EPA-600/9-77-001
February 1977
DENVER AIR POLLUTION STUDY - 1973
Proceedings of a Symposium
Volume II
3EZ
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, Environmental
Protection Agency, have been grouped into seven series. These seven broad
categories were established to facilitate further development and application
of environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related
fields. The five series are:
1. ENVIRONMENTAL HEALTH EFFECTS RESEARCH
2. ENVIRONMENTAL PROTECTION TECHNOLOGY
3. ECOLOGICAL RESEARCH
4. ENVIRONMENTAL MONITORING
5. SOCIOECONOMIC ENVIRONMENTAL STUDIES
6. SCIENTIFIC AND TECHNICAL ASSESSMENT REPORTS
9. MISCELLANEOUS
This report has been assigned to the MISCELLANEOUS series.
This document is available to the public for sale through the National
Technical Information Service, Springfield, Virginia 22161.
-------
EPA-600/9-77-001
February 1977
DENVER AIR POLLUTION STUDY - 1973
Proceedings of a Symposium
Volume II
Edited
by
Philip A. Russell
Denver Research Institute
University of Denver
Denver, Colorado 80210
Grant Number R-803590
Project Officer
Lester L. Spiller
Atmospheric Chemistry and Physics Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
DISCLAIMER
This report has been reviewed by the Environmental Sciences Research
Laboratory, U.S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily
reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
ii
-------
TABLE OF CONTENTS
INTRODUCTION.
CHARACTERIZATION OF DENVER'S URBAN PLUME USING AN INSTRUMENTED
AIRCRAFT
J.A. Anderson and D.L. Blumenthal
MEASUREMENTS OF AEROSOL OPTICAL PROPERTIES
A.P. Waggoner and R.J. Charlson 35
CHARACTERIZATION OF DENVER AIR QUALITY
M.A. Ferman, R.S. Eisinger and P.R. Monson 57
THE BROWN CLOUD OF DENVER
A.P. Waggoner 159
HIGH-VOLUME AMBIENT AIR SAMPLING IN DENVER, COLORADO DURING
NOVEMBER 1973
L.T. Reynolds 169
iii
-------
-1-
INTRODUCTION
The Denver Urban Plume, often referred to as the "brown cloud," is one
of the area's most aesthetically unpleasing features. Although the brown cloud
was observed in the early 1950's, its occurrence and severity have increased
with the city's rapid population increase and urban development. It is usually
associated with the Northeast section of Denver, where there is a concentration
of industries, railways, freeways and a major power plant. During the late
fall and winter months, when severe temperature inversions occur during periods
of low wind speeds, the visible and olfactory characteristics of the cloud
are easily noticed by residents throughout the metropolitan area, particularly
along the South Platte River basin.
For a number of years, the composition of Denver's Urban Plume was unknown,
and it became obvious that its control was impossible without a detailed study
to determine its particulate and gaseous composition, and the influence of
meteorological conditions. In November 1973, a coordinated effort was initiated
by the U.S. Environmental Protection Agency to investigate Denver's brown cloud.
Jack L. Durham, principal investigator of the project from EPA, coordinated the
effort. Participants in the study included:
1. Atmospheric Aerosol Research Section, Atmospheric Chemistry
and Physics Division, Environmental Sciences Research
Laboratory, U.S. Environmental Protection Agency, Research
Triangle Park, N.C. (AARS-EPA)
2. University of Denver, Denver Research Institute (DRI)
3. Loren Crow, Consulting Meteorologist
4. Meteorology Research, Inc.
5. Meteorological and Air Pollution Control Commission, Colorado
State Board of Health (CSBH)
6. Region VIII, U.S. Environmental Protection Agency
7. National Oceanic and Atmospheric Administration (NOAA)
8. National Center for Atmospheric Research (NCAR)
9. General Motors Research Laboratories
10. University of Washington
11. University of Texas
12. Thermo-Systems, Inc.
-------
-2-
13. United States Army, Rocky Mountain Arsenal
14. Battelle Columbus Laboratories
15. IIT Research Institute
About fifty samplers of several different types were used to collect over
500 aerosol samples, and several types of gaseous testing equipment were used
at nearly ten different locations, Meteorological data were collected at all
the field laboratories and at other sites in the greater Denver area. Some
of the extraordinary research conducted during the investigation included air
pollution measurements from an instrumented aircraft; LIDAR observations con-
ducted by NOAA; non-particulate organic contaminants analyzed by Battelle;
radiation measurements made by NCAR; and non-volatile particulate analyses,
using scanning electron microscopy/energy dispersive X-ray spectrometry,
conducted by the Structures Laboratory of DRI.
Prior to the research activities, DRI was active in coordinating the pre-
liminary efforts with EPA and the State of Colorado, in establishing monitoring
sites and the sampling networks, and furnishing logistic support, During the
investigation, DRI maintained the air pollution alert system, continued the
logistic support, and operated its own environmental laboratory in the field.
In June 1974, preliminary results of many of the studies were published
as preprints for the Air Pollution Control Association meeting. Only pre-
liminary results were reported because of the early date required for publi-
cation and restrictive page limitations.
In March 1975, DRI, through an EPA grant, conducted a three-day symposium;
comprehensive research reports from the Winter 1973 Denver Urban Plume Study
were presented. Volumes I and II contain the proceedings of this symposium.
DRI was responsible for the editing of the volumes. Volume III will be published
at a later date.
-------
-3-
CHARACTERIZATION OF DENVER'S URBAN PLUME
USING AN INSTRUMENTED AIRCRAFT
J. A. Anderson and D. L. Blumenthal
Meteorology Research, Inc.
Altadena, California
and
G. J. Sena
Thermo-Systems, Inc.
St. Paul, Minnesota
ABSTRACT
As part of an EPA coordinated air pollution study, an
extensive three-dimensional air pollution mapping program was
carried out in the Denver area "during a 10-day period in mid-
November, 1973. An aircraft instrumented to continuously measure
scattering coefficient, condensation nuclei, (X, NOX, CO, SO2, and
flight parameters was used in the study. The aircraft was also
equipped with instrumentation to measure the size distribution of
grab samples .
The sampling pattern was designed to study the characteris-
tics of the fresh pollutants in the morning drainage wind and those of
aged pollutants in the plume later in the day. The urban plume was
sampled during inversion conditions when it was trapped in a shallow
mixing layer and also during periods of good mixing and ventilationc
The plume was found to be well-defined and well-mixed. High
pollutant concentrations were observed aloft in power plant plumes
which were subsequently ventilated to the ground as the mixing layer
-------
deepenedo Photochemical processes were found to be important,
and the ozone level in the plume was found to vary from 0.00 to 0.08
ppm. The background level outside the plume was always measured
at between 0.03 and 0.05 ppm. The aerosol size distribution was
also found to change character as the plume aged.
INTRODUCTION
Airborne measurements of gaseous and particulate pollutants,
as well as meteorological parameters affecting the pollutants, were
made with MRI's Cessna 205. The aircraft was flown during a ten-
day portion of a major field experiment sponsored by the Environ-
mental Protection Agency and undertaken in the Denver area during
November, 1973. Although a number of different agencies partici-
pated in the experiments, the purpose of this paper is to present
selected airborne measurements and discuss these data in terms of
their contribution to the understanding of the urban plume produced
by Denver, Colorado.
A major emphasis of the experiment was to study the physical
and chemical characteristics of Denver's urban plume and the trans-
port processes that affect the plume. In particular, the choice of
both the airborne sampling paths and ground site locations were
made to best study the aging processes that take place in the plume.
Previously, Riehl and Herkhof ]-> , Crow3, and Riehl and
Crow4 have reported meteorological factors that affect air quality
in the Denver area. We are unaware of any previous airborne
measurements made on the Denver plume. Similar work, however,
has been done in other areas such as St. Louis5 •>6-»7.
Description of the Program
The MRI aircraft as described by Blumenthal and Ensor8
has been used extensively to measure the three-dimensional distri-
bution of air pollutants. The sampling instrumentation used in the
aircraft for the Denver study included fast time response monitors
for O3 , NOxj SO2 , CO, condensation nuclei, scattering coefficient,
temperature, relative humidity, turbulence, altitude, and position.
In addition, measurements of the size distribution of grab samples
were made by installing a TSI Model 3030 electrical aerosol size
analyzer in the plane „ Liu et al. 9 have described the use of such an
-------
-5-
instrument for the measurement of submicron aerosol size distri-
butions, and Liu and Piu'° have performed an extensive calibration
of the instrument. The size distributions were obtained in the
aircraft by rapidly filling a large plastic bag (about 60 liters) to
obtain the grab sample and then immediately analyzing the aerosol
in the bag with the size analyzer, as described by Sem.1 1
1 O
Blumenthal has described considerations for plume sampling
as being dependent on the specific objectives of the particular study.
One of the dominant meteorological factors in the Denver area is the
drainage flow that normally exists during the morning hours. This
flow carries the urban pollutant discharge northeast along the Platte
River Valley. Thus, to optimize sampling, horizontal traverses and
spirals were made at the points shown in Figure 1. Traverses at
various altitudes were made along the routes marked I, II, or III
and spirals were made at Standley Lake, Henderson, and near the
EPA trailer location. Both the Henderson and EPA spiral locations
were chosen because of ground measurements being made at these
points and their close proximity to the expected plume centerline.
The Standley Lake spiral was normally made to obtain useful back-
ground data. Unfortunately, sampling path II had to be terminated
at Interstate SOS since flights over the Rocky Mountain Arsenal were
prohibited.
Upper level wind data were obtained at both Arvada and the
EPA trailer using pilot balloons (pibals). These data, as well as
summaries of surface wind data, have been used in this paper and
are based on information collected during the study and reported by
i *j
Crow o Other data, including portions of the gas and bscat data
that were obtained at the EPA trailer and reported by Durham et al»,
were also used to support the conclusions arrived at in this paper.
Experimental Results
Aircraft sampling was performed a total of six days in
November, 1973. Data from three of these days are presented here
to illustrate various urban plume phenomena.
November 20 - Urban Plume Structure
November 20 represents an excellent reference point to begin
an air pollution episode. A snowstorm invaded the Denver area during
-------
-6-
Figure 1. Denver and the surrounding area. Sampling paths
and spiral locations are shown.
-------
-7-
the afternoon of the 19th and lasted until the early morning hours of
the 20tho Surface winds for the 20th were generally from the south
throughout the day, and thus the plume consisted of fresh pollutants
which aged as they traveled northward. The freshly cleaned air
mass outside the plume and the relatively constant net flow produced
an almost ideal sampling situation and a plume with a fairly simple
structure o Figure 2 indicates the streamlines at 1 1:00 a.m., as
well as an outline of the urban plume as determined by horizontal
traverses and photographs.
Figure 3 shows a cross section of the plume obtained at
6200 ft msl along sampling route II (see Figure 1) from Highway 287
to Highway SOS at about 10:00 a.m0 A distinct increase in NOX , CO,
and scattering coefficient at approximately the 1.5 mile point indi-
cates the western edge of the urban plume. A further increase in
NOX, SO2 , and scattering coefficient and a slight decrease in ozone
at the 4.5 mile point probably indicate penetration of the bottom
edge of the Cherokee power plant plume. The decrease in 03 is due
to scavenging of ozone by freshly emitted NO.
Figure 4 is a vertical profile taken near the EPA trailer at
10:55, an hour after the cross section in Figure 3. The temperature
profile indicates a slightly stable lapse rate with a weak inversion
starting at 6400 ft msl (about 1200 ft above ground). Up to about
5800 ft msl, the various pollutants are well mixed and occur in about
the same concentrations as were seen throughout the urban plume
cross section shown in Figure 3. Between 5900 ft and 6600 ft msl,
however, the power plant plume is superimposed on the urban plume
in a distinct, well-defined layer, the power plant plume being confined
by the weak inversion layer.
Characteristics of the power plant plume include high levels
of primary pollutants such as NOX, SO2 , and particulates and a very
low level of ozone due to scavenging by NO. This type of layer aloft
containing high concentrations of pollutants (in this case NOx )>0.5
ppm) can persist for long periods of time and can be transported
many miles before being ventilated to the ground when finally
entrained by a deepening mixing layer.
Above the inversion at about 6700 ft msl, the pollutant levels
drop off to virtually clean air values . Note, however, that the ozone
level is approximately 0004 ppm0 This level has been observed in
many areas of North America in very clean air and often represents
the ozone background level.15 In the urban plume below the power
-------
HENDERSON
Figure 2. Streamline analysis and location of urban plume,
November 20, 1973, 1100 MST.
-------
-9-
lOOXp
0 h
-, 100X
QUANTITY SYMBOL FULL SCALE
0.
Scat
NO
x
so2
CO
z
B
N
2
C
URBAN PLUME
-IM* 'OV' 03'
z-z 2-i:
"z-z- z-z"
s\ •'
J-O-U-O-0 \ .U-U-O
0.5 ppm
10 x 10 m
0.5 ppm
1 ppm
50 ppm
POWER PLANT
PLUME
f I
/ \ / \ z
X
(D-D
-ULN
1.5
Mile*
ft
•<
t.
£
Figure 3. Cross section of Denver urban plume at 6200 ft msl
along Sampling Route II. November 20, 1973, 1000 MST.
-------
QUANTITY SYMBOL FULL SCALE
GROUND
LEVEL
75-
Q
^
u.
1 1
0
to 65-
Q
LU
Q
— -^
^C
LU
O
13
t 55-
—l
«;«-
• N 9J 2
VjT^M fc
2 CT ~V__ __ B
• Z T Cs V B
^ -^ ^ — »"^""^
~^TZ_F ^^^y —
j H^ — z^,v-T^"^ ^^_____ _N
cJ^v^V^
v^ trNrz
/ CT NB'Z^
V CT N Vz
N ' 1 S -^^^
y CT H X,Z
v ~^ft Nf^"
CO C 50 ppm
0 Z 0.5 ppm
-4 -1
bc B 10 x 10 m
Scat
Temp T -5 to 45 °C
NO N 0.5 ppm
X
SO V 1 ppm
V
N
H
O
I
Percent of scale
100%
Figure 4. Vertical profile near the EPA trailer. November 20, 1973, 1055 MST.
-------
-11-
plant plume, the ozone level is considerably higher than the back-
ground level, indicating photochemical production of ozone.
Figure 5 is a vertical profile taken in the urban plume at
Henderson shortly before the one in Figure 4C Since the power plant
plume seen in Figure 4 was not directly over Henderson at this time,
no indication of it is seen in the profile „ The temperature profile at
Henderson indicates a slightly stable lapse rate with a weak inversion
beginning at 6200 ft msl, about 200 ft lower than the one at the EPA
trailer. The higher inversion level at the EPA trailer may be an
indication of the urban heat island effect.
The pollutant levels measured in the urban plume at Henderson
are similar to those presented earlier and indicate a plume which is
well-mixed, both horizontally and vertically. The plume at Henderson
is fairly uniform in concentration up to a level of about 5900 ft where
mixing is impeded and concentrations start to drop off, reaching
clean air values near 6400 ft.
Figure 6 is a vertical profile of the urban plume over the EPA
trailer at about 2:00 p,m. The wind is still from the south. Due to
surface heating, the mixing layer has deepened, yet pollutants are
still confined to a layer about 2000 ft thick. The power plant plume
is no longer well-defined on this or other afternoon traverses and has
evidently been entrained in the surface mixing layer. Integration
throughout the mixing layer shows that the total pollutant budget is
clearly higher than during the morning flight reflecting the entrain-
ment of the power plant plume and the overall accumulation of
pollutants during the day. It is interesting to note that photochemical
processes are active, even at temperatures of 0°C, and that the
ozone level in the mixing layer is approximately equal to the ambient
air standard of 0.08 ppm.
The data from November 20 verify several statements made
by Riehl and Herkhof .2 In a discussion of turbulent transport, they
surmise that "during daytime, the polluted layer must extend well
above 100 m with characteristics almost those of a mixed layer."
Figures 4, 5, and 6 indicate that, at least on November 20, the
polluted layer was well mixed during the day and extended up to
about 900 ft (or 300 m) in the morning and to 2000 ft (or 650 m) by
midafternoon. Similar characteristics were also observed on other
days. In addition, they conclude that "non-persistence of a tempera-
ture inversion through the noon hours is not a good guide for current
and subsequent air pollution levels." Figures 5 and 6 indicate the
-------
QUANTITY SYMBOL FULL SCALE
GROUND
LEVEL
75-
<7>
t 7°-
0
0 65-
UJ
OC
a
z
S 60-
UJ
^
K-
~ 55-
i
CT
50-
«I
/? I
"*** i
* TB
(!/\T •
Y-^l
/« V
, ^"s
^ »
V 'x
YTC^
"^T 9'
/v 19
V TC
V TC
Z
>
?
z
^ '
>
EiZ
H >B.
— M ^2^ — B
ZN B
•' B
^^E"
| Ni
* j*
^ B
CO
°3
bScat
Temp
NO
X
so2
C 50 ppm
Z 0.5 ppm
B 10 x 10~4 m"1
T -5 to 45°C
N 0.5 ppm
V 1 ppm
Percent of scale
100%
Figure 5. Vertical profile at Henderson. November 20, 1973, 1047 MST.
-------
QUANTITY SYMBOL FULL SCALE
GROUND
LEVEL
75-
oo
^ 70-
t
u_
o
!/> 65'
Q
UJ
O
z
g 60-
UJ
o
1- 55-
h-
1
If!.
i V* 8 2
; 1\^\ \
V CT "^S* ^
ff rj ^g 5
* C T XN7B
>!f Q7 ^*N*
v cCr^ N^5^~
^ ^~CT ~KZB
V TC 2 B N
y icv ^? BM
V 7C Z S~B
V Y * ;
v ^ ^v»
/^ c*> zS^*
V ~CT ^jift
v ir z B H
CO
°3
bScat
CN
/* Temp
/
^ S°2
x
^
^~^x
__J^;x
x
C 50 ppm
Z 0.5 ppm
B 10 x 10"4 m"1
X 10 cm~3 x 104
T -5 to 45°C
N 0.5 ppm
V 1 ppm
x~— — —
"~~ ^
$
|
^
Percent of scale
100 X
Figure 6. Vertical profile near the EPA trailer. November 20, 1973, 1400 MST.
-------
-14-
problem associated with using the inversion level to predict the
depth of the mixed layer and thus to some extent the surface concen-
trations o Using the inversion level in Figure 5 as a guide to mixing
depth would lead to an assumed mixing layer height of 6200 to 6400
ft msl or 1000 to 1ZOO ft above ground level. Using the actual
pollutant concentrations as an indicator of mixing layer height leads
to an actual mixing depth of only 600 to 800 ft. In Figure 6, no
significant inversion is indicated, yet the pollutants are reasonably
well-confined to a layer about 2000 ft deep»
November 21 - Pollutant Characteristics in the Urban Plume
November 21 represents the second day of an episode which
began during the morning hours of November 20. During the late
afternoon and evening of November 20, winds were light and
variable and a strong radiation inversion developed. Thus, pollutant
levels increased over the city. The morning of November 21 was
similar to that shown in Figure 2. By late morning, the wind field
had started to shift to an easterly flow, and shortly after noon the
wind speed increased abruptly to a strong flow from the east, moving
the pollutants up against the foothills to the west of Denver.
Figure 7 is a vertical profile taken at 0925 MST near the EPA
trailer site- Figure Sis another profile taken at the same loca-
tion at 1242 MST. Figure 7 shows a dense polluted urban plume
trapped beneath a strong radiation inversion with clean air above the
mixing layer. At this time, photochemical production of ozone
within the mixing layer had not yet exceeded the scavenging of ozone
by freshly emitted NO or by NO which had accumulated overnight.
The ozone level in the mixing layer was thus depressed from the
clean air level above.
Figures 9 and 10 illustrate in more detail the character of the
urban plume during the morning. The figures show aerosol size
distributions obtained at the low point of the spirals shown in Figures
7 and 8, respectively. Both surface and volume distributions are
plotted, along with the number distribution.
Whitby and his associates16'17have shown that combustion
sources generate fresh aerosol in the size range under 0.1 Mm.
diameter. However, as the aerosol ages and photochemical genera-
tion of new aerosol material occurs, the size distribution will shift,
-------
75-i*J« B 2
~ III \
3 ^ * ?
^ « *r 1 ?
t $ B ?
•!# B z
U- ii XB Z
ft i
S ^ ? *
* t T 1 /
Q V * ilZ
= , fB
Q * X
=> r a, B
1- 55- VC )* ^B
^ bif NB'
GROUND ^ *c *"
LEVEL
T
/ QUANTITY
7 CO
T o3
* o
7
-J bn
7' Scat
f Temp
\ NO
1 x
i SO
7^ 2
T
T ^* p
N; - B
N^^ B
N B
Percent of scale
SYMBOL
C
Z
B
T
N
V
Vertical profile near the EPA trailer. November 21,
*N *
ffiy QUANTITY
Si I CO
4, VI
Z TX Q
5 f 3
^ Tx 1,
zT Scat
i |I CN
1 V7 TemP
? ^t N0
? TX__ S02
z i $—~
Z 7 X
> ^___x
z t,xCT^
r \"~ic
, --,—_,., ,. f , , MM. . II-- ' -"— t •- -----I.. . I. _. 1.— .
SYMBOL
C
Z
B
X
T
N
V
FULL SCALE
50 ppm
0.5 ppm
, -4 -1
10 x 10 m
-5 to 45°C
0.5 ppm
1 ppm
100*
1973, 0925 MST.
FULL SCALE
50 ppm
0 . 5 ppm
10 x 10~4 nf 1
-3 1r>4
10 cm x 10
-5 to 45°C
0.5 ppm
1 ppm
WINDS ALOFT
(KNOTS)
6
^-
V
si
/
3f
/
I2
WINDS ALOFT
(KNOTS)
^
7^_
tr*^^-
20* — ~—
Cf^ -^__
Ln
1
0 Percent of scale ™%
Figure 8. Vertical profile near the EPA trailer. November 21, 1973, 1242 MST.
-------
fO
E
o
ro
TOTAL VOLUME = 28.1pm3 /cm3 < 0.36pm
TOTAL SURFACE=l229pm2/cm3 <0.36pm
uj 20
0
on
jst
Q.
<•
5 16
X
o.
o
o»
<
1 12
<3
2
0
r-
<
o: o
I- 8
UJ
o
0
o
o:
uj 4
CD
2
0
I
0
x^
(/)
<
- §12
1-
2
/ %
- I8
0
<
$
UJ
- g4
(T
13
CO
1
o
0
IUU
ro
E
o
i>
ro
- E 80
3.
_o-
O
CT
0
<
- > 60
_^^
<]
z"
o
r-
<
- £ 40
UJ
o
0
O
- £20
— }
*~J
0
>
1
D
0 •
.01
NUMBER
CONCENTRATION
SURFACE
CONCENTRATION
VOLUME
CONCENTRATION
.04 .07 .1 .2
PARTICLE DIAMETER, Dp,|im
Figure 9. Size distribution of aerosol obtained at lowest point of
spiral near EPA trailer (see Figure 7). November 21, 1973, 0925 MST.
-------
to
I
20
o
\-
16
Q.
O
, a
Z
O
LU
8
O
O
or
uj 4
CO
Z
Z)
•z.
I
0
ro
20
CM
o>
£
^
CO
16
UJ
o
8
lOOr
TOTAL VOLUME= 1.3pm3/cm3 <0.36pm
TOTAL SURFACE =!03um2/cm3 <0.36jjm
NUMBER
CONCENTRATION
SURFACE
CONCENTRATION
VOLUME
CONCENTRATION
ui
i
B
I
O
PARTICLE DIAMETER, Dp,pm
Figure 10. Size distribution of aerosol obtained at lowest point of spiral
near EPA trailer (see Figure 8). November 21, 1973, 1242 MST.
-------
-18-
and the aerosol will coagulate and accumulate in the 0. 1-1 Mm
diameter size range. This process is accelerated if the fresh com-
bustion aerosol is emitted into a background of aged polluted air
already containing large amounts of particulates in the 0.1-1 Mm
size range.
The surface distribution shown in Figure 9 includes both a
large peak at 0.25 Mm diameter (called the "accumulation mode" by
Whitby) and a much smaller inflection in the distribution at 0.07 /j.m
diameter. This indicates that the morning urban plume at this
location consists of a mixture of well-aged pollutants accumulated
overnight plus a small amount of freshly emitted effluents .
By the time the 1242 MST sounding (Figure 8) near the EPA
trailer was made, the wind shift mentioned earlier had occurred.
Cleaner, rural air had replaced the urban plume existing at this
location earlier in the day (0925 MST, see Figure ?)„ In Figure 8,
the ozone level is at a clean air value, other pollutant levels are
quite low, and the temperature inversion has disappeared. The
surface area distribution shown in Figure 10 indicates a small
amount of fresh combustion aerosol from an unidentified source
nearby, but no large "accumulation" mode is present.
Figure 11 is a profile taken over Standley Lake at 1134 MST.
This profile shows the change in character of the urban plume as it ages.
The air in the mixing layer had probably traveled north from Denver
and then moved westward with the wind shift. It had thus had a
chance to age for a few hours since passing over a concentrated
source area. The profile was taken before the abrupt increase in
wind speed and an inversion layer is still present. The mixing
layer has deepened since the morning sounding due to surface
heating, but the plume is still confined within a layer about 1000
feet deep.
Primary pollutants such as CO, SC>2 3 and NOX have remained
at relatively high values; but ozone, a secondary pollutant, has now
increased above the clean air value, equalling the Federal ambient
air standard of 0.08 ppm in places. Figure 12 is a size distribution
obtained at the bottom of the spiral shown in Figure 11. A well
developed "accumulation" mode is seen with little evidence of fresh
combustion aerosolo
Thus, as the urban plume ages in the absence of fresh
emissions and in the presence of sunlight, the aerosol size distri-
bution shifts to the "accumulation" mode, the rate of production of
-------
-19-
ARVADA WINDS ALOFT
GROUND
LEVEL
75-
'-
CO
U-
U-
O
NDREOS
ffv
I60'
UJ
1-
_i
SC-
Y 9W V | T
* p-l^x z >
(%"
-------
IO
o
K)
J320
o
QC
Q.
2 16
o.
Q
12
z
UJ
Q
8
o
o
tr
CD
E
a.
CO
CC
UJ
O
O
UJ
UJ
CO
I
O
100 r
TOTAL VOLUME = 25.2 pm3/cm3 <0.36pm
TOTAL SURFACE = 969 pm2/cm3 <0.36pm
SURFACE
CONCENTRATION
NUMBER
CONCENTRATION
VOLUME
CONCENTRATION
i
r-o
o
PARTICLE DIAMETER, Dp, pm
Figure 12. Size distribution of aerosol obtained at lowest point of spiral
over Standley Lake (see Figure 11). November 21, 1973, 1134 MST.
-------
-21-
ozone surpasses the rate of scavenging, and the ozone level increases.
Although it was not measured independently by the aircraft, the EPA
van data shows that, as the plume ages, the NOx shifts from being
mostly NO to mostly NO2. This is consistent with the increase in
the ozone level.
o
Riehl and Herkhof in their studies had assumed that aerosol
mass was a good indicator of the source strength of the city and that
it was a conservative quantity. It is evident from our results that
photochemical processes occur in the Denver area, and that the
size distribution in the plume changes with time. One must use
caution when assuming that aerosol mass or other aerosol parameters
are conservative quantities since photochemical production of aerosol
is a definite possibility.
November 15 - Urban Plume Structure
During the afternoon and evening of November 14, strong
synoptic westerly winds swept the Denver area clean of existing
pollutants. The winds continued through the early morning hours
(1:00 -5:00 a.m.) of the 15th; however, by 7:00 a.m., the surface
winds reported at Stapleton Airport were 210° at 6 knots. Stapleton
continued to report southerly winds at less than 10 knots until
11:00 a.m. Although upper level winds were not recorded on the
15th, it is evident that urban emissions were quickly transported
from the area during the early morning hours. As synoptic influences
lessened, pollutant transport became more dependent on local flow
patterns. Thus, the drainage flow that developed after 5:00 a.m.
moved a fresh urban pollutant discharge northeast along the Platte
River Valley. Shortly after 11:00 a.m., the drainage flow was
interrupted as the winds increased and became more easterly, moving
the pollutants up against the foothills to the west of Denver.
Figures 13 through 16 show comparisons of vertical soundings
and size distribution data at Henderson and near the EPA trailer
location. The vertical profile near the EPA trailer at 9:39 a.m. is
shown in Figure 13. Two penetrations of the Cherokee power plant
plume (6000 and 6400 ft msl) during the sounding are indicated by the
increased levels of NOx and SO2, with reduced levels of ozone due to
scavenging by NO« The urban plume beneath the base of the power
plant plume was composed primarily of fresh pollutants. Although
some aging has occurred, Figure 15, "A size distribution at the
bottom of the profile," shows that about 65 percent of the surface
-------
- 75-1 QUANTITY
UJ
UJ
u_
It-
CD 70-
cn
Q
UJ
Q 65 -
z
i
• — •
LJ 60 -
O
3
1-
< 55'
GROUND
LEVEL 50-
W t\ ? T 03
y* B x ? T b
VN B x z tx Sea1"
i!' ? \ ? T fM
v:i e xz T »-'•"
t \k Tx \ Temp
V HQ 7 "VT T
ni 2 \ T NO
V f|ip 2 NX_j[^ X
\H^--^2_ T ^ o
\V^r:H i rx ^
V *-^~'""'2 T X
V »/B. ^ l' ~~~X
V H ^? *x T X
2V ti V TN
V~~~ ZB'' H T
^ ^2' ^ t~N.
t? B-^ t ~"N-— _
V 2 B' \ N"^^
* ? % * K
0 PERCENT OF SCALE
SYMBOL
Z
B
X
T
N
V
FULL SCALE
0.5 ppm ..
10 x 10~4 m
10 cm"3 x 104
-5 to 45°C
0 . 5 ppm
1 ppm
x
X
x"
1
X
X
TT
100
Figure 13. Vertical profile near the EPA trailer. November 15, 1973, 0939 MST.
QUANTITY
~ 75-i
\-
UJ
1 1 1
u_
o 70"
cn
Q
UJ
a: 65-
Q
•3
I
~" 60 -
UJ
Q
\—
"5 55-
<
GROUND
i e\/Fi sn -
y» B 2 T 0_
Vf E ? T v3
tT ! ? t Scat
yt\ r ? ^ /->\T
VNXB 7 T ^ '
JJ |JX i 1 Temp
$ 1" rl i NO
V,^?^ Ts X
.ZV_J<. T~ N XX •3'-'i
Z XEVN T "^H^N
x"-V*V^— -— " NT ^ X
| *"* 1 ] Xx_
V ^L_ "
-------
to
uj 20
o
f-
CL
S
ex
o
0»
o
12
<
a:
8
UJ
o
o
o
o:
uj 4
00
2
ID
24
20
K)
O
O.
O
o>
o
8
UJ
o
z
o
o
UJ
5 4
o
i
a
o
I2r
TOTAL VOLUME = I2.3pm3/cm3<0.36pm
TOTAL SURFACE = 868pri^/cm3 <0,36)jm
VOLUME
CONCENTRATION
SURFACE
CONCENTRATION
NUMBER
CONCENTRATION
PARTICLE DIAMETER, Dp, pm
Figure 15. Size distribution of aerosol obtained at lowest point of spiral
near EPA trailer (see Figure 13). November 15, 1973, 0939 MST.
-------
ro
d2°
I-
oc
a.
^ |6
x^
o.
o
z
o
UJ
o
o
o
(E
8
20
to
o
ro*
a.
a
o>
o
- 5> 12
O
Z
UJ
o
z
o
o
UJ „
S 4
o
Q
TOTAL VOLUME * 3.0 um3/cm3 <0.36pm
TOTAL SURFACE « 261 pm2/cm3 <0.36pm
•NUMBER
CONCENTRATION
JS
I
SURFACE
CONCENTRATION
VOLUME
CONCENTRATION
.02 .04 ,07 .1 .2
PARTICLE DIAMETER, Dp,jjm
Figure 16. Size distribution of aerosol obtained at lowest point of spiral
at Henderson (see Figure 14). November 15, 1973, 0927 MST.
-------
-25-
area concentration appears to have been fresh aerosol with a mode
at 0.04 /urn. The age of the urban plume is also indicated by the
reduced level of ozone within the mixed layer. The depletion is due
to the scrubbing action of NO, indicating that much of the measured
NOX is the result of recent emissions. The temperature profile
indicated a slightly unstable lapse rate from the surface to 5600 ft
msl. From 5600 to 6800 ft msl, the lapse rate was nearly iso-
thermal, and above 6800 ft less stability existed. No significant
inversions were recorded during the profile.
The Henderson profile and the size distribution obtained at
the low point of the profile are shown in Figures 14 and 16. The
power plant plume is above the urban plume and is trapped in an
isothermal layer that extends from. 5800 to 7100 ft msl. The
associated NOX, 03, and SO2 concentrations in the power plant
plume indicate that the sounding was made closer to the plume
centerline than during the EPA sounding. The strong deficit of
ozone implies the presence of fresh NO in the plume.
Integration of NOX through the mixed layer (surface to 6000 ft
msl) shows that the urban pollutants at Henderson are about half of
those measured at the EPA trailer location„ This reduction is also
evident in the aerosol volume and surface distributions for the two
sites. At the trailer location, the total volume = 12.3 jum3/crn.3<
0.36 Mm and the total surface = 868 Mm2/cm3 (0.36 Mm, while at
Henderson the total volume = 3.0 Mm3 /cm <(0.36 Mm and the total
surface = 261 Mm^/cm^ <_0036 Mm. Considering the air mass
history, it is reasonable to expect that the leading edge of the
morning urban pollutant discharge was just reaching Henderson at
the time of the profile. Photographs and visual observations
during the flight support the measurements.
Evidence of aging in the urban plume measured during the
Henderson profile is apparent. Figure 14 shows that the ozone
concentrations have increased while the condensation nuclei values
are nearly half of what was measured in the urban plume during the
profile near the EPA trailer. The CN concentrations indicate the
presence of some fresh pollutants. In Figure 16, the number distri-
bution also indicates the presence of some fresh combustion or
photochemical aerosol, but the surface and volume distributions
indicate that the aerosol is primarily aged.
-------
-26-
The urban plume seen in the Henderson profile is well-mixed
up to 5900 ft msl, at which point pollutant concentrations begin to
decrease. It is obvious that the power plant plume has not been en-
trained at this location in the well-mixed urban plume below it. Above
6800 ft msl, the ozone has reached the clean air value of 0. 04 ppm.
Figures 17, 18, and 19 show horizontal traverses made by the
aircraft along sampling route III (see Figure 1), while Figure 20 is a
size distribution obtained during the 6000 ft msl traverse shown in Figure
17. The traverses were made between 8:41 a.m., and 9:08 a.m., prior
to the soundings shown in Figures 13 and 14. la Figure 17, the power
plant plume near Henderson is easily identified by the high NOxand SO2
concentrations along with the absence of ozone. The distinct increase
in NOX and scattering coefficient to the west of the power plant plume
are indications of a portion of the urban plume. Although not positively
identified, the NOx > SO2 , scattering coefficient, and ozone to the east
of Henderson, as seen in Figures 17, 18, and 19, are most probably
due to the power plant plume rather than the urban plume.
The concentrations to the east of Henderson are believed to
be associated with the power plant plume because:
1. Figure 14 shows that the urban plume was mixed from the surface
to 5900 ft msl, but the profile was made nearly 45 minutes after
the traverse shown in Figure 17. It is reasonable to expect the
mixing depth would increase rather than decrease as surface
heating took place. Therefore, the urban plume should have been
trapped at 5900 ft msl or lower during the time the traverse was
being made;
2. The 6500 ft msl traverse shown in Figure 18 again shows the
power plant peak, identified by the NOX , SO2 , and ozone con-
centrations, to be located near Henderson. Since the terrain
to the east along the sampling path is lower than to the west, and
since the plane was above the urban concentrations that were
seen to the west during the 6000 ft msl traverse, it is reasonable
to assume the plane would also be sampling above the urban
plume during the eastern portion of the 6500 ft msl traverse.
The same logic applies for the 7000 ft msl traverse shown in
Figure 19; and
-------
100
URBAN PLUME
SIZE
DISTRIBUTION
\
OL
POWER PLANT PLUME-
QUANTITY SYMBOL FULL SCALE
°3
bScat
NO
SO*
Z
B
N
2
0.5 ppm
10 x 10~ m
0.5 ppm
1 ppm
i
~
-i 100
u
Figure 17. Sampling traverse at 6000 ft msl along sampling route III.
November 15, 1973, 0844 MST.
-------
ioor
-i 100
•POWER PLANT PLUME
QUANTITY SYMBOL FULL SCALE
0,
Scat
NO.
so";
x
Z
B
N
2
0.5 ppm
10 x 10~4 nT1
0.5 ppm
1 ppm
o
en
u.
O
O
CE
10
12
z
O
If}
cc
z
UI
I
MILES
13
cc
O
Figure 18. Sampling traverse at 6500 ft msl along sampling route III.
November 15, 1973, 0855 MST.
CO
I
-------
lOOr
-i 100
QUANTITY SYMBOL FULL SCALE
0,
Scat
NO
SO
x
Z
B
N
2
0.5 ppm
10 x 10~4 m"1
0.5 ppm
1 ppm
z
UJ
•POWER PLANT PLUME-
-"-"- JO
0
CO
*
10
12
MILES
o
IT
UJ
O
Z
UJ
X
13
or
O
Figure 19. Sampling traverse at 7000 ft msl along sampling route HI.
November 15, 1973, 0904 MST.
-------
10
UJ 20
.^J
0
H
tr
12
<]
z"
o
H-
• t- 8
z
UJ
0
O
O
UJ
h 2 4
13
_J
O
>
i
Q
0
- £ 10
3.
O
^™
X
Q°-
- §•&
O
^^1
5
^
#0
z
' ?6
>-
o:
z
UJ
o
- §4
o
UJ
cc
^
Ul
"" ^r 2
2
CC
(O
1
O
0
.0
TOTAL VOLUME = 3.4 pm3/cm3 <0,36pm
TOTAL SURFACE = 269pm2/cm3 <0.36pm
NUMBER
CONCENTRATION
i
U)
o
SURFACE
CONCENTRATION
VOLUME
CONCENTRATION
PARTICLE DIAMETER, Dp , pm
Figure 20. Size distribution of aerosol obtained at 6000 ft msl along sampling
route III (see Figure 17). November 15, 1973, 0843 MST.
-------
-31-
3. Figure 14 shows that the urban plume could not have been mixed
to 7000 ft msl. Therefore, the concentrations encountered east
of Henderson in all three traverses could not have been associ-
ated with the lower level urban plume.
Although the aircraft was generally above the urban plume during
the 6000 ft msl traverse shown in Figure 17, the rising terrain to the
west of Henderson was enough of an influence to allow a portion of the
urban plume to be sampled between Henderson and Highway 87. The
size distribution shown in Figure 20 was taken in the urban plume portion
of the 6000 ft msl traverse and the location of the sample is indicated in
Figure 17. The distribution shows definite fresh combustion or photo-
chemical aerosol with a surface distribution mode at about 0. 05 jum.
Approximately 30 percent of the aerosol volume smaller than 0. 36 /urn is
either fresh combustion or photochemical aerosol.
CONCLUSIONS
1. Under the conditions measured, Denver was shown to have a well-
developed and well-mixed urban plume which varied in thickness
from 500 to 2000 feet depending on the stability and the amount of
surface heating. The temperature lapse rate, however, was not
always a good indicator of mixing depth.
2. Large buoyant stationary source plumes generate layers aloft
•which are ventilated to the surface when the mixing layer deepens.
These plumes are characterized by high levels of primary
pollutants and a deficit of ozone relative to the surrounding air.
3. The chemical and physical characteristics of the urban plume
constituents change as the plume ages. In the presence of NO
sources, and in the absence of photochemistry, ozone is
scavenged; but when sunlight is present, photochemistry is
important, and ozone levels in the urban plume can reach or
exceed the Federal ambient air standards. Photochemical
production of aerosol may also occur in the plume.
4. The aerosol size distribution changes shape as the plume ages,
and the submic ron aerosol accumulates in the 0. 1 to 1 Mm
diameter size range.
-------
-32-
5. The ozone level in clean air outside the urban plume was
measured at 0. 03 to 0. 05 ppm on all flights, while the level
in the plume varied from 0. 00 to 0. 08 ppm depending on the
level of photochemical activity and the amount of scavenging by
other pollutants.
ACKNOWLEDGEMENTS
This research was funded by the Environmental Protection
Agency, and was performed in cooperation with Dr. Jack Durham and
Dr. William Wilson of EPA. Some of the instrumentation used on board
the aircraft was kindly made available to the project by the California
Air Resources Board.
REFERENCES
1. H. Riehl and D. Herkhof, Weather Factors in Denver Air
Pollution, An abridged version of the final report to the
U. S. Dept. of Health, Education, and Welfare, Dept. of
Atmospheric Science, Colorado State Univ. , ASP #158, 1970.
2. H. Riehl and D. Herkhof, Some Aspects of Denver Air
Pollution Meteorology. J. Appl. Meteor., 11, 1040(1972).
3. L. W. Crow, Air Pollution in the Denver Area. Public Service
Company of Colorado, 1967 (Pamphlet).
4. H. Riehl and L. W. Crow, A Study of Denver Air Pollution.
Atmospheric Science Technical Report No. 33, Colorado State
Univ., 1962.
5. R. B. Husar, D. L. Blumenthal, J. A. Anderson, and
W. E. Wilson, The Urban Plume of St. Louis. Presented at the
166th National Meeting of the American Chemical Society, Los
Angeles, California (April, 1974).
6. J. F. Stampfer and J. A. Anderson, Locating the St. Louis
Urban Plume at 80 and 120 km and Some of its Characteristics.
Atmos. Environ., Vol. 9, No. 3, March 1975, 301-313.
7. Fate of Atmospheric Pollutants Study, NCAR, personal comments.
-------
-33-
8. D. L. Blumenthal and D. S. Ensor, The Use of Light Aircraft to
Measure the Three-Dimensional Distribution of Air Pollutant.
Presented at 1974 Annual Meeting of the Air Pollution Control
Association, Pacific Northwest International Section, Eugene,
Oregon (November, 1972).
9. B. Y. H. Liu, K. T. Whitby, and D. Y. H. Pui, Portable Electrical
Aerosol Analyzer for Size Distribution Measurement of Submicron
Aerosols. J. Air Pollution Control Assoc., 24, 1067-1072 (1974).
10. B. Y. H. Liu and D. Y. H. Pui, On the Performance of the Electrical
Aerosol Analyzer. J. Aerosol Science, 6, 249-264 (1975).
11. Sem, G. J., Design and Application of an Electrical Size Analyzer
for Submicron Aerosol Particles. Presented at the Analytical
Instruments Division of the Instrument Society of America Symposium,
Philadelphia, Pa., May 6-8, 1975. Proceedings available as ISA
Publication AINSB8 13 1-154 (1975), Analysis Instrumentation,
Volume 13, ISA, 400 Stanwix St., Pittsburgh, Pa. 15222 (1975).
12. D. L. Blumenthal, Measurement of Physical and Chemical Plume
Parameters Using an Airborne Monitoring System. Paper No. 73-AP16,
presented at the 1973 Annual Meeting of the Air Pollution Control
Association, Pacific Northwest International Section, Seattle,
Washington (November, 1973).
13. L. W. Crow, Airflow Study Related to EPA Field Monitoring Program
Denver Metropolitan Area November, 1973. Report LWC //128, prepared
for Chemistry and Physics Laboratory, Environmental Protection Agency,
February I, 1974.
14. J. Durham, T. Ellestad, and R. Patterson, Denver 1973 EPA Mobile Lab
Data, Final Distribution of the AARS Mobile Lab's Meteorological,
Gas, and b Data, February 1, 1974.
S Ccl t
15. D. L. Blumenthal, T. B. Smith, W. H. White, S. L. Marsh, D. S. Ensor,
R. B. Husar, P. S. McMurry, S. L. Heisler, and P. Owens, Three-
Dimensional Pollutant Gradient Study - 1972-1973 Program. Final Report
MRI 74FR-1262 submitted to the California Air Resources Board, Agree-
ment Nos. ARE 631 and 2-1245.
16. K. T. Whitby, R. B. Husar, and B. Y. H. Liu, The Aerosol Size
Distribution of Los Angeles Smog, J. of Colloid and Interface
Science, 39, 211 (1972).
17. K. T. Whitby and R. B. Husar, Growth Mechanisms and Size Spectra of
Photochemical Aerosols. Environ. Sci. and Technol., 7, 3, 241 (1973).
-------
-35-
MEASUREMENTS OF AEROSOL OPTICAL PROPERTIES
A. P. Waggoner
R. J. CharIson
University of Washington
Seattle, Washington 98195
ABSTRACT
Measurement of aerosol optical properties have been made in Denver
and at various rural and urban sites in California and" Missouri. Meas-
ured particle scattering coefficient has been shown to be highly corre-
lated with particle volume in the 0.1 to 1.0 ym range of particle
diameter. At times a single ionic substance (NaCl at Pt. Reyes, CA,
and H2S04/(NH4)HS04/(NH4)2S04 at Tyson, MO) controlled the aerosol op-
tics as a function of relative humidity.
INTRODUCTION
The aerosol is composed of particles that range in size from
smaller than 0.01 ym to larger than 10 ym diameter. The particles are
of various chemical compositions and each particle can be a mixture of
substances or a single substance. The integral optical effect of the
aerosol particles is dependent on all of these parameters. Atmospheric
optical properties normally considered would include those of interest
from a human impact standpoint, i.e., visibility and colored haze, and
those of scientific interest, i.e., scattering and absorption extinc-
tion coefficients.
Techniques have been developed at the University of Washington for
direct measurement of aerosol optical properties. These measured param-
eters have been compared to other methods of characterizing the aerosol
impact such as visibility or particle mass loading.
-------
-36-
ATMOSPHERIC OPTICS AND VISIBILITY
It is convenient to define several parameters commonly used to
describe atmospheric optics.
The extinction coefficient bext of a real atmosphere defines the
change in intensity of light traversing a pathlength Ax by the Beer-
Lambert law:
^ = -b Ax (1)
I ext
b is the sum of two terms:
ext
b = b (gases) + b (particles)
ext ext V6 ext ^^ '
b (gases) = b^, + b , where
ext v& Rg ag'
b Ax is the fraction of incident light scattered into all direc-
° tions by gas molecules in Ax.
b Ax is the fraction of incident light absorbed by gas molecules
ag in Ax.
Our interest is in b (particles) which can be broken down as
follows:
b (particles) = b + b (2)
ext ap sp
where b Ax is the fraction of incident light absorbed by particles in
ap Ax.'
b Ax is the fraction of incident light scattered Into all direc^
o ~r\
tions by particles in Ax.
The observer visibility, or visual range, is that distance at which
a black object can be just discerned against the horizon. Koschmieder
showed that a turbid media, such as urban air, reduces the contrast
(ratio of brightness of an object to the horizon brightness, minus one)
of distant objects as given by
~bext X (Middleton2) (3)
Ci — L* e
o
where C and C are the contrast relative to the horizon of an object
at zero distance and at distance x. A black object has a CQ of -1.
Experiments have determined that typical observers can detect objects
on the horizon with a visual contrast of 0.02 to 0.05. Assuming hori-
zontal homogeneity of aerosol properties and illumination and a 0.02
detectable contrast, the visible range is
•v - F:
ext
-------
-37-
For a contrast of 0.05,
•v -
ext
Usually the assumption is made that b = b
b can be calculated from known or assumed aerosol particle size
distribution, concentration and refractive index, as discussed below.
PARTICLE OPTICS
The scattering extinction coefficient due to particles, b , can
be calculated if the particle size distribution, number concentration
and refractive index are known and the particles are assumed to be
homogeneous spheres. None of the above assumptions are usually true
but the results of calculations show useful agreement with atmospheric
optical measurements. Figure 1 shows calculated b per volume of par-
ticle as a function of particle diameter.
The value of b is the product of the curve in Figure 1 times the
particle volume distribution function. The aerosol particle volume per
log radius interval usually is similar to that of Figure 2, bimodal
with the two volume modal diameters about 0.6 ym in the 0.1 ym to 1.0
diameter range, as shown in Figure 2. In all the measurements we have
made, the particles in the 0.1 to 1.0 decade dominate scattering extinc-
tion in the visible spectrum although there clearly are cases in fogs,
rain, snow, clouds and dust storms in which large particles influence
or dominate visible extinction.
The correlation of bgp measured with an MRI 1550 nephelometer, and
0.1 to 1.0 ym diameter particle volume, measured using an electrostatic
mobility and single particle optical counters from Thermo Systems, was
0.95 at various locations in the Los Angeles basin. These measurements,
shown in Figure 3, are from the 1973 State of California Air Resources
Board ACHEX^ program.
A correlation of bsp with the supermicrometer volume mode is not
expected unless the submicrometer and supermicrometer volume modes hap-
pen to be correlated. Thus in this qualitative sense we would not ex-
pect to find a particularly good correlation between bg_ and measured
total mass concentration, for example with the high volume air sampler.
It is somewhat surprising, in view of this, that the measured cor-
relation coefficient between bsp and total aerosol mass concentration
is as high as the observed range between 0.5 and 0.9. While the former
value is not impressive nor particularly useful, the latter is suffi-
ciently high to allow inference of mass concentration from b . Table
1 summarizes the various published correlations of b and mass. In-
cluded in the table are correlation coefficients, r, and regression
constants A and B.
-------
-38-
SCATTERING COEFFICIENT PER VOLUME
12
CM
CD
3
0.01
0.1
1.0
10
PARTICLE DIAMETER, ym
Figure 1. Scattering coefficient per particle
divided by particle volume plotted as
a function of diameter. The particles
are assumed to be spheres of refractive
index 1.50 illuminated by 550 run light.
-------
-39-
to
£
o
J
O
UJ
_j
o
Q:
CL
oc
UJ
»-
CO
Q
o:
C9
POMONA 21-AQ
10-5-72
MEASURED
0.01
O.I
1.0
10
CD
o:
UJ
H
K-
o
CO
o
cr
UJ
CO
ir
o
O.OJ
Figure 2. Top:
O.I
— CALCULATED
1.0
JO
PARTICLE DIAMETER,
Aerosol particle size distribution
measured at Pomona during 1972 State
of California Air Resources Board
ACHEX program.
Bottom: Calculated optical scattering by
particles, b , for the measured size
distribution. The particles are assumed
to be spheres of refractive index 1.5.
-------
e
o
c-
o
200
100
OU
VOLUME, 0.1 - 1.0 pm VS. b
TWO HOUR AVERAGES FROM
WEST COVENIA, RUBIDOUX
POMONA, DOMINGUEZ HILLS
CORRELATION COEFFICIENT » 0.948
10
b , IN UNITS OF 10'V1
15
20
I
4^
o
Figure 3. Plot of measured aerosol particle volume including only those of
0.1 to l.Oym diameter versus measured b •. Measurements were
part of State of California Air Resources Board ACHEX program.
Data was supplied by Dr. Clark of North American Rockwell.
-------
TABLE 1. SUMMARY OF LIGHT SCATTERING-FILTERABLE PARTICULATE MASS CONCENTRATION STUDIES
^x. Mass
^x. Sampling
^xMethod
Location ^\.
(Reference) ^\
Los Angeles (4)
Oakland, CA (4)
Sacramento, CA (4)
New York, NY (5)
San Jose, CA (5)
Seattle, VIA (5)
Boston, MA (6)
2.5 cm dia.
open face,
glass fiber
filter
r A B
0.83 -0.57 2.4
0.69 -0.40 1.3
0.95 0.0 2.2
— — —
— — —
0.83 -0.08 3.5
— — —
2.5 cm
dia.
Nuclepore
filter
r A B
— — —
— — —
— — —
0.92 -0.33 3.0
0.56 1.5 1.7
— — —
— — —
High
Vol ume
Air
Sample
r A B
0.53 -0.09 3.3
0.86 -0.61 2.4
0.93 -0.56 2.8
— — —
— — —
0.73 -0.26 3.6
0.86 0.15 2.0
Glass Fiber
filter behind
Lippmann-Harris
Cyclone
r A B
0.83 0.33 3.7
0.79 0.34 3.2
0.98 0.13 4.4
— . - — —
— — —
— — —
— — —
The parameters are: r = linear correlation coefficient; ? ^
A and B defined by bsp(10"V') = A + 10~^B (yg/nr).
-------
-42-
The correlation coefficient of 0.9 in New York City must be due to
either a correlation between the upper and lower volume (i.e., mass)
modes or an absence of the upper mode. The location at the 16th floor
of a Manhattan building suggests the latter since it was well removed
from sources of wind blown dust and other mechanically produced
particles.
In contrast, the low correlation coefficient in San Jose, CA, of
0.6 was obtained at a dusty athletic field, with the air intake at ap-
proximately 7 meters above the ground. In this case, the poor correla-
tion was likely due to a large and variable fraction of the aerosol in
the supermicrometer mode.
The wavelength dependence of bsp depends almost exclusively on
particle size distribution'. The results of measurements to date re-
garding the wavelength dependence fall into two categories. If the
wavelength dependence is described by a simple power law:
b « x~a (6)
sp
where a is an experimentally determined exponent, the two categories
are:
1. Normal wavelength dependence where 0.5 _< a _< 2, with a mean
value of approximately 1.2.
2. Anomalous wavelength dependence where -1 <_ a < 0.
The former case results in the attenuation of blue light from a
direct beam and its scattering into 4ir steradians around the scattering
volume. Of course, Rayleigh scattering always occurs simultaneously
and has a wavelength dependence that is similar:
bRg - A'4 (7)
As a result, blue scattered light (against a dark background) or red
transmitted light (from the sun or a bright white object) is no indi-
cation by itself of the presence of particles. Whether bsp or b^g
dominates is determined by the amount of particulate matter that is _
present. In remote, clean marine locations at sea level, Porch et al.
showed that b j< b^g at 500 nm. In continental, low altitude sites,
bsp is usually larger than bjjg, so that such hazes can often be assumed
to be dominated by bsp. However, clean arctic air intruding or air from
aloft subsiding into mid continent cities occasionally produce bsp
-------
-43-
is much above two, the blue haze has a significant input due to
On the other hand if the product of bsp times distance is of this mag-
nitude, then the haze is likely to be due to particles. Since
bRg 530 nm = 0.15 x lO'^nT , if bgp ^ 03 mountains should not appear
to be behind a haze if they are within 10 km. or so. They will, how-
ever, appear hazy if the distance is much more than 100 km. due to the
omnipresent scattering by gas molecules. Conversely, if such a distant
mountain is not visible at all, bgp » b^g and the haze is due to par-
ticles .
When viewing bright objects (the sun and moon, sunlit snow-capped
peaks and cumulous clouds) hazes with 1 _< a j< 2 of sufficient optical
depth cause the color to be reddened^'". The color thus produced is
remarkably similar to that observed through an optically thin layer of
NO210 so that the presence of color thus viewed is no proof of the
existence of N02» To further complicate this issue, HusarH has shown
that light scattered in the backward hemisphere calculated from typical
measured size distribution is enriched in the red wavelengths> also
causing the haze itself to appear reddened. In forward scatter this
same haze appears white. Charlson-'-^ showed that, in perhaps 20% of the
measured cases during August, 1969 in Pasadena, CA, there was enough N02
to influence the coloration of white objects viewed through the haze and
that in the remaining cases particles dominated the wavelength depen-
dence of total extinction (bext)•
MOLECULAR COMPOSITION
The particle interaction with water, biological effects and complex
refractive index depend on the molecular composition. Therefore, it is
important that the composition of various aerosol systems be classified,
particularly insofar as this determines the imaginary part of the re-
fractive index and hygroscopicity. Unfortunately, this is an area in
which so far very little work has been done. Rasmussen -* suggested
that organic materials (terpenes) are a major source of atmospheric
particles, but did not quantify the work adequately for application
to optics. The reaction products of S02 with water and ammonia have
been shown to play an important part in urban and rural aerosols by
Junge ^ although he did not attempt to relate quantitatively the com-
position with optical effects. We have preliminary data suggesting
that continental aerosol optics is often dominated by H^SO^ and the
products of its neutralization with NH^l^jlS,
The molecular nature of individual particles is a function of the
source and removal mechanisms for these particles. The most important
observable effect of composition on particle optics is the relationship
of b and relative humidity.
-------
-44-
RELAT1VE HUMIDITY EFFECTS
The humidity effects in aerosol optics fall into three categories:
RH _< 100%: particles between and above water cloud
(including high RH hazes);
RH > 100%: unactivated particles in water clouds and fog;
RH > 100%: activated cloud droplets.
Our efforts have been limited to the first case and are discussed
in the following paragraphs.
Since a large fraction of submicrometer particles are hygroscopic
or deliquescent-*-4-18 the size distribution of an atmospheric aerosol
and hence its optical or climatological properties, depend largely on
relative humidities, even at RH < 50%.
First, light scattering always increases with humidity, although
for relatively hygrophobic systems the increase may be very slight up
to extremely high RH. While for most aerosols, such as ^804 droplets
the curve increases monotonically, definite inflection points due to
deliquescent salts are seen at some locations indicating the dominance
by rather pure inorganic substances such as (NHA)?SO/, or sea salt
(Nad) 15,1&, 19. 4
The evolution of a distribution of droplets under conditions of
changing, subsaturation RH modifies the optical interactions between
radiation and particles, thus'changing the temperature of the environ-
ment of the particles and hence in turn the relative humidity. This
complex chain of events cannot be satisfactorily modelled until the
parameters which go into the models (dependence of particle growth on
chemistry, optical properties of saturated and supersaturated droplets,
etc.) and the basic physical principles of the component processes are
understood.
A system has been designed and operated by this laboratory that
(over a period of about 120 seconds) sweeps the relative humidity of
air containing aerosol particles from 30% to 95%. Changes in particle
diameter are detected as changes in the scattering coefficient of the
aerosol particles^,16,19.
In the midcontinent region 30 km southwest of St. Louis, this
system detected ^SO^/tNH^HSO^/tNH^SO^ as dominate materials in the
0.1 to 1 ym decade of aerosol size. Injection of sub ppm concentra-
tions of NH3 converted the bsp(RH) response characteristic of ^SO^ to
that of (NH^^SO^. The (NH^^SO, is detected by comparing the value of
relative humidity at the deliquescence point for the unknown sample
with that of laboratory-generated (NH^^SO^ aerosol. 98% of the time
-------
-45-
either t^SC^ or (NH^KSO, was the dominant substance in terms of optical
effect15'16.
TECHNIQUES FOR MEASUREMENTS OF RELEVANT OPTICAL PROPERTIES
In the past several years our efforts have been focused on design
and testing of methods to measure aerosol optical properties that
directly determine aerosol radiative interactions. Methods for measure-
ment of these relevant integral aerosol optical properties, namely,
bsp> ^bsp' bSp(RH), and bap, are described in the following sections.
b
sp
Consider a small volume of thickness dx illuminated by a parallel
beam of wavelength A and intensity Io ^. For unpolarized light, the
intensity of light scattered into solid angle dti, at scattering angle 0
is
A visibility meter using the operator's eye as a detector was devised
by Buettell and Brewer^O that geometrically performs the integration of
3^(0) over solid angle to measure bgp^1. Ahlquist and Charlson21 in-
creased the original instrument sensitivity by using a photomultiplier
tube to detect scattered light from a xenon flash lamp. Ahlquist
et al. ^ improved the sensitivity, stability and dynamic range by sub-
stituting an incandescent lamp for the xenon flash lamp and detecting
the scattered light using digital photon counting techniques.
This instrument, called an integrating nephelometer , is shown in Figure
4. Modern versions of Buettell and Brewer's device have sufficient
sensitivity to be calibrated in an absolute sense with b^g, the scatter
ing coefficient of particle-free gases such as He, C02,
The geometric errors of the instrument have been studied by
Middleton1, Ensor and Waggoner2-^ Heintzenberg and Quen2el24^ and
Rabinoff and Hermanns and are estimated to be 10% or less for the
aerosol particle size distributions normally found in the atmosphere.
The modern instrument is alternately filled with ambient and par-
ticle-free air and the difference in scattered light intensity is pro-
portional to the scattering extinction coefficient due to aerosol
particles, bsp. The measured values of bsp in the atmosphere range
from ICT^m"1 at Mauna Loa Observatory to 3 x ICF^m in polluted Los
Angeles (0.007 to 150 times the Rayleigh scattering coefficient at
530 nm).
The integrating nephelometer has become an accepted instrument for
measurement of aerosol scattering extinction. A series of patents have
been issued to the University of Washington based on the designs of the
-------
-46-
CLEAN AIR
PURGE
I NARROW BAND
Ul /OPTICAL FILTER
TUNGSTEN FILAMENT
LIGHT SOURCE
AEROSOL I
OUTLET
itu
GLASS
t>Lflss
COLLIMATING DISKS
itr
AEROSOL
INLET
CLEAN AIR
PURGE
TUNGSTEN FILAMENT
LIGHT SOURCE
AEROSOL
OUTLET
Partial/*
Shutter
SCATTERING VOLUME
Figure 4. Diagram of nephelometer with enlarged view of the
partial shutter. Without the shutter, the instrument
inteqrates the particle scattering coefficient over
^ 7° to 170° to measure b . With the shutter in
place, the instrument integrates over ^ 90° to 170°
to measure b, n.
bsp
-------
-47-
authors of this report covering various aspects of the nephelometer.
Several hundred instruments have been produced and are in regular use
for both research and monitoring. High sensitivity, multiwavelength
instruments have been purchased by Institute fiir Meteorologie, Mainz,
Germany, Air Force Cambridge Research Lab and the National Oceanographic
and Atmospheric Administration.
The draft version of \folume I of the ACHEX final report from
Rockwell International to the Air Resources Board, State of California,
recommends the integrating nephelometer for both long-term monitoring
and short-term surveillance of aerosol properties.
An optically thin aerosol layer over a dark surface increases the
albedo by scattering incident radiation backwards into space. The
albedo per unit thickness of an aerosol layer illuminated by a zenith
sun can be determined by integrating the aerosol volume scattering
function over the backward he.mlsphere of scattering angle. A partial
shutter, shown in Figure 4, can change the angle of integration of the
nephelometer so that the scattered light intensity is proportional to
the backward hemisphere scattering extinction coefficient b^gp due to
aerosol particles. t>bsp normally is in the range 0.1 to 0.2 times the
aerosol scattering extinction coefficient bsp.
The two aerosol parameters needed in simple radiative climatic
models are the particle backward hemisphere scattering coefficient,
b^gp) and the particle absorption extinction coefficient, ba_. There
are a number of ways of measuring ba , and none is entirely satisfac-
tory .
Long path extinction cannot be used because b is 10 nr-1 to
10 m~ or smaller. Various techniques based on inverting angular »
scattering information have been used by Eiden and Grames et al. ,
etc. , but these methods require precise knowledge of the aerosol size
distribution, and contain errors of unknown size and magnitude, since
the scattering by irregular particles is calculated using Mie formulae
for spheres. The absorption coefficient of collected aerosol samples
can be estimated with low precision from measurement of the transmis-
sion of KBr pellets containing dispersed aerosol^". Lindberg and
Laude ^ measured aerosol absorption by measuring the decrease of
diffuse reflectance of a white powder when a small amount of aerosol
is dispersed in it.
All of the above methods, in our opinion, are poorly suited for
measurements in background locations. Measurement of the angular
dependence of the aerosol volume scattering function is difficult when
molecular scattering dominates. The methods of Volz and Lindberg
-------
-48-
require collecting an aerosol sample over several days, scraping the
sample off the collecting surface and dispersing the sample in another
media. Any treatment of the sample that alters the aerosol size dis-
tribution will alter the optical absorption coefficient30,31_ ^ dif-
ferent technique for measurement of bap has been developed in our
laboratory that we believe is superior to those described above.
Atmospheric aerosol is collected by passing ambient air through a
Nuclepore filter. The filter consists of a 10 ym thick film of poly-
carbonate plastic with 0.4 ym holes etched through it. The holes are
etched along damage tracks from highly ionizing particles and are round
and perpendicular to the surface of the film. Individual particles with
a mean separation of several diameters are collected on the surface of
the filter. The filter and the particles are placed in an optical sys-
tem that illuminates the particles and the filter with a parallel beam
of, in this case, green light and collects both direct transmitted and
forward scattered light. The extinction or change in transmission
between a clean filter and the filter plus aerosol is assumed to be the
same as absorption by the same aerosol dispersed in a long column of
air. Knowing the volume of air passed through the filter during col~
lection of the aerosol, one can calculate the optical absorption co-
efficient due to particles, bap.
This method has been checked for accuracy using laboratory aerosols
of known (including zero) absorption coefficient and is described by
Lin et al.32. xhe disadvantages of the method center on errors in-
troduced by sample alteration that may take place during collection,
but the sample alteration is probably much less than in the techniques
of Volz and Lindberg. The sample collection is simple and only requires
10 to 20 yg/cm of aerosol on the filter.
ATMOSPHERIC MEASUREMENTS AND DATA
f)sp and Visibility
As discussed in Section II, Koschmieder related bext to the dis-
tance at which a black object is just visible when viewed against the
horizon sky. The distance of visibility is given by
Lv= ~— (Middleton2) (4)
ext
assuming aerosol homogeneity, uniform illumination and a 0.02 detecta-
ble contrast. Commonly it is assumed that bext = Dscat> i.e., ba^s = 0.
Measurements of bscat and observer visibility show good agreement with
the formula above.
33
Horwath and Noll conducted a study in Seattle between total
light scattering, bscat measured with an integrating nephelometer, and
prevailing visibility observed by two separate people. Their results
-------
-49-
were in good agreement with the theoretical expression of Koschmieder
when only data for RH < 65% EH were included. Apparently the location
of the nephelometer in a heated room caused reduced RH in the light
scattering measurements. In the cases where RH < 65%, the correlation
between bscat and prevailing visibility was 0.89 and 0.91, respectively
with a coefficient in the Koschmieder expression of 3.5 ± 0.36 and
3.2 ± 0.25jrespectively. This can be compared with the theoretical
value of 3.9, indicating a slightly lower prevailing visibility than
meteorological range. Since no ideal black targets were used (only
trees, buildings, etc.)} these would have caused just such a deviation.
4
Samuels et al. conducted the most extensive tests to date of
the relationship of prevailing visibility to light scattering and
various mass concentration measures as discussed earlier.
They conclude that bsp as measured with the integrating nephelome-
ter is a good predictor of prevailing visibility and that the regression
analysis is in agreement with Koschmieder's theory. These workers noted
that there was a smaller observed prevailing visibility than that pre-
dicted from theory and bsp measurement, which they suggested was due to
non-ideal black visibility targets.
MEASUREMENTS OF SCATTERING PARAMETERS
Under support from the Environmental Protection Agency, National
Science Foundation>and the California Air Resources Board, we have
measured various aerosol scattering parameters in urban and rural loca-
tions in California, Colorado and Missouri. In all locations the in-
coming air was heated 5° to 20°C above ambient to lower relative
humidity of the sample. The measured parameters were:
bsp - Scattering extinction coefficient of particles at 530 nm,
— (Rayleigh at 530 nm = 0.15 x lO^nf1)
a - Wavelength dependence of b parameterized as
— sp
b = KA~a (10)
sp
Two values of a were computed from Red-Green bgp and Blue-
Green bcri. Red is 640 nm. Blue is 430 nm. Green is 530 nm.
bp
Scat, ratio - Ratio of half sphere back scatter to bsp from particles
at 530 nm.
The sites were:
Richmond - Northeast corner of San Francisco Bay in vicinity of
petro chemical plants.
-------
-50-
Point Reyes - Coast Guard station on cliff 150 meters above the
sea surface, 50 km NW of San Francisco.
Fresno - Central valley of California, urban agricultural site.
Hunter Liggett - Rural California site 20 km inland from ocean.
Local elevation 400 m. Local vegetation consisted of dry
grass and sparce trees.
Cal. T ec. - Site on campus in Pasadena in Los Angeles basin.
Pomona - Site at county fairgrounds in inland area of Los Angeles
basin.
Washington Univ. - Campus site located in residential area of St.
Louis, MO.
Tyson - Rural area 25 km WSW of St. Louis.
St. Louis Univ. - Campus site in industrial St. Louis.
Henderson - Site 10 km NE of Denver.
Trout Farm - Site 8 kin N of Denver.
Table 2 lists the measured values at each site. For each measure-
ment parameter, the range of that parameter containing 63% of the data
is specified. For b,,_, the units are 10" m and the range low to high
IT
contains 63% of data.
bai) Measurements
Using the technique described in section VI,C, measurements were
made of bQT, at two locations NE of Denver and three sites near St.
c
Louis during Fall of 1973. The measured values of the ratio of absorp-
tion to extinction are presented in Figure 5. In Denver, the absorption
to extinction ratio is very high, indicating that the aerosol heats and
stabilizes the lower atmosphere. At the three Missouri sites the
measured values are as one would expect - the rural area (Tyson) has a
less absorbing aerosol than the industrial site (St. Louis University).
Only the industrial MO site had absorption comparable to that measured
outside Denver.
The probable chemical species that produces the absorption is
graphitic carbon. Without chemical analysis for this material it is
only possible to speculate about the nature of Denver's very absorbing
aerosol. The absorption could result from:
(1) high graphitic carbon content.
(2) large concentrations of graphitic carbon particles smaller
than 0.1 ym.
-------
TABLE 2. LISTING OF MEAN AND VARIATION INCLUDING
PARAMETERS IN 11 LOCATIONS
Location b (530nm) b low b high aRG
( Units of 1(T4 M"1 )
63% OF MEASUREMENTS FOR FOUR SCATTERING
aBG
Richmond 0.4
Point Reyes 0.12
Fresno 1.0
Hunter Liggett 0.4
Cal. Tec. 1.5
Pomona 1.8
Wash. Univ. 1.58
Tyson 0.63
St. Louis Univ. 0.71
Henderson 0.31
Trout Farm 0.56
0.2 1.4 0.8+0.9
0.04 0.4 0.25+1.0
0.3 1.9' 1.0+0.4
0.2 0.8 1.4+0.8
0.8 3.0 1.5+0.4
0.6 6.0 1.3+0.4
1.12 2.24 1.47+0.4
0.28 1.41 1.80+0.4
0.40 1.25 1.85+0.3
0.08 1.25 1.65+0.8
0.22 1.58 1.75+0.7
1.2+1
Scat. Ratio Start End
Mo./Day/Hr.Yr.
1.7+0.5 18+5%
1.6+0.6
1.5+0.3 20+8%
1.3+0.7 16+8%
1.00+0.4 11+J%
1.25+0.5 14+4%
1.25+0.3 14+_2!£
1.15+0.6 17+8%
1.30+0.5 18+6%
8/7/17/72 8/12/15/72
8/15/11/72 8/25/6/72
8/29/9/72 9/8/14/72
9/12/9/72 9/15/10/72
9/20/10/72 10/2/8/72
10/4/11/72 10/31/15/72
8/25/2/73 8/31/9/73
9/3/19/73 9/27/12/73
9/27/20/73 10/4/15/73
11/10/-/73 11/14/-/73
11/15/10/73 11/23/11/73
I-1
I
The parameters and sites are discussed in the text. Note that in all locations the sample
air was heated 5 to 20 above ambient temperature.
-------
-52-
o
o
o
u
QJ
3
cr
Denver, Two Sites 10km
NE Of City.
11/10/73- 11/23/73
St. Louis University
9/28/73-10/4/73
Washington University
8/22/73-8/30/73
Tyson, Mo.
9/5/73-9/26/73
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
b /Tb + b 1
ap'L sp apJ
Figure 5. Ratio of absorption to extinction by particles. Data shown
is from Fairground and Trout Farm sites NE of Denver and
three sites near St Louis Mo.
-------
-53-
(3) lack of (NH^^SO^ as a major component of Denver aerosol when
compared to that found in rural Missouri.
The ratio of absorption to filterable particulate mass can be used
to estimate an imaginary refractive index for the aerosol if a size
distribution and chemical uniformity are assumed. We believe the par-
ticles are not uniform chemically and prefer to report bsp rather than
n2« With this warning, the average aerosol bap at Denver was 0.35 x
10~^m~l. The imaginary refractive index, n2> given the stated assump-
tions was 0.035.
CONCLUSIONS
Comparisons can be made between our measurements at Denver and
other locations. Deliquescent salts were not detected in the aerosol
at Denver and the bgp(RH) curves were at times quite hygrophobic. The
aerosol is less water soluble in Denver than at other sites.
The aerosol had somewhat higher backscatter to bsp ratio and much
higher bap/bext than values of the same parameter at other locations.
Both measurements could be explained by a shift of the small particle
mode to smaller particles. The absorbing character of Denver aerosol
may enhance the brown or yellow color of distant white objects viewed
through the urban plume.
ACKNOWLEDGEMENTS
This research has been supported by Environmental Protection
Agency, National Science Foundationjand California Air Resources
Board funds.
REFERENCES
1. Koschmieder, H., Beitr. Phys. Freien Atm., 12, 33-55 & 171-181
(1924).
2. Middleton, W, E., Vision Through The Atmosphere, University of
Toronto Press, Toronto, Canada (1968).
3. ACHEX Aerosol Characterization Experiment of the State of
California Air Resources Board. Prime contractor is Rockwell
International Science Center.
4. Samuels, H. J. et al., "Visibility, Light Scattering and Mass
Correlation of Particulate Matter," Report of California Air
Resources Board (1973).
5. Charlson, R. J. et al. , Atm. Env. 2:, 455 (1968).
-------
-54-
6. Simmons, W. A. et al., "Correlation of the Integrating Nephelome-
ter to High Volume Air Sampler," Mass. Dept. of Pub. Health (1970)
7. Thielke, et al., Aerosols and Atmospheric Chemistry, G. M. Hidy,
editor, Academic Press, New York (1972).
8. Porch, W. M., Science, 170, 315 (1970).
9. Horvath, H. , Atmospheric Environment, 5_, 333 (1971).
10. Waggoner, A. P., et al., Applied Optics, 10, 957 (1971).
11. Husar, R. B., Private Communication (1974).
12. Charlson, R. J. et al., Aerosols and Atmospheric Chemistry, G. M.
Hidy editor, Academic Press, New York (1972).
13. Rasmussen, R. A. et al., PNAS 53, _1, 215 (1965).
14. Junge, C., J. Meteorology, 11, 323 (1954).
15. Charlson, R. J. et al., Science, 184, 156 (1974).
16. Charlson, R. J. et al., Atmospheric Environment, _8, 1257 (1974).
17. Winkler, P., Aerosol Science, _4, 373 (1973).
18. Hanel, G. , Beitr. Z. Phys. Atm. , 44_, 137 (1971).
19. Covert, D. S., Ph.D. Thesis, University of Washington 0-974).
20. Beutell, R. G. et al., J. Sci. Inst., _2j5, 357 (1949).
21. Ahlquist, N. C., et al., J.A.P.C.A., JL7, 467 (1967),
22. Ahlquist, N. C. et al., Patent Application (1974).
23. Ensor, D. et al. , Atmos. Env. , ij_, 48 (1970).
24. Quenzel, H., Atmos. Env. , _9 (1975).
25. Rabinoff, R. et al., J.A.M., _12, 184 (1973),
26. Eiden, R. , Applied Optics, _5, 569 (1966).
27. Grames, G. W. et al., J.A.M., 13, 459 (1974).
28. Volz, F. E. , J.G.R. , _7_7» 1017 (1972).
29. Lindberg, J. D., Applied Optics, 13, 1923 (1974).
-------
-55-
30. Waggoner, A. P. et al., Applied Optics, 12 896 (1973).
31. Bergstrom, R. W., Beitr. Z. Phys. Atm., 46. 223 (1973)
32. Lin, C. I., Applied Optics, 12, 1356 (1973).
33. Howath, H., Atmos. Environment, 3, 543 (1969).
-------
-57-
CHARACTERIZATION OF DENVER AIR QUALITY
Martin A. Ferman
Ronald S. Eisinger
Paul R. Monson
Environmental Science Department
General Motors Research Laboratories
Warren, Michigan
ABSTRACT
The GM Atmospheric Research Laboratory (ARL) monitored ambient air
quality at the General Motors Vehicle Emission Laboratory in Denver
from November 4 through December 14, 1973. The site was about 6 km
north of downtown Denver in the industrialized South Platte River Valley
—an area that lies in the trajectory of the urban plume and the "Brown
Cloud."
Average concentrations of S02 and CO measured during the investiga-
tion were low, (as compared to federal standards), at 0.006 and 2.3 ppm,
respectively, while the N02 average was relatively high at 0.07 ppm.
There were several severe pollution episodes where concentrations rose
well above these average values. These episodes were the result of long-
lasting, low-level inversions which trapped Denver's urban and indus-
trial plumes in the South Platte River Valley northeast of the city.
The resulting brown haze had a variable composition—as indicated by the
relative amounts of individual hydrocarbons—ranging from rich in auto
exhaust to poor in auto exhaust and high in pollutants from stationary
sources.
INTRODUCTION
Due to its particular topography and meteorology, Denver has unique
air pollution problems which are only partially understood. During late
fall, the Denver metropolitan area is subjected to frequent atmospheric
inversions which prevent dispersion of airborne pollutants, forming a
-------
-58-
haze over the north end of the city,1 This visual phenomenon, known
locally as the Brown Cloud, has been the subject of several recent
studies attempting to determine its composition and cause. In 1971, EPA
(and others) conducted a preliminary investigation to identify the
sources of Denver aerosol. This proved inconclusive, and a second study
was planned.
The ARL went to Denver in November, 1973 to study the chemical
composition of the gaseous pollution. Sampling was conducted near the
center of the polluted industrial area in a site immediately removed
from any large source. November, the month with the most severe air
pollution, was also chosen by EPA and the Denver Research Institute for
the Denver Air Pollution Characterization Study, a larger and more com-
prehensive program than the study conducted in 1971.
FIELD SAMPLING
The ARL was parked in the lot behind the GM Vehicle Emission Labora-
tory in Denver, about 6 km northeast of the downtown area. Figure 1 is
a map of the area. The closest building was 15 m east of the ARL and
only about 8 m high. There were no buildings over 10 m high within 0.5
km. The north side of Denver, chosen because of the prevailing SSW
winds, is heavily industrial. Within 3 km of the ARL were located: 3
freeways, a power plant, oil refineries, and a sewage disposal plant.
Nearly all of the major pollutant sources lie in the South Platte River
Valley, about 22 km from the foothills of the Rocky Mountains.
The sampling period, November 4 through December 14, corresponds
with the season of Denver's most severe air pollution episodes. Novem-
ber is the month with the lowest average dispersion index and highest
percentage of low-level inversions. Consequently, it is also the season
with the highest concentrations of particulates and other pollutants.
The first several weeks of the period were chosen by EPA and local
authorities for the Denver Air Pollution Characterization Study (DAPCS),
with which we cooperated.
Tables 1 and 2 list the variables measured in Denver and indicate
the methods used. A general description of the instruments and procedures
used on the ARL can be found elsewhere.2
RESULTS
The continuous monitors were scanned once every minute and the vol-
tages recorded on magnetic tape.2 Voltages were averaged over five-
minute periods and then calibrated. Wind direction and speed were
averaged vectorially. Hourly averages, derived from the calibrated five-
minute points, are presented in Appendix A. To be listed, an hourly
value was required to include at least six five-minute averages. Table
3 lists a summary of these data. Figures 2, 3, and 4 are log-normal
plots showing the frequency distributions of various pollutants for the
six-week sampling period.
-------
-59-
OIL REFINERIES
POWER PLANT
SEWAGE
DISPOSAL
""§
i^STOCKYARDS
70
Q DOWNTOWN
CAMP STATION
1 km—|
Figure 1. Map of Denver, Colorado.
-------
-60-
TABLE 1. CONTINUOUS DATA
Parameter
Wind Direction (Vector)
Wind Speed (Vector
Wind Speed (Scalar)
Wind Sigma
Temperature
Dew Point
Ultraviolet
Rain
Ozone
Oxidant
N02
N02
NO
NOX
Visibility (bscat)
THC
CH4
CO
CO
THC
so2
Temperature
Humidity
Barometric Pressure
J2
h
Method
Derived from 1-min. points averaged vectorially
Derived from 1-min. points averaged vectorially
Scalar average of speed
Analog computer
Pt resistance thermometer
Dew Cell
Radiometer
Bucket
Chemiluminescent
Mast
Saltzman
Chemiluminescent
Chemiluminescent
Chemiluminescent
Integrating nephelometer
Flame ionization detector (FID)
FID gas chromatograph
FID gas chromatograph
Nondispersive infrared
FID
Flame photometric
Monitored inside the ARL
-------
-61-
TABLE 2. HOURLY CHROMATOGRAPHIC DATA
Ethane
Ethylene
Acetylene
Propane
Propylene
Freon 12
Isobutane
n-Butane
1-Butene
Freon 22
Isobutylene
2-Butene
1,3-Butadiene
Isopentane
1-Pentene
n-Pentane
2-Pentene
2-Methylbutane
2,2-Dimethylbutane
2-Methyl-l-Pentene
Cyclopentane
2-Methylpentane
3-Methylpentane
1-Hexene
n-Hexane
2-Hexene
2,2,3-Trimethylbutane
Cyclohexane
Benzene
2-Methylhexane
3-Methylhexane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3- and 2,3,3-Trimethylpentane
1,3 ,4-Trimethylpentane
Toluene
1-Methylcyclohexene
2,2,5-Trime thyIhexane
n-Octane
Ethylbenzene
m- and p-Xylene
o-Xylene
n-Nonane
n-Propylbenzene
sec-Butylbenzene
n-Decane
n-Undecane
n-Dodecane
-------
-62-
TABLE 3. STATISTICAL SUMMARY OF HOURLY AVERAGE DATA
Variable
Wind speed
Temperature
Dew Point
Relative humidity
Ultraviolet
CO*
Total HC*
CH
HC*
NO
N02**
NO
x
S02
°3
Oxidant***
Aerosol bscat+
Units
m/s
°C
°C
percent
mj/cm -s
ppm
ppmC
ppm
ppmC
ppm
ppm
ppm
ppm
ppm
ppm
lO^nf1
No. of. Hours
Average
854
854
854
854
854
586
586
586
586
780
780
780
687
624
850
823
Average
2.5
3
-7
50
0.26
2.3
3.7
1.7
2.0
0.14
0.07
0.22
0.006
0.01
0.01
1.5
Minimum
0.3
-11
-17
13
0.00
0.0
1.9
0.8
0.0
0.00
0.00
0.00
0.000
0.00
0.00
0.14
Maximum
11.9
21
6
100
1.67
16.4
12.4
10.4
8.2
1.27
0.47
1.48
0.066
0.09
0.12
11.24
-'measured using a gas chromatograph with FID
**measured using chemiluminescence by difference (NOX
***uncorrected for NOX interference
+local visual distance, km = 47/bgcat
- NO)
-------
100.0,
80.0
60.0
40.0
20.0
35 ppm CO
(1 hr)
Q_
Q_
o
5 10.0
z 8.0
U-l
CJ
o 6.0
4.0
2.0
1.0
9 ppm CO
(8hr)
0.5
I I
1 I
CH,
j i
I
i I
5 10 20 40 60 80
PERCENT OF TIME BELOW VALUE
95 99 99. S
OJ
I
Figure 2. Log-Normal Frequency Distributions of CO, THC, and CHd .
-------
1.5
1.0
0.80
0.60
0.40
Q.
Q_
p 0.20
8 o.io
0.08
0.06
0.04
0.05 ppm N02
(annual)
NO,
0.02
I
I
I I
J I
10 20 40 60 80 90
PERCENT OF TIME BELOW VALUE
98 99
99.9
Figure 3. Log-Normal Frequency Distributions of NO , NO, and NO,
-------
0.10
0.08
0.06
0.04
D_
Q_
O
f= 0.02
m
O
O
O
0.02
Ul
I
Figure 4. Log-Normal Frequency Distributions of 03, Aerosol, and S02
-------
-66-
The individual hydrocarbon data from the gas chromatograph are pre-
sented in Appendix B. Under normal operating conditions, one run was
made every hour. The values listed are based on the response of a flame
ionization detector which is linear with concentration for any particular
hydrocarbon at ambient levels. The response to different compounds,
however, may deviate slightly from the linear multiple of carbon atoms.
An average response factor based on "peak area" has been used here. A
statistical summary of the most common hydrocarbons is presented in
Table 4.
DISCUSSION OF RESULTS
Meteorology
During the sampling period, several fronts passed through Denveri
creating a variety of weather conditions typical of the season. There
was very little rain and some snow. Temperatures ranged from -11 C to
21 C, relative humidity from 1270 to near 100%. Average temperature and
humidity were 3.3°C and 507o, respectively. The maximum hourly ultra-
violet dosage was 6 J/cms , and the average daily dosage was 23 J/cm2 .
As expected, these values are considerably lower than 10 J/cm and
40 J/crrr--the maximum hourly and average daily UV dosage measured in
the Los Angeles Basin during September and August of the same year
(due to Denver's lattitude, greater cloud cover, and the later time-
period) .
Winds were moderate, averaging 2.5 m/s. Half of the time the speed
was below 2 m/s and 90 percent of the time it was less than 5 m/s.
Prevailing wind patterns were remarkably consistent over the sampling
period, comparing well with historical data.1'4 Figure 5 shows the aver-
age diurnal variation of wind speed and three roses depicting the dis-
tributions of directions (based on the five-minute vector wind direc-
tions). Typically, winds were low (1.5 - 2.5 m/s) and from the SSW
in the morning, while afternoon winds increased to over 3 m/s and blew
from the NNE (or NW during unstable periods). By 2000, winds again
were low and out of the SSW. The ARL data compares well with the data
reported for the same period by Crow for the DAPCS.5 Pollution episodes
are characterized by early morning inversions which often burn off
around 1100; this occurs about three-fourths of the time during this
season. On the few days of severe episodes, the inversion may not be
broken all day. Above the mixed layer are various inversion layers where
there is no verticle mixing. These result in polluted layers at heights
of from 100 m to 500 m.
Comparison with Standards
Any sampling period lasting only six weeks cannot be considered
representative of all a city's pollution problems. For example, ozone
is mostly a problem during the summer, and the Federal standard of 0.08
ppm was barely exceeded on two afternoons at the ARL. (A recently pub-
lished EPA report states that for 1972 this standard was exceeded on
-------
-67-
Table 4. Statistical Summary of Hydrocarbon Data*
Hydrocarbon --
Ethane
Ethylene
Acetylene
Propane
Propylene
Isobutane
n-Butane
Isopentane
n-Pentane
2-Methylpentane
3-Methylpentane
n-Hexane
2 , 2 ,3-Trimethylbutane
Cyclohexane
Benzene
2-Methylhexane
3-Methylhexane
1-Heptene
n-Heptane
Methylcyclohexane
Toluene
1 -Methylcyclohexane
n-Octane
Ethylbenzene
m- and p-Xylene
o-Xylene
n-Nonane
sec-Butylbenzene
n-Decane
n-Undecane
Average
69
,53
59
95
25
58
123
111
68
53
37
55
32
17
18
34
38
20
33
28
64
23
22
15
47
24
19
30
22
14
vp(JLM^
99th Percentile
447
304
344
785
146
557
685
600
586
424
254
321
218
164
116
198
240
135
210
177
338
120
153
80
260
142
116
167
146
84
Max imum
638
508
530
924
243
857
979
999
781
652
509
535
485
547
178
441
481
301
420
272
520
239
766
115
372
571
334
419
209
120
*Based on > 500 points for each compound.
Compounds listed are the 30 with the highest average concentrations.
Minimum concentrations for all are less than 1 ppbC.
-------
20
10
C3
UJ
10
20
3,5
Q
O
LU
CO
3,0
2,5
2.0
1,5
DIRECTION
N
N
G - 9 A,M, 12 - 3 P.I], 6 - 9 P.H.
WIND SPEED
12 16 20 24
HOUR OF DAY
Figure 5. Average Diurnal Variations in Wind .
-------
-69-
over 40 days as measured at the CAMP station--mostly in late summer.)6
The nonmethane hydrocarbon standard of 0.24 ppm (6-9 a.m. average) was
exceeded daily—as it is in nearly all metropolitan areas. The NC>2
standard of 0.05 ppm is an annual average and should be compared to
the 0.07 ppm average from the ARL data only with the consideration that
NC>2 is usually highest during this period. The Federal standards for
SC>2 were not exceeded.
It must be emphasized that all pollutant measurements are dependent
upon location and instrumentation. CO concentrations measured by the
CAMP station in downtown Denver, for example, were consistently higher
than those recorded by the ARL, while the reverse was often the case
fy
for NOo- The CO values listed in Table 3 are from the most sensitive
and reliable method (flame ionization) which was not available (due to
lack of H2) on November 29 and 30 when a low inversion caused elevated
CO levels. The less sensitive nondispersive infrared was operable and
gave an average CO concentration of 19 ppm for the 8 hours from 1900 to
0300, exceeding the 9 ppm standard.
Pollutant Patterns
Many primary pollutants exhibited a typical bimodal diurnal varia-
tion, as shown in Figures 6 and 7. NO and hydrocarbons first peaked
between 0700 and 0800 while the first CO peak was shortly after 0800.
Night peaks were around 2000 and were about the same concentrations as
the morning peaks. The minima occurred near 1300 for these primary
pollutants. (Historical data from downtown Denver show a similar bi-
modal distribution for CO and traffic density, both of which peak first
between 0700 and 0800 and again at 1600 to 1700)1 Another primary
pollutant, S02, was always low (<0.03 ppm, 99 percent of the time) and
seemed to vary more randomly.
As shown in Figure 8, ozone levels were low to moderate with an
afternoon peak averaging just under 0.03 ppm between 1300 and 1400.
Except for early morning values (before 03 levels could build up), the
diurnal averages for 03 and NO seemed to vary inversely. This was also
true for short-term, (10 min.) variations of the two. In fact, the
diurnal variations for THC, CO, and NO were all similar, with minima
occuring near 1300 while 03, ultraviolet, temperature, and wind speed
showed inverted patterns, all with maxima at 1300. Aerosol seemed to
correspond with the primary pollutants--the average visibility was
greatest at the time of maximum average ozone.
Wind roses, depicting average pollutant concentrations subset by
wind direction, are plotted in Figure 9. Average concentrations for
most pollutants were greatest with winds from downtown Denver (and
especially from the direction of the intersection of highways 70 and 25),
but this can be interpreted in several ways since this is also the
direction of drainage winds during inversions. In fact, Figure 5 shows
that these are the prevailing winds at the times of the average diurnal
peaks for these pollutants.
-------
-70-
4
Q_
Q_
o
h-
<
LU
O
O
o
0
I I I I I I I I I I I
I I I I 1 I I I
0 2 4 6 8 10 12 14 16 18 20 22 24
HOUR OF DAY
Figure 6. Average Diurnal Variations of THC and CO,
-------
-71-
0.3
0.2
D_
Q_
o
I—
<
H-
S
LU
O
O
O
0.1
0
I
I
1
0
8 10 12 14 16 18 20 22 24
HOUR OF DAY
Figure 7. Average Diurnal Variations of NO and NCL-
-------
-72-
0.04
0.03
D_
n_
O
i= 0.02
O
CJ>
0.01
0
0
AEROSOL
8 12 16
HOUR OF DAY
20
2.0
1.5
O
on
O
on
O
O
O
O
O
050
U. ^ QJ
24
0
Figure 8. Average Diurnal Variations of Aerosol and
-------
-73-
WIND FREQUENCY
THC, PPM
CO, PPM
S02> PPM
N02, PPM
Figure 9. Denver Wind Roses.
-------
-74-
Individual hydrocarbon data can be useful for characterizing an
air mass and its pollution sources. While many of the more common hydro-
carbon pollutants are emitted from a variety of sources, some may be
considered representative of specific sources. For example, natural gas
is mostly methane with small amounts of ethane and propane. Auto exhaust
composition can vary greatly, but mainly consists of methane, ethylene,
acetylene, propylene, toluene, and CI+-CQ paraffins. There may also be
a small amount of ethane and traces of propane. Other major sources of
atmospheric hydrocarbons include vented vapors from gasoline stations
and oil refineries. Pollutants that are emitted from the same source(s)
would be expected to correlate well. Table 5 lists correlation coeffi-
cients for 9 common hydrocarbons. As expected, compounds such as the
methylpentanes and methylhexanes (which are all found in gasoline) cor-
relate very well (0.91-0.96) while acetylene (mainly from auto exhaust)
and propane (not in auto exhaust) do not correlate well (0.35). With
the exception of propane, all of the hydrocarbons listed in Table 5 are
often found in auto exhaust, and their cross-correlations are all high.
The heavier compounds (Cg-Cg)are also found in gasoline, and they cor-
relate better with each other than with either ethylene or acetylene.
Since the single major source of acetylene in urban atmospheres is auto
exhaust, it is often considered a good tracer for exhaust.
Comparisons with Other Cities
The average concentrations for many pollutants were comparable to
those found in other large cities. S02 values were very low—similar to
Los Angeles3 and about one-fourth those measured in New York City8 (the
ARL monitored in each city during its worst season). The CO values were
also low, averaging only 2 ppm, as compared to 5 ppm in West Covina and
7 ppm in New York. Average values for THC (3.7 ppm) and NOX (0.22 ppm)
were found to be very similar in all three cities. The average visi-
bility in Denver (33 km) was better than in New York City (25 km) and
much better than in West Covina (17 km).
"Brown Cloud" Episodes
Denver's major air pollution problem centers around the Brown Cloud
that settles over the city's northeast sector during severe inversions.
The cloud was sometimes seen to slowly travel down and then back up the
river valley with the prevailing winds: NNE in the morning, then occa-
sionally returning in the afternoon. One of. several episodes encountered
during this period in which this reversal was very noticeable occurred
on December 1, and several parameters are plotted in Figure 10. Morning
winds were low and from the south-southwest. Pollutant levels were rela-
tively high, and the Brown Cloud could be seen over north Denver. By
late morning, however, winds increased and the cloud blew by, leaving
clean, clear air over the city even though the brown haze could be seen
to persist for hours downriver. At 1420, the wind abruptly shifted 180°
to NNE and increased in speed. The dew point jumped 8°C, and the tem-
perature (which had been at its maximum for the six-week period) began
to fall rapidly. Within minutes the cloud was seen to return and
-------
-75-
TABLE 5. CORRELATION COEFFICIENTS FOR VARIOUS HYDROCARBONS
Correlation coefficients x 100 -- Based on 477 runs
1
2
3
4
5
6
7
8
9
Ethylene
Acetylene
Propane
2-Methylpentane
3-Methylpentane
2-Methylhexane
3-Methylhexane
Toluene
0-Xylene
95
35
76
70
81
72
79
82
36
74
68
79
71
79
80
61
63
51
53
39
35
93
93
92
77
80
92
91 96
72 80 76
79 89 84 79
-------
WIND DIRECTION
06
10
12 14 1C
HOUR OF DAY
20
22
Figure 10. 'Brown Cloud1 Episode of December 1, 1973.
-------
-77-
pollutant levels jumped even higher than morning values, but with a
somewhat different composition. Total hydrocarbon levels were essen-
tially the same, while the CO concentration was reduced by more than 75
percent. There were high concentrations of 03 and N02, but very low
levels of NO as expected in an aged and photochemically reacted air mass.
The change in hydrocarbon composition, however, cannot be explained
simply by aging. The afternoon air mass showed a large increase in non-
exhaust alkanes, as seen by the propane/acetylene and butane/acetylene
ratios listed in Table 6. The 9 percent decrease in the ethylene/acety-
lene ratio, if significant, may reflect some photochemical activity (as
indicated by the high concentrations of ozone); but photochemistry alone
cannot account for the very large increases in the ratios of propane and
butane to acetylene. As shown in Table 6, the visibility was poor and
the THC (rich in alkanes), was high. But the low concentrations of both
CO and acetylene imply that only a small percentage of the pollutants in
the air mass can be attributed to auto exhaust—a percentage supported
by the low concentration of CO.
At 1820, the wind again reversed direction and blew from the SSW.
N02 and aerosol concentrations continued high while CO and NO increased;
all peaked around 2000 (coinciding with the typical evening peak). Hy-
drocarbon compositions also showed an increase in exhaust-related pol-
lutants, as expected from the change in wind direction.
Another episode with reduced visibility occurred on the morning of
November 21, when the Brown Cloud could be seen over the ARL. At 0925,
about half of the total hydrocarbons could be assigned to auto exhaust
as indicated in Table 6. By 1025, the levels of CO and acetylene fell,
while THC rose from the large input of nonexhaust hydrocarbons. The
nephelometer peaked at 1025 with 5.2 km, the lowest visibility for this
episode. As seen in Table 6, for this time the ratios of propane and
butane to acetylene had increased several times over those for the pre-
vious hour and the exhaust fraction was reduced to 21 percent of the
total. By 1125, the cloud was beginning to blow west and all pollutant
levels started to fall.
The episode of December 1 may be considered as the end of a three-
day episode in which pollutant levels started to build up on the night
of November 28. As indicated earlier, CO concentrations were very high
during the period, but lack of hydrogen prevented measurements of hydro-
carbons until noon on November 30. Table 6 lists data taken at 1245,
1345, and 1445. During these three hours, concentrations of exhaust-
related hydrocarbons decreased while those of nonexhaust hydrocarbons in-
creased and the total remained remarkably constant at 7 ppmC. By 1445,
auto exhaust could account for only about 4 percent of the 7.2 ppmC of
total hydrocarbons.
Composition of the "Brown Cloud"
The chief cause of haze and reduced visibility is usually light
scattering by aerosols in the 0.1-lym-size range.13 Particulates were
-------
TABLE 6. COMPOSITION OF "BROWN CLOUD" FOR THREE EPISODES
Dec. 1
Nov. 21
Nov. 30
Time
0845
1545
1945
0925
1025
1125
1245
1345
1445
Visibility
(km)
9
6
5
8
5
9
12
18
27
THC*
(ppmC)
8.3
8.1
10.4
6.5
10.6
3.6
7.1
7.0
7.2
CO*
(ppm)
9.7
2.3
11.8
5.1
4.7
1.4
2.4
1.5
1.4
Ethylene/
Acetylene
(Vol.)
1.0
0.9
1.0
0.8
1.1
0.7
0.8
0.8
0.9
Propane/
Acetylene
(Vol.)
1.0
13.7
2.2
1.4
5.1
1.0
1.8
3.8
10.5
n-Butane/
Acetylene
(Vol.)
1.0
5.9
1.3
1.4
4.9
0.9
3.1
2.1
6.0
Acetylene x 20/
THC
(apx. 7o auto exhaust)**
57
11
42
48
21
44
24
9
4
00
I
* from Beckman 6800 gas chromatograph
**based on vol. 7* ^ in exnaust °f about 10%,
-------
-79-
not measured by the ARL in Denver, but some data are available from sam-
pling conducted by several groups during both the 1971 and 1973 studies1?12
Using a variety of analytical techniques (including visual and X-ray
microscopy and optical emission spectroscopy) on samples from both
studies, it was concluded that particulate loadings are moderately high
but only about 20 percent anthropogenic. Of special interest, both
toxicologically and aesthetically, are submicron particles. The MRI
aircraft study in 1973 indicated that fresh combustion particulates
(< 0.1 ym) are found in the inversion layer in fresh plumes high in NO.9
As the plume "ages," NO is oxidized to N02, 03 builds up, and particles
are formed in the 0.1 to 1.0 ym light-scattering range. Particles in
this size range correlate well with nephelometer data and with local
visibility. 3 Ruud and Williams analyzed the back-up filter for
November 16, 1973 and attributed 57 percent of the fine particles to
auto emissions, 8 percent fly ash, and about 33 percent soil and minerals.
Draftz and Durham^ analyzed five days of data from November, 1971.
Each day's total loads exceeded the 75 yg/m3 annual geometric mean stand-
ard, but none approached the 24-hour standard of 260 yg/m3. They con-
cluded that more than 25 percent of the fine-sized particulates were
lead salts from auto exhaust. They reported that total lead concentra-
tions on five membrane filters varied from 1.7 to 4.9 yg/m3. This cor-
responds to about 3 to 8 yg/m3 of the salts which, alone, would be ex-
pected to give nearly unlimited visibility (45 km).13 The analyti-
cal techniques employed did not quantitatively measure (or, in some cases,
even indicate) most organic and nonmetallic aerosols (such as sulfates
which may be much more abundant than lead). The elements they identi-
fied alone accounted for about one-fourth of the total mass. By calcu-
lating the mass of the most common compounds in which those elements are
found (as indicated in the text), one can account for about half of the
total mass.
This figure (50 percent) can be compared with the results reported
by Willeke and Whitby for filter samples also taken in the Denver area
in November 1971. They found that "about 30 percent of the submicron
mass consists of benzene-soluble organics during clean days and over 50
percent during polluted days."12 Not considering organics, Draftz and
Durham concluded that aerosol composition remained unchanged from clean
days to polluted days. With more information now available, it appears
that the pollutant composition of Denver's air may vary considerably—
not just from clean days to polluted days but even from hour to hour
during severe episodes (as seen from Table 6).
With the possibility of large variations in composition, the single
greatest problem of the Brown Cloud is its noticeability. The topography
and meteorology of the Denver area tend to concentrate the urban plume
over a well-defined area where it is in sharp contrast to surrounding
clean air.1*'5 Yet, the visibility measured in one of the worst areas—
at the ARL—was better than 17 km for 90 percent of the time and poorer
than 10 km for only 3 percent of the period (which is historically the
-------
-80-
season of highest particulate loads).
The Brown Cloud phenomenon may be due to both light scattering and
absorption. N0£ levels measured in Denver are sufficient to cause a
brown color which would be more noticeable when there are low aerosol
concentrations.15 In the inversion layer measured by the MRI aircraft
downwind of the city on the morning of November 20, NO (most of which
was N02 at that location) was off-scale at more than 0.5 ppm, while the
nephelometer indicated a minimum visibility of over 15 km. With concen-
trations of SO^ at 0.3 ppm and CO at only 3 ppm,9 the origin of the
pollutants in the plume was predominantly nonautomotive. From ARL data,
ratios of CO/NOX vary greatly but are generally less than expected in
auto exhaust. A volumetric ratio of CO/NO of about 70:1 would be ex-
pected from auto exhaust in Denver for 1973. 16 The ratios measured by
the ARL during episodes usually varied from 10:1 to 20:1, indicating
large nonautomotive sources of NO .
X
Other than its appearance, there seems to be no unique characteri-
zation of the Brown Cloud. Its composition (as indicated especially by
the hydro-carbon and CO data) was seen to vary considerably—sometimes
rich in automotive pollutants, and sometimes poor; sometimes high in
ozone and other times not. No one factor can be considered the cause
of the Brown Cloud—unless it is the frequent periods of stable atmo-
spheric conditions during which strong inversions and low surface winds
concentrate all pollutants in a relatively small volume with sharp visual
boundaries between it and surrounding cleaner air.
ACKNOWLEDGMENT
Field sampling was conducted by the authors and by Richard Brooks,
William Scruggs, and Jerome Zemla. Computer programs for data reduction
and calibration were written by Richard Herrmann, assisted by Carrie
Adlam. The staff of the General Motors Vehicle Emissions Laboratory in
Denver, headed by William Hickok, were exceptionally helpful in provid-
ing space, utilities, and assistance throughout the fall and winter of
1973.
REFERENCES
1. "Meteorological Effects on Air Pollution in Denver," report from
the City and County of Denver Department of Air Pollution Control.
2. Groblicki, P. J., R. S. Eisinger, and M. A. Ferman, "Design of a
Mobile Atmospheric Research Laboratory," GM Research Laboratories
Report No. GMR-1814.
3. Data from ARL studies in West Covina, California, September-October
1973.
4. Riehl, H. and D. Herkof, "Some Aspects of Denver Air Pollution
Meteorology," J. Applied Meteorology, 11 (Oct. 1972), p. 1040.
-------
-81-
5. Crow, L. W., "Airflow Study Related to EPA Field Monitoring Program
Denver Metropolitan Area, November 1973," presented at Air Pollut.
Cont. Assoc. meeting, Denver, Colorado, June 1974.
6. Altshuller, A. P., "Evaluation of Oxidant Results at CAMP Sites in
the United States," J. Air Pollut. Cont. Assoc., 25 (Jan. 1975), p.19
7. The CAMP data are published in the Denver Post.
8. Eisinger, R. S., M. A. Ferman, and P. J. Groblicki, "Air Quality
Studies in New York City, 1971-72," GM Research Laboratories Report
No. GMR-1813, Jan. 15, 1975.
9. Blumenthal, D. L., J. A. Anderson, and G. J. Sera, "Characterization
of Denver's Urban Plume Using an Instrumented Aircraft," presented
at Air. Pollut. Cont. Assoc. meeting, Denver, Colorado, June 1974.
10. Draftz, R. G., and J. L. Durham, "Identification and Sources of
Denver Aerosol," ibid.
11. Ruud, C. 0. and R. E. Williams, "X-Ray and Microscopic Characteri-
zation of Denver (1973) Aerosols," ibid.
12. Willeke and K. T. Whitby, "Physical Characteristics of Denver-Area
Aerosols," ibid.
13. Charlson, R. J. and A. P. Waggoner, "Visibility, Aerosol, and
Colored Haze," ibid.
14. Foster, J. F., D. A. Trayser, L. W. Melton, and R. E. Mitchell,
"Chemical and Physical Characterization of Automotive Exhaust
Particulate Matter in the Atmosphere," presented to Coordinating
Research Council and Environmental Protection Agency, July 1974.
15. "The Oxides of Nitrogen in Air Pollution," State of California,
Department of Public Health publication, Jan. 1966.
16. Kircher, D. S. and D. P. Armstrong, "An Interim Report on Motor
Vehicle Emission Estimation," EPA Publication, revised 1973.
-------
-83-
Appendix A. DENVER POLLUTANT AND METEOROLOGICAL DATA
(Hourly Averages)
Site: 4958 York, Denver, Colorado
Sampling tube 10 m above ground
November 4 - December 14, 1973
Hourly averages given where at least half of the data
points (5-minute averages of one minute voltage read-
ings) exist in the hour.
HOUR Hour of the day (Mountain Standard Time)
VWDR Vector average wind direction (0 and 360° are north)
VWSP Vector average wind speed (m/s)
WSPD Scalar wind speed (m/s)
WSIG Wind Sigma (degrees)
TEMP Temperature (degrees Centigrade)
DWPT Dew Point (degrees Centigrade)
RH Relative humidity (percent)
RAIN Precipitation last hour (mm of ^0)
UV Ultraviolet (mJ/cm2s)
NEPH Integrating nephelometer (scattering coefficient, lO'^m"^)
CO Carbon monoxide (ppm) from Beckman 6800 (preferred)
*CO Carbon monoxide (ppm) from Beckman 315BL NDIR
HC Total hydrocarbon (ppm carbon atoms) from Beckman 400
THC Total hydrocarbon (ppm carbon atoms) from Beckman 6800 (preferred)
CH4 Methane (ppm)
NMHC Nonmethane hydrocarbons (ppm carbon atoms)
S02 Sulfur atoms (ppm)
*N02 Nitrogen dioxide (ppm) by Saltzman technique
N02 Nitrogen dioxide (ppm) by chemiluminescence [NOX-NO] (preferred)
NO Nitric oxide (ppm)
NOX Total nitrogen oxides (ppm)
OXID Oxidant, Mast meter with S02 scrubber (ppm)
03 Ozone, by chemiluminescence (ppm)
-------
C&NVEPt COLO.
NCV 4,1973
H
n
U
P
1?
13
14
15
16
17
IP
19
70
21
22
23
V V W W T
W W S S F
PS PIN
R P D G P
?'i9 0.9 1 .0 <* -4
3"5P O.ft 0.9 11 -4
356 0.7 0.9 10 -4
15 C. 7 0.8 13 -4
360 1.0 1.1 8 -4
10 2.5 2.6 6 -3
C f M
W 4 E
P P I IP
T H N V H
-7 R3 0.00
-fc 86 0.00
-6 67 0.00
-5 68 C. CO
-6 86 0. CO
-6 62 0.00
N
* T : M
C C H H H H
C 0 C C 4 C
1.9
2. 1
2.3
2.1
2.3 2.0
2.6 2.1
2.8 2.2
2.7 2.4
2.6 2.0
2.2 1.9
* 0
S N N NX
0 0 0 N 0 !
222 C X D
0. ©03
O.ooo
C.&06
0.000
0.000
o.oao
D
3
0.0
i.O
{?.£>
0.0
3.0
O.G
-------
DFNVER, CCLC.
MOV 5,1<;73
M
C
'J
Q
no
01
02
03
C4
C5
C6
C7
CR
09
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
V
Vv
r
P
357
22
58
77
24
170
1«7
1A«
171
ICO
34P
335
205
270
36
7P
31
52
0
3 = 8
72
104
35
99
V
W
s
D
1 .9
1.3
0.6
0.8
0.9
1.8
1.8
2. 1
2.6
2. ?
C.a
C. 5
C. 6
2.4
2.7
2.6
1.2
0.3
1.0
0.8
C.6
C.4
C.5
W U
<; s
P !
n P
2.0 7
1.5 7
0.8 19
0.9 14
1. 1 14
2.0 12
2.0 7
2.2 8
2.7 6
2.4 8
1.811
1. 1 19
0.9 27
1.3 17
2.5 6
2.8 6
2. 7 7
1.3 11
1.1 11
1.2 15
1.3 16
1.1 26
i. ; 17
0.9 32
T
M
P
-t,
-3
-4
_ -a
-3
-3
-3
-3
-2
0
4
6
8
8
5
5
3
1
-0
-1
-1
-2
-2
-2
W
p
T
-6
-6
-5
-5
-5
-6
-7
-7
-7
-5
-4
-4
-2
-3
-?
-2
-3
-4
-4
-4
— 5
-5
-5
-5
p
1-
81
83
88
87
86
82
76
75
71
f-k
57
49
47
5F
62
67
74
77
78
77
79
79
79
P
A
N
0
0
0
0
0
0
-0
c
c
1
1
1
1
1
0
c
0
0
0
0
0
c
0
0
M
E
U P C
V H C
. 10
.)0
.00
.00
.00
.00
.01
.10
.47
.16
. 36
.43
.35
.C7
.61
.34
.03
.01 4.0
.01 5.C
.01 5.8
.01 5.6
.01 5.7
.01 6.0
.01 <.3
N
* T C "
C H H H H
0 C C 4 C
1. 8 1.8
1.8 1.9
1.6 2.0
1.7 2.4
1.8 2.6
2.0 2.2
2.4 2.2
3.2 2.5
2.9 2.4
3.1 2.5
3.9 2.9
3.7 2.7
3.8 3.2
4.4 2.9
4.9 3.6
2.9
3.5
3.6
3.4
3.8
4.1
4.5
4.7
* 0
S N N NX
0 0 0 N 0 I
2 2 2 0 X D
O.CDC
0.030
0.000
0. 000
0. COO
0. OCO
0.000
0.000
0 , . 0
0 . :" ,'- ;
0.008
O.G17
0.035
0.033
0.042
0.054
0.037
0.014
0.013
0. JOG
0.000
0.000
0,0)0
0. 000
0
3
0.026
0.025
O.OIS
0.007
O.CC1
0.000
0,000
0,002
0.010
C-.025
0.025 i
00
0.051 1
0.044
0.041
O.OA9
0.06C
0.055
0.037
0.538
0.0 OJ
0.000
0.000
o. ccn
C.OGO
-------
DENVER, COLO.
NOV 6,1973
\-
n
C'
P
00
01
02
C3
04
05
06
07
ce
C?
10
11
V
w
n
R
ISP
2?2
177
221
26C
145
72
24
2(S5
?37
258
V
W
S
P
1.0
2.5
1.2
1.4
C. 6
0.9
C.7
1 .0
0.4
0.9
C.6
V U
S S
° I
n G
1. 5 24
2.7 <5
1.7 17
2.0 1*
1.4 29
1. P 19
1.7 7.1
1 .6 19
1.7 22
1.5 2?
1.1 20
T
E
V
p
-2
-1
-0
0
0
0
1
2
4
7
11
T
W
P
T
-5
-4
-4
-3
-4
-4
-4
-3
_ -3
-1
-1
R
H
80
80
80
78
75
73
70
69
65
55
4t
F
A
I I
N V
n.oi
0.0 1
0.01
0.01
0.01
0.01
-0.01
0.12
0. 48
0.72
C.S4
N
E
P C
H C
t. 1
6.9
4.7
3.6
3.1
2.5
1.5
1.8
2.1
3.1
3.1
*
C t-
0 C
4.
5.
4.
3.
4.
5.
4.
7.
6.
6.
5.
N
T : M
i H H H
C 4 C
9
6
3
8
I
4
3
3
4
5
5
* D
S N N NX
0 0 0 N C I
222 D X D
0.001
0. 014
C.004
0.001
0.000
O.COO
O.OG2
0. CO-7
a
o.;. ^o
0.021
0.016
0
3
0.000
0.000
O.DCO
0.000
o.coo
0.000
G.CQG
0.000
0.000
0.000 i
00
0.001 1
-------
DENVER, CQLC.
10t
n
I
R
15
16
17
18
19
20
21
2?
23
V V
w w
n s
P P
26 2.6
191 0.9
201 2.0
176 1.4
ItS 1.4
16R 1.3
19' 1.4
?3P C.9
u w
S S
p r
r G
2.7 4
1 .3 16
2.0 8
1.7 3
1.7 16
1 .3 5
1 .6 5
1.1 10
T
F
f
P
15
13
1 3
13
10
8
7
5
0
u
p
T
6
5
4
-0
-1
-2
-3
-3
P
A
c I
^ N
56 -C.2
59 C.O
53 C.O
41 0.0
47 0.1
52 C.I
51 0.0
55 0.0
-C
-0
-0
-0
-0
-0
-0
-C
N N *
F * T C M S N
LPCCHHHH 0 0
VHCOCC4C ? 2
.CO
.00 5.6
.00 10.5
.00 13.3
.00 8.3
.00 1.3 8.2 4.0 0.005
.00 1.4 7.3 3.5 0.005
.00 1.7 9.3 4.4 0.006
0
N "i X
0 N 0 I
2 0 X C
0.001
0.012
0.011
0.004
0.033
o.ocr
o.o:^
0
3
C.OOQ
o.oco
0.000
0.000
0.000
o.oco
C-.O )0
1
OO
-------
DENVER, CCLC.
NCV 11,1973
H
r
U
R
:o
ci
02
03
04
05
06
07
C8
09
10
11
12
13
14
15
It
17
in
19
20
21
22
23
V
I.
n
P
V
W
s
w w
s s
P I
C G
T
F
M
P
let; 0.9 1 .0 16 4
216 1.3 1.3 3 4
M3 1.3 1.3 6 3
232 1.0 1.2 7 2
223 0.6 0.9 12 2
>50 C.3 0.5 19 1
245 0.9 1.0 9 1
197 1.5 1.7 6 4
£26 1.2 1.6 14 10
279 C.6 0.9 15 16
341 0.7 0.9 12 1<5
26 1.7 1.8 8 19
31 2.2 2.3 7 19
19 2.4 2.5 8 20
22 2.5 2.6 6 20
27 3.0 3.0 5 19
16 1.5 1.7 8 16
ICt C. 2 0.7 12 13
ISO 1.0 1. 1 10 11
1=6 1.4 1.5 5 10
190 2.3 2.4 4 10
202 l.S 1.6 9 9
224 1.6 1.8 8 P
202 C.7 1.0 ?1 7
0 P
W A
P R I U
T H N V
-3 5S 0.0 -0.00 1.1
-3 60 0.0 -C.CO
-3 64 C.C 0.00 2.1
-4 65 -0.1 0.00 2.0
-4 66 0.0 0.00 1.9
-4 70 0.0 0.00 1.8
-4 72 C.O -0.01 1.5
-3 62 C.O 0.16 1.6
-3 40 0.0 0.63 1.4
-3 29 C.O 1.10 1.3
-4 21 0.0 1.26 1.1
-3 23 -C.I 1.49 1.3
-1 26 0.0 1.52 1.7
-1 24 O.C 1.30 1.4
-0 27 C.O 0.7P 1.4
1 31 C.O 0.40 1.5
0 36 0.0 0.02 1.7
1 43 -0.1 0.00 2.1
1 51 C.O 0.00 2.8
1 57 0.2 0.00 3.5
1 56 C.O 0.00 3.9
0 57 C.O 0.01 4.0
-0 56 0.0 0.01 3.6
-1 57 C.O 0.00 4.1
N
E
P
H
1.7
1.9
2.1
2.0
1.9
1.8
1.5
1.6
1.4
1.3
1. 1
1.3
1.7
1.4
1.4
1.5
1.7
2.1
2.8
3.5
3.9
4.0
3.6
4.1
C
0
9
11
10
9
7
6
4
4
4
4
3
2
3
3
2
2
2
3
11
17
9
5
5
fc
*
C
0
.0
. 1
.4
.1
.4
.6
.6
.1
.6
.2
.0
.7
.2
.8
.7
.4
.0
.7
.5
.1
.1
.2
.1
.7
4
5
5
5
5
6
5
4
4
3
2
3
3
2
2
2
2
3
6
7
4
3
4
4
H
C
*
•
•
»
•
•
•
.
*
*
•
•
«
.
•
•
•
•
•
•
*
•
•
*
T C
H H
C 4
7
6
7
7
9
0
2
3
1
2
9
2
8
8
2
5
2
1
0
1
7
8
0
e
N
M
H
C
*
S N N N
0 0 0 N 0
2 2 2 0 X
0.005
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
005
005
004
005
005
005
005
005
007
016
017
023
020
)09
006
006
006
007 0.10 0.47 0.57
006 0.12 0.51 0.62
009 0.11 0.14 0.31 0.45
015 0.12 0.15 0.23 0.37
Oil 0.12 0.14 0.23 0.36
)08 0.13 0.13 0.34 0.47
0
X
I
0
0.013
0.022
0.026
0.023
0.020
0.016
Q.011
0.012
0. 005
0.005
0.007
0.02^
0.045
0.045
0.025
O.Oif
0.007
0,000
0.018
0.024
0.013
0.008
0.007
0.017
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C
3
000
,000
000
000
ooc
000
,000
000
000
001
002
017
039
047
U30
023
013
000
000
000
000
000
000
000
1
oo
00
1
-------
DFNVFR, COLO.
12,1973
I-
r
u
P
oo
01
02
C3
C4
05
06
C7
Cfl
09
10
11
12
13
14
15
It
17
18
19
20
21
22
23
V
w
r
P
v
W
S
p
T
F
H
P
w
f
T
P
H
n
v
212 1.9 2.1 9
223 1.4 l.« 12
213 1.2 1.8 10
223 1.1 1.5 18
220 1.6 1.9 9
219 2.0 2.2 10
220 2.2 2.4 4
?12 2.6 2.8 5
7 -1 S7 0.0 C.CC 3.?
7 -2 54 C.C 0.00 2.5
7 -3 52 C.O 0.00 2.0
€ -2 54 0.0 0.00 1.7
6 -3 53 C.O C.OC 1.4
7 -4 46 C.C 0.00 1.2
7 -5 44 C.O -0.01 1.6
<; -6 26 0.0 O.C8 2.1
2?.0 1.4 1.7 8 11 -6 31 -0.1 C.49 2.5
203 4.7 4.2 4 17 -7 18 0.0 1.02 0.9
200 5.0 5.0 3 17 -7 IS 0.1 0.53 0.9
203 3.6 3.7 5 17 -7 19 C.O 0.62 0.8
If7 2.6 2.7 7 !<: -6 IS 0.0 0.60 1. I
157 1.5 1.6 8 19 -4 20 C.O 0.62 1.7
*.* 2.0 2.0 10 20 -2 22 -0.1 0.58 2.2
33 1.6 1.6 7 20 -2 23 -C.1 0.33 1.6
9 1.0 l.l 6 IP -2 27 0.0 0.00 2.5
261 C.3 0.7 19 14 -1 37 C.O -0.00 3.0
181 1.7 1.8 11 13 -0 41 0.0 0.00 S.I
1S3 2.3 2.5 6 14 -2 32 0.0 C.CO 2.4
222 2.2 2.5 8 15 -4 28 C.I 0.00 1.2
2
-------
H
C
u
p
00
Cl
C2
03
04
C5
06
07
Cfl
09
10
11
12
13
14
15
16
17
18
19
?0
21
22
23
v v
W w
D «
R P
w
S
P
C
w
S
I
G
1.6 1.8
T
c
M
P
11
D
W
P
T
R
A
I
N
U
V
N
E
P
H
1.8
2P3 3.0 3.1 4 12
263 l. 2.8 A 14
113 ?.0 2.1 7 11
79 0.9 1.6 24 6
-»45 0.6 1 .0 24 3
31 0.7 1.1 27 2
31 0.9 1.3 23 4
20 0.9 1.0 21
-------
H
r
ii
R
CO
Cl
0?
03
C4
05
Cf
C7
08
C';
10
11
12
13
14
15
16
17
18
lc
20
21
??
23
V
w
r
c
!"
?
4
,2
!6
V
W
S
P
1.1
C. 5
0.3
1 .7
0.7
\r*
c
P
C
1 .4
1.2
1. 1
1 .9
1 .1
V.
s
i
r
Cl
2V
72
7
21
T
F
M
P
-3
2
2
1
-0
-2 6E O.o 0.01
-2 73 C.O C.C1
F
P
H
l.S
226
-2 77 C.C 0.01 2.3
1 -3 77 C.O 0.00 1.7
? 7S C.O -C.fC 1.0
1.9 2.0 6 0 -3 80 C.C -0.00 1.1
2 .76 1.5 1 .0 9
1S6 1.4 1.6 13
1«9 C.7 l.C 19
1 -3 78 0.0 -0.01 1.7
3 -2 13 C.O C.1C 2.1
7 -1 57 r.O 0.49 3.0
17<= 1.5 1.7 16 11 -1 44 -0.1 0.92 1.7
249 2.0 2.4 U 14 -2 34 0.3 1.24 1.9
?71 7.6 7.8 7
2H4 7.1 7.5 6
301 5.9 6.0 7
304 6.3 6.5
2)2 6.0 6.1
304 5.4 5.6
270 4.5 4. R
?90 4.5 4.7
2 8 B 5.1 5.1
287 6.0 6.1
283 7.5 7 .R
765 5.9 6.0
260 5.9 5.<;
15 -14 13 C.1 1.67 1.5
14 -14 13 0.1 1.33 C.9
14 -12 17 -C.2 1.17 0.7
7 13 -12 17 0.2 0.80 0.6
5 12-10 21 0 .0 0. 39 C.7
8 -7 33 -C.I C. 01 0.8
6 -7 37 C.2 -0.01 0.8
(• -7 40 -C.4 -0.00 0.8
6 -8 38 0.3 -0.00 0. 7
7 -10 30 C.I -0.01 0.7
6-12 2P 0.1 -0.01 C. 7
5 -12 ?P 0.0 -C.OO 0.6
4 -12 29 -C.I -0.00 0.6
NflV
r
C
C01 C.
14,1973
H
C
6.1 4.3
6.9 7.4
6.4 10.2
4.6 6.0
1.7 4.1
2.7 3.8
5.7 4.0
11.1 5.2
11.9
5.0
4.0 2.6
0.8 1.7
0.9 2.1
1.1 2.2
1.5 2.2
1.8 2.4
1.8 2.2
2.1 2.5
1.4 3.0
1.1 2.2
0.8 2.4
0.8 2.6
0.8 1.7
0.8 1.7
T
H
C
C
H
4
N
M
H
C
S
0
2
*
N
C
2
N
0
2
N
0
N
0
X
c
X
r
D
0.005 0.06 0.06 0.23 0.29 0.007 Q.GCO
0.007 0.06 0.06 0.25 0.31 0.039 0.000
0.010 0.06 0.05 0.23 0.28 0.006 0.000
0.007 0.06 0.05 0.18 0.23 O.OC3 0.000
0.005 0.05 0.04 0.06 0.10 0.000 0.303
O.T06 0.06 0.05 0.13 0.19 0.001 0.000
0.006 0.08 0.08 0.33 0.40 0.014 O.OCC
0.007 0.10 0.06 0.45 0.52 0.024 0.000
0.009 0.14 0.14 0.34 0.48 0.020 0.000
0.12 0.12 0.10 0.21 0.009 0.006
0.010 0.12 0.12 0.05 0.16 0.018 0.021
0.006 0.03 0.03 0.01 0.04 0.015 0.023
0.032 0.02 0.02 0.01 0.03 0.021 C.037
0.008 0.02 0.0? 0.02 0.03 0.023 0.041
0.007 0.01 0.02 0.02 0.04 0.023 0,042
0.008 0.02 0.0? 0.02 0.05 0.018 0.033
0.007 0.03 0.04 0.03 0.06 0.012 0.030
0. J07 0.05 0.05 0.03 0.08 0.006 O.f)20
0.007 0.03 0.03 0.02 0.05 0.013 0.029
0.007 0.03 0.03 0.02 0.04 0.014 0.031
0.00& 0.01 0.01 0.01 0.03 0.020 0.031
0.007 0.02 0.01 0.01 0.03 0.017 0.035
0.006 0.03 0.02 0.01 0.04 0.012 0.029
0.006 0.03 0.03 0.01 0.04 0.012 0.029
-------
PrNVFR, CHI C.
15,1973
I-
0
L
R
00
01
C?
03
04
05
ce
C7
OP
09
10
11
12
13
16
17
If
19
20
r
p
26P
V
W
p
6.5
s
D
D
n
In
P
T
P
H
?83
6.1
4-13 28 C.I -0.00 0.6
4 -14 27 -0.1 -0.00 0.5
4-14 21 -0.1 -0.00 C. *
4 -14 27 C.O -C.CO 0.4
4 -15 25 C.O -0.00 0.5
2 -15 27 C.O -0.00 0.5
C -14 33 0.0 -0.01 0.9
1 -12 41 0.0 C.10 l.C
4 -12 33 -C.2 0.51 1.5
7 -12 2t C.O 0.99 1.3
8 -13 23 -C.3 1.02 0.9
145 3.1 3.3 11 10 -14 18 0.2 1.<1 C. 6
146 3.2 3.4 10 11 -15 14 C.O 1.44 0.5
6
2«4 6.4 6.6 6
?OP =.2 5.3 4
281 2.7 3.3 10
332 2.1 2.5 15
223 2.3 2.4 5
2C5 3.4 3.4 4
197 3.6 3.7 5
193 3.4 3.5 5
157 1.9 2.2 11
125 2.9 3.2 9
143 3.9 4.1 8
135 4.2 4.3 5
110 2.1 2.1 5
2* 0.6 1.2 11
?55 0.2 0 .3 14
180 C.7 0.8 9
206 1.9 2.0 3
2C^ 1.9 2.1 10
211 4.9 5.1 5
131 2.3 3.0 17
12-16 33-0.1 1.18 C. 5
13 -16 13 -0.1 C.79 C.6
11 -16 14 0.2 C.28 0.5
9 -16 16 C.O 0.00 1.0
t -15 21 C.O -0.01 1.5
3 -13 30 0.0 -0.01 1.9
3 -12 33 0.0 -C.OO 2.1
3 -12 35 C.O -0.00 2.1
2-11 37 0.1 -0.00 1.4
3 -12 35 C.C -0.00 1.4
2 -13 34 C.O -0.00 1.1
*
C C
C 0
0.7
0.3
0.4
0.4
0.5
0.2
2.6
5.0
4.5
2.6
1.9
0.7
0.7
1.1
0.5
1.0
5.6
8.4
5.9
10.4
13.5
5.7
4.4
2.8
T
H H
C C
1.6
2.2
2.5
2.0
2.4
1.9
2.6
3.1
2.9
2.6
2.2
2.0
i.e
1.9
1,8
1.8
2.9
*.l
5.4
6.1
5.5
3.5
3.2
2.5
N
M
H
C
S
0
2
*
N
0
2
N
0
2
N
0
0
X
0
X
I
D
0.005 0.02 0.02 0.01 0.03 0.013 0.030
0.006 0.01 0.01 0.01 0.02 0.019 C.036
0.006 0.01 0.01 0.01 0.02 0.020 0.036
0. )U6 O.C1 0.01 0.01 0.01 0.024 0.339
0.006 0.03 0.03 0.01 0.04 0.015 0.026
0.006 0.03 0.03 0.02 0.05 0.012 0.024
0.008 0.07 0.07 0.18 0.25 0. COO O.ODC
0.007 0.08 0.07 0.18 0.25 O.OJO 0.000
0.027 0.09 0.08 0.40 0.48 0.010 0.000
0.10 0.09 0.16 0.25 0.004 0.005
0.08 0.07 0.04 0.11 0.009 0.016
0.03 0.03 0.02 0.04 O.C17 0.028
0.006 0.02 0.02 0.01 0.03 0.024 0.036
0.005 0.02 0.02 0.01 0.03 0.024 0.037
0.005 0.03 0.021 0.020
0.005 0.03 0.03 0.02 0.05 0.010 O.D22
0.007 0.07 0.07 0.13 0.21 0.000 0.001
0.009 0.07 0.07 0.27 0.35 0.000 O.CGO
0.012 0.05 0.07 0.25 0.32 0.OCO O.OCO
0.011 0.07 0.07 0.42 0.50 0.007 0.000
0.012 0.09 0.09 0.57 0.67 0.016 0.000
0.009 0.08 0.07 0.23 C. 31 O.OC1 0.000
0.028 0.07 0.07 0.23 0.30 0.000 0.000
0.017 0.07 0.06 0.12 0.18 0.000 0.001
NJ
I
-------
R, C.r,LC.
16tl973
H V V W W T p V N M * 0
r V- '•< « S C 'V 4 E * T C M SNN NX
ii r ? D i v p P T OPCCHHHH n o o N o i o
o RPD^PTHN VHOOCC^C 2 2 2 o x o 3
00 123 C.4 1.7 30 1 -13 36 0.0 -C. CO l.l 2. 5 3.0 0.014 0.06 0.06 0.11 0.17 0.000 0.001
01 165 1.0 1.4 ?0 C -12 38 C.O -0.00 1.0 2.2 2.9 0.013 0.06 0.06 0.10 0.16 O.OJO 0. GuC
C? 19) 0.4 0.6 16 -1 -13 4? 0.0 -0.00 1.1 2.5 3.2 0.011 0.07 0.06 0.14 0.20 0. COO O.COO
C3 ] C4 •>. o 3.1 ^ -o -11 44 C.O -0.00 1.0 1.5 2.8 0.017 0.07 0.06 0.12 0.18 O.OJJ Q.OOO
04 213 1.5 2.0 15 1 -11 42 C.O -0.00 0.8 1.1 3.4 0.027 0.07 0.06 0.08 0.14 0.000 0.001
C5 210 1.4 1.6 8 -0 -11 45 0.0 -0.00 C. 9 2.0 3.1 0.011 0.08 0.07 0.13 0.20 O.COO O.OOC
C6 l«;? 1.1 1.3 12 1 -10 44 C.O -C.C1 1.2 4.8 3.5 0.012 0.08 0.08 0.26 0.34 0.003 0.705
07 237 C.7 0.9 14 1 -10 44 C.O 0.03 2.3 10.8 4.8 0.012 0.10 0.10 0.55 0.66 0.020 0.000
CR 2 0.6 0.7 17 1 -<) 47 -0.2 0.32 3.* 14.2 8.9 0.014 0.12 0.1? 0.67 0.79 0.03X C.CCO
0° 2? 1.4 1.6 12 6 -6 41 -0.1 C.
-------
DENVEP, COLC.
NCV 17,1973
1-
o
L1
p
00
Cl
02
C3
04
05
C6
07
ce
09
10
11
12
13
14
15
16
17
18
1 9
20
?}
22
23
V
w
D
p
192
201
223
m
?00
?15
220
l£7
10
21*
1F7
161
140
85
100
296
300
30"
285
2?P
164
17P
2CS
20*
V
w
c
p
1.4
1 .9
1.5
C.2
1.1
1.9
0.8
2.4
3.5
1.5
1.6
1.0
0.7
1.3
C.7
3.6
5.5
5.4
3.6
1.5
?.o
3.0
2.3
?..l
u
s
P
n
1. 5
2.1
1. 6
1.4
1. 5
2.1
1 .1
2.4
3.7
1.9
1 .7
1. ?
1.2
1. 8
0.9
3.8
5 .6
?.5
3. 8
2.5
2. 3
3.1
2.3
2. 1
u
s
I
G
7
6
10
21
14
7
20
4
5
11
13
22
24
38
25
9
5
4
5
6
6
3
4
2
T
F
w
P
1
C
-0
-2
-2
-2
-2
0
f
10
14
16
17
16
16
15
14
13
11
<;
7
5
3
3
T
W
P
T
-11
-12
-12
-12
-12
-11
-12
-12
-15
-14
-13
-12
-11
-H
-12
-13
-13
-12
-13
-13
-12
-1 1
-10
-10
P
H
41
41
43
49
tp
48
46
41
23
18
15
14
14
14
15
14
If
17
18
20
25
31
37
38
R
A
I
K'
c.o
0 .0
c.o
0.0
c.o
0.0
c.o
-C.3
0.1
C.I
-0.2
-C.I
0.0
c.o
C.I
c.o
-0.1
C.3
C.I
0.0
c.o
0.0
-0.1
c.o
u
V
-0.01
-0.01
-0.01
-0.01
-0.00
-c.oo
-0.01
0.07
0.49
0.94
1.35
1.36
1.46
1.12
0.69
0.27
-0.00
-C.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
N
F
P
H
1.9
1.6
1.9
1.9
1.4
1.9
1.7
1.2
0.8
0.6
C.5
0.5
0.6
0.5
o.e
0.5
0.5
C.8
0.9
1.1
1.4
1.4
C
0
t.c
4.0
?.«
4.7
3.3
4.4
5.1
4.0
1.8
2.0
1.5
C.4
1.5
2.1
3.0
2.8
2.6
*
C
0
6.8
5.1
4.9
5.6
4.3
5.3
5.5
4.6
2.3
2.3
1.5
1.3
2.1
2.5
2.6
2.2
1. 8
1.8
3.2
3.7
4.4
4.6
5.3
H
C
4.0
3.3
4.2
5.7
4.5
4.8
4.6
3.6
2.4
2.1
1.8
1.9
1.9
2 .9
3.2
2.5
3.8
2.7
2.6
2.7
2.9
3.3
T
H
C
4.4
3. 6
4.4
6.0
4.7
5.0
4.9
3.8
2.6
3.1
2.4
3.1
3.7
2.7
2.8
2. 9
3.3
r
H
4
2.2
1.9
2.5
4. 1
3.1
2. 9
2.8
2.1
1.6
1.5
1.3
2.0
3.0
1.5
1.5
1.5
1.7
N
M
H
C
2.2
1.7
1.9
1.8
1.6
2. 1
2.1
1.7
1.0
1.6
1.0
1. 1
0.7
1.2
1.3
1.4
1.6
5
0
2
0.023
0.035
0.016
0.014
0,013
0.013
0.012
0.027
0.021
0.015
0.012
0.011
0.011
0.013
0.012
0.013
0.013
0.012
0.010
0.010
0.010
0.010
0.011
*
N
0
2
0.11
0.10
0.10
0.11
0. 10
0.13
0,13
0.11
0.09
0.10
0.08
0.03
0.02
0.02
0.03
0.01
0.01
0.01
0.03
0.07
0.08
0.08
0.07
0.08
N
0
2
0.09
0.08
0.08
0.08
0.08
0.10
0.10
0.07
0.06
0.08
0. 02
0.02
0. 02
0.03
0.02
0.02
0.02
0.03
0.07
0.08
0.07
0.07
N
0
0.26
0. 19
0.25
0.30
0.23
0.35
0.35
0.26
0. 06
0.08
0.01
0.02
0.03
0.04
0.04
0.04
0.04
0.03
0.07
0.09
0.14
0.16
N
0
X
0.34
0.27
0.33
0.3S
0 .31
0.45
0.45
0.34
0.12
0.16
0.03
0.04
0.05
0.08
0.05
0.06
0.06
0.06
C. 14
0.16
0.21
0.23
0
X
I
D
0.002
0. 000
0.002
0.004
0.001
0.009
0.009
0.003
0.000
0.002
0.022
' 0.034
0. 039
0.040
0.034
0.028
0.022
0.019
0.014
O.OC3
0.000
0. 000
0.000
0.000
3
3
O.OQ1
0.000
0.000
0.000
o.oco
C.OQO
D. 000
0.030 .
O.CC5
0.007 1
vo
-p-
0. C2S I
O.C40
0.047
0.053
0.050
0.049
0.0^1
0.037
O.J30
0.010
0.003
0.003
0.002
0.001
-------
rt-MVFR, COLT.
NTV 13,1973
H
r
I
P
GO
01
02
03
04
05
06
C7
08
09
1 0
11
12
13
14
15
1 6
}7
18
19
?0
21
2?
73
V
t"
n
P
2 oe
196
191
186
216
351
3fi
3CP
251
^26
17
22
21
16
1?
6
^35
243
?c. 8
311
1S3
224
1 fi?
?24
V
W
s
p
C.9
1.8
1.3
1.2
I .0
0. 1
0.1
0.2
0.9
C. 1
Z .1
3.5
4. 3
3.8
3.1
?.2
1 .3
C.3
C. 5
0.4
1.0
0.5
2. ft
1.2
W
<;
P
D
1. 4
1 .9
1. 3
1 .4
1 .4
0.5
0.7
0.9
I .2
n. 5
2 .1
3 .6
4.4
3.Q
3.2
2. 4
1 .3
0.4
0.6
0.7
1.3
1 .5
2.7
1.6
V<
s
I
G
9
6
11
11
16
23
21
16
9
?2
5
5
5
7
6
7
7
a
7
26
6
fi
?
15
7
F
W
P
2
1
1
0
-0
-1
-?
-2
3
11
Ul
012 '
0.020
0.
0.
0.
0.
025
029
027
013
0.003
0.
r. -i -2
i _' v ~>
0.003
0.303
0.
002
0.032
0.002
-------
r.^NVEP, COLO.
r'PV 19,1973
HVVWWT^P N N * 0
P V W S S F W /t F * T : M S N M NX
U r S P I V P P t tPCCHHHH 0 0 0 N G I 0
B RPDGPTHN VHCOCC4C 2 2 2 C X D 3
00 43 1.1 1.6 17 1 -6 61 C.C -0.01 2.7 4.4 8.2 6.4 5.6 3.0 2.5 0.014 0.04 0.08 0.29 0.37 0.007 0.002
Cl 357 0.5 1.5 28 -0 -7 63 0.0 -0.01 2.5 4.6 7.9 7.1 t. 9 3.4 3.5 0.015 0.04 0.03 0.28 0.35 0.006 0,001
02 287 0.7 1.0 16 -1 -6 68 C.O -0.01 1.8 2.1 4.6 9.1 6.6 5.8 1.6 0.018 0.03 0.06 0.14 0.20 0.000 0.001
C3 278 0.7 1.0 14 -1 -7 66 0.0 -0.01 1.2 0.8 3.3 10.2 7.4 9.0 0.1 0.020 0.02 0.05 0.06 0.11 0.000 0.002
04 115 1.2 1.4 7 -1 -7 t? C.O -0.01 1.4 1.2 4.0 6.5 6.2 4.7 1.4 0.014 0.03 0.06 0.10 0.16 O.ODO. 0.003
C5 196 0.8 1.2 13 -1 -7 64 0.0 -0.01 1.5 1.7 4.8 4.0 3.7 2.1 1.7 0.012 0.03 0.06 0.16 0.23 0.000 0.002
06 223 1.2 1.5 4 -1 -7 65 C.O -0.01 1.9 4.6 8.5 4.5 4.4 2.2 2.2 0.013 0.05 0.09 0.42 0.51 0.016 0.002
C7 354 1.3 1.6 8 2 -6 58 0.0-0.02 1.5 2.9 5.9 4.3 4.3 2.6 1.8 0.014 0.03 0.07 0.21 0.28 0.003 O.OC3
OP 1° 3.0 3.3 6 4 -5 55 C.O 0.17 1.3 2.3 5.0 3.9 3.3 1.4 1.8 0.017 0.05 0.06 0.11 0.17 0.001 0.006
Cc 50 ?.l 3.2 6 4 -4 60 -0.1 C. 36 1.2 0.8 2.2 3.0 2.9 1.2 1.7 0.017 0.03 0.04 0.04 0.07 0.000 0.00=
10 58 2.8 ?.0 7 3 -3 63 C.I 0.19 1.2 C.6 1.5 2.4 2.5 1.3 1.2 0.010 0.02 0.02 0.03 0.06 0.001 0.009
11 3K ?.9 4.1 6 2 -3 67 0.0 0.11 1.3 C.8 1.2 2.5 3.0 1.3 1.7 0.011 0.01 0.02 0.04 0.06 0.000 0.007
12 22 6.8 6.8 4 1 -4 69 0.1 0.06 1.0 C.4 0.8 2.2 2.4 1.2 1.2 0.309 0.00 0.02 0.03 0.05 0.000 0.005
13 24 6.7 6.7 4 -0 -4 73 C.I 0.02 1.0 C.4 2.4 1.2 1.2 0.009-0.00 0.01 0.03 0.04 0.030 0.002
14 20 7.0 7.0 4 -1 -5 79 C.I -0.01 0.9 C.5 0.8 2.0 2.3 1.2 1.1 0.008 -0.01 0.01 0.03 0.05 0.030 0.000
lc 13 6.9 7.0 4 -2 -5 81 0.0 -O.C2 0.9 0.5 0.9 2.1 2.4 1.3 1.0 0.008 -0.01 0.01 0.03 0.04 0. OCO 0.000
16 11 6.4 6.5 4-3-681 C.I -0.02 1.0 C.7 0.9 2.0 2.3 1.3 1.0 0.008 -0.01 0.02 0.02 0.03 0.000 O.OCO
17 15 7.1 7.1 4 -4 -7 84 0.0 0.01 0.8 0.6 1.0 2.0 2.3 1.3 1.0 0.008 -0.01 0.01 0.01 0.03 0.000 O.CC2
IP ?2 5.7 5.7 4 -5 -6 88 C.O 0.01 0.8 C.4 0.7 2.0 2.2 1.2 0.9 0.009 0.00 0.01 0.01 0.02 O.OOJ 0.004
19 32 6.2 6.3 4 -5 -6 90 -0.1 0.01 C.8 0.2 0.2 2.4 2.6 1.3 1.4 0.011 0.01 0.01 0.01 0.02 0.030 O.OQ5
20 27 f.9 6.9 4 -5 -7 89 C.I 0.01 0.8 C.I 0.1 2.2 2.5 1.2 1.3 0.009 0.01 0.01 0.01 0.02 0.004 0.011
21 2° 6.2 6.2 4 -5 -7 90 0.2 0.00 C.8 0.1 0.4 2.2 2.4 1.2 1.2 0.010 0.01 0.02 0.01 0.03 0.006 0.014
22 ?° 4.8 4.P 5 -5 -7 91 C.O 0.00 0.8 C.2 0.7 2.4 2.5 1.2 1.4 0.011 0.02 0.02 0.01 0.02 0.003 0.016
?3 1° 3.5 3.5 5 -5 -6 <52 C.O 0.00 0.7 0.2 0.8 1.9 2.2 1.2 1.0 0.309 0.02 0.02 0.01 0.03 0.010 O.C18
-------
20,1<373
H
C
U
p
CO
01
n?
C3
04
05
C6
C7
Cf?
09
10
1 1
12
1 3
14
15
16
17
18
19
20
21
22
23
V
P
?0
26
23
98
161
213
13
144
190
173
160
135
137
152
121
135
177
180
19?
1«3
172
155
184
190
V
W
S
P
4. 2
2.1
C. 6
1.5
1.2
0.6
1.8
1 .0
1.5
1.8
2.2
2.1
2.1
1.6
1.6
1 .7
3.0
2.8
2.9
3.7
2.4
2.0
2. 3
1.3
W
s
p
n
4.2
2.2
0.7
1.6
1.5
0.8
2.0
1.2
1.7
1.9
2.4
2.?
2.3
1.8
1 .7
1 .8
3.0
2.8
3.0
3. 8
2 .6
2.1
2.5
Uc
W
I
r
4
8
15
13
8
If
9
16
8
8
o
10
9
13
11
T
r
y
p
-5
— 5
-5
-5
-6
-6
-5
-6
-4
-1
-1
-0
0
1
1
1
C
-1
-2
-3
-5
-6
-6
-6
0
W
p
T
-fc
-6
-5
-6
-7
— 6
-6
-6
-5
-3
-4
-4
-6
-7
-7
-7
-9
-9
-9
-10
- 11
-12
-12
-12
p
A
H N
91 C.O
<;4 c.o
101 C.O
c>5 C.O
94 C.O
100 C.O
93 0.0
<35 C.O
<;? -o.i
as 1.2
82 -C.2
76 -C.I
64 -0.1
55 C.I
57
58
53
C K
58
60
63
£5
67
65
U
V
C. CO
0 .00
c.co
0.00
C. CO
0.00
-C. Cl
0.06
0.52
1.02
1.43
1.61
1. 50
1. 20
C.78
0. 35
0.05
0.02
0.03
0.03
0.03
0. C3
0.02
0.03
N
r
P
H
C.7
c.a
0.9
1.0
l.C
1.3
1.1
C.9
1. 1
1.1
1.3
1.3
1.3
1.2
1.5
1.4
1.4
1.4
2.C
2.2
2.0
2.0
2. 1
1.6
C C H
0 0 C
0.1 0.9 1.8
C.I 0.7 2.2
0.1 0.9 2.1
C.3 1.4 2.5
0.4 1.2 2.1
C.5 1.4 2.4
0.6 1.4 2.6
1.1 2.4 2.4
1.5 2.5 2.5
1.4 2.4 2.5
l.t 2.7 2.4
1.8 2.8 2.3
1.4 2.8 2.1
1.3 2.8 2.3
1.9 4.1 2.5
2.1
2.8
4.7
5.8
<. 5
4.0
3.3
3.5
2 .4
T
H
C
2.1
2.4
2.3
2.7
2.2
2.5
2.8
2. 5
2.6
2.6
2.7
2.4
2.2
2.2
2.5
2.5
3.0
3.5
4.0
3.7
3.3
3.2
3.1
2.8
C
4
1. 2
1.3
1. 3
1.7
1. 3
1.4
1. 5
1.4
1.2
1.2
1.2
1.2
1.1
1. 1
1. 1
1.1
1.2
1.2
1. 4
1.5
1.3
1.4
1.3
1. 3
N
VI
H
C
1.0
1.1
1.0
1.0
1.0
1.1
1.4
1.1
1.4
I .5
1. 5
1.3
1. 1
1.1
1.4
1.4
1. 9
2.2
2.6
2.2
2.0
1.8
1.8
1.5
S
0
2
0.010
0.009
0.009
0. J09
0.008
0.009
0.010
0.009
0.011
0.014
0.011
0.009
0.009
0.008
*
N
0
2
0.01
0.02
0.03
0.03
0.05
0.06
0.05
0.05
0.06
0.07
0.07
0.06
0.09
N
0
2
0.02
0.02
0.03
0. 03
0.05
0. 06
0.05
0. 05
0. 06
0.07
0.07
0.06
0.06
0.06
0.11
0.12
0.10
0.11
0.1?
0.12
0. 10
0. 09
0.10
0.10
N
C
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0. 03
0.04
0.02
0.02
0.02
0.01
0.02
0.04
0.04
0.05
0. 13
0.25
0.23
0.17
0. 15
0.15
0.10
N
0
X
0.02
0.03
0.04
0.04
0. 06
0.08
0.07
0.08
0.09
0.09
0. )9
0.09
0.08
0.09
0.15
0.15
0.15
0.24
0. 37
0.36
0.27
0.23
0.25
0.20
n
X
D
0.038
0.003
0.005
0.005
o.ooe
0.000.
0.002
0.001
0.007
0.02S
0.036
0.036
0. 04 <5
0.037
0.024
0.017
-0.004
-O.CC7
0. 00 1
0.0)0
-0.008
-0.003
-0.008
-0.008
0
3
0.017
0.017
0.014
0.013
o.:oi
-0.003
0.005
0.005
0.012
0.034
0.037
0,040
0.059
0.050
0.034
O.D21
-0.002
-0.009
-0.01C
-0.010
-0.009
-0.010
-0.010
-0.010
-------
CFMVFP, CO! 0.
NCV
,1973
H
C
u
p
CO
01
C2
03
C4
C5
C6
07
on
oo
10
11
12
13
14
15
16
17
IP
19
20
21
22
23
V
W
n
p
159
126
103
21
91
-7
67
100
353
IP
2P
61
«,o
llfl
110
103
129
149
127
6?
151
12
?3
7
V
W
p
1.5
0.5
C.2
0.3
0.5
0.9
1. 3
1.3
C.3
1 .1
1.6
1.5
1. ft
3.5
2.4
l.fl
2.0
1.9
1. 1
1.0
C. 7
2.4
3.1
2.4
u w
< s
p I
n G
1.7
1.3
1.2
1. 1
0.9
1 .2
1.5
1. 4
1. 2
1 .2
1 .7
1 .7
2.0 11
3 .7 12
2.7 7
2.0 14
2.0 12
2.0 6
1.2 7
1.2 12
1 .7 16
2.6 6
3.2 5
2.7 6
T
F
M
P
-5
-5
-6
-6
-6
-7
-7
-5
-1
2
3
6
8
5
5
4
3
2
1
1
-1
-2
-3
— 2
C
P
T
-11
-11
-11
-11
-11
-11
-11
-10
-a
-7
-7
-8
-8
-1 1
-9
-a
-10
-q
-0
-B
-9
-fl
-8
-7
R
H
6F
65
66
67
69
12
73
69
59
51
49
38
32
32
37
4 1
4 1
46
48
c 3
57
64
66
69
P
A
I U
N V
C.C1
0.01
0.01
0.01
0.01
c.oo
0.01
0.06
0.36
0.75
1.10
1.38
C.2 1.44
0.1 0.73
-C.I 0.41
C.I 0.14
0.0 -0. 01
-C. 1 -0.00
C.O -0.00
C. C -0.00
C.C -0.00
0.0 -0.00
0.0 -0.00
C.O -0.00
N
e
p
H
l.C
1. 2
1.2
1.6
1.4
l.t
2.C
2.3
2.8
5.6
7.8
«.2
0.9
C. 7
0.7
0.8
0.9
1.1
1.3
1.5
1.3
I .2.
0.9
0.8
C
n
1.5
1.7
2.7
2.6
2.1
1.6
2.8
3.7
3.0
5.7
5.0
3.2
C.8
0.6
C.8
1.6
2.3
4.6
4.5
5.5
2.7
1.9
0.5
0.1
* T
C H H
0 C C
2. 7
3.6
4.5
7.4
6.7
4.5
5.9
3.9
3.6
7.0
8.4
3. 6
1.3 2.3 2.6
1.8 2.1 2.2
2.0 2.1 2.2
2.9 2.3 2.6
3.7 2.4 2.7
5.8 3.0 3.2
7.4 3.4 3.5
7.1 4.2 4.5
4.3 3.0 3.1
2.1 2.7 3.1
0.9 4.0 4.5
0.6 2.3 2.8
C
4
1. 3
1.9
2. 3
4.5
3.9
2.0
2.4
1.9
1. 5
3.0
1.8
1.3
1.2
1. 1
1.0
1.2
1.2
1.3
1.4
1.7
1.4
1.4
1. 9
1.5
N
M S
H 0
C 2
1.4
1.7
2.2
2.9
2. 8
2.5
3.4
2.0
2. 1
4. 1
6. 6
2.3
1.3 0.004
1.2 0.000
1.2 0.000
1.4 0 . D 00
1.5
1.9 O.">00
2.0 0.004
2.8 0.300
1.7 0.000
1.7 0.000
2.6 0.000
1.3 0. 500
*
N N
n c
2 2
0.08
0.09
0.09
0.08
0.08
0.03
0.10
0.10
0.12
0.28
0.32
0.21
0.06 0.06
0.04 0.05
0.05 0.05
0.06 0.06
O.Q7
0.09
0. 09
0.09
0.01
0.07
0.05
0.03
N
0
0. 05
0. 11
0. 13
0.18
0.17
0. 17
0.22
0.16
0.14
0.15
0.07
0. 05
0.03
0. 03
0.05
0.06
0.06
0.12
0.19
0.26
0.13
0.10
0.03
0. 03
N
0
X
0.13
0.2G
0. 22
0.26
0.25
0.26
0. 23
0.28
0.26
0.43
0.39
0.27
0.09
O.C8
0.09
0.12
0.14
0.21
0.28
0.35
0.22
0.17
0.03
O.C6
0
X
1
D
-0.007
-0.007
-O.C07
-0. CQ6
-0.037
-0.006
-0.001
-0.005
-0. 001
0.031
0.109
0.055
0.031
0. 020
0.015
0.008
0.005
0.0)0
0.003
0.007
O.OJO
0.000
c.ooo
o.oo a
0
3
-0.010
-0. 010
-0.009
-0.009
— 0 .010
-0.009
-0.009
-0.009
-O.JOS
0.011 IQ
oo
0.086 '
0.048
O.C34
0.029
0.026
0.017
0*"* " i
Ml* ~ 1.
-0.001
-0.002
-0.002
-O.C02
-0.001
0.005
0.013
-------
[FNVER, COLO.
H V V W W
n v w 5 5
u r 9 P i
C R P D G
OC 11 2.7 2.8 6
01 7 1.7 l.R 6
0? 188 1.4 1.5 10
C^ 229 1.4 1.4 4
C4 233 1.1 1.2 6
0? 193 0.4 1.1 11
06 1<>3 2.2 2. 3 5
07 164 2.0 2.5 If-
C8 170 ?.l 2.1 7
C9 164 2.9 3.1 6
10 14? 3.2 3.3 P
11 13P 4.0 4.1 7
12 139 4.8 4.9 8
13 141 2.7 2 .8 1Z
14 110 2.2 2.4 11
I*! 79 2.8 2.9 13
16 341 3.2 3.5 5
17 3»1 2.8 2.9 5
18 336 1.8 1.9 6
)Q 315 0.6 1.1 14
70 200 0.7 0.9 6
21 115 0.2 0 .4 12
?? 171 1 .0 1 .0 10
23 190 I.? 1.7 4
p
T
p
H
L
V
C
C
H
C
T
H
C
N
M
H
C
s
0
2
p T H r v H c n
-2 -ft 71 C.O -.).00 C.9 C.2 0.8 2.4 2.8 1.3 1.5 0.000
-2 -6 81 C.O -0.00 l.C C.I 0.5 2.2 2.7 1.4 1.3 0.000
-4 -6 84 C.O -0. )0 2.2 0.3 0.7 2.6 3.0 1.4 1.6 0.003
-5 -7 85 f..O -0.00 1.7 C.t 1.0 2.4 2.8 1.5 1.4 0.000
-5 -7 66 0.0 -0.00 1.9 C.6 2.3 2.4 2.8 1.4 1.4 0.000
-6 -8 85 C.O -C.OO 1.7 0.7 3.1 4.6 4.1 2.4 1.6 0.003
-6 -8 P3 C.C -0.00 1.5 0.8 1.8 2.5 2.9 1.6 1.3 0. 000
-5 -a 80 C.O 0.03 1.5 1.0 3.0 2.3 2.7 1.5 1.2 0.000
-2 -9 62 0.0 0.43 1.1 C.7 1.4 1.9 2.4 1.3 1.1 0.000
-0 -9 52 0.2 0.77 0.9 C.5 1.5 1.9 2.3 1.2 1.0 0.000
1 -fl 49 -0.1 C.S3 0.9
3 -9 44 -0.1 1.43
4 -«. 41 -C. 2 1.63
5 -7 43 0.1 1.11
5 -6 43 -C.I 0.76
0.4
0.8 1.7
0.7 1.7
0.9 1.7
1.4 1.8
0.000
0. )00
5 -6 48 C.O 0.29 0.5 0.2 1.0 1.9 2.4 1.4 1.0 0.100
2 -7 55 C.I -0.01 0.6 0.3 1.5 1.9 2.5 1.3 1.1 0.000
-1 -7 61 C.O 0.00 C.P 0.5 1.6 2.0 2.5 1.4 1.1 0.000
-1 -7 64 C.O 0.00 C.8 0.5 1.5 2.0 2.6 1.4 1.1 0.000
-2 -8 67 0.0 0.00 1.0 C.8 1.8 2.2 2.8 1.6 1.2 0.000
-3 -fl 72 0.0 0.00 1.4 2.3 3.8 3.1 3.5 1.9 1.6 0.000
-4 -8 75 0.0 C.OO 1.6 A.I 5.1 4.1 4.8 2.6 2.1 0.000
-5 -8 77 0.0 O.CO 3.5 <.9 9.3 5.1 5.6 3.0 2.6 0.000
-4 -8 77 0 .() 0.00 3.9 *.8 6.9 3.8 4.1 2.0 2.1 0.000
N
0
2
M
0
2
N
C
X
u
X
I
0
0.03 0.03 0.02 0.009
0.03 0.02 0.05 0.003
0.04 0.02 0.06 0.000
0.06 0.05 0.12 O.OOC
0.07 0.09 0.16 O.OJO
0.07 0.10 0.16 0.000
0.06 0.08 0.14 0.000
0.05 0.05 0.10 O.ODO
0.04 0.03 0.07 0.004
0.04 0.02 0.06 0.012
0.018
0.02 0.02 0.04 0.021
0.02 0.02 0.03 0.030
0.02 0.02 0.04 0.029
0.02 0.03 0.05 0.034
0.02 0.04 0.06 0.030
0.04 0.04 0.08 0.010
0.05 0.04 0.09 0.000
0.06 0.04 0.09 0.000
0.06 0.05 0.11 0.0)0
0.07 0.17 0.24 O.OOi
0.08 0.23 0.31 0.005
0.08 0.36 0.44 0.016
0.08 0.26 0.34 0.007
0
3
-------
H
r
u
P
CO
Cl
0?
03
04
C5
C6
07
OP
09
1 0
11
12
13
14
15
1ft
17
18
!«!
20
21
22
23
V
W
P
P
178
23ft
?42
182
203
22ft
207
1 S5
180
119
1F7
125
64
71
50
91
IIP
179
201
196
SO
171
197
118
V
w
c
P
1.8
1.3
1.3
1.1
1.1
C.Q
0.9
0. 2
1. I
C.9
1. I
0 .8
1.8
7.2
1.6
1 .9
2.0
1.7
1.4
2 .0
0.4
1.2
1 .6
?.?.
W
s
P
r
1 .8
1 .5
1.5
1. 5
1.2
1.4
1.3
1.2
1.2
1. 2
1.4
I .1
l.o
2. 3
?.o
2.2
P? .2
1.9
1.5
?.o
1 .1
1.5
1 .8
2.4
W
c,
r
r,
4
4
6
4
4
8
8
14
9
20
13
19
15
10
10
14
C
6
5
a
19
I?
7
4
T
P
P
-5
-6
-ft
-6
-7
-7
-7
-6
-2
2
4
8
7
8
8
6
4
2
-0
-C
-2
-3
_ -a
-4
r>
W
P
T
-9
-9
-10
-10
-10
-10
-10
-9
-7
-6
-6
-6
-7
-8
-9
-9
-7
-8
-9
-9
-8
-P
-8
-9
P
H
75
It
77
77
79
79
PC
79
69
57
48
37
36
34
31
34
44
50
54
56
62
68
69
65
P
A
I
N'
0.0
0 .0
C.O
C.O
0.0
0.0
0 .0
0.0
C.O
-C.I
-0.3
-0.1
0.0
C.O
-0.1
-0.1
-0.1
0.0
0.0
0.?
0.1
0.0
0.0
0.0
LI
V
0.00
0.00
C. CO
0.00
0.00
0.00
-0.00
0.02
0.36
0.80
1.16
1.26
1.24
1.02
0.59
0.72
-0.02
-0.00
-C.CO
-0.00
-0.00
-0.00
-0.00
-0.00
N
E
H
2.2
1.9
1.7
1.8
1.6
2.6
1.9
2.5
2.7
2. 6
1.9
1.8
l.l
1.1
1.4
l.l
0.8
0.8
0.9
1.0
1.3
1.8
2.0
1.5
C
n
2.6
1.7
1.0
1.3
1.1
1.7
2.9
5.7
7.3
4.2
1.2
2.6
1.0
C.6
1.3
1.5
1.5
3.0
3.1
2.0
4.1
(.9
* .7
4.5
C
0
3.1
1.9
1.1
3.7
3.1
3.7
4.8
a. 9
8.6
5.3
3.2
3.3
1.3
0.9
1.0
1.9
3.1
4.4
4.7
4.6
6.2
9.0
e.o
5.1
H
C
2.9
2.6
2.8
2.9
2.8
3.4
3.7
6.0
5.2
3.7
2.8
2.3
2.1
2.2
2.4
2.7
2.6
2.7
2.9
4.6
4.«
4.0
3.4
T
H
C
3.2
2.o
3. 1
3.2
3.0
3.7
3.9
6.3
5.2
4. 2
3.0
3.1
?.6
2.3
2.5
2.6
3.1
2.9
3.0
3.2
4 .7
5.4
4.3
3.9
C
H
4
1.7
1.7
1.9
2. 0
1.9
2.3
2.2
4.0
2.4
2.0
1.5
1.5
1. 5
1. 4
1.4
1. 4
1.7
1.4
1.4
1.4
2.3
2.5
1.9
1.8
N
M
H
C
1.4
1.2
1.1
1.2
1. 1
1. 3
1.7
2.4
2.8
2.2
1. 5
1.6
1.2
0.9
1. 2
1.2
1.4
1.5
1.6
1. 8
2.4
2.9
2. 3
2.0
S
0
2
0.000
0.300
0.001
0.000
0.000
0.002
0.000
0.001
0.001
0. J03
0.003
0.007
0.006
0.001
0.009
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
*
N M
o n
2 2
0.07
0.07
0. 07
0.07
0.07
0.08
0.08
0.08
0.11
0.13
0.10
0. 12
0.07
0.05
0.06
0.07
0.07
0.08
0.08
0.09
0.09
0.09
0.08
0.08
N
0
0.14
0.12
0. 13
0.13
0.11
0.23
0.27
0.46
0. 36
0.16
0.07
0.07
0.04
0.04
0.03
0.04
0.07
0.09
0.15
0.15
0.21
0.34
0.30
0.18
Nl
0
X
0.22
0.19
0. 20
0.20
0.17
0.31
0.35
0.54
0.48
0.29
0.17
0.19
0.12
0. 09
0. 10
0. 10
0.14
0.18
0.23
0.23
0.30
0.42
0.39
0.26
C
X
I C
D 3
0. COO
0.030
0.000
O.OJO
0.000
0.005
0.009
0.025
0.021
0.010 ^
0
0.020
-------
, cm c.
MOV 24,1573
H
r
u
p
CO
01
02
03
04
C*
C6
07
CP
C9
10
11
12
13
14
15
16
17
18
H
?0
21
22
73
V
D
P
206
2C7
210
216.
?12
212
197
?65
73
90
356
350
17
56
69
83
121
139
139
160
182
148
1?7
16*
V
W
c
p
2.0
^. 1
3.0
2.6
?.o
1.8
2.3
0. 6
C. 6
0.7
2.0
2.?
3.4
2.7
1.3
2.3
2.3
3. 1
2.7
2.4
2.0
1. 1
1.4
7.0
w
^
p
n
2.1
3.1
3. 1
2. F
2.6
2.1
2.4
1.2
0.9
1.1
?.l
2.4
3.4
2.8
1.5
2.4
?.5
3.1
2.2
2.5
2.1
1.3
1. 7
2.0
u
I
r
4
4
5
6
<}
16
3
11
19
23
9
8
6
«
24
9
11
4
6
4
5
6
5
4
T
F
V
P
-4
-•"^
-3
-3
_ i
-4
_ -5
-3
2
4
6
7
6
4
4
3
2
2
1
1
0
-0
-2
-2
-i
W
P
T
-1 1
-12
-13
-13
-13
-12
-13
-12
-10
-10
-9
-10
-9
-9
-9
-9
-9
-9
-9
-9
-9
-P
-8
-8
P
H
to
50
47
48
48
53
49
52
43
36
32
31
35
40
40
41
44
45
47
49
52
56
61
63
p
A
I
h'
0 .0
0.0
C.O
C.O
C.O
0.0
0.0
-C.I
-0.1
-C.5
C.3
C. 1
0.0
0.0
0.0
0 .0
C.O
c.c
C.O
0.0
0.0
0.0
C. 1
C. 1
u
V
0.00
c.tc
0. )0
0.00
0.01
0.00
0.00
C. 03
C.39
C.S2
1.15
1.19
1.72
0. 81
0.44
0. 14
-0. 02
-0.00
0.00
0.00
0.00
C.CO
0.00
0 . 00
N
c
p
H
1.1
C.7
0. 5
C.6
0.6
0.6
0.6
0.8
1.0
0.9
1.2
1.4
1.3
1.3
0.8
0.6
0.5
c.e
0.6
0.7
0.9
I. ft
1.4
1.2
r
0
2.1
1.0
0.4
C.4
C.3
C.4
C.6
1.7
2.4
2.2
1.3
1.5
C.5
C.3
C.2
C.2
C.2
0.7
0.8
1.1
1.4
2.2
2.0
2.2
*
C
0
2.9
1.3
0.8
0.4
0.4
0.7
1.1
2.4
3. 5
3.6
2.5
2.7
1.9
2.0
2.4
2.3
2.3
2.2
2.5
2.8
3.3
5.1
3.5
2.8
H
C
2.9
2.4
2.2
2.2
2.6
2.3
2.1
3.3
3.1
3.1
2.7
2.2
2.5
2.1
2.0
2.0
2.0
2.0
2.1
2.2
3.0
3.6
2.3
T
H
C
3.3
2. 8
2. 5
2.6
2.9
2.6
2.4
3.9
3.3
3.3
3. 6
2.9
2.5
2.8
2.5
2.4
2.3
2. 3
2.4
2.4
2.6
3.2
4.0
2.7
C
H
4
1.8
1.7
1.6
1. 6
2.0
1.5
1.5
2.1
1.8
1.8
1.5
1. 5
1.3
1.5
1.4
1.4
1.1
1. 2
1. 3
1.3
1.3
1.6
2.6
1. 4
N
H
C
1.5
1.1
0.9
1.0
0.9
1.1
1.0
1.8
1.6
1 .4
2.1
1.4
1. 2
1.3
1. 1
0.9
1.2
1.1
1. 2
1. 2
1.3
1.6
1.5
1. 3
S
0
2
0. ) 00
0.001
0.000
0. 000
0.001
0.000
0.004
0.007
0.002
0.002
0.003
0.006
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
*
N N
C 0
2 2
0.08
0. 07
0.06
0.07
0.07
0.07
0.07
0.08
0.10
0.10
0. 10
0.11
0,04
0.04
0.03
0.04
0. 04
0.05
0.06
0.06
0.07
0. 09
0.08
0.07
N
0
0.11
0.07
0.03
0.06
0.05
0.07
0.06
0.18
C.17
0.10
0. 04
0.05
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.04
0. 1C
0. 08
0.05
N
0
X
0.18
0.14
0.08
0. 13
0.11
0.14
0.13
0.25
0.26
0.20
0. 14
0. 16
0.07
0.06
0.05
0.06
0.06
O.C7
0. 08
0.09
0.12
0.19
0.16
0. 12
C
X
I 0
D 3
0.000
0.000
0.001
0.000
0.000
0. 000
0. UOO
0.001
0.003
0.006
0.026 ^1
o
0.023 ^
0. C32
0.033
0.035
0.020
0.018
0.012
0.006
0,002
J. 000
0.000
0.000
0.000
-------
DFNVFP, COLC.
NTV 25,1«73
n
u
p
00
01
c?
C3
04
05
C6
C7
C«
09
10
11
12
13
14
15
It
17
18
19
20
21
22
23
V
V
n
V V.
W S
S P
P C
W
s
I
G
N
E
p
p
C
0
H
C
T
H
C
C
H
4
N
M S
H 0
C 2
197 1.7 1.8 4
209 l.it 1.7 6
ISf 2.1 2.1 3
1C.' 2.7 2.8 3
207 2.1 2. 1 4
243 1.0 1.2 6
273 G.*. 1.0 6
234 0.5 1.0 6
242 0.6 1.1 8
IfcP 0. 5 0 .9 20
351 0.2 0.6 35
?42 0.9 1.3 16
30 2.2 2.4 13
6 3.1 3.4 8
54 1.9 2.1 9
57 1.8 1.9 9
90 1.3 1.4 6
69 0.4 0.7 13
162 1.5 1.6 10
177 2.1 2.2 3
209 0.7 1.1 1?
142 C.5 1.4 8
2J7 C.7 1.1 8
180 1.4 1.5 7
-2 -9 65 -Q.I 0.00 1.4 1.7 2.4 2.6 3.0 1.6 1.4 0.300
-4 -10 67 C.O 0.00 2.0 2.0 3.1 3.0 3.3 1.8 1.6 0.000
-5 -9 70 0.0 0.00 1.8 1.9 2.3 3.0 3.4 1.9 1.6 0.300
-5 -10 68 C.I C.OO 1.5 1.1 l.l 2.5 2.9 1.6 1.3 0.000
-4 -10 64 C.C 0.01 1.5 0.7 0.4 2.6 3.0 1.8 1.2 0.008
-5 -11 67 C.O 0.00 1.6 C.9 0.9 3.0 3.3 2.0 1.3 0.000
-6 -11 71 0.0 0.00 1.8 1.7. C.6 2.2 3.8 2.2 1.6 0.300
-6 -10 "H C.O O.C1 1.9 1.8 1.7 4.6 4.6 3.0 1.6 O.JOO
-3 -9 66 0.0 C.32 1.6 1.5 1.1 4.3 4.7 3.3 1.4 0.001
2 -6 56-0.1 C.75 1.7 1.1 1.6 2.9 3.3 1.7 1.6 0.004
6 -6 41 -0.3 1.07 1.8 C.9 1.8 2.7 3.2 1.6 1.6 0.017
7 -8 35 C.O 1.22 1.9 0.8 1.3 2.9 2.2 1.5 1.6 0.018
6 -6 42 -C.I 1.14 l.S 0.7 3.7 1.5 2.1 0.037
5 -7 43 0.0 C.59 1.5 C.3 0.8 2.1 2.5 1.2 1.2 0.028
4 -6 49 0.2 0.48 1.2 C.2 0.7 2.6 3.0 1.4 1.5 0.012
4 -6 49 0.0 0.22 1.2 C.2 0.7 2.8 3.1 1.5 1.6 0.010
1 -7 55 0.0 -0.02 1.4 C.4 1,2 3.5 3.8 2.4 1.4 0.000
-0 -7 £2 C.O -C.CO 1.6 1.1 1.9 4.0 4.3 2.6 1.7 O.)00
0 -7 62 0.0 C.CO 1.9 3.6 6.9 4.2 4.4 2.1 2.4 0.300
-0 -7 63 C.O 0.00 2.5 4.3 6.6 3.8 4.1 1.6 2.5 0.000
-2 -7 68 -C.I 0.00 2.2 5.2 8.0 4.3 4.5 1.9 2.6 0.000
-2 -7 70 C.O 0.00 2.4 6.0 9.1 4.8 4.8 2.0 2.9 0.000
-2 -7 72 C.C 0.00 3.4 4.7 8.1 4.4 4.6 2.0 2.6 0.000
-? -7 74 C.C 0.00 4.C 7.1 10.2 4.8 5.2 2.3 2.9 0.000
N
0
2
0
N
0
X
0
X
I
0
0.07 0.08 0.16 0.000
0.03 0.13 0.21 0.000
0.08 0.09 0.17 0.0-JO
0.07 O.G6 0.13 0.000
0.08 0.09 0.17 0.000
0.07 0.03 0.15 0.030
0.08 0.11 u.19 0.030
0.08 0.15 0.23 0.000
0.08 0.10 0.18 0.001
0.08 0.07 0.15 0.006
o.io o.io 0.19 o.ooa
0.11 0.06 0.17 0.021
0.12 0.09 0.21 0.023
0.09 0.07 0.16 0.007
0.05 0.03 0.08 0.021
0.05 0.03 0.08 0.02J
0.07 0.03 0.13 0.011
0.10 0.05 0.15 0.0'JO
0.11 0.18 0.29 0.003
0.10 0.17 0.27 0.001
0.11 0.29 0.40 0.011
0.10 0.31 0.41 0.012
0.09 0.27 0.37 0.010
0.10 0.33 0.44 0.016
^
o
-------
DENVER, COLO.
KCV 2t>,1973
(1
u
00
Cl
C?
03
C4
05
06
07
08
00
10
11
12
13
14
15
16
17
18
19
20
21
22
23
V
W
r
V
w
«;
W W
« <:
p i
n r,
T r
F w
|V P R
P T M
U
V
C
n
H
c
N
M
H
C
S
0
2
213 1.9 2.1 *)
16? 1.4 l.P 11
Ill 0. 8 1 . 1 I 1
168 C.5 1.6 5
?37 0. « 0.9 7
3?e C.4 0.9 6
94 C.5 0.9 10
194 1.3 1.4 5
182 1.5 1.6 9
192 1.6 1.7 7
207 C.3 0.8 14
68 0.9 1.4 15
25 3.7 3.9 5
22 4.4 4.5 5
355 3.5 3.6 6
336. 3.7 3.8 6
330 3.4 3.4 7
?29 3.4 3.4 7
327 3.2 3.2 6
343 2.6 2.6 6
340 1.7 1.7 7
311 1.5 1.7 8
308 3.4 3.4 6
31P 3.7 3.6 6
-3 -7 74 0.1 -C.GO 3.7 S.3 7.0 4.3 4.5 2.0 2.5 0.000
-3 -S 12 -0.1 -C.OO 2.7 2.3 3.0 3.2 3.6 1.8 1.8 0.000
-4 -9 72 0.1 -C.CO 2.8 2.9 4.3 4.1 4.2 2.2 2.0 0.300
-5 -9 73 -C.I -0.00 2.5 2.0 3.4 3.7 3.9 2.1 1.9 0.000
-6 -<3 7P C.i C.CO 3.2 2.7 3.1 5.7 6.2 3.9 2.3 0.000
-5 -9 79 0.0 C.OO 2.3 0.8 0.4 6.2 6.9 4.4 2.5 0.001
-6 -9 80 C.O -O.)0 2.5 2.3 2.7 4.6 5.3 2.8 2.5 0.000
-5 -8 82 C.O -0.03 2.7 8.0 10.0 6.1 6.5 2.8 3.7 0. )00
-3 -7 75 C.I 0.18 2. fl 8.3 11.2 5.4 5.7 2.2 3.5 0.000
-2 -10 56 C.O 0.48 1.8 5.6 6.7 3.6 3.8 1.5 2.3 0.000
2 -8 49 -C.I 0.80 2.0 3.8 5.9 3.2 3.4 1.4 2.0 0.002
3-11 36 C.O 0.86 1.2 2.3 3.0 2.5 2.8 1.3 1.5 0.000
2 -7 49 C.I 0.85 3.3 2.2 3.3 3.6 3.8 1.6 2.2 0.009
2 -6 56 -0.1 0.69 2.9 0.8 1.3 3.1 3.4 1.6 1.9 0.005
2 -6 57 -0.2 0.50 2.3 0.7 1.0 2.7 3.1 1.5 1.6 0. 001
2 -7 54 C.4 0.12 1. <; 0.5 0.9 2.5 2.8 1.4 1.4 0.000
0 -7 61 -0.2 -0.03 2.0 1.6 2.5
-0 -6 63 C.I -0.00 1.9 C.S 1.5 2.4 3.0 1.3 1.7
-0 -7 43 0.0 -0.00 1.1 C.5 0.8 2.1 2.8 1.2 1.5
-2 -6 75 0.0 C.CO 0.9 C.4 0.5 2.0 2.7 1.2 1.5
-2 -5 F3 0.1 O.CO C.7 0.3 0.8 2.0 2.8 1.2 1.5
-2 -5 83 C.O 0.00 C.7 0.3 1.5 2.4 3.0 1.4 1.6
-2 -6 76 C.O 0.00 0.8 C.I 1.9 1.9 2.6 1.2 1.3 0.000
-2 -6 78 -0.1 0.00 O.o C.O 3.0 1.8 2.5 1.2 1.3 0.000
0. 000
0.000
0.500
0.000
0. 000
0.000
A
N
0
2
0
2
N
0
N
C
X
0.10 0.25 0.35 0.010
0.10 0.13 0.22 0.002
0.09 0.15 0.23 0.001
0.08 0.14 0.21 0.001
0.08 0.21 0.29 0.006
0.06 0.07 0.13 0.000
0.06 0.17 0.23 0.003
0.09 0.40 C.49 0.021
0.14 0.39 0.53 0.025
0.13 0. 19 0.32 0.010
0.14 0.15 0.29 0.008
0.10 0.05 0.15 O.G13
0.14 0.07 0.20 0.015
0.07 0.04 0. II 0.014
0.06 0.04 0.10 0.01C
0.06 0.03 O.OB 0.007
0,07 0.03 0.09 0. OOC
0.07 0.03 0.09 C.COO
0.05 0.02 0.07 0.000
0.04 0.02 0.06 0.000
0.04 0.02 0.06 0.0)0
0.04 0.02 0.06 0.000
0.02 0.02 0.04 0.000
0.02 0.01 0.03 0.001
0
3
o
U)
i
-------
PENVF?, CPLC.
NTV 27,1973
I-'
C
u
R
00
01
02
0?
04
05
06
07
OP
09
10
11
12
13
14
15
16
17
18
19
20
21
22
V
w
n
p
v w
w s
S P
p n
327 4.0 4.0
347 5.9 6. 1
333 3.8 4.1
349 2.4 2.5
339 1.1 1.2
212 1.0 1.1
192 1.7 1.7
202 1.3 1.4
Vt
S
I
G
239 1.5 1.6 6
309 1.3 1.6 11
299 3.7 3.8 7
2cfi 4.6 4.8 8
294 5.2 5.4 6
239 5.2 5.3 6
284 6.5 6.7 6
79^ 6.9 7.0 5
297 7.9 7. S 5
281 5.4 5.5 5
290 5.4 5.5 5
314 4.7 4.8 4
300 2.2 2. 3 12
276 1.3 l.fl 15
2S4 2.3 2.4 12
202 3.8 3.9 8
F
M
P
w
p
T
U
V
C
0
T
H
C
C
H
4
M
H
C
S
0
2
-2 -6 78 C.I 0.00 0.6 -0.0 3.1 1.8 2.4 1.1 1.2 0. JOO
-3 -6 79 C.3 0.00 C.6 -C.O 3.1 1.7 2.3 1.1 1.1 0.000
-3 -6 79 C.O 0.00 0.4 -0.0 2.9 1.6 2.1 1.1 1.0 0.000
-4 -7 79 0.0 0.00 0.5 -C.O 2.9 1.7 2.1 1.2 1.0 0.000
-•> -7 PI 0.0 0.00 C.5 -0.0 2.9 1.7 2.2 1.2 1.0 0.000
-6 -9 81 C-.O 0.00 0.8 0.7 4.2 2.6 3.1 1.7 1.4 0.000
-7 -9 83 C.O 0.00 1.0 3.1 5.7 3.3 3.7 1.6 2.1 0.000
-6 -9 85 -C.I 0.01 1.3 5.2 7.2 3.8 A. 3 1.6 2.7 0.000
-2 -7 72 -C.2 0.44 1.8 7.1 9.0 4.2 4.5 1.6 2.9 0.003
2 -7 52 3.2 0.97 1.1 2.9 2.4 2.8 3.2 1.5 1.7 0.001
4 -12 32 0.1 1.40 0.5 C.3 -0.5 2.3 2.5 1.4 1.2 0.000
4 -15 25 -C.I 1.55 C.4 0.2 -0.0 2.2 2.3 1.2 1.1
4 -IS 25 -0.2 1.43 0.3 C.I C.I 2.3 2.7 1.6 1.1 0.000
4 -16 24 1.21 0.3 0.0 0.4 2.5 2.7 1.5 1.2 0.000
3 -15 25 C.I 0.78 0.3 0.1 1.3 2.1 2.2 1.2 1.0 0.000
3 -14 2P-C.1 0.31 0.3 0.2 1.3 2.7 3.2 2.0 1.2 0.000
1 -14 31 C.I -0.01 0.3 0.3 0.6 2.6 2.9 1.8 1.1 0.000
0 -14 34 C.I -0.01 0.1 0.3 0.7 2.1 2.4 1.5 1.0 0.000
0 -14 34 -C.4 0.00 0.3 0.3 0.5 2.6 1.3 1.3
-0 -13 37 0.0 O.CO 0.3 0.0
-0 -13 39 -0.1 0.00 C.5 -0.4
-1 -13 42 0.0 0.00 0.5 -0.1
0 -13 38 C.C 0.00 0.4 -0.5
1 -12 37 0.1 0.00 0.4- -0.6
*
N
0
2
N
n
2
0
N
0
X
C
X
I
D
0.02 0.01 0.03 0,005
0.02 0.05 0.08 0.003
0.01 0.01 0.03 0.016
0.01 0.01 0.03 0.013
0.02 0.01 0.03 0.010
0.06 0.09 0.14 0.001
0.08 0.20 0.28 0.006
0.03 0.25 0.34 0.010
0.12 0.30 0.42 0.020
0.09 0.07 0.15 0.016
0.02 0.02 0.04 0.020
0.019
0.02 0.01 0.03 0.020
0.01 0.01 0.03 0.020
0.02 0.02 0.04 0.016
0.02 0.01 0.03 0.014
0.03 0.01 0.04 0.012
0.03 0.02 O.C5 O.OQ3
0.03 0.01 0.04 0.011
0.02 0.01 0.03 0.015
0.03 0.01 0.03 0.015
0.03 0.01 0.04 0.010
0.03 0.01 0.04 0.011
0.02 0.01 0.02 0.017
0
3
I
H1
O
I
-------
H
c
u
R
00
01
02
03
04
05
06
C7
OP
OP
10
11
1?
13
1 A
IS
16
17
18
19
?0
?l
22
23
V
w
p
p
V
w
w
s
p
n
297 3.5 3.6 6
295 4.6 4.7 4
289 4.4 4.4 4
276 1.9 2.3 8
211 2.
-------
CfNVER, COI_C.
H
r
u
9
CO
01
0?
03
C4
05
C6
07
OK
GC
10
11
12
13
1*
15
16
17
18
19
20
21
?2
23
V
w
D
P
V
U
s
P
W
S
I
G
T
r
M
P
P
A
I
f"
U
V
N
£
P
H
151 1.4 1.6 15
1F7 2.4 2.6 8
212 1.6 2.0 20
204 1.3 1.6 18
193 0.9 1.4 15
194 1.2 1.7 14
229 1.0 1.5 21
243 1.6 1.9 13
227 1.9 2.5 10
3 -9 42 0.0 -O.CO 0.7
2 -10 42 C.O -O.CO C.4
2 -9 45 0.0 -0. 00 0.8
1 -9 48 0.0 -0.00 0.8
1 -P 51 0.0 -C.CO 0.8
2 -9 47 C.O -0.00 0.6
1 -« 5C 0.0 -C.CO 1.2
3 -8 45 C.I -0.01 1.4
5 -R 38 -O.i 0.15 2.1
P -8 33-0.1 0.58 1.7
1.7
236 1.4 1.7 14
313 C.5 1.3 17 13 -6 25 -C.I C.S8
30 1.6 US 12 15 -6 25 -C.I 0.97 l.S
35 2.0 2.1 8 13 -3 33 C.I 0.85 1.6
56 1.0 1.3 22 14 -2 34 C.O 0.93 1.7
21 1.5 1.6 10 16 -3 28 -0.1 0.61 2.1
47 0.7 1.0 1? 14 -2 34 0.0 0.17 2.6
48 1.2 1.3 7
53 0.2 0.7 21
167 1.0 1.1 5
?6P 0.1 0.9 16
209 C.I 0.7 20
2?0 0.7 1.0 19
211 1.3 1.9 15
2f>7 0.4 1.3 21
11 -2 42 C.I -C.C1 2.4
7 -2 54 C.O 0.01 2.7
5 -2 59 0.0 0.02 3.3
4 -3 60 0.2 C.01 3.8
2 -3 68 C.I 0.02 4.<5
2 -3 73 C.O 0.00 5.S
2 -2 72 C.O 0.00 f.7
2 -3 71 C.O 0.00 5.9
K'OV
*
C
0
5.3
3.4
3.9
3. 4
3.4
3.3
6.1
9.5
12.4
9,6
9.5
8.8
4.7
4.7
4. 7
5.6
6. 1
10. 1
13.5
16.1
17.4
22.6
28.2
23.5
1973
H
C
T
H
C
C
H
4
M
H
C
S
C
2
N
0
2
M
0
2
N
0
N
0
X
0
X
I
D
0.07 0.15 0.22 0.000
0.07 0.08 0.15 0.000
0.09 0.19 0.27 0.001
0.08 0.20 0.28 0.001
0.09 0.20 0.29 0.003
0.08 0.18 0.26 0.002
0.09 0.41 0.50 0.013
0.06 0.57 0.63 0.022
0.11 0.60 0.72 0.025
0.12 0.43 0.55 0.014
0.18 0.2C 0.37 0.015
0.21 0.12 C.33 0.017
0.010
0.11 0.06 0.17 0.014
0.13 0.06 0.19 0.018
0.15 0.08 0.22 0.012
0. 11 0. 19 0.29 0.008
0.09 0.27 0.36 0.014
0.09 0.52 0.61 0.040
0.06 0.56 0.62 0.043
0.12 0.77 0.89 0.061
0.15 1.09 1.24 0.084
0.21 1.27 1.48 0.104
0.18 1.08 1.26 0.087
I
I-1
O
I
-------
H
r
u
p
00
Cl
0?
C3
04
05
06
07
Ofl
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
\'
w
s
V» T
s f
i "
r P
U
V
?OP l.l 1.6 11 1
154 0.4 0 .7 M 0
219 C.7 0. S 9 -0
2*4 0.4 0.9 19 -1
124 C. 3 0.8 17 -1
242 0.5 0.7 10 -2
193 1.0 1.2 7 -2
176 1.0 1.3 12 -0
194 1.2 1.9 22 1
130 0.3 1 .0 1 8 6
358 O.f> 1.011 10
"44 1 .0 1.210 11
34 1.0 1.3 11 13
28 2.5 2.6 6 11
15 2.5 2.6 6 11
16 2.7 3.0 6 10
44 2.3 2.3 5 7
24 1.7 1.7 5 4
iSfl C.8 1.0 14 2
339 C.8 O.S 14 1
337 C.7 0.7 9 1
32 C.8 1.2 9 1
IIP 0.7 0.7 9 C
125 0.5 0.7 14 -0
-4 7Q O.'l 0.00 ^.0
-5 TO c.O C.CO 4.8
-4 75 C.O 0.00 5.1
-5 75 0.0 -O.CO 4.4
-5 75 0.0 -0.00 3.7
-5 77 C.C -0.00 4.3
-5 76 0.0 0.00 4.2
-5 72 C.C -0.01 3.1
-5 64 -C.2 0.23 3.3
-3 54 0.0 0.62 4.4
-6 33 C.O 0.82 2.6
-6 29 0.1 0.93 3.0
-7 24 -C.I 0.85 2.3
-5 31 0.0 0.73 3.1
-3 38 -C.I 0.54 1.7
-3 42 0.0 0.20 I. a
-3 52 C.O -0.01 2.5
-3 60 0.0 0.01 2.6
MOV
*
C
0
, CCLC.
:?0,1<573
H
C
It. R
16.3
15. 8
15.0
13.7
15. 4
18.2
20.3
21.4
19,5
8. 1
2.6
2.2 3.7
2.0 3.2
1.5 3.3
2.3 3.1
2.1 3.9
N
M
H
C
S
0
2
H
0
2
N
0
0
X
0
X
I
D
0.15 0.87 1.02 0.072
0.15 0.82 0.97 0.066
0.16 0.94 1.10 0.078
0.13 0.87 1.00 0.067
0.13 0.79 C.93 0.060
0.14 0.93 1.07 0.070
0.16 1.09 1.25 0.085
0.13 0.94 1.07 O.C67
0.17 0.93 1.15 0.073
0.25 0.85 1.10 0.075
0.21 0.20 0.41 0.023
0.18 0.10 0.28 0.013
0.013 0.14 0.15 0.04 0.19 0.021
0.021 0.20 0.15 0.07 0.22 0.019
0.011 0.09 O.C7 O.C3 0.10 0.016
0.002 0.07 0.07 0.03 0.09 0.016
0.000 0.07 O.Ofi 0.03 0.11 0.009
0.500 0,11 0.10 0.10 0.20 0.002
5.0 4.1
-4 66 C.3 0.01 2.2 1.9 1.6 4.0 6.3 1.8 4.5 0.100 0.10 0.09 0.05 0.14 0.000
-4 69 C.O 0.01 2.1 1.5 1.8 3.8 5.6 1.7 3.9 0.000 0.10 0.09 0.08 0.16 0.000
-4 72 C.O 0.01 2.0 1.7 2.6 3.4 4.9 1.7 3.3 O.)00 0.08 0.09 0.14 0.23 0.003
-4 71 0.0 C.CO 2.1 2.4 4.1 4.8 5.6 1.9 3.7 0.001 0.07 0.09 0.16 0.26 0.004
-4 74 0.0 0.00 2.0 2.4 4.2 4.6 5.4 2.3 3.1 0.001 0.06 0.09 0.17 0.26 0.004
-4 77 0.0 0.00 2.1 3.6 5.3 5.2 5.8 2.5 3.3 0.002 0.05 0.09 0.27 0.36 0.012
0
3
I
M
o
I
-------
DT-NVEK, C'3LC.
0CC 1,
H
P
U
R
00
01
02
03
04
Cf
C*
07
CR
0°
10
11
12
13
14
1*
16
17
IP
IS
20
21
22
?3
V
w
D
P
140
11
354
3?0
17
204
205
237
253
197
200
196
204
208
342
28
49
5?
l«P
loq
227
339
231
?36
V
W
s
P
0.'+
0.6
C.5
0.5
0.5
0.8
1.2
l.l
1 .1
1.7
3.0
3.5
3.5
2.4
1.?
3.2
1.7
0.6
1.0
1.9
1.1
0.4
1.9
2.1
k
S
P
0
0.7
0. 8
0.6
0.6
0.6
0.9
1.3
1 .5
I .4
2 .4
3.0
3.5
3.6
2.6
3.0
3.3
1.8
0.8
1.1
2 .0
l.o
1.3
2.3
2.9
W
S
I
G
IP
14
9
6
12
a
8
7
5
16
5
5
6
f
8
3
6
12
13
6
6
7
6
7
T
C
M
P
-0
-1
-1
-2
-2
-2
_ -2
- ?
— 2
£
15
19
20
21
21
16.
11
7
5
6
c
3
5
7
0
W
P
T
-4
-4
-4
-4
-4
-5
-5
-5
-4
-2
-7
-Q
-8
-8
-5
2
1
0
0
1
-0
-I
-2
-7
R
1-
77
7P
62
64
81
94
86
85
83
62
22
15
15
14
IS
39
51
64
7C
70
6S
76
62
36
R
A
I
\
C.O
c.o
C.O
0.0
c.o
0.0
c.o
-0.1
-C.I
C.I
-0.2
0.1
-C.I
c.o
0.0
-C.I
0.0
0.0
c.o
0.0
0.0
C.3
0.1
-0.1
U
V
O.JO
0.00
0.00
c.oo
-C. CO
-0.00
-0.00
-0.00
0.23
0.70
1.08
1.22
1.18
0.97
0.57
C..20
-0.02
0.00
0.01
0.01
0.01
0.01
C.C1
0. 00
N
F
P
H
Z. 3
2. 5
2.6
2.8
3.1
3.5
4.4
4.9
5.0
4. 4
C.7
C.6
0.5
0.4
2.6
7.6
8.0
7.7
8.1
S. 5
11.2
9.9
3.2
O.P
*
C C
C 0
3.3 6.2
3.1 5.4
2.1 4.3
2.4 5.1
3.4 6.1
4.2 7.1
6.0 11.2
8.2 14.1
S.I 13.9
8.4 10.6
1.4 2.8
1.0
0.7
C.5
1.3
2.4
2.5
3.3
4.2
11. 1
11.7
11.2
4.5
1.2
H
C
5.5
5.8
5.5
7.4
8.6
8.9
9.2
9.4
9.7
10.7
2.4
2.1
2.0
3.2
7.0
8.5
7.4
7.8
9.6
11.5
11.6
6.2
4.5
T
H
C
5.9
6. 4
5.8
6.5
8.1
<5.2
9.1
9.1
8.2
12.4
3.1
2.7
2.5
2.4
3.6
7.5
9.2
8.1
8.9
10. 1
10.3
11.8
6.1
4.7
C
H
4
2.5
2.7
2.2
4.3
3.7
4. 4
4. 1
3. 5
3. 2
6. 5
1.2
1. I
1.0
1. 0
1.5
2. 8
3. 5
3.3
3.7
3.4
4.9
5.5
2. 7
2.8
N
M
H
C
3.4
3.7
3.5
3.0
4.4
4. 8
5.0
5.6
5.0
4.9
1.9
1.7
1.5
1.4
2.2
4. 7
5. 7
4.8
5.1
6.7
6 .8
6.4
3.4
1.9
S
0
2
0.001
0. 004
0 .008
O..)08
0.004
0.006
0.004
0.003
0.004
0.008
0.000
0.000
0.002
0.002
0.000
0.000
0.004
0. 000
O.JOO
0.000
0.004
0.004
0.003
0.004
*
N
0
2
0.05
0.04
0.02
0.03
0.04
0.04
0.22
0.09
0.05
0.05
0.04
0.05
0.13
0.16
0.16
0.16
0.21
0.24
0.22
0.11
0.05
N
D
2
0.09
0. 08
0. 08
0.08
0.08
0.09
0.12
0.14
0.15
0. 19
0. 07
0.05
0.05
0.04
0.08
0.16
0.17
0. 16
0.17
0.22
0. 15
0.13
0.09
0.06
N]
0
0.25
0. 25
0.22
0.26
0.32
0.40
0.69
0.76
0.69
0.46
0.04
0.02
0.04
0.03
0.02
0.01
0. 01
0.02
0.12
0. 32
0.45
0.47
0.22
0.10
N
0
X
0.33
0.33
0.30
0.34
0.41
0.49
0.82
0.91
0.84
0.65
0.11
0.07
0.09
0.06
0.10
0.17
0.19
0.18
0.29
0.55
0.61
0.61
0.32
0.15
0
X
! 3
D 3
0.010
0.009
0.006
0.009
0.015
0.021
0.047
0.053
0.055
0.047 ^
O
0.010
-------
f=0f cnt_o
n
U
P
on
Cl
0?
C3
04
05
06
07
C8
00
10
11
12
13
14
15
16
17
IP
19
?0
21
??
?3
V
W
r
P
?cc
169
1S2
1"3
197
185
I'M
184
163
187
191
*
349
16
351
q
?.C
21
13
11
fl
15
20
16
V
W
<;
P
c. 4
4. 6
4. 0
4.7
2.8
6 .6
5.8
6.1
f.O
5.4
4.6
2.6
4.7
6 .8
6.3
7.0
?. 2
7.7
7.6
5. I
5.6
5.3
5.4
^•.5
W
D
n
5.4
4.7
4.0
4.8
3.5
6.7
5.9
6.1
6.0
5.5
4.7
4 .0
4.9
6.9
6. 4
7.0
8.3
7.8
7.7
5.1
5.7
5.3
5. 5
4.5
W
I
P
3
3
4
4
20
5
5
4
3
4
7
11
6
4
5
5
3
•5
4
4-
5
4
4
4
T
V
D
10
10
10
10
C
11
11
11
12
14
16
16
14
13
11
9
7
4
1
-0
-0
- 1
-1
-1
r
'•/
P
T
-a
-8
-8
-8
-R
-8
-7
-7
-7
-7
-6
-5
-5
-5
-4
-3
-4
-4
-3
-3
-3
-3
-3
_ a
R
H
?F
27
29
28
30
27
27
20
26
23
21
24
27
29
37
43
49
57
76
84
84
P8
S9
89
P
I
N
C.O
C. C
C.O
0.1
-0.1
0.1
C.I
C.O
-0.2
0.0
0.0
0.0
C.I
C.O
C.C
C.I
-C.I
0.1
C.O
C.O
0.1
C.O
C.C
0.2
-o.
-">.
-o.
-C.
-0.
-0.
-0.
0.
C.
C.
1.
1.
1.
0.
0.
C.
-C.
-0.
0.
C.
0.
-0.
-0.
-0.
L
V
(H)
)0
01
01
01
01
01
01
37
£ I
15
26
09
72
32
C5
C3
01
00
CO
00
00
01
01
N
r
P
H
0.4
0.3
0.4
0.4
0.4
0.3
0.3
0.3
0.3
0.4
C.5
1.0
1.2
0.7
0.9
0.6
0.6
O.t
0.6
0.6
C.5
0.4
0.4
0. A
r
^
c
C.3
C.2
C.3
0.1
0.1
0.1
0.1
C.I
C.2
0.3
0.2
0.3
0.3
C.2
C.2
C.I
0.1
0.1
C.I
0.1
0.1
C.I
C.I
0.1
H
C
S
0
2
N
0
2
N
0
2
N
C
N
0
X
0
X
I
0
l.P 2.3 1.0 1.3 0.000 0.02 0.0*. 0.04 0.07 0.000 0.003
1.8 2.3 1.0 1.3 O.)02 0.04 0.05 0.06 0.11 O.OJG 0.000
1.9 2.3 1.0 1.3 0.007 0.04 0.05 0.08 0.13 0.000 -0.001
1.8 2.2 0.9 1.3 0.010 0.03 0.05 0,36 0.11 0.000 0.000
1.7 2.2 0.9 1.3 0.003 0.01 0.03 0.04 C.07 0.000 O.OC7
1.6 2.1 0.8 1.2 0.000 -0.01 0.02 0.04 0.06 0.002 0.011
1.6 2.1 0.8 1.2 0.000 -0.01 0.02 0.04 0.06 0.001 0.010
1.6 2.1 0.8 1.3 0. JOO -0. 01 0.02 0.04 0.07 0.000 0. CO"
1.7 2.2 0.9 1.3 0.100 -0.01 0.02 0.05 0.07 0.001 0.010
1.7 2.3 0.9 1.3 0.000 -0.01 0.02 0.03 0.05 0.005 0.013
1.7 2.2 0.9 1.3 0.000 -0.02 0.01 0.01 0.03 0.009 0.017
2.1 2.7 1.1 1.6 0.000 -0.00 0.04- 0.03 0. D6 0.010 0.016
1.8 2.5 1.0 1.4 0.001 0.01 0.03 0.05 0.08 0.015 0.017
1.9 2.5 1.3 1.4 0.000 -0.02 0.01 0.00 0.02 0.017 0.023
1.7 2.3 1.0 1.3 0.011 -0.00 0.04 0.14 0.18 O.OC8 0.003
1.7 2.3 1.0 1.3 0.005 -0.02 0.01 0.03 0.04 3.007 O.D13
1.8 2.5 1.0 1.4 0.000 -0.04 0.01 0.00 0.01 0.007 0.315
1.8 2.5 1.1 1.4 0.001 -0.04 0.01 -0.00 0.01 0.008 0.017
1.7 2.5 1.1 1.4 O.)00 -0.04 0.01 0.00 0.01 0.002 0.012
1.7 2.5 1.1 1.3 0.000 -0.04 0.01 0.00 0.01 0.002 0.312
1.6 2.4 1.1 1.3 0.000 -0.03 0.01 0.00 0.01 0.005 0.015
1.7 2.4 1.1 1.3 0.000 -0.01 0.01 0.01 0.02 O.OCS 0.017
1.7 2.5 1.1 1.4 0.100 0.00 0.01 0.01 J.02 0.011 0.019
1.9 2.5 1.1 1.3 0.000 0.00 0.01 0.02 0.03 0.012 0.019
,L
o
-------
, C'UC.
3,1973
01
02
03
04
C5
C6
07
OR
09
10
11
12
13
1 4
15
16
17
1R
19
?0
71
?2
?3
V
V
D
p
12
7
5<:
V
w
<;
p
5.5
5.7
3.0
U
S
P
C
5.5
5.7
3.1
w
S
I
G
4
4
5
T
F
H
P
-1
-2
-2
n
w
D
T
-3
-4
-4
35S ?. 1 3.2
346 C.9 1.8 11
?£3 0.8 1.117
330 0.4 1.0 17
122 0.'+ 0.8 16
IP9 1.8 1.8 4
IF5 3. 1 3.1 4
154 2.5 2.6 6
141 1.0 1.313
?7f 0.5 0.7 13
213 0.7 0.9 13
10P 0.5 1.1 16
1 -3 87-0.2-0.01 0.4 C.I
-4 £( C.C -0.01 0.4 C.I
P -C.Cl 0.3 C.I
5 -2 -4 Pf -C.01 0.3 C.I
-2 -4 87 C.O -C.Cl C.4 0.1
-2 -4 86 0.0 -0.01 0.4 0,2
-2 -5 85 C.O -0.01 C. 5 0.6
-3 -5 85 C.O -0.01 0.6 2.1
-2 -5 83 C.I 0.34 0.9 2.2
-0 -4
1 -4 66
C.4 0.90 1.0 2.8
2.1 1.36 0.6 1.3
2.1 2.3
1R6 2.6 2.7
175 1.9 2.0 5
2.1 2.2 3
1.3 1.4
20-> 1.7 1 .S 3
20P 2.1 2.4 4
171 2.1 2.2 6
7?1 1. 3 1.5 12
4 -5 5? 0.0 1.53 0.6 1.0
8 -4 45 C.5 1.47 0.7 0.9
8 -7 36 -0.3 1.17 0.6 0.4
6 -P 38 0.1 0.68 C. 7
6 2 -8 47 -C.? 0.24 1.0 2.0
5 0 -7 61 C.I -0.02 1.2 3.7
1 -8 64 0.0 -0.01 C.9 5.3
3 -8 68 C.O -0.01 1.3 5.0
5 -3 -7 12 C.O -0.01 1.? 3.5
3 -7 72 0.0 -0.00 l.t 4.1
4 -8 71 C.O -0.00 1.5 2.9
4 -" 71 C.C -0.00 1.5 2.6
5 -S 75 C.O C.C4 1.5 2.0
C
0
T
H
C
H
4
H
C
S
0
2
*
N
0
2
0
2
0
X
I
1.6 2.3 1.0 1.2 0.300 0.00 0.01 0.02 0.03 0.014 0.023
1.6 2.2 1.0 1.2 0.000 0.00 0.01 0.02 0.03 0.013 0.020
1.7 2.2 1.0 1.3 O.JOO -0.00 0.02 0.02 0.04 0.012 3.CIS
1.7 2.2 1.0 1.2 0.000 -0.00 0.02 0.02 0.04 0.012 0.016
2.2 2.6 1.1 1.5 0.001 0.00 0.02 0.03 0.05 0.008 0.014
2.1 2.5 1.1 1.4 0.000 0.03 0.05 0.03 0.08 O.COO O.CC5
2.4 2.8 1.3 1.5 0.000 0.04 0.06 0. C6 0.12 O.C01 0. OC2
3.1 3.7 1.3 2.4 0.001 0.04 0.05 0.10 0.15 0.003 0.004
3.8 4.3 1.2 3.1 0.000 0.08 0.09 0.19 0.29 0.010 0.001
3.3 3.9 1.2 2.7 0.002 0.09 0.10 0.12 0.23 0.012 0.007
2.4 2.9 1.0 1.9 0.000 0.06 0.07 0.08 0.15 J.014 0.014
2.5 2.8 1.0 1.8 0.001 0.05 0.03 0.08 0.15 0.016 0.016
2.2 2.9 1.0 1.9 0.006 0.06 0.08 0.07 0.16 0.021 0.320
2.1 2.6 1.0 1.6 0.005 0.07 0.05 0.12 0. C23 O.G23
2.8 0.004 0.03 0.04 0.12 0.C25 0.024
2.8 3.5 1.3 2.2 0.003 0.12 0.05 0.18 0.018 0.014
3.7 4.2 1.3 2.9 0.001 0.15 0.14 0.29 O.C08 O.OCO
3.5 4.2 1.3 2.9 0.000 0.11 0.10 0.20 0.31 0.009 O.CCO
3.6 4.3 1.4 2.9 0.700 0.10 0.11 0.30 0.42 0.019 C.OCO
3.5 4.2 1.4 2.7 0.000 0.11 0.11 0.28 0.40 O.G16 0.000
3.9 4.4 1.5 2.9 0.000 0.10 0. 1 n 0.29 0.40 0.017 O.OCC
3.6 4.3 1.8 2.5 0.000 0.11 0.09 0.22 0.31 0.009 0.000
2.8 3.5 1.3 2.1 0.000 0.09 0.08 0.13 0.21 0.002 0.300
2.9 3.4 1.4 2.0 0.000 0.08 0.10 0.18 0.27 0.007 0.000
-------
H
C
u
R
00
01
02
03
04
05
06
C7
CS
09
10
11
12
13
14
15
16
17
18
10
?0
21
22
23
V
W
n
P
ll?
152
170
?26
I'll
172
16
?0
-55
5?
32
188
196
93
30°
^
303
7*1
283
236
?S2
301
2 14
173
V
W
c
P
0.4
0.6
0.6
0.4
0.5
0.3
1.1
3.9
0.5
1.5
0.3
1 .4
1.8
0.4
3.4
3.7
2.6
4. 0
4. 4
4.5
3.7
2. 7
1 .3
2 .4
W
c;
P
n
1 .0
0.9
0. 8
0 .6
0.9
0.6
i. e
4.0
1.3
1.8
1.1
1.7
2.0
1.7
3.8
3.9
?.B
4. 0
4.5
4.5
3. 7
2.8
1.7
2.5
u
I
C
70
13
6
8
8
8
13
4
20
20
17
14
11
26
9
8
6
4
4
4
4
4
6
7
T
c
M
P
-3
-3
-T
~3
-4
— c
-6
-3
0
2
4
4
4
4
4
3
I
-1
-2
-1
-7
-3
-5
-6
n
VI
p
T
-7
- 7
-7
-7
-a
-8
-8
-11
-10
-10
-10
-11
-9
-10
-11
-13
-14
-15
-15
-15
-16
-16
- 16
-16
p
M
74
74
12
75
75
79
PI
58
49
41
36
34
39
36
32
31
34
36
36
35
36
37
44
47
p
A
I
Ni
0.0
c.u
c.o
c.o
0.0
c.o
c.o
0.0
-0.2
0.1
0.0
-0.1
-0.1
-C.I
-0.1
0.3
-0.1
-C.I
0.0
c.o
c.o
0.1
0.0
c.o
1)
V
-0. 00
-0 .00
-0.00
-c.oo
-0.00
-0.00
-0.no
C.C2
0.41
0.92
1.28
1. 16
1.20
0.99
C. 63
0. 30
-0.01
0.00
C. 00
0.00
0.00
o.cc
0.00
0.00
l\'
F
p
H
2.C
1.2
y.p
1.5
1. 7
1.8
1.7
o.«
0.7
0.6
0.6
1. 8
2. 1
1.6
0.8
0.4
0.5
0.5
0.4
0.3
0.5
0.3
C. f
0.7
or:
«
C C
0 0
7 .0
2.0
1.5
2.2
2.4
3.3
3.P
1.0
2.1
1.2
0.8
2.3
2.7
1.6
0.7
0.3
C.6
C.6
0.4
C.2
C.2
0.2
1 .8
2. 0
:", CCI C.
4, 1S73
H
C
4.2
3.0
2.9
3.7
4.3
5.1
5.0
2.5
2.7
2.8
3.0
2.9
2.7
2.4
1.8
2.3
2.0
2.1
3. 6
2.1
2.4
2.9
2.7
T
H
C
4. 7
3.5
3.3
4.2
4.7
5.5
5.3
2.9
3.1
3. 2
3.8
3. 5
3.6
3.0
2.7
2.2
2.7
2.5
2.3
4.3
2.4
2.8
3. 3
3.0
C
H
4
2. 1
1.6
1.4
1. 8
1.8
2.3
2.4
1. 1
1. 3
1.2
1.8
1.4
1.3
1.1
1. 1
1.0
1.2
1.0
1. 1
2.3
1.3
1. 5
2.0
1. 2
\
H
C
2.7
1.9
1 .9
2.4
2.9
3.2
2.9
1. 8
1.9
2.0
2.0
2. 1
2. 3
1.9
1. 7
1.2
1.3
1.2
1.2
2.0
1.2
1.3
1,3
1.8
S
0
2
0.000
0. JOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.002
0.000
0.000
o. a oo
0.000
0.000
0. 500
0.000
0.000
0. 500
O.)00
0.000
0.000
0.000
*
N
0
2
0.11
0.09
0.09
0.10
0.10
0.10
0.10
0.07
0.08
0.07
0. 06
0.13
0.17
0.14
0.07
0.03
0.06
0.06
0.04
0. 03
0.03
0.03
0.08
0.08
h>
0
2
0.09
0. 08
0.08
0.09
0.09
0.10
0.09
0.07
0.07
0. 06
0.05
0. 15
0. 15
0.12
0.05
0.03
0.05
0.05
0.03
0. 03
0.04
0.03
0.07
0. 07
0
0.28
0.14
0.13
0.24
0.30
0.37
0.36
0.05
0.09
0. 06
0.04
0. 04
0.04
0.02
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0. 16
0.12
N
n
X
0.33
0.22
0.21
0.33
0.39
0.47
0.46
0.12
0.16
0. 13
0.09
0.19
0. 19
0. 14-
0. 07
0.05
0 .06
0.06
0. 05
0.04
0.06
0. 05
0.23
0.19
X
I
D
0.015
O.OC3
O.OG2
0.011
O.C16
0.021
0.021
0.000
0.002
0. CO 7
0.018
0.028
0 .033
0.041
0.025
0.013
O.GOO
0.000
0.000
0.000
0.0 JO
0.030
0.000
0.000
0
3
o.coo
c.ooo
0.000
0.000
O.COG
.0. 000
0.000
0.003
0.003
0.010
0.020
O.C24
0.03C
C. 034
0.'J27
O.C2C
0.010
0.009
0.015
0. 019
0.014
0.015
0.000
0. COO
-------
5,1973
H
C
u
R
00
Cl
02
03
C4
05
06
07
CP
00
10
11
1?
13
14
15
16
17
IP
19
20
21
22
23
V
W
r
P
'05
?«?
202
IQB
217
275
2<36
191
204
133
262
306
3 OP
300
?9
109
142
169
174
172
1 P3
174
m
175
V
W
5
P
2. 4
2.0
?. R
?.B
2. n
2.5
3.6
?. P
3.1
3.1
2.8
5.7
5.6
3. P
1. 3
3.2
2.6
2.6
2.4
2.f
2.5
2.4
2.2
2.3
W
c;
P
n
2.7
2 .2
2.9
2. P
3.0
2.9
4. 1
3.1
3.2
3.2
3.2
5. 8
5.7
3.9
3.5
3.2
2.7
2.7
2.5
2.7
2.5
2.4
2.2
?. 3
W
S
I
G
8
11
5
3
11
12
6
9
4
6
13
5
5
6
6
11
5
4
3
5
4
3
4
4
T
F
M
P
-6
-5
-7
-8
-8
-7
-4
-8
-6
-2
1
2
4
4
3
1
-1
-3
_ K
-6
-7
-8
— 9
-10
r>
W
D
T
-16
-16
-16
-16
-16
-16
-17
-17
-17
-15
-14
-16
-15
-15
-14
-14
-16
- 15
-15
-15
-15
-16
-17
-17
P
H
44
44
48
C -a
52
49
38
46
43
39
31
25
25
2*
2P
33
33
39
45
47
51
53
56
5E
R
t
0.0
c.o
c.c
c.o
c.c
0.0
-0.1
c.o
-0.1
-0.1
C.I
C.I
-0.2
0.1
-0.1
-0.1
0.1
c.o
0.0
0.0
c.o
c.o
u
V
c.co
0.00
C. CO
0.00
0.00
0.00
0.00
c.co
0. 36
0.80
1.23
1.53
1.51
1.23
C. 76
0.25
-0.01
0.02
0.01
0.01
C.OO
0.00
0.00
C.OO
N
E
P
0.6
0.6
0.5
0.5
o.e
0.4
0.5
0.8
1.2
1.6
1.0
0.5
0.4
0.5
0.4
C.7
0.8
1. 1
1.0
1 .1
1.1
l.t
1.3
1.2
*
C C
Q n
C .9
C.7
C.7
C.7
0.5
C.4
C.t
2.9
4.0
4.8
2.0
C.2
C.2
C.2
0.3
2.8
3.7
3.1
2.2
2.P
3.1
2.2
2.0
H
C
2.4
2.3
2.4
2.5
2.6
2.6
2.3
3.1
3.5
3.8
2.6
2.1
1.8
2.3
2.5
2.8
2.9
2.9
3.0
2.9
3.1
2.7
2.6
T
H
C
2.6
2.6
2.7
2.7
2.9
2.8
2.6
3.3
3.6
4.0
3.0
2.4
2.1
2.5
2.5
3.0
2.3
3.2
3.2
3.2
2. 3
3.0
2.8
C
1. 1
1.2
1.2
1.2
1.2
1.4
1.3
1. 3
1.2
1.3
1.3
1.4
1.1
1.3
1. 5
1.1
1. 1
1.1
1.1
1. 1
1.2
1. 1
1.1
N
M
H
C
1. 5
1.4
1.4
1.5
1.7
1.4
1.3
2.0
2.4
2.7
1.8
1.0
1.1
1.2
1. 0
1.9
2. 2
2.1
2.1
2.1
2. 1
1.8
1.7
S
0
z
0.000
O.)00
0.000
0.100
0.000
0.000
0.000
0.010
0.009
0.005
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. TOO
0.000
0.000
0.000
0.000
0.000
*
N
0
2
0.08
0.08
0. 08
0.08
0.09
0. 07
0.03
0.09
0.10
0.15
0. 10
0.01
0.02
0.03
0.03
0.07
0. 09
0.10
0.12
0.11
0,10
0.10
0.09
0.0"
N
n
2
0.07
0.07
0. 07
0.07
0.08
0.05
0.04
O.OS
0.09
0.13
0.07
0.02
0.01
0.02
0.03
0.07
0.08
0.09
0.10
0.10
0.09
0.09
0.08
0.08
0
0.07
0.07
O.C7
0.09
0. 08
0.05
0.09
0.26
0.25
0.20
0.06
-0.01
-0.01
0.00
0.01
0.03
0.06
0. 08
0.10
0.14
0.15
0.18
0.11
0.1C
0
X
0.14
0.14
0.14
0.16
0. 15
0.10
0.13
0.35
0.34
0.33
0.13
0.01
0.01
0.02
0.0
-------
cr\ivfp, cniC.
nec 6,1^73
H
C
u
P
CO
01
02
03
04
05
C6
C7
08
00
10
11
12
13
14
15
16
17
18
10
20
21
22
23
V
V
n
P
ni
101
215
202
204
210
214
200
209
204
l-.f,
1-54
181
151
150
302
20^
201
180
102
195
109
15S
? 15
V
U
s
P
1 .9
1.8
1 .7
2.7
2.7
2.7
2. 1
2.3
3 .3
3.4
2.0
2.0
0.9
1.6
1.1
0.6
0.6
2.3
3.7
3.5
3.8
4.5
4. 5
2.2
W
P
n
2 .0
1 .9
i. a
2.7
2.8
2.7
3.2
2.4
3.3
?. 5
3.0
2.1
1.2
1 .8
1.3
0.7
0.9
2.3
3.7
3.5
3.8
4.5
4.5
2.4
W
c
I
G
4
6
6
4
3
5
5
7
4
"5
5
8
15
9
15
21
12
3
3
2
3
2
2
6
T
P
V
P
-11
-11
-11
-10
-10
-9
-9
-7
_ -a
-0
2
6
-------
(-
n
L
R
00
01
02
C3
04
05
06
C7
08
C9
10
11
12
13
14
15
16
17
1«
19
20
?\
22
23
V
w
D
'26
234
138
19P
199
203
2C4
203
202
IS6
200
2C?
205
210
2?3
235
?50
133
205
?07
180
275
300
291
V
W
p
1 .B
1.3
1 .9
2.9
4.2
4.3
4.6
3.6
4.5
3. 5
3.6
3.9
2.1
2.7
l.l
0.4
0.5
0.7
2.9
3,2
2.3
3. 3
5.2
3.9
u
S
p
0
1.9
1.4
2.0
2 .9
4.2
4. 8
A .6
3.7
4. 5
3.5
3.6
4.0
2. 2
2.7
1. 3
I .2
1.5
1.6
3.1
3.4
2. 6
4.0
5.4
4.0
W
S
!
5
8
5
3
2
2
3
3
•a
4
4
4
7
5
8
18
16
23
6
5
12
7
3
5
T
F
y
P
_ a
-4
_ -a
-2
-1
-1
-1
0
4
6
9
10
14
14
15
11
9
8
7
6
5
7
11
1C
T
W
P
T
-11
-11
-11
-11
-11
-11
-10
_c
-8
-7
-6
-6
-4
-4
-4
-4
-3
-4
— •*
_ i
-4
-3
-4
-5
P
54
56
55
53
50
4^
50
50
43
42
34
32
30
29
27
36
43
45
48
50
C 1
51
35
35
P
A
T
^'
-C.l
0.1
0.0
c.c
C.O
-0.1
C.O
0.0
-C.3
-C.I
-C. I
0. I
C.O
-0.1
C.I
-C. 1
C.O
0.0
C.O
0.0
-0.1
C.O
u
V
J .01
0.01
0.01
0.01
0.00
0.00
c.co
-C.C1
0.34
c. ea
1.24
1.41
1.36
1.13
0.55
O.C7
-0.02
0.01
-O.CO
-O.CO
-0.00
C. CO
0.00
0.00
N
F
p
1-
1.2
1.3
0.7
0. 5
0.7
0.5
C.5
0.8
0.7
0.6
0.6
0.7
0.9
0.9
1.2
2. 1
2.0
2.3
2.3
1.2
1.2
0.9
0. 1
0.2
OFC
*
C C
C 0
1.4
1.3
0.5
0.4
C.I
C.I
0.5
I .9
2.7
1.2
1.9
2.0
2.6
5.6
6.5
12.0
12.9
5.1
4.7
3.1
0.1
C.O
:t, cnir.
7, 197^
H
r
2. 6
2.7
2.4
2.1
2.2
2.0
2.2
2.9
3.0
2.4
2.8
2.9
3.2
6.3
9.5
8.1
7.2
4.4
4.4
4.4
2.4
4.2
T
H
C
3.2
3.0
2.8
2.6
2.6
2.5
2.6
3.3
3.4
2.9
3.4
3.3
3.6
6.5
9.2
8 .8
7.7
4.9
4,8
4.6
3. 7
4.5
C
H
4
1.3
1.2
1. 2
1. 1
1.1
1.1
1. 1
1. 3
1.1
1.2
1.3
1.2
1.2
2.7
3.5
2.7
1. 5
1.3
1.4
1. 6
2.0
2.3
N
M
H
C
1.9
1.8
1.6
1.5
1.4
1.3
1.5
2.0
2.2
1.7
2.1
2.1
2. 4
3.8
5.7
6.1
6.2
3.7
3.4
3. 0
1. 7
2.3
S
n
2
0.015
0.007
0.020
0.010
0. 0 17
0.016
0.009
0.021
0.022
0.012
0.011
0. 009
0.011
0.011
0.013
0.008
0.010
0.012
0.010
0.011
0.008
0.010
*
N
0
2
0. 09
0.10
0.08
0.07
0.07
0.08
0.09
0.09
0.09
0.07
0.06
0. 12
0.15
0.20
0.15
0.14
0.13
0.11
0.09
0.07
0.00
0.00
N
0
2
0.08
0.09
0.06
0.06
0.06
0.05
0.06
0.07
0.08
0.10
0.07
0.07
0. 10
0.11
0.15
0.17
0.14
0.12
0.13
0.11
0.09
0.07
0.03
0.03
N
n
0.16
0. 16
0.04
0.01
0.01
0.00
0.04
0.11
0.11
0.06
0.05
0.06
0.03
0.03
0.09
0.30
0.37
0.53
0.64
0.33
0.32
0.23
0. 03
0.04
N
0
X
0.24
0.25
0.11
0.07
0.07
0.06
0.10
0.18
0.19
0.13
0.12
0.14
0.13
0.15
0.25
0.48
0.51
0.65
0.77
0.44
0.41
0.30
C.05
0.07
0
X
I
D
0.000
0.000
0. 000
0.000
0.000
0.000
0.000
0. 000
0.000
0.001
0.005
0.004
0.020
0.019
0.012
0.003
0.004
0.033
0.010
0. 000
0.000
0.000
0. C04
0.002
D
3
Q.OCO
0.000
0.0 JO
0.002
.0.003
0.005
0.001
0.001
0.003
0.010 M
0.015 f"
0.015
0.031
0.030
0.018
0.001
0.000
0.000
0.000
0.000
0.000
0.002
O.Olfc
0.014
-------
C-MVE», COLn.
rrc 8,1973
r
u
p
00
01
02
03
04
C5
C6
07
08
C9
10
11
12
13
14
15
16
1 7
IP
19
20
21
22
?3
V
w
n
F
? 75
274
?91
264
13C
269
341
3P
1 25
160
343
794
ZIP
2P7
1
1 16
145
169
139
71
65
07
6^
V
w
s
P
4.6
4.4
6.1
0.3
1. 5
2.9
0.7
C.5
1. 4
3.2
1 .5
6.1
6.7
5 .0
2.0
3.9
2.2
1 .0
0.2
1 .6
1.3
0.8
0.6
V.
p
n
4. 7
4.6
6 .3
2. 1
2.0
3 .4
1 .7
1.4
2.0
3 .4
2 .4
3.2
6. 3
6.8
5 .2
4 .0
4 .1
2.3
1 .2
0 .6
1 .3
I .3
1 .0
0 .7
w
5;
I
r,
3
6
3
13
18
"
17
16
18
7
12
13
6
6
6
B
11
7
9
8
7
7
16
19
T
y
P
1C
q
10
7
7
P
7
4
9
s
11
13
13
12
12
10
5
3
2
0
-0
-1
-2
-2
r
W
D
T
-5
-6
-6
-6
-6
-7
-8
-7
-6
-6
-5
-6
-6
-7
-8
— *
-6
-6
-6
-6
-7
-7
-7
c
H
'<
?4
32
3R
39
35
36
4*
36
35
33
28
27
28
26
28
46
52
57
61
64
66
69
67
p
I
N
i.c
C.2
0.4
C.C
0.0
0.0
c.o
c.c
-0.1
-0 .3
-0. 2
0.2
-C. 1
0.1
0.0
0 .0
0 .0
0.0
0.0
0 .0
0.0
0.0
0 .0
0.0
L
V
.)....)
C. ro
0.00
0.00
C. CO
0.00
0.00
0.00
C. 31
0.77
1.12
1.27
1 .33
1 .10
0. 71
0. 26
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
\
r
p
0.7
U2
0.1
0.2
0.3
0.2
0.3
0.5
0.4
0.6
0. 3
0.?
0.?
O.I
0.2
0.3
0.4
C.6
0.6
0.4
0.4
0.2
*
C C
C 0
C ,C
C .0
-C.I
C.I
C.I
-0 .0
C.I
C.5
1.0
1.1
1.2
0 .6
0.1
0.1
0.1
0.1
0.4
o.a
1.1
2.1
3.7
C.4
0.5
0.4
H
C
1.9
2 .0
2. 1
2.4
2.4
2.5
2.6
3.5
2.5
2.4
2.2
2.7
2.4
2.3
2.8
1.9
2.1
2.3
2.9
3.4
2.4
2.5
2.1
T
h
c
2.5
3.0
2.4
3.0
3.1
2. 7
3.2
4.0
3.0
2.9
2.9
3.9
3.4
2.6
2.5
2.7
2.4
2.6
2.7
3.3
3.9
2.9
3.0
2.6
H
0.9
1. 1
0.8
1.0
1. 1
0.9
1.0
1.5
1. 1
1. 1
1. 1
1. 1
1.6
1. 2
1. 2
1.3
0. 9
1. 0
1. 0
1. 2
1. 7
1. 2
1. 2
1. 1
N
M
H
C
1.6
1. 9
1.6
2.0
2. 0
i. a
2.2
2.5
1.9
1.8
1. 8
2.8
1.8
1.4
1. 3
1.4
1. 5
1. 7
1. 7
2.0
2.2
1. 7
1. 8
1. 5
*
S N
Q 0
2 2
0,304 0.01
0.003 -0.01
0.301 -0.03
0.000 -0.00
0.000 0.03
0.001 -0.00
0.006 0.00
0.011 0.04
0.002 0.03
0.000 0.07
0.000 0.07
0. 308
0.000
0.000
0.000
0.000
0.300
O.OCO
0.000
0.000
0.000
o.oco
0.000
0.000
\l
n
2
0.04
0.03
0.01
0.04
0.06
0. 03
0. 04
0.08
C.06
0.05
0.05
0.05
0.01
0.02
0.01
0.02
0.03
0.05
0.06
0.06
0.05
0.05
0.05
0.04
N
r
0. J4
0.03
0. 03
0.04
0.05
0. 03
0.04
0.09
0.07
0. 04
0.03
0. 01
0. 00
0.01
0.01
0.01
0.01
0.03
0.05
0.14
0.11
0.03
0 . 04
0.02
N
C
X
0.03
0. 06
0.04
0.03
0.10
0.06
0.07
0.16
0. 13
0.09
0.03
0. 06
0.02
0. 33
0. 03
0.33
0.05
0. 08
0.11
0. 23
0.16
0. J8
0.09
0.06
P
X
T
D
0.032
O.OJ7
0. 012
O.C05
0.030
0. 007
O.CC4
0.000
0.000
0. C03
0.0)7
0.023
0.019
0.016
0.018
O.C16
0.004
O.OGO
0.0 )0
0.000
O.OGC
0.000
0. 0)C
0.000
o
0.013
0.019
0.025
0.015
0.3J3
0.020
C. C 16
o. ..••;• 5
O.'.JlO
0.015
0.013 ,1
h- '
O.u32 Y1
0,029
0.02?
O.C29
0.629
0.016
v/ • ^J ''.> 3
C.C 01
o.cco
O.CC1
O.CC2
o.cni
0.008
-------
n^jvfs, cote.
Pf C <), 1973
r
U
P
00
01
02
03
C4
05
C6
C7
CP
^
10
11
12
13
14
1 5
16
17
1«
19
20
21
22
23
V
W
n
P
107
131
123
103
100
92
146
12*
112
85
76
64
1 18
15P
151
1 26
2C<:
225
192
19P
193
19)
184
165
v
u
S
P
1.0
2.2
?.l
1.9
?..->
1.7
2.0
1.9
2.2
2.1
2.5
2.2
1. 5
1.2
2.3
1. 6
1. 5
2.3
2.0
2.4
2.7
2.5
1 .9
1.5
W
fj
p
1. 1
2. 3
2. 2
1. 9
2.3
l.R
2.0
2.0
2.3
2 .2
2.6
2 .3
1.7
1.6
2. 5
1.8
1.6
2. 3
2.0
2.4
2 .7
2 .6
2.0
1 .5
Is
I
G
1*
7
8
7
7
7
5
6
7
1 6
15
10
19
24
9
10
6
4
4
4
3
3
5
5
T
C
p
-2
-1
-2
-7
-2
-3
— 3
— 3
- 1
1
0
-0
2
3
3
2
1
-I
- 1
-2
-3
-?
-4
-5
o
M
p
T
-7
-7
-3
-8
-9
-10
-9
-10
-9
- 8
-9
-8
-7
-7
-8
-8
-9
-8
-8
-8
-8
-8
-S
-10
a
h
67
65
63
64
63
60
64
63
56
C 1
52
f C
e 3
4C
4P
49
48
5P
61
64
6"=
f«i
68
66
p
/s
T
N
C.O
C.C
c.c
C.C
0.0
C.O
C.O
C.O
0,1
-0.2
0.0
-C.I
C. 1
0.0
C.3
0.2
C.I
0.0
0.0
0.0
0.0
0.0
0 .0
0.0
u
V
0 . 00
-0.0 )
0 . 00
0.00
0.00
0.00
0 .00
o.oo
0.?2
0.14
0.86
1.10
1.24
1.02
0.63
C. 23
-0.01
0.00
O.CO
0.00
0.00
O.CO
0.00
0.00
I1"
P
R
H
C.2
0.2
0.2
0.2
0. 2
0. 2
0.2
0. 2
0.3
0.3
0.5
0.6
0.7
C.t
0.6
o.«
0.8
1. 1
1.0
1.4
1.8
1.?
2.5
1.5
C
C
C.2
0.4
Q.2
C.I
0.1
0.1
0.2
1.0
0.7
C.4
0.2
C.I
C.£
C.7
C.8
1.3
1.6
1.8
1.6
1.2
2.0
1.8
C H
0 C
2.1
1.9
1.9
1.9
1.9
2.1
1.9
2.2
2.1
2.0
2.0
1.6
1.8
1.8
1.9
1.9
2.1
2.3
2.5
2.8
2.8
2.6
2.8
2.7
T
H
C
2.5
2.5
2.4
2.4
2.4
2.6
2.4
2. 7
2.6
2.6
2.6
2.4
2.4
2.5
2.6
2.9
3.0
3.3
3.2
3.0
3. 1
2.9
C
H
4
1.1
1.0
1.0
1.0
1.0
1.2
1.1
1.2
1. 1
2.7
1. 4
1.3
1.0
1.1
1. 1
1.2
1. 2
1. 4
1. 3
1. 3
1. 2
1. 2
N
H
C
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.6
1. 5
-0.1
1.3
1.1
1 .4
1.5
1.6
1.7
1. 8
1. 9
1.9
1.7
1.9
1. 7
*
S N
o n
2 2
0. JOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
O.")00
0.000
O.J30
0.000
0. 000
O.)00 -0.01
0. )00
0. )00
0.000
0.000
0.003
0.006
0.007
0.000
0.000
N
n
2
0. 04
O.C3
0.02
0.02
0.02
0.02
0.03
O.iK
0.04
0.02
0.01
0.01
O.C3
0.04
0.06
0.10
0.09
0.09
0.09
0.08
0.08
0.07
N
0
0.02
0.02
0.02
0.02
0, 02
0. 02
0.02
0. 03
0.03
0.02
0.00
-0.00
0.02
0.01
O.C2
0. 06
O.OQ
0.11
0.11
0.08
0.13
0.11
N
n
X
0.06
0.35
0.04
0.03
C.C4
0.03
0.05
0.07
0.07
<).0
-------
H
C
U
o
CO
Cl
0?
C3
C4
C5
Cf
C7
CP
C9
10
11
1?
13
14
15
16
17
18
19
20
21
2?
?•*
V
w
n
p
175
176
JCC
103
?CB
220
24 1
206
200
194
209
2 13
204
191
234
?IP
280
230
236
?<»
183
1 79
1 39
174
V
VI
p
2.0
1.3
3.4
4.7
2.2
0.9
1.1
1.4
2.6
2.6
2.0
2.5
2. 2
1.5
1 .7
C.8
2.7
5.1
5.1
2.0
?.S
3.4
3.9
3 .4
U
P
C
2.0
1 .5
3.6
4.7
2.5
I .1
I .5
1.6
2.6
2 .6
2.3
2 .6
2.3
2. 2
2. 1
1.3
2.9
5.1
5.2
3.2
3.0
3.5
4.0
3.5
V,
I
G
3
7
11
3
5
1 1
19
10
5
7
7
8
7
12
6
23
8
4
5
7
13
3
3
a
T
r
M
P
-5
-5
-4
-2
-2
-3
-3
-2
«
7
9
12
13
16
13
11
12
12
12
10
fi
5
4
4
P
T
-11
-U
-11
-12
-12
-12
-11
-10
-9
-10
-10
-<;
-9
-10
-10
-8
-10
-15
-16
-16
-13
-10
-10
-11
H
64
62
60
51
48
5 7
54
57
39
30
2fc
23
22
17
21
2.8
23
14
13
15
23
35
35
33
r
A
I
0 .0
0.0
0 .0
0.0
0 .0
0 .0
0.0
0.0
-0.4
0 .0
0.0
-C.I
C.I
-0.2
c. c
0.1
c.o
-0.1
C.I
0.0
c.o
C.I
c.o
c.o
1)
V
c.oo
0.00
0.00
0. CO
o.co
0.00
o.co
-0.00
0.32
0. 68
0. 80
1. 10
l.CO
1.00
0.23
0.03
-0.02
0.00
-0.00
-0.00
-0 .00
-o.oo
-0.00
0.00
!•
p
H
1.3
C. 7
0.9
0.5
0.*
c.*
l.l
1. 1
0.9
C.7
0.8
1.1
1.0
1.0
1.9
2.2
i.e
c. *
0.4
o. *
0.9
1.0
0.9
0.8
OF:
V:
C C
C 0
1 .4
0.9
C.7
C.2
0.1
0.8
2 .6
4.1
3.8
2 .4
1 .9
2.6
2.7
2.3
4.2
7.4
6.0
0.9
0.2
0.8
2.6
1.9
1.4
1.3
:P t Cnl f.
1J.1973
H
C
2.6
2.5
2.8
2.2
2.7
4.0
3.6
3.8
3.5
2.8
2.9
3.2
3.1
3.0
4.C
5.6
4.5
2.5
3.0
3.6
3.0
2.8
2.5
2.5
T
H
C
2.7
2.6
3.0
2.4
2.9
4.6
3.8
4.2
3.6
3.0
3.1
3.4
3.5
3.4
4.2
5. 6
4.6
3. 1
2.9
3. 6
2.2
3.0
2. 8
2. 6
C
H
4
1. 2
1. 2
1. 5
1. 2
1. 3
2. 9
1. 6
1.4
1. 1
1. 0
1. 0
1.1
1.1
1.1
1.2
1.4
1.6
1.2
1.4
1.8
1.1
1.0
1.0
1.0
N
H
C
1.6
1.4
1. 5
1.2
1.6
1. 7
2. 3
2. 8
2. 5
2. 0
2. 1
2.3
2.4
2.2
3.0
4. 2
3. 1
1.9
1. 5
1.8
2. 1
2.0
1.8
1.6
S
0
2
0.000
0.000
0.013
0.022
0.017
0.013
0.008
0.010
0.011
0.007
0.012
0.024
0. 019
0.006
0.012
0.011
0.004
0.000
0.001
0.003
0.005
0.007
0.005
0.007
*
N N
n n
2 2
0.07
0.07
0.08
0.07
0.06
0.07
0.07
0.07
0.10
0.10
0.10
0.13
0. 14
0.12
0. 15
0.18
0. 12
0. 06
0.03
0.05
0.08
0. 08
0. 08
0. 08
N
D
0.11
0.06
0.21
0.07
0.04
0.13
0.40
0.35
0.20
0.12
0.12
0.12
0.09
0.05
0.27
0. 51
0.22
0.02
0. 03
0. 09
0.16
0. 14
0. 13
0.10
N
0
X
0.17
0. 12
0.28
0.13
0.10
C. 20
0.47
0.41
0.30
0. 21
0.21
0.24
0.22
0. 16
0.41
0.67
0.33
O.Ofi
0.06
0. 13
C.24
0.22
C.21
0.17
0
X
I
0
O.OGO
0.0)0
0. 00 0
0.000
0. COO
0.000
0.000
o.coo
0. 000
0.010
0.000
O.OJO
0.001
0.0 10
o.oro
0.006
0.001
O.OGO
0.008
0.005
0.000
0.000
0.000
0.000
0
3
O.uOG
0.0 00
o.oco
o.oco
O.OC3
0.000
0.000
0 . 0 3 C
0.001
O.C04
O.OC4
0 .006
0.008
0.020
0.001
0.000
0.000
0.002
0. 007
0.036
0. CCO
0. COG
0. 000
0.000
-------
h
0
L
P
oc
01
02
03
04
C5
C6
C7
CR
C9
10
11
12
13
14
15
16
17
IP
19
20
21
22
23
V
V
r
P
19P
IPO
201
222
152
?41
150
1P6
181
186
IIP
14P
U3
202
301
149
156
174
22C
1 73
247
184
1 S6
190
V
V
<;
P
7.6
1.4
2.4
1.2
0.9
0.3
0.7
1.3
0.6
2.2
1.0
0.6
1.6
0.8
1.3
1. 1
C.7
2.0
1.3
0« R
1.3
2.2
3. 3
3.3
W
<;
D
D
2. 7
1. 7
2. 5
1. 5
1.4
1 .0
1 .6
1.8
1.1
2.4
1.9
0 .8
1.7
0 .9
1.4
1.4
1.3
2.1
2.0
1.6
2.2
2. 6
3.4
3.3
w
c;
1
r,
5
9
4
14
12
16
15
17
27
13
15
14
11
10
8
13
14
6
5
15
1 1
6
5
3
T
F
f
P
4
3
3
3
1
1
2
3
5
R
1C
11
12
13
13
12
11
8
6
4
•a
4
6
6
r
w
P
T
-11
-11
-10
-11
-9
-s
-8
-S
-7
-7
-9
-7
-<;
-9
-6
-5
-5
-7
-6
-6
-6
-8
-10
-1 1
P
H
34
3?
39
3P
46
49
4R
43
42
3?
26
28
23
22
27
31
33
36
42
47
5C
44
31
79
F
c.
T
N
C.C
c.c
c.o
c.c
c.o
0.0
0.1
0 .0
-0.1
0.1
-0.1
0.1
-C.I
0.0
-0.1
-C.2
0.3
C.I
c.o
c.o
c.o
-C.I
0.0
0 .0
(j
V
0.00
0. )0
0.00
o.oo
0.00
-o.co
-o.co
-0.01
0. 24
0.53
0.54
0.68
C.74
0. 62
0.39
0.15
-0.02
0.01
0.01
0.01
0.00
0.00
o.co
0.00
f,'
f.
P
^
0.6
0.7
C.5
C.7
1.0
1.0
1.2
1.4
1.7
1.6
1.4
l.S
1.3
1. 2
6.8
£.7
8.7
3.0
5.9
5.7
4.2
2.0
1.2
0. P
OFNVERf COLO.
rcr U.1973
c
c
C.9
1.0
C.5
C.6
1.0
1.1
2.6
f .2
7.5
d .6
3.5
3.2
3.3
2.4
7.8
10.6
13.2
12.2
It. 4
16.0
11.8
4.8
2 .4
1 .1
*
C H
0 C
2.4
2.9
2.5
2.9
4.6
8.4
8.2
6.0
5.7
4.5
3.8
5.8
3.2
2.9
8. 8
7.8
9.3
6.5
10.5
10.8
8.6
4.3
3.3
2.7
T
H
C
2.6
2.-;
2.8
3.2
4. 7
8.1
7.7
5.3
5.5
5.0
3.9
5.9
3.8
3.2
10.0
7.8
£. 6
6.7
10.2
11.0
7.9
4.9
3.6
3.0
~
H
*
1.0
1.2
1.1
1.3
1.8
3. 9
4.3
1. 9
1. 6
1. 3
1. 2
1. 6
1. 2
1.0
4.4
3. 1
2.7
1.5
2.8
2. 8
2.9
1.3
1. 1
1. 1
N
M
H
C
1.6
1.7
1.7
1.9
3.0
4.2
3. 3
3.4
3. 9
3. 7
2. 7
4.3
2.6
2.2
5.6
4. 7
5.9
5.2
7.4
8.2
5.6
3.6
2. 4
1.9
S
0
2
0.000
O.JOO
0. 008
0.008
0.009
0.018
0.021
0.014
0.009
0.007
0.008
0.006
C.OOO
0.000
0. 014
0.016
0.014
0. 003
0.010
0.009
0. 005
0. )00
0.000
0.000
N N
0 0
2 2
0.07
0.08
0. 07
0. 08
0.09
0.08
0.08
0.08
0.12
0.16
0.12
0.17
0.16 0.14
0.13 0.13
0.36 0.38
0.51 0.47
0.51 0.43
0.25 0.18
0.29 0.30
0.31 0.26
0.21 0.16
0.12 0.11
0.10 0.09
0.09 0.08
N
G
0.08
Q.ll
0.06
0.10
0.18
0.20
0.31
0.42
0.45
0.30
0.14
0. 10
0.10
0.07
0.16
0.28
0.44
0.48
0.76
0.75
0.57
0.32
0.16
0.07
N
C
X
0.15
0.18
0.13
0.18
0.27
0.28
0.33
0.50
0. 56
0.4-4
0.26
0.26
Q. 23
0.1S
0.51
0.71
o.a^
0.65
1.0-3
1 . 00
0.72
0.41
0. 25
0.14
C
X
T
D
0.000
0.000
0.000
0.000
0.000
0. 000
0.000
o.coo
0. 000
0.000
0. OCO
0.002
0.030
0 . COO
0.003
0. 006
0. 009
0.002
0.012
0.011
0.005
0.000
0.000
o.coo
0
3
0.000
0.000
0.0 JO
0.0 CO
0.000
o.cto
o.cco
o.oco
0.0 GO
O.OCO i
h- '
O.C01 oo
1
O.OC3
0.002
0.003
0.001
O.OOJ
O.GCO
0.000
o.ooo
0.000
0.000
o.oco
0.000
0.000
-------
. r PLQ.
rec 12,1973
H
P
U
P
00
01
02
03
04
C5
C6
07
08
C<=
10
11
12
13
15
16
17
1 8
19
20
21
22
23
V
V
n
P
V l»
«; P
P D
w
S
I
G
198 3.9 4.0
1^2 4.4 4.4
21° 2.6 3.0
211 1.9 2.2
6
8
283 3.6 3.7 6
303 10.4 10.6 4
283 11.8 11.9 4
290 7.0 7.4 8
332 7.1 7.3 6
3?0 3.7 5.1 12
294 9.3 9.4 5
295 1 C.O 10. 1 4
313 8.3 8.5 5
324 7.6 7.8 6
375 6.3 6.3 5
316 7.6 7.6 5
316 9.0 9.1 4
311 6.7 6.8 4
315 3.4 4.0 12
154 0.6 2.0 13
223 1.6 2.0 9
707 C.7 2.7 22
P 1.4 2.6 9
30? 1.6 ?.6 10
-------
n^Mytp, cnic.
OrC 13,1973
HVVWkTDf-1 N N * G
C V W S S F U A r * TC^SNN NX
U ncpfMPFI U P C C H H H H 0 0 0 M 0 I G
R pPOGPT*Jf' VHCOCC4C 2 2 2 0 X D 3
00 1=5 P.4 2.5 8 3 -11 37 C.O C. CO <>. 9 1 . "5 2.7 3.1 1.1 2.0 0.000 0.11 0.08 0.08 0.15 O.OOC G.3JJ
Cl !<)? 3.0 3.0 3 1 -10 43 0.0 O.CO C. 9 0.9 ?.6 3.0 1.1 1.8 0.000 0.10 0.07 0.05 0.12 C. COO 0.00"
0? IP* 2.1 2. 2 4 1 -10 43 C.C 0.00 O.R C.6 2.4 2.8 1.1 1.7 O.JOO 0.10 0.07 0.04 0.10 0.030 0.0.)0
C3 166 1.8 2.2 18 2 -10 42 C.O C. CO 0.7 0.5 2.3 2.7 1.1 1.7 0.000 0.10 0.07 0.03 0.09 C. CJO O.DOJ
C4 163 l.q 2.5 2* 1 -10 46 0.0 0.00 C. ( 0.5 2.1 2.6 1.0 1.6 0.000 0.09 0.05 0.01 0.06 0. COO .O.CC5
C5 141 1.5 2.5 27 0 -9 51 C.O 0.00 0.6 C.4 2.1 2.5 1.0 1.5 0. 000 0.08 0.05 0.02 0.07 0.000 u. 003
06 194 ?.l 2.3 6 -0 -9 53 C.O 0.00 0.7 C.<3 2.3 2.7 1.0 1.7 O.JOO 0.09 0.06 0.07 0.13 0.000 O.^'-C
C7 ?C8 0.6 1.3 20 -0 -8 5e C.C -0.02 1.6 4.1 5.7 6.0 2.3 3.7 0.003 0.11 0.08 0.36 0.44 O.OJO 0.000
C8 14? 0.2 1.4 28 1 -7 55 C.O 0.21 2.5 7.8 6.3 6.2 2.0 4.2 0.000 0.15 0.10 0.50 0.60 0. CGI 3.1~ij
C<3 15? 0.6 1.6 28 6 -5 46 -0.3 0.61 2. 1 5.5 4.9 5.4 1.3 4.0 0.004 0.18 0.14 0.24 C.37 0.000 0.001 ^
hO
10 171 1.6 1.8 17 9 -4 40 C.O 0.96 1.6 2.8 3.4 4.1 1.0 3.1 0.006 0.18 0.14 O.C9 0.23 O.COO C.OC7 2 1.1 1.6 ?0 10 -3 41 0.0 -C.02 2.7 10.4 6.0 2.5 3.5 0.16 0.15 0.23 0.37 0,000 3.J^3
17 43 0.4 1.7 15 7 -3 49 C.O -0.00 2.6 13.2 6.2 2.2 3.9 0.13 0.11 0.35 0.45 O.OOJ O.uJO
1« 61 0.8 1.2 25 4 -3 61 C.O 0.00 2.7 7.4 7.0 2.5 4.5 0.08 0.08 0.29 0.37 0.000 O.OCC
19 157 0.? 1.7 13 4 -3 62 0.0 O.CO 2.1 9.5 7.9 3.3 4.6 0.09 0.09 0.37 0.46 0.000 O.OuO
20 311 0.3 l.l 13 3 -4 61 C.O 0.00 2.4 <;.<; 9.1 5.3 3.8 0.09 0.08 0.41 0.49 0.031 O.:»jj
21 168 0.4 1.3 14 2 -4 66 0.0 0.)0 3.1 12.0 11.8 8.2 3.6 0.10 0.09 0.57 0.66 0.004 C.003
22 121 0.3 1.5 14 2 -4 b( 0.0 0.00 2.5 13.0 10.5 7.2 3.3 0.09 0.07 0.44 0.52 0.002 O.OC3
73 ?4 3.2 3 .4 7 2 -5 60 0.0 0.00 0. S 3.0 4.3 2.6 1.8 0.04 0.04 0.02 0.06 0.000 0.003
-------
r
U
p
CO
Cl
02
03
C4
C5
C6
07
OR
10
11
V
k
n
p
W
s
p
n
333 3.5 3.7 7
"0 4.7 4.8 4
3?c> 1.4 2.0 20
75 1.6 2.4 21
15 C.2 1.221
306 5.6 5.8 7
328 5.3 6.0 6
Uf
o
T
R4 1.3 1 .8 19 -0 -6
327 2.5 2.R 14 2 -7
350 2.8 2. 9 7 2 -10
A 3.3 3.5 5 2-10
2 -10 M 0.0 O.CO
2 -12 37 C.O 0.00
2-13 33 0 .0 0.00
2 -12 36 C.O -C.02
4 -11 34 C.O C.24
8 -11 2f -C.3
U
V
CO
CO
1)
(10
CO
00
00
02
24
65
,03
23
F
P
H
C.9
U.6
0.6
0.6
0.6
0.6
C. 5
0.8
O.S
0.7
0.7
0.7
n F w\' F
c c
0 0
0.9
0.4
C.I
C.2
0.1
C.I
0.2
1.0
2.8
C.fi
C.7
p, rote.
14,1973
T
H H
C C
3. 5
2.9
2.5
2.4
2.9
2.3
2.2
2.6
3.3
2.5
2.4
C
2.2
1. 8
1.6
1.5
1.5
1.5
1.4
1. 6
2. 0
1.6
1.5
N
M
H
C
1.3
1.1
0.9
0.9
1.5
0. 8
0.8
1.0
1.3
0.9
0.9
*
S N
0 0
2 2
0.05
0.03
0.02
0. 03
0.03
0.03
0.03
0.06
0.06
0.04
0.02
fvl
n
2
0. J&
0.03
0.02
0. 03
0.03
0. 02
0. 03
0.06
0.06
0.04
0.02
0.01
0
0. 03
0.02
0.02
0.03
0.02
0.01
0.0 I
0.03
0.07
0.02
0.01
0.01
0
X
O.C9
0.35
0.04
0.06
0.04
0.04
0.04
o. OR
0.13
0.06
0.03
0.02
n
X
T
0
0. GOO
0.005
0.010
0.005
0. C06
0.005
0.004
0.000
0.000
0.036
0.010
0. C12
3
0.0 CC
0.013
0.021
0.015
0.017
0, 0 1 S
0.016
O.D36
0.050
0.0 13
0.023 |
i a
f_*
NJ
0.52& M
-------
-123-
ABBREVIATION
2-M Butane
2,2 DMB
2M 1-Pentene
2-MP
3-MF
2,2,3-TMB
Unknown
2-MH
3-MH
M Hexane
223,233-TMP
2,3,4 TMP
M Hexene
225-TMHEXENE
Propylbenzene
Butylbenzene
Appendix B. DENVER HYDROCARBON MEASUREMENTS
Site: 4958 York, Denver, Colorado
Sampling tube 10 m above ground
November 4 - December 14, 1973
Units: ppb carbon atoms
The following abbreviations are used:
HYDROCARBON
2-Methylbutane
2,2-Dimethylbutane
2-Methyl 1-Pentene
2-Methylpentane
3-Methylpentane
2,2,3-Trimethylbutane
Unidentified peak eluttng near benzene
2-Methylhexane
3-Methylhexane
Methylcyclohexane
2,2,3- and 2,3,3-Trimethylpentanes
2,3,4-Trimethylpentanes
1-Methylcyclohexene
2,2, 5-Trimethylhexene
n-Propylbenzene
sec-Butvlbenzene
-------
-124-
"Appendix B. DENVER HYDROCARBONS (Con't)
Denver hydrocarbons in the order of their listing in Appendix B:
Ethane
Ethylene
Acetylene
Propane
Propylene
Freon 12
Isobutane
N-Butane
1-Butene
Freon 22
Isobutylene
2-Butene
Butadiene
Isopentane
1-Pentene
N-Pentane
2-Pentene
2-M Butane
2,2 DMB
2M 1-Pentene
Cyclopentane
2-MP
3-MP
1-Hexene
N-Hexane
2-Hexene
2,2,3-TMB
Cyclohexane
Benzene
UNKNOWN
2-MH
3-MH
1-Heptene
N-Heptane
M Hexane
223,233-TMP
2,3,4 IMP
Toluene
M Hexene
225-TMHEXENE
N-Octane
Ethyl Benzene
M P Xylene
0 Xylene
N-Nonene
Propylbenzene
Butylbenzene
N-Decane
N-Undecane
N-Dodecane
-------
CENVEP HYPSPCARBCNS NOV 4, 1S73
f.^2P 1C2F 112P 1228 1^2° 13JF 1528 U?8
ETHANE
F THVLFNF
ACFTYLF.NE
FOfPiNF
PRPPYIF^F
FfiECN 12
I SCei-'T AN E
N-RLTAK'F
1-BUTENF
FRECN 22
I SOPUTYLENE
2-RIIT Ef>F
8CTAOTFNF
I«;OpENTANE
1- FFWTfNE
N-pcNTSN F
2-ppiTFNF
2-N PUTfNF.
2,2 OMB
2V 1-FENT=ME
CYCLQFFM 4N|F
2- up
3 -up
1-HFXENE
N-HE XftNE
2-H EXENE
2 , 2 ,?-TVR
CYC I. Pt-FXANF
6 F N 2 F N F
UNKN'ChN
2-N'H
3-KH
1-HEFTfNC
N-HEPT A^E
P HFXANF
223,2?3-T*P
2,3,* TN\C
TCLUFNF
* V'EXFNE
225-TW-IFXE^E
N-OC TAME
ETHYL PEMZEME
M p XYLFMF
O XYLFNF
fSj— fsQN iNJ £
FqrpYLEF^ZF^'
PC^VL f
3
18
57
32
0
54
20
19
29
11
34
201
26
3
4
4
21
14
18
175
0
18
10
a
32
7
11
12
15
13
16
1
148
11
7
7
20
54
26
7
4
20
7
12
7
27
23
1 1
11
28
1 1
4
8
It
2
34
1
0
24
0
17
K
C
0
0
C
14
13
C
51
13
0
7
2
0
E
7
3
1
7
15
0
0
\tt
3
0
-3
C
19
1
0
0
1
7
F
49
7
9
61
6
4
5?
89
5
0
8
4
7
56
C
36
C
0
0
0
6
23
16
0
52
18
14
4
7
6
13
10
8
10
1 1
15
6
28
7
0
7
K
11
7
6
0
5
6
7
5
55
1 1
12
115
4
8
142
205
e
10
12
8
6
242
7
145
5
10
5
4
17
84
58
46
58
7
32
11
2 I
14
27
2t
15
24
20
7
C
52
10
•a
8
5
13
10
5
0
10
6
4
2
Ln
I
-------
HY r- c n c £ r- F c N c
NOV
1973
1247 1446 1616
F T t- a N P
FRf P
FFFC* 12
r smiT^f
N-PUT /IN E
l-pi'
2,2 01
1-HF XFMF
N-l- EX^NE
2,2,3-T"«
CYfl
2->
y HEXANE
223,233-
2 ,3
THLLENE
M HEXENF
2?s-
M-rc
n XYLENE
K-r>rf* arp
PUTYI RE
43
^2
62
71
16
4
?6
75
5
0
16
6
0
14
0
0
5
0
0
12
7
(•
34
0
8
-------
N\ir
- ECNS
MTV
6, 1973
0 <: c <5 H ? P
F THAf> F 1 58
ACFTYtFf^c 212
1C5
q
2C4
197
1P1
12
ISCPtTA\F
N-PITANF
r\ 22
TSP«UTYLPNF
2-PUTFNF
RLTAPIFf><:
10
48
22
f,
7
a
5
27
CYCLCPFMANP 55
2-wp jq
N-PFNTAf 5
Z-PFNTEME
2-v
2,2
1-HFXFMF
N-^ EX AMF
2-l-FXENF
2,2,3-TP?
35N7FNE
UNKNPWN
2- VH
^— WH
1-t-FPTFNE
^-^F PTfr E
22?,23^-
2,3,4 TVP
THLUFNF
H h FX FNF
V F
P XYt. ENF
0
f5
14
11
29
18
16
9
7
77
23
r 36
126
- 71
35
1 3
103
PFN7FN
PUTYL
N-PFC
P02
121
11
599
47
58
61
30
660
N-CCC EC AN F
16
33
22
12
62
<25
259
22
371
14
197
64
124
103
178
224
229
191
34
21
258
101
14
124
78
220
121
96
35
96
86
67
29
-------
11, 1973
PROPANE
i?
1-BLTFNF
FPFON ?2
TSCPUTYLFNF
2-BIJTFNF
22
13
?2«5
2R
7
853
?9
37
13
If,
3
3
1-HEVENF
2-M BLTANr 0
2,2 CVP 5
2N l-FFMENF IS
CYCLOPFMAMF 0
2-MP 0
2-PF 10
0
6
0
8
0
0
0
0
2-HcXFNE
2,2,3-TMP
CYCLOFXflNE
BEN'ZFNF
I
H-
M
C»
l-t-FPTFNE
^-HPPTA^F
223,?33-TMP
2 ,3 ,<. TNP
TQIUENE
M VcXFNF
225-T^'t-EX5^ F
Ff> 2E^E
F XYLFNE
XYLFNF
30
15
A
2
0
^
12
2
1A
18
5
5
19
PUTYL
F. 10
0
10
o
-------
NCV 12, 1973
1637 17^7 1F?7
ETHANE
ETI-VIENE
ACFTY LFr^r
PPCPdf>E
PPHFYLEf'F
ecFCN 12
I ?CPITANF
N-FIJT/H E
I-PLTENF
FOECN ?2
isreuiYL ENF
2-BljTENF
BUTADIENE
ISPPFNT ANE
i-pcMTEf^F
N-PENT4N5
2-FENTENF
2-" PITANe
2,2 0 "A
2I> 1-FFNTEK'F
CVC LTFEM4NF
2-MP
3-^F
1-hFXENF
N-^ FX4NE
2-t-PXEKF
2,2,^-TVR
CYCLC^fXJ!^F
BEN7FNE
UNKNOWN
2-Vh
.3-fH
1-hEPTPNE
N-I-FFTA^E
V HEXANE
22?, 233-TMP
2f3,4 TfF
TCI UFNF
M hfXENF
225-T^l-FX = Ne
N-nCTANf
ET^•Yl.FF^z?^lE
" P XYLHN=
n xvi FMF
N-KCNANC
7^
ICO
30
3
Kl
312
16
37
17
16
4
121
0
7
5
15
23
73
50
0
31
11
46
12
32
10
32
4*
7.1
?2
•56
11
5
«;<.
4R
B
= 2
23
P2
53
140
2<3
73
PPCFYLPENZFM *l
BUTYLFFM;CMP
^-CFCA^ F
^'-u^^FCA^?
K-rrcf CAME
«P
31
<;s
:-i
147
155
156
17S
71
R
221
£37
19
27
13
l^
4
276
14
208
1 1
27
11
5
?5
204
136
10
143
8
10C
38
54
65
109
140
73
121
102
31
30
289
78
8
77
59
203
113
112
25
127
1PP
115
31
20^
5CF
530
269
2<3
11
335
715
51
82
44
72
1
9<;<3
31
6Ct
46
118
37
17
89
513
497
44
4^6
46
350
138
166
2/3
441
481
301
420
265
36
103
4P.8
239
35
213
76
189
571
334
73
L iq
205
120
59
M
ro
I
-------
1C26 1534
1932 20:2 212
??'
E THANE
EThYl F^F
ACf TYLcf"E
ppcp* ISE
PRCPY LEM-
fPECN 12
ISPRUTANE
h-PUT^F
l-BL'Tflvp
FPEPM 22
JSCW.nYt ENF
2-PUTEMF
PIJTACTEr'F
I Sf FFMflNE
l-PFNTEivF
N-PEMT^r. F
2-PEMFNC
2-N1 RITANr .
2,2 r^p
21" 1-FFNTFNC
CYC inPCWTfVr'F
2-MP
2-NF
1-HEXFNE
fv-MX *Nf
2-HEXENF
2,2,3-^p
CYClThEXANF
«EN?FNF
(JN KNTWN
2-fH
3-KH
1-t-FFTFNF
M-(-
0
21
5
2P
8
15
10.
26
33
17
20
2S
R
4
114
?0
25
19
46
26
58
17
31
54
M
11
0
11
0
4R
0
134
5
30
7
63
45
0
0
173
0
25
10
1 1
1<5
0
0
^
9
6
7
113
T
13
2
163
4
9
5
14
44
14
13
4
0
5
n
0
24
24
4
P
0
53
7
25
5
0
0
21
11
7
23
6
0
23
48
0
C
10
0
0
P
13
23
23
0
0
16
7
0
fl
4
10
5
2
0
10
«
12
0
0
0
4
16
4
0
8
17
0
0
0
0
0
4
4
4
6
0
0
14
5
0
0
0
12
6
2
0
6
5
10
2
81
6C
C. £
PC
20
0
27
72
4
S
6
2
6
31
34
33
: 2
9
10
«6
29
C
2^
19
67
3t
41
1?
T
t2
36
a
74
5 ?
47
71
- ^
0
•?c
169
11
16
12
8
11
31
2!
37
•3 3
9
10
f 1
24
C
23
18
59
• fc
l <;
11
46
47
27
^
6ft
102
114
fl'}
6C
6
102
237
21
24
Ifi
14
20
71
71
'2
76
57
23
23
189
S9
5
51
45
K 4
80
4Q
23
112
52
?2
IB
64
7C
62
53
37
0
50
135
7
15
e
8
12
38
35
24
38
27
12
12
c 7
37
4
2^
24
77
4t
31
13
59
36
?]
9
13, 1073
I—1
U)
o
I
-------
•;-\VFP
PGM
NCV 14
1973
r c' ^ oi33
0333
•KJ 13
H n 1213 13 i
1413 1513 1613 1813 1913 2013
?213 2313
ET!-/Sf> E
F 7HYLF N<~
AT FTYLFfc
FCCFA* F
DROpYI CNF
FPF<~-M 1?
I SnHl_TAN?
N-Pl TAN'F
1-PUTFNF
CRFCM 22
TSPPUTYI =NF
2-PlJT FKF
81 TAnj FN=
TSrDFN'T£Mc
1""PF^^F^F
Nj~~ P F N T f ^' ^~
7~PFfvTFN F
2 — ^ p. t^ T A NJ F
2,2 P ^
2 f» 1-FFNTCMF
CYClPPEMAfE
2-MF
3-VP
1 — HP )< *- N F
N — \~ E X £ ^.' E
2-f-EXFr, E
2,2,3-TN"*
CYCtTI-FX ANE
REN?FMr
UNKNPWN
2-VH
3-PH
1-l-fpTF^F
N- H f P T t N F
M t-FXANF
223,233-TMp
2 ,3,4 TND
TCLUCNE
M I-FXENF
2?5-™tJF XF^F
N-PCT f N F
FTHYL PFIv 7FKF
M P XYl FMC
r XY i FN c
N^TI. ANE
popp YL oc N7F*'
6UTY ( per 7<:N.F
N-pFC/.>\r
N-Uf- r FT 'N =
K-rrr EC AN E
78
94
F 7
95
46
3
65
166
12
17
13
8
16
34
53
39
1 7
IP
1 19
43
3
37
31
1C2
55
38
16
78
^2
3?
15
??
15
P7
P6
79
92
41
2
R 3
196
11
lc
13
10
14
4ft
47
30
54
42
16
16
1?1
52
9
60
67
217
<5R
49
13
65
40
2?
11
2 1 1
134
102
207
42
0
115
245
1C
1«
14
11
14
70
87
39
96
ei
18
1*3
215
48
U
51
45
150
79
82
23
86
124
73
28
133
66
C4
306
33
0
125
376
11
16
13
12
13
44
44
27
43
43
14
13
cq
37
3
4C
25
13
38
37
P
50
42
30
12
1
12
??
:- 1 5
n
c
Kfi
195
•a
5
P
2
4
17
q
16
17
0
15
6
13
8
?2
25
c
26
31
t
4
ei
16
0
19
1 1
40
2 2
19
P
'0
'1
20
13
H c
3P
i~>,
3 } f
16
C
1C3
217
f
8
7
4
4
23
26
13
26
35
•j
7
5T
19
n
16
12
3 c
19
18
4
2 f
24
'e 1
c
C£
91
^8
10]
44
C
7Q
1C3
12
18
10
7
12
45
45
29
41
38
14
15
1 02
36
0
32
24
77
46
31
I?
6 1
41
'• 1
20
i<< ;
173
IP 7
I4C
71
7
P7
23Q
1 c,
28
?5
13
29
92
9 3
52
11 1
91
35
27
227
75
7
60
5 3
174
96
64
?6
13 2
70
4 f
22
( (
i in
< 7
" 7
3<>
-3
66
153
<;
j J
7
2
•j
4 1
6
f 3
2
41
19
24
44
1 1
79
36
~|4
53
17
16
147
<1
5
36
3 1
84
5C
37
11
f 4
i 2
2 1
19
e 3
52
77
76
27
r
67
191
7
14
7
4
a
145
4
88
6
6
6
C
15
1C2
73
2
S7
0
55
2C
24
32
54
65
39
59
42
14
15
123
36
5
35
25
86
44
29
12
47
32
19
11
0
0
C
0
0
7
21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
18
6
6
1
11
7
3
n
c
c
0
c
0
c
c
9
1
0
0
c
0
0
c
0
0
c
0
c
c
0
c
0
0
0
0
c
c
0
c
0
0
0
0
c
0
0
0
0
0
c
0
c
c
0
c
c
0
c
0
Q
4
5
0
0
4
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
2
2
0
0
2
1
?
0
5
5
3
0
0
0
0
0
0
0
0
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
11
0
Q
0
3
10
5
7
0
5
10
8
Q
6
8
12
26
0
0
4
7
0
0
5
0
0
7
0
4
0
0
0
0
0
2
3
0
3
0
0
0
0
0
5
5
5
0
0
0
5
13
0
0
0
1
8
4
4
0
6
7
4
0
7
6
5
5
5
5
11
0
0
5
4
0
0
11
0
7
0
0
0
0
0
1
5
0
12
0
4
3
2
4
7
8
6
6
5
0
0
9
2
0
3
3
11
6
6
0
7
10
8
3
0
0
10
15
q
0
6
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
Q
0
0
0
0
0
4
3
1
0
0
11
3
0
4
0
8
5
5
2
8
P
3
0
11
5
q
20
0
0
5
16
0
0
10
0
0
17
0
7
0
0
0
0
0
6
6
0
8
0
4
4
4
4
10
7
4
7
7
0
0
10
5
0
4
2
8
4
5
0
6
4
3
0
20
7
5
27
5
0
6
12
0
0
7
0
0
12
0
7
0
0
0
0
0
3
3
0
8
0
0
2
0
3
5
5
3
6
IT
0
0
7
3
0
c.
(•)
3
2
8
0
6
0
5
0
7
0
2
11
3
Q
4
5
0
C
0
0
Q
2
0
0
0
0
0
0
0
c
3
2
3
0
I
C
0
0
5
5
3
0
0
n
3
21
0
C
0
0
c
0
0
c
0
0
8
7
14
8
10
34
£,
0
5
8
0
0
5
0
0
7
0
2
0
0
0
0
v;
3
2
0
•V
0
4
3
0
C
6
5
7
4
6
3
2
4
2
0
2
2
4-
0
4
C
2
5
0
0
10
2
5
•» Q
5
0
4
8
0
0
1C
I
n
8
0
2
0
J
C
0
o
3
3
0
4
C
3
0
0
0
0
o
0
^3
;,
0
4
13
0
0
r*t
0
0
c
0
0
0
0
0
0
U)
h-'
I
-------
15
1973
0013 0113 C213 OM3 0413 1513
071^ Oft
JC13 1013
3 1213 1313 1413 1513 1813 1913 2013 2113 2213 2313
ET>»*F
P THYLEf'-F
ACFTYt EIVE
POfp A\E
PQf PVJ.ENE
PPFCN 12
r sreiiT^NE
M-PUTAI\.'E
1-PlTFN'E
FRFCM ?2
I SOPLT Yl ENF
2-pijr p t,f
BLf AdlFNP
I srPFNTj!Nc
I-CPKTCJV P
N-PPNTANF
2-PENTErE
2-V Rl'TANE
2,2 D^R
2* 1-FFKTENE
C VCLTPFNTaNE
2-MP
3-fF
1-HEXFMF
N-t-FX£ME
2-(-EXENf
2,?,3-TI"3
rYcif>Fx ANF
BEN7EI*F
UNKNOWN
2-"H
3— "iH
l-t-FPTFfv'E
N-t-ppTare
M V EXAMS
223,233-Twp
2,3,4 TKP
TCLUENF
» FEXFNE
22=-T"HE XF.^F
N-rcTAf>'f
ETt-YLPENZENF
M P XYIFNF
n XYLfNF
\-MT\/>.r^F
P«TFY( PFM7FN
PU^YLPf ^c"'c
Nj-TEC AMF.
fc-l^ PFC/N F
rv-rcrccANF
13
7
9
19
5
0
•V
P
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
3
n
0
0
0
7
0
<5
A
2
3
21
0
0
^
0
5
0
0
0
0
n
0
0
0
0
1 1
0
7
11
0
0
R
9
0
0
10
0
0
2
0
2
0
0
0
0
0
0
0
0
6
0
2
0
0
0
4
3
2
2
2
0
0
3
0
0
0
0
0
0
0
0
0
0
4
0
10
5
3
13
0
0
b
7
0
0
P
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
')
0
0
17
0
C
lc-
0
0
11
19
0
0
P
0
0
6
0
0
0
0
0
0
0
2
2
0
4
0
0
0
0
0
0
0
4
4
3
0
4
ie
0
0
0
0
C
C
{)
0
0
I)
•3
0
1 g
5
8
19
3
C
12
2 "3
C
0
7
C
0
24
0
6
C
C
0
0
0
6
4
0
e
C
4
C
0
0
f.
6
2
7
10
C
0
e
4
0
C
C
3
1
0
0
0
5
?
0
4P
31
35
52
18
C
27
67
4
0
16
4
5
f6
0
32
0
2
5
C
7
30
24
0
20
5
1"
8
13
8
28
35
17
34
36
e
6
88
24
0
14
8
24
12
1 1
0
18
14
1?
3
C K
71
103
<; £
35
3
2<=
86
fc
0
20
4
11
136
2
67
0
8
7
C
10
7«
57
2
51
9
45
19
2?
22
t •»
61
39
49
39
If
15
119
41
4
26
It
54
30
22
7
42
23
1 5
5
32
71
97
37
1C
C
<£
106
8
0
20
G.
K
lei
4
84
3
(
7
1
12
74
iC
3
27
e
38
15
21
21
!1
59
40
45
35
16
J4
119
27
4
29
20
62
24
25
11
48
14
?8
41
43
26
22
0
18
51
5
0
10
0
t;
78
r»
»M
41
0
4
4
C
5
41
37
0
45
0
35
9
14
13
21
35
19
21
30
8
7
116
29
5
23
11
35
23
48
11
38
50
27
C
29
59
68
27
27
0
34
108
8
0
IB
7
10
180
0
73
0
5
a
?
13
79
52
3
41
13
33
14
22
16
52
58
21
56
42
11
8
75
24
4
2^
16
51
29
59
18
55
82
4?
9
7
4
5
a
c
0
c
13
0
C
7
C
C
16
C
8
0
C
0
0
C
5
5
0
6
0
3
C
2
3
6
5
4
4
9
C
0
13
8
0
10
C
10
7
4
7
24
7
12
C
11
11
25
10
8
0
12
27
0
0
8
0
0
29
0
13
0
0
0
0
2
9
6
7
11
0
6
3
4
3
8
P
4
6
7
2
3
13
7
0
4
2
9
4
5
0
7
12
12
0
11
0
12
8
3
0
7
20
0
0
6
0
0
2^-
0
8
0
0
0
0
0
8
7
0
6
0
5
4
3
4
8
9
7
5
7
2
3
8
8
0
5
2
11
6
24
5
42
7
30
0
22
6
7
15
4
0
7
14
0
0
5
0
0
24
0
10
0
0
0
0
0
10
6
0
5
0
5
0
3
2
9
9
3
6
8
0
0
13
7
0
4
3
12
7
11
4
11
20
19
0
13
16
13
8
7
0
8
14
0
0
7
0
0
17
0
7
0
0
0
0
0
7
4
0
11
0
6
3
4
5
3
3
8
8
12
3
0
13
13
0
37
7
26
12
65
13
16
79
35
0
39
68
66
53
29
0
82
153
8
0
24
7
11
173
0
106
0
0
0
0
16
76
56
0
36
13
52
16
52
13
68
116
56
100
96
8
12
68
31
0
31
22
57
29
29
0
38
24
22
0
76
118
140
95
58
6
129
283
14-
27
17
7
14
•240
0
144
7
16
11
4
19
136
90
4
81
12
64
24
35
36
73
91
54
85
5«
20
19
259
63
5
49
30
100
56
64
18
83
9*1
56
15
10 s
205
191
128
91
3
113
2P4
10
23
48
13
31
440
10
250
10
28
18
5
35
254
163
7
130
36
111
42
58
45
132
154
91
118
91
36
34
213
74
4
70
49
155
84
55
17
110
61
40
21
77
130
135
144
64
6
1)5
245
19
35
23
14
23
335
10
190
10
17
14
5
23
152
106
4
85
32
32
29
46
34
98
11 8
70
94
78
28
26
153
70
9
49
33
104
56
33
10
60
40
24
15
53
55
51
52
31
0
33
81
7
13
12
5
11
128
0
56
0
4
7
4
10
56
42
0
33
13
37
12
21
15
41
49
29
45
38
12
12
65
33
5
20
12
42
23
19
4
31
25
16
10
29
26
30
32
17
C
19
44
0
0
13
C
o
64
0
23
0
0
4
0
4
24
19
0
12
*v
14
8
9
8
20
22
15
14
15
7
6
58
20
3
9
4
1*3
10
7
4
12
11
4
4
-------
\JVc° HY^FPCARPCNS
NOV It, 1973
0TFMr
N-PCNTANc
2-PFNTFN'F
2-N Rl_T4\F
2,2 OWP
?w 1-PFNTFN'F
CYCLOPES ANE
2-WF
3~yp
1-hFXF.NE
N-HF XANF.
2-hExrNF
2,7,3-TNP
CYCLOhF. XANF
eENZFNE
UNKNOWN
2-MH
3-vt-
1-HFPTfNF
N-KEPTAN F
M I-FXANT
223,733-T^p
2,3,4 TN-C
TCLL|CNE
M HEX^NF
2"5-TM-EXF.NE
N-nr TANE
ETHYL P6!>'7FN'E
M P XYLENF
0 XYIFNT
N-NO ^ E
P R f P Y I. PFN7FN
BTTYLRFNZtN?
N-TEC ANF
N-UNDECANC
N-rrr6c AM F
60
24
25
39
25
0
66
47
Q
18
10
6
0
58
0
4
4
0
9
34
?2
0
21
6
23
R
15
a
23
26
15
22
??
7
5
29
16
3
15
R
20
P
10
0
13
10
10
i*
10
6.
69
77
74
98
21
0
50
119
6
15
6
5
5
106
0
56
0
4
5
0
7
41
29
0
27
5
29
10
21
14
39
55
18
53
-V9
9
R
43
22
0
14
9
24
12
20
5
19
25
i a
9
55
31
36
64
15
0
45
93
3
15
7
6
5
113
0
53
0
3
6
0
11
43
32
0
27
7
30
10
16
10
j-a
37
20
26
26
8
8
38
22
0
14
c
26
12
12
0
17
17
11
4
98
36
46
91
I 9
0
39
PI
0
16
a
5
2
«7
0
46
0
3
4
0
10
45
29
0
26
6
27
10
14
13
30
34
20
29
24
12
7
52
25
5
18
9
3 1
16
14
a
23
IS
1 2
5
3S
10
13
36
7
0
15
29
C
0
12
1
0
22
0
n
0
0
0
C
0
9
-------
POS
NCV 17, 1973
0013 0113 0213 0313 0412 051? 0612 0712 C 8 12 C912 1112 1213 1313 1512 1612 1712 1812 1912 2012 2112 2213 2313
E TH4MC
ETHYL ENF
ACFTYLFN?
PROPANE
PPTFYIPNE
FPFCN 12
ISpn|lTAN'P
N-PUT ANF
1-PUTFN'F
p p C p M p p
I ^P^LTYLFN^
2-PtTFNE
PMTAP TFNP
j 5CPP KTA N =
1— pf f'Tf N< c
r-FFNT *f\ c
2-PFN TFNF
2— M PI T A\J c
2,2 r*p
2v 1-PFNTENF
CYCLCPFrT AN'E
2- Hf
•a — M p
l-t-Extf>'F
N-HF XAN'C
2-HcXFN-E
2 ,2,3-TN*
OCI.OHEXAMF
PE&ZFNE
1 1 N K N P V N1
2-MH
•?-^H
i-HFPTFMP
N-f-FPTANE
M t-FXANf
223,233— TMP
2,3,4 Tf-P
TCLlcf*F
M (- F ¥ P ,M E
225-T vhfx?> E
N-OC TAN'F
ETt-Y). REN ?Ph'E
y P *YLFNF
n x Y L F N P
N-NCNANF
pp^pYtPFN?^^
P. i |T YL R t *' 7E ^tcr
N-CFCANF
N-|JNPFCA\~
M-CrrFCANE
146
1C7
96
121
47
4
62
155
10
0
?8
7
16
124
5
15
<)
2
15
1C9
70
4
64
11
56
21
34
31
66
e?
4°
66
49
?0
23
112
55
5
40
25
8?
54
46
13
60
49
??
16>
32
16
108
68
80
PC
37
0
47
1M
7
0
23
6
11
187
4
91
0
9
7
0
15
92
67
0
61
9
51
21
25
20
58
65
44
50
38
14
17
82
40
0
30
14
47
29
17
4
37
23
13
10
134
68
70
128
32
0
46
107
7
0
25
2
8
151
2
77
0
7
8
0
12
72
54
0
49
11
44
18
29
?1
60
70
38
66
63
15
16
133
47
9
31
14
52
29
25
7
43
34
24
13
179
79
84
ni
40
()
64
141
12
0
31
7
13
211
5
109
6
11
10
0
15
104
72
5
64
9
56
22
35
27
13
84
49
67
5 3
19
18
105
49
8
36
24
80
42
28
8
48
30
21
13
127
7?
69
107
29
0
45
103
3
9
22
e
10
156
C
72
0
6
7
C
c
66
41
0
40
9
45
15
26
17
51
62
35
49
40
15
16
65
22
5
21
16
54
28
20
6
34
24
13
11
221
< c
102
2CQ
\t
0
73
158
13
24
12
10
17
209
6
1 14
4
11
P
0
16
111
72
•3
67
10
to
24
2E
26
76
88
50
77
t 3
19
19
139
36
18
42
• c
115
56
4 2
13
5?
52
31
IE
139
14
et
120
24
0
73
153
14
23
17
10
14
208
6
114
3
11
8
0
14
95
66
4
54
p
50
27
3P
??.
85
1C6
49
103
106
22
19
120
37
14
37
22
60
32
29
8
43
38
33
2?
81
46
60
73
27
0
78
115
10
20
14
6
7
156
2
77
3
1
6
0
8
63
46
0
43
4
40
13
21
17
43
49
35
35
29
12
12
65
19
5
20
12
40
20
14
4
26
17
13
11
50
38
4C
52
ie
c
37
65
7
18
8
4
4
£9
C
* 1
0
c
2
0
1
29
31
C
33
2
29
10
16
14
31
•; -a
29
26
25
11
e
52
14
C
11
9
27
14
1 ?
2
24
20
15
C
55
42
43
56
22
5
33
71
6
C
18
5
12
91
0
41
0
3
3
0
e
32
23
4
24
0
18
9
11
11
23
3C
18
20
21
7
7
42
14
3
13
11
44
22
13
0
25
2C
12
C
14
8
13
10
12
0
K
14
0
0
n
0
0
18
1
4
0
0
0
0
0
3
3
0
6
0
4
0
G
0
0
3
0
5
4
2
4
20
0
0
0
0
5
5
0
0
0
0
5
4
7
0
4
8
3
0
3
11
0
0
e
o
c
13
0
a
0
0
0
0
c
1
5
C
8
0
•3
0
0
0
6
4
4
2
C
0
0
c
0
c
0
2
•a
2
2
C
2
4
15
8
13
25
6
0
39
82
5
0
14
5
0
186
4
95
3
13
11
0
14
105
68
0
54
7
46
12
30
15
58
69
28
52
41
12
9
63
37
4
29
20
48
24
18
6
26
14
7
0
15
10
13
23
6
0
15
34
0
0
14
0
0
26
0
7
0
0
0
0
0
6
4
0
13
0
5
2
0
4
7
8
6
4
5
3
0
13
5
0
7
3
5
4
6
0
5
8
5
0
11
1
5
16
0
0
25
47
0
0
10
0
0
13
0
6
0
0
0
0
0
5
4
0
6
0
3
3
0
2
7
6
0
5
6
0
1
10
4
0
7
4
5
0
2
0
26
8
14
0
21
12
11
15
0
0
21
36
0
0
12
0
0
8
0
5
0
0
0
0
0
3
2
0
5
0
0
0
0
0
0
0
0
6
6
0
3
14
0
0
7
0
7
4
5
0
7
11
8
0
21
0
7
18
0
0
9
13
0
0
10
0
0
11
0
6
0
0
0
0
0
6
4
0
3
0
2
2
0
0
7
6
4
0
3
0
5
16
0
0
8
0
5
7
0
0
19
6
11
0
24
24
22
23
20
0
12
31
0
0
13
0
0
40
0
22
0
0
0
0
0
18
14
0
14
0
12
6
6
10
12
17
12
11
3
2
19
9
2
8
7
18
7
6
0
13
7
4
0
29
18
18
37
10
0
19
50
0
0
7
0
0
50
0
25
0
0
2
0
5
17
12
0
14
0
12
6
7
7
14
16
11
12
11
4
5
22
8
0
8
4
18
11
8
0
16
11
9
0
0
0
64
0
30
0
0
1
0
0
0
c
0
112
3
47
0
0
c
24
9
7
18
31
25
14
1C
13
53
21
17
0
57
25
10
C
11
11
0
39
31
31
4i
17
0
19
54
5
0
10
0
0
62
0
31
0
0
3
0
4
24
18
0
11
0
14
3
11
11
20
23
16
19
19
7
5
29
13
0
13
9
2&
14
11
24
16
9
0
76
61
62
£5
29
0
32
87
6
0
22
5
7
134
4
72
3
10
6
G
10
69
45
40
0
35
16
17
19
44
51
35
41
28
14
14
63
2?
3
25
18
55
31
25
10
44
31
18
0
I
M
OJ
I
-------
NCV 18, 1973
00
FTHAMF 1
P^I-YL E*'F
iCFTYlENF
POTP4NE 1
pSfPY ( Ff> E
F RCC\ 1 ?
I ST PI IT AM E
N_pi,T £NE 1
I-PUTENE
FPPfN 22
I Tnt,TYtcNE
2-BIJTE^E
PUTAOTENE
I STFFNTMC
J_pph;T Ef>' e
N- PEN7 AN c
2-PENTCh E
2-N PIIT4NE
2 ,2 DNB
2V 1-PFNTPN'E
CYfirPFNTiNF
2— VP
3-wp
1-|-EXE',F
N-I-FX4NF
2-h FX FMF
2 ,2 ,3-Tf.R
CYCtPHEXAMF
PEN7FWF
UNKNfWN
2-MH
3-MH
1-hrP TFNC
K-h E °T if c
W HFXANF
22?, 2^3 — TMP
2,3,4 T vp
TGI L^NE
M HEXENF
225-Twl-FXENF
K!_n(- T/>Mf
F.THY L PpN ZEN E
*• P XYLFN^
^ XYl FMF
N-NCN£NF
PSCrYI_PfN7F*>'
PUTYl PEN, 7 ENE
N-CFC fi^F
N-t'Nntf a vp
N-rrCFCfNE
12 0117 0712 ,
16
72
77
CO
32
0
4 1
07
6
0
18
f>
5
79
4.
<5
7
0
U
72
51
0
39
c,
39
20
20
IS
48
60
40
46
34
15
15
92
35
0
30
21
69
AO
32
17
61
Al
2A
7
2A
7
76
?3
A9
62
25
0
27
72
6
0
14
0
6
04
2
52
0
6
3
C
10
46
32
0
27
0
25
13
14
17
34
39
?5
30
71
<3
10
62
25
0
18
13
47
25
17
7
44
26
16
A
8A
58
58
123
28
0
36
87
6
C
17
5
6
128
0
6A
0
9
5
0
9
61
40
4
A5
5
35
16
17
18
43
A7
32
AO
29
12
14
65
26
3
22
16
53
30
72
8
44
30
21
9
>212
111
£2
65
101
28
0
37
101
6
0
72
5
8
1 58
2
8A
5
10
8
0
1 1
76
c 3
3
60
"5
A2
21
20
21
50
57
40
47
32
14
15
87
37
4
27
20
63
34
26
10
49
36
21
7
)4 12
1 13
67
69
1 17
30
0
47
1 18
6
C
22
4
8
186
4
100
A
11
8
3
12
91
61
2
50
C
A8
22
74
21
5P
68
A5
54
36
17
18
95
AC
5
33
22
69
40
32
12
c -3
56
30
11
)5 1 ?
127
71
74
112
2fc
0
50
110
6
C
20
5
7
146
c.
79
3
c
6
0
1 1
66
45
2
65
c
41
17
2 C
22
4£
54
33
i 2
32
13
15
78
31
4
27
2 1
57
??
3 1
8
' 2
4 1
30
1 1
Of- 12
178
FP
78
1F5
2/
0
6<;
148
f,
0
20
A
11
1AO
A
79
A
F
7
3
10
63
46
3
36
0
36
16
19
17
44
; 1
34
44
35
13
13
92
36
5
29
22
59
35
37
10
44
61
AA
18
0712
225
£5
P R
455
7 -a
5
22-5
44E
A
15
2A
14
1C
36A
7
2 17
q
17
12
2
22
125
83
6
100
9
6 1
23
37
31
60
74
36
64
A8
16
14
95
36
5
36
22
67
38
4 1
8
52
55
3P
16
CM 2
137
^ 7
57
180
22
C
151
282
5
C
18
0
f
in
2
72
0
6
6
0
10
c c
39
2
32
C
- -5
1A
Ifi
IS
•a 5
4 5
25
<0
28
11
1 1
65
22
3
23
19
^7
29
'• 1
fi
41
49
33
18
CS12
98
60
( 4
110
17
0
115
256
13
C
2A
17
7
252
6
139
5
13
8
1
It
104
7C
2
58
A
60
20
26
22
55
67
37
52
43
15
15
108
27
A
30
20
57
31
26
10
36
31
21
8
1013
7J
29
31
132
12
0
229
3SO
Id
13
16
12
0
246
5
150
A
6
9
0
14
72
47
3
46
0
39
13
2L
13
3A
Al
19
35
30
9
5
51
23
3
21
14
32
19
17
5
19
2?
15
7
1113 1713 1
69
12
14
208
15
0
14-1
252
6
C
It
6
C
132
5
103
0
3
4
0
1 C
AS
3 1
3
Al
0
30
7
22
10
2A
29
S
31
34
5
A
27
19
3
22
8
19
11
17
0
1A
19
19
9
28
7
5
47
5
0
16
35
0
0
6
0
0
25
0
16
0
0
0
0
0
16
5
0
11
0
7
3
6
A
5
9
6
6
7
0
0
9
2
0
3
3
9
5
A
0
6
2
3
0
313
59
10
8
98
4
0
27
60
0
0
14
0
0
31
0
31
0
0
0
0
6
2
8
0
13
13
0
8
4
8
9
A
9
12
0
0
10
5
0
A
0
5
A
5
0
6
6
A
3
1A13
83
8
10
137
3
0
AO
81
0
0
11
0
0
40
0
36
0
0
0
0
0
18
10
0
17
0
13
3
1A
A
9
11
A
10
1A
3
0
11
7
0
9
4
5
A
4
0
7
66
60
4
1513 1613 1
104
6
10
189
0
0
AA
98
0
0
10
0
0
A6
0
50
0
0
0
0
5
19
1A
0
23
0
20
5
18
5
13
15
5
16
25
2
0
9
9
0
11
4
8
5
6
0
5
6
0
0
52
12
11
80
7
0
25
55
0
0
10
0
0
37
0
28
0
0
0
0
3
14
10
0
17
0
11
A
6
5
10
15
8
13
15
3
0
16
8
0
8
7
11
7
6
0
8
6
0
0
713
36
20
22
68
15
0
25
59
6
0
13
0
7
53
0
38
0
A
0
0
b
28
19
0
22
0
20
7
11
9
21
27
1?
25
21
5
5
32
11
0
12
9
22
1A
11
0
18
12
11
3
1813
93
114
129
89
57
0
63
153
')
0
33
0
0
104
5
94
11
16
14
73
AA
63
36
26
14
39
56
45
15
42
21
16
21
120
37
29
28
91
A2
2A
51
71
22
7
1913
211
133
173
16A
73
0
1A8
338
0
0
Al
0
18
247
7
121
19
19
12
90
52
69
A9
70
21
57
72
55
C
58
28
20
27
177
52
A2
AA
137
68
49
75
32
26
9
'J13 2113
145
16A
157
1A2
91
0
106
262
0
51
0
0
62
0
0
221
0
0
0
0
0
52
12
75
2A
12
23
0
5A
0
11
0
51
29
2A
0
39
11
8
19
5
C
0
16A
172
176
146
85
27
06
252
C
0
A5
8
31
0
0
301
0
7
0
0
G
25
63
C
86
-------
HYIFCC
r>cv
1.073
0013 0113 0213 0213 0413 0513 061^ C712 0912 1013 1113 1212 1313 1413 1913 2013 2113 2213 2313
FTHAME
FTt-YLFNF
4CF7YLENF
PBCPANP
PCfCYLf f^
FRFHN! 12
ISOPIJTANE
N-PtJTA\P
1-RUTENE
FCFCN 22
T SCBLTYIENP
2-PIJTFMF
PUTAriEf^c
I SOPFNTAN) =
1 -PFNTFNF
N-PTNTANF
2_DPN;TEr,p
2-V PUTANF
2,2 nm
2M ]-PFNT=NP
CYCLCFFNT ANF.
2-MP
3-VF
1-J-FXFNF
N-I-F XANE
2-'rEXENF
2,2,3-™^
CYCl nv-FXANE
Bf ^ZF^•F
UM^CWN
2_Mf
3-MH
l-t-f-pTfNF.
N-t-PPT ONE
M HFXANF
222, 223- TMP
2,3,4 TNO
TCIUE*.'F
M ^XFNE
225-TKHFXENE
N-nr Tf MP
PT|-YLPF^7E*'F
f P XYt_f\ =
0 XYLFN'F
H-NOANE
PRCPYL°FN7FN
PUTYL P PN 7 "E^F
N-TPC £*-P
M-UNnETAN:c
N-CnCETAN P
C4
67
64
c,fc
32
C
49
121
7
0
22
2
8
73
0
5
6
0
11
66
46
0
46
9
45
14
23
16
40
47
?0
37
??
1?
1 1
60
30
4
23
11
45
20
17
4
2R
??
n
*i
n
a
1*4
61
59
191
30
8
87
195
13
0
?8
8
13
210
2
112
0
6
6
0
12
71
48
0
47
0
40
15
26
13
40
49
29
35
36
12
12
56
20
0
27
11
45
25
31
8
30
42
2«?
12
1 15
29
34
1 14
15
0
63
124
0
0
18
0
0
101
0
54
0
4
3
0
7
36
28
0
25
10
20
9
13
q
25
31
16
21
21
5
4
28
13
0
14
7
25
11
12
2
14
19
13
4
260
24
27
748
25
0
262
617
25
0
47
30
6
540
6
298
5
16
15
4
26
115
71
4
«3
10
53
12
40
11
39
45
22
37
43
10
7
40
\ 1
0
23
7
30
16
17
5
17
24
IB
•5
119
<2
40
133
20
0
62
108
13
C
19
0
8
126
0
53
0
3
6
0
8
38
2<;
0
26
C
22
12
14
11
26
30
ie
18
23
7
5
26
11
K
21
7
21
10
1C
0
16
14
12
4
125
f 5
S3
145
*2
0
f €
161
11
C
24
e
11
1S4
C
88
0
t
8
0
12
70
46
0
36
t
50
15
24
26
^5
51
37
24
27
15
15
59
25
4
24
13
47
2'.
If
6
31
IP
13
f
55
^4
53
71
26
0
66
145
10
19
14
11
8
168
0
88
0
9
7
0
10
68
49
3
44
c
44
19
27
18
C C
68
28
50
39
12
10
46
21
5
19
9
35
16
14
5
23
14
12
i.O
?4
c c
70
47
34
0
85
?25
Q
0
?8
8
10
349
7
197
4
14
12
3
22
142
93
3
79
14
68
20
44
22
80
1C7
35
80
63
17
12
81
51
5
31
15
57
31
24
6
34
18
10
P
r -i
It
18
146
It
6
1=4
290
12
17
24
12
C
247
6
187
3
8
9
1
18
88
57
4
71
5
50
10
•9
16
40
SO
11
51
49
6
i
26
21
7
23
14
32
17
17
C
17
12
11
9
39
9
41
7
3
15
37
0
0
13
0
0
32
0
13
0
C
0
0
0
10
7
0
15
0
6
2
5
4
9
8
2
6
10
4
C
11
A
0
7
3
12
5
2
0
8
5
0
0
22
198
29
0
115
260
16
28
19
14
4
259
6
215
5
10
9
0
20
77
49
4
67
8
39
11
34
15
34
40
8
40
39
7
3
30
21
5
29
10
25
13
18
0
13
13
9
7
47
e
0
14
3C
0
C
19
0
C
49
0
22
0
0
0
0
7
27
18
0
16
C
12
7
10
7
19
19
7
13
14
4
C
14
9
C
9
0
10
6
e
0
8
12
8
0
64
20
192
15
0
187
302
10
0
24
6
6
228
6
172
2
9
9
0
19
76
50
3
62
3
45
10
35
12
37
46
10
44
49
6
4
34
23
4
21
11
25
13
18
0
14
13
1?
7
11
55
8
0
17
45
0
0
11
0
0
44
0
28
0
0
0
0
6
20
13
0
14
0
14
5
10
6
16
20
8
17
18
6
3
20
13
3
10
7
16
11
8
0
14
8
4
4
77
6
5
211
12
0
167
315
8
13
11
5
0
218
0
185
0
0
7
0
19
57
41
0
50
0
33
7
27
6
22
27
5
27
33
5
0
15
10
5
12
4
10
5
7
0
7
6
4
0
74
0
0
235
8
0
203
298
11
14
17
10
5
210
6
161
0
3
5
0
14
56
36
0
45
0
30
5
27
8
22
27
3
25
37
4
4
14
10
3
11
1
7
4
7
0
5
6
4
0
38 55 27
000
000
76 172 46
070
000
37 120 14
69 182 25
060
0110
10 11 11
050
000
u>
a~>
I
-------
NOV 20. 1973
001? 0113 0713 .)M3 0413 0":]? OM3 0<513 1012 1113 1613 1726 1B26 192ft 2026 2126 2226 2326
EThAMF
ACFTYLFr-F
PROPANF
FPECN 12
N-PUT ANF
I-PUTENE
FPFOK' ??
I SCPt fYLENF
2-PUTFNF
PUT AC I?N F
I *rep r^TANc
j_r>£MfNc
fi-PFfvT Ar,F
2-FEMfcfvC
2-M BUTANE
2,2 fNp
2f 1-PFMTFMF
CYrinpF\'T/sjv£
2-VF
3-VP
l-*-EXEf*F
N-HFXAIT
2-t-FXFIMF
2,2,3-TNP
C YCLHHF>ANP
6 E t> Z FM E
UM
•^J
I
-------
f\CV 21, 1973
0026 0126 0226 032b C4 2f
C6?6 C 1? 6 (RJ5 C925 1025 1125 1225 1325 1425 1525 1725 1825 1925 2025 2125 2225 2325
E THAME
EThYl ENF
ACETYlEf^
PRCFiNE
PRTPYL EM:
F & F C N 1 7
I SPRl T/SNE
K-PDT ANE
1-PlTENE
FRFO*' 22
ISratiTVLENE
2-PLTFNE
purar TFME
ISCFENTfN'E
1-PCN TE*lF
N-pCNT AME
2-pPfvTCfvP
2-^ BUTANE
2 ,2 CV«
2f I-PFNTEI*S
cvn DPENTANE
2-NF
3_Mp
1-t-FXENE
N-HEXANF
2-KEXENF
2,2,3-TKS
c vc L^MEXANF
PEN7FNE
I'hKKCWN
?-MH
3-MH
j_t-.cpTP\p:
N-HFPTAAE
^ t-FXAM=
223,233-TMp
2, ?, 4 TVP
TCLLFNP
M hEXFNE
225-Tf^ EXENE
N-rOT/s\'p
FTHY1_REN7ENC
M F XYLPNF
0 XYLENF
fi -MTN AN F
FRCFYLFEMFN
PUTYIPPN/ENC
N - r f r AN c
K_(JKTC(- f M:
r>;-rnrFCA"vc
0
12
0
0
6
0
0
10
12
11
0
4
14
0
20
0
0
0
0
0
0
0
0
0
0
4
27
0
0
20
0
0
0
33
0
16
22
7
9
46
0
44
1 t
4
0
IS
0
0
0
0
0
6
49
0
0
17
0
0
0
33
0
0
2P
9
12
48
0
41
18
12
0
f
0
0
0
0
0
0
1 1
0
0
47
0
11
0
0
57
0
30
B
12
54
0
0
0
0
0
25
12
10
)
0
4
20
0
0
0
A3
0
37
0
0
19
0
21
0
0
0
2e
IF
0
11
17
8
4
p
12
0
0
c
0
6
C
0
0
46
24
3
C
0
0
11
13
20
0
8
C
28
ie
0
5
e
0
i
c
17
10
7
35
0
0
0
«1
0
0
113
67
7
0
0
ft
39
18
17
67
28
0
P3
0
0
0
0
0
0
181
0
7
0
73
52
0
25
42
18
28
23
55
63
?8
45
38
15
14
69
32
7
38
13
47
25
16
4
29
1 2
10
155
5
lc.
0
5
<
0
11
tc
41
3
39
10
: 1
9
t 3
20
e
e
24
2?
10
5
141
122
156
340
82
0
294
<24
57
0
85
37
18
«76
14
275
10
16
13
3
27
ise
132
9
137
24
108
43
74
45
136
178
63
155
117
26
19
156
53
10
55
31
89
49
42
£
52
38
23
13
293
12P
112
854
187
7
821
1087
476
0
8C8
419
32
1274
170
769
114
72
43
5
126
652
50"
70
535
23
2S6
78
178
113
258
304
87
309
272
40
24
229
108
18
142
101
244
119
104
18
64
77
43
24
76
56
80
119
24
C
79
146
C
0
16
0
0
194
0
72
C
0
11
C
13
72
50
0
45
13
3S
13
23
ie
46
54
29
45
40
16
13
67
22
4
20
15
42
23
18
4
20
18
14
11
84
12
8
107
6
0
24
82
0
0
12
0
0
96
0
17
0
0
3
0
6
20
14
0
18
0
8
4
0
4
12
12
7
8
10
5
4
14
4
0
4
3
8
4
4
0
4
4
4
7
31
16
29
38
9
0
28
4fi
0
0
10
0
0
44
0
22
0
0
0
0
5
14
10
1
12
0
10
6
6
7
12
14
11
9
10
0
3
25
8
0
10
8
20
12
11
C
11
8
7
0
21
28
27
21
20
0
15
31
4
0
22
0
0
47
1
22
0
1
0
0
5
19
13
0
13
0
11
15
6
8
27
17
4
13
12
12
20
36
10
0
8
10
22
12
7
0
13
10
7
3
29
22
25
36
10
0
15
54
0
0
11
0
0
49
1
26
0
0
0
0
4
15
12
0
13
0
9
5
4
6
13
16
17
11
11
6
6
36
9
1
7
9
23
14
7
0
14
8
7
4
32
78
84
24
37
0
28
87
a
0
17
4
11
158
0
67
0
6
7
0
11
73
53
0
30
7
40
19
19
16
49
54
47
43
32
16
16
96
38
0
27
21
73
42
41
12
58
85
4?
7
39
77
76
42
36
0
38
110
10
0
18
6
11
161
4
86
5
9
8
3
11
76
51
4
45
6
39
19
21
24
51
60
49
48
32
16
18
82
36
3
30
21
71
42
23
11
54
23
14
3
50
86
89
73
41
0
58
142
12
0
20
6
a
199
0
109
5
12
11
3
16
98
63
0
51
7
49
22
29
27
60
72
52
55
40
17
18
127
43
3
32
25
83
49
32
12
68
31
?2
8
36
66
63
36
30
0
34
92
11
C
14
7
11
130
4
65
0
9
8
2
9
57
38
2
30
5
28
13
15
13
38
46
32
34
22
11
13
64
21
0
21
IS
57
30
19
7
42
24
?0
12
31
23
36
47
12
0
42
93
3
0
7
0
0
102
0
56
0
3
3
0
9
37
25
0
23
0
24
6
16
8
21
28
17
21
18
5
5
30
14
0
11
5
27
16
12
4
22
12
13
8
175
K
s
321
5
0
101
199
0
0
0
0
0
115
0
110
0
3
2
0
11
42
23
0
40
0
32
6
26
6
21
25
10
24
32
4
4
17
12
0
13
3
12
7
10
0
10
11
11
4
31
5
7
48
0
0
16
32
0
0
0
13
0
19
0
11
0
0
0
8
7
17
9
6
6
0
c
9
Z
0
0
0
0
21
0
9
fc
17
0
0
0
0
3
0
1
1 — I
LO
oo
1
-------
f!~ rvv r R
22,
1973
0025 012?
ETHAK'F
FT(-Yt ^NF
ArFTYlF1>F
pp po AM F 1
FPTPYL FN f
FPPrf' i?
I ?Pnl TiM£
N-PI1T /IN E 2
1-PlTF1^
pp COM 2?
i <:rni!TY i PNF
2 — F* t_ T F_ N F
pu^AriF-NF
I Sf<^ T/NE 1
1-PFNTEK?
N-P~NT Af^ F
2 -re (V'TFNr.
2- M BUTANE
2,2 nn/p
?* 1_PFK T = IVF
CY(XOPCNT AfvE
2-^P
3-MP
1-f-EVENP
N-l-FXiNF
2-HF XF*JF
2 »2, 3-T*3
C YCLrHE>»NF
BFM7ENF.
UM^rwN
2-MM
3-M1-
1-t-FPTFNF
N-t-FPTAMt
M 1- F X t M F
223,2^3-TMP
2,3,4 TVP
TCLUE KF
V H6XFNF
225-T^HFXEN'F
N-CCTANF
F.TI-Y(.P ZEK
8 O >lRFf> /EKF
N-CCCAMF
K'-UNTFC «K f
N'-OnC'rf A*lC.
7C
,)
0
29
0
0
F5
24
0
0
0
0
a
58
0
0
20
41
19
8
8
9
H
C
7
13
0
8
9
0
0
0
0
0
0
0
0
0
c
4?
I)
5
46
0
0
14
34
0
0
0
0
0
26
0
?0
0
0
t
8
6
17
4
0
9
0
0
0
0
e
7
0
0
8
0
10
0
17
0
0
0
0
0
0
C?2C 0:25 C42C (
H2
17
R
175
4 3
0
202
196
0
c
0
7
7P
H3
5
71
4
7
7
29
18
29
17
<)
10
11
19
19
8
16
14
5
7
44
16
12
q
25
9
7
13
0
0
0
5Q
iq
23
56
10
0
40
66
0
0
0
0
0
51
0
29
0
0
4
19
12
27
27
0
7
0
14
15
7
14
S
6
4
26
17
4
4
23
8
4
0
0
0
0
4«
1 3
16
49
c
0
28
C C
0
c
0
0
0
*1
0
2 1
0
0
c
15
11
20
13
5
4
7
13
12
5
12
8
4
4
19
15
5
5
17
6
4
0
C
0
0
:?25 <
62
1 8
IP
6?
7
C
25
c *}
0
0
c
0
c
3t
C
;o
0
c
•4
12
8
17
1C
6
C
8
11
1 1
C
S
6
0
0
?6
15
8
6
2 1
7
5
12
C
C
0
;<-?c 072^ C82? C
66
17
2 1
67
7
0
22
C J
0
0
0
0
0
44
0
19
0
0
3
16
10
24
10
10
4
4
9
11
4
11
1 1
3
4
19
19
10
7
18
7
4
0
0
C
0
46
20
IP
46
t
0
16
44
0
0
0
0
0
3e
0
2C
0
0
6
12
9
13
7
5
4
8
12
11
0
7
6
3
5
18
12
2
8
21
9
5
0
0
2
i)
30
f
12
26
C
0
17
34
0
0
0
0
c
32
0
!3
0
0
c
9
7
15
7
5
0
8
10
6
4
5
4
0
0
26
0
10
6
14
1
2
0
0
i
0
'925 1025 1
2 3
1 7
22
20
6
0
2?
39
0
0
C
0
0
32
0
16
0
0
3
H
7
14
0
0
0
10
12
11
0
8
6
4
4
30
0
0
6
1 8
7
0
0
0
0
0
22
0
21
14
8
0
7
24
0
0
0
0
0
27
0
13
0
0
0
12
7
12
6
0
0
8
0
15
0
15
0
0
0
31
0
6
0
35
0
0
8
0
0
0
\z* \
11
0
e
12
0
C
c
11
0
0
c
0
0
12
0
c.
c
0
0
c
0
4
3
0
4
0
3
4
0
C
7
8
5
4
4
C
0
c
2
0
0
0
0
0
0
c
6
5
3
0
.225 1
11
0
d
12
3
0
0
20
4
0
12
0
0
10
0
6
0
0
0
0
0
5
2
0
8
0
0
2
0
0
0
0
0
5
5
2
4
17
0
0
7
0
4
5
0
0
6
5
5
0
325 1425
R
U
0
q
0
0
0
12
0
0
8
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
0
0
5
0
4
0
0
0
0
0
0
0
R
4
7
12
0
0
8
15
0
0
5
0
0
14
0
7
0
0
0
0
0
7
6
0
5
0
4
4
0
3
6
fc
7
4
4
0
3
10
3
0
3
2
8
7
6
0
8
6
3
0
-------
t-YO'CCAPBCNS
23F 1973
1122 1422 1^22 1622 17?2 1P22 1^22 2C22 2122 2222 2322
F. T (- A N P
ETHYI FNF
ACETYL F> E
ppfp/ f^F
PR npYlFNc
FBFCN 1?
I SCPt TiN c
N-PlJTftNF
l -PUTPN.E:
FRECN ??
ISCPUTVL FNF
2-RlT£Kr
BUTAP I EMC
ISCPEMANE
I_PF fv>Tf.-f,c
N-Pf-NT^^'F
2- pCNTFN F
2-M PI.TANC
2, 2 TMP
2 (• 1 -FCMENE
C YCLHPFN Tif'E
2-MP
3-MP
1-HFXENC
N-I-FX ANF
2-HE XEN'f-
2, 2, 3-TMH
CYCl!>>=X ANF
8FN7FME
UNKNOWN
2 — V H
3-MH
1 -t~FPT Ef>' E
N-Hf PTANF
M I-FXAMF
223,233-TMP
2,3,4 T*P
TCLUENF
f (-FXFNF
2 2 5-T*HF XENE
N-CCTAN F
EIHYIPFNZCKP
M P XYlFNr.
C XYLFNF
N'- I\OANF
ppno YI ^FMTEN
RUTY i PFf1 ?Ff*E
IV-OEC AAC
N-UNC EC/M ?
l> -rrrEC £N E
15
6
IS
18
t;
0
9
?6
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
10
6
It
0
7
A
3
0
3
0
41
16
20
96
14
0
66
1?5
<•>
10
6
£
, 0
114"'
0
P5
0
0'
5
0
10
40
26
0
33
0
24
8
17
12
22
27
1?
24
23
c;
4
31
13
0
15
9
19
11
1 8
0
1?
16
q
0
32
19
22
66
13
0
60
155
- 6
0
14
6
8
156
• 0
114
0
• 2
5
0
15
66
42
11
63
0
3P
10
26
13
39
48
15
37
35
10
5
52
26
0
23
15
44
23
17
0
?3
14
10
4
Tt 1
34
1 \
30
17
4
28
75
7
•-. 1
'16
8
. "8
P6
0,
44
,0
' 0
0
0
7
35
24
6
28
2
17
12
13
13
33
33
18
27
24
8
5
no
25
11
24
?1
52
26
23
5
23
77
12
3
64
40
42
65
20
C
26
73
6
0
17
s;
11
92
0
42
0
3
3
1
8
38
26
0
19
0
18
8
11
10
26
30
2 1
21
19
11
8
40
20
4
15
11
34
IE
17
c
29
16
10
4
c -)
42
4 K
55
18
C
34
f 5
7
12
10
t
6
108
0
50
C
4
6
0
7
46
37
0
26
1
22
11
14
15
34
36
27
26
23
c
10
36
22
5
16
13
36
22
16
0
26
16
c
c
60
55
t 3
60
28
0
33
85
6
f)
24
6
7
130
1
56
0
5
5
0
P
53
38
0
25
17
30
13
19
15
39
44
22
29
27
13
10
44
26
3
18
12
42
24
17
6
4 3
19
9
c
!3C
83
77
355
48
0
320
614
61
81
92
66
16
572
22
439
2 1
47
15
6
37
207
132
8
147
13
112
24
72
25
77
^5
36
fil
82
17
15
121
55
7
49
22
66
37
40
R
48
46
24
3
1/7
139
146
124
56
4
78
203
21
28
18
£
18
2£7
K
142
S
18
12
3
19
134
n
4
J5
Afc
68
28
37
34
£ 5
99
65
72
56
2*
25
119
60
7
46
35
99
CE
<2
12
t 5
* 2
23
12
96
90
88
67
43
•a
45
113
C
25
11
5
14
182
2
89
C
9
8
2
11
66
fl
2
50
21
43
18
29
26
60
65
42
45
36
14
15
67
25
5
26
18
59
t C
22
11
4 3
24
13
5
77
59
68
54
32
0
34
97
8
21
11
11
13
152
0
62
0
7
6
P
10
64
45
0
33
21
32
16
17
16
42
51
37
32
29
13
18
58
30
4
20
14
46
25
18
6
36
2?
11
7
o
I
-------
HYnccT A
NfV 24, 1973
C')?2 012? 0??? 0??' 04 ?2
>927 10? < 11?? 1?22 1322 14?2 1622 1722 1822 1922 2022 2122 2222
CT(-/SNjg
E1>YIFNF
ACFTYIF.C'P
pnCFANF
PGCFYLFf. 5
F»cpN 1?
isrpuT«tv?
tv-PUTANF
i -POTENT
FRFCK 7?
I SORL1VI FNF
2-PI/TENf
BlfADIFNc
TSOPFIvTfiNE
l~^F^TF^ E
K-pCNTANF
2-PENTFME
2-v Bt T/ME
2,2 P>"*
2*- i-tprvTfNF
f YCLPFFNTANF
?-vp
3-NF
1-HEXFNF
N-HEXfNE
2-t-FXENF
2,2,3-T^
CYriOhFXiNE
BEN7FMF
UNKNOWN
?-*H
3-M-l
1-hFPTc^f
N-t-FFTME
M (-FX&MF
223,73?-TMp
? ,3,*, TVP
TDLUFNF
M I-EXENF
225-TVHFXcNF
N-CCTANF
FTHYLPFNZF.NE
M p XYI FNE
P XYI ENF
N-NO'ANF
PRPPYLPFNZEN
PUTYL*FI\Z5NF
N-TECANF
N-UNPFf ANF.
N-DCC^CANE
*7
46
46
f3
20
i>
32
79
4
21
10
0
5
43
0
4
4
0
7
41
?ft
0
19
13
?6
1?
15
10
35
48
24
41
44
12
10
55
24
7
19
12
36
19
16
5
?6
?0
10
R
in
a
62
19
?5
47
in
0
17
40
0
0
11
0
4
50
0
17
0
0
0
c
4
18
12
0
9
4
12
8
8
6
15
16
14
11
13
4
3
23
14
0
9
4
18
8
7
0
12
11
R
3
35
14
10
29
8
C
12
27
0
0
12
0
0
0
0
0
0
C
4
11
7
0
c
0
<5
3
5
c
10
12
10
7
10
3
3
13
7
1
5
0
10
7
5
0
7
6
4
0
34
12
19
3 1
8
C
10
21
0
0
10
0
0
0
0
0
0
0
2
8
6
0
c
0
0
3
5
4
11
12
7
10
16
3
0
11
8
0
4
0
10
c
6
0
6
5
5
7
39
10
12
4C
4
C
27
37
C
0
13
C
*•
0
0
0
0
c
0
2
10
8
0
6
0
5
4
4
2
12
10
10
10
12
0
0
23
e
0
5
0
9
0
4.
0
7
8
4
0
(4
17
?1
'i 1
9
C
u
34
C
C
12
C
0
0
0
0
c
0
c
c
0
15
12
0
8
C
10
7
n
4
22
28
10
Z9
4C
5
0
33
14
0
5
•3
16
7
8
0
13
13
11
4
57
47
59
S9
23
i)
43
90
6
P
IP.
4
0
60
0
88
0
33
0
0
40
0
0
24
12
0
0
0
13
24
22
0
11
40
C
39
22
0
27
0
C
67
81
0
102
24
26
244
17
0
283
544
?4
33
40
28
0
299
C
6
0
0
0
90
55
120
47
12
27
25
39
33
0
2<;
27
7
6
36
21
15
11
34
13
9
34
0
0
0
56
36
51
1C
17
4-
(.t
118
0
C
12
C
0
104
C
5
C
6
9
36
23
4«;
16
12
7
17
i*
it
0
IS
14
1
0
40
It
13
11
3<3
C
0
8
8
6
0
61
13
11
71
7
0
52
102
0
C
0
0
0
0
0
0
0
0
9
U
0
0
0
10
0
0
6
<;
0
c
e
16
0
0
c
5
0
0
0
0
0
0
76
0
8
<53
7
0
49
109
0
0
0
0
0
39
0
0
28
0
0
30
0
0
23
0
0
0
0
0
9
0
0
9
0
140
0
0
0
0
8
0
0
0
0
0
73
6
4
77
3<5
20
C
78
45
0
0
C
C
0
12
0
0
0
c
7
0
31
0
0
C
C
0
C
0
0
c
520
C
0
0
0
0
14
11
0
0
c
91
11
13
59
8
5
16
30
3
3
35
0
0
36
0
22
0
0
0
0
4
18
13
0
16
0
10
ft
7
9
23
15
13
16
103
0
14
20
7
5
7
4
12
7
4
0
8
8
3
0
32
17
20
40
7
0
15
35
7
0
0
0
0
42
0
14
0
0
0
0
0
11
7
1
7
0
8
2
7
5
9
12
7
7
10
5
2
9
3
0
7
4
11
8
4
0
5
5
0
0
22
17
19
19
9
0
9
26
5
0
10
0
0
42
0
12
0
0
0
0
3
14
9
0
13
0
7
5
4
4
10
12
9
6
10
*>
4
14
9
2
8
4
14
8
5
0
6
5
3
0
32
14
15
26
8
0
9
19
3
4
8
0
0
36
0
12
0
0
0
0
3
12
11
0
7
0
7
5
5
4
11
11
8
8
8
5
4
14
9
0
8
4
15
8
a
5
8
7
4
0
39
28
99
24
15
3
19
48
6
0
14
0
10
82
0
37
0
0
2
0
4
38
24
1
20
2
19
9
12
11
27
36
19
22
21
13
10
35
18
5
16
10
34
20
13
6
25
14
10
3
88
52
53
79
21
3
25
63
6
0
8
0
5
115
0
53
3
3
4
0
5
45
29
0
25
4
23
12
14
12
31
37
33
28
23
9
10
45
22
5
18
15
43
25
14
4
26
17
3
4
50
42
42
53
22
4
21
57
10
0
10
6
5
32
0
37
0
0
3
0
10
36
25
4
23
2
17
8
11
10
25
28
19
22
19
7
8
40
14
3
13
12
35
20
11
4
25
11
7
2
I
I—1
-p-
M
I
-------
NCV 25,
19-3
•)r 06 0106 0206 0306 0406 0506 0606 0706 CPT6
60 f4 P5 101 1C2
12 20 24 35 *«
19 25 32 41 51
71 c. 3 117 118 11?
6 9 S 13 18
C 0 « 0 0
22 25 27 39 '-?
51 57 73 90 1«1
0 C 4 5 6
0 0 0 0 C
B 8 11 11 11
00446
0 C 4 5 8
46 48 70 70 95
0 0 0 C 0
25 28 40 43 <7
0 C 0 0 3
0 0 3 4 «
04433
0 C 0 0 C
35578
14 18 25 33 40
11 13 20 23 31
00000
9 13 19 20 42
00000
8 13 19 25 24
5 7 12 13 1C
6 8 9 12 15
5 1 9 10 13
12 15 IS 23 25
14 17 23 30 28
12 10 15 21 17
12 14 16 23 26
1? 13 16 19 19
5 4 7 9 T
5 3 5 10 7
16 22 32 3Q 45
9 11 14 15 15
00000
7 f. 11 12 13
5 8 ft 10 1 1
14 18 24 27 :2
10 11 13 17 11
7 10 II 12 12
00005
11 14 17 22 22
7 11 20 19 16
5 P 12 13 12
0 C 3 0 2
1006 1333 1433 1533 1633 1733 1833 1^33 2033 2133 2233 2333
ETHANE
ETHYLENF
ACFTVLFNE
P PC PANE
pqrf-YlFNP
FRFON 1?
ISTPHTANt
N-PLTANF
l-PUTFNF
FPFCN 22
i SORI.TYLENE
2 -PUT EN E
RUTAPTENF
I spPFNTANE
1-FENT FME
N-PFNTANE
2-PFNTEVE
?-V P(JT/>\?:
2, 2 nvt*
?M i-FFNTENF
CYCt CFENT/^f
?-Mp
3-MP
1-HEXFNE
N-I-FXANF
2-^XENF
2,2 ,3-TVR
TVCLOl-FXANF
8E(*7ElvF
UNKNOWN
?-M(-
3-^H
1-HFPTFNE
N-I-FPT CNF
M MFXANE
223,2^3-TMp
2,3,4 T*P
Till LCMF
« f-f^pMC
225-TVMEXFNE
N-PCTANF
ETI-YLREKZENF
M P XYLFM^
C XYLFNF
N-KTNANF
PROP YLPFM7FN
PUTY1 PEN? =NE
r>-CEC ANE
M-UNTFC AfvE
N-rrCFf ANF
43
75
30
40
1?
0
19
45
5
0
31
0
8
37
2
5
3
0
3
36
2^
0
29
0
Iff
8
q
8
2P
9
Q
30
32
18
16
S2
4
5
34
7
0
6
8
8
1
0
0
r>
n
0
7fl
40
45
92
17
0
29
76
7
0
11
0
4
92
0
46
0
0
0
C
7
40
27
3
25
2
23
10
12
13
32
33
23
31
23
9
8
45
19
0
15
11
41
20
16
5
2P
17
10
3
97
47
55
110
22
0
37
08
7
0
12
4
6
121
1
62
0
5
7
0
8
4«
33
3
41
3
31
12
16
14
45
41
27
•>.?
24
10
11
52
?3
2
19
14
44
25
16
6
34
IP.
I?
5
7 3
24
34
79
11
0
24
59
3
0
10
0
0
64
0
31
0
2
3
1
5
23
16
0
14
0
14
7
9
c
20
21
14
18
15
9
10
29
11
0
10
43
129
53
11
0
18
11
11
0
71
29
32
93
11
0
28
69
5
C
8
0
0
54
C
38
0
2
3
0
7
28
19
0
22
0
21
9
1C
12
21
23
17
17
16
7
C
31
16
0
10
11
25
17
11
0
19
11
10
2
73
19
26
106
13
0
39
81
6
0
8
0
0
56
0
47
0
0
0
0
5
25
17
0
21
0
18
8
12
7
19
21
9
21
17
5
4
20
13
0
13
5
15
10
7
0
12
11
7
2
31
10
42
4
0
15
37
0
C
12
0
0
24
C
11
0
C
0
0
2
a
6
0
5
1
4
3
4
3
9
V
7
6
10
3
2
11
7
C
8
4
7
6
4
0
5
C
4
C
104
0
5
168
2
0
38
96
0
0
6
0
0
60
0
40
0
0
0
0
4
16
12
0
18
0
14
5
12
6
9
1?
5
11
13
0
0
11
7
0
a
3
5
4
Z
0
6
5
2
0
81
7
9
148
5
0
35
112
0
0
10
0
0
91
0
48
0
0
3
0
7
23
15
0
14
0
12
5
10
5
11
13
9
11
13
3
3
13
5
2
5
3
8
7
7
0
6
5
3
0
64
12
14
78
4
0
22
50
3
0
10
0
0
30
0
23
0
0
0
0
3
11
9
0
10
0
7
8
6
3
8
9
6
q
9
2
2
13
7
0
4
4
8
6
6
0
6
5
4
0
73
42
74
84
17
0
34
86
6
0
16
1
5
94
0
66
0
7
5
0
8
45
34
6
55
3
29
12
18
23
37
44
25
38
31
13
11
58
29
3
22
16
48
34
23
8
41
29
18
7
196
83
90
205
34
0
63
16 1
10
0
24
5
14
168
5
94
5
9
8
2
14
87
56
3
48
6
42
22
25
24
53
61
50
48
35
15
18
80
34
3
30
24
66
37
22
12
52
18
13
5
1^4
82
87
148
37
0
53
145
If
0
24
7
13
164
5
92
0
9
9
0
13
83
54
2
65
4
46
16
25
25
51
61
37
46
37
15
15
78
35
0
31
26
69
42
26
11
54
25
15
a
130
133
119
129
50
3
62
167
IB
0
31
8
18
202
6
125
7
14
8
4
17
119
78
6
72
8
61
29
31
36
70
82
53
67
48
18
19
118
46
4
40
32
95
56
33
14
72
42
21
9
165
133
136
134
57
8
67
187
24
0
29
10
22
247
7
132
8
16
11
3
IS
135
88
7
104
10
62
27
35
38
78
94
61
74
52
23
24
125
52
4
42
35
109
62
34
14
84
34
20
12
125
92
39
102
35
0
46
121
13
0
22
5
12
150
5
97
3
9
6
0
12
77
52
3
44
6
38
13
22
24
48
58
41
44
30
15
15
76
33
3
24
22
64
40
25
8
49
22
13
8
118
97
98
101
39
0
52
128
14
0
23
5
16
170
0
94
4
11
8
2
13
87
60
4
71
6
45
21
23
28
56
67
43
52
35
17
17
94
38
0
31
25
76
43
29
H
61
35
18
8
-O
N3
I
-------
n e fv; v c
f>CV 26, 1973
0033 0133 0233 0917 1017 1117 1217 1317 1417 1517 1617 1717 1817 1917 2017 2117 2217 2317
FTf-ANE
F T t-V L E N F
ACETYiFKF
PRCPANF
CRCPYLENC
FPFPN 1?
ISnniJTANE
M _ p u T A N F
1-RUTENF
FPFCN ??
I srBUTYlENF
2-PL'TF^E
BUTADTFKP
I SfFFN^ANE
1-PENTEME
K-FFNTAfvE
?-P=NTENF
2-^ PUTAM!
? ,2 rv°
2^ 1-PENT?NF
CYCLCFFfvT Af E
?~ff
3_vp
l-VEXENc
N-t-FXi'.F
2-t-Ex:-wFJ
2,2, 3-TVR
CVLCHFXANF
C- FN7ENF
M\ K^PWN
2_MH
•?-MH
1-HEPTFNE
N- HEPTANE
M I-EXANE
223,233-TwP
2,3,4 TPP
TriDFNC
M HEXF^F
225-TMH EXENF
N-rCT/!NE
?TH>1 PENZENE
M P XYLFNC
0 XYLFNF
N-NPNANF
PPCrYLFFN'7FN
BL1YLPFNZPNF
N-PEC /SKE
N-Uf'CFC ^NF
N-DCCECAK'E
119
1 12
107
1C9
42
0
52
1 45
14
0
25
7
17
1C7
5
H
8
2
15
ICQ
70
5
e i
6
53
22
?7
27
65
76
51
61
40
21
21
105
37
5
34
26
84
48
30
n
11
32
23
9
23
9
77
4C
42
75
17
13
27
73
6
0
12
0
6
79
0
47
0
0
5
0
6
36
?7
2
37
0
24
9
12
10
25
31
18
28
20
6
P
41
20
1
15
11
29
IP
11
0
30
16
9
7
1C5
80
60
131
23
0
61
176
14
0
18
6
10
167
0
9 1
3
5
6
0
12
62
46
0
35
0
31
12
16
17
37
39
24
30
23
14
10
1
16
0
15
18
40
22
14
7
30
19
11
2
57
114
151
5=i
43
5
50
126
16
0
42
7
16
172
10
108
22
13
7
3
15
124
E5
7
97
6
60
25
28
43
88
98
55
76
56
22
21
106
41
7
44
30
<53
58
29
12
62
2P
18
10
36
1C2
125
4g
44
0
44
124
16
0
22
c
13
109
4
71
0
c
5
0
11
94
65
4
67
0
50
17
24
28
59
71
39
59
44
18
16
105
46
i
31
27
-------
NHV 27, IS73
CC17 C117 0?17 0317 C417 0=17 0617 0717 C"17 0917 1017 1117 1317 1417 1517
ETI-AKIE
ETt-Yl ENF
ACETYLENE
PPfPANE
PROPYIFNS
FPEPM 12
I «rp,iTifvF
N-PLJT*N't"
l-Pl!TEMF
FRFCN ??
1 SHBUTYI FME
2-PUTENF
eL'TAfMFfE
! SOPFNTAN'C
l_pcf,TCf,c
N-PFNTANE
2-PENTEN c
2-H PIJT/>N: =
?T 2 r ^
?M 1-FF.MTEMF
CYCl-CFPfvTANE
?-»*P
3-KP
1-HFXENP
N-HFXA\
-------
HYPFCCiFPCN? I*GV 30, 1973
1145 1245 1?45 144* 1*45 U45 1745 1845 1<;45 2045 214= 2245 2345
ETt-ANE PI
ETt-YLENT =7
ACETYLENE 1C3
PRCPAN!: 79
PTPYLFNF 42
FRFnN 12 0
ISCPl'TANF. 7^
N-PIITANF 1P2
1-PLTFME
FRFCN 22
I SmnYLENF
2-BUTFNt
BUTAPieKP
I SrFFNTA\F.
1-PFMTFME
K-ppfT/f^F
2-PENTF.NF
2-w PLTANE
2,2 rvp
2" 1-PEMENE
CYCl rFF.f.T ANE
2-MF
3-MP
1-hFXENE
N-MC XANE
2-^Xc*F
2,?,3-TVP
CYCl OHE>ANE
8FN7FNF
t'M^fWN
2-MH
•3-*H
I-HF. PTEHF
N-I-FPTANE
P KEXANE
22^,2?3-T,MP
2,3,4 TMP
TOl IJPNF
M l-EXENF
225-T^hExFf»E
N-rCT4NF
ETHYI "FN7FNE
M F XYLFNE
C XYIFNC
N-NCNANE
PPCPYLPEN7FN
PLTYlRf NVENE
V-CECANF
N-UN:rFCANE
N-DnnECANF
32
23
2*
42
9
C
22
75
50
0
13
0
0
3
0
3
12
10
0
9
0
9
0
5
6
11
12
9
9
13
5
4
14
7
0
fl
8
29
13
7
0
8
5
7
0
101
71
87
?2<;
26
10
272
531
649
4
?24
0
4
16
0
32
161
103
0
55
4
81
19
47
13
5ft
76
37
46
63
17
11
64
35
8
33
16
70
30
24
7
24
20
18
7
in
25
30
170
15
0
66
126
92
0
38
0
0
4
0
8
22
16
0
15
0
23
7
15
4
13
15
10
12
19
5
4
10
9
3
9
3
12
6
a
0
8
10
11
5
176
13
15
?36
6
0
77
181
174
0
76
0
C
C
C
13
44
34
0
18
0
36
9
26
5
21
23
8
16
29
8
5
15
13
4
14
8
26
10
16
0
14
12
12
7
147
?3
24
ftt
<9
0
«1
194
101
0
19
1
0
1
C
10
25
18
0
13
C
21
7
U
4
12
16
8
11
2t
6
4
13
14
C
19
7
24
11
ie
10
16
12
13
7
137
2R
26
310
19
10
78
216
458
6
233
3
12
20
2
38
249
175
4
133
8
129
35
<8
13
104
138
44
71
110
30
20
45
56
11
51
16
106
37
29
8
37
16
4
4
116
42
40
152
18
0
61
136
152
0
79
0
3
7
0
14
62
46
0
3e
46
4C
5
35
35
22
42
17
21
44
10
7
16
14
0
15
14
34
13
17
7
16
18
12
4
S5
28
27
135
1*
0
46
102
66
C
2 2
0
C
•3
0
5
16
13
C
7
C
]5
8
5
12
11
12
1C
I
15
6
6
7
11
'e.
10
8
'i 2
10
1
«.
8
8
8
3
108
20
25
133
20
0
47
102
90
0
44
0
2
4
0
11
35
26
0
16
0
27
7
18
0
18
25
12
12
30
8
7
7
11
2
10
5
21
8
8
e
12
13
24
13
116
46
48
164
28
12
66
158
138
0
74
0
0
0
0
16
41
28
0
18
0
25
8
17
5
23
32
21
16
32
10
8
17
15
4
13
7
37
20
11
7
16
16
12
11
193
3£
5<;
443
28
7
282
471
14
34
17
427
6
18C
0
9
13
0
22
95
66
0
34
0
48
18
37
C
31
34
27
21
44
1 1
9
17
16
5
20
13
69
25
22
7
20
30
20
9
221
82
71
297
37
14
112
254
0
8
26
12
0
202
0
108
0
6
8
0
19
67
44
0
23
0
40
9
28
7
28
33
26
20
37
12
10
42
27
7
20
9
44
18
25
11
24
22
14
5
288
56
56
389
31
9
109
275
0
11
20
4
17
175
4
128
2
5
7
0
16
65
42
0
33
4
50
12
30
7
36
43
29
25
43
12
10
21
16
5
18
10
45
22
18
6
22
20
15
7
I
t->
-p-
-------
DEC
1, 1973
0045 01*45 C645 C945 10*5 1145 1545 164? 1745 1F45 1945 2045 2145 2245 2345
E THANE
ETHYL ENF
ACETYLENE
PROPANE
PRrFVLENE
PPFTN 1?
I ?OR|.'TANE
N-PUT ANF
1-PCTNE
FRFO' 22
TSrRtJTYI.PNF
2-PbTFNE
PUT AC I PM E
I SCPENT^NE
1-PENTF^F
K-PFN'T AN =
2-PFNTFNE
?-M BUTANE
?,? 0*°
2V l-PFNTi=M=
CYCLHPENTANE
2-VC
3-MP
1-l-EXFNE
N-f-FXiKF
2-l-FXENF
?,2,3-08
CYCLPHEXANE
RtNZENIc
UNKNOWN
?-MH
3-MV-
1 -t-EPTEN'F
M-HFPTANE
M I-EVANE
223,233-TMP
2,3, 4 TfP
TCLUFNE
M HEXENF
225_TM(-Px£ME
N-PCTANE
E1HYLPEN7ENE
M P XYI FNE
C X>LENF
N-NDNANF
FRCFYLPENZEN
Bl'7YLBFN?ENE
N-TFC AMF
\-UM~FCANE
M-DCnFCANE
319
?5
84
370
3.0
9
1 C6
278
0
8
23
6
12
1 40
n
5
10
0
19
f.?
"0
3
?7
4-
49
34
34
9
44
51
45
33
45
16
17
42
31
f,
27
13
60
24
24
7
^7
35
23
e
23
8
290
49
49
375
19
0
110
271
0
12
20
8
20
214
0
143
0
5
6
0
1R
ei
55
2
36
0
62
IS
?7
10
40
46
30
33
52
13
12
31
25
5
19
14
69
31
22
5
37
31
25
<;
326
22«
236
377
65
6
i£9
469
25
36
1?
24
19
457
11
266
4
15
15
4
2P
186
13"0
4
96
10
102
32
60
25
93
115
69
73
90
29
29
113
54
10
46
24
119
49
40
12
67
44
37
21
112
E4
108
113
37
1
67
205
0
e
23
8
11
214
4
106
0
6
9
0
15
80
54
0
33
2
43
20
25
13
48
54
34
32
t- I
15
13
39
35
4
23
14
64
30
23
8
34
2"
23
12
27
2?
27
23
11
0
31
76
0
C
12
4
0
83
0
26
0
C
0
0
4
17
15
0
6
0
11
5
7
3
12
12
13
10
11
6
6
8
7
C
C,
3
20
8
7
£
13
13
10
8
17
17
23
23
1 1
6
24
£ 2
0
4
e
0
0
150
C
36
0
3
4
0
(:
i •>
23
C
e
C
15
11
?
4
19
19
26
S
12
9
9
9
10
C
8
4
Z2
8
7
C
12
11
11
4
534
41
45
924
17
0
255
535
0
0
0
0
0
194
0
2C4
0
2
11
0
24
1 17
76
0
114
0
£6
18
75
14
46
59
26
56
89
12
10
76
40
5
49
16
47
28
46
11
34
50
30
16
638
5C
69
744
22
0
306
£35
6
4
18
10
14
316
5
286
6
4
13
0
36
198
149
1 1
167
0
13C
29
102
20
84
105
38
111
144
20
13
122
54
S
76
33
80
47
64
14
50
56
45
19
447
42
4S
650
21
0
276
523
9
c
16
0
7
• " e
7
274
5
9
13
2
•2 C
212
140
C
15C
57
130
33
89
19
?;
113
57
96
113
24
22
11*
48
8
55
31
SI
50
44
12
c -a
<1
:-i
la
470
182
164
665
75
e
258
554
4
22
37
13
28
«7t
11
350
12
21
20
i
41
287
184
6
163
9
148
46
91
27
130
161
105
125
131
38
38
25C
76
11
65
53
181
101
76
22
102
70
44
23
568
232
220
713
95
6
308
564
4
23
49
17
26
593
13
454
17
36
25
6
58
433
277
11
308
14
203
74
108
49
193
229
152
178
169
53
57
2<59
99
12
1C6
73
216
120
84
30
149
76
55
26
549
2? 8
256
6R7
127
10
352
598
4
33
66
22
35
547
14
446
17
36
22
T
55
428
275
11
317
55
222
7C
114
62
205
252
148
212
194
57
54
333
112
14
123
76
233
136
103
3C
160
95
7C
41
335
164
156
488
78
7
247
533
0
23
42
16
16
520
14
402
14
32
21
4
48
366
224
9
235
20
178
54
113
36
183
225
121
180
172
45
44
244
92
10
90
56
181
100
73
25
114
71
51
26
66
42
43
92
23
7
48
123
0
4
18
7
7
154
4
90
0
6
6
2
13
80
56
0
36
0
45
17
24
12
49
55
43
39
39
13
15
69
25
5
25
14
62
32
25
10
46
32
29
18
62
40
35
62
23
6
51
100
5
9
18
5
7
58
0
42
0
0
5
0
5
29
21
0
25
0
21
11
13
10
23
26
21
17
19
8
7
31
12
3
13
8
30
17
13
5
25
19
15
10
I
M
-0
c^
I
-------
FRCNS
OtC
2, 1973
( C4r> 0145 0245 0^45 0
C '
ETi-/">'E
FTH>l£WF
ACETYL F" c
PPfFANc
pc?po YLEN F.
F = FC* 1?
T SrPlTAK?
N-RUTANF
l-e'JTF\F
FRECN ?2
! SCPI.T YI FME
2-P!JTFf*E
B(.TAC!cr>r
ISOPENTftNT
1-FFNTFNE
N-PFNT ANF
2-PF^'TEf> F
2-N Pl,T£NE
2,2 n MR
2M 1-pEM-CNE
CYCLCPEI^TAN?
2-.MP
3-PF
1-t-EXEKE
N-HFXAMF
2-(-EXFK'F
2, 2,3-T*"*
CYCt Pf-EX/!NE'
BFrZENE
UNKNOWN
?-MH
3-PH
1-HEPTENF
N-HFOTiN g
M HFX4^F
222, 733-TMP
2,3,4 TVP
TCl.LENE
M (-FXENE
22c_TW(-FXENE
N-OCTANF
STV-YLPEMZFME
v F XYLFNE
0 XYI ENE
N-NCN «N F
ORCFYLPF N 7FN
B L T Y L P F N 7 E N c
N-TfC *NE
N-UNPEC ANE
N-nroEca^e
21
0
8
I*
n
0
fl
17
0
0
0
0
0
10
0
n
0
0
3
P
T
0
n
0
A
5
4
?
8
8
7
4
11
0
0
17
4
0
A
A
12
^,
1?
0
12
10
fl
3
a
•*
27
7
q
2S
5
0
P
20
0
0
0
0
0
22
0
P
0
0
0
c
2
7
4
0
27
1
5
4
5
2
8
6
5
5
6
2
2
21
7
0
5
5
12
7
10
0
13
13
1 0
4
?S
12
9
IS
f
0
6
16
0
0
0
0
0
20
0
fl
0
0
0
0
3
5
5
0
17
0
0
0
0
0
7
8
5
4
4
3
2
10
4
0
3
4
10
5
5
0
12
8
q
4
18
fl
S
15
^
0
f>
13
0
0
0
0
0
20
0
5
0
0
0
0
3
8
6
0
21
0
4
0
3
0
9
7
7
4
4
4
3
9
2
2
3
7
10
5
6
0
a
10
9
4
20
7
c
R
c;
C
4
15
0
0
0
0
0
8
0
6
0
0
0
0
0
0
0
0
13
0
0
C
0
0
0
4
0
2
3
0
C
10
2
0
0
1
5
4
K
_j
0
8
10
9
4
t.
t
C
4
C
C
0
4
C
0
C
C
0
c
c
0
c
0
c
c
0
0
c
0
c
0
0
c
c
0
c
0
0
c
0
0
c
4
c
0
0
c
4
c
0
c
4
c
?
0
4
.}
n
4
0
0
vl
4
c
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
4
0
0
0
4
0
2
0
4
0
0
4
0
c
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
4
0
0
0
c
4
0
c
0
4
0
2
0
-------
CFN'VFP
CEC
1973
1630 1730 1620 1930 2030 513C ?23C 233C
E THANE
PTI-YL FNF
ACF.TYLFr*?
PROPANE
PRCFYL EME
FRETK' 1?
ISOPL'TANF
N-PHT/5NE
I-PITFNF
FREPN 22
1SCPUTYI FNF
?-BtTEKF
BUTADIENE
TSCCFNT^P
1-PE*'TEN =
N- PENT ANE
2-FCNTENE
2-M PL TAME
2,2 C"F
43
QO
110
45
39
0
44
122
11
6
28
7
1?
<37
7
11
7
2
12
2* 1-PFf^TPfvEl 14
CYCLOPCMANE
2-fE
N-HEPTANP
M l-EXANf
223,233-TMP
2,3,4 TWP
TCLUFME
p HEXFNE
225-TMHF XFNP
tv-rcT*NE
E ^MYLBF^?E^E
M P XYL TNE
C XYLENF
N-N'PMANF
PPTPYL PEN ?EN
B^YLFF^ ZENE
N- 0 £r A N p
N-uNrec«NE
N-DCDECANE
76
9
1C7
7
61
23
29
31
72
84
49
72
51
20
18
188
43
7
45
33
106
«•>
'2
13
fc7
48
25
8
25
8
3ft
92
103
35
46
0
3R
120
0
11
25
6
14
162
6
103
5
13
7
3
14
112
74
8
77
8
54
?3
31
35
7?
84
47
67
47
22
19
123
38
4
42
35
se
52
31
12
76
37
22
11
41
P6
92
47
42
0
46
117
11
4
25
8
16
162
6
100
6
11
6
2
13
104
69
11
71
7
52
23
29
34
67
79
47
64
47
22
19
122
37
5
A3
27
Ft
54
32
16
66
35
22
12
45
76
80
48
36
0
39
100
9
3
22
6
12
133
6
£4
5
8
5
2
10
77
52
15
55
6
39
19
27
26
60
72
35
66
59
19
14
102
31
5
30
24
13
37
28
10
53
34
29
11
59
FP
93
62
45
0
46
12^
11
4
26
10
14
173
6
108
7
13
6
2
14
112
75
13
101
7
57
22
31
31
65
81
50
75
43
20
22
120
37
4
37
27
PO
43
30
12
60
32
18
10
63
e.t
<4
67
30
0
35
<;c
8
2
19
7
10
113
2
1 1
3
6
4
2
8
?8
40
13
!2
5
ac
14
20
H
41
48
26
39
iS
12
11
16
23
3
26
21
?7
30
24
7
* 3
2S
18
9
36
24
31
40
16
0
23
60
4
3
11
0
5
74
0
40
C
5
5
0
6
35
26
14
38
4
20
12
11
13
28
32
20
29
24
8
8
62
14-
0
13
10
3 1
17
12
4
28
22
13
7
62
78
P4
69
43
0
36
102
7
3
23
6
12
122
4
7C
2
8
4
1
9
t *
46
8
50
6
3t
18
21
23
47
57
33
45
40
14
13
104
30
4
2(
18
62
34
25
e
4t
28
IS
5
00
-------
DEC
4, 1973
C030 0130 023il 0330 0430
0630 0730 C83.) 0<53-.) 103,) 1130 1230 1330 1430 1630
ET>A*E
ETHVIENF
ACETYLENE
PRCPAKC
ppf-pviEM?
FRFCN i?
I Sf°l!TAt>.F
N-PUTANE
I-PIIT Ef*5
FPECN ??
TSOPUTYlENE
2-PUTF^F
BLTAOIEKC
TSrPFNTtNc
1-PENTFNP
N-PF>!TAMF
2-pPNTE^E
2-V BITANE
2,2 nvp
2N l-F^TP^E
CYCLPPFNTAN'F
2-MP
3-vF
1-HcXFNF
N-l-EXfNF
2-HF.XFNF
2,2,3-T>M
CYCirHE>ANE
PFN7ENF
UM
TCUJFNE
M HPXE\F
225-TMt-FX£NE
N-CCTAKE
ETHYLPFN7E^E
M P XY1. FNE
P XYLENF
N— NHNAVF
PRCPYLPENZEN
PLTYl PENZFNE
N-rFCANF
N-UKPFC AN?
N-OCDFCANE
91
7P
P<5
10?
36
0
43
110
9
?
IP
B
12
e?
3
11
6
3
IV
8?
55
13
60
(S
44
20
26
27
?6
70
39
63
51
17
14
124
3?
5
37
21
68
*7
31
P
«3
44
22
10
2?
10
?5
35
45
43
1 8
0
25
65
4
0
11
4
5
P4
0
42
0
5
4
0
a
35
25
11
25
0
20
11
12
12
?7
33
24
27
17
q
P
43
18
2
15
12
37
19
13
5
26
18
11
4
77
35
35
71
14
0
23
58
4
0
11
0
1
72
0
36
0
4
3
0
5
30
21
11
28
0
17
24
10
9
24
27
21
18
!6
6
7
36
12
1
12
10
27
16
11
11
23
13
9
4
13
47
52
79
21
0
45
<;p
6
1
18
7
6
lie
0
70
2
7
6
0
7
54
38
10
34
0
28
13
18
14
39
43
26
36
30
12
11
69
21
0
22
14
47
25
20
5
38
29
16
7
104
56
75
119
26
0
^4
122
7
3
19
7
10
139
5
op
5
10
S
2
10
15
50
12
t2
4
41
22
25
21
48
59
30
46
36
14
12
88
29
1
22
18
60
31
25
6
43
31
22
10
U2
138
1<=C
i 14
34
c
TO
147
11
2
19
7
13
If6
t
116
c
15
7
•3
14
1C<=
73
10
tl
9
54
25
?4
28
74
03
47
72
59
19
16
U4
33
4
27
26
£5
47
43
12
58
;*
33
14
147
M6
1 10
154
43
j
t&
160
10
5
26
7
12
2?9
10
139
7
15
12
2
17
138
<52
16
S3
8
71
32
43
37
87
1C7
55
90
(•S
24
;i
166
43
7
46
30
S8
53
42
13
71
49
29
13
21
17
26
29
11
C
22
38
5
0
14
6
0
66
0
55
0
2
3
0
8
2S
21
13
31
0
18
3
12
10
20
23
11
17
17
9
5
29
14
0
12
9
24
1 2
11
2
22
16
11
0
i£
4*
53
?e
19
c
'4
99
c
C
16
t
8
£4
0
59
3
c
5
C
9
43
22
15
37
2
27
10
16
15
33
39
20
30
23
S
£
C C
20
4
16
14
42
24
17
(
30
19
12
0
56
20
24
1C2
12
C
e 5
118
Q
0
14
2
6
137
4
89
15
7
5
0
8
41
29
23
48
4
26
10
16
12
24
28
14
23
20
6
5
53
14
0
16
12
3t
20
14
5
22
25
13
2
32
20
26
80
11
0
52
131
4
0
10
5
0
109
0
55
0
3
5
0
7
34
26
12
33
0
20
7
14
9
24
30
12
25
23
7
4
27
12
3
9
5
21
11
8
0
13
11
9
0
59
6€
P7
73
25
0
51
124
C
4
14
5
fc
150
c
89
13
6
7
C
9
85
57
18
60
G
41
463
23
26
48
56
30
51
39
14
10
188
25
7
29
23
57
32
34
8
38
58
23
•»
42
37
64
49
17
0
33
86
4
5
11
0
4
100
0
56
0
3
5
0
7
53
37
16
56
0
31
17
16
17
39
50
25
42
39
11
9
87
19
4
20
15
45
26
23
8
28
30
18
7
35
35
64
41
14
0
34
86
0
0
11
4
4
95
0
-52
0
2
5
0
7
43
31
17
37
0
26
13
14
13
37
37
23
34
26
10
8
58
16
3
16
15
40
25
23
7
25
23
14
3
10
6
5
11
6
0
9
21
0
0
6
0
0
22
0
17
0
0
0
0
4
8
6
22
29
0
7
0
4
4
6
7
5
6
4
0
2
13
4
0
5
5
11
6
7
0
11
13
11
0
24
24
14
22
18
2
12
34
4
2
11
2
6
30
0
19
0
2
0
0
6
15
11
20
32
0
10
5
8
8
16
14
9
10
11
5
3
28
8
0
11
9
31
12
10
0
16
14
9
2
-------
E" HYPFPC/FPCNS
CEC
1973
0901 1045
= 2 12 = 2 1252 1452 1552 1701 18C1 1ME
1-PITNF
FPrplM ??
TSfPUTYLENF
2--ex=NF
fi-CCT«NE
ETHYI.PEN7ENF.
M P XYLENE
C XYIFVE
N_i»irwAMF
FPPPY LFF.N7FN
BITYIPFN ZcNE
(Vl_pcf AMC
K-UNFEC&NF
N-OCOFC AN^
45
1 14
131
73
45
0
5P
158
12
3
26
11.
17
38
0
8
0
0
12
29
?7
20
28
0
29
6
30
5
17
2R
12
23
62
4
11
58
23
0
16
10
6?
36
25
13
67
43
25
0
25
0
38
23
24
51
13
0
IP
43
3
0
11
5
0
3*
0
24
0
2
3
0
5
24
20
0
27
0
17
5
9
10
17
21
12
16
14
6
6
35
8
0
11
8
25
12
P
0
18
13
9
0
7
6
p
15
4
5
14
53
0
0
12
0
P
26
0
10
0
0
0
0
4
6
5
35
32
0
3
5
2
2
4
•a
3
4
6
0
0
10
4
C
7
4
12
5
B
0
13
13
7
0
7
7
7
20
3
4
16
55
0
0
8
5
0
32
0
11
0
0
0
0
2
8
8
25
30
0
6
5
4
4
6
7
5
6
8
3
3
11
7
0
7
2
12
6
11
0
12
12
7
0
11
7
9
22
4
4
23
e?
0
0
7
0
0
54
0
20
0
0
0
0
5
14
13
2<3
36
0
14
4
13
2
12
16
6
14
22
8
7
15
12
0
15
7
16
R
20
6
12
25
14
0
41
13
16
43
c
0
26
76
?
0
12
5
2
59
0
17
C
0
C
0
3
17
11
t 1
'.2
0
e
6
8
2
10
12
11
10
t3
5
3
27
11
0
19
11
31
13
10
0
14
H
7
0
38
4?
40
40
27
0
19
17
5
0
14
5
6
88
0
30
0
2
T
0
6
24
16
12
25
1
15
8
9
a
17
21
22
13
18
8
10
33
12
0
12
10
29
14
12
4
20
16
10
0
36
74
80
37
40
0
3 1
P8
9
4
2C
6
1 1
94
4
54
2
6
8
0
9
c c
^ —
39
15
34
0
34
4 1
17
12
31
3P
25
30
26
11
10
73
21
4
22
21
65
35
25
8
53
30
18
0
?.?
55
<3
21
27
C
24
€c
7
2
18
5
11
124
A
5S
2
6
7
0
8
58
40
15
28
3
20
19
17
16
i 2
4t
20
31
25
31
11
<<;
22
3
20
15
54
28
19
7
27
23
13
0
36
61
75
40
26
C
26
73
5
3
19
6
8
127
0
52
0
4
e
0
a
53
37
30
16
0
28
16
15
14
37
41
29
28
25
14
9
58
20
2
22
18
46
3C
17
6
31
18
14
0
38
61
t5
53
31
0
34
90
7
4
23
5
11
140
1
64
2
5
7
1
10
73
49
41
3*
0
37
16
21
16
45
54
40
38
36
14
15
66
22
3
21
14
52
26
22
11
44
31
14
3
45
48
54
46
24
0
33
82
(-.
3
18
4
7
127
1
53
C
5
t
0
8
53
4C
31
14
0
27
16
16
12
39
46
34
34
28
12
12
5f
19
0
16
13
45
24
16
13
35
23
12
0
55
62
57
66
37
0
87
162
6
3
20
12
10
186
4
77
2
8
6
0
11
69
46
31
23
3
35
13
20
15
39
44
31
30
28
11
10
60
22
3
23
14
47
24
18
4
35
24
12
0
34
37
42
36
18
0
18
51
4
0
14
5
6
91
0
34
0
0
5
0
5
34
25
19
26
1
19
11
12
10
26
28
24
21
21
9
8
43
14
2
18
12
35
22
14
4
29
19
11
0
o
I
-------
HynRDCAPfiON?
DEC
1973
0001 0101 0201 .1301 0401 C501 Of-OV 07.11
\C 10 1100 12)0 1300 1400 1500 1600 1700 1800 1900 200C 2100 22CC 2300
PTHA*'F
FTHYI.FNF
ACFTYt FNt
p9CFAf\TF.NP
N-PF NT ANP
2-PENTEMc
?-V PUT ANP
2 1 2 r MP
?W j-pc^revf
CYCI.CCFN T SN'F
2- MO
3-VF
1-HFXENF
M-HrX AN E
2-HEXENF
2, 2, 3-TMR
fYCLOE* ANF
PfKZFNE
UNKNOWN1
2-wi-
3-MH
1-f-FPTEN'E
N-t-FFT 4NP
V HFXANE
22?t 2?3-T^P
2,3,4 T*P
TOLUFNF
M hEXENE
2Z5-T^HFX?.NE
N- OCTANE
F-THYl PF> ?p>E
M F YYI. FNP
T XYl FMF
K:-NOANE
PROP YL°F Nf.F*
PUTYLFEN7ENE
N-n-CANP
N-UNPECANE
N-OCfECANF.
41
?2
3R
40
16
0
18
45
2
0
13
5
7
24
0
0
3
0
6
24
18
21
?0
0
15
8
10
q
20
22
18
16
15
ft
7
34
11
0
11
9
29
14
11
2
2R
13
9
0
9
0
48
30
31
52
15
0
22
47
3
2
14
4
6
78
0
29
0
0
5
0
5
30
23
26
25
0
20
9
11
P
22
22
16
18
19
6
5
37
12
0
12
9
25
12
10
4
24
13
9
0
48
23
29
54
10
0
13
32
0
0
11
0
0
40
0
16
0
1
2
0
4
IP
13
14
22
0
1?
11
7
6
13
16
11
11
10
c
4
27
9
0
Q
5
16
8
8
4
17
14
10
0
45
22
26
69
10
0
15
32
0
0
7
0
0
46
0
13
0
0
3
0
4
19
16
12
28
1
18
4
9
4
14
13
12
15
19
6
5
31
10
0
8
5
18
13
10
0
17
lf>
8
0
?2
8
<;
41
6
0
22
34
C
0
11
2
0
28
0
16
0
0
0
0
4
14
13
17
29
0
14
4
f.
3
11
13
e
n
13
3
3
22
7
0
<3
4
9
6
7
0
12
11
5
0
"3 C
13
1C
«C
f
C
q
19
0
0
8
C
C
20
C
10
0
C
0
C
2
11
13
10
25
C
15
3
C,
2
e
9
5
10
11
C
0
20
2
0
5
2
10
6
5
0
6
10
4
C
29
13
i1;
47
9
0
1 1
23
0
0
7
C
C
30
C
14
0
0
0
0
4
15
14
14
25
0
16
4
7
3
11
12
7
10
12
3
2
22
10
2
a
3
14
7
a
0
12
7
5
0
7 C
36
52
C 3
18
0
14
42
3
1
1 1
5
8
53
0
28
0
0
0
C
5
26
2 1
17
2fc
0
20
0
0
0
23
24
18
19
16
9
8
46
14
2
13
10
34
17
12
1
2 =
14
5
C
2C
22
26
3f
13
C
;?
68
5
C
12
6
t
47
C
28
0
Q
0
C
C
25
2C
16
41
C
19
7
12
11
1 2
23
20
17
16
1
C
48
11
i
13
8
2<;
it
22
11
26
38
15
C
21
31
31
3C
12
0
20
60
0
C
3
0
C
60
0
24
0
0
0
19
14
164
21
14
4
8
12
15
4
10
7
0
4
51
16
11
10
35
15
11
17
16
8
0
21
25
34
24
10
3
22
52
3
0
11
6.
4
55
0
25
0
0
3
0
5
21
16
1
16
0
14
13
7
8
18
20
13
16
13
7
5
33
11
5
9
18
26
13
14
0
17
18
16
0
21
31
47
25
13
5
4<;
122
4
2
14
5
6
83
0
38
0
C
3
0
6
33
21
£
41
C
19
10
S
9
23
25
20
18
15
7
6
46
12
•3
11
11
32
17
It
6
20
25
16
C
17
29
36
21
13
2
46
125
5
0
13
6
4
100
0
36
2
3
5
1
5
40
25
9
39
0
18
40
8
9
22
25
19
17
14
7
10
53
12
2
11
15
29
18
14
5
22
29
11
0
38
41
32
41
29
4
25
72
7
2
16
5
8
67
0
30
6
2
4
0
6
21
17
6
42
3
17
16
12
10
20
19
11
21
29
7
A
56
12
2
11
13
27
16
17
6
18
24
14
0
29
31
31
48
15
4
27
74
4
2
14
0
2
66
0
34
0
0
0
0
5
27
20
13
43
0
17
10
11
12
23
27
18
27
22
11
7
47
12
2
13
11
27
19
16
5
20
24
12
0
74
252
269
134
94
6
99
273
21
8
49
18
31
317
6
191
8
20
13
5
26
196
127
68
113
8
97
38
51
36
113
137
72
85
83
32
32
191
65
7
66
47
167
98
61
25
138
64
44
8
70
244
420
213
99
8
86
264
12
0
65
19
28
289
7
136
189
22
167
110
65
293
87
55
29
67
94
75
0
58
38
23
27
178
62
35
49
172
67
34
86
29
20
5
70
168
176
123
63
7
66
187
17
7
38
13
23
253
8
151
8
18
11
3
21
176
117
9
119
10
91
32
43
37
99
119
76
97
72
29
30
192
78
8
58
43
150
82
46
19
113
49
35
11
45
83
86
57
34
0
34
102
0
0
8
0
17
139
^
64
6
10
7
54
35
127
43
20
12
27
40
34
0
34
21
12
14
90
32
26
21
T7
34
18
44
15
14
10
38
52
34
56
26
0
99
172
0
0
23
0
0
87
0
36
0
7
7
30
19
. 151
28
24
8
22
28
24
0
17
11
16
12
55
21
20
15
53
20
10
44
22
1C
0
29
35
33
58
15
0
16
45
3
1
12
6
5
62
0
26
0
0
3
0
6
22
17
7
44
0
16
6
8
7
21
20
14
15
14
6
5
36
11
2
13
11
30
16
12
5
28
22
13
0
41
28
29
55
13
0
18
48
3
0
14
4
0
56
C
30
1
0
5
0
6
27
19
3
40
3
20
9
11
8
20
24
15
22
17
8
7
36
13
4
13
9
24
14
12
6
24
17
8
0
32
23
23
60
11
0
15
34
1
0
11
4
0
42
0
20
0
0
0
0
^
14
10
4
31
0
12
8
6
5
12
16
11
13
9
£
5
24
10
2
7
7
20
12
8
2
19
14
9
0
I
t-1
Ln
-------
OENVrP HY">prCA£RCN 5
CEC
1973
COCO 01CO 0200 0300 0400 0500 JAfO 0700 CSl'O 0^00 1001 HOC 1200 1300 1400 1500 1600 1700 18)0 1900 2000 2100 2200 2300
ETHANE
FTHYI FNF
ACETYLENE
ppPPAUjF.
PRrPYLENFJ
PPF PM ] 2
TSCIPliT Afge
N-Pt.TANE1
1-PIJTFMf
FSFCN 22
T SDRLTYLtNF
2-PUTFNE
PLTADIENF
T 5pt>FMTANE
l-pp^TENE
N-PFNT4NG
?_pcMTEN' F
?_ v PUT t NE
?, 2 P^1*
2N 1-PFN'TENE
CYCLCFP^TaNF
?— MP
?-V P
1-HEXFNF
N-HEXANF
2-hEXFNF
2,2, 3-TMR
CYCLPI-EXANE
BEN7F^ E
UNKNOWN
?-^H
3-IVH
1-HEPTFNE
(yi-l-F- PT Afv F
M HEXANT
223, 233-TMP
2,3,4 TNP
TCI UFNF
V (-Fyc\F
?2«-TW|-FXENE
M-rCTAME
FTHYl PEN7ENE
M P XYLFME
C XYL FMC
N-NCN4NF
O3nDYI_«FNZEN
BUTYIPE*> ?FNE
N-OEC M'e
f^-lJN cpr AMC
K-CfC FC A\E
46
41
38
£ 3
18
0
2?
51
4
2
16
5
10
32
0
0
0
0
5
30
27
4
34
0
26
11
15
9
31
3?i
23
36
35
10
10
65
16
0
20
11
36
20
17
7
29
22
R
0
R
0
4?
46
48
86
23
0
22
57
6
0
19
6
10
73
0
40
0
-------
CEC 8,
1973
OOCO Oton 0200 0301 1400 0500 060.) .1700 CPCO ('900 1000 1300 1547 1647 1747 1847 1947 2047 2147 2247 2347
ETH/SME
FTHYIFNF
ACETYLCNE
P«CPANE
PorpYLENE
FRpnvi 12
ISCEIJT^ F
N-Rl'TANf.
1-FUTEMF
FBFfN 22
I SrRlTY! FNF
2- PUT WE
BLTAOIFr^P
ISOPEMTANE
1-PFNTFN'f
N-PF\TarjE
2-PENTEf"c
2-* PI T4NE
? , 2 r M*
2* 1-PEHTENE
CYCLTPFNTANE
2-MP
3-VF
1-HFXENF
N-(-EX«NF
2-HF.xF?>F
2t 2, 3-Twq
CYCLOHEX ANE
BEK7FNF
l^ KNOWN
2-*l-
3-fH
1-hFPTF.NF.
N-FEPT.1K F
y >^X4NF
22?, 233-T^P
2.3,4 T*p
TniitENE
" VEXFNF
225-T>HFXENE
N-nCTANF
FT>Y(_PPN?FNE
1* P XYL*-1^
C XYl FNF
^M:N'£NF
ppfio Yl PfNZFN'
PVITYteFN? E^E
N-PFC ANF
N-l.^TFCANE
N-nCCEC «NE
13
6
3
15
0
0
16
31
0
0
R
0
0
6
0
0
0
0
0
6
5
0
26
0
4
0
3
2
6
6
6
4
fl
2
3'
9
7
0
4
3
11
7
10
0
11
14
10
8
10
8
21
10
o
16
6
0
9
23
0
0
s
0
0
24
0
a
0
0
0
C
0
7
5
0
22
1
5
4
0
0
5
8
7
5
7
2
2
12
7
0
7
4
15
7
7
0
11
10
8
4
6
0
0
8
0
0
5
11
0
0
7
0
0
7
0
6
0
0
0
0
u
2
0
0
25
0
0
0
0
0
2
3
4
3
5
0
0
7
3
0
4
0
9
•5
8
0
11
11
8
4
It 3*
3 19
0 31
11 32
0 7
0 0
7 15
11 31
0 0
0 0
12 11
0 0
0 0
10
0
5
0
0
0
0
0
5
3
0
14
0
3
3
0
0
4
5
5
3
4
0
0
6
j
0
4
1
10
5
4
0
8
7
8
0
26 17 •>«; ?2
11 0 31 : 1
11 ^ 37 5R
iH 21 45 7?
7 0 3 1 15
C 0 0 0
12 «0 i4 55
27 50 110 1C"?
C C 0 6
C 0 0 C
12 11 0 1
C 4 C 5
0000
4
5
0
7
•a c
27
•)
32
C
20
7
12
8
/<
29
12
Zl
21
6
4
31
16
3
13
f>
2*
13
12
0
17
16
10
f
42
1 C.
43
*f>
16
0
51
140
5
C
17
7
2
91
0
37
0
0
3
0
5
34
22
0
18
0
17
7
11
9
25
25
17
17
17
7
8
58
2C
0
14
12
4P
23
12
0
22
13
10
8
21
26
35
26
13
0
24
66
6
0
12
0
0
67
0
34
0
5
3
0
3
29
20
3
35
0
17
7
8
11
21
24
14
13
14
5
4
27
14
2
15
7
26
11
10
0
19
10
9
4.
10
£
a
7
C
0
14
24
0
0
0
0
0
17
0
4
0
0
0
4
C
0
0
0
0
0
7
5
0
C
10
0
0
18
12
23
8
22
8
14
14
13
5
0
22
0
5
25
0
0
0
31
0
0
0
0
0
17
0
7
0
0
0
4
0
100
0
0
0
0
4
6
0
0
8
0
0
10
0
0
0
25
0
0
18
0
0
0
10
12
14
11
6
0
7
30
0
0
0
0
0
34
0
12
0
0
0
9
6
0
0
0
0
0
6
6
0
0
6
5
4
19
0
6 "
10
27
0
7
21
0
0
0
20
12
19
!8
13
0
14
40
0
0
0
0
0
50
0
16
0
0
3
16
8
134
28
0
0
0
13
12
0
11
7
4
7
63
0
3
7
29
9
5
16
0
0
0
29
20
28
24
14
0
13
43
0
0
0
0
0
50
0
20
0
0
3
18
11
125
29
30
0
0
14
12
0
8
7
5
6
48
0
6
8
34
18
0
15
0
0
0
66
67
66
44
9
0
41
106
0
0
0
0
0
138
0
68
0
34
9
51
34
342
52
34
13
29
41
30
0
25
17
11
15
81
30
26
18
74
30
24
29
0
0
0
39
21
19
33
• 12
0
14
44
0
0
0
0
0
61
0
21
0
0
0
22
13
274
52
44
15
20
26
19
0
8
9
5
6
42
16
120
11
47
14
9
19
0
0
0
70
7
q
181
8
0
17
73
0
0
0
0
0
55
0
17
0
0
0
16
8
216
23
0
0
5
11
9
0
5
14
3
7
19
12
4
0
40
0
0
0
0
0
0
45
14
16
49
8
0
6
31
C
0
4
0
0
30
0
15
0
0
0
11
5
0
0
0
0
0
8
6
0
0
15
4
7
134
0
6
13
32
12
8
0
0
0
0
29
6
6
27
0
0
0
39
0
0
0
0
0
15
0
6
0
0
0
9
0
205
0
0
0
0
0
0
0
0
34
0
0
50
0
0
0
38
0
0
0
0
0
0
Ln
U)
-------
DEC
9, 1973
0047 C147 0247 0347 0447 0856
lOSfc
125f 1356 1456 1556 1656 1756 1856 1956 2056 2156 2256 2356
ETb RN F
FT(-vt FN^
ACETYLENE
P R C P A *' r
pare VLE Ng
FOF-PM 12
TSrniiTAf*i:
N-PLTAfiF,
1-PIITENF
FPFCN 2?
I SORtTYLENE
2-PUTFNF
PLTAO I EN?
I SOP F NT A N c
| — pp \T F N £
N-PtNTANE
2-PFNTENE
2-K PlITANF
2t ? 0^8
2V \_pFMTEME
CYCinFEMANE
2-Mp
3-WF t
1-HEXFNF
N-HEXAf>'E
2-HFXFNE
2, 2,3-T^R
CYCLCt-EXANE
6FN7ENF
UNKMOWM
2-ft-
3- MM
I-J-FPTEM;:
N-t-FPTif>E
M HFXAMF
223, 233-T^P
2,3,4 TWP
TOLUENE
M (- FX ENF
225-TMHFXENE
N-OTTAMF
E T I-Y L F> E N 7 F N' E
1* F XVIFNE
C XYl ENF
N-NCKafv F
PSPPYLRFNZFV
EUTYl PFNJ7ENF
N-TFC ANE
N— UN PEC* NE
N-ccrtr ANE
24
3
10
23
0
0
1?
37
0
0
0
0
0
7
0
0
4
Mf
0
0
0
15
0
0
0
31
0
0
53
0
0
21
0
0
0
0
0
0
0
28
15
79
26
0
0
0
35
0
0
0
0
0
13
0
6
0
0
0
6
0
118
C
0
0
a
0
0
0
0
11
0
0
17
0
3
0
13
0
0
0
0
0
0
31
5
9
31
0
0
4
26
0
0
0
0
0
13
0
5
0
0
0
3
0
193
0
13
0
0
0
0
0
0
24
0
0
24
0
6
0
18
0
0
0
0
0
0
1 8
0
18
26
0
0
5
15
0
0
11
0
0
11
0
4
0
0
0
0
0
3
0
0
27
0
0
0
0
0
3
2
5
0
0
0
4
20
0
0
5
0
8
2
5
0
8
7
5
2
14
0
0
20
0
C
3
R
0
0
10
0
0
P
0
2
0
0
0
0
0
c
0
0
15
0
0
0
0
0
2
0
3
0
6
0
0
10
0
0
5
0
S
2
5
0
8
n
4
1
?2
13
11
?6
8
C
10
22
C
C
p
C
1
3
8
c
0
29
-a
7
c
4
10
F
7
4
4
8
2
C
29
c
2
c
c
23
12
P
0
14
12
e
4
21
0
2
23
7
0
6
1?
0
0
11
0
0
13
0
5
0
0
0
0
0
?
3
0
21
2
0
0
0
0
3
4
5
3
6
0
0
7
3
0
3
0
5
0
5
0
7
7
2
3
2 1
0
0
8
15
0
0
5
0
0
17
0
5
0
0
0
0
0
4
3
0
20
0
0
0
0
0
4
4
3
2
4
0
0
6
C
0
7
0
9
2
4
0
6
5
3
3
22
A
4
25
6
0
6
]«
C
C
6
C
0
65
1
24
C
0
0
0
3
12
10
C
2f
£
0
5
•a
2
7
8
6
£
7
3
3
7
4
0
5
^
10
t
P
0
p
12
7
•3
17
1
7
21
4
0
9
23
0
C
6
0
0
41
0
20
0
0
0
0
0
10
7
7
59
4
8
0
5
7
8
11
5
15
28
5
2
28
20
5
27
C
23
12
26
0
19
18
8
5
17
5
10
23
5
0
10
28
0
0
8
0
0
34
0
12
0
0
0
0
3
11
9
0
41
0
6
4
5
5
7
8
10
7
8
2
3
23
7
2
8
8
14
8
8
0
12
8
7
3
17
8
] 1
19
4
0
9
22
0
C
6
0
0
25
0
11
0
0
0
0
3
6
7
0
28
0
5
2
2
3
9
10
7
8
8
4
3
17
5
0
9
7
16
8
14
0
19
20
8
C
17
7
11
20
4
0
7
21
0
0
8
0
0
28
0
13
0
0
0
0
0
11
12
0
34
0
9
4
5
2
8
10
9
10
12
4
4
34
10
0
11
8
23
13
12
0
22
13
8
0
28
23
25
27
13
0
13
41
0
0
12
0
6
50
0
23
0
0
0
0
7
18
13
8
29
0
12
6
7
6
14
17
12
12
13
5
4
29
16
0
11
q
25
14
12
0
25
14
9
0
36
26
27
35
15
0
17
40
0
0
12
0
7
47
0
30
0
0
0
0
5
24
24
0
38
0
12
8
7
7
16
17
12
18
14
7
4
33
13
0
12
9
26
14
12
4
23
16
10
0
57
42
47
54
20
0
25
64
2
3
19
0
7
83
0
40
0
5
4
0
8
35
27
4
19
3
23
8
11
10
30
30
24
24
22
10
9
61
25
0
19
14
46
24
19
7
35
23
12
5
52
32
33
49
15
0
21
51
5
0
11
6
5
65
0
31
0
0
4
0
5
31
23
5
17
0
18
8
10
10
24
23
18
15
16
6
5
39
16
0
15
13
32
17
12
5
28
19
10
5
56
30
31
49
14
0
17
43
5
0
14
4
0
60
0
30
0
0
4
0
7
24
19
0
12
0
18
8
8
6
19
20
22
16
16
6
8
45
18
3
15
11
34
18
13
6
31
17
9
5
53
41
41
44
16
0
19
56
3
0
16
0
6
65
0
32
0
3
4
0
5
27
21
2
14
0
17
7
9
8
20
24
23
16
16
7
8
42
19
0
14
12
35
18
13
6
30
17
9
3
64
49
48
53
24
0
21
58
3
4
19
5
10
91
0
41
0
3
5
0
6
33
27
0
16
0
20
11
12
10
25
23
25
20
20
9
10
49
24
2
16
12
41
28
16
7
35
22
11
3
60
38
43
45
18
0
20
51
4
0
12
4
5
73
0
31
0
2
5
0
6
29
22
1
13
0
18
9
9
8
21
25
20
13
19
9
9
43
20
3
15
11
35
18
14
4
29
19
10
0
Ln
-P-
I
-------
CEC 10.
1973
0156 C25f 0^56 0456
0656 P75S CS56 0956 1055 1 1 1 1 1306 1406 1506 1606 1706 1806 1*506 20J6 2106 2206 2306
ETHANE
ETHYLFNF
ACFTYLENE
pRrp£f*F
ppnr>vi EN'?
FRFf' 12
r snpi. T^e
M-HIJTAMC
1-pUTFr^F
F R F f N ?2
ISrptjTYL ENE
2-PlTEVE
BLTA!MENF.
TSCFFNTaMP
l-pf MEfvE
N-PFNT4NC
2_pCNTFNE
2 _ ^ R t T 4 N E
2,? r^B
?n ^-FCM-CNF
C YCL03FN TAME
2-"P
3-VF
1-HEXFNF
r.-HF.x *NF
2-HFXE'VF
2,2,3-TMq
CYClPHEX i\E
nEN/Fr^E
UNKNOWN
2-MH
'3_MH
1-HF.PTENF
M-HEnTAf> F.
M HFXAMF
22^,233-TMp
2,1, A T>P
TCLU^'F
M 1-FXENF
?2t_TM(-F XENF
f"-nr~ *NE
F THYL°Er> 7Ef>E
M p XYl^NE
0 XYlflVF
M-NCWA\F
PRTPYL PEM7 FM
BLTYLP^N 7ENC
M-pFfANE
N-IJNTEC /"NE
N-PCriECAN'F
42
17
?0
36
9
0
15
35
0
0
12
0
5
20
1
0
0
0
7
19
Ift
4
7
0
R
4
4
3
12
13
1?
in
12
6
(S
?9
14
0
11
5
24
13
10
1
23
13
10
0
10
0
74
3?
33
63
13
0
2?
56
4
0
13
4
0
53
0
20
0
0
0
0
0
1 ft
1*
0
10
0
14
6
7
5
12
16
14
10
12
5
5
28
14
1
1?
R
26
13
13
6
23
17
10
0
36
5
7
29
0
C
10
19
0
0
6
0
0
26
0
13
0
0
0
0
3
16
21
0
30
0
22
0
12
3
11
13
11
16
15
0
0
24
9
0
9
4
14
a
10
0
14
11
R
1
?4
0
4
23
0
0
s
12
0
0
7
0
0
20
0
7
0
0
0
0
0
9
8
0
10
0
10
0
4
3
6
8
8
7
10
0
0
17
4
0
5
0
11
6
8
0
12
10
5
')
4 3
10
14
43
5
C
23
39
0
0
1 1
0
0
56
0
22
C
0
C
0
0
IP
14
0
11
0
13
3
6
0
9
12
6
9
11
3
2
21
11
0
11
4
18
7
10
0
It
IP
12
0
C2
?6
32
40
12
C
19
44
0
0
14
C
4
t4
0
29
0
0
0
C
6
2 =
2C
0
11
0
14
c
10
P
19
20
17
14
16
6
7
<4
20
4
13
12
2Q
16
13
4
26
19
10
0
f 5
127
106
tP
56
0
44
116
10
4
3 I
1?
19
174
5
92
0
9
9
0
12
15
57
0
39
5
44
17
24
19
51
57
43
40
41
16
17
-------
HYQPOCARBCNS
QFC 11 r 1"573
OCC6 0106 0706 03C6 0406 05O 0606 0706 CO06 OW6 1005 1105 1207 1307 1407 1507 1607 1710 1810 1910 2010 2110 2210 2310
FTI-AN F
c TH>1 ENF
ACETYLEK:
ccCr ANF
pppPYLFN'E
FfiFn*' 12
I 5C^LTA\P
^i— p (j T £ K.1 £ '
I-PUT CNF
F RECN 72
I Sr«UTYLcNF
2-PUTFNE
BUTADIENE
I SOPF!VT£ N E
1-PEN'TFNE
M-PFMTAN'E
2-pPfvfc^c
2-f "(.TAN =
2, 2 n^B
2v i _ F F^-j- EWE
C YCl DPEIViTJVF.
2-vp
3-vp
1-hEXENE
N-VEX ANF
2-HEXFNF
2, 2,^-Twp
CYCl OFXANE
BEN7ENE
UNKNOWN
2-VH
3-MH
l-KIPTCNC
N_HcpT,Sfi E
*• HEXANF
223 ,233-Twp
2,3,4 TVP
TCIUFNE
M HFXENE
P2 5-TMi-E XE^E
N-TCT ANE
F TH Yl f?p N 7ENF
M P XYL^ME
C XYLCNF
N-NI^NANF
PPCPYL PFN ZFN
BlTYLRfN 7ENE
N-DECAN'F
N-UNCF.C ANF
N-PCPECAN'E
34
77
21
26
11
0
13
34
3
0
M
0
0
2?
0
C
7
0
4
20
14
0
8
0
12
6
7
6
16
18
16
16
14
10
9
31
14
0
11
8
27
13
17
0
26
19
11
0
11
0
64
23
25
47
12
0
72
53
3
0
12
0
0
67
0
22
0
0
3
0
4
25
17
0
9
0
14
9
11
6
15
12
13
16
16
6
7
36
16
0
10
9
27
14
14
6
23
7?
1 2
4
66
70
29
55
7
0
73
53
0
0
11
0
0
131
0
37
0
0
5
0
8
35
25
2
13
0
18
9
17
7
21
22
20
18
16
9
6
44
18
0
14
8
33
IP
17
5
29
29
14
3
55
11
14
46
4
0
17
43
0
0
7
0
0
55
0
20
0
0
0
0
3
18
12
0
10
0
12
9
6
3
12
14
12
11
10
8
6
24
13
0
9
7
21
10
11
0
13
19
12
3
128
78
75
139
27
0
88
147
9
0
74
0
0
15S
0
0
0
7?
7
50
32
140
51
42
17
23
40
35
0
38
13
13
84
31
21
21
80
25
34
25
22
12
c i
145
160
10
53
C
59
144
C
0
0
C
29
C
0
C
13
29
14
c, 1
54
1S6
54
67
78
47
70
54
C
51
18
22
123
53
29
37
12C
c c;
27
59
72
17
0
1 1 f-
2??
756
1C9
94
23
121
360
0
0
21
35
448
0
209
31
35
22
1*54
92
251
34
75
117
C
85
32
0
1S7
80
44
53
1 t 5
41
90
32
C
9
<;o
143
163
7<5
56
C
58
139
7
4
30
8
18
304
5
169
7
18
13
•a
20
154
105
0
78
3
Id
30
43
27
89
106
60
66
63
23
22
142
66
10
47
37
124
67
43
13
90
48
3C
13
1 12
232
256
129
£7
c
118
349
17
9
47
5(0
14
316
23
37
23
f
40
303
1S5
20
1ft
16
139
SO
76
60
166
196
1 12
145
117
"2
36
2£2
98
9
€<
ce
1PP
224
123
75
7
1C1
273
12
6
38
16
25
467
11
268
12
26
18
4
33
258
169
15
149
18
125
124
62
48
133
164
92
312
104
37
35
257
98
11
77
62
213
114
71
19
131
80
47
22
45
64
73
39
14
0
39
91
0
0
0
0
0
0
0
0
0
0
10
57
37
125
48
51
14
24
38
29
0
26
19
12
13
111
36
28
25
91
42
39
43
30
21
6
138
84
86
481
48
4
761
19
0
0
56
35
13
596
101
38
40
207
122
88
42
41
65
7C
62
2
57
37
19
20
148
48
30
40
121
53
34
53
33
23
1C
57
94
92
62
38
2
58
165
5
2
19
7
10
154
4
100
10
7
7
0
12
102
72
6
63
8
52
20
30
27
58
67
37
54
42
18
13
147
47
9
42
30
90
52
61
16
71
154
87
11
27
36
39
26
6
0
20
61
0
0
0
0
0
0
0
0
0
0
6
35
23
252
53
58
13
31
34
27
0
14
12
9
9
65
24
20
17
60
24
14
27
15
11
9
102
164
133
149
38
1
156
383
0
0
24
7
8
0
0
5
0
0
14
85
52
230
64
38
16
40
60
50
0
44
34
17
20
144
52
40
29
125
53
33
44
26
19
8
102
214
326
96
72
20
106
312
8
0
0
21
0
0
8
0
5
20
141
91
328
87
74
33
80
101
86
0
74
31
26
204
102
59
57
180
77
54
74
38
0
0
135
274
294
180
74
5
155
515
0
0
43
16
18
530
0
0
26
31
179
124
0
36
96
125
0
98
66
35
35
315
95
55
70
227
96
57
113
57
32
16
107
219
222
68
88
7
87
273
15
0
45
14
21
488
0
193
31
24
21
161
99
238
76
33
90
120
95
4
84
52
32
42
246
83
69
65
209
104
56
112
45
0
15
155
380
411
135
167
17
173
523
R
0
33
49
0
0
13
0
201
124
336
92
34
0
154
0
113
44
57
103
273
58
128
51
0
0
158
345
373
134
148
22
161
477
32
0
18
85
0
0
15
0
31
224
133
269
47
122
0
0
27
47
25
344
298
127
50
53
36
31
9
183
319
319
139
122
0
144
436
0
0
60
20
35
0
0
13
0
25
189
116
304
102
0
112
20
0
0
29
42
0
261
103
67
107
9
45
31
13
0
64
96
106
49
52
0
65
172
0
0
56
0
50
0
0
5
0
11
77
45
148
45
0
34
0
43
e
0
27
18
0
0
43
35
30
128
0
0
23
8
0
81
97
96
56
46
0
61
153
0
0
0
0
0
0
0
0
0
21
12
57
34
143
0
19
34
49
0
32
14
0
149
45
31
25
98
48
20
0
0
10
0
38
20
29
37
17
0
12
4S
0
0
0
0
0
c
0
0
0
0
6 ,L
31 loi
20 f
142
4C
35
10
0
20
20
0
18
12
7
10
103
28
26
24
56
24
10
27
16
12
6
-------
DFf 1?,
00 10 OHO 0210 0710 0'«M C^IC .161-! 071T OP 10 111.) 1210 1310 IM>) 1610 1710 1810 1910 2010 2110 2210 2310
ETHANF
ETHYL c M F
ACFTYLEM5
F«CFA\c
PROP Yl ct"E
pp gnw 1 2
I srni TANS
N-P'ITAMF
l-PUTFNF
F 0 F f f,. j j>
ISOPL'f YL ENF
2-RUTFNF
BUTAfMFNE
ISPPFNT ANE
i-PFNT Ff>F
N-prMTAN?
2- PpNTFr F
2-N RLTAN'E
2,2 CMP
21^ l-F^MENF
C YCl HPFNTAME
2-wp
3-N1?
1-hFXFMF
N-fFX fiNF
2-HF >«^ P
2, 2, 3-™P
CYCi.OFXA.NE
BENZFMF
UNKNOWN
2-VH
3-MH
l_(-FPTCfvp
N-HEPTANF,
M HEXANF
2?3,233-TwF
2,3,4 TWO
TCLUFNF
M N F X F N: F
225-TMMF X5NE
N-CCT £NF
E1HYLBFN7FNE
M P XYl. f M F
C XYL^F
N-NHN ANF
PRQPYL FFNZPN
BUT YLFF^ 7.FNP
M-pPCfiKjF
N-l 1 N C f C ft N F
N-PfTFCAN?
42
21
2?
27
1
0
14
38
0
0
0
0
0
0
0
0
12
229
33
0
0
16
15
5
10
p.
4
9
1 16
0
0
37
29
12
22
10
0
10
•1
37
0
a
20
0
0
16
20
0
0
0
0
0
0
0
0
0
0
9
0
17
90
34
0
R
0
21
10
6
B
7
4
5
152
0
7
q
2"*
1 1
9
30
0
R
0
50
20
16
37
5
0
2.0
30
0
0
0
0
0
0
0
0
0
0
0
16
13
260
34
39
18
0
13
13
0
18
10
6
5
76
0
9
9
31
14
10
14
12
S
0
37
21
24
28
9
0
24
45
0
0
0
0
0
0
0
0
0
0
0
0
12
73
27
32
13
0
26
25
0
27
35
10
6
59
31
a
1 2
32
12
9
26
20
10
4
f: 2
10
17
44
5
0
30
52
0
0
C
0
0
0
0
0
0
0
5
21
14
229
2P
•(.-{
14
0
18
19
C
23
16
14
12
4P
39
2 1
8
32
<5
6
1ft
11
9
6
lc
8
C
12
r
c
25
2S
0
0
c
c
c
26
0
5
C
0
C
c
0
146
0
15
0
C
fc
C
c
0
c
0
0
27
0
17
0
0
C
0
18
C
IP
0
1?
i)
r
8
0
0
0
12
C
0
c
0
0
0
0
n
0
0
0
0
0
£0
0
4
0
0
6
0
0
0
10
0
0
s
0
9
0
31
0
0
3
0
6
0
P
c
6
10
0
C
0
12
0
0
C
0
,1
0
0
0
0
0
0
0
0
72.
0
0
0
0
4
5
0
0
c
0
1 5
0
7
0
18
0
0
1 1
0
c
0
7
7
c
7
0
C
0
16
C
C
C
C
0
0
0
11
c
0
0
7
0
0
0
- c
16
0
10
0
0
c
12
C
0
18
9
C
0
1C
c
0
15
0
14
0
11
7
8
6
0
0
18
31
0
0
C
C
0
0
0
0
c
0
0
0
0
0
0
c
0
0
0
0
0
2
0
c
0
0
0
0
0
0
c
0
0
0
c
0
22
7
10
8
0
0
10
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
e
5
7
8
0
c
1
12
0
0
6
c
0
a
0
5
0
0
0
0
0
3
3
0
4
2
0
0
0
0
3
3
2
1
5
0
0
6
0
0
0
0
7
0
0
0
2
5
3
0
14
0
5
10
6
0
1
11
0
0
0
0
0
11
0
8
0
0
0
4
0
3
0
0
0
0
0
0
0
0
20
0
0
17
0
0
0
23
0
0
0
0
0
0
7
0
33
Q
0
0
3
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
9
9
6
0
0
10
47
0
0
0
0
0
0
0
23
0
0
0
20
13
47
13
35
0
8
10
9
0
0
0
0
0
29
0
7
0
20
0
0
0
11
0
0
5
0
6
3
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
5
5
9
4
0
7
15
0
0
5
0
0
8
0
4
0
0
0
0
0
3
3
0
3
3
0
0
0
0
3
5
2
3
4
0
0
6
0
0
0
0
7
2
4
0
5
6
3
0
25
24
26
27
15
0
14
42
2
0
11
0
0
66
0
20
0
0
2
0
4
18
12
0
7
0
10
4
5
5
13
15
13
12
12
4
5
28
13
0
8
5
25
13
10
0
19
12
8
0
8
7
10
a
5
0
0
9
0
0
0
0
Q
14
0
0
0
0
0
7
5
0
5
0
0
0
19
0
0
0
0
0
0
28
0
5
0
25
a
0
0
0
0
0
112
47
74
441
50
0
133
370
19
2
43
24
6
334
12
275
7
18
11
4
25
138
90
3
108
11
74
19
59
19
62
76
30
BO
36
17
10
106
58
5
59
22
75
37
50
12
43
50
40
5
7
0
0
7
C
0
5
8
0
0
7
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
2
2
2
2
0
0
3
14
0
0
0
0
10
4
2
0
0
0
2
0
I
I—1
01
I
-------
'3EC 13, 1S73
C01P 0110 02JC 03lil C41-) C510 061.) 0710 0*1 >
1010 1110 1210 1310 1410
FTMNE
F IHVLFNF
ACFTYLFN?
ppf TAME
PRCPVLFNE
FRFnN 12
ISCBI TANE
N-PI.ITANE
l-PUTENF
FPFCN ??
ISOfMJTYL?KIF
2-PLITFN«-
PLTADIFN^
ISrPPNTAMc
l_Fc^TF^ c
V-PTN TANE
2-pFNjT c^ £
2-* BI TANE
2,2 HVB
2V \_pcMrchF
C YCLnPFf>Ti,NC
2-MP
3_vc
1-HFXFNF
N-VF x
-------
-159-
THE BROWN CLOUD OF DENVER
A. P. Waggoner
University of Washington
Seattle, Washington 98195
ABSTRACT
The urban haze NE of Denver appeared very dark against the horizon
on the morning of 21 November 1973. The visual appearance is shown to
be predominately due to aerosol optical properties and not to NOo. The
analysis is based on simplified radiative transfer theory and atmospher-
ic data taken by participants in the Denver Air Pollution Field Study.
INTRODUCTION
Air pollution, or more specifically, suspended particulate matter
or aerosol, can dramatically alter the optical properties of air.
Visibility is often reduced from that limited by Rayleigh scattering,
of order 300 kilometers, to a few kilometers or less. Wavelength de-
pendent extinction by suspended particles and/or NOo can alter the
color of distant bright objects. ~-> N02 and/or the suspended particles
can also produce haze layers of various colors that appear light or
dark against the horizon. The specific case considered in this paper
is the dark cloud NE of Denver typical of pollution episodes.
Theory
The brightness of a layer at any wavelength can be calculated in a
manner similar to that of Middleton. Consider an observer viewing the
horizon from position rQ. In a narrow band of wavelengths centered on
X, a certain level of radiance', I^(r0,X) of light reaches the observer
from the horizon. The perceived brightness and color of the horizon is
determined by the radiance as a function of wavelength. The horizon
2 .,,-1
* 2
The units of radiance, I(r,X) are ergs (sec. x fl x cm x AX)
-------
-160-
radiance as a function of observer position near an initial position,
r0, is given by
dl, (r ,X)
Ih(ro+dr,X) - Ih(VX) + -\^~ dr. (1)
The change in radiance as the observer moves dr away from the horizon
is due to two phenomena: (1) Ij^r^X) will be decreased by extinction
in traversing the thickness dr; (2) I^(r,X) will be increased by light
entering the thickness dr from any direction and being scattered toward
the observer. This change of radiance with position can be written as
dL(r,X)
Vro'X)
a is the volume extinction coefficient that operates to decrease radi-
ance and Ia (the so-called air-light term) is the radiance of a layer
of air dr in thickness. The source of this radiance is scattering by
particles in the element dr under illumination by direct, scattered and
reflected sunlight. More specifically
4?r
I (r,X) = / I (9",$') 3(0)dft, evaluated at r,X. (3)
cL OS
Where Ig(0^,$^) is the illumination radiance as a function of direction
(0^,$O that is incident on the element dr and 3(9) is the volume
scattering phase function for the angle between the incident direction
and the direction toward the observer. The integration over solid
angle relates the incident illumination and scattering phase function
to air-light in the direction toward the observer.
Equation 3 is not generally useful in that both the incident illum-
ination and scattering phase function are usually unknown. However,
some general statements can be made. Clearly the magnitude of Ia
depends on the magnitude and angular dependence of both illumination
and the scattering phase function.
Two contrasting examples of illumination would be (1) a clear sky
with the direct solar beam at angle (0',$'') dominating scattered radia-
tion and (2) an overcast day with the sky acting as a diffuse source of
light. For aerosol scattering, 3 is strongly peaked in the forward
direction producing a relatively large value of Ia on a clear day when
the scattering angle 0 for the direct solar beam is less than 45° and
a relatively small value of Ia when 0 is greater than 90°. See Figure
1 for definition of 0.
-------
scattered
obs.
dr
Figure 1. Schematic of the observer, volume element dr, incident and scattered
illumination directions and scattering angle, 9.
-------
-162-
Equation 2 can be used to calculate the radiance of a layer if
the layer is optically thick in the horizontal direction and horizon-
tally uniform. The radiance of the layer is not a function of observer
position because the decrease of radiance by extinction is exactly bal-
anced by the increase from the air-light.
dl (X)
-—- = 0 = -a(X) Ih(X) + Ia(X) (4)
a(X)Ih(X) = Ia(X) (5)
I (X)
VA) -
Equation 6 shows that the radiance of this layer at each wavelength
is given by the ratio of the air-light term to the extinction coeffi-
cient and the layer's visual appearance in terms of color, brightness,
etc. would be determined by the wavelength dependence of radiance.
The magnitude of the air-light term is determined by the angle 0
and the magnitude and angle dependence of the volume scattering phase
function. The extinction coefficient is the sum of extinction due to
aerosol optical scattering, and extinction due to absorption by the
aerosol and by NOj. If a smog layer is visibly dark, usually the
layer is viewed in backscatter, i.e., the angle 0 is 90° or larger,
and the extinction coefficient is relatively large.
MEASUREMENT OF EXTINCTION
The relative magnitudes of aerosol and NO? extinction must be known
to estimate the effect of each on the visual appearance of a layer under
a given condition of illumination. On 21 November 1973, four different
groups were making measurements of aerosol extinction and N02 or NOX
concentration as listed below:
1. University of Washington (U. of W.) - aerosol scattering and
absortion extinction coefficients.
2. Environmental Protection Agency (EPA) - N0? and aerosol scattering
extinction coefficient (500 nm).
3. General Motors (GM) - N02 and aerosol scattering extinction
coefficient (500 nm).
-------
-163-
4. Meteorology Research, Inc. - NO and aerosol scattering extinc-
tion coefficient (500 run) .
U. of W. and EPA were located 10 km NNW of downtown Denver at the
Trout Farm Site. GM was located 5 km NNW of downtown Denver. The MRI
data is from an aircraft sounding covering 60 to 600 meters local ele-
vation above Standley Lake about 12 km NW of downtown Denver. Data
taken by the four groups are not ideal in that the aircraft measure-
ments were of NOX rather than NC>2 and the aerosol absorption extinction
coefficient was measured as an average over two hour periods and only
at the U. of W. site. The relative extinction of N02 and aerosol par-
ticles can be determined if the following assumptions are made:
1. Aircraft data for NOX is assumed to be 70% N02- This is mean
of the average ratios for GM (80%) and EPA (60%) during the period
0900-1200 on 21 November.
2. The ratio of aerosol extinction to aerosol scatter coefficients
is the same as measured by U. of W. (1.5) during 0830-1330 on 21
November.
,-1
3. Aerosol extinction is assumed to have wavelength dependence of
Using these assumptions and data supplied by Jack Durham (EPA),
Jerry Anderson (MRI) and Martin Ferman (GM), Table 1 lists the fraction
of extinction due to N02 extinction^ as a function of site and wave-
length for the morning of 21 November, 1973.
TABLE 1. FRACTION OF EXTINCTION DUE TO N00
^\^site
A \.
400 nm
450 nm
500 nm
550 nm
EPA
.10
.09
.06
.03
GM
.40
.35
.25
.13
MRI Standley Sounding
.36
.32
.22
.11
PHOTOGRAPHIC OBSERVATIONS
The visual effect of scattering angle is shown in the pair of pho-
tographs, Figures 2 and 3. Both show the central business district of
Denver immersed in haze as photographed from an aircraft on the morning
of 21 November 1973. Figure 2, taken about 11:00 a.m., shows Denver as
viewed from North looking South and the scattering angle is about 30°.
-------
-164-
Figure 2. Denver photographed from the North looking South at about
11:00 a.m. on 21 November 1973. Note the central business
district in the upper left quadrant. The urban haze is
bright when viewed at a scattering angle of about 30°.
Photography by: Charles E. Grover
Denver, Colorado
-------
-165-
Th e haze is bright against the horizon.
Figure 3, taken at 11:20 a.m., shows a view of Denver from the
South looking North with a scattering angle of about 150°. Under these
conditions, the haze surrounding the central business district appears
as a dark layer against the horizon. During the interval between photo-
graphs the wind velocity, as measured at the GM and EPA sites was 3 to
5 Km per hour indicating that the difference between the photographs is
not due to transport.
These photographs are consistent with the results summarized in
Table 1, i.e., aerosol dominates extinction. For a small scattering
angle, as in Figure 2, the haze layer is bright against the horizon
where as the same layer, shown in Figure 3 with a large scattering angle,
appear dark.
CONCLUSIONS
Photographs supplied by Loren Crow show that the urban cloud of
Denver on 21 November 1973 was dark only when observed at large scatter-
ing angles and appeared bright under small scattering angles. The dark
haze layer typically observed under pollution episode conditions NE of
Denver is dark because this is the direction of observation that mini-
mizes the air light term in Equation 6. The extinction of aerosol par-
ticles seems to dominate that of N0£ by a factor of two to one or great-
er at wavelengths longer than 450nm. The measured concentration of N0£
would make the Denver haze layer slightly less blue and more yellow
under all conditions of illumination.
The photographs and measurements of aerosol optical parameters and
N0£ concentration shows that the dark cloud of Denver is an aerosol op-
tical effect with NOo absorption playing a minor role.
ACKNOWLEDGEMENTS
The University of Washington's portion of this research has been
supported by Environmental Protection Agency research grant number
R800665.
I wish to thank the following people for supplying data used in
this analysis:
J. Anderson, Meteorology Research, Inc.
J. Durham, Environmental Protection Agency
M. Ferman, General Motors Research Laboratories
L. Crow, Consulting Meteorologist, Denver.
-------
-166-
Figure 3. Denver photographed from the South looking North at about
11:20 a.m. on 21 November 1973. The central business dis-
trict is located slightly to the right of center, one-fourth
part down from the top. The light urban haze shown in
Figure 2 is dark under these observation conditions.
Photography by: Charles E. Grover
Denver, Colorado
-------
-167-
REFERENCES
1. Middleton, W. E., Vision Through The Atmosphere, University of
Toronto Press, Toronto, Canada (1968).
2. Hodkinson, J. R. , Int. J. Air and Water Pollution, 10, 137 (1966)
3. Ensor, D. S. et al. , J. Coll. Interface Sci. , ,39, 242 (1972).
4. Howarth, H., Atm. Env. , 5_, 333 (1971).
5. Waggoner, A. P. et al., Appl. Opt., 957 (1971).
6. N02 extinction as a function of wavelength is from reference 2.
-------
-169-
HIGH-VOLUME AMBIENT AIR SAMPLING IN DENVER,
COLORADO, DURING NOVEMBER 1973
L. T. Reynolds
Colorado Department of Health,
Air Pollution Laboratory
Denver, Colorado 80220
ABSTRACT
This paper summarizes data from sixteen high-volume air samplers
operated in the metropolitan Denver area in November 1973. Total sus-
pended particulates and the benzene-soluble organic content of the
collected particulates are discussed in relationship to experiments
and observations by others during the "Brown Cloud Study — 1973."
INTRODUCTION
The Colorado Department of Health participated in the 1973 "Brown
Cloud Study" in numerous roles. The Air Pollution Control Division's
meteorologist, William Retallack, made forecasts and recommendations for
intensive sampling days. The Air Quality Monitoring Unit operated six
continuous air monitoring stations in the metro Denver area, at which
gaseous pollutants were measured.1
The Air Pollution Laboratory staff gave field assistance to parti-
cipating research groups: pilot-balloon tracking crews, preparation of
sampling media and special samples, and other logistic support. As an
extension of routine sampling programs, the Air Pollution Laboratory also
coordinated the operation of high-volume air samplers to obtain data
coinciding with the intensive sampling days. The resulting data on
total suspended particulates is the subject of this report.
One of the major thrusts of air pollution control efforts has been
the reduction of airborne particulate matter. A large amount of histor-
ical data is available concerning suspended particulate levels throughout
-------
-170-
Denver and Colorado. Standards and goals for reduction of suspended par-
ticulates have been set at both national and state levels, based on mea-
surements of total suspended particulates (TSP) by the high-volume
Reference Method.2
Even though such measurements provide only gross data for preliminary
assessments of air quality, it is important that the data be available for
correlation with research measurements of other, more specific parameters.
Further, the high-volume sampling technique affords materials from which
analyses can proceed for benzene-soluble organics (BSO), metals, and
limited microscopic examination.
EXPERIMENTAL
The high-volume air samplers were located at sixteen established
stations, shown in Figure 1 with detailed locations given in Appendix 1.
Each station was equipped with an aluminum shelter, General Metal Works
Model 2000-H* sampling unit with standard 8x10 inch filter holder, and
a 7-day clock timer control. Air flow rates were measured by ball-float
rotameters. Each individual sampling unit with rotameter was calibrated
in October 1973 against a calibrated orifice gauge. Calculation of air
volumes by linear integration between initial and final flowrates has
been found to give results consonant with the precision of other sampling
variables, because of the generally low relative humidity, quantity, and
nature of ambient pollutants occurring in the Denver area.
The High-Volume Air Sampling Network in Colorado routinely collects
a 24-hour sample every fourth day, midnight to midnight. This schedule
was extended by 24-hour samples on additional even-numbered days, as
shown in Figure 2. When "alerts" were called for odd-numbered days,
station operators ran the samplers from morning to evening, to permit
changing filters to maintain the 24-hour alternate-day schedule. The
7-to-15-hour samples thus collected during odd-numbered alert days con-
tained sufficient material for precision in measurement; but it should
be recognized that these results involve time-averaging of TSP levels
over a fraction of the standard 24-hour sampling day.
Complete sets of samples and data were not obtained at all stations.
Security regulations at some commercial, industrial, and public buildings
prevented access to Hi-Vol samplers to change filters outside of business
hours. Failures of equipment and a laboratory accident are denoted by
NG and LA, respectively, in tables of data.
Samples were collected on fiber-glass filters, specified with >99.95%
retention of 0.3 urn DOP aerosol. Filters were conditioned before and
after sampling in an air-conditioned, controlled-humidity laboratory.
* Mention of commercial items by name is for convenience in identification,
and does not imply endorsement by the Colorado Department of Health.
-------
-171-
#88-Westminster O
Bri ghton
#58
Wei by -
° #8 Adams City
A O #15-Arvada
Arvada #4-NDWWTPO>
'(platte River)
Oil-Hull Photo
#59-Edgewater O
CARIH-<}>-#96
CAMP
#5-School Admin
Q#7"Aurora
(CoIfax Ave.)
O #13-Lakewood
"x>#2-State Health
Overland
#110-Centennial Wells O
(Broadway)
#9
#1 1-Cherry Creek Dam O
OHigh-volume Sampler
•(^-Continuous Monitoring
I .... J
0 km 5
Figure 1. Outline map of sampling station locations.
-------
-172-
Sunday Monday Tuesday Wednesday Thursday
4
"*—*>
} I
25
5
12
»•. -*
19
26
6
13
^">
20
^_>
27
K
15
22
29
Fri day
2
[9]
©
23
Saturday
3
= Regular sampling day, 0000-2400 hours (# on data tables).
= Extra sampling day, 0000-2400 hours (E on data tables).
r
. = Alert sampling day, 7-15 hour intervals (A on data tables).
Figure 2. High-volume air sampling schedule, November 1973.
Filters were retained from each batch and carried as blanks through
analytical procedures as appropriate.
Determinations of total suspended particulates were made according
to standard procedures.2 Benzene-soluble organic fractions were deter-
mined from one-half of each filter, by procedures involving approximately
50 cycles of extraction by hot benzene in a Soxhlet extractor over a 6-
hour period, and evaporation of benzene from the extracted residue to a
final temperature about 60°C.
Composites of strips cut from filters were treated in a TracerLab
Model 505 Low Temperature Asher to destroy organic matter, and were re-
fluxed in 3 M nitric acid. Extracted metal ions were determined by a
Unicam SP-90 atomic absorption spectrophotometer.
RESULTS AND DISCUSSION
The results for total suspended particulates and benzene-soluble
organic are summarized in Tables 1 and 2. Units are micrograms per
cubic meter. A third value for each sample (%0/P) gives the BSO frac-
tion as a weight percentage of TSP.
Stations have been grouped by topographic locations to facilitate
comparisons of particulate levels. Table 1 includes stations close to
the Platte River, generally on its lower terraces. These stations lie
nearest the major industrial and vehicular sources of pollutants; they
are ventilated last when rising temperatures break inversion conditions;
-------
TABLE 1. HIGH-VOLUME AIR SAMPLES AT VALLEY-LOWER TERRACE STATIONS
Date /Day
11/04-Sun-R
11/06-Tue-E
11/07-Wed-A
11/08- Thu-R
11/09-Frl-A
11/10-Sat-E
11/12-Mon-R
11/14-Wed-E
11/16-Fri-R
11/17-Sat-A
11/18-Sun-E
11/20-Tue-R
11/21-Wed-A
11/22-Thu-E
11/24-Sat-R
11/26-Mon-E
11/28-Wed-R
11/30-Frl-E
Units: ug/m
//3-Gates
TSP BSO %0/P
120 9.5 7.9
329 29.5 9.0
277 20.6 7.4
(0910-1645)
212 15.4 7.3
407 41.5 10.2
(0905-1900)
205 17.4 8.5
312 26.2 8.4
249 20.6 8.3
279 20.2 7.2
144 5.8 4.0
(0850-1955)
194 22.5 11.6
112 14.0 12.5
250 13.0 5.2
(0915-1625)
118 8.4 7.1
135 11.7 8.7
247 21.5 8.7
285 28.2 9.9
616 41.0 6.7
3 i Pg/m3 |
S4-NDWWTP
TSP BSO %Q/P
67 1.5 2.2
241 15.7 6.5
174 6.5 3.7
(0935-1835)
153 7.4 4.8
230 13.5 5.9
(0930-1930)
241 26.7 11.1
485 41.0 8.5
279 22.1 7.9
339 29.2 8.6
163 4.2 2.6
(0933-2005)
ns ns
157 17.4 11.1
248 14.7 5.9
(0945-1655)
89 7.3 8.2
130 10.0 7.7
149 8.5 5.7
(1145-2400)
222 19.9 9.0
325 36.6 11.3
BSO/TSP, %
#5-School Ad
TSP
100
329
ns
202
ns
150
ns
210
228
ns
ns
129
ns
112
ns
ns
273
359
BSO %0/P
8.4 8.4
26.1 7.9
ns
14.0 6.9
ns
16.0 10.7
ns
16.1 7.7
21.6 9.5
ns
ns
13.3 10.3
ns
9.3 8.3
ns
ns
15.7 5.8
42.0 11.7
#8-Adams City
TSP BSO %0/P
50 3.0 6.0
206 13.9 6.7
216 6.9 3.2
(0905-1910)
107 4.1 3.8
204 12.0 5.9
(0850-1900)
186 14.7 7.9
258 8.9 3.4
138 7.7 5.6
278 13.5 4.9
ns ns
142 12.3 8.7
103 10.6 10.3
259 17.0 6.6
(0828-1625)
78 7.8 10.0
98 6.8 6.9
133 10.6 8.0
(1045-2400)
164 3.8 2.3
268 33.3 12.4
#9-Englewood
TSP BSO %0/P
137 10.7 7.8
219 17.2 7.9
207 13.2 6.4
(0840-1730)
172 11.3 6.6
338 25.8 7.6
(0857-1925)
129 10.5 8.1
155 12.4 8.0
122 5.9 4.8
161 10.1 6.3
113 5.7 5.0
(0915-2015)
133 13.5 10.2
120 13.3 11.1
300 LA
(0905-1730)
95 13.8 14.5
129 8.3 6.4
121 7.3 6.1
189 17.7 9.4
398 29.8 7.5
//15-Arvada
TSP BSO %0/P
86 6.6 7.7
305 23.2 7.6
246 13.3 5.4
(0815-1958)
146 9.0 6.2
351 19.2 5.5
(1000-2005)
152 14.8 9.7
216 7.6 3.5
86 4.3 5.0
222 14.1 6.4
115 3.7 3.2
(0920-2025)
111 11.3 10.2
127 14.8 11.7
347 16.1 4.6
(0830-1930)
140 11.5 8.2
229 19.8 8.6
199 4.9 2.5
199 9.9 5.0
321 19.9 6.2
096-CARIH
TSP BSO %0/P
80 6.0 7.5
231 27.7 12.0
167 6.7 4.0
(1000-2100)
175 8.6 4.9
393 28.8 7.3
(0955-2045)
147 17.3 11.8
181 13.7 7.6
107 8.8 8.2
214 3.4 1.6
96 2.4 2.5
(0915-2053)
138 20.0 14.5
88 12.2 13.9
319 23.6 7.4
(1015-2000)
97 11.4 11.8
136 9.9 7.3
154 9.4 6.1
111 7.0 6.3
228 20.5 9.0
//110-Cen. Wells
TSP BSO %0/P
101 7.9 7.9
165 15.7 9.5
169 7.4 4.4
(0901-1800)
168 12.7 7.6
360 30.4 8.4
(0821-1940)
107 7.2 6.7
89 2.5 2.8
74 5.8 7.8
145 6.5 4.5
127 4.4 3.5
(0930-2035)
138 7.6 5.5
60 5.0 8.3
157 12.5 8.0
(0835-1755)
59 7-7 13.1
73 8.8 12.1
88 4.7 5.3
97 4.0 4.1
271 19.5 7.2
1
1— '
UJ
1
-------
TABLE 2. HIGH-VOLUME AIR SAMPLES AT UPPER TERRACE AND MISCELLANEOUS STATIONS
#7-Aurora
#ll-Cherry CD
-Brighton
Date/ Day
11/04-Sun-R
11/06-Tue-E
11/07-Wed-A
11/08-Thu-R
11/09-Fri-A
11/10-Sat-E
11/12-Mon-R
11/14-Wed-E
11/16-Fri-R
11/17-Sat-A
11/18-Sun-E
11/20-Tue-R
11/21-Wed-A
11/22-Thu-E
11/24-Sat-R
11/26-Mon-E
11/28-Wed-R
11 /W-Vri-K
TSP BSO %0/P
63 3.8 6.0
200 17.5 8.8
117 6.9 5.9
85 8.3 9.8
130 7.3 5.6
154 14.1 9.2
71 8.7 12.3
80 8.6 10.8
63 7.5 11.9
116 12.0 10.3
1 «fi 95 1 11 1
TSP BSO %0/P
80 5.7 7.1
174 21.8 12.5
94 3.9 4.1
(0833-1810)
121 7.2 6.0
181 17.5 9.7
(0815-1850)
82 8.1 9.9
121 4.2 3.5
111 8.7 7.8
148 12.1 8.2
61 3.5 5.7
(0820-1905)
120 13.0 10.8
57 7.1 12.5
110 6.8 6.2
(0855-1640)
77 11.5 14.9
63 8.9 14.1
89 9.1 10.2
(0900-2400)
NG -
18=; 1 H A 4 Q
TSP BSO %0/P
61 2.6 4.3
107 4.3 4.0
73 5.0 6.8
(0830-1840)
88 7.0 8.0
136 12.4 9.1
(0835-1757)
96 6.4 6.7
156 6.8 4.4
90 4.1 4.6
138 11.1 8.0
87 2.7 3.1
(0800-1830)
126 13.3 10.6
102 10.0 9.8
153 11.8 7.7
(0845-1745)
83 9.0 10.8
91 9.0 9.9
108 8.4 7.8
(1015-2400)
228 13.8 6.1
71A ")L ~\ in L
TSP BSO %0/P TSP BSO %0/P TSP BSO %0/P TSP BSO %0/P TSP BSO %0/P
123 8.6 7.0 74 8.0 10.8 55 - - 54 2.6 4.8 220 9.9 4.5
1 9Q 11 A ft ft — — — — _
(0845-1845)
92 5.7 6.2 139 7.7 5.5 138 - - 111 5.9 5.3 99 4.5 4.5
i A A QQAQ — __ ___
(0835-2025)
50 2.1 4.2 107 5.2 4.9 162 - - 172 11.7 6.8 167 9.3 5.6
92 1.5 1.6 150 12.4 8.3 202 - - 167 8.4 5.0 191 9.0 4.7
OA 9QQO _ _ — ___
(1000-2110)
f.1) ? A A ? — — - — - -
30 1.9 6.3 58 7.7 13.3 69 - - 97 5.8 6.0 77 3.5 4.5
(0940-1840)
AS AlQl __ _ _ „__
31 1.7 5.5 128 15.5 12.1 166 - - 128 13.6 10.6 137 6.2 4.5
coiiAn _„ _
58 4.8 8.3 95 7.7 8.1 32 - - 68 4.5 6.6 69 3.9 5.7
1 7? in ft 6 9 - _ ___
Units: Mg/m3 | yg/m3 | BSO/TSP, %
-------
-175-
and they are subjected to repeated passage of polluted air masses during
diurnal up-slope/down-slope air drainage.
Station #15 (Arvada) is included with this group of stations. This
station is located on a lower terrace of Clear Creek, a major tributary
of the Platte River. Interstate 1-70 runs along the south side of Clear
Creek valley, and considerable industrial activity is also located there.
Pollutant sources and air movement- characteristics are thus comparable
in both the Platte River and Clear Creek valleys; this is reflected in
most TSP and BSD levels shown in Table 1.
Table 2 includes stations located away from the valleys, on upper
terraces and toward the edges of the Denver Basin. Station #58 (Brighton)
is included in Table 2. Although it lies in the Platte River valley about
20.4 km NNE of Station #8 (Adams City), TSP values at Brighton often do
not correlate with values at the other valley stations.
Station #11 (Cherry Creek Dam) was originally installed to supply
remote, suburban background values for TSP in the Denver area. Growth
of Denver toward the southeast has brought highways and residential
developments near Station #11; it is becoming much like the other sub-
urban stations. It is noteworthy that a TSP level of 172 yg/m3 appeared
at Station #11 on Friday, 30 November 1973; most of the other stations
also showed highest TSP values on that day.
The percentage extractable organic content (BSO) is of special
interest in suggesting origins of the associated particulate matter.
Particulates collected in remote and rural areas of Colorado, where dust
from soils is the principal constituent of the TSP, usually show less
than 2-3% BSO/TSP.
Urban areas with many vehicular sources commonly show 5-15% BSO/TSP.
This percentage has decreased on average during the past decade, presum-
ably due to improved vehicle emissions controls. But high percentages
of BSO/TSP still occur on many winter days. A case at hand is the
Thanksgiving Day holiday, 22 November 1973. TSP levels were generally
moderate, but organic levels were high on that day of heavy traffic.
A different indicator associating vehicle emissions with the par-
ticulate pollution is afforded by analyses for metals. These are shown
in Table 3, and pertain to composites of strips from filters on the
regular (R} sampling days. Apart from constituents of the common silicate
minerals, the metals in Table 3 are the ones routinely measured in Denver's
suspended particulates. It is notable that lead constitutes 1.0-1.4% of
the TSP on a weight basis, indicating a fairly uniform contribution to
the average TSP regardless of location.
-------
-176-
TABLE 3. METALS IN COMPOSITE SAMPLES FROM
REGULAR SCHEDULED SAMPLING DAYS, NOVEMBER 1973.
Station
#2
#3
#4
#5
#8
#9
#11
#15
#110
a /
mg/gm
Copper
us/si
0.17
0.52
0.18
0.27
0.06
0.12
0.22
0.10
0.06
TSP in
mg/gma
1.75
2.55
0.85
1.47
0.38
0.76
3.24
0.62
0.53
composite
Iron
PS/™3
1.3
3.6
4.8
3.0
3.0
2.7
0.9
3.5
1.9
sample.
ms/am
13.4
17.6
22.1
16.2
20.1
17.8
13.9
20.6
17.8
Lead
PS/™3
1.3
2.8
2.8
2.1
2.2
2.1
0.8
1.7
1.3
M
mg/gm
13.4
13.6
12.8
11.4
14.3
13.6
11.6
10.1
11.9
Zinc
ys/m3
0.12
0.47
0.26
0.58
0.17
0.22
0.13
0.10
0.18
mg/gm
1.2
2.3
1.2
3.1
1.2
1.4
1.9
0.6
1.7
Finally, we may look backward to November 1973 and ask whether it
was a favorable month for studying the "Brown Cloud." From the view-
point of total particulates, it was indeed an excellent month. The
average TSP level for regular sampling days in November 1973 was 20-40%
higher than comparable averages in most previous years. Only November
1971 was similar to November 1973. We were thus fortunate that intensive
study efforts were undertaken in those two months, and we anticipate much
benefit from the research efforts in those auspicious months.
ACKNOWLEDGMENTS
Thanks are extended to the leaders of environmental sections of
three local agencies, and to their staff members especially, for coopera-
tion and much extra work in obtaining the numerous special samples in
this study: Messrs. Thomas Peabody and Thomas Bullock of Denver Depart-
ment of Health and Hospitals; Mr. Melvin Davis of Jefferson County Health
Department; and Messrs. Donald Turk and Peter Murray of Tri-County Dis-
trict Health Department. Messrs. Richard Fox, David Wickham, Charles
Bray, and Norman Weigel shared the brunt of extra work outside and in
the Air Pollution Laboratory.
-------
-177-
REFERENCES
2.
The extensive data from the continuous monitoring stations and the
high-volume particulate sampling network have been entered in the
National Aerometric Data Bank in SAROAD format. A synopsis of
data from the continuous monitoring stations during November 1973
may be requested from the Air Quality Surveillance Section, Air
Pollution Control Division, Colorado Department of Health, Denver,
Colorado 80220.
Tentative method of analysis for suspended particulate matter in the
atmosphere: High-volume method, 11101-01-70T. In: Intersociety
Committee, Methods for Air Sampling and Analysis (Washington, D.C.:
American Public Health Assoc., 1972), pp. 365-372.
-------
-178-
Appendix 1. LOCATIONS OF HIGH-VOLUME AIR SAMPLING STATIONS
SAROAD Station Codes follow the Colorado Station numbers. Grid co-
ordinates are given to the nearest 20 meters (UTM Zone 13), and sampler
elevations to the nearest 10 feet; locations are estimated from U. S.
Geological Survey 7.5-minute quadrangle maps (1:24000). Identification
by landmark buildings conveys no implication as to sources of measured
pollutants.
Hull Photo Co., 5105 E. 38th Ave., Denver.
E 0506 220 / N 4402 180 El. 5270 ft.
State Health Department, 4210 E. llth Ave., Denver.
E 0505 340 / N 4397 860 El. 5320 ft.
Gates Rubber Co., 1050 South Broadway, Denver.
E 0501 180 / N 4394 080 El. 5260 ft.
#1.
#2.
#3.
#4.
#5.
#7.
#8.
#9.
#11.
#13.
#15.
#58.
#59.
#88.
#96.
06-0580-006
06-0580-007
06-0580-003
06-0580-004
06-0580-001
06-0140-001
06-0020-001
06-0780-001
06-0080-001
06-1260-001
06-0120-001
06-0240-001
06-0720-001
06-2240-002
06-0580-009
N. Denver Waste Water Plant, E. 51st Ave.
E 0502 360 / N 4404 100 El. 5140 ft.
School Administration Bldg., 414-14th St.
E 0500 680 / N 4398 820 El. 5220 ft.
Aurora: 1633 Florence St.
E 0511 000 / N 4398 980 El. 5340 ft.
Adams City: 4301 East 72nd Avenue.
E 0505 540 / N 4408 420 El. 5130 ft.
& Marion.
Denver.
& Floyd Ave.
#110. 06-1420-002
Englewood: 4857 South Broadway.
E 0501 040 / N 4386 300 El. 5410 ft.
Cherry Creek Dam: South Scranton St,
E 0514 400 / N 4387 600 El. 5650 ft.
Lakewood: 260 South Kipling St.
E 0490 760 / N 4395 600 El. 5580 ft.
Arvada: 7622 Grandview Avenue.
E 0493 000 / N 4405 300 El. 5340 ft.
Brighton: 15 South Main St.
E 0515 540 / N 4426 220 El. 4980 ft.
Edgewater: 25th Avenue & Gray Street.
E 0494 800 / N 4400 160 El. 5350 ft.
Westminster: 70th Avenue & Utica Street.
E 0496 580 / N 4408 260 El. 5320 ft.
CARIH: 21st Ave. & Julian St. [National Asthma
Center; formerly Children's Asthmatic Research
Institute and Hospital].
E 0497 300 / N 4399 580 El. 5320 ft.
Littleton, Centennial Wells: NW Bowles Ave. & Santa
E 0497 860 / N 4384 760 El. 5320 ft. Fe Drive
-------
-179-
Appendix 2. LOCATIONS & METHODS OF CONTINUOUS AIR MONITORING STATIONS
06-0120-002 Arvada; West 57th Ave. & Garrison St. (a,b,c,g,i)
E 491 460 / N 4405 040
(Ca. 1.6 km at azimuth 275 from Hi-Vol Station #15)
06-2210-001 Welby: East 78th Ave. & Steele St. (a,b,c,g,i)
E 504 380 / N 4409 640
(Ca. 1.8 km at azimuth 315 from Hi-Vol Station //8)
06-0580-002 CAMP: 2105 Broadway (a,b,d,e,f,g,h ,i)
E 501 120 / N 4399 820
(Ca. 1.1 km at azimuth 025 from Hi-Vol Station #5)
06-0580-009 CARIH: 2095 Julian St. (a,b,c,g,i)
E 497 320 / N 4399 580
(Within 100 m of Hi-Vol Station #96)
06-0580-011 Overland: 2005 South Huron St. (a,b,c,g,i)
E 500 260 / N 4392 040
(Ca. 2.2 km at azimuth 205 from Hi-Vol Station #3)
06-0580-010 National Jewish Hospital: East Colfax Ave. & Colorado Blvd.
E 505 100 / N 4398 580 (a,b,c,g,i)
(Ca. 0.8 km at azimuth 340 from Hi-Vol Station #2)
a. Coefficient of Haze: Tape Sampler, Transmittance (1120181)
(Data in COHS/1000 linear ft; 2-hour intervals)
b. Carbon Monoxide: Non-dispersive Infrared (4210111)
(Data in ppm; 1-hour running average data listing)
c. Sulfur Dioxide: Coulometric (4240114)
(Data in ppm; 1-hour running average data listing)
d. Sulfur Dioxide: West-Gaeke Colorimetric (4240111)
(Data in ppm; 1-hour data listing)
e. Nitric Oxide, NO: Colorimetric (4260111)
(Data in ppm; 1-hour data listing)
f. Nitrogen Dioxide, N02: Colorimetric (4260212)
(Data in ppm; 1-hour data listing)
g. Total Hydrocarbons: Flame lonization (4310111)
(Data in ppm; 1-hour running average data listing)
h. Methane: Flame lonization (4320111)
(Data in ppm; 1-hour data listing)
i. Ozone: Chemiluminescence (4420111)
(Data in ppm; 1-hour running average data listing)
-------
-180-
Appendix 3. SYNOPSIS OF DATA FROM CONTINUOUS AIR MONITORING STATIONS
Parameter Arvada
Welby
CAMP
CARIH
Overland
NJH
COH
# Values
Average
Maximum
«>.
# Values
Average
Maximum
S02
# Values
Average
Maximum
NO
# Values
Average
Maximum
N02
# Values
Average
Maximum
Total HC
# Values
Average
Maximum
Methane
# Values
Average
Maximum
Ozone
# Values
Average
Maximum
11/01-30
355
0.30
1.80
11/01-30
643
3.6
28.0
11/01-30
592
<.005
.06
—
—
11/01-30
542
3.3
8.6
_.— .
11/01-30
691
.014
.085
11/01-30
331
0..61
3.30
11/01-30
712
3.6
22.0
11/01-30
624
.01
.07
—
—
11/01-30
674
2.9
9.2
—
11/01-30
544
.013
.080
11/01-30
269
1.24
5.80
11/01-30
570
8.2
44.0
11/01-30
430
.01
.10
11/01-30
529
0.11
0.55
11/01-30
535
.05
.22
11/01-30
550
3.4
11.4
11/01-30
550
2.3
7.0
11/01-30
513
.007
.070
11/01-30
354
0.70
3.10
11/12-30
448
5.3
33.0
11/01-30
660
.01
.07
—
—
11/12-30
373
3.9
9.2
—
11/01-30
675
.012
.070
11/01-30
359
0.58
2.90
11/01-30
676
3.8
33.0
11/01-30
575
.01
.16
—
—
11/01-30
626
3.3
9.4
—
11/01-30
666
.012
.085
11/01-30
347
0.57
2.40
11/01-30
711
6.5
54.0
11/01-30
573
.01
.05
—
—
11/01-30
665
3.1
9.4
—
11/01-30
649
.008
.050
Methods and units of measurement are listed in Appendix 2.
-------
-181-
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/9-77-001
2.
3. RECIPIENT'S ACCESSION"NO.
4. TITLE AND SUBTITLE
DENVER AIR POLLUTION
Proceedings of a
STUDY - 1973
Symposium. Volume II
5. REPORT DATE
February 1977
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Philip A. Russell (Ed.)
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Denver Research Institute
University of Denver
Denver, CO 80210
10. PROGRAM ELEMENT NO.
1AA008
11. CONTRACT/GRANT NO.
R-803590
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory
Office of Research & Development
U.S. Environmental Protection Agency
Research Triangle Park. NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final 1/74-6/76
14. SPONSORING AGENCY CODE
EPA-ORD
15. SUPPLEMENTARY NOTES
16. ABSTRACT
EPA, university, and private researchers conducted a study of Denver's urban plume
during the month of November 1973. The objective of the study was to characterize
the pollutants that cause the appearance of the visible colored haze, the so called
"Brown Cloud", which frequently occurs over Denver during the fall and winter months,
Gaseous and aerosol pollutants, and meteorological parameters were measured
periodically under selected conditions.
In March 1975, a symposium was held to present and discuss the results of this study,
This report, Volume II, contains important research papers given at the symposium.
The papers cover airborne instrument aircraft characterization, optical properties
of the plume and airmass movements in the Denver region.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
"Air Pollution
Field tests
^Aerosols
^Particles
^Meteorological data
^Transport properties
*Hydrocarbons
Denver, Colorado
13B
14B
07D
04B
07C
17H
13. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (This Report)
UNCLASSIFIED
21. NO. OF PAGES
186
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (9-73)
-------
FRONT COVER:
Aerial view of Denver from the North looking South at 1100 MST
on 21 November 1973. The central business district can be
seen in the upper left quadrant. Note the bright appearance
of the urban plume and compare with photograph below.
Photography by: Charles E. Grover
Denver, Colorado
Aerial view of Denver from the South looking North at 1120 MST
on 21 November 1973. The central business district is located
slightly to the right of center, one-fourth down from top. Note
the dark brown appearance of the urban plume.
Photography by: Charles E. Grover
Denver, Colorado
------- |