S o P o .Q CO £ E O O CO O O C O CO X-P £ CO CO , X -a £ C P CO IE- o o "O 5- £ c ft- o co O flJ ""* - c< o o O CO XC — 3 CO <— CO — X 1 0 — £ O «- XP CO O — LJ tO< < •l CO 1 p IA ) C CO • "O X.C £ £ — 3 — H * CO — !___.., — CO O CO "D --O > CO IA CO CO » . P C « £— IA to O CO to •POOS — -a to C — CO -P — O E to c c — to a O -P CO — t3 C 10 <- 3 01 O C O — I1-.Q !- C O OT3 1 O— O ECM to eo CO <- IA ^ C CO C CO— CO— O I £ IA CO -P p co P xap (A *> O— 3 C P c — o c •o O-D co o>o co CO O C E C IA CO to ' E £ X O t- co CO S- CO «C 3 fflJ.3 CO E— "O «- > O E P X O — £ CO «IA CO — O CO «- E CO — O <- CO CO £ P— P >£ 4J H tA CO tO CO P — . CM 1 2 p 3 co c c • — o CO CO — £ P +> P C 10 O 3 E 0 co «- COT5 co '- CO O CO t- P C •P co O IA t- P CO CO i- Q.J: CO CO P tA — co X > 0)£ CO 10 *> .p co CO IA£ eo a— CO CO P £ N CO 1 E , m c o p — co X !-£ *O P £ i co •OTJ CO CO £ P C •— E CO o — 1- O d- (- o E co CO CO C i_ •— P CO 10 P c • •D O CO CO O C CO O £ XP S- CO CD CO E JC ;> o CO — £ £ *•>+> H 10 CO . •* ^J i to* 1 CO — CO 3 *.> -to IA — CO 0 I- O O P 3 O to •o— X 2 co- co a-P Xco CO— 0 £ — +J (-0 "O c E « to (. o to <>- c: <- 10 4J E E 3 X P O •P C £... o •*• J3 COT3 jj CO CO C -P £ O CO H O — , lf\ •o CO Cv .« p c CO •a d) c o ^ CO 1 •a — •-•o E s- O OT3 1 C Ci-£ CO O E CO — 10 CO XO L. ^ *^ P— C to co co CO C I- 4J-- O to to CO -P <. S C CO O£ OOP o IA CO - 3 E- • CO 0 O O t- £ — OOP P 4J O 10 C O— 3 0) CO 10 CO aco o IA ! XCO CO CD— -P ££—3 H *> CO — , to 10 ^ 8 •a Xco x-a ._ >j (_ ^ O ^ — £ 00 £ O — 0 X ^ ~~ ^ — .. — o 5 •4 — CO X£ — 4-> E- CO O CO IA CO— CO O p p — IA 10 — C CO XCO X CO — Ol a— «- 10 O to O OP •-'- P O d) CO •P CO'D£ O N— P a co s- O o ® — CO •P O£ O 10 .Q O *™ ! CO CO— XO) p !_ to -P— o > IA CO CO «- •P X «C.> 10 ! £ CO CO O P > >£ 0 O 0 01 O OT3 £ CD— C H -- CO CO , fO Date: 9/25/81 11.12-19
-------
  Q
  LJ
  S
  Z
QCO
oo
a
UJ
O IA
  p
  c
a, eg
  P
— 3
a —

i!
<0
o
OLd
Ul W
0. W
XUJ
UJO
  o
l-o-
Z I
1-0
-JO
i-a:
— o
a. —
O-i

s -
        co —
      E E O
      co   £
      CD— O
      I	o IA
            w
         •— O
         i co-
        in   C
      en   — co
      O C >>cn
      -O-i-
      C	O
      co P eo
      weo   t-
      ^- O  •« 05
      O — CO £
        d-TO P
      •O	O
      eo s- 4-
      CO 3 OT3
      £ a— c
      S-   £ CO
      CD— O
      > O    *
      0£— i-
        O >>»
      « O —£

      I- eo co 0)


*
CO
c-o
o —
— X
P O
CO i- £
NTT 3
•— >>—
— £•0
eg o
t- E W
P 3
3 — -0
CDT3 C
C O CO
IA
CO 0)
-C C P
p — ._
eg s-
E P O
° C£

d- O O
O
«- >>CL
CO eg >> •
•P E£ CO
CO 13
? c s —
CD E 3 *-
P 3— O
IA — ID —
CO O O£
JE O IA O
IA
— CO
— 1 O
— O eg
p t— l— •
to O P Q>
— C
IAfO CO
•o o c —
C 1 eo >>
COM a
1 -O
P -ID 1-
£ vo a.
O>TJ —
	 5- -o
_ S. 0 C
O — co
»-£
££ O CO
•P O -0

e _» ^^ i_
E>>ao
- 0-
C| 	 S-£
eo ao
•a o
co c m —
CO 	 >.
£ CO Q.
t- P .0
CO C CO «-
> o c a.
o o co i
ac
CO >>0
£ CO I-d-
t- s ao

•O 1 (A
1 T3 C TO 13
- S- » CO 1 1 	
CO O C CO P O
t- c — « s- c co
CO CO CO -Q ^- CO
aeo N — E co <- o o
asc— oxjoc —

(- UX3 CO 3 O 3
P — CO L. CO d-
IA -it- 0.0 o c s —
•o o > in co o 3
tJ — >> N d- W
— o in i. eo P c
O CO CO CO E C CD "On
eo O£ C0£ C C
O eo -P S > eg eg
a> — i. O a £
£(»4J cocopmo
P 3 -D *• £ — O —

E— c eo in C -P
O 3 co E TJ so —
t_tn AiAocooc
t,- . O
w o — o o «-
P t-1 	 £CCBC
CA >>P p C P CB > O
co eg — — eg — £ o —
3c e c c oi> P o P
IA
IA P
CD C
P eg-o
CO C C
w.— eg
CO E
C eg *
0) *» CO
0)C C
O CO

C ° C
COd- CO
N CD a
c —

£ O CO
0 C

*> E N
— eg C
C CO CO
L. jQ
CO P O
•o « i- •
3 P (fl
1- CO— o
o P c •—
M C
d- TO -to
O > « c?)
T3 t-
CJil 	 O
COO
	 5 CO f-
£ eg 0)
in E CD£
CO &» 4^
je co co o


P i
CO O

O 4-> 3 P
i. 0 —
P 6— C
— eg *•
C u eo*o
I- > C
CD P eg
•aw*
3 eo «
t- co P in
O P eg p
in C —
d- eg O eg
O > A in
(.
C eg eo *-
O O CD
— IA £
P 9) E P
CO O 3 O
N 3 —
— 'O'O'O
— O O C
CO <- IA CO
i- a
p in in •
3 CO C CO CO
CO C — P C
C CO eg co CO
N -Pd- N
a> c c- c
£ CO O 3 CO
I-J3 O W.Q


1 1
CO C IA
«- 0 0
o —
CO C
C E-0 CO
CO CO CO O)
N CO P «-
C I- O O
CO 40 CO
X2 IA CO '-
El. CO
CO C£
p p 3 p
— IA O
C CO -
> CO IA
d- C 3
O IA CO O
E N —
C O C «-
O P CO eg
— PJ3 >
POO
CO JO 5-T3
— PC
— co— co
c
4J C «
IA— O) CO
— c c
T5 V> — 93
P C N
CO 	 C
£ 3 CO CO
1- in P.Q
                                  CM
                         I
                         CO
                         CJ CO

                       LJ >>CD
                       QjQ-
                       x s-a.
                       O O

                          ~: O
                       3-§
                                                o
                                                co
                                                L-
                                                p
                                                (0 CO
                                                c c
                                              U CO CO
                                              Z N N

                                              -I CO CO
                                              — nco
                                              Z O
                                              < «-*-
                                                P O
  Date:    9/25/81
                                              11.12-20

-------









*— ••
o
Ul
^
Z
—
H
z
ceo
oo


0
u •
HW

UJW
O-W
XUJ
LJO
O
wee
HO.
Z 1
HO
3 3
I Q
-10
oce
0-0-

HCS
— H
ce w
O=>
— o
cez
o. —

z<

Ifl
CO

























Ifl
(A
CB
o
O
(_
0.
1

u

•o
S
0.

IA CB
* — C
— Ifl CB
CB X N
.* — C
O O CB
c_ £.
C X —
a X
« CB £
S- C C JJ
CB — CD CB
Q. ^» —
Q. CO »
O CD CB £ CB
O C C 4J C
0) 0) Q Q)
- 3 3 CO 3
CB — — C —
C O O O
CD -P *J » *J
N "•
C E -. «CB -
CB 3 V  1- C C 10 C
— £ CD 0) CO CB
Z O CO CO 0) CO




•o CD
<- i CD — "a
ICBTJ — X 1 4J £• 1 CD d-
C£ CD W to to W (0 l>> Old) O"D 1
CBO-PIO 1 Q) E Q-(l) 1- OIXO.O Ifll O) ^ C CD O
£003 Xl<-CBt-0> CCO«- I*>C C CO— EN —
•P CD CD CD E "5 4-> "O — E •*•> O CBlACBE — £— O — O
CIO*- — '-•PCOC— £ 	 •D— OCO E OO •P'-X
•PEC CD— CCOCBCB3V) W -P C C 3(AOCD i- Ifllfl -P 0) O
C03CDCD CC03>,l-£ C — CO CO 5-c«-«- IO — CO OE
— £> — E — 4->4J£O C£d-O> O O -P *J (fld- 13 CTl & >i 
S-O« — Ifl - CO «0 O O — *> O t- O— IA — O — CO
0>OCB>> — CB-PE3 .d. O 0>C "Of- CBIfl CD O
•PCCO ccoccoifloiflco— iE«i £ — > co IA *> o
COON ifl— £d-.«C— CCBO£ 	 £ «-£ >> d-3
O — C E CBC — T3*J *J — t- — t-COJT) S-P-P*1 CO  4J — (A 4J— «- O'« lfl£ COl- !>.4->lflCB
— O «- *»  CD >> d- ifl ~O C
CD— '-•P EC-O-+JOWOS COWTJIO O^ — Ifl- C0£ t. Q. — C CD
£ — +J 10 OOCBCDCCDCOO 3CCO E— S- "O CD Q. P T}lfl3IO
4J *J — !- O > C to S- CD O CD O CO CO-PIACBCB (-CO Vld- CD C O C
IACCO d- — flj — — S- "O — £CB — CBCOOE** *>C O >O d—
E — — • CON a-a +J— CW3CB— U o — >> CO ifl 0) DOS
OT3«£'»«-EWC 3CO O-CCB +J— C— !- CD 4JIO- E OT3
&. CDH&- CD3lA(UCD'O (Ad-COOCD &-£ cflcflQI d)£-OC
d- CD C ^-- CD -P— ••— £*ECB33t^~ O •"• *— OlCXC CB+J COCBC ^CB CO
C CD *> to O T3 O O Ol O O 5- C — IO Ifli-t. — *> >O— NO1
<-CDN CO >O S-lfll-CU d-COCCO E3OO1O COC O-P IO — C CD
CDNC-> CD d-*J COWCBd- CO • OQ. CC >— T3t-C0 T5 i- — C
+JCCBW 4JCO— C£— -PO T3> 	 CD . — a CB COECB
COCB.QO£ CAO C — O > CO CO— CCU4J +>4>>C *>t3lfl 3 «- CBQ.S 	
Jja — 10 CO — *> <0 >W CB — CO O C CO — CD IOCB«A CTCB*> CO O "D
CDOIOCCO > -P C T3 — I- CD C £ — CO CIS 3 A — CD TO .O COOlCB — £O >>>d-cO
•Pt-CCOJ O30>.'OO'P3 ' 	 -PNTJ — £*> >«-O — -P «- > I-P
Ifl-Pcooi CBCOO-PCB -PlflO CB— CCO CB— C >> CO O -O COCBEC
CO — — £- Ifl £t-ECJ3CBCOCOE > P O > CD £ 3 CD
JEC4->OCO 1— •PcOCOt3J3S->CO OIAOJ3Q. H CO O O E ZOO. Z — £ X.PCTQ.

• • • • •
\f\ — CM tr> —

d- CO 1-
O C (D C
— > O
C E 0 —
O >- O -P
— O CD CO (0
•P d- CC d- O IO
CO O O CD — 0}
C «- X C d- 0
CD "OH OV— — O
O) >> CO C— «- t.
0 X - 0 3 0.
(. (. 4J Ifl 0.
5_
— O
X CB jJ (- n; -P
N £ C *» to O —
>>C UJ 0. O O — O -1
A CB Z CO — i- IO
J3 UJZ P-0 X E CD
CD O N ca X— O£
ci- zX'-xo'.+J
— 4J UJ £< CO «- d-
— Z X CDJ30. XJ3
C H L. H
< .03 O- 03
Date:  9/25/81
11.12-21

-------











—^
a
LJ
^
Z

h-
cez
00
U.O
^^
O
LJ
1- •
O W
LJLJ
a- w
XW
LJLJ
O
wo
h-o:
20-
< i
H-l-
_JQ
OO

a.
^»
1— ^
— ce
Q£ h-
o w
— ^
c£ O
0-2
—
O
Z-J
^ ^
o
IE
LJLJ
CCX
HO
W
o
LJ —
h-Z
W<
^ O
3:0:
0
•
—
1
CM
— -


LJ
CO
1-


































X

_
L
O CO
- p
t- C
a. re
P
— 3
TO —

P O
c a.
0)
P
o
a.
























CO
E
re
CD
c
P
w

 P
re c
i CD f—
> CD
CD— -P
£ O TO
+J 10 >

E— 0)
O TO £
!- 3 • +J
VO CO
•™ i T C
TJ CO C O
CD CD CD 1- •
5, O «-
TO c a. -a TO
£ — E CO P
O TO O O1
CO P O i. CO
— C. TO C
•a o CD £ —
0 C 0 TO

03 X— — C
•P TO O T3 O
TO E CO 0
> TO 03
03— Ol O)—
4J— 13 —
CO — TJ 3 —
TO P C — P
^  TO«l- to —
	 CD TO —
o-ceoo
w —
P O CO P
X CO 	 £
£• — .p CO O>
Q XX—
C C re O
03 o -P t- *•
N — ro X re
c Poa-h-
03
ca













































































1 ~ •
0 •• re
re E o
i. 0 0
+J 1- •*
X Ci- 03 • »
LJ P a>
C TO C
P O E —
C— 1 	
4) P O O
> TO*- CO —
	 03 re —
0 — 0:00
P O CO P
X CO 	 £
.Q — *> CO O>
Q XX—
03 V. 	 _l
C C TO O
03 O P t- t-
3 — re x re
— POQ-h-
o
1-











































































o

X -P co —
£ I Xre O
co — o
-~~ re P
CO Q *> CO£
E ^v re — en
O C O en —
•P 0 X-l
41— _
o P •• o «-
co o E <- re
^^r (Q O Xh~
J_ c_ Cw
CO PV —
CD X -«re
CLJ C 0) O
03 O PO
— .P— re
XC *> E •-
X 03 CO I- 03
>- 0 C
•0 	 q 	
0) O — 03 —
x w per o
• w
2






*
E
3
._
£
0
c_
£
O

•^
CD
C
03
3
—
O
p

„
03
C —
03 CD
N.X
C O
CD —
CO C






CO
COT3 P
C . c eo-o •
E 03— TO X03 —
3 C— — CO CD
— 03 CD CO TO 3 3
O 3 >— P CH
o— Xre CD
O CO C O£- <-
03 P TO CD O
C £-0 XV
CD - - Q. C TO
N 03 CO— TO E <-
c c o-o o
CD 03— ^~E
.a N P ^ co TO en
C TO •— CD C
CD 03 E OX' 	
Jin o • c P-O
P S- CD 03 CO C
— re— £ CD
E TO Q.W —
O 3 t3 CO 	 .Q
*- "O 03 O "O £
t, 	 a, ._ (_ 03
CO It- CX> C
to CD CO 03 —
•0 S. i. 01P • —
C CD «- 3 CO O
CD C£ 0 P CD CO
— P — 3 TO
X TO O XP "O U)
> +J > CO —
TO CT3 TO J3 CO (.
d) O C 03 3 03 O
X O TO£ CO U V

.

C
o

p
re

St
J£
•
re
03
•o
o
1_
•a

c

A 3
03 O
Ch-
03
N  O "D
— o e ro o CD
TJ — O O <- P
p s- a. co
03 CO CO V C
£ 3 — CD —
p TO -a— n *-
O 03 O
£ P CO X-
O -P to CU !0 £
t- c c 3 e o
V 0> — T3
a s- — e £-
t- co o co re CD
03 — 03 03£
P C0£ t. i. 4->
re c O P O
je— co co
03 TO S- 3 <-
p p CD S- to CD
CO C £ O — >
to O P££ O
3= 0 O 0.1- O

.
"

1

j^
O

£
O

X03
LJX3 C
a CD
— 10 3
CC. CD —
OT3 O
-1 — 1-
X <~
O O-O C
N O
Z 	
LJ X-P
CO N TO
C C
CD
•CO
-




































1 -
E O CD
o re c
i- i. 03 «
W 3 CD
— -o
to P O — '-
03 O P *- 03
•P 3 O £
TOTI C — P
CO O — £ O
C S- TO O
CD CLP T>
•o c c c
CTT O 03 TO
O C O CH
o re o -
X«- co .
E XTO-O 03 co
3 S- E XC 0
3 03 £ 0) —
O > W 3 C
TO O C -.— TO
> o E 03 o ai
03 3"O -P C-
4J c. 	 O O
03 0 <- «-
—5 03 O O O 13
C 	 03
E 03 C££ P
TO 3 O O O TO
CD 	 C
4J O -P — ! 	
CO P TO X03 i-
C N£ 0
03 03 O C £31 —
£ £ — 03 — £
h- P PiS £ O

.
CVJ



























to
c
o

£».
TO
0
O

^J
^
£

T3
03

TO
C

c_
O

£
O

.,
_
O
c
03

a.





o
—
C-
c o
— o —
TO — £
03 -P C O
£ C TO O
4-> O Oll-
O S--O
V OX
0 X J=
TO «
03 E CD —
co c re
re s- o 3
a 03 -PT3
Q.03 —
03 Q.O CO
£•- TO 03
p s_ u
p -
E CO — 13
o o c
S- CD C TO
Ct- to CD
TO£ -
S-£ Q.CO
03 a. P
P 1 — O
TO CO TO 3
$33-0
03 O-O O •
•P 03 — <- T3
co 3 co a. —
ro CTCD Xo
i to s-n co

,
~

c
o

V
TO CD
10 C
C O
03 P
•O CD
C O
0<
0

^ x c
n TO
_j
o< —
z o
LJ— C
X O 03
Q. C£
W 030-
— £
CO Q.C|-
co O
._
• co
VO
Date:  9/25/81
11.12-22

-------

^^ fc
Q
LJ
^5
Z
h-
z
ceo
00
1. ^^

D
LJ .
h- CO
OLJ
LJ CO
0- CO
XUJ
LJ O
O
co ce
h- 0-
Z 1
Z) Z!
-1 Q
-10
OCe
a. a.

>. >-
h- ce
— h-
ceco
OZ5
— Q
ce •z.
a. —

0-1

<0

^ 2
< LJ
LJX
ceo
i-
co o
—
LUZ

CO O
< ce
50


.
—
|
C\J
—

LJ
_J
CO
h-



























p
O (fl
— P
t- C
Q. CC
*;
re —

P O
CO.
01
P
O
a.
























(fl
E
re
0

4J


0
p
in
re
5


























(fl
to
0
O
O
a.
I
4J
O

•^
O

a.




























d-
o
—
S- 0 •
0 C —
tfl 0 O
CJZ C
0 a 0
"O JZ
c 0 a
OJZ
O P —
<- re
0 P 3
•P re 'o
d~ —
re ^- tfl
O 0
0 p i-
JZ O
P 0 C
•T—
E 0 re
O P
s- p c
d- 0 0
— 10

0 E X
P TO TO
re 0 E

0 tfl —
P —
10 0 —
<0 JZ -P
5 P in

.
C\J



















































i-
0
d- JZ
O W P
<- 0
I. 0
0 E-o
tfl O C
C (A TO
0 —
"D tfl
C 0 *-
OJZ 0
OPE
S- O
0 P tfl
P ro-
d-
eo *» ^
OO.
flj 43 CD
JZ O
P 0 C
*T"~
E 0 re
O P
<- P C
d- 0 O
~JO
<.
0 E >> •
P TO TO tfl
TO 0 E O
5 P —
0 W — C
P — TO

ro JZ P i-
3 P 05 O

.
CO




















































_
d- —
O —
p
I. Ifl
0
(fl <
CO-
0 CO
•a
C 0
O JZ •
O P<
i. a.
0 PCO
P TO
d. ti-
ro &- o
o
0 .p 0
JZ O O
P 0 TO
"~* D ^-
E 0 P
O
S- P TO
d- 0
— jc
i. .-
0 E TO
P re P
re 0 c
^ +•* O
0 tfl o
p
(fl 0 >>
TO JZ re
3 P E

.
•=r



















































.
tfl
•a s-
0 re
DIP
s.
TOTO
C C
0 TO
in
— ^
•o fl-
ea

— -_
— re
P 3
Ifl "O
._
< in
O. 0
CO i-

0 C
JZ •—
P ro
p
E C
0 0
<- 0
d-
0
in P
E m
o re
P i
P
O W
CO re

.
m










































s_
0
a
a.
o
o











c
d- 0
O —
P
0 C O
i- o ro
re— s-
P P
(« o x
E 3 0

0 O P •
i- S. C (fl
P O. 0 0
(fl > p
0 — ro
0 JZ O N
P P (0 >>
to —
re c >>o

^
•a-o 0 a
— 0 C
3 P 0~
CTtO — J"

— 01 re O
C P
O 01 3 d-
Z Ol-Q O








0
>~
— -3"
P — •
oo
a
S-d-
P O
X
LJ C
O in
LJ >>— 0
Z £1 P 

, < 01 1 -P O Z3"O tfl <- CO re— >> PQ a. 3 •CO IT •o 0 d- >— P C 0 .— 0 C o •z \ - r* •o O JT c re — > o re 0) o ! -0 •a o <- c JZ >>3 TO P Od- — 0 — — > t- 3 O 0) 01 O CHJZ fe^ o s- Pin — 3 vo re as i o m — 0 S-Jf >> — d. P •O (03 O P re P re i- C P 0 • (0 0 C P W 3 P O C O -P O — O Ol— to J3 3 E E 3 !- CT i- re "O re TO 0 0 — O P !- (0 0 C C P 0 !- <— Ifl S-TJ . C o — in P 0 O -P TO TO <- N P X X — LJ O L. X X J3 0- 0-^ C ^ 0. — — O X P E 3 O Od- tfl — Ifl in ui P 0 C 0 re o p i- 3 a — — 0 OJZ Q.P — d- re o P 4-> C TO p p o 0.0 p •^ c s- TO TO E — re E 0) — t- in p (0 0 .a • 0 0 P— > to — O re — JS 2 > ro c o .~ p — ro o i-JZ •a o j: — 0 < a «_ X X J2 P 3 0 CO C 1 0 P — 1_ X 0 p p 3 J3d- 0 0 Ifl — L. 0 a a o o i T3 •• tfl 0 (0 O — •P 0 W "O re c c S- 01 — Ifl 0 p 0 C 3 £- C 0.Q 0 0 Ol > P d- O 3 0O J3 <- Ifl TO C 0 0 O — JZ • in — s. P -P EPS- 0 re o re o re 0 TO O P S- i- 1- C P p p p — X ifl x c 0 01 0 S- 0 > 0 0 P P— JZ (0 C O 0 P re 0 (fl P > > TO E — 01 C 0 •o o c — s- — tfl p d- d- 3 d- or 0 i* a TS — JZ (fl S- 0 — p 01 — — 0 — O C C JZ — •Z. — 3 P -P 1 1 >> 10 — — o a i- >j 0 O. > — -^ JJiJ- 0 — roo Pd- X 0 LJ C >j o o ... p (fl re tfl 01—0 C — -P 0— re P P N 3 CO E 3 E O L. JZ o • to Ifl C •P !- O 0 O J3 — Jp i- o re E re o TO 0 O a> (. e P T3 U5 0 >, JZJZ 01 4J JZ -P P O1JZ C Ol O P — 5- ro d- 3 ifl O 3 0 TO O P > — TO 0 £- in ro c >>> 0 — •a — w C TO C 00 — O— TO — p 0 0 C JZ >> O h- O O . c o — Ifl p 01 ro c C 0 01 p 013 O CO ^ T3 S- xo 01 TD o c ro J3 0 c 0 ro C P 0 3 ._ 00 •o ro<<- P 0 3 CO •a 0 TO 0 — X L. o • re Q — d-O 0< CO o — 4J ^ o ce 3O o Q. 0 T3 0 C i. - re to — L. — 01 E P — (fl CO 0 1 — i. 0T3 p — (fl O LJ < LJ XO h- J3 — fi 0 >, >- p 1- CC TO O — O — < 0 < >> c S- d- TO -IOOP X 3 h- C CO Z3— 0 1 CO >>— C 1 p p C 3 TO JZ CO O P 1 • Cd- > 00 Date: 8/31/82 R Change 1 11.12-23


-------

Q
UJ
Z5
•z.
—
\—
•z.
ceo
oo
u. ^

Q
UJ •
1- CO
O UJ
UJ to
0. CO
XUJ
Ld O
O
to ce
H 0-
•z \
HO

-Id
-10
oce
Q- 0.

>. >.
I- ce
— H-
ce to
OZ5
— Q
ce z.
a —

O — 1
•z<
<0
ss:
< UJ
UJX
ceo
l—
coo
—
UJZ
L~ ^
too
^ etc
30


•
— -
1
CM
—

UJ
CO
1-





























J
3 to

- C
a. co
4-1
— 3
CO —
— —
P O
C Q-
0
p
0
CL
























to
E
CO
0
p
CO

0
p
CO
CO
3


























y
V
0
0
o
!_
a.
i
p
C

X
o
!_
a.












—
0
"*
0

c

^
o
c

N



E
CO 1
II 0 >>
0) C - 1 t- 0J3
•D O CO JZ 4->JZtO T3
>> o 0 01 to P 0 o>0 co
£ -D ._ — JZ C E 0
0 >> >>JZ to > 1 	 i- -0
T3 CO JZ E — O >>
— E 0 to O- — Ci- JZ
CO T3 3 P CO . O 0
C — O PTJ PJ2 CO-a
0ECO— . OCOIT3 —
JZ 3 S- CO J3 0 3JZ C CO
P — -,co P 13013
O03>O «- >> 0 — 0 03
EOC 3 0 > S-JZ O.JZ
O 01313 4-> CO O. EP
5- C — CO C00 >, O
d- 0 >>co S- C JZ 0— Od-
— a a o JZ c o
EPO «>, — d- P — 13
CO CO t- CO J3. PO C00C
0 — Q.0 O d- E P O
! 	 3O CO >> O CO —
P — T3XJ — '-— 0CP
CO 4-1 0 — C d- c CO 1- 03 CO •
coptoco — 4J co 01 co co
to — o 0 01 PCOC >> c —
ET3 CO !- !- O E 3 CO X 0 O
O 0 O 3 O13 OTJJZ
POlS-P T3COEC CO
PCCtOOl O P CO 0 P O O
0 — 3 >j C S- CO 00 —
J3 C 	 O. 	 >> 3 CO
— Ceo— to — > -a E
ID (,_ — p .— 0 C CO CO O O T3
JZ0cocoO JZOE0^^-C
J— t_ 4-1 O J3 1 — OtOJZ O.d- co

t .
— CM
_
0 O
0 JZ
X 0 4J
O 0 co
— c
0 >
-I >>C -S-JZ
O >sP O 0T3 0
X J2 3 — 13 >>13
O CD P >sl —
O to i co jz co
-I — C C 0 >>S-
< O 0T5 J3 >>
JZ Ol— 4J
— 1 O •• O CO— 3
>- o co t- i- o JQ
h- — to XJ >» C O
Z3 < 0 >>P CO to
CO OX 3 P —
1 — O CO 3
C >>£- >s 1 J2d-
PQ.J3.COO
3 CO
• CD —
ON
—
03
C
0
N
C
0
•O J2 13
0 0

V O CO ItO .030 i-S- ^ E
3CO O E— P >>P JZ O-J3 O O UJ !-
d- CO to 3 CO >>— >O P0 d-d- SO
— 5-0 — E— O C03 COT3 "t-
3O— OTO— O— JZ 013 EC— 0 to 0
COPJD. — O >> !- CO O JZO OO3 JZC JZTJ
C03 PCOP d-— O !-• *-OO 4J — PC
0i 	 to 3 P— 0 a— d- O • CO CO
JZ 0 O 3JZJ3. E C CO JZ>>0 CO * EP E
PC3.CO COPI (00 PJ3JZ13— UJ OC O:*
CO O — O 0CO— O OSCOtOS '-O 5-LJ
E>T3 >0 !-«>, EOO 01COCO d-O d-S
O0C 0 CO P0p o 	 t- — OIX!
t- co JZ-o co 3- i-cco co 1C Ei- EC
d-C P0X1 tOJ3tOC|-CO JZ CLd- CO CO 0 CO —
O 13 *•> C "O — 1 O Ol— O 0 d- 0J 0 CO
P 	 Ecoco — o— E <- >, topo< i-O i--P
CPO OC 3C03C COOP — to CO P4J PC
0COCO ' 	 -CTEtOco 0 3 13 0C/3 CO WO
31- d-EW — 3 Ol S-COJ3 D.JZ C O
— PO C00 	 d-t- PCI 5-3PJZ <- O S-
d-C— OPC OOO CO — o 0C P 0 — 0>>
d-0!- — C013O C004-1CO Ol — P P P CO
0O3 PO— CO COP C04JC/5 CO(BC> COCO COE
Cd- COO>j0t00JZ EC > 	 >S- S
5-O— 3 P JZT3OO1 OOd- 0OJ3X> 0CO 01-
0O3 C003 t- c CO— POO P J30 PC3. PO
P0CO O .Q -Q 00! 	 P to — 3 P t00 COP
col- • >IP octocooi-cococo coco
> l»tO PT3« O4J !- JSEffl >JZOC S • >!-•
•DC0 C— 0 JZJZ0 3O OCO— T3X! COT3
(|) 	 jj 03P 0O1PJZ 0— CO 0O E 0 	 0 a—
JZOcoco Q.OCO JZ 	 P JZOi- JZ — d- CO JZOO JZ0O
HCOPd- c/3Od- I 	 >O I-OP HCOO4J 1-03' CO 1-tOcO

• • • • • • •
— CM rO J- — — CM
CO >, — C
-10 JZ— X O
O C 0 >> O —
X 1 0 Q P CO P
O >>— 3 0O
O X >> X.CD CO C 3
—IP .a i co co X3
< X3 O P O
J3 CO 0 0 0 3 S-
— 1 C CO C CD Q-
> — -a o o i
1— O0 Pd- PC03XJ
Z3JZX 0O 0J= —
coo — ^ :£d-po
OS C O <
>- — _ o _ !_
a: < d- >>— >>4-i o o
>tO UJCOUJTJC0
OP— 0JZ OOO
O3CO — Ol O — ! 	 <
ujco >> >>o o > ap
Wl— JZ! 	 JZ>jCOd-
OO +J"D s_ 00
• to-o z s:
o
CM
Date:  8/31/82 R  Change 1  11.12-24

-------

Q
UJ
3
Z
1-
cco
OO
u. -^
o
LJ •
KCO
OLJ
UJ CO
0-CO
XUJ
LJO
O
COO£
l-o.
Z 1
HO
33
-Id
-JO
on:
a. a.

>• >-
t-cc
a: co
O3
— a
eez
a. —
o —t
z<
 X to to
— CO TO
E en c
i. co £ O
4- co a.
to -o E
E 	 0
co co U
CO C
*- E cn—
4J 3 C CO
10 	 C
o-o o
10 0 3 —
•0 — 4>
c c o o
CD O C C
1 — •— 3
>>P 4-
> CO 10 X
CO— O —
0) 	 o
£ — c a
P CO
co to wo
HtJ O CO
ro










































>J
1_
CO

o
u
CO
t—
0
i_
4-

p
CO
c
« •
DIP
o-o
o
10 C.
E a.
CO 1
CO 0
1- 0
p
to 2£
LJ
sz
10 CO
TOJZ

04-
z o

c
CO CO
£-
•P O

xo
CD 4-
c o
o —
P C O
CO O C
if— co
p p
— O 3
Xcoca
£ CO 1
•PCX O
LJ 0)
X to
— o
£ CO C
•PCS co

y








































UJ
z
UJ
1
•o t-
CO 3
•P CO
t.
O O
a P
2
0)
P 4-
o o



1 1 4-
— •o x o
UJ 1- C UJ
1- CD CO C

_! to — ja —
 >>4- O 3 — >>
NJ=O— cocao —
LJ< CO Z^ CO «-
ca o LJ to > >>
_l O — — -1 CO — CX
1 	 CON t-CDO —
3 CO U C 3— CO^1
ca jc •— co co >> ^- •**
•P4-CQ P -PO
£. 3
. a. .ca
— CM
CM CM











CO
•a

c
CO

(J






4- *
O — tfl
co co
i- 1 D P
CDfO CO
co *> 	
C CO (0 X
CD E CO <-
•o «- o
C CD CO
Of IOJ=
O *J C P •
(_ •— CO 10
CO P CO E CD
P CO P T3
4- C TO ••"•
CO t- O C C
O o co co
CD 4J >>
E CD P O C
O to co co
i- P
4- CO-O CD •.
•-v- P c
«- O CO-
CO E CO— >-
•P CO X13
CO CD O t- >>
> -P — O J=
CD 10— CO O
P >>J= C
10 CO S~ *» CO
COJ= O CO >>

-




UJ CO
I-J=
< P C
> >» £
acja-o
0 X

x— o
1- 0 C
U< CO
£ X
u.2"
>— CO tO
1- >>C 10
3 (- O CO
ca o P o
1 CO CO O
CJ= O 1-
P> O
•a — t- 4J —
.- o «- c t.
O— .CO O 3
CO <- CD P E4-
D P P —
O4- co t0 co 3
	 CO tO
— 3 >>J= «-
>>CO i.\- P CO
t- 0 J=
O— CO CO 4J
CO COC •
£ 3 .p to O4-
PT3 CO <- P O
1 w E 1 P X
CO I.-O— CB CO
£ — O tO >
•p to u a. o
C CO CO U
E — TO ja co
O CO U C <-
t- P — CO >5
4- C- CO «-
0 >» .E 0
CD O <- <- 4-
3 u on
•o — co -P — *> •
	 £.— 3 C -0
10 — P J3 (T CO —
CO *> CO 	 0
cc. to EJZ— aco
C\]












































01
c

X O
C- L. — •
flj-0 —
<0 >»
C CD <-
CO J= O
T3 P CO

O P P
0 CO »
CO I-
+j O— •
4- +J to to
CO O 3 CO
COTS P
CB— j— nj
C. CD 10 —
g CO O
O~5l« CO
CO (0 CO
t_ CO *> E

P 10 O T3
CO U C
> CO CO
W P— TS
in — —
CO 4- *> O
Jt 0 tO CO
«
































CO
TO

c
co

Cj






4- —
O O II
c >>o
«- CO «- C
CD.C .0 CO
f» *>— co X
C CO OJZ O
0) E C P
n co d)4-
C CD.C E O
O£ -P
O 4J CD *- CO
c. E CO CO
(DP £ O
p co— p co
4- CO O «-
CO «- 3 P
o-o .
CO 4-> — CD X 10
£ O 10 +»— CO
P a> CD co .an
~3 (. — — —
E CO X«> C
O 10 t. U) CO
s- p c o o X
4- co — co a. o
•~5CO £
i. +j p-ota
CO E C CO C C
•P co O E co co
CO CD O
>+> - .c
CO <0 — X  CO CO X
S P to E — £
-


CO
c
o
x*>
J3 CD
o
CD<
P
(04-
— O
^^
t- 10
O— C
co to —
£ Xs-
eo O X
z cjz
CO O
-£ C
X+> co
0)
2


Date:  9/25/81
11.12-25

-------

_^^
o
U)
^
Z
—
H
Z
0£O
00


Q
LJ .
HOT
CJLJ
LJCO
Q- CO
>c* UJ
uo
o
coo:
HO.
HO
sis

_IO

Q.Q.

^ J-
H OC,
__ ^
cr co
9.0
oez
a. —

Q-J
z<

•o t
3
t- J- tO IA
CO O C «- CO
IA — (B O
c co cor: co
co£ P -P t-
•a P c o P •
co to
o P o ->>»
o co co — -a
c - u n —
CO I 	 co — C
P O 	 CO CO
tt_ p.p >> co -a
£ co *»£-o c
P CO P C CO
p— to a
E (1) >>E - E ce >»(]> <~
co££ p-a
t- fl) PP eo X
a> P co a> — £
•P - C
> o 	 o co
or: xco co X
P P£ 3jC O
IA P-O P
co .
2 0 E to E o

.
CM






























TO
CO

c>-
—
P
C
CD
•a
—

CO
c
0
Z

_
— 1 CO —
i co • — r: co * -a o
fl) 0) C|_ i a>£ to CO 1 to c,. pp g — — . . ft- C£
•O <- I- Oca CP-PE<-Xfl)OPI too) co >>CiAOfl)O
3 0) air: — — ocofo or: E tot P o cu i o
(-tor: <- c P nEcgcor:o— s- 3 P P r: 3 — to t_p —
acp co— a) noto PCC co-aco o— COP con*-pco CD r: co
— O to>>E 3L. w o co co IAOE 3>j £0) coicocon coot
COCO C«- S-tt-tflCO >> >> C k -O£ *>E COCPN C 	
£+>-o co-o— o c «oo eo a— O-P £ co— s- co — >»
*>cc TJ>> to-o 	 co -o>> s-co >>— a 	 o -a *J
o co cco£ co co — -P -.«. ca>£ a e — >> ico>>co ca>3
t>- o or: P • OPPCOCOCOO o£p — r: ui3<-i_v) o£n
O CO OPO)I- — C C > — CO CJPfl) ID— COP 3-OOP-O O-PI
— -P <- ECO Pcoo >>Pto s- E £co — CD O — co 3 — s- C
co— co COP £ tooutAi.coco COP P3 PE fl)tar:(uu COP
(fl — — p co — P 3CO COU— O PCO— "O C 3COPCCO PCO —
COP>> t>- coco co-oi- CO>>CO> co co o — co co COP— co«- cu CD 	 t-N «>+> —
£P£ £UCO£ £>£OIA IA CO £CO>>to P — p CD o co-o CD > PPP ^-— P CD a)
— Q) —5 &-<]) Q.&-3 — (un ""j^ nc ^-o C3 co >-3 1.
E >> £ Efl) E E co>>E— Efl) co con Eoncoi- Ecu
0s- • o to — o o c o r: to o to co to OUIP-P o to
t-o— IA -S-PC-O ' — o p-oto S-PC £to co t- c— 3 C-PC
ci-co>>a> ci_co— *-c 	 coco > coo) c^co —
££P —3 CO-O COPCOECOO. ~3CO CO COO) WOIAC —3 CO
t, jj 4j CD i_ w c s-oico3 t- P EP con L.EC c <- P
> P co O PO 	 CD CD C P co O CD C-cOfl) pf-fl) pi- CO PcoO
CO t- CO CD O CD TO C|-IA>PCO CO CD O P Cj- c P COOP COCO— >>> CO CD O
> 	 O >+J P > fl) — 4) — CO >P CO — CO COCO > Q. O — C >P
fl)>»coco coco— eo a> £ s- <- o — « «)«> 	 a>eo— coco— fl) Q.£ o co co to —
P£3£ *> 	 +JPfl) >e P — >> PP>> P-0>> P — O to P —
tOp-QP 10 fl) — >> CO p "O W (- — (00) — t- IAC<- CO <- tOt-OCO-O Ul 03 —
(0 fl) — 0) co£Pt- to tt- to C — O I- co£PO COOU COIAO COP 	 C CO£P
3CEIAE 2PIAO S O CD COTD COX) S P U) TO 3CUCO 2 CO CO 3EIACC-OCO ?PtO

... , . . ,
t*» * ITS VO f>" — CM
1 p
£ 3
E >>P<0
o n co i
«-c sc
e>-— fl)
L. JJ y f"
0)-D W O -P
JJ Si «...
*• ^^ ~~ "~
C0£ X.C >
- 0 ^0
>> c o — -o
i- co — co -P —
o >>o £ co a
coO C J-> O<
£ CO fl) —
P CD P S 4- O —
fl) C 3 	 O
Z OflO — ! 	 £
P >>CD >>O
— to -a 4-> *> s- o
>>0 C 3 IA O —
P< CO CQUI CO <
3 1
00 C
Date:  9/25/81
11.12-26

-------

^ fc
Q
U
3

E
TO
CB

p
W

tt)
P
in
TO
3
























>
•o P
C CD 3
O£ja
O P 1
f~ c
CO P
•P TO —
d- TO
CO <- 3
o-o

£ o in
•P CO CB
— 1 '-
E CO
O 
S* P C
d- CD —

i- p
0) E C >
•p TO o a>
CO CB U P
> P TO
CD (0 	
•P - >>
10 CO— L.
C0£ -P O
3e P in a

,
to








































^
in
L.
!|
CO —
P O
c a
o
o •
CB

— CO

P ^»
(0 S-
U
1- CO
CBf
P P
10 CB
CD E
CD —
£ >>
P P
3

O 1
1- C

— in
CD TO *-
3 3 TO
.~ •_
in wo
CD CD C
ce t- a

,
*
































































.
•o
«

t.
o
a


^j
o



i

£.
CD
P U
in —
UJ —

^ *-
So
CO —
a>£ o
P P C
TO CB TO
>> -P
i-fc-U
U 0
a £
£ C P
*» 0-
CB— >
Z P
co -a
— u —
>>— 0
£*-<
UJ


















































•
•o
CD

^
O
a


^j
o




^
J3

CD 1
P£
TO P

SfcJP
c
0 O "—
^ ^
O C
TO O-O
p P O v)
CD «< —
Z U O
— O£
gher C(12)
by Esterif
Methacryl i
C(12) Aico
X


















































•
•o
CD
p
i.
O
a.


^j
o




i
TO
o-o

C 0
— < <0
t. —
Q) O O
P— £
(0— O
LJ >>O
J3 TO
£ 10
(0 P 3
CD CB O
*>Z-
TO <-
— d- TO
0 C£
CO O P
iC *^ *^
p p >
^


















































•
•o
CD

t.
O
Q.
E

4J
i




c
0
— £
1 P P
£ TO —
•P O >

Z d- "O
•_ •—
^ ^ O
£ P
P UJ O
Z — O
Norbornane
acrylate b;
of Methacr;
D i hyd rocyc
i
M




























.
UJ
5
^
X
1-
X
0.

^^
,J
^
^
LJ
X
^J
^.
X
1-
bJ
1
CM


W
«
CO

o
p
i-
CB

CD
ce.





w
LJ
t-
— i CD O CD
< *»— -o
X TO P —
>-— TO 1- —
X TO WOit
43 CD £ *-^
-ȣ-0 CO
d-o. c<
f O 1
o"a- 	 •
1 -~-J3 TO r- V>
O £»~ —
-~ (0 PO O
r- 1 U£ £
1- OJO.£ O
~-~P P O
Or- 10 d- 	
r-LJ O ><
• o"
a-
CM





CD
C
CB
3
«
O
p

^
CB
C
CD
N
C
CB
CO








•P S-
03 —
3— CO
•OCE
O O in
i. £~
Q.E-D
Q C
CD TO
£ C
P— ., .
TO CD E
E P C TO
O C— P
1- O E O
d- O TO TO
E >>>>0
TO TO X S-
o> E o a
(_ (.TO
P E-0 O
w O >»
P£d-
(. p o
CB O •>
PjQ CB V>
TO P P
>— TO C
-d- 3
CO 	 O
£ P 3 E
t— W 10 TO

.
~



1
XT3
CD C P
£ TO C
O CO
— CO E
O E CD
>>— 0)
o x c
O TO
E <-
0 CD <-
Z «-£ TO

-------








*-s
Q
UJ
3
Z

h-
Z
ceo
oo


a
LJ •
1- CO
ObJ
UIC/>
CX CO
XUJ

o
cocc
l-o.
Z 1
I-O
33
-IQ
-JO
OcC
a. a.

^- ^
h— ce
_ l_
or co
O 3
— O
CCZ
a. —

Q '
Z<
<0
15
LUX
CCO
1-
coo
_
bJZ
H— ^
COO

«- C
a. co

— 3
TO —

•P O
c a.
»

0
Q-

























V>
E
TO
s
CO
a>

CO
TO
2
























to
co
a

c
<_
O.
1
•P
C.

T


a.


































(0
4J
C
3
E 0 0
TO e— •
V TO C"»
•P TO 9>

— s- CD
CD TO O 3
f e -
•P (OT3 O
C -P
E C CO
8S.
TO ->O
C>- *» TO
C— ®
E O C C
TO O O CD
CD EN
I- >>E C
w co TO a)
CO E J3
i^
«- CD E «
CD -P TO •
•P TO -P O)
TO CO O •
$ C TO CD
CD CD — ^
•PT3 O
(0 C 1- -P
TO O Q.C
> O TO CD
0 >
CD +> —
f CD d- O
I 	 jo u>

,
CM




























































1


•
Ul
Z
o
^.

0
Z

>^
III
X
o

£
o
4->
c
a

3

—
0
a

o


i_
a)
Cv-
CD
an



TO
'J

~.
O
C CD
a> E

a. x
0
E
O CD
i- C
v o
c
E a
TO X
•P CD
Of
TO O

00
<- >
O.O
TO
o •

CD
1 C 1
O CD O
i- N (-
O C O
_ CD —
O 0 O
aT-D OT3
C 1 — 1
CD Of a
N 0
c .— .
CD CD ^ CD
n c +-> c
O CD 1 CD
s- N-d- N
O C -C
— CD CM CD
f J3 *• <*>
o o— o

-o *o
0) — CD — CD
Cf Cf C
CD O CD O CD
N — N TO N
c-o c x c
Q) 1 CD CD Q)
CO E J3 f J3





1 O
1 4J C . — 1 — 1 *>
<- CO O 0) -P TI 5- (0 S- OJ 1
CDUC tOI.JCCI 0) -D CD3 • 0) 0)
JJ !- 0> 3COCOCTO'- COO) 4J t- T3 O -P i- 1-
d-O>>N TO 	 CD TO (0 TO>»+J CKO— CDE— d-O
nj j-> ra c o « "a c P -f .QTOTO co *^ « fCD4^ CO-PCCO
OEV 30) OO) EC O CD .P-PCO O— O
OCD J3 CDT3d-N £ 	 CD — CDCD«- (03 CDCDTOC
f— J— f— OC CflWf f !- «- f~J E>jTO f~3*i«D
4J CD— . -PIO CD TOCO -PCDO +J CD C OV1O -PVCN
— -o a)-pja >3-o a— ._ (, oc
E-P+J— E«-C ITOCD E af E4JTO V+j— E+JOCD
O CD « O O 3-O (- O > O— O OCD-P CTO OCDJ3
'-~3 TO '-»OCD3 '-—3>>O
V CD C>-4JE4J-P*O CK-P^* d. o CDE'Q'*- CO^-
ECO — TO TO TO -P CO COCD EO Cn-P— E E O
TOTOCD— "DTO C >— «J. T3 f 'DCO 1-TOCO "OTO —
CDCDN'- CD 10 — — TO — CO CD 0) Ol 0 0) >> CO CD 0) CD CD — f
CDPCO- cj) — t- cawocD oxo — 01 j-> to ft-s- 01*^—0
t- 10 CD — CO I-IOTOO f C t-TOf L. in £ . O -P 1- W 	
TO .Of CD TOCE— *> — «!- 4) TOf TO CD CO -O TO JJ TJ
fCDOOC f — (0
— — "DC — C S- ! 	 C.O — 3 -O — WC O *» — S-T3
•DCKf^CD T3O-OCD C>-C03 TJO— -D4-B5CD — -P — T3d-CDC
OOf J3 0 Cf CDOTJ CD 10 O JD -P C TO OETO
<- o ^ co c7) t- i- e CD >-3CD ^ mo cna>co i- o
CDl-CDCDt- CD-^ — CD TO-P CDCT^.* CD^-O^- 3> CD^-COI
•P CD "D E O -PC «f P « TO -P CO CO •PCVZO TO V> -PCD — Q.
TOC03O— CO CO O TO C — C TO CCD TOCO — Ot-C TOCOI
>CS-(Of >*> — -D > 	 > CD — C >CCDf O— >C 	
O CD O O CD P 01 0) CO CO ^ (DfTOV CDCDfO -P 4-> CO CD O) "O 03
•P-D C -Pf W > -P -P E O P -P -P N P-O-PO COP 4->-D 3
(flCW — "O IOW3— (OC«0— CO CC (OC C OJTOC COCCDT3
CO O f CO C CO CO CO O TOO f CO <*- O CD CO O •»-> O CLCUO COOf —
2O-P-PTO 2jeoco 2OTOO 2OOX3 2OTOE lOi-o 3 O P «

• ••••••
— CM CO ^ if\ >«
«-J3 C
a> a>
f CO N
en CD c
— C CD
X CD CO
N
•o c *-
u c CD o
Z TO CO
LJ C
N co-o o
Z C CD —
Ul CD -P -P
CD N TO TO
o c c c
ev Q) .— —
O ja &. &~
-I O 0 O
X « 	
O Of f
— oo

•0
CM
Date:  9/25/81
11.12-28

-------









•— •»
Q
U
3
z
—
H
z
ceo
00


a
Ld .
h-CO
OUJ
U W
a- W
XU
LJO
O
(OCC
HO.
Z 1
HO

-JQ
-IO
oce
0-CL

X- ?~
H-CC
— 1-
cc c/>
03
— Q

a —

a _i
z<

v.
> •
CO CO CD
x: o> E c
ox: CD
co p — N
— — C
•O (, 	 0)
O -PX1
(- 05 O
Q) 5- !-
•P CD CO O
CO 0> O —
> cox:
05 COO O
•p-o —
10 C COTS
co ox: i
S o -PO

m
00











CO
Ul
z
<
X

LJ
s.
o
K
o
_l
X
o


•
M
Date: 9/25/81


c
O 0
COXI C
c «- —
O co N
— o
>>
x: •.<-
P E CO
CO i- Q.
s o a.
<•- o
«o o
CD S-
•o o •>
	 CD
s-x:-o
o o —
— i_
x: .0
O CO-
TS X:
	 o
>>s- co
x: o «-
p— p
cox: co
s: o P



^
S- V)
O 3
V) V> 3 O
CD C 5- CT—
00 CD — S-
E COX! W— CO
CO S. !_ CO >
CO P CO > 0
S- O CD — T3
P"O O -0 P C
v> c (- > > co -
CDTJX: o co
p- i. -0 •
CO OT3 CD P O (A
> CO CD X) C Ul C
CO P A CD O
p o co 3 aox>
10— C S- cfl— t.
co s 	 o P eo
> O «- to C <0 O
— O — 3 0
s-x:— wco co s-
co ox: c P o-o
> 0 0 — C >>
o«- N o »x:
P ~o ~a — o m
>,c — P-O
x:x: co co >>— co
o i- co co P
c in in p E w co
CD C P 3 C
3 	 CD E E •-
CTCO CO C CO 3 5-
P W CO— O
CD C CO S-T3 —
x: o«i- .c *> ox:
1— O O 1— (0 U) O

, ,
— OJ
c
o
— p
O CO
1 C C
O CO —
f-x: s-
•o P o
>»CO— CD

o —
>i>
•p cxix:
CD— 3 -P
E S-CO CD
o o s.

ox: c«i-
— O CO O
x:
o






































1
CD *- T3
p o co

CO P <0 CO
> C CD C
CD O —
s. aco 5-
co in s_ o
> p-
o> O
ex: co
E— i-
i- ti. CD CD
d 	 w 4J
I- CO
E 3 C C
co a— o
CD S- XI
S- CD O «-
to .p-o — co
c to — x: o
s- CO cox: o s- O
3 S- PXI CD O V
tl- p O CD
- w— E
3 S- O
in s- 3 f-
CDd- O
CD P 	
x: co 3x:
K j to o

.
ro





























II
t- P— >>O
co wx: >
o co o co  CO CD CD
s- s-x: o
•a » P co
>» x: co<»- s.
x: H- P o P

,
•*





























.12-29
i
^
C P
O fl)
Q) O O
C 5- 4.
0) CO —
^~ o ^**
>> 0

p e"co
CD S- S_
E 0 P
4- CD
*O P
CD S-
•o o -
	 0)

O 0— CD
— s. a
x: -o a
o cu — o
•ox: o
	 o
>>s- co -
x: o s- CD
*J— P C
cox: CD CD
£ U P —






1
a. i
CD CO
in i o - i
3 — CD —
"O *O fl? ^*~ XJ ^
CD — C 	 O
CD 0 S- S 	
> w_ — x:
CD co 3 >>x: P
P E CO S- co O CO
CO O CO E E
> S- N —
CO O P — — * >>T3
p P c — ex: CD
to CO CD CO O P P
co s- a s- — co co
i co co p P E c

, .
— CM




— CD
co c
E co
s-x:
CD P
x: CD
KS

^d-
XI O

CD C
c o
eo P
x: co
P C
CD —
E s-
0 O
s 	
ox:
— o
x:
O





































•o
CD
P
— CO
> c
x: »—
P to S-
CO P O
cox:
CD <0 O
x:
P C 5-
— CD
E cox:
O P P
s- c o
>co
O CO
co E •>
CO
O S- "O
._ <]}._

3 S. O
— x: •
3 CD O to
05"O CO
	 c
P S- >>CO
c ox:x:
0)— P P
ax: co co
OT o e E

.
CO



































































c c

CO CO
E P
C
CD O
x: o
>j
E co
0 E
i.
d- s.
CO
C N
O —
4J CO
3 <-
— p
0 3
10 0)
C
O
— to in
P CO P
05 Ol—
3 CO
CO S- tO
O CD
-a E
CO f- 3
4-> O —
05 WO
coxi o
3: co to

.
•*































-------

o
UJ
3
E
H-
ceo
oo
u. ^
O
UJ •
H tO
O UJ
UJ W
Q. W
XUJ
LJO
O
wo;
1- Q-
Z 1
(-O
33

-10
oce
Q- Q-

^_ ^
H- ce
— h-
CC W
03
— Q
or z
ex —

O -J
<0

JT ^
< LU
UIX
ceo
i—
wo
UJZ
wo

50


.
—
1
CM

LJ
CQ
I-



















y to

!- C
Q- co
4-
— 3
CO —
*» O
: o-
0
0
a.
























to
E
CO
CD
1_
4J
W

CD
to
n

















to
CO
CD
O
O
c_
Q.
1
Jj.
C
I
T3
O
t.
0.
























g
3

•o
C 0
— to
CO
E C

<0 CD
f -P
4J C
0
E 0

t). CO
E
TJ
— SL
0 CD
*>>
"TJ
!- CO
3 CO
I). 01

3 5-
to CD
.Q •
4J t_ f CO
S- -P !_
TJ 03 4J
>>>>£ OJ •
ft. 4J 0
CO C C
CD -Q — c a>
•P C CO 0 —
3 O P-Q >J
— O C S-f
— O O CO -P
O to U O CD
f














































^j
93 CO 1
f E co •

(-•PC
E as CD co
0.0 -P —
t-^a X

•O Of 03
— to 5- O
O CD t.
CO (O O O
CO —
O Ol «f
E 0
t_ 5_ 1_ t_
O O O 03
— 4->ct- a
f 0 0
o co <--o
0 03 0 C
t- S- — CO
•o f

f 5- 01*
CO CT3
03 "O 	
4-> C CO 5-
3 O -P 0
— O C —
— CD Of
Q  E O

S- C. t,
O 3 CO
4Jtt- O
CO —
C 3 *CD
— to 03 C
t- -0 —
0 C— «-
	 CH 0
f CO 	
0 4-> 3f
C tO 0
01 O--

•P C
Xc co
E co 0
o E .a -
S- t. Q3
 3 CO-
CO S- "Of
> o— o
03 10 5. CO
•P O S-
<0 tO — 4J
CO CO f CD
S cno 4J
f

c
rija
03 CO
•oo
o o

f C
o o
co —
i_ JJ (P
4J WO
03 C —
H*— *-—
.^ *^»
C 03
O— tO
f f ••*
S.OC3
CO
O




























f
CO CO —
CO C •.—
>— 0) CO
wo e^o
o -P— to as
— C i- JJ
•P O OT3 CO
tn o— c c
3 f CO —
o «- ^o
O S 03 —
CD 3 3T3f
f O- 	 O
4J--0 «-
— o o s-
E CO— 03
O O f f
! 	 « O -P
t>- *> CO CO O
5- 3 O •P'l- •
03 CO to CD O 10
•P O P -O
CO O to C
> 4> — C W 3
03 C -P O C O
•P 03 tOf 3 Q.
to 0.3 s- o E
co to co co E O
5-^0 0 co O
B
CM











































t.
flj C
4J O
cof

CO
03 O

•PT3
c
S co
o
i- O
c_._
4J
S to
CO 3
03 CO
i- 0
•p
CO C
i- CD •
CD 4J CD
4J C-0
co O —
> o «-
03 O
•P X-
to cof
co E O
> CO
f s-
01 CO 4J
f CO 03

.
CO










































c
1 O

X 3 ^
co to co
e— o
•a
O) "O
c c c
— O CO
f f
to <- >
CO CO 01
> O"O
t- *<-
3 P O
t)- (0 —
— Xf
3— O
to co o
•P C
E CO O
o o e •
S- CD
d- C S-T3
O 3 —
!_<-!».!_
CO 	 O
+J 3 —
CO C tOf
>— 0
CD CO -CO
4J 4J 01 S_
to C T3 -P
CO O— CO

t















































1 C
CO —
t- CO
•p J-J
03 C
•P O
U
C
0 X
f> CD
!- E
CO
o— •

o — -a

4-> CO S_
o
E 0>—
O Cf
1 	 o

!_-0 -P
01 o)
4J CD 4J
CO 13
>— c
03 i. O
•P Of<
to — S-
CO f CD
5 O O
f




















Date:  9/25/81
11.12-30

-------

^^
o
Ul
^
Z
—
I-
CCO
OO
LL. ^^

o
Ul •
t- w
OUI
Ul CO
0- JO
XUI
UIO
0
WCC
H-0-
Z 1
h-O
-JQ
-IO
OCC
CLO.

HCC
— i-
cc w
21
CCZ
Q 	
0-1
z<
>
m JJ n
i- O
P 3 0)
0)T3 C
1- O CBO
c a>>ui
0 1 -C
J2 O PV
s-o a> o
CO
0










CD
C
03
N
C

f)
8
o

i:
0






CO
3
t3 1 O
C E X —
CO 3 03 S-
— CO
c-o >>>
O O C
— co eo"O
P C
CO CO -CO
N C C
	 o •>
— CO— O
to P P —
t- C CO P
P O N CO .
3 O— 3 W
4) — CO «3
c en co U c
c *- o>
e .- 4J s- N
O.C 3 O C
s- co 0) o>
*" >c~o
y> «- o co P
p 0) i- *~
CO PC,- V C
> CO O O
CD > V) L-
P P CO O
WO — CO —
CO C CO 03 ^^
i co co o O

,



CO C
s- O
ui co —
z ap

N^«-
Z W P
Ul 03— 03
CO C Z C
O 03 0)
CC N >>N
t- C.Q C
— 03 03

58?8
O P P O
X C O.C
o o o
1 S--D
e o cd-
— CO O

• o
00
CM
























<- 1

g c.
O CO
S. CO Q.
co-
co T3
C 03 C
03£ CO
•o -P
O P CO
O CO P
t- 03
CD S- E
P O
CH P 03
co o e
03 O •
03 ~5 <0 CO
*» CC
P— 03
E 03 CO N
O— 5-P C
«- C 03
<>- E O J3
co O O
S- 03 t_
03 P >>P
P c« co-
co EC
J Q) Q
P P~ O
COd- -P£
S O V) O

.
CM



















































— . ,
c^ •— 03
o P c
CO 0)
<- N
03 CO C
CO «- 03
c eo .a
03 ao
•c «-
C 0) P

O P C
<- 0
0) P «-
P CO O
c^ ^
CO «-£
o u

£ o a
P 03
— ,03
E 0) E
p o
i- p «
c_ 03
03 E CO
P CO P
co 03 C
* P O
03 CO CJ
P
CO 03 >>
CO £ CO


.
ro




































03
C
03
N
C
03
O
l_
p
._
Z




•o > «-
P ffl 3 P C
co .a 	 3
N OTJ-O
— *- o — -Q
— P 10 CJ C
CO— CO CO
t- C CO
P O C t- «
3« 	 O OS
05 O CO C
C— *> >»03
£ C P N
fl) O O — C •
SZ U C 03 03
P OJ — A C
£ P— O 03
E P O CO i- N
O 3 JC P C
i- *- •O 	 03
 O U£ C
> 1 - X 0
O <- P CD T3
P OJ O 03 03
« p co >>e P
CO CO 03 C O U
3 > 5- CO CO CO

.

1
C
03

^> O
J3 ^~
p
0) ••
cz
03
Nd-
C O
03
a c
0 0

•p p
c c
81
O O 03
	 C
Cf 03
OO N

E


Date:  9/25/81
11.12-31

-------










«"^
Q
UJ
Z3
2T
_
t—
2T
0:0
oo
IX. ^— f

0
U •
(-CO
O UJ
li t (/>
0. CO
XLJ
ujo
o
too:
t-O-
Z I
I-O
-JO
-JO
Odd
a. a.

>- >.
H- C£
— h-
ce w
O 3
— o

Q. —

Q-l
z<
<0

2 2

CO

CD
.p
Ul
CO
jf























Ul
u
Q
o
O
Q.
1
4J
C

i
o
i.
0.

















CD
c
CD
N
C
CD
a


o
—
s:
0

o

o





"i X
C C 13
— CO CD
C CO -P
O *•> *t3 CO
— c c c to
•P O O CO t-
co O— -P
N -P *C
— U) CO >> 3
— C N 4->
CO O 	 <-
S 	 -oo
4J *•> CO 	 ^
3 CO 5- OT3
0) i- -P CO C
C CD 3 CO
a CD <-
CD O C Ot3
£ CD
•P WE >>-P
C O -P CO
E — s 	 C
O £  -P CO —
«- 1 — X£
CD S- CO — O •
4J CD in co ui
co P d o
> co E ui 3 —
CD > 3 Ul O C
jj ._ gj ._ OT
WO T3 O *- O>
co c o X co <-
;t CO Ul CD > O

~
£
c o
CD —

C 0
CD —
O 1
!- 0
—  C
O— CD
— Z N
a c
1 X CD
•^- n n
*
to


CD CO 1
C S- CO 1 —
1 CD O S- O £
CO O 3 £ 3 C0~
1 £ CO — •> J-> — »— "O
>, a£ o c co N i
£ CO -P N CD -C to
•PCCC£ -CDCD »
CD COCD-PCUCOCVJCD
---~ja c c CD— -c
«CDCOI CO CD — "D— CD
CD C— it S 	 >> ~-3
CCDO-O>>S-. —
CD£Nto3£CDCDOO
N*JC — 4J ac C -P
C C CD -<>- a-* CD CD
CDcoJ3CD'~'co— '-•a -
US'- C^C£0)CCD
O -. CD ^- CD CTl£ — C
»3— 5-OCJ — P CD
CD — O >>N CO O C «S-
cwcac NCOCDX
CD IU CD>CCCa
£ .£— >J3 CD CD CD CD
•PCDaco CJ3£O -
ac — *a> acoo)
COCD-.OCDUl'. i- C
C N CD N C X cD •*£ cD
CDCCCCD^-CCD-P^-
G>
ooocoa




__
~- 4^
CO C
E C CD
s- ui— > -a c
CD CO— CD E £
•POJ.PO -P3COO-
CO C Ul CO — 3V
2t^o ""Ooiuic
0) C OT3 O O C CD
4J CO C O — Ul —
Ul 4JCO U1O1C— >>
CO CO CO WC 	 X
> — £ » CO — CO O
c 4J CD +•> -P n
«-O C t-cOC-PC
CDEU1CD CDCO£CO
•P E — ^ -POOO)
C CO — >> CO — — «
co OX > -P E — CD
0 C O U co C
(D— 4J- •PcocD'i-CD
•OCOJTCD WS-S-03
•p cnc co  Ul>sO
O O— 3 W -P 4J
4J O — « 	 CO-
CO c^ o CD — -P «
t-XO-P POUICCD
•D CO C 1 (D CO C
£ E >> « CO S- C7>3 CD
>> -PCD- OCOi-CTN
CD E — C CO CD-PTO C
13CO-PCD£ "O £*~CD
CDCN-P £ 0— £1
cpi-aca cu-puico
£W3CDCO £• 	 Eul
1— Ul CTJO C h- > "O Ul CO
f f
— N
CO
— O
P
Ul 4J
— £
a o
>>-J
•a
Ul CD
•PH
0
3 —
•o eo
0 0
LJ t- O
h-0.
O  S-
co
E a
o
«l- O
•P
E —
co a
CD
t- c

w co
4J
!- C
CD O
+-> 0
CO
•y >>
IO co
•P E
Ul
CO t-
> to

to o
£ O
1- 0
.
CO





























































1
4J

a>

». 4J
CB£
a> en
£ C —
4J .— —
ca
E -P-O
EC CD
0 >
ci_ o —
o
"O >> Ul
CD CO ui
> e —
o -a

CD Cd-
s. co O
+-J

CD O>*>
•P C —
eo— -P
>- c
CD P CO
•P 4J 3
ui CD cr
CO Ul
3^ "~ *
Ul — Ul
>>- eo-
C — E —
< 0 u) 0
.
.sf






























































e
co
a> i i
•P C -P CO
Ul O£ —
O W—

— X— 4-*
— CO CO
+J E CD —
Ul £TJ
1 (- -p
CD CD £
ts U) Ci_ o
«- C O -P
3 CD CO
yo >>ja
C -P
» o— 01
£ O -P C
*> t. c~
 E
•P O Ul C
CO CD CD
>~JCO£
CD CD -P •
•u c c
ui *» 	 o
co CD co 	
3:— 3-P 0 -P

in






























































_
»cq ui 5- t,-
T> 3 -P CD O
— T3— +J
O — eo co >>
£ CO Ul Ul > +J
Ul CD —
CO O i- CD£ -P
>— 4J Ul C
t— * CO CO to
— 3 CD *- > 3
co *- O>— ty
O — T3 3-D
— 3 3 Ul C —
E ui— co —
CD Ul — CO
£ eo «E
U .. L. L. O Ul .
W CD +•> — —
O O £ 3 *> co —
£ >>d) Ul O
*> -P— C 3 C
Ul O CO — P
E — O. - O co £
O «! "D -P 53)
4- C T3 	 C —
<•- O CD O CO O —
0 -P CO 3 O
Ul to "O "O
01 >> 4-> 0 — >> CD
C CO 	 Ul TO >
— E a t- CD E —
— —Hi. 0
*J J£ CJ «t- 4J Ul
•P C CD — T> CO Ul
CD CO i. 3 C£ —
v> -p aui co P-O
.
VO


























Date:  9/25/81
11.12-32

-------

,^
o
LJ


H
tro
oo
LL. ^M»

o
Ul •
HW
OUJ
LJCO
a. to
XUl
UJO
0
wo:
HO.
Z 1

-JO
-10
ocr
O.O.

>. ^
HO:
— H
tec/)
O 3
— Q
ccz
0. —

Q-J
Z ^
<0
—
>—
i. t. p-a
3 CB— CD
O.P P i-
4- C
CD CO CO O)
JT 3 C
-P i* t? —
O O
E P— W
0 0- «-
*- CD eo CD

CD to C
L. 3
CD P CO
•P CD C
CS~jC 0)
^ — -C
a> E eo P
•p co P
to CB C —
eo p o —
3:  0 —
I 	 p
*- co to P to
p p CO —
CB C C-CT3
3 O CB P CD
13 O 3 «-
— PC
to >»— co £ eo
or E to -p >

.
oo








































i_ £
CB 1 P
CO 3 1 — 1
1 C CD 3-0 1 > E
O CD C CB CB <0 eo
.Q -a c a— -o CB
s- c d- a-o CB p
eo O O « 	 P to
O O co I- to C
to p P — co  P —
E to Pf CQ-O o
0 CH >>> C£S
s- euro eo CB co t-
t>- c 3 E P eo
— IT • to «o
•o a to to cot?
CD a—  CD 0)
	 — to to to £ .
pt-coeococBCP —
0) to to P "O E —
CO I <~ i- C O -P
ECOOCBOt-tO
«- CO — 1- O t)-
0) 0) eo co co o 01
p p P — — 4- »(OC
eo co c — — CD "O — —
> o o o .a CD — a
CD to o aio a
P CD 	 >> S- —

COCOCO'-'->££P
3— E *J -P eo O P co

^
o\






































p
o
CD -O C
to to E C
CO -O 3 CO CD
£ 	 >

1 CO O >
CD P C O J3 CO
3 — £ P >
CTCB CO S- CO
CO J2 P CO tO
p c o-o-o
CB O 	 CD
£ 4- O.Q O a
P O eo a
E E CB 3 <- C
O CO -P — CO P
1- CB C-D P CO
V <- CO O
P O CO >>>>
i- to CB C —
CD C-OT3 CO CD
P > C P
CO O= eo C CB
> T3 O) 	
CB c a) eo a
P t- — P P E
to CD en co c o
co ac coo
> a— o o
— *- .a c
CJ] i. at. >,CD
£ P CO CO CO CD
H ME o En

O









































to
._

E
CO
(0 O
t_ ••—
p —
to o
C
to CB
E JZ
o a
P
P
— p
p CO
to —
i to
CO C
•o o
— 0
o
CO CB
1 3
S--0
CO— •
P CO.C
CD 0
CD *- P
C" .»
H co a

„











































~-
_~ ,
— ~^
4J S- 0
10 0) C
to CD
to C.C
•a a> a
— T3
0 CX5
CO O CD
1 0 >
c_ t_ _
eo CD o
P P to
4- (0
CD CO —
f "O
+J t-
O CD
EP E
o o o
t- CD 10
4- *~3
CD C
c_ *~
CD P co
P CB P
CO— 3C
> o
CD E O
*> CO
to CD >>
co P eo
3: to E

CVJ










































^
eo
E

— i.
— CD
— to •
P C —
10 CD O
1 TJ C
— CO)
o o^
c u a
CD t-
£ CDT3
ap CB
4- >
CD CO —
£ O
P i- tO
o to
E P —
o o-o
t. CD
4---JCB
CD E
t- 0
CD P to
P CD
CO "-}C
^ —
CD E co
P CO P
10 CD C
co P O
3: to o

eo











































.
to
_ «
— £_ O
— CD to
P to CD
CO C 1-
1 CD O
to -o
— c-o
O O 0
to cj >
05 	
!_ CD o
O P <0
ti_ to
CD co —
sz -a
p s-
o 0
E -P E
0 C 0
i- 0 tO
4-— j
».
O -P CO
p CB P
CO— 5 C
> O
CD E U
P eo
to 0 >>
co P co
3: co e

-^














Date:  9/25/81
11.12-33

-------

o"
UJ
^
z

1-
cco
oo
u. ^

Q
UJ •
1-10
OUJ
LJIO
0. - >-
t-cc
— 1-
ce to
— o
0£Z
a. —
o _J
z<
<0

2 JT

1- C
a. co
p
— 3
CO —
P 0
CO.
0)
4J
o
Cu





















CO
E
CO
0)

4J
CO
CD
•p
to
a













to
«
0)
o
o
1
•p
c.

^
o

a.




























Cj.
o

E 4-1
O COT3
p c -P a
O— Q.
ja co « —

01 C JJ P
P 0 >>
c >>
O>t-  ac«K
ro— co
CD I. C
— 4J +J 0
to — 0)
<- COJQ

•P 0) 0)
CO WO >
> co co co
0O IMJZ
p 1 —
10 ! 	 P
CO CO CO O
> *> t- C •
0) 0) 3 >>co
JZ.C 0> co 5
K -p c e ) • a) o oca COT)
C (0 C 0) CO CO (0 CT3 0) 13 130)
COO) — o— IE— J=0)C «-C i-O-O O-O*»
JZ-D — -o co co— O— co 0)0) 0)> WE to— w — to —
aoco io+J — a) w £ a. « • C3- c — 0 — 0)>>
CQOJZ CDOQ. OWO) — ^OCDO) 0>OQ) fl)*D*- "O*-JC
C^-PCI-CO ICP "D 1- C C T3 C -D —
ICUQ. 0 CD c 0 0 o waa>co c 0 0 c 0 to 0 to co
>
CCf.C CO Ct- -D O C 0 0)CWCO O P 3 OP— 4J — —
CD co r: co 0 wo<- p 	 0)t- <- o i- co coo
> p j-> > . o o o — c*. — ja a 0 P CD-PP <^ +> a.
— «-C Q. t- — W OJl- — "O *>CO— 4->COC OC
O O CD to O O — (-0)"O  CPW— O-PO) to ^ 0 C co<-3 CO<-O 0 O C
U— OWO V> P>>0)C j=o«o j= o — 0 .a — o)
•PO) PO) C 4-> S- U5 3PECC P 0 0 P 0 — C — C
0) 0)0) OIA — CO 3 0) 0) -T)t- — 5P 0 CD P 0)
E -p s E-PE— e P — «-ooja— so) EO>WN jz to N
O 0 O O 0 O CO O O"D > O to O C P C
I. — 3 to S- — 3 W JZ 1-0 0 "O >"O a 1- P C i- P 0 0 0)0)
ci. 4- *j <>-—30> — .a CD o v 0 — vcocja E c n
EC Eca »E ' — +»u -3 co —50)— oo> —
i-co— s-co— co t- O OO-acoa «- *> «- N>> «-N>>
0 0 ra 00coc CD P to P to 0 — 0 E c 0 E c a t,. c a •
p 4J P PP+^ -P 0 U -PCD— P CO O •PCOOJO CDOW
CO to C CO to C 0 CO — 3 C <0 « P X CO CO CD U CO 0 J2 S- 0 JD !- 0
> o > OE > — o)0)o>— 3 >+j > P — a 3 — a c
CD— O 0)— OO 0 E CO t- Ol> COT3 0 to— 0 (0 >>O T3 >>O 0
P— .p — 10 P CO P 4- >»•— *» — *» Q. tO — Q. tO N
to — >, io — >, to 0 c 0 co CD — co WO)— CO 0 O — co o — C
copco co*>«i- «PO jz jz s- o 0 to jz P «BJ=*-— o'- — a>


vo r^ oo . ...
— — — — cvi co a-
o
c
o
CO
— •
"^
^£
5
UJ >jO)
ZJ3 C
UJ 0)
£ 0) N
Z) C C
O 0) 0)
ECO
3
o'
M
Date:  9/25/81
11.12-34

-------


^^
O
Ld
^
Z
—
h-
cr o
00
u. _-

Q
Ld •
h-CO
O Ld
Ld CO
0-CO
XLd
LdO
O
coo:
l-a.
Z 1
I-O
-JQ
-JO
ooc
a. ex

s. ^
Her
— i-
cr co
0=3
— Q

s- c
0- CO
J-J
— 3
CO —
P O
CO-
CD
p
O
a.
























(A
E
CO
CD
C-
4J
CO

CD
•P
(A
CO































IA
CA
CD
U
O
Q_
I
4J
U
3
^1
O
i.
a.





















u
c
•—
N






CU
f"
4J
(A
E C
O— CU
i- CO- •
,
CO COXJ

•as- o
CD ! 	
1- > CD C
CD O .C CO
P O -P 01
CO CD O S-
> *- O

W "O ^ "U
CO 	 C
> 0 O CO
CO CO
U 1 -V
— U O (A
•O 	 -D
— t- ! 	
U O O U
>CD
_l CO— C
ox: co co
>- 0 4J X
O — CO CD
'S*»» O O c"
-»> 0
OO CD —

<^"ra >>
X OJ=O
Ld C 0.
X CO 1 ft.
O XT: o
_l CO —
O .C 3 C
>- o cro
0 	
O -1 -P
^
• o

CO




























1 (A
1 — C
C C — T5
CO O CO C

CO C  3
e c E — -o
CO CO CO CO O
CO CD W S-
s. jz t_ a
•P CA P E >>

CD S — 5-

IA CD O.3
CO XI CD — CO
> +J *J O —
in in .0
i- >> 3
O J2 C •> —
—3 0 0 O
CO *O — — CA
E CO P -P S-
•P CO CA 03
CO CO O 3 *J
x: t- — co co
1- CO ft- O >

.
CM































\




























CU
SI 1 CA
•P C —
o
E 0 E
O CO
C. i. CO
C_ CO S-

"D O CA
CU P
O! CA
S-E —
CO — JZ
J= O *> •
OS T5
CA-^ -.CO
— S CA P
•a CD -o co
c c «-
E O CD CD
COS C
CD >»-
s- eu > o
+JJZ CO C
CA 4J CU —
JZ
CU c>_ ^>
+J O C| 	
CA O —
co E co
> O  3 -P C 01
•O OT3 C 3 «-
O — O O O
£-- C- 0 «
Q. O Q- CU ft-
<<- >>C 0
— C CO 0
o s- o E c in
C CD— CO CU
co w -P -P X O
X C CO CO 0) CO
CO CO O J= J= S-
si -o — +J o P
O C ft- —
— O— E Ot3
0 O i- CO >»C
>> 3 CU O CO
o o as-
— +J -, «
CO ! 	 IA 	
> -P O 0 O •
— CD C «- C C IA
•P E CO CD CO CD -P
o o x -P xj= o
CD S- CD CO CD O. 3
— cox: >£ -o
CD J3 O CO Ot3 O
>CO >>0 >>
— -P O > O COX3

.
—


>J
JD

CD
c —
0 O
c c
CO CD

cu a.
f"
O ft-
— o
o

O 0

— p
O CO
c c
CO CU
x 01
CO O
J= S-
OT3

ox
^J
o






























.
1 >J^
_ > tu
O CO P
C CD CO
(U.CS-
x: CD
aft- c
o —
CU U
x: ca c
P W —
ca
E— >>
O ca —
£- C —
ft- O CO
U 3
E CA
CO C 3
CD E
5- 3 IB
4J— 5-
IA O CO
o
CA x:
ECO
o o —
4* "- XI
•P 4J ^
O CO

CO CA
CU Q.T3
x: cu c
1- w tU

.
CM










































































Ld
Z
Ld
N
Z
Ld
m
o
cr
o
_J
x
0

o
4J

i.
CU
li-
CB
cr






1

i.
o
—
f"
o

Ld >>
ZX1 CD
Ld C
N 03 CU
Z C N
Ld CD C
CO N CD
o cm
C£ CO
-JOO
X «-
o o c
	 o
ax: —
1 O -P
O— CO
Q C
1
• o
CM
m










































Ld
Z
Ld
N
Z
Ld
m
o
cr
o

X
o

o
•p

CM
0)
ft.
CU
fr






\
•—
i_
o

£2
o

Ld >,
ZXS CD
Ld C
N CU CU
Z C N
Ld CD C
GO N CD
o cm
cr CD
-J O O
x s-
o o c
	 0
ax: —
1 O P
Q. — CO
Q C
1
• a
fO
CO
Date:  9/25/81
11,12-35

-------











^^
o
UJ
3
Z
—
z
ceo
oo
u.—

o
UJ •
v~ w
OUI
UJ W
QT (/J
XUJ
ujo
wee
f-a-
KO
2 *?
_J Q
-10

a. a.
>>
t-ce
— t-
ce w
OZJ
— Q
cez
a. —

0-1
z<


3
a.






















10
E
ca
0)
i.
4J
V)

a

u
a



























u>
at
0)
O
O
t.
a.
i
jj
o
^
•o
o
d.
a.


•o
o
co
c
._
i.
o

JZ
o

10
3
O

(.
CO
>
*
CD <0
C C
CO O
JZJ3
4J (_
CD CO
0 O
S~ 0
O 5-
— T3
JZ >>
OJZ





*
CD 1
P C i-
O CO CO
3JZ O
•o *> o
O CB t-

a° X
OJZ
0 —
JZ JZT3
•POO)
JJ
E— co
O CO C
!- 3 —
c^. *o (_
— O
E w-

CO 5- O
s_
•P 10 C7) 10
<0 C C «-
	 CO
10 CO — -P
S -P '-~
O C OT3
.p on c
•P O 1 CO
o t-
JO— 4) -.
— JZ — we
JZ 4J— O


.

0) O
•a

t! o
o —
^ 4J
JZ CO
UJO C
Z •""
<_ J.
X >>O
KJZ —
UJ +J JZ
OUJ O
Q^ ^^ O
0 «-
— 1 VO
X C X
O coX 0)
— JZ C
a ^> CB CD
1 4) JZ —
CVI O -P >»
•t &. JZ
— O X+J
— J3UJ
XI
• o
CO



£_
o

L.
CO
a
a
o
o

.t
0)
c
CO
£
u
o
i.
0

JZ X
o c

a i
i —
00 4J
-c
— CO






1
CO
1 -p 1
0 C- X
t_ (p t_ ja
o acD

JZ "O "~
o C-D —
— CO CD CO

w a) i- oi
C CO 3
•.CO JZ
• JZ O •>

. CD— CO
CD OX3 W
— £- 0
o o) a
to — s-  C 0 0
!- CD CO P
X 4J X<0
J3 «CD— S.
CD O — CD
XC t- co C
> CO 0 0 —
CO JZ 	 CJ
CD -P JZTJ C
X 0) O O —

.
"




Ct_
0

X C
J3 O

0) -P
C CO
CO C

4-1 L.
ffi O
o —
5- JZ
OO CB
— c
JZ -P CD
0 O —
- 0 X
a <- Jz
1 — • 4^
OJOUJ
•V




































1
«\ o
•0 «- 1
O — T3 —
0 O XO
Ul CO JZ (A
C
T3
t- 0 CO C
O — C CO
JZ —
4J O <- «
- X O t-
JZ O
CD ~ —
JZ -05 JZ •
•PO c o 0
a— TJ
£ UJ i- 0 —
o o— x

 W 0
> O — C T3 O 3

.
CM

































































13
0
C -P -N •
O CO 4J 0)
— c — -a
+J — CO —
CO 5-  £-
NO O
.— — lv —
— JZ 0 JZ
CO O— O

+J t- 10 cj
303 —
0) JZ CO S-
C 4J O i-
0 X
0 -P4-
JZ «C
*>O 0 Ol
Q Q.C
eui w —
o c
U 10 - —
d- C (0 CO
— C E
!- CO O 0)
01 -P-Q S-
JJ C S-
co O co X
? O O C
O CO
JZ.* S-
U> C "O'O
co co Xcz
Z-PJZ 03

.
fO





























































_
CO
3
•a
JZ *~
Ul Ul
,00

i_ "D
0 C
+J co
CO

u

CO P
C 10
— 3
!f- CO
o
0
JZ -
+JO
0
EUJ
o
<- CO
 o
0
•P J£ *J
w c —
CO CO CO


,
•*































































c^ ^
o o
—
(A
J-> 0
w S
— o
co in
c
OT3
0 C
CO
•D
COO
0 O
JZUI
t-
0 C71
> c
o —
c
c *~
E co
3 W
— c
o o
CJ U
CT1 ^
C 0

Xco J3

.
in

































































0 X

0JZ —
jz OI-P co
•P— C 3
— 0 — (0 0 O
O— Ol—
T3 O JZ CO -P
CO P i- CO
CD 10 O S-
JZ-O ">-P 0
S- C (0 <0 C
(B 0 CJ —
> 1 — -O
o -P c m c
JZ CO 0 —
03 O1C31 —
JZ — i- co X
1 	 O t« J3

.
VO



































































c
E *"^
3 10
— i-
O CD •
O 4J-D

aC" •>->
c in co
— O S-
JZ— 0
to c c
— CO —
c aio
— s. c
4-0 —

0X0
JZ > S-
•p co co
0
EJZ X
L. Ct_ —

-------










^*
a
LJ
23
z

H
Z
ceo
00
u. _

a
LJ .
HW

LJ W
0- W
XLd
LJO
O
wee
HO-
Z 1
HO
_JQ
-IO


>. >•
H ce

ce w

— o
CCZ
Q 	

0-1
z<
j
4J
._
S-
o to
— -p
!- C
Q- co
4_>
— 3
CO —

P O
CO.
CD
P
O
a.























to
E
CO
£
4J
W

CD
10
3C



























to
to
0)
O
O
!_
a.
i

C

•c


a.

E -
!- CD
O C
<*- CO
O.C
S- 4J
O CD
— o
£ !-
0 O
—
- f
CD O
C —
CO S-
£ -P
•P
CD *
O CD
£- C
O CD
— £2
r~ 4J
O CD
— O S-
Q S- CD
i o a
CM— a
«.c o
— 0 0





13
0)
f «•
o o
C U)
CD U>
3 •,•-
c-o-a
o
+JLU a>
O E
r: to o •
C (0 10
CD— C
£. eo 13 O
•P P CJ3
c co i-
S O co
o o -o
S- 13 O
It- (0— !_
0 OT3
*- >
CD CO .C
•P CflO
CO —13
> S- S- 03
CD O O P
•P P— CO
to o.c c
CO CO O —
> a> o s-
!- £. O
0) 13 —

H OJZ 0

,
—

03
1 C

.c —

X «C
0 P
LJ
x^

o
0)
c c
CO O

03 CO
0 C
!_•—
o «-
— o
JZ —
oc
— o

1 t"
CM 13
*




































*
13
0— •>
a o to
LJ CO C
O
CD O .Q
13— t-
3 t- CO
IL. O O
O— O
£ <-
•P OT3
W O >>
5- L. £
— 13
£! O CD
(D -P 3
£1 -WO
PO C —
Q— 10
E LJ S- CD
O O S-
S- 10 —
ti- C.C P
— o to
«- CO >>
0) -PT3 —
•P C CD to
CO O > -P
> O — CO
0 0
.C.C to
t/3 tO tO 13
CO CO— C
5 >T3 CO

,
CM

































































13 -P
CD —
c P co
O co to
— c

CO *• C
N O CO

— c o
CO O —
i- -p
+J «- tO
3 01 3
0) £ CO
C -P O
O
0) 

t- U) •. V C <0 — c S- CD O CD -P-D P C t- CO O CO > 0 O to C13 CO CO >> , CO JZ to to >> > c CO CD 13 P C CO CO o CO P 0 3 CD 13 to c io CO CO CD . •=r *- s 0 O •P 0) a> E — O to to c OT3 0 C CO 13 coO 0) a -CLU 1_ U en > c o — c E co 3 -P o o o o cnt- C 0) — .p . b?2 •D CD 0) 0! 10 — £ CO 0 . ir> 4-> cur: x: en 4J — — E !- 0 tt- (0 E -P CO IO CD — i- to P C to O •\o CD P C CO 3 O 13 Q CO 0) 10 f -Q s- C CD CD O -P CD en 1 . VO °>> — P CO C 3 W 3 CD - o — CO >>to 10 O E a. c CD >— r: > o +J CO C CD — O CD t- tt- {L tf- O 10 10 P >> E io — o •P 10 CO 4J C 3 O O to CO O 3 . 1- . W t 0 o ^ _J o v^ LJ O X o LU Z Ld >J X H LU O ** V e>. 0) CC 0} V) 13 to — flj X 0 0 g CO CDQ. C to 0) C CO >» tL CD ^~ ^3 C -P X ajLJ JZ JT 0 0) 0 O 2^ P ^ 000 — 3 .CT3 0) O O .C "— L. 4^ Q Q. 1 >>>> CM ca .a — o o — L. £ 0) o r: .«. ^j 13 O 1 10 CO -C -0) O — -a .a » t_ - S- CO CD O O C— O .C O13 •P >> 0) — SI 0 >> 5- en 0— tt) - > P £ co o «c — CD — O C <- 1 CO O ^ P .C — CD O 1 O 13 +> t. C O O !- CO 3 — 03 o o en to s c 0.13.C O 03 — •>!- JZ .0) CO •P— C O co O E — j^ i- O CO -PT3 f- 3 03 J= t>- 13 O — S-T3 E W O 0) co 4) — JJ CD s- jr co «- o c +J 10 U) CT3 «- — 1 O 10 CO CM — EJJ -J= 0 C— O •P O +J O »cn 0 03 C J3 — C — • — CO — 10 CD — JC — S- JZ P 4J O CO H to 0) -Q -P . — 1 03 — C <- CO 0 JZ E -P O 03 to o — t. O J3 J^ O Q) •— ca CO 1 -CCM 0) — {^ o o — r: c 0 0 •_ (_ Q 4J 1 CO — N — Date: 9/25/81 11.12-37


-------












—V
Q
UJ
Z>
•z.

t-
•z.
ceo
oo
1. ^_,

Q
UJ .
H- CO
OUJ
UJ CO
Q. CO
XUJ
UJ o
o
coo:
t-o.
I-O
Z3Z5
-IQ
-10
OCC
0.0.

>. >-
i-ce
— h-
o: co
O Z?
— Q
fy Z
Q. —

Q -1
^ ^
<0
2IS:
< UJ
UJX
ceo

coo
—
UJ -Z.
H- ^
COO

§0


_
1
OJ


UJ
CD
1-




































X
4J
.
L
O Ul
- 4->
S- C
0- CO
4-!
— 3
CO —

4J O
C Q.
01
4J
O
Q_
























UJ
E
CO
03
4->
CO

03
4-1
UJ
co
3:


























(/
Ul
01
u
o

Q-
1
4J
C

X
o

0.








































E
O

d-

03
C
CO

4-1
03


O
JZ
0

t.
4J
1

— *03
-t3

- t-
— O

OJZ
4J u
i 	
03 X
d- C
03 —
cc >




1
o

•a

^ —
X
>j C
ja —
03
Cd-
00 O
JZ
4-1 C
03 O
O —
S- -P
O CD 01
— c-o
JZ 	
0 <- 1-
— o o
Q 	
1 JZJZ
— oo
•V
































































•D
03
4J
CO
Q.
£

4_>
o
•z.


1
1 0 L.
i i. C 1— •
O 01 O O 1 03
— 13 	 -1C
JZ — JZ *> — CO CO
O i- 0 CO -CJZ
O — C 	 4J
X — Q— -5-03
J3 JZ 1 ! 	 O O
O— 0 — !-
01 .— — JZ O
c 	 jz oio —
CO >> OX) JZ
JZ C ..O— XO
4J — -- S- S- ja —
03 > U1X) O Q
o ax— 01 i
<- d- 03 X JZ C —
O O 4J O CO -
- Ul X JZ-
JZ C ja — 4-1
O O O X CD d-
	 5 03 C O O
!_ .p Jj C ._ 1_
1— co co > O c
1 C C JZ — O
, 	 4J d- jz —
— 5- — * Q3 O O 4-1
-

1 1
._ 1 t_
s 	 :.
4-1 - O
1 	
CM JZ
- - o
— 03
-C Ul
— CO 3
JZ O

03* 0) 5-
C O CD
CO S- >
JZ O Ul
4-> — -C
01 JZ 01 O
o o c ja
1_— CO !_
OX) — CO

JZCMJZ O
0 -4J i-
	 03 T3
<- OX
H- -!- JZ
1 03 O
— c — -a
-TO JZ 03
— JZ O -P
-P— CO
— oj -a c






1
.p ._
O 1 t-
3— O
•0 i.-
O 4J JZ
S- 1 0
a—
-C1U1
01— C !-
jz -— co

.—
£ — OX)
0 CO J3 C
i- 3 1 co
d-T3 S-
— 01 -
E ui JZ UJ
CO CD OlC
03 ! 	 O
S- JZJ3
P UJ t-
Ul C -CO
— 03 O
Ul CO C O
E 4J CO *-
o C jzx>
•P O 4J X
.P O 01 JZ
0 O
ja — t- x)
— O 01
0) 	 p
JZ 4JJZ CO
1- Ul O C

•





1
^>*~-
f* Q
1
OiOJ
c ^-^
co — O
5 °

01 O *-^
o
5- c 03
0 O C

JZ 4JJZ
O CO 4J
— C 03
I 	 0
\-i-i-
1 O O

-JZJZ
-00
—




1
O 1

O -co
— 01 O
JZ C O
O CO 1-
JZT3
-•w >>
01 01 JZ
c o
CO S-TJ
JZ O 01
4<1 — 4-1
01 JZ CO
o o c

Q-0 i.
— 1 O
JZ 	
O -JZ
	 o

1— -UJ
1 0) 3
— CO

— "ji t- c
-4J CO O
— 01 >J3






1
4>1 •—
O 1 *-
3— O
•a ' —
O 4-1 JZ
S- 1 0
a—
- DIM
03— C «-
JZ -— CO
4J 	 4J
-- .
E— OT3
0 COJ3 C
i- 3 1 CO
Ci_t3 S-
— 01 -
E »JZ ui
co 01 OiC
0} ! 	 O
s- jz ja
P UJ &-
ui c - co
— 01 o
Ul CO C O
E-P co t.
O CJZ XI
4J 0 4J >,
4J O 01 JZ
o o
ja- t-T3
— O 01
01 	 4J
JZ 4-1 JZ CO
1- ui O C

.






>>03
ja c
CO
CDJZ
C P
COUJ
JZ
4J C>.
01 O
o
s- c
o o

JZ 4J
U co
•— c
^ *^
1- t-
1 O
^ »
-JZ
— o
•L

•o
03
4J -
1 CO >>03
— c c c
•D— O CO
1 I- EJZ
CM O— 4J
-— 4J 03
— j: c o
O CO !-
0
0) UJ - —
C 3 t-JZ
CO O 01 0
jz — a—
4J i- al-
as CO OH
O > O 1
S- CM
o - - -
— 03 UJ —
JZ C C -
O CO O —
•-JC J3
S- 4J S- -
1- 03 CO O
1 0 O —
CM £- O C
-o <- a>
	 T3 UJ
-j: >>t-
— OJZ co





1
>«
4J !- 1
O 4J O
3 1 1-
•a CMXJ
0 ->>
£-- JZ
a -
— 01
03 C

4J CO —
3 •*-
E-O o
O — J3
1- Ul 1
d- 03 «-
1. 01
E JZ >
cod- C1UJ
01 o— S-
t- JZ co
P UJ 4->
UJ 4-1 -
Ul O X)
UJ-- C C
E u> co co
O C JZ
4-1 O 4J -
4J O 01 Ul
O 0 C
J3— i. o
— OJ3
ffl 	 !_
JZ 4-1 JZ CO
1- Ul 0 O

.





1

ja'ci

01 CM
c -—
co — O
JZ Q
4Jd-LJ
CO O ^—t
o
S- C 01
o o c
— — CO
JZ 4-1 JZ
O CO 4J
— C 03
«.— 0
1- I- S-
1 0 O
CVJ 	
-JZJZ
-00
•I
~


— 1
UJ >>«-
3 C CO
o —
— > -
s- >>
CO -C
> ui O
C E
-o —
01 J3 4J
C !- C
CO CO CO
JZ O
4J O -
fl) S- I-
OXJ 01

OJZ a
— o
JZXJ O
O 03
'— 4-1 -
4- CO CO
1- CT3
1 ._ ._
CM S- S- o
-o o —
	 c
-JZJZ 03
— O O UJ





1
•—
4J L. 1
O -P O
3 1 S-
XJCMXI
O -X
S- — JZ
a «
— CJ>
03 C

4J CO —
3 —
EX) O
0-J3
1- Ul 1
d- 03 '-
i. 03
E JZ •
COd- Oll/J
0> o— >-
I- JZ CO
P Ul 4->
UJ 4J -
Ul 01 X)
Ul — C C
E Ul CO CO
O C JZ
4J O P -
4-1 O 01 Ul
o o c
J3— !- O
— OJ3
01 	 S-
JZ 4JJZ CO
1- Ul O O

•






^J
J3 —
^•s
0) C
c *^
co>
4Jd-
43 O
o
S- C
o o

JZ 4J
O CO 01
— CT3
s_ »— •—
1- t- s-
1 0 0
CM 	
-JZJZ
-oo

~




















































UJ
o
cc.
0

X
o

_J
^.
•z.
._
>

o
4-1
c-
03
d-
03
ee.








UJ
CO
— CD

C C 3
CO— 4J
JZ> 0
4J CO

O O 3
i- C
0 P CO
- os
JZ 3
OX) 03
— OX)
!_ I_ .—
(-0.1-
1 XO
CVJ CO —
- JZ
— coO

~
1 1
._ —
i_ ^
o c
— CO
JZ
O £

UJ 03
3 a.
o a
— o
t- o
CO
^ -
UJ
-c
03 O
C J3
CO *-
JZ CO O
4J 0 —
03 O C
O S- 03
S- XI Ul
0 XS-
-JZ CO
JZ
OX) «
CO 03 X
X 4J C
03 CO O
X C E




1
JZ
OiX) ^~
— 01 03 1
JZ XJZ 0
JZ O 4J S-
O 03 — 01 O
PJZ aw—
co -P E O JZ
ja 01 4J o
d- CO
CD 0 P -X
JZ C 01 03
4J Ul 01 3 JZ
P > X)
E u) 	 X)
E— O Ul 01
Ul UJ 01 >
d- C i 	
O C O
E 0 0 01 Ul
CO J2JZ UJ
03 — £- 4J —
t- 03 CO X)
4-1 Ul O O)
Ul UJ O C —
03 ! 	 CO
Ul >X> > 3
E X-X>
O CJ1JZ O —
4-1 C UJ UJ
4J— O1U1 01 •
O E C— £- 01
ja 	 x> c
	 JZ CO
01 ja — s. 4J jz
JZ 3 O O — 4J
h- UJ J3d- > 03

•




4J
O
03 03
S- C
— co
Q JZ
^i
ja
d-
43 O
C
CO C
JZ O

OS 4J
SCO
c
o —

JZ O
0 —
CO £
xo
03
X
Date:  9/25/81
11.12-38

-------


-•^
Q
UI
3
Z

t-
Z
ceo
00
u.— .

Q
UI .
\- U)
oui
UJ W
e.co
Xui
uio
o
coos
HO.
Z 1
4f tiiii
**. r™
h-O
33
-IQ
-JO
OCC
duo.

»
h-ec
— t-
0£C/>
O3
— Q
cez
a. —

Q-l
z<
>
p
i_
o to
— *>
I- C
a. co
+>
— 3
CO —
•«. •_
P O
CO.
CO
p
o
CL.
























Ul
E
co
£
p
CO
CD
*J
10
a
*

























in
in
CD
O
8
a.
i
4J
C

•E
o
i_
a.











•o
CO

V

P
c
CO
•o


CO
c
o
z





E 1
P CO C
UI JZ 1 CD O CD O
1- 1 0) «- S- O --0 — >>
•tf C — CD 4J CD •- PCD>
_J 13— > eo >>c 10 co CD c/> eo
< CO OCOCD OCOCD
X — •.«- CUE — T3WCOC.C
t- T3T3 O 1- +* >>C CO CO
X — CD 10 P X CO -P C WO
Q. L-UIO>COCO CO— C C
COCOCD O>fO» i- CO CO (0
"• J3OPPCOIOCDPE
_J ui .aocoi-PCDCc«
>- Q 3 — «- >>3~0*> C00«<
X — L..PP (-OCCOCO OlOCOCL
ui ec cjco eocDoeo— -oh-
X O WO-O > 3— '-•O C>>C
_l > CO C • O CTP C CD O CO 3 »
> X (OCOCOOCOO3E — E O CO
x z COCPCDCO<--P a -a
Id t- < Ol— »O l-CCD«Q) CO P E C
Z UI ICOCD3CO'-'OPUCOO3
UI 1 UI O «- *» C TS -0 — C— J=OO
0£ CM Z — CKCCDO— >a co u <- E c o
CO — 3 O t-X 1 E «- O — 3 co — 0
— co o < o >» i >> o ca co — c acoE
•p eo aja — fl> P P eo • c. o +> •
O O O O UE pi-COCDOt<04JPS 	 CO
p P P 4J CO'OUC1}-P>U'-4JCOCOJ3COO
eococo— oco cooo >> ja —
c. (_ S_ <- i- Dip C CO E 3— CO-OC
CO CD CO CD S- O (0 T3 O C s'o CO P ^O O CO
Ci. 4- e>. Ci_ CDcoeoOiCDcoS 	 < o -P i- a o > eo o o


• • •
— CM fO
1 CD 1 O
WO eo
CO— — P
1 C <- X <>- >>0)
CO 4- CD"O 1 ^ O — C
NO "O JI >>— X3 UI CO CD
— C>> 03< C— K-P —
l-C OC O O < CO X-"
tt) O OC UI W >> — < JOXM
E— < Z co jQ P 
ui — u ui>> ui coo x >> a o
z Q co i- n co NCOCO N— H-jao
UJ— <0 <*> ZCC — +> Xft-O
— CD — CD — J CD CO UICDCDCO '-CD O- "D O 1-
Q C — P < P — CO N E C CDC UI— 0.
< 0} P CO X CO CO C3CD E< CC O C
t- — CO N 1 	 £— -ICDON CO UI>
Z T3 — >> X eo P O > CO C O E t- — «-
UleoO— O.J=CC cs. V 0) O O -P 3
Q. p o P Q- CO O— Oca UI >> t- _l — CO P
o c-o <- -if j= ce >> zj3<>- > — -DC
_l Q) C >) > Q. <>. p Q. a P <«- UI X CO — CO
oacoo. x oui oooo i- co CD HJ=XO
>O I-— COt-3 UICC UIPOl
o— c~ uixcjz — a-o c x CD CD ££ -o
— oom — JCO-P — o o o — *>*> — a i —
O >>— ~ O4J 	 QCOI 	 QCDCO Q CO — Zi
o -P o 0 P > — a P xzc i- < „
^ ... ». « CO
• a -o -a -a -h-
lf\ vo Is- 00 O
tf) CO CO CO CO
Date: 9/25/81 11.12-39


-------










«-^
o
UJ
3
Z
_
H
Z
ceo
oo
ii ^^

o
UJ •
HCO
ou
UJ CO
0. CO
XUJ
LJ o
o
coce
1-0.
Z 1
HO
33
-JO
-JO
oce
Q. Q.

>• >-
t-ce
— H
ceco
O3
-0
cez
a. —

0-1
z<
<0

< LJ
LJX
ceo
K
coo

LJZ
h— ^
COO
^ ce
SO

_•
i
CM


UJ
_J
CO
1-

































X
p
—
c
O in
— p
1- C
0. CO
p
— 3
CO —
•_ »
P O
CO-
CO
p
o
a.

























in
E
CO
CO
p
CO

co
p
in
co
3:
























v>
V)
CD
O
O
C
a.
i
4J
0
3
O
s.
a.



0
i- w) in
•P — 1 C
— o o o
C C Cj3
— co ac
"OJZ O CO
i a co
VO O O O
.C — c
CVJ P JZ-O
0 >
-H — .C
0) T3
c , -o
CO CO * CO
3 C CO P
— CD C CO
O 3 CO C
*j— a—
o o o c
C p 1- O
p a—
— « O J=
C CD L. o
— c o
a co — •>
13 -CO)
.=*• — O C
»O — CD
CM P a a.






1 r"
C « 1 1 1 JZ 1 CO P *- 1
ot-s-t-coifl aco j= « — coo -a
1 - 1 O Z O CO— CO E COC PI C0> J=C 1 (- i-
u) E o t— t- S*— C C CO -P O — J=
— — S O « *» •— 3PWU1 CO— OCDCOS-CO— >ra • co ^ P en ^ oc3 o oo
3 O — »— CO "a —  O CD W 5- COW t(.(/) ,-0 O O — P —
U) — CO J3 ! 	 3 — CO a to CO 3 .PS-^X "DOE PCO a~O
O1CO-P3 POO WJZ-O> 	 E CD — Q-OSl CO CO COJ=CDC
cj=Xco— c to — > CD w o co oca coj= _ > OP co
— p — ti_o CO POJCtltOWWJ -P3 COP--.  £COCO — »
jz — co — «> on' — +>~> tj <- WC03OP CEO *-ECO«W
 3 CCDCOtl- O JECD CO— PEETJ — O CD RJ- — 10CWC
eo c in -a OXa. CCO+JPJZ J=w woo— PJ=3 >s-£-w ccococo
>C— C O— U>O O— P PCO C4JCCOT3 OCOPO 3C a— J3
OcoEtO ET3— C03> 4-- S-d-PoCD— O a— aPOS-5-
CO — P 3 CO CJCWJZT3 O E W CO O — Ol a C CO Q.-O C >O
PfOOTJW PCD C !-CO • 	 COCO O X-PCcooi.CCDO.CO
NOO— -PCD CO Q.NCD 4-coO >PC COCt-JS P S- PPS-Q!-
E— in o • ECO— -a- — 01 PCO COCOEEJTO E«co woc-o
O — >> CW OCXJWCOIflCO— 5- '-C PC33P CO O — t^coJCO>>
C(OCO*>COCO C+J3d)T3'DJZCOCO COO*O W 	 "" > CCO^-P O^BO — £1
 — PCjr POCD COO1OOC-P— li-WO.C — £
P PO.CO COOWO— PO CO P > — O— OC-P CO>>O1 tOeoC(jT3
C3-^toOC Co>O S- CO 3CO CJZJZ— E P— CO
COOJCDCCp COC PCO«>OCO— COCOCO CQO1OO1O> COaO— OW T3-P
PCPP-P— POT3— CCT3 PECO O C CE— PlC P— 4- CO
CO CO 	 C tOOCCPft-V VI C — 3 Cffl — C — CO C COOOTJ P O»C
>cccc > co co coco cocc cow a— -o CD > 	 co oc c —
COdJO O COW OCO CjJC >O3 E CD O. CO C — "O COCJZP J3 E »ti- CDCOT3 COOCCQ-COW U) Ol 	 CO — W 13 —
COtOtO — Zto COfOZtO- 	 totoCO £Cc £C4JOCOEP co'-Q.CO SI O— >>JT
S — OTOQOI S-PQO1EPJEJ3 I— coco 1— Q.in o~o m~ SOCDC (— OWJZO


. • • . • •
— CM O — CM M
1
n — o c
to — j= c
C — OT3
<» < 0 >»
3 ex:
— CD E"O O
0 C O >>l-
CO P CO Z CJZ O
UJ O 3 — ft- CO —
z c— ce QJ:
uj P o aco
3-1- > - CO -
-1C X ! 	 Q
O — <4- O TJ >
HQ o ce >» t>-
o o j= co o
CCT3 C -1 OT3
i— c o x s — c
_ co— O O s- O
Z P 	 O —
O O I- UJ O JZ CO
c *> •- o c
o— a
•£Z -UJ
o —
.3- d-
Date:  9/25/81
11.12-41

-------

o
UJ
^
Z

t-
«z
oo


o
Ul •
1- W
OUJ
U4 W
Q. W
XLJ
LJO
o
wee
l-o.
Z 1
HO
-10
-JO
occ
CLO.

^. ^.
HCC
— 1-
CC W
— a
ocz
a 	
O-l
z<
>CO
IA 3 	 £
co era— ti
3c co co eo o
^
•*


































—
1:
o
•—
c

*
CO
c

N
c
CO
CO






1
CA ^"
C CD

a— *> « «
a co o IA co
•— 4J 4J ^
«- C < 	 X
p o o ro£

i -a
CO X CO *- — -
•o re P co ra
3 E C0£ 

O C O X S C- 0 *> *> 3 co eo IA c— aco — a — IA «P CO O E «w co E X O O O O P o o re w co P C C <- O co co -c J3 £ P CO ™~ *A 4J 3-0 — c eoja X e £ • s 3 C » CO IA CD -0 O CO O co O «- O P C CD C P 1 C CO P CO IA co o aco ai ao o o <- IA • 2C. CO O — «- xa £ o P co i «<- P P O E C -P CO O CO W£ -co N E «X4J W CO CO CO O CO «- CO O CO CO CO C C0£ i- CA ao co o -P B CM 1 CO £ CA CO ra -a a— <- 1 CO CO IA 3£ 3TJ .P O— O CO IA 3 » «- CD — C eo— co £ CO C 4J P CO C N E 0 C • EO CO *•* A P <>- X C (D-D CO (- E C cn CO CO CO CO CO — CJt je ao c co ac — P — n 4-1 IA (-£ CO co P P >- 5 LJ it O — 1 o o •p p {. i- « 4) CO CO a: tr ^ — CO E C O-o x co co C — 1 £ CO X LJ X-P £O £LJ P P UJ >UJ CO CD C CO N C CO •O >J £ p CO * CO c CO N C co CQ CA CO O CO 01 S- C -P •«- XT3 s- c •o co 1 CO CO IA C C CO CO CO — N N P CO CO I- J2JD 3 a CO C E P CO P CO £ C- 20 .a O 3 Cl- — CO— 1 •P > «- (0 CO > C P CO E CO •P 3 > CA — CO O Cl. y. o o B "~ £ .- CO > CA CD CD£ c a. CO 1 N-O c — CO 3 z — LJd-_l N O z - LJ C CO CO 0 C IA — 1 — CO CA > P— CO X CD XO 1 £ 0 UJ XP <~ X LJ a. __ • ^ ^ Date: 9/25/81 11.12-42


-------

o
u
3
Z
—
r-
ceo
oo


a
u •
HM
OLd
LJCO
Q-W
XUJ
UJO
0
woe
h-Q.
Z 1
1-0

_ia
-10
oce
a. a.

^- ^.
KO:
— H
ae U)
O=>
— Q
aez
a —
Q_l
z<
<0

55
LJX
IV £J
1-
wo
_
UIZ
too
^ Ct
so


.
_
1
CO

LJ
CO
1-
























O cfl
— P
«- C
0- CO

— 3
CO —
P O
CO.
(D
4>)
O
Q.

























CO
E
CO
s_
CO

CD

Cfl
CO
^























CO
cfl
CD
o
O
a.
i

o
3
^


Q.























%
CO
•a

to «-
.0 OTJ
.Q— C
3.C CO
t- 0
U 0)
cfl E C
3 CD
Cfl— N
COTJ C
O)O CO
P
C -CH
CD O O
>-
P Cfl
CD Ifl CD
.C 3 —
P CO -P
O —
E 4J
EP C
c co •
<*- CO 3 CO
a crc
5- Cfl CD
0) — N
*J cfl — C
CO C CO CO
>— E.O
CD CO cfl —
p p >»
CO CTJ.C
CO O C P
2 O co CO
f
CM
























CO
c
0)
N
C
CO
JD
^
£
4J
0)

-
a>
c
0)
N

0)
ca





.
C. to
CO E CD P 1 E — •
£ 3 C<-C O C . 3- 10
CD- 1 — - •DCDCOCO O1 CO — cfl 1 — 10 CD 1*-
4J — CA >,"D >T3 PI JZ 1- CO
co 4-.CO Jetocco ai c t*- +J — t-*i— o— jto — — .pcno-P
>> O — — CO (D O S-tOCO— >> C5-53S- — CO CO >» C ^
— T3C CO N— COX1 P S- tOOfO-P CO C0£ Ci- — >,
CO COCCO CCC £ — T3CO "D £OPO C P. OCO>CO
•PECDCOCTI <0 — CD CO OXCDC 1 P CO<-C 0) — C CO Cfl -P CO CD
C03— i- T3 CO J2 Ol Cfl£PO 0). >>>>aO 'OCOO>iCJ ECO)3
OCPIO 3-P S- — P CO O CO) E CO — >> !- 34JI 	 OO^I-D
	 i-C«O •DID'- CDC OEO^JO S-COOC PO —
DIE -PTD i- OOCfl >>CDS- NCD <- a 13 O O .Q O. to P <-CO
C 3 C 0) O *> t- —•— CO) C N «- £ O O O1OCCDCD
	 CO-£ CO — CD 10 O — -P COC CO.— T5 0) 'O-S- ^3Ej=t-
> CO 3 CO P £ >sCO.C !- aO£ ^2 0) tO CO V C C £>>CCOO 3P
o cr c o jj to w P co CO) A ai> c co to P CD aj c to— OP
— co to EOPtO 	 CD 5-CDOI EtU«-£:oc»
- C - N -0 e S ~.C - J=C co «- N t- « S SN05 +JO->>
O 	 CC O.C3-O P>> +3— £tt)COCO O.C3C.C CO —
li-COCOCDCO i-COCC E — cfl CO U-PCD CO S- 00 C 0) -P ECDCDCO
PEA c,. eo — co co £ — -P EP taco.Qi-3 it- co — n O OCCP
JlCCfl . >E CBOCO— OC — > — CD -O >E— «-CDtOCO
cflO -CO O 3«S-S-3 S-OTJ >,£ — O 3 >>t3 «>- N N O
CCOTJCDCO — O — CD ^^-101,. ft_o Cfl£Plfl — O — .C C CC
> CCC -P — CO C CO 3O I04JPOV 4J — CO P CO COtDCOT}
CCOCOCD CAP CD Cfl <->>3OCD <- COP 0> 3AAC
l-O NN 3CO-N (BECOOl COCO O3 - • 3cfl- -T3 	 CO
CD — CO C C C0303C PO— C PE tOTJ-COPCl) C03CD-CO — >>>>
PPT303CO UCOT3CO COP — CO 3OCDc cr'-cc >»— o — c c COP— co
>s_i 	 P « — >o£a CUE coacutB— «- *J s-toto s-tocoo
C00>>>> C«O>, A3— -P3 INNcoO CCBONN >> >>—
CD 0.— C.C. O4J — £ 0) — 5- CO— CDC-CCP3 COP— CC CD 	 C
.CCDUPP dCO£P £CflQP COO .COCDCUCO— D. CO ^ CU CD £OOCO
1- 00 O CD CD CO — O CD 1- CO O W SO t- -P-O-Q Od- 00 — O J2 n l-aatTI
• • • • • • •
PO S 1T\ — CM PO JT
1
o
4->a.
J CU
Cfl
CD CO
C£
CO O.
N 1
C i.
CD O
CD a
co
c*> ^>
o
c CD"
o c
— CO
43 —
CO >)«
— £ CO
>.-P (O
XUJ O
<
Date:  9/25/81
11.12-43

-------





^~.
Q
Ul
^
Z
—
t-
z
0:0
00
u. —

O
U •
H~ CO
OUJ
UCO
CLCO
XUJ
LdO
o
co ce
1- Q-
Z 1
HO
-Id
-10
oce
0. 0.
j_ s.
t-ce
— i-
ceio
03
-Q
cez
Q 	

z<

CO

CU
4->
U)
CO























to
W
a

c

o.
1
4-1
C.
X
o
L.
a.


i.
CD
a
a.
o
o

*
CU
c
09
XJ £
CU -P
CD
V O
— - t.
•P O
c —
0) -C
XI O
..» .—
Q
cu i u
C CM C
o
Z - N





1 CU
<- i- 1 <- 1 1 C
CU CO ^> (*" xj « CU CO W CO
33 -Q O C •— CO W CO • CD3 CO U) CO >> CUMCO
!-J->C 3 S- C)- CO > — XI E«CM E3— E>COOJ= 01COE
X103O ^XSO OC CO XI O^+J 3^CO
tflJO O>>CU!-C3 £ 'WDCU (-4JCCU 4-IA
4-> i- « £ WO CO CO O 1/1U5O XICE d-CUW — — — S-
3 « CO 4J — £ £ Q. CO -P Z CO 3 C CO CO T3 t- CO CO CU
O— O OX>— X-PPE >C £OO1 CO -PC 4J3£*>
i o — cu co o cu co o CUE a. c P co -o c co c -o P co
JCCS- +J > W — WOO- t-305 «- E — COXICOO • CU— >
OOXI «— XJOC S- CU4JCU CUO>> — -P WO « W OWCCU
O — >> 3O« -POOCU *J— S- XOt- — «- OC3) CO — *J
ccflf co uj c c E > n co P P i- -a — -. co >>Q o x> i- co v>
^W Of)— O « -P.Q > — £ CO UJ — C .Poj
CUXI — CO J3 W XI 3 C £CO W — O E O OXIC>
CO 1- CO CUXI'P'-COC'-'- COO'- CO P £ — —  £ c co w co co o £ o co £ P xi -P — E co o co co O c
UJ -PE— +J£OOC04JW)P4->*>£ 10 -D CD — JC M —
z oo P o cno P co co Pen cu cue P >>
LU eo«> e— ^ — co co EE> E— c £cu)s-ot» co— cow
-i o «> o>xiajxjp — £ ococo o>— +>o— -PEW £coEeo
X Ci_+JXI  <%-Wtl--acO Ct-4J.CO £W
1 CO <<- CO co£ C CO CO COS- OCOCUI-oEtf-OP
O i- *- £ i- 4J »— OJJ— !-£$ 1.4JCU S- O — « C OO— C
COOP COCOW3S- CO-P CBCOC C X> — £ P CO S-£co-
O 4^ "~ *~* +^ £— fl) W) QJ ^ ^*~ "O ^ C 4-* ^ Q) O ^> ^ 4^ ~~" ^ W3 i C T"~
•P «!-> CO 3 W £ CO — CU COC— C03O1 — £ O COCU -P —
S- CD XJW (BWCnCDOX!»3 CBCOTJ CDCBl. S-XICUtT— i 	 i-*COCO
CO P-PCOCO -PC/? O) — CO -P-PC pco O £-CO*>E S-tOCU-PCO
d- 10 W p W U C O >j« C CO WC3 W !- Q. CD -PURS 3CPC<-
CB co 2 co co co (0 O i- C CD — s_ coOO coCUO £ it- co — — — O co O P
«v jC *-^ L.QI 2-— -QXIco^-Eco 2O**- 2^tK ^JJQ^+JXI COO^O<0

• • • • • •
— CM er> £t — CM
CO
W 1 C 1
C CO XCO O
oos- a— t-
.0 a. >, o
4J t- U)£ —
co co<<- CO P£
!- >j O O — CU 0
CO ^5 O «- >>—
Q. 5- C UJ CU — Q
CO P CO -O O ZCOOI
co o c >— — a- CM
CO CO X P S CO— .
>»«-—« < c —

x ao o Q e o~o
CO UJ O — CO CO O
C LU 1- W p UJ •— C CD UJ
CU X Z 0. — o ZQOC —
NV-UJ^Wco LJ 	

CU > C — U. W VCC3CCC
^2 £ X CO O P X CO C >>CO
— 01 	 t-XIO 1 	 £
^wUJ^>^>C3 UJ^>EO^
£ <*- £O-CSXI £
-------








-^
Q
LJ
^
Z
—
H
Z
ceo
oo
Lj. *^

a
LJ •
HCO
O LJ
LJ CO
Q- CO
XLJ
LJU
O
coo:
HQ-
Z 1
H-O
3 Q
-JO
oa:
a. a.

>- >•
i-a:
— i-
ctco
03
— O
Q£ Z
a.—
Q-l
Z<

 in *-
d>— -O 1
3 O <0 (W o>
•0 0 CD J3
e — x 
CO 10 — CO CD — •
CD CD 01 O U O CD
s- i-  • P£ CT1
t- 0) W 1- p t-
— CD C O 3 CD CO
— > CO — «l- £
	 £ C CD O
•P — P CO 10 £ 10
w to CD cn*~ +> *~
E«- T3
o s *-
O— O CO O Ol
3 CO —I- CD C
•a *>£ tu t. X—
O C O£ -P «- CD
5- O — P <0 CD £
0.013 O >
1 10 O CD
CD XCM T3 — O <-
£ CO «C£ CD O
(- £ — CO 4J S- C>.

.
•»



CO
_l 4J
O O CD
U CD C
> 5- CD
OQ X
LJ >>P
O n LJ
__
X CD«i-
OTJ 0
U X C
zoo
1,1 ._
_l CD P
> C CO
X CD-0
^ ^ *•—
C" Q
p
.LJ

































CD
C
CD
— CD

<-£ CD CD
CD P— >
•O CD X—
t- £ —
O C P W
to— as
.O CO *O
CO P «C
C CD CO
CD O C
£ 0 CO *
P £  S- CD O —
OT3 O CO
CD « — X -P
£ CD X— CO
I--0 0 0)O

,
CM























CD
P
O

is
i.
CO

p
CD

CD"— CD
c— c
co Xco

p 4-> P
CD CD CD
EO
S_ 13
O 0 CD
	 4J
££ CO
O O C
— | —
QCVJ 5-
I *•— ' O
CM 10 —
•>— £
— £ U






1
O
1 S-
O 1 O
<- 1 O —
O O S-£
O— Q.-O O
— £ XX

CO— C
3-D --O d)
co l -O tt> —
O CM — P X
.0 eo£
CD— CO C -P
£ — CD
•P C O S-
	 O 13
S CO ! 	 C
O P O£ CO
<~ C— O

o o *J
£ CO
Iff
CO CD
•a o
— o
X s-
oa.
CD C
c —
CD S-
— ^
££

UJ



































^
CD-0
T3 C
— CO
(.
CD O CO
£— *J
U CO
E to
0 E
S- 3 t-
t, 	 o)
O£
e •>» i <
co co O
CD O
5- T3
PMC
CO C CO
.— .
CD CO •>
P P CD
to c-o
CO O —
> O X
o
4) C
C CD 0) VI
— CCO
c- to CD —
£• JC — C
o Xco
CD — £ Ol
££ P 5-
1- -P CD O

.
CM























Date:  9/25/81
11.12-45

-------





^•k
a
LJ
^
z

i-
z
ceo
oo
LL._

a
LJ •
1- W
Old
LJ W
a. w
XLJ
LJO
0
wee
t-Cu
Z 1
HO
33
-JO
-IO
OCC.
a. a.

^ >•
-H
ceto
03
— Q
cez
a. —

O '
z<
<0
zz
< LJ
LJX
ceo
wo
LJZ
wo
^ ce
5 o

._
i
CM

LJ
00
^
































>j
P
—
!_
Q 0]
— 4J
«- C

*:
— 3
Cfl —
— •_
P O
co-
al
P
o
a.






















M
E
CD
1^
4J
W
a
a

























>
4J— C -1-1
CO — £ — W CO O
CCOeoO«-C>l-
eo c cfl i TJ o o a.
— CO CM >»JQ O >
>>- t-_£ s. a>.o
£ >>0) u> O ca (.
•P £ £ — t- O -0
CO -P 4JJQ O O !- CO
CO O — S. O W
CO «£ "O V CO
£ C -~* O >» C
•P ~ CD O £ 4J —
co 13 a co c i-
EP — LJC'oeoo
OCt-— ,CD CO  —
(. o 0 — +» £
4- O— CO >>co CO O
£ C£ C A
E >> O CO 4J — S-
CO CO £ CO L- >>CD
CD E E -P O Cfl£
i. 3 CO •— S 4->
*> C — O «- £ O
W E G ^ CD U E
3— O£ WO
co— co— •P'-COC
(A U O £ P
co « — — -p WO •
$ CD CO-O — O OW
•OTJ 1 >> WLJ 4J
CO 	 CVJ £ -O •- O
£ X X •••P C£d- 3
t- O O— CO co 1- OTJ

,
CO










































•o
CO
•—
d-
•—
p
c
CO
•D


CO

o
z







co u
£ —
4n) ^
3
o —
S- 3T3 W
*- in c 3 •
CO O M
EC — 0
co •— * c_ •—
2co I co c
*>— > co
•PC!- 01
in o *> «<-
O MO
t- —
CO >» 1 O S-
•P CO— O CO
CO E-0 >ȣ
> -*»
CO CO - C71 O
+J— (U
(0 O C CO-O
CO >>CO C C
S O — CO eo
CO X—
CO ^- £ X -
01 -P£ in
3 O CO O
O.P -to£
o-o t- o
CO (D — P O
£ CO O CO —
1- L. CO *> CO

,
—







CO
CO C
£ CO
t) —
^
X£

LJ
<0
— Cw
0 O

^•.12
O M
CO —
c o co

«• Tg >^
^> ^* X
£XO

LJ

































•
c w
E 0
3 0V-
— C C
O— CO
O C Ol
W CO O
TJ *»
C C W
CO O £
1 O C7I
4J •»
£ CO —
01 P
— CO TO
	 C
— to
>
O Ol
<- CO
CO 3 »
CO (0 *"*
> 0
CO C£
P CD O
10 U

co >
C CD
O CO
4J .
O «>>.
O eo-
CQ E O1)

.
to































u
o

in
CO
j2
U)
co

«
E
3
._
E
O
L.
£
U

^
.•«
CO
X
o

z






*
c
o
d- C —
O— P
eo co I- •
to 4J N CO w
E C — £ 0
O O — P —
P O TO O C
•P !. CO
O >>P -9
a co 3— !-
E CO O O
eo c-o
•P Ed. eo CO
D O PP
E— CO eo
O O «> O —
«- O -P cfl CO
d. — s-
C CO -
i. o m wo
CO— XJ C
P P «>>eo
eo coX9£
jg C— •— Q) ^
CO T3 O T3 W
P£ CD— CO
to >> COT3
CO CO U) C >>
CO P CO
CO CO U OT3
££ X «--
H •P CO U CO

a
—


— *
1 CO
— •o
co >.

CD CO
O X3
^ —
eo
E C
0 0

—lit- O
o <-
z coo

X >> «
x co >
-J-O —
X CO CO
t- '-•o
LJ »>

CM 3 CO
OQ 13
1
• C
00
if
































%
i in
C CO
E 0-0

dt >,»
CD-0
E E —
co to
£=•.
4J— CO
U) 'c
a — £ CB
S. CO 01
I- PT3 <-
(U Ul— O
*» CD
CO W CT3
> 3 O CO
IIJ O P P
•P CO O CO
W 3 t 	
CO (TO CO
> CO t-
c
CO CO — -O
££ CO C
1- P P CO

g
CM













































O
C
•V
N

*
«
CO

o

z





1

CO
> >> -o
O CO C
E eg
w
co — —

C P C 0) «i
— W — X O
> XJ CO —
CO C O£ C
eo o 	 eo
E CD aTp O
(0 1- P 0)
co-o to i -P
!- >>eoCM£
P£ > 01
CO CO -—
•a o co-
co eo w XTI
*>£ W£ CO
CB P 3 CO W
> co-o eg
CO E 0 	
P O CO CO
(0 S_ C !- !-
cod-— >>
> CO P «-
•0 *J 3 CO
CO CD CJ2£
£ CO O 1 4J
l-£ O C O

B
—
1
c
CO
•o
c
o
Od-
0

o c
•o o

<'**
co
>>c eo

"° 01?,

o v- eo
c-o-o
co >>—
XX eo
eo c X
— o *>
>>- 3
£ •POO
p co i
LJ Ul C
1
CM


Date:  9/25/81
11.12-46

-------






*-*
o
UJ
3
Z
—
1-
z
ceo
00
Lu «^

O
LJ .
h- W
OLJ
UJ W
0. W
XUJ
UJO
O
wee
HO.
Z 1
HO
-IQ
-JO
oce
0.0.

^ >.
oe w
O=J
— Q
cez
0 	

Q-l
z<
j
P
_
t.
O in
— 4O
t. c
a. co
4J
— 3
co —
— _
•P O
CO.
CD
40
O
O.






















IA
E
CO
CO
4J
W
CO
4J
(A
5

















in
in
CD
o
o

o.
1
40
o

^


o.
































t?
c . co

3 O 

>*- > £• 1 ^ *O U C C CO CO CO— 4J •P C CO co O CO 4) 4J i- 40 CD (A O £ 3 CD •P CO CO J2 O — E n >> O 40 3 CO i- C— E *- CD O Q. U) E • (- ~ CO >— CO O C£«l- 3. O col- O f CM •o C TJ to E CO 1 3 E (A C O 1 O-O 40 O U£<<- >>O C O1 £ 3 *~ c — m CD -o 0£-PTJ 0 >» O — I we.- 3 co a— co O"O co — O CO CO 3 — IA (.££ (A •- 40 d 40 40 3 (0 — £ 6. £ CO — U) O 40 C. •oc-a — co 0 4> C > — O +* O CA O CO — "O X) c E c *J eo c CO CO fl) CO 4J fl) CD S- >»C CO >> £ -P X 0) > > — u> OX> eo >> C CA fl) £ CA O>O — £ • 4J E C 0 O -0 0) O— £ CD CO •P— E O w 4J CD W — O O CO co £ O O i £ t- K J3 J3 ^ a *~. ^ ^ y CD — ^ £ 4J Ul 1 CM in ._ n i i c c - CO O 4J-O*- O O CA CO. 0) >>to O •0 CO— Q •O CO 4J<~* co -p coo. CD CO CA O

-P CO CA£ O O CO -P CO— O£ CD co o eo a. £ t- C t- 4J CO 4J— » P X — E « CD C S> E'-^-s Sw •— •• CD W 4-6- >-P£ £ C — <- CD -P O >> CD £ fl) U £ *> 4J 1 4J CO CM >>fl) >4- CO 1 CO O CA eo fl) co c — 3E -P4J COjO B — UJ 1- 3. < *>c^ X CO O£ 1 -P x eo c — ^£ 4J t) — 0. COT3 CO— CD-O — — X C£ C >>Ctf O C CO ££0< X 4J— CO UJ >>XO£ 1 £ J3 CM *> — >> «v^Lt 4J O <- cod- 0) O O O 4-> eo CO eo O£ E t- CO 4J O — *-£ i- "D O 4-> Q. «- c c O cfl C-* <- O X CD 0) fl) eo >> *> W£ *> X eo — C fl) > CO >>O£ C0££ O — •P 4-> 4J >> IA CO >>£ C0 . CM IA-O 1 C C C— eo » > co - O

O •acme O 3 CO t- OT5 X CD •— fl) 4->£ IA£ C IA CD — CO CO *- X 0 > £ fl) 4-> 4J •o o > 1 eo *» — CM £ CA CO 4J 3 4J . co co U E O O — 24J fl) » w . «-£ IA 30. •P P COO «- — OQ . 03 E E 3 co 0) eo 3T3 4J 4) .- .— , 0) I-T3 W Z CO 4J O fl)< 5 10 IA t-O. , CO 1 - C IA — > C O O— *> C •O CO IA CO 4^ X X «- C- 0) CO O co£ 4-> O 4-> — C CO >> co£ U£ O IA 4J 0) CO «fl) T3 i U) 1 4JCM fl) i.- £ CO CO « 4-> *J IA O CO *~ E 3t E -P O 3 IA I- CO— 3 *-£T3 CO •POO (- IA 0)4- . *> O — IA • CO CO CO O. > 6 3 30 CO CO'D'OO 4J CO IA «- in wo co 4J CO CO C 2 « i. s- co , •* ^ .« •_ 1 4J E » C IA 3 O O O1T3 43 •0 C O CA — U) 3 (-a co co a— o 4J-- a C I- 3 •. CO WO IA . o (A — 0) a. CD CA 3O •O— CDT3Q 0 «- — fl)£ IAXJ £ O o c «- a _ *^ E co eo *> . 24J in — CD C >>O 4-£ O— C 40 U CO CO «- *» X CD it- t- eo 0) 4J O 03 O£ CO «A — > E C •>>> CO CO CD IA£ 4J 03T3 4J 4J IA «- C— 4) CO 40 O CO 1 3E IA C IACM . \f\ Date: 9/25/81 11.12-47


-------

•"^
o
Ul
3
Z
•w
1-
z
IKO
£°


o
Id .
I-CO
oui
Id  CO —
WO 4J «- P^-

VO































•o
0) t-
o>
d- Q.
•~ CL
P O
c u
CO
•o «
•— t—
0>
0) >
c —
o •-
Z CO




o
IA 1 E CO —
1 ICC O 1 P £ IPIPP
C P C P — O t- COC— O coCCO<-CO
OCOIA O CO CO O d- (.(gcg (. C- 9) 3 O (1) C
O C OP E CB~ IA d- S CB^^co IA
t_s 	 >, S-5.CX 1-3 C 3 CO-O.OIA
d) O TO CO "D CBOOCO CO— VC t- < 	 4! C Ceo —
P.PPE— PPOE P ^3 Ol— IA 0) CD 'O Ol— CO CO
Ct-OCO d-O COO 0>Q-OCO COO) — 'O >CA (.CO— P COM i- CO — U) .O O
~3 O C — j— C CO t-eoO > t-coP —
CBCBCCCO CBCB— CO PIA 0)P CBIA (DP— XP
CCBC CP IOC £0>C-> PC .C 0) C co co CO
P P Ol— co ppco— co— POIOCD CO— POIOIAEO
CD co O CBO >co COP > CO CO
E— jPCO. E— 3O>e P Ecoco P Ecoi-Ed-
O UJ CO O O CCO OC Of'— p OC O -C —• CD co —
<- E X Q • S- E — X • — O i- O E C — o <-oEf«<-
V co i- CD -~ d-coQ.CBO. PO d-XcgO PO d-XcoP'-S
CD O C d- V CD Q.£ O cA CDCBd. IA CBCDOPQ.
CB P P — O CO CDP 	 O 3<- Pl<- 3<- Pit- IA
PlAOX CO -P U) t- >, COCO CCPE COO) C C P - CB
co CO.CC03 co P£d- OA 0>OC43 O J3 CD O u) PCO < p — 10 Ol— 3

t>- CO — CM — CM
p
1 1 CO
eo — cod- X
•a co -o o —
XP X co
x o) x c P
os: o o co
— o
— JC •— p
eg « co co t.
	 — C CD
P > P CD >
t- S. 01—
co — co o —
a. o a. L.CO
C P -0
UJ X co co X XC
OA£ X A£ P
>- p — fl) —
X CB 0) CO (DO >
uj-or P -o
0 X co XTS -
J£ d-O CCO
< CB O CB CB C
£•00) "D CO
ee- c-o - cj=
O co O — co O P
**" E«o ^'iz
0 0
. ll l!
o
in
Date:  9/25/81
11.12-48

-------

— _
Q
LJ
3
Z
—
H
Z
ceo
00
0
u .
HOT
OUJ
UJOT
O-W
X W
uio
o
wee
HO-
Z 1
HO
3 Q
-1O
OCe
Q.OL

>• >•
H CJ£
trw
03
— o
cez
a.—

Q_l
z<


CO
u
^
Q.
1
p
U
3
•o
S
0.


























10
1 P 10 10
co c— a
£ 3£ E
•P OH 3~
eo E — a •
E eo <0
E P
eo— . 3 eo
£ — CO 3 —1
•P ran o
E >>co E
E W£ > eo
SCO CO
en*- -P
4 	 v,
eo co
CO P E *>d-
•P C <~ C O
CO O O CO
to ud- M eo
c n o
eo — -o eo eo
•o— c —
c— co eo a
o > A
o — c
C 0 >>—
•P E C co
eo 3 eo En
— 5— £ CO
O *> E w
E O CO eo 3
CD E CO
V od- U E
W C O W eo

.
eo

































CO
c
CO
3
__
O





^
c

&_
eo eo
01 O
3 >>
— Ol

4J .
c eo
con
o —
i.
CO O
*>£
O
O E
(, 	
n
t- o
CO to •
p —
co c o
CO co —
P P O
10 C >>
a O —
> O Ol

co >»n
£ to C
H E eo

.

d-
o
10
•—
10
o c
i- —
n «-

Z ^>
Z >>0
-J3 t-
at o
LJ C —
O-£

_l CO —
o u a
«.
• o












c

eo

o
s_
U





co"
n • i u
— m cc « — « —
ic-od-io «- n— c — c w
>» o — o c — *> co — — • — co — c oc coeo-c co— co -P i- • jz 01 « •
eo£eo Eoeo c.~>— toeoto PCCCO
COUOIOOl 4J P «- e in o O O 3— O
£ i. «j >> k soo cot- 10 >>— d- *j i. —
EO -P eo O E eo 3 O >>,O n— C O (DC
0)3 os oeon>> o <- to coico coco
£ — >> a n U.PO— eo • co 01 > 01
Pn> — C Q_«co I.I- E eo— *-
o CD co— eg a. £ o— o P— o OPOIO
E>
C tOCO <- eo3 E^-Oco — O£ OOCO>
d- — n E c cotoeo— o 001— ooi^neo
COCO O>>CO £4^£O ! 	 1- 	 >>— CO
4J P P 1-1.3 o O — 10 > £ O — P P — U) p (.10
noeo EO« nco>> co o >>£ >>3 — n 3
o i- too o to eo 	 01 E— o E— >>o
t.>> coco. i-unE t-eo 	 o— eo o — £ «
aeon i> <- c CD c P co— <- CD c t- *> c
EC P — P — eo w • to— d- co d-u>Eco
to CD 10 *J «. . eo— P CO >>Cn C— 3 —
E— cento > — eo c c i- — — eo < 	 t-to 	
o— . coeooco co P P co  > >>— 4J«icoC3 P co P ra +J+»o P c o o
jj p — to — — p M to — — co c— cocto coeototo
o a> t. mo o>— ro C7i c 6 o > a> o a> So— >i —
A CO ><0 I- > C >.E
too C3 — n P P*» *> -p>n
£C— ££eoE £ — O O C eod-eoC cocoC eoCOOC
HCOOI H P P — HVOOCO JEOECO S E W 5 £ CO CO

• • • • • •
CM eo d1 — CM eo
C
o
'^i
co

O O

n o

j* —
>><
£ — •
>J
C —

L> ^
0)

_
o
Date:  9/25/81
11.12-49

-------

o
Ul
3
_
H
Z
eto
00
*"*
o
Ul •
HOT
OUI
UIOT
CLOT
XUI
UIO
OTOC
HO.
Z 1
> 1 W
£ CO O « 1
~_ 4^ c_ CD CO— 0)
CD >>0) CD -P 4- O <- >> 1
>> W£ a to- *-£ Eco >> u>
ICO 1 W TO W C W >» 0) O W OECDI — CO
C E 1 C 3 co CD — •> CD £ « 1 O 3 •WOOD Ul 	
O — O >»O C CO— OW — • CO— O 4J— 00 <- coc
C O— CD O TO CD CD CD w O co CO O V — eo — O— >- 0) -P o
o -a — o EC TJ £ c -o -o — a <- .a — +* t- £ccn
— c • w —  co c w o — — c — o 	 co w to *>o'-
*J m i» fl>*>— g> 	 o OO- >»— oco *>>>> coca>£ OO
£ C— "* "'.-CD CO >> 	 *>*— o 3 — -0 4JBJCO C >>*>
•o — c E wo e w o -P cooio coc a>— E eo c TJ — — co £
>><- CO COT3 C CO CO W 0) <- E CO O W CO WC4J-O > E Ol
£0>aitDCeo-CD— — 5 O « 0) O « CD CD C CCOCDC co —
10) O ^ P CD (0 4J JJ E 4J — — O £ — O £ — » — 1 O co CD 	
•O>»O co i — o ««O e co — O — -P >, o TO WWO >Xco • 	
— *»O— 3-O col 	 £*> co£ *>— eo> ««> — "O
CD CAW CD££C CDT5C CD CO *> O CO E E O T3 ECO COCO «CO E *> CO
£ £ £O>OCO £ O eo W a u> O O O UC O O TO — COC 	 cocfl+>
w c 01 w — o o) *j>> wo) — co <- — —<« (.0 £ — «- c a> co
	 	 t- a c »ca>>co «K — co *- o E t-eoeo £-« —
ECO— EtOOE— • «- -O — « >»— • TO C CD O 01 4J T3 CD
2J-> oco oco<-ca c CD CD — c i. *> — •a c-cowca co— o>><- w c <-
CM <-£—*> <-£COO CD U) > >> TO COW >>— CO E 0> O *- t- >>— O CO
«- O 3 <*• 4-> >>£ «-*»o~ *»COO— *> — O *» O— W CD — 01 -OI-D
oo — O) >>c ro£O— « coc— eo co > awe
c. CD >-(>- 	 «- *> — co > a CD ra -a > o co ><- a >>— d- > CD £ a
»>>c eooco— CD TO » a> to t. — co— o coo «ui CD — -ooco £ en
wcocow 4^ Cwco ^oww •>— W4>A— (- wen co ^.'—c
CO E — TO CD C W COCDCO CA£CDO)CO MCOCDW U) TO O O « CCO£ CO 	
^ ^ ^w*^3 %w*^ awww eo^wco co^^ coco*^w ^ &.
CD— CD 0) TO TO O CD TO TO *» > TO TO O > "D CO O > O — T3 > £ CC C TJ O C CD
W— O W CO W CD WMW£ SWW— X*> CO O. O CO W 4J 3 CO — O
v>— oco«w «£:«(- coco >>w « cow co <- >>
aW— TO CD O TO CO 4) O — £<-OO« £ CD O 0) £>— a £d-OEcO £CD —
3«>E 3-00— :yoo— Hd-TOwo H-ocoa H CD 01— HOOTO— HOW

• ••• *•• •
^
o
c
0
CO
•a
"x
S-
X O

0
!•

CD —
^^^C
o
Date:  9/25/81
11.12-50

-------


^*
a
u
;3
z
_
1-
z
ceo
oo
LI.—

a
Ld .
h- W
OLd
Ld W
a. co
XLU
LdO
0
wa:
HO.
HO
-JO
occ
a. a.

>- >•
H CC
— H
ce w
O 3
— o
ccrz
a. —
55
LdX
ceo
wo
LdZ
H ^
WO
^ ce
3:0
_,
|
CM

Ld
CO
H




















.p
t-
O CO
'— 4J
s- c
Q- CO
•P
— 3
CO —
•_ ^
•P O
CO.
CO
•P
O
a.



















IA
E
CO
CO
(_
4J
W

CO
IA
S

















IA
IA
CO
O
2
a.
i
43
U
XI
o

Q.





























_
E —
O —
•p -p >>
•P IA .>
O IA CO
o — .c
CO 3 -P
.CXI CD XI
•P O O CO
1. CO -P
01 Q. CO
C .—
— .C C CO
> W«- t-
CO— «-
O C CO «-
	 O CO
d- >»f
CO C O1O
2 'C 'xi -o
•P HI C
CO O C CO

CO— CO « •
•P OI4J C W
U) C— O
co CD O ' 	
>£ O CO C
•P O CO
CO >>>>»
f Ci- to — C.
1- O E OiO

.
VO














































^
XI

XI— O
co— eo
CO -P
£ W O
{J) (0 4J
> XI CD
o c u •
CO CO IA
CD 1 S- O
f -P O«
•Pf O.C
Ol CO
E— -Oi
E — XI «-
— 0
*-XI O
— tO 4J
E O £
CO CO U Ol
£ o'*j-
*J— CD
IA +J OXI
CO CO CO
CO O 

^7o * •P -P CO CXI £4. O C 1- O O CO . "" _^ _ E — O 4* - *> CA — •P O OCX) a o — •- o » « >> JZ CO — • JJ O OIIA — 0 01 C|- .— C — XI C — t. — CO > 3 O 01 co a. co t- 0) O — XI O E O

CO CO CO CO CD U CO I- O CO.C 4J .-. CO 4J CX) CD *~ CO CO U CO -P •P CO *J CO w c — >JZ O «- +J co >>r> J=C|. co C h- O E CO , 00 CO c CO 3 o ^ «. CO u z ^4 * ^> CO "^-Xl CO E- C E ^ CO C-X E CO •*-• * CO *•" •P to CO • to CO — *- *- > c c *> o CD — O « -P •PEE U IA— E IA CO co CO co •- CD > c c. t- Q> *>H (_ ^ CD ^^ CO CD >>- J= O.JI— +» Q.JJ (. . — CD -P W O C E — O -P •P CO C — IA X O CXI co a. co co Of— Ol— C XI t- O — C CO O > E— O — CO * *• O 4J< fl} (. CD COf H OX O.O , ^ o XI X — ZZ3 -P E co'c < C O Q. O E — U COX) z — < Ld-D -I OCi- > C 0 X O I-- C Zf — < 4J 4J X CD CO U E C X CO CD X Ol 0 CM* Ifi ^ CO XI E C to E CO - CD CD 4J >« IA (. CD — •P C IA O to a >5 — to •— •« IAQ (AX IA XI 0 C «— CO— C i z: co OlC O - ccj t- +J O O Cf f O -P h- 0 0 . CM ^ CO XI E C CO E CO •> £IA 0 •P 3 (A XI O IA *> O (0 C. = 1 — to 4J-P IA CO U • IA IA XI -O C< — (DOC 1 S CO CO C 0 J= co «- •P O CO Cf f O -P H O O . CO u o a a o o ^ « CO o z i c o o « CO CO C E O L. £ CD (0 .P COX) • > co- co > o • y ^ ^ 4^ (A OXI eo « O > (0 C — (0 CXJ X E 0 3 >f osr-o OX CO 4J o> -o C< CO xi2 t-X C XI 3 c O — XI f CO C h- *» CO . ~ £ CO c •_ E — o o XI — O IAXI C— CO owe - Xeo >.- X f 0 0 •PCX O O 1 E EVO co E « X ^ ^ o , t. c o — CO 1- 4J CO Cf O -P o o (0 C E co COX 0 « wo raZ *z 1_ « 0 CO •P C C CO co X 0 CO • CDf W XI O O «_ t^ o o c f >>co h- O 01 . CM Date: 9/25/81 11.12-51


-------

o
Ld
3
5
1-
Z
iv £5
OO


Q
Ld •
1- W
OUI
Ld CO
O.CO
XUI
LdO
O
WCC
t-0.
Z 1
I-O
33
-JO
-IO


^ >•
h-ce
03
— o
CCZ
Q 	
0-1
z<
S
X
c
s -
3 CO
__ .— •
O C
0 0

(A E CA
T> R> O
C —
CD C C
I — eo
•P CO W
J= P «-
aic o
— o
— O -P
CD Xcn
iElil

,
CO




















































*
d,
g y t_
coX O
2 .»
P (A >
(A CD CO
3 CD
CDTJ.C
(A CA L.
CO CD CD
2t *•• £-
C »0
E-P
3 IA-O
- >>C
O— CO
0 co
p »
 P CD
CO C P •
CD O O »«- C
£ CO C CO
h- E 3 W

.
•*





















































CD
£ -
4J ^
a (A
•P£ 3
«OX 0
•P C «-
CD— co
•- •jco >
E CT3
CO O C
CD o co
P
CO ,t- 1-
•Q > Q> tt>

O CD -P P
ox: o o

.
ir\































•o
CD


CO CD CD CO
> C P CD
CD O CO «.
o

c
o

4J
CO CD
•o c
— o
x c
o —
3
ui >>cr
ZJD
O CO
Z CD —
- c>
to
C CD
CC 3 "™
££.-
X I- C
•o<
>>
to




























L. •
CD C CD
u CD— C
C£ co O
CD W 4J C
•o c —
C P 0 3
O to O CT
O O
!_«->,!.
CD o con
P P E >>
V O £
~?cx>
CD CD co C

4J 4J
 CD E 3
CDC 3-0
U) U  t-

t
CM




















































1 C
C 0
0 <- •
O •— CD
C
«-x> o
CD C C
P CO-
CO 3
> c o-
£28
CA — -Q
CO >>
> -£
C
(A JO CD
CO «- >

2c o o
U »N
zn >>
UJ -
•^S
5*c^
CO >>
CO *>-^
-• J9 x^
OO
(A
ift






































Ul
Z
Ld
_
O
1-
oo
o
P

4-
CD
4.
CD
cr



<<-
o

c
o

p
CO

^
X

CD
O

>>-
A O
c
CD (0
C P
^cS
XI
p p

-------





^,
Q
LU
3
Z

K
Z
ceo
oo
LL.^,

a
LU •
1- W
OLU
LUCO
a.(0
XLJ
LUCJ
o
wee
(-0.
ill
^ r-
I-O
3 3
-Id
-IO
occ
0.0.

»•
i-ce
— H
ce w
OS
— o
cxz
a 	
a _i
<<£

2S

p
XM
E S- O
O CO —
«- > c
V O CO
O 01 •
«- CO 1- P
0) (. O C
P 1 CO
CO P IA >
> C 3 —
0 CO O O
P >— W
I/I — «.
eo O CO V
3 (A > O

^
—
CO
c
CO C
— o
•o —
CO P
P eo

CO —
a—  O
!T3 P X
LU C OO.
Z CO CO
U t--~
ce co PIT\
a- c x~
O COLUO
W L.
— ax«t-
OJ2 O
IA
IT\
iTl

8
o
£
O
•o
1
CM
•»
__

•,
CO
c
CO
3

O
p

«,
CO
C CO
0 C
N co
C.C
CO P
CO CO







1
CO
p
IA C
eo CO t-
> OlCO
0£
s- t. .p
CO-O O
& >>
.a.c-13
3 C
>- .CO
o u
u>~ ,
u —
O IA 0
— 3 C
P eo eo •
IA o O. (A
3 o O
co in ! 	
O C Q.C
— O CO
IA co (A O>
co P— i-
OiC O
I O «
q. o CO CO
Ci- -a —
0 L.-.Q
c»
— C
P CO
c-
o X
0 a.


£CX
P

eo — —
OT3 O
o c
eo IA eo •
£ at-
P -O CO
0 «- S
E— ax
E-P O —
IA IA O
v 3— a
eo
«- O »-D
CO CO C
P (A P CO
co c eo
> — CH ,
CO eo— *-
P P 3 CO
IA C (A£
CO O— 4J
3 O.Q CO

t
CM





























































«- CTJ
0) EC
P— 3 CO
CO X -
> a o —
CO O O O
pi- C
IA a c co
co o o a
*« pS
i — co a
0-0 O O
J3 — (A
£ , C, 	

!_ O • *- IA
O C <- 3 C
(A eo CO a—
Q.E co
IA O X — P
co s — o c
OlQ-O CO
o a co o
co IA a.
	 -a o «-
o c «- 0
X
o c o co i.
CO— . IA > CO
s~ eo t- — CO E
•P CO -P X
CO C£ CO (A —
£ O P £ CO O
K O CD t- > a

.
ro a-















































CO
c
CO
N

CO
CO





X
co
S
X
CO IA
gj •«•
£
t-l-
0
P
CO •
£C
P CO
IA N
CO C
> CO
A

OW
P C
•P CO
o
a co
S. CO •
CO — t3
SS?5
CO U
OCX
CO— O
•O eo CO
p (-
CO C
£ O CO
1- O.Q

,
—






X
A
CO
•o c
._ CO
LU O N
O< C
-•>»«
ee coco
QT3
>.._ <^
X S- 0
z-o
< XC
£ O
o c —
-< p
LU CO
-J OT3
rf .. •_
Z CO X
-0
eo
1—
1T>






























^
CO
•o
X-
co t-
E-0
X
0£
3 C
•Q CO

IA O
CO— .
<- CO CO

— CO CO
-EN

P .co
wo .a

C OT3
o co c
— co
•P O
eo— »
c cot?
— co o
P E co
0
eo C O
tf- co e
P eo
CO C E
£ 0 3
1- O
0) O
*> —
(A a>
eo —
> CO

l_
o -
PT5
CO •••
I- O
O CO
a
CO O

CO C. CO*
CO C
•o E co
- 3 N
O4- C
CO CO
C JQ
o —
— eo"O
CO P C
— C eo
eo O
E 0 .
•o
0) X-
£ CO O
1- E co

4
fO




























































1
c
o o
o —
(.
Xeo
CD S
E 3
4.
L.
CO »
p-a .
eo— IA
> 0 0
CO eo —
P C
(A O CO
CO— O)
> CO <-
t.*0
co s «-
N CO
— .£
— CO P
— CO
CO CO
p N-o
UJ C C
XCO eo
t-IS
o -
CXJ
CO 	
£ eo o
1- -P co

t
st




























Date:  9/25/81
11.12-53

-------




^*
Q
LJ
3*
Z
_
H
Z
£CO
OO

Q
LJ •
HOT
OLJ
LJCO
0-CO
X LJ
LJO
WK
HO.
Z 1
HO
_J Q
-1O
0.0.

HO:
— H
ceco
— Q
tez
Q 	
O-l
z<
 CO E O
O 3 (0 J-> C
^* co O — co -P CD
CD CD— (0 O (71
4J (- (_ (0X3 .DO
CO C O CO CD '-
> 3 — *> to COXJ
CD £ O 3 £ >>
•P CO t) Q. -P£
10 C O <*-
CO— S.-D— E tO
> WO C«— O C
4J >, CO t- —
CU C£ 10 tk. co
(71 0 * +•* 4^
3 O --0 — -PC
«t- T3— CO CO
— ^^— O to CD O
1- CU O CO 3
4J +J CO E — '-
C CO O 3 • <4- CD
> £U
H~Eft-co— Hto

. .
^ (M






U O

•P CD

— co
CO S
4J
co C
J3 O
*D W
— CO
O N

(.
O CD
— ETJ
t-o —
co to u
3
^




































UJ
H
^*
J
te.
I
u
£

-1
^
H
3
00
1
c
o
4J
s_
CD

a>
a:











CD
jz
•P C
•«•
a >>«-
— £••0
o >>

— o
o o c
-< CO
^ o o
Q~ '^
o— co 10
< XC <0
S <- O CD
H O *> O
Ul CO CD O
££ U <-
CD
00
in
o
c
N
•t
i.
CD

—
•—
to

^
—
CD

O
C
e
.3
^ •«<•
CD e
0.0
n t-
O W



^
CD
E 1
C- C T3
O CD CD

CD C (-
«- O 0 •
O to CD
CD .O X3
£ e co —
•P co X
a)*- o
E •P O C
EtO O
to E
 E «-
t. C/J CO CO
+J— O
(0 tO CD
C OTJ
!- O CO C
CD O <- CO
•P -P
CO t. tO
> O£ co
CD 4-> -P (71
•P CO —
(0- >-
5loT =
CD O W -P
£ O CO CO
H CO « C

f
^





E
O

Cl-

IO
•_
to
CD
£
4J
C
^J
CO 10
CO
-I >>0
on
z —
<- eo
X O (-
H C 3
U CO *>
£ £ CO
•PZ

ON
m





























« i
— c
CD O U CO
£ C— 3
•P CO C (7
£ CO
 (71—
O CD « 	 •
E O co to
E E CD
O to C. 10 3
•P C CD T3
+J — £ C —
O CO -P — CO
J3 +J O to CD
C *» t-
fl) OTJ C
£ U C O -P
•P CO O CO
C >>
E E tOT3 —
0 3— C CO
1 	 O CO 4J
<•- O£ CO
U O *O
(- O CO
CD (71— 4-"t-
•P C CO O O
CO— 3
> a.t--& »—


.
CM



































































a
—
o


o

H
U
0

o

4_
CD
V
ID
at





CD
41

4-
o

•p
u
3 CD
•o c
O CO
(- -p
as
>>oo
oo
»-
CO O
tO C
co O

— .p
O (0
c-o
(0 —

«








































a
^
o


o

H
Ul
O

o
•p
CD

CD
at




i
2Q
—
ac 4>
>> o ®
flO— Q

co co

U (A— O
Z CO X
o o c
H CD O
LJ C CD —
:* O c -P
•P CO O
-1 CD -P 3
>iC 3TJ
X 00 O
1 	 1 l-
LJ >>CO-
£
_J 4Jd- CD
>Ld 0£
X -P
i 	 4> -a
ui >> o ' —
££ 3 O O
»
O
VO




































_1
o
o

J
^
H
3
m
1
u
CD
to
o
.p
t_
CD

a>
(£.




\ »
°£
•o o

f~ •—
CD<
Q
— .
>j >»
J3 4J
3
CD CO
C 1
O O
•P 
at to

o -a
£ C
•P co

X c
n .^
CD
CD —
C O
O <~
•P U
ffl < —
* o
C|-£
— O O

£ C *"
•P O<

- 0 >»
>>eo+>
£ CD 3
•PCCC0

*

Date:  9/25/81
11.12-54

-------







lfm^
Q
LJ

Z

1-
Z
ceo
00


o
LJ .
HCO
OLJ
LJto
0-W
xu
LJO
0
wee
1-0.
2£ 1

HO

-ID
-JO
°gr
A* O.

^" ^~
HOC
QC(O
— Q
QC tS
tt. — •
Q-l
Z<

—
y Z
UIX
ceo
COO
UJZ
coo


__
CM


LJ
CO
£
























>J
.tf
L.
O 10
™ 4J
«- C
a. co

— 3
CO —

•P O
CO.
0>
4J
O
0.






















10
E
CO
CO
!_
4J
co
2
V)
co
5





















to
to
0)
o
roduct-Pro
Q.











































LJ
1-

1
ce
o

X
^—
LJ
_,
H
co
c
o

i.
0>
CO








CO
c
o
UJ >>P
h-A CO
>P
ce re«-
o— o

H O *~ *~
METHYL ME
thyl Metha
Metha no lys
Cyanonhydr
CO
, J£
_
SO
o
c
0)
N
C
03
A
£
4J
0)

.
0)
c

3

O
4J

.
Q)
C
0
N
C
0>
co


CO
c
0>
t.
>> (A
0) -P 44
£ <0 C
P— «C 0)
Xo> o c
E£ C «- O
o j-> a) — ct
(- « N E
V E C-P 0
1 03 C O
E CO — O *
S- (0 4J W •
3 4J (. <0 •
Q.C .CO VO
O 03 4J 3 CO
«- O C TJ «-
P Xt. aTw >
CO CO >>C CO O
> E4J 03 «- 0
0) M N CO
p t- C -P t-
V) 0) . 0) UJ
CO -P ffi A >>CO
> C C 	 A
«0 CO >><0
»
£ 0) 3 4J CO CO
I--O O 4) O E

.
—


0)
c
0)
E
>>a

z
III q\ fc-
ce c o
>- 0)
1- I- C
CO >>0
> to *»
X— CO
£ 1 TJ
»i|
(0

cJ
VO































4)
^

>j
c. i
c
- E 0
C COA
— TJ »
fc- C s- >,
£eo *> n
 E --o
CO CO
E cnc —
2«- a «
0 t- 0
Vci?g
(0— (0 Q)
E (0 — £ •
O *» XOT3
+> C£ 4)
4J O *> «J *>
O O 0) co
A E 0 1-
C 1 4J (0
>>E co C
> 3 £ 4J —
eo— ac o
a o— o> c
x o co w —

.
CM





































































O
LJ
X
Q.
O

<-
*
CO
ce



X
1 A
ttl-l
O
>LJ-
4J04J
<0< CO

Ipha-Methy
product of
Cumene Oxi
CO




















































LJ
h-
o
co
o
UJ
ce
o
o

t_
*
CO
K




B
2
Ct,

c
o

71 co
CO -P
t- (0
CO —
a—

CO 4J
to
UJ >»—
NAPTHALEN
ptha 1 ene b;
Coa 1 Ta r D
(0
• z

SO

















































LJ
Z
LJ
Z
LJ
CO
O
p
I.
*
0)






e
o

4J
CO

— M
S3
W
O «
>>^>
A >.
phthalene
from Pyrol;
(0
z



















































LJ
Z „
J
5
O

c
*
CO
ce





o

c
o

4»
£
i
z

ZA
UJ
Nl TROBENZ
trobenzene
Benzene
*—
• Z

^o
Date:  9/25/81
11.12-55

-------

^^
Q
LJ
^
Z
£
ceo
oo
it ^ ^

Q
Ul .
t-t/J
OUJ
UICO
a. w
XU
UIO
o
wee
1-0.
Z 1
I-O

-JO
-JO
t-ee
CCCO
O=>
CCZ
O- —

O -J
f2
IS
UJX
ceo
oo o
_
UIZ

wo
»o

—
i
CM

Ul
	 [
ea
i-


















.






L.
O v)
~ 4J
t- C
0- CO

21
P O
CO.
p
o
o.
















co
E
a
t_
IS.
a
«!
CO
3:




















10
in
CD
o


ex.
1
4J
C,

T
0
t-
Q.














*•
O
c

£
a.




Ct»
^ _
* ^ —
W | CD —
43 CD— .*> >
— O >>« CO O
E CO CO -P P > P ~
SOW — O CD 3 C
— ., (A 3 *> d CO
V *• 1-— (DTS Ifl O>
3 CD O E O CO— «-
Ed-.CC t- > CO O
ce— P CD «a t-
0) 3 O ^— fl) ^> Q} ^ T3
«- «1 aCd£ 3 C
4J T3 CD *» CD CO
W W C »>>O C
C CO CD I 	 -. 10
1 	 C *> CTJ >»*>
+» *>w E— orxo «- co
> O *- O£ O CD
0) O— -P 0) C CD
4j 3 c a> «- «- E
tf)t»c/)'— ECDcocDco
«
13 £ O CO C — > 3
— «(/>>> co— C*»
O CO CO CO E 	
(0 > «E *.CD>-cocoP
•D CDT3 *> 0) *» W
WCD — -OC— 3«-CC
|-4J10<04JOCIOOO

,
~
CD
C
«
3 CO
o o>
CO
X ^
d co

CD —
o
•p-o
CD C

^
C
•o o
-1 C —
O C04J
Z CO
Ul— TO
Z O —
0. C X
(BO
.f
ir\


























rom the
acetone,
yl oxide,
ganics.
V 4J 1-
C— 0

+J CO CD «-
co *> E CD
WC £
c o -P
CD O W O
O ^"^?
o i -co

•p e o -
CD e c CD
-53 CD C
— £ O
e o D.C
CO O CO
0) -£
p 0) CD a
«) C C O
c» e s 
£?£
K O O

.
w>















































^_ ^
o a>
c c
CD O
rom the ph
acetophen
c^ •>
^
CD O
•P C
CD V
I0£
c a
CD
•o c «»
C- 0
O CO —
o *> c
c a
WOO)
CD O t.
~» o
E<0 I-
CD E CD
CD £
4J C *>
(0 E O
3
CD — -p
£ 0 C
1- O CO

.
*














































••>
>
CD t.—
£ CO —
*» P co
E C CD
0— C
<- CO CD
d- 4J O)
C


,
iTl


















































C
egeneratio
adsorber
e hydro-
«- c0 c
CO CD
o CHE
"O -P O
o c
— CD •>—
!- > CD —
 O C (D
CO O"O
> CD O —
CD£ X
P -P— O
u> — s-
5 O 5 O.

.
VO































O
C

.c
a

^
CD
C
CD
N

CD
CO







para tor
furic
CD— CD
W 3 *)
10 co
CD C
£ -O
4J 0} (t—
c —
E CD 3
O N U)
t- C Q)
d- 0) C
d CD
t- N
CD C C
•P— CD
CD COd
CD C-D
•p o c
 O CO
CD
— •o
« 3 —
£ O O
1- O CO

.

d-
o

o

4J
CO
C
o
d-
3
V)

0)
£
P

>>eo
Q.



























1 E
CD 3
<0 •, T3
CO— »O
> O CD <0
C P
CD Q> CO "O
-P£d- C
CO a— CO

— C «0 «
	 CD
•P CD E **
10 P 3 CO
— C — C
•a o-o o
O Od-
C <0 —
E >> 3

— E CD CD
O -PC
U E— CD
COd- N
E CD— C
3 t- 3 CD
3 P <0d •
O 10 0)
CO E E -P
> (- 3 3 co
CD 	 c
0) P-DT3 CD
£ CD O O£
K > U) W a

,
CM

























Date:  9/25/81
11.12-56

-------


>-*.
0
Id
3
Z
«
t-
Z
fV Q
oo


a
Ld .
h- W
Old
^J {/)
0. W
XLd
LdO
O
wet
(-0.
Z 1
I-O
3 3
-JO
-IO
oce
0.0.
>>.
HO;
— h-
occo
O3
— O
cez
0.-
Q-l
z<
 to
> f
.a
.O 10
c -D
c *~ * c
E co 0) co
3 P P
— C CO •.
o o c-o
o o o —
*- o
E X- co
3 CO 3
3 E <0 O
O fl> —
CO E C <-
> co a> 3
CO N«t-
0) U c —
f *> 03 3
H U.C (A


•
CO
























































E
3 —
3 0
O C •
CO 0) f 0
Q) C
f CK CO
P O Ol
E V) 0
20)
OT3
*- CO C
s- co
P 10
CO C P
(A 	
C CO CO
03 P U)
•o c
c o-o
QUO)

X—
•P CO O
(OEM
•T 10
E E-0
co 3
woe
(A O CO


•
*



























0)
a.
a
o
o

*
0)
c
CO
3
^
O


*
«— •
o
c
0)

CL





__
0
c
0)
a

f
4J

E
SJ
«>- O
0) 03

co a
— c

•P CO
in u
•_ c
^ O
O
in
3 X
O CO
03 S
OC
co E
3
0> —
f O
1- 0


.
^™
1
CO
•o
•—
X
0
Q) "O
(A —
CO O
tx.
I O
•o ••—
— o
3 N
ac


X***
•° °
— c
o o

CO 4J
f
o.




























1 f
P O
C 3
03 in
^ «M»
O P •
(0 C —
03 O
03 > C
f — 0)
•P Of
10 a.

<>- co
P (A
ECO)
CO O O
2O co
(_
•p XP
(A CO
E-0
t- c
03 P CO

co C~
> 3 0)
CO C
•P X0>
W i- 3
(Q Q) «•
» 0
0 P
CO O
f CO M
1- «- CO


•
CM






















































^
L. > |
O CO C
*» CO 0
Of O
CO —
t. »
•P-0 0)
X— M)
03 0 03
CO C
t- CO
CO O O)
•P— C
O CO
03 N E
f C
•P co "o
a c •
O C -P
I — •.



•
to


























































a>

•P O

f 
§— CO
Of
P C
CBf C
» a. co


•
*

































(
•o
CO

l>_
._
p
c
CO
•o


CO

o
Z








^)
CO
E O

0) CO "Of
•pf — *»
CO P O O
>f co
0) a. -o
•P T) C
(At)- C CO
CO O CO

Ifl 10 C
CO -P 03 CO
4J C-O— •
CO 3 — X .
°,^
Ef co
o a. co
•p f
P C
o — -o
J3 CO 03
p p
0) C CO
f O —
•POO)
1.
E X
O CO-O
«- E C
V CO

e— o)
CO — -O
CO 4J —
S. (A «-
•p -a
 a— c
— CO
co o> co 01
1- *> W O


•
CM







































CO
c
0)

co
_^
JJ
a
CO
Z






*
o to
•P — O
c co-
co — c
>"O co co
CO E Ol •
03 P <- (A
f co-o o w
P C C —
— co s- co
BE 0) V)
O CO Of
t- 4J — *J i-
*- C— O 0)
O CO f
E Of ->P
CO *> (A O
t-ja a-o-o

.Qf C
co a P-O o
•P 3 CXC^S
  co co


•
~



1
•^
X
o
0)
XC
A CO
0) CO
•Of
•« 4^
(- a
-o co
f Z
=v
< 0

o c
— o
— ._
co P
f CO
•P-O
f
a.

Date:  9/25/81
11.12-57

-------

Q
Ul


1-
Z
CEO
00

a
Ul .
H* CO
OUI
uiw
o- w
XUI
uio
O
wee
t-a.
Z 1
H-O
33
-JQ
-JO

Ou &.

^ ^
1-tC
— 1-
ae w
O3
— Q
aeZ
a. —
O-l
52
15
UIX
ceo
wo
IB
UIZ

wo

3
a.
























to
e
a
4.

CO
JJ

0


























09
to
<
O


a.
i
41
C
T
5
«_
a.


























.,
CO
c
CO 1 1
1 - >«-
•p cox: co
cox: >>o
» -P C
x: aeo-o
CO C
co c-o co
x: c
•P C CO «
— to
B co tfl *»
O •P'O O •
t- C — 3 10

O eo O —
tfl (-co
eo-o o ata
•™ — ••- X
•P 3 COX) t-
— o— co
>- o co ox:
3 S---P
Q.JC c o
S CT3 CO
— CO C WO
•P CO <- C
•O O co
CO WO
to c— « — C
O (-£ <- O

CM*





















































.
I CO-
CO 10 3 CO
c o-o to
o 	 o
— c to a
*> CO CO tO
O Oil 	
eo «- -o
v. o to
t_ ._ i.
X.C 0
CO > t— «t-
x: to
•P CD —
O to CD Ct-
I- C 3T3
Ci_ — -o C
CO— CO
E 41 tO-
CO C CO
CD O <- O
t- o *>
•P *»
to c to -P
E X C
CO 3— CO
•p — co o
c
CD O-O >>
x:— c co
1- *> to 6
e»>







































^
c
o
E

4J
c
^



^
CD
•a
— O 1
I 	
O— *J
— co co
CDffXl
x: o -P 3
P x: to
E a i
013 O
c — <>- «-
— O 0 O •
> — — to
co co tofo
eo o CD o —
— 0 O
to co to eo
E C t- 3
CO — 4J O -0
CD CO — C
t- .p .,!- (0
•P C CD CO
<0 O"O > tO
0— eo
i- x-o-o
CD «- O C —
*J CD 1- CO «-
CO XJ XJ TJ
? XI >> » >>
co 3x: cox:
•pi- -O C
«l O E — co
CO to 3 <-
> — -o-o
•o o >>co
co 	 x: *>
x: o co c 3
I— >

t- to *> .
*i CO CO
^ TD O
«- CO O
cox:-o >>
•p aco —
eo to p w
> 0 0
cox: co >
•p aco o
(0 1 	
eo-o c
> C 3 t.
Ul CO CO
i- m «x:
O (/) ET3 4J
W CO 3 — O
O 1 	 O
ui a^  10 i- »
*> — C O CO
«- ft- co ao
CO P to O
t>- CD C O >>
co x: ox: —
CC. 1— O O.C71
-

E 1 1
£— o
eo
V *> CO —
to cc o
C— -JO
oo o >>>>
0X1-
ui p— > o co
3 CO *~ -J ~" ^
Q t, 0 0 0 CO —
— CO OCX
w a.p ui >>coO
oew oi uio >>>-! > CO -P CO
>
t. co cc — *-x:
x COK a- Xo -P
Ol- >x: ui
1- — CO -J *» C
— x: eo ** O co o-o
ft- o o eo Q. >,— c
PO— — JJ eo
O
.a. .a.
r~ oo
\o \o





•o
CO

ft-
—
c
CD
•a


CD
c
0
Z






O 1
E— •>>
CO <- CO-
CO 3 CO O
s-tt- *> a
*>- CO
to 3C.--0
CO— C
«- 3 CO
Q) -«
•P CO «
co-o e —
>— 3 0
CO S-— 0
•P O to >>
in— in —
cox: co 01
> O 4J
O CO
•P E ac
C 3 CO •
o — -o 	
ET5 C >0
•p o co ao
co to OX
co e ! —
(- c 3 aoi

i wo ~o co
•o *» o co c
— C CO -P CD
0 O 0 —
eo O -co >>
•o CD a
CD >>— t- O
x: co o c <-
1- E eo 3 a
-

~
1 O
0) O
o^ >>

^>^3
x>
co eo
— c-o
O CO —
0— X

— a
oo»
COO. CO
c —
flj ^~ ^1
- o a
X 0
ac <-
o oo-
a^ T3
xo c
— CO CO
o
o.


























•(
—
o
O 1
co Xi-
c— o
— OI
co *o
•P CD C
C C CO
O CO
O — -0
x*~
<- ao
CD O CO
co ao
•P 0 3
to ach-
> «3 tfl
CO CO CO
£•0 —
in — «- *>
co s- o —
> o t
1 — 10 3
cox: co a
c o o E
— co —
X) 3 -P O
•-. •_
co -o-o c
x: o c n
H to co w
cJ




























Date:  9/25/81
11.12-58

-------






--*
o
UJ
2
z
—
f—
z
ceo
oo
u. —

Q
UJ .
I-CO
UUI
Ul W
a. w
X &*J
uiu
0
wee
HO.
Z 1
1-0

_ta
-JO
oce
a. a.

^ >-
K* ce
» t_
ce w
cez
Q. —
a-i
z ^
<0
zr
U1X
ceu
1-
wo
UIZ

wo
^ cc
50


_
|
CM


LJ
CO
H





























^
4i
•—
4.
O 10
— 4J
t~ c
a. co

— 3
<0 —

•P O
CO.
CD

O
a.






















>a

— J= re -c CD o P > CD CD -P CLO •O— CO ! — X co •> in CD 5- Q. >— 3 •POO CO O CO — «- tO O — CD.C 0. CO O «- t- O >> CD <- CO *> — *- CO > E o ajz CD 3 Q. ^ CJ-O •~ "O *O CD ^ CO d- O C -P CD — (0 co — -P « 3 — CO — <0 CO « O C CD — O Q) .- +J CD -P >> J= CO — J= O — . . ro ^ CD C CD 3 — O O i- 4J •« C •«l a \Q ^ CM •a c co — CD 1 .X .* o CM"C i a-o CO C > CO CD CD O J=H E a O 3 CO — c ^ •_ •"• CO •p p <0 C — o T3 O i. X CD co •P E co > i- CD O W *J (0 CO CO <- » 0 . ^" w u LJ — 1- -P ^^2? O O co Ul P £ -re ce i o t- «>» zt\jn ^^ LJ CD U> Z C <- x'i i 1- CO O Ul— M eea- > CDT3 _J C CD O CD X 0-3 — o o\ VO • ^1 c CD > o to C gg •o — X»S rf I- Q CD 1- 10 C CD — CD£ CO •a -p 3 c -o O -P — O CO CO CD CO C CD— 34J CD C. CD C > •P O — POO E CD (0 0~5 >> t- COd- <•- E E 0 co t- CD t- CO CD P O CD 4J W 4J O co co co > CD S- «- CD C. O *> p p a to eota CO*- > C S O CD co . CM 1 • O< «- t-Q CD ai- to C CD — d)J= CO •O *> 3 C "D O -P — U CO M s. a> 0) I- (_ •P O t,- P C CO 0 — CD CO CD—5-P J= CD C P O •P 0 E CD 0~J>> <- co *- E S CO J- CD — CD P — •P 10- CO *» S5Z to o cod- 3 5 OT3 . CO 10 c CO c o 0 •_ p to u 3 • •a to p i- «- co Q.P CDXJ £ C P CO E< L. (— (4— ^. (0 ca E 3 o-o 4-> — 4J (A O Q) CO ^~ . •* o t. o J= o •o CM ^ .^ CD C CD N C CD .0 CD O C (_ to O N — C J= 0) u CD o «. 3 CO S_ 3 O ^ to — (0 CD CO (- O) •o P C C CO CD > to p CD — J= CO P 10 E E O 3 d- ^ Q c» *> *> 10 10 C 3 CO O CO 2 u o , ~ CD J3 CD 3 to — CD O •Ph- co C.t>- co O X U C o o 10 — — *> — co O C CD CD C CD 01— C to E CD O CO — Q.Q 0 1 «. 1 (. O CD CD to I. to C CD C •O P (13 cz i^ 0 P C O co O «- 0 CD 1- •P O >> *- *> CO CO O E CD CD~3C J= CD E P 3 ECDO • «- e— CD co co > t- CD >- CD -P O O P to E to co CD > CD «-- CDJ= 1 CO +J P .P 3 10 CT3 CO*- CD — S O > <0 . CM 1 O t- (, CD 0.-0 10 CD C CD N CDJ= X 1*0 O -P L- CD <-£ P O 4- P C eo O — CD CO CD— J-P £ CD C P O 4-* O E CD S- CO d- E E L. CD — CD -P — p to- co *> > CD CO p p p . 10 O — co«t- 3O S OTJI- . ro Date: 9/25/81 11.12-59


-------






•M*
o
UJ
3
Z
—
t-
Z
ceo
oo


Q
UJ •
I-W
Old
UJ W
Q. CO
XW
LJO
O
was
HO-
Z 1
1-0
-JQ
-JO
occ
CuO.

^» ^.
KOS
— i-
ecco
03
— o
>
_
!_
0 CO
- 4J
«- C
a. co

— 3
CO —

•P O
CO.
1)
J->
O
Q.
























l
-
s
a.



































i.
CO C
CA —
C CO CO

•0 +J C
c o
O -P O

L. ^>
CO «- CO
**o s
CO O *-
CO O
CO--J-P
C* qj co
,p f_
•P O
E co a •
O~5CO —
d- E  E 13
CO 4J— CO
*> ui •— N
»
> CO 1 -
COJZTJ O
4^ 4J Q} S".
CO Q.-O

2 O >JZ
m
•*






























































CO

*J ca
c —
E— co
O CO 3
«- 4J-0
d- C •—
O <"
E 0 4)
CO «-
£s-
0 C


> eo >>
co
•DEE

er'C c
— 1 CO
— -o

CD a«- —
.c — co o
(->*>!-
s
in

























i
0
c.
o
.c
o

•o
1
CM

—
•^
CO -
(0
d- C
— CO
4-> N
c c
CO 0)
XI J2 0)
O C

CO ON
C — C
O JC CO
z on





d- f- CO
•P O O 1 J= • 1 CO

i- C I.CI (-311 <- U— Q d- B)
0)3 O-PO 0)3 — ^ ID (D O ES O to
in s — t- wooeo 10—50.0 S
ccn coi o.^*o^» ccococo ceo ^-*~ co
CO C JZ C ^>J3 CO ^ ^ CO T3 d- CO r* T^
•O— -PO C-O.C -D — J3 T34JC3+JC
c>> o ocod- c — co ^" c 01 co en~o co
O i- d- — -P T> O O— 3 O ~ 3 C •- d-
on- o>> -P+JC o — -o co • o CD — in o*»
(_ Q) CO OCOCOT3 ^4->—*O ^^ ^ £ XJ *J CO ~-
COCDC 0) £ co > CO COtav) — CO  co
•P .C — U> CO >3X3 COCO
d-+J— Cflt-' S-WCOO d-— S- O CO d-OOWJC eo
co — .ococo — ca coco — en coco— cow jaw
J->C aC CO COB) >cnjT(fl >T3! 	 C
co co co co a— jz j= en— coocoo co > a> —
JZ £ 	 -POWO JTE— £ JZ ^ C Cfl JZCO
4J-P— ^> {>. — . — o -PCOCOCQ. 4->OOCO^- -P-P
COCO WC E££ CO t- -P CO 4JJ3— CO C
E~5Z) E in co o > a— E c end- E co *~ o w eo
E-O O *- O4->OOO OS-CO— CO OO
g ._ {.g)_ t^ , » » . C-CO<- S- O O -u > <-
d- 3 W d- « CO <-+>COC d-CO T3 -P d-O. i. d-<-
30 C03 COVCT3O ><->>O COCCOd- CO
t-ot- s- £ n +J.PCO 	 ' — OJZ3 s->— ao «-.Q
a> co co a— M — > «- *j COO-P xi cococo co^a
4J>«1 *J Cfl CO 	 OCO 4JWO-DO W WCOC +J3.
CO C COOCO >d- O — t- CO COC<- CO— CCO co'-O
$0>— $3'- cfljzeo > co — 5 co a >ooco— >o —
COJZco (DO •DM OC COJZO) COZUJZ4-) COU1-P
4^W4^ O -P CO
CO C 403— — O — C O Cfl 4^C^ C/)CD^>COCO COO53
COd-O COCTCO O3OCOC COd-COCOO CO £ CO i- 0) COCOCO
2OO SCO-P c/j-uS cn— 3o~5>T3 S-PE3<- Saio
• * • • • •
— CM — CM to .a1
CO >>d-
•DI c— o
C 1 — 1 CO O
CO CO CO CO — CX C
CA £ 2*» ^>*~r O
~ c t- o J: —
< CO O O -P (0 4J
OXIU. CO CO CO CO
s: c — E -P c
•*^O~O •— >> co (B
o c a— c en
CO ce O co , -a. >,o
— ja c >> o £
— c c-o OQ-
— < — co c co
CO— JZ CO— >>
co £ — a A
Q O< Q— >> 	
Q C Q<
Q) C. (^. QJ 2T 03 2i Q
c a> o co c^jz s:
co E n co ao Q-
— >>c >> — co >>— ~^
JZ O — CO JCCOOCOQ
+JQ. 4->T3 J-> CO. EZ
CO »
Date:  9/25/81
11.12-60

-------

^^_
a
UJ
35
Z
—
1-
Z
ceo
00
u-— .
o
UJ .
h-CO
OUJ
UICO
Q.C/5
XUI
UJ O
o
CO IX
(-0-
Z 1
HO
-JO
-IO
OK
0. O.
>- >»
HO:
— i-
ctrco
o=>
-Q
cez
Q 	

Q-J
z<
<0

si

JJCtOCOCDOE
3 CO O CO C CO O
E OiE O to
BCD --P O
E JZ C J3 XC O <- O
Q) ^ 4J Q •— ft •* O CO
-P 3 3 0 T3 	
W S..Q ^O C O
(DO ECQ)CO*—
^05"O COOTJ CO— ^
0 Q) .Q X^I CL >>
Q) (/) +J £- ^ JZ 4^ O -^
JZCOO-^CUQQJ^-D
H™ d CD W O T3 £ Q.^2

.
~~

V-
o

c
o

4^
CO
•o
a —
— X
oo

X CD
O J3 ^3
— X
ZT5JZ
O— CD
— OT3

O co
K O 5-
Q-— X

C X3
4JCQ
3
•ffl
O


























C 1
S- 0
3 co —
— 5- C
O XO
0 W —
3 a.
to J3 O
fO Q.
DlCU
— 4J -,
— O O
eo —
CD CD -P
C c. CD .
•P C Ot3
3 CO —
E 0
O * -CO
<- S- 0
Ct- ffl— O
+J E —
CD eo s- t-
*> > 0 X
CO C,. 4J
— C 3
	 -0 J3
— CO C
•P 4J CO 0)
to c E
— O CD O
"O O"O CO
X

JZ co CD C
I- E-o co

%
CM
























































O
— T3
S- CT1C
XC C CO
4J 	
3 CO— .
J3 -P— O
C O —
CD On -P
JZ O 1 CD
•P S- O
XCD CO
E CO >
0 E 0 -
S- - 0
CD CD C
CD— 3E O
JJ O —
co E to a
to 3 O
C 3T3 !-
CD o c a
"O co co
C > to
o "D ro
o c —
E OJ=
E 3 co O
CO — 3
CD O O to •
•P 0— 0
to i. to —
T3 XT3 E
d> ._ 4^ — t_
JZ O 3 O O
t— -

,
ro

























































C
E tJ
3 C 1
	 CO <-
O CO 10 O
O 3 tO 4->
•O CD C C
•O — 3 CD —
— CO -D 3 CO
O CD — -P JZ
(0 *- 10 — O
CD -P 1
O O 5- (0 C-
— -P C CD
S- P O C3)
Xc to o c
•POX 0
3 	 01—
n -p co c
CDT3 CO — C W
£ T3 O — CO S-
•P CO O CO
— n to *J
E C 13 1 CD ^-*
O 	 J_ -o
C- ^ o CD — 13

to O1"O O
CD C 0— XCO
3 	 JZ JZ
•O eo t. co
— -P XJZ eo —
to c P o c
0) O 3 3 to CO
cc on to co 01

,
•*

























































E
e
t^.

•o

o
CO

U

i.
>}
3
n

CT)
c
o
3
T3 Q)
OT3
s- X

o
OT3

CO
S. t-
CD X
Ct- 4->
CD 3






C
0

p
eo

—
X CD
o-a

XJG

•a
•o —
— CO
o c
< o

o a
— o
c t-
oa.
.—
Q-Q-
O O

a.








































o
—
0

o
*•
ce
^
h-
^3
CD

O


L.
CD
V
CD
ce



CO
•D OJ
— T3
X X

CD
XTJ

CO
•0 X
— CD
O JZ
^ •*•
^
O JZ
— 4J
OUJ
C 1
CO CM
X
CD c^
JZ O

X C
JZ O
4J •<_
UJ +J
1
CM








•a
CD

c^,
—
c
0)

._

CD

o
z




i.
OT3 1
*J— 1 0
O O E 5-
CO CO O CL OT
CD O C
i_ O CD —
— on >
to O — co
— c c XCD
to eo eo co —

— c t- cu
O CD O *- -P
i- a CD co
•a i i- *> —
XO CD CO — —
JZ CD — > — •
C > CD -P —
CD CO P to —
JZ TJ CD 10 	
P CD JZ COT3 +->
> j to
E— T3 CD
0 O C to JZ to
S- 10 CO — +•> "D
ft- to j: c
— t. V— JZ CD
£- "O 0) ^^ P 1
Q> JJ — 4J
•P to JZ *fc c"
CO C Ol • C71
'> 	 1013 —
CD CO — TJ CD —
J-> 4-J C CO
to C13 3 10 CD
CO O C O CD JZ
S o co ao -P

.
~~
X
c
OT3
n c
t- CO
CO
O CD
c
Xa>

"° X
13 -P
— 3
on
< o
(A
o —
— to
O t>«. —
c o to
eo X
w c —
coo
CD— S-
a. wo
i co X
O — I
CD
•z.

Date:  9/25/81
11.12-61

-------




^^
Q
UJ
Z)
•z.
—
H
z
CCO
oo
U- — •

Q
Ul •
I-CO
O UJ
UICO
O.CO
X UJ
UJO
o
co o:
HO.
Z 1
HO
••J ^
-j a
_j Q
OCt
Q- a.

>- >-
H CC
— H
ccrco
— Q
CCZ
a. —

O -J
<0
z S
< Ul
UJX
C£ O
H
COO
—
UJZ

coo
 3
s- s- "a
CD CD —
4J (fl tO
V CD
CO S- S.
o
CD -P to
.C O C
•P CD —
•- -3 co
E CD -P .
O CT3
5- *J O —
d. CO O U
~3 CO
CO E— O
.p CO 	
co CD -P O
> *J to c
CD CO CO
4J -P JJ
to CD O C
COJ= 3 CD
j£ jj ^ a

.
to













































































Ul
z
UJ
-J
>.
X
H
Ul
o
•p

i.
CD

CD
tr



o
s-d-
T3 O
^
X C
o
C| 	
O -P
CO
to c
— o
to —
^ 4J
— o
O CO
S, i.
^»u.
Q.
•o
Ul >C
ZjQ CO
UJ tO
_J CO to JJ
> C C 0
a. CD o 3
O "~ J3 T3
a: >>s- o
o- a co i-
o ua-
.0.
—
f^«
c_
CD
C
CD
•^
^-_
CD a
c o
CO 5-
a a
o o -o
i- CO CD
a— —
o o <>-

O Q JJ
	 c
£J= CO
O O T3
._ | ._
T3 CM
1 ~ CD
CM CO C
0
— A Z




^
a>
CD JJ CD II S
~O ECO 1C— •• OS- CO-.I
OEC — C >>CD— CD 0 CO — 1 CDCD5-
— 3 CO — O J3 — >> JZ — O >s O '-'DO
jj— A >»a jJcojJto jj —
to-a, co«- coao ^3— tnx«-
3OC £ CO .COS- Ol— CDJ3 O CD
coco— jJo- jJt-a c >>-o i TJ co «- jz
OS- to ao — JJ >> JJ CD JJCDJJ
«t3 ES— E to >3JZ 4J toao
CDO>> O3O OtOO- COA CD -O CO O
j; — £ s — o s-c— to cDi-a-oco >s_-o
JJPO VO>j >>>co
EDO- Ecocn E-P— u e c c co c s.jz
0 CO — CD COO COCJ=>> CO— O 3 CD «
S-OJZT3 CD CD CDOO— CDCO"-O >~~fl)
CK y— £-toc S-oiDi s-JJ a— "a O >j C
to S- 4JCCD -P CM -PCOEC UJJ<0
E C (P O v> 	 tos-_t- too'-'-co CU34J
CO— C— co>> CDtOCD OaO S-^53
cucocojz s--pa s. a— at s- >— JJQS- JJ— JZ JJCOCD^'D C to
to o a-o cooa cos_« coeccu— cec —
OO > >-PCDt3 > Ot3X *> —
CD S-CD CDS.-a CDIO-OC CD Ji JJ — O 3COT3
jjs-ac -P a> c jj — co JJCCDXS. JD 4-> o
tOCO CD tOCcO C04JS- COcoOOCD* OC-P-
coJ3*i — coo coOO* coJJco — acD toooco
>^tO>j >J£-. S 3 — s_ J -OOC — O CO O
34JQ. O O -D j: CD JZ-.S-CO CD —
CDS 	 o (D — E CDOOJZ CDCO— CT34J CDXS-C
jrocos- ££— .cs 	 JJ r:cooO>>3 JZcoCco
Htfltoa HJJ— H aT3 CD H>JZ.QJZ.a HE3O)

• • • • .
— CM ro — CM


CD
c
1 CO
>>C JJ
a— i 3
os- o a
S--D S- O
o- >> -a to
-c >>—
E 0 X
OS- e,-
UJ S- o >s O
QCt- — J3
— JZ C
X CD O CD O
o-o -a —
— CD — -P
Ul X JZ X co
zo JJ o-o
Ul —
-1 CD >> W Ol-O
> CJ3 CO C —
0. CD CD CD X
O— CD O — O
a; >,c o >>s-
a. acD s- a CD
o — Q. o a
. a- a.
CM
r-
Date:  9/25/81
11.12-62

-------











^^
Q
LU
13
Z
—
1-
Z
ceo
00

a
LU •
i-co
OLd
LU(O
a. co
XLU
LU O
o
coo:
l-a.
Z 1
HO
=5=)
-10
oa:
a. a.

^. ^.
h-ce
a: co
o ^
— Q
1XZ
a. —
Q-l
z<
<0

2:2:

c as co
O— OS
— X£
p a
CO O 
ap
c-o
as o c
•o o co

xx«
O co P
E tA
as x
C E-
03 CO CO
— 03 P
X«- co
ap o
EC/5
.
aas as •
P-O to
as to — *o
£ co X C
1- > 0 OS

.
CO















































•o
as

t>_
~
c
as
•a


as
c
o
Z



f
»—
to as
c to
tA O 3
i as 	
as c c o -PC,.
£ O 03 C3 O —
p o — Xco»—
X- as
E XO.OIS-.P
O CO O ~- CO

.
—
to
tA
~
o
!_
•o


X03

._
to X
— O
O
o as

— as
o —

03 Q.
c o
as <-
— a.

ad-
o o
<_
o.



.
as
c
as .
3 E
— 3
O —
P E


as *"*
c o
03
N -
c —
as o
.0 C
— to
X£
£ a
P p
as <~
•P
.*—
as c
c —

N 1 O
cd- c
03 .—
CQ CM N






t_
as i i
4J C C •
co as as to
>.o.a o
as x »c
££ as co
P P C Ol
as as i-
E 30
o c —
£-- 0 t-
d- CO P 03
•P C.
E C .P
CO O 10 O
as o as
t- c-o
P X— C
to co d- co
E
<- P .
as J£ to as
P C XC
co co — as
> P CO *-
03 P X
P CJ1CO P
to C O tA
CO —

P as as
as P c c
£ as as os
H (A N N

.
—~


CO
c
03
O)
o as
i- C
•o as

£ C
as os
an

as x

P P
LU
LU X
znd-
Ld O
/¥* Q)
>• c c
1- 03 O
CO <--

p
• cyj
CO





































i as •
C C tA
co as o
03 —
as — c
•o o co
P 0)
as i-

P as
c t-
E as as
EN£
C P
d- as o

E--O
CO XC
QJ ^^ (Q
s- P
*> as «
a> as
c c
t 	 4)
as co s-
P P X
CO C P
> o to
as o
P .
tO X03
co co c
> E as
N
as i- c
£ os as
1- P.O

.
CM



































































1 OS
d. C 1 t-
0 O l-f O
O O P 1 d-
S — O OS
O C X> <-£>
P E > a
•P 3 COT3 OS
o— as as as c
.Q o.c P^J as
o P c
OS .03 XX
£ c to 5 co P
- g CA
— as IA
s P E i- E as
8 co Xco CO £
o— P as P
v - o s-
t*. at- P S--D
S — as to os as
co i- as £ > P
as 3 c p to o co
t_ a as o — o s-
P <- £ as as
to os XTJ i- s- c
C 4J C
os as tA co o u
pi. 'PC
to Xd- .03 —
CO P O to C-O
S to o as as 01
10 — i. tO C
os as P c x to —
£ £ — CO P 03 0>
1— P to O1IA O.Q

.
CO







































































LU
1-
^
^
X
1-
X
a.
u
ae
LU

^
^
X
1-
Ld
E
O

O
p

L.
as
V
as
a:






1 d-
P O
CO
O C
O
QX-
— & 4J
O CO

._ ._
O O X

jj
< 0 «-

i- — < as
X CO C
o-£ o as
Ul p 	
- O
d- s- o .a
-o .£ co
OS P U O
P— co O
C CO S- S-
co to P-O
o as X
OS 10 P£
•o c
— c-o
J. CO O OS
OS PA P
p c s- co
CO O CO C
> O 0 —
OS <~
P£ .O
to to LU —
co co O£
3: >l- 0

.
^



 C coQ-
X 03 C-J
H •— — ^*
LU X1-
O£ O to
OC 4J— C
O 03£ O
-1 OO A
XI- «-
O O— co
<— CO O
f££ E O
1- O 1- (_
LU CO 03 -O
1- «-£ X
•PI- X
0)
• H-
IfN
r-
Date:  9/25/81
11.12-63

-------





_
Q
U
13
Z

h-
ozo
oo
U— •"•^

0
LJ .
h-CO
OUI
UJ CO
a- co
XLJ
U4O
o
coo:
l-o.
Z 1
I-O
_| Q
-10
oce
0.0.

>- >•
i-cc:

a: co
OZ5
— a
cez
0.—
0-1
z<
<0

jr S
< LJ
UJ X
ceo
i—
coo
LJZ
\— ^
COO
3> O


-
CM
*—

UJ
CO
1-





























p
^
o to
— 4^
!- C
Q- CO

— 3
CO —
4J O
CO.
CO
p
0























 0 0
CO -0
4->£ -P S-
eo (O — T3
eo co co X


.
CM


























































1

«
CD O.CO 1
— J 3 CO
0)-0 !-
E£— P
CO *J CO CO
CD CD *•*
CO CO T3
C C
CO ! 	 CO
£ CO CO
p w p CD
c c-o
O1CD O —
C-0 0 S-
— C 0
> o X- •
CO O C0£ CO
CO t. E 0 C
— CO CO CO
4J C ! 	
'-'i- E P X
CD CO 3 CO £
4J — . 4J 4^
CO S- O CD
> 0 O C O
CD P O S-
P O P.Q O
CO 0) O ' 	
CO —3 3 CO £
3C VD O O

,
CO

























































co at
£ — C
4J CO —
3 —
c>- 'O *~
0—0
10 J3 •
E CD 1 10
O 4- S- t-
P CO CO
P CJZ P
o— en
JO CO — "O
P£ C
CO C 00
£ O -
P U CO -
C CO
E >>a> c
O CO — O
s- £ >>£•
t*. £ S.
4- P CO
CO CO CD O
P > 0 O
10 O *- i-
co 4J OT3

+>£ £
T3 O O O
— 3 CO 1-
3T3 t- Q
CTO 4-> —
•^ S— Q) -C
-j a-p o

.
•*


























Ei
0 t.
— o
CO U
s- co
CD P
4J CO
P
- l
0)00
c -
CO CM
X-*>co

«- 4J P
1- CD CD





g
O 1
fv t_ ._
Oft. CO . 4-
C U O
£ (0 	
to «- CO 4J£
co o P to a
> ac 3
CO O CO '-
0 > 0 U CO

to 3 O CO O
3 3 P 3
CO O COT3T3
O CO C— C
>— CO CO
CO <- CO
£ *O O ^ * CO
P CD — 0) C
(0£ ->C O
E c o co co .a
O V ~O£ S.
£. TJ CO — 4-> CO
ci- c c 5- a> o
O CD O 0 O
CD C >>£ O 73
P 3 P 0— >>
CO CO ££
> CD O E 0
C0£ CO 3 WO
10 CDT3 -P P
CO ti- JZ O CD CO
S O P CO 4J C

,
~
1
i ca
CO C
l_ "•
p t»
CD O
1 	
•oo
c
CO >> CD
JS C
CO CO
C CD —
OCX

>>- CD
£ >»0
CO P
O COd-
4- o O
0 «-
— o c
£—0

— OP
4-
1-





























c>.
o
p 1 1
^ co co X

CO P
C E CJJ-D
CO CO P CD 13
•0 CD P CD
C P— CO P
O 10 CO C O
O 3— CO
i. S-T3 5- CD
(0 O — O «-
•P P CO— C
d- CO CD£ 3
CO C S- O

CD «- C i- E
£ 0 — CO O
•P— C0£ <0
£ P P
E O C O-O
EO C
CD O «co
d- C CD
CO XC -
i — eo eo to •
CO XE£ C CO
P P P O C
CO CD t, CD .0 CD
> 0 O 0 ! 	
eo eo P t- co X
•P COUP
10 CD CD — O CO
CO J= — 5J= t- O
2 -P CD O-D co

.
CVJ






















































1


d- E O 1
O 1 3— X

££•00
to *> O — "O
co CD CO I- CO
> O P -P
4- « CO
0 O C -C
	 o —
+J£ eo— s-
co O P P O
3 — C 10 —
CO «- O 3£
U P O CO O
o

££ 	 CD
P P — CO £
4J 3 4J
£ E tOT3 O
O O —
«- S- O)IOT3
d- d- C CD C
— S- CO .
t- to c to
CD 1 	 ., . C
P O d- CD CD O
co acD-o c A
> CO ' 	 CO t.
a> > i — eo
P CO O XO
ca CO C — £ O
ajJ= a>-C P i-
je *>— o co-o

^
CO

























































d-
O 1 1 -
O CD CO •
£ £- t. C CO
co a CB *»
CO *— O
> CD CD X3
0 CD — -P O
	 S- CO «-
*» xo o a
«£- «- X
3 -P£ O 0
CO CD O —
0 O £T3
«- E O CO
CD O 3 — 4J
£ 	 S- CO
P£-0 4-> C
O O —
E — to « 4-
o «- o o
t_ 4J (0 •— —
V C 4J£
T3— 10 O
S- CD CO 3
CD C P CO t-
P— C O CO
COd- O £
> CD O— P
CD I- CO O
P 4J 3
CO CD O T3 T3
CO£ 3— C
2 P-o oo to

.
•*


























Date:  9/25/81
11.12-64

-------






^—fc
a
LJ
3
Z
—
h-
Z
ceo
00

Q
LJ .
1- W
OLJ
LJ
O-W
5C LJ
LJO
0
Vice:
I-Q.
(-0
33
-JQ
-JO
OK
a. a.
>>
h-CC
— H
o:c/>
03
— O
cez
a.—
0-1
z<
>
.c e— s- p a
o o >>-a
— P £ >> E tt)
i-PPJC OJC
•P O fl) !- J->
J3 O-Od-
Q) ^-n* i« Qj ^)
JC O P V> C
P 	 TO P TO
— JC C (0
E - 0 - >> «-
OP—! 	 O
S- CO 1- O TO *>
*- *>— -P TO
Ol JC TO C
E C — 0 O —
TO— TO t.
fl) C 3 WO O
< 	 T3 C C — .
P t, 	 TO J= !-
(0 CB (0 — O O
i- d> — <0 P
4) i- o !- fl) O
aid) js TO c a
i- c c i P a) o)
3 4) — L. — I.
a— TO at »>»
>jPJC CO P (0
fl) JC C Ol C fl) —
JC P O — O O W
H- 0) ojc a TO >>
^
lf\


























































c
CB— | I
JC TO O O
0) CT3 Q.
>>>
C C OJCja

•o > >» .-0
C t- CO 0) fl)
O fl) E C -P
o «i a> TO
t- 	 c
Cfl L. — >—
p o — jc f-
TO O (A 0) —
4) OJC
a) — 5 fl) t. o
JC 0) C O
P fl) — TO
P — JC C
E fl) >»O TO
O— 5JC TO
I- PI..
 CB U 3JC •
fl) JC TO -D O W
p p C. •— 4J
(0 P CO C O
TO C>- fl) fl) tt) 3
2 O P «- WC
t
NO


























































1 1
1 10 —
4- C 3 !-
O O TO O
O O —
£ JC
U> fl)— o
CO C CO
> 4) 3T5
— -o c
O >>— TO
— £ 10
P P fl) «
(fl 4) S- fl)
3 O C
CO S- .4)
O O (B —
— 13 >>

JC U I- P
P TO O fl) •
I 	 O 0
E p£ !_ p
O fl) O O O
t_ p -3

T3 3 0 O
L. CB— TO t-
4) C^O S. Q.
P — O P >»
co *- (0 a) .a
jt fl) P
CB «- CO t3
P C «fl)
10 CB — O P
TO JC TO — TO
jt P P P C
.
'-

























































1 1
EC
0 1
o o •>«-
— 4) TO
JC^C O
u v) a> o
TO E— S-
S- 0 >>13

4) P PJC
poa>
J3 OT3
Q) *^ ^ Q}
JC OP
P 	 TO
— JC C
E — 0 —
O P TO «-
i- 01 i. O
*- p —
Old) JC
E C P U
TO — •
4) C— Olio
! — net.
P «t- 3 — TO
CO fl)T3 — P
fl) CO OT3

S- C i- 1 CO
30) <-
a— to 4) «
>>CJ= CO
fl) JC — CJJ C
£ P TO — O
.
00



























1 -
O 0)
s- c
O 0)
•§1*
'C fl)
P O

* o
0) —
C JC
TO O
JC TO

0) P
80)
p
o

JC fl)
o c
— 0) s-
Q — fl)

CM jc a
-P O
— 0) O





>> 1
co -co
E 0) t. *O
C P CB
i — CB p e
0) t- P TO 3
J3 O C —
js — -a — c
3JC C t- O
s- O TO O E
O — E
CO .fl) JC TO
fl) C U
•P-O 0) -0
C 	 (fl C
fl) 1- >>3 TO
> 0 J= O
— p— .
CBJC 0) S- B
JC O O £0 —
P I- > C
CO O
E fl)— -E
O C7IJC 4) E
<- O O C TO
t,- < 	 a)
t -o £ - .
fl) J= £ P •
P — -P O fl)
TO C TO CB 3*O
> — 3 O TS —
fl) «Jt3 i- O i-
P P — O *- O
CO C CO — CL—
TO O 0) JC >>J=
3: U <- U J3 O
.
—
1 0)

1 (- TO
CO OJC
! 	 P
PJC 0)
4) O O
1- >>*-
X 0
T3O-
C JC
TO >>O
JO —
a) a
C fl) 1
a> erg
— 4) .

P JC d-
fl> p O
O 4)
(- O C
O s- O^
- 0 — O

OJC TOLJ
— o c «^
i.
1-































t. c
4) TO
a
a -
— a)
<- 1 C
P O CB

0 >>
CO — £
3 JC P
O O 4)
CB— 0
3 <- t- •
CTP O CO
TO — P
— JC 0
fl) TO U 3
r: 3 TO -a
•Pt3 «- O
.- p !_
E co a> a
O a) P >>
S. !_ jQ
(t- T3
C C-D
I. *— TO Q)
4) TO P
P P fl) TO
Q C C C
> 0 fl> —
0) O— 5-

CO >>J= —
CO TO PJC
2 E 0) 0
.
W


























































O 1
1 CD 1
S- CO S- TO
(1) S- i-
10 -p e P
e 0— o)
0) 4-> TO P
tJ -P
C fl) CTJ
OJC O C
O -P O TO
<_
0) P >>0)
P CO TO C
>
Cfl -P — JC
JC O— P
P 4) +> 0)
— 5(0 O
E 0) 1- •
O 0) O 0)
I- P C— C
 P O — O
fl) CO S- TO S-
P 0 3 O
co a) — -a —
CO £ JC — £
2 *j o co o
.
CO



























Date:  9/25/81
11.12-65

-------







_
Q
Ld
3
Z

^_
Z
ceo
oo


Q
Ld .
HOT
OLd
LdCO
0.10
XLU
LJO
O
CO EC
K~ CL
Z 1
HO
_i a
-10
oa:
0.0.

>. >.
H Q£
— H
a: co
03
— Q
cez
a —
O -1
z<
<0
< Ld
LdX
0£O
1-
coo

LdZ
H ^
WO
^ ce
jg O


,
_
1
CM

LU
ffi
^
H




























>>
-
3 10
— -P
5- C
0. TO

— 3
TO —
— —
•P O
C 0.
S

S
a.





















10
E
TO
2!
.p
w

CO
.p
in
TO
•3.




























10
to
ffi
c
i.
a.
i
4J
C.

•c
o
a.

































ffi

jj
d
tf- 10
O -C
Ld O
coo-a
U) O. S.
TO TO
£—0
ffi D i.
£1-0-0
•P— >»
I0£
E V 0
05-5-
5- 0
ft-  —
C£
S— O
TO TO •
CD *> cnio
s- c c 5.
.p O— TO
10 O — -P
—
ffi- 0 i-
-p — Q q)
w — I .C
00 -P «- +J
> to 03 O
r-
Q) J^j O1T3
.co— c
H 0-£ TO

,
j^
























1 «
O ffi 1
c c —
O ffi t-
	 o
£ >>-
— WO
.p o •>
L_ ffi
-o-o
ffi 	 10
C£ S- C
TO O O O
£ TO — £
JJ S-£ 5-
ffi -P O TO
Effl TO O
4J 4- O
O -P 5-
— «i ffi "O
£ CO -P >>
O C £
— ffi C
Q — O "O
1 >1.Q ffi

•*-P TO TO
— ffi O C



10
S- 4^
ffi -O
£ ffi D
£ CT3
3 1 V O
<- -0 	 5-
o c i- >>a
10 E TO -P£ >>
M— *— ffi
TO C CO TO O C
C31OT3 31-O
e — -a o £
4J £ (_ 	 !_
C TO O !0£ TO
ffi — ffi O O
> -£ S- TO 0
ffi O 5-5-
ffi C 10 4J T3
£— C TO ffi >>
p i- ffi «J£
O Ol—
e — o — «-o

i- O-O > C 4J
<•- >, ffl TO
C£ 10— C
i- •- TO >-
ffi TO •> £ 5-
JJ 4J ffi -4J O
TO C"O TO ffi —
> O 	 O £
ffi 0 «- C 5. O
•P O O O
10 >>- E-T3
TO TO£ E£ C
7 E O TO O TO

,
«
1

O 5-
5- 0
1 0 —
TO — £
5- 4J£O
f O O
ffi Q) — i.
i- *-a «
•- 1 £
T3QCM *»
C «O W
TO X— C
£ "DO
ffi ,- oo"o
£ >»- Q 5.
4-> £ 4J LU T3
ffi -P TO^>
O ffi C X
t- 0— ffi
O 5- !- CT5
— O O TO ffi
£ 	 £ -P
O ££ 4J TO
— O O « C
s_
































ffi
ei- c c
O — ffi
TO — .

ffi ffi C£ C
<0£ O 4J O
C -P O CO.Q
ffi 05.
•a C31>>5- TO
C C TO O O
O — E — O
O > £ 5-
5- 5-- OTJ
ffi ffi— TO >>
4J 10 — 5. £
d- 4-> -P
TO 5- 10 ffiTJ
O +> ffi
ffi 4J ffi +>
£ 0 C >Q
•P ffi ffi ffi C
~3— C —
E ffi Xffi S-
O £ — O
5- *J-P >>-
 4J O— -P
ffi 10 TO£ O
+J i. o
10 ffi -P — TO
TO .C CO t_ c
2 4J -P 4J Q

.
CM
































































•
LU
a
>£
<£ +»
TO£
oca.

3<»-
< u o
1 	 C
X TO O
O -P -P
0££ CO
o ac
-1 O— ffi
X 5. (--g
SJ2SZ
OS JC jC ^
H 00 >>
U TO £
H 5. >>c
•P.O <
CD
VO

















































LU
Z
LU
N
Z
LU
CO

O


t_
ffi

ffi




O O
•v— c

0 >>-
	 o
*> TO 10
5"~

i-O
.p W
X —
Ld .. 10 —
WO-0
C 5- 0
ffl*- J. 4J
> >ȣ
— CO. Ol
o o ~
CO— .._!
•P ffi
Ld >>TO 4J C-
U — Sh-
3 ffi- 5.
-I C 4J O —
O ffi 10 (>. a
H 3 — ffi O
-airo
o
r-













































u
Z
N
Z
u
ffl
o
> O
5^2
|IoI
W ^%LU ^3
O£ CD
CC ** ?K +1
O ffi o a
-10 C
X 5. C~
o o o <-
	 o
OC£ 4J —
H- o n£
— CO
t_
• ^
Date:  9/25/81
11.12-66

-------

^^
a
LJ
15
Z
—
H
ix o
00
L- —

Q
LJ •
1- CO
O LJ
LJ W
0. W
XLJ
LUO
0
wo:
HO.
Z 1
HO
-JO
-JO

0.0.

^ ^
HOC
— H
ctrw
oz>
— Q
cc z
Q 	

O-J
Z ^
<0

< LJ
LUX
ceo
H
C/5O
—
LUZ
H ^
COO
^ o:
50

m|
i
CO
LJ
_J
00
2






























p
L.
O CO
— .p
I- C
0. CD
P
— 3
CO —
P O
CO.
CD
p
O
O-























co
E
CD
CD
i.
p
W

CD
p
to
CD
^
























to
to
CD
O


o.
1
4J
C

•o
0
i.
0.





































LU
Z
LJ
»J
^
X
H
LJ
0
o

X
o

cc.
H
LU
H

O
,_
CD
c^
CD
QC


CD
C
•—
C_
O

JZ
o

^
J3 CD
C
CD CD
C —
CD >
— P

JZ 0
p<
CD
O4-
*- O
O
— C
JZ O
o —

i.
H




































LJ
Z
LJ
J
^
X
H
LU
O
oc
o

X
o

cc
H
LJ
H

0
P
t_
CD

CD
ce


«- c
O CO

JZ P
O CD

X c--
O 0

XJZ
n o

CD o
C 1
CD CM

^3«
j^
P 4-
CD o
O
5- C
o o*~
— o
^L ^ Q
O COLU
— C —
t_
H










O
C
~
N

^
L.
CD
a
a.
o
O






i
CD
«s^3 •
CD— to
•P CO O
eo -P —
P CD C
CD O co
0 co 01
CO «-
c>- O
— O

C to CD
— CDJZ
> 0 P
CD O
CD S-
jz p-a
P C
•O CD
E C
O co to
(_ CD
V- *P
•c co

CD O CD
P CO 0
co to
> o
CD— »
p p CD
to vo
CD 0 >>
2 CDJZ
.
^~


CD
C 1
CD-0

X 3
JZ cr

LU-J

E -

LJ 1 	
HCi- o to
< < CO
H CD CD
LJ p O O
O eo— O
< p p i_
CD CD 0.
-lOO
^ ^ ^ CD
Z CO
	 T3 CO

c coo.
—
d
00


-






















iT
CD
1 E
CD >> <0
O — —
CO O>co » 0)
c P to to t-
— C CD T3 W
> O P C (0
O CO 3
CD P O to
JZ c CD a—
P E 0 EJZ
3 CO OH
E- 0
Eo «-
0 CO 0 •
4- JZ C~ .
c P — ui-a
to O O N P CD
CD — to P
— -P -13 >> CO
P CO CD C— «-
• 	 P CD CD CD
I 	 CO PC
3 .- p (. to —
ap CD CD o o
E to o a. c
— — CD C5. CO —
•o o co
>> — 0 C
> CO >> -D CO
CO P CT3 CD P
CD CO — C CO ti.
X P > CO 3 O
f
CM


























































1
CD CD

H X"*"
CD JZ JZ
•P  p
J= CD
CD O
•D CO

co to
•P C
CD *—
O CO
CD P •
c-o
CD 0 —
.COO
P CO
c
E E O
03 —
! 	 P
4-* O Q)
o o
«- CD
CO C
•P Ot3
CO— C
> P CO
CD CO
•P— CD
10 — T3
m- >,
3t PJZ
f
•*







































L.
CD
a
a
o
o

^
o
c

N







c.
CO 1 10
N >>-
— JZJZ
!- 10 H
o c -
a— CD TJ
CO CO P -CO
> P COT3 P
C P— CO
CD O CD O «-
JZ 0 0 CD CD
P CD C
*•» o —
EC 	 0
0 E >»P C
S- 3 C CD —
 CO >>
E 0 —
eo -."O —
CD to to c co
t-TJ-D CO 3
PC — CO
CO CD — •> 3
1 0 CD
CD >> to C to
P > O —
tO CO <- C
CO CD CD — E
>JZ £ 3 CO
>>O-CD
CD J 	 O «-
JZ 0 0 «- P
f
~


CD
C
CD
— S-
xo
jz a
P 

E -
OT3
I 	
4- O CO
< to
CD CD
POO
CD— 0
p p c_
CO COO.
O O
« CD
to
— t3 CO
>>CJZ
c coo.
—




























•o

o
to —

O CO >J
- EJZ
P tO P
CD CD
0 C
CD — "O
CD C
CD P CO
JZ C
P O CD
OT3
E >>
O — JZ
! 	 CD
4 	 TJ
5 —
E CD
CD C P
CD E CD
i- 3 0
P— CD
10 O
04-
CO O
P >
to S- 10 CD
CO CO P P
> > c co
0 3 P
CD O O CD
JZ CD E O
H «- CO CO
f
OJ






























Date:  9/25/81
11.12-67

-------











f~*
o
LU
z>
Z

H-
^.
ceo
oo


o
UJ .
HCO
O LU
LUC/)
CLOT
XLU
LUO
0
coce
•x. \
HO
-IQ
-JO
oce
O.O.

>. ^_
H Q£
— fr-
ee w
oz>
— Q
CC.Z
a. —

Q _l
z<

e
co
CD

•P
CO

0)
.p
CA
CO




























u
JZ C W
P O 0
CD OP
JZ E co
•P OT3 -P
i- C 0)
E  J3 —
P 3 —
COCv- t-
> O O   <0 CO
•- O)C C
U) 3 CO
a> CT3 o 01
JZ O C E 5-
1 — O CO CO O

CO


























































o
c
.—
N



—
•> 0 i
OJ-Q P —
"O •— CO "O • •
COP -PT3
0 CO 0 CD CA 0
1 O C >>P
>>0 CO 0— CO
>•- — CO t.
CO -P— >>-P 0
0 0 >>JZ CO C
JZ O C -P O —
CO— 0 0
0 > CD C
JZ . . JJ —
P S- ,0 CO
0 »
E E 0 >>a> —
O >>PJZ 0 —
! 	 CO 0 CO CO
<4- o P-O 3
a0 — o co
E O CO C 3
CO CO CO -P —
CD C (D N W
5- •— O G —
P CO — CO TD
05 P C C E
C CO - 03 Q
0 O Ol«- 0
P O «- O -'-
in o P 0 P
CO C •- P U)
> E >,J2 co
3 > — -P CO
CD — CO JZ 0 —
JZ O 0 C O JZ
1- O JZ — CO t-

_•


0
c
0
—
>^
p
0
o
^

E
OTS
&. —
C|- 0

0
•P 0
co —
p p
0 0
o o


— T3

C CO
>

. 1
0
•D E I- 1
— ^ i- 4-J O
1 S- CD O 1 !-
0 0-0 >CD O «
— C C O CO 0>
!_ a) — t- s_ c
O JZ > O P CO
— a. — 0 jz
JZ -JZ P *i
0 -,0 O 0
0 C — C O 0
— C 0-D O I- C
Xco N 1 J3 O co
c JZ c — s — jz
— P 0 « CO JZ P
> CD J2 — O O 0




&.
0 *-
(A P 0
C -13 CO E —
— (A 0 j O >>
CO 5- P C C
P CT) CO CO "DO —
C C P S- C E >
O — 0 CO E
O — T3 C 0—3
•- C — O T3 CO —
5- O CO O 	 3X3
0.Q C -PC-"OO«
> 1 IA — CA O — W CA
O s- C 3 — CA P
p0o>> coJZ0*o —
JZJ2— OOi-Cco
O Dl! 	 CO CA
Q — CO CO 0 — C
Ul JZ O 3 JZ >>— « i-
O Cfl P C CO O 0
0 T3 S- 3 — P — JZ
JZC-D E>CPP
PCO>>tA O OWO
JZ — 5-003
e o c_ jz co-a
1- LU 0 CO 5- CO CO
CK P 0 0  CA O 	
T3-Qi, 0035-i-
	 OCA PJZT3OO
coto — — tocno 	
00JZJZ COCOC-.CJZ
Di5-OH ^5CXOO

— CM

1
O
i.
o
— —
CO JZ
E 0
S- •-
0 CO
JZ O 1
I- — OJ
p ^
UJ >>CO —
an c
_ .— c>-
K 0 5- O —
OT3 O O
	 | .— — ^-*Q
I i- JZ WLU
O O O C —
— 0 —
_j jz i-j: 0
> O T3 O C
•Z. >>co co

> >)0O P
CO — to
.>
00


1
1 ._
OS- 0>
t- o •- -o
o 	 »—
— JZ 0 O S-
JZ 0 C — O
O 0 C —
— cnjz 0jz
•D C Q.U) O
1 — t- CO
	 ••. CO *-
«— CA -P
— O C *CD
JO 0 E P
•- 1 J3 3
CD 5, s. — c
•O 0 CO E O
— jz o -a J3
5- O>O CO S-
O — 5- O CO
— JZTJ O
JZ >> *
O -*JZ >, -
CD <- t-
— CT3 3 0
>jco CD o a
C JZ P s- CL
— p CO 0 O
> 0 C E O





o
CD 1
P 0-C ffl P
en -D — t3 en
3 — i- - >>
CO 4- O CO —
O O — CO
— JZ ->P
0JZ O 0 CO
JZ 0 "DO

— >> *- "D
E >>C 0 C
O C 	 CO
s — >jz
tf- > O W
5- CK CO E —
0 O 3 3 C
P "O— CO
CO CA — T3 O>
> 0 (A O 5-
0 JZ 0  C O 0
> 	 JZ
s- co P P
•a CD -P CA o
0 P C 3
Q. CO O CO - •
a> o o w «
— 0 P

P C CO C >>CO
CO CO E CO JZ 1A

•


1
o
5- »
T3 C
X 0
Z —
^
0 -P
JZ ai
P O

>5
ja v
o
0
•o c
— o
5- p
O CO
— c
JZ —
O s-
o

s^ c*
C O







































c
E 0
3T3

0 «- CTD
O O CO 0
— P
ZJZ «co
O O 0 C
> "D •—
— — 5.
0 >>5- O
JZ C 0-
P 	 JZ
>JZ 0
E 0
E— 01
CO 0 C
0- 3 C —
T3 0 —
E — -0 —
CO CA— O
0 0 — ^a
«- 5- X 1 •
P JZ S- (A
05 C P 0 C
— » JZ O
0 co cn.Q

 O E 5. o
O 0 5-
0 >>CJZ"D
JZ CO O P >>
1- E E 0 JZ

CM






























Date:  9/25/81
11.12-68

-------









,_ „
o
UJ
z>
z

H
Z
KO
oo


o
UJ •
h- (O
O UJ
UJCO
Q.C/3
XLJ

O
10 ce
1- Q.
Z 1
£o
ZD Z?
-10
-JO
oce
0.0.

>- >-
i-o:
— i-
CCCO
o zj
— o
cez
Q 	

O -J
z<
 O


•
w
i
CM

UJ
CO
1-




































X
P
O CO
— p
!- C
0. CD
p
— 3
CO —
— —~
P O
CO-
CO
p
0
0-

























to
E
CO
0
p
CO

CO
p
to
CD
5


























CO
to
0
o
O

o.
I
O
3
•a
o

a.



I 10
— c
i- 0
P 1 J3
1 <- i.
CM 0 CD
-JZ O
— a>o
- Jz-a
-i?
0 —
C OTD
0 C 0
— 0 P
>»JZ CO
JZ D.C
4J ._
0 -s-
O 0 O
s- c —
0 CD JZ
— JZ O
JZ P
O 0 Ol
— 0 C
Q ! 	
1 O —

-JZ O
— O J3






1
._
1 —
CM >>
-C
E 	
1 3 «>
0 	
C-D —
0O - CD
•a to o 3
— — "O
— to P —
>,C to to
C— 3 0
— CO CO l-
> P O
C T3
0 OT3 C
JZ U 0 CO
P P
S- 0 -
E O co 0
O P 0 C •
S- O S- CD 0
4- CO C JZ-O
0 3 P —
S- !_ 0 S_
0 -O O
p Q) 0 * 	
CO "O "D O JZ
> 	 0
0 S- i- JZ
P O O O CO
to 	 c
(D JZ JZ S- 0
3 O O PT3

.
~™


._
^ £-
JZI—
0 1
QCM

UJ >,-
Q J3 -
a: 0
OT3 4-
_l— O
X t
o o c
— 0
UJ JZ —
zo P 0
UJ CD C
Q 0 C CD
— C — JZ
-I 0 S- P
>. *Q O 0
•z 	 o
	 JZ S-
»>0 0
c o —
— i-jz
•>T3 O
CM
GO

































.
CD
C
1 03
— J=
— *J
X CD
0 C O
to— t-
(0 > O

a— Jz
1 co O
(0 3 —
3T3 S.
0— V
0 to 1
3 0 CM
CO —
C -
0 	
JZ CD
P P ^
C C
E 0 co
O 0
<- CO

CO —
s- E s-
0 O
p S 	
CO 0 JZ
> Q.O
0 a
P— 0
to s- c
CD P 0
3 to 13

.
CM





















































































UJ
•%r
UJ
N
•z.
UJ
m

0
P

£_
0

0



1 1 —
CO i- CO
— 0 O
— ci-o
>>— 0
J2 PO: 0
to c
— 0 —
to o 	
E \ P O
0 C >slO
P O — CD
P— coO
O P P
tO CD O CO to
UJ ^ CD O 	
•z. <~ to —
UJ to P XO
-1 0 X 	
> CLU E O P
X 0 O S-JZ
— p s- >>cn
Q >j C Ct- Q 	
UJX 0 -1
X > C 0
— T3 — O P t-
Z CD O— co co
XCO P Et-
•—
• ^
rO
00


0
C
CO
N
C
0
JD
JZ
P


^
0
C
0

—
o
p

—
0
c
0
N
C
0







i -o
to 0 0
C C i- C
SO t-
3—03
— PJ2J3
O O
O CD >> 0
<- CO J3
04- E
C >,
CO •*"' E CO
— 0 co S
>.— 0
X — s- <-
I O P O
O CO
"D -
0 C tOT3
JZ CO — 0)
P JZ C
,~| 	
E a> 4-

i- O • ^~
4- 0
C CT3
a>— 0 C
13 CO — CD
C P >,
0 c X-D —
O 1 0 0
>sO O !- 3
> 0 4~
CO >j"O >
0 CO C O (0
X E CD O CO

.
—
..
^~.
to to
(—— 1
0 ^^ C EX
E 00 O\
O -^— 1
to O P E 0
	 CO 0 C
— --T3 0
0 to — to 3 —
C 0 — CO S- >}
0 C P C OX
— 0 CO 0 • —
X— — — E
X >>Q >>w o
X X 0 <-
4- >s C4-
OT! JDT3 0 C
bj 0  P - -0-5-

i s- o x o xx a
O to s- i s 	 i o)
a.4- o ft- s a.t/3
0
• to
^j-
CO


CO
c
w
N
C
0
J3
JZ
P
0

^
0
C
0
3

O
P

^
0
C
0
N
C
0
CO






- 1
to— >,
— S-< CD
O0 E

0^>> . (0
CO— >>0
a> os —
— TJ Q. 0 P
>>C C TO
x «j 0 — e
E4- O
0™O 0 <~
j; o to i- CD

O >>0 >i
E -JZ >
O 4- £1 P CD
!_ O— 0
4- 10 OJZ
Ol 10 p
ECO 0
CO— Q.T3 JZ •
0 p 0 P "O
S. to "D — 0
P— C O -P
to to co >>>j co
c o — <-
0 O to 0 0 0
P O C S- > C
10 0 	
CO -— 0 P O
>— PJ3 CO C
- 0 C —
0 — CD >, t.
JZ P 5- CD 0 0
1— to 4- E P J3

.
—



1
1 *~
O— U)
to — 0
— CO C
p 0
O tO —
P£X
— TJ
COT3 0
PCX
CO CO —
0 Z
c
X O 4-
J2— O
p
0 eo c
C N 0
Q) «— —
— !_ p
>> 0 CD
X E N
1
a




0
c
0
N
C
0

JZ
p
0

^
0
c
0
3

O
p

•t
0
c
0
N
C
0
CO









. c c
!- 0 O CT3

P P P CO CO
aj CD co co P
>J2— 0 C P
0 	 O C
•P >>— 4- O W
10 CO P— J3
CD E tO 5- >»t-
> — 3 CO O
-•a a. £ «
4- "O 0
o « — P ETJ
0 CD C CD
P4- C 0 0 4-
C — J3 t- 0
3 CO 4- i. 4J
O JZ O u> V>
E P 0 to 0
CD JZ 0 tfl —
E p -a — P
— O JZ —
— <- >>0I- P
C04- J3JZ C
E P CD
CO >>-D • 3 •
— 0 4- C CTtO
>>J2 U O O 0
t. .- 3 	 C
0 to 13 P P— a>
> to o — o CD —
O i- C CD E >>
< aa3 to to x

.
—
i
QL

O
to
-a v>
< 0
c
>>co
J3 —
cx5
o

p 0 in
CO X CO
s 	 0
coS O
a. o
0 E *-
CO O O-
L.
04- X
C 0
0 C 4-
— O CO
X— a-
5tf glj i^^
i
Q_


Date:  9/25/81
11.12-69

-------

Q
LJ
13
Z
—
L-
Z
fy* O
00
1 1 ^^

Q
LJ •
1— W
OLJ
LJ CO
CL CO
XLJ
LJO
o
coce
Z^ 1
I-O
-JQ
-IO
oce
a. a.
>>
h-ce
— i-
CC CO
OI3
— Q
/V ^
a. —

a _i
z<
<0
•Z.'Z.
LJ 31
ceo
1-
coo
UJZ
CO O
.—
•PS c
eg O
Nd-
— O P
(- a
CO C !-
E O O
O — W> IA
U) P 'O CO
— re < c
N CO
LJ X— X-
ZJ3— J3 X
LJ — IA X
-J co re CO CO
> C -P C CTJ
X CO <0 CO CO CO
I - X- - X
a x <- x x—
xox xz
1 1
• a a
ITl
00















—
0
c
CO

o.






1
1 .CO
CO — T3
•P 0
to c o
re CO —
>£ C
are
•P 01
c c «-
fl).- O •
3 re »
— *J *J CO

3 a—
d_ (_ — p
co Xra
to P c >
£ re O —



.
*^
>
Z
o
Z
c
- o
1 —
-I p
^ w
L_ «_
O X
o .x

^
CO
-I^X

Z 1
LJ_I —
= > 0
Q-O C —
_J LJ CO O
>Q£ C
^ O O. CO
-JLJ — £
 "g
JZ P TO
V) IA
>- 0
P P (U
o re£
3 o a.
0 «X
«-- c
Q.O O
c c
CO CO
£ £ d-
H- ao


.
CVJ



















































.
m—
O
— 1 C
TO C CO
C 0£
— o a
d- —
X X
co re c
£ E 0
•P C
c
E S-D
p 3 c
i — re
V O
o —
CO O
P C C
re O CO
W — £
c -P a
co re
•0 — 4-
c— o
o —
o ••-> tn
U) CO
4J— O
0)TT re
| g 4J
E 3
re 3 c
CO O —
p CO (0
CO > W


,
CO






















































^
•°
—
Q
C
CO
r"
a

>j
o
c
I —
o o
d- C
0)
IA£
IA CL
CO
Od-
00
ac
o
o —
P P
re

CO X

CO —
Q- ^




_
0
c
CO

Q.O
— c
Xco
U£
CO Q.
•a

a o

•a c
c o
re —
p
— «
o —
C X
CO JC
£ —

XX
i* <1
y
Q








•o
d)
>•—
d-
•—
P
C
co
•a


CD
C
o
Z



•o
CO C

— re c
£ .re
i- aco
CO IA 4J O
*J O — 4J
— £ re re
— aw —
d_ ^
£ L. X
CO 3 CO O
P-D 4J j->
o o co
S IA
E.co
cnoo£
d- C— P
— co
E C Wd-
re— IA o •
cp re X «
<- *> i. IA O
4J C CJ *J —
IA O C C
o co 3 re
0) -POO)
w Xre E s-
IA f. s- re o
TO i-"O
> 3 X- S-
— £— CO
co IA — re £
£ i- E P
1- re u IA o


•
^



CO
LJ
1—
^ 1
_J _
>- xw
XJt C

"r ^f ^
1- X
LJ E£
O P
_l S-LJ
O d-
z -o
Id to C
x co re
0. P
_J re —
>-— o »
* Xc-o
-J X CD —
< 0£ X
£ ao
P
. u

00






•o
CO
•«•
V
•—
p
c
CO

•—

CO
c
o
z




i ^
(A Oi CO
5£C
P O
IA IA d-
.— •—
10 IA
E C CO
C3 O —
« O -P

.p .il
IA i. 3
co a
co P e
4J — — .
IA— C
red- o O
^ •«. ._
CO (- -P
P£ CO O
c P E re
CO XCO
JJ E- s-
P O O
.- i. aco
Ed- £
•a P
COT3 —
P CO— CJI
c CTO c
._ t. |A —
CO «-
C£d- 3
< 0 OT3


.
•^


1
IA O
CO O

re <

X «-
Xd- re
o o co
£ C
4J C —
LJ O_l
.»
— *>--
O recu
£ 	
O X—
o xo
— O 1
1 4J-—
i. LJ— W
S X^- 0

«
__l


Date:  9/25/81
11.12-70

-------

a
Ul

z
—
H
z
eo
00


a
Ul •
1- CO
out
UltO
a. co
XUI
UIO
o
coce
1-0.
Z 1
I-O
-JO
-JO
oce
0.0.

^> ^.
i-ce
— I-
ceco
O=»
— a
cez
o.—

Q -J
55


P
W5 T3
Ul —
0,3
£
P O

CO >»P
UIJ3 0) (A
1- O —
< 

d- C0£ C
P P CO
•o c co
— O ••
O O «CA
co — CO
COP
P ££ CO
C 3 O P
CO— O CO
ao— o
CO O CO CO

-
,
•«,
^- -C"
*— -p
^ •«
CO je

W T3
LU •—
co<
£
•P O
.»
•Q CD ~™
o o

P O
COd- O
4J O —
CO <
o c

— P£
Xco P
£ OUI
4J
Ul





























£
CO

O C
O co
2-
1 0
o o •
£ O £ o
£ P CO
P V
d-
E W O
0 C
i — at
d- co P
P C
J. C 3
CO O O
P 0 E
CO CO
> C
CO 6-
•P 3-
M — eg
co O E
3C 0 co

N





























































^j
O
O
3
^

_J
^
1-
CQ
C

o
p

^
CO
CO
ce








o
X
0
CO
£
p

.,£
o
X CA
§0

< O CA
O 

|!|


ON
00






























O
P
£ O
a
(A CO
0 t-
£ 3
ap
o
— co

C 3
CD C
£ CO
Q.E
•— (A
!_ CD <-
•P£ CD
CO U)
£ (. CD
•P O
d- CD
O P
P (A CO
CA £
i. CD a
CO O ca
d- O 0
CO t-£
ce aa


Ul -K
1- CO

x —
a. co *-
CO +> O
C3 co —
X £0 0
oa- co
Ul CA-O
Q— 3 O
0 >.«- CA
CO O O —

•o a-o
-J O (A C
>• CA O CO

Ul — O. —
X >> 0
a. c E c
— CO O CO
Q£ L£
au-a.
••_
• Q
0
o\















^
o
c
CO

a.







(.
O 1
1 P C •
*- O OT3
CD CD O —
P~5 O
d- CD >>co
CO CO
P E 0
CO CD —
£ '"^ *— i-
P CO O
E co 5-£
O CD O O
I- P CA O
d- (A JO <-
CO ~O
CO CD >>

CO 4JO
CA X —
C d- CO
CO O CO 3
•0 £T3
C <- P —
O CD CA
O CA U! CO
c c t.
E co-
co -0 > c
CD C I 	
P O CO CO
CO O CA p

-






s co
OT3

U. S-
o
CD —
P£
CO O
£ >>
ax
o
£ CA —
a. 3 o
s- c
— O CO
^>£ £
c ao.
0) CA
£ OT3
a£ c
— 0. CO
!_
t-





























,
C Jti ^
O co co
O 3
£- U *o
CD o —
P -P CA
d- O CO
CO CU L.
CD CO CA
£ C
4* P —
a> co

° E 0
d- ctj O
CO
CD -P —
P CA —
CO —
(A CD P
C£ CA
CO P
•o —
Cd- 0
0 O C
O CO •
<-£ —
E CD ao
CO CA C
CO C CD CD
•P CD££
wo P a

CM




















































CA
1 O
c P o
O CO CO
o <-
S- i- U
CD O
P P C
d- O —
CO CO CO
•-JP
CD CD C
£ O |
P P O •
CO CO
E~5>>P
ECO CO
E E£
d- co a
CO — CA
CD p— O
P CA — £
co pa
CA CD V)
C£ —
CO P P >,
•a o c
C d- 3 CO
O O-O£
o o a
!_ S 	
E co a«-
CO CA P
CO C CD
P C0£ V
WO P O

CO





















































p
O — CA
3 ^s-
T3 C CO
0 CO -P
Q. aai
coZ —
£ P —
•p —
— o
<*- COJ3
O 3 1
•0 5-
CD — CD
(A CA£
co (D en
O t- •— .
£
CD CA
£ CT3
4J— C
CO CO
E P
O C 0)
t- 0 P
d- O CO
£
co— a
p— CA
CO— O
co P£
2 CA a

*

























Date:  9/25/81
11.12-71

-------

Q
UJ
§
h-
z
ceo
oo
Lu _^
Q
LJ •
1- CO
OLJ
LJ CO
O.CO
XLU
UJO
o
en ce
h-O
— *) — ^
-JO
-IO
oce
0. Q.

h-ce
— i—
ce co

— Q
cez
a —

Q _f
Z ^
<0

< LJ
LJX
ceo
i-
co o
LJZ

COO
^ ^**
50


•
1
CM


LJ
CO
1-

























0 CO
— P
s- c
Q. co
CO —

P O
C OL
1)
O
Q-





















y
E
CO
CD

•P
CO

a

CO
CO

























to
to
CD
o
o
a.
i
P
c

T
i.
a.



































1



Q
O


0

jf
CC
U


Q
P

CO

CO
ce






i

— •a
s —
(D 0

LJ O
LJ X—
J CD 0 —
> +>< O
ce 
— H
> ca
CC 1
o c


o o
P p
J_
a> co
v t>-
CO CO
ce ce



i

s.
a> c
P-O o E
to 	 — o
LJ O O P t-

LU X 0 C
h-n o o CD o
_) CD — < OX
>- P X s-J=
ce co « — -o eo 
O — O X XT3  0) P CO co  O
X JZ CO J3 O -P —
t-— O 4J CO 3 CO
LJ x 	 — n C). c
J=6- > O Ol-
p to
.LJ .—
CVJ PO
o o\




















to
•—
to
^
10 —
V) o
CD JH
o o
o o

a<

OiX
en

I- 
3 1-
P CO
O P
co to
d- LU
3
c-o
co —
E O —
 *> 0
t£ 0}< —
O- X

I- O 3
_i o n
XCO
H- 0 «

CO X-P
O -P cor:
CO 3 O *J
o«>- >
CO
. —
^>
Os

























CO
LJ
t-

1
^
X
0
X
H
LJ

o
z
LJ
X
a.
>

^
^f

o
P

CO

tf> >>OJ
ui n —
H" *— '
rf y) O
J CD 1
^" ^
X (Q *^»
o —
X X-
LU OO

OW 0-
X O
o— cj=
o o o o
-1£1— O
<: o j-> —
1 O C0<

^ ^ X ^
LJ 1 X CO
Z S- O CD
— ron c
_1 9) 4J —
Ctvl— 1
•—
. _l
in
ON
































o

o


o
z
o

a.
o
ce
a.
1
c

o


a>

0)
cc


1
CO
— 1
X X
ex
o
n-o
1- C
CO CO
o
a>
Q XC
— n CD
0 -
003
o o
z o «>
H-O to
z cc, —
LJ CO O to
OL -P X
o c c —
LJ CD O O
z a— s-
o -P-O
o

VO





^
CD
•—
Ct_
~
c
CO
^
—

CD
c
o
z




to
1 3
o o
i- C CO
ao o
— CO •
P XE 
— c o «-
CO -P CD
tO C CO N

CO WO —
J= 4J —
p c ^n
O to co
E O CD P
E— to
X O
d- CO— O

E £ C
CO CD CO CO
Q) 01 Q. C71
Pft- C O
 c c
Z Od- CD
— o —
X
• z
f-

Date;  9/25/81
11.12-72

-------

^^
o
UJ
^
Z
—
h-
ceo
oo

Q
UJ •
OU1
UltO
0- W
XU
UJO
o
too:
i-a.
Z 1
1-0
-JO
-10
oo;
a. a.
h-ce
o: to
— o
cez
a. —

z<

o
a.


















(A
£
CO
a>
^.
-P
to

(U
•P
V
s























in
10
a
c
u
Q.
1
4J
C

•c
o

a.



































O
X
o
0

*J

^


CO
c

o
**
i-
0)
c^.
d)
ce


a>
| jp
L. 4^
O
0^

•o a)

x a>

u >> >>
Q.Q.C
>• 4J
X OJUl
lLJ-O
O >>d- M
— i c o >x
0 SO

.a.
00
Q\

































to
UJ
1-

H
LJ
O

_J
•z.


o
4J
5_
0)
CK
0)
ce


i
•^
4-
.••
L,
<0
WO
B> —
ui o
^
UJ >
h-JD O
1- 03 -P 0
ui w a) c
O CO 0 CO
< *>< a
0) 0
-J Ud- I-
X oo.
0. 1
o— c c

a- a— £.
1 O +>*>
c i- co —
0- O >
i
• c
Oi
o\
































0
X
o
0

^

_j
>
5
CO
c

o
4J
I.
(U
(f_
0)
a:



i
V 0)
O^^3
0 >>
T3 0)

X— U)
-I (DO)
o >>c o
1.0 o o
o — 1_
O— CLO.
-IOO
<£ t. O
00- X

a_< o a>
o £
ce— c w
^L ^> O
i a— E

(H (Q L.
Q. C V
• 1
o c
o
—
Date:  9/25/81
11.12-73

-------












(/)
o

t-
 I- CDT3 CBCOI COCDl C-E CD 1 —
3 — C CD O 3 CD a— • 0) -C u) 3P— CD3 .CDCOCOO
O— CD P «J J3 4-> O. U> W t- 4J — O TO C 4->3 CO I. £ ~ .-
CD~— CK > W — CDt- O -OtOI CD— O cco cr— >> >COE u)«c 3o coctocoa
•o 3 jz O.-O c — c .ccot.'o too jzi-xjc £— '-•a
co js *» a— P x to o *> *> CD — -a CB— co j-> co — o P co CD — -o
£«- — B> OJ-PE C — X CD J=T3 • atOE -P — X CB
•PCD— E t- a> E P c e o<«- on P — to ECLCO e c ti- o-o
O.W OPt- O CO O « OO 	 C t-coS- O — !- CB OO 	 C
IOO.3 i- U) i.— o C I- UJ P CD l/)CB3CD I-1- C t- O « 4J 0)
co — -o «-c «>- co ci_ to — c a co a-o E C^.PCCB <>- — c a
« — x— -PX1- *-3coin a— o 10— s- t.3coto
•O-PIO -OCDOJ -QCt-coX -OOE 3- -0— «1 C -0 co>> "DOE 3
COtOCB 0) P -P 0) 10 E P COPCDTJIOV) CDC-CDO CDZPP QJ P 0) "D W
01 ^ oico c 01 1- to oico CD c OIP s- E oi< c 10 oico co
t-X I- — O 1-OlC t.— ^13 T3 — «-CO L.C/JO 1-— "-O "O
COCDIO CO O CO O-O C03-PCCCO co MCD CO OT3 C03PCC
£PC £CO JZ 0) P C -C OlC 0) (0 0) .CZCC J=CD C JZO1CVCO
oco— O.CX O£Oco ococoa. ^ O < — CD o.c>>co ococoo.
to— co u) P 03 • w p a) u) o 01 w . in (O to t- in P eo w o oiw - •
— P — E «- — — J CD — O eo 3 «» W — P X — E CD — O CO 3 (0 to
•OCDC •oh- co •oit-co— "a cocDca -OCDCP -D <<- — -o tococ
£O O«-S O— CBOlX JZOIO O« 	 CDO1>~-
J.PO «- OO 1- P«- t-£C^— 5-PO 1- Ol- t-J=CT3— to
CD CD^-PC CDS-CD-P CU 4J — C P  P 0) P — C P 03
•pCt_C_ • -PCDOO PCD ""}— P 4J CO •— O PVL.C PQ>O — P -Pco — ^~
cooco'- cotacoE taio c to oico TJ toococo co w a) c ceoico *o
> >CD > C — J >CEO > C — -0 -0 «0 > > >C™jO > C — -O T> Z
CB CB — £ CBCBCOCB CBCB3— CO •— 3 CD CO CB CD CD — CD CDCDCO — CD — 3 CD CO ^
*» to CD O p-a c P-O 3 x P>OI> — pmm— P-O >> P > ai> co
(OCOOC IOC-PCB W C O 1- CO t- CO — "DO (OCOO— lOCpt. (0<-CO — *O
co ZWCJIOCOP DCQ.I--P jeo— jco JE u) o w to o

* • . • ...
— CM CO JS- — CM CO
1
_J ^»
— i 1 tO
ce ui >jio
I— Z C — CD
— UJ O O O
zee ~ o. o
O> XP «-
_it- ja co co-
>co N O
ce <- — — x
O — CD *- to CO
UIO- O
-K-J a. Xc
W CO— 4J J3 O
UJ 1 0£ ej. C —
ceuiK co o c P
Z — 1 	 — CO
ZLJZO co to N
< — O — CD —
V>Q_J W 3 CC 4-

u))-cro <
Date:  9/25/81
11,12-74

-------













«M*
coo
OLJ
— 3
HZ
CO —

CLO
0
o~""
L-CO
LJ
oco
LJCO
HUJ
OO
LJO
O.CC.
X tt.
LJ 1
^
COCJ
H3
fo
O
HOC
3CU
I
_J S»
ooi
Q.H
co
£§
— z
oe —
o
-co
ceo:
O.LJ
oo
o —
Zb,
 > O
co CD —
c-o >>
•0 CD O
CJZ CD
O 40
O —
t- 40 CO
CD CO 3
4-> XI
d. (.—
CD O CO •
p CD CO
0) o <- f-
£ CD CO
40~jC E
CD— O
E CD C
E40 p O
CO C E
4-— JO
U CD
s- E C
CB 3 >>CD
40 3 CO <-
co O E >>
S co P
CD > t- CO
40 CD
CO CD NTS
COJ=— C
3 40 40 CO

t
~


^ C
n o

CO P
C CO
— N
CO —
0) t-
K CD

Z >,

c/> o
a.
^3
C ^*»
COO£

CO 3
COO

CO
CD co
CC CO
CD
coz
oa

Date: 9/2S/























.
co
c_
1 CD
CO E
£ s- o
40 C
CO C O
f>— e
CD
C- 40 CD
CD C C
40 o CO
CO O «-
* >ȣ
CD CD CO
£ E
40 -0
«- c
O1CD CD
C N
	 CD
>40-
O CD —

4- — p
I. CD —
a ac
> o
o co-
co u
40 CH CD
CD O
WO co
40 CO 3

jt CD CO

B
CM





























'81










o

.H
c.
40
•—
C
o

>>
y
<





C 1
10 C
co o
c_ _
>5
z «-
< 0
CO CO
CD co
J= C •
40— CD
CO C
E 40 CD
O C t-
«- 0 >>
4- O 40
10
xi a>
CD 40 —
40 CO CO
C— 3
co — •&
CD 40 CO
TJ CO CO
CO T3
40 c. C
CD CD CO
> a.
co a. CD
co tl —
CO 40 S.
S CO 40

f
^

1
C
CD
a
CO
3
CO

^> c
A O

CO 40
C CD
— N
CO —
CD ^*
CC to
E
Z >>
CO O
a.
•a
c c
CO O

CO CO
00





























40 I
L"£
0) C-
P O C
d- 40— .
CD U CO CD
CD 40 C
CD— JC CO
J= CD 0 S-
40 O >,
P P
E CO >>to
0—5 co
s- En
V E C
3 <- CO
XI 3 CD
co o acD
wco a—
S- > 	
CO S_ S-
jr CD 40 p
ox: co —
CO P C
— CO
0 CO >,
c. CD (-
CD (- <- O
P CO CD
CO »Z
> c<-
CU CD CO CO
PXI 3
CO C CO XI
CO OJZ —
JC O 40 CO

^
CM

























































1
CXIZ
0 C<
U coco

CD -T3
4040 C
CD CO CO
40—40
C CD CO
CO 40 >,
O CO —
O CD
CO 40
CD -CO
P O
X) C
CO CO —
Cfl CT CO
(- CO 3
CO XI
£ C —
O O CO
CO— 0)
— CO fc.
XI C
CD C
s. a—
CD CO CD
40 3 40
CD CO C
> O •
CD 10 O CO
PC CD
CO CD >»C
CO — CO —
S40 S4-

t
ro














CO
QC
LJ
00
«-
u-
0

i
^_
CC.
o


CM
11.12-75










CD
—
._
c_
40
•—
C
o

!_
o



.
co
XI t-
1 C O
S 	 CO 40
CD CO CD
Si CD -—
.a i- to 4->
3 I 	
t- CO CD C
O C E —
CO— O
CO C «-
<0 40 O O
co C E
C7IO CO
1 0 «- P
P CO C
CoCJ= CO
CO C P C7I
> CO O CD
40
CD -O)
J= X CD C
40 	
E— XI
E i- C
El. 40 CD
o— a
4- p C CO
0 O 3
J- CO — CO
CD CO >>
40 (- i. CO
CD O —
> CD CO —
COJZ 40
p 40— CO
CO CO —
CO 40 3 0
$ CO XI >

.
~


v>
c >»
— JO 1

CO CO —
CC C- O
CD a.
CD a
	 c
— u. o

40 O <0
	 c c
C— 0 O
o >> 	
— S- CO 40
>»0 C CO
!_< CD N
o a-
CD (- CO L.
>»0 3 CD
— 4-CO E
o
a.
































^
(- CO
CD 1 <-
n c co
JO 3 E
3 0«-
S-- C 0
O co O
co 3 E CO
•o P
CO— S- C
CD CO CO CD
W CO £ D)
1 «- 40 CD
40 O
C <0 01
CD C -C
> .- CD —
CO— XI
CD 40— C
£ C «- CD
40 O 40 a
O— co
E C 3
O 5- O (0
S. O —
4- 40 >>CD
Cjs.-.
C. CD O — CO
CD CD CD P S-
40 e CD o
CO XI— 40
> o co o co
CD £ 40 > —
40 40 O 4O
co coxi —
CO 40 CD C C
jt CD ^ CD *•"

t
CM



























































>j
JD
XI
XIXI C
CD CO CD
(- O (0 -
CO CD *- t-
JZ CD CD O
0 t. £40
co c o CD
— 3 C —
XI O 40

co— C
O1CD t- —
C 40 CD
— C £ - •
£ O P « CO
CO O O P CD
CD C —
> CD -CD O
CTCD 0>—
XI 3— CD P
CC, 	 (.
co — s- 01 co
i- 40 c a
CD 40 	
P C CXI t-
CO CD O C CD
«- O— CD E
•P >>a>>
C CD *- CO —
CD£ CJ 3 O
u P co co a

.
cf>








































CD
^
t_
t.
40
—
c
o

>>
y
<






CD >>CB

n E 40
3 O
S- j£
0 C -
CO CO CD
40 —
CO —
coxi t-
O)CD P
CD —
40 d- c
C O
CD 40— .
> C >>P
CD S- C
Q> > 0 ®
J=— CO >
40 O —
co — O
E CD CO
0 «- 3
S- CD XIXI
4- E— C
O CO co
t- C CD
CD O «- «
40 £ 10
co c s-
> CD— CD
CD£ CD E
40 40 40 O
CO C C
CO 40 0 O
5 CO O £

.
~

|
O
CO
CO
c >>c
— J3 O
CO —
CD CO 40
CC I- CD
CD N
CO J3 —
— •— ^
— U. CD
s- E
40 O >>

C— O
O >>Q-
— c_
>>0 C
<~< 0
o —
CO S- 40
>)0 3
— 4 	
0
a.




-------












~-*
CO Q
OLJ
— 3
CO —
^ h~
-JZ
O-O
O
o^*
ti-CO
LJ
QCO
LJCO
HLJ
oo
Ld O
o-ir
Xo.
LJ 1
^-
coo
1-3
ZQ

c.
•J
E
0.































i- 1
CD —
n o
JD >
3.*
«- c-o
U CO C
CO P CO

WO +>
CO CO C
O><1> CD
1 ll- >
P —
C P O
CD C CA
> CB
> —
03— CO
£ O 3
P WO
V.—
E P co
SIA CD •
><- p
Ci 	 (A
CO C >5
i. p 	
CD CO CO CO
P O P P
CO C CO
> CD O O
CD£ O
•P P CD
eo P co —
3: co E -P

.
CM





















































•
5- -P
CD CD CO
JO 1 - >»
J2 C 	
3 0 «- CO
t- 0 -P P
0 — CO
W >>C O
CO O
CO E — CD
CO >>-
1 3 O P
P I- co co
CT3 —
CD -O
> X-P >
3 C
0>— (DT3
£ft- > C
P CD— eo
i- 0
E IA «
O *- CO
!- 0- S-
d- p eo CD
U 3 E
*- wo o
CD CD— C
P S- UJ O
CO CD E
> CD «-
0)£ S.
P 

O P — t- o o — "o CD E >T3 P CD CD CO- CO i- an a) > o co -— CDT3 P P — CD.X P C (- £ CO CD CD CD P •P O .C > > — P — C E S- (-00 O CD <"- CD CO — S- P O P >> d p_ i. — C CO CO O •Oft- O E 3 CO CD — -0 >> ai c *> -o 5- £ CO — CO O eo P s — a> a .C P O S- O ft- — IA -o IA O — "O C — V O CO C — eo — CO > — CO > P . ai c i — ^t ^ — c 0 — a. a CO E 0 >» it- CD U) — &_ •• CD !- £ p U. C o O — >sO *- co O E 3 S. 3 0) O CD •o — -P c— c O— CD O -P > t. CO — CD O P >>co ft- <- CO CD — > CO CD O 3 s. o-o P CD — i- CO E 0) O P s- u c ft- CD CO > C im •.• •— CD O CO P IA *J CO C > CD 0 cox: o p P CO P CO ft- CD 3: 0-3 . CM 1 1 P C C O «- P CD O CD C > .C CD — !- 4J > O CD O — IA P O — -O CO 03 — C £ft- co£ P 4-> CO C — e E— i O O CO 5- P CD-O ft- P S- CD O P •on o P eo — t- t. £ P O CD O CO co P CO p — >><>- <0 •0 <- O E 0 •o > wo — O P — — O IA — O CD— O CO c- co co . to -^ CD V 4^ P C 0) CD C o z 1 4-J c CD > V C CO p 1 O) c X E CD JC p E ft- t_ CD p CO CD p CO CO . y ^ 3 CO ^J ft CO c CO — Z u> — CD co a: LJ CC U O — > 0 o ^ eo 1 CD P — CD +> E co >>0 p CD <- E CD (A P C O WO P C C CO O t, jr . CDS CA .O^ — ^4J S3 C 3 0) CD t- +J — O WO IA — CD >>'- co s- o CO 0 C Oieo — C o p CO N ~L £ >> O n •a c en co c — s: — 2: ft- CO CO 1 C P •o— c — eo CD O -P — E C-o O CD CD O t- £ 0) P t- C CD — en ft. I — U P i- IA CO CD — P IA O CO CO > > 01 CD 1 t- P -p a> CO C£ eo CD P S > 0 f CM S- &_ 0) O IA P C 0 «- CD CD CD •0— 3£ C CD 4J 0 O 0 E 1-3-0 CD 3 C P O CO ft- CO CO X • s: CA CD oiz: P £ C C p 0) — CO — E— 3-a O — T3 CD c. ft i_ ft- 1 CO O) (_ — L. •— CD O P E IA CD eo C — > CD d>£ co -u P P P eo CO C — eo P O O 3: co O > B ro 1 — ^ rr\ r~ C -P •— eD C E CO >> CD — — O o a • c — O IA O CD E 10 S- CD O O< t-a. co co — en a C CD — C P £— CO l/> CO — ^ c ^ O U t- o co CD £ p >>p CO CO CD 3: E E . •* Date: 9/25/81 11.12-76


-------












«••*
coo
uui
— 3
HZ
W —
rf H
_j 5j
a-0
0
0^
Ul
QCO
UI
HUI
OO
ui o
O. 0£
XQ-
Ul 1
H
WO
H3
ZO
-
oos
O-H
>- 3
HO
~. ZT
cc —
0
— CO
ce.cc
Q. Ul
CO
Q —
zu,
^
o



49 TV
jp .p d)
W C £
03 0) -P
S > O

^
~




i
c c
0) O
CO 4J
3 CO
00 N
•—
^ft C_
jo CD
CO ^4
£; «
— O
MO.
09
oc v
o
o

— o
o



























1
M co
CO —
wo
1 >
Jp
c <-
0) 09
>J=

<- 0
o
4JTJ
0 C
co co
09
y
0)S

4-J (0 •
C M
E. i %
•«• +*
O CO C
S- 4-J 0)
V C —
OTJ
t_ o 09

4J i- Ct
CO 09 C

CD ja
•P 3 09
Ml 	
CO O —
JE M 4J

^
CM



















































1
1 C
M C —
— — O) CO
TJ CO C.C
4J— CJ
CO CTJ
OlO C -
C O 0) 4-J .
ac *>
£ CD M CD M
M 013 O >>
CO 3 M 	
> O M «- C
CD 09 CO
TJ 09 t. N
CC — •
CO 4-> .— 4-J
M— C
09 E 09J3 09
•P O C CO (71
CO t. — 4-> CO
(. C|_ C|. (0
4J i-
CTJ (- «09
CD CD 0) M t>-
O DIE -P M
«- >>C C
CD CD — CD CO
H o aco -P

e
CO

































TJ
CO
CD


*
09
C
09
3
.^
O
H











t-TJ M
09 09 OICD
4-J 4J C O
CO O— COTJ
> CO >><- C
CD 09 t- 4J CO

M C TJ •
CO 3 .C M
> w ra 4-J
CTJ CO
C_ • ^
*• ^ ^
CD CO O M —
a 4J CD 09 CO
AC C -P
3 O O — CO
!- Q — C_ 0 •
O C 09
M >>CD <- ->
CO W 0) M —
M E <- E (- -P
CD O >> CD —
0, O) 	 TJ
1 C7I • O ^ TJ
Ct- t- M a— CO
«- CO— TJ
OJZ O - O 1-
O O M E CD
09 M >>— s:
HTJ OlO O O

t
~

1
CO
c
0) c —
TJ OTJ
C— O
U CO -P
N 09
>>— r
A S-
CD M
M E —
C >>M

Z M O —
— 090. O
C/90C J=
Ul CO
0£TJ O O

Q «£ ^ ^
^~ —
3<
.
                                                                                                                         o
                                                                                                                         c

                                                                                                                         N 4)
                                                                                                                            C
                                                                                                                          >a>
                                                                                                                         o> N
                                                                                                                         TJ c
                                                                                                                         ._ 0)
                                                                                                                         S-.Q
                                                                                                                         O

                                                                                                                         .C M
                                                                                                                         O —
                                                                                                                            CO
                                                                                                                         0) -P
                                                                                                                         C 0)
                                                                                                                         ffi E
                                                                                                                            >
                                                                                                                         •p co
                                                                                                                         0) 0)
                               TJ      I
                           • >>CD      (0       I
                         -.09 CO C  •    <-  I     M CD
                      • MCE — — C0>3   — *»
                     (0  CD CD   CDC  CO aE   TJ —
                I    TJ>— Mt-CDOO    TJ    M
                09TJ	>>CD4JM       1-CO
                4JCDO'PXMCCOM09OCO-P —

                COO   TJt-09    «- O -P —  . CD —
                > CD O TJ O O C>- Ol—    CO M  O  a>   ceo4->ao—  co-
                co    s-jz 3 a) o   c 3— as-
                > c o  *» — M	CD    o    aco
                I •-    O O 09 -P — O O — 4J
                ceo  -   -p.ccooc4-i.acco  •
                O 4-J «   «    4J(-=O      O)  O 4-J E
               — C TJ  M CO   4J -^ O £ — E  E    09
                4J O —  4-J CO E C      Ol CO 4-J  E « £
                C9OOM    O09COO3CCOO094J
                CO    CO  >>£ (-UTJOOO09O4J
                09>>  — Od-C — OC— !-    MCD
                <- CO O1CO 3   O—    CD4J4JMCO*>
                  EC4JM(.OOTJ    C   — > CO
               TJ    —  CO    CD    COCJZCDCD       (-
                09E>>OM4J£   CO 01 > 4J  4J 09 09
                W CO I-    4O CD CT1TJ    —  C M — M C
                C 09 TJ   -C S— C~JC  O CO    09 —
                4) t-    M0909£CDiri    O>CDJ=O
               •D 4-J  >(->4J      ~-4)       «- 4J C
                CMM09— MCMCuaCk.—  O   —
                O    	O CO — TJ O    O«JC>-CD

                  CDO—      4J3    09  C •-  t- t- 4J
                0> 4-J >,TJ TJOJCCTCD^OUCUCD
               Si CD—  O CJ= O — £*-	£JC ^
                                                                           OJ
                                                                                                                              TJ I CO
                                                                                                                            E 3 fl> -P
                                                                                                                            O —TJ 0)
                                                                                                                         a«- o   —
                                                                                                                         0)«K c «- I-
                                                                                                                         4J   	fl.
                                                                                                                         ME    CD O
                                                                                                                            CO M£ (-
                                                                                                                         oio> -P *> a
                                                                                                                         cue
                                                                                                                         — W CO TJ TJ
                                                                                                                         <- to C C C
                                                                                                                         3   — CO CO
                                                                                                                         4-> i- £
                                                                                                                         O 0) CO M  •
                                                                                                                         CO -P 4J 4J M
                                                                                                                         4- CO C C *»
                                                                                                                         3 > O 0) O
                                                                                                                         C »O > 3
                                                                                                                         CO -P    —TJ
                                                                                                                         E <0    O O
                                                                                                                            CO  • M i-
                                                                                                                         o> > M   a
                                                                                                                         TJ   I-  •
                                                                                                                         — CO 0) TJ C
                                                                                                                         t-   A — O  •
                                                                                                                         TJ M A U — M
                                                                                                                         >>a> 3 ca -P o>
                                                                                                                         £ 4-> t-   — >
                                                                                                                         C CO O O M —
                                                                                                                         (C S- « — O 4-J
                                                                                                                            CD    4-J a—
                                                                                                                         0) C 0) CD ETJ
                                                                                                                         £ «£ O OTJ
                                                                                                                         I- W4J CO O CO
                                                                                                                      V)
                                                                                                                      ce.
                                                                                                                      VI
                                                                                                                      c/> .a o
                                                                                                                      Ul
                                                                                                                      Qt (U C
                                                                                                                         4-> O
                                                                                                                      bJ CO —
                                                                                                                      I— 4J 4J
                                                                                                                      < 0> (0
                                                                                                                      I- O O 0)
                                                                                                                      UJ <— (0
                                                                                                                      U   d- O
                                                                                                                      < a> ---
                                                                                                                         M t- 3
                                                                                                                      UJ O CO —
                                                                                                                      W— 4J —
                                                                                                                      O 3 M CD
                                                                                                                      -I-LJO
                                                                                                                      u
Date:     9/25/81
11.12-77

-------










*"••»
(00
Old
HZ
CO —
o-O
o
o"
Ld
oco
LJCO
h- Ld
OO
LUO
Q-Q:
X o.
Ld 1
1-
COO
1-3
ZO
<0
(-OS
30.

oo:
0-1-
(-0
— z
o
— CO
CC.K
Q. Ld
CO
O —
ZU.
^
o
y —
^ H
1. 1 t.t
cex
Kl-
>
coo
 O O CO JJ JJ O£
— to E C 0) CO JJ
O JJ O O I- CD
co to ^ o o co jj
O CD JJ 10
CD E > >> «-O CO
£ — C CO CD C
JJT3 O O E JJ C0£ •
C 10— CO GO)
E CO W JJ O JJ «3 JJ
O — — CO 0) 10 10 CO
Ci-O -O co CO JJ W CD
—3d- co eo JJ o
E eo o JJ CD V c eo
CO E C — <0 — CD
0) E — O 3 Oi—
«- 0) co •— to co >»
JJ£ 0) 0) 3 JJ
IOJJC. • JJ— to OI3
JJ JJ CO— 3 C .O
lOtOIOCCi-CUO —
E — co — G — C «-
O -0—3 « 	 O
JJ 1- CD Q. U) — co CO
JJ CO JJ CO > 1- «
O O. co 0) E 3 JJ —
A 0.<-£ 3-0 -C >>
— jj jj — — •o CD a.
o> (- c to to — o
1— 10 O — Ct-COOQ.

CM

































1
CD
CO £ (-
CO) M r)
— JJ 3
C CO CO tfl ID
- JJ JJ E JO
E C 0) 0 tfl
CO C O G c- 0) O
o; E G cod- > to
i_ 3 	
jj— co— JJ JJ eo
> C —
G i-£ VO >>
<- co JJ >"O co
0) C CD— co E
JJ 0 >>E 0
co — i. to «- e»
> JJ fl> «- O-O
0> (0 > O Q> A —
JJ- 0— 	 X
to— G .QlJ- O
co — CD CD co —
> jj (- C JJ -0
10 1 O— •
10 — 0) JJ 3 — E
ETJ C 0) to 0) 3
O O O JJ —
jj 0> JJ CO *- CO C
JJ£ 0) 0) JJ CO
O JJ G >>£ 0) JJ
.0 CO — JJ O — •
E JJ o co JJ JJ
CD O ffi to — C
Kd-JJEOJJcocO

CO











                                                              u
                                                              c
                                                              0>

                                                              0>
                                                              V

                                                              8
                                                              o

                                                             £
                                                              G

                                                              i.
                                                              JJ
                                                              0>

                                                              0)
               I
E   WD      o    -1-  i
co   o) c >>   <- oi>»o> o
co   o co a    ac —£ <-
JJ C co          — A JJ O
to — «-  ,-0  . — c — o> —
   CO JJ C CD CD	(0   £
£ jj   ._ jj 01— as U) I- O
13 CT3 <- co co > JJ O O —
3oc-o<-4J   ca   a
GGCO>>COIOOIO    CD tD
CO     £ C    C OT3T3
>	OCBJJ—   C — d-
   — o'-o>wjrEco'-o
CD — C O   <-IOCO    O
£>CO— CO— COO)  «— M
JJ   ££ JJd- > <-2C£ JJ
   <-JJGG      JJCOGG
EOV— 30)0)10—   3
   SJJ E Q.T3 £ £   Z C "O
   CO    VOJJJJI.    CD O
d-(-d-   <-      0)d-o><-
   coo  «a<-(-jJOoa
CD Q.  < >>CD CD CO    <->>
JJ CD U)   ^3 JJ JJ > «T3^3
(0 « JJ—   d.d-0)JJ>>
t«   C O"D CO CO JJ C£"D
C CD D C CD      C03   0)

•O JJ E£ CO C C > E O CO
c   co ac	   eo   c  •
o JJ    to — a a co    to— c
oco	«-aa  —o)<—
     — a o	o — 00*-
0) JJ CO   — (-(-OCBCO —T3
                                                                                              I  CD
                                                                                             M g-O
                                                                                             3   0)
                                                                                             O. a
                                                                                                e  -
                                                                                             (- (0 C
                                        JJ C
                                                              (.
                                                              co

                                                    o COTJ o a
                                                    o c a> «- a
                                                      CD JJd- CO
                                                                                                         I
                                                                                                         C—
                                                    —  ac   —
                                                    —  co — >—
                                                                                             CM
                                                               I

                                                              0)
                                                              •o

                                                              O to
                                                              u c
                                                                 a
                                                              .Q4J
                                                                 u
                                                              CO CO
                                                              c a
                                                            CO— QC
                                                            Z CO
                                                            — 0) C
                                                            coo: o
                                                            Ld   —
                                                            Of >>JJ
                                                              X CO
                                                            >• O tfl
                                                            X a.
Date:     9/25/81
                                                            o
11.12-78

-------
o


















*^
coo
OLJ
— 3
co-
rf J—
-J Z
"8
CC ^->
o
b-CO
LU
LJCO
I-LJ
00
LJO
CLCC
XO.
Ul 1
1-
coo
1-3
ZQ
<0
i-ce
30.
^
oce
0.1-
CO
HQ
— Z
cc —
o
-co
cecc
O.LJ
00
o —
zu.
y —
LJ LJ
CCX
h-l-
coz
LJCO
COO
 CO C C CD
P— CO CO.C
E C <- CD P
CO O 3 O C
CD O XI CO — P
P ^i. <- co
CO — - P X) ^^
CD ~ CO XI .C .
S. >— C O CO
p r co «-p
1- O U
E Oft- •>— 3
O P O ~£ T> •
1- co DiO O~
Ct- 1- CO C— «- O)
co CD — a a c
CD a— a CD >>•-
•P o P a A a
CO U) 	 ., Q.
CO P I- rf, XI •—
C CD C P CD 1-
0) JH CO tO — P P
•D P 3 O CO <0
C CT— C C
OP CO CD — CD
O CO 	 C. 1- J=
— p ao P
CD P eo — co —
£ CD E C — C. 
>>P C
J3 CO CO
N
C— C
— c. ._
(0 CD ^*
CD EX)
CC. »

< O O 1
COO. (.<
LJ O
O C 	
Q or: o
— o c
-O P— CD
— CO O.JZ
— > Q.P
CD.C CO C
0— 0 •
c t-a o CD
— O P
CO — XJ O CO
pf c cox:
c o co— a.
o— co 10
o a « o
CD CO Pf
— P c a
— V O CO
— O 3 O C
^ X! CD CD
co ox) at
W P <- o
0 c a- »-
10 0 .Q •- X
co E PJ=
> CO X) — —
CD CX>
! 	 .p —
CD— CO X)
P CO C CD C
CO E — .C co
> W 1-1-
o ^

.c cZ • —
1- CO O 0 t-
0) o P — a.
.C— C CO CD >
*»— COCDNMCDA
— P C. — CO
Dl)— > — £ Ci_ -o
c co ao CD
i — COPI-COCO
3 CO W 3 CD CD C
XI CD — CD p O —
O)C < C CO CO <-
•a co — > t- o
CD P t- C. CD P —
> (OX) • CD P -C
O >>CO P 10X1 O
E X£ P4. CO C
CD3OOCO>COIO
t_ — S- 3 4J
*- O X) XJ CD iC —

o acD £ c
«- XJ ~ >» > « co
CD c a.a o DIC
P CO CD O C — C
CO X) Q) — CO —
i C Q) Q) (• ^Z P ^
O E P (0 CX>
«- — Ocoiocoo>>
— PCOC— >O.C

s
CO











































X)
CD

f[
._
p
c
CD
X)

CD
C
0







^
CD
CD XI
r: >, .

.— xj «.
E co CD O
O P— CO
1- C CO
ft- O E 0
O i 	
CD O 1-
P >>*- O
CO CO A
co E *
c cot.
» P CD O
•a— i.
C C 3 P
O 3 C
0 S- 3
E 0 O
1-3 E
CD 3 CD CD
P O C
CO CO — —
» E-
CD co co
PX>— E
CO CO CD CO
co to E
>.C CO
L. CD
CD CD EXI
H. > O C
K O CO CO

f
~


IA tt- r-
COP

10 C 5
CD O
OH— CD
V) PC
Z CD CO —
— C co E
CO— c eo
LJ E (D— CD
CC CO XI CDX)
- cz >>
< V O £
LJZ OX> CD
CC X C X)
3X> — co —
— .C O CO
LJ CO O. CO E
Z CD <-
- eo >>«- 0
Z H) JD3LL.
^t
1 ^5
LJ
Z
^














^5
CD

Cl.

^j
C
CD
X)

CD
C
0






10
CD 3

XI CD
3 U
— eo
V> E
O
(0 P
co
10 —
— XI

CD c"
— O •
<4-.0 P
•«• ^- T^
<- co co
eo O co
O P C
C 0
CD CD —
P >
LJ— C
CO 0 O
— a. —
u- >>

CO 13
Z C>-
— \oo
COVO
LJ C
CC C O
O —
Z— P
O >>co
~J ^C W)
2^
z
*
eo































CD
1 C
c —
CD E
xi co •
C — X)
OXI —
u o
CD CO
i. C
O CD O

CO >> CX
!-£ —
O P X)
a. CD co
co E
> COCK
CD X O
CD
CDJ= CO
£. CD
P CD P
E 0 P
O <0 C
1- CO
Q- W 3
c a
CD CO CD
P P U
CO C CO
> 0 1-
CD U P
p
10 <-X)
co CD C
S co co

t
CM





























































^
j ^j
C 1 —
CD co O
X)— co
CXI
o u
O CD —
c a
CD CD —

co >>co
^l ff
O P
t. — 0 —
CD CO CO P
p p «- —
CO C PXJ
> O X)
0 O .CD
P CD
W 1- CX)
CO CD— C
S co E co

^
to































































1
c
o
u

L.
0)

10
eo
O

X)
co

CD
£ .
P 1O
CD
E C
O —
<-<>-
(^
C
1- 0
CO C
CD (0
P C
CO-
CO CO

^
*





























Date:  9/25/81
11.12-79

-------











^^
MO
OUI
— 3
V-Z

C
ED
•o

CD
C
o
z








c.
CO
CO CD -
C£ CO
CD 

«- 0 V 3 CO a CO 3 CO t- O E O O CD CO— — CD ^t— CO 0) > CD 1 3 0 P P CD •— CO Q.I013 CO ft- — CO C 5 O > «- CO . ~ C o 4J CO N — • {_ CD E S Xco O O 0- CO £2 a VO co O c 04- — o X O co T3 1 CO O ^- E "*™ CD xi t- a- (D O f i Iter (p insoluble nd other p CD CO CD £ C P — \0 CO EPC 8C O O- «»- OX CD *"» OICDC)- — co co o — CO (A O ;E^^ . CM O P - «- 0 3 CD C CO CO P— i. §41 * X S CD er streams evaporated caprolacta e aqueous polymer. P £ (gCb. CD P V > 0- 0 CD 0£ P OlXP O> CO C O— C CO — CD ) — > CA «- CO CO C Ul — COTJ O CD CO O C — O c O co P p O (- O *- — a. co c a P > 3 — E O —) C •o o s c o •0 «- CO O — < V >- O P . « •a CD c>. P C CD •o CD C o z (. CD P VO CO 1 1 >— c extruder lactam, ol , and nylo £ 22 . p ao ca CD CO CD 60 - 20 o CA 4- C PP — CD «- <• CD O CO CD P co a CD ° 2 i P£ CD X CO P E — CO CO O O 7.Q oia . " 1 o t_ a. u P (. Cv P O X Ul 01 c CA — 3 CA O CA CD CD 3 0 CD <- P O4- CO P O — • C- co — O CO p ao CA CD 9 •O CD P • CO CA PT3 «- CO O C CD CD co S •O 4- O CB4--D Ol ?CD •— •— 1 0- CO CD CO O £ — o 0.0-0 CA C '•5 -»* 3 o e t. E CD co CD P P CD (A O eo£ C co i P •— — CD co O P EP «- CA o c a O S CD — Sp p CD CO CD *-•-)£ O P eg <- E CO 3*-». P3 0 O fco P CO > O CD •U CD U CA CO 4- CO to £4- (- 2PCD4* . " 1 £ co P CO CB C — CO — P P C CO 0 — o •o CA — •O M CO CO— CO O CD O CA P CO I-TJ a CD CO P CD O CO £ CD co P E 3 5£ '» . * (, 0) t. C P O — 4- P CO CO O P CD C CD—sO £ CD O p •0 3— E CD O P (0 OICD CA *> «- > 0 CO OICO £ CD c — 0£— 0 CA P i- c_ — CD a •O4- P <0 O co O CD t- 0)4- •P CB"O O CD CO > C CD CO CD CD£ CD PT3 P O CA C CO SO -P <- O CO P . m i c CD I P O CO 4- P P CO O C CD O CD "3O £ CD P X P CO E CD E 8-»- ft- S — 3— • •0 3P E CD O CA co otco P <- > E 0 to. co co £ a>p- 0£ 0 0 CA P co <- ._ — o, "O4- O CO 0 (- 0 <- a CD <- CD Ch. P CO O O co co > C CD CA CD CD£ CD P-O P O CO C CO <0 O P <- 5 O CO P . VO Date: 9/25/81 11.12-80


-------











^*.
coo
OUI
— 3
HZ
CO —
^i ^~"
.J f
O-O
o
o~~
U-00
ooo
UJOO
HUJ
oo
LJO
a-cc.
XO.
UJ 1
H
ooo
H3
zo
 x 3
£ O CD O —
*> — ca
- 0 E . to— O eo
O 3 P s- -P
•0 t-e_ o
CD— co a
u> w au>
CO CD C£
.O (, C — -P
CD CO co— >
£ C CD 3

CO CD CD
E 4J „ < 	
o c ca "o
(- O (- v> o
Ci. o CD PJ3 •
E O CD
CD— O 3 i- P
•P— WO O CO
10 ~ — O — C
co *>— i- o eo
S « o ao w

,
^







































CD
c
CD
N
c
CD
eo





,
E —
3 1 CO
C 3

•O E O co
— 3 

CD t- O O
tJICD C ca •
t- *> eo >>
eo — a>>+>

O *t- S- A "O
CA a'~ •••-
~ cfl o co o
•a c ca ca co
•«. •«. Q
CD co at-
JC 4J . O
o o-o c >.
O— CO P
S- X -
CD CD O -C
W 4J £. C —
— CATJ O —
— CO >>— CO

.
^
>
Z —

co a.in IA
UJ ^,C
ce c o O —
o— «-
ZJ3 -P*- CD
0 t- >>0-
CO CO— O
ca o eo c —
< p *> OQ

te. •>> c c
ox >>o a
s~ J3 •"•
X E *> CA
3 in re C
Z CD C N —
^ 	 — >t
ui o ca i- CD
_1 S. CD CD —
O •PCC EO
ae CD

UJ
a.


o\


























i •
o —
ca o
•— c
co
CD a

a
Ci- 0
O ca
CD
ca ca
CO C
eo
CD -P
4J O
E°
2 =
*-•-
c. ca
CD
o CB
w a
ca o
CO <-
» a

.
CM





















































1
_
O
CD - U
JO CD 0
at-
j=--"S
^j c» r*
e W t.
o o
S- CD^
*. ca-o
CO C
*-J= CO
CD a
•P 1 Cfl
Sea t.
3 CD •
CD o e~
P CD O 4J
ca 3 c c
CO (TO CD
S CO E >

.
ro




















































ia
c.
CD 1
(A CD L.
CJZ O
0) P

O CO P
O
CD I. co

<4- P-D
CO O C
CD <0
CD -5
£ CD —
P Q)
*j ca
E 0) (A
0-^g,
c>. E
«0£
c. CD ca





























ca i
i. L.
CD CO
ao
52
S-T3
ca X

CD t-
IA O
C0>v
£T>
ac
i co
ca
3 <-
O CD •
CD E-~
3 O *»
ere c
co O CD
E >
CD P COTJ —
P cfl— c u) O
co  0)
CD£ C
*>+» —
ca ca
CO*- CD
SO*-

.
"*

























CO C (A
O C0~
'c c c
CO O O
oon






















































,
— 1
«- 0 >»
CD 
CD *>— C
*>  CD CA t-
CD£ co
CA CO
(04- 0) <-
3 O >T3

.
lA



















































(fl
1 C

co co
O P
CD C
•o o
o
•a
co s-
03 CD
i- a
q> —
> «-
O *»
ca
CD
** C
CD
e >
o —
I- O •

t. CD o
CD£jO
co CO
>*» 0
03 CO O
4J &-
CA «-T3
CO 03 >»

.
VO


















































ca
CO
(_
a
IA

c.
CD
CO

cZ
*> .
-~ CA
CD CD
A C
—
CD«-
4J C
S'IA
o«
<4-
c
CD CO
4J P
CO C
CD O
4J
ia >,
co co

.
!*•







































CD

CD
3
_
O








{.
CD 1
ca —
C CD <-
CD£ CD
C >>
O *>— •
o ro o P
i- ac
CD C, CD
•P o ai>
C|- *> C —
co O— O
CD >  o
CO CO
«- CD- >>
CD  IA E
CO P
> CD C C
CD£ CD O
+» *» >~
V) — *>
CO Ct- O CO
S 0 ca N

.
~


IA 1
C C 3
•— Q —
ia— o
0) PCO
OC CO
N CD
c— c
O t. CD
n CD —
co Xco
o— *»
o o c
S-O. 03
•o o.
X- 0
x eo —
se&
3 CD O
0>£— CA
— HOC
O O
t> ^>(*v *«•
*J^3 O ^
03
a.

Date:  9/25/81
11.12-81

-------














WQ
OLU
— =>
t-Z
CO —
3
t-o
— z
ce —
o
— CO
ceo:
O.UI
co
Q —
zu.

o
UILJ
flCX
t-H
05 Z
UJC/5
COO
§5
1
CM
^

Ul
_J
CD
^
t-














X
p
O
— CA
1- P
0- C
CO
— p
co 3
p —
c o
0)0.
p
o
























CA
e
CO
p


CD
p
(A
CB


















CA
CA
CD
(,
a.
1
^
o
~
•o
p
1.
a.


































to

CD 1
CA CD C
C£ 0
CD P U
•O
CPX
O CD CO
2«6
CD «- p
P O —
14- P 3
03 O O
CD «-
eg— 5—
£ eg o
P
P i.
E eg CD
CD «- C
^ Qj ^A Q)
CD P co >

co P O
> CD C co
P P > C
CO — —
CO fa- O CO
2 O ca P

.
CM



















































1

C P
CD C
> CD

0 —
O ca o
£ CO
P CD
£ C
c^ p »—
O CO
C P
CD— C
CO O
co t- o
§'

P «-
PP
E CA —
23
CD 0
c^ ca *-
^ £ O
CD a
P i <-
CO CO CD
> 3 a
CD o a
P CD •*•
CA 3 «-
CO CTP
JE CB CO

.
^







































CD
C
CD
3
0





1 <-
CO CD
i 3 t- a
4. <_4-OCD4-a4-
o i a>*o CD a o— o E
i c P P 3 a <- — i
«-cx ~>> coca CIP er— *- P i- — —
eg — > ca> >x CDPCCB*- coca CD4-O
CAIOCB 05 CO — W C CD P CO COICO
c cu CD egi-eg a> P-D CDCB c CD > CDCA cc c-o
CD<-£ £ £ £CC fP Q)>— £1 CD— CD CD X
•0 PCD P CD CB P CB -0— O PP T) CA T3 a>
CCDC £C a O'COCA C CO) C— co
O£— 4-P— 4>CA« 4.-C Oca V CD O<- O > CD
O P CO O CO OP OP— O CO O > O O£
4. p CP COC C U) S- CD C — . !. CD >-CD
CD P C CD— C CD C CD CDCDCD «£— CD O P CD£  « a t- P P co cacoc PP- PPC
4-O CO t- O COCO— COCO Ch.PCBCD4-P4.CD
to 4- ACD APO ^3 TJ CC P C .O CD > to P C CO P >
OX ax cca cac coo £— co a) ce
CDPCB 4)&CO CDO CDCCO CD O CDPO Q) > Q> CO
£OE £ — E £O* £— £<- £ ca £< 	 £<-C
PCD P <- PC Pco«POPPP P O O P O —
•IP PP I 	 PP P— coca pea P to
E  «-~J«- S-CDCO «-—}> «-~}O
4-CD<- 4-CAt. 4.3CO 4. — V CD — 4-aP 4-CDCO 4-CDO
«-^«- co'"- *-o co o ac CD
1- O >-£O C-o i- E CO i. e < 	 O <- E£ <- E <-
CD e CD a CDCO* CD 3 CD30ICD(-OCD3 CD3O
p (0 4- . PIC. p p P— . P3C PP P3CA P3P
CBCDCDP CBCACDP COOCA CO O O to O — COCAP CO O C £0 O CO
> P a c > 3 a c > — x • > o — > to a > — >co— >CB<-
egcaacD cDoacD CD P— c CD P cu > a CDCDS CD>CO o> > o •
P — > PCD— > pea co— p£ ca p— P cfl o PP p CLP
to CD t- — (03<_— co D p c» i/i u) D  <- caco<- COCDC cavac
CO£PO coc7PO co a co CD eo co co co£P CB£— co£O co£>CD
jtpcoca jtcocaca 2ou<- ? > o XPCO je ao 5 P o 2CPO>>

• • • •••••
^ in — cvieo^invo

CO
C TJ 1
— 1 CD O
CA CO P 1-
CD N COT3
Q£ ••• *— X
«- 3X
C CD P
O E co E
£• Xco 3
«-- C CD
CO O3 —
oa. o
0 + «-
t. O— P
•o — eo CD
x xcT
— o
e eo4-— 
-------













coo
ObJ
H^f
^
CO —

ZO
0-
J
— J X*
oct:
o-h-
co
^ 3
I-O
— z
ce —
0
— CO
cc ce
O-bJ
CO
o —
zu_
o
y «
^ ^
U UJ
ccx
l-h-
coz
^.
UJCO
coo
>
5- CO P CO —
CO E — co
> O CD O P
O co — eo
•a t- o
CD C C 3
JZ — CO ft- d-
p co — O
P «3
E C CD CO CD
O OT3 0.
S- 0 ^i- >>
 CD
5- eo 13 CO CD
CD E— -O.C
p co— P
co P E X
> .- S- 0 C
CD C 0 1- 0

in >>cn
co E '-.C c •
> 3 O — —
3-vE-on
CO OT3 3 C CO
JZ CO C — CD CO
1- > eo-o 0.3

f
^"
c
CD
•O.C
C P
o *~
0 >
>J_
J3 0
c
CO CO CD
C JC-D
co — a. >,
Z 10 JZ
coce O-D
UJ —
ce o c co
•"• O E
O ^ *~ 5-
— O P O
-1 C cou.
O 0} co
ZJZ
bJQ.
X
a.
o
                                       P
                                       c
                                       0}
                                       c
                                       o
                                                                                                 E

                                                                                                •— (Q
                                                                                                 E P
                                                                                                •o c
                                                                                                 CO <0
                                                                                                 u a.
                                                                                                 o s-
                                                                                                 c 
                                           •.3 a
                                         --- o
                                          o e «-
                                          coo
                                          fl) S-_
                                                                                                a. o O
i
o
1 C
1 C O
— O E
CO O
— o
35- —
E CD —
«J3 >
O S-
5-30
CO I- CO
E OJ=
O  etj
B*0
Ci- C —


O CO
 C
— o
CO O
p
CO <-
O CO

CD J3
J= 3
P 1-
I8
5- CO P
d- CO CO
Oi ^>
5- 1 —
CO P CO
P C P
co co eo
» 0
CD

CO C —
CO CO —
S P P


CO
co CO
cnp
1 CO
JJ —
c >>
CD <-
> O
co •
i- CO
0-5-
P CO CD
U 3 E
WO O
CD— C
i. in o
CD E
CO 5-
J= U
p in —
S-- ">
O eo 5-
5- P O

CO i- tJ
CO O C
3 oi co


1 CO
p —
C 0
CD >

in  o eo
CD CO
P CO
CO CO —
CO CO —
3 CUP
i.
5. CD
X CO E
CD E >>
p >.-
CO — O
— O 0.
a
JZ O —

— ^
E ^* ^»
0 5- O
s- o co
4- CO

•OTO CO
CD- 3
0j— *o
t- 0 —
CO CO <0
J= CB
O CO <-
to c
•o co c
P CO
CO C
cno >
                                                                                                                    CO
                                                                                                   >,   on co co an
                                                                                                 E—   — >> C 4J CO P
                                                                                                 co o   — .c a> o L CD
                                                                                                 coa   o co — 3 co ~j
                                                                                                 p      ;vo >>~o P
                                                                                                 CO g CD O — .CO   E
                                                                                                   3 C   CO -P i- CD (0
                                                                                                 C 3 CD  -P CD ac CD
                                                                                                — O	C0>>    CDP
                                                                                                   CO >>O O— CO— CO
                                                                                                 P>J=CCOOT3>>
                                                                                                 c   P eo    a— jz CD
                                                                                                 CO CO CO JZ  »   CO PJZ
                                                                                                 C JZ   P COd-    CD P
                                                                                                — PCOCO>
                                                                                                 E   — E CO   CD — C
                                                                                                 co E     — C JZ O —
                                                                                                 p o CQ- co o P a.
                                                                                                 c i- o o j= — o   -o
                                                                                                 O >O CO   — O
                                                                                                 CO *> N >>J= 5- <- -o co CO
                                                                                                JZCD	P4-COCJZ —
                                                                                                I	35- cnco^—^PcoPeo
                                                   CM
                                            I
                                  uj      x —
                                  I-      CO t.
                                  <      P CO
                                  -J      co E
                                  >    I  -I >.
                                  ce   j=   —
                                  o   PCO
                                  <   OJ-Q.
                                  >   z co
                                  X   ^CD C
                                  t-   coce o
                                  UJ   P   —
                                  z   a co co

                                  LJ UJ >>eo 3 c
                                      . !	E O
                                      : o >.uj •-
                                      I CO t-   P
                                  >   >>o >>co
                                  ce z— co .a N
                                  o— o
                                  UJ
                                  o
                                  a.
                                       CO C C   ——
                                       Q- ._ (U _ |_ O
                                       bJ «T3 XZ O
                                       CO CD C JT Q >i
                                       — C£ O P——
                                       u.   o co   o
                                       ^.~>>E CO
                                       CO t-	P CD
                                       ZUJ OO CO C
                                       — a. a.   — CD
                                       tO^  It- tO-
                                       UI   >>OJ= >>
                                       te. i-ja    PJ=
                                          CD   C JC P
                                       a: p (. o auj
                                       UJ <0 CO — CO
                                       t- COJD P i--o
                                       CO >»— CO CD C
                                       id —u. ion- eo
                                       >• o
                                       -10.
                                       o
                                       a.
                                                                                              CM
Date:     9/25/81
11.12-83

-------














coo
oui
— 3
HZ
CO —
rf H
1 *y
O.O
O
oc«—
o
U.CO
Ul
UICO
HUI
00
uio
0.0£
XQ-
Ul 1
H
COO
H3
ZO
 co ~o > a. co a.
o — — - •— co •
U co 3 X CD <- co en co
XC O O£ CD 3 C CD
— O O 1- £ O — *>
O> 0 — TJ t_ .p ._ -o .-
§X CD O *- 3 £
££ CD— a
£ 0> 1 P > U CO
PTJ > E O • CO
3 O 3 CO CD — £
e 	 -opi- a
O co -a c o co »
<- «O CO 3 WO
ft- £ P E— o.
? > -P£ 3 O CD CO
O CD O>*~ O — CD *
CD 0 — -0 X.O > -
H i- O > CO otco P C

B
CM























































CD
P co i
co CD — c_
!_ > T3 CD
CD — 1 .O
C P 3 E «—
CD — O 3 co V
WO O — -P
•o— c c «-
>>CO >>CO CD CD
CD C P U£
E 01 CD 	 P
C£ P S- O
CD — Q.— JQ
CD C 3-O
co co O P co
P C CO
O)C CO CD 3 -.
C O 0) I- O CO
— O C CD — P
C 0) P t- C
c e.a co co CD
— CD — 3 > 01
a CD 	 CD
CO t- «J CD "O
1 P WO C U
<- CO to — •
0) ca . P co
t. C0£ C CD CO CO
§o — -o 	
3 f 	 PC
£ «J CO X C —
H to — S o eo«-

.
CO























































•o
c
toci-
•o o

C CO X01
— 3P C

co co — •"
CO CD CD O
i co ao
CK V CO CD
CD >>t P
£ CD 3
P (. co E
a o
E co E t-
0 -ft.
C- Cfl —
ft- Cft- CO
.- +9 .
t- co a> c e
CD P > eo —
P C O C —
co O 1 	 Ci-
> 0 O.E
CD E CD a
p co — P co
co CD C <-
co i. O 0 O
3: co P u co

,
*























































f
in
CD
Q.C

£ V
o
1 C
C *™
— Cfl
CA CD
gr.
(.
CD CD
£ P
p CO
E X
So
ft. a
f. CO
CD C
CO CD

c
O)O
C U
0 S

^
IT)























































1
^
£
^j
CD
g
•_
•o

£
•j
CD
3
p
U
CD
ft.
3
C •
CD CD
CO
O —
P CO
i- P
co£
i|
CO -P





^
CD CO
^3

U. •—
V.O
c<

CO O
0) —
oc 	
CO 0
— •£ O

LJ£ -
a. ao

^ flj
f_ CD C

P —
CO E >>
CD O£
>*-*>

£^W




























CD
C
CD

^
£
4J
CD

£
p
j
«
3
O
CO
3
C
CO
E
O
p
C- .
CD —
— O
co en




0
E -0
El CD
CD C
V C CD
CO P
co X 3
(-COCO
CD£ 1

•^ *^ ^
UB O **
Xs X

— 1 O

CD - —
OC— O
c
'-'O CO
CD C£
P CO P
CO CD
CDH E

-0^
2









T3
CD

C
—
C
CD
TS


CD
C
o
Z






cfl CD
E 0
O COT3
P <- C
•P P CO
O

._ CD*
«- CO C
O P CD
•P C —
CO O X
t_ O£
CO P
ax®
CD CO
co E «
4J
•0 E C
— CO CD
3 CD 3

— cfl-O
•o «-ft.
— CD O
3 P
CTCD CO
— >P .
— CD C Cfl
•P 3 CD
CD cfl O X
£ CD E CD
H > CO >

,
"^
CD 1
C CD
CD —
— O CO
X— CO
£ P CD
•PS- 0
CD CO O
CO X
Ul C — C
_| CDUI —
>00- E
X O <-
H£X O
Ul Ot-^U.
^« ••«
-IX
o
a.

«































C£
E U
3 3
— CO
o
O CO
Xc
(_ CD
CD
> P
O£
U 01
0,.-
1
P Cfl
C C
3 CD
— C
•o o
o •
P CD
co-o c
«- CD CD
— CD£
ft-£ *>
C. CD
CD CD
£ > CO
H O to

.
CM



























Date:  9/25/81
11.12-84

-------














«•«
WQ
Old
— 3
I-Z


U W
WO
 P
3 C 10
_ o —
— o
TO . E
>>co
•D CO CD
C E t-
O -P
o to to
CD S
to o m
0) -PJZT3
JC OH ffl
•pja -P
co
E c • t.
8EUJ 0)
30. C
ox o
 w-
> o a> co
CO O X 3
CD 0) co to

.
to























































1 1
§« 2
u o> to
c— *>
«WH&
0) CO
«- c • w
O — 10 U
>jc — o
0) p CO *>
•P 0) -P
to >>co *»
co— O C
> O CO
a 13 *» 4)
3 *> COJ3


t. 3 *> CO
+^ — O €
C •— CO •
a>-o a> £ >>
o "o co i-
C 0) 0)
a) — -o e >
JC co C -P O
H -P CO <0 U

.
*





























0)
c
a>
N
c
o
J3

%
E
3
«_
E
o
s.
JC
u






1
c
o •>
O 10
E 0)
CO E <
£X

(flJC O E P (0 O Ol JJ CT5 P 0 C O— co JQ 1 0) . — *» 0) — CO C •— •— 0} to 0) X •P <- 4J C 0) 0) 0) -P > c — — — CD O 3 to wo 0;— to JC CO 0) H 4J L. . ~ 1 a « g ^ o o. c o 4J 3 Q CO x o LJ .* ^ +J Q X 4J c 0) a-o 0) c > 0- 0 O to ^ 0} ^ P CO CO 3 P 10 10 0) CO !- * 0> P • +» to t. 2*1 P co X — CO O u. o a . CVJ 0) — P JC CO C P 3 0) •o a *J— tO CO 10 £0) . E a> o to in to c c tt>— C •a co~ C *> CO O C P u o c 0 0 a> u in i- co «B X JC Q.<0 O.Q.E to t-TI 3 P C O to co • 0) p 3 PM to ac c x to o a> — » CO a> P JC O O co H <0 O , m ^ i . <0 t. a, a> c ^ W M to CO •o 3 ._ O tfl C 10 a> 20 0 CO <- a 0) u to JCJC in in a -_- 0) to c CO O O. P J,S CQ •"• O I- JQ X uj o 0.0. a X 0) c o Z 1 a 0> 10 to '-co in CO O C •D «- C-0 3 o cja U a 0) X to to- co— ft) X CO JC CO 3 P > 10 3 E to O C to P O fl> 3 CO O «-<•- <0 P C i- <0 *• CO O CO •a p uj — C CO o L-JC o O CO >2 JC03 4JQ. 10 0) to XtO CO — to (. o coo. XX 01 •PJQ — 10'—— CUJ SO. C 0 0 i ^*-^ o J CD JC 1 •P C « oja E u EC C CO — co E 0 0 3 O O V p CD 13 O CO CO ja co - t. 10 — •0 3 0) O — to xja 3 10 CO CTCO > <0 — t- (0 — a. io 1 CT3 CO >— CD JC O CO CO 1 *J 3 . CVJ t. Q) — 0 a i-td (DO. = 3 JC C o — co CO P JC C •P O u E Ecc? i. L. . CO CD <0 P N 0) CO Wa stew pel let pa rt i c . CO Date: 9/25/81 11.12-85


-------












^•h
coo
ObJ
— U
HZ
W —
5z
O.O
U
o*~
U.CO
LJ
atn
LJCO
HLJ
oo
bJO
a. a:
X a.
bJ 1
I—
coo
ZO
>
CO —
CO O
«- a
to to
3
CO O
E£
o a
P i.
P O
0 E
£> co

CO C •
> CO P
O 3 10
0- >.

i-TJ CO
1 P
PV CO
C O U
CO
3 co-o
— PC
— co co
•o —
to .
CO C fc.
£ 0 CO
HOE

.
~
CO
K
LJ
CO >> !_

b- (.
W— E
Z to >>

(OK O
LJ a.
ce co
c c
LJ CO O
jjj w *•»
LJ >>M
_i ac c
> O CD O
a. s- a—
O aca P
cr >>3 co
a — co N
>- 0
_ICk
O
a.


•
a-



























•,
CO 1
EC CO .
CO O — *>
OJ P "O 10
C- CD ^ ^>
PJC C C —
co co— eo
- CO -P
to — «E co
E O P O
O£ C CO
P O <0£ P
P O 3 *» C
O 	 CO
.a CO — O Q.
— TD CO <0
V. +> .18 CO
CO C~ £
> CB CO CO P
O > "D —
O 	 Ci_
CB O X CO O
c- co o —
1 £ P
-c_ CBH C
O O C —
£ CO O
o to— .a
0 P >>S-
— 10 J£ CB CB
co 	 E 0)
CO co >>t-
CB C — CO
£ O S- 0£
H O O Q.O

m
CM
























































Ci-
O 1
C (-
— tfl O
CO P
P C (-
C 3 CO
O O£
O E P
CO O
CO'CB-O
E 0 C

L. &Z
CB *> «
P P
CO -C
> 10 CB
CO CB 3
4J "•• ••
10 O —
CO — 'O

<. CO C
CB aco
P
— S. JJ .
— eo c to

CO 	 C
£ O O CO
H ato 01

s
m









































e
3
»
E
O
r*
U








1
C 1
0 >>
o —
..i
CO
p-o
CO C

p •.
CO P
CO C
> CO
CD O
aco
a
— *
<- P
P 10
to >>
Era •
CO -P CB
co co C
I- O CO
p —
to co >>
c a
rtj ••• Q
£ CO C-
H -P a

.
~


1
3
_•
C?

Ss
X) C
o
c *~
•' 4^
10 CO
CO N
oc *^
CD CB
CB >>

II
O
C. C
ao

— P
o
ex






























!_
CO
P CO
CO C
12
P a
10 CB
CO £
^
C CO
O

P O
co 3
U CO
c^.
— 4>)
C- C
3 CO
a>

P O —
C to CD
CD C
> to O
— C P
O— CB
<0 CO O
P CO
CO C
£ 0 «-
H 0 0

B
CM
























































1

O
CO
to
C
co •
p <-
II

MB
1- 0
CB a
P
> c
CD CO
P
CO P
CO 10

i- w
CD P
P CO
— O

p
CO C
£ CD
H >

f
to


































TJ
CD

> •
ap
E 0 C
o c- co
I- Q.S

^ •_
c- o a
CD a
P P
5-5
CD CO L-
P P O
to c —
CO O O
> o o
CD >>-a
£ CO C
H E co

,
~







^
rt

C.
CD
JB

U.
CD
C
CO C
— o
aco
O 3

ap
^> X
— u
o
a.

e






•a
CO

c>_
•—
P
C
CD
•o
•^

CO
o
z








01
c
«^
^
o •
O CO
O CD
c
s 	
CDCi.
><-
— CD
O E

CD O
£ a

c
™
O CO
<- p
C>- C
-8
CD
•p >>
co co

*£
U) P
co co


.
~
2~
^
3
co
^^ ,
m
co
co
coz c
z o

CO J3 4J
LJ CO
Of CD N

LJ CC 1-
Z c_ CD
2ZI
> a —
H >,0
co — a.
> 0
-10.
o
a.


,
ir\




























i

1 ^3
P CT3
CO O CO
O
4J Q)
« 6-
"'.p.p
E to co
3 >,-
3 CO O
0 >
CO C
> 0 >>
••" C
CO -P CO
£ CO

> co (- -P to >>ta CD co to co •0 C CD C CD— > O£ CO — O 4J P P > CM •a CO 4- •M 4J c co •o *« CO o z 1 C 1 CO c/9 O <- 3 CO CO O CD E «— £ >> *>CO— • <*- C P — CO O14J e, CO C O CO — I C. CO p to eo CB *» to p co aco C O tfl O <- O m — co o C--O-0 P JJ C CO >» T3 CO > co -c CO E M CO «-^ P CD O CO to co — oip~a CO O> O C CO — > 3 X Ci- P"D P O d) ._ l. C — S- £ I- CO CB C CO H -P a a— a ^ ~ o CO c CD a 10 3 CO C o .a P CO CD N c — co <- L. 0} p >> co — Sj Q — a. o a. Date: 9/25/81 11.12-86


-------



















•"•
ou
_ ^t
HZ
W-

J Z
O-O
u
o""
u
aw
UJCO
HUJ
oo
LJO
o-ce
UJ 1
H
too
H=>
za
=>
HO
— Z
o: —
o
-w
oca:
a. ui
CO
a —
zu.
Jo


C0£- E
£ja o
•P 3 C
t- O
E E
S(/5
C CD
4-- C
CO CD
CD -P <-
•P C>>
WOP
CO O «0
>
•O CD —
•*- +•> 3
	 er
cot. —

.
CM

























•o
CD
(A
3 ^^
4J
4- C

— Ol
CO
0)
•o «-
— CD
1-4-
O M
— C
£ co
0 «-
co P
i.
•P C
•P CO

c o
0
•£ *

5(0
CD







c
CO « (0 4J
C +» C
O C CD
O CO Ol
•M CD
E 4- CD
L. c^
«- 3 <0
CD M C
*> CD
CO ««-
> W +J
CD (- 1
•p o c
U) P —
co co co
+^ o
(— .«
CO CT3
XJ— C
A co
3 »
i- 0> (0
O P <-
>

^ -v Q
Sfc^rt
_l C
l>l
§IW
2


,
\o


































4-
O £
4J ^
<0— 10 1
•P > -P C
<0 C —
— T3 CO CO
ia CD P£
C *> O O
O *> co

i- 3 i
CD +>— 0
— C 4* •
0) O— co  *>— 4- C
3 <- 34- CD
— CD E 3 <-
w 0.0.0 *»

.
(VI


























(0
CO

•o
o
(0
3

4-

„_,

CD
C
CD
3
^
O

«(0
CD P
C C

N >
C —
CD O
03 (A





1 L.
i. CD
CD t- E
•POO
4- P C
CO 0 O
CD E
£ CD  N
CD —
£ 0) *>
O£ C
in +» CD

•O4-— .
OOP
«- 
CD (0 —
> c co o
CD a>£ >
> Q.C

— C >
O Ol>>
0. 	
£o
a
CD o
*J4- C
— CD
— o
a> co E
£ -P
•P C£
O *>
E 0 —

4- CD-0
P CD
CD— *>
.*— *>
CO 4- CD
0 > •
CD CD
C, *J (0 *>
CD CO CO CO
+!*>—*>
— 0) O CD
— O— O
U. CD ** CD

.
(VI

























































£
P
i -o —
o>— >
o —
CO OT3
(0 CD
— -P
X *o +*
C C CD
Sv 4J {_
-CO)
O O E
Q.O >>
CD i. O
£ CD a
P +J
— CD •
E— ** C
O»- CO O
4- C CD P
O O 3
CD— CO —
JC*> 0
CO 3— <0
o c ^
i. (0— CD
•P CD >>>>

— CO O O
u. *j a. a.

,
CO







































^
CD

4-
•—
**
C
CD
•o


0)
c
O







c «i
CD ^^ CD
O I- C
CD —
CD -P «4-
£ CD «-
1 4- CD
E£4- E
0 <0 3 >»
c. 0, A —
*- > 0
•O-O lT
CD C 0-0
OICO *> C
L. CO CO
CO CD —
£ 4> -P P
O co— C
« s- c co
— *»— Ol
•O C CD
CD C
i. O— O)
CD — CO C
•P *> —
CO CD C"O
> aio c
0> 3 O CD
•P4- a
M— >><0
CO (- CO 3
5 w E w

,



1
c
CD
a.
10
3
CO
c

A ^^
44
CD CD
4J N

3 «-
0) CD
U E
i!
x~
— M
Q
&.















•o
CD

4-
•_
•P
C
CD
•o


CD
C
o


^
c


— 1 — CD O
•P >>O t. CD CD
O— CLP in (.
£O 10 CO
0.4- >,
o co «- -o
•a 4- *> co —
O C M > O
£O CO O CD
(0— > 0
CO — P CD U
(A O -1- —
<0 >>3 1. *>
E — "O CD CD CD
CD O O >£ O
CD L. (- CD 44 CO
•P >» O C-O
<0 £ i- X — C
O CD
0>£4- -D
4J 4J . CD-
CO— CD — O O
CO > *> O 3 C
> CO .C-O CD
•O P O O£
•O CD CD O *- *>
— 4> O — Q. CD •
3 CD CO CO E"O
0-— CD CD
._ U 	 A CD <-
— 0 >>>> <- CD
w c c >>a> >
O «9 — — co£ O
Zco » E > 0





£,_
CO 3T 5^
z c
~" x*^
tna >
UJ >>

o o
-l£0-
O 0
X 04-
O — O
o ^
-I M
< 	 eg
>)<0 *>
-J C XCD
Z > O CD
>±£S
i£
2


*
t
Date:  9/25/81
11.12-87

-------

















4>^
C/>Ct
OLU
— 3
(-Z
W-
5z
ex. o
KO
o~
U.CO
UJ
OCA
LdlO
HLd
00
uio
"•£

LJ^"
h-
COO
t-3
ZO


_• 2
DC —
0
— to
ceo:
O.IU
zH
r0.
STREA
YNTHET
UJCO
coo
 S








Ct- CO
0 3
CD O

CO CO *-
CD 3— CD
to 0 >>>
CO C
•o > — -o
— 0 > C
3 CO
o-o c^
— ** CD?
•OPO
CD CD C>
C 10 0 —
P 3 O
E aX«
0 S co E
(- 3 E 0
*- a c
<- E 0 i •
CD 3 P to
P 3 O CD CD
CO U <0-O >
*> O —
CO CD CD — -O
5 VP O?

,
~


••» 1
O >>>-
•J C tf)
^ — c
Z > CD

>— tO O
>• 0 3 —
-10. CA P




•
00
A
•o
CO O
CD -P
— CD

• CO
— J= —
0-P 0

CD a CD
c c
a— a
•>+? «
CD O CD
•o o -o

tl— L
O ^ O ^O
— — eo
C •> C CD
O6O —

^ ». ^ ^
>>e >> u
c-o c c

> 0 > N




01
c
~ 10
1 — II C-O 1 E CD
CO O IB — — . — C O • O tO
 CT>—
CI03 tOC!. co C CD ClOl-3 101 OIC3
— +> to O E O P CD*>c>. O3CDCC IOCDE ! 	 —
co » ace u cox OJEV OWN coo E— o 3 a—
CD a o e 010 o 03 — e — • co c o a o CD
10 — CO O -D IOCD >->>C>J3 >> •> O P P CD 3 CD O
(-I-OC IOU CD 10— CO ' 	 OCOC(-(- CDP —
•O PP CD CO CD co PtOCD M •. + EOP P N CO P 21 O ClOE
— W -O i- J_ CC>CDtOM PIO •— M 10 O 4J CD
3 « • ap co 	 t- CD P otcoco (-('ja >to CDC
CT o r e «- E UCOP cc c 	 COCDCO «- a >>c
— P O O O O T3 • CD P — O — CD — pa— E CD  i- P OC«-OC-O>«t-Ol C— — >>IO*)O3 C
•o v co co o o -o o. co COC-OE — — coa -oc —
CD CD C ~— CD > CD O CO C (D— C— O >C CD— CO
c to — *» c z — c c — o> — eo to am CD o E • *> P
P3COO)— POP PCO-O P W C • O <•- P — 3 -O CO(-C
p-OC >— CDC CD— W O « CD C E (OP3CD (-CDO
sac 	 • E -o e s- co e s- -o t- E to t-oco cocooio CDNO
O E O <- CO OtO-O O CO O C CD O 10 C. CO— CD > N co 3 C >>
*- 3 O O --P «- C CC <- — (.tacDN t- CD CD P<- — > CD— a
«. a — -~ c <•- — <>- >»o ti- c a— wod- IOSP o<- o> 01 co CD •
>>*: £ CO CD C O CD > V CDPtOP CD PJ3 CDlAP CD >i CD CD P
P 3 C P O •- POO PC 10 P C. CO (_— P Q) >> U>
COO<-CDC>-OI COO^ COO CO O « CO CD-Do P >>C CO O 1 <- CO C I- 3
>COCBCTIOC > to > w w >o> — >cw IOJSP a-o o > P CD co
CD > E o — cg(-> CD 4- CD CD oa o to P CD CD — 10 CD > o
P o ^ c > PO PIO P « P P c P a> P c-je3io P e o
wcDC-oott- top-o wZeo to otco-o — CTCD M o o-o
CO C O >> 	 <0 0 C (0 O t. eo 3 — C CO O Cn CO 3 CD C3— <- CO 1- CD C
JEPECPtA S t. CO 5>P JECt-PCO Jt>CO 5PO I-J3— Q. 3CVt-(0

• • • • • •
CNJ CO a- lT> vO —

1
1 >>

3 O —
LJ eo CD
—» c to
>>C >> P «
ja o ja CD
*** ^> o
CD  CD J3 O
•O 1- -O «•
— o> — c t-o.
t. O. i- O W CD
o to o— ee.£> o
_ — _ 41 UJ — 10
coc ceo (OU.O
O 0 O N — 0
1 	 — U. C 10
~* Q ^1 ^_ L. O "^
>>~-co >,« Z >>>
C N C 1 O CO

> oti >- <
- >>- CD >,o a:
— to E —a-
o o
o. a.

Date:  9/25/81
11.12-88

-------












.••*
wo
oui
— 3
H- Z
CO —
Sz
0.0
0
o*"
U.W
u
OW
UJOT
I-UJ
oo
UJO
0-0£
Xo.
UJ 1
H
1-3
ZO
<0
30.
_l
occ
O-H
co
H* O
— Z
o: —
— w
oca:

CO
a —
ZU.
^
o
Ul LJ
OCX
l-l-
coz
UJ W
coo
>CO
-J CO O

.
CM










































1 <_
CO CD
i- p
CD co C
CO > O

co co
«- CO 0

CO O
CD CO 10
3 O O
3 co
P-O «-
CD O P
— ,«.
aoi
§,,.5
3 CO C
o o —
co O co
> U) P
— c •
E > 0 CD
CO O-O
CD V 3
•P O E V
CO co —
C CD 3
CD O I- CO
1- *» 10 -O

.
fO










































1
3
to —
*>- C
CO CD O
co o JD
•Q CO
a CD o
 o c
O co co
3 CO
•o— o
o-o —
«- C P
as co
3
«-*_ CO
CD O O
"*" Cft ^^

t»- "~
•^ *o
CD co co
ca— p •
O CO P 0)
U C CD-O
S8^

C9 JC CO CO
JC co 0 —
1- O — TS

,
*










































E 1
.3— CO
CO O— 3 P
£co c-o co «c •. i c
E 1 — O CO CO «• 	 1
cacocoNcoc-iDPCD-oao)
C P -O dTpCi-c,. co CD
P C— co 33— ^+» C*
co *> co ov -iCOcoAco co
£C P C— CD O PC
CD — 3 -O — « « CD •- CO
•P3OI co — £ «) CO — P
— C CO «.PCOP<-PC
•0*-— PE— OCaCCD
Cd- W c 3 3 oOcoOCDOl
COCDCOcO*— COC03^L.(OCD
CD c-o— CD— *- aco
oioo— o -o -o o> co <-ai
c— psco — *J»ac
— T3 *- CO C»-«fl)cfl —
c— ap «o— wt-p*-«.
C fc. 1 c -0 £1 3 CD C — CD
— — *» o — «- co co c co — *4*
as CDO o co >>o o o co
coco> coo 	 -OS
I O 3 P <- C —
c co o> .0 -.a.— to .a co CD
{. CD £ M — CD — <-3 -O
>»3 O)3— COOC CfT^cO
•OE<-Ct-C).CD— CDCCD£P
CDOOco — — -OEO><->PC
£c-<-£33— CDCPCO— COCD

.
If.












































o-o
C— CO P
p C. CD <- C
CO 3— O «- CD
ja CO P C J3
CD co •- co co
P— — CO CO
3 «3 P E
E CO CD CO C
O P co co
<- E co O P CD
V 3«- c O >
•P-O 3 N- «
CO 30)
> !.«. *> .
O— CO CO
CO CO CO— C
CO i. S CD
P O CO CO C
co ac o
co— o a
CD > CD C E
£ CD P — O
P C N O
£ O
E P O •>£
O CO CD -P
(-13 »P CD
Ci- 1 «- CO£-
C 0)>
P 0 E —
3 O CD
•o o-o at
co— CD co
3 JC —
£ co— •
CO P U ~-
CO CO S CO

i. a~£ a 0) CO V *> E P CO O — -O CD XI O — CD P 1 Ci- E co C O CD co > ac £— ca co h- O COS Ol . 03 Date: 9/25/81 11,12-89


-------










*^
coo
(JUJ
— 3
W —
<,*-
Jz
O.O
o
o*"
U.CO
UJ
OCA
UJCO
H* UJ
oo
ujo
O- cc*
XO.
UJ 1
)-
wo
1-3
zo
 3 3
CD O-O
P 0> —
to 3 10
CO O-CB
5 3
10 C O •
C— CD CD
CD > 3 C
•o i- O-CB
C CD CO «-
O to X
O CD P
i. t-jz u)
CB O P
P P to
*- O-O C
CO CD C —
~5CO CD
CD CD P
C. I- C
p p (D O
CD ao

2 E £ CD
v 3 P a
3 co a
C_ 0 —
CD CD X <-
P > CB P
CD P to
> CB CO
CBJC— CB
P P 10
tO CD CD
2 o P a

,
CM

































T3
CD

c»_
.«
p
c
CD
•a

CD
c
o
z






CD
C 1
CD >,

o o xc •
P J= CD C
O CO P O
CD P CD O —
CB C 	 P
«, CD-o— CO
3 CO —
C P £ 3
O— ..p E
— P 10 £ C,
to to E ao
3 C CO <•-
Ct- O CB-O
o c- c-o
CD P CO CD
JZ 10 CO A
PC O —
— -o — «-
E CO CB CB O
O P CB— to
<- C V CO CD
<«- o e-o
o *-
c- o-O t-
CD >- P C O
P CB O COd-
CD tO CD
> C CD— 10
fl) QJ &_ Q Q)
P-O o-a
to C CD >>—
CO OJZ— «-
SOP o>-a

.
~
CO
Z 10
«• •_
CO CO o
uj -a jz
ce t- c — o
CD O O O
Q- P — < —
UJ 10 P <
h- CD CO O -D
W X co — X O
UJ— C— XJ=
>- 0 CD XOP
-IO.-O X <- CD
o c o-oz:
CD O t- JZ C
O P X co — O
ui co— oa —
1- t- o— co
< 3CLO.C 3
CC P PU.
3 a Xd —
t- «J2 O > 1
di
z


^
CM

























to
c. ^
O CD
A CD
J3C|-
3
C. S.
O O
to p
o
CO CD
CD CD
0>t-

<*- CD
O P

CD 4-
JZ O
p
CO
E a>
o o
tc
p
C-
p co
CB co
p p
CO C
CD O
2 0

,
CM




















































CO
C
CD -a
P C
C CD
o

L.
i. 0)
CD P

— CO
Cf-
CD P
P P O
O 10 3
3 — -0
•D 3 O
004-
< — a
O.P
i- C
CD CO —
jz ato
P CD
g T3
t- CO CD
4- P
i- co
CD CB CB

CO — —
co— O
3E«- a

.
to

































•o
CD

d-
.«
43
C
CD
•o

CD
C
0
•z







•o
C C.
a o
10 4-
CD 1 CD —
JZ C O <- O CA
P O CO O O 0)
o i- P X-o
ft- p o 	
OX co O)i- •
CD ^) CD ^3 C
CD E C I- CB XO
B) CD C J= —
CO <- CD CD C P
.Q Q) ^ JK •"• (Q flB
Q.C P X —
CD a CD JZ O 3
JZ — > CK P — E
P « 	 O CB— C
P O — co O
E CO 10 (O-O JZ4-
O P P
i. CD— C JZ-O
d- io co CD •• acD
CD 3 3 E J3
i- jz -a P co -o —
a) Q. 	 a c <-
p to P t. co O
CO CO CD CO P 10
> 3 t- C CO O CD
CD O O — -0
P CD C O-O CD
CO 3 — CD — CB
CO O* CD C»- (B CO JZ
3t co P O*- S P

.
~



IA 1 1 P
C *™ **** C
— a a CB
co >

cc o P o
— CO
*• c >
CB O 1
P— 10
co P-O co
q) 
i- O O —
CD CO <0 O
P > 10
co to
3e CD co — •
CD JZ O1CD CO
p p 1 3-0
to v>
n i-« qj
•^ (•
JZ * t-
P 5- CD
0> P
E P 10
g— X
4-Ci 	
O
CB to a
P C
to — -o
CD CO C
2 P CD

.
ro




























Date:  9/25/81
11.12-90

-------
u
eex
ot-
xui
Ht-
U.U
OSlO
UJZ
WK
§5
Z PRIORITY POLLUTANTS OBSERVED IN RAW
«iLS INDUSTRY PRODUCT- PROCESSES AT COW
/L [2-6H]
z- a
ObJO
cexo
OOlA
m
I
CM
_l
CO
t-
iclated priority Pollutants
K
(0

M
1
+1
1
U.
M
M
8
£
o
u
o
,
« a «
o -o u
we w
X « I § .
— — > MUML.Q
* | 8 88 8 § £
§U — (B « W» 0> * £
— * — +> ** O +> v> to
« O *J M MIA t. M COW — TO O >>
UJC J O O O *» O C C *» C — —
** o *>*»** c** t t J u w a.
8 « < 8 £8 28 £° 8 ° 1 .
O O O OO OO C£ <£>-«>
i. — M « i. C L.  O C « C-D — X *>
a o « o\ o W.CIA o o ox £ £ e
O — £ O O O OOICO ** «J CD£ O WOO)
u -o— a. i in c cc — o o« co — oc— «
0. _ 1. - 00 « — O«>I9C T3 SO— C
* CC<0~ C^C'-K-— — OOX O »Cl- X
Soo« c co . — eownioe - o c— o ecaeaoao
c — — oo — — o a c xw x c — C o— £— co c c A w c £
a> « x X 	 oo-oo--eox wo oo a- o a o o o
N £ a a ax ' c o i- 3 a— o 3 c «V sc — c .ex N e u — N —
C ** O O — ^ CM O 1- •" — w «B t. — O CD W OO WC C w w eg C U
SO1.1.-OO — .CO-~O«OXO.C£r l£ X£ OWOO—OOX
t a. a. « o o- < r h-ooo. K o. o co. OB- zu CD z z o co o
o So— c *>
— ~ — o o •
a ca CB — w c —
•D fc. C X VOX
— •o o o — — o
x Xc o> S c - w
££ O O — O •* ««
C 0 — u • — u EC
£0 OW-D WCCC «C~0
— (OX XC(6OOO — O X-*
w -NX .OO 	 CC"O — OWCCCCCC
*.<0 M— — X *» w w o O w COOOOOOO
— eno o XE o— o c at-i-t. n a~ — ootaico a ->. OT9<- 0 -0 >, OO O O O w X «
ir £ — — I-D a jc -a v -oxxx — c w w — £ 	 — — — « je —
— OXXEXX— 0>X X»-»-K £OX M XO.C.C.C.C.C — — X
< a o o  — — a
C Q> CO 1- N V
— a. ceo c c
C* O Q) w — Q} O
O»— ^s'o. 0 « O ^.
^C^OO o<'° — If'o w O
o — m . o — -XB*>NB~ c
O w c- — CO U £— Q)NWOC*-C (e
cc woo- ooccuweooo x
SO— 0— — — 1C IP 0) CO OB .OW1.W O
— o ~ c cc _a>— A — c pooeo.c
OX— — O — — — — o X£X) — P O C I. — » C o
WWOXO. XXX-N N a S X C A OOCOV-
co o i. C — jc je — — c cuw w a >- — — o o E o
OOOCJV — — — CO O — 3 3 Cfi • ££li-3X
<<<<< <<<
-------
EWATERS OF THE ORGANIC
AT IONS GREATER THAN
)RGANIC PRIORITY POLLUTANTS OBSERVED IN RAW WAST
CHEMICALS INDUSTRY PRODUCT- PROCESSES AT CONCENTR
>00 ng/L [2-6U] (continued).

m
CM
Ld
03
t-


«M
2
S
I
a
T.
o
o
0>
CO
«
Generic Process Feedstock* s) Assc


J

(0
O
c — -*
Q> W IB u
£ C —1- C
E— > — O£ > M
O — O *» 4J — -
« COC — 0) 0 N
- . . „ £_ 0
a. « a. £ >, o TJ
. z . « : 2
(A O M M i. 10 CO ML. CO
O — O O ** O CM O O *» C
** n « 4^**"c *> cj o **c^ *£
S 1 ~ * s ° i *"~ w S °
E— £ c 000 o 00 00 c.
O < 0 M f. t. o L. C- 1-0 O
M CO C £ WOCOQCOtOWMCOM (0 CO CO
JO ft- O 2 O CO OO0 O O O 0O 3 0 O0 00
a. o w e ft. a. — a. o — &.— cc
V * *J — O -D O — V t> ^ V V— — COCO
0 • (0 0 W CQ JC— 0 1. . *fc- - » fj) O0 « 0 «- •«- ££
CO O -P P *> O COCO OO— OWCOJCCO-P CO— CO— O 00
C - (0 t- (0 I- «S C *--~C-CCOCCO C C - •- C - » E E
— 4i — O— CO— p — — *i*»o*» — — ~— — — O***»O*»^ OO
t- (0 CO .C (0 O O^ <- O fO(0— « (- t-OL. CO «- — CO CO— CO — (-L.
O EC a £ I- C< O C EEXE O O IO£ O XE EXE C OO
— O *J o « *J V — 0 O O i- O — — W — ** — L. o O1- O « — —
j «o
X 0 Z Z
f 1 . z z
0 0 | | J | ! f
CO O 0 W — 4J *> —V —
— 0 £ < 0-0 X *00 OX 1- 00
j *» *j a, v — » £ co o o cc*o0^4J
X CO £ -O K O L- — -MM £ L. b. CO C X — CO CO
w a. — «A o o u o POO x co .c — « «
» X O • — — C co £ — — V O I- X X
CO—* O0 •— O £ 0*** COOOCC— — O—OO 000O
oioocc-o a c x z-»00x--ci-u cccc
— X C — CO 0 OO — — 0UJ O O — — £ co £ O X X 0O nco
X ft- co ** £ 3 CO. X X N * 1 1 XX *JJ= 0 a ft- 0? N ** C£
r £0^-0 - jc c x OCNJM ££ u u - - c a> i i
«J lA -P o 0 o c — — VK a. « - JJ -P i £ a -o ^r m 0000
uou
^ X a
<- c eo e — c
c i .? E « -S « § £
O — C C C -P O— WC (ft — *j
~ O O O on i-M no C— *J «
w — — C C w X C— 0 -0 CBCC
CO * -P C P *» — O — — 4i — CO —
cccooce ce c— cc occ «- «o M*>c0 —«L.
— o o — o c o -o -P o o t. o o c -o u — co o > c t- *j o
fc. — — 4J — O — X CO X — — 0 X — M C — — O « TO —
O +> <»- Cfi <*. ~ fc~ £ — ww ft. ** ** — £ fc- X 0 ** ** — X C£
— O — «- — *»•- OXCOO COCO*JO— — O> O O *>£— O
JCCOUT3L-COL- t. X — CO E C C « U L. OOCOCQ CO O *- O
O <- O X O t- 03 O O X*- CO 0 0 t3 O 0 &.L.L.L. "O C O (-
X X (ft 0) « — w £ *J — X +>EEX£M XXXX XX£X
0O 0
•PC *> 0
CO CU CO C
0 CO L. a CO E
C 0 £ ® £ a
W C Q) *> — AJ X V W — 0) "O
£a;« £ w". x « c Jt «c £ T3 *c — a-
U •— 10 & 0 O 0 — ^ g)«-Q)& ~ O ^
gccco t-0^flj«iej) -co — — C v i-
« £ 03 O-P X«C E— XX 00 XOO
OC*J *» — « ec £ 0 0 COWO X — C £ — —
— C £ 0 — £ O *J N 00X0 C — £
£0.0.0 — **— ai-coc 0000 £ c £ — 0 nxo
o o — c x o x« o— e cccc — — ** X c t.
IX*>00 — £Q.OCX XXXX *J O(0£-O. ffi££
W00JCECa -££ ££££ W XXOO -*i*4
— O O D Q O Q LJ Ld U UJ UJ UJ LJ CVJ OX — — X £ £
Date:  9/25/81
11.12 92

-------


o
iz
0<
KX
OH
Ul Of
XLU


U.LJ
°§
M
UJZ

S ~"
u<
i— ae
WH
w
OfM
UbJ
WO
COO
oa:
o. •
C/} 1 ^*
KI--O
zo u
O 3
HOC
so —
_ice *»
-10- C
20
>- 0
ce —
^ f—
— 3?
KQVO
o z i
	 CM

a-w^"

-ooi
OUJO
cexo
oom
ro
1
OJ
u
CO
1-


(A
4J
c
a

o
a.
>


o
•o
S

o
S




M
|
•o
B
B
il






M)
U
O
g
a.

o
(_
I




S



(A
N
U
Tt
tt
44
g

u
o
1
»
I
CO
c
i
0
i



B
V
*c
o
c
0°
i!
44 44
II











g

44
g
C
u

i
r
o
c
o
i
I
44
i
o
.
£
W
O
44
g
S
£~


IA
U
S I
• B
E £
<

c u
£ 1
Z I


!
I
1
O
c
Ac rote
Cun>ene






^
o
•o
x
5

~ 0

C 44
O IB
Reduc
Perox

S
S g
5 £
- J?
X .
44 —
i £
* I
I !
2
c
1
(0
1
I
V)
IA W O
00 ~

4444 g

xx s i
— —44 0)
££ z« £

* * *2 *
o o o to o
«  c ^
CD « O CD
M*> C 0
W 10 *4 k
00 Z £



Napthalene
N i t robenzene
Pheno 1












10
S 2
— 44
S«> i
|J2 £
II z


t
B
g £
^g B
£ a c
ti =
zo 1











g

e e ~u
O O CD
— — M
•0« B
si s

4 i
i 1
Phthal ic anh;
Polymeric ne
dianillne









4J
1
gS
— c

• 44
C c
Chloro
( phosg


00
If
|£
O fl>
T 	
Pofymei
dianil











c
.2
44
1
o.
0)

it
H
Polymeric ne
diphenyl i



w
o
c
tt
£
CL
fc
IA
O

44
e
CO
I

»
0
44
!


"o
M
S
44
o.
Z









10
W
X
p
fc
eo
e
44
CO



Propylene


V)
i
44 1fi
0)
CNJ
i ^
— CO
(0 **
0 .
o —

£ O
° - i
10 O (A
• C •*•
m CO w «n
0 C 00
7 (0V

| £ |S
o S o o
— o — —
0 < 00



c
0)
o o
0) O 0)
0) N — —
CD (t) O (B
f S -S
X - Q£
B. X 1
S 5 ~5
a. u — cc








c
o
4> O

CMC
Z g S
•e B w
X 01 a
£ ^ u
0X0
i s i

B
2 i
Propylene ox
Styrene
Tetrachloroe











(A
44

B
eo
Chloro



tj
CO
o
Phtha 1 i











c
5
44
g
L.
O
6

o
I
TetrachloropI
anhydride
2 '
c "c
CO CD
0 0
10 (A
— 10 (0 10 U
o « o . •-
0 . « , .
O. 44 44 44 O
0 mo <-
E E C co
to ^ O OO X « (A
O L- L. t. — OO
— o O O O — —
44 — — — &. 44 44
i 5 5 6 ^ i |
n (A w to — ce n
X  0 < . .
ooo •- L- eo c coco o o •. o o
— — — (Q CO C — CC — — tfl — —
444444 O O — (0 •— •— 4444— 44 44
SCO CO fc- »- 1- — t, t. fl CO O CB CO
EEOOO OOO ESC BE
SO O — — — u— — OOO) p O
t- U £ £ £ Off*. *•£ C t-
«< U U U < 0 0 «0- < <


v a>
— C 40
eo— C tt c * C 44 c s co
I o— N eo o co tt — 1 —
(*.£*««£• 0) 9 0>O WW *4
£9tCO BOO O O — CO fl) (0
— a> co <- i- «o < b. £ o>^— 44 44
— —OOO OO -D O O
o « -o — — — - — — wo co eo
— (-— 0) £ £> 0) £t- 	 U £ ™
x*« x o — — a> o» — i xx** x x
— — — O Q£ — ON 	 0) a
CD* O X 1 1 X 1 « O  OJ <- — W
— U O UOOI 0
•o—o o— c— c
Q)U1. O£B OO
B C 1- O «! O -D « — C
C B 1 — — B X O
B — « £ — — — C X —
2 i rf » c'^c'' t ^
£ £-•£>>>* si
Date:  9/25/81
11.12-93

-------
TABLE 12-4.   ORGANIC  PRIORITY  POLLUTANTS OBSERVED IN RAW  WASTEWATERS  OF THE
                PLASTICS AND  SYNTHETIC FIBERS  INDUSTRY  PRODUCT-PROCESSES AT
                CONCENTRATIONS GREATER THAN 500 yg/L [2-63,64].
          Product

          ABS  resins



          Acrylic fibers



          Acrylic resins  (Latex)



          Acrylic resins

          Alkyd resins



          Cellulose acetate

          Epoxy resins



          Petroleum hydrocarbon resins

          Phenolic resins


          Polycarbonates
Monomer(s)

Acrylonitrile
Styrene
Polybutadiene

Acrylonitrile
Comonomer (variable):
Vinyl chloride

Acrylonitrile
Acrylate Ester
Methylmethacrylate

Me thyIme thacryla te

Glycerin
Isophthalic acid
Phthalic anhydride

Diketene (acetylating agent)

Bisphenol A
Epichlorohydrin
Dicyclopentadiene

Phenol
Formaldehyde

Bisphenol A
Phosgene
     Associated
Priority Pollutants

 Acrylonitrile
 Aromatics
 Acrylonitrile

 Chlorinated C2's

 Acrylonitrile
 Acrolein


 Cyanide

 Acrolein
 Aromatics
 Polyaromatics

 Isophorone

 Phenol
 Chlorinated C3's
 Aromatics

 Aromatics

 Phenol
 Aromatics

 (Not investigated)
 Predicted: Phenol
 Chloroaromatics
 Halomethanes
Polyester
HD Polyethylene resin
Polypropylene resin
Polystyrene
Polyvinyl chloride resin
SAN resin
Styrene - Butadiene resin
(Latex)
Unsaturated polyester
resin
Terephthalic acid/
Dime thylte rephalate
Ethylene glycol
Ethylene
Propylene
Stryrene
Vinyl chloride
Styrene
Acrylonitrile
Styrene (50%)
Polybutadiene
Maleic anhydride
Phthalic anhydride
Propylene glycol
(Styrene-added later)
Phenol
Aromatics
Aromatics
Aromatics
Aromatics
Chlorinated C2's
Aromatics
Acrylonitrile
Aromatics
Phenol
Aromatics
                                    Data sets 3,4.
 Date:   9/25/81
 11.12-94

-------
               UJ
               X
               (£.
               O
               CO
               O

               i
               UICO
               Old

               oce
               OH
                 co
               O3
               ZQ


               ce
2                 CO
                 Q£
               LdUJ
                             O

                          — Q)
                        — O£ —
                        o c ao
                        « a> o c
                      — »£«-»
                      o «- ao£
                      c o o— a
                      a> t  i-£ o
                      f E o u i-
                      a i --- o
                      o os. «--
                      4- 1- OH£
                      O O — I  O
                      -- QVO CD
                      ££ I  --P
                      oo.3-.3- c
                      I  I  . «CO
                      CM .a- CM CM a.
                                         * * *
                                   X
                                   O

                                   •o
                                   i
                                   a
                                   i
                                   o
                                   N
                                   C
                                   CO
                                   ,0

                                   •O
                                   O

                                   O
                                                  O
                                                  TO
 I
00
CM
*~  UJ
u
         i.
         » i.
         £ (O
         •PC
         0) «

           *
            a> c
            £ «
            ar:
            — a
            a> c
            c. ce
            ac
            o a
            i- o
            o s
         um
         i i
               ZU_
               O —
               LJI-
               COLJ
               COZ
               <>
                 (0
               co
               LJO
               COZ
oo

Hl-
zco


30.

-Id

25
              HO
              22
     c
     CO


     c

     2
     o


     4-
     O
-«   N
CO   C
C   CO
CO   .O

>>   CM
a   —
o    -
N   —

a   ~
£t V
i c co
^ CO C
     CO
                                           a>

                                           o>
                                           u
                                           a
                                           £.
                                       CO
                                       C
                                       0)   a>
                                                          N
                                                          C
                                                          I
                                                         \o
                                                                a>
                                                                o
                                                                t
                                                          CM
                                                           *      *
                                                          —     CM
              m
               i
              CM
              UJ
              CO
              <
         CO
         o

     *   2
   CO CO   £
CO C—   4J
c co >>» c
0>££ C (D
— 4J 4-> CO —•
CD££ U CD
£ a a TO —
•P «J  t- CD
c o «-
CO 3 O
1	3
_   to

»   S

CO   £

>>   c
*-   «0
fl)   -^
a.   £
                                               ao«i—
  •o
  u
  I
CO fo CO
c  «c
CO CM 0}
                                               TO C JC
         _ ^CO *> — £
       we o c c—-u
       — H) N U) TO O C 0>

       N >>0) O O 0) C fl)
       C (-A 3 3-D 0) >-
      i CO £	C £ >>
      1COOQU-U- — Q.Q-
                                                                           CO

                                                                           CO
                                                                           N

                                                                    fl? Q? fl? fl) Q?
                                                                    C C C A C
                                                                    CO CO CO O CO
                                                                    N N N <- N
                                                                  CO C C C O C
                                                                  C CO CO CO — CO
                                                                  a> JO.Q .a£.a
                                                                  N o o o o o
                                                                  c «.»-1— «-
                                                                  co o o o <- o
                                                                  A	1—
                                                                    e£C£ I  £
                                                                    o o oa- o

                                                                  — aoocvTx
                                                                  £ I I  I  -CO
                                                                  u o as — x
                                                                                                o
                                              £
                                              0)
                                              4J
                                                                                               o
                                                   CO
                                                                                                    ra
                                                     a
                                                     0)

                                                     I
                                                     o

                                                     u
                                                     I
                                                     CM
Date:     9/25/81
                                    11.12-95

-------
u-O
  Ul
oso
UICO
OUI

OK
Ol-
  co
0=>
zo
— z

> 	
PN XX
Ul C P +» —
1 CD 3 O— >>
CM A A O X£
~- 1 1 £ *»
>>C C P CD
co p 1 I (D E
•_ 23 ••• *~ •• ••"•
.aeoaaOO







CD CD
C C
CD CD
3 3

00
CD W P
10 COO
U CD I- !-
N P P
*» C 	
CO CD C C
£ £ 	
O OOO
<- 1- 1 1
CO P ^ VO
O — - «
<- ZCMCM
P
._
Z 3i* ¥ 4>
CD
C CD

•o —

N co
C <-
0)T3
•0 >>
0£
1 	
0 >>
— c
CD£ CO
C U£
co 	 a
CD -OO —
C — 1 O
— N- 1 to
•o c COCM —

N CO ro — * C
c co
CD £
CQ a.




—
o
c
CO
£
a

X
£
P
CO
E
00
C 1
£ «



A £
                                                                      O
                                                                      to
                                                                    o2

                                                                    g?
                                                                	£ O
                                                                o o a i
                                                                c c o o
                                                                CD CD *- l-
                                                                ££ *J P
                                                                a a	
                                                                22.E.E
                                                                p POO
                                                                	i
                                                                           II
a-ee
UIUI
CC CO

ZU-
LU I-
COUI
3X

coz

^
CO
UJO
(OZ
co<
oo
                                       c
                                       CO
                                              co
                                              •o
                                              X
                                              I
                                                   CD
                                                   c
                                                   CO
                                                  •o
X
c o

EC
III
«• !• C
i_T3 «_
  i C0£
  CO   >>   3   3    CO
1,-V   «	1	    CD
CD •-   3 CO C CO —    TO

a >
                                               a.
                                           	o
                                                                         0.0.
h-LJQ
QQQ
000
 I  I I
CD   M
C   CD
CO   C

a  E
co   co
X   to
O   O
t-   t.
    P
  c a
P CD I
C0£ C
E a i

•o-ort
ooo   3
co co to   o

SE8   g
p p p   CO

zzz   —
III   CD
ZZZ   O
        co
CD
Z CD
P C
C— O
— c t.
0) O O
— — £
o >>a
t- (- 0
O O to
«-
* * *
^
CM
—
•o
c
co
to
i
CM
CO
zco
5s!
-10
oz
>V)
1-0

ccz
o<
— o
orce
o-o
in
 i
ui

CO













CO
w
^
O
(0
CO
£
OJ
£
•o
CD
4J
CO
c
CD

CO
X

^^
CD
CO

— - +»
CO CD
C E

•P 0
i ~ 2
SCO O
*~C CO
O CD CO *-
— C£ *>
£ CO P CD
O£ CO 0) P
~ *> g C CD*-"
•O CD O CO C
^^ E *- CO CO £ CO CD
§O C C PfO
— CO CO CD *> —
•D O£££ E CD «.
.-«.0+»*»OEO
Q} L> ^^ *— ffl Q} W O ^
0) T3 O — I- I E O t. £
•O- 	 4- P O O 3 O O tO
— i-£p«^t-(_— a co -
E O O~- OQCt.— i. CM
0- E 	 «.*» 0
<-£ CD E <-££- — O «- O CD
	 CK o-D E 0- C *»
•C jC f. EOS^JCOA C
*»*?*» 0-0.f30.-t. •-
yyyMSffiSSi.-^ ft
£

.^
0 ~
~ -0 E
(D —V.
•o «- o
— O *-
«- - 0
0 £ «-
— O O
0 CO £
~~ C 0
OJ-D CO
— -o -o —
CO — CD — X
•D «- C — £
— O CO CD X P
1 	 c C CD CD
O £ X CD — E C
— 0£ — > ~ CO
£ p X— £
O— CD £ CD CD P
X— P CD C C O
— C tt) C TO CO COO
X— CDCDOCO££ C «-
£ > C C ( 	 PPCDCOO
CD ~£ £ — £ O O CD X£ CO
«^0)PP£P'-t. — £ O C
C CD CO O CO O O X-P co co CO
CDCDOO— O 	 £ tt) <-£ -
coXOOIOOOCO^-CDCD O
££ 	 CO 	 O O t- t.
PP££C£'-'-' 	 IO T3
CO CO O O CO Oh-l- O£CM— CO
8O — — «.— 1 | — O »£ P
<-OO PO CM — £ COCM O co
O O 1 1 1 1 •> «O <- -co C
	 CM — CM 	 4J— X —


















CD
C
CD CD
<0 X
0.0.
28
a. a.
22 -
O 0 O
££ -0
O O CD
00 a
1 1 C
CMco —
** *
-
* * O

















CO
CD
•o
co
p
3
£• in
0 0
o n
— co
£ P
O CO
CO C
X —
»IT.
"•
z
* o













CD
CO

•o
CO
p
c
CD
a
o to
— c.
X CD
O £
g+»
Ul
o
— -^
£ >
o -x
co co
X 0
«t_
™
SM
u
£
O










(. (0
CD C
£ CO
PI- £
I- CD CO P
«- CB-~£ CD
CD£— P E

•P 09 O. -^
~~2 x x4
- xac o
X£ 0- £
£ p V) > P
|§OX 0
20 o *> o
	 CD -
0££ 0 £
— O O f- O
£ 1 1 O 1
OCMCM— CM
*-^^JZ ~-
CO CO CO O C0
'a !o 'ft fvi "o

* * *
c
o c
p
«3 T3
O CD
— to
<)- 3
,«.
«2
> co
c to
.-CD
•^ !—
C O
3 01
0 CD
p. ij
co
to o
P
C P
CO C
•P CO
3 P
— 3
O —
ao

'— 4*
O <~
.- o
t± i.
 ^L
— CM

   Date:    9/25/81
                                     11.12-96

-------











a
z
<
CO
— 1
^
o
— 1 — 1
2£ ^3
LJ VO
X 1
OCM
O
— CO
ZUJ
^ ....
oce
{£. \-
O CO
3)
LJ O
X Z
1 	

ce co
occ
LJ- LJ
03
>- —
I-L.
-ICO
— O
oa —
LJ
OX
SII-
LJ Z
0^ ^
CO
[— V^
zco
^ o
1 	
3 h-
-ICO
1 ^
O-l
a. a.


.
VO
1
CM
—

LJ
—1
CO
^
1-









A
CO
>
O
a
o:

Q
0
CD

W
JZ
4-1
C
0
E
p
CO
0
c_
K
4-
O

0
Q
>
1-'

^
JD


CO

O
E
0
cr
0
o
CD
p
—
^

CO
p
c
CO
Q.

Cl-
o

p
c
0
0
£_
cu
a.

0

*—
J->
03
—
E
3
o
A
CO
J" CM 0 O >
ONl O
ON m o o o E
— — 0
a:

CO
CO
1-

m CM o o fe«
ON — 4t O O P
\o m CM vo c
0
E

CO
0
i.
co — O 0 H
01 ....
ON CM co O O 
01 • • • • 0
001 VO co O O
ON ON OO O —
— CO

O
E
0
a:
O cr> o O
0 • • • • CO
r- o oo o o co
O ON o O h-
£
p
•—
^

CO
p
c
CO
(X

Q_
0

p
c
0
o
s_
0
o_

0

._
4J
CO

E
3
— — — o
- r- — o o
ON vo in o o

O -3" O VO
ml ....
ON o in in oo
CM — CM CM






i^- m o vo
01 ....
ON VO O O CO
CM CM in CM






CO VO O ON
01
col co in o CM
co CM in d-






co vo O —
01
VO| co cr) o f-
t-- ^r in m






co r^ o —
01
ml co co in r~-
r- .3- r- in





10
p
c
CO
—
Q.

.
O
z
00
p
c
CO

vo ON in in o-
CM in
.
o
z





in O\ -^ 1^
— CO




4-> 4->
3 3
OP OP
.C" JZ ~ 3 JZ~ JZ ~ 3
PcoP coo PcoP coO
._ ,_ .— (— ^^ r- ,— ^^ ._ c~ . 	 . r-
^P-XPPPPP ^P^PPPPP
C C — C — C C C — C — C
0)0 00) IS QJ ^S fl? d) QJ 0 OS ^ 03 ^C fl)
0)E D)E E E OiE DiE E E
"DPT3P CP CP T3PT3P CP CP
3C03COOCOOCO 3C03CQOCOOCO
— 0— 0 Q0 O0 — 0— 0 O0 O0
CO t- CO ^- Dl ^ Cn ^™ C/5 ^ CO ^ 01 ^ Ol ^
1— 1— col— co h- 1— 1— col— co 1—
p
c
0
E
p
CO
0
1—
•o n ~i _i P
0 >> 0 >> >> £> c
COCOCOC00C00CO E
> ._ > — 4J — jj ._ 4J
— P — P CO P CO P CO
p!_pS.i-S-S-(- 0
O0OCU0000 !-
^ T3 i i
0 > 0 >, >> X
COCO COCO COCO CUCO
>— >— p— p —
— P — P CO P CO P
pf— PL. £_£. £_£_
O0 O0 CD 0) CD CD






.
c
o

^j
CO
!:
ij
._
Ct-

•^
E C
0 CO
p
to to
to C
o
p a
c
0 Dl
E C
P —
CO JZ
CU CO

p —
0
— Q.
co
O JZ

D1O
O.Q

O t-
— O
J3
«\
in 0 c
JZ O

0 p
tO CTJ CO
C 5-
CO— P
p > —
CO O —
Q — q_

« O «
J- ti_ in
CM T3
• P C
CO C O
• 0 a.
1^ E
• P 01
> CO C
0 —

• • P CO
to —
•a >>—
O <- O
JZ CO Q.

0 P to
E i- 0
0 "O
O P 3
P 0 O
>>JZ C
— 1 	
CD """^
C CO
Date:  8/31/82 R  Change 1  11.12-97

-------




_1
o
E
LJ
X
o

0
ZVO

0
z z
o —
h- CO
^ cc
o: LJ
H CO
z —
LJ U.
O

O-r
Or-
LU
^— T
Zr-
^ Z
^~ >-
Z5CO

-ICO
oo
Q. —
\—
1— CO
z ^
LJ -J
rs Q-
	 1
U.Q
Lt-Z
LJ <

1^
CN1
—

LJ
_ J
ffl
^
r-

























O co O O
Ol O O O O Ol
o o o o o oooooo
col — — — — oolOONOO
O CO O' O
o o o o ....
O Ol O 00 0 O
OOC-OO O O ON O O
d-oooo j-l— — —

0 VO 0
o in o ON • « • i —
	 1
\
a
E
V
p
c
03
E
CO
0)
I-

d-
0

0)
a
1-'

>
n'

c
o

p
CO
L.
p
c
01
0
c
o
o
4-1
c
01
z
—
d-
d-
LJ

a
o
CO

tfl
c
0

p
c
03
u
c
0
o
o
o
CD

e-
4J
•—
^

Ul
4J
c
CO
—
Q-

Ct.
0


01
>
'—
4J
CO

™
e
o
Ql .... 	 j
O O CM O O ^
CMl O ON ON ON o
- E
V
.p
c
03
CM — 0 00 E
01 .... p
o — m o — co
—I ON 00 ON 00 01
H

d-
0

d- vo o P- 01
Ol • • • • Q
ml ON — o CNJ >
r*~ r*~ r^- r^ h~

>
o

c
0
in in o in —
O| • • • • -P
•^1 co r^ O ^" co
r*- vo vo in L.
4J
c
01
o
c
o
oo CM o in o
col oo in o cf 4J
in m vo in c
0!
^
—
d_
d-
LJ
— CO O in
0 • • • -CO
CM r~ o o m co
J- J- VO d" r—

U)
c
0
p
CO
4->
C
01
u
c
0
o
o
o
o

c.

•~
^

Ul
p
c
CO
—
a_

d-
o
s«

0)
>
>—
p
CD

—
g
u
O O VO O
o o ON o in
CM — — 00




o r~ o
... j-
O| O O O
0\ O f~- O —
-1 - - r-





o oo in —
ol
ml in it r~ r~
p- it oo in






vo CM m —
o
a- m vo r- r-
VO ro 00 in






CO ON O ON
o
co vo in O CM
in CM in it






— oo O ON
01
CM| oo co o CM
CM — m it




U)
p
c
CO

a.

c
z
CO
p
c
(0
it r~ o — —
co vo — — CL
-^
eo P -~ 4J o
~- c co C z




CM 00 00 it
co in —

P
c
0) — CD " 0)
P E 4J E E
C P C P p p
01 (0 0) (0 £ — CO ' — 3
E 0) E 0) P co 0) 03 O
•M S— +^ ^ •"• »— •• ^- _C" nwv f~
(0 r- (0 1— 54J H4J4JP4J
0) 0) C — C •- C
a>s-oi>> <- >> oia>o)>>20)3:oi
UiH" CTi ^- h™ ^- Ui E O^ ^ S E
•a -oeoc coo -DP-acoCPC4-i
3 >> 3 — O >> O — 3(0 3— OCO OCO
— i- — p O5- O4-> — 0) — 4J OO) O05
COcoCOS- C71CO Oli- COt-COL. OIL. O1L.
— 01 CO — CO 0) I- OlCOr-COr-
JtJ
c
0)
E
4J
CO
0)
r-
^3 4^ "O H~ — 1 ^ K" -i"
01 L. ai t- c
COr- (03 01- 0)3 £
> > O P P 0 P
— £ — £ COJZ COJZ CC

O — O — 03 — 01 — S-
•o -a I- —i -J
01 >, 0) >> >,
PL. 4J4J *O^- -O^-
(0(0 (03 0) CO 01(0
> — > O P — -P —
._ 4J ._ .c co 4J 03 4J
PL. 4-> p L.L. L.L.
O 0) U— 0301 0)03





















V)
01
•o
3
O •
C C
— o
.—
E 4J
03 CO
P «-

— .—
0 —
— 0

in 01 £
£ P
4-> 4-1 O
0) -Q
« Ol
C L.
co — O
4-1 >
CO O «
Q— C
— O
it d- 4J
CM CO
• P L.
CO C 4J
. 03 —
r~ E —
. p V
> CO
0) -,
L. Ul
.. PT3
CO C
o L. a
£ CO
4J— Ol
01 P C
e L.—
0)£
O P <»
4J 0 —
>>£ 0
— i- a
CO '—
c co
Date:  8/31/82 R  Change 1  11.12-98

-------
o
1
o
UJ
x

cc
o
u.
CO
UJ

UJ

UJ\O
0 1
OOJ

o.
CO
HUJ
UJQ:

H W
0
UJQ
1 —
-JCO

OUJ
— CO
0-
O u.
00
COH
UJ

fflH
< w
00
•Si-z.
t£
HOT"
2
CO C



c
<•- c
c c
CD ffi
0) *»
^ es


M
w- c
o o
—
0 0
jO O
§**
V
zo

c
"E°
T) q
CD >
COG

l/i

C C
II
®

«
b. C
O O
CD C
•£ c
E *J
iS








C
CO
POIIUI









0.0^-00000 «-V3000(MOcoOVO'Oa.CNJCOr-00-ONOOOOOr-000-vOOOO
CMC\J — t—lAMlAliMTtO— OMT\a- — SotT\(»> O CO V3^ C\JO — OlA^lfMAOr^pSSco

— CM





O .M>O .CO -O 	 — (M . -JTlAO • — CM CM f- — h- CO •— OOrOO • • ' 'O • — CM « O\
— — OsCMtfX— CM — lAOChlOr*C\lh-W)OSO— '*O COlAf* «*5 • •r-r-NOsO -ITS \O — —
O »O O 0












OOOCOO^COOOOiAirtOOOOOOOOOOOOOwOOOOOOCO — C\ia-\OCCOOC
OOOOOOCMO— OiT\O -OOO • CO O O -VD>OOJOOO»OOOO -O • -^ • — r- -OOOO
— — — co cor— ir\ CM co CM ift*-CM — CMIT\ « — co— cu
r-r- - ift


— oooo
OOOOOOt>OOOOOiT\— OO — OOO— 0— OOOOOOOOO — O — tf\tfMf\— «OOOO>O
%O CM — ^ CM CM — CMtM Mi^J-fO — — — O




— CM*OM— CM*O — — — CM mcu— CM CM — — — — m— 9 — — — cu 	



i_ Q:
0 C
0) JZ CD
CU C *» jZ
C 03 LU *J
« - -Id)
a) QJ 4-> — jz o — c
V C C fl) I- O CP -•-> C >'— ® « 0)
9 CD CDOOJC « » C CD 0 CO O.>> C£C«
— «£ Q) JZ i- £)]) CCtOO— C — — Q)CB O X 0) « *» W C
L- CDC+A C JJ O -U j; — 0)4)— t-O«)>>OCC t. O ^ .C O.C 0
O C Q O Oj (0 CD — Ul O. O NN>>CCD.Q.CO)4J &.£ — ** E -u —
— 0)£OC£O£ OW C C i — 03 O O 0) D 3 «*Jl-Q) 0) O O "D
co ocjcojoj;a)Ofl> >>o<- ojajocuoaQ.Q.Q.oo oo 	 ooo** — —
0) — coCOJO— *JO— l-flji — O COOO— OOO— *J4JQ)0)t.'-£*- E Z> E 3 OOO
c — i-Q)jai-jE:oi-£:**c*Jjzi a>^uuo^u^>>ooccoouo o — o £ a; c c c
£ 4J OCt.— — 1. — — ^- £ O — It. O.— — — W — — — ** J>> J>> N £ JZ JZ O JZ E .O O ^ t- C VN££
*»C — t— 0) O £ t. O £ t. | *»L.t-OOO£jC£C£jZ£0) — ~ C*>OOCCJ'-O'-— OO— CQ.Q.
£ — CO) .Q— OH-— O *— CM Q) O 1— tfc-l-OOOWCJOOECCtDCI 1 CD O'-O'C— ^-TOOJOO
Q.OJOCCOJ:— i£— i *o— i ooo — 	 &- — — — — — — atocyw — — wo— o^o^^'-'-
CD 	 CD O 1- OO— QOOJCMl-.C\O— t- — OOO*JOQOOOO— l- — — ' >» > O — 4Z t. O£*^O*J4J


-------
      o
      o
o— -
a
LdLd
XZ3
C
r o
tz **



ceP !
oz
"8

u~ i-
to— L
UJ-O
ON
£*"*
(O
I-U
LJ CC
ZK
t-10
0
Ld Q
ccz
r™ """
-110
OLd
— CO
§:
oo
cot-
Ld
EOH
-_!
— O
cc —
c >
en a




OOCMOOOOOiAOcO<< <<<
jyO - — CM .J — J^C-ZZZ
• 4T — — so — rO


(A
<•- c
O 0
o o
£ O
E ^



— IAJ — — z z z


jz o

c
•o o
t. •-
l«
S >


OOOOOOOOOOOO^CNj
o\ .000 -o • o co o • oj ^
COOWOOtAf'-O — ifS^iA
p*o"oT ^ — * — "
^
j
D C
= <<- O
_ o~
w c o
: a e
O — OOOI^OOOOOOr^-P-
— O fM
:
u c
0 O
1.3
o o
A a
E *>
3 C
ZO


r-pr»eo>or-c>jNOONO> — fowo
— P^^ _








or
— Ld
cex
G-O

00
1
M
Ld
ca
*r


c
R
:
~
I
OJ
M

i i

jz ^ a o c
O — *J *J L. flj JZ
tn — ronffl 0)C £*J
O <- O X^R(9<«->(OCUC«
£ 0£ £*" ££ re ™ — £ o i
O O O XX *J I! •*-— — l*.
i. I. U. JZ N — — JC Q- <>-
** *j O *J C X X&. O — O —
..._— LJCJ*J-i-> XNflJNJC
CC£ IJ330 	 C — C —
	 O — CM CO O X-C 0) 0
i i *j c t >»c c *j a t N i c,
JT \O C 8J Wi *J 1 t Q E CM C J C






^rc O — CMJ» OiACOCU -
_ _ ^ _ fy ^
— — eu



CO^^rna\^roa>^^mCJvOn^m^CM^OCMOr^iA<7«9>d'fOnCy
cy, D g e E o o ' s
cruccc jz o o o OOOCO-ED v X 3 3 3 a.— v —
ajfl-roojoj-^oooc— c __— g.-_3—L.'o u — —u— oaic^.
xcjz i ocojot-3ox(- = xooo— vXEoac-oo-^oj>— o w c -o —
«-cj*JCg = oj-Di-*j — --c^cDcoooo^wt-^t-awwi-o 	 coc «c —
Date:  9/25/81
11.12-100

-------







X
o
z
UJ
O1—


~J ^
W OJ
Q"

h- ce
< i-


— 13
I-Q
OZ
^ ~~

U <
OO
xs
OUJ
X
UJ O

=> o
Q- —
X
CD O
a:
-10
>UJ
OX
Sh-
LJ
cr cc
o
h-Ll.
Z
< (O
1- W
13 LJ
-JO
-IO
oce
0. 0.


o\

OJ


UJ
m

i—




P
c
0]
u
t_
a)
a.



I

C
o
CD
P
C







1_
CD

3
Z






















C
O

4->
O
3

a



u
c

2
—
w




c
a;

—
c






_
•v.
E
U

O
~




4J
C
CO
Q.

*-













C
re


O
a.






to o 	 a>zm z r-^oo — o oo — z.3- z OJVD o\\o r-\oz\o zzz-a-zco
A A






OQ — i^t>^OOQONOCMro\Of^lT\Of^OOMQC>OQ(\JOOOOinciJOJOQ\OfO — OfOO— O — VDrOh'CO

ir\vooof-« POO\ oo \oi*^ r*-cy— ooxor-irv oo CNJ








^\ooo M oo ~- -~ co r*-^ ooco^ovooN c\i — co — — i^ cj w










ooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooo
(v^ _ _ (\| — CMmro— •(O{\|rorOMC\|riOC\JrO(\|Mr*3C\j — ro— • — — OJCNJfO — fyCM — ro — — CM — 	 MfO — <\J — M — —









CM W OJ CM CM M OJ CM m







Q P O
c « c
(0 — Q)
0) 4J — Q) C -C O
Q) c o o o c aica •PO t.
T3 OJ O C C O 0) CJZ JZ P 0) Q.
'^cSco jz — o i >, o -o j= CD — — — Q) S a> °
ocean:— a>>caac — 4->s o— TOW — c o
— jc o jz jz o jzaioocj '-coo c >>jz « >» o —
jZ4J(-4JOt--PjZt-t-jZ OS1- tt)XP— JZ— jC
OCUOVTOOCJQ.O.O.Q. — OO 	 JZCUjZcaO) P >> U
« O — O *- OJ — OOOO— CU03JZE3 CDOOO. JZ Q.JZ C O 00 JZ —
0) S-(-jZt-PCJZ t-t-t-i-^cCOO— CCCO — 4->OJ C O 4J Q
QJ Q) 	 t-JZ— f 	 4JNJZC1JJOOCNJZJZO 4J>,a>»C t- O O fO

4j .— OJ Ol— OOJCUt— t^OOOCJECUCOJ'-O— 03OOJZ 13— *J CJ C -P JZCOO3 OJ X 3 3 —
a. a> c c — i — »oi o 	 Jon— o— TOJO'-'-O — cMjaxacococcDOc 	 I--D t 	 ' — t


<

Ci
to

2
ro
a
^
j*
CM
m

'

—
o)-D <*-
T) a) cn
O 4J C
JZ O -
-J O C
U P (0
•0 E
U
•P 0 0
>> c c
(0 * *
z o z
< z z
Date:  8/31/82 R  Change 1  11.12-101

-------
(O
LJ
O
0
ce
0.

Lu
O
o
_J
(0
•—I
o r**1
LJ\O
t- 1
< CM

»
1— >-
oce
CO
CQO
ol


•
C
o
4J
CO
P
c
CO
u
c
0
o

CO
o
CO
^
CO
<
c
CO
3
—
(4-
LU


lAOvOvQOOONCMQjTO
• Zoo •— Z • -Z— •
cvi oo— IAOO tn






4J
C
CO
3
-_
C|-
c



JfQOOOQOOQOO
• zo — ozo\ozo\r-
CO ON CM 1A IA CM 	
•! •.
^* —


0<
so
LJ —
0:2:
   UJ
ZO

go
oo
o-cc
   O

1- Ld
CCO
O.U.
o



CM


LJ
_1


<
               c
            •P O

            CO'-P
            O U
            I- 3
            co-o
            a. co
               IT
       SO   C^OOco   OOO   OO P-S oo 00 ON   ONifOO   CJ\O O r~ 00 S CO OO ONCO O   CO       OCO   CO — VO ON
       cvi   o\o\o\   o\o\   o\o\zo\iA     ONONCO   ON   vo ON ON z r- in ON r- \o   oo          vo   ONONOOOO
                                                                          A
                                                ir\O — QVOOOVOO	J"O\Or~OO — COOQOOQQOOO —
                                                 • —ONZ  -mvoz  •  •.3-000  -oo  -OOCM ZJTZZ z  •  .z  -ovooo
                                                CM Is-      OO        VO—      — COOOOOCO   oo   —        r~ 00   oo r-
                                                                                                           • CM ZOXOOOON
                                                                                                                 — o-=f CM
                                                                           — O
CO —
O>oo
C0~
S- E
CO
r—
          	POOD — l»-r—l^f	VO — r~VOOO — OOOOVOOOOOOCMCMOVOOO — CM — •



     — CM CM 00 OO J-00 tA lA C\J IA 00 oo 00 CM oo CO 00 d" CO oo — J" 1A     CM   J" OO CM 00
                                                                                      JOOOOOCOOO

                                                                                   • — OOO — .3-OOO
   U)
5- 4J
CO C
£1 CD


30-
                    CM — OOlTMn— coco— CV1CMCMCM — oo —
                                                                 — OOOOOOCMCMCM -- \O — CM — lA --- CM CM — CO — oo CO
                    a> —
                    c s-
                    CO 4->
                 CO
        CO        C
        ~o        a
               0) J=
        t-    CO C +J
        O    CCOCB
        —    COJZO
        £    N-PS-
        O CO C CO O
        CO C CO O—
  0


  CO
  J=
CO J->
C 
                                                          C
                                                          co
                                            CO  O   ^
                                                   •P O
                                                   CO C
                             CO
                           CO^
                           COCO
                             O
                             !
                           -P
                           COO
                           O—
                           !- JZ
                           OO
                                            J->  O
                                            CU —
                                            i-O
                                            O  CO
        *J N O O O
        CO C !	i- JZ —
        •PCOO-CS-OOS- I
 WCCO   JD — O I	I-CM
 aoccojz—  ijrai   .
 co—  COOS-UQ— O  I CMCM
                           X
                           CO  -
       — JZ —
       >>a.o
       £ O (0
       4-! i- 0)
       CO O <-
     CO O — O
     c
     co *>
cococco
cccoo
coco— s-
NN>.O
CCJZ—
          O J3 J3 CO O
          c o o o —
          CO S- !- t-
OOEEHOOO
	I  S_ O.	M
                           co
                           c
                        coco
                      — c -- coco
                      oco>>occ
                      CQ.aC<15,
O JZ —
(/) JJ !- CO
— fl) OT3
o o	
                                                      ooo — •p-Pcoco'-'-.n'-
                                                      !_ S- i_ >,o  O C C O O  O O
   0
   c
   CO
CO.C
C 4->
CO CO
j= e
P o
0 s_
o o
E 3
O —
                                                                                                 CO
                                                                                                 C O
                                                                                                 CO C
                                                                                                .C CO
                                              e TO
                                              o w
                                              E 3
                                              O jQ
                                                                                                                    CO O O
                                                                                                                    C C C
                                                      t-o
                                                      I-'-l
                           ! -- XCM—
                    OOCOCO.CCO  •.•.
                    «moox --
     COOI-'-li-i-OOOCO
     O  I  I  OOO ------
     1-CM\0—  ! -- OQQ
     O — •.£  O i:  I  I   I
     —  W^-O — OCMoo—
     £•- -IJZI  - -  .  •>
     OCOCMJ-OCM ----
                      	4JJJ4J NJZJZJZ COJZ EJ2 OJ2  ^
                               	C-POOCUi-OS	O
                      OOOECCOCIICO    OS-O-D —
                                    J3COCMCM	>O
                                                                         CM --
                                                                            1-C.CE.COOco
                                                                           U)4J*JOO --- X
                                                                    4J ----- COCO! --- S- .C CO
                                                   C N.   ._
                                                   co c a. a.
                                                   — CO O O
                                                   CO -Q ^- S-
                                                   JZ O -P 4-1
                                                   .p !	

                                                   Q.4->Z Z
                                                   CO—  I  I
     Date:     8/31/82  R    Change   1     11.12-102

-------









CO
CO— •
UJO
OLU
O 3
0£Z
a.—
i-
LJZ
OO
oo
3 ^«
J
W •— '
h-
OVO
LJ 1
t-CM
>*""
t-at
Oh-
3
coz
jj
oo
tuE
CCLJ
X
(-O
-« • — J- • . • .COVO— -Z 	 ZZ 	 -OXfO — IA VO — Z CM O
CM 00 fOCMCMCM -CM J3- — CO CM
O —









OQfOOiAd-OOO\|v.iAOr-O\Oh-QOOd-OO — I^OOiAO — OOOd-O
CMZd-OVO -—00 — co 'CMf*- -O -Z 	 Z 	 -O\.d-.3-O\ O — Z CM O\
— CM 00 — COM ONCOOO d-d-— CM lA
h- lA






oooooooooooooooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOvOvOOOOOOOOOOOOfOOO

OOh-fO — lACM — lA 	 00 — OOfOOd-h- — — d-d-r-OOOCMfOd-CMOl— OfOOOlA
d-OOfOCM 	 '— CMd-d-tAd1 — fO — CV109CMCM CM 	 CM fO — fO CM —CM















0)
CO
CO
C 0)
— P P 0)
O £ CO P 0)
ui a— co a) c
_g>— — CO— -P 0) CO
O <- O —C. CO CO — C
C O C >>P£— >> 49
0910) XfPCO £—09
jEZ O ^» OJ ^^ ^™ ^~ fl) ^ ^i^3 CO ^f
aift£ CLPC 09 09 £— d-lA
8OO 	 £09 C O P t- »— a. — « 0) «- O)o 	
P4JO P N >> >>C 1- o O —
	 09CP- £0909£ — «-£ «->-X E S 6
CC£ I09O>>POCP £09OO OOCUE3 09 >> 3 3
	 O — CMaO£aco09C09OC— C 	 C-3— S--0 i 	 ' 	
O C) (Q O >C09C£OC49>-3O>,(-XOO— 09EOa.C-OO^09>— O
d-VOCCDUP 1 £0>4J309<-P 	 CT3flQOOP«T3'-Q.«!(0'-O 	 COC
• . 09 £ — 3 	 O C — £ >> CO O ! 	 1 t-i-Cl-eo£O>>09fl9— 09 — £ —









































.
fty

09
u)

co
P
CO
.
M
ro
r-I
•
^

^
3
WO4-
•0 CO 01
O P C
£ 0 —
P 09 C
09 *> 09
E 09 09
•0 E
O
POO
xc c

CO • «
CQZ

-------












o

i
jj
—
u.

o •— «
zr-
<\o
i
|~

3cc
COK
W
LdQ
H<
OO
JT
^- UJ
COX
o
-
LJO
tc.cc.
0
ZUI
r-r-
3
-JOT
-JO
2-
CO
>- LJ
t-CO
— CO
CCUJ
o o
eecc
Q.O.

.
—
mf~
|
(M


UJ
_J
co
t-







jj
c
CO
o
f_
0)
a.

c
o
—
JJ
o
3
•0

ce




coco — Oxd-OXVO Ox Ox Ox ON Ox 00 Z 00 Ox S J- 00 CM O VO 00 Ox Ox — CO in O if\ Ox O Ox 00 liMft
tTN Ox co ON r*" ON ON ON ON ON ON ox 00 Z r^> OxZ^-i^co ^OxOxOxONOx— VOxoift vOOxOx
A A A A A A A


3--P

,
C
O

CO
i-
c
CD
O
C
o
o
o

CO

^




c
CO
3
f.
*^
UJ


xOi/XCXJOOOOOOOOQcoQcxj^txoOOOOxO — OfOOOOOOOCOtfXON^J'OOCXJCXjeo
irxojcM 	 OONZ -zz — zcxjxo -zoo — r — oo — fo — m • — xoexj .* — o— - — CM
	 VO lA— — CO — h» —
— —



P
c
CD
c^



O O Cxi O Ox O O O IA O O O O Ox ITX O O ~* O & OOOOOOOO PO tfX O lA O^^*OO
CXlOtoOfOOOOO — OOOD— CMZO • it CXJ CXJ — JS- iTX O 	 O»0 .3--3-O— -xOJ-
— o o ocozr^ lAOcxj— oox — — — c-of- — o — &• tocxu1
— 00 OJt — — CXJ .O — «xj > JZ C
CO CDjC CO CO Q. CO
•o c *> ceo co
•—CO COCO— CO tO CO — CO C
«- CD C — — OO -0£J= — t. CO »
OC03CDO >) S- C — JJ 4J XJC — C
4J
C
CO
4J
3
~~
O
Q.
— ffifCiafOCI) »- CD CD X -P >> CD
JCN-PeoO) JJ — JC O E E CD C a) £ —CD
CO OCCD£i- COJZa — OO £03 C -P >>T3
CO— <0»O4JO OO— CUCO£EE — — « CO CD 0) £ —
C— I-A<-CDI « 	 XCCOOO >>co — C O 4JS-
CD S- W O O O E E OT5£ CD » '-I- XT— >> CD CD <- COO
£4J CDS 	 I-|! 	 W 4J N JT CD J3 J3 *>O £C«- Q O —
P — 4JO£OOO£CCO" CONC04JCO£ — S.£ g £
£C(J> — O— <-<>-OcoECOCCO(.-0 1 C en O P £CDOOUE3 CD X3
Q.OCC£ — j=oo— « — jaeo— oo — cxivvacocttoc— — 3— u-o *- — u
CO— CDOOOO— S-OKO— t. >>— <- O <^CD MCO<-COC(OCO£— C— E(l>— 3 C CD
u) ^c t_ xc\j x o — — cvi^j:34Jo— co «>CM uo3jj co L. +> 	 •— cS'o 2 aeon *• — —
<

en
JJ
CO
O
^
^
CM
CO
•
^
•
>

^
3
wo v
•o CD at
O P C
£ O —
jj co c
CD *» CO
E CO CD
•0 E
o
JJ O O
>>c c
CD « «
coz

-------










3-
O
U.
W
W
U
g
0£
0.

z
§
o


o
UJ— i
x
oo
Q- —



ceo
o
— LJ
CCX



CM

1
CM

UJ
m
t-











4J
C
0)
o
L.
CO
a.
1

c
o

CO
i.
•p
0)
O
c
o
0

o
CO
i^
CO

<




CO
O!
i







l_
«
A
§
z























c
o

43
U
3
•a
*
•H
c
3
«
(.
Ld




4->
C
a>
3
4-
C






^^

m
•
Tc
0




0)
•P
C
co
a.

d-
o













4J
c
co
3

0







O O\ ON O Z ON £ Z! ON ON ON ON *o ON ON ON ON ON ON co in OOZONZl^CMOOO
ONON ZONZZONONONONON.3-ONONONONONNOON Z CM Z CM — CM —
A AAAA AAAAA



QOlAOOQt^OOQQCvjiAOQQQOONOroOiAOOvO — lA— lAO
ZON 	 coz mzzz • I^ZZZZM— — mr 	 «
— CM O CM — CM






C3 C^ ^? f^ ^D C3 O CNJ <^ _^ C3 ON C? CO ON u^ CM C3 P** lf\ C3 in ^* ON ^f tn (** ^ ^O ^3
OO — CO -ZCM m ONO«O rO^f OCMNO— COON — — — NO
a o.* vo !*• in o CM
z « « « «
CO— CM *
m CM









ooor^oor--ooooor~ooooooot~-oooooi>-ooi~-
OCO^rocooOrOCOr^cOOOroinOOcOOCOCOrocOOOCOcOcocoO'O
intor- r~o f^coh-NONO n co co P- NO h- f~ r-NOvoc*>r^ *o
JTlA— —CM — —tr>m O>OO — (0 	 — POCMlA— COON
— w
















a>
P
CO CO
c —
CO CO
C O £ £
TO C P a  v
CO CO a l- C C — >>eo — C
£OO OCOO) <- X— >> CO
*>«-!. — ££ O CO CO CO £ —CO
CO COOO £O.a — ££C P >>"O
— O 	 O O — » £ — ** CO «CO £ —
— t-££ — !- >> C 0 >>£ - CO P «-
t- OOOE-OO£CO £ a>» « S- a) o
p 	 t-M— *9N<1) 4J £ S-O O —
— £<-(-OC£0)CC fl> — 4J CO £ — <-£ E 6
CCOOI-KVCOUEIDCO 1 >>£ C4>£COOUOE3 CO 3
o c — i i o s- 	 a 	 cMfacBcoc— — 3 — i- -o — — *-
— COOCMVO i-l-QO— >,O»-« CO t- co co CB£— C— E »— 0) C 0)
>> N i - - o i i i >>£ ci cococt-3uxcoEoa.c-DJi:a>>o
i-ccvj — a- — cja-a-£pa)«ea)30p 	 cM-oi-acoau 	 c
Ofl) •• •> «£ •• « «*»»£ 	 O — £ CO O « 	 l-Cfl£O>><0— CD 	










































CO

CO
to

CO
p
co
Q
,
^f
CM

ro
^
>
••
3
WOd-
T3 CO W
owe
£ 0 —
*» 0) C
g CO 0)
•0 E
U
._ 4J p
POO
>>c c
CO « «
iii
Date:  9/25/81
11.12-105

-------









z
o
i-
^
r™
U

UJ
C/5— '
QNO
Z 1

OK
OK
< cy>
o
QZ
Ld —
CC<
UIO
>UJ
COX
o
<0
o z
u u
ceo:
o
ZluJ
-JO
o.
>-UJ
0£LJ
OO
— o
tccc
Q-Q.

B
CO
"~
CM

U
J

5
**
r"~











4J
C
0)
0

(U
a.


x»
§


o
.p
CO
i.
4J
c
CO
o
o
o
CD
O
CO
CO





CO
a
co
c.




ffl
I
z






















c
o
•—
p
O
3
•o
CO
cc


P
c
CO
-
4-
LjJ

P
C
CO
(4-
c





^
fO
'E
i
"•

V)
P
c
CQ
a.
Ct.
C













P
c
cc
=
O
a.






ON ^ *— Z if\ OOCMON^'OO^SE ON Z O O 21 OS O O O O O ON if co O O O ON ON \T\ O O r**
ON ~~ NO Z ^ NO ifN ON f*- O^ Z ON Z Z ON ONC^CO ONON ON
A A







CMir\OOOf-.31CMOOOiriOO-*OOCOOOOOOOCMOCOOOlAONOOCMOO
CM tfN CMM *> COZ





OONNOfOOO — OOONOOOOOt*-OO<»1 — OOOOOOOOOOlfyOco 	 OO
ON f- —CM CO CM co— CO m
CM* VO — " — "






OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OfOOcoOCMOOOOOOOOOOOOOOOOOOOO — d-OOCMOOOCMOO
— ON CO ro ON CO 	 ONON — COCO — m — 00 — OOCOCOOOOOOO — vo^t 	 CO O\ O\ Os CO CO CO
— NOOWNOcn — — vOO — OO — lf\— O»^OOOOO — CVIro — — (OVOVOVOMOO
lA Os ^ — i^ ^t ON — ON OiTN co — ON — ON ON ON. ON ON u> — — .3*.3>.3> ONON




CM CM 	 CM 	 CMtM 	 C\|i»> 	 CM 	 CMCMCM 	






CO
CD P
C CO
o> —
— CO CO
« a> >> £ co c
CC£ 0) PPCOCO
CO CO P <1) C £co*>O
C0££ CO C CO CO 0-— COO) CO
c *> *> o co -a £ "-co — +j t. co
CO - CO XP.C— P CO
P i. t, —I- o 6 X£PcoC —CO
CD O O £a — O — CD Q- £ £ CO >>T3
O 	 O O CD £ E O £ Q.4J— • CO -C —
«-££ — t-CO OCOC 	 £co C *>»-
O O O E XJ O CD 1- C CO £ >>— Q. ^, CO CO CO O
	 Ulfl— N CD E J3 0 £ PN>> O C «- O —
£l-(-OC£CCC 	 a »C*>— NOJCOCO£ >-£ E
CDO(-l-fc-coOCDQ)O-OCOO ICDOXCCOCP CD O O E 3 CO
, o 1- P J-> O ^-— l4JCO>£ E O £ — C 1 X C CD 1 >>£ OCCD3OXt-XEOQ.CT3Jc:O
COM — — — CMCM£PO— O.Z CD W P 1 EC\J'-P3C1)4- — — C'Offl'O'-Q.CO.TJOC
CO 	 O 	 WICOOZjfO.CDeQOO — O
^ E
u
— 4J *>
•POO
xc c
CO « «

-------









CO
CO
Ul
0
o
cc.
o.

z
o
CO
OS

O
^•^
ac-
UIVO
i- i
•
oce
^ H~
CO
^ ^
ooa
z
0<
r o
Ul —
cez:
Ul
zu

I-O
3z
— i <
oo
o
I-UJ
— I
o
ceo
O.U.

•
_
i
CM
—

Ul
1
CD
t-





















4J
C
o
o

0)
a.


t
^
C7


,
C
O

P
CO
C.
P
c
CO
o
c
o
o

CO
o
CO

CO

<





CO
en
CO
c_
a)

<





CO
A
B
3
z



























c
o
•—
4J
o
3
•o
0)
t£




*>
C
CO
3
—
U-
It-
Ul





4J
c
0)
3
—
4-
C








•o
^.
fO
^^
E
.
>
-



(A
C
co
a.

4.
O












4J
C
CO
P
3
_
O
0.








•^ ^f IA srr^pofor^cvjCNjr^zcvcovoz
NOC\ICOZC\100in\OirNO\ONZONONOOZ










OOOOOOOOOcoCMCVIOlTiOJlAOO
O 1 	 f> CM i- r~ J- iTv ONl^ to
CM — J- — com r- n-










oooi^-oooooooNOOoor"
vo — O ONCOOOONOVO — NO — NO
lT( — iTlf-COCO I*- CM 	 C\J
— 	 ON











oooooooooooooooo

CJC\JC\IC\IC\ICJC\IC\ltNJC\IC\JC\IC\IC\IC\lC\J
ON ON ON ON ON ON ON ON ON ON O\ ON ON ON ON ON



















CO
T3 CO
» C CO CO CO
1- 0) C CT3 — CO
O N 0) CO — O C
— C 3 3 !- C CO
S. — CO 	 O CO —
O 0) O.QOO— 	 £ >>

(-0) coi-oouccco -P
•PNE^O'-'- 4-> 9) N.C.C -P O
i-cooo£ 	 cca a— i-
Q) A<»-<-UCCCOCOOOC COO
CCOOO 	 J3«-l 	 C —
IMAOOfl 1 l£< 	 1 CZ3U
C ^ ^ ^™ O W ^f ^D ^ ^ Z Z «3" tt) ^~ **•"
C0co££l « « • » — 1 1 «.CO<-
(DOOOCNJ — CMCMSZCMifCMflLKl—





















































PO

CO
U)

CO
P
CO
a

CM
to
h-
>
.
^
• • 3

•o 01
0 C

P C
CO CO
E CO
E
o

P O
_
CO «
cz:

-------
                11.13  PAINT AND INK FORMULATION

II.13.1  INDUSTRY DESCRIPTION [2-40,41]

The Paint and Ink Formulation Industry can be divided into two
general categories:   paint manufacturing and ink formulation.
Each of these categories is described below.  Table 13-1 sum-
marizes information pertaining to the paint and ink formulation
industry in terms of the number of subcategories and the number
and types of dischargers in the industry.

              TABLE 13-1.  INDUSTRY SUMMARY [2-1]
               Industry:   Paint and Ink
               Total Number of Subcategories:   4
               Number of Subcategories Studied:  2

               Number of Dischargers in Industry:

                    •  Direct:  4
                    •  Indirect:  1,211
                    •  Zero:  845
The limitations established for the best practicable control
technology currently available require that there shall be no
discharge of process wastewater pollutants to navigable waters
[2-42,43].  These limitations apply to point source discharges
resulting from the production of oil-base paint or oil-base ink
(where the tank washing system uses solvents).   Appropriate BPT
effluent limitations for water and/or caustic wash and solvent
wash indirect dischargers are yet to be established.

II.13.1.1  General Description of the Paint Industry [2-40]

Overall, the paint industry consists of an estimated 1,400 to
1,600 manufacturing sites operated by 1,150 to 1,300 companies.
The two major products of the paint industry (SIC 2851) are trade
sales paints, which are primarily off-the-shelf exterior and
interior paints for buildings and other structures, and indus-
trial finishes, also called chemical coatings,  which are sold to
manufacturers for factory application to diverse products such as
automobiles, aircraft, furniture, and machinery.
Date:  9/25/81             II.13-1

-------
In addition to paints,  the industry also produces varnishes and
lacquers,  which consist of film-forming binders (resins or drying
oils) dissolved in volatile solvents or dispersed in water.   All
paints and most lacquers contain pigments and extenders such as
calcium carbonate, clays,  and silicates.   Other common allied
products produced by the paint industry are plasticols, epoxy
compounds, asphaltic coatings, adhesives,  sealants,  paint re-
movers, and stains.

Paint manufacturers can also be classified by the percent of
water-base (also called latex-base) paints and the percent of
solvent-base (or solvent-thinned) paints produced.  One-third of
the paint plants produce 90 percent or more solvent-base paints,
but only 8 percent of the plants produce a like percentage of
water-base paints.  The "average" plant produces approximately 60
percent solvent-base paint and only 35 percent water-base paints.
Generally, plants making primarily solvent-base paint produce
mostly industrial coatings, while the plants dedicated to water-
base products manufacture primarily trade sales products, with a
high proportion of white or tint-base paints.

There is little difference in the production processes used to
produce either solvent-base or water-base paints.  The major
production difference is the carrying agent; solvent-base paints
are dispersed in an oil mixture, while water-base paints are dis-
persed in water with a biodegradable surfactant as the dispersing
agent.  The cleanup procedure also differs for each production
process.  Because the water-base paints contain surfactants,
formulating tanks can be easily cleaned with water.  Tanks used
to make solvent-base paint are generally cleaned with an organic
solvent, but cleaning with a strong caustic solution is also
common practice.

The principal raw materials used in paint manufacture, in terms
of pounds consumed, are oils, resins, pigments, and solvents.
Drying oils, such as linseed oil, are used as the film-forming
binder in some solvent-base paints.  Semidrying oils are used in
the manufacture of water-base (latex) paints.

The paint industry is a large consumer of solvents, which are
used as the volatile vehicles in coatings and certain  specialty
products.  Mineral spirits, toluene, xylene, naphthalene, ketones,
esters, alcohols, and glycols are the major solvents used.   In
addition, the industry consumes a wide variety of other additives
and chemical specialties such as dryers, bactericides  and fungi-
cides, defearners, dispersants, and thickeners.

All paints are generally made in batches.  Batch  size  is an
indicator of paint plant size.  A small paint plant will produce
batches of 380 to 1,890 liters  (100 to 500 gallons), while a
large plant will manufacture batches up to 22,700 liters (6,000
gallons).  Because of the  large number of color formulations
generally produced, a continuous process is not feasible.
Date:   9/25/81              II.13-2

-------
     Solvent-Base Paint Production

The three major steps involved in the solvent-base paint manufac-
turing process are (J.) mixing and grinding of raw materials,
(2) tinting and thinning, and (3) filling operations.

At most plants, the mixing and grinding of raw materials for
solvent-base paints are accomplished in one production step.  For
high-gloss paints, the pigments and a portion of the binder and
vehicle are mixed into a paste of specified consistency.  The
paste is fed to a grinder or mill, which disperses the pigments
by breaking down particle aggregates rather than reducing the
particle size.  For other paints, raw materials are mixed and
dispersed in a mixer.

Following the mixing and grinding of raw materials, the paint is
transferred to tinting and thinning tanks in which the remaining
binder and liquid, as well as various additives and tinting
colors, are incorporated.  The paint is then analyzed, and the
composition is adjusted as necessary to obtain the correct for-
mulation for the type of paint being produced.  The finished
product is then transferred to a filling operation for filtering,
packaging, and labeling.

     Water-Base Paint Production

The pigments and extending agents for water-base paints are
usually received in proper particle size, and the dispersion of
the pigment, surfactant, and binder into the vehicle is accom-
plished with a saw-toothed high-speed dispenser.  In small plants,
the paint is thinned and tinted in the same tank; in larger
plants, the paint is transferred to special tanks for final
thinning and tinting.  Once the formulation is correct, the paint
is transferred to a filling operation for filtering, packaging,
and labeling.

     Other Manufacturing Operations

Some of the large paint plants manufacture their own synthetic
resins such as the usual alkyd resin, a water-soluble alkyd
resin, or an acrylic resin.  For the purposes of this manual, the
wastewater resulting from the manufacture of such resins is not
associated with the paint industry; hence, it is not further
discussed herein.

Following the production of either solvent- or water-base paints,
considerable waste or "clingage" remains affixed to the sides of
the preparation tanks.  Three specific methods of tank cleaning
are used in the paint industry:  (1) solvent wash, (2) caustic
wash, and (3) water wash.  Solvent wash is used exclusively for
cleaning tanks used for solvent-base paint formulation.  When
solvent washing is used in solvent-base operations, essentially


Date:  9/25/81               II.13-3

-------
no wastewater is discharged.   Caustic-wash techniques may be used
to clean both solvent-base and water-base paint manufacturing
tanks.  Water-wash techniques are also used in both the solvent-
base and water-base segments  of the industry.   For solvent-base
operations, water washing is  usually used only to follow the
caustic washing of solvent-base tanks.  For. water-base opera-
tions, water washes often constitute the only tank cleaning
operation.  However,  periodic caustic cleaning of water-base
paint is also a common practice.

Because the paint industry has simple technology and low capital
investment, it includes many  small companies.   About 41 percent
of the companies have less than 10 employees and account for less
than 5 percent of industry sales.  According to the Kline Guide,
the four largest companies (Sherwin Williams,  Du Pont, PPG Indus-
tries, and SCM-Glidden) accounted for over 30 percent of industry
sales in 1974.  Total paint production in 1974 was valued at
$3.67 billion ($1.87 billion  from trade sales and $1.80 billion
from industrial finishes).

Geographically, paint plants  tend to be clustered around popula-
tion centers, due to the expense of transporting paint long
distances.  Approximately 46  percent of the paint plants re-
sponding to the Data Collection Portfolio survey were located in
five states (California, New  Jersey, New York, Illinois, and
Ohio) and 87 percent were located in twenty states.

II.13.1.2  General Description of the Ink Industry [2-41]

The printing ink industry (SIC 2893) includes establishments
primarily engaged in the manufacture of printing ink; it does not
include captive ink establishments that produce ink only for use
within the parent plant.  Captive plants are considered to be
contained in SIC 27,  which includes printed items manufactured as
final products.

The printing ink industry consists of an estimated 460 to 500
manufacturing sites operated by approximately 200 companies.  The
plant sites are dispersed throughout the nation with higher con-
centrations in the North Central and Coastal Areas.  Five states
(California, Illinois, New Jersey, New York, and Ohio) contain 42
percent and ten states include 65 percent of the plants respond-
ing to the Data Collection Portfolio Survey.  Plants are located
near population centers due to transportation costs and the need
to be near customers.  A large majority  (71 percent) of the ink
manufacturing facilities are small and employ 20 or fewer person-
nel.

     Ink Production

Ink production involves three major ingredients:  the vehicle,
pigment, and drying agent.  The vehicle, normally water or sol-
vent, is used to transport the pigment, which may be either an

Date:  9/25/81             II.13-4

-------
inorganic or organic compound.  The drying agent may be a separate
compound or the vehicle for the ink.  The drying agent aids in
the preliminary fixing of the ink on the surface and functions by
oxidation, absorption, or evaporation.

In the ink industry, the primary plant operation is the blending
of the ingredients to produce various sized batches of ink.
Blending is accomplished with the use of high-speed mixers and/or
a wide variety of mixing mills.  The blending occurs in a series
of steps, normally one or two; the number of steps depends on the
dispersion characteristics of the ingredients.   Ink is often
custom manufactured and may be continuously produced, as in news-
paper inks, or batch produced in quantities as small as 2.3 kg.

After the ink product has been removed, the formulation tub is
normally cleaned.  A solvent-base solvent wash is often used to
clean solvent-base ink from a tub.  A caustic wash, followed by a
water rinse,  is also commonly used for solvent-base inks.  This
technique is also used for water-base inks, although a water-only
wash is more common.  This water can be reused or treated and
released.

     Major Types of Ink

There are four major types of ink; each type has its own ingredi-
ents and characteristics.  Letterpress inks are viscous tacky
pastes that use an oil or varnish base and dry by oxidation of
the vehicle.   Lithographic inks are similar to letterpress inks
but have a higher concentration of pigment to offset the thinner
film used in printing this type of ink.  Flexographic inks are
liquids that may be solvent or water-based and dry by evapora-
tion, absorption, or decomposition.  Gravure ink is a liquid that
dries by solvent evaporation and is used for a variety of pur-
poses.  Varnish, an allied product of the industry, is produced
by 20 percent of the ink formulation plants.

     Product Mix

Approximately half of the plants in the ink industry specialize
primarily in either paste or liquid ink.  The remaining half
produce both types of ink, with a wide variety of fractional mix.
An "average"  plant, based on the average mix of all plants, pro-
duces 65 percent paste ink and 35 percent liquid ink.  Ink manu-
facturers may also be classified by the percentage of water-base
ink and solvent- or oil-base ink produced.  Thirty-seven percent
of the plants produce 100 percent solvent- or oil-base ink, and
only 3 percent produce 100 percent water-base ink.

Using this type of classification, the "average" plant produces
60 percent oil-base ink, 25 percent solvent-base ink, and 15
percent water-base ink.  Plants, that manufacture exclusively
solvent- and oil-base ink, produce primarily paste ink; plants


Date:  9/25/81             II.13-5

-------
that manufacture water-base ink products manufacture primarily
liquid inks.

II.13.1.3  Subcategory Description

The paint and ink formulation industry is divided into the follow-
ing two subcategories based on the tank cleaning techniques used:
(1) solvent-wash (solvent-base solvent-wash),  and (2) water-wash
and/or caustic-wash.

     Solvent-Wash (Solvent-Base Solvent-Wash)  Subcategory

This subcategory encompasses those facilities  using solvent-wash
operations to clean their formulation tanks.   BAT Effluent Limita-
tions Guidelines for the solvent-base solvent-wash have already
been promulgated except for existing indirect  dischargers (EPA
440/1-75/ 050a).

     Water-Wash and/or Caustic-Wash Subcategory

This subcategory encompasses those facilities  using either water-
wash or caustic-wash operations to clean their formulation tanks.
Rinse waters generated following caustic wash  are sometimes less
concentrated than wastewaters generated exclusively from water
rinse, although the pollutants contained in these two types of
wastewater are similar.  Consequently, the methods of treatment
and disposal are essentially the same.

II.13.2  WASTEWATER CHARACTERIZATION [2-40,41]

The paint industry, in total, generates approximately 5.7 million
liters (1.5 million gallons) of process wastewater daily.  About
half of this water is actually discharged; the other half is
reused by paint plants, evaporated, or drummed for disposal as a
solid waste.  The ink industry, on the other hand, generates
about 150,000 liters (40,000 gallons) of wastewater daily, of
which 75 percent is actually discharged.  For the purposes of
this manual, process water is defined as only that wastewater
which has an opportunity to contact paint solids, such as tank or
filling equipment wash water, caustic-wash rinse water, and floor
wash water.  Other wastewaters, such as sanitary or noncontact
cooling water, are not considered to be part of the process
wastewater stream.

The percentage of solvent-base and water-base paints or inks pro-
duced is the most important factor that affects the volume of
process wastewater generated and discharged at both paint and ink
plants.  Due to their greater use of water-wash, plants producing
90 percent, or more, water-base paint (or ink) discharge more
wastewater than plants producing 90 percent or more solvent-base
paint (or ink).  Additional factors influencing the amount of
wastewater produced include the pressure of the rinse water and


Date:  9/25/81             II.13-6

-------
the existence or absence of floor drains.   Where no troughs or
floor drains exist, equipment is often cleaned by hand with rags;
when wastewater drains are present, there is a greater tendency
to use hoses.

II.13.2.1  Solvent-Wash (Solvent-Base Solvent-Wash)*Subcategory

Batches of solvent-base paint or ink that are rinsed with solvent
ordinarily generate no wastewater.   The used solvent is generally
(1) used in the next compatible batch of paint (or ink) as part
of the formulation, or (2) collected and redistilled, either by
the plant or by an outside company, for subsequent reuse or
resale, or (3) reused with or without settling to clean tanks and
equipment until spent, and then drummed for disposal.  If sludge
settles out,  it is also drummed for disposal, but as a solid
waste.  Because Effluent Guidelines for the solvent-base solvent
wash have been promulgated, solvent-base wash operations are not
considered further in this manual.

II.13.2.2  Water-Wash and/or Caustic-Wash Subcategory

Batch mixing tanks for water-base paint (or ink) that are rinsed
with water generate considerable quantities of wastewater.  The
spent tank and equipment rinse water is usually handled in one of
four ways:  (1) reuse in the next compatible batch of paint (or
ink) as part of the formulation, (2) reuse either with or without
treatment, to clean tanks and equipment until spent (if sludge
settles out,  it is disposed of as a solid waste), (3) discharge
with or without treatment as wastewater, and (4) disposal as a
solid waste.

Plants that use caustic-rinse systems usually rinse the residue
with water, although a few plants allow the caustic to evaporate
from the tanks.  Evaporation of caustic solution, however, can
leave a residue that will interfere with some types of paint
formulas.  There are two major types of caustic systems commonly
used by the paint and ink industries.  In one type of system,
caustic is maintained in a holding tank (usually heated) and is
pumped into the tank to be cleaned.  The caustic drains to a
floor drain or sump where it is returned to the holding tank.   In
the second type of system, a caustic solution is prepared in the
tank to be cleaned, and the tank is soaked until clean.  Most
plants using caustic, reuse the solution until it loses some of
its cleaning ability.  At that time, the caustic is disposed of
either as a solid waste or wastewater, with or without treatment.

The water rinse following a caustic wash is rarely reused in a
subsequent batch of paints (or ink).  Generally, any generated
wastewater is combined with the regular clean-up water, and
disposed of by one of the same methods.
Date:  9/25/81             II.13-7

-------
In addition to process wastewater generated as a result of tank
and equipment cleaning, there are other sources of pollutants
within the typical paint or ink plant and these include:   (1) bad
or spoiled batches that are not reused in other products or
discharged as a solid waste, and (2) residue from spills that is
discharged to the sewer or combined with other wastewater.

Tables 13-2 and 13-3 present information on the toxic and classi-
cal pollutants found in detectable concentrations for the plant
water supply, raw wastewater, and treated effluents for the
"water-wash and/or caustic-wash" subcategory of the paint indus-
try.  Similar data are presented in Tables 13-4 and 13-5 for the
ink industry.  Values for both the paint and ink industries were
generated from verification and field sampling results repre-
senting 22 paint plants and 6 ink plants.

II.13.3  PLANT SPECIFIC DESCRIPTION [2-40,41]

Production characterization and statistics concerning wastewater
generation and treatment for each of the 22 paint plants and 6
ink plants are presented in Table 13-6.

Tables 13-7 through 13-10 present toxic pollutant and classical
pollutant data for four of the 22 paint plants representing the
"water-wash and/or caustic-wash" subcategory of the paint indus-
try.  Tables 13-11 through 13-14 present similar data for four of
the six plants representative of the ink industry.  Unless other-
wise noted, all values are generated from screening data and
averaged from two or more batches based upon batch sampling.  The
detection limit for toxic organic pollutants is 10 yg/L and
samples below that value are identified as BDL, below detection
limit.  Due to convention in the reference, the full value of the
detection limit is used in computing the mean concentration where
there are one or more BDL samples.

II.13.4  POLLUTANT REMOVABILITY [2-40,41]

Paint and ink plants treat wastewater in several ways.  Generally
the plants can reduce or reuse the wastewater, or release it with
or without treatment.  Because a majority of the plants release
the wastewater into municipal sewage systems, treatment is often
a function of the municipal restrictions on the plant.

II.13.4.1  Reduction or Reuse of Wastewater

There are two widely used general strategies for reducing the
amount of wastewater that paint and ink plants discharge to the
environment.  The first is to reduce the amount of wastewater
generated; the second is to reuse as much wastewater as possible
within plant processes.  The amount of wastewater generated is
influenced by the water pressure used for tank and equipment
Date:  8/31/82 R Change 1  II.13-8

-------
     TABLE 13-2.  CONCENTRATIONS OF TOXIC POLLUTANTS  DETECTED IN  PAINT PLANT
                 WASTEWATER AND INTAKE, VERIFICATION DATA [2-40]
Untreated Wastewater
Toxic pollutants. uq/L
Metals and inorqanics
Ant imony
Arsenic
Beryl 1 ium
Cadm i urn
Chromi urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Ivor
Tha 1 1 ium
Zinc
Toxic orqanics
Bis(2-ethy Ihexyl ) ph thai ate
Oi-n-butyl phthalate
Pentachlorophenol
Phenol
Benzene
Ethy Ibenzene
Ni trobenzene
To 1 uene
Naphtha 1 ene
Carbon tetrachloride
Chlorod ibromome thane
Ch 1 or oform
D i ch 1 orob romome thane
, 1 -D i ch 1 oroethane
,2-Dichloroethane
, l-Oichloroethy lene
,2-trans-Dichloroethy lene
,2-Dichloropropane
Methylene chloride
Tetrachlo roe thy lene
1,1, l-Tricnloroethane
1 , 1 , 2-Tnchl oroethane
Tnchloroethylene
Ac ro 1 e i n
2-Chloronaptha lene
3, 3-D i ch 1 orobenz idene
2,4-Dichiorophenol
Fluoranthene
B i s( 2-ch 1 oroethoxy ) me thane
4,6-Dimtro-o-cresol
Diethyl phthalate
3, 4-Ben2opyrene
Anthracene
Ch 1 orobenzene
D i ( 2-ch 1 oro i sopropy 1 ) ether
2-4 D i n i t ropheno 1
Butyl benzyl phthalate
Pesticides and metabolites
1 sophorone
Aldrin
Die Idr i n
'(, It-DDE
Beta-endosul fan
Heptachlor epoxide
Alpha-BHC
Beta -BMC
Camma-BIIC
Del ta-BIIC
Number
of
samp 1 es
ana Ivzed

49
ill
51
51
51
51
54
51
50
51
(b)
51
51
51

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
a)
(a)
(b)
(b)
(b)
(b)

27
a)
a)
a)
a)
a)
a)
(a)
a)
(a)
Number
of
times
detected

19
ill
51
51
51
51
51
51
50
51

51
51
51

9
18
6
8
17
21
3
23
9
8
0
lit
1
1
5
5
2
3
17
17
15
5
15

























Average
of
detected
va lues

72
120

-------
      TABLE 13-2.  CONCENTRATIONS OF TOXIC  POLLUTANTS DETECTED IN PAINT PLANT
                  WASTEWATER AND INTAKE (continued)
Toxic DO! lutant
Metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Me rcu ry
Nickel
Se 1 en i urn
Si Iver
Thai 1 ium
Zinc
Toxic orqanics
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Pentach 1 o ropheno 1
Phenol
Benzene
Ethyl benzene
Nitrobenzene
Toluene
Naphthalene
Carbon tetrachloride
Ch 1 orod i bromomethane
Chloroform
D ichlo rob romome thane
, l-Dichloroethane
,2-Dichloroethane
, 1 -Dichloroethylene
,2-Trans-dichloroethylene
, 2-D ichlo ropropane
(ethyl ene chloride
' et rach 1 o roethy 1 ene
, 1 , l-Trichloroethane
, 1 ,2-Trichloroethane
Trichloroethylene
Ac ro 1 e i n
1 , 2-D i ch lorop ropy 1 ene
Bis(2-Chloroethoxy) ether
2,4-Dinitrophenol
Di-n-octyl phthalate
Butyl benzyl phthalate
Dimethyl phthalate
Chloro benzene
Chlo roe thane
1 , 2-D iphenyl hydra zine
Diethyl phthalate
Ace nap thy 1 ene
Anthracene
Phenanthrene
Pesticides and metabolites
4.4-DDD
1 sophorone
Beta-endosulfan
Endrin aldehyde
Beta-BHC

Number
of
samples
ana 1 vzed

43
39
45
45
45
45
48
45
45
45
(a)
45
45
45

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
0
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)

(a)
23
(a)
(a)
(a)
Treated wastewaterl b >
Number
of
times
detected

43
39
45
45
45
45
48
45
45
45

45
45
45

7
9
6
13
14
15
1
17
7
3
0
15
0
2
4
4
6
2
19
8
14
4
10
















2



Average
of
detected
va lues

28
34
9
29
1,300
2,000
51
1, 100
830
3,500
>IO
9
12
8,500

33
310
120
140
680
5,800
35
1,800
380
640

390

95
71
19
51
210
5,600
190
89
930
78

>IO
>IO
>IO
>IO
>IO
>IO
BDL
BDL
BDL
BDL
BDL
BDL
BDL

BDL
1 10
BDL
BDL
BDL
Median
of
detected
va lues

25
25
BDL
20
50
120
20
200
200
50

BDL
BDL
1,000

BDL
BDL
1 1
16
310
370

960
16
120

34


53
1 1
27

1,700
35
29
810
15




















Maximum
of
detected
va lues

180
400
20
200
30,000
60,000
530
40,000
4,400
80,000

20
100
100,000

160
1,300
490
1,200
3,800
74,000

7,200
1,800
1,800

4,700

ISO
170
44
190
400
31,000
700
560
2, 100
300
















200



Date:   9/25/81
11.13-10

-------
      TABLE 13-2.  CONCENTRATIONS OF TOXIC POLLUTANTS DETECTED IN  PAINT PLANT
                  WASTEWATER AND INTAKE  (continued)

Toxic oollutants. ua/L
Metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Thallium
Zinc
Toxic oroanics
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Pentachlorophenol
Phenol
Benzene
Ethyl benzene
Nitrobenzene
Toluene
Naphtha lene
Carbon tetrachloride
Ch 1 o rod i b romo methane
Chloroform
Dlchlorobromome thane
, l-Dichloroethane
,2-Dichloroethane
, l-Di chlo roe thy lene
.2-Trans-dichloroethylene
, 2-0 i chlo ropropane
Methylene chloride
Tetrachloroethylene
1,1, l-Trichloroethane
Chlorobenzene
1 , 1 ,2,2-Tetrachloroethane
Butyl benzyl phthalate
Di ethyl phthalate
2,4,6-Trichlorophenol
2, 4-Dime thy (phenol
2,4-Dinitrophenol
Dimethyl phthalate
Anthracene
Pyrene
Pesticides and metabolites
Isophorone
Aldrin
Beta-endosulfan
Delta-BHC

Number
of
samples
analyzed

1 1
(b)
31
31
31
31
31
31
31
31
(b)
31
l|
31

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
(b)
(b)
(b)
(b)
(a)
(a)
(a)
(a)
(a)
(a)

7
(a)
(a)
(a)

Numbe r
of
times
detected

II

31
31
31
31
31
31
31
31

31
4
31

6
5
ll
4
5
6
0
6
4
2
0
2
0
0
0
0
0
0
7
5
7




BDL
BDL
BDL
BDL
BDL
BDL

0
BDL
BDL
BDL
S 1 iidao
Aye rage
of
detected
values

1,700

20
170
7,300
7,800
1,300
11,000
29,000
12,000

23
<200
270,000

570
3,600
350
400
410
18,000

59,000
370
BDL

920






140,000
2,100
870
















Median
of
detected
values

25

20
100
700
1,000
20
3,000
2,300
100

BDL
<200
100,000

410
70
130
240
30
240

1,300
200









2,600
170
14
















Maximum
of
detected
values

13,000

100
600
90,000
80,000
36,000
80,000
220,000
200,000

100
<200
2,000,000

1,900
18,000
1, 100
1, 100
1,900
99,000

350,000
1, 100
BDL

1,000






900,000
8,200
3,200















Date:   9/25/81
11.13-11

-------
       TABLE  13-2.  CONCENTRATIONS OF  TOXIC  POLLUTANTS DETECTED IN PAINT PLANT
                     WASTEWATER AND  INTAKE (continued)

Toxic col lutant
Metals and inorganics
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Si Iver
Tha 1 1 i urn
Zinc
Toxic organics
Bi s(2-ethylhexy 1 ) ph thai ate
Di-n-butyl phthalate
Pen tach 1 o ropheno 1
Pheno I
Chlorobenzene
Benzene
Ethyl benzene
Nitrobenzene
To 1 uene
Naphthalene
Carbon tetrachloride
Ch I o rod i b romome tha ne
Chloroform
Dichlorob romome thane
, l-Dichloroethane
,2-Dichloroethane
, l-Dichloroethy lene
. 2-Trans-d i ch 1 oroethy 1 ene
,2-Dichloropropane
1 ie thy lene chloride
etrachl oroethy lene
, 1, I-T rich lo roe thane
, 1,2-Trichloroethane
Trichl oroethy lene
2, 4, 6-Trichlo ropheno 1
3,3-Dichlorobenzidene
2, 4-Di Ohio ropheno 1
2,4-Dini trotoluene
Fluoranthene
Bromoform
Butyl benzyl phthalate
Diethyl phthalate
3,4-Benzof luoranthene
Benzo (k) fluoranthene
Anthracene
Pesticides and metabolites
Isophorone
Endrin aldehyde
Alpha-BHC
Beta-BHC
Delta-BHC

Samples
analyzed

20

21
21
21
21
22
20
21
20
21
19
20

25
25
25
25
NA
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)

25
(a)
(a)
(a)
(a)

Times
detected

20

21
21
21
21
22
20
21
20
21
19
20

3
It
\
0
\
1 I
3
1
9
0
3
10
15
13
0
0
9
0
0
17
2
1 1
2
4












0




ntake Wate
Average
of
detected
values

12

8
31
1(3
150
20
130
290
41
BDL
1 1
1,200

BDL
BDL
BDL

5,500
90
160
BDL
310

13
22
130
26


13


430
25
36
14
BDL
BDL
BOL
BDL
BDL
BOL
BDL
BDL
BDL
BDL
BDL
BDL


BOL
BDL
BDL
BDL
r
Median
of
detected
values

BOL

BDL
20
20
60
20
100

20
BDL
BDL
600

BDL
BDL



16
61

BDL

14
BDL
41
15


BOL


67
25
18
14
BDL


















Maximum
of
detected
values

25

20
200
200
700
93
400
6,000
200
30
20
8,000

BOL
BDL



570
420

2,700

15
1 10
570
86


40


2,200
40
1 10
18
BDL

















         BDL, below detection limit.
         NA, not aval(able.
         (a)The information is not available on the number of samples;
           the number of detections  is one or more.
         (b)The information is not available on the number of samples or
           the concentration detected.  The reference reported
           compound as being present in one or more samples.
Date:    9/25/81
11.13-12

-------
            TABLE 13-3.   CONCENTRATIONS OF CLASSICAL POLLUTANTS DETECTED
                         IN PAINT  PLANT WASTEWATER AND INTAKE,  VERIFICATION
                         DATA [2-40]
Untreated Wastewater
Pol lutant. ma/L
Number
of
samp les
ana Ivzed
Number
of
t imes
detected
Average
of
detected
va 1 ues
Med ian
of
detected
va lues
Maximum
of
detected
va lues
  BOD5
  COD
  TOG
  TSS
  Total phenols
  Oil and grease
  pH, pH units
  BOD5
  COD
  TOG
  TSS
  Total phenols
  Oil and grease
  pH, pH units
54
54
49
51
54
50
53
54
54
49
51
54
50
53
 9,900
56,000
10,000
20,000
  0.29
 1,200
                                                 Sludge
 4,900
40,000
 8,500
13,000
  0. 14
   980
     7
 66,000
350,000
 34,000
150,000
    1.9
  3,400
     12
31
32
31
31
32
30
29

31
32
31
31
32
30
29

26,000 12,000
190,000 140,000
37,000 30,000
100,000 70,000
0.63 0.20
8,600 2,900
7
Treated Wastewater(a )
150,000
950,000
1 10,000
470,000
6.0
130,000
12

  BOD5
  COD
  TOC
  TSS
  Total phenols
  Oil and grease
  pH, pH units
48
47
44
48
49
43
46
48
47
44
48
49
43
46
 5,300
21,000
 4,000
 2,000
  0.23
   230
                                              Intake Water
 3,500
I 1,000
 2,800
   240
  0.09
    24
     7
 32,000
260,000
 25,000
 22,000
    1.9
  1,700
BOD5
COD
TOC
TSS
Total phenols
Oil and grease
pH, pH units
Ana lyt ic methods:
(a) Includes both
21
22
20
20
22
18
20
V.7.3.25,
d i rect and
21
22
20
20
22
18
20
Data set 1.
ind i rect d i
3
10
8
3
0.01
1


schargers.
2
6
8
3
0.01
1
7


6
40
20
1 1
0.04
5
9


Date:   8/31/82  R Change 1   11.13-13

-------
        TABLE  13-U.   CONCENTRATIONS OF TOXIC POLLUTANTS DETECTED  IN INK PLANT
                    WASTEWATER AND INTAKE AS REPORTED IN SOURCE, VERIFICATION
                    DATA [2-UI]
Untreated Wastewater
Toxic pollutants. ua/L
Metals and Inorganics (b)
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en 1 urn
Si Iver
Tha 1 1 i urn
Zinc
Toxic oroanics
Bis(2-ethylhexyl ) ph thai ate
Di-n-butyl phthalate
Pentach 1 oropheno I
Pheno 1
Benzene
Ethyl benzene
To 1 uene
Naphtha lene
Carbon tetrachloride
Ch lo rod i bromomethane
Chloroform
, l-Dichloroethane
,2-Dichlo roe thane
, I -0 i ch 1 o roethy 1 ene
, 2-T rans-d i ch I o roe thy I ene
,2-Dichloropropane
he thy lene chloride
' etrachloroethy lene
, 1 , l-Tri chlo roe thane
, 1 ,2-Trichloroethane
T r i ch 1 o roethy 1 ene
Acenapthene
1 , 2 , 1-T r i ch 1 o robenzene
2,t,6-Trichlorophenol
Pa rachlorometa cresol
1 , 2-D i ch 1 o robenzene
2, U-D i me thy I pheno 1
2, i|-D i n i t roto 1 uene
2,6-Oini trotoluene
Fluoranthene
Bi s ( 2-ch I oroi sop ropy 1 (ether
Chlo robenzene
1,2-Diphenylhydrazine
T r i ch 1 o rof 1 uo rome tha ne
1 sophorone
N-N i t ro&od i pheny I am i ne
Butyl benzyl phthalate
Di-n-octyl Phthalate
Diethyl phthalate
Dimethyl phthalate
Chrysene
Anthracene
Fluorene
Phenanthrene
Pyrene
Trichloroethylene
Dieldrin
Number
of
samples

1
1
1
i
i
1
0
1
9
1
1
1
1
1

8
8
8
8
8
8
8
8
8
8
8
8
8
6
8
8
8
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
Number of
detections
above detec-
tion limit

3
0
0
5
1 1
1 I
7
1 1
3
2
0
1
0
8

3
3
1
2
5
3
6
3
1
1
2
2
1
1
0
1
5
0
2
0
It
0
0
0
0
0
0
0
0
0
0
2
1
0
1
0
0
1
1
0
0
1
0
0
0
It
0
Mini mum
of
detections
(a)

<25
<25

-------
       TABLE 13-4.  CONCENTRATIONS OF  TOXIC POLLUTANTS  DETECTED IN  INK  PLANT
                    WASTEWATER «ND  INTAKE AS REPORTED  IN  SOURCE, VERIFICATION
                    DATA (cor.cinuea)
                                                  Treated Wastewater
Toxic pol lutants. iig/L
                                                                _ _
                                            Number of   Minimum    Mean     Maximum
                                    Number  detections      of      of        of
                                    • of    above detec- detections detections detections
                                    samples  t ion I imi t _ la 1 _ (a 1 _ (a 1
Metals and inorqanics (b)
Ant i mony
Arsenic
Be ry 1 1 i urn
Cadm i urn
Chromi urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Thai 1 ium
Zinc
Toxic orqanics
Acenaphthene
Benzene
3,3'-Oichlorobenzidine
2,i»-Dichlorophenol
2, 1-D i n i t roto 1 uene
Ethyl benzene
Di (2-chloroethoxy) methane
Methylene chloride
1 sophorone
Naptha lene
Phenol
Bis (2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
1 ,2-Benzanthracene
Anthracene
Phenanthrene
Toluene

2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
2
1

0
0
0
0
1
1
2
1
0
0
0
0
0
2

0
1
0
0
0
1
0
1
1
1
1
1
1
0
0
0
1
1

<25
<25

-------
       TABLE  13-U.   CONCENTRATIONS OF TOXIC  POLLUTANTS DETECTED  IN INK PLANT
                     WASTEWATER  AND INTAKE AS  REPORTED IN SOURCE,  VERIFICATION
                     DATA (continued)
Intake water
Toxic pollutants. ua/L
Metals and Inorganics (b)
Ant i mony
Arsenic
Be ry 1 1 1 urn
Cadmium
Chromium
Copper
Cyanide
Lead
Me rcu ry
Nickel
Selenium
Silver
Thai) lum
Zinc
Toxic organ Ics
Acenaphthene
Benzene
1 ,2,i»-Trichlorobenzene
1 ,2-Olchloroethane
1,1, l-Trichlo roe thane
1 , 1,2,2-Tetrachloroethane
Chloroform
1 ,2-Dlchlorobenzene
U-Chlorophenyl phenyl ether
Methylene chloride
Dichlorobromomethane
Trlchlorof luorome thane
Ch 1 o rod I b romomethane
Isophorone
Naphtha lene
Bis (2-ethylhexyl ) phthalate
Butyl benzyl phthlate
Di-n-butyl phthalate
Dl ethyl phthalate
3 , U-Benzof 1 uo ranthene
Anthracene
F luorene
Phenanthrene
Toluene
Trfcnloroethylerte
Alpha-BHC
Gamma-BHC
Number
of
samples

7
7
8
8
8
8
7
8
6
8
7
8
7
8

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
Number of Minimum
detections of
above detec- detections
tion limit (a)

1
0
0
1
6
6
0
6
2
1
0
1
0
2

0
1
0
0
0
0
U
0
1
7
3
0
1
0
0
3
0
1
0
0
0
0
0
1
0
0
0

<2
<2

-------
   TABLE 13-5.  CONCENTRATIONS  OF  CLASSICAL POLLUTANTS DETECTED  IN  INK  PLANT
                WASTEWATER AND  INTAKE AS REPORTED IN SOURCE, VERIFICATION
                DATA [2-41]
Treated wastewater



Pol lutant. ma/L
BOD5
COD
TOC
TSS
Total phenols
Oi 1 and grease
pH, pH un i ts
Tota 1 so 1 ids
TDS
TVS
VDS
TVSS
Aluminum
Ba r i um
1 ron
Manganese
Ca Ic i um
Magnesi um
Boron
Coba 1 1
Mo lybdenum
Tin
Ti tani um
Vanad i um
Yttrium
Sod i um

Number
of
samples
1
2
1
2
2
2
2
2
1
1
1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
2
Mumber of
detections
above dete<
tion 1 imit
1
2
1
2
2
2
2
2
1
1
1
1
2
2
1
1
0
2
0
1
1
0
2
0
0
2

Min imum
:- of
detections

ii,800

110
30
260
13
5,600




600
100
<2,000
50
<5
1

<50
<50
<50
1)50

-------
             TABLE  13-6.   PAINT AND INK PLANT CHARACTERIZATION 12-1*0,41]
Percent of
Droduction
Plant
code
Paint
1
2
3
1
5
6
a
9
II
12
13
11
IS
16
17
18
20
2 It
25
26
27
28
Ink pi
7
10
19
21
22
Water
thinned
olants
75
100
90
100
35
100
75
75
15
10
65
65
25
50
85
65
65
100
10
65
85
65
pnt^§
30
25
0
35
0
Solvent
thinned
25
0
IO
0
65
0
25
25
85
90
35
35
75
50
15
35
35
0
60
35
15
35
70
75(c)
too
65
100
Percent or Dioawnts
Oraanlc
5
to
75
5
IS
15
5
35
25
20
05
15
10
10

10

15
5
5
85
5
60
35
5
15
65
Inoraanic
95
60
25
95
85
85
95
65
75
80
55
85
90
90

90

85
95
95
15
95
10
65
95
85
35
Batch or
continuous
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Cont i nuous
Batch
Cont i nuous
Batch
Batch
Batch
Batch
Batch
Batch
Batch





Size of
batch. Ljt;er
18,900
15,100
22,700
20,800
21,600
15,100
18,200
3,110
22,700
2,650
1, 110
2,810

5.680

3,780
3,030
22,700
757
91,600
11,600
1,110





Major
sources (a)
Wt
Wt
Wt
Wt
Wt, CR
Wt
Wt
Wt
Wt
CR
Wt
Wt
Wt, St
Wt
Wt
Wt
Wt
Wt
WT, CR
Wt
Wt
Wt
WR
CR(2)
CR(2)
WR, CR( 1 ),
CR(I),
CR<2). SC
Date: 9/25/81
11.13-17

-------
                TABLE  13-6.    PAINT AND  INK PLANT  CHARACTERIZATION  (continued)
Wastewater
aenerat ion
Plant
code
paint olants
1
2
3
4
5
6
8
9
II
12
13
14
15
16
17
IB
20
24
25
26
27
28
Ink plants
7
10
19
21
22
i _ . ...
Liter
H20/
1 iter
oalnt

O.I5(c)
0.25
0.27
0.3 (c)
O.I5(c)
O.I (c)
O.I6(c)
0. 17
0.3
0.3
O.IS
0.08
0.04
0.13
0.15
0.25(c)
0.03(c)
0.7
0.23(C)
0.3KC)
0.07
O.I3(C)






Percent of
flow to
treatment
process/
cleanina

100
75
45
70
65
85
99
100
100
100
100
100
100
100
100
100
100
100
100
100

100





, . .
Percent
reuse

0
0
50
0
0
0
0
0
0
a
0
a
0
50
0
75
25
0
0
0
10
0






Water
pressure,
kPa

345(d)
1,380
1.030
3451 d)
3451 d)
1,380
345(d)
4IO(C)
1,030

517
689
345(d)
3451 d)
3451 d)
3451 d)
345(d)
862
4IO(C)
UIO(C)
551
3451 d)






Caustic
vastier,
yes/no

No
No
No
No
Yes
No
Yes(e)
Yes(e)
Yes(e)
Yes
No
No
No
No
NO
NO
NO
Yes
Yes
No
NO
Yes

Yes
Yes
No
Yes
Yes
Treatment
tVDBlbl

PC
PC
PC
PC
PC
PC
PC
PC
GS
Neut
PC
PC
GS
PC
PC
PC
PC
PC
PC
PC
PC
PC

GS


CS, Sk,
Neut
GS
Chemicals used for treatment

Sodium bisulfate, anlonlc and cationlc
Alum, potassium hydroxide


polymer

Dearborn proprietary Aquafloc 409, polymer
Aluminum sulfate, lime
Sodium aluminate Nalco 7722
Alum ferric, polymer caustic
Ferric chloride, polymer. Aqua Ammonia
Nalco 7742A

Phosphoric acid
Nalco 3174
Nalco 634
Mobil Floe Resin 9000
Cosan C-Floc 18
Alum, lime, soda ash, ferric chloride
Caustic, ferrous sulfate, Oubois Floe
Ferrous sulfate
Drew Amerf loc
Ferric floe, sulfuric acid, caustic
Sulfuric acid, lime
Amerfloc, cationic polymer
HCI, Cosan C-Floc


















551












I • /  i»i.  ww bvi - tn • ifireu UPBI «• b i uti,  .> b — au i fjjii t— bi 11 til iou w|ivi a I iwii, \n\ — uausfcit; rif*»v, t»ni I J - piinar
    water rinse from caustic washer Cr(2)-secondary water rinse to caustic washer (primary rinse  is
    recycled to caustic), Wf) - water rinse of Ink tubs, SC - condensate from stea* tub cleaner, C -
    spent caustic.
(b)  PC - physical chemical, GS -  gravity separation,  Neut - neutralization, Sk - skimming.
(c)  Estimated from 308 survey.
(d)  Estimate of city water pressure.
(e)  No discharge to treatment system.
  Date:     9/25/81
11.13-18

-------
               TABLE  13-7.   WASTEWATER  CHARACTERIZATION,  PAINT  PLANT  I(a)
                                               [2-40]
               Subcategory:  Water and/or caustic wash
               Wastewater treatment description:  Neutralization, chemical treatment (alun,
                 polymer) settling and clarification
               Untreated wastewater flowrate:  3.78 - 22.7 cu.»/d
Pol lutant
Toxic pollutants, ug/L
Toxic metals
Silver
A 1 urn i num
Ba r i urn
Beryl 1 ium
Cadmium
Coba 1 1
Chromium
Copper
1 ron
Mercury
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Titanium
Thai 1 ium
Zinc
Toxic organicslbl
Benzene
Carbon tetrachloride
,2-Dichlo roe thane
, 1, l-Trichloroethane
, l-Oich lo roe thane
, 1 ,2-T rich lo roe thane
Chloroform
, l-Dichloroethylene
, 2-Trans-dichloroethylene
, 2-D i ch 1 o rop ropa ne
Ethyl benzene
Methylene chloride
D i chlo rob romome thane
Ch lorod i bromonethane
Isoph&rone
Naphtha lene
Nitrobenzene
Pen tach 1 o ropheno 1
Pheno 1
Bis(2-ethylhexyl ) ph thai ate
Di-n-butyl phthalate
Tetrachloroethylene
To 1 uene
Trichloroethylene
Classical pollutants, ng/L
pH, pH units
BOO
COD
TOC
01 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Ca 1 c i um
Magnesium
Sod i um
Untreated
wastewater


13
220.000
too

-------
              TABLE  13-8.   WASTEWATER CHARACTERIZATION, PAINT  PLANT  2(8)
           Subcategory:  Water and/or caustic wash
           Wastewater treatment description:  Chemical treatment (alum)
           Untreated wastewater flowrate:   3.78 - 22.7 cu.m/d
Pol lutant
Toxic pollutants, ng/L
Toxic metal s(bl •
Silver
Aluminum
Ba r i um
Beryl 1 ium
Cadmium
Coba 1 t
Chromium
Copper
Iron
Mercury
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Titanium
Thallium
Zinc
Toxic oraap Ics
Benzene
Carbon tetrachloride
, 2-0 ich lo roe thane
, 1, l-Trichloroethane
, l-Oichloroethane
, 1,2-Trichloroethane
Chloroform
, l-Dichloroethylene
,2-Trans-dichlo roe thy lane
, 2-Oichloropropane
Ethyl benzene
Methylene chloride
Dichlorobromome thane
Ch t o rod ibromo me thane
Isophorone
Naphthalene
Nitrobenzene
Pentach 1 oropheno 1
Pheno 1
Bis(2-ethylhexyl ) ph thai ate
Di-n-butyl ph thai ate
Tetrachloroe thy lane
Toluene
Trichloroethylene
Classical pollutants, mg/L(b)
pH, pH units
BOD
COD
TOC
Oi 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Ca 1 c i um
Magnesium
Sodium
i ,. _ .... i _ » ... — — -——-—.. _ 	 i
Untreated
wastewater



-------
                   TABLE   13-9.   WASTEWATER CHARACTERIZATION,  PAINT  PLANT
                                                            [2-1*0)
                      Subcategory:  Water and/or caustic wash
                      Wastewater  treatment description:  Gravity separation, chemical
                        treatment (alun, line)
                      Untreated wastewater flowrate:  3.78 -22.7 cu.m/d
                      Potlutant
                                                      Untreated
                                                     wastewaterlal
                                              Treated
                                             effluentlal
                                                                                smdoelbl Intakelcl
                      Toxic  pollutants, ug/L

                        Toxlc metals
                          Silver                             
-------
             TABLE 13-10.   WASTEWATER  CHARACTERIZATION,  PAINT PLANT  9
                                             [2-UO]
           Subcategory:  Water and/or caustic wash
           Wastewater treatment description:  Neutralization, chemical
             treatment (polymer)
           Untreated wastewater flowrate:  1.89 - 3.78 cu.m/d

Pol lutant
Toxic pollutants, ng/L
Toxic metals
Si Iver
A 1 urn i num
Barium
Be ry 1 1 i urn
Cadmium
Coba 1 1
Chromium
Copper
ron
Mercury
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Ti tan i urn
Tha M i urn
Zinc
Toxic orqanics
Benzene
Carbon tetrachl oride
,2-Dich lo roe thane
, 1, l-Trichloroethane
, l-Dich lo roe thane
, 1,2-Tricnloroethane
Chloroform
, l-Dichloroethylene
,2-Trans-d ichlo roe thy lene
, 2-Dichloropropane
Ethyl benzene
Methyl ene chloride
D ichlo rob romome thane
Ch 1 o rod i b romome t ha ne
1 sophorone
Naphtha lene
Nitrobenzene
Pentach 1 oropheno 1
Phenol
Bis(2-ethylhexyl ) phthalate
Oi-n-butyl phthalate
Tetrachlo roe thy lene
Toluene
Tr ichlo roe thy lene
Classical pollutants, mg/L
pH, pH units
BOD
COD
TOC
Oi 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Ca lei urn
Magnesium
Sod i urn
Untreated
wastewaterfal



-------
              TABLE  13-11.   WASTEWATER CHARACTERIZATION,  INK PLANT  I0(a)
                 Subcategory:  Water and/or caustic rinse
                 Wastewater treatment description:  Gravity separation
                 Untreated wastewater flowrate:  0.38 - 0.95 cu.m/d

Pol lutant
Toxic pol lutants, ng/L
Toxic metals(b)
Si Iver
Aluminum
Arsenic
Barium
Beryl 1 ium
Cadmium
Coba 1 1
Chromium
Copper
1 ron
Mercury
Manganese
Mo 1 ybdenum
Nickel
Lead
Antimony
Tin
Titanium
Thai 1 ium
Zinc
Toxic organics
Benzene
Carbon tetrachloride
,2-Dichloroethane
, 1 , l-Trichloroethane
, l-Dichloroethane
, 1 ,2-Trichloroethane
Chloroform
, 1 -D i ch 1 o roe thy I ene
,2-Trans-dichloroethylene
,2-Dich loropropane
Ethyl benzene
Methylene chloride
Dichlorobromomethane
Ch 1 o rod i b romome tha ne
Isophorone
Naphthalene
Nitrobenzene
Pentachlorophenol
Pheno 1
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Tetrachloroethy lene
To 1 uene
Trichloroethylene
Classical pol lutants(b)
pH, pH units
BOD
COO
TOC
Oi 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Calcium
Magnesium
Sodium
Analytic methods: V.7.3.25, Data s<
NO, not detected.
NA, not avai (able.
!a) All data from l-batch sampling
b) Untreated wastewater data from
(c) Value from 2-batch sampling.
Untreated
wastewater



-------
              TABLE 13-12.   WASTEWATER CHARACTERIZATION,
                                               [2-UIJ
                      INK PLANT 21(a)
                   Subcategory:  Water and/or caustic rinse
                   Wastewater treatment description:  None
                   Untreated wastewater flowrate:  0.95 - 1.89 cu.m/d
Pol lutant
Toxic pollutants, ng/L
Toxic metals
Si Iver
Aluminum
Arsenic
Ba r i urn
Be ry 1 1 i urn
Cadmium
Coba 1 1
Chromium
Copper
1 ron
Mercury
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Titanium
Tha 1 1 ium
Zinc
Toxic organ ics
Benzene
Carbon tetrachloride
,2-Dichloroethane
, 1, l-Trichloroethane
, l-Dichloroethane
, 1 ,2-Trichloroethane
Chloroform
, l-Dichloroethylene
,2-Trans-dichloroethylene
, 2-D i ch 1 o rop ropane
Ethyl benzene
Methylene chloride
Dichlo rob romome thane
Chlorod ib romome thane
1 sophorone
Naphtha lene
Nitrobenzene
Pentachlorophenol
Phenol
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Tetrachloroethylene
To 1 uene
T r i ch 1 o roe thy 1 ene
Classical pollutants, fng/L
• pH, pH units
BOD
COD
TOC
Oi 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Ca 1 c i um
Magnesium
Sod i um
Untreated
wastewater



-------
              TABLE 13-13.  WASTEWATER CHARACTERIZATION,   INK PLANT  22(a)
                                                [2-UI]
                  Subcategory:  Water and/or caustic rinse
                  Wastewater treatment description:  Gravity separation,  settling
                   and clarification, neutralization
                  Untreated wastewater flowrate:  3.78 + cu.ra/d
Pol lutant
Toxic pollutants, ug/L
Toxic metals
Si Iver
Aluminum
Arsenic
Ba r i urn
Beryl 1 ium
Cadmium
Coba 1 1
Chromium
Copper
Iron
Mercury
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Titanium
Tha 1 1 i urn
Zinc
Toxic organ ics(b)
Benzene
Carbon tetrachloride
1 ,2-Dichloroethane
1,1, I-T rich lo roe thane
1, l-Dichloroethane
1, 1 ,2-T rich loroe thane
Chloroform
1 , l-Dichloroethylene
1,2-Trans-dlchloroethylene
1 ,2-Dlchloropropane
Ethyl benzene
Methylene chloride
Oichlorobromomethane
Ch lorod ibromomethane
Isophorone
Naphthalene
Nitrobenzene
Pen tach 1 o ropneno 1
Pheno 1
Bis(2-ethylhexyl ) phthalate
Oi-n-butyl phthalate
Tetrachloroethylene
Toluene
Tr Ich loroe thy lene
Classical pollutants, mg/L
pH, pH units
BOD
COO
TOC
Oi 1 and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Calcium
Magnesium
Sodium
Untreated
wastewater



-------
              TABLE  13-IU.  WASTEWATER CHARACTERIZATION,  INK PLANT 23(a)
                  Subcategory:   Water and/or caustic rinse
                  Wastewater treatment description:  Gravity separation,
                    and clarification
                  Untreated wastewater flowrate:   3.78 -  378 L/d
                         sett I ing
Pol lutant
Toxic pollutants, u,g/L
Toxic metals
Si 1 ve r
Aluminum
Arsenic
Ba r i urn
Be ry 1 1 i urn
Cadmium
Coba 1 1
Chromium
Copper
1 ron
Me rcu ry
Manganese
Molybdenum
Nickel
Lead
Antimony
Tin
Titanium
Tha 1 1 i urn
Zinc
Toxic organics
Benzene
Carbon tetrachloride
,2-Dichloroethane
, 1, l-Trichloroethane
, l-Dich loroethane
, 1 ,2-Trichtoroethane
Chloroform
, l-Dich loroethylene
, 2-Trans-d i chlo roe thy 1 ene
, 2-Dichloropropane
Ethyl benzene
Methyl ene chloride
D i chlo rob romome thane
Chlo rod ibromome thane
Isophorone
Naphtha lene
Nitrobenzene
Pentach 1 oropheno 1
Phenol
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Tetrach loroethylene
To 1 uene
T r i oh 1 o roethy 1 ene
Classical pollutants, mg/L
pH, pH units
BOO
COO
TOO
Oi I and grease
Cyanide
Total phenol
TS
TDS
TSS
TVS
VSS
Calcium
Magnesium
Sod i um
Untreated
wastewater


<5
1,000
NA
500
<5

-------
cleaning,  the degree of cleaning required,  and the use of dry
cleaning techniques.

Several methods in use by some plants reduce the water usage.
Cleaning a tank with a squeegee prior to a water rinse reduces
the quantity of water needed to clean the tank.   High pressure
hoses can also clean a tank in less time using less water.
Wastewater volume can also be reduced by eliminating or sealing
floor drains, assuring that water will not be used to clean the
floors.  The use of these methods can significantly reduce the
wastewater volume of a paint or ink plant.

Reuse of wash or rinse water is common in the paint and ink
industry.   Wash water can be transferred directly to a second tub
or can be reused as makeup water.  The paint industry often uses
wash water for makeup in a batch of similar color paint.   Ink
plants reuse the rinse water from a caustic rinse as makeup for a
caustic wash.  These techniques can reduce raw material costs as
well as treatment costs.  Generally, reuse of wastewater is more
prevalent in small plants than in larger ones.

II.13.4.2  Treatment Systems

Less than 26 percent of all paint plants and 15 percent of all
ink plants practice any type of wastewater treatment.  The major-
ity of the plants that release wastewater,  discharge it to munic-
ipal sewage systems.  Of the plants that discharge their waste-
water to a municipal-sewer, less than 40 percent of the paint
plants and 33 percent of the ink plants pretreated the wastewater
prior to discharge.

The most common methods used by paint and ink plants for treating
or pretreating wastewater prior to disposal are gravity oil
separation and neutralization.  The paint industry also uses
physical/chemical treatment.  Few plants from either industry use
biological treatment, and those that do usually have a combined
treatment plant for wastes from other plant processes.  No paint
or ink plants use advanced wastewater treatment methods such as
activated carbon or ultrafiltration.

     Gravity Separation or Settling

Gravity separation or settling of paint and ink wastewater re-
moves many of the suspended solids but leaves a supernatant layer
that is high in solids and other pollutants.  This treatment
usually requires large areas to achieve a reasonable removal of
solids.

     Neutralization

Neutralization is used to adjust the pH of the wastewater stream
to levels necessary for other treatment steps.  The pH adjustment


Date:  9/25/81              11.13-27

-------
can be made with the addition of either alkalies or acids depend-
ing on what pH is required.   This technique can often signif-
icantly reduce the dissolved metals by precipitation.

     Physical/Chemical Treatment

Physical/chemical (P/C) treatment systems take advantage of the
natural tendency of paint wastewater to settle.  Most plants
operate the treatment on a batch basis, collecting the wastewater
in a holding tank.  If necessary, the pH is adjusted to an opti-
mal level,  a coagulant (lime, alum, ferric chloride,  or iron
salts) and/or a coagulant aid is added and mixed, and the batch
is allowed to settle (1 to 48 hours).  The supernatant is dis-
charged and the sludge is treated as a solid waste.  P/C removes
some metals and some organic priority pollutants, and achieves a
reduction in conventional pollutants.

     Biological Treatment

Biological treatment has been used as a secondary treatment
(usually following P/C) at several paint plants.  Most of the
plants pretreat the raw wastewater and then combine it with other
plant wastewater.  Data from this treatment indicate that bio-
logical treatment in an aerated lagoon can reduce conventional,
metal, and organic pollutant concentrations to low levels.  Use
of this technique can be practical for paint plants in rural
areas that wish to further treat P/C effluent for both conven-
tional and toxic pollutants.

     Potential Wastewater Treatment Systems

Other treatment systems which have been suggested for use in the
paint and ink industry, but for which no data were available,
include ultrafiltration, carbon adsorption, reverse osmosis,
steam stripping, dissolved air flotation, and sand filtration.

The following tables present data on several treatment processes.
Table 13-15 shows the average effluent characteristics and re-
moval efficiencies for batch physical/chemical treatment at
several paint plants.  Table 13-16 presents data from one paint
plant that uses an aerated lagoon as a secondary treatment.
Table 13-17 presents data from an ink plant that practices grav-
ity oil separation, and clarification, and neutralization and
shows average effluent concentrations  and removal efficiencies.
Date:  8/31/82 R Change 1  11.13-28

-------
         TABLE 13-15.
EFFLUENT  CHARACTERISTICS AND REMOVALS FROM
PAINT PLANTS  WITH BATCH PHYSICAL/CHEMICAL
TREATMENT SYSTEMS [2-40]
Pollutant
Classical pollutants, mg/L
BOD
COD
TOC
Oil and grease
Total solids
TDS
TSS
TVS
Toxic pollutants, pg/L
Silver
Beryllium
Cadmium
Chromium
Copper
Cyanide
Mercury
Nickel
Lead
Antimony
Thallium
Zinc
Benzene
Carbon tetrachloride
1 , 2-Dichloroe thane
1,1, 1-Trichloroe thane
1,1, 2-Trichloroe thane
Chloroform
1, 1-Dichloroethylene
1 , 2-Dichloropropane
Ethylbenzene
Methylene chloride
Naphthalene
Nitrobenzene
Pentachlorophenol
Phenol
Bis(2-ethylhexyl) phthalate
Di-n-butyl phthalate
Tetrachloroethylene
Toluene
Trichloroethylene
Average
effluent
concent r a tion ( a )

5,600
20,000
3,600
110
6,100
4,700
1,300
2,500

<10
<10
30
1,500
2,300
54
400
4,200
1,300
30
12
7,900
740
65
40
95
540
390
19
210
6,200
5,500
440
35
48
49
35
180
190
1,900
80
Percent
Average

35
68
65
90
68
35
82
77

14
19
31
43
56
23
68
19
54
11
6
68
54
75
61
39
62
SO
33
52
65
54
47
89
59
28
60
88
70
54
51
removal
Median

21
74
75
97
80
17
98
88

0
0
0
32
70
0
93
0
68
0
0
85
65
>99
84
30
>99
57
0
58
79
67
66
>99
96
0
86
99
>99
70
62
            Analytic methods:V.7.3.25, Data set 1.
            (a) Average of detected concentrations.
Date:   9/25/81
           11.13-29

-------
           TABLE 13-16.  BIOLOGICAL TREATMENT BY AERATED
                         LAGOON AT ONE PAINT PLANT(a) [2-40]
Untreated
Pollutant wastewater
Classical pollutants, mg/L
pH, pH units
BOD
COD
TOC
Total phenol
TSS
Toxic pollutants, yg/L
Silver
Arsenic
Beryllium
Cadmium
Chromium
Copper
Mercury
Nickel
Lead
Antimony
Selenium
Thallium
Zinc
Benzene
1,1, 1-Trichloroethylene
Chloroform
Ethylbenzene
Methylene chloride
Dichlorobromome thane
Chlorodibromome thane
Pentachlorophenol
Phenol
Bis(2-ethylhexyl) phthalate
Di-n-butyl phthalate
Tetrachloroethylene
Toluene

7.4
>25,000
70,000
7,500
1.2
46,000

<10
440
7
130
1,400
260
1,000
450
12,000
<1,000
<200
<200
60,000
280
120
ND
730
6,300
ND
ND
<10
<10
ND
<10
110
290
P/C
effluent

7.0
23,000
260,000
25,000
1.1
400

<10
<100
2
58
100
120
140
<5
98
170
400
100
4,200
200
560
23
ND
31,000
ND
ND
<10
<10
ND
<10
25
200
Lagoon
effluent

8.3
17
680
200
0.01
42

<10
<20
<1
<2
9
7
0.1
<5
<20
30
<200
<20
<60
<10
22
ND
ND
1,000
ND
ND
ND
ND
<10
ND
ND
ND
Tap
water

7.6
<1
10
4
<0.01
<5

<10
2.8
2
<2
7
16
0.1
<5
<20
<2
20
<2
<60
ND
<10
37
ND
740
<10
<10
ND
ND
<10
ND
ND
ND
Analytic methods:
ND, not detected.
V.7.3.25,  Data  set 1.
 Date:   9/25/81
               11.13-30

-------
                    11.14  PETROLEUM REFINING

II.14.1  INDUSTRY DESCRIPTION

II.14.1.1  General Description [2-44]

The petroleum refining industry in the United States, as defined
by Standard Industrial Classification (SIC) Code 2911 of the U.S.
Department of Commerce, produces a wide variety of intermediate
and finished products.  Table 14-1 summarizes information per-
taining to the petroleum refining industry in terms of the number
of subcategories and the number and types of dischargers.
Production of crude oil or natural gas from wells, natural gaso-
line production, other activities associated with such production
(those covered under SIC Code 1311 for example), distribution
activities (such as gasoline stations), and petroleum product
transportation are not within the scope of SIC Code 2911, and
they are, therefore, excluded from this study of the petroleum
refining industry. Some other activities that are outside the
scope of SIC Code 2911 are included because they are inherent to
such integrated refinery operations as steam generation, hydrogen
production, and soap manufacture for the production of greases,
or they are part of refinery pollution control such as treatment
of ballast water resulting from product transportation.

A petroleum refinery is a complex combination of interdependent
operations engaged in the separation of crude molecular constit-
uents, molecular cracking, molecular rebuilding and solvent
finishing to produce the products listed under SIC Code 2911. The
refining operations may be divided among general categories,
where each category defines a group of refinery operations.  The
categories are storage and transportation, crude fractionation,
molecular fracturing processes such as cracking and coking,
molecular rebuilding processes such as alkylation and polymeri-
zation,  molecular restructuring processes such as reforming and
other petrochemical processes, desulfuring processes, chemical
treating and finishing, solvent extraction processes for the
production of lubricants, distillation and oxidation processes
for the production of asphalts and auxiliary processes for the
production of steam and power.
Date 9/25/81                II.14-1

-------
                TABLE 14-1.   INDUSTRY SUMMARY [2-47]
               Industry:   Petroleum Refining
               Total Number of Subcategories:   5
               Number of Subcategories Studied:   5

               Number of Dischargers in Industry:

                    •  Direct: 182
                    •  Indirect:   48(a)
                    •  Zero:   55(b)

          (a)Six of these refineries indicate intent to
             connect to POTW in the near future.  Some of
             these refineries discharge only a portion of
             their wastewater to the POTW.
          (b)Six of these refineries reported no wastewater
             generation.

II.14.1.2  Subcategory Description

Subcategories were developed for BPT using linear regression
analysis on both refinery throughputs and process capacities.
These Subcategories are listed in Table 14-2.   Wastewater
characterization data for the total industry and for these
Subcategories are presented in the following section.  The
size and process factors developed are listed in Reference 2-44.
TABLE 14-2.
SUBCATEGORIZATION OF THE PETROLEUM REFINING INDUSTRY
FOR BPT REFLECTING SIGNIFICANT DIFFERENCES IN WASTE-
WATER CHARACTERISTICS [2-45]
Subcategory
      Basic refinery operations included
Topping
Cracking
Petrochemical
Date:  9/25/81
   Topping and catalytic reforming whether or not
   the facility includes any other process in addi-
   tion to topping and catalytic process.
   This subcategory is not applicable to facilities
   which include thermal processes (coking, visbreak-
   ing, etc.) or catalytic cracking.

   Topping and cracking, whether or not the facility
   includes any processes in addition to topping and
   cracking, unless specified in one of the subcate-
   gories listed below.

   Topping, cracking, and petrochemical operations,
   whether or not the facility includes any process
   in addition to topping, cracking,  and petro-
   chemical operations, except lube oil manufac-
   turing operations.
                II.14-2

-------
Lube           Topping, cracking, and lube oil manufacturing
               processes, whether or not the facility includes
               any process in addition to topping, cracking,
               and lube oil manufacturing processes, except
               petrochemical operations.

Integrated     Topping, cracking, lube oil manufacturing pro-
               cesses, and petrochemical operations, whether or
               not the facility includes any processes in addi-
               tion to topping, cracking, lube oil manufacturing
               processes, and petrochemical operations.
               The term "petrochemical operations" shall mean
               the production of second generation petro-
               chemicals (i.e., alcohols, ketones, cumene, sty-
               rene, etc.) or first generation petrochemical
               and isomerization products (i.e., BTX, olefins,
               cyclohexane, etc.) when 15% or more of refinery
               production is as first generation petrochemicals
               and isomerization products.


II.14.2  WASTEWATER CHARACTERIZATION [2-44,46,47]

Table 14-3 presents the number of samples, and the range and
median concentration of toxic pollutants found during screening
and verification studies at 17 petroleum refineries.  Intake
water, raw wastewater, and final effluent samples were taken for
three consecutive 24-hr periods. Raw wastewater has been defined
in the petroleum refining industry as the effluent from the API
separator, which is considered an integral part of refinery pro-
cess operations for product/raw material recovery prior to final
wastewater treatment.  The medians were developed from individual
plant data.  No assumptions were made as to sample locations for
combining results.  If sample "names" were not the same, the re-
sults were not combined to determine medians.

Table 14-4 presents the number of samples and the range and
median concentrations of classical pollutants found during the
verification study.

II.14.2.2  Subcategory Wastewater Characteristics

     Toxic Pollutants

No data are currently available to characterize toxic pollutant
concentrations by subcategory.

     Classical Pollutants

Table 14-5 presents ranges and median concentrations in waste-
water of classical pollutants for the petroleum refining
industry subcategories.  BOD5, COD, TOC, oil and grease, ammonia


Date 9/25/81                II.14-3

-------
      en
      ui
tn



o


z



ec

•s.

UJ

o
K

UJ
      zd-
      — I
        •CM
2°
       2±
        a:
       U.UJ
       0>

       za

       21
       UILU
       OUJ
       zee

       88
       I
       UJ
       ffi
c
i
u
i *
— o
*• C
"5 5
i
M
*- 4)
11
C
«
u |
1
e
s i
*j «
« <£
IB
Q
I
— ia
0.1. e
"isl
Z "
c
«
i
O 4
CO C
c a
M
<- a
a**- c
• 01
z «
X,
5

«
4J
C
a
*
C
c
0
(
h-




















«l
a
c
i
o
c
c
m
M
4i
I
                                                                            s
                                                                            V
                                                                                      §2
                              §o         o
                              oo  o  o  o
                   ino  oooooo — oointno
                   CJCM  CSJCM  «o  «>o  •ino -tncycy —o
                          V     VV    VOVVVV—
                   in   oooooomoommo
                   <\ioo<\j<\i «o>o^o  •otcucviaj —
                   VCMZVVfOI^VVCMh^VVVOS

                    111111111111111

                   — mo — w —*in —— cyfy — — —
                   v zvv vvv«v  vvv
                    	in»n»Aininir\f*9in —in —in
                                                      t  i
                                                                §o -«oo -0700
                                                                zM-z-znzz

                                                               i i i i i i i i i i
                          >>— » 3  •         f  •    !•
                          eo o~ e a   e   >»  3  3    a
                          5— *>— 3— t-ti   L — — u—    «j
                          icu — •«—   3 o c « —    «
                                  p O.C-D ojc e >— o  —
                                  Ca.aQi.U"'«e  •
          MO—" > •. -O .OO
          mz	mz»>oz

           i i i  i i i i  i i i
             i 2i  §
                V
 11-11      I I I I I I I I I I

aooa     oaaaooooao
zzzz     zzzzzzzzzz
                                                                                  o     o
                                                                                  §   §°.
I            11  s
 *             « •>
—            MM


§            §i  §

1-838


 §000
 zzc





minmin    ininininmininininm





iii     •§ zi§g  §§s     g   §§
§   os.
 •QQ — M
MZZOO-

 • I I I I

 SOQOO
 ZZZZ
                                    o
                              9UMAQ —
                              -v vzv
                                                                            ooooo
Date:    9/25/81
                                       II.14-4

-------

_
•a
0)
c
~
c
o


'*** '
UJ
<

UJ


C/3
<
0

z
—
U-
UJ
"-
jr


UJ
_J
0
o:


UJ
a.


z

i-
z
h-



O
0.

o
X
0
t—

u_
O
z
o
I—

1-
Ld
U

O


ro


LJ
_J
CO

l~



c
R

a


c a
3 C
— (0
<*. tr
Ck.
0
U.
§
(A
L. 0}
CD —
a «*- Q
e o E
3 CO
z to
c
*" "^

c Z
o
D
*-
0) 0)
O
t. c
O cc
CO
L.
to
O
0>
(0

— (A
& I. CD
< CD —
"i o i
c
CO

•a
I




CO OJ
-X C
CD C
** to
C (C


«
0) —
f*k- Q
O E





_J
•s,
O
a

i0
c
CO
if
—
O

_
|

OOOO O OOOO
zzzz z z~zz


o oo
o oo
o o co o o o r*- co
O\ ro «O O O • O O O O » »

1 1 1 1 1 1 1 I 1 1 1 1 1 1

oooooooooooooo
ZZZZZZZZZZZZZZ








o o o 0 oooooooo
zzz— zzzzz^-zz
cy



So
o
OOO— OfMO
ifs ^ \o — *Z Z § § SO -31 OJ *n \O —

1 1 1 1 1 1 t 1 1 1 1 1 1 1

oooooooooooooo
zzzzzzzzzzzzzz








CVJ(MN(MCjrjCMCVJ(\JCJCMCJC\JC\J


oo o oo o oo o
zz z zz z zz z


CNJ O O
CJOZ — ZrOJZC\JZ — PJZ —
1 1 1 1 1 1 1 1 t t 1 t 1 1
oooooooooooooo
zzzzzzzzzzzzzz






V)
fc
c c
CO 0) CO
U V 0
O 03 C 03 TO *0
L. C 01 C t. —
•O O— 0> £ >
> t- >»— ** c
£ JT t. >> C 03 0>
« Q) L CD C £
o c acD -— Q) o
— CO-N.. a co ^ —
4* C O^ — - >» A
CO CD C CD O CX
E CD£d}CN"s. 'D
O C Q. 1- 03 C 0> OJ CD CD
<<- 03 03 '>v>»L. CDCC CDC 4J
to C — 03 03 D. >> ACDCD CCD (0
O £ £ 0) OJ *»— 0) 03 ** *J 0) — £ —
— Q. & TO TO »-•»- C3D«OeOfl3£Cfl3 O
> CCjr^NNXXOOOjTCC Z
> OOCCQ)a)££ — — — a£>» >
o o
a. Q.

oooooooo
y v v


oooooooo

i i r i i i i i

OOQOOOOO
zzzzzzzz








OQQOOOQO
zzzzzzzz





oooooooo
vvvovvvv

1 1 1 1 1 1 1 1

oooooooo
zzzzzz zz








(\JC\JCJOJOJC\JtM CM


o
z



oooo *oo o
zza-zozzz
1 1 1 1 1 1 1 1
aooooooo
zzzzzzzz












V9
U

10 CO
7 £
c a
3 —
E O CJ CM (M OJ CM OJ CNJ
U (0
D OOOOOOOO R
-> ouoooooo a
- ££££ut.i.E c
e «««« -

mo o
VZ f!



— (OOQOxOOOOO
V — ZZZlTlZZZZ
1 1 1 1 1 1 1 1 1 1

oooooooooo
zzzzzzzzzz



U O




\oooo o o
zzzo z

A


1

Z — CV — CV — *Z A Z Z

1 1 1 1 1 1 1 1 1 1

oooooooooo
zzzzzzzzzz







o
	 e>— 	


OO O tAO OOO
ZZ Z OOZZlAZ


o oo o
lAOOO— ("> — O lAO
f 1 1 1 1 1 1 1 1 1
ooaooooooo
zzzzzzzzzz




~ «



CP
c o>
CD C W
— CD V

CD CD *» CD C —
•a c cp o a> cc o
— TO o o o i- CJE a
1- .C C I- *O O O -M CD (0
O *» TO O — — — fl) C *J
o o CD a— (OJ-> o x
£E O — £ *- tD — £ "O
O t-"D O *> OC *> C
•P 6 t_ O 1 0) 1- O OJ CO
*JOO£CCI— 1-*- 10
COO— M— »O t — ^
5 o z ? V £ w* 2 ~..ii *o

ooo r-K- •- i

ooo oo ooo
zz z zz z^z z


§
O — lf\
O — lAQiAOOlA -O lAiAO «
zvvzvzzvoz ' v ZCM
1 1 1 1 1 1 1 1 1 I till

oooooooooo oooo
zzzzzzzzzz zzzz





IA lA lA iA U"\ IfMA lA tA tA lAlAlAlA


O 00 O 0 OOO
zzz z z zzz




§
so
— z v*— zzr-zz— z v^w

1 1 1 1 1 1 1 1 1 1 1 1 1 1

oooooooooo oooo
zzzzzzzzzz zzzz








oj cvj c\j tv co cy cj OJ oj OJ OJOJOJCM


o
z


CO
OOOOO 'OOOOOOOO
ZZZZZCMZZZZ ZZZZ
1 1 1 1 1 1 1 1 1 1 1 1 1 1
oooooooooo oooo
zzzzzzzzzz zzzz












CD CD

C to —
CO C Ik. X
Ik. CO — 0
-w 3 a
3 = * *
o « c t- t- o
XO XX C WO C-O V — — o
CICDl I-DOOILJ3OOO
U ^ i £ I 0-' .' JZ (0 O £ £ Q
— — CD V <0 £ » *— CD C CD CD M
«moooa-*
-------













UJ
H

1 ! 1

(—
CO


•*
o
—
z


UJ
oc



UJ


O TJ
(X (U

UJ C
a. —
4-)
Z C
— o
o
1—
2<
5a

— 1 Z
oo
a_ —

0<
— O
X-
OU_
h- —
o:
Lu LU
0>

za
oz


 —

£ 0 E
3 co






•4J
C

3




<
•a o

— CO
JC t.
*"" Q
03
CO



C
CO

•a
 CO C O C O
<0 >C CO — 0! C CD C
0 X u— a — £ C)£ O
o j= a.£ w co a— o o a
C'* ^*-% — 4J£ 0)1-O>>CCO
— A n a >>— £O. £O^£C00)t-
— e — — £ >
•o >> 3 e e e « ^>u
C CO— S3 0) X3 3 O 0)3
a o 	 3 — 1-13 ' 	 < — w i a
EC 	 SO— 3OCO)— CO C\JI
— Mc4(.-auacocoi-u 	 roc co vt t
w «CD> I- U C E O O£ «
*"5 u ° — Si>£°~ °
4JQ — £111 	 +JC **
as o oJJ-3-zzcco n
	 C 1 	 0)£ E
oo ai eg (M eg eg CM d- a. Ck a
a. <






CD Q)
C C
0} O
N N
C C
a> a
£>£•
SO t)
1- C

££ C
Hi o o a> e
C 	 jO C
N 1 1 >>3
CC\JJ£ —
S« -« O
	 UJ*-
Date:  9/25/81
II.14-6

-------





or
Ul

<
2
(O
^
u
z
z
u.
Ul
a:

£

J*~
OTJ
t- 3
Ul C
O. •—
4J
Z C
— o
u
K~~
1!
oo
o.—
0<
— o
X —
1 —
Of
U-UI
0>
ZQ
oz
-<
<0
cez
zz
UIUI
oui
zee
oo
o w

CO
1
a-
Ul
OB
l-






c
it
o
c
to
3 4J
O CO
U. U
a
S






4J
C
1
c
£va>
•D O
1. U
Z2
"I






*J
C
fl
.re
«
Ik
O O
o *•
IB
0










c
9
•a
i

o
g
a
fl£



C (0
V O

z *

c
(Q

•c
i



a
i
a:

1. M
O 01
rl

*
T)
1




a
2
£


k u

— « »» o o o Q O CM Ift ll\ ^^^^^^^^^j__ oaQoaaaoaaooaa oaoooaoo "" zzzzzzzzzzzczz zzzzzSzz CM » i g i . s s i g : £ g g 2 i x 5 : ? 2-5 S . . . f S t : 5 £• g g 5 52 S.S.egS j ^ 5 2. ^ 2 «- S 5 5|i2£«Sg : *> c ^. — >. ag £ - o2-i-£xpe , O Cj) O O O ft C| O £ •f£OO£U— < 1 O £CC N -v TJ 51 — O OOO— CWOX u OO <^EE OCC 0C Mol — N«)m^9iA>O ca u pE^o*>p£4J 0 C— OSXX £OB CO on OCMNCMMCMCMCM *» • «• O 1 B E o 0 I U ££ 0 «— ^*«| o 4*4* (B — £ — ol a*>OO£C)CI— uEi — «*> o U 0 0 e c C C C •*> k kkkkkkkk 41 V k o «B(M£K O 1 — 1 a. a* o— —« o o o Q£ c e o« oooooooo o coo— uj— .01— ^ >| C C££ N N XXO O O£ C O £ £1 2 O P O O O O O • £ O£ 1 l£ «k *O ' 9 UOCC00££'— — — O£>» >H EkCEkEEt a O£M » •• •« «k H <<<


-------







a:
Ul
$
2
h-
CO
^
^
u
z
z


Ul
cc
£
^
Ul
1 ^--_
i?
1- 3
Ul C
a.—
z c
- 0
u
CO —
h-

za

i —
zz
UIUI
o ui

11
w>
1
*
«•>

UJ
CO
K






c
«
(*.
o
c
CO
a
a
u
'i
0)
-C
o







^
c
3
<*.
C

c
o
Q
O
CO









c
a
i. fc-
< 0)
u C
C

E OQ
3 !
(A

C
R

a



a
Q;


i_ to
0) 0)
z a
«
c
«

n
z



i
c
a
ce


« a
s o c
3 i
Z e
it




C
«
«J
C
c
4
C
I
u
X
o
H

CMQO P*-OOC\lO iA O
V>O VVOV V «
^

§
OO OO-^O lA lA
CM C\J O vosfi >iA CM *
vv«o«ovvov v \o
Illlllll 1 1 OQ O Q
zzzz
lAO CMOO^OO^OOiAtAO
(MC\J VCMOVrovO -tAOJCM — O
VV VtA VVOVVVV —
V








V V CM V "> V V




OJT O OO lA O
CMCyW — ^CM -lAOCM — (A
VVVjfWI^vOVWVV"- OQ Q-Q

— CM CM O -if JOOOOOiA — ^
VV VCMWVCMSO .lA-CVViA
v v cy vw v v




CMOO — OO — OCMAJTO
V \0 V — V V *•



-5
g
O00 O«O O
(MPJ .— OVO -O>»— —
V VCSJlACVJ 	 — CMPltOVO
v o\ i ii i zzzz
"?I5sfdFF§





2
^ «
IA ^
i- c«
o c
J3 *J
•C O
» *- a*»
5 c -2«S
CO — « *> 0
IB — XJC IB —

c ^^« — — - "i"
! Bs?ii.« ^-1J a flS
• CM— — BO— 3OCO— IB OJI£W
U — » ffl >>B O Q.C-D O J« 4> >— O — — C*>» -
— *J «ja i--c t. ao « C o — — «j c IB »iei
*J 444flOOUOO^ZZM(/)^ts4 ^ fiOOO
1 i i







OOQOQOOOOO
zzzozzza-z —
A














o
aoQinoaaooa
zzzr^zzz -zz
M
A












zzzzzzzzzz








_
— o
c o c o «• o
oca co
§~ a£ a— — £ o 3
o a— o o a. 10
o •• o >>c co os
8£ — a> a a— — o
0 C • 0 gf C-
M — aoowwaoao •
•H £ l l i ~ — a C l o
3 OJ-3- JZZ C «»O I-
:! i ... i i a>£ .a








ooaoo
v














OQ
ZZ














zi










II
NN
C C
22
S8i
2«S
££ C
So o o a
-, oS55§
i g^ii4!
9 S--S2

Date:  9/25/81
II.14-8

-------




ce.
Ul

2
V)
^


o
z
z
u.
Ul
EC

3
Ul
_at ^^
o-o
CC 0)
1- 3
Ul C
4J
Z C
— o
u
(-**

3O
2°
H
0<
-0
on-
ce
U-UI
o>
zo
oz
K-
£S
L« OB
zz
UIUI
out
zee
00
ow


i
a-
Ul
_l
m
<
K*




1
CH
(*-
0)
+J
C
(o
a
u
E
V
jC
O

c
to
•a
1
0
a
c
CO




t- (/)
O 0)

z: ra
M




w
C
S

C
13
C
O
Q
O
03


c
.-
•o
X




o
c
a:




L. (A
Q) 03
Z a
.
C



+•1
c
0)
3
— *•-
< 0)
c u
u C
«
0
M




(0
•a
l



Q)
g
ft)
ec



u «>
« o

E O Q
z to
(A

_J
V
i

C
4J
1
u
X
o





QOO — OQ— QQQOr-Q— too — QOOQQ OOQQOOQQOO Q Q Q Q O Q Q Q O Q Q Q vO O
ZZZ ZZ -ZZZZCgz -Z -ZZZZZ Z-ZZZOZZZZ ZZZZZZZZZZZZ -Z
9 " ° 7 *















OQQOQQOOQQQQOQ OOQQ -QQQ Q O O Q Q Q O O Q Q Q O Q Q
zzzzzzzzzzzzzz zzzzozzz zzzzzzzzzzzzzz
















iiiiiiiiiiiiii §i§ii§ii iiiSiiiiiiiiiS










§ el .
S3 g g a
g g S _ >, 5 2
oo£ > £ 41 m ~
1. — U C Ml Ml tO 10 *> C C —
£>>ca to -o O-DCCDOIDWO
u i. a c £C — — -c£A to to
Ol CO — 0) O5| MkfCI-lgoewatg U-O
CO 0. CO 1- — O CO O *> CO O ~ — — CO C W C CO -
3 C " — >, fd £ - 0£-l-f>>pO 0 to W X
cal O03OO& W C£a*>£OU£*>^V k — O
i to ^ c c N -C •oo -ooou-igwox -30.
O C O.0JO COO) O OU SO—NONCUCO^O — <0 BO — £ 1- O — £ ^ 3CM O
MM OO ^ «- C 0) C e OC *> — tM roma-^inso 0 L 5 t-*O U *» 0 -C *• e « CD
CDC C — tO tO >1 >> aoO eg to -D Owou i-kki.kt.bi. «i vCoco«co£(-o o m oacDUOUM — ££C
— 1 to a a co co — — « to to to ca j: c to o— oooooooo * ego— M— .01— 13 ci ii-oggi 0 = 000
>Jo C C££ N N >>>|O O O£ C O £k OOOOOOOO « AOCI l£ - "- -O U *- £ X *> 1 O 1 1 £ C O « *> O.
Ulk O4>«J**CCkb.333Q.Q}U CJ OOOOOOOO O k—UftlC\i*»— ** — —• — V O.CO — 1 — * * O.UJ T3 O. a O
3S 5S55SS5g;;:zS^ i? ^^ii^ili 2 afiS---*|_-ff--t S <
-------






25
|
(O
o
u.
UJ
o^
ec v
1- 3
u c
OL —
**
Z C
— o
o
z<
§i
-IZ
oo
0<
-o
X —
O U-
U.U
o>

ZO
oz


eez
^» UTT
UU
ouj
Z<£
00
ow
CO
1
a-
u
s
c
0
i


Ul
)
1 fl)
: g
) tt
L.
U (0
2u»
E O 0
5 a
c
g
: S
- c
- S
D
D
J
E
"lws
l°l
U

c
fl
i

i

: i
D «
k K
J

1

7 i- «

«




x
G
«
4*
C
«
*
i
0
CMCM VCMin  00 Z V CM -^ rtrt CM — f^ « V V -^ C\T— ">*» Z — ZVZVZVZ —


— a-o — CM — mmcM — — 1*» — — o oooo OOQOQOOOOO
VVZVV V -V VV— ZZZZ ZZZZZZZZZZ
O V
Is" 00 tf O O O O O O O O O O CM CM — —


— — m m in in m in in m in m mm CMCMCMCM CM CM in CM V m
v— — v — v v m
oo o oo m o
CM CM r^ v- r» M3 -inocM — co
v VMn-«- v- v veo
— M3 1 1 1 1 1 1 1 1 1 1 1 1 OZ
Ox
cMOO«oocoo«m— o
VCMmCMCOtO *mVCMVOt
v— vo v v a






cMOOooomo m o
VCMO CM ^
V mco vo— V m


o oooc-o m o
CMCMOt— «MS •« CM m
v v t^mto vo— v »

OQ oooooaaaoo
ZZ ZZZZZZZZZZ













m— o in
w a- i i i i i i i i — i — i oooo OOOOOQOOQO
V V V ZZZZ ZZZZZZZZZZ
woooooa-j m o
VCMineOCMM) >M3 CM fO
V CMm VO V CM







B
^ IB
i I
— £ B
»\ <*• a*>
1 o ri
5 - i?5
1 2 J 22 I!
3 t-»5 B f t « IB
• i-ES^iB-s hls= S ctl
w — eo>>Kpacvpjctt>— o — — c
— +»ia.a»-KN ** flDC
£ fl











— o
. - - SS
ss §og o sE
• - 6 C B CO
^5 oi2i--2 i3
£•» c o a- o o a i«
*>£ o t- p >>c cp pi
c a £ o !•£ B B >. t-o
O. O.— *>*>££ O *» C
— p£— B&CL— — O
^i» |^£|ES?-£S s
£i M -oaowuSooo -
*«B — £111— — *4 C 1 «) 4i
Bi o oaa-a-zz c evo i- •
— — C 1 » * • 1 1 B£ •« •
OQ B CM CM CM CM CM * a. a. 3> 0. 0
ttj <
O OOQ
Z ZZZ


o
cuoo — m
— zz v n

i i i i i
§0000
zzzz




iiiii













ooooo












Benzene
1 , 2-0 1 ch 1 o robenzene
1,4-Dichlorobenzene
Ethyl benzene
To 1 uene
Date:  9/25/81
11.14-10

-------






or
Ul

<
2
(O
i
u
z
l^.
u
oc

3
UJ
-I —
o-o
(X (0
t» <5
l^ w
UJ C
*>
Z C
— o
o


z ^
-?
3O
-JZ
00
a.—

0<
— o
Ou.
1 	
U.UI
0>

oz
t~
KZ


UJUI
OUJ
zor
88


1

UJ
CD







u
c
1
Ck.
0)
i
^








**
c
03
3

d-
O

Q]

n
£
^—










3


—
u
5
*1
a
c

o
5
_?








c
A
•a
r
&

a>
o
to
o:


^
2
- O
e O E
3 (0
Z 01
C
to
•a
CO
z



o
a
c




—
^

<- 0
Jl *i- O
1 ° a
Z M

c
CO

0)




0)
c
(0
a:



£
i. 7!
o o
ioo
14



u
•V.
a
3
U!
+J
C
z
g
o
X
o
f—
z zzzz z z z zzzzzzzz zz zzmzz z z

— o
i*y& . .^ OOOOOCOO O OOOOO O
\OZZ-to 	 ZVZZOZf- VVVVVVVV VvOZVVAVVZV ZZZVZZZZZZZZZ

oo a a aa aaaoa QQO aoaaoooo oaoooooooo aooaooooaaQoo
zzzzzzzzzzzzzz zzzzzzzz zzzzzzzzzz zzzzzzzzzzzzz



u u

cwMtviMiMiMrufurgtMWcyNCM










§oaaaaaaaaaaoo QQQQOOQQ oaaaa aaao ooaaooooaaaaa
zzzzzzzzzzzzz zzzzzzzz zzzzz zzzz zzzzzzzzzzzzz




















ZZZ Z— ZZZZZZ— Z -ZZZZZZ ZZZZZl-ZZZX ZZ -ZZZZZZZZZZ
0 0







IO1
c
o
€ 8 « S
a o * 9 •
o o — c *»|
ssi2 r ^sa
•OOO£ > 41WO— 1
> t- — a c «l CO O O O C — 1
£5XS1 2 S2 loloeiS 1 . .
o c« — e o MI £co-ooe«JO col w -o
- S S i x 23 22 ^ZtZxll 3 « = " x
11 . 288 S S ,i -2 « SS^SSSox 5 i«3 i
O C ft. O * COO O OO « — CyOSCMBO* O — <0 •OV£L'O— £ "M 3— <* O
^ O O "X l^ OCC OC ** B *—CM <•! <*> 2f 5 (7\ W3 •CO^IO4'O£MC MS
« c— oexx .00* co co i OCMCMCMMCNMN " S "" ° 3 B ° S * ° * c fc o
U ££ O O— — O O *» 5 O — £ — O « *>OO£MCI— ut » XU X X C U1O C-Q <>. — —
— «»J O U CO « C C C C C • *» <- 1.1-1,1.1.1.1.1, u «. 1. o M«C\l£t- O O COXCOS COOOU C — ££
- aao c - -a c i eo i i-gooiuisoo
> CC££NNXXOOO£CO £W OOOOOOOO tt AO£II£>«<'«O U k£*tfMO--£t>O*>O
u o vuact PCs 3 3 ao " j> a oooooooo a t- ocMBia— «— — - « aw- 1-a-tfo.wo ao.
> OUCCOO££ — — — co£X ^— t-Ut»f.C.t-C(j. o C0£— «^O «O «<• 4J — — O O «£ «•— OCCOO
— <««nco c »
— o
0 C
01 £
S -2 S
•• s 5
§** ^ 5

4J C
— U 03
O O C
o a **
O Q>
? 2 S
S " 2
C Id Ol
c S «
— — JC
(9 C
J5
» c
«- CB C

CM A
» » (0
^ B C O
- e -S
«0 A £ (* ^
gr «a'
co > can
*> « a i» 3
Sa ~~ o *

4s ^i^
(O CO -O • *»
• v o o e
r- *> o 3 •
• •o u o c
> c a xu o
3 C co —
.. o • fc-o»*»
vi a.'D o c a> 9
n • e um s i.
o o ** — **
£ O O O O W C
« o C f. > o
IS o™ * — 8
8-Q M M— O
- uSi-c
U K> O — — « CO
X^C..g|
fff .M_n,M
-Qwao-0
GO Z ^—.^-.«—
Date:  9/25/81
11.14-11

-------
















*••*
r*




CD (X
ZUI
K<
H3 !S
O UJ
h-
O (/)
z<
^2 ^5
o
U.C9
Z

z —
^c ^*
t-UI
so:
«j
— 1£
2S
Ul
_i
-JO

— Ul
MO.
•£z
O
U.Q
O=>
^
coco
z
o z
^_ 2
^ H"
•

•
.3-

^f
•»

UJ
_j
s
H

















p
jj

—
h-
<*-
3)

u.
^
3








•M
C
Q)
3

h*
l_
co
i.
o

CO
i.
CD
O
flj
CO

w
o.












*
ee
4J
C






















c
CO
•-"
•o
0)
£



CD
O
c
CO
o:



CD
C. CO
(U —
•Q CK Q
E 0 E
3 CO
Z <0


C
CO
•o
CD
£



(U
U
c
CO
ff




u>
i. o>
0> _
•0.4. Q
E 0 E
3 (C
Z CO

C
a
T;
a
£





CD
O
C
a





c
CO
•p
;
S~


OOOOOCOCMCM vO vO VO ^ O CO
CMCMCOif — to — O -vo 'O— •
	 it— .— oo • vo
V O 0
V
O *"••
C5 CD ^^ T3
OVOOCMOO r- o o ^
co to tn *vo oo o • o ov o • ^ o
CMVCVI-" cotoifoto in ^ to to cvi

i i i i i i i i i i i i i i

vo in^ o o\ r^ to CM & — ov — i*^ co
- -O
o o •
V V O
V

VO
in oto
OOO CMVO O -CMCvl
CM CM in in — ov eo • •— -o -co
Jtmtoeo — CMVOO — toO\VO —

1 1 1 1 1 1 1 1 1 1 1 1 1 1

VVV VVO • 'OOVO
•O VOOO •
O V -OlA
V O •
V O
V

vo Ov CM ON CO — Ovcoor*"OCM^*cO
*^ CM •* ^ ^ m^ ^ in CM in in*f -•



«
110
co in
£2 r,
we ^«.
3 CO _/
^^*^^^ CO ^ CD CO £
COO O — CX-O —
«— •«^»» C CO Q.— O •>
ininin ovo c c >
QQOQOU5E+CM— .COCDO
OOOOOCOEt-l— X >>JC —
cQcacooi-»-
U CO
CO l-
CO CO
q
w
ca















^.,
m oovovotocMcomvovooo
1^- VO — veto -O -VO *O 'VO
v co r- .vo r- -CM
o o
V

m vo
o oo J-o — or--oino
V — if O> C^ CO O O\ ^ 1^* O ON —

1 1 1 1 1 1 1 1 1 1 1 1 1

o mocovotocM — d-tominm
r~- inf-incM o •«*> >o -m
cvi .in r~ • —
o o
V


CM ^O CO CO CO CO CO CO CO CO CO ^^ CO



«r

co co o CM oo m cvi co m to — ovj-
— moomto -o -CM «ovot^

~ 0 ~ 00-



& — m
ifrO CMOtO d'OtO —
CM v cMvovovooinmr-o — CM

i iiiiiiiiiiii

m CM o m JT o CM in to --3-r-CvlvOOCvlinCMO
votovovomvo -o -jj- -o cvi
V V CM 00 .<0 — CO >
o o
V



m —

m CM co o\ to o in «inm • «cMr«-
COJjVvotMtM — O — CMCOOCMCM

1 1 1 1 1 t 1 1 1 1 1 1 1 1

IA| ^ «j CO VO VO CO ^1 CO ^T to ^~ ^ Ov
fototor-dro «O "CO »O .
— (^ .O VO • CO
o o —
V



••t* to vo vo vo m vo vo vo to vo vo in to




CD
U)
0} CO

OlC ^
3 «0 _l
^^^^^^ (0 ^ CD CO £
COJ3O — CXXJ —
~.^~< C CO D-— O »
inmin ovo c c >
a a aa o to e + cvj — -cotpo
cocoflQoi-t-
-------
      <
      o
      O LJ
      CD

      <



4J
C
3

t*.

03

4J
c
CO

a


CO
u

S

o









4-1
c
a:


<•-
s

T3
C
O
a
o

03












O
CO
CO
03 C
W 0}
Z

a. (_

03

4J


LL.

























C
CO

•o
s






0)
o
c
CO
ce






i_ CO
J3 <*- Q
E 0 E
D co
Z tfl
C


•o
03






a
c
CO
ce





V)
*- 03
Q) _
EOS
3 (0
Z «
C
™
•c








03
a
c










_J
-v



c
CO

—
o
a.
00
co com — CM o • -CM oo
V J- . co r- •
o o







oT
— ' OfOM\O — <*) — O\— CMiTi
— — COCMCM — • O CNJ
00 • •
0 00




J- CM »
— — OCM
CM CO CM — OO • CM *T\ • • •
— — t^fJ.S'CMO — (MOOOO

1 1 1 1 1 1 1 1 1 1 1 1


— — P*OJ — V O • -OCM
• O r- • •
0 V 00


















V
U)
(9 tfl
0) *>
i — -a
CTC -x
3 ,£ -
mcQCQOt-h-
ro ro j- CM -O -— • — O •
— U~i • O P- • • O
o v o o
V V

CM CM
O iT\ P-OP-
O -3" • • CO — • iTi
O <*! -3" CO • O O lA • -O •

I 1 i I t 1 1 1 I 1 1 1


CM CM co — -O • • O O CM
— -r • o P- • o •
0 0-0
v o
v





^
r- CM OoovOOO — m cO -3-


oo - oo
v



O — <*•> vO
O\O O -3- — OOO
— V ro o*\ oo — O ^ aOOO"^

11 1 1 1 1 1 1 1 l 1 -3"



CM ro -O vO • •
O V OO


















03
Ul
CO (A
£•»•»
•a
we \
3 W _1

co^CJ - CXTJ —
— — — c ro a- o -
iTMTnr» OO CC>
OOOOOWS1- i— x" >^ —
comcoo»-h-» C C

to «) C 3 -u
.. -a cj — 13 ca
u) S t- t-
•O eu O 0) > *J
O *JT3 i- o C
£ CO - 4)
4J o e E c- u
03 — O O • C
S-D *- (-TT 03 0
c <•• c^ QJ cn o
O — (U co
- "O ~O u> (_ C
U W 03 C3 Q] co
>>-£ 03 03 O > 03
— C U3 (rt Z < 2
c — co n u -o cu
Date:  8/31/82 R  Change  1   11.14-13

-------
as nitrogen,  phenolic compounds,  sulfide,  chromium,  and TSS are
the significant pollutant parameters.

Table 14-6 presents the number of plants,  ranges,  and median
concentrations in wastewater for classical pollutants for
indirect discharges from the topping and cracking subcategories
of petroleum refining.  The available data were not sufficient
for the other subcategories.  These data tend to confirm that
there are no significant differences in raw wastewater character-
istics (flow and classical pollutants) for indirect dischargers
and for the Petroleum Refining Industry as a whole,  and further
analysis confirmed this.

Table 14-7 presents ranges and median loadings in raw wastewater
of classical pollutants for the Petroleum Refining Industry
subcategories.

     Wastewater Flows

Table 14-8 presents the median flows for the Petroleum Refining
Industry subcategories.

II.14.3  PLANT SPECIFIC DESCRIPTIONS [2-47]

Verification and screening studies were undertaken in the
Petroleum Refining Industry to:  (a) analyze for the presence
of the 129 toxic pollutants in the plants' intake water sources;
(b) analyze the plants' raw wastewaters to determine the net
production of toxic pollutants as a result of refinery process
operations; and (c) analyze the plants' final effluents for the
presence of toxic pollutants and to determine an indication of
the removal efficiencies of BPT-type wastewater treatment systems
for these pollutants.

The verification and screening studies were conducted by
the Robert S. Kerr Environmental Research Laboratory (RSKERL)
and Burns and Roe (B & R).  The details of how the plants were
selected in both studies are available in Reference 2-47.  The
combined studies sampled 17 refineries, at which intake water,
raw wastewater, and final effluent samples were collected for
three consecutive 24-hr periods.
 Date:   8/31/82  R  Change  1   11.14-14

-------



^
^

1
CM
*— '



Z ^
— O

>z

o ~
OH
Ld <
HO

OLU
CO —
3CC
CO UJ


CQO
z<

-0
^f
NZ
— LU
01 LJ
Ld C£
H-0
O CO



xz:
o —
z
Ct —
Ld b_
L_ Ld

E
CO
t_
CO
a.

ooo~ O




.3-eOO Z (M • -lA —
"" O




oooooooo
oooooooo

1 1 1 1 ( t ( 1 1
OOOOiAQOiAG
rOiAiA— • Z Z — 2






flOO^f""Oi3"lAQ
— w • •
OO



0 O
OiT»O OOO O
O O OOiAOO OO
-lA 	 OSEZ-Z
O




"O 4-
0) o
O) CO

|
(A



— CM M " •
O




§0000 o
OOOiAOOO

I 1 t I 1 1 1 1 1
OOOO — lAQoO
O O lA CM • "Z. W Z
— fO O






zzzzzzzzz



OOOOO 0
O OO OPJ lAOO
1 1 1 1 1 1 1 1 1
OOOO 	 OOO
oooco -za-r
— ss— o






(A tfl
CO "O CO 'C

C 3 C 3
OOO>E o o 01 e
lem3 lem3
E E to — E E eo — •
TO O OJ E TO O QJ E
y i- o O t- O
C O « jZ COMjC
0> — 03 •« O (B—OJ'DO
&— -o c »— ^ c
SO— co— O 0 — «l —
Ct^eo VA t-C^co
OOOW — £ 3 — 0 OOOW — .C3—0
CD O f- H- Z O. t/J O (— CO CJ 1— I— Z O- (/J O t—








2E -^


1
>CJ
ce - •
o
O CO
LU ce
H LJ

oce
CO <

CO O
CO
ca a

Z p-
00
— UJ
HCC

NO
ce —
LJ
HOC
00
^ LL.
ce
~ Si
X Z
o —

ce —
LJ U.
HLJ

ru 3
LJS:
in CO LJ
I _!o
ce
CO ^p |_
n  ™
Ld
wo — — J
v UA CO
5S2 <
*j o>— r—
CD -M CO
E 0) >
•o co
u










>
t-'
C CT

U CO
co c;







C


"O
2







(U
c
c
CO
(C


l~ CA
OJ *J
n <- c
E O co
z a







L
cno
c c

are
0 0
3





c
CO

•o
V





V
c
c
CD
a:


1_ ^o
O V O O
V V


J2
OOO O O



1 1 1 1 1 1 1 1
MO — INliA— COlA
CM o r-\ooo • o
OCXJ • . -OO
OOO
O V V O
V

VD-VO.AXDSOOVO






0) E
(A 3
•o <- o

— J O W £
£ CO — Q> T3 O
— — •DC
« C O— co —
> IT, O C d- tO
O O Q E Ctt 	 •<->
— OO E.C 3— O
u. m cj < ci. w o H-
































CM
(A
0)
(A
CO

°fc
ro
^
> »
+j
CO
(A
•o -w
o c
JZ 0)
fl) o
E —
tfc.
u w
— 3
CO —
C CD

— 4J *J




-------





-^
o
0

CO Z
Q —
LJZ
LJ LJ
U. LJ
a:
O CO

E ^*
• CD
3 ^**
O
0
oz
0 —
oz
— "u.
^•vLJ
C/J Oi
^*
^ 2£
CC 3
OLJ
0-J
1 Q
— cK
:*: 1-
LJ
l-o.
LJ
Z Z ^~"
— ^
z a-
— >• i
y CM
CO O —
oo
ZLJ <
— r-r-
Q«
< OQ
O 03
-1 3 Z
CO O
Q: —
Li] X* ^.
r- Dfl<
< 0

LJ => U-
h- O —
co x o:
^ O LJ
^ 3 >
o
SctQ
j
O1 S—
C 0
- CT
.* CD
O 4J
co ro
<- 0
O.O
3
U)






c
ro

•o
tt)
y






*~
JO
^^
a>
o
c
^
rv
















>.
!_
OIO
C 57
— d]
O.4J
a. CD
o c

3
Ut






C
ro

•Q
Ct








^*
ja
^_
0
o
c
ro
a:


















i.
CD
4J
^
g
R
i.
ro
a.

C7\OOOO\vOror*-^ro
O h- vo in it co in -rocvi
—V — ^ ~— , f^. •
0 0



o
o
rOO— OO O O ON
•^CXJ ^OS-CNJ-^^f— •
J*r*-~ J'rOONCMCMCNjro

1 1 1 1 1 1 1 1 1 1
NO "^ O ON fO ON CM NO ^f ^J
. ^f o -^ * o ~~ • • ^
NO CM NO O CM lAO
CM
O O




• — •
^- -a
rO CO O C\l 00 -Zf ™~ O CO if\
O*^ r*^ M ^f ~~ O^ PO • C^ W
CM • J- •
0 0




00 —
mo "D
r^- o in o o ^^o o CM
«r~- ^cMNooNOor~ •


i i i i i i i i i i

ONj'OO^J'^l' — CTNON-^fCO
CM — CM • ONO •— • O
m • -CM • CM o
CO OO O O
•
O








vo^rs~oc\j^"foj"C\jr*"
. . PO • — m • ro -O
VOfO CO OOOO — O
VO ...
o o o



g\
GO O O O IT\ — CM
lO ^ O^ VO ON • ON * C5 "
ti^ W J" ^0 W ^ 00 ~~ W O

I I I I I I I I I (

o fo ^r ™~ r*" ^ o *~~ r*^ CM
o • • • -o -ot^o
• — ro — OO — OOO
00 • -O
o oo •
0






>.
"O !"•
4) o
4J 0
CO CD
£. 4J
01 ro
CD o
•P £2
C 3
— 1/1





















>
S-
o
0
CO
CD 4J
J2 ID
3 O
_i .a
3
I/I




^*.
inooooN oooinON
ro O ro J- m • • (^ Jt
CMCNjrO— roOJ
O


*~+
o -a
0 O —
r^ o in o o ON o o^
roCNJ «00ro ro • r— •
— NO — NOCM cMt^cM —

1 1 1 1 1 1 1 1 1

O-^rOONin •~CM — CNJ
.s-Nor— CM— NOincM —
• . .
oo o










f1^ O O O CM ^3" ro ^ O NO
— CM ^f — 1"- CM •— CMd"
— cMin— ooo — o

o o


o
o
CMOrOOO OCM
^NO ^-^-^NOroOO •
C^r^-OJroroCyvlACMNO —

1 1 1 1 1 1 1 1 1 1

NO ro O CM 1^ NO NO ~~ ^1" CM
.NO r~ro — • O CM O
oo — J-o o
NO O
O O

0










0) 0)
CA  cu
1_ !_
01 Z Z 01
Wig 1 in IK coo >in oct^ o
OdOOCO 	 CUES- OQQOCOEd) 	 i-
— OOOC/53 — JZEJT — OOOCOEJT3 — J3
LuCDOHHC/5OCi.J
_
0
>
•«
4J
O
CD
a
in
tt)


te^
o
ON

s_
o

&^
o


o

4->
— 3
co a.
3 c"
CTOl
CD 3
O
CM S- <-
- osz

c
in tax
4J J= O
CD 4J O
U) 4->
in in
ro • co ~o
4J <- 03 fl>
co o — CD
Q 4J Ct-
ro CD
* i- o c*-
NO CD C O
CM 0.0
. CD t- E
ro 05 S- .
3 3
r 	 o o
.0. 0
>< oo
o
U) i- O -.
•O CD —
0 C >j^

4J(| 	 .
CD 4) — 3
E «- — 0 •

o «- ro o 3
— CD J3 O !>-
4-> 4J O O —
><+• <- «3
— < Q 	 CO
c co .a OT:
^ « — ^' — ^^^» —
Date:  8/31/82 R Change 1  11.14-16

-------
        TABLE  14-8.   SUBCATEGORY WASTEWATER FLOWS [2-44]

                  Median flow,I97U Guide!ines
                 L/bbl  feedstock   BPT flow basis,     BAT flow basis,
                  throughput     L/bbl feedstock     L/bbl feedstock
Subcateaorv
Topping
Cracking
Petrochemica 1
Lube
Integrated
1977
29
64
95
150
mo
throughput
76
95
110
170
180
throughout
38
53
72
1 10
140
The classical parameters  for  which refinery wastewater samples
were analyzed include  BOD5/ COD,  TOG,  TSS,  oil and grease, ammonia,
sulfides, hexavalent chromium,  and pH.   Each of the three con-
secutive 24-hr  composites collected at each sampling location in
a given refinery was tested for eight  of these parameters.  Grab
samples collected at the  end  of each sample day were used for the
oil and grease  analyses.   Three seeding alternatives were used in
performing the  BOD5 analyses.   Method  1 used a seed from a domestic
sewage treatment plant; Method  2  used  refinery final effluent as
a seed; and no  seed at all was  used in Method 3.

Samples were collected in each  24-hr period for cyanides,
phenolics, and  mercury, and reported as day 1,  2,  or 3 results.
Samples from each 24-hr period  and a 72-hr  composite were analyzed
for toxic pollutant metals.

Asbestos was looked for in samples from four refineries (I,  L, M,
and P).  It is  thought that asbestos contributions within a
refinery may be affected  by rainfall;  two of the four refineries
tested had dry  weather, and two had significant rainfall.

Tables 14-9 through 14-25 present the  analytical results on a
refinery-by-refinery basis.

II.14.4  POLLUTANT REMOVABILITY [2-47]

II.14.4.1  Toxic Pollutants

Based on the limited data received,  it  appears that BPT technol-
ogy (biological treatment plus  effluent polishing) provides effec-
tive removal of toxic  pollutants  in petroleum refining raw waste-
waters.  It has been shown that after the application of BPT-type
technology, effluent metals concentrations  occur in the range
typical of what would  occur after the application of precipita-
tion techniques.  In all  cases  for which complete data are avail-
able,  organic toxic pollutants  present  in the raw wastes have
been shown to be removed  to low concentration levels (generally
less than 10 vg/L).   No data on removability of  toxic pollutants
are available,  other than those shown in Table 14-3 for intake,
raw wastewater,  and final  effluent.


Date 9/25/81                11.14-17

-------
       r--

       i
       CM
       cc.
       LJ
       3
       Q.



       CO



       O
       N


       LJ

       o

       cc.


       o

        w

        o
        o
        O
        0
        LJ
        LJ
        o
        C/)
        ON
        I
        d-
        LJ
        _J
        CD
                                                S









                                      /VV  V V O V  V






                                         roo — o  IA —
                                         t —3 -5s  
                                          V VO V  V
                                       vv  vvov
                         s
                         -•«
                               a e
                               a s
                               » t
                                          -
          »
        t.
Date:   9/25/81
11.14-18

-------
  •a
  03
  C
  C
  o
  o
  tc.
  LU
  Z
  LU
  ce
CO
z
o
I-
N
a:
LU
o

<
u
a:
LU
   3
   W
   UJ
   0
   Ld
    —
                                 S 2^S! fi g
                                   -OW V N
                      .* i
                      I «
                                  ,..j
                                                                       :  s
   1  fi
   >•  es
   U!
   eS it
   51 ft I

i  ^! t^" 5
8  ^r "is!
s  i£ ::««
                                                                        -
                                                                   3*  "v
                                                                     *
Date:  9/25/81
                               11.14-19

-------
     r-

     i
     CM
     00
     OC
     UJ
     UJ
     OC
     OC
     UJ
     o
     oc
     o

     fe

     o
     K
     U
                                       ?5ss??2  BBii  i   iiSiSii ss  siiii
1
                                  7V8 S g 8 " 8
                                            '
             1-
                       ««•
                       • e

                           8 " 8

                      ! If

                  hflilLi  r;h!  i«»
                  ili^lilllliiiii fell
                                                         iiliU

liii
                                                                  a
      I
      UJ
Date:   9/25/81
                  11.14-20

-------
  •o
  0)

  c
   o
   u
  oo


  ce
  ui
  z
  UJ
  2 "^ils".
                                                             PIS  :=-=-.»
                                                             jl>  ||5ij=j

                                                              3SI  5!!<«.]
u «• — 'j£ "  j « S ft


nlis"b"s
Date:   9/25/81
                        11.14-21

-------
       act**
        L>
        u
it
i
                     -•779 « - " >7V* SI
                                                 II  718
             8-
             i-
                 ON "•«•)**«*»
               i
                                  I

                          iPinmfiiiiiftiEifijf
                          ..; suSsfiSSsisasIs fb p U2
                          I •            a a a
                                                  ii!
Date:  9/25/81
                     11.14-22

-------
3
C
4-1
C
o
0
u
cc
UJ
u.
UJ
cc
H
z
OL
CO

Z
o
t—
N
CC
UJ
O
CC
X
o
cc
UJ
1-
1
§
5
£
(0
z
o
I
^
cc
UJ
Q
Z
o
z
z
UJ
UJ
cc
o
w

1—
1
UJ

CO








„
V
•
V
1
!







-d
i
T


J

1

i-
i"


x


x
|-









e
1
(.
s
S
1







d

»a- O«I-.?«»«'

•"saslj-'-

cjoogo«oin*gM
	 ""^f*^


*
J
^
• M
-I U
s c | s ]

2 83 , S 1
! !_„ 1 =! * 1 ?
| lilii Jiggl J I
• 1 *
0 °
                              7S§ g E ££7 S  §  S  SS  i§
                               S 
-------
ID
3
C
C
O
o
o
UJ
z
u.
UJ
ce
•t
t-
z
3
0.
CO
•y
ZAT 1 01
UJ
|
0
ce
u
<
2
V)
o
CO

z
o
fl
o
u.
ce
UJ
Q
z
<
o
z
z
UJ
UJ
ce
S.










U





c
]






i
M
i
o

£„

^

|ft

X
s-



c
f
4
I











n "" ^ O 4D
0

t§ s:r*2s«S
0
.g o.o«.goR
ea
A
a
'JO
? Bi C
** *~ a. m
c * - f
• • • * c
S « 5 *» c
- | 3 ; S 1
& • V M« S3?
"" 0"° ~ *
« SlT * **^ ^ 9 *
! 5ils~" I '


















wtf\~ ™ f) OOQ trt^~* WQ O Q OQ O O O
v v -r=K -=-v vg 2 % xx zx«

(VJOQ f- O*»O «ft O
v (MS M — *m 9:!**9»5
M
9§8§SS2^S2^'-|

«82o2gs-o™
%-$ •%-? V S jj I
i Is
9C MJ
— * ^5 -S a at
I II 1 1^
| - s | 1 afg -g|"
^U*~ • i 3 jT X S 9 1* 0*1 • O —!S— J £ O •
8e"" ^"5 ^ a "" *e ^ — * N Me 3 d*9 S£*~"
I!lLrf!Ir«i!p|i|i!|!pa
4
g
o
J 1
?* I

a I
• •
1 s
i c-
0 3
i * i
e 5 £
^ : a
1 1 ;
i i. :
«j **
5 y i
€ ss e
a =J f
•on' ? • - 3
. 1! !«l I
1 «i ||s 1
I iplll
° 5i. ;«? A
• -0 VN° «
«•• •§*" 5-x •
— * § tt N » « — I
SJa !s|J|l I;
|§1 fiiifs |I
»j| Iiz4|i si

*t Si 2 w«i— OA 2 u
^!l liS^I-si
llilfP'sllfs
o2— St-ua.n«Me^3
• MQ V 3 — » O»Z.W
Iisg'5 £« !•£
       Ul
       CO
Date:  9/25/81
11.14-24

-------
         .3-

         CJ
         ce.
         UJ
         z
         UJ
         f£
         N
         C£
         UJ
         U

         <£.
         ce
         UJ
O


(A

         ce
         UJ
         Q
         Z



         O
         UJ
         UJ
         o:
                        g-* .*.* -I
                                           S § §°i§ S
                                          SJftJ V «Oif\ (M
                                          V V   V V V
                                           OOOOOM
                                               OM
                                               o *
                                          NNV
                              EaoM—
                               wt-v-u.
                            . S
                           : s
                           I =
                             «
                           o *J
                           x fi
                                     -
                                                                      Q|
o— • — £—
ca;tn(0»-N

                                                                    i
             INi
             fellij
                                                             5gbS
                                                                    O C O O
               3=5? ^I
         CM
         UJ


         CO
Date:   9/25/81
                             11.14-25

-------
•o
<0
c
4J
c
o
o
Q

<£.
LJ
Z
Ij^
LJ
o:
•,
h-
<
_1
Q-
CQ
0
r-
<
N
IT
LJ
r-
O
^
2
<
O
cc
LJ
1-
$
^•
LJ
r-
co
S
2
^_
Q
3
F—
CO
o
r-
2
U.

fiC
LJ
>
Q
<
O
z
—
z
LJ
LJ
/y
K
0
CO
cJ
a-

LJ








4J
C
1
(4-
<-
a:
«
c
ik





o
s


(0
c
a






1"

>>
g0i


>>









0>


§
c
(fc.
0
0

2
g
5





















x«
x
gR

I-








4J
C
1
)
-
i

M »AOC» — o >A (A(ftiAoiftiAo OOQ gw^gor- iftg
*A (\j — vvo v — • — — — — o zrac * IA N «
w *or- -CM v ftieu vovv*

"OO OOf- r-O* (NJOOO J-OOftJO (A O
roiA 3-fti - •»« VNOCVJViOO *tA M —
«r-— w vcyv vovvift



•*> (AO«"» — O tA IA — (AOiAtAO POO SS^^S— £*~.
IA N— V V **> V — • — — V*-« OOO 2 X * —
vv r* VOVVVAI — — — — o— ^
W V V V V



988 " S^S S S
vS- *PV v N





















2=
I
s If
m 0i-
. ^s
° .0
S 2-
r "5
£ i- •
tj« u
S c
£• •
_ Sg !
S« o *•
. ss %
.« S" ^
9 ** 1 <
Sc — o
m me
JC *» ** 0 **
03 cS •
ai != 21
.* ll £1
•00 — H- -•
Sx £ , 2:
i 8S U0- 3.

OOO O*OO«AO(VJ MOOO^OOCVIO tA O
*2IS Sag-S" '5,58 a-.y^.n y §
«
as i^ssss ^sss2ss~.s a s
R*2 ^ y^SvJ *Vov V *
IA

SS8 §°;§£§S 8818IS80;! S 2 1
-N oar. n v«Svv SoK B » •
~ " ~ 1 £
1 ?
S ! "
5 81 -
p 12 1
* ..a Js i
* — •*••..•— u e c
s s s s ;l ;
1 1 a § ? g fli g ! ss
: * 0. S ~ , 1 Z S -g^ IS S 22
i . .-.is ??J,n T > i i a.|, is^sss za^
— —V — «Q — — 5 — ~tTJ t — — (-— OlCd C — *w0 • • 0 OCIOO
; IT?? gc > e .!Sxi!S&cxii5§;=o as^s si8&££p zih;o.
o IQQOQ 0 — OM S a — *»»• Cv CUQ,*^CO — — •* Se£— c +> c ?3 at P aP P
•: isiilils^^ o :5iS3§§353is5sls p£3 ^.Sw^lill
S x e 5 a fl
_ o
0 1-
CQ
. — U— £ L
i :? 5i u
. g£ " . S3
i S^ t| -1
•* •! S « m •
2 x* 53 5?
0 « x o o c e
jfi -o— a: > 0 *
** a * •
: i- ** h
• M *» «i "O •— •
N 0 9 * 0V 0 > *»
-= 8* StSSSf
.= S-.-J^^o
4*A O 0 « C *+* <- 5.
83 . °5i"gS3-
.>• "wiS.- -8
S=S i0xSif"":
So- •o-sf'-t'"
«.« «l «J> O 0 • L* •
» Ot * 0 — - Q.J£ 00 —
^y; -MX « a-5o
NBC • ae e.3— 0 o
• ft o^aia:*-
«<« «»•> e
• fr. O «» O J WO ** >*-
r*ui£ ox.~0Md
• 0 O)C •* 0 >
>5s r"s^sl
..«« .S^.oliSS
• 0 "O &•— CO —
isssf.g-s^s?
£— • U O *- 0V P «**
SSSS>.8il^«i
•"SSoi asi"~
S3--fS33,5*3
«*««o^*o«ec««
XT) J£ C «t Q.K X « • W O
— C
I;sg- S" Si

Date:  9/25/81
11.14-26

-------
        N
        Ul
        Ul
        oe
        S
        w
        i
        s
        I
        Ul
        ae
SS7-S " 3-.«29S2 ^
        9    ~
                        2

                        f*
                             s!
                             5 !
                                    9  *?'
                                                    v 9
                                                                  3  SSS
Date:   9/25/81
11.14^27

-------

"*
p""
1
CM
UI
.
Q£
UI
U.
UI
H
5
ffi
O
UI
1-
o
ec.

o

OS
UI
1-
1
w
§
o
§

z
o
B
u.
—
ul
0
o
z
z
UI
UI
K
1
Jt
0
a
t-
"o
c
1


CD
^
|
°
J
j
)
9
:|"

*'
(0 —
O
_
o
I
(
I
„
M
I
j

J

9

V
j.
«1M

3~




1
-
I

82778 V -"
vv vc



»SS ? g"
V V <




h-vo f«» v.vvc

— CM — UMA— i^^O* MOtVNJT OO-
- Vh- .^. . M . V(Mtf\OVm>e
r* o r* v • v v c
9
~TV"C


»2?vS C 2-
vv ve



v~« v -j^





-"_.- " 9 "v^
-S\3 S~.S"JS- vSSSv'SS'
~"o;~ " 9 v '

2v* "~rvv<

A
»j
"S.
s sis
i : . e
*» ** •• o .~
- Sue-* t
1 , i « « | l^ollll...
S |ggg§_|^ggl ^ «i?^"!!o5.I
£ 5«3oS0a«.«K>-w o |«a3oo3ffj
5 1

OXUiniftO 0 0 ggOOQ OO-OOO^ 0 000
' v 9 9



:S 8 3
IV V




gm o
 V V

.S S R
1 V V
.s s s
>V V


'«oi"mo o 9 9S°SS oofOooiA N ooo
• cvi«v~irt z o oxcoo IA^ *z«— • — xae
> v - - -- - o -- o



1





|? 5 s
?m F»
V *
/

/ M
i ^
y *
si "
. 1 f = "1
] || 5| j. ||f
. . J ill h.I.i «- ilJI
t.1,.2 ji _ a|||S| zpjg-lig 111 slal
'.s~rs^ Jl a| fl'i'.^e ass£--«> Se? !f«'^
IlS.OKN |0 ||£ |S W^ |«5S«"-» |=|< -*•-«-

























* -e.
"" 1^*
„•! M"
*4- — £"•
8" £S3
-• U £
• o- i.se
1 1 1 *
' « is -J?
i &• ess
2 T>£ "si
° ?• " "1
« -L X«°
~- If-- *5|
- e jlw ejw
2i sassffl
«2 . — — 2 o*
|c5 o-*i«lw
— — M S— —Ok
oioe • . g.u** aSjS
^s 3gg*|S5
»» * * TJ ap "o — 2"^^
*"lllll--l;
fcoe««--.-
c
lisg- 52 5
Date:  9/25/81
11.14-28

-------
       *

       CM
       <£
       UJ
       U.
       LJ
       oe
       oa

       i
       UJ
       I
oc
u
       w
       O
       OT



       O
u


O
u
Ul
ae
               1-
                                               83SRS

                       irs:-"
                              s

& 3^
I j


                                                lM
Date:   9/25/81
                        11.14-29

-------
•o
0)
3
C
•P
C
o
u
u.
Ul
-
Uv
Ul
a:

^

<
a.
>
1C
z
o
<
N
Ul
o
0£
X
u
ce
Ul
i
H
W
<
2
>
Q
3
(A

O
™
5
!•
o:
Ul
Q
z
<
u
SCREEN IN
^
a-
Ul
«








i
a
d.
Ul
a
C
**•

















t.
|

c
-
S
S










i
I
3



-,
I





X
S"



X
a"

x
3"

-
~
I

_
i
"








I-


>,
••
X
3-



e
I
* — « — f* O ift* VOtAtAO *l«DOOQ 2°9 OQ
IUMVV nj — -(ft— v — 5 . .5 — S z — z »»00«- 1A O
•N —SO *AJ •AO VMMO<0«« *^ N w
" *"• 9 ~ o ° ~

«» «OUN >e n
•«•» Mtr^N •'K* VNrtOwr^S .r- M S
9 °

»S S°"!8 22* ^SCggSS"" " S
"o 9 °


Jft — « — * O iAif\r*OlAiAO OtfVOO— S® 9 ^*S
v R vo v v« «* o °


tt s ^f'-jssfds 9 I


2SS 8"°S!S fSSSSSS^S g S
.. .. -
AtAN O«t** C4J?4 OOQOOOtfiV O O
• N* — •« va«Ow MM^tn*OCW o J
-« |3_
« — ** «) a
3 §•: tl;
* Q. S >*•
1 "!- sil

1 t" III
° Ic "*2
j ilijt!
-^i f5Ili"s
j>2 coa.3«i««>
3§- °«oo.S5«
.j« SSx^v0*
*<; t^2^l^s
l^uifi tfWV •&
sJiJfSS*!
O •— £ « • 4) O>
<
-------
N
O
oe
UJ
z
u.
UJ
H"
z
Q.
>
00
o
^
N
at
UJ
o
X
u
Ul

Ul
(fi
£
>
o
V)
z
o
1-
u.

0£
Ul
Q
EENING AN
S
to
i
Jf
Ul
CO
5











.
c

























c
c
£

5
c
C

O

1-


X
a*


!-






u
c
•
1
I










— .A — __ h, CM — (*» — cy*o o o —— oooo ooa N
V V V VVV?) O — vv ZZXZ ZZZ N
-

vg, » .0 «7S
v V dv V


y*

.vvv«j . . — VNIMOV— 
-------
•o
0) -H
3
C
C
O
u
>
a:
Ul
u.
Ul
0£
Z
a.
00
z
o
§
>
0
I"


|~
1-








c

b-
0
c
1




c
c

c
c
i


>t
s3


I"
X
0

I-





1


— .» — — O (O O — OS — — M O O OO OOOO OMAtA O —
vvvvo «> v VIA o ooo osezo *«o u\ o
r-


CVJ^O SO O«O lAOJO
v WCM 4*0 w va-


o


o
_• a *" v 5V"V

CVJOO OOOOCOOO (SJ OOO^OO — O«*>iA — »
«8 SS ^ «- V»v 0 — V V
•VOOOOOOVOOOOtf PJOOOJJ-OO— OtAtft — m
— *r*-ift»off. -o — o* v««wvo*o - O — *O — CM *O O O Om OOOO COOtA O O
v v v o oovvvto o o — * oaao >x • ov z
ON f*Os-* — — — OftJ
- * — — *

WOO « O«« IT* O
V N— BO *Ot W (0


0

>s


"~~ "" 5 « a 4*9 m
i . ? 2 | 1 Jill = li JS
1 ! I , s 1 ? - ! Ifllg 1 sss =« !l
§. • « « B r a ? ^o— » 1 1 7 > 1 ! 3* «1« t —Sec— Iqt-kk £i aw
— g —5 . a o---— 3 — — u5 C— — t— 2 N — ace — « « « « ocooo «— TB i
* "v j £M<££X£
s s
Date:  9/25/81
11.14-32

-------
      X
I
UI
                            -««-- •» « 7«77« |  S  v7  iiiS   iii  2  S
                                     5?
                                   !l
  3



  I


  3



^ S
                                                                         1

                                                                         I

                                                                         S

                                                                         2
                                                                        -§

                                                                        i!
                                                                               i;
                                                                            N «  »«


                                                                            IIP
                                                                             a.  «<*.
                                                                          s   I

                                                                             1
                                                                             XX    >
                                                                             I? I*   *
                                                                     — N  »- ffl 3  O
                                                                     ox  o ** i*  «

                                                                      **  c w   —
                                                                      £C  O O-D  O
                                                                      •  xag  o

                                                                     ? *•  go"  *


                                                                     X   T9 U S  ~a
                                                                      S*t  c a e  •
                                                                         «£—  *
                                                                      «   **—  w
                                                                     oc  « o •


                                                                     5w  S^*2  C
                                                                     30  0< *  cn



                                                                     !* .|.-S  I
                                                                     o « «• aa «  **
                                                                     o o **  ** c
                                                                              C.MS S
                                                                        •B^-   a 3 e o  o

                                                                        «  !:"i^  ij


III I?
 SS t.3
ic an
ta an
de
                                                                        -«o i-o»-5;>
                                                                        >>-oe nio>-2u«S<
Date:   9/25/81
                              11.14-33

-------
      r-

      I
      CJ
      Ul
      z
      Ul
      ee
z
s
a.
CO
O
5
N
CC
Ul
q
j|
X
U
te.
Ul
i-
2C
UJ
1
0
3
(A
Z
O
o
u-
Ul
>

o
z
<
i

g
Ul
ce
u









1
e










i

<


i
(





3"


\«


3"




























y""" !


99

y WW



JB
J
X,
.
M
g
•
9
I .
— ^C — M<*»
\ Sisi
» 
-------
0)
C
C
o
a:
CO
<
N
oe
ce
UJ

I
(A
<
(O
<
Ld
>
O
<
o
a:
o
en
Ul
CO

          in    BO
                              ?-£8?28  2  212  22   2222222
                         7828»
                         7«f28.223 V v  8
          2$ $SS£2«.8"S     7988.288
                      - «SJ*SS  8  ISS Si   22222
                   792 8 8 ? 7 S.
                                                         Si
                                  7 2
    88  8^8^ 8;     7«28S§§ V  v 8
         .:                      ?
  »i    n
  i *   - I!
hi jy '*"
a o
                                   \
                         j  t ?        I  H
                                               i!iiii! i
                                                             :  s
                                                             s  ;
                                                             *  5
                                                             3  i
                                                       ?  s
                                                       ii
Date:  9/25/81
                         11.14-35

-------
       i

      CM
      o


      K





      K
      ce
      ui




      I
      (A
      M




      O
      oe

      SI

      o
II
                      iJlsil! pUiUHfllli!
                            i
       i

       Sf
Date:  9/25/81
      11.14-36

-------
     a


     4J

     O
     o
     ce
     UJ
     UJ
     a.
     oe
     u
     o


     UJ
     V)


     Q
     t-
     w

     1

     s
     >

     o
     5
     UJ
     K
     u

     3
                                     2 S
                                     M V
                 t-et NM»mN*o>ojr

                 -V V  tZ~o  .
                                          s
                                     "  ?-v9|  §8  S
ll-
                                              8?
                     • r
                     ; s
                     2 8
                 V
                 s ?
                 .-|

                            i uJiic! t.!J  all  .
                            , .^xi?lc,Sn?r« ;-i 31
   !  t
   ;  c-
   o  •


   ?  «
   s  §|

   X  >»JC
   3  2.
   • . -8

   !S |*

   «1 !'


   I? lis  c
!  sill! !
2  jj. ^, S
:  i5 il* £

1  still !

s  si ill -
                                                       US   «
                                                       gi |l
                                                 ^ !*|3i If

                                                 !i 1«W il
Date:   9/25/81
                   11.14-37

-------
       N
I



S



u
ee
u
       v>
       s
       §
       o
       u
       eo
       I
                                            s  I   nil   ill
                  « -«=•:-;•-
                  s   *• o
                                »w«asi:i
                     II
                                            i
ji
!               i p
x •             a a
                                                   ill
                                                 s~5
                                                 •••
Date:   9/25/81
                       11.14-38

-------
             z
           Q —

           t-LJ
           Ol-
           CC
           uz
           >o
           iz
           oat
           zu
           — i—
           zo
           UJQ:
           ox
           wo
           00
           I
           a-
           co
(01 (0 r
ata

I
                       (0 C\J
V OCM OOlA  CM — •
                             -  ^-"VS-"1^
                             O>OCOOOCMOCOO>C\J
                              . r- r^*Oftj  • C • «co
                             —   -- CO O —
                                                             O— IT*  O
                   CMO OC^-OOrOO lA
                   V CM — CM V — CO .lA CM
                     V X    CO O V V
                                                   CMCOOOOO^OO
                                                   V (M oa- ro — O -«O
                                                   CMOOCJOOCOO lA
                                                   V CMJ CM V — O> -LA CM
                                                     V 3- V   — CM V V
                              CM O CM  lA O lA O lA O
                              V CNJ iA  CM sO  • lA CM ^C
                               V     V O V V CM
                              CMOOOMOOCMC lA—O
                              SMOOOOOOtMC I/N— O
                              VfyfMCMO — >O -h- CMVO
                               V \Q V XT OS — f- V  lA
                                                            O V V  —
                           —  C — M  CO O -
                           (C  O 1 I     C (-    >
                           o  1 o o o — a> — utn o
                              looo-xrsow-
                           M  -
L. jj
£ C ft)

C —0)
CO <0 *-
C — X
Q) o a
£ N1^
^§S
»^c«

0 C C —
w w o> n te
O£ XO'S
^ xi i- = a
u
c
(0

_.
£
09

.?



£
a
C

u
o

1
£






M

c
3
OV3CMCM
E OCMM
U
i. 1- (.
•D O O O
0) — — —

ill!
e<«

Date:    8/31/82  R  Change   1    11.14-39

-------





(B
3
C
UJ C
1- O
< 0
5 —
UJ
1— ~3
UJ
Q —
HUJ
wo:

z «
01-
— z
OQ-
— CO
ce
UJZ
>o
01-

 tf\ \O O CM
CMOO CM OJO iTi O
VCMO -* NO O V V m


•"
• \QfiiA -o -o\» VfMomr^*oso -ir» CM v «o
40 •* — r*tfNl^ V» V — V V lT\
— —

•"
• r-inr--m . o •mc\i v CM o M w m >o -IACM CM v *o
f- CM r-O^ V CM V V — V V CM

80 o — »o -o o oo -IACMCM v —
A — m r-iA^C V (O V OV V J3-
Ot


— ir\ 	 o CM CM — *O — CM O O O QOC
v v v r- v v -o tf^ z z z a
iA CM




IV CMrt CM r* -MJ CM —
V «J — V CM









• *** CM lA • • • *O «*> VCMlfx^ — — vO • lA CM 40
j» CM r- — — VM VOV V CM

• (MCMflOCM-G-^M VCMOfM 	 vO-tA CM fl1
« — r-«*»JA VO VOVVCM
•
• — UMOCV .0 *inio v(yiAftj^*-cy <\j o\
(*> « i^\o— VIA — o— v —

2 i
- 5 fJ »S
s? .. I s il
. -if * 5S
is!5! f 1 11
2 E s , i ! ?• tit!
i . : f. J i «.iS!L, t.i j J o fr
« ir? • Sc *- o ^^g^iiggacTig^ssro *i ag gill
loo w — CJ » 6 a - *J w C« u t. a. « « t. o 	 «c «7 oj c o op C
u 3

3i iii
















i§ iii




















?
M
s L
£ *S
i o ONOCMCM
* o — u
C— L. C (. fc,
!5 2SS22
> JJ .Ci-iOOO
°"
Date:  9/25/81
11.14-40

-------
      g
    uj c
    r- O
    < O
    h-UJ
    M0£
    Or-
    Oft.
     25*
     >0

     Or-
     ooe

     zo
     gS
     wo
     oo

     i
     LJ


     CD
                                                        8.8
                                  = 9 9
             _
                                            8  §   8888   888
                           !
2= u :s
  s 1
                           MI&
ia3SgS^2Ji«sls
Date:   9/25/81
 11.14-41

-------
     I
    Ul C
    t- o
    < o
    SP
*s
sz
    I-UJ

    V)K
           x

          3*J
    0£
    uz
    >0


    §i
     :ui
    u
    ox
    MO
    CO


    a-


    ui


    2

                                  IS?
           S
                                                         I

                                                            K
                                                   I SSI
                                                     > • •+> o
                                                   (• —  "O <• K
                                                   .« w« — —

                                                  "i 1s 51 ^
                                                   3 on •• -
                                                      S3 . °5i .?
                                                        • •». =««
                                                      Sgi
Date:  9/25/81
                        11.14-42

-------
    «•

    e\i
    u.
    ui
    <£.
    I
    w

    S
    Ul
    ui
    Ul
                                            iig ill  itiiitl  fiiiii
                                738 2 S 9 v IE
                                7"222 g ? 7 J
                     ll-   j   !
                     1 SI  « 2
                     * a—  -• -
                   U
:-Jf).

    Ul

    §
Date:   9/25/81
11.14-43

-------
 3

 C
 o
 u
Ul




H*




O.



ID



O
 N
 O

 flC
Ul


V)
 o
 (O


 o
 o
 ee
 ui
 u
 ui
 ec

 8
 0\


 a-
                                  VpVV V-
                              f 2  S ? 7 §
                                             eee   2°22222  222S22
                                              v    77vv"vvv  7v"v vv
            A— OOM<*I KitMfti

             -- -   *"
                                  a\ — o
                                  v v 8
                — r- in —
                          iAOO>ma O  Orf\aotf^«VO  OOO  9fiO   OOOOOOO

                          99V § S  gS~?v7l  5§|  887   7777777
                               *    V     »   » •
                                S  8 8 y 8
                                «  *     o
                                                                     ] |

                                                                     U

                                                                     ! 2
                                                                       teJ
                                                                     b.


                                                                     I |   I


                                                                     SI *   I
                                                                     A 3
                                                                     03 e   •
                                                                     a| I 2 .-



                                                                     d!i!
                                                                     8? a s f


                                                                       ^?!
                                                                  *  i^

                                                                  I  ft
                                                                  i  I-
                                                                  •i  s!
                                                                 s!! f^lirf:

                                                                 rf« iUBl.5
                                                                 •is 8 'isia^ir
                                                                 5M *-«|8|.i
                                                                 %* .n.is&'x

                                                                 Ihlteii.il8
                                                                 '«u£  •££*>  •*
                                                                 I £—**•••(»•— •* •••
                                                                 ,

                                                                 i»i*i

                                                                 !i£ii
Date:   9/25/81
                                11.14-44

-------
I
CM
     ce
     LJ
     z
     a.
     ce
     ui
     u

     K

OC
Ul



Q


<



i
      Ul
            a-
                                   8

                                9|| I 1 |> IS
                                 7S 8 SSVS   ti  88§
                           5 U
                                        i

                         MliiLf *.!j   I.
                          !fI!S!Ii!f!!l! Si

                                                                 2
                                                       ffm
                                                      l5SC>.8i
!

*!
 i




?!
Date:   9/25/81
                          11.14-45

-------
•o
»
O
o
a.


00
UJ
K
O
o

cc
LJ


|


i
K
U4
Ul
u
fit
u
OT
a-
UJ


CO
             •
                 .
                    8
                             ?o —oowtQ A p
                             -.88 .3 y 8
                               * I
                                              SS8
                                         I
                                         I
                 inl!                    l
                                                             g  si
                                                               ;  5
                                                                       i  <
                                                                       :s   .-
                                                                       >c - .3
                                                                           .
                                                                       UJ—  I d) |A<

                                                                   HP

  Ti
N • « i O—  - «
>"uo«c  «t* ev
- « u o t «tj o « « «
giS^SiS^S.?

"S5II—£358
S~«fSSSSS^f
Date:   9/25/81
                                  11.14-46

-------
     I
     CM
     Of
     Ul
     Z
     Ul
     Of
     o.

     oo

     o

     1
     of
     Ul

     I
of
Ul

i
     •y.

     o
     o

     <

     0
     Of
     o
     (A
                  o«
                  -
             ^ *2-525«7
                  5  ?
                  is
! e
                         x I


                                                       9 •  k

                                                        M
                                                       ie  3
     CM
      I
     .d-
     ui


     <
Date:   9/25/81
                             11.14-47

-------
    •a
    v

    c
    c
    o
    o
    UJ
    z
    m
    N
    o
    

    a
    UJ
    cc
    o
    (O
    CM
    I
    ffl
                               2S8S2   r2   2222222  ooo
                                      88
°."9 '9'&—0:2a.——£
—     r»vo
               —  v   r-vo
                     328°? 7 *






                     * 77^7!  g§I!
                                                          2222222
                                                          v7v7vvv
2SS
                                 •«>S8,*SS,? 7

                                                          0000000
                                                          iiii jijijii
                                                          llfflff
                                                    as*
                                                            HI
                                                            s^  -
                                                             «•  p w e

                                                           ? o  S A e
                                                           ***•  c * •
                                                           o  u 3 2

                                                           li  t«:
                                                           8i  Sci S
                                                           fs  .2: z

                                                           S-  A* ?
                                                                      NhlS
Date:   9/25/81
                    11.14-48

-------
    d-

    N
    cc.
    u
    Z
    UJ
    ee
z


a.


co


o
    cc
    UJ
cc
UJ



I
W
>
o
    UJ
    UJ
    K
    (VI
    I
UJ


CD

H
                                                                      *-.«   £g   3
                                                   A  A A A
                                   wop  *  pistp  tn  P
                                   VCSIP  —  * *f>  ty  P
                                    v <*i    v p v  v  *
               _
                                   esiooor-oo^o  ir\  o
                                   V9SV  ""^oV  9  R
                                   S§S8§S1^8  S  3
                                   vSSvv  Soy  N  r>
                                   8§g8g||^8  S  8
                                   VSovvvSom  N  »
                                         ^tsy^s   §i§  iii
                                         vovvv
                                             ~ »
              a-1
                   «!«  S72-.2I8
                   o« «^r«

                   -    f-VO
                   O  — O«omM«
                     V*"
                               sggsssg";? a
                               v«S v7«or- N
                                     V   V VOV
                                                                  gii  s§   s
                              -i  u

                              2  S
                              .  2
                              :  §
                 ^ §?7
                 o I a p
                          |

                          I i
                          u *J
                          X 1

                                      *  —

                                  ,Ii!Li t_! J
                                    -
                                              •£

                                              II.
                                                            .
                                                           «0(C— •••   fl

                                                                        ^  li
;;  H-!   i
    in|
Date:   9/25/81
                                11.14-49

-------
•o
0)
c
4-J
c
o
u



C£
Ul
U-
Ul
cf.
\~

O.
>
CO
z
o
N
C£
LU
i-
o
QC

I
O
pf
UJ
i
UJ
K-
(O

2
O
1-
Q

u.
cc
Ul
a
z
o
z
z
UJ
Ul
CC
O
OJ
CVI
1
Ul
CO
K













c
1
a
a
u-


















c
«
c
c
i
£.
c










c

1


„
*
S

°





I"


|(V


1-

_
c
J~*




—
c
!






o

*•

>_




4J
c
1
I


0
SSCvS r ^SS^g §§§ «is iiiiiii iii if i




?8i f 2"?S S §
V- VOV V -
V




o ooa o>«»r- (vioooaoo-o * -
« — V O V V

^ eooa.-o^on, Moooa-oocvio «
^ — h> V O O V — VvVOVV —


• —^ . — • ciiAiA VdJW(NJV>O*O'lA W N
o — toy o vvvyvovvv

_
0
ITVO<*> — O M lAOJiAOtAiAO OOO OOQ QO — — Qi>— *nO— OO »O
NWVViA - -^.-NV-0 -O* C7*C«5 Z* «Z« -Z • -O
- A A V A
3-



<"y O O ^ OU^O in O
V NO V sO -*A Cg O
v r- v o v v cvi
V »





O A1 Qr^^OtAO— C\J O O O f^- O O M O lA O
M WO O • ViAV^VvO^vm
** *
° j— ^"*S«S v'«§«<0°S'^S Sf §
— — «>O O• eg
LIl
5S -J
U 3 C — ~
a— 0 u 4* •
ui— S » »<
o c wco-
fj» C
« «
u o ui a e-J Si
2" ..15* *
S oJ: 0 x5 2 "c
** o** a£ee« •
= So «^|£ ^
I ll f Ixl 1
5 ^« a«a| c
«> — *-°MN£-
-*'C 0 XttCUJC*
3 MCI . — £ « •
M c » w a t.- u
S * • °5ic*a*50a
0 ro 3 WO— — 0
a>— *- 0 0 * • at
*» A c o •**** ow • oi
sg« °«5'Sf!.i*»5.
62z M£°-o-2t**
JS5S aSiS5.^-«
«<- Sfr^^W
. a> o MO_IOX** **
r-ui c U-N. 	 on o o
0 QIC O 00
> >» w ** a 3. a a— 1» *» «*
a *» — oi— 000
(0 WO *t.'O»
M v -o a*— c « —MM
•ON00 • O— •««•
S^tJS SSSxjSSS**
•M Of O O UfCtJW VD
oc--2 t.2 a«~« ««e e
• 0V 0 30 O— 033
— C
C — — O • AC) -OOW
Date:  9/25/81
11.14-50

-------
f£
Id
Z
LJ
ce
^_
z
a.
m
z
o
~
1—
a:
LU
o
a:
x
o
cc
Ld
i
Ld
(-
1



O
I—

(X
Ld
a
z


o
z
— —
z
LU
UJ
OC
O
(0











<0
X
*
c














 	 OiHOO
• V i- . >- • «- r-
<- P- V 0
v


1
e «
» -o oi c
•u — am
c — o
a q * L.
*J *J WO
3 0 WC
— ** T3 C —

a. n «o x 3 c
- =-«,„ 52 . : "
a o i i i C<«- > o «i
u 6 a a a a o— owo a —
u> < £D aa co o ao. tfl i— v- u. u *-
« X ±
5 3
CO
CVJ
1
UJ
CO
                                              (AOfo^-co in  lAiriinotAiAO   a a   oo  ooooao   OIAO   oo
                                              (MCMVV   V  <- "-fttVr-r-   ZZ   Z r-  ZZZZZZ   «-rf\M   ZZ
                                                         VOVVVV
                                                 -O
                                                 f-c\j tf\ o *o o o  ir» *—  o
                                                 VVVCVJVMW  V V  «O














                                                 VVVWVWCVJ  V V  «O












                                                 r-OjiAO\OOO  IA i—  O

                                                 VVVCMVCMN  V V  *O
                                                     VVV       V
                                                          ,,             .... .
                                                          *-_-_( —    — —  o c c —
                                                    --- -    -_ —
                                              ec -- c * » —  3oc«—   *»fO o
                                              — B>.eooa.c-oojeo>— o  —lie
                                              *JtAt--oi-t-a««i-o~— «c  oltf a
                                              C(-aiTOJ=£0>,»0-(D-£-
                                              «ffl(JUUOU-l£Z(OV>h-N
                            — o
                            O >

                                                                                      s  ;
                                                                                a. a. * o> • c
                                .  .          p — -o
                              c««cC£«  c g C x — •
                              >ccco+»c  aao£ a c
                              o e w w 3 a e  o t — w —
                                OOC-
                                « < U.
Date:     9/25/81
11.14-51

-------
•o
»

c
•p
c
o
o
o
UJ
_
u.
Id
K
H
Z
a.
00
•»
0
h-
N
cc.
UJ
o

as
X
o
(£.
UJ
t-
UJ
(O
*
§
I
u.
X.
UJ
Q
<

U
Z
—~ •
z
UJ
UJ
ec
u
(O

CO
CM
1
UJ
CO
K
«

(
{
c


•
!
i
i >»
i
!

I*

3-


g—
C
1
j
t

«
i
C

\l*
i
p

>pft



*
°




\
t

*• * ^C^

<0w"'v2 ^ £ ".1 1^ S ^ <~ 2 zz 2S !ic!iiS2Q» Oftl3 QQ
vv - vovvw v 7*** *




"vS ^ S ^ v S



lAJf COOtO^OtfCUJT T"CMOC4ifiOO tTl r- O
. (j, v evj • »o • IA w v v ift v v *n~P~Q O f^ *A (A O -A iA ^ OO O>O OOOOOO OnQ OO
V » « » » , >



(V V



SS8 ,.8^, ,,jra , , ,

*§R 2*i-:2S 7V8S2SS V 7 S
«*-•»« »* •- «nv^v v
Q


W)O O"*QO*O»- ^NOOOOO (A ^ O
• Si *0-O'MM V V O««n^- W V V «
lA^ m«0 «f>«- (M V CM V V ^.
*~ 9
SI
* 3
5 1 3

i ^^i ll y * i
3 3 ; I - * |g -ll1
! *.„ f« ? S itdi!^! Mj! Ig |i| pllil! i!|i ll]
SI 313




















<•
* &
o! w.
*" * ^
• —
H !
le :
.S £
S" - •
£* 8 a
s- i . s
UJ i. I < «
ec fc
S uj c
jlisi
i ii s f ;
** o ac .• *
o w • —
.i i!:*:
1 si 111 I

m x M -o Q— •
• a— *^2^>
C A O >>M UJ C —

-.• !!l!^9
** e *'(/J S
C <• O C I*— N •

oe • &9 0.0 <• O

O.Q S iI7u a >»*>**
UJ C tVX-' **J3 U (1
•"nc- «•
1*3 — a^oiott**
— « O tf •> *?k •
ff^ii"^!!

-------
     CM
    CC

    Ul
    o

    ee
    ui
    U.

    ee
    w
I
                                f?  212
                                         7 3
      •*-"-
                                                             82=1222  8S8888
    CM
Date:   9/25/81
                 11.14-53

-------
•o
3
C
C
O
o
a.
<£.
Ul
z
u.
Ul
tc.
^
|
a.
>-
03
O
i
Nl
Ul
O
•x.
o
Ul
\
y

z
0
~"
h-
O
u.
UJ
>
o
i
2J
Ul
Ul
ee
W

C\J
1
-
TABLE








C
|
|

S
u.










J


»
3*

!

c
c

•
}
c

>»
3a



1"

J-
I"







4
1
4
!
i
'
f"











°V VJ» •— •«
- e •

°" y^St-*.*"1
N ^ 0

w s^-

<
«
#









— ^*O PO •dMJTtf
S "

CUM S —
=S § |s§s

J
J
• M
J U
i i • «i
• • * c
41 * 8
I . .-. if J •?
• l *
u °
                                   iS
                   NtfNO^OO rf\ — O

                   VV^V7^ v v S
                        trv ~ o
                        y y S
                                  §R|  8
                  -§8*88
                               !


                               ii
                                                          H
                                                          11

                                                        i  l!
                                                        8  *S
                                                              < 3
                                  i*I

                                  ii!
                                  iiif
                                  41:
                                                       S3 .
                                                          SS i
                                                        <**
                                                        .0.0
                                                        »uj c
Date:  9/25/81
11.14-54

-------
        st
         I

        
-------
•o
0)
a
c
c
0
0
cr
te.
UJ
z

u.
UJ
(-*
Z
^
Q.
CO
z
o
i

K
UJ
o
ce
0

UJ
K
UJ
h-

<
3

§
V)
O

u.
ce
UJ
o
z
o
UJ
UJ
u
CO
in
CM
i

u
_J
CD










u
c
*
b.
^
c


















I

t.
0
{
i
j














y
-
C


„
ff
1
c.



s*

t«



X

X
»-
Q


<
C
c
•
!
o



§•*

1-

X



s-


c
~




£•
6
CM



V ftJCM (M O lA 
"V 0

S« rort1^ — ^ScSfti v'fJCYW^SS^Sftifti O
M 
OJ O O • VVV(*)VOVVro

.. gS-^Rog ^ogo-og.o-jQ o

—


CT £
— O— — — O O — O — NO ODQ O OO ^^J?
v-jvv - — v- v vS cyzz -o Sr- «
^ C\l & tr> 00 —


CJOJ1 IA O O «A O
VCNJtNJ - 0 IA CM 0
V V — V V (ft

—


S gg ~ S
« «V 0 N

M«ra:w »wr«?sn s

«O\ — lA VVVVVOVV»


I
«*>Ov— O* VVVVVOVVN
S 5
-J 5
e « ~ a e «5» ° 1°
i IS s s 1*1 vl«
1 . f !-. 1 I ^J.sl ! & s i aftj ass ill!
m "v il f 9 ^ 3
2 5
O K























fc-
i
5 •= >>
s 1 ?
:s ^ 8
* C -O 3 «
N a OO C
X** N «
I! ** i
:* si :
*$ ^ = •
co cc " a
o *» « • > s
5. i. „ S
5 58 j | e
•Q t "D » 0 3
22 Si S " S
8^ SS o S £
— « — o o #j>

S 8— 2» < 2 A
g 0S €5 T. o 2
. I" *° g ° .
5 *: a= = s 5
> « > < o .- «
i s?« ? S £ S
5 *.•.•=! e
o *-= «0 a -
>** ««* o xi
« — -o « t- « —
• M *»»- 	 *- •
U0 3 O U U * O» • >
,_ o —OX JC 0
-c - e » **« 0 0 c —
3 «**«*—•«
M C— ' 0< <- — ' — «-
MJ3 OMWO. 0 **A0
D « u o ** -a at i «*
« "SgS* *** o "^£
P ja c o *» c * e 01
Be 0 o x— oca*
0- WO.MM MOM*
— — • O C • ^ *
*o>« 0v *a— 2 fc- 0 e *»
to. o 5t.Z7o • X 3 ******
-UJ C «V,— *0d 0 «» U O
0 ** a>c x** 0 c 0 0
*£5 ^lt?t?S .wxrll
*^^T3 Q.«- C OtS— 30 t-M«
ONO0S Q.O — *.*•"
P«U0 « £ C -£ O.0VP
Be— +>t-ua(vcQ*00
-------
II.14.4.2  Classical Pollutants

End-of-pipe control technology in the Petroleum Refining Industry
relies heavily upon the use of biological treatment methods.
These are supplemented by appropriate pretreatment to insure that
proper conditions, especially sufficient oil removal and pH
adjustment, are present in the feed to the biological system.
When used, initial treatment most often consists of neutraliza-
tion for control of pH and equalization basins to minimize shock
loads on the biological systems.

The selection of plants was not based on a cross section of the
entire industry, but rather was biased in favor of those segments
of the industry that had the more efficient wastewater treatment
facilities.  Table 14-26 indicates the types of treatment tech-
nology and performance characteristics which were observed during
the survey.  In most of the plants analyzed, some type of bio-
logical treatment was utilized to remove dissolved organic mate-
rial.  Table 14-27 summarizes the expected effluents from waste-
water treatment processes throughout the Petroleum Refining
Industry.  Typical efficiencies for these processes are shown in
Table 14-28.

During the survey program, wastewater treatment plant performance
history was obtained when possible.  These historical data were
analyzed statistically and the individual plant's performance
evaluated in comparison to the original design basis.  After this
evaluation, a group of plants was selected as being exemplary,
and data from these plants are presented in Table 14-27.  The
treatment data in Table 14-28 represent the annual daily average
performance (50% probability of occurrence).
Date;   8/31/82 R Change 1  11.14-57

-------











.3-
1
CVI
CO
o
z
°
o
_ J


r—
z
UJ

1 1
u.
UJ

0
z


y
UJ
1 —



CO


f—
z
1 1 1

1-
UJ
Q£
h-
o;
i . i
z

u.
UI
cc

0
UI
a:
UJ

00
o

.
NO
t\J
1
UJ
_J
CO
H-













o
•o
—
	

CO


CO
^ o -o
je— c
0—3
o o o
•u c a
to U) E
•DJC o
o a. o
tu
JO

TJJP Z
COJ3 1
O —
— O co

,5° i
o —
3X
;;
o •o a

W O CO R
i *j — (•
w— o
D-OO
?o
1-4:
o
> *-
CO O
CO
•O E V.

> 3
1- O
1)
5O

v a
o o
5 0





*.
^
o
§







0}
c
4.
i
4-
i
t-




t,
a
o
i
4J
a
u
£

V


O
o

O
w
co
O

0
3 i
0
~- o
— o
• o
° 0










f- 10

o' d

O to

(Nl CM











~
—

ON
CO

CO

eg

CO


*


01
._
at
~
i
•o c*
c o
o o
10. 01
to
c -
a
1— "O
*> o-o
a we

3 <



O)
? ^
— JC
a o
a to
o '-
t- 0

t-
o

o'


CNI

o

f
d

*
o










<\l

n
—
ON




^.




in
(NJ


^
CNI




00


-«*•
Q

co'


c
0
4J
s
_
 0
o a
M >
to —
"O U
w
Is

N to
— O
to —
31-
p-
U



f
O
to

o
r*.

o

a
*~
rt
O

d

CO
o

d
o
o
—





CO












Q




in

CO

in
CM

_
h"

NO"


*—
Q










1
O
a.
c
o
to
•a
X
o



f
o
eg

U
in
o
o

d
-~
^

o

d
CM
§

o
0
d
in
o

d



•~
d

o

^
-*
CO

(NJ


in




CNI

J»

a-


ON


—


**
(s.

m

o>
c
- ^
C M
O —
to a
o «
— c
tl
— to
CO —
•otj
§2
o21
MOO
M to a
o



at
e
o
to

U
CO

0

d
••*
in
o

d

to
CM
o

d
°
o
NO





m



m

CM
•^
in

NO


CO




J"



~
CM

fs.
NO

NO

J

en





__
c"
o
to
O 01
CD'S
O
fw
_!
o w
M O
M 10
0
to
o

1
2

o
a.



































o




in

to







in


0
^

CM*




c"
O
to
O Ol
r~%
Is

II
0 w
M O
10 CO
O
to
o

1
o
s



















—

o



CM












m




P»



ON


a
m

' —
ON

O
**"

oj

Ol
c

C M
0 —
co a
o -
— •o
±!
to —

o o
>*>
O I- C
MOO
M to a
a
-
u

1
g














o
d

£
d
a
a

o


CNI



j

—
**
a




CO




(Nl



O
(Nl

r*
in

Nt3

CNI

^

^


O
en
013
C —
— M
JC "D
— w
I- 10
CO
O CO

CO >-
N O
to —
St-
iff




o
JQ
3
-1
^.
O

d


Q


o

f

o
[;
o
d
CO

d



CO
CM*


« P

IM r-
— —
CM CM
CM
r—


a co




CO NO
CO CO


CO O
a —
~~ —
o o


o t\r

in NO
*-- —
^ CO


o
f 1

- r
ta u)
^ C —
a o o
w — a.
> w *
*J O 91
o — -o
« t- to
1 "?
w -aw
a ai to
N »
— owe
to to o o
3 » to a
S 5



8
2
o>
o o
X) w
3 C
-1 -
Date:  9/25/81
11.14-58

-------
    i
   c\j
   CO
   LU
   CO
   w
   LJ
   O
   O
   a:
   a.
   UJ
   LJ
   ce
   O
   Qi
   LJ
   a.
   O
   te.
   to
   t-
   o
   LJ
   D.
   X
   r-
   c\l
1

fc-
3
(O


IB
C
i





1
J


i
5
*>
B
C —
»o
5
o
c

-to
uco




8




g
O




|

B
ie A.
IA C
gs
a. c











u
{
L
O.
CM CSI
O •
CSI O O
1 1 1

o o o

? 0 * §
m esj —
i i i
m


o o
o o O m CM m
— y a- m — w csj
ii i i i i i
so O O »*) — — _ —
. O
0 0

o
o tn o o o o in
— m c\i CM in (si —
ii i i i i i

(SI


o o o in o o o
esi so %o csi — CD in
ii i i i i i

xn CM csi (\t —




o
(VI

o in in o o o o
it i i i i i

o o o o o o
go o
o r^ o o o
CM (si — so m m

i i i i i i

= * •> - -


a a
« "I "I
K — — — — (VI Cvt


U
9
4»
C O
en
3 Si!!;;
a C i w
i. (_ -o O C — *O
aj a> 8J — (- O O
a ->**»- -o *>
»<--« — *»»«
«_ o ** 3 « ** >
u « o c -o « —
< o o o o < <

- (si « a- m %o r-


CSI
I

m
o
§
i

m
CSI

o

m

o



i
i

-


o
1

CM







£
(

i
O
in

i

CM









1
«K


~
JC
u
K

CO







0 |
1 1

- 0

o
. 0
esi —
i — i
V
— m
<•)
o
o


r- c\i —
i i i


ce
LJ
z


U-
LJ
C£
_l
O
cc
0
u.
(A
LJ
0
LJ
0
u_
LL.
LJ
_J
O
E
UJ
a:
_i
<
12
D.
>

CO
CNJ
1
	
LJ
1
CD
<
h-



















M


>
S
u
0

S


























B
T
6-
w


c


i
8







O




CO
M


8
1-

8




if
|
"

«
W4J
» C
i!
a. c







M
a.









o o
m rf\
i i
o o



a s



s s


m co
o o
— m





m in
m o




a so
i i
* s


w
S
1 -

u
O
£ t
* B
O fc-

— «
< U

O O O O

1111
o m t* o
r- o\ ON K

SSSKSS £
o o ^> in o h- •*>

+ + o
i i i i i i i i 11
OinoOinoino ino



moooONOinin inin
COONONO'iON O C U
CB o a
"So o"*?**®^ o
— ** fc.+j'Sw-c'eot- «o
OBOW*J>JC— >»«>
tit *» ** -o » — O — — **— —
u> O — — I. *>— o *» — "O *>
— — — XBQl-OO— ttU
ow u. o < < t- o < LI. i <
m ^msor^cooNO— CJ
£c
O E
Date:  8/31/82 R   Change 1   11.14-59

-------
               11.16  PULP, PAPER, AND PAPERBOARD MILLS

II.16.1  INDUSTRY DESCRIPTION [2-48]

II.16.1.1  General Description

The pulp, paper,  and paperboard industry includes approximately
700 operating mills, making this one of the largest industries in
the United States.  Included in this industry are mills that
produce (1) only pulp, (2) both pulp and paper products, and (3)
only paper products from pulp manufactured elsewhere.   Included
in this industry are mills that use secondary fibers (usually
waste paper) to produce paper and paperboard products.

A variety of products are manufactured by this industry.  The
various papers differ basically in durability, weight,  thickness,
flexibility, brightness,  opacity, smoothness, printability,
strength, and color.  These characteristics are a function of raw
material selection, pulp methods, and papermaking techniques.
End products of the industry include stationery, tissue, printing
newspapers, boxes, builder papers, and numerous other grades of
industrial and consumer papers.

The production of pulp, paper, and paperboard involves several
standard manufacturing processes including:

     •  raw material preparation,
     •  pulping,
     •  bleaching, and
     •  papermaking.

These processes are briefly described below.

     Raw Material Preparation

Raw material preparation depends upon the form in which raw
materials arrive at the mill.  Log washing, bark removal, and
chipping may be employed in preparation for pulping.

     Pulping

Pulping is the operation of reducing a cellulosic raw material
into a pulp suitable for further processing into paper or paper-
board or for chemical conversion.  Pulping may vary from simple
mechanical action to rather complex digesting sequences involving


Date:  9/25/81              II.16-1

-------
the use of chemicals.   The primary types of pulping processes are
mechanical pulping (groundwood)  and chemical pulping (alkaline,
sulfite, or semi-chemical processes).

The two basic processes of mechanical  pulping are the stone
groundwood process and the refiner groundwood process.   These
processes have also been modified by the addition of steam and/or
chemicals to reduce the power requirements for grinding.   These
newer processes are known as chemi-mechanical and thermo-mechan-
ical.

     Bleaching of Wood Pulps

After pulping, the unbleached pulp is  brown or deeply colored
because of the presence of lignins or  resins or because of in-
efficient washing of the spent cooking liquor from the pulp.   In
order to remove these color bodies from the pulp and to produce a
light colored or white product,  it is  necessary to bleach the
pulp.  Bleaching is usually accomplished in a series of steps,
using chlorination and alkaline extraction, and various chem-
icals, such as chlorine dioxide and hypochlorite.

     Papermaking

Once pulps have been prepared from wood, de-inked stock, or
wastepaper, further mixing, blending,  and addition of non-cellu-
losic materials, if appropriate, are necessary to prepare a
suitable "furnish" for making most paper or board products.  The
various papermaking processes have basic similarities regardless
of the type of pulp used or the end-product manufactured.  A
layer of fiber is deposited from a dilute water suspension of
pulp onto a fine screen, called the "wire."  The wire permits
water to drain through and retains the fiber layer.  This layer
is then removed from the wire, pressed, and dried.  Two basic
types of paper machines and variations thereof are commonly
employed.  One is the cylinder machine in which the wire is on
cylinders which rotate in the dilute pulp furnish.  The other is
the Fourdrinier in which the dilute pulp furnish is deposited
upon an endless wire belt.  Generally, the Fourdrinier is asso-
ciated with the manufacture of paper while the cylinder machine
is associated with heavier paperboard grades.

With either machine, coatings may be applied in the dry end or on
separate coating machines.  After initial drying on the paper
machine, the sheet may be treated in size press, and then further
dried on the machine.  Calender stacks and breaker stacks may be
employed to provide a smoother finish, either after drying or
while the sheet is still partially wet.

There are three general classifications of mills:  integrated
mills; secondary fiber mills; and nonintegrated mills.  At in-
tegrated mills, pulp is produced from wood and nonwood raw ma-
terials and used to manufacture paper and board products on site.

Date:  9/25/81              II.16-2

-------
At secondary fiber mills, no pulp is produced on site with most
of the furnish (i.e., the raw materials placed in a beater for
making paper pulp) derived from waste paper.   At nonintegrated
mills, the furnish consists of purchased wood pulp, de-inked
pulp, or other fibers.

Pulping operations include groundwood and modified groundwood
operations, sulfite (acid) processes, unbleached and bleached
kraft or soda processes (alkaline),  and modified high-yield
processes utilizing mild chemical treatments coupled with me-
chanical defibration.

In recent years,  secondary fiber sources such as waste paper of
various classifications have gained increasing acceptance as a
raw material fiber source.  Such secondary fiber can frequently
be used without processing.  For some applications, however, the
reclaimed waste papers must be de-inked prior to use.

Table 16-1 presents industry summary data for the pulp and paper
point source category in terms of the total number of subcate-
gories, the number of subcategories studied,  and the number and
type of dischargers.

               TABLE 16-1.  INDUSTRY SUMMARY [2-48]
         Industry:  Pulp, Paper, and Paperboard Mills

         Total Number of Subcategories: 23a
         Number of Subcategories Studied:  23

         Number of Dischargers Responding to Survey:  632
           • Direct Dischargers:  337
           • Indirect Dischargers:   232
           • Zero Dischargers:  51
           • Combined Indirect and Direct Discharges 12


          Excludes three mill groupings,  which are not
          considered to be subcategories.

II.16.1.2  Subcategory Descriptions

Earlier efforts to develop a profile of the pulp, paper, and
paperboard industry resulted in establishing the original (BPT)
subcategories shown in Table 16-2.   During the screening program,
available data and newly obtained information resulting from the
data request program were reviewed to develop a revised profile
of the pulp, paper, and paperboard industry.  This review recog-
nized such factors as plant size, age, location, raw material
usage, production process controls employed, products manufac-
tured, and effluent treatment employed.  As a result, a new
subcategorization scheme was developed and is also shown in
Table 16-2.

Date:  9/25/81              II.16-3

-------
  TABLE  16-2.   PREVIOUS  AND  REVISED  INDUSTRY SUBCATEGORIZATION [2-48]
      Previous subcategories
        Revised subcategories
      Phase I

      Unbleached Kraft
      Neutral Sulfite Semi-Chemical - Ammonia
      Neutral Sulfite Semi-Chemical - Sodium
      Unbleached Kraft/Neutral Sulfite
        Semi-Chemical (Cross  Recovery)
      Paperboard from Wastepaper

      Phase II

      Dissolving Kraft
      Market Bleached Kraft
      BCT (Board, Coarse, and Tissue)
        Bleached Kraft
      Fine Bleached Kraft
      Papergrade Sulfite
        - Blow Pit Hash (plus allowances)
      Papergrade Sulfite
        - Drum Nash (plus allowances)
      Dissolving Sulfite (allowances by grade)
      Groundwood - Chemi-Hechanical
      Groundwood - Thermo-Mechanical
      Groundwood - CKN (Coarse, Molded, News)
        Papers
      Groundwood - Fine Papers
      Soda
      De-ink
      Nonintegrated-Fine Papers
      Nonintegrated-Tissue Papers
      Tissue from Nastepaper
      Builders' Paper and Roofing Felt
        Integrated Segment

        Dissolving Kraft
        Market Bleached Kraft
        BCT (Board, Coarse, and Tissue)
          Bleached Kraft
        Fine Bleached Kraft
        Soda
        Unbleached Kraft
          - Linerboard
          - Bag
        Semi-Chemical
        Unbleached Kraft & Semi-Chemical
        Dissolving Sulfite Pulp
          - Nitration
          - Viscose
          - Cellophane
          - Acetate
        Papergrade Sulfite
        Groundwood - Thermo-Mechanical
        Groundwood - CKN  (Coarse,
          Molded, News) Papers
        Groundwood - Fine Papers
        Secondary Fibers Segment

        De-ink
          - Fine Papers
          - Tissue Papers
          - Newsprint
        Tissue from Wastepaper
        Paperboard from Wastepaper
        Wastepaper - Molded Products
        Builders' Paper and Roofing Felt

        Nonintegrated Segment

        Nonintegrated - Fine Papers
        Nonintegrated - Tissue  Papers
        Nonintegrated - Lightweight Papers
          - Lightweight
          - Electrical
        Nonintegrated-Filter and Nonwoven
          Papers
        Nonintegrated-Paperboard
        Mill Groupingsi
        ^Integrated Miscellaneous including!
          - Alkaline-Miscellaneous
          - Groundwood Chemi-Mechanical
          - Nonwood Pulping
        ''Secondary Fiber-Miscellaneous
        *Nonintegrated-Miscellaneous
       •Groupings of miscellaneous mills - not subcategories.
Date:    9/25/81
II.16-4

-------
The BPT effluent limitations for the revised subcategories (as
they appear in Table 16-2) are shown in Table 16-3.

As a part of the review of the previous subcategories,  raw waste
loads were assessed taking into account the size and age of the
mills, the treatability of the wastes produced,  and the effect of
unique geographical factors.  465 of the 632 mills responding to
the data request program fit into the revised subcategorization.
The following discussion describes the revised subcategories
which are grouped into three segments: integrated mills, secon-
dary fiber mills, and nonintegrated mills.

     Integrated Mills Segment

The original subcategorization scheme included 16 subcategories
within the integrated segment.  Based on a review of raw waste-
water characteristics, it has been concluded that the original
subcategorization scheme is generally representative of the
integrated segment.

Classical pollutant and flow data support segmentation to account
for different pulping processes:  alkaline (kraft and soda),
sulfite, semi-chemical, and groundwood (refiner or stone, thermo-
mechanical, and chemi-mechanical).   In addition, the production
of dissolving pulps, both alkaline and sulfite,  results in the
generation of relatively large quantities of wastewater and
wastewater pollutants and should continue to be recognized in the
subcategorization scheme.  Mills where pulp is bleached are
characterized by higher waste loadings and must continue to be
recognized separately.

Based on data gathered during the current study, it is proposed
that a new subcategory, the unbleached kraft and semi-chemical
subcategory, be established to include all mills within the
original unbleached kraft-neutral sulfite semi-chemical (cross
recovery) subcategory and those mills where both the unbleached
kraft and another type of semi-chemical pulping process (i.e.,
kraft green liquor) are used on-site.  Available data indicate no
significant differences in wastewater or classical pollutant
generation resulting from the use of neutral sulfite semi-
chemical pulping or any other semi-chemical process.

The original subcategorization scheme included the unbleached
kraft subcategory which includes all mills where unbleached
linerboard, bag, and other unbleached products are produced using
the kraft pulping process.  Available data have been reviewed and
it has been determined that mills where bag and other mixed
products are manufactured have higher water use and BOD5 raw
waste loadings than mills where only linerboard is produced.
Therefore, it is proposed that two subgroups be established
within the unbleached kraft subcategory to account for these
differences.  The subgroups are (a) linerboard and (b) bag
(including other mixed products).

Date:  9/25/81              II.16-5

-------
TABLE  16-3.
BPT  EFFLUENT  LIMITATIONS FOR PREVIOUS AND  CURRENT
PULP AND PAPER  SUBCATEGORIES [2-48,  49,  50]
Previous Subcategory
Integrated Segment
Unbleached kraft (b)
Sodium based NSSC (c)
Ammonia based NSSC (c)
Unbleached kraft NSSC (d)
Fine bleached kraft (e)
Soda (e)
Dissolving sulflte pulp (e)
Papergrade sulflte - blow
pit wash (f)
Papergrade sulfite - drum
wash (f)
Dissolving kraft (e)
Market bleached kraft (e)
BCT bleached kraft (e)
Groundwood - chemical-
mechanical (e)
Groundwood - the mo
mechnical (e)
Groundwood - CMC
papers (e)
Groundwood - fine
papers (e)
Secondary Fibers Segment
De-ink (g)
Builders paper and roofing
felt (e)
Tissue from wastepaper (e)
Nonintegrated Segment
Nonintegrated fine (e)
Nonintegrated tissue (e)

Secondary Fibers Segment
Wastepaper - molded products
Non Integra ted Segment
Nonintegrated - lightweight papers
Lightweight
Electrical
Nonintegrated - filter and
nonwoven papers
Nonintegrated - pa per board

Secondary Fibers Segment
Wastepaper - molded products
Nonintegrated Segment
Nonintegrated - lightweight papers
Lightweight
Electrical
Nonintegrated - filter and
nonwoven papers
Nonintegrated - paperboard
BOD!
Dally
Max

5.6
8.0
8.0
8.0
II
14
41

32

27
24
15
14

14

II

7.4

6.8

18


14

8.2
II


4.4


23.9
37.9

29.4
6.3


51

118
118

118
118
. ka/Mo
30-day
Avg (a)

2.8
4.4
4.0
4.0
5.5
7.1
22

17

14
12.25
8
7.1

7

5.6

3.9

3.6

9.4


7.1

4.2
6.2
Continuous

2.3


13.2
20.8

16.2
3.5
Non - Continuoi

27

65
65

65
65
TSS. kg /Ma
Dai ly
Max

12
II
10
12
22
24
71

44

44

30
24

20

16

13

12

24


17

1 1
10
Dischargers

10.8


21.6
34.0

26.6
5.8
30-day
Ava (a)

6.0
5.5
5.0
6.2
12
13
38

24

24

16
13

II

8.4

6.8

6.3

13


9.2

5.9
5.0


5.8


10.6
16.7

13.0
2.8
DH. DH
units
Range

6
6
6
6
5
5


5

5

5
5

5

5

5

5

5


5

5
5











9
9
9
9
9
9
9

- 9

- 9

- 9
- 9

- 9

- 9

- 9

- 9

- 9


- 9

- 9
- 9










js Dischargers

122

106
106

106
106

66

52
52

52
52
















    (a) Average of dally values for 30 consecutive days.
    (b) Current subcategory Is subdivided into llnerboard and bag products
    (c) Sodium based and ammonia based NSSC now combined in the current subcategory, SenI-Che*leal.
    (d) Current subcategory. Unbleached Kraft and Sen I-Chenlea I, combines Unbleached Kraft NSSC and
       mills where both unbleached kraft and kraft green liquor are used on-site.
    (e) Current subcategory is the sane as the previous subcategory.
    (f) Current subcategory includes both blow pit wash and drum wash.
    (g) Current subcategory is subdivided into fine paper,  tissue paper, and newsprint.
 Date:    9/25/81
                       II.16-6

-------
Based on current data, there is only one mill where the soda
pulping process is used.  At this mill, fine bleached papers are
produced.  This alkaline pulping process is similar to the kraft
pulping process.  In the soda process, a highly alkaline sodium
hydroxide cooking liquor is used as compared to the sodium hydro-
xide and sodium sulfide cooking liquor used in the kraft process.
The raw waste loadings and flow characteristics of the soda mill
compared to similar characteristics of mills in the fine bleached
kraft subcategory show that no discernable differences exist
between the soda mill and fine bleached kraft mills.  Therefore,
the soda mill has been grouped with the fine bleached kraft mills
for purposes of data presentation and guidelines development to
form a new mill grouping called "alkaline-fine."  The subcategori-
zation scheme, however, remains as originally defined:  (a) the
fine bleached kraft subcategory and (b) the soda subcategory.

At the time of the data request program, there were three mills
where the groundwood-chemi-mechanical pulping process was used.
These three mills produce different final products and, thus, the
degree to which chemicals are used differ.  Due to this limited
data, the effects of chemical usage in the pulping process on raw
waste generation are currently unknown.  It should be noted that
toxic pollutants were detected in discharges from mills in this
subcategory in amounts too small to be effectively reduced by
available technologies.  It is proposed that the groundwood -
chemi-mechanical subcategory remain as defined in the original
study.

In the original subcategorization scheme, there were three subcate-
gories established to characterize the sulfite pulping process:
dissolving sulfite pulp, papergrade sulfite (blow pit wash), and
papergrade sulfite (drum wash).  Process differences exist between
the manufacture of dissolving sulfite and papergrade sulfite
pulps that significantly affect raw waste characteristics.  It is
proposed that the dissolving sulfite pulp subcategory continue to
be recognized as a separate subcategory with allowances for the
different types of pulps manufactured (viscose, nitration, acetate,
cellulose).

Review of available data indicates that no significant differences
exist between mills in the two original papergrade sulfite sub-
categories due to the type of washing process employed or con-
denser used.  It has been noted that the percentage of sulfite
pulp produced on-site is the single factor that best explains
differences that exist in raw waste generation at papergrade
sulfite mills.  Therefore, data for mills in both papergrade
sulfite subcategories have been combined.

A general description of the subcategories in the integrated
segment is presented in the following discussion.
Date:  9/25/81              II.16-7

-------
     Dissolving kraft.  At dissolving kraft mills,  a highly
bleached wood pulp is produced in a full-cook process using a
sodium hydroxide and sodium sulfide cooking liquor and a precook
operation called "prehydrolysis".   The principal product is a
highly purified dissolving pulp.

     Market bleached kraft.  At market bleached kraft mills,  a
bleached papergrade market wood pulp is produced in a full-cook
process using a highly alkaline sodium hydroxide cooking liquor.
Sodium sulfide is also usually present in the cooking liquor in
varying amounts.

     BCT (Board, Coarse, and Tissue) bleached kraft.  At BCT
mills, bleached kraft pulp is produced and manufactured into
paperboard, coarse, and tissue (BCT) grades of paper.  Bleached
kraft pulp is produced in a process similar to that presented
above for the market bleached kraft subcategory.

     Fine bleached kraft.  At fine bleached kraft mills, bleached
kraft pulp is produced and manufactured into fine papers, includ-
ing business, writing, and printing papers.  The pulping process
is the same as that discussed in the previous two subcategories.

     Soda.  This subcategory includes the integrated production
of bleached soda pulp and fine papers.  The bleached soda pulp is
produced on-site using a full cook process employing a highly
alkaline sodium hydroxide cooking liquor.  The principal products
are fine papers; which include printing, writing, and business
papers; and market pulp.

     Unbleached kraft.  At unbleached kraft mills,  wood pulp is
produced in a full-cook process using a highly alkaline sodium
hydroxide cooking liquor.  Sodium sulfide is also usually present
in the cooking liquor in varying amounts.  The unbleached pulp is
used on-site to produce linerboard, the smooth facing in corru-
gated boxes, and bag papers.

     Semi-chemical.  At semi-chemical mills, a high-yield wood
pulp is produced and manufactured into corrugating medium, in-
sulating board, partition board, chip board, tube stock, and
specialty boards.  A variety of cooking liquors is used to cook
the wood chips under pressure; the cooked chips are usually re-
fined before being converted into board or similar products.

     Unbleached kraft and semi-chemical.  At mills in this sub-
category, high-yield semi-chemical pulp (as defined in the semi-
chemical subcategory) and unbleached kraft pulp  (as defined in
the unbleached kraft subcategory) are produced.  Cooking liquors
from both processes are recovered in the same recovery furnace.
Major products include linerboard, corrugating medium, and market
pulp.
Date:  9/25/81              II.16-8

-------
     Dissolving sulfite pulp.  At dissolving sulfite pulp mills,
a highly bleached and purified wood pulp is produced in a full-
cook process using strong solutions of calcium, magnesium,
ammonia or sodium bisulfite, and sulfur dioxide.  The pulps
produced are viscose, nitration, cellophane or acetate grades;
they are used principally for the manufacture of rayon and other
products that require high alpha-cellulose content and the vir-
tual absence of lignin.

     Papergrade sulfite (blow pit wash).   At papergrade sulfite
mills, sulfite pulp and paper or papergrade market pulp are
produced.  The sulfite wood pulp is produced by a full-cook
process using strong solutions of calcium, magnesium, ammonia or
sodium bisulfite, and sulfur dioxide.  Following the cooking
operations, the spent cooking liquor is washed from the pulp in
blow pits.  Purchased groundwood, secondary fibers, or virgin
pulp are commonly used in addition to sulfite pulp to produce
tissue paper, fine paper, newsprint, and market pulp.

     Papergrade sulfite (drum wash).  This subcategory includes
the integrated production of sulfite pulp and paper.  The sulfite
pulp is produced on-site employing a full cook process using an
acidic cooking liquor of sulfites of calcium, magnesium, ammonia,
or sodium.  Following the cooking operations, the spent cooking
liquor is washed from the pulp on vacuum or pressure drums.  Also
included are mills using belt extraction systems for pulp washing.
Principal products include tissue papers, fine papers, newsprint,
and market pulp.

     Groundwood-thermo-mechanical.   At thermo-mechanical pulp
mills, wood pulp is produced in a process using rapid steaming
followed by refining.  A cooking liquor,  such as sodium sulfite,
is added.  The principal products are fine paper, newsprint, and
tissue papers.

     Groundwood-CMN (Coarse, Molded, Newspapers).  At groundwood--
CMN mills, groundwood pulp is produced using stone grinders or
refiners; no separate steaming vessel is used before the defibra-
tion.  Purchased fibers are used, in addition to groundwood pulp,
to produce coarse papers, molded fiber products, and newsprint
(CMN).

     Groundwood-fine.  At groundwood-fine mills, groundwood pulp
is produced using stone grinders or refiners; no separate steam-
ing vessel is used before the defibration.  Purchased fibers are
used in addition to groundwood pulp to produce fine papers, in-
cluding business, writing,  and printing papers.

     Secondary Fiber Mills Segment

No pulp is produced at secondary fiber mills; most of the new
material furnish is waste paper.  Some secondary fiber mills
include de-inking to produce a pulp, paper or paperboard product.

Date:  9/25/81              II.16-9

-------
Previously, four subcategories were recognized that can be con-
sidered to be a part of the secondary fibers segment:   the de-ink,
paperboard from wastepaper, tissue from wastepaper, and builders'
paper and roofing felt subcategories.  Mills where molded pro-
ducts are manufactured from wastepaper were not addressed in the
original subcategorization scheme.  Therefore, a new subcategory,
the wastepaper-molded products subcategory, has been established
to include these mills.  A general description of the revised
subcategories in the secondary fibers segment follows.

     De-ink.   This subcategory includes the integrated production
of de-inked pulp and paper from wastepapers using an alkaline
process to remove contaminants such as ink and coating pigments.
The de-inked pulp is usually brightened or bleached.  Principal
products include printing, writing and business papers, tissue
papers, and newsprint.

     Tissue from wastepaper.  In wastepaper-tissue mills, paper
stock furnish is derived from waste paper without de-inking.  The
principal products are facial and toilet paper, paper towels,
glassine, paper diapers and wadding.

     Paperboard from wastepaper.  Wastepaper-board mills use a
furnish derived from waste paper without de-inking.  A wide range
of products are made, including setup and folding boxboards,
corrugating medium, tube stock, chip board, gypsum liner, and
linerboard.  Other board products include fiber and partition
board; building board; shoe board; bogus, blotting, cover, auto,
filter, gasket, tag, liner, and electrical board; fiber pipe;
food board; and wrapper and speciality boards.

     Wastepaper-molded products.  At wastepaper-molded products
mills, most of the furnish is obtained from waste paper without
de-inking.  The principal products are molded items, such as
fruit and vegetable packs and similar throwaway containers and
display items.

     Builders paper and roofing felt.  This subcategory includes
mills where heavy papers used in the construction industry are
produced from cellulosic fibers derived from wastepaper, wood
flour and sawdust, wood chips, and rags.  Neither bleaching nor
chemical pulping processes are employed on-site.

     Nonintegrated Mills Segment

Nonintegrated mills purchase wood pulp or other fiber source(s)
to produce paper or paperboard products.  In the original sub-
categorization, only two subcategories were established in the
nonintegrated segment of the pulp, paper, and paperboard industry:
the nonintegrated-fine papers and nonintegrated-tissue papers
subcategories.  Data have been reviewed relative to process and
product differences in an effort to further subcategorize this


Date:  9/25/81              11.16-10

-------
industry segment.  Other major types of products manufactured at
mills in this segment include lightweight and thin papers, filter
and nonwoven papers, paperboard, and specialty items.  As the
basic manufacturing process is generally similar at nonintegrated
mills, the data review involved investigations of the effects of
product type on raw waste characteristics.

Based on a review of the wastewater characteristics of noninte-
grated mills, three additional subcategories have been estab-
lished to account for manufacture of various products:  the
nonintegrated-lightweight papers, nonintegrated-filter and non-
woven papers, and nonintegrated-paperboard subcategories.  Addi-
tionally, within the nonintegrated-lightweight papers subcate-
gory, there are a group of mills where electrical grade products
are produced; at these mills, larger quantities of wastewater are
discharged than at mills where electrical grades are not pro-
duced.  A general discussion of the revised subcategories of the
nonintegrated segment follows.

     Nonintegrated-fine papers.  Nonintegrated-fine mills produce
fine papers from wood pulp or secondary fibers prepared at another
site.  No de-inking is employed at the papermill site.  The
principal products are printing, writing, business, and technical
papers.

     Nonintegrated-tissue papers.  Nonintegrated-tissue mills
produce sanitary or industrial tissue papers from wood pulp or
secondary fiber prepared at another site.  No de-ink pulp is
prepared at the papermill site.  The principal products are
facial and toilet paper, paper towels, glassine, and paper
diapers.

     Nonintegrated-lightweight papers.  Nonintegrated lightweight
mills produce lightweight or thin papers from wood pulp or secon-
dary fiber prepared at another site, as well as from nonwood
fibers and additives.  The principal products are uncoated thin
papers, such as carbonizing, cigarette papers, and some special
grades of tissue, such as capacitor, pattern, and interleaf.

     Nonintegrated-filter and nonwoven papers.  Nonintegrated-
filter and nonwoven mills produce filter papers and nonwoven
items using a furnish of purchased wood pulp, waste paper, and
nonwood fibers.  The principal products are filter and blotting
paper, nonwoven packaging and specialties,  insulation, technical
papers, and gaskets.

     Nonintegrated-paperboard.  Nonintegrated-paperboard mills
produce various types of paperboard from purchased wood pulps or
secondary fibers.  Products include linerboard; folding boxboard;
milk cartons; and food, chip, stereotype, pressboard, electrical,
and other specialty board grades.
Date:  9/25/81              11.16-11

-------
In addition to the above,  there are three miscellaneous groupings
which are not considered subcategories because they do not fit
into any one subcategory definition.   These groups include inte-
grated-miscellaneous (including alkaline miscellaneous, ground-
wood chemi-mechanical,  and nonwood pulping),  secondary fiber-mis-
cellaneous, and nonintegrated-miscellaneous.

     Integrated-miscellaneous.   This mill grouping includes three
types of miscellaneous mills:   1) mills employing more than one
pulping process (exceptions are the alkaline-newsprints and the
alkaline-unbleached and semi-chemical subcategories);  2) miscel-
laneous processes not described above (i.e.,  nonwood pulping,
chemi-mechanical, miscellaneous acid and alkaline pulping mills);
and 3) mills producing a wide variety of products not covered
above.

     Secondary fiber-miscellaneous.  This mill grouping manu-
factures products or product mixes not included in the wastepaper
-tissue, wastepaper-board, wastepaper-molded products and waste-
paper construction products subcategories.  Their furnish is more
than 50 percent waste paper without de-inking.  Products may in-
clude market pulp from waste paper and polycoated waste, filters,
gaskets, mats, absorbent papers, groundwood specialties, and
other grade mixtures.  A mill producing less than 50 percent
construction paper or any other combination of products, other
than secondary fiber subcategory products, would be classified in
this grouping.

     Nonintegrated-miscellaneous.  This grouping includes any
nonintegrated mill not included in the above subcategories.  In-
cluded are mills making mostly asbestos and synthetic products;
paper and paperboard products that are too diverse to be classi-
fied; or products with unique process or product specifications,
commonly called specialty items.

II.16.2  WASTEWATER CHARACTERIZATION [2-48]

Water is used in the following major unit operations employed in
the manufacture of pulp, paper, and paperboard:  wood prepara-
tion, pulping, bleaching, and papermaking.  It can be used as a
medium of transport, a cleaning agent, and as a solvent or mixer.
Details of water use and sources of wastewater generation from
each major production area are discussed below.  Points of ef-
fluent discharge for a typical paper mill are shown in Figure
16-1.  Average raw waste loads for all mills sampled are pre-
sented in Table 16-4.

     Wood Preparation

Wood preparation operations are employed at mills where wood pulp
is manufactured on-site.  Water is utilized in three basic areas:
log transport, log and chip washing/thawing, and barking opera-
tions.

Date:  9/25/81              11.16-12

-------
 RAW MATERIALS
                        FUNDAMENTAL PROCESS
                                                         GASEOUS
                                                                                                  SOLID
 PULP LOG
                                                  »- EVAPORATION LOSS
                           LOG PLUME

                           BARKER BEARING
                           COOLING MATER
BARK REFUSE
WOOD PARTICLES
AND SLIVERS
SAWDUST
                       DEBARKED LOG  WOOD
                       (GROUNDWOOD)  CHIPS
                             1       I
ALKALINE SULFATE LIQUOR
(KRAFT) *•
NEUTRAL SULFITE LIQUOR
CHE* CAL
UU;E
WHITE WATER OR 	 »
FRESH WATER
REUSE WATER
BLEACHING AND OTHER
NECESSARY CHEMICALS — — 1
FRESH WATER OR WHITE [
WATER REUSE — '
FILLERS
DYE
ALUM «.
STARCH
FRESH WATER OR
WHITE WATER REUSE 1
COATING CHEMICALS ^
PULPING
CRl
PIT


*,,  PULP
BLEACHING
1
STOCK
PREPARATION


PAPER
MACHINE


FINISHING AND
CONVERTING
TO EVAPORATION HASH HATERS FIBER
,_ WEAK LIQUOR KNOTS
FIBER
.- m HASTE HATERS FIBER
m BLEACH HASTES
Cl EAN— UP DIRT

HEAT WHITE HATER FIBER
FILLERS
BROKE

COATINGS
1 FIGURE 16-1. EFFLUENT DISCHARGE
,T«™Jf«1Mn, POINTS FOR A TYPICAL
"SiT* PAPER MILL [2-48]
Date:    9/25/81
11.16-13

-------










00
1
CM

CO
_l
_J
—
y

Q
Ul
I
Q.
S
CO

o:
0
u.

C/)
a
^
0
•J

UJ
H
to
^
^t

3:

a:

Ul
o
<
Ul
^^
<
u.
O

>^
cc.
z
3
CO


•
ri*
1
VO


Ul
J
CO
^
^




























•O
CO
0
_l

CO
p
CO
5

^
CD
CC




























CO
CO
h-





c
0
p
a


D
^"
-v
2









iTi
a
o
m







C
O
4J
•X,
.a
—





CJ
^
o

















*
0
»
u.







c
o
4J
\
—
CO
a

(O
UJ
o
—





o
"V
J
>^













^
c_'
0
O
CD
4J
CO
O
3
(A








OOOOO CVJCOO  u. — co
CD »— ** to Q.
« <-> O i-CJO> O«0
4J CD — CO — 3 C — 0.
O — C Q.O-O— «-
3 a. co CD— -a*- PC
—• -a — jcco a,<-£-o uioco
P £0 O 3—^ OWL. CDCOO-O <- V >

(-P4- co COCO 1 0.03 CO 0.0) 13 CO C
2C CO (- 4J 0) P 	 E Q- <- P — to C-^J=Z3
ti- T3 L. ^ ti_ £ c>. — c>-ci_£ s_ cp to co Ecoo  COCO 	 M CD Z C C-O. O CO S ^ <- CX£ 	 "D T3 CO
t-H 'O&.&.Q — 5-O33CO £2*"" CDCO**4-^ CD 'OCOCDCTKDOC^-C
^ o TJ 0) ^ co eo a: — co co 2 H-OU. 0.0. c c*. i a. co 0.0- — > > to to co
to 0 ^ o -a o e £111 eo — E ^
C— O CO S- CD
— CO CO CO £ CD CO£O— CO O- 5 O O O CD <0 W (0 t.- Q. W Dl CO to £ — — P CD O
> CO — O C O).C Ol><- > ? > C U) > O CO1- CD C W O>— 1 -1 — a CO
— P — fflco— COOtO 	 0)>ETD-OT3 Jt 	 CD J3 CO 0. CD *> 	 — CO —
OCOCQ CD-ICO 1 CDEOL.O3CCC CU-h-Z<-3CDT) CU.K-II IU.O-Z
«njt: to— — — CDCOCB— s-333 — — —
co t- 1- c JD i IE^CACO affl aooo i i i i a. « w — ciii 111
— eo O — C CDC — co t-S-J- a> co — to 3 o
OSCQU.Z3 C/>3 QQ- OOO Q Q-l-3: CO Z



















(0
_
_
• —
C E
O
P CD
U C
3 —
•O.Q
0 E
i- O I/)
ao -

•a —
0 • E
OJZ
> V> "O
•D CO CD
cjt c
3 —
0 E CD
t- 3 *>
Oil- c
a o
•P O
3-D 1
O C c^
jc eo —
P CD
•- +J ID
CX O)
•a c
CO O T>

£ co ^
4J O
•— E X
> O CO
(0 > —
.-. w •-.
E— E
CO
— o —
•« .^ ^
CD <4- CD
•_
Ct- 0 «)-
O CD O
a
CO to CD
EJ1 Cl
eo C CD
<_ CD • t-
CD JC ^ CD
> eo CO >
co P 10 co
3
CD CD CO
<- i- 4-> (.
CO CD O CO
c
P 4-> 0) P
CD en <- CD
a a co a

CO A O
Date:  9/25/81
11.16-14

-------
     Pulping and Recovery

In pulping operations,  water is used as make-up,  for dilution,
and for washing and cleaning.   It can also be used to facilitate
a process mechanism,  such as fiberization.  With each different
pulping process, the demand and sources of wastewater discharge
vary and are discussed below.

     Mechanical pulping.  In stone groundwood pulping, bullets
are fed to grinders and water is used as both a coolant and
carrier to sluice pulp from the grinder.  The pulp slurry is
diluted, cleaned, thickened and then discharged for mill use,  to
be bleached, or to be thickened further for transport.  Waste-
water from the thickening process can be recycled to the white
water chest to supplement process water flow to the grinders.
Overflow from the white water chest and the cleaners is usually
discharged to the treatment system.

In refiner groundwood pulping, wood chips are generally washed
prior to refining.  After refining, the pulp is diluted with
water, screened, and cleaned in centricleaners.  Wastewater
sources can include the white water tank overflow, thickening
wastewater, centricleaner wastewater, and wood chip wash water.

In chemi-mechanical pulping, logs or chips are soaked or cooked
in liquor containing different chemicals such as sodium carbonate,
sodium hydroxide, and sodium sulfite.  After this, the logs or
chips are handled in a manner similar to the above two processes.
Wastewater sources are also the same as those described above.

Thermo-mechanical pulping, likewise, has similar potential waste-
water sources as the above processes.

     Chemical pulping.   Chemical pulping involves the use of
controlled conditions and cooking chemicals to yield a variety of
pulps.  The three basic types are alkaline (kraft or soda),
sulfite, and semi-chemical pulping.

In the kraft pulping process,  wood chips are cooked in a solution
consisting primarily of a mixture of caustic soda and sodium
sulfite, which is known as white liquor.  In the manufacture of
dissolving pulps, the wood chips are sometimes steamed in the
digester prior to the addition of the cooking liquor.  After
about two hours of this pre-hydrolysis step, the acidic sugar-
rich liquors are drained and the kraft liquor is introduced into
the digester for cooking.

When cooking is complete, the chips are blown to a tank where
they separate into fibers.  Drainings can be returned to the
white liquor storage tank for succeeding cooks.  The pulp is
transferred, along with spent liquor ("black liquor") to a brown
Date:  9/25/81                11.16-15

-------
stock tank and from there to vacuum drum washers or continuous
diffusers where spent liquor is separated by washing.

After washing, the pulping is diluted,  screened, and deckered for
bleaching.  Wastewater sources from the kraft pulping process can
include spills from the digestor area,  digestor relief and blow
condensates, wastewater from the brown stock washers,  and waste-
water from the screen room and deckers.

In the sulfite process, wood chips are cooked with solutions of
the sulfites of calcium, magnesium, ammonia, or sodium.   Upon
completion of cooking, the pulp is blown into a blow tank.  It is
then delivered to multistage vacuum washers, where countercurrent
washing separates the spent liquor from the pulp.  The pulp is
then diluted, screened, centrifugally cleaned, and deckered to
the consistency for bleaching.  The wastewater sources include
spills from the digestor area, digestor relief and blow con-
densate, and water losses from the washing, screening, and deck-
ering operations.

Semi-chemical pulping involves the cooking of wood chips in a
solution containing sodium sulfite.  This process can be modified
to include non-sulfur containing solutions of soda ash and caustic
soda.  After cooling, the chips are sometimes compressed in
stages of screw pressing to maximize the recovery of spent liquor.
The chips are fiberized, washed, screened and/or centrifugally
cleaned.  Wastewater sources include spills from the digestor
area, "digestor relief and blow condensate, and water losses from
the screw press, washing, and screening operations.

     Secondary fibers pulping.  Secondary fiber sources, such as
wastepaper, can sometimes be used with little or no preparation,
however some wastepaper requires de-inking before it can be used
as a pulp source.

In the de-inking process, wastepaper is cooked in an alkaline
solution to which dispersants, detergents, and solvents are
added.  The wastepaper is then cooked in a pulper, followed by
screening and cleaning.  Wastewater sources include wastewater
from the centrifugal sources, washers, deckers, and thickeners,
and spills from the de-inking process area.

     Bleaching

After pulping, bleaching is necessary to remove lignins or resins
or excess spent cooking liquor from the pulp.

     Bleaching of mechanical pulp.  The most common bleaching
agents for stone and refiner groundwood are hydrosulfites and
peroxides.  Wastewater discharge is limited to that resulting
from the washing of bleached mechanical pulp subsequent to the
bleaching step.


Date:  9/25/81                11.16-16

-------
     Bleaching of chemical pulp.  The chemicals most commonly
employed for bleaching of chemical pulps are chlorine,  calcium or
sodium hypochlorite, and chlorine dioxide.   Hypochlorites are
generally manufactured on-site, as is chlorine dioxide.   Waste-
water is generated in the preparation of both chemicals and is
discharged from the bleach plant from the first stage chlorine
tower wash system and the first stage caustic extraction wash
tower.

     Bleaching of de-inked secondary fibers.  Wastewater sources
for bleaching of de-inked pulps are similar to those associated
with the bleaching of other papergrade pulps.  In the case of
pulps containing large amounts of lignin, wastewater discharge
includes chlorination and caustic extraction wash water.

     Papermaking

In stock preparation, pulp is re-suspended in water.  Chemical
additives may be added either before or after stock preparation.
Water is used for dilution and to trasport pulp to the paper
machine.  This water, called "white water" drains or is pressed
from the paper and, due to its high quality, is reused.   Waste-
water sources include water losses from the stock preparation
area and white water which overflows from the recycle tank.

Approximately 200 organic compounds have been identified in pulp,
paper,  and paperboard wastewaters.  A verification program was
undertaken to verify the presence and quantity of toxic and
classical pollutants identified during screening of the industry.
Table 16-5 presents the parameters detected in screening which
were, therefore, further analyzed in the verification program.  A
summary of the verification data for toxic and classical pollut-
ants detected in each subcategory is presented in Tables 16-6
through 16-29.  The available data include one miscellaneous
grouping not considered to be a subcategory-nonintegrated miscel-
laneous.  Table 16-30 presents the minimum detection limits for
toxic pollutants analyzed in the verification program.   Any value
below the appropriate detection limit is listed in the following
tables as BDL, below detection limit.

II.16.3  PLANT SPECIFIC DESCRIPTIONS [2-48]

Limited plant specific data are presently available from the
reference.  Table 16-31 presents raw waste load flow, BOD5, and
TSS for selected mills within each subcategory and the subdivi-
sions of the subcategories.  These selected mills were chosen by
the approximate mid-range value of the pollutant wasteloads for
the sampled plants.  No data on treated wastewater for specific
plants are currently available.
Date:  9/25/81                11.16-17

-------
Q
|
CO
ce
LJ
ex.
CL

Q
Z

*
ce
LJ
a.
^
Q.

*
CX.
_J
IJ
a.

LJ
1-
z

Q
LJ
h-
U
LJ
1-
LJ
O


h~ •— '
ZOO
^ ^1"
1- 1
=>CM
i . .
_J
£>
ce
i-
O CA
••• ^J
XQ
O3T
1 	


•
IfN
I
- ,
Ul
_l
CO
2






>>>>:>>:»>,>>>>>>
cccccccc
oooooooo

uicococncococQca
CDCDCDCDCDCDCOCD
COCQCOCOCOCOCOCO
CO 33333333
C
Q) &- CDCDCDCDCDCDCDCD
P £ CD 0.0.0.0.0.0.0.0.
CO -PC COCOCOCOCOCOCDCO
— CD CO) CD 0.0.0,0.0.0,0.0,
COP CO— C 0000C00(D(B
CO £ CO C >» 0 +J P +J P P P P P
— P — CD£ — COCOCOCOWCOCOUl
W £ co £P >> cococacococococo
^~ CX£ CX CD £ ^^jt^????
E4J
_-. _ CD 1 1 1 1 1 1 1 1
z >>a c o o
< P coco— s- e CM .=r — CM co o > 0 CO O C 	 — t- CMCMCMCMCMCMOTJ
— C -P X£ <- 3 U O O X O.-D 1 1 1 1 1 1 1 C
Z 1 0 i- >
LJ Q Q O < t— 1— 1— O N Z O — 1 Q- O- Q. Q. Q. Q. a. o
CC
f^J
« w

Z Z
^ ^
1-
0 3
LJ -J
H _l
O 0
LJ QL
1-
LJ ce
a LJ
CD X
W +J H
1- CO O
Z CD —
< C CO
(-CO £
3 £ CD -P
-i a> P c £
—1 CCD CDCOCD Q.4)
O CO O C£ C P
Q_ Q) £* Q) L. — Q) (Q J^ eg ^~* CQ
CPCO O T3£ 0£ 	
CO 0 CO — * C — *JEP >>co
£O££— CD I- 0 O 0 X£
P 1- P O O £ OEt-E CUP
0 0 O CD CD C O. — O O O ££
C O •"* O ^ fl) O (D fl3 -C S 3 £ ^~ Q^
CD<-£I-P£ t-CCOO— 0 CD >>
Nooo0aeo»0 i_v t. 0 c £ —
c 	 1-0*-— Ni.c0.ao.QccD P>>
CD £ (- £ 1 L.Q£C4->COI-— O— 4) P
Q>.aoi-OcMO»— £ t- £ P o ^ i
NOI - 1 »OOI>>O££OO a£ C C
coo 	 (-OCMLJU-SQI-O — ZQ.COQ





CD O
•_ _
eo O P
w c c c c
CD CO C CD ro CD
— t- O£ CO
w a. 	 a o CD
CD E CD eg P P O)C <-
— CO £- C co-o C O Q.
CX to — c CD 0 CD "~ —
e COO3P3 N P P
ro w c •— CT co "O — ro o
MCC-P C — O C
— O CO 00 — P CO —
0) Ul C *~ 0} C3 ^— tO C (^ (0
CD C CD P 3 ro O — 	 CO
— — 0 00 CT 	 C|_S_J
ac i- 0 CD£ CD
ECDO300COC C >"O
CO CD CO CTO O O O C
c« i- CO CO — Q.C!_ 3
O POO P P 3OO
cnco — ocuwcoco o.
C — ro c ro— o -«-P E
— -PCX OCD — COCO
C "~ (0 Q) ^~ ^3 ^H ^ fl) O
CD— C+» C— — E
CDCXCOC/>P3<- 3O.CO
i-C/)-— CO CO O 0 COO —
O PCD a> CD — £
CO C >>CO— C E i-CD-P
— *- CO O O O >
4J P 0 jj UP cncuP
— >> CO — CO T3 CT3CO
— 1.3 CDCDT3 — £
a-p-o P c P co CD COP
> O CD T3 CD >- 0 C C

>> -OCO— 3*- 3E
«- >>T3 CD 0 •DJ3'-Ccr'-
•P JQ CD -P — CD CD 0—00
CO *> CO "O WO 'O CO P
3-aOOCCOT3CDPTS^iC»
•OCDCD 	 COCOPCCD3X3
C 4J 4->T3 3 o 0 P w
— O CD C CD 1 0 .P t- —- CO
CD -o — cn i pt-o co
XP co — CD CD a CD j
J3OI CDCOCDO'D>CDP
T3 O13PCO •O'-eo-P
•O 0 CD CO 0 -P CO 13 —
CDI-OWI— i- O C >.
•P — 3 COOC 	 Ol-
O— «- — £ 1 — C' —
0 o o i o P co i co — e
•PC— C£*J CCCO
COCD£— 0 Q. 0 0 — 0S-
•D£ U O£ E C Old) Ol
a eo c ex— i CD — f- o
lOi-CDOXO— t- O t-
4- 4J £ I- N 1- >> OCOa
EO CD aP C O£
— *> O — CD — *> 1
O£ S- C n££
d. o c o— u ex CD
§co O — Q — 1 co C
P.0£ 1 >>CO C 0
t-Q>COI -.3 CO O >>
CO CS- O CM CM CO Q. < 0.

























CO
c
0
+J
CO
3
E

o
C4-

CD
•a

u

s

—
CO

c


•a
CD
CO
3

^
_
CO
3
0

>
CD
ex
1

3
o
CD


































—
o
c
CD
£
o.
o

0

£
o

S-
1-

1

VO

^
^
CM

•o
c
CO
•t
£t
•t
CM
CO

T3
3
o
c
*"
Date:  9/25/81
11.16-18

-------








u
z

^
J
8
W
—
o

UJ
i-

-
Q
UJ
^—
U
Ul
H
Ul
o *~^
«O
1- I
ZCM
=><
-J<
OO
a.
Z

^ *M
O &—
ino
05 —
one
u
o>
z

ucc


OUJ
H~ ^
^
ooo
te.



Z"O
Q
E
3








C
CO
43
3

O
o.








or-oo ooo -i-i
	 v — d- oo oo r- o
v v v caca — \o o
IA

tf\
o
ON CM IA 0 1^ ™ • O\ O 00
— d-— V— ift CM— CM 00 Is-
1 1 1 1 1 1 II 1 1 1

CM CM CM ID CM JT OO O O O
VVV-VJJ- ZZ — it to
C5 PO
V





COCOCOCOfOfO — — O CO O OOO COO CO
*S*VNSfc*^'X^>1S,'X1. **V^sSi>'S, "V, "S* *SX>N»'X, ^S^*X ^^S
PO CO PO CO CO CO CO CO CO CO fO CO CO CO CO CO CO











— OVO IfMTl CMI^-J •* — _l_l_l O-l O
— • ^f ^"fc r** c3 IA o C3 c^ if\ o co
CO CO CO CO vO CO ON



o
IA O
• O O —J — J — J O lA
— CM O 00 OOtO — OOO O «
CM d- Is- v oo Is- 	 r- — — cacaea o— —

i i i i i i iii i i iii ii i

lT\OMT\mCMto lAQO 00 O OOO OO O
co • r- — zz z zzz voz z
O to
V







cocococococo COCM— to CM — — — co— CM
^X^X^V^X^X^X X^^X^V ^x SX SXSN.SX ^.^X, ^X
cocococococo rococo to co cocoto coco co





_j
^^
0 uj en
•P O E
_l a Cfl 10 — CO
^x. ^^ — CD O O ^ ^ •*
01 — co -P .__ co— in

X -P— CO CO Q O C
« CO JZ co EE — — eo
43 — & 41 (.{.C COO3
C >>4J — JS CO CO CO CD E —
to jrcoXa JE c -o 4- CD —
+J E U) 43— 4> O O -P CO 0 O C O
3 3 >> CJJCDC03— — CD — CO -Pd-CDO.
— — i. J-— 4J 1 JZ J3 >> — — C — CO CO CD COO —
— E0> 3 CO COCM +J 1 £ MO O0 O 1- 1- C C V- >> —
O Wl O Q."D O JC O — — JI C -P — C >3 > O £ CO CDOJZ CO
a — U-aojt-oc to 10 Q. i co o co o— 034^1- o — P o o
<0 .C OCOCD 	 JC— 	 CJ= OO > — C >» OJZCD — O
0 -POO-IZZN 4JCQ OO OO. CH — u.<0. — OZ (0 O
— CO JC jCOO coin
X zl a. a. z o- 1.  0
.. .'43
wo o
•O CO CD
O -P -P
JC O CD
43 CD ^
CO -P
E » >
T3 O
o —
— 43 CO
•p on
CO -—<
coo

-------










1-
Ld
N£
OS

y

UJ
X
H


CO
Q .3-
UJ 1
l-Cvl
UJ
H~ ^
UJ(-
0<
0
w
I 5T
|o
_l —
a. —
OS
_ILU
^ ^
U
w >^
Mac
58
ObJ
1-
0<
zo
<00
3
oco
__
Xh-
OU-

ce.

o
o

flC X
 w
^
O CO
CD
CD —
aiQ
C. E
CO CQ
ce. to


"*^
in
CD
a
Ed-
na co
CO C
s- o
O.Q -P
E 0
C. 3 CD
CDZ -P
A CD
E -0
Z
O
CO
CD CD
Ol—
CO C
CD n
> CO





4-
O co
CD
CD —
01 Q
C E
co co
OC 10



x^
«9
CD

i-t
E *- B>
CO O C
CO O
I 	
c*- CD +*
o a o
E CD
«- 3 -P
CD z a

E "°
3
z






•P
C
CO
-p
™
_,_
£








voj-o\ d-— CMOO _i_im cvj cvi_i o
CM— V — vo CM OO — O —
00 00 CD &

-1 co O
covoosoco— .*C7! a •»•• o *
r-CMCMV— Ov OS— COfflvO co CMCVI J1

1 1 1 1 1 1 II III 1 II 1

OSJ- — U\OOVO OO OO— 1 CM VOO O
v • d- zz zza z !•-
O 00 CO
V







vOvovOvovOvO J'lAO Jfirvvo cooO VOCM vo
vO vo vO vo vO VO vovovo vovovo VOVOVO vovo vo







^ h* CO O — O
co — OS — O it^t-i -JO— NO &
— co v coin — a OCM— d- r-
— 00 CD «



o
m -~ o-~
• in —i co CM co o
O(~-COOOSOO — O vovo CM~' -**• CM
CSJco— V in— CM^-OQ 00 CM CM cOCOin CVJ C\J ON

1 1 1 1 1 1 III III III II 1

t*-£t — ir\\OO vOcoQ Qro-J OO— O — O
CM V • — O ';I Z— Q ZZ CO CO
o — co co in
V











vO vo vo vo vo vO vo vo co ^vovO — — co vo*o vo
"x,*x.x^*xt_x^^' x^x^x^ x^xsxx x^x^x^ ^^x^ x^
vOvovovovovO vovovo vovovo vovovo vo\O ^






^ J
»_ x^
CD O 10 Ol
•P C U E
«J CO — CD CO — CD
x^ ~^ — — £ <- CO Q O C
« CD ^ co a o e — — co
co ^ a.j= o — o CD — .c *>
41 — CD^PC-£I.CCOO3
C >>4J — £ O U CO CD E —
co jz co >» a. — — N'a'-CD —
v> E C04J— +J £ I- O C CD O C O
3 3 >> CDCDCO3— OK-— CD0CDWI-COQ.
— — «- « — -P i .c .a >» 	 i — c A c coo —
— ECD 3CD COCM-PI.C COOOVO O CD— CD C<->> —
O CO O O--O O J£ O — >"JZ C +J — 1 C « > N >> 3 CD O £ CO
Q. — I- O.CO <- U C CO 40 a 1 CD O J- (D J" UC£— O— -P U O
re £ O CD CD 	 .C— 	 C^£« O d) +J O O .C CD — O
O -POO-IZZN -POO OO CD CM Q- CM CCDUII- — OZ M O
— CD C J= O CO <0
x z: Q. o. z: x co
o —
H 0















































•
^
o
•^
>
Q)
L.

(.
0)
•o
c
D
.
CJ X

+J ^
CD C
CO CD
i.
CO «-
J-> 3
CO 0
o

» . n
oo *> u
CVJ — C
• E CD
CO — 1-
. — CD
X. C>.
C CD
> 0 «-
.. . *> c
wo o —
^ CD CD
o *>+»-o
JZ O CD CD
*» CDT3 -P
CD 4J I.
E CD > 0
-o o a.
0 - «
— 4J CD t.
>>c 
-------






o
u

rf
UJ
_J
CD
H
0
CD

UJ
Z


o
ui
H
o
Ul
u
O ""—
00
co.*
H 1
ZCM
2*
•at
-10
SP
-<
wo
CO —
oce
U)
o>
5 .

UK
xS
ObJ
t-K

oeo
>to
ec.

X b.
•E ^
3 flC
W*


CO
vo


J
co
t-


















+1
C
§

t-
«*•
Ul












o
v.
en—
(B O
«- E
CO CC
> 10
*^


c^
O 10
CO

11
CB CB
ec to


to
CO
St- to
CB O C
w o
* l—
«>- fl> p
O.O O
uis
COZ CO
i *
3
z












43
a
—
d-
—















«»-
o
to
CO CO

I- E
C9 eg
£ *



4-
o to
CO
IP
CB a
te. to

^
to
CO
^
o. to
ewe
CD O C

^ 4J
*- O O
°S2
I- 3 CO

A
§
•at



lutant
I






IA r*» QO ITS CM o — i Jt ^ONin— J ^*—
ID—— . — — O O— Q
O — CO CO CO
V


Ift CB
O * O -1— -1
£TCMlAOOVO OfO O — r* O
CM^tf Vcoco —CM CDCM — CO CMfO

1 1 1 1 1 1 II till II
ift ^U co tft ^U 1^ iQ Q C3 ^0 Ci iQ Ci O
v *v^- zz z — zz zz








^CKO* O>^^ ^ •• W cO ^ ~~ •" ^ O
^^^^^^^S^S^X ^V^N ^H*^*^^^ *^*X,SNt
cnost>CM>a\ o\o\ O\ONO\O\ o\o\o\






lAvor— VOO 00 O\ JOvifNOO —
00 ~t ~* CO«^ O •— lA
V V — CO



^.^
ir\ a>
O >OO -l~
OO^OCMO lAh- O — CM —
wr-iftV— 
4i — e &O£(-C
C >>*>— O (- U CB CO
CB £ OJ >, — O — N
*» E IO|*J-** £- (. 0 C
3 3 >. O CO CB 3 O£ 1- — CO CO CO
— —u £.— +» i £JQ —o—i — cjac
— ECO SCO OJCMWI MOCBO\O UCO— CO
O <0| O CXT5 p JC O — — £ C — 1 ** C « > N >> 3
a — «-aoj«-oc CB w a i oa-coa- oc£>-
CB £ O (B « 	 £— — C«CO£« OC04JO
O 44OO-IZZN •PCO O 0> CM 0- 0- CM CCOUtt-
X zl a. a. zl
o




VOCM O
§




o

-JJ- J»

1 1 1
OO O
ZZ ON
CM







O OONOOO ON
x^ ^^^^^x^, **v
ON ON ON ON NO ON






-1 OCMCOCM O
O O MD
co NO r~
^
^

o o
o ~— o
— 1 O CB CB CO
0 . -—'

1 1 1 1 1 1
o oa 	 Q
X 00 Z 0
\e\ co











^ oxr^coco ON
ON ON ON ON NO ON




^
to at
O CO E
to — co c
o *> -a co co •>
— CB 	 C tO
•P £ >- XCO 4»
§a O£— c
— — *» >» CD
S— £ «£ *>
CB O O*> 3
CB CB E i. CO —
C "O c CO O O —
UCO CO O C— «- O
— u *>«- co£ o a
— CB CB O— O —
0 *• C «- >»«£ —
>£ CO O£ <- 0 CB
O *» o— W-P— U O
> C O£ CO CO «- — O
— < — OZHH t« O
acB W
X CB

o











































•
I
^
£

CO
•o
c
3

CM >>

*» *»
CO C
to op
CB >-
•P 3
CB O
a

CO *» O
CM — C
fO *~ ^
, — q)
*•"  0
•o o a.
o — »
•— *» CO t
•P O.C
-c .<

co*o?

Date:  9/25/81
11.16-21

-------








o
Ul
X
(^
^
Ul
J
CQ

Ul

u.
Ul
X
1-
z
•fc

Q
Ul
1-
o
Ul
1-
Ul
o —
CO
t- 1
ZCM
H"
^ ^
-II-
00
a.
z
-JO
Ol-
""" ^
coo
w--
<* Lu
«J -—
occ
Ul
0>
co
(C
 o
on o
E *>
t- 3 »
CDZ-0
.O
E
3
Z



1".














*J
C
Q)
3
w
C|_
C




















t—
O
CO
CD CD
ca a
<- E
CD CO
>cfl





d.
O CO
CD
CD —
ai Q
C E
co 
V V-





in
• o

f^.31— V CO CM

1 1 1 1 t 1
CM ON CM in CM r-
V V • V NO
o
V











ON ON ON ON OA ON
^N^X^^^^^^^^
ON ON ON ON ON ON









j
"*%fc
9
^
09
*J
C
5 E
= 5«. ^_ 2
— E ffi 3 ffi CD
o coio a-o OJC o —
O. — 1C. O.CO <- U C CO
cgLc O ffi CD 	 £
O 4^0 O -1 £ Z N -P
***** 0)1 JTZ
X zl a.
o
1-




NO-J
Q
ffi


_
co CM

I |

QQ
zz







CO —
^^^^
ON ON













ON-J
CM a
m






o
ON
— CM

1 1
OO
zz













r^ CM
*x.^x
ON ON








CD
CO

— CO
X 5
CD £
s. a
>>*>-
J= CO >,
*>— *>
CD CO 3
1 -C.Q
CM 4J 1 W
^JE C —
10 a i o
ffi a CD
£
a.






i j i i
QQQQ
£ ffi ffi ffi


00
lA CO 00 CO

1 1 1 1

QQQQ
zzzz







— CMCMr-
"*x"^^>X^s,
ON ON ON ON













-Jeo 	
O 	
m




^^^^
ca co
•Wrir^*
— d'co
NO 	 CM

1 1 1 1
ON0.3--J
z a
ffi












CM tn NO ON
^^^^^^•^^
ON ON ON ON







—
O
C
— CD W
O— J= O
co a —
CD C O *J
x: ce i- co
Q.£ 0 E
2& £ 2
o i- u co
O£ 1- —
— O— 1 —
O CO ONO U
1 4-> C . >
9 C ffi^t U
«0)£ » O
CMCuQ-CM C
a


























OO

ON ON













cod-
CM






O
00
— 00

1 1
00
zz













CO CM
^^^"V
ON ON








CO
U
•—
+>
CO
£
a

CD
•o
(D
ffi *J
C CD CO
ID C C
3d) a
°£ -
a







CM O

CM

o o

~» — CO

1 1 1

CMC O
Z —







OONCMOO ON

ONONONONON ON













^ o fo in J
(MO — O O
— ffi 00
•. in



O "^
O — CO
CO CO •** O
— «^OO CM
r*» ^ co — ro co

i i i i i i
OroCMroQ O
ZJ* — Z O
jf












«— ON CO CO — ON
^x^x^xW^x ^^
ONONONONON ON






J
ffi ^
COO)
CD C CD E
£ 03 CO C
•P TJ£ CD «
2 ill I
O — O *» co
— £ E O *»
£ U O O 3
06 «- t- -
.- !_ CD.Q O —
I- 0 C 0— 0
h-d- ffi <-£ a
1 O— O O
- <- X- co -
«O££ «- Q
	 +J O*> O O
-,£ ffi— CD — O
— OZOh- CO O
(O
co

O



















































.
1

^
CD


(^
ffi
•o
c
3

CM >>

+J 4J
CD C
CO CD

CO 1-
+J 3
CO O
a

* • CD
00 +> O
CM — C
• E d)
co — t-
• — Q)
r- c,.
C d)
> 0 «-
.. . *J C
wo o~
•D 4) ffi
Q 4* 43T3
£ O CD ffi
4-> CD*D *>
CD 4J «-
E d) > O
x> o a
o — »
— 4J ffi 4-
*J OjQ
^~ *^C
CD •>J'~
COO CD

-------







o
UJ
0
2
_J
CO
z
3

UJ
X
_
ZOO
— a-
i
ON
1. 1 . .
1-
O<
UJI-

uio
o
wo
1 —
ZH

_l —
oce
O-UI
^

oV
™~ fiC
wo
wo
rf U
J l_
0<
o
oco
< w
00
— ce
x<
oo
HCO
ce
U- UJ
oz
ce
It
oS
(O 2£


•
o
K
|
^>
_»

UJ
_)
CQ
rf
H




















.p
C
CD
3
^
c*.
c*.
UJ















*-
0
(0
CD CD
eg
CO 0
> v


V
O (0
CD
eo —
en Q
C E
CO CO
ec. in


10
CO

a c0
Ed- C
a o o
w —
*- CD C
OJ3 CO
E **
t- 3 a
A
E
3
Z














p
c
0)
d.
C
















V
o
V.
ai-
ts 0
CO «
> <0
<



v
O <0
CO
CD —
01O
C E
CO CO
ce <0

^
10
CO
Q. 10
EV C
CO O O
C0 •—
^ ^
«- CO U
OJ3 CD
E P
<- 3 CO
(BZ-O

E
3
Z





C
(0
3
O
O.





9in 5 ~




. o -1
OO O Q
cor-— v vo— CM ca

1 1 1 1 1 1 1 1

ITiCMCMiftfor- — _)
V • CM 0
o ca
V







ro cO co co ro co ^5 CO to ^^ ^3 ^3
CO CO CO CO CO CO CO CO CO CO CO CO










^* ^N CO t^\ ^~ ^N ^* ^^ CM CO
v v — v r- ^ r- co
v





u^
O • O O O -1
— VOCMO CM roo — J» O
— — vvo\— — — — msr ca

i i i i i i ii i ii i

VVV.VCO 5 CM O
o co







CO CO CO CO CO CO CO CO CO CO CO CO
^s^X^Xfc^^^,^^ ^S^V ^^ >X^^ ^S
CO CO CO  O
-I CO 10 10 —
^ ~ — O O -P
2 ^ S P P 5
5 £ 115
S £«oa 2 S »
C >fP— CO COCO
CO £ CO >> C -O
P E 10 P— P O O O CD
3 3 >> CD CD CO 3 —CD —<- P
— — «. L— p i jsja — — C CD — O CO
— ECO 3 CD tOCM P 1 I0O UCDC OC C
O W| O O."O O Jf U — •>'£ C — C >3CD > Q. CD
a — t- a co t- o c cowai oco o 	 oo o
coLc OCOCD 	 jz— ~- c j= oo>> ><0 o
o ploo-JXZN PCD a coo. CKX — —
— » c jc o o co
XX e. a. ± a. x
o
1 t-




0
CO



o
o\

1

o
CM
CM








O O co
CO CO CO










-CM 0
CM







O
CM CO \O

II 1

— CM O
ITi








CO CO CO

PO PO CO






^
^^
Ol
E
CO
•o «
— 10
t. p
o c
— CO
J= p
O 3
g«, =
0 C 0
 I
.. . p
U1T3 O
•O CO CD
O P P
-COO)
P CD-O
CD P
E CD >
•D O
O —
— P CD
P O.O
XC
CO «- T
coo

-------







u.
QJ
i£

Q
UJ
X
o

UJ
-•J
CB
Z
3

Ul
X
t-

z


Q
U
1-
0
u
u
a
Z 1
3*""
_j ^
2^
^
O
_J
 <0


d-
O 10
CO
CD —
aio
c e
co co
ce 10


•s^
10
CD

a. 10
Ed- C
CO O O
10 —
I- 4J
V CD O
O J3 05
e *j
J_ 3 a)
CDZ-O
3
Z
d-













4J
C
CD
3

C

















O
CB a
01—
co a
t- 6
CD «
> <0
<



d-
O 10
CD
CD —

C E
co ti
ce «

*«^
<0
CD
••
a. <0
Ed- C
co o O
<0 ~
t- 4*
d- CD C
g 4J
S- 3 CD

jQ
i
z







*j
c
(0
4.
^






CVJONVO lA ~~ — J ^ «
— - VCO O
CO


m
• 0




3- O
VO
VO

O
0
o
^
__rov— — ^ co vo —

1 1 1 1 1 1 I I

in -^ CNJ in CM vo o o
• v — z z











1 1

3 0
Z -*
ro









\O*O\OVOVONO —CO O CNJOOO tTSO vO
^^^x^^^»^^^^ ^^*^^s» **^ ^»^»^^^x
^D ^0 ^D ^0 ^D ^0 ^0 ^0 ^O ^3 ^0 ^3 ^0 ^0







OD^tzt VOO sten— O\ -ICMVOON
— CM— v.a- N co a
— CO




_»
m — co
. o o to —
VOvOd'OCMrO O\ -* •^•roO
Cvl^CMV— CM f-cfl— — — CMCNJ —

1 1 1 1 1 1 III 1 1 1 1 1

cvjcMinmrvi— oao o a — aco
	 -vj- zzz in z z
o
V









VO vO vo VO vo vo C\J W •— vO •^coa*'')
««vo'«v^« ««« vt) v^vo"«vo'





CD
4i
CO CD <0
— *> 0
_| eg co (0 —
•v — c— o *»
O) — 4» CO — CO
3. X ££ W £
X o.*» co o
•> CD £ e —
(0 £ ^ Qk O CD ^
•P — CD X I- C co
C X+>N— CO CD
CO £ CO C X N -O
43 g oo +J— CD P O C a
— ~ «- « 	 4i I £ a — — C.QCCB (C
— SCD SCO COM *>— I MO O CD— CD C C
O WIpa-DOJCO 	 £ XC — C >NX3CD CD
a. — Caeo'-oc  0 *-
.. •*> C
WD O —
•0 CB CD
f U CD CD
41 CD-O *>
CD <•> «-
E CD > O
•o o a
O — CD
— 4J CD «-
41 O ^
XC ca
CO «-J«~
COQ CO
^ Z CD •*«•
Date:  9/25/81
11.16-24

-------







_l
<
u

Ul
X
u
1
UJ
V)

Ul
X

z
a
UJ
1-
U
Ul
UJ
o
Z
}_ »"^
300
-Id-
_J 1
OCM
a.*—
<£
n
V)
OTZ
5°
Ol-
<
00

o
(— «

It CC
oo
o
>UJ
ect-
<<
xo
XCO
33
WOT


CM
1
VO


Ul
CD
2
















w
1

u
jj












V
o
M
0 0
o>—
Si
0 (B
3"


tj-
O M
0
0 —
OIO
C B
CB a
ae M
>•»
M
O

a. M
E*- c
woo
M —
* , «
•• 4«
*- 0 0
O A 0
6 *J
<- 3 0
0Z"D
J3
i
e*_









4i
C
0
a
—
sg
55
^"


«.
O M
0
o —
aio
C E
«9 a
ce a



•^
v>
0
*a. M
Ed- C
(BOO
M —
1. p
V 0 0
O£- a
E <*>
i. a 0
0ZTJ

z






1 lutant
£






|o\«o m oo\ M ->*t CM-JCMCM
— CM « — VO O— O
GO CD


in *~-»
. O -J « (B
fot^ooor^CM oa- — — '
CM"> — mv 	 00 ODCM coCMd-m
1 1 1 1 1 1 1 1 II 1 1 1 1
voinocMinvo— o o-i oo 	
— —CM • m Z ZO ZZ
V






VOVO f) VOVOVOVO MOO CvlvO CMCMroro
vOvOcnvovOvOVO vOvOVO VOVO vOvovOvO





(B
^,»
o\o\ inmcMO —-1st -Jo m-imcvi
CMf. OS .-d- CMC Oro O
O V — CO (OCM CO
V

*l^
(g — > ~
S~ vOQ— O — —
a- 	 WOCMCM J»eo— in* vocMr**

1 1 1 1 1 1 1 III II till
(OJfOh-iACMOO OO— OO mOroO
-st-x . vr- zz zvo z z
9









VOVO«0 VQVO VOVO in — vo — VO OCMmCM
vovomvovovovo VOVOVO vOvo sovovovo




0
u
(B 0
— *»
-1 (B (B Ml M
^ *- JZ— — 0 0
Ol — *» (B O — —
3. >. JCJ= C d *>
X a

— 0 >, p H c (- C >>*»N— «- (B 0 CB CB £ 1 £ £k 0— -CJ3C0 — — E 0— 30 COCM-P—I M (B O O0— 0C O O M|paC-DU^O — — £>>C — *» C >N>>30 > a — £a.a}> 0 « £ ~ 3— C 0 £ O 0 4-> O >> > U *J)OOO-JXZN v VO VOVOVO SO -1 -V M en U E — 0 *J -O CO « CB — C M £ 1-0 +> a o— c = ££> 5 (B O *» 3 0 E 0 — c -o «- 0 o — 0 0 O C <- O — *><*• a> o a. (B CB O — — £ C S >,£ - •P O O£ U (B a o — 4J— o o CB O£ 0 «- — O Z —OSl- (0 U as at X CO o , I L. e •D a CM >> +> 4J 0 C (0 0 CO S- 41 a » 0 * • 0 CO WO CM — C E 0 CO — 1- . — a r- <+- C 0 > 0 «• .. . 4J C M-O CJ — •000 O *>*»-0 £ O 0 0 4J OJ-O JJ 0 *> «- E 0 > O •D o a o — 0 — +J 0) t.

>c w CB «— l^~ COO (B


-------








o
LJ
X
o
^
UJ
^J
03 —
ZCO
O If
1
UICM
X —
1-
ZH
~O
O
UIZ
I-O
o-
U!eC

UJO
O —
u.
CO —
HO:
ZUJ
=> «
oo
(^ ^
LU
«J H™
^ *t
O O
*— CO
CO Z3
coco
o
o —


X
oo
— 1
°s
M
u.
OO
tr1*
^f ^»
c£ i^
2C ^C
•3 Q£
co*


•
CO
^
1
\o
—

Ul
«J
CD
41
(-























4J
C
0
3
"•
4-
4-
LU















4-
o
M
0 0
on—
CO Q
t. E
0 co
> 
4- 0 O
OA 0
E •P
4- 3 CO
0Z-0
A
E
Z
















4J
C
0
—
Ct-
c


















4-
O
(0
0 0
o>—
CO O
L. E
0 co




4.
O CO
0
0 —
0,0
CO CD
K <0

v.
(0
0

Q. M
E4- C
CO O O
to —
(. 4J
4- 0 O
O A 0
E -P
t. 3 0
0Z-0
A
E
3
Z






.p
c
CO
4J
I







OMfN — CO lA tfMA CO CO — O
	 .V CM — —
V V O co
V


irt
o

.*CM — CMV— Jf — CO CM Jt

1 1 1 1 1 t 1 1 1 1 1

CO (M O CM O CM lA O O O O
— V Z V — Z Z Z CO
V






vovovovoiftvovo coOO OO OOO OO— co vo
*^^v^^^^^>.^X^X ^X^x*^ ^s^X *^****^v ^^"^^^^ ^x ^x
vO VO vo vO vO vO VO VOVOVO VOVO VOvOvo vovovo vo vo











ONCOVOJ- OO OiTtco _JvO cocOCM iTtcooO— O
CMco — CM — it — — Olf* CM lf> O
V V CD O\


— O
ift -^<— >o> -~ ~- o
• O co 9^ CO O CO co
vOd-lACMOOCO VOCMO O ~^l*- — CM ~ «
r~ VO CM Jt V CM IT> — — CM t^— lA-STvl h-vOCM*0 — —

1 1 1 1 1 1 1 III II III 1 1 1 1 1 1
CO vo O OMA CM JS- OOO OO —WON cOOOO — O
	 >VCM ZZZ ZcO — ZZZ iTl
V 0 vo
V









VOVOVOVOVOVOVO ift-tfCM — vO (Ococo cotMcoCM co vo
^X*^^«,*^**^^'^»^X ^^^^N^ ^^*»^ *^*^*^ ^X^X^X^^ ^X ^X
VOVOVOVOVOVOVO VOvOvo VOVO VOVOVO vOvOvOVO vo vo





CO
— _l
0 > ^
0 CO C - C Ol
P U CO 0 E
-1 CO CO — £ 0 £
v. ^* _ qj _ o *J *J -o co Q .
Ol — CO *» O — CO 0 — C — «0
3. >• £« C P £p (.0 A P
X *»— 0 co ofc o— a- c
0 £ CO £ E — O — >> TJlTi CO
10 £ O.£ O. O 	 ££0CM*>
•P —0 *> O «- co£ O +» P— 3
c >>+» — £ >- co o e co co —
CO £CO>»O. O -o— (-0p Cl —
4> e i«*»—*» — o 0 *- o c t- — o
3 3 0 >, CO 0 CO 3— £ —(BCD 4JH4-OO t- t- O.
— •> I.-O «-— 4J 1 £ A >> O— — C C 0 coiO 	 OO
— S0~ 30 CO Cvl -P I £ COI co O O00C C— i- >>£ 	 —
o coioac-oo-xo 	 £ c P —PC > N 3 0 0«o.ru £ o co
o. — U-o.cocot.oc co >00 	 £— 	 C 0 £ O0O>> O •£ 0 t- > t- ._ o
o -PKJOO-IXZN .

04- • •••PC co-o O — •000 O •P PT9 £000 p 0*0 •p 0 *» 4. E 0 > 0 •o o a O — 0 P O A >>c to 03 »_r~ COO CO


-------







o
z
—
^
_J
8
co
^
o

UJ
X

z

o •-—
ujeo
Hd
O 1
LJCM
h~ *— •
UJ
0<
1-
KO
- c
co O O
to —
St. +j
c>- CD C
O A CD
E P
«-3CD
CDZ-O
E
Z















^J
C
CD
3
_
€>.
C

















O
M
CD CD
CO 0
i. E
CD a
^




v
O d
co
O1C
C E
co a
cc - C
co o a

C. 4J
*- CD U
OJQ CD
§^J
CD
CDZ-O
^J
i
X






c
CO
P
3
I






OOlAlTiOO
COCVJ— -fOVO
CM O —
V

0
O if\
— -o

— CM«> v ojr-
1 1 1 1 1 1

— vOOlACMt-
— z . v  ^v ^^ "X» ^^
d1 d" d1 d" d" d"









Sti£ cO»?





in

VOLfMrtOUMft
J-coOJ V^«0

i i i i i i

urn. •— • ^











Jf- J^ £f J& ^ &
^^^V^^^X^^^X
Jf Jf & Jf Jf ^








J
^^
2

to
c
•P E <0
3 3 ^ ^ CD
— E CD 3 CD CO
O <0| O O.-O O JC O —
a. — (-a.coi.uc co
CO £ O CD CD — — £
U *HO O -1 X Z N *>
X 1 f
0
K




if\— J -J J liTMA
00 CD CO




j j
— a oo
— CD— CO — f.
iii iii

000 O-J-I
zzz zoo
as co







CM 	 o — dd- oo

d" d d" d" d" ~t d" d* d"







CO

O* ^ OA — J d1 •" ™" J
O — — O
CO CD





•J
CM OO\IT\
CM CMO CD 	 CM —

1 II III II
CM OO OCVir-- QO
zz z— zz











d-OCM— CMd-d- CM —

d-d-d-d" ^ d" d" d-d-





CD

CO CD 0
— *» c
CO CO — CD «0 1
— £— CD O £ 0 C
— *> co *> c a —
>» ££ CO CD O *> •<
X a*>— £ k a> c
CD £ co O. O E 1
£ — O.£ O — O i
— CD X *» (- £ t- 1
>»*>N — £ O U CO <
£ co c xa. — —
V— CD 

N3 : o d- - 0000 roto CM to II It II O-J OO CMO zo — z -o 00 ^ vO 1** ^ •~ "• CO O JJ CO CO d" ^V^S^^ ^N^^ ^^"*^ -a-.tf.* j±it j-^- j ^^ to en U E a — CD J *> -O « CO — CO J £ t- *J I 5 f = 3 CD — £ *> - C CO U 3 0 CD CD CD E — £ C C -O (- CD — J*»CDCD CD O C O -C— U *>i4- CD O. a - co co a coo— — J «-£ «- C t- X — C >. O •!->£ CD O£ CO O J 3 aP O— *> U EO >1-COC 0£0 - SO -u-z< —OX «o CD L. CD •o C 3 • CM X P -P CD C 10 tt) ^ co t. 4J 3 CO U O . . 0) CO P U CM — C . g 0) 10 — f. • *~ CD F" d- C CD > 0 «- • ••PC co-o O — ^ CD CD £ O O CD P (DT3 P CD *> <- E CD > O •ooa. O — CD — 4J


-------

Ul

^f
o
Q£
a.
o.
UJ
x
f—
•ss.

0
UJ
H

Ul
LJOO
Q J-
1
WCVI
<<
32
2ST
^J
-J J-
OO
(/> U.


Kl-
ZLU
= 3
W W
in
NO
™"
Ul
CO


6-
o
to
« «9
Ol—

|a


O W
' O
: » —
i ota
J C 6
a •
- CC W
J
Id
O
Ks
a O o
VI —
(• *J
S2S
l- 3 tt
m Z T
i
i
w
82
i:


t-
: 9 —
> ata
3 C 1
: ss

x.
v>
ft *

SO <
"«
osi
*- 3 <

|

44
C
a
4
I





^I^i^^S 2 "^ RKoSS 25 S K S2 «" w§
VO — tf» — JTCM -v *>
V «*> *

-* <• — oo — o
« — « -. OO MO
§tf> O — O-IOO -— <0 CM— — -3-
CM .COCM — ar o«amr- «o — IA— COMCM ov>o ao «o — « *o ^CM

Illlll II Illll II 4 till II
«n«0 — tf\CA
O B 00 — >O>O




CMCMNCMCMCM CMCM CM
CM CM CM CM CM CM CMCMCNJ NCMCMCMCM CM CMCM CM CMCMCMCM CMCM CMCM





C\ir*CM>~O CMQQ «OO «0 o cycMnJa-tv tno « »o7 - «o n >o *>
^CMtA ~ CM — *On — !*•& CM CMCM 00 CM JT m CM W
Illlll III Illll III 1 Illll 1 i*

«CMCNJiA(OiA OQO O_* JOO OOO M OlTtCMOCO CM OO
V V . XXX ZOOZ— ZZZ CU «o *OZ zoo
0 CD CD I-






CVJCMCWMCMCM — CMO CM
-^XV.^V^X. v^X.^ *v*X^X.* V.V.vl ^ ClCJ.*sfc'ssv»V.V. xLx,
eg CM eg cy * J N NCMCM CMCMCMCMN CMCMCM CM CMCMCMCMCMCMCV CMCM


_,
s I si! s. i1
-1 • — «MI IM^COVCBC
-^ — . — • o— £  « — w— c u
• £ « o af on 3 — o«— Q *> >. «
40 £ &C COO,— Q O — — p £ • 0) £ M
" —0 W O E P £ C C •£>- Oppu 3
C >>*•-£ £0<- 0 • « 0 OOP t-Ce -
J3Pp —
4J E MV—W p£ — l> u Od>At^£OCP— CO
3 3 >i «««3— CO£ 1- — O « — — -£O a 49
— — <- £•_ 

C

o

3
CM >.

** *J
> »

IsH
Date:  9/25/81
11.16-28

-------






UJ
Z
Lu
i
o
o
o
^
Q
z
3
0
cc
o

UJ
X
t-

z

o
UJ
K
o
UJ
h-
UJ i— i
oco
C/) 1
I-CVI
z ^— *
!<
0
O.Z
o
_J —
^ ^~
0<
— o
co —
C/)U.
ouj
o
z •>
 CD
> <»




CK
O (0
CD

01 C
C E
co «
cc. ^ — vo ^^Q xl
VOVOVOVOVOVO vovo vovo VOVO vovovo vo




_J
x^
eg 10 01
P O CD E
-J CO 10 — CD C
V, ^ _ _ o P -D CO «
O> — COO— CO 	 W
a. XCCP r: i- >> P
X P CD CO Q OC C
•> (D J= J= 6 — — P co
« £ a a p co — J=CDP
P — a p C c co o o 3
C >>P- C cotO E «- —
CO £«>>0 N-Ot-eo-
•P E W*»— p — OC CDOC— O
3 3 >> CD Q> CO 3 JZ — CO CD P d- CD £ O.
— — «- i — P i £ ja o— — jae coo— o
— E CD 3 CD COCMPI <0|tO O O— CD C5->>CO —
O MO O.-D O X O 	 >£ C —PC > >> 3 CDOJZI- CO
a — «-acos-oc co 10 a i o c CD O£— o— PP o o
COCOCDCD — — C— — CCDf OPO OJ=CDCD — O
0 POU-1ZZN PCO Q 4)0.0. CUJH - O Z 1- 

P P
CD C
u) e
co t-
P 3
§ o

« • CD
CO P O
CM - C
,0 •£
. — (D
h- V
C CD
> 0 t-
• • •*» C
WO O —
V CD (D
C O CD CD
P CD-O P
CD P t.
E CD > 0
•o o a
o — co
— p CD <-
p on
>>C (0
CO »-J^»
COO co

Date:  9/25/81
11.16-29

-------






OC
Ul
ex.
rf
a.
UJ
z
—
u.
^
z
1
UJ
a
Ul
X
1-

z
—

o
Ikl
H
o
Ul
i-
Ul
O
V)
h-
z
(— C-"^
=»co

— J 1
CL^i
-J<
— Q
C/}
COZ
2°
Oh-
^
Q O
sc "•
^ LA.
•_
ooe
— Ul
x>
o
u-0£
OO
o
^ UJ
fiSh-
*4 ^C
£ O
£ CO
^> ^5
coco


•
^
—
1
^
•—
UJ
CD
h-














P
C
0
3
£
il

















Ct.
O
CO
0 0
Ol—
go
0 CO
> CO
<




*- 0 O
O.O 0
E4J
«- 3 0
0ZT3
A
E
3
Z




C
a
Q.






lAvOCXJCO Jco
v r~cM v co




iTt
— IftOO «0
o\ — o»co v r~co

i i i i i i i

CM CM O St tf\ CM O
VitCM ' V co
9








CO CO CO CO CO CO CO
^^ ^^ ^^ ^^ >^ ^^ ^^
CO CO CO CO CO CO CO











CM — OO IT(O
•a-vo-in 	
	 CM



irt
00 • 0
.3- CO — co V CM CO

1 1 1 1 1 1 1

C^ CM CM ^ IfMft t1*
CM Sf co ^D • ^K
9









CO CO CO CO CO CO CO
^x ^x ^x ^^ ^^ ^x ^^
CO CO CO CO CO CO CO








o>
3.
ca
c
co
•p E ca
3 3^0^ a
— e 0— 30 «
o co o ac-o OJ£ u —
a. — «- a co co t. u c co
co£O^00*~*— £
U •PUOU-IZZN *>
Q * et]

1-




_lvO_l
0 0
CD CD




CM
CM — VO

1 1 1

000









— CM CM
^^^^x^
CO CO CO











JtlTl-J
0
CO




o o

i i i

O co O
Z Z










C\J co •*
^^Xfc^^
CO CO CO







0
4*
CO
— « *>
fr 5^
1 1*
— o *.
P— P
0 co 3 —
1 £.0 >>
CMP 1 £ CA
— £ C*» —
co a i 0 o
03 OO O
A.






-ICM h-
O —
CO




§o —
CM CM

1 1 1

o_i a
zo z
00








O — co O —
^^^^^^x^^^
no co co co co











_J_llT\CMr-
SO ^ CM
CD




O d1 — \0

1 1 1 1 1

OOOCOO
zz z










— — CO co CM
^^x»^^^^^x
CO CO CO CO CO






^

— 0 ca
§— £ 0
o a. —
0 C OP
— £ 0 t- co
0 0.£ O •
c o a — p
0 t- P £ C
£ O t o CO
a— o —
S£— «- O
O£ t- —
O— O— 1 —
— O co OVO O
£ 1 *» C . >
CJJ-C0J- U
1 «0£ . O
(MCMO.GLCM C
i






—





CO

1

0









— OO

co co co











cvjcor-
ir\





mo
r — CM

i i i

0 — 0
z — z










— CO —
x^^x^x
PO PO CO







CO
u
P
CO
o
CO
•D
0
00 -p
c c 0 a
o 0 c c
N 3 0 0
C 	 0
&£% 2
CO
X






o r-
—




§ -
CM —

1 1

o\









Ocooco
^^^Si^X^X
CO CO CO CO











rviomo
CMOOOV
CM •*
*

o
o
r^oo
co .com
lf\OV— CO

iiii

VOOCMO
!*•• CM CO
VO —









PO CO CO CO
x^^w x^^^
PO CO CO CO




10
M.
0 >
c c
CO 0 O
£ C £
P 00 a
o P >> -o
— 0£ 0
£ O P -P
U E <- 0 CD
- «. o p C
i, o— «- —
!-«.£ O <-
J-SSZ 2
«O «- O £
-






0
r-





o
VO
CM

1

O
IT)









O co
^^ ^t
CO CO











co O
O
VO
—

O
O
Ov CO
Ov CM*

1 1

O O
z o
f-









— CO
X. X,
CO CO





.J
x»
Ol
e
u>
4»
CM C
d- co
CM -P
— 3
1 —
Aroclor
assical po
COO
«_
u
























































•
CM

4>
0
CO

co

CO
o

* •
CO P
CM —
• E
CO —
r-
c
> 0
CO 13 O
TJ CD CD
O P P
£00
4J 0 ^
i£>
•o o
o —
— 41 0
JJ O rt
To -.-T
coo

-------















^£
z

i
Ul
o
Ul
X
r-

Z

O ^^
PS
U 1
UJCM

Ul"
°2
>-o

3
«
d»
tt-
Ul















Q-
0
in
0) Oj
Ol—
CO O
1- E
0) a

c^
O V)
0)
0> —
OIQ
C E
CO CO
 —
«- C0 C
0.0 a:
<- 3 a
oiz-o

E
3
Z


















4J
C
0)
3

Ci^
C
«•


















«-
O
M
o) co

co a
t- E
a> a
> Ul





d-
O o>
CO
OJ —

C; g
co a
Of N, '*X>^ ^^ '^N
CO CO CO CO CO CO fO CO fO CO CO CO CO CO CO CO CO










m o\ co CM \oo POPO o mm OCM — o
— CM 00 CM O — CM — O— d-
V CM — J» d-




0
m o
o • o o oo eo o
oo f^" ^ ^ o ^ ^ o (f\ o *^ • "~
— co — J-VO\CM CM— — CMO\ 	 PO if\

1 1 1 I 1 1 1 II 1 II II 1 1

CM PJ CM CM m a- o it a so oo o— o o
— wr-v • r~ z t- — z o— z r-

V *
— •











PO PO PO PO PO PO PO PO ™ • PO O PO CM PO PO ^ CO
^vX^'X^X^^^'Xfc^V *X»^^ "Xk ^h'X.X^ X^X^ X^ X^
PO CO PO PO PO CO CO PO CO CO CO PO CO CO PO CO PO



in _l
^ x^
> 0)
CO U) C E
4i O »
-1 «J W — CO £
•X — — O +J-OQ.
O> — CO ~ eo — — Ul
3. >»£ *> £<-AP
X « CO Q 0 JJ- C
« to £ E — — -airi co
«> £ a O — £ OJCM 4J
•U — CD >- COO*'— 3
C >>*>— CO E co —
CD £«X -Qt-COCI —
4J 6 > CD CO co 3 — CD CD 4->> 	 —
o  N 3  o c — — c — *> oo o o
CO £ O >> CD 0) 	 £— — Cf O > O£CO > I- — O
U •HUOU-IZZN «CO O CDO- COQr-X — OZ — < <0 U
xz cf| cf r x°«
o —
t- 0

































































•
CM

4J
a>
in

CO

I

•, *
CO *J
CM —
E
CO —
r*.
c
> 0
.. . 4>
in-o O
•00)03
o *»*>
£ 0 CD
•P WO
CD P
E 0> >
•o o
o —
— *» CD
•P O A
xc
CO ^J"
COO

-------











Z
UI
Q
X
1-

z

a
UI
t-
O •""*
UIOO
1- *
UI 1
a CM
co""
I-Q
^J
-JZ

Q. }_
*3
coo:
COUI
^> >
j
o -

ace
i§
UI
•~ ^
xo
oca
co
U.
Ot-
^. _
oca:
^C c^
ZOO
§2
toz


»
A

1
*o .
UI
1
















J
E
3

[j














V
o
09
» o>
Ol—
.0
CD a

ik-
CS 
CD
tw
It. C
CO O O
in —
t~ 4J
*- eo o
OJ3 a

«- i a

A
E
3
Z




49
C
CO
*
I





CM — ON (MOV -1 1A
V V — V V — Q
V 00
Ift

O O « O
cv) 	 fOVJ'co — —
1 1 1 1 1 1 1 1 1

	 o — ie\ — ift o CM
v v — v . v z
v





tooororOfOMoo — o s,%X *S» X> NX
c^ ro PO fO PO co CO PO co co










OOmotVI CMO COiTt— (VtcovO if\ O
— — — V Jf * (\l O
v v r«
"

o
lf\ O
O CO
M — OOO  «
01 — 4»4i — CO M
3. ?> £ W P £ *»
x a.— co a c
CD eg i — ce
in £ — £ o CD — *»
•P — CD >>*» t- C CO 3
C X-P N£ eo CD C —
eo £ co c a N -o C —
4* E M4>— CD O C CD 0 0
3 3 CD X CDCDCOA— — CD CD 4>«. a
— — t--o t.— 4> i £ X —.a ceo eo p
]— EU>— 3« « CM -P — £ O— (DC C<- —
O (OIOO.C-OOJCO — — £X« >X3Cg (DO eg
a — U-acocot-oc co M Q.-P cs o£ 	 o— o a
col£ OXQ>CDMvM* £•* 3*^ O4*OX O£ ••• O
o +»|OOO-IZZN 4*co eoo cuit-x — u w o
"x z! S £ x co
K O

















































,
CM

4J
S.
»

co £•
4> CD
CO —
O —
CO
^ • ^
•O «i eo
• E 4*
CO "™ O
r-
C CD
> 04»
— CD
.. .WO
wo o
•O CD CD CD
O 4»*»4»
£ O CD CD
41 CD -a o
04* —
e eg >-o
•DOC
«j ._?co
CQO-

-------









§
ce
u.

0
cc.
^
s
QJ
u
CL
0-
LjJ
X
^

Z

a
H—*
000
u.3-
K 1
bJCVl
O —
r-l-
z<
<0
r™
3 Z
-JO

Or-

O
rf iZ
o-
— a:
WLJ
CO >
3 .
o ^
Q£
§8
5

•
0
CM
1
VO


UJ
J
co
i-





















jj
c
a:

C|_
C*.
Ul














d-
o
 S


d-
O (A
CO
CO —
WO,
C E
co co
QC 03


(0
CD
a. >» -W. V, >x.
lA (A lA IA lA IA lA











^ vo ov o IA r— o
C^ C^ CM 3* • CO C^
V V —OV CM
V V •>
—


o
o
oooooor-
f— lAJTO «fO ^
ODVO — O\ 	 &

1 1 1 1 1 1 1
CMCMOCMlACMVO
V — V -V CM
V 0
V









lA lA IA IA IA IA IA
•x.xwx,v»xs.»v.'x.
lA lA lA lA lA lA lA









_J
x^
3
^
CO
c
CO
JJ E >>a
JJ— CO JJ
CD CO A 3 —
1 £ £ >>
CM*»— 1 £ «0
~£ >» C 4J —
CO Q.JJ I CO O
eo ceoo CD
a.







_j_i
OO
CD CO




eo


1 I
OO
zz








xlxlxl
lAlAlA











VO--I
a-o
CO






OV —
— OVlA

1 1 1
ovoa
Z Z











IA

IAIAIA






^
O
C
co m
— £ O
o a —
C O JJ
CD i- co
£ 0 E
a. — o
0 £ «-
C O CO
o —
- k 0
O— 1 —
CO OVO U
JJ C - >
C CO JJ- U
C0£ « O
a. a. CM c
o







CM




^^
CO

IA

1
CM









O^vOO^
IAIAIA











_IO«0
O —
CO






OV
— fOVO

1 1 1
OOO
zzz












— 00 lA
IAIAIA







10
U

JJ
CO
Q

ce
•o
CD
CD CD JJ
C C CD CO
CD CD C C
N 3 CO CD
C 	 O
CO O X O
tOr-X —
S







•3- —






O
CM 3-

1 1
OO
zz








x^xtx^x^x^
lAlAlAlAlA











— IACM-I —
— O
CO






o


i i i i i
oaooo
zzzzz











—

IAIAIAIAIA




CO
—
CD >
C C
CO CD CD
f CD C £
JJ -Q CD CD O
CD 	 C —
21- >>co a
0£ —
o — JJ >> -a
- £ CD£ CD
£ O O JJ JJ
U E <- CO CO
— C co o O C
L. 0 C— t. —
r-fc. a>£ o «-
1 O— O— O
— «- >.«£ -
• O£ *- O £
— — JJ JJ— o
.£ CD CD 1- >
— OZt-t- —
O
Q.







^^^^ o
CO CO O
— — ' CM
^_ «»


O
— ^ ^
V V lA

1 1 1
OO lA
zz







IA
*xv» v.
IAIA lA









CO

— lA O
O
CM

—


0
O
— o •>
V - so

1 1 1
OO Q
ZZ Z











if

IAIA 1A




_J
N^
Ot
E


*
in
jj
d-co c
1AJ- CO
CM CVI JJ
— — 3
1 1 —
s- 1. a
0 0
U U co
O O U Q
« ~in O
in
CO

O



















































j'
Q)
.—
>
0)


L.
0)
•Q

3
C\I X

-p -p
(D C
(A Q)
^
A ••
JJ 3
CO O
a

« . i)
eo JJ O
CM — C
E CD
CO — i.
— co
r- Q-
C CO
> 0 «-
.. . JJ C
wo o —
^ co co
o jj jj-o
£ 0 CO CD
JJ CO-O JJ
CO JJ <-
E Q) > 0
•D O O.
0 — CD
— JJ CO t-
JJ 0 JO
>>c in
CO i-J^
COO CD

Date:  9/25/81
11.16-33

-------
4-









i
cc
u.

LU
=3
CO
co
K
1-
LU
X
K
Z
—

O
LU
H— •
OOO
LU d
1- 1
LUCM
o —
!<
^

-JO

2t—
^

HCO

LU cd
OLU
o.
^> ^
ceo.

0 0
Ol—
co a
t- E
0 a
3*
^
O to
0
Ol O
C E
CO 9
ct  a>


4-
O CA
0

010
C E
co co
0- U



^«^
Ul
0
^_
Q. CA
E 4- C
co O O
t- 4J
4- 0 O
O.C 0
E P
1-30
(BZ-O
A
E
3
Z





C
a,
I







«o h- o CO CO (M «
V V*°C>~V
V
0 OO 0
co — ocvi >moD
CM 	 CMCM —
1 1 1 1 1 1 1

CM >o o Jt m co m
V — -V
v o
V







VO vo vo vo vo vo VO

vo vo vo vO vo vo vo










o in o if vo ^ o
CMin — & -CMCO
V V O VO
V

o
o
O OCM VO
•OOOCM -CM «
VO 	 O\tO

1 1 1 1 1 1 1

CM .* O d- in CM —
V CM— • CO
V O
V











vo vo vo vo vo vo vo

vovovovovovovo







_l
x^
2
«
ta
P
c
CO
P E tA
3 3 0 £> 0
— 60— 30 CO
o ta p ac-o OJ£ o —
a. _ C a co eo i- u c co
0 POOOJZZN P
— 0 C
x r Q-
0
H





Jt -1 -J CMCM
0 0
m m


co
00 VO — CO —
1 1 1 1 1

0 O 0 OO
Z Z Z ZZ









COOO Jf —OCM— OO

vOvOvo VO vOvOVOVO vovo








CO (9

OvOVO •• 1^ CM CO fO O
— CM d- CM CM r--



'~ ca
CO ^^
o ~" 2 °
— — in — h-d— Ox*

III 1 III II

aao -J CMOO oi»
ZZZ O ZZ Z —
CO












in ^ CM vo o *o in in ^co
*^*^^^ x^ ^^x^*x^x^ ^^x^
VOVOVO vo vOvovOVO vovo




Iff
^
0 CA e
«B M — 0 £
JHk «• 0 O W ^ O
— C0*» — CD — —
>, £ eo P £ >. A
x v— g a o

£ ac p 0 —co
— 0 *> t- C eo O P
>>p — £ eo 0 E eo
£CD>»a N -O C CD C
44— P O C 0 O C —
0C03— — 0 0 0 -P4-0 C
!££>» — — CJ3C0 COO— O
cvj P i £ in o 00— 0 C c t- >, —
— £CP — C >NX30 00C S.
ta a i 0 00 occ 	 o— P o
— 	 CC O 0 -P O >> OC0 >
co oo 00. cmwi-x: — uz —
£ x is







o
— VO
V —

CO O
-* CM
— C\J
1 1

— 0
V Z









ro in

VO vo








CO

^ o
VO
CO




O
V S

1 1

0 0
Z CO
CM












-* vo
-v -s.
vo vo





«J
i

*
CO
a- c
in ca
CM P
Aroclor -
sical pol 1
COD
s
w
o














































•
v
0
M
^



c.
0
•o
c
3

CM' >>

0 C
 0
s.
CO *-
•P 3
CO O
o

. 0
00 P O
CM — C
E 0
CO — t-
. — 0
r- 4-
C 0
> 01-
.. .PC
wo o —
•000
o -PP-O
C O 0 0
•P 0X> P
03 P U
E 0 > 0
•o o a
o — 0
— +» 0 t
4J OA
>>c ca
ca «J~
COO ca

Date:  9/25/81
11.16-34

-------









0
LJ
O
_J
O
s:
i
0£
LJ
Q.
rf
a.
LJ
t-
w
^
5
LJ
X
H
Z
—

o
LJ
L^
O
LJ —
H-00
LJ .*
O 1
CM
Z<

H~ ^
ZiQ
_J
_J Z
oo
O.—
r-

U

Q ^"
zee
- £—
ce o
fo
0
See
coo.


.
CM
CM
1
VO


LJ
CO





























43
C
CO
3
— •
4.
4-
UJ















4-
O
in
0) CD
en—
CO Q
v- E
CD CO
> 
CD
CD —
CnO
C E
CO CO
<£ IA


1 —
V)
CD
o. in
E4- C
CO O O
t- +J
4. « cj
O ^ O
E P
i. 3 CD
O
E
3
Z


















.P
C
CD
3
«-
4-
C


















4-
O
(0
0) CD
en—
CO O
S- E
CD co
^




4-
O 0)
V
CD —

c e
co co
CC V)


^
in
CD

Q. U)
E4- C
co O O
t- 'H
4- » O
OJ3 0)
E-P
5- 3 0)
0>Z-D

E
3
Z







43
C
CO
4J
3
O
Q.










CO^OCM coCM — 1 -J —1 CM
	 Vlft OO O 00
V CO 00 CO




ITS.
_J_J 0
OOOO CO OO O
^f ^^ ^~ "^ V ^^ ^^ OQ QQ *•• ~*

i i i i i i i ii i i

co CVJ O h- in — vo OO O vo
— • V CM ZZ Z VO
V O
V







CO CO to CO CO CO CO O — — — CO
X^X^^^X^X^X^^x. X^ X^X^ X^ X^
(O CO CO CO CO CO CO CO fO CO CO CO











OVVOOCM COO CM -100 — O
	 CM CMOv Q Ov
V CO CO CM




in
• O O
JS- ^- o co o «o vo m
— co — cova-j- a- vow CM co

1 1 1 1 1 1 1 1 II 1 1

in co o CM in o o — or— o o
— . — vo Z Z VO
V O CM CM
V










CO CO CO CO CO CO CO tO —CO CM CO
^X *X. X^ "x» X^ X^ X^ v^ X^X^ X^ X^
to co co co co co co to co co co to





_J
x^
. C C. «- 43
X CO 0 O C
« a> £: 	 co
in £ o. — £ -P
•P — CO O CO O 3
C >>4J i. —
CO £ CO O V CO —
*> e in 43— — CD c o
3 3>> (DCDco £ -PCOa
— — t_-o t-— *»!£ O— CO —
— ECO— 3CO COCM*> cfleoo C>> —
O MIOCLC^U^CO — •— £ — -P C CD £ CO
a — U-o.cocoL.oc to w a OCCD ow o a
CO £ OXCOCD 	 £— CCD£ O 4) — O
O P|O UO-IZZN •PCD a) a. Q. — s in U

x z: a. e. x a
o —
h- O




































































.
CM

CO
in

CO
4J
to
o

•t •
00 P
CM —
• E
CO —
• —
c
> 0
.. . 43
OJ-D O
•a co CD
o +•* ^
£ O CO
43 tfi-O
CO -P
E OJ >
•o o
o —
— 43 CO
•P OJS
XC

(0 -—I
coo

-------






K
LJ
Q.
Q.
W
u
Q
;£
CO
LJ
X
1-
*—



QCM
U i-^
1-
O<
£5
LJO
Q
MO
<<
HO
3 —
-Ilk
2K
U
^^
J
SV
— fl£
(OO
(OO
rf l^j
J ^~
o ^
o
oeo
35

ot-
— -1
XLJ
OH-
O
O —
u.
>o
flc O
^ flC
zo
25


•0
CM
1
^
•—

u
_J
00
H-














V
c
0
i-
d-
LJ













0
0 0
Ol—
0 CO

*

o to
0 ^
0.0
<0 0

V.
0
a 10
Ed- C
co o o
(A *^
«- *j
*- 0 O

64J
t- 3 0
0Z-O

!















4J
c
s
^
^
e















d-
o
10
0 0
01-
.0
0 CO
> 10




c>»
O <«
0
0-
I1

Q£ 3



(0

"a. 10
S«- C
co O O
(0 —
*- 0 U
OA a
4- 3 «3
0z-o
i
3
Z







c
«
3
I






omoo oo o
oocja- CMO o
CM 	 -* Jf

CM* -^
o o
in o o
o oo -oo\ r-
int^ooo^' « •>
W>O 	 V —ft —

i i i i i i i i
cococMin -oo o
CM O — O CM
V + «






to CO fO co f) fO f) co O O

co co co co co co co co co co










OOOO OO O «O -J
.a-o-r- CMO o — o
COCM — CM —CO CM 00
«l ^
CM —

O O
in o o
OOOO -OO « CM

COCM — coV— co — CM

1 1 1 1 1 1 1 1 1 1

oomoin^o o o a
OtCOCM— >(OO O Z Z
CM— CMO in —
V •. -.
CM —








co co co co CO CO co co CM ^
CO CO CO CO CO CO CO CO ^^ CO






«M
o
-1 «M —
^x u ** O
§1 S £§
8 -2x
(A P — C

c « o
** E O 4) »
— EO— 30 «0O OC CC
o M|pa.cioojco — c >0 oo
a, — £ a.  0
.. .**
10 -D U
•000
O *»*»
C U 0
•P OtI
§ll
*> o^>
XC

coo

-------









^•^
00
st
1
CM
i-^
LJ
X<
l-l-
^
ZO
^
z
00
LJ —
H-l-
0<
LdO
I 	
LJ LL.
Q —
ce
(OLU
H~ ^"
z
sac
-JO
-JO
OUI
0.1-
^
-JO
03
— W
W
WW
 ^
ocs
o

oet-
O
COZ


_;
CM
|
VO
™~
UJ
J
CO '
H















P
c
CO
3
«.
4-
(t.
U


















0
O oi
CO Q
i- E
CO «
$»
^
O VI
o
co —
oia
C E
co co
ce w


x^
(/)
CO

a M
E
z-o
1

z





4J
C
CO
3
I




— eocovovooo vo CM cvifo—l h-
V — V • - 0 00
v o v a
V
C- CO CO O

— O31AO— <0 CM CM CMVO— —

1 1 1 1 1 1 1 1 III 1

	 — lf> — «O Q — — OO co
VVV-V Z ZZ f»
0
v









VOVOVOVOVOVO d1 O «O cocoCM vo

VOVOVOVOVOVO vo vo vo vovovO vo













to co » — o *»*» -o «
01 — — CO CO — »
3. >> *» £ p «- *»
X co a <- o c
O 6 — O — «
,*» eg UE -
CO £ CO •O— C o —
•P E M«>— U OO 0 C 0
3 3 >> co co co — eo *> *. co a
- — i- tr— *J|£ — -c eoio —
— EO 3O COCM-P MO OO C t- >> —
O <0| O O.T5 U JC O — ~£ — C > 3 O CM O £ eg
a — (- a a £ o c co w a oo o— o — *» o Q
CO £ OOO — — £ — C £ OO O *£ 0> — O
O 44OO-IZZN PCO »0. CK 	 OI (A U
x 1 II f i i |
K O


















































•
1
^
£


SB
o
•o
c
3
,
CM >.

4* **
o c
" 2
CO <-
•W 3

°
« • o
oo 

o Z- .. . 4* C (0 ^ O "~ •ooo o ** ^^ £ U O O 44 fO-OP ~*>0* •P O£- XC M « ,J~


-------








UI
3
CO
—
1-

1

o
UI
1-
<
CC.
O
UI
i-
z
z
o
z
UI
X
^_
^^
z
—
o
UJ
U»
u
UI
h-
UI
Q__
^^
oo
eoa-
l- i
ZCM
<—
t-
3<
-IK
-l<
00
Q.
Z
-10
<-
O(-
coo
(0 —
Sit
oce
UI
o>
< -
0£
x8
ou
l-t-
U.O
oco
3
>co
oc
<
coo.


•
in
CM

VO
UJ
-1
m
2
























P
c
CO
3
— -
ft.
ft.
UI














ft.
O
C4
CO CO
Ol—
co a
l~ E
CO n
> to
<



ft-
O M
CO
CO —
Old
C E
co co
CC. to


^.
at
CO
o. ca
Eft- C
co O O
yj *«
t- P
ft. « O
O «Q 03
EP
«- 3 CO
CO Z"O
•Q
E
3
Z















p
c
CO
3

ft.
C
















ft.
O
Iff
CO CO
01—
CO O
1_ E
CO CO
3*




0 M
CO
CO —
Ol a
c e
co co
CC. M
•v.
CO
CO

~0. to
Eft- C
co O O
w —
i. P
ft- CD O
O.O CD
§P
CO
coz-o
A

3
Z





p
c
co
P
3
^
O
O.









CMOCM CMVO O-l -1 OVOO 00 O
v CM v VIA — o o ir> o —
CO CO — 00 —

^^
CO
CO *^O
 O "»O •» co O
COCMO a- com m — ooo^ — • r-
cooOcoVCMin r~o»coco — cococo it vo

111111 i i i i i iii i i
CMf 	 mCMVO VOOOO Q 3-CVJO CM VO
— v • v .3- CMZZ z in ^ —
0 vo







vovovovovovo voco 	 in cococo coo VO

vovovovovovo vOvovOvo vo vovOVO vovo vo





CO -1
P "^
co CO a) 01
— P O CD E
-J 0} CO tfl — C
v. ~* ^— m o PCD«
Ol — p CO P — CO— (0
3. X ££ CO P £ >» P
X ap— co a £ c
•> C0£co E — •Pco
CO £ — a.£ O CO — ID P
P — CO >» P I-C COO3
C >»«N — £ coCD El- —
CO £coC>»O. N 'O<-O —
p E cap— COP OC coo— O
3 3 X CDCDC0.03— — CO CO PV£ a
— — «- * 	 Pl£ J3 >> — — A C CO eoOO
— ECO 3CD COCM -P— 1 £ «9O O— CO C CL.CO —
O to O 0.13 O -* 0 — ^c >>CP — C >>>3CO  O £ CD — O
o POO— IZZN PCO moo coo- cuit-X — OH- to o
— CD £ £ O CO (A
X Z a. a. z x co
0 -
H 0



















































•
1

>
£
<_
CD
•o
3
CM' >,

p -p
CO C
10 CD
i-
co <-
P 3
CO O
o

« . CD
CO P O
CM — C
. E CD
 0 «-
•- •*» c
««w o —
•O CD O
O-PP'O
£ U CO CD
p a>T3 P
§P £-
CO > O
•o o a.
o — «
— p CO »-
P OA
>C CO
« ,_?i
COO CO

-------





r-
X
O
3:
X
o
—
_j
i
a
LJ
H-
^
DC
O
U
1-
z
z
0
z
1 , 1
X
^—

z
—

o
LJ
0
LU
h-
LU— '
ooo
^f
V) I
I-C\J
Z >— •
^
^— ^
=51-
_) ^t
-JO
O
a-z
-
IX CO
<
wa.


•
vo
CM
1
vo
—
LJ
_1
CD
^
r-
























P
C
CD
3

Cj_
c^
LJ















O
(A
CD CO
Ol —
co a
L. E
CO R
> _
O CA
CD
CD —
01 Q
C E
CO CO
CC tf


v^.
IA
CD
a. CA
E—
co a
<- E
CD CO
> IA




C^
O IA
CD
CD —
OIQ
C E
- CD 0
on CD
E P
£-30)
OJZ-0
J3
E
3
Z







4^
C
CO
P
3
—
—
0
a.










~.*o— —-a- CM
co v — co
^- v ^-


in co-~

^ O — O CM ^^
PO v — v v v oo in

i i i i i i i i

ooooinoo o
zz — z -zz z
V O
V







CM CM PO CM PO co PO O —
*^x ^X ^x ^N *^x "**x *V, ^S»*S»
PO PO PO PO CO CO CO PO CO












cor^oov CMVO in —
PO— V —
v




in

•^ O CM O CM
a-in 	 VCMCM r-co

i i i i i i i ii

CMOOinincMCM J-Q
	 . v — z
v o
v











PO PO PO PO PO PO PO PO ~~
*"*s. ***s, **"S, **Xi ^^ "^V, ^x "^V.*^
PO PO PO PO PO PO PO PO CO







CD
4J
-J CO
**x ^^ ^~
O> — CO
4 ^5
- CD JZ
co ^ a.
43 — 0)
C >,-P-
CO JZ CO >>
P E co -P— *>
3 3CD^> CDCDC03
^ — L.^ t-^ 4JIJZJ3
— ECO— 30) CD CM P 1 CA
o wioac-DOJCO — ~J= c —
a — U-Q.COCO'-OC COIAQ.I o
coKc O > CD CD 	 J= — — C
0 sv*11«^i "N^ X^ *x^
PO PO PO PO PO PO












-J CMin r~--i o
O CMO —
CO CO PO





-1 O
O — 00
co inoo incM ^t

1 II II 1

a ao ina o
Z ZZ — Z CO
CM












CM CM CM co— co

CO PO CO CO CO PO





_J
v^
CO Ol
0 E
co — CD
O -P t3 -
— CO — CO
P £ f- *>
co a o c
E — — co
O ~~ -C P
t- CO O 3
co E -
•C i- <0 —
U CO O C O
— CD -PC). CD O.
— —CO) CO O —
O OCDC C«->> —
C > 3 0) CD O^ CO
CD O 	 O— -P O O
J= OO>5 OJ=CO — O
Q- Ch-X —OS >

4J 4^
0) C
(A CD
t
CO £-
*> 3
CO U
a

. CD
00 -P O
CM — C
• E CO
CO — 5-
. _ CD
r— *-
• C CD
> .°S~
.. . 4J C
CO-0 0 —
"D CD CO
O 4J P T3
£ U CO CD
JJ fl)-o -P
CD P S-
E CD > O
•o o a
O — CD
— P CD t-
P O J3
>>C CO

CD «— 1 — •
COO CO

Date:  9/25/81
11.16-39

-------








cc
Ul
r—
u.

o
Ul
r-
^
rv
O
1, 1
1-
z
z
0
z

XOO
1
ZCVI


o<
UJh-
&— ^
oo
Ul
uio
o —
h~
h™ C^
Z —

t- —
3CC
-IUJ
-,. J ^^
2 .
>

oo

>. 2
ceo

01—

i- £

> s


ft-
O CO
O
a> —
01 Q
C E
co co
rf (0


(0
«
Q. CO
eo- c
co O O
(0 —
*- 4) O
e -^
S. 3 CO
0)2 "O
A
E
3
Z


















JJ
C
0)
3

ft-
C



















O
(0
CO CD
O)—
CO O
<- E
CD CO
> 10
<



<(_
O W
CD
CD —
0)0
C E
CO CO
0£ 10

^
<0
CD

a. ia
Eft- C
co o o
10 —
i- -P
ft- CD 0
OJ2 CD
E-P
t- 3 CD
CDZT3
jQ
E
3
Z









*>
c
^1 X^ X^ X^X^ X^
CO CO PO PO CO PO CO CO to PO CO CO




J
x^
O)
E

_J (0
x, ^ o «
o> — — co
3. >>*>*»

« CD E CD co
10 C. O C P
P — CD (- CD 3
C >>*> n N —
co £ co C —
4i e — OCDO
3 3 CD >> CD CD CO — XJCB a
— ECD— 3CD COCVIJJ «>O O— CD —
o |oac-oo.*o — ~-£ — c > >>3 co
a — <-acoco<-uc cocoa. OCD ux:— o o
co Lc O >i CD tt) 	 J=— C£ O4JO — O
O -ploOO-IZZN •POQ CDO. CUII- CO O
— CD JC S. O «»
X Zl 0. 0. £ CO
o —
K 0































































CM

4J
CD
CO

co

co
o

•, •
00 4J
[W •—
• E
CO —
• ^
•^
C
> o

.. . 4J
co-o O
•D CD CD
O -P-P
£. O CD
•P CDT)
CD-P
E CD >
•o o
O —
— *> »
•P OJO
X^ JJ^
^ ^
CO «-J
coo

-------




o
cc
o
co
oc
Ld
Q.
^
Q.

O
UJ
^—
^
/v*
U
UJ
i-
z
z
0
z

UJ
X
1-

z
—
o
1. 1
H
o
UJ
i-
UJ
o

CO
1-
z
^
^ ^^
000
_J ^
^J 1
OCM
-l<
^ ^-
0<
— o
CO
coz
52
o ^
^
OO
z —
UK
— UJ
X>
O
I- .,

U.OC
00
o
cei-
^ ^
zo
SCO
33
(0 CO


•
00
CM
1
NO
UJ
-j
CO
^
f—




















4J
C

3

ft.
ft.
UJ















O
(0
CD CD
CO O
t- E
CD CO
> (A




ft.
O <0
CD
CD —
cna
C E
CO CO
CC. <0


1 —
(A
CD
Q. (A
Ed- C
CO O O
(A —
S- 4J
ft. CD O
oja CD
E -P
c. 3 CD
CDZ-D
E
Z


















^J
C
CD

—
ft-
c

















ft.
O
CA
CD CD
o>—
CO Q
<- E
CD co
> - o CM m CM M
	 v • v r-
V 0
v









NO NO NO NO NO NO NO
NO NO NO NO NO NO NO









J
x^
O!
*
(0
+9
C
co
4> e v
3 3 > CO
— B CD — 3 CD CO
a — <-a.coco<-oc co
co£ O XCD CD — — £
U i^OOO-JZZN *J
— a> £
X 23 0-
O




co m Q
^ CO
CM




O -1
CO Q
NO— CD

1 1 1

OO Q
zz z










O-CM co

VONONO NO







t^^.
CO
^^0
— OJf NO
— 00





a

0
™" co CM O
(OCM— —

III 1
JtOO -I
— z o
— CO










voco— NO
\ONONO NO







CD

CO
~ —CD
— CO 4*
$ 5»
CD £ co

— CD' *»

£ co >>"§.
*>— *>
CD CO 3 —
CM 4J 1 £ MO
^£ C *> — C
W a 1 0) O CD
— 	 C £
CO OO (DO.
£
a.





aoo
CO CO CO




^•^
CO

CM CM — ?

1 1 1 1

ooo —
zzz










^ CM cf co
X^X^X^^x,
vovo NO NO










— co CM 00






^
— CO
co <—
*••* ^
^ NO in —

i i i i
acMOin
z z











CM CO  N >»3 CD CD
O C£ 	 0
o eo« o >> o
COQUJI-X —
O co






NO







^fc
ON

1

CM











OO NO
^^^x ^^
vovo NO










-Iro O
0 0
CO CM
V




^x
CO O
~- h-
— d- to

1 1 1
OCM in
Z V











— CO VO
vovo NO





1
x^
Q)
CD E
CD c
•a co
— — 10
s- >> *»
O£ C
— -P CO
£ CD j->
U O 3
t- —
CD o —
c— o
a>£ a.
— o
>>co —
£ i- CO
•P+> o a
CD CD — O
Zl- co o
>

4>) 4*
CD C
CA CD
CO <-
4-> 3
CO O
a

« .  01-
• • • -P C
IA-D O —
TJ CD CO
o *» *>-o
£ o CD CD
•W CDTS *»
CD -P <-
E CD > O
•o o a
o — CD
— +> CD t-
>>C CA
~— *^c
CO --J*-*
COO CO

Date:  9/25/81
11.16-41

-------



CO
13
O
LJ
Z
LJ
O
CO
—

O
LJ
h-
^
o:
o
LJ
^—
Z
Z
o
z

LJ
X
H

Z
—

Q
LJ
H-
o
LJ
h-
LJ
O
CO
1-
z
^
1— -^
300
-I.3-
-1 1
OCM
Q_ . .
-J<
^ H~
0<
— Q
CO
COZ
<0

Ol-

00
z —
** _
ooc
— LJ
x>
o
h- «

u.ce
00
o
>LJ
CCI-
^ ^
so
SCO
ZJO
coco


•
Ov
CM

VO

LJ
I
CO
^
1-























c
CD
3

C|-
^
LJ

















o
CO
CB CD
01—
co a
s- E
CD co
> CO


4-
O CO
0
0) —
a> a
C E
CO CD
ce co


>^
CO
CO
a co
£<•- C
CD O O
10 —
S- p
C>- CB O
O.Q CO
E -P
t- 3 CD
COZT3
a

3
z


















.p
C
CO
3

c>-
c


















^*"
O
CO
CD CD
£71—
CB Q
<- E
CO CD
> CO





U-
O io
CD
CD —
cna
c E
CD CD
CC 10


1 —
ca
CO

a CA
£<•- C
CD O O
10 —
t- 4J
C,. CD U
0 A CD
E -P
S- 3 CD
CDZT3
E
3
Z







4J
C
CB
4->
™
—
O
a.










in oo vo vo o
V V — V CM
V CVJ
V
o
in o
• o
oocMoom -
V^
i i i i i i

	 CM in CM CVJ
V V V • V V
^
V







CM
— vO VO VO vo vo
>^X^N^»^N^X^
CM vo vovO vovo
_










movvoooooo
V CM— -CMO
V O CO
V




o
o
in oo
CMO\O •* .


1 1 1 1 1 1

^ ^f CM in oo o
V V • d-
o
V









CM
— vO vo vo vo vo
*"X "^ "^ *V. ^^ *>v
CM VO vo VO vo vo
«••






L 1
x,^
en
d.
^
CO
•p
c
CO
4J E w
3 3 >> CB
— — L. I 	 4J
— E CB 3 CD CB
O COI O O.TJ O X O —
a — U- a eg i. o c co
CO £ O CB CB • 	 £
0 P O U -I £ Z N -P
CD £
X Z 0-
0
1-




in *
a
ca



^
-0
— ca
i i





_J Ov
Q —
m

_
CO

00
CO CM
1 1

o a Ovo
zz










m CM

VOCM
«.










^ - '
rod
CQ







o
m
— vo

i i

<*> o
z












voin
\"*^.
VOCM
«_•







^« CB
— -P
^ -
CD CO
Si C.
— CB 4J

£ CO O.
*> —
CD co —
1 £ >>
CV1 4J£ CO
' — £ 4J —
co a co o
•w> »•• C
CO Q CB
£
Q.


z










•^ PO
\>^
VOVO











VOOO
—






^.
CB

a-c?


i i

QVO
Z












JJ-ro

VOVO





_
O
CB CO
£ O
a —
0 *J
I- CB
O E
— o
£ (.
O CO

<- O

— 1 —
OvO O
c •> >
CD J" O
£ . O
a. CM c
O







-J co ^f CM ^
Q —
CO


^^ ^^^^
CB CB CB
CM— .^^
CM tovo mvo
III II

O. OCM —CM
ZZ










— CM PO COPO
^tvx>^s ^^v^
vO vo vO vo vo











_l vOOO
0
CO





^.
*"^ CB
CO —

— 0^ —

1 1 1

O -d* to
z












CM OO eoeo
^v^^^v ^v^v
vovovo VOVO



CO CO
C —
CB >.
M£ C
O -P CD
— CD £
•P O Q
CO t.
£ o n
Q —
— £ TS
CD — O CD
- C CO— -P
CB <- E CO
N -OH 1- C
C CD 1 O —
CD CB CD -P— Cv i-
C A C CB O O
CB— CB C «i- —
N >,3 CB- 0 £
C£— 0 — O
CO -P O O «£ >
eouJi- 	 o —
<0 O
X 0.






00






0
00
1

00
CM










O vo

vO VO











CM O
CO








— O
CO
l~ CM

1 I

Q 0
Z CM












— VO

VO vo




_ j
V.
O)

*
CO
J C
in CB
CM 4J
— 3
^
1 —
O
(. a
o
O CB
Eo o
— 0
< U) O
CO
CB

0






















































•
^
d>

>
V
i_
t-
(!)
^3
c
3
,
CM >>

4J **
CB C
CO CB
s_
CO <-
•P 3
« 0
.*
., . CB
00 4J O
CM — C
*,• «2
. — CB
l>-  0 t-
.. . 4J C
«T3 O —
^3 fl) fl)
O +J WO
£ O CB fl>
4J CO-0 •«
CB 4* (-
E 0) > 0
n o o.
o — CB
— 4J CB I-
•P O.Q
>>C c«

(0 *i^ *^
COO CB

Date:  9/25/81
11.16-42

-------
                  TABLE  16-30.   MINIMUM DETECTION LIMITS FOR
                                TOXIC POLLUTANTS  [2-50]
           Pollutant	Detection Limit

                                                       (yg/L)

           Methylene  chloride                             1
           Trichlorofluoromethane                         3
           1,1-Dichloroethane                             1
           Chloroform                                    1
           1,2-Dichloroethane                             1
           1,1,1-Trichloroethane                          1
           1,1,2,2-Tetrachloroethane                      1
           Carbon tetrachloride                           1
           Dichlorobromomethane                           1
           Trichloroethylene                              1
           Dibromochloromethane                           1
           Benzene                                       1
           Bromoform                                      1
           Tetrachloroethylene                            1
           Toluene                                       1
           Chlorobenzene                                  1
           Ethylbenzene                                   1
           Diethyl phthalate                              5
           Di-n-butyl phthalate                           1
           Butyl benzyl phthalate                         5
           Bis(2-ethylhexyl)phthalate                     1
           Di-n-octyl phthalate                           1
           Phenol                                        5
           2-Chlorophenol                                 5
           2,4-Dichlorophenol                             5
           2,3,6-Trichlorophenol                          5
           Pentachlorophenol                              5
           p-Chloro-m-cresol                              5
           2,4-Dinitrophenol                            500
           Isophorone                                  100
           Napthalene                                   10
           Acenaphthene                                  10
           Acenaphtylene                                 10
           Anthracene                                   10
           Fluoranthene                                  10
           Pyrene                                       10
           Chrysene                                     10
Date:   8/31/82  R Change  1   11.16-43

-------


















00
CM
1 — '
eo
— j
_
E
Q
Id
1-
O
UJ
Ul
co
cc
o
u.

to
Q

o
_J
LJ
<
^£

*£
2

1
(0
VO
—

LJ
1
CO
^r
1-

































TS
CO
3

11
4J
CO
CO

^
CO
o;



































































o
s
3
U
CO
CO

a

E

3
O

a
0
CD



O
^
E
3
U
j
0

La.

C
O
4-1 13

3 0
"OS
O
L.
a.



s_
CD

£
C

—
£















>•
i.
o
CT
0)
4J
Ct

£
*
[/










cz* o *o IA vo co co if ™~ ^ CM ~* o " "" co o ON o o in r** in o ON in in m
to CO ro LA — CM to 	 CMCOifOVO O to 	 OJ • LA 	 CM CO
	 — CM— — — —







ON ^f VO CM VO CO ON J" O if — ON f^- CM (*— VO CM CM VO lA VO lA 00 ~- 00 O ~~
tod'^cM — CM to 	 «i^t — CM— —m —CM • • • m 	 •
— ^t lA ^ if








OOCM — J" LACMlA r^- — CMVOfOifCO O>00 COCM^CM O-d* ^'J'J'ineo
CM to — CM —vow CM co 	 r- ON— co — o-=r 	 CM CM — CM to
P- voro 00 00 ON CM CM VOJ"








'""ONVOCO VO VO fO ^*CM VO CM — 00 LA if- — • — to 00 VO f*~ 00 CM 00 P~ CO • —
COOifVO 	 if CO VO ONVOiflAOO J1 CO [^-J'— • •— • • • -CO
*--mOO f 	 lA — 'lA •? CM — if ro— 00 CM CM 00 ro to LA *—
- « « VO CM LACM J"
•— ^ ^






CM — VO ON OOlAfO CM to CM to — if ro lA O — J- CM if to— lA — ON CO VO
OtOCMif too— OO O — OOO O— OOOO OO — r-CMOO
OOOO OOO OO OOOOO OO OOOO OO OOOOO
CMOOO OOO lAVO OOO.3-CM OO O lA O O OO O lA lA lA O
torocoto — — CM —if J'iTI^lAlA if J' — OOlACM 00 ON ON O O 00 00
OOOO 000 OO OOOOO 	 — O 	 OO 0 	 00




4-1
^~
9)  CO D.
CO O £- 10 C O CO
4-1 — CD 4-1 — —Q,
o c  a. o 
<»- s. -a o. OJQ.ro 4-io.s- 
S-4JV CO CD CD 1 Q- ro Q. C co C
2£ 4-> O CU V) 3. WO  O C/l
4JCOS-4JCD4J 	 EZC f- — 4J 4) S-JZJZZ3
C>-^S-^tf. r- C>. — CV.CKJZ S-S'~ COCDJDEW'OS- WCD4JQ1O1 O
COO)^ CO"D-P COCO 	 CO CUOLl- S_ Q. 	 O CO — CD 5- O.JZ — — "O ^O CD
S.JZ T3t-t-O— 5-O33CO JZ CDC04-1S-3O Q.T3 CDCOCnCUcDCS-C
^: O "D CO ^ co co i<: — W co Z t— \ i o.a- c c*. s co 0 Q.I- — > > CD ca CD
CO CO JZ O"DO E JZI CO — EIO-4JCO 04J4-1 O —
OCDJZO^JOC'— Tf0O
> 0 — o c wjz oi>s- >>> c«>o coi-cDCM oi_J _i — a w
^4J^CQcO'— coOCO'*~~-Ol5ET3T)T3^'—'~C3J30Q.cD4J '—'—•— -—CO*—
OclJCO Q)-JCQI0EOS-O3CCCCU.|-Z'-30-OCLi-l-_Jl lU-DuZ
y)j£ CD— — — CDWCD— S— Z>33"~ 0W4-1 	 —
w s- i- c js i i EJSCOW a ca aoooiiiiawui— ciii 111
— CO O — C 0) C ' — CO S-S-S_CD CO — CO 3 O
QECDU-ZJ 10 Z) OO. UOOQ Q-t-2cQZ

















































.
• CO
CD —
— 4J
J2 C
co CD

._ ._ _
CO Q- CO
> tr-
ee o 4-1
o c
4J 0
O-OT3
c 	
0 Ct-
CO JZ C
4-> 0
CO CO U
•D 4J
CO "D
0n —
4-1 0
co C JZ
0 O
	 CO
T3 4-1 4J
C O eo
— 3-0
•o
U) O —
Jt S_ —
CQ-<
CO — -^
— eo J3

Date:  8/31/82 R Change 1  11.16-44

-------
II.16.4  POLLUTANT REMOVABILITY [2-48]

The Pulp,  Paper and Paperboard industry employs many types of
wastewater treatment systems to reduce the levels of pollutants
contained in mill effluents.  Biological treatment systems are
currently employed extensively by pulp, paper,  and paperboard
mills to reduce BOD5 and TSS loads.   A summary of treatment
systems currently employed in the pulp, paper and paperboard
industry is shown in Table 16-32.   As noted,  aerated stabili-
zation is the most common treatment process employed at mills
discharging directly to a receiving water.  Primary treatment
only is employed at a relatively large number of plants in the
nonintegrated and secondary fiber subcategories.  Primary treat-
ment can often achieve substantial BOD5 reductions,  if BOD5 is
predominantly contained in suspended solids.

     Primary Treatment

Often primary treatment is necessary to remove suspended organic
and inorganic materials that may damage or clog downstream treat-
ment equipment.  This can be accomplished by sedimentation,
flotation, or filtration.  Sedimentation can involve mechanical
clarifiers or sedimentation lagoons.  Mechanical clarification is
the most common technology for removing suspended solids.

     Dissolved Air Flotation

Dissolved air flotation (DAF) units also have been applied to
effluents from paper mills and have, in some cases,  effectively
removed suspended solids.  At high pollutant concentrations or
under shock loadings, the effectiveness of DAF units in removing
pollutants is significantly reduced.

     Primary Clarification

Because of the biodegradable nature of a portion of the settle-
able solids present in pulp, paper and paperboard wastewaters,
clarification results in some BOD5 reduction.  Typical BOD5
removals through primary clarification in integrated pulp and
paper mills varies between 10% and 30%.  The exact BOD5 removal
depends on the relative amount of soluble BOD5  present in the raw
wastewater.  Primary clarification can result in significantly
higher BOD5 reductions at nonintegrated mills than at integrated
mills.   Responses to the data request program indicate that
roughly 50% of the raw wastewater BOD5 is commonly removed at
nonintegrated mills through primary clarification.

     Biological Treatment

Currently, the most common types of biological treatment used in
the Pulp,  Paper and Paperboard industry include oxidation basins,
aerated stabilization basins, and the activated sludge process or
Date:  8/31/82 P.  Change 1  11.16-45

-------




00
d-

>
o
_J
0
z
x
u
UJ
^w
ll 1
o
_i
0.
z
•—
o
z
Ld
O
QC
X
O
CO
Q
|j_
O
0
o
X
1-
LJ
LL.
0
ir
|
3
CO


Pd
co
VO
u
_l
<
1—



a
i
?[
s
1|

-E *
PP
j
°^5
:«-'
a* a
J c
Hs
s'tls
Is ;l

5>

i
Li!
«-

c
j
i
1
.i_ -
1*1
°

1'
!'i!
i
i
1


i
e
*=!


1
i
i
* a f\ -«*« NO.- -« i^ « - ^j j

" 1 2


-» »--, -»-<«-«»« i. -iv- — s a s

* -«j iv - r- i^ g


-mnn a«. «N . nu NM -i» ~ g .»




a 3 *,




,„. --„-,,



- - - , n ;





" 1 =
~ - ~g- «»" « « «J «


- — - i S| 8


. .. .... B ^ B
S 8-8 2--- - ^s- S,» „ Sj |
? £' I
i «!st i! if! 1 .
u •••&• evsMfftt _
u 4J*i- „«. |2'aeei*»-5. -
5 "-S -S533cf* .Ziht-iiii i
«£j«i 5*i"""s?lr.3*'rirf^£5S2 2 g
ckoi^e •$<£ ?S s? g — — J £{> pi S L. i. 4. s) t. M *
s|«i|!:|||i[fli|ll!|sl||||||| III























?
1

3
—
1
!
3
1
F
IS
I. a
!•
Is

!|
!l
si
if
a p
II
*- a.
M *
ii
11
• A
Date:  8/31/82 R  Change 1  11.16-46

-------
its modifications.   Other biological systems include oxygen acti-
vated sludge,  the Zurn/Attisholz process,  rotating biological
contactors,  and anaerobic contact filters.

     Oxidation basins.  Oxidation basins were the first type of
biological treatment systems used in the pulp,  paper and paper-
board industry.  Typical design BOD5 loads range from 56 to 67
kilograms per hectare (kg/ha) of surface area/day (50 to 60
Ib/acre/day).   Retention times can vary from 20 to over 60 days.
Literature presenting data on the removal of toxic and classical
pollutants through application of oxidation basin technology is
limited.

     Aerated stabilization basins.  The aerated stabilization
basin (ASB)  evolved from the necessity of increasing performance
of existing oxidation basins due to increasing effluent flows
and/or more stringent water quality standards.   The removal
efficiency of an ASB treating unbleached kraft waste was eval-
uated over a 1-month period in late 1976.   Although the raw
wastewater exhibited an LC-50 of 1% and 2% by volume, all but one
of the 26 treated effluent samples either were nontoxic or ex-
hibited greater than 50% fish survival after 96 hours of ex-
posure.  The one failure was attributed to a black liquor spill
at the mill.  Average reductions of 87% BOD5, 90% toxicity, and
96% total resin acids were achieved.

Pilot-scale ASB treatment of bleached kraft wastewater was eval-
uated over a 5-month period.  Two basins,  one with a 5-day and
one with a 3-day hydraulic detention time,  were studied with and
without surge equalization.  The raw wastewater BOD5 varied from
120 mg/L to 510 mg/L and was consistently toxic.  The median
survival times (MST) of fish ranged from 7 to 1,440 minutes.
Mean BOD5 removals with surge equalization were 85% for the 5-day
basin and 77% for the 3-day basin.  Mean effluent BOD5 levels
with surge equalization were 40 mg/L for the 5-day basin and 59
mg/L for the 3-day basin.  Mean reported effluent BOD5 values for
the 5-day and 3-day basins without equalization were 50 mg/L and
67 mg/L, respectively.

     Activated sludge processes.  The activated sludge process is
a high-rate biological wastewater treatment system.  The ability
of activated sludge basins to detoxify bleached kraft mill ef-
fluents was analyzed over a 5-month period.  Two pilot-scale
activated sludge systems (8-hour and 24-hour detention times)
were operated with and without surge equalization.  Raw waste-
water BOD5 varied from 110 to 510 mg/L.  Mean BOD5 removals for
the 8-hour and 24-hour activated sludge lagoon with a 12-hour
surge equalization basin achieved an average of 76% and 72% BOD5
removal, respectively.  Effluent BOD5 concentration for the
24-hour system ranged from 5 mg/L to 260 mg/L with a mean of 64
mg/L.  The 8-hour activated sludge system removed an average of
72% of the BOD5.  Final effluent BOD5 concentrations ranged from
14 to 270 mg/L, with a mean of 64 mg/L.

Date:  9/25/81              11.16-47

-------
The pure oxygen activated sludge process uses oxygen,  rather than
air, to stimulate biological activity.   Field test data by Union
Carbide Corp.  confirms that the oxygen activated sludge process
is capable of achieving final effluent BOD5  concentrations on the
order of 20 to 30 mg/L with pulp,  paper, and paperboard mill
wastes.  Effluent TSS after clarification was generally in the
range of 40 to 60 mg/L.  A summary of pilot-scale information is
presented in Table 16-33.

          TABLE 16-33.  OXYGEN ACTIVATED SLUDGE TREATABILITY,
                        PILOT SCALE [2-48]
Production process
Alkal
Alkal
Alkal
ine-unb leached
ine-unb leached
ine-unb leached
Retention,
hrs
1.3
1.8
2.0
- 2.2
- 3.0
- 2.9
BODS. ma/L
Influent
280
210
260
- U60
- 210
- 300
Effluent
20
16
25
- 41
- 22
- 30
TSS.
mq/L
Influent
57 -
120 -
95 -
86
120
120


Effluent
U6
36
60
- 61
- 36
- 70
Sulfite/newsprint effluent was treated using an oxygen activated
sludge pilot-plant facility over an 11-month period.  BOD5 re-
ductions during this time were over 90%.   Final BOD5 and TSS con-
centrations ranged from 23 to 42 mg/L and 61 to 110 mg/L, re-
spectively.

     Zurn/Attisholz system.  Seven full-scale Zurn/Attisholz
(2/A) systems are currently in use at pulp and paper mills in the
United States.  The Z/A process is a two-stage activated sludge
system.  The first stage operates at a DO of less than 1 mg/L;
the DO level in the second stage is maintained at 4 to 5 mg/L.  A
total detention time of four hours may be required to achieve
BOD5 and TSS reductions comparable to activated sludge and aerated
stabilization basin systems.  These installations treat waste-
waters from the following types of manufacturing:

               De-ink-fine and tissue   (5 mills)
               Sulfite-papergrade       (1 mill)
               Integrated-miscellaneous (1 mill)

Most of these mills reportedly maintain effluent BOD5 and TSS
concentrations in the range of 20 to 25 mg/L each.  One mill
reportedly achieves BOD5 and TSS levels in the range of 5 to 10
mg/L each.  Another mill also attained a 96% BOD5 and 99% TSS
reduction using the Z/A process.

A pilot study comparing a two-stage to a single-stage activated
sludge system has recently been performed.  The two-stage system
achieved a higher toxicity reduction in treating bleached kraft
wastewater than did a single-stage system.
Date:  9/25/81               11.16-48

-------
     Rotating biological contractor (RBC).  This system involves
a series of discs on a shaft supported above a basin containing
wastewater.  Pilot-scale evaluations of the RBC system treating
bleached kraft wastewater with an average influent BOD5 content
of 240 mg/L have resulted in substantial BOD5 reductions.

     Chemically assisted clarification.  Recent experience with
full-scale alum-assisted clarification of biologically treated
kraft mill effluent suggests that with proper pH adjustment,
final effluent qualities of 15 mg/L each of BOD5 and TSS can be
achieved.  The desired alum dosage to attain these levels would
be between 100 and 150 mg/L.  A significantly lower alum dosage
could provide insufficient floe formation, while a higher dosage
would result in proportionately high levels of chemical solids
and sludge quantities that must be removed and disposed.

As part of an EPA-sponsored study, biologically treated effluent
from an alkaline kraft mill was evaluated with alum precipitation
on a laboratory scale.  Existing full-scale treatment consisted
of a primary clarifier, aerated stabilization basin and polishing
pond.  Twenty-four hour composite samples of the polishing pond
effluent were taken on three separate days.  The samples were
adjusted to pH 4.6 with alum and four drops of polymer per liter
of sample were added.  The results are summarized in Table 16-34.

TABLE 16-34.  LABORATORY EVALUATION OF ALUM PRECIPITATION ON
              ALKALINE KRAFT MILL POLISHING POND EFFLUENT
              [2-48]
                                   Concentration range, mg/L
                               Polishing pond        Alum-treated
                                  effluent           effluent
Total resin and fatty acids
Total chlorinated derivatives
Chloroform
BOD 5
2.8 -
0.43 -
0.02 -
43 -
3.8
0.45
0.03
51
ND
ND -
0.02 -
0 -
0.04
0.02
14
ND, Not detected.

In a recent EPA-sponsored laboratory study, alum, ferric chloride,
and lime in combination with five polymers were evaluated in
further treatment of biological effluent from four pulp and paper
mills.  Of the three chemical coagulants, alum provided the most
consistent flocculation at minimum dosages; lime was the least
effective of the three.  The optimum alum dose was determined for
four of the effluents and ranged between 40 and 180 mg/L at a
constant dosage of 2 mg/L polymer.
Date:  9/25/81                11.16-49

-------
     Filtration

Filtration is an available technology for application in treating
pulp, paper, and paperboard wastewaters.  If properly designed
and operated, filtration can yield significant solids removal.
Table 16-35 shows the results of a study evaluating the effi-
ciency of sand filtration on four pulp and paper mill effluents.
    TABLE 16-35.
SAND FILTRATION RESULTS ON PULP AND PAPER
MILL EFFLUENTS [2-48]

Mill Initial
No. TSS, mg/L
1 110
2 5.5
3 70
5 60
TSS
w/chemical
addition
64

71

removal, Percent
w/o chemical
addition
14
36
68
23
     Activated Carbon Adsorption

Researches have indicated that pulp and paper mill wastewater
suitable for reuse can be obtained using granular carbon without
a biological oxidation step, particularly if the raw waste ex-
hibits a BOD5 of 200 to 300 mg/L.  Color due to refractory or-
ganic compounds contained in pulping effluents can also be re-
duced by such treatment.  Table 16-36 gives the pilot-plant
results as presented in Reference 2-48.
     TABLE 16-36.
 RESULTS OF PILOT-SCALE GRANULAR ACTIVATED
 CARBON TREATMENT OF UNBLEACHED KRAFT MILL
 WASTE [2-48]
Parameter
pH, pH units
Color ( Pt-Co Units)
BODS (mg/L)
COD (mg/L)
Suspended sol ids
(mg/L)
Tota 1 sol ids (mg/L)
Desired Ranqe
6.8 - 7.3
0-5
0-2
0-8

0-5
50 - 250
Raw Waste
7.8
1,300
260
520

130
1,200
After Lime
Treatment
1 1.9
28
82
320

120
1,300
After Carbon
Treatment
10.5
0
12
210

74
1,200
Percent
Remova 1

100
96
60

U2
O.U
 NOTE:  Columns were loaded at 2.4 - 2.7 Lps/sq.m.
Extensive pilot-plant tests for treating unbleached kraft mill
wastewater with granular and fine activated carbon (AC)  (the  fine
activated carbon system is subject to a patent  application) have
been run.  The 113 L/min (30 gpm) pilot plant utilized four
different treatment processes, as follows:
Date:  9/25/81
            11.16-50

-------
1.   Clarification followed by downflow granular carbon activated
     columns;

2.   Lime treatment and clarification followed by granular acti-
     vated carbon columns;

3.   Biological oxidation and clarification followed by granular
     activated carbon columns; and

4.   Lime treatment and clarification followed by fine activated
     carbon effluent treatment.

Table 16-37 presents the results of the pilot-plant investiga-
tion.
Date:  8/31/82 R  Change 1  11.16-51

-------
TABLE  16-37.    RESULTS OF ACTIVATED  CARBON  PILOT PLANTS TREATING  UNBLEACHED KRAFT  MILL
                   EFFLUENT  [2-U8]
                            AC columns preceded by
                           biological oxidation and
                               clarification
                                  AC columns preceded by
                                  primary clarification
                                               AC columns preceded by biological
                                                  oxidation and  clarification
Description of
carbon process
I nf 1 uent Ef f 1 uent Remova 1 ,
percent
Influent
Effluent
Remova 1 ,
percent
influent Effluent
Remova 1 ,
percent
   Hydraulic load,
     Lps/sq.m
   Ca rbon


   Contact time, min.
   1.4


Granular


   IUO
                                                        0.95


                                                     Granular
                                                 O.U8


                                               Granular
   BOO, mg/L


   TOC, mg/L


   Color, units
   150


   7<10
 57


210
62


72
220


920
 83


180
62


80
 310


1,200
120


200
61


83
   Fresh carbon dosage


   kg/cu.m.
                                                         2.5
                                                                                      3.5
   (Ib ca rbon/1,000
     gal)
                          (8)
                                                        (20)
                                                                                     (28)
   Description  of
   carbon process
    AC columns preceded by
      IIne treatment and
    	clari f I cat ion	

    Iuent    Effluent  Removal,
                    percent
                                                             FACET «v«tem(al
                            EffIuent   RemovaI,
                                      percent
   Hydraulic load,
     gpm/sq. ft.
   Ca rbon


   Contact time, min.
  0.95


Granular


   108
                                                     Intermed iate(c)
                          180


                          250
             100


             76
           26


           1414


           70
          160


          160
          100


           73(b)
          38


          51
   Fresh carbon dosage
   kg/cu.m.
                                                        0.5
   I Ib ca rbon/1,000
     gal)
                         (2.5)
                                                      (3.9)
   Blanks  indicate no data available.
   (a)Fine activated carbon effluent treatment (FACET).
   (b)FiItered.
   (c)Intermediate size between powdered and granular.
 Date:    8/31/82  R    Change  1    11.16-52

-------
                    11.17  RUBBER PROCESSING

II.17.1  INDUSTRY DESCRIPTION [2-50]

II.17.1.1  General Description

The Rubber Processing Industry in the United States is covered by
seven SIC codes.  These are:

     SIC 2822:   Synthetic Rubber Manufacturing (vulcanizable
                 elastomers)

     SIC 3011:   Tire and Inner Tube Manufacturing

     SIC 3021:   Rubber Footwear

     SIC 3031:   Reclaimed Rubber

     SIC 3041:   Rubber Hose and Belting

     SIC 3069:   Fabricated Rubber Products, Not Elsewhere
                 Classified

     SIC 3293:   Rubber Gaskets, Packing and Sealing Devices

This industry includes a wide variety of production activities
ranging from polymerization reactions closely aligned with the
chemical processing industry to the extrusion of automotive win-
dow sealing strips.  There are approximately 1,650 plants in this
industry divided into the 11 subcategories described below.
Plant production ranges from 1.6 x 103 Mg/yr (3.5 x 106 Ib/yr)
to 3.7 x 105 Mg/yr (8.2 x 108 Ib/yr).

Table 17-1 presents a summary of the Rubber Processing Industry
regarding the number of subcategories and the number and types
of dischargers.  Table 17-2 presents a subcategory profile of
BPT regulations (daily maximum and 30-day averages).
Date:  9/25/81              II.17-1

-------
                TABLE 17-1.   INDUSTRY  SUMMARY  [2-1,50]
                 Industry:  Rubber Processing
                 Total Number of Subcategories:   11
                 Number of  Subcategories Studied:   3 (a)
                 Number of  Dischargers  in Industry:
                      •  Direct:  1,054
                      •  Indirect:  504
                      •  Zero:   100
                 (a)Wet digestion, although not a
                 Paragraph  8  exclusion,  was not
                 studied because of the  lack of plant
                 specific data.   Emulsion and
                 solution crumb rubber,  although can-
                 didates for  exclusion,  were studied,
                 because data were available.
    TABLE 17-2.
BPT  LIMITATIONS FOR
PROCESSING INDUSTRY
material)
SUBCATEGORIES OF RUBBER
[2-51]  (kg/Mg of raw
Pol lutant
COD
BODS
TSS
01 1 and grease
Lead
Zinc
pH(d)
coo
BODS
TSS
Oi 1 and grease
Lead 0
Zinc
Chromium
Ti re and Inner
Tube clantsfbl
Daily 30-Day
•ax avo.la)


0.096 0.064
0.02U 0.016



Larae GMEF(c)
Daily 30-Day
max avals)


0.50 0.25
0.26 0.093
.00017 0.0007


Emu 1 s i on
« c rumb rMbbe r
Daily 30-Day
max avo.(a)
12.0 8.0
0.60 0.40
0.98 0.65
0.24 0.16



Wet digestion
rec 1 a i med
Daily 30-Day
max aval a)
15 6.1 6

1.0 0.53
0.40 0.14



Solut ion
crumb rubber
Daily 30-Day
•ax ava.(a)
5.9 3.9
0.60 0.40
0.98 0.65
0.24 0.16



Pan, dry
digestion,
mechanical
rec | a i med
Daily 30-Day
max aval a)
.E(f) 2.8

0.38 0.19
0.40 0.14


0.
(a) Computed from average daily value taKen over 30 consecutive days.
(D) Oil and grease limitations for nonprocess wastewater from plants placed
daily max = 10 mg/L; 30-day avg. = 5 mg/L.
(c) General molded, extruded, and fabricated rubber.
(d) Limitation Is 6 - 9 pH units for all Subcategories.
Latex rubber small GMEFIc) Medium GMEFIcl
Daily 30-Day Daily 30-Day Daily 30-Day
max ava.lal max ava.(a) max avg. (a)
10.0 6.8
0.51 0.34
0.82 0.55 1.3 0.64 0.80 0.40
0.21 0.14 0.70 0.25 O.U2 O. 15
0.0017 0.0007 0.0017 0.0007


LDEH(e) Latex foam
Daily 30-Day Dally 30-Day
max avalal max avalal

3.7 2.2 2.4 1.4
7.0 2.9 2.3 0.94
2.0 0.73

0.058 0.024
0086(9) 0.0036
In operation before 1959:
 ,_, Latex-dipped, latex-extruded, and latex-molded goods.
 (f) Allowable when the pan, dry digestion, mechanical reclaimed processes are integrated with a wet digestion reelaimed
   rubber process.
 (g) Allowable when plants employ chronic acid form cleaning operations.
Date:   9/25/81
             II.17-2

-------
II.17.1.2  Subcategory Description

The Rubber Processing Industry is divided into 11 subcategories
based on raw waste loads as a function of production levels,
presence of the same or similar toxic pollutants resulting from
similar manufacturing operations, the nature of the wastewater
discharges, frequency and volume of discharges, and whether the
discharge is composed of contact or noncontact wastewater. Other
primary considerations are treatment facilities and plant size,
age, and location.  The 11 subcategories are listed below. A
brief description of each subcategory follows.

     Subcategory  1:  Tire and Inner Tube Manufacturing
     Subcategory  2:  Emulsion Crumb Rubber Production
     Subcategory  3:  Solution Crumb Rubber Production
     Subcategory  4:  Latex Rubber Production
     Subcategory  5:  Small-Sized General Molding, Extruding,
                      and Fabricating Rubber Plants
     Subcategory: 6:  Medium-Sized General Molding, Extruding,
                      and Fabricating Rubber Plants
     Subcategory  7:  Large-Sized General Molding, Extruding,
                      and Fabricating Rubber Plants
     Subcategory  8:  Wet Digestion Reclaimed Rubber
     Subcategory  9:  Pan, Dry Digestion, and Mechanical Re-
                      claimed Rubber
     Subcategory 10:  Latex-Dipped, Latex-Extruded, and Latex-
                      Molded Goods
     Subcategory 11:  Latex Foam.


     Subcategory 1 - Tire and Inner Tube Manufacturing

The production of tires and inner tubes involves three general
steps:  mixing and preliminary forming of the raw materials,
formation of individual parts of the product, and constructing
and curing the final product.  Seventy-three plants use these
general steps to produce tires in the United States.

The initial step in tire construction is the preparation or com-
pounding of the raw materials.  The basic raw materials for the
tire industry include synthetic and natural rubber, reinforcing
agents, fillers, extenders, antitack agents, curing and accelera-
tor agents, antioxidants, and pigments.  The fillers,  extenders,
reinforcing agents, pigments, and antioxidant agents are added
and mixed into the raw rubber stock.  This stock is nonreactive
and can be stored for later use.  When curing and accelerator
agents are added, the mixer becomes reactive, which means it
has a short shelf life and must be used immediately.

After compounding, the stock is sheeted out in a roller mill and
extruded into sheets or pelletized.  This new rubber stock is
tacky and must be coated with an antitack solution, usually a


Date:  9/25/81              II.17-3

-------
soapstone solution or clay slurry,  to prevent the sheets or pel-
lets from sticking together during storage.

The rubber stock,  once compounded and mixed,  must be molded or
transformed into the form of one of the final parts of the tire.
This consists of several parallel processes  by which the sheeted
rubber and other raw materials,  such as cord and fabric, are made
into the following basic tire components:   tire beads, tire
treads, tire cords,  and the tire belts (fabric).   Tire beads are
coated wires inserted in the pneumatic tire  at the point where
the tire meets the wheel rim (on which it  is mounted); they
ensure a seal between the rim and the tire.   The tire treads
are the part of the tire that meets the road surface; their de-
sign and composition depend on the use of  the tire.  Tire cords
are woven synthetic fabrics (rayon, nylon,  polyester) impregnated
with rubber; they are the body of the tire and supply it with
most of its strength.  Tire belts stabilize  the tires and prevent
the lateral scrubbing or wiping action that  causes tread wear.

The processes used to produce the individual tire components
usually involve similar steps.  First, the raw stock is heated
and subjected to a final mixing stage before going to a roller
mill.   The material is then peeled off rollers and continuously
extruded into the final component shape.  Tire beads are directly
extruded onto the reinforcing wire used for the seal, and tire
belt is produced by calendering rubber sheet onto the belt
fabric.

The various components of the tire are fitted together in a mold
to build green, or uncured, tires which are then cured in an
automatic press.  Curing times range from less than one hour for
passenger car tires to 24 hours for large,  off-the-road tires.
After curing, the excess rubber on the tire is ground off (de-
flashed) to produce the final product.

This subcategory is often subdivided into two groups of plants:
(1) those starting operations prior to 1959, (applies to thirty-
nine plants) and (2) those starting operations after 1959.  This
subdivision must be recognized in applying limitations on plant
effluents of oil and grease because BPT limitations are different
for the two groups of plants.  For plants placed in operation after
1959,  the 30-day average oil and grease limitation is 0.016 kg/Mg
of product.  For plants placed in operation prior to 1959, the
limitation is the same (0.016 kg/Mg) but only for process waste-
water.  Process wastewater for these pre-1959 plants comes from
soapstone solution applications, steam cleaning operations, air
pollution control equipment, unroofed process oil unloading areas,
mold cleaning operations, latex applications, and air compressor
receivers. Water used only for tread cooling and discharges from
other areas of  such plants is classified as nonprocess wastewater,
in which oil and grease levels are limited to 5 mg/L as a 30-day
average and 10  mg/L as a daily maximum.


Date:   9/25/81              II.17-4

-------
     Subcategory 2 - Emulsion Crumb Rubber Production

Emulsion polymerization,  the traditional process for synthetic
rubber production, is the bulk polymerization of droplets of
monomers suspended in water.  Emulsion polymerization is operated
with sufficient emulsifier to maintain a stable emulsion and is
usually initiated by agents that produce free radicals.   This
process is used because of the high conversion and the high
molecular weights that are possible.  Other advantages include a
high rate of heat transfer through the aqueous phase, easy removal
of unreacted monomers, and high fluidity at high concentrations
of product polymer.   Over 90% of styrene butadiene rubber (SBR)
is produced by this method. Approximately 17 plants use the
emulsion crumb rubber process.

Raw material for this process include styrene, butadiene, catalyst,
activator, modifier, and soap solution.

Polymerization proceeds stepwise through a train of reactors.
This reactor system contributes significantly to the high degree
of flexibility of the overall plant in producing different grades
of rubber.  The reactor train is capable of producing either
"cold" (277 K to 280 K, 103 kPa to 206 kPa) or "hot" (323 K, 380
kPa to 517 kPa) rubber.  The cold SBR polymers, produced at the
lower temperature and stopped at 60% conversion, have improved
properties when compared to hot SBRs.  The hot process is the
older of the two.  For cold polymerization, the monomer-additive
emulsion is cooled prior to entering the reactors. Each reactor
has its own set of cooling coils and is agitated by a mixer.  The
residence time in each reactor is approximately one hour.  Any
reactor in the train can be bypassed.  The overall polymerization
reaction is ordinarily carried to no greater than 60% conversion
of monomer to rubber since the rate of reaction falls off beyond
this point and product quality begins to deteriorate.  The product
rubber is formed in the milky white emulsion phase of the
reaction mixture called latex.  Short stop solution is added to
the latex exiting the reactors to quench the polymerization at
the desired conversion.  The quench latex is held in blowdown
tanks prior to the stripping operation.

The stripping operation removes the excess butadiene by vacuum
stripping, and then removes the excess styrene and water in a
perforated plate stripping column.  The water and styrene from
the styrene stripper are separated by decanting and the water is
discharged to the treatment facility.  The recovered monomers are
recycled to the monomer feed stage.  The latex is now stabilized
and is precipitated by an electrolyte and a dilute acid.  This
coagulation imparts different physical characteristics to the
rubber depending on the type of coagulants used.  Carbon black
and oil can be added during this coagulation/precipitation step
to improve the properties of the rubber.  This coagulated crumb
is separated from the liquor, resuspended and washed with water,


Date:  9/25/81              II.17-5

-------
then dewatered,  dried,  and pressed into bales for shipment.   The
underflow from the washing is sent to the wastewater treatment
facility.

     Subcategory 3 - Solution Crumb Rubber Production

Solution polymerization is bulk polymerization in which excess
monomer serves as the solvent.  Solution polymerization,  used at
approximately 13 plants,  is a newer,  less conventional process
than emulsion polymerization for the commercial production of
crumb rubber.  Polymerization generally proceeds by ionic mech-
anisms.  This system permits the use of stereospecific catalysts
of the Ziegler-Natta or alkyl lithium types which make it pos-
sible to polymerize monomers into a cis structure characteristic
which is very similar to that of natural rubber.  This cis struc-
ture yields a rubbery product, as opposed to a trans structure
which produces a rigid product similar to plastics.

The production of synthetic rubbers by solution polymerization
processes is a stepwise operation very similar in many aspects to
production by emulsion polymerization.  There are distinct dif-
ferences in the two technologies, however.  For solution poly-
merization, the monomers must be extremely pure and the solvent
should be completely anhydrous.  In contrast to emulsion poly-
merization, where the monomer conversion is taken to approx-
imately 60%, solution polymerization systems are polymerized to
conversion levels typically in excess of 90%.  The polymerization
reaction is also more rapid, usually being completed in 1 to 2
hours.

Fresh monomers often have inhibitors added to them while in
storage to prevent premature polymerization.  These inhibitors
and any water that is present in the raw materials must be removed
by caustic scrubbers and fractionating drying columns to provide
the solution process with the high purity and anhydrous materials
needed.  The purified solvent and monomers are then blended into
what is termed the "mixed feed, " which may be further dried in a
desiccant column.

The dried mixed feed is now ready for the polymerization step,
and catalysts can be added to the solution (solvent plus monomers)
just prior to the polymerization stage or in the lead polymeriza-
tion reactor.

The blend of solution and catalysts is polymerized in a series of
reactors.  The reaction is highly exothermic and heat is removed
continuously by either an ammonia refrigerant or by chilled brine
or glycol solutions.  The reactors are similar in both design and
operation to those used in emulsion polymerization.  The mixture
leaves the reactor train as a rubber cement, i.e., polymeric
rubber solids dissolved in solvent.  A short stop solution is
added to the cement after the desired conversion is reached.
Date:  9/25/81              II.17-6

-------
The rubber cement is then sent to storage tanks where antioxi-
dants and extenders are mixed in.  The rubber cement is pumped
from the storage tank to the coagulator where the rubber is
precipitated with hot water under violent agitation.  The solvent
and unreacted monomer are first steam stripped overhead and
then condensed, decanted, and recycled to the feed stage.  The
bottom water layer is discharged to the wastewater treatment
facility.

The stripped crumb slurry is further washed with water, then
dewatered, dried, and baled as final product.  Part of the water
from this final washing is recycled to the coagulation stage, and
the remainder is discharged for treatment.

     Subcategory 4 - Latex Rubber Production

The emulsion polymerization process is used by 17 production
facilities to produce latex rubber products as well as solid
crumb rubber.  Latex production follows the same processing steps
as emulsion crumb rubber production up to the finishing process.
Between 5% and 10% of emulsion polymerized SBR and nearly 30% of
nitrile rubber production (NBR) are sold as latex.  Latex rubber
is used to manufacture dipped goods, paper coatings, paints,
carpet backing, and many other commodities.

Monomer conversion efficiencies for latex production range from
60% for low temperature polymerization to 98% for high temper-
ature conversion.

The monomers are piped from the tank farm to the caustic soda
scrubbers where the inhibitors are removed.  Soap solution,
catalysts, and modifiers are added to produce a feed emulsion
which is fed to the reactor train.  Fewer reactors are normally
used than the number required for a crumb product line.  When
polymerization is complete,  the latex is sent to a holding tank
where stabilizers are added.

A vacuum stripper removes any unwanted butadiene, and the steam
stripper following it removes the excess styrene.  Neither the
styrene nor butadiene is recycled.  Solids are removed from the
latex by filters, and the latex may be concentrated to a higher
solids level.

     Subcategories 5, 6, 7 - Small-,Medium-, and Large-Sized
     General Molding, Extruding, and Fabricating Plants

These three closely related subcategories are divided based on
the volume of wastewater emanating from each.  These subcate-
gories include a variety of processes such as compression mold-
ing,  transfer molding, injection molding, extrusion, and calen-
dering.  An estimated 1,385 plants participate in these sub-
categories.


Date:  9/25/81              II.17-7

-------
A common step for all of the above processes is the compounding
and mixing of the elastomers and compounding ingredients.   The
mixing operation is required to obtain a thorough and uniform
dispersion of the rubber and other ingredients.  Wastewater
sources from the mixing operation generally derive from leakage
of oil and grease from the mixers.

Compression molding is one of the oldest and most commonly used
manufacturing processes in the rubbber fabrication industry.
General steps for the processes include warming the raw materials,
preforming the warm stock into the approximate shape, cooling and
treating with antitack solution, molding by heat and pressure,
and finally deflashing.  Major products from this process include
automotive parts, medical supplies, and rubber heels and soles.

Transfer molding involves the forced shifting of the uncured
rubber stock from one part of the mold to another.  The prepared
rubber stock is placed in a transfer cavity where a ram forces
the material into a heated mold.  The applied force combined with
the heat from the mold softens the rubber and allows it to flow
freely into the entire mold.  The molded item is cured, then
removed and deflashed.  Final products include V-belts, tool
handles, and bushings with metal inserts.

Injection molding is a sophisticated, continuous, and essentially
automatic process that uses molds mounted on a revolving turret.
The turret moves the molds through a cyclic process that includes
rubber injection, curing, release agent treatment, and removal.
Deflashing occurs after the product has been removed.  A wide
range of products is made by this process, including automotive
parts, diaphragms, hot-water bottles, and wheelbarrow tires.

Extrusion forces unvulcanized rubber through a die to give long
lengths of rubber of a definite cross section.  There are two
general subdivisions of this technique; one extrudes simple
products and the other builds products by extruding the rubber
onto metal or fabric reinforcement.  Products from these tech-
niques include tire tread, cable coating, and rubber hose.

Calendering involves passing unformed or extruded rubber through
a set or sets of rolls to form  sheets or rolls of rubber product.
The thickness of the material is controlled by the space between
the rolls.  The calender may also produce patterns, double the
product thickness by combining  sheets, or add a sheet of rubber
to a textile material.  The temperature of the calender rolls  is
controlled by water and steam.  Products produced by this process
include hospital sheeting and sheet stock for other product
fabrication.
Date:  9/25/81              II.17-8

-------
     Subcategory 8 - Wet Digestion Reclaimed Rubber

This subcategory represents a process that is used to recover
rubber from fiber-bearing scrap.   Scrap rubber,  water,  reclaiming
and defibering agents,  and plasticizers are placed in a steam-
jacketed, agitator-equipped autoclave.  Reclaiming agents used to
speed up depolymerization include petroleum and coal tar-base
oils and resins as well as various chemical softeners such as
phenol alkyl sulfides and disulfides, thiols, and amino acids.
Defibering agents chemically do the work of tht  hammer mill by
hydrolyzing the fiber;  they include caustic soda, zinc chloride,
and calcium chloride.

A scrap rubber batch is cooked for up to 24 hours and then dis-
charged into a blowdown tank where water is added to facilitate
subsequent washing operations.  Digester liquor is removed by a
series of screen washings.  The washed rubber is dewatered by a
press and then dried in an oven.   Two major sources of wastewater
are the digester liquor and the washwater from the screen wash-
ings.

Two rubber reclaiming plants use the wet digestion method for
reclamation of rubber.

     Subcategory 9 - Pan, Dry Digestion, and Mechanical
     Reclaimed Rubber

This subcategory combines processes that involve scrap size
reduction before continuing the reclaiming process.  The pan
digestion process involves scrap rubber size reduction on steel
rolls, followed by the addition of reclaiming oils in an open
mixer.  The mixture is discharged into open pans which are stack-
ed on cars and rolled into a single-cell pressure vessel where
live steam is used to heat the mixture.  Depolymerization occurs
in 2 to 18 hours.  The pans are then discharged and the cakes of
rubber are sent on for further processing.  The steam condensate
is highly contaminated and is not recycled.

The mechanical rubber reclaiming process, unlike pan digestion,
is continuous and involves fiber-free scrap being fed into a
horizontal cylinder containing a screw that works the scrap
against the heated chamber wall.   Reclaiming agents and catalysts
are used for depolymerization.  As the depolymerized rubber is
extruded through an adjustable orifice, it is quenched. The
quench vaporizes and is captured by air pollution control equip-
ment.  The captured liquid cannot be reused and is discharged for
treatment.

Nine plants use these techniques to reclaim rubber.
Date:  9/25/81              II.17-9

-------
     Subcategory 10 - Latex-Dipped,  Latex-Extruded,  and
     Latex-Molded Goods

These three processes involve the use of latex in its liquid form
to manufacture products.   Latex dipping consists of immersing an
impervious male mold or article into the latex compound,  with-
drawing it, cleaning it,  and allowing the adhering film to air
dry.  The straight dip process is replaced by a coagulant dip
process when heavier films are desired.  Fabric or other items
may be dipped in latex to produce gloves and other articles.
When it has the required coating, the mold is leached in pure
water to improve physical and electrical properties.   After air
drying, the items are talc-dusted or treated with chlorine to
reduce tackiness.  Water is often used in several processes, for
makeup, cooling, and stripping.  Products from dipping include
gloves, footwear, transparent goods, and unsupported mechanical
goods.

Latex molding employs casts made of unglazed porcelain or plaster
of paris.  The molds are dusted with talc to prevent sticking.
The latex compound is then poured into the mold and allowed to
develop the required thickness.  The mold is emptied of excess
rubber and then oven dried.  The mold is removed and the product
is again dried in an oven.  Casting is used to manufacture dolls,
prosthetics, printing matrices, and relief maps.

     Subcategory 11 - Latex Foam

No latex foam facilities are known to be in operation at this '
time.

II.17.2  WASTEWATER CHARACTERIZATION [2-50]

The raw wastewater emanating from rubber manufacturing plants
contains toxic pollutants that are present due to impurities in
the monomers, solvents, or the actual raw materials,  or are asso-
ciated with wastewater treatment steps.  Both inorganic and
organic pollutants are found in the raw wastewater, and classical
pollutants may be present in significant concentrations.
Date:  8/31/82 R Change 1  11.17-10

-------
In-plant management practices may often control the volume and
quality of the treatment system influent.  Volume reduction can
be  attained by process wastewater segregation from noncontact
water,  by recycling or reuse of noncontact water, and by the
modification of plant processes.   Control of spills, leakage,
washdown,  and storm runoff can  also reduce the treatment system
load.   Modifications may include the use of  vacuum pumps instead
of  steam ejectors,  recycling caustic soda solution rather than
discharging it to  the treatment system, and  incorporation of a
more  efficient solvent recovery system.

II.17.2.1  Tire and Inner Tube  Manufacturing

The tire and inner tube manufacturing industry has several poten-
tial  areas for wastewater production, but water recycle  is used
extensively.  The  major area for water use is in processes re-
quiring noncontact cooling.  The general practice of the industry
is  to  recirculate  the majority  of this water with a minimal
blowdown to maintain acceptable concentrations of dissolved
solids.   Another water use area is contact water used in cooling
tire  components and in air pollution control devices.  This water
is  also recirculated.   Steam condensate and  hot and cold water
are used in the molding and curing areas.  The majority  of the
water  is recycled  back to the boiler or hot  water tank for use in
the next recycle.   Soapstone areas and plant and equipment cleanup
are the final water use areas.   Most facilities try to recycle
soapstone solution because of its high solids content. Plant and
equipment cleanup  water is generally sent to the treatment system.
Table  17-5 presents a summary of the potential wastewater sources
for this subcategory.

Grease,  oils, and  suspended solids are the major pollutants
within  this industry.   Organic  pollutants, pH,  and temperature
may also require treatment.  The organics present are due general-
ly  to poor housekeeping procedures.
TABLE  17-5.
SUMMARY  OF POTENTIAL PROCESS-ASSOCIATED WASTEWATER
SOURCES  FROM THE TIRE AND INNER  TUBE INDUSTRY [2-50J
Plant area
Oil storage
Compound i ng
Source
Runoff
Washdown, spills, leaks,
discharges from wet air
pollution equipment
Nature and oriain of wastewater contaminants
Oil
Solids from soapstone dip tanks; oil from seals in
roller mills; oil from solids from Banbury seals;
solids from air pollution equipment discharge.
       Bead, tread, tube
        formation

       Cord and belt
        formation

       Green tire painting


       Molding and curing

       Tire finishing
                    Washdown, spiIIs, leaks
      Washdown, spills, leaks
      Washdown, spills, air
      pollution equipment
      Washdown, leaks

      Washdown, spiI Is, air
      pollution equipment
Oil and solvent-based cements from the cementing
 operation; oil from seals in roller mills.

Organ ics and sol ids from dipping operat ton; oi t
 from seals, in roller mills, calenders, etc.

Organics and solids from spray painting operation;
 soluble organics and solids from air pollution
 equipment discharge.

Oil from hydraulic system; oil from presses.

Solids and soluble organics from painting operations;
 solids from air pollution equipment discharge.
Date:   9/25/81
                11.17-19

-------
II.17.2.2  Emulsion  Crumb Rubber Production

In-process controls  for the  reduction of wastewater flows and
loads  for emulsion crumb rubber plants include recycling of
finishing line wastewaters and steam stripping of heavy  monomer
decanter wastewater.   Recycling of finishing line wastewater
occurs at nearly all emulsion crumb plants with  the percent
recycle depending primarily  upon the desired final properties
of the crumb.   Approximately 75% recycle is an achievable rate,
with recycle  for white masterbatch crumb below this level and
that for black masterbatch crumb exceeding it.

Organic toxic pollutants found at  emulsion crumb rubber  plants
come from the raw materials,  impurities in the raw materials,
and  additives to noncontact  cooling water.  BOD,  COD,  and TSS
levels may also reach high  loadings.

Table  17-6 lists potential wastewater sources and general waste-
water  contaminants for the emulsion crumb  rubber industry.
       TABLE  17-6.
   SUMMARY OF WASTEWATER SOURCES FROM EMULSION
   CRUMB RUBBER PRODUCTION FACILITIES [2-50]
    Processing unit
                       Sou rce
                                          Nature of wastewater contaminants
   Caustic soda scrubber

   Monomer recovery

   Coagulation


   Crumb dewatering


   Monomer strippers

   Tanks and reactors

   Al I plant areas
Spent caustic solution

Decant water layer

Coagulation Iiquor overflow


Crumb rinse water overflow


Stripper cleanout rinse
 water

Cleanout rinse water

Area washdowns
High pH, alkalinity, and color. Extremely low
 average flow rate.

Dissolved and separable organics.  Source of
 high BOD and COD discharges.

Acidity, dissolved organics, suspended and high
 dissolved solids, and color. High wastewater
 flow rates relative to other sources.

Dissolved organics, and suspended and dissolved
 solids. Source of highest wastewater volume.
 from emulsion crumb rubber production.

Dissolved organics, and suspended and dissolved
 solids. High quantities of uncoagulated latex.

Dissolved organics, and suspended and dissolved
 solids. High quantities of uncoagulated latex.

Dissolved and separable organics, and suspended
 and dissolved solids.
II.17.2.3    Solution Crumb Rubber Production

Solution crumb rubber production plants have  lower  raw wastewater
loads than emulsion crumb plants because of the thorough  steam
stripping  of product cement to  remove  solvent and permit  effective
coagulation.  Recycling in this industry is comparable to that in
the emulsion crumb industry, with about 75% of the  wastewater
being recirculated.
Date:  9/25/81
              11.17-20

-------
Toxic pollutants found in the  wastewater  streams are normally
related to  solvents  and  solvent impurities,  product additives,
and cooling water treatment chemicals.   Table  17-7  presents  a
listing of  the potential  wastewater sources and the associated
contaminants for this industry.
 TABLE  17-7.
SUMMARY  OF WASTEWATER SOURCES  FROM SOLUTION CRUMB
RUBBER PRODUCTION [2-50]
       Processing unit
                           Source
                                               Nature of wastewater contaminants
      Caustic soda scrubber


      Monomer and solvent
       drying columns

      Solvent purification

      Monomer recovery

      Crumb dewatering



      Al I  plant areas
                         Spent caustic solution
        Water removed from mono-
         mers and solvent
        Fractionator bottoms

        Decant water layer
        Crumb rinse water over-
         flow
                         Area washdowns
High pH, alkalinity, and color. Extremely
 low average flow rate.

Dissolved and separable organics.
 Very low flow.

Dissolved and separable organics.

Dissolved and separable organics.

Dissolved organics, and suspended
 and dissolved solids.  Source of
 highest volume  wastewater flow.

Dissolved and separable organics, and
 suspended and dissolved solids.
II.17.2.4   Latex  Rubber Production

Process  contact water is  not  currently used by  the  latex rubber
industry.   Raw material recycling  is not practiced  because of
poor control  of monomer feeds and  the  buildup of impurities  in
the  water.  Wastewater may be generated during  the  removal of in-
hibitors or during the stripping of excess  monomer  from  the  latex
product.   Wastewater  also may be generated  during process equip-
ment cleaning.  Table 17-8 presents potential wastewater sources
and  general contaminants  for  this  industry.

Organic  toxic pollutants  and  chromium  are present in the raw
wastewater  and normally consist of raw materials, impurities,  and
metals used as cooling water  corrosion inhibitors.
      TABLE  17-8.
     SUMMARY  OF WASTEWATER  SOURCES  FROM  LATEX RUBBER
     PRODUCTION [2-50]
            Processing unit
                                 Source
                                                     Nature of wastewater contaminants
         Caustic soda scrubber


         Excess monomer stripping

         Latex evaporators
         Tanks, reactors, and
          strippers
         Tank cars and tank trucks
         AlI  plant areas
                             Spent caustic solution
            Decant water layer

            Water removed during
             latex concentration
                             Cleanout rinse water
                             Cleanout rinse water
                             Area washdowns
     High pll, alkalinity, and color.
      Extremely low average flow rate.

     Dissolved and  separable organics.

     Dissolved organics, suspended and
      dissolved solids. Relatively high
      wastewater flow  rates.

     Dissolved organics, suspended and
      dissolved solids. High quantities
      of uncoaguiated  latex.

     Dissolved organics, suspended and
      dissolved solids. High quantities of
      uncoaguiated latex.

     Dissolved and  separable organics, and
      suspended and dissolved sol ids.
Date:   8/31/82 R Change  1   11.17-21

-------
II.17.2.5   General Molding,  Extruding,  and Fabricating Rubber
            Plants

Toxic pollutants resulting from production processes within this
industry are generally the result of leaks,  spills,  and poor
housekeeping procedures.   Pollutants include organics associated
with the raw materials and lead from the rubber curing process.

II.17.2.6   Rubber Reclamation

Wastewater effluents from this subcategory contain high levels of
toxic organic and inorganic pollutants.   These pollutants gener-
ally result from impurities in the tires and tubes used in the
reclamation process.  The wastewater from the pan process is of
low volume (0.46 m3/Mg [56 gal/1,000 lb]), but is highly contami-
nated, requiring treatment before discharge.  The mechanical
reclaiming process uses water only to quench the reclaimed
rubber, but it uses a much higher quantity (1.1 m3/Mg).  Steam
generated from the quenching process is captured in a scrubber
and sent to the treatment system.  Wet digestion uses 5.1 m3 of
water per Mg (610 gal/1,000 lb)"of product in processing, of
which 3.4 m3/Mg (407 gal/1,000 lb) of product is used in air
pollution control.

II.17.2.7   Latex-Dipped, Latex-Extruded, and Latex-Molded
            Goods

Wastewater sources in this subcategory are the leaching process,
makeup water, cooling water,  and stripping water.  Toxic pollutants
are present at insignificant levels in the wastewater discharges.

II.17.2.8   Latex Foam

No information is available on the wastewater characteristics of
this subcategory.

II.17.3   PLANT SPECIFIC DESCRIPTION [2-50]

Only two subcategories of the rubber industry have not been
recommended as Paragraph 8 exclusions of the NRDC Consent Decree:
Wet Digestion Reclaimed Rubber, and Pan, Mechanical, and Dry
Digestion Reclaimed Rubber.  Of these two, plant specific data
are available only for the latter.  Of the nine remaining sub-
categories, plant specific information is available only for
Emulsion Crumb Rubber and Solution Crumb Rubber, and is pre-
sented below.  Two plants in each subcategory are described.
They were chosen as representative of their subcategories based
on available data.
Date:  9/25/81              11.17-22

-------
II.17.3.1  Emulsion Crumb Rubber Production

Plant 000012 produces 3.9 x 104 Mg/yr (8.7 x 107 Ib/yr) of emul-
sion crumb rubber,  primarily neoprene.   The contact wastewater
flow rate is approximately 8.45 m3/d (2.25 x 103 gpd) and in-
cludes all air pollution control equipment, sanitary waste,
maintenance and equipment cleanup,  and direct contact wastewater.
The treatment process consists of activated sludge, secondary
clarification, sludge thickening, and aerobic sludge digestion.
Noncontact wastewater,  with a flow rate of approximately 1.31 x
105 m3/d (3.46 x 107 gpd), is used on a once-through basis and is
returned directly to the river source.   Contact wastewater is
also returned to the surface stream after treatment.

Plant 000033 produces three types of emulsion crumb rubber in
varying quantities.  Styrene butadiene rubber (SBR) is the bulk
of production, at nearly 3.7 x 105  Mg/yr (8.2 x 108 Ib/yr), with
nitrile butadiene rubber (NBR) and polybutadiene rubber (PBR)
making up the remainder of production (4.5 x 104 Mg/ yr [1.0 x
108 Ib/yr] and 4.5 x 103 Mg/yr [1 x 107 Ib/yr],  respectively).
Wastewater consists of direct contact process water, non-
contact blowdown, and noncontact ancillary water.  The total flow
of contact water is approximately 1.27 x 104 m3/d  (3.355 x 106
gpd), and the total flow of noncontact water is 340.4 m3/d (9 x
104 gpd).  Treatment of the wastewater consists of coagulation,
sedimentation, and biological treatment with extended aeration.
Treated wastewater is discharged to a surface stream.

Tables 17-9 and 17-10 present plant specific toxic pollutant data
for the selected plants.

II.17.3.2   Solution Crumb Rubber Production

Plant 000005 produces approximately 3.2 x 104 Mg/yr (7.0 x 107
Ib/yr) of isobutene-isopropene rubber.   Wastewater generally
consists of direct processes and MEC water.  Contact wastewater
flow rate is approximately 1,040 m3/d (2.75 x 105 gpd), and
noncontact water flows at about 327 m3/d (8.64 x 104 gpd).
Treatment consists of coagulation,  flocculation, and dissolved
air flotation, and the treated effluent becomes part of the
noncontact cooling stream of the on-site refinery.

Plant 000027 produces polyisoprene crumb rubber (4.5 x 104 Mg/yr
[1 x 108  Ib/yr]), polybutadiene crumb rubber (4.5 x 104 Mg/yr
[1.0 x 108 Ib/yr]), and ethylene-propylene-diene-terpolymer
rubber (EPDM; 4.5 x 104 Mg/yr [1.0 x 108 Ib/yr]).  Wastewater
consists of contact process water,  MEC, cooling tower blowdown,
boiler blowdown, and air pollution control.  Wastewater is pro-
duced at about 12,100 m3/day (3.2 x 106 gpd).  Treatment consists
Date:  8/31/82 R Change 1  11.17-23

-------
u. a. o

02  -
LJ O 0
0. — 4J
CO h- CO
  o <-
             as 0
           ro 4-= -P
           CC C CO
             4->
             c •
             0 C

             4->
             CO —
         0   0
         C   i-
         —   1-0
         0
         o
         s
         a
        -   E!
         c
         o
C 4J
0 C
E 0
4-> T
CO —
  «l-
  c
         CO
         o
         o
           CO JZ 0
           !- t/1 .
           a co co
           co - -
0
Q.-P
ac
— CO
S- O
4-3 0
co-a

                              CO
               c
               CO
                   _l
                   •V
                   o
                   i->
                   c
                   CO
                   4->
                   3
       o
       Q
                  CO
                 -C   0
                  4J   C

                  a.   E

                 — 4-> —
                  >J CO >>
                  X— C
                  0 CO 0
                    0
                   T3
                    !_
                    o
0
c
0 0
— T3
                                           —   J=!-
                              JZ
                              O   0 —
                 — P a.  a>   co   o jz
                  >»JZ —   C   5-   S- O
                 JZ Q.T3   0   4J e O
                 4J   O   N   0 !	0
                  0—in   c   4JOJZC
                  I  >>0   0 0
                •CMJZ!	J3CCO	
  0
  c
0 CO
c .c
0 4J
— 0
>>o
jz c.
4J O
0 —
O JZ
!- O
o —
— <_
               3    O

                    X
               o    o
               o-
                          O-*   0— C'-D^OIJZ'-  «
           (00	I  JZ — O CO JZ  « 0 0  »
           OSZCQQZO-ZI—OO — SI	
                                                          CM
           0
           in
                                             CO
                                             Q
                                             OS
                                             CNJ
                                   in
                                  •o
                                   o
                                   o

                                   4J
                                             CO
                                             c
o
in
CM
i — '

(O


O
0
1—
2
_J
O-

~y
O
^_
Q
O
a:
Q_

(£.
UJ
CQ
CQ



CQ
£

CC
O

0

CO
^

LJ


O
u.





Q
O

o

LI-

CC:
LJ
>
0
u.

O
LJ
a.
CO

t—

*J
O-

O

|—
























O


— lfS4Tl II
II -P
II II O

cc U U C
a a re 0
C -w *J O
O C C C
0000
C 0 0 C
o c c
COO-.
ceo
§* .* ..r~
00 -

*w CM —
o - -
	 11

tl II II 4J
u
*J ** 4-» R}
O O O 4J
W CO CO C
•u 4J *J o
C C C 0
OOO
O O CJ 1
CD
CC K. eC V
m co co o
IOZQ- H
£
E

3
u
»
£
L.
0

u.

































0)
c
_
CO
V.

CJ
o
o.
c


c
o
JJ
to
o
c











































0)
-X
£<-
C Q>

J L.
W
cc.
0)
«
c —

>
CO
01
c
CC co
CO U
Z V
•o


w
c -p
01 C
E C
CO —
Ob-
I- U-
*— Q]

•P
C -P
u c
E C
CO —
l_ c


o
c
c.
t£ U>
CD —
z c
(*.




c
£ C
c c
LL.
L.
0)
o
cc a
Cfl.-
^j












^
a
J
cc

—
£






— in — voa-o^a-M — — — CJCM
0 — V 00 \0
V V V


— ^ — r-a-Ofoa-o 	 CM — w
V • V — CM V — . . . . V
0 — V 00 — O
V V V V


v — v vcoov— cytMto .eo
— O v v v in —
v «
eo
a-




ggS-.SS5vtS~~*"2
CMiffOV — V VOO— O —
V V V V V





OOOCMOOCMO — 	 POPOf*-
CMa-rOV— V OOCOOV
- V V V V




— O — CM\OO3T"-(M — — CVimO
VCMV -Vh-O — to • • • -CO
C\J — V OOlftOV
V V V V







3- V CM V OOCM OO
V V V V V




o *nv v o — o —
V V V V




CD
**
_
CO
4J CD
J= C
a. co 01
— £T3
X E 0
0) CD — O —
— — C C O O
>>i- 0) 0) E L.
£ PjC N (-J3 0)
E3^^3Q}CO OlOWt-O)
— ECD3CCJ— -PO— 03 1-— >>
E o a o a) — x— c >> = o^£
CD JZ O 03 CD — • O i ^ P p -g •— tj?
OOUIElOCO^CVjCL-Ldh-OOZ





















































CM

Q) •
(A CD
C0.0
*^ n
CO
* >
a\ to
CM
r* O
• C
' ffi

CD
..-o
CA
•o a
o *>
£ CD
p o

•P CO

— c
CO CD
15
                                                                       CQ
                                                                       <
  Date:     8/31/82  R   Change  1    11.17-24

-------
of API separators,  sedimentation, stabilization, and lagooning,
followed by discharge to a surface stream.

Tables 17-12 and 17-13 show plant specific toxic pollutant data
for the above plants.

II.17.3.3   Dry Digestion Reclaimed Rubber

Data summary for plant 000134 is given in Table 17-15.  Pro-
duction,  wastewater flow, and treatment data are currently not
available for a plant within this subcategory.

II.17.4  POLLUTANT REMOVABILITY [2-50]

In this industry, numerous organic compounds, BOD, and COD are
typically found in the plant wastewater effluent.   Industry-wide
flow and production data show that these pollutants can be
reduced by biological treatment.  In emulsion crumb and latex
plants, uncoagulated latex contributes to high suspended solids.
Suspended solids are produced by rubber crumb fines and include
both organic and inorganic materials.  Removal of such solids is
possible using a combination of coagulation/flocculation and
dissolved air flotation.

Solvents, extender oils, and insoluble monomers are used through-
out the rubber industry.  In addition, miscellaneous oils are
used to lubricate machinery.  Laboratory analysis indicates the
presence of oil and grease in the raw wastewater of these plants.
Oil and grease entering the wastewater streams are removed by
chemical coagulation, dissolved air flotation, and, to some  •
extent, biological oxidation.

Wastewater sampling indicates that toxic pollutants found in the
raw wastewater can be removed.   Biological oxidation (activated
sludge) adequately treats all of the organic toxic pollutants
identified in rubber industry wastewater streams.   Significant
removal of metals was also observed across biological treatment.
The metals are probably absorbed by the sludge mass and removed
with the settled sludge.  Treatment technologies currently in use
are described in the following subcategory descriptions.

II.17.4.1  Emulsion Crumb Rubber Plants

There are a total of 17 plants in the United States producing
emulsion-polymerized crumb rubber.  Five of these plants dis-
charge to POTW's; 10 discharge to surface streams; 1 plant dis-
charges to an evaporation pond; and 1 plant employs land applica-
tion with hauling of settled solids.  Of the five plants dis-
charging to POTW's, 4 pretreat using coagulation and primary
treatment and 1 employs equalization with pH adjustment.  All 10
of the plants discharging to surface streams employ biological
!Date:  8/31/82 R Change 1  11.17-25

-------
                              TABLE  17-11 DELETED
       TABLE  17-12.  PLANT SPECIFIC VERIFICATION DATA FOR SOLUTION CRUMB RUBBER
                     PRODUCTION PLANT 000005  [2-50]
                     Flow rate, cu.m/d.  contact =  1,040; noncontact = 327
Pol lutant. uq/L
Cadmi urn
Chromi urn
Copper
Zinc
Bi s( 2-ethy Itiexyl )phtha late
Pheno 1
Benzene
Ethyl benzene
Toluene
Carbon tetrachlonde
Chloroform
Methyl chloride
Methylene chloride
1 , 1 , 2-Tricnlo roe thane
Tr i ch lo roe thy 1 ene
Location
Screen-
tank 1 and 2 come.

3
6
14,000
<60
9
<22
<38
<26
0.06
0.90
11,000
< |
<0 . 1
<0. 1
in process 1 me
Expel ler-
1 and 2 comp.

-------
               CO
               a:
               o
               o
               0:0
               O lA
               U_ I
                wo
               a CM D
                O O
               ZO
               OOO
               — 00
               OZPJ

               U -- 1
               — a.
               Q£
               UJ Z (I)
               >O -P
                — ra
               Oh- s-
               — a o
               oo —
               LdCC C»-
               a. a.
               C/5  —
                a: ra
               I— UJ JJ
               zco o
               CO
               <
-—OMT\OJOOJ — — — ON —
V — V  CM —	
     — V OO O O O
     V  V V V  V
         -
 co  rg — vooov
                            £ 3  >>O
                               LJ
                               Q
                               J-

                               I
                               CO
                               <
                               J~CMOO— Q
                            £ O Q. O —• C f
                                          l<
Date:   8/31/82  R  Change  1   11.17-27

-------









o:
QO
z

< —

i
(TO
O UJ
LJ. o:
< —i
H* ^
 E
S2
t- 3
^ CD









^i
C
a w
= 4J

*•- to
•ss
E
-W 0
C 0
V
E^

CO t-
Q>0
"



c L.
3 fi
— C
C R
— (A
e R
* C
Q) 4;
H- CC










J
c
4J
C
a
*
~
o
a.





ro — W O M O O OO"~ ~~~-CO OWiTJ^'
pj _ r* .00 oo* --V o — s— •
\OC\JlTtfO OO\O OO roVVV —
^ » . *v v v v
"~











*-





— -3" — OOvOO OOO — — CO Os O CM O CO
V VOv .OCD OO— • -V Iff* 	 •
cy — r- v oov oo vvvv —
» * » V V
pa \O —









^.^lumo-.
o u u a
— VO — O OO OOO OOfO OC5OOON
V M r»- OO OO^C OOco OOOO •
— o oov sor-v a-oor* —
— Kw ^^ — wgvo





CD <-

CO -P
= 5





C
CD C

O O
CD —
•°



^
01
4J 0)
CO 4->
W —
C to
V 0
TJ Q
ii
U U

en
CD CO
CD U
** 0


c"

I*
O y
o
<- a
CD E
> c
C L
— o
o
s

CO

— — — OCOOO \G 3 ~ ^^CD it CM CM lT\ \O
VVV— .fOO VV • • 'V v— — — fO
O M O OO V V
* VVV






CO
— CM^ory t>o o — CM — — — to ocywoo —
cy.cya- 	 • ' • V a- 	 v
ocyo o oo MVV
v v v








«5.S-S ^. S-^.
WfOCMPn . OOMtT»CyO • • — Os -3-— O OJ -O
PO^ OOCJ\r^ON OOOV— — V.S'VMro
* fc »vvvv * »

ey v










*— CM <^l ONlft O O OO3" — — CO OCyf^tMC?N
VVVCM'OCM —tO- *'V 	 — m .
o — — in— o oo — v v v a-
VVV V V






O CD
4J 4J
CO CD


£. E

a co — CD Q.CO —  &- >>.c Q> «-
X **£ 0) O X •!•» .C 0) O
g)j*;Q.Cl)C ~~ 0)£Q.CDC —
c fr— c a> » « £ c D.— c w u to c.
— X 0) C — C CD O — >> CD C — C CD U
t— C NO) >s ffi O C E X— £ NO X 8) 0 C E
>»« cN£ci-o^a x: >.-« CN x:ci- CD t-»
4J 03 (DC 4J O £ O — OC E *J 4-> O CDC P 8) X! O ^ OC
3—1- C |X> — — COXJCD-COCffiXICDO— 3—1- ^ 1 X> — — COXJCO-COCtDXltDO —
— Ed) 3 cyiQoojt-— a>cet-co'-*>c'-x —So 3 eyiaoot-— a)eo»-coi--PCt->»
•D £ alo " cIT^a- S c — it— tB^Si'a" — w •§£ a"eo " c'w'^a- i c — i:*— o^Si'a* — 5
35S"zN(o5cyfSouj°<<£^z^5r c3§3"rN5ocyfmc5uJ°<<£^ztv6z































£'
.-
CD
— O
ts
CD
(0 CD
a>
4J O
• V)
O O 0)
— Q.3
Q.E —
E 0 CO
CM CO U >
CA
*J U. (ft
B) - CD 3 —
w CD -P ox:
	 j=**
S— acj CD
— 6 io
CO 0-0 3
* > O I- CO
ON co — o


to 0 0 >
. CX;-D co
r-. i ex:
• n cr co
> -PtM >>
CO TJ *
« ^ w o E
-O O 1- O CD
O *»— 0) O
jC W tt- « C
at™ c c *
6I°°£
O — TJ TJ *-
— Q) CD CD
4J (0 tfl (A 4J
CO CO— «— »
C— (0.0 O
Date:  8/31/82 R  Change 1  11.17-28

-------
waste treatment ranging from conventional activated sludge to
nonaerated wastewater stabilization lagoons.

Organic pollutants are generally found to be reduced to insignif-
icant levels (<10 yg/L)  by biological treatment.   Most metals are
also found to be reduced across biological treatment; they are
generally at very low levels in the treated effluent.  However,
significant metal concentrations may be found in some treated
effluent.

At emulsion crumb rubber facilities, a well-operated biological
treatment facility permits compliance with BPT limitations and
reduces organic toxic pollutant levels.  Toxic metals that may
not be reduced include chromium, cadmium, copper, selenium, and
mercury.  Tables 17-16 and 17-17 show pollutant removal efficien-
cies at two emulsion crumb plants.

II.17.4.2  Solution Crumb Rubber Plants

There are 13 solution crumb rubber plants in the United States.
Twelve of these plants discharge treated wastewater to surface
streams; the other plant discharges its treated wastewater into a
neighboring oil refinery's noncontact cooling water system.

Ten of the plants discharging to surface streams employ some form
of biological treatment for waste load reduction.  Two of the
plants discharging to surface streams use in-process controls,
oil removal, and primary treatment prior to discharge.  In-process
control employed at one plant consists of steam stripping of
wastewaters, while in-process control at the second plant was not
disclosed. The plant discharging to the oil refinery noncontact
cooling water system used coagulation, flocculation, and dissolved
air flotation prior to discharge.

The results of the verification program showed that all organic
toxic pollutants were reduced across biological treatment.
Chloromethane, used as a solvent at plant 000005, was present at
significant levels in treated effluent.
Date:  9/25/81              11.17-29

-------
                TABLE  17-16.  TOXIC POLLUTANT REMOVAL EFFICIENCY AT
                              EMULSION CRUMB RUBBER PLANT 000012,
                              VERIFICATION DATA [2-50]
Treatment technology: Activated sludge
Discharae ooint: Surface stream
Concentration. ua/L
Pol lutant
Cadmium
Mercury(a)
Nickel
Bis(2-ethylhexyl )
phtha late(b)
Dimethyl phtha late
N-nltrosodiphenylamine
Phenol
Nitrobenzene
Toluene
Carbon tetrachloride
Chloroform
1, l-Dichloroethylene
Methyl ene chloride
Tet rach 1 o roethene
1,1, l-Trichloroethane
Influent
1
2.5
610

260
99
98
85
NM
NM
>93
NM
            Analytic methods: V.7.3.29, Data set 2.
            NM, not meaningful.
            (a)   Intake measured at 1.5 u.g/L, making plant's contribution
                  m i n i ma I.
            (b)   Analytical methodology for phthalates is questionable.
                  Therefore, significance of values reported is unknown.
                 TABLE  17-17.  TOXIC POLLUTANT REMOVAL EFFICIENCY AT
                               EMULSION CRUMB RUBBER PLANT 000033,
                               VERIFICATION DATA [2-50]

             Treatment technology:  Primary flocculation/separation,
               aerated lagoons
             Discharge point;  Surface stream
Concentration. ua/L
Pol lutant
Cadmium(a)
Chromium( a )
Copper(a)
Mercury (a )
Seleniumfa )
Bis(2-ethylhexyl )
phtha late(b)
{ range)
Aery Ion i tri le
2-Nitrophenol
Phenol
Ethyl benzene
Toluene
Chloroform
D i ch 1 o rob romomethane
Methylene chloride(c)
Influent
40
250
1,400
3.2
<20

100
(65-140)
32,000
9
60
<0. 1
<0. 1
8.2
0.3
66
Effluent
40
220
410
4.9
20

94
(59-130)
<23,000
3
19
<0. 1
<0. 1
1.8
0. 1
110
Percent
remova 1
0
12
71
NM
NM

6

>28
67
68
NM
NM
78
67
NM
             Analytic  methods: V.7.3.29, Data set 2.
             NM,  not meaningful.
             (a)  Found at  potentially significant levels in treatment effluent
                 although  generally higher than during screening.
             (b)  Analytical methodology for phthalates is questionable.
                 Therefore, significance of values  reported is unknown.
             (c)  Suspected contaminant from glassware cleaning procedures
                 or analytical methods.
Date:  9/25/81
11.17-30

-------
Tables 17-18 and 17-19 show pollutant removal efficiencies at two
selected solution crumb rubber plants.

II.17.4.3  Latex Rubber Plants

There are 17 latex rubber production facilities in the United
States.  Of these, 9 plants discharge to POTW's; 7 discharge to
surface streams; and 1 employs land application with contractor
disposal of solids.  All 7 plants discharging to surface streams
employ biological treatment before discharge. Pretreatment for
the POTW dischargers consists of coagulation, flocculation, and
primary treatment for 7 of the 9 dischargers, equalization for 1
discharger, and biological treatment for the other plant.

II.17.4.4  Tire and Inner Tube Manufacturing

There are a total of 73 tire and inner tube manufacturing facili-
ties in the United States, of which 39 were placed in operation
prior to 1959.  Twenty-three of the pre-1959 plants do not treat
their wastewaters, and 6 of these plants discharge to POTW's.  A
total of 17 plants placed in operation since 1959 provide no
treatment of their wastewaters, and 10 of these plants discharge
into POTW's.

The toxic pollutants present in raw wastewaters from tire and
inner tube manufacturing operations are volatile organic pollu-
tants that are used as degreasing agents in tire production.
These toxic pollutants (methylene chloride, toluene, trichloro-
ethylene) were found to be reduced to insignificant levels across
sedimentation ponds.

II.17.4.5  Rubber Reclamation Plants

There are nine rubber reclaiming plants in the United States. Two
of these use wet digestion, and all nine use pan, mechanical, and
dry digestion.  Eight of the plants discharge to POTW's. The
other plant employs cartridge filtration and activated carbon for
oil removal, followed by activated sludge.  Table 17-20 shows the
pollutant removal efficiency at a dry digestion reclaiming plant.
Date:  9/25/81              11.17-31

-------
                 TABLE  17-18.  TOXIC POLLUTANT REMOVAL EFFICIENCY AT
                               SOLUTION CRUMB RUBBER PLANT 000005,
                               VERIFICATION DATA [2-50]

            Treatment technology:  Primary flocculation/clarification
              (DAF)
            Discharge point:  Treated effluent is discharged to a
              nearby oil refinery's cooling water system
Concentration. ua/L
Pol lutant
Cadmium
Copper
Chromium
Zinc
Bis(2-ethylhexyl )
phtha late(a)
Phenol
Benzene
Ethyl benzene
Toluene
Carbon tetrachloride
Chloroform
Methyl chloride
Methyl ene chloride
1, 1,2-Trfchloroethane
T r i ch 1 o roethy 1 ene
Influent
99
NM
NM
70
NM
            Analytic methods: V.7.3.29,  Data set 2.
            NM, not meaningful.
            (a)  Intake measured at 4 ug/L,  making plant's  contribution
                 zero.
            (b)  Analytical methodology for phthalates is questionable.
                 Therefore, significance of values reported is unknown.


Date:  9/25/81                    11-17-32

-------
TABLE  17-20.
                        TOXIC  POLLUTANT REMOVAL EFFICIENCY AT DRY
                        DIGESTION  RECLAIMING  PLANT 000134,
                        VERIFICATION DATA [2-50]
               Treatment techno logy: Ca rtridge f iItrat ton, aciiv i tod ca rbon (oil remova t),
                             act ivated siudge, sedimentat i on
               Discharge point: Noncontact cooling water system, blowdown of this system
                          to surface stream
Pol lutant. uq/L
Cadmium
Chromium
Copper
Lead(b)
Mercury
Zinc
Bis(2-ethylhexyl )phtha late(c)
2, ll-Dimethyl phenol
Pheno 1 ( d )
Benzene
Ethylbenzene
To 1 uene
Acenaphthylene
F luorene
Naphthalene(e)
Phenanthrene
Pyrene
Chloroform
	 Conccntr
T rea tment
influent
1
6
28
70

100
16,000
58,000
26,000
60
8,600
2,700
<33
2,000
100,000
1,300
6,800
1.9
itj_qnJ_l!g/L 	

effluentla) removal
3
21
12
670
2.3
2,500
H , 200
25,000
99
>99
>99
NM
>99
>99
77
>99
26
Coo 1 i ng
tower
b 1 owdown , ( a }
UQ/L

-------
            11.18  SOAP AND DETERGENT MANUFACTURING

II.18.1   INDUSTRY DESCRIPTION

II.18.1.1  General Description [2-52,53]

The uses of soaps, detergents, and their derivatives in many of
the nation's industries and households make the soap and deter-
gent manufacturing industry one of the most lucrative commercial
successes in America.  The industry consists of approximately 640
plants which produce a total of 28,000 Mg (31,000 tons) of soap
and related products per day.  A vast portion of these products
or their components will invariably be deposited in the nation's
waterways and wastewater treatment facilities from various pro-
duction plant operations or after actual household use.

Four large companies which dominate the industry own only about
5% of all the plants, yet sell 50% of all soap products, and
account for 54% of total industry employment.  Of these institu-
tions, three are multinational corporations having individual
annual sales over one billion dollars from the sale of household
products and health and beauty aids.  These large corporations
are able to own and economically operate innovative production
processes and large, efficient wastewater treatment facilities
and other pollution control equipment.

The medium to small plant operations that make up the remainder
of the industry (approximately 95%), are limited to large popula-
tion centers and state-of-the-art technology.  These plants must,
in most cases, use publicly owned treatment facilities vand ope-
rate with less capital for advanced process technologies and
pollution abatement equipment.

The industry is covered under Standard Industrial Classification
(SIC) Code 2841 which includes provisions for the manufacture of
soap, synthetic organic detergents, and organic alkaline deter-
gents, or any combination of these.  SIC Code 2841 also includes
the manufacture of crude and refined glycerine from vegetable and
animal fats and oils.  The EPA Effluent Guidelines Division has
devised a subcatergorization of this industry based upon the
specific types of manufacturing processes undertaken at a given
establishment.  Table 18-1 gives information regarding the total
number of these subcategories, the number of subcategories
studied for this report, and the projected discharge status of
638 soap and detergent manufacturing plants in the United States.


9/25/81                      II.18-1

-------
                TABLE 18-1.   INDUSTRY SUMMARY [2-53]

             Industry:   Soap and Detergent Manufacture
             Total Number of Subcategories:
             Number of Subcategories Studied:  13

             Number of Dischargers in Industry:

                 •  Direct:   6
                 •  Indirect:   413
                 •  Zero:  218
Projected industry statistics by SIC 2841 unit operation Subcate-
gories are included in Table 18-2,  which lists all Subcategories.
This profile audit shows that there are an estimated 1,523 pro-
cess installations which produce 28,000 Mg (31,000 tons) of soap,
detergent, and glycerine per day.  Liquid detergent and dry-
blended detergent manufacturing account for 47% of this produc-
tion. As shown in Table 18-2, over 75% (124,000 m3/d) of the
normalized approximate total wastewater flow (143,000 m3/d) is
estimated to come from the 40 glycerine recovery (concentration
and distillation) installations.

II.18.1.2  Subcategory Descriptions [2-52]

The method for subcategorizing the soap and detergent manufactur-
ing industry mentioned above was established to identify poten-
tial wastewater sources and controls, provide a permit granting
authority with a way to analyze a specific plant regardless of
its complexity, and permit monitoring for compliance without
undue complication or expense.  The categorization consists of 2
major categories and 19 Subcategories.  The major categories
follow the natural division of soap manufacturing (production of
alkaline metal salts and fatty acids derived from natural fats and
oils) and detergent manufacturing (production of sulfated and
sulfonated cleaning agents from manufactured raw materials,
primarily petroleum derivatives).  The Subcategories are based on
discrete manufacturing units employed by the industry for conver-
sion of raw materials to intermediate products and conversion of
intermediate products to finished/marketed products.  A manufac-
turing unit may contain a single process (e.g., continous neutral-
ization for production of neat soap by fatty acid neutralization)
or a number of processes (e.g., crutching, drying, milling,
plodding, stamping, and packaging for production of bar soaps
from neat soap).

In general, establishments in SIC 2841 employ between one and
nine subcategory technologies.  Table 18-3 presents the predomi-
nant subcategory combinations employed in such establishments.
9/25/81                      11.18-2

-------
TABLE 18-2.   PROCESS INDUSTRY STATISTICS BY SIC  2841  UNIT  OPERATION  SUBCATEGORIES  [2-531
Subeateoorv
1
2
3
14

5
6
7
8
9), 7, 15, 16, 17
--
1, 2, 3, 1 and 5(b), 6, 7, 16, 17, 19
2, 3, 1 and 5(b), 6, 7, 15. 16, 17, 19
Number of
estabi istuwnts
emp 1 oy i ng
subcateoories
61
51
109
20
31
21
11
7
7
7
10
0
3*0
Percent of
estabi Ishments
i nvo 1 ved
33
29
16
9
28
21
27
11
11
11
59
0
50
50
(a)The predominant subcategories employed are reported as the two largest groups under each division set up in column one, with a.
   the largest group, and b. the second  largest group.
(b)Subcategorles 1 and 5 are counted as  one subcategory because they are normally used together for glycerine recovery.
 Date:    9/25/81
II.18-3

-------
As can been seen,  346 out of the total of 638 establishments,  or
54% of the total,  utilize the 13 subcategory combinations listed.
The remaining 292  establishments (46%) utilize another 70 differ-
ent subcategory combinations.

The subcategories  are described below.

     Subcategory 1 - Soap Manufacture by Batch Kettle

Most of the soap made by this process finds its way into toilet
bar form for household usage.  This use demands freedom from
offensive odors and from displeasing colors.  In order to meet
this requirement,  the starting fats and oils must be refined.
There is a direct relationship between quality of the fats and
quality of the finished soap.

     Fat refining and bleaching.  There are several ways in which
fats are refined.   One of the most frequently used methods employs
activated clay as the extraction agent.  Activated clay, having a
large ratio of surface area to weight, is agitated with warm oil
and filtered.  Bleaching occurs as color bodies, dirt, etc., are
removed, usually through a plate and frame press.  The clay is
disposed of as solid waste.  A small amount of clay remains in
the refined fat.

Other ways in which fats are refined include caustic extraction,
steam stripping, and use of proprietary aqueous chemicals.

     Soap boiling.  Although a very old process, kettle boiling
still makes a very satisfactory product, and in several well-
integrated manufacturing plants, this process has a very low
discharge of wastewater effluents.  In this process, vegetable
and animal fats and oils are alternately heated in the presence
of alkaline materials and inorganic salts to yield two fractions:
(1) a crude, unfinished soap called neat soap; and (2) crude,
dilute glycerine.

     Salt usage.  In order to maintain suitable solubility for
proper processing, salt is added to the soapmaking process to
maintain the required electrolytic balance.  Most of the salt
charged into the process is ultimately returned to it from the
glycerine concentration step, which will be discussed later.
Practically every kettle boiling soap manufacturer concentrates
the glycerine stream, although only a few go on to the distilla-
tion of glycerine.

     Subcategory 2 - Fatty Acid Manufacture by Fat Splitting

By means of fat splitting, very low grade fats and oils are
upgraded to high value products by splitting the glycerides into
9/25/81                      II.18-4

-------
their two components, fatty acids and glycerine.  Fat splitting
is a hydrolytic reaction which proceeds as follows:

            Fat + Water -*• Fatty Acid + Glycerine

Vegetable and animal fats and oils are heated to 260°C under
pressure, in the presence of various catalysts, to yield two
fractions:  (1) a crude mixture of fatty acids in water, and (2)
crude, dilute glycerine.  The glycerine byproduct can be produced
at a variety of concentrations depending upon how complete a fat
hydrolysis is desired.  More concentrated glycerine can be pro-
vided at some expense to fatty acid yields.  Catalysts employed
include zinc,  tin, or an aromatic sulfonic acid.  The crude
mixture of fatty acids is then distilled to recover those appli-
cable to soap manufacturing.  Sometimes this fraction is sub-
jected to flash hydrogenation, using nickel as a catalyst, to
reduce the amount of unsaturated fatty acids present.  As in
subcategory 1, the raw fats and oil are sometimes refined prior
to any other processing.

     Subcategory 3 ~ Soap from Fatty Acid Neutralization

Soap making by fatty acid neutralization exceeds the kettle boil
process in speed and minimization of wastewater effluent.  Widely
used by the large soap producers, it is also very popular with
the smaller manufacturer.

This route from the acids is faster, simpler (no byproduct
dilute glycerine stream to handle), and "cleaner" than the kettle
boil process.   Distilled, partially hydrogenated acids are usually
used.

The reaction that takes place is substantially:

            Caustic + Fatty Acid •* Soap

The resulting neat soap, containing about 30% moisture, is fur-
ther processed into bars or liquid formulations in the same
manner as the product from kettle boiling.

     Subcategory 4 - Glycerine Concentration

The kettle boiling soap process generates an aqueous stream
referred to as sweet water lyes.  This stream will contain 8% to
10% glycerine, a heavy salt concentration, and some fatty mate-
rials.  It is processed by first adding a mineral acid (HC1) to
reduce the alkalinity.  This is followed by the addition of alum,
which precipitates insoluble aluminum soaps.  The precipitate
carries other impurities down with it.  If the stream were not
treated with alum, there would be severe foaming in the evapora-
tors, and the contaminant would be carried forward into the
glycerine.  The cleaned-up glycerine solution is sent to the


9/25/81                      II.18-5

-------
evaporators, which are heated under reduced pressure.   As the
glycerine is concentrated,  the salt comes out of solution and is
removed from the evaporation kettle,  filtered,  and returned to
the soap-making process.   In many plants, this separating func-
tion is performed continuously by a centrifuge,  with the filtrate
being returned to the evaporator.

The glycerine is usually concentrated to 80% by weight and then
either run to a still to be made into finished glycerine, or
stored and sold to glycerine refiners.

The sweet water glycerine from fat splitting is flashed to atmos-
pheric pressure, thereby releasing a considerable amount of water
very quickly.  This can provide a glycerine stream of 20% glycer-
ine or more going to the evaporators.  Since there is no salt
used in fat splitting, there will be none in the sweet water.

     Subcategory 5 - Glycerine Distillation

In this process, the concentrated glycerine (80%) is run into a
still which, under reduced pressure,  yields a finished product of
98+% purity.  At room temperature, the still bottoms (also called
glycerine foots) are a glassy, dark brown, amorphous solid rather
rich in salt.  Water is mixed with the still bottoms before they
are run into the wastewater stream.

Some glycerine refining is done by passing the dilute stream over
ion exchange resin beds,  both cationic and anionic, and then
evaporating it to 98+% glycerine content as a bottoms product.
There are frequently three sets, in series, of both cation and
anion exchange resins used in this process.  Each step is de-
signed to reduce the input load by 90%.  Some of the fat split-
ting plants are equipped with this type of unit.

     Subcategory 6 - Soap Flakes and Powders

Neat soap (65% to 70% hot soap solution) may or may not be
blended with other products before flaking or powdering.  Neat
soap is sometimes filtered to remove gel particles and run into a
crutcher (a cylindrical vessel in which the soap is mixed with
builders).

After thorough mixing, the finished formulation is run into a
flaker.  This unit normally consists of a two-roll "mill."  The
small upper roll is steam heated while the larger, lower one is
chilled.  The soap solidifies on the lower roll and is slit into
ribbons as it sheets off the mill.

The ribbons are fed into a continuous oven heated by hot air. The
emerging flakes contain 1% moisture.  All of the evaporated
moisture goes to the atmosphere, creating no wastewater effluent.
9/25/81                      .11.18-6

-------
In spray drying,  crutched,  heated soap solution is sprayed into a
spray tower,  or flash dried by heating the soap solution under
pressure and releasing the steam in the spray dryer under reduced
pressure.  In either.case,  the final soap particle has a high
ratio of surface area to unit of weight,  which makes it readily
soluble in water.

     Subcategory 7 - Bar Soaps

In some bar soap processes, additives are mixed with the neat
soap in a crutcher before any drying takes place.   Another
approach is to begin the drying process with the hot neat soap
going to an "atmospheric" flash dryer, followed by a vacuum
drying operation in which the vacuum is drawn by a barometric
condenser.  Soap is then double extruded into short ribbons or
curls and sent to plodders.  The plodders remove occluded air
under  partial vacuum and homogenize the individual soap par-
ticles.  At this point, the soap will normally have 8% to 14%
moisture depending upon the previous course of processing.

Next, a milling operation affords the opportunity to blend in
additives and to modify the physical properties of the soap.  The
mill consists of two polished rolls rotating at different speeds
to maximize the shearing forces.  After milling, the soap is cut
into ribbons and sent to the plodder.

The plodder extrudes and cuts the soap into small chips, after
which further mixing melts all of the individual pieces together
into a homogeneous mass.

Plodding completed,  the soap is extruded continuously in a cylin-
drical form,  cut to size, molded into the desired form, and
wrapped for shipment.  Most of the scrap in this operation is
returned to the plodder.

The amount of water used in bar soap manufacture varies greatly.
In many cases, the entire bar soap processing operation is done
without generating a single wastewater stream.  The equipment is
all cleaned dry,  without any washups.  In other cases, due to
housekeeping requirements examples associated with the particular
bar soap process, there are one or more wastewater streams associ-
ated with air scrubbers.

     Subcategory 8 - Liquid Soaps

In the liquid soap process, neat soap (often the potassium soap
of fatty acids) is blended in a mixing tank with other ingre-
dients such as alcohols or glycols to produce a finished product,
or with pine oil and kerosene for a product with greater solvency
and versatility.   The final blended product may be, and often is,
filtered to achieve a sparkling clarity before being drummed.
9/25/81                     II.18-7

-------
In making liquid soap,  water is used to wash out the filter press
and other equipment.   Wastewater effluent is minimal.

     Subcategory 9 -Oleum Sulfonation and Sulfation

One of the most important active ingredients of detergents is
alcohol sulfate or alkyl benzene sulfonate,  particularly in
products made by the oleum route.

In most cases, the sulfonation/sulfation process is carried out
continuously in a reactor where the oleum (a solution of sulfur
trioxide in sulfuric acid) is brought into intimate contact with
the hydrocarbon or alcohol.   Reaction is rapid.  The stream is
then mixed with water and sent to a settler.

Prior to the addition of water, the stream is a homogeneous
liquid. With the addition of water, two phases develop and
separate.  The dilute sulfuric acid is drawn off and usually
returned to an oleum manufacturer for reprocessing up to the
original strength. The sulfonated/sulfated material is sent on to
be neutralized with caustic.

     Subcategory 10 - AirSO3 Sulfation and Sulfonation

This process for surfactant manufacture has numerous unique
advantages and is used extensively.  In the oleum sulfation of
alcohols, formation of water stops the reaction short of comple-
tion because it reaches a state of equilibrium, resulting in low
yields.  With SO3 sulfation, no water is generated, hydrolysis
cannot occur, and the reaction proceeds in one direction only.

SO3 sulfonation/sulfation is also quite amenable to batch proces-
sing, which can produce products having a minimum of sodium
sulfate (all of the excess SO3/ or sulfuric acid in the case of
oleum sulfonation, will be converted into sodium sulfate in the
neutralization step with caustic).  Another advantage of the SO3
process is its ability to successively sulfate and sulfonate an
alcohol and a hydrocarbon respectively.

     Subcategory 11 - SO3 Solvent and Vacuum Sulfonation

Undiluted SO3 and organic reactant are fed into the vacuum re-
actor through a mixing nozzle in this process.  Recycle is accom-
plished by running the flashed product through a heat exchanger
back into the reactor.   The main advantage of the system is that
under vacuum the SO3 concentration and operating temperature are
kept low, thereby ensuring high product quality.  Offsetting this
is the high operating cost of maintaining the vacuum.
9/25/81
                            II.18-8

-------
     Subcategory 12  Sulfamic Acid Sulfation

Sulfamic acid, a mild sulfating agent, is used only in very
specialized quality areas because of the high reagent price.  The
system is of particular value in the sulfation of ethoxylates.
The small specialty manufacturer may use this route for making
high quality alcohol sulfates, equivalent to those from the
chlorosulfonic acid route, substituting high reagent cost for the
high capital costs of the chlorosulfonic route.

     Subcategory 13 - Chlorosulfonic Acid Sulfation

For products requiring high quality sulfates, chlorosulfonic acid
is an excellent agent.  It is a mild sulfating agent, yields no
water of sulfation, and generates practically no side reactions.
•It is a corrosive agent and generates HC1 as a by product.

An excess of about 5% chlorosulfonic acid is often used.  Upon
neutralization, it will yield an inorganic salt which is undesir-
able in some applications because it can result in salt precipi-
tation in liquid formulations, etc.

     Subcategory 14  Neutralization of Sulfuric Acid Esters
      and Sulfonic Acids

This step is essential in the manufacture of detergent active
ingredients; it converts the acidic hydrophilic portion of the
molecule to a neutral salt.

Alcohol sulfates are somewhat more difficult to neutralize than
the alkylbenzene sulfonic acids due to the sensitivity to hydrol-
ysis of the alcohol derivative.  For this reason, neutralization
is usually carried out at a pH above 7 and as rapidly as possible.

     Subcategory 15  Spray Dried Detergents

In this segment of processing, the neutralized sulfonates and/or
sulfates are brought to the crutcher where they are blended with
requisite builders and additives.  From here the slurry is pumped
to the top of a spray tower where nozzles around the top spray
out detergent slurry of approximately 70% concentration.

Wastewater streams are rather numerous.  They include many wash-
outs of equipment, from the crutchers to the spray tower itself.
One wastewater flow with high loadings comes from the air scrubber
which cleans and cools the hot gases exiting from the spray
tower.  This is only one of the several units in series utilized
to minimize the particulate matter being sent into the atmosphere.

After the powder comes from the spray tower, it is further blended
and then packaged.  Solid wastes from this area are usually
recycled.


9/25/81                      II.18-9

-------
     Subcategory 16 - Liquid Detergents

For liquid detergents,  the sulfonated and sulfated products for
the processes described in subcategories 9 through 14 are pumped
into mixing tanks where they are blended with numerous ingredi-
ents, ranging from perfumes to dyes.   From here,  the fully for-
mulated liquid detergent is run down to the filling line.

     Subcategory 17 - Dry Detergent Blending

In this process, fully dried "active" (surfactant) materials are
blended with additives, including builders, in dry mixers.  In
the more sophisticated plants, mixing time is utilized to the
maximum by metering components into weighing bins prior to loading
into mixers.  When properly mixed, the homogeneous dry product is
packed for shipment.

     Subcategory 18 - Drum Dried Detergents

Drum drying of detergents is an old process.  Much of the equip-
ment still in use is well over 30 years old.  The process yields
a fairly friable product which can become quite dusty with any
extensive handling.

A thin layer of the filler cake on the drum is removed contin-
uously by a knife blade onto conveyors.  The powder is substan-
tially anhydrous.  The vapors coming off are often collected and
removed through a vapor head between the drums.

This operation should be essentially free of generated wastewater
discharge except for that from an occasional washdown.

     Subcategory 19 - Detergent Bars and Cakes

In answer to the need for a "bar soap" that performs satisfactor-
ily in hard water, the detergent industry manufactures and markets
detergent bars.  They constitute about 20% of the toilet bar
market.

There are two types of "detergent" bars:  those made of  100%
synthetic surfactant and those blended from synthetic surfactant
and soap.  Most products are the latter type.

Blending methods and types of equipment are essentially  the same
as those used for conventional soap.

II.18.2  WASTEWATER CHARACTERIZATION  [2-52]

There are essentially three types of  in-plant pollutants  in the
wastewater effluent streams:
9/25/81
                            11-18-10

-------
  •  Impurities removed from raw materials
  •  Byproducts or degradation products made in the process
  •  Very dilute product (in aqueous solution) resulting from
     leaks, spills,  and equipment cleanout.

Major types of wastewater pollutants from the subcategories of
the soap and detergent manufacturing industry can be found in
Table 18-4.  This table shows that resultant wastewaters depend
upon process operating parameters and the kind of soap or deter-
gent material produced.

Of these pollutants, several are of particular environmental
concern.  Synthetic surface active agents not only create BOD5
and COD, but they cause water to foam and, in high concentrations,
they can be toxic to fish and other organisms.  Nutrients, par-
ticularly phosphate produced in part by liquid detergent manufac-
ture, are of concern because of their contribution to eutrophica-
tion of lakes.  Soap production leads to wastewaters with high
alkalinity, high salt, and high oxygen demand.  Spills of raw
materials contribute to oil and grease levels.  Most of the
suspended solids come from organics (i.e., calcium soaps), and
many are of the volatile rather than nonvolatile type.  Since
strong acids and strong alkalies are used in most of these sub-
categories, pH can be very high or very low in wastewater.

II.18.3  PLANT SPECIFIC DESCRIPTION [2-53]

In 1977, a survey of the industry was undertaken for the U.S.
Environmental Protection Agency.  Four hundred and nine forms
were sent to U.S. establishments, and 170 responses applicable to
SIC 2841 were obtained.  The survey asked for information on
parameters such as production levels,  process subcategories at a
given facility, and the fate and characteristics of the wastewater
generated in each subcategory.  This survey included a sampling
and analysis review to establish the presence or absence of toxic
compounds in wastewaters discharged from the various subcate-
gories.

The results of the review,  however, were suspect for all subcate-
gories except subcategory 15.  This was due to possible deviations
from EPA's analytical protocol involving excessive lag times
between sample collection and extraction.

As a result, an additional sampling and analysis review was per-
formed in 1979.  Wastewater from subcategories 6, 8, and 17 were
not examined in 1979 because they represent only 0.03% of the
industry's total discharges and because of the difficulty associ-
ated with scheduling sampling and analysis surveys coincident
with the low intermittent discharge flow rates of these three
subcategories. Also, since the only wastewater from subcategory


9/25/81                     11-18-11

-------
UJ
x
u.
SES IN SUBCATEGOR 1 ES C
RY [2-52J
COI-
uco
OQ
ccx
a.—
SO
ox
K —
U.OS
TABLE 18-4. MAJOR WASTEWATER POLLUTANTS
SOAP AND DETERGENT MANUFACI
>f
Source) s) c
tants DO) lutants in i
o
'Is
d
*
(fl
tB
t
O
O
e
4*
CD
i
0
» 1 TS 1
Ot 1 t X C - i (. I
Cll O CD L-l CO O (A CO CD a
— WO Ol Ol tt "O J.C O -* "O > X >
£ N C OC OC C O 01 UQC U
o — a o *- o o i- o — -ora c . * o a »-o * *-
« — £ — TJ — ~ 'a ,- t. ca — O O-— OtAOO
— £ W X-C « X£ « O * * U to C ra O <- O CB O~ 3 n O* (A
3 W CO .C — « .C •- — CC 3 C OOt O -Q W O O CO .C O • Ol
c c * aaa to to co -C X ° 01  o
. O W W W W WC W T3 »•* "O CB tJ (A C. 3 W *OW
otoiw * 3 * 3 co 3 oiu ca c ->occt-ccc
ccn 01 » o ot * o to — t_ X era to rav* -0 >e>f>t->Nt->N,Q
C Ol £. — — £ — — W W — * C — — C — 3 O — — — — 3
woe — w — w w jc ot— ax fl* fl) « o wo x a »- -o o ^ *-
w to — — w a to wan o— ncot to <- o— o— cc— o o c o o o
a^w*- «CAC to « c x*o 	 ra o-o OA o o — a E coato oam
tkU. U. -JU.C/}Q£(£ tCQC
(0 . (fl » | 1 t 1
> — -o -ox > — -o cw era 3-0 3-O3C3
OrfC'^OO— OJC"^ 3 — "O S'—'O t Wl— (fl | — (And
O— 'CO O W..CB CD O'— to O O-O O^-C O *- C O*"O l-O *- O W
OO C OOZJC CDO 1C CC SCOto Ettra (AC *3« -3 (0 -UT3
C — O t_ O — T5 C — C — • CD ^ *- C. n tfl (a (A — CD — O — O — <•- «0
3 CJ — CD f- t. C — C 3CM— O 0) ^ — E— — E — O'O** ra"O— «^~ «*-
*— — O COW— — ^ O O— — — — — C— (AW— CC — CC— 3*
•- CB — X 3 o to . .* ra — c X XO a X— co X— o— o— *-«o <-wo t-wo
(A z a— x « jc (fl (fl z a ca — — a Ewa Ewa o 3 e co o <*- CD <*- o —
.- ^ ^, (A ot— (o co — * «" — — ra a cow  3 u u o o
•a « O w oc C6 •oraOO*' C<-O not- coo*- «AM a— >aw >aw >a —
c z ra u ra ra C a czto^o— o~ow -o w-o Q) x« w — jtf w — jc OOIAQ — w — w — wo
W) XOW Xt-U Xt-0 X*-— W
*J (_ C «- W ra O — « W t- C Q C- XO« t-UQCO t-^.«oO 	 XO — 3 « — 3 W — 3 3 «
u. u. IL u a. a. M o oo
c
o —
— ra
O W 1 t O C O
o a — o w w —
5 15 ~ C = 3
SSS"gi ="8
M OCt-ul (0*03
SO C O »- C 3
(- ._ o 0) -D 0 O
3 -0 «C T3 C «
X^ — « — > 
A O O *- <- O O
««uoa c— -a
gb- CO O *» C
3>>O>>t3 « «
3 C w O— C « «-
uawcoiio « — w
o i a o— u e 3 c
« woo a.o<0v
t. -a 01 co eg fc. > —
3 — c • oo* "> o — __B
C O— O C— CB a «» 3 <*>^ — >O*-
8 a 41 C ._«_ 01 to ~a»c
«J Ci. C CB tt- O *O O-' O
>»— o — t* ~ 8 cy) c — •—
a 4«— a. p— a 33 i o >*>*>
a u a « 5, - CB <- cr o i- — — IB
5CBM P «4JO CB — — — 4J O C
u. M u»ca_JO <
-------
    H
ES
li)-«


II

-I
(0
UJ>
WK
(OK
UCO
8g
£5
^§
Ml-
n
1!
*s
    KG
    OO.
    CP
    $
           R
       !|
                                •*.
                                u o>
                       &
                       2

                       1%
                                 Sl
   --  I 1!  2 Si
     = - i  5 ac
                               V
                               It
           I Ug i
vkautfS|2
-------
18 evolves from pump seal water and the washdown of off-
specification product,  wastewater samples were not collected from
subcategory 18. In addition,  no sampling data from this effort
are available for subcategories 9 through 14.   Based on similari-
ties in raw materials used in each subcategory,  process tech-
nologies employed for each subcategory, and resultant subcategory
final products, it was generally felt that if toxic substances
were present in the wastewaters from the unsampled subcategories,
they would be comparable to those detected in the wastewaters
from subcategories actually involved in the sampling and analysis
review.

Raw wastewater data resulting from the sampling and analysis
review are presented in Table 18-5.  Establishments surveyed in
1979 utilized, among others,  subcategories 7,  8, and 16.  At the
establishment employing subcategory 7, there were six production
lines.  Only one line had a continuous wastewater discharge and
that amounted to less than 2 L/hr (0.5 gal/hr) of a salt water
solution.  In general,  all six production lines were cleaned
without the use of water; however, there was the possibility of
periodic small volumes of washdown water being discharged to the
POTW.  At the establishment employing subcategory 8, any waste-
waters generated were recycled to extinction and, thus, were
never discharged from the establishment.  The wastewater was not
analyzed because of the nondischarge situation.   The establish-
ment employing subcategory 16 had a very small intermittent
discharge of wastewater resulting mainly from equipment wash-
downs.  However, noncommingled samples of this wastewater could
not be collected.  It should be further noted that this estab-
lishment was installing a complete recycle/reuse system for all
of the wastewater generated.

The data from Table 18-5 were used to calculate the volumes of
toxic pollutants in the raw wastewaters discharged from all of
the subcategories in SIC 2841 for all 638 establishments in the
industry.  Values are presented in Table 18-6.  The missing data
for subcategory 3 were calculated by averaging unit wastewater
data from subcategories 2 and 7.  Unit wastewater data from
subcategories 1, 3, and 7 were then averaged to develop the
values for subcategories 6 and 8.  Similarly, data for subcate-
gories 17 and 18 were obtained from subcategories 15, 16, and 19.

The toxic pollutant data are further summarized, by subcategory,
in Table 18-7 where the pollutants are categorized into inorganic
and organic fractions.  Of the total mass of 100 kg/day (230 lb/
day) of toxic pollutants present in the industry's raw waste-
waters, 72% are inorganic and 28% are organic in nature.

To project typical establishment raw wastewater characteristics,
the subcategory production rates obtained by the 1977 survey were
combined with the toxic pollutant information given in Table 18-6
and the predominant subcategory combinations shown in Table 18-3.


9/25/81                      11.18-14

-------
  o
o.
<


o\
o •«
- OSJS-
LJ — >
H CO W 1. II
LJ 4i O
O 00 • •» OlOv
Oin 0 —
to .or— **
\- 3O CO >»
Z too O «-
< •no
1- O 3 Ol
3 •• W 0
_l *> || *>
-I O --CO
2—- 3 rod- O
CO "D rOjQ
in O >> • 3
O 1 «- t.f-W
— CM ao
X>— ' Olll •»
o «- « CM
(->• o +>r-o
ce 09
u. i- 01 o >»—
OM xr) L
3 ^x 3 O II
(AQ EC/) Ol
2T 2C * 4} V0
O— 3 ..*> —
— OO\ W
I-H IA O >>
 w oi
Z IT • 4J || 0
LJUI 09 •«•<•>
OH >(VJO CO
ZLJ 0 00 O
OQ 4J>— J3
O cfl C 3
O CO O II to
RAW WASTEWATER
OF THE SOAP AN
Total W
Subcateg
and 5



















I
O
o
a
a
1















o





-



ir>
—



^




IT
?
a



«





CNJ











0
c
2
I
U
X
£

i^xor* o * lfsw--«
	 iA ftl • CU • • • —
Q rt — ,-



ooo^^ *n "• ^ ft — o ftflo — • ••
— — ' — j ™" ~~ iX <*>


wo\ \o «o\ so in o«no» w P- « «
CM— CO <\O (NJ — fO . . CXJ (M
eg r»cu j- oj



o r- m eott
CM • — • —
NO —



ON 00 — ift OS iA iA J — * eo
o o do



r* i*- r*
NO SO NO





»oiAiA ^ O M O ™~ f^ <0
— O • CVI O — iA • • •

CO

OO V9 O SO O
o— r- o CT» o 9« (A
^ so * lA —
10 — ^


O I

— 1 5 tt (M
a o o — a)
1. 0 1 1 ..f - =
» ao— i c *• -D — IAOOCOO o
T9>» 8 • « ** ** O — i- O « O -C (BiCtC**1-— <*I
c c o a = o x a ao>a «-^: KL wi^jo — ** «JU(BOOOO£ «oo
« O •— 3 — *- "O t. — U — MIA OO— IO OCO — « C «B~-t. — — o— O 'O 1
i c— BO— 3«o>— CBCXJI «M— « OVQ— — « t octoo cow£>»t-£>^O — •••» C ~>l£ ** C »JC *J N O > O C C Q)IIU£OO^- US
— *JWoCo.lOffl(-O- ffl C ««•! OK? CO-7U <0 C— C^ ® ® O— W— ** — — ** — 1
*j«oooo-ixz«i-N *j ao Q w
-------
          N
                         sss
                                                 8   S
      S  228
      —  — o>
                                    8
    COO
    »>r>
      

                                in
                                                     o>

                                                     o
O  *•»    m  f»»

-  «l    »J  N
                                                     £   8
                         1=
                                                                     S

                                                                     82

                                                                     *•

                                                                     sl
                                                                     Is-
Oate:  9/25/81
            11.18-16

-------
     TABLE 18-7.  INORGANIC AND ORGANIC TOXIC POLLUTANTS IN TOTAL
                  INDUSTRY RAW WASTEWATERS, SCREENING DATA [2-52]
Subcateqory
1
2
3
4 and 5
6
7
8
15
16
17
18
19
Inorganic
pol lutants
Kq/day
5.7
38
0. 17
15
0. 1
O.t8
0.77
6.2
2.5
3.2
0.03
0.69
Organic
pol lutants
Kq/day
5. 1
2.5
1.4
4.0
0.94
0.00
7.5
4.4
0.79
1.9
0.02
0.27
Al 1
pol lutants
Kq/day
1 1
41
1.6
19
1.0
0.48
8.2
1 1
3.3
5. 1
0.05
0.96
           Analytic methods:  V.7.3.30, Data set 1,2.


The projections for small establishments are shown in Table 18-8
and for large establishments in Table 18-9.  Table 18-10 presents
the concentrations of toxic pollutants in the direct discharges
from six establishments having NPDES permits.  These discharges
approximate 11.5% of the total industry's wastewater volume, yet
contain only 2.8% of the total industry's inorganic toxic pollu-
tant discharges and 1.6% of the total industry's organic toxic
pollutant discharges.

II.18.4  POLLUTANT REMOVABILITY [2-52]

Pollutants released in the process waters from the soap and
detergent industry are generally of a nontoxic nature and can be
pretreated, removed, or ultimately disposed of under normal
controlled conditions.  Treatment techniques currently in use to
recover or remove wastewater pollutants at these facilities are
standard, well-established processes.

The industry's wastewater pollutants can be greatly reduced by
lower process water usage and/or the recycli: ;' of process water.
In addition/ significant recovery of marketable soap products,
fats, glycerine, organic surface active agents, etc., can be
realized by lower water use, particularly through process re-
design or replacement.  For example, by changing operating tech-
niques associated with barometric condensers or by replacing such
condensers with surface condensers, water use in most processes
can be lowered and the amount of organics released to the sewer
can be reduced.  These organics can be recovered to be purified
for a possible profit.  In the manufacture of liquid detergents,
installation of additional water recycle piping and tankage and
the use of air (rather than water) to blow out filling lines can
substantially reduce water use and minimize loss of the finished
products.
9/25/81                      11.18-17

-------




^
H
3
o
LL.
-1
»J
^
j£
CO

z

CO
H —
ZCO













XJ


CO
a-




0
CO





CO
CO





to
CM




•O





to










^
CO
•o
V

!
c
CO
4-
o
c
>

mcomoo coor-o — o CMOOCOP- o o oo — oo in co
• r- .coo f-or — o\a COCMOVOCM CM d- o^roirio • CM

o* —
"*"*g~00£g.*g **
.* & O CMCM CM CM JT

o m


intfm^\o h-ocoo a- IT
• ^ • ~~ co CM in CM ^ in «
.* .* CM CM J»




— CM CM CM 	 —in J3-
CM"
OI-O
cv^o

Jf


inr-o
• t^* ^
st CM




**"
r^ * in
CM m *





Is- *
CM m





m— moo o coor-o — o coocor- o o oo — oo co
. . .coo o r-ocM — o\.s
^Oa*CMO CO — • O\ —
* % *
— CM —




VOCOVOCM CM •» O


M «
c c
o a
fs
m£
O *
2 '

»• %i 1
CO O >i(
ta\ Q.-P C Cl-
O «

C — ~t
co xc
S fi
w O J
c -e
•0 X E C M|£ *
CCOED o >. 9 oo:
co O — 3 — «- -0 C — — a i £
EC— EO— 3«<-— COCM 1
«>— o E p ac-o t)jc o— o — ~e
— .P M-D £ aa  co c co to i
|«000 -ISXCOH-N |«C
1 O X
— f — O t
i o ao —
: COM *j «.
i - » t. o> «*
§f O «- o IN
a — o c p <
0 p f 1 O <- |
f £ OS N CO 1
t ao — i c '
> p— k p O OX
1 «-£ f £• MX> — *
> O 0— 1 O Op — C
Ml— COOVO— — »- O«
: — c *> c *f *J o >i
OO C OtfU a— 0 I
• C 1 Of «l if >.J
> o CM 0.0. CM a po —o
i 1 i
^



r- o
CM m



i

i
> ?
i O ">

t ^k ^
• £• •••
> ca o ** — —
O C O CO CD O
: — CD o o — c £>
> *»— «. -0 CD O CO
co >>o o— c— v
\. — oo5-cx**
?— o— *>£ OJC O T3
CO I-O 0 O— *»O C
9 O 1 S >>« t. CO
•O— MQOCOO O
: of c «- c *» i — MX
' >(-f CB —CO
: 011 of o o «- oi
• O — CM— *» 	 *> — I
| — H«OI-H |o,

































^
!M
«
^

(0
co CD
*> —
tOA
a to
o'to
CO >
> to
CO
• CO
• co «'
>T3 C .
2 CM
1
•o o c~
O *» to O
c to c —
*> 0 OA
0 — £ to
E^an
o— o o
•— O O
4> OJCOCO

-------
        te.
        a.
        o
        3
        o
        o.
        Oro
        KlTl

        U.CM
        OO

        ii
        Sm
RAW WASTEWAT
SUBCATEGORY
         o\
         CO
         a
                           § §§§
  oo
  oo
                             — — «   AJO
                    OOO
                    • COCOOO
                        oo
                    ooooo § S§2
                           eg — » m
                    •"^••OO
                        -   0  <0 «
                        r§ § S§S8   §
                         (M —  00 <0   —
                                          OOO
        ?§2§    §
                       — * 0- 3 « 9-
                                                   2?  sirs,? i?
ne
oben

li
                                                       $
                                                           O  lA
                                                        §§g§§
        §§§§   sg  §  s  §§
        «or*jCM   —O  N  o*  t/>f-
ooooo     o
OOCOOO     «
                O  O  OOflOCXIO    *O
                —  ^  eo—   m

                   I  I   1


                   I
                  s
                   !i
                                                        : *»   —  —
                   -  afcZSS.fd
                      -SSSSg^S
                      "2?|°^S8
                      ~£ u O O£ O O
                       u c C c*> t —
                       — •o « «or
                   C  «O u — — O— O
                      ^r^ssB
                       .~-----
                           ot-i-
Date:   9/25/81
11.18-19

-------



H-
§
2
Ul
a.
fc
_l
h_
LJ
o
or
3
Z
~
w
h"
Z
h-
_l
O~
a. •o
4)
O 3
X-^
0*»
H- C
O
u. o
0-
W^f
H
oo
z —
Q<


UJ O
f— O
COUJ
•.





£
«


IT






a





a





5
i


c

i
c
1


ooooooo oooo oo ooooo
OOOOOOO OOOO OO ro O O O O *
Ok OOiAO IA \OtAO (MO f- OiAOJ
tf\— 	 \OV3 O CM COtA
— *

— f"» — O O O O OO-O O £T O OO O 0 O tA CM
O* O O lAiA — 3" lAlAO CM Ot *Ol^O
a-co— oo \O — O oo —
-

§000000 oooo oo oooo
oooooo oooo oo oooo
— CM — OOiAO OOrOQ OO OOOstf
00 OO\(OO\ lAiAJtO CMO lAOiACJ
lAOi \O *O*O O CM OD O
- QS -




§00000000000 oo ooooo
ooooeooooooo oo ooooo
•tf OO CA— tAiA^O CM ro (M OiACM
|A(A O .A^O — — o

8§Si|g|||||| || §|§2§
9 C? O Ox — JTON^O — CM CM O CM
lAiA <9 «A lA O ~~ ff»




§0 § §§00 00 §§§ 0
O O roOOOO Od" OOO CM
O CMCM ^ — lAf-fO CMCM lA\OO
.~ — CM — — — ^




8isl§c!lliill II III
— >4-> — o C n
£• X£ 0£ 0 "
o o a. c ex — u
C £ O O £ I
— >>- £ <- o e
£ >> ao — i
•ox • • > 3 0) C 3 >-£ t- <- M
OJO— 3— *-V 6 	 * 	 «KN 4JCOQ 0) CM O. a. CN? CL Q
i II i I
"\O O O ^f O lA O ^ ^
CO <*> O ro (A ro*cu •"
— CM in —


DO O OOOOO O O
OO O OOOOO & SO
CM « oro — -d-CM


OO O OOOOO
9-0 o ooooo c?
AO O OONrotO Q
h- «0 CM — JTOJro »




OO O OOOOO O  \O O O»
— IA C^ NO O\
IA





«.
o e
!| §

go— «

JO WJO ** *~ —
— O C Q> « O O
£ — 0) O O — C A
o o *j— C v e e «
3= S2S8I Sx S
SW Q*>£ ID O » — £ i
SV. — « O£— C >»*>
PO — O— W£B£O t)
S^C OJUOOO— WO C
me o i E xe >- •
O U£ OCCl-CWI 	 »X
CO — C o)—^ — — o— O VI
« C o <0 CO4>£>>I-f • —0)
NO > C eilO£OO>- Of
c— a o> o — CM — *>——*» — i
0£ >£ o>-I-«£l-e 4J«
coo —a. — — — i-ioi-i- •> 01
i £ £

































CM
•1
—
^

.
wl
32
b"5
«i a

row
>'Cg
nethods:
ndicate dat
phenanthre
o— o
w 
-------
                    cc
                    LJ
                    CL
                    O
                    Q_
                    Z

                    o
                    <
                    to
LJ


X

CO


OS
O
                    ce
                    CO
                    I—
                    z
                    o
                    Q.
                    I
                    00



                    LJ
                    _l
                    CO


                    r-
                     0) C CT


                     < O
                      01>
                     — (- CO
                     CO COT3

                     o o a
                        oo
                        mo
                        cvicvi

                        n  li
(O  —
LJ     P
    P C
    C CO
    0) E
    EJr
o  .c co
CO  CO —

O  ^ J3
    A 03
I-  ro -P
O  P co
LJ  CO LJ
a:  LJ
                    LJ
                    X
  •PO
•P C O
C CU lf\
0 E  «,
^3 ra —
TO -P CO
4-) W 4J
CO LJ O
LJ  h-


  o •-
..00 O

OJ  -VO
T3 lA  v
•^  00
E II

 '_ "

O	

 «,
> -p -p
o c c


«•- E e
                        t- CO CO
                        0	
                        +J	
                        CU J2 J2
                        > to ro
                        03 -P *J
                        4J CO CO
                        CO LJ LJ
                                                                — iTOOOMfAjeO — OJC7N
                                                                 • • wCM •  •— ...
                                                                or-    o —  oo oo
                                                              . .o •  •  .O  • •  'O •
                                                             oo  -ooo -ooo  -o
                                                                000
                                     — O

                                     OO
                                                                 OOOO  OOOO
                                                                      O   -OO-
                                                                 OOOO  OOOO
                             -OO
                             IN--
                              00
                                                             U~\CNJ  r~ oj r^ cy  CM — cj 03
                                                             OO  OOOO  OOOO
                                                              ••  O-OO    -OOO
                                                             00    -O  .0  000  •
                                                     ^•ONJ    OJ^O  CJvOCM—  e.-\iri — m
                                                     OOO    OO  OOOO  OOOO
                                                      • •  •    OO  OOOO  OOOO
                                                     OOO     -O  OOOO  OOOO
                                                             o •   •  •  -o   -oo-
                                                              o  o oo •  o o  • o
                                                                      o     .o
                                                             	*T| C\J J —  — J — lA
                                                             (O—  o —OO  —OOO
                                                              	o   • o o -
                                                             OO  OOO-  OO-O
                                                             \o vo — c\j ^o IA cy o ir\ M o\ M
                                                             —OOO OtoOCM OOO O
                                                              • -O  - -  -OO  -OO •
                                                             oo  -ooo •  -oooo
                                                                o     oo
                                                                           00
                                                                         OOOO
                                                                          -oo-
                                                                         OOOO
                                                             OO  OOO
                                                    n O c/J —  O *
                                                    » O « —  - j!
                                                    oeoh-o  x t
                                                   3 JZ   0) -u o
                                                   3 O — C C -

                                                   : *j c N c i
                                                   , C 0) C Q) —
                                                   . tD jZ 03 J3 ••
Date:     8/31/82   R    Change  1    11.18-21

-------
Table 18-11 presents treatment methods for the removal or elim-
ination of pollutants found in wastewaters from soap and deter-
gent manufacture.  Important features and details of the various
treatment methods and abatement systems can be readily found in
the literature.  As seen in this table, organics (especially
those of a toxic nature) can be treated primarily by bioconver-
sion processes and activated carbon adsorption systems.  The
remainder of the major pollutants can be treated by filtration,
sedimentation or clarifying processes, and other treatment tech-
niques.  As an example,  coagulation and sedimentation of the
wastewaters can help remove insoluble precipitate residuals
characteristic of soap manufacturing processes.  The relative
efficiency of removal of pollutants for these various processes
is given in Table 18-12, which shows that for most pollutant
treatment processes, removability efficiency can be as high as
90-95%.  The efficiency achieved is governed by operating para-
meters of the various processes and by the types and amounts of
pollutants in the wastewater.
   Date:   8/31/82  R Change I 11.18-22

-------
      TABLE  18-11.    TREATMENT METHODS  USED  IN ELIMINATION OF POLLUTANTS [2-531
Pol lutants
Free and emulsified
oils and greases
Suspended sol ids
Dispersed organics
Dissolved sol ids
{ inorganic)
Unacceptable acidity
or a 1 ka 1 i n i ty
Sludge obtained from
or produced in
process

1.
2.
3.
i).
5.
1.
2.
3.
1.
2.
1.
Z.
3.
It.
1.
1.
2.
3.
It.
5.
6.
7.
Treatments
Gravity separation
Coagulation and sedimentation
Carbon adsorption
Mixed media filtration
Flotation
Plain sedimentation
Coagulation- sedimentation
Mixed media filtration
Bioconversion
Carbon adsorption
Reverse osmosis
Ion exchange
Sedimentation
Evaporation
Neutra 1 ization
Digestion
Incineration
Lagoon ing
Thickening
Centri fuging
Wet oxidation
Vacuum f i 1 trat ion
        TABLE  18-12.   RELATIVE  EFFICIENCY OF SEVERAL METHODS USED IN  REMOVING
                         POLLUTANTS [2-53]
                  Pollutant and method
                                                        Removal  efficiency
                  Oi I  and grease:
                    API  type separation
                    Carbon adsorption


                    Flotation




                    Mixed media filtration
                    CoaguI a t i on-sed i menta t i on
                     with iron alum or solid
                     phase (bentonite, etc.)

                  Suspended solids:
                    Mixed media filtration
                    CoaguI a t i on-sed i mentat i on

                  Chemical oxygen demand:
                    Bioconversions (with final
                     clarif ier)

                    Carbon adsorption

                  Residual suspended solids:
                    Sand or mixed media filtration

                  Dissolved sol ids:
                    Ion exchange or reverse
                     osmosis
      Up  to 90% of  free oils and greases;
       variable on  emulsified oil

      Up  to 95% of  both free and emulsi-
       fied oils

      Without the addition of alum or
        iron, 70-80% of both free and
       emulsified  oil, with the
       addition of chemicals, 90%

      Up  to 95% of  free oils;  efficiency
       in remov i ng  emu Is i f i ed oils
       unknown

      Up  to 95% of  free oil,  up to 90%
       of emulsified oiI
      70-80%
      50-80%


      60-95% or more


      Up to 90% or more


      50-95%



      Up to 99%
Date:    9/25/81
11.18-23

-------
             11.19  STEAM ELECTRIC POWER GENERATING

II.19.1  INDUSTRY DESCRIPTION [2-55,56,73]

II.19.1.1  General Description

The Steam Electric Power Generation Industry is defined as those
establishments primarily engaged in the steam generation of
electrical energy for distribution and sale.  Those establish-
ments produce electricity primarily from a process utilizing
fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunc-
tion with a thermal cycle employing the steam-water system as the
thermodynamic medium.  The industry does not include steam elec-
tric power plants in industrial, commercial, or other facilities.
The industry falls under two Standard Industrial Classification
(SIC) Codes, SIC 4911 and SIC 4931.

At the end of 1978 there were 842 steam electric power generating
plants in operation in the United States.  Of these plants,
approximately 35% generate in excess of 500 megawatts (MW) and
approximately 12% generate 25 MW or less.  These steam electric
power generating plants represent about 79% of the entire elec-
tric utility generating capacity, and in 1978 they generated 85%
of electricity produced by the entire electric utility industry.
Within the steam electric power generation industry, plants built
after 1970 represent 44% of the total capacity, and plants built
before 1960 represent 26% of capacity.

In the operation of a power plant, combustion of fossil fuels--
coal, oil, or gas--supplies heat to produce steam that is used to
generate mechanical energy in a turbine.  This energy is subse-
quently converted by a generator to electricity.  Nuclear fuels,
currently uranium, are used in a similar cycle except that the
heat is supplied by nuclear fission.  A number of different
operations by steam electric powerplants discharge chemical
wastes.  Many wastes are discharged more or less continuously as
long as the plant is operating.   These include wastewaters from
the following sources:  cooling water systems, ash handling
systems,  wet-scrubber air pollution control systems, and boiler
blowdown.  Some wastes are produced at regular intervals, as in
water treatment operations, which include a cleaning or re-
generative step as part of their cycle (ion exchange, filtration,
clarification, evaporation).  Other wastes are also produced
intermittently but are generally associated with either the
shutdown or startup of a boiler or generating unit, such as


Date:  1/24/83  R Change 2   II.19-1

-------
during boiler cleaning (water side),  boiler cleaning (fire side),
air preheater cleaning,  cooling tower basin cleaning,  and clean-
ing of miscellaneous small equipment.

The discharge frequency for these varies from plant to plant.
Some or all of the various types of wastewater streams occur at
almost all of the plant sites in the industry.  However,  most
plants do not have distinct and separate discharge points for
each source of wastewater; rather,  they combine certain streams
prior to final discharge.

Additional wastes exist which are essentially unrelated to pro-
duction.  These depend on meteorological or other factors.
Rainfall runoff, for example, causes drainage from coal piles,
ash piles, floor and yard drains, and from construction activity.

Table 19-1 presents industry summary data for the Steam Electric
Power Generating (utility) point source category in terms of the
number of subcategories and number of dischargers.

              TABLE 19-1.   INDUSTRY SUMMARY [2-55,56]


          Industry:  Steam Electric Power Generating
          Total Number of Subcategories:  9
          Number of Subcategories Studied:  9

          Number of Dischargers in Industry:
             • Direct:  1,050
             • Indirect:  100
             • Zero (a):  10

          (a) Zero discharge is practical only in arid
              areas where system discharges can be dis-
              posed of by means of solar evaporation.

Current BPT regulations for the Steam Electric Power Industry for
generating, small and old units are presented in Table 19-2.
"Small units" are defined by the EPA as generating units of less
than 25-MW capacity.  "Old units" are defined as generating units
of 500-MW or greater rated net generating capacity which were
first placed into service on or before January 1, 1970, as well
as any generating unit of less than 500-MW capacity first placed
in service on or before January 1, 1974.

The term  "10-year, 24-hour rainfall event" refers to a rainfall
event with a probable recurrence interval of once in 10 years
as defined by the National Weather Service.
Date:  1/24/83  R Change 2   II.19-2

-------






1— t
ITS
in
i
CM


>.
0£
1-
V>
^
Q
Z
—

o:
Ul
^
o
ex

O'
«.
ce
1-
o
ii >
__ j
UJ

JT
^
UJ
1-

CO

>
CO
TJ
1
O
CO











	
*v
o
E


E'
3
E

X
CO
E

^
—
•—
CO
Q

















O

4J
to
— <
l_
0

o
CO
i.
CO
t~
u

4J
C
0
3
—
4.
c*.
Ul
>.
&.
O
o
0
P
CO
u
XS
3
to

0 0
Ol Ol

CO CO
CM JZ CM J=
• O • O
O CO O to
— — o
Q Q .
O\
0 O
•z. z o


o

\Q

0
Ol
c
CO
L.

0
X:
4J

C

e~
0 0 P
Ol Ol—
t- s- 5
CO CO

• 0 • O
O tO O tO
.— •_
Q O

O O
Z Z











*~«
.c
to
co

g
0

o


•o
c
co

r-
in
<- co
00 0
•PC C >,
(0 — — —
3- i- C S- C*.
0 > 0 ~
a— o —
c .c -a J= s-
— 0 > O 0
^ O 4^
O0 — 0 CO
O— 03 — 5
O.Q J3
CO i- CO P
J=— CB— I.
0 — > — O
3 co o co a
0 > H > to
4- CO CO C
.CO CO
1-0 C 0 S-
0) CO *™ 0? CD H™
0 t-O — 5-OX
OU.Q- OU.OL.Q. JZ
CO to
O 0 <

0
Ol
t_
CO
OlTNJZ
CO— 0
to
o —
a
ON
O
0 Z


0

VO

0
Ol
c
CO
S-

0
.c
^J

c

f~
4J 0
•— Ol
^ (_
CO

OCM 0
— to
.«
o

o
z






































0 0
to to P
CO "O <"
0C £
010
a CD
•0 E E
CO 3
eo O —
o
CO — 03 >
xco — o
an- oo. >
o


0
01
L.
CO
OlTNJ^
ro — O
to
0
Q
ON
o
o z
4J

0

VO

0
Ol
c
CO


0
x:
4J

c

_r"
P 0
— Ol
3: s-
co

OCM O
— to
.._
a

o
z






































0
to to c
CO TO >
0 C O
S- 3 T3
aio >
a o
•0 E —
CO 00
CO U

CO — 00 0
X C/5 — O —
at- oo- —
o
03

0 0
Ol Ol
£_ 5.
CO CO
OIAOO.C omoo^z
co — • . O CO — • • O
	 to 	 to
0 — 0 O
Q Q
O\ ON ON
O 0-1
o z o z -^o
P P Ol-P
£
o o o
o •
VO VO LA VO

0 0 -0 tD
01 Ol 0 Ol
C C 0 C
CO CO U CO
!_ !- X S-
0
00 CD
£ .c ox:
P P 4-^ 4->

C C PC
o —
.c x: zx:
P 0 P 0 4->
•-• Ol •— Ol • —
^ <- 3: <- S
CO CO
O O O O ^" O O O O £
OCM • • O OCM • • O
— 	 to — 	 to
._ •—
Q Q

0 0
z z

































to
0

to co
eo —
0 3; 0 c^
to — to — c*.
CO CO O CO CO O
(UP— c 0P— C
s-Oeo — i-oco 3
OIP P c CTIP P ce.
O CO O
•O «P 0 T3 -P 0
C t- - C 4- -
C00-. o co0* —
ac ac a.
to— aoos — co— aom to
XCO— Oi-O eo X CO — O 5- O — CO X
ai-oo — o- 4Janoo — o- coi-a
0 O
£ U






0
x: 0
PX:
P
P
CO C~
0 P
£_ •—
•P >

OT3
P 0
4J
T3 CO
0 —
P 0
CO O
s- in
0 to
a co
O to
to c
•o—o
c —
co x: P
O CO
•1— P
T3X: —
0 > e
P —
QC,- —
3 <(_
5-00
4J C 10
to 3 0
c s-x:
O P
0 C
0 O
»— P
13 P
0 O 4J
C 3 O
Ol t- 0
•— P '"^
to toxj
0 C 3
-a o to
0
to P
0T3 O
— C C
•P CO
— to
^2 <£""
OOP
CO C C
ti- 3 0
s- >
E 0
O 0
s- 01—
Cl- CO —
<- CO
> Od-
0 4J C
— to —
Ct- CO
s 	 t_
0 CO
>— s-
O (- 3
0 O
•o PX;
0 CO 1
P E Jj-
CO CM
s- o «
P i-
C 0 CO
3 E 0
3 >>
>- 1
coo
.— *
CO

Date:  1/24/83 R  Change 2  II.19-3

-------
II.19.1.2   Subcategory Descriptions  [2-55]

Subcategories for the steam electric utility point source  cate-
gory,  as shown in Table  19-3,  were developed according  to  chemical
waste  stream origin within a plant.  This  approach is a departure
from the usual method of subcategorizing an industry according to
different  types of plants,  products, or production processes.
Categorization by waste  source provides the best mechanism for
evaluating and controlling waste loads since the steam  electric
powerplant waste stream  source has the strongest influence on the
presence and quantity of various pollutants as well as  on  flow.
The breakdown in Table 19-3 into subcategories and subdivisions
is based on similarities in wastewater characteristics  throughout
the industry.  Descriptions of the nine broad subcategories are
given  in this section.

   TABLE 19-3.  STEAM ELECTRIC POWER GENERATING SUBCATEGORIES
                 AND SUBDIVISIONS [2-55]
Once-through Cooling Water

Recirculating Cooling System Slowdown

Fly Ash Transport Water

Bottom Ash Transport Water

Low Volume Wastes
  Clarifier blowdown
  Makeup water filter backwash
  Ion exchange softener  regeneration
  Evaporator blowdown
  Lime softener blowdown
  Reverse osmosis brine
  Demineralizer regenerant
  Powdered resin demineralizer back flush
  Floor drains
  Laboratory drains
  Diesel engine cooling  system discharge
  Metal cleaning wastes  (water cleaning only)

Metal Cleaning Wastes (chemical cleaning only)
  Boiler tube cleaning
  Cleaning rinses
  Fireside wash
  Air preheater wash

Ash Pile, Chemical Handling, and Construction Area Runoff

Coal Pile Runoff

Wet Flue Gas Cleaning Blowdown
Date:   1/24/83  R Change  2     II.19-4

-------
     Once Through Cooling Water

In a steam electric power plant,  cooling water is utilized to
absorb heat that is liberated from the steam when it is condensed
to water in the condensers.   The cooling water is withdrawn from
a water source, passed through the system,  and returned.   Shock
(intermittent) chlorination is employed in many cases to minimize
the biofouling of heat transfer surfaces.  Continuous chlorina-
tion is used only in special situations.  Based on 308 data,
approximately 65% of the existing steam electric powerplants have
once through cooling water systems.

     Recirculating Cooling Water

In a recirculating cooling water system, the cooling water is
withdrawn from the water source and passed through condensers
several times before being discharged to the receiving water.
After each pass through the condenser, heat is removed from the
water through evaporation.  Evaporation is carried out in cooling
ponds or canals, in mechanical draft evaporative cooling towers,
and in natural draft evaporative cooling towers.  In order to
maintain a sufficient quantity of water for cooling, additional
makeup water must be withdrawn from the water source to replace
the water which evaporates.

When water evaporates from the recirculating cooling water sys-
tem, the dissolved solids content of the water remains in the
system, and the dissolved solids concentration tends to increase
over time.  If left unattended, the formation of scale deposits
will result.  Scaling due to dissolved solids buildup is usually
controlled through the use of a bleed system called cooling tower
blowdown.  A portion of the cooling water in the system is dis-
charged via blowdown, and since the discharged water has a higher
dissolved solids content than the intake water used to replace
it, the dissolved solids content of the water in the system is
reduced.  Makeup water also is required to replace system blow-
down.

Chemicals such as sulfuric acid are used to control scaling in
the system. Anti-biofoulants such as chlorine and hypochlorite
are widely used by the industry.   These additives are discharged
in the cooling tower blowdown.

     Ash Transport

Steam electric power plants using oil or coal as a fuel produce
ash as a waste product of combustion.  The total ash product is a
combination of bottom ash and fly ash.  The presence of ash is an
extremely important consideration in the design of a coal-fired
boiler since the ash content of coal is much greater than for
oil.  Accumulated ash deposits are removed and transported to a
disposal system.


Date:  1/24/83  R Change 2   II.19-5

-------
The method of transport may be either wet (sluicing)  or dry
(pneumatic).  Dry handling systems are more common for fly ash
than bottom ash.  The dry ash is usually disposed of  in a land-
fill, but the ash is also sold as an ingredient for other pro-
ducts.  Wet ash handling systems produce wastewaters  which are
either discharged as blowdown from recycle systems or are dis-
charged to ash ponds and then to receiving streams in recycle and
once through systems.

     Ash from oil-fired plants.   Fly ash is a light material
which is carried out of the combustion chamber in the flue gas
stream.  The ash from fuel oil combustion usually is  in the form
of fly ash.  The many elements which may appear in oil ash de-
posits include vanadium, sodium, and sulfur.

     Ash from coal-fired plants.  More than 90% of the coal used
by electric utilities is burned in pulverized coal boilers.  In
these boilers, 65 to 80% of the ash produced is in the form of
fly ash.  This fly ash is carried out of the combustion chamber
in the flue gases and is separated from these gases by electro-
static precipitators and/or mechanical collectors. The remainder
of the ash drops to the bottom of the furnace as bottom ash.
While most of the fly ash is collected,  a small quantity may pass
through the collectors and be discharged to the atmosphere.  A
small portion of the coal ash is vaporized during fuel combus-
tion.  Some of these vapors are discharged into the atmosphere;
others are condensed onto the surface of fly ash particles and
may be collected in one of the fly ash collectors.

     Low Volume Wastes

Low volume wastes include wastewaters from all sources except
those for which specific limitations are otherwise established in
40 CFR 423.  Waste sources include, but are not limited to,
wastewaters from wet scrubber air pollution control systems, ion
exchange water treatment systems, water treatment evaporator
blowdown, laboratory and sampling streams, floor drainage, cool-
ing tower basin cleaning wastes, and blowdown from recirculating
house service water systems.  Sanitary wastes and air condi-
tioning wastes are specifically excluded from the low volume
waste subcategory.

     Boiler Blowdown

Powerplant boilers are either of the once-through or  drum-type
design.  Once-through boilers operate under supercritical condi-
tions and have no blowdown streams directly associated with
their operation.  Drum-type boilers operate under subcritical
conditions where steam generated in the drum-type units is in
equilibrium with boiler water.  Boiler water impurities are con-
centrated in the liquid phase.  Boiler blowdown serves to main-
tain concentrations of dissolved and suspended solids at accept-


Date:  1/24/83  R Change 2   II.19-6

-------
able levels for boiler operation.   The sources of impurities in
the blowdown are the intake water,  internal corrosion of the
boiler, and chemicals added to the boiler.   Phosphate is added to
the boiler to control solids deposition.

In modern high-pressure systems,  blowdown water is normally of
better quality than the water supply.   This is because plant
intake water is treated using clarification,  filtration, lime/
lime soda softening, ion exchange,  evaporation, and in a few
cases reverse osmosis to produce makeup for the boiler feedwater.
The high quality blowdown water is often reused within the plant
for cooling water makeup or it is recycled through the water
treatment and used as boiler feedwater.

     Metal Cleaning Wastes

Metal cleaning wastes result from cleaning compounds, rinse
waters, or any other waterborne residues derived from cleaning
any metal process equipment, including but not limited to, boiler
tube cleaning, boiler fireside cleaning,  and air preheater clean-
ing.  This may be accomplished with chemical cleaning solutions
such as acids, degreasers, and metal complexers only.  Wastes which
result from metal cleaning with water are considered under the low
volume wastes subcategory.

     Boiler tube cleaning.  Chemical cleaning is designed to
remove scale and corrosion products that accumulate in the steam-
side of the boiler.  Hydrochloric acid, which forms soluble
chlorides with the scale and corrosion products in the boiler
tubes, is the most frequently used boiler tube cleaning chemical.
In boilers containing copper, a copper complexer is used with
hydrochloric acid to prevent the replating of dissolved copper
onto steel surfaces during chemical cleaning operations.  If a
complexer is not used, copper chlorides,  formed during the
cleaning reaction, react with boiler tube iron to form soluble
iron chlorides while the copper is replated onto the tube sur-
face.

Alkaline cleaning (flush/boil-out) is commonly employed prior to
boiler cleaning to remove oil-based compounds from tube surfaces.
These solutions are composed of trisodium phosphate and a surfac-
tant and act to clear away the materials which may interfere with
reactions between the boiler cleaning chemicals and deposits.

Citric acid cleaning solutions are used by a number of utilities
in boiler cleaning operations.  The acid is usually diluted and
ammoniated to a pH of 3.5 and then used for cleaning in a two-
stage process.  The first stage involves the dissolution of iron
oxides.  In the second stage, anhydrous ammonia is added to raise
the pH of the cleaning solution to between 9 and 10 and air is
bubbled through the solution to dissolve copper deposits.
Date:  1/24/83  R Change 2    II.19-7

-------
Ammoniated EDTA has been used in a wide variety of boiler clean-
ing operations.  The cleaning involves a one solution,  two-stage
process.  During the first stage,  the solution solubilizes iron
deposits and chelates the iron.   In the second stage,  the solu-
tion is oxidized with air to induce iron chelates from ferric to
ferrous and to oxidize copper deposits into solution where the
copper is chelated.

When large amounts of copper deposits in boiler tubes cannot be
removed with hydrochloric acid due to the relative insolubility
of copper, ammonia-based oxidizing compounds have been effective.
Used in a single separate stage,  the ammoniacal sodium bromate
step includes the introduction into the boiler system of solu-
tions containing ammonium bromate to rapidly oxidize and dissolve
the copper.

The use of hydroxyacetic/formic acid in the chemical cleaning of
utility boilers is common.  It is used in boilers containing
austenitic steels because its low chloride content prevents
possible chloride stress corrosion cracking of the austenitic-
type alloys.  It has also found extensive use in the cleaning
operations for once-through supercritical boilers.  Hydroxy-
acetic/ formic acid has chelation properties and a high iron
pick-up capability; thus it is used on high iron content systems.
It is not effective on hardness scales.

Sulfuric acid has found limited use in boiler cleaning opera-
tions.  It is not feasible for removal of hardness scales due to
the formation of highly insoluble calcium sulfate.  It has found
some use in cases where a high-strength, low-chloride solvent is
necessary.  Use of sulfuric acid requires high water usage in
order to rinse the boiler sufficiently.

     Boiler fireside washing.  Boiler firesides are commonly
washed by spraying high-pressure water against boiler tubes while
they are still hot.

     Air preheater washing.  Air preheaters employed in power
generating plants are either the tubular or regenerative types.
Both are periodically washed to remove deposits which accumulate.
The frequency of washing is typically five washings per year.
Many preheaters are sectionalized so that heat transfer areas
may be isolated and washed without shutdown of the unit.

     Ash File, Chemical Handling and Construction Area Runoff

Fly ash and bottom ash stored in open piles, chemicals spilled in
handling, and soil distributed by construction activities will
be carried in the runoff caused by precipitation events.
Date:  1/24/83  R Change 2    II.19-8

-------
     Coal Pile Runoff

In order to insure a consistent supply of coal for steam genera-
tion, plants typically maintain an outdoor 90-day reserve supply.
The piles are usually not enclosed, so the coal comes in contact
with moisture and air which can oxidize metal sulfides to sul-
furic acid.  Precipitation then results in coal pile runoff with
minerals, metals, and low pH (occasionally) in the stream.

     Wet Flue Gas Cleaning Blowdown

Depending on the fossil fuel sulfur content,  an S02 scrubber may
be required to remove sulfur emissions in the flue gases.  These
scrubbing systems result in a variety of liquid waste streams
depending on the type of process used.  In all of the existing
FGD (flue gas desulfurization) systems, the main task of absorb-
ing S02 from the stack gases is accomplished by scrubbing the
existing gases with an alkaline slurry.  This may be preceded by
partial removal of fly ash from the stack gases.  Existing FGD
processes may be divided into two categories:  regenerable and
nonregenerable (throwaway).  Regenerable processes include the
Wellman-Lord Sulfite Scrubbing process and the Magnesia Slurry
Absorption Process.  Additional discussion of regenerable FGD
processes is not provided since under normal circumstances no
wastewater is discharged from these systems.   Nonregenerable FGD
processes include lime, limestone, and lime/limestone combination
and double alkali systems.

In the lime or limestone FGD process, S02 is removed from the
flue gas by wet scrubbing with a slurry of calcium oxide or
calcium carbonate.  The waste solid product is disposed by pond-
ing or landfill.   The clear liquid product can be recycled.  Many
of the lime or limestone systems discharge scrubber waters to
control dissolved solids levels.

A number of processes can be considered double alkali processes,
but most developmental work has emphasized sodium based systems
which use lime for regeneration. -This system pretreats the flue
gas in a prescrubber to cool and humidify the gas and to reduce
fly ash and chlorides.  The gas passes through an absorption
tower where S02 is removed into a scrubbing solution which is
subsequently regenerated with lime or limestone in a reaction
tank.

The disadvantage of all non-regenerable systems is the production
of large amounts of throwaway sludges. ' Onsite disposal is
usually performed by sending the waste solids to a settling pond.
The supernatant from the ponds may be recycled; however, accord-
ing to 308 data,  82% of the plants with FGD systems discharged
the supernatant into surface waters.
Date:  1/24/83  R Change 2   II. 19-9

-------
II.19.2  WASTEWATER CHARACTERIZATION [2-55]

Wastewater produced by a steam electric power plant can result
from a number of operations at the site.  Many wastewaters are
discharged more or less continuously as long as. the plant is
operating.  These include wastewaters from the following sources:
cooling water systems, ash handling systems, wet-scrubber air
pollution control systems, and boiler blowdown.  Some wastes are
produced at regular intervals, as in water treatment operations
which include a cleaning or regenerative step as part of their
cycle (ion exchange, filtration,  clarification, evaporation).
Other wastes are also produced intermittently but are gen-
erally associated with either the shutdown or startup of a
boiler or generating unit such as during boiler cleaning (water
side), boiler cleaning (fire side), air preheater cleaning,
cooling tower basin cleaning, and cleaning of miscellaneous small
equipment.  Additional wastes exist which are essentially un-
related to production.  These depend on meteorological or other
factors.  Rainfall runoff, for example, causes drainage from coal
piles, ash piles, floor and yard drains, and from construction
activity.  A diagram indicating potential sources of wastewaters
containing chemical pollutants in a coal-fueled steam electric
powerplant is shown in Figure 19-1.

Data on wastestream characteristics presented in this section are
based on the results of screening sampling done at 8 plants,
verification sampling carried out at 18 plants, and periodic
surveillance and analysis sampling carried out as part of compli-
ance monitoring at 8 plants.  These data were stored on a compu-
terized data file and analyzed for presentation in Reference
2-55.  All waste streams discussed in Section 19.1.1 were
analyzed during the screening program, while the verification
program focused on the following wastestreams:  once-through
cooling water; cooling tower blowdown; and ash handling waters.
Table 19-4 is a summary of all priority pollutants detected in
any waste stream based on the data stored in the computerized
data file.  The wastewater characteristics of the various waste
streams are discussed in the following sections.  Where they are
available, only verification data are presented.  Where verifica-
tion data are limited or not available, screening and/or sur-
veillance and analysis data are presented.  The data source is
clearly indicated on each table and in the text.
Date:   1/24/83  R Change 2   11.19-10

-------
                                                                             E
                                                                             (TJ
                                                                             0)
                                                                             -P
                                                                             w

                                                                             (0
                                                                             M
                                                                             (1)
                                                                             -P
                                                                             nl
                                                                             £
                                                                             Q)
                                                                             -P
                                                                             CQ
                                                                             w
                                                                             Q)
                                                                             o
                                                                             O S
                                                                             CD O
                                                                             (TJ O
                                                                             •H -H
                                                                             -P H
                                                                             fi -P
                                                                             CU O
                                                                             -P (U
                                                                             O H
                                                                             CU 0)
                                                                             I
                                                                             CTi
                                                                             r-l


                                                                             0)
                                                                             Cn
                                                                             -H
                                                                             Pn
Date:   1/24/83  R   Change  2   11.19-11

-------
  TABLE 19-4.
SUMMARY TABLE OF ALL PRIORITY POLLUTANTS DETECTED
IN ANY OF THE WASTE STREAMS FROM STEAM ELECTRIC
POWERPLANTS [2-55]
     Benzene
     Chlorobenzene
     1,2-Dichloroethane
     1,1,1-Trichloroethane
     1,1,2-Trichloroethane
     2-Chloronaphthalene
     Chloroform
     2-Chlorophenol
     1,2-Dichlorobenzene
     1,4-Dichlorobenzene
     1,1-Dichloroethylene
     1,2-trans-Dichloroethylene
     2,4-Dichlorophenol
     Ethylbenzene
     Methylene chloride
     Bromoform
     Dichlorobromomethane
     Trichlorofluoromethane
     Chiorodibromomethane
     Nitrobenzene
     Pentachlorophenol
     Phenol
     Bis(2-ethylhexyl) phthalate
     Butyl benzyl phthalate
                         Di-n-butyl phthalate
                         Di-n-octyl phthalate
                         Diethyl phthalate
                         Dimethyl phthalate
                         Tetrachloroethylene
                         Toluene
                         Trichloroethylene
                         4,4-DDD
                         Antimony (total)
                         Arsenic (total)          ,
                         Asbestos (total-fibers/L)
                         Beryllium (total)
                         Cadmium (total)
                         Chromium (total)
                         Copper (total)
                         Cyanide (total)
                         Lead (total)
                         Mercury (total)
                         Nickel (total)
                         Selenium (total)
                         Silver (total)
                         Thallium (total)
                         Zinc (total)
II.19.2.1  Cooling Water

In general, wastewater characteristics of once-through cooling
water and recirculating cooling water systems are similar.
Pollutants discharged from both systems are caused by the ero-
sion or corrosion of construction materials plus the chemical
additives used to control corrosion,  scaling, and biological
growth (biofouling).   The wastewater generated from a recircu-
lating cooling water system also depends on the design limits
for dissolved solids in the system.

     Erosion

The fill material in natural draft cooling towers is frequently
asbestos cement.  Erosion of this fill material may result in the
discharge of asbestos in cooling water blowdown.  In a testing
program for detection of asbestos fibers in the waters of 18
cooling systems, seven of the 18 sites contained detectable
concentrations of chrysotile asbestos in the cooling tower waters
at the time of sampling.
Date:  1/24/83  R Change 2   11.19-12

-------
     Corrosion

Corrosion is an electrochemical process that occurs when metal is
immersed in water and a difference in electrical potential be-
tween different parts of the metal causes a current to pass
through the metal, between the region of lower potential (anode)
and the region of higher potential (cathode).   The migration of
electrons from anode to cathode results in the oxidation of the
metal at the anode and the dissolution of metal ions into the
water.

Copper alloys are used extensively in powerplant condensers, and
as a result, copper can usually go into a corrosion product film
or directly into solution as an ion or as a precipitate in the
initial stages of condenser tube corrosion.  As corrosion pro-
ducts form and increase in thickness, the corrosion rate de-
creases until a steady state is achieved. Studies indicate that
copper release is a function of flow rate more so than of the
salt content of the makeup water.

Data on copper concentrations in both once-through cooling and
recirculatory cooling systems indicate that corrosion products
are more of a problem in cooling tower blowdown than in once-
through systems discharge.  The concentration of pollutants (via
evaporation) in recirculating systems probably accounts for most
of the difference in the level of metals observed between once-
through discharge and cooling tower blowdown.

     Chemical Treatment

Chemical additives are needed at some plants with recirculating
cooling water systems in order to prevent corrosion and scaling.
Chemical additives are not frequently used at plants with
once-through cooling water systems for corrosion controls.

Scaling occurs when the concentration of dissolved materials,
usually calcium and magnesium containing species, exceeds their
solubility levels.   The addition of scaling contro.l chemicals
allows a higher dissolved solids concentration to be achieved
before scaling occurs.

Therefore,  the amount of blowdown required to control scaling can
be reduced.   Chemicals added to recirculating cooling water to
control corrosion and scaling are usually present in the dis-
charges.  The solvent and carrier components which may be used
in conjunction with scaling and corrosion control agents are
listed in Table 19-5.
Date:  1/24/83  R Change 2   11.19-13

-------
   TABLE 19-5.   SOLVENT OR CARRIER COMPONENTS THAT MAY BE USED
                IN CONJUNCTION WITH SCALING AND CORROSION CON-
                TROL AGENTS [2-55]
                Dimethyl formamide
                Methanol
                Ethylene glycol monomethyl  .ether
                Ethylene glycol monobutyl ether
                Methyl ethyl ketone
                Glycols to hexylene glycol
               *Heavy aromatic naphthalene
                Cocoa diamine
                Sodium chloride
                Sodium sulfate
                Polyoxyethylene glycol
                Talc
                Sodium aluminate
                Monochlorotoluene
                Alkylene oxide - alchohol glycol ethers

* Indicates that the compound is known to contain a priority
 pollutant.  Some of the other compounds may contain or may
 degrade into priority pollutants but no data were available
 to make•a definite determination.
Chlorine and hypochlorite are used to control biofouling in both
once-through and recirculating cooling water systems.   The addi-
tion of chlorine to the water causes the formation of toxic
compounds and chlorinated organics which may be priority pollu-
tants.

Eleven plants with once-through cooling water systems were sam-
pled as part of the verification program and the surveillance and
analysis sampling efforts.  Four of these plants have estuarine
or salt water intakes, and the remaining seven plants have fresh
water intakes.  Sampling was carried out only during the period
of chlorination.  Samples were analyzed for all organic priority
pollutants except the pesticides, and for total organic carbon
and total residual chlorine (9 plants).  Table 19-6 is a summary
of the data collected in the verification and surveillance and
analysis sampling efforts.  Only the priority pollutants which
were detected are shown.  Table 19-7 is a summary of once-through
cooling system flow rates based on responses to 308 question-
naires.
Date:  1/24/83  R Change 2   II.19-14

-------







X
o

o
DC

HlA

UJ 1
OCM
Z ^^
o
KG
to
3 Z
QO
Z —
oo
OK
LjJLjJ
Ld
Q
EZ
LiJ
i- to
to
z<
Q
toz
< Ld
HO
0-1
Q. —
UJ
— 3
Kl/i
O
Q.LJ
U. <
05
is
too

VD
Ov
~
UJ
3






<0 +1

0
•o
t. C
O 0
c *»
•g
11



o

D

£

S
L
i
is

f:

o c
n *
i «
i

<•- C
o c
•s
II
M
d. C
o c
C (
T

<•- C
o c
f. 4
ii
xt>
°8
L. —
O Q
fS








C
£










0
e

c

5














„
e


















gO«Os «
OCM— O
• O •
0 0
~

R §2t g
d « d


§

in °. N
• COOO


wi o • — (NJ O
So*» r- o v
*o . o
o. „ , o









o oey— oftiMOvcyey • -»ro« r- — N — — • •* • « 2
• «o ooov — — oooo ovoo— —
9* . t . . . o V
r- oo o ooo
?

o §-- ON£|-WCOW.S o 2* 2£ "t g 2
v odd

*o .0 oo c\j *ooo o o^w* S S
imiii'iiiiiiiiiiiQi i i i i i — i i i i 01 i i
o m o oeoift— — CUNOO — oo — • n —
? o°od ooe°0- ^








8
S :
< 1 8 S I
* 2 1 j | gi -8
" «f o £ » — **~ i S
i 1 s s • a N e!
-"« -•>«• §S- 1* --

a E ?*~ • i £"~ 3 ** e w 1 t5 & t. p ot» *» o c
I lg888iJ^*»H8s3-5I * *-Ml|nH-!i «!-|iS2
• g fl 3
S H











Q













N (*> O
V V V

8 S 2
V V

o « 2
S CJ V
« oooo o oo oo o
o v vvo,vovv V
7 7











" s
i 8 I * 11 j-.l
g f | I || ||8S| .
| | ||| ^i. ||||* |

S o e c o $ £& E^t5 ft5 J *
UaEkUAV dSVO^-C ~ £ —
=a||?l|ixl||:.3|£^|

Date:  1/24/83 R  Change 2  11.19-15

-------









X —
on
3 Q)
O 3

H- -P
bJ O
O O
Z —
O
>H


CO
QO
Z —
oo
CELL.
1 	
o cc
LJ U
LiJ
Q
LJ
I-CO
CO —
CO

X —1
z
o
CO Z
yr
< U
h-O
id
LJ
i-ce
— 3
C£ CO
O
a: cc
a. LJ

L_ -rf
OS

< —
lo
= o
coo
.
VO
ON

LJ
CO
I-




0
c —
£ a
i
IA
U C
o a
c *>
IS

il


o
U C
o o
a *j
c«

««
«- c
0 0
«.£
D a

o «
||
3 «
Z

!l
a *J
O U

£
b- C
O C
c **
™ c

is
nge of
actions
n **
a: o>
•o



h- C
0 C
i. Z
II
z-o

•-

II
z





c
t
—
£












1

e
u
a
u


















a
C
o
u






















SO — o M . — — ^ — — v if\ . —
(OOO— OO X  o
o o o

- 1- » <0
(0 O* 40 UN
O O O f> — O O ON O O OO O
^(A — ffvO-ffO'*>^MCMOOJ'»A O4 CM CM -co f-- V CM V — V V
o« o — — o — IM oo ooo oo c
.«*»! — t Otlllllll IOO ||ll a I 1 1 1 I I 	 || I 	 	 —
(M — r-iA 	 SOW O — V — •• *O — — V _ v —
(M OOO . . . O ON V V V
* • • OOO
ooo <-'ww 0










fy o --f^CMCM*JCM «« ^^-^3- « 0
f» O • — -O OO >O • tf\
O O O • < • O O f* « Oirt « O
o o oo — r- v oo - — —
V V J V
v

CM O O - -O O OOOOO
OO • — — CM — —
0 0 0 V V V

— fl «0 3" iTt— O O OO O
tM O O O ««— OO CO "» — — O 	 O —
C\J -iTv -OlA 	 O sA" • V CM — 04 V CM V
O m O^OmroCMMO OO — lAOJCM O 00
«^trt <*>iA i— oioioiioiioooo
|(*1)OO'IIIII1IIOIIO IIIIJI Icoao — — — CM — CM — f-
•*» — OO O «*i >* O V O V ^ V O-tf — O O V V —
O CM OO — I*-* 	 iT\CM»A — OO — V V V
• CM OOO . -0 O • V 0
O ... OO'-O
OOO 0 O












«
*t
«H -> w o
oi «- — e a>£ o * » c
i o u i_ c a (B « c — **«»
— o o « — cccoooan^c
.c — e £-^oco«c-Tj£-OJ*J-a)a)
O £ — W— C NNO >»-*•>» COO** —
0 U>0) C C - £ *- r-C 0> 0 C =J >, 0)
— •o axco«»**oQ.**— ua> — as -o
« — c o*o-^J3-c«— or >» e ai « ** —
•c 3 oo— t-t-(_a.*-co>>**.co*'oa
— -o • M — <->,ooo«jEoajN— oot-c*- —
« -=MOE * - CE-O 2- u-- c " - N e c > o - o a o a) j=
ffi « O B) 3 • • C C «g X • S* (8 C — *J£X£J=OO£CC«*Jl-l-— — CO
8- — * 3 C «) 1 C — -Q *J — mg 	 *- "O «- 	 I 	 Cwpl— -— COO-^ — — JC— lUXOW —
— O 3 ~  "" OO^CMOwOOfl)— ^O— >» O — I fl> ^ — a 1Z to -~ >*
"otAto «c-owc~cBg * xwS --o So— >sttNj=oi xa: C^f£5_:^^^g5
38°"piSS352w- "x<
-------
      TABLE  19-7.
ONCE THROUGH COOLING WATER FLOWRATES  (308
QUESTIONNAIRE) [2-55]
Variable
Fuel :
Flow:
Flow:
Fuel:
Flow:
Flow:
Fuel:
Flow:
Flow:
Coa 1 (a )
cu.m/day/plant
cu.m/day/MW
Gas(a )
cu.m/day/plant
cu.m/day/MW
Oi 1 (a)
cu.m/day/p lant
cu.m/day/MW
Number of
plants
239
239
105
104
138
137
Mean
1, 130,000
(b)
783,000
2,410,000
1,490,000
5,260
Range
0. 189
0.001
0.29
0.006
0.007
0.00004
- 6,280,000
- 209,000
- 7,230,000
- 13,800,000
- 26,700,000
- 219,000
     (a)  Fuel designations are determined by the fuel which contributes the
         most Btu for power generation for the year 1975.
     (b)  Data not presented due to suspected error.

The data  indicate  that there were net increases in all of the
following compounds:   total dissolved solids, total suspended
solids, total  organic carbon,  total  residual chlorine, free
available chlorine,  2-4 dichlorophenol,  1,2-dichlorobenzene,
phenolics,  chromium,  lead,  copper, mercury,  silver, iron, arsenic,
zinc, barium,  calcium,  manganese,  sodium, methyl chloride, alu-
minum, boron,  and  titanium.   However, the net increase was
greater than 10 yg/L  only for  1,2-dichlorobenzene,  total
phenolics,  lead, zinc,  and  methylene chloride.

Eight power plants' with cooling towers were  sampled at intake and
discharge points during the verification sampling program.  The
results of the verification sampling program for cooling tower
blowdown  (recirculating cooling water)  are presented in
Table 19-8.  Only  the priority pollutants which were detected are
shown.  Table  19-9 is a summary of cooling tower blowdown flow
rates based on responses to 308 questionnaires.

The data  indicate  that there was a net increase from the influent
concentration  to the  effluent concentration  for the following
compounds:   trichlorofluoromethane,  bromoform,  chlorodibromo-
methane,  bis(2-ethylhexyl)  phthalate, antimony,"  arsenic,  cadmium,
chromium,  mercury, nickel,  selenium,  silver,  thallium, benzene,
tetrachloroethylene,  toluene,  copper, cyanide,  lead,  zinc, chloro-
form, phenol,  asbestos,  total  dissolved solids,  total suspended
solids, total  organic carbon,  total  residual chlorine,
1,2-dichlorobenzene,  2,4-dichlorophenol,  boron,  calcium,  mag-
nesium, molybdenum, total phenolics,  sodium,  tin,  vanadium,
cobalt, iron,  chloride,  2,4,6-trichlorophenol,  and pentachloro-
phenol.   It must be recognized,  however,  that recirculating
cooling systems tend  to  concentrate  the  dissolved solids present
in the make-up water  and, thus,  a  blowdown stream with many
different  compounds showing concentration increases is to be
expected.  Of  the  priority  pollutants detected as net discharges,
the concentration  increase  was greater  than  10 yg/L only for
Date:  1/24/83  R Change 2    11.19-17

-------
z
0
i
o
Lu
(¥" w

Lu
^



o
o
LJ
|-»




w

CJ

ct
o
LJ
LJ

«b
LJ
H
IT\
LJlA
X 1
HCVJ
"""*
— a:
UJ
WH
23

HO
1 _
00
Q-O
o
HO

o: —
OH
Q- =3
O
b-CC
O —
o
>LJ
czcc
£<
§<
WQ


03
1
o\
1 1 1


00
c
<*- o
° *J

c u
(Q CJ
a) u
TJ

at
fc. C
o o

a u

•o *J
aj Q:
ZT3

V)
<- c
._
ss
c a
(a *>
K 0)
•a



<•- c
o o
u *>
QJ C
A a;
s *•*
3 01
z-o

O (A
V
li
E te
3 w
^










4J
C
a
5

o
a.


\O VO •«*! -OCMO • •— O • O —
• O -O • 'OO .O
j OV— OO O O
V






O ~~ Q QO\Qf*i ^O plA O '(^JO
m o • -O O -O .0 •
• o o • -o o o
o v o o



§ 0 0
O — O — GO
*O OCMOrOCM (MM O OCMOO
^C CM — COQ — OOO^OO^cO OO^OCM
CO
C —
OSOVOO — OO — OO • OO -O •
— o o • • • o • -NO oo^r -o
• o oo -oo . • o
o o v o oo




so^coinwinro^^^a-mso-a-NOiAJTog





eor^oor^eoooooooflocoaooocor^aoflocoooeo






o
c
1 1
i -
n ea
s v

-~ tf) t/l O S 3
o ua> em OMSCS
a — i- 33 s -a a — o 3
— a — — • 3— ucu>-ac
— O— 3 C •O3C— U— « HI .D •-
« en— .s
— O(/>O£OQ 	 fc-fO(OQ(«£O(e(QO —

«

o






• WflO — OO^irt— ifN


P«H






GO O CM ON GO GO lA
a CM — lf\ • CO





o
o
ooo *oo o
-3" — ^f^ — iA— ScM 	 Lf\
iT\ O CM
— o
CO £f — .
O





CM-IAVOCOCMVOVO^-CM^--





QOGOOOQOGQGOGOCOGO'COOOdQGO




M
O

C
i
_j o
N^ C
•D
*. C
«S CO (A
4J O
c <* ••
eg — C
** « >» S E E <0
3 +JCOE3 O 3 3>> a
— « O — 3 — i- -a — * 	 — *- «-
— EEC— EV— 0) O C — 3 O
O — OEOQ.C-OJC>«0— O
— C t. eo £ O >> 0) — — 0) — £ cocor-r~







^B* —
Q) Q)Q) — O
•a 09 c c v c
— C « (B C 0) —
^ 0)££ OJ09£O™"
O N -W +•» CNO.CO
— COO) 03 C O 0) C
£ o E E — Q) t- jz 0)
u .cog >>o o ax:
(0 OES £ O — O Q-
l_ i. o O « 1-.C I- O
w e o i- *- w o o o 4-
E
c ». — CM o — — — jjy.S'C o
o ro £ .— £ o «- , ^ . a) t.
COOO^OO^^^CMCM^OQ



Date:  1/24/83 R  Change 2  11.19-18

-------
o

u_


OS
LJ


OS
O
o
LJ



o
CD
CO
o
OS
h-
o
LJ

LJ
SI'S


LJ _J
1- C
CO —
4J
LJ C
X O
1- 0
z
— OS
LJ
CO H-
h- <
HO
3 Z
— 1 —

OO
Q-O
O

1-0
— Z
OS —
O h-

OS _l
ex ID
o
LJ- OS
o —

>LJ
QS ce
<
i<
CO Q
00
1
ON

LJ
CD
u.
I- 0
0 —

c o
co ID
03 *J
£ 03
•o

ifl
Ct- C
O C

c w
CO U
- 0)
•o -w
0 X
£13


c~ C
_
0) *J

c a
•a





y}
c*. C
O O
—
03 U
J3 Q]
3 a
Z "O


O Ifl
0)
CJ3 Q
2 E
& CO
3 
Z













C
CO
3

0
a.






















0)
a
CO

CJ
en
a







































oa-ir>-"Ovoco-oo-wor~«comcM .omvoooa-or-o o^r>o CM i-m^o 003-
OCOCMO'O — O1-^— 'fCM^-CM^n. »c«USO J^CVJ vo— • • *OJ*co
O • — tT» « • (M O • 	 OOO— ^ — iTV (M CNJO — — kT*V
- OV -OO -O • • V V
— V — O OO O









v6 O • CM O • OO .... OJ
•O -O • O OO O
— OOO


o
§O 0
1M 0 CO O
«O OPJOif\CJ CVJ C\J OO— — OO r*- o oj o o & j" o o if* o c\j r- r*- oj iTico iTi eo — co I^-PJ— — c\jc\jooir\ co^f
J- ^ lT» O
iiiiiiiiiiiiiiiiii iiiiiiiii ill .1 iiiicu coiia*\
o cu OMO nj n m cu m — N \o CMC in CMV j- m CM o c\j >o t>i in .» in OCOCM — — o^o— «.»~
co OO«OO >OOO "OO -O • co . CO CM V V CM «V
3. o • • -o • • '*oa '-s -o o — • o CM
•O OO OOO -O O 0
OV O
V





vococo.a-voina-coinvocoinvOJ'in.nj-CM w CM  —
f j^ t-Cl)£C(l)Q).CQ--
O -*x— ON*J*JCNaCO
•U O") — CO)QJQ)COQ)C
c — 3.-O C0SE— ojt-raj
co to c G .O O O >>^ O O>£
*J 3 «<0 «COOSE£O— OQ.
3 -O *J O«-t-OO**'-^!-O
— — ECv) — 4JEO<-t-OJO(JO»-
•^ w) > E E E >E o — o)Eoac-ojc>e
o wtnoaj*j*oc*joct-fc. — ^co>— 3 a U**MWQ.CQQO — — c«C oc*- — CMO — — — -3-.3-.a- co
— QrtO^OO — — t-««O(OO<0»« — *-» — £» — Q) « .C «— co*-»-»«s-
wi — O O
co X t- 1-
— o
U h-














































OJ

QJ C
(/) Q}
N
co C
CO J3
0 g
- o

• o
• o
' CO

tf> tfi
•o a>
o -o
£ 3
4-1 —
OJ u
E C
u
- o
•P V)
(0 — *

< TO


Date:  1/24/83 R  Change 2  11.19-19

-------
bis(2-ethylhexyl) phthalate, cadmium,  chromium,  nickel,  selenium,
silver, toluene, copper, cyanide,  lead,  zinc,  phenol,
1,2-dichlorobenzene, total phenolics,  and  2,4,6,-trichlorophenol.

     TABLE 19-9.  COOLING TOWER SLOWDOWN FLOWRATES (308
                  QUESTIONNAIRE)  [2-55]


        Variable           Number of plants    Mean     Range
Fuel : Coa 1 (a )
Flow: cu.m/day/p lant
Flow: cu.m/day/p lant
Fue 1 : Gas( a )
Flow: cu. m/day/p lant
Flow: cu.m/day/p lant
Fue 1 : 0 i 1 ( a )
Flow: cu.m/day/plant
Flow: cu.m/day/plant
82
82
120
1 19
47
HI
8,410
1 1.2
1, 190
1 1.6
1,040
7.04
0 -
0 -
0 -
0 -
0 -
0 -
152,000
239
10,900
99
12, 100
63.2
        (a)Fuel designations are determined by the.fuel which contri-
           butes the most Btu for power generation for the year 1975.


II.19.2.2  Ash Transport

The chemical compositions of both types of bottom ash,  dry or
slag, are quite similar.  The major  species present in bottom ash
are silica (20-60 weight percent  as  Si02),  alumina (10-35 weight
percent as A12O3), ferric oxides  (5-35  weight percent as Fe203),
calcium oxide (1-20 weight percent as CaO), magnesium oxide
(0.3-0.4 weight percent as MgO),  and minor amounts of sodium and
potassium oxides  (1-4 weight percent).   In most instances, the
combustion of coal produces more  fly ash than bottom ash.  Fly
ash generally consists of very  fine  spherical particles, ranging
in diameter from 0.5 to 500 microns.  The major species present
in fly ash are silica  (30-50 weight  percent as Si02), alumina
(20-30 weight percent as A120), and  titanium  dioxide (0.4-1.3
weight percent as Ti02).  Other species which may be present
include sulfur trioxide, carbon,  boron, phosphorus, uranium, and
thorium.

In addition to these major components,  a number of trace elements
are also found in bottom ash and  fly ash.   The trace elemental
concentrations can vary considerably within a particular ash or
between ashes.  Generally, higher trace element concentrations
are found in the fly ash than bottom ash;  however, there are
several cases where bottom ash  exceeds  fly ash concentration.
Fly ash demonstrates an increased concentration trend with de-
creasing particle sizes.

During the verification sampling  effort,  the  ash pond overflows
of nine facilities were sampled to further quantify those effluent
pollutants identified  in the screening  program.  The data are
presented  in Table 19-10.


Date:  1/24/83  R Change 2    11.19-20

-------
      TABLE  19-10.  SUMMARY OF PRIORITY POLLUTANTS IN  THE STEAM ELECTRIC  INDUSTRY
                   ASH POND OVERFLOW,  VERIFICATION DATA [2-55]
Number Number Range Median
of of of of
Pollutant samoles detections detections detections
Mean
of
detect ions
Intake
Classical pollutants, mg/L
Oilandgrease 10 1
TDS 1 8
TSS 9 8
TOC 10 8
Phenol ics 10 5
Chloride 10 1
Aluminum 5
Barium 7
Boron 6
Ca 1 c i urn 8
Coba 1 t 3
Manganese 8
Magnesium 6
Molybdenum 2
Sodium 8
Tin 3
Titanium 4
Iron 9
Vanadium , 10 3
Yttrium 1 0
Toxic pollutants, jJg/L
Toxic metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cya n i de
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Tha 1 1 ium
Zinc
Toxic organ ics
Benzene
Carbon tetrachlor ide
Chloroform
1 ,2-Dichlorobenzene
Ethylbenzene
Toluene
Trichloroethylene
1, 1 -Dichloroethy lene
1 , 4-D i ch 1 o robenzene
Methylene chloride
Pheno I
Bis (2-ethylhexyl )
phtha late
Butyl benzyl phthalate
Di-n-butyl phthalate
Dicthyl phthalate
Dimethyl phthalate
Tetrachlo roe thy lene
1, 1,2,2-Tetrachl o roe thane
3
2
0
5
9
II
2
9
2
10
2
2
1
7

3
1
3
1
9 0
2
2
0

(






0
2

1 , 1 , l-Trichloroethane II
Pentachlorophenol II

25
130 - 530
0.005 - 170
5-21
0.006 - 0.04
14
0.2 - 2
0.017 - 0.06
0.06 - 0. 1
6.9 - 57
0.007 - 0.04
0.04 - 0.8
4.5 - 23
0.009 - 0.06

-------
      TABLE 19-10.   SUMMARY OF PRIORITY POLLUTANTS
                    ASH  POND OVERFLOW (CONTINUED)
IN  THE STEAM ELECTRIC INDUSTRY
Pol lutant

Classical pollutants, mg/L
Oi 1 and grease
TDS
TSS
TOC
Phenol ics
Chloride
A 1 urn i num
Ba r 1 urn
Boron
Ca 1 c I urn
Coba 1 1
Manganese
Magnes ium
Molybdenum
Sod i urn
Tin
Titanium
1 ron
Vanadium
Yttrium
Toxic pollutants, ug/L
Toxic metals and inorga/ilcs
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chrom i um
Copper
Cya n i de
Lead
Mercury
Nickel
Se 1 en i um
Si Iver
Thai 1 ium
Zinc
Toxic organics
Benzene
Carbon tet rachloride
Chloroform
1 , 2-0 i ch 1 o robenzene
Ethyl benzene
Toluene
T r i ch 1 o roe thy 1 ene
1 , 1 -Dichloroethy lene
1 ,4-Dichlo robenzene
Methylene chloride
Phenol
Bis (2-ethylhexyl )
phtha late
Butyl benzyl phtha late
Ui-n-butyl ph thai ate
Diethyl ph thai ate
Dimethyl phtha late
Tetrachlo roe thy lene
1, 1 ,2, 2 -Tetrachlo roe thane
1,1,1 -Trichloroethane
Pentach lorophenol
Pesticides
4,4'-DD6
Number
of
samples


12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12


12
1 1
12
12
12
12
12
12
1 1
12
12
12
12
12

12
1 1
1 1
1 1
12
12
10
12
12
12
12

12
12
12
12
12
1 1
1 1
1 1
12

1 1
Number
of
detections


2
9
1 1
9
7
2
6
9
9
9
4
S
9
9
9
6
2
9
5
1


It
2
3
8
12
1 1
2
8
3
12
3
6
0
8

3
0
2
0
3
2
0
1
1
2
r

i
0
i
i
i
0
0
0
1

0
Range
of
detections
D i scha rqe

1 - 2U
4 - 2,1(00
5-160
3-150
0.006 - 0.04
37 - 37
0.06 - 5
0.01 - 0.092
0.02 - 3
21 - 140
0.007 - 0.05
0.01 - 1
5.6 - 20
0.008 - 0.3

-------
II.19.2.3  Low Volume Wastes

Low volume waste sources include water treatment processes which
prevent scale formation such as clarification, filtration, lime/
lime soda softening, ion exchange, reverse osmosis, and evapora-
tion.  Also included are drains and spills from floor and yard
drains and laboratory streams.

     Clarification

Clarification is the process of agglomerating the solids in a
stream and separating them by settling.  Chemicals which are
commonly added to the clarification process do not contain any of
the listed priority pollutants.

     Ion Exchange

Ion exchange processes can be designed to remove all mineral
salts in a one-unit operation and, as such, are the most common
means of treating supply water.  The process uses an organic
resin that must be regenerated periodically by backwashing and
releasing the solids.  A regenerant solution is passed over the
bed and is subsequently washed.

The resulting exchange wastes are generally acidic or alkaline
with the exception-of sodium chloride solutions which are neutral.
While these wastes do not have significant amounts of suspended
solids,  certain chemicals such as calcium sulfate and calcium
carbonate have extremely low solubilities and are often precipi-
tated because of common ion effects.

Spent regenerant solutions,  constituting a significant part of
the total flow of wastewater from ion exchange regeneration,
contain ions which are eluted from the ion exchange material
plus the excess regenerant that is not consumed during regenera-
tion.  The eluted ions represent the chemical species which were
removed from water during the service cycle of the process.
Table 19-11 presents a summary of ion exchange demineralizer
regenerant wastes characterized in the surveillance and analysis
study.

     Lime Softener Wastewater

Softening removes hardness using chemical precipitation.  The two
major chemicals used are calcium hydroxide and sodium carbonate,
thus no priority pollutants will be introduced into the system.

     Reverse Osmosis Wastewater

Reverse osmosis is a process used by some plants to remove dis-
solved salts.   The waste stream from this process consists of
reverse osmosis brine.   In water treatment schemes reported by


Date:  1/24/83  R Change 2   11.19-23

-------
<£
LJ
N
_l
LJ
Z
S
LJ
Q
CC
1-
=5
Q
Z
O

Or '""'
1-lA
LJ 1
-JC\J
LJ i— i
s:
LJH

co o
LJ (O
1- W
25
— <
Z
1-
_J LJ
-IO
O Z
0.5
>• — J

_ u
oc£
o: to
Q_
•t
L>- h-
a: LJ
SO

WCC


IV
1°


5v
V O O
?


c
L5
s°s
<
•O


1
St-t
E o a
C 4
•D
U «

D *- <
3 1



<
i

I


N in W o
o


N — 00
N 00




O <0 m o
ON P- • M • O
|.| . . O O* 1 Jt 1 — « to— 1
D (VI OO
se o f> o O— eu o\ (vi o
B — . O —
kt (VI N • O
C O




(vi — (vi o 	 o — 	 oo — (vi oevi — ro — 00*0 	 o«*»o





u
-t c
f I
^ I
M O! —
= a 3
« « c
1 a i *
o • 3! c a S «>> • SB
O. 0)3 60)— 0) 3 BJJCoeSO^S 3
C C « 3 C W X> fi - —  * - 3oca> -
a ** • — o o 01 c x— Bapc-ooJC»>o —
u wtooojsut.— c w— "o *» o a o^woa-t-aeet-o 	 c*
M K- h-t- « CO mU£Z £ W H — O X < < U O O O— 1 IZCAWNI-
i» — O
5 g *-
0 h-
1
o\
LJ
_J
<







V







ao M "J -
O O 00 — 00 OOO 00
— i — t ...| 	 m— i
V V OO<*> V V V V
-3- f- (VI M
o • —
a • s
o o



















f)
(VJ
o






— (VJO — (U — 	 (VI — 	 O — — tVIOO-OOOO






o
e *j
* o * c *SS
O O CD tof — to to to C
^~ -*$ & 5»«S^S
£ u g gi y ^c£« >>aj
U £ O OO3 >>» >» ** O 4-> «
E O t- 1. — ^ u N 	 £ 1- C N
C *-— « fijOa"*- VTOC>»XaOOC
a o£ c i- o - o a> — VMM — (. o
tjQ)*-ofl)Ot-'ot- i «.o3o--.co.a
U C 0 — — fc-OOO-M£ flOXO— 0
O 0 i-o >.O— »-— 0 — w— 1 l.C 	
-«J= .»*- — £-£— 3 	 -»t-C
xooo — ZOJQOOQ- OP caaoot-Hu
o
t-











il
fl CO 0) 0) 0)
1, l-Trichloroeth
1 ,2-Trichloroeth
2-D i ch 1 o robenzen
3-D i ch l o robenzen
4-D i ch I o robenzen
trobenzene
_*-_*_*_"i






Date:  1/24/83 R  Change 2  11.19-24

-------
w
13
Q
Z



O
_
o:
o
LJ
_ 1
LJ

LJ
1-
to

LJ
X^



Z 3
— C
to *J
1- C
Z 0
< 0
H* **• *
ID
_l Z
£2
LJ
>z
h-LJ
— O
a: LU
oo:
ceo:
Q. LJ
N
0-1
>- S
IT LJ

«<•- 0
0) O 0)
C u
o
TJ
VI
C
c o
2*.*
•o o u
D 0)
Z *J
V
•o

0)
C
o
S> W
Cfc- O
 d
t (0













«,*M«««W«MM*),™M



-^

_l
W CT1
C 3.
2
i . S3| . s
- |l5c5|«|g| =
S wrtoIllfi^lI-ISo a
•^ £££$<££8m$£± o
U) —
a X
O °





CMJCMOJ -CJ \O ^
fnty — CM
A




CO

o
O O CM 00

S£t & CO ^ O O O O O O
IIIICMII lfMT\CO 1 — t — r- CO 1 —
— V V V
irtr-j-Jt oo oo o CM
pj _ O -O \O

d














cn-«CMM«MCMMCMMCMM MMWMCM««CMM ^>



03
0)0) TO »
« o ^eo x
M p.c i i o £
U I- o O O 3 — 0)
= ?2.E^i= £S
X B e E « ox: c *- o - o *J —
CUB 3O >> 3 3 O O» o — < — o CM «
-ojEaocoo^o)>o- NOirEj=Oj=c — r
c«-«o.c>»4>a>-a> — £ — a) r: »o)i — jc — jc —
o


















OCMOOCOf*-CMeoO*«CMMCM —
V VV«> . OiflOif>
oo o

















CMM«MM«MMMM«ro««^



0)
*J 0) «
eg at a) C c
-+I.W e aawottffi
rarara c £ £ c c c c 0)
c 	 QJO)0) 4J iJ a> 4) 01 8) C
*J fl> « W— C UUNNNNO)
£jT JZ (Q >iQ) O O C C C C C
.C.C j» O O-QX) ii J3 J3
— a as: a) ^ c 	 000000
>, UQ-uO.C.C&'l-t-t-i-C
N 	 JI1-09N UUOOOOOO)
c >>>» ao o c 	 N
jO3O — £ODh-HOUUUUV
^ O >> O — O 1 1 — •— — — — .Q
— i i.cw.C5-— cMoaoaao
XC C *J (- O O -•.! 1 1 1 It-
3 	 0)<-£ «.....»-
flJOOO»-t-O Z


    CQ
Date:  1/24/83 R  Change 2  11.19-25

-------
the industry,  reverse osmosis was always used in conjunction with
demineralizers,  and sometimes with clarification,  filtration,  and
ion exchange softening.

     Floor and Yard Drain Wastewater

As a result of the numerous potential sources of wastewater from
equipment drainage and leakage throughout a steam electric fa-
cility,  the pollutants encountered in such wastewaters may be
diverse.  There have been little data reported for these waste
streams; however,  the pollutant parameters that may be of concern
are oil and grease, pH,  and suspended solids.

     Laboratory Drain Wastewater

The wastes from the laboratories vary in quantity and constit-
uents, depending on the use of the facilities and the type of
powerplant.  The chemicals are usually present in extremely small
quantities.  It has been common practice to combine laboratory
drains with other plant plumbing.

II.19.2.4  Boiler Slowdown

Boiler blowdown is generally of fairly high quality because the
boiler feedwater must be maintained at high quality.  Boiler
blowdown having a high pH may contain a high dissolved solids
concentration depending on boiler pressure.  The sources of
impurities in the blowdown are the intake water, internal corro-
sion of the boiler, and chemicals added to the boiler system.
Impurities contributed by the intake water are usually soluble
inorganic species  (Na+,  K+, Cl", So4~2, etc.) and precipitates
containing calcium/magnesium cations.  Products of boiler corro-
sion are soluble and insoluble species of iron, copper, and other
metals.   A number of chemicals are added to the boiler feedwater
to control scale formation, corrosion, pH, and solids deposition.
Table 19-12 presents a summary of toxic and classical pollutants
detected in verification analyses of boiler blowdown.

II.19.2.5  Metal Cleaning Wastes

Chemical metal cleaning wastewater means any wastewater resulting
from the cleaning of any metal process equipment with added chem-
ical cleaning agents, including, but not limited to, boiler tube
cleaning.  Non-chemical metal cleaning wastewater means any
wastewater produced by the cleaning of metal process equipment
without the addition of chemical cleaning agents, including,
but not limited to, boiler fireside cleaning and air preheater
cleaning.
Date:  1/24/83  R Change 2   11.19-26

-------



a:
LJ
_l
o
CO
o:
i-
co

Q
Z
o
ce
i—
o
LJ
LJ
2-
LJ
W
LJ
-r
1-

ZlTl
— lA

W CVJ
^
Hl-

_ia
oz
Q-O
— O
o: —

0:0:
d. LJ


U.
O -
Z
ceo

E5
£0
WCO

CVI
(
Ov


LJ
_J
CD
h-





c *
Jt. l
i
i
i
C i
o o i
I
•c

M
c
0
0) —
Ol +J
Cft- U
So o
*J
09
V


i-l
Z 4
•(


- q
§O E
0

-
c
c
it- c
J0«
a
•a

c
c o
CO —
•a o t
* 1

c
o
0)
n +
5 o a

o
•o

c
t- O
) -
§0 C
c
a
•o
ta
t —
[•si
1 (1
E W






C
eg
I






a
a
£
C
u
C





















a
R
C























»«^ *A com CUM 0*0 o o —moo oooo <*>
"wN CD7 ~ l^ -mv7S VV^V «
r^7 2 t g »


-
SSm cu V d7 S« mS 2 I 7S75; °??7 £
i i i in -c\j i i i o ii i i ... i i — — i i i i — i i i i 22 i
O • • — — tf\ V V V V V
r-ooev v O«A «oino «o> • • (B 1-iO-CCCW— O-f— i-O— <-(-£
•0 — 3 B 0) - 0> 3 *J C 0 B 3 >» 5 009l-CMWU«««)«A3-£a)O(-'OI-OU
C— C3CWOE - o Q — 3 - *. C 	 tci . O — -fi — 1 £ aXOC— OOI<- 	
(DO 	 (OQJ.03 C EEC— BO) 3 « C O « - CVJ *- Q — X(NJ **-l£«0)J=---CJOQO
C B CJ W C >>- C  O N - - O 1 >*£ — J= >>C*Jl_3OJ=O -El C
O t/3 O — £ — (C (0 « O O ^ — — C^-(OJCOB)0>— OB— — ffi * *>JZ « 4-> 8) — 3~ — Q) O ^ — JZ • *- - J^
t-H-t-OQ-
-------
     Chemical Cleaning of Boiler Tubes

The characteristics of waste streams emanating from the chemical
cleaning of utility boilers are similar in many respects.   The
major constituents consist of boiler metals;  i.e.,  alloy metals
ued for boiler tubes,  hot wells, pumps, etc.   Although waste
streams from certain cleaning operations which are  used to remove
certain deposits;  i.e., alkaline degreaser to remove oils and
organics;  do not contain heavy concentrations of metals,  the
primary purpose of the total boiler cleaning operation (all
stages combined) is removal of heat transfer-retarding deposits,
which consist mainly of iron oxides resulting from  corrosion.
This removal of iron is evident in all total boiler cleaning
operations through its presence in boiler cleaning  wastes.

Cleaning mixtures used include alkaline chelating rinses,  proprie-
tary chelating rinses, organic solvents, acid cleaning mixtures,
and alkaline mixtures with oxidizing agents for copper removal.
Wastes from these cleaning operations may contain iron, copper,
zinc, nickel, chromium, hardness, and phosphates.  In addition to
these constituents, wastes from alkaline cleaning mixtures may
contain ammonium ions, oxidizing agents, and high alkalinity;
wastes from acid cleaning mixtures may contain fluorides,  high
acidity, and organic compounds; wastes from alkaline chelating
rinses may contain high alkalinity and organic compounds;  and
wastes from most proprietary processes may be alkaline and may
contain organic and ammonium compounds.  Other waste constituents
present in spent chemical cleaning solutions include wide ranges
of pH, high dissolved solids concentrations,  and significant
oxygen demands (BOD and/or COD).  The pH of spent solutions
ranges from 2.5 to 11.0 depending on whether acidic or alkaline
cleaning agents are employed.

Table 19-13 presents a summary of toxic and classical pollutants
detected in three common cleansing solutions:  ammoniacal sodium
bromate, hydrochloric acid without copper complexer, and hydro-
chloric acid with copper complexer.

     Boiler Fireside Wastewater

When boiler firesides are washed, the waste effluents produced
contain an assortment of dissolved and suspended solids.   Acid
wastes are common for boilers fired with high-sulfur fuels.
Sulfur oxides absorb onto fireside deposits,  causing low pH and a
high sulfate content in the waste effluent.

     Air Preheater Wastewater

Fossil fuels with significant sulfur content will produce sulfur
oxides which absorb on air preheater deposits.  Water washing of
these deposits produces an acidic effluent.  Alkaline reagents
are often added to wash water to neutralize acidity, prevent


Date:  1/24/83  R Change 2     11.19-28

-------



CO
LU
1-
co
^

o

z
LU

O

—1
|—
LU
^
.
o:
CO
Q
-
O
o:
o
LU
_l
LU
s
UJ
CO
UJ
X
1-
z
~
CO

z
t-

-Jm
O ir\
CM
^. . .
°~ ^
o<
— Q
(V
Q-Z
O
Oh-
CC —



SCt
=> UJ
.
ro
1

_

UJ
CO
H


VI
c
c
Sol
a
•o
(4
c
c -
•2%. t
•a o a
i a
•a


c
c
0 *
c o a
Z «
'


«
b •-
D +J
i o a
z v

v
IJ
i°S


C
c
5 u- t
1 H


0)
c
c o
IS
3 0 C

a


V)
c
c
31 4J
C <<- O
V 0 0
a;

c
o
I) fc
= o a
z a


ai

= o e
3 <0
Z (A







c
a
*

c
a.



(A
C
c
4>
:
s
o
*J
A
!
CD
g
•c
°

(C
c

1

















in
C
a
4J
3
I

Z
UJ
in iated
g
1




















~" W lT> f- V — Cy CVJ • • • *PJ«V >O •


O— IA BOM
- O




o w — ^
^ O — * • O e^Off»
-r-cjmoow -o OCMM— • • •
— r-— V — roift* roVtf\«V^O
1 	 «s i i i i i i i i i i
^r ey v — — v 	 r- v — 0*0
V V OOO




rorot\lt\l(\ICJC\| — CMNOJCyroCMCJ^roN



»,»««*«*-««.,«.*«.«,**>.«



O • <"1 OV3 —
O tt *O
IS *




CM O
o
^o




§
0 O
JT O if\ »« —
I*- — a- r*





_i
1

10
«J>
I 1 .
I oiiill
— (A *. -o i- a
u x w a «jz o
— ^^ CO U U O
o
RIII^
«•«•

s~8^ 8
voS/ S




§°
UN49CM *
— — c\icy v —
111111
— • S V 2§
VO V




nn^nniin



~™™,A



§o
o
0 0
•0 o"




o o
8 8
to o
M3 CM


o o
8 8
o o

— _
1 1
8 §
o o
2? «



rO CO















|2l||g


Date:  1/24/83 R  Change 2  11.19-29

-------
           CO
           UJ

           co

           §

           o
           o
           UJ


           I
           V)
           a
           z
           o

           tc.
           o
           UJ
           (O
           to
           H —
           Z-D
           < ffi
           h- 3
           3 C
           _J —
           _l 4J
           o c
           0. o
             o
           txf-
           °^
           o:
           O.Z
             o
            >2
            o: —
            zee
            (O

            i

                      |

                    C  *"
                    c  §
u
               •   §
               §   «*
                I   I
               §   I
                                       SO M M

                                       1  « »
                             *   •   »
                            i  M



                            I  8   i
                            I  S'   5


                            I  I   8

                           .i*  I   I
                           51   i   t
                                   ft!   « — —  (•» (SJ —     «"•» O C\J O O O W O PJ »A O



 o7—*      ft?                 N«N O   **>
                           v — v r-   »











  *  o     •                  « •   »    «
 —       PJ                 —O  O   *
                            —  tft   Oi










I  I I I I I I I I I t I I I I I I      I I I I I I I I I I I

coooifteyey — mor-o** — — « — m     ooo — moowotvioo
 Sovo -v *o • • *mv— • .     — v v »— v o v w*

 j.  d ~  * ~»|AO""    °°     v  «v o   »






















                          ««r«-      r-  «



                                      5
                                  o a « —
                                                  S

                                                «• <•



                                              Igr 2 j|~-S~
Date:   1/24/83  R  Change  2   11.19-30

-------
 corrosion  of metallic  surfaces,  and maintain an  alkaline pH.

 Alkaline reagents might include  soda ash (Na2C03),  caustic  soda

 (NaOH), phosphates  and/or detergent.  Preheater  wash water  con-

 tains suspended and dissolved  solids which include  sulfates,

 hardness,  and heavy metals including copper, iron,  nickel,  and

 chromium.



 II.19.3  PLANT SPECIFIC DATA  [2-55]



 II.19.3.1   Plant 1226



 Plant 1226  is a bituminous coal,  oil and gas fired  electricity

 plant.  The recirculating cooling water  system influent was sam-

 pled from  a stream  taken from  the river  and the  effluent from the

 cooling tower blowdown stream.   The effluent stream is used again

 in the ash  sluice stream.   Table 19-14 presents  the data.   The

 following  additives  are "combined with the cooling tower influent:



      •  chlorine (biocide)

      •  calgon Cl-5  (corrosion inhibitor)

      •  sulfuric acid  (scale prevention)



 The  addition is necessary for  the control  of pipe corrosion.



      TABLE  19-14.   PLANT SPECIFIC DATA FOR PLANT 1226

                     RECIRCULATING COOLING WATER [2-55]

                 Pollutant              Influent    Effluent la)

                 Classical pollutants, mg/L

                   TOS                  190       1,000
                   TSS                   |l»         8
                   TOG                   10         I I
                   Phenol ics             0.01       0.008
                   TRC(b)                 NO       
-------
11.19.3.2  Plant 1245

Plant 1245 is an oil and gas  fired electric generating facility.
The samples chosen are the  influent and effluent from a once
through cooling tower stream.   The influent sample was taken from
the makeup stream comprised of  river water, with the effluent
stream being a direct discharge from the condensers to the river.
The cooling water does not  undergo any treatment to remove pol-
lutants.  The data reflect  the  changes that may occur to such a
stream due to evaporation and pipe corrosion.   Table 19-15 pre-
sents plant specific data for plant 1245.
    TABLE 19-15.
PLANT SPECIFIC DATA FOR  PLANT 1245,  ONCE-THROUGH
COOLING WATER [2-55]
            Pollutant
                  Influent
Effluent(a)
            Classical pollutants, mg/L
IDS
TSS
TOC
Phenol ics
TRC(b)
Flow, L/s
35,000
6
14
<0.005

-------
         TABLE 19-16.  PLANT SPECIFIC DATA FOR PLANT 3924,  ASH
                      POND OVERFLOW  [2-55]
Pollutant
Classical pollutant, mg/L
TDS
TSS
TOC
Phenolics
Barium
Boron
Calcium
Manganese
Magnesium
Molybdenum
Sodium
Iron
Aluminum
Tin
Toxic pollutants, yg/L
Toxic metals
Chromium
Copper
Lead
Nickel
Zinc
Flow, L/s
Influent

480
15
21
0.04
0.04
0.1
57
0.1
13
ND
43
0.5
ND
ND

3.5
14
5
9
10
13.1
Effluent

670
16
16
0.04
0.2
1
110
0.08
14
0.3
38
0.3
0.06
ND

48
16
12
32
10
13.1
Percent
removal

NM
NM
24
0
NM
NM
NM
20
NM
NM
12
40
NM


NM
NM
NM
NM
0

   Analytic methods: V.7.3.13,  Data set 2
   ND,  not detected.
   NM,  not meaningful.
Date:   1/24/83 R   Change  2  11.19-33

-------
    TABLE 19-17.  PLANT SPECIFIC DATA FOR PLANT 5409,  RECIRCULATING
                 COOLING WATER  [2-55]
Pollutant
Classical pollutant, mg/L
TSS
TOC
Chloride
Vanadium
Flow, L/s
Toxic pollutants, yg/L
Toxic metals
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Toxic organics
Benzene
Carbon tetrachloride
Chloroform
1 , 2-Dichlorobenzene
Dichlorobromome thane
Chlorodibromome thane
Toluene
Trichloroethylene
1,3 and 1,4-Dichlorobenzene
Influent

0.005
20
NA
0.013
290

1.4
ND
27
15,000
8
ND
1.7
2
1.6
ND
15
2.4
<1
1.4
5.3
NA
NA
2
4
2.4
Effluent

460
21
110
0.017
11

1
37
3,800
5
130
1
4
ND
14
8
290
1.5
NA
2.4
NA
2.6
<1
NA
4
NA
Percent
removal

MM
NM

NM


29
NM
NM
>99
NM
NM
NM
>99
NM
NM
NM
38
NM



0
   Analytic methods: V.7.3.31,  Data  set  2
   ND,  not detected.
   NM,  not meaningful.
   NA,  not available.
Date:   1/24/83 R   Change 2  11.19-34

-------
of coal.   An ash settling pond is used to remove wastes from coal
pile  run off, regeneration wastes and fly ash.  The  influent data
were  obtained from  the pond inlet whereas the effluent data are
from  the discharge  stream to the river.   The results of this
treatment are shown in Table 19-18.


      TABLE 19-18.   PLANT SPECIFIC DATA FOR PLANT 3920,  FLY
                     ASH POND [2-55]



                                                       Percent
          Pol lutant	Influent	Effluent	removaI

          Classical pollutant, mg/L

             IDS                      220        880       NM
             TSS                       12        73       NM
             TOC                        5         3       40
             Phenolics                 O.OU       O.OU        0
             Aluminum                   ND         5       NM
             Barium                   0.03       0.06       NM
             Boron                    0.08         I       NM
             Calcium                    28        120       NM
             Cobalt                     ND      0.007       NM
             Iron                     0.5         2       NM
             Manganese                 0.05        0.3       NM
             Magnesium                  7.2        6.7        7
             Molybdenum                 ND       0.01       NM
             Sodium                     18        35       NM
             Tin                       ND        ND       NM
             Flow, L/s                 61.3       61.3

          Toxic pollutants, ug/L
Toxic meta 1 s
Beryl 1 ium
Cadmium
Ch rom i urn
Copper
Lead
Nickel
Si 1 ve r
Zinc

ND
ND
1 1
it
10
12
ND
ND

2
ND
30
15
i\
18
ND
IUO

NM
NM
NM
NM
60
NM
NM
NM
         Analytic methods: V.7.3.31, Data set 2.
         ND,  not detected.
         NM,  not meaningful.


II.19.3.6   Plant 1742


Plant 1742 is a bituminous coal and  oil  fired plant producing 22
MW of electricity.  Table 19-19 represents data that  are from
both the ash pond and the once through cooling tower.


11.19. 3.. 7   Plant 3001


Plant 3001 is a lignite  coal and gas fired facility with a gene-
rating  capacity of 50  MW.   The plant uses approximately 277,000
Mg/yr of coal.  The fly  ash and bottom ash from the boiler are
combined and put through a series of three settling ponds.  The
effluent from the ponds  is discharged to the river.   Table 19-20
shows the  effectiveness  of this treatment technology.
Date:   1/24/83  R Change  2   11.19-35

-------



















'— '
in
in
1
CM
i««

CM
1-
O.

cc
2

^
H
0
O
LL.

CJ
LJ
Q.
t>5

1-
Z
3
a.


.
ON
»
1
O\

UJ

CD
1-



















4J —
C CO
CD >
O O
(- E
CD ID
a. s-

c
CD
3
—
£
UJ


.p
C
CD
3
—
c»_
C
—



P —
C CO
CD >
eg
CD Cti
a. i.



c

2
—
Ct-
Ct.
u





c
a

—
c^
c
—















•4J
c
(0
4J
~
—
__
o
a.


2002:
z 	 z



CD
co
^

o
c
o
o
0
o
3
O
S-
r~
1—
1
CD
CJ
C
0

OOO\vOC\J^^^^^^^«cC^^^^^O ^^^^^^^Q
OON cvjr-zzzzzzzzzzzzzd- zzzzzzzz
CJ . . JT
- OO -
^ "~





O O O VO ^ CM VO O\ 	 CM to ON — rojS'^J'OO O CJ O ir\ lA Q iPi O
jfO — OZ OOlftO -CVlOCMOO Zd" d-CMOJ • -Zcoz
?f) •* ^^ • • • £5 CD • • ^f ^f 00
OO O • OO •>
O 0 -






^ \f\Z "£ ^ ON ^~Z?2CZS!ro«E2EO ON 22 IA22O2OON2
ZOOZZZON — zzzz — zz ONZZ r^zz z o\z
A A A











•a
c
o
a.
e~
in
^








OIAOCNJO QlTvCM — ifN fO O lT> VO ro Q 00 O 00 O O CO iTi O O Q IfN
r — m— zzo -iTio -CMOCMOZ — ro — oi~- -r^zz •
PO — O -O -O ... o il-a- —
o o o o if -.
o -







OOOVOOCMVOON 	 CM PO ON — co ^ a- Q 00 O CM O iTMTiO in Q
•3-O — OZ OOlTlO -CNJOCMOO Z fO S CM CM • • Z CO Z
ro— O • • -O O • • • .* CO
OO O • OO J-
o o




_l
t -J
« Ol
•P 3.
C
CO -
4J U)
3 4J
— e c <«
— »> CDE3 cfleo —
O UE u>3C E E\ -P E3 >>
— CE 3.PCWOE — — — 8)3— t- — S- s-
— O — 3 C 	 COCDja3 C -D- — E'-EO) CDCD 3
co c E — o o co 01 c >>— co c co > o e o CL-O jt > o o
O C/JC/)CJ li- O X O CJ O -1 Z W N 2
W — 0
CO XI-
— O
O t-















































,
CM

4J
CD
 C N
£ 0- >>
•P CD C —
CD -P CO CO
E CD CD C
•O E CO
O
P O O O
>>C C C

CO i * «
CQ2<

-------
      TABLE  19-20.
PLANT SPECIFIC DATA FOR PLANT 3001,  MULTIPLE
ASH  PONDS  [2-55]
           Pol lutant
                Influent
Effluent
Percent
removaI
           Classical pollutant, mg/L

               TDS                       530         490          8
               TSS                       170          30         82
               Oil and grease               25          24          4
               Phenolics                   NA       0.014
               Aluminum                   0.5           2         NM
               Barium                   0.04         0.2         NM
               Boron                    0.06           2         NM
               Calcium                     38          64         NM
               Iron                      0.2          ND        >99
               Manganese                 0.04          ND        >99
               Magnesium                   23          II         52
               Molybdenum                  ND        0.03         NM
               Sodium                     57          70         NM
               Tin                        ND       0.007         NM
               Vanadium                    ND        0.01         NM
               Flow, L/s                 23.3      unknown

           Toxic pollutants, u.g/L

             Toxic metaIs
               Cadmium                     ND           8         NM
               Chromium                     5          95         NM
               Copper                      5          ND        >99
               Lead                       ND         1.5         NM
               Nickel                       3          18         NM

             Toxic organics
               I,I,2,2-Tetrachloroethane     24          NA

           Analytic methods: V.7.3.3I, Data set 2.
           ND,  not detected.
           NM,  not meaningful.
           NA,  not analyzed.
II.19.4  POLLUTANT REMOVABILITY  [2-55]

Table  19-21 presents  a summary of end-of-pipe treatment tech-
nologies commonly employed  on the Steam Electric  Industry,  their
objectives, equipment and processes  required, and efficiency.

Table  19-22 presents  the same information  for solid/liquid
separation systems commonly employed in the  Steam Electric
Industry.
Date:   1/24/83  R Change 2    11.19-37

-------
















l_-l
CO
r-

m
CVJ
^^
(O
LJ
_
O
o
	 1
o
x
o
LJ


I-
LJ
j£


LJ
K
LJ
n


Q-
1
U.
O
1
Q
Z
LJ

_•
CM
1
—

LJ

00

1-


















CA
3

CO
fcl


C
o
4J
CO
U


c
a






u a
c >
 >>
0 "-
U CA
U 3
WO
1- C
a. —






















i


_ i_
IA— o
CO CO
3-D
CD (A —
CA 3 U
ICO CO
•o"o
I. CD —
0 i. t-
— 3
•0 3<~

<£S

£
**
C

£»
*J — O

S OX3

(A t>-
xlf



c
o

CO
N


CO
t.

3
ICD
X
X
1

«
C
O

x
0
•o
o



u o
co 3
u-o
ac


0 X
ZJ3








k^
»




o

0)
01
Cto
I- O
4J
X
aw

.
2

CD —
«U 3
CD — CA
•O C. 	 CA
X 3 co —
O 1A 4» CO
	 0) M
•aa e
in
i- E e 3
"- £

3 O O »
CO CA CA Ci.


i o e
CO W 3
X —
CD E E

4- E£
O O 0
C£ 4>
O U C
o
*J *J —
U C CO
3 CD >
•o 	
S5i
c
o
u
3
•o
£


W
u

i

1
x
•°




._

c
o
X
o

•o
CD X
0 <-
— 4f
4> I/I
O 3
cot?



M
MM^ *
^"M*
o\ o
1 1 EO\u
3 CO
o) CD E a
ax o o u>
ao *- c o
UZUIMO-

0)
U
X
ac eg
oa
3 CA O"O
i?«5
•i»ci
Q.CD o o
o-o-i-


— 1 CA
3 CD CO
IA 1.
a. co
c -o
e, hydroge
e, organic
itants, so
£•00.
-114. O


X
A 0

CA a
C 3
O —
— o
CA
<- C
O —
US
>— CA
CD O CO
ee w m



c
o
*>
<0


a

u
CD
L.
a.
CD X
c a
1- X
o —


o —

*|
c x
O CD

*>-o
0 0 X
CD U 1-
— O 3
in CUTS
- 1- C
a a.—












X
a

CD
(. 4*

o-l
2 «
3




0)
C
O CD
1 » N C
O CA — O X—
0.41 O > <•
X— C .CO O
£ CO CD u CD —
- a> o
CD CD — fc.
C +J »w O -CD
	 CO « T3
U L. o > M 	
O O C — *> CO X
	 CD 1 	 a O
£ C £ CD CO CD —
u o a-o CA s-o






0 E

c —
o c
— CO
W 01
O 1-
il
g —
a




c
o
4^
u
o
d-
c

ta
Q

11



X— a
oa-x

iili
C *> 1- 3
O X O.41
CD
•o .13
CD O XCD
U u L O)
— CO w i.
** 1- CA CD
U CD 3 E

lill









§


X
a

£«
— c
3 CD
CTS
(. IA
X'T
CO'O
Z CO




£ 1
CA fc» —
CO O 4>
>>- cV CD
O1P 1 CD
CO CO CD a
*J 	 3
IA — a.**
*> 41 41 Ol
- IA- C



1 CD

— Xw

Ct.
4- 1- 0
O CD
*J C
CU o
O CO —
— E *>
S,S
l> CD O <-
CO > a 41
a— cow
CD 0 > CO
CO CA CD >




C
o
4J





IA
Q









































C
• O
c
O CD (A
evaporat i
merged tub
po ration,
or compres
— a a a.
CO 3 > CO
O •> CD >


























Date:  1/24/83 R  Change 2  11.19-38

-------














fO
r-
ift


i
CM


W
U
w




z


1-
ce
0.
1 1 1

 (A

I- *»
*J C9
(A *>
C (A

1

U CO
c >
Eff icie
of remo
•o
I
3
<0

CO
o

E
09
U

C
o

4> 0)
c|


0)
K




1-TJ
O 0>
(0
<0 3


£ ^
II
•b -J





V)
a
4J
O
a
o

(A
(A
V
U
2
a.

c
o


CO
(.
0)
0
o
c
1
c
s

X C


•o >>
~ X >
O 0) *>
E>S



8
1
o









o
z


c

B



1
















10
oat ing
uid waste
r
— CJO)
«-— u
»-~ 5
ot-'
o o
CO W *J
1=8
O O *-
fli «  4t


Ol
in
o

in
•a 4*
• co 4)
M a

ecu)
CO OJ 3
~ "• '"7
3 3-0
01 01 CO
O OX
O O 0.





U
10 JC
>> 0)
321





(A
1
o
a. at
i.
010)
w C
4> CO
0)™
IA O



•o
a>
||
a—
(0 M
3 w

10
°1?
Remova 1
sol ids


c
o



u

Clarif
i
c

4> 1
x c


o
->>£
O 0) **



f
««
.'- i
T) M— >>
C*> <0 —
CO— O
CO "D &
S « 0)
3 u U
C O CO —
— - > C
§t— CO
1- *> 01
— 0) O 1-
<<- CO O

c

i

o

1


t
c
o c
c — o
o «~
— 1. t. CO U
CO CO CO O W
41 * »— O
o-o c^o cw —
— O O 0) O <-
4: CD co o co — 3
*> aw at w > 3
£10 O W O CO O
	 U R
u. -o <»- "O it- oi>


•O coA
0) 0>
•o '-•o
C OIO)
OJ >
a-o o
ss=
«_0

o o c
o
C*D —
ecu
— CO CO Ol
to (0 O —
0)0 >>J£
W) 
CO
o
ul



£
• « IA
•a £ co
0 4»4>
MCO-k
- - " 0) «>'
0) CO C UTJ
i- 3 co a c
CO *0 — CLO



1
1
0









I








z






«.a
ra
ra —
.-•o
-a a)
ie
B
— 13
— X




TIG!
0) O CO
•O— ">
c u
0) CO
3 — -a

«»- —
«i-5
Remova 1
sol ids
through
and gra





c
o

4>
CO
U.


X

a
u >>

SJlt?
t V) 4*
ac M
O 3
IS!



M
O









I








Z





10
C
CD


O 0)
10 0}
8 u
CO <-
o a
0.0


Ol
3
S£
— £
O*>
M
«?
?«
CO (A
— CO

°.o
Remova 1
matter
screens






Ol
c

Screen



i
x >>
aa

•o >>
U 0) 1-
*> — »
U M 3
CO C-0
.1- 0) C
C 0)
O I- 0)
3 Ol
U UTJ
•0 CO 3
O U O









0)








Z

o!
c

c
0)
.X C
u o

£ *> en
W CO C

— 4-J£
> o
eo e —
O CO **


0)
01
1
M
Cj- ffi
o *•»
C9


si
i- >
Concent
by reno





o»
c

c
Thicke
^


•o
0)
u

s?
k. W
O.M
3
4JT3
O C

•«
if\ O
To 50-7
•oistur
content









o
z




u


ro
1
















its
<- O CO
*tt
.- 0)
— OlE
O C
10— O
at— o>
*- .a (-
O CO CO 3
c ai S
O >>>- 0)
— a o> i-
*> a. a
CO 3 0) 0>
a a- 0113
(0— CO 3





c
o


Iff 4*
,
c
0>
4i 1
X C


ffl.0
u •??
O 0) **
Hi


V
Ij









o
z
c
o
— <0


t- V


— 1
U. —






<0 Q)
•oa
a
.a •a

0) O
> o
Si


§!
isture fr
po rat ion
ugh sand


i- ° *5
o >>
.0 0)
Remova 1
s 1 udge
drainag






•o

•o
Sandbe
i
c
0)

X C


o

u o> **
EiS
CL V) ^


U C
Produce
solid i
f i Iter
cake









i
o
z



c

"e .

ITS
1
















C
separatio

•o
3
51
— 3
U
25



C
o


CO
U
1=
r
1
e
0)

X
0)

Six
o C
3iJJ
U 01 3
=•=!



A
—
I0*Z 1
4J O.(«l
eg -
10 W) *»
w c


• 10 W

'i c 3
3 0-J
— '-•a
<— CO





£

CO
1
OJ
















0>
5
CT3
(U C
11

a o
c-o
o o
Sepa ra t
emu 1 s i f





01
c

0-*
r
Date:  1/24/83 R  Change 2  11.19-39

-------
                      11.20  TEXTILE MILLS


II.20.1  INDUSTRY DESCRIPTION [2-57]

II.20.1.1  General Description

The United States textile industries are covered by 2 of the 20
major groups of manufacturing industries in the Standard Indus-
trial Classification (SIC).  They are Textile Mill Products,
Major Group 22, and Apparel and Other Textile Mill Products,
Major Group 23.  The Textile Mill Products group includes 30
separate industries that manufacture approximately 90 classes of
products.  The Apparel and Other Textile Products group includes
33 separate industries that manufacture some 70 classes of pro-
ducts.

Major Group 22 facilities are principally engaged in receiving
and preparing fibers; transforming these materials into yarn,
thread, or webbing; converting the yarn and web into fabric or
related products; and finishing these materials at various stages
of the production.  Many produce a final consumer product such as
thread, yarn, bolt fabric, hosiery,  towels, sheets, carpet, etc.,
while the rest produce a transitional product for use by other
establishments in Major Groups 22 and 23.

The facilities in Major Group 23, Apparel and Other Textile Mill
Products, are principally engaged in receiving woven or knitted
fabric for cutting, sewing, and packaging.  Some of the products
manufactured are dry cleaned and some undergo auxiliary process-
ing to prepare them for the consumer.  In general, all processing
is dry and little or no discharge results.

The exact number of wet processing mills and the total number of
mills in the textile industry are difficult to establish because
of the relatively large numbers involved, the dynamic state of
the industry, and differing classification criteria.  The number
of wet processing mills is estimated to be approximately 2,000,
and the total mills between 5,000 and 7,500.  Nearly 80% of the
facilities are located in the Mid-Atlantic and Southern regions.
The remaining 20% are distributed about equally between the New
England region and the North Central and Western regions.  Some
industries, particularly yarn manufacturing, weaving, and carpet
manufacturing, are heavily concentrated in a few southeastern
states.
Date:  9/25/81              II.20-1

-------
Facilities in the textile industry are engaged in various pro-
cessing operations required to transform fiber -- the industry's
basic raw material -- into yarn,  fabric, or other finished tex-
tile products.   Approximately 70% of the facilities are believed
to perform manufacturing operations that require no process water
and an additional 10% are believed to use only small quantities
of process water.  In contrast,  the remaining 20% of the facili-
ties that scour wool fibers,  clean and condition other natural
and man-made fibers, and dye or finish various textile products
generally require large quantities of process water.

Depending on the primary fiber type (wool,  cotton, or man-made),
a variety of production processes, some completely dry in terms
of water requirements and some resulting in wastewater discharge,
are used to manufacture the various products of this industry.
In general, most of the dry- or low water use-processing opera-
tions (spinning, tufting, knitting, weaving, slashing, adhesive
processing, and functional finishing) precede the wet processing
operations in the manufacturing sequence.

Most high water use textile manufacturing processes occur during
the conventional finishing of fiber and fabric products.  The
most significant are desizing, scouring, mercerizing, bleaching,
dyeing, and printing.  In the case of wool products, the distinct
nature of this fiber often makes additional wet processing neces-
sary prior to conventional finishing.  Additional specific pro-
cesses for wool include raw wool scouring,  carbonizing, and
fulling.

It is not uncommon for two or more wet process operations to
occur sequentially in a single batch unit or on a continuous
range.  For example, it is not unusual for desizing, scoijring,
and mercerizing operations to be placed in tandem with the con-
tinuous bleaching range to enable cotton to be finished more
efficiently.  It should be understood that a variety of wet
finishing situations of this type may occur, depending upon fac-
tors such as processes employed,  type and quality of materials
and product, and original mill and equipment design.

Table 20-1 presents industry summary data for the Textile Mills
point source category in terms of the number of subcategories
and the number of dischargers.

II.20.1.2  Subcategory Descriptions

Based on similarities in raw materials, final products, manufac-
turing processes, and waste characteristics, the following
Date:  9/25/81              II.20-2

-------
subcategories of the textile industry were established:

     1.   Wool Scouring
     2.  .Wool Finishing
     3.   Low Water Use Processing
     4.   Woven Fabric Finishing
          a.   Simple Processing
          b.   Complex Processing
          c.   Complex Processing Plus Desizing
     5.   Knit Fabric Finishing
          a.   Simple Processing
          b.   Complex Processing
          c.   Hosiery Products
     6.   Carpet Finishing
     7.   Stock and Yarn Finishing
     8.   Nonwoven Manufacturing
     9.   Felted Fabric Processing
             TABLE 20-1.  INDUSTRY SUMMARY [2-57]
     Industry:  Textile Mills
     Total Number of Subcategories:  13
     Number of Subcategories Studied:   9

     Number of Dischargers in Industry:  1,973

        • Direct:  245
        • Indirect:  974
        • Zero:  0
        • Unknown:  754


The subcategories are briefly discussed in the following sections.

     Subcategory 1 - Wool Scouring

This subcategory covers facilities that scour natural impurities
from raw wool and other animal hair fibers as the majority of
their processing.  Wool scouring is conveniently separated from
other segments of the textile industry because wool and other
animal hair fibers require extensive preliminary cleaning.

Wool scouring, the first treatment performed on wool, is employed
to remove the impurities peculiar to wool fibers.  These impuri-
ties are present in great quantities and variety in raw wool and
include natural wool grease and sweat, and acquired impurities
such as dirt, feces, and vegetable matter.  Disinfectants and
insecticides applied in sheep dips for therapeutic purposes may
also be present.  Practically all of the natural and acquired
impurities in wool are removed in the scouring process.


Date:  9/25/81              II.20-3

-------
Two methods of wool scouring,  solvent and detergent scouring,  are
practiced.  In the United States,  the latter is used almost
exclusively.  In the detergent process the wool is raked through
a series of 5,700 to 11,000 L (1,500- to 3,000- gallon)  scouring
bowls known as a "scouring train."  Unless the first bowl is used
as a steeping or desuinting bowl,  the first two bowls contain
varying concentrations of either soap and alkali,  or nonionic
detergents of the ethylene oxide condensate class.  The  soap-
alkali scouring baths are generally characterized by a tempera-
ture of 32°C to 40°C (89.6°F to 104°F) and a pH of 9.5 to 10.5;
neutral detergent baths normally have a pH of 6.5 to 7.5 and a
temperature of 43°C to 57°C (33.7°F to 320°F).  The last two
bowls of the scouring train are for rinsing, and a counterflow
arrangement is almost always employed using the relatively clean
waters from these bowls in preceding bowls.

Scouring emulsifies the dirt and grease and produces a brown,
gritty, turbid waste that is often covered with a greasy scum.
It has been estimated that for every kilogram of fibers obtained,
1.5 kilograms of waste impurities are produced.  Since the wool
grease present in the scour liquor is not readily biodegradable
and is of commercial value, grease recovery is usually practiced.
In the most typical recovery process, the scour liquor is first
piped to a separation tank where settling of grit and dirt occurs.
The supernatant from the tank is then centrifuged (one or more
stages) into high density, medium density, and low density
streams.  The high density stream consists mainly of dirt and
grit, and is discharged as waste.   The medium density stream is
recycled to the wool scouring train.  The low density stream
contains concentrated grease that is normally refined further to
produce lanolin.  Acid-cracking, utilizing sulfuric acid and
heat, is an alternative method of grease recovery, but it is not
widely practiced at this time.

     Subcategory 2 - Wool Finishing

This subcategory covers facilities that finish fabric, a majority
of which is wool, other animal hair fiber, or blends containing
primarily wool or other animal hair fibers, by employing any of
the following processing operations on at least 5% of their total
production:  carbonizing, fulling, bleaching, scouring (not
including raw wool scouring), dyeing, and application of func-
tional finish chemicals.  Mills that primarily finish stock or
yarn of wool, other animal hair fibers, or blends containing pri-
marily wool or other animal hair fibers and that perform carbon-
izing are included in this subcategory, and wool  stock or yarn
mills that do not perform carbonizing and scouring are covered
under Subcategory 7, Stock and Yarn Finishing.  Wool finishing is
differentiated from other finishing categories because of the
manufacturing processes  (principally carbonizing  and fulling) and
Date:  9/25/81              II.20-4

-------
dyes and other chemicals associated with wool operations.  As a
result, wool finishing operations generate high volume wastes
with pH fluctuations and oil and grease.
         »
Processes comprising a typical wool finishing operation include
carbonizing, fulling, fabric scouring, and dyeing.  Carbonizing
removes burrs and other vegetable matter from loose wool or woven
wool goods.  These cellulosic impurities'may be degraded to
hydrocellulose, without damaging the wool, when acted upon by
acids.  It is important to remove these impurities from the wool
to prevent unequal absorption of dyes.
                 >
The first operation in carbonization is acid impregnation.  Typi-
cally this consists of soaking the wool in a 4% to 7% solution of
sulfuric acid for a period of 2 to 3 hrs.   The excess acid is
squeezed out and the wool is baked to oxidize the cellulosic con-
taminants to gases and a solid carbon residue.  The charred mate-
rial, primarily hydrocellulose, is crushed between pressure
rollers so that it may be shaken out by mechanical agitation.
Some solid waste is generated, but, with the exception of an
occasional dump of contaminated acid bath, no liquid waste re-
sults.  However, after the residue has been shaken out, the acid
must be removed.  This is achieved by preliminary rinsing to
remove most of the acid followed by neutralization with sodium
carbonate solution.  A final rinse is then used to remove the
alkalinity.  As a result, the overall water requirements for the
carbonization of wool are substantial.

Fulling gives woven woolen cloth a thick,  compact, and substan-
tial feel,  finish,  and appearance.  To accomplish it, the cloth
is mechanically worked in fulling machines in the presence of
heat, moisture, and sometimes pressure.  This allows the fibers
to felt together, which causes shrinkage,  increases the weight,
and obscures the woven threads of the cloth.

There are two common methods of fulling, alkali and acid.  In
alkali fulling, soap or detergent is used to provide the needed
lubrication and moisture for proper felting action.  The soap or
detergent is usually mixed with sodium carbonate and a sequester-
ing agent in a concentrated solution.  In acid fulling, which may
be used to prevent bleeding of color, an aqueous solution of sul-
furic acid, hydrogen peroxide, and small amounts of metallic
catalysts (chromium, copper, and cobalt) are used.

Fabric scouring is employed to remove natural and acquired im-
purities from the fabric.  Either light or heavy scouring of wool
goods may be performed during wool finishing to remove the
acquired impurities.

Dyeing is the most complex of all the wet process operations.  It
is performed essentially for aesthetic reasons in that it does
not contribute to the basic structural integrity, wearability, or


Date:  9/25/81              II.20-5

-------
durability of the final product.   In short,  the function of dye-
ing is to anchor dyestuff molecules to textile fibers by a va-
riety of processes.

     Subcategory 3 - Low Water Use Processing

Low water use processing operations include establishments pri-
marily engaged in manufacturing greige goods, laminating or coat-
ing fabrics, texturizing yarn, tufting and backing carpet, pro-
ducing tire cord fabric, and similar activities in which either
cleanup is the primary water use or process water requirements
are small, or both.

While there are a large number of facilities of these types, the
process-related wastewater generated and discharged from each is,
for the most part, comparatively small.

     Subcategory 4 - Woven Fabric Finishing

This subcategory covers facilities that primarily finish fabric,
a majority of which is woven, by employing any of the following
processing operations on at least 5% of their production:  desiz-
ing, scouring, bleaching, mercerizing, dyeing, printing, and
application of functional finish chemicals.   Integrated mills
that finish a majority of woven fabric along with greige manu-
facturing or other finishing operations such as yarn dyeing are
included in this subcategory, and total finishing production
should be applied to the applicable Woven Fabric Finishing
.effluent limitations to calculate discharge allowances.  Denim
finishing mills are also included in this category.  Woven fabric
composed primarily of wool is covered under Subcategory 2 - Wool
Finishing.

A wide variety of processes are used in finishing woven fabric,
and in terms of cumulative flow this subcategory is the largest.
Desizing is a major contributor to the BOD load in woven fabric
finishing.  This results in a major difference in waste charac-
teristics between woven and knit fabric finishing, and is respon-
sible for differences in the waste characteristics within the
Woven Fabric Finishing subcategory as well.   In addition, the
number of processes performed at a particular mill may vary from
merely scouring or bleaching to all of those previously listed.
The following subdivisions describe the process differences.

     Simple processing.  This Woven Fabric Finishing subdivision
covers facilities that perform fiber preparation, desizing,
scouring, functional finishing, and/or one of the following proc-
esses applied to more than 5% of total production:  bleaching,
dyeing, or printing.  This subdivision includes all Woven Fabric
Finishing mills that do not qualify under either the Complex
Processing or Complex Processing Plus Desizing subdivisions.
Date:  9/25/81              II.20-6

-------
     Complex processing.  This Woven Fabric Finishing subdivision
covers facilities that perform fiber preparation, desizing of
less than 50% of their total production,  scouring, mercerizing,
functionaj. finishing, and more than one of the following, each
applied to more than 5% of total production:  bleaching, dyeing,
and printing.

     Complex processing plus desizing.  This Woven Fabric Finish-
ing subdivision covers facilities that perform fiber preparation,
desizing of greater than 50% of their total production,  scouring,
mercerizing, functional finishing, and more than one of the
following, each applied to more than 5% of total production:
bleaching, dyeing, and printing.

     Subcategory 5 - Knit Fabric Finishing

This subcategory covers facilities that primarily finish fabric
made of cotton and/or synthetic fibers, a majority of which is
knit, by employing any of the following processing operations on
at least 5% of their production:  scouring, bleaching, dyeing,
printing, and application of lubricants,  antistatic agents, and
functional finish chemicals.  Integrated mills that finish a
majority of knit fabric along with greige manufacturing or other
finishing operations such as yarn dyeing are included in this
subcategory.  Total finishing production should be applied to the
applicable Knit Fabric Finishing effluent limitations to cal-
culate discharge allowances.

Basic knit fabric finishing operations are similar to those in
the Woven Fabric Finishing subcategory and may include scouring,
bleaching, dyeing, printing, and application of lubricants, anti-
static agents, and functional finish chemicals.  Knitting is
performed in conjunction with finishing at most of these facili-
ties.  Desizing is not required in knit fabric finishing and
mercerizing is uncommon in practice.  The generally lower waste
loads of the subcategory can be attributed to the absence of
these processes.

As with woven fabric finishing, the number of processes performed
at a mill may vary considerably.  In addition, hosiery manufac-
ture is distinct in terms of manufacturing and raw wastewater
characteristics.  Consequently, internal subdivision is required
for this subcategory.

     Simple processing.  This Knit Fabric Finishing subdivision
covers facilities that perform fiber preparation, scouring,
functional finishing, and/or one of the following processes
applied to more than 5% of total production:  bleaching, dyeing,
or printing.  This subdivision includes all Knit Fabric Finishing
mills that do not qualify under either the Complex Processing or
Hosiery Products subdivisions.
Date:  9/25/81              II.20-7

-------
       Complex processing.  This Knit Fabric Finishing subdivision
  covers  facilities  that.perform fiber preparation, scouring, func-
  tional  finishing,  and/or more than one of the following processes
  each applied to more than 5% of total production:  bleaching,
i  dyeing,  or printing.

       Hosiery products.  This Knit Fabric Finishing subdivision
  covers  facilities  that are engaged primarily in dyeing or finish-
  ing hosiery of any type.  Compared to other Knit Fabric Finishing
  facilities, Hosiery Finishing mills are generally much smaller
  (in terms of wet production), more frequently employ batch pro-
  cessing, and more  often consist of only one major wet processing
  operation.  All of these factors contribute to their lower water
  use and much smaller average wastewater discharge.

       Subcategory 6 - Carpet Finishing

  This subcategory covers facilities that primarily finish textile-
  based floor covering products, of which carpet is the primary
  element, by employing any of the following processing operations
  on at least 5% of  their production:  scouring, bleaching, dyeing,
  printing, and application of functional finish chemicals.

  Integrated mills that finish a majority of carpet along with
  tufting or backing operations or other finishing operations such
  as yarn dyeing are included in this subcategory, and total fin-
  ishing  production  should be applied to the applicable Carpet
  Finishing effluent limitations to calculate discharge allowances.
  Mills that only perform carpet tufting and/or backing are covered
  under Subcategory  3 - Low Water Use Processing.  Carpet Finishing
  is a distinct segment of the textile industry because of the
  lower degree of processing required and the typically weaker
  wastes  that result.

       Subcategory 7 - Stock and Yarn Finishing

  This subcategory covers facilities that primarily finish stock,
  yarn, or thread of cotton and/or synthetic fibers by employing
  any of  the following processing operations on at least 5% of
  their production:   scouring, bleaching, mercerizing, dyeing, or
  application of functional finish chemicals.  Facilities finishing
  stock,  yarn, or thread principally of wool also  are covered if
  they do not perform carbonizing as needed for coverage under
  Subcategory 2 - Wool Finishing.  Denim finishing is included
  under Subcategory  4 - Woven Fabric Finishing.

t  Typical stock and  yarn finishing may include scouring, bleaching,
* mercerizing, dyeing, or functional finishing.  As a result of
  process differences, the water usage and pollutant loadings of
  this subcategory are lower than those found  in most other  sub-
  categories.
  Date:   9/25/81              II.20-8

-------
     Subcategory 8 - Nonwoven Manufacturing

This subcategory covers facilities that primarily manufacture
nonwoven textile products of wool, cotton,  or synthetics,  singly
or as blends, by mechanical, thermal,  and/or adhesive bonding
procedures.  Nonwoven products produced by fulling and felting
processes are covered in Subcategory 9 - Felted Fabric Processing.

The Nonwoven Manufacturing subcategory includes a variety of
products and processing methods.  The processing is dry (mechan-
ical and thermal bonding) or low water use (adhesive bonding)
with the major influence on process-related waste characteristics
resulting from the cleanup of bonding mix tanks and application
equipment.   Typical processing operations include carding,  web
formation,  wetting, bonding (padding or dipping with latex acry-
lic or polyvinyl acetate resins) and application of functional
finish chemicals.  Pigments for coloring the goods are usually
added to the bonding materials.

     Subcategory 9 - Felted Fabric Processing

This subcategory covers facilities that primarily manufacture
nonwoven products by employing fulling and felting operations as
a means of achieving fiber bonding.  Wool,  rayon, and blends of
wool, rayon, and polyester are typically used to process felts.
Felting is accomplished by subjecting the web or mat to moisture,
chemicals (detergents), and mechanical action.  Wastewater is
generated during rinsing steps that are required to prevent
rancidity and spoilage of the fibers.

II.20.2  WASTEWATER CHARACTERIZATON [2-57]

Wastewater characteristics for the textile industry, in general,
reflect the products and the methods employed to manufacture
them.  Because there is such a diversity in products, processing,
raw materials, and process control, there is a wide range in the
characteristics.  The variation extends vertically within each
subcategory, as well as horizontally among the subcategories.
Nonprocess-related variables such as raw water quality and dis-
charge of nonprocess-related wastes (sanitary, boiler blowdown,
cooling water, etc.) contribute to this lack of uniformity.

II.20.2.1  Subcategory 1 - Wool Scouring

Wool scouring waste contains significant quantities of natural
oils, fats, suint, and adventitious dirt that, even after in-
process grease recovery steps, cause the characteristics to be
distinctly different from those of the other subcategories.
These materials are collectively responsible for high concentra-
tions and quantities of BOD5, COD, TSS, and oil and grease.
Since the natural fat is technically a wax, it is not readily
Date:  9/25/81              II.20-9

-------
biodegradable and must be removed by physical or chemical treat-
ment.  Wastewater from the wool scouring process is usually
brown, thickly turbid, and noticeably greasy.  It is strongly
alkaline and very putrescible.

II.20.2.2  Subcategory 2 - Wool Finishing

Wool finishing wastes are typically high volume, low concentra-
tion wastes (for the conventional pollutant parameters)  that, in
terms of mass loadings, contribute large quantities of conven-
tional pollutants per unit of production.   The nonconventional
pollutants (sulfide and color)  and the toxic pollutants that have
been historically monitored (phenol and chromium) are both high
in concentration and quantity.   These conditions can be attributed
to the numerous steps required in processing and finishing wool
yarn and wool fabric and to the wide variety of chemicals used.

II.20.2.3   Subcategory 3 - Low Water Use Processing

Low water use processing refers, almost exclusively, to facili-
ties that perform weaving or adhesive-related processing.  Re-
gardless of mill size, process-related wastewaters from both
types of mills are typically very low in volume.  The only mills
with large flows are those engaged in water-jet weaving and mills
discharging large volumes of cooling or other nonprocess water.
Where process-related wastewater is a large portion of the total
discharge, the wastewater characteristics are determined primarily
by the slashing process (conventional weaving), the weaving proc-
ess  (water-jet weaving mills),  or the dipping, padding,  or satu-
rating process (adhesive-related mills).

II.20.2.4  Subcategory 4 - Woven Fabric Finishing

The wastewater generated from the finishing of woven fabric is
represented by a rather broad range in concentration and mass
quantity for the conventional pollutant parameters.  The internal
subdivisions of this subcategory (Simple Processing, Complex
Processing, Complex Processing Plus Desizing) group the estimated
336 mills into 3 reasonably distinct segments.

The differences between the three subdivisions are a function of
the complexity of the wet processing.  Mills classified in the
Complex Processing subdivision perform simple processing plus one
or more additional major wet processing steps.  Mills classified
in the Complex Processing Plus Desizing subdivision perform
complex processing plus desizing on the majority of their produc-
tion.  The typical water use and waste mass loading values are
progressively greater for each subsequent subdivision and gene-
rally reflect an increase in the same basic pollutant parameters.
Date:  9/25/81              11.20-10

-------
II.20.2.5  Subcategory 5 - Knit Fabric Finishing

The wastewater generated from the finishing of knit fabric are,
like those from the finishing of woven fabric, represented by a
rather broad range in concentration and mass quantity for the
conventional pollutant parameters.  The typical waste is not
generally as great in terms of concentration as woven fabric
finishing waste, and the variability from mill to mill is also
somewhat less.

II.20.2.6  Subcategory 6 - Carpet Finishing

The wastewater volume from carpet mills is typically quite large,
although water use (kg/Mg of product) is low relative to other
subcategories.  This is due to the specialized nature of carpet
manufacturing and the heavy weight of carpet relative to other
textile products.  The wet processing employed by a carpet mill
can include various combinations of the following operations:
scouring, bleaching,  dyeing, printing, functional finishing, and
backing.  Wastes from dyeing and printing are the major contrib-
utors to the high flows at these mills, but these processes do
not lead to extreme levels of conventional and nonconventional
pollutants.  Scouring and bleaching are seldom performed at
carpet finishing mills.  Functional finishing and carpet backing
make small contributions to the total flow; the latter often
results in a latex waste that should be segregated from the rest
of the waste discharge for separate treatment.

II.20.2.7  Subcategory 7 - Stock and Yarn Finishing

The volume of wastewater discharged by Stock and Yarn Finishing
facilities is comparable to that from mills in other finishing
subcategories.  The wastes generated are generally not as strong
as those found in the other subcategories, and depend substan-
tially on whether natural fibers, blends, or synthetic fibers
alone are processed.

II.20.2.8  Subcategory 8 - Nonwoven Manufacturing

The nature of nonwoven manufacturing is such that a typical
facility has relatively small hydraulic and pollutant loadings.
The wastewater may contain latex and numerous other contaminants.
At a few facilities,  special manufacturing operations or activi-
ties common to other subcategories might be performed with re-
sultant higher water use.

II.20.2.9  Subcategory 9 - Felted Fabric Processing

Felted fabric processing typically results in high volume wastes
of a generally dilute nature.  The wet processing operations may
include felting, dyeing, and functional finishing.  The rinses
that follow felting (fulling) and dyeing/ if employed, result in


Date:   9/25/81              11.20-11

-------
considerable water use and contribute most of the pollutants.
Functional finishing may also make minor contributions to the
waste load.

Table 20-2 presents the toxic pollutant concentrations detected
in plant water supply, raw wastewater, and secondary effluents in
textile wastewaters.  These data are the results of verification
sampling and analysis of the 129 priority pollutants.   Tables  20-3
and 20-4 present the classical pollutant raw wastewater concentra-
tions and loadings, respectively, by subcategory.  These data  are
representative of the historical data base of the Textile Indus-
try.  Where available, verification data are reported as a supple-
ment to the historical data.

II.20.3  PLANT SPECIFIC DESCRIPTION [2-59]

Tables 20-5 through 20-9 present toxic pollutant and classical
pollutant data for five textile mills.

II.20.4  POLLUTANT REMOVABILITY [2-57]

This section addresses current treatment technologies and pollu-
tant removability associated with the Textile Industry.

II.20.4.1  Industry Application of Wastewater Treatment

The following is a summary of methods and removal efficiencies
for systems for which data were obtained.

1.  Aerated lagoons (see Table 20-10)

    Used by:  Direct dischargers - 33 plants
              Indirect dischargers - 23 plants

2.  Activated sludge  (see Table 20-11)

    Used by:  Direct dischargers - 96 plants
              Indirect dischargers - 11 plants

3.  Stabilization lagoons (see Table 20-12)

    Used by:  Direct dischargers - 44 plants
              Indirect dischargers - 16 plants

4.  Polishing ponds

    Subcategory 7, one plant sampled  (see Table 20-13)
    Subcategory 9, one plant sampled  (see Table 20-14)
Date:  9/25/81              11.20-12

-------
   TABLE 20-2.  CONCENTRATIONS OF TOXIC POLLUTANTS FOUND
                SCREENING AND VERIFICATION DATA  [2-57]
IN TEXTILE MILL WASTEWATER,
Toxic DO 1 lutant uo/L d
Metals and inoroanics
Ant i mony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Silver
The 1 1 i urn
Zinc
Toxic oroanics
Bls(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Ol-n-butyl phthalate
Dl ethyl phthalate
Dimethyl phthalate
Acryloni tri le
,2-01 pheny 1 hyd raz i ne
N-nf trosod [pheny (ami ne
N-n i troso-d i -n-p ropy I ami ne
2-Chlo ropheno 1
2 , 4-0 1 ch 1 o ropheno 1
2,4-Dlmethylphenol
2-N it ropheno I
4-N it ropheno 1
Pentach 1 oropheno 1
Pheno 1
2,4,6-Trichloropnenol
Parachlorometa cresol
Benzene
Chlorobenzene
, 2-0 i ch 1 o robenzene
, 1-0 i ch 1 o robenzene
2,6-Oini trotoluene
Ethyl benzene
Hexach 1 o robenzene
To 1 uene
,2, 1-Tri Chlorobenzene
Acenaphthene
Anthracene
Benzo(b)f luoranthene
Benzoj kjf luoranthene
Fluorene
Naphtha lene
Pyrene
2-Chloronaphtha lene
Chloroform
0 1 ch t o rob romomethane
, l-Oichloroethane
,2-Oichloroethane
, 1 -0 1 ch 1 o roethy 1 ene
,2-Olchloropropane
, 3-Oichloropropene
Methyl chloride
Methyl ene chloride
Tet rach lo roe thy 1 ene
1,1, l-Trichloroethane
T r i ch 1 o roethy 1 ene
Tr i ch 1 orof 1 uorometnane
Vinyl chloride
Pesticides and metabolites
1,1' -DOT
Dleldrin
water SUDOIV
Number
of

6
4
4
5
5
6
4
6
4
6
6
6
4
12

6
0
1
3
0
0
0
0
0
0
0
0
0
0
0
5
0
0
2
0
0
0
0
0
0
4
0
0
3
0
0
2
0
0
0
6
2
0
0
0
0
1
0
2
0
1
0
0
0

0
0

<5
<5
<5

-------
 I
 (M
 O
 CO
 cc
 LU
 ce
 o
 co

 co

 o


 i
 LJ

 O
 o
 o
 2

 at
 
l_ OJ
O D
3- C
1> (0

j

tO

VI
1- 0
Q) "~
.ot- Q
E o e
Z M
C
cs

•o
0)
r

CM
L
0
O 0)
OJ D
*J C
CO CO
o tr
A
3
W

(A
«- 0)
0! —
sol
3 CO
Z W
C
CD
1


>
^
0 OJ
0 0
OJ C
** n
CO (E
0
A

CO

M
i. 4
E 0 G
3 ce
Z V)








L.
fl
j
L
cv
OOOO ~

CyfyvO— —
vO
lA

OOO
OOO
— SCO O


ocoeo —
1 1 1 * O 1

rof- O O— lA
_ "~ ™"





M m oo fy -»—*— cy —
	 — .O£
— _
ooocy— — — "-
or-o\o o ooo
O\— lA — x~vv
o ooo
— O cy a- O
lA — lAiA
PO —
o
§OO O
O O O
-oooo ooo
vO lA ••S' • \O CO ••

I I I 1 I III

o-o or- o ooo

— cy — — C

~ ~"



— — — & nf) n&
cy fy cy cy

OOOO 0 ~
OOOO CO O
cyW |

OO
§000 o
ooo c
cvjso— ^IA ry^
i i i i O i r Q

CO O O O O O -
PO— ocy co — cy
fO — —

—







x^
i1 »


n (U _J C
•O -J « 'N* 3

E<_,-J=- ls*l
^ttsi -I*
* * — n o e t-
jSoVt-ges
— O O W) 3 — £ £ O
u_do>~tnoQ-oo






o
a



o
o
QJ
CO
o
A
CO











.£>

o
a

CC
o

D
CO











n
o
a
a
n


=















OOOOOflOOOO



— — _
o o o
ooooo ooo
OOOOO OOO I

— . > . -o -ryo


1 1 1 1 t 1 1 1 1 1

JOO— OiAJ'.S'O I
— ro fy


(


— so O CO •~*if\ lA — — -
lArofy fy JD — J3
VO vO
ooooovoa-o-^
O»AO— OaiA— O

o

s-
-"
O J!
OOO O O i/
OOO OO
-fy — OOOOCyiA
o * -r-cyvoc - *


,

S- OO J a OPO— — O
OJ — PO .

— (



PO CM — — A
cy

ooocy cyooeoo
StMO CO


O O
OOOO O O
OOOO O O t
-OOJOJOO •«

	

IA— o — cy — cy
cy
,




S-PO cy cy — — —



x^
i1 «


>i a _J c
«C -J « "^3
•D •'N. CO —1 O>

3* Oi^xV. . ~" E<
O 6 Ol CTi O "D -3
E ET3 C 	 	
- - — to O E t.
>iT\ * .W COO
OQOW — — OJfc.—
— O O CO 3 — £ £ O
U-tOO^-tOOO-OU
ooocyoocMOO



"•

OOO OO
J O 0 O OO
> lAOOOOOOCM —
»O -CO »00 CO - »


3 II 	
J
1 S COO OOlAvOO O
D a-
i
3
3
5


voor-oapoor^eo
iA co cy c\j — «••• • —

OOOOOCMOOO





3 O
> o o o
1 o o o
>i ^o cy o IA c? o o o
7
1) 1 1 1 1 1 1 1 1 1
J
o O O O eoovofsf Or--
J — CM a — lA T 	 PO
3 — — lA
3
r>



ro 	 —


O 0 0 "> tA PO O CO O
IA cy oo — a-
-

0 0
D OOOOO O O
n ooo oo o o
	 _ cyr-ir — vo —
D
7 1 1 1 1 1 1 1 1 1
)
k> — OO— O-3'-~pOO
TJ — voacyfy— — f—
J ro —

^



^«^^'OONO'2ON



«J
O)
E v>


>> V _l C
ea -t M v.,3
•O -N,fo -J Oi
NX Old) "NX 3,<
E-l 3.S- 01 Z
3 OI'N.X^ ^ e~<
OEOiOXD'D "3
E 6T3 C 	 	
- cs 0 E <-
> lA * .W COO
O OOCO — • — 0) 1- —
— OOCO 3 — ££ 0






JO



O
y

*>
j

3
CO












fX,
o


n
c

z
CO












VO
>
0
o
0)
4J
CO
U
r

V















ooooo — —
coco or- o o

- r-eo
cy oo

§o
0
ONOOO O

— v£) PO — O IA— —
o a
I 1 I I O 'I

POJ O O — a lA
cy





— j PO a —*•*—•-».—-«
— £ CO £• £ A
— — fy cy
ooocoo — ooo
O — VO CM — — LA





OOOOO OO
ooooo oo
vovooocya^^voo

1 1 1 1 1 1 1 1 1


a-.3-.3- IA






— voa-iA — — cy —


ooor-ocoooo oooo
vo a CM — — a- lAcyiA —
— —


00 OOOOO
o o o o o o
O\O~"OO ""OO > LAO — O
voiAfy cy sr o— to— o — tocyfyo o
0 00
iiiiiiiit v iiiicy —
4* -
\OOOr*-O'*>^-3'iA CO — lA O CO —
— OJ A CM

cn



PO— — — — Jcocoeoa



•*v. "NX
i . r .
*> 4J

>» 0) -J C >> 0) J C
CO — 1 tfl "-x. 3 CO J « "N, 3
•o NxtoJOi "o ^xaj^Q!
^"""-i-i ^l>^ai ^'~l -i ^"^^i
3" C7l\^ . ~E*< 3* OJNxNx . E"<
O E OlOlOJ-D * 3 OEOl&VO -3
EE-OC 	 * EE-OC 	 *
* * — eo O E t. * * — en O E L.
NjiA»fcfc_ COO >lA^«<^ COO
OOOtO — — 0)1-— OOO« 	 Ot- —
— O O tO 3 — ££O — OO«3— ££O
LtcDOH-(/5O^-OO l^COOH'tOO'^OO
















































0)

(D C
"id
— O CO
O. to
W 0}
4J (- C
0) O
« o —
CO CO
*J CO O
CO ** "~
."° U
PO C >
. 0)

. 0 0
. fc- Ifl
3— -
«> 3 Q]
.. C « 3
W— O —
•D ^ ro
o fl) o>
4J » 1- Q)
OJ « 01
E OJ co
t- to t-
o a) " o
C «J3 O
Date:   8/31/82 R  Change 1 11.20-14

-------







in
i
CM
*— *
^



a
<


cc.
0
CO
X


^
K.
O
U
Ul
<
CQ

05
^
ffH
UJ

CO
O
_
a
<
o

1-



3
O
Q.

CC
Ul
1—

2
^«
CO

*
CC


•
0
CM

Ul
CO






eo


o
0
o
CQ
o
a
3

a
a






it.
(- «
E o e
3 eo
Z «!
C


•a





o
c
a




Ul
.£><•- C
E o e
= s





u
o
w
1
£
eoj-vo
CM —





CM CM J
1 1 1

CMf^eo
ocvjd






— — eo eo eo co




OOC-

CM~




00^ -,

1 1 1
C\lr~iTi
»






Or-0 	 ~
— — eo eo eo ce



CMOro O
3 eo Jt —





000
— m» CM

iii i
coooi m
e»1 «- —





« — '_*

t



?So,t
01 ^«r 01
je 01 o> aT-o . 3
JCJt'O C 	
* — a o «
S> %










3-CM— - — CM


O
O

01 o d* u>m *

iii iii

OteOCM ^OMO
Ift O O OO







•»•





— O f»f-CM




0
OrovOCM — Cd^

1 1 1 1 1 1 1
\oocvigocvio\4-
co t-' CM' o CM'






.o-eoroio^










ooooo
— — -*r
i i i i i i i
eo eo eo 10 vo 03 —
eo OOO — O



CM.^-0*



t



tef(jS
je jc -o c — —
« — « o •
o ov)1 — « 2
O O CO 3 — ££
CAUH> to o a. o





o
in

£•
o
a
4J
CO
O

c?













a
>
a

4J
c


to













U*
£
o
o
01
o


t/3










tMcO -O - • •




OO O OO
JT co -j o eo in r^-
— \OC\JtfC\J-fU
1 1 1 1 1 t 1

vo^OMOtf eotf
— ocy 	 o











CMOOtf if\CMh»

— (*- rO J1




OOOO

1 1 1 1 1 1 1
OO^cnmtf jtf
to — *oo <*> —






Ov-Oi^io^eo




pj 00 •— • •





0 S °lrt

1 1 1 1 1 1 t

tf CMVOOOO



^OCM^OVOV-O



t
o>
JC

•^xx 0101 .
« — «fl O •
§« «w c 5
OCA — — CO C
O CA 3 — £ C
ui-u>oa.o






eo

2
o
a
4J
CO
U
^
C/1














5
o
a
4J
u
a
3














M3
£
o
o
09
O

3
(O










r-oow ITS
«O CM O





— Ch_ —
III ,1

fOOCM tf
 tf OOO OO
•CM -OXCM > — OOCM MO
"* Q "™
111*1*1 O III II
0)
tf CMXOCOCSJ — (M *J intf ^O tf \O
— OOOO O (M
A
3
tf>
o^cv^r-,- *„-„„-

i—f -w

t t
CTI at
JC JC

OKA X 9>tA X
Z (6 Ol>^ X a Wx.
at •xaxai PI ^ or en
x o>2>a>*-x, x 01 o> on- x*
^XX WOl » ^XX OiO» *
*15« - - "^li? -2
* — « O H *. — * O •
m * «*•- co tn •> »<»- c p
oocy> — — to c QQ<0 — — o t
CD U ^ ^) O A> (J CO O H* tf) O *» O

















































•
3
«

t
• o

o
» o

2s
°-3
»> e
• o
• o
sit

" C
(0 —
Ic
4J «
8e
Analytic
(a) The
Date:  9/25/81
11.20-15

-------
              TABLE 20-5.   WASTEWATER CHARACTERIZATION,  OF TOXIC AND CLASSICAL
                              POLLUTANTS AT  PLANT  100  12-59J
                Wastewater treatment description:  Neutralization, aeration, clarification,
                  carbon/sand filtration, chlorine contact
                Influent flowrata-Average:  3,600 cu.B/d (960,000 gpd). Range during sampling:
                  2.460 to 5,300 cu.m/d (650,000 to 1,400,000 gpd)
                Pollutant
                                                 Intake
                                                 water
                Raw
             wastewater
ClarTfTer
effluent
 FTlter
effluent
                Toxic pollutant*, M9/L

                  Acrylonltrile                    BDL        BDL          
-------
                TABLE 20-6.  WASTEWATER CHARACTERIZATION,  PLANT 200 [2-59]
       Wastewater treatment description:  Line and ferric chloride  reactors,  polyelectrolyte addition,
         primary clarification, aeration, secondary clarification,  chlorination, multimedia pressure
         filter
        Influent f lovrate-Average: 1,700 cu.m/d (MO,000 gpd) Range  during sampling: 3M>  to 3,200
         cu.m/d (90,000 to 840,000 gpd)
Pol lutant
Toxic pollutants, ng/L
Ac ry 1 on i t r 1 1 e
Benzene
1 , 2 , ii-T r i ch 1 o robenzene
1,1, l-Trichloroethane
2,i|,6-Trichlorophenol
p-Ch 1 o ro-m-c re so 1
Chloroform
1 , 2-D i ch I o robenzene
Ethyl benzene
Fluoranthene
Methyl chloride
Naphthalene
N-n i t rosod i -n-p ropy 1 am i ne
Pentachlorophenol
Pheno 1
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Oi-n-butyl phthalate
Diethyl phthalate
Anthracene
F I uo rene
Pyrene
Tetrachloroethylene
Toluene
Trichloroethylene
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i un
Si Ivor
Tha 1 1 i urn
Zinc
Classical pollutants, mg/L
COO
TSS
Total phenol
Sulfide
Color (ADMI 6 pH 7.6)
Color (ADMI • orginal pH)
pH, pH units
Intake
water

O.U
BOL
BDL
BDL
BDL
BOL
360
BDL
6.0
0.2
9.0
BDL
BOL
BOL
BOL
BDL
0.8
8.0
5.0
BDL
0.14
0.3
BDL
1.9
3.2

-------
               TABLE 20-7.   WASTEWATER CHARACTERIZATION,  PLANT  UOO [2-59]
              Wastewater treatment description:  Holding basin, aeration basins,
                clarification, sand filtration, chlorine contact
              Influent fIowrate-Average: 980 cu.m/d  (260,000 gpd) Range during  sampling: 870
                to  1,200 cu.m/d (230,000 to 320,000  gpd)
Pol lutant
Toxic pollutants, ug/L
Ac ro 1 e I n
Ac ry 1 on i t r i 1 e
Benzene
1 ,2,U-Trichlorobenzene
2,4,6-Trichlorophenol
p-Ch 1 o ro-m-c reso 1
Chloroform
1 , 2-0 i ch 1 o robenzene
Ethyl benzene
Methyl ene chloride
Naphthalene
N-ni trosodi-n-p ropy lam Ine
Pentach I o ropheno 1
Pheno 1
Bis(2-ethylhexyl) phthalate
Pyrene
Tetrachloroethylene
Toluene
Trichlorethy lene
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si iver
Thallium
Zinc
Classical pollutants, mg/L
COD
TSS
Total phenols
Sulf Ide
Color (ADMI « orginal pH)
Color (ADMI « pH 7.6)
pH, pH units
Intake
water

BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
BDL
22
BDL
BOL
BDL
BDL
BDL
BDL
BDL
U.8
BDL

-------
                TABLE 20-8.   WASTEWATER  CHARACTERIZATION,  PLANT  50 [2-59]
              Wastewater treatment description:  Holding basin, aerated lagoon,  clarifier,
                dissolved air flotation, chlorine contact, polishing pond
              Influent flowrate, average: 1,000 cu.m/d  (276,000 gpd) Range during  sampling:
                950 to 1,100 cu.m/d 252,000 to 288,000  gpd
Pol lutant
Toxic pollutants, ug/L
Acry lonl tri le
Benzene
1 , 2, ii-T r i ch 1 orobenzene
1,1, l-Trichloroethane
1, 1,2,2-Tetrachloroethane
2,i*,6-Trichlorophenol
p-Ch I o ro-m-c re so I
Chloroform
1 , 2-D i ch 1 o robenzene
1 , 2-T rans-d i ch 1 o roethy 1 ene
2 , I*-D i methy 1 pheno 1
Ethyl benzene
Methyl ene chloride
Naphthalene
N-n i t rosod i -n-p ropy 1 am i ne
Pen tach 1 o ropheno 1
Pheno 1
Bis(2-ethylhexyl ) phthalate
Betyl benzyl phthalate
Di-n-butyl phthalate
Di ethyl phthalate
Acenaphthylene
Anthracene
Te t rach lore thy 1 ene
Toluene
Trichlorethylene
Antimony
Arsenic
Beryl 1 ium
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Thai 1 ium
Zinc
Classical pollutants, mgL
COD
TSS
Total phenols
Sulf ide
Color (AOMI « pH 7.6)
Color (AOMI « orginal pH)
pH, pH units
Intake
water

BDL
0.3
BDL
BDL
BDL
BOL
BDL
BDL
BDL
BDL
BDL
1. 1
I |
BDL
BDL
BDL
BDL
BDL
1.6
0.6
BDL
BDL
0.05
1.8
7.3
0.6
21*
2
<0.04
2
6
16
<2
53

-------
              TABLE 20-9.   WASTEWATER CHARACTERIZATION,  PLANT  700  [2-59]
            Wastewater treatment description:  Aerated equalization, ferric chloride
              addition, flocculation, clarification
             Influent  flowrate, average:  1,770  cu.m/d ( 467,000 gpd) Range during sampling:
              1,500 to 1,990 cu.m/d (1*00,000 to 529,000 gpd)
Pol lutant
Toxic pollutants, ug/L
Acrylonitri le
Benzene
Chlorobenzene
1,2,4-Trichlorobenzene
1, 1,2,2-Tetrachloroethane
2,4,6-Trichlorophenol
p-Ch 1 o ro-m-c reso 1
Chloroform
2-Chlorophenol
2, 4-Dine thy (phenol
Ethyl benzene
Hethylene chloride
Naphthalene
4-Nitrophenol
N-ni trosodl-n-p ropy lam Ine
Pen tach I o ropheno 1
Pheno 1
Di-n-butyl phthalate
Di-n-octyl phthalate
Diethyl phthalate
Anthracene
Phenanthrene
Tetrachloroethylene
Toluene
Trichlorethylene
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Thai I ium
Zinc
Classical pollutants, mg/L
COD
TSS
Total phenol
Sulf ide
Color (ADHI « original pH)
Color (AOMI « pH 7.6)
pH, pH units
Intake
water

BDL
BDL
0.2
BDL
BDL
BDL
BDL
BDL
BDL
BDL
0.3
6.3
BDL
BDL
BDL
BDL
BDL
2.6
1.7
0. 1
0.2
BDL
BDL
0.7
0.14
36

-------



















»-^
f*»
ITS
1
CM


V>
Z
§
o
5

o
UJ
t-

Q£
UJ


u.
o

V)
V)
UJ
z
Ul

1-
o
Ul
u.
u.
LJ


•
o
1
o
CM

J
5
^
K
























_l
o
E
w
CO
1-







_l
>«.
Q
g

.
a
o
o











_i
•x,
§

•
Q
S







c
o

4J
c
0)
Q}
Q























^j
C
a>
3

-
CK
Ul



4J
C
0>
3
-
C



J^
C
(1)
3
__
<4-

c
«
3
Q.
C
_




^
£

«
i
•w
4J


_J
21
X
2


CO
s
CQ
Jp
u
(0
a

£
o
S
*>
CD
U
J3
3
(/>


ONOOO 1 CM
OOVOO —






1 cf O 1 —
ir\vo CM
LA



OO I O 1
— 00 O
OOlTt CM

-_






OO 1 O 1
d-a- o
00 VO OO
^





a* Ov O O -tf
Ox \O vO OX —
«• _•






OOsOOO
r*\ooo% —
to f** ro *-•
	








o if ^> co i^
\o c\j co ~ r*-





oooo^rmos
CO CO "• ON if
h- c\j



OOO

o ^ £• t* o
2"
_ _ _
55Sf5



O CO O 09
jf jf jf U^^»























^— *
r**
\f\
i

— •
i-
0

u.
0

t/)
(O
UJ
z
Ul
—
1-
o
UJ
u.
u.
UJ


•
—
1
o
CM
Ul
_!
«j
H-























_J
O
E
W
C/)
1-







_l
V



.
o
o












_1
V
1

•
o








c
o

4J
c
OJ
CD
Q























4J
C
4)
3

(4-
(,
UJ

^
C
0)
3
—
C
^
C
0)
3
4-
(f-
Ul



4J
C
(0
3
4-
C
~~


JJ
C

3
^
If.
«a- oor- ONa-a- — oo

VO co-^ JT





OOvCM-tfOOcoOOvirMDOvcom — ONVOOiTt
CM — CMCM CMO d1 	 —CM CO
— — CM






oooooooooooooooooo
OOOcor-OcOiTflOUM-- ONOCOO — iftOCM
VO* — CMifcovo — CMCM — CM — — CM — VO —
«• • ^ — •




0

*

o\ o ^t u^ o t^ co o o co CNJ o o vo o *^ «tf* o
g\ _ f^ f*, f*> ONN* C\J 00 "3* CO CM *" (*•• CO ro ^ lA
_ _ _ a-- _




invoco — a-c\jo3oor~-oovoovooiAr-flOinoo
— co — oo«-OMrt — h» — *r** — ootr\coif>
«OCM— — *— — — — — —CO — ON —



o o
f 4& P P ^ 4^ P 4^ P 4^ ^ P P ^ ^ P CO CO
OOOOUOOOOOOCJOQOO^^
4)0}Cl>CJ)Q)C)>CJ}CJ3Q)Q)OCJ>CDOj)Oj)Q)>^*~
l-t-'-'-t-t-'-t.'-Ct.l.l-t.l. '-'OT3
OQOQQOOQQQQQOQaO 	



OCOOOOOCOJ3J3CDCOJ3J3
^ Jf & St Jf a* a* J" Jf lA USiArfN lA VO f^ f1* Is*





















.
vO
r«-
o\
—

c_
CO
0)


5

L.
O
V

0)

X2
CD

•—
CD
CD



w
?

C
•••
IA
CO
A

•o
C
CO
J
o
^
Ct.
CO
01
(B
S
5
CO
c
0
•o

-------
                   TABLE 20-12.  EFFECTIVENESS OF STABILIZATION
                                 LAGOONS [2-57]

                                                       Effluent
                                                    concentration,
                                                        mq/L(a)
Subcateaorv
4c
4c
4b
5b
5b
5a
5c
7
7
8
8
D i scha rae
Direct
Di rect
Ind i rect
Indi rect
Ind i rect
Indi rect
1 nd i rect
Indi rect
Indi rect
Di rect
Indi rect
BOD
53
35
480
320
140
140
210
230
1 10
17
79
COD
180
120
2,200
810
-
860
550
630
790
-
—
TSS
14
35
18
40
-
-
-
59
940
29
180
         (a)Influent data were not presented.


                 TABLE 20-13.  EFFECTIVENESS  OF A POLISHING  POND,
                               SUBCATEGORY 7  [2-57]

         Pollutant                       Influent                  Effluelu:

         Classical pollutants

          COD, mg/L                        78                       140
          TSS, mg/L                        37                        28
          Phenols, ug/L                    36                        51
          Sulfide, ug/L                      2                        ND
          Color, ADM I                      210                       220

         Toxic pollutants, ug/L

          Trichlorofluoromethane           48                       ND
          Bis(2-ethyhexyl) phthalate       40                       II
          Lead                             36                       ND
          Zinc                             860                      120

         ND,  not detected.
Date:  9/25/81                  11.20-22

-------
5.  Coagulation,  chemical or  polymer (see Table  20-15)

    Used  by:   Direct dischargers - 15 plants
               Indirect dischargers - 10 plants
               Zero dischargers - 3 plants
     TABLE  20-14.
     Pollutant
EFFECTIVENESS OF A POLISHING POND,
SUBCATEGORY  9 [2-57]
          Influent
Effluent
     Classical pollutants

      COD, mg/L
      TSS, mg/L
      Phenols,
      Sulfide,
      Color, ADM I

     Toxic pollutants,  ug/L
            550
             91
             52
             ND
            280
  260
   22
   28
   ND
  300
Naphtha lene
Bis(2-ethylhexyl ) phthalate
Chromium
Copper
Selenium
Zinc
56
18
35
ND
32
45
ND
ND
ND
18
18
100
     ND,  not detected.
II.20.4.2   Other Methods and  Industry Applications

Other full-scale treatment methods that have been cited in the
literature,  but for which no  data were presented, include:
screening,  neutralization, equalization, and biological beds.
Date:  8/31/82 R  Change 1    11.20-23

-------







;r
i
%O
1.

a

t-k b(.o ?» t- i (. c
a o oa«j Lot. **
>»— >»— c ;»»— >»~ o M u »— e *» >»— ?*—
uw i-«>. o t- *- i-*- on o-g »- fc- o— *•*- i- *•
a— ca— — eo— «— — > — c co— — — •— « —
•a *- •gt- ** *j -at. -Q (. «. c^o "O <• **v c "o *- •at-
C ed C« «— C w C eg X. > X.U C * O O O C(B C «
o- o- we o- o- oi« a>« o- ® i--- o- o-
uo oo o a oo oo » — a*
si s | til | | si |fl


a "w"
~SSS*» SS« r-r-


a o o o o w in



1 1 1 I I O 1

1 O O O O O O
SO O O GO ^O O
.J1

I O 1 1 1 O 1
o o
ro O



\O (M 1 O O O O O
i S S S =
e a
« .
8 °
T) —
U
1 i ' ' ' ' § | §


c
O A «
X*> ** >» **
1 W —««•-«
co- oSo «*§*«* c
+**>— «- *> O C 4J C U C v
SS£ oiS 3 o;Z SZ SiZ 3
O Q.— eg (- o caaoCLcflO. o
u. o u. O u. O ik






CD 8
• 00 CO
I j: ti p 3 s
i -J -J * < < <


N « J3 «
. N 3 I 5 I 5























e
o
+>
|
o>
o
c
o
t.
a
!§
o —
ts
1!
M
,|
(0 **
i
o
— X
t.*
A **
£3
*d
Date: 9/25/81
11.20-24

-------
                11.21  TIMBER PRODUCTS PROCESSING

II.21.1  INDUSTRY DESCRIPTION [2-60]

II.21.1.1  General Description

The Timber Products Processing Industry encompasses manufacturers
and processors who use forest materials to produce their goods
and merchandise.  Fifteen distinct subcategories of manufacturers
and/or processors are engaged in the utilization of timber.   This
section addresses three major subsections of the entire industry,
(encompassing five subcategories):  Wood preserving; (steaming,
Boulton and nonpressure processes);  insulation board manufac-
turing; and wet process hardboard manufacturing.

Table 21-1 presents industry summary data for the Timber Products
Processing point source category in terms of the number of sub-
categories and number of dischargers.

             TABLE 21-1.  INDUSTRY SUMMARY [2-60]
          Industry:  Timber Products Processing
          Total Number of Subcategories:   15
          Number of Subcategories Studied:   5

          Number of Dischargers in Industry:  247
             •  Direct:  19
             •  Indirect:  52
             •  Zero:  176
II.21.1.2  Subcategory Description

This section presents general descriptions and process descrip-
tions for the five subcategories of the Timber Products Pro-
cessing point source category.  The remaining ten subcategories
have been classified as Paragraph 8 exclusions and are not dis-
cussed in this report.

     Wood Preserving

The three most prevalent types of preservatives used in wood
preserving are creosote, pentachlorophenol (PCP), and various
Date:  8/31/82  R Change 1   II.21-1

-------
formulations of water-soluble inorganic chemicals, the most com-
mon of which are the salts of copper, chromium, and arsenic. Fire
retardants are formulations of salts, the principal ones being
borates, phosphates, and ammonium compounds.  Eighty percent of
the plants in the United States use at least two of the three
types of preservatives.  Many plants treat with one or two pre-
servatives plus a fire retardant.

The wood preserving process consists of two basic steps:  (1)
preconditioning the wood to reduce its natural moisture content
and to increase the permeability; and (2) impregnating the wood
with the desired preservatives.

The preconditioning step may be performed by one of several
methods including (1) seasoning or drying wood in large, open
yards;  (2) kiln drying; (3) steaming the wood at elevated pres-
sure in a retort folldwed by application of a vacuum; (4) heating
the stock in a preservative bath under reduced pressure in a
retort  (Boulton process); or (5) vapor drying, heating of the
unseasoned wood in a solvent to prepare it for preservative
treatment.  All of these preconditioning methods have, as their
objective, the reduction of the moisture content in the un-
seasoned stock to a point where the requisite amount of preserva-
tive can be retained in the wood.

Conventional steam conditioning (open steaming) is a process in
which unseasoned or partially seasoned stock is subjected to
direct  steam impingement at an elevated pressure in a retort.
The maximum permissible temperature is set by industry standards
at 118°C and the duration of the steaming cycle is limited by
these standards to no more than 20 hours.  Steam condensate that
forms in the retort exits through traps and is conducted to
oil-water separators for removal of free oils.  Removal of
emulsified oils requires further treatment.

In closed steaming, a widely used variation of conventional steam
conditioning, the steam needed for conditioning is generated
in situ by covering the coils in the retort with water from a
reservoir and heating the water by passing process steam through
the coils.  The water is returned to the reservoir after oil
separation and reused during the next steaming cycle.  There is a
slight  increase in volume of water in the storage tank after each
cycle due to water exuded from the wood.  A small blowdown  from
the storage tank is necessary to remove this excess water and  to
control the level of wood sugars in the water.

Modified closed steaming is a steam conditioning process varia-
tion in which steam condensate is allowed to accumulate in  the
retort  during the steaming operation until  it  covers the heating
coils.  At that point, direct steaming is discontinued and  the
remaining steam required for the cycle is generated within  the
retort  by utilizing the heating coils.  Upon completion of  the


Date:  8/31/82 R  Change 1      11.21-2

-------
steaming cycle,  and after recovery of oils,  the water in the
cylinder is discarded.

Preconditioning is accomplished in the Boulton process by heating
the stock in a preservative bath under reduced pressure in the
retort.  The preservative serves as a heat transfer medium.
After the cylinder temperature has been raised to operating
temperature, a vacuum is drawn, and water, which is removed in
vapor form from the wood, passes through a condenser to an oil-
water separator. At this point low-boiling fractions of the
preservative are removed.  The Boulton cycle may have a duration
of 48 hours or longer for large poles and piling.  This fact
accounts for the lower production per retort day as compared to
plants that steam condition.

The vapor-drying process consists of exposing wood in a closed
vessel to vapors from any one of the many organic chemicals that
are immiscible with water and have a narrow boiling range.

Following the conditioning steps, the stock may be treated by
nonpressure wood preserving treatment processes, or pressure wood
preserving treatment processes employing waterborne inorganic
salts.

Table 21-2 presents a summary of information pertaining to the
wood preserving category.

     Insulation Board Manufacturing

Insulation board is a form of fiberboard, which in turn is a
broad generic term applied to sheet materials constructed from
ligno-cellulosic fibers.  Insulation board is a "noncompressed"
fiberboard, which is differentiated from "compressed" fiber-
boards, such as hardboard, on the basis of density.  Densities of
insulation board range from about 0.15 to 0.50 g/cm3 (9.5 to 31
lb/ft3).

There are 15 insulation board plants in the United States with a
combined annual production capacity of over 330 million square
meters (3,600 million square feet) on a 13 mm (0.5 in.) basis.
All of the plants use wood as a raw material for some or all
Date:  8/31/82  R Change 1   II.21-3

-------
     TABLE 21-2.   WOOD PRESERVING SUBCATEGORY SUMMARY [2-60]

Number of Dischargers(a):

                 Boulton   Steaming   Inorganic salt   Nonpressure

   •  Direct:       01             1              0
   •  Indirect:    10         29             5              0
   •  Zero:        25         66            56             23

Toxic pollutants found in treated effluents at two or more plants
above the minimum detection limit of 10 yg/L,  organics and 2  ug/L,
metals:

     Pentachlorophenol          Arsenic
     Phenol                     Nickel
     Copper                     Zinc
     Chromium                   Fluorene
     3,4-Benzofluoranthene      Fluoranthene
     Benzo (k) fluoranthene     Chrysene
     Pyrene                     Bis(2-ethylhexyl)
     Benzo (a) pyrene             phthalate
     Indeno  (1,2,3-cd) pyrene   Napthalene
     Benzo (ghi) perylene       Acenapthylene


(a)Those plants responding to questionnaires for industry study.

of their production.  Four plants use mineral wood, a nonwood-
based product, as a raw material for part of their insulation
board production.  Production of mineral wood board is classified
under SIC 3296 and is not within the scope of this section.  Five
plants produce hardboard products as well as insulation board at
the same facility.

Insulation board can be formed from a variety of raw materials
including wood from softwood and hardwood species, mineral fiber,
waste paper, bagasse, and other fibrous materials.  In this
section, only those processes employing wood as raw materials are
considered.  Plants utilizing wood may receive it as roundwood,
fractionated wood, and/or whole tree chips.  Fractionated wood
can be in the form of chips, sawdust, or planer shavings.

At the time  of this compilation only limited data were available
on this subcategory.  Available data are contained in .the tables
in Section II.21.2.  Table 21-3 summarizes information pertaining
to the insulation board manufacturing subcategory.
Date:  8/31/82 R  Change 1   II.21-4

-------
           TABLE 21-3.  INSULATION BOARD MANUFACTURING
                        SUBCATEGORY SUMMARY [2-60]

     Number of Dischargers:  15(a)
       •  Direct:  5
       •  Indirect:  6
       •  Zero:  4(b)

     Toxic Pollutants Found in Significant Quantities:

          Copper                   Phenol
          Nickel                   Benzene
          Zinc                     Toluene
          Beryllium

(a)Those plants responding to questionnaires for indus-
   try study.
(b)One plant uses spray irrigation as a treatment method;
   however, the irrigation tail water is eventually discharged
   from the field to a nearby river.

     Hardboard Manufacturing

Hardboard is a form of fiberboard, which is a broad generic term
applied to sheet materials constructed from ligno-cellulosic
fibers.  Hardboard is a "compressed" fiberboard, with a density
greater than 0.50 g/cm3 (31 lb/ft3).  The thickness of hardboard
products ranges between 2 and 13 mm (nominal 1/12 to 7/16 in).

Production of hardboard by the wet process method is usually
accomplished by thermomechanical fiberization of the wood
furnish.  One plant produces wet-dry hardboard using primarily
mechanical refining.

Dilution of the wood fiber with fresh or process water then
allows forming of a wet mat of a desired thickness on a forming
machine.  This wet mat is then pressed either wet or after dry-
ing.   Chemical additives help the overall strength and uniformity
of the product.  The uses of manufactured products are many and
varied, requiring different processes and control measures.  The
quality and type of board are important in the end use of the
product.

Hardboard which is pressed wet immediately following forming of
the wet-lap is called wet-wet or smooth-one-side (SIS) hardboard;
that which is pressed after the wet-lap has been dried is called
wet-dry or smooth-two-side (S2S) hardboard.

There are 16 wet process hardboard plants in the United States,
representing an annual production in excess of 1.5 million metric
tons per year.  Seven of the plants produce only SIS hardboard.
Nine plants produce S2S hardboard.  Of these nine, five plants
also produce insulation board, while three plants also produce
SIS hardboard.
Date: 8/31/82  R Change 1    II. 21-5

-------
Table 21-4 presents a summary of pertinent information pertaining
to the hardboard manufacturing subcategory.

TABLE 21-4.  HARDBOARD MANUFACTURING SUBCATEGORY SUMMARY [2-60]

     Number of Dischargers:   16(a)

        •  Direct:   12
        •  Indirect:   2
        •  Zero:  2

     Toxic pollutants found in treated effluents at two or more
     plants above the minimum detection limit of 10 vg/L,  organics
     and 2 yg/L, metals:

          Copper              Phenol
          Beryllium           Benzene
          Nickel              Toluene
          Zinc

     (a)Those plants responding to questionnaires for industry
        study.

II.21.2  WASTEWATER CHARACTERIZATION [2-60]

The Timber Products Processing Industry was analysed in a screen-
ing program for the 129 priority pollutants.  Those pollutants
detected in screening were further analysed in a verification sam-
pling analysis.  The following tables present the verification
data.  The minimum detection limit for toxic organics is 10 vg/L
and for toxic metals, 2 yg/L.  Any concentration below its de-
tection limit is presented in the following tables as BDL, below
detection limit.

II.21.2.1  Wood Preserving

The quantity of wastewater generated by a wood preserving plant
is a function of the method of conditioning used, the moisture
content of the wood being treated, and the amount of rainwater
draining toward the treating cylinder.  Most wood preserving
plants treat stock having a wide range of moisture contents.
Although most plants use predominantly one of the major condition-
ing methods, many plants use a combination of several condition-
ing methods, and the actual quantity of wastewater generated by a
specific plant may vary considerably.  The average wastewater
volume from 14 Boulton plants is reported to be 21,200 L/d  (5,600
gal/d) or  139 L/m3 (1.03 gal/ ft3) of production.  The average
wastewater volume for eight closed loop steaming plants is  5,200
L/d  (1,370 gal/d) or 60 L/m3 (0.45 gal/ft3).  The average
wastewater volume for 10 plants which treat significant amounts
of dry stock is 13',300 L/d (3,510 gal/d) or 121 L/m3  (0.91
gal/ft3).  Additionally the average wastewater volume for 14 open
steaming plants is 35,000 L/d (9,250 gal/d) or 236 L/m3 (1.87
gal/ft3).


Date:  8/31/82 R  Change  1    II.21-6

-------
Table 21-5 presents concentrations of toxic pollutants found in
the raw wastewater (for both steaming and Boulton processes)
treated effluent (for steaming and Boulton processes combined).
Table 21-6 similarly presents toxic pollutant loadings in kg/m3
of product derived from the concentrations given in Table 21-5
for the wood preserving subcategory.  Classical pollutant con-
centrations are shown in Table 21-7 and corresponding pollutant
loads in Table 21-8.

II.21.2.2  Insulation Board Manufacturing

Insulation board plants responding to the data collection portfo-
lio reported fresh water usage rates ranging from 95,000 to
5,700,000 L/d for process water (0.025 to 1.5 MGD).  One insula-
tion board plant, Plant 108, which also produces hardboard in
approximately equal amounts, uses over 15 million L/d (4 MGD) of
fresh water for process water.

Water becomes contaminated during the production of insulation
board primarily through contact with the wood during fiber prep-
aration and forming operations, and the vast majority of pol-
lutants are fine wood fibers and soluble wood sugars and extrac-
tives.

More specifically potential sources of wastewater in an insula-
tion board plant include:

     Chip wash water
     Process Whitewater generated during fiber preparation
        (refining and washing)
     Process Whitewater generated during forming
     Wastewater generated during miscellaneous operations
        (dryer washing, finishing, housekeeping, etc.)

The average unit flow for Plant 36, which is 8.3 L/kg (2,000 gal/
ton), is considered to be representative of an insulation board,
mechanical refining plant which produces a full line of insula-
tion board products and which practices internal recycling to the
extent practicable.

Table 21-9 presents concentrations of toxic pollutants found in
insulation board manufacturing raw wastewater.  Table 21-10
similarly presents toxic pollutant metals loading for this
subcategory.

II.21.2.3  Hardboard Manufacturing

Production of hardboard by wet process requires significant
amounts of water.  Plants responding to the data collection
portfolio reported fresh water usage rates for process water
ranging from approximately 190,000 to 19 million L/d (0.05
to 5 MGD).  One plant, 108, which produces both hardboard and
insulation board in approximately equal amounts, reported fresh

Date:   8/31/82  R Change  1     II.21-7

-------
   O
   03
   O
   LJ o
   I-VO
   V) I
    O
   CO —
   <0

   3U-
   -ICC
   OUJ
   o -.
   — a:
   XUI
   01-
   U_ bJ
   OH
    co
   o
   <0
   CEO
   I-LU
   Zl—
   LjJ <
   OO
   zoo
   OO
   O CO
   CQ
   <












f/5
(A
0
U
S
a
c
o
4->

3
O
CO






^
0)
*>
CO
If.
5
I







V)
t/l
c
o
a
rj
c
e
CO
03
4-1







































c
CO
13
^






U
o
c
CO
CC






(0 —
w C £
03 O —

a *J
e o c
CO CO O
aj 4->
t- -o o
O OJ
t- O OJ
0! T3
E OJ OJ

Z S 0
3 -a

«
1




0)
o
c
CO
CC




.p
(A —
MCE
c o •—
§4->
0 C
<0 <0 0
w ** —
t^-o t
O CJ
i- O 0)
0) "D
.0 f-
E 03 CJ
3 J3 >
z e o
3-D
Z CO










C




C
a
*
2
O
Q

O

X
o
t—
Q a — QO a o -3-
CQCQ — CO CO CQ CO

O
00 0
OO O


— — OJ iT\(O 	 ro OJ lT\ OJ OJ OJ

1 1 1 1 1 1 1 1 t 1 1 1 1


O QQ COQQCy OOCJ















COro — — rorocj — fOro — — ro







(OQOCMOJ — OCJOQQ —


0
O
o
- o -J o o

j- 	 ocooco — f-^o — co

i i i i i i i i i i i i i

a ooo QQ Q a o cj












lf\O\CJfOOOO\COOO— ropJOv















(A
CJ

c
re
a

o
c

•a >» 3 E E E tf)
C C 0 - E 3 ^ >, 3^= «J
EC 	 EO) 3QJCQJ— co
(fl - 0) >» E O CXTJ O Ji CJ > — O —

TO Ct-CJCoCOQJO) — Q) — .C — £

2 £
O
ro


O
0



-J-JO— -1 _1_J_I
1 QOOr^-Q QQC

_J ^
o r*-
CC OJ














OJ OO 	 O OOO







O QroOOQ OcuO
CO CQ — OOCO OfOiT
«v
0
OO
ooo oo c
o -o ooc
O «OO -O CO — O.



I 1 1 1 1 1 III

a OOOOQ Qroo.
CO CO CQ OJ JTCQ CQ
_:_:











& c\jroo\Lnc\j -S in IT









QJ
Q
CO


C O
a. c

— o — £ o
— c o a -
>> OJ C O *»
x — x: QJ i- co
QJ o ax: o E
^ c — a — o > s. z. ^ o TO ID
4-J O QJ — t- o C
OJ L. E f t- — OCJfl
1 O— O— 1 — CX1C
cj <"| — Qrao^o o (u — (
— — r:i4Jc- > N >) i
* o OC-CQJJ- o ex:-
— c i - 0 ^: - o a) j-> c
CO 0) CMCJCLCLOJ C CQUJh
si i
-J-IO-J _J_I_I_I
QOCJO OQOQ


OOO O
000 0
CO — U> OO —
» - -3" CO CO CJ -.
CJ OJ — CO — CJ CO ro
_! _J _I _J _J _J _J
1 1 1 lOOCOlQI 1 Q 1 O


Q O Q Q Q Q a O















	 CJ — OOOO — O 	 O — O
rorOfOrororOrOf-oro r*^,fO ro ro ro ro






OCJO^QOO — r-aooao —
inr^iA — cQcoco cQvoincQcjco
— vo" — — " cy

o o oo oo
oooooo oo ooooo
oooooo oo ooooo




1 1 1 1 1 f 1 1 1 1 1 1 1 1 1

OQOOQOQOOQrocMacOvO
— caocamcocaeacacavococaroco
— CJ











o>r^o\cod-j — mr — o>cr\rocrso^







(A
C
o
•£
CO
O OJ C
u e co
•O CJ O t-
> I- 0 0 C >»
£1 x: ceo a
*J 03 fl) CJ O O
0 CCjZC.Cn) —

•H cue— c x: o
co QJ <1> ro CO co >» re -u i
E C J= t- C *- «- *- c ro
O CO 03 Q.-C CJ O CJ O CO Q) *
(_ c — ^v-u (- 3 Q. 3 — -C OJ*
co QJ>.CJC>,— — — x:o -o
cj 4-> *j QJ •""••^•'^xr •"• o «^ *J o ^* o
j — x:x:occcoxi out c o e c —
— a a. to — • 	 — — a? N co 03 o co o





£
                                                                             0-J
                                                                             oo
                                                                             \O CQ
                                                                             — o
                                                                             >>t-
                                                                             .c o
Date:   8/31/82  R  Change  1   II.21-8

-------
Q
Z
<

•y
LJ
H
W
Z

O
QU
•jj^ ~
O —
U-H
wo
HO
5 *~*
HO:
3 LJ



03:
Q- LU
oto
x§


cc

00
UJ
COH
z<
00
— CO
H 13
 >
Z E O
3.O
Z (C








_J
D
2

J
C
a

3
o
Q
O
X
o




g^gg * g- gg0, g g0.- -gw
CSJ

C 0
o o o o o
go o oo
OO O O O 1 I I O I I t O ill
CO CO
O O Q C — Q O O O O -3" O O **•> O OCO









00 0
3*o^oSS^S;S^*o 5r ^5;^ ^^






(0
o
£ •£
4J i.
ID CD
— O
re o
jZ U
£ O >
w a c £
o - o> «
— — o — £ o o
c — c o a. —
re X 01 c o -w -w
gx — £ i.C.C(-OCO O — N
C CO— £3 >>3 3 > 6 O Q.-D O JC CD > — O — •«- — £i*JC- > N>»3 >
— JJWS--oi_Q,ret_o 	 me co w O U3-COJ3- O C.C— O
*> <
0) C
C CD
I- CD CD C >>  CD CD 0) 0) O ~
COC— CC 0 C 0

CD CD d£ QJ O 8) O (BCD «• — *-
C — X.*J(-3D.2 «.C C\J W O
Q) >»» C >>—'-'— £ CD »  *>-
a a co •»*___*_ cDNwojocotj) *o — o
CC.CNNNNINIXCUOO(P+*a> 0) £ O
<<
re
fO
o

m •
ro -*J

r^ —
> c
o

(A O
^ OJ
o •*->
£ 0!

0)
o —
•P.O
IB-J1

-------

-^
TO

ST
< 2
2 £
i—
CO i
< £
5 g
>
ce
o
o
u
1—

o
m
CO

Z
o
-I
13
o
CQ


Q
Z
"*
o
•yz
•z.
LU
CO

z *•
K
3

Q t
z 3
•^ '
o 2
b- £
CO
£3 p— ^
zo
— VO
a i
< CM
O i — i
CO h-
z o
L_ 2*
ISO
—1 —
-11-
o<
0-0

cj u_
xo:
O LjJ





VO



CNJ
i , i

—1
m
<
h™



c.
u) 01
o £

U
O
C
o
— 89
g I
CO CC
c
I
~
a: o
to o —
.oft- e
3 «
Z U)



«
"C
0)
£




^

5
a 0)
O
I C
j o:
CQ
l/)
q) —
.Q <*• Q
E 0 E
3 «
Z «1



C
OO— CM kf\cOO4vavVVVroVsi% — Vtfst^
i i i i i i i i i i i i i i • -o- • • • i i i i i 	 r- .
	 (?*— 	 cy —










"". ^ " vo J»* -" ~ d ~~. "^ o< ^MS-1" *-- In-S~-- — w^-SiS-cyS W-
O OO (MOOO »- . V
v v v cy irt —



o
O vO OOO O O O OO
O vo eo CO — OOO O O O OO
co — J- Jos- — o o r-.a3Q ooo cyoeuooaoooooot—  (- v u e o *A
cJ — o « *jQ)ojcajcj>> —
- — o — .co o cc.cw.Cra a. *J
c — COa- — TOQ94J— -Wt. — CO
(0 X (DCO-" " COC>sC£-O £®
£ tt) O &.C OE E (B£'-C'-ll)l-C 1 - —
o s. c— a— oojOoC a.£ ooaorooji*» — <-

x £ct-o«o 09 wo— Q) c x 	 £cucyc — e
C CO-E3 X 3 3 QJ 4) *- E £ H — QJO41 ~ £**O(0(OO ffi^l COCC — « ** ^
a O 	 3 — 1- !.— _(_— iJ | o — U— 1 — CJ3C — aaco— ^— — -i^— 'Q)N(5d9O^Q3 rtl — O
EC 	 Efl) 3OCO— c CM W — Q re O VO O O — 09 O QTO'-OOOOOU)Ci-t-C4-1C c ^i1-

— 4Jtni--at-a o cj-rcoj- 6 cj:— 6 Qajwccccct-^sa-oat- c *J —
 ODCO)CJ09(DOJ£ 	 CtC>> O O.C
09 ^ £ O O (0
jr a. ft. si a. X


















o
c
(0
e
1

•a
c
a

u
c
ff
o
£
0
!
c




°
4J
3
a

—
c
o
n
09
2
a
u
c
*^ ™
y ™
s °
(8 H
Ol
•• c
rO • -
rrt *> 4J
(0 E 09
..- t_ c
f 	 ** 0
> C W JJ
O « . «
— c « u
.. ** n o w
rt O — > C
•o w a - Q)
O *J wo
.£ « « 0 C
jJ-O fl) > O
09 -D *- O
O — O CJ a
- Qi C *- Q)

£ .
C O CQ A
Date:  8/31/82 R  Change 1  11.21-10

-------



z
o
5
~2
o
co-^
o
Q\O
Z 1

HO:

c
0)
3


0)
•o
o
JJ
£
f—









M
tf)
«
0
o
a
c
0
-t->
3
S
X)
C
CO
o
c
s
CO
0}
*J
en



c
CD

•o
1




CO
o
c

>
CQ
Cg















U)
V)
09



a
c
0
*j
3
O
CO





C
«
i



09
O
c
CO
ce





t_ 09
0) —
-Q <•- a
E 0 E
3 co
Z v)









to
Ifl
V
o
o
«_
a
o
c
i
CD
a
V.





C
«

a
z




CD
O
C
 J (O
, 1*-
— CJ — (^
1 1 1 1 —
CO
-J _J OJ O
Q a — oj
Q co in




if% lA i/\ if\ —




NO ^r o o
^ OJ <*> O
\O f^
SO



0 §
o o
O 0 ON
O — * sO
IT* M — —
(III
^r _j — o
so a - o
o " *,



o o o o
OJ CM OJ CM



0)
«
I
CT

 c
o
.. *J
« C9
•O 09
O *J
£ 0)
iJ -^
I>
So
o —
— cu
*J J3
>»

rs -J
C Q


_JO

— ce
o
too
OLd
Z H
— <
OO
< CO
or>
_j (/j

00
1
CVI

Ld
_l
ffl
<
H






c
0
3


0

•o
01
w
i
^*








M
O
CJ
o
(.
Q
C
a

3
O
CO

•a
c
CO
o
C
'i
CO
01
en

c


J
CC






















U)
tn
09
a
s.
a
c
o
w
3
O
CO





c
a

•o
cy
£



CD
O
C
(0
cc


«
C_ CD
CD —
.a <- a
E o E
3 (C
Z t/>






Ul
U)
09
CJ
O
l_
a
o
c
_
£
<0
CD
W
cn





c
(0
•o
CD
2




 oa cy

i i i i

\O NO so <0
— — ON —
O O O
V V




OJ — CJ OJ



m — j- o
C\J O if*
r— to
o

0
o
0 0\ O <*>
J • OJ
OJ OJ •sO «1
sO
till*
CO
— — CNJ iA
O O lA
O O
V V



iA lA lA lA —





f- J O O
— c\j r—




Q-
0
O O SO
CO OJ O
— fl J J

I I I I

-------
             TABLE 21-9.   CONCENTRATIONS  OF  TOXIC  POLLUTANTS FOUND IN
                          INSULATION  BOARD SUBCATEGORY RAW WASTEWATER,
                          VERIFICATION  DATA  [2-60]
           Toxic pollutant.  ug/L
 Number
   of
 samples
 Range
                                                               Median
           Metals and inorganics

             Ant imony
             Arsen ic
             Be ryI I i urn
             Cadmium
             Ch rom i urn
             Copper
             Lead
             Mercury
             Nickel
             SeI en i urn
             Si Iver
             ThaI Iium
             Zinc

           Toxic organics
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
BDL
BDL
BDL
BDL
BDL
200
BDL
BDL
8.8
3.3
BDL
BDL
250
3
3.3
BDL
BDL
I I
450
21
7.5
240
5.0
BDL
BDL
720
BDL
2.5
BDL
BDL
4.9
310
3.3
5.8
 58
4.5
BDL
BDL
530
Ch loroform(a )
Phenol
Benzene
Tol uene
3
3
3
3
BDL -
BDL -
BDL -
BDL -
20
40
70
60
BDL
BDL
50
40
           Analytic methods:   V.7.3.33,  Data  set  2.
           BDL, below detection limits.
           (a)  One sample of raw wastewater  contained 20 i-ig/L of
                chloroform while plant intake water  contained  10 u.g/L
                of chloroform; therefore,  chloroform is  listed as
                being BDL.
           TABLE 21-10.  LOADINGS OF TOXIC METALS FOUND  IN  INSULATION
                         BOARD SUBCATEGORY RAW WASTEWATER,  VERIFICATION
                         DATA [2-60]
          Toxic pollutant. mg/Mg
Number
  of
samples
  Range
          Mean
          Metals and  inorganics
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromi urn
Copper
Lead
Mercury
Nickel
Se len ium
Si 1 ve r
Tha 1 1 ium
Zinc
4
4
4
4
4
4
4
4
4
4
4
4
4
2. 1
13
4.2
2.8
5.5
1,900
6
21
90
14
2. 1
2.8
3,000
- 25
- 60
- 10
- 10
- 470
- 4, 100
- 170
- 80
- 850
- 70
- 10
- 17
- 6,000
15
29
6.7
6.5
160
1,900
63
42
500
38
5.6
7.6
4,600
          Analytic methods:  V.7.3.33,  Data set 2.
Date:   8/31/82  R   Change  1   11.21-12

-------
water use of over 15 million L/d (4 MGD).

Water becomes contaminated during the production of hardboard
primarily through contact with the wood raw material during the
fiber preparation, forming, and, in the case of SIS hardboard,
pressing operations.  The vast majority of pollutants consist
of fine wood fibers, soluble wood sugars,  and extractives.
Additives not retained in the board also add to the pollutant
load.

The water used to process and transport the wood from the fiber
preparation stage through mat formation is referred to as process
Whitewater.  Process Whitewater produced by the dewatering of
stock at any stage of the process is usually recycled to be used
as stock dilution water.  However,  in order to avoid undesirable
effects in the board when elevated concentrations of suspended
solids and dissolved organic materials occur, excess process
Whitewater is discarded.

Potential wastewater sources in the production of wet process
hardboard include:

     Chip wash water
     Process Whitewater generated during fiber preparation
       (refining and washing)
     Process Whitewater generated during forming
     Hot press squeezeout water
     Wastewater generated during miscellaneous operations
       (dryer washing,  finishing, housekeeping, etc.)

A unit flow of 12,000 L/kg (2,800 gal/ton) is considered to- be repre-
sentative of an SIS hardboard plant which produces a full line of
hardboard products and which practices internal recycling to the
extent practicable.  A unit flow of 25,000 L/kg (5,900 gal/ton)
is considered to be representative of an S2S hardboard manufac-
turing plant which produces a full line of hardboard products and
practices internal recycling to the extent possible.

Available data analyses list primarily metals and inorganics as
toxic pollutants; no base/neutrals data are presented.  Table
21-11 presents concentrations and pollutant loadings for toxic
and classical pollutants found in hardboard manufacturing raw
wastewater.

11. 21.3  PLANT SPECIFIC DESCRIPTIONS [2-60]

Due to the nature of available plant specific data, only subcate-
gory wastewater characteristics could be derived,  and plant
specific wastewater characterization information is not presented.
Date:  8/31/82  R  Change 1   11.21-13

-------
Q
ce
o
CO
Q
cc
-r-
z


Q
3 O
OVO
Ll- 1



1-
z<

H<


—1 Z
oo
O. —
1-
>
— ' .^
O

ace
ZbJ

OS
— UJ
XI-
ow
Hs
LL.
^
c*o o;
o



QO

O UJ
-Jl-

QO
ZCO


CO
zo
oz


r— Q-
< Z>
a: h-
(-O
z<
LJ U-

z z
0<
02


—
1
CM










c
Z
a



0
c
•o
CO
c









a
c
o

Jj
CO

C
0)
o
c
(J




c_
o
.Qt.-
E O
3































C
<0
0)
E






CO
o
c
CO
OL





K

•o
03





0)
O
c
CO
^~



Ui
03

a
E
CO

















c
re
~
0
a.









LJ O
CM LTMTA CD O O — -3" O **) O\ — O OO
m— — j- o «r» — o oj — o — *
h- CM \O — O X ON
fO 03 «*)

^o
UJ
o o o o
oo o o — o
oo o o X o
om-oojo- o*

1 1 I 1 1 1 1 1 1 1 1 1 1 II

^CM^M^-f-OOJOODiTiiAO vOO
— — iTCMQ^JO — O UJ O
-3" CO O O O
« Xrt
-

• OQQirMn Q « .QO\O O Q — Q O — OO iT
(VjcQCQCDrOCDr^-CMCDCD^O CD ffl OQ OOOO eO
oood
V V V



0 0
o o

QQCJfOlC\COf-' •- 50O OOOOO OOO -
oococQiA^riAm — ojcnp- — oj VOM coowit-\o OJCMON oo
i i i i i i i i i t i i i ii i i i i i iii i


CDCQCQCQCD CO tn CD CQ CD - CD CQ CQ CQ CQ CQ CQ CQ CD CO












•o
— v>
O CD

CO fl) -

CO O CO O
O (0 — JZ J3
C — CO »3E EE .0 O O — — C — _-j 3 3 •»*^-. •— QQJCDGJQJ 4Jt,_C.j— ^j cc£ ^ &
— (0 O 	 3-*- t_— -( 	 	 — CCJ3CC CO OOI "O C "DO
— £C 	 SO 30JCO— «> OO O O 0) — OJ CU C i-l-CM — — (flt-to — —
O « — «>»EOa.T3OJifl)>— O — CC > NN>>33 0) OO- O S-- O *J cc tr\(0
a. — j->u)u-3i_c.cot_o- — tec o oflj o cci 	 a 	 — "000—0. o o*»
fO Ci-tUra^OCtU-CJ-JZ— C .CJZ Q OOJ*JOO O JZJZ- •*•> — CJ^OJ — OO
- 0) JZ O CO O (fl
X Z Q- E X 0. co
o —
H O



























T3
o
(,_

o
01
Q.
O 

"O -W c "O Q t a o t*- w O o t- OJ O • * A C co CO E CM ** 4-> 3 1 cct CD C *J "D T3 co c c a 2 g -a T3 -- fO E TO re .Q a o o E t O - • o o co W> <*- O o co J-* C C W t? CO co E co •- •- w . - C -o TJ « |- U (_ 0) ^ w to U > c e o o o O O .£3 £2 <- — o -a -o a W O V5 ts (0 U> T3 CJ CM JZ £ CM C -1 W tfl £ O CO) O C >j>iC S J co w 4-s co a CJ — t/) CO


-------
          TABLE 21-12.  CURRENT LEVEL OF IN-PLACE TECHNOLOGY,
                        BOULTON, NO DISCHARGERS(a) [2-60]

                                           Number
                                             of
             	plants   Percent

             Primary oil separation          19       83
             Oil separation by DAF            1        4
             Evaporation ponds               15       63
             Spray or soil irrigation         1        4
             Cooling tower evaporation        4       17
             Thermal evaporation              1        4
             Effluent recycle to boilers
               or condensers                  4       17

             (a)  Plants may use more than one technology.
          TABLE  21-13.  CURRENT LEVEL OF IN-PLACE TECHNOLOGY,
                       BOULTON, INDIRECT DISCHARGERS(a) [2-60]

                                           Number
                                             of
             	plants   Percent

             Primary oil separation          10       100
             Chemical flocculation and/
                or  oil absorbent media         4        40
             Biological treatment             2        20

             (a)   Plants may use more than one technology.
Date:   8/31/82  R  Change 1   11.21-15

-------
         TABLE 21-14.
CURRENT LEVEL OF IN-PLACE  TECHNOLOGY,
STEAMING,  NO DISCHARGERS(a)  [2-60]
Number
of
plants
Gravity oil-water separation
Chemical flocculation or oil
absorptive media
Sand filtration
Oxidation lagoon
Aerated lagoon
Spray irrigation
Holding basin
Thermal evaporation
Solar evaporation pond
Spray assisted solar
evaporation
Effluent recycle to boiler
or condenser
53

6
9
5
9
9
23
3
26

17

11
Percent
80

9.1
41
7.6
14
14
35
4.5
39

26

17
             (a)  Some plants use more than one technology.
          TABLE 21-15.
CURRENT LEVEL OF IN-PLACE TECHNOLOGY,
STEAMING, DIRECT DISCHARGER(a)  [2-60]
                                          Number
                                            of
                                          plants
             Gravity oil-water separation     1
             Chemical flocculation or oil
               absorptive media               1
             Aerated lagoon                   1
             Holding basin                    1
             Spray  assisted solar
               evaporation                    1
             Effluent recycle to boiler
               or condenser                   1
                            Percent
                              100

                              100
                              100
                              100

                              100

                              100
             (a)   One plant.
Date:   8/31/82  R  Change 1   11.21-16

-------
                TABLE 21-16.   CURRENT LEVEL  OF  IN-PLACE TECHNOLOGY,
                              STEAMING,  INDIRECT DlSCHARGERS(a) [2-60]

Gravity oil-water separation
Chemical flocculation or oil
absorptive media
Sand f i 1 trat ion
Oxidation lagoon
Aerated lagoon
Holding basin
Spray assisted solar
evaporat ion
Effluent recycle to boiler
or condenser
Number
of
plants
28

8
4
1
1
17

2

2
Percent
97

28
14
3.4
3.4
59

6.9

6.9
                   (a)Some plants use  more than one technology.
           TABLE 21-17.   WOOD PRESERVING CLASSICAL POLLUTANT DATA AVERAGES
                         FOR PLANTS WITH LESS THAN THE EQUIVALENT OF BPT
                         IN PLACE, SCREENING DATA [2-60]


Pol lutant
COD
Phenols
Oil and grease
Pentachloropheno 1
Number
of
plants
3
3
3
3
Waste load,
kq/l
Raw
1,500
28
140
8
.000 cu.m
Treated
500
16
27
2.H
Percent
remova 1
67
43
81
70
           Analytic methods:   V.7.3.33, Data set I
           TABLE 21-18.   WOOD PRESERVING CLASSICAL POLLUTANT DATA AVERAGES
                         FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY  IN-
                         PLACE,  SCREENING AND VERIFICATION DATA [2-60]


Pol lutant
COD
Pheno 1 s
Oi 1 and grease
Pentachloropheno 1
Number
of
plants
7
7
7
5
Number
of
samples
10
10
10
7
Waste load.
kq/l
Raw
1,300
50
120
<4.6
.000 cu.m
Treated
670
32
15
1 .2
Percent
remova 1
48
36
88
<74
     Analytic methods:   V.7.3.33,  Data sets  1,2.
Date:   8/31/82  R  Change  1   11.21-17

-------
 II.21.4  POLLUTANT REMOVABILITY  [2-60]

 The following sections address the current level of in-place
 treatment technology and the raw and treated effluent loads and
 percent reduction for several pollutants and several plants.
 Information is organized with respect to the aforementioned
 subcategories [wood preserving including steaming and Boulton
.processes, insulation board manufacturing, and hardboard manu-
 facturing (SIS and S2S)].

 II.21.4.1  Wood Preserving

 Tables 21-12 through 21-16 present the current level of in-place
 treatment technology for Boulton-no dischargers, Boulton-indirect
 dischargers, steaming-no dischargers, steaming-direct dischargers,
 and steaming-indirect dischargers, respectively.

 Tables 21-17 through 21-19 present average raw and treated waste
 loads and percent removal for COD, phenols, oil and grease, and
 pentachlorophenol for plants with less than BPT in place, current
 pretreatment technology  in place, and current BPT in place.
 TABLE 21-19.
WOOD PRESERVING CLASSICAL POLLUTANT DATA AVERAGES
FOR PLANTS WITH CURRENT BPT IN-PLACE, SCREENING
AND VERIFICATION DATA [2-60]


Pollutant
COD
Phenols
Oil and grease
Number
of
Plants
4
4
4
Pentachlorophenol 3
Number
of
Samples
6
6
6
5
Waste load,
kg/1,
Raw
500
38
69
<4.3
OOOcu.m
Treated
96
0.16
<13
0.16
Percent
removal
81
>99
>81
<96
 Analytic  methods:   V.7.3.33, Data  sets  1,2.

 Table  21-20  presents  average raw and  treated waste  loads  and
 percent removals  of methylene  chloride,  trichloromethylene,
 benzene,  ethylbenzene,  and  toluene for  plants  with  current BPT
 in place.  Tables 21-21 and 21-22  present  similar
 data for  base/neutral toxic pollutants  for current  pretreatment
 technology and current BPT  in  place.

 Tables 21-23 and  21-24 present similar  data for  wood preserving
 phenols data for  plants with current  pretreatment technology  in
 place  and current BPT in place.

 in addition,  Tables 21-25 through  21-29 present  data for  average
 raw and treated waste loads and percent removals of metals for
 plants with  current pretreatment technology and  current BPT
 inplace.
 Date:   8/31/82  R  Change 1    11.21-18

-------
    TABLE  21-20.
WOOD PRESERVING VOLATILE  ORGANIC ANALYSIS DATA
AVERAGES FOR PLANTS WITH,CURRENT BPT IN-PLACE,
VERIFICATION DATA [2-60]
Pollutant
Methylene chloride
Trichloromethylene
Benzene
Ethylbenzene
Toluene
Number
of
plants
3
3
3
3
3
Waste
kg/10
Raw
78
<0.16
320
1,600
380
load,
cu.m
Treated
69
<3.2
<4.8
<1.6
<14
Percent
removal
12
NM
>98
>99
>96
   Analytic  methods:  V.7.3.33, Data set 2.
   NM,  not meaningful.
      TABLE  21-21.
  WOOD PRESERVING BASE NEUTRALS DATA AVERAGES
  FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY
  IN-PLACE, VERIFICATION DATA  [2-60]
Pollutant
Fluoranthene
Benzo (b ) f luoranthene
Benzo(k)fluoranthene
Pyrene
Benzo (a)pyrene
Indeno (1 , 2 , 3-CD)pyrene
Benzo (ghi)perylene
Phenanthrene/
anthracene
Benzo (a ) anthracene
Dibenzo(a,h)
anthracene
Naphthalene
Acenaphthene
Acenaphthylene
Fluorene
Chrysene
Bis(2-ethylhexyl)
phthalate
Number
. of
plants
3
3
3
3
3
3
3

3
3

3
3
3
3
3
3

3
Waste load,
kg/10 cu.m
Raw
<91
<0.16
<0.16
<61
<0.16
<0.16
<0.16

<510
<9.6

<0.16
<220
<260
<190
<190
<4.8

<99
Treated
<4.8
<0.6
<0.16
<0.16
<0.16
<0.16
<0.16

<12
<0.16

<0.16
<120
<13
<16
<4.8
<0.16

<16
Percent
removal
NM
NM
NM
NM
NM
NM
NM

NM
NM

NM
NM
NM
NM
NM
NM

NM
   Analytic  methods:  V.7.3.33, Data set 2.
   NM,  not meaningful.
Date:   8/31/82  R Change  1   11.21-19

-------
  TABLE 21-22.  WOOD PRESERVING  BASE NEUTRALS DATA AVERAGES FOR PLANTS WITH CURRENT
               BPT IN-PLACE,  VERIFICATION DATA [2-60]
Pol lutant
Fluoranthene
Benzo( b ) f 1 uoranthene
Benzo( k ) f 1 uo ra nthene
Pyrene
Benzofa Jpyrene
Indenof 1 , 2, 3-CD)pyrene
Benzo(ghi )perylene
Phenanthrene/anthracene
Benzo(a)anthracene
Dibenzo(a, h) anthracene
Naphtha lene
Acenaphthene
Acenaphthy lene
Fluorene
Chrysene
Bi s(2-ethylhexyl ) phthalate
Number
of
plants
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Number
of
samples
H
- u
H
U
U
H
U
U
4
U
U
H
k
4
U
4
Waste load,
kq/IOE6 cu.m
Raw
850
3,000
700
78
540
89
92
NM
NM
NM
>9U
NM
NM
>99
95
>96
>96
NM
NM
 Analytic methods:  V.7.3.33,  Data  set 2.
 NM, not meaningful.
           TABLE 21-23.  WOOD PRESERVING PHENOLS  DATA AVERAGES FOR PLANTS
                        WITH CURRENT PRETREATMENT TECHNOLOGY IN-PLACE,
                        SCREENING AND VERIFICATION DATA [2-60]
Pol lutant
Pheno 1 s
2-CnJorophenol
2, U-Di methyl phenol
2,4,6-Trichlorophenol
Pentach 1 oropheno 1
Number
of
plants
2
2
2
2
7
Waste load,
kq/l .000 cu.m
Raw
100

-------
             TABLE 21-24.  WOOD PRESERVING PHENOLS DATA AVERAGES  FOR PLANTS
                          WITH CURRENT BPT IN-PLACE, VERIFICATION DATA [2-60J
Pol lutant
Phenols
2-Chlorophenol
2, 4-Di methyl phenol
2,4,6-Trichlorophenol
Pentach 1 oropheno 1
Number
of
plants
3
3
3
3
5
Waste load,
kq/ 1 .000 cu.m
Raw
5,600
<6.4
700
<80
1,200
Treated
<3.2
99
NM
>98
NM
82
          Analytic methods:  V.7.3.33,  Data  set  2.
          NM, not meaningful.
            TABLE  21-25.  WOOD PRESERVING METALS DATA,  ORGANIC  PRESERVATIVES
                         ONLY, AVERAGES FOR PLANTS WITH  CURRENT  PRETREATMENT
                         TECHNOLOGY IN-PLACE,  VERIFICATION  DATA  [2-60]
Pol lutant
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Tha 1 1 i urn
Zinc
Number
of
plants
2
2
2
2
2
2
2
2
2
2
2
2
2
Waste load,
ka/IOE6 cu.m
Raw
<0. 16
0.48
<0. 16
<0. 16
0. 16
22
1.3
<0. 16
0.8
0. 16
<0. 16
0. 16
54
Treated
0.32
0.8
<0. 16
<0. 16
I.I*
15
0.32
<0. 16
0. 16
0.8
<0. 16
0.32
160
Percent
remova 1
NM
NM
NM
NM
NM
32
75
NM
80
NM
NM
NM
NM
          Analytic methods:  V.7.3.33,  Data  set  2.
          NM, not meaningful.
             TABLE 21-26.  WOOD PRESERVING METALS DATA,  ORGANIC PRESERVATIVES
                          ONLY, AVERAGES FOR PLANTS WITH CURRENT BPT  IN-PLACE,
                          VERIFICATION DATA [2-60)
Pol lutant
Ant imony
Arson ic
Beryl 1 ium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Thai 1 ium
Zinc
Number
of
plants
4
4
4
4
4
4
4
4
4
4
4
4
4
Waste
kq/IOE6
Raw
3.5
990
<0. 16
<0. 16
1.9
7.7
6.9
<0. 16
1.6
0.32
<0. 16
<0. 16
26
load,
cu.m
Treated
63
45
NM
NM
16
27
>5I
NM
0
0
NM
NM
42
          Analytic methods:  V.7.3.33, Data set 2.
          NM, net meaningful.
Date:   8/31/82  R  Change  1   11.21-21

-------
       TABLE 21-27,
WOOD PRESERVING METALS DATA, ORGANIC AND
INORGANIC PRESERVATIVES, ONE PLANT WITH LESS
THAN CURRENT BPT TECHNOLOGY IN-PLACE, SCREEN-
ING DATA [2-60]


Pollutant
Arsenic
Chromium
Copper
Waste load,
kg/106m3
Raw Treated
6.9 7.0
8.5 8.9
27 27

Percent
removal
NM
NM
0
       Analytic methods:  V.7.3.33, Data set 1,
     TABLE  21-28.
 WOOD PRESERVING METALS DATA,  ORGANIC
 AND INORGANIC  PRESERVATIVES,  AVERAGES
 FOR PLANTS WITH CURRENT PRETREATMENT
 TECHNOLOGY IN-PLACE, SCREENING AND VERI-
 FICATION DATA  [2-60]
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Number
of
plants
2
6
2
2
5
6
2
2
2
2
2
2
4
Waste load
kg/106m3
Raw
<0.8
<4.8
<0.16
<0.32
120
62
0.48
<0.16
9.9
3.0
0.32
<0.16
960
Treated
<0.48
<9.6
<0.16
<0.48
100
42
0.8
<0.16
11
2.2
<0.16
<0.16
900
Percent
removal
NM
NM
NM
NM
17
32
NM
NM
NM
27
>50
NM
6
     Analytic methods:   V.7.3.33, Data sets 1, 2.
     NM,  not meaningful.
Date:  8/31/82 R Change 1   11.21-22

-------
II.21.4.2  Insulation Board Manufacturing

Table 21-30 summarizes the current level of in-place treatment
technology for six plants.  Tables 21-31 through 21-36 present
treated effluent characteristics and various average raw and
treated waste characteristics and removals for the insulation
board manufacturing subcategory.

II.21.4.3  Hardboard Manufacturing

Table 21-37 summarizes the current level of in-place treatment
technology for 13 hardboard manufacturing plants.  Tables
21-38 through 21-44 present treated effluent characteristics
and various raw and treated waste characteristics and percent
removals for the hardboard manufacturing subcategory.
Date:  8/31/82 R Change 1    11.21-23

-------
                     TABLE 21-29.  WOOD PRESERVING METALS DATA,
                                  ORGANIC AND INORGANIC PRESER-
                                  VATIVES, ONE PLANT WITH CURRENT
                                  BPT IN-PLACE,  VERIFICATION DATA
                                  [2-60]
Pol lutant
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Se lenium
S i 1 ve r
Tha 1 1 ium
Zinc
Waste
kq/IOE6
Raw
<0. 16
40
<0. 16
0.32
7.2
2H
5.0
0.48
30
<0. 16
<0. 16
<0. 16
37
load,
cu.m
Treated
<0. 16
40
<0. 16
1.6
15
29
4.8
0. 16
5.4
<0. 16

-------
E
.

J
CO
w
H
o
VO
Q 1
LJCM
UI»-«
OL LJ
HO
<
oce
ZUJ
Z< Q
— O
U 	 1 £Q
LJ <
te 13
2£
_IZ
^ <
o
— f*~
Z F"~
<0\
o ^-
LJ
S CO
O O
s-
OiH
LJ CO
X —
i-ce
UJ ^
OH O
ceo —
« u.
oce
co <
X
zo
o
— H
HZ
< LJ
-13
^ t
COU.
zu.
~~ LJ



— c
CO C


CM 1
LU i
_J <
£0 !
< c
^—






c
3
J lA JT ON
v - CM
3 CM —

O
£ CO CM .3"
V • — ON
O —
* 0
c
o
p .=r — co
•^
J3 ^ CO 3-



O
Z CM — CM
"^
a CM d- CM
X


c
o
p
^
co Cs co vo
a — -CM
•a- CM
O — IA
0 O
o
—

o
z.
^,
.J
lA ro ON
o r-
o • — —
O — LA CM
—
*— «. .—
JO -O
"O ^-- -«-^
^, O LA LA
: w vo vo ON
3 C — VO CO
- o
J p
J
3
3
3-0
- ^ LA LA ON
L O 3- O LA
E — VO CO

CO
S- 	
P 0 f- 00 lA
C.O co O co
a £ tf\ — O
-3 —
1- C















C
o
—
p
o
3
•o
• o
•o i-
0 a
•o
T3 "O
CO !-
ro
w o
— J3
,^
L. L.
0 CO
P JZ
S-r,
>T3
0 C
4J CO
w
co-o
.35 s-
co
1- O
0 J3
Q.
ro c
ao
0 p
i- CO
o —

                                                   co
                   PON
                   in —
                   CO
                                                                                                               !- CO
                                                                                                                co c-
                                                                                                                Q.ON
                                                                                                                i- cn
                                                                                                                o c
                                               JD 3
                                                  X>
                                                C
                                                WO
                                                  CD

                                                  ._
                                                  CO
                                                0 *J
                                                S-J3
                                                CO O

                                                cs co
                                                p p
                                                co co

                                                iQ2.
                                                Ico J3
Date:     8/31/82  R   Change  1   11.21-25

-------
                TABLE 2l-3t.  RAW AND TREATED EFFLUENT LOADS  AND  PERCENT
                             REDUCTION FOR TOTAL PHENOLS,  INSULATION
                             BOARD(a) [2-60]
Plant
number
36
183
360
537
Raw waste load
kq/Mq
0.00095
0.007
0.002U
0.009
o.ooot
0.0022
0.0055
Treated waste load
kq/Mq
0.0001
0.00012

0.00008
0.00014
0.00065
Percent
reduct ion
89
98

80
9t
88
             (a)Total phenols concentration data obtained during  1977  (first
                row  of data) and  1978 (second row of data) verification
                sampling programs.  Average annual  daily waste  flow and pro-
                duction data supplied by plants in response to  data collection
                portfolio were used to calculate waste loads.
      TABLE 21-35.   RAW AND TREATED EFFLUENT LOADINGS AND PERCENT REDUCTIONS  FOR
                    INSULATION BOARD METALS, VERIFICATION DATA [2-60]
Pol lutant
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Lead
Mercury
Nickel
se len i urn
Si 1 ve r
Tha 1 1 turn
^inc

Plant 360

Waste load,
ma /Ha
Raw
2. 1
13
1.2
2.8
6
1,900
6
2. 1
800
11
2. 1
2.8
3,000

Plant 183

Waste load,
mo/Ma
Percent
Treated reduction Raw
18
6
2. 1
3.5
22
900
6
O.ti
600
7
2. 1
8
1,100
NM
51
50
NM
NM
53
0
81
25
50
0
NM
53
25
27
7
8
60
2,300
170
"41
850
35
1.9
1. I
1,200
Treated
21
13
12
13
20
20
21
13
900
25
17
1 1
1,800

Plant_537

Waste load,
ma/Mq
Percent
reduction Raw
16
52
NM
NM
67
99
88
68
NM
29
NM
0
NM
11
60
10
10
170
11
27
21
250
70
10
17
5,000
Treaped
2.8
6
1
1
6
180
3.8
1.9
13
1.1
1.3
1.3
170

Plant 36

Waste toad.
ma/Ma
Percent
reduction Raw
80
90
90
90
99
NM
86
91
95
91
87
92
97
22
17
5.5
5.5
120
3,600
55
80
90
35
5
6.5
6,000
Treated
18
20
5.5
5.5
90
1,200
8
0.7
37
32
7
a
800
Percent
reduction
NM
NM
0
0
25
67
85
99
59
9
NM
NM
87
NM, not meaningful.
  Date:   8/31/82 R   Change 1   11.21-26

-------
            TABLE 21-36.   INSULATION BOARD TOXIC POLLUTANT DATA,  ORGANICS,
                         VERIFICATION DATA [2-60]


Pol lutant
Chloroform
Benzene
Toluene
Phenol


Plant 183
20
70
60
BDL
Average
Raw wastewater
Plant 36
BDL(b)
40(c)
U0(c)
40
concentration, uq/L

Plant 537
BDL
BDL
BDL
BDL
Treated
Plant 36
BDL
BDL
BDL
BDL
effluent
Plant 537(a)
BDL
BDL
BDL
BDL
   Analytic methods:  V.7.3.33, Data set 2.
   BDL,  below detection  limits.
   (a)One of three  treated effluent samples contained 40 u.g/L of  trichloro-
      fluoromethane.
   (b)One sample  of raw wastewater contained 20 |ig/L of chloroform while
      plant intake  water contained 10 ug/L of chloroform;  therefore,
      chloroform  is listed as being BDL.
   (c)Plant intake  water contained 50 ug/L and 30 U9/L of benzene and
      toluene,  respectively.
                  TABLE 21-37.   IN-PLACE TREATMENT TECHNOLOGY AT
                                 13 HARDBOARD MANUFACTURING PLANTS  [2-60]
Plant
number
678
933
673
929
980
348, 3,
207
108
1
919
931
1035
Product
SIS, S2S
SIS
SIS, S2S
SIS
S2S
SIS
S2S
SIS, S2S
SIS
SIS
S2S
Treatment system
Activated sludge, aerated lagoon
Lime neutralization, discharge to POTW
Activated sludge, humus ponds, aerated
lagoons, settling pond
Sett 1 ing ponds
Kinecs Air Pond(a), Infilco Aero Accelerators,
aerated lagoons, facultative lagoon
Settling pond, aerated lagoon
Not specified
Settling pond, aerated lagoon
Settling ponds, activated sludge, aerated
lagoon
Aerated lagoons, settling ponds
Clarifier, aerated lagoon, oxidation ponds
          (a)Primary aerated equalization pond.
Date:   8/31/82  R  Change  1    11.21-27

-------






















CO
0
—
t-
__
cc
UJ

o
CC
x
o
t-
LJ >-^
=JO
_l\0
U. t
U-CM
UJ UJ
t-O
UJ C£
Q
CC-J
OZ>
coz
c-
W ON
CO^-
00
CO
1
CM
UJ
_J
CO
h-



CO
CO
1-






o
o
CO






>
0
u.



c
o
4J
u
•D
o
2
0.



















UJ
CO
3


Q
^,
0





a
s
•-X
5



o

s^
_l
O
O
0




•o
o




4J Q)
C-Q
CO §
—
0.

























^
c

"ccT Q
c. ^
f** lA in CM — C7N 00
— . . — - ifN •
00 CM • — • ON
O O


^^
co
— ' ^ z? co h- — -co
o • r- — ON •
ON ir\ zt
o. o o o




^^
CO

Is- .=r — CM j- CM j-
^ • • • • so — •
CJN 00 Jt ON
O




O\OOCMOOOO
OOONCMCTN-3'O — CO
— — co .3- —
"~"


^
PO ON O^ ^O VO O\ C\J


h-
LU
Qi
*~
Q
2T
^

, ^
? -
™ ^
g> CJ
1 . S
\J ' *^
O "D ^
CO <

St) j^
• CO >> ~
CM 0 OV_
W 4) _
-^ ^?
« 0) « S CM
CD *J z ""^ '
£Wc x< m
(0—"- ^
C COJ3 ^

































O
^
V,
tj
J£

.
CO
n












4-J
C
CD
O
^_
CD


"0
CD
4J
CO
CD
s_
1-























o
cr
CJ
£



4J
C
CD
0
CD
a.



C
O
»
4-J
CJ
3
^
CD
c_

4->
C
ffl

—
C,-
C|-
CD



CO
j-J
CO
CO

^
CO
cc





C
O
4J
C
(t
S.



•a c
CD CD
4J D
CO —
CD 4-
<- 
U
CO
c
0
Ol
• X
C O
O
— c
4-1 0
o JT
D >
•D
00
S-OD
o
•D ro
CO J"
0
.Q J=
•DO.
co O
• .c t-
CM J=
•0 4J
+-> C
0 CO ON
CO |^
CO « 	
*-> CO CM
CO O^
Q J3 ON
•. C CH> •
CO O O C
CO — O
4J-D —
CO CO O 4J
— —CO
r~ D s- s.
CO 0 0
> • C 0,0.
	 o
.-3 4J
CO li- JZ C C
T3 Ol 4J 0 —
O C O CO
j; — ja 0 co
4J C t- CO
0 CO CO O. >
£000
ET3 s- 6
0 3 0
— 4J — CO 4J
4-» O O 4-> CO
>iC C CO >,
— — Q CO
CO *^^"^.
C S CD .Q

-------
          TABLE 21-40.  SIS HARDBOARD 1977 ANNUAL AVERAGE RAW AND TREATED WASTE
                       CHARACTERISTICS [2-60]
Plant
number
348(a)
3
931
207
673
678

Raw waste
33
25
34
34
1.9(b)
22(c)
BOD. kq/Mq
Treated
effluent
9.0
9.3
0.74
4.3
0. 1
1 .0

Percent
reduct ion
' 73
63
98
87
95
95

Raw waste
6.9
13
13
5
0.56(b)
5.8(c)
TSS. kq/Mq
Treated
effluent
17
8.5
2.5
9.8
0. 12
1. 1

Percent
reduct ion
NM
35
81
NM
79
81
Analytic methods: V.7.3.33, Data set 2.
NM,  not meaningful.
(a)  Hardboard  and paper waste streams are comingled.
(b)  Raw waste  loads  shown are for combined weak and  strong wastewater streams.
(c)  Raw waste  load taken after primary clarification, pH adjustment, and nutrient  addition.
               TABLE 21-41.   RAW AND TREATED EFFLUENT LOADS AND  PERCENT
                             REDUCTION FOR TOTAL PHENOLS,  HARDBOARD
                             [2-60]
Plant
number
207
673
678
931
933
979
1
Raw waste load
kq/Md
0.001
0.01
0.003
0.03
NR
0.0015
0. 10
Treated waste load
kq/Mq
0.0062
0.0002
NR
0.06
0.003
0.003
0.001
Percent
reduction
80
98
NM
NM
NM
NM
99
           Analytic methods: V.7.3.33, Data set 2.
           NM,  not meaningful.
           NR,  not reported.
Date:    8/31/82  R  Change 1    11.21-29.

-------
    TABLE 21-42.  RAW AND TREATED EFFLUENT LOADINGS  AND  PERCENT REDUCTIONS FOR
                  HARDBOARD METALS,  VERIFICATION  DATA  [2-60]
Pol lutant
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Thai 1 ium
Zinc
Ant imony
Arsen ic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Thai 1 Ium
Zinc
Plant 931
Waste load,
ma/Mq


Percent
Raw Treated reduction Raw
200 8.5
12 20
6 4.5
290 4.5
290 6
3,900 I,MOO
60 20
18 IB
2,400 200
18 6
6 0.5
13 7
9,000 2,500
Plant 933
24
14
5
5
90
1, 100
20
1 1
60
24
5
5
24,000
96 80
NM 26
25 13
98 60
98 190
64 14,000
67 120
0 1.3
92 1,800
67 20
92 180
46 13
72 11,800

9
17
9
9
17
9,000
35
310
60
60
9
9
14,000
Plant 980
Waste load,
mq/Mq^




Percent
Treated reduction Raw
9
24
9
37
43
9,000
37
37
330
19
85
13
800
Plant 207
9
17
9
9
35
4,000
26
70
35
47
9
9
6,600
89
8
31
38
77
36
69
NM
82
5
53
0
83

0
0
0
0
NM
56
26
77
42
22
0
0
53
80
16
8
7
100
440
800
2.7
800
50
7
13
3,000

100
15
7
7
6,000
3,300
42
22
120
23
9
9
7,000
Plant 673
Waste load,
mq/Mq


Percent
Treated reduction
10
7
2.8
8
24
17
33
1 . 1
24
20
3.3
2.3
260
Plant 678
1 I
0.4
4.8
4.8
820
4.8
36
0.4
60
19
60
8
1,900
87
56
65
NM
76
96
96
59
97
60
53
82
91

89
97
31
31
86
>99
14
98
50
17
NM
1 1
73
       Analytic methods: V.7.3.33, Data set
       NM, not meaningful.
Date:   8/31/82  R  Change  1    11.21-30

-------
TABLE 21-43.  SIS  HARDBOARD SUBCATEGORY TOXIC POLLUTANT DATA,
               ORGANICS, VERIFICATION  DATA [2-60]


                  	Average concentration,  yg/L	
                      Raw wastewater	     Treated effluent
  Pollutant	Plant 207(a)  Plant 931   Plant  207   Plant 931
Chloroform
Benzene
Ethylbenzene
Toluene
Phenol
BDL
BDL
20
15
BDL
20
80
BDL
70
680
BDL
10
BDL
BDL
BDL
BDL
80
BDL
70
20
  Analytic methods:  V.7.3.33,  Data set  2.
  BDL,  Below detectiori limits.
  (a)   Plant 207  intake water  contained 10 yg/L toluene and
        97 yg/L phenol.
  TABLE  21-44.  S2S  HARDBOARD SUBCATEGORY TOXIC POLLUTANT
                 DATA,  ORGANICS,  VERIFICATION DATA [2-60]
Averaae concentration. U9/L
Pol lutant
Chloroform
1, 1,2-Trichloroethane
Benzene
Toluene
Pheno I
Raw wastewater
Plant 980 Plant 1 Plant 943
BDL 20 BOL
BDL BDL 90
BDL 901 a) BOL
BDL 60(a) 10
BDL 300 BOL
Treated effluent
Plant 980 Plant 1 Plant 9U3
BDL BDL BDL
BDL BDL BDL
BDL 10 BOL
I00(b) 30 BDL
BOL BDL BDL
     Analytic methods: V.7.3.33, Data set 2.
     BDL, below detection limits.
     (a)Plant intake water was measured at 120 ug/L benzene and 80 ug/L toluene.
     (b)Plant reported a minor solvent spill In final settling pond prior to sampling.
Date:   8/31/82  R Change 1   11.21-31

-------
          11.22  PUBLICLY OWNED TREATMENT WORKS (POTW'S)

II.22.1 INDUSTRY DESCRIPTION [2-61]

II.22.1.1  General Description

Publicly owned treatment works (POTW's), although not a true
industry, are discussed in this manual.  POTW's often treat a
variety of wastes including treated and untreated industrial
wastewater.  Discharge at these facilities is normally directly
to a stream or lake.  This section presents the results of a
pilot study of two selected POTW's.  These two POTW's are the
initial effort to study 40 POTW's to determine the fate of toxic
pollutants entering POTW's, sponsored by the U.S. Environmental
Protection Agency, Effluent Guidelines Division.  At this time,
only the two plants discussed here have been sampled and analyzed.
Descriptions of these facilites are included in the plant-specific
description section of this report.

11.22.1.2  Subcategory Description

No subcategories are currently defined for POTW's.

11.22.2  WASTEWATER CHARACTERIZATION [2-61]

POTW's do not generate wastewater to be treated.  Instead, the
wastewater that is treated in the POTW originates from several
sources.  The pollutant loading from these sources varies con-
siderably depending on the percentage of industrial and municipal
flow rates and loadings.  Because of this variability each POTW
will have influent characteristics unique to that facility.  This
section presents raw influent wastewater characterization data on
two individual POTW's.

POTW A accepts a large portion of its influent total flow from
industrial sources, yielding a higher incidence of toxic pollu-
tants than POTW B.  In all, 52 organic toxic pollutants and nine
toxic metals were found in the influent to this facility.  Eight-
een organic toxic pollutants were measured above the minimum
detection limit and seven toxic metals were found in higher
concentrations than in POTW B.  POTW A generally had higher
concentrations than POTW B of both toxic and classical (BOD, COD,
TSS, etc) pollutants.  Only a small percentage of industrial
wastewater is mixed with the predominantly municipal influent at
POTW B.  Thirty-three toxic organic pollutants were detected and
only five of these were detected above detection limit.  Nine


Date:  9/25/81             II.22-1

-------
metallic toxic pollutants were found.   Only zinc had a higher
concentration in POTW B than in POTW A.

Tables 22-1 and 22-2 present an initial screening study of raw
wastewater characterization data for these two facilities.

11.22.3  PLANT SPECIFIC DATA

II.22.3.1  Plant A

The design capacity of Plant A is 1.1 x 106 m3 (300 MGD) primary
flow and 4.5 x 105 m3/d (120 MGD) secondary flow.  Under normal
dry weather conditions, the flow through this system varies
between 85% and 90% of its secondary capacity.  During the first
week of sampling at the plant, the flow averaged only 3.4 x 10s
m3/d (91.0 MGD).

The original primary treatment facility was constructed in 1924,
and most of the sewers are as old or older than the primary
system.  It is estimated that the collection system is 60% sepa-
rate sewers and 40% combined sewers.

Sludge handling at this POTW involves primary sludge thickening
by gravity thickeners, secondary sludge thickening by dissolved
air flotation (DAF), vacuum filtration, and incineration.  During
the sampling period at Plant A, the primary sludge flow averaged
1.2 x 103 m3/d (325,000 gal/d) and the secondary (waste activated)
sludge flow averaged 5.7 x 103 m3/d (1.5 MGD).

Industrial contributions to the flow are primarily from several
major industries:  pharmaceutical manufacture, petrochemicals,
plating operations, and automotive foundries.  Also contributing
to Plant A's sewage collection system are some coking operations
and some food processing plants.

The treatment unit operations at this conventional activated
sludge POTW begin with gravity flow from the drainage area to the
bar screens and grit chambers, from which lift pumps elevate the
wastewater for gravity flow through the rest of the plant.  After
the lift pumps, the wastewater passes through preaeration, primary
settling, and clarification, and then proceeds into the aeration
chambers.  After aeration, clarification, and chlorination, the
wastewater is discharged to a local stream.

Tables 22-3 and 22-4 present classical and toxic pollutant data
for the influent and final effluent streams of this facility from
a weekly average data summary.  Data are also presented for the
effluent prior to chlorination, and for the primary and secondary
sludges.
Date:  9/25/81             II.22-2

-------
        TABLE 22-1    CONCENTRATIONS OF CLASSICAL AND TOXIC POLLUTANTS FOUND  IN  THE
                      RAW WASTEWATER ENTERING  POTW A [2-61]
Po 1 t utant
Toxic pollutant, |jg/L
Metals and inorganics
Ant tmony
Arsenic
Be ry 1 1 i urn
Cadmi urn
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Tha 1 1 i urn
Zinc
Ethers
Bi s ( 2-ch 1 o roe thoxy) me thane
Phtha lates
Bi s( 2-ethylhexyl ) phthslate
Butyl benzyl phthalate
Dt-n-butyl phthalate
D i ethy 1 phtha 1 a te
Di-n-octyl phthalate
Dimethyl phthalate
Phenol s
Pentach 1 oropheno 1
Phenol
2,i|,6-Trichlorophenol
p-Ch 1 oro-m-creso 1
Aroma tics
Benzene
Ch 1 orobenzene
1 , 2-D i ch 1 orobenzene
1 , 3-D i ch 1 orobenzene
1 . M-Dichl orobenzene
Tiny 1 benzene
Hexach 1 orobenzene
lo 1 uene
1 , 2 , 14-T r i ch I orobenzene
Polycyclrc aromatic hydrocarbons
Acenaph thene
Acenaphthy 1 ene
Anthracene
Chrysene
F I uoranthene
F lourene
1 ndenof 1 , 2 , 3-cd Jpy rene
Naphtha 1 ene
Phenanthrene
Pyrene
Haloqenated aliphatics
Bromof orm
Carbon tetrach 1 or ide
Chlorod ibromome thane
Chloroform
D i ch 1 orob romome thane
1 , 1 -D i ch 1 o roe thane
1 , 2-D t ch 1 o roe thane
1 , 1 -D i ch 1 o roe thy I ene
1,2-Trans-dich lo roe thy Jene
Hexachlorobutadiene
Methylene chloride
Tetrach 1 o roe thy 1 ene
1,1, I-T rich lo roe thane
1 , 1 ,2-Tri chlo roe thane
Trichloroethylene
Tr i ch lorof 1 uorome thane
Classical pollutants, mg/L
BOD
COD
TOC
TSS
Phenols, total
Oil and grease
Number of
samo 1 es


23
23
23
23
23
23
814
23
23
23
23
23
23
23

28

28
28
28
28
28
28

28
28
28
28

82
8?
28
28
28
82
28
82
28

28
28
28
28
28
28
28
28
28
28

82
82
82
82
82
82
82
82
82
28
82
82
87
82
83
82

27
26
27
27
83
78
Number of
detections


0(a)
0(a)
0(a)
2l(a)
23(a)
23
57(a)
16(8)
I5(a)
22(a)
0(a)
I8(a)
Ola)
23

2

26
1 1
19
17
1
1 1

7
27
1
1

81
9
15
6
114
75
1
81
1

2
1
21
5
8
8
2
23
21
10

1
6
1
79
1
19
1
60
69
1
82
81
71
3
81
2

27
26
27
27
82(a)
78
Median


<50
<50
<2
9
370
150
214
Ml
0.3
66
<50
9
<50
260

NO

5
NO

-------
     TABLE 22-2.  CONCENTRATIONS OF TOXIC  AND CLASSICAL  POLLUTANTS FOUND  IN THE
                   RAW WASTEWATER ENTERING  POTW B [2-61]
Pol lutant
Toxic pollutant, ug/L
Metals and inorganics
Antimony
Arsen ic
Be ry 1 1 i urn
Cadm i urn
Chrom i urn
Coppe r
Cyanide
Lead
Mercury
Nickel
Selenium
Si 1 ve r
Tha II i urn
Z i nc
Phtha lates
Bi s(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Oiethyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
Phenol s
Pen each loropheno 1
Pheno I
Aromat ics
Benzene
Chlorobenzene
1 ,2-0 1 Chlorobenzene
1 , 3 -Di Chlorobenzene
1 , II-DI Chlorobenzene
2,6-Dim trotoluene
Ethyl benzene
To I uene
Polycyclic aromatic hydrocarbons
Anthracene
F luoranthene
Naphtha lene
phenanthrene
Pyrene
Halogenated ali&hatics
Chlorod ibromomethane
Chloroform
D i ch lo rob romo me thane
1 , l-Dichloroethane
1 , 2-D i ch 1 o roe thane
1 , ( -D i ch 1 o roe thy lene
1 ,2-Dichloropropane
Methylene chloride
Tetrachloroethylene
1 , 1 ,2-Tnchioroethane
Pesticides and metabolites
1 sophorone
Classical pollutants, mg/L
BOO
COD
TOC
TSS
Phenols, total
Oi 1 and grease
Number of
samples


7
7
7
7
7
7
"41
7
7
7
7
7
7
7

6
6
6
6
6
6

6
6

l«2
142
6
6
6
6
«2
142

6
6
6
6
6

12
1*2
142
142
M2
42
142
142
142
142

6

7
7
7
7
142
140
Number of
detections


0(a)
0(3)
0(a)
6(a)
7
7
3U(a)
2(a)
5(a)
7
0(a)
2(a)
Ola)
7

6
6
5
5
3
14

1
14

31
2
5
1
1
1
18
32

3
3
14
3
3

3
140
14
2
2
16
1
39
141
114

1

7
7
7
7
i40(a)
40
Med lan


<50
<50
<2
14
67
55
66
<20
0.2
31
<50
<2
<50
300

1

-------
  TABLE 22-3.
CONCENTRATIONS OF  CLASSICAL POLLUTANTS FOUND
IN A WEEKLY AVERAGE DATA SUMMARY OF PUBLICLY
OWNED TREATMENT WORKS (POTW),  PLANT A [2-61]
                 Concentration. ma/L
             Influent
                    Effluent
                              Final
                                     Percent
                                            P r i ma ry
                                                Concentration. ma/L
                                                   Secondary
                                                    sludge
 Analytic methods:  V.7.3.3U, Data set I.
 Note:  Pollutants not detected in any sample are not listed.
 (a) Prechlorlnation
 (b) Average of the range.
                                            Combined
                                             sludae
BODS
COD
TOC
TSS
Total phenols
01 1 and grease
200
420
260
IW>
0. 18
53
22
69
55
10


13
66
65
20
0.013
5(b)
91
81
75
86
92
90
20,000
58,000
24,000
1*7,000
0.67
9, 100
6,000
6,700
2,700
6,300
<0.037

-------
TABLE 22-1.   CONCENTRATIONS OF TOXIC POLLUTANTS FOUND  IN A WEEKLY AVERAGE DATA  SUMMARY OF
              PUBLICLY OWNED TREATMENT WORKS  (POTW), PLANT  A [2-61]
Concentration ranoe.
Toxic oollutants
Metals and inorganics
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide
Lead
Me rcu ry
Nickel
Se 1 en i urn
Silver
Tha 1 1 ium
Zinc
Ethers
Bis(2-chloroethoxy (methane
Phthalates
Bis(Z-ethylhexyl) ph thai ate
Butyl benzyl phthalate
Di-n-butyl phthalate
Oi ethyl phthalate
Dimethyl phthalate
Oi-n-octyl phthalate
Nitrogen compounds
Acrylonitri le
3,3 -Dichlorobenzldine
Pheno 1 s
2-Chlorophenol
2, 4-D i me thy 1 pheno 1
Pentach 1 oropheno 1
Phenol
2,4,6-Trichlorophenol
p-Chloro-m-cresol
Aromat ics
Benzene
Chlorobenzene
1 ,2-0 \ chlorobenzene
1 , 3-D i ch 1 o robenzene
, 4-D i ch 1 o robenzene
Ethyl benzene
Hexachlo robenzene
Nitrobenzene
To 1 uene
, 2, 4-Tr i ch 1 o robenzene
Polvcvclic aromatic hydrocarbons
Acenaphthene
Acenaphthylene
Anthracene
Fluoranthene
Indenof I ,2,3-cd)pyrene
Naphtha lene
Phenanthrene
Pyrene
Haloqenated allphatics
Carbon tetrachloride
Ch 1 o rod i b romome tha ne
Chloroform
D i chlo rob romome tha n6
, l-Dichloroethane
,2-Dichlo roe thane
, l-Dichloroethylene
,2-Trans-dichlo roe thy lene
, 2-Dichloropropane
Hexach 1 o robutad i ene
Me thy lene chloride
Tetrachlo roe thy lene
, 1, l-Trichloroethane
T r 1 ch 1 o roethy 1 ene
Trichlorof luoromethane
Influent

0-50
0-50
0-2
12
440
190
18
56
0.3
98
0-50
8
0-50
250

0 - 1

32 - 36
1 - 4
2-9
0-6
0 - U
NO

ND
ND

ND
ND
0-3
13 - 19
ND
ND

5-13
0-2
0 - 1»
0 - It
0-4
30 - 36
ND
ND
18-23
NO

0 - 1
ND
0-7
0-3
ND
1 - 8
0-7
0-3

1 - 2
ND
U9 - 50
ND
0-2
ND
1 - 8
0-8
ND
ND
6 - 14
53 - 57
17 - 20
24 - 29
ND
Effluent
ore-CI2t
0-6
0-3
0 - 1
0 - 1

ND
0 - 1

0 - 1
0 - 1
0 - 1
18 - 23
NO
ND

0-5
ND
0 - 1
0 - 1
0-3
0-7
NO
NO
0-9
ND

ND
ND
0-1*
0 - H
0 - 1
0-1*
0 - H
0-6

ND
NO
IS - 21
0-2
ND
ND
0-7
0-2
NO
ND
1 - 10
1 - 9
0-7
0-9
0 - 1
Concentration. ua/L
Primary
s 1 udae

150
1.300
37
1,200
15,000
77,000
630
1*7,000
<3.l
13,000
10
25
2
150,000

ND

2,200
1
ND
ND
ND
ND

ND
ND

ND
NO
93
91*
ND
ND

170
ND
ND
ND
ND
280
ND
ND
280
ND

170
ND
1,600
ND
NO
200
4
760

1 1
17
ND
57
II
ND
9
23
ND
ND
220
290
24
280
ND
Seconda ry
s 1 udae

<22
63
10
340
18,000
9,000
<75
1,600
<2.6
3,300
23
180

-------
The  sewer  system  for  Plant B consists primarily of combined
sewers.  Four main  trunk lines  cover the  far sections of the 7.61
x  106 m2 (29.4 mi2) drainage area.   The sewer lines are mostly
concrete construction and average  20 years in age,  with some
lines over 50 years old.   The age  of the  sewer lines accounts for
the estimate  that  as much as
                  to 50% of the total  flow  to  the
POTW can be  attributed  to  infiltration in the subsystems and
interceptors,  according to the  facilities plan,  completed under
the authority  of  Section 201  of the  Clean Water  Act (PL 95-217).
The industrial contribution to  the wastewater flow to Plant B can
be considered  minimal.   The areawide waste treatment management
plan under Section 208  of  the Clean  Water Act lists the zoning
breakdown of the  drainage  area  as 96.6% residential,  1.0% retail
business and offices, and  2.4%  industrial.   The  industries asso-
ciated with  this  drainage  area  are grain elevators,  oil and fuel
terminals, machine tool and metalworking companies,  box and
insulation companies, and  one major  chemical facility with its
own National Pollutant  Discharge Elimination System (NPDES)
discharge permit.  With such  a  small industrial  flow.  Plant B is
considered to  give a general  approximation of a  typical resi-
dential treatment facility.

Tables 22-5  and 22-6 present  classical and toxic, pollutant data
for the influent, final effluent, prechlorination effluent, and
sludge streams for this facility from a weekly average data
summary.
  TABLE 22-5.
CONCENTRATIONS OF CLASSICAL POLLUTANTS FOUND
IN A WEEKLY AVERAGE DATA SUMMARY OF PUBLICLY
OWNED TREATMENT WORKS (POTW), PLANT B  [2-61]
Pol lutant
BODS
COD
TOC
TSS
Total phenols
01 1 and grease
Concentration. ma/L
Tap
yater
SO
>67
Concentration. na/L
Secondary
s 1 udoe
8,500



0.008
<250
Conb 1 ned
sludae

32,000
12,000
22,000
0.46
3,500
DAF
blanket




2.8
11,000
    Analytic methods: V.7.3.314, Data set I.
    (a) Prechlorfratlon.
Date:  9/25/81
            II.22-7

-------
O
UJ
i
o
m
CL
U.
O

ce
$
3

^-
^
O

UJ
1
UJ
>
>
UJ
1, 1

z

Q
Z
£"""
i
WCM
z*~"
«o

S H~
-IZ
0.0.
o .

?s ^Z
PQ
0~
ONCENTRATIONS
REATMENT WORK
Ol-
i
(M
CM






•J
u
J
i
a
ill

8"
i
!
3?
« a
ii
o —
S"


i!
*
j — •
* 4* 4
5I=

J£(
fcl
1
:
I c

^
-


ss
hs




«f
c
1
4
I
1
1
1









0 9t V OJ M
PJ


^V«O — Or*-WiA— VVOift fO AJ
»——»*• €»» f* —
. ftj



« » w —


VVNfJ— VOVV V V VOO
V V V V V


*\ift • *N— N •wSv'iftS — 1?VVVV ZZ V*"VV V>?"*Z -V VZZZVZZ ZvSy'^v •^,7"^ Z
VVNMVOVVV V O VOO
v V V V V V



op «o o o «o •» o *
ii • i r»tf\ i i ••>> 1*10 i(i*ii zz zz ii 11111*1 ziziiii at i i i i i z i i i i
eg ON
^_ o o o ooo ^oo o


0000£«OOMOONOK OOOOOO OO OOOO gOOOOOO OOOOOOO SS^££SSSS£ S
VV^'v V™9VV " vvvv v v v v


Mj
s 1 .
• £ S 3
2. . £ I i
*j+* c , p S • -
t *-S * ' see I a g g £S I i
s -si.s; g - |l|g o ; | |g£||ls I
*le~|«- a.ct; «N-fj5i c-? MUU.O ^Soaao-* u«*S*55S "oCE-poK^-£ -2
2 < -1 |«,m0000 | " I"1* *• 1 —«"-'• | <0^« |«000 H |-









|
*
~"
g
8

f

^

e
8
S
1
4*
•»
I
|
>.
Z
o
k
a
e
2
"
5
i
*
§
E
• *
** **
S3
m **
*>c
s
lytic Mthods: V.7.
>: Blank* Indlot*
not detected.
Preehlorimtlon.
iis'H



CD
Date:  9/25/81
II.22-8

-------
                 11.23  REFERENCES FOR VOLUME II

2-1.   NRDC Consent Decree - Industry Summary

2-2.   U.S. Environmental Protection Agency.  Technical support
       document for auto and other laundries industry.  Contract
       No. 68/03/2550.  Prepared for Effluent Guidelines Divi-
       sion, Office of Water and Waste Management, Washington,
       D.C.; 1979.  Variously paginated.

2-3.   U.S. Environmental Protection Agency.  Status report on
       the treatment and recycle of wastewaters from the car wash
       industry (draft contractors report).   Prepared for Effluent
       Guidelines Division, Washington, D.C.; 1979.  Variously
       paginated.

2-4.   U.S. Environmental Protection Agency.  Development docu-
       ment for effluent limitations guidelines and standards for
       the auto and other laundries point source category.
       Prepared for Effluent Guidelines Division, Office of Water
       and Waste Management, Washington, D.C.; 1980.  157 pp.

2-5.   U.S. Environmental Protection Agency.  Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the coal mining point source category.  EPA
       440/1-81/057-b.  Prepared for Effluent Guidelines Divi-
       sion, Office of Water and Waste Management, Washington,
       D.C., 1981.  429 pp. plus appendices.

2-6.   U.S. Environmental Protection Agency.  Draft development
       document including the data base for effluent limitations
       guidelines (BATEA), new source performance standards, and
       pretreatment standards for the inorganic chemicals manu-
       facturing point source category.  EPA-440/1-79/007.
       Prepared for Effluent Guidelines Division, Office of Water
       and Waste Management, Washington, D.C.; 1979.  934 pp.

2-7.   U.S. Environmental  Protection Agency.  Effluent guidelines
       and standards for inorganic chemicals (40CFR415; 39FR9612,
       March 12, 1974; amended as shown in Code of Federal Regu-
       lations, Vol. 40, revised as of July 1, 1976; 41FR51599
       and 51601,  November 23,  1976;  42FR17443,  April 1, 1977,
       42FR10681,  February 23,  1977;  42FR37294,  July 20, 1977).

2-8.   U.S. Environmental Protection Agency.  Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category; general.  EPA-440/l-80/024-b.  Prepared
       for Effluent Guidelines Division, Office of Water and
       Waste Management, Washington,  D.C.; 1980.  456 pp.
       Volume I.
Date:  1/24/83 R Change 2     11.23-1

-------
2-9.   U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category;  coke making subcategory,  sintering sub-
       category, iron making subcategory.   EPA-440/1-80/ 024-b.
       Prepared for Effluent Guidelines Division,  Office of Water
       and Waste Management, Washington, B.C.; 1980.   434 pp.
       Volume II.

2-10.  U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category;  steel making subcategory,  vacuum degass-
       ing subcategory,  continuous casting subcategory.   EPA-
       440/1-80/024-b.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington, D.C.;
       1980.  488 pp.  Volume III.

2-11.  U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category;  hot forming subcategory.   EPA-440/
       1-80/024-b.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington, D.C.;
       1980.  374 pp.  Volume IV.

2-12.  U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category;  scale removal subcategory, acid pickling
       subcategory.  EPA-440/l-80/024-b.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington D.C.;   1980.  512 pp.  Volume V.

2-13.  U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the iron and steel manufacturing point
       source category;  cold forming subcategory,  alkaline clean-
       ing subcategory,  hot coating subcategory.   EPA-440/
       1-80/024-b.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington, D.C.;
       1980.  576 pp.  Volume VI.

2-14.  U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the leather tanning and finishing point
       source category.   EPA-440/1-79/016.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Managment,
       Washington, D.C.; 1979. 381 pp.
Date:  1/24/83 R Change 2     II.23-2

-------
2-15.  U.S. Environmental Protection Agency.  Effluent guidelines
       and standards for leather tanning and finishing.  40CFR425;
       42FR15703,  March 23, 1977.

2-16.  U.S. Environmental Protection Agency.  Draft development
       document for effluent limitations guidelines and standards
       for the aluminum forming point source category.  EPA-440/
       1-80/073-a.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management, Washington, D.C.;
       1980.   604 pp.

2-17.  U.S. Environmental Protection Agency.  Draft development
       document for effluent limitations guidelines and standards
       for the battery manufacturing point source category.  EPA-
       440/l-80/067a.   Prepared for Effluent Guidelines Division,
       Office of Water and Waste .Management, Washington, D.C.;
       1980,  823 pp.

2-18.  U.S. Environmental Protection Agency.  Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the coil coating point source category.
       EPA-440/l-81/071-b.  Prepared for Effluent Guidelines
       Division, Office of Water and Waste Management, Wash-
       ington, D.C.; 1981.  481 pp.

2-19.  U.S. Environmental Protection Agency.  Draft development
       document for effluent limitations guidelines and standards
       for the coil coating point source category.  EPA-440/1-79/
       071-a.  Prepared for Effluent Guidelines Division, Office
       of Water and Waste Management, Washington, D.C.; 1979.
       473 pp.

2-20.  U.S. Environmental Protection Agency.  Draft development
       document for effluent limitations guidelines and standards
       for the electrical and electronic components point source
       category.  EPA-440/l-80/075-a.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1980.   Variously paginated.

2-21.  U.S. Environmental Protection Agency.  Draft development
       document for effluent limitations guidelines and standards
       for the foundries (metal molding and casting) point source
       category.  EPA-440/l-80/070-a.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1980.   860 pp.
Date:  1/24/83 R Change 2     II.23-3

-------
2-22.  U.S. Environmental Protection Agency.   Draft development
       document for effluent limitations guidelines and standards
       for the metal finishing point source category.   EPA-440/
       1-80/091-A.   Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington,  D.C.;
       1980.  Variously paginated.
       Updated with:
       U.S. Environmental Protection, Agency.   Proposed development
       document for effluent limitations guidelines and standards
       for the metal finishing point source category.   EPA 440/
       1-82/091-b.   Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington,  D.C.;
       1982.

2-23.  U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the electroplating point source category.
       EPA-440/1-79/003.  Prepared for Effluent Guidelines Divi-
       sion, Office of Water and Hazardous Materials,  Washington,
       D.C.; 1979.   526 pp.

2-24.  U.S. Environmental Protection Agency.   Draft development
       document for effluent limitations guidelines and standards
       for the photographic equipment and supplies segment of the
       photographic point source category.  EPA-440/l-80/077-a.
       Prepared for Effluent Guidelines Division,  Office of Water
       and Waste Management, Washington, D.C.; 1980.  Variously
       paginated.

2-25.  U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the porcelain enameling point source cate-
       gory.  EPA-440/l-81/072-b.  Prepared for Effluent Guide-
       lines Division, Office of Water and Waste Management,
       Washington,  D.C.; 1981.  515 pp.

2-26.  U.S. Environmental Protection Agency.   Draft development
       document for effluent limitations guidelines and standards
       for the porcelain enameling point source category.  EPA-440/
       l-79/072a.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington,  D.C.;
       1979.  588 pp.

2-27.  U.S. Environmental Protection Agency.   Technical review
       for the BAT analysis of the explosives industry, draft
       contractors report.  Prepared for Effluent Guidelines
       Division, Office of Water and Hazardous Materials,
       Washington,  D.C.; 1979.  215 pp.

2-28.  U.S. Environmental Protection Agency.   Effluent guidelines
       and standards for explosive manufacturing.   40 CFR457;
       41FR10180, 1976.


Date:  1/24/83 R Change 2     II.23-4

-------
2-29.  U.S. Environmental Protection Agency.   Final development
       document for proposed effluent limitations guidelines,  new
       source performance standards and pretreatment standards
       for the explosives manufacturing point source category;
       subcategory E,  formulation and packaging of blasting
       agents, dynamite, and pyrotechnics.   Performed by Hydro-
       science for the Effluent Guidelines Division, U.S. Environ-
       mental Protection Agency,  Washington,  D.C.; 1979.  Vari-
       ously paginated.

2-30.  U.S. Environmental Protection Agency.   Technical review of
       the best available technology, best demonstrated tech-
       nology, and pretreatment technology for the gum and wood
       chemicals point source category.  Prepared by Environ-
       mental Science and Engineering, Inc.,  for the Office of
       Water and Hazardous Materials, U.S.  Environmental Pro-
       tection Agency, Washington,  D.C.  1978.  Variously
       paginated.
       Updated with:
       U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the gum and wood chemicals manufacturing
       point source category.  Prepared for Effluent Guidelines
       Division Office of Water and Hazardous Materials, Washing-
       ton, D.C.; December 1979.

2-31.  U.S. Environmental Protection Agency.   Effluent guidelines
       and standards for gum and wood chemicals manufacturing.
       40CFR454; 41FR20506,  1976.

2-32.  U.S. Environmental Protection Agency.   Contractor's engi-
       neering report for the development of effluent limitations
       guidelines and standards for the pharmaceutical manufac-
       turing point source category.  EPA-440/l-80/084-a.  Pre-
       pared for Effluent Guidelines Division, Washington, D.C.;
       1980.  Variously paginated.

2-33.  U.S. Environmental Protection Agency.   Effluent limita-
       tions guidelines and standards for the pharmaceutical
       manufacturing industry, draft contractor's report.  Pre-
       pared for Effluent Guidelines Division, Washington, D.C.;
       1979.  622 pp.

2-34.  U.S. Environmental Protection Agency.   Effluent guidelines
       and standards for pharmaceutical manufacturing.  40CFR439;
       41FR506 76, November 17, 1976; Amended by 42FR6813, February
       1977.

2-35.  U.S. Environmental Protection Agency.   Draft development
       document for effluent limitations guidelines and standards
       for the nonferrous metals manufacturing point source
       category.. EPA-440/l-79/019-a.  Prepared for Effluent


Date:  1/24/83 R Change 2     II.23-5

-------
       Guidelines Division,  Office of Water and Waste Management,
       Washington, B.C.;  1979.   622 pp.

2-36.  U.S.  Environmental Protection Agency.   Effluent guidelines
       and standards for nonferrous metals.  40CFR421; 39FR12822,
       April 8, 1974; Amended by 40FR8514,  February 27, 1975;
       40FR48348, October 15, 1975; 41FR 54850, December 15,
       1976.

2-37.  U.S.  Environmental Protection Agency.   Development docu-
       ment for effluent limitations and guidelines for the ore
       mining and dressing point source category.  EPA-440/1-78/
       061-e.  Prepared for Effluent Guidelines Division, Office
       of Water and Hazardous Materials, Washington, D.C.; 1978.
       913 pp.
       Updated with:
       U.S.  Environmental Protection Agency.   Proposed development
       document for effluent limitations guidelines and standards
       for the metal finishing point source category.  EPA 440/
       1-82/061-b.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington, D.C.;
       1982.  640 pp.

2-38.  U.S.  Environmental Protection Agency.   Preliminary draft
       development document for BAT effluent limitations guide-
       lines and new source performance standards for ore mining
       and dressing industry, draft contractors report.  Contract
       No. 68-01-4845.  Prepared for Effluent Guidelines Division,
       Washington, D.C.; 1979.   Variously paginated.

2-39.  U.S.  Environmental Protection Agency.   Effluent guidelines
       and standards for ore mining and dressing.   (40CFR440,
       November 6, 1975; 41FR21191, May 24, 1976; 42FR3165,
       January 17, 1977; 43FR29771 July, 11,  1978;  44FR7953,
       February 8, 1979; 44FR11546, March  1,  1979).  p. 135:0881.

2-40.  U.S.  Environmental Protection Agency.   Draft engineering
       report for development of effluent  limitations guidelines
       for the paint manufacturing industry (BATEA, NSPS, pre-
       treatment).  Prepared for Effluent  Guidelines Division,
       Office of Water and Hazardous Materials, Washington, D.C.;
       1979.  Variously paginated.

2-41.  U.S. Environmental Protection Agency.   Draft engineering
       report for development of effluent  limitations guidelines
       for the ink manufacturing industry  (BATEA, NSPS, pretreat-
       ment).  Prepared for Effluent Guidelines Division, Office
       of Water  and Hazardous Materials, Washington, D.C.; 1979.
       Variously paginated.
Date:  1/24/83 R Change 2     II.23-6

-------
       Updated with:
       U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the ink formulating point source category.
       Prepared for Effluent Guidelines Division of Water and
       Hazardous Materials,  Washington, D.C.; December 1979.

2-42.  U.S. Environmental Protection Agency.   Effluent guidelines
       and standards for paint formulating.   40CFR446; 40FR31723,
       July 28, 1975.

2-43.  U.S. Environmental Protection Agency.   Effluent guidelines
       and standards for ink formulating.  40CFR447; 40FR31723,
       July 28, 1975.

2-44.  U.S. Environmental Protection Agency.   Development docu-
       ment for effluent limitations guidelines and new source
       performance standards for the petroleum refining point
       source category.   EPA-440/l-74/014a.   Prepared for
       Effluent Guidelines Division, Office of Water and
       Hazardous Materials,  Washington, D.C.; 1974.  195 pp.

2-45.  U.S. Environmental Protection Agency.   Interim final
       supplement for pretreatment to the development document
       for the petroleum refining industry existing point source
       category.  EPA-440/1-76/083-A.  Prepared for Effluent
       Guidelines Division,  Office of Water and Hazardous Mate-
       rials, Washington, D.C.;  1977.  115 pp.

2-46.  U.S. Environmental Protection Agency.   Draft development
       document including the data base for the review of efflu-
       ent limitations guidelines (BATEA), new source performance
       standards, and pretreatment standards for the petroleum
       refining point source category.  Prepared for Effluent
       Guidelines Division,  Office of Water and Hazardous Mate-
       rials, Washington, D.C.;  1978.  Variously paginated.

2-47.  U.S. Environmental Protection Agency.   Development docu-
       ment for proposed effluent limitations guidelines, new
       source performance standards, and pretreatment standards
       for the petroleum refining point source category.  EPA
       440/1-79/014-b.  Prepared for Effluent Guidelines Divi-
       sion,  Office of Water and Waste Management,  Washington,
       D.C; 1979.  366 pp.

2-48.  U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the pulp, paper and paperboard and the
       builders paper and board mills point source categories.
       EPA-440/l-80/025-b.  Prepared for Effluent Guidelines
       Division; Office of Water and Waste Management, Wash-
       ington, D.C.;  1980.  632 pp.


Date:  1/24/83 R Change 2     II.23-7

-------
2-49.   U.S.  Environmental Protection Agency.   Effluent guidelines
       and standards for the pulp,  paper and paperboard point
       source category.   40CFR430;  42FR1399,  January 6, 1977.

2-50.   U.S.  Environmental Protection Agency.   Review of the best
       available technology for the rubber processing point
       source category.   Contract No. 68-01-4673.   Prepared by
       Envirodyne Engineers, Inc.,  for Effluent Guidelines Divi-
       sion,  U.S. Environmental Protection Agency,  Washington,
       D.C.;  1978.  Variously paginated.

2-51.   U.S.  Environmental Protection Agency.   Effluent guidelines
       and standards for rubber processing.  40CFR428; 39FR6660,
       February 21,  1974 (amended by 39FR26423, July 19, 1974;
       40FR2334, January 10, 1975;  40FR 18172, April 25, 1975
       [effective May 27, 1975]; and 43FR6230, February 14,
       1978).

2-52.   U.S.  Environmental Protection Agency.   Development docu-
       ment for effluent limitations guidelines and new source
       performance standards for the soap and detergent manu-
       facturing point source category.  EPA-440/l-74/018-a.
       Prepared for Effluent Guidelines Division,  Office of Water
       and Waste Management, Washington, D.C.; 1974.  202 pp.

2-53.   U.S.  Environmental Protection Agency.   Project recommenda-
       tions for the soap and detergent manufacturing industry
       (SIC 2814) BAT/Toxics Study.  Prepared for Effluent Guide-
       lines Division, Washington,  D.C.; 1976. 26 pp.

2-54.   U.S.  Environmental Protection Agency.   Economic analysis
       of effluent guidelines for the soap and detergent in-
       dustry.  EPA 230/2-73/026 (PB 256313).  Prepared for
       Effluent Guidelines Division, Office of Planning and
       Evaluation, Washington D.C., 1976.

2-55.   U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the steam electric point source category.
       EPA 440/1-80/029-b.  Prepared for Effluent Guidelines
       Division, Office of Water and Waste Management, Washing-
       ton,  D.C.; 1980.   597 pp.

2-56.   U.S.  Environmental Protection Agency.   Effluent guidelines
       and standards for steam electric power generating point
       source category.   40CFR423;  40FR61619, Sept. 17, 1980;
       Amended by 40CFR125 and 423, 47FR52290, Nov. 19, 1982.

2-57.   U.S.  Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the textile mills point  source category.
       EPA-440/l-79/022-b.  Prepared for Effluent Guidelines
       Division, Office of Water and Waste Management, Wash-
       ington, D.C.; 1979.  678 pp.


Date:   1/24/83 R Change 2     II.23-8

-------
2-58.  U.S. Environmental Protection Agency.   Technical study
       report BATEA-NSPS-PSES-PSNS:   textile  mills point source
       category.   Contracts Nos.  68/01/3289,  68/01/3884.  Pre-
       pared for U.S. Environmental  Protection Agency;  1978.
       Variously paginated.

2-59.  MRC internal sampling data on file at  Effluent Guidelines
       Division of EPA,  1978.

2-60.  U.S. Environmental Protection Agency.   Proposed develop-
       ment document for effluent limitations guidelines and
       standards for the timber products processing point source
       category.   EPA-440/l-79/023-b.   Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1979.   427  pp.
       Updated with:
       U.S. Environmental Protection Agency.   Final development
       document for effluent limitations guidelines and standards
       for the timber products point source category.  Prepared
       for Effluent Guidelines Division, Office of Water and
       Hazardous Materials, Washington,  D.C.; January 1981.   498
       PP-

2-61.  Clement Associates,  Inc. Description of the organic chem-
       icals and plastics industry,  Section 4.0 (working paper).
       Prepared for Effluent Guidelines Division,  Office of Water
       and Waste Management,  Washington, D.C.; 1981.  35 pp.  plus
       appendices.

2-61.* (as in Section 22).   U.S.  Environmental Protection Agency.
       Fate of priority pollutants in publicly owned treatment
       works - pilot study.  EPA-440/1-79-300.  Prepared for
       Effluent Guidelines Division, Office of Water and Waste
       Management, Washington,  D.C.; October  1979.

2-62.  Catalytic, Inc.  Draft partial report  on evaluation of
       organic chemicals and plastics and synthetics.  Prepared
       for Effluent Guidelines Division, Office of Water and
       Waste Management, Washington, D.C.;  1981.   Variously
       paginated.

2-63.  JRB Associates, Inc.  Organic chemicals industry priority
       pollutant data; data listings,  descriptive statistics and
       percent reduction.  Memorandum, J. Ackermann, JRB, to C.
       Norwood, JRB, 8 June 1981; modified by EPA Effluent Guide-
       lines Division.  Prepared for Effluent Guidelines Division,
       Office of Water and Waste Management,  Washington, D.C.;
       1981.  Variously paginated.

2-64.  Wise, Hugh E., and Paul D. Fahrenthold.  Occurrence and
       predictability of priority pollutants  in wastewaters of
       the organic chemicals and plastics/synthetic fibers indus-
       trial categories.  Presented  in part at the 181st American

Date:  1/24/83 R Change 2     II.23-9

-------
       Chemical Society National Meeting, Division of Industrial
       and Engineering Chemistry, Symposium on Treatability of
       Industrial Aqueous Effluents, Atlanta, Georgia, March
       29-April 3, 1981.  40 pp.

2-65.  Fahrenthold, Paul D., and Hugh Wise.  Toxic pollutants in
       the organic chemicals industry.  Presented at 52nd Annual
       Conference of the Water Pollution Control Federation,
       Session 24, October 9, 1979.

2-66.  Catalytic, Inc.  Preliminary performance data for selected
       classical pollutants.  Contract 68-01-5011.  Prepared for
       Effluent Guidelines Division, Office of Water and Waste
       Management, Washington, D.C.; 1981.  10 pp.

2-67.  JRB Associates, Inc.  Priority pollutant analysis (with
       supplemental data listing).  Memorandum, J. Ackerman, JRB,
       to M. Irizarry, EPA, 22 May, 1981; supplemented with
       additional data, October 1981.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1981.  Variously paginated.

2-68.  Gile, Rexford R.  1982.  Letter, Rexford R. Gile, EGD, to
       Robert P. Stevens, 4 Nov. 1982, 1 p.

2-69.  U.S. Environmental Protection Agency.  Proposed development
       document for effluent limitations guidelines and standards
       for the electrical and electronic components point source
       category.  EPA 440/1-82/075-b.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1982.

2-70.  U.S. Environmental Protection Agency.  Supplement to the
       addendum to development document for effluent  limitations
       guidelines and standards of performance for the ore mining
       and dressing industry point source category - chemical
       analyses data supplement B-l.  Prepared for Effluent
       Guidelines Division, Office of Water and Waste Management,
       Washington, D.C.; 1978.

2-71.  Jordan, J. William.  1975.  Memorandum, J. William Jordan,
       EGD, to Bruce P. Smith, 17 June 1975.  4 pp.

2-72.  Miskimen, Thomas A.  1982.  Letter, Thomas A. Miskimen,
       Utility Water Act Group, to William A. Cawley, USEPA,
       8 December 1982.  4 pp.

2-73.  Utility Water Act Group.  1982.  Utility Water Act Group
       Comments on the draft revised treatability manual, 14 July
       1982.  Variously paginated.
                                      U.S. GOVERNMENT PRINTING OFFICE : 1984 O - 432-454(Vol II)
Date:  1/24/83 R Change 2     11.23-10

-------
-------

Q
Ul
^
Z
—
h-
Z
ceo
oo
*"
o
Ul •
I-CO
OUI
Ul CO
a- CO
X U]
UIO
0
co o;
Z 1
h-O
_l Q
-10
OCe
Q- Q.

>- >-
t-ce
— h-
cetO

— Q
cez
a. —

O-J
Z ^
<0

2 2
< Ul
LUX
ceo
l-
coo
Ul Z
I— ^
COO

CO
CD
4-9
CO
CO






















CO
CO
CD
o
o

Q.
1
4J
O
3
T3
O
l_
o.
























CO
c
•—
TO •.

C CO CO
0 >>O
o 	
CO C
^ -P CO
C CO C7J
CO O S-
4J O
d-
.C 0 <-
CO 0)
TO CO .C
> CD 4->
0 0
< CO
Q. t- T3
1- -P C
CO
E "O
O C ••
«- CO CO
c>- CD
•O 4-9
! 	 (0
CD O —
4J COT3
TO CD
> 0 £
— i.
.C 4-> CD
O3 CD 4->
TO O C
5 co —

,
^
































•o
CD
—
<>-
'^J
C
CD
•o


CD
C
O
Z




O)
«T3 C
— C —
O TO *-
1 C 3
— TO «T3
OC 10
C 4-> 4J"D
TO CD O CD
c E 3 E
4J TD «-
U C O O
E— s- O -P O
0 TO 3
E — -0
EXT3 O
TO 0 t-
*- e E a
S- 1
! 	 CD CD
CD— 4-> -0
4-> — C —
TO 4->— CO
> CO
CD T3 4-9 .
4-9 >>CD.C C
CO C- 4J m O
TO CD O 	
> > TO— P
O CD O
0) O *- >>co
s: to c c a>
1- t- 3 TO S-

,


>J
n
CD
CD C
4-> CD
TO —
— >^
TOX
C 1
•P Q.
^
ri G—
CD 0
s.
0 C^ —
i- o a
._ 0

>>TOCO
£-0 1
4-> — 0
0 x c
EOO

O













CD
C
CD
N
C
CD
CO



4J .
CO CD
>> > >— Ik- O £ TO CO
<- \ 4J >>T3 O>TO S-T5 O *> 0
4J CO CO CO CO C CO 4-> CO C -PU1 -ON
0>*- — 1 E TO ECBTO 4JCO T5CC4J EC C
~5O OSZ O TO «0— 3 O OTOCD

E CO C CO 0) CO 4J C 4-> CO CO* i: 4J E T3 Ct-t— TOI
ro'-co »N4-> o- 	 4JC ^-CaO £ Q.
01 4J — co n co co COCD CO O t~ EO£I
4J 	 CO 	 4->^3 CON >O0d CO O —
WOO — 13 0CO >C OO>> ®C3>>
CC CD CO CO £OO CD >>«S^ < 	 »)£
CD CD CO j: P E P O —A CO CO 1- . 4-> CO 4-!
£XI£ 4JCOf— "O -^ XIE^U •*** CO 4V •* 0
4J4J4J. >,0- E>>C — % -P —0 C4JE
CDCDCO EL--PH O CO CO 4-9— — CO C"D CO O O
EEEO OOCZ (-E coo E— co X 4-9U3C
O — I- •- Q  T3 O
4- CD C C l»- 0 —1- >>CB • £- 4J W 5- CD TO >> O
Ci- j: — TO .CCd- E — Z l-iICO VCOCOT3 >TOl-ffl
4-> 03 CD « 4J O O TO — Q CO 4J 4-> 0 — E Q. P
1- 4-><- i. — 04-9 > CO O 1-CON4-9TO tl> >> CO
0 4J C O 0 4J 4J CO 1. CO 4J OE3 0T3C.CX -0— J33
4JCOO 4JTOO4J 4J O O T3 4JC0O1O C— —
TO OP TO TOC U) 4J 3 0CO CO CO £1 — ^3 0 — t- O
^CU J>I ^t0CD3 O*O L.— t- ^| — £— I4J04J
04->>}Cn 04-91-O 03O- TOO. 04J» TO >. W -P 1
4JCOCO— 4JCO E WOt-W — 4-9 >> 4J £ — "O O > COO.
COCOE— cococra co o a co o en « cno c  CU — "O 5 CO CO CO >Q. «"D TOO^P > — TO • -C3T3>»
^—0 T3+JO CO •— £Z £1 jC^Ol ^0J»
03 C — 4-> CO C C CO CD CO T3 ") P >, Ol CO CD 4J 1— . CD O X 4->
eO4Jco COOt. C£C0 0CO — -C.C0Z0 £^- — 0
h-CJW— HOO4J K-P01- ZE— KWEQ~- ^aEE

• • • • • •
CM to it — CM to
1
£> a.
0 0
0 C. 0
4J 0 CO
col- 
Q.O — 0
0— O
U 4JT3 O
0 ro— t-
1- O Oft.

— 4- C
>»•- o ta

4-J CO — 4->
CO P CO «
E «-C co
OJUJ PLU

o
Date:  9/25/81
11.12-40

                                                 cNVIRONMENTA
                                                   PROTECTION
                                                     AGENCY
DO,                                EPA-600/2-82-001h DALLAS'
Hb
Change 2
                                                      |DMDV
                                                     LlDKAKT
          TREATABILITY  MANUAL

 VOLUME  II.   Industrial Descriptions
  OFFICE OF RESEARCH AND  DEVELOPMENT
 U.S. ENVIRONMENTAL PROTECTION AGENCY
        WASHINGTON, D.C.   20460
              September  1981
             (Revised  8/31/82)
             (Revised  1/24/83)

-------
                              PREFACE

 In January,  1979,  USEPA's  Office  of Enforcement  and  Office  of  Water
 and Waste  Management  requested help from  the  Office  of  Research
 and Development  in compiling  wastewater treatment performance
 data into  a  "Treatability  Manual."

 A planning group was  set up to manage  this  activity  under the
 chairmanship of  William Cawley, Deputy Director,  Industrial
 Environmental Research Laboratory - Cincinnati.  The group  in-
 cludes participants from:  1)  the  Industrial Environmental
 Research Laboratory - Cincinnati;  2) Effluent Guidelines Divi-
 sion;  3) Office  of Water Enforcement and  Permits; 4) Municipal
 Environmental Research Laboratory - Cincinnati;  5) R.S. Kerr,
 Environmental Research Laboratory - Ada;  6  Industrial Environ-
 mental Research  Laboratory -  Research  Triangle Park; 7) WAPORA,
 Incorporated; and 8)  Burke-Hennessy Associates,  Incorporated.

 The objectives of this program are :

      •    to provide  readily  accessible data  and information on
           treatability of  industrial waste  streams;

      •    to provide  a basis  for  research planning by identifying
           gaps in knowledge of the treatability  of certain  pollut-
           ants and waste  streams.

 The primary  output from this  program is a five volume Treatabil-
 ity Manual.   This was first published  in  June 1980,  with  revisions
 made in September 1981 and August 1982.   This publication  re-
 places Volume I  in its entirety,  and updates  Volumes II,  III,
 IV, and V.  The  individual volumes are named  as  follows:
      Volume I
      Volume II
      Volume III -
      Volume IV

      Volume V
Treatability Data
Industrial Descriptions
Technologies
Cost Estimating (In the process of re-
vision for later publication)
Summary
Date:  1/24/83
            11

-------















J
g
2

r
t-


l-i 00
CO —
< -a
H CM
c£ ^t
f~
CM

M U
u <

3°
eg
ti *
c ^
CM
W 00
f- -.

Si. *v^.
S 00
X ~^
o *^
El-
U
2 Z
O <
w X
S- U
u
i
t-
U)
2
**

















O
-1 0)
to -3
•H *J
o: w

21
*^.
u
c
o
b
IM
V^

n
01
0)
£
1/3











U
c
o
•H
u
u
C
u
91
C
H-l




























C
o
I!
o
£





£< 01 0)0)0' 0)0)0)0)0)0)
M 00 000000 OOOObOOSOOOC
c c ecc eecrcc
o o uoo ouuoou








•rt C

— 1 C — 1 > ft £
•* — 1 Q X _| X X — 1 —
C -rf ^-^X£ VHXV-~.-^-'
"J — >^~--^ -rf »^ vJ X •< — i


•o
01
0)
>
0)
b

j: j:
u u
* *
0) « 0)
u u u
tj) ^j .. 0)
0) V *Q 0)
.e £ U j;
« M 79 «
00 60 °> S
C CO W
w « u e
5 •• s e.
o -e o oo
*H 41 -H « C
— 1 T> iH *J -H
0 -rf O 4) 3
U-. > ItJ 4) O
O X -H
4) Ui 0) (0 <-*
£ 0. £ O
U U «B «"•
09 V
4)1 4J 0)1 W 0)
u 01 o -< j:
(n 1 4) to > w
— 1[.C F-I 4)
O. (0 C, b T3|
411 0) *Ol
D2| OS <|











0)
C
e
•^ «
4^ 4J
3 S
U W (0
*j C V
« § 3 9
00 M 0-
C. u- O "-
o o
4) 0)
*^ u —4 iJ
W CO JD W
MW «W^ fl Wrf
1- J H J
§
£
»•*
VQJVV 0)Q)CiO) Q)0)O4)4)
6001)0009 00 00 « 00 00 00 M 00 00
§ecc eecc eeece
ceacc igieiem cgioigcgig
j: j: £ j: s^ £. s: c. a e c. c f
OOOIJ OOUO UOOOU





•^ ^
c e
 r^^^CMCM CMCS)r^»c^^
7T:?t tt77 777TT








j: £
u u
* *
« « to
U *J iJ
41 .. 01 41
41 T3 01 -O V
£ 0) JB 0) £
f T5 » T> «
00 > 00 > 3
CO CO 4)
•H I* T< u ^
30. S ex
o o oo
f-4 to *H tT C
i-t u i-H iJ —4
O O O Q) ^

0) tr 01 to o)
u -> u ^ £
to >  u
iH 4) fl 0)
c. u at. TJ|
8) « 131
o2 c2 <|








09
0)
kl
•o
§
«
J
b


S ff
•H
•^ c
S £
O '"•'
u «
3 3

-------
M  IL!
1-1  U

u  <
a.
C
H ^
«£ •—'
Q fO
a. ^.


ct "^

£-
   u
c
o
•H «
tK 3
•H tJ
> n
« to
^v
.*
U
10
.c
u
C
o
id
(w
^
w
4J
V
V
55



»
c
0
t-4
U
U
3
U
U

£
M











0)5)01010)0)0)0)01 U 0) 0, 0) CJOIOI O 01 11 4)
000000000000030300 *3 00 03 00 03 00 00 09 OO OO OO
eeecceccc e e c c e e e c c c c
nnnnaatoaa nn^n nnn nnnn
ouooooooo oooo ooo oooot



^
c
C re eg -» vo co o
O"^*^-^ ^^^r-l
m^nns nn sn nn:
£ £
5 ^

W CD
U 4J
S) .. 01 ••
0) T3 0) T3
CO T3 (0 T3
•^ t4
00 > 08 >
co do
*4 U *^ Ul
SO- 3D.
0 0
— C 09 i-J »
"o o! co!
(WO) u- o)
oi ••» V n
£ s:
iJ T3 AJ *tj
V V
V tg •• 01 M
O ~< 01 U — 1 0)
n > >  >
^-< 0* O •— ' 01 O
r. i- s a LI e
& K £ ti-

ll a 01 n ai o u ai ai
3000 *9 00000300OOOO
= c c cceiee
in n naninn
36 6 060006




•^ kj
C C fM^Cro-^vC
N ,O ,C ^^ fO ^ <-^ C^ l^
-- ^ I-, t 1 1 1 1 1
FT 7 1 1 1 1 -! w.
D« 1-- 00 OO OO OO 00 OC
JC
u
? -s
01


Ot •• V >
01 -B «* O
£01 -C lj
W ^ U) O.

00 > 03 V
co e u
— U, -JO)
so. J D
O O J
•-I U r-l «
o o! o-o
(MO) (WO)
£ a
OJ « 0) -^
£ j: >
*j t3 u at
IV Li
0) » 0)
O — U £
 aw
— 1 O* -H .J
c. tj a j
S  X
f-  O
o
                 !    J
                      I
                      o

                       o
                      •f-t
                       c
                       a
                       oo
                       b
                       O
                       e
                                                                                                                                 09
                                                                                                                                 C

-------
                     0»  Ol  Ol  0)  0)  01
                     00  00 60 00 00  00
                     e  c  c  e  e  e
                     CO  tg  (B  (13  (0  03

                     j= J=  £. J=  .c .c
                     CJ U  U O  CJ U
                         01
                         00
                         e
              Jt
              %
              J3
                               00  CSI •








                     f^' (st  fsf es  r*1 CM


                     DC CO  00 00  CC 00
 C
 w
rH
XI




T
r-t

03
                                                    co  — *
                                   f

                                   oc
M ,

J '
f-
li
 II  TJ
£  01
 0)  75
    i-l
 oc  >
 c  c
•H  ^
 S  a
 o
—I  01
                       ."8
                                              M >
                                              C  O
                                             u*  0>

                                              oi  a
                 jr
                  u
                 •^
                  J

                  n
                  AJ
                  01  ..
                  01 r;
                 j:  01
                  to -o
                     H^
                  00  >
                  e  o

                 *  s.
                  o
                 i-t  CO

                  o  o>
                 iu  gj

                  o>  01
                 jc
(-•  U
o
                     00
                     c
                     3

                     i
                                              a

                                             5
                                          •3
                     CM


                     OC

-------
 o)  o)  o)      o*  o)
 00 00  00     00 00
 c  e  c      c  c
 (0(9(0        U
                                                                        O  01  01
                                                                        oo oo oo

                                                                        «  a  «
                                                                       .e  .c .s
                                                                       o  o o
J

z
                            .
                             e
                             re
                         O ^
                                       in
                     oo  co oc
               i   i


              oo oo
                                                                                                 I    I   I   I    I
                                                                        i   T  i
                                                                       00  CO 00
                                              oooooocococooocooooococooo     oo  oo 03  oc  oo     oo oo  oo
J  c")
1-1  co
<  ^-


f-  ^
    CM


s"g

K  <
Z  2
o  <
i
                      £  41
                      « -o
                         V4
                      00  >
                      e  o
                      T*  b
                      i  o.
                      o
                      -H  a>
                      01
                      Si
 m
4J
 tl  ..
 4)  -O
-C  V
 a>  -a
    •^
 oo >
 e  o
T1  u
 3  Q.
 o
 O  ft*
*w  01

 01  «!
JC
 W  13
    01
 oi  a
 U  —I

J3  5
 a ij
                                                                            01  ••
                                                                            O  -0
                                                                           j:  
                                                                            e  o
                                                                                                 O   01
                                                                                                IH   0>
                                                                                                    f.
                                               00
                                               e
                                               r
                                               CO

                                               e
                                                                                                 o.
                                                                                                 CL
                                                                                                 3
                                                                                                 (A

                                                                                                 •o

                                                                                                 g
                                                                                                 3
                                                                                                 cr
                                                                                                 U
                      13
                      e

                      I
                                                                                                 CO

                                                                                                 CO

-------
e
O
•^ a
n 3
f4 U
> n
41 u
* C/5
^•v
Jt
U
a
JO
^N.
u
a
0
LI
u*
^-*
01
01
OT
J
3
2
Z
J P
h* CC
OS -^
H CM
1C — i
<* x^ U
H C
CM 0
1-1 U u
W U 0
2 3
is S
J e
§|
tb

CM
H *
S S
a. -^
S OB
a; ^
£-
2 5
O «f
>-i a
H 0
|
2
M






e
o

u
0

trt


4) 41
60 60
I I
6 6




O co
CM CM
— . *--
T 7
0 O
CC CO
M M





JT
^

M
U «

4) -O 41
£ 01 41
-I »
60 >
CO «
* a. f
5 *
£ ^ ^

^ <«
c. •/
X V
U1 £
c ' w
«!"> *
^ 01 o
ll" 1










60
C
41
g
w

e
-i
eg

41
u
u
S,

C 4141 t) 0) 0) 01 4) 01 01 010141 41
60 6060 6360606060 60 60 Q06060 «
c cc ccccc c e ece c
£ j: X X££J:JE: j: j: jr £ JT x
O (JO OUUCJO O U CJCJO U


"s j< ^ ^
3 e e e
r-* CO (0 CO
J9CM^4 CMO^O CM.»,-I
— ,t-JJ3 .^CSIXICM CMCM^lsC
CM ^r^ ^,^S^.^o ^ o^ ^r?^ ^
o "f "f "i'T'T'T'T V T1 fff o
-i CMCM c", ro c" co cn cfl in uiini^ 1







£. f. f J=
% % % %

(A 10 QQ 0)
iJ U 4J 4J

0) -S 01 -O 41 -O 4
£ i' j: 41 £ oi J:

60 > 60 > 60 > «
e c c o eo c
•C* Lt «r4 U «H L(  C

s: jc f
•a i> 01 
U^U^H 01 O — 'Of I
•-iOI^Ol O^OJO «
(




60
e
b
9
u
41 HI U
9 eg uj
WO 3
0 -^ C
* § S: "
"3 1 r «
i ° -S S
*~ Q ~t
eft O 4-1 01
4) » 3 3
> no
—1 T5 O ki
01 C O L.
O (t S 41
— i C u-i
0. a eg c
WO £ S

41 41 41 41 0) U
) 60 60 60 60 60 it
1 § § § § S
665666






rsi
tsr <* \o oo *^ ****
t T V7T t







jr
^

(0
u
41 ..
•O 01-0
41 -CD
vH —i
> 60 >
o e o
b *H Li
O. » o.
O
Cfi r-i 01
O O 41
0) **-• 4)

 « >
01 -H 41
L. CX Ll








H
01
01
41
t)

60
C
*-l
e

*•
41
L,
C




CC

-------
           e
           o
          —i   te
           VI   3
                      00&OM0060M&000
                      CCCCCCCC
                     jr.c.c.e.c.c.n.c
                     CJOUUCJUCJU
 ft)  
               c  o
               T*  ^
               »  a
               o
               •-<  V.
               *4  4J
               O  01
                                                                    u
       X
       u

       *

        (T

        01  ..
        oi  -o
       x  01
        w  -o

        oo >
        c  o
       •H  ^
        i  &
        o
       •H  «

        O  01
       iu  01
                                                                                                                             u  ..
                                                                                                                             01 -O
                                                                                                                             s:  oi
                                                                                                                             01 -v
                                                                                                                                •*-<
                                                                                                                             oo  >
                                                                                                                             e  o
                                                                                                                             f.

                                                                                                                             •o
u

 u
                                                                    I

                                                                    2
                                                                    •a
                                                                    e
                                                                    a
                                                                    e
                                                                    **

                                                                    04
                                                                                                                             01
                                                                                                                             a
                                                                         a
                                                                        p-4
                                                                         3

-------
                                                                                                                     r>JCM
                    01  4)
                    00  ao
                   65
 01  0)  01  tt»  0) 01
 00  00 00 00 OC 00
 e  e  e  e  e e

x x x  x  x x
O O O  CJ  O O
 01  01  0)  0.     01
 00  UJ 00 tC    00
 cccc     c
 (0(0ooO'J^ — ~~-^-^-^.-v.^»^ —
1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1

S°
tJJ CJJ

u.
O
u: oo
H ~-
tn u
z z
O <
1-1 K
f- O
O
 ffi
 u
 01  ••
 at -a
x  oi
 a -o

 &0  >
 c  o
    tu
    a
 o
i-*  m

 o  oi
1
•o
>
o
u
a

0)
^J
01
01
X
w

"S
«
•c*
>
01
1^

X
0)
oo
c
•s
o
~<
^H
o

O
ki
a

a
u
01
01



•s
a
•fi
>
a>
Ui

                                                                   e
                                                                   01
                                                                   00
                                                                   u
                                                                   01
                                                                            a
                                                                            u
                                                                            v

                                                                            I
                                                                            Ui

                                                                            if
                             w
                             01
                            £

-------
                    CM CM  CM CM CM













J
1
£
>*
H
M *•%
J c-i
M 00
ec —
< -a
H CM
S d.
H
CM

SB
Z
u <:
s a:
3°
§i
«c
b.
O '-•
CM
u to
t-> -v.
•< — '
Q n
0. -»
3 00
_ v^
o:
e-
 a
«* u
2?
£
.0
O
u
IM
^x

(I)
4J

W













CO
c
O
T-4
U
o
3
U
4j
c
M









f-J CJ CM (M IM «•"*
V V 
o
a.

9)

tl

(A
•s
W
-4
>
01
b


IP^
01
60
e
a
£
U





















e
o
*
u
Q)
to
i-(
<0
•H
Li
JJ
tfl
3
T3
C
•^

01
u
•vrf
4J
e
u
S
«
•gi
8.
























•c
01
•o
•H
>
o

a

§
••4
U
O
V
to
T3
a)
»
^
>
01
u

V
f
4J
s:
u
t


01
60
5








»»
*s»
T
CM
P-l
M








jg
^j
•g

to
u
01
s:
to


g
Tj
O
iH

O
«u
01
j:
u
0>
u
«
^H
OJ
£
































•e
01
•«


o
S.

01
4J
01
5

•c
V
to
•H
S
w


01 « 01
60 60 60
666








^4 ^ ^D
^s» -x^ ^i.
T T i
CM CM CM









Si
U
•H
3

(0

01 T3
10 T)
(^
60 >
e o
•c* b
5 a
o
—t ai
-< u
O V
1; . QJ
01 0)
X
u *v
01
01 10
o U-
Q >
•H 0>
r


V 01
00 60
sS
6s
tj







o
00 ^
^*^ ^x^
7T
rg N































 o

•a
 01




J
                     o
                     >

-------
                         ACKNOWLEDGEMENT

The development of this revision to the Treatability Manual has
resulted from efforts of a large number of people.  It is the
collection of contributions from throughout the Environmental
Protection Agency, particularly from the Office of Water Enforce-
ment, Office of Water and Waste Management, and the Office of
Research and Development.  Equally important to its success were
the efforts of the employees of WAPORA, Inc., and MATHTECH, Inc.,
who participated in this operation.

A list of names of contributors would not adequately acknowledge
the effort expended in the development of the manual.  This
document exists because of the major contributions of numerous
individuals within EPA and the EPA contractors, including:

     Effluent Guidelines Division
          Office of Water Regulations and Standards, Office of
          Water

     Permits Division
          Office of Water Enforcement and Permits, Office of
          Water

     National Enforcement Investigation Center
          Office of Enforcement

     Office of Research and Development

          Center for Environmental Research Information

          Municipal Environmental Research Laboratory

          Robert S. Kerr Environmental Research Laboratory

          Industrial Environmental Research Laboratory
               Research Triangle Park, NC

          Industrial Environmental Research Laboratory
               Cincinnati, OH

As Committee Chairman, I would like to express my sincere appre-
ciation to the Committee Members and others who contributed to
the success of this effort.
                              filliam A. Cawley, Deputy Director,
                              lERL-Ci
                             Chairman, Treatability Coordination
                              Committee
Date:  9/25/81                iii

-------
                        TABLE OF CONTENTS

                                                           PAGE
PREFACE	ii
ACKNOWLEDGEMENT 	  iii
LIST OF PAGES	xiii

II.I  Introduction  	  II.1-1

11.2  Auto and Other Laundries	II.2-1

     II.2.1  Industry Description 	  II.2-1
          II.2.1.1  General Description 	  II.2-1
          11.2.1.2  Subcategory Descriptions	11.2-4
     II.2.2  Wastewater Characterization	II.2-8
     II.2.3  Plant Specific Description 	  II.2-23
     II.2.4  Pollutant Removability 	  II.2-27

II. 3  Coal Mining	11. 3-1

     II.3.1  Industry Description 	  II.3-1
          II.3.1.1  General Description 	  II.3-1
          11. 3.1.2  Subcategory Descriptions	11. 3-2
     11.3.2  Wastewater Characterization	11. 3-6
     II.3.3  Plant Specific Description 	  II.3-23
     II.3.4  Pollutant Removability	II.3-23

II.4  Electroplating
      (Refer to Section II.8.7 Metal Finishing)

11.5  Inorganic Chemicals Manufacturing	11. 5-1

     II.5.1  Industry Description 	  LI.5-1
          11. 5.1.1  General Description	11. 5-1
          11. 5.1.2  Subcategory Descriptions	11. 5-1
     II.5.2  Wastewater Characterization	11. 5-35
     II.5.3  Plant Specific Description 	  II.5-58
     II.5.4  Pollutant Removability 	  II.5-118

11. 6  Iron and Steel Manufacturing	11. 6-1

     II.6.1  Industry Description 	  II.6-1
          II.6.1.1  General Description 	  II.6-1
          11. 6.1.2  Subcategory Descriptions	11. 6-2
     11. 6.2  Wastewater Characterization	11. 6-21
     II.6.3  Plant Specific Description 	  II.6-53
     II.6.4  Pollutant Removability 	  II.6-79
Date:  8/31/82 R  Change 1

-------
                                                            PAGE
11. 7  Leather Tanning and Finishing	11. 7-1

     II. 7.1  Industry Description	II.7-1
          II.7.1.1   General  Description	II.7-1
          11. 7.1.2   Subcategory Descriptions	11. 7-2
     II.7.2  Wastewater Characterization	II.7-8
     II.7.3  Plant  Specific  Description  	  II.7-17
     II.7.4  Pollutant Removability 	  II.7-17

II.8  Machinery and Mechanical  Products

     11,8.1  Aluminum Forming 	  II.8.1-1

          II.8.1.1   Industry Description	II.8.1-1
               II.8.1.1.1 General Description 	   II.8.1-1
               II.8.1.1.2 Subcategory Descriptions.  .  .   II.8.1-6
          II.8.1.2   Wastewater  Characterization 	  II.8.1-9
          II.8.1.3   Plant Specific Description  	  II.8.1-14
          II.8.1.4   Pollutant Removability 	  II.8.1-22

     II.8.2  Battery Manufacturing 	  II.8.2-1

          II.8.2.1   Industry Description 	  II.8.2-1
               II.8.2.1.1 General Description 	  II.8.2-1
               II.8.2.1.2 Subcategory Descriptions.  .  .   II.8.2-2
          II.8.2.2   Wastewater  Characterization	II.8.2-8
          II.8.2.3   Plant Specific Description 	  II.8.2-29
          II.8.2.4   Pollutant Removability 	  II.8.2-29

     II.8.3  Coil Coating	II.8.3-1

          II.8.3.1   Industry Description 	  II.8.3-1
               II.8.3.1.1 General Description 	  II.8.3-1
               11.8.3.1.2 Subcategory Descriptions.  .  ..  11.8.3-8
          11. 8. 3. 2   Wastewater  Characterization	11. 8. 3-10
          II.8.3.3   Plant Specific Description 	  II.8.3-16
          II.8.3.4   Pollutant Removability 	   II.8.3-18

     II.8.4  Copper Forming

          II.8.4.1   Industry Description
               II.8.4.1.1 General Description
               II.8.4.1.2  Subcategory Descriptions
          II.8.4.2   Wastewater  Characterization
          II.8.4.3   Plant Specific Description
          II.8.4.4   Pollutant Removability
Date:  8/31/82 R  Change 1     vi

-------
                                                             PAGE
     II.8.5  Electrical and Electronic Components  .  .  .  II.8.5-1

          II.8.5.1  Industry Description 	  II.8.5-1
               II.8.5.1.1  General Description 	  II.8.5-1
               II.8.5.1.2  Subcategory Descriptions.  .  .  II.8.5-3
          II.8.5.2  Wastewater Characterization	II.8.5-17
          II.8.5.3  Plant Specific Description 	  II.8.5-28
          II.8.5.4  Pollutant Removability 	  II.8.5-39

     II.8.6  Foundries 	  II.8.6-1

          II.8.6.1  Industry Description 	  II.8.6-1
               II.8.6.1.1  General Description 	  II.8.6-1
               II.8.6.1.2  Subcategory Descriptions.  .  .  II.8.6-2
          II.8.6.2  Wastewater Characterization	II.8.6-7
          II.8.6.3  Plant Specific Description 	  II.8.6-10
          II.8.6.4  Pollutant Removability 	  II.8.6-28

     II.8.7  Metal Finishing 	  II.8.7-1

          II.8.7.1  Industry Description 	  II.8.7-1
               II.8.7.1.1  General Description 	  II.8.7-1
               II.8.7.1.2  Subcategory Descriptions.  .  .  II.8.7-8
          II.8.7.2  Wastewater Characterization	II.8.7-10
          II.8.7.3  Plant Specific Description 	  II.8.7-18
          II.8.7.4  Pollutant Removability 	  II.8.7-18

     II.8.8  Photographic Equipment and Supplies .  .  .  .  II.8.8-1

          II.8.8.1  Industry Description 	  II.8.8-1
               II.8.8.1.1  General Description 	  II.8.8-1
               II.8.8.1.2  Subcategory Descriptions.  .  .  II.8.8-2
          II.8.8.2  Wastewater Characterization	II.8.8-6
          II.8.8.3  Plant Specific Description 	  II.8.8-18
          II.8.8.4  Pollutant Removability 	  II.8.8-22

     II.8.9  Plastics Processing

          II.8.9.1  Industry Description
               II.8.9.1.1  General Description
               II.8.9.1.2  Subcategory Descriptions
          II.8.9.2  Wastewater Characterization
          II.8.9.3  Plant Specific Description
          II.8.9.4  Pollutant Removability
Date:  8/31/82 R  Change  1      vii

-------
                                                              PAGE
     II.8.10  Porcelain Enameling	  II.8.10-1

          II.8.10.1   Industry Description  	  II.8.10-1
               II.8.10.1.1   General  Description  ....  II.8.10-1
               II.8.10.1.2   Subcategory Descriptions .  .  II.8.10-3
          II.8.10.2   Wastewater Characterization ....  II.8.10-7
          II.8.10.3   Plant  Specific  Description  ....  II.8.10-15
          II.8.10.4   Pollutant Removability  	  II.8.10-20

II.9  Miscellaneous

     11.9.1   Adhesives and  Sealants

          II.9.1.1  Industry Description
               II.9.1.1.1  General Description
               II.9.1.1.2  Subcategory Descriptions
          II.9.1.2  Wastewater Characterization
          II.9.1.3  Plant Specific Description
          II.9.1.4  Pollutant Removability
I I. 9. 2.1 Industry Description 	
I I. 9. 2. 1.1 General Description . . .
I I. 9. 2. 1.2 Subcategory Descriptions.
II. 9. 2. 2 Wastewater Characterization. . .
II. 9. 2. 3 Plant Specific Description . . .
I I. 9. 2. 4 Pollutant Removability 	
1 1. 9. 3 Gum and Wood Chemicals 	
I I. 9. 3.1 Industry Description 	
I I. 9. 3. 1.1 General Description . . .
I I. 9. 3. 1.2 Subcategory Descriptions.
I I. 9. 3. 2 Wastewater Characterization . .
II. 9. 3. 3 Plant Specific Description . . .
I I. 9. 3. 4 Pollutant Removability 	
. . II. 9. 2-1
. . II. 9. 2-1
. . II. 9. 2-3
. . II. 9. 2-8
. . II. 9. 2-10
. . II. 9. 2-13
, . II. 9. 3-1
. . II. 9. 3-1
. . II. 9. 3-1
. . II. 9. 3-2
. . II. 9. 3-7
. . II. 9. 3-11
. . II. 9. 3-11
     II.9.4  Pesticide Manufacturing

          II.9.4.1  Industry Description
               II.9.4.1.1  General Description
               II.9.4.1.2  Subcategory Descriptions
          II.9.4.2  Wastewater Characterization
          II.9.4.3  Plant Specific Description
          II.9.4.4  Pollutant Removability
Date:  8/31/82 R Change 1     viii

-------
                                                             PAGE
     11.9. 5  Pharmaceutical Manufacturing	11.9. 5-1

          11.9.5.1  Industry Description	11.9. 5-1
               II.9.5.1.1  General Description 	  II.9.5-1
               II.9.5.1.2  Subcategory Descriptions.  .  .  II.9.5-3
          II.9.5.2  Wastewater Characterization	II.9.5-8
          II.9.5.3  Plant Specific Description 	  II.9.5-11
          II.9.5.4  Pollutant Removability 	  II.9.5-12

11.10  Nonferrous Metals Manufacturing 	  II.10-1

          11.10.1  Industry Description	11.10-1
               II.10.1.1.1  General Description	II.10-1
               II.10.1.1.2  Subcategory Descriptions  .  .  II.10-3
          II.10.2  Wastewater Characterization 	  II.10-7
          II. 10. 3  Plant Specific Description	11.10-25
          II. 10. 4  Pollutant Removability	11.10-34

11.11 Ore Mining and Dressing	II. 11-1

          II.11.1  Industry Description	II.11-1
               II.11.1.1  General Description	II.11-1
               II.11.1.2  Subcategory Descriptions .  .  .  II.11-6
          II.11.2  Wastewater Characterization 	  II.11-8
          II. 11.3  Plant Specific Description	II. 11-9
          11.11.4  Pollutant Removability	11.11-9

11.12 Organic Chemicals Manufacturing	11.12-1

     II. 12.1  Industry Description	II. 12-1
          II. 12.1.1  General Description	II. 12-1
          11.12.1.2  Subcategory Descriptions	11.12-4
     II.12.2  Wastewater Characterization 	  II.12-5
     II. 12. 3  Plant Specific Description	II. 12-6
     11.12.4  Pollutant Removability	11.12-6

11.13.  Paint and Ink Formulation 	  II.13-1

     II. 13.1  Industry Description	II. 13-1
          II. 13.1.1  General Description	II. 13-1
          II.13.1.2  Subcategory Characterization ....  II.13-6
     11.13.2  Wastewater Characterization	11.13-6
     II.13.3  Plant Specific Description	II.13-8
     11.13. 4  Pollutant Removability	11.13-8
Date:  8/31/82 R  Change 1     ix

-------
                                                             PAGE
11.14  Petroleum Refining 	  II.14-1

     II. 14.1  Industry Description	II. 14-1
          II. 14.1.1  General Description	II. 14-1
          II.14.1.2  Subcategory Descriptions 	  II.14-2
     II.14.2  Wastewater Characterization 	  II.14-3
     II. 14.3  Plant Specific Description	11.14-14
     II. 14. 4  Pollutant Removability	11.14-17

11.15  Plastic and Synthetic Materials Manufacturing

     II.15.1  Industry Description
          II. 15.1.1  General Description
          II. 15.1.2  Subcategory Descriptions
     II. 15.2  Wastewater Characterization
     II.15.3  Plant Specific Description
     II.15.4  Pollutant Removability

11.16  Pulp and Paperboard Mills and Converted
         Products	11.16-1

     II.16.1  Industry Description	II.16-1
          II.16.1.1  General Description	II.16-1
          11.16.1.2  Subcategory Descriptions	11.16-3
     II.16.2  Wastewater Characterization 	  11.16-12
     II.16.3  Plant Specific Description	11.16-17
     11. 16. 4  Pollutant Removability	11.16-45

11.17  Rubber Processing	    II. 17-1

     II.17.1  Industry Description	II.17-1
          II.17.1.1  General Description	II.17-1
          II.17.1.2  Subcategory Descriptions	II.17-3
     II.17.2  Wastewater Characterization 	  11.17-10
     II.17.3  Plant Specific Description	11.17-22
     II.17.4  Pollutant Removability	11.17-25

11.18  Soap and Detergent Manufacturing	11.18-1

     II. 18.1  Industry Description	II. 18-1
          II.18.1.1  General Description	II.18-1
          11.18.1.2  Subcategory Descriptions	11.18-2
     II.18.2  Wastewater Characterization 	  11.18-10
     II.18.3  Plant Specific Description	11.18-11
     II. 18. 4  Pollutant Removability	11.18-17
Date:  8/31/82 R  Change  1       x

-------
                                                             PAGE
11.19  Steam Electric Power Plants	11.19-1

     II. 19.1  Industry Description	II. 19-1
          II. 19.1.1  General Description	II. 19-1
          II.19.1.2  Subcategory Descriptions 	  II.19-2
     II.19.2  Wastewater Characterization 	  II.19-9
     II.19.3  Plant Specific Description	11.19-31
     II. 19.4  Pollutant Removability	11.19-37

11.20 Textile Mills	II.20-1

     II.20.1  Industry Description	II.20-1
          II.20.1.1  General Description	II.20-1
          II.20.1.2  Subcategory Descriptions 	  II.20-2
     II.20.2  Wastewater Characterization 	  II.20-9
     II.20.3  Plant Specific Description	11.20-12
     II.20.4  Pollutant Removability	11.20-12

11.21  Timber Products Processing	II.21-1

     II.21.1  Industry Description	II.21-1
          II.21.1.1  General Description	II.21-1
          II.21.1.2  Subcategory Descriptions 	  II.21-1
     II.21.2  Wastewater Characterization 	  II.21-6
     II.21.3  Plant Specific Description	11.21-13
     II.21.4  Pollutant Removability	11.21-18

11.22 Publicly Owned Treatment Works (POTW's) 	  II.22-1

     II.22.1  Industry Description	II.22-1
          II.22.1.1  General Description	II.22-1
          II.22.1.2  Subcategory Descriptions	II.22-1
     II.22.2  Wastewater Characterization	II.22-1
     II.22.3  Plant Specific Description	II.22-2

11.23  References for Volume II	II.23-1
Date:  8/31/82 R Change 1
XI

-------
   CO
   LU

   Si
   CL
   o
T3
CO

tn
— u>
— CO
                        c
                        o
                     Ct- —
                     o
                        CO
                     CO —
                     •P Q,
                     CO E
                     Q O
                       O
•o
co

w
— w
— CO
£t
                       c
                       o
                     «-
                     O
                       CO
                     CO —
                     •P Q
                     CO
                     O O
                       O
                     13
                     CO
                     C.
                     tn
                     —  tn
                     —  co
                        C

                     <,
                     o
                        0
                     CO —
                     p a.
                     co E
                     Q o
                       O
                             cocococococococococo           cocococo
                             CCCCCCCCCC(UCOCO(UCCCCCOC00CO<1>CL)I11COCOC00C00
                            OOOOOOOOOOOOOOOOOOOOOOOOOOUOOOO
i— T-I— r- i— .— r-r-t-T-CMCMCMCMr-r-T— i— CMCMCMCMCMCMCMCMCMCNJOJCMCM
cooococococococooocococococococococococooococococococococococo
lAlAlAlAlAlAlAlAlALAi-'-'-'— lAlAlAtAi-'—
CAJCMCMCMCMCMCMCMCMCMcOcococoCVICMCMCMcococococOcocococorocococo
O\ONONO\OSO\ONC5\ONO\COCOOOOOONO\ONONCOCOCOeOCOCOCOCOCOCOCOCOCO
                                                                               3
                                                                               +J
                                                                               O
                                                                               CO
                                                                                      S

                                                                                      as

                                                                                      CO
                                                                                      o


                                                                                      CO

                                                                                      CJ
                                                                                                           c
                                                                                                           CO
                                                                                                           01
                                                                                                           i.
                                                                                                           o
                                                                                                           c
                                                                                            CO CO CO (0 CO CO CO
                                                                                            c c c c c C c
                                                                                                                V.  S- S- i. !_ !_ S_
                                                                                                                ooo oo oo
                                                                                    co co co co co co co
                                                                                           lA 1A LA lA LT\ lA lA
                                                                                           C\J CM CM CM C\J 00 CM
                                                                                    CT\ ON O> OS O ON ON
                                                >— i-"— i- t- T— T- i— r-CMOJCMCMCMCMOJCMCMCMCOcororO
                             I  I   I  I  I  I   I  I  I  I  I  I  I   I  I  I  I   I  I  I  I  I  I  I  I  I  I  I   I  I  I
                            cococorocococococorofococorocococorocococococorocococococoroco
                                                                                    I  I  I   I  I   I  I
                                                                                    LA lA lA lA UN lA lA
CO             COCOCOCOCOCOCCCOCOCOCOCOfOCOCOCOCOCOCOCOCOCOCCCCCCCOCCCO
ccocoacococccccccccccccccccccccccccccccoco
•— Ol O> C71 Ol OV— — — — •— *~ — "~ — — •" — — — — — — -~ — — — — — •" ••" — •— — Ol CD
  .......
oooooooooooooooooooooooooooooooooooo
                                                                                           WO
       cocoooeococococoeococococococococococococococococococococococococococoa]

                      lAlAlAlAlALALAlAlALAlAlAtALAlALAlALAlALAlALALALALALALALA»— 0
                                                                                              —
                                                                                                                            CO  CO
                                                                                                                            cc
                                                                                                       O101


                                                                                                       oo
                                                                                                «- t-
                                                                                                coco
                                                                                                LAIA
                                                                                                OJCM
I--COON'— i- »-
 I  I   I  I   I  I  I  I  I  I  I  I  I   I  I   I  I  I  I  I  I  I   I  I   I  I  I  I  I  I  I  I  I   I  I   I
CM CM CM C\J C\J CVI C\J C\J CM C\J CJ C\J C\J M C\J CM C\J CO C\J C\J CM CM CM CM CM CM CM CM C\J CM CO C\J PJ C\J CM CM
                                                                                           CD
                                                                                           O
                                                                                           O
                                                                                                                            >-CM
                                                                                                                            II
                                                                                                                            coco
               0) 0) Q)  0) 0)
                                                                        CO CO  CO
                                                                        c c  c
                                                                                              co co ro TO  cu co
                                                                                              c c c c  c c
                                      O)   CCCCCCC
                                      •"•   (DCOCOCOCOCOCO
                                           OOOOOOO
               C\J CV CM CM PJ CVJ CM
               CO CO CO CO CO CO CO
                                     ccccccccczcc
                                     cocococococococococoro
                                                                 ooooooooouo
                                     CMCMCMCMCMfAJCMfMCMCMCM
                                                                               CD Cn Ol        CT CJl CTl CTi d Ol
                                                                               	    (/)   	
                                                                               £_£_£_    CO    Ci_£-L.S_^
                                                                               ooo    —   oooooo
                                                                                         i.

                                                                                         c

                                                                               I— I— I—    CO
4-1
0)
                             O
                            O
          lA
          CM
                                  CO   —
                                  O   >
                                  CO   O
                                 Cl-   C
                      CO CO CO CO CO CO CO

                      CO CO CO CO CO CO CO

                       tn
                       P
                       C
               c
               o
               o
                            ._   ._   ._   >
                                     fOfOCOCOCOCOCOCOCOCOfO

                                     cococooocococococococo
                                          o
                                             in
                                          4J (D
                                          W CJ)
                                          — CO
                                          —I Cu

                                               > >	XX	
                                          ._   ._ x >	XX	
                                               X   X > — X   XX —
                                          X           X >         XX
                                                         X           X
                                                                          c
                                                                          o
                                                                          .p
                                                                          o
                                                                          3
                                                                          •o
                                                                          o
     CO CO CO CO CO CO



     CM CM CM CM CM CM

     ON ON OS OS OS OS
•o
c
CO

o
p

<


CM
                                                                                                                  t— CM CO .3" lAVO
                                                                                                                   I  I  I  I   I  I
                                                                                                                  CM CM CM CM CM CM
Date:     8/31/82    Change  1
                                 Xlll

-------
Q
LJ
O
O
CO
UJ
o
                         03
                         O
                         03
                        a.
T3
 C


— U)
— CD
.Q
                      o
                         03
                      03 _
                      •P  Q
                      CO   ^
•O
03
•C       CDCDCDCOCOCDCO    COCDCDCDCOCDCOCOCO    COCOCOCOCDCOCOCOCOCOCOCOCOCDCOCDCQCDCOCOCD       CO
<«       CCCCCCCCBCCCCCCCCCCUCCCCCCCCCCCCCCCCCCCCCCDCUC
— tf>	O>	•—	Ol	CT> CH	

•Q      ••	•	— re	co	co co —




   c
   o

O .P   00 CO 00 00 CO CO 00 00 CO CO 00 00 00 CO CO CO CO CO 00 00 CO 00 00 CO 00 00 00 CO CO CO 00 CO CO CO 00 00 00 CO CO CO CO CO

OS-

CO e
Q O
   o




   s_
   
         COCOCOCDCOCOCOCOCDCDCO       COCDCDCDCDCDCDCDCDCOCOCO       CDCDCD     COCOCDCOCOCOCOCOCOCO
W       CCCCCCCCCCCOOSCCCCCCCCCCCCCUCUCCCCBCCCCCCCCCCCU
— W   •— — •— — •— •— — •— — •— — Ql C7V— — — •— — — — — — •— — •—  Ol OV— •"• —  Dl— •— •— •— •— — •— •— •— •— en

                                       TO CD -r- — — — — — — — — •- •- •-  co  co •- — —  co — — — — — — — •- — — CD

O-      O O O O O OO O O O O O O O O O O O O O O O (


   c
   o
                                     •OJtAJr-i— i— T-I— i-t— T-T-r-r-r-CMCNJ'— r->— C\Jr-r-i— r- r- T- r- I— t- r- C\J
o .      -   -          -   .-  -    -        -     -     _.._._.

   03
                                         • r- IT* LT\ LT\ tT\ IT* LT» LT\ lA LA LA lA LT\ r- i
P Q   C\J CVJ C\l C\l C\J CNJ C\] C\J CXI C\J CNJ fO CO C\J C\J C\J C\J C\J CNJ C\J C\J CNJ OJ CM C\J PO CO C\J C\J CM fO CM CM CM CM CM CM CM CM CM CM ("O
co e	-   -
Q O
   o
                              CDCOCDCDCDCDCDCDCDCDCOCDCDCDCDCDCDCOCD    CDCOCDCDCDCDCDCDCDCDCDCOCDCDCDCDCDCDCOCDCDCD
                              CCCCCCCCCCCCCCCCCCC03CCCCCCCCCCCCCCCCCCCCCC
                              OOOOOOOOOOOOOOO(
                                                                                S.^:L.U£-£_£~L.L.&-£-£_^^.i-&-£-£-(-£-^t-i-C-
                                   O'-C\JrO^tmvOf^COC3\p<— CMM^lAvp^ODC^pi-CNJco^lA\p^COOvCD'--CMCOJ;iA'Or;03C>
                              COON»                              "''"_
                               I  I  I  I   I  I  I   I   I  I  I  I   I  I  I   I   I  I  I  I   I  I  I  I   I  I  I  I   I   I  I  I
Date:      8/31/82     Change   1          xiv

-------
   Q
   LJ
   I-
   o
   o
   CO
   LJ
   Q-

   Lj-
   o

   I-
   co
   o
-a
 0
.c
 CO
— U)
— CO

 3
Q.
                         C
                         O
                      v-
                      O -P
                         0
                      0 —
                      4J Q
                      CD E
                      O O
                         O
                              COCOCOCOCOCOCOCOCOCOCCCCCOCOCOCOC0
                              cccccccccccccczccc0cD00ci>0cB0000
                                                                                                               ccccccccccc
                                                                             C  C C C C C  C C C C
                                                                          COCOCOCDCOCOCOCOTOCOCU
                                                                                            -
                              oooooooooooooooooooooooooooo
        OOCOCOOOOOCOOOCOOOQOOQCOOOOOCOOOCO Q) CD  CD CD Q 0 CD CD Q) 0 CD
                                               '        +J4->+J*J4J4J-P4J4J4->
                                                        Q    C\J C\J CM CO CM CM C\J CM 	0   CM CM C\J OJ CM CM CM CM CM C\J CO CM CM CM CM C\J CM C\J CM PJ C\J CM CM
CO E    ^v^x^^1^^^^^^  00000000
Q O            _              .  '     '  ~    ~
   O                                                CO

                                                    13
                                                    C
                                                    CO
   (_
   0                                                c
   £>                                                O
   £    j-IAvor^coo\o•         .  .   ..
   3    ro ro f
   Z
             I  I   I  I  I  I  I  I  I  I  I  I   I  I          I  I  I  I  I   I  I  I  I  I  I  I  I  I  I   I  I  I  I  I   I  I  I
   0    IA lA lA lA LA lA lA lA lA lA tA in LA IA LA LA   VO   VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO \O VO VO
   a
   CO
   O-
Date:      8/31/82     Change   1
                                          XV

-------
                     •o
                     0)
                     £
                     V)
                     — in
                     — co
                     .a
                     3
                        C
                        O
                     f. .__

                     o
                        a>
                     

a)
— t»
— co
.a

a.
   c
   O
fc-.-
o
   (U
o —
•P Q
CO _

Q8
                   "O
                   roC\JC\|rOporoC\JC\IC\JC\l
                            COCOCOONONCOGOCOONONONON
                               I  I  I   I  I  I  I  I  I  I   I
                            CVJC\JC\JCMCMCNJC\JCMCMC\IC\ICM
                                                                                                                      a.

                                                                                                                      o
                                                              	,_,_,_,_   O	


                                                              cccccccccccccccccccucucua)   o   cc
                                                              •— — •— •— — •— •— •-* •— •— •— •— •— •— •—•—•—•— Ol Ol Ol Ol   •"•   — ••"
                                                                                                            C C C   C   01 01
                                                                                                          CO CO CO CO   O   *~ '"""
                                                                OOOOOOOOOOOOOOOOOOOOOO
                                                              COCOCO03COCOCOCOOOOOCOCOOOCOCOCOOOCOCO CU CU CD


                                                         C   CM CM CM CM CM CNJ CM CM CNJ CM C\J CM CM CM C\J OJ C\J C\J CO	

                                                         •P   ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON 00 Q Q Q
                                                         co
                                                         O
                                                         O
                                                            o
                                                            o
                                                                                                    c
                                                                                                    CO
                                                                                                                         s-
                                                                                                                         4J
                                                                                                                         U
                                                                                                       i-i— r-CMOJCM
                                                                                                        I   I  I  I  I  I
                                                                                                                             oo
m m
CM CM
                                                                                                                             ON ON
                                                                                                           CM
                                                                                                            I

                                           cococococccococococococococococococococococococtj      co co co co co co
                                           CCCCCCCCCCCCCCCCCCCCCCCC00)CCCCCCtU
                                                                                                        0i

                                                                                                        C
                                                                                                     CO CO
                                                                                                                              C C
                                                                                                                           CO CO CO
                                                                                                       ..._.
                                             ooooooooooooooooooooooooooooooooooo
                            CO 00 00 ON
                            js- in vo r~
                            c\i CNJ oj CM
                             i  i  i  i
                                             mmmmmmmmminmmmininminmmmtniAinmi— i-inmir\ininmr- r-t-
                                             C^MWMC^WCVMW&lf4CVf*lCVC*i(^Mf^MWMCVM&lc<>tr>M&lMMCUCVcf>tf>'fl

                                             ONONONONONONONONONONONONON ON ON ON ONONONONONONONONOOCOONONONON ON ON CO CO CO
                                         CNJ
                                                                                               I  I  I  I  I  I  I   I  I  I  I  I  I  I   I
                                                                                              CVItNIC\JC^N

                             cococococococococococococococo
                             CCCCCCCZCCCCCCCCO)
                              .....
                             oooooooooooooooo
                                                      COCOCQCOCOCOCOCOCOTO           CO TO CO CO        CO
                                                      CCCCCCCCCCCBOJCUOJCCCCCUCUCUCtD
                                                                              Dl Ol Dl Ol— — — — Ol O! Ol—  Ol
                                                                                 c c  c oimoiaic c c aitz
                                                                                 (^ ^  pj ._ ,M ..... (Q (^ (Q ._  (^

                                                       --......£££Ui.l.^££fL.j;
                                                      OOOOOOOOOOOOOOOOOOOOOOO
                                                                      01
                             .- r- r- r- <- I-r- T- r- r- I- r- t- r- r- CM    C    t- ^ r- r- r- t- ^ r- T- ^ CM CM CM CM r- ^- I- r- CM CM CM r- CM
                             oocococococooocococococooocococo    —    cocooaoococococococococococococococoooooooooco
                             ON ON ON ON ON ON ON ONONONONONONONONCO
                                                                           ON ONONONONONONONONONOOOOCOCOONONONONOOCOCOONCO
                                                                      E
                                                                      3
                                                                      C

                                                                      E
                                                                      3

                                                                      <                          O «— CM MiT mvO P~00 ONO »— CM to

                                                                           I  I  I  I  I  I  I  I   I  I  I  I  I  I  I  I  I   I  I   I  I  I  I



                                                                      00    COCOOOCOCOCOCOOOCOCOCOCOCOOOCOOOOOCOCOOOCOCOCO
Date:      8/31/82     Change   1
                                       xvi

-------
  O
  o
  to
  LJ
o
I-
                  0)
                  x:

                  — c/>
                  — CO
                  .n
                  3
                  a.
                       c
                       o
                    (I—
                    o
                       CD
                    CD —
                    •P Q
                    CD E
                    O O
                       O
                    •o
                    0)
                    ^:
                    u>
                    —
                    — CO
                    .a
                    3
                    0.
   c
   o
f. ._

O
   CD
CD —
•P Q
co £
Q O
  O
n
CD


3
T3
C
                                               Di
                                               C
                                               r:
                                               u)
                                                  CD
                                  cocococococococococococo    cocococococococo
                                  CCCCCCCCCCCCCDCCCCCCCCCDtOOCDC])
                                                                                     Ol O* O) Ol Oi
                                                                                          CCC
                                                                                     co CQ co co co
                                                               .....
                                  oooooooooooooooooooooooouo
     r-T-.-i-T-r-r-.-.-r-.-r-CVJi-T-r-r-r-r-r-.-CM
     oooocooooooococoeooooocococooocococoooeoooco
•o-o
                                                                                                              0) 0)
     ir\iAir\inir\iriiriir\LrNirNir\ir\'—ifNir\ir\mtfMr\irNir\T- m m CD CD
     CNC\lC\ieNJC\JC\JC>JCNJC\JCNlJt\JCN)C\JC\IC\ICNlC\JC>JeocoC\)C>JC\IC\|cotoC>JCMC\IC\JC\IC\JC\JCNj

                                                           ON ONONONO\ONONONONON ON ON CO 00 ON Ox ON ONCOCOONONONONON ON ON ON
                                                              I  I  I  I   I  I  I  I  I   I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I   I  I
                                                             \ONONONONONONONONOVOVONOVOVONOVOVONONONONOVONONONOXOVONO

                           CO CO CO CO 00 00 00 CO 00 CO 00   00   00 00 CO 00 00 CO 00 CO CO 00 CO CO CO 00 CO CO 00 CO CO CO CO 00 CO CO CO 00 00 00
                            cocococococococococococococococococococococococococococococococococococococococococo
                            cccccccccccccccccccccccccccccccccccccccccc
                           'L L L L £ L £.           .                    t~ s. t. s.   s. s. t. s. t_ s- s_ L. t. s_ s. s- 1. s- t- 1. 1-
                           oooooooooooooooooooooooooooooooooooooooooo
       cocococoeooooocooococooooococooococococococooocooococococooocooocooooooocooococoooco


       C\IWCN1C\!C\IWCNJC>JCMC\JC\JCNJ<\JCNJCNJCNICXCNJC\IC\ICNIW

       ONONONONONONONONONONONONONONONONONONONONONO\ONONONONONO\ONONONONONONONONONONONONONON
                                                                             I  I  I  I  I  I  I  I
                                                                                                                   I   I  I  I  I
                           COOOOOCOCOCOOOCOCOCOCOCOCOOOOOCOC003COCOCOOOCOCOCOCOOOCOOOCOOOOOCOOOCOCOCOOOOOCOOOCO
Date:      8/31/82     Change   1
                                        XV11

-------
  a
  ui
  o
  o
  co
  LU
  O
                    CD
                    C.
                    I/I
                    —  w
                    —  TO
                       c
                       o
                    d- —
                    o
                    4-> Q
                    co S
                    Q O
                      O
•a
CD
£1
V)
— w
— CO
.a
   c
   o
(l—
o
   CD
cu —
*J a
CO
0 C
                    -o
                    0)
                    .c
                    w
                    — U)
                    — CO
                    JD
                       c
                    c,0
                    o
                       cu
                    CD —
                    4J a
                    co E
                    a o
                       o
        (0   CO CO CO TO CD
        CCOCCCCC0
        — 01	o>
        O) C (7) Ol 01 Ol O) C
        — CO	CO
                                 CO CO CO    CO    COCO      COCOCOCOCOCO
                            00CCC0CCOCC00CCCCCC0C00
                            Ol Ol— — — Ol— O>— — Ol Ol— — — — — —  O) O) Ol
                            c c aiaioic  me oioic c aiaiaiaiaiaic c  c
                            CO CO •— *— •— CO — CO •— — CO CO ™ •— •— •—•—•—  CO CO  CO
                            .c.c'-i-'-.c'-.c'-s-.c.cs-s-s-s-i-i-.c.c.c
                            OOOOOOOOOOOOOOOOOOOUO
                                    C\1C\I>— r- i- CM t— CM r- r- CM CM >— t- i— ?- i— t- CM CM T3
                                    O300COCOCOCOCOCOOOCOCOCOCOCOCOCOCOCOOOCO 0
          CO CO CD CO  CO CO
          C C C C  C C
        CMrOCMCMCMCMCMcO

        ONCOONONONONONOO
                                • CM CO .d' IT\ VO I—
                            I  I  I  I   I  I  I  I
                            CMCNJCMCNJCMCNJCMCM
                                                        t—T—lTMTNir\T—L^T—lAlTiT—»—LniAlALfMAlT**—»—  CO
                                                        ro«CMC\IC\lcoC\JfOCMCMcoroCMC\lC\lC\lCM<\Jcoro —
                                                   c
                                                   CO

                                                   E

                                                   O
                                                                                             CO
                                                                                             .c
                                                                                             Q-
                            O\ C^ ON CJ\ O\ O1* ON ON   ON
                                             I  I   I  I	I  I  I  I   I  I  t  I



                                    ONONONONONONONONONONOs ON ONONONONONONONON ON
                                                                                                                      •— CM to j- mvo
                                                                                                                      i  i   i  i   i  i
                                                                                                                 ON   ON ON ON ON ON ON
                            COCOCDCOCOCOCOCOCOCOCOCOCOCOCOCOCO       COCOCOCOCQCO
                            CCCCCCCCCCCCCCCCCCDCUCCCCCCCDCBCl)
                                                                         > Ol'~ '~ — .— .— .— 01 01 Ol
                                                                          C C7^C7imO^O)C7^C C C
                                                                                            CO CO CO
                                                                                            £^:j:
                            oooooooooooooooooooooooooooo
                                                                                CDCQCQCOCQCQCQCOCO
                                                                                ccccccccc
                            
-------
  a
  LJ
  o
  o
  (O
  UJ
  o
  O

  (-
  CO
                     T3
                     to

                     tn
                     — in
                     — co
                     .a
                        c
                        O
                     
                                                                     01C
                                                                    o w
                                                COCOCOCCCOCOCOCOCOTOCOCOCOCOCOCUCOCOCOCOCOCO
                                                CCCCCCCCCCCCCCCCCCCCCCCOCO
                                               •— — •— •— — •— — —• — — •— — •— •— — — — ••• •— — •— — 0101
                                                01 01 O) 01 O) 01 01 01 01 01 01017) 01 01 01 01 en 01 01 0101 c c
                                               	ro to
                                                S_l_S_l-!-!-S-i-S-!-!_I-I_i_!_i-!-S_S-S-(_t..C.C
                                               oooooooooooooooooooooooo
                                                        cooocococooocococooooococooocococooocooooocoooco

                                                        irNiriinirNiAiriininiAiAiniAirviAinirNiAirNifNiAirMrNr-r-
                                                        C\JCOC\lC\lCMC\JOJC\lC\lC\JC\lC\JC\JC\JC\IPJC\JOdt\lC\lC\JCVJcOfO

                                                        ONONONCNONONONONONONONONONONONONONONONONON ON 00 CO
                                                                                                    OT-C\Jro.d-ir\VOt—OOONO'
                                                                             I  I  I   I  I  I   I  I  I   I  I  I  I  I   I  I  I   I  I  I  I  I   I  I
                                                                            WWOJtAJOJC\lC\JC\JC\lt\IOJCNlCNJWC\JC\ICAJCAl(AJt\Jt\lLALf>lAlTNir\ir\
C\JC\IC\JC\IC\JC\IC\1C\JOJC\1C\JC\1CMC\1MCOC\1C\1C\ICOC\1C\JCMCNJC\I
                                                                                                 c
                                                                                                 CO
                                                                     en
                                                                     c
                                                                                                      C\ICMPOCMCMC\IC\JC\JC\JC\lCMCVl«rO
                                                                             c

                                                                             s:

   CO                                                                        CO
   .Q


         I  I  I   I  I  I   I  I  I   I  I   I  I  I   I  I  I   I  I  I  I  I   I  I  I           I  I   I  I  I   I  I  I   I  I  I
        ooo
   to
   a
   CO
   0.


                                                             Ol
                                                             c
•o
IB
                         ____.._                       _    cocococococococococococococococococococo
JfOfO	S    CN1CAJC\JCN1C\ICMC>JC\1C\1C^C\1CNJC\JC\1CNJC\1C\1C\1C\1CN1
CO E   \\\\'—,\\\\\\\\\ CO 03  CO CO CO
O O   ON ON ON ON ON ON ON ON ON ON ON ON CO CO Q Q O O O    in    ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
   O
                                                             o
                                                             i-
                                                             !_

                                                             0
   0)                                                        C
   ^      —    r-    fo    in vo r-oo  ON o r-CNJ to j-in

   D    I  I   I   I  I  I   I  I   I  I  I   I  I  I   I  I  I   I
                             UMAIAIAmmmunUMAm          i  i  i   i  i   i   i  i   i  i  i   i  i  i   i  i  i  i  i   i
                              	o
   O   ON ON ON ON ONONONONONONONONONONONONONONON
   O
   co
   Q.
Date:      8/31/82     Change   1
                                             XIX

-------
 Q
 LJ
 O
 O
 CO
 LJ
 O

 Q.
 o
                    T3
                     CD
                    —  CO
                    —  CO
                    .a
                     o
                        01
                     0) —
                     •u  D
                     CO
                     Q  O
                       O
-C            co  co co co co co co      co co  ro               cococococococococococo    cococo            cu co co
CO            CCCCCCCCDCOCCCCOCDCOCOCDCCCCCCCCCCCCOCCCCO         CCCC
— CO    C    	—
— CQ    O    CT) Dl 01 01 01 01 01 C  C 0) 01 01 C C C C C 01 01 01 0) 01 01 01 01 Ol CT Ol C CTl CT1 CT C         CT CT CT Ol


Q-       CO    O  O O O O O O O O O O  O O O O O O O O O O O O O O O O O  O O O O O         OOOO

         3
   C    E                                                                                                01
   OS-                                                                                                C

O -U    LJ-    CO  CO CO CO CO CO CO CO CO CO CO  CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO  CO CO CO 03  CO    C   COCOCOCO
   CO
(D —

   _                                                                                              . CO    CC
Q O         .__........._     .     _ _   _  -
   O    TT                                                                                                E
         C                                                                                                D
         CO                                                                                                0)

         •P                                                                                                O
         c                                                                                                s-
   m    —                                            in
   rj    co                                              •                       ___                          m

   3         T-CMro.SmvOr-COOS'— r-.— .-i— i— i— <—i— t— t-C\JC\lC\JCMCMCMCMCMC\JCMfOroco
                 I  I   I  I  I   I  I  I   I   I  I   I   I  I  I   I  I  I   I   I  I   I   I  I  I   I   I  I   I   I  I  I           I   I  I  I

   CO
   o
   CO
   Q.



•a
CO
x:
CO       CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCOCCCOCOCCCCC
— (^    •— — •—  •—. .— .— ._ •— -— .— ._ ._ ._  ._ ._ ._ ._ .— .— ._ ._ ,_ ._ ._ ._ ._ ._ ._ ._ ._  0^ ^._ ._  ^j OV'

.a

Q-       OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO


   c
   o
Cl	    T-^r-r-r-r-r-r-r-r-r-r-T—  T-I— r-r-^-^^r-1— ^r-i-^1— I— I— ^CMOJ'— f-CMOJ'
o •
   CO
CD —
•U Qj    OJC\lCMOJ!\JCMCMCMCMCMOJCMCMCMC\JCMCMC\JC\JCMCMCMCMC\JCMCMC\JCMCMCMfOcoC^
CO
Q O
   O
                             I  I   I  I  I   I  I  I   I   I  I   I   I  I  I   I  I  I   I   I  I  I   I  I  I   I  I  I   I   I  I  I   I  I  I  I   I  I  I   I   I
                             CMCMCMOJCMCMCVOOCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMC^CMCMCMCMCMCMCMCMCMCMCMCMCMCM
                             cccccccccccccccccccccccccccccccccccccccccc
                                        ----------------------.---.-_-_...__-
                             oooooooooooooooooooooooooooooooooooooooooo
                                                                                          LAiAL^
         CMC\JCMCMCMCMCMCMCMCMC\JCMCMCMCMCMC\JCMCMC\JCMCMCMCMCMCMCMCMCMCMC\JC\JCMC\ICMCMCMCMCMCMCMCM
                             I  I   I  I  I   I   I  I   I   I  I  I   I  I  I   I   I  I   I   I  I  I   I  I  I   I   I  I   I   I  I  I   I   I  I  I   I  I  I   I   I  I
                             CMCMC\JCMCMCMC\JCMCMCMCMCMOOCMCMCMCMCMCMCMCMOJCMC\1CMCMCMCMCMC\1CMCMCMCMCMCMC\1CMCMCVJCMCM
Date:      8/31/82      Change   1
                                                 xx

-------
   a
   Ld
   2
   O
   o
   CO
   UJ
   o

   O-
   o
                     T3
                     V

                     in
                     — tn
                     — CO
                     .0

                     a.
                        c.
                        o
                      a
                     co E
                     a c
         cccccccccccccccc(ucccccua>a>(i>
                                                    0s 01 C71 01— — — — Qi 01 O! O) Ol
                                                      C C c O1D1D1CDC C  C C C
                                                                                 03
                                       .._--.-.£
         OOOOOOOOOOOOOOOOOOOOOOOOOOUOO
 cococococococococo
 CCCCCCCCCd)
------------------  JJ,
------------------  CO
!-t-£-S-S_S-t.5-!-i:
oooooooooo
        0300<0incOOOCOCOOOCOCOOOCOCOCOOOC00003cX)COCOCOCOCOCOCU(U(U    —   COaSCOOOcOCOCOOOOOCO

                                                  N r— i— r— i— ir\lALT\ir\i—T—  CDCDCD    W   lAlA IT\ lf\ lA lT\ LA tf\ lA *~~
                                                              -------      )	CD   CM CM CM CM CM CM CM CM CM CO
                                                                             .  O CO CD    U
                                                                                         O
                                                                                         CO
   *-                                                                                    JO
   ID
   £1


         I   I  I  I   I   I  I  I   I  I  I   I  I  I   I  I  I   I  I  I   I  I  I   I  I  I   I   I  I           I  I  I   I   I  I  I   I  I  I

   CD                                                                              *°
   O
   CO
   a.


                                               in



•u
 —    -----
•P OJ   CM CM CM CM CM CM CM CM CM CM CO CM co     »   CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM' CM CM CM' CM' CM' CM
 co T
   O   OM3N 0\ 0\ O O ON 0\ O ON CO O 00     CD

                                               CO
                                              a.


   «-                                          a
   CD
   n


   Z    I   I  I  I   I   I  I  I   I  I  I   I  I          I   I  I  I   I  I  I   I  I  I   I   I  I   I  I  I   I  I   I   I  I  I   I   I
                 ----------    VO
   CDl
   O
   CO
   a.




-------
  a
  UJ
  O
  o
  u.
  o
  o
                    •O
                     0)

                     
                     CB —
                     4-> Q
                     CO E
                     Q O
                       O
        COCOCOCOCOCOCOCO
        CCCCCCCC03
        ----------------  01
   cococococococococococcco      cocococococococo    co
   CCCCCCCCCCCCffiCBCCCCCCCCOJC
        • --- — — • -------  co
        i-i-S-I-i-S-I_l_.c:
        ooooooooo
        COCO CO COOO COCO CO 03
                                                                                                      en   —
                                  ...-
   OOOOOOOOOOOOOOOOOOOOOOOO
                                        .-.-r-t-r-.-r-r-t-T-.-r-CMCM'-'-'-r-.-.-.-T-CM'-
                                        COCO03COCOCOCOCOCOCOCOCOOOCOCOCOCOC003COCOCOCOCO
                                   u>
        CM CM CM CM CM CM CNJ CM —    —    CM CM CM CNJ CM CM CM CM CM CM CM CM to (O CNJ CM CM CM CM CM CM CM er> CM
                                                       r

                                                       03
                                                                                                                PO fO fO
                                                                                                                -^^•x
                                                                                                                CO CO CO
                                                       4-1
                                                       X
                                                       CD
                                                       O
                                                       CM
                                                                                                                 ><- CM co a-
                                                                                                              • CNJ CM CM CM CNJ
                                                                                                          I  I  I  I  I  I  I
                                                            CMCMCMCNJCNJCMCMCNJCMCMcMCMCNJCNJCMCMCNJCNJCMCNJCNlCNJCVJCNI
                                                                                                                i- CVJfO


                                                                                                                CMCNJ CM
        —" ^— — — —— r— 1— "—   4J   — — —	-— — — — — —	-ITI- — —• 1— ^—^ 	- _ _ __ — f_ -nr __ _._ __ _- , __      ____

        CO CD CO CQ CD      TO   TO   TOTOOSTOTOroWTOTOCOCOCOCOTO      CO TO TO TO      TO TO TO TO TO  CO       CD
        CCCCC00C   «-   CCCCCCCCCCCCCCO>03CCCC(D0CCCCCC00C

        OO)O)CTCTCCO^   C   O^CTlOlCnCTOlOlCTCTDlQlOlCTlOlCCOlO^OlCTlCCOlOlolOlCnoiCCcn
        •— •— •— •— •— CO CO *—   03   — — — — — — — — — — — — — — CO  CO — — — — CO CO — — — — — — CO CO —


        oooooooo        ooooooooooooooooooooooooooooooo
                            oococococooocooo
                                                     o
                                                    Q-
'-«-'-r-r-r-T-,-r-t-T-!-T-.-CMCMt-'-'-r-CMC\J'-T---!-r-.-CMCM'-
COCOOOCOOOCOC003COCOCOC009COCOOOCO03COCOCOCOCOCOOOCOOOCOCOCOOO
                     CO
                    — eo
                    — eo

                     2
                    Q.
   c
   o
ll—
O -P
   
                                                                           c

•o

•C                            cococo                 cocococo         •Pcocococococococccocecococococo
 CO       Q)Q030303030303CCQ}C0303Q3C3Q303fZCCZCOQ}    O    CCCCCCCCCCCCCCC
••-to    oioo^OTioicD w— — 01—  m 01 01 OT DI CTI— •"• — •— CT cn   co
— co    cccccccccnoicoiccceccoiaiaioicc
.O       TOTOTOTOTOTOTOTO **~ *^ TO "^  TO TO TO  CO TO TO *^ *•• *~~ '~ 00 CO

Q.      OOOOOOOOOOOOOOOOO OO OOO OO    co   OOOOOOOOOOOOOOO
                                                                           s:

   c
                                                                           c
                      _  _  .             	      -            	    03
 OP    Q}u303u3Q3Q30)Q3 00  CO OD CO CO 00 CO  CO 00 CO CO CO 00 CO 00 03    Ol   CO CO CO 00 00 CO 00 CO CO 00 CO 00 CO CO CO

 03—    0)030)03030303'
 •PQ	CNJCNJmCMfOrorocOroroCNJCNJCNJCMrO —    -P   CNJCNJCNJCNJCNJCNJCNJCMCNJCNJCNJCNJOJOJCNJ
 COE    0)0303030300  0 \vx\\\N^\"^\\\\\\\ 0>    03

   O                                                           ^^
                                                                           T3
                                                                           C
                                                                           eo

   s-                                                                      a
   0)                                                                      CO
   A                                                                      O

   ~~                          •  CNJ CM CM CM CNJ CM  CNJ CM CM CNJ CO CO-1 ro co
   Z    I   I  I  I   I  I  I   I  I  I  I  I  I  I  I  I   I  I  I   I  I  I   I  I          I  I  I  I   I   I  I   I  I  I   I  I  I
                                                           r^-^-r^^-r^    oo   cooococooococococococooooococo
   0
   o
   CO
   a.
Date:      8/31/82     Change  1
                                              XX11

-------
o
o
o

CL
o

(-
o
>   -a
     co

     u)
     — w
     — CO

     3
     o_
        c
        o

     O -P
        1C
     T-   Q.

             CM CM CM CM CM CO CO

             I  I  I  I   I  I  I
             r-r-r-i-T-.-,-   CM

             CMCMCMCMCMCMCM   CM
                         t- CM to .3- m >o r~ co
                          i   i  i  i  i  i  i  i
                         CMCMCMCMCMCMCMCM
                         CMCMCMCMCMCMCMCM
                                                             CJ
                                                      I  I  I   I  I   I
                                                     PO PO CO fO CO CO CO CO CO CO
                                                     CMCMCMCMCMCMCMCMCMCM
 Date:    1/24/83  R   Change  2
                                                XXlll

-------
                       II.I  INTRODUCTION
Volume II of the Treatability Manual provides generic process
descriptions for the industrial categories listed in Table 1-1.
This table also presents those categories currently included and
those categories with additional data added.   The categories not
currently included will be added as sufficient information be-
comes available.

The objective of this volume is to characterize the wastewaters
discharged from the above categories on a facility by facility
basis, prior to treatment and after treatment.  The pollution
control methods used with the treated final effluent pollutant
concentrations are also provided.

Each industrial category is defined according to the Standard In-
dustrial Classification (SIC) Codes of the U.S. Department of
Commerce and by the general industrial descriptions found in
current contractor draft development doucments and published
development documents on each industry.  The categories are
generally divided into subcategories which are described when
sufficient data are available.  The total number of facilities in
each category discharging an aqueous effluent either directly to
a receiving stream or indirectly to a publicly owned treatment
works (POTW) is given in an industrial summary table.

Wastewater characteristics are provided for each category/
subcategory when sufficient information is available.  Subcate-
gory wastewater characteristics are broken into separate pro-
cesses when sufficient data are available.  These descriptions
include the complete pollutant analyses available in the refer-
ences.  These analyses generally consist of classical pollut-
ants, the 129 toxic pollutants, and other miscellaneous pollut-
ants found in the wastewater.  The data presented are labeled
according to the sampling and analytical protocols used.  These
protocols are included in Volume V, Section V.7.

Plant specific descriptions are also presented in this volume.
These descriptions generally include a treatment system descrip-
tion, plant production, and wastewater flow.   Classical and toxic
pollutant concentration data, as well as treatment system removal
efficiency are presented in site-specific tables.
Date:  9/25/81                II.1-1

-------
       TABLE 1-1.   INDUSTRY CATEGORIES FOUND IN VOLUME II

Section
II. 2
II. 3
II. 4
II. 5
II. 6
II. 7
II. 8
II. 8.1
II. 8. 2
II. 8. 3
II. 8. 4
II. 8. 5

II. 8. 6
II. 8. 7
II. 8. 8

II. 8. 9
1 1. 8. 10
II. 9
II. 9.1
II. 9. 2
II. 9. 3
II. 9. 4
II. 9. 5
11.10
11.11
11.12
11.13
11.14
11.15

11.16

11.17
11.18
11.19
11.20
11.21
11.22

Category
Auto and Other Laundries
Coal Mining
Electroplating
Inorganic Chemicals Manufacturing
Iron and Steel Manufacturing
Leather Tanning and Finishing
Machinery and Mechanical Products
Aluminum Forming
Battery Manufacturing
Coil Coating
Copper Forming
Electrical and Electronic
Components
Foundries
Metal Finishing
Photographic Equipment
and Supplies
Plastics Processing
Porcelain Enameling
Miscellaneous
Adhesives and Sealants
Explosives Manufacture
Gum and Wood Chemicals
Pesticide Manufacturing
Pharmaceutical Manufacturing
Nonferrous Metals Manufacturing
Ore Mining and Dressing
Organic Chemicals Manufacturing
Paint and Ink Formulation
Petroleum Refining
Plastic and Synthetic Materials
Manufacturing
Pulp and Paperboard Mills and
Converted Products
Rubber Processing
Soap and Detergent Manufacturing
Steam Electric Power Plants
Textile Mills
Timber Products Processing
Publicly Owned Treatment Works
(POTW)
Included
X
X
Note 1
X
X
X

X
X
X


X
X
X

X

X


X
X

X
X
X
X
X
X

Note 2

X
X
X
X
X
X

X
Revised
X
X

X
X
X



X



X




X


X
X

X
X
X

X
X



X
X
X
X
X
X

X

Notes - 1)
    Electroplating data are included in Section II.8.7
    Metal Finishing
2)  Plastic and Synthetic Manufacturing data are included
    in Section 11.12 Organic Chemicals Manufacturing
Date:  9/25/81
                      II.1-2

-------
Pollutant removability achievable by currently used treatment
systems is presented where possible.  Currently used treatment
methods are described and the removal efficiencies are reported.
Potential treatment technologies suggested in the reference
documents are also presented.  Complete wastewater treatment
alternative descriptions are given in Volume III of this manual.

Treatment technology cost data are summarized for each industry
where these are readily available.  The summary includes the
technology components and an estimated cost per liter of waste-
water treated.

This volume is a general reference to be used in the decision
making process for NPDES permit applications.  It should be noted
that no industrial description provided here takes into account
every plant within that industry; rather this volume presents a
general overview.  Plant specific descriptions are not exemplary
plants within an industry but have been selected based on the
completeness of the available data.  Treatment technologies
presented may not be the only control methods currently is use.

References for Volume II are included in a separate section.  The
data from these references have been used unchanged, except that
all concentrations are reported to two significant figures and
flows are reported to three significant figures.  The references
are available on microfiche at all EPA regional offices and
laboratories.
Date:  9/25/81                II.1-3

-------
                 II.2  AUTO AND OTHER LAUNDRIES

II.2.1  INDUSTRY DESCRIPTION [2-2,3]

II.2.1.1  General Description

The Auto and Other Laundries Industry in the United States is a
nonhomogeneous industrial group whose members are linked by the
fact that they provide cleaning services for their clients.  Some
portions of the industry additionally provide the garments, rags,
rugs, or other products they clean to their customers instead of
cleaning customer-owned items.   Because of this heterogeneity,
the industry is covered by the standard industrial classification
(SIC) codes found in Table 2-1.


   TABLE 2-1.  SIC CATEGORIES OF THE LAUNDRY INDUSTRY [2-2,3]
       Category title
     SIC
 code number
Approximate number
of establishments
Power laundries, family
and commercial
Linen supply
Diaper service
Coin-operated laundries
and dry cleaning
Dry cleaning plants,
except rug cleaning
Carpet and upholstery
cleaning
Industrial laundries
Laundry and garment services,
not elsewhere classified
Car wash establishments
7211
7213
7214
7215
7216
7217
7218
7219
7542
3,100
1,300
300
32,000
28,400
2,700
1,000
2,700
40,000
Date:  9/25/81
II.2-1

-------
There are four basic process divisions in this industry:   water
wash (laundering),  dry cleaning,  dual-phase processing,  and
carpet-upholstery cleaning.   Brief descriptions of these pro-
cesses and the car wash variation of the water wash process are
provided below.

     Water Wash

In this portion of the industry,  the primary cleaning is ac-
complished by a water wash.   Soiled materials are first sorted
according to the processing required.  If necessary, stains which
may set during washing must be removed.   This can involve a
simple cold water soak or the use of acids, bleaches, and/or
multiple organic solvents.   Once laundry is loaded into a ma-
chine, it undergoes a series of cleaning steps.  These steps vary
according to the different types of desired final product and
range from wetting, sudsing, and rinsing the fabric, to souring
(reducing pH to about 5 to remove yellowing sodium bicarbonate),
blueing, bleaching, and finishing.

     Dry Cleaning

In this group of processes,  the primary cleaning is accomplished
by an organic-based solvent rather than an aqueous-based deter-
gent solution.  There are three different processes in the dry
cleaning industry.   The first uses a controlled amount of water
and detergent throughout the cleaning cycle, in addition to the
solvent, to dissolve the water-soluble solids.  The second is
similar but adds detergent only at the beginning of the cycle.
The third uses only solvent.  This process requires prespotting
to remove water-soluble spots.

Solvents are generally filtered and recovered for further use.
Distillation purifies the solvent and removes odor-causing con-
taminants.  Less expensive solvents are vented to the atmosphere
in some cases.

     Dual-Phase Processing

In dual-phase or dual-stage processing,  the water/detergent wash
is preceded or followed by a separate solvent wash.  This is used
almost exclusively by industrial laundries to clean items that
contain large amounts of both water-soluble soils and oil and
grease, such as work shirts and wiping rags.

     Carpet and Upholstery Cleaning

Carpet and upholstery cleaning may be done on location or in a
plant.  On-location cleaning is done by the powder, dry foam,
rotary brush, or hot water extraction method.  In all of these
on-location methods, the carpet or upholstered item is vacuumed
and prespotted to remove stains before any other cleaning is


Date:  9/25/81               II.2-2

-------
attempted.  These on-location methods are similar processes that
involve working a medium into the soiled item, followed by vacuum
extraction.  They each use a different amount of water.  The hot
water extraction process differs in that hot detergent solution
is injected and immediately wet vacuumed out.

In-plant carpet cleaning is done on a rug cleaning machine or on
a special cleaning floor, depending on carpet size.  The rug is
mechanically beaten or vacuumed to remove loose soil, and stains
are removed by prespotting with various solvents.  This is fol-
lowed by a prewash in which a detergent solution is worked into
the pile.  The carpet is then scrubbed, rinsed, and moved to a
drying room.

In a few plants, dry cleaning machines are used for very delicate
and dye-sensitive rugs and tapestries.  In these, the only waste-
waters are cooling water from the solvent distillation unit and
the moisture removed from the carpet with the solvent.

     Car Washes

Car washes are considered a variation of the water wash process.
The variation comprises facilities designed for the automatic or
self-service washing of vehicles.  There are three main types of
car washes:  tunnels, rollovers, and wands.  The tunnel wash, the
largest of the three, is usually housed in a long building.  The
vehicle is pulled by conveyor or driven through the length of the
building, passing through the separate washing, rinsing, waxing,
and drying areas.  A trench, usually running the length of the
building, collects the wastewaters.  Installation of a dam in the
trench permits separation of rinse wastewaters, facilitating
their treatment and reuse.

At a rollover wash, the vehicle remains stationary while the
equipment passes over it.  Similar in design are the exterior
pressure washes which utilize high-pressure streams of water in
lieu of brushes.  At both types, all the wastewater is collected
in a single trench, usually situated beneath the car.

The car also remains stationary at a wand wash, but here the
customer washes his or her own car with a high-pressure stream of
water from a hand-held wand.  As at a rollover, both the wash and
rinse waters are collected in a single trench or sump.  Because
many self-service washes are unmanned, the customer is able to
wash both vehicles and other objects.  These can include engines
and undercarriages, motorcycles, farm equipment, animals, or
anything that can be brought into the bay.  Furthermore, it is
possible to change oil in the bay and to pour the used oil into
the sump.  The waste load at such a facility can therefore vary
tremendously.
Date:  9/25/81               II.2-3

-------
Since the laundry and dry cleaning industries are almost exclu-
sively confined to the urban and suburban areas where their
customers are located, more than 80% of all plants discharge to
publicly owned treatment works (POTW's).   Table 2-2 lists the
number of subcategories and the type and number of dischargers
found in the Auto and Other Laundries Industry.

            TABLE 2-2.  INDUSTRY SUMMARY [2-1]


           Industry:   Auto and Other Laundries
           Total Number of Subcategories:  9
           Number of Subcategories Studied:  8

           Number of Dischargers in Industry:  110,350
              • Direct:  350
              • Indirect:  90,000
              • Zero:  20,000


II.2.1.2  Subcategory Descriptions [2-2,3]

The modern Auto and Other Laundries Industry is grouped into the
following subcategories:

     1.   Power Laundries, Family and Commercial
     2.   Linen Supply
     3.   Diaper Service
     4.   Coin-Op Laundries and Dry Cleaning
     5.   Dry Cleaning Plants Except Rug Cleaning
     6.   Carpet and Upholstery Cleaning
     7.   Industrial Laundries
     8.   Car Washes
     9t   Laundry and Garment Services, Not Elsewhere Classified

Seven of the nine subcategories have been submitted for exclusion
under Paragraph 8 of the NRDC Consent Decree.  These subcatego-
ries are Power Laundries, Diaper Service, Coin-Op Laundries and
Dry Cleaning, Dry Cleaning Plants, Carpet and Upholstery Clean-
ing, Car Washes, and Laundry and Garment Services, not elsewhere
classified.

     Power Laundries, Family and Commercial

Power laundries are defined as establishments primarily engaged
in operating mechanical laundries with steam or other power.  Ex-
cluded are laundries using small power equipment of the household
type as well as establishments that have power laundries but are
primarily engaged in specialty work such as diaper services,
linen supplies, or industrial laundries.
Date:  9/25/81               II.2-4

-------
Currently, 75% of power laundry receipts are from traditional
family and bachelor-type work, but almost 18% are derived from
dry cleaning.

     Linen Supply

Linen suppliers are defined as establishments engaged primarily
in supplying, on a rental basis, laundered items such as bed
linens, towels, table covers, napkins, aprons, and uniforms.
These establishments may operate their own power laundry facili-
ties or they may contract the actual laundering of the items they
own.

Because linen supply laundries are more efficient in water,
chemical, and energy usage than are on-premise laundries, sales
in the linen supply business have been increasing at a moderate
(14.6%) rate over the 1963-1974 period.  One avenue of growth
being tapped by the linen supply subcategory is the light-to-
medium industrial laundry market.  Currently, 80% of the dollar
value of the work done fits in the linen supply category, while
12% of the work is of the type usually handled by industrial
laundries.

     Diaper Service

Diaper service establishments are those primarily engaged in
supplying diapers (including disposables) and other baby linens
to homes, usually on a rental basis.  Diaper services may or may
not operate their own power laundry facilities.  There are ap-
proximately 300 such firms in the United States, which account
for about 0.6% of total laundry receipts.

The diaper service industry has not diversified as have many of
the other laundry categories.  Traditionally, diaper services
have rented diapers and other baby linens to household users.
This role has remained essentially unchanged except that dispos-
able diapers are now also supplied to customers.  Approximately
95% of the receipts are derived from the traditional sources.
The number of establishments and receipts for this industry have
been declining due to the falling birth rate and the increasing
popularity of disposable diapers.

     Coin-Operated Laundries and Dry Cleaning

The coin-op category is made up of establishments primarily en-
gaged in providing coin-operated laundry and/or dry cleaning
equipment on their own premises.  Included are establishments
that install and operate coin-operated laundry machines in apart-
ment houses, motels, etc.

In 1967 this subcategory encompassed 28% of all laundry estab-
lishments and accounted for almost 9% of total laundry revenues.


Date:  9/25/81               II.2-5

-------
Over the past decade coin-op receipts have increased by 10% per
year, and it is expected that future growth will continue at a
moderate rate.

     Dry Cleaning Plants Except Rug Cleaning

Establishments belonging to this subcategory are those primarily
engaged in dry cleaning or dyeing apparel and household fabrics,
other than rugs, for the general public.   There are about 28,400
such establishments, most of them relatively small.  Dry cleaning
plants accounted for 54% of all laundry establishments and about
41% of all laundry receipts in 1967.

The number of dry cleaning establishments and real receipts in
this segment of the industry have both declined by 29% from 1963
to 1974.  This is largely due to the new clothing fabrics de-
veloped over the past 20 years.  Many of these fabrics do not
require dry cleaning, or they shed soil more easily and, hence,
require cleaning less often than the old fabrics.  Dry cleaners
have diversified into related fields such as shirt cleaning and
laundering in order to provide customers with one-stop cleaning
services.  Relatively recent developments are drapery, rug, and
furniture cleaning and the sale and/or rental of working apparel.

     Carpet and Upholstery Cleaning

Carpet and upholstery cleaners are defined as establishments
primarily engaged in cleaning carpets and upholstered furniture
at a plant or on a customer's premises.  It is estimated that 25%
of these businesses operate in-plant cleaning facilities.  The
number of in-plant operations has declined significantly over the
last 10 years with a corresponding growth in the on-location type
cleaners.  This is a result of the increase in the use of wall-to-
wall carpeting.

Firms in this category are not very diversified.  Their basic
services include carpet and rug cleaning, repairing, and dyeing,
and cleaning of upholstered furniture.  Approximately 85% of the
receipts are from these activities.  A small number of these
firms offer in-plant dry cleaning services for specialty items
such as Orientals, Aubussons, Savonneries, and tapestries.

     Industrial Laundries

Industrial laundries are establishments primarily engaged in
supplying laundered or dry cleaned work uniforms; wiping towels;
safety equipment (gloves, flame-resistant clothing, etc.); dust
control items such as treated mats or rugs, mops, tool dust
covers and cloths; and similar items to industrial or commercial
users.  These items may belong to the industrial launderers and
be supplied to users on a rental basis, or they may be the custo-
mers' own goods.  Establishments included in this SIC category


Date:  9/25/81               II.2-6

-------
may or may not operate their own laundry and dry cleaning ser-
vices.

Most industrial launderers offer their customers a variety of
textile maintenance services, but approximately 88% of the re-
ceipts are derived from the activities defined above.  Although
there is some overlap in the work done by industrial launderers
and linen suppliers,  industrial launderers can generally be dis-
tinguished because they rent personalized garments fitted and
labeled for the individual, while linen suppliers provide rental
garments by size.

     Car Washes

Car wash trade associations have estimated that the total number
of car washes is about 40,000.  Approximately 40% of these are
rollovers, 40% are wands, and 20% are tunnels.  The industry
continues to grow at a rate of 3% to 4% a year, although the dif-
ferent types are growing at different rates.  The number of new
tunnel facilities built each year is fairly constant.  Rollovers
are primarily found at service stations where oil companies have
often used them as promotional devices.  Sales are therefore de-
pendent on such things as the availability of gas.

The largest increases in sales have been for the self-service
wand-type car washes.  The resurgence in sales is partly due to a
general upgrading of merchandise and facilities.  Furthermore,
wand washes offer the best return for the least investment.  The
number of bays sold for a location is generally tuned to what the
market requires, and the tendency is to begin with four bays.

     Laundry and Garment Services Not Elsewhere Classified

This subcategory,  Laundry and Garment Services NEC, is defined as
those establishments primarily engaged in furnishing other laundry
services, including both repairing, altering, and storing clothes
for individuals and the operation of hand laundries.  Additional
services provided by these firms include garment cleaning, re-
pairing, and storage; glove mending; hoisery repair; pillow
cleaning and renovating; and tailoring.  There are approximately
2,700 establishments in this category, most of which are very
small.  No data on discharges are available because this subcate-
gory was not studied, and it will not be considered further.

II.2.1.3  Wastewater Flow Characterization [2-2,3]

The volume of wastewater produced by plants in this industry
range from 0.9 to 1,400 m3/d (240 to 360,000 gpd).  This excludes
two subcategories:  (1) Carpet and Upholstery Cleaning, for which
figures are not available, and (2) Dry Cleaning, which uses a
negligible amount of water (30 to 200 cm3/kg  [0.004 to 0.023
Date:  9/25/81               II.2-7

-------
gal/lb] of material  washed).   Table 2-3 indicates water discharge
rates of  those  subcategories for which data are  available.
TABLE 2-3.
PROCESS WASTEWATER DISCHARGE RATES BY SUBCATEGORY
[2-2,3]
Subcategorv
Industrial laundries
Linen supp 1 ies
Powe r laundries
Diaper services
Coin-operated laundries
Car washes
CtL
Minimum! a)
0.008
(0.9)
0.014
(1-7)
0.018
(2.2)
0.006
(0.7)
0.007
(0.8)
35(b)
.m/kg (aal/lb)
Max! mum! a)
0.080
(9.6)
0.086
( 10.3)
0.043
(5.1)
0.045
0.092
(II. 0)
80(b)

Average
0.038
(4.6)
0.030
(3.6)
0.028
(3.5)
0.029
(3.5)
0.032
(3.8)


Minimum(a>
32
(8,600)
14
(3,600)
6.8
( 1,800)
12
(3, 100)
0.9
(240)
1. 1
300(b)
cu.m/dav (god)
Maximum! a )
1, 100
(290,000)
1,400
(360,000)
1, 100
(290,000)
680
( 180,000)
76
(20,000)
180
48,000(b)

Average
260
(68,000)
420
( 1 10,000)
230
(61,000)
160
(41,000)
14
(3,600)

  Blanks indicate data not available.
  (a)Minlmum and maximum values apply only to the laundries
    necessarily reflect absolute minima and maxima for the
  (b)GalIons per car
                      surveyed and do not
                      industry as a whole.
11. 2.2 WASTEWATER  CHARACTERIZATION [2-2,3]

The physical  and chemical characteristics of laundry wastewaters
are influenced by  three primary factors:  the general  type of
cleansing process  employed (i.e.,  water versus  solvent wash),  the
types and quantity of soil present on the textiles being laun-
dered, and the composition of the various chemical additives used
in the process.  Water wash effluents contain all of the soil and
lint removed  from  the textiles, as well as the  laundry chemicals
employed in the process.   On the other hand, wastewaters from dry
cleaning processes tend to contain water-soluble materials;  lint,
grit, and insoluble organic and inorganic compounds are largely
removed by the solvent filter or confined to the still bottoms.
However, dry  cleaning effluents also contain appreciable quan-
tities of solvent,  which are not normally present in water-wash
effluents.

Table 2-4 presents the minimum detection limits for toxic pol-
lutants in this industry.   Tables 2-5 and 2-6 present  subcategory
wastewater descriptions for classical and toxic pollutants found
in this industry.

II.2.2.1  Industrial Laundries

In comparison to domestic sewage,  industrial laundry wastewaters
typically contain  high concentrations of BOD5/ COD, TOC,  sus-
pended solids, and oil and grease.  BOD5 concentrations as low as
91 mg/L and as high as 7,800 mg/L were observed, which attests to
Date:  8/31/32  R   Change 1  II.2-8

-------
      TABLE 2-4.   MINIMUM  DETECTION  LIMITS FOR  TOXIC POLLUTANTS(a)  [2-2,3]
Concentration
Compounds yg/L
Metals
Arsenic
Antimony
Beryllium
Cadmium
Chromium
Copper
Lead
Nickel
Mercury
Selenium
Silver
Thallium
Zinc

Acids

2-Chlorophenol
Phenol
2 , 4-Dichlorophenol
2-Nitrophenol
p-Chloro-m-cresol
2,4, 6-Trichlorophenol
2 , 4-Dimethylphenol
2 ,4-Dinitrophenol
4 , 6-Dinitro-o-cresol
4-Nitrophenol
Pentachlorophenol

Volatiles

Chlorome thane
Dichlorodifluorome thane
Bromome thane
Vinyl chloride
Chloroe thane
Methylene chloride
Trichlorofluorome thane
1 ,1-Dichloroethylene
1 , 1-Dichloroethane
Trans-1 ,2-dichloroethylene
Chloroform
1 ,2-Dichloroe thane
1 , 1 , 1-Trichloroe thane
Carbon tetrachloride
Bromodichlorome thane
Bis-chloromethyl ether
1 , 2-Dichloropropane
Trans-1 , 3-dichloropropene
Trichloroethylene
Dibromochlorome thane
Cis-1 , 3-dichloropropene
1,1, 2-Trichloroe thane
Benzene
2-Chloroethylvinyl ether
Bromoform
1,1,2 , 2-Tetrachloroethane
Toluene
Chlorobenzene
Ethylbenzene

1
10
0.04
2
4
4
22
36
0.5
1
5
50
1



0.09
0.07
0.1
0.4
0.1
0.2
0.1
2.0
40
0.9
0.4



0.2
0.2
0.2
0.4
0.5
0.4
2.0
2.0
3.0
2.0
5.0
2.0
2.0
4.0
0.9
1.0
0.7
0.4
0.5
0.3
0.5
0.7
0.2
1.0
0.6
0.9
0.1
0.2
0.2
, Concentration,
Compounds vg/L
Base neutrals
1,3-Dichlorobenzene
1 ,4-Dichlorobenzene
Hexachloroe thane
1 , 2-Oichlorobenzene
Bis-2-chloroisopropyl ether
Hexachlorobutadiene
1,2, 4-Trichlorobenzene
Naphthalene
Bis-2-chloroethyl ether
Hexachlorocyclopentadiene
Nitrobenzene
Bis-2-chloroethoxy methane
2-Chloronapthalene
Acenaphthylene
Acenapthene
Isophorone
Fluorene
2 , 6-Dinitro toluene
1 , 2-Diphenylhydrazine
2 , 4-Dinitrotoluene
N-nitrosodiphenylamine
Hexachlorobenzene
4-Bromophenyl phenyl ether
Phenanthrene
Anthracene
Dimethyl phthalate
Diethyl phthalate
Fluoranthene
Pyrene
Di-n-butyl phthalate
Benzidine
Butyl benzyl phthalate
Chrysene
Bis(2-ethylhexyl)phthalate
Benzo ( a ) an thrac ene
Benzo (b ) f luoranthene
Benzo ( k ) f luoranthene
Benzo(a)pyrene
Indeno (l,2,3-cd)pyrene
Dibenzo ( a , h (anthracene
Benzo (g,h,i)perylene
N-nitrosodimethylamine
N-nitrosodi-n-propylamine
4-Chlorophenyl phenyl ether
3 , 3-Dichlorobenzidine
Di-n-octyl phthalate

Pesticides












0.02
0.04
0.1
0.05
0.06
0.08
0.09
0.007
0.07
0.2
0.08
0.06
0.02
0.02
0.04
0.06
0.02
0.2
0.02
0,02
0.07
0.05
0.1
0.01
0.01
0.03
0.03
0.02
0.01
0.02
0.02
0.03
0.02
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.8
0.2
0.03
1.0
0.89

1.0











             (a) The minimum detection limit for all toxic pollutants in the car wash sub-
                category is 10 ug/L.
Date:   8/31/82  R  Change  1   II.2-9

-------

















CO •— «
h- CO
Z «

Z





c
CO
0




c
CO
—
•D
0
£





E

E

X
CO






(^
O 05
!-^
0 Q
-Q E
E co
3 05
Z




_
V
CT
E


•P
C
CO
-P
;
—
—
O
a_









CO
_
t_
T3
C
3
CD
—

C
0
3
—
_l






















05
0

s_
TJ
C
3
CO
w

—
CO

s_
4J
V}
3
13
C
—































OOOOONCM OO
CNJOOO 	 CO —
NO NO -^ ^ • CO
0
—


ooood-cvioo
— OONO 	 O —
NO in co co *co
o
—






OOOOCONOOCM
OOOO J- CM 	
inocMCM -o\
*.>,., o
— J- 	





o vo oo ON Lf^ r**" w oo
in CNJ CNJ m inm









OOOOCNJCVIOO
OOOO — COO —
CO O ^° O * —
•* * •. * o *
— m 	 —




OOOO— OOOO
CM OOO • — co-
ON co CNJ r~* ON • r*—
« » o
CO —






OOOOCNJ mocNj
OOOOd" -0 —
CO O CO — — ON
* * * •. •.
r^ r^* NO NO ^









~~ O J" ON CNJ ON NO CM
in NO co NO — — NO NO







(A
3

O 05 (fl
.C — CO CO
Q. O 0 -P
(fl C ! 	
O 0 O1C
.C C. 3
a Q.-D
C X
	 co a.
in co co
aaoco-p-p— «
OOOCO O O— X
03OI-I— h-KO a









CO
0

&_
•Q
c
3
CO


s_
0
a
CO
Q
























w
0
—
c_
T3
c
3
CO
—

s.
0

0
Q.

































OOOO<0-d-OON
CM oooNincM OCNJ .
co mco— • — ON
0



o o o j-m j-
•S-CM co OOO •
CM in — o
o —







OOOOOCOOO
NO O O 00 co Oco •
in — -^ CM .co —
o —






Lf^ 00 W 00 C\J **o r^ ON









OOOOco — O J"

CONO — CM t~- • — ON
o





OOOOOt— CM NO
— OONO co • o in •
CM m — CM.* • ON
o







OOOO-^t^OO
d-o J- — CM ONI-~ •
ON -3" CNJ ^ • CO —
o —
—









CO •"• ^r ~~ NO in ON ^T







to
3
!_ 0
O W5 t/5
jz — co w
ao 0 -P
U) C ! 	
o 0 cnc
£.H 3
a a-a
C X
	 co a.
in co co
aaoco-p-p— •,
OOOCO O O — X
CDOh-Kh-l-O Q.






g
CO

Q

O
C
—
c
CO
0
—
O

4-1
0
Q
CO
O



















U)
0
>—
c_
•a
c
3
CO


•fa
0
-p
CO
c_
0
a
0
t
c
•—
o
o















































ONONO O ON ON —
ON 00 -Zf O CNJ — "
CNJ — t~-

















00 OCOONOON

~~ fO •— ON • f**
o





o o in CM co o
CNJ 1^- 00 OCM •
— CM O CO
•
o
V





OOCOOCOOJ-CNJ
O CO NO CO — CO I-~ •
in ON NO *ON
o










CO — CNJ — CNJ







U)
3
S_ 0
O «5 W
-C — CO W5
ao a) -P
U) C S 	
O 0 O1C
jz r: 3
a. Q.TD
C X
	 co a.
in co co
aaoto-p-p— «
OOOCOOO— X












to
0
JZ
to
CO
^

i_
CO
o

























05
4^
c
CO
—
a

cr
c
—
c
CO
0

O

>
£_
a































00 O NO 	
NO 00 O 00 •
— o r~

o
V
CNJ
CM J- CNJ — •
-d- NO o CM r-
o
.
0
V





o o j-o .*
CNI CNJ CM O •
CM m o-3-oo
. ^
o m





r- r- NO r-h-









co
0
o
.
0
V














CMCOCNJcoCNJinCMCNJ
V -O V •
oo r-
•
o
V
















05
3
!_ 0
O 05 05
£ — CO 05
ao 0 -P
05 C ! 	
O 0 01C
-C.C 3
a a. -a
C X
	 co a.
in co co
aaoco-p-p— .
OOOCOOO — X






























































.
—
.
P to
0 —
05 £}
CO
CO —
-p —
CO CO
a >
CO
— -p
• o
co C
.
r~ co
> co
T3
*•
T3 0
O -P
JZ CO
•P O
to —
ET3
c
0 —

4J 05
^i^
— c
CO CO
c —
< CQ
Date:  8/31/82 R  Change 1  II.2-10

-------





o
cc
u.
a:
Ul
^-
§
LU
to
^ ( 	 i

CO
< C\l
CC \
OJ
Z • •
—
QH
Z<

0
u-O
to —
1- Z
ZLd


•a
c
3
__
CD
'-
4-:
3
•a
c



















































u
d- O
O -

C O
C3 1
03 -P
Z 03
•o




<*- in
O C
o
CO P
- O
•a o
03 -P
Z 03
•a






c.- C
0 0
03 4J
DiO
C Q
CO P
C£ 0)
•o




^
c
o
4J 03
O —
03 C
03 ca
•a IA
o o
L. t-
03 03
.Q.O
E E
3 3











D




C
ca
D


O
Q

O

X
o
H

oom— oooor-ooojuo o oo o oo o

oj — CM cor — oj — to v coo co vo CM — CMOJ oj
- . * - v v *
— -3- m ro jy
V V









OiA— fOO O03O J-O — OJ _JO O OJ- O O O
vo oj ^ocoo.zrO'-a'V-oo o — J oj o —
— J" OJ CM 	 CO CO CM — to — — OJ








o o o o
oo oooo o o o o o
OO OOOO O -JO O O O
.3-0 OCO-O-ONJ-OOOO *IAO o oo
«»CM»— -CM'^OJrOCO-. CO -OJ — \O^ fO
OJCMU*iiACO 	 CMroOJ 	 ON — — CO .3" O JCO OJC
o o o c
lliltilliliill I ii — I co li — i -
V ^ V
-JJ-— —IOOO— liA— J — -J-JO — OO O — COO O-
Q Q — r 	 Q-QVQQO ft 	 — — OJ —
co CQ cQocacoca— vvv v-












— io°°^^^oiX"^OCMiAM J^^O i rttt^^ "~ CMVO"^"










V
c
03 03 •—

o — co re n —
— — ) CO-MfO^COW
co x J^ TOJ: -a c 03 (A a
C o *J— 4JC03JCQ)C
t- cj=»QJ >>Q3 -P Q - >s 1 C
jz*jN4J — jz— e-o-cea
E +JtoCco>iO.>>OO Pl^
"D>j3E £E i/l 1) — aj — 4J4->Ow) 03OC
CCO-E3 03 >> D 3 03 1 co .O cc - — O O E l-0><-
QC 	 • 3 - i- T3 t- 	 ' 	 4JCMJZ £J3>iO CU 	 OCC
E C — - E O — 3CDCQ— cc -— u — 4J I x: 1 03-P « Q O — 03 —
(A-o>>Eoac-ao-^03>— o — .c >,ir cj-»c o— — ICJTNJ:


-j< 4J o o COCDCJ:
j=cc — j:-aco**o
tod) 4J 4J 	 Q3Ct
OC— CO 03t->»aQ3O
— 03 CO £ EOJZS 	 i_
4->r:jz D o — 4-> o >>o
aj > co — r: j= 4J
>>3 — .cr: 4-> OSOJTJ:*- -ooai
j: — o 4-j o a ot— o *-» P — 	 E
4^0 >cico orr-ocu »t-t-
LU h- O < CM Z — OQZt- — HI—
> (0
— I
O
a.
Date:  8/31/82 R  Change 1  II.2-11

-------
CC
LJ
X
o
Q
Z


O
f—


^1
s
o
C£.
u.

o:
1 1 1
h-

LJ
1-
W

S






z
a
z

o


w

z

1-
1
o
a.
O
— *-^

O Q)
H- 3
C
Li ._
O -P
c
z o
o o

1-
< w
o: uj
i 	
zee
LJ a
oz

o<
0-1




i
c\i
UJ
CO






















1
c

_


O

O













































w
c
o
0 4J
u
C 0)
ffl 4J
CO CO
S-D

U)
d- C
O O
C 4J
re o
— Q!
co a



(A




CD 0
cnco
CO CO
ce-a

U)
C
O
— (A
*> Q)
o —
d) Q
>j e
CO CO
T3 W

0 0
co a
€ E
Z Z














^
C

4J
C
n
t


o
O.










OCM**O\^OrOM«iA*'QfO CT\ f\J — lA -CM * • *
CM OCM — V 	 COr-CO.3- V o — lA ^
V V V V V








fMO lAfiOOS-CO— -JlA-J O St h-O
— CM •^•rorovO OVQ — CO — CM
CM — CD CO J-





o ooooeooo -i o o o o


LA LA «*» «
Illlltllllllll 1 IIVl 1— iroiV I •!•
O O
Q— •VlACMCMOQVQQCs COV f\) • •
CO O V CO CD CQCQCM O O O O









iAJ'CM^'VOvOJ'1OxOvO'1O^DfMiA ro rOfOOJfO ro — m — ro Cy fO — ro —
lA3-CSJJ-.OvDC-vOxOvOro^CMLA ro roro-fx, CM-CM-CM- CM - CM -




V)
C
O
•£
CO
u
S
•a

CJ CO CO 	 1 —
— — — 0)~OO— OC *•»
C — fO-PCO C C O W * — CO to
co >» .c TO.C Q) a: c a> *J c j=
O X •»-> — *->— C£QJCcoQ> Q
s- co .c co ^ o D. Q..C co E x: —
O -C — CUZ Q, CO— Q. N OQ.CO —
C — CO >>CO 4J CO t- >»O C t-'X C CO
E jzcoCto>>Q.>) a— wo a roc^c -o
•U>)3 E 6 E U54J— j O O 	 O— O — co CO 3) CO CD co
EC 	 EQJ-- 30JCCO— to CM *> — 4-> I jZ 1 tftj— OOtoO— Ot-t-t-^C C
— AJ«i--Dt-acocoi-ej 	 coc toiAa-jaicoi o cj JJTCCOO o'+jj-'^a*- o
,w<s O 0)
ox: u —
- *J o >>
-C O — £
O O JZ 4J
E s- O 0)
!_ CO O — O
o c — t- i-
tt- CO .C t— O
o — o t —

£ CD 0) . t.

-------

	 mcM CD eh— •* r- v r- v v
« • v v
CM CM





.jm— CMOO — o«J-J -J oo o o r-m
Q -V mf-JOOO O OO ft) — —CM
cor- CM CMCOOD eo r~— CM v v



1 § § §
OOO • f* O 00 O O O O
if> **i •" • fsj eo ™ c* »— oo o o ^^o * — *o "" o O
^«ov— O^CNJVO — irnofti— tAcy ov v ca vmao

i i i i i i i i i i i i o i i i ii (nmtn i i i
CD V V V
_Jf^ — jf^iTNO-J-J-JCyJ OO O iT*O lAOO
SV QftJOCNJOOO Of^m VOV- V--
co com co eo — v v v



(AVO^ ^OlAtfN r-





•


*i S 2
w ** ** .
o • o fa "•
.2 ~ 20S2 o
C — IB *» IB IB C
« X £ 10 — £ Q> 4
8— 5? W- «*> £
— 0) £ «£C O.
O « £ — O.£ u O. p
e *i — o xo> u£ <-
— O >,«NW — £ O.— O
• w £ a c • xo. X -
•a X 3 • f * — BMW— o— « — w £
CCO— • 3 « X 3 5 SUIBJ3IB3— XO O 0 -
BO 	 3 ._ I. •o I- 	 V.— — 4JI£ ££ X£ O 	 C -
I c — — » o — 3«cg>— o « CM *> — M i £ w i uiio o ai
»— vxcoac-opjeo^— oc — — »£ X£ c ** o e — i c 3
— **tac^(.o>«B^u — — «cv iBioawo.1 oil o tf ai —
M«couuou*J£z»-Na. *JOD a ooao OICM^CL H
O £ £
21 CM a4 <




CM Ot
V






2
V CN



o
'« 0 2
— ni moo
* 1 1-0 	
1 — V V
o
O CM
V



m_
^*^* *^^*^^

0

i
}
1
i
I «| c
- — a) c £
J C « •O 0) W
- • « — — o
J C £ <- XO
go) a O£ <-
£— —MO
— £ a> —
-•v • 00£
• OB a c o
c c -o u o o —
jaee e o c — «- MI
- OC- *•»- «£l- 0
-««« IB O — U 1 "D
j 1. 1£ c i. x«- -
>££W OO£(-« O
J 44 4> O. O— ****— —
>e • o£oo« «J
r 3° H~ i
      (N
Date:  9/25/81
II.2-13

-------
oc
Ul
X •
o
Q
z

o
h-
<
Q
ae
Lu
0J

Ul
1 .
<

"^
i
z

Q
Z
3
O
u.
(A
h-
z

1-
_1
o
a.
O
O 0>
t- 3
C
O +»

z o
0 0
1-

CONCENTR
LAUNORIE
vo
i
Ul
C
O u
u
C 0)
(0 *J
0) O
ITJ
t 0
u o —
> o c
a 01 a
D C *J
•S4
: ^
at
c
0
— fl
o —
Cl Q
V E
•a «

o o
u t.
fi
zz









c

*
c
a
t
C
a.



Jror-fOtA^ OCM-llA-l-IO O
V^-OOO — CQOCOGOcr) go
V V V V






(OOtf\CMiAO VO IfN _J U>  »

c — • u — •
a x* w— 3 a
L. a c • il -
gc ac a —
— o w H a
•ox 36 c s «**— ** o a
C C O — E 3 O X 3 3 OOK3— — OO "
MO 	 3-1.TJ C 	 U~ u 1 £ iJ X -CC W
fiC 	 BO— 3OCO— lf O«O C
«— oxEoac-aojco>— o — — .e c w > N 3 a
IDC(-O(g£OXQ>O— «J — £— £« 	 >OO 0

	 U — N 0) *^*-»
££—•>-» b «
000 	 SH-





Date:  9/25/81
II.2-14

-------
       O
       o
       o
       ce
       oc
       LU
       (O
       o
       O
       a.
       O
       O 03
       H 3
         C
       Li- —

       o <->

       z o
       o u
       za:
       LJQ
       uz
       zr>
       o<
       o-J
       VO


       CM


       UJ


       CO
M
C
G

ow
o
C 0
m v
z-o
u)
»- C
O 0

C +J
(9 C
•o u
w a) a

c
(9
O
o at
c c
CO- 2
(9 u
o o u
- 010
19 O
>K-O
a
u>
c
a
— ta
a o
O —
£ i
9) (9
•D M

O O
i!






Mutant. ua/L
£



CMCW V V V V —

V













OOO O O
V CM — V
II III 1 III
oo aao o aoo
CDCD CO CD CD CO CD CD 00







CMCM CMCMftl CM CM CM CJ
CM CM CM CM CM CM CM CM CM

C
O
a
t.
 O
.2 i. £ 3
5 > £S .2 2
o X u— w a
t. O £ (9 (9 O —
o c a£ e c -
— >> W — £ l-NO)
.c <9 XQ. eg c c "o
v u u— u o « o
c a> a> a 3 — uo^~ «J
<9<- > — —COO <9
O C9C\J«J|£ CQIO — 0) t. £ c
ID a-o — ice" — c CNO-U u
— a « cguiaio oo o c — a. o
aoo £ — — — c £ > o c  o c c
c c c i a a «
a (o o v o oc.cc
£ 5=- <" ^ 0)4->4->£Kh-o
ooo 	 t. >,— o i i —
O 0£ 1 1 J *>£ 2 » -O
— — OCM^CM Q)*»*4 — — —
cc- * * * 0 a * *c-
OOO 	 XK — — 1-

v 	 h-incj -^* v o
v v o r-
V -








— eo <\J -Q O
V OCQ O
•&

i.
3
\ §
3 0 O
j inoo *o^o *
— OiTiOOiA— O — O
oo in -J
D CM— iiiiiiiivtoi

3 coco v cacaco ea 
-------

Ul
X
0
a
0
3
S
O
U.
OL
Ul
(—

S
t-
w
•*
*£
ai
Z
o



o
!•

CO
!
3

o
o.

o


o to
H^
^
u.—
O *>
z o
0 0
— ^_v

< (/}
CCU1
CONCENT
LAUNDR 1
>O
CM
Ul
OQ
l~

Ul
C
0- O
c u
a o
£ 9)
•o




0 C
o
c •—
« +J
— o
* "O 
01 U
C tt

•o


c
o
— 
11
zz





X,
c
4J
c
«
+
I
u
X
o
h-



OOi^^OOOOf**OC^W OO O OO O OO O OO O O O OOOO
flOOO-OvJ-O^O-O — W Of O — — P* •»« O OO (\J O O — OO\r-
 rt J- <\j tA
V V V







OiT» — mo O«OO^ O — C\J OO O OJt O O O -JO O
\OCW^COOJ?O»JTV«OiA O^^W O^OO ~~
— -3-CM CM 	 40 CM— — "> — — CM CO— CM
» * » • «
^ M CM ™* •»




JTO O«0 -O -OvJOOQOiA « mo O OO . . » O
» . c\j ,— »CM • oCMroea •> •> «> «cu — vo^ «o «— r»
CMWlAlAflO — — CM«CJ— — OS— — — 00 9 O W) CM O — lA •*
o o o o
i i i i i i i i i i i i i i i i i i — i co i i — i — i i ir^
V * V » —
-I.*- — _)ooo-iin_j — -j-Jo— — oo o — eoo o — -JO tn
o o — r- — a-avaao fo — — — — CM — o— •
a co caoco coco— v vv v cov r-










*s.^«^CC^^l^iC.*x^.O^'x. C. ^.^.C^ ^ ^^. — ^. — "x,^. X.^
wS mSScMSc\|lo"- M- >£««-* ftJSO-00^ *




(A
c
O
^
. si
. . 5 es
si - s « 5 - ?s»
1 1 lib ^1 1 s s oil
2 - S ^S §2 i S g -SS
o « — — a.£ aoa —ONO »>,«> t> a— >> i cc c^.o
0 £UNU-£- CO £ • 00 OOII
e *> waca>»ax oo u i -ON Ccc
T3 >> 3 E • B — »O— O — *» « O Ul O 6 PC a O p
CCO— E 3 O >> 3 3 OIDA03— U P B C « C « « o <-
aO 	 3-1-TJ C 	 I.- - UCM£ £d >>O CC — -OCOAC O (0 O
EC 	 BO— 3OCO— O  WOO— O — — O — 1- —
1«1- 0) >E 0 aCT) OJC 0 >- 0 C - fX£C*>C O— -IC£N£>>3 -££
— .uML-ot-aatoi-u 	 «co aiMawaioi pe Od>ooco£— o^o
CDC^O(Q£O^OOJ'~O™£ — £ £*v 3 •».«— ^| ^ •>£ lO—^O ^Cl
w«ffiOUOO-J£2;U9(0»~NO- "CO CD OOO 4^Z OCNJO. O.flO Q UJ t- O < CM
i 1 i i i
£
- * ~







§O COOOO
7 7 U*MTlOO
o 	
-




i 1 o.llo
* «n ir\o\«n«o

i i r* i i i i cj
CM
M O CM — OJ
CM — —
V










— -_______— x.
Ov -31 — ooroiTiflO








«, S .1
i SS§5»
4J U •- — O C 1
C ^WAOO*~OOO
o oopc— t.'-t-c «
— u<» C o£i_ o o a e
• a o o— u i — — £ v
£ C <-- Xo:-££W ~
•P OOff1- -UOO O
a a— o*'** 	 E —
3 £


















CM













i










1 sopho rone


Date:  9/25/81
II.2-16

-------
o
o
<
o
H-
S
oc
tu
JU>
K
LJ
1
H"
<
2

i
z

0
z
o

W
|
g
£
o
o o
t- 3
, c
Li* •""
0**
i§

S«
CCLJ
Z0£
UJQ
oz
i!
*>
CM
LJ











ta
£
M


3






















ti
O*J


15
fc-c
0 C
C 4J
•g
V *
2€

•i
4. |

A) •
Is
CO O
eer

w
§
— M
w e
0 ™
Si
Z"
o o
k 1.
o c
E I
II







C
*
c
*
£





_IOJf>OcoOcoOcoOf--J-IO O CM vo JT O O
oi- - — cor- •« •« -oocu r~ CM — — « co
flOcAJo -v ^ %o
S-ovcMvuwaaaoco co — — — co —
oca — men co co t«
V





VOjOjO.OjO.O.OvOvO^^vOvO* * «** VOVOVOSO^VOW --*-*--
VO««VO»«««>O>O>O«VO« <0 CM — CM —CM — 	 — CM — CO — —





§ i
., 22 I i g S
O BIOW flOOW
— 	 —CO C CVOO
c — IB 10 o a c *» «*— c f|
• >> CC CCO O Okop
o x uu o oo c • io— k
k O CC C — CC w Q O— >>O
gC — Q.Q. O.OO.O CO • ECC3
_ >i2*** OCX.OOBC O g0"^
T3 >> 3 • • • («*>— O— W*» — CXOcSs^O — OOCkC
CCO~ »5 O >> 3 3 OOIOA03O C O O *» >»— C — TJ <- *- 0> O O
COO— — 3— k-O k — — k— MIC CAO — k « c O.W 0 • O O O O — — —
tc — me— aoco- HCMU-UI i MIOM k • o o kc c k k- >,cc
« — o>ftCpacvpJCO>— o — ic xc cc — |i— CNNNO^COOOCCOO
1— u » k^ c an « C o — — « c « — —
•gckoaco>oo—o — c— c— 3 — — q»icoeo— « Xc c — a k k
«j«a3UOUC-'ZXV)v>t-N «Jco flo oo WCM 9
-------
the extreme variability in industrial laundry wastewater strength.
The median TSS concentration in 69 wastewater effluents was 700
mg/L.   Suspended solids concentrations were also quite variable,
however,  ranging from 68 mg/L to 6,100 mg/L.   Oil and grease
concentrations ranged from 17 mg/L to 7,900 mg/L in 66 industrial
laundry effluents,  with a median value of 730 mg/L.

The high concentrations of oil and grease,  suspended solids, and
biodegradable organics in industrial laundry wastewaters are pri-
marily attributable to the nature of the workload handled by
industrial laundries.  Heavily soiled uniforms,  shop towels, and
gloves used in the  chemical and manufacturing industries often
comprise a substantial portion of the business handled by these
establishments.  Pollutant concentrations vary extremely from
plant to plant because of differences in equipment and in cus-
tomers served.  This variability is at least partially attrib-
utable to the soil  loadings on the articles being water washed.
The highest pollutant concentrations are found in wastewaters
from plants processing a high percentage of wiping towels used in
print shops, machine shops, automotive repair shops, chemical
plants, and other heavy industrial operations.  Much lower pollut-
ant concentrations  are found in the wastewaters from plants
handling a high percentage of uniforms and dust control items
used in light manufacturing concerns.

Factors such as water usage per pound of material washed and the
application of dual-phase or dry cleaning processes also affect
the concentrations  at which various pollutants are found in in-
dustrial laundry wastewaters.  For example, oil, grease, and many
other organic substances are more soluble in organic solvents
than in water, and, thus, they are not present to a large extent
in the wastewaters  from solvent cleaning and some dual-phase
cleaning processes.

In addition to plant-to-plant variability,  wastewater strength at
any given industrial laundry may be quite variable from day to
day and from hour to hour.  This is caused by the changing nature
of the workload and, on an instantaneous basis,  by the particular
wash cycle effluents that are being discharged.   For example, the
initial rinse, break, and wash waters contain much higher pollu-
tant concentrations than the final rinse waters.

Table 2-7 presents pH, BOD5, TSS, and oil and grease data for the
wastewater from one industrial laundry sampled on 30 separate
days over a several-year period.  These data clearly illustrate
the fluctuating characteristics of industrial laundry wastes.
Date:  9/25/81               II.2-18

-------
  TABLE 2-7.
VARIABILITY OF CLASSICAL POLLUTANT CONCENTRATIONS
IN WASTEWATER FROM ONE INDUSTRIAL LAUNDRY (2.2-1)
Pollutant. ma/L
Sanole
1
2
3

-------
Ethylbenzene,  1,1,1-trichloroethane,  methylene chloride,  phenol,
di-n-butyl phthalate,  di-n-octyl phthalate,  anthracene,  and tri-
chloroethylene were also found in 20% to 50% of the plant efflu-
ents.

II.2.2.2  Linen Supply

Linen supply wastewaters typically contain higher concentrations
of BOD5, COD,  TOC,  suspended solids,  and oil and grease than does
domestic sewage,  but much lower concentrations of these pollu-
tants than do industrial laundry wastewaters.  This is attributed
to the lighter soil loading on items such as bed sheets,  pillow-
cases, towels, napkins, tablecloths,  and uniforms,  which comprise
the majority of the linen supply business.  Phosphorus and pH
were found in similar levels in industrial laundry and linen
supply effluents, which reflects the fact that these pollutants
are introduced to the wastewater by process additives rather than
by soil on the articles being laundered.

Many linen supplies service industrial-type garments and flatwork
articles as well as the more traditional linen supply items.
Plant-to-plant differences in the amount of "industrial laundry"
work performed is a major cause for variable pollutant concentra-
tions.  However,  BOD5, TSS, and oil and grease concentrations are
also influenced by the particular types of "linen supply work"
performed.  For example, the wastewaters from laundries washing a
high percentage of aprons, tablecloths, napkins, etc., used in
restaurants contain higher levels of oil and grease than do
wastewaters from laundries washing a high percentage of sheets or
towels used in hotels.

Laundering chemicals are not considered a major source of BOD5,
TSS, or oil and grease in linen supply wastewaters.  However,
detergents, soaps,  starches, and other organic process chemicals
contribute BOD to the wastewater; soap is also a source of oil
and grease.  These pollutant sources are considerably more sig-
nificant in comparison to soil loading in the linen supply sub-
category than in the industrial laundry subcategory.  Variable
oil and grease concentrations in linen laundry wastewaters are at
least partially attributable to the fact that some establishments
use soap while others use synthetic detergents.  Seven toxic pol-
lutant metals were detected in 50% or more of the wastewater
samples analyzed for these substances.  However, only zinc, lead,
and copper were found at average concentrations greater than
100 vg/L.

Sixteen toxic organic pollutants were detected in at least one of
five linen laundry effluents analyzed for these compounds.  With
few exceptions, these were the same compounds found in the in-
dustrial laundry wastewaters.  Much lower concentrations were
observed in the linen supply effluents.  Only bis(2-ethylhexyl)
Date:  9/25/81               II.2-20

-------
phthalate, naphthalene, and chloroform were found in any of the
effluents at concentrations greater than 100 yg/L.

II.2.2.3  Power Laundries, Family and Commercial

Power laundry wastewaters typically contain lower concentrations
of BOD5/ COD, TOC,  suspended solids, and oil and grease than
either industrial laundry or linen supply wastewaters.  Much
narrower ranges in concentration are also indicated.

Both of these observations are related to the types of customers
serviced by power laundries.  Family wash has been traditionally
the largest source of business for these establishments, but many
power laundries now service commercial businesses and service
organizations.  However, very little industrial-type work is per-
formed; hence, the soil loadings on garments washed in these
laundries tend to be light.

The median and mean concentrations of BOD5/ COD, TOG, TSS, oil
and grease, and phosphorus are comparable to the levels at which
these pollutants are found in domestic sewage.  However, power
laundry wastewaters tend to be more alkaline than domestic sewage
because of the use of alkali in the washing process.

Only five toxic pollutant metals (antimony, zinc, lead, copper,
and chromium) were present in any of the effluent samples at con-
centrations greater than 100 yg/L.   Except for zinc and copper,
median concentrations of these metals were all much less than
100 yg/L,  in the range of detection limits.

Twenty-five toxic organic pollutants were present in one or more
of the four wastewaters analyzed for these compounds, but only
bis(2-ethylhexyl) phthalate and tetrachloroethylene were found in
any of the samples at concentrations greater than 100 yg/L.

II.2.2.4  Diaper Services

In terms of BOD5, COD, and oil and grease, these wastewaters
appear to be roughly equivalent to the wastewater discharged by
power laundries.  Higher concentrations of TOG and phosphorus and
lower concentrations of suspended solids were present in the
diaper service effluents, but these observations are based on
limited data and may not represent the entire industry.

Median and mean concentrations of all classical pollutants,
excluding pH, are roughly comparable to the levels at which these
pollutants are present in domestic wastewaters.

Seven toxic pollutant metals were detected in at least one sample,
but only zinc was present at more than 100 yg/L in any of the
samples.  No other toxic pollutants were found at significant
Date:  9/25/81              II.2-21

-------
levels, which is understandable in light of the types of soil
present on diapers.

II.2.2.5  Coin-Operated Laundries

Coin-op wastewaters are less heavily polluted than are the waste-
waters from any of the four commercial laundry subcategories
previously discussed, and they are comparable to low-strength
domestic wastewaters.  Lightly soiled family wash accounts for
nearly all of the business at these establishments.

Eight toxic pollutant metals and 12 toxic organic pollutants were
detected in at least one of these effluent samples,  but only
zinc, total phenol,  and bis(2-ethylhexyl) phthalate were present
at concentrations greater than 100 yg/L in any of the samples.

II.2.2.6  Carpet and Upholstery Cleaners

Except for phosphorus, all pollutant concentrations in this sub-
category are comparable to, or less than, the median and mean
pollutant concentrations shown for coin-operated laundry waste-
waters.

II.2.2.7  Dry Cleaning Plants

Classical and toxic pollutant data from the dry cleaning industry
were obtained from two plants that use perchloroethylene (tetra-
chloroethylene) solvent.  All pollutant concentrations are ex-
tremely low—in the range of, or below, analytical detection
limits,--with the exception of four toxic organics:  chloroform,
tetrachloroetlene, 1,1,1-trichloroethane, and 1,1,2-trichloro-
ethane, which were all detected at concentrations greater than
2,000 yg/L.   Eighteen toxic organic pollutants were detected in
one of the wastewater samples, but none was found in both ef-
fluents except, as expected, tetrachloroethylene.  The source of
process wastewater at these plants was condensate from the steam
regeneration of carbon columns used for solvent vapor emission
control.

II.2.2.8  Car Washes

The primary pollutants present in car wash wastewater are sus-
pended and dissolved solids, oil and grease, BOD5, lead, zinc,
arsenic, copper, and nickel.  Other priority metals are sometimes
encountered (especially in wand wash effluents) in small amounts.

The sources of solids are road grit, dust or mud, salt, snow, and
ice, as well as plant and animal materials.  Solids may also  be
picked up from suspended particles in the air.

Oil and grease may enter the wastewater either  from the vehicle
wash equipment and operation, or the vehicle itself.  Much of the


Date:  9/25/81               II.2-22

-------
equipment used for car washing at tunnel and rollover facilities
is hydraulically operated and may leak hydraulic fluid into the
drain trench.  Surfactants and waxes used in the washing opera-
tions may account for a portion of the measured oil and grease.
Leaky crankcases and the washing of undercarriages and engines
will account for much of the oil and grease measured in car wash
effluents.  The dumping of oil down the drains at unsupervised
wand washes may also occur.

Although BOD5 may also result from organic plant and animal
materials carried into the wash on car bodies and tires, the main
sources of BOD5 are the detergents and waxes used for cleaning
purposes.

The presence of lead in the wastewater results from the use of
lead additives in gasoline.   Significant lead levels accumulate
in crankcase oil and the exhaust fumes of automobiles, and lead
may be introduced into the carwash via these sources.  Gasoline
deposits on the body of the car and on tire treads may also act
as sources of lead.

Zinc may be used in the manufacture of automobile tires which may
then act as a source of this metal.

The variations encountered in pollutant concentrations are great
and may be seasonal as well as regional.  Winter conditions will
increase the suspended solids load due to ice, grit, and mud
accumulations.

Lead may also increase as a result of the use of fly ash as part
of the road sanding material.  Fly ash analysis usually shows a
high lead content.  Dusty soils will be turned into hard-to-re-
move mud during rainy seasons.  Geographical differences will be
due to soil types, type and extent of industry, road conditions,
etc.  Variations in pollutant concentrations will also be found
among the different types and locations of car washes.  Wand
washes tend to produce the heaviest pollutant concentrations, as
vehicles other than cars (four-wheel drive vehicles, trucks,
RV's, motorcycles), parts of the car other than the body (engines,
undercarriages), and a wide variety of other objects, may be
washed.  At unattended sites, customers may perform oil changes
in the bay and may dump the oil down the drain.  Rollovers tend
to exhibit lighter pollutant concentrations than either tunnels
or wands.  Many rollovers are situated at rental agencies and car
dealerships where cars are washed with more than average frequency.

II.2.3  PLANT SPECIFIC DESCRIPTIONS [2-2,3]

II.2.3.1  Car Washes

The sampling done at these plants was completed over a 4-hour
period when road conditions were dry.


Date:  9/25/81              II.2-23

-------
     Plant IB

Plant IB is a total recycle tunnel facility at which 75 cars were
processed during the study.  In this plant suspended solids and
oil and grease concentrations were low compared to domestic sew-
age.  Metal concentrations were generally low, with eight metals
at less than 10 yg/L.   Of the remaining six metals only zinc,
nickel, copper, and lead concentrations exceeded 100 yg/L.   In
this plant, no analyses were performed to measure the toxic
organics.

Wash water and rinse water are treated by different methods at
this plant.  The wash water is processed solely by settling in
settling tanks.  The rinse water is processed by settling fol-
lowed by filtration through turbidity filters.  Plant specific
data for Plant IB are presented in Tables 2-8 and 2-9.

     Plant 2A

Plant 2A is a total recycle wand facility where 57 cars were
processed during sampling.  The sampling results at this plant
showed high suspended solids concentrations and low oil and
grease concentrations compared to domestic sewage.  Metal con-
centrations were generally low, with five metals at less than
10 yg/L and six metals at less than 100 yg/L.   Only copper,  lead,
and zinc were present at high concentrations ranging from 860 to
1,200 yg/L.  Several groups of toxic organics appeared in the
waste, but no organic was at a higher concentration than 100 yg/L.
The groups concerned were the phthalates, phenols, ethers, ni-
trogen compounds, polycyclic aromatics, and halogenated aliphatics.

Wastewater treatment at this plant is carried out in the fol-
lowing sequence:  settling storage, centrifugal separation, and
turbidity filtration.  At this point the stream is divided, with
part being stored for use as wash water.  The remainder is treated
by activated carbon filtration and stored for use as rinse water.
Plant 2A plant specific data are presented in Tables 2-10 and
2-11.

     Plant 3A

Plant 3A is a total recycle rollover facility.  During the sam-
pling period 24 cars were processed.  At this facility the su-
spended solids concentration was moderate and the oil and grease
concentration was low compared to domestic sewage.  Metal concen-
trations were generally low with ten metals at less than 10 yg/L.
Only copper, lead, nickel, and zinc concentrations exceeded
100 yg/L.  Only a very small number of toxic organic compounds
were found in the wastewater and, with the exception of methylene
chloride, at concentrations less than 100 yg/L.  The only toxic
groups found were the phthalates, phenols, and halogenated
aliphatics. Plant 3A data are presented in Tables 2-12 and 2-13.
Date:  9/25/81               II.2-24

-------
Wastewater treatment in this plant consists of the  following
sequence  of steps:  settling,  centrifugal separation,  and tur-
bidity  filtration.  At this point,  the stream is  split,  and one
portion is used as wash water.   The other portion is filtered
through activated carbon and iodinated before it  is used as
rinse water.   Plant specific data for this facility are shown
in Tables 2-12 and 2-13.
     TABLE 2-8.
PLANT SPECIFIC CLASSICAL POLLUTANT DATA
FOR AUTO  LAUNDRY IB [2-3]
Concentration. mg/L

Pollutant
BODS
TSS
IDS
Total phenols
Oi 1 and grease
pH, pH units
Raw
wash
42
56
690
<0.002
21
7.3
Treated
wash
12
24
700
<0.002
20
7.4
Percent
remova 1
0
57
NM
NM
5

Concentration. mq/L
Raw
rinse
12
64
600
<0.002
2U
7.3
Treated
rinse
12
9.3
650
<0.002
4.7
7.2
Percent
remova I
0
85
NM
NM
80

   Analytic methods: V.7.3.1, Data set I.
   NM, not meaningful.
     TABLE  2-9.
PLANT SPECIFIC TOXIC METALS  FOR AUTO
LAUNDRY  IB  [2-3]
Toxic pol lutant
Concentration. uq/L
Raw Treated Percent
wash wash removal
Metals and inorganics
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 i urn
Zinc
8DL
BDL
BOL
25
64
85
BDL
470
BDL
690
BDL
BDL
BDL
720

BDL
10
BDL
31
86
110
BDL
910
BDL
330
BDL
BDL
BDL
1,000

NM
NM
NM
NM
NM
NM
NM
NM
NM
52
NM
NM
NM
NM
Concentration. ug/L
Raw Treated
rinse rinse

BDL
BDL
BDL
20
64
620
BDL
360
BDL
680
BDL
BDL
BDL
590

BDL
BDL
BDL
BDL
54
21
BDL
62
BDL
40
BDL
BDL
BDL
55
Percent
remova 1

NM
NM
NM
75*
16
97
NM
83
NM
94
NM
NM
NM
91
Analytic methods: V.7.3.1, Data set I.
NM, not meaningful.
BDL, below detection limit.
"Approximate value.
Date:  9/25/81
            II.2-25

-------
      TABLE 2-10.
         PLANT SPECIFIC CLASSICAL POLLUTANT
         DATA  FOR  AUTO LAUNDRY 2A [2-3]
             Analytic methods: V.7.3.
             NM, not meaningful,
                          Data  set  I.
Concentration. mq/L

Pol lutant
BODS
TSS
TDS
Total phenols
Oi 1 and grease
pH, pM units
Raw
wastewater
120
520
1,200
<0.002
20
7.2
Treated
wastewater
35
36
880
<0.002
18
7.2
Percent
remove 1
71
93
27
NM
10

      TABLE  2-11.
          PLANT SPECIFIC  TOXIC POLLUTANT
          DATA FOR AUTO LAUNDRY 2A  12-31
Toxic DO Mutant
Metal* and Inoraanlct
Antimony
Arsenic
Beryl llue>
Cede>iu»
Chroeiiuej
Copper
Cyanide .
Lead
Mercury
Nickel
Selenium
Silver
Thai HUB
Zinc
Concentration.
Raw
waitewater wa
II
28
BOL
26
30
860
BOL
1.100
26
T5
BOL
BOL
BDL
1.200
ua/L
Treated
•tewater
BDL
II
BOL
BDL
BDL
150
BOL
55
BOL
23
BDL
BOL
BOL
93
Percent
rMOVBl
55"
61
NM
81*
8S»
83
NM
95
81"
69
NM
NM
NM
92
ttheri
  Bii(2-chloroethoxy)«ethene

Phthalatet
  BU(2-ethylhexyl) phthaiate
  Butyl benzyl ptithalate
             Nit
               iTz-Olpnenylnyd
             ra/lne
                                          NO
                                          80
                                          12
                              NO
                                                     II
20
II
                                         30
                                                               NM
T5
 8
                                                   NM
2,1»Dinitrophenol
1-Nltrophonol
Polycyclic aroeatlc hvdrocarboni
Anthracene
Benzo(a (anthracene
Benzol a jpyrene
Benzo( k ) r 1 uoranthene
Fluoranthene
phenanthrene
*yrene
Maloaenated el iohatici
CIHorodibroMMMtnene
Chlorofof*
Oichlorobroenajethene
Methylene chloride
Trichloroethylene
19
11

IT
12
12
12
11
IT
II
12
83
33
16
13
NO
NO

NO
NO
IT
NO
NO
NO
NO
NO
11
NO
NO
NO
>99
>99

>99
>99
NM
>99
>99
>99
>99
>99
IT
>99
>99
>99
             Analytic e»thods: V.T.3.1,
             NM, not Meaningrul.
             NO, not detected.
             BOL, below detection Halt.
             •Approximate value.
                                Data Mt I.
D«t«:   9/25/81
                                    II.2-26

-------
      TABLE 2-12.   PLANT  SPECIFIC  CLASSICAL POLLUTANT
                     DATA FOR AUTO LAUNDRY  3A [2-3]
Pol lutant
BOD5
TSS
IDS
Total phenols
Oil and grease
pH, pH units
Concent rat ion
Raw
wastewater
8
210
510
Sample broken
6.0
6.2
. mq/L
Treated
wastewater
<3
7.0
450
<0.002
30
5.8
Percent
remova I
>62
97
12
NM
NM

          Analytic methods: V.7.3.I,  Data set I.
          NM, not meaningful.
            TABLE 2-13.   PLANT SPECIFIC TOXIC POLLUTANT
                          DATA FOR AUTO LAUNDRY 3A  [2-3]
Toxic DO! lutant
Metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se ten ium
Si 1 ve r
Tha 1 1 ium
Zinc
Phtha lates
Bis{2-ethylhexyl ) phthalate
Di-n-octyl phthalate
Phenol s
Pentach I o ropheno 1
Halogenated aliphatics
Methylene chloride
Trichlorof luoromethane
Concentrat
Raw
wastewater

BDL
BDL
BDL
BDL
10
140
BDL
460
BDL
160
BDL
BDL
BDL
340

31
16

ND

470
ND
ion. uq/L
Treated
wastewater

BDL
BDL
BDL
BDL
BDL
130
BDL
1 1
BDL
40
BDL
BDL
BDL
140

ND
ND

58

1,200
150
Percent
remova 1

NM
NM
NM
NM
50*
7
NM
98
NM
75
NM
NM
NM
59

>99
>99

NM

NM
NM
          Analytic methods: V.7.3.1, Data  set
          NM, not meaningful.
          ND, not detected.
          BDL, below detection  limit.
          *Approximate value.
Date:   9/25/81                 II.2-27

-------
II.2.3.2  Other Laundries

     Plant B

Plant B is an industrial laundry without wastewater recycle.
COD, suspended solids,  and oil and grease concentrations found
during sampling were high compared to domestic sewage.   Concen-
trations of three metals (copper, lead,  and zinc) were  high,
ranging from 1,600 to 9,400 yg/L.  Of the other metals  analyzed,
four were found in concentrations of less than 100 yg/L.  Toxic
organic compounds were not present in a wide variety, but those
found tended to be of high concentrations, with 10 of 11 at
greater than 100 yg/L.   Two of these,  N-nitrosodiphenylamine  and
naphthalene, were present at 1,800 yg/L and 4,000 yg/L,  respec-
tively.   At least one representative of each organic group except
ethers,  cresols, and polychlorinated biphenyls was detected.

The wastewater treatment used by this plant consists of calcium
chloride coagulation of the solids with polymer addition, fol-
lowed by dissolved air flotation.  The floe from the flotation
step is then skimmed from the surface and transferred to a sludge
pit.  Plant specific information for this plant is presented in
Tables 2-14 and 2-15.

     Plant G

Plant G is a linen supply laundry with wastewater recycle.  The
wastewater from this plant exhibited very high levels of BOD,
COD, TOG, and TSS concentrations as compared to domestic sewage.
On the same basis, the phosphorus level was low and the oil and
grease level was in the medium range.  Metal concentrations
tended to be high, although concentrations of six metals were
below 100 yg/L.  Copper, lead, and zinc were present at concen-
trations from 2,000 to 5,800 yg/L.  Only five toxic organics  were
detected, three of them at concentrations of less than 100 yg/L.
Only one, naphthalene, had a concentration greater than 1,000 yg/L,
The compound classes detected were phthalates, phenols, and
polycyclic aromatics.

Wastewater treatment in this plant consists of polyelectrolyte
coagulation and dissolved air flotation (with skimmers pushing
the solids into a sludge hopper).  All or part of this clarified
water is passed through a multimedia filter and recycled.  When
100% recycle is not employed the excess is discharged.   Plant
specific information is presented for Plant G in Tables 2-16 and
2-17.

     Plant J

Plant J is a power laundry utilizing wastewater recycle.  During
sampling, wastewater from this plant had  low to medium concentra-
tions of all the classical pollutants compared to domestic sewage.


Date:  9/25/81                II.2-28

-------
          TABLE 2-14.   PLANT SPECIFIC CLASSICAL POLLUTANT
                          DATA FOR INDUSTRIAL  LAUNDRY  B  [2-2]
Pol lutant
COD
TSS
Total phenols
Oi 1 and grease
pH, pH units
Concentration, mq/L
Raw Treated
wastewater wastewater
3,800 1,300
700 48
0.016 <0.001
440 190
11.6 7.0
Percent
remova 1
66
93
>94
57

            Analytic  methods: V.7.3.1, Data set  I.
          TABLE 2-15.
                    PLANT SPECIFIC  TOXIC POLLUTANT  DATA
                    FOR INDUSTRIAL  LAUNDRY  B [2-2]
                                          Concentration.
        Toxic pollutant
                                     Raw
                                  wastewater
 Treated
wastewater
Percent
remova i
          inorganics
      Metals and
        Antimony
        Arsenic
        Cadmium
        Ch rom i urn
        Copper
        Lead
        Mercury
        Nickel
        Tha I I ium
        Zinc
      Phtha lates
        Di-n-butyl phthalate

      Nitrogen compounds
        N-n i t rosod i pheny I am i ne

      Phenols
        Phenol

      Aromatics
        Ethyl benzene
        Toluene
Polvcyclic aromatic
  Naphtha lene
      Halogenated aliphatics
        Chloroform
        Methylene chloride
        Tet rach I o roe thy I ene
        Trichloroethylene
                        hydrocarbons
Pesticides and
  I sophorone
                    metabolites
                                       41
                                       12
                                      170
                                      270
                                    1,600
                                    9,400
                                        2
                                      150
                                      BDL
                                    4,500
                                       ND


                                    1,800


                                      600
                                      260
                                      750
                                          4,000
                                       10
                                      540
                                      880
                                      210
                                            190
    <20
     23
   52
   79
   98
   88*
  >67
   NM
   96
   NM


   66


   80
   58
   NM
   80
   20
   7
   NM
   86
  >99
      Analytic methods: V.7.3.1,  Data  set
      NM,  not meaningful.
      BDL,  below detection  limits.
      "Approximate value.
Date:   9/25/81
                                  II.2-29

-------
        TABLE 2-16.
PLANT  SPECIFIC CLASSICAL POLLUTANT
DATA FOR LINEN SUPPLY FACILITY G [2-2
Concentration. mq/L

Pol lutant
BOD5
COD
TOC
TSS
Total phosphorus
Total phenols
Oil and grease
Raw
wastewater
2,000
2,600
1,100
1,300
5.7
0.08
130
Treated
wastewater
1,100
1,800
530
210
3.7
0.21
240
Percent
remova 1
45
31
52
84
35
NM
NM
           Analytic methods: V.7.3.1, Data set I.
           NM, not meaningful.
        TABLE 2-17.
PLANT  SPECIFIC TOXIC POLLUTANT DATA
FOR LINEN SUPPLY  FACILITY  G [2-2]
Toxic DO! lutant
Metals and inorganics
Antimony
Arsenic
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Zinc
Phtha lates
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Pheno 1 s
Phenol
Polycyclic aromatic hydrocarbons
Anthracene/phenanthrene
Naphtha lene
Concentration
, UQ/L
Raw Treated
wastewater wastewater

45
33
240
670
2,000
63
4,000
5
880
2
10
5,800

280
26

24

16
1,200

10
15
BDL
170
200
88
720
1
50
7
<1
580

96
11

24

12
520
Percent
remova 1

78
55
99
75
90
NM
82
80
94
NM
>90
90

66
58

0

25
57
      Analytic methods: V.7.3.1, Data  set I.
      BDL,  below detection limit.
Date:   9/25/81
         II.2-30

-------
Metal concentrations also tended to be low with only the zinc
concentration above 100 yg/L.   There were 17 toxic organics from
4 toxic pollutant categories present in raw wastewater, but none
at a higher concentration than 100 yg/L,  and most at less than 10
yg/L.   The four categories of organics are phthalates,  phenols,
polycyclic aromatics,  and halogenated aliphatics.

The wastewater treatment used in this facility is polyelectrolyte
coagulation followed by dissolved air flotation equipped with
skimmers.  All or part of this clari'fied water may be filtered
via a multimedia filter and recycled.  Plant specific information
for this facility is presented in Tables 2-18 and 2-19.

     Plant N

Plant N is a service laundry with no wastewater recycle.  The
concentrations of classical pollutants observed were all in the
low range compared to domestic sewage.  Metal concentrations also
tended to be low with concentrations of only two (copper and
zinc) greater than 100 yg/L.   A small number of toxic organics
were present with none above  10 yg/L in raw wastewater and two
above 10 yg/L in treated wastewater.  The classes of organics
detected were phthalates, phenols, monocyclic aromatics, and
halogenated aliphatics.

The wastewater treatment process used in this plant is:  alum
coagulation and clarification by settling, and treatment of the
clarified effluent by carbon adsorption, filtration, and chlori-
nation/dechlorination.  Plant specific information for Plant N is
shown in Tables 2-20 and 2-21.

II.2.4  POLLUTANT REMOVABILITY  [2-3]

Treatment technology for this industry falls into two distinct
groups: methods employed at car washes and methods employed at
other laundries.  Because of the large difference in the treat-
ment methods, they are described separately below.

II.2.4.1  Car Washes

Settling is used by a large majority of car washes before recycle
or discharge.  New tunnel facilities are almost always equipped
for recycle of their wash water after treatment by settling.  The
solids and oil and grease are removed from the settling tank
periodically for disposal.  Hydrocyclones are gaining popularity
and have been used quite successfully at some installations.
Sand and multimedia filters may also be used to remove finely
divided suspended solids, almost always in conjunction with
settling.  It is estimated that 5% to 10% of all car washes use
this .technology.
Date:  9/25/81              II.2-31

-------
         TABLE 2-18.   PLANT SPECIFIC CLASSICAL  POLLUTANT DATA
                       FOR POWER LAUNDRY FACILITY J [2-2]
                           Concentration, mg/L
                             Raw       Treated      Percent
  Pollutant	wastewater   wastewater   removal

BOD5                        110           120           NM
COD                         500           380           24
TOC                         140           94           33
TSS                          50           40           20
Total phosphorus            0.8           0.7           12
Total phenols              0.43         0.26           40
Oil and grease               39           33           15

Analytic methods:  V.7.3.1, Data set 1.
NM, not meaningful.
        TABLE  2-19.   PLANT SPECIFIC TOXIC  POLLUTANT DATA
                      FOR POWER LAUNDRY FACILITY J [2-2]
Toxic DO! lutant
Metals and inorganics
Antimony
Cadm i urn
Chromium
Copper
Cyanide
Lead
Nickel
S i 1 ve r
Zinc
Phthalates
Bis(2-ethylhexyl ) ph thai ate
Butyl benzyl ptithalate
Di-n-butyl phtnalate
Di-n-octyl phthalate
Pheno 1 s
2-Chlorophenol
2,'4-Dichlorophenol
2, it-Dime thy 1 phenol
Pentach loropheno 1
Pheno 1
Polvcvclic aromatic hydrocarbons
Anthracene/phenanthrene
Fluoranthene
Naphthalene
Pyrene
Halooenated alionatlcs
Chloroform
Methylene chloride
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethylene
1,1, l-Trichloroe thane
T r I ch 1 o rof 1 uo rone thane
Concentration,
, UQ/L
Raw Treated
wastewater wastewater

BDL
BDL
26
55
29
BOL
BDL
BOL
290

62
17
2
28

BDL
|
2
3
2

0.9
0.3
0.9
0.3

41
57
NO
2
2
NO

BOL
BDL
16
52
1 1
BDL
BOL
BDL
100

5U
8
0.9
4

2
2
29
10
7

2
O.It
0.9
0.3

12
520
9
2
NO
5
Percent
reraova I

NM
NM
38
5
62
NM
NM
NM
66

31
53
55
86

NM
NM
NM
NM
NM

NM
NM
0
0

71
NM
NM
0
>99
NM
            Analytic methods: V.7.3.1, Data set I.
            NM, not meaningful.
            ND, not detected.
 Date:   9/25/81              II.2-32

-------
       TABLE 2-20.   PLANT SPECIFIC CLASSICAL POLLUTANT
                      DATA FOR  SERVICE LAUNDRY N  [2-2]
Concentration. mq/L


Pol lutant
BOD5
COD
TOC
TSS
Tota
Tota
Oi 1




1 phosphorus
1 phenols
and grease
Raw
wastewater
160
240
63
to
7.0
0.04
15
Treated
wastewater
23
59
21
37
0.9
0.01
0.75
Percent
remova 1
86
75
67
8
87
75
95
         Analytic methods:  V.7.3.1, Data set I.

          TABLE 2-21.   PLANT  SPECIFIC TOXIC POLLUTANT

                        DATA FOR SERVICE  LAUNDRY N [2-2]
Toxic DO! lutant
Metals and inorganics
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
S i 1 ve r
Zinc
Phtha lates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Oi-n-octyl phthalate
Phenols
Pheno 1
Aroma t ics
Toluene
Halogenated aliphatics
Ch 1 o rod i b romome tha ne
Chloroform
D i ch 1 o rob romomethane
1, 1,2,2-Tetrachloroethane
Tet rach I o roethy I ene
Trichloroethylene
Concentration
. uq/L
Raw Treated
wastewater wastewater

51
39
140
<2
71
55
14
610

NO
ND
ND
ND

1.8

5

0.6
ND
ND
ND
2
0.5

14
25
32
<2
31
37
7
240

16
4
3
2

ND

6

ND
95
10
0.7
31
3.0
Percent
remova 1

73
36
77
NM
56
33
50
61

NM
NM
NM
NM

>99

NM

>99
NM
NM
NM
NM
NM
     Analytic methods: V.7.3.1, Data set
     NM, not meaningful.
     NO, not detected.
Date:   9/25/81                II.2-33

-------
Activated carbon filters are used  to remove detergents  and other
organics from water  to be used for rinsing  purposes, but they  are
installed less frequently than filters.  Foam fractionators are
used  in some  car washes to  remove  surfactants from the  wastewaters,
Pollutant removal efficiencies for systems  incorporating these
technologies  are included in Section I I. 2. 3.1.

1 1 . 2 . 4 . 2  Other Laundries

Table 2-22  indicates the technologies being used  in the other
laundries segment and the estimated percentage of plants uti-
lizing each.   Tables 2-23 through  2-25 provide removability data
for the three most common systems.
TABLE  2-22.
               ESTIMATED PERCENT OF  LAUNDRIES (BASED ON TECHNICAL
               SURVEY  DATA) HAVING CONTROL  TECHNOLOGY [2-2]

Control technology
P re treatment technology
(Number of responses)
Bar screens
Lint screens
Catch basins
Heat reclaimers
Oi 1 skimmers
Equalization tanks
pll adjustment
Physical -chemical systems! e)
Other(f )
Industrial
laundries

(714)
2.7
70
72
70
15

(j 1
1 . 3 ( b )
8.1
Treatment technology for discharge other than
(Number of responses)
Physical -chemical systems! e)
Biological
Other (h)
None
(0)




Linen supply Power
laundries

(59)
5.1
81
78
81
0
2. 1 (c)
5. 1
0.38(C)
3.14
to municioa 1
(0)




laundries

(20)
0
65
55
25
0
0.033(d)
15
0.033(d)
0
treatment systems
(2)(a)
6.3(g)



Coin-op
laundries

( 1 )(a)










(33)
0
HZ
27
31
Diaper
service

(75)
0
36
20
32
0
0
0
0
14.0

(0)




    Blanks indicate data not available.
    (a)Number of responses not sufficient to provide valid estimate.
    (b)Estimate based on 12 physica I -chemical systems with equalization tanks operating at
      the 1,013 industrial laundry indirect dischargers.
    (c)Estimate based on 5 physica l-chemica I systems with equalization operating at the
      1,308 linen supply indirect dischargers, plus the 1.7$ of linen supplies that have
      equalization tanks based on survey responses.
    (d)Estimate based on I physica I -chemical system with equalization operating at the 3,078
      power laundry Indirect dischargers.
    (e)MaJor unit operations consist of chemical addition and floe removal.
    (f)Other includes filtration, separators, oil hold back devices, and miscellaneous
      operations.
    (g)Estimate based on I physica I -chemical system operating at the 16 power laundry direct
      dischargers.
    (h)Other includes filtration, settling, chlorinat ion, and Miscellaneous operations.
Bar  screens are used in  a  small  percentage at  industrial and
linen supply laundries to  remove large  solids  (6.3 mm  to 19  mm).
Lint screens are used in the majority of industrial, linen supply,
and  power  laundries and  by more  than a  third of diaper service
laundries  to remove lint and particles  such as sand and grit (in
the  range  of 3.2 mm to 9.5 mm).   Catch  basins  are used in approx-
imately the same proportions in  the industry to provide for
settling of solids, with retention times of 15 to 40 minutes
being typical.  The only other technology in common use (approxi-
mately the same proportions) is  countercurrent heat exchange
between the wastewater and the incoming feedwater; this serves to
Date:   9/25/81
                                II. 2-3 4

-------




—
fO
1
CM


J3
*«
CB
*"^

-
2.

t-
co
^»
CO

1
H
UJ
<
UJ
a:
,SSICAL 1
5
o
u.
o
co
_j
CO
UJ
ce

B
fO
CM
1
CM



CO
t-






















c
a
4J
2
«j
c
o
u
3






t.
0)
.Q
E

Z













—
I
£
*J
C
V
u
L.
»




O
g
«
1
•o

u
VI



1 i scha roe
w
E
O
S
c
Ift
s

ffl
*J
CO
•D
^
O












at
g
CO
cc

c
cfl
•a
$
z.



cu
o
c
2
K



C
fl
•o
1


Ranoe

c
«
•o
1


«A
*1
C










t)
c
s
3
i

tnooovooov
« — CNVOOKON

OOOOOO



9XOZCOCVIZ
— ZCSJfZ



o o o
o o o
JO>OO«O
•^ *ftl »M
— o\ — «• — co
1 1 t 1 1 1
OO OOOiA
^ o\ f*~ — tf\
— — (M



Sooooo
o co or-N
J*O ^ — <\J ^

o o o
o o o
^ O **? O d" O
.VO "OS -SO
— so — sOCMflO
1 1 1 I I 1
OOOOOO
Oxr> 	 cONflQ
— — «M CMfO

OO OOOO
CM— OCMCMifN
^ CO lA •"• lA £f


ONOXQsfOOMA





j
•Nk

S
«
(A
(0-1 -1
£^i Xi-i
oie-i a.-~^
•^ oiw
*-ȣ**
-Srfh'g
— O (A O O —
OCO HO -IN




CO

CM


J3
09
•—
•~
£
UJ
CO
u CO

1
i ^
2 uj
« b
S u
1 £
_i
u >  «*; CO
** C iii
_ „ tu
2 3- o:
Stt
O *
t. e
. S
-010 J-
• C t 411
« -0 ?
* ^ UB *
* ** /\t
r- at CM
> • W CO i.i
— tfl-ta '•*•'
..^ -J
(A (^ C 10 CO
?s°. <
5c?8 K
§« » 3
0) «J
EJ2 S
U 0)
-• ** C9 *>
£§££
- S^
Cl"«J?



















c
o
4*
s
c
i
s





!_
o
1
z















CO
>

£
4J
c
0)
o
t_
0.



(U
o
(.
CO
jjZ
o
Ul
X)
L.
1
M


c
2
a
£
U
M
•o
§
E
£
(A
S


s
€
w
o















o
i
ir


c
CO

•c
z


09
c
CO
(£



C
CO
^
£


a
o
c
CO
CC
C
(0
•o
z


\ovo
i i i i i i
OOOOOO
CM PO CO CM lAf-.
^•OJCMCMCOPO



OOOOOO
\o ^ o\ r«- IA r^
^ eg co cvt a- if\

0
OOOO— O
ir\jrr-o *o\
oou> j- j- — eo
1 1 1 1 1 1
OOOOOO
w *n«*>cv o^o
a* — wcy — -3-

OOOOOO
\O— CM — OtA




co tn ro (M co co




_j
^»
S>
E

«
to
0) V. -X.
L, at oi-J — '
en 6-J S.v.'x
X. C7>Ot
•O -Oi *3.3.
C •** S S»
CO lf\ O • •»
— ' - a? u
— aw a« c
— o w o 
CO
CD
jC
•o
c
CO
(_
^
(0
o
e*
• (A
ts
Ir
3 a
(0 *>
—  C
CO — —
4J 3 —
CO <«
ogf?

— CT 03
• C ^
eo— O
. — u>
^El.
>ncc
MJ3

ui C co
•a o
O ID
CT> 0
0) 1« 3
S to
a e
u e
— a w
!?ai
I He






	
to
w

.a
IK
0)




"~
s:
UJ
h-
co

w




^*
•y
UJ
2:
I—
UJ
cc
^_


_i
^
o
CO
CO
<
_l
o

u.
o

CO
1-
-J
3
CO
UJ
fV



lT>
CM
1
CM

UJ
«l
CD
<
1-












_
n
>
0
£
4->
c
(U
o
{_
V
a.

o
c
CO
IT

C
CO
•o
0}
£


















O
ntrati
u
o
c
o
o












(U
I
CO
£
0
(0
—
13

u
o

OJ

CO
o
c
CO
f£





c
CO

•a
£




CJ
13
L.
CO
JZ
C
UJ
™

£
0
O
L.
H
Ul
CO
5
Q)
a
c
CO
a:




c
CO

r
o
*•




CD
U 4-» «

A "O C.
3 Q- C
Z O Q








C
«




o
0.





CM * IA
~
I O 1 i O 1

O OO O



— OOOO J

o o o
o o o
— O .3-OOf-
»fO -CMO -•
— r — os\o —

1 1 1 1 1 1
OOOOOO
-XT ON J W trt W
rO>O CM co fo O\





OOOOOO
if — J-itlf\O
r- r*- co co j ir\
_^


0
§00
OO
rOOOO -O
*lf\J-lf\CO »
— xOcOcO J-CM
1 1 1 1 1 1
OOOOOO
(Mn CM so m oo
00 if N CM CMr*-





OOOOOO
r- — coo — vo
f* ^ W CO CO ON














_J
"X
at
E


V
-i ->
CTiE-i 2.^V.
x. cnw
T3 -Ci « 3. 3.
C — E «-
(oir\ a> * »
— • « a-a o
— o w> a co c
— o wi o » —
O CO H O -IN















u
1
CO

u
£

*J
CO
0)
JC
T3
c

^
c
CO
4->
c
o
4J
CO
• N
£*-
C3
3 0*
CO 93
"~
v  V) J-J
4J CD
CO — O

Q O c"
L. 03
- Q)
- o>»-
• c o
CO — M
f^. Q.**
• E C
> CO —
tfl —
ia C CO
TS Q
O M
•c-o »
** V (A
O W 3
E co
o e
U V
— n *»
*J *J tfl
>IO >.
— oo>

c co .a

-------
reduce both fuel consumption for water heating and the temper-
ature of the final effluent.

The following technologies are used by very small numbers of
plants but provide greater reductions in pollutant concentrations
than the common technologies.   Equalization tanks having reten-
tion times of 2 to 4 hours smooth the discharge flow and remove
solids and grease from the wastewater stream.   These tanks are
used in a small percentage of industrial,  linen supply,  and power
laundries, as is pH adjustment.  Dissolved air flotation (DAF)
with chemical addition is used in a small percentage of indus-
trial, linen supply, and power laundries to destabilize and
remove the colloidal suspensions which contain most of the pol-
lutants that result from plant operations in this industry seg-
ment.  In the small proportion of the industry utilizing waste-
water recycle, multimedia filters are used for removal of fine
particulates remaining after dissolved air flotation.  Remov-
ability data for systems containing these components are found in
Section II.2.3 and listed in Tables 2-26 through 2-31.  These
systems are the most efficient currently in use.

In addition, three other technologies are potentially applicable
to this segment of the industry:  ultrafiltration, diatomaceous
earth filtration, and electrocoagulation.

Both bench and pilot-scale tests have shown that ultrafiltration
(UF) using tubular modules is feasible, but it is not technically
or economically feasible to use spirally wound membranes.  From a
technical standpoint, UF systems with tubular modules have advan-
tages over physical-chemical systems utilizing chemical addition
and DAF.  UF does not incorporate coagulation; thus, it does not
require chemical additives.  Since laundry wastewater is highly
variable, it can be difficult to provide an effluent of consistent
quality based on a specific coagulant or based on a set coagulant
dosage rate.  UF systems also require less space than comparable
physical-chemical systems with DAF.

Removability data for the tubular ultrafiltration module is given
in Table 2-32.
Date:  9/25/81              II.2-36

-------
  04
ii
S"
ss

i§
OCX
(V
   i
«. UK



  T9 C




ZOO
                S— O
                r-eo
              «Nor-
                OONSOOmM
                SIMM -NOO - •
                — — ««<•» — ^


               1 1 1 1 1 1 1 1


               -mtomooONO
               _VO— • !•>— O •
                  paoo
                  |ACMUM*
                SOO-3OOOO

                3-»<\JCMOO •

              -K»» V0«0«-
            oooo


      Ol/N. — IA * • « —


      CM
        I I I I I  I I


      OO — t*»OOOON
      lAtOlAMMOO •
|



C







2-
                              S
                            s-
                            .1
                            >§

                            a
                                      U
                                      oca
                              UJZ

                              1-0

                              < —
                                      OU

                                      ZQ

                              CM
                                                2

                                         I
                                                      coco
                                                     -«6co
                                            t i i i i i i


                                            u>  i-  NOCOI-
                                                    ooowooo
                                                    cjmo — o --
                                                    — a—  MONiCNj
                                            ooo>  oooo
                                            CMJ-CO  a-r-iA  •
                                            CM — CNj«ini~r-f-

                                            i i t i i i  i i


                                               coKooom
                                               — -OrfN— •
                                                     ooor^c
                                                     ino^tMC
                                                     NOdir-  c
                                                     SSi
                                                       »    oo<
                                                       9    ooe
                                                       to  r-.a-u
                       i i i i i i  i i

                       SSg^ggg0.
                                                     (Or-OMiAOOtA
                                                            .
                                                     — oto o a
                                                     — Q a u

         i'.5

         !^S
                                                                                      £
                                                                                           J3



                                                                                         !*«• flo oo 6> ~ r* "
                                                            o\«ooo\ ox


                                                            I  I i i O 1 O
                                                                                 oo— oooo
                                                                                 OOtNOOOON —
                                                                                 --  «^  ON
                                                                                     o
                                                            jfojrinomo —
                                                            CNJ.3-VO«OOr— O •
                                                             

                   o
                                                                                 OOOONOOO
                                                                                 — OJT — mmr~
                                                                                 && tf\  CJrONO
                                                                                               OOO

                                                                                              MOlAO
                §      §
              OOO  OO—



              I I  I I I I I 3

              O O O (M O O O.

              -5w"°°-
dry
                                                                                                          to —
                                                                                                          11
                                                                                                          • 3
                                                                                                       _'  ?>»
                                                                                                          — 4J
                                                                                                       w  — C


                                                                                                       s  K
                                                                                                          U 3
                                                                                         oo oo  m to oo tft
                                                            — o w o an c «
                                                            — o « r o as — x
                                                            otfir-a.u -IN a
                                                                         ~" ^
                                                                          i o £
                                                                          . C «9


                                                                          ; 3£



                                                                          5 B B
                                                                         J *J u-o
                                                                         C (- B B
                                                                         " O 5«


                                                                         •?si

                                                                           , = s.
                                                                         - J «

                                                                         *C£S
   Date:     9/25/81
                                        II.2-37

-------
     XCM
     H i
     Z a
     UJ —
     oe
     KQ
     Ul


     <0
i'
      ut
ow

(AM
     UIUI
     CM


     (M

     Ul


     00
                      5SS
                   9KMAOOOO
                   r^^sr^
              oo«ooor-
            — I** ^ *OOO «

            I I I  I I I I  (
            ojtn^trsooo^a

            —r*1"-
                 OOOCMOO
                 CM o — cy oo
                 ooo — oooo
                 J O ^ W O O O  *
                 f-cj»o  or-o —
                  —   W \OCNJ
            §00  OOOO





             I I I  I I I I  I

            OOOf*-OOOO
            m«%o —oo* •
             £7
                      «»
                      Ol-l _l —

                      »
                 Sinict.   x
                 ic— a.« - - o.
                    • « av g
                 — oin o a« c  •

                            ss-
                             .s

                            •?!
II
 •
 u
°3
MM

*-s

I'
                        XCM

                        UJ«_i



                        uiuT

                        gs

                        uo
                         QO

                         5fE

                         3§

                         U.UJ
                         122
                                                     ass
                                                     (M

                                                           i
                                                              3S
                                                         |«5
                                                         hs
                                                                  irimm«f->oin
                                                              I I I  I I I I

                                                              ooog-ooo





                                                              OOOmooo
                                                              »ao> -osi —
                                                              aooinooom
                                                              !>« —wco —C* •
04-«OO.»»	

I  I I I I  I I I
                                                                     §5 oSSo
                                                                     §5«533_>

                                                                   CM *9\
                                                                  1 1 1 1  1 1 1 1
                                                                  _
                                                 3=
                                                 •I
           *s

           ^3
           *i

           IS
Date:    9/25/81
                                 II.2-38

-------







LJ
OC
O
u.
Ld
CM"
ac i
LJfM


UJ CO
h~ *>^
CO

UIOQ
— J
bJ »
Wl-
oj
ziS
ooe
— i-
<«
C£UJ
3C ^^
UJ<
§0

•
 CO *>
< CO— CO
O— 3 —
3 O>3
^ O) 03 Ol
C co O eg
03 O O O
U U
C CD
O WO CO
.- *j— jj
*>>><- CO
CO — O*-
32«
Ol-P U «
03 U
O « E M
O— 3 3
Cfl— o
§*°fc
— O eg CD
w ao«-
££££
*J 4J 4J +J

4J JJ4J+J
C C C C
Q)  Q) CD CD
Cfff
o u o u
1 1 1 1
«• _» ^B _
co co eg eg
O O O O
u> ca in at
££££
u u n u

 CD Q> CD
41 4J 4J +>
10 10 (0 W
w w w w




a
§
4J
«J>
M



c
9
a
J^
i»


u
c
S
"-
*£
—





U
_
09
4J
>
W



4J
§

t
L*J



4J
C
a

c


CD

2
M
>
(/>



c
s
'*-
L*.


C
a
a
c





<
E
«
u
^
«



c
«.
^
j.


c
I
4^
c

s

4.
C
a
i
o
c
«
0
oooooo oooo o o oo ooo
— — j-o^1— NNOOJO OH **> ooo ONCSIOJ
— CM O CU OX — — —
^"




HI 11 ° 1
* It
m —


^4 *•» <«« ^w.*-^ J«» rf*-^
A A A .Q .O A DA
oo* o ooo o 00*00*0000*0
r«" •• tn vo in f> to oo*'***n — *o ^ oo

»
***


«_ — * — » M.^-. ««k «^«»
A A A AA A AA
ooo 000*000 00*000*000*00
«oo—  oocy
*
CM


^* *^ .^ ^»
A A A £
oo o o o oo o oo
t\JO CM <•> — CMO —  « o u — c
£ a— -a o ucuooo •«•
« « — c oa>«c — c p e • c£
C — £ «-— B 	  oo -it aXiofca 0 — >-B£
X£ — C «B £££4>OO — ^ C>»OB
IOXa CB £C uuvvfl- £ O O£t- —
£B O£ WOB£«£Oaa O — £ *" O >>
>»— >» "p aC B ° 0>>1-CTI OB— O£4>
BXN a C • CO B N— O— £-£ o B 1 6 C tj £ O C
IUBAC CWi.L.A3OUk.|IOB«^9«p£H.OB B
Ql BCOOOOOA--00 	 0 <- 0-£ «- U 1 - C- C B
t-CM— (ao«t- — — t. 1 O I — OQ — H-£5h*a*a« — £BOBC
£ — >> >>£ UO££OCI C£l 1 XI a£ £ — «- >O3CNB
u uiw i. u c — oo— i — i ojcvj.cwowa.cw 	 — » c C

X
C
o
c

I
(0
10
^
§
o
Jj
c
43
M
P
U
a
2

w
3

I

B
U
S
o
•o
I

(A
s .
w
V **
3 •*
O W
0 S
, *
*" 13
Q


5 !
o o
2 I
— £
A
-£ £

B C
"g 0
no u
sz z
S I
~"SB'I
«j o*» o

Methods: V.
s indicate c
s otherwise
s are median
OJC « O
- C B 3
** « — —
*>5§5
I« e
Date:  9/25/81
II.2-39

-------
   TABLE 2-32.
RESULTS OF LAUNDRY WASTEWATER TREATMENT USING
A TUBULAR ULTRAFILTRATION MODULE  [2-2]
Average
concentration,
mg/L
Pollutant
Oil and grease
BOD 5
TSS
Influent
2,100
3,500
1,500
Effluent
86
310
5
Average
percent solids
of sludge
concentration
1.9
4.5
NA
Average
percent
removal
96
91
99
Analytic methods:  V.7.3.1, Data  set  1.
NA, not applicable.
(a)Results obtained from laboratory bench-scale unit.

Diatomaceous earth (DE) filters applied  to  treatment of laundry
wastewater were found to be generally capable of excellent removal
of suspended solids but not of colloidal matter.  Wastewater at a
linen supply laundry with  an  average  flowrate of 530 m3/day
(140,000 gpd) was treated  by  DE filtration.   Effluent from an
equalization tank was injected with DE and  a proprietary oil
adsorbent, then pumped through precoated pressure filters.
Capabilities of this system,  in terms of removing pollutants, are
given in Table 2-33.  The  system  was  in  full-scale operation;
however, it has since been replaced by a treatment system using
calcium chloride coagulation  and  DAF.
      TABLE 2-33.
   RESULTS OF LAUNDRY WASTEWATER TREATMENT
   USING DIATOMACEOUS EARTH FILTRATION(a)
   [2-2]


Pol lutant
Oi 1 and grease, mg/L
BOD(5), mg/L
TSS, mg/L
Lead, ug/L
Zinc, ug/L
Number
of data
ooints
5
5
5
4
5
Concentration
Eaua 1 i;
Median
390
610
460
300
570
;a t i or
i tank
Range
250
1(60
330
200
430
- 430
- 680
- 680
- 600
- 1,100
Ef
Median
210
460
200
200
U30
fluent

Ranae
180
350
140
50
340
- 350
- 540
- 210
•- 300
- 500
Percent
Median
43
32
65
45
35
remc
>va I
Range
0
0
39
0
0
- 53
- 43
- 75
- 99
- 55
     Analytic methods: V.7.3.1, Data set I.
     (a)Data obtained from I  laundry; system is no longer in operaton.
Electrocoagulation  (EC)  systems are designed to treat laundry
wastewater through  two mechanisms.   With the first, electrolysis
includes coagulation by  neutralizing or imparting a positive
charge to negatively charged colloidal material.  With the
second, microbubbles formed as a result of electrolysis float the
Date:  9/25/81
             II.2-40

-------
resulting floe to the surface  of the contained effluent where  it
can be  skimmed off.

In EC pilot tests, chemical  addition was required prior to elec-
trolysis  to achieve removal  of pollutants.  Alum,  sulfuric acid,
and polymer were added to  the  laundry effluent.   Test results  of
laundry wastewater treatment using chemical addition and elec-
trolysis  are given in Table  2-34.
TABLE 2-34.
                    RESULTS  OF LAUNDRY WASTEWATER TREATMENT
                    USING A  PILOT ELECTROCOAGULATION SYSTEM
                    (a)  [2-2]
Pol lutant
Oil and grease, mg/L
BOD(5), mg/L
TSS, mg/L
Copper, Mg/L
Lead, |ig/L
Zinc, jig/L
Number
of data
points
4
4
4
1
4
Concentration
Influent
Median
530
770
290
200
640
Ranqe
380 - 690
660 - 960
250 - 330
200 - 300
1, 100
460 - 760
Effluent
Median
79
270
140
100
350
Range
74 - 150
140 - 600
120 - 170
100 - 200
20
300 - 440
Percent
Median
80
70
50
50
remova 1
Ranae
75 - 89
9-82
48-51
33 - 50
98
35 - 53
      Analytic methods: V.7.3.1, Data set I.
      (a)System incorporates chemical addition with alum, sulfuric acid, and polymer at
        average dosage rates of 1,100 mg/L, 850 mg/L, and 4 mg/L, respectively.
Other technologies have been  tested on laundry  wastewaters with
varying degrees of success.   In general, these  techniques are not
applicable  to the pollutants  present or are not considered eco-
nomically competitive.  They  include reverse  osmosis,  foam sepa-
ration, distillation, and carbon adsorption.
Date:   8/31/82 R  Change  1  II.2-41

-------
                        II.3  COAL MINING

II.3.1  INDUSTRY DESCRIPTION [2-5]

II.3.1.1  General Description

Coals are classified by ranks generally as anthracite,  bitu-
minous, subbituminous, and lignite according to the fixed carbon
content, the volatile matter fraction,  and the heating value.
Coal is primarily used for combustion in steam boilers or metal-
lurgical coke ovens with a large potential market for coal con-
version facilities in the synthetic fuels industry.  All ranks of
coal are mined by the coal industry, which can be divided into
the following two segments:  (1) the production of anthracite,
and (2) the production of bituminous coal, subbituminous coal,
and lignite.  The industry can also be divided by production
processes into coal mining and coal services (coal cleaning and
coal preparation), as indicated by the major Standard Industrial
Classification (SIC) Categories for this industry:

     SIC 1111-Anthracite Mining
     SIC 1112-Anthracite Mining Services
     SIC 1211-Bituminous Coal and Lignite Mining
     SIC 1213-Bituminous Coal and Lignite Mining Services

Anthracite was historically significant in the economic and
industrial growth of the United States owing to its high quality,
use by the railroads, and proximity to major population centers
where its clean-burning characteristics made it a favorite for
space heating.  The annual production of anthracite peaked during
the World War I period (1917).  Since then there has been a steady
decline in its production caused by the high production of more
convenient and cheaper natural gas, oil, and bituminous stoker
coal.  Steam electric utility powerplants burning anthracite were
recently excluded from the SO2 New Source Performance Standards
requiring scrubbing.  This may help make anthracite a more com-
petitive fuel source in the future.

The mining of bituminous coal and lignite constitutes the major
portion of the coal mining industry.  U.S. Geological Survey
estimates indicate that bituminous coal and lignite currently
comprise over 99% of the nation's total coal reserves.   Their
production has increased steadily in recent years because of
continued improvement in strip mining machinery and in response
to increased demands by the electric utility industry.
Date:  9/25/81               II.3-1

-------
There were 6,075 active bituminous and lignite mines in the
industry in.1978.   The majority of the mines were small opera-
tions, with individual production of less than 91,000 Mg (100,000
tons) per year.   Although these small mines comprised over 80% of
the active facilities in 1975,  they accounted for less than 20%
of the bituminous and lignite coal production.  Large mines pro-
ducing greater than 91,000 Mg (100,000 tons) per year represented
less than 20% of the facilities,  but produced almost 81% of the
coal.  The recent trend has been toward larger mines and con-
solidation of mining companies.

The coal mining industry currently operates in 26 states; mines
are located in Appalachia, the Midwest, the Great Plains, and the
Mountain and Pacific regions.

In 1978 there were 5,976 active mines located in the eastern part
of the country,  and only 99 in the western United States.  The
western mines are generally newer and much larger than most
eastern mines.  In addition there were about 660 coal preparation
plants in the country.

The seven leading coal producing states in 1978 were, in order of
output, Kentucky,  West Virginia,  Pennsylvania, Wyoming, Illinois,
Ohio, and Virginia.  Production in these states accounted for 73%
of the total 1978 U.S. output.   Mines east of the Mississippi
River accounted for 74% of 1978 production, while mines west of
the Mississippi River accounted for 26% of 1978 production.

Table 3-1 presents industry summary data for the Coal Mining
point source category in terms of the number of subcategories and
number of dischargers.

                 TABLE 3-1.  INDUSTRY SUMMARY [2-5]
               Industry:  Coal Mining
               Total Number of Subcategories:.  4
               Number of Subcategories Studied:  4

               Number of Dischargers in Industry:  6,075
                    •    Direct:  6,075
                    •    Indirect:  0
                    •    Zero:  Not available
II.3.1.2  Subcategory Descriptions [2-5]

The subcategorization of the coal mining industry is the result
of an examination of several factors which might affect effluent
quality and treatability.  Thus, based on similarities in mine


Date:  9/25/81               II.3-2

-------
type (surface or underground), coal type (anthracite, bituminous,
lignite), size, location, and effluent source (preparation plant,
active mine, or reclamation area), the following subcategories of
the coal mining industry have been established:

     •    Acid or Ferruginous Mines
     •    Alkaline Mines
     •    Coal Preparation Plants and Associated Areas
     •    Post-Mining Discharges
             Reclamation areas
             Underground mine discharges.

Since wastewater characteristics within each of the subcategories
are similar, these four subcategories are adequate to charac-
terize the coal mining, preparation, and post-mining industries.

     Acid or Ferruginous Mines

Characterizing the industry according to the quality of mine
drainage is difficult because of the lack of readily available
information on a mine-by-mine basis.  However, Reference 2-5
generally categorizes mines in western Maryland, northern West
Virginia, Pennsylvania, Ohio, western Kentucky,  and along the
Illinois-Indiana border as being potentially acid or ferruginous.
According to the Bureau of Mines, there were an estimated 2,605
mines located in acid areas in 1975.  Mines that are potentially
acid make up a large portion of the bituminous surface mining
facilities.  Almost 50% of the surface mines reported by the
Bureau of Mines in 1975 could be classified as potentially acid
or ferruginous. Acid drainage, however, does not appear to be as
much of a problem among deep mines in the bituminous industry.
Approximately 70% of these mines can be categorized as having
alkaline drainage.

Acid mine 'drainage is generated under natural conditions when
pyritic coal seams are mined.  The pyrites or iron sulfides
contained in the coal and associated strata are exposed to the
atmosphere during the mining process.  In the presence of oxygen,
water, and certain species of oxidizing bacteria (Thiobacillus
ferroxidans and Ferrobacillus ferroxidans),  these sulfides oxi-
dize to ferrous sulfate, forming an acidic,  ferruginous leachate.

     Alkaline Mines

Most bituminous and lignite coal mines are located in areas where
the potential for the formation of acid mine drainage does not
exist.  According to estimates made by the Bureau of Mines in
1975,  there were 3,563 bituminous coal and lignite mines which
could be classified as having alkaline drainage (50% of the
surface mines and 70% of the underground mines).
Date:  9/25/81               II.3-3

-------
Alkaline mine drainage can be generated under natural conditions
similar to those found in mines with acid drainage.   Iron sul-
fides, however, are transformed into ferrous bicarbonates,  and an
alkaline iron-bearing water is produced.   Additionally,  there are
large areas of coal reserves where the naturally occurring asso-
ciated groundwaters are alkaline.   The coal in these areas is
usually lower in pyritic sulfur,  and the resulting mine drainages
do not develop the low pH which is characteristic of acid mine
drainage.

     Coal Preparation Plants and Associated Areas

The physical coal cleaning processes used today are oriented
toward product standardization and reduction of ash, with in-
creasing attention being placed on sulfur reduction.  Coal pre-
paration in commercial practice is currently limited to physical
processes.  In a modern coal cleaning plant, the coal is typi-
cally subjected to:  (1) size reduction and screening, (2) gravity
separation of coal from its impurities, and (3) dewatering and
drying.

The commercial practice of coal cleaning is currently limited to
separation of the impurities based on differences in the specific
gravity of coal constituents (i.e., gravity separation process)
and on the differences in surface properties of the coal and its
mineral matter (i.e., froth flotation).

Coal preparation can be classified into five general levels.
Levels 1 to 3 are generally used in the preparation of steam
coal. Level 4 is used for metallurgical grade coal, and Level 5
has not yet been commercially demonstrated in this country.  The
five general levels of coal preparation are described below.

     Level 1 - Crushing and drying.  Level 1 plants use rotary
breaker crushers and screens for top size control and for the
removal of coarse refuse.  No washing is done and the entire
process is dry.  Since most removal of pyritic sulfur is accom-
plished by hydraulic separation,  this level of cleaning is in-
efficient for reducing sulfur levels.

     Level 2 - Coarse-size coal beneficiation.  Level 2 cleaning
plants, in addition to crushing and screening raw coal, also
perform wet beneficiation of the coarse material with a jig or
dense medium vessel.  The fine material is mixed with the coarse
product without washing.  A finer sizing of the coal is accom-
plished than in Level 1.  This system provides removal of only
coarse pyritic sulfur material and is, therefore, recommended for
a moderate pyritic sulfur content coal.

     Level 3 - Coarse- and medium-size coal beneficiation.  Leve1
3 cleaning is basically an extension of Level 2.  Coal is crushed
and separated into three size fractions by wet screening.  The


Date:  9/25/81               II.3-4

-------
coarse material is cleaned in a coarse coal circuit.   Medium
fractions are beneficiated by hydrocyclones,  concentrating
tables, or dense medium cyclones.   Fine coal is dewatered and
shipped with the clean coal or discarded as refuse.   However, the
level of beneficiation is not substantially greater than that of
Level 2 with respect to sulfur removal, and this system is recom-
mended for use on low- and medium-sulfur coals which are rela-
tively easy to wash.  This process provides rejection of free
pyrite and ash, as well as enhancement of energy content.

     Level 4 - Coarse-, medium-, and fine-size coal beneficiation.
In Level 4 preparation, coal is crushed and separated into three
or more size fractions by wet screening.  All size fractions are
beneficiated.  Heavy media processes are used for cleaning coarse-
and medium-size fractions.  Froth flotation processes or hydro-
cyclone processes are used for cleaning fine particles.  Level 4
coal preparation systems provide high efficiency cleaning of
coarse and fine coal fractions with lower efficiency cleaning of
the ultrafines.  The method accomplishes free pyrite rejection
and improvement of Btu content.

     Level 5 - "Deep cleaning" coal beneficiation.  Level 5
cleaning is basically Level 4 preparation in which one size frac-
tion is rigorously cleaned to meet a low sulfur-low ash product
specification.  Two or three coal products are generated to
various market specifications.  This level also uses a fine coal
recovery circuit to increase total plant recovery.

There were a total of 458 preparation plants processing anthra-
cite, bituminous, and lignite coal in the United States in 1975
(current estimates [1979] indicate there are now approximately
660 preparation plants.)  Based on 1976 data, 95% of the plants
employed wet processing methods.  Only 21 plants used dry methods.
Two-thirds of the wet processing plants utilized heavy media
separation, froth flotation, or both.

Wastewater from coal preparation emanates from two different
sources:  (1) process-generated wastewater, and (2) wastewater
from associated areas which include coal preparation plant yards,
immediate access roads, slurry ponds, drainage ponds, coal refuse
piles, and coal storage piles and facilities.

The liquid discharges from coal preparation plants are often
combined with discharges of the associated storage piles, refuse
areas, and plant areas prior to final effluent treatment.  The
wastewater from these areas is characterized as being similar to
the raw mine drainage at the mine being served by the preparation
plant.  Consequently, some refuse piles produce an acid leachate
and others produce an alkaline leachate.  The origin of the acid
leachate is the same as that for acid mine drainage,  and its
prevention is the same; i.e., keep water away from the pyrites.
Date:  9/25/81               II.3-5

-------
     Post-Mining Discharges

     Reclamation areas.   Reclamation areas are tracts of surface
acreage which have been recontoured and seeded to establish
ground cover after mining has ceased.   Regrading has already been
completed by removal of the spoil peaks and re-establishment of
natural drainageways.   Replanting of indigenous grasses,  legumes,
and other annual or perennial flora occurs as soon as possible to
stabilize the regraded area.   Runoff from this area directly
following active mining can exhibit substantial suspended solids
loadings until vegetation is well established.

     Underground mines.   Discharges from underground mines will
continue after the temporary or permanent cessation of mining
until appropriate mine closure procedures are implemented.  This
is because the principal source of water is from aquifers that
were intercepted during mine development. These waste-bearing
strata will continue to drain water into the mine during and
after the production of coal.  A study was conducted to charac-
terize these discharges from active and abandoned anthracite
underground mines.  The results of the study indicate that these
discharges will be similar to the wastewaters encountered during
active mining.  For instance, an active discharge and an adjacent
abandoned discharge from one mining operation exhibited similar
characteristics.

II.3.2  WASTEWATER CHARACTERIZATION [2-5]

This section describes the sources and characteristics of waste-
water from the coal mining industry.  No wastewater is purposely
generated in the extractive portion of coal mining because water
is almost always a hindrance and an extra expense to pump and
treat.  A minor exception is the use of water for dust suppres-
sion and equipment cooling.  Water enters coal mines via precipi-
tation, groundwater infiltration, and surface runoff, and it can
become polluted by contact with materials in the coal, overburden,
or mine bottom.  Most water entering underground mines passes
through the mine roof from overlying strata (rock units).  These
rock units generally have we11-developed joint systems, which
tend to cause vertical flow.  Chemicals used in mining and repair
of mining machinery may also be wastewater pollutants.  Mine
water is, therefore, considered a wastewater for the mining
segment of the coal industry.  It is discharged as mine drainage
which may require treatment before it can enter into surface
waters.  There is also the possibility of continuing discharges
of polluted wastewater after a facility has ceased production,
especially from underground operations.

Based on these considerations and the industry categorization, it
is possible to characterize wastewater from the coal mining
industry in the following way:
Date:  9/25/81               II.3-6

-------
     I.   Mining of Anthracite,  Bituminous Coal, and Lignite
          A.  Acid or Ferruginous Mines
              1.  Raw mine drainage (untreated mine drainage
                  definitely requiring neutralization and
                  sedimentation treatment)
              2.  Treated mine drainage

          B.  Alkaline Mines
              1.  Raw mine drainage
              2.  Discharge effluent (untreated mine drainage
                  of generally acceptable quality;  i.e.,  not
                  requiring neutralization or sedimentation)
              3.  Sediment-bearing effluent (mine drainage
                  which has passed through settling ponds
                  or basins without a neutralization treatment)

     II.  Mining Services for Anthracite, Bituminous Coal, and
          Lignite
          A.  Coal Preparation Plant Wastewater
          B.  Coal Storage, Refuse Storage, and Coal Preparation
              Plant Ancillary Wastewater

     III. Post-Mining of Anthracite, Bituminous Coal, and Lignite
          A.  Reclamation Area Drainage
          B.  Underground Mine Drainage.

The Coal Mining Industry was analyzed in screening and verifica-
tion sampling programs for all 129 priority pollutants.  The
following tables present the results of these efforts.  The
minimum detection limit for toxic pollutants is 10 vg/L and any
value below 10 vg/L is presented in this section as BDL,  below
detection limit.

11.3.2.1,  Acid or Ferruginous Mines

Drainage from acid mines presents the most serious threat to the
environment from the coal mining category.  Acidity is delete-
rious to a variety of forms of life including fish and benthic
organisms.  The ferruginous components (ferric ion and ferrous
ion), though not highly toxic in themselves, do contribute to the
formation of insoluble hydroxides which coat benthic organisms,
cover other aquatic food sources, and block fish gills.  The
acidic nature of this wastewater creates a strong solvent for
many metals and minerals, and the data base confirms the elevated
levels of many classical pollutants and heavy metals derived from
both the coal seams and the associated strata.

All operations studied dewater their mines either on an inter-
mittent or continual basis.  The amount of wastewater discharged
Date:  9/25/81               II.3-7

-------
from these facilities varies considerably,  ranging from approxi-
mately 3.,800 to 26,500 m3/d (1 to 7 Mgal/d).   Table 3-2 presents
raw and treated wastewater data for pollutants detected in acid
or ferruginous mines.

II.3.2.2   Alkaline Mines

The data base shows that heavy metals and other toxic pollutants
are seldom present in elevated concentrations in alkaline mine
drainage, but alkaline wastewaters may be high in suspended
solids and require settling.

Over 50% of the facilities studied in this subcategory dewater
their mines on a continual basis.  Of. the rest, dewatering occurs
only infrequently or not at all.   The amount of wastewater dis-
charged from these facilities ranges from 0 to 9,500 m3/d (0 to
2.5 Mgal/d).  Table 3-3 presents raw and treated wastewater data
for alkaline mines.

II.3.2.3  ' Coal Preparation Plants and Associated Areas

Since cleaning techniques generally require an alkaline medium
for efficient and economic operation, process water does not
dissolve appreciable quantities of the metallic minerals present
in raw coal.  On the other hand,  some minerals and salts such as
chlorides and sulfates of the alkalies and the alkaline earth
metals found in raw coal dissolve easily in water.  The principal
pollutant present in preparation plant process water, however, is
suspended solids.  Process water from plants using froth flota-
tion (Level 4 preparation plants) typically contains less sus-
pended solids than such water from plants that do not recover
coal fines.

All preparation plants studied use water in their cleaning proc-
esses, and 17 of 18 recycle at least 50% of their process water.
The total process water circulated varied from 830 to 12,700 L/Mg
(240 to 3,700 gal/ton) of coal processed, and process water dis-
charges to surface waters ranged from no discharge to 1,630 L/Mg
of coal produced (475 gal/ton).  Table 3-4 presents raw and
treated wastewater data for preparation plants.  Table 3-5 pre-
sents raw and treated wastewater data for associated areas.

II.3.2.4   Post-Mining Discharges

The post-mining discharges from either a reclamation area at a
surface mine or from an abandoned underground mine can contain
significant amounts of pollutants.  Results from programs where
data have been available indicate that drainage from surface
mines under reclamation contains suspended solids as the only
pollutant of concern.  Concentrations of iron, manganese, and
Date:  9/25/81               II.3-8

-------


0
CO —
^— &™ *
z<
<0
-ice
o uj
^- ^
_1 S

ooc
— o
CO O
(/>LU
oo
CO
ZW
"^ CO
OLU
x —
0£
U-3
oo
z
z —
oo
I-CC"
NJU I
-U-CM
cc —
LJ CC
o t-
o oj ~ ^ -3" CD ^
1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 II
-I-J-IO^-J _J _J ro _J -J -1 — _l_l -I _J -l-l
QQQ 	 o OQOJQOQ— OQ O O QQ
aococa CD aofi to coco 0100 a ao coco



o\ «n r* <*» — i*- o NO ftj « « o i— — incoooo o oooo NOOOWC^













•
..is i
^ 1 .5515 5 —I II
ate **«* — ** «jc o o C N N
••2 l»»jc£5io jS5o 55
MO £ O> O>£ ^ C •• Q. O. 1 O O Q)
we 33 - >, c o oop i-kc
c - c 	 XN •- i- 1. C poo
• • &>>X£C OC OWM 	 N
4» TO X 3 . • • «M ** *» ** « OO — 	 ££C
3 ecu— «5 o> x 5 3 a>— 3oefi — £cc iMoooea
« no — — 3— ^^o L»«L.-* 4i x£ Pi CO — o — -• oc 	 fie
— Ic — — •«— 3OC«— egc I IN— g) i WPtgOQ — OOO— 0
p « - « x. p ac-o PJC o > — o — 4Jcc— x a- — c*>i i ^NI i xs
a — *> » L-D C aaj « C o — — « c aoi i»*> pm aoeai« Bcwa-c —
act-oa£OX00— o — £— £ 	 »-.-3 C« cca>«oouo-JXz
-------



CO
I—
z
h-
_l
_)
o
0.
<~

— Q)
CO D
CO C
-J 4J
U C
o
Q 0
•^
CO
O UJ
OS
h-
co
oo
z
z —
o o

HO:
^ Qi
NbJ
1C
LJ(X
I-O
o

e
n
7

CO




























• *J
a +a
x. o
•o
M
C
0
c —
(?«•- *J
o o o
£ 41

0!





(A
C
c
loS
CO <1
a
•o


V)
c
c

QJ *J
A V U
E o a
z a
"°



u
Svc
3 a
Z M
















9 999 9 <*"'
CD CD CD CD CD J"




— 1 — 1 — J — 1 — J lf\ _J OO
QQOQO— O OO






_.
§0
_J *o
OOOO — flO O — •*
_J _l""_J ""*
aiiiiiioio ii o -j-j-i^
m 01 CD — oa o c
QQOOOO a o— * « cc






— POCNjCVoromO — «O— OOOOOOO ^DO\OOOOOO— O 	 O — O —
""







^^^^r^r-ar-r-t-f- aa-a-^^a-a OI-«««O«O>O a-a-a-a-aa


in
O

«C 0
O 0} V> C
o S -a ai
*- >> H COO) O COC.C
j: o o c « t- Q o caov
's, *- » C£ E JD eg £ C Q) 0)
o a xu ® a *» o *-»»£**a>oc — »
«j o "O£ — c c -a o^-jcocofuf— >* «
E«(DU-P>>(Offi ®*O— CMCMCO^O «- O 4^t-CO«-— *J££ -Q
Ot.ClCt-t-.Ca> *J — CMrOJ-d-iA^ "D — 0>O£OXOO

>c\T.c-— «£C a> Eooo*-a>oT*- -»* t 1- « a * ffl — *^C** O L.||||||| T30)^ — --L-OO— «O O OO C O « CO •— O OiJC O CD C OJ •Qt.t.t-L.L.t-i. 4J0^-Uh--*OOO(0£ (D CO X CO CD £ — v v O N — — CO O £ O 1 * A U U 1 1 L. UCOIE4JL.4- CCC~DACC^33a^ WOOOOOOO O*^ — C\J— X — — — (XJ*» — a *» 6 — -D ( -COCQ-OCoSO J»tA o §ooor- OPO\O OOv— O O • • OOCMiT) • (MOOtA •« » o o-o UJOOO 0 CMCOJ- — OCOCNJ^OOO 0 1 1 1 I I O I 1 1 . eo — vo o -*-o co eg iTv o o oo d oo o coflor- — o— <-oe\nr\ N — — — CMCMCNJ ^* r- *o«Joeo-roco««,A 1 o N c •o en c*o 2 6 i- •Q O * i. o w — — M CD «^-^ X £ w o —a. O 0 C O — < a « CD o— o< (0 *J 3 C +J *— • +* «- 3«c- toaai O 0) OH— — 01 « 0) C — C 0) 1 X O "- OJ3 O a 3 eo c oo o Q. o>«— « oen.— o>— ex ncx — i*-n — — — — o «cx .ax vmcx o tooww^ooc « XH Sey"


-------





t-
z
3
^j
O
o.

OT3
— CD
to 3
to C
o c

0 0
z —

w
QUJ
if
CO
lj- Z3
oo
•z
oo

HO:
-•» Lt»
UK
1-0
u
4- U
c o c
a
•e

n
g
Q
A O U
• C9
z a


w
l°i
i "












ao — noocvoma — o? oo r-o a







-J-J J f> <•! -1 >O -1 W <7M> _J O O

llOlllllllllll IIOII O IOOQ
oo aooooaoo— oo ao oo o
coco ca ca co co ca a co a) coca coco coca co



eoif\ — ^-cy && tfmovCMOxc^r* tf\di — *Ott\ — IA— — ~
— ex «fi) — eg — «•> — —





tf>«^m«m«mmm^^m« ««««,« n ««««




a
«
52 S
Ml SuC- -0 0
_i o «> « a« — «
^ — 0 	 -*.C N — — O
Sc *> « « — *» « c o o C
• a c £ %£ 10 a ecu
« ^ «££« SO JEf O
«• o e a. a£ — o E a a i
«»c ** — x a o 2£2
nil a >» >»£ c o c o *> «>
— "l^E — — §«— 3«c«— ac i i CM— at mo«oo
a. — *» w C^ ° a« • £ o — — « c « » i i «T« am o|«ca->o
X » «M 3 e9
o
H-


_l _l_l
o ao
ca coca






-I— -ICM
§- §-






«« -0

i i a i i
CO
§§ s§



0>N-»0





SS°fS*







hi orobenzene
hi orobenzene
nzene
(Mo o a « «
oc 	 AC
— S O O — 0
*HN i i >>3
fflS~*5«
•1 tt « »** o
5|i 	 uj K
«

Date:  9/25/81
II.3-11

-------





I--D
Z 0)
< 3
1- C
-I Z
-J C
00
DL 0

_J

oce
— o
WO
WLU
OO
CO
03
ZCO
w
oui
xz
OS
w

oo
2 —
oo
KO:
NIUI
— u.
a:
UJOC
HO
o
Si —

- o u
•o e
o u
r a
"O


d
C
O
c —

u o a
I c
«
£



c
._5
c o c
1C I
•e



u>
, 1
Ok W
a o o
1 1
•a


M
t. g)
I I



















_J O— -I -J
O ON— O O









-J -1 OO-I-J -1-1-1 X
Q o oirtoo ooa —
co co — coco m m co
(A




o
o
a O -r-oo ooo —
-1 _l«tt 0-J.J-.J -^COffl^COfflCO CO jj^jj,



cocyj-o-'-iCM'^ea
— C\J «J3- OOfO— •
O\— CD OD * • t~~
O O








O O O O -J CV 0\ CO f^-

» odd
CM




O O
0 0 J"
O "> "»OJ O — CO-S"
^•osoooif\woN
Q o— i i QO — o i i idi i i i aaooaaa 	 i i
CD CO COCO CO 1 CO CO CO m CO CO CO CO
a o oooo ooo Q
CO CO CD COCO CD COffiCQ CO





(\JftJ





r-j .j — ^- _j _j ^ — iy
OO J-OQ OO •
• . m m • • m
OO OO




incOroCMW lAJ-iA





OOOOOOOOOOOO OOOOOOO 00 eO CO CO O 00 CO CO CO 00 CO CO CO CO CO <0 CO O O « r- J- O\ W »O f- \O -O
rttOC\jrOcoiAiAm


M
c
0
(DC O
O CO Ml C
p « -o co
c x co c —
•oCcDC 3 «M Q>»
>cc»p o c o c -c
£ O 0) C O ^ O O C«Q+*
\ t. co c£ e A eo £ c « a>
uoxucoco4J o t-acDf**opc -^
— cacocfc o *oc**co«— tq> «
«JO'^UO>4Jag U— ag0)COec>iO— C
« O -O.C — C C 13 O(-cpCOlD£— >k •
• CBOO^^fVCO COsO — WCaoOJ-O *• O *JU«t-— +JC£ T>

t-£0co«cooac nocvjCNjrucjcvicij > c o— *J3£O— co —
* C XCXI £ «— O £ C CO SOOO^>COOlC ••—
t-«90.-.fl — WC** CO f-iiiliii -OOjC — .-L-OO— w»0 O OO
— — «- O N — — «)OpfC0 COOOOOOO « — O — 1 £ — 	 >- O "D I CD 1 I C
3NNO9>NN.COOCa> OOOOOOO CC**33CLb (AOOOppOO O**— CM— X — — — «+» — 0. 4-> 6 — "D


il SI i £i





1
CO
A _J
"O at
s ?
•0 O - «
— « -o —
X JC *J —0.
o o c — <

" «1 *> 3 — w
-t- 3VC— tf —
3OVOI 	 — — w 0) C
— coix o a a «>3
;.ca>ctooa. a— n
JOCW-- 0 — CX
>*» « — » i a «jcca\
idx ema o ioouooc •.


Z a

0



































I
OJ
U
CM L
0)
— C
3
lA
S Z
c
a £
eg (-

"1^ 2
I-- 3
• C O
> o »

• •«J C
U) o —
0 IP
C Q) O
•M-o 4J
O— O
- 0) t.
«JX1
>1 111

-olo

Date:  9/25/81
II.3-12

-------











CO
t-
z
^
^
^3
I
O
Q- .,
-ICC

c
C 0
CO —
— C(_ 4J
•0 O O
0 0
'Z. +•>
0
•o
»
c
o
c —
CO 
0 O O
z 0
0
T3









y3
C
o
0 —
Old- 4J
coo
CO 0
CC -P
0
T3




U)
c
!- 0
0
J3 4- -P
£00
3 0
Z -P
0
T3



CO
!_ 0
0 —
.Q W Q
E 0 E
^ CO
Z U)
























J-J
c
CO
JJ
3}
^
_
0
Q.
00
LJ
O
—
^ ^ —i m cjs cz> — J m i c\j to co i o i i
QQXQ — ro — Q — QVOOJ — Qin QQ

—
*
—

UJ
0
—
	 I — 	 IJ"fon*>_JcO— JCOfO-3" 	 1 — -J ™J 	 1
Q — XQ — J" — QrOQQN(\J — QON Q Q Q
CQ CO CQ CQ CQ CO CO CQ
—
—


CTN
bJ
O


X 0
0
— — i o — i oo — — i -i
P- CVJ -Q- 	 CM Q ^t fO -O XO OJ fO -* Q Q -d"
CVJr^^CQOJ — J-CQON— PO — CXJCNJ— CQCQ —
_J
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O
CQ
	 |^J\Q 	 1 ._[ 	 | 	 I 	 | 	 ] 	 lO— JO 	 1 	 1 	 I 	 1 — f
Q Q LJQ Q Q Q Q Q Q co Q — Q Q QQQ
CQCQOCQCQCQCQCQCQCQ CO COCO COCOCQ
—

x
CO
.
CO





d- ^o r- J- vo co d- co ir\ o co — oo r- m CMVOJ-— o
	 C\IC\I — CM 	 CO









^j--^r^-3'-^'j"j'cod'^ij''Sf^3"-3"J' ~~ 	 ~—
j-^- ^^^f^fCM^f'J'J'J'-^'-^'^f C\JC\JCMCM OJ






0
CO
^
CO 0 0
JZ -P C
(U 4J CO —
03 JJ JZ — T3
_l O — 1 CO Q. CO —
v. — ^ 0 — —^. N
O)CU) 4-> CO — -P W C
Zl CO S- CO JZ >>JZ -O 0
O0 — -P X 0. C J3
i- J3 CO JZ 0 Zi O
U3 O — JZ Q.JZ — O l-
PCCt- 4-> — >> Q O
C— JZ->)NE-
co •> E Q->>JZ C O JZ
•P"U>s03ZiE EE t04J4J0OO
Zi C C O O — E Zi 0 >> D Zi 0 — D 0 J3 —
— COO— -P— Zi— S-tJ *- 	 ' 	 -P >>J3 1 C O
— ECW 	 E0— Zi0C0— COJZICM— 01 «
o in— 00XEoac-DO^:0>— o — -PC — >> o- —
Q. — +JWJ2S--O'-Q.COCO!-O 	 COC C00IV)4-> OCO O
COCS-030COJZO>500— 0 — JZ— JZ 	 ZI i- « C
O 4J< « CQ O O O O -1 S Z CO CO h-N 4J Q Q CQ CO P co 0
— 0 JZ — JZ
X 2 0- Z Q-
0





_J \O
Q CM
CO







— f vO vo
Q C\J CM
CQ











I
Q co O
CO f~ J3-
_J
1 1 Q — 1
CO —
-J _J —
Q Q —
CQ CO











CMOOO co 	 co










	 0 — OO
CMPJCMCVJ CMCMCMCM











	
0 0
O) C
	 0 0
00s- N
CCO C
001 0
JZ JZ O J2
a a i 00
o o o s- c
C- S- J- Q0
O -P -P — N
	 JZ C
JZCC M0O00
_ O 	 O C — J2 C
OcoQQ — 0 Q — 0
C *J 1 1 -P N 1 >>Zi
0CJTVO COCJS-JZ —
JZ0 ** E0 ^+JO
Q- 0. CM ^ O CQ — LJ 1—
i_
<


Date:  8/31/82 R  Change 1  II.3-13

-------








o
LJ
O
LJ
1-
LJ
Q

CO
h-
^f

H
ZJ
_J
0
Q.


CO
ce


















































CO
c
c o
CO —
— 
•000
CD CD
T3



U)
C
O
c
CO Ct- P
moo
s: cu
CD
T3







to
c
o
CD —

COO
CO CD
ce -P
0
T3




in
C
S- 0
QJ —
O Ci— JJ
iJ **— +*
EDO
^ ct
•c



£_ QJ
CD —
.Q <»- a
E 0 E
Zi CO
Z CO

























































I 1 1 __
QQO —
CO CO CO













	 O —







	 O 	
CVJCM CM CM CM

CO
O
JD
CO
O
O
i. CD
•O CD CU C CO
> C C 0) C
JZ CD 03 S- O
!- 0 JZ £1
O >>CO 0) -P t-
— as- c c eo
•P— JZ CD CO O
CO ~O P — C O
E 0 t >»0) !-
El CD ^ jC "O
(O'^CD acD >
CM «-•« CD CD C
t. . CO — C JZ 05 13
CO — — JZ CD -P — CD
OJ — ^OOOCco 4->
— ON^COCOJZCD eo
OCCO'-i--PC C
D 0) 0 N JZ O JZ CD CD
C-DJ3C-PZSD.5- O
>C— OJC— co>> O
	 OCOr** o c^
C7\ if CO CO

iii i

_i_i _j _i
a o a a
CO CO CO CO










C3>CMOCMOOrOOO







ooooooooo
CMCMCMCMCNJCMCMCMCM




CD
C
CD

0) >,
0) C JZ
C CO 05 -P
CO JZ C 05 OJ

T3 C 4-> 05 05 — C- CD
nS05EC>jO —
5- JZ 0 0 CD JZ— >,
O -P !- ! 	 -PJZ JZ
— 050O>>C15O4->
JZ O — Zi JZ O — 05
E O O ci-oi-ooOeoJZ CD
— O — 1 	 i-O TJ
>>S-Q — JZJZQ+JCO —
JZ O 1 .O O 1 1 <- O
4J — CM 	 OJ +J .-
Q5JZ ..L>L ..05 4-^
SO 	 (-1 	 h- «
05
a.




VO









1 __
a oo
CO










-1 0
Q r-
ca oo
_i _j
QQ 1 1
CO CO
-1 LA
Q
CO O










	 CM OOO O
J-






	 0 	 0
CM CM CM CM CM CM J"








_)
*^
Ol
E
05
•Q -
— in
X 4J
o c
a. co
CD 4->
t_ i_ _
o o o o —
xox 	 o
co xco jzjz a.
1 CO 1 COO
CD I co *~ co ro ^
JZ co E s- -P -P co
Q.-P ET3 ao. O C/3
— 05 CO — 0) 05 — CO
 O >— CO
                                                                                      C   —     	X
                                                                                      CO   O	4J O Q.
                                                                                    CO)   
-------









Q
UJ
0
UJ
1—
UJ
Q
CO
I—
z
^
r~
_l
o-o
CL CO
_J C
O -P
co o
CO O
^ * —
— 1
o>
C£
QO
z O
< LJ
0<
— O
XCO
ozs
r-W
1 1 (/5
O UJ
Z
I-UJ
<0
_ 2
cc —
UJ <
(-CC
OQ
C£ UJ
it03E EE W
3 C C 0 O — E 3 0 >> 3 3 CO
— COO— 4-s— 3— i-T3 ! 	 ! 	 -P
— EC05 	 ECO— 30C0— CO
0 «J — 00>iEOaC-00^0>— 0 —
a — 4Jwj3i--DS-acorai-o 	 roc co
COCS-U)0COJZOSOJ0— CO — JZ — JZ
0 4->«,jz -o a.
— w x a. c js
CO JZ 0 3 C
JZ Q.JZ — O t-
p — >> Q a
JZ — >>N E —
a>>jz c o JZ
•P -P CO O C
— 3 0 JO
xri i c c
JZ 1 CM — 01
4-> C — >> 0-
0 1 o) 4-> O r^
	 3 !_
Q Q CO CO J->r«-
._
Z



_
O
U)
	 0
0 0 *-
c c o
0 0 1
JZ JZ O
a. a. i
E8E
O -P -P

JZ C C W
— o -^ •— cj
u) o ro Q Q —
— C -P I 1 -P
O CO C ^ VO CO
- C JZ 0 « * E
00.OuCM.3- O
JZ 1-
Q. <




CO CO
C C
0 0
N N
C C
CO 0
JD J2
O O 0
S- i- C
O O CO
	 N
JZJZ C
0 O O 0 0
C — — JO C
0 O Q — 0
N 1 1 >>3
C CM4J-JZ —
0 , »4J O
CO 	 UJ 1-




D
-------










Q
UJ
O
UJ
1-
UJ
o

CO
1-
z
H
Z>
J
_J
O
0.

^
^
O
—
C/}
CO
^
	 t
o

Q
Z •"•

•c







VI
c
0
a> —
cn
JZ

o
•^
4J
CO
E
o
s.
CO

i.
CO

~-
0
3
C
^
O
a.

•



_l
Q
CQ









	 f J
QQ
CQ CO









	 I _J
QQ
coca

OCM 1 1 Q — Q
	 CQ — CQ
_J _l
QQ
com












CM PO









OOOOOO O
CO CO ro CM PO co co









CD
CU CU C Ul
C C CU C
00)'- O
i- O JZ J2
>>TO CD -P !-
at- c c co
^•JZ (D CO O
•a -P— c o
0 C >,CD S-
i co s- JZ •a
fO— • CO Q.CU >
«jz a^ ecu Jz'
CM « — 0 CU C
» TO — c jz cu -a
— —~- f~ CU ^ "~ CD
~-O D1O C to 4->
O N ^^ TO TO JZ CD CO
CCOS-S--PC c
(DCUNJZOJZCD CU
•D J2 C -P 3 a!- D
C — Q) C - TO >, 0
— O CO < U- ZC- —
TO
X





O— _lh- -1 &
0\— Q— Q
i^ m m









o o -J — i o\ — J — i 	 i.zf
OinQQ — QQQ —
*~* CQ CQ CQ CQ CQ
•,
in




0
o
o
^Q _J _J _J ^ 	 1
— I^QQiAQQQ —
r--d-CQCQCMCQCOCQOO

1 1 1 1 1 1 1 1 1

_J ^ _J _ J vO 	 ' ' 	 I_J
QQQQ — QQQQ
CQCQCQCQ CQCOCQCQ












m ~" c\j ^^ jif CM CM PO oo
CM CM









00 00 CO CO 0003 CO 00 03
CMCMCMCMWCMCMcOCM






CD
C
CU

CD >»
CD C JZ
C CO CU P
CO JZ C CU CU
CD CU JZ 4-> CD O C
•O C 4J jO —
*- JZ O O CD JZ — >>
O .p !- t- — +J JZ JZ
^~ OOO ^s CJ O 4^
JZ O — 3 JZ O — CD
O S-JZ— -PS--DO
E O O 4- CD O 1 t-
4)! 	 — OO— WO
COJZt-5-S-JZC— 05
CU4-OI-OOOTOJZ CU
— o — i 	 «-o -a
Xi-Q— JZJZQh-TO —
JZ O 1 »O O 1 1 S- O
•P — CM 	 CM +J —
CUJZ ..,<-!- * *v P
ZO 	 l-l 	 1- W
CD
Q.





CMON^CMOJ'O^J'ONCO
— PO — CM \O • J1 O •
• • 00 ON — O Is-
00
O







ocTNCooooo^o^or^
COOOPOCMOCMO 	 •
• • — CM \o or^
oo
— CM O




0
oo o
OO O .3-
O — 00 PO VO •'OO^'
in • • •. ^in r^- o • •

_J 	 1 	 1 1 	 1 1
QOQQQQ Illlllllll
GO CO CQ CQ CQ CQ
CM 	 .d'VO — ^t — CM CM
rOCM — OOO if O •
OOO • OPO
. . .O
OOO O










m in a- PO CM PO CM — in









CO CO CO CO CO CO \O I~- vo r~- co J* O\ J- \O vo
CM CM CM CM CM CM in in in PO CM PO CM CM CO in










i
x^
01
E
CD
"D •.
— en w
X -P -D
o c
O. CO —
CD .P O W
3 10 -P
S. t- — —
OOOO— CDT3 C
XOX 	 O WCU 3
cozcQjzjza a>> w
ICOICOO C— — X
TOICO — TOTO— CO O OQ.
JZCBE5--P4JTO CWU) C
a-PE-oaa o COOCQCOUCOCOCD -
— CU TO — CU 0) — tOS-TOO — OC/5JZX
a- o-
w
TO

o






















































t
CM

^
—
to

CU
en

CO

TO
Q

-•P
CM —
• E
CO —

^.w
. c
> 0

• • p
(0 O
T3 CD
O J->
J= CU

CU
£ >
Ci
o —

4J JO
— ~ "I
CC-J
CQ
< CO
Date:  8/31/82 R  Change 1  II.3-16

-------

«
jy*
O
-10

-JOT
O
V)
Qh"
oSJIn
XZCM
oo —
oa:<

XLJO
OQZ
ceco
UJKO
P~ 2. Z
UJZDLd
w-ice
o.a-ooo«ooooj-Jo -i-J _i _i o -i
AM ^ (NJ f» ^ CD A dO CD CO O CO

-" 
10 w
— C C «
>> a i>*> ~ c —
wc E— O
J ^o J J S»52— -• o"
o> c » a ow««~ tf|>>* §C
« o — c wcaac o a.— c g— i 0 «•
« c *- « £w — o — >> 0 e xa cc
« • • o. a x xc 000 CL£ ** ** N N
*» •o >« « 5 • •• p •>)— WMW o«£ p a « — cc
3 |Soo-g3u t-5t* i 2^x5o? c2- -52.1.5 SIcSSc
o «— 0 0 ?»• o tXTj ojc 0 >— g Me — g-ucc— 0— i — cc— i i JN>,°3
a — wmat.'Di-Q.ioi-o — — «c uu « I o i i « o CM o0uz«
-------
•a
(0
3
C >
C
O
u
1
-10
01-

o
wca
"w
QH
zz
^ ^
^
O Q-
XZ
oo
*~l-
oce
ZO-
— a:
t— o.
NZ
K
UJO
h- LU
ot-
<0
CC UJ
XUJ
00
a: w
UJ 1—
I-Z
£3
<0

1
u
3
i-












L.

+J
J
ID
M
f
K






















M
C
c o
— fc-'*J
•o o o
| 2
•o


M
c 1
OOO
1 2
a
•o



c
$ ~.
tj.t- u
• a
1

M
u §
f —
o-s
z *
T



M
0 -
s*"l
3 «
Z W






**
c
a
*

I



ggg g gggg'g g g gggg g g




— QJ- a a omo — CM— O>O%O\D*O

o
g i
10 O O
&« «? • «i s;
ec£e » c «e
u a >>o K C o c w
ae ui c^w SQ « T c oc «
c c ~ a> c c — J= -c •>»«'.• -o
3=«»S*^cC c gaoc-A IDC ox
•»»» i-o££— o"l-~ a>aa« ^t — je— a 3— £ a
OO • A d^C- UCM£-^C — ^ C O £O £ **"O O M3 « k«a'-OX«4> C — 6 O 0) 1 £ OM •Dfc-(- 3
** *» i- ID C 0 JC a— «*£ ££C£ 0 V— OOO^-^C— MC13XOXX CIUO9 	 e
cc aoLaaa o ~£ £occ« w »- 1- o « j: «uco9xa)a) — o o £c c
— — —Co — 	 ON a a a a a> .c a « — o i — >- o •oiuiaaiici-aocuu a
OO UQ— OOOCCOIO(D(-fc>C*>C CX' 	 £t~«l — « 1 « t ID «B — ^Dl 1 ~ CNNN«ttNCC£OO£tt d>CO iOI<- OCAfffS+'i- 	 	 (-«*«* —
«« cau c c evj> c • e*»s 3 aE ow — — — (M*» — a.*1 aw B — T> BJJ-D aa. a
*,N | N.S.a-oS.t.KU.^ |So-,--K |<«<«00<0«UJX= »




ooooottor-ttm
ooooorua o •
ooo 	 •« -i*
J^ C\J * "•
mtocM


OOOOOfOft O *
.-.•.. >d o
— C\IO>CO —



oooo
> oOOOflOO VO
OO * «lAflOfO — —
CVMtONCMOftCVJOOO


OOOOO^OOCVJCSJCVJ
. » *~ . o



_ h-tMI-l-iA-fOroa-N
— — — — —






h- r-Mi^^in-«ror-cj




-*x
.
4J -O M
C —TO
4f O— M
3 MOW
0) — M
C — W O C
o o 0 a v> 3
1- o. >— 0 in
O — A C — X
£ — O a a O a.
a ID « ** c o>c
o u oO— OtioCX
— a OI-1-I-DW — IQ- a
(A
ID
0
Date:  9/25/81
II.3-18

-------
^^

01
3
C

jj
C
o
o
OS
O
—1 O
— 10 o eu o -J
O— PO W *Q <*> N *~ O f* ^ O\ 'O O
CD GO CM — CO







-J Ui -JO OO O -1
ooo — VOK oo-^oo or* — o
COfl— ^T-tf-vaiAtACNJCOCNJ h-CMiTt CD
_J J
IIXOIIIOIIIII III 1
CQ cfl

OO • CMOtfN CMOOOiO OO Q O






co^ — O~^^OC\J — C\I^(VJ>6 O O rt W O*O OO f^OOOO







OOX O\ O\ O ON Os O\ ^ C^ Ox Cn Ov f"- p*«>e^*O r»r» r» ^

U
5 2
*T *
5 CO
x o o*» — c —
M CfMJCB— O
-J 0 -1 O O • a O. ON — K
^ *~ ^ *~ ** W -• ^ '^ ~ " • O O
252 a iSS5s 51^ §5
.25 x 5^SSg S2d o-ti
MO— c **£ a, a£ o a— c o — i
JJ c *- S •SS X i£> ?£2?8
C — • £ CLf -" — >» 8VC COf^
2 -a >> in" 3 • a a p *> ouc p o. « —
3 C C O O — « 3 X3 3 C o >,— 3OO O Q. ^ O B C
— BO— *»— 3— «- C— — k — o u £ >>a 01 c "- — — o (- 	
— ECU 	 BO sacp— — «<->£i IM owo HMO— woo
o w — o o >> c o av o Jfi » ? — o MLC — o ** c c -— o— i — c.c— i i
a -wSS C-o " aS " o-- « c t-p • i a i i M gcoj ooozd-
-------
•o
CD

C
»—
C
0
o
<£
-.8
flQ
53
o
QW

Oo-
xz
ili
zo.
OLJ
— Oi
Sz
0£
uo

oa
OCW
UH
I-Z

3EH
1 	 1

99 ' ' ' 9 ' ' ° iiiiiiiiii
CO CO OB CO
OQO oo om^»o\o-i>oin— w



oo ooooooooo — oo — o  01
.a o, S^5 &Cg 5 1 S §S a ?
c c — ace — £ — c •«*oEa u .
«• u — •• «»>x • a aco— c — «
33 • «oC ocC c pa 5«-x «= ax w
— — i M|£ •paiaaae Cot — ££«-• -DO c »
oo pc*»-5cm a c£ -a- oxau -<- X a • -o «
*»» Co<:£-a .— aaaa > «- -£~a 3- £ a « --o
o0aaa**w£cM£^«c~'^co £o£^*oo «>3 a v> a _._
CC k • c — X .«— a Xe c c — • t> ai E OM Q >- <- 3a — o— «
*>*» «• • c «jc a— — C££ c£ a •ecC~6»o •eou oo — oo oc — mo *>
— — « o o— ^— ei*>*>a«*o— eooi-'-c— iwcxixoxx cuoa 	 « o o * —
CC « O C « O • O — £ £OCC 4-»-O<0£ aulCCOXCOCD — OO ££ C "- a T3 O C
— — — L o — o N aanvafa •— pi— <-o oiuiiaiic>-aocoo « o t> « » 3
oo op— oooccoani-1-c.tic cxE — £>-• — a i — a«
i i a >c NNN a a N e e£ o oje « a£O >o i t. uc«£«Iwi.— .. <-«>*> —a • —A c — x
cJ« — O— a<-<0£X
39 «H XI « Ob-Kt"Otf> — X&- a
0

























ni
4J
O
2
s
o
«««

tic methods: V.7.3
below detection li
x
— *
"o
Date:  9/25/81
II.3-20

-------
0




o
CO U.
zee

zee

Ul
C3

re




























c
o
c -
re **
-fc. CJ
•a o a
£ a
•o


10
o
c —
rai- w
a o u
£ a
a





(A
C
O

c<*. o
re o a>
OC -u
0)




IA
u C

3 a
z ->
0)
•a


U a:
%<*-~G
= O £
i "









re
3
~
I



if\rojco — JO^O" O CM
^xQjjeoQroCM -3" ™
CO CM CM





rOOO«OOO-IOOCM O _l VO VO

fO CM CM CM CO CO •«- fO CO
— »




O O
O OO O O
O OO O O
MO OOO-J*O »
00 •.CMCOCO - tQOLAxO O O 00 r-
CM — CM fO ON— — CO — ^ PO f> — J CM
J CM
1 1 1 1 1 1 1 1 1 1 1 — 1 1 1 — 1
Q O Q — — Q O Q POO CM — Q ^ —
CQCQCQ CO 03 CO 00 CO













y\ ON ON ^ ON ON o\ ON ON CA ON Q\ ON ^T-3" Jf & 3"




O
(0
ra

*J C
QJ £ O
(A 4J a. A
_jy a *-
•x. — — * «i
Ol C (D — O
3. « .C >. 0
0 *j x «-
t- £ a) as "a
V) O O.C C >,
*J C — 0) £
C — — >» N
S ,» 1 E B e «2?5 S ?
3 CCO— 6 = ^ >> 3j_3 »3O (AOJAO *J
— WEC 	 E 0 30)CQ)— «ICM —Ot-fl) C
O W — 03 >» E O a*D O ^t OJ > — O — C — • *J N O 3 0)
a. — •uo^-'o^cxre^u — — we aim «cacjuu-izz» »>-N •uaco oeooi- —
» C U eg
X S X < I
o
h-



O O NO «O J 00 O Is- CM CO
ITS CM — -NO -O •
to r— j" j *o i^
—




00 r^ooooooi^^-
OxO vONO — O — OO — •
r-CM PO j r-cM if\
— — —




o o o o o
O O O OO
JO OCM ON — O CM
— J CM — — CM CM M ON CO r—
ii a a i i i i i i i i i
CD CO
\O J — CM CO CM CNJ •
— IA -OCM
o *
0











j.j.jj. j.j. h-^ J J^1 co ON ON!^






0) -J
I *
E wT tA
O O •" T3
•a <- c
- O n —
i. S w 0 01
O — S «1 *J
fl-O O— 'DVC
OOLUOXO 41 U) 3
(_oa>zcQa >u
— O— •SCO 1 — £31
>> i. £ - i • - o»a
XIOO CJ(8**(0 tACOl
CDJ:*- ^(ua) — «oo>w—'-fos
z o t- (Acoo wi h-ot-h->a — z a
0) «
a. a
U
                                                         c ^
                                                           Ii
Date:  8/31/82 R  Change 1  II.3-21

-------



CO

_

^

13
0
a. -^
TJ
_J CO
< 3
U C
CO J->
CO C
< 0
-1 0




<0
o
U bJ
_ L .
X<
O O
•t-oa
s
U- CO
o
CO
ZT ^
O UJ
— a:
<
NO
— Ld
o: h-
LJ <
I 	
oo
<0
a: oo
< 00

o
z
0£ —
UJ
KQ
< UJ
*\-
Ld O
h- LJ
00 h-


•o o a;
0) +J

•a

10
O
C —
(0 W 4-»
OJ O O
z: Q
OJ
•o





c
0
0 ._
c <•- o
co o o:
4
"°



V)
C
« 5
"i o c
3 a
Q;
•a



«
I_ Q)
Oj —
J2 W Q
E 0 E
3 CO
iZ t/1













4-*
C
Cl

O
a.






-J r— — _i o*\ — J r- co —i o— cor- — ocvi^so
a c\j — Q IA o — PO Q u
CO CO CO CO U







^— — — PI") O *O rO *
•\ vO • • f*-

^





QQ — cO — Q 00 Q CJ kT\ — O O Or* Cd CM • CO — O • * •
CQCQ CO CQ — O CQ O— ^O P 	 00
OJ C
y —
CM


c
o c
o c
-J -J -1 O -J O O— -J
QO f*- Cs M Q co Q — if\ — * Q \j
JQCQ— jf CO CD •• -COfO— CNJ ^O CO si
_J _J
it i i i o i i i i i ii a i


3
D O
D O
0 CO OJ O> • OOO - • • •

OJ -J -1
IOJ OQ Illllllll
CO CQ CO CO
aa 	 aaSaa— oo a oo — -CM -o -CM •








WroOCMifMn— «vifOrOMO*0 OjfO — O OJ f








aocOoooocooocooooocoooaOoo **? co f^coro f





0)
(0
CO
4-i C
OJ J= 0
tf) 4J Q. jQ
-JO co <-
N^ 	 	 — . CO
Ol C CO — O
3. co JT >> o
a*J X l- i
jC O 0) "O •
« O Q-C C >
4J C — 0) JC
C — — >> N
(0 E >>£ C *Q
*J "D >> 3 S S 6 (fl -P *J 09 O
3 CCU— E 3 >» 3 3 OJ30) WfljjaO) *J
— CO O — — 3 — t- ! 	 t-— U^l OCOC CO
— EC 	 EQ) 30)C(U— colf\J — OJt-0) C
O W5 — OJ >» E O Q.T3 CJ JC 0) > — O — C •»- WNO3 OJ
o 5«coooo_n:ztrtcnh-N woco OCQOH- —
— Q) JZ 1- CO
X Z 0. < • X
o
h-
— O






OM_ 	 ^0 ro OJ M OJ ro 00 1^- VO








omco COM vOMMroCMfOCOOOsO








C ^^
CO O1
£ S
(D
E W)  —
L.3 -P O «>
0 — 3 (fl *J
- E «•- — —
ci-o o— -ocuc
CJO^-WOXO CJ)«3
woajxcoa >oj
— O — "DCOl — CX
>)J-jZ — i eo — o«a
I O O O (C J-» (D O C O1
rOh- cncQQ cfl h-Ot-t->O — Z CX
OJ O
a. co

o








































CM

-

 o
>* *J

"D O
ss
C U
•P-D
h
o —
._ to
**a
>>
n -1
CO
<£D
Date:  8/31/82 R  Change 1  II.3-22

-------
toxic metals were lower than typical values from active mine
drainage.  On the other hand, post-mining discharges from under-
ground mines are very similar to wastewater generated during
active mining.  This is because the mechanism for wastewater
generation is identical.  Nevertheless, these discharges are
subcategorized separately from active mine drainage because these
discharges were not covered under BPT regulations.

Since abandoned underground mines and reclamation areas at sur-
face mines are not actively dewatered and receive their water
input naturally, there are no data available on the amounts of
wastewater discharged from these areas.  Discharges from post-
mining underground mines are similar to wastewaters encountered
during active mining, therefore, the reader should refer to the
active mine drainage tables for characterization of post-mining
discharges from underground mines.  Table 3-6 presents wastewater
data for areas under reclamation.  These data are from self-mon-
itoring surveys and engineering site visits.

II.3.3   PLANT SPECIFIC DESCRIPTION [2-5]

     Mine 198

Mine 198 is a surface mine with a 1977 production totalling
218,000 Mg (240,000 tons).  The acid drainage at the mine site
consists of pit pumpage and seepage from old spoil piles.  There
is also some runoff from new disturbed and reclaimed areas.  All
runoff is treated in seven settling ponds dispersed throughout
the mine property.  Chemical treatment involves addition of
hydrated lime and potassium permanganate to all ponds.  Hydrated
lime is used mainly as a neutralizing agent and has a limited use
as a flocculating agent.  Potassium permanganate is used to
oxidize manganese and precipitate it as Mn02-   The effluents from
all ponds discharge to a creek.  Table 3-7 lists toxic and clas-
sical pollutant verification data for acid surface mine 198.

     Mine 21

Mine 21 is an underground mine with a 1976 production of 626,000
Mg (690,000 tons).  Drainage from the mine sump is acid and
amounts to 4,360,000 L/d (1,150,000 gal/d).   It is treated by a
process involving lime neutralization and sedimentation.  The
acid mine drainage empties into an equalization pond.  From there
it is pumped to a flash mix tank.  A small amount of the pumped
stream is diverted to the slaker where quick lime (stored in a
silo above the slaker) is added by a star valve to form lime
slurry.  The slurry is mixed with AMD in the flash mix tank.
From there it passes by a flume, where it received aeration, to a
settling pond.  The pond is divided into three sections by two
transverse floating baffles.  Sludge is pumped periodically to a
sludge lagoon.  At the time of the screening visit,  sludge was
pumped from the first section of the settling pond,  and the


 Date:   8/31/82  R  Change  1   II.3-23

-------
    TABLE 3-6.   WASTEWATER CHARACTERIZATION OF TOXIC AND CLASSICAL  POLLUTANTS
               DETECTED IN AREAS UNDER RECLAMATION [2-5]
Raw Wastewater


Pol lutant
Toxic pol lutants, ug/L
Metals and inorganics
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Si Ivor
Tha 1 1 i urn
Zinc
Classical pollutants, mg/L
TSS
1 ron
Manganese
pH, pH units
Toxic pollutants, ng/L
Metals and inoroanics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Ch rom i un
Copper
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 i urn
Zinc
Classical pollutants, mg/L
TSS
1 ron
Manganese
pH, pH units
Number
of
samples


15
15
15
15
15
15
15
15
15
15
15
15
15

16
16
15
16



lit
lit
lit
14
It
111
lit
lit
IU
14
14
14
14

15
15
14
15
Number
of
detections


13
4
8
6
12
14
4
1
8
2
4
3
15

16
16
15
16



1 1
2
5
3
8
1 1
0
0
3
2
4
3
14

15
15
14
15
Range
of
detections


66 - 240
66 * 890
BOL - 12
1 1 - 40
BOL - 120
BDL - 130
30 - 100
40
45 - 1,000
70 - 77
BOL - BDL
150 - 180
BOL - 13,000

12 - 1,900
0.24 - 66
0.094 - 12
5. 1 - 8.0
Treated


52 - 260
42 - 55
BOL - BOL
BOL - BOL
BDL - 24
BOL - 41


71 - ISO
42 - 77
BOL - BDL
12 - 140
BDL - 380

10-82
0.3 - II
0.077 - 6.9
5.5 - 8.0
Mean
of
detections


120
330
BOL
19
37
44
59

260
74
BOL
160
1,200

340
13
1.4
7.3
Effluent


100
48
BOL
BOL
12
17


1 10
60
BOL
58
71

30
2. 1
0.83
7.4
Median
of
detections


100
79
BOL
16
17
19
37

85

BOL
150
71

72
2.4
0.39
7.5



78

BDL
BDL
BDL
15


82

BDL
23
32

22
0.81
0.24
7.5
Date:   8/31/82  R  Change 1   II.3-24

-------
TABLE 3-7.   PLANT SPECIFIC TOXIC  AND CLASSICAL POLLUTANT DATA FOR ACID  SURFACE MINES,
             SUBCATEGORY, PLANT  198,  VERIFICATION DATA [2-5]
Pol lutant
Toxic pollutants, |ig/L
Metals and Inorganics
Antimony
Arsenic
Asbestos, flbers/L
Be ry 1 1 1 urn
Chromium
Copper
Lead
Mercury
Nickel
Se 1 en turn
SI Iver
ThaM luro
Zinc
Phthalates
Bis (2-ethylhexyl ) phthalate
Ol-n-butyl phthalate
Dlethyl phthalate.
Aromatics
Benzene
Ethyl benzene
Toluene
Polynuclear aromatic hydrocarbons
Naptha lene
Benzol a )pyrcne
Benzo (k)f luoranthene
01 benzol a, h (anthracene
Indenof 1 , 2, 3-c,d)pyrene
Halooenated hydrocarbons
Methylene chloride
Dissolved metals, ug/L
Antimony
Copper
Nickel
Selenium
Si Iver
Tha Ilium
Zinc
Aluminum
Tota 1 i ron
Manganese
Classical pollutants, mg/L
COO
Dissolved sol Ids
Settleable sol Ids
Total organic carbon
Aluminum
Chloride
Manganese
Alka 1 inlty (CaCo3)
pH ,pH units
Phenol ics (4AAP)
Sulfate
Hardness
1 ron
Raw
wastewater (a)

0.71
0.29
1,800,000
4.9
no
190
58
0.29
230
3.3
5.3
2
380

1.6
<6.l
99
57
>99
>99
>99
>99
>99
52
NM
NM
>99
76

NM
NM
NM

NM
NM
NM

NM
NM
NM
NM
NM
25

29
>99
17
NM
NM
NM
28




NM
NM
>99
>99
99
NM
40
NM

>99
NM
NM
>99
      Analytic methods: V.7.3.2, Data  set 2.
      NA, not analyzed.
      NO, not detected.
      NM, not meaningful,
      (a)Data are averages of 5-day samp I ing program.
Date:   8/31/82
Change  1   II.3-25

-------
effluent from the pond was discharged to a creek.  The lagoon did
not discharge.  At the time of the Verification visit, sludge was
pumped from the third section of the pond, and both the pond and
the lagoon were discharging.  Aquifer drainage [150,000 L/d
(40,000 gal/d)] is pumped from'the airshaft to prevent flooding,
and is discharged without treatment.  Table 3-8 lists toxic and
classical pollutant verification data for acid underground mine
21.

     Mine 23

Mine 23 is an underground mine with a 1976 production of 980,000
Mg (1,080,000 tons).  Acid mine drainage from the sump is pumped
to an equalization pond at the rate of 23,400,000 L/d (6,190,000
gal/d).  From there it is pumped to a flow splitter which sends
the AMD to one of two parallel treatment systems.  As the drainage
flows from the splitter to the aerator,  lime slurry from the lime
mixer and sludge recycle are added to the stream.  The mixture
then flows via a flume to a thickener.  The lime slurry is formed
in the mixer by adding slaked lime from a storage container to
water pumped from the flume.  The amount of water added to the
mixer is regulated by a level control box, and excess water is
returned to the flume.  The overflow from the thickener passes to
a polishing pond which discharges to a creek at the rate of
15,800,000 L/d (4,180,000 gal/d).  Sludge from the thickener is
pumped to an abandoned mine.  Table 3-8 lists toxic and classical
pollutant verification data for acid underground mine 23.

     Mine 188

Mine 188 is an acid mine drainage treatment plant.  The source of
the acid mine drainage treated by the plant is the creek next to
which it is located.  Upstream of the treatment plant acid mine
drainage discharges into the creek from active and abandoned
mines.  Also, runoff from undisturbed areas and from refuse piles
empties into the stream.  The treatment process is a complex
process involving primary settling, lime addition, aeration,
flocculant addition, clarifying, thickening, secondary settling
(2 polishing ponds) and sludge drying (2 non-discharging ponds).
Effluent from the second polishing pond discharges to the creek.
Normally the entire flow of the creek passes through the treat-
ment plant.  During high flow periods, water is bypassed around
the plant and discharges into the first polishing pond.  Lime is
hand-fed into the bypass stream to raise the pH to provide excess
alkalinity in the final discharge.  During floods the excess
water is directed untreated back into the original stream channel
to be treated downstream.  Table 3-8 lists toxic and classical
pollutant verification data for acid underground mine 188.
Date:  8/31/82    Change 1  II.3-26

-------
     Mine  190

Mine 190 is  an underground mine with  a  1978 production of 315,000
Mg  (347,000  tons).  Two  shafts are the  sources of the acid mine
drainage.  The drainage  from the  first  shaft  is  fed  into a reactor
mixing  tank.  This tank  is used to mix  hydrated  lime with the
mine water.  The effluent from the reactor tank  flows directly to
a settling pond, a Dorr  thickener, or is used as process water in
the preparation plant.   The settling  pond effluent and the prepa-
ration  plant wastewater  in turn flow  to the Dorr thickener.  The
thickener  overflow is collected prior to discharging to the creek
at  the  rate  of 64,300,000 L/d (17,000,000 gal/d).  The untreated
drainage from the second shaft is discharged  to  the  creek at the
rate of 53,000,000 L/d (14,000,000 gal/d).  Table 3-8 lists toxic
and classical pollutant  verification  data for acid underground
mine 190.

     Mine  9

Mine 9  is  a  surface mine with a 1976  production  of 2,180,000 Mg
(2,400,000 tons).  Pit water is the major source of  the alkaline
drainage at  the mine since the lignite  seam is an aquifer.  The
AMD is  treated by a system of flocculation and sedimentation.
Prior to entering settling ponds, two types of flocculant are
metered into the drainage.  One is a  cationic flocculant which is
added at the rate of 94,000 L/d (24,800 gal/d),  and  the other is
an  anionic flocculant which is added  at the rate of  20,400 L/d
(5,400  gal/d).  The effluent from the pond is discharged to
surface waters.  Five ponds are nondischarging,  and  no flocculant
is  added to  these.  Table 3-9 lists toxic and classical pollutant
verification data for alkaline surface  mine 9.

     Mine  10

Mine 10 is a surface mine with a  1977 production of  384,000 Mg
(423,000 tons).  The alkaline mine drainage is the result of
surface runoff and pit water.  Treatment is provided by settling
ponds,  and the effluent  is discharged to surface waters.  There
is  one  baffled pond in use at the mine.  The  baffle  system con-
sists of a fixed baffle  at the influent end which causes consid-
erable  siltation, and one located at  the discharge stand pipe
which forms  a flume extending across  the pond.   Effluent from
this pond  is discharged  to surface waters.  Table 3-9 lists toxic
and classical pollutant  verification  data for alkaline surface
mine 10.

     Mine  11

Mine 11 is a surface mine with a  1976 production of  204,000 Mg
(225,000 tons).  Alkaline drainage [21,570,000 L/d (5,700,000
gal/d)] from the mine results from surface runoff and pit water.
Continual  dewatering of  the pit prevents acid formation, and the


Date:   8/31/82     Change  1   II.3-27

-------
10
LJ
Z
0
ZT
13
O
ce
o

LJ
a
^T r""p*
i
QC\J
(-
OO
u.
<0

0<
o
zu.
h- o;
Z> LJ
o •>
n _^
O
-10
o
CO 00
CO 00
^ ~~

o -
ro
QC\J
__
OCM
XCO
O LJ
*~ 5
OS
H^

oce
LJ O
a. o
CO LJ

1 	 ^
ZO
< CD
— 1 2
a. co


00
i
ro
UJ
CO
^~






IB

"1
(VI
ffi
c
"i















_
IB
N
_
Z























Percent
remove 1


&.
II
CD 5
£«
4J
t— 10
i


a
>s
co a
(C *J
M
§




CB
o c
oi i
0. *"


&_
o
"O *J
O (B
«*
(B a
^



a
>!
|i
U,
CO
>











*J
c
CO
4-

I
AAAAAA A AA'AA



^o o ooocy aoo euoo r-ooo oo ooooo o^or«-ocj — f-oo — roowoMO — oo
— ZZZOJZ ZZZ ZZ -Z — — ZZ ZZZZZ O\ -JZ • -r*-ZvO -Z -POOZ ZZ
%o vv -a1 *o cuir\ oo eoa- •
o




jr 00*0 o O(OQ oo Of—o o oooo oo ooooo o«o o — o\r- « or~-o o ZZZZZZ ' -Z — — Z • 'Z Z— VV • V 3C OOJCMO • • -J ZOJ • • - C* O — >O —
V V V O ...
o o oo
0





• *o.z*o^atc\ja-oz»o zz -z .— v v z • * «"\— oxO'^r'^'Co.i^.^O'^O'
C\J ON • ^ CO O\ PO ^V to^ PO OO\OWO3''1oco-CM— *O
o v v v • o o
0

0)
CO
— (0
CO ID
5 * — X. »
£ CO 0) (fl — O»"O C
(0 o.— +» O O E— O
O CO CO — O A — .O
_l _ — *^ — 0) 4J T3 CO * ° MU
oiw >»££ « £ r S ** — 3
3,0 X a*»- 0 0 E C « -
i_ a)£fo — — co— oo
** § — ^ °*** » "§ "c 3 « C 2
C— >»N — £ E co »- — _« » co E— c
2-OX3S E «5§** "SoCWXOrX— OO jDI-E 3«C3 E°6
3 C C O— E 3 0) >> 3 Q ffi£ 3— *» d- o Q) CD I CO CQ £ Q. > nOS E ~QJO> 3— 3 E
— CO O- 	 3— L. 1 .Q>» «O— Tl 1 CD 1 I 0 0) C 3*i«C"OXE — — 3
— EC — — SO— 30>Ca) cocy— l£ Cl->> — eoitoweo — — 	 — C — — 0>eo.flO.3 C — -O —
O«~«>.EOQ.C'OO^CQ)>O — *->»C *J OOJC O £ « -P E -W « » -WcOEOOeoCDi>, — « (0 1C «-
Q.— *JWt-*oUQ.(Oeot-O — — C (DM4JIO} O — ** — CL -M — E a o*>OCO*i*»3L- — AO)C— **O C *a *» C **
O*i«flStJOOCJ— 'ZZWtrtN ^fflCDOO — OZ <0
-------

to
UJ
z
EQ
Ul
j-* — »
U W
zz
OH
oiz
oo
ceo
UJ^
Q
z —
u in
Q(M
o'""'
«
£C<
OQ
u.
Z

o •>
CL ^"*>
o
_io
<-
o

CO 00
WOO
3~
0 -
CO
Q C\J
Z
< -
OCM
X W
OUJ
HZ
us
u.
	 >_
oce
ui o
0.0
WUJ
H
H<
zu
Sm
_j ^
o. w
00
fO
UJ
CO
<

*» —
£?
ei
a, g,
a. i.

t.
a u *
. .0 a
3a>£
= ss
-K «
0 S
: •*
C

L.
a>
*>
l!
"
>


4J —
C CB
V >
2%
££


u
0)
o *»
o> a
- ro S
to 0) *
« L. U
o"*5
s

1!
:
E ,.
o
4J
•fc ?
7 -
tD CD
C£ **
tf)
t






*J
C
t
4
i
xorrrz^rz h- ITM^^ rr
Z ZZZZlAZZ ^ -CM ZZ






cotr\oirtfo\oor»^oo eoo^o I^NO
PO lf\COPOlft'O • • Z (V to — —- • •
o







2T JTOJ >Z\OZ OC\lOtTt \OQO O C
z^o — zz*z*zco ^ z z zz
Iro (M V
o






J IT\ V
10
c
o
0) A
+> t.
— o
co O
** "D
£ O >
M Q.*J £
o »
_J— ^—0 o
V. C — CO ** —
CD TO X-C IA>> — COC
— c— E CD 3 a; c o— oro i r ura
o * CD >» o a-o o jc Q) > — a — — c *» > ** i
a— wCuacot-o 	 coC « « i » oai
COt-CDfOOO— CD — £— f — — — >«J
O*J05'"0v
— '^COOS ~
CO





O^OlT»O\O\ONOOO S^I^^^^^J*! 5 21 5
o\o\oooo\ovcoo\a» o\ o\o\ eoze> z «z
A A A A A A






oo or-^ooj-ooso SS^S^S^^^^SSSz-
^Z 3C^ . ^ Z uT\ ttl O\C Z *** *Z '^ • • * •VOr1">OZ™-
zz z ^zzif.o«vo ^.^ 0 ._or.WWOCM
° 0






oo .oocoina-oooo ~g«Svo"ONOX>°S2~ozS
zz «-*" KSSS *§<0|e;mcim«ZK<:jWirZ
lM~oCm ^



-1
» i1 £
o E O
-0-1 „•= ^
« 2 ^ « 5i - P
Ik2 -=° <«S
° ° . - 0 0 2 00
. _ i- ^ o w— «* O"-
•E« -, c ' .S -~ = 3x
?li s§s ess 1 -fei5i§s.£s;l
: S's" Sz2,._, g-g | S =zki! i"£
i goit ?xS8j;,,!;s 02.5sis? Hslia
» o — « >ti_o.o— cs*»e 9"'!2i;S=7£^-? = s«Tir:
i £6S oSSSzwSS^! 8sS2«£;5£i£3?SS<
CO W
X «>
0 0




































E
*
O)
E
a
«0 e
+i —
S f
«
a ia
I |
* i
(M **>
j o
UJ
ilytic methods: V
, not analyzed
, not detected.
, not meaningful.
) Data are average:
SSiii
Date:  8/31/82    Change 1  II.3-29

-------
drainage is treated in settling ponds.  Discharge is intermittent
depending upon rainfall.   Table 3-9 lists toxic and classical
pollutant verification data for alkaline surface mine 11.

     Mine 18

Mine 18 is an underground mine with a 1976 production of 544,000
Mg (600,000 tons).  The alkaline drainage is pumped from the mine
at 927,000 L/d (245,000 gal/d), and is treated by a series of
three settling ponds to remove suspended solids.  At the time of
the screening visit a flocculant (stored in a 55 gallon container)
was added to the drainage between pond one and pond two by drip-
ping through a spigot.  At the time of the verification visit,
flocculation had been discontinued as new land had been made
available for larger settling ponds.  The last settling pond
discharges to surface waters.  Table 3-10 lists toxic and class-
ical pollutant verification data for alkaline underground mine
18.

II.3.4   POLLUTANT REMOVABILITY [2-5]

Full-scale treatment methods that have been cited in the litera-
ture, but for which no data were presented, include:  neutraliza-
tion sometimes followed by aeration and oxidation of Fe  (II) to
Fe (III), reverse osmosis, ion exchange, settling, ozonation,
mixed media filtration, and engineering design (planning) to
prevent acid formation (entailing oxygen, water, and contact time
exclusion).
 Date:   8/31/82    Change 1  II.3-30

-------


LU
O

u_
«
Ld
Z
-Jin
< i
<<
o<
1J.Q
HO
OH
HO
1 	
325
i -s^
— i ^
o
0- t
_l —

o
coo*
(O —
OW
Z LU

OS
H ce
o
OO
— LU

00
LU CO
o-rs

HOO
ZLU
_l —
^•s.

o\

ro

LU
CO
^
K








!
E











~
-
»
X














„_
ce

O
i
X


















c'w
|l
L.
«2
Treatei
ir wastewat
Gi

i!
§



S?
0 0
L. g



t-
0
IP
CD 0
0 *>
<- U



03
CD
11
!
f

C«
09 >
II



*2
0 CD
IS

ts



0)
>s
eg
>









C
1
s
ii^ i iiiiii ii iiii iiii


ZZOZZZZZZZZ ---ZZZ ZZ ZZ— Z Z 	 ZZ
— V V V V V V





0\OSJT CMeOOsC* ON Z ZZ
A A A A A



ooirtot\jtnr-oooo r^oh-rooo oo oooo ooooo
O V V V




mmvOO(Mh>0— iT\O^ P-OOt-QO OO OOOO OOOOO
torn— Z — CO— Z. • Z — . ZZ ZZ ZZZZ ZZZZZ
. . . CO — V —
OO O V V



°iiS " § I i ii ii





CVI*O"1 OsO C\J O fu O VOO OOOOQO OO QQQO O^OOO
— .soeoztnz *z <2 rz — xxx xx xxxx o — z — o\

m o o v j. wa





r.^^^g^o.vDoo °°siii ii iiii SSi^S
" * £5 V




a
?
"a. »
*> *» C 09
i^S 25= o
O co a 09 « — N i« CC
_l — — £ _ Q) *j — N « 	 09 OC0
*-.C — •weo*JcoeBc«c'- OO*- NN
Cn a X£ £ co — JE -O 0 -D CC C CC
io x a*j— eo *J en >» o a> i aia>
i- V Jtw££ 3O£ £JC O JS£)
- o £ — Q..C *J a o t. — a o. i opa>
**C —X *>£ 0 O >i Op p i- *- C
C— >>N — £ Q.— E— C f-fc t OOD
STJ x e EE «*£ I ^a- 2" S o£ — — — ZZc
3 C C O 3 >> 3 3 0)0)^3— >>CJ — Q. C £ C V>OUUO)09
— IB O — — «- t — — t- — wi £ >»£ O CO— — O — — O C — ~ .0 C
— SCEO 30)CO>— co (M — 1 £ ** 1 QJ 1 O 091O co O O ~ Q) O O - 0)
o w - o o a-o o je « > — o — — X c *> « c o- i — i *» c i ^Nii>>3
O^)«UU_j£Z(rttOKN *» CD ffl O O O O *» « — 0} CM O. (V a1 O 03 — — W 1-
xl 1 i £ i
o
K
iiiiiii

V V O V V V
V
	 ZZ — ZZ
V V V









OQOOOOd





iiiiiii











iiiiiii







o oooooo
ZZZZZZZ



«
§

n
£ o
•D C
> . t
CO O >>
o c o a.
e&ss A.
.r_. ~.i
-0.— = C— -
— wNcoooae
OOC>->-C£C
|lli=!lt

Date:  8/31/82    Change 1  II.3-31

-------
          Q
         Ul Ul
         
          o
         OO
         — Ul
         UICQ
         a- ^
         COCO

         I- CO
         ZUI
         >
O -C
— ii


0 0
c —
O JI
I?
a >

Jj
o
o
o
t.

Ul
*J
c

n

€


C
<0
«
0}
•a
**
S.




•o
X
0
a.
01

o o
c.~c.
c u u
- O « re
- 1 Q) «


-1
1


"
c
a
4J
3

I

-C
irt





2

O
(0

a
n
a
*j
> en a)



c
o


re
U

U

C W
re £ - C
Oi 0) E 3 C O
t- E w = C 3 £ 1- E
O=! E 0 - « 3 — 3 E
CS 3**C«-OXE — — 3
si! | o* III>a| c 5 Hi «



t\
"i


>


u
•a
c
a
S
u
e
!








tj-o"
V 0)
M -fc*
re **
M-O
Si

•o
CO
o

M
V
• Ot
^ (8
3 t-


c re
is
g.
0 (Q
*^-
Date:    8/31/82      Change  1    II.3-32

-------
     TABLE 3-10   PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA FOR ALKALINE
                  UNDERGROUND MINES SUBCATEGORY (MINE 18),  VERIFICATION DATA [2-5]
Pol lutant
Toxic pollutants, ug/L
Metals and Inorganics
Cadmium
Ch rom 1 urn
Lead
Mercury
Nickel
Se 1 en I urn
Phtha lates
8i s(2-ethylhexyl ) ph thai ate
Butyl benzyl ph thai ate
Arotnat ics
Benzene
Haloqenated al Iphatlcs
Methylene chloride
Pesticides and metabolites
Alpha-BHC
Beta-BHC
Delta-BHC
Classical pollutants, mg/L
COD
TVS
TSS
Total organic carbon
Barium
Boron
Ca 1 c 1 urn
Cobalt
Manganese
Magnes I urn
Molybdenum
pH, pH units
Sod I urn
Tin
Titanium
Total iron
Vanadium
Yttrium

Raw
wastewater


i)
30
50
1.9
13
ND

NO
NO

NO
<3.3
0.37
0. 13
ND

13
16
2.6
5.5
0.03
1.3
70
0.007
6
32
0.007
7.5
160
0.01
0.003
7.3-
0.013
0.013
Mine 18 (a)
Treated
wastewater


ND
9.7
ND
0.3
ND
1

<6.7
<3.3

<3.3
<3.3
0.03
0.26
0.07

14
71
3.8
5.3
0.01
1
65
ND
it
31
ND
7.8
150
0.03
ND
M.7
ND
ND

Percent
remova 1


>99
68
>99
81
>99
NM

NM
NM

NM
NM
92
NM
NM

NM
NM
NM
U
NM
23
7
>99
33
3
>99

6
25
>99
36
>99
>99
       NA,  not analyzed.
       ND,  not detected.
       NM,  not meaningful
       (a)  Data are averages of 3-day sampling program.
Date:    8/31/82      Change 1   II.3-33

-------
            11.5  INORGANIC CHEMICALS MANUFACTURING

II.5.1  INDUSTRY DESCRIPTION [2-6]

II.5.1.1  General Description

In terms of Standard Industrial Classification (SIC) code
numbers, the major industries included for application of
effluent limitations, new source performance standards, and
pretreatment standards within the Inorganic Chemicals Manu-
facturing Point Source Category are:

               SIC 2812 - Alkalies and Chlorine
               SIC 2813 - Industrial Gases
               SIC 2816 - Inorganic Pigments
               SIC 2819 - Industrial Inorganic Chemicals,
                          Not Elsewhere Classified

Table 5-1 presents industry summary data for the Inorganic Chemi-
cals Point Source Category in terms of the number of subcategor-
ies defined for study by Effluent Guidelines Division (EGD), the
number studied by EGD, and the number of dischargers in the in-
dustry.

              TABLE 5-1.  INDUSTRY SUMMARY [2-1]
          Industry:  Inorganic Chemicals
          Total Number of Phase I Subcategories:  55
          Number of Subcategories Studied:  11

          Number of Dischargers in Industry:

               • Direct:  630
               • Indirect:  120
               • Zero:  0
II.5.1.2  Subcategory Descriptions

Based on results of toxic pollutant screening and verification
sampling and on evaluation of applicable technologies for dis-
charge control and treatment, it has been recommended that
effluent limitation guidelines, new source performance standards.
Date:  9/25/81                II.5-1

-------
and pretreatment standards for new and existing sources be pro-
posed for 11 inorganic chemical manufacturing subcategories.
These subcategories,  described herein, include:
          Aluminum fluoride
          Chlor-alkali
          Chrome pigments
          Copper sulfate
          Hydrofluoric acid
          Hydrogen cyanide
     Nickel  sulfate
     Sodium  bisulfite
     Sodium  dichromate
     Sodium  hydrosulfite
     Titanium dioxide
Additionally, 3 of the 11 subcategories may be further subdivided
based on process subdivisions as follows:
          Subcategory

          Chlor-alkali
          Titanium dioxide
          Hydrogen cyanide
     Process  subdivisions

     Mercury  cell
     Diaphragm cell

     Sulfate
     Chloride-rutile
     Chloride-iImenite

     Andrussow process
     Acrylonitrile byproduct
In addition to the 11 subcategories discussed 44 subcategories
have been recognized and recommended as candidates for exclusion
either under Paragraph 8 of the NRDC Consent Decree or for other
reasons.  The 44 additional subcategories are:
          Aluminum sulfate
          Ammonium chloride
          Ammonium hydroxide
          Barium carbonate
          Borax
          Boric acid
          Bromine
          Calcium
          Calcium carbide
          Calcium carbonate
          Carbon dioxide
          Carbon monoxide
          Chromic acid
          Cuprous oxide
          Ferric chloride
          Ferrous sulfate
          Fluorine
          Hydrochloric acid
          Hydrogen
          Hydrogen peroxide
          Iodine
          Lead monoxide
     Lithium carbonate
     Manganese sulfate
     Nitric acid
     Nitric acid (strong)
     Oxygen and nitrogen
     Potassium chloride
     Potassium dichromate
     Potassium iodide
     Potassium metal
     Potassium permanganate
     Sodium bicarbonate
     Sodium carbonate
     Sodium fluoride
     Sodium hydrosulfide
     Sodium metal
     Sodium silicate
     Sodium thiosulfate
     Stannic oxide
     Sulfur dioxide
     Sulfuric acid
     Zinc oxide
     Zinc sulfate
Date:  9/25/81
II.5-2

-------
 VO

 CM
 CO
 Ul
 1
 I

 i
 10
 (0
 S
 5
 tc
 o
 M

 iTi

 Ul


 5
          i|J

          si!
          5C
 000


 c *» u
 T«a
           Si
k • —

B **->



\\&
 Is
          3a
       I ||l  Sfo   | SJj.



       I I I I I I I I I I   II


       S 8»800gf:>'lR  ga
       tT\ —  0   tft"~  tf  ™O
                SI SSSSSS
       I lllll  111  II
         SQO«  <  — P»t*\  «M
         Sf*.   _  _ey  CM*





       I lllll  fill II

                1N«r»Q «
-------
VO

CM
OT
ui
OT


5
•a:
 o
 OT
 K
 Ul

 Ul
 a.
 CD
 ro
 Ul
!   1
s   :
5
          I

          i
          k
          2
                  e

                  !
                          si  2
!
8
"k
A

i

?u

Is
                                I!
                                i:
                                   i 1
                                   I 8

                                   1 i
                                    — o— o  —
     sss
     !i!
     o— o
    isgs
    k k>
    2|8
    iff
    *» W«J
                ill!   111!!!!
                                      S
                                      5
                                      S
                                      •
                                      a
                                      s,
                                      >
                                      S
                                      2
                                                  2 2
                                                  5 S
                                                  S S
                                              32
                                         i     i
82
•!•
S S
82
33

I i
k k
82

il
M «
S S
                                      H
                                      a
                                      «.
                                      e
                                                  a  a
                                                  t.  ^
                                                  o  e
      22
      82
      ss
      • •
»
88

28

22
ee
22
                                                        28
                                                        SS
                                                        aa
                                                        *%
                                                           !!
                       H  Jll
          «C  .0 .  • •
          u»  2°2 2 2
          2r  2°2 8 2
          5°  S S S S
22 8§2  8  2

** WOtf  «  M

C 0 C C  C  C
•A * •  •  «
**  M *i  **  *•
3 >k 3 3  3  3


I? I I  I  1
          2.2- 2 2

          i; i i
          *» V +» M
          <* *» «• tt
          52 S S
         S


       +  M
       S  S
       •»  «

       S  8
       e  2
       a  a
               If.-e ! I !
             « 2|82 |T>| |T

             8 '?£* '8* '!
             22  I 222 IJ
                                          8  .       2 5 i  8    8 £?2  I. g
                                         iiisd .IS • Ih JH  ^ £^  iisl
                                         fl"e?g22fe? » |ps II,I  s,,c€  slis
                                         «.Sl«»i».I«*e I«l*  mil  sm
                                                                                  .
                                                                             >s? >«
                                                         L«  |  52  2  2
                                                         i—  on c • •  v  •
                                                         , k  Cv— •£*••—  »*-
                                                         to  c—mmom-oa  ** —
                                                                             ic^°*
                                                                     2« • « — — — — — — — C*-<" P O
                                                                     tttt*f^vw9vv m — — c c
  Date:    9/25/81
                            II.5-4

-------
ec.

t
to
 I
UY
 oo
             t-N

             §i
                  S


                  i

                  8
1   !
§   •
ii
       S -
                e  2
              2 1 22
             8"_< *k
                                |

                                !
                                -5

                                !«
                                ** O
                 S3
                 If
                     I i
                     "u ^2
                                    3  3  C
                                    228

                                    L-e\ s
                     i!4

                     4* • 4t • 41
                     iiii i
                     4* 4*4*4* 4*


                     1^3
                     i8ia i

                     Ch!C

                     KK e
I |!|!  J|fI I

2 222   2*2

2
8
S
•
•
at
*>
3
3
tf
£
|

I
fc.
4*
|
;
•
«

|
a
«.
o

2
S
S
*
*
at
">
3
8
•
*J
8

I
I
S
|
S
•1
tJ

1
a
w
e

.•
8
S
•
•
at
*J
8
8
*•
g
8

&
fc.
4*
41
S
•*
•»

jj
a
V
o

s
8
!
«
1
"5
8
8
M
g
•
41
3

&
t.
8
i
.
.

g
a
V
0

ss
88
55
• •
|l
^">
S3
88
•t •>
SS
88
3 3

ii
(. k
88
If
is
*j »
• •

si
aa
ww
oe
1
|

ej
-s
"*
*• o
»x
ii
•» —
S3
it
» o

^
itev*ta
Iturnad
S
.2
«
«X
i8
0.1-
tl
                                                i
ii   !l
   e   22
raa
                                                   Zi e e e e
                                                   81 8 8 8 8
                                                   S! S 3 S 5
                                                          S| g 3 3 3

                                                          83 8 8 8 8
                                                          M t « M •* <*
                                                          4*  4> 4* 4* 4*
                                                          S2 S S S 5

                                                          =» 2 I = I

                                                          iu i I I I
                                                          <.§(.{.<.(.
                                                          « V • * • C
                                                          **— 4* *» *• **


                                                          «S M » * «

                                                          «| S S



                                                          fi I I i 1
                                                          a  a & a a

                                                          o- oooo
                                                               I & !
t Q    £<——•»  K  —  —
28, , 2382  5t,2  5,

Hi 1 H»  «>  »l
'Is S *£^*  *8*  *S
2222  2  222  22
                                                                I!!
                                                                8*8
                                                                SSS
                                                  ?i.
                                                      8  S
        i-.Stiiluiil>-C5eaC--  a« 8         ia^Xix»*uC o ECi «?  5 a   cc  ^SsitS'-p-oS
        cI*xN&zrN»"«!** 3«ffi!  ,f     Ii-|g83x£s r iai xlse -22-"  *-*isl§ls:2
        i-s|a3feSc3e.z^l|28IglX83  ol     uo^xS8-°€3,2cc«£ g»p :ss!i  i!i!«scii^£

        IS-!liilihll"«M!!^s« "tl ! !ISsjESiilai=llll"8|!l -s-s"s  s:::iii!in
        !25lEll£||s£fi55355i|SS|tr lit I S22iSl*2|ttS|||SS5?5*t ?tiS5  888S?i9«?ii
        
-------
3
C

JJ
C
O
u
w
LJ

5
o
o
LJ
O
CQ
(A
LJ

O

o
§
o
ce
0
to
oc
LJ

LJ
ce.
<
a.
£L
O
in

LJ

oo
111!
8 * S 8
2222

2
S
S
•
1
2
s
1
i
M
£c
»8
-f
ft°
0>t
| |
i I
Ct-'Cu
t» ** *»**
|S55
ft ft





i
M
S
                   If  Iflf i
                   i:  1:1:2
                   !i  till I
                                     * tt t» **
:   :i  :§:= :
e   o a  o vo o* o


o llss  8282 g
5 88*1  "I'l 5
2 222   222
 § '
 i s  .

.5 1 5l  s „
•t2v lS»Sw.JS«5
uoo| •»-s--e"  •
                               S S 5 S
                               8383
                               S S S !

                               A A A A
                               & a a s

                               I i i I
                               3388
                               M « M M
                               £ S S £
                               8338
                               3333

                               i i i I

                               8838
                                  M M M «
                                  S S S S
                                  a a a a
                                  w w k w
                                  e e o e

                                  I * I I

                                1 fill! i
                                  J'S'S" "
                                  22222 2
                                            33
                                            ss
                                                          38
                             iS
                             55
                             ii
                             iii
{j|
 22
                                 |
                                 (.
                                 A



                                 1

                                 M
                                                              S°
                                                              • X
     *:
     !!
It
a«-
O B>


111
                CSS
                388
                5 S S
      as a

      II i
      82 3
      .£ .
      44  **
      e 0 c
      i: §

      !!!
      85 8

      III
       s s s

       888
       M M M
       ******
       c c e
       5 3 S
       333

       ill
       t. C. L.
       838

       i i i
                                                    sf :
                                                    8? S
                                                    p c 5

                                                    :!:
                                                    or a
                                                         S  5  S
                a ft ft

                WWW
                o o o
                                                     8 1
                                                     0 <-
                                            8    3  Ii!
                                            |e:  2  s£0
                                            l°5  5_-^s
i
L.
3
  £,! |s§    i

i 111! ill if
S *£o-* "I* *8  8*8
22  2 222 22  222

        55
  _ e «i>. JIA-O |^0|§Q^§°  ••• 0 •••° •* oMOMSr0S'e** a • § • 0 * * *3
 S|g1gC|lile2t«s|>elx o.l I Illii|ii|21z}!lla8!8"li 522g:
  SC CjZ 3 •» — — «£38QCQe—• — t C • U O O— OJSJS8tfc-CotCC C—— «£ ft C nb k n«
  wo£-
-------
 T3
 (D
 3
 C
 C
 O
 U
 cc.
 o
 O
 |

 CO
 u
 o
ce
o
ac
o
 co
2
 a.
 CO
LU


CO
                   |


            i     Hi
                 I
               11
               11 -i
                                    2 2

                                    fJBc
                                 s
    ii
    ** 9
    if
    ** *j

    Is
    £>.
    M
                                 K
I   t-,
S **22
a .HH
" SS'S
2 552
                                    £|SS

                                    III!
                                    llll
                                    twt.M
                                    2121
                                    £ 3S 3
iiii
0.1. 0.1-
o we §•


hi!
8«8«
— a— a
         V
         xi —
         — — <•
                              we
                            «  UTI
                           ev  s— •
                           W-  p x **
                                              £ 2 £ S   22
                                              2882   88
                                              s s s s   ;?
          S, S 5 |


          i i I I
          o o o o
          41 *t 4* t»
          M « M M
          «J ** *l «J
          C C C C
          3333
          3333


          1 i I i


          2228
                                               S S S S
                                               M M «• «
                                               O O O O
                                                ft i
                                               SSSZi
                                                        an
                                                        ss

                                                        is
                                                         33
                                                         88
                                                        ?!
                                                            !5
is

22
    oi

    Ii
                                      ,.52222
                                      81 8 8 8 3
                                      ?° S S S S
                                                                   £3

                                                                   If

                                                                   82
                                                                   .£
                                                                     8833

                                                                     8882
                                                                     M M M M
          3* 3 3 3 3
          3X3333

          i| I I & i

          •5 8 8 8 8

          iil i I!
          12 S 5 5 S
          • • * M M M
          M-O U M M M

                                                                                |

                                                                                I
                                                        I
     3


     i
     c
     8
                                                     1    II   ii  i l|il  111  if
                                                                S 2
                                .   'S'
                                I 222
                                            !    i
                                            s    s
 I   I
fill!
22! i«
                                         s .
                                         PI
                                                    T.  .
                                                                         8
                                                                         S    •
                                                                         as   2   s
                                                       ** x5!
                             iSS.  "S S H*!
                             = —C3X U99 — — — — •
                             jS|t! ill S S2ii
                              3SS S   i 53
                                                              = ~Z2
                                                              "22-"  '-
                                                              S88SI
                                                                »
                                                                          ------cCi~ a o
                                                                                 — — C C
Date:   9/25/81
                                    II.5-7

-------








•o
to
3
C

C
o
0
u
K
8
Ld
1
CD


_l
"
S
Ld
X
(J

O
z
o
o
oc
o
u_
a:
Ld
i-
PARAME
H
a.
ro
i
Ud
_l
<
r™





i
1
c
i
t
|

i
(
(•
8
N

i
>
!


i
a
i
i

|
3
i
oc
O"


*,
S i
1 "
3
O -
2 '
a
J£
c •.
to a
*j t
3
_
— •
£
EC
3
1"
i
j
)
.
i








i
9

J


i

i














u
s
s
0

A
*
1
o
4^
M
C
a
44
3
z
i
0
1) 44
1 9
D >
i 4J
1 *
gM
0 «
i S
&
w
!
s s ~ ? !
32 8 ° S *
S S S S
M
5
„ "•
• I
•, O M
! a, 2
!.. iUi
3 — — M U 0 (I'D 0
0 1- 0 — 4) 0 644 « — e+j
.JefrHhifii
l|iijii£|fil




















M
t_
8
S
0

A
a
at
">
a
c
o
4*
M
C
8
~
i
0
i
i
0
a
k.
o
1
£ S. S





1 8 .
20— « w 0
0 44V 0 0 M 01)

"wiSxSp'o
* 3£ £— O.3£ M
^ M OW 0 «• O 3
0AV4?g-S|2£
c g *- « S S'Q
||||=||£=l
"isl^01";!
















|
!
u
A
1
M
0

P
** O
Sx
OTJ
(A —
c e
I!
— o
S8
i!
44 V
'!
0 X
ao
££- a
MM "O





Us

£28
IH
x;8
I«2
















« m
! !
u u
A A
« •
i i
M M
0 0
*J 4444*1
!s!s
4J O *• O
0A 0A
M— M —
c8e8
s|s^
— o— o
ss-s
hh
HI!
«8£8
0 >.* >»
jjijji
a<- a>-
5858
U 0 O 0
M— M —
S S








7»—
••s s
F!




















|A
U
O
44

0

|
">
S
4*
C
s
~
i
1
*i
i
1
a
1
u
«
i





0
44

-of
u o*-
Illl




















!• S £
0 00
44 44 44
s ; s
0 00

A A A
i .11
I i i
8 88
M MM
C C C
*> 4J 4J
3 33
_ — — _
i i i i
8888
i i i i
+t +> +> 4-»
5 ? S !
M M * M
0000
a a a a
o o o o
0000
8 ^|*S* *





..| J8 S

|x|H2oi -
Alllll^'


















s
C
A
£i Ii
44 44 — *»
SS ?S
00 V
— — 44 O
55 S>
52 "S
> > 44 A
SS S-
33 | S
9
MM M —
c e co
S3 5 o
33 3 *»
— — — •«
ii iS
Si i 3
• 44 44 44 0
11 I"
SS S|
U) M M U
00 0O
a a a —
o o 00
ii i!
55 5 «
O U O
ii ^1
ii I




i
i:» £5
p p— 000

ill M*
ff=fl!
O
44
M
C
<0
3
z
i
8
I
44
S
M
M
a
w
o
1
8 S5
3. SS





| .
— 0V
M 030
p— u at)
Jiisj
MMAMtf


































|
a
V
irved
irved
lischarge o
S S^






•Q-Q

'-^
3 3
Date:  9/25/81
II.5-8

-------
•a
d)

c
c
o
o
M
LJ

a:
o
o
o
CO
CO
5
Ld
X
o

o
o
cc
o
cc
o
w .
ce
ui
ce.

Q.
Q.

CQ
oo
                   I *
    8

    4*




    i
  111!
      S  8
      2  2
i!
                    3


                    i

                    0
                    44



                    M

                    5
                                          ""
                                          do
                                                           O  *>|A
                                                           r  -.8
                 |   88

                 a   a a


                 i   I.!-- i
                 M   M 44 I* 44 •
                 Su  SSC5 5
I!
!:
                 i£
                                at.


                                o cr
W Ol*» W «•

e*t c^ e

• o « o «
44 44  4*
3 O 3 O 3
— 44*44 —
                                    0303 0

                                    JS|£ |

                                    SSS2 S
                       JS S
                       - o- «-
                    I   *j  III! |
                    8 ||11?  8'8' S
                    ' SS'I  '!'! '
                    2 222   222
S _
L B-S.O

i=nis»


Iheis
S2S|£|
;§  §1
                    3SiS8582 |xJ



























I
2

2 S
8 S
S S
« 0
A A
Dt 01
> ">
2 2
8 8
•» M
44 «4
C C
8 3
3 3
I 1
fc. t.
8 8
ii
M »
S S
« *»
M M

i! i
a a
V. *-
0 0
1 e
dlscha
served
d 1 sah*

S
.
41
S
0
2
Ql
>
•
e
3
•
44
e
s
3
I
L.
3
|
M
5
t*
0
8
&
W
O
1
1
22222

•t
1.
8
;
0
A
Ot
^J
2
3
V)
44
e
«
4*
3
I
L.
0
41

*
S
•
0
8
a
0
1
I
2
8 „

° 88
s;
0 0
22
* •
«_

* 11
° ..
44 4*
cc
44 44
3 3
11
b t.
88
ii
M *»
ss
(A it
M «
0 0

a a
00
??
HI
Sal
i.
A
!•:

?•
*
•JO
"•&
4* 5
g"°
II
V* Ot
44 —
C 1-
3°
!8
o-a
0.0
t £
83


!s
M
0 »-
ei
a-
0*
C 44
fjl
'IS
2 2
1*
al
Ii 	
t» " C " 2 S
s"
S°
;!
A
3.3
">v
• s
S3
.£
4*
C 0
3s
!!
*0
^i
eo-
41 —
K

H
55

§?
0."
o!
0A
883
5 5 S
0 « 0
A A A
3,5,5,
*> *> ">
222
8

. 4*
C
•
44

I
t.
S
I

s
JJ

1
a
v
0
8
^
44

5
3
i
t
8
|
•
S
*•
**
0
|
a
•s
000
| 2|S| 2*2
8 'Co' 'S'
2 2
2 222
8
S
0
A
*
a
"J
2
3
M
4>
e
8
3
1
l»
8
i
N
S
•
«»

ji
a
o
|
dlsctu
served
22










e
S"
_
I
L.
0
44
u
s
41

j>
0.
o
e
|||
222
8
S
•
2
at
^
2
8

41
e
3
3
i
t
s
|
•
s
*»
0
8
a.
0
e
8'
22
                               5   p
                32
                                        S        fge  8   S(


                          I8.S.5  S3 S 1|«  2C: C sis  Is^f]

                          fizBlslI? « |ls II!! I,,ei  Hist
                                                                         C— « « 3 0«-Q
                                                                         5l-p-0»>T3	
                                           0.0 £ OX-
                                                                                T9 O — —

                                                                               £u-Co3
                                                                               C33
                                       533
                              E5iS£
Date:   9/25/81
                     II.5-9

-------
•o
0>

c

.p
c
o
o
CO
LJ


CC
O
o
LJ
O
CO
 o
 LJ
 X
 o

 o
 o
 cc
 o
 co
 cc
 Ld

 U

 <


«
t
0 •
*»
s
0
A
*
>
S
0
M
*)
C
5
3
_
O
Q.
t_
8

<«
S
«•

o.
V
0
„ s „ •=
ME!
s * s s
£ £ S S


«•
i_
8
0
A
«
•J
S
O
**
M
C
s
3
~
a
i_
8
I
S*
M

O.
t.
i scha rge c
8.8
«
£
1
1
U
A
3
•o
»8
25
S*

if
^
si
s»

— o
*s
(_
81
II
SZ
M
g!
a>-
.,§
"I!
C L— a
SS'I

1 1
• *
1 S
(. fc.
A a
I I 2
2 S 8
L-L- s
-8-8 2
5!55 1
V S- —
*> o*» o >
&x&x s
111! 8
« « <*
siss s
29,35 i

— o— o —
Q.O O.Q 5.
t. *. i.
£^* a S
|§5E |
S 303 {
52S8 S
S2S2 S
PB i
ai-ai. a
vi^l v
SS |
•«•«• «
£ I £


«•
I.
8
S
«
A
•
^
S
O
**
•1
*)
C
s
3
~
a
t.
8

«t
S
•j

a

1
l!l
S *!
& Si


C 2
8 8
S S
« •
3 A
• «
•j •;
* C
0 0
tt 4»
<• tf
£ s
8 S
3 3
3 n
a a
t. t.
8 8
i i
• «
s s
• •
i i
a a
*. v
1 I
;Sj?
?SS£


2
0
**
S
•
A
•
•J
S
2
M
S
4
*»
3
~
a
L.
•
**
i
«
•
|
a
*»
I
»
S


M •
L. L.
88
SS
0 «
AA
5,5,

ii
o o
*» **
M •
*» *>
C C
* •
*> *»
3 3
~z
aa
c. t_
88
ii
ta ••
SS
M *
M •
ii
O.O,

II
^«
££
|
|
i.
•°
i
T3
-8
5?
*>0
a.
0 X
ii
<* —
II
«A OI
3 —
Z o
A>
1.
*S
if
|E
»s
fi
a(-
>.§
i scha rge <
pleted Hi
rved
"s

*»
** X
-1
5S-
•="1
51
P
Is
'JTJ
c e
883
°:£
c«
ma
5J
-i


8"
8l
S2
52
a
t. •)
a
o —

i '=<



«
u
8
5
0
0
•;
S
o
**
M
*>
C
S
3
~

a
L.
8
i
i
«

a
V
Is
'••
5™
£


• w
L. t.
8 S
S 5
« «
5 S
•j •;
S S
O O
*» *>
• »
*» *1
c c
3 S
3 3
_ _
a a
t. k.
8 8
i i
s s
M M
0 0
e e
& o.
V fc-
i 1
'S'
£S£


M
8
5
0
1
>
•
C
8
„
**
C
*>
3
«
a
t.
8
i
i
<•

a
Q
1
l!
•0 0
«
£S


W
t.
8
S
0
|
>
C
O
**
u
*)
c
*l
3
^
a
(_
0
**
i
i
«
M

a
Q
1
s=s
K£|
                                                         S        55«  i  i«  -D  •
                                                     « • a C  e   « p are  i  au  —  3
                                                     » v M a.  5   M c p~  5 • c • e ^  *
                                                             °5 3 ~e5  -Seiroi-p-uBfl-- e
                                                                • •o-o ti  -a-t a«4>oC»-o-xo_«
                                                                EOUCM  ««•••• •••••-i-ioS
                                                                litlS  S«!S-------|52go

                                                                sssls  Ilililliiii^ii^N
 Date:   9/25/81
II.5-10

-------
        TABLE  5-3.    BPT  PARAMETERS  FOR  INORGANIC  CHEMICAL  SUBCATEGORIES  (continued)
                                     Subcateoorv
                                                                Ptlly
                                                                                   of product
                                                                                 SQ-Div averager a*
                         Aiuminum fluoride
                         Chlor-alkali
                           Diaphragm col 1
                           Mercury eel I
                         ChroM pigment*
                         Copper suifate
                           Recovery praces*
                           Pure raw material* process
                         Hydrofluoric  acid
                         Hydrogen cyanide (Andrussow process)
                         Nickel sutfate
                           Pure raw materials

                           (•pure raw  Mterfals
                         Sodium bisulfite
                         Sodium dichromata
                         Sodium hydrosulfite
                         Titanium dioxtde
                           Chloride process
                           Suifate process
                         Aluminum sulfate
                         Ammonium chloride
                           Anhydrous

                           Solvay byproduct
                         Ammonium hydroxide
                         Bar tun carbonate
                         Borax
                         Boric  acid
                           Ore  Mined
                           Trona
                         Calcium
                         Calcium carbide

                         Calcium carbonate
                           Hi Ik of  line
                           Solvay process
                         Carbon dioxide
                         Carbon Monoxide
                         Chromic acid

                         Cuprous oxJde
                         Ferric chloride

                         Ferrous sulftte
                         Fluorine

                         Hydrochloric acid
                         Hyd rogen

                         Hydrogen peroxide
                           Organic process
                           Electrolytic process
                         Iodine

                         Lead monoxide

                         Lithium carbonate
                           Spodimene ore
                           Trona process
                         Manganese culfate
                         Nitric acid
                         Nitric acid (strong)
                         Oxygen and nitrogen
                         Potassium chloride
                         Potass I IM dichromate

                         Potassium Iodide
                         Potassium Metal

                         Potassiuei permanganate
                         Sodium bicarbonate

                         Sodium carbonate
                         Sodium fluoride

                         Sodium hydrosuifldo
                         Sodium metal
                         Sodium silicate
                         Sodium thosuifate
                         Stannic oxide

                         Sulfur dioxide
                         Suifuric acid
                         Zinc oxide
                         Zinc suifate
                                          6.0 - 9.0
                                          6.0 - 9.0

    Reserved

    No discharge of process westewater pollutants to
     navigable waters.
                                          6.0 - 9.0
    Reserved
                                          6.0 - 9,0
    Reserved
                                          6.0 - 9.0

    No discharge of process wastewater pollutant! to
     navigable waters.
                                          6.0 - 9.0
    R.t.rved
    Reserved
    No discharge of process wastewater pollutants except
     thst residual brln. snd depleted liquor My be
     returned to original body or water.

                                          6.0 - 9.0
    No discharge or process vattawater pollutants except
     that residual brine and depleted liquor My be
     returned to original body or water.
    No discharge or process wastewoter pollutants except
     that residual brine and depleted liquor My M
     returned to original body or water.

    No discharge or process westewater pollutants to
     navigable watera.

                                          6.0 - 9.0
                                          6.0 - 9.0
    Reserved
        O.i               0.29            6.0 - 9.0
    No discharge or proceaa waatavatcr pollutants to
     navigable -watera.
    Reserved
    No discharge or process waatewater pollutants to
     navigable waters.
    Reserved
    Ho dfschsrge or process waatawater pollutanta to
     navigable waters.

    No discharge or process wastewater pollutants to
     navigable waters.

                                          6.0 - 9.0
                                          6.0 - 9.0
    No discharge or process waatewater pollutanta to
     navigable waters.
    No discharge or process wastewater pollutants to
     navigable waters.

                                          6.0 - 9.0
    No discharge or process wastewater pollutants except
     thst residual brine and depleted liquor My be
     returned to original body or weteft.
    Reserved

    Reserved
                                          6.0 - 9.0
    No discharge or proceaa wastewater pollutanta to
     navigable water except that residual  brine and
     depleted liquor My be ret
     body or water.
    No discharge or process waatawater pollutants to
     navigable waters.
                                          6.0 - 9.0
    No discharge or process wast water pollutanta to
     navigable waters.
    Reserved
    No discharge or process wattawater pollutants to
     navigable waters.

    No discharge or process waatowetar pollutanta to
     navigable watera.
    Reserved
                                                                                        •turned to the original
   Reserved
   No discharge of process wastevater pollutant* to
     navigable waters.
   Reserved

   Reserved
   No discharge of process wasteweter pollutants to
     navigable water*.
                         (a)Average daily value* taken over JO consecutive day*.
Date:     9/25/81
II.5-11

-------
Table 5-2 presents subcategory profile data for the 55 sub-
categories of the inorganic chemicals industry.  Table 5-3
presents best practicable control technology (BPT)  parameters
suggested for each subcategory.

     Aluminum Fluoride

Aluminum fluoride is used as a raw material in the  production of
cryolite (which is used in the production of aluminum),  as a
metallurgical flux (for welding rod coatings), as a ceramic flux
(for glazes and enamels), and as a brazing flux (for aluminum
fabrication).

Partially dehydrated alumina hydrate is reacted with hydrofluoric
acid gas in the dry process for the manufacture of  aluminum
fluoride.  The product, aluminum fluoride, is formed as a solid
and is cooled with noncontact cooling water before  being sent for
milling and shipping.  The gases from the reactor are scrubbed
with water to remove unreacted hydrofluoric acid before being
vented to the atmosphere.

Wastewater flows emanating from different streams generated from
the production of aluminum fluoride are summarized in Table 5-4.
Data were generated from industry visits and 308 questionnaires.


      TABLE 5-4.  WASTEWATER FLOWS FROM ALUMINUM FLUORIDE
                  MANUFACTURING PLANTS [2-6]

                  (m3/Mg of aluminum fluoride)
Wastewater
source
Scrubber water
Maintenance, equipment cleaning,
and work area washdown
Total raw waste flow
Plant code
251(a)
18.7
1.02
19.7
705(a)
8.92
2.39
11.3
837
3.45
1.13
4.58
(a)Currently not manufacturing aluminum fluoride.


     Chlor-Alkali Industry

Chlorine, hydrogen, and caustic soda (NaOH) or caustic potash
(KOH) are produced together by electrolysis of brine.  Chlorine
is used in the pulp and paper industry, the plastics industry,
for water treatment, and as an input in the manufacture of vinyl
chloride, chlorinated ethers, and other inorganic and organic
chemicals.  About two-thirds of the production is for captive use.
Date:  9/25/81                II.5-12

-------
Two types of cells are currently used for the production of chlo-
rine and caustic:   mercury and diaphragm cells.   Mercury cells
account for approximately 30% of the production while the dia-
phragm cell accounts for 65%.  The Downs cell is another electro-
lytic process for producing chlorine and sodium (or potassium)
from fused salt.  However, the amount of chlorine produced by
this process is relatively small.  Since the predominant method
of making chlorine and byproduct caustic is by the use of mercury
and diaphragm cells, this study of the chlor-alkali subcategory
is restricted to these two processes.  In the processes described
below, sodium chloride is used as the starting material.  The
same descriptions hold true,  however, when potassium chloride is
used, except that the byproduct in the latter case is caustic
potash (KOH) instead of caustic soda (NaOH).

     Mercury cell process.  The sodium chloride (NaCl) solution
(brine or salt dissolved in water) is purified before it is sent
to the mercury cell for chlorine, caustic, and hydrogen produc-
tion.  This is done by the addition of soda ash (Na2C03) and
small amounts of caustic soda until the pH increases to 10 or 11.
The calcium and iron present in the brine and trace amounts of
other metals are precipitated as hydroxides or carbonates, and
the brine is sent to a clarifier for solids separation.  The
underflow from the clarifier, known as brine mud,  is sent to a
lagoon or is filtered.  The overflow from the clarifier, which is
brine, is heated and brought to saturation by the addition of
salt recovered from the caustic evaporation.  Its pH is then
lowered to 3-4 by addition of HC1 before it is introduced to the
mercury cell.

The mercury cell,  in general, consists of two sections:  the
electrolyzer and the decomposer or denuder.  The electrolyzer is
an elongated steel trough that is inclined slightly from the
horizontal so that the mercury flows in a thin layer at the
bottom.  This forms the cathode of the cell, and the brine flows
concurrently on top of the mercury.  Parallel graphite or metal
anode plates are suspended from the cover of the cell.  Electric
current flowing through the cell decomposes the brine, liberating
chlorine at the anode and  sodium metal at the cathode.  The me-
tallic sodium forms an amalgam with mercury:

           2 NaCl (aq) + Hg  ->  C12 (aq) + 2 Na (Hg)

The amalgam from the electrolyzer flows to the denuder.  The
spent brine (reduced to 22% saturation) is recycled to the brine
purification process where it is acidified to pH 3, blown with
steam for dechlorination, and saturated by the addition of salt
for reuse.  In the denuder, the amalgam becomes an anode to a
short-circuited iron or graphite cathode.  Deionized water added
to the denuder reacts with the amalgam to form hydrogen and
caustic.  The mercury is returned to the electrolyzer.  The
caustic formed has a concentration of 50% NaOH and is either sent


Date:  9/25/81                II.5-13

-------
to the storage tank or evaporated (if higher concentrations are
needed).   The hydrogen gas is cooled by refrigeration to remove
water vapor and mercury.   The chlorine gas process is similar to
that practiced for diaphragm cells.

Total wastewater flows emanating from different streams generated
from the production of chlorine, hydrogen, and caustic soda by
mercury-cell manufacturing plants are summarized in Table 5-5.


       TABLE 5-5.  WASTEWATER FLOWS FROM CHLORINE/CAUSTIC
                   MANUFACTURING PLANTS (MERCURY CELL) [2-6]

	(m3/Mg of C12)	._

Wastewater   	   Plant code	
  source     167   299   317   343   553   589   769   747   907

Total flow   5.6   1.6   0.51  1.6   1.0   5.8   6.3   0.69  0.36
     Diaphragm Cell Process.  As in the mercury cell process, the
brine is purified by the addition of caustic soda to eliminate or
reduce the calcium, magnesium, and iron impurities.  The result-
ing brine mud is similar to that produced from the mercury cell
except that it lacks the small amounts of ionic and metallic
mercury present in the recycled brine.  The final pH of the
purified brine solution is adjusted to 6 by the addition of HC1,
and the brine is then fed to the diaphragm cells.

The saturated salt solution (26% concentration) is electrolyzed
in the diaphragm cell to form chlorine, hydrogen, and sodium hy-
droxide according to the reaction:

              2 NaCl + 2 H20  -*  C12 + 2 NaOH + H2

In one pass through the cell,  the salt solution is decomposed to
approximately half of its original concentration.  The diaphragm
cell contains a porous asbestos diaphragm separating the anode
from the cathode.  Chlorine is liberated at the anode, and the
hydrogen and caustic are produced at the cathode.  In the past,
the predominant anode material was graphite with lead used to
provide an electrical contact and support.  In recent years,
however, the majority of graphite anodes have been changed to
stabilized metal anodes.  The use of metal anodes tends to reduce
or eliminate the chlorinated organics and lead impurities in the
wastewaters.

The hydrogen from the top of the cathode is cooled to remove
water and other impurities, and it is either sold, vented to the
atmosphere, or burned to produce steam.  The caustic leaving the
cathode has a concentration of 11% to 12% NaOH, which may be in-


Date:  9/25/81                II.5-14

-------
creased to 50% through multiple-effect evaporation.  If the vapor
evolved from the last effect of the evaporator is air condensed
in direct contact with water using barometric condensers, the
amount of wastewater produced may be quite large.  During evapo-
ration, salt crystallizes and is removed from all of the evapo-
rators.  The concentrated caustic is then settled and stored.
The chlorine from the cell is cooled to remove water and other
impurities.  The condensates are either discharged without treat-
ment or recycled to the brine purifier after steam stripping for
chlorine recovery.  The chlorine gas, after cooling, is scrubbed
with concentrated sulfuric acid to remove water,  the acid being
used until a constant dilution is reached.  The wastewater flows
from chlorine/caustic manufacturing plants using diaphragm cells
are summaried in Table 5-6.

       TABLE 5-6.  WASTEWATER FLOWS FROM CHLORINE/CAUSTIC
                   MANUFACTURING PLANTS (DIAPHRAGM CELL) [2-6]

	(m3/Mg of C12)	
Wastewater
  source
     Plants with
     metal anodes
Minimum   Maximum   Avg
         Plants with
       graphite anodes
Cell room wastes and
 cell wash              0.02
Chlorine condensate     0.16
Spent sulfuric acid
Tail gas scrubber       0.10
Caustic filter wash
Brine filter backwash
Caustic cooling
 blowdown               0.82
Brine mud               0.04
          0.67
          0.90

          0.29
          0.89
           1.5
0.38
0.49
0.01
0.17
0.86
0.42
 1.2
0.78

0.11
 5.4
0.45
Blanks indicate data not available.

     Chrome Pigments

Chrome pigments are primarily sold in the merchant market; conse-
quently,  captive use is minor.  They are extensively used in
paints, printing ink, floor covering products, and paper, as well
as in ceramics, cement, and asphalt roofing.

Chrome pigments (a family of inorganic compounds containing chro-
mium, lead, iron,  molybdenum, and zinc) include chrome yellow,
chrome organge, molybdate chrome orange, anhydrous and hydrous
chromium oxide, zinc yellow, and iron blues.  At some manufactur-
ing plants, compounds are made in the same facility either
simultaneously or sequentially, depending on sales and market
requirements.
Date:  9/25/81
      II.5-15

-------
     Chromium oxide.   Chromium oxide consists of two compounds,
anhydrous and hydrated chrome oxide (Guignet's green).   Anhydrous
oxide is prepared by calcination of sodium dichromate with sulfur
or carbon.  The use of sulfur as the reducing agent eliminates
C02,  CO, and S02 emissions,  but increases the sulfate raw waste.
In the manufacturing process using sulfur, raw materials consist-
ing of sodium dichromate and sulfur are mixed with water and the
resultant solution is fed to a kiln.  The material is heated, and
reacted materials from the kiln are slurried with water, fil-
tered, washed, dried, ground, screened, and packaged.  The ef-
fluent gases from the kiln containing sulfur dioxide and sulfur
trioxide are wet scrubbed before venting to the atmosphere.
Hydrated chromium oxide, also known as chromium hydrate and
Guignet's green, is made by reacting sodium dichromate with boric
acid.  The raw materials are blended in a mixer, heated in an
oven, slurried with water, and filtered.  The filtered solids are
washed with water, dried, ground, screened, and packaged.  The
filtrate and wash water are treated with sulfuric acid to recover
boric acid.  A waste stream containing some boric acid and sodium
sulfate leaves the boric acid unit.

     Chrome yellow and chrome orange.  Chrome yellow is one of
the most important synthetic pigments.  The chrome yellows con-
sist primarily of lead chromate and are made by reacting sodium
dichromate, caustic soda, and lead nitrate.  Lead chromate is
formed as a precipitate during the reaction and is filtered and
treated with chemicals to develop the desired pigment properties.
The product is then dried, milled, and packaged.  The filtrate
from the filtration operation is sent to the wastewater treatment
facility.

     Molybdenum orange.  Molybdenum orange is made by the copre-
cipitation of lead chromate  (PbCrO4) and lead molybdate  (PbMo04).
The process consists of dissolving molybdic oxide in aqueous so-
dium hydroxide and adding sodium chromate.  The solution is mixed
and reacted with a solution of lead nitrate.  The precipitate
from the reaction is filtered, washed, dried, milled, and pack-
aged.  The filtrate is sent to the treatment facility.

     Chrome green.  Chrome greens are a coprecipitate of chrome
yellow and iron blues.  Iron blues are manufactured by reaction
of an aqueous solution of iron sulfate and ammonium sulfate with
sodium hexacyanoferrate.  The precipitate formed is separated and
oxidized with sodium chlorate or sodium chromate to form iron
blues (Fe[NH4J  [FeCN6]).  Chrome green is produced by mechani-
cally mixing chrome yellow and iron blue pigments in water.

     Zinc yellow.  Zinc yellow, also called zinc chromate, is a
complex compound of zinc, potassium, and chromium made by the
reaction of zinc oxide, hydrochloric acid, sodium dichromate, and
potassium chloride.  Zinc yellow is formed as a precipitate  and
is filtered, washed, dried, milled, and packaged for sale.


Date:  9/25/81                II.5-16

-------
Process wastewater flows generated from the production of chrome
pigments are summarized in Table 5-7.

     Copper Sulfate

Most of the copper sulfate produced is sold in the merchant mar-
ket, and captive use is very small.  Copper sulfate is used in
agriculture as an insecticide,  an algicide, and as an addition to
copper-deficient soils.  It is also used in electroplating, in
petroleum refining, and as a preservative for wood.

        TABLE 5-7.  PROCESS WASTEWATER FLOWS FROM CHROME
                    PIGMENT MANUFACTURING PLANTS [2-6]

                       (m3/Mg of product)
Wastewater
source
Total wastewater
Unfiltered treated waste
Filtered treated waste
Sand filter influent

002
78.
78.
78.


4
4
4
Plant code
214 464
32.8 41.1

894
170
170
170

436
149
     Blanks indicate data not available.

Copper sulfate is produced by reacting copper shot (blister cop-
per) with sulfuric acid, air, and water.  Some plants do not
start with copper metal but use a wastestream from a copper re-
finery, which consists of copper, sulfuric acid, and a small
amount of nickel.

The resulting copper sulfate solution is either sold or fed to
crystallizers producing copper sulfate crystals.  These are cen-
trifuged, dried, screened, and then packaged dry for sale.

Wastewater flows emanating from different streams generated from
the production of copper sulfate are summarized in Table 5-8.

       TABLE 5-8.  WASTEWATER FLOWS FROM COPPER SULFATE
                   MANUFACTURING PLANTS [2-6]

         	(m3 Mg of CuS04)	
                 Wastewater
         	source	Plant 034
         CuS04 waste(a)                     1.25
         Effluent from lime treatment       1.25
         Stream condensate
          and noncontact cooling water	14.2
        (a)Infiltration of groundwater into collec-
         tion sump at the time of sampling suspected.
Date:  9/25/81                II.5-17

-------
     Hydrofluoric Acid

Produced as both anhydrous and aqueous products,  hydrofluoric
acid (hydrogen fluoride) is used in the manufacture of fluorocar-
bons, which are used as refrigerating fluids,  as plastics for
pressurized packing, and as dispersants in aerosol sprays.  It is
also used in the production of aluminum, in the refining and en-
riching of uranium fuel, in the pickling of stainless steel, in
petroleum alkylation, and for the manufacture of fluoride salts.

With respect to volume of production, hydrofluoric acid (HF) is
the most important manufactured compound in the fluorine family.
The raw materials used for the manufacture of HF are fluorspar
(mainly CaF2) and sulfuric acid.  The reaction between fluorspar
and sulfuric acid is endothermic.  Reaction kinetics and product
yield depend on the purity and fineness of the fluorspar.  The
sulfuric acid concentration, temperature of the reaction, and the
ratio of sulfuric acid to fluorspar are the most important reac-
tion variables.

Hydrogen fluoride generators are primarily externally fired rota-
ry kilns with acid and fluorspar continuously fed through a screw
conveyor at the forward end, and calcium sulfate (gypsum) removed
from the other end through an air lock.  The product also leaves
this end, at the top, as a gas.  The hydrogen fluoride gas leav-
ing the reactor is cooled in a precooler to condense high boiling
compounds, known as drip acid.  These condensables consists pri-
marily of fluorosulfonic acid and unreacted sulfuric acid.  Most
plants return the drip acid to the reactor, and the remaining
plants send it to wastewater treatment.  The HF gas from the pre-
cooler is further cooled and condensed in a cooler/refrigeration
unit.  The uncondensed gas containing the HF is scrubbed with
sulfuric acid and refrigerated to recover the product.  The
scrubbed acid liquor is returned to the kiln, and residual vent
gases are further scrubbed with water to remove HF and other
fluoride compounds before they are vented to the atmosphere.

Crude hydrofluoric acid is then distilled to remove the residual
impurities, and the concentrate  (anhydrous hydrofluoric acid) is
stored in tanks.  If aqueous hydrofluoric acid is desired, this
is then diluted with water to form a 70% HF solution as the final
product.

Wastewater flows emanating from different streams generated from
the production of hydrofluoric acid are summarized in Table 5-9.
Date:  9/25/81                II.5-18

-------
     TABLE  5-9.   WASTEWATER FLOWS FROM HYDROFLUORIC ACID
                  MANUFACTURING PLANTS [2-6]
                          ICU.B/MQ of hydrofluoric acid)
      Wastewater
       source	231 (dl  9871 dl  753  426   120   722   167   705  837
Gypsum slurry
Drip acid
Scrubber wastewater
Other(c)
64.0
0.049
14.4
0.53
(a)
0
6.3
0.53

0
2.3
8.4
(a)
0


(a)
0
0.624
5.55
(b)
0
(b)

122

40
5.2
(b)
0.018
11.3
22.5
6.5
0
1.12

      Blanks indicate data not available.
      (a)Ory disposal.
      (b(Total recycle.
      (c)Does not include wasteflow from storm water runoff.
      (d)Discontinued Hf production.
      Hydrogen Cyanide

Over  50%  of  the  hydrogen cyanide manufactured  in the United
States  is produced by the Andrussow process, while about 40% is a
byproduct from acrylonitrile manufacture.  A major portion of the
production is used in the manufacture of methyl  methacrylate for
Lucite, Plexiglas  molding and extrusion powders,  and surface
coating resins.   It is also used as a fumigant for orchards and
tree  crops.

The hydrogen cyanide subcategory in this study is confined to the
Andrussow process,  in which air, ammonia,  and  methane are reacted
to produce hydrogen cyanide.  The raw materials  are reacted at
elevated  temperatures over a platinum catalyst.   In addition to
hydrogen  cyanide,  the reacted gases contain ammonia,  nitrogen,
carbon  monoxide, carbon dioxide, hydrogen, and small amounts of
oxygen.   The reactor gases are cooled and  then scrubbed in one of
two processes that are used to remove the  unreacted ammonia.  In
one process,  the gases are scrubbed with phosphate liquor, the re-
sulting solution is decomposed, and the phosphate solution is re-
circulated.   The recovered ammonia is recycled to the reactor. In
the second process,  sulfuric acid is used  to absorb ammonia from
the reactor  gases.

The hydrogen cyanide is recovered from the ammonia scrubber
effluent  gases by  absorption in cold water, and  the waste gases
are vented to the  atmosphere.  The absorbed solution containing
hydrogen  cyanide,  water,  and other contaminants  is distilled to
produce HCN  gas  of over 99% purity.

The water produced during the initial reaction for the formation
of hydrogen  cyanide is purged with the distillation bottom stream
and is  either recycled or discharged to the treatment facility.

Wastewater flows emanating from different  streams generated from
the production of  hydrogen cyanide are summarized in Table 5-10.
Date:  9/25/81                 II.5-19

-------
          TABLE 5-10.  WASTEWATER FLOWS FROM HYDROGEN CYANIDE
                        MANUFACTURING PLANTS [2-6]
              	(ma/Mg of hydrogen cyanide)
                     Wastewater              Plant code
              	source	765   782	
              Recovery and purification             6.3
              Pump seal quenches                  0.58
              Flare stack flushes                 0.09
              Sample hoods                       0.02
              NH3 stripper caustic                0.24
              Steam condensate from NH3 stripper     0.90
              Freeze protection                   0.06
              Washdowns and cleanup                0.25
              Boiler blowdown and condensate        1.48
              Total                         57   9.9

              Blanks indicate data not available.

     Nickel  Sulfate

The majority of the nickel  sulfate produced in the  United
States is sold in the merchant  market.  The major use of nickel
sulfate  is"in the metal plating industry, although  it is also
used in  dyeing and printing fabrics and for producing a patina
on zinc  and  brass.

Pure nickel  or nickel oxide powder,  spent nickel catalysts,  and
nickel plating solutions  or residues may be used to produce
nickel sulfate.  The nickel sulfate produced when pure raw
materials are used is filtered  and sold or processed further
using a  crystallizer to produce a solid nickel sulfate product.

The use  of impure raw materials produces a nickel sulfate solu-
tion that must be treated in sequence with oxidizers, lime,  and
sulfides to  precipitate impurities which are  then removed by
filtration.   The nickel sulfate solution can be sold or the
product  may  be crystallized,  classified, dried,  and screened to
produce  solid nickel sulfate for sale.

Wastewater flows emanating  from different streams generated  from
the production of nickel  sulfate are summarized in Table 5-11.

          TABLE 5-11.  WASTEWATER FLOWS FROM NICKEL SULFATE
                        MANUFACTURING PLANTS  [2-6]
                             (m3/Mg of nickel sulfate)
Wastewater
source
Untreated wastewater
Treated wastewater
Scrubber wastewater
NiSO4 wastewater
All nickel wastes(a)
Treated effluent(a)

369
0.42
0.42




Plant code
120



0.72
0.72
0.72
               Blanks indicate data not applicable.
               (a)Stream is a commingled wastewater.  Flow
                  given is amount contributed by NiSO4 plant.
Date:   9/25/81                 II.5-20

-------
     Sodium Bisulfite

Manufactured in both liquid and powdered form,  sodium bisulfite
is used in the production of photographic chemicals,  organic
chemicals, textiles, and in food processing.   It is also used
in the tanning industry and in the sulfite process for the manu-
facturing of paper products.

Sodium bisulfite is produced by reacting sodium carbonate (soda
ash) with sulfur dioxide and water.   This reaction produces a
slurry of sodium bisulfite crystals which can be sold, but which
is usually processed to form anhydrous sodium metabisulfite.
This requires thickening, centrifuging,  drying, and packaging
operations.

Wastewater flows emanating from different streams generated
from the production of sodium bisulfite are summarized in
Table 5-12.

       TABLE 5-12.  WASTEWATER FLOWS FROM SODIUM BISULFITE
                    MANUFACTURING PLANTS [2-6]

                   (m3/Mg of sodium bisulfite)
Wastewater
source 282
Untreated waste 2.67
Treated waste 2.67
MBS sump #1
MBS sump #2
Amine oxidation pond
Zinc sulfate pond effluent
Lime treatment influent
Truck washdown
S02 wastewater
No. 1 filter wash
Floor wash, spills, etc.
No. 2 filter wash
Plant code
586

188(a)
9.68(b)
9.68(b)
2.77(c)
78.5(c)
110(c)
0.134(c)
85. 9 (c)




987
0.11
0.14







0.055
0.013
0.041
     Blanks indicate data not applicable.
     (a)Treated effluent from combined treatment of a number of
        different raw process wastestreams not all related to
        sodium bisulfite production.
     (b)Includes non-contact process water that does not contribute
        to the pollutant load.
     (c)Raw process waste flows that are not directly related to
        the sodium bisulfite industry, but are currently treated
        in combination with raw process waste that is related.
Date:  9/25/81                II.5-21

-------
     Sodium Dichromate

Most of the sodium dichromate produced in the United States is
used in the chromic acid and pigment industries.   It is used for
leather tanning and metal treatment, and as a corrosion inhibitor.

The starting materials for the preparation of sodium dichromate
are chromite ore, limestone, and soda ash.  Their reaction forms
sodium chromate, which is reacted with sulfuric acid to produce
sodium dichromate.
                                                               /"
Chromite ore is a chromium iron oxide containing ferrous chromite
(FeCr204 or FeOCr203) as well as small amounts of aluminum,
silica, and magnesia.  At the plant site, the ore is ground to a
fine powder, mixed with soda ash, and calcined in rotary kilns.
The reacted product is leached with hot water and filtered.  The
solid filter cake is dried in rotary kilns.  The aluminum present
in the thickener overflow is hydrolyzed and removed from the
chromate solution as precipitated aluminum hydrate in slurry
form. The solution is centrifuged and the centrate is evaporated
to give a concentrated solution of sodium chromate; the latter is
reacted with sulfuric acid to give sodium dichromate and sodium
sulfate.  Sodium sulfate crystallizes as anhydrous sodium sulfate
from the boiling solution, and the crystals are removed by fil-
tration.  The filtrate is concentrated in multiple-effect evapo-
rators and fed to a water-cooled crystallizer.  Sodium dichromate
crystallizes out and is centrifuged, dried, and packaged for sale
or future use.

Wastewater flows emanating from different streams generated from
the production of sodium dichromate are summarized in Table 5-13.

      TABLE 5-13.  WASTEWATER FLOWS FROM SODIUM DICHROMATE
                   MANUFACTURING PLANTS [2-6]

      	(m3/Mg of sodium dichromate)	
          Wastewater                  Plant code
     	source	493	376	398

     Raw wastewater           4.25
     Residue slurry           2.13
     Mud slurry waste                   7.85
     Primary pond effluent
     Treated effluent        28.9(a)    4.16
     Surface runoff                     4.16
     Noncontact cooling water                     71,206(b)

     Blanks indicate data not applicable.
     (a)Includes flow from the sodium dichromate plant, im-
        ported acid used for neutralization, and the water used
        for washing the solids.
     (b)Two streams.
Date:  9/25/81                II.5-22

-------
     Sodium Hydrosulfite

Most of the sodium hydrosulfite produced in the United States is
sold in the merchant market.  Sodium hydrosulfite is extensively
used in dyeing (cotton) and in the printing industry.  It is a
powerful reducing agent and is used in the wood pulp bleaching,
reducing, and stripping operations of the food, vegetable oil,
and soap industries.

In the formate process, sodium hydrosulfite is produced by
reacting sodium formate solution, sodium hydroxide solution,
and liquid sulfur dioxide in the presence of a recycled stream
of methanol solvent.  Sodium hydrosulfite precipitates and forms
a slurry in the reactor.  The co-product, sodium sulfite, is also
formed, as are sodium bicarbonate and carbon monoxide gas.

Methyl formate, a minor side product, is produced as the result
of a side reaction between sodium formate and methanol.  This
side reaction product remains in the recycling methanol during
the entire process.  As a result, some of the methanol must be
periodically purged from the recycle system to avoid excessive
buildup of this impurity.

The resulting slurry of sodium hydrosulfite in the solution of
methanol, methyl formate, and coproducts is sent to a pressur-
ized filter operation which recovers the crystals of sodium
hydrosulfite.  The crystals are dried in a steam-heated rotary
drier, then recovered and packaged.  Filtrate and backwash
liquors from the filter operation are sent to the solvent re-
covery system as is the vaporized methanol from the drying
operation.  Excess heat is avoided in the drying process because
sodium hydrosulfite is heat sensitive and tends to decompose
to sulfite.

Wastewater flows emanating from different streams generated
from the production of sodium hydrosulfite are summarized in
Table 5-14.

      TABLE 5-14.  WASTEWATER FLOW FROM A SODIUM HYDRO-
                   SULFITE MANUFACTURING PLANT [2-6]
Waste source
Dilute waste (spills, etc.)
Dilution water (contact)
Byproduct waste
Total
Flow, m3/Mg
1.95
1.75
0.95
4.65
     Titanium Dioxide

Titanium dioxide (Ti02) is manufactured by both a chloride and a
sulfate process.  Ranking within the first 50 chemicals of all


Date:  9/25/81                II.5-23

-------
United States chemical production,  over 50% of this high volume
chemical is used in paints,  varnishes,  and lacquers.  Approxi-
mately one-third is used in the paper and plastic industries.
Other uses are found in ceramics,  ink,  and rubber manufacturing.

     Chloride Process.  The chloride process uses rutile or up-
graded ilmenite ores as raw material, because the process re-
quires relatively pure materials with a high titanium and low
iron content.  A beneficiation process, used to upgrade the ilmen-
ite ore, removes a part or all of the iron from the low-quality
titanium ore.  It is assumed that the wastes from the chloride
process using beneficiation differ from wastes of the process us-
ing pure high-grade titanium ore.   Therefore, the titanium di-
oxide subcategory has been further subdivided into three separate
categories:  sulfate process using ilmenite ore, chloride process
using rutile or upgraded titanium ore,  and chloride process using
ilmenite ore.  This section is restricted to the chloride process
using rutile ore.

In the chloride process, ore and coke are dried and then reacted
with chlorine to form titanium tetrachloride.  The titanium
tetrachloride is then reacted with oxygen or air to form titanium
dioxide and chlorine, the latter being recycled to the process.
The reaction generally takes place in a fluidized bed reactor and
the product gases leaving the reactor are cooled to remove the
impurities, although in some cases purification is accomplished
by washing the gases with liquefied titanium dioxide.  Residual
uncondensed gases are treated to remove acidic materials before
being vented to the atmosphere.

The liquefied titanium tetrachloride contains impurities which
are removed by distillation.  The distillate is the purified
titanium tetrachloride, and the impurities remain as a residual
which becomes waste.  The tail gases from the distillation column
are scrubbed to remove acidic materials.  The titanium tetrachlor-
ide product is then reacted with oxygen, as air, to form titan-
ium dioxide and chlorine.

After the oxygenation reaction, the titanium dioxide forms a
solid and is separated from the gases.   Residual chlorine is re-
frigerated and liquefied.  Tail gases are scrubbed with caustic
soda to remove chlorine before being vented to the atmosphere.
The titanium dioxide is then sent to the finishing operation
where it is vacuum degassed and then treated with alkali, using a
minimum amount of water to remove traces of absorbed chlorine and
hydrochloric acid.  The pigment is then milled, surface treated
for end-use application, dried, and packaged for sale.
                                                               *
Wastewater flows emanating from different streams generated  from
the production of titanium dioxide by the chloride process are
summarized in Table 5-15.
Date:  9/25/81                 II.5-24

-------
      TABLE 5-15.  WASTEWATER FLOWS FROM TITANIUM DIOXIDE
                   MANUFACTURING PLANTS (CHLORIDE PROCESS)
                   [2-6]
      	(m3/Mg of titanium dioxide)	

         Wastewater                         Plant code
	source	102	172	559

Pit solids and distillation bottom
 waste                                                  10.9
Scrubber and contact cooling water                      80.1
Inlet to wastewater treatment pond    29.3(a)  34.7(a)    91(b)
Treated effluent                               34.7       91

Blanks indicate data not available.
(a)Offsite disposal of process solid residues.
(b)Process solid residues are slurried to waste treatment.

     Sulfate Process.  Ilmenite ore and slag from iron production
generally comprise the raw materials used for preparation of ti-
tanium dioxide by the sulfate process.  Large amounts of water
and sulfuric acid are used in this process, and the majority of
plants are co-located with sulfuric acid plants.  The preparation
of Ti02 by the sulfate process utilizes three important steps:
digestion, precipitation, and calcination.

The ore is dried, ground, and then reacted with sulfuric acid.
After the reduction, the product is dissolved in water and clari-
fied with the aid of flocculation agents to remove insoluble im-
purities such as silicon, zirconium, and unreacted ore.  The con-
centrated solution is diluted with water and heated to form
titanium dioxide hydrate which precipitates out.  The suspension
is filtered and the filtrate (known as strong acid) is separated
and either discharged or recycled.  Filter residue is slurried
with water, and conditioning agents (including potassium,  zinc,
antimony, calcium compounds, and phosphate salts) are added to
control particle size, color, dispersibility, and photochemical
stability.  This solution is then filtered.  Residual acid and
iron originally present in the precipitate are removed with the
water of hydration by calcination.  The resulting Ti02 pigment
is sent to finishing operations, which vary according to the
end-product requirement and application.  Wet finishing opera-
tions may include some, or all, of the following steps:
repulping, milling, surface treatment, washing, and drying.
Alternative dry finishing operations may include one or more
milling steps followed by packaging.

Wastewater flows from the production of titanium dioxide by the
sulfate process are summarized in Table 5-16.
Date:  9/25/81                II.5-25

-------
      TABLE 5-16.   WASTEWATER FLOWS FROM TITANIUM DIOXIDE
                   MANUFACTURING PLANTS (SULFATE PROCESS)
                   [2-6]
     	(m3/Mg of titanium dioxide)	
      Wastewater                            Plant code
        source                         555      559     694
Strong acid wastewater
Weak acid wastewater
Scrubber and contact cooling water
Total effluent
8.49
78.2
362
449
6.13
69
361
436
16
67
457
540
     Candidate Subcategories for Paragraph 8 and
          Other Exclusions

The following paragraphs briefly describe the remaining 44 sub-
categories, which are candidates for exclusion under Paragraph 8
or for other reasons.  No further consideration of these sub-
categories with respect to wastewater characteristics will be
presented in the remainder of this report due to this candidacy
and the absence of data.

     Aluminum sulfate.  Aluminum sulfate is produced by the reac-
tion of concentrated sulfuric acid with bauxite, clay, and other
compounds containing aluminum oxide.  The resultant solution is
purified to yield a product which can be sold or dehydrated to
form crystals.  The primary use for aluminum sulfate is as a
flocculant in water treatment.  Another use is in the papermaking
industry where iron-free aluminum sulfate is required for sizing
paper.

Due to the small quantity of wastewater discharged by the indus-
try, this subcategory has been recommended as an exclusion candi-
date under Paragraph 8.

     Ammonium chloride.  Most ammonium chloride is produced as a
byproduct in the manufacture of sodium carbonate (soda ash) by
the Solvay process.  It is used in the manufacture of dry cell
batteries, explosives, dyes, as a washing powder, a soldering
flux, a chemical reagent, and a medicinal additive to livestock
feed.  It is also used in pharmaceutical preparations and freez-
ing mixtures.

No significant concentrations of toxic pollutants were found in
the waste during screening of ammonium chloride plant 736.  Am-
monium was found to be the only pollutant of significance.  Since
ammonia is not a toxic pollutant, this subcategory has been
recommended as an exclusion candidate under Paragraph 8.
Date:  9/25/81                II.5-26

-------
     Ammonium hydroxide.  Ammonium hydroxide is predominantly
used as a chemical intermediary and reagent.  It is also used in
the dyeing and bleaching of fabrics, the production of ammonium
salts and aniline dyes, and the extraction of alkaloids from
plants.

No plants with a discharge were found in this subcategory.
Therefore, this industry has been recommended as a Paragraph 8
exclusion candidate.

     Barium carbonate.  Barium carbonate is used in glass manu-
facturing, as a flux in ceramics and enameling, as an intermedi-
ate in the production of barium oxide and hydroxide,  and as a
coating for photographic paper.  It is also used in the synthetic
dyestuff industry and for the removal of soluble sulfate in brick
manufacturing.

No toxic pollutants were found at significant levels in the waste
during screening of barium carbonate plant 360.  On the basis of
these findings, this subcategory has been recommended as an
exclusion candidate under Paragraph 8.

     Borax.  Borax is produced by dissolving sodium borate ores
in recycled mother liquors and water.  The insolubles settle out
in ponds or are removed by thickeners, and the clarified borax
solution (mother liquor) is fed to crystallizers where a slurry
of borax crystals is formed.

Because existing BPT regulations require zero discharge of process
wastewater pollutants to navigable waters, this subcategory has
been recommended as an exclusion candidate under Paragraph 8.

     Boric acid.  Boric acid is used in the manufacture of chro-
mic oxide, glazes, enamels, textile fiberglass, and heat resist-
ant glass.  It is also used medicinally as a mild antiseptic and
in atomic power plants as a nuclear moderator.

Only one plant manufactures boric acid from mined ore.  There is
an indication that this plant will discontinue operation.  All
other plants manufacture boric acid using the Trona process and
have zero discharge.  This subcategory is excluded under Paragraph
8 of the Consent Decree.

     Bromine.  Most bromine is produced from brines pumped from
brine wells.  A small amount is produced from brines from Searles
Lake near Trona, CA.  This is not a navigable water because it is
35% solids.  The brine, after appropriate dilution and degassing
is extracted by debromination with chlorine and steam.  The steam
and chlorine are condensed, separated, and distilled to obtain
bromine.
Date:  8/31/82 R  Change 1  II. 5-27

-------
Since the raw wastes are returned to the brine well or brine
source, discharge is near zero.   Therefore,  this subcategory has
been recommended for exclusion under Paragraph 8.

     Calcium carbide.  Calcium carbide is produced by the reac-
tion of calcium oxide and coke.   Calcium carbide is used to pro-
duce acetylene by reaction with water.  Because the process for
calcium carbide production is dry,  little wastewater is gen-
erated.

This subcategory has limited water effluent from the production
plants and has been recommended as an exclusion candidate under
Paragraph 8.

     Calcium carbonate.  Calcium carbonate is manufactured both
in pure and impure form and it is extensively used in many indus-
tries.  In the pure form, it is used in the rubber, paint,
cement, paper, and pharmaceutical industries.

No toxic pollutants were found at significant levels in the raw
waste during screening of calcium carbonate plant 883.  On the
basis of these findings, this subcategory has been recommended as
an exclusion candidate under Paragraph 8.

     Carbon dioxide.  Carbon dioxide is produced in gaseous, liq-
uid, or solid form.  A major portion of the production is used
captively for the production of urea and for the secondary recov-
ery of oil and natural gas.  It is also used for refrigeration,
in the food industry, for the carbonation of beverages, in fire
extinguishing equipment, and for oil well stimulation.

The only toxic pollutant found at a significant concentration in
the raw waste during screening at plant 241 was zinc at a concen-
tration of 910 yg/L.  When the data were reviewed with plant per-
sonnel, it was discovered that the high zinc level was due to
zinc corrosion inhibitors; it was not process related.  There-
fore, this subcategory has been recommended as an exclusion
candidate under Paragraph 8.

     Carbon monoxide and byproduct hydrogen.  In the production
of hydrogen by refining natural gas, carbon monoxide is also pro-
duced.  Carbon monoxide is recovered from several gas sources in-
cluding partial combustion of oil or natural gas, coke oven gas,
blast furnace gas, water gas, and methane reformer gas.

Carbon monoxide and byproduct hydrogen form the building blocks
for other chemicals such as ammonia and methanol.  The major use
of carbon monoxide is for the manufacture of methanol.  It is al-
so used as a gaseous fuel for reducing oxides for special steels,
in nickel refining, and in the manufacture of ammonia, acetic
acid, and zinc white pigments.
Date:  9/25/81                II.5-28

-------
The only pollutants of significance, in terms of concentrations,
in this subcategory are chromium and zinc.  However,  this is the
result of the use of corrosion-inhibiting additives in cooling
water; it is not process related.   Therefore, this subcategory
has been recommended as a Paragraph 8 exclusion candidate.

     Chromic acid.  Sodium dichromate liquor from the dichromate
manufacturing operation is reacted with sulfuric acid and fil-
tered to recover impure chromic acid as a solid.  The mother
liquor is returned to the dichromate process for reuse.   The
recovered chromic acid is fed to a melter in which the sodium
bisulfate liquifies and is separated from the chromic acid.

Since wastes are returned to the dichromate process for reuse,
there is zero discharge.  Therefore, this subcategory has been
recommended for exclusion under Paragraph 8.

     Cuprous oxide.  Copper oxide is used in the manufacturing of
glass, ceramics, marine paints, and photoelectric cells.   It is
also used in agriculture as a seed fungicide, and as an antisep-
tic and catalyst.

Only one plant was found to be producing this product at the time
of screening.  Because this is now a single-plant industry,  this
subcategory has been recommended for exclusion under Paragraph 8.

     Ferric chloride.  Commercial solutions of ferric chloride
are produced from iron and steel pickling liquors which contain
ferrous chloride and hydrochloric acid.  The steel pickling liq-
uors are preheated with steam and then reacted with iron, chlo-
rine, additional hydrochloric acid, and water to produce the
desired solution.  These solutions are used as copper etchant in
photoengraving, in textile dyes, for the chlorination of copper
and silver ores, in pharmaceutical production, as an oxidizing
agent in chemical synthesis, and for water purification.

This subcategory has been recommended for exclusion under Para-
graph 8.

     Ferrous sulfate.  Ferrous sulfate is made using two pro-
cesses.  In the first case it is recovered from the waste sul-
furic acid pickle liquor containing ferrous sulfate,  ferric
sulfate, and unreacted sulfuric acid.  This is a byproduct re-
covery process from a waste solution rather than a direct manu-
facturing process.  In the second process, ferrous sulfate is
made as a byproduct during the manufacture of titanium dioxide.

There is no direct method used for ferrous sulfate manufacture
and it contributes no wastewater discharge of its own because it
is a byproduct of other processes.  Therefore, it has been recom-
mended for exclusion under Paragraph 8.
Date:  9/25/81                II.5-29

-------
     Fluorine.   Fluorine is produced by electrolysis of liquid
hydrogen fluoride.   Fluorine is formed at one electrode and
hydrogen at the other.

Since there is no wastewater from this process,  this subcategory
has been recommended for exclusion under Paragraph 8.

     Hydrochloric acid.   Most hydrochloric acid is produced as a
byproduct in the manufacture of chlorinated organic compounds.
It is used in oil well activation, pickling of steel,  metal
cleaning, monosodium glutamate manufacture, and starch hydrolysis.
It is also used as an acid reagent in several chemical manufac-
turing processes.

On the basis of the low toxic pollutant findings,  this subcategory
has been recommended as an exclusion candidate under Paragraph 8.

     Hydrogen.   Hydrogen is made either from the purification of
petroleum refinery byproduct gases or as a co-product in the
manufacture of carbon monoxide.

In the first case there is no contact process water, and in the
second, waste is attributed to carbon monoxide.   Therefore, this
subcategory is recommended for exclusion under Paragraph 8.

     Hydrogen peroxide.   The organic process is the most commonly
employed method in the manufacture of hydrogen peroxide.  Hydro-
gen peroxide is used as a bleaching agent in the textile and the
pulp and paper industries.  It is also used in chemical manufac-
ture (e.g., plasticizers and glycerine), wastewater treatment,
and as a rocket propellant.

During verification sampling of plant 765, it was discovered that
the presence of the organics listed in Table 5-17 (Section II.5.2)
was not process related; it was caused by a weed killer used at
the plant site.  Therefore, this subcategory has been recommended
for exclusion under Paragraph 8.

     Iodine.  Iodine is produced from brine solutions containing
iodine.  The brine is acidified and chlorinated to liberate free
iodine.  The free iodine is treated with chlorine to yield solid
iodine.

This subcategory has been recommended for exclusion under Para-
graph 8.

     Lead monoxide.  Lead monoxide is generally produced by the
air oxidation of metallic lead, followed by rapid cooling of the
product, then milling.  Most plants in this subcategory do not
use water in the manufacturing process.  Its major uses are for
noncontact  cooling water and dust washdown.  Thus, only plants
with a significant dust problem will have a significant quantity


Date:  9/25/81                 II.5-30

-------
of wastewater.  This subcategory has been recommended for exclu-
sion under Paragraph 8 for this reason.

     Lithium carbonate.  Lithium carbonate is produced by two
processes.  In one process,  spodumene ore is heated at a high
temperature to render it highly reactive.  It is then cooled,
ball-milled, and mixed with concentrated sulfuric acid.   The
acid-roasted ore is leached with water, and the excess acid is
neutralized with ground limestone.  Further processing pre-
cipitates lithium carbonate.  Significant quantities of known
toxic pollutants are not found in the wastewater.  Lithium
carbonate is also precipitated from the reaction of lime with
concentrated brine.  Process wastewater consists of spent brines,
which are sent to on-site evaporation ponds.  This subcategory
has been recommended for exclusion under Paragraph 8.

     Manganese sulfate.  Manganese sulfate is normally sold as a
mixture of tetra- and penta-hydrates.  It is used in oils for the
manufacture of varnishes, in dyeing, and in the manufacture of
porcelain.  It is also used in the fertilizer industry.

Only one plant in this subcategory was found to be in production
at the time of screening.  Out of the eight plants contacted,
four no longer produced it,  two were fertilizer manufacturers,
and one manufactured reagent-grade manganese sulfate.  Because
this is now a single-plant industry, this subcategory has been
recommended for exclusion under Paragraph 8.

     Nitric acid.  Most of the nitric acid produced is used in
the manufacture of ammonium nitrate and other nitrogen fertiliz-
ers.  On-site captive use is extensively practiced.  It is also
used in the manufacture of explosives, plastics, and other organ-
ic products, and as an acidic and pickling agent.

2,4-Dinit±ophenol was found in the raw wastewater during screen-
ing at two plants; it is presumed to be from contamination by the
organic products manufactured at the plants, not process related.
The chromium and zinc found are due to cooling water conditioners
present in the blowdown which is mixed with process streams.

It has been recommended that this subcategory be included in the
fertilizer industry guidelines.

     Nitric acid (strong).  Strong or concentrated nitric acid is
used in the manufacture of organic compounds where nitric acid is
required to act as an oxidizing agent rather than as an acid.  It
is also used in the manufacture of dye intermediates and explo-
sives.
Date:  9/25/81                II.5-31

-------
In a followup to the sampling discussed in the section entitled
Nitric acid, it was found that the chromium and zinc are used as
corrosion inhibitors in the cooling water and are not process
related.  The other values are below significant levels.  Verifi-
cation sampling at plant 623 confirmed this.   On the basis of
these findings, this subcategory has been recommended for exclu-
sion undetf Paragraph 8.

     Oxygen and nitrogen.  Oxygen and nitrogen are produced by
distillation of liquefied air.  Oxygen is used in the production
of steel; in gas welding, medicine, jet fuel, and sewage treat-
ment plants; and in the manufacture of ethylene and acetylene.
In rocket propulsion, liquid oxygen is often used as a cryogenic
liquid oxidizer in the main stage boosters used for space explora-
tion.

The largest use of nitrogen is in the manufacture of ammonia by
the Haber process.  It is also used in cryosurgery.  As an inert
gas, it is used to prevent oxidation by air.   In the liquid form,
it is used for low temperature refrigeration.

Only one toxic pollutant, copper, was found at a significant
level in the raw waste during screening of oxygen and nitrogen
plant 993.

Owing to the small quantity of wastewater discharged by the
industry and the resulting low waste load generated, this sub-
category has been recommended as an exclusion candidate under
Paragraph 8.

     Potassium chloride.  Potassium chloride is produced by
extraction from sylvite ore and by extraction from lake brine
(Trona process).  In both cases, liquors are recycled.  There-
fore, this subcategory has been recommended for a Paragraph 8
exclusion.

     Potassium dichromate.  Only one United States plant current-
ly manufactures potassium dichromate.  The production process in-
volves the reacton of a sodium dichromate dihydrate solution with
potassium chloride.  The product is then crystallized by vacuum
cooling.  Potassium dichromate is used as an oxidizing  agent and
in brass pickling operations, electroplating, pyrotechnics,
explosives, textiles, dyeing, printing, chrome products, phar-
maceuticals, and in many other processes.

This subcategory has been recommended for exclusion under Para-
graph 8 on the basis of being a one-plant industry.

     Potassium iodide.  Potassium iodide is used in photographic
emulsions, animal and poultry feeds, table salts,  and analytical
chemistry.  It also has a number of medical uses.
Date:  9/25/81                 II.5-32

-------
Owing to the small quantity of wastewater discharged by the
industry and the resulting low waste loads generated, this sub-
category has been recommended as an exclusion candidate under
Paragraph 8.

     Potassium metal.  For the production of potassium metal,
potassium chloride is melted in a gas-fired melt pot and fed to
an exchange column.  In the column the molten potassium chloride
contacts ascending sodium vapors, and sodium chloride and potas-
sium metal are formed.  Major uses of potassium metal include
manufacture of organo-potassium compounds and production of sodi-
um potassium alloys used in lard modification and nuclear reactor
coolant.

Because the industry has only one primary plant, this subcategory
has been recommended as a candidate for a Paragraph 8 exclusion.

     Potassium permanganate.  Manganese ore is slurried with
potassium hydroxide solution and heated with oxygen to produce
potassium manganate.  This intermediate product and the ore
wastes are recovered by centrifugation and the solids then leached
to dissolve the manganate.  The resultant slurry is filtered to
remove the ore wastes and the manganate converted in electrolytic
cells.  The permanganate is crystallized from the solution to
form the product.

This subcategory has been recommended for exclusion under Para-
graph 8 on the basis of being a one-plant industry.

     Sodium bicarbonate.  Sodium bicarbonate is made by the reac-
tion of sodium carbonate with water and carbon dioxide under
pressure and is typically a minor byproduct of soda ash manufac-
turers.  Major uses include food processing, chemical processes,
Pharmaceuticals, synthetic rubber processes, and leather, paper,
and textile production.

This subcategory has been recommended for exclusion under Para-
graph 8 because of the low quantities of toxic pollutants.

     Sodium carbonate.  On-site captive production of sodium car-
bonate (soda ash) is a dominate practice.  Sodium carbonate is
used in the manufacture of sodium bicarbonate, ammonium chloride,
and calcium chloride.  Because of the nature of this industry, it
has been recommended that this subcategory be further studied.

     Sodium fluoride.  Sodium fluoride is produced by three
plants in the United States with each plant using a different
process.  Sodium fluoride is used to fluoridate water, to heat
treat salts, for pickling stainless steel, and as a wood pre-
servative, an adhesive, an insecticide, and an antiseptic.
Date:  9/25/81                II.5-33

-------
This subcategory has been recommended for exclusion under Para-
graph 8 because of the small number of plants.

     Sodium hydrosulfide.  Sodium hydrosulfide  is used in the
manufacture of sodium sulfide and other chemicals and paper
(kraft).   It is also used in dehairing of hides and industrial
wastewater treatment.

Owing to the very small flows and waste loads generated by this
industry, this subcategory has been recommended as a Paragraph 8
exclusion candidate.

     Sodium metal.   Sodium metal is manufactured with chlorine by
electrolysis of fused salt.  It is used in the production of
tetraethyl lead gasoline additives, sodium cyanide, sodium perox-
ide, and titanium and zirconium metals.  In liquid form, it is
used as a nuclear reactor coolant; it is also used as a light,
thermally conductive solid in various applications.

No toxic pollutants were found at significant concentrations dur-
ing screening of sodium metal plant 339.  On the basis of these
findings, this subcategory has been recommended as an exclusion
candidate under Paragraph 8.

     Sodium silicate.  Sodium silicate is manufactured both in
liquid and anhydrous powdered form.  It has many industrial uses,
such as additives in adhesives, flocculants, and cleaning agents.
It is also used in the production of soap and household deter-
gents .

Owing to the low waste loads generated by this industry, this
subcategory has been recommended as an exclusion candidate under
Paragraph 8.

     Sodium thiosulfate.  Sodium thiosulfate is extensively used
in the development of negatives and prints in the photographic
industry.  It is also used in medicine, in the paper and dyeing
industries, and as a bleaching agent for natural products.

No toxic pollutants were found at significant levels in the raw
waste during screening of sodium thiosulfate plant 987.  On the
basis of these findings, this subcategory has been recommended as
an exclusion candidate under Paragraph 8.

     Stannic oxide.  Tin is reacted with air and oxygen in a
furnace to form stannic oxide.  The product is recovered with dry
bag collectors and packaged for sale.  There is no process waste
water from this process.  This subcategory has been recommended
for exclusion under Paragraph 8.
Date:  9/25/81                II.5-34

-------
     Sulfur dioxide.  Most sulfur dioxide is produced in the gas-
eous form, although a small percentage is also produced in liquid
form.  In the gaseous form, it is predominantly used in on-site
manufacture of sulfuric acid.  It is also used in the paper and
petroleum industries, as well as for fermentation control in the
wine industry, for bleaching in the textile and food industries,
and in the production of other chemicals.

No toxic pollutants were found at significant levels in the waste
during screening of sulfur dioxide plant 363.  On the basis of
these findings, this subcategory has been recommended as an
exclusion candidate under Paragraph 8.

     Sulfuric acid.  Sulfuric acid is one of the most extensively
used of all manufactured chemicals.  The major industrial use is
in the fertilizer industry, with on-site captive use of the prod-
uct as a dominant practice.  It is also used in the manufacturing
of plastics, explosives, detergents, hydrofluoric acid, nuclear
fuel, and several other organic and inorganic products.

No toxic pollutants were found at significant concentrations in
the raw waste during screening of sulfuric acid plant 363.  On
the basis of these findings, this subcategory has been recom-
mended as an exclusion candidate under Paragraph 8.

     Zinc oxide.   Two major processes are used for the manufac-
ture of zinc oxide:  1) those involving oxidation of zinc, and 2)
those involving precipitation from solution followed by calcina-
tion.

Only one plant exists that generates process liquid effluents
from the manufacture of zinc oxide using the wet chemical pro-
cess.  No waterborne wastes are produced from processes using
oxidation of zinc; therefore, this subcategory has been recom-
mended for exclusion under Paragraph 8.

     Zinc sulfate.  Zinc sulfate is produced by reaction of
sulfuric acid with various crude zinc starting materials, such as
zinc oxide from brass mill fumes, zinc metal residues from various
sources, and zinc carbonate byproduct from sodium hydrosulfite
manufacture.  The only wastes are filter cake residues.  This
subcategory has been recommended for exclusion under Paragraph 8.

II.5.2  WASTEWATER CHARACTERIZATION [2-6]

Wastewaters in the Inorganic Chemicals industry vary considerably
among subcategories.  To ascertain the presence in each subcate-
gory of any of the 129 listed toxic pollutants, a screening
program was conducted of the industry.  Where significant pollut-
ant concentrations were found, additional plants were sampled
during the verification program for confirmation and further
quantification of data on the particular toxic pollutant.  Where


Date:  9/25/81                II.5-35

-------
any toxic metal was found during screening sampling of a partic-
ular plant, analyses were made for all toxic pollutant metals
during the verification program.  The toxic pollutants generally
found
were the toxic metals,  except in cases where organic products are
also produced at the same plant.  The minimum detection limits
for the toxic metals are presented in Table 5-17.

     TABLE 5-17.  ANALYTICAL DETECTION LIMITS FOR METALS [2-6]
                                        Concentration,
          Pollutant	(yig/L)
          Antimony                           10
          Arsenic                            10
          Beryllium                          15
          Cadmium                             1
          Chromium                           25
          Copper                             20
          Lead                               10
          Mercury                           0.5
          Nickel                             25
          Selenium                           10
          Silver                             15
          Thallium                            2
          Zinc                                1
The following descriptions provide detailed wastewater charac-
terization information for the 11 inorganic subcategories not
proposed for exclusion either under Paragraph 8 of the NRDC
Consent Decree or for other reasons.  Table 5-18 presents the
maximum and mean concentrations of each toxic pollutant found in
each subcategory within the industry.

II.5.2.1  Aluminum Fluoride Subcategory Industry

     Water Use

Water is used in noncontact cooling of the product, for seals on
vacuum pumps, and for scrubbing the reacted gases before they are
vented to the atmosphere.  Water is also used for leak and spill
cleanup and equipment washdown.

     Wastewater Sources

     Noncontact cooling water.  Noncontact cooling water is used
to cool the product coming out of the reactor.  In some cases, it
is recirculated and the blowdown treated separately from other
process contact wastewater or discharged without treatment.  The
water can be monitored for fluoride and, if process contamination
Date:  9/25/81                II.5-36

-------












(O O
0 H

rf rf — .
C£ U.
HO —
zzoe
UJ3LJ
OO>
ZU.
O
OCOCO
QfZZ
^ ^ O*
ulj_i
COO-O
^ Lij
SOI
< — O
OS CO
coo
< — !z
UJO<
£ 0
O0£
QZO
z



E
X
I

Q)
0
2
I



•
e
~





c



*j
c
(B
«
i


mo-ir-coo oa-oo-ooo
VO &> O "" a t^ O !*• rt ^ UMA
V UMD V CM O V V V CM

*


— O QQ>O O *O O Ch O CM ^Q ^ O O 4OQ O O O <•> Q O O O rtO CM
m coco- o co - ca S cam acoeaea CD a) coo CD
_*
CM

lf\P 	 fOOO OVOCM — ITIO

V •» * * » V ^
r*i~ CM CM ">
- CM




-Jo «oo oa-o -i o
Q*O — h*O iTVOiO O O
> d . -
^ Ift —



oo ooo ooo ooo
r-o oxeoo ooo r-ao
^* a r* ^ **> cho^f coa'O
CM — OCM »
co m


oo omo ooo OQO-
MJT of-CM oo» inNO
cvi— — a asm — — a

n


-JO-J«OO — — Ol~ O
aeoomom ox— o\o> >ri
COJOS —CM CM a
»






-lo-Jmoo mvooco o
OOQ 10 a- — -CMCM £X i
S O0O£O« BO— OOW0£W X
• O CBO — W— *- P4'^ S §
SB (0 — — £ — ^C^W 0BA£«-£>>O P
•O >> SB • • W£ k O 1- 1 O£— C C O— O W W— C.
DCCO—B3 0 >> 3 3 O OK — I-CX*- O C 0 O t«— 0 3£ 0 O
— «o — — 3— t-v u — — i_— M e c — i £ i «p — — — woo.ci.aoc —
— BC— — BO— 30CO— O QJ OO— OCMCM C O O >>O— 1- OCM 1 « B£
o«~e>>>9ac'ou^0>— o — NAI -co • - o i i£B£Oowpo— x«i+* — —
O W<
-------







CO
0 ^
- CD
1- 1- 3
« C
oc —
1- O +J
zz c
LJ=J o
000
otoco
1— h—
h- h- — 1
OB.
S-l
coo-o
< LJ
-o
ccco
coo
LJO<
QZO
zXLJ
ZO-J
— (-a.

zoco
00

1
LJ
_J
CO
15









M
c
«
a
10
•o
o
a
o
b
c
e
T3
2



t>
c
'a
-
s
It
u-
s
o
a
fl
5


«•
o
«!
e
—
o

c
s
c
*Q
ffi
j
£
c











E
1
X
£



O
iDBJOAV




1
X
£



B
e
a
4






B
o
g

5




!




c
I
4

—
I


§O OOO Onoo no
— N* N ON O
N — N — *
B
4»
•
3
"
O
N
^"

c
§o ooo o o o p •
o 0*00  —
N . —
!
\,
X

«
e
0
CM

« » • * ^ « X
— OMCJ OK O —
S eo «
c
e
1
8 J
^s s ?
•v.C B >
ss eg
t B O •
.0 B — w
«C C C 3
c— w o —
I|&o|s|t««- t_ltl „£ I

 £SSS'£1S— — «S ^£— " Sw
•— d> £ «
XX O •
o —
K 0



1
X
£

B
0
I
<



_
X
£



B
o
I.
§
^


;
X
£




s
I
















Oh- — oo or-o ineoo
vo ae> —^3- «
n — m

QU\ OOO O(*>O OfiOO
n CO QJOtiO ^ «J N "> O
fo o<^ m^N v v ir»
« •>
N —



« ooo oooo o
1— SONvO N — O.9  1 S

— I C — — • B — — 3BCB— O
& ^ *• M C ^ k&QIBfl|2.U«*i
-------










O -0
1-1-3
« C
0£ —
I-Q *>
ZZ C
UJ 3 O
ooo
Z IJ- -^
o
Hl-
0£ZZ
UJ<<
(-(--I
< Z> d.
LJ-I-I
«o.O

SOX
< — O
tn
1
•a

I

X

0>X
•o
o

5§
Avera



|
X
I





a
I



ul
4J
C
«
a
CM

a

£
u
•a
i

?
in



X
i



o
a
1





e
«D
e
a.


O -J O O
o a « o
co ca n






O _) -I -J O
CM o a o r-
r~ ca ca co —

___
•a
« moooo«o?o o oo
r- -tfoooocvjomm o cor^
* » * « «
eg




•a
o vooooomoeTm o oo
P-— — vft


^
m 3

•— — ^c— jm oo CM mcfi o
-J OO d1 OOO O —CX - *..« +
O O^CMOtfOO X— « — — — ^ — i>.
00 OCM <»> — CM CM OQX « —
«. * « •**>
o - - -o-
« •*"
3 «
— 4J 
C as o> "O
«*»- O *-•
*>— «D JflO — OO O O-l Is- O
« 3 t_ f^CM OO*O^Q O

•a > * * .
— < f*i— —
_j oin — o-ivo o —
O OflO — ^O»O CM
CD O «OCD «0

8 ^
^ §
- S -
jS _ J «
V.C 0 C C
a>ea c a eg
ag S S E
»o & — o
S£ 2 o -E
cj • o a •

— "8^ 	 BO— 3OC»— M|« O C "Sc — — ««— 30JCCJ —
OM^O^kCOCLCQpJC0^~*O —I4*G •* M>^a9^tCO&CVP^O^^O
CX^ 4JIAk9L&fB(BCu^^flC*OlC4) 10 V) ^*J(0^^^&B— C
S— « at • i.
« i- So 3
-a a ca
* — <• a> « ..
•« EC O— O
mo - 0 "-— 0
• c — — o « C
r^ ** w > 3
• a) c a co o
>*> 0 "-T3 M
• — *> c •
• ••O •*» C 0) w C
•e o o o o c«~
o *» ** *» c o v
£ « u o o— e o
§— u a e t.
•o o > o o— o
c -o o — x a.
o— — c»- e m
— wo ,J£ c t n o «>

<
-------
occurs, it can be diverted to the wastewater treatment facility
for fluoride removal.

     Floor and equipment washings.  The quantity and quality of
wastewater generated from these operations is variable and de-
pends largely on the housekeeping practices at the individual
plants.

     Scrubber wastewater.  This is the major source of wastewater
requiring treatment before discharge or recycle back to the
scrubber.  It is contaminated with hydrofluoric acid, aluminum
fluoride, and aluminum oxide, and, in some cases,  the presence of
sulfuric acid and silicotetrafluoride has been detected.  These
originate as impurities in the hydrofluoric acid used in the
process.

     Wastewater Characteristics

A summary of unit product raw waste loads found in verification
sampling is'shown in Table 5-19.
    TABLE 5-19.
SUMMARY OF RAW WASTE LOADINGS FOUND IN
ALUMINUM FLUORIDE SUBCATEGORY, VERIFICATION
DATA [2-6]
                                   Raw waste loadings
        Pollutant
           Minimum,
            kg/Mg
 Average,
  kg/Mg
 Maximum,
  kg/Mg
  Toxic pollutants
    Antimony
    Arsenic
    Beryllium
    Cadmium
    Chromium
    Copper
    Lead
    Nickel
    Mercury
    Selenium
    Zinc
               BDL
            0.0003
               BDL
               BDL
               BDL
            0.0001
            0.0001
            0.0002
          0.000004
               BDL
            0.0003
0.000002
  0.0014
0.000001
 0.00007
   0.002
  0.0007
  0.0001
   0.001
 0.00002
  0.0015
   0.001
0.000005
   0.002
0.000002
  0.0002
   0.005
   0.001
  0.0002
   0.003
 0.00005
   0.002
   0.002
Classical pollutants
TSS
Fluorine
Aluminum

13
5.5
0.60

120
13
7.0
  Analytic methods:  V.7.3.4, Data set 2.
  Blanks indicate data not available.
  BDL, below detection limit.
Date:  9/25/81
             II.5-40

-------
II.5.2.2  Chlor-Alkali Subcategory

     Water Use

The water uses common to both mercury and diaphragm cells include
noncontact cooling, cell washings, tail gas scrubbing,  equipment
maintenance, and area washdown.  Noncontact cooling water is used
in cooling brine, caustic, chlorine, rectifiers, and compressors.
Large amounts of water are also introduced into the process
through the salt solution.

One water application unique to the mercury cell process is in
the decomposition of mercury-sodium amalgam to form caustic in
the denuder.  In mercury cell plants, the quantity of water usage
was found to range from 7.6 to 204m3/metric ton of chlorine
produced, with noncontact cooling comprising approximately 70% of
the total.

In the diaphragm cell process, a large quantity of water is used
in the barometric condensers if the vapors from the caustic
evaporators are contact cooled.  For plants practicing contact
cooling through barometric condensers, the average amount of
water usage is twice that of the mercury cell plant per metric
ton of chlorine produced (15 to 492 m3/Mg).  Of the total water
usage in diaphragm cell plants, approximately 50% is used for
noncontact cooling.  In addition, the amount of water used for
cleaning diaphragm cells is higher than that required for mercury
cells.

     Waste Sources

Some of the waste sources produced during the manufacture of
chlorine and caustic by diaphragm and mercury cells are similar
with the notable exception of the presence of mercury in the
wastewaters from mercury cells and asbestos fibers in the waste-
water from the diaphragm cell plants.  Following are descriptions
of the common wastewater streams, followed by descriptions of the
individual streams specific to mercury and diaphragm cells.

     Common Wastes (Mercury Cell and Diaphragm Cell)

     Brine mud.  Brine mud is the major portion of the waste
solids produced from the two processes.  The solids content of
the stream varies from 2% to 20% and ranges in volume from 0.04
to 1.5 m3/ton of chlorine produced.  The waste is either sent to
a pond or filtered.  The overflow from the pond (filtrate) is
recycled to the process as makeup water for the brine.   In the
mercury cell process, only 16% of the NaCl solution is decomposed
in the cell, and the unconverted brine is recycled to the purifi-
cation unit after dechlorination.  This recycled brine is con-
taminated with mercury and, therefore, the resulting brine mud
contains small amounts of mercury.


Date:  9/25/81                II.5-41

-------
     Cell room wastes.   The major components of this stream
include leaks, spills,  and cell wash waters.  The amount of cell
room waste generated per metric ton of chloride is generally
higher for diaphragm cell plants, and the wastewater from the
washing and rebuilding of the cathode contains asbestos fibers,
dissolved chlorine,  and brine solution.   In mercury cell plants,
the cell room wastes contain mercury, dissolved hydrogen, chlo-
rine, and some sodium chloride.

Cell room waste constitutes one of the major streams that has to
be treated for mercury.  If graphite anodes are used in either
the mercury or diaphragm cells, the cell room wastes contain lead
and chlorinated organic compounds in addition to the normal
pollutants.

     Chlorine condensate.  Condensation from the cell gas is
contaminated with chlorine.  At some plants, the condensates are
recycled to the process after chlorine recovery.  Both contact
and noncontact water is used for chlorine cooling and for removal
of water vapor, so the amount of wastewater varies from plant to
plant.  When graphite anodes are used, chlorinated hydrocarbons,
lead, and other impurities carried with the chlorine condense in
the first-stage cooler.  The chlorinated organic compounds that
have been detected when graphite anodes are used are:  chloro-
form, methylene chloride, hexachlorobenzene, hexachloroethane,
and hexachlorobutadiene.

     Spent sulfuric acid.  Concentrated sulfuric acid is used to
remove the residual water from the C12 gas after the first stage
of cooling.  In most cases, sulfuric acid is used until a constant
concentration of 50% to 70% is reached.  The spent acid might
contain mercury, asbestos fibers, or chlorinated hydrocarbons
(depending on the type of cell) in addition to chlorine.  The
volume of waste acid is typically on the order of 0.01 m3/metric
ton of chlorine.

     Tail gas scrubber liquid.  The uncondensed chlorine gas from
the liquefaction stage, containing some air and other gases, is
scrubbed with sodium/calcium hydroxide to form sodium/calcium
hypochlorite.  When the equipment is purged for maintenance, the
"sniff" gas, or tail gas, is absorbed in calcium or  sodium hydrox-
ide, producing the corresponding hypochlorites.  The amount of
tail gas scrubber water varies from 0.04 to 0.58 m3/metric ton  of
chloride for both diaphragm and mercury cell plants.

     Caustic filter washdown.  The 50% caustic produced  from both
mercury and diaphragm cells is treated with chemicals and filtered
to remove salt and other impurities.  The filters are backwasted
periodically as needed; the wastewater volume is variable and
usually contains small amounts of mercury or asbestos fibers in
addition to the salt.
Date:  9/25/81                II.5-42

-------
     Process Specific Wastes

     Condenser drainage.  In mercury cells,  the hydrogen produced
is cooled in surface condensers to remove mercury and water that
is carried over with the gas.  The wastewater is sent either to
the wastewater treatment facility or to the mercury recovery
facility.  After mercury recovery, the water may be discharged to
the treatment facility or returned to the denuder after deioniza-
tion.  Information on the volume of this wastestream is not
available.

     Barometric condenser water.  The wastewater specific to the
diaphragm cell process is the barometric condenser water.  A
significant amount of water is used in contact cooling the vapors
from the evaporators used to concentrate the caustic.  In the
mercury cells, the caustic comes out at a concentration of 50%
and does not require evaporators unless a caustic of high concen-
tration (e.g., 73%) is required.  The barometric condenser waste-
water ranges from 90 to 300 m3/metric ton of chlorine when water
is not recirculated.  The barometric condenser wastewater is
either discharged without treatment or recycled, and a bleed is
discharged with or without pH adjustment.

Discharges from the barometric condensers contain some salt and
caustic as a result of the carryover from the caustic solution.
When graphite anodes are used, the barometric condenser waste-
water contains lead.

     Sulfate purge wastewater.  During the concentration of the
caustic by evaporation, sodium chloride precipitates out.  The
salt is removed and is washed with water to remove sodium sulfate.
A portion of wash water is recycled and the rest is purged to
waste in order to stop the buildup of sulfates.  The stream is
one of the major sources of wastewater from chlorine/ caustic
plants using diaphragm cells.

A summary of unit product raw waste loads for all plants sampled
in the chlor-alkali/mercury cell subcategory is shown in Table
5-20.  Similar data for diaphragm cell plants are presented in
Table 5-21.
Date:  9/25/81                II.5-43

-------
      TABLE 5-20.
SUMMARY OF RAW WASTE LOADINGS FOUND IN
VERIFICATION SAMPLING (MERCURY CELL
PROCESS) [2-6]
Pollutant
Toxic pollutants
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Silver
Thallium
Zinc
Raw
Minimum,
kg/Mg

BDL
BDL
BDL
0.000019
0.00025
0.000096
0.0043
BDL
BDL
BDL
0.00043
waste loadings
Average,
kg/Mg

0.00031
0.00031
0.000061
0.00013
0.00035
0.00032
0.016
0.00024
0.00018
0.00085
0.0026

Maximum,
kg/Mg

0.00077
0.0011
0.00023
0.00040
0.00060
0.0007
0.048
0.0007
0.00083
0.0054
0.01
Analytic methods:  V.7.3.4, Data set 2.
BDL, below detection limit.
      TABLE 5-21.
SUMMARY OF RAW WASTE LOADINGS FOUND
SCREENING AND VERIFICATION SAMPLING
(DIAPHRAGM CELL PROCESS) [2-6]
IN
Pollutant
Toxic pollutants
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Zinc
Mercury
Selenium
Antimony
Thallium
Beryllium
Silver
Raw
Minimum,
kg/Mg
BDL
BDL
0.000017
0.000014
0.0000039
0.000054
BDL
BDL
BDL
BDL
BDL
BDL
BDL
waste loadings
Average,
kg/Mg
0.000026
0.0000043
0.00099
0.00041
0.003
0.00068
0.00089
0.0000033
BDL
0.000031
BDL
BDL
BDL

Maximum,
kg/Mg
0.0021
0.0000061
0.0046
0.0011
0.015
0.0018
0.0021
0.000014
BDL
0.00015
BDL
BDL
0.0000007
Analytic methods:  V.7.3.4, Data sets 1,2.
BDL, below detection limit.
Date:  9/25/81
           II.5-44

-------
II.5.2.3  Chrome Pigment Industry

     Water Use

In the chrome pigment industry, water is used for noncontact
cooling, for washing the precipitated product, and as boiler feed
for steam generation.  In some cases, water is introduced into
the reactor along with the raw materials.  In anhydrous and
hydrated chrome oxide manufacture, water is used for slurrying of
the reaction product and in scrubbing the reactor vent gases.

     Waste Sources

Some plants produce different pigment products sequentially in
the same process.  At a few plants, the different pigment pro-
ducts are manufactured concurrently and the wastewaters combined
and treated at a single facility.  The wastewater sources are
similar for all pigment products except that at chrome oxide
plants an additional scrubber waste is produced.  The quantity of
wastewater and the pollutants vary for the different pigment
products since the pollutants are dependent on the raw materials
used.  All the wastewaters generated in the chrome pigments
subcategory contain dissolved chromium and pigment particulates.

Additional pollutants that can be present are given below for
each major pigment group.

     Chrome yellow and chrome orange.  The raw wastewaters con-
tain sodium acetate, sodium chloride, sodium nitrate, sodium
sulfate, and lead salts.

     Chrome oxide.   The aqueous process effluent contains sodium
sulfate.  If boric acid is used in the preparation of hydrated
chromic oxide, the wastewater will contain sodium borate and
boric acid.

     Chrome yellow and chrome orange.  Additional pollutants
present in the raw wastewater from chrome yellow and chrome
orange manufacture include sodium acetate, sodium chloride,
sodium nitrate, sodium sulfate, and lead salts.

     Molybdenum orange.  Process waste effluents from the manu-
facture of molybdenum orange contain sodium chloride, sodium
nitrate, sodium sulfate, chromium hydroxide, lead salts, and
silica.

     Chrome green.   The raw wastewater contains sodium nitrate.
If iron blue is manufactured on site as part of the process for
chrome green manufacture, the wastewater also contains sodium
chloride, ammonium sulfate, ferrous sulfate, sulfuric acid, and
iron blue pigment particulates.
Date:  9/25/81                II.5-45

-------
     Zinc  yellow.   The raw wastes contain hydrochloric acid,
sodium chloride,  potassium chloride,  and soluble  zinc salts.

Because various plants make  several chrome pigments sequentially
or concurrently,  the unit hydraulic load going  to the treatment
facility will  be an average  of  all the waste  loads from the dif-
ferent processes.   The raw waste from a complex plant may contain
nearly all of  the following  substances:  sodium acetate; sodium
chloride;  sodium nitrate; sodium sulfate; potassium chloride;
lead, iron,  and zinc salts;  soluble chromium; and pigment partic-
ulates.

     Wastewater Characteristics

A summary  of unit product raw waste loadings  for  all plants
sampled is shown in Table 5-22.

      TABLE 5-22.   SUMMARY OF RAW WASTE LOADINGS  FOUND IN
                    SCREENING AND VERIFICATION SAMPLING -
                    CHROME PIGMENTS SUBCATEGORY  [2-6]
                                    Raw waste loadings
                              Minimum,    Average,    Maximum,
          	Pol lutant	kg/Mq	kq/Mq	kq/Mq

          Toxic pollutants
            Metals and inorganics
             Antimony              0.I I       0.58        1.5
             Cadmium             0.016       0.I I       0.15
             Chromium                10         16         2H
             Copper               0.I I       0.7U        I.U
             Lead                 0.82        3.9        6.8
             Nickel              0.0028      0.019       0.03
             Zinc                 0.71        4.8         13
             Cyanide             0.056       0.53       0.8U
             Mercury               BDL     0.002U      0.0072
Organ ics
Pheno 1 s
Phenol ics
Classical pollutants
TSS
1 ron




55
0. 13

O.OIU
0. 13

93
U.2




130
8.2
          Analytic methods: V.7.3.4, Data set  1,2.
          Blanks indicate data not available.
          BDL, below detection limit.
II.5.2.4   Copper Sulfate  Subcategory

     Water Use

Water is used in the process as a reaction  component which be-
comes a part of the dry product as its water of crystallization.
Water is also used for noncontact cooling,  pump seals,  and wash-
downs .


Date:  9/25/81                 II.5-46

-------
     Waste Sources

     Noncontact cooling water.  Noncontact cooling water is used
in the crystallizers  and constitutes  one  of the main wastes.
This wastestream should not be  contaminated by process leaks,  and
therefore can be discharged without treatment.

     Contact water.   Washdowns, spills, and leaks are sources of
contact wastewater, but the flows  are relatively small and inter-
mittent and do not represent  a  major  waste source.   Wastewaters
emanating from this source are  either combined with the mother
liquor, or treated and discharged.

     Steam condensate.  A few plants  use  evaporators, and steam
condensate is an additional noncontact waste formed in the process,
This can also be discharged without treatment.

     Solid waste.  Solid waste  is  produced by some plants.  The
copper metal used in  the process contains copper sulfides, which
are filtered out of the liquor  and disposed of in a landfill.

Plants that produce copper sulfate in the liquid form have no
contact waste streams from the  process.   The copper metal, acid,
and water are reacted together  to  form the copper sulfate solu-
tion product with no  generation of liquid wastes.

     Wastewater Characteristics

A summary of unit product raw waste loads for plant 034 is pre-
sented in Table 5-23.

 TABLE 5-23.  SUMMARY OF RAW  WASTE LOADINGS FOUND IN SCREENING
              AND VERIFICATION  SAMPLING - COPPER SULFATE
              SUBCATEGORY [2-6]
Pol lutant
Toxic pol lutants
Ant imony
Arsenic
Cadmium
Copper
Lead
Nickel
Zinc
Chromium
Se 1 en i urn
Raw waste
Average,
ka/MQ
0.00095
0.052
0.0027
U.2
0.0011
0.23
0.026
0.000055
BDL
loadings
Maximum,
kg /Ma
0.0012
0.097
0.0035
U.6
0 . 00 1 8
0.25
0.027
0.00008
<0.00002U
                Classical pollutants
                  TSS                 0.9U         1.8

               Analytic methods: V.7.3.4, Data sets 1,2.
               BDL, below detection limit.
Date:  9/25/81                 II.5-47

-------
II.5.2.5  Hydrofluoric Acid Subcategory

     Water Use

Water is used in hydrofluoric acid production in noncontact
cooling, air pollution control,  product dilution,  seals on pumps
and kilns, and for equipment and area washdown.   Although non-
contact cooling constitutes the major use of water,  water is also
used,  in a majority of cases, in the transport of gypsum as a
slurry to the wastewater treatment facility.  The water for
gypsum transport is provided either by recycling the water from
the treatment facility or by using once-through cooling water.

     Waste Sources

     Drip acid.  Drip acid is formed in the first stage of cool-
ing of the gases emitted from the kiln.  The drip acid primarily
contains high boiling compounds consisting of complex fluorides
and small amounts of hydrofluoric acid, sulfuric acid, and water.
Nine out of 'eleven plants producing HF recycle the drip acid back
to the reactor.

     Noncontact cooling water.  Noncontact cooling water is used
for precooling the product gases emitted from the kiln.  This
stream is relatively unpolluted, and the possibility of product
or other process compounds leaking into it is small.  In some
plants,  the cooling water is used to transport the waste gypsum.

     Scrubber wastewater.  Scrubber wastewater constitutes the
predominant and major source of wastewater in plants which prac-
tice dry disposal of gypsum.  The water contains fluoride, sul-
fate,  and acidity.  The fluoride is present as hydrogen fluoride,
silicon tetrafluoride, and hexafluorosilicic acid.  Scrubber
water consequently needs treatment for fluoride before discharge.

     Distillation wastes.  Distillation wastes generally contain
HF and water.  In some cases, vent gases from the distillation
column are scrubbed before they are emitted to the atmosphere,
resulting in scrubber water.

     Gypsum solids.  Additionally, gypsum solids are generated as
a byproduct.  Seven out of eleven plants producing hydrofluoric
acid slurry the gypsum with water and  send it to a wastewater
treatment facility.  Three of the plants transport the gypsum as
a dry solid.

     Wastewater Characteristics

A summary of unit product raw waste loads for all plants  sampled
in this subcategory is shown in Table  5-24.
Date:  9/25/81                II.5-48

-------
      TABLE 5-24.
SUMMARY OF RAW WASTE LOADINGS FOUND IN
SCREENING AND VERIFICATION SAMPLING -
HYDROFLUORIC ACID SUBCATEGORY [2-6]
Pol lutant
Toxic pol lutants
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Se 1 en i urn
Thai 1 ium
Zinc
Classical pollutants
TSS
Fluoride
Raw
Minimum,
ka/Md

0.00057
BDL
BDL
0.0035
0.010
0.0025
0.00005
0.0035
BDL
BDL
0.012

3,800
8.8
waste loadinqs
Average,
kq/Mq

0.033
0.0042
0.00022
0.018
0.025
0.039
0.0005
0.039
0.00075
0.0016
0.39

4,200
34

Maximum,
kq/Mq

0. 12
0 . 009 1
0.00047
0.04
0.051
0. 14
0.0015
0. 10
0 . 00 1 4
0.0033
1.3

4,800
58
           Analytic methods: V.7.3.4, Data sets 1,2.
           BDL, below detection limit.
II.5.2.6  Hydrogen Cyanide Subcategory

     Water Use

Water is used in noncontact cooling  in the  absorber,  pump seal
quenches, flare stack flushes, for washdown and cleanup of tank
cars, and for washing equipment and  cleaning up leaks and spills.

     Waste Sources

The following are the sources of wastewater produced  from the
manufacture of hydrogen cyanide by the Andrussow process.

     Distillation bottoms.  The wastewater  contains ammonia,
hydrogen cyanide, and small amounts  of organic  nitriles.   The
water consists of the water produced by the reaction  plus scrub-
ber water used for the absorption of HCN.   The  absorption water
distillation bottoms are either recycled to the ammonia absorber
or discharged to the treatment facility.  Even  if the distilla-
tion bottom stream is recycled to the absorber,  a portion of  it
is discharged to stop the buildup of impurities.

     Scrubber streams.  If the scrubber liquid  is recycled, a
portion of it has to be purged to control the accumulation of
impurities.  The bleed contains the  acid used for scrubbing and
minor amounts of organic nitriles.   The scrubber solution can
also be used for the manufacture of  other products, in which  case
nothing is discharged from the scrubber operation.
Date:  9/25/81
           II.5-49

-------
     Other wastewater.  This includes leaks and spills, equipment
and tank car washings, noncontact cooling water blowdown, and
rainfall runoff.

     Wastewater Characteristics

A summary of unit product raw waste loads for all plants sampled
in this subcategory is presented in Table 5-25.

      TABLE 5-25.  SUMMARY OF RAW WASTE LOADINGS FOUND IN
                   SCREENING AND VERIFICATION SAMPLING -
                   HYDROGEN CYANIDE SUBCATEGORY [2-6]
Pol lutant
Toxic pol lutants
Cyanide, total
Cyanide, free
Classical pollutants
TSS
NH(3)-N
Raw
Minimum,
ka/Ma
O.U5
0.39
0.15
H.l4
waste loadings
Average,
ka/Ma
2.7
0.61
1. 1
12

Maximum,
ka/Ma
6.1
0.82
2.0
27
          Analytic methods: V.7.3.U, Data sets 1,2.


II.5.2.7  Nickel Sulfate Subcategory

     Water Use

Noncontact cooling water is used for nickel sulfate production in
the reactor and in crystallizers.  Water is used for direct pro-
cess contact in the reactor.  Small amounts of water are used for
maintenance, washdowns, cleanup, etc.

     Waste Sources

     Noncontact cooling water.  Noncontact cooling water is the
main source of wastewater, but it is usually not treated before
discharge.

     Contact water.  Direct process contact water constitutes the
major portion of treated waste.  The water comes from  the prelim-
inary preparation of spent plating solutions used in the process.
Plants which use impure nickel raw materials generate  a filter
backwash wastestream with high impurity levels.  This  stream must
be sent through the treatment system.

Washdowns, spills, pump leaks, and maintenance uses account for
the remaining wastes produced by nickel sulfate plants.
Date:  9/25/81                 II.5-50

-------
     Wastewater  Characteristics

A summary of unit product raw waste loads for all plants  sampled
is presented in  Table 5-26.

      TABLE 5-26.   SUMMARY OF RAW WASTE. LOADINGS FOUND  IN
                    SCREENING AND VERIFICATION SAMPLING  -
                    NICKEL SULFATE SUBCATEGORY [2-6]
Pol lutant
Toxic pol lutants
Antimony
Arsenic
Cadmium
Ch rom i urn
Copper
Lead
Mercury
Nickel
Selenium
Tha 1 1 ium
Zinc
Raw
Minimum,
kd/Mq

BDL
BDL
0.0000019
0.0000086
0.00016
0.000022
BDL
0.035
BDL
BDL
O.OOOOU
waste loadinqs(a)
Average,
ko/Mo

0.0001
0.000018
0.0000029
0.00027
0.015
0.00003
BDL
0.05U
0.000027
O.OOOOOUU
0.000075
Maximum,
ka/Mq

0.0002
0.000035
0.0000038
0.00054
0.03
0.000038
BDL
0.073
0.00005
0.0000088
0.00011
          Analytic methods: V.7.3.U, Data sets 1,2.
          BDL, below detection limit.
          (a)Data for only 2 of 3 plants sampled.  No  loading data
            available for third plant.
II.5.2.8  Sodium  Bisulfite Subcategory

     Water Use

Direct process contact water is used to slurry the  sodium carbon-
ate for the reaction.   Noncontact cooling water is  another water
use at one plant.   Water is also used for pump seals, maintenance,
and washdowns.

     Waste Sources

     Noncontact cooling water.   Noncontact cooling  water  from the
centrifuge is a source of waste at one plant.

     Contact water.  Direct process contact water is the  main
source of wastewater which must be treated.  Other  miscellaneous
wastes to be treated are water  used for maintenance purposes,
washdowns, and spill cleanup.

     Wastewater Characteristics

A summary of unit product raw waste loads for all plants  sampled
in this subcategory is shown in Table 5-27.
Date:  9/25/81                 II.5-51

-------
      TABLE 5-27.
SUMMARY OF RAW WASTE LOADINGS FOUND IN
SCREENING AND VERIFICATION SAMPLING -
SODIUM BISULFITE SUBCATEGORY [2-6]
Pol lutant
Toxic pol lutants
Arsenic
Antimony
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
S i 1 ve r
Tha 1 1 i urn
Raw
Minimum,
ka/Ma

0.00001
0.00007
O.OOOOOU
BDL
0.00007
0.000007
0.000001
0.00005
0.0002
BDL
BDL
waste loadinqs
Average,
kg /Ma

0.000023
0.000073
0.00001
0.0074
0.00046
0.000069
0.000006
0.00031
0.0053
0.00014
0.000058

Maximum,
kq/MQ

0.00003
0.00008
0.000017
0.022
0.001
0.0002
0.00001
0.0007
0.0088
0.00017
0.00042
         Analytic methods: V.7.3.4, Data sets 1,2.
         BDL, below detection limit.

II.5.2.9  Sodium Dichromate Subcategory

     Water Use

Water is used for noncontact cooling, in leaching, for  scrubbing
vent gases, and for process steam for heating.

     Water Sources

     Spent ore.  The unreacted ore is removed from the  process  as
a sludge.  The solids contain chromium and other  impurities
originally present in the ore.  The waste is disposed as  a solid
waste in a landfill or is slurried with water and sent  to the
treatment facility.

     Noncontact cooling water and cooling tower blowdown.  The
noncontact cooling water is either used on a once-through basis
and discharged or is recycled and the blowdown discharged to the
treatment facility.  In addition to dissolved sulfate and chlo-
ride, it may contain chromates.

     Boiler blowdown.  The steam used for heating is recovered  as
condensate, while the boiler blowdown is discharged to  the treat-
ment facility.  It may become contaminated with chromium  escaping
from the process area and hence should be sent to the wastewater
treatment facility for treatment.

The majority of aqueous streams resulting from the'manufacture  of
sodium dichromate are recycled.  Streams recycled include conden-
sates from product evaporation and drying; product recovery
filtrates; air pollution control scrubber effluents from  product
drying, leaching, and roasting kilns; filter wash waters; and
Date:  9/25/81
           II.5-52

-------
equipment and process area washdowns.  At two plants the waste-
water, consisting of boiler and noncontact cooling tower, is used
to slurry the spent ore residue to the wastewater treatment
facility.  At one plant, the only wastewater resulting from
process operations is the noncontact cooling water, which is used
on a once-through basis.

     Wastewater Characteristics

A summary of unit product raw waste loads for all plants sampled
in this subcategory is presented in Table 5-28.

      TABLE 5-28.  SUMMARY OF RAW WASTE LOADINGS FOUND IN
                   SCREENING AND VERIFICATION SAMPLING -
                   SODIUM DICHROMATE SUBCATEGORY [2-6]


Pol lutant
Toxic pot lutants
Chromium
Lead
Copper
Nickel
S i 1 ve r
Zinc
Se 1 en i urn
Arsenic
Raw
Minimum,
ka/Mq

0.94
0.00003
0.00013
0.0047
<0. 00002
0.0022
<0. 00002
<0. 00004
waste loadinas
Average,
kq/Mq

2. 1
0.00006
0.0004
0.0049
<0. 00015
0.0024
<0. 00003
<0. 00004

Maximum,
kq/Mq

3.3
0.00009
0.00067
0.0050
0.00028
0.0025
<0. 00004
<0. 00004
          Analytic methods: V.7.3.4, Data sets 1,2.

U.S.2.10  Sodium Hydrosulfite Subcategory

     Water Use

Water is used in the process as makeup for the reaction solutions
and for steam generation in the rotary dryers.  Water is also
used for noncontact cooling in the reactor gas vent scrubbers and
dryers, as well as pump seals and washdowns.

     Water Sources

     Distillation column residue.  The strongest process waste is
the aqueous residue from the distillation column bottoms (solvent
recovery system).  This waste contains concentrated reaction co-
products and is purged from the system at a rate of approximately
54 m3/d (14,000 gpd).  At one plant  (672) this waste is sent to a
co-product pond where it is held and either sold to the pulp and
paper industry or bled into the treatment system.

     Dilute wastes.  The dilute wastes from process are contrib-
uted from leaks, spills, washdowns, and tank car washing.  At one
plant (672) this is collected in a sump and then sent to the bio-
logical treatment system.
Date:  9/25/81                II.5-53

-------
     Slowdown.   Cooling tower and boiler blowdown constitutes a
noncontaminated wastewater source.  This is sent to the final
compartment of the chlorine contact tank without treatment for
discharge with the combined effluent of the treatment plant.

     Scrubber wastewater.   The vent gas scrubbers create a waste-
water source which is sent to the methanol recovery distillers
for recycle.  This waste eventually goes to the co-product pond
with the distilling column bottoms.

     Wastewater Characteristics

A summary of unit product raw waste loads for the plant sampled
(672) is presented in Table 5-29.
       TABLE 5-29.
SUMMARY OF RAW WASTE LOADINGS FOUND IN
VERIFICATION SAMPLING - SODIUM HYDROSULFITE
SUBCATEGORY (FORMATE PROCESS) [2-6]
                    Pollutant
                    Average
                      kg/Mg
               Toxic pollutants
                 Arsenic                 0.00012
                 Cyanide                0.000039
                 Cadmium                0.000033
                 Chromium                0.00056
                 Copper                  0.00019
                 Lead                      0.001
                 Mercury                 0.00002
                 Nickel                   0.0016
                 Silver                  0.00016
                 Zinc                      0.024
                 Pentachlorophenol       0.00083
                 Phenol                  0.00015
                 Selenium                0.00003

               Classical pollutants
                 TSS                        0.57
                 COD                         100

               Analytic methods:V.7.3.4, Data set 2.

II.5.2.11  Titanium Dioxide Subcategory

     Chloride Process

     Water use.  Water is used in noncontact cooling, for scrub-
bing tail gases from the purification and oxidation reactor to
remove contaminants, and in some cases, in the finishing opera-
tion of the product.  The total amount of water usage varies from
45.3 m3/Mg to 555 m3/Mg of Ti02 produced.  Cooling water consti-
Date:  9/25/81
          II.5-54

-------
tutes the major use of water and varies from 10.7 m3/Mg to 426
m3/Mg of TiO2 produced.

     Waste Sources

     Wastes from cooling chlorinator gas.  These wastes consist
of solid particles of unreacted ore, coke, iron, and small amounts
of vanadium, zirconium, chromium, and other heavy metal chlorides,
which are either dissolved in water and sent to the wastewater
treatment plant, or disposed in a landfill as solid waste.

     Chlorinator process tail gas scrubber waste.  The uncon-
densed gases, after the liquefaction of titanium tetrachloride,
are wet scrubbed to remove hydrogen chloride, chlorine, phosgene,
and titanium tetrachloride and chlorine in the first stage.  In
the second stage, they are scrubbed with caustic soda to remove
chlorine as hypochlorite.

     Distillation bottom wastes.  These contain copper, sulfide,
and organic complexing agents added during purification in addi-
tion to aluminum, silicon, and zirconium chlorides.  These are
removed as waterborne wastes, and reaction with water converts
silicon and anhydrous aluminum chlorides to their respective
oxides.

     Oxidation tail gas scrubber wastes.  The gases from the
oxidation unit are cooled by refrigeration to liquefy and recover
chlorine.  The uncondensed off-gases are scrubbed with water or
caustic soda to remove residual chlorine.  When caustic soda is
used as the scrubbing solution, the resulting solution of sodium
hypochlorite is either sold, decomposed, sent to the wastewater
treatment facility, or discharged without treatment.  The scrub-
ber waste stream also contains titanium dioxide particulates.

     Finishing operations waste.  The liquid wastes from the
finishing operation contain titanium dioxide as a suspended solid
and dissolved sodium chloride formed by the neutralization of
residual hydrochloric acid with caustic soda.

     Wastewater Characteristics

A summary of unit product raw waste loads found in screening and
verification sampling is shown in Table 5-30.
Date:  9/25/81                II.5-55

-------
 TABLE 5-30.   SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING
              AND VERIFICATION SAMPLING - TITANIUM DIOXIDE
              SUBCATEGORY (CHLORIDE PROCESS) [2-6]


Pol lutant
Toxic pol lutants
Ch rom i urn
Lead
Nickel
Zinc
Classical pollutants
TSS
1 ron
Raw
Minimum,
ka/Mq

0.03
0.0002
0.003
0.01

5.9
0. 10
waste loadinas
Average,
kq/Mq

0.62
0.021
0.022
0.02

53
13

Maximum,
kq/Mq

1.2
0.041
0.041
0.03

100
26
         Analytic methods: 7.7.3.4.  Data sets 1,2.

     Sulfate Process

     Water use

Water is used in the preparation of titanium dioxide by the
sulfate process for noncontact cooling, air emission control, and
process reactions.  In the process, water is used to leach the
soluble sulfate salts from the reaction mass and to convert the
titanyl sulfate to titanium dioxide hydrate.  Water is also used
to wash the titanium dioxide hydrate precipitate free from re-
sidual acid and iron.  Water is used for air emission control
during the drying of ore, on digester units, and for the cleaning
of the kiln gases before they are vented to the atmosphere.  In
the digester unit, water seals are used to maintain a vacuum.
Large amounts of water are also used in the finishing operations.

     Waste Sources

     Strong acid waste.  The concentration of sulfuric acid in
strong acid waste varies from 15% to 30% as H2SO4.  In addition
to sulfuric acid, the waste stream contains ferrous sulfate,
titania, antimony, and other heavy metal salts.  A part of the
acid is returned to the process and the rest is sent to the
treatment facility.

     Weak acid waste.  The waste generated from washing the
titanium dioxide hydrate precipitate is known as weak acid.  The
concentration of sulfuric acid in this waste varies from 2% to 4%
as H2SO« and contains various impurities, including iron sulfate,
titania, antimony, and other heavy metal salts.  It'also includes,
in some cases, the conditioning agents added to the precipitate
prior to washing, to control  and improve the quality of the final
product.  The weak acid may also include kiln exhaust gas  scrub-
ber waste.
Date:  9/25/81                 II.5-56

-------
     Scrubber wastes.  Scrubber wastewater  results  from the
scrubbing of vapors emitted during the drying  of  the  ore,  during
digestion, and during kiln drying.  The  amount of wastewater
generated depends on the amount of water used  and type of emis-
sion controls practiced.  The scrubber water contains titanium
dioxide particulates, acid mist,  sulfur  trioxide, and sulfur
dioxide.  Of all the waste produced by the  titanium dioxide
sulfate process manufacture subcategory, the scrubber wastewater
constitutes the major portion.

     Wet milling waste.  These wastes are generated during wet
finishing of the titanium dioxide pigment.  Wet milling is used
to produce pigment particles of the desired size  and  surface
character and requires steam and  water for  repulping  the pigment.
Caustic soda is also used to remove any  residual  acidity from the
titanium dioxide pigment during the finishing  operation.  The
wastewater from wet finishing operations, therefore,  contains
titania, sodium sulfate, and other agents added to  improve or
achieve desired properties in the final  product.

     Digester sludge.  After the  digestion  of  the ore in sulfuric
acid, the resulting sulfates are  dissolved  in  water and the
insoluble impurities are removed  in a clarifier or  filter.  These
include silica, alumina, sulfuric acid,  and unreacted iron.  The
quality of this waste varies and  depends on the type  and quality
of ore used.  Data on the quantity of this  waste  indicate that
approximately 210 kg/Mg is produced.

     Copperas.  The recovered ferrous sulfate  is  marketed or
disposed of as a solid waste.  The amount of copperas generated
is about 950 kg/Mg of TiO2.  The  copperas generally contains
small amounts of adsorbed  sulfuric acid.

     Wastewater Characteristics

A summary of unit product  raw waste loads found in  screening and
verification sampling is shown in Table  5-31.

 TABLE 5-31.  SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING
              AND VERIFICATION SAMPLING  - TITANIUM DIOXIDE
              SUBCATEGORY  (SULFATE PROCESS) [2-6]
                                 Raw waste loadings
                             Minimum,   Average,   Maximum,
                  Pol lutant	kg/Mq	ko/Mg	kg/Mo
Toxic pol lutants
Antimony
Arsenic
Cad* 1 un
ChroDiim
Copper
Lead
Nickel
Thallium
Zinc
Selenitna

0.032
0.012
0.000411
1. 1
0.065
0.0211
0.029
0.003
0.014
0.002

0. II
0.019
0.019
2.0
0.085
0.18
0.08
0.0055
0.34
0.031

0.22
0.032
0.02
3.4
0. 12
0.42
0.15
0.008
0.55
<0.06
              Analytic Methods: V.7.3.4, Data sets 1,2.
Date:   9/25/81                 II.5-57

-------
II.5.3  PLANT SPECIFIC DESCRIPTIONS

The following paragraphs, tables,  and figures describe,  in as
much detail  as possible, specific  plants for 11 of the  inorganic
chemical  subcategories.  Descriptions are limited to plants
chosen from  the available data because they have the lowest con-
centrations  of toxic pollutants  in their final effluent streams
and/or are described, in sufficient detail in Reference  2.5-1.

II.5.3.1  Aluminum Fluoride

Two plants were selected for more  detailed description  from
available data on the aluminum fluoride industry based  on the
lowest concentration of toxic pollutants in the final effluent
stream.

     Plant 705

Screening and verification data  are  provided for plant  705, which
produces  both hydrofluoric acid  and  aluminum fluoride.   Waste-
waters from  both processes are mixed and sent to the treatment
facility.  The combined wastewater is neutralized with  lime and
sent to a series of settling ponds.   Effluent from the  last pond
is given  a final pH adjustment before a portion is discharged and
the remainder recycled to the process.  Plant 705 does  not treat
noncontact cooling water.

Figure 5-1 shows a simplified block  diagram of the process in-
cluding the  wastewater treatment facility and sampling  locations.
Table 5-32 summarizes the flow data  of the sample streams and the
emission  characteristics for important classical pollutant param-
eters for screening and verification data.  Table 5-33  provides
toxic pollutant raw waste loads.

        TABLE 5-32.  FLOW AND POLLUTANT LOADING DATA OF
                      THE SAMPLED WASTESTREAMS FOR PLANT 705
                      PRODUCING ALUMINUM FLUORIDE [2-6]
Samp) ing
ohase
Screening(b)

Wastestream
desc riot ion
AIF3 scrubber
Surface drains(a)
Flow,
cu . m/Mg
AIF3
«.9
2.4

TSS
120
0.148
ka/Ma AIF3
Fluoride
4.7
0.82

A 1 un I nun
7.0
0.10
                   cool Ing tower,
                   blowdown, etc.

                   Treated waste(a)     24    2.0     1.6     0.17

         Verlflcatlon(c) AIF3 scrubber       8.9     13      12      4.1

                   Surface drains, (a)   2.4    0.48    0.40     0.06
                   cool ing tower,
                   blowdown, etc.

                   Treated waste(a)     24    0.05    0.55     0.01

         (T)Contribution from both HF and AIF3 plants.
         (b)Analytic methods: V.7.3.4, Data set I.
         (c)Analytlc Methods: V.7.3.4, Data set 2.
Date:  9/25/81                 II.5-58

-------
Date:  9/25/81
II.5-59

-------
     TABLE 5-33.
 TOXIC  POLLUTANT  LOADS  IN RAW WASTE ALUMINUM
 FLUORIDE AT PLANTS  705 AND 251  [2-6]
	(kg/Mg  product)	
     Pollutant
 Screening,
 plant 705(a)
Verification
   data,
 plant 705(b)
Verification
   data,
 plant 251(b)
Antimony BDL
Arsenic 0.002
Selenium 0.001
Chromium 0 . 0003
Copper 0 . 001
Lead 0.0001
Mercury 0.000004
Nickel 0.001
Zinc 0.002
Cadmium 0.000002
Beryllium 0.000002
BDL, below detection
(a) Analytic methods:
(b) Analytic methods:
0.000005
0.002
BDL
0.005
0.001
0.0002
0.000005
0.003
0.001
0.0002
BDL
limit.
V.7.3.4, Data set 1.
V.7.3.4, Data set 2.
BDL
0.0003
0.001
BDL
0.0001
0.0001
0.00005
0.0002
0.0003
BDL
BDL

     Plant 251

Verification data are provided for plant 251, which produces
hydrofluoric acid and aluminum fluoride.  Wastewaters from the
two processes are combined and sent to gypsum ponds for suspended
solids removal.  The supernatant is treated with an effluent
stream from another plant for pH control and neutralization prior
to discharge.

Figure 5-2 is a simplified flow diagram showing the sampling
points for plant 251.  Table 5-32 provides toxic pollutant raw
waste loads.  Table 5-34 summarizes the verification data for the
wastestream flows and the emissions of selected classical pollut-
ants.  Table 5-35 presents data for water usage, wastewater flow,
and solids generated for plants 705 and 251.
Date:  9/25/81
             II.5-60

-------
                                                      c
                                                      •H

UJ
ffi
OQ
3
u
VI
CM
O
VI
4.


o

CM
<



















i"
§
t
1


«s
. u. «J
< a





















ee
UJ
MS
It •**
< g
Ul
.H
I
DC
O
,§
. UJ
ee
f












H
Z
UJ
>









t-

c
X
i
h-
COLLEC







t


|f
L.












M -

>*













1
0
fa
C
I







-








— 1






'
e
j
3
J





3
1
U
3


oc
o.
I/I

§




L
^:
4











(


•
•
1
L
z
>•
oe
a
L
$
a.
M



(»
u
3
>• 0
C 0
to:
Q.







a.
ee
o



a
X


—










1
z
o
feS
< u.
ae
a.
*


a
l« 2
3
!
Ul
3
Q
I/I
. Ul


< t.
I
i
!
<











ee
Ul

3
a


i
i
f „





9
e v>
j i/i
a u>
2 o
gj
J
o
o
Ul
§
















>•
at
DC
.J
I/I







BE
U









«-(







H-
Z
Ul
s
2
K
t-












oc

o
X


















3
fg
1 iij
1
Z
o
ix
INI UJ
— 1-
_J in
«t >
t-
3
Z
CJ


^c
£1
>• a
o



C





u
J
o c
2 <
tu *
_J
1
1
(


S^
43 t^
en a

in 3
o
-P td
nd M-I
3 d
rH fi
^s
g«2 -P
<5 *rt fl\
-•2 ^-d
50. g.H
2ae Id S-l
1C £z ^ O
K »- Cr> 3
uj° id H
zz -H 4-1
_iS *d _
«r u. g
> 2 ^5
«  43
L CD -P
1 n
E &
1 £
S>

Date:  8/31/82 R  Change 1  II.5-61

-------
        TABLE 5-34.  FLOW AND POLLUTANT LOADING DATA OF THE
                     SAMPLED WASTESTREAMS FOR PLANT 251 PRO-
                     DUCING ALUMINUM FLUORIDE [2-6]
Stream
4
6
2
3
Flow,
Wastestream m3/Mg
description A1F3
A1F3 scrubber water 12.6
S02 scrubber water (a) 6.10
Gypsum pond influent (b) 25.1
Gypsum pond effluent(b) 25.1

TSS
16
ND
470
0.23
kg/Mg A1F3
Fluoride Aluminum
5.9 0.60
0.14 0.001
17 0.65
8.0 0.55
Analytic methods:  V.7.3.4, Data sets 1,2.
ND, not detected.
(a)Half of the S02 scrubber water flow has been assumed to contri-
   bute to the A1F3 process and half to the HF process.
(b)Consists of HF and A1F3 wastewater.


        TABLE 5-35.  WATER USAGE, WASTEWATER FLOW, AND SOLIDS
                     GENERATION FOR ALUMINUM FLUORIDE PLANTS
                     705 and 251 [2-6]
                                (m3/Mg A1F3)


                                           Plant     Plant
     	Description	705	251

     Water usage
       Noncontact cooling
       Indirect process contact            1.15
         (pumps, seals, leaks, spills)
       Maintenance                         2.39       1.02
         (cleaning and work area
         washdown)
       Scrubber                            8.92       18.7

     Wastewater flow
       Scrubber water                      8.92       18.7
       Maintenance (equipment cleanup      2.39       1.02
        and work area washdown)
       Other

     Solids generated                        54        69

     Blanks indicate data not available.
Date:  8/31/82 R  Change 1  II.5-62

-------
II.5.3.2  Chlor-Alkali

     Chlor-Alkali Mercury Cell

Two plants (plants 747 and 317) were selected for detailed de-
scription from available data on the chlor-alkali (mercury cell)
industry.  One other plant (plant 167) is described because of
the variety of treatments used in processing the final effluent;
however, no final effluent data are available for that plant.

     Plant 747.  Verification data are provided for plant 747. At
that plant, the brine dechlorination system has been converted
from barometric condensers to a steam ejector system.  The con-
version resulted in increased chlorine recovery and reduced con-
tact wastewater.  By providing settling and secondary filter
facilities, the brine filter backwash has been eliminated.  The
tail gas scrubber liquid is offered for sale; if not marketed, it
is decomposed.  The mercury-bearing wastewaters are collected and
treated with Na2S.  The reacted solution is filtered, and the
filtered solids are retorted for mercury recovery.  The filtrate
is mixed with the other process wastewaters, and the pH is ad-
justed before discharge.

The flow diagram of the manufacturing process, including the
wastewater treatment facility, is given in Figure 5-3.  Table
5-36 provides the flow data for the sampled streams.  The average
residual chlorine effluent loading at Plant 747, after treatment,
was 0.0025 kg/Mg.  Table 5-37 presents residual mercury loadings.
Date:  9/25/81                II.5-63

-------
   317
    167
                TABLE 5-36.   FLOW AND  POLLUTANT LOADING DATA OF THE
                             SAMPLED WASTESTREAMS FOR PLANTS 747, 317,
                             AND 167 PRODUCING CHLORINE BY USING MERCURY
                             CELLS [2-6]
Plant
747
Stream
1
2
3
4
5
6
7
Was test ream
description
Cel 1 waste
Treated waste
Acid input
Acid output
Dechloro system
Cl(a) condensate
Ta i 1 gas-hypo
Flow,
cu.m/Mg
CI2
0.000027
ka/Ma
TSS
0. 16
0.014
0.0037
0.0000018
CI2
Me rcu ry
0.0043
0.000023
0.0000035
0.00000072
0.000015
0.0000008
                     Total                    0.69

             I        CelI waste
             2        Brine  mud filtrate
             3        Tank car wash
             4        Col lection  tank
                       (H(a)+3)                                            0.05
             5        Treated effluent                     0.01*4        0.000043
             6        Deionizer effluent                  0.0052      0.00000029
             7      ,  Noncontact
                       cooling water                        2.2         0.00014
             8        Final  effluent                         2.4         0.00036

                     Total                    0.51

             5        A11 chlorine
                       wastes                               1.9           0.013
             6        Cell wash                          0.00057       0.0000067
             7        Brine  process
                       water                             0.0071     /  0.000009
             8        Treated chlorine
                       waste                              0.013          0.0018
             9        Clarifier underflow                    4.0        0.000087

                     Total                     5.6

Anlaytic methods:  V.7.3.4,  Data  sets  1,2.
Blanks indicate data  not available.
Date:   9/25/81
                                  II. 5-64

-------
                                                              S
                                                                t
                                                               to
                                                                o
                                                              ro
Date:  9/25/81
II.5-65

-------
    TABLE 5-37.   EFFLUENT LOADINGS FROM SELECTED CHLOR-ALKALI
                 PLANTS USING MERCURY CELLS [2-6]
                   Mercury waste load,(a)  kg/Mg	
     Plant	Average	Maximum daily   Maximum average(b)
747
317
0.000055
0.000006
0.000083
0.000048
0.000065
0.00001
     (a)From plant long-term monitoring data.
     (b)Maximum daily average taken over 30 days.

     Plant 317.  Verification data are provided for plant 317. At
that plant, the brine purification mud is mixed with spent sul-
furic acid and sodium hypochlorite solution.  The treatment
removes mercury from the mud and transfers it to the solution.
The solution is filtered,  and the solids are landfilled.  The
filtrate is mixed with other mercury-contaminated wastewater,
which includes the brine purge,  cell room liquid wastes, and
plant area washwater.  This is then reacted with sodium hydro-
sulfide to precipitate the mercury as mercury sulfide and then
filtered. The solids are sent to a mercury recovery unit; the
filtrate is sent to a holding tank.  The effluent from the
holding tank is mixed with deionizer waste and noncontact cooling
water before discharge.

The process flow diagram,  given in Figure 5-4, shows the waste
streams sampled.  Table 5-36 summarizes the flow data and pollu-
tant emissions for the sampled streams.  Table 5-37 presents
residual mercury loadings for plant 317.  Table 5-38 provides the
unit flow data for plants 317 and 167.
Date:  9/25/81                II.5-66

-------
                                                                               CP
                                                                               c
                                                                               •i-l
                                                                               4J-H
                                                                               O rH
                                                                               ft Qj
                                                                               UH g
                                                                               3 US
                                                                               fi M

                                                                               g a)
                                                                               r-
                                                                               rH CP
                                                                               m C
                                                                                 •H
                                                                               -P S
                                                                               c o
                                                                               tO 43
                                                                               rH 0)
                                                                               g  
-------
    TABLE 5-38.   SUMMARY OF WASTE FLOW DATA FOR CHLOR-
                 ALKALI PLANTS USING MERCURY CELLS [2-6]
Plant
number
317
907
299
167
747
343
106
131
589
898
741
553
769
Waste flow
m3/Mg
C12
0.51
0.36
1.6
5.6
0.69
1.6
0.67
1.7
5.8
0.98
0.51
1.0
6.3
     Plant 167.  Verificaton data are provided for plant 167.  At
that plant, the wastewater streams consisting of filter backwash,
cell room wash, rainwater runoff, and leaks and spills, are
combined and treated for mercury removal.  The water is sent to a
holding lagoon; the overflow is reduced by reaction with ferrous
chloride, which precipitates mercury.  The reacted solution is
sent to a clarifier.  The clarifier underflow is disposed of in a
landfill.  The overflow is filtered, and the filtrate is passed
through activated carbon and an ion exchange column prior to
discharge to a lagoon.  Effluent from the lagoon, after pH adjust-
ment, is discharged.

Figure 5-5 shows the simplified process flow diagram for plant
167, including the sampling locations.  Table 5-35 gives the flow
data and pollutant emissions for the sampled streams.  Table 5-39
presents toxic pollutant loadings for raw waste from three plants.
Date:  9/25/81                II.5-68

-------
!-»
:~—
o
fi-
i"
i














w
So ^
gq« O
a*








5-
3^—
w
5







i-*


1
1
1
V.'
*• -J
3 5
V
1
MU
« g


!,
1
w
1
N


tt

-

1
S

,
'




S
i
!
i

»
i
n
1

1

I
2

j

>
*»
3





3
f
• •




i
. »HSH.
i

5
*

i
k
M
w



t
t

ft
t
•
h,

1


i

is
-~!s
is

2

nte ~ •

3
Si
i
f
,* 5
*, |
J* §

sT
^ TT~


_-a
— ^*
So
3*
a

— I
2



°«
«


S
|»-


H!




4

1
f
«~T P.
u
» 3
1 ,g |
»~ S 2-. !
S M ^ IM 4
- *ys
5 «»fe2
»* it 212 *— i
*M "Ml '
S ___ "(Q «
i"* s ~* ^
a "j v
w s
= a

J .
N

»1» _^
«^^ y "^
i I



• *~ * *m
(f\ "$^
^ *

	 	 *1 Me
1 -»f *
w riS =
T »ij
• !1 =C
= al M
- 55
5 §s
» 3


» ill
1 ', 3|I
s
_^ 1

1 '









!

^















"
5
tl
»
3









•H
>-< &>
•«• -P -H
5 o OH
" to _. nJ ft
i 8= s S
.1 	 5 |f ^ m

L fYV^ S .
1 ^~
" nJ H
rH
g 0)
2 °

is £ s
28 rO U
55 >-l
* 5 
Ml S
*oa tp


Date:  9/25/81
II.5-69

-------
         TABLE 5-39.
 TOXIC POLLUTANT LOADS  IN RAW WASTE
 AT  CHLOR-ALKALI PLANTS 747, 317,
 AND 167, VERIFICATION  DATA  [2-6]

	(kg/Mg product)	
     Pollutant
 Plant  747
Plant 317
Plant 167
Mercury
Chromium
Thallium
Arsenic
Nickel
Cadmium
Copper
Lead
Zinc
Antimony
Silver
0.0043
0.000071
0.000016
0.000021
0.000066
0.000014
0.00027
0.00011
0.00049
0.000078
0.000033
0.048
0.00004
BDL
0.00005
0.0007
0.00023
0.0006
0.0007
0.010
BDL
0.000055
0.013
0.0004
BDL
0.0011
0.0002
BDL
0.00025
0.00024
0.00057
BDL
BDL
     Analytic methods:   V.7.3.4,  Data set 2.
     BDL, below detection limit.

     Chlor-Alkali Diaphragm Cell

One plant employing a metal anode was selected for detailed de-
scription from the available data on the chlor-alkali (metal
anode) diaphragm cell industry based on the lowest concentration
of toxic pollutants in the final  effluent stream.

     Plant 736.  Verification data are provided for plant 736,
which has demisters installed to  control the vapors evolved from
the last stage of the evaporator  during the concentration of
caustic.  In this treatment, the  steam evolved from the concen-
tration of cell liquors passes through metal-wool filters to
reduce entrained solids.  Cell room washings are sent to a settl-
ing chamber, and settled asbestos is sent to a landfill. Other
wastewaters, consisting of caustic evaporator washings and wastes
from salt separation, brine purification operations, and caustic
filtration backwash waters, are combined and sent to one of two
settling ponds.  Skimming devices on the settling ponds remove
any oil that separates; the settled solids in the ponds are
dredged and disposed of in an abandoned brine well.

Figure 5-6 shows the process flow diagram and sampling points.
Table 5-40 provides the pollutant loadings of the streams sam-
pled. Table 5-41 presents the toxic pollutant raw waste load for
the plant.
Date:  9/25/81
         II.5-70

-------
                     ir*
             ^
^r
                         14J-!     T_
                         *•
         !P
                                        i;i
                            8

                       h*(X)
                                      11 i
                                      (D
                H
               r
                                                                        •H
                                                                        0)
                                                                        O

                                                                      W3 g
                                                                      n en
                                                                      r- td
•p
(d o
  •H
g -P
nj in tn
M d 4J
Cn 
Date:   9/25/81
          II.5-71

-------
          TABLE  5-40.
FLOW AND  POLLUTANT CONCENTRATION  DATA
OF THE  SAMPLED  WASTESTREAMS  FOR PLANT
736  PRODUCING CHLORINE  USING METAL
ANODE DIAPHRAGM CELLS  [2-6]
                Stream
Wastestream
description
TSS
                                                      kq/Mq CI2
Lead
                  I         Cell wash               0.06      0.0000091
                  2        Cell room drain       0.0046      0.0000028
                  3        Brine mud                 33       0.000031
                  7        Chlorine             0.00039      0.0000016
                             condensate

                Analytic methods: V.7.3.U,  Data set 2.
                Blanks  indicate data not  available.
          TABLE  5-41.
PRIORITY  POLLUTANT  LOADS  IN  RAW WASTE
AT CHLOR-ALKALI PLANTS  736 AND 967
PRODUCING CHLORINE  USING  DIAPHRAGM
CELLS  [2-6]
                   Pollutant
                                               Ptant 736^
                                                          Plant 967lal
                   Metals and Inorganics. kg/Ho

                    Chromium
                    Copper
                    Lead
                    Mercury
                    Nickel
                    Selenium
                    Tha111 urn
                    Zinc
                    Antimony
                    Arsenic
                    Cadmium

                   Organ Ics. ko/dev

                    Benzene
                    Carbon tetrachloride
                    1,2-Dichloroethane
                    HexachIo roethane
                    Chloroform
                    DichIorobromomethane
                    HexachIo robotad Iene
                    Bls(2-ethylhexyl) phthai ate
                    Tetrachloroethylene
                    1,1,l-Trtchloroethane
                    I,1,2-Trichloroethane
                    I,1,2,2-Tetrachloroethane
                    I,l-Dichloroethylene
                    2,6-Dinitrotoluene
                    HethyIene chloride
                    B romo for*
                    ChlorodIbromomethane
                    Ol-n-butyl phthalate
                    Toluene
                    Trichloroethylene
                   O.OOOOiti*
                    0.00011
                   0.0000039
                   0.0000007
                   0.000054
                       BDL
                       BDL
                     0.0007
                   0.000003
                   0.000014
                   0.0000061
          0.000032
            0.001 I
             0.15
          0.000022
           0.00049
              BDL
              BDL
            0.0014
           0.00015
            0.0021
              BDL
                                  0.001 I
                                   0.066
                                    0.23
                                   0.029
                                    0.24
                                    0.10
                                   0.011
                                  0.0022
                                    0. 10
                                  0.0004
                                  0.0011
                                  0.00013
                                 0.000074
                                 0.000074
                                  0.0016
                                  0.00018
                                  0.0057
                                  0.0022
                                  0.0086
                                  0.0057
                   Analytic methods: V.7.3.4, Data set 2.
                   Blanks indicate data not available.
                   BDL, below detection limits.
                   (a)Uses graphite anodes.
Date:    9/25/81
               II.5-72

-------
One plant (plant 967) employing a graphite anode was selected for
detailed description from the available  data on the chloralkali
(graphite anode) diaphragm cell industry.

      Plant 967.   Verification data  are provided for plant 967.
Plant cell washings are sent to an  asbestos pond that has a con-
tinuous  cover of water.  Periodically, the settled solids are re-
moved, sealed in drums, and disposed  of  in a landfill.  The
overflow from the pond is treated with soda ash to precipitate
lead,  treated with sulfuric acid to bring  the pH down to 6-9, and
finally  settled.

Table 5-42 shows the wastestreams sampled  and waste loadings for
plant 967.   Figure 5-7 shows a general process flow diagram.

       TABLE 5-42.  FLOW AND POLLUTANT LOADINGS DATA OF THE
                    SAMPLED WASTESTREAMS  FOR PLANT 967 PRO-
                    DUCING CHLORINE  USING GRAPHITE ANODE
                    DIAPRAGM CELLS [2-6]
Waste stream
description
Ce 1 1 bu i 1 d i ng
wastes
Lead pond
effluent
Caustic f i Iter
backwash
Brine f i Iter
backwash
Ce 1 1 wa sh
Chlorine condensate
and spent H2S04
Ta i 1 gas scrubber
Flow,
m3/Mg
CI2
l.2(a)



5.H

O.H5

l.2(a)
0.78(b)

0. 10
kq/Mq
TSS
0. 18

0.03

0.86

5.8

0.056
0.85


CI2
Lead
0. 12

0.016

0.017

0.0023

0.0086
0.00073


          Analytic methods: V.7.3.U,  Data sets 1,2.
          (a)  Value represents combined cell bldg. waste and cell
              wash flows.
          (b)  Value represents condensate flow only.
Date:  9/25/81                 II.5-73

-------
                                                                               tn
                                                                               C Cn
                                                                              •H rt
                                                                              •P O<
                                                                              U g
                                                                              (0 (0
                                                                              MH co
                                                                              3
                                                                              c cu
                                                                              r- C
                                                                              VO-ri
                                                                              (0
                                                                              (0  0)
                                                                              •H
                                                                              T)
                                                                              UH
                                                                                 O
                                                                              W-rH
                                                                              in -P
                                                                              0)  (0
                                                                              o  3
                                                                              O  (d
                                                                              M  U
                                                                              M H -P
                                                                              d)OC
                                                                              Cr-H -H
                                                                              QJJC O
                                                                              O O Oi
                                                                              Is-

                                                                              in

                                                                              (U
                                                                              •H
                                                                              PL,
Date:   9/25/81
II.5-74

-------
Waste flow data  from the various sampling  points at plants 736
and 967 are  contained in Table 5-43.  Table  5-44 presents the
results of asbestos sampling at the two plants.
          TABLE  5-43.
      WASTE  FLOW DATA FOR CHLOR-ALKALI
      PLANTS USING DIAPHRAGM CELLS  [2-6]


Flow.
cu.m/Mq CI2
Plants with
metal anodes
Wastestream description
Cell room wastes and cell wash
Chlorine condensate
Spent sulfuric acid
Ta i 1 gas scrubber
Caustic f i 1 ten wash
Brine filter backwash
Caustic cooling blowdown
Brine mud
Minimum Averaqe
0.02 0.
0.16 0.
0.
0.10 0.


0.82 0.
0.01 0.
38
49
01
17


86
42
Maximum
0.67
0.90

0.29


0.89
1.5

Plant with
graphite anode
1 .2
0.78

0. 1 1
5.4
0.45


 Blanks indicate data not available.
    TABLE 5-44.
RESULTS OF ASBESTOS SAMPLING AT CHLOR-ALKALI
PLANTS USING DIAPHRAGM CELLS [2-6]
Mi 1 1 ion fibers/ 1 iter
Plant
736





967(a)







Wastestream description
Supply
Cel 1 wash
Gel 1 room waste
Barometric condenser
Barometric condenser
Barometric condenser
Supply
Cel 1 waste
Pond effluent
Caustic wash
Brine filter backwash
Cathode wash waste
Condensate and spent acid
Neutra 1 izer waste
Total asbestos
fibers
0.7
20,000,000
290
1 .8
5.3
140
970
24,000
2,400
7,800
800
320,000
270
2, 100
Chrysot i le
0.7
20,000,000
280
ND
5.3
140
970
24,000
2,400
7,800
620
320,000
180
2, 100
Amohibole
ND
ND
8
1 .8
ND
ND
ND
800
ND
ND
ISO
ND
89
ND
ND, not detected.
(a)  Uses graphite anode.
Date:   8/31/82 R  Change 1  II.5-75

-------
II.5.3.3  Chrome Pigments

Two plants were selected for detailed  description from the avail-
able data on the chrome pigment  subcategory based on the lowest
concentration of toxic pollutants  in the  final effluent stream.

     Plant 894

Screening and verification data  are provided for plant 894, which
produces over 100 products including organic pigments such as
copper phthalocyanine.  All wastes are combined and treated
together.  Treatment consists of chromium VI reduction, equali-
zation, and neutralization, followed by clarification and filtra-
tion.  Sulfur dioxide is added to  reduce  the hexavalent chromium
to the trivalent state at a low  pH prior  to hydroxide precipita-
tion.  The backwash from the sand  filters is recycled to the
equalization tank.  Sludge from  the clarifiers is passed through
filter presses and then hauled to  a landfill,  which has a bottom
composed of two clay layers with gravel in between to allow the
collection of leachate drainage.   Water from the sludge is
trapped in the gravel layer, then  pumped  out and returned to the
plant for retreatment.

Figure 5-8 shows the treatment system  flow diagram and the sam-
pling points.  Table 5-45 provides waste  flows and pollutant
loadings data.  Table 5-46 presents influent and effluent verifi-
cation data for the treated effluent.
       TABLE 5-45.
FLOW AND POLLUTANT LOADING DATA  OF THE
SAMPLED WASTESTREAMS FOR PLANTS  PRODUCING
CHROME PIGMENTS  [2-6]


plant
891
( Ve r i f i ca t i on
phase)

Wastestream
descr lot ion
Treatment
i nf-l uent

Flow,
cu. m/Mg
product

170


kq/Mq product
TSS Chromium

130 NO



1 ron

8.2

                      Treatment
                       ef fIuent
                      Leachate

                      Sand fiIter
           Blanks indicate no data available.
           NO, not detected.
                                       0.66    0.0039

                                        NO      NO
                                 0.051

002
(Verification
phase)


Analytic methods:
feed 170 1.9
Untreated
waste 78.14 55
Unf i 1 tered
treated
waste 78.14 76
f i 1 tered
treated
waste 78.4
V.7.3.U, Data set 2.
ND 0.17
2U 0.13
9.M 0.18
0.00147

Date:   8/31/82  R  Change 1 II.5-76

-------











"*








«*
8
3-
c'









;
<
i
<
i
i
I










m


-5
I*
1
[
S*
a*
X
t

: -
5^^
*°f
ft
a
i
i

1 u
5 -
= *r
**"
H :
3
X
t
EQUALIZATION
TANK
f
<
||I
aPc

05
v>*


1-.
^


oe
Ul
u.
at
t_«

\
»
i
•
»


^
*
t
4
•
A
I



» -
^
1
n

-M
 Q)
•H -P
-d
&>
> C
0-H
rH >
in O
X!
u to
CQ
0) »•
o a

a§.
4J-H
C O4
0)
Be
nj 5
Q) S-l
M A
4J 0
M &i
0) C
-P-H
m M
3: 3
0) -P
•P 0
CQ rt)
nj m
*§
rH (0
2 e
Q) -
fi •*
(1) o\
O oo
t
00
1
in
0)
                                                             tn
                                                             •H
                                                             fc
Date:  9/25/81
II.5-77

-------
          TABLE 5-46.
VERIFICATION SAMPLING OF CHROME
PIGMENTS PLANT 894 [2-6]
      Pollutant
   Influent, kg/Mg
Effluent, kg/Mg
Toxic pollutants
Mercury
Chromium
Chromium VI
Lead
Zinc
Cyanide, total
Cyanide, free
Antimony
Cadmium
Copper
Nickel
Arsenic
Classical pollutants
TSS
Iron

0.0072
14

0.82
0.71
0.84
0.15
0.13
0.15
0.70
0.0028





ND
0.056
0.0039
0.019
0.0099
0.0011
0.011
0.051
0.0014
0.006
0.0036
ND

0.66
0.051
      Analytic methods:
      ND, not detected.

     Plant 002
  V.7.3.4, Data set 2
Verification data are provided for plant 002,  which normally
produces over 100 products.  However,  at the time of sampling,
zinc chromate was being produced by a continuous production unit.
All process contact wastes are treated continuously.  The waste
is pumped to a treatment tank where sulfur dioxide is added to
convert hexavalent chromium to trivalent.  The pH is adjusted to
8.5 and the waste is then passed through precoated filters and
discharged to a sewer.

Figure 5-9 shows the waste treatment flow diagram and sampling
points.  Table 5-43 shows the waste flows and pollutant loadings,
At sample point 2, half of the sample was filtered through a
glass filter on a Buchner  funnel to simulate the filtration
process that was bypassed at the time of sampling.

Table 5-47 presents toxic pollutant raw waste loads for both
plants.  Table 5-48 shows water usage.
Date:  9/25/81
       II.5-78

-------
           CAUSTIC
         #2-U
    RAW WASTE  S0
                              #1
                                       ACID
                           CHROME TREATMENT
                                TANK
                               pH 3.0
        CAUSTIC ADDITION
             THROUGH
             pH 8.5
               LAB FILTERED
               	1
     OUTFALL
     TO  SEWER
                             FILTER FEED
                                TANK
                                  I
                                   FILTER AID
                                      BACKWASH
                       	J
                  (FILTERS NOT WORKING SO
               |   WERE BEING BYPASSED.
               ,   THIS WOULD BE THE FLOW
               *   PATTERN IF FILTERS WERF
                  OPERATING.)
                                                       LEGEND

                                                    SAMPLING POINTS,
     Figure 5-9.
General wastewater treatment process flow
diagram at plant 002,  manufacturing chrome
pigment, showing the  sampling  points
Date:   9/25/81
             II.5-79

-------
         TABLE 5-47.   TOXIC POLLUTANT LOAD  IN RAW WASTE
                      AT CHROME  PIGMENT PLANTS [2-6]
                         (kg/Mg product)
              Pollutant     Plant 894     Plant 002
Cyanide
Chromium
Cadmium
Copper
Lead
Zinc
Antimony
Nickel
0.84
14
0.15
0.70
0.82
0.71
0.13
0.0028
0.056
24
0.016
0.11
4.2
13
0.11
0.025
              Analytic methods:   V.7.3.4,  Data set 2
         TABLE 5-48.   WATER USAGE IN THE CHROME PIGMENTS
                      SUBCATEGORY [2-6]
                                      Unit flow (m3/Mg)
                                     Plant  Plant   Plant
                  Use                 464    436     214
Noncontact cooling
Direct process contact
Indirect process contact
Maintenance
Scrubbers
Boiler feed
Total
9.50
18.6
7.18
12.0
3.3
2.52
53.1
6.45
147

1.78
9.56(a)
11.1
176

32.6

0.152

0.152
32.9
          (a)Iron blue pigment process.
          Blanks indicate data not available.

II.5.3.4  Copper Sulfate

One plant was selected for detailed description from the avail-
able data on the copper sulfate subcategory based, on the lowest
effluent concentration of toxic pollutants in the final effluent
stream.

     Plant 034

Verification data are provided for plant 034.   Waste from the
plant drains into a sump from which it is pumped to two neutral-
ization tanks where lime is added.  The waste is then passed
Date:  8/31/82 R  Change 1  II.5-80

-------
through a filter press, and filter residue is hauled to a land-
fill  disposal site.   The filtrate is mixed with noncontact cool-
ing water and steam condensate in a collection tank.  Wastes are
then  passed through a cloth filter for  final polishing and dis-
charged to a sewer.

Figure  5-10 shows the process flow and  sampling points for this
plant.   Table 5-49 provides data on waste  flows and classical
pollutant emissions.  Table 5-50 presents  a summary of the raw
waste loadings at this plant, and Table 5-51 gives treated efflu-
ent data.

      TABLE 5-49.  FLOW AND POLLUTANT LOADING DATA OF THE
                    SAMPLED WASTESTREAMS FOR PLANT 034 PRODUCING
                    COPPER SULFATE, VERIFICATION DATA [2-6]

Flow,

Was test ream cu.m/Mq
description
CuSOU waste (a )
Effluent from
1 ime treatment
Steam condensate
and cool ing water
product
1.25

1.25

14.2
TSS
1.8

0.03

O.I 1


kq/Mq product
Copper
5.0

O.OOU2

~0.:02U
Nickel
0.20

0.00038

0.002
        Analytic methods: V.7.3.4, Data set 2.
        (a)InfiItration of groundwater into the collection sump was
           suspected at the time of sampling.
Date:  9/25/81                 II.5-81

-------
                                                                             tn
                                                                             fi
                                                                            •H
                                                                             O
                                                                             (0
                                                                            M-l
                                                                             3


                                                                             I
                                                                               W
                                                                             *-P
                                                                            •* c
                                                                            CO -H

                                                                            °a
                                                                            4J
                                                                             fi C"
                                                                             (0 C
                                                                            H -rH

                                                                               P4
                                                                               g
                                                                               (d
                                                                               (0

                                                                               a)
                                                                            m
                                                                            •H tP
                                                                            'O d
                                                                              •rl
                                                                            IS 5
                                                                            o o
                                                                            H 43
                                                                            M-) (0

                                                                            CO -
                                                                            (0 (U
                                                                            0) 4J
                                                                            U tO
                                                                            O M-)
                                                                            H rH
                                                                            a d
                                                                               CO
                                                                            M  0)
                                                                            (1)  DJ
                                                                            C  04
                                                                            a)  o
                                                                            o  o
                                                                             i
                                                                            IT)

                                                                            
                                                                            •H
Date:   9/25/81
II.5-82

-------
        TABLE 5-50.
 SUMMARY OF  RAW WASTE LOADINGS FOUND
 AT COPPER SULFATE PLANT 034  [2-6]
             Pollutant
        Classical pollutant
             TSS
                                      Loadings Kq/Mg
          Average,
       screening data(a)
   Average,
verification data(b)
Toxic pol lutants
Antimony
Arsenic
Cadmium
Coppe r
Lead
Nickel
Zinc

0.00069
0.0078
0.0019
4.1
0.00039
0.25
0.02U

0.0012
0.097
0.0035
5.0
0.0018
0.20
0.027
            0.087
      1.8
        (a)Analytic methods: V.7.3.4, Data set I.
        (b)Analytic methods: V.7.3.U, Data set 2.
           TABLE 5-51.
   VERIFICATION SAMPLING AT COPPER
   SULFATE PLANT 034 [2-6]
Pollutant
Raw waste, kg/Mg  Treated effluent,  kg/Mg
Toxic pollutants
  Antimony
  Arsenic
  Cadmium
  Chromium
  Copper
  Lead
  Nickel
  Selenium
  Zinc

Classical pollutants
  TSS
       0.0012
       0.097
       0.0035
       0.00008
       5.0
       0.0018
       0.20
       BDL
       0.027
       1.8
    0.00027
    0.00013
    0.0000089
    0.000038
    0.0042
   <0.000069
    0.00038
    0.00024
    0.000044
    0.03
Analytic methods:   V.7.3.4, Data  set  2.
II.5.3.5  Hydrofluoric Acid

One plant was  selected for detailed  description from the  avail-
able data on the hydrofluoric acid subcategory based on the
lowest concentration of toxic pollutants in the final effluent
stream.  Information on an additional  plant is also presented due
to the significant amount of available data.
Date:  9/25/81
          II.5-83

-------
     Plant 705

Screening and verification  data are provided for plant 705,  which
produces  hydrofluoric acid  and aluminum fluoride.  The drip  acid
is sent to the wastewater treatment facility,  and the gypsum
produced  from the reaction  is slurried with water and also sent
to the treatment facility.   Wastewaters from the HF production
facility  are combined with  the aluminum fluoride plant waste-
waters.   The combined raw wastewater is treated with lime  and
sent to settling ponds before discharge.

Figure 5-11 shows the general process and  the locations  of the
sampling  points.  Table 5-52 provides the  screening and  verifica-
tion flow data and TSS and  fluoride emissions.   Table 5-53 shows
pollutant removability data for plant 705.
  TABLE  5-52.
FLOW AND  POLLUTANT LOADING DATA OF THE  SAMPLING
WASTESTREAMS OF PLANTS PRODUCING HYDROFLUORIC
ACID [2-6]
                                           Flow,
                            Wastest ream    cu.m/Mg
                                        kg/Mg HF
Plant
705(a)
( Sc reen i ng
phase(c))


705(a)
(Verification
phase(d))

Stream
1
2
3
k
1
2
U
desc riot ion
Kl In slurry
Scrubber wastewater
Surface drains
coo 1 i ng towe r
b 1 owdown
Treated effluent
Kiln slurry
Scrubber wastewater
Surface drains
HF
26.6
10
20
23.3(b)
26.6
10

Fluoride
15
9.6
6.9
1.6
3.8
1.5

TSS
4,700
0.07
3.9
1.9
4,700
0.019

                           cool ing tower
                           bIowdown
                              10
1.5
0.019

251
(Verification
phase)(d)






5
5


6

2

3

Treated effluent
AHF plant
hosedown

S02 scrubber
waste
Gypsum pond
inlet
Gypsum pond
outlet
23.3(b)

1.2


14.4
81.7

84.7

0.54

1.9


0.31
58

27

0.04

0.26


O.I
3,800

0.8

   (a)This plant has discontinued HF production since sampling.
   (b)The discharged effluent consists of the treated wastewaters from hydrofluoric
     acid and aluminum fluoride plants.
   (c)Analytic methods: V.7.3.4, Data set I.
   (d)Analytic methods: V.7.3.4, Data set 2.
Date:   9/25/81
                II.5-84

-------
    "hi
     (T)a
                    L
                        I-
                                       I
                                       
                                          Q>
                                          A
                                          •P

                                          tn
                                          C
                                          •H
                      CO -P
                       o
                      in nj
                      o m
                      r- P
                                          •P Ei
                                          C
                                          (fl "O
                                          H -H
                                          Q4 O
                                          m u
                                           •H
                      tnn
                      (fl H-l
                      •H O
                      •O H
                      . "O
                      (0 CO
                      CO -P
                      
-------
      TABLE 5-53.   TOXIC POLLUTANT REMOVAL AT HYDROFLUORIC
                   ACID PLANT 705 [2-6]
(kg/Mg)
Pollutant
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Thallium
Zinc
Influent
0.00057
BDL
0.00034
0.015
0.015
0.0025
0.00030
0.027
BDL
BDL
0.012
Effluent
BDL
BDL
<0. 000035
<0. 00096
BDL
<0. 00046
BDL
BDL
BDL
BDL
0.0011
             Analytic methods:   V.7.3.4,  Data set 2.
             BDL,  below detection limit.

     Plant 251

Verification data are provided for plant 251, in which the final
effluent stream was not sampled.  The drip acid at this facility
is sent to the waste treatment plant, and the hydrofluoric acid
wastewaters are combined with aluminum fluoride plant waste for
treatment.  In addition to drip acid, the plant wastewater con-
sists of scrubber water, gypsum slurry, and plant area hosedown.
The treatment consists of gypsum ponds in which the suspended
solids are removed.  Overflow from the last gypsum pond is neu-
tralized, and the pH is adjusted with wastes from other product
lines.

Figure 5-12 provides a block diagram of the process showing the
sampling locations.  Table 5-52 gives a summary of the waste flow
verification data and loads of important classical pollutants.
Table 5-54 presents raw waste toxic pollutant loads for the above
two plants.  Water usage, wastewater flow, and solids generation
data are presented in Table 5-55.

II.5.3.6  Hydrogen Cyanide

Two plants were selected for detailed description from the avail-
able data on the hydrogen cyanide subcategory based on the lowest
concentration of toxic pollutants in the final effluent stream.

     Plant 765

Screening and verification data are provided for plant 765.  The
combined wastes for the plant consist of distillation bottoms,
ammonia recovery purge liquor, tank car washings, leaks, spills,

Date:  9/25/81               II.5-86

-------
WiIH
                                                                                     tn
                                                                                     C
                                                                                     •H
                                                                                     H

                                                                                     5
                                                                                     o
                                                                                     (fl
                                                                                     <4H
                                                                                     nJ -P
                                                                                     g C
                                                                                       •H
                                                                                      - O
                                                                                        C
                                                                                     4J -H
                                                                                     C rH
                                                                                        to
                                                                                     •P
                                                                                     n) a)
                                                                                      M Cn
                                                                                      Cn fi
                                                                                      (0 -H
                                                                                     •H S
                                                                                     T3 O
                                                                                        •H
                                                                                      W O
                                                                                      CQ (0
                                                                                      Q)
                                                                                      O O
                                                                                      0-H
                                                                                      ^ M
                                                                                      (XO
                                                                                        3
                                                                                      H H
                                                                                      m M-I
                                                                                      ^ o
                                                                                      0) i-i
                                                                                      C TJ
                                                                                      0) >i
                                                                                      CM
                                                                                      •H
                                                                                      I
                                                                                      in

                                                                                      a)
                                                                                      in
                                                                                      d
                                                                                      tr>
                                                                                      •H
Date:    9/25/81
                       II.5-87

-------
    TABLE 5-54.  TOXIC POLLUTANT LOAD IN RAW WASTE
                 AT HYDROFLUORIC ACID PLANTS [2-6]
	(kg/Mg product)	

Pollutant	Plant 705(a)   Plant 705(b)   Plant 251(b)
Arsenic
Copper
Lead
Nickel
Selenium
Zinc
Cadium
Chromium
Mercury
Antimony
Thallium
0.0029
0.023
0.14
0.0035
0.0004
0.23
0.00008
0.0035
0.00005
0.0012
BDL
BDL
0.015
0.0025
0.027
BDL
0.012
0.00034
0.015
0.0003
0.00057
BDL
0.0091
0.01
0.005
0.1
0.0014
0.024
BDL
0.04
0.0015
•0.01
0.0033
BDL, below detection limit.
(a)Analytic methods:  V.7.3.4, Data set 1.
(b)Analytic methods:  V.7.3.4, Data set 2.
    TABLE 5-55.  WATER USAGE, WASTEWATER FLOW, AND SOLIDS
                 GENERATION FOR HYDROFLUORIC ACID PLANT 251
                 AND PLANT 705 [2-6]
	Description	Plant 705	Plant 251

Water usage, m3/Mg of HF
  Noncontact cooling                          30
  Gypsum slurry transport                     30            64
  Maintenance, equipment,
    and area washdown                       16.9           2.4
  Air pollution control                     11.3          14.4
Wastewater flow, m3/Mg of HF                 ^
  Gypsum slurry                        Total recycle      64.0
  Drip acid                                0.018         0.049
  Scrubber wastewater                       11.3          14.4
  Other                                     22.5          0.53
Solids generation, kg/Mg of HF
  Gypsum solids going to
    treatment facility                      4.73          3.81
  Total solids produced                     4.78
  Kiln residue produced                     4.73(a)       3.81(a)
Total wastewater influent
  to treatment facility, m3/Mg of HF        58.2          84.7

Blanks indicate data not available.
(a)Residue is slurried with water.
Date:  9/25/81                II.5-88

-------
equipment cleanout,  purge from the  noncontact cooling water
system,  and storm water runoff.  The combined wastes are com-
mingled with the other cyanide production wastewaters and sent  to
the  alkaline chlorination treatment facility, which consists of a
trench,  where the pH is adjusted to 10 with dilute caustic,
followed by two ponds.   Sodium hypochlorite is  added at the pond
inlets.   The effluents from the ponds are discharged to a third
pond where sufficient chlorine and  caustic are  added to reach the
required effluent quality; namely,  an oxidizable  free-cyanide
residual of 0.1 ppm  and a residual  chlorine of  about 15 to 20
ppm.   The third pond is operated in a continuous-flow mode and  is
baffled to control circulation.  Agitation is provided in the
flow channel, and the outlet is equipped with a control device  to
stop the flow when the effluent cyanide concentration exceeds the
desired level.

Figure 5-13 is a flow diagram of the treatment  process indicating
the  sampling locations used during  the screening  program.  Table
5-56 provides the flow and pollutant data for the sampled streams.
A comparison of the  raw and treated effluent data in the table
indicates that the plant achieves a cyanide reduction of 99%.
Table 5-57 gives treated effluent and daily monitoring data for
plant 765.

       TABLE 5-56.  FLOW AND POLLUTANT LOADING DATA OF THE
                    SAMPLED WASTESTREAMS FOR PLANT 765 PRODUCING
                    HYDROGEN CYANIDE [2-6]
Flow. ka/Ha HCN

Was test ream description
Raw HCN
Influent to the pond
Treated effluent from
the final pond
cu.m/Mg
HCN TSS
57 I.I
57(»)
57(b),(c) l.9(b)

Ammonia
nitroaen
27
1 1 (b)
7. 1 (b)

Free
cyanide
ka/Ha
0.82
0.39(b)


Total
cyanide
ka/Ha
1.6
1 .6( b )
O.OOOIS(b)
*
        Analytic methods: V.7.3.U, Data set 2.
        (a)Stream is a commingled wastewater; flow given is the amount
          contributed by the HCN process.
        (b)Pollutant load was calculated by apportioning the mass
          emitted between the two wastestreams on the basis of
          measured flows; this it clearly a very approximate process, and
          the results must be used with caution.
        (c)Addltion or loss of water from rainfall, addition of chemi-
          cals, and evaporation have not been estimated.
Date:   9/25/81                 II.5-89

-------
                                  HYDROGEN CYANIDE
                                     WASTE WATER
                                                   OTHER CYANIDE PRODUCT
                                                          WTER
                                                   DIUTTE CAUSTIC
          Haste stream was
          sanpled in the
          verification program
          since it is free from
          other cyanide wastes.
  Figure  5-13.
General wastewater treatment process flow
diagram at plant 765,  manufacturing hydrogen
cyanide/  showing the  sampling points
Date:   9/25/81
              II.5-90

-------
       TABLE 5-57.   SUMMARY OF RAW WASTE LOADING AND CONCEN-
                    TRATION DATA AT HYDROGEN CYANIDE PLANT  765,
                    VERIFICATION DATA [2-6]
                                    Influent
                 Pollutant	mg/L	kg/Mg
TSS
Cyanide,
Cyanide,
NH3-N

total
free

35
29
14
480
2.0
1.6
0.82
27
           Analytic methods:  V.7.3.4, Data set 2.

      Plant 782

Verification data are provided for plant 782, which combines  the
plant wastewater with other production wastewater and treats  the
combined flow in a complex biological treatment  system.  A part
of  the commingled wastewater is sent to an ammonia stripper from
which the aqueous effluent is mixed with the rest of the waste-
water and sent to the treatment facility.  The primary treatment
facility consists of oil skimmers, grit removal, and pH adjust-
ment.   Effluent from the primary treatment goes  through an API
separator and into an aerated lagoon.  Effluent  from the lagoon
is  flocculated and sent to a clarifier.  Overflow from the clar-
ifier is sent to a final settling basin before discharge.  Surface
drainage from the hydrogen cyanide and other process areas is
collected separately.  It is treated chemically  and passed through
a trickling filter.   It then merges with the treated process
wastewaters in the clarifier.

A general flow diagram of the treatment process  including the
streams sampled is shown in Figure 5-14.  Table  5-58 provides
the flow data and concentrations of the important pollutants.
Because of the intermixing of the various product wastewaters,
unit pollution loads are uncertain and not given.  The total
wastewater generated from HCN manufacture and the amount
going to the treatment facility was verified during the plant
visit and was confirmed in the 308 Questionnaire response pro-
vided by the industry.   Based on that flow and the concentrations
determined by analysis, the raw waste load is that shown below:


                           Total       Free      Ammonia
                   Flow,    cyanide,    cyanide,    nitrogen,      TSS,
                  CU.m/Mq   kq/Mq HCN  kq/Mq HCN    kq/Mq HCN    kq/Mq HCN
Effluent from         9.9     0.022       0.017       0.055       0.7U
  combined plant
  waste treatment
Date:  8/31/82 R  Change 1  II.5-91

-------
DISTILLATION
BOTTOM PURGE
                      OTHER PRODUCT
                      WASTE WATERS
                                      #2
                                AMMONIA
                                STRIPPER
                                      #3
                                PRIMARY
                               TREATMENT
                               BIOLOGICAL
                               TREATMENT
                                CLARIFIER
                                SETTLING
                                  POND
                                       #5
                                DISCHARGE
                                            OTHER PRODUCT
                                            WASTE WATER
                                                      SURFACE DRAINS
                         CHEMICAL AND
                          BIOLOGICAL
                          TREATMENT
                          LEGEND

                        SAMPLING POINTS
  Figure 5-14.   General wastewater treatment process flow
                 diagram at plant 782, manufacturing hydrogen
                 cyanide, showing the sampling points
 Date:  9/25/81
II.5-92

-------
The load values assigned to the HCN process were estimated by
proportioning the total  loads in relation to the respective flow
rates.   The result is, therefore, approximate and must be used
with caution.  In calculating the pollutant loads,  the loss or
gain of  water to the treatment system due to factors  such as
evaporation,  loss through filtered solids,  precipitation, and the
water  introduced by treatment chemicals,  has been neglected.

     TABLE 5-58.  FLOW AND POLLUTANT  CONCENTRATION  DATA OF
                   THE SAMPLED WASTESTREAMS FOR PLANT  782
                   PRODUCING HYDROGEN  CYANIDE, VERIFICATION
                   DATA  [2-6]
Concentration. ffla/L
Strain
1
2
3

-------
hydrogen cyanide  from .the reactor gases.  This procedure is used
because the plant is  located where sufficient cold  water is
readily available at  low cost,  and once*-through use is cost
effective.

           TABLE  5-60.   WATER USAGE DATA FOR HYDROGEN
                         CYANIDE PLANTS 765 AND 782  [2-6]
        	(mVMg)	

        	Description	Plant 765	Plant 782

        Water usage
          Noncontact  cooling        8.0           18.9
          Total consumption        58.3           29.5


II.5.3.7  Nickel  Sulfate

Two plants were selected for detailed description from the avail-
able data on the  nickel sulfate subcategory based on the lowest.
concentration of  toxic pollutants in the effluent stream.

     Plant 120

Verification data are provided for plant 120.  Treatment of pro-
cess wastes at the plant consists of pH adjustment  to precipitate
nickel and other  trace metals,  followed by sand  filtration.  The
wastes are mixed  with other plant wastes and discharged through a
single outfall.   Solid wastes fx-om the plant are  disposed of or
used as landfill.

Figure 5-15 provides  the general process flow diagram.  Figure
5-16 presents the wastewater treatment process flow diagram in-
cluding sampling  points.  Table 5-61 gives flow  and loading data
for the sampled wastestreams.  Table 5-62 presents  the treated
effluent and raw  waste flow data for plant 120.

      TABLE 5-61. FLOW AND POLLUTANT LOADING DATA  OF THE
                   SAMPLED WASTESTREAMS FOR PLANTS  PRO-
                   DUCING NICKEL SULFATE  [2-6]
Plant
I20(b)
369(c)
Wastestream
descriotion
NiSO(4) waste
All nickel wastes(a)
Treated effluent! a)
Untreated waste
Treated waste
Flow,
cu.m/Mg
product
0.72
0.72
0.72
0.42
0.42
ka/MQ product
TSS
0.031
0.05
0.0031
0.093
0.045
Nickel
0.035
0.0089
0.00014
0.073
0.00058
Coooer
0.00016
<0. 0000036
0.00014
0.03
0.0076
       (a(Stream Is a commingled wastewater. Flow given Is amount contributed by the
         NISO(4) plant.
       (b)Analytlc methods: V.7.3.4, Data set 2.
       (c)Analytlc Methods: V.7.3.4, Data set I.
Date:  9/25/81                II.5-94

-------
MCXU.
" WGESTOR r~ 	
QIM
tOUITMN
MioeuGT
^K-
kWU

1 ieio

OIGESTOR
1

H F.LTER | 	 1 | 	 1 FILTER | 	 ,
vorr NICKU. f f
STUM 	 -*} OIGESTOR
4G» 1


f FILTER
^
JSmtl B TREATING TANK
*
[ FILTER


1 CONCENTRATOR
1
1 FILTER

| CRYSTALUZER
|

1

J
•WHT NWO. ^J
l*H— — KSIOUO

^ - OX1DIIW



™ "^^STKAH

* .-.j QC LAB |
OUT
	 1» EVAPORATION TANKf* rrc&n
i
^ eoouNa
<| WATER
1
I HOLDING TANK 1
i
1 ««•» H*m-l,_ "
f ' gf SCRUBBER ~^B WWW


ICOOL, SCREEN,
PACKAGE
f
	 1
oorrt
                        •OLIO PKOOUCT
     Figure 5-15,
General process  flow diagram of plant 120,
manufacturing  nickel sulfate
Date:  9/25/81
         II.5-95

-------
    HiSO, PtOOSS
      * vasiz
                                                         ID mso.
    Figure 5-16,
General wastewater  treatment process flow
diagram at plant  120,  manufacturing nickel
sulfate, showing  the  sampling points
Date:  9/25/81
          II.5-96

-------
       TABLE 5-62.
     TOXIC POLLUTANT RAW WASTE AND TREATED
     EFFLUENT CHARACTERISTICS OF NICKEL SULFATE
     PLANT 120, VERIFICATION DATA [2-6]
                      Raw waste
                               Treated effluent
Pollutant
yg/L
kg/Mg product
yg/L
kg/Mg product
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Thallium
Zinc
BDL
49
2.7
12
220
52
BDL
49,000
69
BDL
55
BDL
0.000035
0.0000019
0.0000086
0.00016
0.000038
BDL
0.035
0.00005
BDL
0.00004
BDL
BDL
BDL
57
<43
BDL

200
BDL
BDL
58
BDL
BDL
BDL
0.000041
<0. 000031
BDL

0.00014
BDL
BDL
0.000042
Analytic methods:  V.7.3.4, Data set 2
BDL, below detection limit.
Blanks indicate data not available.

     Plant 369

Screening data are provided for plant 369.  Treatment at this
plant consists of adjusting the pH to between 9 and 10 to pre-
cipitate metal hydroxides,  which are removed by settling prior to
final discharge.  Table 5-61 gives flow and loading data for the
sampled wastestreams.  No flow diagram is available for plant
369.

Table 5-63 presents raw waste load data for plant 369.  Table
5-64 presents water usage information for plants 120 and 369.
Date:  9/25/81
               II.5-97

-------
  TABLE 5-63.
TOXIC POLLUTANT RAW WASTE AND TREATED EFFLUENT
CHARACTERISTICS OF NICKEL SULFATE PLANT 369,
SCREENING DATA [2-6]
                     Raw waste
                             Treated effluent
Pollutant
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Thallium
Zinc
yg/L
480
BDL
9
1,300
73,000
55
BDL
180,000
<10
21
270
kg/Mg product
0.0002
BDL
0.0000038
0.00054
0.030
0.000022
BDL
0.073
<0. 0000041
0.0000088
0.00011
ug/L
200
260
BDL
450
18,000
BDL
1,400
12
29
170
kg/Mg product
0.000083
0.00011
BDL
0.00019
0.0075
BDL
0.00058
0.000005
0.000012
0.000071
Analytic methods:  V.7.3.4,  Data set 1
Blanks indicate data not available.
BDL, below detection limit.
           TABLE 5-64.
         WATER USAGE FOR NICKEL SULFATE
         PLANTS 120 AND 369 [2-6]
         	(mVMg)	
           Description
                  Plant 120
Plant 369
     Noncontact cooling
     Direct process contact
     Maintenance, cleaning,
       washdowns, pumps,
       seals, and leaks
     Air pollution control
                     13.6
                     4.01
                       ND
                     1.28
  0.417
  0.751
  0.094
  0.094
II.5.3.8  Sodium Bisulfite

Two plants were selected for detailed description from the avail-
able verification data on the sodium bisulfite industry based on
the lowest concentration of toxic pollutants in the effluent
stream.

     Plant 987

The filter wash is the main process waste at plant 987.  This
waste is neutralized with 50% caustic soda to a pH of 9 to 10 in
an oxidation tank while mechanically agitating to convert the
Date:  9/25/81
               II.5-98

-------
bisulfite waste to  sulfite.  The  sulfite is then oxidized to
sulfate  with air.   The  treated waste  (stream #6) is  discharged
to a  river after a  17-hour retention  period.


Figure 5-17 provides  a  process flow diagram of plant 987, includ-
ing sampling points.  Table 5-65  provides flow and pollutant
loading  data on the sampling points.
TABLE  5-65.
FLOW AND  POLLUTANT LOADING DATA OF THE  SAMPLED
WASTESTREAMS FOR PLANTS  PRODUCING SODIUM BISULFITE,
VERIFICATION DATA [2-6]
Plant
987






586







Wastestream description
Fi Iter wash (#1 )
Floor wash, spills, etc.
Fi Iter wash (#2)
Treatment influent
(streams 1+2+3)
54-hour aeration (#5)
Treated effluent (#6)
MBS sump 1
MBS sump 2
Amine oxidation pond
ZnSO(4) pond effluent
Lime treatment influent
Truck washdown
S0(2) wastes
Final treated effluent
Flow,
cu.m/Mg
product
0.055
0.013
0.041
0. 1 1

0. 14
0. 14
9.68(a)
9.68(a)
2.77(b)
78.5(b)
1 I0(b)
0. I34(b)
85.9(b)
I88(c)
kq/Mq product
TSS
0. 1 1
0.046
0.0052
0.32

0.38
0.0031
0. 19
0.051
2.4
12
1 1
0.012
2.0
4.3
COD
1.4
0.30
0.91
3.5

1 .2
1 .0
1 . 1
0.46
2.3
0.76
29
0.098
53
22
       Analytic methods: V.7.3.4, Data set 2.
       (a) Includes noncontact process water that does not contribute
          to the pollutant load.
       (b)Flows are not directly related to the sodium bisulfate
          industry, but are currently treated in combination with
          raw process waste that is related.
       (c)Treated effluent from combined treatment of a number of
          different raw process wastestreams not all  related to
          sodium bisulfite production.

     Plant 586


The sodium bisulfite wastes at plant  586  are combined  with pro-
cess wastes from an amine plant,  a zinc  sulfate plant,  and truck
wash waste.   Lime is added to the wastes,  which are then passed
through  an aeration tank with an 8-hour  retention time.   Treated
waste goes through primary and secondary  settling before final
discharge.


Figure 5-18 is a general flow diagram of  plant 586 showing the'
sampling point locations.   Table 5-65 provides flow and pollutant
loading  data for the sampled streams.
Date:   8/31/82 R  Change 1 II. 5-99'

-------
                                                                                tn
                                                                                a
                                                                               •H
                                                                               4J
                                                                               O
                                                                               (0
                                                                                  to
                                                                               oo
                                                                               •P C
                                                                               fi -M
                                                                               fd H
                                                                               -P CO
                                                                               (0
                                                                                  a)

                                                                               n) -P
                                                                               M
                                                                               Cn tn
                                                                               •d  15
                                                                                  O
                                                                               ^^
                                                                               o  w
                                                                               H -H
                                                                               
-------
                         I
                                                                        3

                                                                      i
                                                         I
                                                         1

                                       C!
                                      •H
                                       H 0)
                                       0 -P
                                      4J C
                                       O -H
                                       (0 O
                                      4-1 QJ
                                       3
                                       C Cn
                                       nJ C

                                         H
                                       - a
                                      VD S
                                      00 (Ct
                                      in to

                                      •P QJ
                                       C Xi
                                       nJ -P
                                                                                  en
                                                                                  C
                                                                               -P
                                                                               (0
                                       nj to
                                       5-i
                                       tn  v
                                       nJ Q)
                                      •H -p
                                      •d -H
                                         m
                                       > H
                                       O 3
                                      •H tO
                                      M-l -H
                                         XJ
                                      iH
                                       rd g
                                       H 3
                                       Q) -H
                                       CJ -O
                                       0) 0
                                      O w


                                        •
                                      00
                                      iH

                                      m

                                       0)
                                                                                tn
                                                                                •H
Date:   9/25/81
II.5-101

-------
Table 5-66 provides water usage data for plant 987.   Table 5-67
gives raw waste toxic pollutant loads for the selected plants.

              TABLE 5-66.  WATER USAGE AT A SODIUM
                           BISULFITE PLANT [2-6]
           	(mVMg)	
                    Description
                           Plant 987
           Direct contact process
           Noncontact cooling
           Maintenance, washdowns,  etc.
                               1.15
                                ND
                               0.38
           ND, not detected.
    TABLE 5-67.
 TOXIC  POLLUTANT  LOADS  IN RAW WASTE AT  SODIUM
 BILSULFITE  PLANTS,  VERIFICATION DATA  [2-6]
	(kg/Mg  product)	
             Pollutant
           Plant  987
Plant 586
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Silver
Thallium
Zinc
0.00007
0.00001
0.000004
0.0003
0.00007
0.00007
0.000001
0.00005
<0 . 000003
<0. 000004
0.0002
0.00008
0.00003
0.00001
0.022
0.0003
0.0002
0.00001
0.00017
0.00017
0 . 00042
0.0088
             Analytic methods:  V.7.3.4, Data set 2.

II.5.3.9  Sodium Dichromate

Two plants were selected for detailed description from the avail-
able data on the sodium dichromate industry based on the lowest
concentration of toxic pollutants in the final effluent stream.
Screening data are provided for plant 493, and verification data
are given for plant 376.

     Plant 493

At plant 493, the wastewater going to the treatment facility
includes the boiler and cooling tower blowdown and a small volume
of effluent from a scrubber on a byproduct sodium sulfate opera-
tion.  The total waste includes the spent ore residue, which is
also sent to the treatment facility.  At the treatment facility,
Date:  9/25/81
              II.5-102

-------
 the alkaline wastewaters are reacted with imported acidic  indus-
 trial waste at an elevated temperature in a  reactor.  The  chro-
 mium is precipitated during the  reaction.  The reacted waste is
 sent to clarifiers by  means of holding tanks.   In the clarifiers,
 large quantities of water are used to wash the precipitated
 solids in  a countercurrent fashion.   The final clarifier over-
 flow, which is the treated effluent,  is filtered and discharged,
 and the clarifier underflow is disposed of in  a quarry.

 Figure 5-19 provides a block diagram of the  treatment process and
 indicates  the streams  sampled.   Table 5-68 gives the flow  data
 and pollutant loads of the streams sampled.  Treated effluent
 data are given in Table 5-69.
        TABLE  5-68.
FLOW AND POLLUTANT LOADING DATA
OF THE  SAMPLED WASTESTREAMS  FOR PLANTS
PRODUCING SODIUM  DICHROMATE  [2-6]
Plant
493(c)


376( d)






Stream
1
2

1

2

3
4
5
Wastestream
description
Raw wastewater
Treated
effluent
Mud slurry
waste
Primary pond
off luent(b)
Surface runoff
Reactor effluent
Pond effluent
Flow,
cu.m/Mg
product
4.2
-------
                   RAW WASTE WATER
          WATER
                       SLUDGE TO
                     LAND DISPOSAL
                                     IMPORTED ACID
                                     INDUSTRIAL WASTE
                     TREATED EFFLUENT
                                           LEGEND

                                        SAMPLING POINTS.
           Figure 5-19,
General  wastewater treatment
process  flow diagram  at plant 493,
manufacturing sodium  dichromate,
showing  the sampling  points
Date  :   9/25/81
    II.5-104

-------
       TABLE 5-69.
TOXIC POLLUTANT RAW WASTE AND  EFFLUENT
CONCENTRATIONS AND LOADS AT  SODIUM DICHROMATE
PLANTS [2-6]

Pol lutant
Arsenic
Ch rom 1 un
Copper
Lead
N i eke 1
Si Iver
Selenium
Zinc

Pol lutant
Chromium, hexavalent
Chromium, total
Copper
Nickel
Silver
Se 1 en i urn
TSS
Zinc

ua/L

-------







u
•
u
Z
3
C
C
u


COOLING TOWER
SLOWDOWN
1







J
a
J
t
;
5
>
r»


#•
**
O
=»»,
HXH










vfl
=»«!
1
:
J
u
t/
-3


* g
o •
UJ

i i
I
t
cs=

T^-
SETTLING AND
DEWATERING
LANDFILL ARFAS
1 f
&
j oe
• a oe
: x 2
6 CO


•Ml
^ »
(£) »



5
UJ
(j i^
^C ^^
3 3
«/> oe


3
r- ee
< UJ
UJ t—
P^


c
2
C
Q
C
2
M

-
o
UJ
ee

•k
0 — U O
UJ -J Z 1-
_i a. u. — u
a. £ u. uj <
£ < O 03 UJ
< v> z oe
(/) 3 00
u. oe < uj
«/> O 3 x
__ Z UJ 1—
< UJ 0— .
O UJ S < f\ Z
z oe — u. =«te —
» uj i- h- oe fl,
: ca «/> 3 s a .. 2
> uj uj to < uj -P .C
-J UJ Z UJ h- (d -P
I- H >- oe <
9  _i H- uj e tr>
' oe 5^
. 3 <0^H JJC
j (D * * 2
, v^/ * -H x;

o  O3 o MM
Q UJ ^ _!,
2 M 0 rH
S  C -P
(U (d C
•P g -H
CO O
«> ^
r» &>
H ro C
(d -H
ti i i i
M "i"* i^i
(U C! fti
C (d g
(U rH (d
o a co
o
CN
1
m
0)
h
Date:  9/25/81
II.5-106

-------
         TABLE 5-70.  WATER USAGE IN SODIUM BICHROMATE
                      SUBCATEGORY [2-6]
         	(m3/Mg)	

                                    	Water usage
        Description	Plant 376	Plant 493

     Noncontact cooling                11.4           5.7
     Direct process contact (a)        7.83(b)       2.85
     Indirect process contact
      (pumps, seals, leaks, and
      spills)                          4.16           0.2
     Maintenance (e.g., clean-
      ing and work area
      washdown)
     Air pollution control                            1.0
     Noncontact ancillary uses                       3.12


     Blanks indicate data not available.
     (a)Up to 50% solids.
     (b)Owing to a high evaporation rate, there is no discharge
        from the primary pond during 9-10 months of the year.
        There was no primary pond effluent at the time of
        sampling and only 4.16 m3/Mg of the indirect contact
        sources were being treated and discharged.


II.5.3.10  Sodium Hydrosulfite

One plant was selected for detailed description from data avail-
able on the sodium hydrosulfite industry based on the lowest con-
centration of toxic pollutants in the final effluent stream.

     Plant 672

Screening data are provided for plant 672; two different streams
at the plant were analyzed.  Because of the nature of the two
wastestreams, each one is handled differently.  The dilute waste
is first sent to a holding pond, where the flow is equalized and
the waste is mechanically aerated.  This pond also contains
approximately 5.7 m3/d (1,500 gpd) of waste from a sodium bisul-
fite process.  The pH of the pond effluent is adjusted with sul-
furic acid, and the effluent is then sent to an aeration basin.
A nitrogen-phosphate fertilizer and urea are added as nutrients.
Approximately 13 m3/d (3,500 gpd) of sanitary waste and up to 98
m3/d (25,900 gpd) of clean dilution water are also added to the
aeration basin.  This basin formerly had mechanical aerators, but
now has air diffusers that allow better temperature control for
biological oxidation.  Effluent from aeration goes to a clarifier.
Approximately 53 m3/d (14,000 gpd) of the settled sludge is
returned to the aeration basin and 9 m3/d (2,400 gpd) is sent to


Date:  9/25/81                II.5-107

-------
drying piles on site.  .More  dilution water is added to the clari-
fier when needed for TDS  control.   Overflow from the clarifier
goes to a chlorine contact tank because of the sanitary waste.
Blowdown water from the cooling tower and boilers is added to the
final chamber of the chlorine  contact tank.  Effluent from this
unit is sent to a final polishing pond for settling and equaliza-
tion before discharge.

The coproduct waste from  the distilling column bottoms is sent to
a lined coproduct pond at a  rate of 53 m3/d (14,000 gpd) and held
for one of two possible disposal methods.  When there is a market
for the coproducts, the waste  is concentrated and sold to the
pulp and paper industry.  When this is not possible and the pond
reaches near capacity, the waste is bled into the treatment
system described above through the dilute waste holding pond.

A general flow diagram of the  biological treatment system is
included in Figure 5-21.  Table 5-71 shows the individual waste-
streams, the total combined  input to the treatment system, the
treated effluent quality, and  the efficiency of the system.
   TABLE 5-71.
FLOW AND POLLUTANT CONCENTRATION AND LOAD DATA
OF THE SAMPLED WASTESTREAMS  FOR PLANT 672 PRO-
DUCING SODIUM HYDROSULFITE,  VERIFICATION DATA
[2-6]
Stream
l
2
3

l*
Wastestream
descriotion
Byproduct
Di lute waste
Di lute waste and
SBS waste
F i na 1 d i scha rge
Flow,
cu.m/Mq
0.95
1.95

2.05
H.67
COD
mq/L
78,000
15,000

I6,000(a)
740{a)
TSS
kq/Mq
7U
29

32
3.6
mq/L
61
260

8UO
25
kq/Mq
0.058
0.51

1.7
0. 12
  Analytic methods:U7.3.U, Data set 2.
  (a)Value Is that observed during sampling which may differ significantly
     if the byproduct stream is contributing.
Date:  9/25/81
               II.5-168

-------
      t
W

L
  H A
                   B
                    E

                    I

                   g

                   i
                   I
                   I
                              CD*
i  l-
I-  .
LB
«t
                              T
                                                 ®
                                                           CN1
                                                           4J
                                                           (0
                                                           n) a)
                                                           •H -P
                                                           T3-H
                                                             3
                                                           •H 10
                                                           m o
                                                             1-1
                                                           M -O
                                                           W >,
                                                           a) x:
                                                           o
                                                           H O
                                                           n) ui
                                                           H
                                                           0) tP
                                                           c a
                                                           
-------
Table 5-72 presents final treated effluent concentrations  and
loadings; raw  waste pollutant loadings  are presented in Table
5-73.
    TABLE  5-72.
  SCREENING RESULTS FROM SODIUM HYDROSULFITE
  PLANT 672, VERIFICATION DATA [2-6]
Pol lutant
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Si Iver
Zinc
Mercury
Se 1 en I urn
Cyanide
Phenol
Pentach lorophenol
Raw waste
UQ/L
30
36
7,1*00
1,000
380
1,1100
U3
5,900
3
ND
NO
160
370
Influential
ka/Mq
0.00006
0.00007
0.015
0.0021
0.0008
0.0029
0.00009
0.012
0.000006
ND
NO
0.0003
0.0008
Treated
ua/L
NO
25
35
ND
65
160
3l»
31
2
ND
100
ND
ND
eff luentlbi
ka/Mg
ND
0.0001
0.0002
ND
0.0003
0.0008
0.0002
0 . 0002
0.00001
NO
0.0005
ND
NO
             Analytic methods: V.7.3.4, Data set 2.
             ND, not detected.
             (a)Observed during sampling at sample point #3.
             (b(Observed in treatment discharge at sample point
  TABLE  5-73.
SUMMARY OF  RAW WASTE LOADINGS FOUND AT A SODIUM
HYDROSULFITE  PLANT (FORMATE PROCESS) 672,
VERIFICATION  DATA [2-6]
                Pollutant
                    Average,
                     kg/day
                                         Loadings(a)
Average,
 kg/Mg
           Toxic pollutants
             Arsenic                 0.0067      0.00012
             Cadmium                 0.0019     0.000033
             Chromium                 0.031      0.00056
             Copper                   0.011      0.00019
             Lead                     0.056        0.001
             Nickel                   0.090       0.0016
             Silver                   0.009      0.00016
             Zinc                       1.4        0.024
             Pentachlorophenol        0.047      0.00083
             Phenol                  0.0084      0.00015
             Mercury                  0.011      0.00002
             Selenium                0.0017      0.00003

           Classical pollutants
             TSS                         33          0.57
             COD                      5,700           100

           Analytic methods:V.7.3.4,  Data set 2.
           (a)Based on sampling  at streams #1 and #2.
Date:   9/25/81
                II.5-110

-------
II.5.2.11  Titanium Dioxide

     Chloride Process

Two plants were selected for detailed description from the avail-
able data on the titanium dioxide chloride process industry based
on the lowest concentration of toxic pollutants in the final
effluent stream.

     Plant 559.  Screening and verification data are provided for
plant 559 which uses the conventional chloride process to produce
titanium dioxide.  The solids, hereinafter called pit solids and
consisting mainly of unreacted ore, coke, iron, and trace metal
chlorides, including TiC14, separated from the first stage
cooling of the chlorinated gases, are slurried with water and
sent to the wastewater treatment facility.  The wastewater from
the chloride process is mixed with other product wastewater and
treated in combination.  A flow diagram of the treatment fa-
cility, including the sampling locations, is shown in Figure
5-22.  Slurried pit solids and the distillation column bottom
residue are sent to a large settling pond where they are mixed
with the other process wastewater.  Overflow from the settling
pond is neutralized with ground calcium carbonate in a reactor.
The scrubber and other wastewater from the chloride process is
mixed with other product wastewater and combined with the settl-
ing pond effluent.  The combined solutions are neutralized with
lime in a second reactor and then sent to a settling pond before
discharge.  Because the chloride process wastewaters are mixed
with other product wastewater prior to treatment, the sampling
results represent the total input mixture rather than only the
Ti02 process raw wastes.  Problems were encountered during the
sampling of the pit solids and distillation bottoms.  The pipes
carrying the wastes from the process discharged at the bottom of
the settling pond, and it was not possible to take the samples at
the outlet of the pipe.  The combined sample of the two streams
was taken at the surface of the discharge.  It is probable that
some solids settled before the stream reached the surface.

Table 5-74 provides the waste flows and pollutant loadings for
the streams sampled at plant 559.  Treated effluent pollutant
concentrations are given in Table 5-75.
Date:  9/25/81                II.5-111

-------
                                                                                      •H  CO
                                                                                      G  4J
                                                                                      rt  C
                                                                                      •P-H
                                                                                      •H  O
                                                                                      •p  ft

                                                                                      tn &i
                                                                                      a  c
                                                                                      •H -H
                                                                                      M H
                                                                                      13  ft
                                                                                      1 t  cs
                                                                                      o  !3
                                                                                      m  to
                                                                                      >H
                                                                                      3  Q)
                                                                                      CX!
                                                                                      HJ -P
                                                                                      in O
                                                                                        ^!
                                                                                      -P CQ
                                                                                      fi
                                                                                      nj  ^
                                                                                      H ^
                                                                                      O< en
                                                                                        to
                                                                                      -P 


                                                                                        a;
                                                                                      0) X
                                                                                      fi O
                                                                                      (!) -H
                                                                                     CM
                                                                                     CN

                                                                                     in

                                                                                     0)
Date:    9/25/81
II.5-112

-------
   TABLE 5-74.
FLOW AND POLLUTANT LOADING DATA OF THE SAMPLED
WASTESTREAMS FOR PLANT 559 PRODUCING TITANIUM
DIOXIDE USING THE  CHLORIDE PROCESS, SCREENING
DATA  [2-6]


Stream

1

3

4

Wastestream
description
Estimated total raw waste
Pit solids and distillation
bottom waste
TiO(a) (Cl process) scrubber
and contact cooling water
Final effluent
Flow,
cu.m/Mg
Ti02
91

10.9

80.1
104






ka/Ma T(02
Zinc
0.03

0.02

0.01
0.005
TSS
100

75

25
2.1
|ron
26

15

12
0.4
Chromium
1.2

1.2

0.01
0.003
Lead
0.041

0.04

0.001
0.002
Nickel
0.041

0.04

0.001
0.004
 Analytic Methods: V.7.3.4, Data set I.
         TABLE 5-75.
     RAW WASTE AND  TREATED EFFLUENT DATA
     AT TITANIUM DIOXIDE PLANTS USING
     CHLORIDE PROCESS [2-6]
Pol lutant
Plant 172.
Raw waste
ua/L ka/Ma
(a)
Treated
effluent
Plant 559.
Raw waste
ua/L ka/Ma
(b)
Treated
effluent
ua/L
       Toxic pollutants

        Chroulu*
        Iron
        Lead
        Nickel
        Zinc

       Classical pollutant

        TSS
       720
     2,900
       DDL
       80
       300
                      170,000
 0.03
 0.10
 BDL
0.003
 0.01
             5.9
 20
330
BDL
BDL
 90
                   6,700
 13,000
290,000
  500
  500
  300
              1,100,000
 1.2
  26
0.041
0.041
 0.03
                                                      100
  30
4,400
 BDL

  60
                                                            23,000
       BDL, below detection Unit.
       (a)Analytic methods: V.7.3.4, Data set Z.
       (b)Analytic Methods: V.7.3.4, Data set I.
     Plant 172.   Screening and verification data are  provided  for
the chloride process wastewater in plant  172.   The wastewater
from the process,  mainly the  scrubber water, is collected in
trenches and sent to a central reactor basin.   Other  discharges,
including a part  of the total rain runoff,  are also collected  in
ditches and sent  to the reactor basin.  In  the reactor basin,
sodium hydroxide  is used for  neutralization, and the  resulting
effluent is mixed with the remaining rainwater runoff and sent to
the first of two  retention basins arranged  in series.   Overflow
from the second retention is  adjusted for pH using sulfuric acid
before discharge.
Date:   9/25/81
               II.5-113

-------
A simplified diagram of the treatment system including the sam-
pling points is shown in Figure 5-23.  Table 5-76 provides the
waste flow and pollutant loadings for the streams sampled.  Table
5-75 presents treated effluent data,  and Table 5-77 presents
water usage.

   TABLE 5-76.  FLOW AND POLLUTANT LOADING DATA OF THE SAMPLED
                WASTESTREAMS FOR PLANT 172 PRODUCING TITANIUM
                DIOXIDE USING CHLORIDE PROCESS [2-6]

Stream
2
3


Was test ream
• descriotion
Inlet to wastewater
treatment pond
Wastewater treatment
effluent
Flow,
cu.m/H<
TI02
3U.7
3U.7


i
TSS Zinc
5.9 0.01
0.23 0.003


ka/Md Ti02
Chromium
0.03
0.007



Iron
0.10
0.01



Nickel Lead
0.003 0.0002
0.0003 0.00007

       TABLE 5-77.  WATER USAGE AT TITANIUM DIOXIDE PLANT
                    172 USING CHLORIDE PROCESS [2-6]
                          (m3/Mg Ti02)
           	Description	Water usage

           Noncontact cooling                10.7
           Direct process contact            15.5
           Indirect process contact          0.72
           Maintenance, equipment
             cleaning, and work area
             washdown                        0.52
           Air pollution control             7.14
           Noncontact ancillary uses         10.4
           Sanitary and potable water        0.31
           Total                             45.3
     Sulfate Process

One plant was selected for detailed description from the avail-
able data on the titanium dioxide-sulfate process industry based
on the lowest concentration of toxic pollutants in the final ef-
fluent stream.

     Plant 559.  Verification and screening data are provided for
plant 559 which uses the sulfate process to produce titanium
dioxide.  At this plant, the strong acid is sent to a lined
holding pond for equalization.  Effluent from the pond is neutra-
lized with ground calcium carbonate in a reactor; a sufficient
amount is added to raise the pH to a level such that calcium
sulfate, but not ferrous hydroxide, is precipitated.  The CO2
formed during the reaction is vented to the atmosphere, and the


Date:  9/25/81                II.5-114

-------
                             PROCESS
                           WASTE WATER

                                          NaOH
      HOLDING POND
          FOR
      RETREATMENT
                             MIXING
                             BASIN
                           NEUTRALIZE
                                         RAIN RUNOFF
                                   RAIN RUNOFF
                            RETENTION
                              BASIN
                            RETENTION
                              BASIN  -
                                         pH ADJUSTMENT

                            DISCHARGE
Figure 5-23,
                                           LEGEND

                                        SAMPLING POINTS

                                        THE TOTAL RETENTION TIME
                                        OF WATER IN THE TWO PONDS
                                        IS 5 DAYS.
                    General flow diagram at  plant 172,
                    'manufacturing  titanium dioxide(chloride
                    process)  showing the sampling points
Date:   9/25/81
                          II.5-115

-------
calcium  sulfate slurry goes  to a clarifier.   Underflow from  the
clarifier  is filtered to produce pure gypsum crystals at  a con-
centration of 70 to 80%.

The weak acid is sent to a  settling pond, where it is combined
with a small quantity of other wastes.  Effluent from the weak
acid pond  is mixed with the  calcium sulfate  clarifier overflow
and neutralized with ground  calcium carbonate in a three-stage
reactor.   Pebble and slaked  lime are also added to raise  the pH
and precipitate more calcium sulfate.  Air is also introduced to
convert  the ferrous iron to  ferric.  Effluent from the reactor
goes to  another clarifier,  and the clarifier underflow is fil-
tered to concentrate the solids to 70%.  Overflow from the second
clarifier  is mixed with the  other process wastewaters which
include  the scrubber finishing and cooling wastewaters.   The
combined water is neutralized and solids settled out in a pond
prior to final discharge.

Figure 5-24 represents the  flow diagram of the treatment  process
and shows  the sampling locations for both screening and verifica-
tion.  Table 5-78 provides  the flow data for the waste streams
and Table  5-79 presents pollutant data for the verification
phase.   Table 5-80 presents  raw waste toxic  pollutant loading for
the screening phase.

       TABLE 5-78.  FLOW AND POLLUTANT LOADING DATA OF THE
                     SAMPLED  WASTESTREAMS FOR PLANT 559 PRO-
                     DUCING  TITANIUM DIOXIDE  USING THE SULFATE
                     PROCESS  [2-6]
Stream
3

H

5


6

Wastestream
description
Strong acid pond
overflow
Weak acid pond
overflow
Scrubber and
other product
wastewater
Final treatment
effluent
Flow,
cu.m/Mg
Ti02

6. 1

68.4(a)


361 (a)

436(a),(b)
kq/Mq
TSS

210

1.2


1 10

10
Ti02
1 ron

I 10

1.2


52

1.9
          Analytic methods: V.7.3.U, Data sets 1,2.
          (a)Pollutant load was calculated by multiplying the  flow
             contributed by the sulfate process stream times the
             concentration of pollutant.  Pollutant  load = (total
             stream flow) x (fraction contributed by sulfate
             process waste) x (stream pollutant concentration).
          (b)While calculating the unit flow, the contributions
             to the treatment process from precipitation, the
             water in the treatment chemicals, and the losses
             from evaporation and from solids leaving the process
             have not been considered.
Date:  9/25/81                 II.5-116

-------
              A.
                              |!
                 r-V


                                          (T)s
                                       •H
                                        fi W
                                        
                                                                           to (U
                                                                           •H -P
                                                                           T3 (0
                                                                             m
                                                                              W
                                        H 
-------
    Table 5-79.  RAW WASTE AND TREATED EFFLUENT FOR TITANIUM
                 DIOXIDE PLANT 559, VERIFICATION DATA  [2-6]
                              Raw waste       Treated effluent
Pol lutant 	
Classica 1 pol lutants
TSS
1 ron, tota 1
TQXI'C pol lutants
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Tha 1 1 i urn
Zinc
Se lenium
ua/L
270,000
840,000
74
28
BDL
3, 100
160
960
140
7
1,000
BDL
kq/MQ
120
360
0.03
0.012
BDL
1.3
0.07
0.4
0.06
0.003
0.45
BDL
ua/L
23,000
4,400
15
10
BDL
25
BDL
BDL
BDL
3
62
BDL
kQ/Ma
10
1.9
0.006
0.004
BDL
0.01 1
BDL
BDL
BDL
0.001
0.03
BDL
        r\t ICI I JT b I V* "IV* Olivvi^. **(>f*-i;
        BDL, below detection  limit.
   TABLE 5-80.  TOXIC POLLUTANT RAW WASTE CONCENTRATIONS AND
                LOADS AT TITANIUM DIOXIDE PLANT 559 USING
                THE SULFATE PROCESS,  SCREENING DATA [2-6]
                 Pollutant	yg/L	kg/Mg
Cadmium
Chromium
Copper
Arsenic
Lead
Nickel
Zinc
Antimony
Thallium
2
7,000
250
29
200
310
1,100
160
20
0.0009
3.4
0.1.2
0.014
0.10
0.15
0.55
0.08
0.008
                 Analytic methods:   V.7.3.4,  Data set 1.
                 Blanks indicate data  not
                 available.
II.5.4  POLLUTANT REMOVABILITY  [2-6]

The inorganic chemicals  industry  discharges a variety of toxic
pollutants into plant wastewater  streams because of the large
number of products manufactured by the different subcategories of
this industry.  Each subcategory  has  specific major pollutants,
and in some subcategories  a  specific  treatment method is used to

Date:  9/25/81                II.5-118

-------
control pollutant discharge.  Generally, these major pollutants
are toxic metals.  Table 5-81 lists the toxic metals and the
treatment methods normally used to reduce their concentrations.
The treated waste concentrations and removal efficiencies are
assumed to represent the best performance characteristics obtain-
able under the specified operating conditions.  The operating
conditions are considered optimal conditions.

II.5.4.1  Aluminum Fluoride Industry

The toxic pollutants found in actual aluminum fluoride plant
wastewaters include copper, arsenic, chromium, and selenium.  In
the case of selenium, it is apparent that the source was largely
the raw water supply.  Therefore, selenium is not regarded as a
process-related pollutant, but its control in the treated efflu-
ent may be required.

Toxic pollutants are generally reduced in the wastewater from
this industry by neutralization and settling.  Lime, soda ash,
and alum are the common chemicals used to precipitate the pollut-
ants.  Fluoride is also precipitated as calcium fluoride using
this technology.

Copper and chromium trace impurities may be present in the hydro-
fluoric acid used to react with bauxite to form aluminum fluoride.
Arsenic may originate as an impurity in the bauxite ore.  Waste
treatment processes should be designed to control fluoride, cop-
per, arsenic, and chromium.  Effluent data are shown in Table 5-82

Potential treatment technologies include the exchange of copper
and chromium for hydrogen or sodium ions by ion exchange from
clarified solutions.  Copper and chromium at low levels may also
be controlled by xanthate precipitation, although the process is
not widely used.  Sulfide precipitation will reduce copper to
very low levels but does not control chromium or arsenic.  A
combination of lime and ferric sulfate coagulation is probably
the most effective proposed method for reducing arsenic concen-
trations.
Date:  9/25/81                II.5-119

-------














Ul
o

<
or
o
u.
or
Ul —
o. \o
i
a CM
<""'
is
KZ
a.
oo
KX
zo
UJI-
KO:
22
QJ
H->
or
uiz
1— £
i^
Cflh-


•
00
1
ir\
UJ
00
i-















o
c
0
to














X
a


c a
0 >
a. t-



«
C
-III
X
0
3

c
o
4*
u
c
ID
U
1.

c
.

1

CO
§A
1 1

oz
z



§§
'»•

V






_-^__^
ad
II
oo
o"o"
1 1
II








c
I
1






I
Q

C a
e >
t!
c?2


_J —
O C
C
o
4J
2_
0) 4-
I£


I

+
*1
C
4
CO
s
H



















See
— o o
III
(DUG
•ovo
{{{



























tf
«J


£



o
8




|

i?
0
t
3
31
*> •
ca. e
5 .5
-ili
1- 0 N O <-
— •aZ S
< <<<
                                                        u

                                                        o"
                                                      moooj
                                                      coo\r-
        o in
        «

        v o
        .. s
        o
        in
                                                                   o
                                                                   in
                                                        §
                                                        o
        § S_

        I  O

        o §

        S in'
                                                       §O
                                                       O
                                                      CNJO
                                           §
                                           m
                                                 t.

                                                 2
                                        55      c e  *   •—
                                       C — —  i.    o O «- 0   C
                                       owe  0  «•	o»-   x,
                                      — «• •  **  Q4>4>4>—   0
                                     §i-«»c >.  -  So «—3   -a
                                     tea—o  —  —*i*»—«)   —
                                    — Al AJ C.   Ik  •*««B(b1B«   f*
                                                       O
                               11
                                                                  tt<- 0
                                                                  — 0TS
                                                                  OW —
Date:   9/25/81
 o— a— 000  x,—— 00   —    a-a-o  —
 3»- — £  •D-O00OO*>t)  Ol£   0 «— —  tt <-
  ?x,o o « — —*'<-'o i «~  eo   icxx  —0
  « «  o U I. • « C Ci-w  —   0— OOP  O*>
  ^ C « c o o w a ex——  coi-« — .oCt  0 —
  So at 0---— oo 3 3  0—0	I--D-P  •
 0« — M££ 3 3 U U » •  WUWIWCaXX

:-0g«£00<""oo««  Sirsf05^
 • — — JC aO O O O*» *" 3 3  Mkt-MuaBB

    "    utmt2£j^^^9 = 33
        kkbl.l.L.UI.i
        0000000 »-
       II.5-120

-------


















LJ
O
Z

CC 0)
0 3
u. c
ot —
1. 1 )j
0. C
o
0 U
z *•»

V)
V) -1
z<
OK
— UJ
a.
oo

I-X
ZO
UJt-

HK
<0
LUU.
cc
cc
Si
ii
LJ
so
00
1
UJ
co























1
•
s































s
1






















c
o
g
£




x
a
a
c
o
•~
OB
t
4J
c
s
0
















c
0
2
£
X
a
a

1
L
i
s











X
a





09
>
S
s



—
a
c

ik







—
-
•™
_









g



m
3
§
I
U

a


]

C
4>
10
£
H



—
S
^
O




O
A






00












s
(M






















1 S
** HO
f— V-
§5 C^
3 C — — . <- 001-
am ef e o u — — a
» 3 — « • *» eww *>
«— ckwex — *»•• —
Sec c^ 552s" ^ E£i£

slsis?! r2"§ii»€33n»
otnoootl— • k.4. — — JC Q.O O O O4**> 3
•sz-2^1- sll Isis t fc 1 1 1 1 1

•a
o in inm
0> X) — —
i i
•« i
in m «
00 w •
ooo
0
•o
o\ « ooo
A
H
00 O 48
IK
O

w .
O 00 O-O
V —
^^
**
o
s
CM



•o
§o oo
o oo
» - ino
1 -•* 1
§TT
— o
a- oo

,
lf>



in
•
^




a-

VO


I


1.
8
? E i i
W X, «A «•
c? 2 C C
— 1. ^ V.
tZ -" «-lp2
- cot^-aCt
3 mk-tZ « w • • •
p ^s^Xt U 3 3 3
[, 	 | i i i i ff ^6 j^ ^























































e
o
c w
o o
• 0

Jl:
»-CCw
WMWM
Date:  9/25/81
II.5-121

-------













ll I
u


HI!
0 3
U. C
CC.—
UJ 4->
0. C
o
Q U
W-l
z<
OH
-,,_ ^
HZ
Q.
00
HX
ZO
UIH

HCC

cc
LJZ
HZ
SJ2
UJ
H<
WH
5 *"**

«Q
ifl
UJ
CO
H










































a
c
i!



































+>
c
o
if
£








.
N,
o
a
,
c
o
'^
(0
fc
c
a
g
0
























X









>
1






1
^












eg
a
c







1
8
A
C
«
•M
^
«
S
h-


0 0
1

m










A A









1 1











i i
« *









"
1
^
= ell
10 5 — 01 • ** 09
*>— e «-*» e >> — *»
« *•• 00 Ol~ 0 — -
CCC C&C *S — -^ O ^ X* *•
— o o o o o — a— oca >
— «« — ««>« 90V ULLOIOI
• UU^ONO 1- C'D C 0) C O O<^<~
oi - c oace 	
SSSiS>S "ifoccC00**
• ••••— • ww — — jcaoooo
4J4J4J«^«J^*jSaM3 ^^«» !• k U L
OUC! C) o ^-~ — • JE 4)0aoi
om
i •«
m

•00
OOA

0
ON
1
m
00


Am
AA
A
• «
A-S






0 00
So
o
(NJ
'
§

*
*"




oo
§o
0


oo
3§
«o
I
o




L.
s
£
slug
.-- o«-
WM-P —
• «— 3
*»*>— M
a^>s.~
Ite cop reel
Ite cop reel
>us sulfate
ius sulfide
fcfc EHj
• • • •-
•o
inm
i

— o
o •

o

0
ON
1
m
00
•a
OA
AA
^A

«•
%
**
A


§
OO
oo
o
I
Jf
.^
O




— ^
•n
OO
88
lAO
m
— 1
OO
o *
°.s
in
I





u
8
Z

o
softening
'ferric chl
filter
'sulfide
:tlon llae
list!
—•r— — •


















































• I
- § |
•^ s 1
m hydroxid
M hydroxid
Ide
Ide precipl
Ida/filter
jr dioxide
««^-^_
9s a 33g
Date:  9/25/81
II.5-122

-------
          LJ
          O
          CC. 0)
          O 3
          tJ- C
          CC —
          Ul *»
          0. C

          08
          to _l
          z<
          OK
          CL
          OO

          t-X
          zo
          UIK
          <0
          LJU.
          O

          Ul
          00
           I
                                          m

                                          NO
                                                  inro  in 0

                                                  ON—  — I
                 O


              o  I
         SON  KCO «0  ON
         OS  ONON ON  ON
         A  A A    A



            ON   ON  ON
            A    I  O\
                                           O  O   OO  - O
                                           in  —   oin  o NO
                                              v   ——  o
                                                  v   — •«
                §  !-
                o
                                           in  m   n   mo
                                              eg         S
Date:   9/25/81
II.5-123

-------











LJ
O
s^
a** Q)
0 3
U. C
K —
UJ 4->
0- C
o
Q 0
z~
to
3T <
OK
— li 1
tS
00
^
I-X
zo
LUH
1-0:

eg
S2







fl
C
u


o
0
1
-J
o
3

c
0

5i
c c
o-
c
s









i
(
c
1
£
c
<
«
4
C
1
1
*
I
1
i
h









































,7
X
4*

t il
3 C — — <-
am e^e 0
ta s — • • *J
44— C I-44C X -
44 « O0 ••— O —
S"->X — 4* 44 «- W
CC CO.C W 	 0V. ^
— o o o o o — a— 000
• .fi A A "ft 3  0— 0OO
44 44 44 C 44 > «J — — OC0C
(D<900C«— 0 fc.*. — — JC CLO P
— — — o>— a~ BI3MO<»ci-i-
444444-M»44<_44 5 3 «B 3-.**— L. C.

oin
OS —
i —
o
o







ovoxcNin
A A








opal
•ftf-Otf}








^^
O
§§
o
o^inotn
40 O\







*J

*-
cc- 7
sulfate
sulfate/f liter
e copreclpltatio
e copreclpltatio
s sulfate/f liter
s sulflde (Sulfe
— " — —a a
BO 0 00 0

in
^
"™

ift
r*

§


^^
"D
§"*


in
o
|
in
*
i




S

of ten Ing
errlc chloride/f
liter
ulf Ide
«t.W^«
Illl
«J_J^..
o
O*










?&*
O\
oC

/v




^
l§l
*o •*
n 01
§1
CM>O

—





§0 0
o o
"S 8
1 ~*
I
-




.
c
o
o
1. C. C. o
1 on/ 1 lute
carbon* te/f 1 Ite
carbonate/f 1 Ite
hydroxide
hydroxlde/fl Ite
e
e precipitation
e/f liter
dioxide reducti
O 3 3 3 S222 3
3 — — — — WWW%-
OCCACAtACOCOCOVXO
Date:  9/25/81
II.5-124

-------











Ul
o
ZT
a: a)
O 3
U. C
oe —
UJ 4J
0- C
o
o o

W -1
OK
— Ul
1-2
a.
ou
HX
zo
UK
£

LkJ U.

}_ ^.
K
CC <
Ul 3£
HZ
S"5
<<
.
00
1
lf\
Ul
03
1-






















%

2
£























x
a





** —
c a
o >
?i
£2












_i
§
3
e
o

«j
•
c.
4J
C
B

1






a
c
**•











«

c









intent techno! oay
«
>-
o o
0 <0
1
in
0

in
fO O ON Cii Ov
9 (*•• ^ 40 C^
A A
1 1 •*>
O\ 1
Sm ON
m A eo
« i
O\ O OS
« ?
1

S^
A


SO Oi -1 O iT\
0 0 CM
in OB to ~~
., o
o —
CM
o
1 VO
0 •-
— o


SO 0 00
(*> O O O

f* O *O
O 0 -
VO CM 1 1
§ 88
m o o M
1 ^O O *^
in o
2 , §
§ 8
fO
vO



I
B *-
X «•
s. - C S
? =11 . sl.I £ s s 1
A| OMC B U — — eW >. u W C M
M 5 — « « 4> OU4JM— O — — O O
4t- CI-UCX - *>««-3 TJ — — — 3
« • OB«— O — —«« — «! — <*«-«> -a
S— -s, ™ «a *» c. fc. — -~ — w-^ t x^ *x « B
CC CO.C w — — OV. -x VO-Q.^. . O BBB " C
— O O O O Q— a— OBB •X.— —BB — **W —
• £.3 A --S Su — £ •S'SoeooS-o ei£ B« — — ai-o
3>-k wot wu o B — — «** B S «— co icxx — oca
^coa^^MBII BBB Ul»^MB^"-W*' *~ B — O O O O**«
«OO<-"N" i. C-5 " « c o o " " as.-- coi--S-o2£ a-x
""",, _" g So.ce-- 	 0033 B— B 	 "-o-o <-—o
BBB3BBB — *» B— BOV<*CW>3 	 UCBL BB«« OB-3— BBB
>••«•-• »-fc. — — 2 0.0 OOUMM3 3 »Wk MWB • ••O-O'DI-


Date:  9/25/81
II.5-125

-------
            r T3
            K 03
            O 3
            U. C
            « —
            bJ +>
            Q. C
              O
            o u
            W-l
            z<
            OH
            — LJ
            I-S
            Q.
            00

            I-X
            zo
            UIH
             ^. •
                • • • 3
                 22  ..
                                       =Srss=
                                  ** ** t  V — -^ — — ^
                                   — o»- x, *- a ax.
                                               »
                                               f*
                         mot
Date:    9/25/81
  II.5-126

-------










LJ
u
ZTJ
cc. o
O 3
U- C
ae —
1. 1 JJ
0- C
0
0 o
z-~
(O

z<
OK
— U
1— £
a.
OO
I-X
zo
UJI-
£

o «



_l —
i-
— tt
c
o

2
c «
§5
i-






: technology
e
!
«
£
H
a Of»
• • ••
Nin

>£IA


00 OO

S°


SOO
-n
CM
OO




0 00
tA —
OO
— O

0
§0
**
~

J- — *-
e §1 c£ 7
3 e-~ i. ooi-o
an owe o u — — o>b
M3 — •« *> «*J*J« —
«— e>-uc>> — •»«•— 3
we o««-o — —att — ia
• — >. — wuu «- — — _«._
ecc c a. c *> — — o »- -^ t>o. o.'v
— o o o o o — a— o o o "x— — o «
§€f •eT,"£ «^oo«22228SS2
• o o *- u N o u CB £ o c o ov*. aa— —
ooasoe^c — a o— ouo«« °
§••«•—• *- V— — 5 Q.O O O O « *> 3 3

ooo p p — — — «£ e o e a> o a e a
<<< < <«S>OO U.U.U.U.U.U.U.U.
in
—


S


o
o
CM




I



m

~
,^
lA

~

l*>

O
a


O

o
o
f)



s

o
o




t
o

c
u
o
ai — e —
w t — —
S£C«
SilH
• • • • •















































i/ MM
irbonate/f liter
rdroxide
Iroxlde/r liter
irecipltation
'liter
oxide reduction
5S2& "5
«..£|||k
3—— 3
-------
















LJ
O
z
2T3
0£ 0)
O 3
Lu C
;y ...
LJ *J
Q. C
O
O O
Z^
W
W-J
01-
— LJ
KS:
Q.
00
h-X
zo
LJh-
I-Q:

i
£











«
il













D
i
C









]
!
4J
t
1
h-
Ooo in ininoin
tooto — 0x0x00
« o oxoxn
~ « In
o —
- • m
o
0 ~
1
m
ON OSI«> ^O h- N-
Ox OSON h^ ON ON
A A A

O ^ •
v O
m tf
C? «0
f
1
S
fO

•^ *•*
•o -o

800 o o o
Mm o So
_« * * *
» o ~ ~ ~
o o"
m —
*° S
• 000—0 — -*>«-»> — «. «. tJ
• —V. — 4 4* ^>BOC0** 00WM O0*~3** 00
0fl000— 0 ww^— .— JZfikO 000^^3 3 rt^btf^afBcwk
^^A'wAlv^wsSMS flB^^.^ LkbCbt.LL]|][||B|[^^
















































2 .ff
O •— — 4»
• — — *» o

— ^» . 0
«_!— I • « •
».-t 55 M
(S indicate data not
:tlvated aluailna (2 •
itivated carbon (3 »9
•e (260 a>g/L).
i«e (600 *9/L).
>ncentration as chro*
>ncentratlon as chron
tdiua hydroxide, 1 hr
idilM hydroxide, 24 h
— « a o « o t e>£
Date:  9/25/81
II.5-128

-------
          TABLE 5-82.   VERIFICATION SAMPLING AND REMOVAL
                       AT ALUMINUM FLUORIDE PLANTS [2-6]
Pol lutant
Arsenic
Selenium
Ch rom i urn
Copper
Lead
Me rcu ry
Nickel
Zinc
Cadmium
Ant imony
Be ry 1 1 i urn

Influent,
Ud/L
180
BDL
4UO
70
20
BDL
220
80
10
BDL
BDL
Plant 705
Effluent,
uq/L
ND
ND
UO
BDL
20
ND
ND
BDL
BDL
ND
ND

Percent
remova 1
>99
NM
91
71*
0
NM
>99
88*
90*
NM
NM

Influent,
UQ/L
20
50
BDL
BDL
BDL
3
BDL
20
BDL
BDL
BDL
Plant 251
Effluent,
UQ/L
5
70
220
70
30
ND
U50
ND
ND
ND
ND

Percent
remova 1
75
NM
NM
NM
NM
>99
NM
>99
NM
NM
NM
 Analytic methods: V.7.3.U,  Data set 2.
 BDL, below detection limit.
 ND, not detected.
 NM, not meaningful.
 *Approximate value.

II.5.4.2  Chlor-Alkali  Industry
                                              *
     Mercury  Cells

Existing chlorine plants using mercury cells are already control-
ling mercury  in their wastewaters in response to current regula-
tions which call for  a  discharge of less than 0.00014 kg/Mg of
product as a  daily  average taken over 30 days.   Potential candi-
dates for further control are  the common heavy metals:  chromium,
nickel, zinc,  copper, lead,  and antimony,  as well as arsenic,
thallium, and asbestos, most of which respond to the sulfide
process for mercury precipitation.   Some of these metals repre-
sent corrosion products from reaction between chlorine and the
plant materials of  construction.

With the phasing out  of graphite anodes,  chlorinated organics are
not common constituents of mercury cell wastewaters, although
some may originate  by the contact of chlorine with rubber linings
and other organic structural components.   Traces of certain toxic
organics were  found but none in significant concentrations.

Air pollutant  emissions, generally called tail gas emissions, are
a result of noncondensable gas emissions and often have high
chlorine concentrations.  These emissions are normally scrubbed
with caustic  soda or_lime solution to produce hypochlorite which
may be sold, decomposed to chloride,  sent to the water treatment
plant,  or discharged  without .treatment.   Other scrubbing pro-
cesses often used include steam and vacuum stripping,  and chlo-
rine adsorption columns.
Date:  9/25/81                 II.5-129

-------
There are many water treatment practices used to reduce the
pollutant concentrations in chlor-alkali wastewater.   Most of the
toxic pollutants can be essentially removed by sulfide precipi-
tation followed by settling or filtration.   However,  chromium and
asbestos are not affected by such treatment.  Alakaline precipi-
tation controls all of the heavy metals with varying degrees of
removability at a given pH.  Mercury levels are generally con-
trolled by mercury sulfide precipitation as a result of treatment
with hydrochloric acid and sodium bisulfide.  Other technologies
currently being practiced on a limited scale include ferrous
chloride reduction, activated carbon adsorption, ion exchange,
and chemical treatment and sodium bisulfite, sodium hydrosulfide,
sodium sulfide, and sodium borohydride.

Tables 5-83 and 5-84 show the effluent loadings for treated ef-
fluent emanating from mercury cell chlor-alkali manufacturing
facilities.
          TABLE 5-83.
EFFLUENT LOADINGS FROM SELECTED
CHLOR-ALKALI MERCURY CELL PLANTS
[2-6]
     (kg/Mg)	
                            Mercury waste load
Plant
343
907
898
195
106
589
299
747(a)
317(a)
195(a)
324(a)
Average
0.000025
0.00002
0.00006
0.00004
0.000065
0.000055
0.00004
0.000055
0.000006
0.000022
0.00086
Maximum Maximum
daily 30-day average(b)
0.00094
0.00026
0.0025
0.00073
0.00022
0.00086
0.00019
0.000083
0.000048
0.00066
0.0022
0.00029
0.00003
0.00043
0.00015
0.000096
0.00049
0.000056
0.000065
0.00001
0.0001
0.0018
       (a)Maximum of average daily values taken over
          thirty days.
       (b)From plant long-term monitoring data.
Date:  9/25/81
       II.5-130

-------
      TABLE 5-84.  EFFLUENT TOXIC POLLUTANT CONCENTRATIONS
                   FOLLOWING MERCURY TREATMENT, VERIFICATION
                   DATA [2-6]
Pollutant, ug/L
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Silver
Thallium
Zinc

747
<250
<10
120
<50
<25
73
100
<50
BDL
<45
<25

106
<450
<5
16
BDL
43
380
BDL
140
260
260
88
Plant
317
<250
20
<25
<50
<30
170
190
<67
BDL
<250
510

299
150
63
73
<60
38
<50
29
<50
BDL
200
100

167
65
380
10
<50
<25
120
320
<50
BDL
90
<25
Analytic methods:  V.7.3.4, Data set 2.
BDL, below detection limit.

     Diaphragm Cells

Existing regulations in diaphragm cell-graphite anode chlorine
plants call for lead discharge to be less than 0.0025 kg/Mg as a
daily average over 30 days.  Other toxic pollutants to be con-
trolled include asbestos, antimony, arsenic, chromium, copper,
nickel, and chlorinated organics.

The use of graphite anodes, in either mercury cell or diaphragm
cell plants, results in the generation of a variety of simple
chlorinated hydrocarbons as a result of the attack of the product
chlorine on the anodes.  These organic pollutants are sometimes
produced by the reaction of the chlorine with process exposed
rubber.

Toxic heavy metals are normally controlled by sulfide or carbon-
ate precipitation.  Asbestos is trapped in a chemical flocculant
or may be settled or filtered to remove the toxic fibers.  Chlo-
rinated organics are normally controlled by a reboiler on the
chlorine purifier or by a vacuum stripper.  Carbon adsorption and
steam stripping are also used for this purpose.

Alternate metal removal methods include ion exchange and xanthate
precipitation.   Hydrocarbons may be removed by waste incinera-
tion.  Membrane separation for metal control has not proven to be
a viable alternative.
Date:  8/31/82 R Change 1 II.5-131

-------
Table 5-85  gives a subcategory profile of treatment effluents at
reported plants for the diaphragm  cell subdivision of  the chlor-
alkali industry.   Table 5-86 shows the removal efficiency of a
lead treatment facility associated with graphite anode-diaphragm
cell plant  967,  and of metal anodediaphragm cell plant 261.

         TABLE 5-85.   EFFLUENT LOADINGS - CHLOR-ALKALI
                       DIAPHRAGM  CELL PLANTS [2-6]
                                    (kg/Mg)
Plant
589(a)
738(a)
261(a)
014(a)
967(c)

Average
0.002
0.001
0.0025
0.006
0.0064
Lead
Maximum
0.030
0.015
0.019

0.026
TSS
Average



2.8(b)

     Blanks  indicate data not  available.
     (a)Plant uses metal anodes.
     (b)Plant has "once-through"  barometric condenser water.
     (c)Long-term data.
       TABLE 5-86.   TOXIC POLLUTANT REMOVAL CHLOR-ALKALI
                     DIAPHRAGM  CELL SUBCATEGORY  [2-6]


                       Plant 967	  	Plant 261
Pol lutant
Cadmium
Arsenic
Chromium
Copper
Nickel
Zinc
Influent,
uq/L
<23
280
100
1,600
70
930
Effluent! a)
uq/L
50
96
>29
>89
Influent,
uq/L
37
170
1,900
17,000
22,000
1,500
Effluent,
uq/L
t>
120
<50
<25
<50
<25
Percent
remova 1
89
29
>97
>99
>99
>98
        Analytic methods: V.7.3.U, Data sets 1,2.
        NM, not meaningful.
        (a(Flow-proportioned average discharge, consisting of lead treatment discharge
         and untreated filter backwashes, condensates and scrubber wastes.


II.5.4.3   Chrome Pigments  Industry

The toxic  pollutants found within the chrome pigments industry in
significant amounts are  the heavy metals often  found in chromium
ore, including chromium, antimony, copper, cadmium,  nickel, lead,
and zinc.   In some raw wastes,  ferro- and ferricyanide are found,
presumably from metal complexing steps in the ore  processing and
the manufacture of iron  blues.   These complex cyanides may pass
through the treatment processes and could slowly revert to simple
cyanide ions.
Date:   8/31/82 R  Change  1  II.5-132

-------
All of the  common heavy metals (except hexavalent chromium) found
in chrome pigment wastes are normally treated by alkaline pre-
cipitation  with  substances such as lime or caustic soda, although
the optimum pH may  differ for each metal.  Reaction with sulfide
compounds such as sodium bisulfide precipitates the same metals,
but in a less pH-dependent manner and, with the exception of
chromium, to lower  concentrations.  Chromium in its hexavalent
form is reduced  to  its  trivalent form by S02 reduction and then
precipitated as  chromium hydroxide at a pH above 10.  Ion ex-
change, biological  oxidation,  filtration, and settling are other
treatment methods used  for pollutant reduction within this indus-
try.

Table 5-87  shows treated effluent verification data for plant 894
and plant 002 of this subcategory.


 TABLE 5-87.  VERIFICATION SAMPLING OF CHROME PIGMENTS [2-6]
Pol lutant
Ch rom i urn
Lead
Zinc
Cyanide(A)
Cyanide
Antimony
Cadmium
Copper
Nickel
Mercury

Influent,
uq/L
82,000
4,800
4,200
880
4,900
760
880
4, 100
17
42
Plant 894
Effluent,
uq/L
330
1 10
58
BOL
65
300
8.4
35
21
ND

percent
remova 1
>99
98
99
99*
99
61
99
99
NM
>99

Influent,
uq/L
310,000
54,000
160,000

710
1,400
200
1,400
320
BOL
Plant 002
Effluent,
uq/L
130,000
1,500
120,000


430
120
77
83
ND

Percent
remova 1
58
97
25


69
40
95
74
NM
Analytic methods: V.7.3.4, Data set 2.
.Blanks indicate data not available.
ND, not detected.
BDL, below detection limit.
NM, not meaningful.
*Approximate value.

II.5.4.4  Copper Sulfate Industry

The toxic pollutants found in copper sulfate plant wastewaters
are closely  related  to  the purity of the copper and acid sources.
The heavy metals (cadmium, nickel,  and zinc) which were found
during field sampling may originate as trace impurities in copper
scrap.  Arsenic was  found at one plant in wastewater containing
floor washings and infiltrated groundwater.   A possible source of
arsenic and  other copper ore trace metals is the use of sulfuric
acid made from sulfur dioxide produced in the roasting of copper
sulfide ore.  In any event,  it appears that copper, arsenic,
cadmium, nickel, and zinc are-typical toxic pollutants encoun-
tered in copper sulfate wastewaters.
Date:  9/25/81
II.5-133

-------
Copper, nickel, cadmium, and zinc can be separated from solution
by alkaline precipitation at pH values from 7.2 (copper) to 9.7
(cadmium).  Arsenic levels are also reduced by this treatment at
high pH levels.  Other technologies currently employed include
aeration, clarification, gravity separation, centrifugation, and
filtration.

Metal removal from plant wastewaters could also be accomplished
by sulfide precipitation, ion exchange from clarified solutions,
or the xanthate process.  Arsenic removal can also be achieved by
the addition of ferric chloride during alkaline or sulfide pre-
cipitation.

Table 5-88 shows verification data for the raw waste, treated
effluent, and removal efficiencies for plant 034.

          TABLE 5-88.  VERIFICATION SAMPLING OF COPPER
                       SULFATE PLANT 034 [2-6]
                                                     Percent
      Pollutant           Influent      Effluent     removal
Toxic pollutants,
  Antimony                      540        120          78
  Arsenic                    44,000         57         >99
  Cadmium                     1,600        4.2         >99
  Chromium                      360        BDL          97*
  Copper                  2,200,000      1,900         >99
  Lead                          780        <31         >96
  Nickel                     91,000        170         >99
  Selenium                      BDL        110          NM
  Zinc                       12,000         20         >99

Classical pollutant, mg/L
  TSS                           790         14          98

Analytic methods:  V. 7.3.4, Data set 2 .
BDL, below detection limit.
NM, not meaningful.
* Approximate value.

II. 5. 4. 5  Hydrofluoric Acid Industry

Toxic pollutants in raw wastewaters and slurries typical of the
hydrogen fluoride industry include the heavy metals zinc, lead,
nickel, mercury, chromium, arsenic, copper, and selenium, which
are often found as impurities in fluorspar.  Raw wastewaters from
plants practicing dry disposal of kiln wastes may include some of
the heavy metals in scrubber and area washdown wastes, but in
considerably smaller amounts, since the spent ore is hauled as a
solid waste and bypasses the wastewater treatment facilities.
Although a f luoro-sulfonate complex is found in hydrofluoric acid

Date:  9/25/81                I I. 5- 134

-------
wastes containing drip-acid,  organic  compounds are not antici-
pated in wastewaters  from  this  industry.

Raw wastewater from this industry is  presently being treated by
alkaline precipitation, settling,  filtration,  clarification, and
complete recycle of wastewater.

Treatment 'methods currently under study or feasible because of
other industry applications include sulfide precipitation,
xanthate process, and ion  exchange from clarified solutions.
Sulfide precipitation from cleared solutions will control zinc,
lead, nickel, copper,  and, to a lesser extent, antimony.

Table 5-89 presents treated effluent  and removal data for several
hydrofluoric acid manufacturing plants.

      TABLE 5-89.  TOXIC POLLUTANT REMOVAL AT HYDROFLUORIC
                   ACID PLANTS  [2-6]
                                     167

Antlaony
Artenlc
CadBlun
Chroaluai
Copper
Lead
Mercury
Nickel
Selenitic
Thallluu
Zinc
Influent,
ua/L
BDL
BOL
6
260
260
44
5.3
480
BOL
BDL
210
'Effluent,
ua/L
BDL
BDL
1.7

<20
<22
BOL
BDL
BOL
BDL
53
Percent
NM
NM
72
>82
>92
>50^

95*
NM
NM
75
Influent,
ua/L
740
28
3
74
320
62
1
150
BDL
19
6,200
Effluent,
ua/L
47
16
6.7
50
60
10
6.5
90
BOL
3
1,900
Percent
removal
94
43
NM
32
81
84
NM
40
NM
84
77
Influent,
uo/L
120
110
BDL
470
120
59
18
1,200
17
39
280
Effluent,
ua/L
02
NM
53
42
>47
>94
57
NM
>fc2
43
  Analytic Mthodi: V.7.3.1, Data let*
  BDL, below detection Unit.
  NM, not Heanlngful.
  •Approximate value.
II.5.4.6  Hydrogen Cyanide  Industry

The only toxic pollutant  found during field sampling within the
hydrogen cyanide industry was  cyanide,  both oxidizable and in the
form of metallic complexes  such as ferro- and ferricyanides.
Ammonia, which is present as a classical pollutant, exerts a
demand for the chlorine used to oxidize cyanide and should be
removed by steam stripping.

Cyanide is decomposed  readily  by oxidation at high pH levels,
forming cyanate as an  intermediate product.  Further decomposi-
tion into carbon dioxide  and nitrogen is possible with complete
oxidation.  Alkaline chlorination is widely used in the electro-
plating industry to break down metallic cyanide complexes.  Al-


Date:  9/25/81                 II.5-135

-------
though oxidation agents such as hydrogen peroxide might be used,
their operating costs are generally not favorable.  If ammonia is
present, it increases the cost of chlorination since it also
reacts with the chlorine.  If ammonia is not to be controlled,
ozonation may prove to be a more cost-effective oxidant.

Owing to excess chlorine usage, the discharge from cyanide de-
struction is high in chlorine, and dechlorination is generally
needed.  Biological treatments such as aeration and trickling
filtration are used to reduce the chlorine concentration in the
raw wastewater.  Other technologies often used include sodium
hypochlorite treatment, API separators, and caustic adjustment.

Ozonation to oxidize the chlorine in the wastewater is currently
under study for use as a treatment method within this industry.
Sulfur dioxide is also a potential treatment technology:

No effluent data are available for this subcategory.

II.5.4.7  Nickel Sulfate Industry

The toxic pollutants present in a specific process operation de-
pend upon the sources and nature of the raw materials being used,
which presumably could vary from time to time.  If impure raw
materials include spent plating solutions, most of the heavy
metals will be rejected from the process as sludges by the puri-
fication of the plating solutions prior to nickel sulfate pro-
duction.  The sludge produced may be handled as a solid or slurry
waste; the former can be being safely landfilled, and the latter
can be treated and settled in treatment facilities.  The only
significant toxic pollutant found in the sampling program was
nickel.

Alkaline precipitation will remove nickel and most other heavy
metals from solution, allowing them to be settled and filtered in
successive steps.  Nickel and the common heavy metals, except
chromium, can also be precipitated as metallic sulfide for later
separation by settling and filtration.
Date:  9/25/81                II.5-136

-------
'fable 5-90 shows raw waste and treated effluent characteristics
and removal efficiency for plant 120.

       TABLE 5-90.  VERIFICATION SAMPLING AND REMOVAL AT
                    NICKEL SULFATE PLANT 120 [2-6]
Pollutant,
Antimony
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Thallium
Zinc
yg/L Influent
BDL
49
2.7
12
220
52
BDL
49,000
69
BDL
55
Effluent
BDL
<10
BDL
57
<43
BDL

200
BDL
BDL
58
Percent
removal
NM
>80
63*
NM
>80
81*

>99
86*
NM
NM
    Analytic methods:  V.7.3.4, Data set 2.
    Blanks indicate data not available.
    BDL, below detection limit.
    NM, not meaningful.
    *Approximate value.


II.5.4.8  Sodium Bisulfite Industry

Toxic pollutants should not normally be present in wastes origi-
nating solely from the manufacture of sodium bisulfite from
sodium carbonate and sulfur dioxide.  However, it is reported
that some sources of sodium carbonate contain zinc and other
trace metals in measurable amounts.  Dissolved zinc was found in
some sodium bisulfite wastewaters during the sampling program.
It may be assumed that zinc enters the wastestream by corrosion
of galvanized metals from coproduct operations, or from non-
process zinc compounds used by the industry.

Raw wastewater from this industry is generally treated by alka-
line precipitation to remove the toxic metal pollutants.  Lime,
sodium carbonate, and caustic soda are normally used for this
treatment, which is usually followed by a settling basin.  Sodium
hypochlorite may also be used as a treatment chemical.

Three other treatment methods may also be feasible for this
industry:  sulfide precipitation, which readily precipitates zinc
from solution; ion exchange from clarified solutions; and the
xanthate process.
Date:  9/25/81                II.5-137

-------
Table  5-91 shows  treated effluent and  removal data for plants 987
and 586.

          TABLE 5-91.   VERIFICATION SAMPLING AND  REMOVAL
                        AT SODIUM BISULFITE PLANTS [2-6]
                     Plant 987	   	Plant 586	
                                  Percent                    Percent
        Pol lutant	Influent	Effluent	remove I	Influent	Effluent	remova I

        Toxic pol lutants.uoVL

         Antlmony     650       ND      >99      BDL       20       NM
         Arsenic       67       ND      >99      BDL       NO       NM
         Copper      7140      270       61       18       NO      >99
         Zinc      2,100      BDL      >99      520       ND      >99
         Cadmium       40       ND      >99      BDL       ND       NM
         Chromium    2,600      110       96     1,300       NO      >99
         Lead       600      150       75       12       ND      >99
         Mercury       12       ND      >99      0.6       10       NM
         Nickel      U60       ND      >99      BDL       50       NM
         Thallium     <50       ND      >99       25       ND      >99
         Silver      <30       ND      >99      BDL       NO       NH

        Classical pollutants, mg/L
TSS
COD
2,300
25,000
22
7,300
99
71
13
82
3.3
31
75
62
        Analytic methods: V.7.3.M, Data set 2.
        BDL, below detection limit.
        ND, not detected.
        NM, not meaningful.
II.5.4.9  Sodium Dichromate Industry

Toxic pollutants found within the  sodium dichromate industry in
significant amounts are the primary  pollutant,  hexavalent chro-
mium,  and the  common heavy metals  often present as impurities in
the chromium ore,  notably  zinc and nickel.  By controlling chro-
mium,  the incidental removal of other trace heavy metals will
also  be achieved.

Alkaline precipitation and reaction  with sulfite are two methods
used  to separate nickel and zinc from solution.   Hexavalent chro-
mium  must be reduced to its trivalent form by  reacting  with
sodium bisulfide before it can be  precipitated by alkaline sub-
stances.  Clarification, filtration,  and settling are also used
as control technologies.

Although ion exchange or xanthates can remove  metals from clari-
fied  solutions,  they are inappropriate for treating raw waste
slurries from  this industry.
Date:   9/25/81                  II.5-138

-------
Table 5-92 shows verification and  screening pollutant data for
treated effluent from plants 376 and 493.


    TABLE 5-92.  VERIFICATION AND SCREENING SAMPLING  AND REMOVAL
                 FOR  SODIUM DICHROMATE PLANTS [2-6]


                     	Plant 376. fa)	   	Plant >l93. Ibl	
                                     percent                  Percent
       Pol lutant	Influent   Effluent	remova I	Influent   Effluent	remova I

     Toxic pollutants, ug/L
      Arsenlc              BDL                    99    250,000    2,500      99
      Lead               11                     BDL
      Copper              85     12       86       35      16      54
      Nickel               6U    200       NH     1,300      90      93
      Selenium             BDL    80L       NM      BDL     100      NH
      Sliver              36    BOL       58«       <5      <7      NM
      Zinc               320    BDL       97*      580     110      81

     Classical pollutant, «g/L
      TSS                       II                      2

     (a)Analytic methods: V.7.3.U, Data set 2.
     (b)Analytlc methods: V.7.3.M, Data set I.
     Blanks Indicate data not available.
     BDL, below detection limits.
     NH, not meaningful.
     •Approximate value.
II.5.4.10  Sodium Hydrosulfite Industry

Although sodium hydrosulfite is being  manufactured by both the
zinc  process and the  formate process,  the trend is away from the
zinc  process for environmental reasons.   This discussion concerns
only  the formate process,  using a sodium formate feedstock from a
source  which appears  to  contain significant heavy metal impuri-
ties  (chromium, zinc,  nickel, lead,  and copper), as well as trace
amounts of cyanide.   A predominant characteristic of  sodium
hydrosulfite wastes is their high chemical oxygen demand result-
ing from various forms of sulfite, from methyl formate,  and from
residual methanol after  a solvent recovery process.   Low levels
of phenolic compounds are also found in the raw wastes.

The significant heavy metals appear  largely in a coproduct waste-
stream  which is often sold for use in  the pulp and paper industry.
When  no market exists,these wastes are bled into the  product
wastes.

Practical technologies for controlling COD include various forms
of chemical and biological oxidation.   For the relatively
simple  chemical oxidation of sulfite to sulfate, intimate contact
with  atmospheric oxygen  is effective,  using submerged air diffus-
ers,  induced air in a circulating system,  or mechanical surface
aeration.   For biochemical oxidation of resistant organics such
as formates,  phenols,  chlorinated hydrocarbons, and methanol,
trickling filtration,  rotating biological discs, or variations of
the activated sludge  process can provide intimate contact between
organic pollutants and the microbiological organisms  which use
them  as food.
Date:  9/25/81                 II.5-139

-------
Technologies for controlling heavy metals include alkaline pre-
cipitation, which is effective for the common heavy metals,  and
sulfide treatment, which precipitates nickel, zinc, and  copper,
but does not control chromium without a subsequent pH  increase.

In this subcategory, an exception is made to the assumed exclusion
of sanitary sewage from the wastestream.  To utilize the nutri-
ents and bacteria present in sewage as support for a biological
oxidation system to control organics and COD, the plant  sanitary
wastes are included in the biological treatment.

Vent scrubber water containing methanol is also treated  by the
above processes.

Table 5-93 shows concentrations and the removal efficiency for
toxic pollutants for plant 672.

         TABLE 5-93.  VERIFICATION RESULTS FROM SODIUM
                      HYDROSULFITE PLANT 672  [2-6]
Pollutant. ua/L
Cyanide
Arsenic
Mercury
Zinc
Chromium
Copper
Lead
Nickel
Cadmium
Pheno 1
Pentach I oropheno 1
Silver
Influent
NO
30
3
5,900
7,400
1,000
380
1,400
36
160
370
U3
Effluent
100
ND
2
34
35
ND
65
160
25
ND
ND
34
Percent
remove 1
NM
>99
33
99
>99
>99
83
89
31
>99
>99
21
           Analytic methods: V.7.3.U,  Data set 2.
           ND, not detected.
           NM, not meaningful.
II.5.4.11  Titanium Dioxide Industry

Toxic pollutants to be controlled in  this  industry are the common
heavy metals found in the ore  (i.e.,  chromium,  lead,  nickel,  and
zinc).

Alkaline substances and sulfide  compounds  are  used to control the
heavy metals by precipitation  as metallic  hydroxides, carbonates,
or sulfides.  Lime neutralization also  reduces the concentration
of arsenic in the wastewater,  although  the removal mechanism is
not known.  Dissolved air flotation,  settling,  filtration, and
centrifuging are a few of the  physical  methods used for pollutant
control.
Date:  9/25/81                 II.5-140

-------
 Among potential treatment technologies,  ion exchange can remove
 metals from clarified solutions,  but it is seldom specific enough
 to remove on^y the trace metals and is not effective in solutions
 saturated with calcium.   Lime treatment combined with ferric iron
 may be the most effective means of controlling arsenic concentra-
 tions.

 Table 5-94 and Table 5-95 show verification and screening effluent
 data for the chloride process and sulfate process,  respectively.

      TABLE 5-94.   VERIFICATON AND SCREENING DATA WASTESTREAMS
                   FOR A PLANT PRODUCING TITANIUM DIOXIDE
                   (CHLORIDE PROCESS) [2-6].
Pollutant
TSS
Iron
Chromium
Lead
Nickel
Zinc

Influent
yg/L
1,100,000
290,000
13,000
500
500
300
Plant 559
Effluent
yg/L
23,000
4,400
30
BDL
BDL
60

Percent
Removal
98
98
>99
98*
95*
80
Analytic methods: V.7.3.4, Data set 2.
BDL, below detection limits.
NM, not meaningful.
*Approximate value.
Date:  9/25/81                 II.5-141

-------
       TABLE 5-95.   VERIFICATION DATA FOR COMBINED WASTE
                    WATER TREATMENT DISCHARGE AT TITANIUM
                    DIOXIDE PLANT 559 (SULFATE PROCESS)  [2-6]

                                                    Percent
Pollutant	Influent	Effluent	removal

Toxic pollutants,  yg/L
  Antimony              74              15              80
  Arsenic               28              10              64
  Cadmium              BDL             BDL              NM
  Chromium           3,100             BDL              99*
  Copper               160             BDL              88*
  Lead                 960             BDL              99*
  Nickel               140             BDL              82*
  Thallium               7             BDL              71*
  Zinc               1,000              62              94
  Selenium             BDL             BDL              NM

Classical pollutants, mg/L
  TSS                  200              23              88
  Iron, total          840             4.4             >99

Analytic methods:V.7.3.4, Data set 2.
BDL, below detection limit.
ND,  not detected.
*Approximate value.
  Date:   8/31/82 R  Change 1  II.5-142

-------
               II.6  IRON AND STEEL MANUFACTURING

II.6.1  INDUSTRY DESCRIPTION [2-8]

II.6.1.1  General Description

The Iron and Steel Manufacturing Industry encompasses all opera-
tions under SIC Codes 3312, 3315, 3316, 3317, and 3479.  Within
these classifications are establishments involved in the produc-
tion of iron, steel, and those ferrous products which do not
require machining (rolling and drawing are not considered ma-
chining operations for these classifications).  It also includes
ancillary processes necessary to the primary functions of the
plants.  Therefore, coke production, scale removal, pickling, and
alkaline cleaning are all included in this industry.  Excluded
are those operations engaged in the manufacture of iron and steel
castings, which are classified under group 332 of the SIC code.

The manufacture of steel involves many processes which require
large quantities of raw materials and other resources.  Steel
facilities range from comparatively small plants engaging in one
or more production processes to extremely large integrated com-
plexes engaging in several or all production processes.  There
are an estimated 680 plant locations containing over 2,000 indi-
vidual steelmaking and forming and finishing operations.  Be-
cause of the interrelationships of these plants, there are fre-
quently a large number of plants on a single site with the pro-
duct of one plant serving as the feedstock for another through a
series of operations that produce one or more final products
(usually several).

Depending on the subcategory, about 40% to 80% of the plants in
this industry are located in Pennsylvania and Ohio.  Approxi-
mately 75% to 85% of all plants are located in the states of
Pennsylvania, Ohio, West Virginia, Kentucky, Indiana, Illinois,
Michigan, and Wisconsin.  These plants are grouped around the coal
and iron mining regions, where shipping distance of the needed
raw materials is short and shipment is inexpensive.  The remaining
plants tend to be found in coastal regions where transportation
costs also tend to be moderate (especially Alabama, California,
Texas, and Georgia).  Furthermore, all the states mentioned have
sizeable contiguous bodies of water available for use.  There are
a few plants in the arid region of the Southwest, but they must
necessarily be among the portion of the industry with low or zero
discharge rates.


Date:  9/25/81              II.6-1

-------
Table 6-1 presents summary information on the Iron and Steel
Industry in terms of the number of subcategories,  the number of
subcategories studied,  and the number and types of dischargers.

              TABLE 6-1.  INDUSTRY SUMMARY [2-8]
             Industry:   Iron and Steel Manufacturing
             Total Number of Subcategories:   12
             Number of Subcategories Studied:   12

             Number of Dischargers in Industry:

                  •  Direct:  1,545
                  •  Indirect:   286
                  •  Zero:      196(a)

            (a)Twelve of these achieve zero discharge
               either by disposing of their effluent
               via quenching or deep well injection.
               Zero discharge is achieved in Acid Pick-
               ling Subcategory (ten dischargers) in
               some instances by having wastewater haul-
               ed off site.

II.6.1.2  Subcategory Description [2-9,10,11,12,13]

The steel industry can be segregated into two major components -
raw steelmaking and forming and finishing operations.

In the first major process, coal is converted to coke which is
then combined with iron ore and limestone in a blast furnace to
produce iron.  The iron is then purified into steel in either
open hearth, basic oxygen, or electric arch furnaces.  Finally,
the steel can be further refined by vacuum degassing.  Following
these steelmaking operations, the steel is subjected to a variety
of hot and cold forming and finishing operations.  These opera-
tions produce products of various shapes and sizes, and imparts
desired mechanical and surface characteristics.

A revised subcategorization of the industry has been adopted to
more accurately reflect these production operations.  Factors
which were examined in this determination included:

     •  manufacturing processes and equipment,
     •  raw materials,
     •  final products,
     •  wastewater characteristics,
Date:  9/25/81              II.6-2

-------
     •    wastewater treatment methods,
     •    size and age of facilities,
     •    geographic location,
     •    process water usage and discharge rates, and
     •    costs and economic impacts.

Of these factors, manufacturing process is the most significant
basis for the revision of the industry into 12 main process
subcategories.  Table 6-2 cross references the modified subcate-
gorization with subparts of the previous regulations.   The fol-
lowing paragraphs briefly describe the revised subcategories,
including process descriptions, number of facilities,  subdivi-
sions, production capacity, and wastewater discharge flow rates.

Table 6-3 presents best practicable control technology pollutant
data for each subcategory within this industry.

     Cokemaking [2-9]

The production of metallurgical coke is an essential part of the
iron and steel industry, since coke is one of the basic raw
materials necessary for the operation of ironmaking blast fur-
naces.  Cokemaking has been divided into the by-product recovery
cokemaking process and the beehive cokemaking process.  Of the
two traditional processes for the manufacture of coke, by-product
recovery has virtually eclipsed beehive oven in commercial appli-
cation.  Less than 1% of the metallurgical coke produced in 1978
was made in beehive ovens.  The remaining 99% of coke production
comes from coke plants practicing varying degrees of by-product
recovery in '(64 plants at 59 locations)  in 17 different states.

     By-product recovery coke.  The by-product recovery process,
as the name implies, places emphasis not only on the production of
high-quality coke for use as blast furnace or foundry fuels and
carbon sources, but also provides a means for recovery of valuable
byproducts of the distillation reaction.  Air is deliberately
excluded from the coking chambers, while heat for the distilla-
tion process is supplied from external combustion of fuel gases
in flues located within dividing walls separating adjacent ovens.

Volatile components are recovered and processed in a variety of
ways to produce tars, light oils, phenolates, ammonium compounds,
napthalene, and other materials, including coke oven gas.  A
complete list of coal chemicals produced by by-products coke
plants is presented in Table 6-4.

Several trends have been noticed in the by-product segment since
the original study of the subcategory.  These trends include
increases in size of by-product coke ovens, fewer plants employing
the indirect ammonia recovery process, and fewer plants recover-
ing and refining light oils to benzene,  toluene and xylene.  On
the other hand, more plants today practice some form of desul-


Date:  9/25/81              II.6-3

-------
                TABLE 6-2.  CROSS REFERENCE OF REVISED  STEEL  INDUSTRY
                            SUBCATEGORIZATION  TO  PRIOR  SUBCATEGORIZATION
                            [2-8]
  Revised Subcategorization
      (1980 Regulations)
  A.  Cokemaking
  B.
  C.
  e.
  F.
  G.
      I.
      2.
    By-Product
    Beehive
Sintering
Blast Furnace
  D.  Steel ma king
      I
    BOF
    a.
    b.
    c.
              Semi-wet
              Wet - Open Combustion
              Wet - Suppressed Combustion
          Open Hearth
          a.
          b.
          EAF
          a.
          b.
        Semi-wet
        Wet
        Sem i-wet
        Wet
Vacuum Degassing
Continuous Casting
Hot Forming
I.  Primary
    a.  Carbon and Specialty wo/scarfers
    b.  Carbon and Specialty w/scarfers
  Prior Subcategorization
(1974 and 1976 Regulations)
A.  By-Product Coke
B.  Beehive Coke
C.  Sintering
D.  Blast Furnace - Iron
E.  Blast Furnace - FeMn

F.  BOF - Semi-wet
G.  BOF - Wet
H.  Open Hearth - Wet
I.  EAF - Semi-wet
J.  EAF - Wet
K.  Vacuum Degassing
L.  Continuous Casting
M.  Hot Forming - Primary
    I.  Carbon wo/scarfers
    2.  Carbon w/scarfers
    3.  Spec i a Ity
Date:  9/25/81
                              II.6-4

-------
              TABLE 6-2.  CROSS REFERENCE OF REVISED STEEL INDUSTRY
                          SUBCATEGORIZATI ON TO PRIOR SUBCATEGORIZATION
                          (continued)
Revised Subcategorization
    ( I960 Regulations)

     2.  Section
         a.
         b.

         Flat

         a.
         b.
Carbon
Spec i a Ity
Hot Strip and Sheet
Plate
( I)  Ca rbon
(2)  Specialty
         Pipe and Tube
H.  Scale Removal

    I.   Kolene
    2.   Hydride

I.  Acid Pickling
     I.   SuIfu r i c Ac i d
         a.  Acid Recovery - Batch
         b.  Acid Recovery - Continuous
         c.  Neutralization - Batch
         d.  Neutralization - Continuous
     2.  Hydrochloric Acid
         a.  Acid Regeneration

         b.  Neutralization - Batch
         c.  Neutralization - Continuous
                                       Prior Subcategorization
                                     (1974 and  1976  Regulations)

                                     N.   Hot Forming -  Section
2.
Carbon
Specia Ity
Hot Forming - Flat

I.   Hot Strip & Sheet
2.   Plate
    a.   Ca rbon
    b.   Specialty

Hot Forming - Pipe and Tube
                                                      I.
                                                      2.
                                             Isolated
                                             Integrated
                                     X.   Scale  Removal

                                         a.   Kolene
                                         b.   Hydride

                                     Q.   Pickling  - Sulfuric Acid -
                                         Batch  and Continuous

                                         a.   Batch -  spent  liquor,
                                             no rinses
                                         b.   Continuous - Neutralization
                                             (Iiquor)
                                         c.   Continuous - Neutralization
                                             (R, FHS)
                                         d.   Continuous - Acid Recovery
                                             (new  faciIities)

                                     R.   Pickling  - Hydrochloric Acid -
                                         Batch  and Continuous

                                         a.   Concentrates -
                                             nonregenerat ive
                                         b.   Regeneration
                                         c.   Rinses
                                         d.   Fume  hood  scrubbers
Date:  9/25/81
                        II.6-5

-------
             TABLE 6-2.   CROSS  REFERENCE OF REVISED STEEL  INDUSTRY
                         SUBCATEGORIZATION TO PRIOR SUBCATEGORIZATION
                         (continued)
Revised Subcategorization
    (I960 Regulations)

     3.  Combination Acid
K.

L.
         b.
        Batch
        Continuous
     Cold Forming

     I.   Co Id Ro11i ng

         a.  ReelrcuI at ion
         b.  Combination
         c.  Direct  Application

     2.   Pipe and  Tube
         a.
         b.
        Water
        0 iI  emu Is i on
AlkaIine Cleaning

Hot Coatings

I.  Galvanizing

    a.   Stip,  Sheet,  and Miscellaneous
        Products
    b.   Wire Products and Fasteners

2.  Terne

3.  Other coatings
         b.
        Strip, Sheet,  and Miscellaneous
        Products
        Wire Products  and Fasteners
  Prior Subcategorization
II97U and 1976 Regulations)

W.  Combination Acid Pickling
    (Batch and Continuous)
    Subcategory

    a.  Continuous
    b.  Batch - Pipe and Tube
    c.  Batch - other
                                                Co I d RoI Ii ng

                                                a.  RecircuI at ion
                                                b.  Combination
                                                c.  Direct Application
Z.  Continuous Alkaline Cleaning
                                                 T.  Hot Coatings - Galvanizing

                                                     a.  Galvanizing -
                                                     b.  Fume hood scrubber
                                                 U.  Hot Coatings - Terne
 Date:  9/25/81
                                 II.6-6

-------
             TABLE 6-3.   BPT  LIMITATIONS  FOR  IRON  AND  STEEL  MANUFACTURING(a)  [2-9]
Subcateqorvlb 1
Byproduct coke
Beehive coke(c)
Sintering
Blast furnace (iron)
Blast furnace (ferro-
Pollutant oarameter
Oi J and grease,
ka/Ma
0.0109

0.0042


TSS. ka/Ma
0.075

0.021
0.026
0. 104
Amman i 8 ,
ka/Ma
0.0912


0.0535
0.489
Cyanide,
ka/Ma
0.0219


0.0078
0.156
Dissolved iron.
Phenol. ka/Ma ka/Ma Zinc. ka/Ma
0.0015


0.0021
0.0208
  manganese)
Basic oxygen  furnace (semi-
  wet air pollution con-
  trol)
Basic oxygen  furnace (wet
  air pollution control)
Open hearth furnace (semi-
  wet)(c)
Electric arc  furnace
  (semiwet air pollution
  control)(c)
Electric arc  furnace (wet
  air pollution control)
Vacuum degassing
Continuous casting              0.0078
Hot forming-primary
  Carbon w/o  scarfers           0.0288
  Carbon w/o  scarfers           0.0352
  Specialty                     0.0508
Hot forming-section             0.110
Hot forming-flat
  Hot strip and sheet           0.174
  Carbon plate                  0.167
  Specialty                     0.376
Hot forming-pipe and tube       0.042
Scale removal-kolene
Scale removal-hydride
Sulfuric acid-batch
  and continuous acid
  recovery(d)
Sulfuric acid-batch neu-
  tralization                   0.015
Sulfuric acid-continuous
  neutralization w/ spent
  pickle I iquor                 0.01014
Sulfuric acid-continuous
  neutralization w/o  spent
  pickle Iiquor                 0.00938
Hydrochloric  acid-batch
  neutraIization w/
  scrubber                     0.0117
Hydrochloric acid-batch
  neutralization w/o  scrubber   0.00960
Hydrochloric acid-continuous
  neutralization w/scrubber
Hydrochloric acid-continuous
  neutralization w/o scrubber    0.00960
Hydrochloric acid-continuous
  acid regeneration w/scrubber   0.0187
Hydrochloric acid-continuous
  acid regeneration w/o scrubber 0.0166
Combination acid-batch          0.00834
  combination acid-batch
  pipe and tube                 0.0292
0.0052
0.026
0.0371
0.0453
0.0654
0.212
0.331
0. 167
0.376
0.1112
0.0521
0.125
0.075
0.0469

0.05814

0.0480


0.0480

0.0938

0.0834
0.0209
0.0730
                       0.0013
   0.0021
   0.005
0.00104

0.000938

0.00117

0.000960


0.000960

0.00187

0.00166
0.000834
0.00292
Combination acid-continuous      0.0417
Cold forming-recircuiation      0.00104
Cold forming-combination        0.0167
Cold forming-direct appli-      0.0417
  cation
AlkalIne cleaning
0. 104
0.00261
0.0417
0.104

0.0052
0.00417
0.000104
0.00167
0.00417
  Date:   9/25/81
         II.6-7

-------
       TABLE 6-3.    BPT LIMITATIONS  FOR  IRON  AND STEEL  MANUFACTURING(a)  (continued)
Subcateoorvlb)
Byproduct coke
Beehive coke(c)
Sintering
Blast furnace (Iron)
Blast furnace (ferro
Pol lutant oarameter
chromium, chromium. Fluoride, nickel copper
ko/Mo ko/Mo Lead. ko/Mo Tin. ko/Ho ka/Ma ka/Ma ka/Mo oH
6
6
6
6
to
to
to
to
9
9
9
9
  manganese)

Basic oxygen furnace  (semi-
  wet air pollution con-
  trol)

Basic oxygen furnace  (wet
  atr pollution control)

Open hearth furnace (semi-
  wet )(c)

Electric arc furnace
  (semiwet air pol Union
  controI)(c}

Electric arc furnace  (wet
 air pollution control)
(a)Values are average of daily values for 30 consecutive days.
(b)Although not a subcategory, miscellaneous runoffs from casting and slagging have the following BPT  limitation:
   there shall be no discharge of process wastewater pollutants from casting and slagging to navigable waters
   (but the limitation does not apply to any operation in Mahoning Valley).
(c)There shall be no discharge of process wastewater pollutants to navigable waters.
                                                         6 to 9



                                                         6 to 9


                                                         6 to 9


                                                         6 to 9



                                                         6 to 9
Vacuum degassing
Continuous casting
Hot forming-primary
Carbon w/o scarfers
Specialty
Hot forming-section
Hot forming-flat
Hot strip and sheet
Carbon plate
Specialty
Hot forming-pipe and tube
Scale retnova l-kotene
Sea I e remova 1 -hyd r i de
Sulfuric acid-batch
and continuous acid
recovery(d)
Sulfuric acid-batch neu-
tra 1 izat ion
recovery(d)
Sulfurfc acid-batch neu-
tral ization
Sulfuric acid-continuous
neutralization w/ spent
pickle t Iquor
Sulfuric ac id-cont inuos
neutralization w/o spent
pickle 1 iquor
Hydrochloric acid-batch
neutra 1 ization w/
scrubber
Hydrochloric acid-batch
neutral ization w/o scrubber
Hydrochloric acid-continuous
neutralization w/sc rubber
Hydrochloric acid-continuous
neutralization w/o scrubber
Hyd roc h 'one ac id-cont i nuous
acid regeneration w/sc rubber
Hyd roch 1 o r i c ac 1 d-cont i nuous 0 . 0047
acid regeneration w/o scrubber
Combination acid-batch
combination acid-batch 0.00146
pipe and tube
Comb tnation ac 1 d - con 1 1 nuou s 0 . 00209
Cold forming-reci rculat ion
Cold forming-combination
Cold forming-direct appli-
cation
AlKa 1 ine c leaning
6 to 9
6 to 9
6 to 9

6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
0.0125 0.000209 6 to 9
6 to 9
O.OU38 0.000730
0.0626 0.00101 6 to 9
6 to 9
6 to 9
6 to 9
6 to 9
 Date:   9/25/81
II.6-8

-------
 furization of coke oven gas,  thereby  allowing for wider use  of
 the by-product  gas as  a fuel  for other steel  plant  operations.

 Production capacities  of the  59 by-product recovery cokemaking
 plants  range from 520  Mg/d  (580 tons/d)  to 21,000 Mg/d (23,000
 tons/d),  with a total  annual  capacity of 69,000,000 Mg
 (77,000,000 tons).  Raw wastewater flows generated  by the nine
 by-product coke plants sampled  during this study were found  to
 range from 90 to 580 L/Mg (21.6 to 139 gal/ton) of  coke pro-
 duced.
      TABLE 6-4.
COAL  CHEMICALS PRODUCED BY U.S. BY-PRODUCTS
RECOVERY COKEMAKING PLANTS [2-9]
     Material
     Recovered

     Coke Oven Gas
     Crude Coal Tar
     Crude Light 01 Is
     Ammonium Sulfate
     Naphtalene Solidifying at <74°C
     Sodium Phenol ate (or Carbolates)
     Intermediate Light Oils
     Toluene, a I I grades
     Benzene, specification grades
     Xylene, a I I grades
     Solvent Naphtha, all grades
     Elemental Sulfur
     Crude Chemical Oil (Tar Acid Oils)
     Naphthalene solidifying between
      7i»°C and 79°C
     Soft Pitch of Tar
     Enriched Ammonia Liquor
     Benzene, non-specification grades
     Creosote Oils, straight distillate
     Phenol, non-Industrial grades
     Hard Pitch of Tar
     Creosote Oils In coal tar solution
     Cresols
     Cresylic Acid
     PIcoIines
     Anhydrous Ammonia
     Phenol, industrial grades
     Mono- and DI ammonium Phosphates
           No. of Plants
         Practicing Recovery

              59
              59
              46
              U3
              1(1
              25
              20
              10
              9
              9
              8
              8
              8
              It
'ercent Practicing Recovery
i of No.t of Coke Prod.
100.0
100.0
 81. U
 72.9
 69.5
 "42.U
 33.9
 16.9
 15.3
 15.3
 13.6
 13.6
 13.6
 6.6

 6.8
 6.8
 5.1
 5.1
 5.1
 3.H
 3.it
 1.7
 1.7
 1.7
 1.7
 1.7
 1.7
100.0
100.0
 90.2
 78.4
 76.2
 1*6.8
 U3.7
 30. U
 27.9
 27.3
 2U.lt
 22.3
 20
                                        22. U

                                        21.0
                                         6.5
                                         5.1
                                        19.7
                                        17.2
                                        111. 7
                                        11.8
                                         9.8
                                         9.8
                                         9.8
                                         9.8
                                         9.8
                                         2.0
      Beehive coke.   The beehive process  utilizes ovens in which
carefully  controlled quantities of air are admitted to the coking
chambers.   This causes volatile products which distill from  the
coal to be immediately burned, thus generating additional heat
for further coking  of the  coals.   No attempt  is made  to recover
gases or other byproducts  of this distillation process.   The
average raw wastewater flow for the beehive cokemaking operations
is  1.5 m3/Mg (370 gal/ton)  of product.

      Sintering  [2-9]

During iron and steel production  operations,  large quantities  of
particulate matter  (fines,  mill scale, flue dust) are generated
by  blast furnaces;  open hearth, electric arc,  and basic oxygen
furnaces;  and hot forming  mills.   This particulate matter is
removed from process gases,  by dry or wet air pollution control
Date:   9/25/81
            II.6-9

-------
devices, to reduce air emissions or to clean the gases for reuse
as fuel.   A large percentage of this iron rich material is re-
covered through the sintering operation.   The fused material
(sinter) produced by the sintering operation is reused as raw
material in blast furnaces.

Sintering is an agglomeration process in which iron-bearing
material, generally fines from various sources, is taken and
mixed with finely divided fuel such as coke breeze.  The mixture
is placed on a traveling grate, the bed of raw feed mix is ig-
nited on the surface,  and,  as the mixture moves along the travel-
ing grate, air is pulled down through the mixture (wind boxes) to
enhance combustion and to sinter the fine ore particles into
lumps.  The combusted sinter drops off the traveling grate at the
end of the machine and is then cooled, crushed, and screened
before the proper size sinter is sent to the blast furnace.
Improper size sinter is returned to the head of the sinter pro-
cess.

The 32 sintering steel mills in the United States have an annual
production capacity of 48,000,000 Mg (53,000,000 tons).  Eleven
of these mill operate dry dust collecting systems and do not
discharge wastewater;  therefore, they are not included in the
data base for this report.   Production capacity at the 21 wet
sintering mills ranges from a minimum of 450 Mg/d (500 tons/d) to
a maximum of 11,000 Mg/d (12,000 tons/d).

Wastewater flow rates for this subcategory range from 0.11 m3/Mg
(26 gal/ton) to 39 m3/Mg (9,300 gal/ton).  Process water varies
from 0.50 m3/Mg (120 gal/ton) to 39 m3/Mg (9,300 gal/ton).

     Ironmaking [2-9]

Ironmaking operations involve the conversion of iron bearing
materials into molten iron in a blast furnace.  The gases pro-
duced as a result of this combustion are a valuable heat source
but require cleaning prior to reuse.  Blast furnace wastewaters
are generated as a result of the scrubbing and cooling of these
effluent gases.

Blast furnaces are large cylindrical structures in which molten
iron is produced by the reduction of iron bearing ores with coke
and limestone.  Reduction is promoted by blowing heated air into
the lower part of the furnace.  As the raw materials melt and
decrease in volume, the entire mass of the furnace charge de-
scends.  Additional raw materials are added (charged) at the top
of the furnace to keep the raw material mass within the furnace
at a constant level.

The gases which are produced in the furnace are exhausted through
the top of the furnace.  The gases, are cleaned, cooled, and then
burned to preheat the incoming air to the furnace.  Generally,


Date:  9/25/81              11.6-10

-------
gas cleaning involves the removal of the larger particulates by a
dry dust collector, followed by a variety of wet or wet/dry gas
cleaning systems for fine particulate removal.  The three most
common gas cleaning systems either use one wet scrubber (primary);
two wet scrubbers (primary ad secondary); or one wet scrubber and
one dry air pollution control device.

Blast furnace operations within the U.S. primarily produce basic
iron.  Several plants have occasionally produced ferromanganese
iron, although during this study only one ferromanganese furnace
was in operation.  Production of iron on a plant basis ranges
from 720 to 19,900 Mg/d (800 to 22,000 tons/d).  The total rated
capacity of all plants was 290,000 Mg/d (320,000 tons/d).

     Steelmaking [2-10]

Steel making is basically a process in which carbon, silicon,
phosphorus, manganese, and other impurities present in the raw
hot metal or steel scrap, are oxidized to specific minimum levels.
The hot steel is then either teemed into ingots or transferred to
a continuous casting or pressure casting operation for direct
conversion into a semi-finished product (i.e., slabs, blooms, or
billets).

The large quantities of airborne gases, dusts, smoke, and iron
oxide fumes generated in the steelmaking processes are collected
and contained by gas cleaning systems, some of which use water
for the cooling, conditioning and scrubbing of these waste gases
and fumes.  The systems normally employed are dry, semi-wet, and
wet.  Dry gas cleaning systems result in no wastewater or sludge
discharge, therefore, only semi-wet and wet systems are addressed
in this discussion.  The following segments of the major steel-
making processes were selected to reflect the distinctions in the
wet gas cleaning system discharges:

     •  EOF (Basic Oxygen Furnace)
          Semi-wet
          Wet-suppressed combustion
          Wet-open combustion
     •  OH (Open Hearth Furnace)
          Semi-wet
          Wet
     •  EAF (Electric Arc Furnace)
          Semi-wet
          Wet

     BOF (Basic oxygen furnace).  BOF steelmaking involves the
production of steel in pear-shaped, refractory lined, open mouth
furnaces using a mixture of hot iron, cold steel scrap, and
fluxes.  Oxygen is injected into the furnace at supersonic ve-
locities through a water cooled, copper tipped steel lance, which
causes violent agitation and intimate mixing with the molten


Date:  9/25/81              II.6-11

-------
iron.   The result is rapid oxidation of iron and dissolved carbon,
silicon,  manganese,  and phosphorus.

The waste products from the basic oxygen process are heat, air
borne fluxes,  slag,  carbon monoxide  and dioxide gases,  and oxides
of iron (FeO,  Fe203, Fe3O4) emitted  as submicrometer dust.  Also,
when the hot metal (iron) is poured  into ladles or the  furnace,
submicron iron oxide fumes are released and some of the carbon in
the iron is precipitated as graphite, commonly called "kish."
Fumes and smoke are also released when the steel is poured from
the furnace into steel holding (teeming) ladles.  Approximately
1% to 2% of the ingot steel production is ejected as dust.  All
of these contaminants become airborne and thus, require removal.
Basic oxygen furnaces are always equipped with air pollution
control systems for containing,  cooling, and cleaning the huge
volumes of hot gases and submicron fumes which are released in
the process.  Water is used to quench the off-gases to  temper-
atures at which they can be effectively handled by the  gas clean-
ing equipment.

The semi-wet gas cleaning system supplies an excess of  water to a
spark box to cool the furnace gases, thus resulting in a process
wastewater discharge.  The particulate matter collected in the
precipitator system is discharged as a dry dust.

Wet gas cleaning systems generally use quenchers and high energy
Venturi systems.  Both open and suppressed combustion furnaces
employ wet scrubber systems.  The open combustion gas cleaning
system generates smaller particles due to the presence  of excess
air and,  thus, more complete combustion.  The suppressed combus-
tion system generates particulate matter which is larger and
easier to remove from the gas stream.

     Open hearth furnace.  The open hearth process is the oldest
of the primary steelmaking processes.  It became the primary
method of making steel in the United States and reached its peak
during the 1960's.  Since that time, however, the use of open
hearth furnaces has declined as a. result of the development of
the basic oxygen and electric arc furnaces.

The open hearth process produces steel in a shallow rectangular
refractory basin, or hearth, enclosed by refractory lined walls
and roof.  The furnace front wall is furnished with water cooled,
lined doors through which raw materials are charged into the
furnace.   A plugged tap hole at the base of the wall opposite to
the doors is provided to tap the finished molten steel into
ladles.  Open hearth furnaces can use an all scrap steel charge;
however,  a 50% hot metal/50% steel scrap charge is typically
used.
Date:  9/25/81              11.6-12

-------
There are two  principal types of open hearth furnaces:  acid and
basic.  Where the basin refractory material is composed of silica
sand, the furnace is termed an "acid" furnace.  A furnace whose
basin is lined with dolomite or magnesite is termed a "basic"
furnace.  The basic open hearth process is generally used in the
United States because of its capacity to remove phosphorous and
sulfur from iron and its ores.  The acid furnace on the other
hand, tolerates only minimal amounts of these elements and can
use only selected raw materials.

The waste products which result from the open hearth process are
slag, oxides of iron ejected as submicron dust, waste gases
(composed of air, carbon dioxide, and water vapor), oxides of
sulfur and nitrogen (due to the nature of certain fuels being
burned), and oxides of zinc (if galvanized steel scrap is used).
Fluorides may be emitted from open hearth furnaces both as gas-
eous and particulate matter.  In most instances, the source of
fluoride is fluorspar (CaF2), which is used during the final
stage of the heat.  Iron oxide fumes or dust are generated at the
rate of 12 kg/Mg (25 Ibs/ton) of steel.  Gas and dust generation
is fairly constant throughout the heat cycle except during oxygen
lancing, when the gas and dust generation rates are highest.

Open hearth furnaces are generally equipped with some type of gas
cleaning system to cool and scrub the hot gases emitted from the
refractory checker system.  The particulate matter carried by the
gas stream is removed by one of the three basic gas cleaning
systems:  dry precipitator system, semi-wet system, or wet system.
The gas cleaning systems may be manifolded designs which serve
all the furnaces in a shop with one central gas cleaning system,
or they can be independent systems which serve each furnace with
a separate gas cleaning system.

     Electric arc furnaces.  The electric arc furnace steelmaking
process produces high quality and alloy steels in refractory
lined cylindrical furnaces using a cold steel scrap charge and
fluxes.  In some instances, a portion of hot metal or a lower
grade of steel, produced in the basic oxygen or open hearth
furnace, will be charged to the electric furnace.  This procedure
is referred to as duplexing.  The heat for melting the furnace
charge, and fluxes, is furnished by passing an electric current
(arcing) through the scrap or steel bath between three cylin-
drical carbon electrodes, arranged in a triangle, which are
inserted through the furnace roof.  The electrodes are consumable
and oxidize at a rate of 5 to 8 kg/Mg (10 to 16 Ibs/ton) of steel.
Larger tonnage furnaces have hinged removable roofs for scrap
addition while smaller furnaces receive the charge through fur-
nace doors.

The waste products from the electric arc furnace process are
smoke, slag, carbon monoxide and dioxide, and metal oxides (mainly
iron) emitted as submicron fume.  Other waste contaminants such
as zinc oxides from galvanized scrap may be released depending

Date:  9/25/81              II.6-13

-------
upon the type and quality of scrap used.   Oil bearing scrap will
yield heavy reddish-black smoke as the oils are burned off at the
start of the meltdown cycle.  Nitrogen oxides and ozone are
released during the arcing of electrodes.   Generally, 4.5 kg
(10 Ibs) of dust/ton or steel is expected,  but as much as 14 kg
(30 Ibs) of dust/ton of steel may be released if inferior scrap
is used.  The gas cleaning systems employed in electric arc
furnaces are either semi-wet or wet.

     Vacuum Degassing [2-10]

Vacuum degassing is the process in which molten steel is sub-
jected to a vacuum in order to remove gases from the steel.  The
gases hydrogen, oxygen,  and nitrogen can impart detrimental
qualities to the finished steel product if not removed.  Hydro-
gen, in particular, can cause flaking and embrittlement of steel.

The hydrogen gas is removed when the partial pressure of hydrogen
above the molten bath is reduced.  Carbon and oxygen are removed
from steel by reaction with one another as the pressure above the
molten bath is reduced.   The carbon monoxide generated by this
reaction is released, thus reducing the carbon and oxygen content
of the molten steel.  There are presently seven types of vacuum
and one type of nonvacuum degassing processes in use in the
United States.

The vacuum degassing operation serves as an intermediate step in
steelmaking.  After the hot metal has been refined to steel in
basic oxygen, electric arc, or open hearth furnaces, the molten
steel is transferred to the vacuum degasser for further refining.
Degassing is only performed when required by steel order specifi-
cations.  Therefore, not all steel is degassed.  After the molten
steel is degassed, it is then transferred either to a continuous
casting machine or is teemed into ingot molds.

     Continuous Casting [2-10]

Continuous casting plants in the United States are identified as
carbon steel or specialty steel casters.  There are 54 continuous
casting facilities in the United States with a total annual
production of 24,849,000 Mg (27,392,000 tons) of cast steel.
Five of these plants are specialty steel facilities and the
remainder produce carbon steel.

In the continuous casting process, the hot molten steel is poured
from the ladle into a refractory-lined tundish that maintains a
constant head of molten metal.  This constant head is essential
to a controlled casting rate, and, in multiple-stand operations,
it distributes the molten metal to the casting networks.  The
molten metal is poured into oscillating water-cooled copper molds
where partial solidification occurs.  These molds oscillate to
prevent the steel from sticking to them.  As the metal solidi-


Date:  9/25/81              II.6-14

-------
fies, the product is removed continuously to a series of cooling
zones.  The rough product is then sent to refinishing.

Flow rates for applied process water in this subcategory vary
from 0.09 m3/Mg (22 gal/ton) to 67 m3/Mg (16,000 gal/ton) and
average 19.6 m3/Mg (4,700 gal/ton).  Discharge flow rates range
from 0 m3/Mg (0 gal/ton) to 23 m3/Mg (5,3000 gal/ton) and average
1.7 m3/Mg (400 gal/ton).

     Hot Forming [2-11]

Hot forming is the steelmaking process in which hot steel,  ini-
tially in solid ingot form or in intermediate shapes, is reduced
in cross-section through a series of forming steps, ultimately
producing finished and semi-finished steel products.  These
products have numerous cross-sections, lengths, and tonnages.
While several different types of hot forming mills are in use
today, the hot forming processes have been grouped into one
subcategory with the following major subdivisions:

     •  Primary Mills
     •  Section Mills
     •  Flat Mills (Plate and Hot Strip and Sheet)
     •  Hot Worked Pipe and Tube Mills

     Primary rolling mills.  The hot forming, primary mill is the
initial rolling step used in the production of a semi-finished
product from solid hot steel ingots.  Primary mills produce
either blooms, slabs, or billets.

The hot steel ingots are transferred to the primary mills from
soaking pit furnaces which uniformly heat the steel ingots to the
desired rolling temperature, usually 1180 to 1340°C (2156 to
2444°F).  The ingot is transferred to an ingot-receiving table
which, in turn, delivers the ingot to the mill-approach tables.
The latter tables transport the ingot to the front table or
roller table in preparation for rolling.

During the rolling cycle, the ingot is transported to and from
the mill stands by reversing rolls.  After the ingot is rolled to
the desired size, the end of the bloom, slab, or billet is cut
off or "cropped."  The crop shear removes a sufficient length of
stock to meet chemical and metallurgical specifications.

     Section rolling mills.  The section rolling mill takes the
semi-finished product from the primary mill and produces either
an intermediate finished product called a billet, which is further
reduced in other finishing mills, or rolls the bloom directly to
a finished product.  Most billets are rolled directly from the
blooming mill without reheating furnaces, but some steel plants
do provide furnaces between the blooming and billet mills.
Date:  9/25/81              II.6-15

-------
The intermediate and finished products produced from section
mills include rails, joint bars,  I-beams,  channels,  angles,  wide
flanged beams,  H-beams,  sheet piling,  and billets which are
further processed into tube rounds,  bar and rod,  wire,  and nume-
rous special sections.

     Flat mills.  Flat mills consist of two types:  plate and hot
strip and sheet.  The basic operation of a plate mill is the
reduction of a heated slab to the weight and dimensional limita-
tions defining plates.  This is accomplished by heating the
slabs,  descaling, rolling them to plate, leveling, or flattening,
cooling, and shearing to the desired size.  Hot strip mills use
slabs that are reheated to rolling temperatures 1093-1315°C
(2000-2400°F) in continuous reheat furnaces.  The basic operation
of a hot strip mill is the reduction of slabs to flat strip steel
in thicknesses of 0.1 to 3.18 cm (0.04 to 1.25 in).   The product
of the hot strip mill may be sold as produced, or processed in
cold reduction mills, and plated or coated.

Several hot forming-flat rolling mills produce a variety of
finished products including sheet, strip,  and plate.  Mills
capable of producing all of these products are called combination
mills.   Because of the similarities between combination mills and
strip mills, the combination mills are included in this subdivi-
sion.

     Hot worked pipe and tube mills.  A hot forming pipe and tube
mill takes hot steel and processes it into products such as
seamless pipe and tube.

     Scale Removal   [2-12]

Scale removal is the operation in which specialty steel products
are processed in molten salt solutions for surface cleaning.  Two
types of solutions are used in the scale removal process - kolene
and hydride.  There are significant differences in kolene and
hydride scale removal operations in terms of effluent flow rates
and wastewater characteristics and thus the subcategory has been
subdivided to reflect these two descaling operations.

     Kolene descaling.  The kolene process employs highly oxidiz-
ing salt baths maintained at temperatures of 370-480°C,
(700-900°F), which react far more aggressively with scale than
with the base metal, and therefore, result in a smoother surface
than is obtainable with acid pickling.

The usual kolene process is carried out in the following manner.
The steel product, after annealing, is placed in  the kolene bath.
When the product has soaked a sufficient time for necessary
chemical and thermal action it is quenched in a "cold" water
tank.  The combination of the chemical  action and the sudden
thermal shock and steam formation causes the  scale on the surface
Date:  9/25/81              II.6-16

-------
to crack so that subsequent pickling operations can be more
effective.   Another important function of the quenching operation
is to cool the product.  Without adequate cooling,  the immersion
of the product into an aggressive acid solution such as nitric
and nitric/hydrofloric will cause overheating of the acid bath
and an undesirable attack on the base alloys.

Kolene baths in the alloy and stainless steel industry are not
separate processes but are operated as an integral  part of the
pickling process.

     Hydride descaling.  Sodium hydride descaling depends upon
the strong reducing properties of sodium hydride.  Most scale
forming oxides are reduced to the base metal, and oxides of
metals that form acid radicals are partly reduced.   The hydride
is formed in place by the reaction of hydrogen and sodium in open
bottom chambers partially immersed in the bath.  Most commercial
operations use ammonia as a source of hydrogen.  Hydride opera-
tions, like kolene operations, are operated as an integral part
of the pickling process.

     Acid Pickling  [2-12]

Acid pickling is the steel finishing process in which steel
products are immersed in heated acid solutions to remove surface
scale.  The subcategory is divided into three subdivisions, based
upon the type of pickling acid solution used in the process:

     •  sulfuric acid pickling
     •  hydrochloric acid pickling, and
     •  combination acid pickling.

Pickling is only one of several methods for removing undesirable
oxides from the steel surface, however, it is the most widely
used in the steel industry due to its comparatively low cost and
ease of operation.  Carbon steel pickling is almost universally
accomplished by using either hydrochloric acid or sulfuric acid
solutions.   Pickling operations for specialty steels include more
than one acid, typically, nitric and hydrofluoric acids.  The
acid combinations vary with the type of material to be pickled.
The bath temperature, use of inhibitors, and agitation also vary
depending upon the material to be pickled.  Pickling is accom-
plished in either batch or continuous operations.  The three
subdivisions of acid pickling are discussed briefly below.

     Sulfuric acid pickling.  Sulfuric acid pickling operations
process a wide variety of products, some as final products and
others for further processing (i.e., cold reduction, coating,
oiling, or painting).  The most common steel shapes processed by
sulfuric acid pickling are:  strip/sheet/plate; bar/wire/rod; and
pipe/tube.   The strip/sheet/plate grouping comprises 92.5% of the
continuous sulfuric acid pickling operations, while the bar/wire/


Date:  9/25/81              II.6-17

-------
rod and pipe/tube groups make up 92.5% of all batch operations.

     Hydrochloric acid pickling.   The most common steel products
processed by hydrochloric acid pickling are:   strip/sheet; pipe/
tube; and wire/rod fence.  Strip/sheet may,  in turn be formed
into various shapes,  such as auto parts, architectural components,
containers, gutters,  and channels.   The seven batch hydrochloric
acid picklers in operation process all three types of product
groupings.  The continuous hydrochloric acid pickling segment
consists of the strip/sheet and wire/rod/fence product lines.

     Combination acid pickling.  As in the other subdivisions,
the products processed in combination acid pickling operations
are strip/sheet, pipe/tube, and bar/wire products.  Strip/sheet
products compromise 92.4% of the continuous operations.  In
contrast, batch operations consist mainly of bar/wire and pipe/
tube products (81.3%).

     Cold Forming  [2-13]

Cold forming operations transform steel of various configurations
(i.e., bar, slab, sheet) to the final configuration desired.  The
cold forming subcategory is separated into two subdivisions:
cold rolling and cold working pipe and tube due to the differences
between equipment used to form flat sheets and tubular shapes.

     Cold rolling.  Cold rolling is the operation which passes
unheated metal through a pair of rolls for the purpose of re-
ducing its thickness; producing a smooth, dense surface; and
developing controlled mechanical properties in the metal.  Cold
rolled strip, cold rolled sheet,  and cold rolled flat bar are the
principal cold reduced flat products.  Carbon, alloy or stainless
steels are used depending on the end use of the product.  Most
products rolled are carbon steel in sheet form and are used as
base material for such coated products as long terne sheets,
galvanized sheets, aluminum coated sheets, tin-plate, or tin-free
steel.

Before the material enters the rolls, an oil-water emulsion
lubricant is sprayed on the surface.  This oil prevents rust
while the material is in transit or in storage and must be re-
moved before the material can be further processed or formed.
Various oils and oil application systems are used, depending on
the product being rolled and the desired properties in the steel.
Due to differences in flow rates of various oil application
methods, the cold rolling subdivision is segmented according to
the following oil application systems:

     •  direct application,
     •  recirculation, and
     •  combination.
Date:  9/25/81              II.6-18

-------
Direct application mills continuously add fresh rolling solutions
to the rolls.  Due to the high cost of rolling oils, treatment
plants and palm oil recovery systems are usually installed to
reclaim oils for reprocessing and potential reuse.   However,  when
a high quality product free of contamination is desired, once-
through systems are employed.  These mills have the highest
discharge flow rates of any cold rolling operations.

Recirculation mills are more common throughout the industry and
roll higher tonnages than do combination and direct.  In this
operation, the oil emulsion in the flooded lubrication system is
collected and recycled to the mills for reapplication to the
rolls.  Generally, each stand has its own collection tank and
pumps to return the emulsion to the sprays.  Mills usually have
periodic batch discharges of spent rolling emulsions, although a
small amount is continuously blown down at some mills to maintain
rolling solutions of acceptable quality.

The third type of cold rolling mill is the combination mill which
is a combination of recirculation and direct application rolling
stands.  Although the applied flow rates are higher than for the
other types of mills, the discharge flow rate for a combination
mill is substantially less than for a direct application mill
because of the recirculation system.

     Cold worked pipe and tube.  The second subdivision of the
cold forming subcategory, cold worked pipe and tube operations,
takes cold flat steel strip (skelp) and forms hollow cylindrical
products followed by electrical resistance welding of the seam.
During this operation, wastewaters are generated because contact
cooling water or soluble oil solutions are continuously flushed
over the cold pipe and tube products for cooling and lubrication
purposes.   The type of lubrication used, water or oil, forms the
basis of further segmentation of this subdivision of the cold
forming subcategory.

The properties of hot rolled seamless pipe can be improved by
cold working the product.  Cold working the pipe increases its
yield strength and generally improves the product.   There are
four different types of cold pipe and tube mills in operation.
These are briefly described below.

          Cold expanded pipe.  One method of cold working is the
seamless pipe method, in which the hot rolled pipe is conveyed to
a cold expander mill.  The hot rolled pipe is secured in an
expander trough and a ram forces an expander plug through the
pipe.  The plug is lubricated through the ram head with a water
soluble oil.  The seamless pipe is then hydrostatically tested.

          Cold drawn tube.  Where specfications require closer
tolerance, enhanced physical and surface properties, thinner
walls, and smaller diameters than achievable by hot forming,  cold


Date:  9/25/81              II.6-19

-------
drawing the hot rolled tubes in a finishing operation is em-
ployed.  The process consists of pulling a cold tube through a
die, the hole of which is smaller than the outside diameter of
the tube being drawn,  while at the same time retaining the inside
diameter with an anchored mandrel.  All tubes are pickled to
remove scale and oxides,  rinsed, and then dipped into a lubricant
tub prior to the cold drawing operation.

          Electric resistance welded tubing (ERS tubing).   Strip,
sheet, or plate in coil form is used as a starting material for
the ERW process which involves forming, welding, sizing, cutting,
and finishing.

          Electric welded pipe.  The electric weld process or
fusion weld is used to produce pipe in unlimited diameters.  If
the desired pipe circumference exceeds the plate width, two or
more plates may be welded together to provide the necessary
width.  The steps required to make plates into pipe by the elec-
tric weld process are shearing, planing, crimping, bending, weld-
ing, expanding, and finishing.

     Alkaline Cleaning  [2-13]

Alkaline cleaning is the process in which vegetable, mineral, and
animal fats and oils are removed from steel products prior to
other finishing operations such as coating or pickling.  Immer-
sion in solutions of various compositions, concentrations, and
temperatures is often satisfactory.  However, for large scale
production or a cleaner product, electrolytic cleaning may be
used.  The alkaline cleaning bath is a solution or dispersion of
various chemicals in water.  These chemicals can include carbo-
nates, alkaline silicates and phosphates.  Wetting agents are
often added to the cleaning bath to facilitate cleaning.

The cleaning may be done in either batch fashion where the pro-
duct is moved manually in and out of cleaning and rinse tanks, or
it can be done in a continuous fashion on sheet, strip, or wire
product.  Alkaline cleaning operations can also be integrated
into different types of larger production lines.

     Hot Coating  [2-13]

Hot coating processes in the steel industry involve the immersion
of clean steel into baths of molten metal for the purpose of
depositing a thin layer of the metal onto the steel surfaces.
The coatings provide desired qualities, such as resistance to
corrosion, safety from contamination, or a decorative bright
appearance.  Finished products retain the strength of  steel while
gaining the improved surface quality of the coated metal for a
fraction of the cost of products made entirely  of that metal
alone.
Date:  9/25/81              II.6-20

-------
All methods for applying protective coatings to steel products
require careful attention to proper surface preparation - the
primary and most important step in the coating process.  Without
proper surface preparation, good adhesion is impossible.  Surface
preparation methods vary depending on the type of coating applied
and on the shape of the surface being coated, but all methods aim
at cleanliness and uniformity of the surface.  The most common
methods used are acid pickling to remove scale or rust, alkaline
or solvent cleaning to remove oils and greases, and physical
desurfacing with abrasives to eliminate surface imperfections.

The two major classes of metallic coating operations in the
industry are hot coating and cold coating.  Zinc, terne, and
aluminum coatings are most often applied from molten metal baths,
while tin and chromium are usually applied electrolytically from
plating solutions.

II.6.2  WASTEWATER CHARACTERIZATION  [2-9,10,11,12,13]

The Iron and Steel Industry was studied in a sampling program to
determine the presence and magnitude of the 129 priority pollut-
ants in manufacturing wastewaters.  The program involved a two-
phase sampling and analysis of 31 steelmaking facilities and 83
forming and finishing facilities.  The first phase of the sampling
program was designed to detect and quantify those 129 toxic
pollutants.  The purpose of the second phase of the sampling
program was to confirm the presence and further quantify the
concentrations of the toxic pollutants detected during the first
phase.  Data presented in the following tables are taken from the
above-described Toxic Pollutant Survey of the Iron and Steel
Industry.  Where no data were available from the Toxic Pollutant
Survey, the historical data (Original Guidelines Survey) were
used as a supplement.

II.6.2.1  Cokemaking  [2-9]

The two subdivisions of the cokemaking subcategory generate
significantly different wastewaters due to differences in manu-
facturing processes and equipment.  These are discussed below.

     By-Product Recovery Coke

Raw waste loads from by-product cokemaking operations vary widely,
not only as a result of differences in coals used, but also due
to variations in recovery processes, water use systems, operating
temperatures of the ovens, and the duration of the coking cycle.

The most significant liquid wastes generated during by-product
cokemaking and by-product recovery operations include excess
ammonia liquor, final cooler wastewater, light oil recovery
wastes from the benzol plant,  barometric condenser wastes from
the crystallizer, desulfurizer wastes,  and contaminated waters


Date:  9/25/81              II.6-21

-------
from air pollution emission scrubbers for charging,  pushing,  pre-
heating or screening operations.   In addition,  miscellaneous
wastewaters may result from coke  wharf drainage,  quench sump
overflows, and coal or coke pile  runoffs.

The major pollutants found in excess ammonia liquor are directly
related to the destructive distillation of coal.   Since excess
flushing liquors represent the first step in cooling the coke
oven gas for reuse, the waste ammonia liquor contains by far  the
greatest pollutant load.  All by-product recovery plants generate
excess ammonia liquor.

The volume of excess ammonia liquor produced from the distilla-
tion of coal varies from 79 to 430 L/Mg (19 to 100 gal/ton) of
coke at plants using semi-direct  ammonia recovery, and from 290
to 440 L/Mg (70 to 110 gal/ton) at plants using indirect re-
covery.  Approximately 75% of the by-product coke plants attempt
some degree of ammonia recovery.

Final cooler wastewater originates from direct contact cooling of
coke oven gas with water sprays which dissolve any remaining
soluble gas components and physically flush out condensed nap-
thalene crystals.  Final cooler wastewater volume ranges from 46
to 710 L/Mg (11 to 170 gal/ton),  but this volume can be reduced
to between 8.3 and 42 L/Mg (2 to  10 gal/ton) by recycle.  Nearly
85% of the by-products coke plants have some degree of wastewater
from this source.

Light oil recovery (benzol plant) waste volumes vary widely,
depending upon the degree of recovery (crude or refined), and
whether recirculation is practiced.  Although once-through sys-
tems generate from 840 to 6,300 L/Mg (200 - 1,500 gal/ton),
recirculation is usually practiced which reduces the discharge
flows to between 63 and 500 L/Mg(15 to 120 gal/ton).  Certain
toxic organics (e.g., benzo(a)pyrene, isophorone, parachlorometa-
cresol) common in other coke plant wastewaters were not detected
in benzol plant wastewaters in the sampling program.  Also, most
of the pollutant concentrations observed in benzol plant waste-
waters are significantly lower than those in the other coke plant
wastewaters.  Notable exceptions are benzene, toluene, and xylene,
which were found in benzol plant wastes at 3 to 7 times higher
concentration than in other wastes.  As in the case of final
cooler wastewaters, nearly 85% of the by-product recovery plants
have some degree of wastewater flow from benzol plant processes.

Table 6-5 presents classical pollutant data for by-product coke-
making operations.  Table 6-6 presents toxic pollutant raw waste
data by wastewater source for by-product cokemaking operations.
Date:  9/25/81              II.6-22

-------
     TABLE 6-5.
WASTEWATER CHARACTERIZATION OF CLASSICAL
POLLUTANTS IN BY-PRODUCT COKEMAKING OPERATIONS
[2-9]
Raw wastewater

Parameter. mq/L
TSS
Oi 1 and grease
Ammonia-N
Phenols, total
Sul fides
Thiocyanates
pH, pH units

Parameter. mq/L
TSS
Oi 1 and grease
Ammonia-N
Phenols, total
Sulf ides
Thiocyanates
pH, pH units
Number of
samples
4
4
4
4
4
H
4
Number of
samples
4
4
4
4
4
4
4
Number of
detections
4
4
4
4
4
4
4
Treated
Number of
detections
4
4
4
4
4
4
4
Range of
detections
14-86
82 - 180
2,400 - 5, (00
630 - 1, 100
440 - 1,800
380 - 1,200
6.9 - 11.7
effluent
Range of
detections
6-40
4-40
0.77 - 4,900
0.028 - 84
0.21 - 1,700
0.84 - 1,000
6.9 - 9.9
Median of
detections
70
120
3,400
720
522
522
8.7
Median of
detections
34
8
170
0.40
260
200
8.8
Mean of
detections
60
130
3,600
780
830
670

Mean of
detections
30
15
1,300
21
560
360

 Analytic methods: V.7.3.5, Data set I.
     Beehive Cokemaking

Process wastewaters from beehive operations are related  strictly
to quenching operations and vary only slightly from plant  to
plant.  Table 6-7 presents net concentrations of classical and
toxic pollutants in wastewaters from quenching operations.

II.6.2.2  Sintering [2-9]

Wastewaters generated at sintering operations result primarily
from the dust and gas scrubbing equipment and from sinter  cooling
and quenching.  Newer plants typically use dry air pollution
equipment and therefore generate no process wastewaters, while
older plants typically have wet systems.  Although the nature
of the wastewaters may vary as a result of their origin  in the
sintering process, similar pollutants are found in all sintering
wastewaters.  These include oil and grease, suspended solids,
cyanide, fluoride, sulfide, phenols, and other toxic pollutants.
Table 6-8 presents wastewater characterization data for  sintering
operations.

II.6.2.3  Ironmaking  [2-9]

Water is used within the blast furnace operation for two pur-
poses:  to cool the furnace, stoves, and ancillary facilities,
and to clean and cool the furnace top gases.  Although blast
furnace wastewaters are primarily the result of the gas  cleaning
Date:  9/25/81
           II.6-23

-------







CO
z
o
1—
£
UJ
0.
o
o

^£
z
UJ
o
0
1-
o
Q
o
ce
0-
oo
U- 1
^
^~
Old
h-

O
t*>jj O ^f~^
•» »v

CM


"I v
8



0
§ |oo
»vo v VON vca v »
i i i i i i i i i
JT— V — OV«?V«*>
(MCM O - -
CVI



CM CM (M n m CM CM n CM








at
_l-
Ol«
4J C
h&«I s i
— « O — — fo — — L.
— i c— o— o c o
o «— o >>acJ£ o > u
a— u«La«o — — c
o|< "^
~E>- ~*m S~










§00 oooo o oo ooo o
oo -tfoeoo o oo — oo o
OCOO >OVO(ntO O OVO CMCMJt CM

CMme CM — — O— lA —
— CM «n o\


oo r- o o oo o o
•t « » » * * 4
lAftJ — Ch O ™" lA
CM m



00 00
§000000 oo o o
o o o o o o «o o o
r« «in * *.^ «IA — « CM CM « «
§cM«otf\ — m>om m »CM CMOMS CM
* o ooo m — o
co i i i — l i i i — i aocho i i — i i l a co i
v a —
mOOO 1OOOO O OO OOO O
o»— o — — — o Oin oi~o r-
««• v— CM o ooo cvi CM m
m e cs *
CM CVI



-««CM-«CMCM«-« 	 ««-CMCM««-n








S~ o
— MOO
£0 e— — c c
c "one o
u o o c w o —
W £ 1 O O « O >
o *" a — oc w t. c o C
o— • >»cc coo **» 2 o a
— *- ppcovooo^i- MCX — o-*
• — o o e c w p «> a— — *»—- >e£O£o
8 coo — <^iocC— pec •••cuueic
o c c o £ o — a « o n C — o — — — o a « — i
xSS°i^f5§CM"iIir-xcM»£Sf cStooS
-------
2



^
w
z
o

i
UJ
a.
o

o
z

i
UJ

o
o

^
u
§
o

O.V
t CD
>-3
CD C
cc P
OC
u. o
u

H*""

QUJ
h-
H- <
z5e
< UJ
KK
3 W

-J3e

3E
ool

Xh-
ouj
f-Z


.
VO
1
VO
UJ

CO



















CO
^
Q)
+J
I
P
10
CO
J

p
c
CO
a

—
0
N
C
CO





































M
C
o
O P
o
C CD
CO 

>CCO«PCD C C — — S- £CDCDCDI->C I- 3CCU—E3 CD O C O C P ^COO*~*n3*~t-'D^ 1-OCCCD'— ACOCOO — -" •^^ CD O. CO CD C CD — EC E CD — CD O— CDCDCO— <-£COOCOOcOco<-'-COC O<0— » >> E O a C > ^N3CDI>>OPPC£N>C£OCCD CO C «- 0) co£ O >>— — O«O>»*-P— COCD££CD£OC— £>> OP«CQOOOOW X CD 3 — P J3 u P CD •> CD • P T) 10-D CD CD CDT3 P co N co p >>*> I- co— O -co o CD c— a C O CD .CO « C <0 IA 3 CD • P .O £ CD ro O Q.J3 • C"D O r» CD *- *» • co N O O >P >>— C CO — £ • •"O CO O"O ID C •O CD CO S- 3 OP »- O £ CO 10 1 O •P O >X 0 C O — CO. coCJ CO CO—- — C— CO jQ Date: 9/25/81 11.16-25


-------
       TABLE  6-7.   TOXIC AND CLASSICAL POLLUTANT DATA FOR QUENCHING OPERATIONS
                    IN  BEEHIVE COKEMAKING,  NET RAW WASTE CONCENTRATIONS [2-9]
Pol lutant
Classical pollutants, mg/L
Suspended sol Ids
01 1 and grease
Ammonia
Sol fide
Thlocyanate
pH.pH units
Toxic pollutants, M9/L
Be ry 1 1 1 urn
Cyanide
Mercury
Phenol 1C cmps.
Number of
samples

3
3
3
3
3
3

3
3
3
3
Number of
detections

3
3
1
3
2
3

3
3
2
3
Range of
detections

29-710

-------
and cooling processes, there are other wastewater sources, such
as floor drains and drip legs.

Blast furnace wastewaters contain suspended particular matter,
cyanide, phenol and ammonia.  Other wastewater pollutants include
toxic metals and certain toxic organic pollutants which originate
in the raw materials or form during the reduction process.
Table 6-9 presents wastewater characterization of sampled plants
in the ironmaking subcategory.

II.6.2.4  Steelmaking  [2-10]

The Steelmaking processes generate fumes, smoke, and waste gases
as impurities are burned off and various elements in the molten
steel are vaporized.  The wastewaters are generated when semi-wet
or wet gas collection systems are used to condition and clean the
furnace off-gases.  The particulate matter carried by the gas
stream is the principal source of pollutants which contaminate
the process wastewaters.

The raw wastewaters from the semi-wet and wet gas cleaning systems
of each Steelmaking subdivision are similar in waste characteriza-
tion in that toxic metals, fluoride and significant quantities of
suspended solids are present in wastewaters from the systems.
The levels of the toxic pollutants, however, vary among the sys-
tems.  The presence of zinc, one of the prominent toxic metal pol-
lutants in Steelmaking process wastewaters, can be directly re-
lated to the use of galvanized scrap in the furnace charge.
Fluoride concentrations vary in relation to the amount of fluor-
spar (a fluxing compound) used in the process.  The use of differ-
ent fuels for firing open hearth furnaces results in the genera-
tion of nitrous and sulfur oxides, which subsequently depress the
pH of open hearth furnace wastewaters.

Table 6-10 presents wastewater characterization of sampled plants
representative of basic oxygen furnace, wet-suppressed and wet-
open combustion.  Limited data are available for the open hearth
furnace subdivision.  Plant specific data are presented for
semi-wet and wet processes in Tables 6-41 and 6-42, respectively.
Table 6-11 presents wastewater characterization of sampled plants
representative of electric arc furnaces, wet-process.  Limited
data are available for the semi-wet process and these are pre-
sented as plant specific data, Table 6-43.

II.6.2.5  Vacuum Degassing  [2-10]

During the vacuum degassing process, fumes and waste gases are
generated as a result of the volatilization of impurities in the
steel.   The gases emitted from the molten steel come into contact
With barometric condenser cooling water during degassing.  The
process wastewaters from degassing operations contain suspended
solids, chromium, copper, lead, nickel, and zinc.  Table 6-12


Date:  9/25/81              II.6-27

-------



K
O
u.

CO
1-
z
1-
"^
_l
_J
o
0.

.J
o"
—
CO
CO
5
0
Q
Z
^

o ^^
— o\
X I
OCM
t— •—•

otr
o
zo
OLJ
— (—

cr co
•o




Ul
4- C
O O
i-'-P
CD C
r> co
E-P
3 CO
z-o


c^
O
m
c_ o
CD —
.Q a
E E
3 CO
















4J
C
CO
4-
_
O
a.




GO f^ lA^f O
ift — rf -O
CM co
^
»






— — jj O O^
4- ._ .0 •
l>- CM — 00
^ _




O
00
^D PO i^ • <^C5
— ^ — ' f*» fO -—

1 1 1 1 1 1

CQiAOCOOCO
~O O\O •
•W\O
O O






^ ^^ ^ ^ ^o












^D ^D ^D ^0 ^0 ^3





i

01
E

^
in in
JJ T3
re —
*> o to
3 W J->
— z -a c
O 1 CO CO 3
are co-o ~o
— -o 	 ex
— c — t- o CD a
co o c o c a.
o E re 3 CD in •.
— E >>— f. 3 X
to < O^ 0- CO Q.
ta
re
—
O




•Sf O 00 O O O O *O lT\ O
^If^f-^COONOCOC^POO
— coco Of- O
«1 t
Jf ^
— w





o\sooooooo\oo
••^ -t CM CM CO C3X " ™ CO C^
— — O\ PO O
CM CO



o o
ooo o
ooo o
OOO CM -if «
^^ c^ cs ^* *^m ^co co m
co zt CM 00 — \f\ CM ^O VO CO

1 1 1 1 1 1 1 1 1 1

— lT\— tTtCMO 	 IAO
V 	 d- 	 CM 0
lf\ —







•^ & r^ r^ r^ vo vo £t vo vo












j^ ^f r^ r^- P"- vo r^. *t r*- vo








in
-I 0

01 C
3. co
,E
co o ca
•PC U
re c
*»n >> e E re
3CCOE3 3 D
— tOO— 3— S- 	 *- S-
— EC— ECO COCCB O
o i0 — co E o a-o Jt CD > o
a.— *j  -o t- a co o 	 c o
cec'-afoco—co 	 —
o +»«ooo-izco WN x
•-co o
xr K
o
h-




— o oomo
CMO OOOOO
fo r**" ^t u^
^ ^ •» *
— CMCM CVJ






oo \oooo
•^ J^ — ~_ — _
V d- V V V




oo o
o oo o
0 00 0
O •> -tO *
CO *i VO ^^* ^D IfN
U\^" — • — J^ ^
o o
Jt I I vo 1 1 I I
CM —
— o ^ — r-h-
, a c c
O£ O CO CO
— *» «-jC t.
£ CO O *» XCP
u E - c ac
	 £ CO 01 CD
OO O O «- O o) C
1 1 C TO O N >> CD-
a-d- CO X 3 C t- !.
« ^j= co — co jC x
cvicMo.xii.moa-



















































•
M.

^J
CD
ta
re
4>
re
o

lf\

fO
.
^.
,
^
^^
(A
•a
o
CO

u
£
re
c

Date:  9/25/81
II.6-28

-------
















cc
o
u.

l_
z
^
1--"
3 O
_J —
I |
O C\J
Ck. • _r

O >-
— cc
X O
00
1- Ul
t-
U_ ^
oo
CO
"ZL ~?
OC/5
1- Ul
<0
N<
— z
CC OL
LJ3
I-U.
O
 P
< CD
"D
in
C
C 0
TO —
•— c*- p
T3 O O
0 0
£ P
0
•o








in
c
o
CD —
Oil*- P
COO
CO 0
ce P
CD
•Q





u)
c
0

0 p
.a <*. o
E O 0
D p
Z 0
TD



to
!- 0
0 —
JO !|- Q
E O E
3 to
z to





_l
\
o
n
.
p
c
CO
p
3
—
—
o
Q

0

X
0
1-





















c
0

p
to
Z3
J3
E
O
0

c
0
a
o
|
P
0
^

























d-oo OOP-OCM ooo d-
^o r*~ ^3 o o ~~ -3° c\) co o ^3 ^f
tAOJrOON ^t 	 O
•l •, *l *
iTN rO fO LT\



oooor-o o o cu
CO C^ CO O ~~ CO ^ O li"N
CVJ f^ VO — co — VO
•. «. IS
— — CO







ooo o
0000 O 0
oooo o o
C0«s*.«. O OO"
in •»h~ CM d1 d" ".P1- O CO Ov VO
r — "~ 	 co — coin — d" in

Illlltlllll 1

d- — d 	 moo — oo co
inCMCMCMd"- COO —
o o
.,
CM









CM d" d" d'd'ddCMdCVJd' d"











•d d" d" dd'dd'dddd d





















c
o
p
to
D
J3
E
0
O

•a
0
0}
05
0
i.
Q
a
2
U5
1
P
0
^























o\oooo o
vo d vo o —~ o
vo — vo co d1
•» •!
ON CO



ooo o
oo o d o
inco CM
•V *t
— ^







o
00 0
o o o
— o «o d-

ON — CO CM in CO
o
1 1 1 1 1 CO 1

OOcoOCM O
d P^- f^ co co —
— CM VO











CVJ CVJ CO CO CO — CO











CO CO CO CO CO CO CO






05 tO
o o
.~ .—
c c
1C CO
E E
O in o
c o c

C 5-
"OE EEroO T3E
COED >>33 0^- CE3
CO — 3 — S- ! 	 ! 	 S_O COD — i- — 5-
C — E 0 30C0— O i- — E 0 0)0
U) 0 E O Q.T3 O ^ 0 > — O O tflEO Q.T3 H > O
— WD'-Q.CO'-O 	 coc o— — •o^-o.ioo— c
CO *- CO ^ O CO (D — CD — .C — — JT CO CO .C O 0 	
P< O O O — 1 Z Z CO CO H N XO PO O O — ' Z CO N
0 00
£ 1— S





















































.
_

p
0
05

CO
p
CO
a

in
CO
•
r-
.
>

05
T3
o
f
p
0
E

0

p
>^
_
CO
c
Date:  8/31/82 R  Change 1 II.6-29

-------










o
cc
H
O
LJ
1
LJ

cc
o
L.
co
H
z
H
3
1
1
o
0.

O
X *~^

1 	
L-CM
z>
OOC
— o
HO
< LJ
NH

CC O
LJffi
OCO
^
CCH
< LJ
O 1
LJ
cro
LJ <
HZ

3 3
LJ U.
H
COO

<






c
CO
- d-
•o o
0









CD
Ol
C d-
CO O










!_
0
E 0
3
Z





s_
0
JD d-
E 0
3
Z





















U]
C
O
•—
4J
O

4J
CU
T3

in
c
0

4.)
0
0
.p
0
•D




U)
C
o

•p
0
0
0
T3





> E
c c o e 3
CD 0 — 3 — S- — S.
E c — e 0  o
CO C i- CO £ O 0 — — —

0
s:



































































in
u
c
CD
O
s.
o
0

X
o
H






3N CM Jj O CO
— CM — CO CM








O
•—











— O IfNOOcO
?O ^" CM ITN LTN

1 1 1 1 1













^J W CO CO C\i









CO CO CO CO CO






0
c
0
_ g~
o a 0
CO C
0 (- 0
.CO J=
a— 4J
OJ= CU C
S- O C CO 0
4J CO 0 S- C
— 4J N O CU
Z C C 3 S.
1 0 0— >>
d-a. co L. a.




















































.
—

4J
0
in

CO
4J
CO
°
CO
•
.
^

*•
in
T3
o
j=
4J
0)
E

U
4J
>j
—
CO
C














y
3
13
O
ir
O
L.

^
H
^
Q

H
Z •— '
<0
1 	
-JCM
o""1
Q_ ^
ce
-JO
^ o
OLJ
— H
CO <
CO O
-.
0 4J
O
C 0
CO -P
O 03
Z -a
CA
d- C
0 0
C 4->
CD O
•- 0
•D 4->
0 0



in
C
d- 0
O —
4J
0 O
O10
C 4J
CO CU
ac-o

d- C
o o

i- 4->
0 O
ID 0
E 4->
3 0
ZT3


0 «
0
S 	
0 a
& E
E CD
3 in
z















4J
C
CO
•P
3
^
—
O
a.



d- ooooo
CM OOOVOO
OCM CO CM ON
* •» *
— — 00





ON ON co O O O
CM • co co r*~ O
c- —a- in
^
CM

O
O O 0
o o o
— OOCM O «
O • *-^ *O ^"
COON co j- co incM

ii i i i i i

CM in inoocoo
— • CMCMJ-CM VO
.a- c\j CM





coco CO (O CO CM CO









CO CO CO CO CO CO CO






1 —
en
E

4-> Ol
C 3.
CD
4J in .
3 4J 4J
— — c
— C CO
0 3 4J E
Q. 33^
— a — e cu 0
CD O O O-"O X. O
CJCO - Q.I-Q.TCUC
— CO X JZ O CU 	
WHO. OOO-IZN
in —
CO X
— o
O H
Date:  8/31/82 R Change 1  II.6-30

-------
presents wastewater characterization data for sampled plants in
the vacuum degassing subcategory.

II.6.2.6  Continuous Casting  [2-10]

In the continuous casting process, the cast product is only
partially solidified when it emerges from the molds.  The in-
terior core of the product is still molten steel at this time.
The cast product spray cooling water system sprays water directly
onto the product for further cooling.  As the cast product sur-
face oxidizes, scale is washed away by the cooling water.  The
spray water also becomes contaminated with oils and greases which
are released by the hydraulic and lubrication systems.  As the
cast product is discharged onto the run-out tables for final
cooling, additional scale flakes off which is sluiced to the
spray cooling pit.

Approximately 5-10% of the water sprayed on the product is evapo-
rated with the balance being discharged to a scale pit.  Tempera-
tures of discharged spray waters range from 54° to 60°C (130° to
140°F).  Other minor wastewater systems include spray cooling of
cast product, acetylene torch cut-off, and miscellaneous cooling
or sluicing.

Table 6-13 presents toxic and classical pollutant data for the
continuous casting subcategory.

II.6.2.7  Hot Forming  [2-11]

Hot forming wastewaters are comprised of direct contact cooling
and descaling waters.   Roll cooling water is used to flush the
the mill stands to prevent surface cracking of the steel rolls
due to sudden temperature changes.  When the hot steel product is
being rolled, iron oxide scale (called mill scale) forms on the
surface of the hot steel.  The scale is removed by direct contact
high pressure sprays.   Approximately 4% of the water sprayed on
the hot steel evaporates and the balance is discharged beneath
the rolling mill to trenches called flumes.

Wastewaters from descaling, rolls, hot shear equipment cooling,
roll tables, and flume flushing are generally discharged through
flumes to inground settling chambers called scale pits.  Scale
pits often contain underflow weirs with launders to trap oils and
greases picked up by the process waters.  The major sources of
oils are the oil cellars where recirculated oils are conditioned,
and leaks from lubricating and hydraulic systems.  The wastewater
oils are discharged to waste oil storage tanks and periodically
removed by contract haulers.  The scale pit effluents are dis-
charged to plant sewers or are paritally recycled back to the
mills.
Date:  9/25/81              II.6-31

-------
Toxic metal pollutants have been detected in the wastewaters from
rolling mills.  The appearance of chromium,  cppper,  lead,  nickel,
and zinc result from the use of these metals in steelmaking and
alloying and possibly in lubricants used at certain mills.
Relatively few toxic organic pollutants were detected in the
sampled mills.  The waste charcteristics of the subdivisions of
the hot forming subcategory are briefly discussed below.

     Primary rolling mills.  Blooming or slabbing rolling mills
generally have six main contact water systems:

     •  High pressure descaling spray water,
     •  Mill stand roll and roll table spray cooling water,
     •  Hot shear spray cooling water,
     •  Flume flushing,
     •  Hot scarfer spray flushing and cooling system, and
     •  Hot scarfer wet gas cleaning system.

The first four sources, which are common to all hot forming
operations, have previously been discussed.   The last two sources
are unique to primary rolling mills.  The use of automatic hot
scarfing machines for surface finishing results in the generation
of fumes, smoke, and slag.  Wastewaters are produced from the
flushing of the slag and equipment spray cooling water.  Addi-
tional wastewater results when wet type dust collectors are used
to clean the exhaust gases from the scarfer.  These discharge
waters may be acidic if resulphurized steels are being scarfed.
Table 6-14 presents toxic and classical pollutant data for the
primary rolling mill subdivision.

     Section rolling mills.  These mills generally have four main
mill contact water systems:

     •  High pressure descaling spray water,
     •  Mill stand roll and roll table spray cooling water,
     •  Hot shear spray cooling water, and
     •  Flume flushing.

Table 6-15 presents toxic and classical pollutant data for the
section rolling mill subdivision.

     Flat mills-plate.  Plate rolling mills have three contact
water systems:

     •  Descaling water sprays,
     •  Mill stand roll and roll table water  sprays, and
     •  Flume flushing.

Table 6-16 represents toxic and classical pollutant data  for the
flat mills-plate subcategory.
Date:  8/31/82 R Change 1  II.6-32

-------
        TABLE 6-13.  TOXIC AND CLASSICAL POLLUTANT DATA FOR CONTINUOUS CASTING
                     SUBCATEGORY,  NET  RAW WASTEWATER [2-10]
Pol lutant
Classical pollutants, mg/L
TSS
01 1 and grease
pH, pH units
Toxic pollutants. ug/L
Toxic natal a
Chromium
Copper
Lead
Selenium
Zinc
Toxic organ let
Parachlorometac reso 1
Chloroform
2,4-Dlmethylphenol
Fluoranthene
Ol-n-butyl ph thai ate
Ol-n-octyl ph thai ate
Toluene
Number of
sa Moles

4
4
4


4
4
4
3
4

4
4
4
4
4
4
4
Number of
detections

2
4
4


0
1
1
1
0

3
2
2
2
2
3
2
Range of
detections

11-16
3.6 - 19
7.0 - 9.4



15
6
220


0.018 - 110
1.7 - 17
7-25
3-19
3.4 - 39
16 - ISO
3.9 - 16
Median of
detections


3.9
8.0








5




20

Mean of
detections

14
7.6









38
9
16
II
21
72
10
      Analytic methods; v.7.3.5. Data set
        TABLE 6-It.   TOXIC AND CLASSICAL POLLUTANT DATA FOR HOT  FORM ING-PR I MARY
                     NET RAW WASTEWATER [2-11]
Pol lutant
Classical pollutants, mg/L
TSS
Of 1 and grease
pH, pH units
Toxic pollutants, ug/L
Toxic metals
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
SI Iver
Zinc
Toxic oraanlca
Chloroform
Methylene chloride
Bls(2-ethylhexyl )
ph thai ate
Dl-n-butyl ph thai ate
Dl-n-octoy ph thai ate
Tetrachloroethylene
Number of
samples

5
5
5


5
5
5
5
5
5
5
5

5
5

5
5
5
5
Number of Range of
detections detections

5
5
5


5
4
5
2
5
5
5
5

4
2

3
2
3
3

15 -
0.5 -
2.6 -



-------
      TABLE 6-15.   TOXIC AND CLASSICAL POLLUTANT DATA FOR HOT FORMING-SECTION
                    NET  RAW WASTEWATER [2-I IJ
Pol lutant
Classical pollutant, mg/L
TSS
Oi 1 and grease
pH, pH units
Toxic pollutants, M9/I-
Toxlc metals
Cadmium
Copper
Nickel
Zinc
Toxic organ Ics
Methylene chloride
Napthalene
2, i»-D 1 n 1 t ropheno 1
Bis(2-ethylhexyl )
phthalato
Butyl benzyl ph thai ate
Dimethyl ph thai ate
Pyrene
Number of
sa moles

9
9
9

8
9
9
9
9
9
9

9
9
9
9
Number of
detections

8
7
9

0
9
7
5
4
3
3

5

3
2
Range of
detections

18 - 200
1 - 250
6.9 - 7.9


10 - 200
10 - 800
20 - 200
6 - 190
2-10
5-19

15 - 1,300
14
5-M
5-5
Median of
detections

30
8
7.5


60
70
30
100
10
13

150

5

Mean of
detections

54
45



70
170
86
100
7.3
12

370

7
5
     Analytic methods:  V.7.3.5, Data set I.
   TABLE  6-16.   TOXIC AND CLASSICAL POLLUTANT DATA FOR HOT  FORM ING-FLAT  PLATE,  NET
                RAW WASTEWATER [2-11]
Pol lutant
Classical pollutants, mg/L
TSS
OI 1 and grease
pH, pH units
Toxic pollutants, M9/L
Toxlc metals
Chromium
Copper
Lead
Nickel
Si Iver
Zinc
Toxic oroanlcs
Benzene
2, 4-DI methyl phenol
Methylene chloride
it-Nit ropheno 1
Pentach 1 o ropheno I
Bls(2-ethylhexyl)
ph thai ate
Dl-n-butyl ph thai ate
Dlethyl phthalate
Number of
samples

7
7
7


7
7
7
7
7
7

7
7
6
7
7

7
7
7
Number of
detections

7
7
7


4
7
2
7
0
7

2
2
3
2
2

6
1
1
Range of
detections

12 - 1 10
4-60
7.2 - 8.9


10 - 90
20 - 200
210 - 420
10 - 930

10-50

9-170
5-14
2 - 120
7-17
5-12

6 - 820
32
23
Median of
detections

31
10
7.4


40
150

120

50



14



420


Mean of
detections

42
19



45
130
320
260

40

90
10
45
12
8

430


      Analytic methods: V.7.3.5, Data set I.
Date:  9/25/81
II.6-34

-------
     Flat mills-hot strip and sheet.   Hot strip rolling mills
generally have six mill contact water systems:

        Flume flushing water,
        High pressure descaling water,
        Low pressure roll coolant water,
        Table roll and shear cooling waters,
        Product cooling including runout tables, and
        Coiler cooling water.


Large quantities of cooling waters are applied to cool the strip
on the runout table after it has been rolled on the final mill
finishing stands.  This water is relatively clean and is often
recycled because of its large volume.  Table 6-17 presents toxic
and classical pollutant data for flat mill-hot strip and sheet
subdivision.

     Pipe and tube (hot working).   Wastewaters are generated in
the hot working operation as a result of the large amounts of
direct contact cooling and descaling waters required by the hot
steel and the piercing, plug and reeler mill equipment.

The butt welded pipe mills have two types of contact wastewater
systems:


     •  Roll cooling spray waters and
     •  Pipe cooling bed water bosh.

The seamless tube mills have two types of contact water systems:

     •  Roll spray coolant waters and
     •  Spray water quench.

Table 6-18 presents toxic and classical pollutant data for the
hot working and tube subdivision.

II.6.2.8  Scale Removal  [2-12]

Wastewater characteristics vary significantly between the two
descaling processses, kolene and hydride descaling, thus these
are discussed separately in this section.

     Kolene Descaling

Wastewaters are generated at two points in the kolene descaling
operation: the salt bath tank and the subsequent quench or rinse
steps.  The bath is a molten salt solution that contains high
levels of sodium compounds together with other constituents.
After the same bath has been used for some time, it becomes
highly contaminated with scale from the steel,  oils that are


Date:  9/25/81              II.6-35

-------
        TABLE 6-17.   TOXIC AND CLASSICAL POLLUTANT DATA FOR HOT FORM ING-FLAT
                     HOT  STRIP AND SHEET, NET RAW WASTEWATER [2-11]
Pol lutant
Classical pollutants, mg/L
TSS
Oi 1 and grease
pH, pH units
Toxic pollutants, |ig/L
Toxic metals
Beryl 1 ium
Cadmium
Chromium
Copper
Lead
Nickel
Si 1 ve r
Zinc
Toxic orqanics
Chloroform
Methylene chloride
2,4-Dinitrophenol
Bis(2-ethylhexyl )
phtha late
Butyl benzyl phtha late
Di-n-butyl phtha late
Number of
samples

2
2
2


1
2
2
2
2
2
2
2

2
2
2

2
2
2
Number of
detections

2
2
2


1
1
2
1
2
2
2
2

1
2
1

1
1
2
Range of Mean of
detections detections

18-41 30
3-6 4.5
7.4 - 8. 1


(a)
(a)
(a)
1 1
(a)
(a)
(a)
(a)

18
(a)
28

280
24
1-23 12
 Analytic methods:  V.7.3.5,  Data set  I,
 (a)  According to  reference, data cannot be evaluated.
        TABLE 6-18.   TOXIC AND  CLASSICAL POLLUTANT DATA FOR HOT FORMING-HOT
                     WORKING PIPE AND TUBE, NET RAW WASTEWATER [2-11]
Pol lutant
Classical pollutants, mg/L
TSS
Oil and grease
pH, pH units
Toxic pollutants, (ig/L
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Nickel
Si 1 ve r
Zinc
Number of
samples

2
2
2

1
2
2
2
2
2
2
2
Number of
detections

2
2
2

1
2
2
2
2
1
1
2
Range of
detections

27-31
1.9 - 2.0
7. 1 - 7.8

10
(a)
(a)
29 - 60
12 - 270
69
(a)
37 - 130
Mean of
detections

29
2.0





44
140


84
 Analytic methods:   V.7.3.5,  Data  set  I.
 (a)  According to  reference,  data cannot be evaluated.
Date:  9/25/81
II.6-36

-------
burned off in the high temperature bath,  metals,  and other com-
pounds.  It must then be replaced and, due to its highly con-
taminated nature, is generally hauled off-site by private con-
tractors.

The other source of wastewater in the kolene operation is the
discharge from the quench or rinse step that follows the scale
removal operation.  Due to the need for constant temperature,
fresh water is continually added to the rinse tanks and thus,
there is a continuous discharge.  Wastewaters generated in the
quench and rinse steps contain significant levels of solids, and
total and hexavalent chromium, and have elevated pH and tempe-
rature levels.  Table 6-19 presents toxic and classical pollutant
data for kolene descaling.

     Hydride Descaling

The hydride descaling operation is carried out similarly to the
kolene operaton.  The only significant difference is the salt
solution used.  While the compounds in the kolene bath act as
extremely strong oxidizing agents, the hydride salt solution
depends on the strong reducing properties of sodium hydride to
aid in scale removal.  Hydride operations have been found to
discharge quantities of cyanide.  Table 6-20 presents toxic and
classical pollutant data for hydride descaling.

II.6.2.9  Acid Pickling  [2-12]

Wastewaters are commonly generated by three sources in the pick-
ling operation.  The largest source is the rinsewater used to
clean the acid solution from the product after it has been im-
mersed in the pickling solution.  The second source is the spent
pickling acid (liquor) which is used to treat the steel product.
Wastewater from the wet fume hood scrubbers is the third source,
however, not all plants have wet fume hood scrubbers.  For hydro-
chloric acid regeneration plants, absorber vent scrubber waste-
water is a source of contamination similar in nature to that of
pickle rinsewaters.

     Pickle Rinsewater - Batch and Continuous

The first wastewater source is the rinse operation following the
pickling step.  Varying amounts of water are used, depending upon
whether the operation is batch or continuous.  However, regard-
less of the type of operation, the rinsewater constitutes a
higher flow than the other sources and contributes much of the
pollutant load to the treatment system.

There can be one or more rinse steps depending upon the pickling
operation.  Many lines include a single tank in which the product
is rinsed after pickling, however, the rinsewater discharge flow
can be minimized with cascade or countercurrent rinse systems.


Date:  9/25/81              II.6-37

-------
                  u
                  CO
                  Ul
                  o

                  Ul

                  Ul
                  K
                  O
i
                  -!£!
                   > i
                   .(M
   21
  (
                  
                       CMO^CM »   «O
                       fteuaaa   m«
                      O        OO
                      — t l i l i fO
O
m
M
                                                 — — aw — —   — M  m  —
                      CM CM vfMAJT lf\» CM *\0
                                                                             Ul
                                                                             O
                                                          Ul
                                                          a
                                                                             Ul
                                                                             o
fiC
o

                                                                  eg
                                                             (M



                                                           OCVJ
                                                                        I    S
                                                                   O <

                                                                   i. u
                                                                                                        o  oo   o
                                                                                                        4  OO   —
                                                                                         §§

                                                                                    «S  0.".   S
                                        — *O — tO    —      lf\
                                     OO   O   IfMfV    OJ«*>
                                     IA— 11 — 11 «O\ I   —— I
                                     no—   —

                                        OO OO    in      flO
                                        pOO OO*    •»      —
                                        in^ MM
                                                                                                    __MCSJ — ftl«— — W    — — CM
                                                                                           icvicy «*)    MOJCVJ
                                                                                              S  og
                           S  Is  5-
                           —   —CM
                           —  « C  » —
                           O  03  *» <•
                           a  >   3w _ _ _   _    _
                              — x  — e o 3— '••o  —— i.
                           -  oa  -••—•«—  ec*
                              "   -  -• e» o.c'oje « >o
                                     u-e <- a«a a	c
                                                                                                                     (-£—!£
                                                                                                                     DOOM'*
                                                                                                                      - a a a
                    Date:   9/25/81
                                                II.6-38

-------
These systems also concentrate the pollutants in the last rinsing
chamber and achieve more thorough rinsing.   Although cascade
rinsing is ideally suited to continuous operations, it is also
used for batch operations.  Table 6-21 presents toxic and classi-
cal pollutant data for batch and continuous sulfuric acid pick-
ling rinse wastewater.  Table 6-22 presents data for hydrochloric
acid pickling.

     Spent Pickle Liquor

The second source of wastewater in acid pickling operations is
spent pickle liquor bath, which contains a pickling solution
composed of acids or various acid mixtures depending on the type
of steel being pickled (i.e., carbon versus specialty), or on the
type of finish desired.  Regardless of the type of acid used,
spent pickle liquors are highly contaminated.

The strength of the pickle liquor progressively diminishes as
more and more products are pickled.  At a certain level of
strength, the pickle liquor must be discarded.  Many plants
choose contract hauling as the disposal method for the pickle
liquor.   Plants without contract hauling gradually bleed the
liquor into treatment systems for disposal, or recover or regene-
rate it.  Table 6-23 presents toxic and classical pollutant data
for batch and continuous sulfuric acid pickling spent concentrate
wastewater.  Table 6-24 presents data for hydrochloric acid
pickling.

     Fume Scrubber Water

The third potential source of wastewater in the acid pickling
process is the wet fume scrubber.  Wet scrubbing systems use
water to trap and flush away the acid droplets in the fumes.
Other types of fume treatments that do not require water, one of
which is the acid mist filter, are in use at several acid pick-
ling operations.  This system controls air pollution and simul-
taneously recovers acid for reuse in the pickle tank with no dis-
charge of wastewaters.

Considerable quantities of pollutants are discharged from the
conventional fume scrubbing system, the concentrations depending
upon the amount of fumes generated in the process, the water
usage in the scrubber, and the degree of recycle.  Table 6-25
presents toxic and classical pollutant data for hydrochloric acid
pickling fume scrubber water.

     Absorber Vent Scrubber Water

The regeneration mode of treating spent hydrochloric acid pick-
ling solutions can produce an additional wastewater source.  Wet
absorber vent scrubbers are used to collect and scrub fumes
produced by the acid regeneration process.   The concentrations of


Date:  9/25/81              II.6-39

-------
    TABLE 6-21.  TOXIC AND CLASSICAL POLLUTANT DATA FOR SULFURIC ACID PICKLING,
                 NET RAW RINSE WASTEWATER [2-12]

Po 1 1 utant
Classical pollutants, mg/L
TSS
Dissolved iron
Oil and grease
pH, pH units
Toxic pollutants, ug/L
Toxic metals
Arsenic
Cadm i urn
Chromium
Copper
Cyan ide
Lead
Nickel
S i 1 ve r
Zinc
Toxic organ ics
Pa rach lorometacresol
Methyl ene chloride
Chlorod ibromome thane
2-Ni trophenol
i*,6-Dinitro-o-cresol
Bis(2-ethylhexyl )
phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Te t rach lo roe thy 1 ene

Classical pollutants, mg/L
TSS
Dissolved iron
Oil and grease
pH, pH units
Toxic pollutants, ug/L
Toxic meta Is
Arsen i c
Cadm i urn
Chromium
Copper
Lead
Nickel
S i 1 ve r
Zinc
Toxic orqinics
Methylene chloride
Diethyl phthalate
Dimethyl phthalate
Benzene

Number of
samples

13
13
13
13


2
5
5
5
5
5
5
5
5

5
5
5
5
5
5

5
5
5
5
5


9
9
9
e


3
3
3
3
3
3
3
3

3
3
3
3

Number of
detection!

1 1
13
12
13


2
1
5
5
1
3
5
|
1*

1
|
|
|
|
It

3
1
i
i
i


9
9
a
8


1
2
2
3
2
1
I
2

1
1
2
1
Batch
Range of
detections

1.3 - 750
3.6 - H3,000
0.6 - 43

-------










a

U
c o>
CO *»
CD 0)
r-o

IA
«- c
o o
•—
C 4J
CO U
._ CD
•o -P
0) CD
ZTS




U>
C
*- 0
o —
4J
CO O
01 (D
C *>
cc-o
- c
o o

i. **
0) U
JO CD
3 0)
z-o

It.
O
IA
L. 0)

e e
3 co
Z (A
















*»
c
CO
3
«•
—
2



O «
CO •
CM CM
















IA
3
O
0 OJ- 3
(^ . . c
CM coco —

i tie
o in oo o
— — —





CMOCMCM








CM CM CM CM






O VO co
Olftco

^
CM







O t^ O O
Oco • •
CM ON Cvl

*_



O
o
o
•OOO

— CM — IA

1 1 1 1

— —





CM ON 00 ro








co co CM co
«B «* ^V ^—






_J _J
^^ x^
i1 f
_J

(A (A Ol
jj *j a.
ceo c c ®
CO O M CB O  COIA CA
3— CD+> 3— Cl) JJ 4J
— U— — C— CCA
— ^ OC — ^ D> C CO —
•OCD 3 O « 3 JJ CO
a> TJ a> *o 3 *»
— ex — ex— o
— o co a — o co a — E
co w ee in o
O— » owe/)— « ao
,^ ••• (A I,, ^F .ja l— . *A ,m ^» ,^
MQH-OO. WQHOCL OX
(A (A •• O
CO CB XH-
333



oooooooo
co it — co O Ox CM O
•* CM V ^ vO ^ *A O
^
^w
CM






O OOOOOO
oo — vor-ifcoco
— V d'vo — vOco




o
o
o oo
o o «
OO OvOOcoO
O\ lA O O\ «co ^vo
— CM — r — zt 	

1 1 1 1 1 1 1 1
OOOOOOOO
— Cvl 	 VO 	 co
V CV) V V V V —





CO CM CO ^ lA co 1A VO








«OC01A1AIA1AIAVO
















IA
U
C
>> S co
C O E 3 0
0 — 3 ~ t. — t-
E C — g CD CD O
— 0 e o a-o jc o
** wo *. a co o c o
c (- co c o u 	 —
«OOO-JZN X
0
H




CMh-O 0 OCOO CMco
— Cvl O — O— co ro CM
VO V vo V V V
•s
—







OO OOO OX
V V V V






O 0
o o
CM O f- O
oo * — *IA— tno
cvjvo— v J-PJ— inj-
co o r-
tll— 1 III— 1 1 1A
V
OOO 0 OOO 00
VVV V VVV V V





Jf CO CV — CO fO CO IA — C\J fO —








SO VO VO vo VO vo vo vo VO VO vo vo







0)

— CO 0)
O ~* — -P Ci)
CO (A — CO CO CO C
*OO> >> .C — CD-POCD
— s- X .P co -P co — C
l-O CD ££ CO — >>«
o i £ Q.4J— cor: —
— o r: co£ +J >>
n> £ i — — Q..C 4J o r:
coo >»co>. 4->r:o-p
ECD i- r:+->N — r:o.^-a)
r: cu -P w ro c x a oo
O-UC— 0) — CO 4J 	 i-
ct-ccuc icons— >>£ o
oca 	 cvir: n >i£ o —
«- «- xo o~-*->— i r:+Jco£
- iwvo 5 w"a^f » li~
OU-S^O-CO CO O O O 1— H-















































•
—
+i
s>
ID

CO
4J
CO
O.
^
lA
CO
•
^.
•
>

«•
(/)
X!
0

CO
O
£
—
CO
c
Date:  9/25/81
II.6-41

-------




_
QCV!
O 1
 JO
>O(MC\Toi
1 1 1 1
O CJ •
•* V
eo





^











i
**^
S1
_J
V,
2 2
ceo
0 O <0 «
u (. • u u
3— to 4* *>
— t ~ ea>
— •a o» c « —
O 0> 3 *> t>
a>i3 3 *J
— C I — «
— o * a — «
a « o
o « — w . 0.0
uao)- a o >
M *^ C
• XI-
1* o
o t-

SO O O OOO O
(MOO O — 5 O
ovo Otno •*
» « ft «
O(*) in ro
* oj r-
04







§0
o o
00 0 0
•o o *
or- -oo o M
*o r~ * f"-c?vf> to ~

§OOCM moooo :
III — — ^ 1 J-iTi— — — C
tf\oo -ooo in +i
woo— o«o — c
o\o 0.3-0 o
*<««>« c
ON **? *O
O N —
fNJ











CV « W ftl CMWNCMNW




O
S S .
£ a « o c
41 T3— — WO «
«|5 II III 1
oc o— a £ p u
•1 |tlilit>l«o
fsLllo "-.IHIIsssi
TjCo-so— c o — — *»»aii« — —
ouo-izwN ^< — "o 2 5 o o K t- 1-
o
h-


|-§

•a* cu
j




Oeop
§-g
S


§ §
o oo
— ineo —

ooooooo m
• i i • o — oooooo m
o tnmo * » " •>
l^^v' ~~£

— •





r+*Qr+r+






N.«h.f^




*i
8*


32 z
CCO 0
a— S 2 w u o
— V Ol C ft— C O
00 3-UMB Kg
w^iZcAaT — t-CB£« ,-. — — ~01
«ooi-a OX
-------













o
o
o

X
g
ce
a
>


at
o

CM
K 1
Q *--
H-CC
zo
O
i-a

33
ouj
O- _J
^
-10

OCL.
MZ

ft- C
o o
C P
«**
W
._ 0)
•0 P
ZTJ



10
4- C
O O

0) p
OIO
C 0)
03 P
OC 0)
•o




V>
*- C
0 0
i. p
0) O
A SJ

3 0)
ZT3



O V>
CO

CO O
o E
E 03
3 U>
Z











^
C
03
P
3
— >
_
O
a.

OO
oo\
o
^
OS











o
o
o
O O 3
— ^" — Q
	 V 3
C
II 1 —

oo — e
C3-* V O
0 O
r-







CVICM CM










CMCMOCM





oom

oj-
^
in




ooo —
OCM -V
o — in
^
•*



0
o
oo
oooo
^ *^ •
— co CM *O

1 1 1 1

— O O vO
r^d








OS OS VO OS










OS OS 00 OS






_, _,
v^ x^
0, g,

* * ^^
in w w
P -P 3.
C C CO C C CO
00 O W 03 P (A «
pi. 03 U)
2 '" £ ™ 2 '" * ~ c t8
— -o me — x> we 03 —
OCO 3 OCO D P B!
a> -o o-> -o 3P
— ex — ex — co
— O 03O. — O 03 O. — E
03 ^ Q
03 03 XH
— - 0
O O 1-

oooooooo
ovoinooooo
	 ooooo
M ro — OOin
~§ ~




ooooooo
lAJ-OOOOO
— f-o">om
cO ^^ ^™ ^^ ^^
•" — "™

o
0
o
oo «oo
o ooooo
o ooooo
— OO « -.vo » .
-OSOOf-CM «CM —
JJ- fO CM fO CM — CM SO

1 1 1 1 1 1 1 1

omoooooo
— covo v .*in
^
~







CM PO ^t if\in^ in in










CM co m mm m m m













 CO
CO — 03 03 C
^O ^™ «C *"~ 4) Q)
Z x* ^5x§
O CO Q.P£ —
— C £*» X
O XCO X OP
E £ P N- 1- «
(-CO P co C XO O
o c e»— co P— «-
	 CMJC A O —
XO~P— 1 03£
0£ C 1 C XC <- 0
— P » « ap i P —
£CO£— 3 — CO «-
OZO-CO COQI-I-
















































•
.^

P
CO
U)

03
03
,
m
fO
•
r~


U)
•o
o
P
i
o
p
X
••»
09
c
<
Date: 9/25/81
II.6-43

-------









o

ce
o— •
-ICM
X —
O 1
OCM
C£ *— •
O
XUJ
CO <
= 3:
OLd
zco
— 
Z
oct:
UUJ
CO
CCCO
o o
IJ.CC
 O1C CO —
O CO 3 4J CO
CX> -0 3 *J
— CX — 0)
— O CO Q. — E
CO 10 O
o cow— . ao
	 CO — X —
WOr-O Q. OX
ta — o
co XH-
— o
0 H-








CM CM co J- — co J-











CM CO J- JJ- .* it if

















CO
u
c
> £ co
c o 3 a
o 	 s- — s-
E C E CO CO O
— CO O tXTJ JC O
•P  i- O.CO O C o
C S.JZ O CO 	 —
«00-JZN X
o
1-





o ooo
O VOCM —








O VOCM
— CMCO
V










o ooo
co CMCMVO
co cococo
r- co
— 1 Jfr III

o ooo
v v v v








— if— CMcod-











^^^ A ^ £t







CD

CO CO CO
•0 — -P
— •-» CO CO
1_ — — jr —
O O >, w CO
— CX ££
c co CD a-p
u jz JT £
eo a— — a
*> E S-JT J-> N —
O 1- o *J eo C >>
V O— CO— CO -P
<4- JZ I co J2 O
C O OCMjC O

O O *» 1 JC >>C
I 	 C CO O.JJ 1
co £ CO — 3 —
ooa-co coo
























































.
^_

4J
CO
to

co
CO
a
^
iTl
•
to

^
•
^

• •
10
•a
o
£
43
0)
E

U

JJ
>j
M.
CO
C

Date:  9/25/81
II.6-44

-------
pollutants discharged from the scrubbers vary considerably and
depend upon such factors as the amount of fumes generated in the
process, the water usage in the scrubber, and the degree of
recycle.  Table 6-26 presents toxic and classical pollutant data
for hydrochloric acid pickling absorber vent scrubber water.

II. 6.2.10  Cold Forming  [2-13]

     Cold Rolling

The major process water use in cold rolling mills is cooling the
rolls and the material being rolled.  This is accomplished by
using a flooded lubrication system for both lubrication and
cooling.  A water-oil emulsion is sprayed directly on the ma-
terial and rolls.  Due to the high cost of rolling oils and the
implementation of pollution control regulations, mills currently
use recycle and recovery systems.

Considerable heat is generated during heavy reductions at high
speed on the various types of mills.  Not only is the temperature
of the product raised but also the temperature of rolls.  This
heat is removed from the mill by the flooded lubrication system,
and by noncontact water that is used in the internal roll cooling
system.  High quality rolling oils are added to form the emulsion
sprayed on the rolls.  Oil and temperature are the basic pollu-
tants in the discharge.  However, the oils become contaminated
with solids as they pass over the rolls and the product.  Also,
the oils themselves can contain high levels of toxic organic
pollutants.

Recirculation mills are more common throughout the industry and
in the aggregate, roll higher tonnages than do combination and
directed application mills.   In this operation, the oil emusion
in the flooded lubrication system is collected and recycled to
the mill for reapplication to the rolls.  These mills usually
have periodic batch discharges of spent rolling emulsions,
although a small amount is continuously blown down at some mills
to maintain rolling solutions of acceptable quality.  The used
emulsions in some mills are treated in filters and cooling sys-
tems prior to reuse, thereby assuring that the rolling solutions
contain few impurities and remain at a fairly uniform temperature.
Because of the conservation practices in use and the high degree
of recycle, very low wastewater discharge volumes are achieved.

The second type of cold rolling mill is the Direct Application
(DA) mill.  In these mills,  fresh rolling solutions are continu-
ously added to the rolls.  Treatment plants and palm oil recovery
systems are usually installed to reclaim oils for reprocessing
and potential reuse.  The high cost of rolling oils has dis-
couraged the use of once-through systems.  Once-through systems
are used only when a high quality product is desired which re-
quires the application of a solution that is free of contamina-


Date:  9/25/81              II.6-45

-------









o
0


U
—
ce
o
_j •— i
XCVJ
o —
O 1
IT CM
O— .
xcc
UJ
Cfll-
3D ^
0?
Z5U1
Zl-
— CO
^ ^
2 2
0

UJ
a: co
Offi
it «^
ce


I-CC
3UJ
-ICO
-ICC
oo
a- co
CO
Si
woe
CO
^ H~
-JUJ
oz

o -
zo

oIJ
— it
xo


•
VO
CM
1
VO
UJ
CO
^
1-











co
C|- C
o o

c ^
CO O
CD CD
r -p
•o

CO
6- C
o o

C -P
CO U
- CD
TJ -P
CD CD
STJ







CO
 WC
0 CD 3
a> -o
— ex
— o co a.
co co
o cnw— ,
	 CO — X
WOHO a
to
CO

5


if OiTsOO

v oo r-ov





















o o
o o
WOO —
1^ •>— Ov •>
_ — — fM. ^
0 0
— 1 00 I I I I
CM O
o oooo

v &v \or~










— CM — CVI CM CVI CM











— CM CM CVI CVI CM CM










_J
•x^
Ol
a.
co co
•P 0
C co —
CO— C
•P co >> E  CD
CD CD co CD C
C T3 ^*^ ^ ^ 0}
CD — — CO CO —
- «- >. J=- >>
J=— CD J=£ -P
•p££ aw co
CD u— CD C. O
i o >>*>— a«-
> O
C 0 C-P-.P 	
CO — CD CD co O >»£
«- J=— 1 J= O£ U
4-> O >>CM 4J 1 4-> CO
1 — S. ~-Jl C CD I-
CMO *> co a i E -P
. CD— 	 CD
— zco aai-





























































,
^

•p
CD
CO
co

CO
0
IA

•0

^
.
>
CO
•o
o
4J
CD
E

O
^)
^
_
re
c

Date:  9/25/81
II.6-46

-------
tion.  These mills have the highest discharge flow rates of any
of the cold rolling operations.

The third type of cold rolling mill is the combination mill,
which is, as the name implies, a combination of recirculation and
direct application rolling stands.  These cold mills are multi-
stand with the last stand usually being the direct application
stand.  Although, the applied flow rates are higher than for the
other types of mills, the discharge flow rate in kg/Mg for a
combination mill is substantially less than for a direct appli-
cation mill because of the recirculation system.  Tables 6-27, 28
and 29 present toxic and classical pollution data for recircula-
tion, direct application, and combination mills, respectively.

     Cold Worked Pipe and Tube

Wastewaters are generated in cold worked operations as a result
of the continuous flushing of the product, welders, or rolls,
either with water or soluble oil solutions.  Also, wastewaters
are discharged from hydrostatic testing operations.

The cold worked pipe and tube mills generally employ three main
water systems.

     1.  Noncontact cooling water for annealing or normalizing
         furnaces.

     2.  Water or soluble oil solution cooling or lubrication
         systems for welders, rollers, etc.

     3.  Hydrostatic testing waters.

The cold worked process using water and cold worked process using
soluble oil solutions both generate a fine scale as well as
insoluble and water soluble oils and greases.  Free oils and
greases are present in both types of mill wastes as a result of
oil spills, line breaks, excessive dripping of lubricants, and
equipment washdown.  In addition, water soluble and emusified
oils are found in the mill soluble oil solutions.  The pH of cold
worked pipe and tube wastewaters may be slightly acidic due to
prior pickling operations.

Since similar oil solutions are used in both cold rolling and
cold worked pipe and tube operations, similar pollutants are
expected in all cold worked wastewaters.  Limited data are avail-
able on wastewater characteristics in the cold worked pipe and
tube subdivision.  Table 6-63 (Section II.6.3) presents plant
specific data for the one plant sampled.
Date:  9/25/81              II.6-47

-------








o

1-
<
J
3
U
at
— •
u
U4
at
i
0
j
o
at
Q
_j
o
u

CC
O
u.
i
1-
^
1-
3— •

-J —
O I
0-CM
^^
_J
— H
21
_i ^_
oto
^
o ^
Z

rf
occ

xt-
ou
HZ
t
f^
CM

o
00
K








u)
ct- c
o o
•—
C P
CO O
0) 0)
Z 

- C 0 O 0) -P 01 o c « co -P <£ O •o CO It. C o c (- *» « o .a 0 E -P 3 a> z-o o 0 i — a> o .0 E E co 3 «1 Z P C a * O a. OiAO ITNOOOOOCOOO O O OOOOOOO O iTtO OifiifNiFi OOiTiO O — O if\rf — VOOOCM OO O CM J-CMiftOO O CM CO NO-*I*- — — CM IfSlft NO o % * — CM CO OvOONO f- -o • OMAONO * \0 o 0 0 o o rtV — CMO VOOO ON % « * » *« ^ NO CM CO CO lAO ITNOOOOO O IftO roOOcoOO O d- — a- oir> r- co r** ^ ^ CM oo oo oo oo o oo oo o — v— oo— vo v «o v — ^r ^ ^ *, COW |T| — — co ID o O O OOO V CM oo o OO 0 O OOO O ON *O\ OOO^*» *«lft OO^ ^O ^ OOOOCMOO -^•CM • OOOOOOOOOCM > O OOOvOinOO O OO OOOOO O -OO •3-fOCOt"- 1 1 1 1 OVOO^S" o\ -o • — d- — CM •t ^D CO \ft ^3 VO 4J - c- c <« — • -o o>c co — 0 0 3 P CO a >-o 3 -P — ex — 0 — o co a — e CO M O ow to— » ao — W X — ££co- >» 0 £ e_ 4j _£ o 010 X *»*»— co £ — 000 OO. - — £OC 0 ££«£ *> >> 2— p c — o £ oaia £ a a£ -P 0 £ £ C 0>»CO COpO — O »*> £ a0 ^ 0 >>>a COO •wt.£op0cco a *»—+»*> — 00— C 0 |_ (j«* £• E 0 0— p C C£ CJ3C03O— XOC£0O CC 1 — p 0 — X> - CO C 0— I£J30 >>£ CO 0 0 C — 0O — O^ — O— >»£ -P O O CO O CM -P 1 l£4Ji-<.»£ *»— 1 1 -P C<->£ CC-P0£O<-3O c ». — — — o^£ ** az^-vo c o «j a i i CDE-PSP — — Q) CO * *^Z 1 ^ ^ O CQ 1 •* ^ Q} ^K *~" *™ * *^ *^ *™ C *•• 05 O ^ OSO UCMCMUJZZCMCMd'a.O.eD QOOO methods o ^j ^j ^B CO < Pate: 9/25/81 II.6-48


-------
o

5
_J
a.
a.
1-
o
UJ
cc.

o
1

o
z

_j
—i
o
o

o
Q£
O
u.

^_
O

K
(-
2 ^^

^~
21
CM
t— *
 OO OO O O • »
— r*- • CM— ir»p n — 	





nm — 1»> CMCM — CMCM 	 CM — — — CM 	 —










?» C 0] O
•DO *>*» e
_, _£ 0_ 0 „ c
, v^ I. .wo— — — 09
CBC £°OO>UU£
— k — CM — ** U £*i — — 0) ^
— oi-o c co— c c »— o w » x >. c o
^ E — I £»."~5l. _ t S c C 1 — CMCA O B O
— >— w i i L. a
« •> o efcpa.-ojc>o N£ «£ijcccf >-
«>-OQa o!<N xtoo — zco oo
s
c.
4J
i
u
**
>»

a
c
<












(A
t- C
O 0
O *J
o>a
c a
CB 4J
OC Q
^

O «
If
Z










4J
g
a
w
3

i

























OO • myjMO1*— ift
r-vovo — CON —

—









» ,
• "v
« pi
-p a—
c —
• * 3h
"0 WX
3 M 4* O
— 0 4J « — fl)
o ^*~ ** >»**
O. OtC 3C «
— *g 7^*S«3i_
U • ft- O.CJ ** C • 9> O
CHO?. Xffi <§OZN
S £










Date: 9/25/81
II.6-49

-------
II.6.2.11  Alkaline Cleaning  [2-13]

Alkaline cleaning is accomplished in batch and continuous opera-
tions.  In both operations,  the product is cleaned in alkaline
solutions prior to entering other finishing operations.

Wastewaters are discharged from two sources at alkaline  cleaning
lines:  the cleaning solution tank and the subsequent rinsing
steps.  The cleaning solution tank contains a caustic solution
which generally has high levels of sodium compounds and  other
constituents depending on the type of solution used.   Some lines
reuse the cleaning solution continuously, adding fresh solution
only to make up for the dragout and evaporative losses.   However,
due to the build up of contaminants (dissolved solids and oils)
in the baths, the contents of the bath are discharged periodically
or as soon as the cleaning ability of the solution is impaired.
Because most alkaline cleaning baths are used to process a large
amount of product, pollutants can build up in the tank to extreme-
ly high levels.

The other source of wastewaters from the alkaline cleaning pro-
cess is the rinse steps following the cleaning operation.  After
immersion of the product in the cleaning bath, rinsing is re-
quired to remove residual cleaning solution from the product and
to cool the product if the cleaning bath was heated.   The rinsing
is usually done in dip tanks or spray chambers, and there can be
either one or several tanks depending upon the degree of rinsing
required.  Although some mills use standing rinse tanks (no
continuous flow through the tanks) many mills use rinse tanks
that have continuous water feed and overflows.  This is done to
keep the rinsewater relatively free of contaminants and to cool
the product, if necessary.

Table 6-30 presents toxic and classical pollutant data for batch
and continuous alkaline cleaning operations.

II.6.2.12  Hot Coating  [2-13]

The major wastewater flows originating from hot coating opera-
tions in the steel industry fall into several distinct groupings:

     1.  Continuously running dilute rinse waters from rinsing
         and flushing operations following alkaline or acidic
         cleaning steps; rinses following chemical treatment or
         surface passivation steps; and, final product rinses
         after hot dipping.  These waters contain suspended and
         dissolved matter, chlorides, sulfates, phosphates,
         silicates, oily matter, and varying amounts of dissolved
         metals (iron, zinc, chromium, lead, tin, aluminum,
         cadmium) depending on which coating metal is used.
Date:  9/25/81              II.6-50

-------
CO
d- C
O O
—
C -P
CO O
CO CO
a
TJ
(A

< «K C
o o
ce
o co P
u» o> c
c co
< CO -P
i- ce co
< T3
o
r-
3co
_l— 10
-1 1  U
-JtO CO O
^ Q£ -Q Q]
OUI E -P
— 1- 3 CO
CO < Z"O
cos
>E
a>"D 3 4J C 3 CO
— C X — CO O — -D —
— O co a — E E E— CD
CO CO O — O C-0 JC
O CO — CO « Q.O P ^ CO CO O
	 co x — c jc. >> a> —
COQOI-Q. OXjf vo — oocvir-
VOcO CMd-lf\C\JCM 1 COCOCM — COCM
CM —
ir\
_.







1 • — 1 » rt 1











^** PO PO PO PO PO PO PO PO PO PO PO PO CO








CO CO
•P P CO
CO CO CO CO C
c — — 	 w co
CO o — co co ca —
3 C >> JC.C— >>
— CO X 4J4JCOCO .C
0 H CO ££CC P
CO 4J CD Q. £ Q. Q.4J CO Q>
O OCO — CO JC£- O
— E <- cu «- >,« 	 a>> t-
ci-4J£o £co>>>> a. o
E eoo—'P— P — *>*> — «~- —
3 OC.-CC.C COco3O>>co JI

C OS-Qi-coOOd+JI 1 -W O C CO
CO O O 1 O P C ~—S2 C C 9) N CO «-
— C 0 — VO3CCOCOO.I IECS--P
co ~ — £: — co £ — 	 co >> co
(ONI X O CM U_ a. a. CQ OQQCOO-r-
o



Date:  9/25/81
II.6-51

-------
     2.   More concentrated intermittent  discharges,  including
         spent alkaline and acid cleaning solutions,  fluxes,
         chemical treatment solutions, and regenerant solutions
         from in-line ion exchange systems.   These  discharges
         contain higher concentrations of the pollutants noted
         above.   Discharge volumes from  these sources can be
         minimized by close attention to maintenance and ope-
         rating conditions, and through  provision of dragout
         recovery units whenever possible.   Spent cleaning baths
         are normally collected separately for disposal  or treat-
         ment, and the plating baths themselves are never dis-
         charged.  Instead, they are recovered and continuously
         regenerated as part of the coating operation,  or sold to
         outside contractors for processing and recovery.

     3.   Fume scrubber wastewaters are produced by continuously
         scrubbing vapors and mists collected from the cleaning
         and coating steps.  Scrubbers may be once-through or
         recirculating, and produce wastewaters that may be used
         as process rinses, since only volatile components are
         present in the air to be scrubbed.   Less than 40 percent
         of all hot coating lines have wet fume scrubbers. A  few
         plants use dry fume absorbers,  but most lines do not
         provide for any vapor and mist  control from coating
         operations, other than acid tank covers, or fans to
         divert fumes out of the work area.   In many cases, the
         coating line has been designed  to minimize the potential
         for releasing mists and vapor to the air.

     4.   Noncontact cooling waters are used to control tempera-
         tures of the furnaces and molten bath pots associated
         with coating operations.  Except for an increase in
         temperature, these waters are not contaminated with
         pollutants during their pass through the coating lines,
         and thus, require no treatment  if they are kept separate
         from contaminated process waters.

There are large variations in the levels of most pollutants.
These are due mainly to coating line configuration.  For example,
lead is used at some plants to anneal products prior to coating.
If a pickling or rinsing step follows lead annealing, considerable
lead may be found in the wastewater.  Otherwise, lead is essen-
tially absent except as a contaminant in the zinc metal used for
coating.  Zinc was found to be essentially absent at several  of
the galvanizing lines listed.  In those  cases where zinc content
is high in the raw wastewaters, it is often the result of re-
pickling and coating previously galvanized product which failed
to pass inspection of the coating following previous passes down
the line.  Similar findings were noted for chromium and nickel.
Date:  9/25/81              II.6-52

-------
Relatively low concentrations of toxic organic pollutants were
found in raw wastewaters from all coating operations during the
toxic pollutant survey.  The phthalates and methylene chloride
were universally present but it is believed that they are attri-
butable to sampling and analytical techniques.  The remaining
toxic organics tended to be present in plant intakes at levels
equal to or greater than those found in hot coating wastewaters.

Tables 6-31 and 32 present toxic and classical pollutant data for
galvanizing and terne-coating operation wastewaters, respectively.

One plant was sampled for aluminizing wastewaters and these data
are presented in Section II.6.3, Table 6-68.

II.6.3  PLANT SPECIFIC DESCRIPTIONS  [2-9,10,11,12,13]

The following paragraphs describe classical and toxic pollutant
data and treatment methods at selected plants within each subcat-
egory of the Iron and Steel Industry.  Selection was based on the
availability of data and description of the treatment method
used.

II.6.3.1  Cokemaking:  By-Product Recovery Coke  [2-9]

     Plant 009

This plant uses a physical/chemical treatment system.  Excess
ammonia liquor from three coke plants (one off-site) is mixed and
then passed through a gas flotation unit (with a side stream
through dephenolization), a mixed media filtration unit, an
activated carbon adsorption unit, and free and fixed ammonia
strippers.  Benzol plant wastewaters from two plants are mixed
and passed through the gas flotation, mixed media filtration, and
activated carbon adsorption units prior to disposal in coke*
quenching.  Table 6-33 presents plant specific classical and
toxic pollutant data for plant 009 in the byproduct coke subcate-
gory.

     Plant 001

Excess ammonia liquor is equalized; stripped of free ammonia;
dephenolized by vapor recirculation; diluted (85:1) with cooling
water and other wastewater flows; and discharged to a receiving
stream.   Final cooler blowdown is diluted 2:1 and disposed of by
coke quenching.  Quench runoff recycles to extinction.  The in-
stallation of adsorption by activated carbon following chlorina-
tion was under construction at the time of the survey.  Table 6-34
presents plant specific classical and toxic pollutant data for
plant 001.
Date:  8/31/82 R Change 1  II.6-53

-------
o
z
~~
— _

z
^
^
o
o
	
1-
o
o
o
X
o:
0
u.
H
Q
3 =
0 1
a- CM
< K
OLd
— 1-
W <
V>"3.
^ LJ

OCO
QS
Z

oce
xt-
O Ld
f- Z

ro
i
VO
Ld
m


c
o
b —
°S
C C
01 (U
E-0

U C
o o
C -J
- 01

E -0



c
t- O
o —
Oi CD
c-o
<-£
o o
u u
II


0
o —
.c a
Z- (C
Z V)






c
«
o






-1" "^ "ggg'S^g ^~" -§- S! ~ BO;*
V V (M




oo^ g g^oooooo «e= or- gmvo ooo
Lf"\ "~ — X M V O
O



§O O
OO OC O 0
o o c o c o o
ao.ro -OL-S.I^. ^ IA o
o r- «o
tiiii iiiiiiiii t i i tr\ i i i i i i ur\ i i i a-
LTMTir-OM — LTi{\JO\COOOO iTM"lO lAOlA L-MAO iTufMft
• — O fU(\Jf\IL'N(\lf\JC — — r^ —
0 V ^ V V xo





•O-OxOCNJVD ftj \D \0 xD 0 (TilfMA SO VO vO \0 \0 \0 VO so VO VO VO ^ vO \O VO VO




—i a>
-^. u
CTl C 01 0)
E (CO 4J 4-> Q
•^ =- cci-cxiiro— >ffl
CO C t-OOOX *J4->— «£ —
ccj
4JWwt.w W-OQ-J: a^ a Q.J= w 01 j=
SO*j.-*j O£l-COO— *JJZO*J
— i--c cw — OEOOI i-xo) 	 jztii-a>
— CiCO'B t— C — t- — JZ flJ O £ *J >>>)Q. OD
O 3L-U •" (C E (6 t-O^JJC— *J(o jj jj _ _ i.
ci — — a> — •- i--o — *- i-cio-co— otJZ ^o x^ o —
— w a — o — 6 c E o— aio) oa>— *-oi->»(ocvj*) IIJZ^CCJT
(C (O ift O UO O. C "D ^t > O N-OlOJZJJ— ^ C C J-> 03 t- O
U(/)_ . ij (n Q. O W t- Q. W TO U — C OC — — rO3*JCWQ. 1 1 ft) E 4J —
— CO — I O — - i- JZ O >> « 	 — QJ -.C -— U 0) — 3 	 W C-
M 1- O D.I- O U X < O U O — 1 Z « ISJ Xtfl — U — ^-Ell-CD (DO O O Q h- *-
(A - O O
w x t-t t~
— o
o •-



uT
21

IX
UJ

o
•z.
t-
o
o
H-
o
X
(X
o
1 1

J
Q
K
_l —
O 1
a. c\j
U Ld
CO <
COS
< Ld
O CO
*J ^
s a5
2 <3
c ^
OCC

" XH
m O bJ
^ h- Z
>
•S c\j
5 «
i ^>
.e u
> ^
I iS






c c
• «
C -o

v!
3 C
a c
. 4
u a



 *.
- a
S5
w c
o e
u «
!!


o
t» a
li
zS






c
d
^
i
e






Z"^ SS2SS
r^.— ov ^ (y




— tf\ W O if\ tM OOr-O"*
— V CM — • r-flvovoO\
Lft —




8 §
O ift r* OO —
«0«*iW — •* • -OOOS -
i r i i i i IAO— — — i i i i i
CKJJfN J CM • O O Q O O
o a-cy v v
V











?
?t 5 - g
« 2 r > >
S !. ,; | 1 |
£ «S± IB" ^££
°* S^^ ?£ " 0 «Z 3
m - - a. — t-xoca-waa* — C O Q * Q.— ** Q «) Q.*> C- Q-<8 CJ C
VI — — «- U S J=CD£— OjCOCD 	
^:O)___ a uox^-a I-OO-JZN
o
o *~

Date:  8/31/82 R  Change 1  II.6-54

-------
          TABLE 6-33.  PLANT SPECIFIC CLASSICAL AND TOXIC  POLLUTANT DATA
                      FOR PLANT 009-BYPRODUCT COKEMAKING  [2-9]
Raw
Pollutant wastewater
Classical pollutants, mg/L
Ammon i a
Oil and grease
Total phenols
Sulf ide
TSS
pH, pH units
Toxic pollutants, ug/L
Metal and inoraanics
Antimony
Arsenic
Cyanide
Selenium
Silver
Zinc
Toxic organ Ics
Phenol
Pa rach 1 o rometac reso I
Pentachlorophenol
4,6-Dinitro-o-cresol
Ac ry 1 on i t r i 1 e
Xylene •
Benzene
Ethyl benzene
Toluene
Fluoranthene
Naptha lene
Benzo( a Janthracene
Benzoj a (pyrene
Chrysene
Acenapthylene
Fluorene
Pyrene
Chloroform

4, 100
130
1, 100
520
86
8.5


250
130
28,000
66
<20
I2
NM
21
48
NM
95

99
<57
97
>89
74
>99
>99
NM
>99
>98
>99
>99
>98
>99
>99
>98
>98
NM
   Analytic methods: V.7.3.5,  Data  set  I.
   NM, not meaningful.
Date:  9/25/81                   II.6-55

-------
                 TABLE 6-31.   PLANT SPECIFIC CLASSICAL AND TOXIC
                              POLLUTANT DATA FOR PLANT 001-BY-
                              PRODUCT COKEMAKING [2-9]
Raw
Pollutant wastewater
Classical pollutants, mg/L
Suspended solids
Oi 1 and grease
Ammonia-N
Phenol ic comps.
Sul fides
Thiocyanate
pH, pH units
Toxic pollutant, M9/L
Metals and inorqanics
Antimony
Arsenic
Cyanide
Se 1 en i um
S i 1 ve r
Zinc
Toxic organics
Ac ry 1 on i t r i 1 e
Benzene
2,4,6-Tr ichlorophenol
Pa rach 1 o rometac reso 1
Chloroform
2, 4-Dimethyl phenol
2,4-Dinitrotoluene
2, 6-D i n i t roto 1 uene
Ethyl benzene
Fluoranthene
1 sophorone
Naptha lene
4,6-Dinitro-o-cresol
Pentachloropheno 1
Phenol
Phthalates, total
Benzol a )anthracene
Benzo(a jpyrene
Chrysene
Acenaphtha lene
Fluorene
Pyrene
To 1 uene
Xylene

180
27
110
9. 1
2.8
26
6.9 - 7.9


<4
5
3,300
<3
<25
220

21
13,000
NO
ND
NO
ND
530
140
ND
18
55
1,900
ND
ND
3, 100
1, 100
2
1
1
17
29
4
1,900
ND
Treated Percent
effluent removal

180
27
1 10
7.8
3
26
6.9 - 7.9


<4
5
720
<3
<25
220

ND
13,000
ND
ND
ND
ND
510
140
ND
3
ND
1,400
ND
ND
2,300
690
ND
ND
ND
13
27
3
1,700
ND

0
0
0
14
NM
0



NM
0
78
NM
NM
0

>99
0




4
0

83
>99
26


26
37
>99
>99
>99
24
7
25
10

            Analytic methods: V.7.3.5, Data set I,
            NM,  not meaningful.
Date:  9/25/81                   II.6-56

-------
II.6.3.2  Sintering

     Plant 017

Wastewaters from six sinter process scrubbers are mixed with
blast furnace wastewaters and treated to remove suspended solids
in a thickener.  The thickener overflow is further treated with
alkaline chlorination and sedimentation in a second thickener
prior to discharge. Table 6-35 presents plant specific classical
and toxic pollutant data for Plant 017.

     Plant 019

Sinter plant wastewaters are treated by adding lime to aid pre-
cipitate formation.  The floe is settled in a "Lamella" thicke-
ner.  The overflow is mixed with make-up water and recycled to
the steam hydro-scrubbers.  The underflow is discharged to a
blast furnace clarifier for further treatment.  Table 6-36 pre-
sents plant specific classical and toxic pollutant data for plant
019.

II.6.3.3  Ironmaking [2-9]

     Plant 026

Blast furnace gas cleaning system wastewaters are combined with
slag pit wastewaters and treated by pH adjustment with acid
coagulation with polymer, sedimentation in a thickener, evapora-
tive cooling and recycle.  A portion of the recycle water is
blown down to a central treatment facility which receives waste-
waters from various segments of an integrated mill.  Table 6-37
presents plant specific classical and toxic pollutant data for
plant 026.
Date:  9/25/81              II.6-57

-------
                  TABLE 6-35.   PLANT SPECIFIC TOXIC AND CLASSICAL
                                POLLUTANT DATA FOR PLANT 017-SINTERING
                                SUBCATEGORY  [2-9]
Pol lutant
Classical pollutants, mg/L
Oi 1 and grease
Suspended solids
pH, pH units
Fluoride
Phenol Ic comps.
Toxic pollutants, Mg/L
Hetals and Inorganics
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Silver
Zinc
Toxic organ Ics
Fluoranthene
Pheno 1
Chrysene
Pyrene
Raw
wastewater

9.1
5,100
11.3 - 12.0
6.4
0. 16


(a)
620
65
140
(a)
(a)
(a.)
940

3
39
6
6
Treated
effluent

5
38
10.6
3.2
2.9


(a)
(a)
26
1, 100
79
(a)
(a)
940

7
630
7
7
Percent
remova 1

45
99

50
NM




60
NM

0

NM
NM
NM
NM
Analytic methods:  V.7.3.5, Data sets
NM, not meaningful.
(a) Insufficient data to evaluate.
                                                  1,2.
                    TABLE 6-36.   PLANT SPECIFIC TOXIC AND CLASSICAL
                                  POLLUTANT DATA FOR PLANT 019
                                  SINTERING SUBCATEGORY [2-9]
Pol lutant
Classical pollutant*, mg/L
TSS
Oi I and grease
pH, pH units
Fluoride
Total phenols
Toxic Pollutants, ng/L
Metals and inorganics
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Silver
Zinc
Toxic orpantcs
Butyl benzyl phthalate
Di-n-butyl phthalate
Dl-n-octyl phthalate
Pheno 1
2,4-Dinltrophenol
Benz( a (anthracene
Benzol a Jpyrene
Chrysene
Fluoranthene
Pyrene
Raw
wastewater

810
210
5.9
47
2.2


1,300
20
600
260
5,300
200
13
8,700

85
124
20
1,000
ND
NO
ND
NO
ND
7
Treated
effluent

15,000
1,100
8.6
180
2.1


770
10
270
160
800
130
10
5,000

990
420
490
990
ND
260
190
53
860
1,100
Percent
remova 1

NM
NM

NM
4


41
50
55
38
85
35
23
43

NM
NM
NM
1

NM
NM
NM
NM
NM
                   Analytic methods: V.7.3.5, Data  sets
                   ND, not detected.
                   NM, not meaningful.
                               .2.
Date:  9/25/81
                   II.6-58

-------
      TABLE  6-37.   PLANT  SPECIFIC CLASSICAL AND TOXIC POLLUTANT
                    DATA FOR PLANT 026-IRON MAKING  [2-9]
                                     Raw     Treated   Percent
          Pol lutant	wastewater  effluent  removal

          Classical pollutants, mg/L
             Ammonia-N                 60         UU        27
             Phenols                 0.08      0.029        64
             Fluoride                  16         17        NM
             Suspended solids           510         70        86
             pH,  pH units            6.1* - 7.1   7.3 - 7.5
Toxic pollutants, u-g/L
Metals and inorqanics
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
S i 1 ve r
Zinc
Toxic organics
Hexach lorobenzene
2 , 4-D i ch 1 o ropheno 1
2, 4-D i me thy 1 pheno 1
Fluoranthene
Phenol
Benzo(a Jpyrene
Chrysene
Pyrene


10
70
12
54
1,000
21
12
6,000

ND
ND
1
4
ND
1
16
7


0.003
0.008
0.005
49
0.03
0.003
0.003
0.044

ND
ND
0.001
0.001
0.001
ND
0.001
ND


>99
>99
>99
9
>99
>99
>99
>99



>99
>99
NM
>99
>99
>99
          Analytic methods: V.7,3.5,  Data set I.
          ND, not detected.
          NM, not meaningful.
      Plant 028

Blast furnace gas  cleaning  system wastewaters are treated by
aeration,  pH adjustment with  lime, chlorination coagulation with
polymer,  sedimentation with a thickener,  evaporative cooling and
recycle.   A portion of the  recycle water  is blown down to a POTW.
Table 6-38 presents classical and toxic pollutant data for plant
028.
Date:   9/25/81                II.6-59

-------
     TABLE 6-38.   PLANT  SPECIFIC  CLASSICAL AND TOXIC POLLUTANT
                    DATA FOR PLANT  028-IRONMAKING  [2-9]
                                      Raw     Treated    Percent
          Pol lutant	wastewater  effluent   removal

          Classical pollutants, mg/L
             Ammonia-N                  25        16        36
             Fluoride                    9       7.9        12
             Total phenols              2.5       2.0        20
             Suspended solids           1,600        U4        97
             pH,  pH units               10.2       8.5

          Toxic pollutants, M9/L
            Metals and inorganics
             Cadmium                   150        10        93
             Chromium                  630         9        99
             Copper                   1,200        30        98
             Cyanide                   300       230        23
             Lead                   23,000        83       >99
             Nickel                   1,200        60        95
             Silver                     73         5        93
             Zinc                   30,000       330        99

            Toxic  organics
             2,4-Dichlorophenol          2itf)        UU        82
             2,4-Dimethylphenol            3        ND       >99
             Phenol                    250       560        NM
             Hexachlorobenzene            ND        ND
             Benzo(a)pyrene              ND        ND
             Fluoranthene                ND        23        NM
             Chrysene                   ND        ND
             Pyrene                     ND        12        NM


          Analytic methods: V.7,3.5, Data set I.
          ND, not  detected..
          NM, not  meaningful.
II.6.3.4  Steelmaking  [2-10]

      Basic Oxygen Furnace - Wet Suppressed Combustion

           Plant 032.   Hydroclones and  clarifiers are used for
primary solids removal in this  wastewater treatment system.  The
effluent is then discharged to  the thickener  distribution box
where it is mixed with the discharge from the secondary ventila-
tion  scrubbers.   The thickener  overflow,  after pH adjustment,  is
recycled, from a holding tank,  to the  process.   Seven  percent  of
the thickener  overflow is blown down to a clarifier.   The overflow



Date:   9/25/81               II.6-60

-------
 from  the clarifier is pumped to a central  treatment facility and
 is  subsequently discharged.  The underflows  from the thickeners
 and clarifier are discharged to settling lagoons.   Table 6-39
 presents plant specific data for plant 032.

      TABLE 6-39.   PLANT SPECIFIC CLASSICAL AND TOXIC POLLUTANT
                   DATA FOR PLANT 032 - BASIC OXYGEN FURNACE, WET
                   SUPPRESSED COMBUSTION [2-10]
                                    Raw     Treated    Percent
          Pol lutant	wastewater  effluent   removal

          Classical pollutant, mg/L
             TSS                  1,500       55       96
             pH,  pH units              8.7       8.8
Toxic pollutant, ng/L
Cadmium
Ch rotn i urn
Copper
Lead
Nickel
Si Iver
Zinc

98
1,100
320
27,000
340
30
8,400

8
13
9
470
10
15
230

92
99
97
98
97
50
97
          Analytic methods: V.7.3.5, Data set I.
     Basic Oxygen Furnace - Wet Open Combustion

          Plant 033.   The wastewaters from the scrubber are dis-
charged to a  clarifier for the purpose of achieving primary sus-
pended solids removal.   A portion of the clarifier  effluent is
recycled to the process while the remaining  (thirty percent)
effluent flows to a thickener for secondary  suspended solids
removal.  The overflow from the thickener is discharged.   The
thickener underflow is discharged to centrifuges  for dewatering
and the centrate is returned to the thickener influent.   Table
6-40 presents plant specific toxic and classical  pollutant data
for plant 033.
Date:  9/25/81               II.6-61

-------
     TABLE 6-40.  PLANT  SPECIFIC CLASSICAL AND TOXIC POLLUTANT
                  DATA FOR PLANT 033 - BASIC OXYGEN FURNACE,  WET
                  OPEN COMBUSTION [2-10]
                                   Raw     Treated    Percent
         Pol lutant	wastewater  effluent   removal

         Classical pollutants, mg/L
            TSS                  7,800        52       99
            pH, pH units             11.7      I 1.6
Toxic pollutants, ug/L
Chloroform
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Se 1 en i urn
Si 1 ve r
Tha 1 1 i urn
Zinc

13
75
1,800
3,000
920
iu,ooo
0. 1
710
37
180
130
19,000

22
17
NR
30,000
69
940
0. 1
2,000
31
NR
80
320

NM
77
NM
NM
92
93
0
NM
16
NM
38
>99
         Analytic methods: V.7.3.5, Data set I.
         NR, not reported.
         NM, not meaningful.
     Open Hearth  Furnace - Semi Wet

          Plant 043.   Each furnace has its own spray which is
manifolded to  a central precipitator gas cleaning system.  A
common wastewater treatment system serves all  of the spray cham-
bers.  The major  component in the wastewater treatment system is
a thickener.   The thickener overflow is recycled,  while a 0.3%
blowdown is discharged to a final polishing lagoon.   The thickener
underflow is conveyed to a settling lagoon.  The dry precipitator
dust is slurried  and removed from precipitator hoppers by pneu-
matic conveyors with water jet ejectors.  This wastewater is dis-
charged to another thickener.  This thickener  overflow is re-
cycled to the  water jet ejectors while the underflow is dis-
charged to the settling lagoon.  Table 6-41 presents plant
specific toxic and classical pollutant data for Plant 043.
Date:  9/25/81               II.6-62

-------
      TABLE 6-41.  PLANT  SPECIFIC CLASSICAL  AND TOXIC POLLUTANT
                   DATA FOR PLANT 043 - OPEN HEARTH FURNACE,
                   SEMI-WET [2-10]

                                     RawTreatedPercent
            Pol lutant	wastewater  effluent   removal

            Classical pollutants, mg/L
               TSS                      510       30       9t
               Fluoride                  260       32       88
               pH, pH units                2.7      10.8
Toxic pollutants, ug/L
Chromium
Copper
Cyanide
Nickel
Zinc

80
83
39
53
500

10
13
6
9
70

88
8U
85
83
86
           Analytic methods: V.7.3.5, Data set I
      Open Hearth Furnace  -  Wet

           Plant 042.  This  gas cleaning  system is a manifolded
system in which all furnaces are exhausted through common duct-
work  to three clusters  of hydroscrubbers,  with each cluster being
able  to serve a set number  of furnaces through the manifolded
ductwork.   The principle  of the hydroscrubber involves the use of
steam or air, and a water jet ejector for  cleaning open hearth
off-gases.   Waste heat  boilers furnish the steam for this process.

Wastewater treatment is provided in a joint system serving both
the electric arc furnace  shop and the open hearth shop.  The
wastewaters are neutralized,  flocculated with polymers and then
discharged to clarifiers  where they undergo sedimentation.  A
portion of the clarifier  overflow is recycled,  while a 71% blow-
down  is discharged to final polishing lagoons.   The clarifier
underflow is dewatered  by vacuum filters.   Table 6-42 presents
plant specific data for Plant 042.

  TABLE 6-42.  PLANT SPECIFIC CLASSICAL  AND TOXIC POLLUTANT DATA
                FOR PLANT  042 - OPEN HEARTH FURNACE, WET [2-10]

                                    RawTreatedPercent
          Pol lutant	wastewater  effluent  removal
          Classical pollutant, mg/L
             TSS                    1,500         15      99
             Fluoride                  100         27      73
             pH, pH units              6.7        9.1
          Toxic pollutants,  ux|/L
             Zinc                 390,000      4,400      99
          Analytic methods:  V.7.3.5, Data set I.
Date:   9/25/81               II.6-63

-------
Electric  Arc - Semi-Wet

     Plant 059B.  This treatment system uses a clarifier to provide
sedimentation for process wastewaters.  The  clarifier  effluent  is
either  reused in other operations in this plant or discharged,
while the underflow is dewatered with vacuum filters.   Table 6-43
presents  plant specific data for Plant 059B.

     TABLE 6-43.  PLANT SPECIFIC CLASSICAL AND TOXIC POLLUTANT
                   DATA FOR PLANT 059B - ELECTRIC ARC,  SEMI-WET
                    [2-10}
                                     Raw      Treated    Percent
          Pol lutant	wastewater   effluent   removal

          Classical pollutants, mg/L
              TSS                  190,000       120      >99
              Fluoride                2,200       64       97
              pH, pH units               (a)       8. I

          Toxic pollutants, ug/L
              Zinc                 830,000     3,300       99

          Analytic methods: V.7.3.5, Data set I.
          (a)Representative sample could not be obtained.
      Electric Arc  - Wet


           Plant  051.  Sedimentation is provided  in a thickener.
Vacuum filters are used to  dewater the thickener underflow while
the  filtrate is  returned to the inlet of the thickener.  More than
ninety-eight percent of the overflow is  recycled to the scrubbers
while the remainder is reused in other mill operations.  Table
6-44 presents plant specific data for Plant 051.


      TABLE 6-44.   PLANT SPECIFIC CLASSICAL AND TOXIC POLLUTANT
                    DATA FOR  PLANT 051 - ELECTRIC  ARC, WET [2-10]

                '                    Raw    Treated  Percent
                Pollutant	wastewater  effluent	removal.

                Classical pollutants,  mg/L
                  TSS                2,900      86     97
                  pH, pH units           7.I      7.6
Toxic pollutants, ug/L
Benzene
Fluoranthene
l|-N! trophenol
Pentachlorophenol
Pyrene
Ant i mony
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Silver
Zinc

10
3
7
3
3
670
1,200
3,300
4,300
1,300
23,000
1)3
63
100,000

28
5
NO
NO
5
6
1 1
1.500
550
80
1,500
5
1
20,000

NM
NM
>99
>99
NM
99
99
55
87
9ll
93
88
98
80
                Analytic methods: V.7.3.5, Data set I.
                NO, not detected.
                NM, not meaningful.
Date:   9/25/81               II.6-64

-------
II.6.3.5  Vacuum Degassing  [2-10]

     Plant 062

This plant utilizes a combination treatment system for its vacuum
degasser and continuous caster.  Vacuum degasser wastewater is
discarged to a hot well from which a sidestream is treated through
a bed filter.  The filter effluent and the remaining degasser
wastewater is then discharged to a main hot well.  From the hot
well, the combined degasser and caster wastewaters are treated
through a scale pit, sand filters, and cooling tower.  A recycle
is taken from the cooling tower back to the degasser.  This
system has zero discharge since the plant recirculates its water
through a 7.6 x 104 m3 (20 M gal) reservoir.

Table 6-45 presents classical and toxic pollutant data for vacuum
degasser plant 062.

     Plant 068

Vacuum degasser wastewater discharges to a hot well and is then
treated via the mill central treatment facility.  Treatment
includes deep bed filters and clarifiers.  A recycle is taken
from the central treatment facility to the vacuum degasser.

Table 6-46 presents classical and toxic pollutant data for vacuum
degasser plant 068.

II.6.3.6  Continuous Casting  [2-10]

This plant uses a combination treatment system for its vacuum
degasser and continuous caster.  Caster wastewater is discharged
to a scale pit which receives degasser wastewater as well.  The
wastewater is then recirculated through a cooling tower to pres-
sure sand filters.  Backwash waters are discharged to the scale
pit, which overflows to a large lagoon or reservoir.  Filter -
effluent is passed through another cooling tower and finally
recycled to the process.   Aside from filter backwash, this system
achieves zero discharge,  since all of the wastewaters are recir-
culated.  Table 6-47 presents classical and toxic pollutant data
for continuous caster Plant 072.

     Plant 075

Caster wastewater is first pumped to primary scale pits.  Some
water is recycled to the process from there, but most of it is
passed through flat bed filters.  A blowdown from the filters is
discharged to lagoons.  The filter effluent is recirculated
through a cooling tower and then pumped to walnut shell deep bed
filters.  The backwash is discharged to the lagoons, and the
filter effluent is recycled to the caster sprays.  Recycle is
approximately 97 percent of the process flow.  Table 6-48 pre-


Date:  9/25/81              II.6-65

-------
         TABLE 6-U5.   PLANT SPECIFIC  TOXIC AND CLASSICAL POLLUTANT DATA FOR
                      PLANT 062,  VACUUM DEGASSING SUBCATEGORY [2-10]
Pol lutant
Classical pollutants, mg/L
TSS
pH, pH units
Toxic pollutants, fig/L
Ch rom i urn
Copper
Lead
Nickel
Zinc
Raw
wastewater

30
7.8 - 9.1

33
130
470
23
2,500
Treated
effluent

16
7.6 - 8. 1

26
210
60
56
87
         Analytic methods:  V.7.3.5,  Data  set  I.
         NM, not meaningful.
              TABLE 6-U6.   PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT
                           DATA FOR PLANT 068, VACUUM DEGASSING SUBCATEGORY,
                           12-10]
Pol lutant
Classical pollutants, mg/L
TSS
pH, pH units
Toxic pollutants, |ig/L
Chromium
Copper
Lead
Zinc
Raw
wastewater

12
8.0 - 8.2

25
20
2UO
260
Treated
effluent

12
8.0 - 8.2

25
20
240
260
Percent
remova 1

0


0
0
0
0
         Analytic methods:  V.7.3.5, Data set  I.
Date:  9/25/81                    II.6-66

-------
           TABLE  6-47.   PLANT  SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA FOR
                        PLANT  072, CONTINUOUS CASTING SUBCATEGORY [2-10]


                                            Raw         T rea ted      Percent
           Pol lutant	wastewater	effluent	remova I

           Classical  pollutants, mg/L
               TSS                           36              16           56
               Oil  and grease                26               6           77
               pH,  pH units               7.4 - 7.9      7.6 - 8.1

           Toxic  pollutants, ug/L
               Chromium                       8              26           NM
               Copper                       20             210           NM
               Lead                         70              60           14
               Selenium                      10              10            0
               Zinc                        300             330           NM


           Analytic methods: V.7.3.5, Data set I.
           NM,  not  meaningful.
               TABLE 6-48.   PLANT SPECIFIC TOXIC  AND CLASSICAL  POLLUTANT DATA
                            FOR PLANT 075,  CONTINUOUS CASTING SUBCATEGORY
                            [2-10]


                                             RawTreatedPercent
           Pol lutant	wastewater	effluent	remova I

           Classical pollutants,  mg/L
               TSS                           13              15           NM
               Oi I and grease                17              18           NM
               pH, pH units               7.9 - 8.3      7.4 -  7.7

           Toxic pollutants,  u/j/L
               Chromium                   2,000          2,000            0
               Copper                        26              15           42
               Lead                          60             60            0
               Selenium                       2            2.3           NM
               Zinc                         740            970           NM


           Analytic methods:  V.7.3.5,  Data set I.
           NM, not meaningful.
Date:  9/25/81                   II.6-67

-------
sents classical and toxic pollutant data for continuous casting
Plant 075.

II.6.3.7  Hot Forming  [2-11]

     Primary Rolling Mills

     Plant 083.  The wastewater treatment system at Plant 083
serves several hot forming mills and steelmaking facilities (EOF,
electric and furnace, etc.).   The hot forming mills include
primary,, section, and plate rolling mills,  (blooming mill,
structural mill,  plate mill,  and rod mill).   The blooming mill
wastewaters are discharged to a main pump station after passing
through primary scale pits with oil collection equipment.  The
rod mill has its own treatment equipment and discharges only a
discharge to the main pump station as well.   The combined waste
stream is then treated by flocculating clarifiers and is recycled
through a cooling tower to the mills.  A portion of the clarifier
effluent is blown down to a POTW.  The clarifier underflow is
pumped to a thickener which,  in turn, discharges to a sludge
decant tank.  After decanting, sludge is hauled away by a private
contractor.  Overflow from the decant tank is returned to the
thickener.   Table 6-49 presents toxic and classical pollutant
data for hot forming primary Plant 083.

     Section Mills

     Plant 081.  The wastewater treatment system for Plant 081
serves a combination of hot forming mills consisting of primary
and section rolling.  The wastewaters are discharged to a Lamella
separator after passing through primary scale pits.  The overflow
from the Lamella is recycled to the primary and section rolling
mills.  The blowdown from the Lamella is discharged to a central
wastewater treatment system which also treats the wastewater from
combination acid pickling, alkaline cleaning, kolene and hydride
descaling,  continuous alkaline cleaning, and one-section rolling
mill.  Makeup water is added to the Lamella separator and section
mills as required.

Table 6-50 presents toxic and classical pollutant data represent-
ing the discharge from the Lamella separator for hot forming sec-
tion Plant 081.

     Flat Mills - Plate

     Plant 082.  Wastewaters from the 3.56 m (140-inch) mill go
to primary scale pits and then to a combined secondary scale pit.
Overflow from the secondary scale pits is discharged to three
common settling basins set in parallel.  The effluent from the
settling basin is then passed through media filters.  Filtered
water is then discharged to a receiving stream.  Filter backwash
is taken to a backwash settling basin which discharges to the


Date:  9/25/81.             II.6-68

-------
           TABLE 6-49.  PLANT SPECIFIC TOXIC AND  CLASSICAL POLLUTANT DATA
                        FOR PLANT 083, HOT FORM ING-PR I MARY SUBCATEGORY,
                        [2-11]
Pol lutant
Classical pollutants, mg/L
TSS
Oi 1 and grease
pH, pH units
Toxic pollutants, (ig/L
Ch rom i urn
Copper
Lead
Nickel
Zinc
Raw
wastewater

240
35
7.0

120
530
70
9
100
Treated
effluent

9
10
7.4

130
40
50
20
70
Percent
remova 1

96
71


NM
92
29
NM
30
           Analytic methods: V.7.3.5,  Data  set  I,
           NM, not meaningful.
            TABLE  6-50.   PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA
                         FOR HOT FORMING SECTION PLANT 081  [2-11]
Pol lutent
Classical pollutants, mg/L
TSS
Oi 1 and grease
pH, pH units
Toxic pollutants, ug/L
Chromium
Copper
Lead
Nickel
Zinc
Raw
wastewater

84
250
7.2

90
130
50
830
85
Treated
effluent

23
8
7.8

70
75
50
490
45
Percent
remova 1

73
97


22
42
0
41
47
            Analytic methods: V.7.3.5, Data set I,
Date:  9/25/81                    II.6-69

-------
three parallel settling basins.

Table 6-51 presents toxic and classical pollutant data for hot
forming flat plate Plant 082.

     Hot Worked Pipe and Tube Mills

     Weld Mill (Plant 087).   This mill practices once-through
treatment and utilizes a primary scale pit that discharges to a
central clarification water treatment facility.  The primary
scale pit overflow waters are mixed with other wastewater from a
merchant mill, hot strip mill, and blooming mill hot scarfer
before treatment in the clarifier.  Lime and polymer are added as
coagulant aids.  Clarifier overflow is discharged to a receiving
stream,, while the clarifier underflow is dewatered by vacuum
filter.

Table 6-52 presents toxic and classical pollutant data for hot
forming pipe and tube Plant 087.

II.6.3.8  Scale Removal [2-12]

     Kolene Descaling

     Plant 137.  The continuous kolene operation wastewaters are
treated in a central treatment system.  The kolene wastes repre-
sent approximately 1.5% of the total flow to the treatment sys-
tem.  Treatment consists of lime neutralization and sedimentation
in a settling lagoon.  The discharge is directed to a receiving
stream.  Table 6-53 presents toxic and classical pollutant data
for kolene descaling Plant 137.

     Hydride Descaling

     Plant 132.  The wastewater from this hydride operation is
treated in a central treatment system with wastewaters from
several other sources.  Treatment consists of neutralization with
lime or acid depending on the wastewaters being treated, floccu-
lation, and polymer, and clarification with oil skimming.  Sludges
are dewatered in cyclones.  Table 6-54 presents toxic and classi-
cal pollutant data for hydride descaling Plant 132.

II.6.3.9  Acid Pickling [2-12]

     Batch Sulfuric Acid Pickling

     Plant 091.  Concentrates from a batch rod pickling operation
are hauled off-site for disposal.  Rinses are blended and equa-
lized with hydrochloric acid pickling and galvenizing waste-
waters, aerated, neutralized with lime, clarified, and filtered
prior to discharge.  Table 6-55 presents toxic and classical
pollutant data for Plant 091.


Date:  9/25/81               II.6-70

-------
                TABLE 6-51.  PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT
                             DATA FOR HOT FORMING FLAT PLATE PLANT  082
                             12-11]
             Pollutant
         Raw
      wastewater
Treated
effluent
Percent
removaI
            Classical pollutants, mg/L
                TSS                            67
                011 and grease                 46
                pH, pH units                  8.3
            Analytic methods: V.7.3.5,  Data set I.
            NM, not meaningful.
                        I
                       10
                      7.4
              99
              78
Toxic pollutants, u.g/L
Chromium
Copper
Lead
Nickel
Zinc

60
160
260
370
80

1,000
40
40
40
30

NM
75
85
89
62
                TABLE 6-52.   PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT
                             DATA FOR HOT FORMING PIPE AND TUBE PLANT 087
                             (WELD MILL) [2-11]
             Pollutant
         Raw
      wastewater
Treated
effluent
                                                                   Percent
                                                                   removaI
             Classical pollutants, mg/L
                 TSS                            66
                 Oi I and grease                  5
                 pH, pH units                  7.2
                       38
                        4
                      7.5
               42
               20
Toxic pollutants, |ig/L
Ch rom i urn
Copper
Lead
Nickel
Zinc
240
65
800
500
250
43
31
210
82
52
16
             Analytic methods: V.7.3.5, Data set
Date:  9/25/81
II.6-71

-------
              TABLE 6-53.  PLANT SPECIFIC TOXIC AND CLASSICAL  POLLUTANT
                          DATA FOR KOLENE DESCALING PLANT  137 [2-121
Pol lutant
Classical pollutants, mg/L
TSS
pH, pH units
Toxic pollutants, ng/L
Antimony
Arsenic
Cadmium
Ch rom i urn
Copper
Nickel
Selenium
Tha 1 1 ium
Zinc
Chloroform
Raw
wastewater

1,200
13

mo
19
200
37,000
880
1,700
69
210
340
15
Treated
effluent

92
6.2

38
NO
200
2,700
150
6,000
NO
50
260
65
Percent
remova 1

92


73
>99
0
93
83
NM
>99
76
24
NM
           Analytic methods: V.7.3.5, Data set I.
           ND,  not detected.
           NM,  not meaningful.
           TABLE  6-54.  PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA
                       FOR-HYDRIDE DESCALING PLANT 132 [2-12]
Pol lutant
Classical pollutants, mg/L
TSS
Dissolved iron
pH, pH units
Toxic pollutants, u.g/L
Ant imony
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Si 1 ve r
Zinc
Raw
wastewater

490
0.45
12

200

-------
     Plant 090.  Plant 090 treats rinses from batch pipe and tube
pickling in a central treatment facility that includes equaliza-
tion, oil skimming, aeration,  neutralization with lime, polymer
addition, clarification,  and finally discharges to a receiving
stream.  Spent concentrates are recovered by a vacuum crystaliza-
tion acid recovery system.  Table 6-56 presents toxic and classi-
cal pollutant data for Plant 090.

     Continuous Sulfuric Acid Pickling

     Plant 094.  Spent concentrates from this plant are hauled
off-site.  Rinses are combined with all other finishing mill
wastewaters, equalized, skimmed,  treated with lime and polymers,
and clarified with thickening and centrifugation of underflows.
These treated effluents are discharged.  Table 6-57 presents
toxic and classical pollutant data for Plant 094.

     Batch Hydrochloric Acid Pickling

     Plant U-2.  The waste pickle liquors and rinsewaters from
the batch pickling operations are neutralized in a batch treat-
ment tank by sodium carbonate prior to discharge to a municipal
sewerage system.  Table 6-58 presents classical pollutant data
for Plant U-2.

     Continuous Hydrochloric Acid Pickling

     Plant 091.  Spent pickle liquor and rinses are neutralized
with lime, oxidized, clarified, and filtered through pressure
sand filters prior to discharge to a receiving stream.  Clarifier
sludge is dewatered by vacuum filters prior to disposal.
Table 6-59 presents toxic and classical pollutant data for
Plant 091.

II.6.3.10  Cold Forming - Cold Rolling [2-13]

     Recirculation Mills

     Plant 101.  Wastewaters at this plant originate at twelve
different cold mill operations.  All wastewaters are collected in
a holding tank and are treated in an ultrafiltration unit on a
batch basis.  The effluent from this system is discharged to a
POTW.  There is no other discharge from this plant.  Table 6-60
presents toxic and classical pollutant data for Plant 101.

     Direct Application Mills

     Plant 105.  This mill uses waste oil handling tanks and oil
skimming.  Discharge from this process goes to central treatment
lagoons where additional oil and solids are removed.  Table 6-61
presents toxic and classical pollutant data for Plant 105.
Date:  9/25/81              II.6-73

-------
              TABLE  6-55.   PLANT SPECIFIC TOXIC AND CLASSICAL  POLLUTANT
                           DATA FOR BATCH SULFUR 1C ACID PICKLING  PLANT
                           091 12-12]
Pol lutant
Classical pollutants, mg/L
Dissolved iron
TSS
Oil and grease
pH, pH units
Toxic pollutants, ug/L
Cadmium
Ch rom i urn
Copper
Lead
Nickel
Zinc
Raw
wastewaterfa

2,400
96
18
1.8

20
3,800
630
210
800
27,000
T rea ted
) effluent

0.37
II
k
8.3 - 8.5

20
HO
30
190
30
130
Percent
remove 1

>99
88
77


0
99
95
10
96
>99
           Analytic  methods: V.7.3.5, Data set I.
           (a)Rinses and concentrates.
              TABLE 6-56.   PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT
                           DATA FOR  BATCH SULFUR 1C ACID PICKLING PLANT
                           090 [2-12]
Pol lutant
Classical pollutants, mg/L
Dissolved iron
TSS
Oi 1 and grease
pH, pH units
Toxic pollutants, ug/L
Cadmium
Chromium
Copper
Lead
Nickel
Zinc
Raw
rinsewater

400
10
26
1.7 - 2.5

97
92
NM
93
99
           NM, not meaningful.
           Analytic methods:  V.7.3.5,  Data  set
Date:  9/25/81
II.6-74

-------
                 TABLE 6-57.   PLANT SPECIFIC TOXIC  AND CLASSICAL POLLUTANT
                                DATA FOR  CONTINUOUS SULFUR 1C ACID PICKLING
                                PLANT 094 [2-12]


                                                           Treated    Pe rcent
                      Pol lutant	Rlnsewater  effluent   removal
Classical pollutants, mg/L
TSS
01 1 and grease
Dissolved iron
pH
Toxic pollutants, |ig/L
Arsenic
Cadmium
Ch rom 1 urn
Copper
Lead
Nickel
SI Iver
Zinc

38
9
40
4.4

99


NH
NM
NH
>82
>75
33

NH
                      Analytic methods: V.7.3.5, Data set I.
                      NM, not meaningful.
              TABLE 6-58.   PLANT  SPECIFIC  CLASSICAL  POLLUTANT DATA FOR BATCH
                            HYDROCHLORIC ACID PICKLING PLANT U-2  [2-12]


                                                           T rea ted    Percent
                      Pol lutant	Rlnsewater  effluent   removal

                      Classical pollutants,  mg/L
                         Dissolved iron               190       0.50      >99
                         TSS                         0        380       NM
                         011  and grease                3         5       NM
                         pH,  pH units                 1.8        8.5

                      Analytic methods: V.7.3.5,  Data set I.
                      NM, not meaningful,
             TABLE 6-59.   PLANT SPECIFIC  TOXIC AND  CLASSICAL  POLLUTANT  DATA
                           FOR  CONTINUOUS  HYDROCHLORIC ACID  PICKLING  PLANT
                           091  [2-12]
Pol lutant
Classical pollutants, mg/L
Dissolved Iron
TSS
01 1 and grease
pH, pH units
Toxic pollutants, |tg/L
Chloroform
Antimony
Arsenic
Cadmium
Ch ram 1 urn
Copper
Lead
Nickel
Silver
Zinc
Raw
wastewater(a)

ND
120
ND
2.9 - 3.9

NO
ND
ND

-------
           TABLE 8-60.  PLANT  SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA
                        FOR COLD FORMING RECIRCULATION  PLANT 101  [2-13]
                    Pollutant
                                               Raw
                                            wastewater
               Treated
               effluent
      Percent
      removal
                   Classical pollutants, mg/L
                       TSS                    2,200
                       Oil and grease          82,000
                       Dissolved Iron             6.5
                       pH, pH units               6.5
                    Analytic methods: V.7.3.5, Data set I.
                    ND, not detected.
                    NM, not meaningful.
                  200
                  IUO
                  800
                  U.I
        91
       >99
Toxic pol lutants, \ig/L
Toxic metals
Antimony
Cadmium
Chromium
Coppe r
Lead
Zinc
Toxic oroanlcs
2-Chlorophenol
2, II-D I methyl phenol
2-Nitrophenol
Phenol
14,6-Dini tro-o-cresol
Ethyl benzene
To 1 uene
Carbon tetrachlorlde
Chloroform
Tetrachloroethylene
1,1, l-Trlchloroethane


150
45
6,500
7,500
1,600
1,800

36,000
25,000
70,000
ND
NO
390
MO
110
80
1,200
1*20


300
20
1,200
65
90
5,200

NO
ND
210
55
ND
10
60
ND
43
16
99
>99
>99
NM

97
45
>99
46
>99
>98
              TABLE  6-61.   PLANT SPECIFIC TOXIC  AND CLASSICAL POLLUTANT
                            DATA FOR COLD FORMING-DIRECT APPLICATION  PLANT
                            105 [2-13]
            Pollutant
        Raw
     wastewater
Treated
effluent
Date:  9/25/81
Percent
removaI
            Classical  pollutants, mg/L
                TSS                              290          300          NM
                Oil  and  grease                1,900        1,400          26
                pH,  pH units                    7.2          3.3
                Dissolved  iron                   23          170          NM

            Toxic pollutants,  ug/L
              Metals and inorganics
                Arsenic                           30           30           0
                Chromium                        170          240          NM
                Copper                          240          450          NM
                Lead                            420          600          NM
                Nickel                           350          500          NM
                Zinc                            200          680          NM

              Toxic  organics
                Carbon tetrachloride             30           40          NM
                Tetrachloroethylene              80           70          12
                I,I,l-Trichloroethane           140          200          NM

            Analytic methods:  V.7.3.5, Data  set I.
            NM, not  meaningful.
II.6-76

-------
     Combination Mills

     Plant 103.  Only representative samples of the raw waste-
waters at this mill could be obtained at the time of sampling.
A large central treatment system is used to treat several waste
sources.  Table 6-62 presents toxic and classical pollutant data
for Plant 103.

II.6.3.11  Cold Forming - Cold Worked Pipe and Tube [2-13]

     Plant HH-2

Plant HH-2 is a cold worked mechanical tubing mill.  The tubing
mill wastewaters discharge to a settling and cooling basin which
receives wastes from other mill operations such as open hearths
and rolling mills.  The settling basin overflow is directed into
another similar basin and then to oil skimming facilities.  The
effluent is then pumped to a large reservoir from which all of
the water is reused.  However, if the reservoir is full, treated
effluent, after oil skimming, is discharged to a receiving stream.
Table 6-63 presents classical pollutant data for cold worked pipe
and tube Plant HH-2.

II.6.3.12  Alkaline Cleaning [2-13]

     Plant 152

Wastewaters from alkaline cleaning operations are discharged to
a complex central treatment system.  The alkaline cleaning waste-
waters, which comprise approximately 1% of the total flow to the
central treatment system, are discharged directly to the central
treatment system without pretreatment.

The wastewaters combine with wastewaters from approximately
twenty other sources and undergo equalization and neutralization,
flocculation with polymers, and clarification with oil skimming.
Sludge formed in the treatment process is dewatered in mechanical
centrifuges.  The effluent from this system is discharged to a
receiving stream.  Table 6-64 presents toxic and classical pollu-
tant data for alkaline cleaning Plant 152.

     Plant 156

This mill utilizes a complex central treatment system.  The
wastes from the alkaline cleaning line comprise less than 1% of
the total flow to the central treatment system.  The alkaline
cleaning* solutions and rinses are combined with wastes from other
sources and then undergo equalization, neutralization, and pri-
mary clarification in a thickener.  From the clarifier, the waste-
waters enter a high-density-sludge (HDS) unit where the solids
and metals are settled out.  The overflow from the HDS unit is
then filtered.  The filtrate is discharged to a final polishing


Date:  9/25/81              II.6-77

-------
                 TABLE 6-62.  TOXIC AND CLASSICAL POLLUTANT DATA FOR
                              COLD FORMING COMBINATION PLANT 103 [2-13]
Pol lutant
Classical pollutants, mg/L
01 1 and grease
pH, pH units
Toxic pollutants, M9/L
Arsenic
Chromium
Copper
Nickel
Zinc
Raw
wastewater
1,600
6.6
160
30
890
210
150
Treated
eff luent(a)


               Analytic methods: V.7.3.5, Data set I
               (a)No  samples were taken of the effluent because of
                   the difficulty of sampling the treatment system at
                   this plant.
               TABLE 6-63.   PLANT SPECIFIC CLASSICAL POLLUTANT DATA
                            FOR COLD WORKED  PIPE AND TUBE PLANT
                            HH-2 [2-13]


                                              RawTreatedPercent
            Pol lutant	wastewater   effluent   removal

            Classical pollutants,  mg/L
                TSS                           23            i*         83
                Oil and grease                63            2         97
                pH, pH units                 5.8          6.2

            Analytic methods:  V.7.3.5, Data  set  I.
              TABLE 6-64.   PLANT SPECIFIC  TOXIC AND CLASSICAL POLLUTANT
                           DATA FOR ALKALINE CLEANING PLANT  152 [2-13]
Pol lutant
Classical pollutants, mg/L
Dissolved iron
Oi 1 and grease
TSS
pH, pH units
Toxic pollutants, u.g/L
Cyanide
Lead
Zinc
Raw
wastewater

0.10
8.0
3.5
8.9 - 9.1

53
65
30
Treated Percent
effluent removal

0.80
4.5
16
7.2 - 7.9

35
50
40

NM
44
NM


34
23
NM
            Analytic methods:  V.7.3.5,  Data  set  I.
            NM, not meaningful.
Date:  9/25/81                    II.6-78

-------
lagoon where additional settling and temperature equalization is
carried out prior to discharge to a receiving stream.  Table 6-65
presents toxic and classical pollutant data for alkaline cleaning
Plant 156.

II.6.3.13  Hot Coating [2-13]

     Galvinizing

     Plant 111.  Wiper waters from wire galvanizing operations
are collected, recycled via hot rolling mills, with a small
continuous bleed-off to treatment.  Pickling rinses and spent HC1
concentrates are combined with wastes from nail and fence galva-
nizing, treated with lime, aeration, clarification, and pressure
filtration through sand prior to discharge.  Table 6-66 present
toxic and classical pollutant data for hot coating galvanizing
Plant 111.

     Terne Plating

     Plant 113.  During the toxic survey, wastewaters from this
continuous strip/sheet terne coating line were discharged without
treatment.  A combined chemical treatment plant is under construc-
tion.  Meanwhile, solution dragout is minimized through strict
attention to maintenance of equipment.  Table 6-67 presents toxic
and classical pollutant data for terne plating Plant 113.

     Aluminizing

     Plant 116.  Wastewaters from galvanizing, aluminizing,
electrolytic coating, and alkaline degreasing of wire, fasteners,
and special shapes, are combined, treated with lime and polymer,
clarified, filtered and stored in a large lagoon for reuse or
discharge.  Table 6-68 presents toxic and classical pollutant
data for aluminizing Plant 116.

II.6.4  POLLUTANT REMOVABILITY [2-9, 10, 11, 12, 13]

The Iron and Steel Industry generates a wide variety of waste-
waters from its subcategories.  Pollutant concentrations and
waste loads differ significantly not only within the industry but
also within subcategories, creating problems in the selection of
the treatment technology to be used.  Central treatment facili-
ties often combine waste streams from several subcategories,
increasing the selection dilemma.  This stream combining is a
direct result of many subcategories being represented on a single
plant site.

Wastewater from this industry is generally low in organic concen-
trations due to the limited use of organic materials.  Concentra-
tions of these organics are generally less than 0.1 -mg/L and are
often less than 0.01 mg/L.  Only the by-product recovery coke-


Date:  9/25/81              II.6-79

-------
                  TABLE 6-65.   PLANT SPECIFIC TOXIC  AND  CLASSICAL
                               POLLUTANT DATA FOR ALKALINE  CLEAN-
                               ING PLANT 156 [2-13]


                                          RawTreatedPercent
        Pol lutant	wastewater   wastewater	remova I

        Classical pollutants,  mg/l
            TSS                           II               I           91
            Oil and grease               9.0             4.0           55
            Dissolved iron              0.34          0.045           87
            pH, pH units                 7.6             7.5

        Toxic pol lutants, u.g/L
            Lead                          75             75             0
            Zinc                         300             130           57

        Analytic methods: V.7.3.5, Data set I.
          TABLE 6-66.  PLANT SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA
                       FOR HOT COATING GALVANIZING PLANT  III  [2-13]
                                            Raw       Treated     Percent
          Pol lutant	wastewater   effluent    removal

          Classical pollutants,  mg/L
              Oil and grease                  20            4        80
              pH                             7.4          8.4
              TSS                             67           II        84

          Toxic pollutants/ ug/L
            Metals and inorganics
              Chromium                       140           40        71
              Copper                          60           30        50
              Cyanide                          7           21        NM
              Lead                           200          180         10
              Nickel                           30           20        33
              Silver                         <20           20        NM
              Zinc                         3,200          120        96
Toxic orqanics
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthlate
Diethyl phthalate
Dimethyl phthalate
Pentach 1 o ropheno 1
Benzene
1,3-Dichlorobenzene
Fluoranthene
Chloroform
Methylene chloride
Tet rach 1 o roethy 1 ene
1,1,1 -Trichlo roe thane
Trichloroethylene

86
ND
ND
ND
5
5
ND
ND
ND
ND
15
120
13
67
46

130
ND
18
ND
10
5
5
5
ND
10
5
21
ND
ND
10

NM

NM
NM
NM
0
NM
NM

NM
67
82
>99
>99
78
          Analytic methods: V.7.3.5, Data set I.
          ND, not detected.
          NM, not meaningful.
Date:  9/25/81                   II.6-80

-------
            TABLE 6-67.   PLANT  SPECIFIC TOXIC AND CLASSICAL POLLUTANT DATA
                         FOR  HOT  COATING TERNE PLATING PLANT 113 [2-I3J
            Pollutant
                                  Raw
                              wastewater
Treated
effluent
Percent
removaI
Classical  pollutants,  mg/L
    Oi I  and grease
    pH,  pH units
    TSS
                                             5.8
                                               I I
            Analytic methods: V.7.3.5, Data set I.
            NM,  not meaningful.
      k
    5.2
     I I
   NM

   NM
Toxic pollutants, u/j/L
Arsenic
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si 1 ve r
Zinc

<2
2,700
HO
3
67

590


93

8
2,700
UO
3
70
O.I
590

<25
39

NM
NM
NM
NM
NM
NM
NM

NM
58
                   TABLE 6-68.   PLANT  SPECIFIC TOXIC AND CLASSICAL
                                POLLUTANT  DATA FOR HOT COATING
                                ALUMINIZING  PLANT 116 [2-13]
                 Pollutant
                                              Effluent
                 Classical  pollutants,  mg/L
                     TSS
                     Oils and  grease
                     pH,  pH units
                                              7.3 - 7.7
     Toxic pollutants,
         Cadmium
         Ch rom i urn
         Copper
         Cyanide
         Lead
         Nickel
         S iIve r
         Zinc
                                   ug/L
                                                            <30
                                                             20
                                                               I
                                                            <80
                                                            <25
                                                            <20
                                                            130
                 Analytic methods:  V.7.3.5,  Data  set  I,
Date:  9/25/81
                         II.6-81

-------
making  subcategory has concentrations that are usually greater
than this.  This is the direct result of the recovery of the
organic by-products.  Biological treatment methods are often used
to reduce these toxic organic concentrations.

Metal concentrations in this industry vary considerably.  Indivi-
dual subcategories may release significant concentrations of
particular metals used within their processes.   An example of
this is the hot coating subcategories, which may release large
concentrations of lead, chromium, and zinc.  Metal concentrations
are generally reduced by settling,  chemical addition neutraliza-
tion, or filtration.

Treatment technologes used in the iron and steel industry vary
between subcategories.  However, several methods are more preva-
lent than others.  Scale pits and settling ponds are used in many
of the subcategories.  This treatment is used at most facilities
because of the high concentration of solids normally present in
the wastewater.  Clarification and sludge thickening are also
used to reduce the solids concentration and volume.  Chemical
addition is used both as a pH adjustment and as a flocculant aid.
Common chemicals used include lime, polymers,  alum, and ferric
sulfate.  Dissolved metals may be precipitated with this treat-
ment method, reducing the metal concentration in the final
effluent.

Filtration is also a common treatment method that may be used as
a solids removal mechanism or as sludge thickening process.
Several filtration methods are currently in use including pressure,
sand, deep bed, and vacuum filters.

Recycling of treated water is a very common practice in this
industry.  Twenty-three of twenty-four subcategories studied used
this technology to reduce effluent volume and control cost.  Nine
subcategories have facilities practicing 100% recycle, and several
other subcategories recycle over 80% of their fume scrubber and
rinsewater streams.  Wastewater is generally treated in some
manner before recycling.

Generally, more than one technology is used at each facility.
Settling is normally a preliminary step to another treatment
method and may also be present more than once in a treatment
scheme.  Chemical addition and filtration treatments are often
used in conjunction with other treatment technologies.

Removal efficiency data may be found in the wastewater characteri-
zation section (II.6.2) and in the plant specific  section  (II.6.3)
of this industry description.
Date:  9/25/81              11.6-82

-------
          II.7  LEATHER TANNING AND FINISHING INDUSTRY


II.7.1  INDUSTRY DESCRIPTION

II.7.1.1  General Description [2-14]

The Leather Tanning and Finishing Industry in the United States
is included within the U.S. Department of Commerce, Bureau of
Census Standard Industrial Classification (SIC) Code 3100,
Leather and Leather Products.  The part of the industry discussed
in this report is identified as SIC 3111, Leather Tanning and
Finishing.

Leather tanning is a general term encompassing the numerous
processing steps included in converting animal skins or hides
into leather.  There are three primary hide or skin types used
to manufacture leather, namely,  cattle hides, sheepskins, and
pigskins.  Other skins utilized in smaller quantities include
goatskin, horse hide, deerskin,  and elkskin.

There are an estimated 189 tanneries producing leather products
in the United States.  These tanneries are located in four
general regions:  the New England states, the Mid-Atlantic
states, the Midwest, and the Pacific Coast.   Of these, about
75% are privately owned.

Table 7-1 summarizes pertinent information regarding the total
number of subcategories, the number of subcategories studied by
the Effluent Guidelines Division, and the number and type of
dischargers in the Leather Tanning and Finishing Industry.

               TABLE 7-1.  INDUSTRY SUMMARY [2-1]
            Industry:  Leather Tanning and Finishing
            Total Number of Subcategories:  9
            Number of Subcategories Studied:  7

            Number of Dischargers in Industry:  189
              •  Direct:  18
              •  Indirect:  170
              •  Zero:  1
Date:  9/25/81               II.7-1

-------
Best practicable technology (BPT) limitations  for  the  seven sub-
categories are listed in Table 7-2.

       TABLE 7-2.  BPT LIMITATIONS FOR THE LEATHER TANNING
                   AND FINISHING  INDUSTRY  [2-14]
                      (kg/Mg raw  material)
Dai ly
Subcateqor.v maximum

1.
2.
3.
4.
5.
6.
7,

1.
2.
3.
4.
5.
6.
7.

Hair pulp/chrome tan/retan-wet finish
Hair save/chrome tan/retan-wet finish
Hair save/nonchrome tan/retan-wet finish
Retan-wet finish
No beamhouse
Through-the-blue
Shear) ing

Hair pulp/chrome tan/retan-wet finish
Hair save/chrome tan/retan-wet finish
Hair save/nonchrome tan/retan-wet finish
Retan-wet finish
No beamhouse
Through-the-blue
Shea r 1 i ng

7.0
8.2
6.0
2.6
5.0
4.0
21.0
Total
0.24
0.28
0.20
0.09
0. 17
0. 14
0.70
30-day
averaae(a )
BODS
3.5
4. 1
3.0
1.3
2.5
2.0
10.0
chromium
0. 12
0. 14
0. 10
0.04
0.08
0.07
0.35
Dai ly
I maximum
30-day
averaoefa )
TSS
1 1.0
13.0
9.6
4.2
8.0
6.6
34.0
Oil and
2.0
2.2
1.7
0.70
1.4
1. 1
5.8
5.6
6.7
4.8
2. 1
4.0
3.3
17.0
grease
1.0
1. 1
0.8
0.4
0.7
0.6
2.9
  The pH range for all subcategories is 6.0 - 9.0.
  (a)Computed from average daily values taken over 30 consecutive days.
II.7.1.2  Subcateggry Description

The primary criteria for  subcategorizing the Leather Tanning and
Finishing Industry are  (1) the  type  or condition of animal hide
processed, (2) the method of hair  removal,  (3)  the type of tan-
ning agent used, and (4)  the extent  of finishing performed.  Also
taken into consideration  are plant size,  age,  location, waste-
water characteristics,  and water usage.

The seven of the nine subcategories  that were derived, based on
the above criteria, are defined as follows:

1.   Hair pulp/chrome tan/retan-wet  finish - facilities that
primarily process raw or  cured  cattle  or cattle-like hides into
finished leather by chemically  dissolving the hair (hair pulp),
tanning with chrome, and  retanning and wet finishing.

2.   Hair save/chrome tan/retan-wet  finish - facilities that
primarily process raw or  cured  cattle  or cattle-like hides into
finished leather by chemically  loosening and mechanically remov-
ing the hair, tanning with chrome, and retanning and wet
finishing.
Date:  9/25/81                II.7-2

-------
3.   Hair save/nonchrome tan/retan-wet finish - facilities that
process raw or cured cattle or cattle-like hides into finished
leather by chemically loosening and mechanically removing the
hair, tanning, primarily with vegetable tannins, alum,  syntans,
oils, or other chemicals, and retanning and wet finishing.

4.   Retan-wet finish - facilities that process previously
unhaired and tanned hides or splits into finished leather through
retanning and wet finishing processes including coloring, fat-
liquoring, and mechanical conditioning.

5.   No beamhouse - facilities that process previously unhaired
and pickled cattle hides, sheepskins, or pigskins into finished
leather by tanning with chrome or other agents, followed by
retanning and wet finishing.

6.   Through-the-blue - facilities that process raw or cured
cattle or cattle-like hides into the blue-tanned state only, by
chemically dissolving or loosening the hair and tanning with
chrome, with no retanning or wet finishing.

7.   Shearling - facilities that process raw or cured sheep or
sheep-like skins into finished leather by retaining the hair on
the skin; tanning with chrome or other agents; and retanning
and wet finishing.

The following paragraphs discuss the subcategory processes in
detail.

     Hair Pulp/Chrome Tan/Retan-Wet Finish

Tanneries in this subcategory primarily process brine-cured or
green salted cattle hides into finished leather.  Various amounts
of water are used in performing the three wet processing opera-
tions, namely, beamhouse, tanyard, and retan-wet finish.  Water
use for individual subprocesses typically employed is described
in the following paragraphs.

     Soak and wash.  The purpose of this operation is to remove
salt, restore the moisture content of the hides, and remove any
foreign material such as dirt and manure.  Brine-cured hides are
soaked and washed simply to remove salt, while green salted hides
require the removal of manure and dirt as well as salt.  The
quantity of manure and dirt varies with the season of the year
and the origin of the hide.  Industry data estimate the waste-
water volume from this subprocess to be about 20% of the total
wastewater flow.
Date:  9/25/81               II.7-3

-------
     Fleshing.   Fleshing follows the soak and wash operation,  if
this was not done previously.   Fleshings are isolated as a solid
waste and,  when handled properly,  do not make a significant
contribution to the total waste.loads of a cattle hide tannery.

     Unhairing.  Pulping to remove hair involves the addition of
lime and sharpeners (e.g., sodium sulfhydrate) in relatively
high concentrations.  The process dissolves the proteinaceous
hair enough to dissipate it in the unhairing solution.  As
reported by various tanneries, this segment of beamhouse opera-
tions generates between 20% and 38% of the total tannery flow, an
average of 32% for those facilities reporting such information.

     Bating and pickling.  The bating subprocess delimes, reduces
swelling, peptizes the fibers, and removes protein degradation
products.  Major chemical additions are ammonium sulfate to
reduce pH to an acceptable level and enzyme to condition the
protein matter.

Following the bating process,  hides are prepared for tanning by
pickling.  Pickling solutions contain primarily sulfuric acid and
salt, although small amounts of wetting agent and biocide are
sometimes added.  Since protein degradation products, lime, and
other waste material are removed through bating, the quantities
of BOD5, suspended solids, and nitrogen are relatively low.
Principal waste constituents are the acid and salt.  Bate and
pickle wastewater volumes, reported as a combined total by
several tanneries, range from 9% to 50% of the plant flow and
average 26% for the combined process flow.

     Tanning.  Chrome tanning employs a chromium sulfate or a
chrome tanning solution as the tanning agent.  Other chemical
additives include sodium formate and soda ash.  The chromium
must be in the trivalent form and must be dissolved in an acidic
medium to accomplish desired results.

For those plants reporting data, the median and average flows
associated with the tanning process were found to be 4.4% and
6.6% of total plant water use.

     Retanning, coloring, and fatliquoring.  The chrome-tanned
hides normally remain in the same drums for these three subpro-
cesses.  Retanning increases the penetration of tanning solution
into the hides after splitting and uses either chrome, vegetable,
or synthetic tanning agents.  Because retanning uses  lower con-
centrations of chemicals, the wastewater strength is not high and
does not represent a significant portion of the total waste flow.
Date:  9/25/81               II.7-4

-------
The most variable process in the tannery is coloring.  There are
hundreds of different kinds of dyes, both synthetic and vegetable
based.  Synthetic dyes are the most widely used in the industry
and usually require the addition of acid to facilitate dye up-
take in the leather.  The fatliquoring operation can be performed
either before or after coloring.  Ultimate use of the leather
product dictates the type and amount of oil required for this
subprocess.

Drying by the pasting method requires a small amount of water,
first to prepare the mixture and then to wash it off.  Even
though the volume is very small, pollutants associated with the
starch can be present in relatively high concentrations.  Several
tanneries report the reuse of paste mixtures, which minimizes the
amount .of material entering the waste stream.

Process effluent from wet finishing (retan, color, and fatliquor-
ing) is considered high-volume, low-strength wastewater, compared
to the waste streams associated with beamhouse and tanyard opera-
tions.  Because wet finishing imparts color to the process water,
recycling is not normally practiced.  The wastewater volumes from
the combined subprocesses, reported as a percentage of total
tannery flow, are highly variable, ranging from 12% to 30%.

     Finishing.  Because leather finishing operations are
basically dry, they contribute the lowest wastewater flow of any
tannery process.  There is some wet processing, such as wetting
the hides to facilitate handling in the staking or tacking opera-
tions, but most leather finishers do not have a contaminated
discharge resulting from their processing activities.

     Hair Save/Chrome Tan/Retan-Wet Finish

In the hair save unhairing operation, the hair is loosened for
subsequent machine removal.  The depilatory chemicals utilized
are the same as those characteristic of hair pulping, but are
present in lower concentrations.

The second step, in the hair save operation, is machine removal of
hair from the hide.  Removed hairs require washing only, if they
are to be baled and sold; otherwise they are handled as solid
wastes.

The average water consumption of hair save operations is
approximately 20% greater than for hair pulp tanneries.  The
higher water use is associated with machine removal and washing
of the hair.

     Hair Save/Nonchrome Tan/Retan-Wet Finish

The principal difference between this subcategory and the pre-
vious one is the tanning operation.  Cattle hides leaving the


Date:  9/25/81               II.7-5

-------
beamhouse are bated and pickled in a similar manner but are
tanned with such agents as alum,  zirconium,  and other metal
salts, as well as syntans, gluteraldehyde,  and formaldehyde.
Vegetable tannings accomplish the major portion of nonchrome
tanning.

Spent solutions from the vegetable tanning process are quite
different from chrome solutions.   The reaction rate of vegetable
tannings with the hides is much slower than that associated with
chrome.  Because of the longer contact time, the process nor-
mally proceeds in vats with some type of gentle agitation.  Pro-
cess solution conservation is prevalent due to the cost of these
tanning agents.

     Retan-Wet Finish

These tanneries receive previously tanned hides or splits for
retanning and finishing.  Either chrome, vegetable, or synthetic
tanning agents can be used for retanning.  Wastewater sources
for the wet finishing steps are coloring, fatliquoring, and
drying.  Without the beamhouse and tanyard operations, flow and
waste loads per unit of production decrease.  The average flow
for a retan-wet finish facility is less than one-half of the
volume characteristic of tanneries with beamhouse and tanyard
processes.

     No Beamhouse

These tanneries primarily include plants that tan unhaired pig-
skins and pickled sheepskins.  They may also receive pickled and
unhaired cattle hides, which are subjected to tanyard and retan-
wet finish processes.

Unhaired, pickled sheepskins require fleshing, if this has not
previously been done.  Previously fleshed skins usually require
refleshing after tanning.  Pigskins are not subjected to this
operation.

Grease removal is necessary, for both sheepskins and pigskins, and
follows the soak and wash step.  Utilizing the same drums,
degreasing proceeds by one of two methods:  (1) hot water with
detergent, or (2) solvent addition.  In either case, the grease
is separated and recovered as a by-product having some commercial
value.  For pigskins, the total amount of grease removed from the
skin can approach 10% of the skin weight.  The quantity entering
the waste stream is usually a small part of the total.  In
solvent degreasing, the solvent is recovered for reuse.  BOD5/
COD, and suspended solids are other constituents in waste streams
generated by this operation.
Date:  9/25/81               II.7-6

-------
Prior to tanning pigskins, the tanneri-es must remove the embedded
portion of the hair from the skins.  The pickling step follows to
prepare the skins for tanning.

Sheepskins and pigskins may be tanned with chrome or vegetable
tannins, although the majority of tanneries utilize the chrome
tanning method.  The conventional practice is to tan pigskins
completely, thus eliminating the need for a retan operation.
Tanned sheepskins are retanned in a manner similar to cattle
hides.  The wet finishing operations for both types of skins are
equivalent to those previously described.

Elimination of the beamhouse results in lower average flow and
waste loads per unit of production than is typical; however, the
no-beamhouse segment generates higher flows and waste loads than
tanneries which only retan and wet finish.

     Through-the-Blue

Facilities in this segment process raw or cured cattle hides
through the blue-tanned state only.  The remaining steps to
produce finished leather are performed by other tanneries.

Unhairing of the hides may use either the hair pulp or the hair
save method.  Hair pulping results in the higher waste loads,
while hair save uses more water.  Following bating and pickling,
the unhaired hides are chrome tanned to the blue stage.

Average wastewater flows for through-the-blue tanneries are
lower than those for no-beamhouse tanneries, but greater than for
facilities that only retan and wet finish.

     Shearling

Tanneries in this subcategory process raw or cured sheepskins
into finished leather with the hair (wool) intact.  The major
processing operations include tanyard and retan-wet finish.

Prior to the tanning operation, the skins are soaked and washed
to cleanse them of foreign matter.  This step requires a sub-
stantial amount of water for shearlings.  The shearling hides
are fleshed after washing.  Degreasing follows, using either of
the two methods described in the no-beamhouse subcategory; how-
ever, grease recovery is not normally practiced by shearling
tanneries.

Unlike unhaired sheepskins, shearling hides are pickled in the
manner characteristic of cattle hide processing, i.e., prior to
tanning.  They do not, however, require liming and bating.  Tan-
ning may be accomplished with chrome or vegetable tannins,
Date:  9/25/81               II.7-7

-------
although the chrome method is generally preferred.   The retanning
and wet finishing steps for shearlings follow.

Because shearling hides are processed with the  hair intact,  aver-
age water consumption is more than four times the volume per unit
of production observed for the no-beamhouse process,  which essen-
tially employs the same processing steps.

II.7.1.3  Wastewater Flow Characterization

The volume of water utilized in the leather tanning and finishing
industry fluctuates.  Processing techniques within each sub-
category of the industry may differ from tannery to tannery.
Most tanneries have combined processes that fall under several
different subcategories, and all process wastewater is generally
discharged to a common sewer.  Wastewater flows are tabulated in
Table 7-3.

     TABLE 7-3.  SUMMARY OF SUBCATEGORY WASTEWATER FLOWS [2-14]
Subcateaory
Hair pulp/chrome tan/retan-
wet finish
Hair save/chrome tan/retan-
wet finish
Hair save/noncnrome tan/
retan-wet finish
Retan-wet finish
No beamhouse
Through-the-blue
Shearl ing
Total number
of plants
report inq flow

31

12

16
8
IU
2
3
Average Total number
flow, L/kg operating below
of hide averaae flow

38

46

33
14
28
23
1 16

16

6

8
4
7
1
2
II.7.2  WASTEWATER CHARACTERIZATION [2-14]

Water is used extensively in the leather tanning and finishing
industry.  Some of its uses are:

     •  soaking and washing unprocessed hides,
     •  as a medium which allows chemicals to react with hides/
        skins,
     •  as a carrier for dyes and pigments which impart the
        desired color to the final product, and
     •  for cleaning processing areas and equipment.

II.7.2.1  Hair Pulp/Chrome Tan/Retan-Wet Finish

The primary constituents of the soak and wash waste stream are
BOD5, COD, suspended solids, and dissolved solids.  For a cattle
hide tannery with this operation preceding hair pulping and
chrome tanning, typical ranges for BOD5 and suspended solids are
from 7 to 22 and 8 to 43 kg/Mg of hide respectively.  Because the


Date:  9/25/81               II.7-8

-------
incoming hides are generally either brine-cured or green-salted,
the salt must be removed in preparation for unhairing.  This re-
moval results in relatively high total solids values, ranging
from 143 to 267 kg/Mg of hide.

The liming and unhairing process is one of the principal contrib-
utors to the plant effluent.  Spent unhairing liquors contain
very high concentrations of proteinaceous organic matter, dis-
solved and suspended inorganic solids, and sulfides (mostly in
the dissolved form) in a highly alkaline solution.  Most sul-
fides found in tannery wastewater come from spent unhairing
liquors, although some potentially significant amounts, depend-
ing upon the specific processes and formulations, carry over
into spent tanning and retanning liquors.  The BOD5 content of
the waste from this operation may range from 53 to 67 kg/Mg of
cattle hide processed.  Concurrently, the estimated total nitro-
gen levels range from 11 to 15 kg/Mg of raw material.

In the bating of unhaired hides, lime reacts with ammonium sul-
fate to produce calcium sulfate, which enters the plant effluent.
The total nitrogen content of the waste stream varies from 5 to
8 kg/Mg of hide, with ammonia constituting two-thirds.  The
pickling step which follows generates relatively low levels of
pollutant, including BOD5/ suspended solids, and nitrogen.

The chrome-tanning operation generates signficant wastes because
it is the major source of chromium in the total plant effluent;
however, the organic content of the spent tanning solution,
including BOD5 and suspended solids, is generally low.

The wet finishing operations, which include retanning, coloring,
and fatliquoring,  generate high-volume, low-strength wastewaters
compared to the effluents from beamhouse and tanyard processes.
The temperature of the retan, color, and fatliquor waste streams
is high, typically exceeding 38°C (100°F).  Use of high temper-
atures in retanning ensures maximum chromium uptake, thereby,
reducing its discharge to the total waste stream.

Since this subcategory represents the largest portion of the
leather tanning industry, considerable data are available for
characterizing its wastewaters, particularly for classical param-
eters.  Table 7-4 summarizes the classical pollutant concentra-
tions in the wastewater.  All data presentation of classical
parameters in this industry are the range of concentrations
and the geometric mean.  The geometric mean was determined,
according to the reference, to be the most representative
indicator of the central tendency of the classical pollutant
data.  Table 7-5 presents verification data for toxic pollut-
ants in this subcategory.
Date:  9/25/81               II.7-9

-------
    TABLE 7-4.
RAW WASTEWATER CHARACTERIZATION pF CLASSICAL
POLLUTANTS FOR THE HAIR PULP/CHROME TAN/RETAN-WET
FINISH SUBCATEGORY, SCREENING DATA [2-14]
Concentration
Number of
Pollutant plants
BOD 5
COD
TSS
TKN
Phenol
Sulfides
Oil and grease
Total chromium
Ammonia
16
12
17
10
6
11
14
16
10
Number of Range of
samples samples
205
170
210
58
15
170
75
180
168
210
180
25
90
0.14
0.8
15
3.1
17
- 4,300
- 27,000
- 36,000
- 630
- 110
- 200
- 10,000
- 350
- 380
, mg/L
Geometric
mean
1,600
4,600
2,400
330
1.0
64
400
76
100
Analytic methods:  V.7.3.6,  Data set 1.

II.7.2.2  Hair Save/Chrome Tan/Retan-Wet Finish

The principal difference between this subcategory and the pre-
vious one is the method of removing hair from cattle hides.
Although water use is greater for machine removal and washing of
hair, the waste loads associated with the hair save process are
substantially less than those for hair pulp operations.   The
proteinaceous hair does not dissolve totally in the unhairing
solution for the hair save process.  This results in a lower
BOD5 content in the waste stream, ranging from 17 to 58 kg/Mg
of raw material.  The total nitrogen and sulfide contents also
decrease correspondingly.  The remaining tannery operations
essentially are the same as for subcategory one, thereby
contributing similar waste loads.

Tables 7-6 and 7-7 summarize the raw wastewater characteristics
for this subcategory in terms of classical parameters and toxic
pollutants, respectively.

II.7.2.3  Hair Pulp/Nonchrome Tan/Retan-Wet Finish

The tanning of cattle hides by nonchrome methods distinguishes
this segment from the previous one.  The most significant
difference between the raw waste loads of the two subcategories
occurs in the total chromium content.  The use of nonchrome
tanning agents reduces the average chromium level.  The small
amount of chromium present in the effluent from nonchrome
tanneries, generally originates in the retanning operations
which may require chromium salts.
Date:  9/25/81
             II.7-10

-------
    TABLE 7-5.  RAW WASTEWATER  CHARACTERIZATION OF TOXIC  POLLUTANTS FOR THE HAIR
               PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY, VERIFICATION DATA
Number
of
Toxic pollutant. ug/L samples
Metals and inorganics
Chromium
Copper
Cyan ide
Lead
Nickel
Zinc
Toxic orqanics
Bis(2-chloroisopropyl Jether
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Benz id ine
3,3' -Dichlorobenzid ine
1 ,2-Diphenylhydrazine
N-n i t rosod i pheny 1 am i ne
2,4-Dichlorophenol
2,4-Dimethylpheno 1
Pentach 1 oropheno 1
Phenol
2,4, 6-Tr ichl oropheno 1
Benzene
Chlorobenzene
1 , 2- Di chlorobenzene
1 , 3-D i ch 1 o robenzene
1 , 4-Di chlorobenzene
Ethyl benzene
Hexachlo robenzene
Ni t robenzene
Toluene
1 , 2, 4-Tri chlorobenzene
Acenaphthene
Acenaphthylene
2-Chloronaptha lene
Chrysene
Fluoranthene
Fluorene
Naphtha lene
Phenanthrene/anthracene
Pyrene
D i ch 1 o rob romornethane
Chloroform
1, l-Dichloroethane
1 ,2-Dichloroethane
Dichloromethane
1 ,2-Trans-dichloroethylene
1 , 1 ,2,2-Tetrachloroethane
Tet rach 1 o roethy 1 ene
1,1, l-Tr ichlo roe thane
1, 1 ,2-Trichloroethane
Trich lo roe thy lene
T r i ch 1 o rof 1 uo romethane
Pesticides and metabolites
Chlordane
1 sophorone
Alpha-BHC
Beta-BHC

3
3
2
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
Number Range
of of
detections detections

3
3
2
3
3
3

0
1
0
0
0
1
1
0
0
0
0
1
0
3
2
3
0
1
0
1
2
0
1
3
0
1
1
0
0
0
0
2
1
0
0
1
1
0
3
1
1
1
1
1
1
0

0

0
0

43,000 - 180,000
50 - 380
20 - 60
1, 100 - 2,400
20 - 60
200 - 580


51



120
27




BDL

3,000 - 4,400
880 - 5,900
10-20

260

54
88 - 88

430
150 - 400

32
16




24 - 67
94


20
20

10 - 10
30
10
50
BDL
10
20






Mean
of
detections

80,000
170
40
1,700
40
430














3,700
4,000
15




88


280







46






10












     Analytic methods:  V.7.3.6, Data set 2.
     BDL, below detection  limit.
Date:   9/25/81
II.7-11

-------
    TABLE 7-6.   RAW WASTEWATER  CHARACTERIZATION OF CLASSICAL
                 POLLUTANTS FOR  THE HAIR SAVE/CHROME TAN/RETAN-WET
                 FINISH SUBCATEGORY, VERIFICATION DATA [2-14]
Number of
Pollutant. mq/L plants
BOD
COD
TSS
TKN
Phenol
Su If ides
Oi 1 and grease
Total chromium
Ammon ia
7
5
7
5
4
6
5
6
5
Number of Range of
samples samples
101
30
82
56
24
70
30
56
31
140 -
700 -
94 -
63 -
0.44 -
0.03 -
49 -

-------
Lesser variations occur for the classical parameters, such as
BOD5 and suspended solids.  Table 7-8 presents these values
along with the concentrations for chromium and phenols.  Table 7-9
summarizes the presence of toxic pollutants and their respective
levels for hair pulp/nonchrome tan/retan-wet finish tanneries.
    TABLE 7-8.
RAW WASTEWATER CHARACTERIZATION OF CLASSICAL
POLLUTANTS FOR THE HAIR SAVE/NONCHROME TAN/RETAN-
WET FINISH SUBCATEGORY, VERIFICATION DATA [2-14]
Pollutant,
mg/L
BOD 5
COD
TSS
TKN
Phenol
Sulfides
Oil and grease
Total chromium
Ammonia
Number
of
plants
10
7
10
6
5
7
8
7
5
Number
of
samples
48
40
55
21
16
29
32
30
20
Range of
samples
1.0 -
1,100 -
28 -
130 -
0.28 -
0.10 -
2.0 -
0.25 -
23 -
7,800
75,000
8,200
1,200
100
330
1,300
110
680
Geometric
mean
1,200
5,100
1,700
200
1.2
68
340
11
90
Analytic methods: V.7.3.6, Data set 2.

II.7.2.4  Retan-Wet Finish

The tanneries in this industry segment limit their operations to
retan and wet finish hides or splits that have been unhaired and
tanned.  The absence of the beamhouse process results in lower
organic and sulfide loadings for this subcategory.  Tables 7-10
and 7-11 characterize the tannery wastewaters for classical and
toxic pollutants, respectively.

II.7.2.5  No Beamhouse

These tanneries consist only of tanyard and retan-wet finish
operations with no beamhouse.  Since unhairing operations are
absent from these tanneries, the raw waste loads, including
BOD5, suspended solids, and sulfide, are lower.  Tanyard opera-
tions increase conventional pollutant levels beyond those typical
for strictly retan-wet finish facilities.  Tables 7-12 and 7-13
present classical and toxic pollutant data in no-beamhouse tan-
neries.

II.7.2.6  Through-the-Blue

Hair removal and chrome tanning of cattle hides are the basic
operations of the through-the-blue tanneries.  Relatively high
organic loads, as well as the nitrogen and sulfide contents,
reflect beamhouse operations; total chromium levels result from
Date:  9/25/81
             II.7-13

-------
      TABLE 7-9.  RAW WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE
                 HAIR SAVE/NONCHROME TAN/RETAN-WET FINISH SUBCATEGORY,
                 VERIFICATION DATA  [2-It]
Number
of
Toxic pollutants. uq/L samples
Metals and inorganics
Chromium
Copper
Cyanide
Lead
Nickel
Zinc
Toxic organics
Bis(2-chloroi sop ropy 1 ) ether
Bis(2-ethylhexyl )phtha late
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Benzid ine
3, 3'-Dichlorobenzid ine
1 , 2-Diphenylhydrazine
N-n i trosod ipheny lamine
2,4-Dich loropheno 1
2,4-Dimethylpheno 1
Pentach lorophenol
Phenol
2,4,6-Tr ichlorophenol
Benzene
Ch lorobenzene
1 ,2-Dich lorobenzene
1 , 3-Dich lorobenzene
1 , 4-Dich lorobenzene
Ethyl benzene
Hexach lorobenzene
Nitrobenzene
Toluene
1 , 2, 4-T rich lorobenzene
Acenaphthene
Acenaphthy lene
2-Chloronaphtha lene
Chrysene
Fluoranthene
Fl uorene
Naphtha lene
Phenanthrene/anthracene
Pyrene
Ch loroform
D i ch 1 o rob romometha ne
1, l-Dich loroethane
1 ,2-Dich loroethane
Dichloromethane
1 ,2-Trans-d ich loroethy lene
i, 1 , 2,2-Tetrachloroethane
Tet rach 1 o roe thy 1 ene
1, 1, l-Trichloroethane
1, 1 , 2-Tr ichloroethane
Trich loroethy lene
Trich lorof luoromethane
Pesticides and metabolites
Alpha-BHC
Beta-BHC
Chlordane
1 sophorone

4
4
3
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
Number Range Mean
of of of
detections detections detections

4
4
2
4
4
4

0
0
0
1
1
0
0
0
0
0
0
0
2
4
2
3
0
3
0
3
3
0
0
4
0
0
0
0
0
0
0
3
1
0
1
1
0
0
3
0
1
1
0
0
0
0

0
0
0
0

430 - 10,000
100 - 740
60 - 100
100 - 200
40 - 95
300 - 700




BDL
BDL







10 - 2,900
51 - 25,000
130 - 1,700
10 - 10

49 - 200

19 - 20
10 - 120


10 - 15







6-59
BDL

24
10


10-25

10
23










5, 100
380
80
140
61
490













1,500
9, 100
920
10

130

20
58


12







32






18

BDL
BDL









      Analytic methods: V.7.3.6,  Data  set 2
      BDL,  below detection I imit.
Date:   9/25/81
II.7-14

-------
 TABLE  7-10.
RAW WASTEWATER CHARACTERIZATION  OF CLASSICAL POLLUT-
ANTS  FOR THE RETAN-WET  FINISH SUBCATEGORY,  VERIFICA-
TION  DATA [2-14]
Number of
Pollutant. mq/L plants
BOD5
COD
TSS
TKN
Phenol s
Su If ides
Oil and grease
Total chromium
Ammon i a
3
3
3
3
3
3
3
3
3
Number of Range of
samples samples
30
9
28
9
8
7
29
24
9
200 -
1,200 -
96 -
1 10 -
0.23 -
0. 16 -
58 -
1.6 -
58 -
1,600
4,800
7,400
480
17
2.4
850
380
160
Geometric
mean
780
3, 100
820
210
3.9
1. 1
270
53
1 10
       Analytic methods: V.7.3.6, Data set 2.
   TABLE  7-11.
  RAW WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS
  FOR THE RETAN-WET FINISH SUBCATEGORY, VERIFICATION
  DATA  [2-14]
Toxic DO Mutants. IM/L
Metals and inoraanfcs
Ch rom i un
Copper
Cyanide
Lead
N i eke 1
Zinc
Toxic oraanlcs
Bis(2-chloroi sop ropy 1 )ether
Bis(2-ethylhexyl )ph thai ate
Butyl benzyl phthalate
Dl-n-butyl phthalate
01 ethyl phthalate
Dimethyl phtnalate
Benz 1 d i ne
3,3'-Dichlorobenzidine
1 , 2-Diphenylhydrazine
N-n 1 1 rosod 1 pheny I >• i ne
2, ii-O i ch 1 o ropheno 1
2,1-Dimethylphenol
PentachJorophenoj
Phenol
2,1*, 6-Trichl o ropheno 1
Benzene
Chlorobenzene
1 ,2-Dichlorobenzene
1 , 3-D i Chlorobenzene
1 , i*-D i ch 1 o robenzene
Ethyl benzene
Hexach 1 o robenzene
Nitrobenzene
To 1 uene
1 ,2,1-Trlchlorobenzene
Acenaphthene
Acenapntny lene
2-Ch 1 o ronapthaene
Chrysene
Fluoranthene
Fluorene
Naphtha lene
Phenanthrene/anthracene
Pyrene
Chlorofona
D i ch 1 orobromoine thane
1 , l-Dichlo roe thane
1 , 2-0 ich to roe thane
Dichloromthane
1 , 2-Trans-d ich loroethy lene
1, 1,2,2-Tetrachloroethane
Tetrachloroethylene
1,1, l-Trlchlo roe thane
1, 1,2-Trlchloroethane
Trichlo roe thy lene
Tr ich lororiuonm thane
Number "
of
samles

3
3
2
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
	 Nu.be r 	
of
detection!

3
3
1
3
3
3

0
0
0
1
1
0
0
0
0
1
0
0
0
2
2
2
0
0
0
0
3
0
0
3
0
1
o
0
0
0
0
1
2
o
2
0
0
0
2
0
0
0
0
0
0
0
Range
of
detections

16,000 - 130,000
160 - 330
30
100 - 3,500
6 - 100
ISO - 280




BOL
BOL




250



3,200 - 3,200
570 - 570
10 - 10




10.- 150


10-11

8DL





BOL
110 - 130

10 - (0



10 - 10







Mean
of
detections

89.000
250

1,300
15
200














3,200
570
10




80


10








120





10







              Pesticides and metabo Iit

              Alpha BHC
              Beta BHC
              Chlordane
              Isophorone
             Analytic methods; V.7.3.6, Data set 2.
             BOL, be tow detect?on limit.
Date:   9/25/81
                 II.7-15

-------
TABLE 7-12.
RAW  WASTEWATER  CHARACTERIZATION OF CLASSICAL  POLLUT-
ANTS FOR  THE NO BEAMHOUSE SUBCATEGORY,  VERIFICATION
DATA [2-14]
Pol lutant. mq/L
BOD5
COD
TSS
TKN
Phenol
Su If ides
Oil and grease
Total chromium
Ammon i a
Number of
plants
10
7
10
4
4
5
7
8
5
Number of
samp les
127
64
124
12
20
13
32
66
22
Range of
samples
20 - 20,000
140 - 38,000
120 - 37,000
22 - 160
0. 1 1 - 9.9
0.09 - 6.1
85 - 1,200
2.8 - 1,900
6.2 - 99
Geometric
mean
1,000
1,700
630
I70(a)
1.2
3.2
340
68
36
      Analytic methods: V.7.3.6,  Data set 2.
      (a)  As reported in reference; currently under review.
  TABLE  7-13.
  RAW WASTEWATER CHARACTERIZATION OF TOXIC POLLUT-
  ANTS FOR THE  NO BEAMHOUSE SUBCATEGORY,  VERIFICATION
  DATA [2-14]
              Toxic pollutants ug/L
                                 Number
                                  of
                                 samples
                        Number
                          of
                       detections
 Range
  of
detect ions
  Mean
  of
detections
              Metals and Inorganics
Chromium
Copper
Cyanide
Lead
Nickel
Zinc
Toxic inoraanlcs
Bi s ( 2-ch 1 oroi sop ropy 1 ) ether
Bis(2-ethylhexyl )phthalate
Butyl benzyl phthalate
Ol-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Benz i d i ne
3 , 3 ' -D i ch 1 o robenz i d i ne
, 2-D i pheny 1 hyd raz i ne
N-n i t rosod i pheny I am i ne
2 , U-D i ch t o ropheno 1
2, 1-Di methyl phenol
Pentachlorophenol
Pheno I
2,1,6-Trichlorophenol
Benzene
Chloro benzene
1 , 2-Dichlorobenzene
1 , 3-D i ch l o robenzene
, M-Di chloro benzene
Ethyl benzene
Hexach 1 o robenzene
Nitrobenzene
Toluene
1 , 2, It-Tr i ch 1 orooenzene
Acenaphthene
Acenaphthylene
2-Ch I o ronaphtha 1 ene
Chrysene
Fluorenthene
Fluorene
Naphtha lene
Phenanthrene/anthracene
Pyrene
Chloroform
Dichlorobromomethane
, l-Dichloroethane
,2-Dichloroethane
Ichloromethane
,2-Trans-dichloroethylene
, 1 ,2,2-Tetrachloroethane
etrachlo roe thy lene
, 1, l-Trlchloroe thane
, 1 ,2-Trichloroethane
Trichlorof luoromethane
Pesticides and metabol ites
Alpha BHC
Beta BHC
Chlordane
Isophorone
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
0
3
3
3

0
0
0
0
0
0
0
0
0
0
0
0
2
1
3
2
0
1
0
1
2
0
0
2
0
0
0
0
0
0
0
2
2
0
3
1
0
0
1
0
0
1
0
0
0

0
0
0
0
16.000 - 170,000 71,000
110 - 260 190

60 - 1.600 790
BDL - 30 15
96 - 2,600 1,000













3.100 - 3.700 3.600
6,200
2,100 - 1,200 3,300
10 - 150 60

36

13
10 - ISO 80


10 - 150 80







5-19 27
110 - 130 120

BDL - 18 10
10


10


HO







              Analytic methods: V.7.3.6, Data
              BDL, below detection limit.
Date:   9/25/81
                   II.7-16

-------
chrome tanning procedures.   Raw waste concentrations for the
classical parameters  are presented in Table 7-14.  Table 7-15
presents toxic pollutants and their respective concentrations.
   TABLE 7-14.
RAW WASTEWATER CHARACTERIZATION OF CLASSICAL
POLLUTANTS FOR THE THROUGH-THE-BLUE SUBCATEGORY,
VERIFICATION DATA  [2-14]
            Pollutant,
                       Number of
                        plants
               Number of
               samples
Range of
samples
Geometric
 mean
BODS ;
COD
TSS Z
TKN
Phenols
Sul fides
Oil and grease <
Total chromium
Ammonia
> 8
5
> 8
5
1
U
9
U
U
1,300
10,000
1,200
960

110
67
230
380
- 11,000
- 33,000
- 15,000
- 1 , 800
9.6
- 680
- 6,200
- UOO
- 610
2,500
6,400(3)
3,900
l460(a)
l.5(a)
I20(a)
560
I00(a)
I20(a)
            Analytic methods: V.7.3.6, Data set 2.
            (a) As reported in reference; currently under review.

II.7.2.7  Shearling

Tanneries in this  subcategory  tan and wet finish sheepskins with
wool intact.  Subprocessing operations eliminate the need for a
beamhouse;  however,  the  amount of foreign matter which must be
removed from the wool  creates  higher organic waste loads than
those of no-beamhouse  tanneries.   The absence of grease recovery
during the  degreasing  step  is  responsible for the higher oil and
grease loads.   Chrome  tanning  is  prevalent for shearling pro-
cessing and results in significant levels of total chromium in
the untreated wastewater.   Tables 7-16 and 7-17 summarize the
classical and toxic pollutants,  respectively, found at shearling
tanneries.

II.7.3  PLANT SPECIFIC DESCRIPTION [2-14]

Tables 7-18 through 7-27 present  toxic pollutant and classical
pollutant data  for leather  tanning and finishing process plants.
The data presented are based on information from six plants in
five subcategories.  An  end-of-pipe treatment system was used
for each tannery.   The treatment  system used by each site is
listed on each  table.  No additional information is currently
available on an individual  plant  basis.

II.7.4  POLLUTANT  REMOVABILITY [2-14]

II.7.4.1  Industry Application

The leather tanning and  finishing industry utilizes two general
systems to  minimize the  quantity  of pollutants discharged by
tanneries.  They are (1) in-plant process control and (2) end-of-
pipe effluent treatment  systems.   End-of-pipe treatment
approaches  include preliminary treatment and primary treatment,
Date:  9/25/81
             II.7-17

-------
  TABLE 7-15.
RAW  WASTEWATER CHARACTERIZATION OF  TOXIC  POLLUTANTS
FOR  THE THROUGH-THE-BLUE SUBCATEGORY,  VERIFICATION
DATA [2-14]
               Toxic pollutants. iia/L
                                     Numbe r
                                       of
                                     samples
                             Number
                              of
                            detections
  Range
   of
detections
               Metals and inorganics
Ch ront i urn
Copper
Cyanide C
Lead
Nickel
Zinc
Toxic orqanics
B i s( 2-ch 1 o ro i sop ropy 1 ) ethe r
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Benzidine
3 , 3 ' -D i ch 1 o robenz i d i ne
1 , 2-Diphenyl hydra zine
N-nitrosodiphenylamine
2,U-Dichlorophenol
2,U-Di methyl phenol
Pentachlorophenol
Pheno 1
Total phenol
2,4,6-Trichlorophenol
Benzene
Chloro benzene
1,2-Dichlorobenzene
1 ,3-Dichlorobenzene
1 , 4-D i ch 1 o ro benzene
Ethyl benzene
Hexach 1 oro benzene
Nitrobenzene
Toluene
1 ,2,U-Trichlorobenzene
Acenaphthene
Acenaphthylene
2-Chloronaphths lene
Chrysene
Fluoranthene
Fluorene
Naphthalene
Phenanthrene/anthracene
Pyrene
Chloroform
0 i ch 1 o rob romomethane
1 , l-Dichloroethane
1 ,2-Dlchloroethane
Dichlorome thane
1,2-Trans-dichlo roe thy lene
1, 1,2,2-Tetrachloroethane
Tetrachloroethylene
1,1, l-Trlchloroethane
1, 1 ,2-Trich loroethane
Trichloroethylene
Trichlorof luoromethane
Pesticides and metabolites
Alpha BHC
Beta BHC
Chlordane
Isophorone


i




0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0

0
0
1
0
550,000
100

28
160
980












BDL

BDL
8,500
BDL


BDL

BDL
BDL


BDL


BDL
BDL


BDL
BDL
BDL

BDL



BDL



BDL






BDL

               BDL, below detection limit.
Date:   9/25/81
                 II.7-18

-------
TABLE  7-16.
RAW WASTEWATER CHARACTERIZATION OF CLASSICAL POLLUT-
ANTS FOR  THE SHEARLING SUBCATEGORY,  VERIFICATION DATA
[2-14]
Pol lutant. mq/L
BOD5
COD
TSS
TKN
Sul fides
0 i 1 and grease
Ammon i a
Phenol
Number of
D lants
3
3
3
2
2
3
2
2
Number of
samples
24
19
25
7
10
12
7
10
Range of
samples
100 - 3,900
370 - 32,000
120 - 7,700
39 - 750
0.08 - 68
56 - 1,200
8.7 - 35
0. 14 - 1 10
Geometric
mean
350
900
390
53
0.2
140
13
0.3
     Analytic methods: V.7.3.6, Data set 2.
  TABLE  7-17.
  RAW WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS
  FOR THE  SHEARLING SUBCATEGORY,  VERIFICATION DATA
  [2-14]

Metals and morqanics
Ch com i urn
Copper
Cyanide
Lead
Nickel
Zinc
Toxic orqanics
Bi s(2-chloroi sopropyl )ether
Bi s(2-ethylhexyl )phtha late
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Benzidine
3, s'-Dichlorobenzid ine
1 , 2-D i pheny 1 hyd raz i ne
N-n 1 1 rosod i pheny 1 am i ne
2,U-Dichloropheno 1
2,1-Dimethylphenol
Pentach 1 oropheno 1
Pheno 1
Total phenol
2,i|,6-Trichlo ropheno 1
Benzene
Ch 1 o robenzene
1 , 2-D ich to robenzene
1 , 3-D ichlo robenzene
1 , U-D ichlo robenzene
Ethyl benzene
Hexachlo robenzene
Nitrobenzene
Toluene
1 ,2,14-Tnchlorobenzene
Acenaphthene
Acenaphthylene
2-Ch 1 o rona phtha 1 ene
Chrysene
Fluoranthene
Fluorene
Naphtha tene
Phenanthrene/anthracene
Pyrene
Ch loroform
D i ch 1 o rob romometha ne
1 , l-Dichloroethane
1 ,2-Dichloroethane
Dichloromethane
1,2-Trans-d ichloroethylene
1, 1 ,2,2-Tetrachloroethane
Tetrachloroethylene
1,1, l-Tr Ichlo roe thane
1, 1.2-Trichloroe.thane
T r ich 1 o roe thy f ene
Trichlorof luoromethane
Pesticides and metabolites
Alpha BHC
Beta BHC
Chlordane
1 sophorone
Number
of
sa moles

2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
Number
of
samples

2
2
2
2
2
2

0
1
0
0
0
0
0
0
0
0
0
0
1
1
2
0
2
0
1
0
2
0
0
0
2
0
0
0
0
0
0
0
2
1
0
2
0
0
0
2
0
1
0
0
0
0
0

0
0
0
0
Range
of
detections

20,000 - 53,000
35 - 120
10 - 10
70 - 80
20 - 27
190 - 500


97










1400
91

-------
       TABLE 7-18.   CONCENTRATIONS OF CLASSICAL POLLUTANTS
                       FOUND  IN THE HAIR SAVE/NONCHROME TAN/RETAN-
                       WET FINISH  SUBCATEGORY FOR PLANT 47,
                       VERIFICATION DATA [2-14]
Treatment type: Activated sludge

Pol lutant. mg/L
BODS
COD
TSS
TKN
Su If ides
Oi 1 and grease
pH, pH units
Ammon i a

Influent
1,500
6,000
6,400
750
19
250
8.6
440

Effluent
49
550
230
280
17
35
7.6
2140
Percent
remova 1
97
91
96
63
1 1
86

45
              Analytic methods: V.7.3.6, Data set 2.



     TABLE 7-19.   CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN
                    THE HAIR SAVE/NONCHROME TAN/RETAN-WET  FINISH
                    SUBCATEGORY  FOR PLANT  47, VERIFICATION DATA
                     [2-14]


        Treatment type:  Activated sludge

                                                             Percent
        Pol lutant. Ufl/L	Influent	Effluent	remova I

        Metals and inorganics

          Chromium                      6,400         170          97
          Copper                          200         25          88
          Cyanide                         100         400          NM
          Lead                           100         50          50
          Nickel                           60         30          50
          Zinc                           460         59          87

        Toxic organics

          Bis(2-ethylhexylJphthalate         ND         26          NM
          Pentachlorophenol '             2,900         200          93
          Phenol                          850         ND         >99
          2,4,6-Trichlorophenol           1,700         38          98
          Benzene                         BDL         BDL          NM
           1,2-Dichlorobenzene               49         ND         >99
           I,4-Dichlorobenzene               19         ND         >99
          Ethyl benzene                     43         BDL          88*
          Toluene                         BDL         BDL          NM
          Naphthalene                      19         ND         >99
          Phenanthrene/anthracene           BDL         ND          NM
          Chloroform                       .ND         ND          NM
           I,1,2,2-Tetrachloroethane         BDL         ND          NM

        Pesticides and metabolites

          Alpha BHC                        ND         ND          NM
          Beta BHC                         ND         ND          NM

        Analytic methods:V.7.3.6, Data set 2.
        ND, not detected.
        BDL,  below detection limit.
        NM, not meaningful.
        "Approximate value.
Date:  9/25/81                  II.7-20

-------
 TABLE  7-20.
CONCENTRATIONS  OF  CLASSICAL POLLUTANTS  FOUND IN THE
HAIR SAVE/CHROME TAN/RETAN-WET FINISH SUBCATEGORY
FOR  PLANTS 248  and 320,  VERIFICATION DATA  [2-14]
 Treatment  type:   Extended aeration
                or activated sludge
                    Pollutant. mq/L
                       Influent
Effluent
Percent
removaI
                                                    Plant 248
                   BOD5
                   COD
                   TSS
                   TKN
                   Sulfides
                   Oi I and grease
                   pH, pH units
                   Ammoni a
                        1,200
                       2,600
                        I, 100
                         250
                          50
                          170
                           I I
                          98
   920
 1,800
   560
   190
    30
    91
    I I
    60
  23
  31
  49
  24
  40
  46

  39
 TABLE  7-21.

BOD5
COD
TSS
TKN
Sulf ides
Oi 1 and grease
pH, pH units
Ammonia

2,000
4,000
2,300
290
16
550
8.4
150
Plant 320
300
890
130
160
6
17
7.6
120

85
78
94
45
63
97

20
 Analytic methods: V.7.3.6, Data set 2.

CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE  HAIR
SAVE/CHROME TAN/RETAN-WET  FINISH  SUBCATEGORY  FOR
PLANTS 248  and 320,  VERIFICATION  DATA  [2-14]
    Treatment type:  Extended aeration, activated sludge
                                       Plant
    Pollutant.  ug/L
                              Influent
                                       Effluent
                                                 Percent
                                                 removaI
                                                                    Plant 320
                                                           Influent
                                                                    .Effluent
                                                             Percent
                                                             remova I
    Metals and inorganics

      Chromium                  31,000     20,000
      Copper                       57        37
      Cyanide                      20        <|0
      Lead                        100        30
      Nickel                       BOL        3>>
      Zinc                        230        IUO

    Toxic organlcs

      Bis(2-ethylhexyl)phthai ate        ND        ND
      Pentachlorophenol             9,500      3,100
      Pheno I                       1480        UtlO
      2,1,6-Trichlorophenol         11,000      4,300
      Benzene                      ND        ND
      I,2-Dichlorobenzene             215        69
      I , <4-Dichlorobenzene             99        21
      Ethyl benzene                  ND        ND
      Toluene                      BDL        BDL
      Naphthalene                   49        15
      Phenanthrene/anthracene          56        BDL
      Chloroform                    ill        BOL
      I,I,2,2-Tetrachloroethane        ND        ND

    Pesticides and metabolites
                                   35
                                   35
                                   NM
                                   70
                                   NM
                                   39
                                   NM
                                   67
                                   8
                                   61
                                   NM
                                   68
                                   79
                                   NM
                                   NM
                                   69
                                   9I»
                                   88»
    Analytic methods:
    ND, not detected.
    BDL, below detection limit.
    NM, not meaningful.
    *App rox i ma te vaIue.
 V.7.3.6,  Data set 2.
      170,000
         220
          50
        3, 100
          75
        2, 100
          32
          ND
        5,500
          NM
         BDL
          ND
          NO
        >IOO
        >IOO
          ND
         BDL
         BDL
          ND
    1,700
     BDL
      10
      60
      30
     170
     BDL
      12
    I, tOO
      12
     BDL
     BDL
     BDL
     BDL
     BDL
     BDL
     BOL
      NO
      ND
99
98*
20
98
60
92
NM
75
NM
NM
NM
NM
95*
95»
NM
NM
NM
NM
Alpha BHC
Beta BHC
ND
ND
ND
ND
NM
NM
ND
ND
ND
ND
NM
NM
Date:   9/25/81
                     II.7-21

-------
  TABLE  7-22.   CONCENTRATIONS OF CLASSICAL POLLUTANTS  FOUND
                  IN THE  SHEARLING SUBCATEGORY  FOR PLANT  253,
                  VERIFICATION DATA [2-14]
Treatment type:
Pol lutant, mq/L
BOD5
COD
TSS
TKN
Su If ides
Oil and grease
pH
Ammonia
Activated sludge
Influent
1,000
2,400
770
49
0. 16
410
5.2
1 1

Effluent
27
490
1 10
27
0. 13
25
7.7
17

Percent
remova 1
97
80
86
45
19
94

NM
              Analytic methods:  V.7.3.6,  Data set 2.
              NM, not meaningful.



     TABLE 7-23.   CONCENTRATIONS OF  TOXIC POLLUTANTS FOUND  IN
                     THE  SHEARLING  SUBCATEGORY FOR PLANT  253,
                     VERIFICATION DATA  [2-14]

         Treatment type:   Activated sludge

                                                               Percent
         Pol lutants. uq/L	Influent	Effluent	remova I

         Metals  and  inorganics

           Chromium                      53,000       2,200         96
           Copper                          120         BDL         96*
           Cyanide                           10         BDL         50*
           Lead                              80          30         63
           Nickel                            27          19         30
           Zinc                             500          68         86

         Toxic orqanics

           Bis(2-ethylhexyl)phthalate          93          34         63
           Pentachlorophenol                 400         130         68
           Phenol                            91          ND         >99
           2,4,6-Trichlorophenol              ND          ND         NM
           Benzene                          BDL          ND         NM
           1,2-Dichlorobenzene                ND          ND         NM
           I,4-Dichlorobenzene                20          ND         >99
           Ethyl benzene                      ND          ND         NM
           Toluene                          BDL          ND         NM
           Naphthalene                       35          ND         >99
           Phenanthrene/anthracene            36         BDL         83*
           Chloroform                        12          10         17
           I,I,2,2-Tetrachloroethane          18          ND         >99

         Pesticides  and metabolites

           Alpha  BHC                        ND          ND         NM
           Beta  BHC                          ND          ND         NM

         Analytic methods:V.7.3.6,Data  set 2.
         ND, not  detected.
         BDL,  below  detection  limit.
         NM, not  meaningful.
         *Approximate value.
Date:   9/25/81                   II.7-22

-------
  TABLE  7-24.
      CONCENTRATIONS  OF CLASSICAL POLLUTANTS  FOUND
      IN THE HAIR PULP/CHROME TAN/RETAN-WET FINISH
      SUBCATEGORY FOR PLANT 184,  VERIFICATION DATA  [2-14]
Treatment type: Aerated lagoons
Pollutant. mq/L
8005
COD
TSS
TKN
Sul fides
Oil and grease
pH, pH units
Ammon i a
Influent
1,900
5,500
2,900
500
200
720
8.4
260
Effluent
21
220
160
1 10
0.4
17
6.8
64
Percent
remova 1
99
96
94
78
>99
98

75
                 Analytic methods:   V.7.3.6,  data set 2.
   TABLE 7-25.
       CONCENTRATIONS OF TOXIC  POLLUTANTS FOUND IN  THE
       HAIR PULP/CHROME TAN/RETAN-WET FINISH  SUBCATEGORY
       FOR  PLANT 184,  VERIFICATION DATA  [2-14]
           Treatment type:  Aerated lagoon
            Pollutant. ug/L
                              Influent
Effluent
Percent
removaI
Metals and inorganics

  Chromium
  Copper
  Cyanide
  Lead
  Nickel
  Zinc

Toxic organ ics

  Bis(2-ethylhexyl )phtha late
  Pentachlorophenol
  Phenol
  2,4,6-Trichlorophenol
  Benzene
  I ,2-Dichlorobenzene
  I ,4-Dichlorobenzene
  Ethyl benzene
  Toluene
  Naphthalene
  Phenanthrene/anthracene
  Chloroform
  I , I ,2,2-Tetrachloroethane

Pesticides and metabolites

  Alpha BHC
  Beta BHC
                                         160,000
                                             50
                                             60
                                           1,100
                                             60
                                            500
                                             51
                                             NO
                                            880
                                            BDL
                                            260
                                             54
                                             88
                                           >IOO
                                             24
                                             ND
                                             ND
                                             ND
                                             ND
                                             ND
  I, 100
    BDL
    150
    80
    30
    49
    BDL
    ND
    ND
    ND
    BDL
    ND
    ND
    ND
    BDL
    ND
    ND
    ND
    ND
    ND
    ND
   99
   90*
   NM
   93
   50
   90
   90*
   NM
  >99
  >99
   NM
  >99
  >99
  >99
   95*
  >99
   NM
   NM
   NM
   NM
   NM
           Analytic methods:  V.7.3.6, Data set 2.
           ND, not detected.
           BDL, below detection limit.
           NM, not meaningful.
           *App rox i ma te vaIue.
Date:  9/25/81
                        II.7-23

-------
   TABLE 7-26.
CONCENTRATIONS  OF CLASSICAL POLLUTANTS
FOUND IN THE RETAN-WET SUBCATEGORY FOR  PLANT
247,  VERIFICATION DATA [2-14]
              Treatment type:  PhysicaI/chemical
Pol lutant. mc/L
BOD5
COD
TSS
TKN
Sulf ides
Oi 1 and grease
pH, pH units
Ammon i a
Influent
620
1,900
520
180
0.5
180
4.3
1 10
Effluent
6.7
28
7.7
U.H
0.3
15
U.H
1.5
Percent
remova 1
99
99
99
98
HO
92

99
              Analytic methods:  V.7.3.6, Data set Z.
  TABLE 7-27.
CONCENTRATIONS  OF TOXIC POLLUTANTS FOUND IN THE
RETAN-WET FINISH SUBCATEGORY FOR PLANT  247,
VERIFICATION DATA [2-14]
         Treatment type:  Physical/chemicaI
Pol lutant. ug/L
Metals and Inorganics
Ch rom i urn
Copper
Cyanide
Lead
Nickel
Zinc
Toxic organ ics
Bi s(2-ethylhexyl )phthalate
Pentach 1 o ropheno C
Pheno 1
2, U, 6-Trichlo ropheno 1
Benzene
1 , 2-D i ch 1 o robenzene
1 , U-Dichlo robenzene
Ethyl benzene
Toluene
Naphtha lene
Phenanthrene/anthracene
Chloroform
1, 1,2,2-Tetrachloroethane
Pesticides and metabolites
Alpha BHC
Beta BHC
Influent

16,000
260
BDL
300
BDL
150

NO
ND
3,200
570
BDL
ND
ND
>IOO
1 1
ND
130
BDL
ND

ND
ND
Effluent

<20
BDL
BDL
BDL
BDL
61

ND
ND
60
BDL
BDL
ND
ND
12
BDL
BDL
BDL
BDL
ND

ND
ND
Percent
remova 1

>99
98*
NM
98*
NM
59

NM
NM
98
98*
NM
NM
NM
<88
9*
NM
96*
NM
NM

NM
NM
         Analytic methods:  V.7.3.6, Data set 2.
         ND, not detected.
         BDL, below detection limit.
         NM, not meaningful.
         "Approximate value.
Date:   9/25/81
                II.7-24

-------
secondary treatment, and advanced waste treatment.   Preliminary
treatment includes in-plant controls, initial treatment of segre-
gated streams, and primary treatment of combined streams by
coagulation-sedimentation.  Secondary treatment is intended for
use to remove biodegradable organic material.  Advanced waste
treatment includes technologies that remove certain pollutants
and produce an effluent of high clarity and extremely low content
of classical and toxic pollutants.

Current treatment employed in the tanning industry ranges from no
treatment to several types of secondary treatment.   Twelve
percent of the industry dischargers have no pretreatment; yet,
all the direct dischargers have at least primary treatment and
some form of secondary treatment.  Eighteen plants discharge
their wastewaters directly to surface waters.  One-hundred
seventy indirect dischargers discharge to municipal treatment
plants.

II.7.4.2  Treatment Methods

The following discussion represents some of the treatment methods
currently in use in the Leather Tanning Industry.

     In-Plant Control

     Process changes.  Process changes are difficult to itemize
because of the numerous tanning methods employed.  Substitution
of effluents from one process for make-up water in another is
generally feasible at some points within a tannery.  Before
tanneries can make this change, however, they must establish the
quantity and pollutant content of water required for each
operation.

     Substitution of process ingredients.  Chemical ingredients
of low pollution potential can often be substituted for problem
pollutants.  A number of process chemical substitution oppor-
tunities exist.

     Water conservation and reuse.  Conscientious use of water
helps to reduce both the volume of wastes and the amount of water
used.  One plant in the industry currently employs a comprehen-
sive water conservation program.  Through implementation of this
program, the total use of water has decreased nearly 50%.

Water may also be conserved by reusing it in another process.
The water, however, must be filtered or treated.  Batch washing
reduces water consumption by approximately one-fifth.

     Automatic monitoring devices.  Automatic monitoring equip-
ment for detecting abnormal levels of selected constituents
guards against the failure of established precautionary measures.
In addition to indicating loss of materials, automatic sensing
devices also can operate recovery equipment.

 Date:  9/25/81                II.7-25

-------
     Recovery and reuse of process chemicals.   The most efficient
method of eliminating pollutants from tannery wastes and of
reducing the volume of effluent is through reuse of water and
chemical agents and through recovery of materials that are
normally used.  Four plants in the industry are currently using
this approach.  These facilities use recycle systems to reduce
the amounts of tanning liquor discharged into the waste streams.

     Preliminary Treatment

     Screening.  The principal function of screening is to
remove objectionable material that has a potential for damaging
plant equipment and clogging pumps or sewers.   Much of the
screening employed in this industry has been ineffective due to
poorly operated screens, or screens with openings that are too
large, or both.

     Carbonation of beamhouse waste stream.  Carbonation is
effective in the treatment of alkaline wastes.  Four tanneries
in the United States have operated flue gas or carbon dioxide
Carbonation systems.  Carbonation is attractive for tannery pre-
treatment facilities.  The effectiveness of flue gas carbonation
of beamhouse waste streams is optimal for treatment when the pH
is lowered to the isoelectric point.  The introduction of only
flue gas can limit the degree of treatment possible.

     Secondary Treatment

     Activated sludge systems.  The activated sludge process is
one of the most controllable and flexible of all secondary treat-
ment systems.  It is applicable to almost all treatment situa-
tions and plays a very important role in this industry for treat-
ment of toxic pollutants.  With proper design and operation, high
organic removals are possible.  Designs based on solids retention
time (SRT) afford optimum residence time for solids with minimal
hydraulic retention.  However, pilot studies are required to
establish appropriate design parameters defining the relative
rate of biological growth and decay with a given wastewater.

Activated sludge systems, including various modifications, have
been and can be effective in organic reductions to  low BOD5 con-
centrations even under low temperature conditions.  Removals of
suspended solids prior to final effluent discharge  and mainte-
nance of a large quantity of active biomass in the  aeration basin,
especially during winter months to compensate for lower rates of
organism activity, appear to depend on conservative design and
diligent operation of the final clarifier.

     Physical-Chemical Processes

     Chappel process.  The Chappel process is a patented
physical-chemical process for treating wastewater streams.  The


Date:  9/25/81               II.7-26

-------
basis for this process is the assumption that all waste streams
contain components that flocculate or settle in the proper environ-
ment.  The process consists of dividing the wastewater stream
into two equal parts, one of- which is treated with an acid solu-
tion, while the other is treated with an alkaline solution.
Flocculation occurs during this treatment and also upon the
reuniting of the two waste streams.  The waste stream then goes
through a series of settling tanks, with agitation in each tank
mixing the settled sludge with the wastewater, which aids in
further flocculation.  The final sludge removal has no oxygen
demand and is sterile.  The system can be housed within a plant
which is important in cases where available adjacent land is
limited.  The process has been reported to be highly effective in
removing toxic pollutants, including chromium, and classical
pollutants.

     Activated carbon.  The use of activated carbon in treating
industrial wastewaters has been generally successful depending on
the application, the soundness of engineering, the degree of
proper operation and maintenance, and the performance criteria
established for the system.  A relatively new application of
powdered activated carbon (PAC) is being tested and evaluated in
combined carbon-biological systems because of the ability of
activated carbon to improve the performance of biological systems.
This concept is now undergoing extensive testing, using powdered
carbon in activated sludge systems.  The carbon is metered into
the system with the influent at a concentration normally less
than 100 mg/L.  It is recirculated and purged along with the
biological solids at a rate that maintains an equilibrium con-
centration of 1,000 to 2,000 mg/L.  Since the powdered carbon is
added directly to the activated sludge process, this eliminates
the need for carbon-adsorption beds or columns.
Date:  8/31/82 R Change 1  II. 7-27

-------
                    II.8.1  ALUMINUM FORMING

II.8.1.1  INDUSTRY DESCRIPTION

II.8.1.1.1  General Description [2-16]

The Aluminum Forming Industry consists of approximately 265
plants owned by 149 companies.  Four of the companies own 20
percent of the plants.   The industry employs more than 26,000
workers.  Reported production of formed aluminum at the indi-
vidual plant sites ranged from 0.09 Mg (0.1 tons) to almost
360', 000 Mg (400,000 tons) during 1977.  The majority of these
plants (56%) were built since 1957.  In addition, 50% of the
plants have undergone a major modification since 1972.  Table
8.1-1 presents an industry summary of the aluminum forming in-
dustry.

             TABLE 8.1-1.  INDUSTRY SUMMARY [2-16]


               Industry: Aluminum Forming
               Total Number of Subcategories:  6
               Number of Subcategories Studied: 6

               Number of Dischargers in Industry:
                    • Direct:  50
                    • Indirect:  54
                    ••Zero:  161


Aluminum forming processes are defined, for the purposes of this
study, as those manufacturing operations in which aluminum or
aluminum alloys are made into semi-finished products by hot or
cold working.  These manufacturing operations include the rolling,
drawing, extruding, and forging of aluminum.  Associated pro-
cesses, such as the casting of aluminum alloys for subsequent
forming, heat treatment, cleaning, etching, and solvent degreasing,
are also included.  The major aluminum forming processes are
briefly described in the narrative below.

     Casting

Before aluminum alloys can be used for rolling or extrusion and
subsequently for other aluminum forming operations, they are
usually cast into ingots of suitable size and shape.


Date:  9/25/81              II.8.1-1

-------
The aluminum alloys used as the raw materials for casting opera-
tions are sometimes purchased from nearby smelters and trans-
ported to the forming plants in a molten state.   Usually,  how-
ever, purchased alumjnum ingots are charged together with alloy-
ing elements into melting furnaces at the casting plants.   Several
types of furnaces can be used,  but reverberatory furnaces are  the
most common.

At many plants, fluxes are added to the metal to reduce hydrogen
contamination,  remove oxides, and eliminate undesirable trace
elements.  Solid fluxes such as hexachloroethane, aluminum chlo-
ride, and anhydrous magnesium chloride may be used,  but it is
more common to bubble gases such as chlorine, nitrogen, argon,
helium, and mixtures of chlorine and inert gases through the
molten metal.

The casting methods used in aluminum forming can be divided into
three classes:

     Direct chill casting.  Vertical direct chill casting is the
most widely used method of casting aluminum for subsequent form-
ing.  Direct chill casting is characterized by continuous solid-
ification of the metal while it is being poured.  The length of
an ingot cast using this method is determined by the vertical
distance it is allowed to drop rather than by mold dimensions.
Molten aluminum is tapped from the melting furnace and flows
through a distributor channel into a shallow mold.  Noncontact
cooling water circulates within this mold causing solidification
of the aluminum.  The base of the mold is attached to a hydraulic
cylinder that is gradually lowered as pouring continues.  As the
solidified aluminum leaves the mold it is sprayed with contact
cooling water,  reducing the temperature of the forming ingot.
The cylinder continues to lower into a tank of water, causing
cooling of the ingot as it is immersed.  When the cylinder has
reached its lowest position, pouring stops and the ingot is
lifted from the pit.  The hydraulic cylinder is then raised and
positioned for another casting cycle.  Lubrication of the mold is
required to ensure proper ingot quality.  Lard or castor oil is
usually applied before casting begins and may be reapplied during
the drop.

     Continuous casting.  Unlike direct chill casting, no re-
strictions are placed on the length of the casting since it is
not necessary to interrupt production to remove the cast product.
Continuous casting eliminates or reduces the degree of subsequent
rolling required.  Because continuous casting affects the mechan-
ical properties of the aluminum cast, the use of continuous
casting is limited by the alloys used, the nature of subsequent
forming operations, and the desired properties of the finished
product.  Continuous casting techniques have been found to signif-
icantly reduce or eliminate the use of contact cooling water and
oil lubricants.
Date:  9/25/81              II.8.1-2

-------
     Stationary casting.  Molten aluminum is poured into cast-iron
molds and allowed to air cool.  Lubricants and cooling water are
not required.  Melting and casting procedures are dictated by the
intended use of the ingots produced.  Frequently the ingots are
used as raw material for subsequent aluminum forming operations
at the plant.  Other plants sell these ingots for reprocessing.

     Rolling

The rolling process is used to transform cast aluminum ingot into
any one of a number of intermediate or final products.  Pressure
exerted by the rollers as aluminum is passed between them flattens
the metal and may cause work hardening.

Heat treatment is usually required before and between stages of
the rolling process.  Ingots are usually made homogeneous in
grain structure prior to hot rolling in order to remove the
effects of casting on the aluminum's mechanical properties.
Annealing is typically required during cold rolling to keep the
metal ductile and remove the effects of work hardening.  The kind
and degree of heat treatment applied depends on the alloy involved,
the nature of the rolling operation, and the properties desired
in the product.

It is necessary to use a cooling and lubricating compound during
rolling to prevent excessive wear on the rolls, to prevent ad-
hesion of aluminum to the rolls, and to maintain a suitable and
uniform rolling temperature.  Oil-in-water emulsions, stabilized
with emulsifying agents such as soaps and other polar organic
materials, are used for this purpose in hot rolling operations.

     Extrusion

In the extrusion process, high pressures are applied to a cast
billet of aluminum, forcing the metal to flow through a die
orifice.  The resulting product is an elongated shape or tube of
uniform cross-sectional area.

Extrusions are manufactured using either a mechanical or a hy-
draulic extrusion press.  A heated cylindrical billet is placed
into the ingot chamber and the dummy block and ram are placed
into position behind it.  Pressure is exerted on the ram by
hydraulic or mechanical means, forcing the metal to flow through
the die opening.  The extrusion is sawed off next to the die, and
the dummy block and ingot butt are released.  Hollow shapes are
produced with the use of a mandrel positioned in the die opening
so that the aluminum is forced to flow around it.  A less common
technique, indirect extrusion, is similar except that in this
method the die is forced against the billet, extruding the metal
in the opposite direction through the ram stem.  A dummy block is
not used in indirect extrusion.
Date:  9/25/81              II.8.1-3

-------
Although aluminum can be extruded cold,  it is usually first
heated to a temperature ranging from 375° to 525°C,  so that
little work hardening will be imposed on the product.  Heat
treatment is frequently used after extrusion to attain the de-
sired mechanical properties.

The extrusion process requires the use of a lubricant to prevent
adhesion of the aluminum to the die and ingot container walls.
In hot extrusion, limited amounts of lubricant are applied to the
ram and die face or to the billet ends.   For cold extrusion,  the
container walls, billet surfaces, and die orifice must be lubri-
cated with a thin film of viscous or solid lubricant.  The lubri-
cant most commonly used in extrusion is graphite in an oil or
water base.  A less common technique, spraying liquid nitrogen on
the billet prior to extrusion, is also used.  The nitrogen vapor-
izes during the extrusion process and acts as a lubricant.

     Forging

Closed die forging, the most prevalent method, is accomplished by
hammering or squeezing the aluminum between two steel dies, one
fixed to the hammer or press ram and the other to the anvil.
Forging hammers, mechanical presses, and hydraulic presses can be
used for the closed die forging of aluminum alloys.   The heated
stock is placed in the lower die and, by one or more blows of the
ram, forced to take the shape of the die set.  In closed die
forging, aluminum is shaped entirely within the cavity created by
these two dies.  The die set comes together to completely enclose
the forging, giving lateral restraint to the flow of the metal.

The process of open die forging is similar to that described
above but in this method the shape of the forging is determined
by manually turning the stock and regulating the- blows of the
hammer or strokes of the press.  Open die forging requires a
great deal of skill and only simple, roughly shaped forgings can
be produced.  Its use is usually restricted to items produced in
small quantities and to development work where the cost of making
closed-type dies is prohibitive.

The process of rolled ring forging is used in the manufacture of
seamless rings.  A hollow cylindrical billet is rotated between a
mandrel and pressure roll to reduce its thickness and increase
its diameter.

Proper lubrication of the dies is essential in forging aluminum
alloys.  Colloidal graphite in either a water or an oil medium is
usually sprayed onto the dies for this purpose.

     Drawing

The term drawing, when it applies to the manufacture of tube,
rod, bar, or wire, refers to the pulling of metal through a die
or succession of dies to reduce its diameter, alter the cross-

Date:  9/25/81              II.8.1-4

-------
sectional shape, or increase its hardness.  In the drawing of
aluminum tubing, one end of the extruded tube is swaged to form a
solid point and then passed through the die.  A clamp, known as a
bogie, grips the swaged end of tubing.  A mandrel is inserted
into the die orifice, and the tubing is pulled between the mandrel
and die, reducing the outside diameter and the wall thickness of
the tubing.  Wire,  rod, and bar drawing is accomplished in a
similar manner but the aluminum is drawn through a simple die
orifice without using a mandrel.

In order to ensure uniform drawing temperatures and avoid ex-
cessive wear on the dies and mandrels used, it is essential that
a suitable lubricant be applied during drawing.  A wide variety
of lubricants are used for this purpose.  Heavier draws may re-
quire oil-based lubricants but oil-in-water emulsions are used
for many applications.  Soap solutions may also be used for some
of the lighter draws.  Drawing oils are usually recycled until
their lubricating properties are exhausted.

Intermediate annealing is frequently required between draws in
order to restore the ductility lost by cold working of the drawn
product.  Degreasing of the aluminum may be required to prevent
burning of heavy lubricating oils in the annealing furnaces.

     Heat Treatment

Heat treatment is an integral part of aluminum forming and is
practiced at nearly every plant in the category.  It is frequently
used both in-process and as a final step in forming to give the
aluminum alloy the desired mechanical properties.  The general
types of heat treatment applied are:

     •    homogenizing, to increase the workability and help
          control recrystallization and grain growth following
          casting;
     •    annealing, to soften work-hardened and heat-treated
          alloys, to relieve stress, and to stabilize properties
          and dimensions;
     •    solution heat treatment, to improve mechanical proper-
          ties by maximizing the concentration of hardening
          constituents in solid solution; and
     •    artificial aging, to provide hardening by precipitation
          of constituents from solid solution.

Homogenizing, annealing, and aging are dry processes, while
solution heat treatment typically involves significant quantities
of contact cooling water.
Date:  9/25/81              II.8.1-5

-------
     Surface Treatment

A number of chemical or electrochemical treatments may be applied
after the forming of.aluminum or aluminum alloy products.  Solvent,
acid and alkaline solutions,  and detergents can be used to clean
soils such as oil and grease from the aluminum surface.  Acid and
alkaline solutions can also be used to etch the product or bright-
en its surface.  Acid solutions are also used for deoxidizing and
desmutting.

Surface treatments and their associated rinses are usually com-
bined in a single line of successive tanks.  Wastewater discharges
from these lines are typically commingled prior to treatment or
discharge.  In some cases, rinsewater from one treatment is
reused in the rinse of another.  These treatments may be used for
cleaning purposes, to provide the desired finish for an aluminum
formed product or to prepare the aluminum surface for subsequent
coating by processes such as anodizing, conversion coating,
electroplating, painting, and porcelain enameling.

A number of different terms are commonly used in referring to
sequences of surface treatments, e.g., pickling lines, cleaning
lines, etch lines, preparation lines, and pretreatment lines.
The terminology depends, to some degree, on the purpose of the
lines, but usage varies within the industry.  In addition, the
characteristics of wastewater generated by surface treatment are
determined by the unit components of the treatment lines rather
than the specific purpose of its application.  Cleaning and etch
line is used in this section to refer to any surface treatment
processes other than solvent cleaning.

II.8.1.1.2  Subcategory Description

Division of the industry into subcategories provides a mechanism
for addressing process, product, and other variations that result
in distinct wastewater characteristics.  The aluminum forming
industry is comprised of separate and distinct processes with
enough variability in products and wastes to require categori-
zation into a number of discrete subcategories.  The individual
processes, wastewater characteristics, and treatability comprise
the most significant factors in the subcategorization of this
complex industry.  Other factors either served to support and
substantiate the subcategorization or were shown to be inappro-
priate bases for subcategorization.

From this evaluation, the following subcategories were selected:

     1.  Rolling with Neat Oils
     2.  Rolling with Emulsions
     3.  Extrusion
     4.  Forging
     5.  Drawing with Neat Oils
     6.  Drawing with Emulsions.

 Date:   9/25/81            II.8.1-6

-------
Each subcategory is broken into "core" and "additional alloca-
tion" operations.   The core is defined as those operations that
always occur in the subcategory or do not affect the wastewater
characteristics from the subcategory facilities (e.g., dry opera-
tions, zero-pollutant-allocation operations,  or operations that
contribute insignificant pollutants and wastewater volume in
comparison with other streams).   These operations that do not
contribute to the wastewater characteristics will not occur at
every plant, which should not affect wastewater treatment.

Operations that may affect wastewater characteristics but are not
included in the core are classified as additional allocation
operations.  These are ancillary operations involving discharged
wastewater streams of significant pollutant concentrations and
flows that may or may not be present at any one facility.  If an
additional allocation operation occurs at a facility, the waste-
water from the operation would occur in addition to the core
wastewater, with a subsequent modification to the performance
expected from a treatment facility.  The most common additional
allocation operations are:

     •  cooling water from direct chill casting,
     •  quench water from heat treatment, and
     •  rinse water from cleaning and etch lines.

The designation of core and additional allocation operations is
listed by subcategory in Table 8.1-2.  More than one subcategory
may be associated with a specific facility.  In such cases, the
pollutant contribution from the additional allocation operations
may be a combination of several individual waste streams, as
characterized in Section II.8.1.3.

A brief description of the subcategories follows.

     Rolling with Neat Oils

This subcategory is applicable to all wastewater discharges
resulting from or associated with aluminum rolling operations in
which neat oils are used as a lubricant.  The rolling with neat
oils subcategory consists of approximately 45 plants, 22 of which
use only this process.  Half of the plants (23 of 45) associated
with this subcategory were also associated with one or more
additional subcategories.

     Rolling with Emulsions

This subcategory is applicable to all wastewater discharges
resulting from or associated with aluminum rolling operations in
which oil-in-water emulsions are used as lubricants.  The rolling
with emulsions subcategory consists of approximately 23 plants,
of which only one uses this process exclusively.  Thus, 96% of
the plants in this subcategory were also included in one or more
other subcategories.

 Date:  9/25/81             II.8.1-7

-------
   TABLE 8.1-2.   SUMMARY OF  CORE AND ADDITIONAL  ALLOCATION OPERATIONS ASSOCIATED
                    WITH ALUMINUM  FORMING  INDUSTRY  SUBCATEGORIES [2-16]
 Subcateoorv I.  Rolling with Neat OiTi

 Core:  Rolling using neat oils
       RolI grinding
       Degassing
       Stationary casting
       Continuous sheet casting
       HomogenIz i ng
       Artificial aging
       Degreasing
       Cleaning or etching
       Saw i ng
       Stamping

 Subcateoorv 2.  Rolling with Emulsions

 Core:  RolI ing with emulsified lubricants
       Ro11 grinding
       Degassing
       Stationary casting
       Homogen i z i ng
       Artificial aging
       Cleaning or etching

 subcateoory 3.  Extrusion

 Core:  Extrusion die cleaning
       Extrusion dummy block cooling
       Degassing
       Stationary casting
       Artificial aging
       AnneaIi ng
       Degreasing
       Cleaning or etching

 Subcategory 1.  Forging

 Core:  Artificial aging
       AnneaI ing
       Deg rea s i ng
       Cleaning or etching
       Sawing
Additional  Allocation:
                       I.
                       2.
                       3.
Additional  Allocation:  I.

                       2.
                       3.
Additional  Allocation:  I.
Additional  Allocation:
                       Z.
                       3.
                           Solution heat treating
                           Cleaning or etching
                           Annealing
                           Direct  chill casting or
                           continuous  rod casting
                           Solution  heat treatment
                           Cleaning  or etching
                           Direct chill or continuous
                           rod casting
                           Press and  solution heat
                           treatment
                           Cleaning or etching
                           extrusion  die cleaning
                           Annealing
                           Forging
                           Solution  heat treatment
                           Cleaning  or etching
 Subcateoorv 5.  Drawing with Neat Oils

 core:   Drawing with neat oils
        Continuous rod casting
        Stationary casting
        Artificial aging
        Anneal ing
        Degreasing
        Cleaning or etching
        Sawing
        Stamp i ng
        Swag i ng

 Subeateoorv 6.  Drawing with Emulsions
                or Soaps

 Core:   Drawing with emulsions or soaps
        Continuous sheet casting
        Stationary casting
        Artificial aging
        AnneaIi ng
        Degreasing
        Cleaning or etching
Additional Allocation:
                        I.
                       2.
                       3.
Additional Allocation:
                           Continuous rod casting
                           Solution heat treatment
                           Cleaning or etching
                        l.
                        2.
                        3.
                           Continuous rod  casting
                           Solution heat treatment
                           Cleaning or etching
Date:    9/25/81
                                             II.8.1-8

-------
     Extrusion

All wastewater discharges resulting from or associated with
extrusion are applicable to this subcategory.   The extrusion
subcategory consists of approximately 157 plants, more than in
any other subcategory.  Of these plants, 140 use the extrusion
process exclusively.  Although most of the plants in this sub-
category (89%) are not associated with any other subcategories,
some overlap does occur.

     Forging

This subcategory is applicable to all wastewater discharges  .
resulting from or associated with forging of aluminum or aluminum
alloy products.  The forging subcategory consists of approxi-
mately 15 plants, 12 of which use only this process.  Thus, only
20 percent of the plants have operations that overlap with one or
more other subcategories,

     Drawing with Neat Oils

All wastewater discharges resulting from or associated with
drawing operations that use neat oil lubricants are applicable to
this subcategory.  Fifty of the 62 plants that comprise the
drawing with neat oils subcategory use this process exclusively.
The remaining 12 plants in this subcategory were also associated
with one or more additional subcategories.

     Drawing with Emulsions or Soaps

This subcategory is applicable to all wastewater discharges
resulting from or associated with the drawing of aluminum pro-
ducts using oil-in-water emulsion or soap solution lubricants.
Eight of the 11 plants that comprise this subcategory use the
drawing with emulsions or soaps process exclusively.  Overlap
with other subcategories occurs at the remaining three plants.

II.8.1.2  WASTEWATER CHARACTERIZATION [2-16]

Wastewater characterization for the aluminum forming industry has
been developed on a waste stream basis, rather than on a sub-
category basis.  Table 8.1-3 summarizes the wastewater sources
reported for this industry.  Wastewater flow rates identified for
these sources are presented in Table 8.1-4.

The pollutants characteristic of the industry wastewaters have
been summarized in Tables 8.1-5 through 8.1-12, for both classical
and toxic pollutants.  The toxic pollutant data have been devel-
oped using a verification protocol established by EPA as of April
1977, with the exception of the following:  selenium, silver,
thallium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCCD).  Table
8.1-13 presents the minimum detection limit for the toxic pollut-


Date:  9/25/81             II.8.1-9

-------
ants.   Any value below the minimum limit  is listed  in the summary
tables  as BDL, below detection limit.


     TABLE 8.1-3.   WASTEWATER  SOURCES REPORTED IN ALUMINUM
                     FORMING INDUSTRY PROCESSES [2-16]

                "Plants Known to
                                               Have Process
              Wastewater Source                   Hastewater

              Direct  chill  cooling                    29
              Continuous rod casting  cooling             3
              Continuous rod casting  lubricant           2
              Continuous sheet casting                  3
              Stationary mold casting                  0
              Air pollution control for metal treatment    5
              Rolling with neat oils                   45
              Rolling with emulsions                   27
              Roll grinding emulsions                  4
              Extrusion die cleaning  bath              11
              Extrusion die cleaning  rinse              5
              Air pollution control for extrusion
                  die cleaning                       2
              Extrusion dummy block cooling              3
              Air pollution control for forging          3
              Drawing with neat oils                   55
              Drawing with emulsions  or soaps            5
              Heat treatment quench                   43
              Air pollution control for annealing furnace  1
              Annealing furnace seal                    1
              Degreasing solvents                      2
              Cleaning and etch line  baths             12
              Cleaning and etch line  rinses             20
              Air pollution control for etch  lines        4
              Saw oil                               3
              Swaging and stamping                     0
More detailed information on  each operation is provided in  the
section of this  report dealing with each specific  plant.

II.8.1.2.1  Direct Chill Casting

Of the  approximately 266 plants in the  aluminum  forming industry,
57 cast aluminum or aluminum  alloys using the direct chill  method.
Because the ingot or billet produced by direct chill casting is
used as stock for subsequent  rolling or extrusion,  this waste-
water stream is  associated with both the rolling with emulsions
and extrusion categories.  Table 8.1-5  summarizes  the classical
and toxic pollutant data associated with the contact cooling
water waste stream from direct chill casting.

II.8.1.2.2  Rolling with Emulsions

Rolling operations that use oil-in-water emulsions as coolants
and lubricants are found in 27 plants of the aluminum forming
industry.  Table 8.1-6 summarizes the classical  and toxic pollut-
ant data for the rolling with emulsions subcategory.



Date:   9/25/81               II.8.1-10

-------













§




3
_l
ce
o


Q
UI
(-

Ovo
UI 1

_
JEW
OUI
-IV)
U.CO
UJ
ceo
UIO
t-ce


Ul>
i-ce
< w

o
U. Z
0-

cez


Zee
30
(Ob.


.


—
CO

UI

CO










































f.
owsia


i.
c;
CO

u
VI

























11)
1
Z


J_
(D
1
3
Z


























E

S
X
Z









c
(0
•o
i








c
re
r







|
.!
c
T











O





Q

























C
a
V,

to
o

o
^
E

3*
0
c
o
4J


n
^
I
E


3
U

_
C
c

fo
o
0
E
2
O

*.
C
c
re
o

o
z

S

U

U)
U
CU
O

«

U
ta
C

2
«
4-
c
 O O in
tf\ vo r- — — CM o o • o o
o CM •— ' — — • in o r- \o o — —
(M *— O Is- vo —
CM O — « ~

•
~

o
CM • *** fo ^ j* CM o cj *o o ""Q *o
o d oo CM o m o - -a- o

d do d d d


O ^ CM ON CO O O O O -3*
r» J.P. *oN- o^<*>
d" • — — C\J CM \O CM CM
«- 0 — — — — -. 0
^- — ^ •_«
O CM ift COCM — CO O O —
o o o — • o
CM O O OO — CM in — O
O O OO O



O J J- fOJ O O O O O O
O ^T • ••— OO OOSiT*
iT\ •CO<*i^iAOf*- mj
O — — — • — * * — O
CM — O — iT\ —
^ CO — —
""^
J CM lA J 00 — O — CM O CM
O M — — • O • CM O
O O O OO CM O r- CM O
o o oo CM" o





CO -3" CO vfl — O — \f\ -3" O O
O CM O O f O CO •— • » E  *-> € co wcucu co-u
OO£ CO CO E C (- W —
— t_ O « £-^ 3 £ CP3C1T -0 3 t.
— *J "O O 4J « S «- O C C— A
— « 01 «* 01 — o 01 •— a. *j — re re— 3
£ 3C 3Q > C — CC >re (D O»*J O —
U O™ O -•• O •>-> 3) O ••- O  c
re -
>
CO *-

UJ W
re

*J
CO (0

CO •*->
• — c
U) — (t)
0) re -
- > o
*J CO —
- <—
- *J 3
CO >
W "O
w re
Ol" C
c c
- re oi
Ol— *-
<- Q.Q1
(0 Ol
O w» re

-------








»
cc
o
o
UJ
1-
^
o
CQ
35
t/5

O
Z
—
H
O
_l
_J
—
X
o

f —
o
UJ
cc
—
Q

UJ
X
1-

t£.
0
U.

(— *— '
< VO
Q —
HCM
^^ >— ^
J<
O
0- Z
o
u. —
01-
>0
a: —

u£ __
so:
O UJ
(/} ^


•
lA
1
—
CO

UJ
CQ
^
1-








tn
c
o
0 P
0
C 0
CO 4J
0 0
E"D




in

CO 0
CCT3





U)
C
"V O
in —
0 4->
— o
0.0
E 1 '
CO 0
W "D
^v
O O
I- i-
S S
3 3
zz






















4J
c
3
Z
—
—
o
a.



OO\3T~-J-J- I^OJO
^- rol^ J" • CM CM -O
— V V I^O VroCM
V
O
V








CM VO CO \O .* — OCMC
I-CMVO — -O CM -G
l>- • V 	
o




c
CM C
oooo-s-— o c
oo CM — m • . oo
.3-CMCM — COO — CM —

1 1 1 1 1 1 III

in — IA — o— _i_i_j
V V V -O QQC
VOO CQ CQ CC
,
o
V










CM CM CO CM CM CM CM CM CV
CMCMPOCMCMCM CMCMCV











_J
X^
01
E
__ 1
^ **s.
(/) (/} O*>
4J -0 3.
C — 0 —
co — in co -
4J o co in 4-> u>
3 Ul 0 4J O 4J
— (- — 4J C (0
— T5 Ol C CO —
O 0 3 « 4-> CO
O. T3T3 U) 3 4-1 >»
C C X— — 0 <-
— 0 co ao — E 3
CO a CO T3 O t
o a M — o «0 a ocos-c
— O 3 — O X £ — 0 0 -
w O to O 1— Q.Q- O X-IS!s
in — o
co XI-
— 0
O H-



ooovoro— I— ICMCO
r^vOCM-3"COClQCMCy\
— CO CQ V











vooooo — i^fin
J" CO CM -3" LA Q — O"\
— CQ






o
OO d"
« CO VO CO J- VO CM CO VO CM

1 1 1 1 1 1 1 1 1

	 1 1 1 1 1 1 1 1 1
oaooaaaaa
CQCQCQCQCOCQCOCQCQ













— CVJ
CM CM CM CM CM CM CM CM CM






0
4-1
CD

CO
£ 0
4J 4J
JZ CO 0 0
Q.— 4-1 4-1
CO CO CO 0

— 4-> CO CO —
X Q.4-1 4J — O
0 -C.C O —
m si — a a c .c
0— X 0 0
— >> N 	 -C E
c.cc»> a i-0
(04J04-14J O OC
a 0)12 3 o i-0ti_0
S-l JO O — O C O —
O CM — 1 1 O — 0 !- >>
) — >jC C C J= N OjC
: umpi i 0 o c — 4->
— — 3 — — JZ 1 0 -C 0
J XcacfiQQQ-CMCQOS
o
h-





CM













1
Q
CQ








CM
CO

1

1
Q
CO














CM







VO

o
I/I —
—
^ d
CO
0 VO
-C CM
Q —
.—
CO

0CVJ
4-1 —
CO
c -
— CM
!- to
O CM

f~
U CO
>0
— Q.
o
a.





















































CM

4J
0
w
CO
p
CO
o •
in
-.4-1
^~ *^
• E
CO —
• -•_
f^
• c
> o
• • p
W O
T3 0
O 4J
£ 0
4-1 T3

o
0 —
— 0
X
— ^
co-l
CO
< CO
Date:  8/31/82 R  Change 1  II.8.1-12

-------



o
_1
—^
1 1 1


X
i—

5t
O
z
_i
O vo
o: —

UJ M
H-

CC h-
0<
U.Q
I-O


^ _^
ID a;
—I UJ
-l>
Q
Q. .,
>
U.Q:
OO
o
>-UJ
a: h-
£0
2Z CO
ID ID


VO
1


03
UJ
_j

<
1-


W
° I
C 0
(D 0

^^
0 C
TO -P
— o
•Q QJ
0 *J
Z »
•o



in

OJ 4->
c a:

c: 0
•O

(A
C
xo
V) —
— t
££
re 0
O o

QJ ffi
•O .C
1 1
zfz














c
a
~
£
ooo oooo -Jr-a-ooooo ocoo oooooooo
OOO OOOO OcOOOtnOJC OiT\J COCo^OOOiAOO
OJOOOOf^ CD O « O — ^O O 	 J — J .3- CM
O c\J — Kr^ino j j CM ir\ —
ro — — r> 	 M

go oooo -IIAOO-IOOO o o ooo -to
OOOOO OOCMOOOMO J iTiOr*-OO —
J CO OOOO CD 	 COO — CM — CM CM CO
CMVO 0\OCOCM JT CM (M
— CM 	 —






o
oooooo o oo
ooo oooo ooo o o o oo
0000*00 oo-o o — — oo
*ey> » -o-' OOJO-OCM oo OO^O-OJSD
j»M ^ — f- f*- vOCOCM">jr**^» *fOO o3\D— lT\— O3»*
rOfOCMJfOCMtNJ"1 — — — h-OiACMJ O O O— J r'^roVJVO"*'''
CMO OOOCM _J_J_1
I I I • 1 I I i • iiiiiili OOOCMiiiiAitiiiiii roin OOeoOcO

OOO OJCM- UiTi— O-1O-OO — O O-JO OOOOOO-1-J
O CO CO *n CO \OCDO J CO V COCO
fw _ — f\j —
CM





„„„ .,„„„ „„„„„„„„ -„„„-*,**>*,«>„*,<*





re
0

« — .
TO -P —
— O O
j •£,£ ""
?JZ (D 0 O C— "o
v) a— -PC 0 0 CM\O
-JO <0(C0 0Cu=CMCM
VN. ._ — *.£ — JE -D Q) Q 	
W(A« CTlC — *J TO G. 	 — C
*J "O ^ 2. to >».C JZO *->>j3*» TO0
c — ~ — QJ a xa«t- ^-ojza-co w-o
TO 	 <0tf) *.(- 0JZO — -P-oiTiJ — S
POO-WTO tn tn o IA £ — o.— 0 0jr00CMCM 3jz
3 W « O Q) *J JJ C O— >>£ CD) CUC-P 	 ,N_O 0C000 1-TO O-D
— -a ts en E c re cjzc >>— Nttjc c t wo c-- -D — o
d >-o «*O3E-— 3 COE3 0 OCBJ3DH- 00**— C O C P CU-C I-jro 0O0 £x
— C — C C 3 « X — re — 3 — t- -C — *-l fil— CJ3CXTO0TOCCC0— O OCMCM ISOIClCO
— O0 Ore 	 COO. — C..-EQJ._ flj OCJ— IVOOQ)— COJ=(Al-t.roC>>TO 	 — 1 TO — TO 1
re LAO. C E O C O tAQjgOQ.C'O-XU — >,C^C3>>C-W XJ= O C 8) JZ i- JZII U-JZl-JZTO
— 3O£ — — TOCOX" wi-«J:c>>0 	 	 3— -.CO*>OTO.CC — £>>«» >OO JJ - — C — tt)
« ncAt-a.o o

lA O
•D 0
O •P
JZ 0
«8
o —
Q — 1
CO
Date:  8/31/82 R  Change 1  II.  8.1-13

-------
II.8.1.2.3  Extrusion

The wastewater characterization data for the extrusion die clean-
ing rinse are summarized by classical and toxic pollutants in
Table 8.1-7.

II.8.1.2.4  Forging

Of the approximately 15 aluminum forging plants, three use wet
scrubbers to control particulates and smoke generated from the
partial combustion of oil-based lubricants in the forging pro-
cess.  The summaries of the classical and toxic pollutant data on
the air pollution controls for the forging subcategory are con-
tained in Table 8.1-8.

II.8.1.2.5  Drawing with Emulsions or Soaps

Eight of the 266 plants in the Aluminum Forming Industry draw
aluminum products using oil-in-water emulsions and three use soap
solutions as drawing lubricants.  These solutions are frequently
recycled and discharged periodically after their lubrication
properties are exhausted.  Table 8.1-9 summarizes the classical
and toxic pollutant data for the drawing with emulsions subcate-
gory.

II.8.1.2.6  Heat Treatment

Heat treatment of aluminum products frequently involves the use
of a water quench in order to achieve the desired metallic prop-
erties.  Of the 266 aluminum forming plants, 84 use heat treat-
ment processes that involve water quenching.  The sampling data
for classical and toxic pollutants from heat treatment quenching
processes are presented in Tables 8.1-10 and 8.1-11 by the alum-
inum forming operation that it follows.

II.8.1.2.7  Etch or Cleaning

Thirty plants in the Aluminum Forming Industry use etch or clean-
ing lines.  Rinsing is usually required following successive
chemical treatments within these etch or cleaning lines.  Waste-
water discharge values tend to increase as the number of rinses
increase.  Table 8.1-12 summarizes the classical and toxic pollut-
ant data for etch line rinses.

II.8.1.3  PLANT SPECIFIC DESCRIPTION  [2-16]

A very limited amount of individual plant specific data for the
Aluminum Forming Industry are available.  Data available on the
influent and effluent streams are discussed briefly in the follow-
ing subsections for specific plants.
  Date:  8/31/82 R  Change I  II.8.1-14

-------
•l
{£
O
O
LU
h~
O
CD
^3
CO

o
CO
Eg
1-
X
LJ

UJ
X
1-
os
O
b.

J~ *"""*

O —
1
I-CM

-J <

Q_ ZT
o
L. —
01-
>O

1-
zce

CO ^


,
r—
I

•
CO
Ul

CO
1-





U)
C|- C
0 O
CO W
CTIU
C CO
CO 4->
<£ CO
•o


U)
C

w —
CO -P
— o
a. co
E -P
Q Q)
«*.
-I 0

v> in at 01 c
•P •O'D 3. co
c 	 CD O
CO ——(/>— ^ t.
•P OOCOCO MWO IA
3 MV1CO-P *J 4-> C O
— i. o C —
— •DTS OP E C CO C
O COCO E33-P-OE CO
a >-o-a»3E— co 3 cE3 >> a
— CC— C3W4JX — CO 3 — S- «- t-
— ococoo 	 cocoa— — E co 3 o
co u) a c e o c v o MEO a-o o o
O CXJ U> V>— C03— D>— « Q. — "Ol-Q.co'-C O
— OO— 3 — £;— COC03X CO CB C O CO CO — —
_
^ L.
X O
CO —
CJ=
X°
£ CO
•P C
CO CO
1 —
CM >>
^-£
at P
— CB
cos































•
CM
CO
CO
^j
CO
Q
•
i»T._
• E
CO —
^
• C
> 0
•_
.. 43
U) O
T3 CO
O *>
J= CO
•p-o
CO
E >
Q
o —
._ (1)
•P.Q

CO-I
CO

-------

>.
Of
O
a
i—
^
o
ffft
3
CO
O
Z
0
cr
o
u.
Ul
X
t-
cc
o
u.
h~ """^
t-
-JQ
CX. Z
O
Lj_ -•—
OH
>0
ec —

zoe
3) Ul
v»
B
00
1
CO
Ul
CO
1-



10
<>- c
o o

CD -P
O1O
c o>
cs p

— o
E P
eg ffi
Q«
O
c i.
» 0)
o a
E E
3 3
ZZ












P
C
eg
p
—
^
O
a.




O CO O CM O f** IftGsO VA O O 00 CO O CO & t°~ O\O\ 00 ~~ (*)
IAOSO\ VOO -iTi — O\ OO O — lf» CM CM — — — CM CM
CO rO *~ *O O *O Ot ^
O »
CM














Vs^.X.V.>x-^-x«N^x. ^.^ ^v-^^V.^V.>x^>^^ ^










-1 « C —
^ -£ 2 2-
E O E £ 4)CM
_l — c0 > 0) eg —
P •Ot3 3. Ot-COCOCjQo
C *~ — CO ~~ £ O 4) 1 CJ) eg 0} ^
eg 	 £O.t O.£ a CD CM
3 IOMCDO P otcopo— *>v. -P —
— t- ,» CM — oa>^(-' CD
— -a-a e» 6 eg — c — .c a> -P .P o co c c -
O 4)« .6 3 .P « eg £ P C 	 M — OC9 —CM
a >Tj-ac/)3£— a> a P ouceccoaco ^-4-
— cc— C3CH-P — 0 t— eg 	 c.^c9cgeD OCM
— O 0> (0 O 	 CD eo — E OO<- >»O OWOMt-C 	
eg « a. c e o c>£ co £ i
O QO M (0— CB3— oi— a O eg C O3'3P.3-^OZC'--P<- OCO
— oo— 3 — £— eo«D3 —en— ._ ,_ CD « « i CD j: c >> >o
(0 — O O O
CD X K- f- OL
— o
U 1-

























•
CM

•p
CD
M
CD
CD
o
^
^
fO
•
f^
>

-------
a.
o

M
Z
o

CO
J

UJ
1
wl
o
o
_
5— •
Q —
1
IUCM
X— .
t-
<
p<
U. Q

c
CO 4J
— o

<0 CO
TJ
ft- ft-
o o
CO CO
E E
3 3
zz












c
co
3
^m
«•
O
o.



OCMOO^ or^ooor-ir\nio\ 3-mmo — i -i-i c — coo-so
O •J'poro coo\CM«*>r-— eoMCMCMO O OO en — OoOd'MO
mr-«— ir> — CM OQ coco o.*— o

— CO \O
^












>^X.X>>.x. x,x,x,V.XX>v-xXX.X>s X. X.-X x>>s.x.-vx^^





 >.
O> C £ (19 0) C
e co ci-p-p co IA
« • -x *>c— c -o —.2* Q —
<0 CJl COCOOCO — — COCO C"- C
•P a. O£ W 3 *- >>££ CO A CO
c 0 i- *> v 	 o x. v *> »- a
COM . O CO 4- O O — 0>££ — "D <-
4J co(A W  •MU£<-IO>OCO— « *J C
— « 	 C — O O E £ 1- CO CO >> 	 O CO * « ~
— oc E co c 	 ia.uNicoc£>>>> -o CIA*
O 3E 3 *> CO'-£OO— CCO4J4J4J «OC — CM W -O E
a -0 3E— 3 OHO<-'-CCO«t-C03OCO COCO < 	 COE3
CXC3M — <-t— OO — .0— OIAOC -01 O eo ~ 3 — «- —
— eo a 	 a> — o — o 	 o— >>£ cMiico — TO — 11 c— ECO to
CO EUC 0 -l££l >»£ 0.— CC3 O £ £ MCOSO O.n X U
O — * 3 — O> a. U 	 OO^-£*>OI«II— — O. OCQCO — « T3 t- a TO O C
— — X — TO CO —,,|| . J-> 0> !/> 	 O 4J— > O O TO «- TO £ O  o
•—
•• &
VI U
•o co
£ CO
JJtJ
o|
&"0
"• S
eo-J
CO

-------


X
o
z
UJ
ID
a
i-
Z?
UJ
h-
Ul
H-

h-

Ul
X

o
z
—
— •
Ovo
OL —
1
UJCM
X • •

cel-
o<
U.Q


O
Q- -.
U.CC
oo
>UJ
crh-
2:0
zco
3 3
COCO


,
o

.
00

UJ
CO
J*




u)
d- C
O O

C -P
CO O
£1 to
S P
•o



to
d- C
O O

0) -P
OlCJ
C CD
CO >P
IT CD





CO
c
(0 —
CD P
— O
a 0)
E -u

wo
tv-V
O O

I_ i.
Q) d)
E E
3 3
z z


















C
K

_
_k
O
a.



CM tf\ fO VO *O ^O O VO CM
— - • t ^ — V ^O ft V
r-o CM v
v





	 	
o\^ • o o
CO • • — OO — O
— r-om v cMr- J-r~CMO

1 fO 1 1 1 1 1 1 1 1 1 1

CM —CM 	 iTlOco 	
— . .d- ._ v — V V O
r-o o —
v v o











CM — CMCM CM CM CM CM CM CM CM CM
CMCMCMCMOJtMCMCMCMCMCMCM











_j
V.
i1

^
CO CO t0
•P T3 TJ

CO CO — — CO
•P co O co o -P
3 CD to P to O
— O>'D C E "O
O CD 3 E 3 CD
ca-oxj DS— >« to
CCXC3 W — *» —
to a E o c c ustt- c
0 — to •> 3 — O OlO co — O CD
— — 3X— COUcoO— 3OJZ
to oco a> CD
O Of to Jt
0. o — *J — O
— .c a> co —
0 XOZ PZ
— O CD
XI- Z
O
H






































•
CM
P
CD
in

CO
CO
a
O-P

• E
to —
• ^
f—
• c
> 0

• • -p
tn u
•o a
O -P
SZ CD
P-D
CO
e >
o
o —
— CD
PJ2
^ ^
co-l
CO

-------
0
z
o
o:
o


x
o
LJ vo
a i
OJ

•(^
UJ <;
H <
Ld
CCZ
I-O
1-1-
LJO
X — •
Ll.
LJ —
X (£
1- LU
CC
0 *
U- S£

< LU
HO:

aco
r-UJ
ZK-
^ CO



O CQ
a_
>
LU a:
oo
o
CC r-

so
2 CQ
tOt/5
I
GO
LU
CQ
>
E (D
•o


O C
c —
to -P
— o
V CD
O *-
•c




CO
W C
O O

cnc
c v
CO 4>>
CC 0)
•o

CO
c

0) 4J
— o

co a
WO
o o
L. L.
JD .c
E E
3 I
Z Z








4J
C
CO
+
I


ifttOOOCO — \OOOfOf- O
(*)CO>ViT\tMCMa>\O*CM -3"
oo v r~ — \o • CM
V O






3" CM f 	 00 — COOOfOCM —1
— CM • -iT^CM — Of) O O

7 ~ 0



o
c

o o
u. O
OCM JfO CO O
E CD CM CO O CO *0 tTi — ro — O CD
CD
(D 1 1 1 1 1 1 1 1 1 1 f 1
L.
C/> • V ro V O\ro V O O
f^ — O CD
a>
V)






^wmcr^zr^a-a-^m 3-





(D
CO
ce
*j 5

oi a
E W
J — O
WO (0 O» >» C
*» ^ "o a. x «
C »— -- _ » a
w « o « o *> co in — o
3 Q) « 4J CA O ** O >> C
O CP3E3Q1 * *J CO CO T3
Q.T3-O 3E— >0) « 3 OI C
— co v &.-— — c o co o — O — '
CD a E u c «w co «
O — CO •« 3 — O)O W — Q 0) O. U3-
»V -O V »
O (A V —
ro V




OOiPiOCMf-O
— OCOVO • V CM
V O O —
» V
ro
CM


I
~>
O O 0 *
O O O D

— rN.ro— O V if\ E OCNCMOlfSO C
CQ CM— -OOO C
I 1 I 1 1 1 I CD OOOOO -
L- * . *
_ir-oo-J-Jo *J CMOON ev
D JMAOOlf* W) O —
fi V V COCO
a>
10
CD














_j

f
_)
CA CA Ol
4i -0 3,
C ®— —
•P CD O CA 4J ta V)
3 CD «ft *> O -P U
— CUT) C CO C
E O 0) 3 * *» co
E3 >> a. -O-Q co 3oa
3-1- C- CCX- -l-C
— ECU 3d) — ea * a o — o a
E o CITS u^cu co a c o ^
•D s. CLCO l- O C O — cfl »O a) O O. O 1
5So.jrzN « ow^of t- o xc
*A — O
« X r-
— O
O t-





















ooooooooo IAN S^S°
OO — fOVOCM OCJro • * °TT2"~
OOroro— Ofoa- -3-M ^fc
CM — J- ~
— ro V














ID —
£ o
CD —
^ --0
4J > CJVO
£0) C CMCM
O.4J ffl O — — W
0) CD OJ C ^ ^
srisss = -^"o c
o^5i«j* 2 -°NS 5
— 0>j= co^ *J >» T3 	 !-
-C £ O..C ** CD £ » g
E>,— jz: a i- o «CMC\J —
CDJ: >»& o o C5^ ^ ^
O C -P *J — — I- — CMN T)>>
) l_ aj CP 3 — >>£ 00 1 	 CC»>.
: o — i js >»jz oc— o * 2 ' i
;°t~?iB!f i:: 2=111
5£«) 	 -euot- >y^ * S ,9 ,^$
3 CJZ flDOOQj-p-H — 6. O- «
-------
      TABLE 8.I-I I.
SUMMARY OF POLLUTANT DATA FOR  THE  HEAT  TREATMENT QUENCH
FORGING SUBCATEGORY BY WASTE STREAM  (continued)
Number of samples/ Range of Median of
Pollutant Number of detections detections detections
Mean of
detections
Waste Stream: Extrusion press
Classical pollutants, mg/L
Oi 1 and grease
Suspended sol ids
pH, pH units
COD
TOG
Phenols, total
Toxic pollutants, ug/L
Toxic organ ics
2-Ch 1 oropheno 1
1,2-trans-dich to roe thy 1 ene
Methylene chloride
Bis(2-ethylhexyl Iphtha late
Butyl benzyl phthalate
Metals and inorganics
Copper
Nickel

5/5
5/5
5/5
5/5
5/5
it/t|


5/1
5/2
5/5
5/4
5/5

'1/14
M/4

8 -

-------
    TABLE 8.1-12.
SUMMARY OF POLLUTANT DATA FOR THE ETCH LINE RINSES SUBCATEGORY
VERIFICATION DATA [2-16]
Number of samples/ Range of
Pollutant Number of detections detections
Classical pollutants, mg/L
Oi 1 and grease
Suspended solids
pH, pH units
A I urn i num
Calcium
1 ron
Magnesium
COD
Dissolved sol ids
Sul fate
TOC
Phenols, total
Toxic pollutants, ug/L
Toxic organics
Acenapthene
Benzene
Chloroform
1,2-trans-dichloroethylene
2,l)-Dimethyl phenol
Methylene chloride
1 sophorone
i)-Nitrophenol
Pheno I
flis(2-ethy Ihexy 1 ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-0i_tyl phthalate
Diethyl phthalate
Chlordane
Po lych 1 or i na ted biphenyls
PCB-I2I|2, I25'i. 1221
PCB-1232. 121(8, 1260. I0lt>
Metals and inorganics
Arsenic
Be ry 1 1 i um
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc

18/16
18/18
16/16
19/19
19/18
18/15
I/I
17/17
19/19
19/19
18/18
18/18


19/5
19/9
19/18
19/5
19/2
19/18
19/2
19/1
19/9
19/18
19/9
19/IU
19/5
19/9
19/12

19/11
19/12

19/17
19/15
19/15
19/15
19/15
19/16
19/15
19/15
19/15

2 - 47

-------
     TABLE 8.1-13.  MINIMUM DETECTION LIMITS FOR TOXIC
                    POLLUTANTS  [2-16]
           Toxic pollutant            Concentration, yg/L

             Organic pollutants              10
             Pesticides                     5
             Metals
              Antimony                    100
              Arsenic                      10
              Asbestos                 1 x 107fibers/L
              Beryllium                    10
              Cadmium                      2
              Chromium                     5
              Copper                       9
              Cyanide                     100
              Lead                         20
              Mercury                     0.1
              Nickel                       5
              Selenium                    .10
              Silver                       20
              Thallium                    100
              Zinc                         50
II.8.1.3.1  Plant 47432

This aluminum processing  plant uses lime precipitation  (pH
adjustment) followed by coagulant addition and sedimentation  as
its treatment system.  Data  on the pollutant removal efficiency
at plant 47432 are  summarized in Table 8.1-14.  No production or
water usage data are available for this plant.

II.8.1.3.2  Plant B

No plant specific identification number was available for this
facility.  The wastewater from Plant B contains pollutants  from
both metals processing and finishing operations.  It is  treated
by precipitation-settling followed by filtration with a  rapid
sand filter.  A clarifier is used to remove much of the  solids
load.  Table 8.1-15 summarizes the data on the pollutant removal
efficiency at Plant B.

II.8.1.4  POLLUTANT REMOVABILITY [2-16]

This section describes the treatment techniques currently used or
available to remove or recover wastewater pollutants normally
generated by aluminum forming facilities.  In general,  these
pollutants are removed by oil removal (skimming, emulsion break-
Date:  9/25/81               II.8.1-22

-------
           TABLE 8.1-14.   REMOVAL OF POLLUTANTS BY LIME PRECIPITATION
                          AT METAL PROCESSING PLANT 47432 [2-16]
     Pollutant
   Raw
wastewater
Treated
effluent
Percent
removal
     pH,  pH units
     TSS, mg/L
     Copper,
     Zinc,  yg/L
    2.8
     24
180,000
110,000
  7.1
   11
2,000
8,700
  54
  99
  92
     Note:   Data based on  the  average of three influent/effluent samples.
         TABLE 8.1-15.   REMOVAL OF POLLUTANTS BY A COMBINATION OF LIME
                        PRECIPITATION, SEDIMENTATION, AND FILTRATION
                        AT PLANT B [2-16]
Pollutant, yg/L
Chromium
Copper
Nickel
Zinc
Iron
Raw
wastewater
5,900
170
3,300
2,900
22,000
Treated
effluent
38
11
180
35
400
Percent
removal
99
94
95
99
98
     Note:   Treated effluent performance reported for the period 1974-1979.
Date:   8/31/82  R Change  1   II.8.1-23

-------
ing, and flotation),  chemical precipitation and sedimentation,  or
filtration.  Most of the pollutants may be effectively removed by
precipitation of metal hydroxides or carbonates utilizing the
reaction with lime, sodium hydroxide, or sodium carbonate.  For
some, improved removals are provided by the use of sodium sulfide
or ferrous sulfide to precipitate the pollutants as sulfide
compounds with very low solubilities.  The effectiveness of
pollutant removal by several different precipitation methods is
summarized in Tables 8.1-16, 17, and 18.  Table 8.1-19 presents
the removability of pollutants by two types of skimming systems--
the API (American Petroleum Institute oil-water separator) system
and the TEB (Thermal emulsion breaker) system.
Date:  8/31/82 R  Change 1 II.8.1-24

-------
              TABLE 8.1-16.  REMOVAL OF POLLUTANTS BY SODIUM
                             HYDROXIDE PRECIPITATION [2-16]
Pollutant, yg/L
pH, pH units
Chromium
Copper
Iron
Lead
Manganese
Nickel
Zinc
TSS
Raw
wastewater
2.3
74
65
11,000
1,300
0.11
61
120

Treated
effluent
9
BDL
17
880
120
0.05
31
12
12,000
Percent
removal
_ _
93*
74
92
91
55
49
90

     BDL, below detection limits.
     ^Approximate value.
           TABLE 8.1-17.  REMOVAL OF POLLUTANTS BY LIME AND SODIUM
                          HYDROXIDE PRECIPITATION [2-16]
Pollutant
pH, pH units
Aluminum, mg/L
Copper, yg/L
Iron, mg/L
Manganese, mg/L
Nickel, yg/L
Selenium, yg/L
Titanium, mg/L
Zinc, yg/L
TSS, mg/L
Raw
wastewater
9.4
35
670
150
210
6,100
29,000
130
17,000
3,600
Treated
effluent
8.3
0.35
BDL
0.55
0.12
BDL
BDL
BDL
27
12
Percent
removal
__
99
99*
>99
>99
>99*
>99*
>99*
>99
>99
     BDL, below detection limits.
     *Approximate value.
Date:  8/31/82 R  Change 1        II.8.1-25

-------
         TABLE 8.1-18.  REMOVAL OF  POLLUTANTS BY SULFIDE PRECIPITATION
                       AT THREE PLANTS  [2-16]
Pollutant
Plant 1
pH, pH units
Chromium, hexavalent, yg/L
Chromium, yg/L
Iron, mg/L
Zinc , yg/L
Plant 2
pH, pH units
Chromium, hexavalent, yg/L
Chromium, yg/L
Iron, mg/L
Nickel, yg/L
Zinc, yg/L
Plant 3
Chromium, hexavalent, yg/L
Chromium, yg/L
Copper, yg/L
Zinc, yg/L
Raw
wastewater

5.9
26,000
32,000
0.52
40,000

7.7
22
2,400
110
680
34,000

11,000
18,000
29
60
Treated
effluent

8.5
<14
<40
0.10
<70

7.4
<20
<100
0.6
<100
<100

BDL
BDL
BDL
BDL
Percent
removal

--
>99
>99
81
>99

--
>9
>96
>99
>85
>99

99*
99*
83*
92*
     BDL,  below detection limits.
     *Approximate value.
Date:   8/31/82 R   Change  1  II.8.1-26

-------
             TABLE 8.1-19.   REMOVAL OF POLLUTANTS BY TWO TYPES  OF
                            SKIMMING SYSTEMS [2-16]

                                           RawTreatedPercent
   Pollutant              	wastewater	effluent	removal


   API System9

   Oil and grease, mg/L                  230,000           15          >9S
   Chloroform, mg/L                           23          BDL           78*
   Methylene chloride,  yg/L                   13           12            8
   Napthalene, yg/L                        2,300          BDL          >99*
   N-nitrosodiphenylamine,  yg/L           59,000          180          >99
   Bis (2-ethylhexyl) phthalate,  yg/L     11,000           27          >99
   Butylbenzyl phthalate,  yg/L               BDL          BDL           NM
   Di-n-octyl phthalate,  yg/L                 19          BDL           74*
   Anthracene-phenanthrene, yg/L           16,000           14          >99
   Toluene,  yg/L                              20           12           40


   TEB System

   Oil and grease, mg/L                    2,600           10          >99
   Chloroform, yg/L                          BDL          BDL           NM
   Methylene chloride,  yg/L                  BDL          BDL           NM
   Napthalene, yg/L                        1,800          BDL          >99*
   Bis (2-ethylhexyl) phthalate,  yg/L      1,600           18           99
   Diethyl phthalate, yg/L                    17          BDL           71*
   Anthracene-phenanthrene, yg/L              140          BDL           96*
   BDL,  below detection limits.
   *Approximate value.
   -i
    API: American Petroleum Institute  oil-water separator.

    TEB: Thermal emulsion breaker.
Date:  9/25/81                 II.8.1-27

-------
                  II.8.2  BATTERY MANUFACTURING

II.8.2.1  INDUSTRY DESCRIPTION [2-17]

II.8.2.1.1  General Description

The Battery Manufacturing Industry in the United States includes
230 active facilities operated by 132 different companies.
Plants commonly manufacture a variety of cells and batteries
differing in size, shape,, and performance characteristics.   A
significant number of plants produce cells using different reac-
tive couples but with a common anode material (e.g., mercury-zinc
and alkaline manganese batteries both use a zinc anode), although
facilities may produce cells or batteries using two or more
different anode materials.  Some battery manufacturing facilities
purchase finished cell components and assemble the final battery
products without performing some of the whole range of manufac-
turing process steps on-site.  Other facilities only manufacture
battery components, and perform battery manufacturing process
operations without producing finished batteries.  Finally,  some
battery plants have fully integrated on-site production opera-
tions including metal forming and inorganic chemicals manufacture
which are not specific to battery manufacturing.

The reactive materials in most modern batteries include one or
more of the toxic metals cadmium, lead, mercury, nickel, and
zinc.  Cadmium and zinc are used as anode materials in a variety
of cells, and lead is used in both cathode and anode in the
familiar lead-acid storage battery.  Mercuric oxide is used as
the cathode reactant in mercury-zinc batteries, and mercury is
also widely used to amalgamate the zinc anode to reduce corrosion
and self discharge of the cell.  Nickel hydroxide is the cathode
reactant in rechargeable nickel-cadmium cells, and nickel or
nickel plated steel may also serve as a support for other reac-
tive materials.  As a result of this widespread use, these toxic
metals are found in wastewater discharges and solid wastes from
almost all battery plants.  Water is used in battery manufac-
turing plants in preparing reactive materials and electrolytes,
in depositing reactive materials on supporting electrode struc-
tures, in charging electrodes and removing impurities, and in
washing finished cells, production equipment, and manufacturing
areas.
Date:  9/25/81              II.8.2-1

-------
Table 8.2-1 presents industry summary data for the battery
manufacturing point source category in terms of number of sub-
categories and dischargers.

               TABLE 8.2-1.   INDUSTRY SUMMARY [2-1]
               Industry:   Battery Manufacturing
               Total Number of Subcategories:   8
               Number of Subcategories Studied:  7

               Number of Dischargers in Industry:

                    •  Direct:  25
                    •  Indirect:  150
                    •  Zero:  77
II.8.2.1.2  Subcategory Descriptions

Subcategorization for the battery industry has been developed by
USEPA on the basis of the anode material employed.  The available
data indicated that where multiple cell types are produced, and
especially where process operations are common to several types,
the cells frequently have the same anode material.  Further
consideration regarding the electrolyte used with zinc anodes re-
sulted in subcategorization as follows:

          Subcategory              Anode Material
        A - Cadmium                Cadmium anode
        B - Calcium                Calcium anode
        C - Lead                   Lead anode
        D - Leclanche              Zinc anode, Acid electrolyte
        E - Lithium                Lithium anode
        F - Magnesium              Magnesium anode
        G - Zinc                   Zinc anode, Alkaline
                                     electrolyte
        H - Nuclear                Radioisotopes

Nuclear batteries have not been manufactured since 1978 and have
not been included in any study.  Zinc anode is divided into two
groups based on the electrolyte type because of substantial
differences in manufacture and wastes generated by the two
groups.

A description of various Subcategories is given below:

     Subcategory A - Cadmium

This subcategory encompasses the manufacture of all batteries in
which cadmium is the reactive anode material.  Cadmium anode
cells presently manufactured are based on nickel-cadmium,  silver-


Date:  9/25/81              II.8.2-2

-------
cadmium, and mercury-cadmium couples.  Nickel-cadmium batteries
are among the most widely used rechargeable cells, finding appli-
cation in calculators, radios, and numerous other portable elec-
tronic devices in addition to a variety of industrial applica-
tions.  Total annual shipments of nickel-cadmium batteries were
valued at over one-hundred million dollars in 1977.  Silver-
cadmium battery manufacture amounts to less than one percent of
the nickel-cadmium batteries product weight.  Mercury-cadmium
batteries are manufactured in small quantities for military and
industrial applications.  At present, ten plants are manufac-
turing batteries in the cadmium subcategory.  Total annual pro-
duction is estimated to be 5,200 metric tons (5,800 tons) of bat-
teries with three plants producing over 450 metric tons (500
tons) of batteries, and one producing less than 0.9 metric tons
(1 ton) of batteries.

Cadmium anode batteries are produced in a broad range of sizes
and configurations corresponding to varied applications.  They
range from small cylindrical cells with capacities of less than
one ampere-hour to large rectangular batteries for industrial
applications with capacities in excess of 100 ampere-hours.  In
general, batteries manufactured in the smaller cell sizes are
sealed while the larger units are of "open" or vented construc-
tion.

Manufacturing processes vary in accordance with these product
variations and among different facilities producing similar pro-
ducts.  Raw materials vary accordingly.  All manufacturers use
cadmium or cadmium salts (generally nitrate or oxide) to produce
cell cathodes.  Supporting materials generally are used in manu-
facturing the electrodes to provide mechanical strength and con-
ductivity.  Raw materials for the electrode support structures
commonly include nickel powder and nickel or nickel-plated steel
screen.  Additional raw materials include nylon, polypropylene,
and other materials used in cell separators; sodium and potassium
hydroxide used as process chemicals and in the cell electrolyte;
cobalt salts added to some electrodes; and a variety of cell
case, seal, cover, and connector materials.

     Subcategory B - Calcium

All calcium anode batteries presently produced are thermal bat-
teries for military and atomic applications.  Three plants pre-
sently manufacture these batteries to comply with a variety of
military specifications, and total production volume is limited.
Of the three operating facilities, two showed total thermal
battery production amounting to less than 23 metric tons (25
tons).

     Subcategory C - Lead

The lead subcategory encompasses lead acid reserve cells and the


Date:  9/25/81              II.8.2-3

-------
more familiar lead acid storage batteries.   This is the largest
subcategory both in terms of number of plants and volume
of production.  It also contains the largest plants and produces
a much larger total volume of wastewater.

The lead group includes 184 battery manufacturing facilities with
144 manufacturing electrodes from basic raw materials and 40
purchasing electrodes prepared off-site for battery assembly
on-site (these are termed assemblers).  Most facilities which
manufacture electrodes also assemble them into batteries.  In
1976, plants in the lead group ranged in annual production from
10.5 metric tons (11.5 tons) to over 40,000 metric tons (44,000
tons) of batteries with the average production being 10,000
metric tons (11,000 tons) per year.  Total annual battery pro-
duction is estimated to be 1.3 million metric tons (1.4 million
tons) of batteries.  Seven companies owned or operated 42 percent
of the plants in this subcategory, consumed over 793,000 metric
tons (875,000 tons) of pure lead and produced over 1.1 million
metric tons (1.2 million tons) of batteries.  In 1977, total lead
subcategory product shipments were valued at about 1.7 billion
dollars.

All products in this subcategory are manufactured using similar
materials and employ the same basic cell chemistry with the
exception of lead-acid reserve batteries which are manufactured
at only one site.  However, products differ significantly in
configuration and in manufacturing processes depending on end
use.  Lead-acid battery products include cells with immobilized
electrolytes for use in portable hand tools, lanterns, etc.;
conventional rectangular batteries for use in automotive start-
ing, lighting, and ignition (SLI) applications; sealed batteries
for SLI use; and a wide variety of batteries designed for in-
dustrial applications.

Manufacturers of SLI and industrial lead acid batteries have
commonly referred to batteries shipped with electrolyte as
"wet-charged" batteries and those shipped without electrolyte as
"dry-charged" batteries.  These "dry-charged" batteries include
both damp-charged batteries (damp batteries) and dehydrated plate
batteries (dehydrated batteries).  Dehydrated batteries usually
are manufactured by charging of the electrodes in open tanks
(open formation), followed by rinsing and dehydration prior to
assembly in the battery case.  Damp batteries are usually manu-
factured by charging the electrodes in the battery case after
assembly (closed formation) and emptying the electrolyte before
final assembly and shipping.  The "wet-charged" batteries (wet
batteries) are usually manufactured by closed formation pro-
cesses, but also can be produced by open formation processes.

Dehydrated plate batteries afford significantly longer shelf-life
than wet batteries or damp batteries.  In 1976, sixty plants
reported the production of 239,000 metric tons  (268,000 tons) of


Date:  9/25/81              II.8.2-4

-------
dehydrated plate batteries, representing over 18 percent of all
lead acid batteries produced.   Twenty-seven plants reported pro-
ducing 121,000 metric tons (136,000 tons) damp batteries,  9.3
percent of the battery manufacture total.

Major raw materials for all of these battery 'types include lead,
leady oxide, lead oxide, lead alloys, sulfuric acid,  as well as
battery cases, covers, filler caps, separators, and other plastic,
rubber, or treated paper components.  Generally, additional mate-
rials including carbon, barium sulfate,  and fibrous materials are
added in the manufacture of electrodes.   Many manufacturers use
epoxy, tar, or other similar materials to seal battery cases,
especially in manufacturing industrial batteries.  Common alloying
elements used in the lead alloys are antimony, calcium, arsenic,
and tin.  Antimony may be used at levels above 7 percent while
arsenic, calcium, and tin are generally used only in small per-
centages (1 percent).

     Subcategory D - Leclanche

Plants included in this subcategory manufacture the conventional
carbon-zinc Leclanche cell and some silver chloride-zinc and
carbon-zinc air cells as well.  All of the battery types included
have in common the use of an acidic (chloride) electrolyte and
use of a zinc anode.  Among carbon-zinc air batteries, only "dry"
cells which use ammonium chloride in the electrolyte are included
in this subcategory.  Carbon-zinc air depolarized batteries which
use alkaline electrolytes are included in the zinc subcategory.
The Leclanche subcategory also includes the production of pasted
paper separator material containing mercury for use in battery
manufacture.

Plants in this subcategory produce a total of over 108,000 metric
tons (111,000 tons) of batteries and employ approximately 4,200
persons.  Individual plant production ranges from approximately
1.4 metric tons (1.5 tons) to 24,000 metric tons (26,000 tons).
In 1977, the total value of product shipments in this subcategory
was over 261 million dollars.

A wide variety of cell and battery configurations and sizes are
produced in this subcategory including cylindrical cells in sizes
from AAA to No. 6, flat cells which are stacked to produce rec-
tangular nine volt transistor batteries, various rectangular
lantern batteries, and flat sheet batteries for photographic
applications.  Only the flat photographic cells are somewhat
different in raw material use and production techniques.  For
specific cell configurations,  however, significant differences in
manufacturing processes and process wastewater generation are
associated with differences in the cell separator chosen (i.e.,
cooked paste, uncooked paste,  pasted paper).
Date:  9/25/81              II.8.2-5

-------
Major raw materials used in the manufacture of batteries in this
subcategory include zinc,  mercury,  carbon,  manganese dioxide,
ammonium chloride,  zinc chloride,  silver chloride,  paper,  starch,
flour, and pitch (or similar materials)  for sealing cells.   Plas-
tics are also used in producing flat cells for photographic use.
The zinc is most often obtained as sheet zinc preformed into cans
which serve as both cell anode and container, although some
facilities form and clean the cans on site.  For one type of
battery, zinc powder is used.  Where mercury is used to amalga-
mate the zinc and to reduce internal corrosion in the battery,  it
generally is added with the cell electrolyte or separator.   It
amounts to approximately 1.7 percent by weight of the zinc con-
tained in these cells.

     Subcategory E - Lithium

This subcategory encompasses the manufacture of batteries which
employ lithium as the reactive anode material.  At present, the
batteries included in this subcategory are generally high-cost,
special purpose products manufactured in limited volumes.  These
include batteries for heart pacemakers,  lanterns, watches,  and
special military applications.  A variety of cell cathode mate-
rials are presently used with lithium anodes including iodine,
sulfur dioxide, thionyl chloride,  and iron disulfide.  Electro-
lytes in these cells are generally not aqueous and may be either
solid or liquid organic materials or ionic salts (used in ther-
mally activated cells).

Because the commercial manufacture of lithium anode batteries is
relatively new and rapidly changing, production figures were not
available in all cases.  Three of seven plants reporting lithium
anode battery manufacture had commenced operation after 1976.
Based on 1976 figures where available and data for other years
where necessary, total annual production of lithium anode cells
is estimated to be over 22.2 metric tons (24.5 tons).  Individual
plant production ranges from less than 50 kg  (100 Ibs) to 14
metric tons (15 tons).

Because of lithium's high reactivity with water, anode processing
and most cell assembly operations are performed without the use
of process water.  In fact they are usually accomplished in areas
of controlled low humidity.  Process water is used, however, in
producing some cell cathodes, either in washing reactive mate-
rials or for air pollution control and area clean up.

     Subcategory F - Magnesium

The magnesium subcategory encompasses the manufacture of mag-
nesium-carbon batteries, magnesium-vanadium pentoxide thermal
cells, ammonia activated magnesium anode cells, and several
different types of magnesium reserve cells using metal chloride
cathodes.  These cell types  are manufactured  at eight plants with


Date:  9/25/81               II.8.2-6

-------
tot&l annual production amounting to 1,220 metric tons (1,340
tons).  Annual production at individual plants ranges from 0.4
metric tons (0.5 tons) to 570 metric tons (630 tons) of magnesium
ano.de batteries.  Over 85 percent of all magnesium anode bat-
teries produced are magnesium carbon cells.

A wg.de variety of raw materials are used in the manufacture of
magnesium anode batteries owing to the diversity of cell types
manufactured.   While the anode is magnesium in every case, prin-
cipal raw materials used in cathode manufacture include manganese
dioxide, barium chromate, lithium chromate,  magnesium hydroxide,
and- carbon for magnesium-carbon batteries; vanadium pentoxide for
thermal batteries; copper chloride, lead chloride, silver, or
silver chloride for magnesium reserve cells; and m-dinitrobenzene
for ammonia activated cells.  Electrolyte raw materials for these
cells include magnesium perchlorate, magnesium bromide, and ammo-
nia.   Separators are most often reported to be cotton or paper.

     Subcategory G - Zinc

Zinc anode alkaline electrolyte batteries are presently manu-
factured using six different cathode reactants:  manganese di-
oxide, mercuric oxide, nickel hydroxide, monovalent and divalent
oxides of silver, and atmospheric oxygen.  A wide range of cell
size, electrical capacities, and configurations are manufactured,
and both primary and secondary (rechargeable) batteries are
produced within this subcategory.  The manufacture of zinc-anode
alkaline electrolyte batteries is increasing as new battery
designs and applications are developed.  These products presently
find use in widely varying applications including toys and calcu-
lators, flashlights, satellites,  and railroad signals.  In the
future, zinc anode batteries may provide motive power for auto-
mobiles.

In 1976, seventeen plants produced approximately 23,000 metric
tons (25,000 tons) of batteries in this subcategory.  Individual
plant production of zinc anode alkaline electrolyte batteries
ranged from 0.36 metric tons (0.40 tons) to 7,000 metric tons
(7,700 tons).

Raw materials used in producing these batteries include zinc,
zinc oxide, mercury, manganese dioxide, carbon, silver, silver
oxide, silver peroxide, mercuric oxide, nickel and nickel com-
pounds, cadmium oxide, potassium hydroxide,  sodium hydroxide,
steel, and paper.  Zinc is obtained either as a powder or as cast
electrodes depending on the type of cell being produced.  Process
raw materials at specific plants vary significantly depending on
both the products and the production processes employed.  Zinc
and zinc oxide are both used to produce zinc anodes.  Mercury is
used both to produce mercuric oxide cell cathode material and to
amalgamate zinc anodes to limit cell corrosion and self dis-
charge.  Manganese dioxide is blended with carbon to form
cathodes for alkaline manganese cells and is also included in

Date:  9/25/81              II.8.2-7

-------
cathode mixes for some mercury and silver oxide batteries.
Silver is used in the form of wire screen as a support grid for
cell electrodes,  and in the form of powder for the production of
silver oxide cathode materials.   Silver oxide is used in the
production of both silver oxide and silver peroxide cell cathodes,
and silver peroxide is also obtained directly for use in silver
oxide cell cathodes.  Nickel and nickel compounds are used in
producing cathodes for nickel-zinc batteries identical to those
used in some nickel-cadmium batteries.   Potassium and sodium
hydroxide are used in cell electrolytes which may also include
zinc oxide and mercuric oxide, and also as reagents in various
process steps.  Steel is used in cell cases, and paper and
plastics in cell separators and insulating components.

II.8.2.2  Wastewater Characterization

Water is used in battery manufacturing plants in preparing re-
active materials and electrolytes, in depositing reactive mate-
rials on supporting electrode structures, in charging electrodes
and removing impurities, and in washing finished cells, produc-
tion equipment, and manufacturing areas.  Wastewater flow,  pattern
of water use, and waste characteristics are similar among the
subcategories, but vary widely among different battery manufac-
turing units.

Data on Wastewater flows and characteristics have been developed
on an industry-wide basis by USEPA for the establishment of
effluent guidelines.  Sources of the data used in the USEPA
analysis included the literature, data collection portfolios sent
to all battery manufacturing companies, and plant visits with
on-site sampling and data collection.  The sampling data col-
lected in support of the USEPA program consisted of initial
screening data (where the objective was to identify the presence
of toxic pollutants) and subsequent collection of verification
data-(where the objective was to quantify the toxic pollutants
identified).

The following discussions summarize wastewater flow and charac-
teristics (based on verification sampling) for the various sub-
categories.

     Subcategory A - Cadmium

Cadmium anode cells presently manufactured are based on nickel-
cadmium, silver-cadmium, and mercury-cadmium couples.  Thus
significant pollutants carried by waste streams in this category
are the toxic metals cadmium, nickel, and silver.
Date:  9/25/81              II.8.2-8

-------
Manufacturing processes in this subcategory can be divided into
four broad categories:  anode manufacture,  cathode manufacture,
assembly operations, and ancillary operations.   All except the
assembly process result in generation of process wastewater.
Following are the major wastewater streams.

Anode Manufacture;     •  Rinsing, wet scrubbers, and other
                          wastewater during electrodeposited
                          anode manufacture
                       •  Cleaning, rinsing, and other wastewater
                          from cadmium impregnated anode manufac-
                          ture

Cathode Manufacture:   •  Rinsing wastewater and spent caustic
                          from electrodeposited cathode manufac-
                          ture
                       •  Cleaning, rinsing, wet scrubber and
                          other wastewater from impregnated
                          cathode manufacture
Ancillary Operations:  •  Battery, floor, and employee hand
                          washing
                       •  Nickel hydroxide production

Water use and wastewater discharge vary widely among cadmium sub-
category plants with process wastewater flows ranging from 0 to
over 450 m3/day.  Production normalized waste flow from the
different process elements is shown in Table 8.2-2.

Combined process wastewater characteristics are included in Table
8.2-3.  These are based on three days of data from four operating
plants.  As the table shows, concentrations of pollutants vary
over a wide range, primarily because of variations in the manu-
facturing processes.  As expected, the significant pollutants are
cadmium, nickel, zinc, and silver.  The waste is alkaline and
high in suspended solids.

Table 8.2-4 summarizes the wastewater generated by the different
process elements.  The primary pollutants are cadmium, nickel,
TSS, and oil and grease, with the wastewater normally exhibiting
a very high pH.

     Subcategory B - Calcium

This subcategory encompasses the manufacture of thermal batteries
for military and thermal applications.

Process water use and discharge in this subcategory are limited.
Wastewater discharge is reported from only one process operation
which is involved in producing the reactive material used to heat
the cell for activation (heat paper production).  The highest


Date:  9/25/81              II.8.2-9

-------

















_J
Q
>
—. >-
ace
ZO
— o
Ul
CCt-
0<
u.o
CO
*3* —5
oco
Ce —
us:
30
Ul
t-l-
co z
< Ul
32
Ul
Q-l
UIUI
N
— w
-ICO

O— CD
3— e
•o co co
O E 5-

0- O D
C





C
CO
C CO —
o £ a
— &

O CO E
3 JJ •
•O£ 3
O O1O
I — _
0. CO


C Ola
co ^ S
— CO *X
T3£ E
CD O •
Z U) 3

•O ••»•





CO —
cno
S-S
C CO'V-
CC£ E
CD O •
Z Ul 3
— 0
"O ^«











•P
C
c(
g
0
Ul
E S
3 3
>— >«•
E E
•o -o
co co
o o
CO (U
C>--0c

CO CO







co o
VO ON
• vO









o r-
ON
— vo










r- t~-
' ON
CM VO







•o
CO
Ul T3
CO 4J
(- —
a v>
o
•a a
C CO
co «- -a
CO O
•o-a t-
_
E
•a
CO
0
CO
 •«
a a
a. a.
co co

V- C|_
O— O —
CO 0)

£ o.c o
en— en—
— C — C
CO CO
3 3






cr\ o
vo a-
in —
•—








o\ o
VO CM
in r-










ON O
vo 3-
in vo
~»






•O in
1 CO C
a> +j o
•a co —
EC -P
(71 co
o t~ CD
co ex a
-T3 S 0

4J ^
— — C
CO U) CD CO
j: o .* —
o a o —
.— .^ •«
z z o
c


V) I/)
_ —
— ^
CO CO
o o
•o
c*- CO V
o o o
3
4-> T3 P
£ O £
en«- en
— a —
CO CO
3 3






r- oo
VO VO
o
CO •
O







CO 00
o

O









CO 00
ON O
• •
d- o






1
CO
a
£
a
CO
^j
c ^
m — c
CO O O
•p w
— O CO
- CO t.
CO —
o ui



Ifi
—
—
CO
0
o
CO P


a—
CO







o
•
00
CM








•a-

CM'










o

C\j











r~
If,
cc

!_
O
o
—
u.



in
—
—
CO
0
•O TJ
CD **- CO
0 O O
3 .3

O £ O
t« en t-
a— a
CO







m
•
—









m

—










m

—










in
CO
^

CO
CO
o
a
E
Ul

E
3
• _
E
TJ
CO
0

t^.
O

jj -Q
£ 0)
en ui
— 3
CO
3






r~
.
m
VO








p*.
.
m
VO









r^

in
VO









c.
CO
•o c
> 0
o —

o
E 3
11
•o a
CO
O

•Q
i. g)
0) O
> 3
— •a
— 0
Ul i-
Q.
c^.
0 !-
0)

£ >
cno
— a,
CO
3






00

—
CM








CM
•
^
CM









CM

—
CVJ









CO
•o
^
o
a
j.
CD
>

—
CO

E
3
L
E
•a
CO
o

<<-
0

4* ^
£ CO
en ui
— 3
CO
3






m
«
•
in








OX

o










ON

o'








CO
•o
X
He
•o o
^>*~"
f* 4J
Q
E 2
3XJ
'i2
•D a
cs
o


—
CO

0
•—
c

Cf.
o

•p-o
£ CD
cnw
— 3
CO
3






l^
—
^f









o

—










o

M









CD
T3
X
EC
0
^3 '^
^ ^J
£ O
3
— •a
® o
o a
—
z

Date:  9/25/81
II.8.2-10

-------







1
o
UJ
i-
5
w
2
^
-~
3r
Q
^

|

Z
o

i-

N
UJ
O
rf
eg
«^
X
o
cc!"^1
UJ —
1- 1
2"
wt-
JEQ
^ 2
^ o
ce —
o<
LJO
z —
CO —

§1

,
eo
CM

00

UJ

CO

K








C (O
CO CO

•0 O Q
V E
£ co

0)
0)
C —
CO






in
w CD
O> —
c <*- a
co O E
f£ CO
i/i





en

CD
5_ —
to a
£l S
E co
3 

O
O
O O O
O OO -
O OOO
•>oo
-1OO OO O «co

fOCOCMl^- CM CM co CM CM co

1 1 1 1 1 1 1 1 1 1

aoa-i OOQOOO
ZZZQ ZZZI^ZZ
00 \f\







NCOS— CMOOiOOflOCMco —








CVJCVJCMCMCM 	 CMCMd-CM







L.
O
>s C £
0)0) 0) O
3. TJ 0) -
— C CO 0
^ ^ Q) ~~ ^ -M
cfl o— co co —
*> — >> +J X co •
C ££ O 01 *> C
CO O -U 4J£ O E
•W CD +> CO
3 ID O « -
- C S- E E » •>
— a>oE33a>aj>>
O — — 3~ — "DTJi-— t-
Q. >»£ — E E 	 3 CD Q)

o 4J — •a<-i_coco«-o— c
a> «- co ££>>>> a) 	
X ZI-OOO OOZZION
Q
K
1s- o — J r^ ^ so o\
• if\ o • \o « •
OO to — •
oo -. -r- •> •j*
i 	 o — CMr —

1 1 1 1 1 1 1

ON O Q O to O if\
• zzoo— . .
— • — CM
o






OM-- O — CM CM CM








ON CM 	 CM CM CM






-1
s*^
Ol «
E T3
^ .^
V) O
+> (O
c
CO "D
•P — 4> 0)
3 co ca-o
— *> CO C
— O CD CD E E
O *> I- 0.3 3
a 01 « E E
— co wo en c x
co — **— C — to
O C— O CO— E E
— O CD C CO
V> E.Q 0) — -u •.«
0) E O £ — O X X
a 
to 'i

. ~"
> c
0
•—
• • • ^1
wo o
•0 CD CD
O *>*»
£ O CD
+* CD ^
i « >
•o o
0 -
— WO)
•U OJ3
^> C
CO >_l
CQO

-------
Ul
5
Ul
w

Ul
o
O
DC
a.
_J
0
—
•J
a
z
•m
00
(X
UJ
K
1

w
2
s
2
3
£


0
Z
^^
zr-
o —
— t
||
oz
oo
POLLUTANT
VERIFICATI
•
*
i
CM
C ro • •
OCO M<\f O^ " COO^Ot O A VO i^w(*> —
* • • * « * — «•
O ffl W ^ "~ Irt
OJ

a
£
4J
(A
01
+1
M
S


OB
•c
w
L.
0)
p
I
«
u
Ifl
£
a
•o
c
0
1!
a
^
tf
(B
a
§
i
T
a
a

00 §
o oo o oo
o SS °.0 « §5=?° !
OO * «O OfO • O * -OO *
«— Ov9tiT\ 5tf\ (XI «M — — — C

II III II 1 1 1 1 1 1 M
§Q OOO OO Is" OOOOO 0)
C ZZZ OtA >O — >O • • *J
O »(*» • iA«OO9( M
* * O «
0 «J >
in
£
a
V
i
•e
O O ••* ^ O ftJ N ftl O *O W *•> O rt *O W*O PO fl
V!


c
4,

*
ro «o w>«*> w w « 1*1 « tt m «o rt nz " — •— • •
CM 1^ CM —

"S



OO«OO**»«OO«OJ ro O <*>«*> w> co co







f> co CO ro "> fO « CO co W rt co f> (•> co CO CO CO

j
k at « i.' n M
. o i is o t -a
^ C £ » ^ "^ C £ • ^
» « o o « o oi « e o « o
3. « « — *> «• 3, T5 « — 41 <•
. ul -5 S g T, . tg -? 3 g
« o-» «w— ** — » at M o— **— *j — o»
*» - >» **5* ' 3 WWO w -X *»X« . 3 cort-O
C ££ O O 4J C — ** W C C££OO*»C — *> CB C
5 °S -*8l o SScllS 3 °S "35 S SE&ii
2 ge .-.'.. a ."sll 2 gs gg.. a .•"§«•
- oomssvu ^_ - «w«>'''wcx - «o«330« x — O^IB^MCX
5 ilJillllill 1 iiiiiu ; I^IIPIIII- I Illilss
o — o —
1- OH 0
Date:  9/25/81
II.8.2-12

-------
z
LU
£
LU
UJ



UJ
o
o
cc
0.




13
Q
Q
Z


x.
CO
.
QC
8
LU
1-
u
CO
3



O


i

o




z
0


<
cc
t-
LU
o
z
o^


r— O
Z 3
< C

3 -P
-J C
-1 0
1
CJ

C u>

— (t_ —
•O O Q
£ i
w



(0
o
c —
co t»- a
o o E
Z 0
tfl






Q] QJ
Ol —
Cd- 0
CO 0 E
 C
a a
z





O U!
t_ —
fl) c

IS












-P
C
eg
3
O
Q.









-JOO OO i^OO
oo^r j-— — o.=r
CO O— CM

CO CM


o
0 0
O 0
-J -O fO
E
CD
(_
+J
V)
0)
JJ
V)
CO
*

•0
O
C
CO

•o
a>
4J
CO
C
O


i
™
E
3

^
3
CQ\0- SOCM r*)(0^
1 1 1 CO 1 1 III
QOO^OO -JOO
Z — O CMZ QOCO
	 CD cy
—








O — COCO — CO — OCOCMCJ









CMCOCOCOCOCMCOCOCMCMCM







U
O

-*s C £.
CT a a) o
3. T3 0 —
-- C CO 0
w O — (o a —
C .C.C O Q) *J C
+* ID 4-> CO
3 (0 O - -
— C i- E E - *
— 0) O E 3 3 « (D X
O 	 3 	 -O-O t_ —
O. >»jC — E E — — 30)
£ O E O O C CT3 O^£ a
— a) t. co jc i: >>^» v CD 	
X ZHOOOOO-JZZN
O
t-
to
LU
CO













rOLPiCM lAO — CM
• r-o • o • •
CM O • CO CO ^O cO
•0 —
O





CM — or-oo •
f*>OO OJ fO P- 	
1 1 1 1 1 1 1
.=r J — co J-CM o
• o o - in • •
— • • CM iA cO
00 —









CM CO CO 00 CO CO CO









CM CM CO CO 00 CO CM






^
O1 (A
a -o


w o
W (0
c
as -o
« — Q) 0>
3 co wo
— -P <0 C
— O (U (U E E
O 4J t. Q. 3 3
Q. CTW E E
., 3 — —
— to tfl T3 « C X
co — *J — C — CO
O C— 0 CO— E E
OCOC (0
w e .a o — j-> - -
« E O -C — O X X
co < o Q- 01- a a.

0







Q OO OO OO LT\ — O O
Z lAZ -JOd CMO OO-Z
o • -co
.. OO
CM




-J o -J o fo r^ o o oo Is* r—
Q in Q ro CM *" O — O • •
CQ CO 00 • • 	
00




0
E
ea
t_

W!
CO

£

0)
T3
o
^:

CO
u

03
*->

CO
o
a
D
•o
o
o
0}

0)
_
Q
CJ
Z
O iTN ^J
O CO OO O
-S-§§Mvo* OOOOU>
1 1 1 1 1 1 1 1 1 1 1




o —








J- f^









-CM
r-r-
i i
O OQ OO QO O — O Q CM 00
z —z 	 20 zo -z
so . —
-, o



















(OcOCOCOfOrOCOCOCOcOtO fO(OCO(OfO






^
t- Oi w>
O E "O
-J +J —
V. C J= s —
a* « to o CA o
3. -a a) — ** «
- C eo 0 C
(A O ~™ <0 CO — *•* -~> *J X « * 3 W WO
C£JZO03*JC — +JCOC
co O *J •*-* J^ O E •^ O D 0)
•MO) 4->co O j-J i- a.
3 0) O * « a CTi(A
— C 1- E E « - -3
O 	 3 	 'O'O I- — ca — -u— C
a >>jc — E E 	 3® o c— ore —
.coEoocc-au^co — one co
0 jp — •oS-i-coeocot-cjC w E4OO — *J
— >>>a)(D 	 w E o ^ — o
X Z1-UOOOO-I3EZN TO < CJ 0- O H
o —
K O



™



















CO fO














€ E
C X
— CO
E E
z"x
a a.





Date:  9/25/81
II.8.2-13

-------
Ul
Ul

W
M
Ul
O
0
(X
CL
_J

Q
Q
£
q£
o
o
Ul
l-
u
03
3
M
_

^»
£
0

z
•_

2
o
L_
2
1-
Ul
o
o
•o
t- «
. POLLUTAN
(conttnu
^
CM
CO
Ul
CO

5 o
3 0 C
1 !
V



(0
a
l°i
10
§, I
c<- a
a o E
as a
IA




«- C
0 C
t- +*
a o
Is
Zt



fc.
O V)
(
O i
IS
3 *
Z





4
1
4
™
I
&














e
i
M
2
M
n
5
n


O lAO O O O O
O CO CO CO O N
ro O
— (M

§ 1
o -
»o o -J oo
ONCO ONOQO 	
ii i i i i i i
-JO QQQOOO
az zzzzom
CO 0
t\r







ooocoocotTtnjcvjoo







oooooooooooo





u
o
•V C ~G
20 O O
•DO) —
. IS -5_S
2 — > 2 * « •
C ££ O « *> C
a o w w£ o •
u e «>•
2 g|B|j-.v
fUBOOCC'OOXO
0 W---0 (-t-oaoi-uS
X ZI-OUUOU-IZZN
0




^00"°**
CO • >tO — tACU
oo -





— >oo •» • •
do" —

So o
r-r- •
r- . -co « -a
CO -T O N (M 0\ —
1 1 1 1 1 1 1
maaoicooo
•ZZONCM • •
" o ~-







CO ^* O*O O O O







COOOOOOO




_t
gt w
m -a
 —00
*»— — *>X<0- 3 « «>1S
CfXOBWC — U«C
• U£f«4£OB — O00BE
tf U W 5 O " 1- 0.3 3
3 SP .'_* a 0>«E6
••££•••>« »3 	
— OOK3300 X — CB M-otACX
O S« c
o
w-oo— .
•Q 0) 0) A Q)
O *» ** « O
£ O O— C
u o -D — £
o ** nt C
SSSS£
O — L.
W OJ3 O W
>>c c c
a ._T -~
cao< 10

-------
volume  reported by  any  plant in the subcategory is 0.061 m3/hr.
Table 8.2-5 presents wastewater flow characterization for the
calcium subcategory.

Wastewater constituents,  as  reported in data collection port-
folios,  include cadmium,  barium,  and chromium.   Other potential
pollutants based  on raw materials used include zirconium, as-
bestos,  and iron.

   TABLE 8.2-5.   WASTEWATER  FLOW - CALCIUM SUBCATEGORY [2-17]
Elements
Mean
discharge
(m3/Mg)
Median
discharge
(rr>3/Mg)
Production
weighted mean
(n\a/Mg)
Production
normalizing
parameter
Heat paper
  manufacture    276

Cell leak
  testing      0.014
 24.1
0.014
 16.9
0.014
Weight of
reactants

Weight of cells
produced
     Subcategory C - Lead

The lead subcategory, including  lead acid reserve cells and
storage batteries, is the  largest  subcategory in terms of number
of plants, volume of production, and volume  of wastewater.

Process water use and wastewater discharge quantities vary widely
among lead subcategory plants reflecting  differences in water use
control and wastewater management  practices  as well as manu-
facturing processes.

The following manufacturing  subprocesses  are major sources of
process wastewater in this subcategory.

     •  Pasting processes  -  from wet scrubbers
     •  Electrolyte preparation  and  addition - wastewater from
        rinsing and spillage
     •  Formation (charging) - rinse and  scrubber wastewater
     •  Battery wash

Total plant wastewater ranged from 0 to nearly 62 m3/hr with a
median value of 3.5 m3/hr.  Table  8.2-6 shows production normal-
ized waste flow generated  at several lead subcategory process
units.
Date:  9/25/81
                            II.8.2-15

-------
    TABLE  8.2-6.
WASTEWATER FLOW
ELEMENTS  [2-17]
- LEAD SUBCATEGORY PROCESS
       Element
                             Mean
                           d i scha rge
                           (cu.m/Mq)
                    Med fan
                   d ischa rge
                    (cu.m/Mq)
             Number of plants
               represented
            	in data
       Anodes and cathodes

       Leady oxide production     0.21
       Paste preparation and
        applicat ion            0.57
       Curing                  0.01
       Closed formation
       (in case)
        Single fiI I             0.09
        Double fill             I.26
        Fill and dump           I.73
       Open formation (out of
       case)
        Dehydrated            I8.U
        Wet                  14.77

       Anc ilia r.V Ope rat ions

       Battery wash             I.28
       Floor wash               O.UI
       Battery repa i r           0.17
                     0.0

                     0.0
                     0.0
                      0.0
                      0.31
                      0.83
                      9.0
                      0.0
                      0.72
                      0.19
                      0. 17
                  3U

                  95
                  89
                  UO
                  30
                  I I
                  35
                   7
                  60
                   5
                   I
       Note:  Production normalizing parameter is total weight of lead used.

Total process wastewater  characteristics  for this subcategory are
included  in Table 8.2-7.   The  data have been obtained from sam-
pling at  five operating plants and represent the process  waste-
water stream discharged to treatment  at each facility.  However,
it excludes streams, such as pasting  wastewater, which  are to-
tally recycled.  The significant pollutants  are lead, iron,  and
TSS and the wastewater is acidic.  The pollutant concentration
varies widely owing to different manufacturing processes  and
wastewater  management practices at different plants.

Table 8.2-8 presents wastewater characteristics from specific
process operations that contribute to the total waste stream.
Major process wastewater  sources characterized include  pasting,
closed formation for wet  and damp batteries, open formation and
plate dehydration for dry charged batteries, and battery  wash
operations.

     Subcategory D - Leclanche

This subcategory encompasses  the manufacture of all batteries
employing both a zinc anode and a zinc chloride or zinc chloride-
ammonium  chloride electrolyte.
Date:   9/25/81
                              II.8.2-16

-------












cc
o
0
UJ
H
o
CO

w

0(-

UJ 1
-JCV

1
ZH
0<
— Q
H

a: •>
UJLU
«n
^ *c
UJ !S
H

< <
"3-CC.

•
\
CM
CO

UJ
-1
CO

H













C <0
CO tt
.-» c^. —
•a o a
« E
S CO
u>
tt
c —
CO d- Q
(DOE
£ co
i/)









tt CJ
j^ CO
E w
3 tt
ZXJ



d-
O 10

I 	
tt Q
11
3 <0
Z


















C
cc
3

o
a.
_ia_i_ioo-i-io-J-io-iooo oooooo
aza a Zfoaazaozazzvo oozmzto
co coca coco coca co — o co
•K
co

aaoaOtoaa — QOOco 	 (O to O 	 O
COCOCQCQCO COCO COCOCQ ^ ^ O CO — •
* *
^ ^
-^





o
o oo o o
o oo o o
-1-1 -JO -JO -IOO co lA « lA CO
OOOOO^fOO ^ O O O O\ CM O i "»*O O «»O •*
(O CO CO — CO — CM CO — CO COCO — — COCO CM it lT\ CM CO VO
a
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Z 1 1 1 1 1 1

-JOOOQ -IQOOO OO OO O-l OOOOOO
azzzzozzzzzzzzzo iriozzzir\
CO CO CO O
_r








covoooo — cof~-covoi>-r~ir>a-a>o
-1C •» CO tt tt *>
^ CO £—*»*> C
en c. » a co co co tt
3. *> T3 —JC 	 —
tt — — *> CO « CO

CO* «- O X O.4J +> CO CO
jJ O — tt££ 4-> X
c — £ £— aa o ott
co C. O tt — >> C +>£
+> 0 E C XN 	 tt tt
3 .-{.«« £ C X >> C C. ,.
— 1- O C— W » *J w tt J= X E 6
— t-d-fflco 00£3OO*J COE33 X
o i o — J= — i jaococtto— 3 	 «- i- — i-
Q. — «- X** OCM— 1 I<-COCEC— E6O 3 0) «
«O-C.CC~XCC.CCO)— ttEOO Q.-O C J£ > O
U 	 *> Q.4) W 4J 1 l+Jtt'-*>WO'-'-aeo'-O— C
«J= 4) CO J= — 3 	 C JZ X C «- CO JZ J= O « « 	
X — OZ ZQ- COCOOQ t- 0.3 3
O. E Oito E E
• 3 3 	
—  — -o  C — CO
O 0 C co— E E
CCO co
^ Ott< 	 *J , .,
(0 t- £ +J — O X Z
co — Q.WOH aa

U














































•
CM

•P
tt
10

CO
co
Q
.,
00 -P
• •—
to E
. .—
r* —
•
> c
o
—
• • • 4J
10 T3 O
•O tt tt
O *> +»
£ O tt
•p tt-a
tt w
E tt >
•o o
0 —
— *J tt
•P 0.0
co --I
coo

-------




*
CO
H-
UJ
z
-i
Ul

(0
(/)
Ul
Of
a.
<
Q
— •
^
—
0
•X
—
>

S-
fle
s
Ul
h-
oo

u
,
2C
o


00
1
CM
00

TABLE

C in
CO 0)

•o o a
a> g
Z co
V)



(A
0)
c —
ra v a
4) 0 g
£ a








M
ft) 0]
cYo

0) O
.a a>
eS
3 0)
z-o


it-
o m
0)
i.—
0) a
.0 E
e co
3 10














4J
C
*.
^
•I
I

_i oo a a ovoa oo
a zz z z CMUJZ vovo
CO -O CM-

X
it
to


_J QQ o to OVOO OO
a zz o vo vouito a\^f
CO CM CMO COCM
% ~"
- X



vo
o ui
o o
-i -i r- o o— oo
O O .00 OOXO 	
CO CO to — tftvoCM f~-lA

CO II 1 1 1 1 1 1 1
oo aaovoooo
|£ z z z z eouiz ocf
O 0 -
i X
o
C CM
in
e
Q
t- OOOCM O — OOOOOO — O — OOCOto — OtOfO
I.

CO
0
3
1
C
CO
CO CO to cr) CO — IO CO tO to CO to to CO to to to CO to CO to CO CO CO
(M
o

0)

co
co
£ CD
O *» *>
-J C £ CO 0) CD 4J
^v CO Q.— *» 4-> C
o> £ o co co co a>
3. *> -0 ^-£ 	 -
§— — *> co co co
«- >.£ £ £ - >
W t O X O.4J P co (0
*»O— »££ *>X
C — £ £—0.0.0) 00)
CO £ O 0) — >» C +>£
*> OE C >>N 	 0)0)
3 .- t- CO <1> £C»CI-
— t*OC— PO)VPO)£ ^6 EE
— (-VCOCO 0)JS3OOJ-> CUE33 >>
O 1 O — £ — 1 J3 O CO C 4) O — 3 	 «- « 	 «-
a — <- >>*j OCM— i it-racgc— eea> 3 a> >ccj:ca)— COEOO a-o o -s: > o
O *H'~~^O.Q)(A^I IPQ)&BpU3X!^^*O.COLBO*BC
~ »£ t) CO £ — 3 	 C £ >> C «- co £ £ O 0) 0) 	
X -or za.cacaaaOO\ON
o «
CM
CM



0
oo
m oo ^ j-
CM— vo - • •

r«! o — "j- 	

it i i i i
OO\ OOOCMON
OOO coo • •
• • o r*- ^>
oo -




CO CO ^5 PO PO PO CO








CO PO PO PO PO CO CO






^
0) in
E -0

^ ^
 Ul
c
(0 "D
*j — a> o)
3 CO WO
— +J CO C
— O 0) 0) E E
O 4J t- Q.3 3
O. E Old £ E
- 3 3 	
— (0 — T3 W C X
co —we — co
O O C CO— E E
~ ceo 2
M OQ)"» — -P •>.
 t- £ *i — O X X
a — Q.COOI- aa
o
Date:  9/25/81
                            II.8.2-18

-------







w
OT
Id
O
0
OC
Q.

_J
3
a
>
a
z
—

CO

^.
a:
o
o
UJ
i-
0
CO


o
^
u
J

1

z
o

1-
^
N
_
ce —
UJT3
0 3
< c

< p
X C
U 0
o

Ul*'
\-V)
LJ UJ
1- E
CO LJ
Sui


•
00
1
CM

CO
CO
(-



C w>
CO ID
•• » <». —
T5 O Q
O E
S CO
V)


 —
c<>- a
co O E
Q£ CO
 E
E co
3 SO
Z














lutant
w
o
a.
0 -1
— o
CO






CM —
— CO











O
o —
CM —

1 1
CO
C a -J
Z Q
£ CO
O
to
E
a
c

P
U)
co
a

t.
O OOOtoOd-OO OO
•o
c
3

a
E

at
4)
C

_
1 J- JT .3- Jf — it St J- J- J»
C




4J
CO

C 0)

^x CO &,— 4J 4J
O) JC O CO CO <0
3. *> T3 ~J= 	
0) — — ** CO to
-.0 <- >,J=J=J=
c« «- O X Q.-UP
P O — V £JC
c - j= £- aa
co £ O (B — >>
*» o 6 c XN 	 a>
3 .- C CO fl> £ C XXC
•— &*OC^ 4^0j)P4^Q)
— H*. CO « OJ3 3 U U
O IO — £— 1 J3 O to
a — '-X-uocM— i ii-
>O££C^>>>CC£
X ••t^y^&^f^fQf^^^^f
O
1-
OO OO OOOOOO
\O CM co toOZCM— VO
O VO

O
to
CM


OO CM 1*- «*> O VO co CM O
	 CMCM COO — CMIAO
	 O JJ-

0 -^
ON
—


O
o
o o
• o
O OO OO\
— OO ONOOOOOO «
to ^ CO — CMtTVCO— CO

1 II 1 1 1 1 1 1

0 00 OOOOOO
Z —CM COOZCM 	
O .*
^
CO
—









OOCMO^coOco^~*fO^^












jj-d-d-cojtco — nststmstst










4J
C
CO

03
- >
to a
•P X
C S£
£
P COE33 X
C « 0 — 3 	 t- W — t-
fOCEC— EECO 3 CD 03
c e — o E p o a-o o J« > o
Q)w4^iA^3L.LB O^03^"O~~C
£ XC^ CO££OQ)0} »—•—•—



j-vOQOO
• OZCMO
— • 00
O
00




OOvOlTtONO
OvOO — O
•0 h-
O • •
^5 ^h





0
o
CO CM O
000
ON • -IfN —
coOOeOCM
•» .•
1 1 1 1 1 • •
VOVO
J-CMQOO
inoz -co
. . CO —
OO











JS- -3- - JJ- It 	












^ Jf *f If Jf *•» «H







-1
Ol M
i ~P
•^
« ••
V> 0
44 (A
C
eg •o

3 co WO
— P as C
— O CO CO B E
° ** s al i
— M — V l» C X
3 OC«0— SB
i» p co 2— *i . »
M fc £ 4J — O X X
03 — o-woi- a. a
^
O
Date:  9/25/81
II.8.2-19

-------










>-
cc
o
o
(jj -"^
H-0
< 4)
O 3
CO C
ID *~
V> *J
C
o o
< o
_i ""
w
i h-
z
ZLJ
OS
— LJ
 a
.0 E
E co
3 in
z



















JJ
C
CO
4J
O
O-
in -J
\O O
CO






_J
o a
00 CO

1 1

0 -1
m o
CO


CD
4-J
CO
CD
'


CD

mo mo o o
in jo CM J
f— — to
^
i**


o
o
VO O O
OO O » fO 1A
— m moo — to

II II 1 I

oo oo o o
zm .3-0 o 
x:
(D
t3
	 CMOCMCMCMCMCMCMCM
C
O

CO

^
O

4)
C -P
4) CO
a —
Ol *»
O> .C 4) CO CO CO
3. *> -0 -^J= 	
0) — — ** co co
- O <- >>J=J=£
v> i- o x ap 4->
•P O — CD £C
c — £ £— aa a)
CO £ O 4) — >» C
•P O E C >»N 	 CD CD
3 — (.0)4) .C C >> >> C t.
— I-OC— P0P-PO)£-
O 1 O— £— 1 XIOcoCCD
a — S->»-POCM— iis-coc
*O££ C^-*>»C C£ C CO
O — — *JO,4)W-PI !4JQ)fc-
»£ 4) CO £ — 3 	 C £ >>
X — O£za-eocooa
eo co
4-> X
O 4)
•Pf
*t %
>> E E
C O S 3 3 >>
i 'c •- 'i 'i 4) 3 » *
— CD B o o a-o o Jt > o
Ct-eo££Oa)CD 	
«oooo_irzcoN


VOCM OlAOOO
•o ....

d




CM
NO r- o^1

CM o in o\ CM m

ii i i i i

<0— J-OO —
ONO -z • •
. • CM CM.*
OO










CM CM O CM — CM CM












CM CM CM CM CM CM CM











•J
^^
C7t M
E 17

^ «.
M O
4f 0)
C
CO T3
*» — 4) 4)
3 CO WO
— 4J CO C
— 0 4) 4) E E
O 4-> 4- a3 3
a E 0>
-------




















^
rs
O
o
UJ~
H-0
< CD
O 3
00 C
O •—
CO P
C
Q O
< 0
U ^^
_J
CO
1 H-
z
ZUJ
or
— UJ
h™ _J


so
UJZ
1 —
CO
^f ^.
SCO


•
00
1
CM

CO
UJ
_J
00
H




C CO
CO CO
— c>- —
•O O O.
co e
r co
CO
CO
c —
ro<4- a
co o e
r co
CO




en
CD CD
c i- a
woe
CC CO
CO








U)
Ct. C
O 0
t- P
CD O
XI CD
E P
3 CO
z-o





4-
O CO
CD
I 	
(B Q
J3 E
E CO
3 CO
Z




















c
co
P
3
O
a.

-1 1A_I -JQQ QQ O OOQO O
Q — Q QZZ ZZ CM iriOZ.3- CM
CQ CD CD ^3 £f ^f co {f\
•i
f*^

-J-J .d- CM -1 -J-l-J C\JCM O OOfOO O
QQ — OJQ QQQ VOCVJ O ^O O — -* O
CO CO CO CO CO CO ~~ ON ^~ ^"^ CO
^ •. ^
— f^. — '

o
O OO 0 0
o oo o o
— 1 _J —I —!_]_! OO l~- 00 ^ 00 VO
QQ O OQ QQQ O\rO ^ «O\O « •>
COCO JT lACO COCQCQ 	 CO CM — Is- CM r^
II 1 II III II 1 1 1 1 1 1

-l_l -J _IQ QQQ QQ Q OOQQ O
QQ Q OZ ZZZ ZZ Z 00 O Z Z ro
COCO 00 CO CMCM —
^
— .

t.
CD
JJ
CO
^

£i
CO
> CMC\IOVOO<5^OCOCMCJOCM — O IT\O \O \O CM ITl O «3

^
£_'
CD
*>
JJ
CO
CO





\O \O VO^O *~ VO \O NO NO NO NO NO NO NO NO NO fO NO NO NO NO NO NO





CD
4J
CO

CO
C. CD
CD P *>
-1C JT CO CO CO -P
— co a— P -P c
en £ CD co a co co
3. P -o — J= 	 —
CO — — « CO CO CO
« 0 I- >>JC.C.C — >
« s- o x ap P co co
4J O — CD J=JC +J X
c — £ j=— aaaj o»
co £ o co — >> c PX:
P OE C >>N 	 COO)

— t-oc— +JcD*>i>a)x: >> EE
— HCt-Vco CDX>3OO^ CUE33 >,
o i o — x: — i xiococcoo— 3 	 «- i — s-
a — 1->>POCM— lll-COCEC— EECO 3CDCO
•.O££C~->sCC£CCO— COEOO Q.T3 O JC > O
o 	 +Jacoco+Ji iwcD'-pwo'-'-aco'-o— c
^J= CD CO J= — 3 	 C C. >> C «- CO £1 J= O CO CD 	
X — OS ZO. COOOQQ 
o




CM.*
oo oo
PO • TONO -CNl
OOOOCM — CM —
1 1 1 1 1 1 1

ON — — J O ON O ^"*
.OQ 	 . •
to -00 CMlTv
0










NO NO — NO NO NO NO













NO NO NO NO NO NO NO








1
^x^
cn co
E -a
•_
* —
CO O
P CO
c
CO t)
W — CD CD
3 CJ WO
— P CO C
— O CO CO E E
O P «- a3 3
a E o>w E e
« 3 3 	
— ca — -o co c X
co — -P C — co
O O C CO— E E
CCO CO
CO o  S- — P •, •>
CO !-£*>— OXX
co — O.WOH aa
.•»
o
Date:  9/25/81
II.8.2-21

-------














03
(£.
O
O
Ul
1 —
^
O"-
CO "U

CO 3
C
Q —
^ -P
UJ C
-1 0
o
ZCO
O(-
— z
1- Ld
N Ld
	 	 I
ecu
UJ
1- CO
OCO
< Ld
ceo
<0
X CC
CC-I
Ld <
1-13

1 	
CO Q

*"
00
1
CM
00

UJ
-1
CO
^
1-

















C 14
CO CO
— d— —
•a o Q
CD E
2: co
CO
c*
CD
c —
COd- Q
CD 0 E
s: co
w








CD CD
C7I —
C d- a
co 0 E
or co
0)






d- C
O O

i- 4J
CD O
n CD
E 4J
3 CD
ZX!



c^
O w
0}
s 	
CO Q
-Q E
E CO
3 01



















4J
C
n
i
—
—
0
ex
































CO
CD
'£
0)

4J

O OOOO O
in r— vo z CM oo
— o\




OO OO-Jco O
— in cMoacM —
CMCMCQ —

—






o
0
or- o
— r- ^- — CM J- —

it i i i i i

OO OOOO O
— co omz — vo
— 00









CO OO OOOO OOOOO O OOCM CO Ococo— cOOcO
.Q

4.)
CD
3:






ro co ro co •"•• co ro co co co co



CD
4J
CO
CO
JC CD
CD -P -P
-1C £ CO CD CD
•^ co QL— 4J 4J
D) £ CD CO CO CO
3. -p -a -~.c 	
CD — — 4J CO CO
•> 0 «- >,£££
« 5- O X Q.JJ -P
•p o — a> c^
c — js J=— aa CD
CO C O CD — X C
•P OE C >»N 	 CDCO
3 — S- CD CD JZCXXCS.
— • i— Q C """ "W Q} ±^ ^ fl) iC
— 1— d-CUco CDJ33OOW
O 1 O — .C — 1 ^OCOC
a — s- >>** o>C CJ= C
O .~ — •PQ.CDW'PI I-PCD
— »JZ CD CO £ — 3 	 C JC
X — OS ZO- COCOOO O
XC t- COJZ«C O CO 0 .— •—.—
fx^^oocoo— JZZCONI



— CM — OO\O
•o ....
m • — VOCMCM
o



VOd" — OOO
•o ....
in • CM mcM co
o








CO
OiO CMOOOO
r— o •=)• eo CM vo

II 1 1 1 1

ON — o o o -^j*
•o ....
CO • 	 CM CM
o








CO CO ^^ co CO fO ro











CO CO CO CO CO CO CO





i

cn co
£ T3

^ _
Ul O
•P V>
c
CO "O
•P — 00 CD
3 CO tfi *o
— -P CO C
— O 0) 03 E E
O 4-> t- 0. 3 3
Q. E CT« E E
«. 3 3 	
— as — -o w c X
CO — -P C — CO
O O C eo— E S
CCO CO
UJ O»! 	 -P.-
in !-£*>— oxx
co — a. cn o H a. a
^
O
Date:  9/25/81
II.8.2-22

-------
co
CO
UJ
o
o
fy*
a.
3!
3
O
—
>
_
O
z
—

>•
CO
oe
o
o
UJ
i-
^
U
to
IS
CO

a

X C
u o
o
a? ^^
Ul
KCO
^ (•"
It Z
UJU
KS:
COUI
*t '
It Ul


,
CO
1
CM
CO
Ul
CO
K


C CO
cod 	
CO O Q
Z. E
CO
V)





w
CO tt)

C 
£ 4J
3 0)
z-a



c,.
o in
CO
t. —
CO a
a E
E co
3 
CO
(.
CO
4J
CO
^

Q
E CM CM CVJ CM — CM CM CM CM CM CVJ CM CM CM CM CM CM CM CM CM CM CM CM
CO
a






CO

CO

CO
£ 0>
O a *>
-JC £ CO CO CO 4J
— . CO O.— 4J *> C
en £ co co co co a)

CO — — 4J co eo co
* o ^» ^>xr £ ^i ••• 3^
M <- O X Q.4J*J CO CO
WO— 0) ££ •MX
c — £ £— a a co o CD
co £ O 0) — X C •»£
•P U E C >>N 	 0) 0)
3 — t. CO CB £ C >, >> C «- >•.
— >-OC— i> 0) *J *J C0£ >> E E
— t->
O 1 O — £ — 1 AOCOCCOO— 3 	 «- « 	 t-
a — «->>*> o  O
u 	 4J aco w -u i iJJtjj'-wwo'-t-Q.coi-o— c
.£ CO CO £ — 3 	 C £ >> C <- CO £ £ O 0> 4> 	
X — O Z ZO. CQCD Q Q< Q. Q- « O OOO-1Z Z CON
o

ONCM CMOOOO
•o .— . .

o




CM
^f C5 ^^ f**
. . .CO
ov o "~ •*• m

ii 11 i

•a-CM cuo o
• o
J- • —00 CM
O








CM CM O CM CM — CM











CM CM CM CM CM — CM











-J
*s^
(71 ">
E -0

4 —
C0 O
4J (A
C
eg -o
*J — CO CO
3 co ca-o
— 4J CO C
— O CO 0) E E
O 4» i- 0.3 3
a E Otv> E E

— t/T— -a w c x
dj — *» C — CO
U O C co- E E
— CCO co
V) OCOf. — 4J ^*t
VI «-£*>— O X X
co — a-cooh- 0.0.
•..
0








































•
CM

JJ
0)
CO
CO
^>
CO
o
r
^ 4J
CO —
• E
ro *^
• —
^*-
• c
> 0

• > <+J •
 CO
o-o
o —
4J.O O
X ^C
CO -J «
coo

-------
Process water use and wastewater discharge in this subcategory
are generally very low or zero, with a maximum reported flow of
2.16 m3/hr.  The only sources of wastewater are from separator
production and from cleanup of miscellaneous equipment.  Table
8.2-9 presents normalized wastewater flows from Leclanche sub-
category elements.
  TABLE 8.2-9.
WASTEWATER FLOW - LECLANCHE  SUBCATEGORY PROCESS
ELEMENTS [2-17]
Elements
Average
flow
m3/Mg
Median
flow
m3/Mg
Production
weighted mean
raw waste
m3/Mg
Production
normalizing
parameter
Ancillary operations

Separator       0.04
  cooked paste

Separator       0.14
  pasted paper
  with mercury

Equipment and    0.38
  area cleanup
           0.04
           0.14
0.137
0.14
                        0.103
Weight of cells
produced

Weight of dry
paste material
            Weight of cells
            produced
Tables 8.2-10 and  8.2-11  summarize total plant and process spe-
cific wastewater characteristics.   The significant pollutants are
zinc, manganese, mercury,  oil  and grease, and TSS, and the waste-
water is slightly  alkaline.

     Subcategory E -  Lithium

This subcategory includes the  manufacture of batteries with
lithium as the  reactive  anode  material.

Water use and process wastewater discharge in this subcategory
are quite limited.  Only three of the seven plants in the sub-
category reported  process wastewater discharges ranging from 0.004
m3/hr to 0.15 m3/hr.   Normalized waste flows are presented in
Table 8.2-12.   Wastewater sources primarily include some cell
cathode production, washing, or cleaning.

Wastewater data for this subcategory characterizing the waste-
water discharge resulting from heat paper production were in-
cluded in the calcium subcategory.
Date:  9/25/81
             II.8.2-24

-------
c «) _i ooo oaoood






\-
co
^
5

^
<£
cc

_j
1—
o
*~
>-
o:
0
o
UJ
i-
^
O
CO
^
CO

UJ
X
o
o
UJ
~*
1
z
0

l_ I — ,
^ t^
N —
ce CM
i-1"1
0 <
0£ <
< Q
I
O Z
o
C£ —
UJI-
1- <
<0
UJ U.
1 	
CO IX
< UJ
^ >


o
_~
1
CO

CO

UJ
CO

H-









CO 0
._ t, —
13 O Q
0 E
S. CO
tn


0 0
01 —
C <4- Q
ro o e
CC CO
in





t*. c
0 0
(_ 4J
0 U
JO 0
E P
3 0
ZT3


o m
0
s. —
0 a
.c B
E co
3 U)
z



















4J
c
CO
•P
3
_
^
o
1^1 — - ^3- co ozr^CM — o
CO — co O

00
ON


-i ooo oooomo
Q d" NO — \OiTNOONOcoO
CO CM CM f- O
«t
o
CM
-«


o
o
0 O O
0 O
_l 000 — OOCMOO
Q ^r* h~ ON **o\ oo ^oo "~
CQ CM — 00 — CM — co — co

1 III 1 1 1 1 1 1

_) ooo OQOOOO
Q ZC\J — OZJ"ONZO
m — o
*
—
CO





NOOCONONOONOfONONOCONO









NO NO NO NONONONONONONQNONO











_J ^J
^. c
01 0
3. 0 —
•P CO
-.CO — >
y) — co co
•P to -P X
C JC O 0!
CO -P 4JJZ
•P £
3 a » «
— X E E E
— — COE33 >> 3
O >s O — 3 	 ^ S 	
a j= e c — E e 0 30c
w — 0 E o o a-o o jc 0 o
o 0+Jin-oS-s-acos-o— c
._ c !- CO .C JZ O 0 0 — 0 —

Q

CMcor-oo.*
CNJ OLANO • •

o




r^ NO o o r^ in
COO — O • •
• — cMino\
o *







o
j- o
ocvio J-CM
co -ON •* • O
— O co J-NO —

1 1 1 1 1 1

CM — OO — NO
• o — d- • •
lA • CO IT\00
o







NO NO NO NO NO NO









NO NO 
c
CO "D
P — 0 0
3 to WO
— P CO C
— o 0 0 e e
O -PS- Q.3 3
a 0 01 v> E E
0) . 3 	
— 0 wo W C X
CO C — C — CO
O co O eo— E S
— Ol C CO
in c 0— -P « -
W CO J= — O X X
co z: a. o (- a a

o














































•
CM

4J
V
Ul

eo
CO
o
•
-4J
00 —
• E
CO —
i»!~"
• c
> 0

.* 4J •

OT3
0 —
— 0 .p
•Pi2 0
>> c

CO — 1 -
coo

-------
cc
z
UJ
0
z
o
o
z

h~
=3


0
o_
a:
0
o
UJ
1-

o
CO
CO

X
zt^

O C\J
UJ —
to
1 t—
z
ZUJ
OS
— UJ
K J
< UJ
N
— t/3
ceco
LJ UJ
1- O
oo

CC 0.
0<
3
CCO
UJ —


SO
UJZ
CO
IS

—

1
C (V
3 O Q
D E
E *


tn
CD

Dfa- Q
O O E
Z ID
0]




10
CD 0)

£ a
V)



V)
w. c
O C)
L. 4J
CD O
a a
3 S
z-o




0 «
ffi
ll
3J «











+A
C
a
~
O
a.
-J O O OO O IA— fOCy — CO
O CNJ CO tAlTi O *O — W3 • •
co — o in • IASO
* o
JT
t>


-J r*- r- oo O ITS— — .S'.S'ND
o — o m^ o -owr- • •
CD —Or*-- trv>o
2





g
o
-J O OO O O OOvflO

(fl
E i i I i i i iiitii
CD
u Z — CO nm O "o — I? •**?
« "" * o
CD tO
i

0
+»
£ COOOfoOOfOOfOMOfO ro«ro«mfr>
CO
o
V
(0

*
V)
CO

"D
CD
„„„„„„ „ „„
U



?WJ
^ "°
^•s. C •. —

a. o — *> «
*> CO C
w — > w -o
i» — to n *j — u oj
C£ O 0) — 4-» co C
CO 4J 4->£ — O » CD E S
*> £ O--''- D.3 3
3 a - - a cc a>v> E g
O >>O— 3 — — L. 1.—— to C— C — CC
a £ E c— 6 6 « D m c o ec e? eo — E E
*»— CD E o o a-o o jc o o — o>c co
(J Q)4JV9^fvL.(XfCi^U— C W C ir\Od O
CD — CM \O







o
w o
E _J o O oo ey
co or- — 00.3-
£CD if — >> fl- — —
*J 1 1 1 1 1 I 1
w
-1 O OOOO O
CD O CM COZ-a-CM **>
** CD - CM
to
>
>
3
S
CD
E
5

>
*~
L.
O
*J
L.
CC
CD fO««tOrOro«rOM«rttr>
a
Q
S.



_J J->
^ C
Oi U
3, CD —
*J as
-a — >
« — CB co
*J co « X
C £ 0 CD
^ -&o.S! » §
O >»O— 3 	 »• ' 	
Q. £ E C— E € CD SCttC
** — O E O O CX-Q U JC CD O
X O «O O OO-IZ ZW N
O
h-




                                                               — ooo —coco

                                                               I I I I I I


                                                               a-o   • •
                                                                   r- PO f> (O
                                                             •P  —
                                                             o   *>
                                                             a.  
re c
CD CD


."I
•O w
c
                                                                      •O Q) «
                                                                      O *J *>

                                                                      - 0) O
                                                                   — a  o —
                                                             O CO o «— E E  —
                                                             — WC o    «
                                                             » C 01 —
Date:   8/31/82  R  Change 1   II.8.2-26

-------
 TABLE  8.2-12.   WASTEWATER FLOW  -  LITHIUM SUBCATEGORY INDIVIDUAL
                 PROCESS ELEMENTS [2-17]
Elements
Average
flow
m3/Mg
Median
flow
m3/Mg
Production
weighted mean
raw waste
m3/Mg
Production
normalizing
parameter
 Cathodes
 Sulfur dioxide    NA
 Thionyl
   chloride       108
 Iron disulfide     7.54
 NA
108
  7.54
  2.83
108
  7.54
Weight of sulfur
dioxide
Weight of
thionyl chloride

Weight of iron
disulfide
 NA, not available.
 Note:  Ancillary operations (heat paper production,  leak test) wastewater
 flows are  reported to be similar to calcium anode subcategory.
     Subcategory F - Magnesium

The magnesium subcategory includes manufacturing operations pro-
ducing cells  combining magnesium anodes  with a variety of de-
polarizer  materials.

Process operations that may yield process wastewater include:
           Cathode manufacture
           Ancillary operations
           Product rinsing
           Wet scrubbers

           Testing
           Separator processing
           Floor wash
           Dehumidifiers
Most process  operations are accomplished without the use of
process water,  but operations which result in battery manufac-
turing wastewater are reported at four  of the eight plants in
this subcategory.   Production normalized wastewater flows from
each of these process operations are presented in Table 8.2-13.
The total  flow  ranges from 0 to 5.2 m3/hr.

No detailed wastewater characterization is available for this
subcategory.
Date:  9/25/81
II.8.2-27

-------
           TABLE 8.2-13.   WASTEWATER FLOW  - MAGNESIUM SUBCATEGORY
                          INDIVIDUAL PROCESS ELEMENTS [2-17]
Elements
Average
flow
(mVMg)
Median
flow
(m3/Mg)
Production
weighted mean
raw waste
(m3/Mg)
Production
normalizing
parameter
Cathodes
Silver chloride       3310      3310        3310
  cathode-surface
  reduced

Silver chloride       1640      1640        1640
  cathode-electro-
  lytic

Vanadium pentoxide    1650      1650        1650
  cathode
Ancillary Operations

Cell test               52.6      52.6


Floor wash               2.9       2.9
          52.6
            2.9
Heat paper                *         *       792
  manufacture
                     Weight of
                     depolarizer material
                     Weight of
                     depolarizer material
                     Weight of
                     depolarizer material
Weight of
cells produced

Weight of
cells produced

Weight of reactive
materials
*Refer to calcium anode subcategory for representative  data.
 Date:   9/25/81
II.8.2-28

-------
     Subcategory G - Zinc

Batteries manufactured in this subcategory all employ a zinc
anode which is amalgamated to reduce anode corrosion and self
discharge of cell.

Process water is used in many of the manufacturing operations in
this subcategory, and flow rates are sometimes high.  Process
wastewater is discharged from most plants and characteristically
results from a number of different manufacturing processes.

Because of the large number of different wastewater producing
operations in the subcategory and the variety of patterns in
which they are combined at individual plants, plant wastewater
discharges are observed to vary widely in wastewater flow rates
and in pollutant characteristics.  However,  the flow rate and
characteristics of the wastewater from specific process opera-
tions performed at different sites are generally similar.

Major points of water use and wastewater discharge in this sub-
category are zinc anode amalgamation, electrodeposition of elec-
trode reactive materials, oxidation and reduction of electrode
materials, nickel cathode impregnation and formation, cell wash,
silver etching, silver peroxide production equipment cleaning,
floor wash, and equipment wash.

Wastewater discharges from zinc subcategory plants vary between
0 to 26 m3/hr.  Table 8.2-14 presents the normalized wastewater
flow from various process elements in the zinc subcategory.

Wastewater characteristics of different process element waste-
water streams are summarized in Table 8.2-15.  The data have been
obtained from daily sampling at various manufacturing locations.
Significant pollutants are zinc, mercury, TSS, oil and grease (in
anode production); copper, chromium, zinc, lead, silver, nickel,
mercury, TSS (in cathode and silver compounds production); and
arsenic, selenium, and zinc (in electrolyte preparation).  The
wastewater is slightly to highly alkaline.

II. 8.2.3  PLANT SPECIFIC DESCRIPTION

Specific descriptions of battery manufacturing facilities are not
available.

II.8.2.4  POLLUTANT REMOVABILITY [2-17]

Wastewater from battery manufacturing plants varies in quantity
and quality depending upon the type of batteries produced and the
operations employed.  The wastewater streams characteristically
contain significant levels of toxic inorganics, primarily cad-
mium, chromium, lead, mercury, nickel, silver, and zinc.
Date:  9/25/81             II.8.2-29

-------
            TABLE 8.2-14.  WASTEWATER FLOW - ZINC SUBCATEGORY
                           INDIVIDUAL PROCESS ELEMENTS  [2-17]
Elements (
Anodes
Zinc powder-wet
amalgamated
Zinc powder-gelled
amalgam
Zinc oxide powder-
pasted or pressed.
reduced
Zinc electro-
deposited
Silver powder
pressed and elec-
trolytically
oxidized
Silver oxide (Ag20)
powder- thermally
reduced or sintered
electrolytically
formed
Silver peroxide
powder
Nickel impregnated
and formed
Ancillary Operations
Cell wash

Electrolyte
preparation
Silver etch

Mandatory employee
wash
Reject cell handling

Floor wash

Equipment wash

Silver peroxide
production
Silver powder
production
Average
flow

3.8

0.68

143


3190

196



131




31.4

1640


6.35

0.12

49.1

0.27

0.01

0.1

7.1

52.2

21.2

Median
flow

-------








_J
^
^
Q
—
>
Q


>.
CO

>-
Of
0
0
LU
H

O
CO
Z)
cy>

O
•z
_
N

1

•z
O
—
H

Nr~

CC 1
UICM
f_ ^^
0
CEH

c —
rod- o
CD 0 E
"Si co
(A









CO
CB CD
O —
C4- Q
CO O E
0£ CO
i/i








in

CB

CD Q
^) C
E eo
3 V)
Z



















C
eo

3
O
0.
-IQQQ O-J OQQ Q OOOOOQ O OO
OZZZ ZQ -3-ZZ Z 3-ZroCM — Z O — O
CO CQ iTv O
*
O
CO

_l_!_l_l -1-1 O-l-l -I O-IOOOQ O OO
QQQO QQ ^TOQ Q lAQP~lf\— Z lT\ — O
CO CO CQ CO CO GO CO CQ QQ CO -^f O
*
O
0
er>

O
O
O

E d"
co O
CB -1 -I-J -l-l -1-1 -1 O OO 0 O
5- QOQQ QQ OQQ Q Hr O — JT O O O O •>
P QOrOOQCO COCO f^ CO CO CO 	 CM — 4f fO \O CM —

0
a

o
C CB
•— Q) 4->
N C co
a> —
>> J= «-'

— J C CB ** c" 4J ^
— COCCB aCB C£
OlfCBCDOCB C CB O
3. +JC— t. T> 	 CB CB » —
(B CO >> O — O — 4-> — C CO O
» 0££— 1- C>>CO>> 0) — > *>
Ifl 5-ppjC O CBX — C. — COCO —
•P O HI CD O — £CBCO-P >> -U X CO-
C — O O — CD £ Q..C £ CD £ O CB +> C
•P O O O 1 CD C t. >>.C 4- CO P CO

— S-££CCC 	 4J — t- >> EE* « - 6 E
— H O O CO 0) CB C0.C CO — JC CBOCOE33 CD (D >, 3 3CO
O 1 	 <-.Q— £OI>>OC— O— 3 	 t-TJ-0 « 	 «- C —
a — OQI 	 >><-> COCM£ CO CB£ E C— E E CD 	 3 CD C CB — C
* 1 II ^^.C dC *^ ^^ *^ ^ 3 O "~ CD E O O CX C c~ ^5 CO ^ Q) ^ O E O
O 	 — CM£*>Q.C«JCD'P 	 •PWTJ'-'-a.eoeceo'-O — — C3E
.- « « , -.4JCDCOCD 	 >>>CDCB— CB 	 E
O

•3" co ^ o co lA
OO . - • .

OO



-C -=)• W CM J- VO
00 •— • •

do









o —
o— «o«
• -CM CM • •
OOCM CO CO 00

1 1 1 1 1 1

— OOQ com
oz .z • •
CM d'VO
o












OvO co \OlTl\O\O












O vo vO VO NO vo vo









—1
o> in
E T3
•—
*, —
0) O
4J U>
C
CO 'O
•P — CB CD
3 CO 0) X3
— 4J co C
— O CD CO E E
O -P «- O.3 3
a. CB 01 u E E
tn * 3 	
— CD  C X
eo c — c — co
O CO O CO — E E
— c cnc co
tfj O C CD— *J . •.
a> t- co £ — o x x
TO -zo-oHaa
—
o
Date: 9/25/81
II.8.2-31

-------







^
3
O
—
>
O
z
oo

V-
0£
s
u
^»
^p
O
co
^
V)

o
z
—
N

TJ
Z 0
O 3
— C

^ 4J
Nl C
- O
oc. o

^w
OS 1—
XUJ
oz
LJ
OC-J
LJUJ
1-
^ CO
UJUJ
I-O
WO
^ flC
^ CL

,
in
i
CM

00
Ul
_J
00






c . —
-a o a
0 E
Z co

Ul
c —
cod- O
at o E
Si CD
ia






u>
0 «
oi —
c t»- o
CD O E
Ce CD
Ul







Ul
<*. c
o o

<- w
0 O
J3 0)

3 0
z-o


Ct-
o  x z zo z z — z inzzzr-z zo
CD 00 it O
f *
00
0 —

o
c
co
E
CD
o

CD

CD

•o
0
0
0
1

L.
0
TJ IA ~ O O O tn O ^O vO O — ™ in O v0 vO VO ^ ^0 *o co \O *o vo ^ vo in
^
Q
a
u
c
._ a)
N 0 4->
C CO
— CO
>> J= <-
0 £ *» O
-J C 0 *> £ 4J —
^v 00 C Q) CX 0 C £
OI£00O0 C 0 O
3. .WC— t. TJ _^.cj>0 CP —
0CO>>O— O— *>— C 0) O

U) S-4J4JJZ O 0X — £ — COCO —
•P O00U — £ 0 co ** X  •Pf OS
•U O O O 1 0 C <- >>£ C. CP *> CD
3 	 IAN00O£aO O •>•>
— (-££CCC 	 *J — <->> EE « « E
— K O O CO 0 0 C0£ 0 — £ 0 O C O E 3 3 00 >> 3
0 | 	 <-A — £UI>»UC— 0— 3 	 4-TJTJ ^ 	 «-
a — OOI 	 >»*» COCM£ CO 0£ E C— E E 0 — — 30C0
« 1 1 1 >>£ £*>~-*»l-3y— 0)EOOaCCO
X — "— "-T— "ul ZZQ-03OI-l-h-«OOOOOO-IZZWWM
o
H-
O CMQOOOcOco
• • Z • vo •— —
in -~ Is* CM



vo OOCMinOcoco
• o — oo 	
in - . CM
o







o
VO— O
CM . .cod-cojf
— CM
• i in i i i i i i
CO '
I»-O — OO^coco
- -ZZOv 	

d d











— vo — vo CM j- m co «o










— vo — vominmcoco









| |

« ^
CA O
C
(D -0
*J — 0 0
3 CO WO
— 4» CO C
— O 0 0 E E
O 4J I- 0.3 3
a 0 oica E E
E M % 3 •• ••"
— 3 CO 0 WO W C X
CO C — C — C — 03
O — C co O CD— E E
— E O C O1C 03
Ul 3EOC0 — *»««
V> -Ei-co£-OXX
co <<-za.oi- ao.

o
Date: 9/25/81
II.8.2-32

-------








_J
^
3
Q

>
_
Q
Z
j.
CO

y-
<£.
0
o
UJ
h-
^
o
CO
3
CO

o
z
—
N

1
«-*
ZT3
O CO
— 3
1- C

N 4J
— c
CC 0
UJ U
h- *-^
O
^ CO
CCI-
X UJ
OS
UJ
CC_I
bJUJ
H
 J^
0 CD JZ P
C _J C CO -P £
•— ^^ CO C 0 O. 0
rsioijm00o0 c
3_ 40 c ^ ^ ~o — ^"v 00 0
0COXO — O — 4J — C
» O£JC— S- C>jCO>> 0
U) S-4J4JJ; O 0 X — .C —
4-> OOJ0O — JT0COP >>
C — O O •— fl> JT D.£ JC 0 £
CO J=*-*--OCO0O— -PO 4J
P o o o i co c i- XJT «- 0
3 	 lON0>OC —
Q. —QQI 	 X^PcoCMJZco0JZ
-III >>.C JZ 4-> • — 4-> s- 3 CJ
O 	 CMJZPQ.CW0P 	
— *.***4-}0C00 — — 0O^-
X —-• — '— UJ2ZCuCClQH~^h~
0
H-
OOO O OOO OO
j'm— o oovo— \o o
ro O

00
CM

OOO O roOO OO
LA -^ C\J O f^ P^ CM O O
co — O
^
VO






o
0
o

O O OO OO
— OO — J-vOO !•« ro
-*f^\O vo — — LA CM —

III 1 III II

QOQ Q QQQ QO
z — z z -z.~z.-z zoo
CM












OC\J.3-C\JOCMOOCMCOCMOCM-*












J-J-J-J-roroOOcOjr^-d-jrd-










*
^
O
-P —
C £
a> u

CO O
— > -P
CO CO —
4J X CO •
O0 4J C
•PJZ 0 S
4-> CO
^ "i
>> E E * - E
COE33 001 X 3
O — 3 	 !- T3 T3 S 	 «-
E C — E E 0 	 30C0
— 0EOOaCCT3OJC0>O
4J(0"Ol-i-Q.CC}COCO^-O — •— C
Ci-COJ=£OXXC13 
C
CO 'C
P — 0 0
3 co 
-------








_J
^
^
Q
—
>
0
z
CO

>-
CC.
o
o
LJ
1-
^
O
CO
35
CO

o
z
N

1
^*»
z-o
o co
— 3
1- C
^ *•"•
M +^
— C
ce o
Ld o
\— "^
O
< CO
fV |__

3 CO
Z-O





Q-
O to
CO
L. —
co a
-O E
E co
3 to
Z





















4J
C
CO
4J
3
_
—
O
a.




















£
CO
CO
s_
4J
to

01
.p
U]
CO
•*
0
•a
o
c
CO

"O
CO OOOOOOOOOOOOO OO
4J
• —
to
o
Q
CO
t3
o

.p
o
CO
—
CO rororocororocoOOcococoforOfO

0
C
'—
N

01
CO P
C CO
CO —
— CO
>> ^

_l C 01 -P JZ
^ co c co a co
01 JZ 01 CU O 03 C
3_ 4J c — ^- T3 — ^- CO CO CO
COCO>>O — O — -P — C
« OJZJZ— t- C>>co>> CO
« 5.JJ4JJZ O COX — JZ —
+J OCDCOO — JZCJ1CO-P >>
C — O O *~~ CO JZ O.JZ JZ CO JZ
CO JZt-!--OCO0O— •PO -P
•p o o o i cu c t- XJZ 5- co
3 	 tONCOCOOJZaO O
- CJZJZCCC 	 P - !- >»
— i-oococococojzai — jzaioco
o , 	 S-J2 — JZOI>>OC— 0 —
a — QQI 	 >>4JcocMJzcocojzec
-III >>JZ JZ 4J — *J S- 3 O— CO
O 	 CMJZ-PQ.CtO ».
CO CM


r~* fooof'-o— fl oo
— 	 OQ COO
OCQ — 0

tr\ CM


o o
0 0
0 0
«_! O ••
O OOOO — Q c«1CM
CM CM 	 J3"COCQ J" —

1 1 1 1 1 1 1 II

O OOOQQQ OO
— 	 zzz mo
o

CM










OroOrororoCMCM — Oroco













rococoforocv>cocococoropo










.
i-
O

C JZ
CO O
—
CO O
— > -p
CO CO —
•p X co •
O CO .P C
•PJZ O E
•P CO

E"E" - . E
£33 (DO) >, 3
3 	 <- -a -o s 	 t-
— E 6 01 	 3 CO C CO
EOOCXCC1DO-^0!>O
-Ot-i-Q.(OCOCO^-O 	 C
COJZJZ O >>>>CO CO— 0 	
OOOOOO-JZZCOCON



00 -1 — 0
CM Q • —
CO J-
O



in _i CM oo
\O Q • •
• CO J- f*~
0






J- -JvO
Q -O
— CO 1 	

1 III

00 Q — -3-
CM Z
CO
0











OCOOO — COCOOO













rocoocococoroOO









	 1
^^
01  O
4J CO
C
co -a
•P — CO 0
3 CO to "O
— +J CO C
— o a> a> s E
O -P <- O. 3 3
O. CO 01 to E E
E lf> -. 3 	
— 3CO COWOtOCX
CO C — C — C — CO
O — C CO O co — E E
E O C 0) C co
to 3EOCCO— 4J .,.,
W — ES-COJZ— OIX
co « — S a. o i- a a
— .
0
Date:  8/31/82 R  Change  1
11,8.2-34

-------







_J
«£
=3
Q
—
>
—
Q
—
>.
CQ

^-
<£.
O
O
LU
1-
^
O
CO
o
v>
o
z
—
N
^^
ZT3
O 0)
— 3
1- C

N P
— C
C£ O
LjJ U
O

_
Q
E
CO





















4J
C
CO
P
3

~
O
o-

QQ
ZZ




_1 _l
E
CO
03
1_
•P
U)
0
U)
CO


03
•a
0
x:
p
CO
o

T3
03
N
•a
•—
X
O
>
—
CO
0

p
^
— '
O
*-
o
03

03
•o
c
CO

•Q
03
U)
CO
j
IB .C
-1 C 0) -P
\ CO C QJ
01 .c >O
- 0 .C.C —
U) S- P 4-J.C
P O 0) CD O
c — o o —
CO -C *- t- TO
P U O O 1
3 	 













0)
•a

&_
o


c
•— ^~- 03 07
O— P —
C >>CO >5
0) X — JT
£ 0) CO -P
Q..CX: o>
o — -P o
s- >>.c s-
o x: ao

x: 0) — x:
O 1 >> O

4J 	 Pi.
C "5 0) P
CD — — (U

_1 Q
Q Z
CQ



_1_J
OQ
CQ CQ










_1 ~l
QQ
CQCQ

1 1

QQ
Z Z











CO CM O











IT\ LTv LA














03
C
0)

>>

JJ
0)
o

03 O C
c — o

3D —
	 .p


Q O O O
z\o— o
CM
•K
—

000 0
CM^T o o
ro O
^ ^
OJ OJ





0
o o
o o
o ^ r-
— OOJ ^
— CO— -=f

III 1

Q-IQ Q
ZQZ Z
CO










— tT\ ro O co O











iriin ir\ d- IA o











4->
C
(0

co
— >
CO CO —
p X co
O 03 -P
P XT O
P
^ .,
E E

•-3 	 !- -0

03 E O O Q. C
U) "D S- S- Q.CO








































O











O








.
s_
0
—
x:
0

o
.p

•
c
e
CO

«
0)
13

C
CO
>,

OOO OO
OCMlA OO
CM IAO

— o^
CM
OOO OO
d" co ON O O
ro — ONO
•V «L
— LA
NO



O
O
OO
0 -
o o ONQ
CM OON -J-
CO f^ Li^ CO CM

III II

Q -JQ OQ
ZQZ CM Z
CQ CO










CO lA^" O LA CO











IA LA IA lA lA VA








^
Dl
E

*
05
4J
C
CO
4J
3
__
O
a
E
> 3 —
! 	 S_ ra
3 03 C 03 O
"O O Xi 03 > O — '
co *- o 	 c en

LUSTZCuCQQHI-l— «OUOOOO-JSZtOtOM CO










— »
o

Q _- \Q 	 —
z: o co 	
•
0


O OJ O — —
CO O J- — —
. • —
o o








jj-
^ o o
• • *O Od CM
-d" O co 	

1 1 III

Q Q lT\ — —
z -z. 	











— OO-CfOOiAii^ lA











\f\ O O lA O O lA iT\ U^









to
-Q
.—
—
O
C/5

•D
— 03 0)
co wa
P CO C
O 03 0 E E
p s- as 3
03 O1U3 E £
E U) - 3 	
3CO 03WDWCX
c — c — c — a
— C co O co — E E
E O C C31C CO
3EOC03— P •>«
— E^-cox:— oarx
« — S Q. OH- Q.a


Date:  8/31/82 R  Change 1  II.8.2-35

-------

_J
^
z>
Q
—
>
Q
Z.
—
>-
CQ

>-
cc
0
o
Ld
1-
^
O
CQ

CO

O
Z
—
N

|
<—• •
z-o
O CD
— 3
H C
^ —
N P
— c
C£ 0
LJ U
h- ""^
O

i.


—
—
CO
E

CO
c.
^J

1

s_
CO
T3
^
O
Q

**•««
CM
O
o-

<^«

CO
T3
X
o

i_
CO

— .
—
CO
co
i-
p
CO

CD
P
CO
CO


CD
•o
O
JZ
p
CO
0

•o
CO
E
C
0
Ct-

>
—
—
CD
O
•—
P
^

0

p
0
CD
CD


•a
CO

CO
p
c
—
efl


•
o
o
0

QQ QQ Q O QO O I"- O
CQ CQ CQ CQ CQ — CQ — CM —CM

II II 1 1 III II

Q — f Q —1 _1 O QO O OO
ZQ ZQ O — Z— — O —
CQ CQ CQ ro












O— CMOO — CMOOCMOOOOOOCMOO — CMOCMOOCMCM













CMCMCMCMOJCMCV1OOCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM.





CO
ID P
C CO
a> —
— CO
X JZ l-
,O — O— P— C CO O
O-C.C— !- C >>CO X CO — > P
01 t-PPJZ O COX — JZ — coco —
P OCOCDO — JZCDCOP >> PX CO-
C — O O — CO JZ Q.JZ JZ CO JZ O CO P C
to JZ'-S-'CCOCDO— PO P PJZ OE
P O O O 1 CD C !- >>JZ !- CO P to
3 	 CONCOCOO-CaO O « «
— I--C.CCCC 	 P — i- >, EE «« E
— h- OOCOCOCOCO.CC1) — JZCOOCOE33 COCO >> 3
O f — — t--G — JZOI >sOC — O — 3 — — S-"OT3 * 	 — 5-
a — QQI 	 XPCOCMJZCOCOJZEC— EEco 	 3cocco
•.III >>JZ JZP~-P'-3CJ— COEOOaCC-DO^CD>O
O 	 CM-CPCLCiocDP 	 Pw-os-'-acococo'-O 	 c
.— . ^ ^ •, *.PCDcQCO*~ *~C13O^-C^cOJ3JZO^s^sC13CD'~CD"- —
X "" — — — LJSZCl-COQh— h— h~^^OOOOOO-J^ZCOCOh^
O
1-

CO ^O ~~ ""• VO ^ ^~
— IT\ o — • • •
. . • COOO
OO O 	








m-* CM
COCO O —
• • -CM -CM CM
OO O — VO 	

II 1 1 1 1 1

Q CO Q co — OO
ZCM Z •
• O\ O\Os
O











— CMOO — CMCMCMCM













CM CM OCM CM CM CM CM CM








_j
\
01 w
S -D

•s ~—
u> o
p ia
c
co "c
P — CO CD
3 CD wa
— P CO C
— O 0 CO E E
O -P S- Q. 3 3
a. CD 01 w E e
E tO -, 3 -— •—
— 3CO COWDtOCX
co C — C — C — to
O — C CO O CO — E E
— E O C O> C CO
W 3 E O C «— P -•,
10 — ES-COJZ— OZI
to « — £ o- o i- a a
_
o
Date:  8/31/82 R  Change 1  II.8.2-36

-------







1
^
^
Q
>
Q
Z
CO

>.
tx.
o
o
LJ
1—

o
CO
^
w

o
z
N

1
*-••,
ZT5
O 0
— 3
h- C

N -P
— C
CC 0
LJ O
1 — *-^
o
CCH

CO Q Q Q Q Q
> Z Z ZZ Z

0
T3
O
«
CO
O

5-
0

^
O — O— OOOJ CM OO — OOO
a

--~
o
o


0
•a
•—
X
o
S- ct ^- J- J- zj- .3- ^- o O J" .3" ^" ^f
0
Q

!_
0
>
— 0
— 0 -P
W C CO
0 —
— .CO
>) -C
0 JC -P
-J C 0 -P JZ
^^ CO C 0 Q. 0
C7) JZ 0 0 O 0 C
ri. 4J C — 5- T3 	 00 0
0cg>>O •— o — -P — c
^ OJ=JZ— <~ C>,G5>> 0
U) 1-4J4JJZ O 0X— JZ —
•P O0COO — .C0CO-P >>
C — O O — 0 .C Q.JZ JZ 0 £:
CO JZ'-'--OCO0O— -PO -P
4J O O O 1 0 C S- >>JZ S- 0
3 	 «N00OJzao o
— i-j:jzccc 	 jj — «-
— i-ooco00coj:0 — Ji0o
O | 	 S-J2 — .COlXOC —
Q. — QQI 	 >j+JcoC\JJZC00JZ

o ^ -^ ^ c\j r" 4J Q. c t/3 0 4-5 — -^
•^ •, «i «v «\ 4J 0 CO 0 •— -^ 0O^
X 	 LJ S Z Q- CO Q 1— H- 1—
o
h-
000 Q
OOCM Z
t--CO —
•I  _
C ^
0 O

CO O
— > P
to co —
J-J X co *
O0 -PC
•P-C 0 E
4J CO
•l "l
>> E E - *
COE33 00 >,
O — 3 	 !- -D -D S-
E C — E E 0 	 3
— 0EOOQ.CCT3O

Ct-COJZiIOX>>00
«OOOOOO-JS


Q OOO
zoo J-
IAO
•^ ^
CM 1—

-1 OOO
Q OO J-
CO CM O —
•> •,
CM ro
^f


O
OO
00

O -— IT\
— ro r^- -3"

1 1 1 1

Q Q OO
ZZO —
CO
^
CO









— ro J-3-












•3" -3" ^ ^f

























S
3
•~ •— <_
0 C 0
-s: 0 > o
o — — c
._  U)
c
CO "O
+J — 0 0
3 co co -a
— u co c
— o 0 0 E E
O -P 1- CX 3 3
a. 0 oi v> s s
E a> •. 3 	

CO C — C — C — CO
O — c co O co — E E
E 0 C 01 C CO
« 3EQC0— P -»
<0 — E^-co-C— OXX
co « — s Q- o i- a a
—
o
Date:  8/31/82 R  Change 1  II.8.2-37

-------








_J
«^
3
_
>
Q
Z
~
CO

>-
a:
0
o
LJ
h-
^
O
CO
^
w

o
z
—
N
,
*~*
ZT3
O 0)

h- C
^ •—
NJ 4J
— C
K 0
LJ U
o~~"
< C/5
CC 1-
 —
C Ci- Q
CO 0 E
CC. CO








t»
Ci- C
0 0

i- 4->
CD U
J3 CD
E -P
3 CD
Z-D




C).
O W
CD
03 Q
-0 E
E co
3 W
Z





















4J
c
CO
^
;
.^
—
O
a.

	 I_1_J 	 lOO 	 1 O 	 1— JO 	 1
QQOQZZO mOOZQ
CO CQ CQ CO CO CQCO CO




_J_J 	 | 	 | 	 | 	 |_J Q 	 1 	 1 — J 	 1
OQQQOQO |-~QQQQ
CO 03 CQ CQ CO CQ CO CQ CQ CQ CQ







_J _J _ J 	 I 1 O — J — J -J
ooaaaao voaaao
CM CO CQ CQ CQ CQ CM — CQ CO CO —

1 1 1 1 1 1 1 1 1 1 1 1

aaaaana o-iaaa
ZZZZZZZ CMQZZZ
CO


E
CO
CD
S-
VI

CD
43
U)
CD
^ ON-Sf-U-fO""^^©^^©^ — 00

c~
U)
CO

—
—
0)
O


CMVOVOVDvOC\|y3CMVO\O\OVOC\J






CD
0) 4->
C CO
CD —
— CO
^j f~
CD .C *^
_j c CD 4J x:

Dl .C CD CD O CD C
3. *JC— S- 73 — ^-CU CD CD
0)CO>>O — O — 4-> — C
. OJ^x:— s- c>,co>> CD
w s.4J4J£ o >
c — o o — CD s: a^ .c o £
CO £S-i-73CO O — -P O 4J
•p o o o i CD CD t- xr: c- CD
3 	 NCDCO.Ca.O O
— I-OOWCD0— JZOJ — £CDO
O j 	 S..Q— COOI>>OC —
a — Q Q i 	 >>.c co CM £ co CD £
^1 1 1 ^^4^4>^ "~~ 4^ i- 3 O
O 	 CM-C'PQ.C'flCD-P 	
— v -. •. * *\
J- — ro CM to


ooooooooooooo
— moomoocMOo — oo
f~ OCMCMCMVO OOOCMO
1^ O CM co — IT\ O
r- —

o
oo o o
o oo oo ooooo
O "O OO OOOOO
J* ^3 O * O CM O\ O CO «s~~ ^f •»
•sCOCMOco -^ «,^ -»zt O 4J
as co —
4J X CO •
O CD -PC
•P.C 0 E
4J CO
•t «\
>> E E •. - £
COE33 CDCD X 3

EC— E E CD 	 3CDCCD
— CDEOOQ.CC'OO— £CD>O
p«T3i-'-D.eococo'-O 	 C
C C_ cO^£ O >s^*>CD CU*~ 03 — '~
«OOOOOO-JZZtOCON



OCM r- — o — in —
Z • -O coco • —
CM Is- • r-
o



COO VO CM CM O IT\ h-
o • — ot— J- • •
• a- • r-o
o o





l~- ON O

O -OMD -CM
OCO h-OCM — O —

II 1 1 1 1 1 1

QlA VOQOQCOCO
Z • OZ -Z • •
— • co iAtn
o











— COOCMVOON— ONC3N
— —






*



^OcoOCMOC3NCMONOi
~ —








-J
^^
Dl c/)
E -0

„ —
« O
4J (/)
C
CO T3
4J — CD CD
3 CO WO
— 4J CO C
— O CD 03 E E
O -P *- O. 3 3
Q. CD fj> CO E E
E «
W _ ES-CO.C— OXX
co « — "Z. o- O i— a a
—
o
Date:  8/31/82 R  Change 1  II.8.2-38

-------
_1
5
Q
«
>
—
Q
Z
—

^-
03

^-
o:
o
0
LU
1-

0
m
=1
w
o
z
—
N

1
ZT3
O 0)
— 3
1- C
•^c *~
N P
CC. 0
Ul O
o"""
CCH
 CO
C a
03
O
c
0
o






c
o

4J
CO
S-
co
Q
2
Q
gj
4J
^
«
O

4->
O
Q)

Ul










































ooooooooooo



















CD CO
C +>
0> CO

> CO
03 £ £
-1 C jCO>>
10 t-4J4J£ O OX — £
•P OCOCDO — .C CD CO P
c — o o — a> s: a^ £ a>
co r:s-t-T3coo>o— -PO
P 0 O O 1 CO C S- >>£ t-

— l-££CCC 	 *> —
— HOOCOCBCBcoilCB — JC
a — QQl 	 X-PCOCM.CCO
•.III X.C.C *>^-JJ t-
•— •.•.•.•.4JQ)COCD<— •— 03
X 	 uisza-coot-
o
H




O
O

^
^j-















OOO^^OOOOOOO






















•
C.
o

C £
0) O
03 —
C CO O
0) — > *>
— CO CO —
>, w X eo •
£ O CD P C
P P.C O E
03 4J CO
O « -
s- >> E E
030COE33 0303
C — O — 3 	 t- TJ TJ
0) .c e c — E E ® 	
3o— ojEooacc-a
	 4J|A'OU(.Q.COCOCO
o<-c(-cs££o>>>>a3
"~t— ^^OOOOOO— J






OOOOO OMco
J-PJOONO r 	
tMvor~o

ro C3N
^














oooooo





















^J
^^
Ol (A
E T3

* —
« O
4-> , 3 — 3 CO 03 WO <« C X
! 	 i. eg C— C— C — CO
303C03 O — C CO O to — E E
O -X CO > O — E O C Ol C CO
S_Q 	 C Ui 3EOC03— *> «•.
4) — (j) — •— (a — E^-cof— OXZ
ZZ(0
-------

-!
5
a
—
_
o
z
—

>•
CD

^
ee.
o
o
UJ
<
o
CO
CO

o
z
«
N

1
,~*
ZTJ
O CO
— 3
1- C
5 o
UJ o
H ^*
O

CO
o
c
o
o




(fl
> TO t-'
CO £ £ O
_l C 01 P P p —
~>>COCCO -CO) C .C
ofcoaioco Q. c co o
OJCO>>O— O — +J — C CO O
» O££— «- C >>CS >> 0) — > 4J
(0 t-4J4j£ o COX— £ — COCO —
P O 0) tp O — £COCOP >> PX co-
c — o o — » £ a.c r: co c o » P c
CO ft-U-DCUCOO— -PO P P.C OE
•P U O O 1 CO C t. >£ i- CO P CO
3 • 	 «INCOCOO£ao O «•>
— S-JZJSCCC 	 +> — s- >> EE « - E
— l-OOCflCBeOCOJCCB — £COOCOE33 COCO >> 3
o i 	 s- JD — £oi>>oc— o— 3 	 t--a-o « 	 «-
d — QOI 	 >>*» COCM£ CO C0£ E C— E E 0) 	 3 CO C CO
O — — — CMjCPD.cc/JCOP 	 •PWOl-'-a.coeoco'-O — — C
•« * •> as *CO CO> 3 	
— 3CO COM-OU9CX
CO C — C — C — CO
O — C co O co — E E
— E O C O>C co
10 3EOCCO— +J.«

-------








_J
^
^J
o
—
>
o
z
CO

>-
C£
O
O
UI
r-

o
CO
^
CO

0
z
—
N
1
<— •.
zr "o
o 0
— 3
1- C
^ •—
N J->
— c

 COCOCOCOCO CO CO O O CO COCO COCO
—
•—
C/3



0
0 4J
C CO
0 —
— CO

0 JT W
_l C 0 4J £
•^ CO C 0 Q. 0
Ol -C CD CD O CD C
i 4-> C — S- T3 — '^ 0 0 0
0CO>>O — O — -P — C
- OJCJZ— !- C >>CO >> 0
uj t-p+Jjr o 0 X — -C —
•P O00O ~- ^^CO^J >>
c — oo— 0.c o,£jz0 j:
CO -C^-^-^CCJOJO — -PO -P
•P O O O 1 0 C <- >>JZ i- 0
3 	 WNCDCUO-CO-O O
— i- JZ JZ C C C 	 4J — S->i
— I— ooeo00coj=aj — £0oc
O 1 	 S-J2 — JZOI >j O C — O
Q. — OOI 	 >> -P CO CM JZ CO 0 JT E
•,11 | >^JZ r" 4J ^^ 4J i- 3 CJ ™
U — ^^OJJ^ -p
CO CO —
•P X co •
O0 PC
•PJZ 0 E
+J CO

s'e" - - E
OE33 00 >> 3
— 3 	 s- -a -D s 	 «-
C — S E 0 	 3 0 C 0
A)EOGQ.CC"DOJ£0^CJ
wo'-'-acococos-o 	 c
s-ca.C.co>>>)00— 0 	
^OOOOOO— JSZCOCOINJ



d- o co — ir\
— CM • •
co • C\J CM
o



CO O 	 lA
— CM • •
lA • CM
-------
_J
3
Q
_
>
—
a
^
—

^.
CO

>
0
o
LJ
1-
^
o
GO
33
CO

O
Z
—
IM
1
^*.
z-o
O CO
— 3
(- C
N -P
5 0
LJ U
h- -*^
O
 CO
C. CO
CO
y
c.
o
o




(0

—
* —
CO
























_l _J
a o
CO CO
















— COCO-





















CD
c
CO

^J
0 SZ
_J C 0 -P

01 n co CD o 0
i j-> c- i- -a
0 CO >> O —
« o£x: — s-
ul i- *J 4J£ O
4J O CO CO O —
C — 0 0— 0£
•P O O O 1 0
3 	 CO N 0
— £_ J^ ^ C C C
— 1— O O CO 0 0
O 1 	 5- J3 —
a. -OQI 	 >
•.iii >>£
O 	 CM £ -P
— •* * -, -. 4J 0
X 	 LJS
O
t-























oooooooo




















0
4J
CO

CO
f~
•p
f"
a 0
c

O— 4J— C

co X — ^: —
£ 0 CO -P >>
a^: j: CD £
Q) O ••• +J O ^
C S- >,£ 5. CO
co or: ao o
	 -P - s- >>
CO.CCD — r:0oc
JI 0 1 >>0 C— 0
•PcoC\J.Cco0.CE
£4J^ 	 ^4JS-3y —
O.C *O 0-P — — -P
CO 0 	 IO O *- C
ZQ-fflO(-l-l-<






O O O OOO — OCM
o ^N ^f o r*" oo co • ~~
a\ cor^ —

in Jt ~














— o— ooooo— o 	 oooooo 	























1
. ^^
*- a> co
o E -a
4J —

0O CO O
— JJ CO
co o c
— > -P co -a
CO CO — -P — CO 0
4J X CO • 3 CO W 13
OCO-PC — 4JC5C
P.COE — 000EE
•PCO O -Pt-O.33
« « Q. 0O1COEE
EE»- E E w«3 	
OE33 00 >s 3 — 3CO COCO-OCOCX
._ 3 	 !- "D T3 ' 	 i- CO C — C — C — CO
C — E 6 CO 	 30CCO O — C CO O CO — E £
0Eooa.cc-aoxco>o — EOCCTC co
was-s-a.cococo'-o 	 c co 3 E o c 0 — -P •>-
s-coxi£:o>)>j00— co 	 co — EI-CO.C— 0x3:
< O O CJ O O O _l S ZWCON co « — SO-OI-Q.Q.
—
o



































B
CM

4-}
CO
CO

(0

CO
Q

-> -p
CO —
E
rO —

r—
c
> 0

.. . JJ
WX3 O
"D CO 0
O -P -P
£ O 0
•P COT3
0 -p
e co >
•a o
o —
— -P CO
•P OJQ

~- ^
CO -.—1
COQ
< zoo
Date:  8/31/82 R  Change 1  II.8.2-42

-------
Battery manufacturing wastewater is readily treatable.   The major
end-of-pipe treatment technologies employed in the industry are
chemical precipitation (for removal of dissolved metals and
cyanides),  chemical reduction of chromium,  settling,  pressure
filtration, and oil skimming.  Table 8.2-16 presents  a summary of
treatment operations practiced in the battery manufacturing
industry.  Chemical precipitation followed by the settling of
resulting solids is the most widely used technology.   Adjustment
of pH is a required pretreatment step in most instances.   Table
8.2-17 lists the treatment technologies reported in use by the
various subcategories.

Tables 8.2-18 to 21 present effluent quality achieved at plants in
different subcategories.   Influent characteristics for these
treatment facilities were not reported.  Table 8.2-21 also lists
treatment technologies used in the respective plants.
Date:  8/31/82  R  Change I  II.8.2-43

-------
       TABLE 8.2-16.  SUMMARY OF TREATMENT OPERATIONS
                      PRACTICED IN BATTERY MANUFACTURING
                      INDUSTRY [2-17]

       Treatment                                    Number  of plants

            Chemical Precipitation                           76

            Settling

                 Settling tank                               55
            •    Tube or plate settler                        1
            •    Lagoon                                      10

            Oil skimming                                      7

            Pressure filtration                               6

            Evaporation                                       1

            Flotation                                         2

            Gravity sludge thickening                         7    *

            Ion exchange

            •    Nickel recovery                              1
            •    Silver and water recovery                    1
            •    Trace nickel and cadmium removal             1

            Membrane filtration                               1

            Reverse osmosis*                                  2

            Vacuum filtration                                 2


  *To treat process wastewater for boiler feed.
Date:   9/25/81                II.8.2-44

-------













1
Ul
UIH
co<
3CJ
CO
ZI3
— CO

Q ^*
Ul OC
h- 1-
CE co
O3
0-Q
Ul Z
X. —

coo
sz
Ul _
i- ce
COS
>• K
CO CJ
^
t— u.
uz
I— S
CC <£.— -
H* UJ ^
1 	
QO h_*
^»
<£ UICO



C).
o

L_
CO
J2
E
3
C
•_

P
C
CU
E
P
CO
CO
1-

0)
.C 0
P t.
0
CO 
a. — P t- t- — . — co
"O C *"% CO CO P "OP
.3* CO (0 O. CcACUCO
^^•^-' 4- — -*^ P O^ CO "^"O P CO
> o-^a— ccwo — P— '-'-• >
PPi. "O CO CO — »> CO ac— OT3
cccu — cur~>— P co — tr\ o a 10 u — — — <« CUP o
— E o ><>-^ — ^ECOOCO co — a — - 1. i- —. t.

WCO EOOlC.CMC^.3 C PtTl — CU COP Q."O CU
f^ 3 c» CO CO C *— C>- Q) CO C C •— '"O ^^ P O CO CO P ""^ ^>
•^-•- 5 C.Q..- to o a i. ~* — -— co — cw s_ct-p'--a'-

c co co P f-'-t-cQ-o P P co O.PP oac a ^POQ.P>
O > OP PtO — OOTJC-' C-~CCV P PC — COCO CUCOa.CO'-O
— X — COO CUPO&. — JScOW COWCO— C — CUco P3— i- O C (U i- O O
p a.— i- c uicco PV> P — P — " — coma. — •~^^- a. Q
Co CO P— CO OCOCQCTC Q.C O. C W — -~ Q. <- PP PCO'-
4->> C "O— OPOSCCO CO OPO.PC X5 P-OC OCoCPO<-
pjas- of CQ.C -O Q. P *-* O — CU
<<-CO CO. p— P4-COCOP-O PJ-PT3Q. Q.Q. PP PE P— O. CC^-P
>CU P C — ^CCOWecUQ) C~-C"O C i- CC -OCS CO^CO — C0«-
S. o O>— — O CD CD C. CHOP CU CU CO CM O — O COCO CCU— CUCOOO— PO
O — C P JP ECEOiA— O SCS — -— — co E£ coe E«-w— -PCcoa
— CO C POPC03<-Q> POPP P "O PP P — P Q.T3 P CO O E CO
C7IOJZCO O1CU CO— (0 — COCTOCi- CO— WCOCOOICO WW Otulco W COCOP— S-
C«t-O— CC3> 3P3-OOd><^l>- COP3COCNC 33 C3> 3CU ECP«
— x a. — i- — j co — 3 o co i- co — ? 	 c "n 	 ) o -TO c co co co w P
— CO CO — CO 'D'-TO'O'-'O'- Pt-'D3 	 EO "OTJ — ~O E ~O — OOlES-COO
p > — P JZ coP(OCdCCU>— CO P 3 — «- P «- — t- CO "O — O —
CO ^3 O CO X — X C CO C — X O CO CTX CO XX CUX X3COECO— S-
co < — co a.u- Q. — S  r*- oo \o
— 00 — —




CO E
JZ 3
E E 0 E —
33 C 3 <0
-- - >«. (o •— CO
e o -o — j=. c o
•o — co o P o> c
CO CO CU CU '-co —
O O -J -1 -1 £ N

III 1 III
< CO O Q Ul U O
Date:  9/25/81
II.8.2-45

-------
         TABLE 8.2-18.   EFFLUENT QUALITY  ACHIEVED  IN CADMIUM SUBCATEGORY  [2-17]
Plant ID
number! b)
A
B
C
D
E
F
G(c)
G(d)
H
Total discharge
flow Oi 1 & grease
(cu.m/hr. ) DH (ma/L)
0. 1 114
IIU(a)
27.3 7-114
33.2(a) 12.14 3
0.023
7.88 7.5
U.63
7.014
49.5
TSS Cd
1 ma/L ) 
-------











~
1
CM



— r-
O 1
UJCM
UJ
xce
00
<0
UJ
H<
— O
-JOB
Z3 W
a
UJ
L_ ~r
zo
UIZ
=><

u.0
U.UJ
Ul-l


d
CM
1
CM
CO
UJ
I
CO

>-






u-i
c ^-


~ *"*
O 71
— 3.
Z —


£_
3_J
O ^x
<- 01





•o-l
CD-^.
3S




(A
CO
01-1


~ "*
O




4-1 O*
c c
£a


z §
O
o
vo
VO


1- <



0 O
o o
3- <\J
— to




0 <
m z







Cvl Z







u. u,
w *~*
c V
-a 1
i t^
• 5
0
01 CO
5 3

£ o
a> —
*> N
o z
™"

Q a
i UJ
1 ?

•° X
*J *5
W ^
C ^
£ H
£ 3
(». ^
•a 3
c «
H
l_ 2J
Q) S
. ! 3
0) C u.
5 Q J»-
n - UJ

™ c
> w •
eo — ^
w a f^

§»I ~
***w *
< o 00
z z
UJ

00
K






























*—
_J
1
(A
JJ
C
n
3
O
a
u
x
0
H-
























Q


tf)
V)




c


a>
u_

ro
X
Z

c
N

a



z





X


.0
CL



2
O



3
U


(j



S





*J
i
+j
00
£
t-
c
E
lA f- CJ CM
ON — — CO
1 — —
NO
o o

O O CJ O
« — ON O
CJ
-=f 0 00
CO lA — ON CM
O O -4- CJ O

lA d-
O O CM
CM
0 00
—
O O
CO lA

O o u o o oooooo
o o o r- o oJ-"iooNON
coo — fo — r*-f*- ocj —
-. -. x «. »
— cu r* CM -3-
CJ*
o o o o
OJ O O :J
O CM —
o —


O O lA
NO 0 0
— o z
o


CM vO lA

OO O CO O OOOo'CJO
it— o— ~fi h~ fi ON
CM — —

§o oo \o
o —
00 0
0*
~
CM
lA O O




o o o o r^ o
O O O O * #
CO O O O

— 00 CD
00 »A



0 O 0
o o z
CM —
€ E 1
O C CD C *- « C Cll
— o J=0 a

— +> 4J — « — t_ (A O *^ a)** — (A (0 4-» CQ4J 4J
x— c cj — -o -* (o T: x i- oj x t- o — -o Eo Eo> v
Q.W c/) (Ou-co (rt u  u.(o < w 
-------
                       II.8.3  COIL COATING

II.8.3.1  INDUSTRY DESCRIPTION

II.8.3.1.1  General Description [2-18]

The coil coating industry consists of at least 73 plants pro-
cessing approximately 1.2 billion square meters of painted coil
each year.  Facilities vary in size and corporate structure,
ranging from independent shops to captive operations.  Indepen-
dent shops obtain untreated coil,  conversion coating chemicals,
and paints, and produce a wide variety of coated coil.  Typical-
ly, the annual production at these plants is low compared to that
from the captive coating operations.  The captive coil coating
operation is usually an integral part of a large corporation
engaged in many other kinds of metal production and finishing.

The coil coating sequence,  regardless of basis material or con-
version coating process used, consists of three functional steps:
cleaning, conversion coating, and painting.  Basically, there
are three types of cleaning operations used in coil coating,  and
they can be used alone or in combinations.  These are:  mild
alkaline cleaning, strong alkaline cleaning, and acid cleaning.
There are four basic types of conversion coating operations,  and
the use of one precludes the use of the others on the same coil.
These are:  chromating, phosphating, use of complex oxides, -and
no-rinse conversion coating.   Some of these conversion coating
operations are designed for use on specific basis materials.   The
painting operation is performed by roll coating and is independent
of the basis material and conversion coating.  Some specialized
coatings are supplied without conversion-coating the basis" ma-
terial.  For example, Zincrometal is a specialized coating con-
sisting of two coats of special paints that do not require con-
version coating.  In this process, coils are cleaned and dryed,
and then receive two coats of the special paints.

The selection of basis material, conversion coating, and paint
formulation is an art based upon experience.  The variables that
are typically involved in the selection are appearance, color,
gloss, corrosion resistance,  abrasion resistance, process line
capability, availability of raw materials, customer preference,
and cost.  Some basis materials inherently work better with cer-
tain conversion coatings, and some conversion coatings work
Date:  9/25/81              II.8.3-1

-------
better with certain paint formulations.   On the whole,  however,
the choice of which combination to use on a basis material is
limited only by plant and customer preferences.

The following subsections describe the coil coating processes in
more detail.

     Cleaning

Coil coating requires that the basis material be clean.  A
thoroughly clean coil assures efficient conversion coating and a
resulting uniform surface for painting.   The soils, oils, and
oxide coatings found on a typical coil originate from rolling
mill operations and storage conditions prior to coil coating.
Such substances can stop the conversion coating reaction, cause a
coating void on part of the basis material, and cause the produc-
tion of a nonuniform coating.  Cleaning operations must chemi-
cally and physically remove these interfering substances without
degrading the surface of the basis material.  Excessive cleaning
can roughen a basically smooth surface to a point where a paint
film will not provide optimum protective properties.

Aluminum and galvanized steel are prone to develop an oxide coat-
ing that acts as a barrier to chemical conversion coatings.
However, these oxide films are easier to remove than rust and,
therefore, require a less vigorous cleaning process.  A mild
alkaline cleaner is usually applied with power spray equipment to
remove the oxide coating and other interfering substances.  The
cleaning solutions normally used consist of combinations of sodi-
um carbonates, phosphates, silicates, and hydroxides.  These com-
pounds give the solution its alkaline character and emulsify the
removed soils.  Soap and detergents may be added to the solution
to lower the surface and interfacial tension.  A good cleaning
solution also rinses easily.  Solutions may be made stronger with
the addition of more sodium hydroxide.

Steel, unless adequately protected with a film of oil subsequent
to rolling mill operations, has a tendency to form surface rust
rather quickly.  This rust on the surface of the metal prevents
proper conversion coating.  A traditional method of removing rust
is an acid applied by power spray equipment.  The spraying action
cleans both by physical impingement and the etching action of the
acid.  The power spray action is followed by a brush scrub which
further removes soil loosened by the acid.  The brush scrub is
followed by a strong alkaline spray wash which removes all traces
of the acid and neutralizes the surface.

A spray rinse follows the alkaline cleaning step.  Spray rinsing
is conducive to the fast line speeds which make coil coating an
economical coating procedure.  The spray rinse physically removes
Date:  9/25/81              II.8.3-2

-------
alkaline cleaning residues and soil by both the physical impinge-
ment of the water and the diluting action of the water.   The
rinse water is usually maintained at approximately 66°C (150°F)
to keep the coil warm for the subsequent conversion coating
reactions and to help the rinsing action.  The rinsing action
prevents contamination of the conversion coating bath with clean-
ing residues which are dragged out on the strip and that could be
subsequently deposited in the conversion coating solutions.  The
rinsing step also keeps the surface of the metal wet and active,
which permits faster conversion coating film formation.

The no-rinse conversion coating and the Zincrometal processes
require a coil that is clean, warm, and dry.  For these proces-
ses, a squeegee roll and forced air drying are used to assure a
clean, dry coil following alkaline cleaning and rinsing.

     Conversion Coatings

The basic objective of the conversion coating process is to
provide a corrosion-resistant film that is integrally bonded
chemically and physically to the base metal and that provides a
smooth and chemically inert surface for subsequent application of
a variety of paint films.  The conversion coating processes
effectively render the surface of the basis material electrically
neutral and immune to galvanic corrosion.  Conversion coating on
basis material coils does not involve the use of applied electric
current to coat the basis material.  The coating mechanisms are
chemical reactions that occur between solution and basis ma-
terial.

Four types of conversion coatings are normally used in coil
coating:

     •  Chromate conversion coatings,
     •  Phosphate conversion coating,
     •  Complex oxides conversion coatings, and
     •  No-rinse conversion coatings.

Chromate conversion coatings, phosphate conversion coatings, and
complex oxide conversion coatings are applied in basically the
same manner.  No-rinse conversion coatings are roll applied and
use quite different chemical solutions than phosphating, chromat-
ing, or complex oxides solutions.  However, the dried film is
used as basis for paint application similar to phosphating,
chromating, and complex oxide conversion coating films.

Chromate conversion coatings can be applied to both aluminum and
galvanized surfaces but are generally applied only to aluminum
surfaces.  These coatings produce an amorphous layer of chromium
Date:  9/25/81              II.8.3-3

-------
chromate complexes and aluminum ions.   The coatings offer unusu-
ally good corrosion-inhibiting properties but are not as abrasion
resistant as phosphate coatings.   Scratched or abraded films
retain a great deal of protective value because the hexavalent
chromium content of the film is slowly leached by moisture,  pro-
viding a self-healing effect.  Under limited applications, these
coatings can serve as the finished surface without being painted.
If further finishing is required, it is necessary to select an
organic finishing system that has good adhesive properties.
Chromate conversion coatings are extremely smooth, electrically
neutral, and quite resistant to chemical attack.

Chromate conversion coatings for aluminum are carried out in
acidic solutions.  These solutions usually contain one chromium
salt, such as sodium chromate, or chromic acid and a strong oxi-
dizing agent such as hydrofluoric acid or nitric acid.  The final
film usually contains both products and reactants and water of
hydration.  Chromate films are formed by the chemical reaction of
hexavalent chromium with a metal surface in the presence of
"accelerators", such as cyanides, acetates, formates, sulfate,
chlorides, fluorides, nitrates, phosphates, and sulfamates.

Chromate conversion coating requires that the basis material be
alkaline-cleaned and spray-rinsed with warm water.  The cleaning
and rinsing assures a clean, warm, wet surface on which the con-
version coating process takes place.  Once the film is formed, it
is rinsed with water followed by a chromic acid sealing rinse.
This latter rinse seals the free pore area of the coating by
forming a chromium chromate gel.   Also, the sealing rinse more
thoroughly removes precipitated deposits that may have been
formed by hard water in previous operations.  The coil is then
subjected to a forced air drying step to assure a uniformly dry
surface for the following painting operation.

Phosphate conversion coatings provide a highly crystalline,  elec-
trically neutral bond between a base metal and paint film.  The
most widespread use of phosphate coatings is to prolong the
useful life of paint finishes.  Phosphate coatings are primarily
used on steel and galvanized surfaces but also can be applied to
aluminum.  Basically, there are three types of phosphate coatings;
iron, zinc, and manganese.  Manganese coatings are not used in
coil coating operations because they are relatively slow in
forming and, as such, are not amenable to the high production
speeds of coil coaters.

The remaining two phosphate coatings are applied by spraying or
immersing the coil, with the major difference between them being
the weight and thickness of the dried coating.  Iron phosphate
coatings are the thinnest and lightest and generally the cheap-
est.  Iron phosphate solutions are applied chiefly as a base for
Date:  9/25/81              II.8.3-4

-------
paint films.  Spray application of iron phosphating solutions is
most commonly used.  The coating weights range from 0.22 to
0.86 g/m2.

Zinc phosphate coatings are quite versatile and can be used as a
base for paint or oil,  as an aid to cold forming,  to increase
wear resistance, and to provide rustproofing.   Zinc phosphate
coatings can be applied by spray or immersion with applied coat-
ing weights ranging from 1.08 to 10.8 g/m2 for spray coating and
from 1.61 to 43.1 g/m2  for immersion coating.

Phosphate coatings are  formed in the metal surface, incorporating
metal ions dissolved from the surface.  This creates a coating
that is integrally bonded to the base metal.  In this respect,
phosphate coatings differ from electrodeposited coatings, which
are superimposed on the metal.  Most metal phosphates are insol-
uble in water but soluble in mineral acids.  Phosphating solu-
tions consist of metal  phosphates dissolved in carefully balanced
solutions of phosphoric acid.  As long as the acid concentration
of the bath remains above a critical point, the metal ions remain
in solution.  Accelerators speed up film formation and prevent
the polarization effect of hydrogen on the surface of the metal.
Accelerators commonly used include nitrites, nitrates, chlorates,
and peroxides.  Cobalt  and nickel nitrite accelerators are the
most widely used and develop a coarse crystalline structure.  The
peroxides are relatively unstable and difficult to control, while
chlorate accelerators generate a fine sludge that may cause dusty
or powdery deposits.

After phosphating, the  coil is passed through a recirculating hot
water spray rinse.  The rinsing action removes excess acid and
unreacted products, thereby stopping the conversion coating reac-
tion.  Insufficient rinsing could cause blistering under the sub-
sequent paint film from the galvanic action of the residual acid
and metal salts.

The basis material is then passed through an acid sealing rinse
comprised of up to 0.1% by volume of phosphoric acid, chromic
acid, and various metallic conditioning agents, notably zinc.
This solution seals the free pore area of the coating by forming
a chromium chromate gel.  Also, this acidic sealing rinse more
thoroughly removes precipitated deposits formed by hard water in
the previous rinses.  Modified chromic acid rinses have been used
extensively in the industry.  These rinses are prepared by re-
ducing chromic acid with an organic reductant to form a mixture
of trivalent chromium and hexavalent chromium in the form of a
complex chromium chromate.

Complex oxide conversion coatings can be applied to aluminum and
galvanized surfaces but are generally applied to only galvanized
surfaces.  The nature of the film and the chemical and physical
Date:  9/25/81              II.8.3-5

-------
reactions of its formation are a function and a reinforcement of
the naturally occurring protective oxide coating that is found on
galvanized surfaces.   The physical properties of the complex
oxide conversion coating film are comparable to those of chromate
conversion coating films and phosphate conversion coating films.

Complex oxide film is formed in a basic solution while the films
described earlier are formed in an acidic solution.   Complex
oxide conversion coating reactions do not contain either hexa-
valent or trivalent chromium ions.  However, the sealing rinse
contains much greater quantities of hexavalent and trivalent
chromium ions than do the sealing rinses associated with phos-
phate conversion coatings and chromate conversion coatings.

Recent developments in chromate conversion coating solutions have
resulted in a solution that can be applied to cold rolled steel,
galvanized steel, or aluminum without the need for any rinsing
after the coating has formed on the basis material.   The basis
material must first be alkaline cleaned, thoroughly rinsed,  and
forced-air dried prior to conversion coating.  The conversion
coating solution is applied with a roll mechanism used in roll
coating paint.  Once the solution is roll coated onto the basis
material, the coil is forced-air dried at approximately 66°C.
The no-rinse solutions are formulated in such a way that once a
film is formed and dried, there are no residual or detrimental
products left on the coating that could interfere with normal
coil coating paint formulations.

Although no-rinse conversion coatings currently represent a small
proportion of the conversion coating techniques that are used,
they offer several advantages, including fewer process steps in a
physically smaller process line, higher line speeds, application
of a very uniform thickness by roll coating rather than spray or
dip coating, and reduction of waste treatment requirements
because of the reduced use of chromium compounds.  Disadvantages
include roll coating mechanism wear possibly reducing quality,
the closer coordination of entire line that is needed, difficulty
in adaptation, and the hazardous organic acids content of the
no-rinse conversion coating chemicals.

     Painting

Roll coating of paint is the final process in a coil coating
line.  Roll coating is an economical method to paint large areas
of metal with a variety of finishes and to produce a uniform and
high quality coating.  The reverse roll procedure for coils is
used by the coil coating industry, and allows both sides of the
coil to be painted simultaneously.

The paint formulations used in the coil coating industry have
high pigmentation levels (providing hiding power), adhesion, and
Date:  9/25/81              II.8.3-6

-------
flexibility.  Most coatings of this type are thermosetting and
are based on vinyl, acrylic, and epoxy functional aromatic poly-
ethers, and some reactive monomer or other resin with reactive
functions, such as melamine formaldehyde resins.  Also,  a variety
of copolymers of butadiene with styrene or maleic anhydride are
used in coating formulations.   These coatings are cured by oxida-
tion mechanisms during baking, similar to those that harden
drying oils.

After paint application, all coils are cured in an oven.  Curing
temperatures depend upon basis material, conversion coating,
paint formulation, and line speed.  Typical temperatures range
from about 93°C to a maximum of about 454°C.  Upon leaving the
oven, the coils are quenched with water to induce rapid cooling
prior to rewinding.

The quench is necessary for all basis materials, conversion coat-
ings, and paint formulations.   A coil that is rewound when too
warm will develop internal and external stresses, causing a pos-
sible degradation of the appearance of the paint film and of the
forming properties of the coil.  The volume of water used in the
quench often has the largest flow rate of all of the coil-coating
processes.  However, the water is often circulated to a cooling
tower for heat.dissipation and reuse.

The finished coils are used in a variety of industries.   The
building products industry utilizes prefinished coils to fabri-
cate exterior siding, window and door frames, storm windows and
storm gutters, and various other trim and accessory building
products.  The food and beverage industries utilize various types
of coils and finishes to safely and economically package and ship
a wide variety of food and beverage products.  Until recently,
the automotive and appliance industries have made limited use of
prefinished coils.  These industries have relied on post assembly
finishing of their products.  Recently, the automotive industry
has begun using a cold rolled steel coil coated on one side with.
a finish called Zincrometal.  This coating is applied to the
under surfaces of the exterior automobile sheet metal to protect
them from corrosion.  The appliance industry uses prefinished
coils in constructing certain models of refrigerator exteriors to
provide a finished product that minimizes the costly and labor-
intensive painting operation after forming.

Coil coating operations are located throughout the country,
usually in well established industrial centers.  Compared to some
other industries, coil coating operations are not physically
large.  Coil coating operations use large quantities of water and
are often a significant contributor to municipal waste treatment
systems or surface waters.  In addition, the curing ovens from
coil coating operations are a source of air pollution in the form
of reactive hydrocarbons.
Date:  9/25/81              II.8.3-7

-------
Table 8.3-1 presents an industry summary of the coil coating
industry.

              TABLE 8.3-1.   INDUSTRY SUMMARY [2-1]
               Industry:  Coil Coating
               Total Number of Subcategories:   3
               Number of Subcategories Studied:   3

               Number of Dischargers in Industry:

                    •  Direct:  36
                    •  Indirect:  54
                    •  Zero dischargers:   0


II.8.3.1.2  Subcategory Description [2-18]

The primary purpose of subcategorization is to establish group-
ings, within the coil coating industry, such that each group has
a uniform set of effluent limitations.  While subcategorization
is based on wastewater characteristics, a review of the other
subcategorization factors reveals that the basis material used
and the processes performed on these basis materials are the
principal factors affecting the wastewater characteristics of
plants in the coil coating industry.  The coil coating industry
is therefore divided into the following three Subcategories:

     •  Coil coating on steel,
     •  Coil coating on zinc coated steel (galvanized), and
     •  Coil coating on aluminum or aluminized steel.

The following subsections describe the above Subcategories.

     Coil Coating on Steel

Fifty-nine facilities in the coil coating industry were surveyed
for process type and pollutant levels.  Of these, 38 plants are
in the coil coating on steel subcategory.  Ten facilities coat
steel alone and the remaining 28 coat a combination of steel
coils and coils from the other Subcategories.   The production
rate is approximately 85,000 m2/hr.  Operations used at these
facilities include acid cleaning, strong alkaline cleaning,
phosphating, no-rinse conversion coating, roll coating, and
Zincrometal coating.  Water usage rates for the general opera-
tions at steel coating facilities are listed in Table 8.3-2.
Date:  9/25/81              II.8.3-8

-------
        TABLE 8.3-2.
SUMMARY OF WATER USAGE RATES FOR THE COIL
COATING INDUSTRY BY SUBCATEGORY [2-18]
   Operation
    Number
      of
plants sampled
                                              Water use, L/m2
   Range
          Mean
                                            Steel
Cleaning
Conversion coating
Quenching
All operations
      11
       8
       4
      13
0.04
0.04
 2.0
0.37
7.3
0.76
5.7
13
 1.9
0.43
 4.0
 4.5
                                         Galvanized
Cleaning
Conversion coating
Quenching
All operations
10
10
5
12
0.17 -
0.03 -
0.44 -
0.65 -
8.8
0.98
5.1
8.4
1.9
0.49
2.7
3.6
Aluminum
Cleaning
Conversion coating
Quenching
All operations
12
12
9
15
0.21 -
0.18 -
1.2 -
0.26 -
2.0
1.8
3.5
5.8
0.97
0.56
2.3
2.5
     Coil Coating on Zinc Coated Steel (Galvanized)

Within the 59 plants surveyed, 17 coil coat on galvanized steel
with a production of approximately 60 x 103 m2/hr.  Only two
facilities produce coated galvanized steel alone.  Operations
used at the galvanized coating facilities include mild alkaline
cleaning, phosphating, chromating, complex oxide treatment,
no-rinse conversion coating, roll coating, and Zincrometal
coating.  Table 8.3-2 above also presents water usage data for
the general operations at galvanized coating facilities.

     Coil Coating on Aluminum

Thirty-nine of the facilities coil coat on aluminum with a pro-
duction rate of 90 x 103 m2/hr.  Nineteen facilities coat only
aluminum coils.  The aluminum coating facilities use mild alka-
line cleaning, phosphating, chromating, complex oxide treatment,
no-rinse conversion coating, and roll coating.  Water usage rates
for the general processes in this subcategory are listed in Table
8.3-2 above.
Date:  9/25/81
      II.8.3-9

-------
II.8.3.2  WASTEWATER CHARACTERIZATION [2-18]

Water is used in virtually all coil coating operations.   It pro-
vides the mechanism for removing undesirable compounds from the
basis material,  is the medium for the chemical reactions that
occur on the basis material,  and cools the basis material follow-
ing baking.  Water is the medium that permits the high degree of
automation associated with coil coating and the high quality of
the finished product.  The nature of coil coating operations, the
large amount of basis material processed, and the quantity and
type of chemicals used produces a large volume of wastewater that
requires treatment before discharge.

Wastewater generation occurs for each basis material (steel, gal-
vanized and aluminum) and for each functional operation (clean-
ing, conversion coating, and painting).   The wastewater generated
by the three functional operations may (1) flow directly to a
municipal sewage treatment system or surface water,  (2) flow
directly to an on-site waste treatment system and then to a muni-
cipal sewage treatment system or surface water, (3)  be reused
directly or following intermediate treatment, or (4) undergo a
combination of the above processes.

Coil coating operations that produce wastewater are characterized
by the pollutant constituents associated with respective basis
materials.  The constituents in the raw wastewaters include ions
of the basis material, oil and grease found on the basis mate-
rial, components of the cleaning and conversion coating solu-
tions, and the paints and solvents used in roll coating the basis
materials.  The following tables present wastewater characteri-
zation data for each subcategory.  The data presented are the
results of verification analysis of the industry.  Prior to veri-
fication sampling, a screening program was conducted to identify
the presence or absence of the 129 priority pollutants.  Those
pollutants detected in screening at a concentration greater than
10 yg/L were further studied in the verification analysis.  The
minimum detection limit in the verification analysis for pesti-
cides was 5 yg/L and for all other toxic pollutants, 10 yg/L.
Any value below its detection limit is presented in the follow-
ing tables as BDL, below detection limit.

Tables 8.3-3 through 8.3-6 present raw wastewater characteriza-
tion data for each general process in each subcategory and for
the wastewater in each subcategory when combined into a single
representative stream as a whole.  Table 8.3-7 presents raw
wastewater flow data for each subcategory.
Date:  9/25/81              II.8.3-10

-------












1™ 1
00
EC —
LL| |
f-<\J
3^"
LJ <
1- h-

<0
3:0
£t h-
ZCJ
U.
CO —
i- ce
Z UJ
O
| s.
— 1 ^~

00
a. o
Ul
-II-
OO
W 3
CO CO

O UJ
Ul
Q I—
Z W

O X
— 1-
X
O u.
1- O


rO
"1
00
Ul
1
CO

h-






— 0)
so —
— a
= e


*,.
O


0)
u a
en e
C (5
o:

o




d- C
o o
—
0 U
3 4)
II

ti-
ll]
fa
i
3 Ul
z


«
— dJ
— c
c s

U W
(*-



(A
Q)
aj Q
C n
cc
t-
o


(fl
0 0

V U
12
3 U
ZT3

°s
1!
3 W
Z






c

i
~1— _ 1 -J O -JOO — 1 -J -J -I «
Q- Q Q OJ 0-0 00 GO -
ffi CD 03 CO — — CO CO CD 00






-1 -J O OO -J ~* -> -J
3
11 It I I 1 I I 1 I 1 t
j
o oo a a o ooo oo oo o
zz z a: z zzz zz zz z
u

3
j

fi
>












-1 -J -1 J d"O -I -IVO -1 -J -1 — Q — -1
O OOQ ro^-OOJ O Q O m Z lA O
a> eocoflo coco co coco 0






-1 OO -JO -1 0 -JO
O 00 OOO iA\OOO — O O O«O O 00 OJ
CD *O-OJ — cOMCON « rofflOJ CO C\J OJ
j
Q OOQ OOOOQ O QOO OO O
U Z ZZZ ZZZZZ Z ZZZ ZZ Z
TJ
]
I

7

I
)












0
C 0
0 C
X 0 00 U 0
0 JS t> c c a c
C U) *J <000 030 t-0
CO C O — *J *J JZJZ « Jt i-
>s. *j c— s- o — r--»Secc « c a a
0) 0nxoc — 4J«»*Jw«o)co« —  jz£coJ=t-^33 c tb c o >>
w w— oo 	 0 jz — a. o,c w c x 	 o a 0 0 i £
*> o .c i- s- a x c — 0x *> jz *J aw *- — o c ja «o *>
C — UOOt£O0D X*>N 	 £ a C X0N (P — • 0
— '"QQ^Q2O2~'^ -00 ^^ »^«"~''»0-»lgC v«-0C —
O - 1 1 1 t O Qw C— J= XCC4JO)! N 1 NXCJ= -O C *C03O
u x — *— 	 ry u — arcwco eoa ooo — 'co mcoo < < -»u.o- — "— cv>-(-

1 "
OOO — ftl-JOOO O^ — Os — lACO— OO
. , . * o • -
OO J41 O m
OJ — if%

§o oo
o ooo o
- - OO - ro o
SOO *O *O m OJ if\O
— \Oe\lCM «Os J — -3T- •« • O *»f\
I t i I i i 1 I I i i I i i I i i i

OOOOOOQOO O — <*) — OQr-Of-
ZfflZZZZZZM Z . .-ZZ -0(\J
OJ lA — 1*1 • ^*O
0
***
















o— r-oj — ^r MO M -oj -oj — .ffooj
CO CSi OJ O •— OtA • roOJ
« o o •>




§o o o
o in or- o
-JO OO — O" WJ- r-\OOJ -O
ow cowa -— oj -^-o • - • »r~#

oa — oo QO o oeo« 4>
•Q CO  X w « on
« O 0 *> ** « *>
WC O 3 « O
«t *J — C *J M
fill.* - "S ll H-l
S— fi • 0— 0 — — <- » W o a
• ooac •QJCO « Koccn c »
O-O C t a« « O C U =DPC-tDO«W)
— a £ £ O X « — — — — — t-» — ££OW
XUUUUOU-JZN W 
-------





















UJ
X
r-
U.
o
LJCO
1 	
X
0>
o- o:
u§



V)O
WCQ
o
o
Q
ObJ
ZN


0<

X— 1
°o

s
•*
CO
CO

UJ
CO

1-












tffl
— ~ o
CO —
0 CO
O «
c

o


CO
—
o a
JE
0 C4
C
4-
O



a>
0- C
o o

» O
3 a
zx

0 CO
QJ
II
3 0
Z

(A
<— C
C E
w n

£
o




(A
V
0) C
c «
co w
C£
b-
o




(/
O C

*- *»

A a
3 a



O (A
ol
I!
3 «
Z












C
IB
4


£

— -J-> -Jc\l_J O-I-J 1*- -J _l _J O\ -IOS -J J-
CM oo a in a CMQO r» o QOCM OCM o —
coca oa m CMCOCD co coco co CD





o
O _) O CSJ-J O -1 -J-IO ->O O
.4- Q IA <*> CM (A -.OOOO OOOsOOs — —
: — co— CMIA— — COCM « eo CQCOCVJ COCM — —
5
1 II III III 1 t III tl 1 1
B O OO OOO QOO O O OOO OO O O
z zz zzz zzz z z zzz zz z z
l>
1

\
a
1
'

> jJO— CM O — — if\O Ovcn«oOO\O— OOO— — f>O — »OOO — ON





O— OOCMOOOJ OOOOOOOOOOOOOOOOOOOa"O





O OOO 	 co O — — Q CM — O O O








_J -I OOO-IO O -J -i
So r*» GO •S' co f*» o w r~- f-- IT* js^ o o
CDJ-M ro — — eflj- CM cy CM as-=r CD CD

: i iii i i i i i i i i i i it
o ooo oooao o o o ao o o
P Z ZZZ ZZZZZ Z Z Z ZZ Z Z
o

>
:

i


i

J J-OOOOro — (MO O— r- 	 eOOJ OOOa-O'OO ^«OO»OO(M







O — OOCMOOO3 OOOOOOOOOOOOOOOOOOO JO




0
c o
o c
X O 0) O U O
O £ *> C C CO C
ca>+* cooo oo t.o
10 CO — *>*> ££ 0) £ t.
_l £OOO— CO CO 0 00 U4> C « >>
^ we— »- o -* iz — —owe cc cs co. o

3. ace— » >> ccfco— o c ™ >- >> — e
I»^»V££ X O,*> P— CO CO O O O O £- NV —
O 0 O U Q. O ££co£'-'-33 C O CO X
» co — p o 	 o £ — a a,£ *>£>> 	 a> a. 001 c
C — OOOIfOOO X*JN — — £ O.C >|ON O— - O
00 C — 	 C«U£CC £coC>>>>0. CO — O— £CC l-OC\J g
3 Sl-OOOECl-— o (Oil 3 O— >>C — C— C£ OB C *>«— OO
— Li 	 ( — co o co — i £ .00 >>£ o o oacoioc »^oc —
— O — O Ol- O (-££ OCJ *J— 1 1 £ ** A Ott O CO co t- CY *- CO lf\ O C O£
O « 1 1 1 1 O a« C— £ XCCWOI Nl NXCf -0 C .C030
o x -^— ^— '— (M*U — ZCLGO ffi oooo *^ffi cw^ffi u « -Tu. a. — "— a. i- K
— 0
X K
o

— OOlAOODOOO

OO JO
O^ CM
CM- CM

OO OO
OO OOO
« « OO -
oooooo« -o
^f«.C*)^^fO^C*)l^

t 1 1 1 1 1 1 1 1
OOOQOO JOO
ZOIOZZZOZO


m n





cnoocom^ovoo





ooooooooo





m  CO
>o ee - -
a E = 3 d ai
O3 	 (--O-D —
E- E e o — o
E o g ac c-cje o
xS6ocj&o "zivi
0
t~








































































_l
^
E

tfl
c
•p
o
Q.
CO
o
CO
u
CO
o

co vo - O (\J
o
o




	 "5°^ o
— f-OJ 	 OVO OJ»

1 1 1 1 1 1 1 IA 1
OlAJjrj-OOCD tVCO
^ • O — PO
o •
o





ooooor-r- — o





oooooor* — o





w tfi co r- o o\ M o
• • • — r- cy «*> tf\
CM N^1 -CNJ O CM
o
o





(o r*-
os r-oo o
& 	 OOsO lA \0
0
I 1 I 1 1 I I O I
OMDOQOO j- os
z 	 z— z . —

OO















OOOOOOs Os— O












V) CD
TO *J
(- *J «
 3
e u  c —
o*> •
— CO
• • . *J o t.
ta-D 0 > (0
o ** *» o
r: o o o o
§** o
a, >**-
•o o RJ
O — O 3
•- W G) 3 CT


CO »— 1 — '
COO CO

-------








Ld
•[•

'
i^
o
QC
LJ

— OCM





(MCJCMCJ (\J N CU CJ OJ CJ (M CJ


1



-J O -1 O>-> -1
o —a ova o
CO — CO CO CO




a
1 S S i iS §
g
S
\

i
!
J OO*>O OOCMOr^CMOm
—




MCVJO.M NNNCMNWWN




«
**
= 22




x a££~ S * *
S ej * — « xaQ"5.e*i e
« ^S c S ^« c >,'>,'Q, a 5 —
| gfff-?ff|jkfj;
o o a** c^lf^c c ** « ' N
a CJ3OO.9MO.WI 1 OltMC
— — MIBC— 3 — — — — . ffl
u xu.-zo.co co ooo a — eo
x £
S M

-1 -J — IQOOOOoOOO OO — ^ — CJJ'O
a o 000000-9^0 o — CM • -o — «
OO «- * CO °
h-N
•
§o

o oo o o
O O oo'*>ao«*o>O''> — • — r- cvj Q .^ .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
z z zoozzzzz— - — *5Sz — *^i
oo oo JT

ift- * O
^




OOOOJOOJOOOO mc\JCMOOv\O(VI^(\i MC\J(\JC\JO\eot\Jftj





oacgojwwcjwcvjcvjfocjftj CMCMNCNJCMO\C\JCMCM (MnjCM(\K\j(\jcjcu






J J^ OWOvOroty.A 0 gj^^^g-31?
CO COCO - O
— o


oo o o

_|_|_j oSoOOO - OtftO«0-OO
a ao — - •— ^Ofl-cy ^ ^ • -ift « «of^
1 II 1)11111 1 Illlllll
a an QQQQOQQ o voar-ooooo
z zz zzzzzzz z CM



C U
o « S » c t! _j
c c 2 c * o *-.

** *j c ** >» O O U
c c o co. c —
a « - « - « 0
1- 1- >» — > — > *»

cc • 1 S|A 5 II si is
o_ ^ss sscj 2 .. "• . .l-s
N^«J*>OJO)a)£l« (0 6 * -o GO I0 *>t-
c — c£oeoc**o— a *j B 3 3 we 3-0 otjao
Q) CU O. at 1 CO C 	 •» C g 3 — — 1--OT3 — C— C C — £
iN^cfi^loc^cwS aooaccflxo BOCCTI'CI*
J C t. « **— SOJtNJflJ*-— O-Ot-*-O.iO(0«OOC 33OC— «Otf)
» O C O C •— £ «TJ >> O — «££O»tW — — — — ^ a — £ C CO
«*»eoo« — u-a. — — O.K XUUUUOCJUZN  c —
o **
— c
.. . *J d>
ytic Methods
not detected
below detec
Due to conv
« *_T— >

-------
       TABLE 8.3-6.  TOXIC AND CLASSICAL POLLUTANTS IN QUENCHING RAW WASTEWATER
                       IN  ALL SUBCATEGORIES,  VERIFICATION DATA  [2-18]
Pollutant
Toxic pollutants, ug/L
Toxic organics
1,1, l-Trichloroethane
1, 1 -Dichloroethane
1, l-Dichtoroethylene
1,2-trans-Dichloroethylene
2, U-Di methyl phenol
f luoranthene
Isophorone
Naptha lene
Pheno 1
Bis(2-ethylhexyl )
ph thai ate
Butyl benzyl ph thai ate
Di-n-butyl phthalate
Di-n-octyl phthalate
Oiethyl phthalate
Dimethyl phthalate
1 ,2-Benzanthracene
Benzo (a) pyrene
3,i»-Benzo f luoranthene
Benzo (k) f luoranthene
Chrysene
Acenaphthylene
Anthracene
1,1, 2-Benzope ry 1 one
Fluorene
Phenanthrene
1 ,2,5,6-Dlbenz anthracene
Idenoj 1 ,2,3-cd) pyrene
Pyrene
To 1 uene
Trichloroethy lene
Toxic metals and inorganics
Cadmium
Chromium, total
Chromium, hexavalent
Copper
Cyanide, total
Cyanide, awn. to chlor.
Lead
Nickel
Zinc
Classical pollutants, mg/L
Aluminum
Fluorides
I ron
Manganese
01 1 and grease
Phenols, total
Phosphorus
TOS
TSS
Number of
samples


9
3
6
6
3
18
18
18
7

18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
\B
18
16
18
7
9
20
20
20
20
20
20
20
20
20

20
20
20
20
20
ZO
18
3
20
Number of
detections


it
0
1
1
0
1
0
3
0

m
2
6
I
15
2
0
1
I
1
0
0
2
1
0
2
0
0
0
0
5
3
15
0
7
17
1 1
2
1
20

8
20
20
15
15
15
1 1
3
18
Range
of saraoles


NO - 3, 100

NO - 36
ND - H3

NO - BDL

ND - BDL


NO - 880
ND - 15
ND - 20
ND - BDL
ND - 330
ND - BDL

ND - BDL
ND - BDL
ND - BDL


ND - BDL
ND - BDL

ND - BDL




ND - 3, 100
ND - 270
ND - UUO

ND - 17
ND - 200
ND - 80
ND - 61
ND - 190
llf - 5,000

ND - l.ll
0. 15 - II
0.018 - 1.6
ND - 0.78
ND - 26
ND - O.Oll
ND - 15
99-1, 100
ND - 24
Mean(a)
of samples


1(00

BDL
BDL

BDL

BDL


72
BDL
BDL
BDL
6U
BDL

BDL
BDL
BDL


BDL
BDL

BOL




410
15
U3

BDL
33
11*
BDL
BDL
610

0.38
1.6
0.37
0. It
5.3
0.012
1.2
UUO
6.2
        Analytic methods:  V.7.3.9, Data set 2.
        ND,  not detected.
        BDL, below detection limit.
        (a)  Due to convention  in the reference, BDL was calculated as equal to zero in the mean
            concentration.
Date:   9/25/81
II.8.3-14

-------
              TABLE 8.3-7.  WASTEWATER FLOWS FOR THE COIL
                            COATING INDUSTRY [2-18]
Operation
  Number
of samples
  Range
                                                m3/day
Mean
Cleaning
Conversion coating
Cleaning
Conversion coating
Cleaning
Conversion coating
Quenching
      9
      8
     20
                                      Steel
7.7 - 650
1.4 - 75
                                    Galvanized
                                      Aluminum
                                  Total industry
170
 38
10
10
15 -
1.8 -
330
75
110
36
12
12
11
15
- 160
- 60
83
39
 36 - 1,100
320
II. 8.3.2.1  Coil Coating on Steel

Wastewaters from the coil coating on steel subcategory generally
have higher levels of phosphorus than that from the other sub-
categories because of the use of concentrated phosphate alkaline
cleaners.  Oil and grease in this subcategory are also found in
larger concentrations than the other basis materials wastewater
because of the increased raw material protection needed to inhib-
it rust.  This can often cause an increase in the number of
hydrocarbons found in this wastewater.  Suspended solids may be
greater because of the adhering dirts in the oil.

II.8.3.2.2  Coal Coating on Steel (Galvanized)

Coil coating on galvanized steel generally produces significant
suspended solids concentrations in wastewater.  Another pollutant
problem is the high concentration of dissolved zinc and iron in
the wastewater as a result of the dissolved metals from the
cleaning operation.  Significant concentrations of hexavalent
chromium are generally expected in all three subcategory waste-
waters.
Date:   9/25/81
         II.8.3-15

-------
II.8.3.2.3  Coll Coating on Aluminum

Wastewaters from the coil coating on aluminum subcategory contain
higher levels of cyanide and fluorides than the other subcate-
gories as a result of chromating solutions containing cyanide
ions and hydrofluoric acid.  Aluminum wastewater is also more
acidic and contains more dissolved aluminum.  This is due to the
acidic nature of the chromating solutions that dissolve more
aluminum than the phosphating solutions.

Painting wastewater generally consists of quench water.  Waste-
water from this operation is generally less toxic than wastewater
from the other general operations; normally, only the following
pollutants are expected to exceed 10 yg/L:  oil and grease,
fluorides, TSS, iron, zinc, bis(2-ethylhexyl) phthalate, and
diethyl phthalate.

II.8.3.3  PLANT SPECIFIC DESCRIPTIONS [2-18]

A limited amount of plant specific data for the coil coating
industry are available.  Data available in the reference docu-
ments on the effluent streams for the plants discussed in the
following subsections are summarized in Table 8.3-8.  These data
are verification data.  All three subcategories are represented
by the facilities.

II.8.3.3.1  Plant 36056

This site coats cold rolled steel and galvanized steel.  The data
presented are the analyses of the effluent from the cold rolled
steel operations.  Approximately 1.1 x 107 m2 of steel material
are cleaned, coated and painted annually (based on 1976 figures).
The plant uses water at a rate of 1.2 L/m2 of product and pro-
duces 1630 m2/hr. of coated steel coil.

II.8.3.3.2  Plant 38053

This facility coats both cold rolled steel and galvanized steel.
The data presented are the analyses of the effluent from the gal-
vanized steel operations.  Approximately 2.2 x 107 m2 of galva-
nized steel are cleaned and coated and 4.5 x 107 m2 painted
annually  (1976 figures).  Water is used at a rate of 0.63 L/m2
product and the production rate* of painted galvanized steel is
2700 m2/hr.

II.8.3.3.3  Plant 01057

No production information is available for this facility.  The
data presented are the analyses of the effluent from the aluminum
operations.  Treatment consists of lagooning and sedimentation.
Date:  9/25/81              II.8.3-16

-------
                TABLE 8.3-8.   PLANT  SPECIFIC EFFLUENT CONCENTRATIONS,
                              VERIFICATION DATA [2-18]
Pol lutant
Toxic pollutants, ug/L
Toxic organics
1,1, l-Trichlo roe thane
1 , l-Dichloroethane
1 , 1 -Dichloroethylene
1 ,2-trans-Dichloroethylene
2, 4-D i methy 1 pheno 1
Fluoranthene
1 sophorone
Naptha lene
Phenol
Bis(2-ethylhexyl )
phtha late
Butyl benzyl phtha I ate
Di-n-butyl phtha late
Di-n-octyl phtha late
Diethyl phtha late
Dimethyl phtha late
1 ,2-Benzanthracene
Benzo (a) pyrene
3,4-Benzo fluoranthene
Benzo (k) fluoranthene
Chrysene
Acenaphthylene
Anthracene
1 , 1 ,2-Benzoperylene
Fluorene
Phenanthrene
1 ,2,5,6-Dibenz anthracene
ldeno( 1 ,2,3-cd) pyrene
Pyrene
Toluene
Trichloroethylene
Toxic metals and inorqanics
Cadmium
Chromium, total
Chromium, hexavalent
Copper
Cyanide, total
Cyanide, amn. to chlor.
Lead
Nickel
Zinc
Classical pollutants, mg/L
Aluminum
Fluorides
1 ron
Manganese
Oil and grease
Phenols, total
Phosphorus
TSS
Steel
Subcategory
Plant 36056


BDL
ND


ND
BDL
ND
BDL


BDL

BDL
ND
BDL
BDL
BDL

ND
ND
BDL
ND
12

BDL
12


BDL

BDL

ND
1,700
600
120
BDL
ND
1 1
10
290

37

700
90
3,000
BDL
4,600
460,000
Ga 1 van i zed
Subcategory
Plant 38053


BDL

ND
ND

BDL
BDL
BDL


42
ND
BDL
ND
330
ND
BDL
ND
ND
ND
BDL
ND
BDL
ND
BDL
BDL
ND
ND
BDL

ND

ND
1,300
ND
BDL
ND
ND
ND
15
2,900

3,900

250
BDL
10,000
33
1,700
27,000
Al uminum
Subcateqory
Plant 01057







ND
ND
BDL


15
ND
ND
ND
140
BDL
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND



BDL
BDL
ND
ND
14
ND
ND
ND
390

5,900
2,300
130
BDL
5,900
24
BDL
8,600
     Analytic methods:  V.7.3.9,  Data set 2.
     ND,  not detected.
     BDL,  below detection limit.
Date:   9/25/81
II.8.3-17

-------
II.8.3.4  POLLUTANT REMOVABILITY [2-18]

This section describes the treatment techniques currently in use
to recover or remove wastewater. pollutants normally found at coil
coating facilities.  The treatment processes can be divided into
six categories:   recovery techniques,  oil removal,  dissolved
inorganics removal, cyanide destruction,  trace organics removal,
and solids removal.

Recovery of process chemicals in coil coating plants is applica-
ble to chromating baths and sealing rinses.   Recovery techniques
currently in use include ion exchange and electro-chemical chro-
mium regeneration.

Other possible recovery processes that are not currently in use
include evaporation and insoluble starch xanthate.   Ion exchange
columns are used at four facilities within the coil coating
industry.  The wastewater stream is filtered to remove solids and
then flows through a column of ion exchange resin which retains
copper,  iron, and trivalent chromium.   The stream then passes
through an anion exchanger which retains hexavalent chromium.
Several columns may be necessary to achieve the desired levels.
By regenerating the exchange resin, the life expectancy of the
column is extended.  In some regeneration procedures, hexavalent
chromium is removed by conversion to sodium dichromate with
sodium hydroxide.  The sodium dichromate is then passed through a
cation exchanger which converts it to chromic acid for reuse.
The cation exchanger can be regenerated with sulfuric acid.

Electrochemical chromium regeneration oxidizes trivalent chromium
to hexavalent chromium by electrooxidation.   This system can be
used with the wastewater or the drag-out sludge from a settling
basin.  One coil coating operation presently uses this technique
for chromic acid regeneration.  This system offers relatively low
energy consumption, operation at normal bath temperatures, elimi-
nation of metallic sludges, and regeneration of chromic acid.

Oils occurring in wastewaters from the coil coating industry gen-
erally come from cutting fluids, lubricants, and preservative
coatings used in metal fabrication operations.  Oil skimming is
the only current method used in this industry to remove this oil.
Oil flotation has been suggested for this industry to achieve low
oil concentrations or to remove emulsified oils but is not in
current practice.

Oil skimming as a pretreatment method is effective in removing
naturally floating waste material.  It can also improve the per-
formance of subsequent downstream treatments.  Many coil coating
plants employ this treatment process.
Date:  9/25/81              II.8.3-18

-------
The dissolved inorganic pollutants for the coil coating category
are hexavalent chromium, chromium (total), copper, lead, nickel,
zinc, cadmium, iron,  and phosphorus.   Removal of these inorganics
is often a major step toward detoxifying wastewater.   Chromium
reduction, which can be carried out chemically or electrochemi-
cally, is frequently a preliminary step.  The next major step in
the classic treatment system is chemical precipitation, which is
often accomplished by the addition of lime,  sodium sulfide,  sodi-
um hydroxide, sodium carbonate, or ammonia.   These additives
result in the precipitation of metal hydroxides.

Cyanide destruction in coil coating facilities is necessary to
reduce the cyanide concentration in wastewater from the plating
and cleaning baths.  Cyanide is generally destroyed by oxidation.
Alkaline chlorination is the standard technique used in the Coil
Coating Industry, but oxidation by ozone, hydrogen peroxide, or
electrochemically have been suggested for use.  These alternate
techniques, however,  have not been demonstrated at this time.

Plant sampling data show that organic compounds tend to be re-
moved in standard wastewater treatment equipment.  Oil separation
not only removes oil but also removes organics that are more
soluble in the oil than in water.  Clarification also removes
organic solids by adsorption on inorganic solids.  Carbon adsorp-
tion to remove organics has been demonstrated in the electro-
plating industry but is not presently used in the Coil Coating
Industry.

Sedimentation is the most common technique used for the removal
of precipitates.  In this process sedimentation is preceded by
chemical precipitation, which converts dissolved pollutants to
solid form, and by coagulation, which enhances settling by coagu-
lating suspended precipitates into larger, faster settling parti-
cles.  The major advantage of sedimentation is the simplicity of
the process.  Sedimentation is used in 55 coil coating plants in
various forms, including ponds, lagoons, slant tube clarifiers,
and Lamella clarifiers.

Granular b'ed filters are used in 10 coil coating plants to remove
residual solids from the clarifier effluent.   Chemicals may be
added upstream to enhance the solids removal.  Pressure filtra-
tion is also used in this industry to reduce the solids concen-
tration in clarifier effluent and to remove excess water from the
clarifier sludge.  Other sludge dewatering technologies used
include vacuum filtration, centrifugation, and sludge bed drying.
No pollutant removability data are currently available for this
industry.
 Date:   8/31/82 R  Change  1   II.8.3-19

-------
           II.8.5  ELECTRICAL 'AND ELECTRONIC COMPONENTS

II.8.5.1  INDUSTRY DESCRIPTION

II.8.5.1.1  General Description [2-20]

The Electrical and Electronic Components Industry encompasses the
manufacturing of a wide range of electrical products from the
following product areas:

     •  Carbon and graphite
     •  Switchgears and fuses
     •  Resistance heaters
     •  Incandescent lamps
     •  Fluorescent lamps
     •  Electron tubes
     •  Cathode and television tubes
     •  Insulators - mica
     •  Insulators - plastic and laminates
     •  Capacitors
     •  Semiconductors  (simple)
     •  Semiconductors  (complex)
     •  Electric and electronic components
     •  Wet transformers.

Table 8.5-1 is a listing of the SIC codes included in the Elec-
trical and Electronic Components Industry.  Most of these SIC
codes were included in the Electrical Products Category in the
NRDC Consent Decree.  Table 8.5-2 presents the Electrical Pro-
ducts Industry Summary in terms of the number of subcategories
and discharges.


      TABLE 8.5-1.  SIC CODES FOR ELECTRICAL AND ELECTRONIC
                    COMPONENTS CATEGORY [2-20]


SIC 3612 - Power, Distribution, and Specialty Transformers
SIC 3613 - Switchgear and Switchboard Apparatus
SIC 3621 - Motors and Generators
SIC 3622 - Industrial Controls
SIC 3623 - Welding Apparatus, Electric
SIC 3624 - Carbon and Graphite Products
SIC 3629 - Electrical Industrial Apparatus, Not Elsewhere
           Classified
Date:  1/24/83  R Change 2 II.8.5-1

-------
SIC 3631 - Household Cooking Equipment
SIC 3632 - Household Refrigerators and Home and Farm Freezers
SIC 3633 - Household Laundry Equipment
SIC 3634 - Electric Housewares and Fans
SIC 3635 - Household Vacuum Cleaners
SIC 3639 - Household Appliances,  Not Elsewhere Classified
SIC 3641 - Electric Lamps
SIC 3643 - Current-Carrying Wiring Devices
SIC 3644 - Noncurrent-Carrying Wiring Devices
SIC 3645 - Residential Electric Lighting Fixtures
SIC 3646 - Commercial, Industrial, and Institutional Electric
           Lighting Fixtures
           Vehicular Lighting Equipment
           Lighting Equipment, Not Elsewhere Classified
           Radio and Television Receiving Sets, Except Communi-
           cation Types
           Phonograph Records and Prerecorded Magnetic Tape
           Telephone and Telegraph Apparatus
           Radio and Television Transmitting, Signaling,  and
           Detection Equipment and Apparatus
           Radio and Television Receiving-Type Electron Tubes,
           Except Cathode Ray
           Cathode Ray Television Picture Tubes
           Transmitting, Industrial, and Special Purpose Electron
           Tubes
SIC 3674 - Semiconductors and Related Devices
SIC 3675 - Electronic Capacitors
SIC 3676 - Resistors, for Electronic Applications
SIC 3677 - Electronic Coils, Transformers, and Other Inductors
SIC 3678 - Connectors, for Electronic Applications
SIC 3679 - Electronic Components, Not Elsewhere Classified
SIC 3693 - Radiographic X-Ray, Fluoroscopic X-Ray, Therapeutic
           X-Ray, and Other X-Ray Apparatus and Tubes; Electro-
           medical and Electrotherapeutic Apparatus
SIC 3694 - Electrical Equipment for Internal Combustion Engines
SIC 3699 - Electrical Machinery,  Equipment, and Supplies, Not
           Elsewhere Classified
SIC 3647 -
SIC 3648 -
SIC 3651 -

SIC 3652 -
SIC 3661 -
SIC 3662 -

SIC 3671 -

SIC 3672 -
SIC 3673 -
             TABLE 8.5-2 INDUSTRY SUMMARY [2-20]
                 Industry:  Electrical Products
                 Total Number of Subcategories for
                   Which Effluent Limitations Are
                   Required:  6
                 Number of Subcategories Studied:  6

                 Number of Dischargers in Industry:
                 •  Direct:  2,000
                 •  Indirect:  8,000
                 •  Zero:   Unknown
Date:  1/24/83   R Change 2 11.8.5-2

-------
II.8.5.1.2  Subcategory Description

Based on product type, the Electrical and Electronic Components
Industry can be divided into 21 subcategories as follows:

        Semiconductors
        Electronic Crystals
        Electron Tubes
        Phosphorescent Coatings
        Capacitors, Fixed
        Capacitors, Fluid Filled
        Carbon and Graphite Products
        Mica Paper
        Incandescent Lamps
        Fluorescent Lamps
        Fuel Cells
        Magnetic Coatings
        Resistors
        Transformers, Dry
        Transformers, Fluid Filled
        Insulated Devices, Plastic and Plastic Laminated
        Insulated Wire and Cable, Nonferrous
        Ferrite Electronic Parts
        Motors, Generators, and Alternators
        Resistance Heaters
        Switchgear

The Electrical and Electronic Components Industry is derived from
categories found in the Standard Industrial Code (SIC) major
group 36,  composed of Electrical and Electronic Machinery, Equip-
ment, and Supplies.  Many of the categories listed under this
major classification, however, were never evaluated as part of
the Electrical and Electronic Components Industry because it was
concluded that the wastewater discharges from these categories
were primarily associated with the Metal Finishing Industry.  In
addition,  other categories have been recommended for exclusion
under Paragraph 8 as a result of the nature or volume of the
wastewater generated by the industries.  Two subcategories of the
Electrical and Electronic Components Industry are presently
subject to regulation:  semiconductors and electronic crystals.
A description of these subcategories is presented below in con-
siderable detail while the descriptions are abbreviated for
subcategories which are being excluded or deferred from regula-
tion.

     Semiconductor Subcategory

Semiconductors are solid state electrical devices which perform a
variety of functions.  These functions include information pro-
cessing and display, power handling, and the conversion between
light energy and electrical energy.  The semiconductors range
Date: 1/24/83   R Change 2 II.8.5-3

-------
from the simple diode,  which may be turned on or off like a light
bulb, to the integrated circuit, which may have the equivalent of
250,000 active switching components in a 0.64-cm (0.25-inch)
square.

Semiconductors are used throughout the electronics industry.  The
major semiconductor products are:

     •  silicon-based integrated circuits which include bipolar,
        MOS (metal oxide silicon), and digital and analog devices;

     •  gallium arsenide and gallium phosphide wafers for the
        production of light emitting diodes (LED's);

     •  silicon and germanium wafers for diode and transistor
        production; and

     •  glass wafer devices such as for liquid crystal display
        (LCD) production.


     Silicon-based integrated circuits require high purity,
single crystal silicon as a basis material which can be purchased
as ingots (cylindrical crystals which can be sliced into wafers),
slices, or wafers.  These slices or wafers are lapped or polished
by means of a mechanical grinding machine, or they are chemically
etched to provide a smooth surface and remove surface oxides and
contaminants.  Commonly used etch solutions are hydrofluoric acid
or hydrofluoric-nitric acid mixtures.  The presence of hydro-
fluoric acid is generally necessary because of the solubility
characteristics of silicon and silicon oxide.  Other acids such
as sulfuric or nitric may be used depending on the nature of the
material to be removed.  Wastewater results from cooling the
diamond-tipped saws used for slicing and from deionized water
rinses following chemical etching and milling operations.

The next step in the process is the growth of either silicon
dioxide, silicon nitride, or an epitaxial silicon layer on the
surface of the wafer.  The wafer is then coated with a photo-
resist, a photosensitive emulsion that hardens and clings to the
wafer when exposed to light.  The wafer is next exposed to ultra-
violet light using glass photomasks that allow the light to
strike only selected areas.  After exposure to ultraviolet light,
unexposed resist is removed from the wafer, usually in a de-
ionized water rinse.  The wafer is then visually inspected under
a microscope and etched in a solution containing hydrofluoric
acid (HF).   The etchant produces depressions, called holes or
windows, where the diffusion of dopants later occurs.  Dopants
are impurities such as boron, phosphorus, and other specific
metals.  These impurities eventually form circuits through which
electrical impulses can be transmitted.  The wafer is then rinsed
Date:  1/24/83   R Change 2 II.8.5-4

-------
in an acid or solvent solution to remove the remainder of the
hardened photoresist material.

Diffusion of dopants is generally a vapor phase process in which
the dopant, in the form of a gas, is injected into a furnace
containing the wafers.   Gaseous phosphine and boron trifluoride
are common sources for phosphorus and boron dopants, respec-
tively.  The gaseous compound breaks down into elemental phos-
phorus or boron on the hot wafer surface.  Continued heating of
the wafer allows diffusion of the dopant into the surface through
the windows at controlled depths to form the electrical pathways
within the wafer.  Solid forms of the dopant may also be used.
For example, boron oxide wafers can be introduced into the fur-
nace in close proximity to the silicon wafers.  The boron oxide
sublimes and deposits boron on the surface of the wafer by con-
densation and then diffuses into the wafer upon continued heat-
ing.  This photolithographic-etching-diffusion-oxide process
sequence may occur a number of times depending upon the appli-
cation of the semiconductor.

During the photolithographic-etching-diffusion-oxide processes,
the wafer may be cleaned many times in mild acid or alkali'solu-
tions followed by deionized water rinses and solvent drying with
acetone or isopropyl alcohol.  This is necessary to maintain
wafer cleanliness.

After the diffusion processes are completed, a layer of metal is
deposited onto the surface of the wafer to provide contact points
for final assembly.  The metals used for this purpose include
aluminum, copper, chromium, gold, nickel, platinum, and silver.
One of the following three processes is used to deposit this
metal layer:

     •  Sputtering - a process whereby the source metal and the
        target wafer are electrically charged, as the cathode and
        anode, respectively, in a partially evacuated chamber.
        The electric field ionizes the gas in the chamber and
        these ions bombard the source metal cathode, ejecting
        metal which deposits on the wafer surface.

     •  Vacuum deposition - a process whereby the source metal is
        treated in a high vacuum chamber by resistance or elec-
        tron beam heating to the vaporization temperature.  The
        vaporized metal condenses on the surface of the silicon
        wafer.

     •  Electroplating - a process whereby the source metal is
        electrochemically deposited on the target wafer by immer-
        sion in an electroplating solution and application of an
        electrical current.
Date:  1/24/83  R Change 2 II.8.5-5

-------
Finally, the wafer receives a protective oxide layer (passiva-
tion) coating before being backlapped to produce a wafer of the
desired thickness.  Then the individual chips are diced from the
wafer and are assembled in lead frames for use.   Many companies
involved in semiconductor production in the United States do not
dice finished wafers.  Rather, the completed wafer is packed and
sent to overseas facilities where dicing and assembly operations
are less costly.

     Light emitting diodes are produced from single crystal
gallium arsenide or gallium phosphide wafers.  These wafers are
purchased from crystal growers and upon receipt are placed in a
furnace where a silicon nitride layer is grown on the wafer.  The
wafer then receives a thin layer of photoresist, is exposed
through a photomask, and is developed with a xylene-based devel-
oper.  Following this, the wafer is etched using hydrofluoric
acid or a plasma-gaseous-etch process, rinsed in a deionized
water, and then stripped of resist.  The wafer is again rinsed in
deionized water before a dopant is diffused into the surface of
the wafer.  A metal oxide covering is applied next, and then a
photoresist is applied.  The wafer is then masked, etched in a
solution of aurostrip (a cyanide-containing chemical commonly
used in gold stripping), and rinsed in a deionized water.  The
desired thickness is produced by backlapping, and a layer of
metal, usually gold, is sputtered onto the back of the wafer to
provide electrical contacts.  Testing and assembly complete the
production process.

     Diodes and resistors are produced from single crystal sil-
icon or germanium wafers.  These devices, called discrete de-
vices, are manufactured on a large scale, and their use is mainly
in older or less sophisticated equipment designs, although dis-
crete devices still play an important role in high-power switch-
ing and amplification.

The single crystal wafer is cleaned in an acid or alkali solu-
tion, rinsed in deionized water, and coated with a layer of
photoresist.  The wafer is then exposed and etched in a hydro-
fluoric acid soluton.  This is followed by rinsing in deionized
water, drying, and doping in diffusion furnaces where boron or
phosphorus are diffused into the surface of the wafer.  The
wafers are then diced into individual chips and sent to the
assembly area.  In the assembly area electrical contacts are
attached to the appropriate areas and the device is sealed in
rubber, glass, plastic, or ceramic material.  Wires are attached
and the device is inspected and prepared for shipment.

     Liquid crystal display (LCD) production begins with opti-
cally flat glass that is cut into 10-cm  (4-inch) squares.  The
squares are then cleaned in a solution containing ammonium hy-
droxide, immersed in a mild alkaline stripping  solution, and
rinsed in deionized water.  The plates are spun dry and sent to
the photolithography area for further processing.


Date:   1/24/83  R Change 2 II.8.5-6

-------
In the photolithographic process a photoresist mask is applied
with a roller, and the square is exposed and developed.  This
square then goes through deionized water rinses and is dried,
inspected, etched in an acid solution, and rinsed in deionized
water.  A solvent drying step is followed by another alkaline
stripping solution.  The square then goes through deionized water
rinses, is spun dry, and inspected.

The next step of the LCD production process is passivation.  An
oxide layer is deposited on the glass by using liquid silicon
dioxide, or by using silicon and oxygen gas with phosphene gas as
a dopant.  This layer is used to keep harmful sodium ions on the
glass away from the surface where they could alter the electronic
characteristics of the device.   Several production steps may
occur here if it is necessary to rework the piece.  These include
immersion in an ammonium bifluoride bath to strip silicon oxide
from a defective piece followed by deionized water rinses and a
spin dry step.  The glass is then returned to the passivation
area for reprocessing.

After passivation, the glass is screen printed with devitrified
liquid glass in a matrix.  Subsequent baking causes the devitri-
fied glass to become vitrified, and the squares are cut into the
patterns outlined by the vitrified glass boundaries.  The saws
used to cut the glass employ contact cooling water which is
filtered and discharged to the waste treatment system.

The glass is then cleaned in an alkaline solution and rinsed in
deionized water.  Following inspection, a layer of silicon oxide
is evaporated onto the surface to provide alignment for the
liquid crystal.  The two mirror-image pieces of glass are aligned
and heated in a furnace, bonding the vitrified glass and creating
a space between the two pieces of glass.  The glass assembly is
immersed in the liquid crystal solution in a vacuum chamber, air
is evacuated, and the liquid crystal is forced into the space
between the glass pieces.  The glass is then sealed with epoxy,
vapor-degreased in a solvent, shaped on a diamond wheel, in-
spected, and sent to assembly.

Contact water is used throughout the production of semiconduc-
tors.  Plant incoming water is first pretreated by deionization
to provide ultrapure water for processing steps.   This ultrapure
water or deionized water is used to formulate acids; to rinse
wafers after processing steps;  to provide a medium for collecting
exhaust gases from diffusion furnaces, solvents,  and acid baths;
and to clean equipment and materials in semiconductor production.
Water also cools and lubricates the diamond saws and grinding
machines used to slice, lap, and dice wafers during processing.
Date:  1/24/83   R Change 2 II.8.5-7

-------
     Electronic Crystals Subcategory

Based on their properties and their uses in the industry,  elec-
tronic crystals can be divided into three types:

     •  piezoelectric crystals,
     •  semiconducting crystals,  and
     •  liquid crystals.

     Piezoelectric crystals are transducers which interconvert
electrical voltage and mechanical force.  The three principal
types are quartz,  ceramic, and yttrium-iron-garnet (YIG).

Quartz crystals are the most widely used of the piezoelectric
crystals, with applications as timing devices in watches,  clocks,
and record players; frequency controllers,  modulators,  and de-
modulators in oscillators; and filters.  Some quartz is mined,
but the main supply comes from synthesized material produced by
about forty companies in the United States.

The growth of quartz crystals is a hydrothermal process carried
out in an autoclave under high temperature and pressure.  The
vessel is typically filled to 80 percent of the free volume with
a solution of sodium hydroxide or sodium carbonate.  Particles of
a-quartz nutrient  are placed in the lower portion of the vessel
where they are dissolved.  The quartz is then transferred by
convection currents through the solution and deposited on seed
crystals which are suspended in the upper portion of the vessel.
Seeds are thin wafers or spears of quartz about six inches long.
A vessel normally contains 20 seeds.  Nutrient quartz will dis-
solve and deposit onto the seed crystals because a small temper-
ature gradient exists between the lower and upper portion of the
autoclave, promoting the migration of quartz to the upper portion
of the vessel.  Upon completion of the growth cycle (45 to 60
days), crystals are removed and cleaned for the fabrication
process.

The quartz crystals are cut or sliced using diamond blade saws or
slurry saws.  Diamond blade saws are used when one wafer at a
time is cut.  Slurry saws are utilized in mass production lines
for cutting many wafers at a time.  The crystal wafers are then
lapped to the desired thickness.  After lapping, the crystal is
usually etched with hydrofluoric acid or ammonium bifluoride and
subsequently rinsed with water.  Crystal edges are then beveled
using either a dry grinding grit or a water slurry.  Following
this, metals are deposited on the crystal by vacuum deposition.
The crystal wafers are mounted on a masking plate and placed in
an evacuated bell jar.  Metal strips in the jar are vaporized,
coating the unmasked area of the wafer.  The metal coating (gold,
silver, or aluminum are often used) functions as the crystal's
conducting base.  The metal coating operation is covered by
regulations for the Metal Finishing Industry.  During fine tune


Date:  1/24/83   R Change 2 II.8.5-8

-------
deposition, the crystal is allowed to resonate at a specified
frequency and another thin layer of metal is deposited on it.
Wire leads are attached to the crystal and it is sealed in a
nitrogen atmosphere.  At this point the crystal is ready for sale
or insertion into an electronic circuit.

Ceramic crystals are basically fired mixtures of the oxides of
lead, zirconium, and titanium.  They are used in transducers,
oscillators, utrasonic cleaners, phonograph cartridges, gas
igniters, audible alarms, keyboard switches, and medical elec-
tronic equipment.

Ceramic crystal production begins by mixing lead oxide, zirconium
oxide and titanium oxide powders plus small amounts of dopants to
achieve desired specifications in the final product.  The powders
are mixed with water to obtain uniform blending, then filtration
takes place and the waste slurry is sent to disposal.  This
mixture is roasted, ground wet, and blended with a binder (poly-
vinyl alcohol) in a tank called a blundger.  The mixture is then
spray dried, pressed, and fired to drive off the binder, which is
not recovered.  Formed crystals are enclosed in alumina and
refired.  After this final firing crystals are polished, lapped,
and sliced as in quartz production.  Electrodes, usually made of
silver, are then attached to the crystals.  Approximately ten
percent of the crystals -have electrodes deposited by electroless
nickel plating.  This plating operation is covered by regulations
for the Metal Finishing Industry.  Poling, the final process
step, gives the crystal its piezoelectric properties.  This step
is performed with the crystal immersed in a mineral oil bath.
Some companies sell the used mineral oil to reclaimers.  After
poling the crystal is ready for sale and use.  Ceramic crystal
production is very small.

YIG crystals are made by the slow crystal growth of a melt of
yttrium oxide, iron oxide, and lead oxide.  Their primary use is
in the microwave industry for low frequency applications as in
sonar.   Their incorporation into microwave circuits makes wide-
band tuning possible.

The production of YIG crystals involves the melting of metal
compounds to form large single crystals which are processed to
yield minute YIG spheres for use in microwave devices.  Yttrium
oxide,  iron oxide and lead oxide powders are mixed, placed in a
platinum crucible and melted in a furnace.  After the melt equi-
librates at this temperature the furnace is cooled, the slag is
poured off, leaving the YIG crystals attached to the crucible.
This growth process takes approximately 28 days.  The crucible is
soaked in hydrochloric and nitric acid to remove the crystals
which are then sliced by a diamond blade saw to form cubes 0.10 cm
(0.04 inches) on a side.  These cubes are placed in a rounding
machine, and the rounding process is followed by polishing to
obtain perfectly spherical crystals for use in a microwave device.


Date:  1/24/83   R Change 2 11.8.5-9

-------
The production of YIG and ceramic crystals with piezoelectric
properties constitutes a minor portion of the piezoelectric
crystal industry.  The entire YIG production for the USA is less
than 6.8 kg (fifteen pounds) per year.

     Semiconducting crystals have properties intermediate between
a conductor and an insulator, thus allowing for a wide range of
applications in the field of microelectronics.  In conductors,
current is carried by electrons that travel freely throughout the
atomic lattice of the substance.  In insulators the electrons are
tightly bound and are therefore unavailable to serve as carriers
of electric current.  Semiconductors do not ordinarily contain
free charge carriers but generate them with a modest expenditure
of energy.

There are several types of semiconducting crystals such as sili-
con, sapphire, gallium gadolinium garnet (GGG), and gallium
arsenide crystals.

Silicon crystals are widely used in the manufacture of microelec-
tronic chips:  transistors, diodes, rectifiers, other circuit
elements, and solar cells.  The raw material used to produce the
crystals is polycrystalline silicon.  Reduction of purified
trichlorosilane with hydrogen is the usual method of producing
the high purity polycrystalline ("poly").silicon.  Single crys-
tals of silicon are then grown by the Czochralski method, the
most common crystal growing technique for semiconductor crystals.
This method functions by lowering a seed crystal (a small single
crystal) into a molten pool of the crystal material and raising
the seed slowly  (over a period of days) with constant low rota-
tion.

Because the temperature of the melt is just above the melting
point, material solidifies onto the seed crystal, maintaining the
same crystal lattice.  Crystals up to 15.24 cm (6 in) in diameter
and 1.22 m (4 ft) long can be grown by this method.

After a crystal has been grown, the outside diameter is ground to
produce a crystalline rod of constant diameter.  The ends are cut
off and used to evaluate the quality of the crystal.  At the same
time, its orientation is determined and a flat is ground the
length of the rod to fix its position.  Rods are then sliced into
wafers.  Silicon dust and cutting oils mixed with water are waste
products of the grinding and cutting operations.

Lapping is a machining operation using an alumina and ethylene
glycol abrasive medium which produces a flat polished surface and
reduces the thickness of the wafers.  After lapping, the wafers
are polished using a hydrated silica medium.  The final cleaning
is done with various acids, bases, and solvents.
Date:  1/24/83  R Change 2 II.8.5-10

-------
Crystals of pure silicon are poor conductors of electricity.   In
order to make them better conductors, controlled amounts of
impurity atoms are introduced into the crystal by a process
called doping.  When silicon is doped with an element whose atoms
contain more or fewer valence electrons than silicon, free elec-
trons or electron "holes" are thus available to be mobilized when
a voltage is applied to the crystal.   Phosphorus and boron are
common dopants used in silicon crystals.

Sapphire crystals are used as single crystal wafers which act as
inactive substrates for an epitaxial film of silicon, that is,
substrates upon which a thin layer of silicon is deposited in a
single-crystal configuration.  This is referred to as silicon on
sapphire (SOS).  In addition to being a dielectric material,
single crystal sapphire exhibits a combination of optical and
physical properties which make it ideal for a variety of demand-
ing optical applications.  Sapphire,  the hardest of the oxide
crystals, maintains its strength at high temperatures, has good
thermal and excellent electrical properties, and is chemically
inert.  Therefore, it can be used in hostile environments when
optical transmission ranging from vacuum ultraviolet to near
infrared is required.  Sapphire crystals have found application
in semiconductor substrates, infrared detector cell windows,  UV
windows and optics, high power laser optics, and ultracentrifuge
cell windows.

Gallium gadolinium garnet (GGG) is the most suitable substrate
for magnetic garnet films because of its excellent chemical,
mechanical, and thermal stability, nearly perfect material and
surface quality, crystalline structure, and the commercial avail-
ability of large diameter substrates.  GGG is the standard sub-
strate material used for epitaxial growth of single crystal iron
garnet films which are used in magnetic bubble domain technology.

To produce sapphire and gallium gadolinium garnet (GGG) crystals
a raw material called crackle (high purity alumina waste from a
European gem crystal growing process) is melted in an iridium
crucible.  Sapphire is pure alumina.   Gadolinium oxide and gal-
lium oxide powders are added to the crucible if GGG is the desired
product.  These are melted using an induction furnace under a
nitrogen atmosphere with a trace of oxygen added.  Crystals are
pulled from the melt using the Czochralski method.

These crystals are annealed in oxygen-gas furnaces after growth
in order to remove internal stress and make the crystalline rods
less brittle.  Sapphire and GGG rods are ground and sliced using
diamond abrasives and a coolant consisting of a mixture of oil
and water.  Wafers are lapped using a diamond abrasive compound
and lubricants, and are polished with a colloidal silica slurry.
GGG wafers are coated with a thin film using liquid-phase epi-
taxy.  The film has small permanent magnetic domains, which make
Date:   1/24/83  R Change 2 II.8.5-11

-------
it useful for "magnetic bubble" memory devices.   The sapphire
wafers are coated with a layer of epitaxial silicon to produce
the SOS substrates for microelectronic chip manufacture.

Gallium arsenide and gallium phosphide crystals were developed
under the need for a transistor material with good high temper-
ature properties.  These crystals exhibit low field electron
mobility, and are therefore useful at high frequencies,  in such
devices as the field effect transistor (FET).  The technology of
manufacturing high performance gallium arsenide FET's is maturing
at a rapid rate and the devices are experiencing a greatly expand-
ing role in oscillators, power amplifiers, and low noise/ high
gain applications.

Most gallium arsenide/phosphide is presently being used for
production of light emitting diodes (LEDs) which can convert
electric energy into visible electromagnetic radiation.   The
interconversion of light energy and voltage in gallium arsenide
is reversible.  Hence this material is also undergoing intensive
development as a solar cell, in which sunlight is converted
directly to electricity.

Indium arsenide and indium antimonide crystals,  formed by direct
combination of the elements, are used as components of power
measuring devices.  These crystals are uniquely suited to this
function because they demonstrate a phenomenon known as the Hall
Effect, the development of a transverse electric field in a
current-carrying conductor placed in a magnetic field.

Bismuth telluride crystals demonstrate a phenomenon known as
thermoelectric cooling because of the Peltier Effect.  When a
current passes across a junction of dissimilar metals, one side
is cooled and the other side heated.  If the cold side of the
junction is attached to a heat source, heat will be carried away
to a place where it can be conveniently dissipated.  Devices
utilizing this effect are used to cool small components of elec-
trical circuits.

The formation of gallium arsenide, gallium phosphide, and indium
bismuth telluride takes place by a chemical reaction which occurs
in an enclosed capsule.  When gallium arsenide or phosphide
crystals are produced, the gallium, on one side of the capsule,
is heated to more than 1200°C.  The arsenic or phosphorus on the
other side of the capsule is heated separately until it vapor-
izes.  The vapor and hot metal react to form a molten compound.
(In the case of phosphorus, high pressure is required.)  The
molten compound can then be crystallized in situ by the Chalmers
technique or cooled and crystallized by the Czochralski method.
These crystals undergo the fabrication operations mentioned
earlier.
Date:   1/24/83  R Change 2 II.8.5-12

-------
To produce indium antimonide, indium arsenide, and bismuth tellu-
ride, the elements are mixed together,  melted to form the com-
pound and frozen into a polycrystalline ingot.  These materials
are used in a polycrystalline state so no crystal growing step
occurs.  The ingot is fabricated into wafers by normal machining
operations.  Because these materials are relatively soft, carbide
abrasives with water cooling are sufficient for machining the
ingots.  The wafers are milled into small pieces and incorporated
into electronic components.

     Liquid crystals are organic compounds or mixtures of two or
more organic compounds which exhibit properties of fluidity and
molecular order simultaneously over a small temperature range.
An electric field can disrupt the orderly arrangement of liquid
crystal molecules, changing the refractive properties.  This
darkens the liquid enough to form visible characters in a display
assembly, even though no light is generated.  This effect is
achieved by application of a voltage and does not require a
current flow.  Therefore minimal use of power is required,  allow-
ing the display in battery operated devices to be activated
continuously.  Liquid crystals are used in liquid crystal display
(LCD) devices for wrist watches, calculators, and other consumer
products requiring a low power display.

Liquid crystals are produced by organic synthesis.  Precursor
organic compounds are mixed together and heated until the reac-
tion is complete.  The reacted mass is dissolved in an organic
solvent such as toluene, and is crystallized and recrystallized
several times to obtain a product of the desired purity.  Several
of these organic compounds are then mixed to form a eutectic
mixture with the correct balance of properties for LCD applica-
tion.

The major source of wastewater from the manufacture of electronic
crystals is from rinses associated with crystal fabrication,
although some wastewater may be generated from crystal growing
operations.  Fabrication steps generating wastewater are slicing,
lapping, grinding, polishing, etching,  and cleaning of grown
crystals.  Certain growth processes generate a large volume of
wastewater from the discharge of spent solutions of sodium hydrox-
ide and sodium carbonate after each crystal growth cycle.

     Electron Tube Subcategory

Electron tubes are devices in which electrons or ions are con-
ducted between electrodes through a vacuum or ionized gas within
a gas-tight envelope which may be glass, quartz, ceramic, or
metal.  A large variety of electron tubes are manufactured,
including klystrons, magnetrons, cross field amplifiers, and
modulators.  These products are used in aircraft and missile
guidance systems, weather radar, and specialized industrial
applications.  The electron tube subcategory also includes


Date:   1/24/83  R Change 2 II.8.5-13

-------
cathode-ray tubes and T.V.  picture tubes that transform elec-
trical current into visual  images.  Cathode-ray tubes generate
images by focusing electrons onto a luminescent screen in a
pattern controlled by the electrical field applied to the tube.
In T.V. picture tubes,  a stream of high-velocity electrons scans
a luminescent screen.  Variations in the electrical impulses
applied to the tube cause changes in the intensity of the elec-
tron stream and generate the image on the screen.

Processes involved in the manufacture of electron tubes include
degreasing of components; application of photoresist, graphite,
and phosphors to glass panels;  and sometimes electroplating
operations including etching and machining.   The application of
phosphors is unique to T.V.  picture tubes and other cathode-ray
tubes.  The phosphor materials  may include sulphides of cadmium
and zinc and yttrium and europium oxides.  The electroplating
operations are covered under the Metal Finishing Industry.  Raw
materials can include copper and steel as basis materials, and
copper, nickel, silver, gold,  rhodium, and chromium to be elec-
troplated.  Phosphors,  graphite, and protective coatings contain-
ing toluene or silicates and solders of lead oxide may also be
used.  Process chemicals may include hydrofluoric, hydrochloric,
sulfuric, and nitric acids for  cleaning and conditioning of metal
parts; and solvents such as methylene chloride, trichloroethyl-
ene, methanol, acetone, and polyvinyl alcohol.

     Phosphorescent Coatings Subcategory

Phosphorescent coatings are coatings of certain chemicals, such
as calcium halophosphate and activated zinc sulfide, which emit
light.  Phosphorescent coatings are used for a variety of appli-
cations; those specific to the  Electrical and Electronic Com-
ponents Industry are in fluorescent lamps and television picture
tubes.  The most important fluorescent lamp coating is calcium
halophosphate phosphor.  The intermediate powders are calcium
phosphate and calcium fluoride.  There are three T.V. powders:
red phosphor (yttrium oxide activated with europium), blue phos-
phor (zinc sulfide activated with silver), and green phosphor
(zinc-cadmium sulfide activated with copper).  The major process-
ing steps in producing phosphorescent coatings are reacting,
milling, and firing the raw materials; recrystallizing raw mater-
ials, if necessary; and washing, filtering,  and drying the inter-
mediate and final products.

     Fixed Capacitors Subcategory

The primary function of capacitors is to store electrical energy.
Fixed capacitors are layered structures of conductive and di-
electric materials.  The layering of fixed capacitors is either
in the form of rigid plates or  in the form of thin sheets of
flexible material which are rolled.  Typical capacitor applica-
tions are energy storage elements, protective devices, filtering


Date:   1/24/83  R Change 2 II.8.5-14

-------
devices, and bypass devices.  Some typical processes in manu-
facturing fixed capacitors are anode fabrication,  formation
reactions, dipping, layering,  cathode preparation,  welding, and
electrical evaluation.  All manufacturing processes are covered
under the Metal Finishing Industry by unit operation.   Fixed
capacitor types are distinguished from each other by type of
conducting material, dielectric material, and encapsulating
material.  This subcategory has been excluded under Paragraph 8
of the NRDC Consent Decree.

     Fluid Filled Capacitors

As with fixed capacitors, the primary function of fluid-filled
capacitors is to store electrical energy.  Wet capacitors contain
a fluid dielectric that separates the anode (in the center of the
device) from the cathode (the capacitor shell), which also serves
to contain the fluid.   Fluid-filled capacitors are used for
industrial applications as electrical storage, filtering, and
circuit protection devices.  Some typical processes in manufac-
turing fluid-filled capacitors are anode fabrication,  formation
reactions, metal can preparation, dielectric addition, soldering,
and electrical evaluation.  All manufacturing processes are
covered under the Metal Finishing category by unit operation.
This subcategory has been excluded under Paragraph 8 of the NRDC
Consent Decree.

     Carbon and Graphite Products Subcategory

Carbon and graphite (elemental carbon in amorphous crystalline
form) products exhibit unique electrical, thermal,  physical, and
nuclear properties.  The major carbon and graphite product areas
are (1) carbon electrodes for aluminum smelting and graphite
furnace electrodes for steel production, (2) graphite molds and
crucibles for metallurgical applications, (3) graphite anodes for
electrolytic cells used for production of such materials as
caustic soda, chlorine, potash, and sodium chlorate, (4) non-
electrical uses such as structural, refractory, and nuclear
applications, (5) carbon and graphite brushes, contacts, and
other products for electrical applications,  and (6) carbon and
graphite specialties such as jigs, fixtures, battery carbons,
seals, rings, and rods for electric arc lighting,  welding, and
metal coating.  This subcategory has been excluded under
Paragraph 8 of the NRDC Consent Decree.

     Mica Paper

     Mica paper is a dielectric (non-conducting) material used in
the manufacture of fixed capacitors.  Mica paper is manufactured
in the following manner:  Mica is heated in a kiln and then
placed in a grinder where water is added.  The resulting slurry
is passed to a double screen separator where undersized and
oversized particles are separated.  The screened slurry flows to


Date:  1/24/83   R Change 2 II.8.5-15

-------
a mixing pit and then to a vortex cleaner.   The properly-sized
slurry is processed in a paper-making machine where excess water
is drained or evaporated.  The resulting cast sheet of mica paper
is fed on a continuous roller to a radiant heat drying oven,
where it is cured.  From there,  the mica paper is wound onto
rolls, inspected, and shipped.  This subcategory has been ex-
cluded under Paragraph 8 of the NRDC Consent Decree.

     Incandescent Lamps Subcategory

An incandescent lamp is an electrical device that emits light.
Incandescent tungsten filament lamps operate by passage of an
electric current through a conductor (the filament).  Heat is
produced in this process, and light is emitted if the temperature
reaches approximately 500°C.  Most lamp-making operations are
highly automated.  The mount machine assembles a glass flare, an
exhaust tube, lead-in wires, and molybdenum filament support.  A
glass bulb is electrostatically coated with silica and the bulb
and mount are connected at the exhaust and seal machine.  The
bulb assembly is annealed, exhausted, filled with an inert gas,
and sealed with a natural gas flame.  The finishing machine
solders the lead wires to the metallic base which is then
attached to the bulb assembly by a phenolic resin cement or by a
mechanical crimping operation.  The finished lamp is aged and
tested by illuminating it with excess current for a period of
time to stabilize its electrical characteristics.  This sub-
category has been excluded under Paragraph 8 of the NRDC Consent
Decree.

     Fluorescent Lamps Subcategory

A fluorescent lamp is an electrical device that emits light by
electrical excitation of phosphors that are coated on the inside
surface of the lamp.  Fluorescent lamps utilize a low pressure
mercury arc in argon.  Through this process, the lowest excited
state of mercury efficiently produces short wave ultraviolet
radiation at 2,537 Angstroms.  Phosphor materials that are com-
monly used are calcium halophosphate and magnesium tungstate,
which absorb the ultraviolet photons into their crystalline
structure and re-emit them as visible white light.

There are two types of fluorescent lamps:  hot cathode and cold
cathode.  Cold cathode manufacture is primarily an  electroplating
operation.  Hot cathode  fluorescent lamp manufacturing is a
highly automated process.  Glass tubing is rinsed with deionized
water and gravity-coated with phosphor.  Coiled tungsten fila-
ments are assembled together with lead wires, an exhaust tube, a
glass flare, and a starting device to produce a mount assembly.
The mount assemblies are heat pressed to the two ends of the
glass tubing.  The glass tubes are exhausted and filled with  an
inert gas.  The  lead wires are soldered to the base and the base
is attached to the tube  ends.  The finished lamp receives a
silicone coating  solution.  The lamp is then aged and tested

Date:  1/24/83  R Change 2  II.8.5-16

-------
before shipment.  This subcategory has been excluded under Para-
graph 8 of the NRDC Consent Decree.

     Fuel Cells Subcategory

Fuel cells are electrochemical generators in which the chemical
energy from a reaction of air (oxygen) and a conventional fuel is
converted directly into electricity.  The major fuel cell pro-
ducts, basically in research and development stages, are:
(1) fuel cells for military applications, (2) fuel cells for
power supply to vehicles, (3) fuel cells used as high power
sources, and (4) low temperature and low pressure fuel cells with
carbon electrodes.  Some typical processes in the manufacture of
fuel cells are extrusion or machining, heat treating, sintering,
molding, testing,  and assembling.  Some typical raw materials are
base carbon or graphite, plastics, resins, and Teflon.  This
subcategory has been excluded under Paragraph 8 of the NRDC
Consent Decree.

     Magnetic Coatings Subcategory

Magnetic coatings are applied to tapes to allow the recording of
information.  Magnetic tapes are used primarily for audio, video,
computer, and instrument recording.  The process begins with
milling to create sub-micron magnetic particles.  Ferric oxide
particles are used almost exclusively with trace additions of
other particles or alloys for specific applications.  The par-
ticles are mixed,  through several steps, with a variety of sol-
vents, resins, and other additives.  The coating mix is then
applied to a flexible tape or film material (for example, cellu-
lose acetate).  After the coating mix is applied, particles are
magnetically oriented by passing the tape through a magnetic
field, and the tape is dried and slit for testing and sale.  This
subcategory has been excluded under Paragraph 8 of the NRDC
Consent Decree.

     Resistors Subcategory

Resistors are devices commonly used as components of electric
circuits to limit current flow or to provide a voltage drop.
Resistors are used for television, radios, and other applica-
tions.  Resistors can be made from various materials.  Nickel-
chrome alloys, titanium, and other resistive materials can be
vacuum-deposited for thin film resistors.  Glass resistors are
also available for many resistor applications.  Two examples of
glass resistors are the precision resistor and the low power
resistor.  This subcategory has been excluded under Paragraph 8
of the NRDC Consent Decree.
Date:  1/24/83   R Change 2 II.8.5-17

-------
     Dry Transformers Subcategory

A transformer is a stationary apparatus for converting electrical
energy at one alternating voltage into electrical energy at
another (usually different) alternating voltage by means of
magnetic coupling (without change of frequency).   Dry trans-
formers use standard metal working and metal finishing processes
(covered by the Metal Finishing Industry).   The main operations
in manufacturing a power transformer are the manufacture of a
steel core, the winding of coils, and the assembly of the coil/
core on some kind of frame or support.  This subcategory has been
excluded under Paragraph 8 of the NRDC Consent Decree.

     Fluid Filled Transformers Subcategory

Wet transformers perform the same functions as dry transformers,
but the former are filled with dielectric fluid.   Wet trans-
formers use standard metal working and metal finishing processes
which are covered by the Metal Finishing Industry.  The only wet
process unique to the Electrical and Electronic Components
Industry are the cleanup and management of residual dielectric
fluid.  The main operations in manufacturing a power transformer
are the manufacture of a steel core, the winding of coils, and
the assembly of the coil/core on some kind of frame or support.
In the manufacture of wet transformers there is the need for a
container or tank to contain the dielectric fluid.  This sub-
category has been excluded under Paragraph 8 of the NRDC Consent
Decree.

     Insulated Devices, Plastics and Plastic Laminated Subcategory

An insulated device is a device that prevents the conductance of
electricity (dielectric).  Plastic and plastic laminates are
types of insulators.  Plastics are used in electronic applica-
tions as connectors and terminal boards.  Other uses include
switch bases, gears, cams, lenses, connectors, plugs, stand-off
insulators, knobs, handles, and wire ties.  Thermosetting plas-
tics are melted and injected into a closed mold where the solidi-
fy.  These insulating moldings include polyethylene, polyphenyl-
ene, and poly vinyl chloride.  Laminates are used in transformer
terminal boards, switchgear arc chutes, motor and generator slot
wedges, motor bearings, structural support, and spacers.  Lami-
nates are made by bonding layers of a reinforcing web.  The
reinforcements consist of fiberglass, paper, fabrics, or syn-
thetic fibers.  The bonding resins are usually phenolic, mela-
mine, polyester, epoxy, and silicone.  Laminates are made by
impregnating the reinforcing webs in treating towers, partially
polymerizing, pressing and finally polymerizing them to shape
under heat and pressure.  Manufacturing processes associated with
these products are studied 'as part of the Plastics Molding  and
Forming Industry.  This subcategory has been excluded under
Paragraph 8 of the NRDC Consent Decree.


Date:   1/24/83  R Change 2 II.8.5-18

-------
     Insulated Wire and Cable, Non-Ferrous Subcategory

Insulated wires and cables are products containing a conductor
covered with a non-conductive material to eliminate shock hazard.
The major products in this segment are:  (1) insulated non-ferrous
wire, (2) auto wiring systems, (3) magnetic wire, (4) bulk cable
appliances, and (5) camouflage netting.  Typical processes used
in the manufacture of insulated wire and cable are drawing, spot
welding, heat treating, forming,  and assembling.  All manufac-
turing processes are included in the Metal Finishing Industry.
Some of the basis materials are copper, carbon, stainless steel,
steel, brass-bronze, and aluminum.  This subcategory has been
excluded under Paragraph 8 of the NRDC Consent Decree.

     Ferrite Electronic Parts Subcategory

Ferrite electronic parts are electronic products utilizing metal-
lic oxides.  The metallic oxides have ferromagnetic properties
that offer high resistance, making current losses extremely low
at high frequencies.  Ferrite electronic products include:
(1) magnetic recording tape, (2)  magnetic tape transport heads,
(3) electronic and aircraft instruments, (4) microwave connectors
and components, and (5) electronic digital equipment.  Some
typical processes to manufacture ferrite electronic parts are
shearing, slitting, fabrication,  and machining.  All production
processes in this segment are included in the Metal Finishing
Industry.  Some typical raw materials are aluminum, magnesium,
bronze,  and brass.  This subcategory has been excluded under
Paragraph 8 of the NRDC Consent Decree.

     Motors, Generators, and Alternators Subcategory

Motors are devices that convert electric energy into mechanical
energy.   Generators are devices which convert an input mechanical
energy into electrical energy.  Alternators are devices that con-
vert mechanical energy into electrical energy in the form of an
alternating current.  The major motor, generator, and alternator
products are:   (1) variable speed drives and gear motors,
(2) fractional horsepower motors, (3) hermetic motor parts,
(4) appliance motors,  (5) special purpose electric motors,
(6) electrical equipment for internal combustion engines, and
(7) automobile electrical parts.   Some typical processes are
casting, stamping, blanking, drawing, welding, heat treating,
assembling and machining.  All production processes are included
in the Metal Finishing Industry.   Some basis materials are carbon
steel, copper, aluminum, and iron.  These materials are used as
sheet metal, rods, bars, strips,  coils, casting, and tubing.
This subcategory has been excluded under Paragraph 8 of the NRDC
Consent Decree.
Date:  1/24/83   R Change 2 II.8.5-19

-------
     Resistance Heaters Subcategory

Resistance heaters convert electrical energy into usable heat
energy.  Three types of resistance heaters are made;  rigid encased
elements used for electric stoves and ovens, bare wire heaters
used in toasters and hair dryers, and insulated flexible heater
wire that is incorporated into blankets and heating pads.  Some
typical processes used in the manufacture of resistance heaters
are plating, welding or soldering, molding,  and machining.  These
processes are included in the Metal Finishing Industry.  Some raw
materials used are steel, nickel, copper, plastic, and rubber.
This subcategory has been excluded under Paragraphy 8 of the NRDC
Consent Decree.

     Switchgear Subcategory

Switchgear are products used to control electrical flow and to
protect equipment from electrical power surges and short cir-
cuits.  The major switchgear products are:  (1) electrical power
distribution controls and metering panel assemblies,  (2) circuit
breakers, (3) relays, (4) switches, and  (5) fuses.  Some typical
manufacturing processes are:  chemical milling, grinding, electro-
plating, soldering or welding, machining, and assembly.  All
processes are included in the Metal Finishing and Plastics Pro-
cessing Industries.  Some typical basis materials are plastic,
steel, copper, brass, and aluminum.  This subcategory has been
excluded under Paragraph 8 of the NRDC Consent Decree.

II.8.5.2  WASTEWATER CHARACTERIZATION [2-20, 2-69]

The following sections summarize characteristics of the waste-
water from sample plants in each of the subcategories in the
Electrical and Electronic Components Industry.  Wastewater
characteristics for the regulated subcategories (semiconductors
and electronic crystals) are derived from plant specific data
presented in Reference 2-69.  The unregulated subcategories are
then discussed in the sections following Electronic Crystals.

More than 250 plants were contacted to obtain data on the Elec-
trical and Electronic Components Industry.  Seventy-eight of
these plants were visited for an on-site study of their manufac-
turing processes, water used and wastewater treatment.   In addi-
tion, wastewater samples were collected at thirty-eight of the
plants visited in order to guantitate the level of pollutants in
the waste streams.  Sampling was utilized to determine the source
and quantity of pollutants in the raw process wastewater and the
treated effluent from a cross-section of plants in the Electrical
and Electronic Components Industry.  All of the 129 priority
pollutants were examined in one or more  subcategories.
Date:  1/24/83  R Change 2 II.8.5-20

-------
II.8.5.2.1  Semiconductor Subcategory [2-69]

This section presents information on the wastewater characteris-
tics of the semiconductor subcategory.  The data presented are a
summarization of the wastewater sampled from twelve plants in the
semiconductor subcategory.  Of these twelve plants, five are
practicing solvent management which means that the facilities
segregate and collect spent solvents for sale to reclaimers or
contract disposers.

Contact water is used throughout the production of semiconduc-
tors.  Plant incoming water is first pretreated by deionization
to provide ultrapure water for processing steps.  This ultrapure
water or deionized (DI) water is used to formulate acids; to
rinse wafers after processing steps; to provide a medium for
collecting exhaust gases from diffusion furnaces, solvents, and
acid baths; and to clean equipment and materials used in semi-
conductor production.  Water also cools and lubricates the dia-
mond saws and grinding machines used to slice, lap, and dice
wafers during processing.

The major pollutants found at facilities in the semiconductor
subcategory are as follows:  fluoride, toxic organics, and pH.
The major source of fluoride comes from the discharge of spent
hydrofluoric acid after its use in etching.  Minor quantities of
fluoride enter the plant wastewater from rinses of etched or
cleaned wafers.

The sources of toxic organics are solvents used for drying the
wafer after rinsing, developing of photoresist, stripping of
photoresist, and cleaning.  While residual amounts of solvents in
wastewaters come from solvent rinses, their primary sources are
the dumping of solvent baths.  The pH parameter may be very high
or very low.  High pH results from the use of alkalis for caustic
cleaning.  Low pH results from the use of acids for etching and
cleaning.

Several toxic metals were found in the wastewater because of
electroplating operations associated with semiconductor manu-
facture.  These metals are chromium, copper, nickel, and lead and
are regulated under the Metal Finishing Industry.

The semiconductor subcategory is divided into the following wet
processes:

     •  scrubber,
     •  rinse,
     •  etch, and
     •  fluoride.
Date:  1/24/83   R Change 2 II.8.5-21

-------
Table 8.5-3 presents a summary of the wastewater sampled at the
twelve plants.

II.8.5.2.2  Electronic Crystals

This section presents information on the wastewater character-
istics of the electronic crystals subcategory.   The data pre-
sented summarize the characteristics of samples obtained from
eight crystals facilities.   The concentrations represent total
raw wastes after flow-proportioning individual discharge streams.
Table 8.5-4 summarizes the data obtained from each of these
plants.

The major source of wastewater from the manufacture of electronic
crystals is from rinses associated with crystal fabrication,
although some wastewater may be generated from crystal growing
operations.  Fabrication steps generating wastewater are slicing,
lapping, grinding,  polishing, etching, and cleaning of grown
crystals.  Certain growth processes generate a large volume of
wastewater from the discharge of spent solutions of sodium hydrox-
ide and sodium carbonate after each crystal growth cycle.

The major pollutants of concern from the electronic crystals
subcategory are toxic organics, fluoride, arsenic, TSS, and pH.

Toxic organics are found in wastewater from the manufacture of
electronic crystals as a result of the use of solvents such as
isopropyl alcohol,  1,1, l-trich*loroethane, Freon, and acetone.
These materials are used for cleaning, degreasing, and drying of
crystals.  High concentrations of these toxic organics in waste
streams are the result of uncontrolled dumping of solvent rinse
tanks.  Another source of toxic organics could be contaminants in
oils used as lubricants in slicing and grinding operations.

Fluoride comes from the use of hydrofluoric acid or ammonium
bifluoride for etching electronic crystals.  A minor source of
fluoride is from the etch rinse process.

Arsenic originates from the gallium arsenide and indium arsenide
used as raw material for crystals.  Process steps generating
wastewater containing arsenic are cleaning of the crystal-growing
equipment, slicing and grinding operations, and etching and
rinsing steps.

Total suspended solids are common in crystals manufacturing waste
streams as crystal grit from slicing and grinding operations.
Grit and abrasive wastes are also generated by grinding and
lapping operations.

The level of pH may be very high or very low.  High pH results
from the presence of excess alkali such as sodium hydroxide or
Date:  1/24/83   R Change 2 II.8.5-22

-------
     TABLE 8.5-3.  SUMMARY OF  CLASSICAL AND TOXIC POLLUTANTS IN  SEMICONDUCTOR
                   SUBCATEGORY RAW WASTEWATER [2-69]

Pol lutaru
Toxic organics, M9/L
Benzene
Benz i d j ne
Ch 1 orobenzene
1 , 2,1-Tnchlorobenzene
1 . 2-Dich lo roe thane
1 , 1 , l-Tnchloroethane
1 , l-Dichloroethane
2, 'I, 6-T r i oh 1 oro phono 1
Chloroform
2-Ch t o ropheno 1
1 , 2-D i ch 1 orobenzene
1 , 3-D ichl orobenzene
t , 1-Dichl orobenzene
1, l-Dichioroethylene
2,1-Dimethylphenol
1 , 2-D i pheny 1 hyd raz i ne
Ethyl benzene
F luoranthene
Mcthylene chloride
Methyl chloride
D i ch lorobromome thane
Chlorod ibromome thane
Naphtha lene
2-N i t ropliono 1
4-N i tropheno 1
Pentachlorophenol
pheno 1
Bis ( 2-ethy 1 hexyl ) phthalate
Butyl benzyl phthalate
Di-N-butyl phthalate
Di-N-octyl phthalate
D i e thy 1 phtha 1 a te
Anthracene
phenanth rene
Tet rach lo roe thy lene
Co 1 tiene
Tnchloroethylene
Cyan ide
Toxic metals, M9/L
Ant i mony
Arsenic
Bery 1 I i urn
Cadmi urn
Chrom i urn
Coppe r
Lead
Mercury
N < eke 1
Se len i um
S i 1 ve r
Tha 1 1 i urn
Zinc
A 1 urn i num
Ba r i um
Boron
Ca 1 c i um
Coba 1 1
Cold
1 ron
Magnes i um
Manganese
Molybdenum
Pal [ad i urn
P 1 a 1 1 num
Sod 1 um
Te 1 1 ur i um
Tin
Ti tani um
Vanad i um
Yttrium
Li thi um
Pheno 1 s
Total organic carbon
r 1 nor i Oe
Oil arid grease
tss
BOO
pH, pH un i ts
Plants Not Practicing
Number of plants sampled/
Number or detections

7/2
7/1
7/2
7/6
7/1
7/1
7/1
7/1
7/6
7/6
7/7
7/5
7/7
7/2
7/2
7/1
7/6
7/1
7/6
7/1
7/2
7/3
7/7
7/6
7/1
7/1
7/7
7/7
7/2
7/6
7/3
7/1
7/1
7/1
7/4
7/6
7/6
7/6

7/7
7/7
7/6
7/7
7/7
7/7
7/7
7/7
7/7
7/7
7/7
7/7
7/7
7/5
7/5
7/5
7/5
7/1
7/l|
7/5
7/5
7/5
7/5
7/1
7/1
7/5
7/1
7/5
7/5
7/5
7/5
7/1
7/6
7/7
7/6
7/6
7/6
7/1
7/1
Solvent Manaaem
Mini mum


-------
     TABLE 8.5-3.   SUMMARY OF  CLASSICAL AND  TOXIC  POLLUTANTS  IN  SEMICONDUCTOR
                     SUBCATEGORY RAW WASTEWATER (continued)
Plants Practicina Solvent Management*
Pol lutant
TO.XIC orgamcs, ug/L
Benzene
Ch lorobenzene
1,1, l-Trichloroe thane
Ch 1 orororm
2-Chlorophenol
1 ,2-Dichlorobenzene
I , 3-Dichlorobenzene
1 , i*-D ich 1 orobenzene
1, l-Dichloroethylene
Ethylbenzene
Methylene chloride
Ch 1 o rod i bromome thane
Naphtha lene
2-Nitrophenol
Phenol
Bis (2-ethy Ihexy 1 ) phthalate
Butyl benzyl pti thai ate
Di-N-butyl phthalate
Diethyl phthalate
Tetrachloroethylene
To 1 uene
T r i ch 1 o roe thy I ene
Cyanide
Toxic metals, ng/L
Ant imony
Arsen ic
Beryl 1 ium
Cadmium
Ch rom i urn
Copper
Lead
Me rcu ry
Nickel
Se 1 en i urn
S i 1 ve r
Tha 1 1 ium
Z inc
Classical pollutants, mg/L
A 1 urn i num
Barium
Boron
Ca 1 c i urn
Coba 1 1
Gold
1 ron
Magnesium
Manganese
Molybdenum
Pal lad ium
P 1 a t i num
Sod i urn
Te 1 1 u r i urn
Tin
T i tan i urn
Vanadium
Yttrium
Lithium
Pheno 1 s
Total organic carbon
Fluoride
Oi 1 and grease
TSS
BOO
pH, pH units
Number of plants sampled/
Number of detections

5/3
5/1
5/3
5/t
5/3
5/3
5/2
5/3
5/1
5/1
5/U
5/1
5/3
5/3
5/U
5/3
5/1
5/M
5/1
5/3
5/1
5/U
5/5

5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5
5/5

5/5
5/5
5/5
5/5
5/5
5/2
5/5
5/5
5/5
5/5
5/3
5/3
5/5
5/3
5/5
5/5
5/5
5/5
5/1
5/5
5/5
5/5
5/5
5/5
5/5
5/1
M i n i mum


-------






to

<£
1—
to

DC
o

u

z
o
DC
0
u
u
z
w
h-
]•—
_l
o
Q-

o
—
X
o
1-

0
z
^

	 1
<^
O •"•""'
— ON
to \o
V) 1
< M
1 , ,--.
o

LL. C£
OO
o
>UJ

^ ^
so
SCO

to to



-3-

lT\
.
03
LJ

CD

1—






Dl
C*
— 4->
0 C
- CO
4-> E
O CD
CO Q
!- CO
a. c
CO
4->£
0

C
40 CO
c >
CO —
— o
Q- tO



*
4.)
OlC
C CO
— E
O CO
— D
4J CO
O C
CO CO
t_ y
o.
4O
4-> C
C CO
CO >

0. 0
to

























4J
c
CO
P
3
_
—
O








OOOO O OOO OO O O OVOO Q O OOQ Q OOOO
O 	 ZOOOZ— ZZ Z — d-ZZZ OC\I Z Z ZOOZZ
r-- v v ooo v v -* —
•* •, •. ^ •,
CO O CM co —
co in



















OQOOOOOOOd"OOOOOinOOOOOO OOOO
ZZI 	 ZZZ 	 CO 	 Z 	 ZZ 	 OOOJ-
— V VV VV VV VV 	 \O
V V V











CO

CO
—
CO
£
CO CO 4->
CO CO C £
CD c c — a. co —
NCOCOCOCO —E4J 0) O
—JCCO.C CCC CON CO' — to C CO
\coc4-j cocuaj — •oco 	 coco— as
O1.Q COCO NNNO— !- >>>>cq — CO5- —1
3.OXIO CCCCS--O CX.C >>COCO ^~
(_4JS- COCOCOCOOX COC04J ^ — CO 1 O>
*>OCOO .Q.O-Q.C — f~ ££^ 4-J >s.C O ~<
tn — O — OOO Q..C — Q.— Q. CD .C D. 1
U £ 5- £: S-5_5_OO>>0>— >> O4->OO -v
— OOOEOOO5- C C T3 £ — CO 5- « 5. 5- CO
C05.^5_Q^^J^— C^ — C004OCD0 .^ S_ .— .— C0>s
cnh-ol— ci-ooo-ccoaccoi 3occox:occ 4-ic
S-i—i o 	 O 	 .C5-C\J.QcoCOCO 	 COO' 	
O-3-O— S-OOOco>,O4J4->— 1 S-S-COCO-COO EECOCO
-1 « O 1 1 1 -P C 1 £ — Z £ O N 5- U 1 1 — Q.^ O
OCMCM 	 OdcOJ-C4JC\IO.CU3 1 4->3C4-> — d-\O OPaOC
— » - -.C -. •, -.O <0 «COI 	 C — CO CO 5- «- — CO 	
X 	 O 	 1-S — ZZCQQ
3 CO CO
— "U T3 "O
co x c c —
o aco co s-
•- Q. O
 ^ CO — O O 3
CO X 3 — O O —
CO Q.CO O h- CD b-
—
o


























•
4-J
c
CO
—
a.

CO
>
—
• 40
CM CO
4-J
4J C
CO 0
co a>
0
CO <-
4-j a
CO 0
O !-

- CO
— c
— 0
*
co E
0
r- s-

• 0
CO !-
• • • — CO
COT3X3
T3 0 COT3
O 4J O 0
x: o— 4J
4-> 0 — C
0 4-> Q.CO
E 0 a. co
•o co 0
0 <-
•— p 4-> CL
4J O O
>>C C CO
^ 4-J
CO •.-.«!
CQ
-------
sodium carbonate.   The alkali may come from crystal growth pro-
cesses or from caustic cleaning and rinsing.   Low pH results from
the use of acid for etching and cleaning operations.

Several toxic metals were found in the wastewater because of
electroplating operations associated with electronic crystals
manufacture.  These metals are chromium, copper, lead, nickel,
and zinc, and are regulated under the Metal Finishing Industry.

II.8.5.2.3  Carbon and Graphite Subcategory [2-20]

This section presents information on the wastewater characteris-
tics of the Carbon and Graphite Subcategory.   The data presented
are based on the analysis of wastewater samples collected in
eight streams at four facilities which use wet processes.  The
following wet processes are used by Carbon and Graphite Subcate-
gory plants:

     •    Post-extrusion quench,
     •    Post-impregnation quench,
     •    Machining (grinding), and
     •    Scrubbing.


Table 8.5-5 presents a summary of the classical and priority
pollutant concentrations in the raw waste from the four wet
processes sampled.  The reference presented varying detection
limits for any one pollutant due to different labs conducting the
analyses at different plants.  Therefore, the data presented in
the following tables do not adhere to the usual presentation of
BDL, below detection limit.  Any value presented in the range or
median as being "less than" the reported concentration is, in
effect, below its detection limit, the detection limit being the
specific concentration reported.  Calculations of the mean, in
such cases, assume the full value of the inequality and are
therefore approximate values.

II.8.5.2.4  Incandescent Lamps

This section presents information on the wastewater character-
istics of the Incandescent Lamps subcategory.  The average flow
of wastewater from these plants manufacturing incandescent lamps
is 2.04 x 10s L/day (540,100 gal/day).  The major pollutants
found and their concentrations are described on the following
page:
  Date:  1/24/83 R  Change 2     II.8.5-26

-------
         O
         O
         UJ
         O
         CO
         13
         X
         a.
         Q
         Z
         <
         cc o
          W
         CO

         Ld
         _J
         CO
                        ti- W
                        O C
                          o
_ Q)
£•0
tk- C
o o
                        010
                                                                          if\if\ iT\ f> O O — PO
                                                                        VVV	tT\V — OjV
                                                                             V V V V  V —
                                             cj co PO r—^O*J
                                                                  Ol
                                                                  2.
                        =    o    _*
                        3 4J  - E   —
                        ~ - _ C 3   -

                             *J*D   Q.  —
                                                                  o
                                              O C
                                              - O
                                              CE
                                                   1- — — L. —
Date:     1/24/83    R  Change   2    II.8.5-27

-------
      ir
      o
      o
      CQ
      ID
      CO
      CL
      cc
      o
      z-o
      O —
      CO 4J
      a: c
      < o
      O O
      3 CO
      -I 10
      -ILJ
      ou
      a. o
        a:
      O a.

      X-l
      0<
      h- ^
        a
      Q —
      O
      _J LjJ

      O h-
      O UJ
      I?
      co o:
      oo

      LJ
      _l
      CO
« o
(D —
— JJ
ao
                  Q>
                  A 0>
                  E^
                       OO—  OOO  O O
                       	co	—co
                       V V —  V V V  V
                                       oooooooooo ooooo  oo
                       --- o --- o -- OOO ---------- O ----- O --
                                                   oo —

                                                   V ^ V
                 *-r*—*  O
                COCJ.O  —

             oo   oo oo
                         o

                         2  00
                                            oo

                                            V V
—o
o —
— V
                                  ooo

                                  V V V
oo

V V
                                                  oo

                                                  V V
                       — ro -- WO -- POCVJ -- C\J -- ro — r
                                              M — f\|— C\J(\|(*) — C\J --- <*>C\J
                                     s  * a*s «
                                     -  c -"* £ — Q) 4


c
a)
^

O.C

C N
HI C
3S


C
N
C

O

o
c

0>
£ -
o o
— c
>> o
.c —
— aj (u£
.C 0) >>C C 0
O EH C 0) V
— L. a

1 O O

- -o
— "ocy

a) NX: o


o — t- >>

— *ujiZ Z

^

o
t.
Ef



1-2
»6

Q)
a

OJ O
c w
(D O



az 01


— -w iJZ£ to — o 0) w X
X Q.-U— re to c t- (-
d> x: ro Ji t- Q) o a)

>>N-.C ac
£ c >> a eg

1 -O >t£ CD

<— >> c *•> CD i
o en a o a -


Q.**- OJ
a.

C O

£ C\J*
C — to *
-^•— 0) 0)f 0)^- —

	 a) eo

c c u 5
CO CD O <


_Q

N O
tt> —
CD U.


N o a
c c c
S|!
Q — 0

c c
0) to

4-1 tA
0) O
O -D O O
*- « C Z X

L) C — "C

5 3 0 0
>> 0 *- *-
a.
Q) CD CD
1 1 1
CO CO CO
-C -C 6
CLQ.E
	 (0

Date:   1/24/83   R Change  2   II.8.5-28

-------
TABLE 8.5-5.   SUMMARY OF CLASSICAL AND TOXIC  POLLUTANTS IN CARBON AND GRAPHITE SUBCATEGORY
              RAW WASTEWATER BY INDIVIDUAL PROCESS UNITS (continued)


Number
Pol lutant Number i
Classical pollutants, mg/L
TSS
TOC
BOD
Oil and grease
Pheno 1 $
pH, pll units
Ca Iciunt
Magnes ium
Sod i um
A 1 um i num
Manganese
Vanadium
Boron
Ba r i um
Molybdenum
Tin
Yttrium
Cobs 1 t
1 ron
T i tan i um
Toxic pollutants, ug/L
Metals and inoraantcs
Antimony
Arsenic
Be ry 1 1 i um
Cadmium
Ch rom i um
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i um
S i 1 ve r
Tha 1 1 i um
Zinc
Toxic orqanics
Acenaphthene
Benzene
1,1, l-Trichloroethene
Chloroform
2-Chlorophenol
1 ,2-0 iphenyl hydra zine
F 1 uoranthene
Methylene chloride
Naphtha lene
N-Ni trosod iphenyl am me
Pheno 1
2-Ni trophenol
0 i ch to rob romome thane
Bi s(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Diethyl phthalate
Benzo(a) pyrene
Benzol b) fl uoranthene
Anthracene
F luorene
Pyrene
Tet rach 1 o roe thy 1 ene
To 1 uene
T r i ch 1 o roe thy I ene
Pest tcides
Heptach lor
Alpha-BHC
Analytic methods: v.7,3.11. Data set 2.
(a ) Interference present.


of samples/

3/3
3/3
3/2
3/3
3/3

3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3
3/3


3/3
3/3
3/3
3/3
3/3
3/3
3/2
3/3
3/3
3/3
3/3
3/3
3/3
3/3

3/2
3/2
3/1
3/1
3/2
3/1
3/2
3/3
3/3
3/2
3/2
3/2
3/1
3/3
3/3
3/3
3/1
3/3
3/1
3/1
3/3
3/2
3/1
3/1
3/3
3/3

3/1
3/1
3/2

Machining
Flow = 0.82 L/s
Range of

53 - 3,000
190 - 7,200
6-25
7 - 70
0.01 - 0. 12

8.5 - 38
1.2 - 8.3
II - 80
0.23 - 2.2
0.006 - 0.071
0.023 - 0. 12
0.01)1 . 0.1,2
0.085 - 0.88
0.02 - O.l|l4
0.013 - 0.21
<0.00l4 - 0.007
0.013 - <;0.05I
0.57 - 6.7
O.OH7 - 0.314


1 - 3
1 - Ma)

-------
Toxic Pollutants
Chromium
Copper
Lead
Total toxic inorganics

Methylene chloride
Chloroform
Dichlorobromomethane
Total toxic organics
  Raw  Waste
  Concentration
      (mg/L)
       0.71
       0.42
       0.11
        1.4

       0.05
       0.02
       0.01
       0.08
Raw Waste Load
kg/day (Ibs/day)
  1.5    (3.2)
  0.86   (1.9)
  0.23   (0.5)
   2.8   (6.2)
  0.05
  0.10
  0.03
  0.17
(0.11)
(0.22)
(0.05)
(0.38)
Raw waste concentrations are based on flow weighted means from
three plants.  For toxic inorganics only flow weighted mean
concentrations greater than or equal to 0.1 mg/L are shown.  For
toxic organics only flow weighted mean concentrations greater
than or equal to 0.01 mg/L are shown.

II.8.5.2.5  Fluorescent Lamps

This section presents information on the wastewater characteris-
tics of the fluorescent lamps subcategory.  The major pollutants
found in wastewaters from plants manufacturing fluorescent lamps
and their concentrations or mass loadings are presented below:
Toxic Pollutants
Antimony
Cadmium
Total toxic inorganics

Methylene chloride
Toluene
Total toxic organics
  Raw Waste
  Concentration
      (mg/L)
       0.46
       0.31
       0.063
       0.011
Raw Waste Load
kg/day (Ibs/day)
                        0.08   (0.18)
                        0.07   (0.16)
Specific raw waste data from a representative fluorescent lamp
manufacturing plant is presented in Section II.8.5.3.5.

II.8.5.2.6  Mica Paper

This section presents summary data on the wastewater character-
istics of the mica paper subcategory.  The average flow of waste-
water from the plants producing mica paper is 3.50 x 106 L/day
(926,000 gal/day).  The major pollutants found and their concen-
trations are presented on the following page:
  Date:  1/24/83 R  Change 2
II.8.5-30

-------
Toxic Pollutants
Total toxic inorganics

1,1,1-Trichloroethane
Methylene chloride
Total toxic organics
                            Raw Waste
                            Concentration
                                 (mg/L)
                                 0.55

                                 0.18*
                                 0.029*
                                 0.21
Raw Waste Load
kg/day (Ibs/day)
  0.20   (0.44)
  0.63
  0.10
  0.73
(1.4)
(0.22)
(1.6)
*Not confirmed by process or raw material usage.
Raw waste concentrations are based on raw waste data from one
plant.  For toxic organics only concentrations greater than or
equal to 0.01 mg/L are shown.

II.8.5.2.7  Electron Tube

Information presently available on the wastewater resulting from
plants in the electron tube subcategory is insufficient to ade-
quately characterize the pollutants associated with this sub-
category.  Preliminary data indicate that wastewater flows from
plants manufacturing cathode ray and T.V. picture tubes are in
the range of 200,000 to 500,000 L/day and that the major pollu-
tants are fluoride and lead.

II.8.5.2.8  Fuel Cells

Only a few plants manufacture fuel cells and these do not do so
on a regular basis.  In addition, all pollutants found were at
quantities too low to be effectively treated.

II.8.5.2.9  Magnetic Coatings

This subcategory discharges only a small amount of pollutants to
water.  The average wastewater discharge from this subcategory is
19,000 L/day (5,000 gal/day).  The total toxic metals discharge
for the subcategory is 0.045 kg/day (0.099 Ibs/day), total toxic
organics is 0.018 kg/day (0.040 Ibs/day).

II.8.5.2.10  Resistors

No wastewaters result from the manufacture of resistors.

II.8.5.2.11  Dry Transformers

No wastewaters result from the manufacture of dry transformers.

II.8.5.2.12  Phosphorescent Coatings

Data presently available are insufficient to adequately charac-
terize the wastewater discharges for the phosphorescent coatings
Date:  1/24/83 R  Change 2
                            II.8.5-31

-------
subcategory.  Preliminary data indicate that wastewater flows
from these plants range from 100,000 to 700,000 L/day (30,000 to
200,000 gal/day;  and the major pollutants are suspended solids,
fluorides, cadmium,  and zinc.

II.8.5.2.13  All Other Subcategories

Information obtained from plant visits showed that wastewater
discharges in the following subcategories result primarily from
processes associated with metal finishing and plastics molding
and forming.  Because these processes are studied elsewhere,  the
Electrical and Electronic Components project limited its sampling
effort in these areas:

          Switchgear and Fuses
          Resistance Heaters
          Ferrite Electronic Parts
          Insulated Wire and Cable
          Fluid-filled Capacitors
          Fluid-filled Transformers
          Insulated Devices -- Plastics and Plastic Laminated
          Motors, Generators,  and Alternators
          Fixed Capacitors


II.8.S.3  PLANT SPECIFIC DATA  [2-20]

Plant specific data are presented below for representative plants
from the semiconductor, carbon and graphite, mica paper, and
fluorescent lamps subcategories.   Where sufficient data are not
available to adequately characterize the treated effluent, only
raw waste characteristics are presented.  The data for represen-
tative plants of the electronic crystals subcategory have been
presented earlier in a table summarizing the raw waste character-
istics (Table 8.5-4).  The data available for the electron tube,
incandescent lamps,  and phosphorescent coatings subcategories are
insufficient for adequate characterization and therefore are not
presented.  No data are presented for the fuel cells, magnetic
coatings, resistors, and dry transformers subcategories since
little or no wastewaters result from the process.

II.8.5.3.1  Plant 35035 [2-69]

This facility is representative of plants in the semiconductor
subcategory which are not practicing solvent management.  The
data presented in Table 8.5-6 represent only raw waste character-
istics since no treated effluent data were available.  No produc-
tion information is available for this plant.
  Date:   1/24/83   R Change 2   II.8.5-32

-------
II.8.5.3.2  Plant 42044 [2-69]

This facility represents those plants in the semiconductor sub-
category which are practicing solvent management.   The data
presented in Table 8.5-6 represent only the raw waste character-
istics since no treated effluent data were available.  No pro-
duction information is available for this plant.

II.8.5.3.3  Plant 36173 [2-20]

This plant is representative of the carbon and graphite manu-
facturing subcategory.  The data presented are from three dif-
ferent wet processes which include:

     •  extrusion quench,
     •  impregnation quench, and
     •  machining (grinding).

No production information is available for this plant.  Table
8.5-7 presents the wastewater characterization for Plant 36173.

II.8.5.3.4  Plant 43055 [2-20]

Mica paper is manufactured at Plant 43055.  Mica paper is a di-
electric material used in the manufacture of fixed capacitors.
This facility is a large mica paper dielectric manufacturing
facility using 3,800,000 L of water per day (1,000,000 gpd).   The
raw waste is sent through a series of settling ponds in order to
settle out the mica properties.  Table 8.5-8 presents the waste-
water characterization data for Plant 43055.

II.8.5.3.5  Plant 19121

This facility represents those plants involved in the manufacture
of fluorescent lamps.  Fluorescent lamp manufacture utilizes wet
processes which include:

     •  glass tube rinse,
     •  tin chloride scrubber,
     •  sulfur dioxide scrubber,
     •  glass tube brush scrubbing, and
     •  silicone coating.

Table 8.5-9 presents the wastewater characterization data for
Plant 19121.  No production information is available for this
facility.

II.8.5.4  POLLUTANT REMOVABILITY [2-20]

This section reviews the technologies which are currently avail-
able and are used to remove pollutants from the wastewater gener-
ated in the Electrical and Electronic Components Industry.  A


 Date:   1/24/83   R  Change  2   II.8.5-33

-------
          TABLE 8.5-6.   SEMICONDUCTOR MANUFACTURING PLANT  SPECIFIC  DATA,
                         PLANT  35035 AND PLANT U204U* [2-69]
Pol lutant
Toxic organics, ug/L
1 ,2,'i-Trichlorobenzene
1 , I , I -Tr ich lo roe thane
Chloroform
2-Ch 1 orophcno 1
1 ,2-Oichlorobenzene
1 , 3-Di ch lorobenzene
1 , 14-0 ich lorobenzene
Ethylbenzene
Methylene chloride
Ch I o rod i b romome tha ne
Naphtha lene
2-Ni trophenol
Phenol
Bis (2-ethylhexyl ) phthalate
Di-N-butyl phthalate
Tetrachloroethylene
Toluene
Trichloroethylene
Cyanide
Toxic meta Is, ng/L
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmi urn
Chromium
Copper
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Thai 1 lum
Zinc
Classical pollutants, mg/L
Aluminum
Ba r i urn
Boron
Ca 1 c i urn
Coba 1 t
Gold
1 ron
Magnesium
Manganese
Molybdenum
Pa 1 ladium
PI a t i num
Sod i urn
Te 1 1 u r i urn
Tin
T i ta n i urn
Vanadium
Yttrium
L i th i urn
Phenol
Total organic carbon
F 1 uo r i de
Oil and g rea se
TSS
BOO
35035(a)
(Not Practicing
Solvent Management)

it . 900
ND
10
I*. 1
8.9
1.6
1 .14
1.6
\>4
95
ND
2<4
3140
8
1.5
3. 1
9. U
10
<5

140
25

-------
0
CM
1
CM
K
O
0
UJ
h-

0
CO
to
UJ
!l
X
rt

a:
o
a
z
<
z
o
m
rv

O

CO

^
VO

Z
a.

cc.
O
u.
0

1—
N
UJ
1-
<
Q£

X
O

CC
UJ




UJ
1-
(O
f-
1

00
UJ
CQ




<|
aia *J
i- !
JZ 11 d-
0 V

-
UJ
ann **
c *o c
T> O Z
c —
- 11 <*-
<- c
0 g -
u.
II
si
o a


w
JZ C
o Q)
C U) 2
3 J £
O1 t.
0 •
— ftj
o~o fvjcovv^o
0- 0 <*> v r-
ro O tf> —


r-Zr-«o v v v v v
o


„,
re
_ v — JJ — V VV 	 ITSV— VVM
O V V V V V
0

zzo— o zzoxz z zzzzzzzz
ZZ <\J Z Z CO Z Z Z ZZ Z Z Z Z Z Z



OOO — (M 	 UTMAMOO — roflO 	 O
, . . — o v v — — coin v 	 vvc
uiCSI M • VVVV —
o

(0
... — o vvvv 	 if»v— VVPJ
o






_J



-1 O
"X —
« O) C
I S * E
** (0 « O "
- 1 ! - 1
i I. S 1&o'BS » > i 1 1
So : "la:.5'Si= iȣS;: S
a C O v>— CJ>vaOQ.C'DOJCQ)>— O
w Kt-fflOa- O w < < CO GO O O -I Z Z tfl WI- N X
«A — 0) O
• g *
o *-








gOQOQO^aOQOOOOCOO O O C C ECO
— z — ZZIAZZZ — z 	 — — — - zrz





£2 j? 2
OOOO O OOvOO OOO OC>OOO O O OOO




IIE^ZEM Z ZO\ZZZZZr-£Z ZZZZEZZ Z a
ZZZC*ZZ«N Z Z^ZZZZZJTZZ Z Z Z Z Z Z ZT Z Ov
A A ".





OOOOOO^OOQOOOOOOOOOOQOOOOOOOOO Q Ci Q
	 Z 	 C\JZ — Z-Z 	 Z 	 Z- ZZZ




X-.-— — . -~ — .
jS J3 J3 J3 J3
OOOOOOOOQOOOOOOOOOVOOQOOOOOOOQO OOO


§0\Z ZZZ Z ZZZ ZZEOvfoaOvZZZZZZZ Z
O\Z ZZZ Z ZZZ ZZZACMAAZZZZZZZ Z
A A


oooooooaoaoooooooooooooooooooo OOQ
_z-z 	 ovz-z 	 z 	 z- zzz


££ 2
OOOQOOWQOQOO — OOOO -(O 	 OOOOOOOOO OCO





Q) 01
*J C
n a; o
— jz Q) (u c
Q) re Q) M C C 0)
§C JZ *» C 01 O 1-
oj ^*»«oj (o _u>,
— c s jz — w t- > re Q. a>
N QJ « w a re « « w o t-u c
a -o JZ — — jz — a> ** c 3  -o — c
T3 fc. « C XJZ JZM-OOS^ — CO >> 2
OJ= —3 — JC Qi JZ « JZ t- Q) je £ (O •!-*>> —
v c— aijze o a. j=— a.j= *-> c « — 71 — - as 3
C 0)>.COOQ)C— — >» *J JZ *J >> O — JZ (M O M
v 6JZCQ) «. c oco >N — jzacaN as o « - >- o
jz uaucuouro £ c >. a noc c N — o ^^ -Q u
a. c o o — «— ojzt-( — i js >4Z vo)ia)Noa;c'o "o 11
CNOCIOJZJZJZ----C — >,C*i8>| 1- >,JZ WOWfflSsS Or'Jljz
0)C — (J C\J 3 4-> O O.Z C Q) w *J 1 0 fi MJ - t. *J — 3 J3 -D > 	 ^ - i' O. a
as


















[





1










i
1









cs;
u .
10 U
-
ir.A
*j n
n —
o -
1 ->
— (0



1 • c c
yt ic methods: V. 7
iks indicate data
not detected
not meaningful
nie r f e rence p re se

n ra - •— •
C — O Z (C
< CD Z Z —


Date:  1/24/83 R  Change 2     II.8.5-35

-------
       TABLE 8.5-8.   MICA  PAPER MANUFACTURING  PLANT SPECIFIC VERIFICATION
                     DATA  FOR THE DIELECTRIC SUBCATEGORY,  PLANT 43055
                     [2-20]
Pol lutant
Toxic pollutant, u.g/L
Toxic organ ics
Benzene
Ch lorobenzene
1,1, l-trichloroethane
Ch lo reform
Ethyl benzene
Methylene chloride
Bi s(2-ethylhexyl )phtha late
Butyl benzyl phthalate
Di-n-butyl phthalate
Tet rach 1 o roethy 1 ene
To luene
Tr ichloroethy lene
Toxic meta I s
Ant imony
Arsen ic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Se len ium
Si 1 ve r
Tha 1 1 ium
Z inc
Classical pollutant, mg/L
Flow, L/s
Al uminum
Ba r i urn
Boron
Ca 1 c i urn
Coba 1 1
1 ron
Magnes i urn
Manganese
Molybdenum
Sod i urn
Tin
Ti tan ium
Vanad ium
PH
Yttrium
Cyanide, total
Oil and grease
TOC
BOD
TSS
Phenol s
Raw waste



-------
0
CM
CM


CM

—
1—
Z
<
Q.
•K
H
Q
LLJ
CO
^
•*
s
0£

O
LJ-
o
UJ
CL
w

1-
z
<
Q.
0
z

a:
^
H-
|
Z



a.

3
i-
z
LJ
O
w
1 1 1
a:
o

U-


«
o\

IT\
00
UJ
£0

(A
t-
V

i- n
o o
tf) O
CM C
o a

«
— c
J W

«


0)
Q) _
C*J
(TUJ
1
O W!
flj O
K Q-
» C
3 r
w
« (0
tfi-y.
— -a
o c
CQ


_^
o a>
B! —
GC *>
4-
"c 
V)
(fl C
w —
ca a:

U















AJ
C
(0
J.
o
a.





OOOtoQOOOOOOO —
— — z\oz — — — — — zz —
V V V V V V V













OQOOOOOOOQOOQ
zz — 	 — — — z — — z












««<««««
zzzzzzzzzzzzz









0)

n
I
4*
C.
o v a®
c c **
-I eo v a — «o «
X. £ ^£ — — 0) 4J

3. 0 e Q> XJ= ra —
t- O E « *J— W
. 0 — O .C.C (B£

0 E «- £ — £ 0. O O
c — t- o js *J >» a CL.
a *- O C O fl> ** — 0) £
?0) 1- fc- fl) I- 13— >,O 4J fl)
C 1 0- 0-C\J£ >,£ ffl C C
o a»— *- >>— o— i £*j «- OOiftOif\OOO— •

o • *o >o o -oo
oo »ov o v o










^.^
(0

co so — v v— •**>— *o • • -o  • *u% o •
o o *ooo *o *oo -o
O V O O V O










t

OVVOVtnCyVroVVf^-lA ~-tV .\Od-OvO— O«*>«*>O — «*> 'ZZZZlAZ —
%O * — V V— *N • *OO • *OOO • •>£
o oo • -oo • • >oo o
oo vooo












-J

* c

10 jQ
*> c
_J C «
V. « O
S S S0
™ rt m ••
* — +* 0 C
S^ol.S >, 5 5 -.-" SSS § . S§,"l »•§
0) Q 	 3 — (- C — — 1. — M3MECC— E -0 3*» — X -0 C 	
EEC 	 EQ> 3OCO)— 0— 0)3— «T3C3p — — C Q.— (0 — O «-
— » >> E p an p j£ a> > — o ™oc— Ba>«p— >» ^- w c « c to co
x<ZZ(A»t-N (auz«eDfi±H->o — H ao o i- co i- o. u.
O "~
t- U


























V
4J
1
t_

ul

o

I


VI
a

C7I
V)
w
A

X
1


10



. . Q)
tj-D «
O 0) C
** N O
° ***
OCX
ceo
cT< 
-------
discussion of control practices and treatment options are dis-
cussed for the two subcategories currently being regulated:
semiconductors and electronic crystals.   Treatment discussions
are not presented for those subcategories excluded from regula-
tion.

II.8.5.4.1  Semiconductor Subcategory

There are several in-process control techniques currently in
widespread use throughout the Semiconductor subcategory.  They
include the collection of spent solvents for resale or reuse,  and
treatment or contract hauling of the concentrated fluoride waste-
stream.

An estimated 75% of the semiconductor facilities collect spent
solvents for either contract disposal or reclaim.  Fifteen of 45
plants surveyed either treat or contract out the removal of the
concentrated fluoride stream.  In addition, three of the plants
practiced rinse water recycle.  The pollutants present in the
reused process wastewater are removed in the deionized water
production area.  However, the reuse of rinse water has been
found in some facilities to result in product contamination;
therefore the use of this technology is limited.

Treatment of the wastewater at the point of discharge consists
primarily of neutralization which is practiced by all dis-
chargers.  One plant also uses end-of-pipe precipitation/clari-
fication for control of fluoride.

II.8.5.4.2  Electronic Crystals Subcategory

In-process control techniques similar to those employed at semi-
conductor plants are being practiced to some degree at most
electronic crystals facilities.  These techniques include the
segregation of specific wastes such as solvents and cutting oils
for contract hauling or reclaiming.  An estimated 70 to 80% of
the facilities within the subcategory practice solvent management
and these practices were observed at most of the plants visited.
Of eight plants visited, two treat their concentrated fluoride
stream while one plant has the fluoride waste hauled off by a
contractor.

End-of-pipe treatment technologies currently employed in elec-
tronic crystals plants include neutralization and precipitation
/clarification.  Of the six plants visited which have direct
discharges, all treat the waste to control pH, suspended solids,
and fluoride.  One of the direct dischargers also treats end-of-
pipe wastewater to reduce arsenic.
  Date:  1/24/83  R Change 2  II.8.5-38

-------
II.8.5.3.7  Plant 09062

Plant 09062 has one process line and produces dry tantalum slug
capacitors.  The manufacturing process steps utilize very little
water, but the ancillary operations produce a large volume of
water by comparison.  The ancillary operations include cooling
tower blowdown, boiler blowdown, and water deionizer backwash.
Table 8.5-18 presents plant specific verification data for Plant
09062.  Production data were unavailable for this facility.

II.8.5.4  POLLUTANT REMOVABILITY [2-20]

This section reviews the technologies currently available and
used to remove pollutants from the wastewater generated in the
Electrical and Electronic Components Industry.  Treatment options
are presented for each subcategory within the industry.

II.8.5.4.1  Carbon and Graphite Subcategory

Two levels of treatment are used for each of the four wet pro-
cesses associated with the manufacture of carbon and graphite
products.  The Level 1 treatment consists of end-of-pipe methods
to reduce pollutant loads prior to discharge.  Level 2 treatment
permits total recirculation of process water.

Identical treatment is recommended for both extrusion and impregna-
tion quench streams.  The Level 1 treatment consists of skimming
and contract hauling of sludge, with provision for settleable
solids removal.  The quench stream Level 2 recycle treatment
consists of a clarifier for settling with oil skimming.  Recycle
presents the likelihood of increased oil and solids concentra-
tions requiring removal to prevent pollutant buildup.  Polymer
addition is recommended for improved solids removal for applica-
tions where high TSS is of concern.

Level 1 has been observed for extrusion and impregnation quenches
within the industry and sampling has verified separator effective-
ness in reducing oil and grease discharge levels.  Table 8.5-19
presents treated effluent data for oil separation in extrusion
and impregnation quench processes.  Level 1 treatment of machining,
grinding, and scrubber effluent has been observed in industry
without oil skimming and sampling has verified that a clarifier
without polymer addition can maintain a TSS level of less than 24
mg/L.  Table 8.5-20 presents raw and treated effluent data for a
machining clarifier.  Level 2 treatment of extrusion and impregna-
tion quench streams has not been observed in the Electrical and
Electronic Components Industry.
Date:  9/25/81            II.8.5-39

-------
        TABLE 8.5-18.
PLANT SPECIFIC DATA FOR THE CAPACITOR SUBCATEGORY,
PLANT 09062, [2-20]
Pol lutant
Classical pollutants, mg/L
Oil and grease
TOC
BOD
TSS
Phenol s
Fluoride
Cyanide
pH, pH units
Aluminum
Ba r i urn
Boron
Ca lei urn
Cobalt
I ron
Magnesium
Manganese
Molybdenum
Sod i urn
Tin
Titanium
Vanad ium
Yttrium
Toxic pollutants, ug/L
Toxic metals
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Si Iver
Tha 1 1 i urn
Zinc
Toxic orqanics
Benzene
Chloroform
Methyl ene chloride
Methyl chloride
Di-n-butyl phthalate
Di-ethyl phthalate
Toluene
Trichloroethylene

Influent

0
120
75
56

-------
     TABLE 8.5-19.
OIL SEPARATION PERFORMANCE IN CARBON AND
GRAPHITE SUBCATEGORY  [2.8.5-1]

Pollutant

Toxic pollutants, v9/L
Methylene chloride
1 , 2-Benzanthracene
3 ,4-Benzopyrene
11 , 12-Benzof luoranthene
Chrysene
Selenium
Zinc
Classical pollutants, mg/L
TSS
TOC
BOD
Oil and grease
Phenols
Raw
waste
Extrusion

62(a)
11
13
11
11
2
23

5
1
2
14
0.022 0
Treated
waste
quench oil

90
<10
<10
<10
<10
18(a)
140

6
2
2
11
.020
Impregnation quench
Toxic pollutants, yg/L
Methylene chloride
1 , 2-Benzanthracene
Arsenic
Zinc
Classical pollutants, mg/L
TSS
TOC
BOD
Oil and grease
Phenols

(a)
19
1
34

19
<1
19
44
0.019 0

23
10
1
41

5
4
7
6
.014
Percent
removal
separation

NM
>9
>23
>9
>9
NM
NM

NM
NM
0
21
9
oil separation


47
0
NM

74
NM
63
86
26
 Analytic methods:  V.7.3.11, Data set 2.
 NM, not meaningful.
 (a)Interference present.
Date:  9/25/81
           II.8.5-41

-------
     TABLE  8.5-20.   MACHINING SETTLING DATA IN CARBON AND
                     GRAPHITE SUBCATEGORY [2-20]

                               GrindingClarifierPercent
     Pollutant	effluent  effluent    removal

     Toxic pollutants,  yg/L
        Methylene chloride           (a)      59
        Butyl benzyl phthalate        19      <10        >47
        Antimony                    3        1         67
        Arsenic                     1       <1         NM
        Chromium                    54       43         20
        Copper                 5,300      160         97
        Lead  '                 1,700      440         74
        Mercury                     2       <1        >50
        Nickel                     20      <13        >35
        Selenium                    (a)      13
        Zinc                       61       27         56
Classical pollutants, mg/L
TSS
TOC
BOD
Oil and grease
Phenols

3,000
190
25
20
0.014

24
2
6
19
0.01

99
99
76
5
28
     Analytic methods: V.7.3.11, Data set 2.
     NM,  not meaningful.
     (a)Interference present.
  •

II.8.5.4-2   Dielectric Materials Subcategory

Two levels  of treatment are recommended for the dielectric mate-
rials subcategory.   The Level  1  system consists of oil  skimming
and applies to wet transformers  and oil-filled capacitor manu-
facture.  The Level 2 system applies to the same industry seg-
ments but provides improved performance.   It consists of oil
skimming, multimedia filtration,  carbon adsorption,  and dia-
tomaceous earth filtration.  The Level 1 system recommended for
the mica paper dielectric segment consists of two stages of
sedimentation.

Table 8.5-21 presents observed treated effluent data of Level 1
and Level 2 treatment systems  in the dielectric materials sub-
category.
Date:  9/25/81            II.8.5-42

-------
     TABLE  8.5-21.
TREATED EFFLUENT CONCENTRATIONS  IN THE
DIELECTRIC MATERIALS SUBCATEGORY [2-20]
 Pollutant
        Dielectric materials excluding mica paper
      Level 1Level  2
 Toxic pollutants,
     Carbon tetrachloride          ND
     1,2-trans-Dichloroethylene     ND
     Methylene chloride           930
     Trichloroethylene             ND
     PCB 1254                   <10
     Copper                     100
     Lead                       <40
     Zinc                       100

 Classical pollutant, mg/L
     TSS                         11
     Oil and grease              3.5
     Total organic carbon          16
                                ND
                                50
                                10
                                 5
                                ND
                                10
                                48
                               700
                                47
                               3.9
                               8.5
 Classical pollutant, mg/L
     TSS
                                Mica paper dielectric manufacture
          7.2
 Analytic methods: V.7.3.11,  Data set 2.
 ND, not detected.

II.8.5.4-3.   Electric Lamp Subcategory

The  recommended treatment technologies for the electric  lamp
subcategory  are defined for process wastes from the manufacture
of  fluorescent lamps, tungsten filaments,  and quartz mercury
vapor  lamps.   The following discussion presents two levels of
waste  treatment for fluorescent lamp manufacture, three  levels of
waste  treatment for filament manufacture,  and one level  of waste
treatment  for quartz mercury vapor lamp manufacture.

     Fluorescent lamps.  Treatment of process wastewater for
fluorescent  lamp manufacture requires two levels of treatment to
achieve total recycle.  Level 1 treatment consists of  the follow-
ing:

     •  Settling of phosphor wastes,
     •  Chemical precipitation and sedimentation in a  clarifier
        of wet air scrubber wastes using lime and a coagulant
        aid,
     •  Sludge dewatering,
     •  Final pH adjustment, and
     •  Collection and removal of silicone coating wastes.
Date:  9/25/81
       II.8.5-43

-------
Level 2 treatment consists of Level 1 with the following addi-
tions:

     •  Total recycle of treated wastes for the wet air scrubber
        associated with tin chloride coating,
     •  Chloride coating,  and
     •  Total recycle of treated wastewater for glass tube brush
        scrub or sponge mix,  and rack cleaning.

Table 8.5-22 presents treated effluent data for fluorescent lamp
manufacture.

     Tungsten filaments.  The recommended Level 1 treatment
technology for filament mandrel dissolution is-.

     •  Chemical precipitation and sedimentation in a clarifier
        with the use of lime, ferric sulfate,  and a coagulant aid,
     •  Sludge dewatering, and
     •  Final pH adjustment.

Level 2 treatment consists of Level 1 treatment with the addition
of multimedia filtration to reduce the concentration of suspended
solids.  The Level 3 recommended treatment consists of Level 2
with the following additions:

     •  pH adjustment with sodium hydroxide to precipitate iron,
     •  Pressure filtration to remove iron oxide precipitate
        prior to reverse osmosis,
     •  Reverse osmosis to concentrate the wastes, and
     •  Recycle of the permeate from the reverse osmosis to the
        process.

None of the three levels of recommended treatment for tungsten
filament manufacture has been observed as in-place treatment in
this industry, thus, no data are presented here.

     Quartz mercury vapor lamps.  The recommended treatment for
the acid cleaning of quartz mercury vapor lamps is wastewater
collection and contract removal.
Date:  9/25/81            II.8.5-44

-------
     TABLE 8.5-22
TREATED EFFLUENT DATA FOR FLUORESCENT  LAMP
MANUFACTURE, ELECTRIC LAMP SUBCATEGORY [2-20]
                                      Level 1
Pollutant, mg/L
Antimony
Cadmium
Lead
Tin
TSS
Raw Waste(a)
Flow Weighted
Mean Concentration
0.460
0.310
0.029
22
140
Daily
Maximum
0.15
0.04
0.15
0.37
52
30 Day
Avg
0.07
0.02
0.07
0.16
23
Long term
Avg
0.05
0.012
0.05
0.13
18
   Analytic methods: V.7.3.11, Data set  2.
   (a)This is a developed process raw waste stream.  It does not include
      phosphor coating equipment and floor washdowns.
II.8.5.4-4.  Electron Tube Subcategory

Treatment technologies for the  electron tube subcategory are
recommended for process wastes  from  the manufacture of.television
picture tubes and steel aperture masks.

Recommended treatment for the three  recommended levels requires
three treatment systems, two for picture tubes and one for aper-
ture masks, to control the great diversity of process wastes.
Level 1 treatment combines the  following technologies into three
separate treatment systems.

     •  Solvent collection and  removal,
     •  Chemical precipitation  and sedimentation for concentrated
        metal wastes employing  chemical additions of lime, sodium
        carbonate, and a coagulant aid,
     •  Fluoride treatment to precipitate calcium fluoride with
        the use of lime and calcium  chloride,
     •  Chromium reduction with the  use of sulfuric acid and
        sodium bisulfite,
     •  Settling and reclamation of  phosphor wastes,
     •  Sludge dewatering, and
     •  Final pH adjustment.

Level 2 - Recommended treatment consists of Level 1 treatment
with an additional multimedia filtration step on all three treat-
ment systems.

Level 3 - Recommended treatment consists of Level 2 treatment
with the addition of water reuse where possible.   Level 3 recom-
mended treatment for aperture mask manufacture reuses 100% of
treated process wastewater.  Level 3 recommended treatment for
television picture tube and aperture mask manufacture reuses
Date:  9/25/81
      II.8.5-45

-------
approximately 60% and 100%  of treated process wastewater,  re-
spectively.

Performance  of the three  levels of recommended treatment  for
television picture tubes  are  presented in  Table 8.5-23.   Per-
formance  is  based on sampling data obtained from visited  plants
in the Electrical and Electronic Components Industry as well as
data from other industries  with similar  raw waste characteristics.

None of the  three levels  of recommended  treatment for  aperture
mask manufacture were observed in-place  at any of the  visited
plants.
     TABLE  8.5-23.
TREATED EFFLUENT DATA FOR ELECTRON TUBE
SUBCATEGORY [2-20]
 Pollutant. mg/L
                   Raw Waste
                  Flow Weighted
                 Mean Concentration
                                    LeveI I
                                                        Level 2
         Da i I y
        Maximum
30-Day
Average
Long Term
 Average
 Da i ly
Ma x i mum
 30-Day
Average
 NA,  performance data not available.
 (a)  included in total toxic organics are
    ethylene.
Long Term
 Average
Television picture
Total toxic organics (a)
Antimony
Arsenic
Cadmium
Chromium
Lead
Zinc
Boron
Ba r i urn
1 ron
Yttrium
Oil and grease
Total suspended solids
Fluoride
0.290
0. 1 1
0.08
3.2
1. 14
<4.6
38
13
O.ItS
4.9
1 1
62
11*0
8UO
NA
0.15
0. 15
0.04
2.2
0.15
1.6
5.7
0.5
2.3
0.017
3>t
52
Hit
NA
0.07
0.07
0.02
0.80
0.07
0.72
2.6
0.22
1 .0
0.008
16
23
20
0.290
0.05
0.05
0.012
0.57
0.050
0.55
2.0
0. 16
0.8
0.006
12
18
15
tubes
NA
NA
NA
0.03
1.24
0. 10
0.71t
5.2
0.112
0.75
0.009
21
37
lit

NA
NA
NA
0.015
0.45
0.04
0.32
2.4
0. 19
0.33
0.004
9.2
16
6.2

0.290
NA
NA
0.01
0.32
0.034
0.25
1.8
0. 14
0.26
0.003
7. 1
13
4.8
      I,I-trichloroethane, methylene chloride, toluene, and trichloro-
II.8.5.4-5   Semiconductor

Three  levels of wastewater treatment  are recommended  for the
semiconductor subcategory,  each providing increased control of
pollutant discharge.  The following paragraphs describe each of
the three levels of treatment.

Level  1  treatment consists of the following:

     •   Solvent collection and contractor removal,
     •   Wet air scrubber water recycle,  concentrated  wastes
         bleed-off to  waste treatment,
Date:   9/25/81
       II.8.5-46

-------
      •  Fluoride  treatment for concentrated fluoride  streams,
      •  Arsenic treatment (if applicable),
      •  Dilute acid waste treated  by chemical precipitation with
         lime, coagulant addition,  sedimentation in  a  clarifier,
      •  Sludge dewatering.

 Level 2 treatment consists of all  of the components of Level 1
 treatment including the following  additions or revisions:

      •  Recycle of dilute acid wastewater to DI water production,
         and
      •  Solvent collection and segregation for reclaim and resale.

 Level 3 treatment consists of all  of the components of Level 2
 treatment including the following  addition and revision:

      •  Carbon adsorption column to  treatment wastewater from the
         sludge dewatering unit prior to discharge.

 Effluent data for the recommended  treatment systems are shown in
 Table 8.5-24.  These concentrations  are based upon  data from
 the Electrical and Electronics Industry as well as  other indus-
 tries with similar raw waste characteristics.

 Level 1 treatment is a basic treatment system whose components,
 excluding arsenic treatment, are presently in use and have been
 observed at sampled facilities.  Level 2 treatment  is presently
 in use and has been observed at sampled facilities.   The Level 3
 treatment system  is not currently  in-place in any of  the semi-
 conductor facilities contacted in  this study.

      TABLE 8.5-24.   TREATED EFFLUENT DATA FOR THE
                      SEMICONDUCTOR  SUBCATEGORY [2-20]




Pollutant. ma/L
Total toxic organlcs
Arsenic
Chromium
Copper
Lead
N 1 eke 1
Zinc
Oi 1 and greats
TSS
fluoride

Raw Waste
F 1 ow We i ghted
Mean
Concentration
(a) 3. ft
0.021
0. 16
0.86
0.098
1.0
0.07ft
ft. ft
ft«
57



Daily
Maxima
2. 1
( b)
2.6
0.15
2.7
(b)
3ft
52
ftft
Level 1


30-Day
Averaae
NA
(b)
!bf
0.07
1.2
( b }
16
23
20



Long Tem
Ayeraae
0.82
(b)
(b)
0.81
0.05
0.9ft
(b )
12
18
15



Dai ly
Maximum
2.1
NA
(b)
2.6
0.15
2.7
(b)
3ft
52
ftft
Level 2


30-Day
Averaae
NA
NA
(b)
0.07
1 .2
(b)
16
23
20



Long Tern
Averaae
0.82
NA
(b)
0.31
0.05
0.9ft
(b)
12
18
15



Daily
Maxim*
0. 12
NA
(b)
0.15
2.7
(b)
3ft
52
ftft

Level 3


30-Oay
Averaae
0.05
NA
(b)
0.07
1.2
(b)
16
23
20




Long Tena
Averaaa
0.0ft
NA
(b)
0.05
0.9ft
(b)
12
18
15

(a) Total toxic organics Includes I,2,U-trichlorobenzene; I,I,I-trichloroethane; chloroform; I,2-dlchlorobenzene;
  1,3-dichlorobenzene; l,l(-dlchlorobenzene; uethylene chloride; napthalene; ft-nltrophenol; phenol; dl-n-octyl
  phthalate; tetrachloroethylene; toluene; and trlcnloroethylene.
(b) No change in perfonaance froa> previous level or raw waste.
 II.8.5.4-6  Capacitor Subcategory

 Three levels of treatment are proposed for the capacitor manufac-
 turing facilities.   Level 1 represents the minimum  treatment

 Date:   9/25/81             II.8.5-47

-------
found for  those facilities that had any treatment and consists of
pH adjustment prior to discharge  and for ball mill discharge, pH
adjustment and settling.  Capacitor manufacturing operations
often result in pH fluctuations that could fall outside pretreat-
ment regulations.

The Level  2 treatment systems contain chemical precipitation and
sedimentation (for solids and metals removal), neutralization,
vacuum filtration and contract hauling of the dewatered sludge
(an oil  skimmer is included for treatment of capacitor raw waste
excluding  ball milling).  This type of system would  lower
effluent concentrations for all of the visited facilities.  None
of the visited facilities had a Level 2 treatment system presently
in-place.

The Level  3 treatment system is a Level 2 treatment  system with
a polishing filter after the neutralization step.  The polishing
filter reduces the total suspended solids concentration with
attendant  incidental reduction of various metals concentrations.

Table 8.5-25 presents treated effluent data for Level I systems
observed as in-place technology in the Electrical and Electronics
Industry.
     TABLE 8.5-25.
TREATED EFFLUENT DATA FOR LEVEL 1 TREATMENT
IN THE CAPACITOR SUBCATEGORY  [2-20]
                        Flow Weighted
                      Mean Concentration	Range
                                 Mean
   Toxic pollutants. ug/L
     Copper
     Lead
     Zinc

   Classical pollutants. mg/L
     Aluminum
     Ba r i urn
     I ron
     Manganese
     TSS
     Oil and grease
     pH, pH units
   Toxic pollutants. ug/L
     Ch rom i urn
     Lead
     Zinc

   Classical pollutants. mq/L
     Ba r i urn
     TSS
                              Treated Capacitor (Excluding Ball Mill
                              Wastes) Effluent
53
50
13
U9
50
67
- 60
- 50
- 290
54

180
      0.42
      0.8U
      O.UO
       I . I
        15
         0
0.23 - 0.97
0.02 -I.I
 0.3 - 0.68
0.01 - U.3
 1.0 - 20
    0
 7.0 - 7.7
 0.6
0.57
O.U9
 2. I
  10
                                  7.U
                               Treated BaI I Mi I I ing Raw Waste
                                   7
                                   I I
                                   36
                                  160
                                  210
Date:   9/25/81
       II.8.5-48

-------
                        II.8.6  FOUNDRIES

II.8.6.1  INDUSTRY DESCRIPTION

II.8.6.1.1  General Description  [2-21]

The Foundry Industry comprises facilities that pour or inject
molten metal into a mold to produce intricate metal shapes that
cannot be readily formed by other methods.

The Foundry Industry in the United States employs over 400,000
workers in 3,600 foundries that produce over 17,000 Mg (19 mil-
lion tons) of product annually.  This production includes cast
pieces made of iron, steel, aluminum, brass, and copper as well
as other metals.  This industry is described by Standard Indus-
trial Classification (SIC) Codes 3321, 3322, 3324, 3325, 3361,
3362, and 3369.

The basic foundry process is essentially the same regardless of
the method of melting, molding, or finishing.  A raw material
charge is melted in a furnace, from which the molten metal is
withdrawn as needed.  The mold for the product is a sand cast or
a set of metal die blocks that are locked together to make a
complete cavity.  The molten metal is ladled into the mold, and
then the mold is cooled until the metal solidifies into the
desired shape.  The rough product is further processed by re-
moving excess metal, quenching, cleaning, and chemical treatment.

Table 8.6-1 presents industry summary data for the Foundry In-
dustry including the number of subcategories, the number of
plants which have a process wastewater, and the types of dis-
chargers.

          TABLE 8.6-1.  INDUSTRY SUMMARY [2-21]
          Industry:  Foundries
          Total Number of Subcategories:   6
          Number of Subcategories Studied: 5

          Number of Dischargers in Industry: 1,132

          •  Direct:  300
          •  Indirect: 360
          •  Zero:  472
Date:  9/25/81             II.8.6-1

-------
BPT limitations currently listed for this industry are presented
in Table 8.6-2.

II.8.6.1.2  Subcategory Description [2-21]

The Foundry Industry includes a number of foundry types as well
as processes within these foundry types.   Plants are capable of
casting one or more metals on a site and each site may utilize
one or more processes that can generate wastewater.  The most
effective basis of subcategorization is by the type of metal
cast.  Alloys of these metal types are also considered as appli-
cable to the subcategory.  These subcategories are:

     (1)  Aluminum casting
     (2)  Copper casting
     (3)  Iron and steel casting
     (4)  Magnesium casting
     (5)  Zinc casting
     (6)  Lead casting

The original subcategorization included three more subcategories:
the casting of nickel, tin, and titanium.  These have been elim-
inated on the basis that the manufacturing processes associated
with the casting of these metals and their alloys do not result
in a process wastewater.  The analysis of the lead casting sub-
category is currently underway.

     Aluminum Casting

Aluminum is a light metal with good tensile strength.  It is
easily cast, extruded, or pressed, and it weighs half as much as
a similar product made from steel.  Today aluminum is the second
most widely used metal after iron. Establishments that are engaged
in producing castings and die castings of aluminum and its alloys
produce household and hospital utensils,  and machinery castings.

     Copper Casting

Copper is second only to aluminum in importance among the non-
ferrous metals.  It is often alloyed with tin, lead, and zinc to
produce brass and bronze.  Copper castings are produced by several
methods including centrifugal molds, green sand molds, and die
casting.  Products include bushings and bearings, propellers, and
other cast products.

     Iron and Steel

Iron is the world's most widely used metal.  When alloyed with
carbon, it has a wide range of useful engineering properties.
Alloys of iron include:  gray, ductile, malleable, and steel.
The same general processes are used with all four classes of
Date:  9/25/81             II.8.6-2

-------
          CM

          CM
          a:
          w
          Ld
          CC
          Q
          a:
          o
          u.
          LJ
          Z)
          Q.
          00
          CVJ
          I
          vo

          00

          Ld
          _1
          CO
c
c
«
r
u-
c
^


a

-i
n
g
0)
£ c
fl-Z

2
Si
a.
c

I
o
c
N
|
3
a>


£1
9>
-i
65
at
?^
ol
•o
at
if
»*•">
49 JC
3
—
*
>
E (
ll
<5
S


C
0
;ego_ryZoeerat
a
U
£
£

S » £ -
~

§in «
S *
(U
o o o
— — — O*
III 1
in tn in >o







-
S
1
o
£


so
o
g
o

o o o m
— — — cy


OiCUCiAC C — C
>o o « o « * o «
N o ** o ** ** o *j
o o — o — — o —
O O O O
a a a a
o Q o> o o> a> iAa>
I I I I
... ,
, o o o at « o »
o g o o g o g
a a a
o o o o
N a> a) at 01
o ? ? t- 21
s s s s
£ s s s
(Tt — — — —
o
« O O O O
Q z z z z

S |

| 8 ; § |
*J fl) i. C C **
<« u r at o to »
« a w o - «
u c c a ** A o
- S S g 88 .5* .
C **. (T — — — O 3
§** at -o— o c o
O» 91 u> JS CO O « 3
c e a 3 « o us c
is « z ° ~ •_** T,17 «

3|— I 3 O Q C O X O











m




o
o



«



—
o
o


o



c c c c c c cm
 a> o e e o

0 O O O O O 0
o no a> « a> a
» gl » gl Ol gt 91
U U U O O O U
M « « MM M W

K S Z Z S Z Z


cl
5 So,
sl S ? §z l€S
— 4* C «- - CO 0) ** C C t-
So t. U) £ o o c u a* »- o
0) 3« 0 30 - 0) 3 3A
*j— it. a c o* c — o1 <--Q
u>— 3 01 -a rt - 3
O 91 (- 3 91— ID SO 91 9) t-
•oo co cr c o > 3U c co
c — *o •— i — .- — («
«— «U) COW t» —
pi ss s §a as i




























4JQ

S -o —

1 s^f
i si]
eve
S'StCD >
•o x, (--o o
£ ao *V
S-O V M
** «
ja e « x
3 0) i. M
u **
0 WJ1-
u) >>O O
5 0) 0 t.
i 910
. C.Q 1- «
25^*~
^t S »2

JJ 4-> ffl *
it-f.I
W O •— >> 3 ^  a> ** c.
o « <- co-x a
ac ** o — £
qi M o*- **r—
i «— o r-v
Ad- C — O
o" g— C -DO)
— ra t3 C 0) f- CD
 9)
— t--0 O (9t
oi— a a - -v a
(0.0 U
Date:   9/25/81
II.8.6-3

-------
metal in the production of products ranging from cooking utensils
and pipe fittings to steel railroad car wheels.

     Magnesium Casting

Magnesium is a silver-white metal which, on an equal weight
basis, is equal or stronger than any other common metal.  Most
magnesium is cast in sand molds.  This is to prevent metal-mold
reactions, which may occur because of the reactive nature of
molten magnesium.  Inhibitors such as sulfur, boric acid, or
ammonium fluorosilicate are often mixed with the sand to prevent
these reactions.

     Zinc

Zinc and zinc alloys are well suited for die casting because of
their low melting temperature,  small grain size, and adequate
strength.  Zinc alloy compositions consist of copper, aluminum,
magnesium and traces of lead, cadmium, tin, and iron.

     Lead Casting

Lead foundries produce lead castings such as wheel balancing
weights and sash balances,as well as white metal castings.

II.8.6.1.3  Subcategory Operations

Several of the above subcategories may be divided into separate
operation types.  These operations are presented below with a
brief description of each.

     Aluminum Casting

The aluminum foundry industry can be subdivided into five opera-
tions, which represent different processes within the foundry.
These include investment casting, melting furnace scrubbers,
casting quench operations, die casting operations, and die lube
operations.  Investment (also known as precision or lost wax)
casting operations use molds that are produced by surrounding an
expendable pattern with a ceramic slurry that hardens at room
temperature.  The pattern, normally a wax, is then melted or
burned out of the hard mold.  These molds provide very close
tolerances.  After the molten metal is poured into the mold and
solidifies, the mold is broken away.  Thus, a new mold is needed
for each casting.  Process wastewaters include those resulting
from mold backup, hydroblast (of castings), and dust collection
(used in conjunction with hydroblasting and the handling of the
investment material and castings).

A second operation inherent to the aluminum foundry industry
involves the use of wet scrubbers to remove noxious materials
from melting furnace gases.  The wastewater sources resulting


Date:  9/25/81               II.8.6-4

-------
from this process are either the discharges from wastewater
scrubber equipment packages or the discharge from treatment
systems separate from the scrubber system.

The third operation type, cast quenching,  is practiced more
frequently in nonferrous than in ferrous foundries.   Ordinarily,
it is used to promote the rapid cooling and solidification of
casting material or to produce certain metal grain structures
that are obtainable only through sudden thermal changes.   In
these cases, the casting is quenched in a water bath, which may
be plain water or may contain an additive to promote some special
condition. The only wastewaters considered in association with
this operation are those that are discharged from the casting
quench tanks.  Raw waste loads will depend on the duration of the
quenching cycle, the degree of quench recycle, the quench solu-
tion additives used, and the contamination of the quench solu-
tions with wastes from other sources (hydraulic oil leaks, etc).

Theoretically, the fourth operation type,  die casting, does not
produce a process wastewater.  However, in most die casting
operations major sources of wastewater include contact mold
cooling water, die surface cooling sprays,  casting machine hy-
draulic systems using water, and leakage from various noncontact
cooling systems that are subsequently contaminated by dirt, oil,
and grease.  Preventive maintenance can affect the volume and
contamination of die casting process wastewater.

Die lube operations involve the application of lubricants to die
casting molds to prevent the casting from sticking to the die.
The lubricants used are dependent on the temperature of the
metal, the operating temperature of the die, and the alloy to be
cast.  The lubricants, generally organic compounds,  may enter the
waste stream through leaks in mold machinery.

     Copper and Copper Alloy Casting

The copper and copper alloy foundry industry can be subdivided
into three operation types that represent various processes
within the plant:  dust collection, mold cooling and casting
quench, and continuous casting.  Mold cooling is commonly used in
casting operations that employ permanent molds.  In such opera-
tions, it is often necessary to force cool the mold with water,
which subsequently becomes contaminated with materials picked up
from the mold surface.  The major pollutant loads from these
operations are the particles of copper and alloying materials
which are represented as suspended solids.

Continuous casting is used in operations where a slab or billet
is "worked" to produce a final product.  Such slabs are con-
tinuously cast by pouring molten metal into a water-cooled mold
at a controlled rate and withdrawing a solid piece from the
bottom of the mold.  This piece is then cut into lengths for


Date:  9/25/81              II.8.6-5

-------
further processing.   Wastewaters result from the cooling of the
molds and castings used in,  and produced from,  continuous casting
equipment.  The major pollutant loads in these process waste-
waters are the suspended solids consisting primarily of copper
and copper alloy materials.

     Iron and Steel Casting

Iron and steel foundries have five operations that can produce
wastewater in some form.  These include dust collection, melting
furnace scrubber, slag quenching, casting quench and mold cooling,
and sand washing operations.

Ferrous foundry dust collection systems use various types of
scrubbers to remove airborne gases and particulates generated as
a result of sand handling operations, mold and core making, and
molding and casting shakeout.  The major pollutant load results
from the casting sand itself and the binders and process chemicals
used in the molding and casting processes.

The melting furnace scrubber process is similar to that in the
aluminum subcategory.  The pollutant load is due to the amount,
type, and cleanliness of scrap and metal used in the furnace
charge and the various by-products associated with the melting
process.

Slag quenching is commonly used to rapidly cool and fragmentize
slag (a mixture of nonmetallic fluxes introduced with the "charge"
to remove impurities from the molten metal) to an easily handled
bulk material. The quench water is a waste product that must be
handled.

The reclamation and reuse of sand is a major operation in foun-
dries that use sand as a molding medium.  In this operation, water
is used to "wash" impurities, primarily "spent" binders and sand,
from the casting sand prior to its reuse in the molding opera-
tions.  The sand and binders become "spent" as a result of the
heat present in the casting process.  Additionally, sand can be
"washed" using a number of dry and thermal methods.  These latter
methods have the advantage of not producing a wastewater stream.

     Magnesium Casting

Magnesium foundries generate wastewater in grinding, scrubber  and
dust collection operations.  Because of the violent reaction of
fine magnesium particles with air, wet scrubbers are used to
control the dust that results from the grinding operations.
Date:  9/25/81             II.8.6-6

-------
      Zinc Casting

 Zinc foundry operations include  casting, quench operations,  and
 melting furnace  scrubber operations similar  to those described
 above.
 II.8.6.1.4  Wastewater Flow Characterization  [2-21]

 Table 8.6-3 presents wastewater  flow characterization for the
 Foundry Industry  by subcategory.   Also presented in this table  is
 the degree of process water recycle,  and the  number of plants
 surveyed with central wastewater treatment facilities for all of
 the processes at  that plant.  The discharge flow represents  all
 processes within  the subcategory.
   TABLE 8.6-3.
  WASTEWATER FLOW CHARACTERIZATION BY SUBCATEGORY
  [2-21]
                                       Subcateqory
             Aluminum casting
          Copper and copper  Iron and steel
          al lov casting	casting	Magnesium casting   Zinc casting
 Respondents,
  No. of plants

 Applled flow, ML/yr

 Recycle flow, ML/yr

 Dl rect discharge
  flow, ML/yr

 Indirect discharge
  flow, ML/yr

 100% recycle
  flow, ML/yr

 Central treatment
  faclI(ties. No. of
  plants

 Operation treatment
  facilities. No. of
  plants
32
It, 500
7,530
24
3U.900
25,300
3 Ht
397,000
317,000
3
8. 18
0
25
n,oto
3,1*30
5,700


1,260


 408
  20
9,610


  U8


3,31*0



  10


  IX
69,300


11,600


189,000



  109



  205
5,050


 100


1,010


  13


  12
II.8.6.2  WASTEWATER CHARACTERIZATION [2-21]

The  foundry industry was analyzed  in screening and verification
programs to identify and quantify  pollutants discharged.  During
screen sampling, one or more samples from each manufacturing
process within each  subcategory were analyzed for  all 129 priority
pollutant parameters.   Originally,  the chemical  analysis data
obtained from the screening sampling program together with other
supporting data were to be used to screen out those pollutants
from further consideration in the  verification program that were;
1) not detected in the  foundry process wastewater  streams, 2)
detected but not quantifiable and  3)  considered  environmentally
insignificant.  Environmentally insignificant pollutants include
Date:   9/25/81
              II.8.6-7

-------
those pollutants found in only one plant,  pollutants which are
artifacts of chemicals historically used in the plant but whose
use has been discontinued,  i.e.,  PCB's,  and pollutants found at
concentrations below a level of. environmental significance.

However, the laboratory performing the analytical work was unable
to develop appropriate analytical methods designed to verify the
organic pollutants selected for verification analysis.  There-
fore, all the organic toxic pollutants were analyzed during
verification.  The analysis of the toxic metal pollutants though,
followed the original sampling strategy and only the toxic metal
pollutants warranting further consideration after screening
analysis were analyzed.  The toxic metal pollutants selected for
verification analysis are listed on Table 8.6-4 for each subcate-
gory and process segment.

Numerous toxic pollutants were detected in the process waste-
waters from metal molding and casting processes sampled during
the verification sampling program.  The toxic pollutants detected
most frequently in concentrations at or above 0.1 mg/L were
the phenolic compounds and heavy metals.  The pollutants included
the following:
     2,4,6-Trichlorophenol
     2,4-Dimethylphenol
     Phenol
     Bis (2-ethylhexyl)
       phthaiate
     Cadmium


     Chromium


     Copper


     Lead


     Nickel
was found in 14 percent of the
processes sampled

was found in 11 percent of the
processes sampled

was found in 23 percent of the
processes sampled
was found in 23 percent of the
processes sampled

was found in 11 percent of the
processes sampled

was found in 9 percent of the
processes sampled

was found in 36 percent of the
processes sampled

was found in 36 percent of the
processes sampled

was found in 16 percent of the
processes sampled
Date:  9/25/81
                            II.8.6-8

-------
        CM
        8
        QL
         at
         Ul
         I
         s
         Q
         Ul
         u
         Ul
         ui
         Ul
         00
         Ul

         8
                  XX XXX   XXX   X XXX X   XX   XX
                  XX X  X X   X
                  XX XXX   XXX   X  XXX X
                  XX XXX   XXX   X  XXX X   XX   XX
                  XX XXX   X  X X   X XXX X   XX   XX
                  XX XXX   XXX   X  XXX X   XX   XX
XXX   XXXXX   XX   XX
                  X  X  X X   X
                                   X  XXX X
                                   X X  X X
                                   X X  X X
                                   X X  X X
                 *» •    •»  c ctt*«  «e •
                 * u *   ff fl! "."  *° 2 ?*?
                 "•! £• •• K 0SS  LW 8 -e-o>
                 fiisiiii! fi.!:i. S.iii
Date:   9/25/81
    II.8.6-9

-------
     Zinc                          was found in 59 percent of the
                                   processes sampled

Each type of operation in the foundry industry can produce dif-
ferent types of pollutants in the wastewater stream.   Also,
because each subcategory operation often involves different
processes, subcategory pollutant concentrations may vary.   A
summary of those pollutants detected within each subcategory in
the verification sampling program is presented in Tables 8.6-5
through 8.6-14.

Operations within each subcategory have been combined to give an
overall view of the subcategory.  More detailed information on
each operation is provided in the section of this report dealing
with each specific plant.

II. 8.6.3  PLANT SPECIFIC DESCRIPTIONS  [2-21]

The following plants have been selected to present plant specific
information on each subcategory and, when possible, each process
within the subcategory.  Plants were selected on the basis of the
completeness of the available information.  A brief description
is given of each plant, its treatment system, and the toxic and
classical pollutants discharged.

II.8.6.3.1  Aluminum Foundries

     Plant 4704

This plant employs investment casting operations and co-treats
wastewaters from mold backup, hydroblast casting cleaning, and
dust collection.  Polymer is added to aid settling in a Lamella
inclined plate separator.  The Lamella unit sludge is filtered
through a paper filter, and the filtrate is returned to the head
of the treatment system.  The treated effluent is discharged to a
river.

     Plant 20147

This plant provides for the complete recycle of all die lubri-
cating operation solutions.  The die lubrication operation solu-
tions are collected both by gravity drains connected to a holding
tank and by drip pans beneath each casting machine.  Wheeled
tanks are used to collect and transport the die lubricant solu-
tions collected in these pans to the die lubricant storage tanks.

A skimmer located on the holding tank provides for tramp oil
removal.  The die lubricant solutions are pumped from the holding
tank, through a cyclonic separator, and then to a storage tank
for reuse.  A paper filter is used to remove solids from the
cyclone concentrate; the filtrate goes into the storage tanks.
The die lubricants collected in the pans are filtered using a


Date:  9/25/81             II.8.6-10

-------
     TABLE 8.6-5.  WASTEWATER CHARACTERIZATION OF CLASSICAL
                   POLLUTANTS FOR THE IRON AND STEEL FOUNDRIES
                   [2-21]
Pollutant
TSS
Total phenols
Sulfides
Oil and grease
pH, pH units
Analytic methods
TABLE 8.6-6
Pollutant
TSS
Total phenols
Oil and grease
pH, pH units
Analytic methods
TABLE 8.6-7
Pollutant
TSS
Total phenols
Oil and grease
pH, pH units
Number
Sampled
27
27
23
27
27
of times
Detected
26
23
14
26
25
Concentration,
Maximum
21,000
31
18
200
11
Average
4,200
3.4
4.5
29
mg/L
Median
1,600
0.81
2.9
12
7.4
: V.7.3.12, Data set 2.
. WASTEWATER CHARACTERIZATION OF CLASSICAL
POLLUTANTS FOR ALUMINUM CASTING [2-21]
Number
Sampled
10
10
10
10
of times
Detected
10
9
10
10
Concentration,
Maximum
2,700
66
43,000
8.6
: V.7.3.12, Data set 2.
. WASTEWATER CHARACTERIZATION
POLLUTANTS FOR ZINC CASTING
Number
Sampled
5
5
5
5
of times
Detected
5
5
5
5
Average
710
8
5,000
mg/L
Median
320
0.08
150
7.3
OF CLASSICAL
[2-21]
Concentration,
Maximum
3,800
91
17,000
7.4
Average
1,000
18
3,800
mg/L
Median
430
0.11
760
5.7
Analytic methods:  V.7.3.12, Data set 2.
Date:  9/25/81
II.8.6-11

-------
     TABLE 8.6-8.  WASTEWATER CHARACTERIZATION OF CLASSICAL
                   POLLUTANTS FOR COPPER CASTING [2-21]
                 Number of times
             Concentration, mg/L
Pollutant
TSS
Oil and

grease
pH, pH units
Sampled
3
3
3
Detected Maximum
3
3
3
1,600
40
8.3
Average
560
24

Median
56
21
8.0
Analytic methods: V.7.3.12, Data set 2.
     TABLE 8.6-9.  WASTEWATER CHARACTERIZATION OF CLASSICAL
                   POLLUTANTS FOR MAGNESIUM CASTING [2-21]
                 Number of times         Concentration, mg/L
   Pollutant	Sampled   Detected   Maximum   Average   Median
TSS                2
Total phenols      2
Oil and grease     2
pH, pH units       2
  2
  2
  2
  2
 36
1.1
 10
9.8
  31
0.58
   7
           8.7
Analytic methods:  V.7.3.12, Data set 2.
 Date:   9/25/81
II.8.6-12

-------
K.
a
z
0

o
\-~
o
i

s

— J
<

z
a
z
o
u.

CO

z


3
_l
O
a.
O
X
o

u.
O

z
0
<— '
NCVI
— 1
H"
0<

"°





1C
wfo
^1"^
do
£l£
m a:
oL
l_
CJ L.
11
2










_l
a
2.
c
CO
*J
3
£




CM -JC-Uf^O OOO-JO— O
.T G )*•> CO CO ** CO (A >>-
CO X^^^tO— -DO.
D (D O.-W -u — co C t
i- £ £jr co£ 3 c
o — — a Q..C « o i
C >»>.*»£ Q —
.CN 	 XldE'D
«** c ££a ° °
C3 OJ >» 3 Q) 1 £ 3 O — >, O
E Q) — 3 tO C CO — •— 1 I £ « Q) *•>
— t-dcocot-G— c co « 4-> i i Q) 6 oc
CO X: O >> O Qj — CD — J= — 3 	 	 S- 1
*> O O O _l Z Z (/) N 4JCOCQOO.OQ 4J Z
£ £ S




OOM^iO^reOi^^O

"



°.£[£o J CNJ^oS
CM CO CO U"\






0 00
O O O
O O r- O XD ~

O i 1 i i i i i 1 1
CO
^•o-;-j_i_j_j_i_i
	 OQOOOOO
CO CO CO CO CO CO CO












c* S^choCo^S^o?








«
•5
OJ —
— CO 0
— Q) « 	 > £ 0) O O CD —
£ a i- c c (- o
4-> O U 0) 0) O C
0} L. eo — £ C. 10)
i- — CD c o — o i a
O £ E Q) t- XC O O
£ — t_ a.— *>j: *j o
o i- o o £ tu a. 	
I *-— t~ o E O CJ= «
CM i £ o 	 ' — o — o

IAJI — • CD J^ 1 1 — 1 *J C *J
0)1— C • CO 1 **l • Q) £ E
uj| o. <




— ONCOO
(M CM ONO
0

VO



-J -J _l LA
o Q o r-
co coco






o
0
o
c »
eo r- IA JT
o
1 LA 1 1 1
CM
— 1 -J _llA
O OO —
CO CO CO











0\ —- 1*> \o ro
c>-^xOM














C 0)
V C
N CD
C N
0) C
ar> CD v
C OX3 C 0)

N O >>3 0)


Date:  8/31/82 R  Change  1  II.8.6-13

-------
C£.
Q
Z
^
0
Li.

Z
h-
o
z
3
Z

Z
13
i
<
Z
0
z
3
o
u.
CO


z
1-
3
J
O
0.
0
X
0
h~

OT3
O C
< c
N O
UI*"
>-


j~ ^




Q


1
*O*
00
u
CO
<

c
<» o
c o
(0 0}
d> u
£ 0)
•o

o c
o
c —
- o
B 01
Es




t- C
0 O

OJ *J
CTiO
(0 -w
CC (U
•o





V)
1C
« 0
0)1--
0 U
E a
« a
°s
03 t-
2 =
Z

















^s,
C



C
 j f\j JT m ro a- IA coco
Ch CN Ch Ch 0> CN Ch ON Ch ^ CTv





vO
O
—
_
-0
CM \O
CNJM
0) « 	
C —
OJ > - -
i- C ^ eo «
£ oj m j o
OJ -W £ CM CM —
O C C Q — — 4J

» woj S ^CM* a

*-«cc **i- oj"v *j— — re
ncojojojc>> — OJ re
o .c .c c > c cii "o
O J3 *J *•> 0) ---.— aj £ Q) 5) •— Q;
— TO Q TO (0 w 0) Q. TO OJ OOO n
oore'-^ooww'-i- 	 c
^OCO+JNN^C^O £ O O d
O^tt)3Q.CC^U>*J3 U O O O
O C) O 03
a. Q. x





— vO CO
CO






_J_i _lm _( 0-J
DO O ro Q OJ Q
ID CO CD CO ~ CD



o
o o
0 0
CO r- vo com - O \OCJN
Jt 	 -J — J CNJ -J CO — > — vC

1 1 1 lAffl t 1 1 CD 1 CD 1 1

OOJ OOO O OQ










eororg 	 f\jir»j-cr-fovo
0>OsOvOONf7sO>ONONC?vOsf?vOv










Q) «
TO —

Q) Q) 4-> 	
O C C OJ OJ OJ —

— oj.CQj.ci- a> w ro c A

O ro Qj ro 4) ^ •— *j *J — c AJ
— £ O JT On l- OJOJXOJ CJ
£4Ji_4JUtJ O 6E£— e
03 O — O — 1- .C EE0-C T3
!_ I- £ i. ^ 4J o OOO*J C
4J O O O O 4) E uuugj ir\tACMwrycMCvjcMrocyvoj-co^
^^CNChChOxONOONChaNONONONONONON

















4J -0
C « —
to C<*- OJ X
(^ (0 — T3 O
"D ^ (ft £ oj

O 10 C T3 L t.
OJ T3O« — OOO OU
CCt-LJOC-^^ (0— — XOXX
C'U-DQOO i o3^ C COOIfflll
— "O i- 1 1 I«OI« 	 TO TO W 1 TO (0

•o tp — j-j-a- cx*»'oio-o aaa-p E —
 0

0 0
O *J
£ a)


£ >
(J —


- .
fa
CO


Date:  8/31/82 R Change 1  II.8.6-14

-------
         TABLE 8.6-1 I.
WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS  FOUND  IN
COPPER AND COPPER ALLOY CASTING,  VERIFICATION  DATA  [2-21]
NM
Pollutant. UO./L Num
Metals and Inproanlcs
Cadmium
Ch roni i urn
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Zinc
Phthalates
Bis(2-ethy Ihexyl ) ph thai ate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Diethyl phthalate
Dimethyl phthalate
Nitrogen compounds
Benzidine
1 , 2-D i pheny I hyd raz i ne
Pheno 1 s
2,i»,6-Trichlorophenol
2, it-Dimethyl phenol
2-Nitrophenol
U-Nitrophenol
Pentachlorophenol
Pheno 1
i4,6-Dinitro-o-cresol
Parachlorometacresol
Aroma tics
Benzene
2,6-Oinitrotoluene
To l uene
Po 1 vcvc 1 i c a roma ties
Acenapthene
Fluoranthene
Napthalene
Benzo (a) anthracene
Benzo (a) pyrene
3,i»-Benzof luoranthene
Benzo (k) fluoranthene
Chrysene
Acenapthylene
Anthracene/phenanthrene
Pyrene
Fluorene
Polvchlorinated oiohenvls
Aroclor - 11)24, I25U, 1221
Aroclor - 1232. 12118, 1260, 1016
Halooenated aliphatic*
Carbon tetrachloride
1,1, l-Trichloroethana
Bromoform
Tetrachloroethylene
Trlchloroethylene
Pesticides and metabolite*
Isophorone
U, it-DDE
Endrin aldehyde
Heptachlor epoxide
Chlordane
Endosulfan sulfate
Heptachlor
Beta-BHC
Alpha-BHC
Delta-BHC
Aldrin
Toxaphene
•ber of samples
ber of detections

3/2
3/1
3/2
3/2
3/2
3/2
3/2
3/1
3/3

3/1
3/3
3/1
3/2
3/2
3/2

3/1
3/1
3/1
3/1
3/1
3/1
3/2
3/2
3/1
3/1

3/1
J/l
3/1
3/2
3/2
3/1
3/1
3/2
3/1
3/1
3/2
3/2
3/1
3/2
3/2

3/2
3/2
3/1
3/1
3/1
3/1
3/1

3/1
3/2
3/1
3/2
3/1
3/1
3/1
3/1
3/1
3/1
3/1
3/1
Range of
detections

100 - 100
BDL
350 - 110,000
BDL - 1*9
2,000 - 28,000
BDL - BOL
BDL - 720
BDL
1,600 - 130,000

1 |
BDL - 180
BDL
BDL - BDL
BDL - BDL
15 - 38

BDL
BOL
BDL
36
BDL
BDL
1 1 - 17
BDL - 25
BDL
BDL

BDL
BOL
BDL
BDL - BOL
BDL - BDL
1 1
<29
BDL - BDL
BDL
BDL
BDL - 57
BDL - BDL
<2I
BDL - BOL
BDL

BOL - BOL
BDL - BOL
1 1
37
BDL
80
50

BDL
BDL - BOL
BDL
BDL - BDL
BOL
BDL
BDL
BOL
BDL
BDL
BOL
BOL
Median of Mean of
detections detections

100

55,000
27
15,000
BDL
360

2,000 Ui»,000


BDL 63

BDL
BOL
26







It
15






BOL
BOL


BOL


31
BOL

BDL


BOL
BDL







BDL

BDL








    Analytic methods:
    BDL, below detection limit.
Date:   9/25/81
              II.8.6-15

-------
        TABLE 8.6-12.
WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS  FOUND  IN
IRON AND STEEL FOUNDRIES, VERIFICATION DATA [2-21]
Pol lutant. uo/L
Metals and inorganics
Ant i mony
Arsenic
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Zinc
Phtha ates
Bis 2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Oi ethyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
Nitrogen compounds
N-Ni trosodiphenylaroine
Pheno 1 s
2, 4, 6-Trich lorophenol
Pa rach 1 o rome tac re so 1
2-Chlorophenol
2, 4-Dlch lorophenol
2, i»-Di methyl phenol
2-Nitrophenol
4-Nitrophenol
i» , 6-0 i n i t ropheno 1
4,6-Dinitro-o-cresol
Pentach lorophenol
Pheno l
Aroma tics
Benzene
1,2,4-Trichlorobenzene
To 1 uene
2, 4-D i n i t roto 1 uene
2, 6-0 i n i t roto 1 uene
Nitrobenzene
Polvcvclic aromatic hydrocarbons
Acenapthene
Fluoranthene
Naptha lene
Benzo (a) anthracene
Benzo (a) pyrene
3,4-Benzof luoranthene
Benzo (k) fluoranthene
Chrysene
Acenapthylene
Anthracene/phenanthrene
Pyrene
Polvch orinated biohenvls
Aroc or - 1232, 1248, 1260, 1016
Aroclor - 1424, 1254, 1221
Halooenated aliphatics
Carbon tetrachloride
1,1, l-Trichloroethane
1 , 1 ,2-Trichioroethane
Chloroform
1,2-trans-Oichloroethylene
Me thy lene chloride
0 i ch lo rob romome thane
Pesticides and metabolites
Oieldrin
4, 4 '-DOT
4, it-DDE
Eldrin aldehyde
Heptachlor
Beta-BHC
Gamma -BHC
Delta-BHC
Number of samples
Number of detections
2U/7
24/6
24/4
2V 10
24/17
24/14
24/17
24/I5
24/15
24/14

12/9
12/8
12/7
12/5
12/1
12/3

12/3

12/3
12/4
12/4
12/5
12/8
12/4
12/4
12/6
12/4
12/5
12/7

12/6
12/1
12/5
12/3
12/3
12/3

12/6
12/9
12/5
12/5
12/4
12/2
12/2
12/4
12/6
12/8
12/8

12/5
12/4
12/5
12/6
12/2
12/3
12/1
12/4
12/2

12/8
12/3
12/1
12/5
12/2
12/2
12/1
12/1
Range of
detections
30 - 3,400
BDL - 1,500
200 - 820
BOL - 4,600
20 - 12,000
BDL - 210
BOL - 140,000
BOL - BDL
BDL - 910
97 - 190,000

BOL - 1,200
BDL - 200
BDL - 200
BDL - 39
BDL - 2,200
BDL - 130

BOL - 1,400

BOL - 80
BDL - 170
BOL - 200
BDL - 2,200
BDL - 1,100
BOL - 40
BDL - 51
BDL - 44
BOL - 38
BDL - 340
69 - 20,000

BOL - 100
7
BDL - 40
BDL - 50
BDL - 50
BDL - 280

BDL - 36
BOL - 390
BDL - 93
BDL - 21
BDL - 30
BDL - 36
BDL - BDL
BDL - 21
BDL - 62
BOL - 410
BOL - 1 10

BOL - 270
12 - 330
BDL - 20
BDL - 37
BDL - 20
BDL - 80
11
BDL - 20
BOL - 37

BOL - 20
BDL - 20
20
BOL - 20
BDL - 20
BDL - 20
20
20
Median of
detections
800
90
680
200
370
32
2,000
BDL
60
20,000

71
60
23
BDL
350
41

15

BDL
65
15
20
39
15
26
15
17
53
500

BDL

BOL
BDL
BDL
BDL

20
26
20
BDL
BDL


BDL
1 1
49
34

20
26
BDL
IS

31

BOL


BDL
BOL

9




Mean of
detect ions
1, 100
480
600
1,000
1,900
46
25,000
BOL
180
88,000

190
67
54
1 1
730
59

470

30
78
60
450
220
20
28
24
20
1 10
3,700

26

17
20
20
97

21
66
43
14
15
20
BDL
12
22
92
46

68
98
12
18
12
39

BDL
21

6.9
8.3

9.8
1 1
1 1


   Analytic methods:  V.7.3.12, Data set 2.
   BDL, below detection limit.
Date:   9/25/81
              II.8.6-16

-------
         TABLE 8.6-13.
WASTEWATER CHARACTERIZATION OF TOXIC  POLLUTANTS FOUND IN
MAGNESIUM CASTING, VERIFICATION DATA  [2-12]
Pol lutants. UQ/L
Metals and inorganics
Copper
Lead
Zinc
Phtha lates
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Di ethyl phthalate
Phenols
2-Nitrophenol
Pentach 1 oropheno 1
Phenol
Aroma tics
Benzene
Hexachlorobenzene
1 , 2-D i ch 1 o robenzene
1 , 3-D i ch 1 o robenzene
1 ,4-Dichlo robenzene
Toluene
Xy 1 ene
Po 1 vcvc 1 i c a roma tics
Acenapthene
Naptha lene
Chrysene
Acenapthy 1 ene
Anthracene/phenanthrene
Fluorene
Pyrene
Pol vch lorinated biohenvls
Aroclor - IU24, I25U, 1221
Aroclor - 1232, I2U8, 1260, 1016
Halogenated aliphatics
Hexachloroethane
Methylene chloride
Pesticides and metabolites
Dieldrin
4, 4' -DDT
U,4-DDD
Alpha endosulfan
Endrin aldehyde
Alpha-BHC
Gamma -BHC
Number of samples
Number of detections

2/2
2/2
2/1

2/2
2/1
2/1

2/1
2/1
2/1

2/1
2/1
2/1
2/1
2/1
2/1
2/2

2/1
2/1
2/1
2/1
2/2
2/1
2/2

2/1
2/2

2/1
2/1

2/1
2/2
2/1
2/1
2/2
2/1
2/1
Range of
detections

20 - 60
30 - 80
1,200

IU - 51
10
40

BDL
1 1
BDL

BDL
BDL
BDL
BDL
BDL
18
BDL - BDL

1 1
BDL
10
32
BDL - <30
BDL
BDL - BDL

BDL
BDL - BDL

BDL
UU

BDL
BDL - BDL
BDL
BDL
BDL - BDL
BDL
BDL
Mean of
detect ions

10
55


32













BDL





<18

BDL


BDL





BDL


BDL


 Analytic methods:  V.7.3.I2, Data se't 2.
 BDL, below detection limit.
Date:  9/25/81
            II.8.6-17

-------
       TABLE 8.6-IU.
WASTEWATER CHARACTERIZATION OF TOXIC  POLLUTANTS  FOUND  IN
ZINC CASTING, VERIFICATION DATA [2-21]
Pol lutant. ua/L
Metals and Inorganics
Chromium
copper
Cyanide
Lead
Mercury
Nickel
Zinc
Phthalates
Bis (2-ethylhexyl ) ph thai ate
Butyl benzyl ph thai ate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Phenols
Parachlorometacresol
2-Chlorophenol
2,U-Dichlorophenol
2, it-Dimethyl phenol
it-Nitrophenol
i»,6-Dinitrophenol
Phenol
Aroma tics
Benzene
Ethyl benzene
N i t robenzene
To 1 uene
l,2,U-Trichlorobenzene
Polvcvclie aromatics
Acenapthene
Anthracene/phenanthrene
Fluoranthene
Napthalene
Benzo (a) anthracene
Chrysene
Acenapthylene
Fluorene
Pyrene
Po 1 vch 1 o r i na ted b i phenv 1 s
Aroclor - IU2U, I25i(, 1221
Aroclor - 1232, 1248, 1260,
1016
Pesticides and metabolites
Aldrin
Chlorodane
U.U'-OOT
U,U'-DDE
U,U'-DDD
Alpha-Endosulfan
Beta-Endosul fan
Endosulfan sulfate
Endrin
Endrin aldehyde
Heptachlor
Heptachlor peoxlde
Alpha-BHC
Beta-BHC
Gamma -BHC
Delta-BHC
Number of samoles
Number of detections

U/3
U/l
U/3
U/U
lt/2
U/l
U/U

u/u
U/3
U/U
U/2
U/2

V3
U/2
V3
U/U
VI
U/2
U/U

V2
VI
VI
U/2
U/l

U/2
U/l
U/3
U/U
VI
U/l
U/2
U/2
V3
U/3
U/3


U/l
U/3
U/U
U/U
U/2
U/2
U/2
U/l
U/l
U/2
VI
U/2
U/2
VI
U/U
VI
Range of
detections

BDL - BOL
ISO
BOL - BOL
BOL - BOL
BOL - BOL
30
3, 100 - 350,000

U7 - 5,500
BOL - 80
BOL - 210
BDL - 1 10
BDL - 80

IU - 73
19 - 210
BOL - 1,300
32 - 12,000
1,600
BOL - 900
BDL - 30,000

BOL - 150
BDL
60
BOL - 27
1,000

BDL - 37
<86
BDL - IU
BDL - 3,300
BDL
BOL
BOL - U3
BOL - U6
BOL - BOL
BDL - 1)3
BDL - 5U


BDL
BDL - BDL
BOL - BDL
BDL - BDL
BDL - BOL
BDL - BOL
BDL - BDL
BDL
BOL
BOL - BDL
BDL
BDL - BDL
BDL - BDL
BDL
BDL - BOL
BOL
Median of
detections

BDL

BOL
BDL
BDL

HO, 000

2,200
BOL
IU



30

25
76


260









12
30




BOL
BOL
BOL



BOL
BDL
BOL









BDL

Mean of
detections

BOL

BOL
BDL


110,000

2,500
30
62
57
U2

39
1 10
uuo
3,000

U50
7,600

78


16


21

10
8UO


2U
26
BDL
18
21



BDL
BDL
BDL









BOL

   Analytic methods: V.7.3.12, Data set 2.
   BDL, below detection limit.
Date:    9/25/81
               II.8.6-18

-------
paper filter prior to discharge to the storage tanks.  In the
storage tanks the solutions are "freshened" with makeup water or
new lubricants as needed.  The wheeled tanks mentioned above are
then used to transport the die lubricants back to the machines.
An extensive maintenance program is followed to minimize leakage
of various fluids at the die casting machines, which would result
in contamination of the die lubricant solutions.

     Plant 12040

Aluminum and zinc die casting waters are co-treated.  After collec-
tion in a receiving tank where oil is skimmed, they are batch
treated by emulsion breaking, flocculation, and settling before
discharge.  The released oil is returned to the receiving tank
for skimming, and the settled wastes are vacuum filtered and
dried before being landfilled.  Filtrate water is returned to the
receiving tank.

Tables 8.6-15 and 8.6-16 present plant-specific information on
classical and toxic pollutants respectively, for the above facil-
ities.

II.8.6.3.2  Copper Foundries

     Plant 6809

Mold cooling and casting wastewaters are recycled through a
cooling tower in this system; a portion of the process wastewater
flow is "blowndown" for treatment with other nonfoundry waste-
waters.  The mold cooling and casting quench system blowdown
represents 3 percent of the combined wastewater flow.  These com-
bined wastewaters are settled and skimmed in a lagoon and are
then discharged.

     Plant 9979

This plant has a direct chill casting operation producing both
copper and aluminum castings.  This 100 percent recycle operation
uses a cooling tower to reduce the wastewater system heat load.
Temperature probes activate the cooling tower when evaporative
cooling is required.  The recirculating system of approximately
94,500 L (25,000 gallons) supplies water to:  the direct chill
casting molds, the casting quench water, the cooling tower, and
noncontact cooling waters systems within the plant.  The casting
molds are cooled by passing process wastewater through water
jackets around the mold.  This water upon leaving the mold is
also sprayed on the casting as it leaves the mold.  The addition
of water treatment chemicals to this 100 percent recirculation
system has limited the scale buildup within the molds.
Date:  8/31/82 R  Change 1   II.8.6-19

-------
s:
z
s:
_j
**
LU LL.
X
| —


U.
>C\J
O 1
13 CM
CO
O —

1- CM
01-
LL. <

Lt a.
LJ
Z


—
QO"

33 O
OCM
Lu —


CO h-
1— Z
z<
< — 1
l-o.
13

—id-
o o
o- 1>-
i

r^ t
CO _l
coo.
d>"
C£
LL.O
00
LJ
CO h-
Z<
00
— CD
1— 13
< CO
K
\~ O
Z Z
LJ —
Oh-
zco
0<
oo

vo
O




f-
5
o
CM
W
C
ra










c
o
*J
al
a a
o
•C






C 03
0 >
£i


C
a
*.
t.
c
i
1
reated
t-


j
ce






Q

0
CSJ


c

a.









c
a

to
9 O
_ Q
a o

g

(C
u



C a
O >

<- 6
££


^

C
c

a
c

=


a

a
u



>








§
j
c
Q






U)
c
c
§2
e a
Invest!
;astinq OD



C n
0 5
1!



c
c.
u
s
4J
c
c.
1

a
a

i
a




C
c
£

\
Lu



i i i


O O CM O
o o
o -
N


0 O so O OS
31 O so O
f- so SO
o •« »




00 CS] CO
OS CM O\





O\ r- csj —
. o —
Q



O OS >O O CM
3- O <*> O
Ift P- P-
o



OS J



csj oo —

O O CO P*
cy M —
OS



_j ta 
S 3 1 £ £
^ - S . " §
• *> a o -a
3 C -OCX
(jg) — •—  - o a
Z 2



QZ
l_

Z3-
oo
— CM
Oh-

- -. 1
o: a.
LJ

ZO
— r~
Q

Z h-
^ Z
0<
LL. _l
O.
CO
f— ^



h-O
—ILJ

O<
O-O
CO
O 3
— CO
X
oo
1— Z
— 1 — .
O CO CM
•< 1
COOCM
os:"""
(yj l_ -r -«.
S OC S O
I-3CM
2 z-i
5 LJ O * * *
A ZOO *O 3" Z ZOs




O «O-IO-JO O CM-I-IJ Q -J
— — 03 V CO COCQCQ CO
V






0 -JO-JOOO -1 003-0-J 3- -1
o Qooo\3'O a oc\r-roa n a
— 03 CM 03 V V « CO insop^CO CO
v .
— lA



*




_i -J CM -i a -J -J







- so O -J Oin
3- — — Q ZP*
— CO






ZCMZOZZZO ZZZ ZZ Z Z Z Z ZZ
zcozo^zzzeo zzz zz zzz z zz



O M -J -J -J -J -J O W— i— 1 (**Q
roeoaaaaao — QQ — z
cocomeoca- com




-J _J -J -J _J— ! -J
§o a a QOO
ca co ca cacnm

ooao-J— IQO a_j_)_ja_j -j_i_jj aa_i _j -10
-3- 03 co j- comco co eocoaaco co ca en

0
1. - C

.c .c s
Q j- £ 2
aca o « >
ui -* — *j *» S
O — •— « B» ® «B O —
— >» — .C— 0+*— U o
c £ >.*» - O £ £ (O.C.C 3 1 a
o u — — ajzwa o— o
c o »» *»c a -a u
— — Ji N — £ a— s i o

•Ql 9 o u» 41 « *J — *»(JW j;
C 3 « >» 3 i CO I *3 3— >O O U
(Q—t-'O t- — — (\J wfvj jQ >£ O C «- —
S ® — 3 O C — CO — — 1 £ U 1 CD -M Mia
woac-aojcoo MI — >> c *j c c a— — '
— t-aacgi-o— c HM ra « *» i o a i oc our
aj C O >» O Q) •— 0— O — £ — 3 	 — t- t C *
WOOO-JZZWN £JCO *J (0 CO Q Q O O MZ O CM
£ wl 3 33
CO





^
1 s
; o o-o £
D C O W O
I— r o «- o o
— o a — o i co
>»C O £ 1 O O C
C OJ «- US*- NO
W-C O - 1 4J C N
CD a— s. o — ai c
= OJ= t- I- C « 02 0 CD
— i- o— i O— O C O.Q C CD
a-unoso — a - « ! — CDC
i - - C .JZi WNOX30

- 1 01 J= « 1 - S O.C ** O >»
N cj a. o. cj aj- o co u ua t- x

-------
  U.-
  oo

  >
  o


  to
   r.
   zo
   §5
   U-J
   r-

   33
   .-
   0100

   -J J
                —  «OlK )A  O  sOO  «   Oftlf^Q mQ OOQ
              KN «  J3-    3  -o  M   m  Z  3 S32

                         «i   «












                   ii   ii  ii  S      i   i
                                        33
                                             10, 0- -
                                    3   3
                   33   Sl  S8  8
                                                                8 11
                     i   iliil
i  §2-si
              Si  Si  i 2 5SIi    i iii i  i  ii
                   28

                 I  §SS 8  I  §S
                                   2 i
                                 SS
                    ^s-;sjssg
                    iSSSgbSSilt  3
                    ISSMSZZilt  *
                                             I

                                             i
                                       «M*a  •   **  «  e e

                                  s K  ;!  IsshiBi,

                                  I- a  If  iiif-Ifff
                            88  I



                               I
 rs Bsglssllox

 2 Ise^sslsss
,S8l22i.si»»g
cSeeffeei-kkC
2j wCuuevcujCK^-o
    —--t.» .01 i —
                                                                 i
!i.5i

i?!Ss
ic.«S

!»i!
— ***** P
*f Q QJ> C
xel a

iisif
Date:   9/25/81
              II.8.6-21

-------
     Plant 9094

This plant produces process wastewater from three internal re-
cycle dust collectors.   The process wastewaters are collected and
treated in a series of three lagoons to provide solids removal.
The lagoon effluent is recycled back to the scrubbers.

Tables 8.6-17 and 8.6-18 present classical and toxic pollutant
data, respectively, for the above copper foundry facilities.

II.8.6.3.3  Iron and Steel Foundries

     Plant 15520

This large foundry has a separate treatment system for melting
the particulates in scrubbing waters.  This system consists of
chemical additions, clarification, and vacuum filtration of the
settled materials.  Clarifier overflow is recycled with makeup
from noncontact cooling water.

Dust collection scrubber water, slag quench water ,and sand
washing wastewaters are settled and recycled with makeup from
noncontact cooling water.  Excess water is discharged to a Pub-
licly Owned Treatment Works (POTW).

     Plant 15654

This plant employs a heat-treated casting quench operation in-
volving the complete recycle of all process wastewaters.  The
treatment system utilizes a settling channel, from which solids
are removed infrequently, and a cooling tower to provide for
quench water cooling.

Tables 8.6-19 and 8.6-20 present plant-specific information for
each process within the iron and steel foundry subcategory.

II.8.6.3.4  Magnesium Foundries

     Plant 8146

This foundry uses dust collectors and magnesium grinding scrub-
bers from which the wastewater flow is discharged untreated.  No
treatment description or treated wastewater concentrations are
available.  Tables 8.6-21 and 8.6-22 present classical and toxic
pollutant data respectively, for this facility.

II.8.6.3.5  Zinc Foundries

     Plant 18139

Plant  18139 has melting furnace scrubber systems for both its
aluminum and zinc furnaces.  The quench tank process wastewater


Date:  9/25/81             II.8.6-22

-------


u.
O
>h-
I!
mo.
o§
H
0->
— o
K-00
UJ >—
— Q.
O »

11
H CL
3
2§
u
<<
i§
OUJ
u. o:
00
INCENTRATIONS
IE COPPER FOUN
194 [2-21]
of- o*

i
^
CO
UJ
-i
00




1
e
a.




«
3
u C
"0
ss
«
c
a


rcent
£!
11
= 1
?H

c :




i
e
a.






«
s
s
M
C



il
* *
0i "
— G
s!
ii
o

2




Cont i nuous
istlna OD« ratfoni
u


Percent

1
Wl-
L.
I
1




Concentration





4
i
i
i
o* o* o*
A A

O N O 9 F-
• X • *
* o r-


O Q 1- — 
O
IZK-
ZQ.
°R
|>*
tf>Z
il
is

| o£
• ^1
1 ot»
5w-
ZK
" OQ
S3 i-
" fi z« —
•* uu —
M .. O a. CM
B • za. i
5 S8«
:? g
h !

*. . M A_J_l -<->^
2*g*i*p;«§ -«g "g SS '"gg-^gg ggg
* * *
o « g

1 sssgss! ggsi-g s
-
cu

i iiiiiii iii iii
£S(

Concentration,
UO/L



*
G
•
<
<
1
1
"


S i^S^S S22 i i *
^CD~09CDCDtf »•» OB
ei* »
o oaooooo O— jo -J — i o
z Zz^zzz| zgz g g


** « —
- SS 5 £ § o
s r 5=.S2 2 g - S-2 i
s fr |5s=s iii s ssv i
- tsKt*x i.^ fill Ifll §
•I-1-! hi Hil-llt? ssl Illl-lsl liii
| coo., |« OQOO | - !««,*....«« | «^.
Date:  9/25/81
II.8.6-23

-------




u
X •»

>z
Q<
i-o.
w
Q
ci
QC H
>!
za.
Zl-
S*

»z

3 >
J>
SO
S
u
2 5
xo
om
-s
U.
o«
i*J
Ii
;:§

§
41
c
—













«
*
S
II
4J
u
c
a
u


I
15
c?c
cool i
uench
0,0
•— O
o c

is
s




M
.1

is
P
Is


u







**-
C j



1

V
c
;

c a
8
*»-
C *
§1
£!

•B
i S
3 !
SvH


O "
i i


c ;

£ i


c IS
I '
Cx k
*» a
c a
!]i



*
]
i
c
1




* * *
ii££iiic;iiS£i i i iii i iiiii i i iii
A

-J -J-JO-JOO-JJ-JQ JCg -J «J -JQJ J _|-JJ_I_J O J O-IO
§§§zizasg§Sz§~ § S Sxi S §3333 z 3 ZSZ


-IJ — O\-J-J_lf- -JJ — — -J O O O-tO Q QOOOO -J O Q_IQ-J
oocvicMOaoiAOO — (MO z z zoz z zzzzz a z zoza
affivvaoaeamaiva GO ao aoa


ii i iii i iSi i iii iii iiiii
A

QOx -1 O»-*O -1 OOOOm#4 OQO Q QQO -J
Z- g -gZ g ZX.J « 0>a« ZZZ *««




-I-J J _)J_J u
OQ O OOO Q
ffiCD CO flDCQcfl B -t-O O Or-O _)_l_l _I-J_IJJ
Q — Z Z COmiA QOQ OQQQO
S co com co ai mm to



ii i ii S i i i iii liliili i iii




-J-J -1 _l _J -1 -* J -J iA_I-J _J -JOO -JO J-J -J -J J _l -J
33 3 33 3 33 3 ~33 §3ZZ3Z3§33 333



zS S SS z oo o aoo _)oQ-i-iQ-JQoao QQO
z z z zzz ozzogzozzzz zzz



21 « • 3
,1 la. a* 1 f.S 1
£ i» • £ c« «*T>
— o a) « e — onicu i o a— — — a c *J « —
AI «ct-£ a a— — £ — o^cxpec cw ® x
« « <- p o w • ec— o oc t,— I to — •BO
!»,»£ s^s g . «8»o-- : ii ssrss^ , ts* &
i§i*.SatS £ Si S25S8i • i.80SS§S S 0 3cS<-to
£gce — s £ >* .5«--- ^ES i"°'H§ i! S i"uj ««-ooc
— a cc o «•— »-C e e c « ** i-«b.b «o *•— «OJ£H-O c eoxioawoo— c— £f£
-oaaSZ a>li«£c« o-ooo* at-cpc- -o i - 5 c i aj i -000 i-u 3 c o o o
UOaat. OOO«*utw«c — « — st — tit COO^U X(M • — S, — — wl««»-llfll«— l-CCCNNNNXeO£CtJ f^PAIUJT aBAO«£ >k «o UI.CIB4JBO-- — « o 1- ** *» A


| < o^* |g< < |«ooi -•-- ^ !«































N

2

S
cvT *»
tic methods: V.7.3.1
ot meaningful .
ot detected.
below detection limi
ox I ma te va I ue .
>>c c t-
— • a
fsTei o <"
ZZffl*
Date:  9/25/81
II.8.6-24

-------













1
UJ
X
t-

o
1
w
i
SE
— 1
s~
>S
—
M
o J
u. a.
WO
58
S
55
«
u) -
o*-
(AQ
ll
r— UJ

ZO
o z
u<

»
i












*
u>
c
<
a




















s
u
*
1
<
c




















g-
ss
0«J
:E
MI
Is
§ e
°1
s

c
a
Ii"
*j
L.
•GO
I O —
c*
ig
(0 U


c
=n

2°"
Die C
» a o
« °^
15
!c c
gg
3 C
ao

i
E£
0
0 C
-0
°1
M e
c!
i


ll
ii=
e?t i

ii:
II
i
<







R ° °

- M - e* w
N «O O •
o


M O — » «
lA 0 ^
~ O

S S I



M o  * k
. 3 (/»** — — -
| r S £ S 5 i













O
g
£
Ul
Z
I—
u.
0

t-
(fl
t- —
UOJ
s^
l«
f?
Ii
MO
I5
9 fy
-JtTi
8-
O*
H-
o|
»B
!i
ii
U «J
out
ZU)
ot-
ow

d
u
D UJ
a !
s

M
m
P
ii
Sc
i!
£i
ii

9
If!
?
^
C
&
























g
tr
c
a!
















w
c
0
?+)
-S
P

a


c
e
*j
:
cc
Is
1
£
M
*



M
C
o
s
s
wo
— o
to c
£
i
e


M
Mccto
8
3
o


M
si
c u
2«
f!

'1







rcent
£!

I P
** i
P:
1 "
*»-
0;
£1
fc
- 11
*» i
P!
y
C i
8 tt


**-
c «
11
£1

i }
s i
t. _J H
*»>«,
S3
o ;
u a

rcent
£!
§ 1
u
Ir
1 •
U B

4<«
si
•i

. n
ef i
2 !
p"
1 '




«
G
1
!
1
1
:
iiiiiiiiiiiiii i ii iii i


-j—i-t-j-jo-JO-J-J-i-J-Jo P- _i _; _i _i _i _i

ZZZZZNOZZZZZZZ Z OZ ZOZ O
co BD m CD

SiiiiiiSiii i iiiii iiii iiii


ggggg~~"ggg § -ggg2 ggg* ggg*
S

|^iiig^§^^§ i s°°°* °°°° °"°
"" * °"B s"° * °°

* » *
SStg;i§i~i S SiSSi £ iSS° iS!S|i


-j_i_ioo.J^-i p ors-ooo o oooo r-oo-oo
ooozoxomo o oiCMr-cMZ eo ft — aa Ntomxa
eoScD ineo ea o —
-

fOOQO-JOO O OGOQiQ O OOOO —OOOO
OlAZOOA'Z O OCM — <*>Z O WevjvO-31 CJOOOCJCJ
r^« -co o N - * -
CM
SiiiiliSiii i iiiiii iiii iiiii

3 ,— ,
oooooor* — otvjo t~ oooo^z aaoo — oozo
ttBDCOBDCDCD CO CD m OCDCQCO CD CD 03 CD CD CD CD
!O Q O O -J O — 1 O O Q Q O _JOO~JOJ OOOO OOOJO
r^zzzg»omzzz z ozzozo zzzz zzzoz
£ co co co a «

0-ixl^xg.xxx^xx || --||^| IIII xxxxoxxxxx


|Sg|§gg|gSogo| go S5|Sg? Rggl £I§S8||SSS
* * *
3 CO O CM
A
§ooooor-o-Jooo-Jo oo o^oooo oooo oooooooooo
tOZ^fOOd-OO — zmgO ZZ CM><-ZZsOZ ZZZZ ZmZZ^maOZZZ
- g s
t. *
5 S
1? !• i
a If f-s s II go
i 1§ |!lsH . s£ ii o loS
5*3 S 5( £ C * - £ -D -O C 00 CP«OO
51 !!!Ht 12 11 iflool sS?
1 52 £fr_£i_ Si &5 *o-£SSE €1S
si> ! i . i SS aS5&a-JJ 8iS£8 S:i|ii2 ti"
cco-«3 • >. 5 3 ii ci«3-xo c-ap £oioo£ H^C
«g — -5— (.-D C— — t— CMCMMCMJ) XC O COTJ— C O2"o*»5
— ** £ ^-S SCIB'^'O-- «c ^l» •* « * ^f » 8 f p^ccwc opia-zz c o-s-'u^o
M <
-------
o
z



o
o:
          |
          ^
o


'"IT
UCM

U-
-------
               TABLE 8.6-21.   CONCENTRATIONS  OF CLASSICAL  POLLUTANTS FOUND
                                  IN VERIFICATION STUDY OF THE MAGNESIUM FOUNDRIES
                                 SUBCATEGORY, PLANT  81U6  [2-2I]


                                               Grinding                   Dust
                                         scrubber  operations    collection systems
              Pol lutant. mg/L	Raw(a)     Treated	Raw(a)   Treated

              TSS                                         36                       26

              OiI  and  grease                             U                        10

              pH,  pH units                             9.8                      7.6


              Analytic methods:  V.7.3.I2.  Data Set 2.
              (a)Raw process  wastewater  inaccessible for sampling.
  TABLE 8.6-22.  CONCENTRATIONS OF  TOXIC POLLUTANTS FOUND  IN VERIFICATION STUDY
                    OF THE MAGNESIUM FOUNDRIES  SUBCATEGORY, PLANT  8IU6(a)  [2-2I]
                                                    Grinding              Dust
                                                 scrubber ope rations    col lection
                                                  Concentration,        Concentre
                                                     UQ/L                UQ/L
                     Toxic DO! lutant	Raw	      Raw

                     Metals and inorganics
                      Copper                           60                 20
                      Lead                            80                 30
                      Zinc                          1,200

                     Phthalatet
                      Bis (2-ethylhexyl) phthalate          51                 14
                      Dl-n-butyl phthalate                ND                 10
                      DI ethyl phthalate                  ND                 40

                     PhenoIs
                      2-Nltrophenol                                       BOL
                      Pentachlorophenol                                     II
                      Phenol                                             BDL
                       enzene                                            BDL
                       1,2-Dichlorobenzene                BDL
                       Hexachlorobenzene                 BDL
                       Toluene                                             18
                       1,3-Dichlorobenzene                                   BDL
                       l,M-Dichlorobenzene                                   BOL

                      olvcvclic aromatic
                      hydrocarbons
                      Acenaphthene                                         1 1
                      Acenaphthylene                     ND                 32
                      Anthracene                       BDL                <30
                      Chrysene                         ND                 10
                      Fluorene                        BOL                BOL
                      Naphthalene                                         BDL
                      Phenanthrene                     BDL                <30
                      Pyrene                          BDL                BOL
                      Xylene                          BOL                BDL

                     Polychlorlnated bjphenvls
                      A roc I or 1016, 1232,
                        1248, 1260                     BDL
                      Aroclor 1221, 12514
                        11)24                          BDL
                        oenat
                      Hexach lo roe thane                  BDL
                      Me thy I one chloride                 U4                  ND
                     Pej
                      isticldei and a»tabolltes
                      Alpha-BHC    """•"""'            goL
                      Gamna-BHC                                           BDL
                      4,4'-DDE                        BDL
                      4,4'-DDT                        BDL                 BDL
                      4,4'-ODD                        BOL
                      Dieldrln                        BOL
                      Endrin aldehyde                   BOL                 BDL
                      Alpha-Endosulfan                  BDL


                    Analytic uethods: V.7.3.12. Data set 2.
                    (a) No treatment at this facility.
                    ND, not detected.
                    BDL, below detection llaiit.
Date:    9/25/81                     II.8.6-27

-------
mixes with melting furnace scrubber process wastewater,  aluminum
casting quench tank flows, and other nonfoundry flows prior to
settling and skimming.  The treated process wastewaters are
discharged to a POTW.   The scrubber process wastewater comprises
27 percent of the total treatment flow.

     Plant 10308

No information is available concerning Plant 10308,  other than
the raw and treated data is presented.

Tables 8.6-23 and 8.6-24 present classical and toxic pollutant
data respectively for the two zinc foundries described.

II.8.6.3.6  Lead Foundries

There are no plant-specific data in the available source docu-
ments pertaining to the lead foundry subcategory.

II.8.6.4  POLLUTANT REMOVABILITY  [2-21]

Two classical pollutants represent the major wastewater pollutant
concerns in the foundry industry.  Suspended solids are present
in high concentrations in nearly every wastewater source emanat-
ing from the foundry processes.  Oil and grease are also present
in many of these sources.  Primary treatment technologies are
generally used to reduce the amounts of these pollutants emitted.
Metals may also be present in the wastewater streams and can be
removed by chemical precipitation.

The most common treatment method used to reduce the high solids
content in the wastewater is sedimentation.  Wastewaters from
foundry processes are treated by lagooning, clarification with
chemical addition, cyclone separation, dragout chambers, and
Lamella inclined-plate separators.

Chemicals used for clarification include polymers, lime, and
alum.  Sulfuric acid and alum are also used as emulsion breakers.
Settled sludges are dewatered by filtration or other techniques
and are generally hauled away by waste disposal contractors.
Ultrafiltration is used at a few plants to trap high molecular
weight organics prior to discharge to a POTW.

Oil skimming is also used at foundry facilities to remove the oil
and grease that results from housekeeping and from machinery
leaks.

Another common control method used extensively in the foundry
industry is the recycling of wastewater.  Most processes have
facilities that recycle 100 percent of the wastewater and can be
classified as zero dischargers.  Plants can also recycle less
Date:  9/25/81             II.8.6-28

-------




u.
o —
H 1
V) CM
Is
22

U-H-
UJ -i
^i
a
ZOv
3=
U.CO
I-H-
zz
_J •

o
-JO
a
55
— O
HU.
Iz
H- Z
Z —
UJN

O X
OH-

**>
CM
1
*O
CO
UJ
__l
<







1
c

c
a.











O
«

c
-

















M
a
*3
one
c *.
.-. gg
*J Q
«A O
«


o


|
•J
?E
I1

e
^








L.
i
•9
fi

£|
3
V









-»
\t

ir

= 2
> «
j£

i
P
u —
i 9
'2
:f
j
h
i\

t h*>
n
L
t

I jj
5|ae


u—
Is
!£
ji

^
u 2.
a h-
u
t


i
*
C
«
I





; i S



O BO CM —
• M « •
O




S S i

S i S °.
*



§ o N *
d



S £ i



o * p o
— — <5
n « «



o ~ Q r»
3 « S •
. 8
I ! 5
| n e
a "c x
— • Q.
a, Z - .
in o — i
K H o a










zz

i"
3O
£5
tA OS
t-n
•f « —
3~N
-11- I
»'S
is"
So
U, UJ —
I(f 5
(OOU
O3ut
K oe
K UJ >
K —
Z CC *
olo
ooo
~


Scy
i
I «'
UJ

(•» ^-

i'li
Seg

— *> 4*
xi?
hi




§
c
•
&










M
a

e
"
""


















]
i
fl
I|
!
S
a




U
c
?5
-a
u c
S!
1





M
k
Oil
= g
2S
f «
8

5









*t-
c a
n
£1
-Jj
11
«i
OH
*J
U

1


Is
if
u
X
§r
<
Ii
i



4* —
|!
si
Si

«j
i:

s1"

«j
§
i




*>
i
t
:
I
c
i



A A A A A A

JO-»-J-JO— IP lACt^Ch OOOO OOO
gmogoNOg -^g^1 xzzr jj>ZJC
s



-lOO-JQOOO r--JUO OviT>OO -J — O
O»AZOZrtXO rfQQZ — N — O OuftO
a— ea o coco — « co »
s
m

iliiiiiS iiiii il i§S


g^^gggg^ 2§-SS aco zm*y
_IO^JUOOO o-Jr--J_J JCd _j mm
OZOOOZZO r-Q-Og O* gift*
CO CDCOBO t** —CO COCO CO 60
m



XgZgXSXN O^XXE n« Nf- Xrf-*




O-l-)_l-J-t-Jp OOtOOO OP OQ -ir-f-
ZOOOOOOP QJTh-ttn (UOt OO Q~~
cocoacococoo tft — — IMA *oso S v v
-^ Ift W

-iDJ-.-Joag 00-.00 go oo
2 " -« S-

B
*<
Is. i
1 ?l|s5 ii o to if
« xc £•— cvcgw 55

«• • «M**Q)4->« p JC V ft-~ ^ p "• *~
2 5 8 ^ * x* 5 3! N 5 S S S 5 S JN « N st £ £ N a 1 2 « «T
i S s 1
Date:  9/25/81
II.8.6-29

-------







Q
LJ
3
Z
i
O

2
1
(/)O
5^
oo
=>u.
o —
U-ce
z>
o to
zo
3 W3
oo
u. —

(_ z
15
i-0.
dz

oS
g*
H-
°!
wo.
| .

I-K
I-U
Zh-
Ul <
oo
II


<5
1
V
CO
LJ
U





SC
«•
o

c
1.


















(*".
o
c

a.



















c
o
A

C It
- Q
+J 0
U)
3|
4
=
O





O
§
"^
??
C u
Cast
h op
c
i
c







.
1
=1
5g
*5


3











§5
£i
£2


v t
O 1
3 *
a
d!
OH
£
|3
c a
o

C i
si
22
_J


1
C 1
a i
— i
5"

c
S3
ca
s

C i
O 9
2i
0) <
a. i

a i
"" j
|j
ii
i.
*j
U i
c a
1







*
c
•
^
I
C
:

ii iiiii ii liiii iii





SZZZOZ ZO ZOOOZ OZZ
CO <0 CQ0BO CO


QZ OQQZO O— OQOcaQOQQO



i iii i i iii iiiii i i ii




^ S d S § ^ c!^ ii^i^ g g ^i
CO CO CO COCO CO CO CO




-J jr _j _j j _i OQO _(_i_i_ij _i _i -i -J
o — o o o o zzz oaooo o o oo
CO CO CD 03 CO COeOCQCOCD a CO COCO



* #
isaiiipsi i i iiii i iii i


£§ssi~sgs- s s gigg g ggg s



-"^gg-^g^s ^ a Siigd ^ ^^^ ^
• co co v co o> cacao) a>



H
a s

c o « —
o - * u-o go •
£ (U •* — — VC A 'D
CM « Qi^a\jjt--oa>qj»fl —
2 £ 52! 2 S2 t^g £ g= . g
i. i c . ?«o- =1 111 * ^ 1 I
*-C£— £C«C *J — 10 N #3 1- O O *« C M30
taooxv^eco - c — -— -o » C c o 5 o ooo *o o -oo
oi-*»**e«e*>« — £ — « *» o c — *- M XOXXCUOKCV « — —
ooweoi. — w<-t**»c — — rf — M c o ° >» * -C — — a i a e i. i i i « i — — w w
>I.CC£N>>OO£Cd) fONO^ V A O £ *• U Ot.£«Oil*JO--- £«'.<-*'**
UVO04JC>>33OiO*> O P — O — Q t. — *J *J — — va*JB^-~^XJrtf&

-------
than 100 percent of the wastewater; these normally treat the
nonrecycled wastewater before discharge.

Tables 8.6-15 through 8.6-23 (Sections 11.8.6.3.1 through
11.8.6.3.5) present pollutant removability data for each foundry
subcategory.  This information is the result of a verification
program.  No data are currently available concerning the treat-
ability of wastewater emanating from the lead foundry subcategory
and limited data are available for the magnesium subcategory.
Date:  8/31/82 R  Change 1   11.8.6-31

-------
                   II.8.7  METAL FINISHING INDUSTRY

II.8.7.1  INDUSTRY DESCRIPTION

n.8.7.1.1  General Description [2-22]

The Metal Finishing Industry is comprised of 45 unit operations
involving the machining, fabrication,  and finishing of metal
products (SIC groups 34 through 39).  Industries not included in
this section include porcelain enameling, coil coating, battery
manufacturing, electrical components,  photographic equipment and
supplies, iron and steel, aluminum and aluminum alloys, copper
and copper alloys, and shipbuilding.  These industries have been
specifically excluded from this section.  The industries in SIC
groups 34 through 39 are not exclusively part of the Metal Finish-
ing Industry.  For example, all of the industries listed under
SIC group 36 are covered under both the Electrical and Electronic
Components Industry and the Metal Finishing Industry.  The Elec-
trical and Electronic Components Industry considers all processes
specific to electronics, and the Metal Finishing Industry con-
siders all of the remaining processes  used to manufacture the
products in SIC group 36.

There are approximately 13,000 manufacturing facilities in the
United States which are classified as  being part of the Metal
Finishing Industry.  These facilities  are engaged in the manu-
facturing of a variety of products that are constructed primarily
by using metals.  The operations performed usually begin with a
raw stock in the form of rods, bars, sheets, castings,  forgings,
etc., and can progress to sophisticated surface finishing opera-
tions.  The facilities vary in size from small job shops employ-
ing fewer than ten people to large plants employing thousands of
production workers.  Wide variations also exist in the age of the
facilities and the number and type of  operations performed within
the facilities.  Because of the differences in size and processes,
production facilities are custom-tailored to the specific needs
of each plant.  The possible variations in unit operations within
the Metal Finishing Industry are extensive.  Some complex prod-
ucts could require the use of nearly all of the 45 possible unit
operations,  while a simple product might require only a single
operation.

Each of the 45 individual unit operations is listed with a brief
description in the following discussion.
Date:  1/24/83 R  Change 2  II.8.7-1

-------
     1.    Electroplating  is the production of  a thin coating of
          one  metal upon  another by electrodeposition.

     2.    Electroless  plating  is a chemical  reduction process
          which  depends upon the catalytic reduction of  a metallic
          ion  in an aqueous solution containing a  reducing  agent
          and  the subsequent deposition  of metal without the use
          of external  electric energy.

     3.    Anodizing is an electrolytic oxidation process which
          converts the surface of the metal  to an  insoluble
          oxide.

     4.    Chemical conversion  coatings are applied to previously
          deposited metal or basis material  for increased corro-
          sion protection,  lubricity, preparation  of the surface
          for  additional  coatings, or formulation  of a special
          surface appearance.  This operation  includes chro-
          mating,  phosphating, metal coloring, and passivating.

     5.    Etching and  chemical milling are used to produce  speci-
          fic  design configurations and  tolerances on parts by
          controlled dissolution with chemical reagents  or  etch-
          ants.

     6.    Cleaning involves the removal  of oil, grease,  and dirt
          from the surface of  the basis  material using water with
          or without a detergent or other dispersing material.

     7.    Machining is the general process of  removing stock from
          a workpiece  by  forcing a cutting tool through  the
          workpiece, removing  a chip of  basis  material.  Machining
          operations such as turning, milling, drilling, boring,
          tapping, planing, broaching, sawing  and  cutoff,  shaving,
          threading, reaming,  shaping, slotting, hobbing,  filing,
          and  chamfering  are included in this  definition.

     8.    Grinding is  the process of removing  stock from a  work-
          piece  by the use of  a tool consisting of abrasive
          grains held  by  a rigid or semirigid  binder.  The  pro-
          cesses included in this unit operation are  sanding  (or
          cleaning to  remove rough edges or  excess material),
          surface finishing, and  separating  (as in cutoff  or
          slicing operations).

     9.    Polishing is an abrading operation used  to  remove or
          smooth out  surface defects  (scratches, pits, tool
          marks, etc.) that adversely  affect the appearance or
          function of  a part.  The operation usually referred  to
          as buffing  is  included  in the  polishing  operation.
Date:  1/24/83 R  Change 2  II.8.7-2

-------
    10.    Tumbling (barrel finishing)  is a controlled method of
          processing parts to remove burrs,  scale,  flash,  and
          oxides as well as to improve surface finish.

    11.    Burnishing is the process of finish sizing or smooth
          finishing a workpiece (previously machined or ground)
          by displacement, rather than removal,  of minute  surface
          irregularities.   It is accomplished with a smooth point
          or line-contact and fixed or rotating tools.

    12.    Impact deformation is the process of applying an impact
          force to a workpiece such that the workpiece is  perma-
          nently deformed or shaped.  Impact deformation opera-
          tions include shot peening,  peening, forging, high
          energy forming,  heading,  and stamping.

    13.    Pressure deformation is the process of applying force
          (at a slower rate than an impact force) to permanently
          deform or shape a workpiece.  Pressure deformation
          includes operations such as rolling, drawing, bending,
          embossing, coining, swaging, sizing, extruding,  squeez-
          ing,  spinning, seaming, staking, piercing, necking,
          reducing, forming, crimping, coiling,  twisting,  winding,
          flaring, or weaving.

    14.    Shearing is the process of severing or cutting a work-
          piece by forcing a sharp edge or opposed sharp edges
          into the workpiece, stressing the material to the point
          of shear failure and separation.

    15.    Heat treating is the modification of the physical
          properties of a workpiece through the application of
          controlled heating and cooling cycles.  Such operations
          as tempering, carburizing, cyaniding,  nitriding, anneal-
          ing,  normalizing, austenizing, quenching, austempering,
          siliconizing, martempering,  and malleabilizing are
          included in this definition.

    16.    Thermal cutting is the process of cutting, slotting, or
          piercing a workpiece using an oxyacetylene oxygen lance
          or electric arc cutting tool.

    17.    Welding is the process of joining two or more pieces of
          material by applying heat, pressure, or both, with or
          without filler material,  to produce a localized union
          through fusion or recrystallization across the inter-
          face.  Included in this process are gas welding, re-
          sistance welding, arc welding, cold welding, electron
          beam welding, and laser beam welding.
Date:  1/24/83 R  Change 2  II.8.7-3

-------
    18.    Brazing is the  process  of joining metals  by flowing a
          thin,  capillary thickness layer of nonferrous  filler
          metal  into the  space between them.   Bonding results
          from the intimate contact produced by the dissolution
          of a small amount of base metal in the molten  filler
          metal,  without  fusion of the base metal.   The  term
          brazing is used where the temperature exceeds  425°C
          (800°F).

    19.    Soldering is the process of joining metals by  flowing a
          thin,  capillary thickness layer of nonferrous  filler
          metal  into the  space between them.   Bonding results
          from the intimate contact produced by the dissolution
          of a small amount of base metal in the molten  filler
          metal,  without  fusion of the base metal.   The  term
          soldering is used where the temperature range  falls
          below 425°C (800°F).

    20.    Flame spraying  is the process of applying a metallic
          coating to a workpiece  using finely powdered fragments
          of wire and suitable fluxes, which are projected to-
          gether through  a cone of flame onto the workpiece.

    21.    Sand blasting is the process of removing stock,  in-
          cluding surface films,  from a workpiece by the use of
          abrasive grains pneumatically impinged against the
          workpiece.  The abrasive grains used include sand,
          metal shot, slag, silica, pumice, or materials such as
          walnut shells.

    22.    Abrasive jet machining is a mechanical process for
          cutting hard, brittle materials.   It is similar to sand
          blasting but uses much finer abrasives carried at high
          velocities (150-910  mps [500-3,000 fps])  by a  liquid or
          gas stream.  Uses include frosting glass, removing
          metal oxides, deburring, and drilling and cutting thin
          sections of metal.

    23.    Electrical discharge machining is a process which can
          remove metal with good dimensional control from any
          metal.   It cannot be used for machining glass, ceramics,
          or other nonconducting materials.  Electrical  discharge
          machining is also known as spark machining or  electron-
          ic erosion.  The operation was developed primarily for
          machining carbides,  hard nonferrous alloys, and other
          hard-to-machine materials.

    24.    Electrochemical machining is a process based on the
          same principles used in electroplating except  the
          workpiece is the anode and the tool is the cathode.
          Electrolyte is pumped between the electrodes and a
          potential applied, resulting in rapid removal  of metal.
Date:  1/24/83 R  Change 2  II.8.7-4

-------
  25.   Electron beam machining is a thermoelectric process in
        which heat is generated by high velocity electrons
        impinging the workpiece, converting the beam into
        thermal energy.  At the point where the energy of the
        electrons is focused, the beam has sufficient thermal
        energy to vaporize the material locally.  The process
        is^ generally carried out in a vacuum.  The process
        results in X-ray emission which requires that the work
        area be shielded to absorb radiation.  At present the
        process is used for drilling holes as small as 0.05 mm
        (0.002 in.) in any known material, cutting slots,
        shaping small parts", and machining sapphire jewel
        bearings.

  26.   Laser beam machining is the process of using a highly
        focused, monochromatic collimated beam of light to
        remove material at the point of impingement on a work-
        piece. tLaser beam machining is a thermoelectric pro-
        cess, and material removal is largely accomplished by
        evaporation, although some material is removed in the
        liquid state at high velocity.  Since the metal removal
        rate is very small, this process is used for such jobs
        as drilling microscopic holes in carbides or diamond
        wire drawing dies and for removing metal in the balanc-
        ing of high-speed rotating machinery.

  27.   Plasma arc machining is the process of material removal
        or shaping of a workpiece by a high-velocity jet of
        high-temperature ionized gas.  A gas (nitrogen, argon,
        or hydrogen) is passed through an electric arc causing
        it to become ionized and raising its temperatures in
        excess of 16,000°C (30,000°F).  The relatively narrow
        plasma jet melts and displaces the workpiece material
        in its path.

  28.   Ultrasonic machining is a mechanical process designed
        to remove material by the use of abrasive grains which
        are carried in a liquid between the tool and the work
        and which bombard the work surface at high velocity.
        This action gradually chips away minute particles of
        material in a pattern controlled by the tool shape and
        contour.  Operations that can be performed include
        drilling, tapping, coining, and the making of openings
        in all types of dies.

  29.   Sintering is the process of forming a mechanical part
        from a powdered metal by fusing the particles together
        under pressure and heat.  The temperature is maintained
        below the melting point of the basis metal.

  30.   Laminating is the process of adhesive bonding of layers
        of metal, plastic, or wood to form a part.
Date:  1/24/83 R  Change 2  II.8.7-5

-------
    31.    Hot dip coating is  the  process  of  coating  a  metallic
          workpiece  with another  metal  by immersion  in a molten
          bath to provide a protective  film.   Galvanizing (hot
          dip zinc)  is  the most common  hot dip coating.

    32.    Sputtering is the process  of  covering a  metallic  or
          nonmetallic workpiece with thin films of metal.   The
          surface to be coated is bombarded  with positive ions in
          a gas discharge tube, which is  evacuated to  a low
          pressure.

    33.    Vapor plating is the process  of decomposition of  a
          metal or compound upon  a heated surface  by reduction or
          decomposition of a  volatile compound at  a  temperature
          below the  melting point of either  the deposit or  the
          basis material.

    34.    Thermal infusion is the process of applying  a fused
          zinc, cadmium,  or other metal coating to a ferrous
          workpiece  by  imbuing the surface of the  workpiece with
          metal powder  or dust in the presence of  heat.

    35.    Salt bath  descaling is  the process of removing surface
          oxides or  scale from a  workpiece by immersion of  the
          workpiece  in  a molten  salt bath or a hot salt solution.
          The work is immersed in the molten salt  (temperatures
          range from 400-540° C  [750-1,000°F]),  quenched with
          water, and then dipped  in  acid.  Oxidizing,  reducing,
          and electrolytic baths  are available,  and  the partic-
          ular type  needed depends on the oxide to be  removed.

    36.    Solvent degreasing  is  a process for removing oils and
          grease from the surfaces of a workpiece  by the use of
          organic solvents, such  as  aliphatic petroleums,  aro-
          matics, oxygenated  hydrocarbons, halogenated hydro-
          carbons, and  combinations  of  these classes of solvents.
          However, ultrasonic vibration is sometimes used with
          liquid solvent to decrease the  required  immersion time
          with complex  shapes.  Solvent cleaning is  often used as
          a precleaning operation such  as prior to the alkaline
          cleaning that precedes  plating,  as a final cleaning of
          precision  parts, or as  a surface preparation for some
          painting operations.

    37.    Paint stripping is  the  process  of  removing an organic
          coating from  a workpiece.   The  stripping of  such coat-
          ings is usually performed with caustic,  acid,  solvent,
          or molten  salt.

    38.    Painting is the process of applying an organic coating
          to a workpiece.  This process includes the application
          of coatings such as paint, varnish, lacquer, shellac,


Date:  1/24/83 R  Change 2 II.8.7-6

-------
          and plastics by methods such as spraying, dipping,
          brushing, roll coating, lithographing, and wiping.
          Other processes included under this unit operation are
          printing, silk screening, and stenciling.

    39.   Electrostatic painting is the application of electro-
          statically charged paint particles to an oppositely
          charged workpiece followed by thermal fusing of the
          paint particles to form a cohesive paint film.  Both
          waterborne and solvent-borne coatings can be sprayed
          electrostatically.

    40.   Electropainting is the process of coating a workpiece
          by either making it anodic or cathodic in a bath that
          is generally an aqueous emulsion of the coating materi-
          al.  The electrodeposition bath contains stabilized
          resin, dispersed pigment, surfactants, and sometimes
          organic solvents in water.

    41.   Vacuum metalizing is the process of coating a workpiece
          with metal by flash heating metal vapor in a high-
          vacuum chamber containing the workpiece.  The vapor con-
          denses on all exposed surfaces.

    42.   Assembly is the fitting together of previously manu-
          factured parts or components into a complete machine,
          unit of a machine, or structure.

    43.   Calibration is the application of thermal,  electrical,
          or mechanical energy to set or establish reference
          points for a component or complete assembly.

    44.   Testing is the application of thermal, electrical, or
          mechanical energy to determine the suitability or
          functionality of a component or complete assembly.

    45.   Mechanical plating is the process of depositing metal
          coatings on a workpiece via the use of a tumbling
          barrel, metal powder, and usually glass beads for the
          impaction media.

Table 8.7-1 presents an industry summary for the Metal Finishing
Industry including the total number of subcategories,  number of
subcategories studied, and the type and number of dischargers.
Date:  1/24/83 R  Change 2  II.8.7-7

-------
                 TABLE 8.7-1.   INDUSTRY SUMMARY [2-68]
               Industry:   Metal Finishing
               Total Number of Subcategories:   1
               Number of Subcategories Studied:   1

               Number of Dischargers in Industry:   13,470
                    •  Direct:  10,561
                    •  Indirect:   2,909
                    •  Zero:   None
II.8.7.1.2  Subcategory Descriptions

The primary purpose of subcategorization is to establish group-
ings within the Metal Finishing Industry such that each sub-
category has a uniform set of quantifiable effluent limitations.
Several bases were considered in establishing Subcategories
within the Metal Finishing Industry.  These included the follow-
ing:

             Raw waste characteristics
             Manufacturing processes
             Raw materials
             Product type or production volume
             Size and age of facility
             Number of employees
             Water usage
             Individual plant characteristics.

After examination of the potential categorization bases, a single
metal finishing subcategory was established.  All process waste-
waters in the Metal Finishing Industry are amenable to treatment
by a single system and one set of discharge standards results
from the application of a single waste treatment technology.
Figure 8.7-1 presents the waste treatment requirement for the
Metal Finishing Industry and illustrates the effect of raw waste
type upon the treatment technology requirements.

Seven distinct types of raw waste are present in wastewaters from
the Metal Finishing Industry.  The raw waste characterization is
divided into two components:  inorganic and organic wastes.
These components are further subdivided into the specific types
of wastes that occur within the components.  Inorganics include
common metals, precious metals, complexed metals, hexavalent
chromium, and cyanide.  Organics include oils, greases, and
solvents.

All of the process raw wastes resulting from each of the 45
individual unit operations previously described are encompassed
Date:  1/24/83 R  Change 2  II.8.7-8

-------
i.

. .



4J
tH
fH
O
S, »
4»
I §_
3 CO
4J
O 1>
5 »
3 *
C *
5 * *""
(0




! 	
! a> m g
!
i 	 	 i
IT"1
S X U) "fl
•
i 	 i
r- — n-
I.|H
ii^i
• 	
i 	
r^
^ i
ML3
g g g 1 	
"6 njJTj C 1
$
— , S
B




'
1
i
J

Q
•-(




i
71 9
1 ^3
§ !=s
s* »i
!
i


                                        w *o
                                        O w
                                          a

                                        ii
                                         if
                                        | s pfj i
                                        !    i
                                        I ----- 1
              :*
              SS
              »
                          ,
IS
s"
                                                            o
                                                            •H
                                                            4-1
                                                             o
                                                             g
                                                             CO
                                                             0)
                                                             M
                                                             H
                                                             I
                                                            r-
                                                             •
                                                            oo
                                                             00
Date:  1/24/83 R  Change 2   II.8.7-9

-------








C\J
C\J
CM
, 	 i

O
— _
1-

fV
Ld
O.
O
H
Z
13

>-
m

z
O

^
CO

ce
w
_
0

o

1-
V)
OL
Ld
1-
o
^
C£
^
X
o
UJ
1—
to
^
^


.
CM
1
^
00

Ld
1
ffl

1-

































o
•—
4-5
U5
0
4-5
O
CO

CO
r~
O

0
U)
CD
2


















































C
0

o
C/5
W
	
O



0
•o
c
CO

o




~
c
E 0
^ «—
— CO
e >
O CO
t- X
-C 0
ox:
"~



0 0)
X-
0 CO

0.0
E E
O
O

w
3 W
o —
— CO
0 4->
0 0
<- E
ex

c 
o —
E co
E 4J
O 0
0 E















C
o

4J
CO

0
C
4J
C


X



xxxxxxxx






X X X X XX











X X X X X X












X XX









XX XXX X X






xxxxxxxxxxxxx








c
Ol O
C Ol C —
— C O 4->
4J — — CO
CO 4J 4J E
Ol— CO (0 1-
C Q. O E O
•- O S- U) O0
CO  4J — 0 — C — ^ W — — O W
OOTD>JCCOXZC — .QCCOtO
00oco0o 	 Es-a0
~~ ™™ C O +J ~~ CO ^ O 3 3 c ^
LdLd>— E x: e 0
4JD <04J O0X3EOO
COO Ol'-W4->0).C CO'- —
OI0 CQ.C00— OC0COC
c s- — 01 01— w — — 3"o o o .a o
— 4-> (0 C C *- X> S-i- COW
t- E 	 00 S- .4J4J4-ECO
{04Ji-^N'D£'C0OOO0wS-
0C00— CO— COCXI000WC04->
t/5XI— SCQWli-tOOLdLdLd—JO-O
jj'irvvor^ooavO'— cMmj-iAvor-oo






X
















































X X X X X X X









Ol
c

c —
O) O CO
c — o
— 01 w w
4-> C 3 0
CO —  3 Q.0 —
(O _l X W >l- W
\] co co co ro ro ro


X X X X X X



X X X X XX


















X





























XXXXXXXX






Ol
c
•—
J-J
Ol C
C — 01
— CO C
w 01 a. 01—
RJ C C N
0 — O 	
S- Q. .— 4J —
01 a w c co c
0 — CO — 4-> O
•D 5- 4-> CO 0 —
4J 010) Q.E >)4J
4J U5 C O O — CO
C — S- 5- E -Q '-
04J4->4->4->D EX!
>CCOO3 0*—
	 0 0 O W —
O CO CO ~— ^ CO W CO
COQ-D-LiJLjJ>
-------
by one  or more of the raw waste  types.   Table 8.7-2 presents a
tabulation of the manufacturing  unit operations and the  types of
raw waste that they have the potential  to generate.

II.8.7.2   WASTEWATER CHARACTERIZATION

In this section the water uses in  the Metal Finishing  Industry
are presented and the waste constituents are identified  and
quantified.   Raw waste data are  derived from an analysis of
samples taken at visited plants.

Water is  used for rinsing workpieces, washing away spills,  air
scrubbing,  process fluid replenishment,  cooling and lubrication,
washing of equipment and workpieces,  quenching, spray  booths,  and
assembly  and testing.  Unit operations  with significant  water
usage include:   electroplating,  electroless plating, anodizing,
conversion coating, etching, cleaning,  machining, grinding,
tumbling,  heat treating, welding,  sand  blasting, salt  bath  de-
scaling,  paint stripping, painting,  electrostatic painting,
electropainting,  testing, and mechanical plating.  Unit  opera-
tions with zero discharge, identified in DCP (data collection
portfolio)  and plant sampling studies,  were electron beam machin-
ing,  laser beam machining, plasma  arc machining, ultrasonic
machining,  sintering, sputtering,  vapor plating, thermal infu-
sion, vacuum metalizing, and calibration.  While an operation may
tend  to be zero discharge, associated preparatory operations,
i.e., cleaning,  may have discharges.

Table 8.7-3  displays the ranges  of flows found in the  Metal
Finishing Industry.  The flow information is based on  data  ob-
tained  from visited plants.  For those  visited plants  with  common
metals  waste streams, the average  contribution of these  streams
to the  total wastewater flow within a particular plant was  67.6%
(range  of 1.4% to 100%).  All of the plants visited and  sampled
had a waste  stream requiring common metals treatment.

    TABLE 8.7-3.   WASTEWATER FLOW  CHARACTERIZATION OF  THE
                   METAL FINISHING  INDUSTRY [2-22]
                     Flow of plants.       Approximate percentage of
                     MeoaIiters/dav     plants represented by this flow

                       <0.0378               17.5
                     0.0378 - 0.0757             12.5
                     0.0757 -0.111              9
                     0. Ill - 0. 151              7
                     0.151 - 0.189              5
                     0.189 - 0.227              I
                     0.227 - 0.265             3.5
                     0.265 - 0.303             1.5
                     0.303 - 0.311             2.5
                     0.311 - 0.378              11
                     0.378 - 0.757              15
                     0.757 - I. Ill              3.5
                      I.14 - 1.51               6
                      1.51 - 1.89              3.5
                      1.89 - 2.27              3.5
                      2.27 - 2.65               0
                      2.65 - 3.03               2
                      3.03 - 3.HI               I
                      3.11-3.78               0
                      3.78 - 1.16               I
                      1. 16 - 1.54               I
                      18.9 - 22.7               I
Date:  1/24/83  R  Change 2  II.8.7-11

-------
Of the plants visited,  6.3% had production processes which gen-
erated precious metals wastewater.   The average precious metals
wastewater flow was 20.1% of total  plant flow.

The average contribution of the complexed metal streams to total
plant flow was 11.9%.   The percentage was computed from data for
plants whose complexed metal streams could be segregated from the
total stream.

Of the plants visited and sampled,  24.1% had segregated hexa-
valent chromium waste streams.   The average flow contribution of
these waste streams to the total wastewater stream is 23.4%.  Of
the plants having hexavalent chromium streams,  100% segregate
those streams for treatment.

At those plants with cyanide wastes, the average contribution of
the cyanide-bearing stream to the wastewater generated is 14.6%
(range of 1.4% to 29.6%).  Of the plants visited and sampled,
13.9% have segregated cyanide-bearing wastes.

Segregated oily wastewater is defined as oil waste collected from
machine sumps and process tanks.  The water is segregated from
other wastewaters until it has been treated by an oily waste
removal system.  Of the plants visited, 12.9% are known to segre-
gate their oily wastes.  The average contribution of these wastes
to the total plant wastewater flow is 6.4% (range of approxi-
mately 0.0% to 31.7%).

In order to characterize the waste streams, raw waste data were
collected during the sampling visits.  Discrete samples of raw
wastes were taken for the seven waste types and analyses on the
samples were performed.  The results of these analyses are pre-
sented for each waste type in Tables 8.7-4 through 8.7-9.  In
each table, data are presented on the number of detections of a
pollutant, the number of samples analyzed, the range, the mean,
and the median concentration of those samples analyzed.  The
minimum detection limits for the toxic pollutants in the sampling
program are listed in Table 8.7-10.  Any value below the detec-
table limit is listed in the following tables as BDL, below
detection limit.

II.8.7.2.1  Common Metals

Pollutant parameters found in the common metals raw waste stream
from sampled plants are shown in Table 8.7-4.  The major constit-
uents shown are parameters which originate in process solutions
(such as from plating or galvanizing) and enter wastewaters by
dragout to rinses.  These metals appear in waste streams in
widely varying concentrations.
Date:   1/24/83 R  Change 2  II.8.7-12

-------
130
OZ
CO O
h-Z

ZUJ
CO

UJ

CO
     ui
c   CD
COS	
CD O Q
s:   E
     CO
     (0
           c   w
           CO   U
           .- d—
           T3 O Q
           CD   E
           S   CO
                Ul
CD   CD
01   —
C 0- Q
CO O £
a:   co
     U)
     c
<-   o
0)   —
n   4J
E <•- o
3 O (D
Z   -P
     CD
     UJ
!-   CD
0   —
-Q It- Q
E O E
3   CO
Z   UJ
r-ir\cooooooiAor-vocoo
       — oooo   o       o
       VO— OOCM   O       O
                                                               lAQ CM Q C\J Q
                                                                 CO   CD   CO
                                                                                 —JO
                                                                                 Q -g-
                                                                                 OQ —
                                                                                                         fO O CO
                                                                                                         COVO ro
                                    CM .a-CM —
                                                        o

                                                        ro
                                 Q O CO — lA Z r-
                                 CO --
                                                        O\
                                                        ro
                                                        — Q — Q
                                                      Q   Z   Z
                                                      CO
                                                                                 Q Q
                                                                                 ZZ
                                                                                          Q Q CO Q
                                                                            _l Q Q Q
                                                                            Q ;
                                                                            CQ
                             o              §
                             o              o
                           oo     o
                      ooo   -o   o        o
                      ooooo   o        o
                      OO  -.00    .       O
                                 .00
                               -CM OCM OOCM VO
                           OOOOOOOOOQOOOO
                           zzzzzzzzzzzzzz
                                                               o   o
                                                               o   o
                                                               O   CM   O
                                                                «     «   d-
                                                               — LA	CM —

                                                               I  I  I  I  I  I

                                                               OOOOOQ
                                                                                 -JO
                                                                                 o r>-
                                                                                 CD ir\

                                                                                 i  i

                                                                                 O Q
                                                                                              O
                                                                                              O
                                                                                              O
                                                                              CM CM --

                                                                               I  I  I  I

                                                                              O Q O O
                                                                              O
                                                                              O
                                                                              00 OO
                                                                            VO  -.OMA
                                                                            	VO —



                                                                            o o o o
                                                                                                                         o
                           CMOrO— OVO Or~CVI
                           OJro — •   -
                                                               O\ro|--C\J vo
                                                                                 	      	-VO —     J3-(7\r*	
                           VOlAf— ON VO OO> CVJ ON — VOrovOCM
                           OOCM	O>CMO — CMOCMCM
                                                               O\VO CO VO CO vo
                                                                                                                       .3-00
                    3
                    UJ
                    4->
                    C
                    co
                    4-1
                    3
                     O
                     a
                     x
                     o
                           >,   D   E             E   E
                           CO— ED    CD   >>   3   3
                           O	3 — t. -o   '	S- —
                           EC	ECU—   3CDCOJ —
                           — CD >> E O Q.C-DOJs:(D>— O
                           4J«/)S-T3i-Q.coco'-O	COC
                           C5-0)COJ=0>sa +J £2
>jN 	 ^ Q.
.C C >5>>0-
4J 0 4-> 4-> —
0 .a 3 o — >>
1 ^5 O >>JT
CM — 1 1 .C -P
— >jC C 4J 0
U> 4-i 1 1 0 E
— 3 	
m CD o o o o


CD
c
—
CO
CD —
c >> —
0 a. o
"O O U1
— i. — CD O
U)
T3
c
3
o
a
E
o
o

c
0
a
0

4J
—
z
NO. O t-
C 1 C O -P
0 C 0 CO CO
J2 1 	 .C 4J E
O— ooa. 000
S--D CCQ CE!-
O 1 00<- 0 O CO
— O .C J^ O N !-
.cm aa— coo
oo oo JT u)0a)0 —
— 5- S-1-— o OC.QC.C —
Q4J U)^->4JOCO — 0 — 0O O
,._ 	 c.p +JNX3CO X
roc OZZ0C COCJZ— S- O
-1 CII-C0 E0-POCO >
rOZ 0CMil-a-Q- O CD UJ 1— Q- —
.C S- O
Q. < 0-





CO
U)
c
0
n
&_
re
o
0
i-
•a
>
j=
c
0 0
J= C
W O
C S-
co O
t_ c-
o a.
3 O
— U)
U. —


 Date:     1/24/83  R    Change  2    II.8.7-13

-------




Q
Z3Q
£1
wo
I-Z
ZbJ
^ — >


j

00
LJ
CO




w
c o
cow —
ooa
»




co I
— d- —
o°i
r 1
M






0 a
? —
<*- a
 —
-aw a
§°s
Z 10






c
(C
I




\f\ * a oo— • o— -a —
CO CO O CO OGQ





_i_j_j_ia _io — o_iQ — ooooooa-J
OOQQZ az .zoz rzzzzrza
CO CO CO CO CQ O CD CO







OOO O OO O O
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OOOQQ oaaoaaaaaoooaaa
zzzzz zzzzzzzzzz zz zzz







SK^S" S~3w5'3''0~Ki"'~ c o a> —
o-o teto c a: a> c c a) o
— —•»££ O O — « « flJ C A
jj t. c ** w — t- >-o £ £ a) 0) a
> o a— +* *J — c *>
jc — i: o o £ — o t- a> « « >»aj v
Qj= *J t. l- *Jj=i-OT3a)eEjC— E
— u v o o o o a— — -a o o *J >»
S— * O 	 O— Oj=t-— EEO.C "O
eo t- i- £ jZ i-TJ'-OOEOOp*^ C
ao a> *j o o o e o i o — o ^ t- C o «
CC t. T3 « — 	 C— «— OjCt-jajOOO
« « O C 0) coC— lip— l_ — — — — OOO— "O
£L.t->>4 >*— *- CO J= —
I-UjCOCO OJAl **OllljZj=jCjCO'-O O
O.4J3OU pl_CM — — 	 
o ais aw —
	 C — 0) Q
o*'ONCVj.tfh-vo
»— o>o





•v
O)
E
d
C
— E
— «! E » 3
O E CO 3 W C
as E -0 — a> o
Cfi 3D— MC-O
— — 3 C 	 I- OC3.Q
OO co O— — CO
M* <\l



• JZOOJO -OOOCJOO
o o *~ w *o ^ ~-
—



o o
o-o o
OOO OO
OJOJ O O * O *
1 1 1 1 1 1 I 1 1 1 1 1 1
Z— ZZZZZ 	 OZZ
rocD






» « -CM-«« n





00 ^ CO O^^ — "- NOP^iAOh-








o —
>>«)— acoi-o c
OO53t-t- — ^3OO1C— O'DCDCDEQO— OCOU
— w— coocoo— i-iocoo^io 	 CODEOO — 1:00
10
CO

u
































—
^
(D
(A
*fl
a
o
^

~ £

* I
methods:
detected.
ow detect
o —
— DO
D Oa
CO --T
coo

-------
II.8.7.2.2  Precious Metals

Table 8.7-5 shows the concentrations of pollutant parameters
found in the precious metals raw waste streams.  The major con-
stituents are silver and gold,  which are much more commonly used
in Metal Finishing Industry operations than palladium and rho-
dium.  Because of their high cost, precious metals are of special
interest to metal finishers.

II.8.7.2.3  Complexed Metals

The concentrations of metals found in complexed metals raw waste
streams are presented in Table 8.7-6.  Complexed metals may occur
in a number of unit operations but come primarily from electro-
less and immersion plating.  The most commonly used metals in
these operations are copper, nickel, and tin.  Wastewaters con-
taining complexing agents must be segregated and treated indepen-
dently of other wastes in order to prevent further complexing of
free metals in the other streams.

II.8.7.2.4  Cyanide

The cyanide concentrations found in cyanide raw waste streams are
shown in Table 8.7-7.  The levels of cyanide range from 45 to
1,700,000 ug/L.   Streams with high cyanide concentrations nor-
mally originate in electroplating and heat treating processes.
Cyanide-bearing waste streams should be segregated and treated
before being combined with other raw waste streams.

II.8.7.2.5  Hexavalent Chromium

Concentrations of hexavalent chromium from metal finishing raw
wastes are shown in Table 8.7-8.  Hexavalent chromium enters
Wastewaters as a result of many unit operations and can be very
concentrated.  Because of its high toxicity, it requires separate
treatment so that it can be efficiently removed from wastewater.

II.8.7.2.6  Oils

Pollutant parameters and their concentrations found in the oily
waste streams are shown in Table 8.7-9.  The oily waste subcate-
gory for the Metal Finishing Industry is characterized by both
concentrated and dilute oily waste streams that consist of a
mixture of free oils, emulsified oils, greases, and other assorted
organics.  Applicable treatment of oily waste streams is depen-
dent on the concentration levels of the wastes, but oily wastes
normally receive specific treatment for oil removal prior to
solids removal waste treatment.

The majority of the pollutants listed in Table 8.7-9 are priority
organics that are used either as solvents or as oil additives to
extend the useful life of the oils.  Organic priority pollutants,
Date:  1/24/83 R  Change 2  II.8.7-15

-------








QQ
Z Z
^ ^
£o
z
«> —
ZUJ
-
oot-
uoo
ouj —
<0£U-
ft: Q —
uj o£
>zu
^ — . >


.
IA
i
f^
•
00

UJ
i





















U)
OS
C —
cod- a
0) 0 E
X CO
in
c in
CO V
._ C| 	
•o o a
2 i
CA





U)
Q) CD
Ol —
Cd- Q
CO O E
OS CC



CO
c
«- 0
eo —
ja 4-1
Ed- O
3 O 0)
Z 4-1
CD
•a




(/)
J_ CD
0} —
-Qd- Q
E 0 E
3 CO
Z U)













U
C
co

3
-_
«•
O
a.








OSPOPOOO
VO .CM —
o\oo
• •
OO

^ VO O O
cvjiAzz
• *
OO





CM CM
O —CO
OPO • •
vOd-OO

1 1 1 1

aaoa
z z z z







CM — PO —
_«. _









LfMAPOCM
.^ ^ — —









_,
Ol
E
CO
c
co
4J
3
—
—
0
a E
3
- — E
CO 1- -O 3
O CD CO —
— > TJ — TJ
CO — — — O
CO — O CO S.
co coo a- a:
m^
0










































•
— .

4J
a>
in

CO
4J
CO
a

PO
PO

>

• • *
CA-O
•0 0)
0 4J
£ O
4J CO
CD 4-1
E 0)
T3
O

4J O

^
CO «
CO

-J2Z
oo
^ ' ' CO


•
VO
1
!*•
00

LU
CO
H-





















CA
CD
C —
cod- a
Q) O E
£ ca

ZOZIA— r- • z •
ON lACM • 00 PO
0




o
O OO
OOOOO
ooo «o
VO «VOO « O
^PO *OSOO OS O PO
POVOPOCM— ON — vo eo
— t~- Cvl — O
1 1 1 1 1 •— 1 • 1 — 1 1
o o —
a o Q a PO oo PO QQ
ZZZZCM PO CM ZZ
o
0
o






CM — OJ PO PO PO —CM









PO PO PO PO PO PO PO PO PO








_!
Ol
E
01 co
3. 4->
c
« eo
in 4J
•P 3
c —
eo —
•P O CO
3 a E CD 3
— E 3 co t-
— E — 3 E — CO O
O3«- — COC3 CACJ=E
a— CB d> O 	 CDCOQ.3
E Q.T3 XV — E O C C OKA —
OT3Q.COOC CA3— OOICOTSCt/5
— coOCU 	 (A— cOt.coCOJZO — t/5
xoo— IZN co< o — s: s Q. wi- 1—
o —
h- O
















































•

4J
to
in

CO
CO
a

PO
PO
^
..;


• • •
CA ^
•a CD
O -P
.c o
•P CD
0) JJ
E 0)
•o
u

•P O

•_
CO «
ca

-------








Q
Z
s
0 1
U- —
u.
CO —
HCC
ZLJ
1-
s o
-IZ
^ ^
o
Q. O
z
Lu •""
OZ
UJ
CO U
zee
00
— CO
1-LU
UJ<
OS
ZUJ
Oh-
Oco
^
^ ^
_J
— s '"^
«CVJ
DCC CM
1
UJ UJ CM
ccz<
LJ<|-

 c

.. . o
WO —
"O CO JZ
O -P O
J= U
*J CO O
CO -P 4->
E CO
-O CO
2»A
•P O CO
>>c c
co « E
co<
LJLU
< X >

00
1
r-
00
UJ
1
CO
t-















tfl
Q5
C —
co <>- Q
CD O E
2: co

tn
c CD
CO —
— C). Q
•DOE
CD co
s: w








tn
CD CO
C71 —
c <*- a
co O E
CC cc





w
c
S- 0
OJ —
J3 -P
E 

CO "D
-a co
O -P
£ O
•P CO
CO 4->
e co

u
— -p
•P O
CO «
CO

-------
             TABLE 8.7-9.  AVERAGE DAILY  CONCENTRATIONS OF POLLUTANTS
                           FOUND IN OILY  RAW WASTEWATER, SCREENING AND
                           VERIFICATION DATA [2-22]
Pol lutant
Toxic pollutants, M9/L
Metals and Inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Tha 1 1 i urn
Zinc
Phthalates
Bis(2-ethylhexyl (phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Diethyl phthalate
Dimethyl phthalate
Ethers
Bis(chloromethy) (ether
Bis(2-chloroethyl (ether
B 1 sj 2-ch 1 oroi sop ropy 1 (ether
B!s(2-chloroethoxy (methane
Nitrogen compounds
1 ,2-Diphenylhydrazine
Pheno 1 s
2 , U , 6-T r i ch 1 o ropheno 1
Pa rach 1 o rome tac reso 1
2-Chlo ropheno 1
2, U-Dichlo ropheno 1
2, i4-Di methyl phenol
2-N it ropheno 1
i(-N it ropheno 1
2 , I|-D i n i t ropheno 1
N-N i t rosod i pheny I am i ne
Pentach 1 o ropheno 1 •
Pheno 1
U,6-Dinitro-o-cresol
Number
of
samples


27
38
10
uo
UO
UO
37
39
38
39
27
27
27
UO

22
10
17
6
12
8

1
2
1
1
2

5
9
2
2
1 1
5
3
1|
6
7
20
3
Number
of
detections


27
38
UO
UO
UO
38
28
39
38
39
27
27
27
UO

20
9
15
2
9
3

1
2
1
1
2

3
8
2
2
6
3
I
3
5
3
13
2
Range
of
samples


i - 600
2-120
BDL - 110
BDL - 1,700
5 - 15,000
ND - 21,000
ND - 530
BDL - 390,000
BDL - 25
BDL - 5,700
1 - 50
1 - 22,000
1 - 500
U - 80,000

ND - 9,300
ND - 10,000
ND - 3, 100
ND - 120
ND - 1,900
ND - 1 , 200

9
U - 10
If
3
5-12

ND - 1,800
ND - 800,000
76 - 620
10-68
ND - 31,000
ND - 320
ND - 10
ND - 10,000
NO - 900
ND - 50,000
ND - 6,600
ND - 5,700
Median
of
samples


16
10
2
12
130
270
5
130
1
100
5
20
25
1,200

63
76
15
ND
16
ND







10
2,200


BDL
10
ND
12
380
ND
56
10
Mean
of
samples


IUO
22
12
100
1,200
1,800
UO
12,000
3
630
9
850
1 10
8,300

7UO
1,500
2UO
21
310
150


7


8

370
92,000
350
39
2,800
73
3
2,500
1)10
7,900
1, 100
1,900
Date:   1/24/83 R  Change 2   II.8.7-18

-------
              TABLE 8.7-9.   AVERAGE DAILY CONCENTRATIONS OF POLLUTANTS
                            FOUND IN OILY RAW WASTEWATER,  SCREENING AND
                            VERIFICATION DATA (continued)
Pol lutant
Aroma tics
Benzene
Chloro benzene
Nitrobenzene
To 1 uene
Ethyl benzene
Pol.vnuclear aromatic
hydrocarbons
Acenapthene
2-Chloronaptha lene
Fluoranthene
Napthalene
Benzol a (pyrene
Chrysene
Acenapthy lene
Anthracene
F 1 uorene
Phenanthrene
Py rene
1,2-Benzanthracene
Haloaenated hydrocarbons
Carbon tetrachloride
, l-Dich loroethane
,2-Dichlo roe thane
, 1 , 1 -Tr ichloroethane
, 1 ,2-Trichloroethane
, 1 ,2,2-Tetrachloroethane
Chloroform
, l-Dich lo roe thy lene
,2-trans-Dichloroethylene
Methylene chloride
Methyl chloride
Bromoform
D ichlo rob romo methane
Trichlorof luorome thane
Ch lo rod i bromome thane
Tetrachloroethy lene
T r i ch 1 o roe thy 1 ene
Pesticides and metabolites
Aldrin
Dieldrin
Chlordane
4, 4' -DDT
4,4'-DDE
4,4'-DDD
Alpha-endosulfan
Beta-endosulfan
Endosulfan sulfate
Endrin
Endrin a Idehyde
Heptachlor
Heptachlor epoxide
Alpha-BHC
Camma-BHC
Delta-BHC
Polvchlorinated biphenvls
Aroclor 1251*
Aroclor 1248
Classical pollutants, mg/L
Oi 1 and grease
Number
of
samp les

22
14
2
29
19


4
1
9
12
6
6
7
1 1
8
1 1
6
6

8
13
6
20
It
It
19
IK
12
29
4
3
6
2
6
19
15

3
2
2
3
4
3
2
2
4
2
2
2
1
3
4
3

3
3

37
Number Range
of of
detections samples

18
2
2
25
16


2
1
8
10
1
3
3
7
7
8
5
4

5
1 1
6
IB
14
2
19
12
9
29
U
1
2
2
3
18
1 1

2
1
2
2
4
3
2
2
4
2
2
|
1
3
3
2

2
2

37

NO - 1 10
NO - 610
BDL - 10
ND - 37,000
ND - 5,500


ND - 5,700
130
NO - 55,000
ND - 260,000
ND - 10
ND - 73
ND - 1,000
ND - 2,000
ND - 760
ND - 2,000
ND - 150
ND - 170

ND - 10,000
ND - 1, 100
9-2, 100
ND - 1,300,000
6 - 1,300
ND - 570
2 - 690
NO - 10,000
ND - 1,700
5 - 7,600
BDL - l»,700
ND - 10
ND - 10
260,000 - 290,000
ND - 10
ND - 110,000
ND - 130,000

ND - 1 1
NO - 3
0.8 - 13
ND - 10
BDL - 53
1 - 10
8-28
BDL - 6
BDL - 16
7-10
10 - lit
ND - BDL
0.01
i| - IB
ND - 9
ND - 1 1

ND - 1, 100
ND - 1,800

It. 7 - 800,000
Median
of
samples

4
6

18
8


29

66
6
NO
BDL
ND
5
46
5
62
It

3
310
1,100
190
10
3
10
120
28
92
10
ND
ND

BDL
10
5

It


2
2
It


II




13
It
It

76
160

6, 100
Mean
of
samples

10
160
5
1,500
320


1,400

7,300
30,000
2
13
170
230
150
290
66
31

1,600
420
1, 100
67,000
330
140
58
1,300
380
600
1,200
3
2
280,000
2
8,400
17,000

5
1.5
7
4
14
5
18
3
10
8
12
BOL

12
4
5

390
650

4 1 , 000
    Analytic methods:
    ND, not detected.
    BDL, below detection limit.
                  V.7.3. 13, Data set I
Date:   1/24/83  R   Change  2   II.8.7-19

-------
such as solvents,  should be segregated and disposed of or re-
claimed separately.   However,  when they are present in wastewater
streams they are most often at the highest concentration in the
oily waste stream because organics generally have a higher solu-
bility in hydrocarbons than in water.   Oily wastes will normally
receive treatment for oil removal before being directed to waste
treatment for solids removal.

11.8.7.2.7  Solvent

The solvent raw wastes are generated in the Metal Finishing
Industry by the dumping of spent solvents from degreasing equip-
ment (including sumps, water traps, and stills).   These solvents
are predominately comprised of compounds classified by the EPA as
toxic pollutants.   Spent solvents should be segregated, hauled
for disposal or reclamation, or reclaimed on site.  Solvents that
are mixed with other wastewaters tend to appear in the common
metals or the oily wastes stream.

II.8.7.3  PLANT SPECIFIC DESCRIPTION

Descriptions of individual plants within the Metal Finishing
Industry are not available at this time.

II.8.7.4  POLLUTANT REMOVABILTY  [2-22]

This section reviews the technologies currently available and
used to remove or recover pollutants from the wastewater gener-
ated in the Metal Finishing Industry.   Treatment options are
presented for each raw waste type within the Metal Finishing
Industry.  Refer to Figure 8.7-1 for the wastewater stream segre-'
gation in common practice in the Metal Finishing Industry.  This
stream segregation allows the recovery of precious metals, the
reduction of hexavalent chromium to trivalent chromium, the
destruction of cyanide, and the removal/recovery of oils prior to
the removal of the common metals that are also present in these
streams.  Segregation of these streams reduces the flow rate of
wastewater to be treated in each component and accordingly
reduces the cost of this primary treatment.  The complexed metals
wastewaters require segregated treatment to preclude the complex-
ing of other metal wastes in the treatment system.

II.8.7.4.1  Common Metals

The treatment methods used to treat common metals wastes fall
into two groupings—recovery techniques and solids removal tech-
niques.  Recovery techniques are treatment methods used for the
purpose of recovering or regenerating process constituents which
would otherwise be discarded.  Included in this group are evapor-
ation, ion exchange, electrolytic recovery, electrodialysis, and
reverse osmosis.  Solids removal techniques are employed to
remove metals and other pollutants from process wastewaters to
  Date:  1/24/83 R  Change 2  II.8.7-20

-------
make these waters suitable for reuse or discharge.  These methods
include hydroxide and sulfide precipitation, sedimentation,
diatomaceous earth filtration, membrane filtration, granular bed
filtration, sedimentation, peat adsorption, insoluble starch
xanthate treatment,  and flotation.

Three treatment options are used in treating common metals wastes.
The Option 1 system consists of hydroxide precipitation followed
by sedimentation.  This system accomplishes the end-of-pipe
metals removal from all c.ommon metals-bearing wastewater streams
that are present at a facility.  The recovery of precious metals,
the reduction of hexavalent chromium, the removal of oily wastes,
and the destruction of cyanide must be accomplished prior to
common metals removal.

The Option 2 system is identical to the Option 1 treatment system
with the addition of filtration devices after the primary solids
removal devices.  The purpose of these filtration units is to
remove suspended solids such as metal hydroxides which do not
settle out in the clarifiers.  The filters also act as a safe-
guard against pollutant discharge should an upset occur in the
sedimentation device.  Filtration techniques applicable to
Option 2 systems are diatomaceous earth and granular bed filtra-
tion.

The Option 3 treatment system for common metal wastes consists of
the Option 1 end-of-pipe treatment system plus the addition of
in-plant controls for lead and cadmium.  In-plant controls would
include evaporative recovery, ion exchange, and recovery rinses.

In addition to these three treatments, there are several alter-
native treatment technologies applicable to the treatment of
common metals wastes.  These technologies include electrolytic
recovery, electrodialysis, reverse osmosis, peat adsorption,
insoluble starch xanthate, sulfide precipitation, flotation, and
membrane filtration.

II.8.7.4.2  Precious Metals

Precious metal wastes can be treated using the same treatment
alternatives as those described for treatment of common metal
wastes.  However, due to the intrinsic value of precious metals,
every effort should be made to recover them.  The treatment
alternatives recommended for precious metal wastes are the re-
covery techniques - evaporation, ion exchange, and electrolytic
recovery.

II.8.7.4.3  Complexed Metal Wastes

Complexed metal wastes within the Metal Finishing Industry are a
product of electroless plating, immersion plating, etching, and
printed circuit board manufacture.  The metals in these waste
Date:  1/24/83 R  Change 2  II.8.7-21

-------
streams are tied up or complexed by particular complexing agents
whose function is to prevent metals from coming out of solution.
This counteracts the technique employed by most conventional
solids removal methods.   Therefore, segregated treatment of these
wastes is necessary.  The treatment method well suited to treat-
ing complexed metal wastes is high pH precipitation.   An alter-
native method is membrane filtration.   The method is primarily
used in place of sedimentation for solids removal.

II.8.7.4.4  Hexavalent Chromium

Hexavalent chromium-bearing wastewaters are produced in the Metal
Finishing Industry in chromium electroplating, in chromate con-
version coatings, in etching with chromic acid, and in metal
finishing operations carried out on chromium as a basis material.
The selected treatment option involves the reduction of hexa-
valent chromium to trivalent chromium either chemically or elec-
trochemically.   The reduced chromium can then be removed using a
conventional precipitation-solids removal system.  Alternative
hexavalent chromium treatment techniques include chromium re-
generation, electrodialysis, evaporation, and ion exchange.

II.8.7.4.5  Cyanide

Cyanides are introduced as metal salts for plating and conversion
coating or are active components in plating and cleaning baths.
Cyanide is generally destroyed by oxidation.  Chlorine, in either
elemental or hypochlorite form, is the primary oxidation agent
used in industrial waste treatment to destroy cyanide.  Alter-
native treatment techniques for the destruction of cyanide in-
clude oxidation by ozone, ozone with ultraviolet radiation (oxy-
photolysis), hydrogen peroxide, and electrolytic oxidation.
Treatment techniques, which remove cyanide but do not destroy it,
include chemical precipitation, reverse osmosis, and evaporation.

II.8.7.4.6  Oils

Oily wastes and toxic organics that combine with the oils during
manufacturing include process coolants and lubricants, wastes
from cleaning operations, wastes from painting processes, and
machinery lubricants.  Oily wastes are generally of three types:
free oils, emulsified or water-soluble oils, and greases.  Oil
removal techniques commonly employed in the Metal Finishing
Industry include skimming, coalescing, emulsion breaking, flota-
tion, centrifugation, ultrafiltration, reverse osmosis, carbon
adsorption, aerobic decomposition, and removal by contractor
hauling.

Because emulsified oils and processes that emulsify oils are used
extensively in the Metal Finishing Industry, the exclusive occur-
rence of free oils is nearly nonexistent.
bate:  1/24/83 R  Change 2  II.8.7-22

-------
Treatment of oily wastes can be carried out most efficiently if
oils are segregated from other wastes and treated separately.
Segregated oily wastes originate in the manufacturing areas and
are collected in holding tanks and sumps.  Systems for treating
segregated oily wastes consist of separation of oily wastes from
the water.  If oily wastes are emulsified, techniques such as
emulsion breaking or dissolved air flotation with the addition of
chemicals are necessary to remove oil.  Once the oil-water emul-
sion is broken, the oily waste is physically separated from the
water by decantation or skimming.  After the oil-water separation
has been carried out, the water is sent to the precipitation/
sedimentation unit used for metals removal.

Three options for oily waste removal are discussed in Reference
2-22.  The Option 1 system incorporates the emulsion breaking
process followed by surface skimming (gravity separation is
adequate if only free oils are present).  The Option 2 system
consists of the Option 1 system followed by ultrafiltration, and
the Option 3 treatment system consists of the Option 2 system
with the addition of either carbon adsorption or reverse osmosis.
In addition to these three treatment options, several alternative
technologies are applicable to the treatment of oily wastewater.
These include coalescing, flotation, centrifugation, integrated
adsorption, resin adsorption, ozonation, chemical oxidation,
aerobic decomposition, and thermal emulsion breaking.

II.8.7.4.7  Solvents

Spent degreasing solvents should be segregated from other process
fluids to maximize the value of the solvents, to preclude contam-
ination of other segregated wastes, and to prevent the discharge
of priority pollutants to any wastewaters.  This segregation may
be accomplished by providing and identifying the necessary stor-
age containers, establishing clear disposal procedures, training
personnel in the use of these techniques, and checking period-
ically to ensure that proper segregation is occurring.  Segre-
gated waste solvents are appropriate for on-site solvent recovery
or may be contract hauled for disposal or reclamation.

Alkaline cleaning is the most feasible substitute for solvent
degreasing.  The major advantage of alkaline cleaning over sol-
vent degreasing is the elimination or reduction in the quantity
of priority pollutants being discharged.  Major disadvantages
include high energy consumption and the tendency to dilute oils
removed and to discharge these oils as well as the cleaning
additive.
Date:  1/24/83 R  Change 2  II.8.7-23

-------
_J
.28
M i n i mi
Detect
Limit,

oooooooooooooooooooooooooooooooooooooooc
oooooooooooooooooooooooooooooooooooooooc
oooooooooooooooooooooooooooooooooooooooc

30OOO
20OOO
300OO
      O CJ
      — I
       CM
      oce
      a co
      o —
      oz
      I --
        X
      K CO
      O —
      U. Z

      CO U-
      -I LJ

      LJ
      _J LJ
      COX
       oz
       LJ —
       I-
       Ld CO
       OH-
       00
a meter
t.
CD
O.










_l
01^
E £ E
C 01 —
Q-l
1 oromethane )
mome thane)
£ O
O c»
— CO
0)"
•0 01
— "O
O E
ze
O A
>»>>


0) <|)
"

c>


0)
— c —
,
£ c — • *J a
— « *J co 93 C CD
O C 1- C CO C
C to O O *•"* <1>
03 t- 3 — .C —
0 0- >> *>>
OS 3C*. t- CO C
I 	 — . « _®
j= a)<-.x a or:
+j c~— i N a. — *
C 0) .D O — C 1 0>
(Ol.XM.tsl — >O C £ .0 1 tf
— • Q) <0 O. N 0) Cl — (O —
v +j — i cm — a - >»
c v VCD o o 
jC O 0) —CO C C — 0> CO) Q)
** » c — a a) E .c CD o o c c ecu o
CD C Q "D CCCO 4J 4-> CD OD (D O CD Q} C t-'
E O (0 £ 0) (0 — .-._ — .C co 0) d> *— 1 C .C -»> O t» O
§C jT *J C C *-» O E E >> a— *-> *J J" O *J « 1- O —
 -.c c ffi t. >, c £
O £ V E £ V Q) .^QJ^^Q— •"'J^ — ^CD+JCfO-Wn! C jCCl 0) Q) CJ
jQ O g t. vo O CW^CaC >»jC J= .C cc — O JOO — WD >>«

*- o o 3 o -w o — — i:oa)jzC£ o jZjz«£;i-co— c t- c i -w >>-D
t- E 3 — E 3 >» Q) o o a i E a t a £ — a Q.JZ .P .c a> 3 <»- o o vivo o ^ —
— . o — «^ o J3 o cycccoo 	 o — >» *3jr^>i_— o — a c^» o *»*-
t-W—l-OOtUCOJCDtVl-I-'O-O-O*- >N — — JiaC >>(^ N >>0)O ,>, a caaoc x: c N L.O- o o —
UQL.Q — O O O — CO. O-— — « ifl « — 4J O *J *J — N — NQjOJ4J(l)CCJJ£l — — t- £
Ot-O*-'D — — t-«00)OOCCOOO.C {DJ33O— >>Co;CCDC£aajC:+JsO^- X:tDOU
<_ o — o o ^« ojzfit-u — — 1-1.4.0— i ^o >>r: QJ — • CD i cuacecDcpc *OCPCJC —
O — £— t-CJCJ.C'l->OJJ4JOQ*J'tJ*JcoOCNJ— 1 ijZWCQOCDCMWfCt-l L-(OhTiCC(OCt}^I —
E -C 0 JC 0 CD CO O..C * 	 1 1 	 +JC-->CC*JtDINl— ^CjZCMOC -CD-VS-SOX

U — L. — £ d) Q) W <0 — 1 1 « * 1 1 1 Q) £ — 3 — — — — * CD « — *JT OC •— JZ * C X 0 O &• •-
«001-00 = X-ZZW,W^ZZZC,^C0CDQOOO-CC-o-0«-u.i--C,>-K)->

•ooooooooooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooo

(1M>












(.
0)
*1
1
<0
a.











a>
c
CO
£
4J




o
£
o
CO
L.
*J
£
o
•o
i.
o
£
a> cj
I Z E
Q) *- 4J
£ +> 

|||

(. — CD

— O 1-
£•••1 *O^i w
CO 1 • «O— — £
X 	
l» «CJ














§0
to
C 01 01
01£ 1-
— Q.O
52B

HI

C— 1.

t- K —
Q 1 £
— to O
£ -co
O J I.










««.
0)
c
£
hloromet
u


— c
01
g£
0
° <-

S2
O£
— U














CD
C
01
N
C

g
O


o














ene
ene
zidine
N N C
a oc

001-
i- I. o



o o —
oooT
(NJ
c*u c^













i
lene
roethyle

0)
c
01
o.
£
a
o
t.
o

£
o
Q
1
«
i «
§o ._
	 0) 0) N

£ — O O O D 3 3"O
*>££ t, U C — — X

££
O 1
— tfl

CJ tO
Oh-
1 1

oooa,cDce£ >ai «»a> «« «£ — *— i i «co£i «««•««
<«£BtBOCJ — I 	 Z — — — UacDMCMCUa.CJt\J 	 « 	

o o o— *j*i —
O O O.C *- l- C


O CJ O E C C Q.
OOOOQOQ
1 1 1 1 1 1 1
•ff M cy jf 3- so w
CM — ^ OJ CM CM —





0)
c


4J
i
1- 0
L. 01 01 ^
0 <-£ C O
£ 01 *> ce —
01 *» *> o
01 ^ cu —
- - la
X- X —
c xa—
01 c o xa>
£ 0, 1- X15
a£ a. CD —
— at a o
x — 01 —
01 01 C XO O£
CD oi£ a> o o

CMC Q.£ £ C
01 c t. o o o a,
— l_— OftlCV X
X0£ '-——5

ulJr jcoSr
Date:   1/24/83 R  Change 2    II.8.7-24

-------
o


to


oo:

OV)


                     — O
                      o -oooooooo -oo
                       • — -o *o •  -o  -ooo
                      o o  -o  -oo .o   • •
                          o  o   o    o o
                                      u o  a
                                      C. **  CO M
                                      O—  C —
                                    §
                                    §5  S t«  £
                                  s—  —o-ooa-  TJ
                            3 E T3 C 3 C  <0 C —13   C
                            — 3 co	0)  > a'	  co
                          •O-O	«J'O£  COMOCto
                          	E— CCO*iCXO3«0*» —
                          O ^ »
•^iTvcvjwi^vo-" fl) c o
CUOJCMC\JCMC\JO.C o —
1 1 1 1 1 1 1 (Q — 0}
fQCQCQCOQ3COCQX**0





«i E
O— E 3
*J— 3 —
S£"^E
^ u -Q i-
V) 0) CQ£

izo-p-dioxin (TCDD
ID
s
O
£
U
4*
H
e e i
3 3 CO
0) >— O s
Date:    1/24/83 R  Change 2     II.8.7-25

-------
           II.8.8  PHOTOGRAPHIC EQUIPMENT AND SUPPLIES

II.8.8.1  INDUSTRY DESCRIPTION [2-24]

The Photographic Equipment and Supplies Industry (SIC 3861) is
divided into three categories:  photographic equipment and ap-
paratus manufacture; photographic materials sensitizing; and
photographic chemicals manufacture.  Information on the number
and types of discharges, the number of subcategories studied, and
the total number of subcategories in the Photographic Equipment
and Supplies Industry is presented in Table 8.8-1.


                  TABLE 8.8-1.  INDUSTRY SUMMARY
          Industry:  Photographic Equipment and Supplies
          Total Number of Subcategories:  5
          Number of Subcategories Studied:  5

          Number of Dischargers in Industry:  153

               • Direct:    15
               • Indirect:  106
               • Zero:      32
Photographic equipment and apparatus manufacturing activities are
common to operations performed in other industries such as metal
forming, metal finishing, plastic molding and forming, and elec-
troplating.  Consequently, these operations are not considered in
this section of the Manual.

II.8.8.1.1  General Description

The major manufacturing processes in the Photographic Equipment
and Supplies Industry are solution mixing, emulsion or coating
solution preparation, coating, packaging, and testing.  The major
source of wastewater results from clean-up activities associated
with each of these processing steps.  These wastewaters contain
pollutants that are dependent on the type of product manufac-
tured .
Date:   9/25/81              II.8.8-1

-------
Subcategorization by product inherently accounts for raw mate-
rials and process.  These subcategories of the Photographic
Equipment and Supplies Industry are:

     •  Silver Halide Sensitized Products
     •  Diazo Sensitized Products Manufactured by the
        Aqueous Process
     •  Diazo Sensitized Products Manufactured by the
        Solvent Process
     •  Formulated Photographic Chemical Products
     •  Thermal Products Aqueous and Solvent

In this subcategorization scheme, the manufacture of silver
halide products is treated separately from diazo and thermal
products.  This distinction is necessary to account for dif-
ferences in the imaging chemistry, coating technology,  and waste-
water characteristics observed.  In considering diazo products,  a
further distinction based on process type (solvent or aqueous)  is
deemed necessary since one process produces a solvent waste and
the other process produces an aqueous waste.  Many of the thermal
products investigated contain imaging chemistries sufficiently
different from silver halide or diazo products to justify the
establishment of a separate subcategory.  Both solvent and aqueous
processes are utilized in the manufacture of thermal products and
are treated separately within this subcategory.  Because the raw
materials for production of photographic chemicals differ signif-
icantly from raw materials in the material sensitizing segment,  a
separate subcategory is established for photographic chemicals.

II.8.8.1.2  Subcategory Descriptions

     Silver Halide Subcategory

Silver halide sensitizing is the mixing and application of a
light sensitive emulsion of silver halide microcrystals to a sup-
port material of either cellulose triacetate, polyester, glass,
metal or paper.  The type of base material used is determined by
the specific application for which the photographic material is
intended.  Generally, cellulose triacetate, polyester,  metal and
glass are used for film products, whereas a cellulose pulp is
used in the manufacture of paper based products.

Photographic images are produced in silver halide products by
either reduction of exposed silver halide microcrystals to metal-
lic silver in the presence of a developing agent or reduction of
exposed silver halide microcrystals by a developing agent fol-
lowed by the subsequent coupling of the oxidized developing agent
with a color coupler to form a visible dye.  In the diffusion
transfer process, either ionic silver or a dye developer migrates
from one layer to a second layer where it becomes deposited, or,
in the case of the dye, immobilized.  Products within this sub-
category include amateur, professional and motion picture films,


Date:  9/25/81              II.8.8-2

-------
black and white and color papers, and diffusion transfer films.

Water is used in the silver halide subcategory to:  prepare
solutions for emulsipn making and finishing, wash emulsions,
clean mixing tanks, clean coating machines, test emulsions, heat
and cool solutions, and carry away spills.  The mean water usage
rate for 22 plants in the silver halide subcategory is 1,200,000
L/day, the subcategory total being 16,800,000 L/day.

     Diazo Aqueous Subcategory

The sensitizing of a diazo product involves the mixing and appli-
cation of a sensitizer solution containing a diazonium salt to
either a paper or film support material.  In general, aqueous
processes are utilized to coat paper products, whereas the diazo
solvent process is primarily intended for film.  Included in this
subcategory are all diazo aqueous processess along with those re-
quiring the use of some solvent.  The diazo solvent process is a
separate subcategory.  The typical products manufactured in this
industrial segment include blueline, blackline, and sepia paper.
These products are used for copying engineering drawings, micro-
filming, and printing plates for lithographic purposes.

Aromatic organic compounds containing an azo linkage attached to
a carbon atom on an aromatic ring are light sensitive. These
compounds can be coated onto a support material, exposed to
light, then developed in a developer solution containing a coup-
ler.  The diazonium salt coated on the support material reacts
with a color coupler to form a dye image.  The color of the dye
formed is determined by the structure of the color coupler. In
general, compounds that have active hydroxy or methylene groups
behave as a coupler.  Typical diazo couplers are the phenols.

Water is used to prepare solutions for coating, to clean mixing
tanks, clean coating machines, heat and cool equipment, and
remove spills.  The mean reported process water usage rate is
7,310 L/day, the subcategory total being 190,000 L/day.

     Diazo Solvent Subcategory

The diazo solvent subcategory encompasses all diazo products
manufactured using solvent processes.  Included within this
subcategory are two distinctly different product types, diazo
film and vesicular film.  For both of these products, the light
sensitive properties of diazonium salts are utilized as the
imaging chemistry. Diazonium salts are aromatic organic compounds
containing an azo linkage attached to a carbon atom on an aromat-
ic ring.  They are light sensitive and capable of producing a
visible image either through dye formation or the creation of
vesicles that scatter light.
Date:  9/25/81              II.8.8-3

-------
     Diazo films.   Diazo films produce a visible image through
dye formation.  The basic reaction for the diazotype process can
be represented by two chemical reactions.  In the first reaction,
light resulting from exposure destroys the diazonium salt thus
rendering it light insensitive.  In the second reaction,  the
unexposed diazonium salt reacts with a color coupler to form an
organic dye molecule.  The color of the dye formed is determined
by the structure of the color coupler used in the process.  Diazo
film products find application as transparencies for use in
overhead projectors, microfilm, microfiche, and duplicating films
for technical reproductions.

     Vesicular films.  Vesicular films produce a visible image
through the formation of vesicles.  The vesicles scatter light
thereby creating a visible image. In vesicular films, nitrogen is
released during the photolysis of the diazonium salt.  Upon
heating of the film with steam or water, the nitrogen expands in
the coated layer creating vesicles that scatter light and form a
visible image.  Thus, vesicular images differ from diazo images
in that vesicular images result from the light scattering prop-
erties of vesicles rather than resulting from the absorption of
light by an organic dye molecule as in diazo film.  If the thermal
development step described above is omitted, the nitrogen diffuses
out of the film.  Upon subsequent exposure and thermal develop-
ment, a positive image of the original subject is produced.  It
is, therefore, possible to produce both positive and negative
types of vesicular film images.  Vesicular films are used for
microfilm and microfiche applications.

Ten plants reported water as not being used in the diazo solvent
process, seven plants did not provide flow data, and five plants
reported the use of process water.  For the five plants with
reported water usage rate, water is used to treat vesicular film,
to cool equipment during coating of either diazo or vesicular
film, and for steam regeneration of carbon columns for both pro-
duct types.  The reported mean process water usage rate for 5
plants in the diazo solvent subcategory is 2,180 L/day, the
subcategory total being 10,900 L/day.

     Photographic Chemical Formulation Subcategory

The photographic chemical formulating segment of the photographic
industry produces both powder and liquid chemicals to develop and
stablize photographic images in film and paper products.  These
processing chemicals are used by professional studios, commercial
photofinishing laboratories,  motion picture processing labora-
tories, medical laboratories, scientific laboratories, and ama-
teur and professional photographers throughout the United States.
Products within this group include black and white and color
developers, stop baths, fixers, bleaches, bleach-fixes, stabili-
zers, toners, image intensifiers, activators, reversal baths,
chemical rinses, prehardeners, photoresist, photo etch, film


Date:  9/25/81              II.8.8-4

-------
lacquers, print flatteners,  and lens cleaners.

Generally, photographic chemical formulations contain multiple
ingredients.  These formulations are prepared by one of two
methods,  blending or mixing.  In the first method which is used
for powder formulations, powder chemicals are prepared by weigh-
ing chemical ingredients and blending these ingredients in tum-
blers into a homogenous powdered formulation.  The powder photo-
chemical formulation is then metered into packages or cans and
sealed. In the second method which is used for liquid formula-
tions, liquid photographic chemicals are manufactured by weighing
out powder and liquid ingredients and adding these ingredients to
water with mixing.  After all the components in the formulation
are dissolved, the formulation is metered into either bottles or
cubitaners and capped.  The liquid chemical is then labeled and
packaged for shipment.

Water is used to prepare liquid photographic chemicals, cool
solutions, test products, wash equipment, rinse bottles, and
remove spills.  There are 67 plants that produce photographic
chemicals. Eight reported no water is used in their process,
twenty-eight plants did not report a usage rate, and thirty-one
plants reported water associated with photographic chemical
manufacture.  For the plants with a reported usage rate, the mean
water usage rate is 81,300 L/day, the subcategory total being
1,790,000 L/day.

     Thermal Products Subcategory

Thermography refers to any process in which heat is used to bring
about a visual effect.  A thermal material is a support upon
which is coated a heat sensitive layer capable of producing a
visible change when exposed to heat radiation.   Included as
thermal products are photothermographic systems.  In these sys-
tems, the thermographic reaction is controlled by prior exposure
to light. Heat is used to develop the image but heat is not used
for initially recording the image.  In this subcategory, thermo-
graphic and photothermographic systems are treated together.

Thermal materials can be divided into two types, physical and
chemical.  Each of these classes of thermal materials is dis-
cussed.

     Physical thermal materials.  In physical thermal materials,
a support material is coated with a dark colored material such as
carbon black or a dye and overcoated with an opaque layer.  Upon
application of heat using a heated stylus, the opaque overcoat
layer fuses to a clear transparent state exposing the black
underlayer.  These materials are often referred to as bubble
coatings.  Another physical thermographic system is prepared by
coating a support with a colored wax material and overcoating
this layer with a blushed resin layer.  Upon exposure to infrared


Date:  9/25/81              II.8.8-5

-------
radiation, the blushed resin layer melts exposing the colored
underlayer.  These thermograph!c materials are often referred to
as blush coatings.  Physical thermal materials find application
as chart recording papers.

     Chemical thermal materials.  Most thermographic systems
today are chemical in nature.  Upon the application of heat, an
irreversible chemical reaction occurs and a colored image is
formed.  Many chemical systems are reported in the literature.
One marketed system contains a soap of a heavy metal such as iron
and gallic acid, and hexamethylene tetramine.   The low melting
ferric stearate reacts with these components to form black ferric
gallate.  Another system utilizes silver behenate and an appro-
priate organic reducing agent such as protocatechuic acid.  In
this system, heat causes the formation of metallic silver.
Another system investigated in this study consists of a colorless
carbinol base of a triphenylmethane dye.  In the presence of acid
released by heat exposure,  the leuco form of the dye is changed
to its colored form by neutralization of alkali.  Another system
studied uses zinc dibutyldithiocarbamate and ferric stearate.
These and other thermal imaging systems are currently being used
as copy paper, thermal transparencies, trace and alphanumeric
printing materials, chart recording papers, calculator printing
paper, and computer papers.

Water is used in aqueous thermal systems to prepare coating
solutions, clean mixing tanks and coating machines, cool equip-
ment and remove spills.  For solvent based thermal systems, water
is used to cool equipment and recover solvent.  There are ten
plants that produce thermal products.  Five plants report no
water is used in their process, one plant did not report a water
usage rate, and four plants report water associated with coating
activities.  For the plants with a reported water usage rate, the
mean water usage rate is 8,550 L/day, the subcategory total being
34,200 L/day.

II.8.8.2  WASTEWATER CHARACTERISTICS  [2-24]

     Silver Halide Subcategory

The major sources of wastewater in silver halide sensitizing  are
from emulsion washing, equipment cleaning, product testing, and
the discharge of unused coating solutions after a production  run.
The following is a description of these sources.

     Emulsion washing.  Water used to wash the emulsion after the
physical ripening step contains silver, gelatin, halide salts,
and other chemical ingredients used in the precipitation of
silver halide microcrystals. These wastewaters may contain  sig-
nificant concentrations of silver and may be sent to silver
recovery prior to mixing with other waste streams at the plant.
Date:  9/25/81              II.8.8-6

-------
     Equipment cleaning.   Water used to wash mixing tanks,  bot-
tles, emulsion cold storage buckets, pumps,  coating heads,  and
floors in the production and testing areas contains trace quan-
tities of pollutants typical of raw materials used in product
manufacture and should be discharged to treatment.  Since some of
these streams contain silver,  waste streams in this area can be
divided into silver rich and silver lean streams for separate
treatment.

     Product testing.  Product testing activities at silver
halide plants include certification of raw materials, determi-
nation of the concentrations of components within emulsions,
physical defect evaluation of coated products, and evaluation of
the sensitometric response of the product to a known standard.
The solutions used in testing include inorganic and organic
analytical reagents and photoprocessing solutions.  Wastewaters
from these sources enter the wastewater stream from sinks in the
quality testing laboratory and floor drains in photoprocessing
rooms.  These wastewater streams contain a variety of inorganic
and organic compounds present in test reagents, emulsions,  and
processing chemicals.

     Unused coating solutions.  Unused coating solutions contain
high concentrations of pollutants typical of the product manufac-
tured and require treatment prior to disposal.  These streams can
be segregated into silver rich, silver lean, and cadmium bearing
streams for separate treatment.

Seven plants were visited in the silver halide subcategory, and a
wastewater sampling program was conducted at four of these plants.
Table 8.8-2 presents information on the concentrations of pollu-
tants found in the total raw waste streams as determined in
screening and additional sampling.  The total raw waste stream
represents the combined wastes from incoming plant water, in-
fluent and effluent to silver recovery, influent and effluent to
cadmium recovery, testing wastewater, and final plant effluent.
Table 8.8-3 is a listing of those priority pollutants not detec-
ted in any of the plants sampled.

     Diazo Aqueous Subcategory

The major source of water in the diazo aqueous manufacturing
process is from discharge of unused coating solutions and equip-
ment cleaning activities.

     Unused coating solutions.  Unused coating solutions contain
high concentrations of inorganic and organic pollutants, and they
require treatment prior to discharge.  All diazo aqueous manu-
facturers identified hired a contractor to haul away their unused
sensitizer solution rather than treat this solution in-house.
Date:  8/31/82  R  Change 1 II.8.8-7

-------
        TABLE  8.8-2.   SUMMARY  OF CLASSICAL AND TOXIC  POLLUTANT  DATA  FOR THE
                      SILVER HAL IDE  SUBCATEGORY  RAW WASTEWATER, VERIFICATION
                      AND  SCREENING  DATA  [2-2U]
Number of
Pollutant samples
Toxic pollutants, u.g/L
Toxic oroanics
Acenaphthene
Benzene
Chlorobenzene
1,2,4-Trich lorobenzene
Hexach lore benzene
1 ,2-Dichloroethane
1,1, l-Trichlo roe thane
2,4,6-Trichlorophenol
Pa rach lorometacreso 1
Ch lo reform
2, 4-D i ch I oropheno 1
1 ,2-Dichloropropane
Ethyl benzene
Methyl ene chloride
Trichlorof 1 uorome thane
Isophorone
2-Ni trophenol
4-Ni trophenol
Pentachlorophenol
Pheno 1
Bis-2-ethylhexyl phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Tet rach 1 o roethy 1 ene
Anthracene
Phenanthrene
Vinyl chloride
To 1 uene
Trichloroethylene
Polvchlorinated biohenvls
PCB-1242
Metals and inoraanics
Antimony
Arsenic
Be ry 1 1 i urn
Cadm i urn
Chromium, total
Copper
Cyanide, total
Cyanide, amn. to chloride
Lead
Mercury
Nickel
Selenium
Si 1 ve r
Tha I 1 ium
Zinc
Classical pollutants, mg/L
Aluminum
Ammon ia
BOO
Barium
Boron
Ca I c i urn
COD
Coba 1 1
Fluoride
1 ron
Magnesium
Manganese
Molybdenum
Oil & grease
Phenols, total
Phosphorus
Sod i urn
Thyocyanate
Tin
Titanium
Total organic carbon
Total suspended solids
Vanadium
Yttrium


2
5
5
2
2
13
10
12
12
2
12
2
5
13
10
2
2
2
12
12
1 1
7
1 1
1 1
10
2
2
2
5
10

10

14
IU
1 1
It
IU
IU
1 1
7
14
13
111
111
III
IU
1 1

1
9
9
9
7
1
8
111
i*
1 1
1 1
14
l|
1 1
7
l|
1
9
1 1
5
10
10
1
1
Number of Range of
detections detections


1
5
1
1
1
12
10
3
5
2
3
1
1
6
1
1
1
1
7
9
1 1
6
1 1
8
8
1
1
1
2
1|

6

3
5
2
1 1
13
111
10
1
9
1
10
i|
111
6
1 1

1
9
8
1|
2
1
8
3
(4
1 1
1 1
1 1
1
1 1
6
3
1
5
2
2
10
10
1
1


2.9
BDL -I.I
BDL
BDL
12
BDL - BDL
BDL - 1
BDL - 1,500
BDL - 1 1
3.9 - i|
BDL - 3
37
1
BDL - 13
8. 1
1 . 1
32
57
BDL - 680
BDL - 10
BDL - 21
BDL - 5
BDL - 1 ,1100
BDL - III
BDL - 42
BDL
BDL
BDL
BDL - 1
BDL - 2

BDL - 1.3

1.9 - 220
BDL - 100
BDL - 1
BDL - 50,000
BDL - 3,000
38 - 2,700
BDL - 720
5. 1
BDL - 400
0.6
BDL - II
1.6 - 42
390 - 37,000
2. 1 - 280
2.7 - 2,000

0.3
0.37 - 160
16 - 820
0.01 - 0.07
0.0095 - 0.024
5
330 - 1, 100
0.005 - 0.086
0. 13 - 20
0. 16 - 1 .4
0.55 - 7.8
0.001 1 - 0. 15
0.005
0.3 - 7.3
0.003 - 0.69
0.075 - 2.3
46
0.027 - 1
0.009 - 0.86
0.02 - I.I
MO - 2,000
20 - 240
0.01
0.02
Mean of Median of
detections detections



BDL



BDL
BDL
500
3. 1
4
1.4


2.9




150
2.4
4.8
2.7
280
3.6
5.6



BDL
BDL

BDL

140
41
BDL
8,600
590
390
81

170

BDL
24
14,000
130
680


39
290
0.045
0.017

630
0.034
5
0.72
3.7
0.046

3.7
0. 14
0.86

0.3
0.43
0.56
440
68





BDL



BDL
BDL
BDL
1.4

1


1 . 1




21
1
1 .7
3. 1
5
BDL
BDL




BDL

BDL

200
22

520
76
140
8.9

120

BDL
23
13,000
140
150


9
210
0.049


570
0.01
0. 16
0.64
1.5
0.048

3.5
0.038
0.20

0.027


190
49


       Analytic methods: V.7.3.14, Data sets I,
       BDL, below detection limit.
Date:    8/31/82 R   Change  1   II.8.8-8

-------
TABLE  8.8-3.
PRIORITY POLLUTANTS NOT DETECTED  IN RAW WASTE-
WATER  OF ANY SILVER HALIDE  PLANTS  [2-24]
        Acrolein
        Acrylonitrile
        Benzidine
        Carbon tetrachloride
        Hexachloroethane
        1,1-Dichloroethane
        1,1,2-Trichloroethane
        1,1,2,2-Tetrachloroethane
        Chloroethane
        Bis-chloromethyl ether
        Bis-2-chloroethyl ether
        2-Chlorovinyl ether
        2-Chloronaphthalene
        2-Chlorophenol
        1,2-Dichlorobenzene
        1,3-Dichlorobenzene
        1,4-Dichlorobenzene
        3,3-Dichlorobenzidine
        1,1-Dichloroethylene
        1,2-trans-Dichloroethylene
        1,2-Dichloropropylene
        2,4-Dimethylphenol
        2,4-Dinitrotoluene
        2,6-Dinitrotoluene
        1,2-Diphenylhydrazene
        Fluoranthene
        4-Chlorophenyl phenyl ether
        4-Bromophenyl phenyl ether
        Bis 2-chloroisopropylether
        Bis 2-chloroethoxymethane
        Methyl chloride
        Methyl bromide
        Bromoform
              Dichlorobromomethane
              Dichlorodifluoromethane
              Chlorodibromomethane
              Hexachlorobutadiene
              Hexachlorocyclopentadiene
              Naphthalene
              Nitrobenzene
              2,4-Dinitrophenol
              4,6-Dinitro-o-cresol
              N-nitrosodimethylamine
              N-nitrosodiphenylamine
              N-nitrosodipropylamine
              Di-n-octyl phthalate
              Dimethyl phthalate
              1,2-Benzanthracene
              Benzo(a)pyrene
              3,4-Benzofluoranthene
              Benzo(k)fluoranthene
              Chrysene
              Acenaphthylene
              1,1,2-Benzoperylene
              Fluorene
              1,2,5,6-Dibenzanthracene
              Ideno-(1,2,3-cd)pyrene
              Pyrene
              Aldrin
              Dieldrin
              Chlorodane
              4,4'-DDT
              4,4'-DDE
              4,4-DDD
              Alpha-endosulfan
              Beta-endosulfan
Endosulfan sulfate
Endrin
Endrin aldehyde
Heptachlor
Heptachlor epoxide
Alpha-BHC
Beta-BHC
Gamma-BHC
Delta-BHC
PCB 1254
PCB 1221
PCB 1232
PCB 1248
PCB 1260
PCB 1016
Toxaphene
Chromium, hexavalent
TCDD
Some plants re-use the precoat solution while  others  have  a
contractor haul away this  solution.   Some  plants  discharge back-
coat to a  POTW.

      Equipment cleaning.   Water used  to clean  mixing  tanks,
coating trays,  rollers,  and pumps  on  coating machines contains
pollutants from coating solutions.   Since  some of the cleaning
operations produce wastewaters containing  zinc, the waste  streams
are often  segregated for separate  treatment.

Five plants were visited in this subcategory and  a wastewater
sampling program conducted at  all  five of  these sites.   Screening
was performed  at one plant,  and additional sampling was performed
at  all  five plants.   Sampling  was  performed at each site  on
Date:   9/25/81
                II.8.8-9

-------
incoming plant water,  total raw waste,  and final effluent.   Table
8.8-4 presents information on the concentrations of pollutants
found in the combined raw waste streams.   Those priority pollut-
ants not detected in any raw wastewater of the plants sampled are
listed in Table 8.8-5.

     Diazo Solvent Subcategory

The major sources of waste in the diazo solvent subcategory are
the raw materials and solvents used to  prepare coating solutions.
The mechanism by which pollutants from  these sources enter plant
wastewater streams are through solvent  recovery operations and
vesicular film treatment.

     Solvent recovery operation.  Solvent recovery is associated
with diazo film and vesicular film manufacture.  For plants that
recover solvent using carbon columns,  steam is used to regenerate
carbon columns once they are saturated  with organic solvents from
diazo product manufacture.  The solvent/steam mixture from the
carbon column is condensed and either contractor hauled or sep-
arated at the plant for reuse of the solvent.  The separation of
solvent and water is accomplished through decantation of immis-
cible solvents or through distillation.  The water fraction after
separation contains trace quantities of organic solvents and this
is considered process water in this subcategory.

     Vesicular film water treatment.  Water used to treat vesic-
ular film contains trace quantities of  pollutants that leach out
of the film during the immersion step.

Eight plants were visited in this subcategory and sampling was
conducted at four sites.  Only one plant produced a solvent/
water stream from solvent recovery.  No solvent/water sample was
available from vesicular film solvent recovery because sampling
upstream of decantation was not feasible.  No raw wastewater
sample was available for vesicular film treatment because filtra-
tion is performed in-process on the film dip tank to remove
solids during coating and film treatment.  Consequently, for
vesicular film water treatment, an effluent sample was the only
sample upon which wastewater characteristics could be estab-
lished.

Table 8.8-6 presents the concentrations of pollutants in the raw
wastewater streams associated with solvent recovery at one plant
and in the effluent associated with vesicular film water treat-
ment.  Pollutant concentrations reported in the table for solvent
recovery may be less than the minimum detection limit for the
pollutant because wastewater streams were combined to form a raw
waste for each day of sampling.  Pollutants which were not de-
tected in the sampling effort are listed in Table 8.8-7 for
solvent recovery and vesicular film water treatment.
Date:  9/25/81              II.8.8-10

-------
       TABLE 8.8-U.  SUMMARY OF CLASSICAL AND TOXIC POLLUTANT DATA FOR THE
                     DIAZO AQUEOUS SUBCATEGORY RAW WASTEWATER, VERIFICATION
                     AND SCREENING DATA  [2-24]
Number of
Pol lutant 	 samples 	
Toxic pollutants, ug/L
Toxic organics
Benzene
1,1, l-Trichloroethane
Chloroform
2, it-Dimethyl phenol
Ethyl benzene
Methyl one chloride
0 i ch 1 o rob romomethane
D i ch 1 o rod i b romomethane
Naphthalene
Pheno 1
B i s-2-ethy 1 hexy 1
phthalate
Di-n-butyl phthalate
Tetrachloroethylene
Toluene
Trichloroethylene
Metals and inorganics
Arsenic
Beryl 1 ium
Cadmium
Chromium, total
Copper
Cyanide, total
Cyanide, amn. to chlor
Lead
Mercury
Nickel
Si Iver
Zinc
Classical pollutants, mg/L
Aluminum
Ammon i a
BOD
Barium
Boron
Ca 1 c i urn
COD
Coba 1 1
Fluoride
1 ron
Magnesium
Manganese
Molybdenum
Oi 1 ft grease
Phenols, total
Phosphorus
Sod i urn
Thy iocyanate
Tin
Titanium
Total organic carbon
Total suspended solids
Vanadium
Yttrium


15
4
16
1 1
4
4
16
16
16
1 1

16
16
4
16
4
16
16
16
16
16
12
12
16
16
16
16
16

1
16
12
16
16
1
16
16

16
16
16
16
15
15
6

12
16
10
16
16

1
Number of Range of
detections 	 detections 	


6
7
8
1
1
2
10
14
7

16
15
3
6
1
1
1
16
16
16
6
5
1
1
8
2
16

1
16
12
1
6
1
16
|
1
16
16
16
1
15
15
6
1
3
2
1
16
16
1
1


BDL - 2, 100
1
1 - 25
1-170
0.74
4
BDL - 0.47
1.4 - 12
BDL - 3.4
BDL - 120

BDL - 100
BDL - 290
BDL - 1
BDL - 55
BDL
33
2
2.6 - 160
BDL - 120
29 - 1 , 400
BDL - 950
BDL - 760
300
29.000
BDL - 410
1.2 - 2.7
120,000 - 4,300,000

20
6. 1 - 420
36 - 15,000
O.I
0. 12 - 20
37,000
1,200 - 67,000
0.05
1.7
0.47 - 12
6.7 - 25
0.086 - 5.5
0. 1
1 - 550
0.003 - 17
0. 12 - 0.98
290
0.025 - 0.088
3.9 - 10
0.07
85 - 16,000
16 - 35,000
0.01
0.02
Mean of
detections


540
6.6
26


BDL
5.2
0.83
19

18
23
BDL
1 1



59
37
510
210
170


73
2
1,500,000


61
5,600

1 1

32,000


5
14
0.95

81
2.2
0.32

0.056
6.9

7,700
9,800


Median of
detections


120
3
3.4



5.5
0.68
1

6.6
1
BDL
1.6



51
29
480
58
37


25

1,300,000


36
2,000

15

32,000


5.9
14
0.25

1 1
0.35
0.16

0.056


7,800
8,000


 BOui'beTow detection limit.
Date:   9/25/81
II.8.8-11

-------
             TABLE 8.8-5.
PRIORITY POLLUTANTS NOT DETECTED IN  ANY
DIAZO  AQUEOUS  PLANTS  [2-24]
     Acenaphthene
     Toxaphene
     Aeroiein
     Antimony
     Acrylonitrile
     Chromium, hexavalent
     Benzidine
     Selenium
     Carbon tetrachloride
     Thallium
     Chlorobenzene
     TCDD
     1,2,4-Trichlorobenzene
     Hexachlorobenzene
     1,2-Dichloroethane
     Hexachloroethane
     1,1-Dichloroethane
     1,1,2-Trichloroethane
     Chloroethane
     Bis-chloromethyl ether
     Bis-2-chloroethyl ether
     2-Chloroethylvinyl ether
     2-Chloronapthalene
     2,4,6-Trichlorophenol
     Parachlorometacresol
     2-Chlorophenol
     1,2-Dichlorobenzene
     1,3-Dichlorobenzene
     1,4-Dichlorobenzene
     3-3-Dichlorobenzidine
     1,1-Dichloroethylene
     1,2-trans-Dichloroethylene
     1,2-Trans-Dichlorethylene
     2,4-Dichlorophenol
     1,2-Dichloropropane
     1,2-Dichloropropylene
     2,4-Dinitrotoluene
     1,2-Diphenylhydrazine
  Fluoroanthene
  4-Chlorophenyl phenyl ether
  4-Bremophenyl phenyl ether
  Bis-2-chloroisopropyl ether
  Bis-2-chloroethoxymethane
  Methyl chloride
  Methyl bromide
  Broraoform
  Trichlorofluoromethane
  Dichlorodifluoromethane
  Hexachlorobutadiene
  Hexachlorocyclopentadiene
  Isophorone
  Nitrobenzene
  2-Nitrophenol
  4-Nitrophenol
  2,4-Dinitrophenol
  4,6-Dinitro-o-cresol
  N-ni trosodime thylamine
  N-nitrosodiphenylamine
  N-nitrosodi-n-propylamine
  Pentachlorophenol
  Butyl benzyl phthalate
  Di-n-octyl phthalate
  Diethyl phthalate
  Dimethyl phthalate
  1,2-Benzanthracene
  Benzo(a)pyrene
  3,4-Benzofluoranthane
  Benzo(k)fluoranthene
  Crysene
  Acenaphthylene
Anthracene
1,1,2-Benzoperylene
Fluorene
Phenanthrene
1,2,5,6-Dibenzanthracene
Ideno(l,2,3-CD)pyrene
Pyrene
Vinyl chloride
Aldrin
Dieldrin
Chlorodane
4,4'-DDT
4,4'-DDE
4,4'-DDD
Alpha-endosulfan
Beta-endosulfan
Endosulfan sulfate
Endrin
Endrin aldehyde
Heptachlor
Heptachlor epoxide
Alpha-BHC
Beta-BHC
Gamma-BHC
Delta-BHC
PCB-1242
PCB-1254
PCB-1221
PCB-1232
PCB-1248
PCB-1260
PCB-1016
Date:    9/25/81
                                        II.8.8-12

-------




2
<
s~
a _i
UJU.
**
O3N
U.O 1
— CM
t-UI*"'
°o<
H-ZO
z<
< 0
3K —
-JLJZ
_I>UJ
2OUI
OK
LdO
XI-0
°Z5
H-U

Q-IZ
ZOO
>x •••NO — —•*».»• — C C
s 5e||s s x>l2:S £ 2 s ^ -
• Oca o — — v£ «c i. tt ** a* C «< •
* «M 6— M O — • • £ Q C •&£ «*££••£ C O S
*» u Cje«Co.eeo £ - •»£*•«£ 5 «• 2 ** e
e — o o 5 o i • 5 •• X- « a e — JJ *• f ~ **
a oc<\(-"3.i- — ^ON OO
-s °o'ii *i >ii — iiiii^il
o o —
ocv ft poo — to»mtAor-Q
« • V OP ^OOOOB— -Q
«g °°oo0 g









^ e
S 3
• O
3 . c 8
t. J * : - Sir! -I*!-!
T) u * $~ g « o « e S Sic S «1io 2"
« C o — • e u leoApotc*— c ** ** 3 - g «
•JXSM^N •* 
-------
     TABLE  8.8-7.
PRIORITY POLLUTANTS NOT DETECTED  IN  ANY  DIAZO SOLVENT
PLANTS  [2-24]
                         Solvent Recovery
                                              Vesicular Film
        Acenapthene
        Acrolein
        Acrylonitrile
        Carbon tetrachloride
        Chlorobenzene
        1,2,4-Trichlorobenzene
        1,1-Dichloroethane
        1,1,2-Trichloroe thane
        1,1,2,2-Te trachloroe thane
        Chloroethane
        Bis-chloromethyl ether
        Bis-2-chloroethyl ether
        2-Chloroethylvinyl ether
        2-Chloronaphthalene
        2,4,6-Trichlorophenol
        Parachlorometacresol
        Chloroform
        2-Chlorophenol
        1,2-Dichlorobenzene
        1,3-Dichlorobenzene
        1,4-Dichlorobenzene
        3,3-Oichlorobenzidine
        1,1-Dichloroethylene
        1,2-trans-Dichloroethylene
        2,4-Dichlorophenol
        1,2-Dichloropropane
        1,2-Dichloropropylene
        2,4-Dimethylphenol
        2,4-Dinitrotoluene
        2,6-Dinitrotoluene
        1,2-Diphenylhydrazine
        4-Chlorophenyl phenyl ether
        4-Bromophenyl phenyl ether
        Bis-2-chloroisopropyl ether
        Bis-2-chloroethoxymethane
        Methyl chloride
        Methyl bromide
        Bromoform
        Dichlorobromomethane
        Trichlorofluoromethane
        Dichlorodifluororaethane
        Chlorodibromomethane
        Hexachlorobutadiene
        Hexachlorocyclopentadiene
        Nitrobenzene
        4,6-Dinitro-o-cresol
        N-nitrosodimethylamine
                Pentachlorophenol
                Butylbenzy phthalate
                Di-n-octyl phthalate
                Benzo(a)pyrene
                3,4-Benzofluoranthene
                Benzo(k)fluo ranthene
                Chrysene
                1,1,2-Benzoperylene
                Fluorene
                1,2,5,6-Dibenzanthracene
                Indeno(1,2,3-cd)pyrene
                Vinyl chloride
                Aldrin
                Dieldrin
                Chlordane
                4,4-DDT
                4,4-ODE
                4,4-DDD
                Alpha-endosulfan
                Beta-endosulfan
                Endosulfan sulfate
                Endrin
                Endrin aldehyde
                Heptachlor
                Heptachlor epoxide
                Alpha-BHC
                Beta-BHC
                Gamma-BHC
                Delta-BHC
                PCB-1242
                PCB-1221
                PCB-1232
                PCB-1248
                PCB-1260
                PCB-1016
                Toxaphene
                Arsenic
                Beryllium
                Chromium, hexavalent
                Cyanide, amn. to chlor
                Selenium
                TCDD
                Isophorone
                4-Nitrophenol
                2,4-Dinitrophenol
                N-nitrosodiphenylamine
Chlorobenzene
1,2-Dichloroethane
Hexachloroethane
Ethylbenzene
Methylene chloride
Naphthalene
Phenol
Toluene
Trichloroethylene
Arsenic
Beryllium
Chromium, hexavalent
Lead
Nickel
Selenium
Silver
Thallium
Date:    9/25/81
                 II.8.8-14

-------
     Photographic Chemical Formulation Subcategory

The major source of waste in the photographic chemical formula-
tion subcategory is from the preparation of photographic chem-
icals.   The mechanisms by which pollutants from this source enter
the wastewater streams are discharges of out-of-specification
photographic chemicals, spills, testing, and equipment clean-up
activities.  These wastewaters contain a wide range of inorganic
chemicals needed to process photographic materials.  The pollut-
ants present in the wastewater streams vary greatly among plants
within the subcategory and within a given plant, depending on the
type of product manufactured.

Nine plants were visited in this subcategory, and a wastewater
sampling program conducted at five of these sites.  Screening was
performed at two of these sites and additional sampling was
performed at all five plants.  To arrive at a total raw waste for
a plant for each day of sampling, all process waste streams as-
sociated with processing, equipment cleanup activities, and
testing were sampled.  Table 8.8-8 summarizes the concentrations
of pollutants found in the raw waste streams of the sampled
plants.  Those pollutants not detected are listed in Table 8.8-9.

     Thermal Product Subcategory

The major source of waste in the thermal product subcategory is
the raw materials and solvents used to prepare coating solutions.
The mechanisms by which pollutants from this source enter the
wastewater streams at plants are:  discharge of unused coating
solutions, equipment cleaning, spills, and solvent recovery
operations.

     Unused coating solutions.  Unused coating solutions can be
divided into two types, solvent and aqueous based.  Unused coat-
ing solutions were collected for contractor disposal at all
plants visited.

     Equipment cleaning.  For aqueous processes, water used to
clean mixing tanks, coating trays, rollers, and pumps on coating
machines contains trace quantities of pollutants present in
coating solutions.  For solvent based processes, solvents are
used instead of water for equipment cleaning.  These solvents are
collected for contractor disposal.

     Spills.  Spills of powder and liquid raw materials or coat-
ing solutions contain chemicals typical of the product manufac-
tured.   These chemical spills may require water for clean-up and
should be treated prior to discharge from the plant.
Date:  9/25/81              II.8.8-15

-------
  TABLE  8.8-8.  SUMMARY OF CLASSICAL AND TOXIC POLLUTANT DATA FOR THE PHOTOGRAPHIC
               CHEMICAL FORMULATION SUBCATEGORY RAW WASTEWATER, VERIFICATION AND
               SCREENING DATA [2-24]
Number of
Pol lutant samples
Toxic pollutants, ug/L
Toxic organ Ics
Benzene
Carbon Tetrachloride
Chlorobenzene
1,1, l-Trichlo roe thane
Chloroform
1 , 2-D i ch 1 o robenzene
1 , 3-D i Chlorobenzene
1 , 4-D I ch 1 o robenzene
Ethyl benzene
Fluoranthene
Methyl ene chloride
Naphtha lene
Phenol
B i s-2-e thy 1 hexy 1
phtha late
Butyl benzyl phtha late
Oi-n-butyl phtha late
Diethyl phthalate
Dimethyl phthalate
Anthracene
Phenanthrene
Pyrene
Tetrachloroethylene
To 1 uene
T r i ch 1 o roethy I ene
Metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium, total
Copper
Cyanide, total
Cyanide, amn. to chlor
Lead
Mercury
Nickel
S i 1 ve r
Tha I 1 i urn
Zinc
Classical pollutants, mg/L
Ammon i a
BOD
Ba r i urn
Boron
COD
Coba 1 t
F 1 uor tde
1 ron
Magnesium
Manganese
0 i 1 ft g rea se
Phenols, total
Thiocyanate
Tin
Total organic carbon
Total suspended solids


14
2
2
11
2
14
2
2
2
2
14
2
lit

16
16
16
16
2
2
2
2
2
14
14

16
17
13
16
16
16
9
6
16
17
16
17
17
16

12
12
3
16
13
16
7
16
13
16
1 1
8
1 1
13
13
13
Number of Range of Mean of
detections detections detections


3









2
1
3

14
13
16
14





2
1

1
3
1
4
16
16
8
4
4
1
3
9
1
16

12
12
1
14
13
1
4
16
13
12
6
5
6
1
13
13


BDL - 1.8
3.7
3.7
34
5
24
3.7
3.7
3.7
3.7
3.7 - 63
3.7
BDL - 5

1 - 86
BDL - 34
1 - 20
BDL - 19
7.7
3.7
3.7
5.5
3.7
1.5 - 1.8
18

1 1
BDL - 670
8
2-30
9.8 - 3, 100
39 - 350
5.9 - 1,700
13 - 1,200
28 - 1 10
10
7-17
4.4 - 63
3.8
83 - 18,000

35 - 6,000
490 - 8,700
0.068
0.6 - 38
1,600 - 13,000
0.05
0. 19 - 2
0.92 - 89
1.4 - 17
0.015 - 0.48
0.6 - 330
0.027 - 0.92
0.99 - 5<»
1
550 - 2,800
27 - 1,800


BDL









34

2.3

9
9.1
4.4
4.9





1.7



270

17
510
150
470
420
64

13
29

2, 100

1,300
3,200

12
5,200

1. 1
15
9.3
0. 15
70
0.26
1 1

1,600
220
Median of
detections


BDL











1

3.8
1
3.9
1









120

17
220
140
85
220
59

15
29

460

570
2,800

6.3
3,600

1. 1
4.3
9.5
0. 12
14
0.09
2.7

1,500
79
       BDL, below detection limit.
Date:   9/25/81
II.8.8-16

-------
 TABLE 8.8-9.
PRIORITY POLLUTANTS NOT DETECTED IN ANY PHOTOGRAPHIC CHEMICAL
FORMULTATION PLANTS [2-24]
Acenaphthene
Acrolein
Acrylonitrile
Benzidine
i, 2,4-Trichlorobenzene
Hexachlorobenzene
1,2-Dichloroethane
Hexachloroethane
1,1-Dichloroethane
1,1,2-Trichloroethane
1,1,2,2-Tetrachloroethane
Chloroethane
Bis-chloromethyl ether
Bis-2-chloroethyl ether
2-Chloroethyl vinyl ether
2-Chloronaphthalene
2,4,6-Trichlorophenol
Parachlorometacresol
2-Chlorophenol
3,3-Dichlorobenzidine
1,1-Dichloroethylene
1,2-trans-Dichloroethylene
2,4-Dichlorophenol
1,2-Dichloropropane
1,2-Dichloropropylene
2,4-DimethyIphenol
2,4-Dinitrotoluene
2,6-Dinitrotoluene
1,2-Diphenolhydrazine
4-Chlorophenyl phenyl ether
4-Bromophenyl phenyl ether
Bis-2-chloroisopropyl ether
Bis-2-chloroethoxymethane
Methyl chloride
Methyl bromide
               Bromoform
               Dichlorobromomethane
               Trichlorofluoromethane
               Dichlorodifluoromethane
               Chlorodibromomethane
               Hexachlorobutadiene
               Hexachlorocyclopentadiene
               Isophorone
               Nitrobenzene
               2-Nitrophenol
               4-Nitrophenol
               2,4-Dinitrophenol
               4,6-Dinitro-o-cresol
               N-nitrosodimethylamine
               N-nitrosodiphenylamine
               N-nitrosodi-n-propylamine
               Pentachlorophenol
               Di-n-octyl phthalate
               1,2-Benzanthracene
               Benzo(a)pyrene
               3,4-Benzofluoranthene
               Benzo(k)fluoranthene
               Chrysene
               Acenaphthylene
               1,1,2-Benzoperylene
               Fluorene
               1,2,5,6-Dibenzanthracene
               Indeno(l,2,3-cd)pyrene
               Vinyl chloride
               Aldrin
               Dieldrin
               Chlordane
               4,4-DDT
               4,4-DDE
               4,4-DDD
Alpha-endosulfan
Beta-endosulfan
Endosulfan sulfate
Endrin
Endrin aldehyde
Heptachlor
Heptachlor epoxide
Alpha-BHC
Beta-BHC
Gamma-BHC
Delta-BHC
PCB-1242
PCB-1254
PCB-1221
PCB-1232
PCB-1248
PCB-1260
PCB-1016
Toxaphene
Chromium, hexavalent
Selenium
TCDD
 Date:   8/31/82   R   Change 1   II.8.8-17

-------
     Solvent recovery.   Steam is used to regenerate carbon col-
umns used for air pollution control once the columns become
saturated with organic  solvents from thermal product manufacture.
The solvent/steam mixture from the carbon column is condensed and
either separated at the plant for reuse or hauled away by a con-
tractor.  Separation of solvent and water is accomplished through
either decantation of immiscible solvent or through distillation.
The water fraction after separation contains trace quantities of
organic solvents and this water is considered as process waste-
water.

Seven plants were visited in this subcategory and a wastewater
sampling program was conducted at three of these sites.  Since
the thermal product subcategory includes both aqueous and solvent
processes, the raw wastewater characteristics for this subcate-
gory can be further subdivided based on process type.  Table
8.8-10 presents the concentration of pollutants that were found
in the raw wastewater streams of thermal aqueous processes and
thermal solvent recovery processes.  Table 8.8-11 is a tabulation
of the pollutants which were not detected in one or both of these
processes.

II.8.8.3  PLANT SPECIFIC DESCRIPTION [2-24]

The effluent characteristics of photographic plants within each
subcategory are presented in this section.  Data from plants
19814 and 30927 in the silver halide subcategory are presented in
Table 8.8-12.  Plant 19814 uses equalization, silver recovery,
chemical precipitation, clarification, and pH adjustment before
discharging.  Plant 30927 uses equalization, silver recovery,
chemical precipitation and clarification, aeration and clarifi-
cation to treat wastes before discharge.

Data from Plant 23004,  representing the effluent characteristics
from the diazo aqueous subcategory, are presented in Table 8.8-13.
This plant uses a holding tank for metal bearing streams, and
settling and pH adjustment for non-metal bearing streams before
discharging.

Data are available for five plants in the diazo solvent sub-
category.  Four plants (30041, 35032, A, and C) use solvent re-
covery, and one plant,  04046, uses vesicular film.  Table 8.8-14
shows the actual performance for the solvent recovery  (distilla-
tion) plants.  The effluent concentrations represent the sampled
water streams going from the distillation columns to the carbon
adsorption beds.  Inclusion of system raw waste concentrations in
Table 8.8-14 would provide a better picture of system performance,
however, these raw waste data are proprietary.  Table 8.8-15
shows effluent concentrations from solvent recovery  (decantation)
plants.  These concentrations represent sampled water going from
decanters to the carbon adsorption bed.  Table 8.8-16 shows
effluent concentrations in the vesicular film plant.  This plant


  Date:  8/31/82 R  Change 1  II.8.8-18

-------
  TABLE 8 8-10  SUMMARY OF CLASSICAL AND TOXIC POLLUTANT  DATA FOR  THE  THERMAL
  TABLt 8.8 1U  ^DUCT SUBCATEGORY RAW WASTEWATER,  VERIFICATION AND SCREENING

                DATA [2-24]
Number of
Pol lutant samples
Toxic pollutant, ug/L
Toxic organ ids
Benzene
Chloro benzene
1 , 2-Di chlo roe thane
2-Ch 1 o ronaphtha 1 ene
Chloroform
Ethyl benzene
Methyl ene chloride
Naphtha lene
Pheno 1
Bi s-2-ethy Ihexy 1 phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Diethyl phthalate
1 , 2-Benzanthracene
Benzo( K)f luoranthene
Chrysene
Anthracene
Phenanthrene
Pyrene
Toluene
T r i ch 1 o roe thy 1 ene
Metals and Inorganics
Arsenic
Beryl 1 ium
Cadmium
Chromium, total
Copper
Cyanide, total
Cyanide, amn to chlor
Lead
Mercury
Nickel
S i 1 ve r
Zinc
Classical pollutants, mg/L
Aluminum
Ammon i a
BOD
Ba r i urn
Ca 1 c i uoi
COD
1 ron
Magnesium
Manganese
Molybdenum
'Oi 1 fc grease
Pheno 1 , tota 1
Phosphorus
Sod i urn
Thiocyanate
Tin
Titanium
Total organic carbon
Total suspended solids
Vanadium


9
9
9
9
1
9
9
1
9
9
9
9
9
9
9
1
9
9
9
1
9
9

6
9
9
9
7
6
6
9
7
9
9
9

1
6
5
1
1
6
9
3
9
9
6
6
1*
1
6
3
1
6
6
9
Number of
detections


7
2
t»
3
1
3
3
1
8
9
7
9
3
3
2
1
2
2
2
1
5
9

1
1
it
4
7
6
3
1
It
2
3
9

1
6
5
1
1
6
9
3
5
1
5
6
1
1
6
1
1
6
6
'
Range of Mean of
detections detections


BDL - 1,800
2-27
BDL - 5,300
BDL - 1
26
1 - 31
BDL - 2
5
BDL - 13
5 - 580
1 - 5
BDL - 5
BDL - 6.2
1.6 - 5
1 - 350
5
1 - 350
BDL - 5
BDL - 5
5
BDL - 8,600
BDL - 80

1,300
13
BDL - 5
16 - 120
1 10 - 990
BDL - 20
BDL - BDL
7l«
9.1 - 890
13 - 19
12 - 620
280 - 51,000

38
0.05 - 7. 1
13 - 2, 100
2.9
3.5
50 - 11,000
0.21 - 2.6
9.9 - 12
0.01 1 - 0.057
0.055
0.11 - 1,200
0.29 - 0.79
0.61 - 1.8
9.6
0.001 - 0.05
0.083
0.38
30 - 1,500
6 - 6,000
0.005


260
11
1 , 300
BDL

12
1. 1

3.9
110
3.2
3.6
1
1.9
170

170
2.6
2.6

1,900
10



3.5
72
110
12
BDL

230
16
280
1 1 , 000


2.1
510


3,300
1.1
1 1
0.029

360
0.51


0.027


520
1,300

Median of
detections


BDL

BDL
1

3. 1
1

3
5
1
5
5
5






220
BDL



3.7
76
260
12
BDL

17

ISO
170


0.91
200


1 , 300
1.9
10
0.019

?60
O.'tl
0.92

0.028


310
170

    Analytic methods: V.7.3.11,  Data sets
    BDL, below detection limit.
                                    2.
Date:   8/31/82  R   Change 1   II.8.8-19

-------
         TABLE  8.8-11.
PRIORITY POLLUTANTS NOT DETECTED IN ANY
THERMAL PRODUCT PLANTS [2-24]
Acenaphthene
Acrolein
Acrylonitrile
Benzidine
Carbon tetrachloride
1,2,4-Trichlorobenzene
Hexachlorobenzene
1,1,1-Trichloroethane
Hexachloroethane
1,1-Dichloroethane
1,1,2-Trichloroethane
1,1,2,2-Tetrachloroethane
Chloroethane
Bis chloromethylether
Bis-2-chloroethylether
2-Chloroethylvinylether
2,4,6-Trichlorophenol
Parachlorometacresol
2-Chlorophenol
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
3,3-Dichlorobenzidine
1,1-Dichloroethylene
1,2-trans-Dichloroethylene
2,4-Dichlorophenol
1,2-Dichloropropane
1,2-Dichloropropylene
2,4-Dimethylphenol
2,4-Dinitrotoluene
2,6-Dinitrotoluene
1,2-Diphenylhydrazine
Fluoranthene
4-Chlorophenyl phenyl ether
4-Bromophenyl phenyl ether
Bis-2-chloroisopropyl ether
   Bis-2-chloroethoxymethane
   Methyl chloride
   Methyl bromide
   Bromoform
   Dichlorobromomethane
   Trichlorofluoromethane
   Dichlorodifluoromethane
   Chlorodibromomethane
   Hexachlorobutadiene
   Hexachlorocyclopentadiene
   Isophorone
   Nitrobenzene
   2-Nitrophenol
   4-Nitrophenol
   2,4-Dinitrophenol
   4,6-Dinitro-o-cresol
   N-Nitrosodimethylamine
   N-Nitrosodiphenylamine
   N-Nitrosodi-n-propylamine
   Pentachlorophenol
   Dimethyl phthalate
   Benzo(a)pyrene
   3,4-Benzo fluoroanthene
   Acenaphthylene
   1,1,2-Benzoperylene
   Fluorene
   1,2,5,6-Dibenzanthracene
   Ideno(l,2,3-cd)pyrene
   Tetrachloroethylene
   Vinyl chloride
   Aldrin
   Dieldrin
   Chlordane
   4,4-DDT
   4,4-DDE
   4,4-DDD
Alpha-endosulfan
Beta-endosulfan
Endosulfan sulfate
Endrin
Endrin aldehyde
Heptachlor
Heptachlor epoxide
Alpha-BHC
Beta-BHC
Gamma-BHC
Delta-BHC
PCB-1242
PCB-1254
PCB-1221
PCB-1232
PCB-1248
PCB-1260
PCB-1016
Toxaphene
Antimony
Chromium, hexavalent
Selenium
Thallium
TCDD
Boron
Cobalt
Fluoride
Gold
Platinum
Yttrium
   Date:   8/31/82   R  Change  1   II.8.8-20

-------
Date:  9/25/81
II.8.8-21

-------
uses a treatment process involving the recycle through  cartridge
filters of water used in the water bath.

Data from two plants.in the photochemical formulation subcategory
were available.  Plant 23004 uses chemical precipitation and a
clarifier prior to  discharge.   Plant 30927 uses chemical precipi-
tation and clarification,  aeration and a clarifier to treat raw
wastewater. Data for these plants are given in Table 8.8-17.

Data from the thermal products subcategory were available for
four plants.  Three of these plants also fall within the diazo
solvent subcategory.   Data from plants 30041 and 35032,  which use
distillation, are presented in Table 8.8-14, and data from plant
04046, which uses decantation, are presented in Table 8.8-15.
Data from a second  plant (Plant 3004), not previously reported,
are presented in Table 8.8-18.  The effluent concentrations
represent sampled water streams going from the decantation
columns to the carbon adsorption beds.
 TABLE 8.8-13.
EFFLUENT CHARACTERISTICS FOR ONE PLANT IN
THE DIAZO AQUEOUS  SUBCATEGORY, SCREENING
AND VERIFICATION DATA [2-24]
      Pollutant
                      Number or
                      samples
             Number or
             detections
 Range of
detections
 Mean or   Median or
detections detections
      Toxic pollutant, ug/L
Hetals and Inorganics
Arsenic
Cadmium
Chromium
Copper
Nickel
Si iver
Zinc
Classical pollutants, mg/L
BOD
COD
Phosphorus

3
3
3
3
3
3
3

3
3
3

3 10-10
3 BDL - BDL
3 5-10
3 19-27
3 50-50
3 1 - 1
3 50-70

3 38-56
3 67-160
3 700 - 800

10
BDL
6.7
2 K
50
1
63

til
63
750

10
BOL
5
25
50
1
68

39
77
800
      Analytic methods: V.7.3.14, Data sets I, 2.
      BDL, below detection limit.
II.8.8.4   POLLUTANT REMOVABILITY  [2-24]

The Photographic Equipment and Supplies  Industry has a number of
options for treating and controlling pollutants in wastewater
discharges or potentially dischargable wastewater streams.  A
tabulation of recommended technology options  for the five sub-
categories is presented in Table  8.8-19.   Each option is de-
scribed briefly in the following  discussion.
Date:   9/25/81
             II.8.8-22

-------






o
0
UJ
s
CQ
=9
!±
LJ
,_.,!
o
(O
o
o
LJ
x
t—
M
W 1
KM
SIz
cc~
ot-
«3
o-
— Q

LU >•
t-CC
0£O
<0
X UJ
occ
1-1-
U1UJ

-J-J
u-O

00
CO
UJ
co
















CM
<*!
M
C
fl
i
















I
s
c
a.













t. «>
o
c
n
i
n of

tO Q!

^



*- e
0 tJt
en o
c a
CO *



t- 
_j j o « Oinoo »o o h- — co o
III 1 II 1 1 1 IlkTtll 1 IIIIIII till
_j j -1 in *n— — o ^ oo r-«o o eo — o — ooeo ch-ar^m
QQQ - ON CM o or-o«*n • ooooo
°** ir\ "*. cJPO-Ooood
CM — ey








to — n o o oo*oif\i»>r-«o
5 S Oif -* • O
= ° d °

o
§o
O W (M —
r» co •> ,«-£acffl£«D-- - C MM
• c— cc£*xaeecep — o> » 3 •
•u « £ O U ^— *»— — ® *- C -O X • • O M^C
3 O«UA ««3— X«UC«O C C • 3 « X 3 O. m V « COB
— C c — — — 1 £ A X£ — « ** C — eg 0 3 — t- T9 C- (_ — — C — «J C £ X

* --I^SSJ*.- a-2*|cJo^ "i>C«J=OxSo-^£- - foS-8w£ oS £5JC
o x 2 — u at a. co oooeS
-------





>-
1
UJ
<
o
co

CO
h-
Z
UJ
O
co
o
5
Q
UJ
X
La.
Z
it
COM
h- 1
ZM






O —
U-H
COI-
oz
I-CJ
COUJ
-0
Of 1
UJ>-
KO:
o uj

K O
^ o
XUJ
O 0£
h-h-
zz
LdbJ
U-O
U.CO
UJ *^
l^
1
00
co

TABLE













o

e

Oh





















^

c
CO

a.


















ta
!~- C
O O
0> a
CTO
C O
(0 +J
K. H>
^



O C
c
f*J
s
ss


o
<- a
|E
Z V



u
c
<•• o
o —

c c
a a


•o

to
<•- C
O C
Q) *
OtU
c o
a *j
a: g>
w



o c
i_.S
o u
Is
3 4J
z a>
•Q
^
O
<- <
Ii




4i
C
a
4

i
e



J^— — — -J-J OVOO N- — MOOlftO CM tt t*->O
Q— OQ CM CM CM M3 .OO — — CM • • •
CD CQGQ CM OMO CM O O OO
— CM O







— — — OO— O O— 	 OO— — — O — OO— — — 	 O— O— O 	





0 00000 0







j ov — <*» o -J o o cooootn^^-^*o

 *OO — • CMO —
it o » « * O
fl- r*CM vo o


§o
§00 o
o o r* —
-J o-i r- n * * CM >o aooov
a r» oa * — •ao.tf * • . • •
oo w — in <*»eo * — o — •* «r-o CMO —
— i i i i ii tr\o i o i — iii iii iii
tr\— ^
Q >OQ O CMOO O CM O •
ta 03 vO -OO O O O^

31 %O— eo O O
— CM



— O OOOCM CMCMCMOO M CM O — — CM O— OOCM O— CM (MCM O CMM CM OCM N CM O




CMCMOCMCMOCM CM CM CM CM CM O O CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

^
S m S
=1 g S - -,SS . -2
a, ««—-•»•« cc «
a 5g S fr 5i^S iS £
« -I S^oZ £ i25^ . £» i S
a o Cocoa — « *>£•> cue an «
c — ooe e >>w — £aceo> o — — • •>«<
S S 2SS§f f2;?a--g| 8 ,x i .o S S2S
2 Ei.HsSfS-rjJ^gSiS g|§ = L5 b_ul a i " i«. gSS
a °S?gx£'£i^c5SS£g§5 .ii8ic«pJf=o » § * i^cS,»§
a ^j CCM X£ a a« « a i o • c*j o — — — wo i- a« « " o— « c o igo — ow o>a o c o —
°3 P A **
o i
H- O














































CM
0
tt
l»
5
^ ,
« w
«J
• —
ytic methods: V.
below detection
» »
fo
CD
Date:  9/25/81
II.8.8-24

-------
   TABLE 8.8-16.   EFFLUENT CHARACTERISTICS FOR ONE PLANT IN THE  DIAZO
                  SOLVENT SUBCATEGORY (VESICULAR FILM),  PLANT 04046
                  [2-24],
Pollutant
Toxic pollutants, yg/L
Toxic organics
Benzene
1 ,2-Dichloroethane
Hexachloroe thane
Ethylbenzene
Methylene chloride
Naphthalene
Phenol
Di-n-butyl phthalate
Benzo (a) anthracene
Toluene
Trichloroethylene
Metals and inorganics
Antimony
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Silver
Thallium
Zinc
Classical pollutants, mg/L
Ammonia
BOD
COD
Oil & Grease
TOC
TSS
Phenols
Cobalt
Iron
Manganese
Phosphorus
Thiocyanate
Concentration


0.1
ND
ND
ND
ND
ND
ND
10
ND
ND
ND

770
2
42
760
20
ND
ND
ND
ND
ND
17

0.6
35
99
10
65
ND
0.008
ND
0.19
ND
11
2.2
Analytic methods: V.7.3.14, Data sets 1, 2.
ND, not detected.
 Date:   9/25/81               II.8.8-25

-------
      TABLE 8.8-17.
EFFLUENT CHARACTERISTICS FOR ONE  PLANT IN THE PHOTOCHEMICAL
SUBCATEGORY  (a)  [2-2UJ


Number of
Pollutant samples
Toxic pollutants, ug/L
Metals and Inorganics
Antimony
Arsenic
Beryl 1 1 urn
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Silver
Tha 1 1 1 u*
Zinc
Classical pollutants, mg/L
BOO
COD


3
3
3
3
3
3
3
3
3
3
3
3

3
3

Number of
detections


3
3
3
3
3
3
3
3
3
3
3
3

3
3
Plant
23004
Range of
detections


10
10
2
BDL
5
19
BDL
14
50
1
5
50

38
67


- 10
- to
- 2
- BDL
- 50
- 27
- 18
- 6
- 50
- 1
- 5
- 70

- 56
- 160

Mean of
detections


10
10
2
BDL
20
24
12
5
50
1
5
63

44
100

Median of
detections


10
10
2
BDL
5
25
12
5
50
1
5
68

39
77
      Analytic Methods: V.7.3.14,  Data sets I, 2.
      BDL, below detection limit.
      (a) Also see  Plant 30927 on  Table 8.8-12.
          TABLE 8.8-18.
    EFFLUENT CHARACTERISTICS FOR ONE PLANT  IN  THE THERMAL
    PRODUCTS SUBCATEGORY [2-24]


Number of
Pollutant samples
Toxic pollutant, M9/L
Toxic organ Ics
Benzene
Pheno 1
Bis(2-ethylhexyl jphtha late
Butyl benzyl ph thai ate
Di-n-butyl ph thai ate
Diethyl phthalate
To 1 uene
Trichloroethylene
Metals and Inorganics
Cadmium
Ch ron i UK
Copper
Lead
Si Iver
Zinc
Classical pollutant. mg/L
Ammonia
BOD
COD
TOC
TSS
Pheno 1 s
1 ron
Manganese
Phosphorus


2
2
2
2
2
2
2
2

2
2
2
2
2
2

2
2
2
2
2
2
2
2
2

Number of
detections


l
2
2
1
2
2
2
2

1
1
2
1
2
1

2
2
2
Z
Z
2
2
2
2
Plant 3004

Range of Mean of
detections detections


BDL
1 - 1
1 - 37
1
1 - 1
1 - 5
60 - 390
BDL - BDL

55
1 10
4,600 - 4,700
40
7-11
1,000

0.22 - 0.33
16,000 - 18,000
21,000 - 44,000
3,900 - 8,200
3-7
0.021 - 0.67
2 - 2.8
0.008 - 0.019
1.2 - 1.9



1
19

1
3
230
BDL



4,600

9


0.28
17,000
32,000
6,100
5
0.34
2.4
0.014
1.6
          Analytic methods: V.7.3.14, Data sets I, 2.
          BDL, below detection limit.
Date:   8/31/82   R Change  1   II.8.8-26

-------
   TABLE 8.8-19.   SUMMARY OF TREATMENT TECHNOLOGIES AND PLANT
                   UTILIZATION FOR SUBCATEGORIES  [2-24]
              Technology               Plant Utilization

              Equalization                    16
              Clarification                   12
              Filtration                      9
              Sludge Thickening                1
              Centrifugation                   6
              pH Adjustment                   21
              Lagoon/Pond                      4
              Activated Sludge                 4
              Thickening                      4
              Aeration                        7
              Chemical Oxidation                6
              Incineration                     4
              Carbon Adsorption                3
              Decantation                      2
              Fractional Still                 3
              Filter Press                     1
              Settling                       18
              Chlorination                     1
     Equalization.   Equalization is a process which  reduces the
effect of surges  in flow rate and pollutant loading  on the treat-
ment system.   Surge protection capacity is provided  by large
aboveground metal tanks or in-ground concrete tanks.   For maximum
effectiveness,  the tank should be well mixed.

Performance depends on the adequacy of the holding time provided
to smooth out  surges in flow rate and on the degree  of mixing to
eliminate concentration gradients in the tanks.

     Chemical  precipitation and sedimentation.  Chemical pre-
cipitation and sedimentation is used in the photographic industry
for removal of dissolved metals,  primarily silver, cadmium,
chromium, copper,  and zinc.   The process can also be utilized to
remove metal ions such as iron, lead, tin, aluminum,  mercury,
manganese, cobalt,  antimony,  arsenic, beryllium, and molybdenum.

Several reagents  are commonly used to effect chemical precipita-
tion. These reagents include:  alkaline compounds such as lime,
sodium hydroxide,  sodium carbonate, and anhydrous ammonia; hy-
drogen sulfide, ferrous sulfide,  or soluble sulfide  salts; and
ferrous sulfate or zinc sulfate.   Sedimentation is a process in
which solid particles are removed from a liquid waste stream by
gravitational  force.   Because of its simplicity and  effective-


Date:  9/25/81              II.8.8-27

-------
ness, chemical precipitation and sedimentation is extensively
used for industrial waste treatment;  however,  available photo-
graphic industry data on this process are currently inadequate.
Where metals precipitation is not needed, sedimentation may be
used without chemical precipitation.

Chemical precipitation and sedimentation is used in at least 20
photographic industry plants.  Eighteen additional plants use
either settling or clarification with or without a preceding
chemical addition step.   The quality of treatment provided by the
process is variable.  Where precipitates are removed by clarifi-
cation, retention times are likely to be short, and cleaning and
maintainence questionable.  Also, pH control is sometimes inade-
quate .

     Granular bed filtration.  Granular bed filtration in the
photographic industry is used as a polishing operation downstream
from the sedimentation step.  The porous bed formed by the gran-
ular media can be designed to reduce suspended solids concen-
trations by 60% or more.

The principal advantages of granular bed filtration are its low
initial and operating costs, reduced land requirements over other
methods to achieve the same level of solids removal, and elimi-
nation of chemical additions which add to the discharge stream.
The wastewater may require pretreatment if the solid level is
high (over 100 mg/L).  Operator training must be somewhat ex-
tensive due to the controls and periodic backwashing involved,
and the backwash must be stored and dewatered for economic dis-
posal.

     Membrane filtration.  Membrane filtration is used mainly for
removing precipitated heavy metals from a wastewater stream,
although it will also remove other particulates. It must be
preceded by those treatment techniques which will properly pre-
pare the wastewater for solids removal.  Typically, the membrane
filtration unit is preceded by pH adjustment or sulfide addition
for the precipitation of metals.  These steps may be followed by
the addition of proprietary chemicals which cause the precipitate
to be non-gelatinous, easily dewatered, and highly stable.  The
filter module contains tubular membranes.  While the reagent
metal hydroxide precipitate mixture flows through the inside of
the tubes, the water and any dissolved salts permeate the mem-
brane.   The permeate is alkaline, non-corrosive, and essentially
free of precipitate, and it may be safely discharged to sewer or
stream.  Membrane filtration is a particulate removal technique
using microporous membranes to falter out particles as small as
0.2 microns.

Membrane filtration systems are being used in a number of in-
dustrial applications, particularly in the metal finishing area.
These systems could be used in photographic manufacturing facil-


Date:  9/25/81              II.8.8-28

-------
ities in place of sedimentation or clarification to remove pre-
cipitated metals, or as a polishing treatment after chemical
precipitation and sedimentation to reduce residual pollutant
levels.

     Ion exchange.   Ion exchange is a process in which ions, held
by electrostatic forces to charged functional groups on the
surface of the ion exchange resin, are exchanged for ions of
similar charge from the solution in which the resin is immersed.
This is classified as a sorption process because the exchange
occurs on the surface of the resin, and the exchanging ion must
undergo a phase transfer from solution phase to solid phase.
Thus, ionic contaminants in a waste stream can be exchanged for
the harmless ions of the resin.

Although the precise techniques may vary slightly according to
the application involved, a typical illustration follows.  The
wastewater stream being treated passes through a filter to remove
any solids, then flows through a cation exchanger which contains
the ion exchange resin.  Here, metallic impurities such as copper,
iron, and trivalent chromium are retained.  The stream then
passes through the anion exchanger and its associated resin.
Hexavalent chromium, for example, is retained in this stage.  If
one pass does not reduce the contaminant levels sufficiently, the
stream may then enter another series of exchangers.  For this
reason, many ion exchange systems are equipped with more than one
set of exchangers.

The conventional application of ion exchange is supply water
treatment, especially for removing "hardness" (calcium and mag-
nesium ions) from the water.  Industrial plants use it widely to
provide water for deionized rinses which follow processing steps
such as alkaline cleaning, pickling, electroplating, and electro-
deposition painting.  Ion exchange is also used for recovery of
valuable metals (or other materials) or for end-of-pipe removal,
usually as a polishing function following chemical precipitation
and sedimentation.   Ion exchange is used in photographic plants
only for producing deionized rinse water.

     Decantation.  Decantation is the separation of two immis-
cible liquids by allowing the mixture to form two liquid phases,
which are then separately removed from the decantation tank.  The
process is possible because the two liquids are immiscible and
because they differ in density.

In batch decantation, the mixture enters the decantation tank and
is then allowed to separate.  Separation time depends mainly on
density difference.  If good separation is required for one phase
but not the other,  the purer phase is first drawn off the top or
bottom of the tank (by opening a valve at an appropriate loca-
tion), but not until the interface approaches the draw-off point.
The remaining liquid is then removed from the bottom of the tank.


Date:  9/25/81              II.8.8-29

-------
If good separation of both phases is necessary,  removal of each
phase is ended as the interface approaches the draw-off point.
The balance of the liquid remains in the tank,  and the next batch
of mixture is added to it.

Decantation is used in the photographic industry for separating
water from immiscible solvents such as toluene,  napthalene,
xylene, and methylene chloride.  The method is an inexpensive,
simple method of separation,  but it is limited to mixture of
liquids that are both immiscible and have significantly different
densities.

     Oxidation by ozone.   Ozonation could be used to destroy
residual organics present in wastewater partially treated by
other means at some photographic manufacturing plants, but its
present use in the photographic industry is limited to photo-
processing plants.  Ozonation has been applied commercially for
oxidation of cyanides, phenolic chemicals, and organo-metal
complexes.  It has also been studied in the laboratory for appli-
cability to photographic wastewaters with good results.  Ozone  is
used in industrial waste treatment primarily to oxidize cyanide
to cyanate and to oxidize phenols and dyes to a variety of color-
less products.

Technology for large-scale ozone application is well developed.
Applications to industrial wastes are not numerous, but feasi-
bility has been demonstrated for cyanides and for phenols.
Laboratory and pilot studies have demonstrated potential for
ozone treatment of other oxidizable hazardous species, including
chlorinated hydrocarbons, polynuclear aromatics, and pesticides.
This experience provides confidence that ozonation can be effec-
tive in treating photographic manufacturing wastewater.

     Oxidation by hydrogen peroxide.  Hydrogen peroxide can be
added to wastewater to oxidize, either partially or completely, a
variety of pollutants, both organic and inorganic.  Partial
oxidation usually converts organic compounds from one form to
another which is more easily biodegradable.  Hence, peroxide
oxidation may be used either as the single major treatment step
or in conjunction with a biooxidation process such as activated
sludge, either upstream for pretreatment or downstream for polish-
ing. Although peroxide is frequently used to reduce BOD, it can
sometimes increase BOD by converting a non-biodegradable organic
to a biodegradable form.

Although hydrogen peroxide reacts instantaneously with some
compounds, it is often necessary to adjust pH, provide more
retention time, or to add a catalyst.  Optimum pH depends upon
the compound being oxidized.  A pH range of 3 to 5 is appropriate
for phenol, hydroquinone, and, in general, for reduction of BOD
or COD, while formaldehyde and cyanide fall within the 9 to 12
range.  Hypochlorite is destroyed instantaneously, while a 30


Date:  9/25/81              II.8.8-30

-------
minute detention time is recommended for oxidation of formal-
dehyde and up to one hour for COD reduction.  Peroxide oxidation
is often aided by a catalyst.  The usual catalyst is 15 to 100
mg/L of soluble iron (ferric or ferrous) salts.  Copper, man-
ganese, chromium, cobalt, or the enzyme peroxidase are sometimes
used, and formaldehyde is specific for cyanide oxidation.  Labo-
ratory work has been done on ultraviolet radiation, which may be
the most effective catalyst of all.

The main pieces of equipment required for this process are two
holding tanks.  These tanks must be equipped with heaters and air
spargers or mechanical stirrers.  These tanks may be used in a
batch or continuous fashion with one tank being used for treat-
ment while the other is being filled.  A settling tank or filter
is needed to concentrate the precipitate.

Hydrogen peroxide has been used in treating photoprocessing
wastes to recover silver and oxidize toxic compounds•such as
cyanides, phenols (removal greater than 99 percent), and hypo
(sodium thiosulfate pentahydrate).  The process has been used
particularly for cyanide-bearing wastewaters, especially those
containing metal-cyanide complexes.

     Activated sludge.  Activated sludge describes a continuous
flow, biological treatment system characterized by a suspension
of aerobic microorganisms, maintained in a relatively homogeneous
state by the mixing and turbulence induced in conjunction with
the aeration process.  These conditions are in contrast to those
in processes characterized by fixed growths of microorganisms
attached to solid surfaces, such as trickling filters.

Basically, the activated sludge process uses microorganisms in
suspension to oxidize soluble and colloidal organics in the
presence of molecular oxygen.  During the oxidation process, a
portion of the organic material is synthesized into new cells,

A part of the synthesized cells then undergoes auto-oxidation
(self-oxidation, or endogenous respiration) in the aeration tank.
Oxygen is required to support the synthesis and auto-oxidation
reactions.  To operate the process on a continuous basis, the
solids generated must be separated in a clarifier; the major
portion is recycled to the aeration tank and the excess sludge is
withdrawn from the clarifier underflow for additional handling
and disposal.

In the photographic industry, the activated sludge process has
been used for destruction of the mixtures of various organic
materials found in the wastewater.  The system must be protected
by prior removal of heavy metals such as silver and cadmium.
Activated sludge is used in photoprocessing for destruction of
acetate, benzyl alcohol, hydroquinone, sulfite, and thiosulfate.
Date:  9/25/81              II.8.8-31

-------
     Carbon adsorption.   The term activated carbon applies to any
amorphous form of carbon that has been specially treated to give
high adsorption capacities.  Typical raw materials include coal,
wood, coconut shells,  petroleum waste residues and char from
sewage sludge pyrolysis.  A carefully controlled process of
dehydration,  carbonization,  and oxidation yields a product which
is called activated carbon.   This material has a high capacity
for adsorption due primarily to the large surface area available
for adsorption (500-1500 m2/g) resulting from a large number of
internal pores.  Pore sizes generally range from 10-100 angstroms
in radius.

The use of activated carbon for removal of dissolved organics
from water and wastewater has been demonstrated to be feasible.
In fact, it is one of the most efficient organic removal pro-
cesses available.  This process is reversible, thus allowing
activated carbon to be regenerated and reused by the application
of heat and steam or solvent.  Activated carbon has also been
shown to be an effective adsorbent for many toxic metals, in-
cluding mercury.  Regeneration of carbon which has adsorbed
significant metals, however, may be difficult.  Activated carbon
is used in at least four photographic plants for removal of
organic vapors resulting from operations such as solvent coating.

     Final neutralization.  Following chemical precipitation or
certain other treatment steps,the pH of the treated wastewater
may be too high or too low for safe discharge. If so, it must be
at least partially neutralized before discharge.  In batch treat-
ment processes, this is often accomplished in the vessel used for
the major treatment'step (e.g. the settling tank), by manually
adding sulfuric acid (to treat high pH water) or lime or caustic
(to treat low pH water). In continuous systems, final neutra-
lization may be accomplished automatically in a small, agitated
tank or by direct injection of neutralizing agent into a pipeline
or open channel.

Final neutralization of wastewater has general application to
industrial wastewater treatment.  It is used where the manu-
facturing raw wastewater is excessively acid or alkaline or where
treatment has imparted such a characteristic to the water.
Complete neutralization is usually unnecessary.  Adjustment of pH
upward to 6 or downward to 9 is often considered adequate.  Final
pH adjustment is performed in thirteen photographic manufacturing
plants.

     Pressure filtration.  Pressure filtration "is achieved by
pumping the liquid through a filter material which is impene-
trable to the solid phase.  The positive pressure exerted by the
feed pumps or other mechanical means provides the pressure dif-
ferential which is the principal driving force.  A typical pres-
sure filtration unit consists of a number of plates or trays
which are held rigidly in a frame to ensure alignment and are


Date:  9/25/81              II.8.8-32

-------
pressed together between a fixed end and a traveling end.  On the
surface of each plate is mounted a filter made of cloth or a
synthetic fiber.  The feed stream is pumped into the unit and
passes through holes in the trays along the length of the press
until the cavities or chambers between the trays are completely
filled.  The solids are then entrapped, and a cake begins to form
on the surface of the filter material.  The water passes through
the fibers, and the solids are retained.

Maintenance consists of periodic cleaning or replacement of the
filter media, drainage grids, drainage piping, filter pans, and
other parts of the system.  If the removal of the sludge cake is
not automated, additional time is required for this operation.

Pressure filtration is a commonly used technology that is cur-
rently utilized in a great many commercial applications.  It is
used for sludge dewatering in three photographic manufacturing
plants and for purifying process, or non-process, wastewater at
two other plants.

     Vacuum filtration.  In the wastewater treatment plants,
sludge dewatering by vacuum filtration is an operation that is
generally accomplished on cylindrical drum filters.  These drums
have a filter medium which may be cloth made of natural or syn-
thetic fibers, coil springs, or a wire-mesh fabric. The drum is
partially submerged in a vat of sludge.  As the drum rotates
slowly, part of its circumference is subject to an internal
vacuum that draws sludge to the filter medium.  Water is drawn
through the porous filter cake to a discharge port, and the
dewatered sludge, loosened by compressed air, is scraped from the
filter mesh.  Because the dewatering of sludge on vacuum filters .
is relatively expensive per kilogram of water removed, the liquid
sludge is frequently thickened prior to processing.  Vacuum
filtration is used in photographic manufacturing for dewatering
sludge.
Date: 8/31/82   R  Change  1   II. 8.8-33-

-------
                  II.8.10  PORCELAIN ENAMELING

II.8.10.1  INDUSTRY DESCRIPTION

II.8.10.1.1  General Description [2-25]

The porcelain enameling industry consists of at least 130 plants
enameling approximately 150 million square meters of steel, iron,
aluminum, and copper each year (each coat of multiple coats is
considered in this total).  Porcelain enameling is the applica-
tion of glass-like coatings to the metals mentioned above.  The
purpose of the coating is to improve resistance to chemicals,
abrasion, and water, and to improve thermal stability, electrical
resistance, and appearance.  The coating applied to the metal,
called a "slip," is composed of one of many combinations of frits
(glassy raw materials), clays, coloring oxides, water, and special
additives such as suspending agents.  These vitreous inorganic
coatings are applied to the metal by a variety of methods such as
spraying, drying, and flow coating and are bonded to the metal at
temperatures over 500°C.

Several processes are used in the porcelain enameling industry
regardless of the metal being coated.  These processes, discussed
below,  include preparation of the enamel slip, surface prepara-
tion of the base material, and enamel application and firing to
fuse the coating to the metal.

     Enamel Slip Preparation

The preparation of the enamel slip includes ball milling the frit
and raw materials to the appropriate consistency.  Frit is the
glassy raw material that makes up the backbone of porcelain
enameling.  Most frit is manufactured outside the operation but
some plants do include captive operations.  Other raw materials,
such as clay,  gums, or opacifiers,  are mixed into the frit by the
ball mill, which then releases this mixture to the coating opera-
tion.

     Base Material Surface Preparation

In order for the porcelain enamel to form a good bond with the
workpiece, the base metal to be coated must be properly prepared.
Depending on the type of metal being finished, one or more prepa-
ration processes are performed.  Solvent cleaning removes oil,
greases, and fingerprints from the metal by exposing it to non-


Date:  9/25/81              II.8.10-1

-------
flammable solvents such as trichloroethylene or 1,1,2-trichloro-
ethane at their boiling points.   This process may also be com-
bined with water to provide a two-phase cleaning system for
solvent-soluble and water-soluble contaminants.

Alkaline cleaning removes oils and soils from the workpieces by
the detergent nature of the solution.  Soaking, spraying, and
electrolytic alkaline cleaning are the common methods used, with
the electrolytic process providing the cleanest surface.   If
aluminum is the metal being coated, a stronger alkaline solution
is often used as a mild etch that removes the surface oxides.

Acid treatment is used to remove rust, scale, and oxides from the
base and may be carried out in the form of acid cleaning, pick-
ling, or etching.  Each option involves a slightly stronger acid
solution.  Generally, sulfuric acid is used for this treatment,
although other acids may be employed.

Nickel deposition is a common step when enameling steel in order
to improve the bonding of the enamel to the metal.   Nickel is
normally deposited after the part has been acid treated and
rinsed.  Neutralization normally follows acid pickling and nickel
deposition to remove the last traces of acid left on the metal.
Chromate cleaning and grit blasting may also be used to prepare
the base metal prior to the coating process.  When used, grit
blasting is normally the sole preparation step because it cleans
the metal and roughens the surface, providing a good base for
bonding.

     Enamel Application and Firing

Once the workpiece has undergone the proper base metal prepa-
ration and the enamel slip has been prepared, the next step is
the actual application of the porcelain enamel.  Included among
the application methods are air spraying, electrostatic spraying,
dip coating, flow coating, powder coating, and silk screening.
After each coating is applied, the part is fired in a furnace to
achieve a fusion between the enamel coating and the base metal or
substrate.

Air spraying is the most widely used method for enamel applica-
tion.  In this process, the enamel is atomized and propelled by
air onto the base metal to form an enamel coating.  Overspraying
is a common problem with this technique since the atomized par-
ticles may not adhere to the part.  Spray booths to collect this
oversprayed enamel are necessary.  A modification of this tech-
nique is the electrostatic spray coating method where the atomized
particles are charged at 70,000 to 100,000 volts and directed
toward the grounded part.  This charge increases the adhering
efficiency but does not eliminate the need for the spray booth
collectors.  Other advantages such as edging and the coating of
both sides at once are also seen.
Date:  9/25/81              II.8.10-2

-------
Dip coating consists simply of dipping the workpiece in an enamel
bath and allowing it to drain.  Flow coating floods the piece
with enamel and then recycles the unused, recovered enamel.  Pow-
der coating is the dusting of a red hot cast iron workpiece with
porcelain enamel in the form of a dry powder.  The glass powder
melts as it strikes the hot surface.  Silk screening is used to
apply a decorative pattern on a porcelain enameled piece.

Porcelain enameling plants are located primarily in the states of
Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania,
Kentucky, and Tennessee.  Seventy-six percent of the facilities
discharge to POTW's, twenty-two percent to streams or rivers, and
two percent to both.  Approximately 10% of the plants recycle,
with an average recycle of 9.6 m3/hr, which represents 46% of the
average process water usage rate of 20.8 m3/hr.  The total porce-
lain enamel applied each year by all plants is estimated at 150 x
106 m2.

Table 8.10-1 presents an industry summary of the number of sub-
categories and the number and type of dischargers for this in-
dustry.

           TABLE 8.10-1.  INDUSTRY SUMMARY [2-1]
               Industry:  Porcelain Enameling
               Total Number of Subcategories:  4
               Number of Subcategories Studied:  4

               Number of Dischargers in Industry:
                 •  Direct:  30
                 •  Indirect:  100
                 •  Zero:  0
II.8.10.1.2  Subcategory Descriptions [2-25]

The porcelain enameling industry consists of four Subcategories;
porcelain enameling on:  steel, iron, aluminum, and copper.  This
subcategorization was chosen on the basis of the base metals
used.  Other possible Subcategories (dependent on wastewater
characterization, manufacturing processes, products, water use,
etc.) were considered, but all were found to be directly related
to the base metal used.  In addition to the four Subcategories
selected, steel and aluminum base metals may be further divided
into two segments, sheet and strip, to account for the signifi-
cant water saving potential of continuous operations relative to
individual sheet processing.  However, because only two porcelain
enameling facilities treat strip, no separate division is neces-
sary at this time.
Date:  9/25/81              II.8.10-3

-------
In general, only 10% of the porcelain enameling facilities enamel
more than one type of base metal.   Over 70% of the plants enamel
solely on steel, 10% on aluminum,  and 8% on iron.   Less than 1%
of the plants enamel copper, strip steel,  or strip aluminum
separately.

     Subcategory 1 - Porcelain Enameling on Steel

Steel is by far the most widely used base metal for porcelain
enameling with the average yearly production of a  plant being
1.34 x 106 m2 (14.4 x 106 ft2).  This figure represents the area
of enamel applied.  For multiple coats, the area for each coat is
considered.  Among the products which use porcelain enameled
steel are the following:  cooking and heating equipment such as
ranges, home laundry equipment (washers and dryers), refrig-
erators, freezers, dishwashers, water heaters, process vessels,
architectural panels, plumbing fixtures, and various appliance
parts.

Several processes are used when enameling on steel.  The parts to
be coated are first alkaline cleaned and rinsed to remove soils.
An acid treatment step and rinse follow in which sulfuric acid,
ferric sulfate in conjunction with sulfuric acid,  or muriatic
acid are used for oxide removal.  A nickel deposition step and
rinse ensues, followed by a neutralization operation which re-
moves any remaining traces of acid.

Following surface preparation and drying,  the part is ready for
the enamel application.  Steel parts are either sprayed, dipped,
or flow coated.  The enamel slip can be applied in a single coat-
ing operation (referred to as direct-on),  or a ground coat and a
cover coat may be applied separately.  For the direct-on process,
corners and edges are usually reinforced (precoated) to ensure
coverage.  For either case, each coat is fired at a temperature
of approximately 820°C (1,500°F).   Total thickness of sheet steel
enamels involving a ground coat and cover coat is in the range of
0.13 to 0.20 mm (5 to 9 mils).

When the direct-on process is utilized, surface preparation
requirements are more critical to ensure effective enamel ad-
hesion.  The acid etch is often deeper and the nickel deposition
is always thicker.  Typically, the nickel coating is 0.01 to 0.02
g/m2 for direct-on coating as compared to 0.002 to 0.007 g/m2 for
two-coat applications.  A few porcelain enamelers prefer to omit
the nickel deposition step.  While the nickel enhances the enamel
bonding, product quality 'requirements may not -require nickel
deposition.  The omission of the nickel step necessitates the
utilization of a heavy acid etch to ensure a clean, properly
conditioned surface for enamel bonding.
Date:  9/25/81              II.8.10-4

-------
     Subcategory 2 - Porcelain Enameling on Cast Iron

Cast iron is porcelain enameled primarily for plumbing fixtures
for the sanitary products industry.  It is also used for cookware
and for various appliance parts such as grates for gas ranges.
The average yearly production of a plant is 1.56 x 106 m2 (16.8
ft2).  This figure represents the areas of enamel applied.  For
multiple coats, the area for each coat is considered.

The porcelain enameling of cast iron is a process in which water
is not generally used for metal preparation but is sometimes used
for coating application.  The casting to be coated is blasted
with sand or a combination of grit and sand to produce a smooth,
velvety surface.  The parts are then brushed off and any rough
edges are removed by grinding.

The ground coat is then applied by spraying, dipping, or flow
coating.  If only one coat is required, a heavy ground coat is
applied.  If there is to be a ground coat and a top coat, a thin
layer of enamel is used for the ground coat.  The ground coat is
then fired.  The firing period is longer than for sheet steel
because of the greater mass of the enameled body, and firing
temperature is reduced to avoid excessive baking.  When the cast
is removed from the furnace and still red hot, the top coat is
applied by powder coating.  The enamel in powder form is dusted
on the hot part and fused to the surface.  Total thickness of dry
process coatings is approximately 0.50 mm (20 mils).

     Subcategory 3 - Porcelain Enameling on Aluminum

Porcelain enameling on aluminum finds use in the cookware and
housewares industry.  It is also used for panels and signs.  The
average yearly production for a plant in this Subcategory is 2.5
x 105 m2 (2.7 x 10s ft2).  This figure represents the area of
enamel applied.  For multiple coats, the area for each coat is
considered.

Although all aluminum parts can be coated in a similar fashion,
the surface preparation can vary from company to company.  The
choice of surface preparation methodology is based upon the alloy
type of the base metal and the cleanliness requirements involved.
Pure aluminum requires only a cleaning step.  A heat treatable
alloy may require a pickling step in addition to cleaning.
Porcelain enameling on a high magnesium alloy could necessitate a
chromate cleaning process.  This chromate coating retards the
oxidation of the magnesium in this high strength alloy.

Nearly all aluminum parts are first treated in an alkaline solu-
tion.  In some cases,  this is only a cleaner for removing grease
and soils; sometimes it is a mild etchant to remove a layer of
metal and its oxides.   Frequently, this is all the surface prep-
aration that is necessary.  Any further preparation steps are to


Date:  9/25/81              II.8.10-5

-------
remove residual oxides (example:   chemical deoxidizing with
nitric acid) or to impart a thin protective layer on the metal
(alkaline chromate treatment).   The users of such processes were
limited in the plants studied.

Aluminum does not require a ground coat.   Enamel is generally
applied by spraying,  with firing accomplished by heating to 450°C
to 550°C (850°F to 1,040°F) for 2 to 10 minutes.

     Subcategory 4 -  Porcelain Enameling on Copper

Porcelain enameling on copper represents a very small part of the
porcelain enameling category.  It is not practiced by many firms
and the ones involved do it on a small scale.   Enameled copper is
used mostly for ornamental purposes, such as jewelry, decorative
ware, and metal sculpture.  The average yearly production of a
plant in this subcategory is 1.4 x 104 m2 (1.5 x 105 ft2).

Since it is essential to remove all the oil and grease on the
copper before coating, the part is first alkaline cleaned, de-
greased, or annealed.  After cleaning, the part is then typically
pickled for oxide removal.

The enamel application involves two processes:  a ground coat or
backing coat, and a cover coat to prevent the copper base from
being taken into solution with the enamel and causing discolora-
tion.  This ground coat is applied by either spraying or dipping.
The cover coat can be applied by powder coating or with silk
screening to achieve patterns.

     Other Subdivisions

In addition to the above subcategories, porcelain enameling on
continuous strip is a subdivision within this industry.  However,
because there are only two plants in the United States producing
this product, a separate subcategory is not necessary.  These
plants start with coils of steel, aluminum, or aluminized steel,
porcelain enamel them, and either recoil them for sale to metal
fabricators or shear them into pieces for use as architectural
panels or chalkboards.  The estimated production for 1976 was 2.0
x 106 m2 (2.2 x 107 ft2).  This figure represents the area of
enamel applied.  For multiple coats, the area for each coat is
considered.

The surface preparation operations for strip are dependent upon
whether the basis material is steel or aluminum.  The surface
preparation steps for steel strip are minimal in comparison to
porcelain enameling on steel sheets since precleaned strip steel
is used.  Steel strip is nickel immersion plated prior to the
enameling step.  Surface preparation for aluminum involves only
cleaning.  The enamel for either basis material is applied by
means of spray guns which are aimed at the surface of the moving


Date:  9/25/81               II.8.10-6

-------
strip.  Two coats are normally applied,  the strip being fired
after each coat.

II.8.10.2  WASTEWATER CHARACTERIZATION [2-25]

This section presents water uses and discharges, and waste con-
stituents emanating from the porcelain enameling category.  Pub-
lished literature, data collection portfolio (dcp) responses, and
screening and verification sampling data have been used to obtain
the relevant information.  The screening analysis of the porcelain
enameling category consisted of a sampling program for all 129
priority pollutants.  Those pollutants which were detected in the
screening program were further studied in the verification analy-
sis.  Only those pollutants included in the verification program
are presented in the following tables.  The minimum detection lim-
it for toxic pollutants is 10 yg/L and any value below 10 vg/L is
presented in the following tables as BDL, below detection limit.

Table 8.10-2 presents wastewater flow data on a subcategory and
stream basis for the porcelain enameling industry.
       TABLE 8.10-2.
 WASTEWATER FLOWS FROM THE PORCELAIN
 ENAMELING INDUSTRY [2-25]
       Stream
 Number
   of
samples
Wastewater flow, m3/day
Range	Medi an	Mean
P/E on steel
  Alkaline cleaning     21    1.64 - 122
  Acid etch             21   0.556 - 56.2
  Nickel flash          12    19.1-31.2
  Neutralization         8   0.999 - 19.8
  Coating               21   0.783 - 505
  Total raw waste       21    11.3 - 711
P/E on iron
  Coating                7
P/E on aluminum
  Alkaline cleaning      8    19.2 - 217
  Coating                8    4.84 - 546
  Total raw waste        8    68.2 - 223
P/E on copper
  Acid etch              3    6.14-7.27
  Coating                4   0.008 - 1.27
  Total raw waste        4    1.27-7.90
        0.636 - 7.21
            30.3
            19.6
            24.8
            15.1
            4.03
             175

            1.23

             169
             297
             197

            7.27
           0.636
            7.02
 47.2
 23.7
 25.2
 14.1
  107
  197

 2.88

  131
  285
  160

 6.89
0.638
 5.81
II.8.10.2.1  Subcategory 1 - Porcelain Enameling on Steel

Wastewater from porcelain enameling on steel is generated by base
metal surface preparation, enamel application, ball milling, and
related operations.  The constituents in the wastewater include
Date:  9/25/81
       II.8.10-7

-------
the base material being coated (iron),  as well as the components
of the surface treatment solutions and enamels being applied.

Water rinses are used in surface preparation operations such as
acid pickling, alkaline cleaning,  and nickel deposition to remove
any process solution film left from the previous bath.   A water
rinse may also follow the neutralization step.  Another common
water use is in the ball milling process, which uses water as the
vehicle for the enamel ingredients, as a cooling medium,  and for
cleaning up the equipment.  Coating application processes nor-
mally employ wet spray booths to capture oversprayed enamel
particles.  Water wash spray booths use a water curtain into
which the enamel particles are blown and captured.

The major sources of waste generated by this subcategory are the
process solutions used in basis material preparation, the base
metal being coated, and the enamel being prepared.  Alkaline
cleaning solution varies with the type of soil being removed.
Wastewaters from this operation contain constituents of the
cleaning solution as well as oil and grease.  These wastewaters
also contain iron but in lesser concentrations than those from
the acid pickling process.  Alkaline cleaning wastes enter the
waste stream in three ways:  during the rinse step, from the
cleaning bath overflow, and in the batch dump of the spent alka-
line bath.

Acid treatment is typically sulfuric acid with lesser amounts of
hydrochloric, phosphoric, and nitric acids being used.  Acid
solutions develop a high metallic content due to the dissolution
of the steel itself during the pickling operation.  As a result,
the baths are frequently dumped, introducing large amounts of
iron into the waste stream.  Also present in significant concen-
trations are phosphorus and manganese.  The stream has a low pH
as well.

Nickel deposition can place large amounts of nickel and iron into
the waste stream by batch dumping and dragout.  The neutralization
step eases the pH burden and adds little additional loading of any
pollutant.

The introduction of enamel into the waste stream results in an
increase in the concentration of metals, but these metals  (anti-
mony, titanium, zirconium, tin, cobalt,  and manganese) are in
solid form while the metals generated by surface preparation are
normally in dissolved form.  These solid metals increase the sus-
pended solids concentration of the stream.  Other metals that may
be found in the enamel preparation and application waste stream
in significant amounts include aluminum, copper,  iron, lead,
nickel, and zinc.  Table 8.10-3 presents pollutant sampling data
for the processes used in the porcelain  enameling on steel indus-
try.
Date:  9/25/81              II.8.10-8

-------















o


_J
LJ
£

z

m
ZCM

fi£i
UJ
o<
o<
Q- Q

LUZ
XO
1 	
h™
OO
zu-
O^
— o:
HLJ
N

<£>
LUQ:
HO
O O

Q> C
Ol O
(Q
OJ O C
> 5

cu
•D

M
c
0) -

Cfc- C
n o 49
cc 4J
o>
•Q



V)
c
o
t,
OJ 4->
a**- o
€ o a
•c


0) a
e o o
3 6
Z m
VI

in
C
0} O
» -
CQ 4-

o o a
> 4J

c ^- o
flj 0 CO
CC *J
a


M
o
t. ..
Q) 4-
z a
13
M
t. Q}
A 
O
0
0)
c
I
^


























PO -co . .IA -o • —
r- -d-CM ^O — CO
00*0
CM


O
lA O CO
O OS lA — CM » PO
PO — O — P- — *** — lA O

1 I I I 1 I I I 1 O 1


•lAO — O — O —
- .0 • • -0
O • OO O
O O





OsO\iAOsO — iA— -O — flQ
— 	 CM CM — CM CM —




— 	 PJCMCMCMCMCSJCM





OiACOf^OSOrTJOO lA

O 00 O O*




os r* o —
so OS o so 	 PO — ^ O
1 1 1 1 1 1 I 1 1 1

VO O\ \0 CO CM PO CO CO iA. —
CM O CM OCM O O
.0 • *OO O
o • oo • *
o oo o



OOsOs— CO — sCCO^OCM



OOO — CO 	 eoos 	
CMCMCM — POCMW — ""CMCy


_i
1
_J O
uT w etc
*J 3 3.0}
C t. Q) O
01 O M (0 » *-
4^ £ — CD M MO
3 Q.O « 4J 4J C
— « C 1- — C —
— O 0) WC M O 03
O .C.C 3 0) E «E u-a
O. CL Q.-O -O 3 
a XX
— o
0 1=


OiA lAO O
osr*1* co o —


lA


o
§ §
— o 0*0
COCO —CM CM
•3- O
— 1 1 l 1 — 1
CM
— -J Oh* f-
CD







000 	 OlAI" 	
CM C\J — CM




CM CM CM CM CM (M CM CVJ Cg CM





SO P1" M OOO


m



O
§
oo -oo
^ >O CM lA ^ ~
CO xi o acts.* a> o













c
.2
4J
CO
N

(0

*J
i

























_£
M
n

w
0
z



























S^^^^S— — o

o oo o




O •* tA
lAlACOf1- — PO CM
lAf^OfOOS— O^TO

1 1 1 1 1 1 1 1 1

O-S1-^ — sOfMJCOSO
•OO POO • —
CO -O * • — O
0 • 00
o o





\ososoM3^r*»CMri*r*-oo
—










VOIA.S--OIAOSOCM «
IA -O • -lA — & • —
d do d




LA O
ON CM rO O ^O
fOCOO — sOOO — f- O
1 1 1 1 I 1 1 1 1 1

CM — eo — or-"^rf-r* —
• O *CM OlACSJ O
— O CM • •
oo o o
O



— C4— — — —



OsOOr-OCSJCMCMOJCMCM
(M


_l
E M
-1 O
MM cnc
4J 3 3.CO
C L. 0 C
tO O O M * '-
*J .C— 
— 0>,eoac-oj: to o >
wuii.'oi.aanu — c —
cL.onJZOXi)'— W1— —
«COOUUCJ-1Z (ON(0



Date:  9/25/81
II.8.10-9

-------




























^
3
C
•P
C
O
U


CO
1
O


00

Ul
CO

H
























W
o c
1 O
. tt- 43
ooo
> a
; 43
•o
V)
c
o
to
en 43
: 0)
•* :


M
C

<

E O 1
3 (











1
—

a.


o .0— • .cor- -co •
com • '•coo cyos eg
•> O
cy

o
O 0
o o\ m o
- ry • oo c\icy
\oro .ooojo — r — • -
	 OM — rocy sovo — o\

1 1 1 1 1 1 1 1 1 1 1 1
i vocyvOfocy — imncof'-r'-
3 vOCOO • VO3- -O 	
o • oo ooo
! O





— 	 coojcy 	 cyoj



«ON 000^00^*00



OCMO « — CSJ
Ox O
OJ


o
• O vO O O
- *o m o o
oooo -oinoo-oo
04 • -cocycy -^cyo -tf\


t i i i i i i i i i i

: vo^-o • • •JTJ- .«
— n • o in — in • • ^ •
p O • OO O
3 °



w mwcycycuwM




OJ — Cy — So4(MCMfVJC\JOJ




_J
1


it i «
 iTS — PO — —

i i i i i i in i i i i
m

^
•~



— — CMC4 — fy — C4




OJOJOJOJOJOJ — OJOJOJOJ





IA
-1 0
X,—
5S

a o
43 C
2-o>> § e s
3 C C O — E 3 0) 3
— a o 	 3— i--o 	 w
— EC — e o— me o
ow— «>>Eoac-DJceo —
a— 43cnt--a(.a.cQ
0 £ <- B
L. O4> O
O E 1- O t
— Cjsi- O
£ O O 1 —
So w t cy it
— o o • o
0} O t- — 0

« U
Jo
B
p.
03 -T

< CO
Date: 9/25/81
II.8.10-10

-------
 II.8.10.2.2   Subcategory 2  -  Porcelain Enameling on Iron

 There  are two different  types of  cast iron porcelain enameling:
 wet process  and dry process.   The dry process uses no water and
 does not produce wastewater.   Wet process enameling of cast iron
 employs water for ball milling and enamel application.   These
 processes are very similar  to the ones described for the steel
 subcategory.  Surface preparation involves sand or grit blasting
 and uses water only in an air scrubber operation.   Ball milling
 uses water as a vehicle  for the enamel slip ingredients, as cool-
 ing water, and for equipment  cleanup.   Coating application uses
 water  as a trap for the  excess enamel particles during the spray
 step.  Wastewater constituents in significant concentrations in
 the streams  emanating from  this subcategory include suspended
 solids, aluminum, iron,  copper, lead,  manganese,  nickel, titanium,
 zinc,  and cobalt.  All of these metals are the result of the
 enamel carryover via spray  booth  blowdown or ball mill washdown.

 Table  8.10-4 presents wastewater  characterization data for the
 streams in this subcategory.
   TABLE 8.10-4.
WASTEWATER CHARACTERIZATION OF THE PORCELAIN
ENAMELING ON CAST IRON SUBCATEGORY, VERIFI-
CATION DATA [2-25]
Pol lutant
Classical parameters, mg/L
TSS
Total phosphorus
Total phenols
Oi 1 and grease
pH, pH units
Fluorides
Aluminum
1 ron
Manganese
Titanium
Coba 1 1
Toxic pol lutants, uxj/L
Meta 1 s and inorganics
Ant imony
Arsenic
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Nickel
Selenium
Zinc

Number
of
samples

7
7
6
3
14
7
7
6
7
7
7


7
7
7
7
7
7
3
7
7
7
7

Number
of
detect ions

7
6
6
3
14
7
7
5
7
4
7


1
3
4
4
7
7
1
7
4
7
6
Coa t i nq


Range Average
of of
detections detections

6,600
0.49
0.008
1.0
7.9
2.0
0.38
18
0.003
0.02
0.044


6
1,900
BDL
14
BDL
BDL

490
250
430
680

- 81,000
- 2. 1
- 0.038
- 9.5
- 1 1.4
- 120
- 1,200
- 150
- 65
- 100
- 95


,000
- 2,800
- 120
- 9,600
- 1, 100
- 8,800
BDL
- 880,000
- 67,000
- 160,000
- 650,000

27,000
1 . 1
0.02
4.7
9.5
41
340
56
15
44
24



2,400
49
2,700
430
2,600

170,000
33,000
29,000
130,000
 Analytic methods:  V.7.3.16, Data set 2.
 BDL, below detection limit.
Date:  9/25/81
          11.8.10-11

-------
II.8.10.2.3  Subcategory 3 - Porcelain Enameling on Aluminum

Wastewaters from this subcategory come from surface preparation,
enamel application,  ball milling, and related operations.   Con-
stituents of this wastewater include aluminum and components of
the surface preparation solutions and the enamels being applied.

Water is used in this subcategory as solution makeup and for
rinsing in the surface preparation process, as the vehicle for
the coating in the application process (normally done by spray
coating), and for cooling and cleanup in the ball milling opera-
tion.

The surface preparation process contributes pollutants to the
wastewater by the continuous overflow of the cleaning bath (if a
continuous process), by the batch dumping of spent solutions, and
by the rinsing steps directly following the process.  Generally,
significant quantities of dirt and grease are removed during this
cleaning process.  Also entering the waste stream is a consider-
able amount of aluminum.  When an alkaline cleaning process is
used, the wastewater contains significant concentrations of sus-
pended solids, phosphorus, and aluminum.  Acids used to deoxidize
the surface normally remove a larger amount of aluminum than
alkaline treatments and, therefore, increase the dissolved alum-
inum concentration.   The enamel preparation and application steps
contribute significant amounts of suspended solids and metals,
particularly cadmium, lead, titanium, zinc, aluminum, barium,
iron, selenium, and antimony due to use of these metals in the
enamel itself.  There are also high levels of fluorides and
phosphorus.

Table 8.10-5 presents classical and toxic pollutant concentra-
tions for the porcelain enameling on aluminum subcategory.

II.8.10.2.4  Subcategory 4 - Porcelain Enameling on Copper

Wastewater from this subcategory is generated as in the previous
subcategories; by surface preparation, enamel application, ball
milling,  and related operations.  Wastewater constituents gener-
ally consist of copper and the components used to form the enamel.

Water is used to rinse the workpieces after various operations,
as a constituent of the enamel slip, in spray booths, and in
cleaning, cooling and air scrubbing.  Pollutants such as dirt and
grease enter the waste stfeam from the surface preparation and
rinsing steps.  Acid pickling adds dissolved copper to the waste-
stream.  Enamel preparation and application may add high concen-
trations of aluminum, titanium, manganese, nickel, zinc, and
cobalt, as well as fluorides, antimony, copper, lead, and iron.
Date:  9/25/81              II.8.10-12

-------
o
z
5
Ul
^ l~~l

ZCM
Ul 1
CM
Z— .
oc
o z
0.0

Ull-
h-O

U.U,
O —
a:
Z Ul
0>
<>
58
UIUI
t-l-
Im
0
xw
0 jr
UIZ
 +*
< o
•o
1A
C
o
v ._
cVo

OC +»
o
•o




«
*- C
• o t
3 a
4
W

M
t. Q
2 ^ *Q
1°!
3C V




«J
C
«
+
I










g

c
o

s

I
*



















o^«or-«« 	 (M«^o o
«oo^o*o o o • ^ S *t
00 .
0 (M

M a ma o
O O Ov  £ •
i MI au
^•— **—
M M OlE — 0
S 2 . aS s?5
0 0 M M .C 0C
S loSS S§ £a
- «CI.~ C- >>-
— oeoiCM 0 0 • £>>
a "^fi «?., S|e»«ls|t. _| SS.
— — — « a »- — 5 « c — — » c — «••««- « e OJM i o
• 0* O •— C O»* It O«S— 0>kKeaC9«I^O
I*5ol^«*i w
- M C U-
« O 0 O»C «1 O
O ££ 3 O • » •
o. a. a.v -a 3 at 3
c z - c • c - w
— 	 0 a. t. -- 3 0c —
000 0 •— C 0100
OV)****— ^33kQCWA
— WOO— I — — 01.0—O
M H t- 1- o au- < e — 1 1- o
0
u
Date:  9/25/81
II.8.10-13

-------
                               TABLE 8.10-5 (continued)
Number Number Range Average
of of of of
Pollutant samples detections detections detections
Coatina
Toxic pollutants, ug/L
Metals and inoraanlci
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Selenium
Zinc i
Organlcs


2 210 -
0
0
7 290 -
8 BDL -
6 BDL -
1 BDL
B 3,500 -
0
4 530 -
1 8 150 -



360


54,000
39
180

38,000

7, 100
2,000



280


11,000
24
57

15,000

2,200
740

Bis(2-ethlhexyl) phthalate a 0
Di-n-octyl phthalate i
1 0


To 1 uene 3 0

Classical pollutants, mg/L
Total raw waste

TSS ' 8 8 12 -
Total phosphorus 8 8 0.88 -
Total phenols 8 8 0.001 -
Oil and grease 8 5 1.7 -
pH, pH units 16 16 6.3 -
Fluorides 8 8 0.74 -
Aluminum 8 8 0.08 -
Barium
Iron
Manganese
Titanium
Cobalt
Toxic pollutants, ug/U
Metals and inorganics
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Coppe r
Cyanide
Lead
Nickel
8 0.01 -
8 0.02 -
5 0.002 -
8 0.09 -


190
24
0.015
1 1
10.4
0.98
10
0.24
0.71
0.13
6.1


110
9.3
0.007
5.8
8.7
0.89
3.8
0. 10
0.24
0.04
2.6
1 0.005


2 150 -
0
0
7 BOL -
8 BDL -
6 BOL -
2 BDL -
8 150 -
0
Selenium 8 4 110-
Zinc 8 8 120 -


260


5,200
13
130
140
12,000

630
530


210


2,200
BDL
48
73
3,900

400
300
Organ ics
Bis(2-ethylhexyl) phthalate 8 0
Di-n-octyl phthalate 8 0
Toluene 3 0
           Analytic methods:  V.7.3716,  Data set 2.
           BDL, below detection limit.
Date:  9/25/81
II.8.10-14

-------
Table 8.10-6 gives classical and toxic pollutant concentrations
for the porcelain enameling on copper subcategory on a stream
basis.

II.8.10.3  PLANT SPECIFIC DESCRIPTION [2-25]

Only a limited amount of information is available on specific
plants within this industry.  This section describes the treat-
ment practice and wastewater composition at nine plants:  three
that enamel on steel, three on aluminum, two on cast iron,  and
one on copper.  The major treatment operation employed is a
settling technique.  Treatment operations are not necessarily
listed in this narrative in the same order that they are used at
the plants.  Wastewater composition data were obtained from
verification sampling.

II.8.10.3.1  Porcelain Enameling on Steel

     Plant 40053

This facility is involved with porcelain enameling on both steel
and cast iron.  Data presented in Table 8.10-8 are for the coating
on steel subcategory only.

     Plant 41062

This plant produces 130 m2/hr of enameled steel and operates
3,500 hrs/yr.  It uses 0.0036 m3 water/m2 of product to coat the
steel.  Average process water flow is 0.144 m3/hr for coating
operations and 0.734 m3/hr for metal preparation.  The primary
treatment in-place for process wastewater is clarification and
settling.  Other water treatment practices employed are pH adjust-
ment with lime or acid, sludge applied to landfill, polyelectrolyte
coagulation and inorganic coagulation.

     Plant 36030

This facility produces 110 ma/hr of enameled steel and operates
4,000 hrs/yr.  It uses 0.0042 m3 water/m2 of product in coating
operations.  Average process water flow is 1.69 m3/hr for coating
operations and 0.466 m3/hr for metal preparation.  The primary
in-place treatment is clarification and settling.

Table 8.10-7 gives the water use for each process in the pro-
duction of porcelain enameled steel for the above plants.  Pollut-
ant concentrations for treated effluents are presented in Table
8.10-8.
Date:  9/25/81              II.8.10-15

-------
       TABLE 8.10-6.
WASTEWATER CHARACTERIZATION OF THE PORCELAIN ENAMELING
ON COPPER SUBCATEGORY, VERIFICATION DATA [2-25]


Pol lutant

Classical pollutants, mg/L
TSS
Total phosphorus
Total phenols
Oi 1 and grease
pH, pH units
Fluorides
Aluminum
Iron
Manganese
Titanium
Coba 1 1
Toxic pollutants, ug/L
Metals and inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Se 1 en i urn
Zinc
Oroanics
Carbon tetrachloride
1,1, l-Trichloroe thane
1, 1,2-Trichloroethane
1, l-Dichloroethylene
Methylene chloride
Methyl chloride
T r i ch 1 o roe thy 1 one
Toluene
Chloroform
Dlchlorobromo methane
1, 1,2,2-Tetrachloroethane
Tetrachloroethylene

Classical pollutants, mg/L
TSS
Total phosphorus
Total phenols
Oi 1 and grease
pH, pH units
Fluorides
Aluminum
1 ran
Manganese
Titanium
Coba 1 t
Toxic pollutants, ug/L
Metals and Inorganics
Antimony
Arsenic
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Se 1 en i urn
Zinc
Number
of
samoles


2
2
2
|
5
2
3
3
3
3
3


3
3
3
3
3
3
2
3
3
3
3







2
3
2
2
4


3
2
3
3
7
3
It
4
4
4
4

4
It
k
4
14
4
3
It
It
M
It
Number
of
detections


2
1
1
1
5
2
3
3
3
0
0


0
1
0
t
3
3
0
1
1
1
3

0
1
0
0
0
0
1
0
2
2
2
0


3
2
0
3
7
3
It
It
U
U
1

4
2
3
It
It
1.
1
l|
H
It
It
Range
of
detections c
Acid etch

It - 24
0.52
0.006
200
1.8 - 6.6
0. II - 0. 12
0.0002 - 0. 17
0.15 - 51
0.01 - 0.26





BDL

22
BOL - 60
9,700 - 820,000

770
120
BOL
49 - 2,400


BDL



BDL

BDL - BDL
BOL - BDL
BDL - BDL

Coatina

14,000 - 94,000
1 - 71

2.0-98
7.6 - 10
46 - 66
96 - 200
15 - 29
6.2 - 120
3.6 - 560
20 - 64

1,600 - 3,500
420 - 3,800
BDL - 59
97 - 2,800
200 - 3,000
4,700 - 10,000
55
2,300 - 440,000
20,000 - 49,000
200 - 810
1,100 - 200,000
Average
of
letections


19



5.7
0. 12
0.073
27
0.09








26
280,000




890








BDL
BDL
BDL



46,000
36

37
8.8
56
140
22
68
220
46

2,300
2, 100
34
830
1,000
6,900

110,000
37,000
570
84,000
Date:   9/25/81
             II.8.10-16

-------
                              TABLE 8.10-6 (continued)


Pol lutant

Toxic pollutants (continued)
Organ ics
1 ,2-Dlch 1 o robenzene
Toluene
Carbon tetrachloride
1,1, l-Trichlo roe thane
1, 1,2-Trlchloroethane
1 , l-Oichloroethylane
Methyl one chloride
Methyl chloride
Trichloroethylene
Chloroform
D i chlo rob romome thane
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethylene

Classical pollutants, mg/L
TSS
Total phosphorus
Total phenols
Oi 1 and grease
pH.pH units
Fluorides
A 1 urn i num
1 ron
Manganese
Titanium
Coba 1 t
Toxic pollutants, M9/L
Hetals and Inorganics
Antimony
Arsenic
Be ry 1 1 i un
Cadmium
Chromium
Copper
Cyanide
Lead
Nickel
Se 1 en i urn
Zinc
Organ ics
To 1 uene
Chloroform
Dichlorobromo/nethane
1,1, l-Trichloroethane
1, 1,2-Trichloroethane
1, 1 -Dichloroethy lene
Hethylene chloride
Methyl chloride
Trichloroethylene
1, 1 ,2,2-Tetrachloroethane
Tet rach 1 o roe thy 1 ene
Carbon tetrachloride
Number
of
samp les



1
3







it
3
2
It


3
|
3
2
7
3
i|
It
4
It

-------
    TABLE 8.10-7.
WATER USE IN THE PORCELAIN ENAMELING ON
STEEL SUBCATEGORY  [2-25]
(m3 of water/m2 product)
Plant identification
Process(a)
Alkaline cleaning
Acid etch
Nickel flash
Neutralization
Ball milling
Coating
33617
0
0
0
0
0
0
.00094
.00014
.00033
.00011
.00004
.00066
40063
0
0
0
0
0
0
.0032
.0026
.0027
.0016
.017
.011
47033
0
0
0
0
0
.10
.038
.021
.0056
.0010
(b)
0
0
(
40053
.0056'
.012
c)
(c)
0
.0013
(d)
36030
0.
0.
(c
0.
0.
0.
010
0051
)
00075
0031
0013
41062
0.029
0.0071
(e)
(c)
0.0053
(d)
  (a)  Because of differences in area prepared and coated, these data
      cannot be added directly for each process to obtain overall
      subcategory water usage.
  (b)  Uses dip coating and spray coating with a dry booth.
  (c)  No rinsing involved.
  (d)  Dry spray booths.
  (e)  Nickel flash not used at this plant.

II.8.10.3.2  Porcelain Enameling on Aluminum

     Plant  11045

This facility produces 210  m2/hr of enameled aluminum and uses
0.015 m3 water/m2  of product for coating operations.  The average
process flow rate  is 1.33 m3/hr for metal preparation operations
and 0.716 m3/hr for coating operations.  The primary in-place
treatment for process  wastewater is clarification and settling.

     Plant  47051

This plant  produces 290 m2/hr of enameled aluminum for  6,400
hrs/yr.  It uses 0.018 m3 water/m2 product for coating  and ball
milling purposes.  The average  process flow rate is 12.5  m3/hr
for metal preparation  and 1.59  m3/hr for coating and ball milling.
In-place treatment consists primarily of clarification  and set-
tling and final pH adjustment.

     Plant  33077

This facility produces 360  m2/hr of porcelain enameled  aluminum
for 4,000 hrs/yr,  and  uses  0.038 m3 of process water/m2 of product
coated.  The mixed wastewater stream is treated by equalization,
Date:  9/25/81
          II.8.10-18

-------
 TABLE 8.10-8.
EFFLUENT CONCENTRATIONS (3-DAY AVERAGE) OF
POLLUTANTS FOUND IN STEEL SUBCATEGORY PLANTS,
VERIFICATION DATA [2-55]
Plant Identification
Pollutant, yg/L
Aluminum
Antimony
Arsenic
Cadmium
Chromium
Cobalt
Copper
Fluoride
Iron
Lead
Manganese
Nickel
Phenols, Total
Phosphorus
Selenium
Titanium
Zinc
Oil and grease
TSS
pH, pH units
40053(a)
190


ND
12
22
52
930
250,000
ND
910
2,700
24
11,000
ND
ND
140

51,000
2.1 - 3.2
41062(b)
2,100

ND
75
10
ND
13
2,300
240
ND
BDL
14
36
770
ND
160
230
1,700
11,000
8.1 - 9.1
36030(b)
130,000
9,700

550
630
32,000
3,500
58,000
630,000
3,500
51,000
29,000

3,600
590
660,000
180,000



Analytic methods:  V.7.3.16, Data set 2.
Blanks indicate data not available.
ND, not detected.
BDL, below detection limit.
(a)  In-place treatment not available.
(b)  In-place treatment consists of clarification/settling.
 Date:   8/31/82  R Change 1     II.8.10-19

-------
settling,  pH adjustment with lime and/or acid,  polyelectrolyte
coagulation, clarification,  and contractor removal  of the result-
ing sludge prior to discharge to a surface stream.   Process water
flow for this production consists of 8.12 and 4.37  m3/hr for
surface preparation and coating operations respectively.

Table 8.10-9 gives the water use for each process in the pro-
duction of porcelain enameled aluminum for the above plants.
Pollutant concentrations for treated effluents are  presented in
Table 8.10-10.

II.8.10.3.3  Porcelain Enameling on Cast Iron

     Plant 15712

This facility produces 9.1 m2/yr of porcelain enameled cast iron.
Primary in-place treatment for process wastewater is clarifica-
tion, settling,  and skimming.

     Plant 40053

This facility is involved with porcelain enameling on both steel
and cast iron.   Data presented in Table 8.10-12 are for the
coating on cast iron subcategory only.

Table 8.10-11 gives the water use for each process in the pro-
duction of porcelain enameled cast iron for the above plants.
Pollutant concentrations in the treated effluent are presented in
Table 8.10-12.

II.8.10.3.4  Porcelain Enameling on Copper

     Plant 36030

This facility enamels both copper and steel.   It uses 0.042 m3
water/m2 product in all coating operations.  Process wastewater
flow is 0.466 m3/hr for metal preparation and 1.69 m3/hr for
coating and ball milling.  The production rate for porcelain
enameling on copper is 10 m2/hr for 4,000 hrs/yr.  Primary in-
place treatment is clarification and settling.

Table 8.10-13 gives the water use for each process in the pro-
duction of porcelain enameled copper for two plants.  Pollutant
concentrations in the treated effluent are given in Table 8.10-14.

II.8.10.4  POLLUTANT REMOVABILITY [2-25]

Treatment technologies used in the Porcelain Enameling Industry
are generally chosen to remove the major wastewater components:
suspended solids and toxic metals.  Table 8.10-15 presents a
summary of the treatment and disposal techniques used by this
industry.  Usually more than one treatment method is used at each
facility.

 Date:   8/31/82  R  Change 1   II.8.10-20

-------
      TABLE  8.10-9.  WATER USE IN THE PORCELAIN ENAMELING ON ALUMINUM
                    SUBCATEGORY (m3 of water /m2 product) [2-25]
Process(a)
Surface preparation
Ball milling
Coating
Plant Identification
11045
0.029
0.041
0.019
33077
0.140
0.014
0.014
47051
0.042
0.0029
(b)
         (a)  Because of differences in area prepared and coated,
             these data cannot be added for each process to obtain
             overall subcategory water usage.
         (b)  This plant employs dry spray booths.

           TABLE 8.10-10.  EFFLUENT CONCENTRATIONS OF POLLUTANTS
                           FOUND. IN ALUMINUM SUBCATEGORY PLANTS,
                           VERIFICATION DATA [2-25]
Plant Identification
Pollutant, yg/L
Aluminum
Antimony
Arsenic
Barium
Cadmium
Chromium, total
Chromium-hexavalent
Cobalt
Copper
Fluoride
Iron
Lead
Manganese
Nickel
Phenols, Total
Phosphorus
Selenium
Titanium
Zinc
Oil and grease
TSS
pH, pH units
11045(a)
3,600


240
1,100
BDL


84
930
460
5,300
28

BDL
1,900

3,900
210
3,300
140,000
7.3 - 9.3
33077(a)
76
ND
ND
200
350
BDL
ND

ND
1,800
24
210
ND

BDL
1,900
28
130
390
ND
13,000
9 - 9.3
47051(a)
6,800


300
BDL
57
ND
BDL
52
390
360
97
80
57
BDL


ND
290
72,000
310
7.1 - 10.2
     Analytic methods:  V.7.3.16, Data set 2.
     Blanks indicate data not available.
     ND, not detected.
     BDL, below detection limit.
     (a)  In-place treatment consists of clarification/settling.
Date:   9/25/81
II.8.10-21

-------
         TABLE 8.10-11.  WATER USE IN THE PORCELAIN ENAMELING ON  CAST  IRON
                         SUBCATEGORY'[2-25]
                               (m3 water/m2  product)
Plant Identification
Process
Surface preparation
Ball milling
Coating application
15712
(a)
0.00001
0.00028
40053
(a)
0.0013
(b)
                    (a)Surface preparation consists of dry
                         operations.
                    (b)  This plant uses dry spray booths.
    TABLE 8.10-12.
EFFLUENT CONCENTRATIONS OF POLLUTANTS  FOUND  IN  CAST  IRON
SUBCATEGORY PLANTS,  VERIFICATION DATA  [2-25]
Plant Identification
Pollutant, yg/L
Aluminum
Cadmium
Chromium, total
Cobalt
Copper
Fluoride
Iron
Lead
Manganese
Nickel
Phenols, total
Phosphorus
Selenium
Titanium
Zinc
TSS
pH, pH units
15712(a)
190,000

19
6,200
BDL
2,200
13,000
110,000
BDL

20
1,200
63,000

470
16,000,000
8.8 - 10.7
40053(b)
190,000
3,600
740
50,000
6,000
89,000
80,000
5,600
35,000
44,000
20
980
590
58,000
250,000
21,000,000
8.8 - 9.0
              Analytic methods:  V.7.3.16, Data set 2.
              Blanks indicate data not available.
              BDL, below detection limit.
              (a)  In-place treatment consists of clarification/
                   settling.
              (b)  In-place treatment not available.
Date:   9/25/81
             II.8.10-22

-------
  TABLE 8.10-13.  WATER USE IN THE PORCELAIN ENAMELING ON COPPER SUBCATEGORY
                  [2-25]
                             (m3 of water/m2 product)
Process
Acid etch
Ball milling
Coating
Plant Identification
36030 06031
0.057 0.087
0.0037 (a)
0.0015 0.00017
               (a)  Ball milling operations at this facility
                   generated no waste water.
     TABLE 8.10-14.  EFFLUENT CONCENTRATIONS OF POLLUTANTS FOUND IN COPPER
                    SUBCATEGORY PLANTS, VERIFICATION DATA [2-25]
Pollutant, yg/L
Aluminum
Antimony
Cadmium
Chromium, Total
Cobalt
Copper
Fluoride
Iron
Lead
Manganese
Nickel
Phosphorus
Selenium
Titanium
Zinc
TSS
Plant Identification
36030(a)
130,000
6,400
550
1,100
32,000
3,500
58,000
630,000
2,100
51,000
29,000
'3,600
590
660,000
180,000
57,000,000
              Analytic methods:  V.7.3.16, Data set 2.
               (a)   In-place treatment consists of
                    clarification/settling.
Date:   9/25/81                II.8.10-23

-------
          TABLE 8.10-15.
TREATMENT METHODS IN CURRENT USE IN
THE PORCELAIN ENAMELING INDUSTRY
[2-25]
Number of plants using
the method by subcategory
Treatment method
Skimming
Settling tank
Clarifier
Sedimentation lagoon
Tube/plate settler
Equalization
pH adjustment-lime
pH adjustment-caustic
pH adjustment-acid
pH adjustment-carbonate
pH adjustment-final
Coagulant-polyelectrolyte
Coagulant- inorganic
Chrome reduction
Emulsion breaking
Chlorination
Ultrafiltration
Pressure filtration
Vacuum filtration
Filtration
Aeration
Trickling filter
Centrifugation sludge
Material recovery
Air pollution control
Process reuse-oil
Contract removal-oil
Contract removal- sludge
Landfill-oil
Landfill- sludge
Sludge drying bed
Sludge thickening
Steel Iron
2
33
17
10
3
24
15
6
6
2
5
10
3
2
1
1
2
5
5
3
2
1
1
1
1
1
7
5
2
20
3


7



2
1
2



1
1




1





2





2


Aluminum Copper

5 1
2


2
2

1
1
1
1

1













1



1
Total
plants
2
46
19
10
3
28
18
8
7
3
6
12
4
3
1
1
2
6
5
3
2
1
1
3
1
1
7
6
2
22
3
1
Blanks indicate no plants using this method.
Date:   9/25/81
      II.8.10-24

-------
Some type of settling technique is used in a large portion of the
plants, with a settling tank the most common technique.  pH
adjustment by chemical addition is another common treatment that
is used to neutralize the alkaljne or acid wastes.  Coagulants
are sometimes used to aid settling.  Once the settling nears
completion, filtration techniques are used to concentrate the
sludge, which is then landfilled or contractor hauled.  Oils may
be treated in a similar manner.  Tables 8.10-8, 10, 12, and 14 in
the plant specific section give treated effluent concentrations.

Brief descriptions of the common treatment practices and the
water reuse and recycle techniques follow.

II.8.10.4.1  Equalization/Neutralization

Raw wastewaters are commonly collected in equalization basins to
even out the flow and the pollutant contaminant load.  This
permits uniform and controlled operation of subsequent treatment
facilities.  Wastes in this industry generally require pH adjust-
ment which can be performed .in mixed equalization basins or in
separate neutralization reactor basins following equalization.

II.8.10.4.2  Sedimentation/Settling

Sedimentation is the most common technique for removal of pre-
cipitates.  It is often preceded by chemical precipitation, which
converts dissolved pollutants to suspended form, and by coagu-
lation, which enhances settling by flocculating suspended solids
into larger,  faster settling particles.  Simple sedimentation
normally requires a long retention time to adequately reduce the
solids content.  When chemicals are used, retention times are
reduced and removal efficiency is increased.  A properly operated
sedimentation system is capable of efficient removal of suspended
solids, metal hydroxides, and other wastewater impurities.

II.8.10.4.3  Chemical Addition/Precipitation

Chemical precipitation is used in porcelain enameling to precipi-
tate dissolved metals and phosphates.  Chemical precipitation can
be utilized to permit removal of metal ions such as iron, lead,
tin, copper,  zinc, cadmium, aluminum, mercury, manganese, cobalt,
antimony, arsenic, beryllium, molybdenum, and trivalent chromium.
Removal efficiency can approach 100% for the reduction of heavy
metal ions.  Porcelain enameling plants commonly use lime, caus-
tic, and carbonate for chemical precipitation and pH adjustment.

II.8.10.4.4  Granular Bed Filtration

Granular bed filters are used in porcelain enameling wastewater
treatment to remove residual solids from clarifier effluent.
Filtration polishes the effluent and reduces suspended solids and
insoluble precipitated metals to very low levels.  Fine sand and


Date:  9/25/81              II.8.10-25

-------
coal are media commonly utilized in granular bed filtration.   The
filter is backwashed after becoming loaded with solids,  and the
backwash is returned to the treatment plant influent for removal
of solids in the clarification step.

II.8.10.4.5  Sludge Concentration and Dewatering

Sludges from clarifiers can be thickened in gravity thickeners or
mechanically thickened by centrifuges.  Thickened sludges can be
further dewatered on one of a number of dewatering operations
including vacuum filters, pressure filters, and belt filter
presses.  Dewatered sludges are disposed generally to landfills
which must be properly constructed to conform with provisions of
the Resource Conservation and Recovery Act and regulations gov-
erning disposal of hazardous wastes.

II.8.10.4.6  In-Plant Technology

Many facilities in this industry use in-plant technology to
reduce or eliminate the waste load requiring end-of-pipe treat-
ment and thereby improve the quality of the effluent discharge
and reduce treatment costs.  In-plant technology involves water
reuse, process material conservation, reclamation of waste enamel,
process modifications, material substitutions, improved rinse
techniques, and good housekeeping practices.

Water reuse is practiced at several plants in this industry.
Water that may be reused for such purposes as rinse water, makeup
water, and cleanup water includes air conditioning water, acid
treatment rinse water, and noncontact cooling water.  Reuse of
acid rinse water in alkaline rinses has been demonstrated at many
electroplating plants.

Process material conservation is practiced by the recovery,
reuse, or purification of the materials used in the processes.
In the nickel deposition process the nickel solution is filtered
to reduce its iron content, giving a longer life to the solution.
Because the bath is dumped less often, the pollutant load is
reduced.

The use of dry spray booths can also reduce the wastewater volume
from the plant as well as increasing excess enamel recovery and
reuse.  Overspray is captured on filter screens and then swept up
and reused in the enamel slip.  Several plants use this and
other, similar processes to recover the enamel raw material.

Process modifications, material substitutions, improved rinsing
techniques, and good housekeeping procedures may also signifi-
cantly reduce the amount and loading of the wastewater released.
Date:  9/25/81              II.8.10-26

-------
                 II.9.2  EXPLOSIVES MANUFACTURE

II.9.2.1  INDUSTRY DESCRIPTION [2-29]

II.9.2.1.1  General Description

The Explosives Manufacture point source category is covered by
Standard Industrial Classification (SIC) Code 2892.  This category
includes the following operations:

(1)  Manufacturing operations that produce

     •  explosives,
     •  blasting agents,
     •  solid propellants,
     •  pyrotechnics, and
     •  initiating explosive compounds.

(2)  Packaging or assembling operations in which the products
     listed above are converted into end-use products.  These
     operations include the loading, assembling, and packing of
     ammunition and military ordnance.

(3)  Operations used to demilitarize or dispose of obsolete, off-
     grade,  contaminated, or unsafe explosives and propellants.

The Explosives Manufacturing Industry may generally be divided
into the commercial (private) sector and the military sector.  On
a production basis the military sector, consisting of 24 plants,
has operations that are for the most part distinctly different
from those used by the commercial sector, which consists of over
100 plants.   Operations common to both apply in only a few areas.

The major products manufactured by the commercial sector of the
industry are blasting agents and dynamites.  Other products
manufactured in limited quantities include double-base propellants,
nitroglycerin, nitroglycerin/ethylene glycol dinitrate mixtures,
special grained ammonium nitrate for use in dynamites, pyrotech-
nics, and initiating explosives.

Production processes consist primarily of mixing, blending, and
loading, assembling,  and packing (LAP) operations.
Date:  9/25/81             II.9.2-1

-------
The military sector manufactures explosives and propellants at
separate installations.   The products are then shipped to muni-
tions loading plants for assembly into finished items.  Munitions
loading plants are designated LAP operations^

Most military explosives manufacturing facilities are government
owned, contractor operated.   Of the 24 plants, only^ 10 Army
Ammunition Plants (AAP)  were scheduled to operate in 1978, and
the level of production ranges from 10% to 70% of total plant
capacity.  The common explosives produced by the military include
trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX),
cyclotetramethylenetetranitramine (HMX),  nitrocellulose, and
nitroglycerin.  Nitroguanidine is often used by the military but
is normally purchased from commercial sources.  Pyrotechnics
supplemental to those manufactured by the military are also
purchased from commercial sources.

Water usage is minimal in the explosives industry, the major uses
being equipment and facility cleanup and safety.  Reuse is
limited,
however, due to the possibility of introduction of foreign mate-
rials that could sensitize an explosion in the processing equip-
ment.

In 1977, over 1.7 billion kg (3.7 billion pounds) of industrial
explosives, blasting agents, and unprocessed explosive-grade
ammonium nitrate were sold for consumption in the United States.
Approximately 85% of this total was processed blasting agents and
unprocessed ammonium nitrate.

Table 9.2-1 summarizes information pertinent to the commercial
sector of the explosives manufacture point source category in
terms of the number of subcategories and the number and type of
dischargers in the industry.  Only the commercial sector of the
Explosives Manufacturing Industry is discussed herein, because
the military sector operates a limited number of plants, produces
very few products in the primary subcategory for consideration,
and products are manufactured for use within the military.

            TABLE 9.2-1.  INDUSTRY SUMMARY [2-1]


      Industry:  Explosives Manufacture
      Total Number of Subcategories:  5
      Number of Subcategories Studied:  1

      Number of Dischargers in Industry:

          • Direct:  180
          • Indirect:  0
          • Zero:  100
Date:  9/25/81              II. 9.2-2

-------
II.9.2.1.2  Subcategory Descriptions [2-29]

Five subcategories, based on the variety of production processes,
product types, and wastewater characteristics, have been selected
for the explosives industry.  Factors such as plant location,
size, age, solid-waste generation, air pollution control technol-
ogy, and energy consumption do not have a significant impact on
waste characteristics; therefore, they are not included in the
subcategorization criteria.  The five subcategories are:

     Subcategory A - Manufacture of Explosives
     Subcategory B - Manufacture of Propellants
     Subcategory C - LAP of Explosives
     Subcategory D - Manufacture and LAP of Initiating Compounds
     Subcategory E - Formulation and Packaging of Blasting Agents,
                     Dynamite, and Pyrotechnics

The annual production estimate for the Explosives Manufacture
Industry is presented in Table 9.2-2.  Also presented is the
percentage of total industry production contributed by each sub-
category in 1977.  As indicated by the table, 95.3% of the total
industry output is represented by Subcategory E, Formulation and
Packing of Blasting Agents, Dynamite, and Pyrotechnics.  Due to
the dominance of this Subcategory in the industry, this report
primarily addresses the Formulation and Packaging of Blasting
Agents, Dynamite, and Pyrotechnics in terms of wastewater charac-
teristics.  Since this Subcategory does not include military
explosives products, only data regarding the commercial sector
are reported.

     Subcategory A - Manufacture of Explosives

The manufacture of explosives includes operations that produce
explosive compounds by the mixed acid nitration of organic mate-
rial.  Raw materials used in this process include nitric acid or
ammonium nitrate as the nitrate source and either sulfuric or
acetic acid as a dehydrating agent.  Examples of the organic
molecules used are glycerin, ethylene glycol, toluene, resorcinol,
hexamine, and cellulose.  Upon nitration, these organic molecules
form, in the order presented above, the following products:  tri-
nitroglycerin (TNG) and dinitroglycerin (DNG), ethylene glycol
dinitrate (EGDN), trinitrotoluene (TNT), and dinitrotoluene (DNT),
trinitroresorcinol (TNR), cyclotrimethylenetrinitramine (RDX), and
nitrocellulose (NC).  Nitration may be accomplished on either a
batch or a continuous basis.  Initiating compounds, dynamite, and
black powder are not included in the subcategory due to differen-
ces in process and wastewater characteristics.
Date:  9/25/81             II.9.2-3

-------
            TABLE 9.2-2.   ESTIMATE OF ANNUAL INDUSTRY
                          PRODUCTION BY SUBCATEGORY (1977
                          DATA)  [2-29]

Subcat-                            Production,    Percent of total
egory	Subcategory title	billion grams  industry output

  A    Manufacture of Explosives       24               2.1

  B    Manufacture of Propellants      10               0.9

  C    Load, Assemble,  and Pack
         (LAP) Explosives              19               1.7

  D    Manufacture and LAP of Ini-
         titiating Compounds            4               0.3

  E    Formulation and Packaging of
         Blasting Agents, Dyanmite,
         and Pyrotechnics           1,090              95.0

                                    1,147             100.0


Production in this subcategory creates relatively large volumes
of wastewater from neutralization and washing of the final
product.
Wastewaters are generally low in suspended solids, contain soluble
nitrate and sulfate salts, and have organic concentrations that
are proportional to the solubility of the products and byproducts.

     Subcategory B - Manufacture of Propellants

This subcategory includes the manufacture of nitrocellulose-based
propellants and gas generators.   Propellants are similar to ex-
plosive products in that they are mixtures of oxidant and fuel
held together in a polymeric matrix.  They differ in the rate at
which the reaction proceeds.  Explosives detonate in a chain re-
action that occurs extremely rapidly while propellants simply
burn, evolving large volumes of gas in a definite and controllable
manner.  The most commonly produced commercial propellants are
called smokeless powders and are designated as either single-base,
double-base, or triple-base propellants.  Single-base propellants
are basically nitrocellulose, double-base propellants are chiefly
nitrocellulose and nitroglycerin, and triple-base propellants
primarily contain nitrocellulose, nitroglycerin, and nitroguani-
dine.  These propellants find principal use as the propelling
charge in munitions, but they are also used in gas generators and
rocket propulsion.  Another type of propellant is the composite
propellant, an intimate mixture of a fuel, usually aluminum
powder, and an oxidizer, usually ammonium perchlorate, held
together by a polymeric binder.   Composite propellants are used
principally for rocket propulsion.

Date:  9/25/81             II.9.2-4

-------
Relatively large volumes of wastewater are generated as the
result of water used to transport propellant between unit opera-
tions, to remove solvents from the final product, to cool and
lubricate in the cutting and machining of the final product,  and
to clean and wash down process equipment.  The presence of organic
solvents often makes organic loading higher than in Subcategory
A, and the suspended solids present are generally propellant
fines from the cutting and machining operations.

     Subcategory C - LAP of Explosives

This subcategory includes facilities that obtain the necessary
explosives and propellants from outside sources, then mix and
pack these materials into a final product.  Included in the
commercial sector of this subcategory are the loading and assem-
bly of small- to intermediate-caliber ammunition, and the manu-
facturers of explosive devices.  The military sector of this
subcategory produces large-caliber shells, bombs, grenades, and
other munitions that are filled with blends of TNT and other
ingredients.  Propellants and small explosive devices are usually
loaded dry, while explosives are normally melted down in kettles
and molded as liquids.  The small volumes of wastewater produced
reflect the characteristics of the materials being handled and
generally result from plant cleanup operations.

     Subcategory D - Manufacture and LAP of Initiating Compounds

This subcategory includes plants that manufacture "sensitive"
explosive compounds, such as trinitroresorcinol, hexanitromannite,
isosorbide dinitrate, tetryl, tetracene, lead azide, lead styph-
nate, and mercury fulminate.  Initiating compounds, which are
produced by the mixed acid nitration of organics, are extremely
sensitive materials that can be made to explode by the applica-
tion of heat or a slight shock.  They are very dangerous to
handle and are used in comparatively small quantities to initiate
the detonation of larger quantities of less sensitive explosives.
Plant facilities often include an LAP operation on site to reduce
the bulk shipping of these hazardous compounds.  Final products
include primers, detonators, detonating cords, percussion caps,
and electric blasting caps.  The LAP operation differs from the
LAP of Explosives Subcategory by the small amounts of explosives
used.

Wastewater from this subcategory is generated by neutralization
and purification of the compounds, safety practices, and plant
and equipment cleanup.  Wastewater volume is generally higher per
unit production than in other subcategories due to safety proce-
dures.  Pollutant loads result from the production processes and
from chemical treatment of catch basins and sumps to desensitize
released initiating compounds.
Date:  9/25/81             II.9.2-5

-------
     Subcategory E - Formulation and Packaging of Blasting Agents,
     Dynamite,  and Pyrotechnics

This subcategory includes operations that manufacture blasting
agents, dynamite, black powder, and pyrotechnics^.  Processes that
produce pyrophoric materials,  which ignite spontaneously if not
covered with water, are excluded because of the lineral use of
water necessary to prevent spontaneous ignition.    '

     Blasting agents.  Blasting agents include ANFO and slurries
(water gels).  ANFO (ammonium nitrate/fuel oil) blasting agent
compositions, also known as nitrocarbonitrates, are easily pre-
pared and inexpensive,  and they dominate the explosives market
today.  They are generally used in mining operations, with the
major portion produced being used for bulk loading into dry bore
holes.  If water is present, the ANFO compositions may be placed
in water-resistant containers and used.

The raw materials used to manufacture ANFO mixtures include fuel
oil, explosive-grade ammonium nitrate (AN), aluminum granules,
ferrophosphorus, and dinitrotoluene.  The AN used is normally
produced under special prilling conditions that give the prills
high porosity for better absorption of the oil.  Small amounts of
anticaking agents are also used.

Fuel oil is received in bulk and is stored in large tanks.  When
needed, it is pumped to the use site.  The AN is received in bulk
railroad hopper cars and may be transferred to a storage area or
used from the hopper car.  The remaining ingredients are normally
received in bags or steel drums.

ANFO may be produced by dry mechanical mixing, injection of the
fuel oil into the AN as it is transferred to the packaging area,
or injection of the fuel oil into the AN as it is transferred
into the bore hole at the use site.  Packaging, when used, con-
sists of cylindrical plastic tubes, plastic-lined bags, or metal
cannisters.

Approximately 75 plants produce ANFO.  Their wastewater is limited
to periodic cleanup of the plant area and rainfall runoff from
the unloading areas.  Dry cleanup is used when possible, but AN
is very hydroscopic and tends to become pasty and hard to clean
in humid conditions.  Heated floors are sometimes used to reduce
hydroscopic effects and thereby aid in the cleanup process.

Slurries (water gels) are water-resistant, high energy blasting
agents used for wet bore holes and applications requiring greater
energy than that supplied by ANFO.  Slurry products usually re-
quire a high explosive primer for detonation.  Slurry formulation
is an art and can produce a desired energy release as well as the
desired explosive properties.  Sensitivity relies on the type and
characteristics of the raw materials used and the method of


Date:  9/25/81              II. 9.2-6                                    ^^

-------
mixing.  Water resistance and gel consistency are achieved by
addition of cross-linking soluble gums.  There are approximately
21 slurry manufacturing plants in the United States.

Raw materials are received in the same way as at ANFO plants, with
sodium nitrate, aluminum granules, and organic liquid extenders
also being received in bulk.

Slurries may be prepared on site or at the plant.  For packaged
slurries, the entire formulation is prepared by premixing the
liquid ingredients into a paste, then adding the solids and
packaging the product.  On-site production may be carried out in
two ways.  In one method, the slurry is prepared as above but the
gum crosslink agent is not added until the slurry is pumped into
the bore hole.  In the second method, the paste is prepared, all
the dry ingredients are added at the use site, and the mixture
is pumped into the bore hole.

Wastewater from slurry production comes from automatic packaging
machinery, periodic equipment cleanup, dust control scrubbers,
and rainfall runoff.

     Dynamites.  Seven plants produce high explosive dynamite
compositions that are used in underground mines and for blasting
small-diameter bore holes.  Dynamite consists of nitroglycerin
or ethylene glycol dinitrate, porous filler material, and oxidiz-
ing salts such as AN (ammonium nitrate).  The grained AN used in
dynamite is produced by controlled evaporation of high concentra-
tion AN solutions followed by crystallization in open-top agitated
vessels (kettles).

Production occurs in three general steps.  First, all ingredients
except the nitroglycerin or ethylene glycol dinitrate are mixed
in batch blenders in a building known as a dope house.  The dope
mixes are then transferred to the mix house where the nitro-
glycerin or ethylene glycol dinitrate is added in batch blenders.
The mix is then sent to the packaging house and loaded into
cardboard tubes by wooden tamping machines.

Plant and equipment cleanup and dust control wet scrubbers are
the major sources of wastewater.

     Pyrotechnics.  The 45 commercial pyrotechnic plants in
the United States are divided into 2 general types.  The fireworks
industry consists of 13 major and 25 minor plants.  The flare
industry, which produces illuminating flares, distress flares,
and smoke generators, consists of seven plants.

Fireworks consist primarily of black powder and metal salts, which
produce the colors.  The mixture is held together by a water
soluble binder such as sugar or gum.  The ingredients are combined
in dry batches and water is added.  The wet mixture is then molded


Date:  9/25/81             II.9.2-7

-------
and air dried.  Black powder is also used for the fuse and pro-
pelling charge of the assembled device.   Flares are produced
similarly but may use an organic binder instead of a water sol-
uble one.  If so, an organic solvent may be necessary to clean
the equipment.  Fireworks production equipment is generally dry
cleaned with brushes.

     Ammonium nitrate (AN).   Explosive-grade ammonium nitrate
plants, although they do not fall directly under this SIC code,
are related to the industries of Subcategory E because of the
extensive use of AN as a raw material in their products.  Approx-
imately 16% of all the AN produced in the United States in 1976
was used in explosives products.  Ammonium nitrate is produced by
several processes including the Stengel, prilling, and graining
processes.  The general procedure is evaporation of the water
from a solution of AN by a physical process.

Wastewater from the production of AN generally is limited to
plant housekeeping, air pollution control, and fugitive dis-
charges, although some wastewater may result from the evaporation
steps in the process.  AN is the major pollutant in the waste-
water, which allows the wastewater to be recycled, if not too
contaminated, or sold as dilute fertilizer solution.

Table 9.2-3 presents a list of the common ingredients for the
products described above.

II.9.2.2  WASTEWATER CHARACTERIZATION [2-29]

The general nature of the wastewater sources within the explosives
industry results in a wide variance of wastewater volumes.  The
volume of wastewater" generated depends on operating methods,
equipment type and condition, housekeeping practices, safety
practices, product mix, and package type.  Table 9.2-4 presents
wastewater flowrate data for each type of production in Subcate-
gory E.

Wastewater does not originate from direct contact within the
process with the ingredients used to produce the products; there-
fore, only cleanup operations normally have the potential to
contribute pollutants to the wastewater stream.  The materials
that may possibly enter the wastewater stream include the ingred-
ients of each type of explosive found in Table 9.2-3.  Ammonium
nitrate, which is used extensively in this industry, is generally
found in all wastewater from Subcategory E facilities and con-
tributes to the TKN, NH3-N, N03-N, and TDS levels.  Inorganic
salts and metals are used in most Subcategory E product types and
contribute to TDS, TSS, and nitrate levels, and to heavy metal
concentrations.  Small concentrations of organic materials may
also be found in some industry wastewaters.
Date:  9/25/81             II.9.2-8

-------
           TABLE 9.2-3.  COMMON EXPLOSIVE INGREDIENTS [2-29]
      Product
               Ingredients
Dynamite
Black powder

Ammonium nitrate/fuel
  oil mixtures
Slurries (water gels)
Propellants
Pyrotechnics
Initiating compounds
Nitroglycerin, barium sulfate, ammonium
nitrate, ammonium chloride, sodium ni-
trate, sodium chloride, calcium carbonate,
calcium stearate, sulfur, nitrocellulose,
phenolic resin or glass beads, bagasse,
sawdust or wood flour, coal, cornmeal and
cornstarch, inorganic salts, grain and
seed hulls and four

Charcoal, sulfur, potassium nitrate

Ammonium nitrate, ferrophosphorus, calcium
silicate, dinitrotoluene, fuel oil,
aluminum, coal, mineral oil

Ammonium nitrate, sodium nitrate, guar
gum, water, crosslinking agents for gum,
ethylene glycol, aluminum granules,
flakes, or powders, glass microspheres,
fuel oil, smokeless powder, trinitro-
toluene, carbon fuel, organic amines,
ferrophosphorus, silicon

Nitrocellulose, plasticizers, density
modifiers, burning rate modifiers, nitro-
glycerin, nitroguanidine, aluminum powder,
oxidizers (e.g., ammonium perchlorate),
polymeric binders

Black powder, potassium nitrate, copper
salts, barium nitrate, strontium nitrate,
strontium carbonate, aluminum metal,
magnesium metal, potassium chlorate,
potassium perchlorate, antimony sulfide,
red phosphorus, ammonium perchlorate,
boron, manganese oxide, lead oxide, copper
oxide, sugar, linseed oil

Pentaerythritol tetranitrate (PETN),2,4,6-
trinitroresorcinol (styphnic acid), nitro-
mannite (HNM), isosorbide dinitrate,
trinitrophenylmethylnitramine (tetryl),
tetracene, lead azide, lead styphnate,
mercury fulminate
Date:  9/25/81
   II.9.2-9

-------
Wastewater sampling of screening protocol   was conducted to iden-
tify the presence or absence of the  129  priority pollutants, with
the exception of asbestos.  Those  pollutants detected in screen-
ing were further analyzed in verification  sampling.   Tables 9.2-5
and 9.2-6 summarize the available  verificationNiata on toxic
pollutants and classical pollutants,  respectively,  for the Explo-
sives Manufacture Industry.  Since most  plants have several
production processes on site,  the  data have been collated into
these processes representing wastewater  production processes
rather than an average plant.

     TABLE 9.2-4.  SUMMARY OF  WASTEWATER FLOWRATE DATA FOR
                   SUBCATEGORY E  [2-29]
Wastewater volume
cu.n/d (aal/d)
Product tvoe
ANFO
Slurry
Dynamite
Pyrotechnics
Averaaela)
0.3
5.2
72 (

(79)
(1,400)
19.000)

-------



z
o
I
o:
0 s
LL. W
O
LJ —
X Z
h-X
0
ZLJ
O
O Q£
=3 0.
O
U.Q
w<
1-
 ** "1 *
\
t
	 «,„ „ e



--fir, N







i
i f»e ^ N «A
!


0--QO - -0-



----- - ---



I 1 s
-



e




I s:sg s s




ON— — — O« N
*n«*-»-«l* M

§






j
i
i

S S ~S




	
— - M ,-«J

* *

!
e
«
s
I
x
|1 ^ 1
a ^5 a a ^ I
I p t 1 pi
i -* i i tr i
JJ. f |S ;o  X
! 1
M
" I
M
Is:
Jli

IM
is:
Date:  8/31/82 R  Change 1  II.9.2-11

-------
       o —
W
C
0
E —
U -P
Eft- 0
— 0 0)
(0 0)
z -o
(0
c
0

c +•>
n o
•o o -P
01 0)
Z "O

W
> c
t- o
I. CO —
3 O> -P
— TO O
W t-ft- 0)
03 0 -P
> 0)
< -o
if}
C
o

0) *J
.Q o
Eft- OS
3 O -P
Z 03
TJ
t- V)
0) 03
Eft- a
3 0 E
(A
c
o
E —
3 -P
Eft- 0
— 00)
X -P
TO 0)
Z T3
(A
C
O
en -P
n o
(-ft- 0
O > ° a
i. < T3
<

U
O
0 .P
.Oft- 0
E 0 0)
3 -P
2 a
0) C
.0 d —
E o a
3 E
•Z. c

c
E
4_
c

\
_
1
a.



o o o o o o o
o o o o o o o
OS O O CM O XO CM
Os J- CM CO CO lA OS
— CO



000 O O O
O CM O O O O
y ITS eo* s I"-"

a>
(0
L.
4J

C

OOOO OOOE
OO^t-0 O003
. -. i * * * C
sO lA ^ Os fi ITS C
— E
E


























oooooooo
oooooooo
— r- — omooo a>
rocsj — -3- — OCMO —
— CO — CM E
C
a'













-------
Table 9.2-7 presents toxic and classical pollutant concentra-
tion data for the selected plants.   Data are from the verifi-
cation sampling phase, except as noted.   Each plant is divided
into product lines and is usually presented as an entire plant.
Pollutant loading data for each plant subdivision are presented
in Table 9.2-8.

II.9.2.4  POLLUTANT REMOVABILITY [2-27]

Treatment practices are limited in number in the explosives in-
dustry due to the small volumes of wastewater produced and the
typical characteristics of the wastewaters from the plants.
Effluent data are very limited, and no plant specific treatment
data are available at this time.

Control and treatment practices in use today can be divided into
in-plant source control and end-of-pipe treatment.

II.9.2.4.1  In-Plant Wastewater Source Control

Control practices within the plant can consist of wastewater
reduction, recycle, or isolation.  Reduction of wastewater volume
is accomplished by use of dry cleaning practices and cleanup water
recycle.  Dry cleanup consists of dry sweeping floor areas and
shovel collection of waste, equipment cleanup with brushes, and
use of wet vacuum systems.  The material collected can be reused
if not overly contaminated with foreign material.

Cleanup water recycle deals with the dust control wet scrubber
system.  Because dust must be controlled for safety and industrial
hygiene reasons, the pollutant load in the raw wastewater from
the dust control system cannot be reduced.  However, the volume
of the wastewater can be reduced significantly by recirculation
of the wet scrubber water.  This recirculation increases the
ammonium nitrate loading and can make it feasible to recycle the
wastewater to an AN plant.  Alternative dust collectors, such as
cyclone-type collectors, can reduce or eliminate this source of
wastewater and must also be considered.

Direct recycle of wastewater into the product is not applicable
in this industry.  However, a few plants practice concentration
by evaporation and reuse the concentrated wastewater in ammonium
nitrate production.  Care must be taken to prevent contamination
of this recycle for safety reasons.  Isolation or containment of
wastewater is practiced by enclosing loading and unloading areas,
diking or trenching storage areas,  and collecting runoff in
lagoons.

II.9.2.4.2  End-of-Pipe Treatment

Treatment methods being used by the explosives manufacturing
industry to control pollutant levels in raw wastewater streams


Date:  9/25/81             II.9.2-13

-------









«
zee
Oh-
^ {0


^ z
3 —
£
tec/)
oo

z
UIX
xo
h-W
zo

MO.
za
3<
a.
Z

O O

~ 0?
oei-
oz
U.LJ
o
z<
o
~°-,

< — »
Nt-CM
-eyj i
0£«CCM
LJ_J~-
1-CQ
O ^

cc o ^
20°
ozz
-o
ceo —
^J ^f Lv
fr— ^ ^

LUO.U.
K —
woce
^ z u
^c ^c ^^

(^
1
CM
o\
u
.J
I







vO

w
c
co
a.












o
co

*j
c
CO

a.







CM


c

Z









CO
O
c
CO
a.





















10
u
c
£
O
CD
4J
2
a

_
CO
^
z
u
z



*•
CO

o
u.
1


a
._
E
a
c
0



0

z






z
^


^1
(_
(_
w


^
CO
^
o
u.
z









c
CO
4.
1







a r*ooo iTi
2j f? lA Z Z ^
^





O 0
CM O

*
CM






0 0
z j-




o o
- s





o^roooo
Jf ^ *~ O Z O

..




0 O O
Z CM CM




O O O
IT| 00 00
PO i^K





O O O
Z Z Z









to
^. c
Oi a
» o
*> c
— coo— t-v — «•  o —
a — j-> 4- aco eo o— c c
to c .c o X » 00 CM
CO



o\


o


CO
CD jJ
C 09
CD CD —
x£S
£ — *> J -0
?*> >>£ CD ^x ^
CD£ a *> 01 E
4) 0*> CO E
— 4. 9) — — 3
>»O g— CD - U
JC— 0 J* £ *>
*>£ «- X ** C CD »
CD O O 0> — £ CO to CD
8— 3£ O a *> CO 4J
a 	 c 3 ep co
O 1 «>- >>CD 0>— — «- «-
— » 0£ C£ >> - Ol >
£ c £ *> o a+> o o
CD O CO O CD *• O O CD 0. -O —
C— (.— I 0 <- 0— C C *-
aa+>£N£ 4* i o CD — zz a
N 1 1 O — CL— C C 3 co II -P
CCMCM— tOOZI CD— O OOZcoroWW— C
» « «i-— ioi— £o — oo^xoaco— CD
co 	 K en — CM a a- 1- «> CQOHZZH-KO 3
CB 4-
— c
o —








tl
CD
CO


•o
CD
N

C
O

CD
•Q

•o
CD
^
—
to
•o
«.
o
CD

—

i.
(D
O.
+>
O

•o




z-o
Z «>
CO

O
Or*
w
U.
Z ••>

V C
o o
CTtfl
CM E •U
c
4J .0 CD
CD CDO 3
M — O •"•

CO CO CMC).
*>— CD
CO— 01
°5-5S
-co X 3
CO — 0
• O
eOC XCD
. .00.
r- c« o
• ** T3 ^
> CO CD
•••0 «--0
CO CO C
•o CD an
o +> CD
£ a <- CD
jj o a. to
CD— 3
ET3 0) O

— C
co co— "-»

< m— '~-
Date:  9/25/81
II.9.2-14

-------
-JO
ZZ

£H
UJO
h-U.
zee
— UJ
CO
Uv &
zV
3£
Q-CO
3
-10
•5
0~
— co
>o
oz
zx
-o
u
oei-
£°
coo.
o
zo
— z
0<
0 -
K-

ZS
t-z
-JQ
O •>
Q- tO
1-
-IZ

= t
:-
D V)
L


•
O
u.
S


C
fl
*
I


o o— o o o
9 ooo* o o




•0 CM
X *
o



ft 9
°. 0
0
V



lf> Q VN^^fOO
. o • »^ ^ • ~
f> tft WlA « —




to n h»o • • • — 01
c) do d



« 0 O»

-------
include ponding,  land application,  biological oxidation in con-
junction with other raw waste loads,  and solids removal by fil-
tration,  settling ponds,  or air flotation.   Only a few of the
treatment systems used have any, effluent discharge and most  treat
a combination of  wastewater sources.   Table  9.2-9 shows a summary
of the  treatment  systems  used by  some Subcategory E plants.

     TABLE 9.2-9.   SUMMARY OF INDUSTRY CONTROLS FOR
                     SUBCATEGORY E  [2-29]

Tota 1 number of
Number or plants
Plants reporting
Control data
plants estimated
studied
no process- re la ted wastewater
ANFO
75
6<4
1 1
Slurry
23(a)
23
2(0)
Dynamite
7
6
1
Pyrotechnics
45(b)
7(b)
2(b)
Total
150
100
16
      Plants reporting vastewater discharge without
        treatment                         46    U     0       0       50

      Plants using evaporatIve/percolative ponds     681       I        16

      Plants using land application              3    i»      I       0       8

      Plants using solids separation only(d)        042       0       6

      Plants discharging to a combined wastewater
        treatment system                    I    I      I       2(e)     5

      (a)Includes one plant which is reported to be inactive; includes two plants at one plant site.
      (b)38 plants produce fireworks only and are considered dry operations without wastewater dis-
        charge; 7 plants produce flares, distress signals, etc.
      (c)Includes one plant which concentrates and recirculates process wastewater.
      (d)lncludes filtration, settling ponds or tanks, and air flotation.  Settling sumps may be used
        at other plants prior to ponding or discharge to treatment plants.
      (e)lncludes one plant that has collected wastewater hauled by disposal firm.
      Ponding

Ponding is the  most common form of treatment for Subcategory E
plants.   Generally, the  ponds are  not lined and natural percola-
tion  could be occurring.   Long winter seasons create some problems
for ponding because of the large inventory storage  with negligible
percolation or  evaporation.   Evaporation  ponds are  very effective
where the natural evaporation rate from stagnant water exceeds
rainfall.  This would generally include states west of the  Mis-
sissippi.  Increased evaporation by mechanical methods, such as
sprayers or cooling towers,  may also be effective for other areas
but is not in current use.

      Slow-Rate  Land Treatment

Land  application of wastewater using spray irrigation is the
second most often practiced method.  Wastewater is  collected in a
pond  and applied to plant-covered  land areas during the growing
season.   Mobile or stationary sprayers may be used.  The amount
of water applied per acre varies at each  site according to  the
amount of wastewater produced and  land area available.  No  nega-
tive  effects have been observed on green  plants in  the treatment


Date:  9/25/81               II.9.2-16

-------
areas.  Dilution may be necessary for wastewaters with very high
nitrogen content.

     Biological Treatment

Biological treatment is used at one plant to handle wastewater
from several sources.  Slurry plant wastewater is combined with
explosives manufacturing plant wastewater for a combined flow of
approximately 150 m3/day (40,000 gpd).   The water is treated in a
diffused-air, extended aeration, activated sludge treatment
system.  Based on verification data from this plant, cyanide and
ammonia nitrogen levels were reduced more than 90% and nitrate
nitrogen increased from 900 mg/L to 1,400 mg/L.

Other combined wastewater treatment systems include septic tanks
and facultative ponds.

     Solids Separation

Suspended solids are found at various levels in wastewater from
slurry and dynamite plants.  Dynamite wastewater has very small
particles which originate from the airborne dust collected by the
wet scrubbers.  Slurry wastewater generally contains larger
particles, such as granular aluminum or glass microspheres.
Small settling ponds, air flotation, and continuous paper belt
filter are three methods used to remove these solids from the
wastewater.  Another method uses caustic to dissolve the aluminum
present, then neutralizes the treated wastewater to convert the
paint grade aluminum in the raw wastewater to a settleable sludge.
The sludge is then recovered and reused.

     Alternative Technologies

Several potential technologies for treating industrial wastewater
containing high levels of ammonium and nitrate nitrogen have been
studied.  These technologies include biological processes in-
volving a variety of process configurations, and physical/chemical
unit processes, such as reverse osmosis, ammonia stripping,  and
ion exchange.  Break point chlorination and electrodialysis have
also been suggested.
Date:  8/31/82  R Change 1    II.9.2-17

-------
                    II.9.3  GUM AND WOOD CHEMICALS

11. 9.3.1  INDUSTRY DESCRIPTION

II.9.3.1.1  General Description [2-30]

The Gum and Wood Chemicals Industry in the United States (SIC
Code 2861) consists of establishments primarily engaged in manu-
facturing hardwood and softwood distillation products,  wood and
gum naval stores, charcoal, natural dyestuffs,  and natural tanning
materials.  It does not include establishments primarily engaged
in manufacturing synthetic 'tanning materials and synthetic organic
chemicals, or those engaged in the production of synthetic organic
dyes; rather,  these establishments are included within SIC Codes
2869 and 2865, respectively.

Some materials produced by this industry,  such as rosins,  may be
further processed into materials classified under different SIC
codes.  Those cases in which materials change classifications
within the same plant are  included in this description.   Excluded
are those cases where materials are purchased from one plant for
processing at a different  plant into a product with a different
SIC code.

Table 9.3-1 summarizes pertinent information regarding the number
of subcategories, the number of subcategories studied by Effluent
Guidelines Division,  and the number and type of dischargers in
the Gum and Wood Chemicals Industry.


               TABLE 9.3-1.  INDUSTRY SUMMARY [2-1,30]
                Industry:   Gum and Wood Chemicals
                Total Number of Subcategories:   7
                Number of Subcategories Studied:   4

                Number of Dischargers in Industry:  23

                   • Direct:  14
                   • Indirect:  6
                   • Zero:   3
 Date:   8/31/82 R  Change 1  II.9.3-1

-------
Best Practicable  Technology (BPT) limitations  currently promul-
gated for each  subcategory are presented in Table  9.3-2.   Limita-
tions on the  sulfate turpentine subcategory have been proposed
but not promulgated.

     TABLE 9.3-2.   BPT LIMITATIONS FOR THE GUM AND WOOD CHEMICALS
                    MANUFACTURING INDUSTRY  [2-31]


                                       Concentration. kq/Mq  of product
                                	BOD5	  	TSS	
                                Daily   30-day    Daily   30-day
Subcategorv	maximum  average(a) maximum  average(a)	pH

Char and charcoal briquets            No discharge of process wastewater pollutants

Gum rosin and turpentine
Wood rosin, turpentine, and pine
Tall oil rosin, pitch, and fatty
Essent ia 1 oils
Rosin-based derivatives


oi 1
acids


to
1
2
0.

1
navigable waters
.4
. 1
99
23
.4
0.
1
0.

0.
76
. 1
53
12
75
0.
1
0.

0.
08
.4
70
9
04
0.03
0.48
0.24
3. 1
0.02
6.
6.
6.
6.
6.
0-9.
0-9.
0-9.
0-9.
0-9.
0
0
0
0
0
(a)Computed from average daily values taken over 30 consecutive days.
II.9.3.1.2  Subcategory Descriptions

The modern Gum  and Wood Chemicals Industry  is  grouped into the
following major areas:

     (1) Char and  charcoal briquets

     (2) Gum rosin and turpentine

     (3) Wood rosin,  turpentine, and pine oil

     (4) Tall oil  rosin,  fatty acids, and pitch

     (5) Essential oils

     (6) Rosin  derivatives

     (7) Sulfate turpentine

Three of the seven Gum and Wood Chemicals subcategories (char and
charcoal briquets,  gum rosin and turpentine, and essential oils)
have been submitted for exclusion of BAT, NSPS,  and pretreatment
standards for all  specific toxic pollutants on the basis of Para-
graph 8 of the  NRDC Consent Decree.  These  subcategories are
described herein;  however, no wastewater characterizations are
presented.

     Char and Charcoal Briquets

Eighty plants,  primarily concentrated in the eastern section of
the country, have  been identified in the char  and charcoal indus-
try.  Char is produced from the destructive distillations of

Date:  8/31/82  R Change 1    II.9.3-2

-------
softwood and hardwood (primarily the latter).   Char, in turn, may
be processed into charcoal briquets or activated carbon.  Charcoal,
in itself, is one of the more economically important products of
the Gum and Wood Chemicals Industry with its wide use in the
chemical and metallurgical industries (although largely replaced
therein by coke) and in other areas.  Activated carbon has wide
use as a filter for gaseous and liquid streams.

Exclusion of revised BAT and NSPS limitations has been recom-
mended for all specific pollutants on the basis of Paragraph 8 of
the NRDC Consent Decree since the existing BAT and NSPS require
no discharge of process wastewater.  The only discharge of water
to surface water occurs from runoff which is regulated by BPT.

     Gum Rosin and Turpentine

Currently, there are only seven plants identified in the gum
rosin and turpentine subcategory, all of which are located in
Georgia.  The two largest plants have diversified and are now
producing rosin-based derivatives in conjunction with gum rosin
and turpentine.  In terms of product value, gum rosin and tur-
pentine products are a minor portion of the Gum and Wood Chem-
icals Industry.

Exclusion of BAT, NSPS, and pretreatment standards has been recom-
mended for all specific toxic pollutants on the basis of Para-
graph 8.  Of seven plants in the industry, one is an indirect
discharger, and the remaining six are self-contained dischargers.
These six plants operate on a seasonal basis between May and
September (approximately 180 days per year).  Flows of process
wastewaters in this subcategory are quite low (averaging about
5.3 m3/d per plant).

The only toxic pollutants found during screening analysis of the
indirect discharger were benzene, toluene, delta-BHC, and metals.
However, this plant is also a rosin-based derivatives producer
which is covered under the rosin derivatives subcategory of the
Gum and Wood Chemicals Industry.  Exclusion of the NSPS limita-
tions is recommended since no new plants are expected and most
existing plants are expected to close within the next 10 years
for economic reasons.  Exclusion of pretreatment is recommended
since only one indirect discharger exists, and the effluent from
this plant will be regulated under the rosin derivatives sub-
category.

     Wood Rosin, Turpentine, and Pine Oil

The wood rosin, turpentine and pine oil industry consists of five
plants in the United States.  In a typical process, pine stumps
are brought into the plant, conveyed, and washed.  The water and
sediment flow to a settling pond from which water is recycled
back to the washing operation.  Pine stygnps are reduced to chips;


Date:  9/25/81               II.9.3-3

-------
the chips undergo an extraction process that enables them to be
used as fuel (the solvent used during the extraction process is
removed from the chips by steaming);  and spent chips are removed
from the retort and sent to the boilers as fuel.   The solvent is
recycled for use in the retorts.

The extract liquor is sent to a distillation column to separate
the solvent from the products.  The bottom stream from the first
distillation column enters a second distillation column.  The
bottom stream from the second column is the finished wood rosin
product.

The crude terpene, which has been removed in the second distilla-
tion column, is stored until a sufficient quantity has been ac-
cumulated for processing in a batch distillation column.  The
distillation column is charged with the crude terpene material,
and the condensed material enters a separator.  The terpene and
pine oil products are removed from the separator.

     Tall Oil Rosin, Fatty Acids, and Pitch

Twelve tall oil distillation plants,  primarily located in the
southeastern United States, are currently in operation.  Two
additional plants are not in operation but could be made opera-
tional, if economic conditions so dictated.

Crude tall oil is particularly attractive as a raw material be-
cause of its availability as a "waste" product of the kraft pulp
and paper industry.

The crude tall oil is treated with dilute sulfuric acid to remove
some residual lignins as well as mercaptans, disulfides, and
color materials.  Acid wash water is discharged to the process
sewer.  The stock then proceeds to the fractionation process,
where the pitch is removed from the bottom of the first column
and is either sold, saponified for production of paper size, or
burned in boilers as fuel.  The remaining fraction of the tall
oil (rosin and fatty acid) proceeds to the pale plant, where the
quality of the raw materials is improved.  The second column
separates low-boiling-point fatty acid material, and the third
column completes the separation of fatty and rosin acids.

The wastewater generated in this subcategory results from pulling
a vacuum on the distillation towers.  This water is generally
recycled, but excess water is discharged to the plant sewer.

     Essential Oils

The only essential oil being produced in this subcategory is
cedarwood oil.  Cedarwood oil is produced by steaming cedarwood
sawdust in pressure retorts to remove the oil from the wood
particles.


Date:  9/25/81                II.9.3-4

-------
Exclusion of BAT,  NSPS,  and pretreatment standards has been
recommended for all specific toxic pollutants on the basis of
Paragraph 8.  The  subcategory includes seven plants, none of
which is a direct  discharger; one is an indirect discharger and
the remaining six  have no discharge.  Flows of process wastewater
in this subcategory are low (a maximum flow of 57 m3/d from the
indirect discharger under full-scale production).  The only toxic
pollutants detected during screening of the indirect discharger
were benzene and metals,  and all were at low levels.

     Rosin Derivatives

Rosin derivatives  are not included in SIC 2861, Gum and Wood
Chemicals, but in  SIC 2821, Plastics and Synthetic Materials.
Derivatives production is a natural extension of processing in
gum and wood chemicals plants since the rosin is available in the
plants.  This industry description is applicable only to those
derivative operations which are located within, and in conjunc-
tion with, gum and wood chemicals facilities.  Another deriva-
tives operation that occurs in gum and wood chemicals plants is
terpene derivatives.  Derivative products include ink resins,
paint additives, paper size, oil additives, adhesives, wetting
agents, chewing gum base, and chemical-resistant resins.

Sixteen gum and wood chemicals plants currently are producing
rosin or terpene derivatives.  These plants are located within
all four types of  rosin-producing plants.

Process operating  conditions in the reaction kettle are dependent
on product specifications, raw materials, and other variables.  A
simple ester is produced under high temperature vacuum conditions.
A steam sparge is  used to remove excess water of esterification,
and the condensable impurities are condensed in a noncontact
condenser on the vacuum leg and stored in a receiver.  Noncon-
densables escape to the atmosphere through the reflux vent and
steam vacuum jets.

Wastewater is developed from the chemical reaction and separation
of product.

     Sulfate Turpentine

Sulfate turpentine was originally considered to be a waste product
in the kraft pulp  and paper process.  However, modern technology
allows it to be profitably recovered by a distillation process to
such an extent that sulfate turpentine is the major source of
turpentines in the Gum and Wood Chemicals Industry.

During the distillation of sulfate turpentine, the first tower is
usually used to strip odor-causing mercaptans from the turpen-
tine.  Subsequent  fractionation breaks the turpentine into its
major components:   a-pinene, 3-pinene,  dipentene, camphene,  and


Date:  9/25/81               II.9.3-5

-------
sulfated pine  oil.

The distillation  of  sulfate turpentine is an  intermediate produc-
tion step.  The operations are usually batch  reactions that take
place in reaction kettles in the presence of  some  organic solvent
and metal catalyst.   The catalyst and solvent used depend on the
type of products  required.  There are approximately 200 products
produced in this  area.

Wastewater usually is generated from the condensation in the
distillation tower and from washdown of reactors.

II.9.3.1.3  Wastewater Flow Characterization  [2-30]

The volume of  wastewater produced by the plants  in the Gum and
Wood Chemicals Industry ranges from 19 to 7,310  m3/d.  Discharge
flow rates for each  subcategory are difficult to quantify because
most plants have  combined processes' that fall under several dif-
ferent subcategories, and all process wastewater typically is
discharged to  a common sewer.  Although total plant flow can be
determined from this discharge pipe, a breakdown into components
from each process is not possible.  Wastewater  flows have been
tabulated in Table 9.3-3 for each plant, and  grouped according to
the processes  within the plant.

       TABLE 9.3-3.   TABULATED WASTEWATER FLOWS  BY PLANT [2-30]
Subcate-
qories(ai
G

G,F
G.C.F

G,D,F

B,F
C
C,F
D,F






D


Plant
No.
009
885
159
571
222
743
993
485
934
242
334
244
714
660
454
040
049
759
436
590
Di scha rge
type
Ind i rect
1 nd i rect
Di rect
Ind i rect
Ind i rect
Di rect
(b)
Ind i rect
Di rect
Di rect
Di rect
Di rect
(b)
Ind i rect
(b)
(b)
(b)
Di rect
Di rect
(b)
Product ion,
kq/d
57,600
86,300
45,300
218,000
464,000
209,000
467,000
45,400
48, 100
336,000
199,000
139,000
192,000
69,000
306,000
227,000
270,000
163,000
152,000
193,000
Wastewater
flow, cu.m/d
273
1,230
4,470
2,200
1,750
682
3,830
19
587
7,310
3,030
636
2,020
186
447
3,410
1,330
158
2,270
984
             (a)B = gum rosin and turpentine; C = wood rosin, turpentine,
               and pine oil; D = tall  oil rosin, pitch, and fatty acid;
               F = rosin- and terpene-based derivatives; G = sulfate
               turpentine.
             (b)Plant discharges into the waste treatment system of another
               plant.
Date:  8/31/82  R Change 1    II.9.3-6

-------
II.9.3.2  WASTEWATER CHARACTERIZATION [2-30]

Wastewater characteristics for the Gum and Wood Chemicals Indus-
try demonstrate that,organic solvents are generally the most
prevalent pollutants.  These solvents are used in the extraction
processes across all subcategories.  Some heavy metals have been
listed as natural components of the raw materials (e.g., tree
stumps) that are utilized in this industry.

Due to the nature of the Gum and Wood Chemicals Industry, there
is a great deal of overlap among the various subcategories.  Al-
though the subcategories were defined according to the principal
product(s) peculiar to a set group, most of the plants within a
subcategory secondarily produce products which are primary to
another subcategory.  The resulting overlap makes separation of
available data relative to specific pollutants difficult to
achieve.

Wastewater sampling of screening protocol was conducted to
determine the presence of the 129 priority pollutants.  Those
pollutants detected were further analyzed in a verification
program.  The following tables present the results of the veri-
fication program.  The minimum detection limit for toxic pollut-
ants is 10 yg/L and any value below 10 ug/L is presented in the
following tables as BDL, below detection limit.

II.9.3.2.1  Wood Rosin, Turpentine, and Pine Oil

Principal toxic pollutants observed were some organic solvents
(particularly toluene), chromium, and zinc.  Benzene and ethyl-
benzene, which were frequently observed in sampling, are not used
directly in the production of gum and wood chemicals, but are
major contaminants of the two solvents - toluene and xylene,
respectively -that are commonly used in the industry.  Chloroform
and methylene chloride were found in raw and treated wastewaters
in each subcategory.  These compounds were not used in the indus-
try processes,  but are common solvents found in laboratories.
Although methylene chloride was found at relatively high levels,
it is unclear what the actual waste stream concentrations are due
to possible contamination from outside sources.  Classical pollut-
ants of concern are BOD and COD.

Of the five plants that process wood stumps for their extractable
components, only one has segregated wood rosin waste streams (the
remaining plants have multiprocess wastestreams).  The multi-
process streams could not be used to characterize the wastewater
from this subcategory;  thus,  Tables 9.3-4 and 9.3-5 present con-
centrations of toxic and classical pollutants for the wood rosin,
turpentine, and pine oil subcategory based on sampling conducted
at one plant.
Date:  9/25/81               II.9.3-7

-------
    TABLE  9.3-4.
CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN
VERIFICATION SAMPLING OF WOOD ROSIN, TURPENTINE,
AND PINE OIL SUBCATEGORY WASTEWATER [2-30]
   Toxic  pollutant,yg/L    Intake(a)
                        Raw        Treated
                    wastewater(b) effluent(c)
   Metals and inorganics
     Arsenic
     Chromium
     Copper
     Lead
     Zinc

   Monocyclic aromatics
     Ethylbenzene
     Toluene

   Halogenated aliphatics
     Chloroform
     Methylene chloride(g)
             20
            910
                      1,500
                         33
                         15
                        160(e)
                         50
                        (d)
190
             17(e)
            110
             16(f)

             27
            10(f)
340
   Analytic method:  V.7.3.19,  Data set 2.
   (a)Process makeup water--well  water.
   (b)Influent to equalization basin;  one  sample.
   (c)From aerated and settling lagoon;  average of three samples.
   (d)Indeterminate because of high organic compound loading.
   (e)Average of two samples.
   (f)One sample.
   (g)Concentrations presented are suspect due to  possible contam-
      ination.
     TABLE 9.3-5.
 CONCENTRATIONS OF CLASSICAL POLLUTANTS
 FOUND IN WOOD ROSIN, TURPENTINE, AND PINE
 OIL SUBCATEGORY WASTEWATER [2-30]
        Pollutant,mg/L  Intake(a)
                    Raw
                 wastewater(b)
         Treated
        effluent(c)
BOD 5
COD 11
Suspended solids
Total phenols 0.12
Oil and grease
1,500
1,200
240
0.46

22
230
55
0.09(d)
12(e)
        Analytic methods:   V.7.3.19,  Data set 2.
        (a)Process makeup water—well water.
        (b)Influent to equalization basin;  one sample.
        (c)From aerated and settling lagoon;  average of three
           samples.
        (d)Average of two samples.
        (e)One sample.
Date:  8/31/82 R Change  1    II.9.3-8

-------
 II.9.3.2.2   Tall  Oil  Rosin,  Fatty Acids,  and Pitch

 Principal toxic pollutants observed were  methylene chloride,
 benzene,  copper,  and.chromium.   Classical pollutants included
 total phenols, COD, and oil and grease.   Unusually high levels of
 methylene chloride  and benzene  are probably due to their use as
 laboratory  solvents and,  thus,  represent  contamination from an
 outside  source.

 Three tall  oil distillation plants currently in the industry
 perform  only tall oil distillation and some rosin size opera-
 tions.   As indicated in Tables 9.3-6 and 9.3-7 one plant in this
 subcategory was sampled.   The other tall  oil distillation plants
 have combined processes,  making their wastestreams unsuitable for
 characterization.

 II.9.3.2.3   Rosin Derivatives

 Principal toxic pollutants observed were  ethylbenzene, toluene,
 methylene chloride, and zinc.   Classical  pollutants included COD,
 BOD, and oil and  grease.   The consistently high levels of meth-
 ylene chloride and  ethylbenzene probably  represent contamination
 from an  outside source,  since these compounds are used as sol-
 vents in laboratories.

 In  one plant the  rosin derivatives process wastewater was sepa-
 rated from  that of  other processes.   The  results of the verifica-
 tion analyses are shown in Tables 9.3-8 and 9.3-9 for three sam-
 ples.

    TABLE 9.3-6.  CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN
                  TALL OIL ROSIN,  PITCH,  AND FATTY ACIDS SUB-
                  CATEGORY WASTEWATER, VERIFICATION DATA [2-30]
Toxic pollutants. ua/L
Metals and inorganics
Chromium
Copper
Lead
Nickel
Se 1 en i urn
Zinc
Monocyclic aroma tics
Benzene
Ethylbenzene
Toluene
Halogenated aliphatics
Chloroform
Methylene chloride
Intake (a )

110


13



120

20

10
7UO
Raw
wastewater

83
150
14
19
1 1
50

120
20
20

10
710
Treated
effluent

88
220

43

«tt

120

20

10
85
        Analytic method: V.7.3.19, Data set 2.
        (a)Process makeup water-well water.
Date:  9/25/81               II.9.3-9

-------
    TABLE 9.3-7.   CONCENTRATIONS OF CLASSICAL POLLUTANTS
                  FOUND IN TALL OIL ROSIN,  PITCH,  AND FATTY
                  ACIDS SUBCATEGORY WASTEWATER,  VERIFICATION
                  DATA [2-30]
Pollutant, mg/L
BOD 5
COD
Suspended solids
Total phenols
Oil and grease
Raw
wastewater
42
1,100
44
0.55
48
Treated
effluent

130
19
0.029
13
        Analytic method: V.7.3.19,  Data set 2.
    TABLE 9.3-8.  CONCENTRATIONS OF TOXIC POLLUTANTS FOUND
                  IN ROSIN DERIVATIVES SUBCATEGORY RAW WASTE-
                  WATER, VERIFICATION DATA [2-30]
Toxic pollutant, vg/L
Metals and inorganics
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Zinc
Phenols
Phenol
Monocyclic aromatics
Benzene
Ethylbenzene
Toluene
Halogenated aliphatics
Chloroethane
Methylene chloride
1,1, 1-Trichloroethane
Intake

53
120
62
180
72
34
38,000

14,000

170
2,200
5,300


7,300
830
Raw Treated
wastewater effluent

41
95
48
300
54
100
38,000

>11,000


12,000
17,000


2,700
•


100
34
190
49
35
38,000

23,000

710
28,000
>4,000

520
6,700

     Analytic method:  V.7.3.19, Data set 2.
     Values not blank adjusted.
Date:  9/25/81             II.9.3-10

-------
         TABLE 9.3-9.  CONCENTRATIONS OF CLASSICAL POLLUTANTS
                       FOUND IN ROSIN DERIVATIVES SUBCATEGORY RAW
                       WASTEWATER, VERIFICATION DATA [2-30]

                                              RawTreated
           Pollutant, mg/L	Intake	wastewater  effluent
BOD 5
COD
Suspended solids
Total phenols
Oil and grease
450
40,000
87
46
150
1,300
31,000
' 71
41
92

38,000
70
53
62
           Analytic method:  V.7.3.19, Data set 2.
           Values not blank adjusted.

II.9.3.2.4  Sulfate Turpentine

Three plants that fractionate sulfate turpentine were sampled.
Mean concentrations of two of the three plants' wastewaters were
used to determine the values in Tables 9.3-10 and 9.3-11, since
the waste stream from one plant is very different from those of
the other two.  Waste streams differ based on the types of end
products manufactured by the various plants.  The varying product
lines of the sulfate turpentine fractionators make this subcate-
gory very difficult to characterize.

II.9.3.3  PLANT SPECIFIC DESCRIPTION  [2-30]

Tables 9.3-12 through 9.3-15 present toxic and classical pollut-
ant data for gum and wood chemical process plants.  The data in
this section are based on the most current representative infor-
mation available from two of the plants contacted.  Verification
sampling data are used to supplement historical data obtained
from the plants for the classical pollutants, and in most cases
are the sole source of quantitative information for toxic pollut-
ant raw waste concentrations.

II.9.3.4  POLLUTANT REMOVABILITY [2-30]

II.9.3.4.1  Industry Application

A matrix of the current in-place treatment technology in the Gum
and Wood Chemicals Industry is shown in Table 9.3-16.  Many of
the direct dischargers have primary treatment in place at this
time.  Pretreatment processes used by indirect dischargers depend
on the requirements of the receiving treatment works.  Six in-
direct dischargers discharge their wastewater to POTW's.  Six
plants discharge their wastewater to the waste streams of other
industries such as pulp and paper mills.  The plants that dis-
charge to POTW's have treatment equipment to meet POTW require-
Date: 8/31/82  R  Change 1   II.9.3-11

-------
          TABLE 9.3-10.
                CONCENTRATIONS OF TOXIC POLLUTANTS  FOUND  IN  SULFATE
                TURPENTINE SUBCATEGORY WASTEWATER(a)  [2-30]
    Toxic pollutants. ug/L
                           Intake
Raw wastewater
Treated effluent
Arsen ic
Chromium,
Copper
Lead
Nickel
Selenium
Zinc
Bis(2-ethylhexyl ) phthalate
Phenol
Benzene
Toluene
Ch loroform
Methylene chloride
Analytic methods: V.7.3.19, Data

I20(b)
250(b)

36(b)




74(b)


kSO
set 2.
62
540
2,800
15
1,300

280

450(b)
I40(b)
1,600
1, I00(b)
3,600

76(b)
450
2,800
15
450
I9(b)
310
l,900(b)
850(b)
200
940
1, I00(b)
1,600

    Values not blank adjusted.
    (a)Ddta compiled from two plants  whose
       sulfate turpentine.   Values are  the
    (b)Data available for one plant only.
                                 major processing  effort was  fractionating
                                 mean of the averages  for  each plant.
TABLE 9.3-11.
                        CONCENTRATIONS OF CLASSICAL  POLLUTANTS FOUND IN SULFATE
                        TURPENTINE SUBCATEGORY WASTEWATER [2-30]
Classical pollutants. mq/L
BOD5
COD
Suspended So 1 ids
Total phenols
Oil and grease
1 ntakef a )

17

0.023

Raw
wastewater(a )
2,200
8,200
160
1 .7
260
Treated
eff luentta )
2, 100
5,600
220
3.8
310
        Analytic method: V.7.3.19, Data set 2.
        (a)Data compiled from two plants whose  major  processing effort was frac-
           tionating sulfate turpentine.  Values  are  the mean of the averages
           for each plant.
Date:   8/31/82  R   Change  1   II.9.3-12

-------







o
CO
1
CM


<^
1-
<£
Q

Z
O
—
1-
«^
o
—
_
cc
UJ
>

«*
•3-
VO


t-
z
^
I
Q.

«
Z
o

h-
^
N

Q£
UJ
1-
o

iy
^
X
O

Jjj
t-

2
l_
t/5
rf
s


.
CM

1
CO
.
O\

UJ
t
CO

h-

























.
C-D
— o
tfl O
CO >
r»
L.
Old)
C —
... ._
— o
P J3
p
0 cn
M C
•0 X
c —
co E

C (/)
O 0
o-o
013
CO —
— 0
c
•o —
0
p 0 t-
CO !- 0
!- 3 P
0T3 CO
CO 0 >
U 0
>>0 P
J3 5- W
Q. co
p ^
C P
0 CT3
E 0 0
.PEN
- CO P —
— 0 CO —
O S- 0 CO
P <- 3
0 P CT
C— 0 0
— CO S-
0.0 o.jz
73 °O> CD —
C O 3 >
CO — O"
O — £
.— C W
0 CO Z> CO
c

p ••
c c
0 0
a—

3 a
p —
^
«o
C (A
.- 0
V) Q
O

C
T3 0
0 E
O P
2 co
2
• • H~
Sj
!. i-
0 0
0)P
0 co
*> >
CO 0
O P
.O (A
3 CO



























C
o
—
p
CO
L.
P
C
0
o
c
0
o


























































i
c
0
— 3
CO —
C d-
U_ 0
p
01C
C 0
— 3
— __
4J<4-
4J C>_
0 0
V)
c
c~ .—
10 CO
< CO
^





CO
^^
C P
0 C
— 0
P 3
CO —

•- Q-
— 0
(Q
3 C
CT—
UJ U)
CO
jQ





4J
C C
0 0
— 3
1 < _
CO ^f-
N C

...
co c
3 —
CT W-
LU CC




5-
ffi


QJ 3
O0 —

s- co 0
a- E >
















4J
C
(0
p

—
o
a.
•a
or~ o
j- — —
CO







OO O
VQ CO C?
CM J-
A


















OOOO
VO 	 O
lT\ J-
V















ooo-^
os— m o
— v —











OO
— CM
ON









_l 0

01—

o

»i 	 0)

ap — n —

ozoujh-
—
X
o
1-
0T3 0
— \oo r^in
	 CO 03
—







J* OfOOO
— CM — m —
VO ~"



















O(--O\O
00— COCO
ON ON
















coomoo
co O — VO\O
in —a-
*
—









o
CM
_














IA
^
O
c
0
E J=
U 3 O.
._ s 	
C 0 E —
0 Q. O ^ O CO
w as- co c P

--a
O CO
0
0 —
01
CO TJ
s- c
0 3
> 0
• CO Q.
E
• *K O
C 0
in o
CO —
A C
CM CO
O1O1
P C !-
0 — O
u> —
PJZ
CO P Ol
JJ >

« • c o— c
ON • C CO CO
— •DO 0O
• 0 — C -D 0 — ja co co
CO S- (A j0 P 0 o
•o c co P co c >
O WO CO C O P
JZ — 1 ! 	
•P.O m 0 E c c
0 —(0^-00
E P 0
0 S- S- P-DTJ
U C 0 0 0 0 0
— P p "O !/> >0 « — 0303
— 3
c eo co .a o "u  •^^-•^-•*_*-^-
Date:  9/25/81
II.9.3-13

-------





>— 1
o
CO
—
•^
I —
<£
Q

Z
O
—
f-
«^
0

u.
—
Q^
LJ

.,
ON
•if
ON

h-
z
rf
Jj
O-

•,
2E
O

1-
^r
N

•e
Ul
H-
o

C£

I
O

a:
LJ
i-

3c
LJ
1-
V)
^
3=

.
CO
«
1
CO
OS
LJ
_J
CO

1-















e CD to
3— C
~ V 0
CO — O
10 O)
c. 	 co
03 —
E
CD CD-O
to 0)
3 Ct- p
O CO

J3 OICD
c co
•D —

C W
(D CD P
EWC
0) CD
— CD E
O.U P
a. c co
3 CO CD
• CO £ !-
to c P
•0 P CD

O CD O CO
co E P 0

>> CO C O!
P CD O O
4J ! 	
CO +J P O
C|- CO —

•a i- 3"°
C CO O> •»
co E co to
— O —
.£- CJ —
.CO- O
O

•— • •.
ac
o

C -P
— a
to —
0 5-
<- 0
CO
•> CD
— o
O P
c
— CD
— E
CO -P
t- CO
E
••H-

f_ L.
O CD
O14J
CD co
•P >
CO CD
O P
O CO
3 CO
























C
o
^3
CO

4J
C
0)
o
c
o
o

























P
•a c
0) CD
P 3
CO —
_
1- CD


Ol
c

—
p p
P C
CD CD
W 3
—
— It.
COti-
— CD
p
—
c





t_
CO
P
CO

CO 0
cr P
to
cc






1
a
3
CD i-
x. CD
CO -P
E co
^
to
to —
CD-
CO CD
0 >

a.















p
c
CO
p
;

_
o
a.


1AOO O' OCO co d"O
03 — C\T CM CM 00 J- ^t-CM
— CM












ooooo oi*~ ^ r^o
oo 	 ir> coos csj CM o
r~ — CM —















OOOOO OrOifO— OO
	 CM CM CM iTiOO 	 IT\IT\
p- — — ir\










-^ *~ ^^
CO CO CO
•w *-* x^
O O O O O CO
J- — CM CM — —
f- — —











-I CD
CV-

~~o
«— to
to £ 0) —
P O C O
C E CD C
co >

• a
fO CO
• a
^E
> Q.

#• • "1
CO 
CD
£ P
O
U CD

P V!
^> 3
— W
CO'—
C CO

-------
        TABLE 9.3-14.  WASTEWATER CHARACTERIZATION,  PLANT 097,  VERIFICATION
                      DATA  [2-30]

            Subcategory:  Rosin Derivatives
            Wastewater Treatment Description:  Unknown
Pol lutaht
Toxic pollutants, u.g/L
Chloroethane
Methylene Chloride
1,1, l-Tri chloroethane
Benzene
Ethyl benzene
Toluene
Phenol
Arsen ic
Cadmium
Copper
Chromium
Lead
Nickel
Zinc
Total phenols
Classical pollutants, mg/L
Suspended sol ids
COD
BOD
Oil and grease
Intake


2,700


12,000
17,000
>l 1,000
4 1
95
300
48
54
100
38,000
41,000

71
31,000
1,300
92
Raw
wastewater


7,300
830
170
2,200
5,300
14,000
53
120
180
62
72
34
38,000
46,000

87
40,000
450
150
Treated
eff 1 uent

520
6,700

710
28,000
>4,000
23,000

100
190
34
49
35
38,000
53,000

70
38,000

62
       Analytic methods: V.7.3.19, Data set 2.
       Blank  values have not been subtracted.
       TABLE  9.3-15.
WASTEWATER CHARACTER IZATON,  PLANT 610, VERIFICAT
DATA [2-30]
                                 ION
Process makeup-
Pol lutant wel 1 water
Toxic pollutants, |ig/L
Methylene chloride 560(b)
Benzene
Toluene
Bis(2-ethylhexyl ) phthalate
Arsen ic
Copper 250
Ch rom i urn 1 20
Lead
Nickel 36
Selenium
Zinc
Total phenols 18
Classical pollutants, mg/L
Suspended sol ids
COD 16
BOD
Oil and grease
Raw
wastewater

6,600
<53
< 1,000

<43
2,000
200

-------
ments.  The plants that discharge to the waste streams of other
industries pretreat TSy^ skimming the surface oil and settling
solids.

II.9.3.4.2  Treatment Methods

     Oil Separation

     Free oil removal.  Oily products such as turpentine and
fatty acids are a major factor in this industry.   Gravity oil-
water separation is used throughout the industry to recover oil
for use as a fuel supplement or, in some cases, for recycle to
the plant process.  Oil-water separation reduces the toxicity and
the oxygen demand of the wastewater by removing the oil.

A baffle separator at the effluent end of an equalization basin
is the most common system used in the industry.  The oil can be
skimmed from the basin either manually or continuosly depending
on the wastewater flow and the quantity of oil products produced
at the plant.  In this study, free oil removal was not considered
part of the treatment system, and wastewater characteristics
across oil-water separators were not considered.

     Chemical flocculation.  Wastewater from the industry typi-
cally has high concentrations of emulsified oil,  the quantity of
which varies from plant to plant depending on the efficiency of
the oil-water separator and the pH of the waste stream.  At a pH
less than 3, the emulsion problem is greatly reduced; however,
the pH of the waste streams in the industry typically range from
3 to 9.

Two plants in the industry are currently using chemical coagula-
tion.  One plant fractionates tall oil, and the other plant has
major production in the wood rosin and turpene area.  These
plants reduce oil and _grease by 65% to 85% using coagulation and
settling equipment with a polymer as a flocculation aid.  The
flocculated effluent generally contains from 7 to 16 mg/L of oil
and grease.

     Equalization

Equalization is used in the treatment system to smooth out surges
in both flow and pollutant concentration. Some type of equali-
zation will be required by the industry in general.

     Air Flotation

Air flotation devices are used by plant 778.  A study conducted
by plant 778 reported that air flotation removed 204 kg/day  (450
Ib/day) of BOD, 181 kg/day (400 lb/ day) oil and grease, and 236
kg/day  (521 Ibs/day) of COD.  Plant 767 is in  the process of
Date:  9/25/81               II.9.3-16

-------
installing flotation equipment, and pollutant removal rates are
not available at this time.

Plant 102 is using a dissolved air flotation process.  A study
conducted by the plant showed a reduction of TOC across the flo-
tation unit of 2,860 kg/day (6,310 Ib/day).   Oils recovered from
the flotation unit are used as a fuel supplement.

     Neutralization

Gum and Wood Chemicals industrial waste streams vary in pH from 3
to 9.  Neutralization is required to adjust the pH of the stream
to levels necessary for the various treatment steps.  Oil emulsion
breaking requires a pH of less than 3; metals precipitation re-
quires a pH of approximately 9; and biological treatment requires
a pH of approximately 7.  The pH adjustment can be made with the
addition of either alkalies or acids, depending on what pH is
required.  Alkalies commonly used are lime,  caustic, or soda ash.
The acid used in neutralization is usually sulfuric acid.

     Carbon Adsorption

Presently, there is one facility using activated carbon adsorp-
tion.  Plant 102 has oil-water separation, neutralization, dis-
solved air flotation, filtration, and finally granular activated
carbon (GAG).  Before installing the GAG, carbon isotherm and
pilot plant studies were performed.

Adsorption isotherms were developed by three separate labora-
tories using the parameter COD.  The results were carbon loadings
of between 0.85 and 1.2 kg COD/kg carbon (0.85-1.2 Ib COD/lb
carbon).   The pilot plant studies revealed that the optimal con-
ditions were flow rates of 176 to 293 m3/m2/day (3 to 5 gpm/ft2)
and a contact time of 45 to 50 minutes.  At these conditions, COD
removals were 75% to 85%.  The pilot plant results confirmed the
isotherm results by yielding a carbon loading of approximately
1.0 kg COD/kg carbon (1.0 Ib COD/lb car.bon) .

The GAG system was designed and is operating at a carbon loading
of approximately 1.2 kg COD/kg carbon (1.2 Ib COD/lb carbon) and
0.44 kg TOC/kg carbon (Ib TOC/lb carbon).  Pollutant reductions
were approximately 84% COD and 79% TOC.  Representative perfor-
mance data for the GAG system are shown in Table 9.3-15.  The
performance of the entire treatment system was better than 95%
removal of COD and TOC.  Typical performance data for the total
treatment system are shown in Table 9.3-16.

Very little data are available on adsorption of toxic pollutants
in gum and wood chemicals wastewater.  Carbon adsorption is not
effective for removing most metals.  The organics commonly ident-
ified during screening and verification were benzene, toluene,
ethylbenzene, and phenol.


Date:  9/25/81              II.9.3-17

-------





1
CM
>
O
X
o
i-
i-

(V
00
>o
o

s<
(*-
o
>o
^»
c
00
J^-
r-

QXXXXXX X
OX X
QXXXX XXX
- X X X X X X
OX X
QXXXX XXX X
0 X X X XXX
Q X X XX
OX X

OX X

— X X X X
Q XX
- X X X
X XX X

— X XXX X
OX X
- X X
— X X XX

0 X X XX XX
OX X

QXXXXXX X
I ! s
o c wo
?o c a a a
— O C — o « O>
Si cgig-^c Si, §§?
o— co — -oou>o <-c o a o -M a) 0*0
£au— u i. i. o — <-a— aio wo
NO— C'O — W (B L. CO C <0>>
oa> — — feooQ>(0<**cti— oo— en t-tv
0 — «.!, — *>£_ —>- 3«l — — BjC«>
a— §1-3*)™1-S|0- • 09 O W X CO C **
Date:  9/25/81
II.9.3-18

-------
        •TABLE 9.3-17,
SECONDARY TREATMENT FEED AND EFFLUENT ANALYSIS
AND PERFORMANCE  DATA FOR PLANT 102 GRANULAR
ACTIVATED CARBON SYSTEM [2-30]
Item
Design
12,300 m3/d (3.24 MGD)
COD
TOC
BOD
Startup period
9,810 m3/d (2.59 MGD)
COD
TOC
Typical operation
9,810 m3/d (2.59 MGD)
COD
TOC
Selected samples
9,810 m3/d (2.59 MGD)
BOD
Phenols
Ni
Zn
Cd
Cu
Cr
TS
SS
DS
Chlorides
NO 2
Oil and grease
Concentration
, mg/L
Influent Effluent


600
160
250


980
220


750
200


300
4.7
1.0
1.1
0.9
1.3
1.1
1,200
81
1,100
1.8
5.2
28


130
30
50


150
46


160
42


82
0.58
0.33
0.29
0.22
0.36
0.26
970
13
950
0.84
4.3
2.2
Percent
reduction


78
81
80


85
79


79
79


73
88
67
74
76
72
76
19
84
14
53
17
92
Removal,
kg/ day


5,800
1,600
2,400


8,100
1,600


5,800
1,600


2,100
40
6.8
8.2
6.8
9.1
8.6
2,400
680
1,700
8.6
8.6
250
Date:   8/31/82 R  Change  1   II.9.3-19

-------
As indicated in Table 9.3-19,  the toxic pollutants found at plant
102 were benzene,  toluene, phenol,  and bis(2-ethylhexyl) phthalate.
The bis(2-ethylhexyl) phthalate  was found only  in the effluent  of
the carbon  adsorption unit.

     Evaporation

Due to the  significant volumes of plant wastewater generated,
evaporation is not a feasible  or widely used  technology in the
Gum and Wood Chemicals Industry  for achieving no-discharge status.
However, it may be applicable  for disposal of specific, high
strength, low volume, process  waste streams.

    TABLE 9.3-18.   TYPICAL TOTAL TREATMENT SYSTEM PERFORMANCE
                    DATA(a)  [2-30]



Parameter
COD
TOC
BOD
TSS
Oil and grease

Raw waste-
water,
mg/L
3,200
1,200
1,600
320
500
Primary
treated
effluent,
mg/L
670
200
270
72
25
Secondary
treated
effluent,
mg/L
140
37
73
12
2

Overall
reduction,
%
96
97
95
96
99
   (a)Data represent the  total performance of an oil-water separation,
      neutralization, dissolved air flotation, filtration, and granular
      activated carbon(see Table 9.3-17)  system at 9,810 m3/d (2.5 MGD).
     TABLE 9.3-19.  REMOVAL OF ORGANIC PRIORITY POLLUTANTS  FOR
                     PLANT  102  ACROSS ACTIVATED CARBON COLUMN
                     [2-30]

                             Sample prior toSample after  carbon column
       Pollutant, yig/L	carbon column	Day 1	Day 2	Day 3

     Benzene                      590           130     200       300
     Toluene                     2,500           180     400     1,300
     Phenol                       120                              49
     Bis(2-ethylhexyl)
      phthalate                                 400     260

     Blanks indicate data not available.
Date:  8/31/82   R  Change 1   11.9.3-20

-------
              II.9.5  PHARMACEUTICAL MANUFACTURING

II.9.5.1  INDUSTRY DESCRIPTION

II.9.5.1.1  General Description [2-32]

The Pharmaceutical Manufacturing Industry produces hundreds of
medicinal chemicals by means of many complex manufacturing tech-
nologies.  The Pharmaceutical Manufacturing Point Source Category
may be subdivided to cover the following products, processes,  or
activities:

     • Biological products - SIC Code 2831
     • Medicinal chemicals and botanical products - SIC Code 2833
     • Pharmaceutical products - SIC Code 2834
     • All fermentation, biological and natural extraction, chem-
       ical synthesis, and formulation products con-
       sidered to^e pharmaceutically active ingredients by the
       Food and Drug Administration but not included in SIC
       Codes 2831, 2833, or 2834
     • Cosmetic preparations - SIC Code 2844 - which func-
       tion as skin treatments, excluding products which serve to
       enhance appearance or provide a pleasing odor
     • The portion of a product with multiple end uses which is
       attributable to the pharmaceutical manufacturing industry
     • Pharmaceutical research which includes biological, micro-
       biological, and chemical research; product development;
       and clinical and pilot-plant activities.

Information on 464 pharmaceutical manufacturing plants is pre-
sently included in the EPA data base, representing the feedback
from more than 900 Portfolios distributed under Section 308 WPCA.
Most pharmaceutical manufacturing firms are located in New York,
New Jersey, Pennsylvania, Illinois, Indiana, Michigan, Missouri,
Ohio, and California, with production concentrated in the indus-
trial areas of the east and midwest.  Of the 464 plants identified
in the EPA data base, approximately 80% are located in the eastern
part of the United States.

Table 9.5-1 summarizes pertinent information regarding the total
number of subcategories, the number of subcategories studied,  and
the number and type of discharges in  the industry.  Only 11% of
the surveyed pharmaceutical plants have direct discharges, where-
as the majority of the plants in the industry discharge their
wastewaters to POTW's.  Best Practicable Control Technology
Currently Available (BPT) regulations pertaining to the pharma-

Date:  9/25/81               II.9.5-1

-------
ceutical  manufacturing industry  are presented  in Table  9.5-2.


                 TABLE 9.5-1.   INDUSTRY  SUMMARY  [2-32]
               Industry:   Pharmaceutical  Manufacturing
               Total  Number of Subcategories:   5


               Number of  Dischargers in  Industry:   464
                 • Direct:   54
                 • Indirect:   271
                 • Combined Direct  and Indirect:   7
                 • Zero:   132(a)


               (a)98  of the 132 discharge no  process wastewaters.
                The reference  classified  the  remaining 34  also
                as zero dischargers:
                  Contract disposal:  7      Recycle/reuse:   2
                  Evaporation:   7             Septic system:   6
                  Land application:   6       Subsurface discharge:
                  Ocean dumping:  2


                 TABLE 9.5-2.   PHARMACEUTICAL MANUFACTURING
                                  BPT  REGULATIONS [2-34]

   PaVameter     Subcateqories              Current BPT regulation

     BOD 5  (a)     A,B,C,D,E     The allowable effluent discharge  limitation
                                for the daily average mass of BOD(5) in any
                                calendar month  shall  be expressed in mass
                                per unit time and shall specifically reflect
                                not less than 90% reduction in the  long-term
                                daily average raw waste content of  BOD(5)
                                multiplied by a variability factor  of 3.0.

     COD(a)        A,B,C,D,E     The allowable effluent discharge  limitation
                                for the daily average mass of COD in any
                                calendar month  shall  be expressed in mass
                                per unit time and shall specifically reflect
                                not less than 7**% reduction in the  long-term
                                daily average raw waste content of  COD
                                multiplied by a variability factor  of 2.2.

     TSS          B,D,E         The average of  daily TSS values for any
                                calendar month  shall  not exceed 52  mg/L.

     pH           A,B,C,D,E     The pH shaI I be within the range  of 6.0 to
                                9.0 standard units.

   (a)To assure equity  in regulating discharges from the point sources covered
      by this subpart of the  point source category, calculation of raw waste
      loads of BOD 5 and COD  for the purpose of determining NPDES permit
      limitations (i.e., the  base numbers to which the percent reductions are
      applied) shall exclude  any waste load associated with solvents in those
      raw waste  loads,  provided that residual amounts of solvents remaining
      after the practice of recovery and/or separate disposal or reuse may be
      included  in calculation of raw waste  loads.  These practices of  removal,
      disposal, or reuse include recovery of solvents from waste streams and
      incineration of concentrated solvent waste streams (including  tar still
      bottoms).  This regulation does not prohibit inclusion of such wastes in
      the raw waste loads in  fact, nor does  it mandate any specifjc  practice,
      but rather describes the rationale for determining the permit  conditions.
      These limits may  be achieved by any one of several or a combination
      thereof of programs and practices.



Date:   9/25/81                  II.9.5-2

-------
II.9.5.1.2  Subcategory Descriptions [2-32]

Under the regulation established for BPT, the Pharmaceutical Man-
ufacturing Point Source Category was grouped into the five product
or activity areas shown below.  This subcategorization was based
on distinct differences in manufacturing processes,  raw materials,
products, and wastewater characteristics and treatability.

     Subcategory A - Fermentation Products
     Subcategory B - Biological and Natural Extraction Products
     Subcategory C - Chemical Synthesis Products
     Subcategory D - Formulation Products
     Subcategory E - Pharmaceutical Research

  •  The EPA has decided to deemphasize pharmaceutical research
     (Subcategory E) because this activity does not fall within
     SIC Codes 2831, 2833,  and 2834, which were identified in the
     Consent Decree.
  •  Many plants within the industry are involved in activities
     associated with more than one Subcategory.  Table 9.5-3 in-
     dicates that 59.6% of the plants in the EPA data base are
     involved in formulation (Subcategory D) activities.  Table
     9.5-4 presents a breakdown of the industry by manufacturing
     Subcategory, listing the number of plants and the percent of
     total plants for each subcategory combination.   Formulation
     (Subcategory D) is by far the most common manufacturing op-
     eration in this industry.  Many plants having either Sub-
     category A or C operations also have Subcategory D activi-
     ties.
  •  Table 9.5-5 gives the number of batch, continuous, and semi-
     continuous operations for each subcategory and for the total
     industry.  Batch-type operations are by far the most preva-
     lant form of pharmaceutical production activities.

     Subcategory A - Fermentation Products

Fermentation, the basic method used for producing most antibi-
otics and steroids, involves three basic processing steps:
inoculum and seed preparation, fermentation, and product recovery.

Production of a fermentation pharmaceutical begins with spores
from the plant master stock.  The spores are activated with
water,  nutrients, and heat.  The cultures are then propagated
under laboratory conditions to produce sufficient mass for trans-
fer to the seed tank.

Fermentation is a batch process, although most large operations
are highly automated.  In each batch cycle, the broth is dis-
charged from the previous cycle, and then the fermenter is washed
down with water and sterilized with live steam.  Sterilized raw
materials  are then charged into the vessel.  After optimum
conditions are achieved, the microorganisms in the seed tank are
drained into the fermenter, and fermentation begins.

Date:  9/25/81               II.9.5-3

-------
          TABLE  9.5-3.  PLANTS ASSOCIATED WITH OVERALL MANUFACTURING
                       SUBCATEGORIESJ2-32]
                                                          Percent of
      Overall manufacturing      Number of plants      total subcategory
          subcategory(a)	in subcategory(b)	combinations
A
B
C
D
Not available
37
80
133
372
2
6.0
12.8
21.3
59.6
0.3
(a)Excludes  Subcategory E.
(b)Individual  plants may be counted more than once, depending upon the
   number of subcategory combinations employed.
             TABLE  9.5-4.  PLANTS ASSOCIATED WITH MANUFACTURING
                          SUBCATEGORY COMBINATIONS [2-32]
Manufacturing subcategory
combination(a)
A
B
C
D
AB
AC
AD
BC
BD
CD
ABC
ABD
ACD
BCD
ABCD
Not available
Number
of plants
4
21
47
271
1
3
5*
12
23
42
2
4
10
9
8
2
Percent of
total plants
0.9
4.5
10.1
58.4
0.2
0.6
1.1
2.6
5.0
9.1
0.4
0.9
2.2
1.9
1.7
0.4
            (a)Excludes  Subcategory  E.
 Date:   9/25/81               II.9.5-4

-------
      TABLE 9.5-5.  PHARMACEUTICAL INDUSTRY SUBCATEGORY AND
                    PRODUCTION OPERATION BREAKDOWN [2-32]

                               	 Number of operations
                                     Subcategory
          Paramater             A     B      C      D    Total
Type of operation
Batch
Continuous
Semi continuous
Number of operations
Percent of total operations

32
3
11
46
6.7

76
0
9
85
12.4

129
14
19
162
23.6

359
16
17
392
57.2

596
33
56
685 (
100.0




a)

(a)Since each individual subcategory within a plant may be com-
 prised of more than one type of operation, this figure will
 be greater than the total number of subcategories.

After a period of 12 hours to one week, depending on the fermen-
tation process, the broth is ready for product recovery.  The
three common methods of product recovery are solvent extraction,
direct precipitation, and ion exchange or adsorption.  In solvent
extraction, an organic solvent is used to remove the pharmaceu-
tical product from the aqueous broth to form a more concentrated,
smaller volume solution.  Direct precipitation consists of first
precipitating the product from the aqueous broth, filtering the
broth, and then extracting the product from the solid residues.
Ion exchange or adsorption involves the removal of the product
from the broth using a solid material (i.e., ion exchange resin,
adsorptive resin, or activated carbon).  The product is then
removed from the solid phase using an elutriant or a solvent and
subsequently recovered.

     Subcategory B - Biological and Natural Extraction

Many materials used as Pharmaceuticals are derived by extraction
from natural sources, which include roots and leaves of plants,
animal glands, and parasitic fungi.  All extractive Pharmaceu-
ticals are too complex to synthesize commercially.  In addition,
synthesis is an expensive manufacturing process because extrac-
tion requires the collection and processing of very large volumes
of specialized plant or animal matter to produce very small
quantities of product.
Date:  9/25/81               II.9.5-5

-------
The extraction process consists of a series of operating steps in
which, following almost every step,  there is a significant reduc-
tion in the volume of material being handled.   In some processes,
the volume reductions may be in orders of magnitude,  and the com-
plex final purification  operations may be conducted on quanti-
ties of materials that are only a few thousandths of the amount
handled in earlier steps.  Therefore, neither continuous process-
ing methods nor conventional batch methods are suitable for
extraction processing.  Instead,  a unique processing method has
been developed which can be described as assembly-line small-scale
batch.  In this method, material is transported in portable
containers through the plant in batches of approximately 19.8 L
to 26.4 L.  A continuous line of such containers is sent past a
series of operating stations.  At each station, operators perform
specific tasks on each batch in turn.  As the volume of material
being handled decreases, individual batches are successively
combined to maintain reasonable operating volumes, and the line
moves more slowly.  When the volume is reduced to a very small
quantity,  the containers being used also become smaller, with
laboratory-size equipment used in many cases.

An extractive plant may produce one product for a few weeks, and
then, by simply changing the logistical movement of pots and re-
defining the tasks to  be conducted at each station,  it can con-
vert almost overnight to the manufacture of a different product.

     Subcategory C - Chemical Synthesis Products

Most of the compounds used today as drugs are prepared by
chemical synthesis generally using a batch process.  The basic
equipment consists of a conventional batch reaction vessel, which
is one of the most standardized equipment designs in industry.
Synthetic pharmaceutical manufacture includes the use of one or
several of these vessels to perform, in a step-by-step fashion,
the various operations necessary to make the product.  Following
a definite recipe, the operator (or a. programmed computer) adds
reagents,  increases or decreases the flow rate of cooling water,
chilled water, or steam, and starts and stops pumps to withdraw
the reactor contents into another similar vessel.  At the appro-
priate steps of the process, solutions are pumped through filters
or centrifuges or pumped into solvent recovery headers or waste
sewers.

Each pharmaceutical is usually manufactured in a "campaign" in
which one or more process units are employed for a few weeks or
months to manufacture enough compound to satisfy the projected
sales demand.  At the end of the campaign, another is scheduled,
and the same equipment and operating personnel are used to make  a
completely different product, utilizing different raw materials,
executing a different recipe, and generating different wastes.
Date:  9/25/81               II.9.5-6

-------
     Subcategory D - Formulation Products

Although pharmaceutical active ingredients are produced in bulk
form, they must be prepared in  dosage form  for use  by the con-
sumer.  Pharmaceutical compounds can be formulated into tablets,
capsules, liquids, or ointments, as described below.

Tablets are formed by blending the active ingredient,  filler,  and
binder.  The mixture is placed in a tablet press machine and
sometimes coated by tumbling with a coating material and drying.
The filler (usually starch or sugar) is required to dilute the
active medicinal to the proper concentration; binder (such as
corn syrup or starch) is necessary to bind the tablet particles
together.  A lubricant (such as magnesium stearate) may be added
for proper tablet machine operation.  After the tablets have been
coated and dried, they are bottled and packaged.

Capsules are produced by first forming the hard gelatin shell.
These shells are produced by machines that dip rows of rounded
metal dowels into a molten gelatin solution and strip the cap-
sules from the dowels after the capsules have cooled and solidi-
fied.  The active ingredient and any filler are mixed and poured
into the empty gelatin capsules by a machine operation.  The
filled capsules are bottled and packaged.

Liquid preparations can be formulated for use by injection or
oral consumption.  In either case, the liquid is weighed and then
dissolved in water.  Injectable solutions are packaged in bottles
and heated or bulk sterilized by sterile filtration and poured
into sterile bottles.  Oral liquid preparations are bottled
directly without subsequent sterilization.

     Subcategory E - Pharmaceutical Research

Because of the high cost of a new drug and the general importance
to the public health, companies are mainly interested in cures
for the more common ailments.  Nevertheless, many remedies for
rare diseases and diagnostic agents have come from the labora-
tories of the pharmaceutical industry.  The three areas of re-
search in the pharmaceutical industry are chemical, microbio-
logical, and biological.

Laboratory animals are used extensively at pharmaceutical research
facilities.  The types of animals used include dogs, cats, monkeys,
rabbits, guinea pigs, rats, and mice.  The animal colonies where
the test animals are housed can be major wastewater sources.  The
animal cages are usually dry-cleaned and the residue washed into
the plant sewer system.  Collected feces and any animal carcasses
are incinerated or landfilled if the waste matter is not infected.
Exhaust gases from the incinerators pass through wet scrubbers,
and the scrubber blowdown is subsequently discharged to the plant
sewer system.


Date:  9/25/81              II.9.5-7

-------
II.9.5.2  WASTEWATER CHARACTERIZATION [2-33]

Plants in the Pharmaceutical Manufacturing Point Source Category
operate continuously throughout the year.  , Their processes are
largely characterized by batch operations,  which have significant
variations in pollution characteristics during any typical oper-
ating period.  However, some continuous unit operations are used
in the fermentation and chemical synthesis subcategories.

Plants in Subcategory A (Fermentation Products) and Subcategory C
(Chemical Synthesis Products) generate wastewaters with the
highest pollutant concentrations.   In Subcategory A,  these high
levels are primarily due to the spent solvents used in extraction
processes and sewered fermentation beers.   In Subcategory C, a
myriad of organic chemicals are used as intermediates in the
production of fine chemicals, and they contribute significant
pollutant loads to plant wastewater effluents.

The major sources of process wastewaters in the Pharmaceutical
Manufacturing Point Source Category include product washings,
product purification and separation, fermentation processes,
concentration and drying procedures, equipment washdowns,  baro-
metric condensers, and pump-seal waters.  Wastewaters from this
point source category can be characterized as having high con-
centrations of BOD5, COD, TSS, and volatile organics.  Consider-
ations significant to the design of treatment works are the
highly variable BOD5 loadings, high chlorine demand,  presence of
surface-active agents, the possibility of nutrient deficiency,
and the possibility of potentially toxic substances.

During screening and verification programs, 60 priority pollu-
tants were detected in the wastewater of at least one of 26
plants studied.  However, only 13 were found at 10 or more plants.
They are phenol, benzene, chloroform, ethylbenzene, methylene
chloride, toluene, chromium, copper, lead, mercury, nickel, zinc,
and cyanide.  Phenol was the only significant acid extractable,
appearing 15 times.  Methylene chloride was the most often de-
tected volatile organic, appearing 22 times.  Finally, chromium,
copper, and zinc were the major metals, appearing 24 times each.
No significant base/neutral extractables were detected at the
screening/verification plants.  Bis  (2-ethylhexyl) phthalate was
not considered to be important, because its presence was probably
the result of contamination from the tubing used to collect the
wastewater samples.

Table 9.5-6 presents available wastewater characterization data
by overall manufacturing Subcategory in terms of median pollutant
concentrations.
Date:  9/25/81              II.9.5-8

-------
  TABLE 9.5-6.
MEDIAN POLLUTANT RAW WASTE CONCENTRATIONS BY OVERALL
MANUFACTURING SUBCATEGORY(a),  SCREENING AND VERIFI-
CATION DATA [2-32]
Toxic pollutants, yg/L

    Phenol
    Benzene
    Chloroform
    Ethylbenzene
    Methylene chloride
    Toluene
    Chromium
    Copper
    Lead
    Mercury
    Nickel
    Zinc
    Cyanide

Classical pollutants, mg/L
                                   Subcategory
                                    C         D
230
390
150
20
500
310
55
100
65
0.9
70
320
400
240
200
110
15
95
630
100
85
45
0.9
130
310
290
                                   260
                                    75
                                   150
                                    20
                                   410
                                   750
                                    20
                                    70
                                    65
                                   0.9
                                    50
                                   270
                                   290
230
230
140
 15
320
700
 55
 95
 45
0.9
 65
260
240
All

180(b)
100
150
 20
320
520
 45
 85
 50
0.8(b)
 50
250
280
BOD
COD
TSS
1,900
4,400
900
1,100
1,300
320
1,400
3,800
440
1,400
2,500
320
Analytic methods:V.7.3.21,  Data sets 1,2.
(a)For purposes of this analysis,  the data from a specific plant were used
   in each of the single subcategory analyses for which the plant had a
   subcategory operation.  For example: Data from an ABD plant were used
   in the subcategory A, B, and D analyses.   Assumed values for "less than,
   not detected, and unknown" data were not  used.
(b)As presented in reference,- currently under review.
Date:   9/25/81
                 II.9.5-9

-------
II.9.5.2.1  Subcategory A - Fermentation Products

The sources of wastewater from fermentation operations are (1)
spent fermentation beers; (2)  floor and equipment wash waters;
(3) chemical wastes such as spent solvents from the extraction
processes; and (4) barometric  condenser water.   Of these,  spent
fermentation beer is by far the most significant waste discharge.
Spent beer contains residual food materials such as sugars,
starches, and vegetable oils not consumed in the fermentation
process; a large amount of organic material,  protein,  and other
nutrients; and frequently, it  also contains large amounts of
nitrogen, phosphate, and other growth factors as well  as salts
such as sodium chloride and sodium sulfate.

Disinfectants can contribute to the pollutant load from fermenta-
tion processes.  Although steam is used to sterilize most equip-
ment, many instruments cannot  withstand high temperatures.
Although there is no published information indicating which dis-
infecting agents are used, a number of toxic pollutants including
phenol can be used for that purpose.  The fermentation process
occasionally creates massive discharges of contaminated waste-
water, which occur whenever a plant becomes infested with a
phage.

Wastewaters from fermentation processes are generally character-
ized by high BOD, COD, and TSS concentrations;  large flows;  and a
pH range of about 4.0 to 8.0.

II.9.5.2.2  Subcategory B - Biological and Natural Extraction
            Products

The principal sources of wastewater from biological/natural
extraction operations are (1)  spent raw materials, such as waste
plasma fractions, spent eggs,  spent media broth, plant residues,
etc.; (2) floor and equipment wash waters; (3)  chemical wastes,
such as spent solvents; and (4) spills.  Whenever possible,  bad
batches are recycled; if this is not feasible,  the bad batches
are discharged to the plant process sewer system.

Wastewaters from biological/natural extraction processes are gen-
erally characterized by low BOD, COD, and TSS concentrations;
small flows; and a pH range of about 6.0 to 8.0.

II.9.5.2.3  Subcategory C - Chemical Synthesis Products

Primary sources of wastewater from chemical synthesis operations
are  (1) process wastes, such as spent solvents, filtrates, cen-
trates, etc.;  (2) floor and equipment wash waters;  (3) pump seal
waters;  (4) wet scrubber spent waters; and (5) spills.
Date:  9/25/81              II.9.5-10

-------
Wastewaters from chemical synthesis operations are generally
characterized as having high BOD, COD, and TSS concentrations;
large flows; and an extremely variable pH ranging from 1.0 to
11.0.

II.9.5.2.4  Subcategory D - Formulation Products

Sources of wastewater from mixing/compounding/fprmulation oper-
ations are (1) floor and equipment wash waters; (2) wet scrubbers;
(3) spills; and (4) laboratory wastes.  The use of water to clean
out mixing tanks can flush materials of unusual quantity and con-
centration into the plant sewer system.  The washouts from recipe
kettles, which are used to prepare the master batches of the
pharmaceutical compounds, may contain inorganic salts, sugars,
syrup, etc.  Dust fumes and scrubbers used in connection with
building ventilation systems or, more directly, on dust and fume
generating equipment, can be another source of wastewater depend-
ing on the characteristics of the material being removed from the
air stream.

Wastewaters from mixing/compounding/formulation processes are
generally characterized as having low BOD, COD, and TSS concen-
trations; relatively small flows; and a pH range of about 6.0 to
8.0.

II.9.5.2.5  Subcategory E - Pharmaceutical Research

Generally, quantities of materials being discharged by research
operations are relatively small compared with the volumes gener-
ated by production facilities.  Research operations are fre-
quently erratic with regard to quantity, quality, and time sche-
dule when wastewater discharging occurs.  Flammable solvents,
especially volatile solvents such as ethyl ether that can cause
explosions and fires, are the most common problem.  The major
sources of wastewater are vessel and equipment washings, animal
cage wash water, and laboratory-scale production units.  The
wastewaters are generally characterized as having BOD and COD
concentrations similar to those in domestic sewage; pH values are
between 6.0 and 8.0.

II.9.5.3  PLANT SPECIFIC DESCRIPTIONS [2-32]

Twenty-six plants were analyzed in a screening program to deter-
mine the presence of the 129 priority pollutants and to charac-
terize their nature and extent in the pharmaceutical industry1s
wastewaters.  Five of the screening plants were selected for the
verification program to quantify the concentrations and loadings
of those pollutants detected in the screening program.
Date:  9/25/81               II.9.5-11

-------
Tables 9.5-7 through 9.5-11 present plant specific verification
data for each of the subcategory combinations as follows:

     • C
     • CD
     • BCD
     • ABCD

For each of the following five plants,  a summary of verification
data and a description of the wastewater treatment plant are
presented.  All reported pollutant concentrations were obtained
as a result of the verification program, with the exception of
plant 12026.  The verification data are not currently available
for this plant, thus,  screening data are substituted.

II.9.5.4  POLLUTANT REMOVABILITY [2-32]

Wastewaters from pharmaceutical manufacturing activities vary in
quantity and quality depending upon the type of operations em-
ployed.  However, in general, the wastes are readily treatable.
Table 9.5-12 presents a summary of the wastewater treatment tech-
nologies identified by the industry survey and the number of
plants found to be using each particular process.  End-of-pipe
systems in the pharmaceutical manufacturing industry rely heavily
upon the use of biological treatment methods, particularly the
activated sludge process.  A majority of the plants that are con-
sidered to have BPT treatment in-place use activated sludge sys-
tems.  One facility has installed a pure oxygen system; another
plant reported using powdered activated carbon in its activated
sludge unit.  Other biological methods identified in the survey
include trickling filters, aerated lagoons, and waste stabiliza-
tion ponds.  Primary treatment includes equalization to minimize
shock loads to downstream units at many of the plants.  This
finding is consistent with the fact that most pharmaceutical man-
ufacturing operations produce wastewaters on an intermittent
basis.  Neutralization is required at almost two-thirds of the
plants to neutralize acidic or alkaline wastes generated from the
production of specific products.

Primary separation methods to remove solids were shown by the
survey to be widely practiced.  Physical/chemical systems also
are being utilized to achieve higher levels of wastewater treat-
ment.  Thermal oxidation of strong chemical waste streams has
proven successful at two pharmaceutical facilities.  Another
three sites reported using evaporation methods to reduce waste-
water flows.  Effluent polishing including polishing ponds,
chemical flocculation/clarification, sand and multimedia filtra-
tion, and chlorination were identified at 22 pharmaceutical
facilities.
Date:  9/25/81               II.9.5-12

-------




















r-^
CM
CO
1
CM
i_i

VO
CM
O
CM
—

h-
Z
S
a.

l-
1
cc.
1

a.

O
z
z
LJ
LiJ
ae
U.
0

^»
cc



CO

•
1
.
ON

UJ
.J
CO
^
1-



o


jj
o
o
0)
CO
o
3


C
o
•—
p
Q
—
(_
O
a>
0)
•o

P
c
CO
—
o

4J
C
a)
E
4J
CO
03

P

S-
<0
+J
CO
5
Q)
P
UJ
CO
^P

c
o

C P
o 
O 0)
^ Ol Ol
c co —
o — -a

— -p-a o
co co oj —
O N -P.O
— — CO O
en - t- t.
O CO Q) 03
— L- CO CO
O -PC
•— 3 * CO
00 03 0)
C 01 .
•DT3
-3 C
•P C— 0
c .. o  U)
*> s- co 	
03 3 P —
V a cru o
O OUJ CO Q.
(D P
a —
>> c
1- =3

•H
c
a>
3
—
vV
V-
UJ



4->
C

p
c
CO
p
3

—
O
0
o
X
o



QVO mor~ OCOQOQO 00^* — cvimo — o^tocococo
z — z z zzzz r- • v CM v — v CM v v \o
o v v v








fo^1 — OQ O O O O r^- h- — — OOMAO — O -Sf O co OD O
— VO 	 Z OOtor 	 :* — CMt^ V CJ V — V CM V V O
OCM — d- — . V V V O
. . o *
— CO CM


0
CO
w co
03 .C
— — +£
O -O^ 0) CO
c co a. P -a <«
Q) ^ CO *~ 4) O
jr o-~ — t- c —
Q. CO — CO O CO C
U>O «->»£»— £ CO
03 t. P x P o^: P o
— o x a> £ — o a> o «-
j3— a>£ a c ca co o
CDC — 0) CO 1- 03 i- C
+JO — >>C— O-PENO

co<- C--P— -PO-POtVC 13 E >> EE
£-(- P CB CO 3 tf-J30)OO) C 3 >, C O E 3 30)
•PI— 3l£A d)CO C— C CO' 	 J. o — 3 	 i 	 -O
X VO O 0 CM P 1 — O 1 	 03 Q 03 03 E 3EC— 0) C 03 	
0) » C C -~JC C — JO O >» 3 1 N WO.OOO— fl)E-a^«>— C
era) uio.1 p s- — jz — CM c — CH-CI-PWOCOO — — coco
•O »JC CB — CO — CO >
O CO O 03
< 03 > •£.




















































f
CM

P
0)
10
CO
P
n
O
«
CM
•
«o
•
f^
•
>

w-a
^3 Q}
O -P
JT U
*J 0)
0) P
E 03
•a
O
•P O

-------












«•— 1
CM
CO
1
CM
"
VO


CM
CM


1-




O_
1-
^



o:
0
cc
0.
z
o

1-
0
~"
_


UJ
LL.
O
or
i


<7}

00
1
ON
UJ

3
H



































































0
>
e
5
C
a
i

(7
C 1
o <-
4J 4J
a a
o o
: 6-
) E
• 3
1 OtO
•O (0
3 >
) —
9 at ..
j ui
> -o c
J 4J C
: -ro o -o
I C > — ^
; £7:- •
— W OT3 3
J fB CD flj C U
: o N o
1 — — » o O
E ai — c —
j o a o— d-
9 — l 	 eg .
g O u JJ o in
3 (0 —
01 g£Z ..
OJ= >t
1) » -EO- *J
j *J c— — -
9 C •• Ot» *— 4*
i 0) «— » end- c
I) E C 4J W C-0 (0
J +* O <0 — C 3
ft W — N >* C eo CT
0 Q) *i — C. (I) —
c t- (c — re .* t.
*J U CD E U - V

<»- Q. CT t- JC C (0
o ouj a-w— j
0)
a — (fl
>» C (0
1-3 3C

O
O
— O OO
: eo «*> J^1
l> O OO OO
3 — l — — 1 	 II
O CM OlA
O VO Cif\
J iA -"
-

OO O
OO OO
OO OO

)
3 1 1 O 1 1 1 1 1 1
i- OO OOOOOOO
I OO — vo — — OJ1
OO O0\

lA —

i
_j 0 0 IP 0
x^ — C W —
01 >» « — e
3,tfl 0 J=£ t- (9
o -o *;« o p
„— .. 0) CD 0) — t-
Ul C S- Op C£ O
4JCO o ^^ QJU C
CO — E O O N —
gg C c. 1 	 c 0
*» O QO£C OC "O
3 D> 1- 0 O 11) a tD C
o — oc— o 	 c 	 a
I O — 3 £ O 1 1 N >>.C C in
3 o — H-ZO 	 ^eoujza. 4:
_ ._p 0)
o 15
». H









































lA O O
— OfO — CM
OO OlA OO
	 1 —CM 1 1 -31— 1 1
O C\J ™ f> ^
— -CM —
0


O VO OO
lAVQ * O\ vQ h-
	 Om —CO

O O 1 1 O 1 1 O O 1 1
CM.3- CMVQ (7>O
3-— VOCM VOCM
O






IE E .
= 32,. Zr_2t «
	 E0> 39CH) —
>> E O D--O U -X H) > 0 C
i-'o t- an i- o 	 c a
Sea £ o ® O — O 	 >*
U U U -1 Z Z <0 U) N U












































°°
— vo
1 I
00
fO (O
— vo


OO
OO
(O vo
— "tVl"

1 1
II
_T— T

_j
1

VI
c
3
O
a
Sao.
— o o
uiCOO
(A
a

U
Date:  9/25/81
II.9.5-14

-------







CM
ro
1
CM
^^
r-
o
CVI

1-
~p
J
0.
1—

y



O
0
a.
Q.
z
o
h~


_
U.

^
Ul

o
£



2
w


.
ON
1

ON
ui o
_l o

t— o
c
^
«
u
r

a





0)

(A
(0

J <
0
H-
o o o oo
o o oooooo
o o oooooo




II — Illllll 	 II Illllllllll
\OsO ON — so O • OOOOOOO
in PO o •* O — OsOOOto
00 — CM — CM OiT\
ro CM CNJ CM —


o o o oo
o o oooooo
o o oooooo
ooo o o~ »oh~o *oo «in « *o
Q
1 1 — 1 1 1 1 1 1 1 	 II Illllllllll ._
— — r-CMO<0— — fO OO OOOONOOOOOOO Q
fooN ON incM oc\j-h-ooooooin 	
•31 CM CM vO — m OsOOinoOCM t.
— O — O — O*o tn
CM Csl &— 0
•a


c
oo 2
O 0 Q
o o so r-oi--ooo —
CM ^ in J so * -ON »C3N — in • ^
cvi <\j -3~ CM — CM — r-in — *o — toin-*"1" ^
0)
I 	 (\j(\j||_vQ|__|(O Illllllllll g
— (o o — — o in — csi ooooo o co «
j- ON • • ocoor-oco * S
— ro r- ^ — -d" — »o o 2.


t.
*»

0 OOO J
O OOO ij
OO OO OOfO CNJOCMOOOfO ^

CMl — Illl— II— — II Illllllllll
co so — o— m— o— Oin — ONOOOOOOCM
CM — or- co to \o to co in —







1
u
C V)
a -u
2 S
O ±J W
C 3 -M
•D X 3 E EE 0 3
CCO— E 3 >»330>a Z
tO 0 	 3 — *- I 	 « 	 "D I 1
EC — — E 0) 3 « C 0) — — — a -^
» E o O.-D ojco>>— octa tf) « M
— «(--Ol-a. O 0)
C M) ffi W **
,8' «5&-
C ifl E — — co CD E
O 0) 3 n WO U 3
— t. 3 CO U C— 3
jj au o co o E u
WX, CO — O 0) CO
N C > 4J-D 0) £ >
— O 4J 0) (A U
	 » 0) t- »
3 co c -a 4J c c
o- L. — as 5 c o —
Ul *J C (OOO)— C
— O (- O.E *-> O

E - o £ 3 - -
0) --O — t- c^ -o
U9 C O •- I- O
>>a> o E CD— co u -a
O E 0) OitO — -v

O C 0) U >>— ECO
— 03 t. — touiOJO — — 3
CTi fi***! £ — E — O
— co — ii C 0) I *£<•- QO
o a a> o 03 -*j — — ox) r*-
CO *J—« w>OO->« ***
EC co 	 O C —
tfiO)O 0}4Jtf)OO >»
c •• n i co anew
0> ifl>— N — JC- — N — C
E C «•-— (fl— -co— *-  O — 0 	 eocoCCJ— O 3
co — to — — c* > > o — — ** tj
£4JO«X1-O O O E A co
to— >>toct-Et-0)co> t-

ft) Q (X W — 0^000*0 4J
<*- a£ — to
0 00 u. >
« ** 2
O. *~ (A
* 5 S










Date:  9/25/81
II.9.5-15

-------













I— 1
CM

1
CM


_
—
^
CM

H
Z
^
i
CL

h-


2;

ce
O
O
IX
Q.
0
i-
^
u

U-
_
ce
>

LL.
O

CC
E
13
CO


,
o
__
1
1T\

^^
LJ
1
CO
^
t—















































































































a
o
CO

t:
o
CJ
CO
4J
CO
o
.£
~
w
c
o
^
a
"£
o
UI
CO
•a
4J
c
CO
_
a

P
c
0
E
.p
CO
CO

-p
£_
CO

CO
>
CO

{/)
(0
3










4J
C
CO
3
f.

UI









4J
C
CO
3
—*
Ct-
c























.p
c
ec

^
^
O
a.












^
CO
O

O)
0

O
•— .
CO


4J
c
CO
E
4->
CO
CO
s_
+->

Ct.
o

CO
a
>>
H






































_l
*^
CTl
3. W
U
•!•—
(A C
P CO
C 0
CO S-
•P O
3
— CO

0 —
Q.-P
CO
O —
— O
X>
O
h-


T3
CO
CO
1.
CO
CO

c"
o
•-•
4-1
CO
N
—
—
CO
t.
p
3
CO
c

c
.. 0
(/) —
C P
O CO
— N
4-> —
CO —
i- <0
CO 3
Q.O-
OLJ

+>
. —
C
3



o
r-
— .

OO 1
o







0
o
o
*
OO
coco
— CM

O 1 1
OO
— o
— o

—
—







0)

»
(_
o
— .
e~
O
CO S-
c o
CO COC>.
c — o
CO >»s-
3£ O
O CO.C
t-ZO





















c
o
—
4J
CO
s.
CO
_
o
c
•—

^
c
o
0
O)
CO
















































































































































10
0)

.a
CO
*->
o
co
1_
4J
X
CO
T3
o











•a
E

•
3
0

o
CM
ro
«n
—


,.
>>
	
p
c
CO
3
CT

t_
CO
4->
CO

CD
4->
tfi
CO
3






o
OOOOOOOOO— O
















Od-OOOOOOOO






_
o
c
— CO
— CO.
O CO —
C c" >> tf>
	 CO O..C O
O O £ — 4J — —
c c axco o c
co co ox: E c co

O— Q.Q.OCOCM£— «-
co — o— Eiao o
COC >>S-.C 1 O O C C
j^ Q5 j^ Q y ro t. fc» Q3 "^
a.c 4J 	 i 4J o £
OQ. CO^^O — ^CL "O
«-O EOHS-C£O C
0 ! 	 1 0 — O «- CO
— 4JOOO.VO — OtO-P
£— C 1 1 .£!*>— tfl
OZCUd'd-d'Od'CC —
ll£^*.^l «COI CO
CM CM Q. CM CM CM d- CM 0- d- 4J
«













































0 O
OVO O
OONO CO
O — in - -try «
d-CMCO CMOCV1 ro
o
OO 1 1 1 iTiO III O\ 1

CM — in — r-d- o
— .— o\
o
CM





o
o
ooo oo
O\O O\— 1— »
COfO POCOCVJ OlA
o o
OO 1 1 rotTiO III in 1
m o. o — vo — o
CO CM ~- OS O
~" ~t
f,
^




1

CT
g

^
> 0) a
— 3 — I 	 — «- T3
	 ECOCO C 3— —
>>E o a^-o co u o c co
V-'O'-Q.OCO— C«-eo OOO
OCO£0— 00— O>> — OO
cooooz-i WNZ: o tamo
in
co

o


































































.
CM

p
CD
10
CO
4->
CO
a
•t
.—
CM

CO
•
>

• «
to
•a
o

4J
o

o
£
^
CO
c

Date:  9/25/81
II.9.5-16

-------
















CM
to
1
CM
fc—"*
co
to
o
CM


iZ
5
Q.


t-
s
<
1

Q_


O
1-
c3

LL.
OH
Ul


Li_
O



z:
OT


J
—

"}
O\
UJ
CO
1-




o
c
b
o
CT
£
C

05

•P
19
_

U





































c
tt

c



















4J
c
CO
4-

O
o.






(A



(A
c
0


CO
L.
O
Q
O
C
0
P
P
c
o

o

1




0>

«1



o

2

O






(.
9)
.Q
C
O
O
V)

(A
c
o
*J
(0


Q
O
C
i
o>
o
E
O















c
o

4J
(0
o
Q
O

t-
+J
o
E
e
u.

















O)
3. W
c pol lutants, i
lat i le organic
x>
o
H
* «
J (M
O 1 OOOO 1 OO
CU VO
CJ —
































OO
OO OOOO
§O OOOO
O OO - •
* *o « »oo

1 1 1 1 O 1 1 1 1

OOOO OOOO
OO>O — OOOO
— in — Noa-o —
» » » »
CJ







§o
>o
fo — in

O 1 OO 1 O 1 OO
o o o




e
c
V
c o

c — 2 •§ a
• >>o — c
C C — 1- Q> V)
w *j.c o rsi o>
a o o a— c —
So— cc o> A
<-o e o a a
o • o i N o u
— I- — M C 0) 1- O
£ of c c c o a
c — o — »- — c .c *>
aa >-o u— xo o x
N 1 O 1 1 >>C 3 O 01
CCM 	 NC 4J— c
O -C . «*1 0 OS T3
u h ..



ro
N(\J
1 1
ftj —
(M

































O
§O
0
•in co
vocsj a
ii i in

§o o
- 0
in o
m N
(M






§
om
OO 00 •

1 1 O 1 1
OO — O
— — cot—






CD
— U
s •-
0 a c
con
— a-~a o
o.c a- o i-
c a< i- o
g> o< w c
0.0^ c
0 	 -a
— o u — a. «
o— a o a
cc w c i- M
no c 41 a —
£ 1 O.C— (0
0-NO.CLO 4J



O
flONO 0003 ^^TCNJCVJ
II II lift
or- eovo — too w
>oin vein CNJCVJCVJOJ
CVJ


OOO
OOO
w — <\j
CVJ • • -C\J
m 	 <\JCM

i i i i i

2 °S§"
vo mincvi
»
*~


o o
§§§
o *^r -o
jj- o -om
— 	 CU —
1 lilt
CO OOOCO
ro OOOf"-



—







§ § §§1
Of- r- M— •
—•\o-cu ocy cy
tiii iii

f-O — O OOO
roo — O t>\O t
(M ro Q00300 (



T

4
O <
8
OO OO*
00 CM Od" ^
— _ (VJ —


Ov o O O
a-j- mo
0
o
0
.

.
_J
1 :


vt
4J
c
CO
6 « 3 — — in —
o ao o c ce <*»
coo— >» — o to o z
UOXNU UJQ3I-OZ
M
CO

U


























to *

J3 O
CO * —
O O) V 4J
— C — CO
4J— a o
CO *•> *-
O > 4J CO C
MO  O — ^

-3 C04J-O X
C V O CO C O
.21 °B|2_
co C C* O - £
NO O O C t.
— O 	 O 0
_ *» <•- •- .C Ul
0) » CD 4-» -P C
: *. « N — M —
3 *» ot *- co q> » c
3-0 — O »C O
j Q) 3 A 	 O —
3 C— i-E-0— **
- 3 j= O COT9
J C-O OO— NC
A o o> c ja — o
D — P >» 0 — O
3 4J CO .L C co
CO > C (0 0> <-•*->
J N — OEC04J<0
; —*»—•- C 3 O
CO CO CO O. C
3 3 N * *
O* •> — * O» » 4-»
J U C — C C C C
r o eg o— o o
) - 3 — U - E
: .. p cr*i O -P *J
i o» P *•> eg N o
£*» c c > — C
(A 0} •• O O — 4J
J >>E- E 6-0 co

•o— *J -a — cr c
J C «^ >>« W —
n o c w> 3 Q.
K « B£--W^E-C
^ u CD ce c «) i- a> —
A — fl) g * 03 S -P -P*
ao» 2.-cs-c«
O 4Jl-O-tJt-0>>>-*
— a— co a o M E
o o *» o o

00 « — O **— COW
CO CO 9 CO O — X

O"O -P O O>«
4J CE  t. xo
E C 4-> .0 73 O E
+J O CO IA O— (A 0 4J
« —p-Dt-CD-DP-rtl
to 4JC— oo— cecoo
*- 
-------
         TABLE 9.5-12.   SUMMARY OF END-OF-PIPE TREATMENT
                        PROCESSES [2-32]
End-of-Pipe Technology                          Number of Plants

Equalization                                           60

Neutralization                                         79

Primary treatment                                      61
     Coarse settleable solids removal                  41
     Primary sedimentation                             37
     Primary chemical flocculation clarification       11
     Dissolved air flotation                            3

Biological treatment                                   74
     Activated sludge                                  51
          Pure oxygen                                   1
          Powdered activated carbon                     2
     Trickling filter                                   9
     Aerated lagoon                                    23
     Waste stabilization pond                           9
     Rotating biological contractor                     1
     Other biological treatment                         1

Physical/chemical treatment                            17
     Thermal oxidation                                  3
     Evaporation                                        5

Additional treatment                                   40
     Polishing ponds                                   10
     Filtration                                        16
          Multimedia                                    7
          Activated carbon                              2
          Sand                                          5
     Other polishing                                   17
          Secondary chemical flocculation/clarification 5
          Secondary neutralization                      4
          Chlorination                                 10
Note:  Subtotals may not add to totals because:  (1) some plants
       employ more than one treatment process; (2) minor treat-
       ment processes were not listed separately; (3) details for
       some treatment processes were not available.
Date:  9/25/81              II.9.5-18

-------
LJ
LJ
CJ
CO
TO

to'
1 —
z

o.

1
<£
o

1-
13
LJ
O



<
X
Q.
Q
LJ
O
LJ
LJ
CO
H

I—
_l

CO CM
< «
> 1
O CM
^ . .
1 1 1

1-
ZQ
(— Z
:D O
J —

O <
0- O

— I Ll_
O CE

C/5 "^
CO
< Q
0<

m
1









u:
n
*~














a
o
CJ










5
ta



















^
o
E

C
O
*J
2
g
u
u
c
c









i
c
c
(C
J-
a
1




~
i
c
0
Iu
ea
L.
u
C
0)
g
c











4J —
a >
||


Is
CO 3

0)
t
OJ
•^
J 5

V
s



C co
O >
0 0
<- s
0) U
a. t-

Treated
t
a
ca a
*
5

percent
remova 1

o c
•W 2
fit
1— 0)


a
u
CO
J8
SJ
rt



C
(Q


;e
U 0
1!



z — —*yz coo-tf
Z 80 
I
CM
• -'

CO
h-
^
a.


O
LJ

O
LJ
_J
LJ
CO
H
oo
z
o
i i
Q. UJ

S o
1 H
S LJ
(A ^

I <
* *• |j 1
• cc
« « H
*J Qi
O * O
aZ c *
*> * o j-
Q- 5 —
tO IB |
cy * u ^
m o t. O\
• C O
• to a] Ld
> u . a •« 	 |
..•S -aTa'-S CO
•o « CD OT • a c ^
o +> 4* co\-o o {—
W CJ U C 0) OIW
o— h- aXb
** U> 0 O 0) *-^
>»jt c c a) o a
— C CO (O >






a
tfl
O
c
u)
Q













u
C
Si
IS
— CD
Ul (-






S
a
v,
U)

C
 **
2r
I!



c
a.




i1 ?
— "- § S S
3 3 3 01 3
SCO 0]~ (DO—  ^c o
-en 01 c at o —
en c c — c — 4->
C C— « - t- - +J co
O — C -I'D CO) 91 Cco*!-
— COCCOO) 0** C ONCO C
•fc* O — O O O..Q - a — 	 O Q. O
(A ^ *J— — to *» > (- u 	 ca

— £ C *- O • 	 C « C (5 *- •• Q)
•0 *JO*JOI->» 0— > OWJJ. 01
IO— — e ^ O« 0)cn O in — 6 -
o c — "a tfi-o 01 "DC - « -a
-a -is oo -. COc ca« o a
o •WUE-X.C a— *J « oue-s -
<- to— 3 J3 • O — (- - X -— 3. J3
0) UE30W— S W > O SE30 0
(O O « O ^- >i*» OC ca— 0) (D O > t-
C -ra OCco £0) <-£ ££«£  < as- o o o w o o > a <

•o
,2
CD 1 —CO)
O) CO O "O
•a ** — >
(A3 (4 C U) *J O
7-* "O CD - T3 ffl Q.
•. — IV) — g 0) — O
c — — 	 at — — £
o 013-0 • o-o^o o *- *» TS
— wffloj i«a>3u> 	 cc
U u) W w— — > o O
CD CD *4 CD C — >»> 0) — >» — <8 CU C CD <- *»
en cji » COKD-QL-— O) ^ *- "a ^ — en o oia*(aen
•oc •o C-Q ® -D o> canu c -o c « « «-o » » g O O 3 O CDE-PC 0) ->»3<- 3— O 	
— O — OO ——X 	 a O — O -—(00 - C-« 	 O — C
w) o» « tj» Q. -o « o ** t. at u 01 jj t. > a u Q « o IA«- en—  jJOi a *j-a-a ~o 01— eo —
o> a>c O><-M*O a u>*ucMcQCDC4-»o
-P-Q *J-D— >i*J 3 — — T3 W T3 — (0 - — *J *J 4J— T3 U) a
—  O «- e < < < o »- -u a o t- w « « < -u « > a.



c c c c
*>o -o -o •> -o
O *» O *•" OW O O JJ
— (O -« -«0 - — <0
UN UN UN u UN
(0— (o— (0— CO CO —

— (a — a — m — — «
«u «u «u « «u
33 33 33 3 33
am era O-CD tr a-o



PJ-OvOOJOO — — r- \O
a-O C\J — CNJ^if— O O
CM CV (U fW PJ tM cy CM CM CM
Date:  8/31/82 R  Change 1  II.9.5-19

-------
Table 9.5-13 presents classical pollutant removability and re-
spective treatment for 10 plants grouped according to manufac-
turing subcategory combinations.  These data are from screening
and verification studies.  Table 9.5-14 presents the respective
treatment operations for these selected plants.
Date:  8/31/82 R  Change 1    II.9.5-20

-------
             11.10  NONFERROUS METALS MANUFACTURING
II.10.1  INDUSTRY DESCRIPTION

II.10.1.1  General Description [2-35]

The nonferrous metals industry encompasses the primary smelting
and refining of nonferrous metals (Standard Industrial Classifi-
cation [SIC] Number 333) and the secondary smelting and refining
of nonferrous metals (SIC Number 334).   The industry does not
include the mining and beneficiation of metal ores; rolling,
drawing,  or extruding metals; or scrap metal collection and
preliminary grading.

Primary smelting and refining includes the final recovery of pure
or usable metal from a metal ore.  Some metals, such as aluminum,
are produced by essentially one process, while others, e.g.,
copper and zinc, may be produced either pyrometallurgically or
electrometallurgically.   Byproducts and coproducts can often be
produced as a result of the smelting or refining of the base
metals.

Secondary recovery refers to processors of scrap.  This scrap is
generally collected from scrap dealers or industrial plants.
Scrap often has a high level of impurities and generally needs
classification to separate recoverable metal from nonmetallic
material.  Scrap metal can then be treated in a similar manner as
in primary metal recovery or can be refined by other, more effi-
cient recovery methods.

There are an estimated 800 plants in the United States involved
in the primary or secondary recovery of nonferrous metals.  These
plants represent 61 subcategories.  However, many of these sub-
categories are small, represented by only one or two plants, or
do not discharge any wastewater.  This report focuses on 296
facilities that produce the major nonferrous metals (aluminum,
columbium [niobium], tantalum, copper,  lead, silver, tungsten,
and zinc).   In 1973, these facilities produced 8,100,000 Mg
(8,900,000 tons) of the listed nonferrous metals.  The volume of
wastewater discharged in this industry varies from 0 to 540 m3/Mg
(0-160,000 gal/ton) of metal produced.
Date:  9/25/81                 II.10-1

-------
Nonferrous metal facilities are distributed throughout the United
States.  Most sites are located near ore production facilities,
near adequate transportation facilities, or near adequate power
supplies.

Table 10-1 presents an industry summary for the nonferrous metals
industry indicating the number of subcategories and the number
and type of dischargers.

          TABLE 10-1.  INDUSTRY SUMMARY [2-35]

          Industry:  Nonferrous Metals
          Total Number of Subcategories:  61
               •  Phase I coverage:  26
               •  Phase II coverage:  35
          Number of Subcategories Studied:  12

          Number of Dischargers in Industry:
               •  Direct:  129
               •  Indirect:  79
               •  Zero dischargers:  215
Table 10-2 presents best practicable technology limitations that
have been promulgated and reported in the Federal Register.
     TABLE 10-2.
BPT LIMITATIONS FOR THE NONFERROUS METALS
INDUSTRY(a) [2-36]
Secondary aluminum
sme 1 1 i ng

Parameter 	
COD
TSS
Oi 1 and grease
Ammonia
(as nitrogen)
pH, pH units
Fluoride
A 1 urn i num
Arsenic
Cadm i urn
Copper
Lead
Se 1 en i um
Zinc
Primary
a I um i num
smelting,
kg/Mg of
product

1.5


6.0 - 9.0
1.0







Chlorine
defflagg ing,
kg/Mg of
magnesium
removed
6.5
175


7.5 - 9.0









Wet
processing. Primary
kg/Mg of copper
oroduct smeltina(b)
1.0
1.5

0.01
7.5 - 9.0
0.1
1.0


0.003




Primary
copper
refining,
ka/Mo

0.05


6.0 - 9.0



0 00003
0 . 0008
0.00026

0.0003

Seconda ry
copper (b)(c), li
mo/L

25
10

6.0 - 9.0




0.25


5

Primary
sad(b)(c),
mo/L

25


6.0 - 9.0



0.5

0.5

5

P r i ma ry
zinc,
kg/Mg of
product _.

0.21


6.0 - 9.0



0.0001)


0.01
0.01
                                                       except
Date:  9/25/81
             II.10-2

-------
 II.10.1.2   Subcategory Description [2-35]

 The nonferrous metals  industry is divided  into 61 subcategories
 by the  type and  source of the metal to  be  smelted and/or refined
 and by  similar wastewater sources.   Sixteen of these  subcate-
 gories  have been chosen for  detailed  study in Phase I.   However,
 four  of these sixteen  subcategories lack sufficient data to  be
 reported.   The remaining subcategories  have been  deferred to
 Phase II of the  nonferrous metals study or are Paragraph 8 exclu-
 sion  subcategories.

 Table 10-3  lists the subcategories studied,  deferred,  and excluded
 for this report.   The  following paragraphs describe the 12 sub-
 categories  that  were studied in detail.
          TABLE 10-3.
               SUBCATEGORIES  WITHIN THE NONFERROUS
               METALS  INDUSTRY  [2-1,35]
          Subcategories and SIC codes chosen for
          Primary aluminum (3334)
          Secondary aluminum (3341)
          Primary columbium (3339)(a)
          Primary tantalum (3339)(a)
          Primary copper  (3331)
          Secondary copper (3341)
                                  deta iled study;
                                   Primary lead (3332)
                                   Secondary lead  (3341)
                                   Secondary silver (3341)
                                   Primary tungsten (3339)
                                   Primary zinc (3333)(b)
                                   Primary cadmium (3339)(b)
          Subcateqories and SIC codes
          Primary beryl Ii urn
          Primary selenium
                         lacking sufficient data for study;
                                   Primary tellurium
                                   P r i ma ry s i  I ve r
          Subcateqories to be deferred to Phase II:
Primary boron
Secondary boron
Primary cesium
Primary cobaIt
Secondary cobaIt
Secondary columbium
Primary gaI Iium
Primary germanium
Primary gold
Secondary precious metals
Primary hafnium
Ind ium
Primary Iithium
Primary magnesium
Secondary magnesium
Primary mercury
Secondary mercury
Primary  molybdenum

Paragraph 8 exclusion subcateqories and
Primary arsenic (3339)
Primary antimony (3339)
Primary barium (3339)
Secondary beryllium (3341)
Primary bismuth (3339)
                                             Primary nickel
                                             Secondary nickel
                                             Secondary plutonium
                                             Primary rare earths
                                             Primary rhenium
                                             Seconda ry rhen i urn
                                             Primary rubidium
                                             Primary platinum group
                                             Secondary tin
                                             Primary titanium
                                             Secondary titanium
                                             Secondary tungsten
                                             Primary uranium
                                             Secondary uranium
                                             Secondary zinc
                                             Primary zirconium
                                             Bauxite
                                             SIC codes:
                                             Secondary cadmium (3341)
                                             Primary ca Ic ium ( 3339)
                                             Secondary tantalum (3341)
                                             Primary tin (3339)
                                             Secondary babbitt (3341)
          (a)Primary columbium and primary tantalum are studied together
             because of  similar processes and wastewaters.
          (b)Primary zinc and cadmium are studied together because
             simultaneous recovery is common.
Date:   9/25/81
                           II.10-3

-------
     Primary Aluminum

Aluminum metal is produced from alumina in electrolytic pots by
the Hall-Heroult process.   The pots are made of cast iron lined
with carbon and contain an electrolytic solution composed of
cryolite, calcium fluoride, and aluminum fluoride.   Alumina is
added to the pots periodically, and electrical current causes the
reduction of alumina to aluminum metal.  Molten aluminum is re-
moved from the bottom of the pot.

The carbon-lined pot and the molten aluminum that collects in the
pot serve as the cathode.   The anode is a carbon rod prepared
from petroleum coke and pitch.  During the reduction process that
produces the aluminum, the anodes are oxidized, producing carbon
monoxide and carbon dioxide.

The molten aluminum is tapped and conveyed to holding furnaces
for subsequent degassing and alloying.  Degassing with chlorine
(and sometimes nitrogen and carbon dioxide) serves to remove
hydrogen and to mix the aluminum to ensure a uniform alloy.  At
most plants, the final step is casting the finished metal.

     Secondary Aluminum

In this subcategory, the use of varied raw materials requires two
operations:  presmelting and smelting.

Presmelting varies with the raw material being recovered.  With
relatively pure feedstocks, only sorting and perhaps oil removal
by drying may be required.  However, crushing, screening, and
iron removal frequently are necessary.

Smelting of the cleaned, purified aluminum involves charging the
furnace with scrap and flux, addition of any necessary alloying
agents, "demagging" to remove magnesium, and skimming to remove
waste slag.

     Primary Columbium and Tantalum

Columbium (also known as niobium) and tantalum metals are pro-
duced from purified salts, which are prepared from ore concen-
trates and slags resulting from foreign tin production.  The
concentrates and slags are leached with hydrofluoric acid to
dissolve the metal salts.   Solvent extraction or ion exchange is
used to purify the columbium and tantalum.  The salts of these
metals are then reduced via one of several techniques, which
include aluminothermic reduction, sodium reduction, carbon re-
duction, and electrolysis.  Owing to the reactivity of these
metals, special techniques are used to purify and work the metal
produced.
Date:  9/25/81                 II.10-4

-------
     Primary Copper

Smelters producing copper metal from ores use smelting and con-
verting processes plus an optional roasting step.  Roasting is
used to reduce the content of sulfur and other impurities prior
to smelting.  Smelting converts the ore to a molten copper/iron
sulfide material (matte), which is sent to a converter.  In the
converter, air is introduced and the iron sulfide is oxidized to
sulfur dioxide and iron oxide.  The resulting product, called
blister copper, is cast into anodes and purified by electrolytic
refining.

In the copper refining process, blister copper purchased from a
nonassociated smelter or transferred from an associated smelter
is cast into anodes and electrolytically deposited on the cathode.
All impurities become concentrated in the electrolytic solution
and in insoluble slimes.  The slimes are processed for byproduct
recovery of copper, lead, selenium, tellurium, gold, and other
precious metals.

     Secondary Copper

In secondary copper operations, scrap containing copper is pro-
cessed to recover the copper.  Low-grade copper waste such as
slag is added in small amounts to copper alloy melts or is melted
to produce black copper.  Intermediate grade scrap is used to
produce brass and bronze alloys after removal of some associated
impurities.  High grade scrap is dried and baled or sawed, then
used to produce blister or refined copper.

     Primary Lead

Lead is produced in a two-step process involving refining and
smelting.  Typically, both operations are carried out at the same
site, but there are also nonintegrated smelters and refiners.

In the smelting process, ore concentrates are blended with re-
cycle products and fluxes, pelletized, and sintered.  The sinter
is fed with flux, coke, and wastes (such as slag and dust) to a
blast furnace from which lead bullion is drawn for refining.
Slag and matte are frequently withdrawn and processed to recover
any other metals present.

In the refining process, the first step is dross decopperizing.
In this step, lead is maintained slightly above its melting point
and copper slag is skimmed off the top.  Additional slagging
steps are carried out to remove antimony, tin, arsenic, gold,
silver, and bismuth before the lead refining process is complete.

     Secondary Lead

Scrap lead from batteries and other lead-base materials is charged
to furnaces to produce soft or hard (antimonial) lead.  The soft

Date:  9/25/81                 II.10-5

-------
lead may be refined or oxidized to make battery paste.  The hard
lead may be used in the manufacture of battery plates or pro-
cessed to make lead alloy.

     Secondary Silver

Wastes containing silver include materials from photography,  the
arts, electrical components,  industry,  and miscellaneous sources.
These wastes are processed by a wide variety of techniques to
recover the silver.  Because  the process is highly specific for
the type of waste,  no attempt to discuss the various processes
will be made in this document.

     Primary Tungsten

There are several variations  in the processes of this industry
depending on the ore.  In each process, one of the intermediate
products is tungstic acid.  The tungstic acid is converted to
ammonium tungstate, which is  dried and heated to form ammonium
paratungstate.  This intermediate is converted to oxides in a
nitrogen-hydrogen atmosphere.  Finally, the oxides are reduced to
tungsten metal powder at high temperature in a hydrogen atmos-
phere .

     Primary Zinc - Primary Cadmium

In this industry, the concentrates are roasted to remove sulfur
and other volatile impurities.   The product, called calcine,  is
processed either pyrolytically or electrolytically to recover the
zinc.  All of these plants also recover cadmium and send their
wastes to other processers for recovery of other metals.

     Primary Beryllium

Primary beryllium production  occurs at two plants within the
United States; one of these plants discharges its wastewater to
the environment.  Because of  the limited number of facilities,
beryllium production will not be discussed in this document.

     Primary Selenium

Primary selenium recovery occurs at a single site that does not
discharge to the environment.  Consequently, this subcategory is
not discussed further in this document.

     Primary Tellurium

No information is currently available for this nonferrous metal.
Date:  9/25/81                 II.10-6

-------
     Primary Silver

There are four primary silver production facilities in the United
States.   Of these,  two discharge wastewaters.   No further infor-
mation on this subcategory is currently available.

II.10.2  WASTEWATER CHARACTERIZATION [2-35]

Each metal subcategory uses different processes and emits differ-
ent pollutant concentrations and types in the process wastewater.
The following paragraphs and tables present information on the
wastewater streams for each of the 12 subcategories studied.

Raw waste characteristics for the industry generally reflect the
products and the methods employed to manufacture them.  Because
there is such a diversity in products,  processing,  raw materials,
and process control, there is a wide range of characteristics.
The variations exist among different streams within each sub-
category, as well as among similar streams (such as casting
wastewater) in different subcategories.  Discharge of nonprocess
wastes (sanitary, boiler blowdown, noncontact cooling water,
etc.) with process waste streams and other nonprocess-related
variables such as raw water quality can contribute to this lack
of uniformity.

The nonferrous metals industry was sampled in both screening and
verification programs for the 129 priority pollutants, with the
exception of asbestos, which was analyzed only in screening.   The
data from both sampling programs along with sampling data pro-
vided by other contractors were combined in the reference and,
thus, are likewise presented in the following tables.

II.10.2.1  Primary Aluminum

Process wastewater sources for this subcategory are primarily
related to air pollution control.  Wet air pollution controls on
anode bake furnaces generate wastewater in plants utilizing
prebaked anodes.  Suspended solids, oil and grease, sulfur com-
pounds,  and fuel combustion products characterize this stream.
Some organics may also be present as a result of the release of
coal tar products during anode baking.   Degassing with chlorine
requires wet air pollution control methods and results in a
wastewater stream.  Cryolite recovery also produces a wastewater
stream that has significant amounts of fluoride, suspended solids,
and TOC.   Other waste streams may also be produced by cooling
water, cathode making, and storm water runoff.

Tables 10-4 and 10-5 present classical and toxic data for the
primary aluminum subcategory.
Date:  9/25/81                 II.10-7

-------
     TABLE  10-4.
CLASSICAL POLLUTANTS IN THE RAW WASTEWATER
OF THE PRIMARY  ALUMINUM SUBCATEGORY,  SCREENING
AND VERIFICATION DATA [2-35]
Pol lutant
COD
TOC
TSS
Total phenol
Oi 1 and grease
Ammonia
Fluoride
Number of
samo les
2
2
2
3
2
1
3
Number of
detections
2
2
2
3
2
1
3
Concent rat ion (a Li mq/L
Ranqe
3. 1 - 5,700
140 - 440
2, 100 - 1 1,000
0. 1 1 - 0.27
4.2 - 5.5
25
0.46 - 2,700
Med ian



0. 13


170
Mean
2,900
290
6,600
0. 17
4.9

960
   Analytic methods: V.7.3.22, Data sets 1,2.
   (aJConcentrations were calculated by multiplying the concentrations
      of the various wastestreams by their percentage of the total flow,
      and then subtracting the concentration present in the  intake.
II.10.2.2   Secondary Aluminum

Sources of  process wastewater in the  secondary aluminum industry
include demagging air pollution control,  wet nulling of residues,
and contact cooling water.  Removal of  magnesium (demagging)  in-
volves passage  of chlorine or aluminum  fluoride through the melt,
causing the release of magnesium in heavy fuming.  The waste-
streams from the air pollution control  devices contain significant
levels of suspended solids and chlorides  or fluorides as  well as
moderate amounts of heavy metals.  Milling streams also contain
suspended solids,  and contact cooling water contains oil  and
grease, chlorides, and suspended solids.   Tables 10-6 and 10-7
present classical and toxic pollutant concentrations found in the
wastewater  streams of this subcategory.
Date:   9/25/81
              II.10-8

-------
       TABLE  10-5.   CONCENTRATIONS OF TOXIC POLLUTANTS  FOUND  IN PRIMARY ALUMINUM
                      RAW WASTEWATER,  SCREENING AND VERIFICATION DATA  [2-35]
Toxic oollutant
Metals and inorqanicsfa )
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Thai 1 ium
Zinc
Phthalates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Pheno 1 s
Phenol
Aromatics
Benzene
Toluene
2,4-Dini trotoluene
Polvcvclic aromatic hydrocarbons
Acenaphthene
Acenaphthylene
Anthracene
Benz( a (anthracene
Benzo(a Ipyrene
Benzo( b ) f 1 uoranthene
1 , 1 2-Benzope ry 1 ene
Benzol k)f 1 uoranthene
Chrysene
Dibenz( a, h (anthracene
Fl uoranthene
Fluorene
Indenof l,2,3-cd)pyrene
Naphthalene
Pyrene
Phenanthrene
Haloqenated aliphatics
Chloroform
Methylene chloride
Pesticides and metabolites
Gamma -BHC
Number of

3
3
1
3
3
3
3
3
3
3
3
3
3
3
3

7
7
7
7

6

8
8
7

7
7
7
7
7
7
7
•7
7
7
7
7
7
7
7
7

8
8

7
Number or
detections
>IO uo/L

2
2
1
2
2
2
3
2
2
0
3
1
1
1
2

5
2
1
0

1

1
0
0

1
1
u
3
3
1
1
2
2
1
U
1
2
I
>4
3

0
1

0
Concent rat
Ranoe

NO - 770
ND - 260
2.3 x IOEIO
ND - 75
2.3 - <200
ND - 2,200
13 - 1140

-------
    TABLE 10-6.
CLASSICAL POLLUTANTS  IN THE RAW WASTEWATER
OF THE SECONDARY ALUMINUM SUBCATEGORY,
SCREENING AND VERIFICATION DATA [2-35]
Pol lutant
COD
TOC
TSS
Total phenol
Oil and grease
Ammon i a
Chloride
Number of
samples
h
h
14
It
n
2
3
Number of
detections
„
3
it
14
u
2
3
Concentrat ion^a )
Range Med
9 - 580 35
ND - IUO 3.8
63 - 13,000 150
0.003 - 0.025 0.01
3.2-98 13
<0. 10 - 140
400 - 6,000 I,UOO
. mq/L
ian Mean
160
37
3,300
0.012
32
70
2,600
    Analytic methods: V.7.3.22, Data sets 1,2.
    ND,  not detected.
    (a)Concentrations were calculated by multiplying the concentrations
       of the various wastestreams by the percentage of the total flow
       and then subtracting the concentration present in the intake.
II.10.2.3  Primary Columbium - Primary Tantalum

The production  of  columbium and tantalum involves the processing
of ore concentrates and slags to obtain columbium and tantalum
salts, and the  subsequent reduction of those  salts to the respec-
tive metals.  The  ore concentrates are dissolved by hydrofluoric
acid, and the insoluble gangue is removed by  filtration.  Waste
gangue is generally settled in holding ponds.   Overflow from this
pond is extremely  acidic and contains metals,  fluorides, and sus-
pended solids.   After filtration, the digested solution is ex-
tracted with an organic solvent and the raffinate is discharged
as a wastestream with high concentrations of  organics, fluorides,
metals, and suspended solids.  The organic  stream is then stripped
with water to yield aqueous solutions of columbium and tantalum.
Precipitation of the salts is accomplished  by ammonia addition
and is followed by filtration.  The filtrate  typically contains
high concentrations of ammonia as well as significant levels of
fluoride, various  metals, and suspended solids.  Conversion of
Date:  9/25/81
               11.10-10

-------
       TABLE 10-7.   CONCENTRATIONS OF TOXIC POLLUTANTS  FOUND  IN RAW WASTEWATERS
                      OF THE  SECONDARY ALUMINUM  SUBCATEGORY, SCREENING  AND
                      VERIFICATION  DATA [2-35]
Toxic DOI lutant
Metals and inorqanicsla )
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 ium
Cadmium
Cti rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si 1 ve r
Tha 1 1 ium
Zinc
Phthalates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Dimethyl phthalate
Oi-n-octyl phthalate
Nitrogen compounds
3 , 3 ' -0 i ch 1 o robenz i d i ne
Aromatics
Benzene
1 ,4-Dicnlorobenzene
Polvcvclio aromatic hydrocarbons
Acenaphthy lene
Anthracene
Benzol a (pyrene
Chrysene
Fluoranthene
Naphthalene
Phenanthrene
Pyrene
Polvchlorinated biphenvls
Aroclor 12148
Aroclor 1254
Haloqenated aliphatics
Carbon tetrachloride
Chloroform
D i ch lo rob romome thane
1 , 2-D i c 1 o roethane
1,2-trans-Dichloroethylene
Me thy lene chloride
Tetrachlo roe thy lene
Trichloroethylene
Pesticides and metabolites
Alpha-BHC
Beta-BHC
Gamma-BHC
Chlordane
4,4'-DDE
4,4'-DDT
Dieldrin
Endrin
Endrin a Idehyde
Heptachlor
Heptachlor epoxide
Isophorone
Number of
samples

4
4
1
4
4
il
4
4
4
it
i»
It
4
3
4

6
6
6
6
6

6

10
6

6
6
6
6
6
6
6
6

6
6

10
10
10
10
10
10
10
10

6
6
6
6
6
6
6
6
6
6
6
6
Number of
detections
>IO ua/L

2
3
1
it
It
It
It
U
U
3
3
1
2
1
It

It
2
3
1
1

0

1
'

1
0
1
1
2
0
0
1

0
0

0
6
1
0
5
1
1
5

0
0
0
0
0
0
0
0
0
0
0
0
Concentration. ua/L
Range

NO - 950
ND - 14,000
7.5 x IOE8
<7.0 - 310
<35 - 2,000
<5 - 1,200
<70 - 6, 100

-------
the salts to metals produces  wastewater from air pollution con-
trol scrubbers and reduction  leachates.  These streams contain
high levels of dissolved  solids and significant concentrations of
fluoride.

Tables 10-8 and 10-9 present  classical and toxic pollutant con-
centration data for this  subcategory.
  TABLE 10-8.
CLASSICAL POLLUTANTS  IN  THE RAW WASTEWATER
OF THE PRIMARY COLUMBIUM AND PRIMARY TANTALUM
SUBCATEGORIES, SCREENING AND VERIFICATION DATA
[2-35]
Pol lutant
COD
TOG
TSS
Total phenol
Oil and g rea se
Ammon i a
Fluoride
Chloride
Number of
samples
3
3
3
3
3
3
3
1
Number of
detections
3
3
3
3
3
3
3
1
Concentration^ ) . mq/L
Ranqe
140 - 6,600
45 - 1,000
570 - 8,600
0.016 - 0. 10
5.3 - 16
31 - 2,400
2,200 - 6,400
120
Median
400
120
3,900
0.02
7.3
380
3,500

Mean
2,400
390
4,400
0.04
9.5
940
4,000

     Analytic methods: V.7.3.22, Data sets 1,2.
     (aJConcentrations were calculated by multiplying the concentrations
       of the various vastest reams by the percentage of the total flow,
       and then subtracting the concentration present in the intake.
II.10.2.4  Primary Copper

Both smelting and refining are practiced by the primary copper
industry.  Some plants  engage in smelting only, others practice
only refining, and some facilities practice both operations.
Significant differences in wastewater characteristics associated
with smelting and refining are found.

Smelting process wastewater sources include acid plant blowdown,
contact cooling, and  slag granulation.  Acid plant blowdown
results from the recovery of sulfur from the smelting operation.
Contact casting cooling water used by primary copper smelters is
normally recycled after cooling in towers or ponds.  Furnace  slag
is disposed of by either dumping or granulation.  Molten  slag is
granulated by using high pressure water jets. ' The wastewater
from this granulation is typically high in both suspended and
dissolved solids and  contains some toxic metals.

Refining operations have two principal wastestreams, waste elec-
trolyte and cathode and anode wash water.  Spent electrolyte  is
normally recycled.  A bleed stream is treated to reduce copper
Date:  9/25/81
             11.10-12

-------
       OL
       

       WO
       CCZ
       U<
       caul
       
       OK
       U- —
       °
       w
       <£=> I
       o=><
       oo<
       ooa
       o

       u

       <

c
I
2


O
<
CT
•-:
2

c
V
U
c
a
c
c
a
a

(0
ft- C-
O O*-
0) O "
A OC
E **-
3 0 /
z-o
0
U
c- (
11
z <




J
c
a
4


C
c
c
>
c
t-


oo ooooNQvo-a-ooofMO o*nOO*O X —00 O*
p^ o\ r- ^
— • CO
CO

— 00 CM — CJfO — — COM — ro
— — OOOOOOfOO




-co ra-a-oo o -o — \OCMO CM .0 .a .0 .0 .a A nnn^jD a .0 .a .a .0 .a .Q .0 ,0
* . * *
co ro CM \O

J—
OO UJ O





OO OOO OOO
OO OOO— OO O O — .—.
OO^ O - - X OO O * O OO
* *LJO -OO 00 P- -OOO — — — OO OOOOOO O
— — — — (\JtAC\J — CJflOJCyvOVf- — ^\O — ro O\ — ^ — — — CM — CUCM 	 C\JpO^-rf

1 t X I t 1 t 1 1 1 1 I 1 1 1 iillli I II


III 1 1 1 1 1 1 1 1 1

o OOVOOOOCMO — ooooo oaaQaa a aaaaa QOQQOOQQO
ZOO -IN -OO O -OZOJ2J ZZZZZZ Z ZZZZZ ZZZZZZZZZ
— eo OOOJT oo»o v m
•> -V V




C\JPO — POCJ
O -J eg CO 0) (0 09
^ ^.c _ oj *J - - C
CM — 4-» W *J CO CO O >£ £ « - £ C 3
S« x Q.4J— n 4J o —
A 01 £ C8££ £ O
§— £ — a£ *j a a. 4^
«- — X «.n o o
>»N — £ a— i- <-
-e j= c xa >> o *j
^ >» « 3 S E£ « *J « *J — *» — —
C C 0 0 — E 3 0) >> 3 3 0) > O £ MO>C
(OO— •*->— 3— S--O L — — (_ — 4JI 13 >>£ O O O C —
sew — — e»— 3cj}coj— co cj — i £ *J i Mies — a> a
« — OJCj)>»goaC-OOJC(D>— O — *— >» C « O C — U» 4J N 1
— ^M^u-oi-acQcot-o 	 re c CQM+JIVSI oc co c j
AJrf^^CQCJOOOJsEzWJCrt^hJ ^iCOCOOOOO fliffl- O OQ CJ
£ £ fl <


tit
c
L.
CO
o
i !

N J= 0 C
O C 03 C 0)
COO O C V 0
§r> — c oj— to
O *J V — co t-
— i. co 0) O 0) >»£ £
O O E C re C t- +J W
•p 0) — ovffi t-a>0}j= c
Scr: i- c— r: t- a a CD
(DO TO Q > 4) 4J >»— (Q —
w N •- 5 5 c c .S^ c c
-QI_ — ^co-^wcnt-c^-
- A i — a a co co — — o dj N
007 oreco*- — oo— we
It.. >CC£NNN£>»CB

S
Date:   9/25/81
11.10-13

-------
      or.
      

      COO
      o:z
      LJ<
      UJ —
      h-Z
      COU1
      -
      oce

      Hl
      LL. —
      OK -*
      CO   0)
         O 3
           C
      0:3 o
      I -- O
      US
         _Jh-
      OO<
      OOQ
      ON
       I
      O
         — POP-) — roiA    vo —    (\J — C\JCO<-Of>.3-OMAOiA\OiA — —
          	     ..     	—  ..=r  -o • •  •  • cy     •o--O'O'OOO-ooo-o
         — — O'-oo o    cy .=r    — iAiAr-o  —   —oowcycy      o*— oo^o—o^——^-o— —•--oj —






    (
    <

  C TJ    .Q.Q.O.Q.O.a    J3.O

  "4





  »                                             §
  _                                             O               JT    en        — co
  o      cyooo                 ooo    -o      o    ooiAooflO^-o — o o.*cy IA —   —
  O       • O  •#  •  •    COCy    —J- — J-fOiACycOtOCO-iAOOvrO     	OS-
    Q>    h-CM^cocyto    ro ifS    cyt^co — — — cy^cyoo^ovo-wcycAj    ^ o^t j~ o o o — OOOIAOOOOJO
    o
    C     I I I I  I I     II     1 I I  1  I  1  1 I  I I I  I  I  I I     I  I I I  I  I  I  I  I I I  I  I  I  I I I

         QQQQQQ    QQ    QOQOOQQQQQQQQQQ    OQQQQQQQOQQQQQQQQ
         zzzzzz    zz    zzzzzzzzzzzzzzz    zzzzzzzzzzzzzzzzz



  C -1
O ON

uvS
o o
AQJO    O CM O ~ O O    ^"~    —<\Jcor~~-SO^NO~"^O~'C\J<\JW?    OOOOOOOOOOOOOOO^O
E -w —
~ 0) /
  •o




  o
    n

        SinminuMnm    ir\if\    <\J oj CJ cvj tM c\j w nj \t\ w CM oj PJW CM    ..			
  .a of   3	    	    cyCMWwwwojcy — cytMtMMOjtM    	•	    ca

  3 n
  z in
s
(U

>>
  C
                                                    •DC  C   CO
                                                    — CO  CO 0} 0} O
                                                                        0) tt)
                                                                        CC
                                                                    £ >>0 O O  O

                                                           CDQJO^:— C04JOO>>
                                                                  C CO
                                                                  fit
                                  OE   |g°~g-gi«2Sw   c
                                  ji.Ei.oo7o   £ i- o o «   a
                                  DA^-A	10 U 0) I— O	O      O  OUO
                                  '— OOffCOCI— t-f.1.   01  ZOIXCL
                                                o c

        Off C O C I — I- 1- £   "1  ZUZX CUJh- C? ™
        ^OUCQ'-CJJCUf^^-O   O  CQZCC0ffl»{\j co •— CM £  —— coicece1-!  ivcoto —
E.QOO.CI I I n£ .U ..O   Ot-fcofEO-- — JT O 1-      	
01	ocvj — CMXW— *>	— -oaw—E — a-jro a-o TJ ^o a a o X
^cof£—«««OCD^Q}»«(.   *J	03 r~	
CQUUUO      	            -----
•a u i. o
i;°°iS
c€^oS
                                                                                        O 

flj — **JC >~ 4-) >>a IA « U V) CB C E O C * O CO ** O O 0) — C (- <_ W O O *» « CO — — W (^ 1_ 4J C « 0) ** CO > eg ** (- C »- Ottf) CD O > 0) C 0) T3 <0 O C £ O 3 *J O •U 0) T3 O C C O 0) *•> C — — CO E 0) «J *- — C oT>_«»TJCB — 4* CB *» o *» e_ >>c a>£ coo — r +•> - z z £ « O u e e COO — z z C Q a> A U < ac~- *^*- CO Date: 9/25/81 11.10-14


-------
and impurity concentration.   Varying degrees of treatment  are
necessary because of  the  differences in the anode copper.   Anode
impurities, including nickel,  arsenic,  and traces of antimony  and
bismuth, may be present in the effluent if the spent electrolyte
bleed stream is discharged.

Table 10-10 and Table 10-11 present classical and toxic pollutant
data for raw wastewater in this subcategory.
TABLE 10-10.
CLASSICAL POLLUTANTS  IN RAW WASTEWATER FROM
THE PRIMARY COPPER  SUBCATEGORY,  SCREENING AND
VERIFICATION DATA  [2-35]
Number of
Pol lutant samples
COD 3
TOC 3
TSS 3
Total phenol 2
Oil and grease 1
Number of Concentrat ion(a)
detections Range Med
. mq/L
ian Mean
3 <2.0 - 810 25 280
3 3.5 - 7.0 H.9 5. 1
3 5.U - 4,500 18 1,500
2 0.0055 - 0.033
1 6. 1
0.019

    Analytic methods: V.7.3.22, Data  sets  1,2.
    (aJConcentrations were calculated by multiplying the concentrations
       of the various wastestreams by the  percentage of the total  flow
       and then subtracting the concentration present in the intake.
II.10.2.5  Secondary  Copper

Wastewater is generated by several processes in this  subcategory.
Slag milling and classification generates wastewater  that  is  high
in suspended solids,  copper,  lead, and zinc.  Air pollution con-
trol at the site generates acidic wastewater that contains sig-
nificant levels of  copper.   Other wastewater sources  may include
contact cooling, electrolyte disposal, and slag granulation.

Tables 10-12 and 10-13  present classical and toxic pollutant  data
for the secondary copper recovery subcategory.

II.10.2.6  Primary  Lead


Primary lead facilities have two major processes associated with
wastewater generation.   The smelting process generates  a major
wastestream from the  sintering operation.  These wastewaters  are
typically high in dissolved solids and metals such as cadmium,
lead, and zinc.  Acid plant blowdown, slag granulation, "and air
pollution control methods are also associated with smelting
operations.  Refining operations also generate wastewater  from
air pollution equipment and from noncontact cooling water.
Date:  9/25/81
               11.10-15

-------
  TABLE 10-11.   CONCENTRATIONS OF TOXIC POLLUTANTS  FOUND  IN  RAW WASTEWATER  FROM
                  THE  PRIMARY COPPER SUBCATEGORY,  SCREENING AND VERIFICATION  DATA
                  [2-35]
Number of
Number of detections
Concentration. ua/L
Toxic DOI lutant sanwles >IO uo/L Ranae
Metals and inoraan icsla )
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Tha 1 1 i urn
Zinc
Phthlates
Bis(2-ethylhexyl ) phthalate 1
Butyl benzyl phthalate 1
Di-n-butyl phthalate 1
Di-n-octyl phthalate 1
Pheno 1 s
2,4-Dimethylphenol
Aroma tics
Benzene 1

3 3 <50
3 3 <2.0
3 0 <2
3 1 <5
3 2 
-------
 Tables  10-14 and 10-15 present classical and toxic pollutant  data
 of  the  raw wastewater generated in this subcategory.
TABLE  10-12.
CLASSICAL POLLUTANTS  IN THE  RAW WASTEWATER OF THE
SECONDARY COPPER SUBCATEGORY,  SCREENING AND
VERIFICATION DATA  [2-35]
Pol lutant
COD
TOG
TSS
Total phenol
Oi 1 and grease
Fluoride
Number of
samples
5
5
5
H
H
1
Number of Concentration^ ). mq/L
detections Ranqe
5
5
5
H
U
1
9.7
6.0
k.O
0.0063
1.7
0.
- 900
- 99
- 11,000
- 0.22
- 30
29
Median
75
30
65
O.OU5
H.2

Mean
230
UO
2,700
0.079
10

     Analytic methods: V.7.3.22, Data sets 1,2.
     (a)Concentration present in the intake was subtracted from concen-
       tration measured.
 II.10.2.7   Secondary Lead

 The principal  raw material for the secondary lead industry is
 scrap batteries.   Wastewater is generated from battery acid
 streams, wash  down streams,  and saw cooling for cracking the
 batteries.  These streams contain significant levels of suspended
 solids,  antimony,  arsenic,  cadmium,  lead, and zinc.  Smelting
 operations  for this subcategory generate wastewater from air pol-
 lution control devices  and contact cooling streams.

 Tables 10-16 and  10-17  present classical and toxic pollutant data
 for the  raw wastewater  in this subcategory.

 II.10.2.8   Secondary Silver

 Secondary silver  is recovered from photographic and nonphoto-
 graphic  sources.   Wastewater sources from photographic wastes
 include  leaching  and stripping,  precipitation and filtration of
 silver,  electrolysis, and pollution control.  Nonphotographic
 scrap wastewater  is generated by similar processes.  These waste-
water streams  contain significant concentrations of chromium,
copper,  lead,  and zinc  as well as some organic priority pollu-
tants.
Date:  9/25/81
                             11.10-17

-------









UJ— ,
X LA
l-co
1
SCM
•— •
<£.
t-
CO <
CC O
LJ
h- Z
<0
3:-
LJ 1-
1 — <£
CO O
^ —
5: LI_
—
~^ oi
< LJ
fX >

ZQ
— Z
^
Q
ZO

O —
u- z
LJ
(O LJ
I- ce
zo
< CO
r-
-lo:
o o
0- O
LJ
Ol-
""~ ^
xo
O CO
f— ^
!/>
occ
LJ
C/50.
Z0_
oo
— o
I—
o
(£. Q"*

ZQ
OO
zo
O LJ
O CO

•
CO
1
o
—

LJ
_J
CO
^
1-




























1
*-,



c
o

.p
CO

.p
c
CO
o
c
o
o















u>
<*- c
0 0

£~ -P
(U C

E 4J
3 CO
ZT3


C4-
O

5.
CO
J2

Z































CO
0
z:









c
CO
13
(11
UJ















0)
a
c
CO
cc












	
\
o
^J

o
—
A




CO
CD

a
CO
(n














4J
c
CO
4-9
~
—
—
O
a

o
x
o
t-





OOO03OOOCOOIAOOOO — O
O J" — LACS-3'O • O CO O O f*- CM O
CM OMJ rovOOOO -O co O
* O V *V «*O * •*
CM — O l»- O 0
IA — CM CO
X & V3 rr>
LA
LA




C^ C^ O O O O VO O (O CO O CO O C^
ZO COIAJ-O OlAOZ— ZO
V -, -O - -.
O O CO O
•3" — -3-



—
— vo \o \o
LJ LJ UJ LJ
O O O O
— ~~ _ ^
0 O
oox oox o x o x
oo oo o o
*CM O CO CM ~~ ~~~ ^^O ^ CO ^O IA
— * • \O ^ •> • \O CO • • p— *\co •
— J- 	 CMCMCMLAOroCM — IA —

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

QQr^QOOO — OQOQQQO
ZZLJZ . -CMVIAZ -ZZZO
O LAlA^O ^ r~ d"
^ *
w
X

CO

CO







CMcoCM-£f-3''3'LA— LAO -3" CM CO CM LA










LAlACMLALALALAJ-LALAlfMfMAlALA












f^
CO
•^^
U)
0 -I
'— ^^
c in
CO t-
O CO
L_ jQ
0
C >W3E EE W
C C 0 O — E 3 CO >> 3 3 CD
COO— -P— 3— S-13 ! 	 ' 	 4J
EC« 	 ECU— 3COCCO— TO
w— .eoac-DOJC(B>— o —
— <->WJ3!-T3t.acOCOl-O 	 COC CO
^J^^^CQOOOO— JSZCOCOt— NJ 4J
CO £
z: a.

^ ro \O ~™ • ^^*
o -m— a

*,
—








LA.a'^.a"












O
o
O. 0
•«VO O\ co f**
*— IA CO CO ^O

I I 1 1 I

aooao
zzzzz















ON— LAW-










CM CM CM CM CM








CO
CO

CO
£ CO
4J 4J
£ CO CD CD
a— 4J 4J
CO CD CD
^£— CO —
— 4J CO 4J CO
>>££ ID £
X Q.4J- -P
CO £ co£
£— a.£ a
- >> -P

£ C ^> Q. ^4
•p co -P •P
4) J3 3— O «)
1 £• >>0 O
CM — 1 £ 1
~->>C -P C -P
Ul -P 1 CO 1 CO
flQ CQ O QQ O
^
^

•o j-or-
• -CM •











n.o.a.a












0
0
oo
co • -O
— -3-LA —

1 1 1 1

OQQQ
zzzz















— o — o










OOCMO






C
o
J3
CO
O
0
!_
•a

f'

CO O
c —
CD 4J
N CD
C E
CO CO O
CJ3 S-
CO O CD
N «-
CO 0
O ffi — CO —
C.O£ C —
CO— 0 CD O
N >»CO 3 >
C£ X- 0
CO -P CO 0 >
OOLJXI- —
O
Q.

^>coO — OO J"
•CMVO • -3-00 —
3- CMOWCM










£3 J3 J3 S3 J3 -J3











O
O OO
0 OO
000 -0
VOCM - -O -.3-
CO — CO 	 CO C>

1 1 1 1 1 1 1

OQQOQQQ
zzzzzzz















CM CO CM O CM CO >CO >> CD
££ C a £
H 4J CD — CD -P CD
££ 0 CO C C C
a. a. co -^ CD co CD
CO CO <- O "> •- *-
C C£ N >>O O
0) CD 4J C S- 3 3
O O C C0£ 	
< « OQ O U, LL.


Date:  9/25/81
11.10-18

-------


•a
CD
c
UJ —
X 4J
h- C
o
s: u
UL~
U. «:£
C/5 «?
££O
bJ
1— z
<0

UJ h-
H- <
WO

^ u.
"^ ^
^ tt^
< UJ
°- •*
ZO
"~ 5
Q
ZO

O —
U. Z
UJ
WUJ
1— CC
ZO

1
^ ^
_J >.



Ul
OK

xo
oco

w
u.

w a.
zo.
oo
-0

^L "^
2 ^
H~ ^
ZO
UJ Z
00
Z O
O LjJ
o to


.
CO
_
Q


UJ

CD
H-













-i
CT
.
C
O
~
CO
c_
4-J
C
CD
0
C
o












^
CO
S
C
CO
s:










CD
O
C
CO
(T










OS
ti- c _l
0 OX
— o
!- 4J 3
CO U
xj co o
e: ij -_-,-
3 CO A
z-a



Cj-
o
V5
S- CO
CD —
n a
Ee
cz
3 CO
Z 05
















C
CO
4J
3
—
O
O

u

X.
o
1-





^; >— ' l^ UAm W\J l_J v\l 1^ u A \~s ^1 uu 	
lA^ — •• — ro.iT\>CO.»*


^£^5 ^2X3








OOO
OOO


ja • JQ .a .o .a .a .a .Q








o
o
OOO OO 00 0000
•, ^ «. • • C\J *W fO • "~ • W O

III II

QOQ Q Q
zzz zz















COfOCO O O












c
CD
C
o
—
o

•o
CO U 03-d-
CO C 4JJ-IT
CO CO CMCM
CO S- C 	
— £1 —
CD -P i. i. !.
Si C CO OOO
4-J CO C 	
C. C O £ O O
aa> <- u o o
CO £ >> ^ ^- 5—
z a. o. — < <
o
a.

1 1 1 1 1 1 1 1 1

QQQQQQQQQ
zzzzzzzzz















— m— CMOCMOCM —











ooooooooo










CD
C 0)
CO C 05
— CO CD
>> C. 4J

05 CO CO 4-J CO —
O T3 C CO O CO O
	 COCUOCBt-C -Q
4J1. C— S--O O CD CO CO
COO CO>>O 	 C *J
il— ££—'-£>»»  >
— co 0 0 — £ >- 0) C -0
co<- S- i- Q O -P O 4-> C
•PEOOI COt-CD CO
•530)! 	 05COKOO
a) 4J o^:^: c c i — s- os
4J ,CM coil —
CO.Q O 1 1 1 ,C - 1- 0 O
as — cvi — CM 4J — 4-J — —
O CD-C •,•.•.& .011- 4-J
— OO 	 S — I-H 05
CO CU
x a.
ooooo -oooooooooo


^^^^J3^^1X3^J3ni2jar!J3^









CM .3- CM coco CM
CMCMOCMOh^O — OOcOro^fOO^f
OOOOOOOOOOOOOOOO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

QQQQQOQQQQOQQQQQ
zzzzzzzzzzzzzzzz















OOOOOOOOOOOOOOOO











^•^•J-J'Jl-J'J'^JtJ-d'itJTJ-itJ'



















c
CO C CO
<*- CO T3
— c>. X
3— x:
05 3 CD
o en -a *-
OOOCO T3O— Od)
XOXX CU1QI- C C-D CO— C
coxmcocoQQQ — ujc -c 0
CICQI • t^f"»r*ir^t- i iiif-f-or"
— CO 1 CO CO 4- 1 1 1 "O CO 1 	 CO Q.
S-.CC04JEO--- — £ CO i- 5- 4-J CO
•O £i4J— E~--^^^J'CD O-4J^T3 D.X
	 coeocox: «•.•> 	 cocccuo
«cooood-d-irQ CD CD
X! «-<4-
3 CO
05 C t-

05 C
CM CO CO —
— XI CO
0) CO —
in ^ — xi
4J CO— CO
CO 4J CO-
OS C > —
— CO CO
co >
40 CD 4-J CO
Sx: o
4J C 4-J
o
. C 05 C
CM — CO
CM > W
4J CO
ro C C >
CO O
1^ 05— C
CD 4-1 O
> s- co-
Q.S- 4J
... 4J CO
05 T3 C C t-
T3 CO O CD 4J
O *»— O C
x: o 4-J c co
4-J 0 CO O O
CD 4J 1- 0 C
E CD 4-> 0
•o c c o
U CO CO
— 4J O — C
4J O CT3 CO
>>C O CD CO
— O 21 2
co -i*™ .^^.^^
c: Q cox: o
^ z - -- --_-
Date:  9/25/81
11.10-19

-------
                TABLE  10-IU.   CLASSICAL  POLLUTANTS IN THE RAW WASTEWATER
                               OF THE PRIMARY LEAD SUBCATECORY [2-35]
Pol lutant
COD
TOG
TSS
Tota 1 pheno 1
Ammon i a
Oil and grease
Number of Number of
Concentration^
samples detections Ranqe Med
2
2
2
2
2
2
2
1
1
1
2
0
3.7 -
NO -
NO -
NO -
ND -
ND
f70
3.3
26
0.050
3.8

). mq/L
ian Mean
87
1.6
13
0.025
1.9

     Analytic methods:  V.7.3.22, Data sets  1,2.
     ND,  not detected.
     (aJConcentrations  were calculated by multiplying the concentrations
        of the various  wastestreams by their percentage of the  total  flow
        and then subtracting the concentration present in the  intake.
      TABLE  10-15.   CONCENTRATIONS OF  TOXIC POLLUTANTS  FOUND IN RAW WASTEWATER
                     OF THE PRIMARY LEAD SUBCATEGORY [2-35]
Toxic DO! lutant
Metals and inoroanicsta 1
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Coppe r
Cyanide
Lead
Mercury
Nickel
Selenium
S i 1 ve r
Tha 1 1 i urn
Zinc
Po 1 vcvc I i c a roma t i c hvd roca rbons
Pyrene
Halogenated aliohatics
Methyl ene chloride
Number of
samples

2
2
2
2
2
2
2
2
2
2
2
2
2
2

3

It
Number of
detections Concentration. ua/L
>IO ua/L

I
2
0
2
2
2
0
2
0
2
1
1
1
2

0

1
Ranae Median

ND -
58 -
ND -
700 -
11 -
100 -
<0.02 -
7,900 -
0.67 -
50 -
5.U -
ND -
ND -
5,300 -

NO -

ND -

<330
96
6.7
1,300
30
620
0. 12
21,000
7.5
130

-------
            TABLE  10-16.   CLASSICAL  POLLUTANTS IN  THE  RAW WASTEWATER OF  THE
                             SECONDARY  LEAD  SUBCATEGORY [2-35]
Pol (utant
COO
TOO
TSS
Total phenol
Oi 1 and grease
Ammonia
Chloride
Number of
samples
3
3
1
1
3
|
1
Number of Concentrat ion(a ) . ma/L
detections Ranae
3 65 - 230
3 U - 110
1 0.056 - 1,000
1 IO ua/
it
3
I
3
1
1
1
1
1
1
3
3
3
1

5
5
5
5
5

5

10
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

10
10
10
10
10
10
10

5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
3
1
1
1
i|
1
1
1
1
0
3
3
1

1
1
3
2
2

0

0
0
0
1
1
1
1
0
0
1
2
0
0
0
1
2
0
0

1
3
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
of
ons
R!
1,800
3,000
1.3
1.0
210
1 10
230
7,000
0.6
210
ND
110
50
870

ND
NO
NO
ND
ND

NO

ND
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NO
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
NO
ND
ND
ND
ND
NO
ND
ND
ND
ND
NO

nc

-
X
-
-
-
-
-
-
_
-
-
-
-

-
-
-
-
-

•

-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
-
.
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
•
-

Concentrat i
e
80,000
13,000
IOEI 1
30
2,000
1,000
8,000
2.0 x IOE6
12
2,000
)
0.2
(b)
(b)
(b)
(b)
(b)
(b)
0. 1
0. 1
(b)

Mean
10,000
7,700

12
960
520
3,600
510,000
3.6
1,000
<1.0
160
390
5,700

180
17
12
2.6
9.0

1 .2

0.2
0.5
0.3
3.2
8.6
1.0
2.0
1.6
1.6
1 10
7.6
0.1
0.2
0.8
1.6
10
1 .1
1.3

5.7
6.9
1.0
3.7
1 .0
1 . 1
0.8

(c
(c
0.
(c
0.2
(c
(c
(c
(c
1 .0
0.
0.
0.
1.8
      Analytic methods: V.7.3.22,  Data sets 1,2.
      ND,  not detected.
      (a)Metals and  inorganics concentrations, except for asbestos,  were calculated by multiplying the concentrations
        of the various wastestreams by the percentage of the total  flow and then subtracting  the concentration pre-
        sent in the intake.
      (b)Median concentration was  not available in reference.
      (c)Mean concentration was not available  in  reference.
Date:    9/25/81
11.10-21

-------
Tables 10-18  and 10-19 present pollutant data for this  subcate-
gory.
     TABLE  10-18.
CLASSICAL POLLUTANTS IN THE RAW WASTEWATER OF
THE SECONDARY SILVER SUBCATEGORY,  SCREENING
AND VERIFICATION DATA [2-35]
Po I lutant
COO
TOC
TSS
Total phenol
Oil and grease
Ammon ia
Fluoride
Chloride
Number of
same les
3
3
3
3
3
2
1
1
Number of
Concentrat ion(a ) . mq/L
detections Range
3
3
3
3
3
2
1
1
230
19
1 10
0.02
8.0
12
1.
32,
- 12,000
- 9, 100
- 1, 100
- 28
- 100
- 1,500
2
000
Med ian
3,000
U30
1 10
0.04
17



Mean
5, 100
3,200
440
9.4
42
760


    Analytic methods: V.7.3.22, Data sets 1,2.
    (aJConcentrations were calculated by multiplying the concentrations
       of the various wastestreams by the percentage of the total flow
       and then subtracting the concentration in the intake.
II.10.2.9  Primary Tungsten

Tungsten production involves processing ore concentrates  to
obtain the salt,  ammonium paratungstate (APT), and subsequent
reduction of  APT  to metallic tungsten.   Wastewater is generated
during all three  processes and results  from the precipitation and
filtration of the salt, the leaching to convert to tungstic acid,
and the air pollution control methods associated with the pro-
cesses.  Wastewaters may be acidic  and  contain significant con-
centration of chlorides, arsenic, lead,  zinc, and ammonia.

Tables 10-20  and  10-21 present classical and toxic pollutant data
for the primary tungsten subcategory.
Date:  9/25/81
             11.10-22

-------
TABLE  10-19.
CONCENTRATIONS OF TOXIC POLLUTANTS FOUND  IN RAW  WASTEWATERS OF  THE SECONDARY
SILVE'R SUBCATEGORY,  SCREENING AND  VERIFICATION DATA [2-35]
Toxic ool lutant
Metals and inorganics(a 1
Antimony
Arsenic
Asbestos, fibers/L
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 ium
Zinc
Phtha 1 a tes
Bis(2-ethylhexy 1 ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Di-n-octyl phthalate
Aroma tics
Benzene
Chloro benzene
Ethyl benzene
Toluene
Polycyclic aromatic hydrocarbons
Acenaphthene
Anthracene
Naphthalene
Phenanthrene
Pyrene
Polych lor mated biphenvls
Aroclor 1248
Aroclor 1254
Halogenated aliphatics
Bromoform
Carbon tetrachloride
Chlorodibromomethane
Chloroform
1 ,2-Dichlo roe thane
1, l-Dichloroethylene
Methylene chloride
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethylene
1 , 1 , 1 -Tr ich lo roe thane
Trichloroethyl ene
Pesticides and metabolites
Aldrin
Beta-BHC
Del ta-BHC
Chlordane
4,4'-DDE
ll,lt'-DOD
4, 4 '-DDT
0 i e 1 d r i n
End ri n
Heptachlor
Number of
samples

3
3
1
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5

6
6
6
6

5
5
5
5
5

3
3

6
6
6
6
6
6
6
4
6
6
6

3
3
3
3
3
3
3
3
3
3
Number of
detections
>IO uq/L

1
3
1
2
3
3
3
2
3
0
3
1
3
1
3

14
1
4
1
3

H
0
3
4

1
0
0
0
1

0
0

1
1
1
3
3
2
3
1
5
2
5

0
0
0
0
0
0
0
0
0
0
Concentration. uq/L
Range

NO
10
2
NO
1,000
2,000
7,300
1
4,000
NO
1, 100
NO
250
NO
8,400

7.0
NO
NO
NO
ND

3.0
ND
ND
3.0

ND
ND
ND
ND
NO

ND
ND

NO
ND
ND
ND
NO
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

-
-
X
~
~
-
-
-
-
-
-
—
-
-
-

-
-
—
-
-

-
*
-
•

«
-
-
-
-

-
-

~
-
-
«
-
-
-
-
-
.
-

-
-
-
-
—
-
~
-
•


25,000
920
IOE9
20
80,000
27,000
70,000
2, 100
50.000
5.5
800,000
590
It, 700
510
2.0 x IOE6

3U
53
300
38
58

160
9.0
21
55

10
4.0
1.0
4.0
2, 100

0.5
0.7

65
2,300
64
890
560
6, 100
3, 100
32
110
22
900

1 . 1
0.02
1 . 1
0. 1
0.01
0. 1
0.01
0.01
2.0
0.02
Median

ND
40

19
3,200
20,000
60,000
50
4,200
ND
30,000
ND
410
ND
20,000

1 1
(b)
15
(b)
33

66
0.5
(b)
18

(b)
(b)
(b)
(b)
(b)

(b)
(b)

(b)
(b)
(b)
8.5
21
(b)
170
(b)
36
(b)
230

(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
Mean

8,300
330

13
28,000
16,000
46,000
720
19,000
1.8
280,000
200
1,800
170
680,000

18
1 1
75
7.6
30

75
2.8
9.2
21

2.0
0.8
0.2
0.8
430

0.2
0.2

1 1
380
1 1
160
120
1, 100
1,000
8.0
43
7.3
360

0.4
(c)
0.4
(c)
(c)
(c)
(c)
(c)
0.7
(c)
        Analytic methods:  V.7.3.22, Data sets 1,2.
        ND, not detected.
        (a)Metal and  inorganic concentrations were calculated by multiplying the concentrations of  the
           various wastestrcams by the percentage of the total flow and then subtracting  the concentra-
           tion in the intake.
        (b)Mediari concentrations not available in refcronuo.
        (c)Mean concentrations not available in reference.
   Date:   9/25/81
                            11.10-23

-------
               TABLE  10-20.
CLASSICAL POLLUTANTS IN  THE RAW WASTEWATER OF  THE
PRIMARY TUNGSTEN  SUBCATEGORY
Pol lutant
COD
TOC
TSS
Total phenol
01 1 and grease
Ammonia
Chloride
Number of
samples
3
3
3
3
3
3
2
Number of
detections
3
3
3
}
1
1
2
Concentration! a). ma/L
Ranae
120 - 880
6.0 - 270
12 - 6,700
0.038 - 0.089
6.3 - 17
3.9 - 1,600
850 - 26,000
Median
320
27
210
0.039
6.8
900

Mean
110
100
2,300
0.055
10
830
13,000
                       Analytic methods: v.7.3.22. Data sets 1,2.
                       (aJConcentrations were calculated by multiplying the concentrations or
                          the various wastestreams by the normalized percentage or the  total
                          flow and then subtracting the concentration present in the intake.
TABLE  10-21.   CONCENTRATIONS OF TOXIC  POLLUTANTS FOUND  IN RAW WASTEWATER  OF THE PRIMARY
                 TUNGSTEN SUBCATEGORY,  SCREENING AND VERIFICATION DATA  [2-35]

Metals and Inoraanics(a)
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 ium
Cadm i um
Ch rom i um
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en 1 um
Si 1 ve r
Tha 1 1 i um
Zinc
Phthalates
Bis(2ethy 1 hexy 1 ) phtha 1 a te
Di-n-butyl phthalate
Ol-n-octyl phthalate
Aromatlcs
Benzene
Ethyl benzene
To 1 uene
Pg 1 ycvc 1 1 c a roma 1 1 c Jwd roca rbons
Acenaphthene
Acenaphthyiene
Anthracene
Benzol a Ipyrene
Chrysene
Fluoranthene
Fluorene
Naphthalene
Polvchlorlnated bi phony Is
Aroclor 1218
Aroclor 1251
Haloaenated aliohatics
Bromoform
Chlorodlbromome thane
Chloroform
1 ,2-Dlchloroethane
1, l-Dichloroethylene
1 ,2-Trans-dichloroethylena
1, 1,2,2-Tetrachloroethane
Tet rach 1 o roe thy 1 one
1,1, l-Trichloroe thane
Trichloroethylene
Pesticides and metabolites
Aldrln
Alpha-BHC
Beta-BHC
Camma-BHC
Chlordane
1,1'-DDT
Dieldrin
Alpha-Endosulfan
Beta-Endosul fan
End r i n
End r i n a 1 dehyde
Heptachlor
Heptachlor epoxlde
Number of
samoles
3
3
1
3
3
3
3
3
3
3
3
3
3
3
3
5
5
5
9
9
9
5
5
5
5
5
5
5

5
5

9
9
9
9
9
9
9
9
9
9

5
5
5
5
5
5
5
5
5
5
5
5
5
Number of
detections
>IO ua/L
1
3
1
1
3
3
3
2
3
0
3
2
3
2
3
1
2
1
0
1
2
1
1
1
0
1
0
1
1

0
0

2
1
2
0
2
0
1
5
1
2

0
0
0
0
0
0
0
1
1
0
0
0
0
Concentration. uq/L
Ranae
ND - 800
20 - 7,200
6.0 X IOE9
2.0 - 29
19 - 190
11 - 2,000
95 - 5,000
2-110
180 - 20,000
0.21 - 3
15 - 1,000
ND - 1,000
76 - 270
NO - 600
250 - 1,900
ND - 880
ND - 23
ND - 1.0
ND - 3.0
ND - 1 1
ND - 15
ND - 100
ND - 110
NO - 150
NO - 1.0
ND - 210
ND - 1.0
ND - 55
NO - 1,100

ND - 1.0
NO - 5.1

ND - 18
NO - 38
ND - 1,800
ND - 8.0
NO - 19
NO - 2.0
ND - 35
ND - 69
ND - 10
ND - 19

NO - 7.0
ND - 0.6
ND - 0.2
ND - 0.2
NO - 1.2
NO - 0. 1
ND - O.I
ND - 15
ND ' 15
ND ' 0.8
NO - 0.9
ND - 0.2
NO - 0.2
Median
ND
210

9
20
18
120
13
210
1.0
92
20
86
200
520
10
(b)
(b)
(b)
3.0
(b)
(b)
(b)
(b)
(b)
(b)

-------
II.10.2.10  Primary_Zinc - Primary  Cadmium

Wastewater is generated in the primary  zinc  and primary cadmium
recovery subcategories by acid plant blowdown,  which results from
sulfuric acid recovery, air pollution control,  leaching,  anode/
cathode washing, and contact cooling.   The streams may contain
significant concentrations of lead, arsenic,  cadmium,  and zinc.

Tables 10-22 and 10-23 present classical  and toxic pollutant data
for the primary zinc-primary cadmium subcategories.
     TABLE 10-22.
CLASSICAL POLLUTANTS FOUND  IN THE RAW WASTE-
WATER OF THE PRIMARY ZINC SUBCATEGORY  [2-35]
Number of Number of Concentration^ ). ma/L
Pol lutant
COD
TOC
TSS
Tota 1 phenol
Oil and g rea se
samples detections Ranqe
2
2
2
4
2
2
2
2
4
2
20
7.3
13
0.002
10
- 59
- 9.3
- 15
- 0.025
- 14
Median Mean
40
8.3
14
0.007 0.010
12
     Analytic methods: V.7.3.22, Data sets 1,2.
     (a)Concentration reported in the intake was subtracted from concentra-
        tion measured.
II.10.3  PLANT SPECIFIC DESCRIPTION  [2-35]

Tables 10-24 through 10-31 provide plant specific data on the
classical and toxic metal pollutant  concentrations found in the
untreated and treated wastewaters of plants  in the nonferrous
metals industry.  Data for toxic organic pollutants are not
available on an individual plant basis.   The available data cover
17 plants in 10 of the 12 subcategories  studied.   Primary copper
and primary cadmium are not reported as  a result  of insufficient
data.  When data on several plants were  available,  reported
plants were selected based on the completeness of the data and on
the overall pollutant removal efficiency.

The following paragraphs briefly describe the selected plants.

II.10.3.1  Primary Aluminum

Plant B generates wastewater by contact  cooling (830 m3/d [0.22
MGD]) and by cryolite recovery (220  m3/d [0.058 MGD]).  Waste-
water is treated by alkaline chlorination and neutralization.

Plant D generates wastewater from air pollution control equipment
(4,900 m3/d [1.3 MGD]), paste plant  waste (570 m3/d [0.15 MGD]),
and anode cooling and baking.  Treatment consists of settling.
Table 10-24 presents plant specific  data for the  primary aluminum
subcategory.
Date:  9/25/81
            11.10-25

-------
 TABLE 10-23.   CONCENTRATIONS  OF TOXIC  POLLUTANTS FOUND  IN RAW WASTEWATERS OF THE
                  PRIMARY ZINC SUBCATEGORY,  SCREENING AND VERIFICATION  DATA [2-35]
Toxic ool lutant
Metals and Inoroanicslal
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 iu«
Cadmium
Chromium
Coppe r
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Thallium
Zinc
Phthalates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Number of
samples

4
4
2
4
4
Jj
4
it
4
4
4
4
4
2
4

9
9
9
9
9
Number of
detection
>IO UQ/L

4
If
2
1
4
4
4
2
4
|
4
4
It
2
4

6
1
1
1
1
s
Concentration. ua/L
Raqae

2.0 -
3.0 -
3.2 x IOE7 -
2.0 -
350 -
24 -
37 -
2 -
280 -
2.9 -
50 -
24 -
25 -
20 -
8,700 -

NO -
ND -
NO -
ND -
ND -

2, 100
3,000
4.3 X IOE7
20
44,000
610
26,000
380
18,000
52
4,300
1,200
740
360
1.7 x IOE6

98
30
26
18
22
Median

59
150

7.5
3,500
65
1,200
6.7
4,400
5.5
590
360
58

160,000

15
(b)
5.0
(b)
(b)
Mean

550
820
3.8 x IOE7
9.3
13,000
190
7, 100
99
6,700
16
1,400
490
220
190
510,000

28
3.3
3.6
2.7
2.4
Phenols
  Pentachlorophenol                   9

Aroma tics
  Benzene                            9
  Ethylbenzene                        9
  HexachIo robenzene                   9
  To Iuene                            9

Polvcvclic aromatic hydrocarbons
  Acenaphthylene                      9
  Anthracene                          9
  Chrysene                           9
  Fluoranthene                        9
  Fluorene                           9
  Pyrene                             9

Halogenated aliphatics
  Chloroform                          9
  I,l-Dichloroethane                  9
  1,2-Dichloroethane                  9
  I,l-Oichloroethylene                9
  Methylene chloride                  9
  Tetrachloroethylene                 9
  Trichloroethylene                   9
  Trichlorofluoromethane              9

Pesticides and metabolites
  Isopho rone                          9
                     ND - 8.0
                     NO - 24
                     ND - 2.0
                     NO - 100
                     ND - 54
                     ND - 18
                     ND - 0.4
                     ND - II
                     NO - 15
                     ND - 14
                     NO - 15
                     ND - 71
                     ND - 180
                     NO - 22
                     ND - 23
                     ND - 2,600
                     ND - 8.0
                     ND - 160
                     ND - 100
                                                                 ND - 18
                                         (b)
(b)
(b)
(b)
7.0
(b)
(b)
(b)
(b)
(b)
(b)
 53
(b)
(b)
(b)
(b)
(b)
7.2
(b)
                                                                                     (b)
                                                      0.9
2.7
0.2
 I I
7.5
2.0
(c)
2.2
1.7
1.6
3.2
 16
 20
2.9
2.6
350
0.9
 19
 12
                                                                                                  2.0
Analytic methods: V.7.3.22, Data sets 1,2.
ND, not detected.
(a)AII concentrations except  those for cyanide and asbestos were calculated by multiplying the concentra-
   tions of the various wastestreams by their percentages of the total flow and then  subtracting the con-
   centration  in the intake.
(b(Median concentration was not available  in reference.
(c)Mean concentration was not available in reference.
Date:   9/25/81
11.10-26

-------
TABLE 10-24.
CONCENTRATION OF POLLUTANTS  IN THE  RAW AND  TREATED
WASTEWATERS  OF PLANTS IN THE PRIMARY ALUMINUM SUB-
CATEGORY(a),  SCREENING AND VERIFICATION DATA [2-35]
                                Plant B
          Pollutant
                           Raw
                                Treated
                                       Percent
                                       removaI
                                                      Plant D
                                                   Raw
                                                       Treated
                                             Percent
                                             remova I
        Classical pollutant, mg/L

           COD            5,700   l»50
           TOC              UKO    78
           TSS            11,000   2UO
           Total phenol        0.11   0.016
           Oil and grease        1.2   3.2
           Ammonia            25    31
           Fluoride         2,700   510

        Toxic pollutant, U9/L
                         92
                         82
                         98
                         85
                         21
                         NM
                         80
 3. I
 1140
2, 100
 0. 13
 5.5

 170
  120
  It
  80
0.061
  10

  2.1
        Analytic methods: V.7.3.22, Data sets 1,2.
        Blanks indicate no data available.
        NM, not meaningful.
        (a(Concentrations were not corrected for pollutants in the source water.
NM
69
96
53
NM

99
Metals and inorganics
Antimony
Arsenic
Asbestos, fibers/L
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 i urn
Zinc

76
NM
>95
69
80
>60
NM
60
95
NM
NM
NM
II.10.3.2   Secondary Aluminum

Plant B in  this subcategory generates wastewater by processes
involving dross milling  (140 m3/d  [0.037 MGD]), and demagging air
pollution control  (95 m3/d  [0.025  MGD]).   Treatment consists of
sodium hydroxide neutralization and settling prior  to discharge.

Plant E generates wastewater by demagging  air pollution control
(90  m3/d [0.024 MGD]).  Treatment  consists of neutralization with
soda ash.   Table 10-25 presents plant specific data for the sec-
dary aluminum subcategory.
Date:   9/25/81
                   11.10-27

-------
TABLE 10-25.
CONCENTRATION  OF POLLUTANTS FOUND IN THE RAW AND
TREATED WASTEWATER OF  PLANTS  IN THE SECONDARY
ALUMINUM SUBCATEGORY(a),  SCREENING AND  VERIFICATION
DATA  [2-35]
                               Plant B
         Pollutant
                         Raw
                              Treated
                                      Percent
                                      removal
                                                    Plant E
                                                 Raw
                                                      Treated
                                            Percent
                                            remove I
       Classical pollutant, mg/L

          COD               580    51
          TOC               110    9.0
          TSS             13,000    210
          Total phenol       0.009   0.02
          Oi I and grease        17    13
          Ammonia            110    16
          Chloride         1,100  5,500

       Toxic pollutant, ug/L
                        91
                        91
                        98
                        NM
                        21
                        89
                        NM
  18
 3.0
  89
0.025
  98
<0. 10
6,000
  10
  120
2,000
0.011
  7.3
<0. 10
1,100
       Analytic Methods: V.7.3.22, Data sets 1,2.
       Blanks indicate no data available.
       NM, not meaningful.
       (a)Concentrations were not corrected for pollutants in the source water.
17
NM
NM
56
93
NM
32
Metals and Inorganics
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc

38

82
>95
>96
>99
19
>96
71
>68
NM
>60
>81
>90

300
1,000
7.5 x IOE8
310
2,000
97
210
99

15
50
22
5
NM
50
15
NM
90
NM

NM
II.10.3.3  Primary Columbium  -  Primary Tatalum

Plant B in this subcategory emits wastewater  from leaching wastes
and powder wash (310 m3/d [0.082 MGD]),  gangue  slurry  pond over-
flow  (53 m3/d [0.014 MGD]), and ammonia stripper supernatant  (76
m3/d  [0.020 MGD]).  Treatment consists of lime  addition followed
by settling.

Plant D generates wastewater  from extraction  raffinate (870 m3/d
[0.23 MGD]),  and digester air pollution control (870 m3/d [0.23
MGD]).   Treatment consists of ammonia  stripping,  lime  addition,
and settling.   Table 10-26 presents plant specific data for the
columbium and tatalum  subcategory.
Date:   9/25/81
                11.10-28

-------
      TABLE 10-26.
CONCENTRATION OF POLLUTANTS FOUND IN THE RAW
AND  TREATED WASTEWATERS OF THE COLUMBIUM AND
TANTALUM SUBCATEGORIES(a),  SCREENING AND
VERIFICATION DATA  [2-35]
                                Plant B
          Pollutant
                          Raw
                               Treated
                                       Percent
                                       removaI
                                                      Plant D
                                                 Raw
                                                       Treated
                                        Percent
                                        removaI
        Classical pollutant, mg/L

          COD              1400     1)14
          TOC              120      9
          TSS             3,900     36
          Total phenol       0.018   0.012
          Oil and grease       5.3     3.5
          Ammonia           380     240
          Fluoride         3,500     16

        Toxic pollutant, ug/L
                   89
                   93
                   99
                   33
                   3U
                   37
                  >99
6,600
1,000
8,600
0.016
  16
  31
6,100
  120
  23
  I 10
0.028
  U.3
  26
5,500
        Analytic methods: V.7.3.22, Data sets 1,2.
        Blanks indicate no data currently available.
        NM, not meaningful.
        (a(Concentrations were not corrected for pollutants in the source water.
98
98
99
NM
73
16
IK
Metals and inorganics
Antimony
Arsenic
Asbestos, fibers/L
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Thai Mum
Zinc

99
92
>99
98
88
98
>98
97
NM
>75
NM
NM

1 1,000
114,000
8.9 x IOE9
190
20,000
510,000
270,000
12
2.6 X IOE7
36
2,700
23,000
620
25
710,000

1,300
<4lO
1.9 X IOE9
<20
<200
<2UO
3140
6.0
6,300
1.3
630
8
<250
50
6,000

88
97
79
>89
>99
>99
>99
50
>99
96
77
>99
>60
NM
99
 II.10.3.4   Secondary Copper

 Plant A has a sole source of raw wastewater  from the  furnace
 scrubbers  in the  acid plant (380 m3/d  [0.10  MGD]).  This waste-
 water is treated  by lime and sodium hydroxide  neutralization,  and
 polymer addition  followed by settling.

 Plant E generates wastewater by the disposal of waste electrolyte
 and  area cleaning water  (110 m3/d [0.029 MGD]).  This wastewater
 is treated by settling.   Table  10-27 presents  plant specific data
 for  the secondary copper subcategory.
Date:   9/25/81
           11.10-29

-------
     TABLE 10-27.
CONCENTRATION OF POLLUTANTS FOUND IN RAW AND
TREATED WASTEWATERS  OF PLANTS  IN  THE SECONDARY
COPPER  SUBCATEGORY(a),  SCREENING  AND VERIFICA-
TION DATA [2-35]
                              Plant A
         Pollutant
                        Raw
                             T rea ted
                                     Percent
                                     removaI
                                                   .Plant E
                                              Raw
                                                    Treated
                                      Percent
                                      removaI
       Classical pollutant, mg/L

          COD               36
          IOC               l»3
          TSS              U.O
          Total phenol      0.0063
          Oi I and grease       l|.7
          Fluoride

       Toxic pollutant,
           20
           21
           3.3
         0.006
           3.7
MM
51
18

21
  75
  30
  65
0.080
 3.7
 0.29
1,300
  21
 200
0. I I
 U.3
0.43
       Analytic methods: V.7.3.22, Data sets 1,2.
       Blanks indicate no data currently available.
       NM, not meaningful.
       (a)Concentrations were not corrected for pollutants in the source water.
NM
30
NM
NM
NM
NM
Metals and inorganics
Antimony
Arsenic
Asbestos, fibers/L
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
S i I ve r
Thai 1 iura
Zinc

100
23
>75
>97
>99
<42
>96
tl
>99
NM
NM
NM
96

1 1 , 000
4,200
3.3 X IOE7
30
1,200
2, 100
2. 1 x IOE6
it
20,000
0.53
3. 1 X IOE6
220
1,600
53
97,000

M.OOO
2,000

30
2,300
2,200
27,000
2.7
26,000
0.23
310,000
2,300
250
60
100,000

6M
52

0
NM
NM
99
33
NM
57
90
NM
84
NM
NM
II.10.3.5  Primary  Lead

Plant  B generates wastewater from several  sources.  The  acid
plant  sump combines blast furnace blowdown,  and slag and material
granulation (4,500  m3/d [1.2 MGD]) into one  stream.  Other un-
defined process wastes (1,100 m3/d [0.29 MGD])  are also  treated.
Treatment consists  of simple settling.  Data for Plant B are not
currently presented due to the undefined nature of its process
wastes.

II.10.3.6  Secondary Lead

Plant  A of the secondary lead subcategory  generates wastewater
from the battery electrolyte process (8 m3/d [0.002 MGD]) and
from saw cooling during battery  cracking (16 m3/d  [0.004 MGD]).
Treatment consists  of ammoniation, lime neutralization,  and
settling.

Plant  C of this subcategory releases wastewater from the saw wash
down (11 m3/d [0.0029 MGD]) and  battery electrolyte processes  (11
m3/d [0.0029 MGD]).  Treatment consists of  lime  addition  and
settling.  Table 10-28 presents  plant specific  data for  the sec-
condary lead subcategory.
Date:   9/25/81
          11.10-30

-------
      TABLE  10-28.
CONCENTRATION  OF POLLUTANTS IN RAW AND TREATED
WASTEWATERS OF PLANTS  IN  THE SECONDARY LEAD
SUBCATEGORY(a),  SCREENING AND VERIFICATION
DATA  [2-35]
Pollutant

Raw
Plant A
Treated

Percent
removal
Plant C
Raw Treated

Percent
remova 1
        Classical pollutant, mg/L

          COD              230     32
          TOC              110     19
          TSS             l»,000    350
          Total phenol       0.0099   0.009
          Oi I and grease        36     15
          Chloride            53    310

        Toxic pollutant, |ig/L
                   86
                   86
                   91
                   9
                   58
                   NM
  160
  70
I, 100
0.012
  6.5
  59
  3U
  68
0.005
 14.5
        Analytic methods: V.7.3.22, Data sets 1,2.
        Blanks Indicate no data currently available.
        NM, not meaningful.
        (a (Concentrations were not corrected for pollutants in the source water.
63
51
9U
58
31
Beta Is and inoroanlcs
Antimony
Arsenic
Be ry 1 1 1 urn
Cadm i urn
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Tha 1 1 i urn
Zinc
62,000
7,100
2
930
330
3,300
8
32,000
0.93
930
85
57
30
80,000
13,000
U.5
2,000
1,000
8,000
5.2
2.0 X IOE6
12
2,000
99
>99
>78
99
95
>99
81
>99
>99
>99
NM
>83
87
>99
II.10.3.7  Secondary Silver

Plant B treats  spent plant liquor,  contact  cooling,  and air pol-
lution control  wastewater (10 m3/d [0.0026  MGD]) by lime neutral-
ization, ferrous chloride addition,  and aluminum chloride addi-
tion  followed by settling.

Plant C uses neutralization,  polymer addition, settling, and
filtration to treat slurry supernatants (3  m3/d [0.0008 MGD]),
film  waste effluent (8 m3/d [0.002  MGD]), and sludge tank
effluent (3 m3/d [0.0008  MGD]).   Table 10-29 presents plant
specific data for the secondary  silver subcategory.
Date:   9/25/81
                                11.10-31

-------
TABLE 10-29.
CONCENTRATION OF POLLUTANTS  IN THE RAW  AND TREATED
WASTEWATERS OF PLANTS  IN THE  SECONDARY  SILVER SUB-
CATEGORY(a),  SCREENING  AND VERIFICATION DATA [2-35]
                               Plant B
         Pollutant
                          Raw
                               .Treated
                                        Percent
                                        removaI
                                                          Plant C
                                   Ray
                                                          Treated
                                                  Percent
                                                  removaI
     Classical pollutant, rag/L

        COD                230      <5.0      >98
        TOO                 24      < 1.0      >96
        TSS                110       10       91
        Total phenol         0.04      0.01       75
        Oil and grease         8.0       10       NM
        Ammonia               12      0.6       95
        Fluoride
        Chloride           32,000      670       98

     Toxic pollutant, ug/L
                                   12,000
                                   9, 100
                                   I, 100
                                     28
                                     100
30,000
lit,000
  120
   25
   67
     Analytic methods: V.7.3.22, Data sets 1,2.
     Blanks Indicate no data currently available.
     NM, not Meaningful.
     (a)Concentrations were not corrected for pollutants found in the source water.
NM
NM
89
I I
33
Metals and Inorganics
Antimony
Arsenic
Asbestos, fibers/L
Beryl 1 iun
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Thai Hum
Zinc
80

50
>99
>99
99
95
>99
0
>99
NM
>99
0
>99
25,000
920
2.0 X IOE9
<20
3,200
27,000
7,300
2. 1
4,200
5.5
1,100
590
<250
510
8,1400
450
700

<20
3,000
8,000
1,000
1.5
3,000
1.6
4,000
400
<250
640
5,000
98
24

NM
6
70
86
29
29
71
NM
32
NM
NM
40
II.10.3.8  Primary Tungsten

Plant B  in this subcategory  treats tungstic  acid precipitant
rinsewater (130 m3/d  [0.034  MGD])  by  lime addition followed by
settling.   Table  10-30  presents plant specific data  for the
primary  tungsten  subcategory.
Date:   9/25/81
                  11.10-32

-------
      TABLE  10-30.
CONCENTRATION OF POLLUTANTS FOUND IN RAW
AND TREATED WASTEWATERS OF PLANT B IN THE
PRIMARY TUNGSTEN SUBCATEGORY(a),  SCREENING
AND VERIFICATION DATA [2-35]
                 Pollutant
                Raw
Treated
Percent
removaI
             Classical pollutant, mg/L

                COD                  320      53        83
                TOC                  6.0      10        NM
                TSS                  210      150        29
                Total phenol          0.089    0.91        NM
                Oil and grease          6.3      U.6        27
                Ammonia               3.9      5.2        NM
                Chloride            26,000   19,000        27

             Toxic pollutant, u.g/L
Metals and inoraanics
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se lenium
S i 1 ve r
Tha 1 1 i urn
Zinc

67
60
>98
99
72
>99

90
>67
90
NM
>70
             Analytic methods: V.7.3.22,  Data sets 1,2.
             Blanks indicate data not available.
             NM, not meaningful.
             (a)Concentrations were not corrected for pollutants
                in the source water.
11.10.5.9  Primary Zinc

Plant C generates wastewater from air pollution control equip-
ment,  boiler blowdown, and preleaching  filtrate (1,600 m3/d  [0.42
MGD]).  Treatment  consists of lime addition followed by settling.

Plant E in this subcategory  uses settling to control roaster and
reduction wastewater, cooling water, and scrubber wastewater
(1,600 m3/d [0.42 MGD]).  Table 10-31 presents plant specific
data  for the primary zinc subcategory.
Date:   9/25/81
             11.10-33

-------
     TABLE 10-31.
CONCENTRATION OF POLLUTANTS FOUND IN RAW
AND TREATED WASTEWATERS  FROM PLANTS IN THE
PRIMARY  ZINC SUBCATEGORY(a),  SCREENING AND
VERIFICATION DATA [2-35]
                            Plant C
       Pollutant
                        Raw
                              Treated
                                    Percent
                                    removaI
                                                    Plant E
                                                Ray
                                                     Treated
                                         Percent
                                         removaI
    Classical pollutant, mg/L

      COO                 59     17
      TOO                9.3    8.3
      TSS                 15    9.3
      Total phenol         0.00'(3   0.009
      011 and grease           11    1.3

    Toxic pollutant, ug/L
                  71
                  I I
                  38
                  NM
                  91
  20
 7.3
  13
0.025
  10
    Analytic methods: V.7.3.22, Data sets 1,2.
    Blanks Indicate no data currently available.
    NH, not meaningful.
    (a)Concentrations not corrected for pollutants in source water.
   17
  8.3
0.0087
  7.3
 15
 NM
>92
 65
 27
Antimony
Arsenic
Asbestos, flbers/L
Beryl 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Silver
Tha II i urn
Zinc
67
12
1.3 x IOE7
7.0
5,000
610
560
3.3
3,000
6.9
1,300
270
<25

100,000
51
4,800

<2
1 10
350
51
6.7
150
0.2
<50
100
<32
3.5
2,000
2U
NM

>7I
98
13
90
NM
95
97
>99
63
NM

98
<2.0
3
3.2 X IOE7
<2.0
350
<21
37
380
280
2.9
<50
21
<25

8,700
2.7
2.3

<2.0
630
<21
18
8
<60
0.5
<50
27
<25

7,700
NM
23

NM
NM
NM
51
98
>79
83
NM
NM
NM

1 1
II.10.4   POLLUTANT REMOVABILITY [2.10-1]

There are several methods for pollutant removal currently used in
this industry.  Some  are used industry-wide; others  are used only
in specific applications.

Those used industry-wide include:  physical-chemical methods
(precipitation, coagulation and flocculation, pH adjustment, and
stripping)  and physical  separation methods (filtration, sedimen-
tation,  and centrifugation).   Lime,  caustic, soda  ash,  and cal-
cium chloride are used as precipitants  in the industry, espe-
cially for removal of the soluble metals.   In the  coagulation-
flocculation system polymer,  lime, and  iron or aluminum salts are
mixed into the waste  stream to facilitate agglomeration of col-
loidal suspensions.   Air/steam stripping are widely  practiced
techniques for the reduction of volatile compounds such as
ammonia,  hydrogen sulfide,  and organics.

The physical separation  methods find wide application in this
industry because of the  nature of the wastes.  Centrifugation may
be feasible in some applications but is not suitable for abrasive
or very  fine particles  (less than 5  pm).
Date:   9/25/81
           11.10-34

-------
There are several potential treatment technologies that may be
applicable,  but are more expensive than the methods currently
used.  These potential treatments are:  sulfide precipitation,
ultrafiltration, reverse osmosis, deep-well disposal,  activated
carbon adsorption or activated alumina adsorption, solidifica-
tion, or ion exchange.

Pollutant removal data for toxic organic pollutants in the sub-
categories studied are presented in Tables 10-32 through 10-41.
The average removal percentage was determined by comparing the
average raw wastewater concentrations found in the Wastewater
Characterization section with the average treated wastewater
concentrations presented in these tables.  In some instances,
insufficient data were available to determine accurately an
average concentration.  Removal data for toxic and classical
pollutants are presented on an individual facility basis in the
plant specific section.
Date:  8/31/82 R Change 1  11.10-35

-------
  TABLE 10-32.   REMOVABILITY OF TOXIC ORGANIC  POLLUTANTS FROM RAW WASTEWATER
                  IN THE PRIMARY ALUMINUM  SUBCATEGORY  [2-35]
Tox ic po M utant
Phthalates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Oi-n-octyl phthalate
Phenols
Phenol
Aroma t ics
Benzene
2,4-Dini trotoluene
2 , 6-0 i n i t roto 1 uene
Ethyl benzene
Toluene
Polvcyclic aromatic hydrocarbons
Acenaphthene
Aconaphthy lene
Anthracene
Benz(a Janthracene
Benzol a jpyrene
Benzol b ) f 1 uoranthene
Benzol ghi Iporylene
Benzol k)fl uoranthene
Chrysene
Dibenz( ah) anthracene
Fluoranthene
F 1 uorene
lndeno( 1 ,2, 3-cd Ipyrene
Naphtha lene
Phennnthrene
Pyrene
Haloaenated allphatics
Chloroform
1 ,2-Qichloroethane
1 , l-Dichloroethylene
Methylene chloride
1, 1 ,2,2-Tetrachloroethane
Tetrachlo roe thy lene
Trichloroethylene
Pesticides and metabolites
Aldrin
Oelta-BHC
Gamma-BHC
Chlordane
4,4'-DDT
D i e 1 d r i n
Endrin a Idehyde
Heptachlor
Heptachlor epoxide
1 sophorone
PCB 1248
PCB 12514
Number of
samples

9
9
9
9
9
9

I*

14
9
9
14
14

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

14
14
14
IU
114
14
11

8
8
8
8
8
8
8
8
8
9
8
8
Number of
detections
>IO ua/L

2
1
3
0
0
1

0

2
0
0
1
0

4
0
2
0
0
0
1
0
1
0
5
0
0
0
2
3

2
0
1
6
0
1
1

0
0
0
0
0
0
0
0
0
0
0
0
Treated effluent
Concentration. UQ/L
Ranqe

ND - 120
NO - 75
NO - 30
NO
ND - 5
ND - 13

ND

ND - 33
ND - 7
ND - 1
ND - 12
ND - 6.8

ND - 13
NO - 7
ND - 1 1
ND - 6
ND - 8
ND - 6
ND - 1 1
ND - 6
ND - I10
ND
ND - 79
ND - 1
ND - 1
ND - 1
NO - 1 1
ND - 80

ND - 320
ND - 5.5
ND - It, 100
ND - 4,200
ND - 1
ND - 61
ND - 120

ND - O.I
ND - 0. 1
ND - 0.01
ND - 0. 1
ND - 0.01
ND - 0. 1
ND - 0.2
ND - 0.2
ND - 0.2
NO
ND - O.lt
ND - 0.2
Median

(b)
(b)
(b)

(b)
(b)



(b)
(b)
(b)
(b)
(b)

(b)
(b)
2.6
(b)
(b)
(b)
(b)
(b)
(b)

1 1
(b)
(b)
(b)
(b)
9

(b)
(b)
(b)
(b)
(b)
(b)
(b)

(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
Mean

17
9.6
5

1
1.8



It
0.9
0. 1
0.8
0.5

5
1.9
It. 7
0.7
2. 1
0.7
0. 1
1 . 1
17

22
0.2
0. 1
0. 1
(a)
20

23
0.1)
290
360
0. 1
44
8.5

(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(O
(c)
Average
percent
remova 1

79
56
74
>99
NM
NM

>99

NM
NM
NM
NM
NM

40
66
88
98
98
98
>99
97
58
>99
77
97
>99
97
NM
71

NM
NM
NM
NM
NM
NM
NM

NM
NM
0(d)
NM
NM
NM
NM
NM
NM
>99
NM
NM
    Analytic methods: V.7.3.22,  Data sets 1,2.
    Blanks indicate  insufficient or conflicting data.
    ND, not detected.
    NM, not mean ingful.
    (a) Insufficient  data to report concentration.
    (b)No median concentration was available in reference.
    (c)Np mean concentration was available in reference.
    (d)Percent removal derived from the maximum raw and treated waste concentrations.
Date:    8/31/82  R   Change  1   11.10-36

-------
TABLE  10-33.  REMOVABILITY OF TOXIC  ORGANIC  POLLUTANTS  FROM RAW WASTEWATER  IN THE  SECONDARY
               ALUMINUM SUBCATEGORY [2-35]
Toxic DO! lutant
Phthalates
Bis(2-ethylhexyl ) ph thai ate
Butyl benzyl ph thai ate
Di-n-butyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
Nitroqen comoounds
3,3'-Dlchlorobenzidine
Aroma tics
Benzene
Chlorobenzene
1 ,IO ua/L

6
0
3
0
1
0

0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0

0
0
2
6
3
0
2
2
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
Range

NO - 1.200
NO - 2.0
ND - 50
NO - 3.0
NO - 100
NO

NO - 5.0
ND - 7.0
ND
ND - 6.0
ND - 2.0

ND
ND - 1.0
ND - 2.0
ND - 2.0
NO - 2
ND - 2.5
ND
ND - 1.0
ND - 1.0
ND
ND - 0.3
NO - 0.3

ND - U.7
ND - 6.0
ND - 29
ND - 170
ND - 18
ND - 7.0
ND - 20
ND - 75
ND - 200
NO - 1.0
ND - 5.0
NO - 8.5
ND - U
ND - 7

NO
ND
ND - 0. 1
ND
ND - 0. 1
ND - O.OU
ND - 0.03
ND - O.l)
ND - 0.6
ND
ND - 0. 1
ND - 0.2
ND - 0. 1
NO - 0.02
Median

5.3
(a)
(a)
(a)
(a)


(a)
(a)

(a)
(a)


(a)
(a)
(a)
99

93
NM
>99
NM
NM

>99
95
NM
NM
NM
99
>99
50
98
>99
0
0

NM
50
NM
NM
NM
NM
NM
52
NM
NM
NM
NM
98
98

>99
>99
NM
>99
NM
NM
NM
NM
0
>99
NM
NM
65
80
         Analytic methods: V.7.3.22, Data sets 1,2.
         Blanks indicate  insufficient or conflicting data.
         ND, not detected.
         NM, not meaningful.
         (a)No median concentration was available  in reference.
         (b)No mean concentration was available in reference.
    Date:    9/25/81
11.10-37

-------





u
X

_

cc
Hirt

=><

j jj
0<


o ^~
— ce
z ^
^ «E
O —
ceee
OQ-

00
— z
X<
O
HZ
33
U. —
OCQ
>=>
H-J
— O
-10
^
ca>-

^ ^C
02:
s —
UJCC
ceo.


.
jj-
CO
i
o

UJ
CO
H








03 -P —
O1C CO
CO 03 >
S- 0 0
as t- E
> 03 03
< O.S-

c
03
•z.
_J
•P 0
c a c
0) CO
3 • —
— C-D
.
O
(0
<. ffi
0) —
A Q
£ £
3 CO
z in
















•P
c
CO
J.
=

o
a
u
—
X
0
H




ON ON GO r*. Z ON ON
A A





00 CNJlTiOin
co CNJ oino





00 ^*~~*~^.*-*
• CO CO CO CO
OJ ^^-^-_






IT\ OO O
. • . o •
ON ONCMCMCM

i a i i i i a
z z
a QQQQ
Z ZZZZ







OOOO— O O











^ ^" ^3* ^ ^ ^ CM









03
P
CO

CO
£ 03
•P -U
£ CO 03 03
Q.— *> -P
CO CO 03 CO
-~£— 0) *J— —
— *> CO -P CO <0 O
>»£ £ CO — £ C
X Q.-P— CO -P 03
03 £ C0££ £
£— a£ -P ex a
- >. +J£ 0
>>N — £ a— i-
£ c >>a > o
a) .p 0) 4J — -P —
0)03£}3~"^C3 £
•P 1 A >>£ O U
COCM— 1 £ W 1 u) CO
— ~XC -P 03 C — 4J
CO ») 

N £ 03 03 C C C 0) O 33 O -P t- CO 03 O O O £ C *> *J 03 03 — O 03 O O C C £ S- N ^« ^ QJ QJ O (0 C 4J *J N N — 03 C C i- O (OQ3ifiCCQ30)03H *~ OCO J3.0CI — — 0)5-00— OCO^f O •PNOIlXt-3* > CO C — d-VO£ 4J— CNJ O otnocNT'cvTuizi — * — <- o < Cu SISSONONSOZONONONONSONONSZ ZZZONONZ ZONONONONZONONZZ AA AAAA AA J-tMOO IfNCMlfN (^ OOJ- r CO OOO CO- ON ON ITN -^-^^— *-* ITN^" • •• CDCOCO CO •• 00 OOO ON NO -CM ... ON CNJ . — CNJ— CNJ — CM NO — .31 III Q ^3 III O Q O C^ 1 Q Ct 1 I ZZ ZZZZ ZZ ooa aoa o aa ZZZ ZZZ Z ZZ CM OOOO OOOO OOO— OO — O <3* ^ ^ ^ it" ^ ^ ij" ^ J" -3* J* il" ^ ^ -3" C^ 03 C 03 03 0) 03 C C 03 C <- 03 03 03 C 03 X 03 £ C£ 03 O a C -P 03 JJ— CO — 03 C— C CO £- TJ 03 O03CO>>CO£ £ O C >03 -P >>— — — CO ~03 CM C CD ££CCalc cocos-^ — OOOO— wc<-s-c-ucoc CC£NNNNN£>>03OO03£Ca3 Q3034^CCCCCO^-^333^Ci03C— OOC030)a30J03 l£ CCO£>> <<


-------







LJ
X
H
*-^
ZT3
— 0
3
ce c
Ul —
H P
< C
U°

CO
=>
|— t
— O
-10

co>

^ ^
OS
s-
Ldce
ceo.


.
a-
CO
1
o


LJ
I
CQ
^
H





0 P
01C
to CO
S- 0
0 i-
> 0
< a



_i
1 —
o
p 3
c
0 •
3 C
— 0

0 CO
£-
"O P
CO C
4_) (1)
CO O
0 C
!- 0
H 0






in
ft- C
0 O
t- p
0 O
.a 0
E P
3 0
ZTJ


ft-
O

i-
0

E
3
Z




































_. .
CO
>
O

0)
S-
c
CO
c
s



c
co

•o
CO
£






CO
0
c
CO
ce





_j
CJ
a

o
—
A




W
0
— .
Q
E
co
in
















•P
c
co
•p
3

w
O
Q

O

X
O
1-








CN ON 0\ S r^ S Z lA y(T\n\cnyyrr\poy
OO\ OZCOZZlAZ C3SO\ONZ Z OvOOZ
AAA A A A




— r^ O CO ON "~ l^NO-St '"^•CM
C\l • • • • CM 00 -in .Q co
o ONCM m r^ ~-






COCOCOCO'CO COCO~~ COCO
^••^^-^'S— -CO — ' ^wv.^ >—r-h^






OO O O O OO
— • ^ ^OOOa* OC3NON • ON
— ifN-^" — — ..— VOa*— lf^ —

OQ QlillllQQIIlQII
ZZ Z ZZ Z
QQQQOQ QQQ QQ
ZZZZZZ ZZZ ZZ





OO O CM O co — CM CM OO 	 ^ O O co









coco ^•r^f^r^-r^^f^^-J'r*"^^^ NO r*-











0
C 0
0 C V>
m — to co
— >> ^ P
> j= 4J a) a) —
C t/>C0000p 0CC —
0 OTJCCC0 O Q) CD CO O
£ — — CO C000O 0^-C£^ .Q
O 4J i-il ^ C — t- T3O0PP0 CO
— CO O-P PCO>>O0 	 00C P
JD j: — ca 0^:r:— cs-^:>,ooco co
Q JCE EPP-CcoOOJZ'-^-—* £
•a — coo O00OJZ— COPOO>>
cocoj- — toe soo— •PJZ'-O 	 j; ~o
PJ"lfN CO i-O O'-'*O0OPO^-C'P C
COCMCM P'-E'-OOIO 0^-UOCO CO
C 	 "O E CD -Q i- -O 	 Wl-COHO 	 O
— COUP — OO.C.CCOC1— S-S-V. U)
S_i-i- 4JQ T3ft-i-OOco— 0CM£I— HO 0
OOO COft-COOO 	 S-.C— -OI I— T5
	 C O O <- ! 	 QQ -P O XCM co — CN1£: —
jzoo &- -.-.u o
OOO U O i 	 OCNI — CNIXP— P 	 —
>^-t- Ot-CO^JZ — •.-<*00 -.0 •k-.i- P
— « — CQOOOQ 	 X2 — H 	 H- W
O CO CO
0. X . Q.



co ITN \T\ ro ON S ON ONOONONONONONOONONON
CO I^- f^ CO ON Z ON CJNONONONONONON-^ONONON
A AA AAA A AAA




CNj ^-^— CM ^~* "~ ^ ^^ —
* fN . > f^ O fN •
O— OO — — «— O






coco*coco co coco
— ^-^^o •^^ ^.^ 'H-' •— * — '





— — _
ITN O CO ifN O O O CO
• •••• • ••
OOOO— O OO

1 1 1 IQIQQIQOQIQIQQQ
Z ZZ ZZZ Z ZZZ
QQQQ O Q Q Q
zzzzz z zz





oooooooooooooooooo









COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOJd'CO



















0 CO
P "O
C CO —
co C ft- 0 X
ft- CO — "O O
— ft- 3 >> a
3 — m £: 0
U) 3 0
OWC TJ *- *- 0
O OOO T3OCO — OOC0
XOXXCLdHCCT3ft- co 	 OC
CQXCQCQcoQQ — UJC— .C.CS-0
C 1 CD 1 |-DQQS-lbJ=JCCOOO^:
— co i to co s- i i-acoiw 	 COCO^ID.
S-.CCOPEO- - — xrcoO'-i-ppQ.co
•o Q.P— E — j-aco apT3Tj-o aaox
	 0 0 CO .C * * 	 0CCC00WO
jrf^rfNr^f^fN -^j?i-l*''t«^mi-iJlillil"T"'J" — ^







































%
0
o •
C 0
0 O
!- C
ft. 2.
0 0

0
C 1-
• •«*
CNJ C
CO —
— —
f) 0
W CO —
p —.a
0 — to

CO <0 CO
Q co
> to
- CO
CM C >
CM O
— c
co -u O
CO —
r- i. p
•P CO
> • c <-
— CO -P
.. . 3 O C
W "O ft- c 05
T3 0 O1O O
O P C O C
£ O— O
P 0 C C o
0 P CO CO
S 0 0 — C
"O E ^ co
0 CO 0

POO
>>C C O 0
— ZZ
(0 ., « — — ^
CQ 2 CO j3

Date:  9/25/81
11.10-39

-------
           TABLE  10-35.   REMOVABILITY OF  TOXIC ORGANIC POLLUTANTS  FROM RAW
                          WASTEWATERS  IN THE PRIMARY COPPER  SUBCATEGORY
                          [2-35]
Toxic DO! lutant
Phtha lates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Phenols
2, i4-Di methyl phenol
Aromat ics
Benzene
Chlorobenzene
Toluene
Polycyclic aromatic hydrocarbons
Acenaphthy lene
Anthracene
Benz( a (anthracene
Chrysene
Fluoranthene
Fluorene
Phena nthrene
Pyrene
Polychlorinated biphenyls
Aroclor 121)8
Aroclor I25U
Halogenated aliphatics
Carbon tetrachloride
Chlorod ibromome thane
Chloroform
D i ch 1 o rob romometha ne
1,2-Dichloroethane
1, l-Dichloroethylene
Methylene chloride
1 , 1 ,2,2-Tetrachloroethane
Tetrachlo roe thy lene
1,1, l-Trichloroethane
1 , 1 ,2-T rich lo roe thane
T r i ch 1 o roe thy lene
Pesticides and metabolites
Beta-BHC
Gamma-BHC
Chlordane
lt,l)'-DDE
lt,l*'-DDT
D i e 1 d r i n
A 1 pha-Endosu 1 fan
Beta-Endosul fan
Endosulfan sulfate
Endrin
Endrin a Idehyde
Heptachlor
Heptachlor epoxide
1 sophorone
D,4'-DDD
Number of
samples

5
5
5
5

2

5
5
5

5
5
5
5
5
5
5
5

5
5

5
5
5
5
5
5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Number of
detect ions
>IO UQ/L

14
1
2
1

0

0
0
0

0
3
0
0
0
1
1
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Treated effluent
concentration. ua/L
Ranae

ND - 1)80
ND - 1(8
ND - 73
ND - 190

ND

ND - 1.0
ND - 6.0
ND

ND
ND - 17
ND
ND - 2.0
ND - 2.0
ND - 14
ND - 17
ND

ND - 1.0
ND - 1.5

ND
ND
ND
ND
ND
ND - 10
ND
NO - 9.0
ND - 3.0
ND - 10
ND
ND - 3.0

ND - 0.2
ND - 0.01
ND - 0.9
ND - 0. 1
ND - O.I
ND
ND - 0.04
ND
ND - 0.2
ND - 0. 1
ND - 0.1»
ND - 0.2
ND - 0. 1
ND
ND
Median

17
(a)
(a)
(a)



(a)
(a)



(a)

(a)
(a)
(a)
(a)


1 .0
(a)














(a)
(a)
(a)
(a)
(a)
(a)
(a)

(3)
(a)
a)
(a)
(a)


Mean

1 10
9.6
25
38



O.i)
1.2



6.2

O.U
0.1)
2.8
3.1*


0.8
0.5






3.8

3.2
1.0
3 . U

0.6

0. 1
(b)
0.2
(b)
(b)
(b)
(b)

0. 1
(b)
0. I
(b)
(b)


Average
percent
remova 1

NM
NM
NM
NM

>99

D3
NM
>99

>99
NM
>99
NM
NM
NM
52
>99

NM
NM

>99
>99
>99
>99
>99
NM
>99
NM
81
NM
>99
60

NM
75
0
NM
NM
>99
NM
>99
NM
0
0
NM
NM
>99
>99
     Analytic methods: V.7.3.22,  Data sets 1,2.
     Blanks indicate insufficient or conflicting data.
     ND, not detected.
     NM, not meaningful.
     (a)No median concentration was available in source.
     (b)No mean concentration was available in source.
Date:   9/25/81
11.10-40

-------
     TABLE  10-36.   REMOVABILITY OF TOXIC ORGANIC  POLLUTANTS  FROM RAW WASTEWATER
                    IN THE  SECONDARY COPPER SUBCATEGORY [2-35]
Toxic col lutant
Phtha lates
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Oi-n-butyl phthalate
Diethyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
Aroma tics
Benzene
Ethyl benzene
Hexach 1 orobenzene
Nitrobenzene
Toluene
Polycyclic aromatic hydrocarbons
Acenaphthene
Acenaphthy lene
Anthracene
Benzol a Jpyrene
Benzoj bjf luoranthene
Benzoj kjf luoranthene
Chrysene
Dibenz(ah)anthracene
F luoranthene
Fluorene
Indenot 1 , 2, 3-cd Jpyrene
Naphtha lene
Phenanthrene
Pyrene
Polvchlorinated biohenvls
Aroclor 121(8
Aroclor I25U
Haloqenated aliphatics
Carbon tetrachloride
Chloroform
D i ch 1 o rob romometha ne
1 , 2-Dichlo roe thane
1, l-Oichloroethylene
1 ,2-trans-Dichloroethylene
Methylene chloride
1 , 1 , 2,2-Tetrachloroethane
Tet rach 1 o roe thy 1 ene
Trichloroethylene
Pesticides and metabolites
Aldrin
Alpha-BHC
Beta-BHC
Delta-BHC
Gamma -BHC
Chlordane
I4,M'-DDE
l|,lt'-DDD
i»,V-DDT
Dieldrin
Alpha-Endosulfan
Beta-Endosul fan
Endrin
Endrln aldehyde
Heptachlor
Heptachlor epoxide
Toxaphene
Number of
samples

13
13
13
13
13
13

13
13
13
13
13

13
13
13
13
13
13
13
13
13
13
13
13
13
13

13
13

13
13
13
13
13
13
13
13
13
13

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
Number of
detections
>IO UQ/L

10
2
7
3
l»
2

0
0
2
0
1

1
0
5
0
1
1
0
0
1
3
0
2
5
3

0
0

1
6
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Treated effluent
concentration. uq/L
Ranae

NO - 590
NO - 23
NO - 110
NO - 82
NO - I.3XIOE3
NO - 170

ND - 3.0
NO - 2.0
ND - 220
ND - 1.0
ND - 69

NO - 36
ND
ND - |l«0
ND - 9.0
ND - 12
ND - 12
ND - 8.0
ND - 8.0
NO - 17
ND - 100
ND - 8.0
ND - 930
ND - mo
ND - 38

ND - 2.2
ND - 1.7

ND - 260
NO - 320
ND - 7.0
ND - 1.0
ND
ND
ND
ND - 14
ND - 12
ND - 2.0

NO
ND - 0.2
ND - 0.2
ND - 0.01
ND - 0. 1
NO - 0.5
ND - 0. 1
ND - 0.01)
ND - 0. 1
ND - 0.2
ND - 0.6
ND - 0. 1
NO - 0. 1
ND - 0.1*
ND - 0.2
ND - 0. 1
ND
Median

31.0
(a)
16.0
(a)
1.0
(a)

(a)
(a)
(a)
(a)
(a)

(a)

5.0
(a)
(a)
(a)
(a)
(a)
2.0
(a)
(a)
(a)
5.0
3.0

(a)
(a)

(a)
(a)
(a)
(a)



(a)
(a)
(a)


(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)

Mean

84
3.3
32
15
210
15

0.2
0.2
30
(b)
5.6

2.8

19
1.5
(b)
(b)
0.8
0.6
3.9
23
0.6
87
19
7.8

0.2
0.2

20
U3
0.5
(b)



2.6
1 .7
0.2


(b)
(b)
(b)
(b)
0. 1
0. 1
(b)
0. 1
(b)
0. 1
(b)
(b)
0. 1
(b)
(b)

Average
percent
remova 1

92
38
13
NM
NM
NM

85
50
93
NM
NM

39
>99
93
NM
NM
NM
>99
NM
99
NM
NM
814
93
99 -

60
60

NM
67
NM
97
>99
>99
>99
NM
81
97

>99
0
NM
95
NM
0
NM
60
NM
NM
NM
67
75
NM
NM
NM
>99
    Analytic methods:  V.7.3.22, Data sets  1,2.
    ND, not detected.
    NM, not meaningful.
    (a)Median concentration was not available in the  reference.
    (b)Mean concentration was not available in the reference.
Date:   9/25/81
11.10-41

-------
TABLE  10-37.   REMOVABILITY OF  TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER  IN
                  PRIMARY  LEAD SUBCATEGORY [2-35]
                                                                                                    THE
                 Toxic pojlutant
                                          Number of
                                          samples
                                                   Number of
                                                   detections
                                                   >IQ gq/L
  Treated effluent
 concentration. ug/L
	Range	
                                   Average
                                   percent
                                   removaI
              Py rene
              Methylene chloride
            Analytic methods: V.7.3,22, Data sets 1,2.
            ND, not detected.
            NM, not meaningful.
 TABLE  10-38    REMOVABILITY OF  TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATERS  IN THE
                   SECONDARY LEAD SUBCATEGORY  12-35]
               Toxic DPIlutant
                                         Number of
                                         samples
Number of
detections
>10 uq/L
                                                              Treated effluent
                                                           	concentration. ug/L	
                                                            Ranoe	Median   Mean
                     Average
                     percent
                     removaI
             8is(2-ethylhexyl) phthalate
             Butyl benzyl phthalate
             pi-n-butyl phthalate
             Dimethyl phthalate
             Di-n-octyl phthalate
                                                           ND - 22
                                                           ND - 1.0
                                                           ND - 35
                                                             ND
                                                           ND - 2.0
         9.5     12
         (a)    1.0
         1.5    9.5
                                                                         (a)
           ND,  not detected.
           NM,  not meaningful.
           (a)No median concentration was available In reference.
           (b)No mean concentration was available in reference.
                                                                               0.5
                                     97
                                     91
                                     21
                                     >99
                                     91)
Nitroqen compounds
Benzid ine
Aroma tics
Benzene
Chlorobenzene
Ethylbenzene
Ni trobenzene
Toluene
Polvcvclic aromatic hydrocarbons
Acenaphthylene
Anthracene
Benzol, a )pyrene
Benzo( b)f luo ran thene
Benzojghi )perylene
Benzo(K)f Iqpranthene
Chrysene
Huo ran thene
Fl uorene
Indenot 1 ,2, 3-cd)pyrene
Naphthalene
Phenanthrene
Pyrene
Po lych 1 or ina ted biphenyis
Aroclor 1248
Aroclor 1251
Kaloqenated aliphatics
Bromoform
Chloroform
1,2-Dichloroethane
1 , 1 -D i ch 1 o roe thy 1 ene
1 , 2-trans-Dichloroethylene
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethylene
1 , 1 , 2-Trichlo roe thane
T r i ch 1 o roe thy 1 ene
Pesticides and metabolites
Aldrin
Alpha-BHC
Beta-BHC
Gamma-BHC
Chlordane
1,1'-DDE
1,1'-DDT
D i e 1 d r i n
Alpha-Endosul fan
Beta-Endosul fan
Endrin
Cndrin aldehyde
Heptachlor
Heptachlor epoxlde
1 sophorone

1

7
7
7
t
7

1|
1
1
It
14
1
H
1
1
1)
3
14
1

14
1

7
7
7
7
7
7
7
7
7

14
1
It
14
It
It
14
14
II
It
It
It
It
14
1

0

0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
M
0
1
1
0
0
0
1

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

ND

ND - 7.0
NO
ND - It.O
ND
ND - 1.0

ND
ND - 2.0
ND
ND
ND - 1.0
ND
ND - 2.0
ND
NO
ND
NO - 3.0
ND - 2.0
NO

ND - 1.6
ND - 1.9

NO
ND - 32
ND - 2.0
ND - 17
ND - 22
ND
ND - 3.0
NO - 7.2
ND - 28

ND
ND - 0.01
ND - 0.3
ND - 0.02
NO - 31
ND - 0.02
ND - 0. 1
NO - 0.1
ND
ND - 0. 1
NO
NO
ND - 0.3
NO - 0. 1
ND



(a)

(a)

(a)


(a)


(a)
(a)



(a)
(a)


1.0
1.3


(a)
(a)
(a)
la)

(a)
(a)
1.0


(a)
(a)
(a)
9.0
(a)
(a)
0.2
(a)
(a)


99

NM
>99
NM
>99
NM

>99
88
>99
>99
NM
>99
>99
>99
>99
>99
0
89
>99

36
15

>99
33
93
35
NM
>99
15
NM
NM

>99
80
0
80
NM
90
0
NM
>99
NM
>99
>99
0
>99
>99
Date:    9/25/81
                                            11.10-42

-------
 TABLE  10-39.   REMOVABILITY OF TOXIC ORGANIC  POLLUTANTS FROM  RAW WASTEWATER  IN THE
                SECONDARY  SILVER SUBCATEGORY [2-35]
Toxic ool lutant
Phtha tales
Bis(2-ethylhexyl ) phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Diethyl phthalate
Di-n-octyl phthalate
Aroma tics
Benzene
Chlorobenzene
Ethyl benzene
To 1 uene
Po 1 vcvc I i c a roma t i c hvd roca rbons
Acenaphthene
Anthracene
Fluoranthene
Naphthalene
Phenanthrene
Pyrene
Polvchlorinated biphenvls
Aroclor 1248
A roc lor 1254
Haloqenated aliphatics
Bromoform
Carbon tetrachloride
Ch lo rod i bromome thane
Chloroform
1,2-Dichloroethane
1, l-Dichloroethy lene
1, 3-D ichlorop ropy lene
1 ,2-t rans-Oichloroethylene
Me thy lene chloride
1, 1,2,2-Tetrachloroethane
Tetrachlo roe thy lene
1,1, 1 -Trichloroethane
Trich loroethylene
Pesticides and metabolites
A 1 d r i n
Alpha-BHC
Beta-BHC
Delta-BHC
Gamma -BHC
Chlordane
4, 4 '-ODE
4, 4' -ODD
4,4'-ODT
D i e 1 d r i n
Endrin
Endrin aldehyde
Heptachlor
Number of
samples

5
5
5
5
5

9
9
9
9

5
5
5
5
5
5

2
2

9
9
9
9
9
9
9
9
9
8
9
9
9

2
2
2
2
2
2
2
2
2
2
2
2
2
Number of Treated effluent
detections concentration. uq/L
>IO UQ/L

3
2
1
0
2

4
0
2
1

0
0
1
0
0
1

0
0

1
5
4
6
3
3
0
1
2
2
4
0
3

0
0
0
0
0
0
0
0
0
0
0
0
0
Range

3.4 - 120
ND - 52
ND - 79
ND
ND - 69

ND - 59
ND - 4.0
ND - 14
ND - 19

ND
ND
ND - 200
ND
ND
ND - 180

0.3 - 1.9
0.2 - 2.6

ND - 13
ND - 1,700
ND - 2,800
ND - 2,900
ND - 240
ND - 3,400
ND
ND - 44
ND - 790
ND - 25
ND - 35
ND - 5.0
ND - 330

ND
ND - 0. 1
0.01 - 0.04
ND
ND - 0.03
ND - O.I
ND - 0.01
ND - 0.01
0.02 - 0.03
NO - 0. 1
ND - 0.2
ND - 0.5
0.01 - 0.04
Median

17
1.0
7.0

(a)

(a)
(a)
(a)
(a)



(a)


(a)

1 . 1
1.4

(a)
19
(a)
130
2.0
(a)

(a)
(a)
(a)
(a)
(a)
(a)














Mean

37
18
19

16

14
0.4
3.9
2.7



40


36

1. 1
1.4

1.4
310
750
440
48
390

4.9
160
5.9
8.3
0.6
51


0.05
0.025

0.015
0.05
0.005
0.005
0.025
0.05
0. 1
0.25
0.025
Average
percent
remova 1

NM
NM
75
>99
47

81
86
58
87

>99
>99
NM
>99
>99
92

NM
NM

87
18
NM
NM
60
65

NM
84
26
81
92
86

>99
NM
NM
>99
NM
0
NM
NM
NM
NM
86
NM
NM
    Analytic methods:  V.7.3.22,  Data sets 1,2.
    ND, not detected.
    NM, not meaningful.
    (a)No median concentration was available  in reference.
Date:    9/25/81
11.10-43

-------
TABLE  10-40.  REMOVABILITY OF TOXIC ORGANIC  POLLUTANTS FROM  RAW WASTEWATERS IN THE
               PRIMARY TUNGSTEN  SUBCATEGORY [2-35]
Toxic DOI lutant
Phthalates
Bis(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
Di ethyl phthalate
Dimethyl phthalate
Di-n-octyl phthalate
Aroma tics
Benzene
Chlorobenzene
Ethyl benzene
Ni trobenzene
Toluene
1 , 2, U-Tri Chlorobenzene
Polycyclic aromatic hydrocarbons
Acenaphthene
Acenaphthylene
Anthracene
Benzol a )pyrene
Chrysene
Fluoranthene
Fluorene
Naphtha lene *
Phenanthrene
Pyrene
Polvchlorinated biphenyls
A roc lor 121(8
Aroclor 1251)
Haloqenated aliphatics
Bromoform
Chlorod ibromome thane
Ch 1 o ro f o rm
D i ch 1 o rob romome tha ne
1 ,2-Dichlo roe thane
1 , l-Di chlo roe thy lene
1 ,2-trans-Dichloroethylene
1 , 1 ,2,2-Tetrachloroethane
Tetrachlo roe thy lene
1,1, l-Trichloroethane
Trichloroethylene
Pesticides and metabolites
A I d r i n
Alpha-BHC
Beta-BHC
Gamma -BHC
Ch lordane
4,4'-DDD
4,4'-DDT
D i e 1 d r i n
Alpha-Endosulfan
Beta-Endosul fan
End r i n
Endrin aldehyde
Heptachlor
Heptachlor epoxide
Isophorone
Number of
samples

2
2
2
2
2

it
4
4
2
it
2

2
2
2
2
2
2
2
2
2
2

2
2

4
4
It
4
It
It
It
It
l|
l|
it

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Number of Treated effluent
detections concentration. ua/L
>IO ua/L

2
2
1
1
1

1
0
0
0
0
0

0
0
0
0
0
0
0
1
0
1

0
0

0
0
2
1
2
2
0
0
1
0
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Ranae

32 - 730
22 - 66
ND - 16
ND - 230
ND - 13

ND - 17
ND - 1.0
ND - 1.0
ND - 5.5
ND - 1.0
H.O - 5.5

ND
ND
ND - 8.0
ND - 1.0
ND
ND - 1.0
ND
ND - 32
ND - 8.0
ND - 15

ND - 2.4
ND - 1.9

ND
ND
ND - 870
ND - 12
ND - 29
ND - 29
ND - 2.0
ND - 9.0
3.0 - 20
ND
ND - 88

ND
ND
ND
ND - 0. 1
ND - 0.5
ND - 0.2
ND
ND
ND - 0.6
ND - 0.2
ND
ND
ND
ND
ND - 6.0
Median







7.5
(a)
(a)
(a)
(a)
(a)

















29
6.0
7.5
10

5.3
7.0

38
















Mean

380
44
8.0
120
22

8.0
(b)
0.3
2.8
0.3
4.8



4.0
0.5

0.5

16
4.0
7.5

1 .2
1 .0



230
6.0
1 1
12
0.5
5.0
9.3

41





0.3
0. 1


0.3
0. 1




3.0
Average
percent
remova 1

NM
NM
NM
NM
NM

NM
NM
86
NM
97
NM

>99
>99
87
NM
>99
NM .
>99
93
NM
NM

NM
29

>99
>99
NM
NM
NM
NM
NM
4
54
>99
NM

>99
>99
>99
50'
NM
NM
>99
>99
91
97
>99
>99
>99
>99
NM
   Analytic methods: V.7.3.22, Data  sets 1,2.
   Blanks indicate  insufficient data.
   ND,  not detected.
   NM,  not meaningful.
   (a)No median concentration was available in reference.
Date:   9/25/81
11.10-44

-------
 TABLE 10-UI.   REMOVABILITY  OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER  IN THE
                 PRIMARY ZINC  SUBCATEGORY  [2-35]
Number of Treated effluent
Number of detections concentration, uq/L
Toxic oollutant samples >IO uq/L Ranqe
Phtha lates
Bi s(2-ethylhexyl ) phthalate II 4
Butyl benzyl phthalate II 0
Di-n-butyl phthalate II I
Diethyl phthalate II 0
Dimethyl phthalate II 1
Di-n-octyl phthalate II 0
Nitrogen compounds
3,3 -Dichlorobenzidine II 0
Phenols
Pentachloropnenol II 0
Aroma tics
Benzene
Ethylbenzene
Hexach 1 o robenzene
Toluene
1, 2, lt-Tri chlo robenzene
Polvcyclic aromatic hydrocarbons
Acenaph thy lene
Anthracene
Chrysene
Fluoranthene
Fluorene
Naphtha lene
Phenanthrene
Pyrene
Po Ivchlor inated biphen.vls
Aroclor 1248
Aroclor 1254
Haloqenated aliphatics
Bromoform
Chloroform
1 , l-Dichloroethane
1 ,2-Di chlo roe thane
1, l-Dichloroethylene
Methylene chloride
Tetrachlo roe thy lene
T r i ch 1 o roet hy 1 ene
Trichlorof luoro methane
pesticides and metabolites
Alpha-BHC
Beta-BHC
Chlordane
4,4'-DDE
1*,1*'-DDT
Dieldrin
Heptachlor
Heptachlor epoxide
Isophorone
0
0
0
0
1

0
0
0
0
0
0
0
0

0
0

1
1
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
Nitrogen compounds
3, 3' -Dichlorobenzidene II 0

ND -
ND -
ND -
ND -
ND -
ND -

ND -

ND

ND -
NO -
ND
ND -
ND -

ND -
ND -
ND -
ND
NO -
ND -
ND -
ND -

ND -
ND -

ND -
ND -
ND
ND
ND
ND -
ND -
ND -
ND

ND -
ND -
ND -
ND -
ND -
NO -
ND -
ND -
ND
ND -

170
0. 1
12
0.9
22
1 .0

2.0



3.0
6.0

5.3
1*7

8.0
9.0
0.7

3.0
6.0
9.0
8.0

7.0
9.8

1*1*
51



7.0
22
19


0.7
0.03
1.6
0.2
O.I*
0.03
0.7
0.7

2.0
Med i an

It
(a)
4.0
(a)



(a)



(a)
(a)

3.0
(a)

(a)
7.0
(a)

(a)
(a)
(a)
(a)

(a)
(a)

(a)
(a)



(a)
(a)
(a)


(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)

(a)
Average
percent
Mean removal


(
1
0
2
0

0



0
0

0
4

0
1

22
b)
.6
. 1
.4
. 1

.2



.4
.5

.8
.3

.7
.6
(b)

0
0
1
0

0
0

4
5



0
2
2


0

0
0
0

0
0

0

.3
.5
.4
.9

.6
.9

.0
.4



.8
.6
.0


. 1

.2
.01
.03

. 1
. 1

2

21
99
56
96
96
NM

NM

>99

85
NM
>99
89
NM

65
NM
94
>99
81
NM
NM
72

NM
NM

NM
66
>99
>99
>99
>99
NM
89
>99

NM
NM
NM
NM
NM
NM
NM
NM
>99
NM
   Analytic methods: V.7.3.22,  Data sets 1,2.
   ND,  not detected.
   NM,  not meaningful.
   (a)No median concentration was available  in reference.
   (b)No mean concentration was available in reference.
Date:   9/25/81
11.10-45

-------
                    11.11  ORE MINING AND DRESSING

II.11.1  INDUSTRY DESCRIPTION [2-37]

II.11.1.1  General Description

The Ore Mining and Dressing Industry is both large and diverse.
It includes the ores of 23 separate metals and is segregated by
the U.S. Bureau of the Census Standard Industrial Classification
(SIC) into nine major codes.  This industry category includes
establishments engaged in mining ores for the production of
metals, and includes all ore dressing and beneficiating opera-
tions, whether performed at mills operating in conjunction with
the mines served or at mills operated separately.  These include
mills which crush, grind, wash,  dry, sinter, or leach ore, or
perform gravity separation or flotation operations.

As mined, most ores contain valuable metals, whose recovery is
sought, disseminated in a matrix of less valuable rock called
gangue.  The purpose of ore beneficiation is the separation of
the metal-bearing minerals from the gangue to yield a product
that is higher in metal content.  To accomplish this, the ore
must generally be crushed and/or ground small enough for each
particle to contain either the mineral to be recovered or mostly
gangue.  Separation of the particles on the basis of some dif-
ference between the ore mineral and the gangue can then yield a
concentrate high in metal value, as well as waste rock (tailings)
containing very little metal.   The separation is never perfect,
and the degree of success attained is generally described by two
parameters:   (1) percent recovery, and (2) grade of the concen-
trate.  Widely varying results are obtained in beneficiating
different ores; recoveries may range from 60% or less to greater
than 95%.  Similarly,  concentrates may contain less than 60% or
more than 95% of the primary ore mineral.  In general, for a
given ore and process, concentrate grade and recovery are in-
versely related.  (Higher recovery is achieved only by including
more gangue, yielding a lower grade concentrate.)

Many properties are used as the basis for separating valuable
minerals from gangue,  including specific gravity, conductivity,
magnetic permeability, affinity for certain chemicals, solu-
bility, and the tendency to form chemical complexes.  Separation
processes in general use are gravity concentration, magnetic
separation,  electrostatic separation, flotation, and leaching.
Amalgamation and cyanidation,  which are 'variants of leaching,
deserve special mention.  Solvent extraction and ion exchange are
Date:  1/24/83 R  Change 2    II.11-1

-------
widely applied techniques for concentrating metals from leaching
solutions, and for separating them from dissolved contaminants.
All of these processes are discussed in general terms in the
paragraphs that follow.   This discussion is not meant to be all-
inclusive; rather, its purpose is to discuss the primary process-
es in current use in the ore mining and milling industry.

Gravity-concentration processes utilize the differences in den-
sity to separate valuable ore minerals (values) from gangue.
Several techniques (e.g., jigging, tabling, spirals, and sink/
float separation) are used to achieve the separation.  Each is
effective over a somewhat limited range of particle sizes, the
upper bound of which is set by the size of the apparatus and the
need to transport ore within it, and the lower bound by the point
at which viscosity forces predominate over gravity and render the
separation ineffective.   Selection of a particular gravity-based
process for a given ore will be strongly influenced by the size
to which the ore must be crushed or ground to separate values
from gangue, as well as by the density difference and other
factors.

Magnetic separation is widely applied in the ore milling indus-
try, both for the extraction of values from ore and for the
separation of different valuable minerals recovered from complex
ores.  Extensive use of magnetic separation is made in the pro-
cessing of ores of iron, columbium, and tungsten.  The separation
is based on differences in magnetic permeability (which, although
small, is measurable for almost all materials).  This method is
effective in handling materials not normally considered magnetic.
The basic process involves the transport of ore through a region
of high magnetic field gradient.  The most magnetically permeable
particles are attracted to a moving surface by a large electro-
magnet.  The particles are carried out of the main stream of ore
by the moving surface and as it leaves the high field region the
particles drop off into a hopper or onto a conveyor leading to
further processing.

Electrostatic separation is used to separate minerals on the
basis of their conductivity.  It is an inherently dry process
using very high voltages (typically 20,000 to 40,000 volts).  In
a typical implementation, ore is charged to 20,000 to 40,000
volts, and the charged particles are dropped onto a conductive
rotating drum.  The conductive particles discharge very rapidly,
are thrown off, and collected.  The nonconductive particles keep
their charge and adhere by electrostatic attraction to be removed
from the drum separately.

Flotation is a process where particles of one mineral or group of
minerals are made by addition of chemicals to adhere preferen-
tially to air bubbles.  When air is forced through a slurry of
mixed minerals, the rising bubbles carry with them the particles
of the mineral(s) to be  separated from the matrix.   If a foaming


Date:  1/24/83 R  Change 2    II.11-2

-------
agent is added which prevents the bubbles from bursting when they
reach the surface,  a layer of mineral laden foam is built up at
the surface of the flotation cell which may be removed to recover
the mineral.  Requirements for the success of the operation are
that particle size be small, that reagents be compatible with the
mineral, and that water conditions in the cell not interfere with
attachment of reagents to the mineral or to air bubbles.  Flota-
tion concentration has become a mainstay of the ore milling
industry.  Because it is adaptable to very fine particle sizes
(less than 0.001 cm), it allows high rates of recovery from
slimes, which are inevitably generated in crushing and grinding
and which are not generally amenable to physical processing.

Ores can be leached by dissolving away either gangue or values in
aqueous acids or bases, liquid metals, or other special solu-
tions.  The examples below illustrate various leaching possibil-
ities.

     (1)  Water-soluble compounds of sodium, potassium, and boron
          can be mined, concentrated, and separated by leaching
          with water and recrystallizing the resulting brines.

     (2)  Vanadium and some other metals form anionic species
          that occur as insoluble ores.  Roasting of such insolu-
          ble ores with sodium compounds converts the values to
          soluble sodium salts.  After cooling, the water-soluble
          sodium salts are removed from the gangue by leaching in
          water.

     (3)  Uranium ores are only mildly soluble in water, but they
          dissolve quickly in acid or alkaline solutions.

     (4)  Native, finely divided gold is soluble in mercury and
          can be extracted by amalgamation (i.e., leaching with a
          liquid metal).  One process for nickel concentration
          involves reduction of the nickel using ferrosilicon at
          a high temperature and extraction of the nickel metal
          into molten iron.  This process, called skip-lading, is
          related to liquid-metal leaching.

     (5)  Certain solutions (e.g., potassium cyanide) dissolve
          specific metals (e.g., gold) or their compounds, and
          leaching with such solutions immediately concentrates
          the values.

In the amalgamation process, mercury is alloyed with some other
metal to produce an amalgam.  The process is applicable to free
milling precious-metal ores, which are those in which the gold is
free, relatively coarse, and has clean surfaces.  Lode or placer
gold/silver that is partly or completely filmed with iron oxides,
greases, tellurium, or sulfide minerals cannot be effectively
amalgamated.  Hence, prior to amalgamation, auriferrous ore is


Date:  1/24/83 R  Change 2    II.11-3

-------
typically washed and ground to remove any films on the precious-
metal particles.  Although the amalgamation process has,  in the
past, been used extensively for the extraction of gold and silver
from pulverized ores,  it has,  due to environmental considera-
tions, largely been superseded, in recent years,  by the cyanida-
tion process.

In the cyanidation process, gold and/or silver are extracted from
finely crushed ores, concentrates, tailings, and low-grade mine-
run rock in dilute, weakly alkaline solutions of potassium or
sodium cyanide.  The gold is dissolved by the solution and sub-
sequently adsorbed onto activated carbon ("carbon-in-pulp"
process) or precipitated with metallic zinc.  The gold particles
are recovered by filtering, and the filtrate is returned to the
leaching operation.

Ion exchange and solvent extraction processes are used on preg-
nant leach solutions to concentrate values and to separate them
from impurities.  Ion exchange and solvent extraction are based
on the same principle:  polar organic molecules tend to exchange
a mobile ion in their structure [typically, Cl~ , NO3 , HSO4 ,  or
COf  (anions) or H+ or Na+ (cations)] for an ion with a greater
charge or a smaller ionic radius.

Table 11-1 presents industry summary data for the Ore Mining and
Dressing point source category in terms of the total number of
subcategories, the number of subcategories studied by EGD, and
the number and types of dischargers.

            TABLE 11-1.  INDUSTRY SUMMARY  [2-1,37,38,39]


     Industry:  Ore Mining and Dressing
     Total Number of Subcategories*:  11
     Number of Subcategories Studied*:  11

     Number of Dischargers in Industry:  Over 500
           •   Direct:  Over 500
           •   Indirect:  None
           •   Zero:  No definition for this industry


*Based on revised BAT subcategorization.

II.11.1.2  Subcategory Descriptions [2-37,38]

Based on similarities in types of processing, technology, waste-
water, end products, and other factors, eleven subcategories have
been established for the Ore Mining and Dressing Industry.  This
subcategorization constitutes a revision from the seven subcate-
gories established for the BPT regulations.  The BPT subcategor-
ies are retained under proposed BAT with several modifications.


Date:  1/24/83 R  Change 2    II.11-4

-------
The Ferroalloy ores  subcategory which included tungsten and
molybdenum  ore mines and mills has been eliminated.  Molybdenum
ore mines and mills  are now  categorized with  copper, lead, zinc,
gold,  and silver ore mines and mills.   Tungsten ore mines and
mills are placed in  a new and separate subcategory.  All subcate-
gories, with the exceptions  of iron  ore,  aluminum ore,  mercury  ore,
and uranium ore, have been changed since the  BPT rules  were promul-
gated.   Table 11-2 presents  the seven BPT categories and  identi-
fies the subcategory changes promulgated for  BAT.  Unless other-
wise noted,  the subcategorization referenced  below is that pro-
posed for BAT.
      TABLE  11-2.
REVISIONS TO  THE SUBCATEGORIZATION OF  THE
ORE  MINING AND DRESSING INDUSTRY
            BPT Subcateqories

            I ron Ore
            Base and Precious Metals
             (includes copper, lead,
             zinc, gold, and silver)
                    Proposed BAT Subcateqories
                     Iron Ore
           Aluminum Ore

           FerroaIloy Ores
             (includes chromium,  cobalt,
             columbium, tantalum,  man-
             ganese, molybdenum,  nickel,
             tungsten, and vanadium recovered
             alone and not as a by-product of
             uranium mining and mills)

           Mercury Ore

           Uranium, Radium, and Vanadium
             Ores (only vanadium by-product
             production from uranium ores)
                    Copper, Lead, Zinc,
                      Si Iver,  Plat inum,
                      Molybdenum Ores

                    Aluminum Ore
           Titanium Ore
                                                         Gold,
                                                         and
                    Mercury Ore

                    Uranium, Radium, and Vanadium
                      Ores (only vanadium by-pro-
                      duct production from uranium
                      ores)

                    Titanium Ores

                    Nickel Ore

                    Vanadium (mined alone and not
                    as a by-product of uranium
                    mining and mills)

                    Antimony Ore

                    Platinum Ores
These  subcategories are discussed briefly in the following sec-
tion.
Date:   1/24/83  R  Change 2
             II.11-5

-------
     Iron Ore

The iron ore subcategory covers mining and/or milling operations
associated with the excavation and extraction of iron ore and is
classified as SIC 1011.   Of the iron ore operations currently
active, over 50% use milling operations which result in no dis-
charge.  Over 30% of the operations discharge to surface waters
and the remaining are unknown.  The general trend in the industry
is to produce increasing amounts of pellets and less "run of
mine" quantities (coarse,  fines, and sinter).   For pelletizing
operations, 56% of total production is represented by operations
with no discharge of process wastewater while approximately 35%
of the operations discharge to surface waters.   Unlike the mill-
ing segment, the mining segment of the industry does discharge
either as the primary source of process water or as makeup water.
The primary water treatment used in this subcategory is removal
of suspended solids by settling.

     Aluminum (Bauxite)

In both BPT and BAT effluent guidelines, the aluminum ore sub-
category applies only to the mining of bauxite for the eventual
metallurgical production of aluminum.   The bauxite mining indus-
try is classified as SIC 1051 and includes establishments engaged
in mining and milling bauxite and other aluminum ores.  No other
aluminum ores are being commercially exploited on a full-scale
basis at present.  Domestic bauxite ore operations require dis-
charge of large volumes of mine water, but there is no process
water for crushing or grinding of the ore.

     Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores

Because of the similarity of the wastewater discharge from mills
and mine drainage, a large subcategory has been established for
ores mined or milled for the recovery of copper, lead, zinc,
gold, and silver.  Molybdenum is also included in this group be-
cause of the similarity in mill processes.  The mine drainage of
this subcategory was identified as being of similar pH with
relatively high concentrations of heavy metals regardless of the
ore mined.  The most commonly used mill process in the subcate-
gory is the froth flotation process.

     Uranium

This category includes facilities which mine primarily for the
recovery of uranium, but vanadium and radium are frequently found
in the same ore body.  Uranium is mined chiefly for use in gener-
ating energy and isotopes in nuclear reactors.   Where vanadium
does not occur in conjunction with uranium/radium (nonradio-
active), it is discussed as a separate subcategory.  Within the
past 20 years, the demand for radium (a decay product of uranium)
has vanished due to the availability of radioactive isotopes with


Date:  1/24/83 R  Change 2    II.11-6

-------
specific characteristics.  As a result, radium is now treated by
the industry as a pollutant rather than as a product.

The milling processes of this industry involve complex hydro-
metallurgy.  Such point discharges, as might occur in milling
processes  (i.e., the production of concentrate), are expected to
contain a variety of pollutants that need to be limited.  Mining
for the ores is expected to lead to a smaller set of contami-
nants.  While mining or milling uranium ores produces particularly
noxious radioactive pollutants, these are largely absent in an
operation recovering vanadium only.

     Tungsten Ore

Tungsten mining and milling is conducted by numerous facilities
(probably more than 50), the majority of which are very small and
operate intermittently.  Almost all are underground mines,  and
many have no discharge of mine water.  Most of the active mills
do not discharge primarily because they are in arid regions and
need the water.  Wastewater treatment methods vary, but may
include settling and recycle and/or evaporation.

     Nickel Ore

A relatively small amount of nickel is mined domestically,  all
from one mine in Oregon.  This mine is open-pit, and there is a
mill at the site, but it only employs physical processing methods.
The ore is washed and transmitted to an on-site smelter.  Depend-
ing on the outcome of on-going exploration, nickel production may
increase in the next 5 to 10 years, and the Bureau of Mines
predicts a significant increase in production by 1985.  Nickel
production is possible both from the Minnesota sulfide ores and
from West Coast laterite deposits.

Water used in beneficiation and smelting of nickel ore is exten-
sively recycled, both within the mill and from external waste-
water treatment processes.  Most of the plant water is used in
the smelting operation since wet-beneficiation processes are not
practiced.  Water is used for ore belt washing, for cooling, and
for slag granulation in scubbers or ore driers.  Water recycled
within the process is treated in two settling ponds.  A sizeable
discharge results from runoff inputs to the ponds during the
rainy season (winter).

     Vanadium Ore (Mined Alone, Not as a By-Product)

This subcategory includes facilities which are engaged in the
primary recovery of vanadium from non-radioactive ore; however,
there is only one active facility in this subcategory.  At the
facility, vanadium pentoxide,  V2O5, is obtained from an open-pit
mine by a complex hydrometallurgical process involving roasting,
leaching, solvent extraction,  and precipitation.  Water used in


Date:  1/24/83 R  Change 2    II.11-7

-------
the mill includes scrubber and cooling wastes and domestic use.
The most significant effluent streams are from leaching and
solvent extraction,  wet scrubbers or roasters,  and ore dryers.
Together, these sources account for nearly 70% of the effluent
stream, and essentially all of its pollutant content.

     Mercury

The mercury industry in the United States currently is at a re-
duced level of activity due to depressed market prices.  Two
facilities were found to be operating at present, although it is
thought that activity will increase with increasing demand and
rising market prices.  The decreased use of mercury due to strin-
gent air and water pollution regulations in the industrial sector
may be offset in the future by increased demand in dental, elec-
trical, and other uses.  Historically, little beneficiating of
mercury ores has been known in the industry.  Common practice for
most producers (since relatively low production characterizes
most operators) has been to feed the cinnabar-rich ore directly
to a kiln or furnace without beneficiation.  Water use in most of
the operations is at a minimum.

The majority of U.S.-produced mercury is recovered by a flotation
process at one mill in Nevada.  Ore processed in that mill is
mined from a nearby open pit.  The flotation concentrate produced
is furnaced on site to recover elemental mercury.  Wastewater
treatment consists of impoundment in a multiple pond system with
no resulting discharge.  The majority of impounded wastewater
evaporates, although a small volume of clarified decant is occa-
sionally recycled.

     Antimony

Antimony is recovered from antimony ore (stibnite) and as a
byproduct of silver and lead concentrates.  This industry is
concentrated in two states:  Idaho and Wyoming.  Currently, only
one operation recovers only antimony ore.  The ore is mined
underground and concentrates are obtained by the froth flotation
process.  There is no discharge from the mine, but wastewater
from the mill flows to an impoundment.  No discharge of process
wastewater to surface waters occurs.  A second facility recovers
antimony as a byproduct from tetrahedrite, a complex silver-
copper-antimony sulfide mineral.  The antimony is recovered from
tetrahedrite concentrates in an electrolytic extraction plant
operated by one of the silver mining companies in the Coeur
d'Alene district of  Idaho.  Antimony is also contained in lead
concentrates and is recovered as a byproduct at  lead smelters
usually as antimonial lead.  This source may represent about 30%
to 50% of domestic production in recent years.
Date:  1/24/83 R  Change 2    II.11-8

-------
     Titanium

The principal mineral sources of titanium are ilmenite (FeTi03)
and rutile (Ti02).   Rutile associated with ilmenite in domestic
sand deposits is not separately concentrated typically.   The
majority of all ilmenite concentrates (includes a mixed product
containing ilmenite, rutile,  leucoxine,  and altered ilmenite)
produced domestically are from titanium dredging operations.  The
remainder of the domestic production comes from a mine in New
York mining an ilmenite ore.   However, domestic production of
ilmenite concentrates has substantially declined during recent
years, dropping approximately 40% between 1968 and 1978.

Most of the active titanium mine/mill operations employ floating
dredges to mine beach-sand placer deposits of ilmenite in New
Jersey and Florida.  At these operations, concentration of the
heavy titanium minerals is accomplished by wet gravity and dry
electrostatic and magnetic methods.  Ilmenite can also be mined
from a hardrock, lode deposit by open-pit methods.  A flotation
process is employed to concentrate the ore materials.

Wastewater treatment practices employed at titanium mine/mill
operations are designed primarily for removal of suspended solids
and adjustment of pH.  In addition, peculiar to the beach sand
dredging operations in Florida is the presence of silts and
organic substances (humic acids, tannic acids, etc.) in these
placer deposits.  During dredging operations, this colloidal
material becomes suspended.  Methods employed for the removal of
this material from water are coagulation with either sulfuric
acid or alum, followed by multiple pond settling.  Adjustment of
pH is accomplished by addition of either lime or caustic prior to
final discharge.

     Platinum

One placer mine in Alaska was operated to recover platinum as the
primary product, but in 1982 that mine was temporarily closed.  A
potentially new mine was identified that will use .a different
metal recovery process from the currently existing placer mine.
Therefore, BAT was promulgated for a new subcategory, Platinum
Ores.  However, new source performance standards for Platinum
Ores is reserved for future use.

11.11.2  WASTEWATER CHARACTERIZATION [2-37]

The wastewater situation evident in the mining segment of the Ore
Mining and Dressing Industry is unlike that encountered in most
other industries.  Usually, industries (such as the milling
segment of this industry) utilize water in the specific processes
they employ.   This water frequently becomes contaminated in the
process and must be treated prior to discharge.  In the mining
segment, process water is not normally utilized in the actual


Date:  1/24/83 R  Change 2    II.11-9

-------
mining of ores, except where it is used in placer mining opera-
tions (hydraulic mining and dredging)  and in dust control.

Water is a natural feature that interferes with mining activ-
ities.  It enters mines by groundwater infiltration and surface
runoff and comes into contact with materials in the host rock,
ore, and overburden.   An additional source of water in deep
underground mines is the water that results from the backfilling
of slopes with the coarse fraction of the mill tailings.  Trans-
portation of these sands underground is typically accomplished by
sluicing.  Mill wastewater is usually the source of the sluice
water.  The mine water then requires treatment depending on its
quality before it can be safely discharged into the surface
drainage network.  Generally, mining operations control surface
runoff through the use of diversion ditching and grading to
prevent, as much as possible, excess water from entering the
working area.  The quantity of water from an ore mine thus is
unrelated, or only indirectly related, to production quantities.

The principal uses of water in the Ore Mining and Dressing Indus-
try can be grouped in three major categories:

     (1)  Noncontact cooling water

     (2)  Process water:  wash water
                          transport water
                          scrubber water
                          process and product consumed water

     (3)  Miscellaneous water:  dust control
                                domestic/sanitary uses
                                washing and cleaning
                                drilling fluids

Noncontact cooling water is defined as cooling water that does
not come into direct contact with any raw material, intermediate
product, by-product, or product used in or resulting from the
process.  Process water is defined as that water which, during
the beneficiation process, comes into direct contact with any raw
material, intermediate product, by-product, or product used in,
or resulting from, the process.

Wastewater characteristics for the Ore Mining and Dressing Indus-
try in general reflect the diversity of the mining and milling
operations associated with the various ores mined and processed.
Each ore exhibits its own set of waste characteristics and these
peculiarities were used, in part, as criteria to determine the
various  subcategories.
Date:  1/24/83 R  Change 2    11.11-10

-------
The wastewater of the Ore Mining and Dressing Industry was
analyzed in screening and verification sampling programs to
determine the presence or absence of the 129 priority pollutants
and to quantify the concentrations of those pollutants detected.
An extensive sampling and analysis effort was undertaken by USEPA
in 1977 and extends to the present.  The purpose of this effort
is to establish the quantities of toxic, conventional, and non-
conventional pollutants in ore mine drainage and mill processing
effluents.  USEPA visited 20 and 14 facilities respectively for
screening and verification sampling.

USEPA selected at least one facility in each major BPT subcate-
gory.  The sites selected were representative of the operations
and wastewater characteristics present in particular subcate-
gories.  These facilities were visited from April through Novem-
ber 1977.  To determine these sites, the agency reviewed the BPT
data base and industry as a whole, with consideration to:

     •   those using reagents or reagent constituents on the
         toxic pollutants list;
     •   those using effective treatment for BPT regulated
         pollutants;
     •   those for which historical data were available as a
         means of verifying results obtained during screening;
         and
     •   those suspected of producing wastewater streams that
         contain pollutants not traditionally monitored.

After reviewing the screen sampling analytical results, USEPA
selected 14 sites for verification sampling visits.  Because most
of the organic toxic pollutants were either not detected or
detected only at low concentrations in the screen samples, the
Agency emphasized verification sampling for total phenolics
(4AAP), total cyanide, asbestos (chrysotile),  and toxic metals.

Table 11-3 lists the minimum detection limits for toxic pollut-
ants appropriate to the studies described above.  Any value below
the quantifiable limit is referred to in this section as BDL,
below detection limit.

Toxic metals are naturally associated with metal ores and all -of
the 13 toxic metals were found in wastewater from the Ore Mining
and Dressing Industry.  The concentrations of each metal varied
greatly, as expected in such a diverse industry.  Organic com-
pounds are not found naturally with metal ores and only 27 toxic
organics were detected in the industry's treated wastewater.

The conventional parameters observed were primarily those regu-
lated by BPT effluent guidelines,  namely TSS and pH.  The TSS
values are very high in many raw wastewater samples because these
samples include tailings which typically contain tens of thousands
Date:  1/24/83 R  Change 2    11.11-11

-------
                      TABLE  11-3.  MINIMUM DETECTION LIMITS FOR
                                  TOXIC POLLUTANTS [2-38]

             Pollutant	Concentration, yg/L

             Antimony                                      200
             Arsenic                                         2
             Beryllium                                       5
             Cadmium                                         2
             Chromium                                       20
             Copper                                         10
             Lead                                           50
             Mercury                                       0.5
             Nickel                                         20
             Selenium                                        2
             Silver                                         10
             Thallium                                      100
             Zinc                                            5
             Asbestos, fibers/L                      2.2 x 105
             Cyanide                                        20
             Phenol (total)                                   2
             Benzene                                      0.04
             Diethyl phthalate                             0.2
             Bis (2-ethylhexyl) phthalate                   0.2
             Butyl benzyl phthalate                        0.25
             Di-n-butyl phthalate                           0.3
             Dimethyl phthalate                           0.35
             Methylene chloride                           0.08
             Toluene                                      0.35
             Chloroform                                   0.05
             Trichlorofluoromethane                         0.1
             Carbon tetrachloride                          0.35
             Ethylbenzene                                  0.1
             Tetrachloroethylene                           1.1
             1,1,1-Trichlorethane                          0.15
             3-BHC                                         0.1
             2T-BHC                                         0.1
             Dichlorobromomethane                          0.05
             COD, mg/L                                       2
             TSS, mg/L                                       1
             TOC, mg/L                                       1
             VSS, mg/L                                       1
Date:  1/24/83  R  Change  2  II.11-12

-------
of mg TSS/L.  Effluent TSS values vary, but are generally low
indicating good solids settling characteristics.

Values of pH vary, but are often in the alkaline range (7 to 14)
because several mill processes operate at elevated pH levels.
The levels of pH, TSS, and metal are often closely associated.
The solubility of many metals varies greatly with pH, and the
status of the metals (dissolved versus solubilized) affects the
concentration of TSS.  This relationship is used by the industry
for ore beneficiation and for wastewater treatment.

Table 11-4 presents available screening and verification data,  by
subcategory, for wastewater pollutant concentrations.  Verifica-
tion data for the nickel subcategory are not available.

II. 11.3  PLANT SPECIFIC DESCRIPTION [2-37,38]

     Copper Mine/Mill 2120

This copper mine/mill facility is located in southwest Montana.
The ore body consists primarily of chalcocite and enargite, mined
only by open-pit methods at present.  Underground mines at this
facility are inactive, but mine water is continuously pumped.

The mill employs the froth flotation process to produce copper
concentration, while cement copper is produced by dump leaching
of low grade ore.  In 1976, ore production was 15,000,000 metric
tons (17,000,000 short tons), and 327,000 metric tons (360,000
short tons) of copper concentrate were produced.  Approximately
16,000 metric tons (17,600 short tons) of cement copper are pro-
duced annually.

Table 11-5 summarizes the verification pollutant data for mine/
mill 2120.  The barrel pond system characterized by the data
consists of a three celled settling pond where the influent
wastewater is limed and polymer is added to enhance flocculation
and settling.  A relatively high pH is maintained through this
treatment system, but a final pH adjustment is made when nec-
essary by addition of sulfuric acid.  Average discharge volume
from this treatment system is approximately 25,000 m3 (6.5
million gallons) per day.
Date:  1/24/83 R  Change 2  II.11-13

-------
         TABLE  ll-l*.   WASTEWATER POLLUTANT CHARACTERISTICS BY  SUBCATEGORY,
                     SCREENING AND VERIFICATION  DATA [2-37]
Number of Number of
samples/number Mean of Maximum of samples/number Mean of Maximum of
Pollutant of detections detections detections of detections detections detections


Classical pollutants, fflg/L
pH, pH units
COD
TSS
TOC
VSS
Phenols (total)
1 ron
Toxic metals and inorganics.
Ant imony
Arsenic
Beryl 1 ium
Cadm i urn
Ch rom i um
Copper
Cyanide (total)
Lead
Mercury
Nickel
Se 1 en i un
Si Iver
Thallium
Zinc
Asbestos (chrysot i le).
fibers/L
Asbestos (total fibers).
flbers/L


Classical pollutants, mg/L
pH, pH units
COD
TSS
TOC
VSS
Phenols (total )
1 ron
Toxic metals and inorganics.
Ant imony
Arsenic
Be ry 1 1 1 urn
Cadmium
Ch rom i urn
Copper
Cyanide ( tota 1 )
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 i urn
Zinc
Asbestos (chrysot i le).
f ibers/L
Asbestos (total fibers).
fibers/L



2/2
I/I
2/2
I/I
I/I
I/O
I/O
Mg/L
2/0
I/O
2/0
2/0
I/O
2/1
I/O
2/0
2/0
2/0
2/0
2/0
2/0
2/1

I/I

I/I



2/2
I/I
2/2
I/I
I/I
I/O
I/I
M.9/L
2/0
2/1
2/1
2/1
2/2
2/2
I/O
2/2
2/0
2/2
2/1
2/2
2/0
2/2

I/I

I/I
Subcateaorv - 1
Raw wastewater

8. 1 8.2
10
1.6 5
25
2








90







18

3.5XIOE6

I.7XIOE7
Subcateaory - Iron Ore:
Raw wastewater

7.8 7.9
96
65,000 110,000
22
80

73


890
920
31
280 500
230 320

51 80

2,200 2,700
20
17 20

3,200 5,800

3.8XIOEIO

2.3XIOEII
ron Ore: Mine drainaqi
Treated

I/I
I/I
I/I
I/I
I/I



I/O
I/I
I/O
I/O
I/O
I/I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/I

I/I

I/I
Physical /chemical mi
Treated

2/2
I/I
2/2
I/I
I/I

I/O

2/0
2/1
2/0
2/0
2/2
2/1
I/O
2/0
2/0
2/0
2/0
2/0
2/0
2/2

I/I

I/I
3
wastewater

8
6
14
19
3




5



120







30

3.8XIOE6

1.2XIOE7
1 1 orocess
wa s tewa te r

7.7 8.1
14
2 It
1 1
BDL




5


BOL BDL
100







19 30

1. IXIOE6

U.3XIOE7
Date:   1/24/83  R  Change  2   11.11-14

-------
        TABLE  11-4.   WASTEWATER POLLUTANT CHARACTERISTICS BY SUBCATEGORY,
                    SCREENING AND VERIFICATION DATA [2-37] (continued)


Pol lutant
Number of
samples/number
of detections

Mean of
detections

Median
detect
Subcategory -


Classical pollutants, mg/L
pH, pH units
COD
TSS
TOC
VSS
Phenols (total )
1 ron
Toxic metals and inorganics.
Antimony
Arsenic
Be ry 1 1 i urn
Cadmium
Chromium
Copper
Cyanide (total )
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Thall ium
Zinc
Asbestos (chrysoti le).
fibers/L)
f ibers/L



12/12
12/12
13/13
10/10
6/5
13/9
7/7
Ufl./L
15/3
15/11
15/1
15/9
15/7
15/11
H/2
15/10
15/1
15/11
15/1
15/5
15/1
15/15

6/6 9
6/5 2

Raw vastewater

7.1
24
200
7.6
16
0.008
20

BDL
37
9
28
22
760
12
1, 100
3
71

1 1
100
5,300

.2XIOEI5 3.
.IX IDE 10 1.



7. 1
7.9
20
3.8
3.2
0.008
1.1

BOL
18
7
5
BOL
15

290
2
59

12
BOL
310

IXIOE9
OXIOE8
Subcategory


Classical pollutants, mg/L
pH, pH uni ts
COD
TSS
TOC
VSS
Phenol s ( tota 1 )
Toxic metals and Inorganics,
Antimony
Arsenic
Be ry 1 1 1 urn
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
Si Iver
Tha 1 1 i urn
Zinc
Asbestos (chrysoti le).
f ibers/L
Asbestos (total fibers).
fibers/L



2/2
2/2
2/2
2/2
2/2
2/0
M9/L
2/1
2/2
2/1
2/0
2/2
2/2
2/2
2/2
2/2
2/0
2/2
2/1
2/0
2/2

2/2

2/2 5

Raw Wastewater

8.8
350
30,000
12
650



100,000


830
1,100
3,800
200
280

78


2,200

1 .1XIOE9

.5XIOEIO





























of Maximum
ions detections
Copper, Lead, Zinc,
Molybdenum:


8.3
150
1,500
23
70
0.016
130

BDL
200
22
120
65
7,300
20
5,900
6
200
12
20
270
28,000

5.5XIOEI6
I.2XIOEII
Number of
samples/ number
of Detections
Gold, Silver,
Mine Drainaae


1/1
1/1
5/5
2/2
2/2
1/2
3/3

5/0
5/2
5/1
5/2
5/0
5/5
I/I
5/1
5/1
5/2
5/0
5/1
5/2
5/5

2/2 1.
2/2 6.

Mean of Median of
detections detections
Platinum,

Treated wastewater

8.3 8.2
27 11
1 1 10
3.5
2.5
0.0075
9.1 0.65


10

1 1

56 10

63 66

320


300
3,800 530

6XIOE6 8.
.1XIOE7 7.

Maximum of
detect i ons




9
77
20
6
3
0.01
27


10
6
13

120
35
99
19
600

BOL
180
11,000

2X1 OE6
2XIOE7
- Copper, Lead, Zinc, Gold, Silver, Platinum,
Molybdenum: Cyanidation Mill Process


9.9
700
60,000
18
1,300


BDL
200,000
30

1,600
2,600
6,800
370
510

150
100

3,900

2.7XIOE9

1. IXIOEI 1

















































































Date:   1/24/83  R  Change 2   II.11-15

-------
          TABLE 11-4.  WASTEWATER POLLUTANT CHARACTERISTICS BY SUBCATEGORY,
                      SCREENING AND VERIFICATION DATA  (continued)


Pol lutant



Classical pollutants, mg/L
pH, pH units
COO
TSS
TOC
VSS
Phenols (total )
1 ron
Toxic metals and inorganics.
Antimony
Arsenic
Beryl 1 iu«
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i un
Si Iver
Thallium
Zinc
Asbestos (chrysoti le).
ribers/L
Asbestos (total ribers)
ribers/L
Number or
samples/number
or detections




22/22
22/22
22/22
22/22
9/9
73/65
9/9
M9/L
78/13
78/78
78/55
78/41
78/63
78/78
74/31
78/69
72/48
78/72
77/50
78/43
78/7
78/78

15/15 2

13/13 1

Mean 01
detect


Raw

8.8
1,100
200,000
15
10,000
220
58

l,700(b)
2,900
75
640
4,600
99,000
280
20,000
52(b)
3,700
240
410
BOL
74,000

.3XIOEII

.8XIOEI2

r Median or
ions detections
Subcategory -

wastawater

8.4
530
160,000
9.5
3,800
36
29

BOL 1
BOO
75
170
1,900
63,000
180
2,800
1. 1
2,000
200
250
BDL
5,600

4.8XIOEIO 4.

5.4XIOEII 3.

Maximum or
detections
Copper, Lead,
Molybdenum:


12
3,000
440,000
29
15,000
400
160

,400(b)
8,100
150
1,100
1 1,000
290,000
590
27,000
22(b)
9,200
530
800
200
270,000

2XIOEI 1

5XIOEI2
Subcategory * Copper, Lead, Zinc



Holy
bdenum: Heap/
Number or
samples/number
or detections

Mean or
detections

Median of
detect ions

Maximum or
detections
Zinc, Gold, Silver, Platinum,
Froth Flotation


21/21
22/22
21/20
15/15
8/7
52/48
6/6

59/3
59/43
59/7
59/6
59/20
59/55
51/12
59/27
58/16
59/35
58/23
59/8
59/0
59/48

14/14 2

14/14 6
, Cold, Silver,
Vat/DufliD Leach ii
Raw wastewater
Classical pollutants, mg/L
pH, pH units
TSS
1 ron
Toxic metals and inorganics.
Antimony
Arsenic
Be ry 1 1 i urn
Cad* i urn
Chromium
Copper
Lead
Mercury
Nickel
Se 1 en i urn
Silver
Tha 1 1 i urn
Zinc

I/I
I/I
I/I
ug/L
I/O
I/I
I/I
I/I
I/I
I/I
I/I
I/O
I/I
I/O
I/O
I/I
I/I





































3
320
1,900


27
BDL
260
1,300
88,000
BOL

14,000


BOL
1 10,000

I/I
l/i
I/O

I/O
l/i
I/I
I/I
I/O
l/i
l/i

I/I
I/O
I/O
I/I
I/I
Mill Process
Treated

7.8
16
1 1
12
1.7
75
0.57

BDL
75
5.7
7.3
160
310
160
100
27
91
23
31

260

.2XIOE8

. IXIOE8
Plat mum.
ig Process
i
Wastevater

7.8
12
4.6
9.5
1.5
19
0.15

BDL
13
BDL
5
30
70
120
BDL
0.8
60
12
20

70

I.7XIOE6 3.

I.9XIOE7 1.





8.8
27
17
21
3.2
220
1.3

BDL
290
12
12
320
640
250
230
68
190
34
46

560

2X1 OE8

.9XIOE9


Treated wastewater





































7.9
50



2
BOL
3

23
BDL

28


BDL
. l3
Date:   1/24/83 R  Change  2   11.11-16

-------
      TABLE \\-H.  WASTEWATER POLLUTANT CHARACTERISTICS BY SUBCATEGORY,
                  SCREENING AND VERIFICATION DATA (continued)
Number of
samples/number Mean of Median of Maximum of
Pollutant i



Classical pollutants, mg/L
pH, pH units
TSS
Toxic metals and inorganics.
Arsenic
Mercury


Classical pollutants, mg/L
pH, pH units
COD
TSS
TOC
VSS
Pheno 1 s I tota 1 )
Toxic metals and inorganics.
Antimony
Arsenic
Be ry 1 1 i urn
Cadmi urn
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Si Iver
Tna 1 1 turn
Zinc
Asbestos (chrysot t le) ,
fibers/L
Asbestos (total fibers).
f ibers/L
af detectio




6/6
1 I/I 1
M/L
11/11
1 I/I 1



I/I
I/O
I/I
I/I
I/I
2/1
ug/L
I/O
I/O
I/O
I/O
I/I
I/I
I/O
I/O
I/I
I/I
I/O
I/O
I/O
I/I

2/2

I/I
ns detections detections detections
Subcategory - Copper, Lead
Molybdenum:
Raw wastewater

7.2 7.2 7.9
19 12 61

1,200 200 5,000
BDL BDL 1.1
Subcateoorv - Alu
Raw wastewater

3. 1

2.8
2
1.6
0.005





30
60


37
60



570

5.5XIOE6 5.5XIOE6

3.5XIOE7
Number of
samples/number Mean of Median of
of detections detections detections
, Zinc, Gold, Silver, Platinum,
Gravity Separation
Treated Wastewater

10/10 0.17 0.05
10/10 I.J| BDL

10/10 170 50
10/10 BDL BDL
minum: Mine Drainage


I/I

I/I
I/I
I/I
3/2 0.025





I/I
I/I


I/I
I/O
I/O
I/O
I/O
I/O

2/2 I.OXIOE8 2,

2/2 7.5XIOE8 1.
Maximum of
detections




1 .2
5.7

1,200
BDL



8.6

6
It
5
O.OItt





25
50


8M






, OXIDES

1XIOE9
Date:   1/24/83 R  Change  2   11.11-17

-------
          TABLE  II-U.   WASTEWATER  POLLUTANT CHARACTERISTICS  BY SUBCATEGORY,
                         SCREENING AND VERIFICATION DATA (continued)
                          Number of
                          samples/number
                          of detections
Mean of
detections
Maximum of
detect ions
Number of
samples/number
of detections
Mean of
detections
Maximum of
detect ions
     Classical pollutants, mg/L
pH, pH units
COO
TSS
TOC
VSS
Phenols (Total)
1 ron
Toxic metals and Inorganics,
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Coppe r
Cyanide
Lead
Mercury
Nickel
Se 1 en i um
Silver
Thallium
Zinc
Asbestos (chrysoti le).
fibers/L
Asbestos (total fibers).
fibers/L
Classical pollutants, mg/L
pH, pH units
COO
TSS
TOC
VSS
Phenols (total)
Toxic metals and Inorganics,
Antimony
Arsenic
Beryll ium
Cadmium
Chromium
Copper
Cyan i de
Lead
Mercury
Nickel
Se 1 en i um
Si Iver
Tha 1 1 i um
Zinc
Asbestos (chrysoti le).
fibers/L
Asbestos (total fibers).
flbers/L
2/2
I/I
2/2
I/I
I/I
2/1
I/I
ug/L
2/1
2/1
2/2
2/2
2/2
2/2
I/O
2/2
2/1
2/2
2/2
2/2
2/0
2/2

I/I

I/I

I/I
I/I
I/I
I/I
I/I
I/I
M9/L
I/I
I/I
I/I
I/I
I/I
I/I
I/O
I/I
I/I
I/I
I/O
I/I
I/I
I/I

I/I

I/I
                                     	Subcafreqorv - Tungsten;  Hj J t_Proc_es.s.   	

                                     Raw wastewater                   Treated wastewater
9.9 9.9
300
260,000 390,000
220
1,100
63
660
BDL
370
120 620
260 320
910 1, 100
22,000 21,000
3, 100 1, 100
2
1,300 1,600
31 12
300 350

17,000 21,000
I.3XIOEI2
3.7XIOEII
Subca^eaory - Kercurv:
Raw wastewater
8
60
110,000
21
1,300
0.92
53,000
1, 100
90
560
160
350

1,000
230.000
1,600

10
200
2,100
I.5XIOEI 1
I.3XIOE12
I/I

I/I



I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/O
I/O
I/O
I/I
I/O
I/I


Froth Flotation process
Treated wasfewater
I/I
I/I
I/I
I/I
I/O
I/I
I/I
I/I
I/O
I/I
I/I
I/I
I/O
I/O
I/I
I/O
I/O
I/O
I/O
I/I
I/I 5
I/I 7.
9.2

160



15
BDL
15
BOL
36
BOL
11,000
220



35

1, 100




6.3
22
16
13

0.22
200
1 10

6
BDL
50


50




10
.7XIOE7
.7XIOE8
Date:    1/24/83  R   Change  2    11.11-18

-------
       TABLE  11-4.   WASTEWATER POLLUTANT CHARACTERISTICS BY SUBCATEGORY,
                   SCREENING AND VERIFICATION  DATA (continued)
Number of
samples/number Mean of


Classical pollutants, mg/L
pll, pH units
COD
TSS
TOC
VSS
Phenols ( tota 1 )
1 ron
Toxic metals and inorganics.
Antimony
Arsenic
Beryl 1 ium
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i urn
S i 1 ve r
Thai 1 ium
Zinc
Asbestos (chrysot 1 le),
f ibers/L
Asbestos (total fibers).
fibers, L


Classical pollutants, mg/L
pH, pH units
COO
TSS
TOC
VSS
Phenols (total)
Iron
Toxic metals and inorganics,
Antimony
Arson ic
Be ry 1 1 ium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en i um
Si Iver
Thai 1 ium
Zinc
Asbestos (chrysotl le),
fibers/L
Asbestos (total fibers),
f ibers/L



13/13
15/15
18/18
2/2
2/2
3/1
I/I
"9/L
3/1
17/16
3/0
16/13
V3
IVIM
3/0
V3
3/1
VI
5/3
3/0
3/0
17/17

3/3

2/2



6/6
5/5
5/5

I/ 1
2/2
7/5
"9/L
M/2
10/9
6/2
12/1 1
8/8
12/10
2/1
8/5
VI
8/8
6/6
6/3
M/2
12/12
I/I
I/I

R ast t r

7.7
22
IMO
8.5
2M




20

M
M3
17

90


23


M3

I.IXIOE8 1.

2.0XIOE9

Raw wastewater

6.M
95
19,000


0.009
1,500

520
M.300
270
150
1,700
1,000
1,900
2,300
170
70
1,200
26,000

Median of
Subcateaorv


8.1
7
21






7

3
M5
BDL

50


28


20

.IXIOE8 i

2.
Subcateaorv


7.5
26
6M


1,700

2MO
100
1,500
M90
1,300
2.800
150
56
22,000
Z.
Number of
Maximum of samples/number Mean of Median of Maximum of
- Uranium:


8.8
IMO
1,600
9
28
0.01
0.32

BDL
170

10
50
110

180
It
60
37


190

.9X108

3X1 OE9
- Uranium:


8.3
390
95,000
2M
20
0.01
2,000

1,000
1 1,000
300
1420
3,700
3, MOO
14,200
36
3,700
M90
100
1,200
61,000
3X1 OE7
2.9XIOE8
Mine drainaoe


9/9
12/12
13/13
2/1
2/2
3/1
I/I

3/0
13/11
3/0
13/10
3/2
11/8
3/0
3/1
3/1
3/0
5/3
3/0
3/0
13/12

2/2

2/2
Mill Process


9/9
7/6
9/9
2/2
2/2
3/2
7/5

5/3
12/11
7/3
13/1 1
10/5
114/1 1
3/0
10/5
5/1
10/8
7/6
7/M
5/2
IM/13
2/2
2/2
Treated wastewater

7.9
10
33

1.5




8

M
M3
BDL




36


20

M.OXIOE7

5.0XIOE8
Arid Locations
Treated wastewater

6.7
60
56
22
6
0.01
1.14

300
120
7
35
Ml
190
390
830
6M
16
790
M,700 2
I.8XIOEB
I.8XIOE9



7.9
8.9
27






6

3

BDL




M8


III







7.7
1 1
26


O.M

BDL
29
10
29
28
100
200
950
22
20
,500





8.5
38
83
10
2
0.01
0.054


24

7
60
1 1

50
9

51


78

5.3XIOE7

5.7XIOE8



8.5
280
160
27
10
0.01
3.9

900
750
1 1
77
100
900
960
i (i
1,300
210
23
8MO
1 1 , 000
2.0XIOE8
2.3XIOE9
Date:   1/24/83 R  Change  2   11.11-19

-------
         TABLE M-lt.  WASTEWATER POLLUTANT CHARACTERISTICS BY SUBCATEGORY,
                    SCREENING AND VERIFICATION DATA (continued)
Number of Number or
samples/number Mean of Median or Maximum or samples/number Mean or Median or Maximum or
Pollutant of detections detections detections detections of detections detections detections detections


Classical pollutants, mg/L
pH, pH units
COD
TSS
TOO
VSS
Phenols (total )
Toxic metals and Inorganics,
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en 1 um
Si Iver
Thai Hum
Zinc
Asbestos (chrysotl le).
flbers/L
Asbestos (total fibers).
ribers/L
Classical pollutants, mg/L
pH, pH units
TSS
TOC
VSS
Phenols (total)
Iron
Toxic metals and Inorganics,
Antimony
Arsenic
Be ry 1 1 i um
Cadmium
Ch rom i um
Coppe r
Cyanide
Lead
Mercury
Nickel
Se 1 en 1 um
Silver
Thallium
Zinc
Asbestos (chrysotl le),
flbors/L
Asbestos (total fibers).
fibers/L









Mg/L



















9/9
6/6
9/9
6/6

6/5
9/9
U9/L
9/1
9/3
9/0
9/0
9/7
9/9
9/0
9/1
9/2
9/3
9/3
9/5
9/0
9/9



Subcateqppv - Titanium: Mine drainaoe
Raw wastewaterl al


























Raw wastewater
5.9 5.7
1 , 1 00 1 , 1 00
310 160
190 560

0.007 0.007
3.2 1.9


8 9


17 30
27 16

BDL BOL
6
23 23
31 29
BOL BDL

31 21



Treated wastewater

I/I
I/I
I/O
I/I
I/O
I/I

I/O
I/O
I/O
I/O
I/O
I/I
I/O
I/I
I/O
I/O
I/O
I/O
I/O
I/I

I/I

I/I
Treated wastewater
6.6 9/9 5.9 6.8
1,900 9/9 11 11
1,100 9/8 3.6 2.9
750 9/8 5.2 5.3

0 . 007 8/1
6.3 9/9 0.2 0.17

BDL 9/0
10 9/0
9/0
9/1
80 9/0
63 9/5 BDL BOL
9/0
58 9/1
1 1 9/1
33 9/0
36 9/0
1 1 9/2 BDL
9/0
71 9/8 27 8
I/I

I/I



8.0
2

8

0.03






20

BOL





20

BOL

I.9XIOE6

7.6
17
9
6

0.01
0.5




2

BDL

BDL
BOL


BOL

71
3.3XIOE6

2.7XIOE6
Date:   1/24/83 R  Change  2   11.11-20

-------
          TABLE  II-U.  WASTEWATER  POLLUTANT CHARACTERISTICS  BY  SUBCATEGORY,
                       SCREENING AND VERIFICATION DATA  (continued)

Po 1 1 utant


Classical pollutants, mg/L
Phenols ( tot«l )
1 ron ( total )
Toxic metals and Inorganics,
Ant 1 mony
Arsenic
Beryl 1 lum
Cadmium
Chromium
Copper
Cya n I de
Lead
Mercury
Nickel
Selenium
SI Iver
Tha 1 1 1 urn
Zinc

Number or
samples/number



I/O
I/I
ug/L
I/I
I/I
I/I
I/I
I/I
I/I
I/O
I/I
I/I
I/I
I/I
I/I
I/I
I/I


Mean of

Median of

Maximum or
Subcateaorv • Vanadium:







































Subcateaorv



69

BDL
130
16
17
120
U2

320
1
450
6.3
BOL
BOL
1,500
- Vanadium:
Raw wastewater
Classical pollutants, mg/L
Phenols (total )
Iron (total )
Toxic metals and Inorganics,
Antimony
Arsenic
Beryll lun
Cadmium
Ch rom i urn
Copper
Cyanide
Lead
Mercury
Nickel
Se 1 en 1 urn
Silver
Tha 1 1 ium
Zinc

3/0
3/3
U9/L
3/3
3/3
3/3
3/3
3/3
3/3
3/1
3/3
3/2
3/3
3/3
3/3
3/3
3/3


ItO

BDL
300
Ul
ISO
1,600
14,200

5,800
ItO
790
870
31
290
3M.OOO


69

BDL
370
38
25
1(70
65

320

150
IMO
27
BOL
1,500


330

BOL
390
69
510
14,1400
13,000
290
17,000
280
1,800
2,500
63
870
100,000
Number of
samples/number
Mine dra Inaoe
Tri

I/O
l/l

l/l
l/l
l/l
l/l
l/l
l/l
I/O
l/l
I/O
l/l
l/l
I/O
I/I
I/I
Froth Flotation

Mean or Median of

lated wastewater




















Maximum or




0.86

BDL
5
BDL
8.2
29
21

170

59
12

BDL
160

Treated waatewater

3/0
3/3

3/3
3/3
3/3
3/3
3/3
3/3
3/0
3/3
3/0
3/3
3/3
3/2
3/3
3/3


0.96 0.96

BDL BDL
110 It
53 36
2U 29
IMO 61
37 12

560 330

1140 95
8UO 79
BDL
120 BOL
120 110


0.86

BOL
300
120
38
330
17

1,200

250
160
16
350
160
BDL, below detection limit
(a) Data not avallable.
(b) As reported In source.
Date:    1/24/83  R   Change 2   11.11-21

-------
       TABLE  11-5.
PLANT SPECIFIC DATA FOR COPPER MINE/MILL
2120, VERIFICATION DATA  [2-70]
    PoI Iutant
        Barrel  pond
         infIuent
Barrel  pond
 effluent
Percent
removaI
    Classical pollutants, mg/L

      TSS
      COD
      TOG
      pH, pH units

    Toxic pollutants,  ug/L
           10
           19
          I 1.8
    Analytic methods:  V.7.3.23,  Data  set 2.
    NM,  not meaningful.
    4
   18
   12
  3.4
  71
  NM
  37
Ant imony
Arsen ic
Be ry 1 1 i urn
Cadmi urn
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Seleni urn
Si Iver
Tha 1 1 ium
Zinc
Asbestos, fibers/L
88
88
      Copper Mine/Mi11/Smelter Refinery 2122

The  wastewater treatment plant at this facility treats the com-
bined waste streams  from two mills,  a  refinery (including a
refinery acid waste  stream), a smelter,  and the facility sanitary
wastewater.  Existing  treatment includes lime addition,  polymer
addition,  flocculation,  and settling.   Table 11-6  summarizes the
pollutant verification data for this mine.
Date:   1/24/83 R  Change  2   11.11-22

-------
     TABLE  11-6.
PLANT SPECIFIC  DATA(a) FOR COPPER MINE/MILL
2122, VERIFICATION DATA [2-70]
     Pollutant
           Treatment
           influent
Treatment
effluent
Percent
removaI
     Classical pollutants, mg/L

       TSS                       76
       COD                       25
       TOC                      9.5
       pH, pH units               3.4

     Toxic pollutants, u,g/L
     Analytic methods: V.7.3.23, Data set 2.
     ND, not detected.
     NM, not meaningful.
     (a)Average of two 24-hour composites.
                              3
                             14
                             10
                            8.0
               96
               46
               NM
Antimony
Arsenic
Be ry 1 1 i urn
Cadm i urn
Chromi urn
Copper
Cyan ide
Lead
Mercury
Nickel
Se len i urn
Si 1 ve r
Tha 1 1 ium
Zinc
Asbestos, fibers/L
88
>50
33
7
>88
NM
74
NM
     Lead/Zinc/Copper Mine/Mill 3103

This facility  is  located in Missouri  and has an underground mine.
The minerals of principal value are galena,  sphalerite, and
chalcopyrite.  Zinc,  lead, and copper concentrates are produced
by the flotation  process in the mill.   In 1976,  mine production
totalled 972,000  metric tons (1,070,000 short tons), while 92,000
metric tons  (102,000  short tons) of lead concentrate, and 9,800
metric tons  (11,000 short tons) of copper concentrate were pro-
duced at the mill.

Mine and mill  wastewater streams are  combined for treatment at
this facility.  Wastewater treatment  consists of alkaline sedi-
mentation in a multiple pond settling system.   Table 11-7 sum-
marizes pollutant verification data for mine/mill 3103.

     Lead/Zinc Mine/Mill/Smelter/Refinery 3107

Wastewater streams  generated from mining,  milling, smelting, and
refining activities at this lead/zinc complex are combined in a
common impoundment  pond,  and the effluent from this pond is
subsequently treated  in a physical/chemical  treatment plant by
lime precipitation,  aeration,  flocculation,  and clarification, in
Date:  1/24/83  R  Change 2  11.11-23

-------
conjunction with high-density sludge recycle.   Table 11-8 sum-
marizes pollutant verification data for mine 3107.

II.11.4  POLLUTANT REMOVABILITY [2-37,38]

Pollutants in the Ore Mining and Dressing Industry originate from
two distinct sources:  particles from raw ores,  and beneficiation
(dressing) reagents.   Pollutants from various ores generally con-
sist of heavy metals contained in the ore.   These pollutants are
normally in a natural state as dissolved or suspended particles
resulting from contact with rainwater and seepage water.   The
beneficiation or dressing process generally contributes cyanide
or phenols and may result in high volumes of waste loads when
combined with the natural pollutants.

In-process recycle of waste streams after thickening or filtering
is used at several plants within the industry.  Water also may be
recovered by dewatering tailings prior to final discharge.  The
recovered water may be reused as makeup or as a process control
measure for additional metal recovery.  In-process recycle may
reduce the volume of wastewater discharged by 5% to 17%;  when
tailing wastewater is recovered, the wastewater volume may be
reduced by up to 50%.  This reduction allows for a smaller waste-
water treatment system.  Mine drainage also has been used as mill
makeup water, which has a similar effect on the treatment system.

Several treatment methods are currently being used by the Ore
Mining and Dressing Industry.  Settling, chemical treatment, and
filtration, are techniques commonly employed.   Other methods for
wastewater treatment also are used but on a less frequent basis.

Ponds are used in the industry for settling.  Tailings ponds
receive relatively high solids loadings and thus require frequent
cleaning or enlargement.  Chemical treatment involves the addi-
tion of a chemical compound, usually lime or alum,  to  precipi-
tate dissolved metals.  Preliminary settling may be used to
remove larger particles prior to chemical treatment, which is
generally followed by sedimentation. Large quantities of sludge
may be produced that may be disposed of in an abandoned mine.
Filtration is accomplished by the passage of water through a
physically restrictive medium with the resulting deposition of
suspended particulate matter.

Settling is used at mine/mill 1108, where the tailing-pond efflu-
ent is treated with alum, followed by polymer addition and secon-
dary settling to reduce suspended solids from approximately 200
mg/L to an average of 6 mg/L.  At mine/mill 3121, initiation of
the practice of polymer addition to the tailings has greatly
improved the treatment system capabilities.  Mean concentrations
of total suspended solids, lead, and zinc in the tailing-pond
effluent were reduced by 64%, 43%, and 17%, respectively, over
those previously attained as shown in Table 11-9.


Date:  1/24/83 R  Change 2  11.11-24

-------
               TABLE  11-7.   PLANT SPECIFIC DATA FOR LEAD/ZINC/COPPER
                            MINE 3103, VERIFICATION DATA [2-70]
    Pollutant                     Tailings pond       Tailings pond      Percent
    	influent	effluent	remova I

    Classical pollutants,  mg/L

      TSS                         120,000                   3              >99
      COD                           2,100                  14               99
      TOC                             22                  15               32
      pH, pH units                   6.4                 7.4

    Toxic pollutants,  u.g/L
Ant imony
Arsen ic
Be ry 1 1 i um
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se lenium
Si Iver
Tha 1 1 i um
Zinc
Asbestos, fibers/L
< 1,000
500
70
350
200
21,000
40
120,000
<2
4,400
<200
150
99
>86
>97
>95
>99
25
>99
NM
96
NM
>93
NM
98

    Analytic methods:  V.7.3.23,  Data  set 2.
    NA,  not analyzed.
    NM,  not meaningful.


             TABLE 11-8.   PLANT  SPECIFIC DATA (a) FOR LEAD/ZINC
                          MINE 3107,  VERIFICATION DATA [2-70]


    Pollutant                     Treatment plant     Treatment plant    Percent
    	influent	effluent	remova I

    Classical pollutants,  mg/L

      TSS                              12                  19               NM
      COD                              II                   3               73
      TOC                               I                   2               NM
      pH, pH units                   2.7                 6.6
      Iron, total                       58               2,400               NM

    Toxic pollutants,  u.g/L
Ant imony
Arsenic
Be ry 1 1 i um
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Se len i um
Si 1 ve r
Zinc
Bi s(2-ethylhexyl ) phthalate
Di-n-butyl phthalate
<500
28
<5
3,000
75
700
180
2,800
30
280
<5
<20
86,000
NA
NA
<500
4
<5
220
25
60
35
220
1.6
75
<5
<20
5,500
16
0.3
NM
86
NM
93
67
91
81
92
95
73
NM
NM
94


    Analytic methods:  V.7.3.23,  Data  set 2.
    NA,  not  analyzed.
    NM,  not  meaningful.
    (a)Average of two  24-hour composites-.

Date:   1/24/83  R   Change 2   11.11-25

-------
      TABLE 11-9,
Parameter
 IMPROVEMENT IN TREATMENT SYSTEM CAPABILITY
 RESULTING FROM POLYMER ADDITION TO EFFLUENT
 AT MINE/MILL 3121 [2-38]
   Effluent levels
  attained prior to
 use of polymer, mg/L
 Mean      Range
  Effluent levels
 attained subsequent
to use of polymer, mg/L
Mean       Range
TSS
Pb
Zn

0
0
39
.51
.46

0
0
15 -
.24 -
.23 -
80
0.80
0.86

0
0
14
.29
.38

0
0
4 -
.14 -
.06 -
34
0.
0.

67
69
Similarly, the use of a polymer at mine 3130 reduced mean concen-
trations of total suspended solids,  lead and zinc in treated ef-
fluent by 89%, 76%,  and 29%,  respectively,  over those attained
prior to use of polymer and sedimentation as shown in Table
11-10.
    TABLE-11-10.
IMPROVEMENT IN TREATMENT SYSTEM CAPABILITY
RESULTING FROM POLYMER ADDITION AND SEDIMEN-
TATION TO EFFLUENT AT MINE 3130 [2-38]
                     Effluent levels
                   attained prior to use
                      of polymer and
                    secondary settling
                      pond(a),  mg/L
                           Effluent levels
                        attained subsequent to
                          use of polymer and
                          secondary settling
                            pond(a),  mg/L
Parameter
TSS
Pb
Zn
Mean

0.
0.
19
34
45

0.
0.
Range
4 -
11 -
23 -
67
1.1
1.1
Mean

0
0
2
.08
.32
0
<0
0
Range
.2 -
.05 -
.18 -
6.
0.
0.
2
10
57
(a) Secondary settling pond with 0.5-hour retention time.

Both fullscale and pilotscale operations are currently being
studied by this industry.  A fullscale multimedia filtration unit
is currently in operation at molybdenum mine/mill 6102.  The
filtration system consists of four individual filters, each
composed of a mixture of anthracite, garnet and pea gravel.  This
system functions as a polishing step in the treatment scheme
which consists of settling, ion exchange, lime precipitation,
electrocoagulation, and alkaline chlorination.  Since its startup
in July 1978, the filtration unit has been operating at a flow of
63 L/s (1,000 gpm) and four months of monitoring data have demon-
strated significant reductions in TSS, iron, and zinc.  Suspended
Date:  1/24/83 R  Change 2  11.11-26

-------
solids concentrations have been reduced by approximately 66%,
from an average 35 mg/L to less than 12 mg/L.   Zinc removals from
0.2 mg/L (influent) to 0.05 mg/L (effluent) and iron removals
from 0.2 mg/L (influent) to 0.09 mg/L (effluent) have also been
achieved.

Depressing agents are commonly used in the flotation of metal
ores to assist in the separation of minerals with similar float-
abilities.   Cyanide is widely used as a depressant and thus often
is present in mill tailings and wastewater.  Because of its
toxicity, treatment methods are needed to reduce cyanide concen-
tration.  Alkaline chlorination and ozonation are two methods
being used to achieve cyanide destruction.

A fullscale system has been implemented at mill 6102 for cyanide
reduction.   The unit is an integral part of a total treatment
system employing lime precipitation, electrocoagulation-flotation,
ion exchange, alkaline chlorination, and multimedia filtration,
followed by final pH adjustment.  The alkaline-chlorination
system involves onsite generation of sodium hypochlorite by
electrolysis of sodium chloride.  The hypochlorite is injected
into the wastewater following the electrocoagulation-flotation
process and immediately preceding the filtration unit.  At this
point in the system, some cyanide removal has already been real-
ized incidental to the lime precipitation-electrocoagulation
treatment.   Operating data from the first four months show the
concentration of cyanide at 0.09 mg/L prior to the electrocoagu-
lation unit.  Concentrations of cyanide progressively decrease
from 0.04 mg/L (electrocoagulation effluent) to 0.01 mg/L or less
after filtration and less than 0.01 mg/L after the final reten-
tion pond.   Mill personnel expect this removal efficiency to
continue throughout the optimization period of the system.  The
problem of elevated chlorine residual levels has not yet been
resolved.

Ozonation tests in the laboratory showed substantial destruction
of cyanide.  Although the target level of less than 0.025 mg/L of
cyanide was not achieved and the tests under pilot-plant condi-
tions showed less favorable results, ozonation did result in sub-
stantial removal of manganese as well as cyanide.

Phenolic compounds are also used to dress the raw ores.  The low-
concentration, high-volume phenolic wastes generated lend them-
selves most readily to treatment by chemical oxidation or aera-
tion.  Aeration is the only treatment currently in use although
phenols may be incidentally reduced by treatment of traditional
parameters such as TSS.  At Mill 2120, phenol concentrations in
the tailing-pond influent and effluent average 0.031 mg/L and
0.021 mg/L, respectively.  Similar results are noted at Mill
2122, where phenol concentrations in the tailing-pond influent
and effluent average 0.26 mg/L and 0.25 mg/L respectively.  Data
from samples collected at Mill 2117 show phenol reductions from


 Date:   1/24/83  R  Change 2  11.11-27

-------
5.1 mg/L of phenol in raw tailings to 0.25 mg/L of phenol in the
tailing-pond overflow.

Radium 226, a product of the radioactive decay of uranium/  occurs
in both dissolved and insoluble forms and is found in wastewater
resulting from uranium mining and milling.  Coprecipitation of
radium with a barium salt is typically used for waste stream re-
moval of radium.   Dosages vary from 10 mg/L to 300 mg/L depending
on the characteristics of the wastestream.

At uranium mine/mill 9452, a unique minewater treatment system
exists that employs radium 226 ion exchange, in addition to floc-
culation, barium chloride coprecipitation, settling,  and uranium
ion exchange.  The mine water to be treated is pumped from an
underground mine to a mixing tank where flocculant is added.  The
water is then settled in two ponds, in series, before barium
chloride is added.  After barium chloride addition, the water is
mixed and flows to two additional settling ponds (also in series).
The decant from the final pond is acidified before it proceeds to
the uranium ion-exchange system.  The effluent from the uranium
ion exchange column is pumped to the radium 226 system.  After
treatment for removal of radium 226, the final effluent is pumped
to a holding tank for either recycle to the mill or discharge.
The unique feature of this treatment approach is the radium 226
ion exchange system, which consists of two up-flow ion exchange
columns operated in parallel.  Each column is constructed of
fiber-reinforced plastic (FRP) and contains approximately 11.3 m3
(400 ft3) of resin, supported on a FRP distribution plate.  Min-
ing personnel have estimated that the theoretical life of the
resin at the present loading is 50,000 years.  The total treat-
ment system at mine/mill 9452 is capable of reducing radium 226
from levels of 955 picocuries/L (total) and 93.4 picocuries/L
(dissolved) to 7.18 picocuries/L (total) and less than 1
picocurie/L  (dissolved).  This performance represents 99.2%
removal of total radium 226 and greater than 98.9% removal of
dissolved radium 226.

Asbestos is often found in the ores from this industry.  Although
several bench-scale and pilot-scale plants have been proposed,
only settling ponds are currently in use.  For mill treatment
systems consisting primarily of tailing ponds and settling, or
polishing ponds, some facilities have demonstrated reductions of
104 and 105  fibers/L.  Examination of these treatment systems
indicates several factors in common:  high initial suspended
solids loading, effective removal of suspended solids, large
systems or systems with long residence times, and/or the presence
of additional settling or polishing ponds.

Other methods, which are used to a lesser extent and normally in
the pilot plant stage, include:  flocculation, centrifugation,
oxidation, adsorption, and solvent extraction.
 Date:   1/24/83 R  Change  2  11.11-28

-------
       11.12  ORGANIC CHEMICALS AND PLASTICS AND SYNTHETIC
              FIBERS MANUFACTURING

II.12.1  INDUSTRY DESCRIPTION

II.12.1.1  General Description [2-61]

The organic chemicals industry has developed since 1856, when the
first coal tar dye was synthesized from by-product coal tar
generated by the production of blast furnace coke.  The industry
began initially with the isolation and use of aromatic hydro-
carbons (e.g., benzene and toluene) from coal tar.  As additional
materials were identified and the properties of such materials
found useful, routes for commercial synthesis were developed. The
economic incentive to find users for by-products and wastes from
industrial processes has been a strong incentive for development.
For example, the chlorinated aromatic chemicals industry developed
mainly out of: (1) the need to use the large quantities of chlo-
rine formed as a by-product from caustic soda production; (2) the
availability of benzene derived from coal tar; and (3) the dis-
covery that such compounds could serve as useful intermediates
for production of other, more valuable materials (e.g., phenol
and picric acid).   The development of uses for specialty products
such as surfactants, pesticides,  and aerosol propellants also
contributed to the growth of the industry.

Today the organic chemicals industry is comprised of production
facilities of two distinct types: those facilities or plants
whose primary function is chemical synthesis (representing the
bulk of the industry), and plants that recover organic chemicals
as a by-product from unrelated manufacturing operations such as
coke plants (steel production) and pulp mills (paper production).
Approximately 90% of the chemical precursors used by all indus-
tries as feedstocks is derived from petroleum and natural gas.
The remaining 10% is supplied by plants that recover organic
chemicals from coal tar condensates generated by coke production.

The organic chemicals industry is described under the Standard
Industrial Classification (SIC) codes 2865 and 2869.  These are
characterized as:
Date:  9/25/81               II.12-1

-------
     •  SIC 2865.   Establishments primarily engaged in manufac-
        turing coal tar crudes and cyclic organic intermediates,
        dyes,  color lakes and toners.   Important products of this
        industry include:  (1) derivatives of benzene,  toluene,
        naphthalene,  athracene,  pyridine, carbazole,  and other
        cyclic chemical products; (2)  synthetic organic dyes; (3)
        synthetic organic pigments;  and (4) cyclic (coal tar)
        crudes,  such as light oils and light oil products;  coal
        tar acids;  and products of medium and heavy oil such as
        creosote oil,  naphthalene, anthracene,  and their higher
        homologues, and tar.

     •  SIC 2869.   Establishments primarily engaged in manufac-
        turing industrial organic chemicals, not elsewhere class-
        ified. Important products of this industry include: (1)
        non-cyclic organic chemicals such as acetic,  chloroace-
        tic, adipic,  formic,  oxalic and tartaric acids and their
        metallic salts; chloral, formaldehyde and methylamine;
        (2) solvents such as amyl, butyl, and ethyl alcohols;
        methanol;  amyl, butyl, and ethyl acetates; ethyl ether,
        ethylene glycol ether and diethylene glycol ether;
        acetone, carbon disulfide and chlorinated solvents such
        as carbon tetrachloride, perchloroethylene and trichloro-
        ethylene;  (3)  polyhydric alcohols such as ethylene
        glycol,  sorbitol, pentaerythritol, synthetic glycerin;
        (4) synthetic perfume and flavoring materials such as
        coumarin,  methyl salicylate, saccharin, citral,
        citronellal,  synthetic geraniol, ionone, terpineol, and
        synthetic vanillin; (5) rubber processing chemicals such
        as accelerators and antioxidants, both cyclic and acyclic;
        (6) plasticizers, both cyclic and acyclic, such as esters
        of phosphoric acid, phthalic anhydride, adipic acid,
        lauric acid,  oleic acid, sebacic acid,  and stearic acid;
        (7) synthetic tanning agents such as naphthalene sulfonic
        acid condensates; (8) chemical warfare gases; and  (9)
        esters,  amines, etc.  of polyhydric alcohols and fatty and
        other acids.

The chemical products of the organic chemical industry mainly are
synthesized from only seven parent compounds--methane, ethylene,
propylene, butane/butenes, benzene, toluene, and o,p-xylenes.
These seven compounds are processed into derivatives which in
turn are marketed or used as feedstocks for the synthesis of
other derivatives.  The product line of this industry is complex,
with approximately 1,200 products produced in excess of one
thousand pounds per year and probably several thousand more pro-
duced in lesser quantities.  Because (in general) these products
are produced by one or more manufacturers by differing synthetic
routes, few plants are exactly alike,  in terms of either product
or processes used to manufacture the products.
Date:  9/25/81               II.12-2

-------
The industry is characterized by a small number of very large
plants and a large number of very small plants.  There are esti-
mated to be 195 plants in SIC code 2865 and 457 plants in SIC
code 2869 who would be primary or secondary producers.  Most of
the small plants are batch process plants that make none of the
high-volume chemicals.  Many plants or companies exhibit a pro-
nounced degree of vertical integration while others produce only
a limited number of products from one level of the chemical
product tree. One representative complex, for example, may pro-
duce a total of 45 high volume products with an additional 300
lower volume products.  In contrast,  a batch process plant may
produce a total of 1,000 different products with 70 to 100 of
these being produced on any given operating day.  Manufacturing
sites that produce large quantities of specific chemicals, how-
ever, often incorporate fewer unit processes than smaller sites
that generate a large number of products.

The plastics and synthetics fibers industry developed in the
early 1900's with the manufacture of the commercial polymers
rayon and bakelite.  These materials and the subsequent de-
velopment of other plastic and synthetic fiber products were
closely related to and an outgrowth of the development of the
organic chemicals industry.  The variety of plastic and synthetic
fiber products developed in the last decades have made the industry
the largest consumer on a volume basis of organic chemicals.

The plastics/synthetic fibers industry is described under SIC
codes 2821, 2823, and 2824.  These are characterized as:

     •  SIC 2821.  Establishments primarily engaged in manufac-
        turing synthetic resins, plastics, materials, and non-
        vulcanizable elastomers.  Important products of this
        industry include:  cellulose plastic materials; phenolic
        and other tar acid resins; urea and melamine resins;
        vinyl resins; styrene resins; alkyd resins; acrylic
        resins; polyethylene resins;  polypropylene resins; rosin
        modified resins; coumaroneindene and petroleum polymer
        resins; and miscellaneous resins including polyamide
        resins, silicones, polyisobutylenes, polyesters, poly-
        carbonate resins, acetal resins, fluorohydrocarbon resins;
        and casein plastics.

     •  SIC 2823.  Establishments primarily engaged in manufac-
        turing cellulosic fibers (including cellulose acetate and
        regenerated cellulose such as rayon by the viscose or
        cuprammonium process) in the form of monofilament, yarn,
        staple or tow suitable for further manufacturing on
        spindles, looms, knitting machines or other textile
        processing equipment.
Date:  9/25/81               II.12-3

-------
     •    SIC 2824.   Establishments primarily engaged in manufac-
          turing synthetic organic fibers,  except cellulosic
          (including those of regenerated proteins,  and of polymers
          or copolymers of such components as vinyl  chloride,
          vinylidene chloride,  linear esters, vinyl  alcohols,
          acrylonitrile,  ethylenes, amides,  and related polymeric
          materials) in the form of monofilament,  yarn,  staple or
          tow suitable for further manufacturing on  spindles and
          looms.

The plastics/synthetic fibers industry is estimated  to include
484 plants in SIC code 2821,  19 plants in SIC code 2823, and 62
plants in SIC code 2824,  representing both primary and secondary
producers.

II.12.1.2  Product-Process Descriptions [2-61, 62]

The manufacture of a chemical product consists of three steps:
(1) combination of known reactants under suitable conditions to
yield a desired product;  (2)  separation of the product from the
reaction matrix (e.g., by-products, co-products, reaction sol-
vents); and (3) final purification of the product.  In general,
chemical species do not react via a single reaction pathway; one
pathway may be greatly favored over all others, but  never to
total exclusion.  The by-products and co-products for a specific
product, however,  will depend upon the specific manufacturing
process, the raw materials, catalysts, and solvents  utilized,  as
well as any contaminants associated with these materials.  Since
there are several pathways for the manufacture of most organic
chemicals, it is necessary to describe wastewater characteristics
according to both the product and the manufacturing process.

The manufacture of organic chemicals relies upon basic unit pro-
cesses to perform the chemical transformations.  These generic
process are described in standard organic chemical and chemical
engineering texts, and include the processes:

        Condensati on
        Halogenation
        Oxidation
        Polymerization
        Hydrolysis
        Hydrogenati on
        Esterification
        Pyrolysis
        Alkylation
        Dehydrogenation
        Amination (ammonolysis)
        Nitration
        Sulfonation
        Ammoxidation
Date:  9/25/81               II.12-4

-------
        Carboxylation
        Hydrohalogenation
        Dehydration
        Dehydrohalogenation
        Oxyhalogenation
        Catalytic cracking
        Hydrodealkylation
        Phosgenation
        Extraction
        Distillation
        Others

Product-processes have been summarized for 100 organic chemical
products in Table 12-1.  The summary is organized alphabetically
according to the organic chemical product, and includes the
product, the process, the waste streams normally associated with
the product-process, and priority pollutants that might be ex-
pected.

The manufacture of plastics and synthetic fibers also relies upon
basic unit processes to perform the necessary chemical trans-
formations.  The generic processes for this industry include:

     •  Addition polymerization
             Mass
             Emulsion
             Suspension
             Solvent
             Solvent-nonsolvent
          -  Other

     •  Condensation polymerization

The product-processes for plastics and synthetic fibers have been
summarized in Table 12-2 for 21 products.  The summary is orga-
nized alphabetically according to the plastic/synthetic fibers
product, and includes data similar to those for the organic
chemicals product-processes.

II.12.2  WASTEWATER CHARACTERIZATION [2-62,64,65]

The waste streams typically associated with the product-processes
used in the manufacture of 100 organic chemicals are included in
Table 12-1.  Similar information on the waste streams for product-
processes used in the manufacture of 21 plastic/synthetic fibers
product are included in Table 12-2.  The data in Tables 12-1 and
12-2 on the "Potential Priority Pollutants" from the product-
processes do not represent the results of field measurements.
Rather the data reflect the potential for the presence of these
priority pollutants based on the reactants, solvents, and
catalysts used in the manufacturing process.
Date:  9/25/81               II.12-5

-------
The observed occurrence of priority pollutant classes for approx-
imately 150 product-process lines in the organic chemicals in-
dustry is summarized in Figure 12-1.   The data illustrate that
metals were found in essentially every waste stream,  aromatics in
over 70% of the waste streams, and so forth.

Wastewater characteristics data for the organic chemicals industry
is summarized by product and generic process in Table 12-3.   This
represents the observed occurrence of organic priority pollutant
classes where these were measured at a concentration greater than
500 ug/L.   Similar data for the plastics and synthetic fibers
industry are presented in Table 12-4, with the organic priority
pollutant classes reported where their concentration exceeds 500
yg/L.   The priority pollutants and associated class as used in
presenting these data are included in Table 12-5 with the priority
pollutants actually detected during the survey identified.
                /
II.12.3  PLANT SPECIFIC DESCRIPTIONS

Data concerning toxic pollutants within specific plants in the
organic chemical industry are not available, due to the confi-
dential nature of these facility operations.

III.12.4  POLLUTANT REMOVABILITY [2-63]

Technologies for the control of pollutant discharges in the
organic chemical industry include biological and physical-chemi-
cal processes.  Data on the removal of classical pollutants  (BOD,
COD) using biological systems most commonly used in the organic
chemical and plastics/synthetic fibers industries are presented
in Table 12-6, with data on the effluent concentration achievable
by these systems presented in Table 12-7.  These summaries were
compiled using data provided by industry responding to an EPA
data request (Section 308 of the Clean Water Act).

The removal of priority pollutants by wastewater treatment tech-
nologies used in the organics and plastics/synthetic fibers
industries are presented in Tables 12-8 through 12-14.  The data
in Table 12-8 represent a summary of the removal data for all
biological processes sampled in the industry.  The data were de-
veloped using sample specific quality assurance methods, as
discussed in Volume V, Section V.7.3, and the data are recovery-
corrected (i.e., the results presented in the table represent the
analytic results adjusted to reflect the percent recovery estimate
developed during the analytic program).

Data for the removal of priority pollutants are presented for
pure oxygen activated sludge  (Table 12-9), activated sludge
(Table 12-10), activated sludge followed by filtration (Table
12-11), aerated lagoon without settling  (Table 12-12), aerated
lagoon with settling (Table 12-13), and activated carbon  (Table
12-14).  These data also have been corrected for recovery, so
that the values reported represent the concentrations in the
waste  streams.

Date:  9/25/81               II.12-6

-------
       FIGURE 12-1.  OBSERVED OCCURRENCE OF PRIORITY POLLUTANT FACTIONS  IN
                    PRODUCT-PROCESS COMBINATIONS  IN THE ORGANIC CHEMICALS
                    INDUSTRY [2-65]
                           Organic Plants
                   Priority  Pollutants Verified in
                    Product/Process Effluents
    Metals

    Aromatics

    Phenols

    Halogenated
    Alkanes/Alkenes
    Polyaromatic
    Hydrocarbons
    Phthalates

    Miscellaneous

    Haloefhers

    Pesticides, PCB's
           Concentration   1O-1OO MO/I
           Range      lOO-)OOO^g/l
           Mg/l (ppb)      >1OOO Mg/l
                      JL
                       _L
                      1O    2O    3O   4O    5O    6O    7O   8O    9O

                          % Product/Process Effluents Containing Priority Pollutants
                                       100
Date:   9/25/81
II.12-7

-------

















1— 1
CC C\J
o ^o
U. 1
CM
Q.—
UJ
h- CO
O UJ
UJ CO
Q. CO
XUJ
UJ O
o
coo:
h-o.
Z 1
I-O
^ Z!
-JQ
-IO
OCC
0. 0.

>- ^-
I-CC
— f-
ceco
OZ3
— Q
rv 2;
Q- —

O 	 1
Z ^

0
a.

























in
E
CO
0
s_
4-1
CO

0
tn
CO


























in
tn
0
o
0
s.
Q.
|
4_)
O
~
•o
o

0.


c
o
J3 1
S- 0
CO S-
000
o c —
s- 0 JZ
•o—o

s:j: -
•P E
•O 0 S.
10 £ Q
P d-
co -O
C 0 S.
— •oo
s 	
0 S-JZ
— 0 0
JZ —
us: -
O 0
- "O 0
i 	 c
0 >>S- CO
QiJZ OJZ
a-p— -p
O 0 JZ 0
O E 0 E




1
0
is. d- tn
O"O O 10
C S- X 1 0 0
— O JZ E JJ X 0
eo — 3 0 -P O •

c 0 0 01— P 4J a 0
o-o -P c-o c +j
O X co •— Eco0co
JZC — d-O3ClS-
0)03 	 OS-CTCO-P
ET3 S- o d- 4-> C
O— OJ2-P 0100
•P CO — 1 C 'O JZ 1 O
•P-PJZJZ304-JOC
O 0 O O1O Ol > O
J3O — E S- --P O
co tn jz co co to
C 3 JZ CO 0 0
E -OS-03O0JZS-
Zi0 — QJOimoPO
--OS-JZS.-0 E
O— CO'PCO'OS-S
os->o— ao-p
1 O en S- 3
c — «-a < — 0 d- JD
OJZ 0 C 01
— O"OCO S_> . 0 -P 0 0
coCJZ ..in'Pin.p —
— 0 0 tn 0 co i co —
— O1T3 C — > 0 > CO
— O— O-P0— 0E
•PS-COJ3— -Poi-pen
wo c s. s. tn c in
— >>OC03CO— COtO
QJZ4-IO Q.>tn> —

.



C
0

CO
•o

X
O

^
UJ JD
a
>- 0
X T3 0
UJ >>C
OJZ 0
_J 0 —
4->Od-eo0
0i 	 .- i. — „.- u • JP C S- O *> —
!-oc0 co <" >> 	 OCO-P oa>a c-o
•P3TJ JZCeo POeoOC ja>>> EDO
wo — en o — • E toe 0 — J3 OO.O
00cos_— tneo^ cooto 00 -P
•O*J OJZ — +J-O— O1JZ —.0 JZWO -P>»S-
— (0 O — *> "OC0O c-P4Jens- +>— oeoo
encj-Jjz os-c — 0 0 -P a cc JOE —
— OTJ — O 0 etj Q.OO £— eo O
cs-4J C-— >jz Q.-C030 Oeocn 0CO
EOCC0— — -P04J — 0TOJ3 S--PS- JZE
3 — 0 0 10 CO -PCOO0 S-'O-.O d_cO *J3tfl
— jz in 01 to cojz0 P >>— s- o O — 3
ooo-o +JS.-D tojzoaen £00 Eoo
O0s.s-o.>, c 0c X— eo £ O O —
IOJ3-D0CO S.E0CO 0-OCOJ3CO 0>>O S- S_
C3X> — 0eoJ3 jz — -P • s-catn d-oico
0 0 XJZ 0T3>0— +JC030XZ 4->E C>
	 COj QS-XO- •PJS — CO— IO-O E —
•PS-Ed-00 O-PCOC-P E0 CE UJ S-C C0>"0
coco OJZ-P 0eoEcoC O0«co -J s-0co 0OC
— > JZ to s- — .p 0 s-to0oitoO 0Q. s-eco
— O>>'>co|S_3(nd-jJS-0Q: jpa- 4J0
— d 	 s-tn> — 0TJJ30 CeoO3 O eo — rs eos.-c'
•POJZ04J O^P — S- 4- .— 4J "O < >i 	 1 —
tn >>co ccood-Q.0eo0s 	 0-PO 0s-o
••in oco-P co^coo  JZ — tn > o — —
coin— 00 co-POO-P>> jJ +o jps.
CCCS.ES- 0>0coen en XJZ -omd- 00o000co
— OcoOO-P JZ OS 	 COBSPCX 0 JZd-O3 JZJZO4J
U- o old- coin i— co co *— co 3€=0co — ce h-Oeo"O h-4Jco<-^

• • • • •
CM CM — — CM
0 -P d-
C 0 C O
0 CO 30
— JZ TJ — C.
•P 4-> O -P O
XUJ S- CO
— a^o P
eo d- X— CO
•P O 00 X "0
CO O —
O C eo X
O X O
X— in J3
J3 -P CO 1) X0
eo c c a .a -a
0 C CD — 0 — X
T30 "O0— OT3JZ
Xoi X— X ^*—0
JZ O JZ O O. OT3
05- 0S-O O^-"
•o *o "o o i- — co
— X — 
-------

^^
C)
Ul
Z>
•z.
—
\-
•z
ceo
00
u. ^

a
UJ .
1- W
O Ul
UICO
a. co
XUI
Ul O
o
cocc
l-a.
•z i
t-o
=>C)
-IQ
-JO
oce
a. a.

>- >-
h-ce
— - i—
ce co
or>
— Q
cez
Q. —
Q_J
3E ^
>
CO

CD

CO
CO



























w
w
CO
o


a.
i
4J
U
3
T3
o

a.















E
3
. —
E
O
L.
j**
0





01 1 O
c . 	
— O CO W i. C
> — CO E 3 O
£- c -p eo a—
co c o ran co a.
CO 	 P C !- i- O
co a. co co -P CD s-
t- *j o o co JC a
o c s- co co u
•POO. 'O *- *- "O
CO 0 -v— CD 3 C
L. «+» O -P <*- to
CO >>"O C CO CO
D. CO — CD jt CD "U
CO E 0 01-0 CO JC —
W CO CO C -P -P O
C CO CO CO
CO E O CO CO C
jc 3— a •>>— o
.p — £ O w —

eOO-POCDCDCD
E*- O JC JC 4J O
CO CO O -P CO CO
CH a «N oo <-
OT3 CO — CO  N 0 CO — CD —
coco— «ccja-p •
•P -PT3 O CO CO "O
COCDCO— *JO»>O —
COJCOOCD'-CO— O
^4JCOCO-2£OS^-CO

.


CD

CO
J^
O. CO
1 C
7 40
— 4J
3 3
a- co
— 1
-1 C

^c>_
JQ O

T3 C
— o
o —

CO
OT3
..~ .^
4J X
oo
u








73 T3
CO CO

t>- c>.
._ ..
•p -p
c c
CD CD
•O T3


CO CO
C C
O O
Z Z



1
w o o w
. .— 1 — JC 1 CD
OT3wo co-pac>
•P CDOCDJC JJCOW O 1 •— 4*
>> Ol — -P O ICOOO OS--POCD
nn i- • -P >a s->T3CO-
•o+jjcoococo uj > •, a ci_ — o -P co
COCOO-PCOO 1— O • — '13 TJ 4-> O S- i- CD O
tojj'-iocoeo-a < co— c coco tut —
COC— t-CC J i-*JOCO >WO — C
3 O "O CO — CO CO ^ COCOCO COCO CD'DCO
•P T3 — a CO 3 X J3I/3-, 4JOT3JCOI
COO-PWCO-PO" H J3CCJW W CO — 4-> d- £-
JC S- CO — <0 C — <0 X 3 CO — O • CO t- O OO
4J D.— OS-T3 1- 5-T3+J— CO>4JCOft-
>> ^TS T3OCO— bJ OCCOCCD IO-P>>
f-jac 	 >o. ce wooto-p CTJO co>
CO OO3— COCO UJ ^OCOOICO EC— E— CO
> (D J3 CO CT— T34J 1— •- S-jCScoi-OWCD
ojcs- 	 c-o co-pcoa— O-PCJC
•PCOCJ— >COC03 Z _J J3C13— CO OT3JC 4JO
s- o — -v. !_-o— > s_— j co i- o u — aoo'-
COC+-4J'Ot-*CDOCC X O-PCOJC OCOj^CO
•POT3— jCt-'UI H WECJCQ. O1COO — JC
COCO3JP04->aO UJ J3CCO-P C JC CO— -P
5 QJ ro co CT co c d) ^s ^" Z co Q) O O ^3 *~ O CL J3 *^ O
E — > CO ja -1 — -P C< 	 4J4J
WOW 	 COJZ- O Q CO to — « CO a>4->"O COT3
ww— COJJ-PCOW c— CD -PCOCEC
CO WCCDWCDCOco O O 0 c_ — 73 73 COOCO O X CO
O-P>>OJCCOE"O W -P 4->O> 	 >CO '-'-
X S- 	 +J $ >>T3 CO^ — • S-O CD CO Ct-CUCO
co co o w «jc 0 i- (- ^ s- -o co n w o >c
>! 	 EWTJCOeCD CD "OCO^ C— COO —
>>Cm3O 	 •D'- *- <>- 0)CD4->JCO CO— C t-CJW
C O >>T3 S- JC O — O CO CO JCCOCOC— JCCOCO COCDCD
>>> CD

— CD O 	 3CO CD
>>i- s-xo-o-o-o *:
CO. Q.OJCO 	 E
01 i a o i- o co oco
J3JC OXOQ-<-P S-JC
C.Q) OUJ — ICO U1C>_4J
co— < O O O Q
ox ca>> o — < — co >>
^-— jo — — ce -o xs
>> (/) W >. W CO <<- O —
JO— W COC— COJCO >"£-T3
O CD 	 JJ X T3 —
T3 C 0 T3S-< T3JZC Z >> O
— co o — co — a o < jc <
OJ=«- OO>O-< 4J<>-— WVX O-POS-
COOCQ a>O4-> CDOO 
-------




^^
o
LJ
13
Z

H
Z
ceo
00


Q
LJ •
H W
CJ LJ
LJ V>
Q.V)
XLJ
LJO
O
wee
HO.
Z 1
HO
"*^ ^
	 ) Q
OOS
Q- Q.

>- >-
HOt
— H
c£ C/3
OO
— Q
cez
Q. —

Q-l
Z<
<0

E
CD
i
w

CD
p
to
CO
^


























to
to
CO
o
E
CL
1
p
c
•£
o
&_
CL



















CD
c
CD
N
C
CD
CO





,
1 —
E to
O CD
s- o s-
CD CD
P -O -P
CO to
jf * X
CD TJ —
P — CO
CO o P
CO CO CO
2 O
O
c — -o
E P C
3 CD CO
— O
o co in
0 P
to o
Ol C 3
c — -o
— CO O
S- P £-
CD c a
P 0
CO O C
> 0
CD E —
"O CO P •
CD— in
0! S- 10 CD
JC P O 3
H w a -a

.







CO
SI
•ptt-
0

JD a>
c
CD —
•0 JC
— o
i- WO
•OS 	
>>o o
£ <
c —
< CO O
O t- -P

PC U
CDH<
o


































CD
c
!_ CO
CD N
P C
CO CO
3c «Q •
CD to
PCl- P
to o O
CO 3
S to-o
CO O
!. 0 S-
CD co a
JO <-
.a P c
3 O
i- 10 —
O C P

co to
CD P O
c c a
CD 0 E
N O 0
C O
CD E CO
-D (0 T3
CD
(D S-TJ
.c P c
H to co

.
CM



























































1
C
O 1
0 O
i-
E a
CD
CD C
I- O
P —
to P
•—
i. 10
CD O
P a
co E
S o
CD O
P CD
IflTJ
CO

C
— CD
— N
CD C
> CD
PU
O
£ to to
C t *
CO — O
-C CO 3
H P-O

.
to



























CD
O

C
^
I.
0)
>
i_
»".
to

*
o
c
•—
N

*
S,
CD
a
a
o
0




^
C 0) 1
U) C P
P CO O CO
O CD — P O
3 C d- CO
•O CD • OT3
O P CO CD CO C
S- 0) O C CD

— C — -
CD "O CO E O to
C O) O C O
P > E t- 01
to > co a *-
E — ca CD O O
O (0 CD P to
P C C 10—5-
•P O CD
O O «- CO CJ=
^3 CD Ol— P •
— £ 4- CO O tO
CD — P 3 P CD
£ — o a c * 3
p p O-OTD

EC CO O to
o >>co P >>co CD
l_ t- CB OS S-
*- CD to > E O
> C CD — P
<0 O — p E P to
S- O to 10 3 CD >>
CO CD CD CO «- O —
H i- <- 513 CO CO

. .
*



c
o
.—
p
CD
C
CD
Ol
o
s_
•o —

c. c
CD CO
Q Q
o

LJ .a a
z o
O CD «
H C —
LJ O
O PC).
< CD O
O
it





























CD
P
1
E O
O  o
13
to— c
E 0 co
o c
P CO —
p ao
o o c
.a «- co
a. a.
CD 0 0
c. to «-
i 	 a

.
cv











































































«
_j
O
z
LJ
X
a.

O
P

L.
CD
(4-
CD
ce





c
o

p
CO
•o

'x
0

CD
C
0)
E CD
3 Ol
O CO
>>CO
A CD

COO
C
o-a
P C
CD CD
o










.
•a
a)

Cg_
•«
p
C
CO
•a


CO
c
o



t
I
o
t
o
CO <0
c —
o
P It-
CD o
o
CO C
0
Ct- —
O P
CO
c c
O CO
— Ol
P O
O S-
3-0
•0 X
O.C
i. a.
a-a

CD o
.c —
p -P
^
o —
P CD
4J •
i- CO —
CD O O
*- C
CD >>CO
0:12 a



i
CO
^2
—
>O
O jQ C
3 CO
•o CD a
OTJ O

ax a
>>o o
CO 5- 10
CD —
coo.
CO C O
CO CD
OlC

o-a *»
P >>CD
CDX-O
o












.
•Q
0)
p
o
CO
p
CD
•a

CD
c
o
z




E
ca -
CD-O

P O Cl-
10 CO O

•a y to
(D— CD
CD C —
— O 0

i- p
t- CO «-
CD O CO
p a
CO »
Ol CD CD
c —

— jj in
O CD O
o o —
O CO C
CD
to c o
to— s.
0 CO O
O P
O C CD
S- 0-
Q.O.O •
3 P
CD >>— 0
C CO O O
H E to u)

.
~


1
CO
•a

XU.
OCO
^
— CO
CO ~-
"«
P CD
t- C
CO CO
O..C
p
u i?s
z ^>
LJ CO - CO CD
H— C O
LJ >>O O
O P— !-
< co -PO.
o
if\
Date:  9/25/81
11.12-10

-------


«^h
o
Ul
Z

K
Z
ceo
oo


o
u .
1- 00
OLU
LJ CO
Q. W
XUI
LJO
o
wee
H-o.
Z 1
HO
3 Z>
1 Q
-JO
oce
0.0.

>. ^.
(-CC
— 1-
ce w
0 =
— Q
CCZ
o —

O -J
z<
<0
g S

— 4J
S- C
0. TO
— 3
TO —

•P O
CO.
CB
JJJ
O
0.
























Ul
E
CO
2!
4J
W

CD
•P
U)
co






















10
in
CD
U


0.
1

c
3
•o
E
CL

























in
L. 4J
CD 1 C
•P S- 3
— CO O
— as >-o
TO 0 <~ 0
U TO *-
CD > a
CB C >>
.c-.cn

— c .
E m > o-o
o c n CD
! 	 -D S- 4J
Cl- TO CB TO TO
•P X O S-
£ C— ,
4J CO — S 	
in u CD —
TO 0> U> 4-> TO
>T3 CD TO !-
- > CD
CD-0 O C
C C — V CD
(— TO 4J O Ol

B
CM

















































4J
C
CD 1 Ul 1
> >>3 C
— -P O CD
O CB— 01
in o £-
TO TO in
Q) •— « ^ *—
f ^5
•P "O E
i<- c co
E O TO CD
0 «-
S- Ul «4J
d- 4J W M
in CB
•0— C CB
CD >n-o
TO O 4-> 13t CD
£ CD +J
o E o  S-H C
CO 01 .C O
•0 01 • C
c 01— in —
CD ex: t.
— CD ^>
>> C ^ E —
> TO CD >J —
TO CB C— TO
CD— CB O s-
x o— acD

,
CO






























•o
CD

>
e TO ran
O -P
s- c «o
C>- O CD —
o c c
t- — TO

4J C 0.1-
CO TO I/I O
? -P 0
CB C-O
•p oiac
t/1 C TO
TO— - 0 -

+j jj m CB
C CB O-O
CO W O —
4J TO<1-
TO ><--
C S- 4J 3
S. !- VI
CD 3-0
a— c CD
3 W TO— •
ui i n ui
CD CD 3 -P
CD E E— O
£ 	 O 3
1 	 wo

B



JJ
CD
£ ^C
3 —
0 «-
— CD
TO -P
O TO

B
o-o
1- C
it. a

CD CD «
C ^ ui
CD— CB
-no
>>s- 0
4J TO *-
CDOO.
u





























CD
c


E
0

c*_

T3
CD
Ol

TO
O
U! •
— Ul
T3 Ul
CB
01 O
— o
t.
S- CL
0)
-P 0)
CDT3

Q) jO
43 t.
CO <0
CD O
^t
>j
O ^
Z ^






.^*
£ tA
3 Ul
._ CD
0 0
i;e
OO.

E >>
O s-
^ Q
^ ^_,

CQ CB
c-o
CD —
— n
X L.
JJ TO
CBO
O














































.
LJ
Z
LJ
I
>.
X
LJ

0


£_
(U
d-
gj
cc



It-
o
4J
U
3 CD
•0 «-
23
O.O
>>TO
to<>-
3
TO C
TO
mz:
TO
0)
CD C
C CD
>«
E£ C
0).-.
V--O *-
CD — _
Ul -P
- r*
t. CD Ol
CD C —
•POO)
TO -P > •
S CD 1 Ul
O «- CD
CD TO 01 3
r* n "O
•P « Ol—
c "• in
E — C. CD
O CD '-
! 	 *.
tk- O O -P
S- Ul
s- o ui >>
CD TO CB —
•P O TO
TO C TO 4J
>— «- TO
CD TO -P O
•P 4J
Ul CT3-O
TO O C C
3: O TO TO

,



V
o

c
o
TO
•o
• ^
X
o

X CD
zn c
— CD
LJ C —
-J— >>
O CD a.
ce— o
O 0 s-
< s- a.
O
\o

























.
Ul
i.
-CD

TO O —
£ CDJC O
u on
— TO O
— ! 	 £
— 4J TO Ol

wo — r:
c >>
c TO a.<-
O CD
CD ui 1- £
— C 0.4J
O— O
i- Ct. ^
o <*- c-o
TO TO— C
L. CD TO
>o-o
e > TO >>
O TO £
S- CD 4- CB
CH £ o T?
—
U> C Ul TO
e— P-
O TO C >>
4J 4J 3 Q.
4J C 0 O
O O E i-
aa o TO a

.
CM























Date:  9/25/81
11.12-11

-------



•«•
Q
LJ
^
Z

h-
z
0:0
oo


Q
UJ •
I- CO
OLU
LU W
o. co
XLJ
LUO
o
co o:
1-0.
Z 1
I-O
**"^ ^
-JQ
-JO
OK
Q. O_

^- V"
KQ:
— i-
ccco
O 3)
— O
>
0 CO CO &
C CU
•P S- O S-
.- 0
d- C P.C
O— CU P
CO O O
0 -P CO
(0 C -O
CO O -C
JD O-D co

0 >> O ,o
d- a i- —
— o c
S- C- CO CO
0 -P Ol
p  0 C
0 p 0 5-
•P CO > 0
10 C — JZ
CO— O -P
U d- CO O
1


^^
0 C
c —
0 0

^ o
D.S-
£ °
CL
CO

r> n ^
— 1_«
o-o
<— c
O 0
o< —
— 4*^
— 1 O CO
>•- n
ry — —
o >x

o





























t>- 1 1
OP— O
C CO •>«-
t- 0 3"O Q.
CU > T3 — >>
CO 	 O ^3
C O CO CO
CU CO 0 S-
TD i- 0 0
C 0 — £
ox: c P -P
O p— 0 O
5- CO O
0 p +J CO-D
4J CO C C
C|- O •> CO
CO <- OT3
o — -
0 4J >>O CO
.C O CO CO "D
4J 0 E —
~5 00
E 0 c— co
2P3>0
C(- 0 — ! 	
— JO O C
£- O co co
0 E O)
•p co X -s-
CO 0 <- W O
> P 0 C
0 co > 0 t- ta
•P O > 0 -P
10 CD O — -C O
co ^: 0 o P 3
^ 4J S- CO O T3

CM



















































,
CO CO
T3 P
Ci- C O
O0 3
1 OT3
5_ ±> — o
0 .c— s.
w oi>i a
c— <~ >>
0 — O J3
•o co
C 0 S-
O^—0
O -P co£
«- 3 -P
Q> P "D O
4J CO —
Cl- CO 13
CO t- 0 C
0 <- CO
0 -P
.C O C -
•P 0 — "D
•—> co —
E 0 -P o
0 C CO
S- -P O
j 4J
0 E co 0
P co E O
CO 0 CO
> P C
0 
C 5- i-
0 ao
T3 CO
C 0
O.C —
OPJO
0 p -a
4J CO —
C,. CO
CO <- 0
0 «-
0 p
C. 0 C
•p 0 —
~5 CO
E 0 -P
o c
S- 4J O
C,. 0 0

I. ^)
0 E co
•P CD E
CO 0
^ 4J C
0 to E •
•P 313
UJ (1) 	
CO .C O O
3: -P 0 co
,
3-























































0
x: — -a
P CO C
3 CO

CO (0
005-
CO i- 0
co E
•a c >,
0 CO O
.c P a
P C
0 0 •
E 0— co
O — 0

ct. co s- C
E O co
0 CO C71
3 C 5-
•0 E .0
— 3-D
CO 	 >,
0 0 0 >
5- O CO CO
0
O -P O.C
— 0 —
C 3— !-
CO "D >s 0

S- 5- O P
O a. co o
.
in



































S-
0
a
a
o
0

•,
^
0
y
o
•—
z


^
._
0 —
d- co 0
OP 1 X.
c o *- o
!_ (]j._ O —
0 >— C
«->>!-
C O !- CBCj-
0 CO O.C O
•O co -P
C 0 O CO
O-C - 0
O -P CO ^O
t- +J 0 CO
0 4J C-O 5-
+J CO 0 >>4J

CO ! 	 0T3
o O-D c
0 4J CO — CO
£ O CO
4J 0 C -P -K
—5— 0 CO
£ 01 CD G P
O -P CO O
i- P C 3
Q- 0 O *T3

C • — 5-
0 E >>o a •
•P CO CO CO >» —
co 0 E J3 >>
> P O C
0 co — — O O
•P — 4J — JO
I/I 0 — 0 C S-
CO.C -P O CO CO
3 4J f co en o
B

0
c
e>
—
^
+J
0
o
<
6 *••
O (A
i. CO
V 0
o
•o o
— c.
00.

0
o a.
— a.
— 0

t- -_
o


























TJ
._- _
0 O >>
d- CO — 1 C
O -P >»O
o cu.a.a
s-.- 0 s.
0 4J CO O CO
CO 0 — O
CO «C
0 CO ~O CO —
•a — 010
C 0 O i-^
OJ= CO O O
0 -P
5- 0 5- C
0 4J— 0
4J CO — £ d-
4- >5-P 0
CO 5- 5_ O
O O co
CD U CO -.0
£. O 0O
•P 0 C-O CO
~3— >> «-
E >0 «
•P CO CO O CO
co a) e co p
> 4J 0
0 CO — - 3
•p — T> "a
CO 0 • 	 O
CO.C -P O S-
3: 4J co co a.
.
CM

























Date:  9/25/81
11.12-12

-------

*-^
Q
LJ
3
Z
f—
Z
OiO
oo

o
LJ .
t- W
ou
UJ W
Q-CO
XU
LJO
o
wee
HO.
Z 1
HO
33
I Q
-10

CL d.
i-a:
or w
03
— O
OZZ
0 	
Q-J
z<
0 C
4) E >>d-
•P (0 co O
co 0) E
> -P to
03 W — (D
4J — O
w a>— co
C0£ -P S-
3C 4J tO 4J

,
ro









































•P
O
3
o o w^X
Q.— CD CO
>>E CD
£ O —
•P CO O <-
a 03
d- — .C
O CO --P
3 « O
e-o «-
0— CDT3
•P V) E C
4J CD— CO
O '-'O
n t,
C -.M
QJ — (0 CD
£ CO S- 3
** c°2
e o— w
o o A ep
d- >>£
CO C W CO
dJ E — to o
3 X*—
-D— -— C
— — "D CO CO
U) 	 4J 0>
0> J-> O CO *-
a: ui (o o o

,
*





















,
•o
0)

d-
'^
C
0)

.—

a>

o
z



,
— 03 U)
o o i PC'
d- ! 	 £ 40 d- CO — <0
O t. O— O £ •> O40— (0 S.
^O ^> O w o>« O ^ 4J CD
tocox: a)4J«o- — c to — o toow o —
CCD40 01 W 10 03 O TO C 03 >>— C I- O
•a E • .aeoocD 4ocos- -0400(0 -o >> —
CO) W O E J=O C CO Ol C 03 £ — "D
O£ «O «- tO 5i d- 4J 040 t- Q.C40 4J C
O40 	 0—40— OCDi- O (0 — O O40CD > <- E
CD40CCO O3COQ. CD £ 03 1-.C .p 03 4J JJ 03
•PlO(OO> COT! W CO — 40 40O40£ 4-> CO — O4O
d- CO 3 TO
COt-40O S-IOEC ^3 COOE— eoS-3 T3 —
OCB 4)3(0 TJ"O CD— OT3 O >>
0)40Et- 0)' 	 CD— C 4) — 5 «J 4)40— £.<-
f* y 4) r" T3«^ £(0(0 £4)Ct. J»Q(0 CLO
•PO)C£ 40COOIO 4J 03 40 — CD 4J 03 03 CO
~5— 40 CtO-O t- • 40(0£ — J «- ,
d-4)OC d-C— d 	 d-EO-O d-CD— S4O
— 5O(0 OO«- (0>> (0 C —5(0 OCB
t_ i- O TO 03 i-40(. S- CO — CO <- 40 !- E
to e >> - 4) — 03 C O 4)40— 01 E C d~
40(0(04) 405-O> 40QCO 40(0- 	 -P CO O —
(SCDE40 (04)— CO (OO (0 40Q COCDO Olco
>40 a > Q.S- 03 > — > 03 M C > 40 23
4) (0 — — 4>O.3£ 4) — >> 01 £ (0 4)10— TS^a
10 4) — i. (O i- — "a 10 — 40 to T3 -P W 03 — t/110
(O.C40U C0403C CO -P 03 TO d- C 03 (0£4O 01 03
3:4O(Oeo 3:totO(o jC> 4O 40
£ CO —
40 O >
4)
Date:  9/25/81
11.12-13

-------


_-
O.
UJ
^
Z
—
H
Z
§8


Q
UJ .
1- W
OUI
UJOT
CLOT
ujW
O
wo;
KQ-
Z 1
KO
3=)
-JO
-JO
occ
Q-Q-

^ s-
KQ:
new
O 3
— Q
cez
CL ™~
O _-*
21 - 	
OCUI — C 	 X — > O
< O — P XP CO t- £
— £ XcofPCQ££ Q)^ O
— P4JPOP3OP— P— O
X TO — 3 	 A 	 X 10 O —
PIMP
Ul C — Ul
















-••
0)
JC
u
z



*
<- CO
COT}
P •—
TO <-
> ov
CB— O
P£
to o  E O

OTJ P
P O
O WO
CO C
0) OICO
•— ^
— C 0)
X— P
c CO-
OP t- •
n c o —
<0 O£ C
0 00
XOA
- J_ Q.1-
5a^S
0-
B — JC
co ~a o
£. at o —
1 	 10 C

.
-_


^^
1 
CO IA
O CO
< 0
EOS
O CO.
I- CO
<+• JZ CB
p a

PSE CO
co ae
— -o
xe-o

o —
< 0)4-
c —
— eo-o
X— O
£ XZ
CB *~"
TL























,
CB
— P£ 1 t. |
1 O W CO pffiti. W 1 C
— C CO <0 « ££ OP OO C —
TO CO > IA . Olp U L. 3
£ <0*OIA i-—O 1-3 !- C O. t-T3
COP «-U C CO CO— COX) 0)3 CO C
£0)£OC03 (A -O IOOCO (A(-0> t- CO
PE P 10 -O C CO C C 1- P CCOP
P— co£co co a « coi-co co«
Cy— i-PJZW -OP TS — t3 — £10
O co OCOICD C — C CO X C CO X P <-
3 C0'~^ OPO O£»- O£l- CO
E "a E a— o co c OPO OPO <«- P
o— o w P t-co <-co (-co o
PCAPCBIO Q>!-£ COP CO P «
PCD PIOPX POP P co— Pa— EM
O *- OCCO—  £ 	 CO COOS a>l-3 COt-3 PCD
M CO XP CO OX3 OX) PE
eoc co P 4- to • «~j«i COP— COP— ox
£— JZ C O O « £COC £OlA £OIA JD —
PCOPOCO<-P— pcoco Pcod) o
P O - TO PCS •ll- ~5 >- CO&
EC E C— P E tt P ECO ECO £
OO O 1- — X O — ) C o IA O  PIA— c P co o • P to O O •
COM COIAX ^ CO PCD COCOOP COCOO COO<-
> > CO— CB > CD IA 1 > P O >P 3 O
CO— 0) t- e CO E CD£ P CD <0 — 3 CD CA— . T3 — P
PO PCB -XX PPC»£ p — 13 P — p — — —
(Of IAP~ao— "> 'Dai  — A
TOO to TO C — O nVC—  TO c a 3: o co— jc P w a JEPIO-O oe • • • • •
CM <»> a- m 
-------



<«.
Q
LJ
3
Z

1-
Z
ceo
oo


0
LJ •
HCO
OLJ
LJ W
0. W
XLJ
LJ O
0
coce
H-Q.
Z 1
HO

-JQ
-JO
oce
a. a.

>- >•
h~ ce
— t-
ce co
O=5
— Q
cez
Q 	
Q-l
Z<
<0

2 s
LJX
ceo
COO
LJZ
H ^
coo
so
1
CM
LJ
3
























X
p
i.
O CO
— P
t- c
Q- CO

— 3
CO —
... «
P O
CO.
CO
4J
0
a.























CO
E
CD
CO
£-
P
CO
CO
p
CO
CO
3:















CO
CO
CO
U
O

a.
i
P
O
3
•Q
O
1_
Q.










•o
CO

tt-
•—
4J
c
CO
T3


CD
C
o
Z







1
t- c
O 0
i- P O
CO U CO
10 CO XE
C~3CO O
CO CO E CO
•o
c p — -a
O CO— C
i- "'p
CO E <0 CO
P CO T3

CD P"O X
CO— O
C X
CD co o co
£ C
E P CO CO
o c —
!-ft- CO X
ft- O — P
Xco
<- E£
CO CD P 0)
P CO CO E
(0 t- 0
jC P CO CO
CO C0£
•P C P C
CO 3: —
CD O P eo
Jt13 CO P

—

o
X-
.a —

CO C-
P O
CD <
s»ft-
*- o
U
< c
0

X P
£ co
•p —
CO X
XX
X OT3
O£ —
I- P O
T3LJ<

X











































.
CO
+J
CO
B
o
CD

—
X
1
O
1
























































co
E
*- O
5- O CO
CO P
CO O C
C CO-
CO— 3 CO
•o co P
c c
O P O
O CO O
*-••}
CO X
P E co
 p o x
CO C0£ O
CO > "O
co o P X

(M





















































4J
0 1
3 X 1
*O ^ 7 Q)
o c i-
« 	 CO C
acD 3
3 -
co-o <- co
£- 0 E
4J CO 4J O
CO— CO
ft- L.JQ
o — c

E co c co
0 «--P
P CO C
P E .O
O XCO O •
J3 — -P W
O W X—
co a— CD o
£ XE <0
W CO S-
c o-a o
E — co C —
BCD CO —
P- X
O£ P O
CO U P CO CD
3 CO X
T5— X— TJ
	 X CD CO
« — p p p
CO P t- co O
ce. co-o u CD


































•
•a
CO

Q-
—
p
c
CO
•a


CO
c
o
Z








c_
!. O
CO P E
CO O C 3
c a> 	
co— sco -a
"O O ^ Q)
c c s
O P O
U CO O O)
*- *~3 C
CO X*~
P E co X
ft- CO E 3
CO 0) —
p — ft.
CO CO — CD
_c *— s*
POP
£ CO CD
E P £
O *-•!->
t-c_ o

o c
*— E CD eo
CO ID CO
P CO t- CO
eo «- C
> P CO CO
CO <0£ —
p c P X
CO > £
CO O P-P
SV CD CO

—

c
o
— o
p —
._ __

_
< o
^J
A O
p
CO
P O
CO C
— CO
^} —
(_ ^
O £
< p
LJ-D
«^ *•
Xft- O
£ 0<
p
LJ



























1 CO
C -P
> CO CD
0£-
X5P X
(_
«- P O
(0 co co
10
C i 	
CD O X
•0*»£
COP
O O CO
O~5
*- CO C
0) —
p p co
ft- CO P
tO~3C
o
CO E U
£ (0
POX
P eo
E co E
o
t- 0-
ft- £ —
p —
t- p
CO ft- CO
P O
CD P
> 6 0
CO CO 3
•P O"O
co s- o
CD P <-
3e co a

CM




















































O 1

4J— fl)

ft-£ O)
O -P —

E
O— 13
P CO C
P 3 03
OT3 -
£•— CO
co CO
O CO C
£1-0

U)TJ
E C
o— »
{. CD <-
ft- P 0
C P •
E O— W)
CD O.Q (-
t- — f C
p— c X
U) 	
P O
co co .a
P 0
(A 4-> P Ol
CD O CO C
^-D X-
£ 1- 0 O
1- a ton

CO

































•o
0

ft.
•—
p
c
0
•o


0
c
o
Z




cn<-
C CO «- CO
— P O C
CO C P O
10 co O N
co o CD c
o o o o

ao co —
£P (8
<- P CD 3
CO — 13
ac (- co
	 O «
^ > to *-
P co X
CO O— C
— o —
co aco
£ E P
P CD O C
C0£ O
E «-P 0
O P

ft- O CD
co E
(- 3 E
CO O CD !-
P CO O O
CD 3 5- (0
3= C7P C
O CD CO O
P CIS
CO O > C
eo£ O O
3. PTJ 0

—
s
e_
"-£>
CO P
.P CO
tOZ

Xc
O co CO
CO P
O CO CD
C-D P
co XCO
X£ 0
O O CD
1 T5 O
c\i — C
eo CD
-EX
^> L ^J
£ 0 1
PLL.OJ
o
r




























(_
CO O
Pt3£
CD CO P
— NO

&- (v ^
U O C
eo E CD
^^ ?*
	 to
001-
aao
o — co
£ CD O
P 3
•o co •
E— P-~
O «> CD 10
i, fl) — f-
ft- s- Xco
<- p
E co O *— •
CO C CD
O— O CO
I- CD C U
P P CO-
CO c xc
O O co
co u i en
P CM «-
CO t- O
CO O —
0£ >
O eo P eo
£ CO O O
1- t- E£

CM'





















































1
CO CO
N 1 «-
— XO
«-— P
CO O CO
E aco •
X —
	 O CO
O CO P i-
a.3 to to
ffl-O— +J
•0— X«--
CO 1-
o CD o to
£ <- co O
P O —
CO C C
C- C CD CO
0— X0>
ft- CD O t-
P 1 O
E CM
CD O X
CO O— >
«- Xco
P C~£ O
co o P£
P O
O O E t-
P to CO
CO VO£
CO *- <)> 4J
> NO
d) O t-T3
£— O C
I- w E co

CO
























Date:  9/25/81
11.12-15

-------








•—»
0
Ul
3
^E
H
Z
C£O
00


Q
LL! •
HOT
oui
UJCO
O.CO
XUI
uio
o
wo:
L_ Q_
p— u_
Z 1
HO
-JO
-IO
ooc
0.0.

^. ^
HO:

CCCO

— O
OiZ
Q.—

0-1
z<
<0

ss
 fl) t_ {g
-J X
t- CO
CD E O 1
P co— CM
CO CD P
S -P CO —
CD to N X
P — £
10 CD C- P
co.CZ CD CD
2 P E E

B
•*




























































,
CD

CO

X
C
o
n
O
c
co

(j
CM

^
£

CD
y

O
P

t_
CD

CC







E E
E- 8-
u. X u. X

CD P CD —
P Ul P ^
co co
— •a —-a
S- co CD 1- eo CD
O P O P
CO CD CO CO CD CO
OT3 P OTJ *>
c XCD c XCD
co£ O co£ O
XCD CO XCD CO
OTJ OOT3 0
1 - C 1 - C
CM CO CO CM CO CO
EX EX
_ l-O- l-O
XO 1 XO 1
£U-CM JCU. CM
UJ <















._
e
o
i.
£
o
^
CM
CD
a
a
o
0







CD


o


$.
CO
CD
a
a.
CO

to
E
CO

P

L.
CD
jj
CO •

CD CD
P P
CO CO
CO <-
> CD
c
0 CD
Z 01



1
CO

•o
X
X
0 CD

P —
X ^~
— P
CO —
P C
co O
o —
X *•
a o
<
CD

— o
E
CO C
— o
i_ 4J
<






















L.
Q)
a
a
o
o



to
X P
— o
— 3
co o-o
E— O •
<-!.(. CO
o P as
c— Xce

CD t-
S- V O P
co O— to
c
« Xeo «-
E <- Old)
co 0) !- P
CD > O CO
^ 0 )
P O-O CD
to a> c -P
t. CO 10
CD CO
P P ->
to 3 -P
ran to a)
> XP
»— eo
to-O co (-
tO CD P CD
CD W CO C
O t- O CD
O eo Ol
!-£ »
awo —
at 	
o— o —
z-o co >





CD
c>- C
0 0
c
C CO 1
0X0

P.C U
co O X

I Is
x^2
OJ3 OO
— c —
OTJ (0
< — X to -~
O CD CD —
O<£ t- 0
— O 3 C
0- O— P co
	 O X X
^ '~ O 3£ £
.5
03









































•
Ul
z
o

_J
o
z

Ul
o
_J
o

o

o


c.
a)
6-
0)






4- 1
0 X
CD
C£ X
O O —
	 Z
P 0
co XCD
•oo c
X a C
O— CO
> X
X CD
JO CD £
C O

•— X O
O CD X
^ £ O
O ^*
O 	
— o o
axe
— O CO
5










































.
Ul
z
o

	 f
o
z
X
Ul
X
o

o

o

o
P

(_
CD
V







fc.
o
c
o

P
CO
•o
X
o
X-
a o
c

•w X
O CD
^ £
O
O —
Q> X
•— O
5

O
c
*•-
N
,
t.
CD
a
a
o
u

aT
•a
••*
c
w
X
U

CD*
C
CD
N
C
&


























•
•a
CD
P
L.
O
a.



4J
o




CD
C C
CD O

•o *>
CO CO
P C
3 CO
m x
O
0)
P C
co
uj.0 c
1 Q
M> (D —
£C— -P
(-— CO
— «. c to
z *>— to
O— I- CD
a. c o o
-o-o
O CL£ *-
^f .— fj fl
<
OS

C
CD
3
O
P

«*
0
c
•_
N
,
CD
•o

C
CO
X
o
^
— •
CD
j£
o
z




•t
to P
•— to
X
E P -
co to co
CD XCD-O -P
I 	 O CD co
•P co co P O
to -p t- o *
CO -P CO CDT3
CD O CDT3 CD
*i C t- — *J
to p — c C co
co c co 3 eo >
> CD P X—
ac -OP
<- to OZ O
CD oca c co
P<4- £ £
a— 3 co 3
CD e — OP — xj
£ oz e 3 o c
I- o — >p
•P O 3
— oca
c c<- i
ax"

i1"































X
—
c -
— z
mm
g y

COCi-
— O

E CO
CO CD •
CD U P
<- co to
p s- X
10 4J —
eo
0>£ P
P *» CO
to— o
CO >
> CD
->
t- jj —
CD to p
P XO
	 co
— eo
ft- PT)
CO C
Z O CO
CO
2 P •>
cz
ma>a-
£ a i
1- 10 eo

.
CM

























Date:  9/25/81
11.12-16

-------

~^
o
LJ
3
Z
—
1-
Z
ceo
oo


o
LJ .
1- W
OUI
Q. C/J
X 'jJ
LJO
O
wo:
HO.
Z 1
t-o

-JQ
-10
OK
O.O.
S..J.
t-ce
— h-
cew

— Q
cez
Q 	
O-J
Z<

p
o
Q.























in
E
CO
S!
4J
W


CBXI
a— •o
IA C C
co co
c >>
— OP
CO IA
p «x
C (U ^~
OXI CO
O— P
s- a
>>o o
to —
E£ 0)

0) O P
•P C O
	 CD
— N
Q- -in
Z p"— O
CL IA— 3
co— P O
CO- 5-
o> P c a
£ CO O X
h- O CL.O

B
to

















































B
i- in
>> 4) O
co £~
s - -PC
IA -O CO
S CO O O^
co 3— -«-
0) XI — u> O
1 	 S- (_
P in P a> 
>- c-
eo 0) — TS
c p a<- c
E co i P co
3 O co —
— C IA
O •> -O 0)
o w CD a—
0) 	
WO — O S-
•O — l~ co P
C C P —
o> to— «c
1 XC CO
POO) CXI
£ C 0) 0)
O1C 0>— P
	 P >> eo
— CO C P —

a> c awjc
JC O 1 0> —
1- OCM E CO

,
•*


















































1
c
o *

c a>
e IP-
CO— o
0) >> >>
s- P O
P— CO
(A IA t-
(D
0) E i.
P O
CO C
> COX) •
0) (A
C*J I- i.
E IA 0) 0)
3 X ** ^
— W O '™
o to o o
o P eo a
CD ^ 1
IA O £
•o 0) w
C CB.Q —
0) > -C

> O I 0)
co co £
0) £ P
£ IA O O
c —
0> — £"O
£ CO > C
h~ P ~. ~ co

,
IA








































































•
•a
0)
p
t_
0
a
0)

o
z



O 1

P S.
xo

W
•P O
u
0) C
— o
ll 1 ._
Xto
n N

o'il
— 0) 0)

(. •«. •«
PT5 t-
— O P
C ! 	
OX) C
axo

5







•o
tt>

(^
•.«
4J
c
CO

—
a>
c
o
z




<" X

IA to
X 0)
— X£ P
O CD C
C E -0
o x) a

E O O
co— co xi
£ C
O > O co

+•> * £ *
IA CO IA
E i- O.P
SCO — —
PX> to
d- to IA
c>.
e o -e
CO 0) 3
0} WO —
S. P— C
•P u) E O
IA— to E
IA Q.E
IA C— CO
E OX)
0 0 CO - •
j-i in p
P (- C O «
O 0 	 X
J3 P to C —
O -P CO <0
CO CD C (TIP
£ 0) O *- eo
(- i. o O O

,
~
^Xl
in —
— o
in <
— o
0 —
c a
§•—
xt

<
xo
ri
c
a> o

•— 43
I- CO
p 1-
— XI
ex

0.0)
— a
XJ




























^
CO IA
c— -in
O CO CO O
E wo —

CD E E co
3 to W

£ C— O
•P OXI
E to (-
E E CO
O CO 
CO -P O C
0) C CO (0
$_ 0 «.
P O P •>
IA XI
XI •>—
IA — XI O
E 3— CO
o o o
P O to O
p
O C O E
£• E— CO
3 a. a
£ OXIXJ
h- O co co

,
CM




















































•—
—
._
p
IA •.<-
0) 0)
•PXJ£
O— P
3 E 0
XI eo
O EX)
i- S- C
ao to
f\ —
co co co
£XIX>
P X*—
£ E
E CO —
OX)
ft- eo IA
E 0)
xt '-•o
to O —

fto •
in in
0) C IA O
> — 3 —
o a o c
P— CO
0) C <- Ol
£00)!-
t- o > o

.
CO



















































1
— c
•O— 1
to co t-
•P O
— c
CO O <-
COO)

V X>
CO CO
0) E 0)
£ £
EX)
E 3 0)
O — P
<- O eo
d- O —

6 O* ^
CO C
co — x>
*- c c
4J •— . CO
(Ad-
0) 0)
IA S 	
s *—
O CD I-
4J — •— •
O i. C (19
£1 P O O
._ a—
co c— c
£ OO co
H Q. CD O)

.
.3-



















































c
1 P E
<- CO 3

P (- O
d- O O
to P
u en
CO CO C
£— J—
p eo c

E -Pd-
O CO CO •
(— **^ (— Q)
d- —•
E CO —
X* eo — '-
CO 0)— P
OIP S 	
i- W P C
co — O
£ a) c a
0£ 0 —
(A P axi
— — to
X)d-xt
o to c

CO I 	 co
P CO CO -P
CO (A C C
> C— 0
CO COd- O
PX>
IA c a> X
S O P E

,
lf\

























Date:  9/25/81
11.12-17

-------




4-^
O
u
=>
Z
«_
H
Z
|8


O
LJ •
I-CO
out
LJCO
0-CO
XLJ
LUO
O
cotr
Z 1
1-0

-JO
-JO
one
0.0.
>- >•
t-oe
— t-
osco
OS
— o
o: z
CL —
0-1
z<

C

€
ex










•a
CO
d-
•—
4J
C
CO
•a


CO
c
o
z




L. »
V (0
aco
ac
._ ._
i_ g
•P TO
10 —
^
— r*
O -P
C ID
TO E
£i
CO—*
E O •
c to
CO TO O
££ —
4-> 40 C
CO TO
E E 01
O <-
i- 10 O
d- C
«• TO CO
CO 4J 4J
•P C TO
TO O —
» ° *
4J CO
tO V) *Q
re TO c
5.0 TO

_

^
O

c c
o o

4J 4}
TOCO
*"* "O
E X
<£
CO
co .a
LJ t-
Z to ID
- a >
r co
S.-*.
> TO O 10
*- C X
-1 Xeo-
<££ TO
P -U *»

o"°


























•
C
CO
•o to
CO C CO
£ a <-
*i D.
TO •
d 	 10 0)
O C CD.O
§C
— 0
O E E  TO
CO TO CO E
£ W E
•PC 10
o*- eo
E O O 3
8— co —
d- ^ *3 U>
— C CO
t_ *3 3 t-
CO to O
4J E -P
TO TO TO to
£=-*
.P O— TO
10 E TO *»
TO E E TO
2 a too

<\j



















































^
to
CO
c

E
TO
£
1

(_
O

10
to
O

a
o
4J
C.
CO
d-
co
ac



i
d. a
0 «-
•a
C X

• •• Q)
TO
c a
E I-
•^ Q)
^ >*J
XO to
A X

to o co

C O 00
— oo
E —
TO< C
<•£ CB +^

**



t.
CO

«
to

^
i.
CO
a
CL
O
O

^
_
CO

o

z




1 CO*
	 tJ
-ex

> .00 10
&•& o
1. CO 	
COT? TO C
CL— *> TO
ag co oi
— TO O t-
<- TO O
to o ««-
10 CO
L. 10 t-£
CO *J CO +*
4J C 4J O
TO 3 10
> O COT}
E a -a
210
0) t- .
V U CO CO
(. U 4J —
co -P eo t-
•P 4->
TO C «•—
CO TO CO O
4J 4J_ 4J
to C— CO
TO O <- O
je o -P n

_^


d» 1
O TO
C
C CO
O OI
— O CO C
*J t-£ CO
WO « OI
ex o
— x c «-
^ TO X
•PX
A CO Xd-
>— O
to O a
0 4J CO
C— TO O
- oo c
EC 0)
n n c to
— £ o eo
X*>— '-

LJ


























1
C
0) TS
C TO TO
0 E
U to
L. (0

CO Q.—
•-3Q.E
§5:.
3 10 O 10
O -P
TO S. (. 0
> CO CO 3
•P>-0
0) co O O
f ^ ^ £_
** ID ll X
E£ a^
8 ** ° u
d- O» CO dO
C E£
CO > to O
a CO C 10
3f to— 3
a) a o
*> CO 4J —
to w c f-
CO TO O TO
3: to o >

CM'
























E
3

E
8
£
O

•,
i.
CO
a
a
o
o

*
—
CO

o
•—
z


CO
c -
•ifri
TO CO ^
1 E C

(• (_ ^
TO CL »C
to TO
•P C CO
•-• •— ' C *
*- TO— TO
C04J E —
P C TO C
O O
CO 0 XE •
£ (. E to
•P Xa TO o
TO— —
E E *» «C
O i- CO TO
«- c co-o 01
d- E4J X>-
3 £ 0
(. — •Q CO
a) o C-D -P
•P O TO— £
a a 01
> to « E —
co-o X< —
•P C (- O
to CO «d- to
TO 1 TJ 3
> -P CT3 O
£ O CO-
CO OIO *> l-
£— CO O TO
1 	 to « >

_T

c
o

4J
a
c
0)
OI
to
•o co
^^""™

(-
X4J

z
V)
CO X
C 4»
E TO
cou.
JC O

<
























CO
c

i - 1
TO to L.
1 CO O
^~ T3 X
TO •— >
— to eo
•p co co

CO
4J 4» tO
10 3
£ 	
*J TO <-
4J CO
E TO >
EO
•a
d- C C
— CO
E TO
TO *» «
CO C 40
I- 0 C
4J 0 —
10 E
Xco
CO a
•PE X
to <- .
TO C CD 10
.* E— 0
3 4J —
flj— t_ C
£ O 0) TO
1- O -P 01

cJ







































CO
•o

C
TO

O



^
(0~
£ O
•p a

•P O
TO *""
E •
+J «- tO
t» o o
"* c
E c a
TO— OI
CO TO '-
*>*> O
t« C
O tO
CO O 3
£ O
*ffll
E E TO

V — XJ T>
— C CO
CO 4J TO 4J
4J -
L. O JCOQ
CO —
•p <
















o

c
CO
tn
L.
•^


T5 — *
TO O
CO 1 £
£ O O
S. i. o
co a—
> TO
O C

co a X
£ *» CL
*J C O
0 «-
E O CL
0 1
*- XC
E ^
E CO
TO— C
CO— O •
I 	 *> 10
•P +J CO O
to to o —
TO C
«- *> TO
CO O -.01
4J 3 CO «-
'WOT5 O
> 0 X
CO <-£ !-
*» aco co
to T3£
TO CO— *>
>£ TO 0
•P C
CO OT3
£d 	 C
h-OQ.CU

^.


1
a
N eo

L. •—
CO X
EO
O
10 CO
— c
CO
-1 X—
0.0 X
x a.
o— o
o o «-
_I£H.
< O
Od-
-1— O

-I C
-1-0

_-<
Date:  9/25/81
11.12-18

-------


^^
Q
LJ
3
Z
«
H
z
QCO
00
li- —,

o
LJ .
h-W
OLJ
LJOT
0. W
XLJ
LJO
0
wo:
HO.
Z 1
HO
33
-10
-10
oce
0-0,
HOC
— H
o: to
03
— Q
fez
o. —

Q-J
<0
SSI
LUX
ceo
H
WO
LJZ
w o