October 1990
                      USER'S GUIDE TO CTDMPLUS:

            VOLUME 2. THE SCREENING MODE (CTSCREEN)
                                     by
                               Steven G. Perry*
                      Atmospheric Sciences Modeling Division
                            Air Resources Laboratory
                  National Oceanic and Atmospheric Administration
                        Research Triangle Park, NC 27711


                               Donna J. Burns
                         Computer Sciences Corporation
                        Research Triangle Park, NC 27709


                               Alan J. Cimorelli
                  Region III,  U.S. Environmental Protection Agency
                             Philadelphia, PA 19107
* On assignment to the Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency.
     ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
                  OFFICE OF RESEARCH AND DEVELOPMENT
                 U.S. ENVIRONMENTAL PROTECTION AGENCY
                    RESEARCH TRIANGLE PARK, NC 27711

-------
                                                                      October 1990
                      USER'S GUIDE TO CTDMPLUS:

            VOLUME 2. THE SCREENING MODE (CTSCREEN)
                                     by
                                Steven G. Perry*
                      Atmospheric Sciences Modeling Division
                            Air Resources Laboratory
                   National Oceanic and Atmospheric Administration
                         Research Triangle Park, NC 27711


                                Donna J. Burns
                          Computer Sciences Corporation
                         Research Triangle Park, NC 27709


                                Alan J. Cimorelli
                   Region III, U.S. Environmental Protection Agency
                             Philadelphia, PA 19107
' On assignment to the Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency.
     ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
                  OFFICE OF RESEARCH AND DEVELOPMENT
                 U.S. ENVIRONMENTAL PROTECTION AGENCY
                    RESEARCH TRIANGLE PARK, NC 27711

-------
                                           NOTICE
      The information in this document has been funded wholly or in part by the United States Environmen-
tal Protection Agency (EPA) under contract 68-02-7365 to Computer Sciences Corporation.  It has been
subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA
document.  Mention of trade names or commercial products does not constitute endorsement or recom-
mendation for use.

-------
                                         ABSTRACT
      The EPA's Technology-Transfer Workgroup  has  developed  a screening  version (denoted as
CTSCREEN) of the Complex Terrain Dispersion Model, CTDMPLUS.  CTSCREEN uses an array of prede-
termined meteorological conditions to model the user supplied source-terrain configuration. CTSCREEN
yields estimates  of maximum 1-h, 3-h, 24-h, and  annual  impacts that are conservative with respect to
CTDMPLUS estimates using a full year of on-site data.  In comparison with other complex terrain screening
models, CTSCREEN provides estimates that most consistently reflect those of CTDMPLUS.
                                             111

-------
                                   CONTENTS
Abstract	     iii
Figures	     vi
Tables	     vii
Acknowledgments	    viii

1.  INTRODUCTION	    1-1

2.  TECHNICAL DESCRIPTION	    2-1

   2.1  CTSCREEN METEOROLOGICAL INPUTS	    2-1
       2.1.1  CTSCREEN for Stable/Neutral Conditions	    2-1
       2.1.2  CTSCREEN for Unstable/Convective Conditions	    2-4
   2.2  MULTIPLE SOURCES AND TERRAIN FEATURES	    2-5
   2.3  AVERAGING BEYOND ONE HOUR	„	    2-6
   2.4  IMPLEMENTATION OF CTSCREEN	    2-7

3.  USER INSTRUCTIONS	    3-1

   3.1  INPUT DATA REQUIREMENTS	;	    3-1
       3.1.1  CTDM.INFile	    3-2
       3.1.2  TERRAIN File	    3-7
       3.1.3  RECEPTOR File	    3-7
       3.1.4  SURFACE and PROFILE Files	    3-7
   3.2  CTSCREEN OUTPUT FILES	   3-10
       3.2.1  CTDM.OUTFile	   3-10
       3.2.2  STCONCand UNCONC Files	   3-10
       3.2.3  SUMREFile	.'.	   3-10
   3.3  INSTRUCTIONS FOR EXECUTION OF CTSCREEN	   3-12
   3.4  CTSCREEN SUBROUTINE STRUCTURE	   3-12

4.  REFERENCES	    4-1

APPENDIX A COMPARISONS BETWEEN CTSCREEN AND OTHER
            REGULATORY MODELS	    A-l

APPENDIX B. TEST CASE FILES	    B-l

-------
                                        FIGURES
Number                                                                            Page
  2-1      CTDMPLUS(3-h HSH)/CTSCREEN(l-h) concentrations for
            the 22 different source-hill combinations	    2-8
  2-2      CTDMPLUS(24-hHSH)/CTSCREEN(l-h) concentrations for
            the 22 different source-hill combinations	    2-9
  2-3      CTDMPLUS(annual)/CTSCREEN(l-h) concentrations for
            the 22 different source-hill combinations	   2-10
  3-1      Sample CTDM.IN file for the following switch
            settings: iauto = 1, irange = 0, idiscr = 0	    3-5
  3-2      Sample CTDM.IN file for the following switch
            settings: iauto = 0, irange = 1, idiscr = 0	    3-5
  3-3      Sample CTDM.IN file for the following switch
            settings: iauto = 0, irange = 0, idiscr = 1 	    3-5
  3-4      Outline of the main program, CTSCREEN	   3-13
  3-5      Outline of the subroutine SEQSCR	;.   3-14
  3-6      Outline of the subroutine CONCALC	,	   3-17
  3-7      Outline of the subroutine NITCALC	   3-18
  3-8      Outline of the subroutine DAYSCR	   3-19
  A-l      Receptor locations for Piedmont Hill	   A-3
 . A-2      Receptor locations for Montour Ridge	   A-4
  A-3      Receptor locations for Cinder Cone Butte	   A-5
  A-4      Comparison of CTSCREEN with COMPLEX-I for
            the 3-h averaging time	   A-9
  A-5      Comparison of CTSCREEN with COMPLEX-I and VALLEY for
            the 24-h averaging time	  A-10
  A-6      Comparison of CTSCREEN with COMPLEX-I for
            the annual averaging time	  A-ll
  B-l      Test case CTDM.IN file	    B-l
  B-2      Test case TERRAIN file	    B-2
  B-3      Test case RECEPTOR file	    B-2
  B-4      SURFACE file used with CTSCREEN	    B-3
  B-5      PROFILE file used with CTSCREEN	    B-5
  B-6      Test case CTDM.OUTfile	   B-10
  B-7      Excerpts from the test case STCONC file	   B-15
  B-8      Excerpts from the test case UNCONC file	   B-16
  B-9      Test case SUMRE file	   B-18

                                            vi

-------
                                        TABLES
Number                                                                           Page
  2-1     Neutral/Stable Meteorological Matrix	    2-3
  2-2     Unstable/Convective Meteorological Matrix	    2-5
  3-1     Contents of the CTDM.IN File	    3-3
  3-2     Typical Surface Roughness Lengths (meters) for Land Use Types and Seasons	    3-6
  3-3     Format of the TERRAIN Input Data File	    3-8
  3-4     Format of the RECEPTOR Input Data File	    3-9
  3-5     Format of the STCONC and UNCONC Files	   3-11
  A-l     Characteristics of the Source-Hill Combinations Used in the Comparisons	    A-6
  A-2     Comparison of Maximum l-h,3-h,24-h, and Annual Estimates (in/is/m 3)
            from CTSCREEN, CTDMPLUS, COMPLEX-I, and VALLEY	    A-7
  A-3     Comparison of Normalized (by CTDMPLUS) Maximum 1-h, 3-h, 24-h, and Annual
            Estimates from CTSCREEN, COMPLEX-I, and VALLEY	    A-8
                                          Vll

-------
                                   ACKNOWLEDGEMENTS
      The authors would like to acknowledge the significant contributions to CTSCREEN by the other
members and former members of the EPA's Complex-Terrain-Modeling Technology-Transfer Workgroup:
Mark Garrison, Tom Casey, Roger Erode, Leon Sedefian, Russ Lee, Pat Hanrahan, Rob Wilson, Jon Pollack,
Joe Tikvart, and Jim Dicke.
                                             Vlll

-------
                                        SECTION 1

                                     INTRODUCTION
      The Complex Terrain Dispersion Model (CTDMPLUS) is a refined air quality model for use in all
atmospheric stabilities with sources located in or near complex topography.  Since the model accounts for
the three-dimensional nature of plume and terrain interaction, it requires detailed terrain and meteorologi-
cal data that are representative of the modeling domain- Although the terrain data may be readily obtained
from topographic maps and digitized for use in the CTDMPLUS, the required meteorological data may not
be as readily available.

      Since the meteorological input requirements of the CTDMPLUS can limit its application, the EPA's
Complex-Terrain-Modeling, Technology-Transfer Workgroup developed a methodology to use the advanced
techniques of CTDMPLUS in  situations where on-site  meteorological measurements are limited or
unavailable.  This approach uses CTDMPLUS in a "screening" mode-actual source and terrain characteris-
tics are modeled with an extensive array of predetermined meteorological conditions.

      This CTDMPLUS screening mode (CTSCREEN) serves several purposes in regulatory applications.
When meteorological data are unavailable, CTSCREEN can be used to  obtain conservative (safely above
those of refined models), yet realistic, impact estimates for particular sources. These estimates can be used
to determine the necessity and value of obtaining on-site data for refined modeling or can simply provide
conservative emission-limit estimates. In addition, CTSCREEN can be a valuable tool for designing meteo-
rological and pollutant monitoring programs.

      It is important to note that CTSCREEN and the refined model,  CTDMPLUS, are the same basic
model. The primary difference in their make-up is in the way in which CTSCREEN obtains the meteorolog-
ical conditions. For example, wind direction in CTSCREEN is  calculated based on the source-terrain-
dividing streamline geometry to ensure computation of the highest impacts that are likely to occur.  The
daytime mixed layer heights are based on  fractions of the terrain height.  Other meteorological variables or
parameters are chosen through a variety of possible combinations from a predetermined matrix of values.
                                              1-1

-------
      CTSCREEN yields maximum concentration estimates that are near to, yet on the conservative side of,
those that would result from the use of the CTDMPLUS with a full year of on-site meteorological data for
the same source-terrain configuration.  Several options are available to the CTSCREEN user so that impacts
from multiple sources and multiple terrain features can be obtained with both internally-computed and user-
specified wind directions. Model output includes estimates of maximum 1-h, 3-h, 24-h, and annual impacts.

      This document is intended as a supplemental guide to the CTDMPLUS user's guide, Volume 1 (Perry
et al. 1989).  Where not otherwise noted or instructed in this document, the user is to follow the guidance
contained in Volume 1.  This document provides descriptions of:  the meteorological matrices and the
internal computation of certain variables, user input options, special user instructions for CTSCREEN,
comparisons between the CTDMPLUS, CTSCREEN, COMPLEX I, and VALLEY models for a variety of
source-terrain geometries, and examples of model output.
                                             1-2

-------
                                        SECTION 2

                               TECHNICAL DESCRIPTION
      The CTSCREEN model has the same technical basis as the CTDMPLUS model as described by Perry
et al. (1989). No repetition of this information is needed here. Both models yield identical 1-h estimates for
the same meteorological conditions.  The differences are in the manner in which the models obtain the
meteorological inputs. The user supplies the terrain, source, and receptor information identically in both.
For input to CTDMPLUS, meteorological data are collected on site and provided by the user and through
the meteorological preprocessor.  With CTSCREEN, no user input is  required with reference to the
meteorology (however, the user is provided the option to select specific wind directions in addition to those
Selected by CTSCREEN).  Without the requirement for meteorological  data collection, CTSCREEN is
available for application on any source of pollutant for which CTDMPLUS is applicable.


2.1  CTSCREEN METEOROLOGICAL INPUTS

      CTDMPLUS was first developed as the CTDM model which was only applicable to stable and neutral
atmospheric conditions.  The model's applicability was later extended to include daytime convective
conditions.  Because of the distinction between the modeling methodologies used in the stable/neutral versus
the unstable/convective algorithms, the combinations of meteorological parameters required for each were
developed separately  for CTSCREEN.  To select the meteorology, the workgroup focused its efforts on
analyses of model sensitivities,  typical  distributions  of meteorological  conditions, and the-ranges  of
conditions associated with high concentrations at actual field monitoring sites.

2.1.1 CTSCREEN for Stable/Neutral Conditions

      CTSCREEN distinguishes between stable/neutral and convective conditions based on the value of the
Monin-Obukhov length, L , and the mixed layer height, z,.  If L is positive or if L < -100 (and z J L < 10)
then CTSCREEN assumes the plume is transported and diffused in a stable or neutral layer.  The matrix of
meteorological values selected to represent stable/neutral conditions is based on an analysis of:
                                             2-1

-------
(1) sensitivity tests of the model to the individual input variables,-  (2) ten months of meteorological
conditions observed at the Full Scale Plume Study Tracy site (Truppi 1986), and (3) a full year of data from
the Widow's Creek monitoring study (Egan et al. 1985).

      The  stable/neutral algorithms  of  CTSCREEN require the following meteorological variables to
compute concentrations:

      U         - wind speed at plume height (m/s)
      a „         -- standard deviation of the lateral wind speed (m/s)
      0 „         — standard deviation of the vertical wind speed (m/s)
      dQ / dz    - vertical potential temperature gradient (K/m)
      WD        — wind direction

      The remaining meteorological inputs such as mixing height, surface roughness, friction velocity, and
the Monin-Obukhov length need not be specified for the stable/neutral CTSCREEN since they only have a
bearing on  the vertical scaling of meteorological variables to plume height.  The nature of CTSCREEN
preempts the need for vertical scaling.  The variables are simply assumed constant with height and the
highest input level is set well above any stack or plume heights. Stack top temperature is defaulted to 293 K
for all cases.

      After examination of the  five variables (above) through sensitivity tests and analysis of field data, a
matrix of values (Table 2-1) was determined to adequately portray the conditions associated with "worst case"
impacts.

      This matrix  of meteorology (with exceptions)  results  in 96 combinations to pass through the
CTSCREEN model for each calculated or user-specified wind direction.

      Wind direction in CTSCREEN is determined in an automated way.  This  is necessary because the
geometry between the source and the fitted hill shape at the dividing streamline level, Hcrit, (Snyder et al.
1985) greatly influences  the optimum (yielding highest impacts) wind direction. This geometry changes as
each combination of meteorology yields  a different Hcrit, plume height, and cutoff hill height.  So, with
simple coding changes  to CTDMPLUS, CTSCREEN computes the optimum wind  direction  for each
combination of other meteorological variables in the matrix.  The following describes the method used for
single-source/single-terrain  cases.  The  extension to multiple-source/multiple-terrain  feature cases  is
discussed later.
                                               2-2

-------
                 TABLE 2-1. NEUTRAL/STABLE METEOROLOGICAL MATRIX
Variable
U (m/s)
o, (m/s)
ou (m/s)
dQ/dz (K/m)

1.0
0.3
0.08
0.01
Specified values
2.0 3.0 4.0 5.0
0.75
0.15 0.30 0.75
0.02 0.035
Exceptions:
(1) If U < 2 m/s and a „ =0.3 m/s, then include au = 0.04 m/s in the matrix.
(2) If au = 0.75 m/s and U > 3.0 m/s, then dQ / dzis limited to 0.01 K/m.
(3) If £7 > 4 m/s, then aB > 0.15 m/s.
(4) c.So.
      For each combination of conditions in the matrix above (96 cases) the model determines the plume
height and Merit (dividing streamline height) as in CTDMPLUS. Depending on the relationship between
the plume height and Hcrit, the wind direction is determined in one of three ways.

      1.  For Hplume < Hcrit: If the plume center is below Hcrit, the maximum concentration is controlled
by the WRAP calculation (see Perry et al. 1989 for a discussion of the WRAP and LIFT calculations, Hcrit,
and the stagnation streamline). The CTDMPLUS code has been modified to calculate the first guess wind
direction as the direction from the source to the center of the ellipse selected by the model for the WRAP
calculation.  With this WD, the model calculates the distance, d, between the source streamline and the
stagnation streamline. Minimizing d maximizes the surface concentration estimate.  If d is greater than 10 m,
the model calculates the d value for wind directions up to plus or minus 30° from the first guess direction.
The iterations  begin with increments of five degrees and focus eventually to  one degree.  The optimum
(minimum J) direction is then used to continue the computations for the selected meteorological conditions.

      2.  For Hplume > Hcrit and large [Hplume - Hcrit]: If the plume is well above Hcrit, then the
maximum concentration will be determined by a LIFT calculation since WRAP will have little impact. It is
the "cutoff hill" that influences the flow distortion in this case.  Therefore, the optimum wind direction is
                                              2-3

-------
selected as that along a line from the source to the center of the cutoff hill, determined automatically by the
model. Tests have shown that this produces the highest concentrations for a plume well above Hcrit. Com-
putations then continue with this wind direction.

      3. For Hplume > Hcrit, but small [Hplume - Hcrit]: When the plume height is above Hcrit but such
that a significant portion of the plume is still below Hcrit, then the receptors above Hcrit can receive
significant concentrations from LIFT and WRAP. For these particular cases, the model determines the wind
direction from both methods  1 and 2 and calculates the maximum concentration with each. The highest of
the maximum concentrations from these two approaches is saved. The [Hplume - Hcrit] value where both
LIFT and WRAP have significant impacts on the maximum concentrations depends on the vertical size of
the plume at the point of impaction. The value of [Hplume - Hcrit] below which method 3 is used has been
set to ozl 3 (where oz is calculated at the impaction point).

      Since the computations  that are made to determine the optimum wind direction are performed
outside  the receptor loop, this method of specifying wind direction produces conservative concentration
estimates with very little impact on the overall execution time for CTSCREEN.

2.1.2  CTSCREEN for Unstable/Convective Conditions

      This section describes the meteorological variables used with CTSCREEN that represent conditions
when convection is important ([ -100 < L < 0 or -  z, IL > 10]  and stack height < zt).  This set of values is
based on an analysis of:

      •   meteorology associated with highest observed concentrations during eleven months of daytime
         conditions (that meet the above criteria)  at the Westvaco site (Wackter and Londergan, 1984);
         meteorology associated with the highest CTDMPLUS predicted concentrations during the same
         daytime conditions at Westvaco; and
      •   sensitivity tests on CTDMPLUS for the important meteorological inputs to the model.

      The daytime (convective) algorithms of CTSCREEN require the following meteorological variables
to compute concentrations:

      U         -wind speed at half plume height  (m/s)
      zt         - mixing height  (m)
      u.         -- friction velocity  (m/s)
      L         - Monin-Obukhov length (m)
      dQ/dz     - potential temperature gradient above z, (K/m)
      WD        ~ wind direction at half plume height
      9         - ambient potential temperature at z, (K)
      T         - ambient temperature at stack height (K)

                                              2-4

-------
      Model-calculated wind direction is based on plume-hill geometry using method 2 of the stable/neutral
case and assuming Hcrit is zero.  Users also may specify discrete wind directions. Potential temperature at
the mixed  layer top and temperature at the stack top are both calculated internally  by the model..
CTSCREEN assumes a temperature of 293 K. at the first tower level and extrapolates vertically with an
assumed mixed layer dQ /d z = Q(dT/dz = -0.0098 K/m).

      This leaves five meteorological variables to include in the "daytime" matrix: U, zlt u* , L, and dQ/dz
(above z,). After examination of these five variables through sensitivity tests and analysis of field data, the
matrix of values in Table 2-2 was determined to adequately portray the convective conditions associated with
maximum impacts as estimated by CTDMPLUS.


             TABLE 2-2. UNSTABLE/CONVECTIVE METEOROLOGICAL MATRIX
Variable
• U (m/s)
u, (m/s)
L (m)
dQ/dz (K/m)
z,(m)


1.0
0.1
-10
0.030
0.5 h
(where
Specified values
2.0 4.0 6.0
0.3 0.5
- 50 - - 90

1.0 A 1.5/1
h = terrain height )
      This matrix yields 108 combinations (simulations with the model) for each wind direction.  When
added to the stable/neutral cases, the total number of simulations is 204 (per wind direction) for each sour-
ce/terrain combination. This requires a very reasonable execution time.


2.2 MULTIPLE SOURCES AND TERRAIN FEATURES

      The above methodology considers the case of a single source and single terrain feature.  Often, the
user of CTSCREEN is concerned about multiple sources and multiple terrain features.  A generic procedure,
designed to guarantee the determination of worst-case combined impacts from multiple sources,  would
                                              2-5

-------
require a prohibitively large number of simulations. Therefore, the workgroup decided that multi-source
screening procedures would be handled on a case-by-case basis with the following options made available to
the user to ensure effective implementation and provide adequate flexibility.

      •  The model automatically calculates the maximum impact  from any selected combination of the
         sources based on the optimum wind directions determined for each individual source. The user
         may designate sources as primary or secondary, optimum wind directions are determined only for
         these primary sources; however, all sources are included in the impacts estimates.
         The user also  has the option to have  CTSCREEN calculate maximum impacts with wind
         directions determined as the average of any pair of individual optimum wind directions. Often it
         is some wind direction between the optimum directions  that is associated with the maximum
         combined impacts of two or more sources.
         The user is also able to specify a range (and increment) of wind directions over which to calculate
         maximum impacts.  Often there is a large number of primary sources in one general area.  The
         specification of wind direction over a given range (with adequate resolution within the range) may
         be more appropriate for finding maximum combined impacts than would a large number of auto-
         matically determined wind directions.
         To allow  maximum flexibility, the user  is given the option to specify up  to 50 discrete wind
         directions.
         Any combination of the above.

      With the aid of these modeling options, the users are able to design the needed multi-source scenarios
that insure conservative application of CTSCREEN, yet  limit the total number of required simulations.
Users should be judicious in the selection of these options, since-for options  1 and 2-the number of
simulations increases greatly over the single-source / single-terrain case even when the number of primary
sources is  moderate. For example, with four primary sources and  two terrain features, the selection of
options 1 and 2 result in up to 4,100 simulations. For single-source cases (with one or more terrain features),
option two should be chosen.
23 AVERAGING BEYOND ONE HOUR

      Although CTSCREEN calculates maximum 1-h impacts at all receptor locations, it is designed to
provide conservative estimates of worst case 3-h and 24-h highest-second-high (HSH) and annual impacts. A
number of options for converting  1-h estimates to 3-h and 24-h HSH and annual estimates were considered
by the Technology-Transfer Workgroup, and it was decided that the only workable approach would be to use
simple scaling factors.  The workgroup used the results of a comparison study between CTSCREEN and
CTDMPLUS to select appropriate factors for conversion from 1-h to 3-h HSH, from 1-h to 24-h HSH, and
from 1-h to annual estimates of worst case impacts. The study included a wide variety of source and terrain
types and source/terrain configurations (described in Appendix A).

                                               2-6

-------
      Figure 2-1 displays the ratios of CTDMPLUS 3-h HSH values to CTSCREEN 1-h highest for the 22
scenarios (see Appendix A for a description of scenarios tested).  In  all but two cases (both involving
Montour Ridge, alongwind orientation), the ratio is less than 0.7.  The workgroup felt that the Montour
alongwind cases represent situations that are encountered infrequently. Therefore, without further analysis
of these extreme cases, the group selected an otherwise highly conservative conversion factor of 0.7 to
convert CTSCREEN 1-h maxima to 3-h HSH estimates.

      Similarly, Figure 2-2 shows the ratios of CTDMPLUS 24-h HSH to CTSCREEN 1-h maxima. Again,
with appropriate consideration to the Montour alongwind cases, the workgroup concluded that a conversion
factor of 0.15 would be sufficiently conservative.

      Finally, Figure 2-3 shows the ratios of CTDMPLUS annual estimates to CTSCREEN 1-h highest.
Based on these results, a conservative conversion factor of 0.03 was selected by the workgroup.

      These three fixed conversion factors are  built  into the CTDMPLUS code for cases  when the
CTSCREEN mode is selected. In this way, the l-h,3-h,24-h, and annual screening estimates appear in the
output file. Comparisons of CTSCREEN estimates (based on these factors) with those of the COMPLEX I
and VALLEY models are discussed in Appendix A.


2.4 IMPLEMENTATION OF CTSCREEN

      CTSCREEN should be  used under the same technical guidance as the CTDMPLUS. This document
should be  used in conjunction with the CTDMPLUS user's guide,  Volume 1 (Perry et al. 1989) and the
terrain preprocessor user's guide (Mills et al. 1987). CTSCREEN simply eliminates the need to prepare the
three meteorological input files SURFACE, PROFILE, and RAWIN.  All other input files should be
prepared by the user, in accordance with the CTDMPLUS user's manual Volume 1, based on actual source
and terrain characteristics. Since a number of parameters such as wind direction are calculated automatically
in CTSCREEN,  a special version of the CTDMPLUS code was developed  with options to run the
CTSCREEN mode.

      It is important to note that CTSCREEN model yields identical 1-h concentration estimates to that of
the refined CTDMPLUS for the same meteorological conditions. The conservative nature of CTSCREEN
results from the use of a carefully selected range of meteorological conditions and appropriate conversions
to 3-h HSH, 24-h HSH, and annual high estimates.
                                             2-7

-------
 UJ
 CC
 o
 CO

 O

 ^-\
 I
 CO
 rc
 v_s
 co
 r)
 _j
 a.
 2
 Q
 (-
 O
  1



0.9



0.8



0.7



0.6



0.5



0.4



0.3



0.2



0.1
                 I    I    I   !    I   I    I   I    I    I   I    I   I    I   I    I   I    I    I   I    I   I
                                                                          a:  j
                                                                          *.  S
                                                                          .§  Ou
                                                                            J  0  U.
                                                                            a:  -J  -J
                                                                            2  o  o
                                                                            CL  O  O
Figure 2-1.  CTDMPLUS(3-h HSH)/CTSCREEN(l-h) concentrations for the 22 different source-hill

            combinations. (See Table A-l for explanation of abscissa notation.)
                                                2-8

-------
CTDMPLUS(24hrHSH)/CTSCREEN(lhr)
i -
.y


On?
OA —
Ort
00
n i —
n







'
•
"""• 	
w ^ i i i i i i i i i i i i i i i i i i i i i i
Figure 2-2.   CTDMPLUS(24-h HSH)/CTSCREEN(l-h) concentrations for the 22 different source-hill
            combinations. (See Table A-l for explanation of abscissa notation.)
                                             2-9

-------


^^
u
-C
^^
UJ
LJ
oc:
o
h-
o
^»
^^
annua
\-/
(/)
o.
Q
H
O '



Ono
Of\Q
n 07
Or»A
00^
OH4
Om
Ono
Om






m
m


• „, .., _.
•
•
* • • * •

                0  "  0
                J  =J  I
                _J  I  -1
                                     D_  Q-  a.   2  .2   a.
                                                             a.  a.
                                                                                   a.  o  o
Figure 2-3.   CTDMPLUS(Annual)/CTSCREEN(l-h) concentrations for the 22 different source-hill


            combinations. (See Table A-l for explanation of abscissa notation.)
                                              2-10

-------
                                       SECTION 3

                                 USER  INSTRUCTIONS
      Contained within CTDMPLUS is a screening mode (CTSCREEN) that, when selected, requires no
meteorological input by the user.  CTSCREEN uses predetermined matrices of meteorology along with
actual source and terrain characteristics to estimate maximum impacts that are of particular interest for
planning and regulatory applications. The following subsections briefly describe the input and output files
associated with CTSCREEN and give instructions on the  use of the program.   A complete test case is
provided in Appendix B. Users should be familiar with the input requirements of CTDMPLUS (Perry et al.
1989) before attempting to use CTSCREEN. Note that the CTSCREEN mode cannot be selected using the
CTDMPLUS menu driver; however, the terrain preprocessor and receptor generator programs can be run
from the menu driver. The source code for CTSCREEN is available on the EPA's SCRAM bulletin board.


3.1  INPUT DATA REQUIREMENTS

      There are five input files required to run CTSCREEN. Three files are created by the user:
      •   a  file  containing program  switches, source  data, meteorological   tower  coordinates (see
         Section 3.1.1), and hill surface roughness lengths (CTDM.IN file);
      •   a terrain data file which has been created by the terrain preprocessor from user input digitized
         contour information (TERRAIN file);
         a file containing receptor names, locations, and the associated hill numbers (RECEPTOR file).
         This file is created by the user either by using a text editor or the RECGEN program.

The other two required files are meteorological files that are provided with CTSCREEN:
      •   a file containing surface meteorological data (SURFACE file);
         a file containing meteorological profile data (PROFILE file).

      These five input files are discussed in more detail in Sections 3.1.1 through 3.1.4.  The upper air file,
RAWIN, and the variable emissions file, EMISSION, are not used with CTSCREEN.
                                            3-1

-------
3.1.1 CTDMJNFile

      The input file (CTDM.IN)  contains program options, meteorological tower coordinates, source
information, and surface roughness lengths for each hill. There are several options in this file that pertain to
CTSCREEN only; they are ignored by CTDMPLUS.  This allows the user to use a CTDM.IN input file
created for use with CTSCREEN with the CTDMPLUS program as well. CTSCREEN can also be set,
through the use of model options, to operate in a non-screening mode (i.e., exactly as CTDMPLUS does). A
description of the inputs for the CTDM.IN file is given in Table 3-1. CTSCREEN will override the user
input for the following switches and set them as indicated below:

                             Switch name         Value
                             ICASE       =        0
                             ITOPN      =        0
                             ICONC      =        2
                             ISIGV       =        1
                             IWD        =        1
                             ISOR        =        0
                             •IUNSTA     =        0
                             IEMIS       =        0 (for all sources)

      Note that values for these parameters must still be included in the CTDM.IN file to prevent read
errors. Sample files are shown in Figures 3-1,  3-2,  3-3, and  B-l. Although the  meteorological data are
provided, the user must include a position (x,y,-z) of the meteorological tower base in the CTDM.IN file.
The tower should be  located in the vicinity of  the primary sources.   Point-source information in the
CTDM.IN file  includes stack name, horizontal and vertical coordinates, stack height and diameter at the
outlet, stack gas temperature, exit velocity, and emission rate (CTSCREEN  does  not allow variable
emissions). CTSCREEN recognizes primary and secondary sources by the ISCNDRY flag that is included
for each source. Sources that have this flag set to "1" are designated as secondary sources.  Secondary sources
are not used for determining wind directions, but do contribute to the total impact. CTSCREEN does not
require stacks to be colocated. However, a common  base elevation is calculated (as in CTDMPLUS) to be
the minimum of the tower base and the lowest stack base among those input. The lowest "critical elevation"
specified in the terrain preprocessor run for each hill must be at or below the common base elevation to
avoid a CTSCREEN runtime error.

      Surface roughness lengths for the local surface characteristics of each hill are given in the CTDM.IN
file. The values of these roughness lengths vary according to vegetative cover and season of the year.  See
Table 3-2 (Sheih et al. 1979) for guidance.
                                              3-2

-------
                       TABLE 3-1. CONTENTS OF THE CTDM.IN FILE
Line   Variable
group   name
Columns    Format
                              Description
      Title
 1-80
A80
80-character header
       ICASE


       ITOPN

       ICONC


       IMIX

       IWSI

       ISIGV

       IWD

       ICHIQ


       ISOR

       IUNSTA


       ISCRN




       IAUTO


       IRANGE

       IDISCR
                       Case study printout option.
                          0 = No, 1 = Stable hours only,
                          2 = Unstable hours only, 3 = All hours
                       Create a top 4 table at the end of the run.
                          0 = NO,  1 = YES
                       Concentration output file option.
                          0 = NO,  1 = BINARY, 2 - TEXT,
                          3 = TEXT with receptor information
                       0 = Use calculated mixing heights as first priority,
                          1 = Use observed mixing heights as first priority
                       Set minimum wind speed = 1.0 m/s.
                          0 = NO,  1 = YES
                       Assume 09 input if 0;  au input if 1
                       Scale wind direction with height.
                          0 = NO,  1 = YES
                       0 = output concentrations ( n g/m3)
                          1 = output  x / Q (v- s/m3)
                       Create a source contribution table at the end of run.
                          0 = NO,  1 = YES
                       0 = Model only stable hours
                          1 = Model unstable hours (RAWIN file required) and
                          stable hours
                       0 = Run in regular mode
                          1 = Run in screening mode, stable hours only
                          2 = Run in screening mode, unstable hours only
                          3 = Run in screening mode, stable and unstable hours

                       0 = Do not automate the selection of the wind directions
                          1 = Model determines the wind directions
                          2 = Use average wind directions
                       Use a user-specified range of wind directions.
                          0 = NO,  1 = YES
                       Use user-specified discrete wind directions.
                          0 = NO,  1 = YES
3





HORIZ
VERT
RLAT
RLON
TZONE
IPOL
*
*
*
*
*
*
*
*
*
*
*
*
Horizontal scale factor, converts user units
Vertical scale factor, converts user units to
Site latitude (degrees)
Site longitude (degrees)
Site time zone (hours behind GMT)
Pollutant Code (1-4)
to meters
meters




                                         (continued)
                                            3-3

-------
               TABLE 3-1. CONTENTS OF THE CTDM.IN FILE (CONCLUDED)
Line
group
4



5**











Variable
name
LABEL
XT
YT
ZT
SNAME
ISCNDRY
XS
YS
ZS
HS
DS
TS t
vs t
Qt
IQ

Columns
1-20
21-30
31-40
41-50
1-15
16
17-23
24-30
31-37
38-44
45-51
52-58
59-65
66-72
80

Format
A20
F10.0
F10.0
F10.0
A15
11
F7.0
F7.0
F7.0
F7.0
F7.0
F7.0
F7.0
F7.0
11

Description
Meteorological tower name
X-coordinate of tower (user horizontal units)
Y-coordinate of tower (user horizontal units)
Z-coordinate (user vertical units) of tower base
15 character source name
Secondary source. 0 = NO, 1 = YES
X-coordinate of source, (user horizontal units)
Y-coordinate of source (user horizontal units)
Source base elevation (user vertical units)
Stack height (m)
Stack diameter (m)
Stack gas temperature (K)
Stack gas exit velocity (m/s)
Emission rate (g/s)
Variable emission rate flag for this stack.
0 = constant, 1 = variable
      ENDS
              1-4
A4
'ENDS'-flag for end of source data
      ZOH
                                   Surface roughness length (m) for each hill in the order
                                      that the hills appear in the TERRAIN file.
8 ft   WDLOW      *
      WDUP        *
      WDINC
                                   Lower bound of the wind direction range
                                   Upper bound of the wind direction range
                                   Wind direction increment
NUMWD       *
DISCWD       *
                                         Number of discrete wind directions
                                         Values for discrete wind directions (up to 50)
     *  Free format.
    * *  One line per source; maximum of 40 sources (maximum 'number can be changed).
     f  These values are replaced if hourly emissions data are provided for this stack.
   tt  Included only if IRANGE = 1.
     $  Included only if IDISCR = 1.
                                            3-4

-------
Piedmont Hill; High-level Low-buoy;  Close Source
00211101011100
1.0, 0.3048,  39.5915, 89.4885,  6,  1
COMPOSITE U-V TOWER        0.0    1000.0    1000.0
High-Low Stack  0   0.0 1000.0 1000.0 150.00   2.00 400.00  10.00 100.00
ENDS
0.5
    Figure 3-1.  Sample CTDM.IN file for the following switch settings: iauto = 1, irange = 0, idiscr = 0.
Piedmont Hill; High-level  Low-buoy;  Close Source
00211101011010
1.0, 0.3048,  39.5915, 89.4885,  6.  1
COMPOSITE U-V TOWER        0.0    1000.0    1000.0
High-Low Stack  0   0.0 1000.0 1000.0  150.00   2.00 400.00  10.00 100.00
ENDS
0.5
330  360  5
    Figure 3-2. Sample CTDM.IN file for the following switch settings: iauto = 0, irange = 1, idiscr = 0.
Piedmont Hill;  High-level  Low-buoy; Close Source
00211101011001
1.0, 0.3048,  39.5915,  89.4885, 6, 1
COMPOSITE W-V TOWER       0.0     1000.0    1000.0
High-Low Stack  . 0   0.0 1000.0  1000.0  150.00   2.00 400.00  10.00  100.00
ENDS
0.5
5  330  335  340  345  350
    Figure 3-3.  Sample CTDM.IN file for the following switch settings: iauto = 0, irange = 0, idiscr = 1.
                                                   3-5

-------
             TABLE 3-2. TYPICAL SURFACE ROUGHNESS LENGTHS (METERS)
                           FOR LAND USE TYPES AND SEASONS
Season*
Land use type
1. Water (fresh water and sea
water)
2. Deciduous forest
3. Coniferous forest
4. Swamp
5. Cultivated land
6. Grassland
7. Urban
8. Desert shrubland
Spring
0.0001
1.00
1.30
0.20
0.03
0.05
1.00
0.30
Summer
0.0001
1.30
1.30
0.20
0.20
0.10
1.00
0.30
Autumn
0.0001
0.80
1.30
0.20
0.05
0.01
1.00
0.30
Winter
0.0001
0.50
1.30
0.05
0.01
0.001
1.00
0.15
*Definitions of seasons:

   Spring refers to periods when vegetation is emerging or partially green.  This is a transitional situation
   that applies for 1-2 months after the last killing frost in spring.

   Summer applies to the period when vegetation is lush and healthy, typical of midsummer, but also of
   other seasons in locations where frost is less common.

   Autumn refers to a period when freezing conditions are common, deciduous trees are leafless, crops are
   not yet planted or are already harvested (bare soil exposed), grass surfaces are brown, and no snow is
   present.

   Winter conditions apply for snow-covered surfaces and subfreezing temperatures.
                                             3-6

-------
      The wind direction used by CTSCREEN may be determined in a number of ways, the selection of
 which is controlled via  switches in the  CTDM.IN file (see Table 3-1 for  further descriptions of these
 switches). The methods for determining the wind direction are described below:

      (1)  the model automatically determines a set of wind directions based on the source-hill geometry, if
           the user selects a value of "1" for the iauto switch;
      (2)  in addition to the individual wind directions (method 1), the model determines the average of
           the directions from the sources to a particular hill, if the iauto switch is set equal to "2";
      (3)  a range of wind directions and an increment can be specified by the user, by selecting a value of
           "1" for the irange switch;
      (4)  up to 50 discrete wind directions can be specified by the user, by selecting a value of "1" for the
           idiscr switch; or
      (5)  any combination of the above.

      If the user selects method 3, the upper and lower limits  of the wind speed range and the increment are
 included in the CTDM.IN file. If the user selects method 4, then the discrete wind directions are specified in
 the CTDM.IN file.
3.1.2 TERRAIN File

      The terrain data file is created by the terrain preprocessor (see Mills et al. 1987) and is used by
CTS'CREEN without modification.  The format of this file is given in Table 3-3; an example is shown in
Figure B-2.
3.1.3 RECEPTOR File

      The RECEPTOR file contains receptor names, coordinates, and hill number. This file can be used
directly from the output of the receptor generator, RECGEN (see Section 4.1 in Perry et al. 1989) or can be
created using a text editor. The format of this file is shown in Table 3-4; an example is shown in Figure B-3.


3.1.4 SURFACE and PROFILE Files

      The  SURFACE  and  PROFILE  files are  provided  with  CTSCREEN (CTSCREEN.SFC and
CTSCREEN.PFL, respectively) and are used without modification.  These files are constructed so that the
matrices of meteorology described in Section 2.1 are used to run the model. The SURFACE file is shown in
Figure B-4. The PROFILE file is shown in Figure B-5.
                                              3-7

-------
              TABLE 3-3. FORMAT OF THE TERRAIN INPUT DATA FILE
                       (FROM THE TERRAIN PREPROCESSOR)
Record
group
Parameter
name Columns Format
Description
         NH f
         NZft
         HTP
         HNAME
 6-7        12           Hill identification number
9-10        12           Number of critical elevations
21-30       E10.4       Hill-top elevation (user units)
31-45       A15         Hill name
         ZH                 1-10        F10.3        Critical elevations (user units)
         XHW.YHW        11-30       2F10.3       x,y-coordinates of the ellipse centroid for
                                                    the critical elevation
         MAJORW         31-40       F10.3        Orientation (degrees) of the ellipse major
                                                    axis with respect to north
MAJAXW
MINAXW
3** ZH
L
MAJORL
EXPOMA
EXPOMI
SCALMA
SCALMI
41-60
1-10
10-30
31-40
41-60
61-80
2F10.3
F10.3
2E10.4
F10.3
2F10.3
2F10.3
Semi-major and semi-minor axes lengths
for the ellipse at the critical elevation
Critical elevation (must match critical
elevations in Record Group 2)
x,y-coordinates for the fitted cutoff hill
centroid
Orientation of the fitted cut off hill major
axis with respect to north (degrees)
Inverse polynominal exponent
parameters for the major and minor fitted
hill axes
Inverse polynominal length scale
parameters for the major and minor fitted
hill axes
  *  Record groups 1-3 are repeated for each hill.
 **  NZ records for group 2 are followed by NZ records for group 3.
  t  Maximum of 25 hills.
ft  Maximum of 21 hill contours.
                                         3-8

-------
                TABLE 3-4. FORMAT OF THE RECEPTOR INPUT DATA FILE*
Record
 group
Variable
 name
Columns
Format
Description
            RNAME


            XR



            YR



            ZR



            GE


            NH***
                1-16       A16         16-character receptor name


               2 1-30      F10.0        x-coordinate of receptor (user horizontal
                                        units)


               31-40      F10.0        y-coordinate of receptor (user horizontal
                                        units)


               41-50      F10.0        Height of receptor above local ground surface
                                        (user vertical units)


               51-60      F10.0        Ground-level elevation (user vertical units)


               61-65      15           Hill number of this receptor
  * No special line is required to signify the end of receptor input; this is signified by the end of the file.
 ** One line per receptor;  maximum of 400 receptors.
*** Hill number 0 is used to indicate flat terrain algorithm to be used for this receptor.
                                             3-9

-------
3.2 CTSCREEN OUTPUT FILES

3.2.1 CTDM.OUTFile

      CTSCREEN creates an output listing which contains a verification of input data from the CTDM.IN
file, a  line printer map showing  the relative locations of sources and receptors, and the information
contained in the TERRAIN file.   Note that the ICASE switch is set to  "0" by CTSCREEN so that a
case-study output listing cannot be created. A sample file is shown in Figure B-6.

3.2.2 STCONC and UNCONC Files

      CTSCREEN creates two text files of concentrations:  one for the simulations of stable (Monin-
Obukhov length, L > 0) conditions (STCONC), and one for the simulations of unstable/convective (L < 0)
conditions (UNCONC). Each file indicates the meteorology associated with all of the individual simulations
and the concentration at each receptor for each  simulation. The format of these files is given in Table 3-5
(both files have the same format). Sample STCONC and UNCONC files are shown in Figures B-7 and B-8,
respectively.

3.2.3 SUMREFile

      The SUMRE file lists the maximum concentration predicted for stable/neutral  conditions  and the
maximum predicted concentration for  unstable/convective conditions  as well as the meteorology  that
produced these concentrations. It gives the maximum overall value calculated for the 3-h and 24-h HSH and
annual high estimates for regulatory purposes. It also shows the maximum predicted concentration for each
receptor and the meteorology that produced that concentration. A sample file is shown in Figure B-9.
                                             3-10

-------
             TABLE 3-5. FORMAT OF THE STCONC AND UNCONC FILES
Line
group
1*

2**

3






4t
Columns
1-20
25-28
2-5
8-11
2-6
10-14
18-24
28-34
38-41
45-50
54-58
62-66
1-80
Format
A20
14
14
14
F5.1
F5.1
F7.2
F7.2
F6.3
F6.1
F5.1
F5.1
8F10.3
Description
Concentration units for this model run
Number of receptors
Simulation number
Number of receptor with maximum concentration
Wind direction used for this simulation
Wind speed used for this simulation
au used for this simulation
OM used for this simulation
Potential temperature gradient used for this simulation
Mixing height used for this simulation
u. used for this simulation
Monin-Obukhov length used for this simulation
Concentrations at each receptor
 * Appears only once, at the beginning of the file. .
** Each hour.
 t Eight values per line until receptor list is exhausted, each hour.
                                      3-11

-------
3.3 INSTRUCTIONS FOR EXECUTION OF CTSCREEN

      The size of the CTSCREEN executable file is approximately 550K bytes.  It is distributed in an
archived format and must be de-archived using the CRE8CTSC program. The CRE8CTSC program will
extract the CTSCREEN.EXE, CTSCREEN.SFC, CTSCREEN.PFL, and RUNCTSC.BAT from their
packed format and put them in the current directory.  In order to run CTSCREEN, the following steps
should be completed (the file naming convention from CTDMPLUS has been retained; see Table 5-2 in
Perry etal. 1989):

      •  Using a text editor, create the *.CIN file.
         Using the terrain preprocessor programs, create the *.HCO file.  (The terrain preprocessor
         programs can be run using the menu driver.)
      .  Using RECGEN or a text editor, create the *.RCT file. (RECGEN can be run using the menu
         driver.)
         At the DOS prompt, type RUNCTSC %1, where %1 is the name of the case to be run. The batch
         file will then copy %1.CIN to CTDM.IN, %1.HCO to TERRAIN, %1.RCT  to RECEPTOR,
         CTSCREEN.SFC to SURFACE, CTSCREEN.PFL to PROFILE, and execute  CTSCREEN.
         After the CTSCREEN  run has completed, the batch file  will copy STCONC to %1.STG,
         UNCONC to %1.UNC, and SUMRE to %1.SUM and delete the temporary files that it created.
         Note that the batch file assumes that all of the files are in the same directory as the batch file. The
        : batch file can be customized for your system using a text editor.

3.4 CTSCREEN SUBROUTINE STRUCTURE

      The subroutine structure of CTSCREEN is slightly different than that  of CTDMPLUS.  The main
program, CTSCREEN, calls several subroutines which read in much of the input data for a run. It then calls
SEQSCR which primarily determines the wind  direction used for a particular simulation. SEQSCR calls
CONCALC which determines whether a particular simulation is modeled as stable/neutral or unstable/con-
vective.  NITCALC and DAYSCR perform the calculations of the concentrations for stable/neutral and
unstable/convective conditions respectively.  Figure 3-4  outlines the  structure of the main program,
CTSCREEN.  Outlines of the structure of SEQSCR, CONCALC, NITCALC, and DAYSCR are given in
Figures 3-5,3-6,3-7, and 3-8 respectively.
                                          3-12

-------
CTSCREEN (MAIN)
 — initializations
 - Open: CTDM.IN, CTDM.OUT
  * Call PAGE
  * Call INPAR
  * Call INPTOW
  * Call INPSOR
 — set default values (iscreen > 0)
 - Open: EMISSION (iemis = 1)
 - Open RECEPTOR
  ' Call INPREC
 - Close RECEPTOR
 - Open TERRAIN
   Call INPTER
 — Close TERRAIN
 - Open SURFACE, PROFILE,
 — Open CONC (iscrn = 0)
 - Open STCONC, UNCONC, SUMRE (iscrn > 0)
 — Open RAWIN (iscrn = 0 and iunsta = 1)
   Call MAP
   Call SEQSCR
>— Stop
        Figure 3-4. Outline of the main program, CTSCREEN.
                       3-13

-------
SEQSCR
 — initializations
 — Hour Loop
       Call RDSFC [return if EOF is found]
       Call SUN
       Call PAGE (icase > 0)
       read PROFILE data (loop over MAXLEV)
       CalllNPEMS(iemis = 1)
       if ZQ, u*, ws, wd, sv, or sw is bad: skip to
       write hourly met data (icase > 0)
       zero concentration arrays
       Preliminary Loop on Hills
           HCRIT
           BULKFR
    — End Preliminary Loop on Hills
    — if iscrn = 0, call CONCALC; skip to	
    — if iauto = 0, skip to	
    — Loop over stacks (for wind direction determination)
           if secondary source skip to —   —   -—
           initialize variables for current source
           if L < 0 skip to	
           Call SRISE
           Call URISE
           Call SIGB
           Call PLAVG
           Call GETSW
           Call GETSV   '
           compute virtual travel time
           Loop over hills (for wind direction determination)
1
          I— if L > 0
              — calculate wind direction,
              — loop over Zj values,
                 ** Call CONCALC
                 ** Call WRITSCR
                    Figure 3-5.  Outline of the subroutine, SEQSCR.
                                    3-14

-------
          I— end ij.loop; skip to	
         if L < 0
          1— define WRAPIN geometry
          I— calculate wind direction (L > 0)
           ** Call WRAPIN
          [7-calculate az
            Call CONCALC
            * Call WRITSCR
   |— end hill loop	

\— end source loop —   —   —   —  —   —   —   —   —'

   [— if iauto = 1, skip to	
   — loop over wind directions (average of pairs of those calculated above)
         if L<0then
         |— loop over zj values
              * Call CONCALC
              * Call WRITSCR

          |— end z. loop; skip to —

      h~if L>0then
          ** Call CONCALC
          ** Call WRITSCR

   — end loop over wind directions
   — continue	
   — if irange = 0 skip to
   — loop over range of wind directions
r— if L<0then
       loop over Zj values
          [ —
   t
        ' Call CONCALC
       I** Call WRITSCR
    \— end Zj loop	
I—  ifL>Othen
     ** Call CONCALC
     ** Call WRITSCR
end loop over range of wind directions
continue	
            Figure 3-5. Outline of the subroutine, SEQSCR (continued).
                               3-15

-------
      if idiscr= 0 skip to-
    — loop over discreet wind directions
      1-
if L < 0 then
h-loop over z\ values
      r-
     ' CallCONCALC
     ' CallWRITSCR
|— endzj loop; skip to
if L > 0 then
 ** Call CONCALC
 ** Call WRITSCR
   |— end loop over discreet wind directions-
|— end hour loop (iscrn > 0)-
   — find maximum predicted concentration (iscrn = 0)

   — write maximum concentration (icase > 0)
   — fill Top N arrays
      Call TORN (iscrn = 0 and itopn = 1)
   r— set all concentrations to -999 if no calculation
      Call WRITIT (iscrn = 0 and iconc > 0)
      Call SOURCES (iscrn = 0 and isor« 1)
   h- print Top N table
— end hill loop (iscrn = 0)
   Call TORN (iscrn = 0 and itopn = 1)
1— Return
            Figure 3-5. Outline of the subroutine, SEQSCR (concluded).
                                 3-16

-------
CONCALC
    Loop on Sources
t
      • initialize variables for current source
    — if no emissions write source information and skip to
      ' CallGETWS
      ' CallSRISE
      ' CallURISE
    — If stack height is in convective layer and L < 0, DAYSCR: skip to
    - NITCALC
    end Loop on Sources
    if iscrn > 0 find max concentration this wind direction
    if iscrn > 0 find max concentration all simulations
    return
                    Figure 3-6. Outline of the subroutine, CONCALC.
                                     3-17

-------
SUBROUTINE NITCALC
      ' CallSIGB
      > CallPLAVG
      > CallGETSW
      * CallGETSV
      . rotate coordinate system
      - compute virtual source, virtual time
      . screen out hills upwind of source
      k CallPSRCE
      - Loop on Hills (do 270)
        _ if Hill # = 0 and no flat terrain receptors: skip to 270
        — if receptors are all upwind: skip to 270
         . ellipse geometry for WRAP
         * Call KLOSE
         ' Call XINTRP
         * Call MUNU
         - Call WRAP.IN
        _ write WRAP info, (icase > 0)
        _ geometry for LIFT
         * Call KLOSE
         * Call TERAX
         * Call GETWS (compute wind shear)
         * Call LIFTIN
        _ write LIFT info, (icase > 0)
        _ Loop on Receptors (do 260)
            - if receptor is not on current hill: skip to 260
            - initialize receptor
            - if hill = 0: I** FLAT
                      I— End Loop
            . set up LIFT
            • Call LIFT (receptor > He)
            . set up WRAP
            " Call MUNU
            * Call WRAP
            . store hourly concentration
       L_  End Loop on Receptors (260)
    \— End Loop on Hills (270)
 |— Return
              Figure 3-7. Outline of the subroutine, NITCALC.
                             3-18

-------
SUBROUTINE DAYSCR
  •  if plume height > mixing height, correct plume height to be .9 * mixing height
  '  Call GETWD (gets wind direction at 1/2 plume rise height)
  •  get rotation factors from wind direction
  '  Call GETWS (gets wind speed at 1/2 plume rise height)
  •  if iscrn > 0, set potential temperature gradient above z\ = 0.03
  '  Call DTHDZ (if iscrn = 0)
  '  CallPENFCT
  •  calculate source dependent variables
    if icase > 2, write report
    check hills to see if they have any downwind receptors
    CallPSRCE
    Loop on Hills (do 270)
b
    — if all receptors are upwind: skip to 270
    — set up coordinate system for hill
    r~ Loop on Receptors (do 260)
       get crosswind and downwind distances for receptor
       Call PSRCE
       if receptor is upwind: skip to 260
       rotate and translate receptor coordinates
       calculate transitional plume rise, if final rise > rise
       at receptor distance
       Call TRANPR
       get wind direction change over plume depth
       Call GETWD
       If hill # = 0
       |**  Call WFLAT: skip to 268
       If hill#>0
           Call WPDF
           calculate probabilities for all paths
       calculate crosswind-integrated concentration
       if icase > 2, write report
       calculate concentration (268)
       if icase > 2, write report

f— End Loop on Receptors (260)
End Loop on Hill (270)
Return

                 Figure 3-8.  Outline of the subroutine, DAYSCR.
                                     3-19
          L"

-------
                                        SECTION 4

                                       REFERENCES
Brode, R.W.  1989.  A comparison of design concentrations obtained from CTDMPLUS relative to the
      regulatory screening models RTDM-Default and COMPLEX I.  Internal report, U.S. Environmental
      Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC. 20 pp.

Egan, B.A., R.J. Paine, P.E. Flaherty, and I.E. Pleim. 1985.  Evaluation of COMPLEX I and RTDM using
      1979-1980 data from the TVA Widows  Creek Monitoring Network.  ERT Document PD523-400.
      Available from Hunton & Williams (UARG), Washington, D.C.

EPA, 1986. Guideline on air quality models (revised). EPA-450/2-78-027R, U.S. Environmental Protection
      Agency, Office of Air Quality Planning and Standards, Research  Triangle Park, NC.

Mills, M.T., R.J. Paine, E.M. Insley, and B.A. Egan. 1987. The Complex Terrain Dispersion Model (CTDM)
      terrain preprocessor system-user guide and program descriptions. EPA/600/8-88/003. U.S. Environ-
      mental Protection Agency, Atmospheric Sciences Research Laboratory, Research Triangle Park, NC.

Perry, S.G., D. Burns, and L. Adams. 1989. User's Guide to the Complex Terrain Dispersion Model Plus
      Algorithms  for Unstable Situations (CTDMPLUS).  Volume 1.  EPA/600/8-89/041, U.S. Environ-
      mental Protection Agency, Research Triangle Park, NC.

Sheih, C.M., M.L. Wesely, and B.B. Hicks. 1979.  Estimated dry deposition  velocities of sulfur over the
      eastern United States and surrounding regions. Attnos. Environ. 3:361-368.

Snyder,  W.H.,  R.S.  Thompson, R.E. Eskridge, R.E. Lawson, I.P.  Castro, J.T. Lee, J.C.R.  Hunt,  and
      Y. Ogawa. 1985.  The structure of strongly stratified flow over  hills: dividing streamline concept. /.
      Fluid Mech.  152:249-288.

Truppi, L.E. 1986. EPA Complex Terrain Model Development: Description of a computer database from
      the  Full Scale Plume Study, Tracy Power Plant, Nevada. EPA/600/3-86/068,  U.S. Environmental
      Protection Agency, Research Triangle Park, NC.

Wackier, D.J. and R.J.  Londergan.  1984.  Evaluation of complex terrain air quality simulation  models.
      EPA/450/4-84/017, U.S. Environmental Protection Agency, Research Triangle Park, NC.

                                             4-1

-------
                                     APPENDIX A

 COMPARISONS  BETWEEN CTSCREEN AND  OTHER  REGULATORY MODELS
      In order to evaluate the usefulness of CTSCREEN as a screening tool, predicted concentrations from
CTSCREEN were compared with those from a refined model, CTDMPLUS, and two established regulatory
screening models, COMPLEX-I and VALLEY. These models were run for 22 different plume impaction
scenarios. The meteorology, terrain features, receptor locations, and source characteristics used to run the
models are described in Section A.I.  The results of the testing are discussed in Section A.2.  A detailed
description of the 22 scenarios is found in Erode (1989).


A.1 DESIGN OF THE STUDY

A.1.1 Models Used in the Comparison

      The two models selected for comparison with CTSCREEN were COMPLEX-I and VALLEY. These
models were run, in screening mode, according to the recommendations found in the "Guideline on Air
Quality Models (Revised)" [EPA 1986].

A. 1.2 Meteorology Used in the Comparison

      The Westvaco  1981 meteorological database (Wackter and Londergan, 1984) was used for running
CTDMPLUS and COMPLEX-I.  VALLEY does not require a meteorological input file.  The matrix of
meteorology described in Section 2.1 was used for running CTSCREEN.

A.1.3 Terrain Features and Receptor Locations

      Four terrain shapes were used in the study:

      (1) Piedmont Hill - A complex, three-dimensional hill with a height above stack base of 378 meters;
      (2) Montour Ridge (Crosswind) - A two-dimensional hill, oriented with the major axis perpendicular
         to the flow, extending 222 meters above stack base;
      (3) Montour Ridge (Alongwind) - A two-dimensional hill, oriented with the major axis parallel to the
         flow, extending 222 meters above stack base; and

                                           A-l

-------
      (4) Cinder Cone Butte - A simple, almost antisymmetric 100-meter high hill.

      Receptors were placed on the hill contours as shown in Figures A-l through A-3. Receptor locations
for VALLEY were generated by translating the receptor file and terrain information for CTDMPLUS into
the format required by VALLEY.

A.1.4 Source Characteristics

      A variety of sources were modeled with the four terrain features. Variations in buoyancy flux, stack
height, and distance from source to hill center were included. The characteristics of these sources are given
in Table A-l.
A.2 RESULTS AND DISCUSSION

      In order for a screening model to be useful, it should consistently predict concentrations that are more
conservative than (yet comparable to) refined models which require on-site meteorology.  In this study,
CTSCREEN is compared with CTDMPLUS (which requires substantial on-site information) and with two
existing regulatory screening techniques.

      Table A-2 shows the results from the four models for all 22 scenarios for averaging times of 1, 3, and
24 hours, and annual estimates.  Table A-3 gives the same  results, but  the concentrations have been
normalized by the corresponding values for CTDMPLUS. Figures A-4, A-5, and A-6 show the comparison
of CTSCREEN normalized estimates  with those from COMPLEX-I and VALLEY. In 77% of the cases,
CTSCREEN predicts 3-h HSH concentrations that are lower than those of COMPLEX-I, but still conserva-
tive with respect to CTDMPLUS  (Figure A-4).  For the 24-h averaging time,  CTSCREEN  provided
estimates lower than those of COMPLEX-I in 45% of the cases and lower than VALLEY for about 73% of
the cases, but conservative with respect to CTDMPLUS (Figure A-5).
                                             A-2

-------
                       IPICDMNT2I
                            .
                        "•••:*••
                                  £tt)
          *m	«
            .-y-'v  •    •  /
            /;; ?.;••  rt>
             * ^ > V   1  ^-'
                 •   •   •    *
                    •  •
           Receptors are circles located along the dotted contour lines.
           Hill height is 378 meters above stack base.
           Sources are located north of the hill.
Figure A-l.    Receptor locations for Piedmont Hill.
                        A-3

-------
         i"*->**TO    .  •	•,•••::?.---;:::-	••-   ......
         .jfe&*2:^^^
         ?i.V-:--r-;*::::::..--«-^----:....-----.     >-••	r'---	-•    •"
         	••.	•:"*       .::::..,•:-•.,'•••••••..,•.......-•
               Receptors are circles located along the dotted contour lines.
               Hill height is 222 meters above stack base.
               Sources are located to the north and west of the hill.
Figure A-2.      Receptor locations for Montour Ridge.
                                  A-4

-------
                                    ICCBI
                 Receptors are circles located along the dotted contour lines.
                 Hill height is 100 meters above stack base.
                 Sources are located to the north of the hill.
Figure A-3.      Receptor locations for Cinder Cone Butte.
                                    A-5

-------
           TABLE A-l.  CHARACTERISTICS OF THE SOURCE:HILL COMBINATIONS
                                  USED IN THE COMPARISONS
Hill
name
Piedmont a
Piedmont
Piedmont
Piedmont
Piedmont
Piedmont
Piedmont
Piedmont
Montour-X b
Montour-X
Montour-X
Montour-X
Montour-X
Montour-X
Montour-A b
Montour-A
Montour-A
Montour-A
Montour-A
Montour-A
Cinder Cone c
Cinder Cone
Source
abbrev.d
PMLLC
PMLLF
PMLHC
PMLHF
PMHLC
PMHLF
PMHHC
PMHHF
MXLLC
MXLLF
MXLHC
MXLHF
MXHLC.
MXHLF
MALLC
MALLF
MALHC
MALHF
MAHLC
MAHLF
CCLLC
CCLLF
Stack
height,
m
30
30
30
30
150
150
150
150
30
30
30
30
150
150
30
30
30
30
150
150
30
30
Stack
diameter,
m
2
2
6
6
2
2
6
6
2
2
6
6
2
2
2
2
6
. 6
2
2
2
2
Exit
velocity,
m/s
10
10
30
30
10
10
30
30
10
10
30
30
10
10
10
10
30
30
10
10
10
10
Exit Buoyancy Source-hill
temp., flux, center distance,
K m4/s3 m
400
400
500
500
400
400
500
500
400
400
500
500
400
400
400
400
500
500
400
400
400
400
26
26
1,096
1,096
26
26
1,096
1,096
26
26
1,096
1,096
26
26
26
26
1,096
1,096 .
26
26
26
26
2,730
11,696
2,730
11,696
2,730
11,696
2,730
11,696
2,000
11,000
2,000
11,000
2,000
11,000
3,500
12,500
3,500
12,500
3,500
12,500
1,500
10,500
a.   See Figure A-l.
b.   See Figure A-2.
c.   See Figure A-3.
d.   Tlie source abbreviation represents—

        (1,2) Hill name:
        (3) Stack height:
        (4) Buoyancy flux:
        (5) Source-hill center distance:
PM = Piedmont Hill,
MX = Montour Ridge (crosswind),
MA = Montour Ridge (alongwind),
CC = Cinder Cone Butte

L = Low (30m)
H = High (150 m)

L = Low (26 m4/s3)
H = High(l,0%m4/s3)

C = Close (< 4,000m)
F = Far ( > 4,000 m)
                                                A-6

-------









d
6
1
.s
"O
r*j
f^
r*
S
I*E
C JH
[•^ r
a |

5 Q
Z Q
5 - .c
Ul •
— 1 *^
— J CVJ
<
>
>. r-

^ *""
$

x "ra
CL C
CJ C

— z
X CO
—1 31
a.
CJ JC.
i
eo^^Oc> to«~«~rocMCO roin
N.CM«-s»-OCMin-* OlOCOCMOst ^tOCMCMtONj- O«*
«-or*-»-rooeOCM ro^«-o>ocM ro«-»-oinc\» >OCM


<«-ooo^->i-eocM OCOCM>)-N*8cM»-CMO OO vj u-\ O t\J O- inCMOOOCMO «-CO
^3 «.— co in CM ^" *T o* in in r^ ^~ ^^ o* ^^ in ^j* C3 ^~ O^ ^^ c?^
CM«-tO«- CM«- CMCM
eo^
OONJOCMOS.O CM O *- O «— O M3«— tOO^*CM OO
OOOOOOOJO OOOO<-O OOOOCMO OO


~*«-f>o-omooo cM«-inomN. (M^>orooo%o  ^ CM in c^ in 09 o oo o* r^ *o to ^3 ^3 to o

to^«-^(C •- >» *~

in to ^ ^f in *^ to (M op *o in to v\ to O* ^ O* O^ o^ oo ^^^ ^f
to tO ^ ^ ^3 tO O^ *~ ^3 *~ to in h^> K. (M ^3 ^3 tO ^f ^O ^O *O
oo«~rocM03CM*o>^ cMCMO^~oro ^ocMin^roro *oro
in«-oo CM 'in «- >* >*


r^cMroro«»CMMto eg rg rj i\i o ^r sf>tc>inOO «-ro
«— OCOO^fOK-O COOOOtOO inNf>YCM^OO CMO
OOOOOOCMO «— OOOCMO CM O «— O tO O OO
oooooooo oooooo o o o o «- o oo


ro-^o^in^oooo *4->jh-tocMco o>ooooc>^-c> oto
CMOooinoino ooinooo .Ov^-voo^vi- CMO
oo»-ooo«-o oooo«-o oooor^o oo



in^^rococo^^N-^ inroo^CM^r^ ^-r^.^cMto*o to^o
in to CM to *^ in CM ^h ^ CM o^ CM ^^ ^r oo r^ o^ ^j* ^~ t^. o^ *^
«-omocMOooo co o in o o co ooocMtoom 0900
tooo«-«-or^«- inooin^-o ooo«-K.«-cM to *t
^^^O^in^co^ inoroo**^ CMCMinoinin ^o
«- • «- «- «- »o


^OCO^CMO^^ toocMoK*^ ^00000^" oo ^
oooooo^-o oooooo oooooo oo


omcMoooooo f~ in >o «- ^t -o rvr^roCMor^- r>>-
r*-«-o-*cM«-eoin oocMO«-oom OOCM^«->-X> o -o
CO O ^1* ^3 ^ CO U^ O ^~ CO ^~ CO tO CO CO CO CO CO ^f CO ^f CO


CMr*»f^cMOO>>^ro r^vc^mo^in ocMoininv~ o^oo
tooooc\jCM oo >- >» o r~- rvj ^» «- rj o o ro oo rg



in to oo oo CM oo r^ *o ^f o^ r^ in r^ co co ^~ oo CM co oo ^~ oo
- cococOooo^ «-o
**«— CMtoco*— oto CM «— r^ o in to in «— CM o f^* >j- h->^
tO «- CM CM CM


CJU.CJU.OU-CJU. CJU-CJU.OU. CJU.CJU.CJU. CJU-
ZZ_I— IZZ_I_J _J_IZZ-J_J _I_JZZ_J_I _l_l
zzzzzzzz xxxxxx <<<<<:< ucj
0.0.0.0.0.0.0.0. XXXXXX XXXXXX CJCJ
A-7

-------




!•
1
0)
jjf
2 ™
i nJ
^H 1

§5
- i

~

?5
5 1
o.
U x:
i
X | .
n


UJ (0
g |
CJ
UJ i
UJ *f
O£ (NJ
U
O)
1—
u
Ul i
UJ fO
g
(J
v>
u

Z f
IU 1
UJ ^~
Of
o
C/)
0









ro«-mN.O <>N.
vtro«-OmF-roo rj ro ro - -inN.o N.ooeoroin roor^cococM rocMinin»-o >»CM
irio-N-O-j-ocom co o ~» o •- rj <-mOCMrocMOoro OOCMOOO incM^CMr>-in ooro
roininroinmoro «-in«-inmin cMCMCMro«-CM roro



-r>.r>.roin »-inoro-«-o«-ror«- «-CM«-ro>»'O >*inor>»»-ro coo
•j-rjvOror^x»vj-ir> roincM^ooo rocMro^cMCM coro
*~


Ss. «- vj N. o t\i o ro«-c>inoco r«.c>»*ro N. «-
00 CM CO CO vO •- IT! K> O O -J- .^o^o ^oo
ocMro«rm«-in>»in o Ki co co «- o roo
CM«a->ocoeocMro>o frrorocMroS. ^ocMino^O^ s.co
oomc>v— mc>%4-ro •— in CM ^ ro h* o«-*ooo«— coo
«-ro«-ro C\J«-CM ro>»

ro^ocMininooo p> ~* ^ in -o •* cg^-^-N.»
roro-*N-CMroro«O »-^«-roroo o»-o»-o»- ^o
*- CM


oroc>gro»N.roro ro «- >r ro co in co-



§o co ^» o «- o o ro co CM o o ro inN-in  cvj co ro in ro -j- «»coin«-N.co mm




zz_j_jxx-j-j _j_jzz^_j _i _i ac i _i _i _i _i
££££££££ 222222 ££££££ S3
X <
4J 1 i 0)
C 1- i- *•
1 8 3 S

.1 I ' I "
Q. Z X U
A-8

-------
 CO
 CO
 a
 f-
 o
 ac
 CO
20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0
                                                                                  ±
                                       ^.	•  •   •—•—•
31
                       o
                             u.  u.
                             5  s!
o
I
u.
I
I
                                     I
                                     o
U.  O
I  I
-1  _J
i    1
q  o
                                                        2
O  U-
Zj  I
X  X
2  2
                        I
                        u.
                                  I
                                  u.
                                                                            X
              1^
              u.
                                                                          o
                                                                          o  o
                                                                          o  o
                               CTSCREEN
                                                COMPLEX-I
Figure A-4. Comparison of CTSCREEN with COMPLEX-I for the 3-h averaging time.
           Concentration values are normalized by CTDMPLUS predictions.
           (See Table A-l for explanation of abscissa notation.)
                                            A-9

-------
 a:
 CO
 a:
 k«

 Tf
 C»J
 \«x
 CO
 Q
 h-
 O

 I
 CO
 CM
                                                                               a.oo
•    CTSCREEN
                                             COMPLEX-I
o    VALLEY
Figure A-5. Comparison of CTSCREEN with COMPLEX-I and VALLEY for the 24-h averaging time.

           Concentration values are normalized by CTDMPLUS predictions.

           Note that the estimate provided by VALLEY for the CCLLF source is off the scale (81.67).

           (See Table A-l for explanation of abscissa notation.)
                                           A-10

-------
 2
 2
 Q

 O
 2
 2
-4-0 -i
A[\ _
T'U
otr _j
v3o H
on _
ou
ocr
on
^lW
1 S
i n
q
n
*
r
A /
y v
1

. /\/\ . /
/ " \/\ A /
^^^ + y v -^

^\\\\\\\\\\\\\\\\\
oSy^bhu-ou. ou-ooooo
diS^^T1^:!^111-1^^
d5d:>d5-1:r-:r:E-1-J-1^-i-J
<<<<<<5^^ xx^x^-sx
•s-s-s-s-si^n^-2 -?-^«^««-5


+ + + +
i i i i i i
L±- U. U. (J-
5c l! d EC 3 ^
5 r! 5 ± _j _i
Q 2 Q 2 o o
                                                                                  O  O
                              CTSCREEN
COMPLEX-I
Figure A-6.  Comparison of CTSCREEN with COMPLEX-I for the annual averaging time.

           Concentration values are normalized by CTDMPLUS predictions.

           (See Table A-l for explanation of abscissa notation.)
                                           A-ll

-------
                           APPENDIX B


                        TEST CASE  FILES
CTDMPLUS TEST RUN: Testcase Number 1 (TC1)
31201011113100
1.0  0.3048 39.5915  89.4885  6  1
MET TOWER           -1260.0     200.0   4251.0
STACK-1       0 0.0   0.0   4268.0 90.95  2.0   400.0  5.0    1000.0
ENDS
0.3 0.3
                   Figure B-l. Test case CTDM.IN file.
                                 B-l

-------
1 5
4200.000
4400.000
4600.000
4800.000
5000.000
4200.000
4400.000
4600.000
4800.000
5000.000
2 5
4200.000
4400.000
4600.000
4800.000
5000.000
4200.000
4400.000
4600.000
4800.000
5000.000
.0203E+04
.0203E+04
.0233E+04
.0382E+04
.0386E+04
.0323E+04
.0323E+04
.0353E+04
.0339E+04
.0291E+04

.3203E+04
.3203E+04
.3233E+04
.3382E+04
,3386Et-04
.3323E+04
.3323E+04
.3353E+04
.3339E+04
.3291E+04
.5252E+04
.1956E+04
.1956E+04
.1951E+04
.1916E+04
.2024E+04
.1977E+04
.1977E+04
.1985E+04
.2020E+04
.2015E+04
.5252E+04
.1956E+04
.1956E+04
.1951E+04
.1916E+04
.2024E+04
.1977E+04
.1977E+04
.1985E+04
.2020E+04
.2015E+04
45
45
112
90
90
94
94
90
90
90
BEACON
.000 1653
.000 1653
.500 1273
.000 904
.000
.131
.131
.000
.000
.000
686
3
3
3
3
2
BEACON
45
45
112
90
90
94
94
90
90
90
.000
.000
.500
.000
.000
.131
.131
.000
.000
.000
1653
1653
1273
904
686
3
HILL
.000
.000
.000
.200
.500
.270
.270
.744
.871
.000
HILL
.000
.000
.000
.200
.500
.270
3.270
3
3
2
.744
.871
.000
MOVED WEST
1275.000
127S. 000
995.500
541.700
237
1
1
1
1
2

1275
1275
995
541
237
1
1
1
1
2
.200
.364
.364
.467
.632
.000

.000
.000
.500
.700
.200
.364
.364
.467
.632
.000

883
883
745
646
748






883
883
745
646
748

.384
.384
.561
.716
.771






.384
.384
.561
.716
.771

449.044
449.044
316.031
205.880
115.669






449.044
449.044
316.031
205.880
115.669
                    Figure B-2. Test case TERRAIN file.
221
222
223
224
231
232
233
322
323
324
325
326
327
331
332
333
335
337
422
432
221
222
223
224
231
232
233
322
323
324
325
326
327
331
332
333
335
337
422
432
2553.898
1479.699
2461.910
1880.180
1538.770
1769.449
1841.789
0001.530
0991.820
0057.630
0164.770
0878.070
0653.510
1236.891
0000.740
1270.289
0816.540
1067.340
0000.540
0000.990
5553.898
4479.699
5461.910
4880.180
4538.770
4769.449
4841.789
2909.530
3991.820
3057.630
3164.770
3878.070
3653.510
4236.891
2818.740
4270.289
3816.540
4067.340
2341.540
2687.990
3126.910
2739.790
2889.500
2235.350
1627.800
1528.550
1524.760
2499.060
2684.420
2139.380
1957.660
2173.610
1962.280
1905.030
1496.860
1488.750
1459.690
299.400
2389.440
1496.730
3126.910
2739.790
2889.500
2235.350
1627.800
1528.550
1524.760
2499.060
2684.420
2139.380
1957.660
2173.610
1962.280
1905.030
1496.860
1488.750
1459.690
299.400
2389.440
1496.730
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4256.625
4441.992
4241.566
4216.270
4249.242
4222.242
4332.215
4862.168
4512.660
5141.762
5228.148
5122.012
5220.438
4861.809
4823.586
4643.664 .
4832.082
4235.891
4633.461
4811.609
4256.625
4441.992
4241.566
4216.270
4249.242
4222.242
4332.215
4862.168
4512.660
5141.762
5228.148
5122.012
5220.438
4861.809
4823.586
4643.664
4832.082
4235.891
4633.461
4811.609
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
                   Figure B-3. Test case RECEPTOR file.
                                   B-2

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
• 50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0.
50.0
50.0
SO.O
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
    (continued)





Figure B-4. SURFACE file used with CTSCREEN.
                   B-3

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
66
67
68
69
70
71
72
73
.74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
50
50
50
50
.0
.0
.0
.0
50.0
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.1000
0.1000
0.1000
0.3000
0.3000
0.3000
0.5000
0.5000
0.5000
0.1000
0.1000
0.1000
0.3000
0.3000
0.3000
0.5000
0.5000
0.5000
0.1000
0.1000
0.1000
0.3000
0.3000
0.3000
0.5000
0.5000
0.5000
0.1000
0.1000
0.1000
0.3000
0.3000
0.3000
0.5000
0.5000
0.5000
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
-10
-50
-90
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-10.0
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
-10
-50
-90
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02.
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
Figure B-4. SURFACE file used with CTSCREEN (concluded).
                       B-4

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2-29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
293.23
293
303
293
317
:00
.13
.00
.98
293.00
293
293
303
293
317
293
293
293
303
293
317
293
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
.•0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.04
0.04
0.04
0.04
0.04
0.04
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.04
0.04
0.04
0.04
0.04
0.04
0.08
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
         (continued)
Figure B-5. PROFILE file used with CTSCREEN.
                   B-5

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1000.0
10.0
1000.0
10-. 0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2,0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
Figure B-5. PROFILE file used with CTSCREEN (continued).
                        B-6

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2.29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
.10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0..
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.0
5.0
5.0
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
303
293
293
293
303
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.23
.00
.13
293.00
317
293
293
293
303
293
317
293
293
293
303
293
317
293
293
293
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
.13
.00
.98
.00
.23
.00
303.13
293
317
293
293
293
303
293
293
293
.00
.98
.00
.23
.00
.13
.00
.23
.00
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.30
0.30
0.30
0.30
0.30'
0.30
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.15
0.15
0.15
0.15
0.15
0.15
0.30
0.30
0.30
6.30
0.30
0.30
0.75
0.75
0.75
0.75
0.15
0.15
0.15
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4'.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.0
5.0
5.0
Figure B-5. PROFILE file used with CTSCREEN (continued).
                        B-7

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
.29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
12
12
12
12
12
12
1?
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
293.00
317.98
293.00
293.23
293.00
303.13
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999:00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-9.99.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.15
0.15
0..15
0.15
0.15
0.15
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.75
0.75
0.75
-999.00
-999.00
-999.00
-999.00
-999. QO
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Figure B-5. PROFILE file used with CTSCREEN (continued).
                        B-8

-------
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2 29
2.29
2 29
2 29
2 29
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1000.0.
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
10.0
1000.0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o:
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999. Op
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999
-999
-999
-999
.00
.00
.00
.00
-999.00
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Figure B-5. PROFILE file used with CTSCREEN (concluded).
                        B-9

-------
CTSCREEN            VERSION 1.00      REV.  DATE 2/15/90

CTSCREEN TEST RUN: Testcase Number 1 (TC1)
      PAGE    1
         INPUT/OUTPUT SWITCHES (1 = USE THIS OPTION,  0 = DO NOT USE OPTION  )

         ICASE:  INCLUDE CASE-STUDY PRINTOUT: 0 = NONE,  1 = STABLE ONLY,
                        2 = UNSTABLE ONLY  3 = ALL HOURS        •           0
         ITOPN:  CREATE TOP 4 TABLE AT END OF RUN                          0
         ICONC:  CONCENTRATION OUTPUT:  0 = NONE, 1 = BINARY,  2/3 = TEXT    2

         INTERNAL PROGRAM SWITCHES

         IMIX: (IF 1, USE ON-SITE MIXING HEIGHT OBSERVATIONS
               (OFF-SITE IF NOT AVAILABLE); IF 0, VICE VERSA)               0
         IWS1:  (IF 1, SET MINIMUM WIND SPEED TO 1.0 M/S)                  1
         ISIGV: (HORI2. TURB. INTENSITY DATA (0=SIGMA-THETA 1=SIGMA-V)      1
         IWD:   (IF 1, SCALE WIND DIRECTION WITH HEIGHT)                   1
         I CHIP: (IF 1, MODEL OUTPUTS CHI/Q;  OTHERWISE IT OUTPUTS CHI)      1
         ISOR: (IF 1, MODEL GIVES SOURCE CONTRIBUTION TABLE)               0
         IUNSTA: (IF 0, MODEL WILL NOT READ RAWIN FILE OR CALCULATE
                        UNSTABLE HOURS)                                    1
         SCREENING MODE SWITCHES

         ISCRN:  (0=REGULAR MODE. 1=SCREENING MODE, STABLE HOURS ONLY.
                  2=SCREENING MODE, UNSTABLE HOURS ONLY.' 3=SCREENING
                  MODE STABLE AND UNSTABLE HOURS)
         IAUTO:  (0=NO, 1=AUTOMATE WIND DIRECTION SELECTION,  2=ALSO
                 USE AVERAGE WIND DIRECTIONS)   .
         IRANGE: (0=NO, 1=USE RANGE OF WIND DIRECTIONS)
         IDISCR: (0=NO, 1=USE DISCRETE WIND DIRECTIONS)
         FOR HORIZONTAL SCALE, MULTIPLY USER UNITS BY     1.0000 TO GET METERS.
         FOR ELEVATION, MULTIPLY USER UNITS BY     0.3048 TO GET METERS.

         SITE LATITUDE (> 0 IF NORTH) = 39.591
         SITE LONGITUDE (> 0 IF WEST) =  89.489
         SITE TIME ZONE (> 0 IF WEST) =    6.
         POLLUTANT # (FOR HOURLY EMISSIONS) =    1
    METEOROLOGICAL TOWER COORDINATE INFORMATION:
         X-COORD:    1260.000 (USER UNITS) *     1.0000 =
         Y-COORD:     200.000 (USER UNITS) *     1.0000 =
         ELEVATION:  4251.000 (USER UNITS) *     0.3048 =
1260.0 (METERS)
 200.0 (METERS)
1295.7 (METERS)
                                  Figure B-6. Test case CTDM.OUT file.
                                                   B-10

-------
CTSCREEN            VERSION 1.00      REV. DATE 2/15/90                PAGE

CTDMPLUS TEST RUN: Testcase Number  1  (TC1)

               ***SOURCE   INFORMATION***

                    EMISSION     LOCATION         STK   STK   GAS   EXIT
STIC      NAME        RATE        X         Y        HT    DIA   TEMP  VEL
 #                   (G/S)      (M)        (M)       (M)   (M)   (K)  (M/S)

 1 STACK-1           1000.00    0.00     0.00   96.1*  2.00 400.0  5.00
  COMMON BASE ELEVATION =  1295.7 (METERS).
  THIS BASE ELEVATION IS USED  FOR ALL  STACKS  IN THIS RUN;
  ALL STACK HEIGHTS MARKED  WITH   *  HAVE  BEEN ADJUSTED TO
  RETAIN THE ACTUAL ELEVATION  OF  THE TOP  OF THE STACKS.
  MULTIPLY HORIZONTAL USER  UNITS  BY: 1.000E+00 TO CONVERT TO METERS
  MULTIPLY VERTICAL USER UNITS BY: 3.048E-01  TO CONVERT TO METERS
                           Figure B-6. Test case CTDM.OUT file (continued).
                                                  B-ll

-------
CTSCREEN           VERSION 1.00      REV. DATE 2/15/90               PAGE

CTDMPLUS TEST RUN:  Testcase Number 1 (TC1)
                               RECEPTOR INFORMATION
REC   IDENTIFICATION    EAST      NORTH  HEIGHT  ABOVE    GRD LVL
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
COORD COORD LOCAL GRD LVL
(USER UNITS) (USER UNITS)
221
222
223
224
231
232
233
322
323
324
325
326
327
331
332
333
335
337
422
432
221
222
223
224
231
232
233
322
323
324
325
326
327
331
332
333
335
337
422
432
2553.90
1479.70
2461.91
1880.18
1538.77
1769.45
1841.79
1.53
991.82
57.63
164.77
878.07
653.51
1236.89
0.74
1270.29
816.54
1067.34
0.54
0.99
5553.90
4479.70
5461.91
4880.18
4538.77
4769.45
4841.79
2909.53
3991.82
3057.63
3164.77
3878.07
3653.51
4236.89
2818.74
4270.29
3816.54
4067.34
2341.54
2687.99
3126.91
2739.79
2889.50
2235.35
1627.80
1528.55
1524.76
2499.06
2684.42
2139.38
1957.66
2173.61
1962.28
1905.03
1496.86
1488.75
1459.69
299.40
2389.44
1496.73
3126.91
2739.79
2889.50
2235.35
1627.80
1528.55
1524.76
2499.06
2684.42
2139.38
1957.66
2173.61
1962.28
1905.03
1496.86
1488.75
1459.69
299.40
2389.44
1496.73
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ELEVATION
(USER UNITS)
4256.6
4442.0
4241.6
4216.3
4249.2
4222.2
4332.2
4862.2
4512.7
5141.8
5228.1
5122.0
5220.4
4861.8
4823.6
4643.7
4832.1
4235.9
4633.5
4811.6 .
4256.6
4442.0
4241.6
4216.3
4249.2
4222.2
4332.2
4862.2
4512.7
5141.8
5228.1
5122.0
5220.4
4861.8
4823. 6 •
4643.7
4832.1
4235.9
4633.5
4811.6
HILL
NUMBER
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
  MULTIPLY HORIZONTAL USER UNITS BY:  1.000E+00 TO CONVERT TO METERS
  MULTIPLY VERTICAL USER UNITS BY:  3.048E-01 TO CONVERT TO METERS
                           Figure B-6. Test case CTDM.OUT file (continued).
                                                  B-12

-------
CTSCREEN            VERSION 1.00      REV. DATE 2/15/90                PAGE   4

CTDMPLUS TEST RUN: Testcase Number 1 (TC1)
TERRAIN INFORMATION (USER UNITS FOR ALL DATA)
HILL # 1  BEACON HILL MOVED WEST                  HILL TOP:  5252.0 (USER UNITS)
BEST FIT ELLIPSE INFORMATION FOR WRAP: BEACON HILL MOVED WEST
 CONTOUR  X-COORD   Y-COORD   MAJOR  AXIS   ELLIPSE AXIS LENGTHS
  HEIGHT    (HILL CENTER)     AZIM. FROM N    MAJOR      MINOR
4200
4400
4600
4800
5000
.0
.0
.0
.0
.0
203
.000
203.000
233
382
386
.000
.000
.000
1956.
000
1956.000
1951.
1916.
2024.
000
000
000
45
45
112
90
90
.0
.0
.5
.0
.0
1653
1653
1273
904
686
.000
.000
.000
.200
.500
1275
1275
995
541
237
.000
.000
.500
.700
.200
He CUT-OFF HILL INFORMATION FOR LIFT:  BEACON HILL MOVED WEST
 CONTOUR  X-COORD  Y-COORD  MAJOR  AXIS  <--- INVERSE POLYNOMIAL VARIABLES --->
  HEIGHT    (HILL CENTER)  AZIM. FROM N  MAJ EXP MIN EXP   MAJ SCALE  MIN SCALE
4200.0
4400.0
4600.0
4800.0
5000.0
HILL # 2
323.000 1977.
323.000 1977.
353.000 1985.
339.000 2020.
291.000 2015.
BEACON HILL
000
000
000
000
000
94
94
90
90
90
.1
.1
.0
.0
.0
3
3
3
3
2
.270
.270
.744
.871
.000
1.364
1.364
1.467
1.632 '
2.000
HILL TOP:
883
883
745
646
748
5252
.384
.384
.561
.716
.771
.0 (USER
449.044
449.044
316.031
205.880
115.669
UNITS)
BEST FIT ELLIPSE INFORMATION FOR WRAP: BEACON HILL
 CONTOUR  X-COORD   Y-COORD   MAJOR  AXIS   ELLIPSE AXIS LENGTHS
  HEIGHT    (HILL CENTER)     AZIM. FROM N    MAJOR      MINOR
4200
4400
4600
4800
5000
.0
.0
.0
.0
.0
3203
3203
3233
3382
3386
.000
.000
.000
.000
.000
1956
1956
1951
1916
2024
.000
.000
.000
.000
.000
45
45
112
90
90
.0
.0
.5
.0
.0
1653
1653
1273
904
686
.000
.000
.000
.200
.500
1275
1275
995
541
237
.000
.000
.500
.700
.200
He CUT-OFF HILL INFORMATION FOR LIFT:  BEACON HILL
 CONTOUR  X-COORD  Y-COORD  MAJOR  AXIS  <--- INVERSE POLYNOMIAL VARIABLES --->
  HEIGHT    (HILL CENTER)  AZIM. FROM N  MAJ EXP MIN EXP   MAJ SCALE  MIN SCALE
4200.0
4400.0
4600.0
4800.0
5000.0
3323.000
3323.000
3353.000
3339.000
3291.000
1977
1977
1985
2020
2015
.000
.000
.000
.000
.000
94.1
94.1
90.0
90.0
90.0
3
3
3
3
2
.270
.270
.744
.871
.000
1
1
1
1
2
.364
.364
.467
.632
.000
883.
883.
745.
646.
748.
384
384
561
716
771
449.044
449.044
316.031
205.880
115.669
  MULTIPLY HORIZONTAL USER UNITS BY: 1.000E+00 TO CONVERT TO METERS
  MULTIPLY VERTICAL USER UNITS BY: 3.048E-01 TO CONVERT TO METERS

   SURFACE ROUGHNESS LENGTH OF EACH HILL:
HILL #        1       2
ZO (M)    0.300   0.300
                           Figure B-6.  Test case CTDM.OUT file  (continued).
                                                   B-13

-------
CTSCREEN            VERSION 1.00     REV. DATE 2/15/90             •  PAGE   5


  MAP EDGES:  XMIN =       0., XMAX =    5554., YMIN =    -751., YMAX =    3878.
               * = SOURCE, RECEPTORS SHOWN BY HILL # (0-9,A-Z)
                                   1

                                 1
                   1                                         2
              1                                        2
                                      2
1                              2

            1             1                          2
                                          2
  11                                  22
                1                                         2

                     1                                       2
          1       111           22             22       2
                          Figure B-6. Test case CTDM.OUT file (concluded).
                                                 B-14

-------
 MICROSECONDS/M**3        40
    1     17
 198.1     1.0      0.30      0.04    0.010     50.0     0:1      5.0
 0.528E-08 0.215E-03 0.385E-08 0.191E-08 0.101E-08 0.941E-09 0.193E-06 0.831E+01
 0.559E-02 0.826E-01 0.116E+00 0.113E+00 0.140E+00 0.106E+02 0.133E+02 0.679E+00
 0.134E+02 0.437E-09 0.390E+00 0.125E+02 0.185E-11 0.427E-07 0.140E-11 0.749E-12
 0.496E-12 0.489E-12 0.732E-10 0.322E+00 0.962E-06 0.289E-02 0.127E-02 0.383E-03
 0.316E-03 0.146E-02 0.367E-02 0.137E-03 0.297E-02 0.240E-19 0.957E-02 0.285E-02
    2     35
 240.1     1.0      0.30      0.04    0.010     50.0     0.1      5.0
 0.717E-08 0.139E-08 0.485E-08 0.119E-08 0.224E-09 0.279E-09 0.525E-07 0.838E-04
 0.359E-07 0.580E-07 0.158E-05 0.315E-02 0.152E-02 0.156E+01  0.308E-02 0.448E-01
 0.255E+00 0.293E-15 0.354E-05 0.290E-02 0.481E-07 0.381E-03 0.378E-07 0.186E-07
 0.104E-07 0.112E-07 0.100E-05 0.554E+01 0.663E-02 0.973E-01  0.102E+00 0.832E-01
 0.855E-01 0.499E+01 0.667E+01 0.404E+00 0.566E+01 0.312E-08 0.334E+00 0.651E+01
    3     20
 200.2     1.0      0.30      0.04    0.020     50.0     0.1      5.0
 0.281E-10 0.653E-04 0.170E-10 0.579E-11 O.OOOE+00 O.OOOE+00 0.418E-08 0.681E+01
 0.456E-02 0.572E-04 0.192E-04 0.307E-03 0.258E-04 0.862E+01  0.164E+02 0.150E+01
 0.153E+02 O.OOOE+00 0.814E+00 0.173E+02 0.645E-13 0.495E-07 0.414E-13 0.152E-13
 0.662E-14 0.638E-14 0.777E-11 0.520E+00 0.265E-05 0.442E-05 0.728E-06 0.222E-06
 0.210E-06 0.337E-02 0.353E-01 0.744E-03 0.744E-02 O.OOOE+00 0.419E-01 0.221E-01
 190    40
239.2     5.0      0.75      0.75    0.010     50.0     0.1      5.0
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00  O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00  O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.162E-01 0.617E+00  0.171E-01 0.221E-01
0.279E-01 0.264E-01 0.248E-01 0.343E+00 0.615E+00 0.644E+00  0.711E+00 0.738E+00
0.747E+00 0.524E+00 0.752E+00 0.151E+00 0.300E+00 0.497E-01  0.195E+00 0.782E+00
 191    17
208.2     5.0      0.75      0.75    0.020     50.0     0.1      5.0
0.390E+00 0.499E+00 0.411E+00 0.466E+00 0.456E+00 0.449E+00  0.559E+00 0.105E+00
0.542E+00 0.457E-02 0.141E-01 0.870E+00 0.389E+00 0.171E+01  0.536E-01 0.148E+01
0.242E+01 0.669E-02 0.502E+00 0.697E-01 0.416E-05 0.490E-05  0.443E-05 0.567E-05
0.717E-05 0.708E-05 0.705E-05 0.174E-01 0.501E-05 0.113E-02  0.279E-03 0.396E-04
0.415E-04 0.138E-05 0.367E-04 0.520E-05 0.882E-06 0.309E-04  0.103E+00 0.678E-04
 192    40
242.0     5.0      0.75      0.75    0.020     50.0     0.1      5.0
0.889E-01 0.351E-01 0.765E-01 0.278E-01 0.447E-02 0.655E-02  0.842E-02 O.OOOE+00
O.OOOE+00 O.OOOE+00 0.959E-09 0.539E-04 0.543E-09 0.308E-02  0.134E-09 0.119E+00
0.973E-03 0.274E-10 O.OOOE+00 0.173E-09 0.225E+00 0.378E+00  0.235E+00 0.285E+00
0.333E+00 0.324E+00 0.317E+00 0.361E+00 0.378E+00 0.663E+00  0.729E+00 0.679E+00
0.710E+00 0.522E+00 0.886E+00 0.341E+00 0.329E+00 0.431E+00  0.554E+00 0.938E+00
              Figure B-7.  Excerpts from the test case STCONC file.


                                      B-15

-------
 MICROSECONDS/M**3        40
 193     3
189.3     1.0   -999.90   -999.00    0.000    152.6     0.1    -10.0
0.152E+01 0.153E+01 0.154E+01 0.114E+01  0.959E+00 0.925E+00  0.930E+00  0.113E+01
0.152E+01 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.104E+01  0.644E+00  0.840E+00
0.747E+00 0.177E-01 0.110E+01 0.644E+00 0.132E-03 0.530E-05  0.375E-04  0.108E-06
0.208E-11 0.478E-12 0.583E-12 0.560E-07 0.189E-05 O.OOOE+00  O.OOOE+00  0.677E-08
O.OOOE+00 0.204E-09 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00  0.412E-08  O.OOOE+00
 194    11
189.3     1.0   -999.90   -999.00    0.000    305.1     0.1    -10.0
0.482E-03 0.308E+00 0.251E-03 0.836E-03 0.103E-03 0.155E-06  0.297E-07  0.337E+01
0.232E+01 0.520E+01 0.712E+01 0.276E+01  0.493E+01 0.128E+00  0.335E+01  0.100E-02
0.336E+00 0.472E-08 0.369E+01 0.335E+01  O.OOOE+00 O.OOOE+00  O.OOOE+00  O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 0.133E-07 0.507E-11 0.244E-11  O.OOOE+00  O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00  0.311E-05  O.OOOE+00
 195    10
189.3     1.0   -999.90   -999.00    0.000    457.7     0.1    -10.0
0.402E-03 0.250E+00 0.207E-03 0.681E-03 0.287E+00 0.791E-01  0.558E-01  0.260E+01
0.183E+01 0.407E+01 0.284E+01 0.218E+01  0.393E+01 0.104E+00  0.189E+01  0.494E+00
0.144E+01 O.OOOE+00 0.285E+01 0.188E+01  O.OOOE+00 O.OOOE+00  O.OOOE+00  O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 0.104E-07 0.393E-11 0.198E-11  O.OOOE+00  O.OOOE+00
O.OOOE+00 O.OOOE+00 0.207E-03 O.OOOE+00 O.OOOE+'OO O.OOOE+00  0.254E-05  0.463E-03
 196    40
239.2     1.0   -999.90   -999.00    0.000    152.6     0.1    -10.0
0.193E+00 0.245E-01 0.155E+00 0.319E-01  0.189E-02 0.426E-02  0.570E-02  0.626E-08
0.283E-02 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.865E-03  O.OOOE+00  0.184E-03
0.501E-06 0.104E-11 0.922E-09 O.OOOE+00 0.124E+01 0.150E+01  0.128E+01  0.147E+01
0.166E+01 0.161E.+01 0.159E+01 0.207E+01  0.164E+01 0.210E+01  0.210E+01  0.177E+01
0.189E+01 0.170E+01 0.244E+01 0.177E+01  0.195E+01 0.214E+01  0.241E+01  0.253E+01
 197    40
239.2     1.0   -999.90   -999.00    0.000    305.1     0.1    -10.0
0.770E-01 0.437E-03 0.129E+00 0.107E-02 0.773E-01 0.155E+01  0.201E+01  0.329E-03
0.645E-06 0.815E-03 0.217E-02-0.814E-08 0.124E-10 0.131E-05  0.170E-04  0.647E-01
0.241E-04 0.211E+00 0.420E-03 0.171E-04 0.145E+01 0.200E+01  0.143E+01  0.175E+01
0.123E+01 0.529E+00 0.470E+00 0.157E+01  0.228E+01 0.264E+01  0.276E+01  0.277E+01
0.316E+01 0.238E+01 0.296E+01 0.954E+00 0.135E+01 0.378E-02  0.718E+00  0.321E+01
              Figure B-8. Excerpts from the test case UNCONC file.
                                       B-16

-------
 403    11
189.3     6.0   -999.90   -999.00    0.000    152.6     0.5   -90.0
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.315E-01
0.390E-02 0.341E+00 0.209E+01 0.163E-02 0.126E+00 O.OOOE+00 0.431E-01 O.OOOE+00
0.451E-10 O.OOOE+00 0.433E-01 0.435E-01 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
 404    11
189.3     6.0   -999.90   -999.00    0.000    305.1     0.5   -90.0
O.OOOE+00 0.838E-08 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.104E+00
0.301E-01 0.483E+00 0.177E+01 0.197E-01 0.328E+00 0.979E-10 0.198E+00 O.OOOE+00
0.580E-06 O.OOOE+00 0.128E+00 0.199E+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
 405  .  11
189.3     6.0   -999.90   -999.00    0.000    457.7     0.5   -90.0
O.OOOE+00 0.298E-07 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.600E-01
0.864E-02 0.405E+00 0.142E+01 0.107E-01 0.235E+.00 0.372E.-08 0.354E+00 O.OOOE+00
0.207E-04 O.OOOE+00 0.903E-01 0.356E+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
 406    40
239.2     6.0   -999.90   -999.00    0.000    152.6     0.5   -90.0
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.723E-06 0.289E-04 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 0.453E-04 O.OOOE+00 O.OOOE+00 0.172E+01 0.267E+01 0.438E+00 0.193E+01
0.543E-02 0.119E-09 0.695E-11 0.218E-02 0.531E+00 0.326E+00 0.102E+01 0.214E+01
0.163E+01 0.204E+01 0.233E+01 0.153E-04 0.331E-02 O.OOOE+00 0.109E-08 0.301E+01
 407    40
239.2     6.0   -999.90   -999.00    0.000    305.1     0.5   -90.0
O.OOOE+00 O.OOOE+00 0.511E-12 0.821E-10 O.OOOE+00 0.274E-03 0.237E-02 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
O.OOOE+00 0.173E-02 O.OOOE+00 O.OOOE+00 0.882E+00 0.143E+01 0.444E+00 0.124E+01
0.319E-01 0.211E-05 0.451E-06 0.232E-01 0.690E+00 0.433E+00 0.806E+00 0.163E+01
0.147E+01 0.110E+01 0.139E+01 0.131E-02 0.262E-01 O.OOOE+00 0.752E-05 0.167E+01
 408    40
239.2     6.0   -999.90   -999.00    0.000    457.7     0.5   -90.0
0.881E-11 O.OOOE+00 0.546E-09 0.226E-07 0.150E-07 0.465E-02 0.185E-01 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.475E-08
O.OOOE+00 0.626E-02 O.OOOE+00 O.OOOE+00 0.413E+00 0.578E+00 0.256E+00 0.681E+00
0.832E-02 0.263E-04 0.995E-05 0.340E-01 0.356E+00 0.459E+00 0.796E+00 0.762E+00
0.915E+00 0.801E+00 0.106E+01 0.209E-02 0.286E-01 O.OOOE+00 0.101E-03 0.126E+01
       Figure B-8.  Excerpts from the test case UNCONC file  (concluded).
                                      B-17

-------
SUMMARY  FOR ALL STABLE  HOURS
REC
#
16
SUMMARY
REC
#
11
SUMMARY
REC
#
16
CONC
US/M**3
20.57
FOR ALL
CONC
US/M**3
11.48
FOR ALL
CONC
US/M**3
20.57
RECEPTOR SUMMARY
REC
#
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
CONC
US/M**3
0.80
1.03
0.84
1.01
1.11
1.10
1.10
8.31
1.84
2.78
4.53
6.98
3.66
10.57
16.50
20.57
15.60
0.61
13.13
17.44
0.55
1.36
0.55
0.56
0.56
0.56
0.59
5.54
1.51
2.42
4.29
5.52
5.72
4.99
8.19
7.27
6.33
0.57
8.04
8.91
WD

205.2
US
M/S
5.0
SIGV
M/S
0.30
SIGU
M/S
0.15
DTHDZ
DEG/M
0.035
ZI
M
50.0
USTAR
M/S
0.1
EL
M
5.0
UNSTABLE HOURS
UD

189.3
HOURS

US
M/S
1.0

3HR
US/M**3

14.40
SIGV
M/S
-999.90

24HR
SIGU
M/S
-999.00


US/M**3
3.09
DTHDZ
DEG/M
0.000

ANNUAL
US/M**3
0.62
ZI
M
305.1




USTAR
M/S
0.1




EL
M
-50.0




FOR STABLE HOURS
UD

240.1
201.3
240.1
240.1
240.1
240.1
240.1
198.1
205.2
190.1
190.1
202.4
190.1
198.1
200.2
205.2
200.2
198.1
205.2
200.2
240.4
239.2
240.1
240.1
240.1
240.1
240.1
240.1
242.0
240.8
242.0
242.0
242.0
240.1
240.4
241.4
240.4
240.1
241.4
240.4
US
M/S
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
5.0
5.0
5.0
3.0
5.0
1.0
2.0
5.0
2.0
1.0
5.0
2.0
1.0
5.0
1.0
1.0
1.0
1.0
1.0
1.0
5.0
3.0
5.0
5.0
5.0
1.0
2.0
5.0
2.0
1.0
5.0
2.0
SIGV
M/S
0.75
0.30
0.75
0.75
0.75
0.75
0.75
0.30
0.30
0.75
0.75
0.30
0.75
0.30
0.30
0.30
0.30
0.75
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.75
0.30
0.30
SIGU
M/S
0.75
0.30
0.75
0.75
0.75
0.75
0.75
0.04
0.30
0.15
0.15
0.08
0.15
0.04
0.04
0.15
0.04
0.75
0.15
0.04
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.04
0.30
0.08
0.15
0.15
0.15
0.04
0.04
0.15
0.04
0.75
0.15
0.04
DTHDZ
DEG/M
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.010
0.035
0.020
0.020
0.010
0.020
0.010
0.010
0.035
0.010
0.010
0.035
0.010
0.020
0.010
0.010
0.010
0.010
0.010
0.010
0.010
O.TJ20
0.010
0.020
0.020
0.020
0.010
0.010
0.035
0.010
0.035
0.035
0.010
ZI
M
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0
USTAR
M/S
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1-
0.1
0.1
0.1
0.1
0.1
0.1
0.1
EL
M
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
                      Figure B-9. Test case SUMRE file.
                                     B-18

-------
RECEPTOR SUMMARY
REC CONC
#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
US/H**3
1.52
1.53
1.54
1.51
1.54
1.64
2.01
4.06
2.52
7.16
11.48
2.76
6.06
1.54
4.55
1.53
1.51
3.83
4.47
4.56
3.38
3.84
3.43
3.66
3.86
3.81
3.79
4.27
3.84
4.29
4.29
5.02
4.14
3.91
5.20
3.98
4.15
4.33
4.56
5.71
FOR UNSTABLE
UP WS

189.3
189.3
189.3
189.3
189.3
239.2
239.2
189.3
189.3
189.3
189.3
189.3
189.3
189.3
189.3
189.3
189.3
239.2
189.3
189.3
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
M/S
1.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
4.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.0
1.0
2.0
1.0
2.0
2.0
2.0
2.0
1.0
HOURS
SIGV
M/S
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
SIGW
M/S
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
-999.00
DTHDZ
DEG/M
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
ZI USTAR
M
152.6
152.6
152.6
152.6
152.6
457.7
305.1
305.1
305.1
305.1
305.1
305.1
305.1
152.6
305.1
152.6
152.6
305.1
305.1
305.1
152.6
152.6
152.6
152.6
152.6
152.6
152.6
152.6
152.6
152.6
152.6
305.1
305.1
152.6
305.1
152.6
152.6
152.6
152.6
305.1
M/S
0.1
0.1
0.1
0.3
0.3
0.1
0.
0.
0.
0.
0.
0.1
0.1
0.3
0.3
0.3
0.3
0.3
0.1
0.3
0.3
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.1
0.1
0.3
0.1
0.3
0.3
0.3
0.3
0.1
EL
M
-10.0
-10.0
-10.0
-90.0
-50.0
-50.0
-10.0
-50.0
-50.0
-50.0
-50.0
-10.0
-50.0
-90.0
-90.0
-50.0
-50.0
-50.0
-50.0
-90.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-50.0
-50.0
-10.0
-50.0
-10.0
-10.0
-10.0
-10.0
-50.0
Figure B-9. Test case SUMRE file (concluded).
                   B-19

-------