OCR error (C:\Conversion\JobRoot\00000CEA\tiff\20013MXT.tif): Unspecified error

-------
                                     DISCLAIMER
This  document  is  intended  for  internal Agency use  only.   Mention  of trade names or
commercial products does not constitute endorsement or recommendation for use.

-------
                                       ABSTRACT
This report  describes  the  development  of  computational  methodologies  and  computer
programs that may  be  employed  to  estimate  aromatic organic solute  solubility in  miscible
polar solvent/water  mixtures.   This information is used  to predict the sorption  partition
coefficient for  sorption of aromatic  solutes onto soils or  sediments  in  aqueous  systems
containing miscible polar solvent  These  procedures  assist in  the prediction of  facilitated,
near-source,  solute transport  in  soil  or  sediment in the  event  of spill or  discharge  of
organic waste containing water-soluble solvents.
The chemical  thermodynamic basis for estimating  organic  solute  solubility  in water and  in
solvent/water  mixtures  is reviewed.   This information is  synthesized and employed in the
design of a computer  program, named AROSOL,  to aid prediction of aromatic solubility  in
water  and in  miscible  organic solvent/water  mixtures.  The  program  AROSOL is formulated
to  accommodate various levels of input data and  physical constants.  The  program utilizes
four techniques to predict solute solubility in solvent/water mixtures:
     (i)   Log  linear,
     (ii)  UNIFAC,                                                  —  -"
     (iii)   Excess free  energy,  and
     (iv)   Molecular  surface  area

The user  may select any or all of these  techniques to evaluate solubility depending on the
availability of  data,  physical  constants, and  other  specific information required for  each
approach.
The solubility  prediction is then used in conjunction with a chemical  thermodynamic  sorption
model  to estimate  solute sorption partition  coefficient, K ,  in  water and  in solvent/water
mixtures.
This report   also  describes  the  development  of  a  general purpose  program,  named

-------
                                           Ill
                                                                                    \



MOLACCS, to compute  molecular surface area  The  program MOLACCS is used to  estimate


molecular surface area  for  use in solute  solubility predictions.   Three types of  surface


areas are computed:

     (i)   The solvent accessible area,


     (ii)   The contact surface  area, and


     (iii)  The van  der Waals area




The  program allows  for specification of  solvent,  or  probe  radius,  and individual atomic


parameters  including  degree  of hydrophobicity.   The  contribution  of each  atom to the


surface  area  is displayed,  as  well as the  net value  of  the  individually  estimated atomic


group  contributions to  hydrophobic and  polar  surface  area.   The  program is designed for


use  by the non-expert, in which  molecules are constructed  from existing atomic groups


and  molecular fragments.  The user may construct new molecules and molecular  fragments


through  the  program operations  comprising:    building,  perturbing,  replacing,  adding,  and


combining.



The  report presents  various sample calculations for  both  AROSOL  and MOLACCS.   Program


listings are also included.

-------
                                            IV
                                  TABLE OF  CONTENTS

Chapter 1.  Introduction	   1

Chapter 2.  Solute  Solubility and Sorption onto Soil in Water and
            Miscible  Solvent-Water Systems	   4

            Phase  Equilibria and Activity	   4

            Estimation  of  Infinite Dilution Activity  Coefficient	   6

            Solubility Prediction by an Excess Free
                 Energy Approach	„	   8

            Solubility Prediction by Log-Linear Relationships	  11

            Solubility Prediction by a
                 Molecular Surface Area Approach	  12

            Calculation of Molecular Surface Area
                 and Its Use in Predicting Solubility	  13

                       Molecular Surface  Area	  14

                       Calculation of Surface Area	  18

                       Problem of Determining Hydrogen-Atom
                          van der Waals Radius	  22

                       Correlation of  Hydrocarbon Solubility
                          with  Solute Surface Area	  23

            Effect of  Organic  Solvent on Sorption of
                 Aromatic Solutes onto  Soil	  26

            Partition  Coefficients	  28

            Koc and  Solute Solubility	  29

            Solvent  Effect on  Solute Sorption	  30

            Partition  Coefficient in  Solvent-Water Mixtures	  33

Chapter 3.  Description of the  Computational Programs	  34

            AROSOL Program Organization	  34

            Estimation  of  Solubility and Sorption
                 Partition  Coefficient	  36

            Molecular  Surface  Area  Calculations	  51

                       Program Description	  51

                       Program Structure	  52

-------
                     Molecular Fragment Library File	 56

                     Manipulation and Generation of
                        Molecular Fragments	 57

                     Testing  and  Initial Results	 61

                     Example Calculations	 63

References	 80

Appendix  1.   AROSOL Program Listing	 86

Appendix  2.   MOLACCS Program Listing	107

-------
                                            1

                                       Chapter One
                                     INTRODUCTION
 The  purpose  of this  investigation is to develop  computational  procedures  which can  be
used to estimate the solubility of aromatic solutes  in  miscible solvent/water  mixtures.  This
information  can  then  be  employed  to  predict  the  partition coefficient  for  sorption  of
aromatic solutes  onto soils or sediments.

 The  effect  of miscible solvents,  e.g. low molecular  weight  polar  sovents, on  solubility  of
aromatic  solutes  would  be  evident  wherever water,  miscible  solvents,  and  solutes  are
comingled,  such  as in  concentrated  wastewaters  or in  waste  liquids  from  chemical
manufacturing.   The effect of miscible solvents on sorption  of  aromatic solutes • onto soils
would  be  manifested  when  concentrated  waste liquids contact  soil  or sediment  material.
Understanding  the  combined  effects  of solvents  on  solubility  and  sorption  will aid  the
assessment  of  the  tendency  for  aromatic  solutes  to  undergo  facilitated  transport   in
soil/sediment  systems  in  the presence of  miscible  polar solvents.   This   will  allow  for
prediction  of  near-source   contaminant  transport  in  soils  in   the  event  of  spillage  or
discharge of organic waste containing watei—soluble solvents.

 The  following chapter  describes  the general  methodologies employed in  the computational
procedures  for  estimation   of  solute solubility  in  water and  in miscible solvent/water
systems.   Also  described are the  effects  of organic solvents on  sorption  of aromatic
solutes onto soil, and  the calculation of molecular surface  area and its  use  in  predicting
solubility.   This  is followed  by a  discussion  of  the  use  of the  computer  programs  and
example  calculations.    An  appendix  contains  a   listing of  the  computer   programs.    A
summary  of  the  organization  and content of  this report is presented below.

 The  chemical  thermodynamic basis for estimating  organic solute solubility in water  and  in
solvent/water mixtures  is  reviewed.   This information  is synthesized  and employed  in the
design  of a  computer program,   named  AROSOL, to  aid  prediction  of aromatic  solute
solubility  in water  and  in  miscible  organic solvent/water mixtures.   The program  has been

-------
specifically designed to aid the prediction of aromatic solute  solubility; however,  the  general
methodologies  and procedures are  also  applicable  for other  organic  compounds  as well.
The  program AROSOL  is  formulated to  accommodate  various levels  of  input  data  and
physical  constants.   The  program  utilizes  four techniques  to predict  solute  solubility  in
solvent/water mixtures:
     (i)   Log linear,
     (ii)  UNIFAC,
     (iii)  Excess free  energy,  and
     (iv)  Molecular surface area

 The user  may  select any or all of these techniques to evaluate solubility  depending on the
availability  of data,  physical  constants, and other  specific  information required • for each
approach.

 The solubility  prediction  is  then  used  in  conjunction  with a  chemical  thermodynamic
sorption  model  to  estimate  solute  sorption  partition  coefficient,  K,   in  water  and  in
solvent/water mixtures.

 The report then  describes  the  development  of  a general  purpose  program,   named
MOLACCS, to compute molecular surface area.  The program MOLACCS Is used  to  estimate
molecular surface area  for use  in  solute  solubility predictions.   Three  types  of  surface
areas are computed:
     (i)   The solvent  accessible area,
     (ii)  The contact surface area, and
     (iii)  The van der  Waals area

 This program  allows for  specification  of solvent,  or probe  radius, and  individual atomic
parameters  including   degree  of  hydrophobicity.   The contribution  of each  atom  to the
surface  area  is  displayed,  as  well  as  the net  value  of  the  individually  estimated atomic
groups contributions to  hydrophobic  and  polar  surface area.    The  program  is designed for

-------
use by  the  non-expert,  in  which molecules are constructed from existing atomic groups
and molecular fragments.  The user  may construct new  molecules and molecular  fragments
through operations comprising:  building, perturbing, replacing, adding, and combining.

 The  report  presents   various  sample  calculations  for  both   AROSOL  and  MOLACCS.
Program listings are also included.

-------
                                      Chapter Two

                    SOLUTE SOLUBILITY AND SORPTION ONTO  SOIL
                  IN WATER AND MISCIBLE  SOLVENT-WATER  SYSTEMS
 The  following  is a  synthesis of  current  chemical  thermodynamic  techniques  that may be

used  to  estimate  solute  solubility  in  miscible  solvent/water  systems.   This information  is

used  in   conjunction  with  a  chemical  thermodynamic  sorption  model  to  describe  a

methodology by which the sorption of  aromatic  solutes onto  soils may be  predicted for

liquid  phases comprised of  miscible solvent-water  systems.  This  discussion is  adapted  in

part from  the  methodological  procedures  presented in  Fu and  and Luthy  (1986 a and  b)

with  additional  information  being  provided  on  the  subject  of  molecular  surface  area

calculations.   The techniques  described below have  been  incorporated in the • computer

program   named  AROSOL  for  estimation  of  aromatic  compound  solubility  in  miscible

solvent/water  mixtures,  and  for  prediction of  aromatic solute sorption  onto  soils and

sediments  in solvent/water mixtures.   This chapter also explains techniques  for molecular

surface area calculations and their  use  in predicting solubility.



Phase Equilibria and Activity

 Expressions  that  relate  solute  activity  coefficient and mole fraction _are  employed  in

several techniques  to estimate  solute  solubility in  solvent/water systems.   The relationship

between  activity and  solubility are  described below.



 The  solubility  of a liquid or  solid  non-electrolyte  solute  in  aqueous  solution  can be

described by the thermodynamics  of  phase equlibria.  The  solute chemical  potential can be

expressed   in terms  of  fugacity,   and the  aqueous  solubility  of  a  hydrophobic  organic

compound   in water  or  water/miscible  solvent mixture  can  be  expressed  in  terms of

fugacity  and  activity using  the  Raoult's   law convention.    For  liquid  components the

relationship  between  mole fraction solubility, X, and  activity coefficient,  y, is


      X = -                                                                          (1)
           7


Both  terms  in this  equation are  dimensionless.   For   solid  solutes  (e.g.,  naphthalene) the

relationship  between  mole fraction and activity  is

-------
          —                                                                           (2)
          rR

          f 7



in  which  fs  =  the pure  solid  fugacity, or  vapor  pressure;  and  fR  =  the reference  or



standard state  fugacity,  which is usually  defined  as an extrapolated pure  component liquid



vapor  pressure  below  the  triple  point   As explained  below,  the  ratio  (fs/fR)  can  be



estimated by several standard procedures.






 The  conventional  definition  of  the  reference state for a solvent  identified as  component



1,  is  y  -»  1  as X -»  1.  For  a solute, identified  as component  2, the reference  state  is



the infinitely dilute solution.   In  general,  y2 >  1 for a dilute  solution of a  given  component



in  a given solvent  As the solution becomes  increasingly  dilute, the value  of y2 approaches





a  limiting value,  y °°,  known as  the  infinite  dilution  activity  coefficient  (Prausnitz,  1969).



Knowledge  of  the infinite  dilution  activity  coefficient  can  be  used  to  estimate  solute



solubility  in  water and  in  solvent/water  mixtures,  as   well  as  other   physico-chemical



properties  important   to   the   environmental  scientist,  such  as  solvent/water  partition



coefficients and  Henry's law  constants (Campbell and Luthy, 1985; Grain,  1982).






 A simplified  expression  for (fs/fR)  employs  heat of  fusion of  the solid,  AHfm,  cal/mole,  at



the melting  point (Prausnitz,  1969)



                 AHf.m r  T       i      f*

      in (y2X2> -  — L - - 1 J = «n -                                               (3)

                          m             T
in  which T =  system temperature, °K; T  =  melting temperature of pure solid, °K; and R  =



the gas  constant,  1.987  cal/mole-°K.   Eq.  2 neglects certain correction terms including



those  depending  on  the  difference  of  specific  heat  between  solid  and  liquid,  AC ,



cal/mole-°K.   Hildebrand and Scott (1950) proposed that the  heat  of fusion  of a solid at a



temperature,  T,  can  be calculated from the heat of  fusion  at the melting  point:


      AH  = AH   - AC (T   - T)                                                         (4)
        f       f,m      p m





in  which AH(  =  heat of  fusion  at the  system temperature.   This expression can be  used to



compensate in part  for  some of the  error  introduced  by  omission of the AC  term  in the



simplified  fugacity ratio  expression.  Heat capacity data are available  for  relatively few solid

-------
solutes, and  thus  it is  fortunate that  the  correction  is usually small compared to the AHfm
term, as well as compared to other uncertainties  in estimating activity coefficient (Gmehling
et al.,  1978;  Prausnitz,  1969).

  In the  case of  solid  solutes for  which  heat  of fusion data  are  not available,  heat  of
fusion may be calculated from entropy of fusion, ASf (cal/mole-°K)
      AH  = T AS                                                                      (5)
        f    m   f
For many moderately-sized  organic  molecules, including  substituted aromatic hydrocarbons,
the entropy  of fusion  is  reported to be  nearly constant at  about  13 -  13.5 cal/mole-°K
(Tsonopoulus  and Prausnitz,  1971; Yalkowsky, 1979).   Then,  Eqs.  3 and  5  reduce to the
following relation, assuming ASf is constant at  13 cal/mole-°K
                      r T "T i
      In (y2X2) = 6.56 L 	-J                                                '       <6)

The  AROSOL computer  program  which  was  developed for  the  project  allows  for the
determination of the fugacity  ratio expression as follows.  AHfm is employed according to
Eq. 3  if heat of  fusion data are  available.   If AH   is  not  available, then Eq. 5  is used  in
  •                                               f,m
conjunction with Eq.  3  as  the  fugacity ratio expression,  which reduces to Eq. 6.

Estimation of Infinite  Dilution Activity Coefficient
  The  solute  infinite  dilution  activity  coefficient,  and  the  solvent  and   water  activity
coefficients,  are estimated in  the  computer  program by a group contribution  method  using
the Universal  Quasi-Chemical Functional Group Activity Coefficient  (UNIFAC)  approach.  This
approach computes the activity coefficients from  knowledge  of the molecular structure of
the solute  and the solvents through equations that  employ a data base comprising functional
group size and  interaction parameters.  This represents  an especially  utilitarian technique for
prediction  of   chemical  properties  of   mixtures,  as  no  specific  experimental  data  or
correlation coefficients  are required.

  The UNIFAC approach is a group  contribution  method for  predicting  activity coefficients
of nonelectrolytes in liquid mixtures (Fredenslund et al.,  1975).  The model assumes that the
logarithm of  the activity coefficient is comprised of  two parts

-------
     In y =  In yc +  In y                                                               (7)






Herein,  yc is a combinatorial part due to the difference in molecular size and  shape of the



molecules in  a mixture,  and  yR  is a  residual  part  due  to  molecular  interactions.    The



computational procedures employed in the UNIFAC model are described in Fredenslund  et al.



(1975)  and   Gmehling  et  al.  (1978).   The  most  current  tabulation  of group  size  and



interaction parameters is given by Gmehling et al. (1982).






 The  UNIFAC approach has been applied  to various problems for  estimation of solution



properties including  estimating activity coefficients in  organic  solvent  mixtures  (Fredenslund



et al.,  1979),  estimating the  solubility of a  solid in a solvent (Martin  et  al.,  1981),  estimation



of octanol/water partition coefficient (Arbuckle,  1983),  predicting the  solubility of organic



compounds   in  water  (Banerjee,   1984,  1985),  estimating  aromatic solute  distribution



coefficients  for  both polar  and nonpolar  organic  compounds  (Campbell  and Luthy, 1985),



and  estimating  solute  solubility  in  solvent/water  mixtures  (Fu and   Luthy,   1985).    The



calculation  of  solvent  and  water  activity  coefficients,  and  solute  infinite  dilution activity



coefficient,   was  facilitated  by the  adaptation  of  a  computer  program  developed  by



Fredenslund  et al. (1975)  and updated by Anderson  (1983).  Examples  of the computational



methodology  for predicting  activity  coefficients  are provided by  Grain (1982) and Fu and



Luthy (1985).






 The  UNIFAC approach was adapted in  this investigation  in order to  estimate solute infinite




dilution activity coefficient  (y°°)  in  pure  solvent  and  pure  water,  and in  solvent/water



mixtures.  The methodology entailed  treating the solvent/water  system as  one component



and the solute as a second  component  The solvent/water system  was treated as a  single




component  to facilitate  estimation of  solute  solubility  from  y°°.    In  this approach the



solvent/water system may be envisioned as comprised of  a "molecule" of water and solvent



in  proportion to  the mole  fraction  solvent/water  composition of  interest.    It   does not



matter if the  "molecule" is comprised of water and solvent in noninteger ratios when  using



a solution-of-groups approach to  estimate activity coefficients.

-------
                                            8
 For  the  case of liquid solutes,  mole fraction solubility can  be estimated from y°°  using
Eq.  1, provided  y°° is  sufficiently large,  i.e.,  y°°  >  1,000.   If y°°  is  < 1,000, then  the
mole  fraction solubility  calculation must account for the fact that at infinite dilution there is
appreciable  solubility  of  solute,  and that  the  solvent  system  mole  fraction does  not
approach  unity.    In  these  cases,  mole  fraction solubility  is  estimated   according   to
procedures  described by  Lyman  (1982),  which  includes an  evaluation to determine  if  the
component  is  completely  miscible.    For  solid  solutes,  mole  fraction  solubility  can   be
estimated  from y°° with Eq. 3  if y°°  is  >  100.   If  y°°  is  <  100 then  the  mole fraction
solubility is  estimated  according to Lyman (1982) to account for the solvent system mole
fraction being less than unity.

 It  is useful for purposes  of practical environmental  engineering calculations to be  able to
express  solute  concentration  in  terms of molar  concentration (moles  per  liter) or  mass
concentration (mg or g per liter).  This introduces  a small difficulty  because in computing
molar or  mass composition  from mole fractions,  it is  necessary to incorporate  a value  for
the volume  of  the  solute/solvent/water mixture.   In  using the activity  coefficient data to
compute solute molar or mass concentration,  it was  assumed that  the  separate volumetric
contributions  of  the solute,  solvent,  and  water are conserved.  This assumption  is  often
made in theories pertaining  to thermodynamic  properties  of  mixtures  of  nonelectrolytes
(Hildebrand  et al.,  1970).   This  assumption was addressed  in experiments  and  discussion by
Fu  and  Luthy  (1985) for  the case of methanol/water and acetone/water mixtures.   In  these
cases the conservation  of volume assumption  generally resulted  in errors less than  about
5%, and often less than 1 or 2%.

Solubility Prediction by an Excess Free Energy Approach
 Williams and Amidon  (1984a)  derived  relationships  between  solute  activity  coefficient,
solute Henry's law  constant in pure  solvent,  and  solute-free  solvent  and  water  volume
fractions.    These relationships  were  then used  with  an expression for  the  excess  Gibbs
free energy of mixing to estimate the solubility of a solute in a binary solvent system.   The
resulting expression was

-------
                                                   q2             q2

     In X  = z  In X  + z  In X   - A   z z (2z  - 1) — + 2A   z 2z — + C z z          (8)
         2    1     s     3    w    1-3131      n      3-1 1  3a     213
                                                   H1             M3



in  which the subscripts  1, 2, and  3 refer  to solvent  solute, and water, respectively; z.  =



solute-free  volume fraction  of  solvent  or  water; q. = molar volume for component  i; A^



and A    = solvent/water  interaction constants (dimensionless).  The  first two terms  in Eq.  8



represent proportional solubility  of  solute in  pure solvent and  water.   The next two terms



represent the contribution of solvent/water interactions, and the last term accounts for the



interactions  between  solute  and  solvent/water.  This  last  term, C2, is essentially a  ternary



correction parameter.  The solvent-water interaction constants  may be estimated from the



molar excess free energy of mixing for solute-free systems (Williams  and Amidon,  1984b)


                            A                        A


     xi  ln r, + x3  ln r3  «  -^V,'0^, +  W + IT ^iV^i + X3S>]         <9)

                             H1                        H3



X1  and X  = solvent  and water mole  fraction,  respectively; and  y1  and y3  = solvent and



water  activity coefficients, respectively.   Williams and  Amidon  (1984b) determined A1_3 and



A    for a solvent/water mixture from estimation of y1 and y3  through use of  experimental



partial  pressure data  . In  the  present AROSOL  program,  y1  and  y3  are  estimated for



different solvent/water compositions by the  UNIFAC method.   The constants AI 3 and A



are  then  obtained  by  a  two-parameter  statistical  regression  of  Eq. 9.    The  statistical



regression  procedure  is  performed according to the  techniques  described by Ryan et al.



(1981).





 Williams and  Amidon  (1984b)  employed Eqs. 8 and   9  to describe the  solubility  in



ethanol/water mixtures  for ten  compounds of interest in  pharmaceutical science, where C



was estimated  by linear  regression of  the difference between experimental  solubility and



calculated solubility without  the  C2  term using Eq.  8.   It  was  noted  that the C  term was



correlated with  the  solute octanol-water partition coefficient,  K  .   This suggested  that it



may be possible to  estimate  C2  from octanol-water partition coefficient data, and then use



an  estimated C2  term  in conjunction  with  the solvent-water  terms  and  pure  solvent



solubilities to predict  the solute  solubility-solvent/water  composition  profile.   In  additional



work,  Williams  and Amidon (1984c) concluded that  Eq. 8  predicted  a  semi-logarithmic

-------
                                           10
increase in solute solubility with volume  fraction solvent when the solvent/water interactions
were  small compared to the  interaction between the  solute and the mixture.

 In summary, three parameters must be  determined in order to use the excess  free energy
approach:    the  solvent  interaction  parameters A     and  A3 ^  and  the  solute-solvent
interaction parameter, C .  The solvent interaction parameters  are  determined  in the AROSOL
program  from estimation  of  activity  coefficients   for  the  solvent  and  water  using  the
UNIFAC procedure  with  Eq.  9 and  a  two-parameter statistical  regression  technique.   The
results of this technique for four  solvent-water systems have  shown  that the parameters,
A   and  A  .  are  constants  for the binary  solvent systems being considered (Fu and Luthy,
1986a).  The  computer  program developed for this  investigation uses Eq. 9 to  determine
A    and  A3 v and  considered these parameters as  constants,  as found  previously Fu and
Luthy  (1986a)  and  Williams and Amidon (1984b,  1984c).

 The  solute-solvent interaction parameter, C ,  was estimated  from the experimental data  of
Fu  and   Luthy  (1985).      Statistical   analysis  of  the   data  for   eighteen   aromatic
solute/solvent/water systems investigated by  Fu and  Luthy (1985) showed  that C  may  be
correlated with aromatic solute octanol-water partition coefficient, K  ,  by
      C = -2.69 - 1.22 log K        r2 = 0.86                                     (10)
       2                       ow

For comparison, Williams and Amidon (1984b)  found that the correlation for  eight solutes
and ethanol-water was
      C = 3.96 -  2.66 log  K         r2 =  0.90                                      (11)
       2                      ow

The AROSOL  computer program employs Eq.  10 for prediction of solubility by the excess
free energy approach.  This  is because it is desired  to employ  an expression for  C  that is
more  appropriate  for aromatic  solutes,  rather than  a more  general, but  less precise
regression equation.  Nonetheless, the  user  of the program has  the flexibility to modify the
expression  for  C   as conditions  may  warrant   Fu and  Luthy  (1986a) have  shown that
statistical   analysis   of  the   combined   eighteen  aromatic  solute/solvent/water   systems
investigated by Fu  and Luthy (1985),  plus  the  eight  solute/ethanol/water systems reported
by Williams and Amidon (1984b), results in a correlation for C2  with r2 = 0.69.  The poor

-------
                                            11
correlation for the  larger data set suggests  that the expression  for C2 is either  system-



specific, or that the expression for C2 must be expanded to include additional terms.







Solubility  Prediction by Log-Linear Relationships



 Yalkowsky et al. (1972) reported on  the solubility of  alkyl p-aminobenzoates  in water-



propylene  glycol mixtures, and  found  that  the  solubility could  be  described  by  a  semi-



logarithmic relationship,


     log S =  log S  +  o-z                                                            (12)
           2     °   w      1





in  which  S,  = the  solute solubility  in  the mixture,  moles/L;  S   =  the  solute solubility  in
           2                                                   w


water,   moles/L;  z   =  the volume fraction  of  solvent;  and  a  =  a  parameter  that  was



characteristic of  the system  under study.   Later it  was  reported by Yalkowsky and  Flynn



(1974)  that the solubility  of  certain compounds in  solvent/water  mixtures  required Eq. 12



to be expanded to a fifth-degree polynomial in  z  in order to account for non-linearity of



solubility with  increasing fraction  of  solvent  Eq.  12 has  been  examined  by  Martin  et al.



(1982)  where  it  was noted  that  it was  applicable  to systems where the  polarity of the



compound was significantly less than either  of the  solvents in the binary mixtures.  It was



shown  (Martin  et al.,  1982)  that  the  linear dependence of  logarithmic  solubility on volume



fraction of the solvent was  applicable  when the Hildebrand solubility parameter of solvent



was larger than the solubility parameter  of the solute.  The Hildebrand solubility parameter,



<5,  in units of (cal/cm3)1'2, is defined  as  the square  root of  the  pure liquid component



cohesive  energy  density.  Weast  (1983)  and Barton (1983)  provide tabulations  of  5 for



various  compounds.   These  values typically  range  from less than ten  (e.g.,  5 = 7.3 for



hexane) to over  20, as  that  for  water  (5 =  23.45).  Eq.  12 is  related to  the  Hildebrand



solubility  theory  (Martin et  al.,   1982),  where  it can  be  shown  that  the  mole fraction



solubility of solute  may  be given as a power series in terms of solvent volume fraction, z ,



and constants



     log X =  log  X  + log  v   - K  +  K z  - K z  2 +  ...                              (13)
        323w3/wo1121





in  which  the  subscript w refers to water;  and KQ, K  , and K , etc., are  the polynomial



regression constants.  Martin et al.  (1982)  showed  that  the  solubility  of semi-polar drugs



in  solvent/water systems could  be described by  a simplified expression

-------
                                            12
     log X  =  log  X  + log  y   - K  + K z                                            (14)
       a  2     a   w     a  'w    o     11
 If regression analysis of  Eq.  14  was performed  with  perfect accuracy then  the  log  yw
and the  K  terms  would cancel  in order  that  X, =  X   as  z -» 0.  Thus,  Eq.  14  would
          o                                     2     w                      ~
reduce to
     log X  = log X  +  K  z = log X  +  
-------
                                           13
mole  fraction solute solubility in water; zl  = the solute- free  volume fraction  of solvent; k
= the Boltzman constant; and T =  the  system temperature.  A*H describes the microscopic
interfacial free energy between  hydrocarbonaceous surface area and the solvent, and A*   is
an analogous interfacial free energy term, which is dependent upon the interaction between
the solvent  and  the polar portion of the  solute.   For  the case  of  relatively nonpolar
compounds,  the hydrophobic interactions are dominant relative to polar interactions.  This is
equivalent to assuming  that the term  (A*H  HSA) is much greater than  the term  (A«  PSA).
Under these  conditions  Eq.  17  can be reduced to
r
-------
                                           14
the use  of  molecular  surface area  for  correlation with  aqueous  solubility  and partition



coefficient





 The   purpose  of  this  review  is  to  provide  the  user  with  appropriate  background



information  on the execution and use of molecular surface area calculations.  This will help



the user in  making judicious selection of atomic and molecular input parameters, as well as
   »,


providing  a  reference base from which to  make rational comparisons.






Molecular Surface Area



 Richards (1977)  has  reviewed  the procedures  for  calculation  of molecular surface  area,



and he has  discussed  some of the applications of  this parameter  in  the  field of protein



chemistry.    Richards notes  that there is  an  intuitive appeal  with  being able to  correlate



thermodynamic properties of condensed  phases with the packing  of groups  of  atoms in a



molecule  and the  area  of  the  molecule.   This appeal  derives in  part from geometrical



concepts  being  generally  easy to grasp, as well as from the  success with which correlation



with  molecular  surface area  and   molecular  volume may  describe  phase  partitioning  and



solubility,  as well  as other molecular properties that may relate to exposed surface and the



nature of the exposed  groups.





 The  calculation of molecular surface area is  usually made by assigning to each  atom in a



molecule a  bond length and bond angle,  and a van der  Waals radius.  It is  well  understood



that   the  surface  of  a   molecule  must  relate  to  the  radial distribution  of   electrons



surrounding  the molecule, and for  atoms in  a molecule the distribution  of  electrons is not



spherically symmetric  nor isotropic.  Nonetheless, as  summarized  by Richards (1977), the



hard  sphere  model of chemically  bonded atoms  has  a long  and  successful record for



explanation  of molecular  properties.   Richards's view  is that more realistic  and complex



models have improved the  explanation of  certain details not provided by  the  hard  sphere



model, but  these  approaches have  not altered the principal characteristics ascribed by hard



sphere models.  This view has remained  essentially unchanged, as  summarized in the review



by Pearlman (1986) which concludes that  even though the electron cloud surrounding the



nucleus of  an atom has no  well-defined surface, the intuitive appeal and empirical success



of the hard  sphere or  van der Waals radius concept is  widely recognized.

-------
                                           15
 The  van  der Waals surface,  A   of a molecule may  be envisioned as  shown  in Figure 1-a
Each  atom in a molecule is  represented as a sphere centered at the  nucleus and having  a
radius equal  to  the  van der Waals  radius of  the  atom, r .  The van der Waals surface is
        ~                                                w
defined as  the  exterior  surface of  the  union of  all the  van der Waals spheres  in  the
molecule (Pearlman,  1986).   The van der Waals surface area of  a molecule represents  the
boundary  surface of  the molecular electronic  distribution,  and  hence the van  der Waals
surface is one type of descriptor of molecular  surface area that may  be used in  estimating
solute-solvent interactions.

 Hermann (1972) and  Richards  (1977)  recognized  that  not all of  the van der  Waals surface
is  accessible to the  solvent, depending  upon  the  size  of a  solvent  molecule.   This is
illustrated  in Figure  1-b  and  Figure  2.  These figures show a trace of the van der Waals
surface of  some  atoms  in which a spherical  solvent  molecule with radius rso|v,  or probe
with  radius  R ,  is allowed to trace  the van der Waals surface by rolling on the outside of
the van der Waals  surface.    Figure  2  illustrates  that  atoms  3, 4 and   11  are  never
contacted by the probe,  and as such these atoms  may be  considered as  interior atoms
which are not part of  the surface of  the molecule.   For this reason alternate definitions of
molecular surface  have  been  proposed  which attempt  to account for surface  in  actual
contact with solvent

 One  procedure for defining the surface of a molecule  which is in contact with  solvent is
to  use the   continuous sheet  described by the locus  of the  center  of the  probe  as  the •
probe rolls  over  the  van  der Waals  surface.   This is  termed  the  accessible surface  by '
Richards (1977) and Pearlman  (1986).  Another procedure is to consider those parts of the
molecular van der  Waals surface that can actually  be in contact with  the surface  of  the
probe.  This  is termed the  contact  surface by Richards  (1977),  and it is illustrated  by the
heavy line in Figure 2  for a  probe of  radius  RV  The definition  of contact surface  results
in  a series  of disconnected patches.  The patches in contact  with the probe are separated
by  a  segment given by the interior-facing part  of  the probe when it  is simultaneously in
contact with more  than one atom.  These  interior-facing segments are termed the reentrant
surface by  Richards (1977).  Taken  together,  the  contact  surface and the reentrant surface

-------
                                16
                                                      [a]
                                                ^
/.
                            "^-.i-^—
                                             *.

Figure 1.  Molecular surface area definitions, after Pearlman (1986)

-------
                                         17
                                      OUTSIDE
           Schematic representation of possible molecular  surface definitions. A section
through part of the van der Waals envelope of a hypothetical protein is shown with the atom
centers numbered.
                Figure 2.   Molecular surface area definitions and features,
                                 after Richards (1977)

-------
                                           18
represent a  continuous  sheet that  is  termed  molecular  surface by  Richards  (1977);  this
continuous sheet  is  termed  contact  surface  by  Pearlman  (1986).    Hence,  there  is  a
conceptual difference in definition  of  contact  surface  among  these  authors.    Pearlman's
definition of  contact surface  includes the  reentrant  surface  as  defined  by  Richards.
Richards (1977)  explains,  as in Figure 2 by the nature of the geometrical construction,  that
the accessible surface has no reentrant  sections.

 Note  that as  the size  of the probe,  or solvent  radius, approaches zero  the  accessible
surface area  approaches the van der Waals surface area  Also, small changes in the choice
of solvent radius can have a  relatively large effect on the accessible surface area  Figure
2  shows for a  change in probe size from  RI  to R2, that the accessible surface becomes
much smoother  and the  number of  interior atoms increases.   It is generally  agreed that the
smallest  reasonable  probe is  a water molecule,  which is considered  as a  sphere  with  a
radius  of 1.4 or 1.5 A

Calculation of  Surface Area
 For covalently  bonded-atoms the van  der Waal hard shell spheres  are normally  truncated
by a plane perpendicular  to the interatomic bond, with the plane chosen  to  divide the bond
into  two segments  proportional  to  the radii  of  the  bonded  atoms.    Another  normal
approximation is to specifically include  the contribution of hydrogen atoms to  the van  der
Waals  surface.   This technique incorporates the radius of the hydrogen  atoms  into that of
the heavy atoms to which they are bonded.  This is because the bond length  and van  der
Waal radii for  atoms of  carbon  and  higher atomic  number  result in the  hydrogen being
"buried"  to a great extent within the radii  of the larger atom.   Hence,  a common  procedure
is  to expand the  heavy  atoms, and C,N,0 and  S,  into a  series  of groups  with zero, one,
two  or  three hydrogen  atoms attached, with each  one of  these groups considered  to be
spherically symmetrical  (Richards,  1977).   This  procedure  is  termed  an  extended atom
approach,  in  which  the  radius  for  each  atomic   group  attempts  to  account  for  the
contribution of  hydrogen to  the surface area.  Figure 3  illustrates this concept  as  applied
to a terminal methyl group,  -CH3  with three  tetrahedral hydrogens (Valvani et  al., 1976).
The  van  der Waal radii for aliphatic  carbon was taken as 1.6,  and that for hydrogen as  1.2,

-------
                                           19
with the  C-H interatomic bond length of  1.09 A The solid curve shows the  planar view of
the terminal methyl group without solvent radius with three tetrahedral  hydrogens,  while the
dotted curve shows the methyl group as  single  sphere  with radius of 2.0 A

 Valvani  et al. (1976)  evaluated  procedures for  calculation of surface area for  various
aliphatic alcohols  and hydrocarbons.  Three  methods  for  computation of surface  area  were
compared:
Method- A:   Hermann's procedure (1972) for van der  Waals surface area, which  has  been
                    adopted  by  Pearlman  (1986),  where  the  calculation  considers the
                    molecule as comprised  of  intersecting spheres  with hydrogen assigned
                    a specific  van der  Waals radius.   The  accessible  surface  also  was
                    computed with a  solvent radius  of 1.5 °A  (water).

Method B:    An  extended  atom  approach was used  in  the  calculation  with  methyl, ~CH ,
                    methylene,   ~CH2~,  and   the   hydroxyl   groups  in  alcohols,  -OH,
                    considered as a spherical  group rather  than  as individual atoms.   The
                    accessible surface was  computed  with a solvent radius of 1.5 °A.

Method C:   An extended atom procedure was used to compute the van der Waals  surface
                    area,  i.e. the computation  was  similar  to  Method B_with the  solvent
                    radius  excluded.                                       -

  Some of  the conclusions from comparison  of  these procedures  for  computation of
surface area were:
    1. Accessible  surface areas  calculated by the  extended  atom approach.  Method
       B, were generally  very  comparable to  Method  A.

    2. Surface  area was correlated  with mole fraction  aqueous  solubility  for  51
       alcohols that  are liquid  at  25°C,  plus  four alcohols  that are solids at  25°C  for
       which the  solubility  of the pure  subcooled  liquid was used.   The correlation
       showed  for the 55  compounds that an expression of the form:

-------
                              20
         A planar view of a terminal methyl group. The solid curves
show a carbon atom in the center with van der Waals radius of  1.6
A and, three hydrogen atoms with van der Waals radius  1.2 A. The
broken  curve  shows  the whole methyl  group treated as a single
sphere with radius of 2.0 A.
    Figure 3.  Definition of extended atom approach for  a terminal
              methyl group, after Valvani et al. (1976)

-------
                                       21
        log  (X) = ft  Surface Area + a

   correlated the  data  equally  well  by Method  A,  B  or C with  a  correlation
   coefficient  in  the range  0.986-0.989.    A similar conclusion  was  made  for
   correlation of  surface area with aqueous  solubility for seventeen  hydrocarbons
   (r = 0.980).

3.  Another correlation with aqueous  solubility  was performed  in  which the total
   surface   area  for   the  alcoholic   molecules  was   partitioned   between
   hydrocarbonaceous  surface  area  (HSA),  and  the polar  surface area  (PSA)
   associated with the exposed  portion of  the hydroxyl  group.   The correlating
   equation had the form:
        log  (X) = ft  HSA  + r PSA+«

   where  a. ft  and  y  were correlating coefficients.   This correlating equation
   was  used to  evaluate  the three  methods  for computation  of  surface  area
   This  evaluation gave  essentially similar  results  (r  ~  0.99).    Although  the
   correlation  coefficient  was similar to that found in No.   2 above, the authors
   judged from  these  results  that the extended atom  approach  was  able  to
   account for the  contribution  of the hydroxyl  group to  the  solubility  of the
   alcohol.                                                             —

4.  The  extended  atom  approach (Method   B)  afforded  several  computational
   advantages  over  the single  atom approach:   (a) the  extended  atom technique
   allowed one to eliminate  the  arbitrary selection of a specific  arrangement  of
   hydrogen  atoms   in  the  molecule,  (b)  the  simplest  standard geometrical
   representation of a molecule  compared to  within about 2% of that calculated
   by Hermann's procedure which accounted for exact conformation, or weighted
   average when  several conformations  were possible, and (c) the extended  atom
   approach offered considerable  advantages  in  terms  of computation time and
   costs.  In summary,  Valvani  et  al.   (1976)  concluded that the extended  atom

-------
                                           22
      approach  can  give  at  least  as  good,  or  slightly  better,  correlation  with
      solubility than the single atom  approach,  and that the extended  atom approach
      can be  consistently utilized in  solubility-surface area calculations.  It was also
      discussed for  the  case  of alcohols  that  the  extended  atom  approach  for
      calculation   of   surface  area  tended  to  eliminate  from  the  surface  area
      calculations  the  inaccessible portions  of the  molecule.   Although  somewhat
      inconsistent the  authors  claimed that the  use of extended  atoms  without
      solvent  radius had  much the same effect as  inclusion of a solvent radius term.
      For this reason,  method C gave  comparable correlation coefficient as Method
      B. The authors preferred  use of Method C (i.e.,  zero solvent radius or van der
      Waals  surface  area)  as   a method  for estimating surface area,  since  this
      eliminated  the  need to  arbitrarily  select  a  solvent  radius,  which  may  vary
      somewhat from  solvent to solvent

Problem of Determining Hydrogen-Atom  van der Waals Radius
 Another fundamental  reason  for  use  of  the  extended atom  approach relates  to  the
experimental difficulty  in determining  the van  der Waals  radius of  the hydrogen  atom.
Unlike interatomic  bond lengths  and bond angles, van der  Waals radii  are less well defined.
Further,  the parameterization  with explicit hydrogen atomic  parameters  seems to  unduely
complicate  the  process  of  building  and  manipulation of molecules  from  fragments  for
purposes of  surface area calculation.   In addition, extracting  explicit  hydrogen  van  der
Waals  parameters  is,  at  best,   speculative.   Most  of the  current molecular  force  fields
models, which are used describe the interactions between molecules, use an  extended atom
representation (Brooks  et al.  1983; Jorgensen  and Swenson, 1985 and  references therein),
and we have adapted this procedure in the current program.  The  difficulty associated with
extracting   van  der   Waals  parameters  from   standard  transport  data  and  viscosity
measurements arises  because  the hydrogen electron density is often buried within the  heavy
atom  to  which  it  is  attached,  and  consequently  it  is  not  "seen"  by  the  experiments.
Therefore, these parameters have often  been either empirically  adjusted  to fit some  set of
experimental measurements or  inferred from  data on H2, in which  case the heavy atom
parameters  require empirical adjustment.

-------
                                           23
 Richards (1977) concludes that  "within  limits the choice of van der  Waals radii is arbitrary,
with each  author  having  his  favorite list for the  different atoms.   The most appropriate
values  for  successful predictions may vary with  the problem."

Correlation of Hydrocarbon Solubility  with Solute Surface Area
 Various  investigators  have  proposed  relationships between  molecular surface area,  or
molecular  volume,  and aqueous  solubility or partition  coefficient,  such as  octanol/water
partition  coefficient   These  relationships derive from the earlier work of Langmuir  who
proposed  in  1925  that the  logarithm  of organic  compound  aqueous  solubility should  be
linearly proportional  to  molecular surface  area.   The  relationship  between  solubility  and
molecular volume was proposed in Scatchard's regular solution  theory in 1931  in which the
logarithm of aqueous solubility is linearly proportional to molecular volume (Pearlman, 1986;
Richards, 1977).

 Herman (1972) explained that the number of water molecules that can  be packed around a
given hydrocarbon  solute molecule is an  important quantity in predicting solute solubility in
aqueous  solution.   This is because  there  is a decrease  in  entropy due  to the tendency of
the water  dipoles in  the layer of water adjacent to the  hydrocarbon  to  orient  with  respect
to  the water molecules in the next water  layer.   This  does not  happen in the bulk liquid
away from the surface  of a hydrocarbon molecule.   The number of~water molecules  that
can be packed around a hydrocarbon is related  to  the surface  area  of  the  solvent cavity if
the  surface area  is  defined as  that  which passes through  the  centers of  the water
molecules  adjacent to the solute.  This is analogous to  the definition of accessible  surface
area

 The relationship between molar solubility,  S, and  accessible surface area,  A  , was given
by  Hermann  (1972) as
     b A    =  -kT In (S) - c                                                          (19)
         ace
where b and c  are temperature  dependent constants, and  k  is the Boltzmann constant  This
type  of  relationship  may consider  different  molecular  confirmations  by defining  A    as a
                                                                                 flCC
weighted  average of  the various confirmations,  although  this was shown by  Valvani et al.

-------
                                           24
(1976) not to be necessary for alphatic alcohols  and various hydrocarbons.  Hermann found
for single  conformation hydrocarbon compounds that  b =  0.033 kcal mole"' A2  at 25°C,
while  b = 0.030  kcal mol"1 ft2 for alkylbenzenes.

 Amidon et  at. (1975)  correlated the aqueous solubilities and molecular surface areas  for
the following classes of  monofunctional organic nonelectrolytes:  hydrocarbons,  alcohols,
ethers,  ketones/aldehydes,  esters, carboxylic  acids,  and olefins.   Molecular  surface  areas
were  calculated  by Hermann's  procedure  with  a solvent radius  of  1.5 A   Amidon  et al.
(1975)  summarized that the use  of  the  surface  area approach to  explain solubility results
from  consideration of  the following  steps in  transfer of  a solute from  pure  liquid to
aqueous solution:  removal  of solute from its pure liquid, creation of a cavity in water,  and
placement  of the  solute  into  the cavity.   These  sequence  of steps  give the  result at
equilibrium that  the logarithm  of  the  mole  fraction solubility  is proportional to  the  total
surface  area  in   the  organic   solute.     The  total  surface  area   may  be  divided   into
hydrocarbonaceous (HYSA)  and functional  group surface area (FGSA),  and the effects  of
these contributions to total surface area  may be  determined by regression  analysis  assuming
that the  hydrocarbonaceous and functional  group  portions of surface  area contribute
independently to  solubility.   Amidon et  al.  (1975)  showed for the different classes  of
aliphatic hydrocarbons  that the  logarithm of  organic  compound aqueous molal  solubility
could  be correlated  almost equally well  with HYSA  and FGSA, as with total surface  area
The effects  of  the  functional  group  (except  for  olefins)  seemed  to  make the  same
contribution  to  solubility for the case of pure  liquid  being chosen  as the  standard  state.
The sign on the  regression equations  which employed  an FGSA  term indicated that among
any class  of monofunctional aliphatic  compounds,  decreasing the functional  group surface
area increased compound aqueous solubility.

  Amidon  et  al. (1975)  showed that  the  relationship  between the logarithm of the aqueous
solubility and molecular surface area for  all 227 solutes being considered  (alkanes,  alcohols,
ethers,  ketones,  aldehydes,  esters and carboxylic  acids) was  0.988, which  was almost as
high  as the  average  of  the  correlation  coefficients  obtained  from  separate regression
equations for each class of solutes.  This suggested to Amidon  et  al. (1975) and  Pearlman

-------
                                           25
(1986)  that  the  aqueous solubility  of  the  organic  solutes  depends  almost  entirely  on

molecular surface  area and was seemingly independent of the chemical nature  of the  solute.

However,  it  must  be  recognized  that  this  conclusion  was  based  on monofunctional

substituted compounds.  The  conclusions from the discussions of  Amidon  et  al. (1975) and

Pearlman  (1986)  are not necessarily broadly applicable  to  a variety  of  solute  types; also,

these  discussions  are  somewhat inconsistent  with solubility  theories  which  attempt  to

account for interactions  between  polar and nonpolar entities.
                                                                              x   ^

  In subsequent work, Yalkowsky and Valvani (1979)  showed relationships between molecular

surface area and aqueous solubility and  octanol/water partition coefficient for  rigid aromatic

hydrocarbons.   The surface  areas were computed  with zero solvent radius  and  using  an

extended atom  approach for methyl and  methylene groups.   For thirty-two  components

having melting points  equal  to or greater  than 25°C, the  logarithm of the molar  solubility

was related to TSA and  melting point as
      log  Sw = a (TSA) +  yff(mp) + 5                                                   (20)


The relationship  was  derived  from the  recognition  that  the  molar  solubility  for  poorly

soluble solutes is  proportional to the mole fraction solubility, which is inversely  proportional

to  the  activity  coefficient  with a  temperature  dependent crystal  energy  term.    The

agreement  between  calculated surface  areas  and  solubilities  was .judged to  reflect  the

concept that  the molecular interactions  were  determined by  the molecular area of contact

It was not necessary to specifically correct for  structural  features  such  as  branching and

proximity  effects because  it was judged that  these effects were  reflected in  the surface

area  calculation  and  manifested  as the  amount  of  contact  between  the  hydrocarbon

molecule  and the  aqueous  solution.  Yalkowsky and Amidon (1979) also showed that TSA

was  linearly correlated  with  the logarithm  of calculated values of octanol-water partition

coefficient for rigid aromatic solutes.


  Pearlman (1980,  1986)  observed for  typical  hydrocarbons, including normal  and  branched

alkanes  and alkyl  substituted aromatics,  that  molecular surface  area  and total  molecular

volume are linearly related.    The  linear  relationship would not be expected for  a series  of

essentially spherical  molecules nor  for globular  entities such  as proteins  in  which  case

-------
                                           26
                                                                                     *
molecular surface  area and  volume  would vary  as molecular  radius  to the  two-thirds
power.

 Pearlman (1986) explains  for  partitioning that  Amidon's et al. (1975) observation that, the
correlation of molecular surface area with  aqueous solubility  for  all  solutes combined was
almost  as  high  as  the   average of   correlation  coefficients  obtained from  separate
regressions  for each  type  of solute, may lead to the supposition that the free  energy  of
solute-solvent  interaction   is  essentially the  same for  all solvents.   However,  Pearlman
suggests  that  as  solvents   (and  presumably   solutes)  become   increasingly  different,
differences  in solute-solvent  interaction energy are expected.   Nonetheless, a weak solute-
solvent  interaction in the enthalpic  sense (i.e. weak  "bonds"), is  more favored entropically (i.e.
solvent  molecules near the solute cavity surface are more asymmetric and less  structured
than when solute-solvent  interactions are  stronger).   Hence, while the enthalpy  of solute-
solvent  interaction may differ  between solutes  and solvents,  the free energy  of solute-
solvent  interaction will differ  to  a lesser extent   This  type  of  argument is employed  by
Pearlman  (1986)  to explain  why a  single  parameter  equation  involving  either  the  total
surface  area  or  the total  volume  of  the solute  provides  an  adequate correlation for
partitioning  for  a variety  of solutes.   An  analogus argument also may  hold for aqueous
solubility, whereas although some  functional groups can  "interact  more strongly  with  water
than others, they also interact with themselves more strongly,  with the net difference being
nearly the same  (Amidon et al., 1975; Pearlman, 1986).   As a result  of these explanations,
and  the success  of single-parameter surface  area regression equations,  it was  concluded
by  Pearlman  (1986)  for  the case  of  64  alkyl-  and  halo-substituted  aromatics  that
correlation  of  aqueous  solubility with ISA  was satisfactory,  while an equation  which
explicitly accounted for group-dependent differences in  solute-solvent interactions was not
particularly advantageous.

Effect of Organic Solvent on  Sorption of Aromatic Solutes onto Soil
 The following  describes  the  mathematical formulations that  are employed in  AROSOL to
describe the effect of  miscible organic  solvent in water  on  sorption of  aromatic solutes
onto  soil.   The  theoretical  development for these formulations have  been presented  in Fu
and Luthy (1986b).

-------
                                            27
 The  role  of soil  organic matter in the  sorption  of uncharged organic solutes has  been
studied  extensively,  and  it  has  been  found  that  the  organic  matter  in  soil/sediments  is
primarily responsible for  sorption  (Karickhoff, 1981).   In  studies  of hydrophobic  organic
solutes  at  low  loadings,  a  linear correlation is  often  observed between  solute  partition
coefficient, K  (L/kg), and soil/sediment organic  carbon content  The dependence of the
linear partition coefficient on organic carbon  content  can be expressed as
     K  =  K   OC                                                                      (21)
      p    oc
where OC  is the fraction organic carbon  content; and K  is the normalized organic carbon
partition coefficient  Hamaker and  Thompson (1972) suggested that KQC is highly soil or
sediment independent and is constant for a  particular organic solute.  A similar conclusion
is  made by Karickhoff  (1984)  in his review of  sorption  of uncharged  organic solutes of
limited  aqueous solubility  «  10"3 m/L)  that  are not susceptible  to  special interactions  with
soil organic carbon.

 Karickhoff  (1984), following  Mackay  (1979),  explains  that  sorption equilibrium  may be
defined as the  state in which  sorbate  fugacities are the  same  in the aqueous and sorbed
phases.   For systems  in which  sorption to organic  matter dominates over  sorption to
mineral  matter,  the  organic  carbon normalized-partition  coefficient  may be envisioned as
being proportional  to the ratio  of the compound's  activity  coefficient in  the  aqueous phase,
y^ and in  the  organic  phase, yoc, i.e.                                         "
            y«
      K  oc —                                                                        (22)
       OC    y
            '
             OC
In  Eq.   22  the  proportionality  constant  contains  the  reference  state  fugacities  and
appropriate unit  conversion factors.  The activity  coefficients "contrast" interactions of the
solute in  a  given phase with the cohesive interactions in the  reference state (i.e., pure  liquid
or  subcooled liquid).   Thus it may be  expected  for relatively  hydrophobic  organic solutes
that yw would be highly  variable, as are variations in  aqueous solubility, while y  ,  reflecting
cohesive  interactions  in  the organic  carbon  phase,  should be similar  to  that  for the
reference state  and  therefore  much  less  variable.   Hence, K   should  be dominated bv
                                                               OC                         '
variations in y ,  and as a first approximation

-------
                                           28
     K   «  y                                                                          (23)
            'v
      OC    ' W
Partition Coefficients



 The  octanol/water  partition coefficient, K  ,  like K  , describes the partitioning of a solute
                    r                    ow       oc               ~         s


between an aqueous phase  and a relatively immiscible hydrophobic phase.  For a  solute in



equilibrium with octanol  and  water, the  fugacity is the same in each phase, and K   is given



as the ratio of the mass concentration  in each phase.  Thus,


            c        r

      K   =-^=?^                                                              (24)
       ow
in which C    = solute concentration in  octanol; C  =  solute concentration in water; and  y
          oct                                    w                                      ' oct


= solute  activity  coefficient in octanol.   In Eq. 24 the  proportionality  constant,  J3,  is  a



conversion  factor which entails the  ratio of the molar volumes of water and octanol.   The



same standard state  is  chosen for the solute in each phase  (i.e., pure  liquid  or subcooled



liquid).






  Since  K   and  K    both  describe  organic  solute  partitioning  between  water  and  a
          OC        OW


hydrophobic organic  phase, it may be expected that these  parameters would be related





     K   oc  K                                                          ""             (25)
      ow     oc




The  concept  embodied  in Eq.  25 entails correlation  of  a partition  coefficient  for  a given



system  with that for a  reference  solvent/water system.  This  has been termed a linear free



energy  relationship (Leo et al.,  1971).   Linear  free  energy correlations with K   have been



used  to describe  aqueous solubility  (Chiou et al.,  1982),  bioaccumulation (Chiou et al.,  1977;



Neely and MacKay,  1982), and sorption of organics  onto  soils (Dzombak and  Luthy,  1984;



Lambert,  1967).






  Various  investigations  have developed empirical  expressions to  describe the  relationship



between K  and K  .  These investigations  have reported  excellent  correlation between K
          P       ow                                                                    OC


and K   for hydrophobic  solute  sorption,  with a linear regression equation usually  given in



the form

-------
                                            29
                                                                                      *



     log K   = a log K   + b                                                          (26)
       3  oc       3  ow




where a and b are regression coefficients.   Karickhoff (1984) concluded from these results


that   the   correlation  between   K    and  K    was  "a   somewhat  divergent  group   of


relationships."  This  was attributed to  various  factors  including hydrophilic  contribution  to


sorption, as  well as kinetic or steric effects.





KQC and Solute Solubility


 Organic  solute solubility  in water  can be  related to the solute's activity coefficient, y,  as


explained previously.   For hydrophobic  solutes  that are  liquid  at  ambient temperature and


which have  sufficiently  large values  of  y,  mole  fraction  solute  solubility,  X,  can  be


expressed as the reciprocal  of the activity coefficient   For  hydrophobic solutes  that are


solid  at ambient temperature,  a crystal  energy term must  be taken into  account, and if y  is


sufficiently large,  the mole fraction solute solubility can be  expressed as  in Eq. 3.   Entropy


of  fusion, ASf, may  be  incorporated into  Eq.  3  for  heat of  fusion, then the relationship


between solid  solute activity and  mole fraction  solubility can be expressed as


                        ASf(T  - T)

      log  y = -log  X -"	                                                   (27)
                         2.303 RT



For   hydrophobic   liquid   solutes,  the  system   temperature  is  greater  than  the   melting


temperature, and T  is set equal to  T  and the crystal term  vanishes.  Yalkowsky and Valvani


(1980)  have reviewed ASf data  for  "rigid"  organic  solutes  which  are  solids "at 25°C,  and


found that AS( is not highly variable  and   is in the range  of  12-15  cal/mol-°K.   "Rigid"


solutes included cyclic compounds (aliphatic or aromatic)  and molecules with less than five


atoms in  a  flexible  chain (Yalkowsky  and  Valvani,  1980).   It  is  recognized  by   chemical


thermodynamicists that the value  of  AS  is in the range of  13  cal/mole-°K for solid organic


compounds  (Prausnitz,  1969),  and  this  average  value   of  AS(  was  employed   in  this


investigation.




  Eq.  23  suggests  that  K   should be proportional  to  the  solute activity   coefficient,   y.


Hence by  combining  Eqs. 23 and 27,  an empirical equation of the following type may  be


expected to fit observed  sorption data

-------
                                          30
                                                                                    •i






                              AS,

     log K   = -a  log X	(T   - T) +  B                                   (28)

                           2.303 RT  m




in  which  a  and ft are  regression-fitted  parameters.   Karickhoff  (1981)  performed an



evaluation of Eq. 28 for  condensed  ring  aromatic  compounds using KQC data of Hassett et



al.  (1980)  for  benzene  and  polycyclic aromatic hydrocarbon (PAH)  compounds,  with ASf



assumed to  be  13.0  cal/mole-°K and  system  temperature T  at 298 °K  (25 °C).   The



empirical equation was given  as


     log K   = 0.921  log X -  0.00953 (T  - 298) -  1.405                           (29)
       w  oc            "*                m




This  equation was  evaluated for  other  families  of hydrophobic organic solutes  (triazines,



carbamates, organophosphates, and  chlorinated hydrocarbons), and was found  to  estimate



KQC usually within a factor of 2 to 3 of measured values (Karickhoff,  1984).  It was found



that  Eq.  29 worked well  for low molecular weight compounds  but tended  to overestimate



sorption of highly chlorinated,  high molecular weight compounds.  It  was concluded  that a



values  for these  type of  compounds may  be in the range of 0.7-0.8  which  is considerably



less  than that for polycyclic  aromatic hydrocarbons.   The sorption literature values for 47



organic compounds gave an  a  value of 0.83 and a /3 value of -0.93  (Karickhoff, 1984).






Solvent Effect on  Solute Sorption



 The theory behind Eqs.  21-25  and Eq.  28 is  summarized  by Fu  and Luthy (1986b) as



follows.  Linear  partition coefficients are  often observed for  hydrophobic  organic  solute



sorption onto soil  or sediments.  The sorption partition coefficient may be  normalized for



soils and sediments on  the  basis of fraction organic carbon, and normalized  for various



solutes on the basis of octanol/water partition coefficient or aqueous solubility.  Hence for



a  given soil  or  sediment, organic   solute sorption  is inversely  proportional  to  aqueous



solubility.   The following  explains  a  theoretical approach for predicting the observed  effect



of a miscible organic solvent in the aqueous  phase on organic solute  sorption onto  soil or



sediment.  This  approach  is  based on the linkage  between K   and aqueous solubility, and



the effect of solvent on  solubility.






 It has been demonstrated in Fu and  Luthy  (1985,  1986a) that aromatic solute solubility in  a

-------
                                           31
solvent/water  mixture  generally  increases  semi-logarithmically  with  increase  of  volume



fraction of  solvent  Using  a  simple log-linear solubility model  (1986a), the mole fraction



solubility of the solute in the solvent/water mixture can  be  expressed as



     log X  = log  X  + 
-------
                                           32
However, for the case  of solvent/water mixtures, the total  number  of moles  per liter is


not constant and the partition coefficient must be expressed in  units of mole/kg.  Thus, in


order to use  Eq. 34, the  ratio of the experimentally  determined sorption coefficients must


be expressed on the basis of total moles per  unit mass of  soil

         r    /  V       V      v              n
         I     /   water     solvent \  ,       '      I
     log |_Kp  \  	 + 	 // KpJ55.34) J  = - aaz                             (35)

                 water     solvent


where  V refers to  the solute-free volume  of  water  or  solvent  in  the  mixture,  and q

                x
represents the molar" volume  of water or solvent




 Eq. 35 indicates that K   for a solvent/water mixture decreases  semi-logarithmically  with


the increase of solvent  volume  fraction.  The  semi-logarithmic relationship predicted  by Eq.


35 can be  shown on a semi-logarithmic plot  with volume  fraction solvent  on the abscissa


and  K   (mole/kg) on  the ordinate.  The  slope  of  this plot  represents the combined .effect


of  both a  and a.   The  a term  represents  the  effect of solvent  on  increase  of  solute


solubility, while the  a term relates to  the  dominance of y  in  K   among  various  solutes.


The  a  term should approach  unity  if  the  fugacity  coefficient  for  solute  in soil/sediment


organic carbon  is relatively independent of  solute (Karickhoff, 1984), and  if  the  soil organic


carbon  properties are independent of change  in solution phase composition.




 Soil sorption  partition  coefficient  data  were  presented  by  Fu  and iuthy  (1986b)  for


various lower molecular  weight,  aromatic  solutes  in  solvent/water  systems."'"From  these


data it  was  possible to  determine  experimental  values  of  the solvent volume fraction-


coefficient  in Eq.  35, (a
-------
                                           33
Partition Coefficient in Solvent Water Mixtures
 The  effect of  solvent  on organic solute sorption partitioning  was  examined  by Fu  and
Luthy  (1985, 1986a,  1986b) using Eq.  35  and experimental solubility and  sorption data  Eq.
35  was  examined using  experimental sorption data for seven  systems in conjunction with
the respective  a values.   The observed a values showed that the aobs values were  in the
range of 0.41-0.63.  The average  
-------
                                          34
                                    Chapter Three
                   DESCRIPTION OF THE COMPUTATIONAL PROGRAMS
                            AND EXAMPLE CALCULATIONS
 This chapter discusses  the  general  features of the  computer programs,  named  AROSOL
and  MOLACCS.   The program AROSOL is  designed to aid prediction  of  aromatic solute
solubility in water,  and  in miscible organic solvent-water mixtures,  and  to  estimate the
effect  of  miscible  organic  solvent in water  on sorption of  aromatic   solutes  on to
soils/sediments.  The program MOLACCS computes MOLecular Accessible Surface  area  A
molecular   surface  area  approach   is  one   technique  by  which  organic  solute  aqueous
solubility and solubility  in  miscible  solvent/water  mixtures  may  be  predicted,  and the
MOLACCS  program provides  surface area  parameters for this approach.   The theoretical
approaches and the computational methodologies employed in AROSOL and  MOLACCS  have
been  described in the previous  chapter.   The  use of the  programs is described in turn
below.

AROSOL Program Organization
 Figure 4  is an  outline of  the  computational methodology  employed  in the  AROSOL
program.   The program  utilizes four  techniques  to  predict  solubility:   (i)  log  linear, (ii)
UNIFAC, (iii) excess free energy,  and (iv) molecular surface area  The user may select any
or  all  of  these  techniques  to  evaluate  solubility  depending  on  the availability  of  data,
physical constants, and  other  specific information  required  for  each  approach.   The
program was developed  to accommodate a  variety  of  input parameters to predict  solubility.
The  program consists of the following subroutines:
(a) INPUT:   Input data are read from this subroutine
(b) SETUP:  Reads input data from the console and  stores input  into a  data file
(c) UNIFAC:  Calculates activity coefficients for each component
(d) REG1:  Linear  least-square  regression for the log-linear procedure
(e) REG2:  Two parameter least-square  regression for  the  excess free energy procedure
(f) SOLCAL:   Calculates solute  solubility

-------
               35
Figure 4.  AROSOL Program Structure

-------
                                           36

(g) LOGNR:   Log-linear approach subroutine calculations
(h) UIMIEST:   Numerical estimation technique for estimating solute
             solubility mole fraction from  activity coefficient
(i) MSA:  Molecular surface  area approach  calculations
(j) EXFREN:  Excess free energy approach  calculations
(k) ADS:  Calculates  solute  sorption partition  coefficient

 The AROSOL computer program  is written  in FORTRAN-77, and it can  be run on any IBM
or IBM-compatible personal computer with  at  least 256 K  internal memory.   A listing  of
the program is presented in Appendix A

 The following  examples illustrate the use of the  program.   These examples illustrate  the
calculation  approach employed in  the log-linear,  UNIFAC, excess free energy, and molecular
surface area approaches.

Estimation  of Solubility and Sorption Partition Coefficient
Example Calculation I:  No  Input File
Quinoline in Methanol-Water                                      	

 Figure  5  shows  an  example  of  calculation  of  quinoline  solubility  in  methanol-water
mixtures by  the  log-linear, UNIFAC,  and excess  free  energy  approaches.   In this example
the user inputs data from  the terminal.

 The program begins  with a RETURN key  stroke.  The  user  is  asked if there is an input
file,  for which in this example the response is "no".  The  user  enters  a response that an
input file is to be established, and in this example the input file  is named Q.I (for quinoline
input).   The user  is then asked to  type  in the name of the solvent (methanol, component 1)
and  solute (quinoline, component 2),  using  twenty characters  or  less  for each name.   The
user is  then  asked  to  input the molecular weight  of  solvent, solute, and  water.  The  format
for input is free  format, in which  a  space  or  comma  between the data  entry identifies the

-------
                                          37
appropriate  molecular  weight in the order  solvent,  solute, and  water.   The  user  is  then
asked to  input the  densities  of the components  in the  order solvent,  solute,  and water
using  the  same free input format

 The  user is then asked  to  input known solubility for the solute in the  solvent  The  data
are input  in the order  per cent by  volume solvent, followed  by solubility in mg/L in the
mixture, using the  free format with  a separate line being used  for each  data pair.  The last
data entry is followed by the input  of -1 -1  on a separate line to indicate completion of
the data entry file.

 The  user now specifies which of the four calculation  approaches  are to  be  employed.
Each  of the four approaches  are employed in this  example.

 The  user is  then  asked if  K  for  the mixed solvent system  is to be  calculated  'In  this
example  the response is "yes;" and the user  will  be  asked  later  to   input the  fraction
organic  carbon content of the  soil  or  sediment  As  explained  later, if  the organic carbon
content of the soil  or  sediment is unknown, the program  computes KQC  by inputting OC =
100%.

 The  user now  inputs solute  heat of  fusion in cal/mole,  solute melting temperature  (K),  and
system temperature (K) using the free  format  If  solute heat of fusion  is not known,  then
the user is  to enter zero (0) as the value, in which  case the fugacity ratio expression will
be  computed by Eq. 6.

 The  user is now asked  if it is desired to see the secondary  group listing for the  UNIFAC
calculations.  The  listing  is requested  in this  example,  and the  89 secondary groups are
displayed    The  user  is  asked  how  many  secondary  groups  appear  in the  solvent
component, in this  example there is only  one solvent secondary group.   Similarly the  user
is  asked how many secondary  groups  appear  in the solute, in this example the  solute may
be  constructed  from  two  subgroups.   The user now enters  the  number  of times  each
secondary group appears in the solvent, and the  identification  number  of  the  secondary
group.   In  this  example  the solvent is  comprised of  one  secondary  group, number 16

-------
                                38
              Figure 5. Example Calculation I:  No Input
C:\JKF >      File-Quinoline Solubility in Methanol/Water
C:\JKF >aro3ol
             *               AROSOL                  *
             *     Aromatic Solute Solubility        *
             *     in Solvent/Water Mixtures         *
             *                                       *
             *               by                      *
             *          Jaw-Kwei Fu                  *
             *          Charles Brooks               *
             *          Richard G. Luthy             *
             *     Carnegie-Mellon University        *
             *     Pittsburgh, Pennsylvania          *
             *                                       *
             *          August, 1986                 *
Hit RETURN key to continue

 This program estimates aromatic solute solubility in
 solvent/water mixtures.  This program is designed to
 utilize different levels of input parameters to estimate
 aromatic solute solubility. This program employes four
 approaches: LOG-LINEAR, UNIFAC, EXCESS FREE ENERGY, and
 MOLECULAR SURFACE AREA. The input parameters can be read
 from either an existing input file or from the terminal.
 The program estimates solute solubility via approaches
 specified by the user, and stores the results into an
 output file.


 Hit RETURN key to continue

DO YOU HAVE INPUT FILE? (Y OR N)
n
DO YOU WANT TO SET UP AN INPUT FILE? (Y OR N)
y
GIVE THE FILE NAME IN WHICH INPUT DATA ARE TO BE STORED
q.i
INPUT THE NAME OF COMPONENT  1 IN 20 CHARACTERS 1 -SOLVENT-. 2-SOLUTE
METHANOL
INPUT THE NAME OF COMPONENT  2 IN 20 CHARACTERS 1-SOLVENT, 2-SOLUTE
QUINOLINE
INPUT MOLECULAR WEIGHT OF SOLVENT, SOLUTE, WATER
32.04 129.16 18.02
INPUT DENSITIES OF SOLVENT. SOLUTE AND WATER
.7914 1.0929 .9971
INPUT KNOWN SOLUTE SOLUBILITY IN % SOLVENT, AND SOLUTE SOLUBILITY IN MG/L,
FINISHED AS -1 -1.  DATA INPUT IN PAIRS WITH ONE PAIR PER LINE
0 6832
10 14603
20 34048
30 75358
40 125493
50 251189
-1 -1
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY  THE LOG-LINEAR APPROACH?
 (Y OR N)
y
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY THE UNIFAC APPROACH? (Y OR N)
y
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY THE EXCESS FREE ENERGY APPROACH?
(Y OR N)
y
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY
THE MOLECULAR SURFACE AREA APPROACH? (Y OR N)
y
DO YOU WANT TO ESTIMATE ADSORPTION PARTITION COEFFICIENT? (Y OR N)
y
ENTER SOLUTE HEAT OF FUSION (CAL/MOLE), SOLUTE MELTING TEMPERATURE (K),  AND
SYSTEM TEMPERATURE (K), IF HEAT OF FUSION IS NOT AVAILABLE USE 0 AS THE VALUE
3751.8 288.6 298
DO YOU WANT TO SEE THE UNIFAC SECONDARY GROUP LISTING? (Y OR N)
y

-------
                                39
             Figure 5.  Example Calculation I (continued)
 1 CH3
 6 CH=CH
11 AC
16 CH30H
21 CHO
26 CH2O
31 CHNH2
36 CH2N
41 CH3CN
46 CHCL
51 CHCL3
56 CH2N02
61 CH2SH
66 CH-TRIP-C
71 ACF
76 CF
81 SI
86 AMIDE
                 2 CH2
                 7 CH2=C
                12 ACCH3
                17 H20
                22 CH3COO
                27 CH-0
                32 CH3NH
                37 ACNH2
                42 CH2CN
                47 CCL
                52 CCL3
                57 CHN02
                62 FURFURAL
                67 C-TRIP-C
                72 DMF-1
                77 COO
                82 SIH20
                87 CON(ME)2
 3 CH
 8 CH=C
13 ACCH2
18 ACOH
23 CH2COO
28 FCH20
33 CH2NH
38 C5H5N
43 COOH
48 CH2CL2
53 CCL4
58 ACN02
63 (CH20H)2
68 ME2SO
73 DMF-2
78 SIH3
83 SIHO
88 CONMECH2
                    4 C
                    9 C=C
                   14 ACCH
                   19 CH3CO
                   24 HCCO
                   29 CH3NH2
                   34 CHNH
                   39 C5H4N
                   44 HCOOH
                   49 CHCL2
                   54 ACCL
                   59 CS2
                   64 I
                   69 ACRY
                   74 CF3
                   79 SIH2
                   84 SIO
                   89 CON(CH2)2
 5 CH2=CH
10 ACH.
15 OH
20 CH2CO
25 CH30
30 CH2NH2
35 CH3N
40 C5H3N
45 CH2CL
50 CCL2
55 CH3N02
60 CH3SH
65 BR
70 CL(C=C)
75 CF2
80 SIH
85 TERT-N
 INPUT THE NUMBER OF SECONDARY GROUPS IN COMPONENT METHANOL

 INPUT THE NUMBER OF SECONDARY GROUPS IN COMPONENT QUINOLINE
1
 INPUT NUMBER OF TIMES SECONDARY GROUP i APPEARS IN COMPONENT  METHANOL
 REPEAT n TIMES UNTIL n = NUMBER OF SECONDARY GROUPS
1 16
 INPUT NUMBER OF TIMES SECONDARY GROUP i APPEARS IN COMPONENT  QUINOLINE
 REPEAT n TIMES UNTIL n = NUMBER OF SECONDARY GROUPS
4 10 1 40
 INPUT LOG OCTANOL/WATER PARTITION COEFFICIENT
 OF SOLUTE FOR THE EXCESS FREE ENERGY CALCULATION
2.04
INPUT SOLUTE HYDROPHOBIC SURFACE AREA AND POLAR SURFACE AREA.
INPUT IN UNITS A**2
142.877 9.078
INPUT SOLVENT MICROSCOPIC INTERFACIAL FREE ENERGY BETWEEN HSA AND PSA,
INPUT IN UNITS OF DYNE/CM**2
24.6 47.7
INPUT ORGANIC CARBON CONTENT OF ADSORBENT. IN X
2
GIVE THE OUTPUT FILE NAME IN WHICH THE SOLUBILITY
CALCULATION DATA WILL BE STORED
q.o .                                                    ~
INPUT PERCENT VOLUME SOLVENT IN THE MIXTURE TO BE EVALUATED
0                                                               -
LOG-LINEAR REGRESSION INTERCEPT    -3.0002 SLOPE     .03573
   LOG-LINEAR ESTIMATION METHOD
        SOLVENT FRACTION [X VOL]        .00
        LOG LINEAR ESTIMATION SOLUBILITY [MOLE FRACTION]
        LOG LINEAR ESTIMATION SOLUBILITY [MG/L]   . 710E+04
                                                           . 100E-02
  UNIFAC ACTIVITY COEFFICIENT ESTIMATION
    COMPONENT         MOLE FRAC  LN ACTCF
                                                ACTCF
   QUINOLINE
   METHANOL
.0000
.0000
                                      7.51707
                                       .00000
                  1839.1690
                     1.0000
   UNIFAC ESTIMATION
        METHANOL            FRACTION [X VOL]        .00
        QUINOLINE           SOLUBILITY [MOLE FRACTION]    544E-03
        QUINOLINE           SOLUBILITY [MG/L]   .387E+04
 THE SOLVENT-SOLVENT INTERACTION PARAMETERS ARE  .7644  AND .4566

   EXCESS FREE ENERGY ESTIMATION METHOD
        SOLVENT FRACTION [X VOL]        .00
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MOLE FRACTION]    961E-03
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MG/L]       683E+04
   MOLECULAR SURFACE AREA APPROACH
        SOLVENT FRACTION [X VOL]        .00
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MOLE FRACTION]
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MG/L]   .683E+04
                                                                     .961E-03

-------
                               40


             Figure 5.  Example Calculation I (continued)
 ADSORPTION COEFFICIENT OF QUINOLINE            IN WATER/METHANOL
MIXTURES IS   .515E+02
ANOTHER CALCULATION? (Y=1,N=2)
i.
INPUT PERCENT VOLUME SOLVENT IN THE MIXTURE TO BE EVALUATED
20
   LOG-LINEAR ESTIMATION METHOD

        SOLVENT FRACTION [X VOL]      20.00
        LOG LINEAR ESTIMATION SOLUBILITY [MOLE FRACTION]   .518E-02
        LOG LINEAR ESTIMATION SOLUBILITY [MG/L]   .321E+05

  UNIFAC ACTIVITY COEFFICIENT ESTIMATION
    COMPONENT         MOLE FRAC  LN ACTCF       ACTCF

   QUINOLINE                 .0000    5.84863      346.7577
   METHANOL                  .1004     .00000        1.0000


   UNIFAC ESTIMATION
        METHANOL            FRACTION [X VOL]      20.00
        QUINOLINE           SOLUBILITY [MOLE FRACTION]    .309E-02
        QUINOLINE           SOLUBILITY [MG/L]   .194E+05

   EXCESS FREE ENERGY ESTIMATION METHOD
        SOLVENT FRACTION [X VOL]      20.00
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MOLE FRACTION]   .253E-02
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MG/L]       .159E+05
   MOLECULAR SURFACE AREA APPROACH

        SOLVENT FRACTION [X VOL]      20.00
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MOLE  FRACTION]    .655E-02
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MG/L]    .404E+05


 ADSORPTION COEFFICIENT OF QUINOLINE            IN WATER/METHANOL
MIXTURES IS   .223E+02
ANOTHER CALCULATION? (Y=1.N=2)
2
Stop - Program terminated.                            	 	

C:\JKF >

-------
                               41
            Figure 5.  Example Calculation I (continued)
C:\JKF >
C:\JKF >type q.i
METHANOL
QUINOLINE
         32.0400000
   7.914000E-001
           .0000000
         10.0000000
         20.0000000
         30.0000000
         40.0000000
         50.0000000
         -1.0000000
y
y
y
y
y
       3751.8000000
             1
             2
          1.0000000
          4.0000000
          2.0400000
        142.8770000
         24.6000000
          2.0000000

C:\JKF >
     129.1600000         18.0200000
    1.0929000  9.971000E-001
    6832.0000000
   14603.0000000
   34048.0000000
   75358.0000000
  125493.0000000
  251189.0000000
      -1.0000000
     288.6000000
         16
         10

       9.0780000
      47.7000000
     298.0000000
  1.0000000
                      40
C:\JKF >
C:\JKF >type q.o
 SOLUTE USED IN THE CALCULATION IS
 SOLVENT USED IN THE CALCULATION IS
 PARAMETER
 MOLECULAR WEIGHT
 DENSITY
 MOLAR VOLUME
METHANOL
   32.04
   .7914
   40.49
QUINOLINE
METHANOL

QUINOLINE
    129.16
    1.0929
    118.18
  WATER
  18.02
  .9971
.-18.07
 OCTANOL/WATER PARTITION COEFFICIENT  .110E+03
 SOLUTE SOLUBILITY PREDICTIONS IN MIXED SOLVENT SYSTEM
 VOLUME   LOG-LINEAR
 SOLVENT  APPROACH
        MOLE    SOL.
    *      [-]  [MG/L]
      UNIFAC
      APPROACH
   MOLE    SOL.
      [-]  [MG/L]
 EXCESS FREE     MOLECULAR SURFACE
 ENERGY APPROACH AREA APPROACH
 MOLE    SOL.    MOLE    SOL
    [-]  [MG/L]     [-]  [MG/L]
    .00 .10E-02 .71E+04 .54E-03 .39E+04 .96E-03 .68E+04 .96E-03  68E+04
  20.00 .52E-02 .32E+05 .31E-02 .19E+05 .25E-02 . 16E+05 .66E-02 .40E+05
 *******

  SOLUTE SORPTION PARTITION COEFFICIENT ESTIMATION
 METHANOL
    [X]
        .00
      20.00
   OC OF ADSORBENT
        [X]
        2.00
        2.00
          KP OF SOLUTE
             [MOLE/KG]
                 51.53
                 22.26
C:\JKF >

-------
                                           42
(methanol).  The user  now  inputs the number  of times  each secondary group appears in the
solute, and the identification  number of each  secondary group.  This  is repeated using free
floating  format until  all  the  secondary  groups have been  specified.   In  this  example,
quinoline is constructed from a pyridine-type derivative and  aromatic  -CH  groups  (ACH).
Thus  four  (4)  secondary  group  ACH, number  (10),  and one  (1)  secondary group C5H3N,
number (40),  comprise the molecule quinoline.

 Next the  user inputs  the logarithm of  the  solute  octanol/water partition coefficient;  this
value  is used in the excess free energy  calculation.

 The  user  is then asked to input the solute hydrophobic surface area and the polar surface
area  in units  of &   The  data  are  input in their  respective  order  using the  free  format
These data are  obtained from the  MOLACCS program,  as  demonstrated in a latter  example
calculation.   The  user is then  asked to  input the  solvent  microscopic interfacial free
energies for  the hydrophobic surface area  and the polar surface area in  units of dynes per
cm2.

 The  user is  then  asked to input  the  percent  organic  carbon  content of  the soil  or
sediment  In this  example the calculation is performed for a  soil having  2% organic carbon
content   If  the organic  carbon content is unknown,  the  user  should  specify a  value  of
100%, in which case  K becomes equal to  K  .                              _-
                      p           —       oc
 The  user is then asked to name the output file in which the  results  of the calculations will
be  stored.  In  this example the output file  is named  Q.O, for  quinoline output  The user  is
then asked to  specify a solvent/water volume composition to  be evaluated.  In this example
the user has  requested calculation for 0% by volume methanol  (i.e. 100%  water).

 The   output  for the  various  calculations are now  presented, for  which  the   program
computes and  displays firstly the slope  and the intercept  values for the log-linear method;
the solvent volume  fraction  specified is also shown.   The log-linear computation method
employs Eq.  15, in  which the log-linear solute solubility relationship  is computed  in terms
of  mole  fraction  solute  in conjunction  with  volume  fraction  solvent.   The  log-linear

-------
                                           43
solubility output is shown as  mole fraction, for which quinoline solubility  in pure  water is
estimated from  the  input data as  1.0 x  10"3.  The predicted  mole fraction solute  solubility
is  then converted by procedures described in Chapter  2 to  customary solubility  units of
mg/L  of solution,  or  7100  mg/L in this example.

 Next the  results  for the UNIFAC  calculation procedure are presented  First, the solute  and
solvent activity  coefficients are shown.   The  specified  volume  fraction solvent is shown,
followed by the  presentation of  the solute mole fraction  solubility.   The solute activity
coefficient is related to mole fraction by  procedures discussed in  Chapter  2, which is then
converted  and displayed in  units of mg/L,  i.e. 3870 mg/L in this example.

 Next, the results for the  excess free energy  calculation procedure are presented in units
of  both mole  fraction  and  mg/L.  The  regression coefficients  for determinatibn of  the
solvent-water interaction parameters,  A    and A3 ^ are also shown.

 The  results from the molecular surface area calculation  are presented next

 The  solute sorption partition coefficient is  then calculated  by  procedures  described in
Chapter 2.

 The  user  is then asked if  another calculation is to be performed.  In this example the user
inputs a "1" for yes, and specifies 20% by volume methanol for the  next calculation.

 The  results  for  the new  solvent volume fraction calculation are  presented  in  the  same
order as in the previous  discussion.   The regression coefficients  for  the log-linear  and
excess free energy calculations   are  not  repeated, however.   At  the conclusion of  this
calculation  the user  terminates the calculation by inputing  the  number  "2".

 The  manner  in which data in the input and output files  may  be listed is shown at the  end
of  the example.
Example calculation II:   No Solubility Data
Solubility  of  Monochlorobenzene in Acetone-Water

-------
                                           44
 In this example  the  user  has  no solubility information,  hence the only calculation approach
which may be  employed is the UNIFAC technique.  The user is asked to input the  solvent
solute, and water properties.  This is  done according to the procedures described in the
previous example.  The user does not request that  the calculations be  performed  by the
the log-linear, or the excess free energy approach, or the  molecular surface  area approach
because of  lack  of data   Normally one would desire some data from which to establish a
correlation for  the  log-linear  approach,  and in the  case of the  excess  free  energy
approach  one  would normally  desire  at least pure solvent solute solubility  as  an  input
parameter.

 For  the  case  of the UNIFAC approach,  the solvent, acetone,  is  recognized as  being
comprised of  two secondary groups:   one  ~CH  (secondary  group  1) and  one CH3CO-
(secondary group  19).  The solute  is comprised of two secondary groups:  Five - aromatic
CH (secondary group  10), and  one  -  aromatic  C-CI (secondary  group  54).   The  user
requests that the solubility prediction calculation be performed for the case of 0% and 20%
by  volume  solvent    The results  are  displayed  in  the same   fashion as  in  the  previous
example, with the input and output files shown also at the end  of the calculation.

Example Calculation III:  Read from an Input File,
Naphthalene Solubility in Methanol-Water                           —

 In this  example  the user has  an input  data file  and requests the  program to estimate
solubility  and  sorption partition  coefficient in 0, 10,  and  50% by volume  solvent   The
results from the  example  calculation are shown in Figure 7.  In this example  the input file
is   shown  at  the  end  of  the  calculation.    The  necessary   solvent  solute,  and  water
parameters are  entered, as  well as the  solubility data  The  necessary data  are  entered
according  to  the  format  explained  in  Example I.  Note  for  purposes  of  the  UNIFAC
calculation that naphthalene is comprised of eight aromatic-CH  secondary groups, and two
aromatic-C  secondary  groups.   The calculation proceeds as described  previously,  and the
results are displayed  in an output file.

-------
                                45


           Figure 6.   Example Calculation II:   No Solubility
         Data - Monochlorobenze  Solubility  in Acetone/Water

C:\JKF >
C:\JKF >arosol
             *****************************************

             *               AROSOL                  *
             *     Aromatic Solute Solubility        *
             *     in Solvent/Water Mixtures         *
             *                                       *
             *               by                      *
             *          Jaw-Kwei Fu                  *
             *          Charles Brooks               *
             *          Richard G. Luthy             *
             *     Carnegie-Mellon University        *
             *     Pittsburgh,  Pennsylvania          *
             *                                       *
             *          August, 1986                 *

             ft***********************************.*****


Hit RETURN key to continue

 This program estimates aromatic solute solubility in
 solvent/water mixtures.  This program is designed to
 utilize different levels of input parameters to estimate
 aromatic solute solubility. This program employes four
 approaches:  LOG-LINEAR, UNIFAC, EXCESS FREE ENERGY, and
 MOLECULAR SURFACE AREA. The input parameters can be read
 from either an existing input file or from the terminal.
 The program estimates solute solubility via approaches
 specified by the user, and stores the results into an
 output file.


 Hit RETURN key to continue

DO YOU HAVE INPUT FILE? (Y OR N)
n
DO YOU WANT TO SET UP AN INPUT FILE? (Y OR N)
y
GIVE THE FILE NAME IN WHICH INPUT DATA ARE TO BE STORED	
cbace.i
INPUT THE NAME OF COMPONENT  1 IN 20 CHARACTERS 1-SOLVENT, 2-SOLUTE
ACETONE
INPUT THE NAME OF COMPONENT  2 IN 20 CHARACTERS 1-SOLVENT, 2-SOLUTE
1CHLOROBENZENE
INPUT MOLECULAR WEIGHT OF SOLVENT, SOLUTE.  WATER
58.08 112.56 18.02
INPUT DENSITIES OF SOLVENT, SOLUTE AND WATER
.7899 .9630 .9971
INPUT KNOWN SOLUTE SOLUBILITY IN * SOLVENT,  AND SOLUTE SOLUBILITY IN MG/L,
FINISHED AS -1 -1,  DATA INPUT IN PAIRS WITH ONE PAIR PER LINE
-1 -1
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY  THE LOG-LINEAR APPROACH?
 (Y OR N)
n
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY THE UNIFAC APPROACH? (Y OR N)
K
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY THE EXCESS FREE ENERGY APPROACH?
(Y OR N)
n
DO YOU WANT TO ESTIMATE SOLUTE SOLUBILITY BY
THE MOLECULAR SURFACE AREA APPROACH? (Y OR N)
n
DO YOU WANT TO ESTIMATE ADSORPTION PARTITION COEFFICIENT? (Y OR N)
n
ENTER SOLUTE HEAT OF FUSION (CAL/MOLE). SOLUTE MELTING TEMPERATURE (K),  AND
SYSTEM TEMPERATURE (K), IF HEAT OF FUSION IS NOT AVAILABLE USE 0 AS THE VALUE
0 295.74 298
DO YOU WANT TO SEE THE UNIFAC SECONDARY GROUP LISTING?(Y OR N)
y

-------
                                46
             Figure 6.  Example Calculation II  (continued)
 1 CH3
 6 CH=CH
11 AC
16 CH30H
21 CHO
26 CH2O
31 CHNH2
36 CH2N
41 CH3CN
46 CHCL
51 CHCL3
56 CH2N02
61 CH2SH
66 CH-TRIP-C
71 ACF
76 CF
81 SI
86 AMIDE
 2 CH2
 7 CH2=C
12 ACCH3
17 H20
22 CH3COO
27 CH-0
32 CH3NH
37 ACNH2
42 CH2CN
47 CCL
52 CCL3
57 CHNO2
62 FURFURAL
67 C-TRIP-C
72 DMF-1
77 COO
82 SIH20
87 CON(ME)2
 3 CH
 8 CH=C
13 ACCH2
18 ACOH
23 CH2COO
28 FCH20
33 CH2NH
38 C5H5N
43 COOH
48 CH2CL2
53 CCL4
58 ACN02
63 (CH20H)2
68 ME2SO
73 DMF-2
78 SIH3
83 SIHO
88 CONMECH2
 4 C
 9 C=C
14 ACCH
19 CH3CO
24 HCOO
29 CH3NH2
34 CHNH
39 C5H4N
44 HCOOH
49 CHCL2
54 ACCL
59 CS2
64 I
69 ACRY
74 CF3
79 SIH2
84 SIO
89 CON(CH2)2
 INPUT THE NUMBER OF SECONDARY GROUPS IN COMPONENT ACETONE
 5 CH2=CH
10 ACH
15 OH
20 CH2CO
25 CH30
30 CH2NH2
35 CH3N
40 C5H3N
45 CH2CL
50 CCL2
55 CH3NO2
60 CH3SH
65 BR
70 CL(C=C)
75 CF2
80 SIH
85 TERT-N
 INPUT THE NUMBER OF SECONDARY GROUPS IN COMPONENT 1CHLOROBENZENE
2
 INPUT NUMBER OF TIMES SECONDARY GROUP i APPEARS IN COMPONENT  ACETONE
 REPEAT n TIMES UNTIL n = NUMBER OF SECONDARY GROUPS
1 1 1 19
 INPUT NUMBER OF TIMES SECONDARY GROUP i APPEARS IN COMPONENT  1CHLOROBENZENE
 REPEAT n TIMES UNTIL n = NUMBER OF SECONDARY GROUPS
5 10 1 54
GIVE THE OUTPUT FILE NAME IN WHICH THE SOLUBILITY
CALCULATION DATA WILL BE STORED
cbace.o
INPUT PERCENT VOLUME SOLVENT IN THE MIXTURE TO BE EVALUATED
0
  UNIFAC ACTIVITY COEFFICIENT ESTIMATION
    COMPONENT         MOLE FRAC  LN ACTCF
   1CHLOROBENZENE
   ACETONE
             .0000
             .0000
      9.86048
       .00000
ACTCF

 19158.0400
     1.0000
   UNIFAC ESTIMATION                                           	
        ACETONE             FRACTION [X VOL]        .00
        1CHLOROBENZENE      SOLUBILITY [MOLE FRACTION]   .522E-04
        1CHLOROBENZENE      SOLUBILITY [MG/L]   .325E+03
ANOTHER CALCULATION? (Y=1,N=2)
1
INPUT PERCENT VOLUME SOLVENT IN THE MIXTURE TO BE EVALUATED
20
  UNIFAC ACTIVITY COEFFICIENT ESTIMATION
    COMPONENT         MOLE FRAC  LN ACTCF
   1CHLOROBENZENE
   ACETONE
             .0000
             .0579
      8.46858
       .00000
ACTCF

  4762.7260
     1.0000
   UNIFAC ESTIMATION
        ACETONE             FRACTION [X VOL]      20.00
        1CHLOROBENZENE      SOLUBILITY [MOLE FRACTION]
        1CHLOROBENZENE      SOLUBILITY [MG/L]   .111E+04
ANOTHER CALCULATION? (Y=1.N=2)
2
Stop - Program terminated.
                                         .210E-03
C:\JKF >

-------
                              47
           Figure 6.  Example Calculation II (continued)
C:\JKF >
C:\JKF >type cbace.i
ACETONE
1CHLOROBENZENE
         58.0800000       112.5600000        18.0200000
   7.899000E-001  9.630000E-001  9.971000E-001
         -1.0000000        -1.0000000
n
Y
n
n
n
       3844.6200000
             2
             2
          1.0000000
          5.0000000

C:\JKF >
C:\JKF >
C:\JKF >type cbace.o
     295.7400000
     298.0000000
          1        - 1.0000000
         10         1.0000000
                      19
                      54
 SOLUTE USED IN THE CALCULATION IS
 SOLVENT USED IN THE CALCULATION IS
 PARAMETER
 MOLECULAR WEIGHT
 DENSITY
 MOLAR VOLUME
ACETONE
   58.08
   .7899
   73.53
1CHLOROBENZENE
ACETONE

1CHLOROBENZENE
    112.56
     .9630
    116.88
WATER
18.02
.9971
18.07
 SOLUTE SOLUBILITY PREDICTIONS IN MIXED SOLVENT SYSTEM
 VOLUME   LOG-LINEAR
 SOLVENT  APPROACH
        MOLE    SOL.
    *      [-]  [MG/L]
      UNIFAC
      APPROACH
   MOLE    SOL.
      [-]  [MG/L]
 EXCESS FREE 	 MOLECULAR SURFACE
 ENERGY APPROACH AREA APPROACH
 MOLE    SOL.    MOLE---SOL.
    [-]  [MG/L]     [-]  [MG/L]
    .00 .OOE-t-00 .OOE-t-00 .52E-04 .33E+03 .OOE+00 .OOE+00 .OOE+00  .OOE+00
  20.00 .OOE+00 .OOE+00 .21E-03 .11E+04 .OOE+00 .OOE+00 .OOE+00  .OOE+00
C:\JKF >

-------
                              48


         Figure 7.   Example Calculation III:  Read from
     an Input File -  Naphthalene  Solubility in Methanol/Water

             *****************************************

             *                AROSOL                   *
             *     Aromatic Solute Solubility        *
             *     in  Solvent/Water  Mixtures          *
             *                                        *
             *                by                       *
             *           Jaw-Kwei Fu                   *
             *           Charles  Brooks               *
             *           Richard  G. Luthy             *
             *     Carnegie-Mellon University        *
             *     Pittsburgh, Pennsylvania          *
             *                                        *
             *           August,  1986                 *

             *****************************************


Hit RETURN key  to continue

 This program estimates aromatic solute solubility in
 solvent/water  mixtures.  This program is designed to
 utilize different  levels of input parameters to estimate
 aromatic solute solubility. This program employes four
 approaches:  LOG-LINEAR, UNIFAC, EXCESS FREE  ENERGY,  and
 MOLECULAR SURFACE AREA. The input parameters can be read            t
 from either an existing input file  or from the terminal.
 The program estimates solute solubility via  approaches
 specified by the user, and stores the results into an
 output file.


 Hit RETURN key to continue

DO YOU HAVE- INPUT FILE? (Y OR N)
y
INPUT FILE NAME=
name.i
GIVE THE OUTPUT FILE NAME IN WHICH THE SOLUBILITY
CALCULATION DATA WILL BE STORED
name.o
INPUT PERCENT VOLUME SOLVENT IN THE  MIXTURE TO BE EVALUATED"
0
LOG-LINEAR REGRESSION INTERCEPT    -5.4287 SLOPE     .03724   -
   LOG-LINEAR ESTIMATION METHOD

        SOLVENT FRACTION [X VOL]        .00
        LOG LINEAR ESTIMATION SOLUBILITY [MOLE FRACTION]    .373E-05
        LOG LINEAR ESTIMATION SOLUBILITY [MG/L]   .264E+02

  UNIFAC ACTIVITY COEFFICIENT ESTIMATION
    COMPONENT         MOLE FRAC  LN  ACTCF       ACTCF

   NAPHTHALENE                .0000   11.84144   138890.8000
   METHANOL                  .0000     .00000        1.0000


   UNIFAC ESTIMATION
        METHANOL            FRACTION [X VOL]         .00
        NAPHTHALENE         SOLUBILITY [MOLE FRACTION]    .216E-05
        NAPHTHALENE         SOLUBILITY [MG/L]   .153E+02
 THE SOLVENT-SOLVENT INTERACTION PARAMETERS ARE  .7644  AND .4566

   EXCESS FREE ENERGY ESTIMATION METHOD
        SOLVENT FRACTION [X VOL]        .00
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MOLE FRACTION]    .437E-05
        EXCESS FREE ENERGY ESTIMATION SOLUBILITY [MG/L]       .310E+02
   MOLECULAR SURFACE AREA APPROACH

        SOLVENT FRACTION [X VOL]        .00
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MOLE  FRACTION]    .437E-05
        MOLECULAR SURFACE AREA APPROACH SOLUBILITY [MG/L]   .310E+02


 ADSORPTION COEFFICIENT OF NAPHTHALENE          IN WATER/METHANOL
MIXTURES IS    . 102E+-04

-------
              4y
                     . „
                 _0000   1U •
                 -0473
                                                   E.
                      !
                 Of
                                             -
                          Q000
                          -3086
                                                50.00
   ..c                             t*
"
                                       oo
                                                              ;-05

                         OE
                            _


-------
                          50
       Figure 7.   Example Calculation III  (continued)
 C:\JKF >
 C:\JKF >type name.i
 METHANOL
 NAPHTHALENE
          32.0400000
                          128.1900000
    7.914000E-001  9.625000E-001  9.971000E-001
                                              18.0200000
Y
Y
Y
            .0000000
           1.0000000
           5.0000000
          10.0000000
          20.0000000
          30.0000000
          40.0000000
          50.0000000
          62.0000000
          71.0000000
          75.0000000
          84.0000000
          92.0000000
        100.0000000
        100.0000000
          -1.0000000
               31.
               39.
               46.
               58.
              104.
              243.
             9961
            19831
            36591
            66200
            71093
               -1
     0000000
     1000000
     5000000
     3000000
     0000000
     0000000
 468.0000000
1230.0000000
2956.0000000
6362.0000000
     0000000
     0000000
     0000000
     0000000
     0000000
     0000000
       4540
          1
          8,
          3.

        155.
         24.
0000000
 1
 2
0000000
0000000
3400000

8000000
6000000
                          353.5000000
     16
     10
                   298,0000000
2.0000000
                                    11
                           47
     0000000
     7000000
          2.0000000
C:\JKF~ >
C:\JKF >type name.o
 SOLUTE USED IN THE CALCULATION IS
 SOLVENT USED IN THE CALCULATION IS
 PARAMETER
 MOLECULAR WEIGHT
 DENSITY
 MOLAR VOLUME
         METHANOL
            32.04
            .7914
            40.49
              NAPHTHALENE
              METHANOL	

              NAPHTHALENE
                  128.19
                   .9625
                  133.18
                       WATER
                       18.02
                       .9971
                       18.07
 OCTANOL/WATER PARTITION COEFFICIENT  .219E+04
 SOLUTE SOLUBILITY PREDICTIONS IN MIXED SOLVENT SYSTEM
 VOLUME   LOG-LINEAR
 SOLVENT  APPROACH
        MOLE    SOL.
    %      [-]  [MG/L]
               UNIFAC
               APPROACH
            MOLE    SOL.
               [-]   [MG/L]
               EXCESS FREE     MOLECULAR SURFACE
               ENERGY APPROACH AREA APPROACH
               MOLE    SOL.    MOLE    SOL.
                  [-]  [MG/L]     [-]  [MG/L]
    .00 .37E-05 .26E+02 .22E-05 .15E+02 .44E-05  .31E+02  .44E-05  .31E+02
  10.00 .88E-05 .59E+02 .52E-05 .35E+02 .72E-05  .48E-I-02  . 11E-04  .74E-t-02
  50.00 .27E-03 .14E+04 .20E-03 .10E+04 .14E-03  .70E+03  .46E-03  .24E+04
  SOLUTE SORPTION PARTITION COEFFICIENT ESTIMATION
 METHANOL
    [X]
        .00
      10.00
      50.00
            OC OF ADSORBENT
                 [X]
                 2.00
                 2.00
                 2.00
                        KP OF SOLUTE
                           [MOLE/KG]
                             1016.51
                              656,44
                              114.16
C:\JKF >

-------
                                           51
Molecular Surface Area Calculations
 The program MOLACCS calculates MOLecular Accessible Surface.  The program MOLACCS
is presently  written in standard FORTRAN-77 and requires minor modifications for use on a
personal  computer.  The  following explains the general features of the program.   This  is
followed by the presentation of several example calculations.

Program Description
 The FORTRAN-77 program MOLACCS  is a general purpose program  to compute molecular
surfaces  of molecules using the Richards algorithm  (1977).  Three  types  of surface areas
are  computed:  (1)  The solvent accessible  area as defined by addition of a solvent radius to
each solute  atom, which is the surface accessibility algorithm  referred by Richards as the
accessible area;  (2) The  contact  surface area,  which  is  the  accessible  area  without the
solvent  radius  as computed using the  Richards  algorithm  and  does  not  include  the  re-
entrant surface area; and (3) The  van der Waals surface area  is that corresponding to the
accessible area  for a solvent probe of  zero  radius.    Note that the areas computed  by
procedures  (1) and (2) are  dependent on  solvent radius, as explained previously in Chapter
2, while  the area computed by procedure (3), the van  der Waals area, is not dependent on
probe, or solvent, radius.

 The  program contains several features which permit ease of  preparation,  manipulation or
generation of  molecular structures for  surface area calculations.  These features include the
ability  to read  in  existing Cartesian coordinates for  a molecule  and then  calculate the
surface areas; the  ability to build  linear and simply connected  molecules;  and the ability to
add atoms  onto existing molecules or to  replace atoms in an existing  molecule.   The ability
to add and  replace atoms  in a molecule  is collectively known  in MOLACCS as perturbing
the  existing  structure.    Finally  the  program   has  the  ability  to   combine  two  existing
molecules to create a new  molecule.

 In  order to  permit this  flexibility,  MOLACCS  maintains two   internal files.   These  are a

-------
                                          52
                                                                                   •i
parameter  file and  a molecular  fragment library file.   These files are read  and  written as
binary  files in MOLACCS,  and thus to  maintain portability,  a utility program  CONVERT  is
provided to change files from binary to  formatted, and vice  versa

 The  molecular   fragment  library  may  be  manipulated  as  described  above.   Additional
features  are also included which  permit  the  modification  of  the  atomic  parameter file.
These include (1) addition of new atom types, and (2) changing existing types.

Program Structure
 The  overall structure of  MOLACCS is  diagrammed in Figure  8.   The program exists as a
collection of  three  modules  and a task  router.   The task  router  is  the  main  program
MOLACCS.  In  MOLACCS the user is  prompted with regard  to the specific task  to  be
performed.  The options are:
    1. PARAMeters   - this option  routes  to  the  parameter  manipulation  module,
      NEWPARAM.

    2. FRAGment - this  option routes  to the  molecular fragment manipulation module
      (task  router NEWFRAG).

    3. SURFACE  - this option calculates  surface areas for particular fragments.

    4. QUIT - allows for finishing the  program  and exiting.

Parameter and Fragment Library File  Structure
Parameter File:
 The  parameter  file  contains all the information required to compute atomic  surface  areas
or to construct  molecular fragments.   The  information associated  with each atom  type is:
NAME -  this is  a 4  character identifier.
TYPE  - the number of the atom as it  appears  in the file.
BOND -  the bonding  radius for an atom.

-------
                               53

                            Figure 8.


                    MOLACCS Program Structure
               .MOLECULAR .ACCESSIBLE SURFACE AREA
                            (MOLACCS)
                        CALCULA TION PROGRAM
                            TASK ROUTER
CALCULATION  OF
SURFACE AREAS
                      MANIPULATE MOLECULAR
                          FRAGMENT FILE
                               DHAN

                      DELETE}  '    '  {PERTURB
                              '	N
                              COMBINE
MANIPULATE ATOMIC
  PARAMETER FILE
       -I
                                                                   CS7493

-------
                                           54
ANGLE - the standard bond angle associated with a valence  bond angle in which the  atom
        is central.
HYDROPHOBICITY - an integer value between 0 (polar) and 100 (nonpolar) indicating the
                 degree of hydrophobic character.  This  is used in partitioning total
                 surface areas between polar and  hydrophobic surface areas.
van der Waals  RADIUS - the van der Waals radius associated  with an  atom.
 A list of  the  parameters currently resident  in the file parameter.bin  (for binary  version) or
parameter.fmt (for  formatted version) is  given  in Table I. Atom  type  numbers  3 and  4 are
to be used if  the  user  desires to develop polycyclic aromatic hydrocarbon fragments  in a
non-extended atom format  using an aromatic-type  carbon and  an aromatic-type hydrogen
atom.

 All of the H, C, N, 0  and  S bond  lengths,  bond angles,  and van der Waals radii  reported
in  Table I  are taken from the data base employed in  CHARMM (Brooks et al.,  1983).   These
parameters  are considered to represent an  internally consistent and  reliable set of  atomic
parameters.  This data base was  developed from the analysis  of spectroscopic data, for
bond and  valence angle  parameters, and ab-initio quantum  chemical calculations, for  van der
Waals parameters,  for use  in molecular  mechanics calculations  on macromolecules  (Brooks
et al., 1983).

 The values for  the  bond lengths, bond  angles, and  van der  Waals radii reported in  Table  I
for  the halogens,  i.e. F,  Cl, Br,  and  I,  were obtained from:   (1)  stanadard bond  length
information,  (2) standard hybridization  angles, and (3) van  der Waal  radii based  on nearest
nobel gas  (i.e. crf  =  
-------
                                          55
                                        Table  I
                    Atom Parameters for Surface Area  Calculations

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Atom Type
(Name & Number)
Csp3 (aliphatic,
tetrahedral, etc.)
Csp2 (aromatic,
hybrid, etc.)
CARO
HARO
Nsp3
Osp3
S
F
Cl
Br
I
Bonding
Radius
1.53
1.35
1.39
0.6
1.4
1.35
2.00
1.3
2.0
2.3
2.7
Angle
111.0
120.0
120.0
120.0
120.0
110.0
110.0
111.0
111.0
111.0
111.0
VDW Radius Hydr
2.0
2.0
1.7
1.2
1.7
1.7
1.9
1.65
1.9
2.0
2.1
100
100
100
100
0
0
80
90
90
90
~ "100
Note:  Atom type numbers 3 and 4 are to be used if the user
       desires to build aromatic molecular fragments without the use
       of the  extended atom approach.

-------
                                          56
 The  van der  Waals  radii  values  for  the  non-extended atom  format  for the aromatic
carbon (No.  3) and the hydrogen atom (No. 4)  agree with  average values reported by Bondi
(1968),  1.7  A and  1.2  A respectively.  These tabulated values are  also  reasonably close to
those chosen by Hermann,  1.77 A and  1.0 A  respectively.  The bonding  radii  and van der
Waals radii reported in Table I  are consistent with Valvani  et al. (1976) as employed  in their
"Method  B"  calculation  procedure  which used  an  extended  atom  format  for  methyl,
methylene,  and the hydroxyl group in  alcohols; the respective bond lengths  and van der
Waals radii were:  1.54/2.0,  1.54/2.0, and 1.43/1.7  A  These values are the same  as shown
in  Table I for atom type Nos.  1  and 6.  except for a slightly smaller  bond distance  for the
oxygen  bond.

 Yalkowsky and Valvani (1979) computed the van  der Waals surface areas of rigid aromatic
hydrocarbons using  an  extended atom  format for  methyl  and  methylene groups,   The
following respective interatomic distances  and  van  der  Waals radii  were used:  aromatic C-
C,  1.40/1.70 A and  aromatic C-H, 1.08/1.20 A   The  bonding  radius  of  the  aliphatic-
aromatic C-C was taken as  1.54 A and the methyl or  methylene group was assigned a van
der Waals  radius  of  2.0 A   These values are consistent with the parameters in Table  I,
except for the choice of aromatic  C-H  bonding radius.

Molecular  Fragment Library File:
 This file contains  the cartesian coordinates of molecular fragments  plus all the  identifiers
necessary  for surface  area  calculation  or structure  manipulation.    Specifically, the file
contains:
NAME - an 8 character  name identifying the fragment

NUMBER of  ATOMS - an integer specifying the number of atoms in a fragment

ATOM TYPES - an array containing a list of the atom types for all  atoms in a  fragment

COORDINATES - the  cartesian  coordinates for each atom  in the fragment

 One fragment library  file  is  included,  it is called  fragmentbin  (for  binary version)  or
fragment.fmt (for formatted version).

-------
                                          57
Manipulation and Generation  of  Molecular Fragments
 The  fragment module permits the manipulation of existing fragments, and the creation or
deletion,  of fragments in the  library file.   A  brief  description  of the various options  is
given  below.

 READ - the read option reads a new fragment into  the library file.  The user  is prompted
for the  name  of the file from which to  read the  single fragment  This file is in a specific
format and contains the following:
     * FRAGMENT_NAME      2X, A8 (fragment name)
     *                  A2
       NATOM             15   (# atoms in fragment)
        XI    Y1   Z1  Typel  (20X,  3F10.5, 10X,  F10.5)
        X	NATOM  .     .         (Cartesian coordinates plus
                                atom type for all atoms)
 Appendix 2  shows the existing  fragment file;  this  provides  an example of  the input
format for creation of a new fragment
BUILD  - This  routine builds a simple unbranched chain  given a user-specified sequence  of
                    atom types  and dihedral angles.   Judicious choice of  dihedral angles
                    allows  for the building of  aromatic (planer) ring structures.

PERTURB  - This  routine executes  a simple modification  of  existing fragment  with two
                    options ADD and REPLACE

ADD  - This  attaches single  atom  substituents to  an  existing  molecular  fragment   This
                    routine allows fragments like BENZENE to be  perturbed to toluene,  or
                    phenol, or chlorobenzene,  or  to  1,2-dichlorobenzene,  etc.  The user is
                    asked  to specify  the three  atom  sequence   indicating  where  the
                    addition is to  take place.   The atom  is added trans to the first atom
                    specified, e.g.,  for a  final  atomic  sequence i  -   j - k  - I, it is taken
                    that the atomic  sequence  i, j, and k  are existing atoms with the new
                    atom, I, being  added  trans to atom i.

-------
                                          58
REPLACE -  This affects single atom replacements in existing fragment by substituting atom
                    type identifiers with  no adjustment of  geometries.   For  example,  a
                    fragment like BENZENE  may be  perturbed to PYRIDINE by perturbing a
                    carbon to a nitrogen.   If the perturbation is  viewed as  too  dramatic,
                    the replacement is  ignored.   For example, the replacement of an sp2
                    carbon by an sp3 carbon is not permitted.

COMBINE  - This combines  two  existing fragments to form a new  one.  This subroutine
                    combines a parent  and a secondary  fragment (order  of specification)
                    into a third.  The user is prompted for a three atom sequence on the
                    parent  fragment which  indicates where the  bond is to be formed  and
                    a two  atom sequence on the secondary fragment to indicate point of
                    attachment  For example, to  combine benzene and butane one would
                    specify 6,1,2 on the  parent fragment,  benzene, in order to add butane
                    at the  2 position.   The sequence  1,  2 is specified for  the secondary
                    fragment, butane, to indicate that atom 1  on butane is to join benzene
                    at the specified location.
DELETE - This deletes a fragment from  the  library.

CHOOSE - This chooses a fragment for a surface calculation.        -  --

Additional Notes and Options
  Other options are available  in  this program, including LOG  which sets up  a log file to
which all surface area calculations are  saved.  There is  also included a facility which  crudely
draws the molecular  fragments.  This  is a crude 40 x  20 bit map  to be  displayed on the
terminal screen and is  intended  only to guide the user in building or combining  molecular
fragments.

  The  aromatic  molecular  compounds,  and  related molecules,  currently  resident  in  the
fragment  file  are shown in  Figure 9.  Functional  group substituents in the fragment  file are
shown in  Figure  10.

-------
                                   59
                   Figure 9.  Aromatic and Related Molecules
                        in the MOLACCS Fragment File
                     BASE  MOLECULAR FRAGMENTS
                                 Aromatics
   OJ BENZENE
                       IT   1                 I   ^1   ^1   1

                     OJOJ  NAPHTHALene     IO1OIOJ  ANTHRACEne
PHENANTHrene
                                 0
                                 ii
                                    Oj  BENZOPHEnone
                                                 OJ DIPHENME

                                                    (diphenylmethane)
    H
   ,N.

Oj   [Oj DIPHENAN
          (diphenylanaline)
               Ol   lO
                               DIOXIN
                            C  TRIAZINE
                          V
     N
      )  IMIDAZOLe
    H
O
                           PYRROLE
                       'N
                       H
                                                              N
                                                              H
                                                    INDOLE
 N4BENZ
(naphthacene)
                                      S4BENZ
                                                        T4BENZ
             C4BENZ
         /-\ ]{benzo(a)anthracene)
                                 CHRYSENE

-------
                   60
       Figure 10. Functional Group Substituents

          in the MOLACCS Fragment File
      BASE MOLECULAR FRAGMENTS



            Branched Sidechains
-C-OH   ACID
-C.
   0
  //
   0
 •N'
          KETONE
          NITRO
•CxNHg AMID
-C
   0


  S-o

   S0
         ISOPROPY
         SULFATE

-------
                                          61
Testing and  Initial Results
 A number of compounds have been  used for evaluative purposes in  initial surface area
calculations in order to  make comparisons with existing literature data   Using  the  current
atomic parameters  listed  in Table I, calculations of the van der  Waals surface areas have
been  performed   Some of the  results  are  tabulated  in Table II  along with comparison of
results from Pearlman (1986) and  Yalkowsky  and  Valvani  (1979) for  benzene  and  several
polycyclic aromatic hydrocarbons, and Pearlman (1986) and Valvani et al. (1976) for normal
alkanes and alcohols.

 The  comparisons  with  the results  of  Valvani et al. (1976) on straight chain  hydrocarbons
and alcohols,  as  computed by  "Method  C"  in  their paper, are  all very  good.   A  slightly
smaller total  area is found with the MOLACCS  extended atom  approach and  this is  most
probably due  to  a small difference  in assumed bond  angles.  Valvani  et  al. (1976)  did not
specify what  bond angles were  used.   Nonetheless, the values  computed by the extended
atom  approach and those of Valvani  et al. (1976) agree  very  well, as  the  two methods
agree within  about 1%.

 It is noted that  calculated values of surface areas for the n-alkanes reported by Pearlman
(1986) are not in general agreement with either the current extended atom approach, or the
calculations of Valvani et al. (1976).   The values reported  by Pearlman  are  about  15%
greater than  those  obtained by either the MOLACCS extended atom approach  or by Valvani
et al.  (1976).  Pearlman  (1986)  did not report assumed  values of bond  length, or  bond
angle,  or van der  Waals  radii.   Thus the  explicit  reason  for the descrepancy cannot be
stated.  Nonetheless, this points  to  the  difficulty with  making comparisons  among different
sets  of  surface  area  calculations  for   which  the atomic parameters  employed  for the
surface area calculation are unknown.

 Table II  also  shows  comparison of  van der  Waals  surface area calculation  for benzene
and various  polycyclic aromatic  hydrocarbons and aliphatic-substituted polycyclic aromatic
hydrocarbons.  The results show comparison  of  the  MOLACCS  extended  atom approach

-------
                62
              Table II
   Comparison of  van der Waals
Molecular Surface  Area Calculations
Aromatic
Compounds
Benzene
Naphthalene
1 -Methylnaphthalene
1 -Ethylnaphthalene
Anthracene
Biphenyl
Phenanthrene
2-Methylanthracene
Pyrene
Chrysene
Naphthacene
n-Aliphatic
Compounds
Butane
Butanol
Pentane
Pentanol
hexane
Hexanol
Heptane
heptanol
Substituted
Benzene
Toluene
Benzoic Acid
Nitrobenzene
Benzamide
Aniline
Fluorobenzene
Chlorobenzene
Bromobenzene

MOLACCS
111.7
155.0
169.4
184.4
198.2
183.2
196.1
214.8
208.04
236.0
240.1

MOLACCS
104.6
114.6
122.5
132.3
140.3
150.2
158.2
168.1

MOLACCS
128.5
140.1
140.5
139.0
120.5
119.5
129.0
133.5
            Pearlman
              (1986)
             110.0
             156.8
             203.5

             199.4
             Pearlman
             (1986)

             116.1

             138.8

             161.5

             184.2
Yalkowsky
and Valvani
(1979)
155.8
172.5
187.4
202.2
182.0
198.0
226.6
213.0
241.0
248.0
Valvani
et al. (1976)

105.9
115.8
124.0
134.0
142.1
152.1
160.3
170.3
             Pearlman (pers. comm.)

             131.2
             140.0
             133.0
             141.9
             125.0
             1 14.4
             127.1
             134.5

-------
                                          63
with  data  reported by  Pearlman  (1986)  for  four  compounds,  and  data  reported by
Yalkowsky and Valvani  (1979)  for ten compounds.  Pearlman's (1986) data are slightly larger
than those  of  Yalkowsky  and Valvani  (1979).   Yalkowsky and  Valvani (1979)  calculated
molecular van der Waals surface  areas  according to "Method C" of  Valvani  et al. (1976), as
described earlier.  The current extended  atcm approach agrees within about 1-2% of the
van  der  Waals  surface  areas  reported  by  Yalkowsky  and Valvani  (1979) for  most
compounds.

 Additional  comparison of  results  from  MOLACCS is given in  Table II for  surface  area
computation  data  provided by  Pearlman  (personal communication)  for  purposes  of this
investigation.  This comparison  is  made  for eight  substituted benzene compounds.   This
comparison  shows  good  agreement  of  van  der  Waals  area   between  the  method of
Pearlman  (1986)  and MOLACCS  for the  eight  substituted benzene derivatives.   Although
there appears to be a  small difference  in selection  of  atomic parameters for F  and N. Also,
the comparison depends  upon an assumed value of the dihedral angle between the plane of
the parent  fragment benzene, and  the plane of  the  branched fragment,  such as  for the
carboxylic or nitro  substituent

Example Calculations                                             _._  .._
 Figure 11  shows  example surface  area  calculations.  The presentation in Figure 11  shows
how to initiate the  program and how to use the various features.   The example calculations
show listings of accessible  and contact surface  area with respect to a probe radius  of 1.5
A  and the van  der Waals  surface area   The listings  also show the contribution of  each
atom  to  the surface area   Also shown is the net value of the individually estimated  atomic
group contributions to the  hydrophobic  and polar surface areas.

Reading  the Parameter and Fragment Files
 Figure  11  shows  the initiation of  the  program in  which the  user is  first presented with  a
question regarding  the use  of the prompt  which is indicated by the arrow.  The first task
the user must perform is  either  input  an atomic parameter file,  or  read from the existing

-------
                                           64
atomic parameter  file.  The  user  has  indicated "p"  for  input atomic  parameters, and  "o" to
read the "old" file of  existing atomic parameters.   The  atomic parameters  are  in the file
"parambin",  and after  typing  the  file name the user  is  asked  if  the  atomic parameters
should be displayed.   After  entering  "y",  for  yes, the atomic  parameters are shown; these
data are the  same as  shown previously  in Table  II.   The user  is  asked if  any of these
parameters should be changed or if any new parameters are to be added to  this file.

  Next the user asks to have the program read  the  existing molecular  fragment file by
entering "f", and "o".   The molecular  fragment file name is entered,  i.e.  "fragmentbin."  The
fragment file  is opened, and now the user is presented with a list of options.

List
  The first option the  user  chooses  is to list the existing fragments by entering  "I."  The
fragments are shown, and the user is then presented with the several program options.

Choose  -  Example of Surface Area of Molecular Fragment
  The first option the  user  selects is "choose",  which  performs  a surface area calculation
on one of the molecular fragments.   The user sets up a file,  "surface.o", in  which to store
the calculation, and again requests a  listing of  the  fragments,  and chooses fragment  No.  1,
"BENZENE".    The  user is  then asked to  input a probe  radius, and  1.5 A' is  selected.  The
results of  the calculation are  given for the accessible, contact, and  van der Waals surface
area, as  well  as the  individual  atomic  contributions to these surface area  values.

Build  - Example of Construction  of  a New Molecular  Fragment  from  Atomic
Parameters
  After  this calculation, the  user  is presented  again with the various options, and  the  user
selects to  build a new, unbranched molecular  fragment from the  existing atomic parameters.
The user enters "build", and decides  to build  "HEXANE".  The  current atom types  and  their
numbers are  presented, and the  user enters  the sequence of atomic members  (six  atomic
fragments  No. 1)  for the molecular  fragment  hexane.  The fragment is constructed in the
standard trans configuration, and  a schematic drawing of  the fragment is given.

-------
                         65



                      Figure 11.




    Examples of Molecular  Surface Area Calculations

$ run molaccs
                     MOLACCS
          MOLecular Accessible Surface
                 Version May-86

          Author Charles L. Brooks III
             Department of Chemistry
            Carnegie-Mellon University-
              Pittsburgh,  PA  15213

 This program will compute molecular surface areas using the
 Richards algorithm with varying solvent probe radii.
 Prompts are given by the symbol ==>, and default
 answer is given in parenthesis, e.g.,
 Do you want to input parameters? (n) ==>
 Do you understand? (n) ==>
y
 Congratulations, you got it!
 Now onto more interesting things.
 Do you want to input atomic parameters ,
 set-up a molecular fragment , calculate
 a  surface area  or quit ? (surface)  ==>
P

 Current parameter file is empty or non-existent
 Do you want to create a new file ,                     Reading the Parame
 or read an old one ?  (new) ==>
o
 What is file name, ? (for090.dat) = = >         an(j Fragment Files
param.bin
File parara.bin status=old will be opened and read
 Do you want to list current atom parameters? (n) ==>
y
Atom 8   Name   Bond   Angle   vdW_radius   Hydrophobicity

    1  CSP3      1.530     111.000       2.000   100
    2  CSP2      1.350     120.000       2.000   100
    3  CARO      1.390     120.000       1.700   100_  	
    4  HARD      0.600     120.000       1.200   100
    5  NSP3      1.400     120.000       1.700     0
    6  OSP3      1.350     110.000       1.700     0                          	
    7  S         2.000     110.000       1.900    80
    8  F         1.300     111.000       1.650    90
    9  CL        2.000     111.000       1.900    90
    10  BR        2.300     111.000       2.000    90
    11  I         2.700     111.000       2.100   100
 Do you want to input parameters? (n) ==>

 Do you want to change existing  parameters? (n) ==>

 Do you want to input atomic parameters ,
 set-up a molecular fragment  , calculate
 a  surface area   or  quit ? (surface)  ==>
f

 Current fragment file is  empty  or  non-existent
 Do you want to create a new file ,
 or read an old one ?  (new) ==>
o
 What is file name, ?  (for091.dat) ==>
fragment.bin
File fragment.bin status=old  will be opened and read
         24 fragments read from  fragment file
 List existing fragments  ,
 build new fragment ,
 read in new fragment ,
 perturb an existing  fragment ,
 combine two existing fragments  ,
 delete an existing fragment  
 or choose fragment for surface  calculation 7  (choose)  ==>
1

-------
                                66
Figure  11.  Example  of  Molecular Surface Area  Calculations (continued)
3 ANTHRAC
7 DIPHENAN
11 S4BENZ
15 PYRIDINE
19 ACID
23 NITRO
4 PHENANTH
8 DIOXIN
12 T4BENZ
16 IMIDAZOL
20 AMIDE
24 SULFATE
    1  BENZENE    2 NAPHTHAL
    5  BENZOPHE   6 DIPHENHE
    9  TRIAZINE   10 N4BENZ
   13  C4BENZ     14 CHRYSENE
   17  PYRROLE    18 INDOLE
   21  KETONE     22 ISOPROPY
 build new  fragment  ,
 read  in  new fragment  ,
 perturb  an existing fragment   ,
 combine  two existing  fragments  ,
 delete an  existing  fragment 
 or choose  fragment  for  surface  calculation

 Do you want to set  up a LOG file to store
 the surface area  calculations?   (n) ==>
                                                                           List
                                                ? (choose)  ==>
                        ? (for093.dat) ==>
                                                                          Choose
 What is file name,
surf ace. o
File surf ace. o status=new will  be opened
 Which molecular fragment do you want?
 list identifiers   or input fragment
1
                 2 NAPHTHAL
                 6 DIPHENME
                10 N4BENZ
                14 CHRYSENE
                18 INDOLE
                22 ISOPROPY
                                                  (input)  ==>
         1 BENZENE
         5 BENZOPHE
         9 TRIAZINE
        13 C4BENZ
        17 PYRROLE
        21 KETONE
      Input fragment
3 ANTHRAC
7 DIPHENAN
11 S4BENZ
15 PYRIDINE
19 ACID
23 NITRO
4 PHENANTH
8 DIOXIN
12 T4BENZ
16 IMIDAZOL
20 AMIDE
24 SULFATE
                8 = =
     1
                                 = = >
 Input solvent probe radius.
1.5
           Surface areas for fragment BENZENE
       computed with respect to probe of radius
                                                       1.500
           ACCESSIBLE

     Hydrophobia  246.697
     Polar         0.000
         CSP2
         CSP2
         CSP2
         CSP2
         CSP2
       6 CSP2
             41
             41
             41
             41
             41
             41
 116
 116
 116
 116
.116
.116
    CONTACT

    80.554
     0.000

Atomic Breakdown

        13.426
        13.426
        13.426
        13.426
        13.426
        13.426
                                                 van der Waals
                                           111.714
                                             0.000
18.619_.
18.619
18.619
18.619
18.619
18.619
      Do you want to input atomic parameters ,
      set-up a molecular fragment ,  calculate
      a surface area   or quit ? (surface)
                                                     = = >
      List existing fragments ,
      build new fragment .
      read in new fragment ,
      perturb an existing fragment  ,
      combine two existing fragments ,
      delete an existing fragment 
      or choose fragment for surface calculation ? (choose)
     b
      A single unbranched molecular fragment will be built.
      Is that what you want? (yes)  ==>

      What is new fragment name, only 8 characters? ==>
     HEXANE
     New molecular fragment HEXANE  will be built
      Number of atoms in linear chain? ==>
     6
      Now specify atom types, do you want them listed?  (n) ==>
     y
                                                                ==>
                                                                      Build

-------
                                67
Figure  11.  Example of Molecular Surface Area Calculations (continued)

             Current  atom  type names  and  their  numbers
              CSP3    1     CSP2    2
              CARD    3     HARO    4
              NSP3    5     OSP3    6
              S       7     F      8
              CL      9     BR    10
              I     11
             Input  sequence of atom type  numbers  in  assending  order
             111111
             The  chain will be built  in an all  trans configuration
             unless otherwise specified.
             Do you want other dihedral angles? (n)  ==>

             Molecular fragment  HEXANE   will be  drawn
                                1         2
              Return to continue

              Save fragment in the library file? (n) ==>

              Fragment           25 to be used in surface calculation
              Is that what you want? (y) ==>

              Input solvent probe radius. ==>
             1.5                                      	
                        Surface areas for fragment HEXANE
                    computed with respect to probe of radius   1^500


                   ACCESSIBLE              CONTACT            van der Waals

             Hydrophobic 298.781           97.561       140.323
             Polar         0.000            0.000         0.000

                                       Atomic Breakdown

               1 CSP3     83.258               27.186            33 003
               2 CSP3     37.597               12.276            19.319
               3 CSP3     28.536                9.318            17 840
               4 CSP3     28.536                9.318            17 840
               5 CSP3     37.597               12.276            19 319
               6 CSP3     83.258               27.186            33.003
              Do you want to input atomic parameters ,
              set-up a molecular fragment , calculate
              a surface area  or quit ? (surface)
             f

-------
                                68                                       •»


Figure  1 1.  Example of Molecular Surface Area  Calculations (continued)


     List existing  fragments  ,
     build new fragment  ,
     read in new  fragment  .                                  Perturb and Replace
     perturb an existing fragment  ,
     combine two  existing  fragments  ,
     delete an existing  fragment 
     or choose fragment  for surface  calculation  ?  (choose) ==>
    P
     Do you want  to replace atoms  in existing  fragment 
     or add single  atom  substituents ?  (add)  ==>
    r
     Which molecular fragment do you want  to perturb?
     list identifiers   or input fragment J* (input)  ==>
    1
       1 BENZENE    2 NAPHTHAL    3  ANTHRAC    4 PHENANTH
       5 BENZOPHE    6 DIPHENME    7  DIPHENAN  8 DIOXIN
       9 TRIAZINE   10 N4BENZ   11  S4BENZ    12 T4BENZ
       13 C4BENZ     14 CHRYSENE  15  PYRIDINE  16 IMIDAZOL
       17 PYRROLE   18 INDOLE   19  ACID       20 AMIDE
       21 KETONE     22 ISOPROPY  23  NITRO      24 SULFATE
     Input fragment # ==>
    2
    Atoms will be replaced in fragment NAPHTHAL
     What is new  fragment  name, only 8 characters? ==>
    QUINOLINE
    New molecular fragment QUINOLINE will  be built from perturbation of NAPHTHAL
     How many atoms to be  replaced in fragment
    1
     Molecular fragment  NAPHTHAL will be drawn
                                            1           2
                                       10

     Return to continue

     Atoms will be replaced one at a time
     List atom to be replaced on fragment NAPHTHAL
     1
     Now specify new atom type, do you want them listed?  (n)  ==>
     y
     Current atom type names and their numbers
      CSP3   1    CSP2   2
      CARD   3    HARD   4
      NSP3   5    OSP3   6
      S      7    F      8
      CL     9    BR    10
      I     11
     Number for new atom type?
     5
     Atom type CSP2 at site  1
     replaced by atom type NSP3

-------
                                69


Figure  11.  Example of Molecular Surface Area  Calculations (continued)
          Molecular fragment QUINOLIN will be drawn
                                                 1          2
                                            10

          Return to continue

          Save fragment in the library file? (n) ==>                    ,

          Fragment           25 to be used in surface calculation
          Is that what you want? (y) ==>

          Input solvent probe radius. ==>
         1.5
                    Surface areas for fragment QUINOLIN
                computed with respect to probe of radius   1.500


               ACCESSIBLE              CONTACT            van der Waals

         Hydrophobia 295.527           96.499       142.877
         Polar        16.920            4.775         9.078

                                   Atomic Breakdown     	—'

           1 NSP3     16.920                4.775             9.0-78
           2 CSP2     50.698               16.555            21.855
           3 CSP2     41.859               13.668            18.531
           4 CSP2     34.574               11.289            17.470
           5 CSP2      7.480                2.442             7.146
           6 CSP2      4.419                1.443             5.011
           7 CSP2     38.203               12.474            18.332
           8 CSP2     41.859               13.668            18.531
           9 CSP2     41.859               13.668            18.531
           10 CSP2     34.574               11.290            17.470
           Do you want to  input atomic parameters ,
           set-up a molecular fragment . calculate
           a surface area    or quit ?  (surface) ">
         f

-------
                                 70


Figure  11.  Example of Molecular  Surface  Area Calculations (continued)



         List existing fragments  ,
         build new fragment ,
         read in new fragment .                                  D _«..._.
         perturb an existing fragment  .                       Kerturt)
         combine two existing fragments ,
         delete an existing fragment 
         or choose fragment for surface calculation ? (choose) ==>
        P
         Do you want to replace atoms  in existing fragment 
         or add single atom subatituents  ? (add)  ==>
        a
         Which molecular fragment do you want to perturb?
         list identifiers   or input fragment tf (input) ==>

         Input fragment & ==>
        1
        Atoms will be added to fragment BENZENE
         What is new fragment name,  only 8 characters? ==>
        13DICLBENZ
         Name greater than 8 characters,  truncated.
        New molecular fragment 13DICLBEN will be built by addition to BENZENE
         How many atoms to add to fragment
        2
         Molecular fragment BENZENE  will be drawn
                                    1                   2
         Return to continue

         Atoms will be added one at a time
         Atom added where on fragment BENZENE
         List 1,J and k, where k la the bond to add
         atom to and j and i are the k-1, k-2 atoms
         bonded to k
        541
         Now specify atom type to be added
         Do you want them listed? (n) ==>
        y
         Current atom type names and their numbera
          CSP3   i    CSP2   2
          CARD   3    HASO   4
          NSP3   5    OSP3   6
          S      7    F      8
          CL     9    BR    10
          I     11
         Number of atom type to be added?
        9
         Atom added where on fragment BENZENE
         List i,J and k, where k in the bond to add
         atom to and J and i are the k-1, k-2 atoms
         bonded to k
        123
         Now specify atom type to be added
         Do you want them listed? (n) ==>

-------
                                71
Figure  11.  Example of Molecular Surface Area Calculations (continued)
         Number of atom type to be added?
        3
         Molecular fragment 13DICLBE will be drawn
                           7
                                 5           6

         Return to continue

         Save fragment in the library file? (n) ==>

         Fragment           25 to be used in surface calculation
         Is that what you want? (y) ==>

         Input solvent probe radius. ==>
        1.5
                   Surface areas for fragment 13DICLBE
               computed with respect to probe of radius   1.500
              ACCESSIBLE

        Hydrophobia 289.659
        Polar        15.178
    CONTACT

    92.637
     4.740

Atomic Breakdown
      van der Waals
140.400
  6.074
          1 CSP2      5.905                1.928
          2 CSP2     29.192                9.532
          3 CSP2      5.905                1.928
          4 CSP2     35.312               11.531
          5 CSP2     41.432               13.529
          6 CSP2     35.312               11.531
          7 CL       75.889               23.699
          8 CL       75.889               23.699
         Do you want to input atomic parameters ,
         set-up a molecular fragment , calculate
         a surface area  or quit ? (surface)
                           6.719
                          17.557
                           6.719
                          18.075
                          18.593
                          18.075
                          30.368
                          30.368
                          = = >
         List existing fragments ,
         build new fragment ,
         read in new fragment ,
         perturb an existing fragment ,
         combine two existing fragments ,
         delete an existing fragment 
         or choose fragment for surface calculation ? (choose) ==>
        P
         Do you want to replace atoms in existing fragment 
         or add single atom substituents ? (add) ==>

         Which molecular fragment do you want to perturb?
         list identifiers  or input fragment # (input) ==>
                                    Perturb and Add

-------
                                                72



Figure  11.   Example of  Molecular  Surface Area  Calculations  (continued)

                           Input  fragment * = = >

                          Atoms mil be added to fragnent  NAPHTHA!.
                           "hat i, new fragment name,  only a characters? —>
                          ethylna
                          New molecular fraoient ETHYINA will be built by addition to  HAPHTHAL
                           How many atoms to add to  fragment                          nnrninAu

                           Molecular (rafnent NAPHIHAL will be drawn
                                                                1          2
                          Return  to continue
                          Atoras will be added one at a  tine
                          Aton added where on fragment  NAPHTHAL
                          List l.J and k. where k is the bond to add
                          atoia to and J and I are the k— I, k-2 etons
                          bonded to k
                         6 5  1
                          Now specify atom type to be added
                          Do  you want them listed? (n)  ==>

                          Number of atom type to be added?
                         1
                          Aton added where on fragment  HAPHTHAL
                          List i.J and k, where k la the bond to add
                          aton to and j and 1 are the k-1, k-Z atoms
                          bonded to k
                         5 1  11
                          Now specify atom type to be added
                          Do  you want then listed? (n)  ==>

                          Nunber of atom type to be added?
                         1
                          Molecular frataent ZTBYLNA will be drawn
                          Return to continue

                          Sive  frel»«nt in the library  file? (a) ">

                          Do you want to set up a  LOG file to store
                          the surface area calculations?  (n) ">
                        y
                          What  1> file name, (filename. ext>? (for093.dat) ::>
                        ethyna. sur
                        File ethyna.sur atatuaznew will be opened
                          fragment           2& to be uaed in surface calculation
                          Is that what you want? (y) ==>

                          Input solvent probe radius. =x>
                        l.S
                                   Surface ereaa  for fracment ETHYLNA
                               computed with reapect to probe of radiua   1 . 500
                              ACCESS I Bt-t
Hydropheblc 349.253
Polar         0.000
                                                     CONTACT
114.035
  0.000
                                                                        van dar Weals
                                                                  184.428
                                                                    0.000
                                                 Atomic Breakdown
1 CSP2
2 CSP2
3 CSPZ
« CSP2
5 CSP2
6 CSP2
7 CSP2
« CSP2
9 CSP2
10 CSP2
11 CSP3
12 CSF3

3,
21.
41.
33.
3
3.
23
41.
4).
33.
29.
72.

.933
.494
.116
.(34
.717
.71?
.865
.ill
.116
635
.273
417

1.
7.
13
11.
1
I
7
13
13.
11.
3.
23.

.2(4
.019
.426
.048
.214
.214
.727
.428
428
046
.559
646

                                                                            5.258
                                                                           14.724
                                                                           It.619
                                                                           17.558
                                                                            5.130
                                                                            S.130
                                                                           15.451
                                                                           18.619
                                                                           16.819
                                                                           17  556
                                                                           17.355
                                                                           30  407
                         • surface area  or quit ? (aurfece)

-------
                                                               73
                Figure  1 1.   Example  of  Molecular  Surface  Area Calculations (continued)
Perturb  and Add
                                                                                                                       Perturb  and  Ad
        List existing fragments .
        build new fragment  .
        read in new fragment .
        perturb an existing fragment .
        combine two existing fragments ,
        delete an existing  fragment 
        or choose fragnent  for surface calculation  ? (choose) ==>
       P
        Do you want to replace atoms in existing fragment 
        or add single aton  substltuenti ? (add)  = =>

        Which molecular fragment do you want to perturb?
        List Identifiers  or input fragment * (input) ==>
           1 BENZENE
           5 BENZOPHE
           9 TRIAZINX
          13 C4BENZ
          17 PYRROLS
          21 KETONE
 2 HAPHTHAL
 6 DIPKENME
10 H4BEHZ
 3 ANTHRAC
 7 DIPHENAH
11 S4BENZ
14 CHRYSENE  15 PYRIDINE
IB INDOLE
22 ISOPROPY
19 ACID
23 NITRO
 4 PHZNANTH
 8 DIOXIN
12 T4BEHZ
16 IMIDAZOL
20 AMIDE
24 SULFAT*
         Input fragment I =->
        4
        Atoms will be added to  fragment PHENANTH
        What is new fragment name, only 6 characters?  ==>
        PYRENE
        Sew moleculer fragment  PYRENE will be built by  addition to PHENANTH
        Kow many atoms to add  to fragment
        2
        Molecular fragment PKENANTH will be drawn
                            12      11             12
                                                             Save fragment in the library  file?  (n) = = >

                                                             Fragment           25 to be used in surface calculation
                                                             la  that what you want? (y) = = >

                                                             Input solvent probe radius. ==>
                                                            1.5
                                                                      Surface areas for fragment PYRENE
                                                                  computed with respect to probe of radius   1.500
                                                                 ACCESSIBLE
                                                           Hydrophoblc 374.701
                                                           Polar         0.000
 1 CSP2
 2 CSP2
 3 CSP2
 4 CSP2
 5 CSP2
 6 CSP2
 7 CSP2
 8 CSP2
 9 CSP2
1O CSP2
11 CSP2
12 CSP2
13 CSP2
14 CSP2
15 CSP2
16 CSP2
 3.564
33.854
41.116
33 934
 3.714
 3.717
 3.714
33.835
 3.717
33.834
 3. 564
33.854
41.116
33.834
33.717
33.717
                                                                                                           van der Waa
   122.351
     0.000

Atomic Breakdown

         1.164
        11.054
        13.426
        11.048
         1.213
         1.214
         1,213
        11.048
         1.214
        11.048
         1.164
        11.054
        13.426
        11.048
        11.010
        11.010
                                                                                         208.039
                                                                                           0.000
 5.019
17.538
18.619
17.558
 5.130
 5.130
 5.130
17.558
 5.130
17.558
 S.019
17.536
18.819
17.558
17.470
17.470
        Return to continue

        Atoms will be added one  at a time
        Atom added where on fragment PHENANTH
        List l,j and k. where k  la the bond to add
        atom to and j and 1 are  the k-1. k-2 atoms
        bonded to k
        3  2  1
        How specify atom type to be added
        Do  you want them Hated? (n) ss>
        y
        Current atom type names  and their numbera
          CSP3   1    CSPZ   2
          CARO   3    HAXO   4
          NSP3   5    OS?3   6
          S      7    T      8
          CL    9    BR    10
          I     11
        Suaber of atom type to be added?
        2  '
Aton added
List i.J ft
mitoa to «n
bonded to
13 12 11
Now sp«clf
Do you w»n
wh*r* on fr..r»nt PHENAHTH
d k. wh«r« k Is the bond to add
3 and 1 ar* tha k-1. k-2 «to»»
atow type to be added
the* listed? (n) -=>
         Nuaber of atom type to be added?
         Molecular fragment PYRCNE   will be drawn
                                        16     15
                             12
                                    U
        Return to coatlnue

-------
                                                74
 Figure  11.   Example of  Molecular  Surface  Area Calculations  (continued)
 Llat existing fragments  .
 build new fragment  ,
 read in new fragment .
 perturb an existing fragment  ,
 combine two existing fragments  (
 delete an existing  fragment 
 or choose fragment  for surface  calculation ? (choose)  ==>
con
 Which molecular fragments  do  you want to combine?
 list identifiers   r  input fragment • (input) ==>
1
                              3  ANTHRAC
                              7  DIPHENAN
                            11  S4BENZ
                            15  PYRIDINE
                            19  ACID
                            23  NITHO
                                                                                                           Combine
    1 BENZENE
    5 BENZOPHE
    9 TR1AZINE
   13 C4BENZ
   17 PYRROLE
   21 KETONE
 Input fragment «  ==>
1 23
Molecular fragment NITRO    will be added to fragment BENZENE
 What is new fragment  name, only 8 characters? ==>
NITROBENZ
Hew molecular fragment NITROBENZ will be built by combining BENZENE  and NITRO
 2 NAPHTHAL
 6 OIPHENHE
10 N4BENZ
14 CHRYSENE
18 INDOLE
22 ISOPROPY
 4 PHENANTH
 8 DIOXIN
12 T4BENZ
16 IMIDAZOL
20 AMIDE
24 SULFATE
 Mole
      ula
           fragments  BENZENE
            Fragment  A
                     2
                              and NITRO
                                          will be drawn
                                              Fragment B
         5           6

 Return to continue
 Fragment B added where on fragment A
 List l.J and k.  where k la the  bond to add
 atom to and J and i are the k-1. Jc-2 atons
 bonded to k
632
 Now specify aton on fragment B  wher* bond la forned
 and the aton Its bonded to
1  3
 Current dihedral value around bond connecting
 fragments Is   180.0000
 What dihedral do you want?  ==>
180
 Current dihedral value around bond connecting
 fragments is   180.0000
 Molecular fragment NITROBEN will be drawn
                                      9
  la this the configuration you went?  (ye«)

  Save fragment in the library filet (o) ==
n
 Do you want to set up a LOG file  to store
 the aurface area calculations?   (n) -->

 What la file name. ? (for093.dat) ==>
com log
File com.log status=new will be  opened
 Fragment           25 to be used  in surface calculatlo
 Ii that what you want? (y)  ==>
 Input solvent probe radius.  ==>
l.i
                                                                          Surface areas  for  fragment NITROBEN
                                                                      computed with respect  to probe of radius
                                                                                                                l.SOO
                                                                     ACCESSIBLE
                                                               Hydrophoblc 191 3S4
                                                               Polar       105.289
                                                                   1  CSP2
                                                                   2  CSP2
                                                                   3  CSP2
                                                                   4  CSP2
                                                                   S  CSP2
                                                                   6  CSP2
                                                                   1  NSP3
                                                                   •  OSP3
                                                                   9  OSP3
                                                                             29.286
                                                                              7.937
                                                                             28.553
                                                                             41.859
                                                                             41.859
                                                                             41.059
                                                                              1.670
                                                                             50.787
                                                                             52.632
                                                                                                               van der Waals
                                                                             62.483
                                                                             29.71S

                                                                          Atomic  Breakdown

                                                                                   9.563
                                                                                   2.592
                                                                                   9.323
                                                                                  13.666
                                                                                  13.668
                                                                                  13.668
                                                                                   0.471
                                                                                  14  333
                                                                                  14.911
                                                                 9S 772
                                                                 44.770
                                                                          16.649
                                                                           7.207
                                                                          16.322
                                                                          18.631
                                                                          18.531
                                                                          11.531
                                                                           J.77Z
                                                                          20.671
                                                                          21.327

-------
                                                   75
     Figure   11.   Example  of Molecular  Surface  Area  Calculations  (continued)
 List existing  fragments ,
 build n«»  fragment ,
 read in  new  fragment .
 perturb  »n existing fragment  ,
 combine  two  existing fragments ,
 delete an  existing fragment 
 or choose  fragment for surface calculation ?  (choose) ==>
                                             Combine
list Identifier!
1







1
5
9
13
17
21

BENZENE
BENZOPHE
TRUZINE
C4BENZ
PYRROLE
KETONE
Input fragment
1
1

Molecular fragm«

2
S
10
U
18
22
t

>nt
 or

NAPHTHAL
DIPHENME
N4BENZ
CHRYSENE
INDOLE
ISOPROPY
= = >

BENZENE
input fragment * (input) = = >

3
7
11
IS
19
23


Kill

ANTHRAC
DIFHENAN
S4BENZ
PYRIDINE
ACID
NITRO


be added

4
8
12
16
20
24


to

PHENANTH
DIOXIN
T4BENZ
IMIDAZOL
AMIDE
SULFATE


fragment BE1
 What 13 new  fragment name,  only  B characters? ">
BIPHENYL
New molecular fragment BIPHENYL fill be built by combining BENZENE
 Molecular fragments BENZENE  and BENZENE  will be  drawn
           Fragment A                        Fragment B
         12                     12
and BENZENE
         S          6

 Return to continue
 Fragment B added where on fragment A
 List 1,J and k. where k la the bond to add
 atom to and j and  1 are the k-1.  k-2 atoma
 bonded to k
632
 Now specify atom on fragment B where bond li formed
 and the atom its bonded to
S 6
 Current dihedral value around bond connecting
 fragments is -1.9792342E-02
 What dihedral do you want?  =*>
0.0
 Current dihedral value around bond connecting
 fragments is -1.9782342E-02
 Molecular fragment BIPHENYL will  be drawn
                                      ?          6
                                                 12
                                                                            Surface areaa  for fragment BIPHENYL
                                                                        computed with respect to probe of radius
                                                                                                                  1.500
 Return to continue

 Is thla the  configuration you want**  (yea) = = >

 Save fragment  in the library file? (n) ">
 Fragment          25 to be use
 Is that what you want? (y) ">
                                               illation
 Input
1.5
      ACCESSIBLE

 Hydrophoblc 358.596
 Polar         0.000
                                                                                              CONTACT
116.439
  0.000
                                                                                                                 van der Haala
183.268
  0.000
                          Atomic Breakdown
I CSP2
2 CSP2
3 CSP2
4 CSP2
5 CSP2
6 CSP2
7 CSP2
6 CSP2
9 CSP2
10 CSP2
11 CSP2
12 CSP2
24.
4
24.
41.
41.
41.
41.
41.
41.
24.
4
23.
Do you want to
set-up a
a surface
q
510
346
510
696
.696
898
916
699
117
528
.347
.726
input atomic
molecular fragment
area

 or

8.003
1.419
8.003
13-. 681
13.681
13.681
13.667
13.681
13.428
6.009
1.420
7.748
parameters .
i calculate
quit ? (aurface)

IS.
5.
15.
16.
16.
18.
18.
18.
16.
IS.
S
IS


ss:

.369
024
.369
624
.624
624
.629
624
.619
.374
.024
.363




                                                                  MOLACCS normal  termination
                                                                  t

-------
                                          76
 This fragment is assigned a number in the  event that the  user may wish to save it,  then a

probe radius  of 1.5  A is selected, and  the  accessible, contact, and van der Waals surface

areas are calculated


Perturb  and Replace - Example of Replacement of  an  Atom in  a Fragment

 The next  example shows use of "perturb" and "replace",  in  which the molecular fragment

naphthalene is used to construct quinoline.  The  user selects "p"  for perturb and then "r"

for  replace.   The molecular  fragments are listed;  fragment No.  2 is selected; the  new

fragment is named; and the molecular  fragment "NAPHTHAL" is drawn.   Atom  number  1  in

IMAPHTHAL is  selected for  replacement; the  atom  types are listed;  atom  number 5  is

selected from  the list;  and  the  new  molecular  fragment  is drawn.   The  surface  area

calculations are then  performed for a probe radius of 1.5  A

 The weighted proportion of the total surface area comprised  of hydrophobic  and polar

atomic entities  is  shown, as in the other examples.  These  values  for hydrophobic and polar

surface  area for  quinoline  were  used in  the  AROSOL  program  Example  Calculation  I as

shown previously in Figure 5.
                             *

Perturb  and Add - Example of Addition of an Atom to  a Fragment

 The next  calculation shows an example of  "perturb"  and "add" in  which two chlorine atoms

are  added to  benzene to  form  1,3-dichlorobenzene.   The user  enters  "p* and  "a" for

perturb  and  add; and  molecular fragment  No.  1,  "BENZENE", is   selected  for perturbation.
The  user  then  inputs  the  number "2"  to indicate the addition of two atoms to benzene.

The  molecular fragment is  drawn.  The  sequence  of atoms 5,4,1   on benzene  are specified,
the atom  types are  listed, and atom type No.  9  (CD  is  selected.   Chlorine  is added at the

one  position, and  the  steps  are repeated to add  chlorine  at the  3  position  by  specifying

the  atomic sequence  1,2,3  on the aromatic  ring.   The  molecule  1,3-dichlorobenzene  is

drawn, and the surface area calculations are performed for a probe radius of 1.5 A

-------
                                          77
Perturb and Add - Example of Addition of an Atom to a Fragment
 The   next  example  illustrates the  construction  and  surface  area  calculation  for  1-
ethylnaphthalene.   The  calculation  proceeds  as in the  above  example  with  the atomic
sequence  6,5,1  indicated  to identify  the  location of the atomic addition.  The atoms are
added  one at  a  time, and  an aliphatic  carbon is  first added  at  the  1-position and the
second carbon is added to  the new carbon atom by specifying the sequence  5,1,11.  The
map shows that first additional carbon, labled number  11 was added at  the 1 -position, and
the example  continues with the  additional  carbon  being added  at the   11-position.   The
second carbon atom is labled No. 12.

Perturb and Add - Example of Addition for an Atom  to a Fragment
 The  next example  illustrates the construction  of  pyrene from  phenanthrene.   As before,
the user inputs "p" and "a", and  the  molecular  fragments  are  shown.   Molecular  fragment
number 4, "PHENANTH," is  specified, the new fragment is named.   The  new fragment will
be  constructed by addition of two  aromatic  carbon atoms.  The location of the first atom
to be  added  is given as 3,  2,  1 for addition at the 1-position.  The atom type is  selected,
i.e.  atom type  2  for aromatic-CH.   This  procedure is  repeated  with the next atom  being
added  at  position  11 by  specifying 13,  12,  11.   The  calculation  then proceeds  as in the
previous examples.
Combine  - Example of Combining a Functional Group Substituent  to a Fragment
 The next example illustrates the construction of nitrobenzene from the  molecular  fragment
benzene and  the nitro functional group substituent  The user  enters "c" for combine, and
then enters the fragment numbers 1 and 23 for "BENZENE" and "NITRO", respectively.  The
fragment numbers are entered  with the parent fragment identification first,  followed by the
secondary  fragment  identificatioa   The new  fragment  is named,  and then the parent and
secondary  fragments  are displayed.   Atoms "6,  3,  2" are specified on the  parent  fragment
to indicate the  point of attachment at atom number  2 on benzene.  The two atom sequence
"1,  3"  is specified for the secondary fragment to indicate the orientation and attachment of
the nitrogen  atom, which  is atom number 1 in the NITRO functional group.  The  program
then indicates that the dihedral  angle  between the  plane containing benzene and  the  plane

-------
                                          78
containing the  nitro group  is  180°.   This  value  of the  dihedral angle  is accepted  for
calulation.  The configuration  is checked, and the surface area calculation  is performed.

 NOTE:  The fragment atomic  numbering system is shown in the  appendix  in the fragment
file.   This numbering  system must be used  to  ensure that the fragments  are  combined  in
the manner desired.

 The  combine operation  may have to executed at  one or two  different locations around a
symmetric aromatic ring until the  desired atomic configuration is achieved.  This requirement
results from  the manner in which the combine operation  is performed.  The combining of
two molecular fragments to form a  daughter fragment is accomplished by a series of three
operations.  The first step  entails the atattachment of the principal atom (i.e. atom  number
1) of  the secondary  fragment to the parent fragment  with  the  correct bond angle.   The
computer  program then  translocates  the  secondary  fragment  over the attached atom to
achieve superposition of the principal atoms.  This translocation  is executed by moving the
secondary fragment to  the  attached atom  on the parent fragment  without rotation.   This
translocation  is performed by  superimposing the fragments in the orientation shown in the
orginal presentation of fragment  A and B. The  computer program then rotates the branched
atoms on  the  secondary  fragment to achieve the correct bond  angle between the branched
atoms and the  principal  atom  on the  secondary  fragment   This rotation  is restricted to
about  plus or minus  45°.   Therefore, the correct strategy  for  combining  fragments is to
select a location  on the parent  fragment  for which a direct  lateral translocation  of the
secondary group results  in approximately the correct orientation  of the branched  atoms.

 The  third step of the combine operation is the rotation of attacheded secondary fragment
to the specified  dihedral angle between the parent fragment and secondary fragment  The
dihedral angle is the  angle  formed  by the  plane  containing  the  primary fragment and the
plane  containing the secondary fragment  A dihedral  angle of 0°  or  180°  means that both
fragments  lie  in  the  same  plane,  while  a dihedral  angle  of  90°  means that the  two
fragments lie in planes perpendicular to each other.

-------
                                         79
Combine - Example of Combining Two Fragments
 The  last example shows  the  combination  of benzene  and  benzene  to  form  biphenyl.
Again, the user selects combine, and the fragment benzene is taken  for both  parent and
secondary fragment.  The user specifies the  sequence "6,  3, 2" for attachment at  location
number  2 on the  parent fragment, and "5, 6" for attachment of the secondary fragment at
location  5.   The  molecular  fragment  is  drawn,  and  the  calculation  is performed for  a
dihedral angle of 0° (actually 0.02° owing to runoff  error).

 The  "combine" operation permits only  one  bond  to be  formed  between fragments.   As
indicated above, the operation may have to be executed several times at different  locations
around the parent ring in order to achieve the correct symmetry and orientation  for  the
new molecule.

-------
                                          80
                                     REFERENCES



Anderson,  RE,   "Supplement  to  Program  UNIFAC,"  3rd   revision,  Dept  of  Chemical



    Engineering, Univ.  of  California,  Berkeley,  CA, 1983.






Arbuckle,  W.B.,   "Estimating  Activity  Coefficients  for  Use  in  Calculating  Environmental



    Parameters,"   Environmental  Science  and  Technology.   Vol.    17,  No.9,  1983,  pp.



    537-542.






Barton,  A.F.  M., Handbook of Solubility  Parameters and  Other Cohesion  Parameters CRC



    Press Inc., Boca Raton, FL,  1983.






Benerjee,  S.,  "Solubility  of  Organic  Mixtures  in  Water,"  Environmental  Science and



    Technology, Vol.  18,  1984, pp.  587-591.






Benerjee,  S., "Calculation  of  Water  Solubility  of Organic Compounds with  UNIFAC-Derived



    Parameters,"   Environmental  Science  and  Technology.  Vol.    19,  No.  4,  1985,  pp.



    364-369.






Brooks,  B.R.,  Bruccoleri, R.,  Olafson,  B.,  States,  D., Swaminathan,  S.,  and  Karplus,  M.,



    "Chemistry at Harvard - CHARMM:  A  Program for Macromolecular Energy, Minimization,



    and Dynamics Calculations,"  Journal  of Computational  Chemistry.  Vol. 4, 1983,  pp.



    183.






Campbell, J.R., Luthy,  R.G., and  Carrondo,  M.J.T., "Measurement and  Prediction of Distribution



    Coefficients for  Wastewater Aromatic Solutes,"  Environmental Science and  Technology,



    Vol.  17, No.  10,  1983, pp. 582-590.






Campbell, J.R., and Luthy, R.G.,  "Prediction of Aromatic Solute Partition  Coefficients Using



    the UNIFAC  Group  Contribution  Model,"  Environmental  Science  and  Technology, Vol.



    19, No.  10.  1985, pp. 980-985.






Castallan,  G.W., Physical  Chemistry, 2nd Ed, Addison Wesley, Reading, MA,  1971.






Chiou,   C.T.,   Freed, V.H., Schmedding,  D.W.  and Kohnert,  R.G.,  "Partition   Coefficient  and

-------
                                          81
    Bioaccumulation  of   Selected  Organic   Chemicals,"  Environmental   Science   and



    Technology, Vol.  11,  1977, pp. 475-478.






Chiou,  C.T..  Schmedding, D.W.,  and Manes,  M.,  "Partitioning  of  Organic  Compounds  in



    Octanol-Water Systems," Environmental Science and  Technology. Vol.  16, No.  1, 1982,



    pp. 4-10.






Dzombak,  DA, and Luthy, R.G., "Estimating  Adsorption  of  Polycyclic Aromatic Hydrocarbons



    on Soils,"  So/7 Science, Vol. 137, No. 5,  1984, pp. 292-308.






Fredenslund, A, Jones,  R.L.,  and  Prausnitz, J.M., "Group Contribution Estimation of Activity



    Coefficients in Nonideal  Liquid  Mixtures,"  AlChE  Journal,  Vol. 21,  No. 6,  1975,  pp.



    1086-1099.






Fu, J.K., and Luthy, R.G.,  "Aromatic Compound Solubility in Solvent/Water  Mixtures," Journal



    of Environmental Engineering, ASCE, Vol. 112, No. 2, Apr., 1986a, pp.  328-345.






Fu, J.K., and Luthy, R.G.,  "Effect of  Organic  Solvent on Sorption of Aromatic Solutes onto



    Soils," ASCE, Journal of Environmental Engineering,  Vol.  112, No. 2, Apr., 1986b,  pp.



    346-366.






Fu, J.K., and Luthy, R.G.,  "Pollutant Sorption onto Soil/Sediments in  Organic/Aqueous Solvent



    Systems,"   Report  to  US  Environmental  Protection  Agency,  Environmental   Research



    Laboratory, Athens, GA, under Contract No.  R810878-01, May, 1985.






Gmehling,  J.G., Anderson,  T.F., and  Prausnitz, J.M., "Solid-Liquid Equilibria  Uisng  UNIFAC,"



    Industrial & Engineering  Chemistry;   Fundamentals,  Vol.  17,  No.  4,  1978,  pp.



    269-273.






Gmehling,  J.G., Rasmussen, P., and Fredenslund, A.,  "Vapor-Liquid Equilibria by UNIFAC Group



    Contribution,  Revision and Extension 2,"  Industrial & Engineering Chemistry; Process



    Design &  Development, Vol. 21,  1982, pp.  118-127.






Grain, C.F., "Activity Coefficient," Handbook of Chemical Property Estimation Methods,  W.J.

-------
                                         82
    Lyman,  W.F.  Reehl, and  D.H. Rosenblatt Eds., McGraw-Hill  Book  Company, New  York,
    NY,  1982.

Hamaker,  J.W.,  and  Thompson,  J.M.,  "Adsorption,"   Organic  Chemicals  in  the   Soil
    Environment. Vol.  1, C.A.I.  Goring and J.W. Hamaker, Eds.,  Marcel-Dekker, New  York,
    NY,  1972.

Hassett, J.J., Means, J.C.,  Banwart,  W.L, and Wood,  S.G., "Sorption Properties of Sediments
    and   Energy-Related    Pollutants,"   US   Environmental   Protection   Agency,    No.
    EPA-600/3-80-041. 1980.

Hermann,  R.B.,  "Theory  of   Hydrophobic  Bonding  II.    The  Correlation  of  Hydrocarbon
    Solubility in  Water with  Solvent  Cavity Surface Area,"  Journal of Physical  Chemistry,
    Vol. 76, No. 19, 1972, pp.  2754-2759.

Hildebrand,  J.H.,  and  Scott, R.L,  The  Solubility  of   Nonelectrolytes,  3rd ed,  Reinhold
    Publishing Company, New York, NY,  1950.

Hildebrand,  J.H.,  Prausnitz,  J.M.,   and  Scott  R.L,  Regular  and  Related  Solutions,  Von
    Nostrand Reinhold Company, New York, NY, 1970.

Jorgenson, W.  and Swerison, C,  "Optimized Intermolecular  Potential  Functions  for Amides
    and Peptides.   Hydration of Amides.",  Journal  American Chemical Society,  Vol.  107,
    1985, pp. 569 -  578.

Jorgenson, W.,  and Swerison,  C.,  "Optimized Intermolecular Potential  Functions  for Amides
    and Peptides.  Structures and Properties of Liquid Amides," Journal American Chemical
    Society. Vol. 107, 1985, pp. 1489 -  1496.

Karickhoff,  S.W.,  "Semi-Empirical  Estimation  of Sorption  of  Hydrophobic Pollutants  on
    Natural Sediments and Soils," Chemosphere,  Vol.  10, No.  8,  1981,  pp. 833-846.

Karickhoff,  S.W.,  "Organic  Pollutant  Sorption  in  Aquatic  Systems,"  Journal of  Hydraulic
    Engineering, ASCE, Vol.  110,  No. 6, 1984, pp.  707-725.

-------
                                          83
Laidler and Meiser, Physical Chemistry, 1982.

Lambert, S.M.,  "Functional  Relationship  Between  Sorption  in  Soil  and Chemical Structure,"
    Journal of Agricultural and Food Chemistry, Vol. 15, No. 4,  1967, pp.  572-576.

Leo,  A.J.,  Hansch,  C,  and  Elkins,  D.,  "Partition  Coefficients and  Their  Use," Chemical
    Reviews, Vol. 71, No. 6, 1971, pp. 525-616.

Lyman,  W.J., "Solubility in Various Solvents," Handbook  of  Chemical  Property Estimation
    Methods, W.J. Lyman, W.F.  Reehl, and D.H. Rosenblatt, Eds., McGraw-Hill  Book Company,
    New York, NY,  1982.

Mackay,  D., "Finding Fugacity Feasible," Environmental Science and Technology, Vol.   13,
    No. 10, 1979, pp. 1218-1223.

Mackay,  D.,  "Aqueous  Solubility  of  Polynuclear  Aromatic  Hydrocarbons,"  Journal  of
    Chemical  and Engineering Data,  Vol. 22, No. 4,  1977, pp. 399-402.

Martin, A.,  Wu, P.L,  Adjei, A., Beerbower, A., and Prausnitz,  J.M.,  "Extended  Hasen Solubility
    Approach:  Naphthalene in Individual Solvents," Journal of  Pharmaceutical Sciences,  Vol.
    70, No. 11, 1981, pp. 1260-1264.

Martin,  A,  Wu,  P.L, Adjei,  A,  Lindstrom,  R.E,  and Elworthy,  P.H., "Extended  Hildebrand
    Solubility  Approach and  the Log-Linear  Solubility  Equation," Journal  of Pharmaceutical
    Sciences. Vol.  71, No.  8, 1982, pp.   849-856.

Miller, M.M.. Wasik,  S.P.,  Wang, G.-L,  Shiu, W.-Y., and Mackay,  D., "Relationships Between
    Octanol -Water  Partition Coefficient and Aqueous Solubility, Environmental Science and
    Technology. Vol. 19, No. 6,  1985, pp. 522-529.

Neely,  W.B.,   and   MacKay,   D.,  "Evaluative Model  for  Estimating  Environmental  Fate,"
    Modelling the  Fate  of  Chemicals  in the  Aquatic Environment. K.L   Dickson, AW.
    Maki,  and J. Cairns, Jr., Eds., Ann Arbor  Science,  Ann Arbor, Ml,  1982.

-------
                                          84
Pearlman, R.S., "Molecular Surface  Area and Volume:  Their Calculation and Use  in Predicting
    Solubilities and  Free Energies  of  Desolvation," in The Partitioning Coefficient:   Theory
    and Measurement, W.  Dunn, J.  Black  and R.S.  Pearlman, Eds., Pergammon Press,  New
    York, NY 1986.

Pearlman,  R.S.,  "Molecular Surface  Areas and Volumes  and  Their  Use in Structure/Activity
    Relationships,"  in  Physical  Chemical  Properties of Drugs, Marcel  Dekker, New York,
    NY, 1980 pp. 321-347.

Prausnitz,  J.M., Molecular  Thermodynamics of  Fluid-Phase  Equilibria, Prentice  Hall,  Inc.,
    Englewood Cliffs, NJ, 1969.

Richards,  F.M.,  "Areas,  Volumes,  Packing,  and  Protein  Structure",  Annual  Reviews  of
    Biophysics and jBioengineering, Vol. 6, 1977,  pp. 151-176.

Ryan,  T.A.,  Jr.,  Joiner, B.L,  and  Ryan,  B.F.,  Minitab  Student Handbook, Duxbury Press,
    Boston,  MA, 1981.

Tsonopoulos,  C., and Prausnitz,  J.M.,  "Activity  Coefficient   of  Armotic  Solutes  in  Dilute
    Aqueous Solutions," Industrial & Engineering  Chemistry;  Fundamentals.  Vol. 10, No.
    4, 1971, pp. 593-600.                                        -   --

Valvani,  S.C.,  Yalkowsky,   S.H.   and  Amidon,  G.L,  "Solubility  of  Nonelectrolytes  in  Polar
    Solvents  VI.   Refinements  in  Molecular  Surface  Area  Computations,"  Journal  of
    Physical Chemistry, Vol. 80, No. 8,  1976, pp.  829-835.

Weast, R.C., Ed, CRC  Handbook of  Chemistry  and Physics,  63rd  ed., Chemical Rubber
    Publishing company, Boca Raton, FL,  1983.

Williams,  N.A., and  Amidon, G.L,  "Excess Free  Energy  Approach  to  the  Estimation  of
    Solubility in  Mixed Solvent  Systems I: Theory," Journal of Pharmaceutical Sciences, Vol.
    73, No.  1,  1984a, pp.  9-13.

Williams,  N.A., and  Amidon. G.L,  "Excess Free  Energy  Approach  to  the  Estimation  of

-------
                                           85
    Solubility  in  Mixed  Solvent  Systems  II:   Ethanol-Water   Mixtures,"   Journal  of



    Pharmaceutical Sciences. Vol.  73,  No.  1, 1984b,  pp.  14-18.






Williams,  N.A.,  and  Amidon,  G.L.,  "Excess  Free  Energy  Approach to  the  Estimation  of



    Solubility  in  Mixed  Solvent  Systems  III:  Ethanol-Propylene  Glycol-Water Mixtures,"



    Journal of Pharmaceutical Sciences, Vol. 73, No.   1, 1984c, pp. 18-23.






Yalkowsky, S.H., "Estimation of  Entropies of Fusion  of Organic Compounds," Industrial  &



    Engineering Chemistry; Fundamentals,  Vol. 18, No. 2,  1979, pp.  108-111.






Yalkowsky,  S.H.,   Flynn,  G.L.,  and  Amidon,  G.L.,  "Solubiltiy  of  Nonelectrolytes  in  Polar



    Solvents," Journal of Pharmaceutical Sciences, Vol. 61, No.  6, 1972, pp. 983-984.






Yalkowsky,  S.H.,  and  Flynn,  G.L,  "Correlation  and  Prediction  of  Mass Transport  Across



    Membranes  II: Influence  of Vehicle  Polarity on Flux from  Solutions and Suspensions,"



    Journal of Pharmaceutical Sciences, Vol., 63, No. 8,  1974,  pp. 1276-1280.






Yalkowsky,  S.H.,  Valvani, S.C.,  and Amidon,  G.L, "Solubility  of  Nonelectrolytes  in  Polar



    Solvents IV:  Nonpolar Drugs  in Mixed Solvents," Journal  of  Pharmaceutical Sciences,



    Vol. 65,  No.  10,  1976, pp.  1488-1494.






Yalkowsky,  S.H.  and  Valvani,   S.C.,  "Partition  Coefficient  and Surface  Areas of  Some



    Alkylbenzenes," Journal  of Medicinal Chemistry  Vol. 19, No. 5, 1976, pp. 727-726.






Yalkowsky, S.K., and  Valvani, S.C.,  "Solubility and Partitioning I:   Solubility of Nonelectrolytes



    in Water," Journal Pharmaceutical Sciences, Vol., 69, No. 8, 1980, pp. 912-922.






Yalkowsky,  S.H.,  and Valvani,  S.C.,  "Solubilities and  Partitioning 2.  Relationships  Between



    Aqueous  Solubilities, Partition  Coefficients,  and  Molecular  Surface  Areas of  Rigid



    Aromatic Hydrocarbons," Journal  of Chemical and Engineering  Data,  Vol.  24,  No.  2,



    1979, pp. 127-129.

-------
                86
APPENDIX 1:  AROSOL PROGRAM LISTING

-------
                                                                                                            87

v
(j

ui
z
bl
bl
bl
t£
U.
<
t-t
O

u.
a:
H
z
I-H
ce
o
cu

Cu
Ul
a


LOG-LINEAR APPROACH
UNIFAC APPROACH
EXCESS FREE ENERGY APPROACH
MOLECULAR SURFACE AREA APPROACH
a: as a;
PC O O O
O b* b4 U. E-»

(A M VI U H
in z z z > z
Z O O O iJ ui
O t-t t-i M O > Z
M H H H W ^ O
H < < < O M
rf _i ^ ,.3 u* tn H
J o o n o <
O U (J O b. *4
0 J _} ,J z O 0
*H- < < < O U
< O U U t-t Z t-3
O E-t O *C
Ui U. U, O *-< (J
Cu o o o <; E-*
DC o: ce u. rf o
>-3 a£ ui ui ui o-
gu m CQ CQ ui L* cu
CO S Z Z Z bl
g§Iii3Sg
1/1 z 	 § g i
Ul .. !H U, rt
Z J Z X Ul 	
>H»H:DUIZ>>»H'
EHZZZZOO<
OUOUUU1U1U
ozzzz>xz
ac
m












ac
3
§

ul
z

o
o
ac
m
ION SOLUBILITY
ANALYSIS
EH Z
U 0
Sw Z
ul O
CM Ul n
Ul Ul
ul ac Ul
fj U Ul
O Ul «
Z 3 u
ul ac oc
H <
O ul ac
S5S
Ul *H Z

g u, iJ
O u.
Z EH O
x: cu
Ul ul
Ui U CU
0 a: KJ
ul o
O EH Ul
22
l-l ••
i-H
.. .. Ou
I-) rH J
x M: ui


CTION SOLUTE SOLUBILITY
OLUBILITY [MG/L]
S"1

EH
Ul O
•-1 J
O O
Z ui
X X
u u
0 0
cu cu
cu cu
< <

33
Ul bl
Z Z

1 1
u o
33


88
•H J
X u>


a.
Ul
S
g
a-


i-t
H
S
Ul
g
M

Z
Ul
Z 0

X H

ul O
z en
I-H


ac
CQ
C ACTIVITY COEFFICIENT ESTIMATION
TE FREE)
f* 3
Ul IH
l-t O
55 ii

as z
0 0
Ui HI
t-i
Ul U
Ul «£
O u,
EH
X ul

Z O

° z
ul >
Z O
Z


X i->





EH
Z
ul
M
U
M
U,
Ui
ul
fH O
z u
ul
O EH
M I-H
U, >

Ul EH

X U,
M °
S8
o""
< ••

EH O










X
1
Z
Ul

ul
OS
Ul
u]
X



5




REGRESSION ANALYSIS
ETER
ac Z
O <

<
a- cu
Ul
EH Z
ul O
Z i-t
< EH
(£ U
< <
Ul
X EH
OS Z

CC "

5^
^ 0
(N
Cu i-t
a: m

< rT




TY ESTIMATED BY EXCESS FREE
t-i
M
m
o
»-i
o
Ul
ul
(H
3
O
Ul

0

o
g
Ul
o
z

ui




Y EXCESS FREE ENERGY APPROACH
ca
o
Ul
EH
S
EH
Ul
Ul
X
EH
X W

o m

cu O
X Ul
a S
z o
Ul Ul

Ul
Ui
Ul



I
cn
§
o



ii


Ul IH
Z O
M m
H
o i
ac
CQ
SOLUTE SOLUBILITY ESTIMATED BY MOLECUJ
z
o
t-H
EH
O
<
2
u.

Ul
o

..
<
Ul
§


PP ROACH
<
5
0-
<

bl
U

U,
DC








ITY ESTIMATED BY MOLECULAR SURFACE ARI
h-4
ca
o
tn

Ul
H
3
o
en

<
w
2
tn







H

Ul
z
D

ul
Z
hH

8
ac
CO
RAMETER FOR NGMOL
RAMETER FOR NOGP
RAMETER FOR IDGP
NENT IN THE MIXTURE
ENT PARAMETER OF NGMOL, NOGP AND IDGP
IENT
Y COEFFICIENT
R NUMERICAL ESTIMATION
R NUMERICAL ESTIMATION
UMERICAL ESTIMATION
FUNCTION VALUE FOR LOWER BOUNDARY, Ui
D ESTIMATED VLAUE
«€< U, > OS EH
1-1 Uii-tXXOrfX
OCOCCSU3 u]EHOSOSUii4oS
ooo OHOU«:< s<
aCaCcCUiUlZUU U..
§.UMOOSOSi-lX
Cu EH i-l ul ul O u.
5ZZZOMU 2CUEH »•
ulul z < < » o a. ca
t-*EHH.« »U (J^O"Ui

OOQUlO-.O
      Vt  O  kl
      ul  TJ  Cl
              O  3
              OC  .-<

                  0
      >H  o  01  u

     i  I  CL  V  3
      y>      e  *;
     i O  «  «  X


     .   .H  a 6
     I U         U
                                .-* u  a
                                z a:  c
                                ^ < •*«
       >H Ul
       U. z

       <2

       og

.. u,g"
Bl Z  l-t 3=
a> t-t     u
C H  bl <
-. :=,  ac ul
*J O  O
a ac  H ac
O ea  tn o
*H r>     u,

^•"iu,
H Ul  < EH
   IH     Z

C EH  < 1-,  i


O O  Z £
                                                                                                <

                                                                                                a
                                                                  i
                                                                  ul  X
                                                                                          ul
                                                                                          O
                                                                                      X  U
                                                                                    : u
                        o o  a: u,  wi
                        ^t oc    u,
                                                                                          :  o
at  *j
Q. 4
O  *
                  Ul     *H ^  kl
>  c
HI  V
•a  >
                                u     u   c
                                aoe -a  -«
                                   s  c  *j
                                U O  V  -*
                                C W  Li  ^-4
                                W i-4  «  — «
                                u o *M  ja
                                «  o   o
                               *j z  o
                                o ui  u
j=  ac  os H  i

"  ui     >  !

O     EH H  ;
    O  < U
U  H  d <
                        <  H
                      lO<
                        O:£
ui     O <  ui ui     < a.
 I  as  ui     ul O ul  u, ac
E-> ul     ac     U ul  ac O
U>EHUI<.~)    ac^iul
                                                                                     u,
                                                                                     0
                                                                           hH£Ula^
                                                                              2a,ul
                                                                           ozZa,
                                                                           Z     iJZ
                                                                           . H
                                                                                                                                  Ot-tHOZI-t
                                                                                                                                                                                                    O OS EH

                                                                                                                                                                                                       H ul


                                                                                                                                                                                                    O Z O
                                                                                                                                                                                                    O Cu  U
                                                                                                                                                                        EH M od DC  O
                                                                                                                                                                        U    ul o  a:
                                                                                                                                                                        3 CC H     U X
                                                                                                                                                                        as ul z x     ul
                                                 UH     UOC<(JIUli-tulUEH

                                                 Ecu.C
    HO EH fH E-. ooo Ul Ul Ul < < < u o u . OO iulul o o es ac U1 HUl oO ouiuiuui X n X ul u ac ul I HU: u>u.<«I«<5 <_ ul « u u Ul O C U ul u < Z 2 u. O C O cc a u t. J OUIJ muiu woosujzZZZZZuiuiuio > CO •• o < .. .. < 5 UIOOXX (HOL.X3 (OOOOOOUOOOOOOOOOOOOUUUUOUOOOOOOOlJUOOUOOUOOUUOOOUOOOtJ

-------
                                                              88
                                         X    -XX
                                         rH  * X rH t-4 *
                                          . X rH  ,  » X


1-t
f-«

X

"s.
^ '
*


H


*, i
tn
i-4
H
X
i-4
*"v
tn »
fH *
H -
X m
f-4 Ul
- H
x* »
« U.

in a>

* i

? !?
X X




oXS',T55, '*',/, IX, T15,
Luthy',T55, '•',/, IX, T15,
Ion University', T55, '*',/, IX, Tl 5,
M • 0)
CD O Z
1
w -a a>
-H «fl CT
M jn at
.C *H U
u cc «
» » o
XX--
O O X



Pennsylvania', T55, '•',/, ix, T13,
/
*. i-i
SZ H
o> *
U X
J-l -
(A ^x
4-> ».
•^4 *
0, *

X m
m o*


6', T55, '*',//, IX, T15, 41 ('*'),///, 1*
continue' )
o\ o

* >,
(A M
•3
D CU
< S
* H
X cC
O
•-4 4J




CC
bl
0
cu
(N — ,
•-» O
f-4 t-l
* *•*

Q 3§
bl O
CC Ui

t-l
i-4
O
CM
O
O
O

•J
a
a
bl
u O
H Z
0 «
cu t-*
*- Z
1-4 O






— -
iH
o -
r-4 X
«* — '
— H
bl rf
t-4 2
eC O

r-t 1-t <
-N. -X.
iates aromatic solute solubility in',
ures. This program is designed to',
•H X
to E
at
E at

0> S
O ^x
at
to >
•H r-t
.c o

4-) » "
levels of input parameters to estim;
)lubility. This program employes foui
jj 10
c
01 0)

IM — i
•M O
•a
u
V -4

-H E
— * o

1*^.1
a nj i
NEAR, UNIFAC, EXCESS FREE ENERGr, ar
AREA. The input parameters can be rt
i-i u
1 O



.. CA
01 Ctf
S3
o o
u f.l
Sio

-4 .'"i
C 01 C
-tea
gSoT
o> :> 4J at
AJ ^ c a
S.H C
-H
.C <0 tn jj
4-1 *J C
 «
U 0) 0
M -H 01 >i
o <-4 .c: at
«» 3 ** **
.-4 3 M z
-•4 .H a> cc
»M O W 3
W O H
D at to ce.
a 4.)
C 0 tJ *-»
•H ^ C -(
o rt x
o> to
c * *
*j at a> *
to *j to x
X E
at -H 0 v.

C <0 4J *V
>» .

,C U Tj ••-»
*J O flj "*-t
-* O -^
a-** ^
E u a
O 01 9 W
M J^ U 3


1-1
p
o
a, u
Ul ~
3

t
**•
U)
t-l
CM
cu
z
I-H
z
0 H
U Ul
.-. w
>« O
O H
^
<-4 X
3 =
.3 0
u 0
o o

>4 -*•
- »
0 <
Ul —
— o *

g u, H
O Uj CC
U, M S

CN
o
f-1
0
o
2
o
u]
i
M-
CM O
U .
C
u. ..
rH 0
O f-1
O •


Q U,
Ul b.

1
Q i
Ul
CC
O
H
ui
CD
O
H
H
Q
cu
Z
bl
X
X
M


y: —
2 *
<
bl —
tu «

H bl
0 H
cu *-«
z a
M X
Q
DC
o
H
IO
Ul
CO
0
bl
CC
H
O
H
CU
Z
r-H
X
u
X
x
z
SM
^ fl]
CO

t-t U.
rsi
bl O
X 0
x
bl *
> —
t-» Q
O <
bl
o CC







^
O
— CN
t-«
O O
u. o

\ EXISTING DATA FILE
o
cc
b.

H


D
Z
t-t
O
Til
CC

"i
bi
|
ui
•J
f-4
(u
H
Z
»-« Z
h-4

. U.
i< CM
— o
- o
* »
— - *
ul —
H Q
"-• <
rt fii
7 cc

cu
O
a
»--*
cu
§ O
Z H

cu 0
w *— -^
»-- • o
H H 0
0 O «-•
z « *
t-4 CU *-
U) bl
J B H
< U. CC
U M X




£
(-4


U.

H
O ul
H Ul
O M
U U.
a
Ul
1 TERMINAL AND STORE INTO THE SPECIF
3L,NOGP,IDGP)
ifi
u. z

H cu
< (/)
*^.
H o-
O C3
Z bl

Q _)
CC O

3
O
H u
Z
0
•—• — • >:
• o z
O iH
Ul « —
Cn — t>
Ul bl <
Z H Z
— l-t Ct
u. a: c
H* 3: b,









•A

oo
CT»

rH

fH
CM

O\
oo
iH

IO
CM

O
O

Jj

0)


M
O

•
t—l

O
o
M
m





























0
u
cc
bl
Z
H
O
O
cc
m
n>
in






















z
o
01
i/>
ul
CC
0
bl
cc
oc
<
Ul
z
1— t
_4
cC
0
u
cC
Ul
H
Ul

<
cu
X























2§
o •-.
1-4 (/I
in w
M Ul
bl CC
CC U
O ui
Ul CC
cC
ec
cc <
< Ul
Ul Z
Z "-•
h-* l-l
I-)
cc
CC O
O b.
b.
t/)
t/> Ul
Ul Z)
33
< >
>u.
2 O
O
1-4 CC
1- Ul
o ca
2 Z
3 3
u. 2
>• 2
























CA
UJ
3
»-)
<
>
>«

O
2
<

X
U,
o
2
O

UMY: SUMMAT
Ul

X
Wl







X
a
5

X
1
X


X
1 2
X O
1-4
U. Ul
O CA 2
ul O
Ul CK t-4
3 U Ul
J Ul CA
«: a. ui
> cc
u] U
2 a: ul
o < 2
1-4 3
H O Ul
< ui a
£ <
i-i !-• 3
H CA O
Xi CA < Ul
ul ul
Q i-4 a:
2 Ul <
< a: cc ui
< < z
X 3 ul I-H
0 2 J
U. Ul l-i
O i-l ul
H I
Ul CA ul f-4
3 < X
l-l Ul H U,
< .-> 0
> u.
•• O !-•
z >* °*
«tj X Ul ui
ui tn a. o
Z * o a
>« U Ul
.. >* w» H
Z wi Z
5-i »..»-»
* X cu
r x J ••
X w» w CQ


















2 Z
O O
»-t 1-4

C/> t/)
Ul U
cc cc
o o
bl Ul
CC CC
Ul U
CC CC PJ
< <
ID 3 Q
a o z
I/I Vt Z
CO
H H X H
IV» W 3
«< < » ul
UJ U] X •-•
^ ^» u
u. »-*
Ul OC O U.
x o u,
H U. M ul
b] O
CC bl O U
O 3 -1
U. -4 < Z
< > 0
tn > >-•
CC 2 «
ul »-) < tn
f-> < U] Ul
f^ ui z 3C c-C
u z o o
Ul nC >~4 •• Ul
CC CC (-• X DC
«C U CM
Ul CU Z » ••
Z 3 Z r>*
(-4 »• U, >• e_>
H >* •* *
B* •• X ^*
x M S u
cc
m
o
in



£ §§5
tfl CQ 03 H
bl cC a: ui
< < x
H U U W
Z
u u u cc
t-* »-* 1-4 bl
O Z Z H

£ O U cc X
b. CC a£ ui >x bl
ui o O (- (-• cu
O < Z O
U Z Z 3C Ul .J
O O > W
Z Ul -1
o a a ac o z
t-i bi bi 3 m o
C-* to M CU 1-4
H co m z i-i to
a: -. ul
< (-» H (-• CC
Oi >• 2 Z H Z L5
H Ul bl Z bl Ul
Z (-4 (-4 ,-t UJ t-4 (X
O »J U U »-• U
-4 1-4 r-l 1-4 O -1 CC
[-• ca u. u. *-4 u. <
CU H 3 U U. U, U. Ul
CC Z>-lUlblb.UlZ
Of-«blOOOUlO^
toz>*nuuooiJ
Q Ul ^ U
<>OUZZ 2 »
•-li/lHOOZOH
U.O 3t-tMQl-4»-4
OVIU.JHH»-»HJ
O O >H M H 1-4 .-.
f-«Ui tO(-iHi-»HCQ
Z O Z CC at r- CC D
3 OZ<-4t>.
COrfUOCOHt-HD
t/)£cC U. O CU H Cu -)
O 5 U. u) ^icCcucCO
rfj Z y 1*1 o oc O m
ui 5 tJ "wow
Ul •• iJ *-J O Q « ••

2qz>zyy"yS
(-. M. -*OOXOO
OZX>Xa>cu>CcuW
CC
CO
3
W











z
o


cu
cc
o

i
U]

fl
f-l Ul
« 2
en I-H
O Ul
CA
Q
U 2
f-1 <

O Ul


M
M ESTIMATES
/HATER MIXT


882
CC CC t-t
cu cu o

Z W


X H









— 0
WO in
H r-4


Z «-t in O

Q » r*> »

W >-4 E-> O
^ — u *n
to ac •< »
j 3 *»i

o - cu o o
5 — ^ — ^.
u 3 r < z

o » « * —

^-4 •-* r^ O
bl 1-4 * * 2
HZ— in -C

O O O —» U O

(j «. '-^ z » »
b. — ' O » in rn
U. -J * « — —


2 2 °1^ § 2
^ Z ^ ~ W Z

CC 3C *•" 5 U) 3^


^ " O




>
o
W
X ^ <
O J
W « U.
> «"•* o ^ r»
* *~3 O \fl (J




» *. CU —•• rfl fc

a: o ui o o. u* ui
> rf> H ^ Ul » H
*n o* 3C CQ » O cu
»*>*>H Ul QO Z3 t/1
'N—U.iC Q (J) U.Z
QOXZ-. * <0. *<


I«vfc5e5c2g jjsl!:^
,ooo2x -.ooouoS

Xr-tluOCUCUf-iU. «. O •-• U. «

*^ » » f-4 W "— U. < -. l/l ri J J iij


g
-------
                                                                                          89
   to
   v>
   <
   I-I
    •. u
   ss
   1-3 U)
   k. Z
    *<
   en   »
r- ,J 2 i  3
U b. H ul  HI
u. o 5!  i  in
 - < 2 VI   ..
HI .J O 3  ,
b] U.   « H>  HI
1/1   .H <  <
tj t-l 3 Hi  3
•-I O O VI   t
b. < t-1   * u
 - J 11 HI  <
2 b, b. Ul  U.
M   .  * VI  t-l
tj ^ M: j  2
t-< O 2 t-l  3
U, X 3 b.  .
          fl  I
O O O bl  bl
.-I t-l t-l ,-)  1-1
•  * * l-l  t-l
OS DC 06 b,  b,
bl U bl   *  *
Hi HI Hi 
o -
O  »
Ul .-3 r-4
X O — '
H tn J
r^ 1 O
^ 6-4 «M X
-* 3 — *
rsi rO cu » *r
* O Z H O
1 r-4 U] r-4
r-* * * > *
•^ # ^ -4 •
*- u O —
n E- E i Q
t-l tl r-t <
O 0£ O ui
Q 3: -w » OC


rH
KJ

C4
rl
O
z


r-t
»T>
rH
^
O
X
*r
O
«. O
O rH
< 00
CM 0*
H .
-rf U)
2 H
QC r-t
O £*
U ?















OS
Ul
H
< ^
*3
uiIJL
2 . ,
tH rH fM
Hi 	
§hj >J
O O
0 X X
IGHT OF SOLVENT, SOLUTE,
bl
f
A
5
3
(j
Ul
r-1
o
x
s
o<
z
M

^
^

<
"-
Ul
H
M
cx:
7
SOLVENT, SOLUTE AND WA'
u.
O
tn
ul
M
H
K4
tn
ss
td
o
en
n£5
X » DU n
X  *.
^iv.
"~*uiul<~^wXXX
O H H Q H 1 II 1
l4;r-t|_f>>
"«^
r-t m
1 Q
* -^ *
•» rH 
•* in z o —
M rH 0 rH
Z Z IH rH >
*H rH ^ —
U. OS —I
>* Ul fM rH
H » Q. *-D —
rH fc — *
fj \ OS rH ^

m *~ < — Z
o «. cu • o
tJ t-3 -* O X
O ^ ui — . o ul
w o z — rH e«
X O «N * -*.
Ul Q CM —
H Z X « O — -
3 rH H O -» — • O
»J IH — oo>xO*n
O >» X OIOO — O
tnH «»-3rHOCMrHO
rHtnCM'fc-~-"rH»-J« (^
ZrH'QS'-iOa^* — CM
XrHrH— tn — > (N CM a: O
om<(M »cMXtnXO
§3 ou tn — » *-j x — — —
r4 » CM — — * 1 ^« O
OZ-~.t-3tM^O.~ •
HujrHr^-^-tn— .OCMO
^-.O *~JrH 	 CMO^ •
r-t Qj Ul H — > t •-> rH — ' H
rHZHOr-4,^0 	 — CM rj
rH J Z -* * O (rt — — " «
v* O*H« OlrH-t- -»• 1 fM
U) CM — +
Ul ^ O !-• "•* ul "•" H* t-« *^ ^4 CM O c
rHHXZ -^ ^ r
1 in23:U,» * CCZtHHHXrH'-iU1-
* •








J
>H
-^ X
SI
J rH
X X

o *"7
X o
-*. o
O t-H

CM O O»
rH « -^ U
1 r-« — — Z
M rH rH rH
-> CM > > f-t
M O U. U- O
^ Q rH rH (J
OLUTE SOLUBILITY BY '
Y OR N) ')
to — •
U)
H -
Sc
t— t *.
H *
ui r*
b] X
O
O <
t- 0
a:
H a.
Z cu
3 <
&
a:
o <
O u]
— x» z
CM f~4
r* O *1
s.?8
i. ~ "-1
b] rt bl
H Z X
t-l 2 H>
a: o
3 u. ,
00
o
HI
o
u

>,

bl
2

(*l
o
5
u>
a.
o
fo .
o -
m < ><
O iJ .
3bt •
— Ul
^* co" i*>
~rg O
• — f.
"•" bl l-l
O HI U.
< t-t —
a. s n
UBILITY, CAN NOT'
.-3
0
V)

b]
HI
3
J _
O ,
V) X
O
§<
0
o a.
2 Oi
oo at: a.
<
O bl
Hi 20:
o °5
O -^ >• Z
m r-3 IH
—. rH Z 1-3
. rH 0 -
t- * - 0 Z
°.^HT^-,
CM Ul rt Ul 1*1
•D H X « 0
— w 2 o rf
H S tfc. » Ui
5
0
>
t
t-
fl
C
b
&
t;
C
u
c.
f-
d
2

E-
c/
u

c
t-
E-
Z
A
3

E
— >
v
-« c
— t-
H 2
IH a
a: c
2 U
u>
oo
Ok
tH
H
CM
O>
*»•
OO
rH
m
01
4.)
O
0
*J
m
M
M
o

b. Ul
m
HI
3 .J
O. i-)
I3
«s
gg
Ul 2
> O
O H>
. 5
FORMAT 1
' CALCl
•
v
o
o



02JFILOUT
o
*
9
Ul
at






i
Ul
z
I LE-FILOUT, STATUS-'
u.
OPEN (33







•*•*
•
~- «n
o r-
r-* *
rH X
 z o u. CN
0 U »•*• 0
— O — -J _ (-. o -«r o
CMkJ^..Z.CMZ*-I »;c*
^Z^t-t^HZU o5»Ul
CM»-«t-i ^-» » >2riCM *£
-Q^kCM QHCMO
•_4O.-4U).-iac;K(X * »X»-^
— ui— ,*>
O D O Oui«-«n ^.H<-4
X ZHZXiO^«i-4X«
-.ui«z^.2StjQin>rf
^«HcMutnrx — . 1-1 — . z ,~* ,4
ooo>o<^O*nu*oo
o«JoJoa«oXoQoz
tnOmOm* o» o*. o»
»tn *« »»»n »in *in *
r-. ^. — X-X^X-X
(*>» <•> » (*>^Hr^^- 4pH>-4r-«P^
"™" ^^ *^ *-" ^* "• * (^ *••" f^ ~^ p*) ••*
H H H— H— H— H
tJ-«at»--«(Xt-*CL»-«at-4cc
CCOaCOcXOalOQCOcCO
2u.xuxu,xu.2u.3:u

r^ CM (*> V trt \O
o o o o o o
O O O O O O
«n «n irt tn trt (fj
5007
EMPERATURE'I
O H-
o 5
O HI
— VI
» »
>, VI
NE.'Y' .OR.FLAC4.NE.
Q.DGO TO 5008
5009) LSTA
SOLUTE IS LIQUID AT
1
t Ul * ~4
•9- t .H * 0
O t^ it *"— in
<(-—*-•
»-4 t/> u) rf o
U, +1 H Z H
u, u. a: o o
VH M X U. O

. CM
aC CM •
3 • o
H O ^-4
< ^4 U.
S u. *
Ul » O
a. o ^r —
2 •» H  t-l O —
V) O Ul v «
» X ce H >i
«n x. a . *
5010) LSTA
SOLUTE IS SOLID AT
5012)HF,TM,TEMP
HEAT OF FUSION I CAL
TE MELTING TEMPERAT
EM TEMPERATURE [KJ '
EQ.'Y' .or. FLAGS. EQ.
C
3 H • a.
r-4« t-t * t-)(/)m«
^H— t-»iOto<0
ui < ui < i-4 >-4
H 5 H X «. - U. i
t-4 S t-4 2 — O
oi O cC O U. a.
2 U. ^E U. •-* X
* *
CO O r-t CM P-
O r-4 >-4 <-4 O
O O 0 O 0
tn in in «n in
FICIENT',E10.3)
u.
Ul
O
O
z
0
t-t
5013JXPC
OCTANOL/WATER PARTI'
£ -
WRITE C
FORMAT:
END IF

*"»
r-4
O
in

Ou
(J
O
i-i
SOLUTE SOLUBILITY
AL(NSPS,NGMOL,NOGP,
Sii
< O
J VI
13
U U a*
^ -J O Q
« HZ
u u tn u



Q
U r-t
>
O
— tn
-« X
~ 0 >"
Q mo
•-• « -^
*• 	 <*^ > CM O
- 0 — . ^ o
«-4 U^ O f*» * ^-t
*• rn » > o X
^ *- -* * m 3
•-» (r» O C>J ^- 2
5 <"- 5S °.
a -o » * a. «
-a, So Xo5S a.
*-* •* ^.4 t>tnf-.rH Ul
•-«-* »U *^-^— Q
•-•r-4 **)«; <*1 CM 2; m •.
•^ ^^ "~" * Q t/> E-* «C x
°;g~ y— .-.H. u <»
u^Ja. ^n CM — , b. a<: Q u
2^^ S- QOX2~ " So,
iibio ->o . m » ,o < 3x:
>oc. i.
SSft °S~ S— J— <(JVII-,Q,O.
U O U — U 0 Xrlb.OO.O.I-'b. -O
2 ,0 .,. -X2
* * » r-« z *•• * .—4 % ^ t— 4 f^ in *fi t* d. «
tn — • — ^ »a- Xrno— 'OOOuiaco-
0.0^-45^0 X0r-43rOr-i ^rf^o: ^.JJJOO
Z * — Z * * 	 Ju, *OU,U.t-iOZ
f^»^H«O-*cnr«iu. »UiA » -U, % .
ft* — O »inn— .. s.t-»tn'^-u.< »tnfn
^rf * — w"-'-4(MUZZWXW2Q2
HO~r-4Q.XO— J3*QUlX<-«<£
U3grHrH(JUX^ZZUOZZrJZ*
WXr-4— QZOOUUX^UOr-UfM
—" O •-• ZXZZZ^.ZZUZ2
UlZr-l » Z >N.X.^"^QVfc>sl>^I*vX
ZOo:-~ZO2S.Vi»S.V.'S.>*,>*^-X.--4
HVa^«r-lr-«t/lr-« ^
ozr-t— oiztnzzzzzzzzzx
Ouir-4XZU2OOOOOOOOO
cDr-»K^tnxt-4Xix2£££i5i<
3Q*<(J>-«Q*-4O OOOOOOOOU
«n r-4nQ QUOUUOOUUOOC




u o o u

-------
                                                                                                   90








0
1-*

d
r* x"
Ul *
ui m
» in
N U-

3 X
< -^ *





" 2 ii
*-» o o

i-H CM
0 0
o o
0
Cu
1
>>
X
a
§
o
U)

o

u.
i-i
g
w
H

CO
^^
n o
. £-t
W ^.
-~ Z
M — • S

r~ « rs

El — X

O 3
t-t

O
o

n1
0
H
O
U —
o

~ z
C >

CJ * X
2'ScT

M S <
a' u x
O - -i

* -"• f>i
S , -0- .
1-1 O 0 rt
— Ul •




CM M
I^H
X 0


Si

o
£ H

•?io z
tj O



2 ~ H
1 H £



m
o
SECONDARY GROUPS')

o
CC
Ul
ta




'
c
CS
0 Z

tN V)

X Z

»'**
z




O OS

« «



z z
z -
«. f-l
"t i





1-H —^
oT S
Q 1-1


i-7 *^
*-^ Oj
CU U
u o
o z
S ~"
—*. *

v 00


CJ
Q H

*


7
ITION COEFFICIENT',/,
Y CALCULATION')
f-> U
o a. a.
t-i < a
04 2
o cj
u a:
— u u
- H Ul
2 < DC
S u.
• \
O >-) to
U O ui
2 U
in 2 u
U f-i X
3 Ou
u* w
U X
M O £-t
O i-3
CC
H 0
C 3 Cn
• r- z U 04
w o M D o« 7"

in * «. O * oo
(J « *- V) » CM
3— H * —
ul < u* — u
Cu OS O « DC


o
o
CO

o
o



z


o
Ul
^
3
u.

o

fc
C
*•
Ul




*J
Ui



U)
01
3
O
04
Q
<
CJ
oC
<
CJ
u
<
u.
oc
D
M
o C"
M CN
m *
o *
X <
0,
ss
ss
I n
u] Z
H >H
3». <
O 3 tO

U] tO
> 0-
-J 0.
O O ul
to z a. Q
•< ul ^
(i Q DC
5T 2 C/) ZQ
01-1 Q •
~i Z — .
* * LJ * OO
• — CJ » OJ
— t- 3E • —
U] rf H >— cj
1-1 2 a < 1-1
a: o u] a:
•

a*
90
ONTENT OF ADSORBENT,
u
o
H Z
O en
o a.
— <
- u

. o

a 2
CJ <
• u
ao CC,
0 0
3*
u. 3
. Q4
U Z
0 M

fc x
C — •
•.x 8



O * - CM

t-) CJ — UJ
u, oc cj ac
n .f 3


S-' DELETE')
o
E-«
<
H
M

ao
fM

Ul
CO
s
(J
s r
CJ CU
f-, u
. u
ui *:
•-3 «.
>~t i
CM Ul
* 3
sg
* 
 <£ U*
•H O to J «
o a to u. r-i
r-. Ul — -
" — U "^ o <
— x J o 3
r- 3 rf u.
-i o u J 	
O O Ul U. r* O

.. * O r-i aa <
— H • — H
ul < Ul — ul <
(-1 ? I Q [-. 2
CC O 3 OC O
Z U. . CC X U.
•"*
r-
WANT TO ESTIMATE ADSORP1
Y OR N)' )
8

O CO <
_ X. r. 0 3
O H < U
 a- I
•-•
o
^ r~ (-•
"l O O
l~ H H
C3
3O O
O O
U. 	
~ Z C
'. 6 a
O ul ul
u . .
. in in
•V 0 0
U. • •
• a o f-i
a. z z Z C
. . . o
. . . o
o a o ~
Ul CJ Ul O

? S 0 0 Z
-1 3 3 3 o
u u* u* u. x
3 — — 	
u, u. u. u.
u* n »~* *~* *-*


CM
CM
o
o
"
o
Ul
s Z *
'LAG4-'Y
F(X100.
'LAG4-'Y
U. *-l u*


r^ i-l r* r**
O O O O
H l-i (- H
SO O O
U O O
d d o c>
CJ Ul Ul Ul
u o o o
3333
U* U. U. U.
o o a o
z z .z z
< < < <

C Z C Z
d d d d
UJ UJ UJ Ul

U U O O
3333
u. u. u. u.
u. u. u. u.
M *-* »^ »^


U
O
o
U]
H
o
M

X H t-3
^ 13 r
» « ao
• •» CM
— * "—
Ul — UJ
H Q H
M 2 i-f
oc ui ac
3: o£ X



«. a. uj
O CJ W
Z >4 Ul
w * rf
3 * i-4
- <
u- » >
O Q <
n5n
S. g
X -
X  *" Z
o«2
VI X VI

OC U.
A Ul Ul
« (-« oc u,
^» z n o
O Ul H

« — ui ui
*""* t™1 Qj X
So *"*

* •
*£)
a,
a* 3C ui
CJ «
«-• ri Z

H U. u.
» Z X
u. 	
3 O *

• O oo
<- Ul CM
Q ZC f-i
ui u« oc
oc t-* X


UJ
X
(-1
o«
as

u*



                                                                                                                        U U O     rt
                                                                                                                                                                                              —    l/l    »-)
8                                                                                                                                                                                                    DC
                                                                                                                                                                                                    »-•    M
                                                                                                                                                                                       o z  o    — z o
                                                                                                                                                                                       7   v O    *   - O
                                                                                                                                                                                         „ r-t  4-     ^ ^-t -
-------
                                                                                          91


» r* r*

1 O O
I- l-i EI
O
30 o
o o
u. —. —

- z c

'• OO
O Ul U
Ul • •
• tn in
TOO
355
i-J U. u.
u. . .
• Q Q -H
« Z Z CM
0 < <
• • . o
V « * O
*. . . 0
O O O —
U] Ul Ul O

S 0 0 Z J*
< < < -I
•-I J *4 o *r
U. U U. X O
u. U u. U. 3



ft i-H
t-l I-l

o o
EH EH

8O
O




O O)
Ul Ul

in in
O O
55 .
CN CM U. H
CN • • CU *
Q Q Z O
O Z Z ul . z
H < < H m ui
• • - i-t X
8*1 * < Z 1 H
C Z H H U, ~
O • • i-3 Ut ^-. Z
• O O •-* X • fi]
Ul Ul U] * ~. O H
Z - •* - « • • ,-t CM
• >-i rr •f t-H *. O Ul 1 1
O * O U CNr-tUO< <
O • < < — CN • • H Ul H b.
X O U. U. *£ Q X H •-! t-3 »J
•s^rf^-— Ulrf — — ui Q
U, J Cu U, ££ Ul U. U. Z

t-4 CM






















i
CO

<
o
Q
3




M


2
Z
O

»— 1

00
<
J£



o —
o> o
Z O
O* ~

- I
O 01 (N
O Z O
•«• * o

tn i *. ui

Q «— i O H
S O 5 O
pC Q 06 U
rt C-l


Q

a:
Ul
EH
Z

o
z

a
«a£

CC

E-i
en
I-l
u.
fc
"•
<

«

l_«
X


o

2


1

_;


M
•^-»
5
a

cu

^
1-1
Ul
1

Z 0
- o

,' *

t-4 O
O u]
Q a£


Q

cC Z*
ui z
6n
Z i-i
O H«



»••. »
9O H*
r-t —

a; *> o
CN Q
Q Ht M
§r x
ci*in I o
OXt-3OQOo5ooOoOZUl
O UbclMU^OQ^OZZHiQZoC
000
O O O


O
r* ao

O O
H F-<
0 0
O U


z z

o o


in vo
o tj
u. u,

o o < ex.
C C * »
» «. <; zc
O cu o re Q
Ul -•>. U -^ •"•

0 rf S rt rn"
5=1 3^2
u, o u, a a
— < — < <
U. Ul U. Ul Ul




0


o
H
0
O


Z

a


«

u.

o
c
^8
Ul — .

O ^

u. a
u* ui

o

















^
Ul
Ul
*i

fr*

 J
                                                                                                                                                                                       CU Q <
                                                                                                                                                                                      000
                                                                                                                                                                                      W Z Q
                                                                                                                                                                                         X »-t
                                                                                                                                                                                      UJ
                                                                                                                                                                                      z z z
                                                                                                                                                                                      >-* o o

                                                                                                                                                                                      3 w wi
                                                                                                                                                                                      O z z
                                                                                                                                                                                      EC UJ UJ
                                                                                                                                                                                      co z 2:

                                                                                                                                                                                      l/> Q Q
u>
          »    —en    > CM
         —    o —     - !->
                                                    o

                                                    u.
Ok
CM
OO
I-l
in
CM
4J
o
0
IT)
M







M
O
H
O
n
o
•-H m
* en
1 ?
» cu o
r-« -» «
Z — O
COMLN(11),RES1
QGPI (6,11) ,OG!
1)
OGP(50,3),ALG/

S§|s

— O .m


— O 1-1

o a _T z

V) H ,-1 I-l
Z rH ~- VI
ui .-H i z
a < u -1


0
<
o
s
u
o

cu


J
O



H4
0»
z
Ul
o


m . r-»
§3 5
* in <<
CN — Z
•g +* o
> X
•> h CU «
C -1; °
JC o ui o a*
> tn ei f-i u
2
£^^r^OXOOL*O
«ooo .0 . . » -3Tz

xcno— ooouixo*
Xo1 U. -OU.U.I-IOZ


^)CM»JZZUIX(AZQa;
o — -Jo -duizi-i2£

zizzi^zzuzs"

Zizzzzzzzzz£
zooooooooo
>-iooooooooo3
QUUOUUUUUUOC


5
u.
» r-
o <
3d
u. *
,5
o z
5°.
, FLAG2,FLnG3,l
T,FILIN,FILSE:
r-l 3
522
*-4 *-t
u> u.


2 3

0 0
f-l l-«

a. a.

E- HI
-i z a a u.

»











Ul
0
z
>-H
H
Z
o
o








tf
Ul
H


1 I

^.d
*4 »-l
O O
X X





i


*

1

•

s
3
cc





m
a

Q

r-l
Q
-* ^»
• O
h X»
§1
3g
ot >











 W « o CN O
^* — CN O "I •
«-l I ^ rH — (-1
> O — — '  r> H »r>
< Z Z Z -5 ^ I i
UJUJUJu3_)U.(NOfN
OSHHHX^^O^






1-4


1-3
— X
*- o
>-> 0
X X
1 ~
o •
X 0
'— O
O i-i
i Z
^ 3


m ul X
o z u
< 0 <
•J O
U. >4 CC
• OD 1-4 CU
CC Z CU
o o o <
• H
en * * a:
o » o — <
3» O * ul
— z
U. Ul — < I-H
~ Z rH — J
H • • *. Ik

CM «: . — _> 1
— J CM ul m
O U. i-l H Ul O
< 	 •-. Ul .?

















o o o o
5555
u* u* u. u. ~
^ -» « -* o

«•>««<<
fN CN CN CN H

a a a a z
Ul Ul Ul Ul O
ac a: ct at u.

-------
                                                                                                    92













r-

Cb
o
a
M
cu
o
o
z
i
o
z

ft.

z

M
z

«
rH
z
x

u
<
o*

<

rt
Ul rH
O rJ O
« < rH
X U X
(100-VSOV)/MW3))
OL,NOGP,IDGP)
n o
a z
+ w
-^ Oi

? z

X M
§1
Ol V)

*H Z
Q O
3 X
X U

rH -
13
+ >"
S S H«
3 > tn z

z o" Q z ₯

u > x u x
z

















rH
+
Z
z

z
1

z
(100-VSOV)/MW3J)
OL,NOGP,IDGP)
n o
S 2
•t- w
rH «
? Z

X rH
§1
V) V)

«-* Z
Q O
^ X
X. (J
-* <

5 o*
>u
o —
(O EH
> */>

• rH rH
o a z

> x o
(100-VSOV)/MW3))
OL,NOGP,IDGP)
n o
Q Z
4- V)
•-H 01


X H
§i
(O W

rH Z
9, °

x cT
— <
f-t «.

+ ^y
2 0-
rH -3 CO rH M
22 > CO Z

X 2 • rH rH X
1 1 0 Q 2 1

X 2 > X CJ X
CD
CN
o
O



C


ul
r-
CJ
3


OC
O
rH •

s\
z o

• r^ w u

rH > X
a,
o
a
a.
1
g
o
z
Ul
cu



rH

w
,_J
55
X



o"
r-1 rH
*< M
— z

W Z
u o
rH Z
Z 1
O M
J Z
u z
o
rH
8
o
CJ


c

a
Ul
r*
CJ
3
u.

DC
0
.
..
a
U]

g
rH
),ACLG(1,1),AC(1,1)
,1),ACLG(1,1),AC(1,1
G(2,1),AC(2,1)
CLG(2,1),AC(2,1)
NT ESTIMATION',/,
TCF',7X,
rH rH »J < Ul CJ
-— CJ -M <
rH 1-1 < > CJ
— ' O - O i-H 2
iJ E > CO U. J
O X O X U, «
Z «. co ~ ul «
8 ~ x — o x
- CN x rH CJ CN

CN CN rH CN >H *
-— . — f-i CJ
 2

Z ~ Z — CJ Ul
- CN * rH < iJ)
— »-» . O
CN rH rH rH CJ Z
.— . — < .
rH -1 rH .J £ .
	 O 	 O rH X
>-) Z •-) X 2 cn
— O ~ O — 0 -
— o — o -, o t-t
r* o CD o CD o z
O CN O CN O CN fc CJ
0 .0 -0 - . 2
CNrHCNrHCNrH^O
* m * o *rr» — CM
"— CJ-^Ul^UIHO
UlHulr*ulf> *~ x
O X CM *
> l/> ».».<*»
O > * O •
M * Z rH O
> — O H rH
- rH rH «. Ul
— fH X *
rH CM < rH «
* — z »

*— O H - z n
O - Ul • rH O
Z -~ M 0 H rH
-1-HrHZUrHOtJ
— Z -0 < U- rf »
rH 3 rH V) U, -2*
•.(/)*-" * rH «. U*
rH » tJ — * Z — '
*— — O CM ID — CJ .H1
rH* CM £ - * »J .-] X.
O .. — * CM ». O O O
— . — O r-J EH .-* —
rH t-J O O * dp>
OOrHZX— >•>«

•h.r-VrOCMXOrJr-l
* CM *"* «. *-" rH rH tH
— *UJrHH(HCQai
tJ-tt-"--
a Z rH u. * * *
rH rH CM n
m
•"•
g
O
o —
-~ Pa


- rH
o oT
Ul O
m 2

3 0

• O
a, 2
o -
• to
C CO H-
• — X
O Z Ul
ul CJ 2
• C£ CJ
m u> 2
CJ X 1
.-! X
u. << CJ
rH CJ 2
O
CN
O
O
CJ


2

O
Ul
VO
CJ
3


a:
o
-e
\
0
CJ
« <
CJ to
5*
u, <
r-t CJ


















rH
to


CJ
2
to
Z
CJ
2
O
en
O
H
O rH
CJ &
~ r4
~ to
2 -
x a*
• o
O a
Ul rH
CD (U
CJ O
3 2
u. «
• *1
a o
O Z >
• o o
- 2 CO
C * >
» CO I
o to to
U 2 0
CD CO z
CJ O CJ
3*5-
Cu t-4 W
"— rJ Q
U < <
rH U >
                               OUOOOCJCJOCJUOCJCJUOCN
vo
CO
en
CN
m
CN

4J
 O
O

4J
 R)
co
H
 O
 n
 o
 M
       5    g
 » Z   * ""»
-» Ul CM *-
O H Z rJ
*n O > X
 - Q   *


S-I-I:
                                                3
                                                U.
                                                                H
                                                                z
                                                                            S    rl




                                                                            ?    Z-
                  » CU  **


                  >  Ul  O
                                u]
                                Q
< o o


n z a
       „ — rM <-.  u,
                o  x  z  -~
^ 8  °  r-i

o   -.  2   -

  • n   -  o
-^ *""  CM  l/l
                                                               oC -:  < < r>  . ao t>-
                                                                  5U.  »  OH*  CM   «
                                                                  oC   »as  *.  • H -
   O CJ  <  X  * uT
   rf   »(2   » < u,

   U. O  CU  CU H  fc
   S5
o o

a. »J
O u.
                                             O < .

                                           * O U .
                                                      rH tO CN  I

                                                       i  o:   •.
                                     i CJ O

                                     ' o " '
                                                         CJ

                                                         a
                                                                 .UIO.CM..    ,

                                                               r^ocur-  »cjr* —
 O    " " .
5 i ^
Q S o
5" V T* V  V T 5"
§111111

U U U U  U CJ U
                                             Z cj

                                             r.3
                                             < <,
                                                      •  rH    UP*   » *  O *  *   Z
                                                      *•-)    Z in  rH X M  *-^ —



                                                   rHf^OrHO*   fcOP-fH*   C7»
                                                   rH  v r-J O > Ul  *  OCrH  »  »*!•

                                                   •-tXOO*  ul(HCuH«  04H



                                                   rH>s.UlrHrH     >    UlO  * —•
                                                   n— Hn—'W»r-l>4r-l«»   I
                                                   — fr^ID*— HV1OOO*  *  *-*
                                                      o o o  o o       o  o
                                       H-    -      I   I   I  I  I  O O  I  I
                                         0»»   «    >OOMrH||<<
                                        -v   *^-    OOOZZuiUloiw

                                       •*   *nen    >xwxwixtoxto
























rH
Z
u
z
§
z
ul
H


rH

Z
Ul
>
iJ
vt
Ul
Z
3
o
>
H
Z
ul
u
a,
UJ
a.

EH
rH CU
rH Z
O rH


Z Z Z 2 « 3
u u u cj a o
Z Z Z 2 2 u.
















^^
Q
CJ
H
<
3
<
>
CJ
ul
H
»
0-VSOVJ/M
0



n
a

•*
*^
s
~
>
o
to
>

rH
0
'Si
•"•


^
Si5
Ul t/1
> >
— *
*• B
•C O
ac X





g

O
O
~
2
*.
O
CJ

d
CJ

a.


c
~m
0
ul
•
3
«
rH
















vH
CU
rH
*n

rH
1C rH
*•* •»•
CC i-4
Z -1
r-3 Z
3T
^5
O Z

o
rH

O
EH
O
o
.••»
c
»
ci
ul
r~
O
3
U.
Q



£;
",
O
ul
•
r-1
U.
u.
rH

O
rH

O
t"
o
o
^H.
z
fc
d
U
r-
O
3
U.
Q
Z


Z

O
Ul
•
0
r-1
U,
u.
rH

cn
CM

O
EH
o
0

>,
*
o
Ul
r-

3
U,
Q
Z


*G

0
Ul

O
u,
u.
rH

a*
CM

o

o
o

^
«.
~
Ul
r»
O
U.
Q
Z


z

a
u

o
,-j
u.
u.
rH



CM

O
f-t

o
o
•^
c
*^
d
Ul

tn
3
* \o
OC. CM


Z
*. 8
d —
Ul O

t/1 V) O Z
> X < •
2Z u, X
Ul *— *-
H H U. U.
> X rH rH
Q
(J
a


c
2
2

u
0
(/
2

t-
2
y

, (_
2
c
•4


• j
*
f-
VI
u;
O O r-
• • 2
O 0 2
1 1
8§ri
l/l 01 <
> X (J

-------
                                                                                      93
(*>
«
u
o
i-3
X
*
§
en
x
i
+
 P o O o S
o z o .J o x
« > o x t-s *
> « 0 -X >
r-i o o o > w
j »j « > tn — .
tn x CM -. > .-i
•*• i 3: ,-i « o
3£ •— ' * O O r-*
*— « CJ rH O *
« > O *-H r-l
• O >-3 * *. m
o tn x — * —
U. f-t X — ' Ul *— 01
*H 1 -- 1 {-< Ul (-«
O 1 O M H t-t
O O w O oi M a:
Z J ui ^ 3: ct 3;
Ul X H V) 2
*H
X.
r)
o
o ui r>
i-H - *
H » 0
X — Ul
•-* Z *
o *
•x. t-t
U .-3
go" 5 u
f-4 U> Z
% H —
H - Ul
U7 X -3 >«
* Z M
Z x, — ^
O «. i-t
*-» CM >-< m
E-» • S-* O
< O t-t *J
2 -1 J 0
t-t Ui M t/1
H *DQ
ul -> O
™ O t-t
(£ v4  -Pi
Z J O o O
2 O O t-t H Q
o tn .-3 H u 2
U. * * « DC U
§
— tn
,-t X r-
.H ~* o
— o > <
Q in O »-3
H *. M CN -*. U<
*. -^ CO > *7> O *
-^ O — - * O \O
t-t m u m — .-« o
r-. * < Z 0 ~ <
*<*»-. > m Z >-3
fH ^- —. *. — < U.
^H H 0 *N J 2
— U in Z X U m
<— .— r-^-E-t«H O -
i-*» * o — ~ ^CN*.— •. ^
-». r-lr-l **>«J ;z
2 r-irH no^. n^^t-tinxwz U,f-«
<. ^* ^zo X-^* — — .*a*xz-»
i-q — - \D o - o Zor~c«zo »«.5*N;c
Z JM •— 'm*- CN — <«.2«u)u,«.<7:
u r a, cu«r-t 2«-*^)nu«ocua< * * u u. -
*. UO<-tOincu *.*...o~*.\£>u]Z * H
« » ^ t-4 Z *— c£ f-*n^fH— m u> u. *.rHp
04 «.«.•— * cu * XOO*-oO-tZZZOZZZZOZ<<^
D>-*O^ >J U - - O
O O < ^ rH 2
Z Z O "^ -^ ul
x. x, «. X X rg
^ n * • • 2
5 S - S S *
x * * .J * « ^
h-l 	 O n rH <
2 ^ * X * • CC
». «H m — • .-t i-« — *
I 1 Ul < < U

n
_§
* in >
— X x.
> 1 fN
0 r+ Z
tn ~-" >
X + ~ «
1 — . O —
^H *-» X ^*
•*• ?• O i-i
— . « O r*
rt > 3 *
Z 0 < CN
> tn * —
* x n •
O *- -t- CM
X — 0 ^
'x > X m
§§SJ.
• U) < Z
> X • CJ
0 1 r-. (-.
X — 1 .-t
i^ • r S :
00
Ot
m
OJ

4J
O
O

+J
«
w
 M
 O
 O
 n
 o
                 X
              SI
              3":
              I X

              X tH
 - u
bl  -
b. X
X n

»-« r>i
Z  •
3 r-
en ul

•-J x~
z ^
o  -
X tN


O ui
•J  %
W X
              tj  • »
              x r* f>*
               . ul  •
              >  >r-
              O 9- M
              W H  »
              >  -X
              -~ O* r-«
              rM  .  »
              O U> fs
              o u.  •
              in  •. r-
               - X ul
              oC O r-
              S u. ul
                                       O
                                       H
5


|

U

A
ul
3:

S

5
                   z •.  —
                   OHO
                   M Z X.
                   H u ^
                   >-* m u
                   (-2->

                   3SS


                   z3"
                   O u. r?
                   •-« O *rt
                   H    H
                   ex. y  «
                   oc 5 .
                   O »  —
                   in  * *
                     «n —
                   ui CN *
                   6-« H  »
                   3  » O
                   J O f\
                 - O -• (-
                 4 V) <  *
                     (N »
 • «N
O — «
Ul i-4
 • O

Sz.:

S~-.
                                  -1-

                                    X
                         O  -J •
                          •  O u
                         .  r t
                         z  ~~
              ^) —
             . < rt
           ul
           H
           »-4
           a:
           3e
    - j
   • <
   — u
   Q Z
        .-.    on-
                5*^ )
                u .
        e>    u. H :
       . 1-4 Ul
        H H
        i/> n
       . Ul ~>
           o
        t-t U>
       . z
       • ul Uj
        h-i O
        u
        »-< 04
        U. 1C
   CA
-" Q
 I  <
W Z
   3-l 04
                   — H
                   VI  «
                   Q -i 2
                                                 (-• 3 u.
                                                 z H i-i
                                               O O
                                               U m


,^
0.

tn



•^
z

o
3

IBROUTINE
^1
Ul



§
^4 X
^* o >
Q tn O —
M -* *. in o
OfO > r* o
— tn — » "-3 •-« »*>
^H k (J (*>»—" (J
^  o 2 ^
r-t f-. ^» » Ul 2 U.
r-t U O 0* — • O
*— •< to Z *J * in
Z.*$XO.« 0
K^.(0 * « Z O <
< O— .-• — . Ul 0 CM *J
» a* m O Z o H •-< ul u*
— • •-* U* QW»*H Ul «<
3 (i. 5rt c7«i2-^ -to u»z
tno •-!« oo*.«o  n*
od* »i/i f-«-— e-» o « o x fc oz
fc *-. — » — ' Qfr-l
o
*J
M
V)
jC
H
U




0


O


O
O

^
H
(NCNLL.G
S













(-4

X
CN O
*"J 1-*
7§
t-t I
O J
Q X

















mwJE
o
u


,_,











2
Ul
X
H

O
Ol
•-5
U.
t-t




«-*
t-]
-) o
* u. o
— • * CN
S" °
^ UJ t- L
O O O -
U. J U L
«

*-•
O
(N
)
»-t
J




CN

X

5

x
i
J r-<
o a.
J J
U VI













>
*
a*
1
~ C
J C
X 1-
X C





-------
                                                                           94
            i
            o
            2
            2
            3
            X
                                                                    O
                                                                    H
                                                                    o o
                                                                  zoo
                                                                  Z Z M
                                               —   1^ >1
                                               M   -* •—

                                               tj   13 O
                                               O   O Q
                                               z   z 1-1
                                               U Z I 1
                                            ; — 2 z	
                                                                                                                                         cu —
                                                                                                                                         81
                                                                                                                          0, 0,
H    h-4l/)wr-t»~«l-tl-lt-|
->. ac M  » oc as
         u u
       & H H
O 2 Z £ U U

sifhii
  o o a t_> o
                                                                                                                             Q    Q
                                                                                                                                      2 O O
                                                                                                                                      2 en Q
                                                                                                                                                22    "z:
                                                           esio»-3»-i"— "^I-IMO^IU
                                                           l*>2OZI
                                                             US   U U 2 2      I
                                                           O2OOOQOOOOZ
                                                                                                     Z Z Z Z

                                                                                                    > H I
                                                                                                     OU
                                                                                                     OQ
                               Z IN C-4 (M
                        -  -    O —  •  .
                      I	U Z Z O O
                     MCNfNla I OfMCN
                         -  - 2 — 2 I Z ^

I •— Z-«r — — H — ZT — — H •— O — ~X

S)OzoSSou2oououSoSS
ZZZOZ»-IUZ2Q2I-IUZZ>-IZZ
                                                                                                                   2 ->
                                                                                                                    I  •—
                                                                                                                   — Z
00
aa
C71
in
oj

4J
o
O

41
It
co
 n
 o

-------
                                                                                                 95
                                                                                                                                                                                        Z —
                                                                                                                                                                                        3 rH
                                                                                                                                                                                        X  -
                                 Z
                                 3
                                 X
                                 I
                                                                                            a
                                                                                            i-i
                                                                                            u
                                                                                                                                                                                 M O
                                                                                                                                                                                 2 <
                                                                                                                                                             Z
                                                                                                                                                             3
                                                                                                                                                             X
                                                                                                                                                                                        u
                                                                                                                                                                                        tJ  — "
                                                                                                                                                                                        O  -X. t
O U.
O >-l
                                 Z
                                 O
                                 X
                              h-t «  O
                              2—0
                              a 1-1 o
                              x z -H
                              — 3 «
                              O X 01
                               •  I  I*
                       H «  •-!
                       O >  Z
       CN         o < u. o    i-i H  w a:
O O            x>
""        go
88        0H
s~.        "8
   J     O
   
2

U
<
t-H
2
a
^
,-j
<
u






0
0 0
in O

O •
t-» o
o
O rH
o •

OJ J

O —
U r-<
« s -
* d 5
a. !-• .-.




r-t
U
1
r-l
1
X.
Z
Ul
H

•



y

(™* Z

OC H
X. O<
U X 00
Tig
Z 2
ul O O
t- X O




0

o
o



o

(

,_)


«-l
u
<
KHJ



n
«-H
O
U
1
1
(-•

a*
H

•


a*
Z
Ul
H

CC ~.
•** ul o
U. H 0
x *- .
— a. o
1 X • 1
5U1 r-t t/1
1 1 CU
*- < aQ ul




•-i
r^
s
u
<
•
•H
1
Z
e«
cu
Z
Ul
H
• v
— O
cu H
5 o
H (J

oc in
— CU
"•v Ul
U. .
X H
*- O
I •

— u.
O 01
-J CD
O 1 —
1 < U.
I-t U. ^H




,-1
o
o
ffi
1
•*•
1
z
H
Ul
*
CU
5
H
*
a:


u.
:c

i

CO
<-8
1 0 rJ
§ o en
x (J u.



^

r-
0
H
0




Ul

H
O


m
t/1 CQ
ca i
Cu O
»-* X






S
u.
j.
u.




1
CO
"»"
•
<
u.
• i
O rH 1
M 2
O 1 0
O M X



r»
i-*
u
1
1
B
X.
CU
5
H
Z
ul o
l-o
a. H
x*0
U. U
X -*

— CU
— Ul
1 • SO
fN f*. Ul «
-s. i-i »~1 ao
— 2 • *
CQ D ~- *^>
* X X —
<< — u* <
— (J •*- 1*.
I O V) •
t-t J CD X
^ 1 — —
X X UH U.
U. >-4 *-*



U
                                                                                                                          U
                                                                                                                          1-1
                                                                                                                          (J
                                                                                                                           I
                                                                                                                           ll
                                                                                                                                     — CO
                                                                                                                                     rH O.
                                                                                                                                      ~ ul
                                                                                                                                                     O
                                                                                                                                                     U
                                                                                                                                                                                  z     —
                                                                                                                                                                                  o
                                                                                                                                                                                  z
                                                                                                                                                                                  —'       CN
                                                                                                                                                                                  CU  CD
                                                                                                                                                                                  Z        O
                                                                                                                                                                                  WO    H
                                                                                                                                                                                  H  t-«
                                                                                                                                                                                  •         O
                                                                                                                                                                                  a  o
                                                                                                                                                                                  — o
                                                                                                                                                                                         u. ui
                                                                                                                                                                             * — X  CU
                                                                                                                                                                        2  CU r-l *-  Ul
                                                                                                                                                                     t-t D  t/»   » ^-   •    U]
                                                                                                                                                               o*    2 X  2 rH  t  ul    O
                                                                                                                                                             1  "s.    O  I  — — —  _)      •
                                                                                                                                                               —    X .H  U O Z   •   • ~
                                                                                                                                                             ;  co     i  i  < < 2  ~ r« z
                                                                                                                                                             >•«-    « .— U. « H  X  I U
                                                                                                                                                             '<    r-frHl-trH—  U,l-«f-t
                                                                                                                                                               —      *   * 2
                                                                                                                                                                                            —    -. U*
                                                                                                                                                                                            l/l     Ul —
                                                                                                                                                                                            Cu     cu -x.
                                                                                                                            l rH Ul

                                                                                                                              4,a-
                                                                                                                              aui
                                                                                                                                   '2      1—2    n  2  3
                                                                                                                                   .DOCQU.3O  •  OX
                                                                                                                                   >XOU.rHXOrHX
                                                                                                                           -*— —     X-JCDXCO-•:
                                                                                                                          >-«OO.-^Z  I  —  Z— Z"2;
                                                                                                                          ZZZ:

-------
                                                                    96
U I





























tt.
H
<
Q

H
3
CU
Z

U.
0
>-»
5

Z
«
z
M
OS



o
> (.
















3

os
a;

~
*-r
— O
^ a



•J Z





f-i i-4

I I
O

M CN — 0
o to o ""a o
o cu o — - « o
•.Z * *O Stf * M^ — »

OJ «-4 OJ M" r-4 ~— — * CQ OO*
4> z i o — HZ SS
CJ CJO Q Q *£ U] 2 2
n M> n SO i-i H H
cc H: i i i i x as z z
XOZ O 5 3: O O
U> (N
10

LJ O U O W
J O (.




Q
CJ

3

O


O

U
CQ
o
E-i

to
CJ
cc
g_l
X
l-l
z


0

u
CO

ID


Q

Ul
cC
o

5.
Ul
CU
z
Ul
Q
3




0
H
CJ
U* E~t
0 Z


u
Q M
Z bj
< U,
u)
•* o
C O



0) 1-4
fcS >
M
Z H
M o


ai X
3 (J
H M
X X
M 2

CC
U. O
O bi
CJ m
OS «. - CM

H «. O


Ul O X 1 O
CU i-i M O u">
Sf- XX w>
1-4 2 M —

O — CU* 2* O H
H cu » Z o —.
.— . :D 3E Q CJ — »tNO*f-4 H O
(^CuOCJHO«>nn« cu O
o>-4 < -* a i-i -3 -~
M H M * Ul • * » *•- * — *:
»» Z D *• • CuMSM— .CQM.*-tn *
bl g CJ < ZHCJ Q3£ OK*
l-l 2 U* S* '*"" M \O *O "— '
OC O M CJ Ul U* OC HI II
m
o
o

JUUUUCJUt





in

CJ
U
Z
CJ
• as
en u
Ul U.
f-4 in v vo r-» cj
O as
Z bl
0 £
O Z O
Z CJ CC
o a: •—••—*— u*
O Ul
CC Ui CJ
O CJ cC
X CC <
O
* a:
0
O O U

OS _
« ^-. O ul cu
« — . -* x«o EH z
O »-5— '-3— "OX CO Ul
d a-* o — Q — ^ 5 \
•Vbl MQ I-HQ MQI CC -*.
VO • — » M - M *.t-HCJ •< M



SC—Q— a~ O — H QUIZ
O"-"U1 tHQ MQ MQ O HM" rf
O CJ Q ~M •. M «. t— t • >-5 E~*CQ aJ
OO t-1 •. tJ ^ »J]* -~. » i-^ U rfj *<
^, O S£ »*-3 «.^ «**J •— • iC «.  \jQ»i \O* SO*. CUCN.-Hr-t —
Q- ZCJ— ZU1"- Z CJ — Z CQ Ul E-« t-7
St:— HHMHt-HMHHHMHH— Mt-tS O-ST
•— • *-• ZOin 2o£M 2 OS *— * 2 oC^^QC O o:
u.u.oO3:a:oo3:asoo^asou.3:oSO (-><
\o r- oo T t-t m
\O VD ^ VO O VO
O
J O O U U
J





















t
£

£
L
E
I
*
c

c


C
i-
E-
c
d
f-
2
*-
a

C
°
2
a



J <-
                        uoouoooouuuoo
u>
oo
Ot
l-l
m
CM

4J
a
O
n)
CO
M
O
o
n
o
n
n)

b.
U

U


(j
<
3


o
5
z
z


o
g
z
a*
O
a


z
VI
Q<

Z
O
M
z
D
Ul
Z
M
8
a:
CQ


u in
= g < Si
M M O r-»
X H «-i —
Z Z
H u) O
1 CU H — M*
Z Ul X <
O O bl VI
Z Z ui E-
O 3C OC ul
2 U 2 O

VI Z X Z
V) 0*0*-* £3
H 3 Z «J
z o a to
Ul OS ul Q Z
M O V» 1-4 LJ
O 1 < 3 O
M M" m a ui
u. < r-4 a:
b. Z (O i-) b.
U OH
O M z U. Q
U H U) O Z
>• Z O >«
H 3 M OS
M U. U, O —
> • 1 U. Ul f-1
t-4 *O b. bl X 09
H bl O O H en
U CC 1 U .r-4
< D Z J —
H O X. <
u. x MHO z
0 M H M .-. 0
Z 3 > Z trt
V) J £ (J aS
Ul Q O H X Ul
H »-4 to O O O
SB u,*^ 2
t-4 »-4 X OS */l
H *J H O < Z
W b, O O
b] bl to O c£
H bl *J b«
bl >* Z bl bl
H M" M Q X Q
< O CO O H bl
3 CC Z X H
OH O U. o-
00 O < O <
J Ul Q Q
5-J 0 <
bl X Ul
i 1



§
» VI
-^. X r*

M O > <
"— — . m O .4
O o *, to »N -^ u.

» « — * » O «3
— m O 4-1 « ^-4 o
^ — < Z o — ^

* O *C » %— 5 b.
«-i f-* O CM *J Z »
M o m Z X O m
r: < * > * ^
I «i*l «. ^. dj ^. •£
pi — . — *-4OZO CU M
< OO ZmtJo ul U.

r-i — **>•< 'ntozcD 3T o

*— r-4 O — . * — . i » H O 3(O
Z— <»*»  u, o CM cu .DU. ^
OO«-«Z*-" r-4n^^4«,mo»*-45
h * *^ -- »• 3roo^""oorfQuOO

m r-< < « » — ^ u. u- ^cTu. >Zb.b.
mMHS^— rTJ'i-rw;n-urSn''1jie
t-1 » — O.XO*— ZO -QulJcZzS
Zr7MQz5ozozS5z*Noo
OoS-^OMO^* -N."X\\ r-4U](J
1-t^r-lMtOM Z Z^HH
x*-"3X|-*3C*o35*j*§c°*c«J:S
Q rf O O QU OUOO OSOO











H

ul
z
COMPO,
oC
u
Ou

to
cu
o
OS
o
u.
0

Ul
CD
g
z

g
<
to
H
u)
o
cu
O
O
a
Ul
aC






O


M n
Z »
= x
CJ
O *

to
U] ^
5 S
Z H
to
Ul *

M M"

h- t
3 Z
a. cj
H 3
o O> in
O bl ^*
ui * o
> 1 H
M tO
O V) O
u] O
Ul O
•2 «d S ^
Ul & ^
U H O '^ —
CU H 3 HO n
O S 0 "^ M
» J M O bl — H
— * M b. Z rH CU CW
*iU.I (0 «H* OO
	 ui a, ~ o (X — ^ +QZ
— o M z— zoz-t (-• i
* <-« _ U< * tJ * CJ *. M CUI
Ul — < — 1 Z O Q*-T ZICUt-Tzz
HQiz o mzin^— o»-4 O — •-« —
cCuiOcu Cu O Zcu—OZZ
3: a: b. O OOZOu.Ob.QOOOOOOO
O in o *n o
o -^ in in SD
rH
                        uouuooouuuouu
                                                                                               u o u u o

-------
   97

in
i
~
—
CO
O tn
t-4 Cb
< m • — ^~
2 o ~ ac ^5 • r> • ae
• 1 rJ 1 — 1 — ' 1 1
*-> z o — . o -~
r7 Ml 1 D 1 D
OQOSXaZUZUa
tn

2
r-l
On
a
*
s
I

-
rH
Z
.— o
^ co ac
O r-l O
Z r-t
1 O
r3 O Q
O

••J-r^ • O£ »H QC rH C£ rH
-— r^ — voH u. - u. - l*. -
u. — u. u. < - .. * »
CJU.O * ^ X UllUllUll
HUH — .XX"! <"- oC-QCoo:-
U H U - r- •** 2 * <-<^<-
< u < to - - o - o* CM oj
-<* H *. *P rH U. >« M >« rH >• rH
-^ — . * — 2 Z • H u DC » cc - e£ -
— M — . M Ul 5 V> rH H <-<-«£-
§M H M >-4 Z Lu tn U 2 2 2
- M * O - - O < r-l Ul rH U] rH Ul
in ^*^> rH - x cu CQ x co x oa x
1 —.,-,«- U, X CM Z O HHH
-. o*-u u.n*o-~ocua.ei.
— ~3 UUm*.t/l ..cCUjOCUiC^u.
§i in » 04 ui o* o o o
V) _*_ E-, „ x rH H «^.«U1^U1-U1
O r-t«.r-t hH»r-l-Ul »^-tO-in-tn
— ^ O ^3 - *"3 H » ^^ OCK 2 rH — U] -U -Ul
2 »-3 • *"•" ^ "~" U- -O<3? Ui U>*.cC -Qi -OS
•— < CO i-3 — >-?  Z O J O cdof-uix--^
tOr-t r-i SZ« O- *HX* O-oToCoToCrgo:
-^. »-3 < -^ v -^ 2 X — Ul v^ * .^H^-H-^-H-N.
rJ 2^S ->r>- i-t-^u- x"r-tZ-Z-Z-
* — t-J—O Oj»,lNj H- X«-«2 O\U.Ul«*,2U]«d2Ulrt)2
Z Z to M i-l ^-oj"— rt^cur-tCur-t *, kXaOia.on^a.0
2--p21^ ZOZ O o5 *-* O ul — .2 -DCOoCOOtfU
< * O + *^ ' Ul «• Z - «-- i-3 U -OX! tnul ^OUrfOu]tt/)OOOU]UlUlUlU]Ul
2 Q^rJ— ' Z (-1—- *J * — . Ui-V*— rHOOr-t(J XH- H- H -
f>, *^ t-4 O Ul O f** ^- r- CU -^ Z "^ Or^ •. O 3 •< - O i< ^n rH X - O 2 -O2 "O^J -O
Z 1 ' Z 2COOH rH DdoCoSOoCoCoiOZO'-^OOOOOO OO OOO Occu*toctUjtoctU*i/iOH
«ZQrH-to38o:ri:< a. 3=3:2023:2000 u. ^ ^ ^ u,cc-u,a:-u.a:. a
m om \o o ooooooooooooov o r-* ^
•*r tnm «H or- ooooooooooooo rH r-i o
r-l OJ 04 0*
uouuooouoou uoooooouuoouuouuo u





vo
CO
iH
r-|
^


*&

00
,_!


1O
CN


U
0

n>
CO








O
•H
H
O
n
O
M
nj <










H
a*
t3

r-*
•O

(-« r^
a*
o i-<
z —
7 1
CU rH O*
Z - — '
Ul -*. -
H rH ^
- *" " M
X Z —
rH 2 Z
Z 2 3
2 H 2


--. *r t/\ H ^
H X O O CU O
a. —• o o o o
(j Z rsi IN 2 04
2 < - - - »
rH — U IN 04 1 04
1 rH 1 ~— — * rH **"
Q >-« ui ui in ui
o rH — (H H r- H
I S oc afi O oC
0 2 2 3C Q 3:
a x H
in
O p"
r-

J U U U U























to
2
o
H
tn
o

o
o
u,
o

H
Ul
in
9
Ul
ac



) (J
Ul
H
X
Z
Ul
X
H
10
H
Ul
2 ~
O -
& Ul
Z >

U CO

< Ul
ac u. —
O >*-* m
u. u c»
Ul CO
2 0- 2
O «
H w» V
o -C *r>
ac co -C
U. Ul rH
Z rH
Ul rH
-J H »^
O *—


^5 i 15
OD On «. "*~
0 Z « rH
0 tH < 1 —
r-t rH *
- » OC rH -
• — o *
•— H U. 0 —
ui rf r-
si. ~a
ac O -^ O Ul
2 u, . a ac

00
o
0
J U U U U U









i
to

o
Ul
H
5
U)
ac
a
2
^

§
£
ac
O
DM
•J
ac
O
H
<
2
n
m
5
U

COMPUTE



J U



























X
z
2
.—4
1
1— t

o



J
                                                                        2
                                                                        O
                                                                        O
                                                                        O
                                                                        o
                         o
                         z	
                         X  M  1-H
               — —    a.  x  X
               OCOU«*
               aa — o  -- .
.J.-!	~ OC O —


3C »-«  o   > o   >      . «•

 I   I   I  I  I     V  X
1-1    *     M   .  *  3
   -^    «     O     

-------
                        99
vo
00
Ol



tH
O4
Ot
•*

03
iH
>O
f\l
*N
jj
O
o
4J
n>
co





H
O
(JJ
T<
.
H
O
O
M

	
a.
O
a
oT
8

j
o
§
2
to
a.
to
•z.
Z
13
to
1-4
2
O
X
u"
<
o
u
u
<
H
tO •-« M
Ul > > 2 Z
M O O O 13 •
2  I i CM

•-1 « -^ 
»-J (N O4 *— —* O
< — — 3 Z) to
U X > X 10 >


(*")

£ aT
^ o
> s
S "
to a.
T8
0 2
O *
r-H ^-5
— o
**\ o
a 2
-*• «o^
-~ cu
ft C/1
i2.
-^ i~«
§1
tO (O
^ »
« 1— *
r-« 2
Q O
— x
^ u"
~ <
r-« »
sa
i y
gi
to t-«
> Ul HI-)
• Ul > > 2 Z
.-» »-< O O 3 3 •
£3 2 W to X lO O
— o x > i i «n
1 1 1 — — 1
> ,J ^, « r> n >
O i-4 m n ~- — O
I/I < — — O ^3 IO
X  X to >


«
»
£ S7
•^ o
« o
o w*
V) Cb
> U
1 O
o z
o *
f-t ij
ri
as
•*• to
— o<

is.
li
tO (/I
> «•
•-* 2
D 5
— x
-v O*
— <
^-t -
IS
-^ 0
g£
10 l-t
> to
* u
(-4 H
O 2
— D

> «-3
O .-»
to <
X O


0
i?
?£
VSOV
ADST
 . — i
 i o u
 I ,H H

 :8:
 I t-1 O
   I  *-t

  5 L
  H *
                     Z

                     •z.
                     M




                   So'

                   -^ <

                    * o
                   fM <-l



                   O **

                   s.u
                   — O
                   «-l
                    * H
                   •-4 Z
                   — CJ
                   Ol bl I*)
                    * O  •
                   <  O O
                   —. Cw W
                   (N CC >-»
                    . O
                   1-4 t/1 I/I
                   — Q U
                   «• 3 a
                   O   3
                   r - t-
                   *~  -X
                  ss
                  a: o CN
cC
3
H O

-------
                                     100
4689
0.9011
0.6744
0.4469
0.2195
1.3454
1.1167
1.1173
0.8886
0.6605
0.5313
0.3652
1.2663
1.0396
0.8121
1.0000
1.4311
0.9200
0.8952
1.6724
1.4457
0.9980
1.9031
1.6764
1.2420
1.1450
0.9183
0.6908
0.9183
0.848
 .540
 .228
0.000
1.176
 .867
0.988
 .676
 .485
0.400
 .120
 .968
0.660
 .348
1.200
1.432
1.400
 .680
1.488
1.180
 .948
1.728
1.5959
1.3692
1.1417
1.4337
1.2070
0.9795
1.1865
0.9597
1.0600
2.9993
2.8332
2.6670
1.8701
1.6434
1.3013
  .5280
  .4654
  .2380
  .0060
2.2564
  .0606
  .8016
 2.8700
 2.6401
 3.3900
 1.1562
 2.0086  1
 1.7818
 1.5544
 1.4199
 2.0570
 1.8770
 1.6510
 3.1680
 2.4088
1.420
1. 188
1.088
  .780
  .468
1.100
1. 544
1.236
0.924
1.244
  .936
0.624
  .940
  .632
0.816
2. 113
1.833
1.553
1.724
1.416
1.224
1.532
1.264
0.952
  .724
1.988
1.684
1.448
2.410
2.184
2.910
  .844
  868
 1.248
 1. 104
 1.650
 1.676
 1.368
 2.481
 2.248
 1CH3
 1CH2
 1CH
 1C
 2CH2=CH
 2CH=CH
 2CH2=C
 2CH = C
 2C=C
 3ACH
 3AC
 4ACCH3
 4ACCH2
 4ACCH
 50H
 6CH30H
 7H20
 8ACOH
 9CH3CO
 9CH2CO
10CHO
11CH3COO
11CH2COO
12HCOO
13CH30
13CH2O
13CH-O
13FCH20
14CH3NH2
14CH2NH2
14CHNH2
15.CH3NH
15CH2NH
15CHNH
16CH3N
16CH2N
17ACNH2
18C5H5N
18C5H4N
18C5H3N
19CH3CN
19CH2CN
20COOH
20HCOOH
21CH2CL
21CHCL
21CCL
22CH2CL2
22CHCL2
22CCL2
23CHCL.3
23CCL3
24CCL4
25ACCL
26CH3H02
26CH2N02
26CHN02
27ACN02
28CS2
29CH3SH
29CH2SH
30FURFURAL
3HCH20H12

-------
101
1 . iit>
-------
102
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0.
0.
300.
324.
168.
370.
0.
160.
0.
275.
0.
0.
0.
0.
0.
0.
26.
-133.
0.
-284.
-46.
0.
0.
505.
0.
0.
0.
0
0
0
114
-36
-73
108
0
0
0
90
0
0
0
4
0
0
83
0
141
137
-8
0
0
-30
0
63
0
-70
0
0
65
0
0
0
0
0
0
-83
2
1
0002
5000
0000
4000
0
8002
1
8002
0
0
0
0
2
0
7602
1000
0
0000
.2800
2
1
.7001
0
0
0
0
2
1
.8002
.7200
.5000
.9000
0
2
1
.4902
0
0
0
.3390
2
0
.3602
0
.7000
.8000
.5380
2
1
.4802
0
.7200
0
.1400
2
0
.3302
0
0
0
0
2
0
.9802
33.
214.
496.
-195.
304.
353.
188.
0.
365.
217.
-356.
0.
0.
0.
0.
0.
42.
0.
0.
-354.
-163.
-34.
135.
133.
128.
0.
0.
0,
0
4700
0000
1000
4000
0000
7000
0000
0
0000
5000
1000
0
0
0
0
0
9200
0
0
6000
.7000
.5700
.0001-
,0000
.0000
0
0
0
0
-7. 1801
132
372
0
-209
202
-83
-54
-62
0
0
-287
0
0
0
26
52
0
-154
0
240
5780
1
0
-41
0
0
0
0
-28
0
-189
0
0
0
0
-25
.1000
.2001
0
.7000
.3000
.3000
.6000
.5500
0
0
.2000
0
0
0
.5100
.3800
0
.3000
0
.2000
.0001
.1630
0
.1100
0
0
0
0
.7000
0
.2000
0
0
0
0
.3800
-48.
0.
362.
-257.
213.
497.
0.
0.
0.
25.
0.
0.
1827.
-687.
0.
0.
140.
-37.
937.
-39.
0.
0.
1680
0
0
0.
0
0
0
333
85
2390
0
54
-101
0
0
0
0
0
0
0
0
0
52
-7
0
47
-20
0
131
-44
0
0
-99
0
0
0
-22
0
0
71
0
0
0
-223
2500
0
3000
3000
0000
5000
0
0
0
3400
0
0
.0000
1000
0
0
.1000
3600
.9000
,2000
0
0
.0001
0
1
0
0
0
0
.0001
.8400
.0000
0
.4700
.7000
0
1
0
0
0
0
0
0
0
.1300
.8380
0
.6700
. 1100
0
.0000
.8500
0
0
.8100
0
0
0
.3100
0
0
.2300
0
0
0
.9000
-172. 4000
0. 0
377.6000
14. 4200
459.0000
678.2000
0. 0
319.0000
0. 0
244.2000
-449.4000
-305.5000
0. 0
0. 0
0. 0
0. 0
365.8000
-213.7000
165.1000
174.5000
53.5900
-61.7000
-58.0000
0. 0
-448.0000
0. 0
0. 0
0. 0
0. 0
6810.0000
-170.0000
0. 0
0. 0
629.0000
148.3000
0. 0
6960.0000
0. 0
-261.1000
0. 0
0. 0
0. 0
0. 0
0. 0
65.6900
461.3000
0. 0
0. 0
-149.5000
254.8000
0. 0
0. 0
0. 0
0. 0
68.8100
0. 0
0. 0
0. 0
223.0000
136.0000
0. 0
4350.0000
0. 0
0. 0
0. 0
109.9000
0.
0.
-229.
0.
112.
220.
0.
0.
0.
-451.
0.
0.
0.
0.
0.
0.
164.
0.
2
0
1000
0
6000
6000
0
2
0
6000
0
0
0
0
2
0
5000
0
481.7000
137.
245.
0.
0,
-404.
0.
0,
0,
0
0
0
245
372
494
0
0
0
0
191
0
0
0
0
0
0
237
0
0
95
-202
0
0
-164
0
0
0
0
0
0
-150
0
0
0
0
0
0
28
5000
.2000
2
0
, 8000
0
0
0
0
2
0
.4000
.9000
.6000
0
0
2
0
.2000
0
0
0
0
2
0
.7000
0
0
.1800
.3000
2
0
.0000
0
0
0
0
2
0
.0000
0
0
0
0
2
0
.6000
165.7003
0. 0
289.6000
540.5000
-14.0900
399.5000
0. 0
-197.5003
0. 0
-265.2000
0. 0
0. 0
0. 0
0. 0
-494.2003
0. 0
108.7000
5.2020
669.4000
0. 0
-246.6000
-18.8003
0. 0
-340.2000
304.1000
0. 0
0. 0
0. 0
0. 3
0. 0
0.
0.
0.
48.890
325.400
887.100
-139.000
0.
0.
-601.800
0.
0.
0.
0.
0.
0.
472.500
0.
-191.700
216.100
-44.580
0.
0.
232.700
0.
751.900
0.
0.
0.
0.
249.600010000.000
-235.7000
660.2000
0. 0
0. 0
560.2003
0. 0
155.7000
0. 0
-356.3000
0. 0
0. - 0
-70.2403
0. 0
339.7000
0. 0
664.6000
0. 0
0. 0
417.0003
0. 0
-481.7000
0. 0
0. 0
0. 0
0. 0
0. 3
0. 0
-500.4000
-49.3000
0. 0
0. 0
0. 0
-38.7703
0. 0
-406.8000
0.
0.
183.000
52.080
0.
0.
0.
0.
0.
0.
- o.
0.
0.
-314.700
0.
140.900
140.900
172.100
0.
0.
-330. 400
0.
0.
0.
0.
0.
0.
-448.200
108.800
0.
0.
0.
0.
0.
-598.800

-------
103
u
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
..3
0
0
0
0
0
0
3
0
u . u
865.9000
-73.8500
0. 0
0. 2
0. 0
5339.0002
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-101.6002
-341.6000
0. 0
-351.6000
0. 0
0. 2
0. 0
24.8202
0. 0
0. 0
0. 0
21.3700
81.5702
0. 0
315.3002
0. 0
0. 0
-183.4000
0. 0
0. 2
127.2000
91.4602
0. 0
0. 0
108.3000
59.0200
0. 2
0. 0
34.0102
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
36.7002
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-78.4502
010000.0000
0
0
0
0
3
0
0
0
0
91.1300
17.9700
0. 0
0. 2
0. 0
-141.3002
0. 0
-108.4000
0. 0
U.
0.
-352.
0.
0.
0.
0.
-399.
0.
0.
0.
0.
0.
0.
-51.
0.
-114.
0.
0.
0.
-40.
-287 .
0.
-15.
0.
3.
u
0
9000
0
0
0
0
1000
0
0
0
0
0
0
5400
0
7000
0
0
0
6200
5000
0
6200
0
5090
0. 0
1264.
-297.
0.
76.
0.
-11.
0000
.8000
0
.7500
0
.1600
0. 0
97
286
0
249
0
-245
0
18
423
-141
0
0
0
0
51
552
-293
0
-64
111
0
160
372
-126
51
546
187
0
-158
128
1088
0
.5100
.3000
0
.2000
0
.4000
0
.2500
.2000
.4000
0
0
0
0
.0600
.1000
.7000
0
.3800
.2000
0
.9000
.0000
.0000
.9000
.7000
.1000
0
.8000
.1000
.0000
0
u.
0.
-8.
0.
0.
0.
650.
0.
0.
8455.
125.
0.
0.
31.
0.
0.
-165.
0.
0.
0.
-22.
0.
617.
-54.
0.
0.
0.
62.
0.
0.
212.
0.
0.
0
4
-47
0
62
0
0
0
121
0
0
56
0
0
0
288
0
0
-30
0
0
0
-4
0
1301
0
0
215
0
-237
0
323
-255
u
0
2830
0
0
0
4000
0
0
0000
3000
0
0
8700
0
0
1000
0
0
0
9700
0
1000
8600
0
0
0
3200
0
0
.7000
0
0
0
.6800
.5100
0
.4200
0
0
0
.3000
0
0
.3300
0
0
0
.5000
0
0
.1000
0
0
0
.7000
0
.0000
0
0
.2000
0
.7000
0
.3000
.4000
u. u
0. 0
-86. 3600
0. 0
0. 0
0. 0
979.8000
0. 0
0. 0
699. 1000
0. 0
-293. 1000
0. 0
49. 8000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
-138. 4000
-266.6000
134.3000
52.3100
0. 0
0. 0
0. 0
268.2000
-256.3000
-313.5000
0. 0
0. 0
0. 0
0. 0
122.9000
0. 0
0. 0
464.4000
0. 0
0. 0
0. 0
0. 0
-132.9000
587.3000
0. 0
177.6000
0. 0
0. 0
33.6100
176.5000
18.9800
0. 0
86.4000
0. 0
0. 0
134.7000
129.5000
309.2000
475.8000
247.8000
498.6000
0. 0
375.5000
-246.3000
0. 0
0. 0
u .
0.
0.
0.
0.
0.
529.
0.
-216.
0.
0.
0.
0.
-132.
0.
-169.
0.
0.
0.
0.
-185.
0.
0.
0.
0.
0.
0.
-151.
312.
0.
0.
0.
0.
0.
562.
0,
0
0,
-125.
0
0
747
0
0
0
0
0
0
742
488
74
0
0
0
0
856
0
492
490
41
0
0
246
0
356
-154
U
0
0
0
2
0
0000
0
8000
0
0
2
0
3000
0
7000
0
0
2
0
4000
0
0
0
0
2
0
0000
. 5000
0
0
0
2
0
.2000
0
0
0
.9000
2
0
.7000
0
0
0
0
2
0
.1000
.9000
.0400
0
0
2
0
.3000
0
.0000
.9000
.9400
2
0
.9000
0
.9000
.5000
U.
0.
0.
0.
0.
0.
5.
0.
0.
-62.
0.
0.
0.
-378.
0.
-153.
0.
0.
0.
0.
157.
0.
0.
0.
-203.
120.
0.
1020.
-338.
0.
0.
0.
-337.
0.
529.
225.
326.
0.
0.
0,
0
669
-197
1821
0
0
-96
0
649
-20
1346
0
0
255
0
860
113
689
534
0
256
0
661
0
0
0
0
0
0
0
3
0
1820
0
0
7300
0
3
0
2000
0
7000
0
0
3
0
8000
0
0
0
0000
3003
0
0000
,5000
0
0
0
0003
0
,0000
.4000
.4000
0
0
3
0
.9000
.7000
.0000
0
0
.8703
0
.1000
.9300
.0000
0
0
.8003
0
. 1000
.9000
.0000
.7000
0
.5003
0
.6000
0
0
0
38. 890
0.
0.
0.
0.
0.
-339.500
0.
0.
0.
0.
0.
0.
-332.900
0.
0.
0.
0.
0.
0.
242.800
0.
0.
230.900
0.
0.
0.
-66. 170
0.
44.420
0.
0.
169.300
0.
698.200
0.
0.
450. 100
0.
0.
0.
-708.700
0.
-84.530
0.
215.000
0.
0.
826.700
0.
-157.100
116.600
363.700
0.
0.
1201.000
261.100
11.800
132.200
337.700
639.300
0.
920.400
203.500
-314.900
0.

-------
104
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0. 0
0. 2
0. 0
-32.6902
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
5541.0002
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-52.6502
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-7.4812
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-25.3102
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
140.0002
838.4000
0. 0
0. 0
0. 0
0. 2
0. 0
128.0002
0. 0
0. 0
-40.8200
0. 0
0. 2
0. 0
-31.5202
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-72.8802
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
0. 0
0. 0
0. 0
-1. 9960
-142.6000
0. 0
0. 0
0. 0
10.7600
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
16.6200
303.7000
0. 0
-26.0600
0. 0
-47.3700
0. 0
0. 0
160.6000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
317.5000
0. 0
48.4800
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
138.0000
0. 0
21.7600
0. 0
0. 0
0. 0
0. 0
-142.6000
0. 0
0. 0
0. 0
0. 0
0. 0
41.3800
443.6000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
10.3800
0. 0
0. 0
-34.6800
139.8000
0. 0
0. 0
1824.0000
0. 0
5250.0000
514.6000
0. 0
0. 0
0. 0
21.5000
0. 0
0. 0
-60.7100
0. 0
0. 0
0. 0
28.4100
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
157.3000
0. 0
0. 0
-133.1000
0. 0
0. 0
0. 0
221.4000
0. 0
164.4000
0. 0
0. 0
0. 0
0. 0
58.6800
0. 0
0. 0
48.4900
0. 0
0. 0
0. 0
155.6000
0. 0
0. 0
225.8000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
-97.0500
0. 0
0. 0
794.4000
304.3000
0. 0
0. 0
-127.8000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
40.6800
243.8000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
78.9200
0. 0
404.3000
-146.3000
0. 0
0. 0
0. 0
0. 0
0. 0
150.6000
152.0000
0. 0
0. 0
0. 0
302.2000
0. 0
0. 0
21.9200
0. 0
0. 0
0. 0
0. 0
0. 0
291.1000
0. 0
0. 0
224.0000
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
-119.8000
0. 0
-60.7000
0. 2
0. 0
341.7000
0. 0
0. 0
0. 0
10.1700
0. 2
0. 0
561.6000
0. 0
0. 0
-85.1200
0. 0
0. 2
0. 0
823.5000
0. 0
335.7000
0. 0
0. 0
0. 2
0. 0
461.6000
239.8000
125.7000
0. 0
0. 0
0. 2
0. 0
521.6000
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
267.6000
0. 0
0. 0
481.3000
0. 0
0. 2
0. 0
501.3000
0. 0
0. 0
64.2800
0. 0
0. 2
0. 0
721.9000
0. 0
0. 0
125.3000
0. 0
0. 2
0. 0
0. 0
0. 0
329.1000
174.4000
0. 0
0. 2
0. 0
0. 0
-145. 1003
0. 0
252.6000
-94.4900
0. 0
533.2000
-27.7000
0. 3
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 3
0. 0
914.2000
112.4000
0. 0
0. 0
0. 0
469.8003
0. 0
382.8000
63.7100
0. 0
0. 0
0. 0
0. 3
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 3
0. 0
0. 0
9.2070
0. 0
0. -0
0. 0
0. 3
0. 0
0. 0
476.6000
0. 0
0. 0
0. 0
68.5503
0. 0
0. 0
736.4000
0. 0
0. 0
0. 0
0. 3
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 3
0. 0
0.
0.
0.
417. 900
0.
0.
0.
0.
0.
0.
360.700
0.
0.
0.
0.
0.
0.
1081.000
0.
-73.090
0.
0.
0.
0.
0.
106.700
-27.940
0.
31.660
0.
0.
23. 480
0.
0.
0.
0.
0.
0.
0.
0.
0.
--- o.
-417.200
0.—
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1169.000
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

-------
105
u
0
0
0
0
0
3
0
0
0
0
0
0
3
2
2
2
2
2
2
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
0
0
0
0
0
0
3
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
I
su. 4bU2
0. 0
0. 0
-215.0000
85.7000
0. 2
0. 0
-165.9002
0. 0
0. 0
0. 0*
0. 0
0. 2
0. 0
47.4102
0. 2
0. 2
0. 2
0. 2
0. 0
0. 0
-5.1322
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
-31.9502
0. 0
0. 0
0. 0
-71.0000
0. 2
0. 0
147.3002
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
x 529.0002
-167.3002
284.5002
305.4002
0. 2
-53.9102
0. 2
97.9003
0. 3
0. 3
0. 3
0. 3
0. 3
498.8 3
109.2003
0. 3
0. 3
0. 3
0. 3
0. 3
0. 3
272.0001
0. 1
0. 1
422.
110.
0.
-343.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
124.
-40.
0.
-149.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
249
97.
0
0,
0
0
0
b
0
0
0
0
0
0
1397
123
0
-193
0
-198
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-435
0
4UUU
4000
0
6000
0
0
0
0
0
0
0
0
0
0
2002
9002
2
8002
2
2
0
0
0
0
0
0
0
0
.0000
.0400
0
0
0
0
0
0
0
0
0
0
0
0
.0002
.4002
2
.0002
2
.0002
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
.0001
1
-2.
0.
0.
-58.
535.
0.
0.
0.
0.
0.
0.
0.
0.
0.
395.
0.
0.
134.
0.
SU4U
0
0
4300
8000
0
0
0
0
0
0
0
0
0
8002
2
2
2002
2
0. 2
0.
-237.
0,
0.
-124.
0.
0.
0
-133
0
335
-186
-191
0
0
0
0
0
0
0
0
0
317
0
0
335
0
0
0
-184
0
0
0
0
0
0
293
0
0
102
0
0
0
-288
-686
0
0
,2000
0
0
.6000
0
0
0
.9000
0
.6000
.7000
.7000
0
0
0
0
0
0
0
0
0
.6002
2
2
.7002
2
2
2
.3003
3
3
3
3
3
3
.8003
3
3
.0003
3
3
3
.0001
.0001
1
-14J.
41.
0.
0.
0.
-97.
0.
0.
0.
0.
2UUU
5700
0
0
0
7100
0
0
0
0
0. 0
0.
0.
0.
0
0
0
0. 2
16.
0.
0.
0.
0.
0.
-157.
0.
0.
0.
0.
0,
9902
2
2
2
2
0
,3000
0
0
0
0
0
0. 0
-240
0.
0
0
0
0
0
0
0
0
0
0
0
0
615
-234
0
1107
288
0
0
191
0
0
0
0
0
0
221
0
0
0
0
0
0
-1020
-463
0
.2000
0
0
0
0
0
0
0
0
0
0
0
0
0
.8002
.9002
2
.0002
.1002
2
2
.6003
3
3
3
3
3
3
.8003
3
3
3
3
3
3
.0001
.0001
1
-•<>;>. avuo
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
0. 0
0. 0
-42.3100
0. 0
0. 0
0. 2
0. 0
738.9002
0. 2
304.0002
379.4002
0. 2
0. 2
0. 0
649.7000
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
64.1600
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
0, 0
0. 0
0. 0
0. 0
0. 0
0. 2
0. 0
88.6302
65.3702
-61.6002
0. 2
0. 2
0. 2
0. 2
85.1903
0. 3
0. 3
0. 3
0. 3
0. 3
0. 3
84.8503
0. 3
0. 3
0. 3
0. 3
0. 3
0. 3
0. 1
0. 1
0. 1
695.
-122.
0.
0.
0.
153.
0.
0.
0.
0.
0.
0.
423.
0.
528.
0000
1000
0
0
0
7003
0
0
0
0
0
0
,4003
0
,0002
-217.9002
898.
0.
0.
730.
0.
645.
0.
0,
0
0.
0,
0
172
-158
0
0
6
0
0
0
0
0
0
0
0
0
171
-247
1179
0
0
0
0
0
0
2450
0
0
0
0
0
0
2496
0
0
0
0
-668
2880
0
,2002
2
2
8003
0
,9000
0
0
0
0
3
0
.2000
.2000
0
0
.6990
3
0
0
0
0
0
0
3
. - 0
.0002
.8002
.0002
2
2
3
2
3
3
3
3
3
3
3
3
3
.0003
3
3
3
3
.0001
.0000
1
-240. 000
0.
0.
0.
0.
0.
0.
386.600
0.
0.
0.
0.
0.
0.
0.
0.
428.500
167.900
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-287. 100
0.
0.
0.
136.600
0.
0.
0.
0.
0.
0.
0.
0.
--- o .
284.400
O,
0.
885.500
-29.340
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
639.300
0.
-1080.000
0.
0.

-------
106
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
u.
0.
0.
0.
8960.
0.
0.
0.
0.
0.
0.
-11.
0.
0.
0.
0.
0.
0.
1
1
1
1
0001
1
1
1
1
1
1
1001
1
1
1
1
1
1
U. 1
0. 1
0. 1
0. 1
-963.0001
-444.0001
0. 1
0. 1
• 0. 1
0. 1
0. 1
0. 1
1530.0001
0. 1
0. 1
0. 1
0. 1
0. 1
0
0
0
0
-63
-167
0
0
0
0
0
-11
-60
0
0
0
0
0
1
1
1
1
.1001
.0001
1
1
1
1
1
.8001
.8001
1
1
1
1
1
U
0
0
0
-196
0
0
0
0
0
0
-36
-466
0
0
0
0
0
1
1
1
1
.0001
1
1
1
1
1
1
.6001
.0001
1
1
1
1
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
-74
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
.7001
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-------
                 107
APPENDIX 2:  MOLACCS PROGRAM LISTING

-------
                                                                 108
                O 0)


                u n
                             <-> c
                             c o
                       jj 4-1   a


















0)
ot


le Surface'
f-86'
—t ro
V) £
ifl
0) C
U 0
O -H
< (/)
Li
Li Ol
« >

3
0
Ot
*4
o
as









Brooks III'
:hemistry'
m
J  U
at jj
C -H
Lt O4
(Q
U








«

S 2 S
-H O
(A Ll
3 a
M 4J
at a>
o
a* o
u
« o»
Ll --I
3 >i
rt
Ll >
rt
— I jC
3 4->
U — 1
Of S
,-H
0 E
E x:
4-t
at --H
*j n
3 O
O. D>
e -H
O fl
O
«
^ -o
^ Li
••-i n
u
§£
_ o —
s - x
•3
n
to
•a
•a
c
A
W

O
^
^


C
01
>



01



0}

f*
°
Of

Contin
Write)
A
. II
H
O H
0)
« o
M 14
^i ai
IA u
j: e
4J IQ
C h
2 a
a-
a


~H
C
at o


0 4J
C
w re


LI a
at o
u
ra a

ot at
2 3:

A
1
1

C


•a
c




at
T3
c
3 01
c
3 — t
O ^
^
Q —

Write (
Read (5
<-H
O
4J
o
o»
>«
cr
0)
..


c
^




o







cr
0)

-^
_
O 0)
— i c:
-^ c
0 O
Q U



4J
0
O
3
0
>i


M
C
O

*J
ra

3
4_)
«
Ll
C
u

c "—
0 -• 01
c -i
o o ^
0»U 7
V)
o»
c
i-4
JC

n>
c
4->
U)
at
LI
0)

c


at
Lt
0
t-.

o
4J
r
o
5
2

Write (
: parameters 

E
0
j~>
«o
4J
3
a
c


0


Jj
c
ro
2


0

O

Contin
nfrag-
Write (
, calculate'
- quit 
c o
Q)
E A
0» 0)
rtl O
Li 
01 ro ,-1 ~ C
Li m — ^ jj
0) O
CNJ 
c c
^H 'H



Li Lt
0 0




>M U)


cr cr
at at

_, ,H
-rt -H
c c





c
^



Lt
O




cr —

• c
CT-H
at — i

-^ *
-M ra
c \
*— at a
o
u






















E
LI
a.<
0) i
z
a)
U
    ooououuuououoouo
10


o
iH




CM




U

O


•H


(u
0)
o
u
o
e







































.

41


O
u
5
o
£




O












I-*

l-l

vt


CC
CQ

J

(/I
UJ

CC
rf
u




00 UJ

UJ
in
^ UJ
O ec
V)
H H
i :r
o o

CC CC

O J
u <




• ,

t
u
u
u

o
u

u

o
u
0

(J
L)
U
u
u
u
u
u
o
u
o
u
u
u
u
u
o

u
o
o
o
u
o
u
<_) t/)
u u
u u
u <
u >J
u o
0 X
u
u
O E
O ra
O Ll
u o
o o
O Li
u a*
o
u
(J
r U
» u
JUDO
J <




















































J
J O (J O O O O '











r-*

1/1

X


>! M -.
Li Li C
n *j at ^
»-*«>>
E C >i
«rt Ol O W
J* JC C
0 U C C
o o a*
Lt IM ~H a.
CQ O — «
Ol »
• *J 2: .c
J C 1 o
at at LI
w E -H 3
at *j o ja
-* M a> H
Li m c 4J
<9 Q. w u
JC Ol 1) ^
U O O Q*







L4
0
x:

3




u u o u o o o
W U
J •» >a «a
*J -* Li
T3 3
H Lt M
—• O
O 4-*
E U U

OU 3 — «
Lt at o
4J O tO
• W 10
VD  t3
U C
U O
U £1


o —
U 0

(_> ~-"
U -C

O C"
o c
i
U u


L) O
0 4-1
o n
,


U
-4 M
J3 3
O -rt
£ T3
Ci ra
O ^

T3 O
>* *4
J= E
o
« »j

o


U) .-H
a o

•a ra


I c
00


o «
u .C

CT
C
01

1
•o
c
g
^


ra
01
IX

























&




«J
n
c



4-1




O
jC
a
o

T3
>,
x:

Ll
V
O
01
4-1
c
*-*







































4-t
1
E
0
4-1
,
L«
fll
C
o

*J
u

T3

Ol
JC
*J
«J
V)

•-*

•^
E
m
Lt
fl
a
*s.
C
0


o
u

c


M
Ol
,_<
jQ

LI
(I
>

m
a.
V)
U
c» c
- o
0* -^
tJ
* *

Ot -H
t-t T)
U — »
n LI
L. jQ

jc x:
u

T3 0.
C M
(V
JC

fi -«
1 >
c
c
at o
U jQ
X Ll
4-* *0
u
u

E
O Ll
4J O



A
1
1






at
a
>!
4->
I
6
o
«j
a)



Here we
bondlength
01 1
a 4-*
X 0
u tJ
1
E «
O £
*-» »-»
n
4-f
Ll *
o x:
•-• u

*» c
3 O

T3 u
(fl 

t4
O



M

Ol
JC
tJ

V)


Ul
K
O
*-*
>«

O
u

C
o> •
Ol -^

4-1 -0

























— m
A
* o
o»
• •
i)
at
aT "o


1 0)

O 1


E


M <«
*_f
C T1
oi a
U N
—4
x» -o
C -4
D Ll
O jQ
LI >,
1 £

01 *-l
C» V)
C
1 T3
C
T3 a
C 0
O it
JO nj


A
1
1





O

0
c
fa
1
•a
c
o
Xl



—

s
>,
fcj
1
E
O
*-»
4

Lt
O
UJ

(A
P
—4
T3
*0
Ll

M

"J
4
3:

Ll
c>
T3

C
fl
>


A
4
1


M
3

T)
*
Ll
1
U

"e
o
tJ
11




0
c

,


U

jQ
O
JC
a
o
Li
TJ
>,
Jw



SP3
hydrophobi c
o
>,

O 3


Li
- O
Ot , 0
iJ> O
1^
e
o •*-<
*-J O
M a
o — •

>i >
4J

o
-^ a»

JC jC
a
O »J
Lt jC
T3 0»
>. -t
•C E























                                                                                                                           E O



                                                                                                                           O
                                                                                                                           •35
                                                                                                                           E  11
                                                                                                                            o
                                                                                                                            u
                                                                               uuuooouuuuuououuuuuuu

-------
                                                                                                         109
                                                                                W

                                                                                X
                                                                                01 .
                                                                                I   .
                                                                                C A
                                                                                O i .
                                                                                C 01 /
                                                                                   c
                                                                                Uj V  I
                                                                                O
                                                                                   01 .
                                                                                >i-i  :
                                                                                *j -H  i

                                                                                i^J
                                                                                01 X
                                                                                   01
                                                                                I/I C f
                                                                                   01
                                                                                M U|
                                                                                01 U
                                                                                E *J •-!        *—
                        *  o  — TJ  re
                                   m1*
                                    |CtJ  g.
                                                                                                I     TJ
                                                                                                •a
                                                                                                ^-4    O
                                                                                                O    0\
                                                                                                                                                                  0)     I  u
                                                                                                                                                                  M     e ^
                                                                                                                                                                  TJ     03
                                                                                                                        C  •
                                                                                                                        n u
                                                                                                                           - -Q
                                                                                                                          — o


                                                                                                                          SI
                                                                                                                          U kl
                                                                                                                          O TJ
                                                                                                                                                                                  ~ TJ
                                                                                                                                                                                  -H  I-H
                                                                                                                                                                                  u  E

                                                                                                                                                                                   e'S
                                                                                                                                                                                   o  m
                                                                                                                                                                                   -=&
d' ,
red
nfo
it -
orm
9 99,
                                                                                                                                                                                                       C     rH
                                                                                                                                                                                                       a     -i ,
                                                                                                                                                                                                       a
                                                                                                                                                                                                       o     a •
                                                                                                                           •*     r-«     C
Newparam
c
Subrou
V)
TJ
<0
0)
M
0)
C
4J
3
O
U|
XI
3
V)
Ul
parameter
0)
r.
c
VI
T3
13
O
j->
m
^
n
a
Common
jr.
o>
c
0)
TJ
C
XI
— 1
fl
0)
cC
«
drophobic
JC
Intege
>.
«j
Er
O
(Q
«
01
Charac

XI
*0
>
(Q
U
0
C
o
*
kl
0)
Charac
o>
c
o
«

c
rO
U
TJ*
O
U
o
-4
O
cr
o
0) 0)
ui a
^ . E
TJ ID
O 0 •-«
                                                                                   3  i
                                                                                   O  '
                                                                                   >.  I
                                                                                                                                                                        —*  Q)
                                                                                                                                                                        —  a
                                                                                                                                                            —     ft  O
                                                                                                                                                                                                       3    -M  <9
                                                                                                                                                                                                  •  a>  *-»    —
                                                                                                    O ki  O)  '
                                                                                                    u 3: 06  •
CM
VO
CO
CT1
m

o
CM
ore
s?
                                                                                                              *   ««
                                                                                                              •a  j=
                                                                                                               01  (A
                                                                                                               O  —*
                                                                                                              V*  c
                                                                                                              *   3
JJ
 o
o

•H
 M
Ui
                     O. 0)
                     3  U        >•
                        rq 0)
                     *-»  H C
                     41  ki —i     or
                     tn  3 r~t     01

                     o     -.     —•

                                           —»  a>
                                           -^  a
                                            ••  o
                                             i £1     — CT
                                                                                                              •M  3
                                                                                                              —
                                                                                                              XJ
                                                                                                      t -*     —t  1
                                                                                                                                         vi -•
                                                                                                                                         U ^H

                                                                                                                                         «
                      I  «. — r-* C
                                                              »  A *J     CT t-H
                                                              •  V Ul     VI
                                                              .  C ki      • u
                                i     c     c — »n  i
                                  —• -.  O  -« 0» —  tJ
                                  *-<  tJ  «J  *J *J TJ  v»
                                  -»  C     C —»  rt  U
                                     O  O  O ki  ey vi
                                     U  t> U 3: O. -H
o  -^ •

*J  *^ '

^  o
-•  TJ
 01
 O
  • i-4 O  *
*J  I t-l   I
 ui *J  I  Q
 Ul Ul u   01
•M kl  V|   C
                                                                                           Ui     —. -^
                                                                                          «M     — «s.  C
                                                                                                               01  Q)
                                                                                                              *-«  O
                                                                                                              -«  U
                                                                                                                               « 3:     -H ~    -i
                                                                                                    "S.  I     Vi  rq
   * *   Ul


  —  •-«  «0
                                                                                                       0)    ki
                                                                                                       E *  v,
                                                                                                       nl -* C
                                                                                                       C «  -,
                                                                                                                                                                                                                 „     E
                                                                                                               c
                                                                                                               0)
                                                                                                               a
                                                                                                               o

                                                                                                                                         um~4     c
                                                                                                                         O — I C -H -^ ^  »q
                                                                                                                         o     •—  ki  t,     4,0
                                                                                                                        -••0    3:3:*t*a
 • O "— in
I E 01 —
(    U TJ
(  « i-t TJ
l -H Ut ft)
                                                                                                                                                      oo»3:"-3:a;ui3c»  XCCQ
                                                                                                       a>
                                                                                                 » t-t  c      cr
                                                                                                o> n -<      a)
       »  •-* o  oi
—.  *j  —. m ,-«  c
«c«  —   *^    o     o
 *0)   «.«..-4i-»4»O     (*>

—  cV — in*^      c^?0"
OJflfl)—     — -i  O  O O
iJ^WTJ^Vi^j^jflj^ji

       . ...  _               Q
                                                                                                                                                                                                 u
                                                                                                                                                                                                                        O
                                                                                                                                                                                                                        3C

-------
                                                                                        110
                                a
                                O
                                                                 —  o
                                                                 --t .C
                                                                 —  a
                                                                  OTJ
                                                                  C  >,
                                                                  a  jc
                                                                 <— i
                               TJ   | rtt
                                > -a  n
                                   c   |

          |  U

"E       x:  "E
o       *J  o
U — *  O 4-)
«J 6 A  C  *B
   jj  I  0)
                                                                  e'S
                                                                  O  1 C  4J
XI

2
                       4J -*    TJ  ^
                                         >,  O C 4J
                                       j  *J  C O «fl
                                        —i    XI -H
                                    * O O  »  * O '
                                   *D c  x: u> in c .
                                                                           -^  3  a
                                                                           TJ  «J  O TJ
                                                                           c  a>  u  c
                                                                           O  Ct  V) CJ
o
t-H
0
:•
0
o
u
Q o
O (0
•-t Ll
*_, ^
-* 1
o »-»
6 O
|E
e 2
o
4-> «•
It) — .
C O
*r
-*. o
o o
O rH
rH 	

3 0) O
ni e E

 —I
£ 2
••-t E
^ "c?
3 C
0 0
H E
XI E
3 O
w o
o
rt
M


,H
o

c:

^H
o
6
|
01
a

^>



*H

e
i

"o o
E n
1 n
l< C
O
o n
o
rH 01
n *-»
0) C
a: rH
th {20) , bond_angle (2(
phobicity (20) , natmj
o> o
C H
at -a

|J=
TJ
C *
So

^ •-•

O 3
CM •**

a> m
a ^
£ 1
0) U U


coo

•— 1 10 *9
O
E ^
E
00 «fl
* M
LI ra
0) CL
4-> —
Ot 0
M e
n E
J= O
u u
3
TJ

|
0

E
o a>
j-> a


Oi E
rH 4J
O> i
C *J 0>
0 -t CX
x» u >,

-XI t
J= 0 E
*J J£ O
CT Q. *j
con
U Li

1 X «
•ox n
C 0)
O Li U
c> «
-^ OI M

01 C J=
ce »-i o





















O 0)
C C TJ
-. -. TJ
-H ^ fd

O 0 »
uj rH r~ °O
O) • * rH
rH LI LI o
J3 0) (U
Ifl fl (T) O
> L. Ll ^
ra nt o
-H £ £ 0
, '
M
-H n

01 0)
•-i *-»
-^ at
<*H a>
M
U U
c
a* o
E *J
O

LI c
»*H n
y
4-»
C 3
0) O


3 O
L? O



« «

\\& vD
0> 0)





A
I
1
j"
0)
£
r-«
A
TJ

O
V

01
c
o

TJ

0

C

01
TJ C
ra -*
at rH


LI *
o —
o

— «
* v"~"

vo *
at —
— t m
Li 0)



•
TJ
*-4
O
b
CT
0)
0)
c
•^4
^-*
-^


Ll
o




0


cr
0)





-—
at
0 C



•


0
TJ


name.ext>? (for091.d,
o>
^-»
^^
*M
V


0)
g
at
C

01


*M

V)
-4

U
a)
.C
3:




0) «-
3 *O
•^ at

o M
0 Z



















XI
01
c
"•-i
l-l

^ .





-» o
— u i
(fl U I
O  «
-CM
^1 -M W
I ^^ -M


-t 0



cn
m

o
 o
o

-H
 M
fm
 M
 O
 ff)
 O
 O
V
I
"c
M
at
*j
0)
E
a

u
c
01
L«

-^
U
4-1
u) «
-M C
r-4
O
4J X.
C O
-. X <9
» 3 *
SO O -

at —
-H Q fl
Li O)
*
O
cr
01
— *
at
c

L«
O



^
X
cr
01

-«
il
01
o c
r-i —1
r-t — 0>
1 3
-« — c

— i c:
o o
•o u
vdW_radius Hydrophob.
0)

c»
c




c
o
ta

—
« e
- z
--• 0) \ •*

C — E
o — i at o
c -• <
0 0 L<
o o a »
3x, f8.3, 3x,f8.3,3x,13)')
ngth(latm) ,
s (latm) ,
* 0> 3
en ^-« — «
CO
03 TJ n
*-t C W
- O 1
X X) U
n -*
* » E
•«r — o
* E *>
X* 1
CN •--« •.
4*> 01 E
— * CX *-»
X U -^
n I*—
— E 0
- *J CT
U> < C

0> E 1

U -r* O
J — XI
• *
at
a
x
*j
E
C

r-«

E

(fl
'-i
^
"E

^
x
fj
O 01
-C 3
a c

TJ C
>* O
£ U
•









M
S
u
OI
m
n
a
01
c

TJ
01
Lt
3
A
1
1
c:
14
Lt
01
iJ
E
M
a
a
c


o


*J
2 Of
C
a -H
O rH
X
o r*
o —
0
^ %


01 *-
-^ n

x a
cr
Of
at
c

M
O



.
>^
cr
01

--<
•^
at
0 C
t-4 --1 O

1 — °

H-( 0
-4 O
O
TJ
A
1
1
r*
*j
a
ex
c
0
tft
i

6
i-l



0)
c
o
w

A
§c
5
01 — »
01 r-t Ol • - »
3 r- 3 • *o m
c c a« ^- —
--» O --« c» a*
C C (* —* "Tl
o o o ^ *•-» a*
O O> O U J OS
o
o
4J
w
o
a
|
at
c
*j
3
a
c



r-4
1
4J
1
E
£ c
*J 1
-_::£
• «. >•»

\O 1 |

0) t-t
j_> ^T ro
— t C
L. O
5 TJ
A
1
1
at
ex
*j
E
O
»j



,^
»
•. 0*
n .5

X
fl X
— • fl
— in i o
o> — *j i
*J TJ tfl U
Li O) Vi ^H
3: a: -4 -.


*-» cr
« n
r-< at
1 C
CTTJ*
0) C
WJ ^»
Ll O
-H o*

TJ •
C U
.
O ** r-( -M rH
*J 0 — -. —
O j.) » 0) •» •
LI u at *H o» —

U] r^ »H TJ -• *J

L* U CC 2
or
c
Hydrophobicity'
type) ,

vi E


TJ C

U JZ
x'o»
TJ C
> 0)
rH
I
TJ
01 C
OX)
c
*
TJ —
C
O T)
m  a£

.
c radius (natm_type) ,
length (natm_type) ,

E c
0 0

01 oT
ex ^

-- t~> O
0. E'-^
i-t oj «i
i C Of
E — H
*J >
C -( -^
— ' U *
rH X) iTt
O1 O *•*
C -C
\ O ^J
^ L» — H
C TJ L.
X> -C

* •
at
a
*.»
n)
c
3
n)
u
o1
E
o
*J —
(0 01
a

« *j
at |
CX E
>! «-*
E'-^


-^ o
01 -r<
-^ XI
o> o
C J^
1 o 
Q)
C


o



fc
>,
cr


-•
^
c
«



_^



-------
                                                                                              111
        —      CM
                                          -* -X —

                                          o  *  o
gtw

dd:
Li
JQ
rH
Ol
4-1
C
—4
4J
C
01
E
O 01
M <9 Ol  tCQ)CLi\Dini-H
O D> 0) 01 —
i  «
a: o c 3: -


O T^
4J *. r-
.r
C i
Li -H . 01
3 4J 1 4-> O
Ot O *O Li
of. o n y *


c
Ot
3
4-1
rH
tA
Q
3
 or input fragme
ilO)'J line
to
« * T3 "*- "
*• ~ "** *• *~*
ai o) «) —
LI LI at o
3: 3: * of. a


— x
0) rH
C
-H go <.
""" x" o i
• rH ID
Ll «. M *4b
O *t «M
— x o at
- til.
•> OD •>• *D
• (TJ rH Ll
cr * * *M
at x — «
rH 4J
-^ * * 3
-H n .~ a
— X 0)
ot n E »
—4 *. C «

— -H O 01 E 01
O O Li -H Li
u 03: — 3:


ifrag
jrb(add, nfrag)
fragment to make sure its right
fro (nfraa)
— - 4~» ? 3
* M at 
at ra n
a: u » U


                                              T3


                                               O
00

Ok
at
in
o
tH
 O

O
 m
 o
 o
 o
 a
-'unform

t-91, sha
                                               — CT*



                                               (A I
                                                 O   » Cr »M

                                                 E  — *
                                                   |J* t* E

                                                 E   - «M 0
                                                 O  •*-•   1 Ll
                                                 *J   * ^ Ik*

                                                 ra  -H 0
                                                                                   4J £
                                                                                   4J M
                                                                                   ra  *

                                                                                   Es:
                                                        at  o *H 4_»
                                                        e  o    c
                                                        ra  U  » a
                                                        c     ~ E
                                              "H  C
                                              -H  01
                                              —  a
                                              _Q  O,

                                               at  ra
                                               c  -
                                              —»  i
                                                                           L* .Q    IH at
                         o
                         Ll

                         O
                                                   | 0)  C  r-,

                                                rH  Q.  * O

                                                 O  >,rH  E

                                                 E  *-•  I  2
       CL|~HLttA4JOI    'H
       vH'M I  *-t Ll W» C *J  O •
              i  ^4 IM rH -H -J •*•  Lt
                                        C

                                        &
                                                                       «—•  01 ^    **
                                                                       01 -H ra    c
                                                                       w •^ 4-»    at
U  -H  -4  -«
                                                                                  •a -t
                                                                                  c
                                                                                  01 -a
A
*J
M *
rH A
V T3
Vt —4
c n
Ot V
4 C
LI at
"i
o ra
C Li
VI 3
-H at
x c
ot
•a
id ~4
-H 3
•-) jQ


^^ — »



u at
*J 4-t

Li Li
1 X
A
ai
Ll
c
at
§
Li
*
at
c

c
^H
•o
01
Li


^»



Ot

Li
^
ragment , '
fragments , '
0
o c
c -*
— 1 4-1
t-> tn
vt -*
-H X
x at
01
0
C X
(9 4-1

£) at
Ll C
3 ~H
4-» JQ
LI e
Ot O
a u


r^ r^



oi at
4J 4-1

Li Li
3: 3;
A
at
4-*
at
at
V
c
at
E
O
V4
0
c
u
U)
X
ot
c


at
*-»
01
01
T)


^•^
*


at

Li
ts
:alculation ?
01
u
•M
i.,
Lt
O
VH


C
Ot
0
ra
LI
*M

01
— VI
• O
* O

01
4-J L|
-H O
Ll
•




01
c.
-H
•-*
**
» *-+
A O
1 r-<
1 nt


0) *
wi m
o —
0 -Q

U 01
*
o
cr
Ol
-4-
— H
Ot
c
O rH (N (*>
T3
O O O O C
o o o o
o o o o — .
at <~ « -^ -^. u
ra »-3 ffl DC rx •
o ~ . » ^ * cr
o • • • . o>
L< rn cr cr cr tr •
a> » at ot 01 at «.
O. 01 • • . . -H
a c . 	 « — ..
3 ^ — * — , ^ _, ,-,

O " — < -n -H »H 01
4-» U — — — — C
3 ON at at at at -H
a>4-> »CCCC-H
C >rH-H— 4-^^ —
*H C 1 rH -H .-4 rH
jJ^rHWHtH'MH-l'M

at ra o
> O "O
c

o
o
Q


cr
at
—

^

ot
c


«H


















3 rH
C
••H O
U 4->

Q 0
0 C»




M
4J
C
Ot
E
O
ra

IM

Q
C


X
Ol

«
x"
f-1
x"
03
ra
X
n
x
rH
CD
ra
x
rH
X
rH
OD
ra

X

o
^
x"

—

01 -

c —
— » at
C — H
a w
u :c

S
ra
""*!
o
*^

i


—
^,
0)
E
ni
C O
lo

o
E 0

-^ O

                                                                                                                                                                                   ~O  I  
-------
                                                                                                       1  12
                 r     i

          =    i     J
       — —      10
       ~> -i    01     O
       —  o —. a     o
        v  E >-i  >i     i

        «  e'^<  ™     j?
        c:  o — «       .
         |4J -I  —     T1

       "o  C E  "     -H
        £  I    )t-l     I
        I — E   I      ~*
       — •" °  ^     ~
        t —i n  -*   » o
       -1 — C  O -1  E
       — -i  - 6  I    I
        01  O rt    I.X  M
        e  E i  ai     o
        id    IT-I Q, OJ  O  01
        C  e    >i     03
         I O (M  u  O     C
       -i  u    mo     -i
        O  ID O            *J
        6  C Q            C
                           o
                           o
                                                  0.0
                                                  e — o
                                         c  i
                                         a>  &
                                     U *J  O     Ll  E
                                     14-1 (O  01    "W    I
                                       IT3 —I       I 01
                                     —* a. o    —»  Q.
                                     ODE     O  >..
                                       I 111    ICO)

                                     O -i  O  I -H
                                     e  ti  e  u  L,
                                     c s  c a: 3












C
3
4J 13
at c
a u


g, log, iunit)
O)
M
*M
C
 at

a 3

« E
ai 8

u o
u c
u ~v»
~4 Q)
06 Q
C
o
•r4
q
•H
O
U
n
a
•o
10
u
2
o
a
o



&
cu

u
k4
a
^
c:
A
e(100), natom_mol (100) , coor_mol (100, 41
01(100,40), nmol_frag
§6I
cl&
^ >,
0 U
E "J

\
o
*u
M
i-H
O
E
V.
c
o
o
«










•-t
0
E
M
O
0
U
i-4
n
01



o>
a)
M
^'
a
m a)
*. ra
^-t C
o I
e ^
10

o
I re *
C M
M 4-*
01 U
C £



(20) , ioond_length (20) , bond_angle (20) ,
&
>i
4J

o




E

re
Cv
C
o



dius(20), hydrophoblcity (20) , natm_typi
angle, atomic_radius
2 J
«'§
-^ ja
o *

fl» 4-»
c»
c
0)
1
T3
C
XI
0)
*


natm_type
£
*J
jj

O

a
o

>.

0)
c





a>
a
4J

E
o
4-t
m

*

at
u
JS












VI


re
>
0)
V)
re
a*



— t
C
3



n
» ~
O 0) -~ *r
.-* .-4 o --
re ^ X N
O o) rt
O •—< 0) *-j
u
o
u
M
O
u
VI
o
— a
01 C
at *
^ 01
01 .a
- 0
— u
O Q,

(N a
O —4

a>
«


o
c
o
N
c
-rH
o
01
4-1
3-
i
19

,,
4->


•*
U

0)
4J
c








O Ul

o •
1 U
Q O


at or
01 0)
E E



O
— *
£
M
O

C



C
01 i
o
0)
O
*J 3
n] 1
O

Du
then
ters, calling Newparam'
Ot
~ e
(0
O h-t
. a
cr
Oi O
• 2


O, —
, >1 *

E —
*J 0)
*-4
3
at
2
O>
c
flj
u
c ..
at 4/1
-C *J
u c
Ot
— e
o ^.
o re c* — .
u re o
• >M t-4 IO '
CT M U
Ot O C 
C »W C OJ 0
01 -^ OJ -r* Q


                                                                                O  O O L> U
vo
00
Ok
                                     XI
                                      I
at
m
 o
o
 M
 O
•

                                     ~-.  — ai  n
       —  — —i ~<  C  C G
        V        —  _i  k< _i
        *j  T3 <^ VI  *j  3 *J
       —<  *B    «4  C  ^J C
        LI  

(0



•

vo




M
2














at
c






o





tA


TJ

V
at
V



^4

at
c




0

fc



Cr
at



o ••


rt  01 »0
1 C 3 ^

-. -^ 0
(N ^- U t-t
erv -w c
-^ 0 0
O u O
•a
0)
at
T3

0
U

*J
c
re
>

a
0
>.

o
T3

4-» O
c re
Ol M


re



vo £ m
— 0 —
Ot v-4
*j ^: T)
-4 X re
u o>
3: * a
















0
re
M

c



>M
4-1

'-I O
at o *-4
O I
o o


re 
2
C *
t-t
3 a.
*J O

a: i/}
O
u
                                                                                                                                                                                              5 <-•
                                                                                                                                                                                                 u  at
                                                                                                                                                                                              *  c  c
                                                                                                                                                                                               » re -^
                                                                                                                                                                                                  Ot  
-------
                                            113
o
id
£
*j
O
*J
u
u
o



f^
n

09

. JC

- O
, __
OD •>.
«. —I
*» O.
vo o
Ot TJ
— « X
Ui
*
)
otpc, ' ' ,totpaO
Breakdown'
» 4J U

C** E
* O
rO u

oo

id*

r)

OD •.

- u

* 0
• «. C""
00 *. «
id n
ini
O — . 0>
-~4 0* — 1
V4 U
x * x *
00
 *
c
— * 3
O •*"
>-l 0)


M X *.
probe of radius', Radius_prob<

0
4-1

4-1
U
at
~ a
X at
• o
••-» i-l

x » sc
o
id
.c
4J
O
4J
U
Jj












rd


O
fc


a
•o
3:

*
0
a
4~t
O
4-t
r* o"
— a
«*) 4->

OO *.*
*M

fl)

ro
ao
IM

ra *.


* a
OD 4-1
IM O
id *

*
C
0> -i


X »
Breakdown'
o


o
4J











X.
id

-
C
3
Ot

Ut
2 *
n
oo
IM
X
o
CO
00
x"
l-(



00

fc
X

^•"
(H

X
•H


-H
»
CM
"""
*
C
a
01


X
o
(d
4-1
C
0
u
14
CJ
O
U
id


n

*.

«
"M
C


0


at jj
S"

~~* i
a -
"l-
E 0
O 14 1
C O 4-t
— E id
TJ
•-4 "V
-4 O
3 (d
CO Ui
IM
01 >-i
C O
4-1 V,
3 C
O 0
& 5
D O
w o
*


o
id
Ul
IM
^1
O
£
C
.-1
O
:•
a
>i
4J
id

•-4
O



o o

t "
M C
O
u a>
0
10 4-1
01 C
06 »-*





at
E
id
c
1

o


00
*

0
u
id
(0

(j



e (20) , bond length (20), bond_angle (20) ,

>t
61
o
4J
id


E
rd
Ut
id
a
c
2

O



adlus (20) , hydrophobicity (20) , natm_tyj
angle, atomlc_radlus
Ul TJ
o'§
sa
O -


c»
c:
ot

1
TJ
C
jQ


o£
«


&
4-*
E
C
>,
4-1
U
jQ
O

a
o
U|




at
C7


t-4





&
>,
|
e
o

f« O
M IQ

* -* «M at
u» jO C —•
01-* J3
*d > O> ro


U (4 *H ro
t4 O
10 O
a —




at
c
-H
•-H

— 0

*T *
— ' Ut
-H at
ra


Q& O






n
a>
c

rH

O
r-
*
Ui
0)
ro


QJ



molecular fragment will be built.'
at you want? (yes) — >'
JC
0)
U 10
C fZ
(0 t->
Ui

C t-t
3



. O* *
O> M 0)


2 » 3;
«


0
i-l
O
4J
O
o
z
tr
0)
-rH
i-t
0)
c
v4
—4
O

Ot -
c c

cr
-^ 01


o -*



* 0)
» i-t C 0)
** ^5

01 O O
oc, a o



to Newfrag. . . '

c
c

3
*J
01
a:

^

•
In «T
0 0)

o ^
ox



E to make branched chains.'
2
M
CD
5
U

01
(A
D



«
*
01


X



1
1
f*
(4
Ut
Ot
U
u
id
U|
id
£
U
00
>
c
0
Ot
E
10
c
*J
c
0)
E
o
<0
Ul
  Ui
oc X



vo
09
in
t-i
4J
u
•H
h


M
o
'H
n
o
u
 —i
f C
Ll
e 3
*J 0>
< u e
» •> Ul
— ^- id
so vo a>
*— — 35
Ui V-i rO
X X U TJ
C



v4
t>
*O
Ui
IM
C
0
%
ui
>, 	
*J r-l O*
(4 * »
300
-^ «0 (0
rfl «M »-*
Ui C C

0 II
ID o O
~ 0 0
-1 1 1





«
1
c
— I O O
00-.
|0 1 1
o « ^7 C7
0 — U 0
1 Ul ro >4
— 4) tJ 0)
— < U C O
~— o o u










01
3
C
U
o
(1


?be radius
Ul
O
£
C
Ul
Of
u
o
0
e
o
tJ
2
o
•t-l
c
ot
jC
*-t
 3 M o> »
at id -~* c vt TJ
O rfl * » Ui
Q. OTJ N
O *J rO «« »
4J . C 4-t Uj X
at « > o^< x
> J5 . ^« id M ^
—* O 41 O *J X V«
O l-» ,-1 (A *. » (j
\ ^1 U Ul 10
4J 14 OT id — « >i *
O. -4 O Ul *J t-« O
C T> Ui O ro Ui Ui
Ui | —
* n jd u
— » — . 3 *j id
» »T> > U
vo «n ra 3
	 a: *j «
V ui
4J TJ *— Ui .-(
3: oc M u
^-* M m
id
U
U
* t7
n ai
3 u>
J3 «d -
^ Ol O
M Ul •
* fO O
S~-a
» U C
N V »
C W TJ
» * Ul
OTJ N
ro Id » — *
ro O ^H X 0)
^j 10 Ul * U
C 4J X «M 0
O » *. u id
„ U Ut (0 O
M O -4 >t » *4
U O 4J rH O O
U 1 ro U4 Ui U
3 *-
— » U
TJ fl
Ui Ui
3
-C VI
*J
10
4-t O
v x f>* ro T
at
z
u






(4
-H 4J
3 «0
« O O -4
M • O • .Q • r~t
O 1 O 0 1 0 I
V 1 0 1 101-4
4-1 10 id U ro <0 U

— — « ^-« a ex ex
-H o o a. >, >,
o e E >, *j >j
lo a> ^ i 5.
at a a — >, >i
>» U 4J 4J --^ —^
>i *J *J JD O O
-H u u .c a a.
O -H -H O. O O
-4 ja xi o ui W
J3 O O Ut T) TJ
x: a a >» jc j=
CX+O O JC+I 1 OOOOOO
-*-U»OTJ*TJ-*-OOO-*-O Of-iOO<-4O
4-t * O •—• *J -^ tJ • O — • *-• — ro JC U 10 Ck O 3
I*-OOI O 1 — O O 1 UOtO4JOOUQU(
JCO)jCoijCt-tcXaiCLotO.4-tcioi loiu
OO O (JO O QUO OOO4-tJ^-CJS^Q-Ci-O
OOOOOOOU
Ui
a.
*N U
E ^
v, IM
fragment '
to probe o
o o
Q.
M 14
ro 01
Ui —
ro * JC
0) C -4
10 "v
IM * TJ
3 • 4J
~* W 00 3
rO 10 O
— — u
0) 01
Ul Ui
X - X »
• •
u

CONTACT



u
«. i— i
*. U)
•0 U
— u
4-t
Ul
•

-------
                                                         114



o
o
01 ao
m "rt.
«. *
•*-( 0)
« c
m 1
-H 3
TJ — C
ID -H -H
cc cx c
o





to t





at
*->
3
M
*-»
TJ
3 3
XI C
•-• O
r u

U.


J U i/l



O
o
n I
O r-4
0) CT
V fl)
4-1 C
 o


CLt


o
_length(atype_mol {nfrag, 1))
. (atype_mol (nfrag, 2) ) )
C CT
O C
X3 01
— t
TTJ'
in c
• O
o o o XI
o o i •*•
i i


c C c
O 0 O
O 0 O
o o o






f»4
CT
o
o o 1
O o CX
1 1 >iO
* * — *D
CT CT CT -H
C C 13 4J
	 C 01
O O XI *J
E e » i
11* *
o o to ot
O O C- -C






nfrag, 2))
i (atypejnol {nfrag, 3) J J
•-H iJ
f1"
0) r-4
0. 1
u c
n o
— a
*j +
o

TJ
c
p,
«
o
c
o
«





4-1
01
x:
cos (pl-t
«
•o
c
Q
1
^
CT
c
o
o
o






fN "at 
» ra
ra •«

— o
^7
>i * -^
1 E 1
a a~4









t-i
a
4J •
-~4 O
^* ao
"C
c a
™|ra
O £
.a u
ra ra
U 0







+ bond length (Ityp) )
^Bond.Theta.Phil)
— . »H
«-< 1
E -1
a -
>1 CN
«j i
^ ^
£ n
w l
c .
01 O
^H ra

o —
a ~->
E
in -a
• TJ
TJ -H







>ordlnates'
u
a
c

c

0>
t-1
«
C 0)
O 3:





r* u
^
00
«M
X
OI
03
fc
^"
t
C
01
cr
Ul
CT
c
tfl
01
V4
^
«
01
M



n\

C O
— o
o o
O i-l
"-" ^
0> 0
C 01
1 a
o *->
E at
CT
ot
0
£
C
0
o
*












o
E
Ll
0
0
u
ai






CT
(Q
mic_radius
2
4-> O.
TO >i
is1
O> (T)
c c:
1 -
C 4J
O — *
XI 0
—4
o> a
c o
-1 TJ
0 U
X) 01
ra tJ
u c:










to
a
>,
rl
O
4J

jj lj
U 01
01 TJ
x: a>
U)

a


u







CT
to

Li
(U
CT
C





O
r fragment from a fixed forma
>:
at 3
•-» O
3 -i
U -H
OJ O
~H "M
O
E vi
0)
flj
C -H
T3
T3 W
0
nj
01 E
-^ O
O 01
M x:
w
-H .-1
x: -^
H *M


U O
vo
CO
Ok
O)
in
CM

JJ
O
O
 M
 O
 O
 o
 ft)
•H
 O
 e



01
c

^
-^

» o
— 4J
01 M
01 "W
ac *H





VI
r
^. 4
*J CT
M «
--4 -H
i at c
— < c -^
— * — ^ in
* ^4 CT
CT * ^
01 T)
jj (0 C
Ul • — H
*M O Ll
—t • 4-» C
• at o>
T3 ^ x:
C • TJ *J
« 4J  ul 01 —
". TJ 4J x: E *-•
cr c M «j oi CT
Of « LI c • t
» • t» *~. i
^ -4 ^ *J O -^ <
,-« • u) 2 4-12
.. at — •-* «


(^ Of VI Of t CT * «-i 1
»CLl .4J»*X»rH *JW
ir-tv^Dui^^wiato ~H

M ^-«c — ui— -3:CTT) :
^0 ON-I^-M CV.
-4T) U — * -^4 -< OI»-«




O*
:-lfrst)
U)
4->
VI

i ai •"

o oj a>
= o c
-» *J ft) — —.
M a. u m
* L, a 3 —
3 «~i 3 »j *
U • O C VO
-t M — ^ 0)
-* *H iJ t~« iJ
E -» TJ Li -H ^
C 0) Ol Li
Oi > O 2
C
o
o

o
•x
•x
AJ
n
u
(4
Li
*-i
XI
O
C
X.
4J
c
0)
4




3 3
U XI
01
--I O)
0 X3
* .-H
iy — •
Z 3
• *




L name (nfrag)
o
E
00
Ul







X)
01
c
•o
at
V





lear chain? —>'
c
vt
e —
0 0»
o w

Li O


E e
3 o
ra
- c
• ^~
& •
CJ ~
t-* TJ
•^ n





A
1
£
r»
TJ
0
U
M
e
o
.c
u
u
c
ra
3
0
O
TJ
V)
>i
W

E
0

*


— U
0 X
u 0
-< z
X -






«
c
-«



X

fS O
*. -
Tjr,
I
V 0
CC O





o
o
4J
o
CT
cr
0)
V
c
o


cr
V
^


OJ
c ot

o
u




rn
js and their numbers'
E
C
Ot
a
E
O
4-*
01
*j
C
01

3
°

*
0 Ot
*-» 4-*
— t
O tH
CT X



O
n

CM CX
x l
fM E
4 C
X *-T
-4 — (

X -*
CM *4

".S
X *-»
n 1
— E
* o
* «j 01
*- — c
at -^
4J 4-»
M 0
3: u



^,
*n
>ers in assendlng order'
ig, i) , i-l, natom_mol (nfrag:
c c
si
at
E a
o :s
4J fcJ

O «


O <*»
C 1
3 Li
CT «J
« 0) *
• H *
— • 3 —
Oi CX
*J C TJ
D oi
2 *• tX
*




LI trans configuration'
.fled.'
built in an aJ
otherwise spec!
₯
Jj i/i
tfl
~«. 0)

* 3
C *
* at •
-X -
U V 0>
fcJ .C *J
-( H -<
X - 3=





idrai angles? (n) •->'
is for rotation around
oi x:
-C a*
0 •
>,
4J n]
C M
nj k»
2 n

3 0)
0 -•

c
o

•"* TJ
6) "O
Li P

41
l/l

U
•*•
0
E <*
O 1
t-> 	
placement of £
x-y plane Phi (1

4-1 C
U -»
01

01 rtl — ,
Li O

c .-«

0)
c
o


cr
0)

^
O -H
- at
-< C 0)
lO Vl 4^
Q O




m
*->
C
Ot
. e
M 01
0 -H
i 01
U •+•
n) -H
dihedral angle
n about bond i/
o
cx-«

1 at
01 O
t/» Ll

,-4 \ *»
O 01 0)
O Li Li
03: 3:



o
m
different from trans?'
i+2 w/r 1-1.'
y dihedrals are
Sc
n


•M O
o a:

^ ^
ot ot
3= 3:










c
*fl
u
c
c

•o
n
0)











c
u
c.
c.

o
o





for non-trans dihedral '
M
Ot
Ot
CT
0)
TJ
C
at
~- CT
- C

^
* C
at n
» ~4
*.

X »






-------
                                                                           1  15
ngle, atomlc_radlus
natm_type
IB

o - a
a u >,
-H 4J
cia.°
con
~-4 ^ ^* 01
|>»« -H
C O -H
a: n u w
n





o A>

CT
r- «-* M
* * V|
0) d)
U U r-i
V|
£
rt
c
"V
•x.
4J
1
n>
ki
vi
O
4J

•a
a>
•o
oi
0)
c »
0) « r-i
.C 01 •-!
3~\ *
"a ~ e
o> s «.
»J M
«
a>
E
a)
=i
o
E
•^
\
*j
c
0)
1
OJ
kl
V|
TJ
0)
U
01
.-t
0)
kt
~j§
— «, r-l
o] r-i
\*
01 O
m 3: *
u
fragment name, only 8 char

J
0)

(Q
•H
19
2
X
V£>
T) -H




a
V
c
r-H
— •
(Q
* O
(VMM
06 — i -H
I •
4J cr
tn oi
ki •
•M .-*
— H -r-l
<-4 XI
1 0)
-1 C
CT •
»?
*J fl)
M *
kt *~~
VI 0
-»H •
• 0)
10 4-1

» ,— t
T-t
*• TJ
cr c
0) 13
—1 •
.. u
-r* c
O XI 4->
•H ^H VI
*4 -H
T3


»-4

n
ki
V|

O
CT.-H
0) 1
01 4J U)
C — «
C
••H
n)
CT
t9
CT
C
&
*J
TJ
01
O
kl
c
-c e
4J nj
C
w 2
•-I
iH »
4> «
CT o
4J •—
— 3:
c
0)

OD


*
M
kt
r-l 1
(4
O rH
O-TJ
C Vl
0) r-l
C
3
ki
4-*
w
Wi
0>
4-t
u
n
ki
to
£
U
00
c
0)

oj
o>
^

0)
e
o>
* +
« w

M
— *
*J
I/I
r-l

u
(A
Vl
^4
0) wx
M XI
U C
kl r-l
a u
a n
o c
nvert
Call
nt '//lineb(ifrst:ilst)//
Ition to '//mol_name(nfrag
,
vi X)

01 — 3 3
JC 19 O X)
» -< O
— . » O X>
•a — e --»
T3 4> > *-»
— ki 0
X » * tfl
.
C IB
E

IB O
C C -
V~\
0 TJ —
O -O V
IB
in mol (nfrag) -fnatm
agl)-natm
o ^
4-t >M
IB C

— O
•-> s
C •« J-l
C IB
\Or-T
e ***
CC C Q
0»
E
*^, — — * u
rH CN n
«. * * * «
,H ^- 1 ^-| -^
*.•>«*. 4J
CT CT CT O> i O O O O
»-> U O U XI
01 1 1 1

	 r-l (N «*> r-l CT
rH * - * CT VJ
O r-i r-t r-i oi tn c
o) CT o CT v« e *—
— C C C CT |iJ

eri § i « 2^*7
>» o o o -TH or o
O 01 ^i 01 O
O O X C Q
o c
^ 0
X.
% «
JC.
*-> *J
c
o> n
kt
vt O
kl
C 01
o ^
2
01
JC
5 T)
C
0>

•o *
g 4J
O vt
 * •
XI v at
ki U U
01 01 «9
-^ JC JC
•u u u
u
o
e formatted fragment file will
file name, ? -->
•-» w XI
CT -H at
c c

r~ •* —
— — »n
at ai —
-H ^ 19
ki ki 01
X 2 ct






1 0
*-> i
ki in


U CT
VI 0)
kl .
Vl ~*.
-4 —4
1 01
-« C
o •
0) T)
• C
VI •
ki -,
•M 0
••"I •
. 01
c •
• M
-* ^-1
• TJ *J
cr c in
0) ol ki
••at *•>
-H C O
O XI 4J C7 r-4
r^ o» v» a> i
-CM . jj
r-t -H V. O *-» VI
— i — -~ C ki ~+
vT "^ *^ *
_, ^ c — w
O 0 vi -,
T3 U —i -^


C
rt
CT
«0
CT
C
>i
ki
4->
U
3
a
c
*r4
C
at at
j^ ^-i
Ij o
vi Z
01 *
CT »0
• VO rt

Vl _l tM
w X CT TJ
vi c
-H at


•o
*«
V
u
T3
C
•N. 01
"^
— T3
4-1 at
v) C
r-i at
-i Q.
•• o
4-)
)')
lneb{ifri
d will b<
01 — * •-«
	 ^ O
» "s. 1
* *. «
'— 0) 4J
Ol ^ 0>
— I U* «
kl
X *. »
• «

it : list) , form-' formatted' , statu:
err-9 99, unit- 92, shared)
\ol name(nfrag)
»i •» C
—i C *
— at —
ai ex 01
— i * X*

IV) -*
at in CM h
r~* 0> ff* -
*-• O  »
^ ~4 ~ O ^
CT O CT *** »
kt | ki •» ~
ot vi e vi *o CT
in c C o c • 01
m — at 4J — o !-*
E at 4J c o vi £
Ot C -^ -* — | X -•
a jr-t » * E o o
a^ — o w E
3 O — . ui *-» — 1
E * « -TH ol * ki
O — — . - — C -O
tJO<9 * * *nO
3 *— tT » r-i  U
0> u » 0) rvi i —
E > » • av -* T)
*o c r>* at •—* 19
C (J CTS C TJ CM V
— -* 01 OC
4-> •-* TD •-* Ol O
Of 01 01 *M
> u a: -^
c •
o
a
E
V
*J
- E
-i at
C CT
— ' 01
O vi
e 3
0 0
0 E
U | 01
at 3
4-> 4-1
01 C
o
u


5, a)')
name (nfrag) , ' with' , natom mol (n
file'
 ui
                    o
             00   i-i


























CT
01
^
C
T3
"0
XI


ki
Q*
4)
C
3
O

O

vt


a
4J


>t O
X) *J

4J
C ki
O> 0)
E J=

oi O
kt
v» >,
XI
ki
01 0)
-^ M
3 3
O tJ
0) U
—* 3
O ki
Ul V)
CT u
C 01 C
-* £ a>
*J 4-» 3
VI tJ
X -* *J
at in
M X)
C E 3
w of E
XI 0

3 -H 01
kl C? (D
a> *-< —<
d n CT
c
01 0^
C C VI
U U CT
t3 Ot C
O -H --•
u a, -a
0) "O
VI ki rq
H r-< CM
U U O U
^*
r-t
0


»_,
O
o
u



O CT
O 01
t-« M
•"•"' Vl
-t 1
O ^-i
E 0

E'§
O
t-> *.
01 ~
C 0


— o
o o
0 t-i
^ "•*
0 *0
E E
c at
O w
e oj


CT
Vt
O
E
C
o

[2
d
o
•

o

















CT


V|
|
-H
i
c


t
o
E
c,1
a
u
e
* IB
~l C
0 1
E -«
10
o 1 E
Jst
O kt tJ
L* 0) O
CT 01
— « 0) ki
f» 4-t n
01 C JC
CC r-4 (J


— E
rH fl
CT C
C




o —
M £
~- C
JC -C
*-t C
CT C
C k
o> -c

y
o -
XI C
o

	 u
O 5
— T
CL k

0 C



^
ki
i
C
o

ej

U
•

U


-------
                                                   117

CM cn
0> 01
IA u)
CM CM
0 O-
(Q tq
C C
O O
6i6i
o o
O 0
u u
1 1
ts n
S "
ul (4
.* X.
rsi CN
c c
O 0
80
0
1 1
rnew (2
rnew (3

r-t 1
U
Ul

ecu
0 O «-l
o o a)
o o w
o cj ^
1 1 4
CM n •
2 3 2
W W £
CM CM D
t> 0 .
ecu
) -coor_mo
1 -coor_mo
otate (rne
•o -o ~H








O t-l
3 £
M «
CM
~4 C
C O
0 E
>. I
-Q 0
O
E 1
Rotate at
rnew(l








CM f>
3 3
01 U
CM CM
C C
ii
ij j
0 0
0 0
1 1
I X







^
0

c
r-t CM
ra 19
M K
O O
H1^'
O O
*J O
C 1
t-4 f«
M
o
0







CM n
•» «.
•r4 —4
el

C C
CM CM

O O
Ju1
O O t*>
o o -.
1 II 1
CM <*>
rH <-4
0 O O
M M Q
4-
t-4
O
E
4_>
c
CM
id
«H
^
o
E
M
O
O
O — *
T1 Jrf

0 C
^ 1
c
L4 rH
t-i O
rH 0 •*-
U 3
0
a
*

*
+
E
4-t
C ~-
CM —
O>TJ
(0 rH
M O
c
o *^.
E.c
O 0
0 C
U r4
t -r
•^
-»H
O
4J
n
c
CM
O
2
ntinue
or mol (nf]
0 0
u u
«
r-4
c
U 4J
c u
P C
cr c
01 O
ta u
—. o
c ^ -o •
-r* JC C O
O* O  o» ai e
ft) r( M fO <0
-4 £ U -M X
H JC » k *
C 0 JC 4-t * » *.
4J C "O O ^- -^ —
C -r-t 01 01 0
O C 4J r^ -» ^ -H
o Oi u x S 3:
o
u




c
•r-t
cu
0
-H
0
.c
u
a
o
•o
8
0 — .
.rH 1
-n U
*,*) Phin
e around
hin/180.0
CC CU
o

*~t CM
0 0
W CO
CM* CM"
O CT
H-l «4-l
C C
r-4 r-4
0 0
M M
O O
O O
0 0
t-l CM
0 0

00
c c
0 O
s"'J
0. O O
1 O O
— 1 1
Phin-P
rnew(l
rnew{2

n
0
w
CM
<«
M
C •
— 0
O V4
0 •
O 0
U IA
n »M
0 *

o *
c u
} -coor_mo
otate (met
o> — »








r>
o

0
r-4
C
o
>!
0
JQ
E
Rotate at








r-4 CM
0 0

0» O>
C C
O 0
t 1
0 0
o o
at ai
c c








rO
0)
(A
C?
C
o
o
0
t
rnew (3







rH CM
O O

~ C C
t-l M ^4
0 -H -4
E O O
E 1 |
O M U
4J O O
fl O O
c u u
-II
rH 0 0
o
Q







^
o

c

o
w1
0 ft
o •>
O *-4
1 I
0 0
W Q
^
•r*
o
E
nj
c
CM
0
m
•M
o
u1
0
0
o —
1
T-..X
* 0)
o c
E M
c
»ui 0
t*l —
r-t O «
•*r o •«"»
r-4 O —
U 3
0
a
*
„
^
-*•
o
E
c ~
CM *-
OT3
fl) r-4
M O
c
rH
o —
M a
O 0
o e
y M
i +
•^
1
fO
c
CT
ro
. c
0) r-4
3 O ,
c o
O O
U O
r-4

U
c
0
cr
0
w
0
4J
IA
IA

O
jQ
C
O
0
0 -0
Cont
Contin
Compute d

c
tJ
u
at
c
o
u
_ 0
je c o
at o CD
a •
w -a ~
-.CO
in =* •
E 0 -H
. M 1
HI M —
3 « 3
W 3 U

4J -C
-H -^ a*
(A *O

. 4-1 C
CM C 0
O> V E
etdih (nfr
*,*)' Cur
*,-)' fra
o — ~-
01 0
.
1

IA
0
X
C»»
C
rtj
3
O
c
0
•n
O
1 name (nf rag2)
< fragment location
E 01
* O

00
 
M
t-i
C
r-4
O
o
4-1
tq
c
M

C


O
E —
1 0


c ~

— . o
CM E
0 1

C *
— • c

IT
l-~*
E
O CM

* 0
C Q

ftj nj rg
t-i t-i H-l
c £ .5
r-4 rH ^^
O O O

1 1 t
Ol M M
a o o
> o o
4-t 0 0
t« i i
— r-l CN
* —4 — H
CM » »
tj> CM CM
(Q O O
M ffl CO
— C C

0 -4 ~4
E O 0
«'elel
a. u M
>. 0 0
4J O O
nj U (J



4*>
c?
c
o
E
1

0
o
u
1
n

»
CM
CT
fll
"c
•—

O
E13
U C
O -H
0 «J
u c
0
u







r-t


M
C
0


*M
c
CT
L<


m
u
Q

,— »


U

*J
c
at
c
o
01
M
at
2

•O
01

•o


01 *-»
M C
t-i 01
c e

rH fl]
E U
E *


C v*>*

o Oi
E £


C 3C

"O (A
<« O
O 4
4-t
CM
T3 1
O
O>
(A C
— t 4J
_^ 01
M
at «o
oi — i

J T3
C

_y




- O
-4 4J T3


WOC

* * *.

• • m
uT «T MD"

Of Ot 01
»-t t-t fcj


3: 3: i



01
4-t

(A
JM


at
IA



01
4J
%



^


T)

Ol
ae




at «
*j t-»

W IA
J* -r~*

CM CM


c c

r-l ^-«
ii
„'«'
a p.
>* s
*-» 4-t
I 1

at at
a a

4-* 4-t





01
«J

(A


CM
0>


c


o
E
1
at
a

4-1 •
? «T
-H —• '
at at
Q. 4-t

i-l U


•O
i
o
M
•a
o
at
«

c
u

5


w
o

E
o

4
>*
^
U

IA


O


^
•
4J
•o



n

v4

e
o
u V

V M
£ E


"O w
C —*
it n
fc


>o >n

V
u T>


X a




v w

-4 -4
« «


t-t r*
o  1
Ot -rH
C. £.
H o-

_length(itype)cn
i"te, lslte,Bond,Theta,Ph
C X
0 *
jO 01
-t- 4-1

r-| W

t* »
>, 01
4J 4-t
— IA
JC -H
4-1 -
O «N
c o
01 *
—4 M
I'M
•a c
O —4
JO E
	 4J

m T3
• T3
0 <
1
T3 —4

O rq
00 U






£
O
•o
0
TJ
T3

rtl
0
O
4-1
C
0
«M
C
c
C
C
C Translate sect
r-4 
O 0 O
E £ E
n fl *
c c c
01 01 «
M (A (A
r-» ^ ^-*


000
^,v.
o o o
u u u
r-4 CM **1
O Ot 01
IA W W
CM fM CM
M ^ V4
O 0 O
E E E
J Jw1
rnew(l) -coc
rnew(2) -coc
rnew (3) -coc







(4
M

a

00
t-l tJ
t~« tU
c c:
E •«
E'iJ
*-» —
C O
^T e
i «
-t a
\0 ,J
o
a

_
2
C
U
v ^
*
?
C
0
E
O
U
I
f
E
C
CM
Li
C
0 -t
Do 7 J-l
coor_mc
7 Continue
01
c

01
o


01
4J
o
T)
C
0
u
IA
E
O
t-t
T3
C
O
at
o
4
6 Continue
C Now find bond
Rkl-0.0
Rjnl-0.0
~.
ai
M
CM
•u
C

O
o
0
u
i
0>
(0
fM
fa
c
0
E
1
O
o
u

O » r-4
o i ad
W 00 .*
u a;
O
Q
-
0
IA
CM
C

o
o
o
u
1
at
.s
CM
ffl
C
o
o
o
u

u
^.
o.
o
CM
n)
c

o
E
1
O
O
u
01
E
CM
tO
C
o
o
o
o

I
1
I
~
01
IA
CM
o
m
c

0
o
0
o
1
at
E
CM
C
O
0
0
u

u
~
0)
w
CM
C?
a)
c

i,
o
o
o
1
at
(fl
J*
CM
0*
u
e
o
o
o
u

o
1
u

O>
w
rM
O>
C

0
0
8
1
0)
(A
E
CM
k-i
C
O
0
0
u

* 1
8 Continue


~



t-t
o — •
0 O
a> E
v. w
o o
U
fM 1
0 — 0
O rH *J-
* E -•
* (2 IA
rH <-4 «.
at j^ CM
act a
— « 14 •*-»
O M -'
O 4J O
c rt £

C
Theta- bone
• - acos
rnew(l) -coc

-------
                                                                              1 18
                                                  fl -r* CD —»
                                                       S£
O (4
E LI
m T3
O —
E -«
;••» ^
« *. -H
Cx, S
a> — fa
§r-4 M
01 01
MM <~
•M s-4 * O
c N n
u — o o — •
— CO 4) \O CM t-» CT
• -• E - - - a>
M> U C I I— '-43
— OJ |~. T-. J — C
-« Z E Q -* C
M x. O O O
3: » x. Q Q u
« •


*J
c
c
0
cfl
VI
Process fii
o
^< -^
rH
M
at -4
*J C?
O O M
C ~t
c — o
"I"1
Se'i
C X
• •••Ell
X C X C oi CM £
ns ~* fl -4 e X
E E E E 0
X X >» >» T3 Q
C
-4
U.
r-4 CM CM
oi o> o>
M M U
•*-* «M "4-1 O
— — — n
ft r-t r-4 CM
o o o x
0 0 O E
o o o a
C X C E
1 1 1 3 I
E E E 4J C
X >* >i C OJ
O M
U X
x£
t 1 rH
t-J CM -C
X * * 0
kl •. «. •+•
«M O 01 *fl C
O Of M M O
CD fM >*-* C C C t *~*
r-4 1C— 	 <0 *J M
X r-l— rHrHJ^ OOI
— ^4 o o 4-» *o .c
C U1OEE rH »W O
6 -r< | k4 M U « — .
X ,QEOOOOUO>i
J OOO*-4r- X >i »M
flj -4 —4 v4
ki (DO
>i MO
O
CM 0 - - - -
£ CM X t-l <-l (M CM
U M *. * * *
--4 JZ M -4 -4 -4 --»
-*- O (U * -. * *
~t t-«
C -»• 4J — CTCTCTO
-H C IM>*-II*-4'MOO
j; M 4J C ^ ^H — • ^ CM ^
U o» C C*— OOOOXX
• jc , M QJgOO*?OX>i
+ 1 — I U XX
-i 1 — i c CXCXCEE
-^ C*J wxcxCoJ^rEEEE^JCC
V 0)C w oi -H 01 — t E xx>i>iCoim
O OiEEEE 0 OMM
u OXX^^TJO ux>.
o c
M —4
cu u.
X
I
X
— 1
O — rH
0 flf M
1 -M C
m c *—
CO — -4
-H O
i! 6iJ
J3 E O
O 0
C *J U
c
U) . —
c •* i c
^ ro — • -n
.C 1 1
4j *


01

c

0
M

X


Q

OJ
c


3
O
^

i/l
e E
C V
-JS

O *-•


«x.
CT
(Q


^^
O


C
o
1
o











o
E

M
o
o
u

01
o
a;
a

rg



0
E
I
E
O
u
\ n
c


a>
0
4-<
C
*-*


o
E
Ol
C

,-«
O
E

00 I/)
* Of



U M
01 01
01



U r-»
OJ *
01 «
i: c
u O







.^
o
c
o

^4
*

0

1
c
o
-^


•
*
"
3
11
c
1
0
E
>v
^
%
fragment
Ul
u •
V O
0 X
Z n
« K
LI
o
£:
*J
0)
c
c
o
c
u
E
^ fM t"t
• • * i i — 3 e
OOO*4T-»» C*4
CXCr-4r-4M*-»ffl
*H OJ — t Q C E
X > >*Q Q U -0
M
O
"|
6
c
i
CM
Q
(nfrag, i, 1
o
j
o
o
u
X
Ol
X
X

r-t
-H
t>
c
o
o
o
u
c
1
c
§

CM
— 1
c
o
0
o
u
X
01
1
X
E

fN
—t
0
c
0
£
0
o
u
c
c c
>> c.
u
0 0
CO CD
c c
E U
X >!
1 1
c c:
X >
o
o
E
1
o
c
1

o
*-4
kl
c
o
s
o
0
_
c
X

CM
o
o
ki
C C 1
•-« £ U
!'" ir
O 0 O U O
-?iiA
c oi r: jz
-4 — «w U U
><  M 1
OJ OJ
01 O O

-------
                                          1 19
Ul
m
o
ac
                                                          o
                                                          H
RMIN)RMIN-RADl(I)

-S

2 — o
OC M •
1 — U) O
« ~4 3 1
M O Z X

.-1 2 H 2
2 U. O 3
OC M U CM
g
E-i
<
1
U
05
Ul
X
a*
VI
5
H
<
z
<

b4
Q

VI
3
M
9


x
H
o
z
M O
Qi Z
1 <

o ^? -^
CM ~^ 1
5O t-4
1J
• CM fl
U 1 --<
i— i O O
) + RINC
ZOR
RADl(I)
RADl(I)
UBMAX)ZUBMAX-ZUB(I)
M I -t- i e«l

Q ^- — — O O
rtj t-t <-H 1-1 • •
a DS ac oc — . o

-^ t ft | — — o
1-4 	 Cfl t-t Z
*"*•-» h-1 (-) 3 — M

*C OC 3 lJ Lu OC O
ETERMINED
Q
pr
O


O
a
o
w
Ul
N
cu
«
O
(N O
X 01 O
OC U) ,-t
+ ac "N,
Z fJ w
1-1 X Ul
Z * OS
2 o f)
1 01 U, ,-t
V) I U. 1
ui en O o
3 ac S §
X fJ (J *-i
U)
UJ
ac
M
w
u 2
w z
CC CO
O O O M O
1 1 1 1 03
O r-* o* E-» 1
.-4 < H H X Q
^ U. U U Z Ul
PHERES PERPENDICULAR
V)



<

§
t>H
H
Ul


O
Ul
t-<


J^

o\
o
oi O
Ul Z

•*• o
H a z
x i-» 3
U) DC K-«
Z U 1
Oil
1 O H 0
CO i-t X rt
H U Z O
LOWER Z BOUNDS OF AN
-SECTION CUTS THE AT<

Q
< »-»
X
ac H
Ul
Cu OC
cu UJ
D X
H
£ i
•-« O
oj rn
0 0
H E-t
O O
O O
Q Q
a. DC

• • f-« O
Ul Ul {_) •
»-4 O M O


Z Z • Z Ul
CQ CQ 1 JeT Z

t-a p-4 z n »-. H
u* C*4 z O oC O
Ul
v»
>*
m
E-«
3
U
VI
Ul
oC
U]
X
cu
VI
Q
oc
O
U
ac

Q
z
<
H
Z
O
u



r-t Z
-t- I
CQ —
< CO
H <
1 i-<
CQ —
H Z
»-* hH
01
O
J
UJ
n
.
CQ
H
3
O
Z
u] O
ac t-<
ui H
X O
CU Ul
VI VI

f-> H
ui x
f-i Ul
z
Q
I-H O
U. U.
U)
CO
t-(
r*
H
O
H
^J1
CM
4-)
O
O
•H
M
bi





O


n
y
frj


O
6
-1
lfact-1
f,ly)-char(lone+lchrl)
f +1, ly) -char (Ione+lchr2)
f , ly) -char(lone+lchr2)

u o o o o

_ -H X X -H X
1 1 -< -H 1-1

uoiiMwuk* c:
— 1 -^ T3 "O W— 1TJTJ-*
-> c u
o
u




m o
o
* o«
m -
i-t
u •
C -4
E -
0 —
19 O
U. .
< "
C ^
4) •*— « »
e — o
5 » 3
q in C
u. a u
. c
— — 0
« u
"* o
I/I >^ C M
(N t-l k4 — 4
•» o u ~»
" "" a "
« m x •*

C 	 — —
J= *. *. *. *.
^- ^- — -~ c
S 41 Q> V ^i
(fl kj «J *j TJ D
Z X 2 oc ac

0
Z

o
?
t
M
t
i
«.
0" o
U] b
V) b
OC (.
.as
CO ac C
t-1 < r
rsl « 3
5U
Ul 0
» V)
M ac £
2 * *
1-4 f-H C
O 2 c
» OC i
O X
< *. c
(-t •-< >
* ac
H >- L
O - t
- 2 .
51.
I- as i
o
u.
ct
t/i

Ul
Z
H
P
O
ft
c r>
UJ V)
fN r




TE ACCESSIBLE CONTACT SURFACE AREA FOR A GROUP 01


u
.-i

o
 U
F THE ATOM SPHERE WITH THE Z-SECTION) THAT IS NO'
OTHER ATOM CIRCLES IN THE SAME Z-SECTION.
o >•
z
Z rf
0 <
•-• o
H H
U
Ul ac
V) O
ac n
ui ac
H Ul
SH




u u
z
K-l
H
f-^



f-«

z
4-> ac
a u
:? ui
^ z
p
a
c
-*
U (J
ZUB(l), XR1(1), mil), ZR1(1), RADl(l)
), AREA(l), RSEC(l), ARCI(ICT,1), ARCF(ICT,1)

— ~
— u


CM OC


^1 ^1
3 5
a a.





(1), ZR(D
P, RH20, ACCESS (1), CONTACT (1)
ac .

fc ^


ac
X

J J
S 3
at ac





H
u
o"
*-t
Q
Z
ul
i"
z
a
t-i

»-«
^

z
<
OC
ul
o
Ul
z
•-t t-«
>v
o
0

o
-1
u.
1^1
CN
z
u
z
u


o"

<
K-t
oc
Ul
O
ul
H





U,
O
H
L>
«
Ul
ac
tsl
vt
Ul
X
oTo
O
OJ *
a
y«
Q
Z Q
t>» X*
O
Ul
cu Q
* oC
Z 0
-r

H
» X
Ul Ul
a. N

•J i-J
< <
Ul Ul
a: ct







—
. t-t
r-l CU
1 •
— o
O 
0)
XI
u





r-* O
1 Z 0
f-« O O
OHO
>-« •< f-t
1 Z 1
r+ 1 Z
H O »-*
U Z Z
« < 2








0


,-*
I
.-i

r*
O
a




u o
t-t
2
O
_}
g
OC
u.
V)
§
!-•
<
H
OC
0
V)
Q
Z
H
<
X
O
<
Ul
aC
0
u.
Q
Z
O
CO
CM
H
(/)
Ul
O
J CO

U M
32:
o
o
u 3:
*-l O
< t-»
u 3;




u u
»— t
Q

2
	
t-t

ac
N


—
CQ
H-J
N




U
IH
0
Z
<
CQ
_J
— o
u z
< <
U] OC r-«
D O 1
Z V) •-»
1—4
H ^ «
Z cJ
o < o
U O Q

f->







^3

ix ac
— IX
n « i
— "~j —»
t3 """•-<
< rH —
(-• O ^^
• < ac
»-> H X








«. —
^5 ^

oc ac
>< rs>
1 1
*-* *-t

*~t •-*
CC OC






-------
                                                                                             120
                                         Q
                                         s
                                               u.
                                               o
                                               €1
              3
              O
              a
              a      .
                *    Of
            •ft CN *N Q
            *• Q 04   *
                *    H
            O €-1 O U
            H U H M
              t-t      ~
            O   - O o
            o o o   •
                        Ul  Ul
      -• 2
U* M
> -0
U. CM fN
O H X
CC 2 CC
< U *
* M UJ
1— | k Ul
O ^ CC
CC H rJ
< 2 *
» O «-t
HUH
U » L>
*"!§ 1
CO - CN
< Nl X
H 2 Ul
* » Ou
X < *
£> UJ Ul
Q ce M
t-t < 0,

Ul
u
o
Q
ul
oc

J
d
u
<

cj"
UJ
ul
a.

o'

o
                                                                          OC
                                                                           I
i
                              U  Ul  X
                              a:  x  E-I

                              U     Q
                                  •  Z
                              Ul  UJ  <
                              o  z
                              z  <   ~.
                              UJ  J  M
                              OC  cu  U
                              uj     a:
                              u,  u]  a;
                              ul  s
                              DC  3  Z
                                 Ul  l-t
                              <
                                 U  Q
                              a:  x  u]
                              o  ei  a:
                              u.     o
                                 Z  H
                              Q  I-H  Ul
                              Z
                                 BO  Ul
                                 Ul  IH
                              U,  Z
                                 t-i  O
                              ul  <  c£
                              a,  t-.  <
         2 U q
         »H i~3 (-)
         o u o
         cu oC 2
         O t-H Ul
         2 U
         Ul    Ul
            OS X
         U CO H
         Ct X
                                                                                u]
                                                                            u.  z

                                                                            °3

                                                                            Z  Ul
                                                                            I-l  X
                                                                            O  H
*- M
< J
CC Ul
< a:


3 ^

u t/»
< v>
H Ul
2 O
O U
(J «£






Ul

2 2

H D
2 H Q
O UJ 2
g
5
<
U

CO
2
t-l
H
E>
O
QC
CQ
£
2
U*

Q
2
*
(J
<


M
Z
§H
Z
ffl O
Oj
Q Q
Ul Z
Jj«
Ul J
01 <
OC t-H
ui H
2 2
u.
o
CC

2


U
cC




2
•— t








a
a
a
0






X
oc
Ul
o
Ul
z




e*
u
o




SS
Ul
CC

a —
.-1

O Z
_ x
CN OC
Q ul

>-! U]
5£
to*
a.


X
0

>*



UJ
-
5
O*
•-]
<
r-(
*: *
u
QC CC
Ul <
O
Ul _]
z2
                                                              S
                                                                                        Ul Ul
                                                                                        «  o
                                                                                        o u

                                                                                        fN  I
                                                                                        Q •-<

                                                                                        73
                                                                                        U a*
                                                                                                    ul ul
                                                                                                   : o cc
                                                                                                    z ui
                                                                                                   ; UJ H
                                                                                                   I cc z
                                                                                                    ul ul
                                                                                UJ  u
                                                                              t  X  CC
                                                                              t  t-t  1-4
                                                                              i     u
                                                                              :  a
                                                                              :  z  x
                                                                                3  H
                                                                              i     o
                                                                              :  z  ca

                                                                              'So
                                                                              I  H  Z
                                                                              I  U  M
                                                                                Ul  Z
                                                                              I  Ul  1-4

                                                                              ;sg
                                                                              :  t  S
                                                                                                             — .    u
                                                                                                             X    J
                                                                                                             Q    U
                                                                                                                                                                                       —    ul x

                                                                                                                                                                                       S    g?
                                                                                                                                                                                       <       X
                                                                                                                   UJ Z
                                                                                                                   oa a:
                  m
                        CN  <
                              O O O O
                                                      O  O
                                                                  O  U  O
                                                                                                     U 
O CC
ac »~4
3O

< t*.
U 0
Z 2
O O
1— t •— «
H H
U U
Ul UJ
CO V)
ac
Z ul

2
M KH
UJ
U U.
U O
ac
M V)
U uj
Lu 0
O Z
 CC
z
ui ui <:
cc » ul
cc cc
=> X <
U ul
Q O
Ul z z
X i-l
H Z
• Z X
a CN e*
Ul
^-1 >i »
J en o
< 0
CJ Q 0
Ul O
Ul f-« .-«



CJ Q
3 Z Z
Q »-• O
UJ 1-.
"S^
* H X
O < Z
Ul <
r-J Ul
J X OC
i-« H O
U. U.
cC
Ul O Z
«
U. CO if
< (- <
u.
0
O
Z
Ul

U]
X
H

OC
O
2
O
H
(J
Ul


VI


H

Z
0
r
o
H
*£
<
x —
i
OC H
O U
U. t/1
SIBLE
EST(KN
ui ac
ul UJ
<«
<
ul
ac
<
Q
a?


OC
N
r*
U
<
f~l

o
<
H >
« fN
U. H
U Z
OC (J
< *-<

IH rH
fN fN U H
fN fN T CC Z
oo o -*y
H H H Z H *
UJ U 2
O O O X t-t >C
O O  —
H ui.-tuj.-iuj* »-4(-tui
**l ^t c/)a£OaC(J« O • • (J
•-> * a; x • >* • x UHuio
acx r>«->— -" — — — • — ui 2 z
•~* «-^ *•• L) *~* i/l »~t wi • HO ~^ "^ ' J
»-<(^j-*-rNrsiuJoicn£Xffl>-'a; • Z 2 »-l

Qz^aiiS«S«Si««t:
ES, CUTOFF)
ac
N
x

Q*

ac
O
rs)
o"
fN
X
aC

in
ul
ac
N

r-4
(_
(J
n
fN
X
U]
t-t
a*
Ul
»-»
a*




t-i
Q
z
Ul
cc
Q
5


at


U
H

O

H *.
. fN
U. H
U Z
aC U
*C *^

»-< »-H
O H
r^ ai 2
< U
O »t-t
H Z H *
Ul O 2
O X t-t >C
O H * •*
-, O^»
r-i « » 2
H H X »-t
L) O —
r^ *-< »-« UJ
•*• • • (J
^ H ui n
2; iJ .J o
— • • * ui
^ § § ,J
*•* Z Z t-3
2: a^ ii <
-^ — — (j
z u. u.
ES, CUTOFF)
1
i
aC
M
X

Q*

ac
O
rj
O*
fN
X
ac

IA
Ul
ac
M

^
t-t
o

X
Ul
t-«
a.
"
a.



Z
U* 1
t-4 ^—
Z
o —
ui x:
NSIDE THE OTHER?
t-4
>4
^
Ul
(-4
Ul
_)
li.
§
(J

Ul
2
o

VI


aC
o

H
U
U]
VJ
oc
Ul
2


Ul

u
ac
O
ul
X

o
Q






















O

O CN
— O O
2 U H

U ^ O
t*l 03 U .-1 rH
Ul *— — | |
CC VI O 0 ^ O —
1 CQ • O 2 OX
— < o o — o *—
X • • 0 2 fN 0 2 fN
u 5 S 7 f ~ v f N
Ul . . _ ^ o J* * 0
t^QCQX2HZXH
• l*.U,22OZZ>O
m^^iiUlu^iCO
:RSECTION
UM
2



O
U)
H
Z

O
CL,

ul
X
H


2

U<
*
U
(J)
cc
Ul
2


Ul
, j
u
ac
u
Ul

H
£

-------
                                                                                                121
                                                                                Z
                                                                                l-t


                                                                                z
                                                                                a.
                                                                                o
                                                                                                                                    3

                                                                                                                                    >
                                                                                                                                    X

                                                                                                                                    H
                                        H     *- •-»


                                        Kl     Ul  Z
                                        —     en  u
                                        U.     <  M
                                        O
                                        OS  -* —  »
                                                                                                                     Z

                                                                                                                     H
                                                                                H
                                                                                O
                                                                                O
                                                                                a:
AR
                                     O ^- rH  r-l  	
                                       . H  H  tt     Ul
                                       I U   *  *  «. M
                                       ; t-i  ~ «  —. cu
                                         O  O  >H  N  Ul H tO
                                       t oi  <  oC  z  n O oi
                                       ,  <  H  f^J  »-H  a. M cv)
                                    i»-ia:i-iaCMa:i-ia:^Hi-t(
                                                                                                                     u
                                                                                                                     z
                                                                                                                     o
ACC
                                                                                                                                     y  z
                                                                                                                                     ai  t-t
                                                                                                                                     <  O
                                                                                                                           So
                                                                                                                           < O
                                                                                                                                                                         ui  i  — "-* CM i: u* o  i  z —
                                                                                                                                                                         uzou.    —• u z z -— •-'

                                                                                                                                                                         HWHoiH«C Cu
TF-TF-PIEX2
-TF+PIEX2
« u.
fN H
X •«.
Ul O

Cu O

H f-'
O *-J

H I-<

U. U
o
H

0
O


H

ul
O



U.
H
o"
CC
Ul
Ul
Ul

O
oc
U

U
oc


Ul
H

U*
Ul
3:
H
Q
5
fX.
X
CM
H



Q

Ul ,

(/I
(X



Y

Z



. *-*
^
u.
U
OC

X
Ul
cu
1

Z


^
u,
u
cc
OL


^




Z
iC CN
I


Z 0


u.
H


z


sc
u.
u
cc
tf.


»~*

1

z

r-<
ac z

(J H
p; u
rf ct











Q
iii

-------
                                                                                             122
                  a
) -PAREA
z
"— r-«

Ul CM
cc H
f g^
z V "*
< H H
Ul Z
CC (J O
< M O
O
U)
x
H
Z
1-4
Z
D
O
U,
Ul
CC.
Ul
2
tn
Ul

u
3
Ul
Z
U]
O
Q
H
O U
Z »-<
tn u
"z
o
z o
o
El .
1 l-l
s£2
l-l CC <
— wl tt
z
u o
< oc Z
H O
CC VI
— CC <
m ui X
•H O
-^ E-i
f-> SJ
3 0
I u,
c
o
u
jC
-4
VI
g
01
3
0
o
D
O
Ul
»
z
Q3
O H
*J Ul
U) CC
o
<
t-l
z
•^
I

o
U)
Ul
z
g

*" JL §
•H *- H
O < O
O
r-
0

O
O

^
U]
O
t-t
r-t t-t Z ' —
« 1 « U.
o
w
o
H
O
O



(M Ul M
•^s. *1 —
— • <
•*• "0 W |
— — < »^
(H I •< "^ M
i n i u* »-


1-4

U
^ H O
*-* 1 t-t
H *^ O •o — .
— — H 	
»-* < 1 U O *o
— 1 U < < *
O
^>
o
H
O
O


H
Ul —
o 2.
•0 1 H >~3

— »-i »^ «:
t*4 — — 1


*^>

U
s V
o •->

i<
o
o
H
O
O


H
Ul
H •
*-*. t—t
*- <
< (A.




u —
~ — < ' O
»-» i-iHO — . ->t-«H
H H^O*o~   o
            CC
            <
•4
Ul
X
H

O


Z <
O U.

H «
O 0
Ul X
u* H

ert O
*-4 U)
X OC
H Ul
H
Z Z


3C U
O Z
H Ul
Z
M O

X H
H 0
Ul
OL *n
o
u. ui
X

UJ
DC ^
< -1

Ul
-J a:
CO O
»-* u.


Ul 0
O H
u <

01
Ul •-»
X X
H H
Q CC
3£
M
M
Ul
O
U


O
H
Z
CC
3
H
Ul
CC



i-i
H
U
Ul
(A

nl

V)
X
H

CC
o
u.

1

^
< *J

ac Z

a. u.

— Ul
z x
*•* H
5 «
CC <
< X
1 ul
— ID W
Z Z •-

5 z
CC O U.
< U i-i






































o


o
o

o
0

ca
H
—
U.
I-i


5
CC
<.


%
o
n
Cw
l-l
Z
o

V)

M
Ul
O
a


Q
Ul
j
i^
U,

UJ
CC

2
tn

3



u.
o
CC


Q
5


u <••
oc z
< <-•
ul Z
X ul
H a.
































"
o
l-l
0
o

u>
u,
0
(1
3
U



£2
<
^,
«
ul
z
J
M
H


_
vT


H
<

CC
ul
X
H
O

ac
O
Ut

VI
^
<
U

z
1-1

>•
l-l
z
o
o
ul
VI
3

VI
1-4


2

tn
s§

» u
O Ul
z in
o ^
O H
o z
o o
                                                                      z u o
                                                                      :£ M o
                                                                                                         |
                                                                                                      o
                                                                                                      o
o
r
Ul
CC

 * l/l
ui O
ui a.
                                                                                           O u.
                                                                                           < (J
                                                                                                            o
                                                                                                            (J
u
i-i

o
                                                                                                                              o
                                                                                                                              f-l
                                                                                                                            X O
                                                                                                                            •a? Ul
                                                                                                                                                     Z

                                                                                                                                                     Z

                                                                                                                                                     u.
                                                                                                                                                     u
                                                                                                                                                     CC
                                                                                                                                                     <
                           I  O u,
                          >-i Q 11  i
u. —
L) n
OC U
< (i a.
* i <
5?5^B
•-> ~ i-i M O
U. — U. l-l H
U U (J U 1
CC < CC CC *">
•C H •< *< *~i
RCF(JJ.N)

i
H
(N
0
l-i

O
U
*:
<

i
z
H
o
z
u.
OC
<

u.
l-l
TINUE
z
o
u
t-l
1
z"
I-*
u
CC
<
z

z

JC
X
s
1
^
^H
* »n

V o
•-H Q
O
o
1
z
u
CC
<
u
z
z
0

OVE THE PART]
ERSECTIONS
X H
Ul Z
CC i-i
 i
       uuuuo
                                                      o u u  o    o u o u

-------
                                                                                            123
V
JZ
- o
"*"^ C
o
o c
4>
•^ rt
.c •
C Li
O> rt  01 M
c -a -H
u rt
3 T3
O M C
S
M E
-H o -a
H rt rt
•-t
0
0
0
o
0 &
o rt

o •-•
o
Jj «.
rt —
C 0
— o
0 O
«-t — *
« el
c a.1
la
S n
0
H O
o n
6 0
c o
o
U at.
*


CT
U

rt
c
o
o
o
1
CN
rt
c
o
o
o
A

ro
•"
rt
c
o
0
0
1
n
CT
c
o
o
o
ja






rt


*
X
rt
X
O* rt rt rt
rt rt rt n)
1 around atom' , k
c
.a
rt
C
*
*•*. vX>
0 —


O O

rr? g °.
S x 5 o ^
til X U
* « * M O
J3 jQ J3 CT rt
O U U O -*-i









a a
O U O Ifl C
:H r-J X (j «
tM X >* « C C
111 u in to
\-*x^ ««• ccc
O U O Q O Q ffl O U
i*Xa+Wb*Xb+Wc*Xc
i'Ya+Wb'YbtHc'Yc
i"Za+Wb'Zb+Wc"Zc
3: X 3:
	
*- .*- J*-
CT CT 0
C C C
JJJ
000
(J O O
1 I H
t-4 CN m
-^ .— < -H
O4 0 0*
c c c

000
u u o
                                                                                                                                                                             rt >I-H at
                                                                                                                                                                                M rt x;
                                                                                                                                                                                — » Q. «
                                                                                                                                                                                c:    -a
                                                                                                                                                                              * a e c
                                                                                                                                                                             Ul
                                                                                                                                                                                       >1
                                                                                                                                     O    « «-i
                                                                                                                                     ai (rt     .C —
                                                                                                                                        — o

                                                                                                                                     0)   « x: QJ
                                                                                                                                     .X IU 3 u»
                                                                                                                                                                                         .C CM 4.
                                                                                                                                                                                         Du C C
                                                                                                                                                                                            cd o
                                                                                                                                      O rt  O rt
                                                                                                                                      U  ro •*-*  19
                                                                                                                                         n  tf)  ^
                                                                                                                                      w  (fl  C  la
                                                                                                                                     -rt Oj  TO Ckt
                                                                                                                                     J=     H
                                                                                                                                     t-t —  tJ —
                                                                                                                                                                                          tj CL i
                                                                                                                                                                                          o
                                                                                                                                                                                          ^ x:  i
                                                                                                                                                                                            ^j  t
                                                                                                                                                                                          .C O -
                                                                                                                                                                                          O d  )
                                                                                                                                                                                          —*    «
                                                                                                                                                                                          J= O
                                                                                                                                                                           OUOOOOUl
CM
 o
o
 M
h
 H
 O
 O
 O
 n)
H
 O
 e
      o
o o u
O h"

— OS?
t-t o  I
                                                           o
                                                        8"
                                                           o
                            O
                            H
                                                                          o
                                                                          l-t

                                                                          o
                         i O	
                           H r z
                              	
I O .


1 o

                                                                            *  —* I  H  •*• —
                                                                           i *:  o  sc  -'   '  "
                                                                            —  <  i  u.














o
1-1
1- ~ 0
1 rt 0\
~^ +
rt x: o
-*• — H
" < O
< (- 0

*J
0
c
rt

o
c

IH
*-»
V)

O
3
j-t
>
C
U

0)
c

tJ
3
0
LI
Q J3
a: 3
U l/)
(A
0)
O
E
41
ki
T3
C
rt
o
V)
rt
u
D
01
a
a
o
o>
c
£
V)
rt

(A
*j
Li
a»
>
c^
0
u
01
c
-H
3
o
Ll
(fl
£
o
<
01
o»
c
i-l
3
O
Lf
Ol
t_l
U
rt
x:
u

o
Ll
u
c
Q
0
o

Q
rt
a.
41
o
u
rt
c
o
c















•
c
n
T3
C
 u
•^ ^
o •
C — ^-1

01 01

S rt rt

»~* u u
J*
c
rt
a
oT
i
rt
u
n
<
*l
<
O> •-»
CQ ki
* J=

1 <
N O


-1 N

* »J
rt u

i _]
rt •-•
*j rt^
4-1 — *

rt — — i

at

0- E CT

C £ S




rt

•_»
rt M >_j


ii ^ rf
•-J »J O>
— "— -^«


o u rt
1 I O

— t ^-* 1
*J u <
*J *J O*
^ 3 3





^

HH
o>
c

-C u
H V)


J x;


»-« Li
i-t U
o
a
Le.ILittlz)

W
.c
o
l~t

TJ
C

rt

u
*j
!-}
1-4


•


»-(
H-t
>-H
<

jQ
t-^
\_f
jC
0
M
*-" j^
M C

tj m ai
i »-i «

	


c c
LI j^ u« Ol

W >-i ui c
Vt *j
O
O


















C
Ll
a
u T3
U C
« Ul

-------
                                                                                               124
                  o
             t CM  •

             11-1 a
                     a *j
                     *: a
                     i  ^c
U u
 • o

a i
                                 a
                                 «}
                                 <_>
                  »-» i-t tn  c
                                     c -^
                                     o 4-»
                                    O C
                                       o
                                       u
—
o
g1
aii
< re

-0
ft ~~
- 0)
0 6
£ C
C -H
£ E
U O
0) re
routine
mon/molf
3 0
:
0 0
0 0
X X
CO
.X
o
c

o
,BI
o
o
u
1
C">

CT
c
o
0
o
o
s
                                                                                                                             >  N
                                                                                                                           1  CT  CT
>, >, « -~—l    r-t
»fl U  CM CM  -
-*- +•  niXloiao^)
X X  M U  - M  - '•
fl ^3  —"— O \


X
                                                                                                                                                                 o

                                                                                                                                                           ^-1 ja ^»
                                                                                                                      ra  rt  fl J3 .a  .
                                                                                                                       - —  cr cr
                                                                                                                       i  i  tn  m  M t  M
                                                                                                                       CM CM  I  I  	 1-4 	
                                                                                                                       nt ^  tQ  £)  "*-* fO "•-*
to
00
Ok
in

o
CM
 O
O
                                                                                                                          n     •-«    CM
 O
M-l

 n
 u
 o
 a
H
O
OL
C
^
—
c


a.

*— *J M
rt w -<
-" U *J X
*d^1
.-. C *.^t
ri vi u U

— u •-> w

o o

tf a; »-« *j

) then
>en two vectors
41 3


CT u
*-• c o

»-« T3
C
•^
.12+Rnl (i)*Rn2(
rml+Rnl {i) »Rnl (
n o o
U tj » "O *-.

C U T3 C
0 O 0
c c: Q


CM £
c a. c
a;  uw


^ -H 1 n) | | | o M
OJ^MJ^X: x: «c

tJ C
ni U
0
c "c
0) OC *-

-> c

— w o o
-t H Ofi
t-« M
3
-. « c c — c
(N n U k4 CM W
— — 1 1 — • t
o o n ^ o fv
f-» • * (Nt~«CM*CM
— — . ^. c *-* c — c
*J  U 4J M CM M
0 — — • 0 « — •

*-cccc c^-ccc
OIOIO • 1 0 1 O 1
00000*000000

3

-ot (3) "rot (3)
(1) /Sqrt (Rotn)

c o
O . 1
O CM O *J
M TJ a c
CO O
u a u

natrlx

fl*
V
-
re

c

o

r-t rn" .— 0)
m o — u
3 c
O O O
Q Q U




1


0
Q




11^
*~> ^* C
< c
O 0
Q O




-i
• u
rH O
I o:

< O


o
oc
u
^
* '-
I 1 3
•*"» — . C
< c
o o
Q U



-------
                                                          125
a\
in
u
o

•H
H
M
O
n
o
U

-------
                                                    125
vo
CO
en
r-
H
in

o
4J
O
O
•rl
M
Cu







M
O
, N X
O O £l Q -Q
0 O • • *

f-* *-« M M X >i

— U III
. . — • H U L«
?1 8 f i1 ? "
U U 1 >i N X C
III 1
^ *M a x >. M *.
— ' -^ «fl U U U U


0 0

N
• C
N V



o —
• o
>t •
* X *J
r * • «9 M —4 i-»
O •** 1 1 T3 (J T3
> i »M a *j c ai c
> vi •* *fl ui ua oc ui




-------
126
type param. f mt
11
1
2
3
4
5
6
7
8
9
10
11
$

CSP3
CSP2
CARO
HARD
NSP3
OSP3
S
F
CL
BR
I


1.530
1.350
1.390
0.600
1.400
1.350
2.000
1.300
2.000
2.300
2.700


111.000
120.000
120.000
120.000
120.000
110.000
110.000
111.000
111.000
111.000
111.000

  2.000    100
  2.000    100
  1.700    100
  1.200    100
  1.700      0
  1.700      0
  1.900     80
  1.650     90
  1.900     90
  2.000     90
  2.100    100

-------
           127
$ type fragment. fmt
24
BENZENE
6
1 2
2 2
3 2
4 2
5 2
6 2
NAPHTHALEN
10
1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
ANTHRAC
14
1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2
PHENANTH
14
1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2
BEHZOPHE
14
1 2
2 2
3 2
4 2
5 2
6 2



0.00000
1.38000
2.07000
-0.69000
0.00000
1.38000


0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-2.76000
-2.07000
-0.69000


0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-4.14000
-4.83000
-4.14000
-2.76000


0.00000
1.36000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-2.76000
-4.14000
-4.83000
-4.14000


0.00000
1.38000
2.07000
-0.69000
0.00000
1.38000
0.00000
0.00000
  ,19512
  ,19512
  .39023
1.
1.
2.
2.39023
0.00000
0.00000
  19512
  .39023
  .19512
  .39023
  19511
2.39023
3.58534
3.58535
0.00000
0.00000
1.19512
2.39023
1.19512
2.39023
1.19511
3.58535
2.39023
3.58534
2.39023
3.58534
  .78046
 4.78048
 0.00000
 0.00000
 1.19512
 2.39023
 1.19512
 2.39023
 1.19511
 3.58535
 2.39023
 3.58534
 0.00000
 0.00000
 1.19511
 2.39023
 0.00000
 0.00000
 1.19512
 1.19512
 2.39023
 2.39023
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
            0.00000
             0.00000
             0.00000
             0.00000
             0.00000
             0.00000
             0.00000

-------
128
V V
8 7
9 2
10 2
11 2
12 2
13 2
14 2
DIPHENME
13
1 2
2 2
3 2
4 2
5 2
6 2
7 1
8 2
9 2
10 2
11 2
12 2
13 2
DIPHENAN
13
1 2
2 2
3 2
4 2
5 2
6 2
7 5
8 2
9 2
10 2
11 2
12 2
13 2 '
DIOXIN
14
1 2
2 2
3 2
4 2
5 2
6 2
7 6
8 2
9 2
10 2
11 2
12 2
13 2
14 6
TRIAZINE
6
1 2
2 5
3 2
4 5
5 2
6 5
N4BENZ
10
1 2
2 2
-•^.ubava
-2.67547
-4.17063
-2.79084
-2.18589
-4.83967
-4.12891
-2.95757


0.00000
1.38000
2.07000
-0.69000
0.00000
1.38000
-2.06979
-4.17063
-2.79084
-2.18589
-4.83967
-4.12891
-2.95757


0.00000
1.38000
2.07000
-0.69000
0.00000
1.38000
-2.06979
-4.17063
-2.79084
-2.18589
-4.83967
-4.12891
-2.95757


0.00000
1.38000
2.07000
-0.69000
0.00000
1.38000
-2.06979
-4.17063
-2.79084
-2.18589
-4.83967
-4.12891
-2.95757
-0.83918


0.00000
1.37500
2.06250
1.37500
0.00000
-0.68750


0.00000
1.38000
1. 21920
0. 14866
2.41993
2.39584
3.63618
3.62690
4.80979
4.78025


0.00000
0.00000
1.19512
1.19512
2.39023
2.39023
1.21920
2.41993
2.39584
3.63618
3.62690
4.80979
4.78025


0.00000
0.00000
1.19512
1.19512
2.39023
2.39023
1.21920
2.41993
2.39584
3.63618
3.62690
4.80979
4.78025


0.00000
0.00000
1.19512
1.19512
2.39023
2.39023
1.21920
2.41993
2.39584
3.63618
3.62690
4.80979
4.78025
3.73035


0.00000
0.00000
1.19079
2.38157
2.38157
1.19079


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000

-------
129
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
S4BENZ
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2


2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-4.14000
-4.83000
-4.14000
-2.76000
2.05500
3.42000
3.40500
4.09500


0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-2.76000
-2.07000
-0.69000
-4.11000
-2.74500
-4.78500
-4.09500
-2.07000
-0.67500
1. 19512
2. 39023
1.19512
2.39023
1. 19511
3.58535
2.39023
3.58534
2.39023
3.58534
4.78046
4.78046
-1. 16913
1. 19512
-1.16913
0.02599


0.00000
0.00000
1.19512
2.39023
1.19512
2.39023
1.19511
2.39023
3.58534
3.58535
2.39023
0.02598
1.22110
0.02598
-1.14316
-1.16913
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
T4BENZ
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-4.14000
-4.83000
-4.14000
-2.76000
-4.81500
-2.74500
-4.14000

0.00000
0.00000
-.1.19512
2.39023
1.19512
2.39023
1.19511
3.58535
2.39023
3.58534
2.39023
3.58534
4.78046
4.78046
1.22109
0.02598
0.05196
C4BENZ
18
1
2
3
4
5
6
7
8
9
10
11

2
2
2
2
2
2
2
2
2
2
2

0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-4.14000

0.00000
0.00000
1.19512
2.39023
1.19512
2.39023
1.19511
3.58535
2.39023
3.58534
2.39023

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
. 0.00000

-------
                                  130
iZ Z
13 2
14 2
15 2
16 2
17 2
18 2
CHRYSENE
18
1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
PYRIDINE
6
1 5
2 2
3 2
4 2
5 2
6 2
IMIDAZOL
5
1 2
2 2
3 5
4 2
5 5
PYRROLE
5
1 2
2 2
3 2
4 2
5 5
INDOLE
9
1 2
2 2
3 2
4 2
5 2
6 5
7 2
8 2
9 2
ACID
3
1 2
2 6
3 6
-4 . 83000
-4. 14000
-2.76000
3.42000
2.05500
4.09500
3.40500


0.00000
1.38000
2.07000
1.38000
-0.69000
0.00000
-2.07000
-0.69000
-2.76000
-2.07000
-2.76000
-4.14000
-4.83000
-4.14000
3.42000
2.05500
4.09500
3.40500


0.00000
1.37500
2.05000
1.37500
0.02500
-0.65000


0.36674
1.20085
0.33166
-0.95564
-0.94361

0.36674
1.20085
0.33166
-0.95564
-0.94361

-1.53762
-0.21879
-0.28479
0.97047
-2.35104
-1.54495
0.81957
2.11023
2.03692


0.00000
1.09102
-1.09102
3.58534
4.78046
4.78046
1.19512
3.55936
2.36426
3.55936


0.00000
0.00000
1.19512
2.39023
1.19512
2.39023
1.19511
3.58535
2.39023
3.58534
0.00000
0.00000
1.19511
2.39023
1.19512
3.55936
2.36426
3.55936


0.00000
0.00000
1.16913
2.33827
2.33827
1.16913


1.06526
-0.01815
-1.05777
0.66545
-0.65479

1.06526
-0.01815
-1.05777
0.66545
-0.65479

1.09831
0.73748
-0.61601
1.42322
-0.01833
-1.06399
-1.42878
0.63072
-0.76262


0.37863
-0.18932
-0.18932
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


0.00000
0.00000
0.00000
AMIDE

-------
                                   131
 3
 1    2
 2    6
 3    5
KETONE
 3
 1    1
 2    6
 3    1
ISOPROPY
 3
 1    1
 2    1
 3    1
NITRO
 3
 1    5
 2    6
 3    6
SULFATE
 4
-0.04283
-1.09284
 1.13568
 0.00000
 1.09102
 1.22476
 0.00000
-1.22476
 1.22476
 0.00000
 1.09102
-1.09102
            0.00000
           -0.96361
           -0.96361
           -0.96361
 0.41902
-0.22159
-0.19743
 0.60013
-0.56795
-0.90020
 0.60013
-0.30007
-0.30007
 0.37863
-0.18932
-0.18932
             0.00000
             1.37618
            -1.37618
             0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
             0.00000
             0.00000
             0.00000
             1.37618

-------
-------
                                                                                  116
                       -~ 6
                       j< O
     —« 4» 4J
     —' 4J C
     01 -H Ot
     O, * E
     >,   u


     Wi* •?
             O ~H

             O 13
                    . 4-1  *~* *-» C
                             C — •

                             O

                             U T3
ibine (nf rag, nf ragl)
o
u
01
c
-H
3
Subro





ines two existing fragments
/ mol name (100), natom_mol (100) , coor_mol (100, 4
e 4
O M

to o
C £
3 O
0 i
O
W U

JZ


(j O U
>
1
•1
4
1
•t
)
i
>
r
>
3
•4
•1
9
^
i
^
j
0
O
^i
coor
0)





mol, atype mol, nmol_frag
l_name
atom_type (20) , bond_length (20) , bond_angle (20) ,
avv/tml f raHlne/Oni. hv/rtr nnhnhl rl fV f 901 - natm t.VO
§6 VI
,« -I • * —
•o -c ki ja LI ki T)
C 4) — * 0» 0» -^
o d > rt  c x: 41 x: x: o)
cc M o w o u ce
to

a,

o
nfragl
agment ' //mol_name (nfragl) //
d to fragment '//mol name (nfrag)
at is new fragment name, only 8 characters? *••>
lineb
1) .eq.' ' .and.ifrst.eq. (i-1)) ifrst^l
< -,«,4 -1 1 „•> I*. n\ ->r*^ 11naK/<>4\ an ' ' * tlet-^t
O» * *M -O 2 — -* <
« —* T3 * —•
IM •*— rt —. « r- O) (
C » ^ 0) « — ' * C *
C k| kl 41 *M r-* O
M 2«.*2o:-t—i-0
* •


o
U (J rH
ifrst-1
st) then
No name read, trying again'
t) .gt. 8) then
Name greater than 8 characters, truncated.'
case
neb (if rst: list) , ilst-lfrst)
- O -**.* kl » + kl -H
. — IM — . 4J 4) —
n 4>io>-<-<'i * LI 0.3

o >»-» ^^ •*_» C*M coini
O^i-^^i 0)>-l 0)>U

o
u

^ o
ir fragment ' //lineb (ifrst:ilst) //
t by combining ' //mol_name (nfrag) //
X 3 3

* Q A
2 * *





lame (nfraall
^
p
^
c





vo
CO
t>
iH

at


o
t-t


CM

JJ
 o
O
 M
 hi
 M
 o
* -^

                 £2
         a: -. -,  ^
4J T3 '


ki  41












to
3
£

O
U

3
c
kl
o
4-1
•o
c
n »
0) *-
E ™
c -
X
&~.
E x"
O «•
i« r*i


C X
LI
ki v
3 *
x"
» iT)

* «
^ «0 *0
0 01 Of
4J 4J 4-»

O ki Li
022

^
a
4-1
1
£
4-1
c
^
•rt
i.


—
—
£
4-)
|
£
O
4-» 01
« 3
£
C
0

(*-
TJ
41
TJ
tJ
O
s
E
0
a
«-i
o

k*
Jj a>
i a
•^ *+
* o
	 E
• * 4J
u> tn c
01 O>
4J TO 4J

ki 41 M
2 « -•

o
o
a>
"N.
0
«-<
1
41 M
ci o
i *•*
41 01
4-> a

tn w
-^ -ft
t-T 41
fl» t> —
*-i 4 •
C I-*
— -a i
-H C —
o o tn
G "? 8
4) •« rt
>i a* — »
4-> J^ X:

pel) +bond length (itypek;
, jsite,)csite, 1 site, Bond,
>i V
4-J 4->
-< — 4
— w
,c -^


C CT
•~* 2
T) C
O <~4
S E

* *0
m -a
• T3
T3 —i C

O fl 4-1
m o c
o
u
E
O
*
w
c
T3
4)
U
»
"J
E
O
X

X.
•
vo
41
iJ
4t Li
w 2
C*
ki
C
o
£
E
O
*J

t
E O

* ki
C *M
c
• ~*
e i
e
T) O
rQ 4-»
ct c
«
kl
c
o
-&'
rt >,
I O 4J
nj n)


C —«

£ «
E*1"
O cC
*J —
ra ^-*
C O
^£|
ii&


— <

>M X
t *
O —
4)
ffl Li
0 2





O


£
0
£ E

§3

C 1
1 -H
O
£ ^O
« 0
c a
•9
*<
O
E
X.
•N,
4J
C
41
&
4
ki
O
4>
U
JS
a
V
ki

^3 4)
O — «
4J Jfl
£
— » O -^
• 4J •
•»(U »

4-» — < T3
•^<-4l
k! 41
2 « QC

41
4->
Jt
o
*0
M

c
,^
o
E
fti
a

rtj ».
X VO
41 41
a 4->

4J L|
~+ 2

E
4>
x:
4J
C
3
O
0
•o
4J
£
o QD
u c
ffl -<

41 —.
c «
w 2
— « <9 O
O — r-»
&«-•?

X
O T3 r-
Z 01
V O
* QC 0

O
O
0»
o-
4)
41
C
Li
0
»


•
41

..
v~ *

41
C 41
— i 3
«•"! C
^ C
0
u

3
kl


O
*J
n)


C
4)
ki
kl
3
O
%

r* ".
r- M?
0 41

O U
OX

5
X

04


X
^
™
X
m

*^
SO
4)

ki
2

0)
a
J
c

^
^


~
^
4>
a
^
I
E1
0
<0 3
*— C

5

4)
4-*
O
» -H
4) 4-1
C 3
ki -^
O 4J
Vl (/)

ki D
41 •— * W
.Q 4>
3 >. o
^* ^
* 4-t

• * ^H
*o in J3
O 4~l
u "D n)
•--» 1J Q.
M a. g
X a o

                                                                                                                                                                 0)   ^~
                                                                                                                                                                 a   -H
                                                                                                                                                                 >,    41
                                                                                                                                                                 u    a
                                                                                                                                                                  a.    a
                                                                                                                                                                  x    a
                                                                                                                                                                  ij    >.
                                                                                                                                                                 —    —  0) I
-------
                                                                                            98
      MI-IM    X *> X  X X
                        -4-  HT  +    « in :D .
                      I  Xt  rg  rg    « -« wi .
                      i  X  X  >*    *  «  *
      X
       I
      X
      X
  7*!|L          	
  IHI  if?izuuS;
      ryS!
  o
                                             i o tn

                                             : u x
                                                                        bJ

                                                                        S
                                                                         H



                                                                         $
                                                                         bl
                                                                         (-<
                                                                         §
                                                       gN|*
                                                       in  (_>  in vo
                                                       i   «.   u.
                                                       eg  rH  cu  -
                                                       X  U  X *
                                                       Z  — H O
                 i w en in  w «i  u
g
VI
X
— > rH
0 O — ' 03
m — w o eft
-— - m > o r-i
O f> .. » rH —-
m — o m *— Z *M
-0 in z Z 3 «M
M < -" > 3 2O
*- » Z * 2 O -C
H — > U rg O - -X
U O tn Z «. 00 U
«< *n u > « U -H
. - a « Oj o «t; VH
^- <*) t-H TH Z O t-3 »0
O ~— * Z " *"« U.SC
-* m W — . > H *-"
rH .. rH~ m t ». CQ f- C
a. r> u *. m z < H O o
.--1 -"< 0 Q IH H -E <
W U *in . * 3tf 00 W »-] -0
~-^<~ — CM tu z .-* u .. u«   »rHn.^U.UinU.OOZU.
in *.o *rnm ^cn — * *cg «. »o
z _ m — -* «.rHzuiCMtnxfi>-^O
— o — • m »-.! CM 2: *QXQ -.xoac
woo,— O— 3ootu3oZZ
3rHUZZr^ZZ^:ZZr-t - C
— QOOOU2\OUX
MOOOO'S.X. -S.*^ r-ttO*jO
E-«MI-H»-*t-H 23 .ZXHl-ltn
z>ininin«2ZOO22OZU «P»
O22Z2OOZZOOZ QQQQOU ou «UCH>
























o
m
0
H

O
O
— • 2
rH U
• :c
H H
o «
• 0 0
in • '
a a o
< U] U
2 • >
U o O
2 X i/l
rT[T>
r-( (-H


CU
o
a
t-H

Oj
o
o
z

tS
S
o
z

 -J X U.
O *-» B rH
in < o
x u X Q
u













m

fl O
ao x:

0 *
O 1 *
• • x a o
O O 1 (J rH
*~ — . rl (J 0
rH rH 	 O O
X > X CL. Cu






























O
o
^
u
o

u
o
^
2
r<
                                                                                                                                                                                     t-    2
                                                                                                                                                                                     —    Z
                                                                                                                                                                                     o
                                                                                                                                                                                     ul
tM
vo
CO
CM

Ot
CM
 o
o
 n>
CO
 M
 O
H
 o
 n
 o
a i

z.
              i X


              • O W)

   !W U X  X
   Z < I  I
 :  u] a£ X  x
 i  r < 2  £
 i  »-< x ^  ra
 I  O U v>  V)
                           rH ui to  z  ;

                    2 i

                       H-
                       X
                           rtS£
Sx
Z O  i
x Q  :
 —* U r-« --* «-H rN -t-  •+-  •* CJ Dj
 X 3 — rH —


i — r-. x >* x    tntnin
t »-» H  I  I  I  fN I  I  I
        < X- X    X  X  X
        < IM X O X  >"  X
        /i to tn Q t/>  tn  in
                                                                      UJ Du
                                                                      o a
                                                                      a: M
                                                               rH .ri
                                                               u x
                                                               rH VI
   — 2    u x
   CN O    O VI

   * H -.    m
   >-• < — U, CO
   X -H a: o «C
   V) > <    —
   — U > 2 H

   IQ «2S
   >* Q m H w

u tn < *— 5 'x.
U « O H U X*
2 x 2 a: a: X
< x < O oc in
•-» in H in o i
oc, *-• m  • o u
< —   > .. o  2

   ac > Q o oc  -»
• • < ui H O O
OC>Q incCL)U2
<   H    O    a:  U
>   W    O
                                                                                                           Q
                                                                                                                      z o
                                                                                                                       -o
                                                                                                                      fN r-t
                                                                                              o ~
                                                                                               * o
                                                                                              X O
                                                                                                                                  fN O
                                                                                                                                  o o
                                                                                                                                  U] rH
                                                                                                                                  oe —
                                                                                              z z
                                                                                              rH O
                                                                                              H rH
            X >* M


r7r7r7^izZU252r,
"- — -" I  ^OODXXfg i
x>«rgrHirtinin2t2:ZZrH
 III     lllrH^O"-
X>*fM»HX>-'Mf-.inv)

ig§o§§§§ii
inww)QUiwwL)x>*
     iii     —. -.
 2	rH ^



    X V> rg O X rg
     I   I   I  2 I  I

lOrHrHrnSSS
)  Q  X >* rg U tn w