TECHNICAL APPENDIX
                   to the
 REPORT on the WATER QUALITY OF CHARLESTON HARBOR
          and the EFFECTS THEREON of the
      PROPOSED COOPER RIVER REDIVERSION
   UNITED STATES DEPARTMENT OF THE INTERIOR




FEDERAL WATER POLLUTION CONTROL ADMINISTRATION




          Southeast Water Laboratory




   Charleston Harbor - Cooper River Project




          Charleston, South Carolina




                  August 1966

-------
                             TABLE OF CONTENTS
                                                                   Page No.
INTRODUCTION                                                           1
FIELD OPERATIONS                                                       !

     Sampling Station Selection                                        1

     Sampling Programs                                                 2

     Sampling Methods                                                  3

     Sample Handling and Preservation                                  8

LABORATORY ANALYTICAL PROCEDURES AND OPERATION                         9

     Discussion                                                        9

     Chloride Determination Employing Automatic Tiration Procedure    14

     Dissolved Oxygen Determination Employing Automatic Titration
          Procedure                                                   20

     Total Phosphate                                                  30

     Laboratory Data Collection and Reporting                         33

SPECIAL STUDIES                                                       35

     Organic Carbon-Organic Nitrogen Ratios of Sediments              39

     Dye Dispersion Studies                                           45

     Hydraulic Model Studies                                          47

     Sample Preservation                                              58

     Free Carbon Dioxide                                              66

     Organic Carbon                                                   77

     Oxygen Uptake by Sediments                                       81

DATA ANALYSIS                                                         94

     Basic Statistical Methods                                        94

     Computer Programs                                              106

COMPILATION OF BASIC DATA                                           156

-------
                       LIST OF TABLES
                                                                            Page No,
 1  -  Intensive Survey Sampling Schedule                                      4
 2  -  Intensive Sampling Program                                              5
 3  -  Comparison of Sampling Methods Based on Dissolved Oxygen Samples         6
 4  -  Laboratory Analytical Procedures                                        11
 5  -  Comparative Chloride Data for Manual and Automatic Titrations            18
 6  -  Standard B.O.D. Bottle Volume                                           24
 7  -  Comparative Dissolved Oxygen Data for Manual and Automatic  Titrations    26
 8  -  Results of Modified Total Phosphate Procedure                           32
 9  -  Data Reporting                     .                                     33
10  -  Special Studies                                                         36
11  -  Source of Organic Materials in Benthic Deposits                         41
12  -  Organic Analysis of Bottom Sediments                                    42
13  -  Summary of Intensive Surveys                                            48
14  -  Comparison of Mean Values of Chloride Data                              50
15  -  Comparison of Surface to Bottom Chloride Data                           51
16  -  Comparison of Overall Response of Chlorides to River Discharges          52
17  -  Summary of Model Dye Studies                                            53
18  -  Analysis of Model Dye Studies - Mean Travel and Residence Times
       in Tidal Cycles for Given Cooper River Flow                             57
19  -  Descriptive Statistics of Total Phosphates - Sample Preservation
       Study                                                                   60
20  -  Descriptive Statistics of Nitrate Nitrogen - Sample Preservation
       Study                                                                   62
21  -  Descriptive Statistics of Ammonia Nitrogen - Sample Preservation
       Study                                                                   64
22 -   Descriptive Statistics of Organic Nitrogen - Sample Preservation
       Study                                                                   65

-------
                                                                          Page No.
23  -  Ashley River, Carbon Dioxide Study  -  Municipal Marina  Station       71
24  -  Ashley River, Carbon Dioxide Study  -  Buoy  #3  Station                72
25  -  Ashley River, Carbon Dioxide Study  -  Atlantic Coast Railway
       Bridge Station                                                       73
26  -  Ashley River, Carbon Dioxide Study  -  Buoy  #15 Station               74
27  -  Ashley River, Carbon Dioxide Study  -  Highway  #7  Bridge Station      75
28  -  Ashley River, Carbon Dioxide Study  -  Buoy  #13 Station               76
29  -  Comparative Data for Total Organic Carbon -  5day B.O.D.  Relationship  79
30  -  Comparative Data for Total Organic Carbon -  Long Term B.O.D.
       Relationship                                                         80
31  -  Experimental Results of Oxygen Utilization by Benthic Deposits        86
32  -  Descriptive Statistics of Experimental Results                        92
33  -  Data Processed Through Descriptive Statistics Program                 95
34  -  Routine Monitoring Data                                             157
35  -  Intensive Survey Data                                               206
36  -  Environmental Data                                                  764
37  -  Model Chloride Data                                                 803

-------
                            LIST OF FIGURES


                                                             Page No.

1  -  Charleston Harbor Sampling Stations                      2a

2  -  Titration Curve for Chloride Determination Employing
      the Automatic Titration Procedure                        16

3  -  Potentiometric Titration Curve for Dissolved Oxygen
      Determination Employing the Automatic Titration
      Procedure                                                27

4  -  Potentiometric Titration Curve for Dissolved Oxygen
      Determination Employing Manual Titration Procedure       28

5  -  Laboratory System for Measuring Utilization of
      Oxygen by Harbor Deposits                                82

-------
                     INTRODUCTION

     The purpose of this technical appendix 1s to present all of
the supporting documentation for the summary report entitled
"A Report on the Water Quality of Charleston Harbor and the Effects
Thereon of the Proposed Cooper River Rediversion".  The material
presented in this appendix includes the following:
     (1)  A description of the field operations including the
     criteria for selecting sampling stations and a description
     of program used to substantiate the fidelity of all phases
     of the water sampling techniques;
     (2)  A discussion of the laboratory operations and of the
     laboratory analytical procedures and modifications of these
     procedures;
     (3)  A complete description of the special studies;  	
     (4)  A detailed discussion of the data analyses techniques
     including a listing of the computer programs used; and,
     (5)  A display of all basic data not contained in the summary
     report.
This appendix does not contain any conclusions pertaining to the
study's objectives but serves as a readily available repository
for the large amount of information collected by this project,
                         FIELD OPERATIONS
SAMPLING STATION SELECTION
     The results of any estuarine water quality survey are greatly
dependent on the selection of representative sampling stations in
the area under study.  It becomes a problem of maximizing the amount
of information gained under the constraints of available manpower,
equipment resources and laboratory capability.  The capability of
the laboratory controls the number of samples that can be collected
while the rationale used for station selection governs the utility

-------
of the data obtained from the analysis of each sample.
     The following criteria were used for selecting the sampling
stations in Charleston Harbor.  The stations are shown in Figure  1 .
     1)  The station had to be in an area that would be affected
     by the proposed flow reduction from the standpoint of hydraulic
     characteristics.
     2)  The station had to be accessible during all tide conditions
     and had to be referenced to either existing navigational
     aides or prominent land marks.
     3)  The station had to be located so that the data resulting
     from sample analyses would not be overly biased by external
     factors such as nearby waste outfalls.
     4)  All stations had to be located within an area that could
     be covered with the existing sampling boats in a time period
     less than one-half of tide frequency of 12.2 hours to approach
     an optimum sampling frequency.
     5)  The overall number of stations was limited by the number
     of samples that could be analyzed by the laboratory staff and
     the number of field personnel available for sampling duty.
SAMPLING PROGRAMS
     Three specific types of sampling programs were used during the
Charleston Harbor Study.  The first type was a routine weekly program
for preliminary reconnaissance or surveillance purposes.  The results
from the analyses of these samples were used to plan further studies
and to monitor the water quality in the harbor.  The second type of
sampling program was an intensive, high frequency,  round-the-clock
operation to obtain sufficient environmental information to establish
the quality characteristics and dynamics of the harbor system.  The

-------
                                                                         2a
DEPT. OF THE INTERIOR
                                                                   FV/PCA
    W. Va. Pulp a Paper Mttlf
         outfall area
                                       Baresford Creek  ;•
                V. C. Chemicl ^
                     Co.
                                     UPPER
                                     HARBOR /. "•..'-.-.•: '
      A.C. L. Railroad
               Hwy.  17
LOWER
    R

    Shules
                                                    e,
                                                  Ft.Sumter
    01234
          nautical  miles
                                                                Ocean
                           CHARLESTON  HARBOR
                            Sampling Locations
                                                                  FIGURE

-------
 intensive surveys  were designed  to  yield  data amenable  to various
 statistical techniques of analysis.   The  third  type  of  sampling
 program was one especially designed  for  the  special  studies.  This
 program generally  involved the collection of specific types of
 samples such as sediment, water  under mineral oil, or a series of
 samples at a specified time or tide  condition.
      The sampling  runs were scheduled in  the following  manner:
      1)  Routine Sampling - One  run  per week scheduled  until  the
                      •
      occurrence of low flow periods  when  the frequency  was  increased
      to twice a week to maintain adequate surveillance. Single
      rund scheduled on Thursdays so  that  the analyses of the  5-day
      BOD samples and the membrane filters could be completed  during
      a regular work day.
      2)  Intensive Sampling -  Samples for this program were  collected
      on a four hour frequency at each station beginning at  12:00
      am  on Monday  and ending at  12:00am on Saturday.  Six sampling
      runs were conducted every 24 hour period and all samples were
      collected within 10 minutes of  the specified time. Table   1
      shows the sampling schedule used for the intensive surveys.
      Each sampling run took about three hours to complete and one
      hour was available between  runs for  routine boat maintenance.
      Table 2  summarizes the intensive surveys  completed.  Each
      intensive survey involved a considerable amount of coordination
      between laboratory and field crews.   In addition,  the round-
      the-clock operations were more  expensive.   Consequently, each
      survey was planned in detail to ensure  adequate stand-by
      equipment and manpower.
SAMPLING METHODS
      During the course of the Charleston  Harbor Study a considerable
 amount of time was expended in developing sampling techniques to

-------
O


o
p
CO
S3
w


vO




m




-------
W H






























1
8
erf
CM
O

CM M
62
a 3
pq co
H W
^_l
CO
1




















Q CEJ
rj ^
f~"i
H
W
11
CO
0  W
frf H
CO tD


W g
 o m
CO >Ct' CTt CT*
in i"' CM CM
*N A n M
r^ r^ vo ON
CM CM CM i-l









O O O O
0 O O 0
vO vO vO vO












CO CO O (^
i-( r-J r-4



Jd 60 42 42
60 3 m 60 60
3in ovo am 3in
O vO M CT% O vO O vO
V4 ON ^2 t— 1 V4 ON M ON
42 r-l 4J 43 i-l 42 i-<
4J 4J 4J
« CO I~- » «
COf^ CMCM r-lin CTlCO
CM CM t-l CM
42 42 42 42
OO OO OJO) >i>.
MVl MU CC i-fi-l
rt rt cd rt j3 ^ 33
S S 5u S ^ ^5 ^ *™5




5 
42  r-«
4J


O  vf"
CM  CM
4J  4J
 (X O.
 0)  01
CO  CO
           w
                           0)


                          •r-l

                           CO
                           d
                           Q)
                          4J
                           d
                          •r-l
                td
               T)
                I
               o
               CO
                          <4-l

                           O
                          O
                          in
                          42
                           60
                           3

                           8
                           o

                           o
                          T)
                           d
                          o   •
                          co in
                              vO
                          42 ON
                           3
                           O
                           M 42
                          42  O
                           \ i  ^j
                       60
                       d
                       a,
  to  M-l
  
-------
improve the reliability and uniformity of the samples collected.
The critical parameters from the sampling standpoint were dissolved
oxygen and coliform bacteria.  Dissolved oxygen was used as the
controlling factor in the development of the sampling techniques.
     The major factors that were considered in collection of the
dissolved oxygen samples were to ensure the collection of a
representative sample and to prevent the loss or gain of oxygen
while it was being collected.  The basic underlying premise was
that any method that gave reliable and representative dissolved
oxygen samples would give equally reliable samples for measurement
of other parameters.  Three separate sampling techniques were tested
against each other.  These were standard 1 liter Kemmerer Bottle,
a Sargent D.O. ,      Sampler and a submersible pump connected to
an onboard sink by plastic hose.  Forty-six replicate samples were
taken to test the methods against each other.  Table   _3   summarizes
the test data.                TABLE  3

             COMPARISON OF SAMPLING METHODS BASED ON DISSOLVED
                            OXYGEN SAMPLES
TYPE OF
SAMPLE

Kemmerer
Sargent
Submersible
NUMBER
OF
SAMPLES
46
46

RANGE OF VALUES
mg/1
High Low
6.01 2.68
6.01 2.68

MEAN
mg/1

4.51
4.60

VARIANCE
(mg/1)2

0.63
0.52

  Pump
46
5.99
2.67
4.58
0.58

-------
     The difference between the means were tested for statistical
significance and was found not statistically significant at 99.7%
confidence level In all cases.  An analysis of variance was also
made resulting in the same conclusions.  It was concluded that any
of the three methods would give equally reliable results.  However,  the
submersible pump technique was more flexible,  easier and faster to
use, and afforded a greater degree of safety for field personnel
during rough weather; and therefore, it was used for the majority
of the field work.

-------
SAMPLE HANDLING AND PRESERVATION
     The majority of water samples were collected with a submersible
pump; however, on several occasions the samples were collected with
Kemmerer and Sargent samplers due to either boat and pump failure
or checking of submersible pump sampling versus conventional sampling.
     The samples for dissolved oxygen determination were collected
in conventional glass  BOD   bottles and immediately dosed and placed
in dark chests.  The dosed and acidified samples were returned to the
floating laboratory where they were automatically titrated utilizing
the Fisher Titralyzer.  The time from collection to titration was
about four hours.
     Prior to April, 1965 the samples were collected in BOD    bottles
and delivered to the laboratory in dark ice chests.  They were then
dosed and titrated in the lab within four hours after collection.
An algae bloom developed in the harbor in early April and prohibited
the icing procedure for D.O.
     Samples for  BOD   determinations were collected in     half-
gallon plastic jugs.  The  BOD   in Charleston Harbor is less than
1.0 mg/1.  At first the  BOD   samples were delivered to the lab in
ice chests; however, after several months of low  BOD   the samples
were not iced.  Samples for  BOD   tests were set up within three to
five hours from time of collection.
     Samples for bacteriological examination were collected in clean,
sterilized, bacteriologic bottles.  They were immediately placed in
iced chests and delivered to the lab.  Total and fecal coliform tests were
set up as soon as possible and always within five hours from time of
collection.
     The remaining samples for chemical analyses were collected in one-
gallon plastic bottles.  A portion of the samples was preserved with
1 ml of concentrated 1*2804 per liter of sample and stored in cubitainers
for nutrient determinations.  The remaining chemical analyses were run
as soon as possible.

-------
                LABORATORY ANALYTICAL PROCEDURES
DISCUSSION
     The chemical and bacteriological procedures used by the Charleston
Harbor Project are listed in Table  4.  Insofar   as possible the
analytical procedures as outlined in Standard Methods for the
Examination of Water and Waste Wateri( llth Edition were followed.
Standard Methods was written          using          fresh water
procedureswhichin many instances are not compatible with analyses
of estuarine and sea waters.  Many of the* procedures were modified
to meet the analytical needs for this Project.  Such modifications
are also listed on Table  4 and those for chlorides, dissolved oxygen
and total phosphates are discussed in the detail following Table  4 .
                  and physical
     The chemical/parameters included dissolved oxygen, biochemical
oxygen demand, chemical oxygen demand, chlorides, conductance, pH, temperature,
turbidity, total suspended solids, volatile suspended solids, ammonia
nitrogen, nitrite nitrogen, nitrate nitrogen, organic nitrogen, ortho
phosphates and total phosphates.  The bacteriological examinations were
limited to total coliform and fecal coliform.  The precision and accuracy
of chemical analytical procedures which were greatly modified are
discussed in the analytical procedure section.
     The chloride concentration in Charleston Harbor varied from
500 to 19,000 mg/1 depending upon the station and tide.  At the time
of sampling,the estuary was vertically stratified and also carried
a large suspended load which resulted in a widely varying turbidity.
The variable chloride and turbidity concentrations caused considerable
difficulty with several of the laboratory analytical procedures.  The
ammonia procedure as outlined in Standard Methods has many short-
comings when used in estuarine waters and is definitely not recommended
for these studies.  When the chloride concentration exceeds 12,000 mg/1
and the ammonia concentration exceeds 0.4 mg/1 of ammonia-nitrogen,
results obtained are erratic using the pre-floc procedure.  Distillation
   Hereafter referred to as Standard Methods.

-------
                                                                      10
of ammonia using the micro-Kjeldahl distillation apparatus and
mercury catalyst, even with pH correction, would not suffice.  The
ammonia is chelated or held back in the distillation apparatus and
                                          ammonia
in most instances harbor samples had less/than the reagent blank.
      COD   values of less than 100 mg/1 are not reproducible
when chloride concentration approaches that of sea water.  Data
obtained cannot be corrected for chloride interference.  Thus the
modified mercuric sulfate procedure is of little use in relatively
clean sea water.  Diluted samples with  COD    concentrations near
1000 mg/1 are reproducible and can be chloride corrected.
     The membrane filter technique worked quite satisfactorily
for bacteriological tests even with the high suspended solid
concentrations.  At one station located adjacent to the paper mill
outfall,  atypical fecal coliform colonies were encountered perhaps due to
sulfur bacteria or the sulfate waste.

-------
                              TABLE 4

                      LABORATORY ANALYTICAL PROCEDURES
                                                                             11
PARAMETER
TEST INITIALLY
    USED
MODIFICATIONS
  OF TEST
REFERENCE
 1  Dissolved
   Oxygen
Winkler Alsterberg
Azide Modification
2  Biochemical    Dilution Method
   Oxygen Demand

3  Chemical       Dichromate reflux
   Oxygen Demand  Method with mercuric
                  Sulfate modification
4  Chloride
Mercuric Nitrate
Method
5  Conductance
Conductivity Cell
Method
Floe settled only
one time, 300 ml
sample automatically
titrated with 0.038
N Sodium Thiosulfate

None
                         None
Standard Methods,
llth Edition.
Standard Methods,
llth Edition.

1) Standard Methods.
   llth Edition
2) Dobbs, Richard A.
   Williams, Robt. T.
   "Elim. of Chloride
   Interence in the
   Chemical Oxygen
   Demand Test",
   Analytical Chem.
   Vol.35, July, 1963,
   Pg. 1064-7.
3) Chemical Analytical
   Procedures -Raritan
   Bay Project

Standard Methods.
10th Edition.
0.2000N NaCl standard
and 0.2000N Hg(N03)2
used. Sample automat.
titrated with or with-
out indicator.
Resistance in ohms     Standard Methods.
measured on Industrial  llth Edition.
Instruments, Inc.Model
RC-8 conductivity bridge
at temperatures less than
30°C. Data are converted
to specific conductance at
25°C  with a temp.-Specific
conductance table prepared
by Chas.Harbor Proj. 0.1M,
0.2M, and 0.5M, KC1 used to
calibrate cells.

-------
                                                                             12
 6  pH
 7  Turbidity
 8  Total Susp.
    Solids and
    Volatile
    Susp. Solids
 9  Ammonia
    Nitrogen
Glass Electrode
Method
Jackson Candle
Method

Gooch Crucible
Method
10  Nitrite
    Nitrogen
11  Nitrate
    Nitrogen
PreFloc and
Direct   Nessler-
ization
PreFloc and
Sulfuric acid-
Naphthylamine
Hydrochloride
Method.
Modified Brucine
Method
Fisher 13-639-90
Combination
Electrodes

None
Reeve angel glass
fiber filter, 934
AH, size 2.4cm
employed.

2 ml Zinc Sulfate
and 5 ml of sodium
hydroxide solution
added to 200 ml
sample.

2 ml Zinc Sulfate and
5 ml of sodium
hydroxide to 200 ml
sample for PreFloc
treatment. pH adjust.
made with 10% HC1
solution.

Reagent Blank is
not boiled.
Standard Methods,
llth Edition.
Standard Methods,
llth Edition.
Standard Methods,
llth Edition.
Standard Methods^
llth Edition.
Standard Methods.
llth Edition.
1) Standard Methods,
   llth Edition.
2) Jenkins, David and
   Medsker, Lloyd L.,
   "Brucine Method
   for Determination
   of Nitrate in Ocean
   Estuarine, and
   Fresh Waters".
   Analytical Chem.,
   Vol. 36, No.3,
   p.610-12.
3) Finger, James H.
   "Nitrate Determin.
   in Saline and est.
   Waters: Comp. of
   Hydrozine reduct-
   ion and Brucine
   Modification
   Methods" Lab.Inves.
   No.3, Tech.Adv. &
   Inves.Section, TSB,
   Robt.A.Taft Sani.
   Eng. Center,C inn.,
   Ohio.

-------
                                                                             13
12 Organic
   Nitrogen
Micro Kjeldahl
None
13 Ortho and
   Total
   Phosphate

14 Total
   Coliforin
15 Fecal
   Coliform
16 Temperature
Stannous Chloride
Method
Membrane Filter
Method with M-Endo
Broth procedure
Technique
Improvements
None
Membrance Filter
Method with
M-FC Broth
Procedure

Standardized
thermometer
None
1)Standard Methods,
  llth Edition.
2)Kabat, Elvin A.,
  and Maver,Manfred
  M., Experimental
  Immunochemis try.
  C.C. Thomas Publ.
  2nd Printing  (1953).

Standard Methods,
llth Edition.
Standard Methods,
•llth Edition.
"Recent Developments
in Water Microbiology"
conducted by Water
Supply and Pollution
Control Trng. Prog.,
PHS, Robt.A. Taft
Sanitary Eng. Center,
Cinn., Ohio

(Same as #14 above)

-------
                                                                      14
CHLORIDE DETERMINATION EMPLOYING AUTOMATIC TITRATION PROCEDURE
     The mercuric nitrate method for chloride determinations
as outlined in Standard Methods, 10th Edition for water was
modified for us in sea water.  The concentrations of reagents
were increased and instead of hand titrations an automatic titration
procedure was used.  The modified procedures are simple, rapid and
accurate.  An aliquot of sample is diluted with distilled water,
acidified with nitric acid to a pH of 2 or less, and then titrated
automatically with or without the indicator.  Using this procedure
one aide can make over 250 determinations per day including necessary
calculations.
     A Fisher Titralyzer equipped with a glass general purpose
electrode and a silver billet electrode was used for the chloride
titrations.  The pH must be 2 or less to prevent sodium ion
interference at the glass electrode.  A potentiometric titration
curve based on the scale of 0-1400 millivolts has an end point in
the titration a£ 740 millivolts.  However, due to the peculiarities
of the instrument involving the end point's anticipation, an end point
of 727 millivolts was used on our particular instrument.
     The diphenylcarbazone-bromophenol blue indicator described
in Standard Methods, 10th Edition, is stable and much more independent
of pH as compared to the indicator-acidifier reagent described in
Standard Method, llth Edition.
     An indicator is not necessary for automatic titrations on the
Fisher instrument;  however, if an indicator is used to check end
points then the choice of indicators is the diphenylcarbazone-
bromophenol blue due to the range of pH.

Apparatus
1.  Fisher automatic titrator, "Titralyzer".
2.  Electrodes.  Beckman #41263 glass general purpose electrode
     and Fisher #13-639-122 silver billet electrode.

-------
                                                                      15
 Preparation of reagents
 1.  Sodium chloride standard, 0.2000N.  Dissolve 11.6894g of ACS
    grade NaCl, which has been dried in an oven at 103°C over-
    night, in distilled water and dilute to 1 liter.
 2.  Nitric acid solution, 0.2N.  Place 12.9 ml of cone.  HN03  in
    distilled water and dilute to 1 liter.
 3.  Mercuric nitrate solution, 0.2000N.  Dissolve 35.5g of Hg(N03)2 .
    H20  in approximately 900 ml of distilled water.  Add 4 ml
    of cone. HNC>3  .  Make preliminary standardization against 10 ml
    of 0.2000N NaCl.  Adjust the mercuric nitrate solution to exactly
    0.2000N and perform a final standardization.
 4.  Diphenylcarbazone-bromophenol blue indicator.  Dissolve 0.5g
    diphienylcarbazone and O.OSg bromophenol blue in 100 ml 95 per-
    cent ethyl alcohol.

 Procedure
 1.  Use a 10.00 ml sample or an aliquot with a chloride content of
    about 70 mg.  This will requiretapproximately 10 ml of 0.2000N
    mercuric nitrate titrant.
 2.  Dilute with distilled water to approximately 300 ml in a 400 ml
    tall-form beaker.
 3.  Add 1 ml of 0.2N HN03  with a medicine dropper.
 4,  Set the millivolt end point on the titralyzer.  This millivolt
    end point can be determined either by running a potentiometrie
    curve on a sample or by titrating 10.00 ml of 0.2000N NaCl with
    10.00 ml of 0.2000N Hg(N03)2 with instrument in manual position.I/
    The indicator is not necessary but may be used if desired.  The
    10.00 ml of 0.2000N NaCl will require  10.00 ml of 0.2000N
    Hg(N03>2 .  An end point of 727 millivolts, based on 0-1400 millivolt
    range, was used on our particular instrument.
-' See Figure #2

-------
 u
 Q.
                                                                                o
                                                                               -rt
                                                                               -8
 Q:
 g

 E
 a
 a
 z


 u.

10
                                                                                o
                                                                                 -•  w
                                                                                   O)
                                                                                is
                                   o

                                   s
                                 «»|OA|H|UI
8
(0

-------
                                                                      17
5.  Place the instrument under automatic control.  Chloride samples
    placed in the turntable will be titrated automatically, with or
    without indicator, and the volume of titrant will be recorded
    automatically by the instrument on a tape.
6.  The instrument can be checked by placing NaCl standards in the
    turntable or by adding indicator to a titrated sample.

Calculations;

      /I  Cl  -      ml Hg  (N03)2  x normality of Hg (1*03)2   x  35460
                                   ml sample

Precision and Accuracy;
    Forty-one replicate samples were titrated by hand using the
indicator and with the titralyzer in automatic position without
the indicator.  On 20 samples titrated by hand, the calculated
average was 7100 mg/1.  Twenty titrated on the instrument had a
calculated average of 7101.  The variance on the hand titration
was 346.9 with a standard deviation of 18.6.  The variance by
automatic titration was 1308.9 with a standard deviation of 36.2.
Thus for the Project's purpose,   the gain in speed with automatic
procedure justified the  small  loss in accuracy compared to hand
titration.  Table 5 presents the comparative data for the hand and
automatic titrations.  Figure 2 shows the potentiometric titrating
curve for end point determination.

-------
TABLE 5
                                                  18
CHLORIDES
AUTOMATIC
mg/1 Cl
7162.9
7070.7
7077.8
7092.0
7120.4
7035.3
7092.0
7070.7
7070.7
7106.2
7092.0
7184.2
7113.2
7092.0
7077.8
7127.4
7092.0
7134.6
7148.7
7070.7
x = 7101.5
t(x - £)2 =
tr _ ^(X -
v n - 1
S « -f\T =
TITRATIONS
(x - X)2
3770.0
948.6
561.7
90.2
357.2
4382.4
90.2
948.6
948.6
22.1
90.2
6839.3
136.9
90.2
561.7
670.8
90.2
1095.6
2227.8
948.6

24,870.9
x)2 = 1308.9

36.2
                     HAND TITRATIONS
mg/1  Cl
7092
7092
7085
7142
7099
7099
7106
7099
7085
7092
7092
7156
7092
7092
7092
7120
7085
7092
7099
7092
                  x  =  7100
                                (x -  x)2
                                  64
                                  64
                                 225
                                1764
                                  1
                                  1
                                 36
                                  1
                                225
                                 64
                                 64
                               3136
                                 64
                                 64 .
                                 64
                                400
                                225
                                 64
                                  1
                                 64
                     x - x)2  =  6591
 v  =
         n - 1
    =  \nr  «
                             - x)  _  6591
                                       19
                              346.9

-------
                                                                     19
REFERENCES

1.  American Public Health Association, Inc.;  Standard Methods
    for the Examination of Water and Waste Water.   10th Edition.  (1955)

-------
                                                                      20
      DISSOLVED OXYGEN DETERMINATION EMPLOYING AUTOMATIC TITRATION
                        ,     PROCEDURES

     The Alsterberg azlde modification of the Winkler method as
outlined in Standard Methodswas followed with the exception of the
titration procedure.  The hand titration procedure was modified
to an automatic potentiometric titration procedure to enable
               a greater number of D.O. and  BOD  , determination^ to be run.
     A Fisher Titralyzer equipped with a glass general purpose
electrode and a platinum inlay electrode was employed in D.O.
determination.  A potentiometric titration curve based on the
scale of 0 to 1400 millivolts has an end point in the titration
at 650 millivolts.  However, due to the peculiarities of the
instrument involving the end point's anticipation, an en<^ point
of 681 millivolts is used on our particular instrument.  A sample
is collected and dosed in the conventional manner.  'Chen 300 mis,
or a complete  BOD  , bottle volume, is titrated with 0.038N
sodium thiosulfate*

Apparatus
1.  Fisher Automatic Titrator, "Titralyzer."
2.  Electrodes.  Beckman #41263  glass general purpose electrode
    and Fisher #13-639-102 platinum inlay electrode.

Preparation of r,.eagents
1.  Manganous sulfate solution.  Dissolve 364 g MnSO^  .  1^0  in
    distilled water, filter, and dilute to 1 liter.
2.  Alkali-iodide-azide reagent.  Dissolve 500 g NaOH and 135g
    Nal in distilled water and dilute to 1 liter.  To this
    solution add lOg NaN3 dissolved in 40 ml distilled water.

-------
                                                                      21
3.  Sulfuric acid, cone.  Reagent grade.
4.  Starch solution:  Dissolve approximately 2 grams of Superlose
    50(>i'in approximately 200 ml of cold  distilled water.   This
    solution is stable for several months.
5.  Potassium biniodate stock standard, 0.152N.  Dissolve
    4.9384g KH(I03>2  in distilled water  and dilute to 1 liter.
6.  Potassium biniodate stock standard, 0.038N.  Dilute 250 ml
    of 0.152N potassium biniodate to 1 liter in a volumetric
    flask.
7.  Sodium thiosulfate stock solution, 0.152N.  Dissolve 37.73
    grams NaS203  •  5H2<>  in freshly boiled and cooled distilled
    water.  Dilute to approximately 900 ml   and add 1 g NaOH.
                      •
    Standardize against 0.152N £11(103)2  according to standardization
    procedure below.
8.  Sodium thiosulfate working solution,  0.038N.  Dilute 250 ml
    of 0.152N sodium thiosulfate stock solution to 1 liter.

Standardization procedure for 0.152N sodium thiosulfate stock

1.  Dissolve 2 to 3 g KI, free from iodate, in a 400 ml tall form
    beaker with 250 ml of distilled water.   Add 10 ml  1+9
     H2S04  followed with exactly 20.00 ml  of 0.152N biniodate.
    Titrate with sodium thiosulfate stock solution using starch
                                              ?/
    and with the Titralyzer in manual position^'   When the solutions
    are of equal strength 20.00 ml of 0.152N biniodate will require
    20.00 ml of sodium thiosulfate.  Also 20.00 ml of 0.038N
    biniodate will require 20.00 ml of sodium thiosulfate.  Add
    starch toward the end of titration and  the blue color  will
    disappear at the end point.
 (Available from Stein Hall & Company,  Inc.
  605 3rd Avenue
 ,New York, N.Y.
 [The millivolt end point is different in this  titration compared to a
  conventional dosed  D.O.  and cannot be titrated with Titralyzer
  using automatic procedure unless end  point setting is changed.
                                                                              J.

-------
                                                                       22
  Procedure for  Dissolved  oxygen determination

  1.  To  a  sample  collected  in a 300 ml   BOD   bottle*1  add 2 ml
     MnS04 solution  followed by 2 ml of  alkali-iodide-azide
     reagent well below the surface of the liquid.  Stopper with
     care  to exclude air  bubbles.  Mix the dosed sample by inverting
     the bottle several times.   If the precipitate settles to bottom
     of  bottle  in less than 20  minutes then again mix the sample,.
     When  settling has produced at least  100 ml clear supernatant,
     remove the stopper and add 2.0 ml of cone HoSOA  by allowing
                              side of the
     the acid to  run down the/  neck.   Restopper the bottle and
     mix by inverting the bottle several times.
  2.  Pour  304 ml  of  the dosed sample, or the complete  BOD   bottle
     volume into  a 400 ml tall  form beaker and place on Titralyzer
     turntable.
  3.  Set the millivolt end point On the Titralyzer.  This millivolt
     settine flan  be  determined  either by running a potentiometric
     curvet'on a  dosed D.O. sample or by titrating a dosed sample with
     the Titralyzer  in manual position using starch to determine the
     end point.   An end point of  681 millivolts, based on 0 - 1400
     millivolt range, is  used on our particular instrument.
  4.  Place the instrument under  automatic control.  Dosed samples
     placed in the turntable will be titrated automatically,
     without starch, and  the volume of titrant will be recorded
     by  the instrument on a tape.
  5.  The instrument  can be checked by adding starch to a titrated
     sample.  0.05 ml of  0.038N  biniodate will turn the colorless
     sample to a  blue-purple color.
—   The average volume of 100BOD   bottles was 304.9 ml.  The
    variance was 1.14 with a standard deviation of 1.07.  See
   ! Table 6.   ___._|
-' |See Figure; 3.        !

-------
                                                                     23
Calculations
     Each mllltliter of 0.038N ^28203  is equivalent to 1 mg/1
D.O. if a volume equal to 300 ml of original sample is titrated.

Precision and accuracy
     Forty-one replicate samples were titrated both by hand and the
Titralyzer.  On 20 samples titrated by hand, the calculated
                              samples
average was 7.66 mg/1.  Twenty/titrated on the titralyzer had a
calculated average of 7.65.  The variance on the hand titration was
0.0020 with a standard deviation of 0.045.  The variance on the
titralyzer was 0.0025 with a standard deviation of 0.050.  Thus for
all practical purposes, the instrument's titration was as
accurate as hand titration.  (See Fig. 3).
     A potentiometric titration was run on the remaining D.O. samples (Fig.  4).
The end point was 7.45 mg/1.  The difference in the answer obtained
with the titration curve as compared to the automatic titration
or the hand titration is due to the time required to run the
potentiometric curve as iodine gas is being stirred out, thus
producing a lower result.by the potentiometric method.

-------
                              TABLE 6
                       STANDARD  BOD   BOTTLE VOLUME
                                                                            24
BOTTLE
NUMBER

  76
  64
 137
 458
 426
 275
 472
 522
 838
  8
  95
 633
  9
 455
 440
 433
 849
 162
 997
 619
 204
 667
 164
 575
 610
  55
 687
 389
  27
 778
 771
 429
 775
 976
 786
 225
BOTTLE
VOLUME
(x -  x)2
305
304
305
306
302
307
304
307
305
303
304
305
304
305
304
305
305
306
306
305
304
305
305
305
305
304
307
306
304
305
306
305
308
303
306
303
.0081
.8281
.0081
1.1881
8.4681
4.3681
.8281
4.3681
.0081
3.6481
.8281
.0081
.8281
.0081
.0081
1.1881
1.1881
.0081
.8281
.0081
.0081
.0081
.0081
.0081
1.1881
.8281
4.3681
1.1881
.8281
.0081
1.1881
.0081
9.5481
3.6481
1.1881
3.6481
BOTTLE
NUMBER

 714
  30
  61
 132
  65
 644
 178
  15
 855
 521
  47
 586
 899
 595
  38
 347
 681
 279
 953
 624
 239
 927
 547
 519
  33
 779
 .774
 360
 662
  5
 301
 467
 446
 728
 736
 219
BOTTLE
VOLUME
(x -
305
304
304
305
305
305
304
303
306
305
305
306
305
305
306
304
305
305
305
305
305
305
306
305
303
306
306
305,, .
304
306
306
305
304
305
305
305
.0081
.8281
.8281
.0081
.0081
.0081
.8281
3.6481
,1.1881
.0081
.0081
1.1881
.0081
.0081
.0081
.8281
.0081
.0081
.0081
.0081
.0081
.0081
1.1881
.0081
3.6481
1.1881
1.1881
.0081
_ .8281
1.1881
1.1881
.0081
.8281
.0081
.0081
.0081

-------
                                                                           25
                               TABLE 6, Cont.
                       STANDARD  BOD  } BOTTLE VOLUME (Page 2)
BOTTLE
NUMBER

 151
 949
 773
  4
 982
 548
 176
 211
 571
 184
 696
 523
 325
 493
BOTTLE
VOLUME

 305
 305
 305
 305
 303
 307
 305
 304
 305
 306
 305
 306
 302
 302
(x - x)'

 .0081
 .0081
 .0081
 .0081
3.6481
4.3681
 .0081
 .8281
 .0081
 .8281
 .0081
1.1881
8.4681
8.4681
                                            BOTTLE
                                            NUMBER

                                             648
                                             893
                                             492
                                             646
                                             462
                                             770
                                             532
                                             224
                                             582
                                             444
                                             409
                                             616
                                              7
                                             944
BOTTLE
VOLUME    (x - it)2
 304
 307
 304
 305
 304
 306
 306
 304
 305
 306
 393
 305
 304
 305
 .8281
4.3681
 .8281
 .0081
 .8281
1.1881
1.1881
 .8281
 .0081
 ,1881
 ,6481
 .0081
 .8281
 .0081
1.
3,
H  -  |OO

x   -  304.91

 £(x - X)2  -   112.54

V  -  l(x - x)2
        n - 1

S  •  >Tv" -  1.07
                              112.54
                                99
                            1.14

-------
                             TABLE 7
                                                                      26
                       DISSOLVED OXYGEN




            AUTOMATIC TIT8ATION VS. HAND TITRATION
AUTOMATIC TITRATIONS
HAND TITRATIONS
mg/1 D
7.68
7.69
7.62
7.67
7.72
7.65
7.68
7.67
7.62
7.59
7.55
7.65
7.67
7.55
7.72
7.62
7.66
7.65
7.61
7.72
x
V
S
.0. (x - x)2
1 , 0.0009
0.0016
0.0009
0.0004
0.0049
0.0000
0.0009
0.0004
0.0009
0.0036
0.0100
0.0000
0.0004
0.0100
0.0049
0.0009
0.0001
0.0000
0.0016
0.0049
= 7.65
(x - x)2 = 0.0473
- £(x - x)2 • 0.0473 - 0.0025
n - 1 19
«• 4V • 0.050
mg/1 D.
7.73
7.67
7.70
7.70
7.61
7.69
7.60
7.70
7.71
7.70
7.70
7.60
7.63
7.63
7.71
7.62
7.69
7.61
7.67
7.61
x =
V =
S =
0. (x - x)2
0.0049
0.0001
0.0016
0.0016
0.0025
0.0009
0.0036
0.0016
0.0025
0.0016
0.0016
0.0036
0.0009
0.0009
0.0025
0.0016
0.0009
0.0025
0.0001
0.0025
7.66
- x)2 = 0.0380
£(x-- x)2 = 0.0380
n - 1 19
^V~ - 0.045
                                                                       0.0020

-------
g
c

u
                           27
DC
g

E
u.

2

UJ
                                                                                   _Q
                            CO

                            UJ
                            IT

                            D
                            o
                                                                                   _Q
                                                                                    r\w
                                                                                    Qo
                                                                                   H")JC


                                                                                      E
                                                                                     eo

                                                                                     8
             o
                                    8
8
"8
 10

-------
                                                                            Q
                                                                            O 28
                                                                                UJ
                                                                                kl»

                                                                           -83
                                                                           -§
o:
O
cr

z
UJ
UJ
Q
                                 O
                                                                              o
                                                                              jE
                                                                              «AT
                                                                              8
                                                                             •O
                                                                            o
                                                                            CO
                                                                             N
O
g

-------
                                                                      29
REFERENCES

1.  American Public Health Association, Inc.;   Standard Methods
    for the Examination of Water and Waste Water,  llth Edition. (1960).

-------
                                                                     30
                  TOTAL PHOSPHATE PROCEDURE
                                           method
    The acid molybdate - stannous chloride/is satisfactory for sea water.
    However, for the  Charleston Harbor Study samples, the turbidity
             *
correction step as outlined in Standard Methods is misleading.  The
high suspended solid concentration in Charleston Harbor produced high
turbidity interference with the spectrometric determination necessitating
a procedure modification in the turbidity correction step and calculation,
The time for color formation was increased to 13 minutes for the
convenience of handling 20 samples, the reagent blank.and three
standards.

Apparatus and -jteagents
    See Standardjttethods for the Examination of Water and Waste Water,
llth Edition.

Procedure
    Two 100 ml portions of each sample are taken for analysis,
one for color development and the other for turbidity correction.
To each of the 100 ml portions and, two 100 ml distilled water
blanks, add one drop of phenoIphthaliein : indicator solution.  If a
pink color develops, add strong-acid solution drop by drop until the1
color disappears, and then add one ml in excess to each portion.
    Digest each portion on a hot plate for 90 minutes, adding
distilled water to keep the volume above 25 ml.  Cool and to one
portion of each sample and one distilled water blank adjust the pH
by adding sodium Hydroxide until a faint pink color appears.  Restore
each portion to the original 100 ml with distilled water.
    To these pH adjusted samples and blank, add  4   ml of molybdate
solution, mix well and add 10 drops of stannous chloride.  Mix
well again and read on photometer 13 minutes after addition of the
stannous chloride-  Use I distilled water to zero the instrument.

-------
                                                                     31
    Zero the instrument again using the remaining distilled water
blank and read the digested turbidity blanks.
    Three standards are run with each set of samples.

Calculations

    a  =  O.D. of reagent blank (distilled water + acid + NaOH
           + molybdate + stannous chloride)
    b  s  O.D. of sample turbidity blank
    c  =  O.D. of sample
    Corrected O.D.  =  c - b - a

    mg/1 Total P04  =  Corrected O.D.  x F

   • Where F is a chart factor obtained from the three standards
by dividing the mg of PO^ in the standard by the corrected O.D.
for the standard.
    Table 8 shows the results from the analysis of 20 raw and spiked
samples using this modified procedure.

-------
                                                                           32
                                 TABLE 8







                           TOTAL  PHOSPHATES




                               REPLICATES
RAW
mg/1
0.11
0.11
0.08
0.09
0.09
0.10
0.10
9.09
0.08
0.11
0.09
0.08
0.08
0.08
0.09
0.11
0.13
0.10
0.11
0.09
x = 0.10
V - 0.004
19
s = VoT5obT

(x - x)2
0.0001
0.0001
0.0004
0.0001
0.0001
O.OOOQ
0.0000
0.0001
0.0004
0.0001
0.0001 .
0.0004
0.0004
0.0004
0.0001
0.0001
0.0009
0.0000
0.0001
0.000}.
£= 0.004
= 0.0002

- 0.00145

SPIKED
.WITH 0.25 mg/1
0.36
0.37
0.37
0.34
0.37
0.37
0.35
0.39
0.38
0.38
0.39
0.37
0.36
0.35
0.36
0.35
0.35
0.36
0.39
0.33
x = 0.36
V = 0.0054
19
S -10.0003 =
% Recovery 104
(x - x)2
0.0000
0.0001
0.0001
0.0004
0.0001
0.0001
0.0001
0.0009
0.0004
0.0001
0.0009
0.0001
0.0000
0.0001
0.0000
0.0001
0.0001
0.0000
0.0009
0.0009
4- = 0.0054
= 0.0003

0.017

Chloride" «  12,800 mg/1

-------
                                                                      33
LABORATORY DATA COLLECTION AND REPORTING

     All laboratory data were recorded tn ink on 5" x 8" bench
cards. These  raw data were then calculated and rechecked by either the
project chemist or laboratory director.  Once the data were rechecked
                                                       were
and rounded off to the most significant figures  they /tabulated
on engineering pads.  The bench cards were then separated as to
determination and specific study and      filed in chronological
order in a filing cabinet.  This enabled one to check any piece of
tabulated data on the engineering pads against the raw data in a
matter of several seconds. The sub-groups of data for this
particular study were routine data, intensive survey data (Surveys
AA, AB, B, C, D, and E) and special studies.
     The laboratory data were rounded off to the most significant
figures as illustrated below:
                        TABLE 9
                   DATA REPORTING
PARAMETER	 HOW REPORTED       	EXAMPLE	

1) Dissolved Oxygen         Hundredth               4.23 mg/1
2) Biochemical Oxygen       Tenth                   0.9 mg/1
   Demand!'
3) Chemical Oxygen          <100 mg/1               <100 mg/1
   Demand='
4) Chloride                 Three significant       15,200 mg/1
                            figures
5) Conductance              Expressed as Chloride
6) pH                       Tenth                    7.6
7) Turbidity
   0-25                   <25                     <25
   26 - 100                 Nearest unit             32
8) Total Suspended
   and Volatile
   Solids                   Nearest unit             12 mg/1
— About 50% of data collected was less than 1.0 mg/1. Rather than recording
  BOD    as <1 mg/1 it was recorded to the nearest tenth.
2/
— COD   • values of less than 100 mg/1 in salt water are not accurate and
  are meaningless. On all harbor samples examined the COD was less than
  100 mg/1.

-------
                                                                     34
                        TABLE 9 (Cont'd)
PARAMETER
9) Ammonia Nitrogen
10) Nitrite Nitrogen
11) Nitrate Nitrogen
12) Organic Nitrogen
13) Ortho and Total
Phosphates—
14) Total Coliforms
and Fecal Coliforms
HOW REPORTED
Tenth
Thousandth
Tenth
Tenth
Hundredth
Whole number
EXAMPLE
0.2 mg/1
0.002 mg/1
0.3 mg/1
0.6 mg/1
0.34 mg/1
1,240
                          per 100 ml
—' The precision of total phosphate determination in sea water
   is not       this good and should probably be reported to
   the nearest tenth.

-------
                                                                     35
                     SPECIAL STUDIES

     Results from the preliminary analysis of data collected during
the early intensive surveys and routine monitoring indicated several
areas requiring special investigation.  A series qf special laboratory
                                            more detailed
and field studies were initiated to develop/information on certain
segments of the system interactions.
                                                 These studies are
                                  table
described in Table   1°   i  This/is followed by a detailed discussion
of the methods and procedures used in those studies which were either
carried to completion or utilized special field and laboratory techniques,

-------
0)
43 • >•> co 0) •
T3 cd 4J d CUi-l 0) 42 • co
M 0) 4J •!-! 60d 4JT3J2 4J M J4











































CO
a
Q
s g
co
W K-3
M M

^ g
CO






















































s
o
I-l
£
1-4
Pd
O
CO
lyi
£^














w
co
2
p^
5




^
Q
£5
E~^
CO

fa
O

(jj
n3
£-^
H
H
o o d i3 d 60 d o M-I cud-i-i oicuo
43 3 0) 0) i-l fl Mid O 0) cd M i-l 4-)f>t_ici)
M TJ S 4J M 0) 42 M-IOIM cd v-l Tj 43 42
Cd O O -H 4-1 r-4 O 4-1 O • 4*! 424-10) ttJOl'rlO
32 i-i M T3 -i-i cd cd 130 fi 60 cd 4J cu M &o
dcxcus-'-'o s M-I o> cd -rt s d d >. cd 1-4 d
Q)td coMM-rl OMi-l 4J42 0) O 0) 0) i-l O
4J }_j 4J QJ p t jj uj d) QJ OT 0[J bO O * *^ r^ f^| QJ | i
O ctJ (^*i ctf o w 4-J nj ^3 Cj trJ ^^ 4J ^ w nJ C crJ
d O4-1T3BB CdQ)O Q).rli-40)Q) O«lJtO O
•r-IM d O "01-1644 MMtOdO) 43 i-l Cd i-l
m M-I • CU -1-4 CdOJtOO) COTJr-ICd Cd42 60-r-l
d 4-iNOdM 42cd3 cd cd42m424-lO)dM
OT3d'i-l'i-lcdO M4J§'d« CUddOCM >iT40)
•t-IO}0)MdbO 0) ^» BO 'i-l 0)drOT3^
4JN4JQ)cdMi-l 4JT)d'O'T3 i-ll30)M-l 42-t-l v4
4Jr-4OOM -H 3cd-H4J4J M IT) 4-1 4-1, M43OQ)
COCdOcdOM-lM 4JO03 0)4->*i-l 43 dQ)4-JMt3
0 I-i fl O 4J MPstXtCI 3t tn DC M 4J -H 43 &. O
i-icdcicd-r-i eo euMMTJcu o^do. 4JM-i B
vD 0)42 033 J>O4-Jd42 C060OOO) 0)OO**
T3 60 O M 0) T3 *H 4J d O 4-1 0) d i 1 i— 1 T3 T3 0) M
Bdo ood MtdQ)o 1-1 -r-i cd cdcucotoo
OtdMd M'i-4 MO 60 -H r-4 cd B430)edM^
M 4JOO3 M-IOdO)d M-IO.»T3 4-IOfl)
M-I » 'H -i-l -H O O O43OM-H OBtOO)4J 0) Cdr-4d
03d4->dC04-) cdOCI)4J McdCUMcd MTJMCUO
T3M CdCd CO i— 1 SO) C3jCOfX33 0)d4-*M*H
O*rld4JO 'r-l 42 i— 1 4J B 4JO 0)Cd CO 03 i— 1 42 B
0)Mcd03 dCO 4-1 4-1 O W O T-lcdrMB 0)0)cd4->M
r-4 6001OO4J M COCUO dO)O 0) CO-r-l O
i-l>~iM^4-l'i-l'i-l Od 4J 'rl CdO)O cd4J03MM-l
OMOd 4JCO CX-i-ITJ M r-l 4-1 i-H M Cd 0)4JQ)0)d
ocd 1-1 en rt o o o)>-.o cdcdcooiM-i --icuo34Ji-i
4J *X3 cd '^ P" M *O *Xi M M-I O3 S M 0) *•— ) cd M-I
coddeo 4JQ) (xcuded COM d M ocdM-i
4J43cd-i-ICOdT3 ><0)dM i-l r-l CU to en 0) O
d-H 424-10) CO i-l PL i-l (U Cdcd4JO) Q)O42>-i
o)Md4-i-i-iMa) dBwBS o>cdi-io) >, d 4-1 i-i u
B4JO 030)60 O d'HO -i-l MS -H 42 t3cdO4Jd
•r-i ff* R o M-I *o •*"( d) w i™^ ci< -i-i SOP-B >-H^-ID-cd HO)HtOt3
0) T) .... -
o 4-i d • o
M-id do) cd cd r-4 a> cuico T-I—
to OO T342 cd r-l 43 4J CU r-l
d'i-1 0)4-1 M60 0) O C i-l M-I Cd03>»cd
cdos - Otdcuo ETJ MT-IOTSO dMtd^M
O di-4424JM-IO3 60 4J -i-l 3 M OcdB'^TJ
0)Cu cdd4-i OMr-l 0)cd4J4Jp. 43 M>^
M01» 4JOT3M-ICO T) U cd -rl dOM^t04J Cd'rlO)4JB,CdO)M V-I(3M-I43
M-I CO B14-"1^1 K>Od4JC0430) CdOM
•HM-IQ) MMcd 0)i-l-HM-l cd-i-l -r44J d 3
4JOi-i -i-iQ)d4Jdcdpi 4JddMcd -1-14-10342
d M M-I 4J cu d 1-1 'd 4J co -i-i -ri o ES cddo
CUCUtd ddB^B'^^l'i-l 43 i— 1 cd O3 4->0)-r-IO)! •
*OO43 O*i-IOB^OO)03 dcdB^U44 43B^43 i— 1
•i-l M U O d-rlCUi-lp.O 0303 TJO OCU034J 0)
3 0) 0) *0 4J i—4 O P- 0) Cd r* *rl T3
OOd 043430)0)000) O M-I 42 O i-l O O M d O
HCO-H HWP.OITJOO'O HO4J4-ICO HBO)-rl B
03
4—1
d
i d o> a)
0) B 1-1
d 60-rl 1-1 d
O O T) M-I O
43 M 0) d O -rl
M 4-1 CO O M 03
cd -H -rl PH M
O S5 M-I 4J td 0)
o cd d >. a.
O O r-l 0) 4J CO
•r4 -i-l CO 3 B 'rl 1-1
d d o o o d Q
cd cd M-I o d -ri
bO M 4-1 O 0) r-l CD
M M ed r-l 43 cd >>
O O 05 fa Pn CO Q
36

-------

co Ol
43 01 CX
CX _C r-l >,









































TJ
01
3
0
•r-l
4-1
0
o
CJ
^^


o
1—4


w
M
IS


























CJ td 4-J CU 4-J
•r-4 M "d O
r-4 M 60 O W
a o 0 B o
cd M -r-i to
to -d to cu ex •
T) >> 3 43 0)
>-, 45 TJ H 01 -d
43 43 3
5 -d 4J 4-1 .
CU O CU • -r-l
43 r-l N CO 43 r-4
4-1 M-4 -i-l >, 4-1 -i-4
0 r-l CU -r-l B
0 -r-l •!-! f> 3 1-1
-H 4-1 M CO
rl 3 3 >>
CU CU CO r-4 M-l
•d 4-i cu i-i o
gcd *-t cu td
5 3 p. o cu
•d £-rl 0)
CU 43 0) 4J 4-1 I-i
to CO 43 O CO 60
CU CU O 4J -r-4 CU
3 J-l to O 4J -d
M-I i-i td
to bO CX 4-1 0)
4-1 0) 0 CO 43
0 B •'-| CU 4J
O) Cd i-l > T)
B CO CX -r-l 01 0
oi B co to M-I
to cu cd c3 cd cd
3 43 to CU CX 4J
to 4-1 4J 6 to
cd cu 0 o cu
0) 60 B i-l O O
S 0 cd to
•ri to to 0) td
>> to 3 M
w a 01 o cu o
•r-l 43 M-4 3 4-1
01-44-1
•rl CU 4J Cd Cd
t-l "d T3 CO 4J 4-1
cd o 0 td cd cd
co B cd i-i "d *d


CJ
•rl >, CU
r-4 4J ,0
3 rl 1-1 4J 5
Cd O 0 0 O
to 43 1-4 -i-l CU M-4 td i-l
T> M •-* 43---I M^ >>
^» td cd 'd 4J co 0 4-i
43 W tO CU "d Cd 1-1 «rl
> 60 0 0
CU 0 01 H 0 Cd Td I? 'i-l
43 O 43 0) *r4 CU O i— 1
4J4J4JCOrlCQCOr-4td
CO 43 3 >", 3 CO
M-l Ol Ol O *d 0) 01
•rl r-l U > 01 to M-4
043'oo>!coT3atno
•rl O to ft 4-1 r-l M-l 0 •!-!
gO. 4J O CU 3 O 4-1
M-l 01 3 4-1 r^ O M *rl 3
rlCJO4->43
4J -H rl U3 M-4 O -rl
CUl-l-drlP-Or-l -rlrl
'd3cooi4-i'dOO)ca
OOOi-l43COOrl'H





r-l
CU
*d
o
S

CJ
•rl
i—4
3
td

•d
^>
33
CO
0
O
•rl
4-1
cd

4-1
0
CU
o
0
o
o

4-1
0
cu
•H
to
4J
3
0
0
S
o
0
^

M-4
0

CO
0)
r-l
CX

cd*
CO
M-l
0

to
cu
•H
J.J
cu
CO

<




M-l
O

CO
4-1
0
CU
M-l
M-l
01

Ol
43
4J
CU
0
•rl


01
4-1
CU
O
H
0
O
•rl
4-1
td
f>
i-l
ai
CO
cu
to
dj

cu
r-l
fX
§
cd
CO
o
0
cu 0
3 0 M
rj* "r-l O
O) 4J M-4
to cd
M-I > -d
to Ol
0 Ol ^
CU CO CJ
p> CU CU
•rl I-l 43
60 CX O

cd 01 CU
43 M
4J 4J 01
cd S
M-l
T3 O CO
CU 4-1
N CO U
>, CO 01
r-l 0) M-l
Cd 0 M-4
0 01 01
td ?>
•rl 0
0 4J O
Ol O -rl
43 CU 4J
4J M-4 Cd
M-4 J>
•d cu to
0 01
cd cu co
43 CU
•d 4J M
0) PM
f> CU
to 0
01 -rl •
co S ai
tu M 3
r-l 0) C71
CX 4J -rl
01 0
01 *d 43
r4 CJ
01 0 CU
3 4J 4J





M-4
O
4J
0 >, •
01 CJ CO
•rl Cd 4J
rl rl r-l
jj 3 a
3 0 co
0 U 01
cd M
M-4
O Ol r-4
43 td
04-10
0 i-l
•rl 0 4J
4J 0 >,
cd i— ^
t> to td
rl 01 0
Q) r-l Cd
to cx
cu B cu
to a 43
(X CO 4J





















0
CU
60
0
U
4-J
•r-4
0

r-4
td
4-1
0
4J

n •
0 CO
Ol 0
60 O
0 -rl
to 4J
•rl 0
0 -rl
o) to
4-J O)
Cd 4J
rl CU
4^ *d
•rl
0 01
4J
« Cd
0 43
Ol CX
60 W
O O
to 43
4J CX

'0 r-l
. cd
Cd 4J
•rl O
0 4J
O
6 *^
R 0
S cd



























0) 0
IJ 0
Ol T-t
S 4J
td
r-l M
•rl 4J
0 0
Ol
r-l 0
cd 0
rl 0
cu cj
0
•rl 0)
B 'd
•rl
to X
O) O
-d 1-1
0 -d
0
•d o
01 43
4J to
o td
Ol O
r-l
r-l 01
O 01
0 M
M-l
CO
cu to
i-l O
ex M-I
c*
to 'd
CO 01
N
to >•.
Ol i-l
4-1 Cd
td 0
& cd


0)
o
to cd
0) M-4
r-4 rl
43 a
43 CO
3
43 rl
01
CO 4-1
cd td
60 £

M-l 01
•--I 43
4-1
CU
0 4J
•rl td
B


















•
M
01
4-J
01
CO
cd
60
o
to
o
•H
s •

0
o
to
r-l
Ol
4-J
td


td

60
0
•r-l
CO
3





O 1
4-J CU
1 1
-d td
0 0
td o
43
o) to
•d cd
•r-l O
X
o cu
•i-l 43
-d 4J
0 CU
O 4J
43 Cd




















































0
•rl

ej
0)
4-1
CO
^
CO

cu
t3
•r-l
o
•1-1
to •& to bo-d























cu cu
4J f>
01 i-l
-d cu
to
0 43
H 0
CU

•rl
X
o
•rl
Q

0
O
43
to
td
CJ

to
to
to

Cd -r-l
U 4-1
to
cu cu
to P>
CU 0





















o
43
td
CJ














































































•
CO

cu
4-1
td

cu
0
•r4
M
a
4J
to
cu




















I-l
o
43
to
cd
43
cu
43
4-1

0
•r-l

CO
0
O
•i-l
4J
cd

CO
to
cd
i-i
3
60
CU
M

i-l
td
*o
cu
4-1
O
cu
i-H
r-l
O
O

CO
0)
i-l
ex
c*
to
CO







M-l
O

4J
0
a
o

Cu

cu
43
4-1
CU

rj
CO
td
o>
3
o
H





0
O

to
td
CJ

CJ
•r-i
0
cd
60
r-l
O

•
I-l
cu
N
*>^
r-l
s


CO
a
o
01
0
td
0
o
43
M
cd
CJ

J
0
Ol
PQ

cd
43
4-1
•r-4
Jj

T)
CU
N
^
r-4
td
0
cd

to
to
cu





CO
0 4-1
0 r-l Q
•H a O
4J 0 CO O
3 4J CU
1-1 to -d
O •* 0
co i-i a) cd
CU 43
0 4J 4J Q
•H td O
SUM
0 CU
O M 43 B
43 O 4-1 O
r-l 43 CU I-l
Cd to 43 M-l
o cd ?

O 00)
•r-l CU C 0
0 43 ---1 -i-l
Cd 4-1 M-l fd
60 0 4J
M C 0 43
O -rl CJ O










• 1 I«M -



























































fu
?•
J_l
o

cu
r-l
n
cd

o
to

-------
13
 cu

 0
•rl
4-1
 0
 O
 U




CU
60
TJ
CU 0
fi *rl
TJ
TJ
0 CU
O CJ
co cO
fi " — 1
CU ft
4-1
CU TJ
D-l 0
cO
cO

42 fi
4J O
•rl 4J
3 cd
J-l
TJ O
CU 43
4J Cd
0 r-l
CU
r-4 CU
r-l 42
O 4J
CJ
0
CO 4-1
CU 0
t-l -rl
ft
g .|_.i
Co ^£4
CO 60
3
4J 0
0 fi
CU 43
a
•rl CU
TJ fi
cu cu
OT ?

0
•rl

r* 0
r-i cu
CU 60
•rl £?
4J 0
cO
4-1 CU
•rl 42
4-1 4-1
0
cO >-.
cr o
4J
cu cd

3 0
CO 43
cd cd
g"
cu
0 43
t^J JJ











CU
^ CO
Cd -U
4J 0
O* OJ
£> B
•rl
0 TJ
cu cu
60 CO
&t
K ^»
O 43

TJ
cu
J^
3
• CO
M CO
CU CU
4J B
cd
5 co
cd
cd S
cu
CO CU
42 -3
CO 4-1
CU
M 0
M-l 4-J

42 4J
4J CJ
•rl CU
S ft
CO
TJ CU
cu M
r-l
r-l 42
•rl 4-1
M-l -rl
CO
>. 0
O O
43 -rl
(| ^|
cd ft
° @

0 CO
0 0
i— 1 O
iH O
CO
60 0
CU
42
CO
•rl 1
r-4 CU
43 i-l
CO ft
4J CU
CO TJ
CU
0
O Q)
4-1 60
co X
0 0
•rl TJ
4-1 CU
cd >
3 i-i
4-> 0
•rl CO
CO W
•rl
60 TJ
0
•rl r-l
X Cd
•rl -rl
S 4J
1 0
0 CU
O 4-1
0 0
ft
TJ
£3 m
cd o

60 W
0 4-1
•H -rl
!y* d
•H -5
0 t— 4

42 CU
ij cS
o cu
CU 6043 M
^ ^*
•t-i X
M-l O




4-1
{3 ^
•rl CU





*T^
0
cO

0
O
43
cu fi
M cd
3 0
4J
CO CJ
•rl *rl
0 0
60
- fi
0 O
0
•rl -
4-1 CO
•rl TJ

^O ^~^
cd o
CO
0
M CU
i-4
•H
• 4.)
co cd
4J r-l
0 0
CU J>

•rl 4J
T3 O
CU 0)
CO U
!-l
cu .-rl
0
60 -rl
•rl CO
N r-l
•rl 10
t-l -rl
•rl fi
43 CU
CO 4J
4J CO
CO B

0 0
•rl -rl
0
TJ CO
CU 60
N fi
•rl O
t-l
M-l Qt
4J fi
3 4J
























£
g
M-l

TJ
CU
4-1
0 •
cu co
^ 0
r-l 0
O -rl
U 4J
cd
CO 4J
4-1 CO
0
cu fi
B o
T3 fi
cu cO
CO 42












































r-l
CU
•rl
4-1
cd
4-1
•rl
4-1
0

g
0
O
•rl
4J




CO
cd
S

0
o
•rl
4J
CJ
cu
CO
CO
CO
o
rl
a

J_j
cd
r-l
3
CJ
•rl
CJ
•rl
B
CU
CO

cd
_-)
n)
(->
»j-*
jr*.
O
•H
42


rl
cu
43

flj
42
CJ

}_l
cu
4J
cO

CU
42
4J

ft 4J


CO
0
O
cr cj





































































CU
fi
3
CO
cd
cu

0
H









O
•rl
42
4J
0
V
fP

3
4J
•rl
CO

0
H

0
cu
60

X
O
cu
42

CO
4-1
0
CU
e
cu
rl
3
CO
cd
CU
B

0
o
•rl
4J
CO
M
•rl

CO
CU

cd

Q)

4J

O
4-1

4J
O
cu
ft
CO
cu
M





























TJ
TJ CU
cu >
4J r-l
CO O
CU CO
rl CO
•rl
4J Tj
•rl
l-l 0
•rl
4-1 CO
0 4J
3 0
CU
4J B
Ctt CU
O M
43 3
CO
cd cO
cu
M-l g
O

cu .
TJ E
•rl 0
CO 4-1
4->
0) 0
r^ J.Q
4J
CU
M 42
CU 4J
0 0
O
TJ)
CU >,
M i— 1
cu a
s &
O 'rl
r-l M-l
0
cu
cu
&
O 4J
4-1 CU
43
TJ
0 CO
CO ft
•rl
CU 42
U CO
CO 0
M-l O
CU 4J
4J CO
0 r-l
•rl CU
M
4J
0 ft
CU 0
•rl'cu'
•d >
0) CU
CO TJ



























TJ
CU
4-1
CU
cu r-i
42 ft
4J B
o
cu cj
0
•rl CU
fi CU
cu 3
4J
CU CO
TJ 4J
CO
O CU
4-1 4-1







60
0
•r4 ^Sj
0 CJ
•H cO
cd i-J
4J
43
O •
CO
M 3
O 4-1
M-4 cd
rl
co cd







r-l
t-l
3
M-l
TJ
CU
4J
0
cu
•>
cu
fi •
ft 4-1
0
TJ ft fi CU
O ft CU E

t-l i-l
r-i cu
CO -rl
CJ M-l
•rl
TJ r*^
O ft
•rl Cd
fi 0
CU -rl
ft B

cu t-i
TJ CU
cd M
B £*•*

cu
rl •
CU 0
3 o
•rl
0 4J
cu cu
60 r-l
>-. ft
X cu
O TJ


4-1
0
cu
6^^
i^»
•rl H
TJ O
CU 4-1
CO Cd
rl
M-l O
0 43
cd
4J r-l
0
cu cu
4J 42
0 4J
o
CJ •>
CO
CJ 4J
•rl -rl
0 CO
id o
60 ft
rl CU
0 TJ
























42 cd
4J
cu cu
B 42
4-1
^>
fi 42
CO 4J
CO -rl
CO 3
cu
CJ CO
CU 4-1
0 r-l
3
CU CO
42 0)
Ij Ij
ft 4J
O 0
t-l Hi
CU 4-1
> CO
CU T-l
TJ CO
0
O O
4-1 CJ


•
0
TJ 0
0 -rl
CO 4J
cd
CO N
CU T-l
•rl r-l
TJ -rl
3 4J
4J 3
CO
0
cu cu
A! 60
cd >i
4J X
ft O
3

0 4J
CU -rl
60 CO

X 0
O i-l
























3 3
0 fi
ft 4J
0 CO
cO 0


TJ CO
0 -n
cd 42
4J
cu
Cj ILf
•rl O
4J
CU
4J TJ
0 Cd

U 60
•rl 0
M-l -rl
M-l CU
3 43
CO
CU
M-l CO
0 3


















































                                                                                                                          38

-------
                                                                      39
   ORGANIC CARBON - ORGANIC NITROGEN RATIOS OF SEDIMENTS
     The purpose of this study was to characterize sediments as
                            to
   organic or inorganic and/identify the source of any organic
material as domestic or industrial by organic carbon-organic
nitrogen ratios.  This study is based upon the premise that the
ratio of organic carbon to organic nitrogen (C:N) in sewage is
sufficiently different from the corresponding ratio in the major
                 types
industrial waste/present and that this ratio can be used to
differentiate between the two types of wastes in sludge deposits.

Procedure

     Sediment samples were taken with a scoop sampler such as used
by the Corps of Engineers.  The samples were dried in an oven at
103°C overnight and then ground and stored in glass vials.
     The chemical oxygen demand of the dried samples was determined
utilizing the dichromate reflux method with the mercuric sulfate
modification.  The size of sample varied from 0.0300 grams near the
paper mill outfall to 8.0000 grams in clean portions of the Cooper
River.  The weighed   dry samples were placed in 500 ml (J24/40)
Erlenmeyer flasks and 50 ml of distilled water added.  The   COD
procedure outlined in the references given in Table   4     was
followed after the distilled water was added.  The organic carbon
content was then stoichiometrically calculated.
           C + G£  	^  C02
For every one gram atom of carbon oxidized, 2.67 gram atoms of oxygen

-------
                                                                      40
                                     simplification
 is utilized.  This  equation  is   a  /      and does  not account  for.
 all  intermediate  reactions,  for  organics not completely oxidized* or
 for  inorganic oxidation.
     The COD value  is  substituted in the chemical  equation above for
 the  oxygen, thus  to calculate the organic carbon the following
             equation  is  employed:
     mg of organic  carbon/gram dry  sediment  =

            (a - b)    (N)      (8)	
        2.67  x weight  of dry sediment  in grams
 a =  ml Fe  (1^4)2(804)2  used for  blank
 b =  ml Fe  (^4)2 (804)2  used for  sample
 N =  normality of Fe (^4)2  (804)2
 The  organic nitrogen was  determined by  the micro-Rjeldahl /procedure.,
                                                  .which varied
               A  weighed  amount  of  dried sediment/from 0.0200 gram
                     t
 near the paper mill outfall  to 1.5000 grams in clean portions of
 the  Cooper River, was placed in  a micro-Kjeldahl digestion flask
 and  50 ml of distilled water added.

     % organic nitrogen   =    mg of O.N. in aliquot  	  X 0.1
                              wt. of dried samples in grams
     A summary of the data collected during this special study is
 shown in Table    11       It can easily be seen from the-se-data that
 there is a distinct  difference in the composition of  the sludge
 deposits, depending  on the source of organic material, and that the
 organic carbon to organic nitrogen  ratio presents a  clear indicator
 of this source.   Table   12    presents  all  of  the data developed
from this study.

-------
  co
  H
  H


  £

  S

  O
  H
  EC
  W
  PQ
  co
  Pi

as
PQ 





•
-I
t

J

•f-
r
t
(



'
1 r-l
•H T-l
& s
§ c
cu co cu

CO 0 Cfl
co o m
3" j-i i—i
'4-4 3
T3 CO
cu rn
4J 4J I-l
ctt y cfl
0) 3 M
M *d 4J
4J 0 3
C M CU
p PL, C!
CM

T)
w cu
0) 1 4-1 •
4J ,13 Cfl CO
to 3 cu cu
Cfl CO rl 4J
S 4-1 CO
43 C Cfl
CJ 4J 3 ?

4J ,5 >,r-l
CO i-l r-l
d) - 1 .-I .,-1
B ' •' 0

•§ n
cu

cfl ( cd
c2 • ft


•
r* 1
,-l








. ,
o
o
•
o
CM
CO
0
•
o

CM
0
•
O

in
o
0




M
cu •
ft TJ
O CO CU
O 0» 60
U 4J M
« co cd
rl rl Ctt JS
CU 4) S U
ft f> CO
ftl-l O T-*
D OS 25 P
r-l
C'
00
oo
o

o
oo

co
0
O

vr
Oj
*
LO

m
CM
•
CM

>^j-
oo
CO
r-l




£
i— 1 Cfl r-l f>
Cd CU r-l -rl
•rl C -H Pi
W ^4
4-1 CO rl
CO 0) M 0)
3 4J CU PW
T) CO ft O
C cd cd O
M JZ fri CJ
CM

vO
eg
o
r^.
p**
r-l
•
o
OO
—1
 CO
Pi cd
P JS

00

r-l
^
CM
O
co
o
^f.
CO
CM
•
o
oo
CO
CO
*
o

^-J-
l/">
•
co

0

4J rl *O
d cu c
t) VH Cfl
ro

•
in
CM

CM
r-l
O
00
r-l
r-i
•
O
r-l
CO
r-l
•
O

m
r-l
•
CO

CO
!>H
•
CN

0
o
m



CO
CO
cu
4-> •
<£ CO M
cfl CU

(fl *rl
•rl CJ Prf
P i-l
4J 4J >-.
CO CO CU
3 CU r-l
"SS-S
r-l Q >,
M •
Cfl CO
4J CU
3 60
43 rl
•rl Cd
M ifi
*j a
CO
O *rl
S3 T3

f*1*
•
0
r-l
O
m
o
o
CO
r-l
0
•
0
CT.
ty\
o
•
o

m
m
•
o

co
r-1
•
O

vD
CM
r-l




M
O

i.
w

I,
cu
4J
3
Co

-------
                                                                              42
                                    TABLE   12
                       ORGANIC  ANALYSIS  OF  BOTTOM SEDIMENTS
Station
SA-1
SA-2
SA-3
SA-4
SA-5
SA-6
SA-7
SA-8
SA-9
SC-1
SC-2
SC-3
SC-4
SC-5
SC-6
SC-7
SC-8
SC-9
SC-10
SC-11
SC-12
SC-13
SC-14
SC-15
SC-16
SC-17
SC-18
SC-19
SC-20
1
Date
11/3/64
11/3
11/3
11/3
11/3
11/3
11/3
11/3
11/3
11/4/64
11/4
11/4
11/4
11/4
11/4
11/4
11/4
11/4
11/4
11/5/64
11/5
11/5
11/5
11/5
11/5
11/5
11/5
11/9/64
11/9
% Volatile
Solids
3.1
0.7
13.3
7.6
6.1
1.0
2.9
1.7
14.4
1.0
12.8
13.2
12.2
12.5
13.1
12.7
10.3
12.8
5.0
13.3
1.1
9.3
8.7
11.2
8.9
12.8
9.7
8.6
9.8
% Organic
Carbon
0.13
0.11
5.00
2.31
2.13
0.18
0.90
0.65
4.01
0.18
4.45
4.22
3.73
3.99
3.63
3.97
2.40
4.94
2.09
4.56
0.30
2.34
3.63
3.49
2.83
5.87
2.71
3.30
4.14
% Organic
Nitrogen
0.010
0.005
0.118
0.131
0.124
0.111
0.054
0.037
0.314
0.011
0.337
0.319
0.275
0.136
0.295
0.334
0.338
0.180
0.093
0.418
0.021
0.177
0.213
0.237
0.203
0.353
0.167
0.197
0.224
-' OC:ON
13.0
22.0
42.4
17.6
17.2
16.4
16.7
17.6
12.8
16.4
13.2
13.2
13.6
.29.3
12.3
11.9
7.1
27.4
22.5
10.9
14.3
13.2
17.0
14.7
13.9
16.6
16.2
16.8
18.5
Theoretical Oxygen
Demand
mS 6*2 / S"1 dry wt.
3.9
3.2
138.9
67.7
62.5
9.9
26.5
19.0
121.4
5.3
134.2
127.2
112.2
112.7
110.4
121.3
79.5
140.1
80.0
140.8
9.0
70.6
106.6
104.0
84.8
172.9
80.0
97.1
120.8
I/
   Ratio of organic carbon to organic nitrogen

-------
TABLE 12 (Cont.)
                                             43
Station
SC-21
SC-22
SC-23
SC-24
SC-25
SC-26
SC-27
SC-28
SC-29
SC-30
SC-31
SC-32
SC-33
SC-34
SC-35
SH-1
SH-2
SH-3
SH-4
SH-5
SH-6
' SH-7
SH-8
SH-9
SH-10
SH-11
SH-12
Date
11/9/64
11/9
11/9
11/9
11/9
11/9
11/9
11/17/64
11/17
11/17
11/17
11/17
11/17
11/17
11/17
11/12/64
11/12
11/12
11/12
11/12
11/12
11/12
11/12
11/12
11/12
11/12
11/12
% Volatile
Solids
12.5
14.3
8.7
13.6
7.4
10.1
0.6
0.2
3.2
.0.1
t
0.01
0.4
0.2
0.02
0.02
__ _
10.8
7.5
1.9
1.8
4.1
	
	
	
	
0.01
...
% Organic
Carbon
5.45
6.34
4.49
13.84
2.25
4.85
1.52
0.03
1.70
0.02
0.03
0.02
0.04
0.05
0.06
3.18
2.12
1.98
0.49
0.34
1.26
0.56
1.06
0.28
0.55
0.26
0.13
7o Organic
Nitrogen
0.310
0.398
0.171
0.287
0.088
0.289
0.008
0.002
0.077
0.003
0.003
0.002
0.003
0.003
0.003
0.234
0.244
0.228
0.070
0.035
0.090
0.051
0.099
0.029
0.037
0.026
0.013
OC:ON
17.6
15.9
26.2
48.2
25.6
16.8
190.0
15.0
22.1
6.7
10.0
10.0
13.3
16.7
20.0
13.6
8.7
8.7
7.0
9.7
14.0
11.0
10.7
9.6
14.9
10.0
10.0
Theoretical Oxygen
Demand
mg 02 / gm dry wt.
159.7
187.5
127.7
382.6
64.1
142.7
40.9
0.9
48.9
0.7
0.9
0.6
1.2
1.5
1.7
95.6
67.8
63.3
16.3
10.7
37.8
17.3
32.8
8.8
16.4
8.1
4.1

-------
TABLE 12  (Cont.)
                                               44
Station
SH-13
SH-14
SW-1
SW-2
SW-3
Date % Volatile
Solids
11/12/64 5.0
11/12
11/12/64
11/12
11/12 3.4
% Organic
Carbon
3.29
3.02
0.77
0.60
1.22
% Organic
Nitrogen
0.317
0.267
0.115
0.056
0.043
OC:ON Theoretical Oxygen
Demand
nig 02 / S1™ dry wt«
. 10.4
11.3
6.7
10.7
28.4
102.3
92.8
25.8
18.6
34.5

-------
                                                                      45
DYE DISPERSION STUDIES
     During the initial planning of the Charleston Harbor Project,
it was envisioned that the Corps of Engineers hydraulic model would
be used for examining the characteristics of the harbor under conditions
of reduced inflow.  This approach was predicated on the premise that
the dispersion characteristics of the model could be verified by a
series of prototype dye studies which would establish the reliability
   the
of/model for use as a predictive tool.  A series of six dye releases
was planned for developing the necessary prototype information.  Only
two of these six releases were   made   , and the data obtained were
not usable for model verification.
     The first dye release was made between the jetties at the entrance
of the harbor.  The purpose of this release was to establish the
hydraulic characteristics of the bottom currents in the salt wedge.
Two barrels of 40% Rhodamine B in acetic acid were injected into the  ,
center of the channel at a depth of 30 feet  during low water slack
tide.  A slack water monitoring program was started on the following
high water slack and was to be continued until all traces of the dye
had disappeared.  About three hours after the dye was released, winds
reaching velocities between 20mph and SOmph hit the harbor from a
direction exactly opposite the direction of the flooding tide.  As
a result,waves between 4 and 6 feet developed, and the dye from the
salt wedge was brought to the surface.  After the following ebb tide,
all traces of the dye/vanished.
     The second dye release was made in the Ashley River at River
Mile 7 as measured from the channel junction near Fort Sumter.  Two
barrels of    \ 20% Rhodamine WT solution were injected as a line source

-------
                                                                      46
in the center of the channel at high water slack.  A four-hour frequency
sampling program similar to that used for the intensive surveys was
initiated at the time of release and was to be continued for a period
of five days.  Approximately six hours after the dye was released,
a marked increase in turbidity was noted in the harbor in the vicinity
of the dye cloud.  Approximately two hours later all traces of the
dye/disappeared..  No:  further dye studies were attempted.

-------
                                                                      47
HYDRAULIC MODEL STUDIES
     Two types of studies were conducted on the Corps of Engineers
hydraulic model of Charleston Harbor.  The first type consisted of
a lengthy series of dye tracer studies at various conditions of
fresh water inflow; and the second type consisted of a series of
salinity studies to duplicate the last four intensive surveys and
to vary the similitude of the model.  The dye studies were scheduled
                         previously discussed
and conducted before the/verification studies because of time
                                                        later
considerations.                The verification studies/demonstrated
that the model,  insofar  as project data were concerned, would not
adequately reproduce the salinity distribution to enable*the oroject
to make full use of all of the model dye data.   Nevertheless . both
types of model studies produced useful information and gave additional
insight into the hydraulics of the harbor.
     The salinity verification studies were based on the concept that
the chloride ion in both the model and the prototype systems should
have a similar distribution.  Since the project-/already processed the
chloride data from the intensive surveys, it  would be possible;, by
sampling at the same locations and frequency in the model under the
same conditions of fresh water inflow to reproduce the prototype ,data.
                                                           in the model studies.
Table   13   shows a summary of the intensive surveys used/  The model
was programmed to run in one 16 hour period the inflow hydrograph
                                covered by
that existed during the period / intensive surveys B through E.  The
sampling stations were marked.,and the sampling procedure and • schedule were
developed to reproduce the prototype data.  During the test approx-
                                        samples
imately 2400 samples were taken.  These/were analyzed using the
modified chloride procedure with automatic titration, and the data
were compared with the prototype data.
     Three separate types of data comparisons were made.  The first
involved computing the mean chloride concentration at each station

-------







co
w
M
CO
iJ
W
§
a

u
M
h4
P
3
Q
SH
K

2
M
O
W
t/1
S3
W
>"
M
P>
w
w
r-l1 5"
M
W
!S
W M
M c~f
PQ ^
2M
fa
O

ttJ
^C
*y
CO













































w
Q
H
h4 W
W O
Q 55
O ^J
5d p3


a-
M
H O >H
W 2 W
S O H >
^J [23 QJ Q^
[zJ ^J 5 5
s o3 Q co







tT^ ^<4
CO & W
w o >
fvj . "^ rv^
fa fa 5
S co
W M
o o
•< & 2
OS W H
W H Pf! CO
> < H
N W O
O > H CO
S FT! O SH
CrT p-l fvj rffj
h4 CO fa Q


a
o
H M
s«s
co i-J
a! w co
W J
(v^ p | JT{
a co w
O co
KJ 0
PQ H
S ^
S CO
B
en



r-l i-l i-4 r-l
• • • •
U-» lO IT) IT>






CJ\ ^-1 CM vO
O r-4 -

••st" ^ 
-------
                                                                     49
for each survey.  These data are shown in Table   14   .  A comparison
                                                 7
of the means showed a better similitude at the higher fresh water
inflow rates.  The second comparison used was to compute the surface
to bottom ratio of the chloride concentrations to see if a similar
density stratification existed in both systems.  These data are
shown in Table  15      The third method of comparison involved
making a cross spectral analysis of the response of the chloride
concentration to the river inflow.  This type of analysis showed the
relationship of the variations in one time series record to the
variations in a second time series record.  There were two types of
useful information developed from the cross spectral analysis.  The
first was a frequency spectrum of the response of the variance of
one record (output) to the variance in a second record (input).
By graphically comparing the response spectrum of chlorides concentration
to river discharged for model and prototype, the similarity of the
two systems could be verified.  This was done for all stations for
all surveys and it again showed a decrease in similitude as flows
decreased.  The second type of information developed from the cross
spectral analysis was the overall response of the chlorides to fresh
water inflow.  These data in grams per liter per cfs are shown in
Table  16   .  Again there is an apparent loss of similitude with
decreasing flow.  Due to this apparent loss of similitude with
decreasing flows,  it was felt that the model dye data would be of
limited use for predicting the proposed future low flow conditions.
     The model dye studies did provide some useful information on the
harbor system.  A total of 18 dye studies were completed.  A summary
of these studies is presented in Table  17      These da-za were used
to compute mean residence times and mean flushing times for the
harbor system.The method of analysis was to plot dye particle distribution
vs. time after dye release, assuming a log normal distribution, and to
use the 50th percentile time as the mean travel time from release

-------
^
w
o
s
w
w
Pi M
co £•<
O
1
Pi
o
o
p s
w
—N > W
1 "g
N^_X r .
^•^ t-l
O
CO Pi
W PH
Q
Pi
O
32
CJ
O r7 ,J
01 W
CO T3 Q
WO O
s S US
> w w
^ r**\ M
~3" <£ co 5 P"i
S >> H
W 4-1 O
3 r .— K^
i— i Pn O H
PQ 0 4J Q
< O Pi

O P<
M
Pi
P*5
S
O
CJ iJ

1
i
w w
> PL|
pi Ix
£3 H
CO O
g
I
a
o
H

H
CO
in i~* mo
o co r^- oo
O CO OO r-4
r-l r-l r-l



•sf VD 1** i^ N^" -vj"
C^ ^"^ If) ^^
oo *
r-4 CO
r^ o
r-4


CO ON
ON r*
00 CM
r-4






in in
VO r-l
r-l



I-. o
OO CM
I"* CO
r-l








vD *^J"
ON vO
vO CO
r-l




O CO
vt CM
vO CO
r-l


co pq



•vf r-l VQO r-4O t^CO inr-4 COvO
covo cMin •^••vf mo in i** oo-d*
oor-i inoo VOON cMvo moo OCM
r-l



COO OCO  ooco oovo CMd-oo Or-i




CMCO »>9
-------
1
w
Q
O
W
Is
pi PM
S ><
00 H
8
o
1
Q
W H
Q 0
M H
0 Crf
O
a
O X-N
H --I
H <1>
O T3 i-q
MO W
• g* 1
EH • s
w
W P> O
i— 1  oo in m m


00 OO OO ON t— ( CM
CM -st -* i-1 CN| vO
f^ vO ^* vO 1*"* "st

ON r*" CM oo co co
O ON OO O 
-------





















o
H

CO
w
Q
M
Cd
O
o
x-~\
0 &
o
W —
C/D rH
rS ^""""^ ^^
O 6 rH
PH fab 0)
CO v-' T3
a £
Wr— .
|J O •
. 1 (Vj y)
CM £E
WOO)
> CO &.
O M >>
0 4J
f-M O
O Pi •*-*
M O
O M PH
CO Pi ^
M
§
CJ

















t-J
W
Q
O

>H
H W
CO PH
>H
H
O
H
O


^
w
Q
O

g«
H PH
CO >H
H
O
£-|
Q
P-5






IH
w
Q
O
cj g
PH
g
H W
CO PH
t^
H
0
H
O
PS




jj
P3
Q
O
s
p
££
b-l
fH
O
s
eu
2
0
H
in
CO
vt ON
rH in
i — 1 rH
O O
o o
o o



rv, cM
vo m
rH rH
O O
O O
o o
rH CM
vt CM
O rH
O O
O O
o o


CO vO
O 00
rH 0
0 0
0 0
O O





vO vO
oo m
rH CM
o o
o o
o o




CM 00
vO ON
CO CM
O O
0 0
O O



rH in
CO CM
CO CO
o o
o o
o o


vt 00
ON rH
CM CO
o o
o o
0 0


W M
rH rH

rH >t
rH rH
•-I i— 1
O O
o o
O 0



ON CO
O O
CM CM
0 0
0 0
0 0
ON CO
r*v \&
O O
o o
0 0
o o


oo in
oo co
O rH
0 0
0 0
0 0





ON r->
o o
CM rH
0 0
0 0
o o




m co
m ON
rH rH
0 0
o o
0 0



o m
o m
CM rH
O O
0 0
o o


in co
rH rH
rH  m
CO r-H
CM CM
o o
o o
0 0



00 rH
CM rH
CO CO
o o
0 0
o o


CM 00
rH CO
CM CM
o o
o o
0 0


CO M
in m

CM 00
CM rH
rH CM
o o
0 0
o o



rH rH
oo co
rH CM
o o
o o
0 0
rv CM
oo co
0 rH
o o
0 O
0 0


O rH
vO O
0 rH
o o
o o
o o





vt in
vt vt
rH CO
o o
o o
o o





I— 1 rH
o o
o o
o o




CM m
m ON
rH rH
o o
o o
o o



rH 00
oo rv>
rH rH
0 0
o o
o o


vt CM
CM ON
rH CM
o o
o o
o o


co pa
tv» rv.

O CO
vo m
O rH
o o
o o
O 0



I-H! r***
CM m
rH rH
o o
o o
o o
CM rH
CO rH
O rH
o o
o o
o o


ON 00
CO 00
rH O
0 0
0 0
o o





rv, Q
ON CM
O CM
o o
o o
o o




rv, o
ON CM
O CM
o o
o o
o o



rH CO
O vO
CM CO
o o
o o
o o


in vt
VO vt
'-' vt
o o
o o
o o


co PQ
oo oo

O vt
rH O
O rH
o o
0 0
o o



oo oo
vo oo
o o
o o
o o
o o
VQ rv.
rH CO
o o
o o
o o
0 0


oo co
CM m
o o
o o
o o
o o





m oo
CM rv
O rH
o o
o o
o o




m oo
CM !*•
0 rH
0 0
o o
o o



ON i — 1
co oo
O CM
o o
o o
o o


CM 00
ON in
rH CO
o o
o o
o o


co pq
ON ON

CO rH
vt m
O rH
o o
o o
o o



vO vO
ON O
O CM
o o
o o
o o
vO 00
CM 00
o o
o o
o o
o o


ON O
vt rH
O rH
0 0
0 0
o o





rH ON
rH O
O CM
o o
o o
o o




rH ON
rH O
O CM
o o
o o
o o



O ON
*tf CO
O CM
o o
o o
o o


O vO
co m
O vt
o o
o o
o o


CO PO
co co
rH rH

52

-------
                                                                             53
                                 TABLE
                              17
SUMMARY OF MODEL DYE STUDIES

STUDY NO. LOCATION
OF
RELEASE
1 Cooper River,
Mile 37

TYPE
OF
RELEASE
One Cycle,
Mid-Depth

TYPE
OF
DYE

FRESH WATER
INFLOW
cfs
Uranine 3,500

TIDE
RANGE
ft.
5.1
 2

 3

 4
Cooper River,
Mile 20.3
Continuous
Surface -
Pontacyl
Brilliant
Pink
Bottom -
Uranine
 3,500
            Cooper River
            Mile 20.3
                Continuous
               Surface -
               Pontacyl
               Brilliant
               Pink
               Bottom -
               Uranine
              15,500
              5.1
                            Continuous
                               Surface -
                               Pontacyl
                               Brilliant
                               Pink
                               Bottom -
                               Uranine
                             30,500
                            5.1
10
Town Creek,
Mile 3.5
Continuous
Surface -
Pontacyl
Brilliant
Pink
Bottom -
Uranine
 3,500
5.1
11
Town Creek,
Mile 3.5
Continuous
Surface -
Pontacyl
Brilliant
Pink
Bottom -
Uranine
15,500
5.1

-------
                               TABLE  17  (Cont'd)
                                                                            54
STUDY NO.
LOCATION
OF
RELEASE
TYPE
OF
RELEASE
TYPE
OF
DYE
FRESH WATER
INFLOW
cfs
TIDE
RANGE
ft.
12
13
14
15
16
17
Town Creek,
Mile 3.5
Continuous
Custom House  Continuous
Pier
Custom House
Pier
Custom House
Pier
Ashley River  Instantaneous
Mile 7
Wando River,
Mile 4.5

Ashley River,
Mile 7
           Wando River,    "    "
           Mile 4.5
Surface -
Pontacyl
Brilliant
Pink
Bottom -
Uranine
                 Surface -
                 Pontacyl
                 Brilliant
                 Pink
                 Bottom -
                 Uranine
                 Surface -
                 Pontacyl
                 Brilliant
                 Pink
                 Bottom -
                 Uranine
                 Surface -
                 Pontacyl
                 Brilliant
                 Pink
                 Bottom -
                 Uranine
                 Pontacyl
                 Brilliant
                 Pink

                 Uranine
                 Pontacyl
                 Brilliant
                 Pink

                 Uranine
30,500
 3,500
15,500
30,500
 3,500



 3,500


15,500



15,500
5.1
5.1
5.1
5.1
5.1



5.1


5.1



5.1

-------
                               TABLE  17  (Cont'd)
                                                                            55
STUDY NO.
LOCATION
OF
RELEASE
TYPE
OF
RELEASE
TYPE
OF
DYE
FRESH WATER
INFLOW
cfs... -
TIDE
RANGE
ft.
18
20
23
26
Ashley River,
Mile 7
Wando River,
Mile 5

Entrance
Channel,
Mile 3

Entrance
Channel,
Mile 3
Entrance
Channel,
Mile 3
Instantaneous  Pontacyl      30,500
               Brilliant
               Pink

  "     "      Uranine       30,500
Flood Interval, Pontacyl      3,500
Continuous,     Brilliant
Bottom Diffuser. Pink

Flood Interval, Pontacyl     15,500
Continuous,     Brilliant
Bottom          Pink
Diffuser.

Flood Interval, Pontacyl     30,500
Continuous,     Brilliant
Bottom          Pink
Diffuser.
5.1
                                                                       5.1
5.1
5.1
5.1

-------
                                                                     56
point to sampling station.  This was done for all three tributary
streams for three different conditions of flow to show the effects
of river flow.  The results of these computations are shown in
Table   18

-------
                                                                      58
 SAMPLE  PRESERVATION
    From March  3,  1965j to September 24, 1965, 6000 samples were
 collected  for nutrient  determinations  (total phosphates, nitrate,
 ammonia and  organic nitrogen).  These  samples could not be analyzed
 on  the day of collection due to lack of laboratory space, equipment,
                        samples
 and personnel.     Thus/were preserved  with 1 ml of cone l^SO^  per
 liter of  sample and  stored  in plastic cubitainers.  The purpose of
                      •
 this study was to determine the effects of acid preservation of
 nutrient  samples on  the accuracy of the analytical results.
 Sample collection and preservation
    Harbor samples were collected with either a submersible pump or
 Sargent sampler and  delivered to the lab in one gallon plastic
 bottles within three hours  from time of collection.  One liter was
 immediately poured into a plastic cubitainer and 1 ml of cone K^SO^
 added.  For the purposes of the preservation study, nutrient
 determinations were  immediately made upon delivery of samples to the
                £1
 lab and then at/time sequence of usually one month, two months, three
 months and six months.  Nutrient concentrations in Charleston Harbor
were generally less than 0.3 mg/1; thus, to give the effect of
 preservation at different concentrations, some of the samples were
 spiked with known concentrations of nutrient material.  A summary
 of the results of this study is shown in Tables 19 - 22.

 Total phosphates
    The mean total phosphate concentration of 18 samples collected
 from the  harbor was  0.09 mg/1 PO^ with a range from 0.04 to 0.35
 mg/1.  The samples were preserved with 1 ml of cone ^SO^ per liter
 of sample and stored in plastic cubitainers.  At the end of one month
 the mean  total phosphate concentration of 17 samples was 0.15 mg/1

-------
                                                                      59
     with a range from 0.11 to 0.52 mg/1.  At the end of two months
the mean total phosphate concentration of 18 samples was 0.19 mg/1
P04 with a range from 0.11 to 0.54 mg/1.
    The mean total phosphate concentration started to decrease at
the end of three months.  The mean total phosphate concentration of 18
samples was 0.17 mg/1 PO^ with a range of 0.08 to 0.65 mg/1.  The mean
total phosphate concentration continued to decrease and at the end of
six months was down to the level of the raw sample; i.e., 0.09 mg/1
P04  with a range of 0.01 to 0.52 mg/1.
    A second set of the raw samples were spiked with 0.25 mg/1 PO^
giving a mean total phosphate concentration of 0.34 mg/1 PO^ with a
range from 0.27 to 0.55.  These spiked samples were also preserved
with ^SO^  acid and stored in plastic cubitainers.  The mean total
phosphate concentration increased    throughout the six month period
reaching a level of 0.56 mg/1 PO^  with a range from 0.25 to 1.00 mg/1,
    Based on these data it appears that phosphates are being released
by the plastic cubitainers.  The mean total phosphate concentration
increased over 100 percent  on the raw preserved sample at the end of
two months and the total phosphates on the spiked preserved sample had
increased 65 per cent at the end of six months.  It is concluded that
acid preservation and storage d>£ samples in plastic cubitainers will
lead to erroneous results for total phosphate analysis at these low
concentrations.  It is recommended that further work on sample
preservation techniques be undertaken.  See Table JL9.

Nitrate nitrogen;
    The mean nitrate concentration of 20 samples collected from
the harbor was 0.06 mg/1 N03 - N with a range of 0.03 to 0.13 mg/1.

-------
60








r—t

|












CO
H
O
ss
Pu >-<
Q

M W
Hr/t
CO
a a
H PM
H W
CO |-3
1^1 ^2

M
ff!
co
w
Q




AM.f.L,£i> AMU
5 OF STORAGE
ta
s
H

o ^? ^"^ *™^ »™^
ooooo
ooooo
^ & in a\ t*< &
£, ooooo
.
B S S 2 S
x_x ooooo
^ ooooo
00 -H W 4J 4J 4J
V~' O r-t r-l O O
ooooo


oo f^ oo oo co


CO CO CO
4-1 4J 4J 4J
c a 0 c
oooo
6866
1 1 1 1
CO CO CO CO CO
CD Q) CU CU CU
,-< r-| r-| ,_( ^-1
PL p< p. p. fx
CO CO CO CO CO
1 1 1 1 1

O O O O vfr
ooooo
ooooo

-------
                                                                      61
    At the end of six months the mean concentration of acid
preserved samples stored in plastic cubitainers was 0.05 mg/1
N03  - N with a range of 0.03 to 0.10 mg/1.
    Analyses of the spiked samples preserved with 1 ml H2S04 showed
equally good results.  The mean concentration of the raw sample spiked with
0.2 mg/1 was 0.26 mg/1  N03  -. N with a range from 0.22 to 0.28 mg/1.
At the end of six months the mean concentration was 0.21 mg/1 NO^ - N
with a range from 0.18 to 0.26 mg/1.  Based on these data it appears
that acid preservation and storage in plastic cubitainers is a
satisfactory means of preservation for nitrate analysis.  See table 29.

Ammonia nitrogen
    The mean ammonia concentration of 19 samples collected from the
harbor was 0.27 mg/1 NH3 - N with a range of 0.14 to 0.54 mg/1.  The
ammonia concentration in the samples preserved with 1 ml of I^SO
per liter of sample and stored in plastic cubitainers increased
through the second month, resulting in a mean concentration of 0.42
mg/1 NH3  - N with a range of 0.18 to 0.74 mg/1.  At the end of
six months the mean ammonia concentration was 0.32 mg/1 NH3 - N
with a range of 0.09 to 0.67 mg/1.
    The acid preservation of spiked samples produced about the same
results.  The mean concentration of raw samples spiked with 0.3 mg/1
was 0.60 mg/1 NH-j - N with a range from 0.48 to 0.76 mg/1.  The mean
concentration at the end of six months was 0.78 mg/1 NHo - N with
a range from 0.49 to 1.10 mg/1.
    The only explanation for the high values at the end of 2 months
on the preserved spiked samples  is procedure difficulties or laboratory
error.
    As has been stated before, the pre-floc ammonia procedure leaves
much to be desired.  Even though these data indicate a slight increase

-------
62






w
8
OJ
M
W
H

c2
H
h~l
"Z,
In
0 0
CM
CO
• u
M
WC_|
t~<
I-l CO
PQ M
<; H
r~^  f>
*> »>
flj cd

lO
o
o
.0
o

m
0
o






CM
r-<
0

o

CSl
o
0





0
CM


CO
4J
C
O


CM

1
CO
CO
1-1
p<
s

CO
5

-------
                                                                      63
in low ammonia concentration using acid preservation, this method
of preservation is as satisfactory as is the analysis of fresh
samples employing the pre-floc procedure.  See Table 21.

Organic nitrogen
    The mean organic nitrogen concentration of 19 samples collected
from the harbor was 0.38 mg/1 with a range from 0.22 to 0.47 mg/1.
The samples were preserved with 1 ml of cone. l^SO^  per liter
of sample and stored in plastic cubitainers.  At the end of one
month the mean organic nitrogen concentration was 0.36 mg/1 with
a range from 0.24 to 0.47 mg/1, and at the end of two months was
0.45 mg/1 with a range from 0.33 to 0.67 mg/1.  At the end of
3 months the mean had dropped to 0.30.  The preserved samples were
run again in seven days for duplicate 3 months data.  The mean was
0.30 again.
    The raw samples were spiked with 0.2 mg/1 of organic nitrogen.
The mean concentration was 0.54 mg/1 organic nitrogen with a range
from 0.36 to 0.68 mg/1.  The spiked samples were also preserved
with acid and stored in cubitainers.  The mean organic nitrogen
concentration remained constant through two months and dropped 0.1
at the end of the third month.
    Based on these data it appears that preservation of samples
with l^SO^  and storage in plastic cubitainers will suffice for organic
nitrogen analysis if the samples are analyzed within two months.
See Table 22.

-------
64





w
8
o
H
Z
< P
M 5
Z E~*
O co
_, ^ o
i-1 M
CN fxj £H
O 
CO Pi
hJ M CO
pq H w
 CO
1-1
Pd
u
CO
w
P

















Is
^1
H
£
z

§








w
s
fi
2






g
§
5
^J







w
0
£5 CM
^* ^^
l^ LO ^"^ 00
^N O O O O
i—4
-^ oooo
a
t-1 rH r-l O
OOOO





eyi o r»- oo
i— 1 OJ i— 1 i— 1




CO CO
•U 4J 4J
C (3 C
o o o
e s e
i— 1 CM en

1 1 1
CO CO CO CO
CD CU (U CU
i-l i-l i-l r-l
Qj PJ Pj Pt
§ 1 ci 1
CO CO CO CO
? 3 ? ?

vO
c^
CM
o
0

en
o





r^
*£>
O

0

O
O





o
CN




CO
4J


€
vO

1
CO
0)
1-1
p,
I
CO
rj
i
CD co !™~i e^ o*J
CD CD e^ CJN vo
i— 1 CN CTi 
•H cti 'i~l "H *r^ *H
co4 C- co4 to4 tn* to*

-------
65





3
w

1
M
0 P
Wt-^
t-— '
2 H
Pi 3
O O
M
O <3
£>
CO Pi
M CO
H U
CO PQ
H
H >4
CO R
w 2
> c/3
M
S
}_f
Pi
CJ
co
w
p
































































CJ

•^3
H
£

J23
,
6 B
to ct)
CO CO
3 3
od cd
P5 PQ
O

0
0
O

in

PJ
O
0

CO

1
CQ
0)
r-l
p-
CO
?
£
vO
t"»*
0
0
o

o
co
o




^j-
st
o

o

3
0





o
CM




CO
4-1
0
o
0

CO x^
cu
1 4J
ctf
CQ O
0) -rl
•-I r-l
f}^ f\f
0 3
cfl P
CO ^
3
A

r*^
o
o
o

xj-
m
0




oo
sO
o

o

sO
co
o





0
CM








/«v
1 r-l
"•^_
CQ M
cu €
p, o
0 CM
ctf •
CO O
•0 +
cu
•H ctf
P* W
CO ^-^
oo
CO
I-l
o
o

CM
m
0




CO
l^>
o

o

CM
O





o
CM









JS
4J
pj
O
0
^-1

|
T)
CU
•rl
P<
co
m

o
o
0

co
m
0




oo
VO
o

o

00
co
o





o
CM








CO
tr1
4-1
c
O
0
CM

1
T3
CU
•rl
CO
o
o
r-l
o
0

r-l

-------
                                                                     66
FREE CARBON DIOXIDE
     Free carbon dioxide in estuarine waters exists as C0£ molecules
and carbonic acid with 99 per cent as CX^.  Combined carbon dioxide
exists as carbonates and bicarbonates.  The form of carbon dioxide
depends primarily.upon pH, temperature, salinity and pollutional
conditions.  The nomographs in Standard Methods will not suffice
in estuarine waters due to the buffer capacity of sea water.  The
buffer capacity or total alkalinity is directly related to salinity
and is independent of either total carbon dioxide, free carbon dioxide
or combined carbon dioxide in this estuary.
     There is considerable disagreement in the literature about the
                                                 it
toxicity threshold of carbon dioxide to fish but'is generally agreed
                                                              .  .where
                                                              d/tlu
that free carbon dioxide can be toxic to fish.
     The purpose of this study was to measure free carbon dioxide
in the Ashley River where numerous fish kills have occurred and/the
fisTi population      is now very small.  The active sludge beds in
the Ashley River produce sufficient free carbon dioxide to create
a deleterious venvironment for the fishery resources.

Apparatus
     1)  Natelson Microgasometer and associated parts
     2)  10 ml disposable hypodermic syringes
     3)  Mercury
     The basic theory of the Natelson microgasometer is the same
as thecdassical Van Slyke manometric method.  The gas pressure is
measured under constant volume so that results are independent of
atmospheric pressure.

-------
                                                                      67
Procedure
1)  Samples for free carbon dioxide determinations  were
    collected under mineral oil and refrigerated until analyzed.
    Surface samples  were  collected with a hypodermic syringe in
    the following mannerT
    Draw up approximately 2 ml of mineral oil into a 10 ml disposable
    syringe.  Hold the syringe in upright position and remove all
    atmospheric CC>2 by eluting a small amount of mineral oil.  With
    the syringe approximately one foot under the surface, draw
    approximately five ml of sea water into the syringe being careful
    to elude atmospheric carbon dioxide.  Cap the syringe under
    water and place in an ice chest in upright position.  The mineral
    oil should be at the top of the syringe or over the water sample.
    Keep refrigerated until analyzed.
    The following glass bottle method can be employed for depth
    samplesc  !Place mineral oil to a depth of approximately two
    inches in a glass bottle.  Drop a kemmerer sample to a desired
    depth, close the sampler with plunger and bring to surface.
    Discard 200 to 300 ml of sample and then place the rubber tubing
    on the bottom of sampler to the lower limit of the mineral oil
    in the bottle.  Allow the bottle  to fill but do not overflow.
    Place the bottle in upright position in an ice chest and keep
    refrigerated until analyzed.
2)  Prior to the determination of free carbon dioxide the manometer
    employed with the Natelson microgasometer should be checked and
    calibrated according to the Natelson Microgasometer Instruction
    Booklet #5 as outlined on pages 16, 17 and 18.  Advance the
    mercury until a small drop is held on the tip of the pipette and

-------
                                                                      68
    then draw 0.10 ml of sample into the pipette, being careful
    not to draw in mineral oil.  Cap with 0.01 ml of mercury and
    then draw in 0.10 ml of 10% low foam detergent.   Cap with
    mercury to 0.12 ml mark of reaction chamber.  Close the
    reaction chamber stopcock and retreat with piston until liquid
    level is halfway into reaction chamber.   Mix one minute and
    advance the piston until the top aqueous miniscus is at the
    0,12 ml mark.  Obtain Pi reading and record along with temperature,
3)  Advance piston till mercury is to top of manometer.  Place
    vial of IN lactic acid solution under the tip of pipette and
    draw in 0.03 ml.  Cap with mercury to 0.12 ml mark of reaction
    chamber.  Close the reaction chamber stopcock and retreat with
    piston until liquid level is halfway into reaction chamber.
    Mix one minute and advance the piston until the  top aqueous
    miniscus is at the 0.12 ml mark.  Obtain Pn reading and record.
4)  Advance piston until mercury is to top of manometer.  Place
    vial of 3N NaOH solution under the tip of pipette and draw
    in 0.10 ml.  Cap with mercury to 0.12 ml mark of reaction chamber.
    Close the reaction chamber stopcock and  retreat  with piston
    until liquid level is to bottom of the reaction  chamber.  Raise
    and lower the piston several times and then advance the piston
    till the top aqueous miniscus is at the 0.12 ml mark.  Obtain
    ?3  reading and record along with temperature.
5)  Advance piston until mercury is to top of manometer.  Open
    reaction chamber stopcock and wash reaction chamber with 0.1
    ml of distilled water followed with 0.03 ml of 1(1 lactic acid.
    Repeat several times with distilled water and then proceed to
    next sample.

-------
                                                                     69
Experimental data
     The observed free C02 data are shown in Tables 23 - 28.  These
data result from analyses of samples collected from the Ashley River.

-------
                                                                      70
Calculations
    These; calculations are a slightly modified version of those
given in Instruction Booklet #5 on Page 17 for the Natelson
Microgasometer to give COo concentration in mg/1.  The equations
                         j  manometer,
used to convert instrument'readings to C02 concentrations  are
shown below.
    mg/1  of free C02  =    (pl -  P3 > • F • 44
                                   3.3

    mg/1 of Total CO,  =      • F  • 44
                                   3.3

    mg/1 of combined C02  =    ^P2  "  Pl^ ' F  * 44
                                        3.3
where :
    PI  =  Partial pressure of all gases in sample in mm  of mercury.
    P2  =  Partial pressure of all gases plus the partial pressure of
           acid released C02   in mm  of mercury
    P3  =  Partial pressure of all gases less the partial pressure
           of the carbon dioxide absorbed in caustic in mm  of mercury.
    F   =  factor for converting mmr. of mercury to mmole/1 of
           These factors are found in Table #3 on page 27 of the
           Natelson Microgasometer Instruction Booklet #5.
   •44   =  is a conversion factor for converting mmole:' to   mg   of C05
mg _
   3.3  =  is a factor used to correct formulas given in the Natelson
           Microgasometer handbook for the size of sample used in
           the analysis.

-------





















<
t* H
£3 <*
pyt r [ *t^
w to

co
«-
Cn CMH CM
OO 0
5~2 CJ H U
CM
O
rJ ^
?S B5
O ^*^-/
H
CM
o 	 „
O r-l
W M
ta ~~^

*""~x
to
o
CJ
co rt
! -* St 1 1
II • • • 1 1
m in in

11. ii
1 1 in vD vO 1 1
CM CM CM

1 1
CO CO CO CO M II


in in m m in
in vo in vo vo vo vo
vO — . vO -^--^ "v. -~^
" — vO "^x. O O CO CO
^ "*^-^ O O ""^ ^x*-
O> O^ ON CT* *™4 r— 1 vO \O

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1
m
Ii t i • i
iii "i
1 1 1 1 CM 1
1 1 1 1 i-l 1

It 1 1 1 1
I 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




•tf 00 CM 1 CO 1
vo in ^* i *^ i




CO ON ON i OO 1
<}" *st* *^ 1 CM 1



CM O
1 1 si" 1 rH 1
1 1 r-4 1 r-l I




CO m ON O
J^s f1"^ \Q 1 p^ 1

in o
1 1 CO 1 CM 1
II • 1 • 1
co 
-------










p
W H
*^ CO ^TT^
CNJ pj rrl
p
W >-l M >"
T r -l t^f ^\
i_ 1 W X O
pq [j O ^>
H W P
Z
O r^l
^1





s
H

j£
00
O 
i— 1
60
m
fed U
J 0)
•3 o

p.
CD -x.
• 60
.
w o
H >— '
DEPTH
w
H
II £. £. i i I I I i 1 I I i I
I i g i i i i 60 60 5 5 i l i i i i MI l i
1 1 O v4 -i-l O O 1 1 1 1 1 1 1 1 1 1 1
nJKWffiffiffiffii-Ji-l
o ooco o m co o- oo co CM r- v m  i i i i i i i i

1 1 CD ^O r~l ViD lO ^t* CO C^ C^j LO ^^ CO f^ 00 00 C^ lO CO ^^
i i oo ^o ^^ LO ^o f*^ oo vO vO r^ vo ^D i^ LT^ i^ to ^o ^j vo
i i

i i


i i icMvopi-vJ-oorxvocsjv^i^j. | | | ivor^-oovo
III ^O ^"^ lO ^O CO f^ C^J i^ v^ vD 1 1 1 1 ^t" LO i"H vO

coinin>d-D vO vO vD ^O vO vO vO vO vO ^O vO \^5 vO ^O "*O ^D ^O
^**^ vO """""i". ^3 ^3 CO CO tO to f"^ J*^ lO tO C^4 C^I CO CO CO CO ***•* ****»•
^X ^™* 00 i"^ ^^ ^^ f"™4 ^^ ^~» nH r™4 ^"N^, ^^^. f^| ^J f^ ^^ CO CO ^^ ^"^
72

-------

















w
P
M
Crf
rJ
M
SJ ^§
P
CD H
Crf H CO
"?. H W U
CM erf p
M CJ
W s^ k,.
£
rl *^^*^
S
PH
"^
60

^J
ro
<3 u


a

• cr
o -^
• 60
0 >JL»

CM/ — x
2 CJ
3 o .
H — '
a
^H
fM
P



V)
H

P

SiS ii
O 1 O 1 1 1 1
r-3 1 1 1 1 1
JT{ JT"{

CM vO vO
II • • • 1 1
1 1 C^ O O 1 1
1 1 i— J CM CM 1 1

m "& oo
i i • • • i i
i i CM i^ in i i
1 1 00 vO O\ 1 1


VO CM O 00 r-4 1 I
CM i-« 00 vD f* 1 1
r-l 1-4 II





o
r-l j tj i i i 1111111

o\
oc^ooocom ^.CMI^-



CM C^ 00 CO O i-l
vO f^*« CO O CT^ CM Illlllll
oor-"O>ONr-i{j>i i i i i i i i


inooincMcoincMOcMcMcMcMf>vo
^O vO vD ^D vO ^"^ i/^ ^O ^O vD vO vO *^" ^O







vOCO^ ^^ %cj"


tnvl-CMtMCOCM OOOCM

o\ooo>t->cT,o oo
-------








m
*i*
W H
> co >i
VO M O
Q ro
W >H M
9 rf* '
< H M
H CO Q
i r*^ cs ^^ ^o i


-------
CM


















W
8
M
M
OS H*
g» CO
H W ><
03 Q 
^j
3  ci
~S


Cu

• r-4
O --«
• 00
^
.
S cj
£10
a
x,
3
Q



W
-1
ri
^
.J^ ^^
S 1 S 1 1 1 1 M 60 S 3 1 1 1
O 1 O 1 1 -rl -i-l O O 1 1 1

,-ICOCO I^COCM^40>vO

| | ^_| ^ ,—1 | | r-1 ^H ^-( r_| ^-1 ,— | |


i i r^ oo oo i i vo oo en ON
II •••!( ••••
1 1 O\ O O 1 1 f*"* P** ^ r— 1 vO 00 CO
1*^ CK G\ CO CO 00 ^^ C^ CO ^O



c^co^irjin i i i— i •<}• r- 1 cr»i irHLOcxjoocr»voi
^4 ^J ^d* ^O ^-O 1 1 ^"^ ^D vO ^0 \& ^D 1






CMCM OOO>OvOCMin
i i ivovoi iininvomvovoi
i i i •-) i i i


i-io-or*-- CMCM^-I^^-I^
,r-r-r^r-, .r^i^r-^,

r-mvo voco^oot^(^(^>cMCMin
1 ICMCMCMI ICMCMCMCMCMCMCM

1 1
COCOCOCOfP 1 ICOMCOMCOMCO

in in in in in in in in in in in vo
invOinvOvOvOvOvOvOvOvOvOvOvO
vO ^»*. vO ^^. *^^. ^^- *^s. ^^ ^-^ *^^ ^^^ ^^. ^*^ '%^»
^*^. vo **•«* co co co co in in f*** ^^ in in CM
^^ i— ( OO f— ' i— ' *— ^ i— 1 i"^ i— ^ r-l r-l ^^ ^v». CM
•^^ "^^. *^*« ^» "s^» "*«^ *^x. ^>fc "•*•». ^«^. "^^ O CO ^^^
00 00 C^ ON ON ON ON ON ON ON ON rH i— 1 vO

1 1 1 1 1 1 1
1 1 1 1 1 1 1

m o 
CM 1 1 CM CM CM CM


PQ CO M CO PQ CO PQ

vO vo vO vO vO
vO vO \O vO vO vO vO
^- -*^ ^^ ^^ ^. vO vO

CM CM c^J co co r*** r*1*
"-^ -"^^ -**x_ -v^^ -x^^ *s^ .^^^
vO vO vo vo so r** r**
                                                                                               75

-------

























co
JM T-t


U H =»=
* * ><
erf w o
W Q !^>
3 ** M M
9 J Q
H W Q

a a
o o
^c ^c
O E~i
OT
















Q
H
H

.
s£
CM CM,
00
CJO

w"d
Fn O
BA^_
O
CM
O

!-(
< 60
1-
CM
O ^~^
CJ--I

60
W d
W x^v
&

.-^
^
W 60
oooi ir-^m'^'~~oocri
I 1 i— I i— < CM 1 \ r— 1 i — Ir— It— If— Ir— 1

m vo ON o\ CM co co
II • • • 1 1 . « • •
i iinmini loovof^-vor^o
i it^**inin
o i~»
ii • '
i im\ovo i it^-r^-r^r^cocM
CMCMCMM. ICMCMCMCMCMCM
1 1 1
icocncApqi i w M w pq co P3

m inmininininmininin
in vo in vo vo vo vo vo vo vo vo vo vo
vO ^^. vO **•». ^^ "*»^ *^^. *^^ "**^_ "^^^ "^^^. ^^. "^^.
^.vo-^oococoininf^f^inin
^i-IOOi-lr-lr-»i-li-(i-li-li-l^ 	 -~^
"^•^ ^» ^**. ^^- *^«». "^«^ *^. "***. *^^. "***« "*^ CO O
00 00 O"^ O\ Os OS O^ OS OS Os Os i—l T— 1
76

-------
                                                                  77
ORGANIC CARBON
     During the summer months the dissolved oxygen depletion in
Charleston Harbor is much greater th^u chat attributable to the
5-day  BOD   ln the water.  This oxygen depletion is apparently
caused by the stabilization procedure occurring in the sludge
deposits.  To check this premise a study was conducted to measure the
organic carbon in solution and correlate long term  BOD   to organic
carbon content utilizing the Beckman Carbonaceous Analyzer.
Sample collection and preservation.  The samples were obtained with
the ordinary water sampling equipment and were analyzed immediately
upon collection and return to the laboratory.
     The effects of acid preservation techniques on organic carbon
content were investigated, but sufficient data were not collected to
fully evaluate the methods.
Procedure:
1)  Add 3 drops of cone HC1 to approximately 20 ml of sample in a
50 ml beaker.  Purge with nitrogen gas for 5 minutes to remove inorganic
carbonates.  This N£ strip p.^ccdure will not suffice for the removal
of inorganic carbonates if low volatile organics are present.
2)  Place the 50 ml beaker containing the sample on a small magnetic
stirrer and allow to stir 30 seconds before drawing an aliquoc for
injection into the analyzer.
3)  Draw 40ul of sample using a hypodermic syringe and inject into
the Analyzer according to the Beckman Instruction Manual.
4)  Prepare a series of standards in the range of 0.0 to 10.0 mg/1
working standard of Potassium hydrogen phthalate (2.1254g of KHCoH/0/
diluted to one liter = 1000 mg/1 of organic carbon).  Treat the
standards identical to the sample and inject 40 microliters of each
into the instrument.  Plot peak heights vs. concentration of organic

-------
                                                                     78
carbon or. graph paper  (Note:  the distilled water blank will not
pass through zero due  to 1^0 interference).  Compare the peak
heights of sample to peak height of the curve to compute the organic
carbon content of the  sample.
Notes:
1)  A gain setting of  264 is recommended by Beckman.  We found
(See Figure 1) that a  gain setting of 600 in the range of 0.0 - 10=0
mg/1 O.C. is much more sensitive and the increased noise is tolerable.
The peak height of the 5.0 mg/1 standard was doubled by increasing
the gain setting to 600.
2)  NaCl in sea water  has little or no effect in the determination
of organic carbon.  The effect of other salts in sea water, not
including the carbonates, appears to be negligible due to the low
concentrations.  All samples must be pretreated to remove carbonates
and acid carbonate salts as these will give erroneous, positive
results.
3)  The Beckman instructions suggest an oxygen flow rate of 50 cc/minute,
The best flow rate for our particular instrument is 100 - 125 cc/minute
with a 40 microliter sample.  Sample injections faster than one
every two minutes produces "feed back" from the combustion tube.
4)  The silt and salts in Charleston Harbor clog the combustion tube
and micron filter.  The tube must be repacked and the filter cleaned
after every 125 samples or 375 injections (each sample is injected
at least 3 times as odd peakrs are sometimes encountered).
5)  The precision of the analyzer is + 0.3 mg/1 O.C. in the range
of 0.0 - 10.0 mg/1 with a gain setting of 600.
Experimental data:
     Tables 2^ and 30 show respectively the 5-day and long-term
BOD    - organic carbon comparison.

-------
                                                                                                                                                 79
                                                               r_:OOOOOOOOOOOOOO

                                                               ^i  C>  lA i—<  CO  vQ -cr  u~>  CNJ t—I  CO  CM  CM i—I  CO
^
<  C
Ci  O
    03
m
                                     OOOOOOOOO^OOOOOOOOOr-l'-l<-l
crs
CM
w
(-3
PQ
          Q
                        M X
                        Q O
                        Q
                        K

                   !-<  Jj  23
                   'MOW
                    H  00  O
                   i —I  00  >i
    CJ
      .
    o

     >>
     «
    O
                   i^  ,
                                                                              VO
                                     O-—I  •—IOO'-iCN^-IOO'-iOOr-lr-lO'-l'-iO>-
-------











1
CO
O
CO
e
pa
§
3
O rh
3 S
pa
H r-'
i
* — ;
O
C
H







0 S3
,^0,
^ ^
^~<
Q O
CO
X
< Q
Q 0
pq
1
< a
-75 O
cq
X
,13 O
>t
a o
•
<1 P
Q O
pq
CM
X
£2, O
r-1 ^
1 r-1
r-1 fcO
"-> 3
 ! O
'V b r~^ »
M O — . O
>• — '
0 :? — i o r-i
ON CO •S
3 O
pq pq
CO CO


CO
o
r-
o
o
o
,

m
0
m
0
CO
o
CO
0
CM
o
o
o
CO
0
r-1
o
o
CO
CO
CO
CO


CO


r- o
o o
CO CO
o o
f^ O
O <-!
,0 r-
o o
in r>-
0 0
*• 0
0 0
CO \-D
o o
CM CO
0 0
0 •-!
0 0
o c
O ON
N
Q
o
1 — 1
c
o
b
fr ,
X
o

o
pq
£
CO
, — !
4J
o
Q
Q

r-1 CM
0 O
CM ^Csl
Dilution
Dilution
"D
- 4J

0
~
r—
vS
•Sr.


^2
i— 1 -H
ob




r-i I-l
r-1
•H
O rJ
r^ ttf
O
,1
4-J 3
IW O
r-1 CO
3
co B-5
O
e m
5
CO •
G CO
c a
6 S
cd
-.co
4-1 C
u-i a
a 3 C
4-1 Z O
^ T-i
CwO -H
^ CM TD
O W
S-, r— 1 ^
o 5 r— i
—i ^
^-. 5 co
i— 1 O 4J
..-a ^
C4 CJ •
c-i T3 13
OT3 4-J
2 c3 CO

-------
                                                                     81
OXYGEN UPTAKE BY SEDIMENTS
     The purpose of this study was to quantitatively measure the
potential oxygen utilization by the deposits and to determine what
effect different types of sludge beds in different areas of the
harbor have on the dissolved oxygen resources.

•"Vpor 1 -ipn'ral methods:
     Sediment samples for this investigation were taken at 61
locations in the Harbor and the major tributaries.  Sediment samples
were taken with a Peterson dredge and delivered to the lab in sealed
one-quart plastic containers.  The sample was thoroughly mixed and
50.0000 grams were placed in a 5-gallon glass carboy containing sea
water (18,600 - 19,200 mg/1 Cl).  The sea water was aged at least
3 days and aerated several hours at 21°C before using.  The carboy
was then sealed with a syphon system as shown in Figure 5 .
     Another portion of the mixed sample was dried at 103°C overnight
and stored in glass vials for chemical oxygen demand and organic
nitrogen determination.  In addition, volatile solids and percent
moisture determinations were made on the sediment samples.
     Sediment samples for oxygen uptake determinations were placed
in both a mixing and a non-mix system.  Neither of the systems were
exactly similar to the conditions in the harbor but this approach permitted
a determination of extreme ranges of oxygen uptake potential.
     Salinity, temperature, light conditions and initial dissolved
levels were maintained as near constant as possible for all tests.  Sea
water x^as used as dilution media and was always 18,600 to 19,200 mg/1
chloride.  The sea water was delivered to the lab several days ahead
of samples and allowed to come to room temperature (21°C).  On several
occasions when the sea water contained turbidity they were allowed

-------
c
                                  82
                                                     to
                                                     •r-i
                                                     pt,

-------
                                                                      83
 Lo s,_.tele over fright and syphor.cd the next morning.  The  temperature
 i.'as r.'..v'..n coined at 21°C0  The  tcmparr.tures of mixing  systems were
 slightly higher than non-mixing systems due to the heat from magnetic
 stirrers.  Light conditions were constant in the  laboratory.   The
 only source of light was from the overhead fluorescent  lights  which
 were turned on every morning and off at Lhe end of the working
 day.  The dissolved oxygen concentration was also close to saturation
 of sea water at 21°C.
     A sea water blank was run along with every set  of samples.  At
 first thi;-- was a mixing blank but later was changed  to a  non-mixing
 blank ,r.;j the dissolved oxygen depletion was very  small in both the
 mixing and non-mixing systems.  Dissolved oxygen  depletion in  the
 sea wacer bl.ir.ks '..--.is always less than 0.5 mg/1 at the end of five days
 and was usually about 0.1 mg/1.
     On sediment samples near the paper mill the  size of  the sample was
 reduced f:v . 50.0000 weight grams to 10,0000 grams so as  not to
 deplete the oxygen in the carboy to less than 1.0 mg/1 at the  end
 of five days.  The size of the sample was increased  to 200.COOOg
 for the datum stations in the upper Cooper River above all pollution
 sources.
     There are many arguments concerning the oxygen  demand of  disturbed
 and undisturbed bottom muds.  The purpose of this study was to
measure the potential for dissolved oxygen uptake by resuspended benthic
 deposits.  The actual oxygen demand of deposits in the harbor  probably
 is less than that observed in the mixing system and more  than  that
 demonstrated by the non-mixing system.  The exact amount  of resuspension
 of bottom deposits in the harbor is virtually impossible  to measure.

-------
1)  Eloven 5-gallon glass carboys
2)  Eleven 4-liter glass botcles with tuning outlet
3)  Six senior mag-mix stirrcrs
4)  Eleven size #llJj rubber steppers
5)  An assortment of rubber tubing, glass tubing and clamps
    (See Drawing #1)

Procedure:
1)  Determine the volume of the glass carboys and record.
2)  Collect the bottom sampl-Li \\''. >:n a Peterson dredge and seal in
    a suitable plastic cor.t,.'..-....:.  Vhe sample should be tested as
    soon as possible, and not stored more than 2 to 3 hours.  The
    plastic container must be scaled and completely full to retard
    oxidation.
3)  The dilation water in the carboys i;, sea water (19,000 mg/1
    of chloride) which is several days old and has been aerated
    at 20 to 21°C for several hours.
4)  Mix the sample and place 50.000C grams of the wet sample into a
    carboy containing sec. water co within 3 inches of the top.  Add
    a stirring bar to chc c..j.,oy and add sea water to bring the
    water level to the top.  Carefully inset the syphon system into
    the carboy being careful not to entrap air bubbles in the system.
    Set the carboy upon a mag-mix stirrer and stir 10 to 15 minutes
    before drawing a sample for dissolved oxygen determination.
    50.0000 grams of wet samples is placed in a carboy without a
    stirring bar for the non-mixing system.  A blank of the sea
    water is set up in identical fashion with the omission of bottom
    samples.  The initial D.O. of the blank is used as the initial
    D.O., of the carboys containing sediment.  The oxygen utilization
    in DO 1 luted areas is rapid and the D.O^ at the end of 10 to 15

-------
                                                                     85
    m dilutes may be as much as 1.5 to 2.0 mg/1 less than the blank.
5)  Determine the  percent moisture of a weighted portion of the
    regaining sludge in the plastic containers by drying over night
    ac 103°C.  The volatile solids is then determined at 6GO°C for
    15 •v.i.r.L, cos.
o)  Dry anojhar portion of the remaining sludge in the plastic
    containers by placing approximately 20 grams in an evaporation
    cILsh and drying at 103°C over night.  Grind and mix the dried
    sample and store in a glass bottle for chemical oxygen demand
    and organic nitrogen utilizing the same method discussed in the
    special study section on organic carbon to organic nitrogen ratios
    of benthic deposits.
7)  Svphon and determine the D.00 daily from the blank, mixing and
    non-mixing systems.
1)  Determine the grams of dry material in the 50.0000 grams of
    the sample.
            50.0000  X  (ICO  -  percent moisture)
                        =  grams of dry sample
2)  Determine the mg of oxygen utilized per gram of dry sediment
            mg oxygen per gram of dry sediment   ~

            (DO^  -  D0t )  X  volume of carboy in liters
                    GRAMS OF DRY SEDIMENT
    where:
            DO-    =  Initial dissolved oxygen
            DO*.    =  Dissolved oxygen at time t
Experimental Resales;
    All experimental results are presented in Table 31 and a statistical
treatment of ive data is presented in Table 32.

-------
                                                                                                                                           86
                     o
                                           co
                                                                           o
                                                                           ro
                                 CM
                                 ,—J
                                 O

                                 o
CM
CO
                     CM

                     C
O
r-4


O
                                          CO
                                          C
                                           CM
                                                                CO
                                                                                      CM
CO
O
              o
              >
CM
O
                                                      C

                                                      ex
                                                                           
-------
                     OD
                     o
                     c
                                                                                                     o

                                                                                                     o
                     CO
                     r-l
                              CO
                              CM
                                                                                                     CM
                                                                                                     I—
                     >-0


                     CO
                                                                                                         O      —  ~  -  _
o   I
         co co
                     
-------
                                                                                                             o
                        o
                        CM
c*">
LTl
                -,-      CM
                —      oo
o o
LO ro
X
vj 1 	 1
s o
X
— (
*^J
< i
-j £
2 £
o ^
X
•r-l
"7"
x T*
•'-• c
o &**
r— 1 CM

x
•r-l
^T1
x r
— ' c
i CM
I-- r-l

-------
c
                        o
CO


o
                                                                                     a-'



                                                                                     c^
o
CO

OJ
O   r~-
t r-~
• ^™^
O on
^3 OD
ro o
00 00
o  '
1
C
o


X
• *-i
~z.
'/,
S-^
1
£;
O
X
•r-l
^_
X i
•r-i £
Kl- O
                                                                          i

                                                                         ^
                                                                         T,

-------
Q
O

H
CJ 2
• « —)
bT O 6C iJ

U O O ri
T-l
4J
cn • •
•1-1 bO O

4) O J-J
U •-!
CJ Sv! Z
M
ccj
.c • c
CJ bO O
W »-Q
4J O U
(3 cd
0) S-S CJ

-O -« iJ
0) O rC
C/l W C 60
O -i-l
• 41
r-l T) 3
o CD
> ,
cd M
fv° rQ -o
CO
M
3
CO
O

4J
3
t3 r-l >*
O T> flj

r-l •
cu T3 in
a, co
ca
U_J
O E
•o
C r-l
bl
U
ra
T3
01
—1 N
•r-l -r-l
4-J r-l
C S3 >»

bO O
X O^ r-4
0
00
g


4-1 0)
 r-l
O ^O vO
— * o o
• • •
o o o



O ft «^
vO m ^o
• • •
CM CM i- 4






en !»• r~
in ON en
• • •
\c m m




O^ CO *^5
C vD CM
in t r— I en r— i














rv» r-4 oo r^* vo vo
m m en vt r— i r^»
CM O CM O CM O



XXX
T-l -r-l *i-l
s 2: s
XI Xi Xl
•M C -rt C -H C

z * z z
.0 ^o ^o NO ^o ^o
•4O *O ^p \o ^o \o
W, -v^ »»^_ «v^ -v»^ v —
'•vl CM CM CM CM CM
r- 1 r-l — 1 r-4 r-l i— 1
V^ -v^ -Vx^ V^_ v^_ "V^
vt vt vt vt vt vt


'/^ O O
r-- r-l CM
t 1 1
•J cj cj
•si en co


~"* O O eM C^ oo ON
c*. o co r^ C^N oc m
X op O y? in vj?
—i rsj CO — i

r-~ ,^ CM . CM CM in O
en





rsl CM O vt CM vO
.•"•• oo vt •— • vD en
« i • • • • •
-vT 1 vt OO f**" ON CD
r-.



 vt CM
"


pvrv r-4in \Oen envjO \o^* oO^^* ONO
oo vt ^NI —i CM vO en m •— ' CT* r— j m vf en
f im  f\i fv- ft} >^ OO
eno CMI^- ooin r-icM cMen oooo —10
r— — i CMO ONOO l^vt >-lO vt r-l OO



X X X X X X X
•i-l -i-l -i-l -r-l T-l -r-l -r-l
^-J Xld t^4 -<^" f«^-( r«ij «£r<
Xi Xi Xi Xf Xl Xi Xi
^ C -H C -r4 C »H Cl -f-l C -r4 C -r-l C
Sj O rS O '*£ O 2^ O £ O JS O US Q
t-^ r*^ ^^ r^lT r— X +yT *^
4Z* /--• *t-l «£j »Cl4 _t_( .C.4
vO vD vO vO
^O ^3 vO ^D \O ^»O viD ^^5 ^O ^J3 ^O v£)
*»*^. *«v^ **1^. ^*v. \£j \jj \O ^O ^jD \O "^D ^O *^ ^O
CMCM OO -v, -v, -v^v^_ vOvD v^ 	 _ v^-v^
r— 1 —4 f\J CM VJO *^ '-O -O *Vv v^^ \O VJO 00 OO
-v,v^ -v^v^ CMCM Mri enen eMCM •— i i— 4
vt vt ^J CM ^-v **V, "V— ~v^ v^^ v^^ -v^ -v^ -v^ v^_
— i <-« vtvt vt-t m -n vtvt 'nen

r-i ^i en vt u-, i-
^-1 '"vl ^1 ^*-l ^ J O"J
II 1 1 1 vD 1
CJ CJ CJ O CJ fM CJ
'/j C/D CO '/) •/) • 1 V3
CJ
tn
90

-------
a
o

H
C
IvT O t>C AJ
U u >-. (fl
01 O O »J
u
- _ i
4J • •
ifl 5C O
•r-l >-l )J
r-l O iJ
(U -r-l
J-l 5-5 Z
O
rt
ctj * C
,C M O
CJ r< ^3
4J rj
C 8-S U
£ •
•r-l i— 1 JJ
T) 0 £
Q) W C 60
CO 0 -^
-J T3 3
O  to >>
0 U
£< -O t3
at
M
3
OJ
tn
O
•z.
3
"O r4
O T3 X
• fJ ttj
M • O
CJ "O
PJ a) in
CO
O £
M
•a
c ~*
W
u
cd _
• O
r-l N
^ ,^J
AJ — *
*J >>
C ^) eo
o O
^» O *""'
X
O 30
E


J-J 0)
en O.
V >s
H H

a>
4-1
U
0 O
aJ -J
(•) r*
0 0
^
O
-J
4J
on
co
»
»-4


•
rQ


x^-
o
o
o



\D
O
•
0





r^.
r—<
•
0





CM
OO




in m
r^ 0
O 0










oo o
o o
O 0



X
•r-l
X *?
•r-l C
2 0
z
^O ^0
\^ vQ
<*"^. """^
oo oo
Cv| fvj
^•s^ **x»
CO CO
00
CM
1
U
ry)
*™^ CJ^ ^^ ^>^ CT^
*****
CM o vo sD m
r-l CM CM —1 i-»


m ON co m r>>
o m o> o co
o o o o o
o o o o o



Is* oo oo oo f^
o m >n o m
• * * * *
O "-1 CM O O





o "w" ON N£> o
CO CM vO -in com r^cM moi
CM"-< OU*I CMO f-* ?%l ?^l
•r-i c -H c -H c i-* c 1-1 e
zo ^-.S so so so

vO ^D vO vO vO ^^ vO vD vO ^O
\O *»O \O vO \£» \£5 vO vD ^O ^O
"** — "*^>- "***•* "^*«* "*^. ** — "^-w "S*^. "^^ *"^>.
oooo OOQO oooo oooo oooo
C^IC^ CM(S| OviCM CNICM i-l-^
"V^_ ••^ •«si^ "x^ "K^ "^^ **^ "Sii^^ ^i^^ ^Vi^
COO coro coco coco roco
ON ^ o *•"* CM co
CM **\ CO CO CO
1 1 1 1 1
O U U CJ CJ
tn -o u-i co tn
in
*
~ J

^
•
r-l


co
0
O
O



in
•
O






1
t






L^
rC
r-l



r-l O
ro r-»
0 0










CM O
0 0
o o



X
• r-l
X 1
•H C

*
\o \o
vO vO
^•^ ^^^
oo co
r-l r-l
K^ ^N.
co ro
^
r^j
I
tj
•r.
^
•
r-J

O
*
O
ro


CM
0
O
o



o
•
0






CM CM CO
» *• *
r-l r-l r-l





X   CM OO 00 "-I
r-t O O O CM r-l
. .. .









ON OO CM O 00 CM
 
-------
   CO
   ^
   Qi
   u
   a,
   X
  ,u
CMj
col fa
   o
   CO
   o
   M
   H
   CO
   H
   H

   a
   co

   w!
   >
   Mi

   E.
   w
   oi
   W!
   to
   U
   o
[-MIXING
Days
«& «o
i
N-MIXING
Day
2 '-'I
55
MIXING SYSTEM
Oxygen Utilized at
End of 5 Day in mg
02 per gram of dry
sediment
4-1 60 X
cO £5 to
X -d C "^
W 0) -i-l U-l
H N .O
CO -rl >4
co -H Q| cfl
4-1 I M
O 3 i-il 60 4J
Z C
M (3 M-l M <1>
X 01 o >*o t)
X C CM J vO CM O
o o o o o o
in &* fo co i^ co
o c\i oo co in *n
O - '' ~~
o «n <}• co -3- r^ in vO ^O i—4
Q) *. • • •
OI4JI-I (Ohio P 0>
4J 01 i-l Q)CU(U T) (1)  4J Cl 4-1 > D.
cy 3 * cy co 0*1 co co p*i o f"^
OOQ) Qtd)-H i— 1C I-l I-l tfl X MO)
O Z 60 -fl O. Oi -f-( 03 O 0) O O -^ U <1) COOO
>(Q 4J Ol (J U) 4-1 O 4J M 4J 4J j: 3
M >-i x; w (u M «!T3 MCO (VSQO O-H MQO OZ
»-< CM co -4 »n vo
                                                                                                         92

-------
                                                                                                      93
 HI
 3
 C
 c
 o
CM,

i


2
W
O
o
)J -O
cl S
O CO
• » pj
H 0)
O
s
H


c
CO
V
S





3
O



£]
1
•c|


i 2
H
§8
tf) a;
2 H
dl 1 1
2 O
M
O O H
M M  JC O4 OO ^^
O ^ uo ro in •— *
• fO C^> O C3 CM
CM CM -1 r-t

CM m CM m -J
\D • • • • •
• CO rH Os vO CO
1-1 r^ oo vo vo

^ CM vo in f^* co
CM 'fO CJN CM O% CM
•*D O CM CO -tf"
130 i— ' r-l 1—1
»J- (VJ i—tr-4 O O
• • • • • •
«n m r-i in vo  O
r-l CM r-4 —< i-l i-l


CM <** •-< 00 O '
• C«J -ct O vO O
VO vf CM r-l CO CM
-1 M
-J- PI r-l O ^O O
o «n VD co m m
O fl r-l CM r-l O
• • • • • •
O C3 O O O O
CO O'N CO O CM O
O vO •-< ^O 00 O
O O — 1 r-l O O
• • • • * •
O C) O 0 O O
•-'••(£-
o oo r-i o1! >j cy>
O CM CM CM CM O
• * • • • •
o o o o o o
^£3 x£ i~^ f1*^ ^^ oJ
o "^i co  CM
O r-l OO O OO JJ C -U ?> D-
M cr) ?Xr4 co-i-i to rd co -f-i V-icu
oo, MIU
o 2 w) 1-40.0: -r-ictfuai uo -rJ o a) cdoO'
CJ W MCtf 2: •r^tl-HjQ H--4r-< Kt3
- « 4-101^1 co 4J o 4J >-) (U WODOI M <--i
0)0)0 3 Ul Q, CD 4-> I) CJ CU EG 3 0) 
-------
                                                                      94
       ,              . DATA ANALYSTR
BASIC STATISTICAL METHODS
     The scheme of data analysis developed herein is one that was
evolved for this specific project for use 'with the intensive
survey data.  It is based on fundamental statistical principles of
data handling and analysis to provide an understanding of the
significance of the variations in the data and a reliable starting
point for engineering and scientific evaluation of the results.
The basic steps in this analysis scheme were these:
1)  Compute the basic descriptive statistics of each significant
parameter distribution at each sampling station;
2)  Compute the Pearson distribution of each significant parameter
at each station;
3)  Make an analysis of variance for each significant parameter
between surveys to determine if there was a statistically significant
difference between parameter distribution;
4)  Make an analysis of covariance for pairs of significant parameters
for stations and for surveys.  This is a combination of an analysis
of variance and a regression analysis; and
5)  based on the analyses of variances, significant pairs of parameters
were selected for cross-spectral analysis to determine the parameter
interaction at each station.
Each step of data analysis procedure is discussed below in greater
detail.
Descriptive statistics;  All basic water quality and environmental
data were put on punch cards and, except for the nutrient series
(i.e. ammonia nitrogen, nitrate nitrogen, total organic nitrogen,
total phosphates)and pH,were tabulated along with the mean, variance
standard deviation, skewness, kurtosis and frequency distribution in

-------
                                                                      95
standard deviations on computer print out sheets.  The nutrient
and pH data were only tabulated because the nutrient values were
sufficiently low to be of minor concern and the pH values were not
amenable to this statistical treatment.   Data processed through
the descriptive statistics program are shown in Table   33
Pearson coefficients;  The coefficients of the Pearson theoretical
frequency distribution were calculated and also tabulated on the
descriptive statistic print out sheets.  The Pearson distribution,
which is a general analytic representation of a wide variety of
possible observed distributions, is obtained from the solution of
the first order differential equation.
Where the y - axis is the centroid vertical and the values of y
are the number of observations found at corresponding values of x.
The Pearson coefficients are calculated from the relationships
        A =
            A
        b=  £
S  is the variance, L is the skewness and K is the kurtosis.

The Pearson distributions provided a common mathematical basis for
evaluation of the observed frequency distributions.
Analysis of variance;  The analysis of variance is essentially the
separation of variance according to causes and determining by
variance ratios the probability of the samples being tested of
coding from the same populations.  The analysis of variance computations
  The definition of pH is:  pH  =-jJ  Therefore pH, similarly
  to MPN coliforms, should be analyzed statistically in terms of
  a geometric mean or a harmonic mean rather than an arithmetic
  mean.

-------
                                                                      96
                          TABLE   33
          DATA PROCESSED THROUGH DESCRIPTIVE STATISTICS
                           PROGRAM
ENVIRONMENTAL                      WATER QUALITY
    DATA                               DATA
Rainfall                           Chloride Concentration from Model Studies
Air Temperature                    BOD
Tide Height                        Total Coliforms
Wind Speed                         Fecal Coliforms
Solar Radiation                    Water Temperature
River Discharge                    Chlorides (Prototype)
                                   Dissolved Oxygen
                                   Dissolved Oxygen (percent saturation)
                                   Total Solids4
                                   Volatile Solids4
                                   Turbidity4
NOTES:
1)  Intensive survey data measured on four-hour frequency for period
    of 5 days.
2)  Environmental data recorded every four hours during intensive
    surveys.
3)  Observed values for nutrients and pH only tabulated.
4)  frhese parameters measured only during intensive surveys AA and AB
    Khen sufficient laboratory personnel were available to make the
    determinations.

-------
                                                                       97
 result  in an F  ratio  or  variance  ratio which can be compared  to
 standard  statistical  tables  to  ascertain  for any given degree of
 significance whether  the samples  came from the same populations.
      The  analysis  of  variance procedure was applied to the data
 of  the  two most important quality parameters, chloride concentration
 and dissolved oxygen  percent saturation.  Chloride concentration was
 used because it is a  conservative constituent and dissolved oxygen
 percent saturation was the predominant water quality degradation
 factor.  The major questions to be answered by the analysis of
 variance  were these:
 (1)   Is ther^a  significant change in the  statistics of each water
 quality parameter  between surveys at the  same stations?
 That is,  does each of the six surveys represent sampling of a
 different physical environment, or may two or more of the surveys
\e  used as representing  the  same  environment?  A lack of significance
 in  the  F-ratio  between surveys  would indicate that the surveys
 being considered can  be  regarded  as one survey, and that the data
 obtained  are all samples of  the same physical environment.
 (2)   Is there a significant  change in the statistics of each
 water quality parameter  between stations  for each survey?  That
 is,  are the  stations  chosen  sufficiently  far apart that the observed
 changes in parameters between the stations do represent changes in
 the  environment between  them,or may some  of the stations be grouped
 together  in  the data  analysis?  A lack of significance in the
 F-ratio between stations  would  indicate that the station records
 concerned are actually measurements of the same environment and may
 be  treated as such.                                      -  •
 (3)   Are  the statistics  of difference between the same parameters
 at different stations the same  for all surveys or sequential parts.

-------
                                                                      98
of surveys?  For example, is the change in Chlorides between
Stations 1 and 2 the same for Survey B as for Survey C?  A lack of
significance in the F-ratio for station-survey interaction would
indicate that the relationships between stations are similar for
the surVeys concerned.
(4)  For the environmental factors (River Discharge, Tide Height,
Air Temperature, Solar Radiation, etc.), which factors show
significant changes between surveys?  A lack of significance in
the F-ratio between surveys would indicate that the environmental
factor analyzed does not change and may be regarded as having
similar effects during each survey.
     The results of the analysis of variance were used as a basis for
selecting pairs of environmental and water quality parameters on
which an analysis of covariance was run.

Analysis of cpvariance:  The analysis of covariance and cross-spectral
analyses were begun at the same time with the object of reaching
the same goal.  This was to develop significant relationships between
pairs of water quality parameters and between water quality parameters
and environmental factors.  The major difference in the two approaches
being that the covariance analysis approach does not yield as much
information about the relationships.  However, at the time these
approaches were started, it was questionable whether the records were
of sufficient length to yield reasonable results from the cross-spectral
computations, therefore, both methods were tried.  The information
yielded by the cross-spectral analysis was far superior to that from
the covariance analysis and further covariance analysis was discontinued,

-------
                                                                      99
     Essentially the analysis of covariance involved a combination
of the methods of regression and analysis of variance where the
regression coefficients were calculated and tested for equality
along with the residual variances.  The questions to be answered
from this approach were these:
(1)  Is there regression between individual values of y and x
for the entire body of data?
(2)  Is the regression of replicates at individual stations the
                                  »
same for all stations in all surveys?
If this F is not significant,  then the regression of y on x is
the same for each station in each survey.
If this F is significant, then it is necessary to examine the
variation of the regression coefficients at each station between
stations and between surveys.
(3)  Is there a significant difference between the regression of
replicates within one station and the regression of mean values for
each station over all surveys and all values?
If this ratio is not significant, then the regression coefficient
of replicates of y or x within stations is the same as the regression
coefficient of the mean values of y and x at each station for all
stations in all surveys.
If the ratio is significant, then it is necessary to examine the
variation of the mean regression coefficients at each station between
surveys and stations.
(4)  Is there a significant difference between the regression of
the mean values at each station between all stations at all surveys
and stations only?
If this F is not significant, then there is no difference in the
regression of the individual station means for all stations and
surveys and for stations only.

-------
       \
100
(5)  Is there a significant difference between the regression
of the mean values at all stations at all surveys and surveys
only?
Cross-spectral .analysis:  Cross-spectral analysis is a technique
whereby a pair of sequential records can be analyzed to ascertain
the statistical relationships between them.  Conceptually, cross-
spectral analysis is the harmonic covariant analysis of two time
series records where one record is considered a causative factor
and the other a resultant.  The statistics produced show the
significance of the cause-effect relationships as well as a temporal
relationship.  The procedures involved in cross-spectral analysis
require a tremendous amount of calculations and are practical only
if a high-speed computer is available.  The computational steps
for cross-spectral analysis are (1) compute the individual power
spectrum of each record; (2) compute the cospectrum and quadrature
spectrum from the cross-correlations of the two records; (3) compute
the coherence, the phase lag, and the response spectrum from the four
spectra listed above; and (4) compute the overall response.  Each
of these steps is discussed in more detail below.
(1)  Individual power spectrum.  The term power spectrum refers to
a sorting/the total variance of a time series record into those parts
that recur at a constant time interval or frequency.  This sorting
is accomplished by the following procedure.  Using a record of
constant sampling interval, tabulate the data sequentially and
determine the mean and the square of the mean.  Compute the auto-
correlation function of the record for the desired number of lags.
This function is obtained by multiplying each number of the record
by another number in the eecord, determining a mean of the sum
and subtracting from this mean the square of the arithmetic mean

-------
                                                                      101
of the entire record.  This may be expressed mathematically by
             = N~r   2_  Vt
where                                                    '
          Cr  =  Autocorrelation at lag r,
          Xt  =  record value at t  ,
          t   = sequential index of values,
          r   =  lag numbers,
          m   =  total number of lags, and
          n   =  total number of values.

The fluctuations in autocorrelations are smoothed by applying a
cosinusoidal weighting factor.  This factor is the Fourier cosine
transform and is computed mathematically from the expression
where
     Vr  =  Fourier cosine transform of the autocorrelation of lag r,
      q  =  lag number, having values between 1 and m - 1

      k  =  a constant,  k  «  1 for r  =  1, 2 --- m - 1
                         k  =  1/2 for r  =  o and m.


The final step is computing the power specrum estimates for each
lag period.  This procedure involves another weighting operation

to counteract distortion of spectrum resulting from the small

sample size.  Mathematically this is accomplished from

     V0   =  0.54V [Vo  +  Vj]  ,

     v    =  0. as  Vr-, -f
     Urn   =  0.5>  V^_, +


Vo, Vr and Urn are the power spectrum at the corresponding lag periods.

-------
                                                                      102
     The temporal period corresponding to each lag can be obtained
from the expression
                  •2-m
Tr is the period corresponding to the lag, and A t is the sampling
interva 1 .

(2)  Cospectrum and quadrature spectrum -  These two spectra are
the result of a cross-correlation procedure which is an extension
of the autocorrelation process.  They are obtained by multiplying
one record by second record, and since either record may be lagged,
there two possible cross-correlations.   The cross-spectrum scheme
of data analyses utilizes the sums and differences of the cross-
correlations and may be expressed mathematically
       ^r=jT,-r)
where x and y are the values of the records, t is a sequential
index of values, r is the lag number, m is total number of lags,
and S denotes whether the computed factor is from the sums or
differences of the cross-correlation.
     The Fourier transform of the two cross-correlation functions
is then computed.  This again is a weighting operation or smoothing
function.  However, it differs from the procedure used for the
individual power spectrum in that a sine transform is used on one
of the cross correlation factors and a cosine transform is used on
the other.  This suppresses components of the variance which are not
90° out of phase and permits the computation of the phase lag which
is the angular time lapse between respective maxima and minima in

-------
                                                                    103
the two records.   The Fourier  transforms are computed as follows.
For the S+ cross-correlation function the cosine transform is
used.  Mathematically this  is  expressed

                         *)  +  ?'*;]   ,               ,
                                            r + C    *• r$ f    Ai
                                            Sg. Los -^f J  )
Co ,  G£   and Cm  are  the  transforms at lags 0, r,  and m.

r is the lag number,  m  the  total number of lags, and a  the

lag number between 1  and m  -  1.
For the S~ function the Fourier sine transform is computed from  the

expressions

       Qo =o,
                                          ,J
                  /   .\*   \    	•— ,
             /rrv.

 Qm  - 0.
A final weighting of the  transforms yields the cospectrum and

quadrature spectrum. This  is accomplished/tne same procedure  used

for the individual power  spectrum.  Mathematically the relationship are




      C^- o.s-4  ( C«-i  +C^')  ,

      Q6 = O.5M- (  Qo'  + Q/)->

      Qr. 0.33 Or-i  t 0.5₯ C?r -f-  0. •

      9m
       Or = ^  >   S
                                                 the
Co, Cr, Cm,  QOj  Qr>  and Qm  are    < respectively/oospectra and

quadrature spectra at the subscripted lags.

     The period  of these spectra can be computed from  the same

expression as  given  for the individual power spectrum.

-------
                                                                      104
(3)  The coherence, phase lag and response spectrum can now be
computed from the individual power spectra of the two records and
the cospectrum and the quadrature spectrum.  These statistics are
computed as follows:
          The coherence, which is a dimensionless number, is
     analogous to the square of a linear correlationship coefficient.
     It can be computed for each lag from the relationships
              r * JL Qt-*-
        fjr =     -   ^        , where Hr is the coherence.
              Urx "Wry
          The phase lag, which as stated earlier is an indicator of
     the temporal relationship between similar variations in the
     records, can be computed from the expression
       Lr =
                       Cp J    >  where Lr is phase lag at lag r
     in units of radians.

          The response spectrum, which shows what the resultant
     spectrum would be like  if the causative record were the only
     parameter dominating it,  is computed from the expression

             Rr  =  Hr  • Uro  where Rr is the response at
     lag r and Uro is the individual power spectrum at lag r of
     the causative or output record.  The units of the response
     spectrum are variance of resultant or output record.  This
     function is analogous to the individual  power spectrum and
     is interpreted the same.
(4)   The overall response of the cross-spectral analysis is the
     final statistic fo be computed.  This is a rate statement of

-------
                                                                           105
          the process under investigation and is computed from the
          relationship
                   \
                                        where OR is the
                        T'O
          overall response and Uri indicates the value of the individual
          power spectrum of the causative or input record.  The units
          of the overall response are the unit of resultant record
          (output) per unit of causative record (input).

     The above discussion of the data analysis scheme used for the
Charleston Harbor Study defines only the mathematical and statistical
manipulations used on the intensive survey data.  The evaluation and
interpretation of the results of these manipulations is presented in
the document to which this report is appended.

-------
                                                                     106
Computer Programs
Calculation of Pearson  frequency curves
    This is the basic statistical program used in this study.  Input
is raw data from the intensive surveys; printed output is the accompany-
ing tabulation of statistics and frequency plot for surface and
bottom records; punched output is one card for the surface record
and one card for the bottom record, each containing the number of
values (SUMA or SUMC),  the sum of the experimental values (SUMB or
SUMD), and the sum of the squares of individual experimental values
(SB2 or SD2).
    Input consists of a lead card identifying the data, thirty cards
containing the empirical data, and a blank card or termination card.*
Where data are missing, 0.0 is punched in the data field (B(I)) or
D (I)  ) and a 0 is punched in the corresponding identification field
(A(I) or C(I)  ).
    The arithmetic operations are these:
I.  Sums of the numbers of values (SUMA or SUMC) and of the experimental
    values (SUMB or SUMD) are formed as the data are read in.  For
    the experimental values sums of squares, cubes, and fourth powers
    are also formed (SB2, SB3, SB4, or SD2, SD3, SD4).
II. For surface and bottom records separately, these further calculations
    are made:
          Let x^    =   the i  the value of the record
              N     =   the total number of values in a record.
                   ^ X'
    a)  x   =     .JjL  l                       ( x BAR)
                 ~u~     w
    b)  x2  =           Jn^              (P2MO)

    c)  x3  =
£ ft)
*  A termination card for any of these programs has a 1 punched in
  Column 4.

-------
                                                                       107
      d)   x4
      e)   M
                   N
            Variance  x
                    x2
                                                 (P4MO)

                                                 (SQUMO)
      g)
X*-
                                                       (TRIMO)
                                                 (QUAMO)
      h)  S      Standard Deviation = (M2)
                                           1/2
                                                 (SIGMA)
      i)  P  =   Skewness
                                                 (SKEW)
      j)  K  =   Kurtosis  =
                                 M,
                                (M9 )
                                                  (BETA 2)
k)  Pearson Coefficients*

    A    =  10K  -  12P2   - 18
    B0   =    M2   (4K  -  3P2)/A

    Bj.   =    SP (K  +  3) /A
    B         (2K  -  3P2  -  6)/A
                                                       (ABIG)
                                                       (PBO)

                                                       (FBI)
                                                       (PB)
III.  The experimental values (B (I) ) or D (I)  ) are sorted in ranges
      of one standard deviation from the mean and a histogram of the
      values is printed out.
Analysis of variance, part one and part two
      These programs carry out an analysis of variance of the experimental
      values between stations and between surveys for one parameter.  The
      scheme used is that presented in Bennett, C.A. and N.L. Franklin,
     As defined in Smart, W. M. , Combination of Observations, Cambridge
     University Press, 1958.  pp. 166 - 188.

-------
                                                                         108
C     CALCULATION OF PEARSON FREQUENCY CURVES FROM EMPIRICAL DATA
C     REQUIRES BLANK CARD BETWEEN DATA DECKS. PROGRAM  IS TERMINATED BY
C     CARD PUNCHED 1 IN COLUMN 4 FOLLOWING LAST DECK.  FIRST DECK HAS
C     NO BLANK CARD PRECEDING IT
      DIMENSION A(30), B(30), C(30), D(30)
   92 RE.'^D k8
   48 FORMAT(15X   49HSAYTHEMAG ICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS )
      PRINT 48
      SUMA=0.0
      SUMB=0.0
      S UMC =0.0
      S UMD =0.0
      S 82 =0.0
      SB3=0.0
      SB4=0.0
      SD2=0.0
      SD3=0.0
      SD4=0.0
      L=30
      DO 61 1=1 ,L
      F'EAD 53, A(|), D(l), C(l), D(l)
   53 FORMAT(34X F3.0.F7.2,2X F3.0,F7.2)
      SUMA = SU.MA + A( I)
      S UMB = S IJMB + 8(1)
      SB2 = SB2+B( l)**2
      SB3=SB3+B( l)**3
      S UMC = S UMC + C ( I )
      S UMD = S UMD + D ( I )
      SD2=SD2+D( |)**2
      SD3=SD3+D( l)**3
   61  SD^=SD4+D( |)**4
     PUNCH 50,SUMA,SUMB,SB2
   50  FORMAT (F6.0.EI4.8, El 4.8 f15X,7HSURFACE)
      PUNCH 51 .SUMC,SUMD,SD2
   51  FORMAT(F6.0,E14.8,E14.8,15X,6HBOTTOM)
      TOT=SUMA
      SUMX=SUMB
      SUMX2=SB2
      SUMX3=SB3
      K=1
      PRINT 49
      DO 23 1=1 ,L.6
   23 PRINT 110,B(l),B(l+1),B(l+2)fB(l+3),B(l+4),B(l+5)
  110 FORMAT(14XF7,2,2XF7.2,2XF7.2,2XF7.2,2XF7.2,2XF7.2)
   49 FORMAT(/28X 24HVALUES OF SURFACE RECORD)
   45 XBAR=SUMX/TOT
      P2MO=SUMX2/TOT
      P3MO=SUMX3/TOT
      P4MO=SUMX4/TOT
      SQUMO=P2MO-(XBAR**2)
      TRIMO=P3MO-3.*XBAR*P2MO+2.*(XBAR**3)
      QUAMO=P4MO-4.*XBAR*P3MO+6.*(XBAR**2)*P2MO-3.*(XBAR**4)
      SIGMA=SQRT(SQUMO)
      SKEVy=TRIMO/(SIGMA**3)
      BETA2=QUAMO/(SOUMO**2)
      ABIG =10.*BETA2-12.*(SKEV/**2)-l8.
      PBO=SQUMO*(4.*BETA2-3.*(SKEV/**2))/ABIG
      PB 1 =S I GMA*S KEV/*( BETA2+3 . ) /AB I G
      PB =(2.*BETA2-3.*(SKEV;**2)-6.)/ABIG
      PRINT 14. TOT      *.

-------
    1'4  |{TM-\T(/»X  I7IINUMBCR OF VALUES=,F4.0,24X 20HPEARSON COEFFICIENTS)
       PRINT  15. XBAR,ABIG
    15  FORMATS  8X  5HMZAN=.F8.3, 35X 2HA =  F1206)                          ino
       PRINT  16, SQUMO,PBO                                                109
    16  FORMAT(  8X  9HVAR|ANCE=, F14.6, 25X 3HBO=, F12.6)
       PRINT  17, SIGMA,  FBI
    17  FORMAT(8X I9HSTANDARD DEVIATION=, F12.6, 17X 3HB1=, F12.6)
       PRINT  18, SKEW, PB, BETA2
    18  FOR^AT(8X9HSKEWNESS=,F12.6,27X,2HB=,F12.6/8X9HKURTOSIS=,F12.6)
       PRINT  131
   131  FORMAT(/ 25X 30HFREOUENCY DISTRIBUTION OF DATA)
       PRINT  152
   152  FORMAT(/31X  11HUPPER BOUND, 3X 16HNUMBER OF VALUES)
       PRINT  153
   153  FORMAT(33X  8HOF RANGE, 8X 8HIN RANGE)
       PLOT = -6.0
   128  UNUM=1.0
       MUM = 0
       PLOT = PLOT + 1 .0
       DOWN = XBAR +(PLOT - 1.0)*SIGMA
       UP - XBAR + PLOT*SIGMA
       DO 143 1=1 ,L
   133  GO T0( 164,163),K
   163  IF(D(I)) 121,121,165
   165  IF(D(I) - DOWN) 121,121,162
   152  IF(D( I) - UP) 123,123,121
   164  |F(B( I)) 121 ,121 ,125
   125  IF(B( I) - DOWN) 121,121,122
   122  IF(B(I) - UP) 123,123,121
   123  UNUM = UNUM*10.
       MUM = MUM +  1
   121  IF( I-L)  127,132,132
   127  1=1+1
       GO TO 133
   143  CONTINUE
   132  PRINT 126,  UNUM,  PLOT, MUM
   126  FORMAT(F30.0, 3XF4.0, 5HSIGMA, 9X 13)
       IF(PLOT - 5.0) 128,129,129
   129  GO TO(75,85),K
   75  TOT=SUMC
       SUMX=SUMD
       SUMX2=SD2
       SUMX3-SD3
       SUMX4=SD4
       K=2
       LAST = -1
       PR I NT 44
   44  FORMAT(/28X 23HVALUES OF BOTTOM RECORD)
       DO 24 1=1,L.6
   24  PRINT 110,D( l),D(l + 1),D(l+2),D(l+3),D(H-4),D(l+5)
       GO TO 45
   85  PRINT 172
   172  FORMAT(////)
       READ 91, LAST
   91  FORMAT(|4)
       IF(LAST)  87,87,111
   87  LAST = 0
       GO TO 92
   111  STOP
       END

RELOCATABLE SUBROUTINES  CALLED
SQRT

OBJECT PROGRAM DATA TABLE

-------
                                                                  110

 ENTER  SOURCE  PROGRAM
 THEN  PUSH  START
 C       ENVIRONMENTAL DATA)   PEARSON  PROGRAM
       CALCULATION OF PEARSON FREQUENCY CURVES FROM  EMPIRICAL DATA
       REQUIRES BIANK CARD BETV/EEN DATA DECKS. PROGRAM  IS  TERMINATED BY
"C      CARD  PUNCHED  1  IN COLUMN  4 FOLLOWING LAST DECK.   FIRST DECK  HAS
 C      NO BLANK CARD PRECEDING IT
       DIMENSION  B(30)
    92  READ  48
    48  FORMAT(15X   49HSAYTHEMAG ICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS)
       PR I NT 48
       SUMA=30.0
       SUMP =0.0
       SR2-0.0
       SB3=0.0
       SB4=0.0
       L=30
       DO 61  1=1,L
       READ  53, B(l)
    53  FORMAT(F9.2)
       SUMB  =  SUMR + B(l)
       S32  = SB2+B(l)**2
       SB3=SB3+B(|)**3
    61  SB4=SB4+B(I)**4
     PUNCH  50tSUMA,SUMB,SB2
    50  FORMAT(F6.0,E14.8,E14.8)
       TOT=SUMA
       SUMX=SUMB
       SUMX2=SB2
       SUMX3=SB3
       SUMX4=SB4
       K=1
       PRINT 49
    49  FORMAT(/24X 24HVALUES  OF  OBSERVED DATA  /)
       DO 23 1=1,L,6
    23  PRINT 110,B(l).B(l+?),B(l+2),B(l+3),B(l+4),B(l+5)
   110  FORMAT(8XF9.2,3XF9.2,3XF9.2,3XF9.2,3XF9.2,3XF9.2)
       XBAR=SUMX/TOT
       P2MO=SUMX2/TOT
       P3MO=SUMX3/TOT
       P4MO=SUMX4/TOT
       SQUMO=P2MO-(XBAR**2)
       TPIMO=P3MO-3.*XBAR*P2MO+2.*(XBAR**3)
       QUAMO=P4MO-4.*XBAR*P3MO+6.*(XBAP**2)*P2MO-3.*(XBAR**4)
       SIGMA=SQRT(SQUMO)
       S KEV,'=TR I MO/ (S I GMA**3)
       BETA2=QUAMO/(SQUMO**2)
       ABIG  =10.*BETA2-12.*(SKEV'**2)-18.
       PBO=SQUMO*(4.*BETA2-3.*(SKEV/**2))/ABIG
       PB1 =S I GMA*SKEV/*( BETA2+3 .) /AB I G
       PB =(2.*BETA?.-3.*(SKEW**2)-6.)/ABIG
       PRINT 14 TOT                                 .
    14  FORMAT(/8X 17HNUMBER OF VALUF.? = ,F4.0,24X 20HPEARSON COEFFICIENTS)
       PRINT 15.  XBAR.ABIG
    15  FORMAT( 8X 5HMEAN=,F9.2,  35X 2HA=, F12.6)
       PRINT 16   SQUMO,PBO
    16  FORMAT( 8X 9HVAR IANCF. = , E14.8, 25X 3HBO=, E14.8)
       PRINT 17,  SIGMA, PB1
    17  FORMATfSX  19HSTANDARD  DEVIATION-. E14.8, 17X  ?HB1». F14.8)

-------

       ,-;•;  = 0
        :7 -  PLOT  -r  '\ .0
          1       '  .•> '"
                  •- "  ' '   ' ", "   791  19'
           . ; ,  — ''•''.,•   i ^ i  j ; /. I , i /..
           ' - \    i'-A  " f\ '-:  1O^   1O1
            . ,;  - s.',-,.  j 2;. , !  2,-i, i 2 1
        '  •  . >  -07  - -. o  1 ? ?
        ,   - - /  it- ! , • j - , • J -
                                    L ," ! I, '
                                    ,U. .
            ^  *
             92
                              :ALL:I
*• '- r~  f<	• ^ .—• f f - T~  ^S f~-- >~-
A ^ u  b i u -<, •. C. c  r" U:
                                                                          !S = ,F12.6)
                                                                                               111
                                                        ::'  Cr  VALuZS)

-------
                                                                  112
Statistical Analysis in Chemistry and the Chemical Industry.
Wiley, 1954.  pp. 368 - 379.  The program was debugged using the
data presented in the example in this reference.
B.I.  Part one.  Input consists of these cards:
  (1)  Lead card identifying the data
  (2)  Lead card stating number of stations, surveys, .and
       replicates for the analysis of variance
  (3-n)A data card (the output from program A) for each station
       of each survey to be used.  Data cards are arranged in
       order of stations, then in order of surveys.
The output is (1) printed cross check of summations,  (2) punched
cards for input to part two, consisting of (a) lead card identifying
the data, (b) lead card stating number of stations, surveys, and
replicates, (c) one data card containing summations of data by
stations, surveys, and replicates.
     The arithmetic computations consist of summing the data and
squares of the individual data points by stations, surveys, and
replicates.
     BIGN  =  Total Number of Values (N)
     GSX   =  Sum of Individual Data Values (5. x)
     GSXS  =  Sum of Squared Individual Values  ( j? x2)
     TS    =  Sum of Squared Sums of Values for each station
              in each Survey
The notations used are these:
     i  =  station index  (i  =  1, 2,  3 	p)
     j  =  survey index   (j  =  1, 2,  3 	q)
     n  =  individual value index  (n = 1,2,3	30)

-------
                                                                    113
   STI  =   Summation of  squared  sums of individual values in each
           survey  at each  station over all surveys      •"• •
             J = i

   STJ  =   Summation  of  squared  sums o£ individual values in all
           surveys  at each  station over all stations
.2.   Input  consists  of  the  three output cards from Part I.
     Output consists  of a printed analysis of variance table and
     one  punched  card which is input to the analysis of covariance
     program.
     Variable names  used in the FORTRAN program are equivalent to
     these  symbols used in  Bennett and Franklin
       SIGN   = N
       GSX    = T
       GSXS   = Z;j/n.*»J
               = So 7i|
       STI    =   .-a
        PEE     =  p
        CUE     =  q
        COMP    =  n

   The  calculations made are these:
   a.   Variance breakdowns within c las ses
       ESI  =
                        ^f       *
       F^ T  =  ^.   =  ^T" *!"•      ~"r
            —    i       ^ '  /       /
                      "  nj^      TT

-------
                                                                  114
     ESAU  =   Sdij  =
     ES     -   S
     ESSIJ  =   svr    =
b.  Degrees of Freedom
    DEFR   «  p - 1
    DEFC   =  q - 1
    DFINT  =  (p -l)(q - 1)
    DFREP  =  N  -  pq
    DFT    =  N - 1

c.  Mean Values of Variance estimates
    AMEAN   =  Si          A

    BMEAN   =  Sj      =   B
              q - 1

    CMEAN   =  S...             =  C
              (p -~l(q - 1)

    DMEAN   =  Sati            =  D
               N - pq

d.  Hypothesis Testing  (F - ratios)
    AFD   =   A/D
    BFC   =   B/C
    CFD   =   C/D
    VARA  =   A - D
               nq
    VARB  =   B - C
               np
    VARC  =   C - D
               n

-------
                                                                           115
       , v/f- , {-,  p i-  , , f -, , • . ,,* (- r-;., j-y-. -




       •T  •". ;::ST  COLUMNS
                                      \ "  SQUARES  FOR  ROV'S, COLUMNS
                                       " "  OUT  AND  PUNCHED FOR
                                          :i!ECK OF SUMS  FROM ROV'S
                                      ......ATION.
        ••.T'T'T.X  36HCHLORIDE DATA  FROM INTENSIVE  SURVEYS)
        •;>:;,;!  R!GJN(20)  TJX(20),  TJXS{20), TS!(20)
        VS:~N  u.,"jr/20,6j, su:;xf20,o) .:.-.:'T>'20,6),  xcUMS(20,6)
        'lF!..;,.  oIGIN(6), T!X(6),  T!XS(6). TSJ(6)
    . .    --
    r.sx£=o.o
    RGSXS^O .0
    7".-0.0
I 0 2
   i--=O.C
   :'  10?..
   ::\T(K;x  !^,!OH STATIONS,. 1^,9:-: £u^vFvs,,F6.o,iiH REPLICATES)
   ; :T m?.,  iP.-I,  JCUE, COM?'
           • :-:.£, JCUE,COMP
                  JCUc
     ! ^   '"'i  O
    J ; - U . o




        I =* 1
        Jj  =
                    PEE
103
113
                    t\  C I I"v' / '  : '   C i".'1''  l\
                   J; , SUr/ v i ,^} ,  -^	,JJ
   N'iATlFft.O,  EHi-,8, E14.6)
   'CCMP-!JNun(! ,J)) 106,  107,  108
   VT  102,  !, J
   " :AT(fA32X  i4  2X 25HN[;::"ER  OF  VALUES  TOO  HIGH)
   .• -  su:-;x(i ,J)/UMUM( i ,j)

   • 'S( f^J)  =~ SUMXsf I , J) +  ( X3AR**2}->(CCfiP-UNUM( I , J) )
   .•/.{: ,.;i  --- COMP
   :.':!/' J'  -  r.!CiN( J) + UNiJ/ ' .. , J)
   :.; j)  -  T;X(J) 4-  SUMX( i,j)
   • •'-( J'  - 7IXS( J)  -i- SUMXS( ; . .,}
::r,,,s( -. .j'  =  (SUMX( i,j))**2
TSJ:J)  =  TSJ(J) +  XSUMS(I,J)
?, 1GN =  "'!GN + BIGIN(J)
re'' —  <~  ' i  T \\f ( \\
L- 3 A =  i - , -!- I I A ^ J )
GSXS =  ^CXS + TIXS(J)
-S - TS -;- TSJ(J)
FT: =  ST; + ((TIX(j))**2)
r:.  in  i  -  i, IPEE
-: ^j.\" s)  =oeo
7JX( !)  =0.0
TJXC.( ! ) =0.0
--r < r < \  _  n  n
l j i v ! •  =  U . U
DO  M3  J  =  1 , XUE
H1GJN' J)  =  P1GJNC!) + UMUM(I,J)
TJX: I)  =  TJX(I) +  SUMX( |,J)
TJXC(I) = TvJXS(l)  + SUMXS(I.J)
TSI( I)  =  TSI( I) +  XSUMS(!,J)
BBIGM  = BBIGN + BIGJN(I)

-------
               H- TJXSf !)
:.rs =  rrrr.  -;- TSI( i)
~7J -  T"J  -•- ((TJX( !))**2)
                                                                             1]
                                   STJ
     ;i( 11 2.6 ,  E 12 Oo ,E 1 2 .6 >r: 12 .& ,E 1 2 06 ,E1 2 .6)

    •::-! 1 90 ,B ! GM ,GSX , GSXS ,TS ,ST I ,STJ
   ; ' ' T 100  P. T I (t '•!  P, !7 C Y  R ft "^ V C Q T C
    TO 92
  "•"OGFIAM CATA  TABLE
  ".T^ACE POSITIONS
• c; ' ;. i ^ r pi * • p !  c ~r 
-------
                                                                           117
    3K:CG0300&02b
CARD OJ7 OF SEQUENCES 10000300002R"
ENTER CnijRCE  PROGRAM
THE?. ?j£;-: START
C     A'-'-ALYSIS OF VARIANCE PROGRAM.   PART TV.'O.
c     /';:CUIRES AS INPUT THE PUNCHED OUTPUT FROM  PART ONE.  RESULTS ARE
c     •--•:::TED OUT IN AM ANALYSIS OF VARIANCE  TABLE  AND  THE SUMS OF
C     .-. i-'.RES ARE PUNCHED OUT FOP. INPUT TO COVARIANCE  PROGRAM.
   "?.    i'!T 101
  '-'. ".  ..:AT(//// 3ox  ZOHANALYSIS OF VARIANCE //)
       ,: :  100
  ]':' -;\-;AT(22X  35HCHLORIDE DATA FROM  INTENSIVE  SURVEYS)
             r
            1 '! 1

             (16X  30HSURVEYS AA, AB, B, C, D
           \T(16X40!!STATIO^S. SURFACE, 1 2 3 *:•  5  o  7  S 9 1 3   )
      READ  102,  I PEE,  JCUE, COMP
  102 FCRMAT(13X  |4,10H STAT IONS , , !^,9H SURVEYS , ,F6. 0,11 1! REPLICATES)
      PRi;\T 102,  I PEE,  JCUE, COMP

-------
      ,"£AD U-)0,BIGN, GSX, GSXS, TS,  STI, STJ
  190 FORMAT(E12.6, E12.6,E12.6,E12.6,E12.6,E12.6)
      PEE = I PEE                                                         118
      CUE = JCUE
      ESI = (STJ/(COMP*CUE))-(GSX**2)/BIGN
      ESJ = (STI/(COMP*PEE))-(GSX**2)/BIGN
      ESAU = GSXS - (TS/COMP)
      ES = GSXS - (GSX**2)/BIGN
      ESSIJ = (TS/COMP)  -(STJ/(COMP*CUE)) - ESJ
      DEFR = PEE - 1.
      DEFC = CUE - 1 .
      DPI NT = DEFR*DEFC
      DFREP = BIGN -(PEE*CUE)
      OFT = RIGN - 1o
      AMEAN = ES I/DEFR
      BMEAN = ESJ/DEFC
      CiMEAN = ESSIJ/DFINT
      DMEAM = ESAIJ/DFREP
      AFD = AMEAN/DMEAN
      BFC = BMEAN/CMEAN
      CFD = CMEAN/DMEAN
      VARA = (AMEAN-DMEAN)/(COiMP*CUE)
      VARB = (BMEAN-CMEAM)/(COMP*PEE)
      VAPC = (CMEAN-DMEANJ/COMP
      PRINT 121
  121 FORMAT(// 32X 31HSOURCE  OF  ESTIMATED  VARIANCE/)
      PRINT 122
  122 FORMAT(20X7HBETOEEN,3X7HBETV/EEM,5XH'HSTAT!ON-SURVEY,16X5HTOTAL)
      PR INT 123
  123 FORMAT(20X8HSTATIONS,2X7HSURVEYS,4X11 HINTERACTION,5X10HREPLICATES)
      PRINT 124.ESI,ESSIJ,ES
  12k FORMAT(//6HSUM OF,10XE12.6,12XE12.6,14XE12.6)
      PRINT 125,ESJ, ESAU
  1 25 FORMAT( 7HSQUARES ,21 XE 12 .6,1 7XE1 2 ,6//)
      PRINT 126, DEFR,DEFC,DF I NT.DFREP,DPI
  126 FORMAT(10HDEGREES  OF , 10XF4.0,8>(P4.0 ,8XF6eO , 10XF6.0 ,6XF600)
      PRINT 12?
  127 FORMATC7MFREEDOM//)
      PR INT 128,AMEAN,BMEAN,CMEAN,DKEAN
  128 FORMAT(ifHMEAN, 12X E12.6, 2X E1206, 2X E1206, 2X E1286)
      PRINT 129
  129 FORMAT(6HSQUARE //13HAVEP.AG,r  ' • J£  '
      PRINT 130,VARA,VARB,VARC
  130 FORMAT(11HOF VAR IANCE ,5XE12     . :_  .lXc.12.6/8HEST IKA-L//)
      PRINT 131,AFD,CFC,CFD
  131 FORF;AT(10HCALCULATED,6X F12.5.2X F12.5, 2X F12.5/zfX 1 HP //)
      PRINT 132, DEFR,DEFC,DPI NT
  132 FORMAT(9HTABULATED/8HFUNCTIOK/^X2HN1 , U;-XF4.0 ,8XF400 ,8XF5.0)
      PRINT 133, DFREP,DFINT,DFREP
  133 FORMAT('fX 2HN2, 12X F6.0,6XF600,8X F6.0/4X IMF///)
      PUNCH 134, ESAU,ESSIJ.ESI.ESJ,ES
      PRINT 406
  40 6 FORMA
      GO TO 92
      END

 ":JECT Pr.CSr:AM DATA TABLE
    0 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                      119
Spectral analysis
        These computations required to use of four programs because
    of the limited memory of the IBM 1620 being used.  The general
    procedure followed this scheme:
          DATA DECK
         INPUT RECORD
            T
SPECTRUM
PREPROCESSOR
•^
POWER
SPECTRUM


                           CROSS SPECTRUM
                             PART 1
                           CROSS SPECTRUM
                             PART 2
 DATA DECK
OUTPUT RECORD
                                                 SPECTRUM
                                                PREPROCESSOR
                                                  POWER
                                                 SPECTRUM
                           PRINTED OUTPUT

-------
                                                                      120
 I.  Spectrum preprocessor program
         Either of two separate programs are used for this operation,
     one for environmental parameters and one for all other data.
         Input consists of one lead card identifying the record,
     thirty data cards, and a termination card.
         Output consisted of punched cards,  two  lead cards, six
     data cards, and one termination card for each record, (i.e.,
     one set for surface values and one set  for  bottom values.
         Arithmetic operations consisted of  finding the arithmetic
     mean and the deviation of each value from the mean.  Output  is
     the deviation from the mean for each value  of the record.
II.  Power spectrum program
         This program computes the power spectrum of a single record
     to a maximum of 10 lags at 100 record values.
         Irput is (1) one lead card stating  number of values (IPEE),
     number of lags (LAG), and sampling interval (BELT), and (2)  output
     from the spectrum preprocessor program,,
         Output is printed and punched.  Printed output is (1) record
     identification; (2) autocovariance at Lag 0 and a sum of the
    'spectral values, which are equal.  This operation is provided
     as an internal check on the arithmetic  operation of the computer.
     (3)  a listing of each spectral estimate computed and the lag
     number at which it is valid.  Punched output consists of
     two lead cards identifying the record,  a set of cards each
     containing one lag number and corresponding spectral estimate,
     and a termination card.
         Several standard spectral analysis  schemes were followed in
     developing this program.  The programs  developed at New York
     University and at U.C.L.A. for larger computers were the basis
     for many of the procedures.

-------
                                                                         121
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
C     PREPROCESSOR FOR SPECTRUM PROGRAM.
      DIMENSION A(30),B(30),C(30),D(30),X(30),Y(30)
   92 READ 43
   48 FORMAT(15X   49HSAYTHEMAGICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS)
      PUNCH 48
      L=30
      SUMAaO.O
      SUMB=0.0
      SUKC-0.0
      SUMD^O.O
      DO 28 1=1 L
      READ 53,A(I),R(I),C(I),D(I)
   53 FORMAT(3*tX F3.0,1X F6.2,2X F3«0,1X F6.2)
      SUHA*SUMA+A( I)
      SUiMB = SUMB+B(|)
      SUMC=SUMC+C( I)
   28 SUMD=SUMD+D( I)
      BBAR= SUMB/SUMA
      DBAR= SUMD/SUMC
      1 = 1
   96 IF(A(|)) 101,101,102
  101 B(I)=BBAR
  102 IF(L-i) 98,98,97
   97 1=1+1
      GO TO 96
   98 1=1
  107 IF(C( I)) 103,103,104
  103 D(I)=DBAR
  104 IF(L-I) 105,105,106
  106 | = | + 1
      GO TO 107
  105 DO 118  1=1 L
  118 X(l) = B(I)-BBAR
      PUNCH 9
    9 FORMAT(15X 29HSURFACE RECORD SPECTRUM INPUT)
      DO 108  1=1,L,5
  108 PUNCH 10,X(I),X(1+1),X(1+2),X(1+3),X(1+4)
      LAS = 0
      PUNCH 91 .LAS
  10 FORMAT(E14.8,E1408,E14.8,E14.8,E14.8)
      PUNCH 48
      PUNCH 8
    8 FORMATdSX 28HBOTTOM RECORD SPECTRUM INPUT)
      DO 119  1=1,L
  119 Y(l) = D( D-DBAR
      DO 109  1=1.1.5
  109 PUNCH 10,Y(I),Y( I + D,Y( 1+2),Y( 1+3),Y( 1+4)
      READ 91,LAST
   91 FORMAT(l4)
      IF(LAST) 87,87,111
   87 LAST=0
      PUNCH 918LAST
      GO TO 92
  111 PUNCH 91,LAST
      STOP


OBJE'.  ' PROGRAM DATA TABLE
0231C STORAGE POSITIONS

-------
                                                                           122
ENTER SOURCE PROGRAM
THEN PUSH START
C     PREPROCESSOR FOR SPECTRUM PROGRAM.  ENVIRONMENTAL DATA ONLY
      DIMENSION B(30),X(30)
   92 READ 48
   48 FORMAT(15X   49HSAYTHEMAGICWORDSOFPLEASEANDTHANKYOUANDHOPE I TV/ORKS)
      PUNCH 48
      L=30
      SUMB=0.0
      SUMA=L
      DO 28 1=1,L
      READ 53. B( I)
   53 FORMAT(F9.2)
   28 SUMB=SUMR-fB(l)
      BBAR=SUMB/SUMA
      DO 118 |=1,L
  118 X(I)=B(|)-BBAR
      PUNCH 9
    9 FGRMAT(15X 29HENVIRON.  DATA SPECTRUM INPUT)
      DO 108 1=1.L,5
  108 PUNCH 10,XU),X( I + 1),X( I+2),X( I+3).X( 1+4)
  10 FORMAT(El4.8,E14.8,El4.8,E14.8,El4
      READ 91,LAST
   91 FORMAT(|4)
      IF (LAST) 87,87,111
   87 LAST=0
      PUNCH 91,LAST
      GO TO 92
  111 PUNCH 91,LAST
      STOP
      END

QBJECT PROGRAM DATA TABLE
00940 STORAGE  POSITIONS

PROCESSING COMPLETE

-------
                                                              123
     The arithmetic operations performed are these:
     (a)  The auto-covariance is computed;

          r  =  0, 1 ,  2, 3, ....  m       (lags, m - LAG)
          Xq =  X]_, X2, X3,  ....  Xjjj      (data  values, n = IPEE)

         fl   »  sampling interval  =  DELT
PROD(L)  =            ,
         /  \    '    5"
        y/H a rr,  <£.  '
        K*-  /   N-l  Q'l

(b)   The raw estimate of  the  power spectrum is  computed.

  VEE(L) = ftW  "^

  where  k   =  0, 1,2,  3  	m     (lags, K =  ARQ(K)   )
         Ef =  I   for 0 < 1 < m
              1/2 for  1  =  0, m

  (c)  The  smoothed spectral  estimates  are  computed.
    "Hamming is used; i.e., the factors are 0.54 and  0.46.
    SPEC(l)  =   SPX (0)
         SPEC(L)   - 5* M - flM % r

         SPEC (HUG) - SP(">)=  °'^  ^ H
       (d)  The sum of spectral estimates used for a check is
            computed.
                                      s- SPX

-------
                                                                        124
III.   Cross-spectra p'rogram.  Part one.
          This program computes the cross-spectral estimates from a
      pair of records.
          Input is (1) a punched card stating number of values, number
      of lags, and sampling interval, (2) punched output from the
      spectrum preprocessor for the input record,  (3) punched output
      from the spectrum preprocessor for the output record.
          Output is entirely punched cards,  and consists of these:
      (1) one card stating number of values, number of lags, and
      sampling intervals, (2) four cards identifying the input and
      output records,  (3) a deck of cards each containing a lag number
      and the two cross-spectral estimates corresponding to that lag
      number, (4) a termination card.
          The arithmetic operations are entirely analogous to those in
      the power spectrum program.
      (a)  The cross-covariance is computed.
          Xq     =  input record values
          Y      =  output record values
      SPOS     -   -y	v,
                                    /H-r
      SNEG (L)    =
      (b)  The raw cross-spectral estimates are computed.

      CTRAN(L)   =  Pt
                           ,     2-a>
      QTRAN      -  P^  IKJ-  -pTS"

-------
                                                                       125
(c)   The smoothed cross-spectral estimates are computed.
     C(l)  -  G!  = 0.54 Pxy(0)  +  0.46  PXJ  (1)

     C(L)  =  Cr  = 0.23 P+(r - 1)   +  0.54 PX+ (D  +  0.23 PX+  (P + 1)
                                y             .    X            .    X

          C(NIAG) -  Cm = 0.54  Pxy (m)  +  0.46 P^y  (m - 1)

          Q(l)   =  Qi  =  0.54 Pxy (0)  +  0.46  Pxy  (1)

          Q(L)   =  Qr  =  0.23 Pxy (f - 1)  +  0.54 Pxy  (fr) +  0.23 Pxy  (f +  1)

          Q(NLAG)  =  Qm  =  0.54  Pxy (m)  +  0.46 P'y (m - 1)


IV.  Cross- spectrum program.  Part two.

          This program computes supplementary statistics from the power
     spectra of the two records and from their cross spectra.
          Input consists of these punched cards:  (1)  Output from the
     Cross-spectrum program Part One, (2) Output from the Power Spectrum
     Program for the input record, (3) Output from the Power Spectrum
     Program for the output record.
          Output is entirely printed out.  The printout contains this
     information:
          (1)  Record identification
          (2)  Numbers of values, lags, and sampling interval
          (3)  Power spectra of input and output records
          (4)  Cospectrum
          (5)  Quadrature spectrum
          (6)  Period corresponding to each lag
          (7)  Coherence
          (8)  Response spectrum

-------
                                                                           126
ENTER SOURCE PROGRAM
THEN PUSH START
C     POWER SPECTRUM PROGRAM.
      READ 18,|PEE,LAG,DELJ
   18 FORMAT(l4,|4,F6.0)
      DIMENS'OM X(100) .PROD(10) .CF.(10) nAR
  Q(10),SPEC(10),VEE(10)
   92 READ 48
   48 FORMAT(15X   49HSAYTHEMAGICVORDSOFPLEASEANDTHANKYOUANDHOPE ITVORKS)
      PR I NT 48
      PUNCH 48
      READ 9
    9 FORMAT(15X 23HSURFACF. RECORD SPECTRUM)
      PRINT 9
      PUNCH 9
      PEE  = I PEE
      SUMX=0.0
      DO  101  |=1,|PEE,5
      READ 21  X(l).X(J+1),X(l+2),X(!+3),X(l+4)
   21 FORMAT (E14.8,E14.8,E14.8,E14.8,E14.8)
  101 SUMX=SUMX+X(I)+X(I+1)+X(l+2)+X(l+3)+X(1+4)
      NLAG=LAG+1
      DO  103  L=1,MLAG
      PROD (L) =0.0
      I LAG =IPEE-L+1
      DO  102  1=1,ILAG
      M=!+L-1
  102 PROD(L)=PROD(L)+X( I)*X(M)
      DIV= ILAG
  103 PROD(U=(PROD(L)/DIV)
      EM=LAG
      DO  192  L=1.NLAG
  192 CE(L)=PROD(L)
      DO  105  L=1,LAG
  108 TEE=L-1
      T!NT= DELT/3.1416
      SUMC=0.0
      DO  104 K=2,LAG
      ARQ(K)=K-1
  104 S UMC =SUMC+CE(K)*COS(3.1416*TEE*ARQ(K)/EM)
  105 VEE(L)=TINT*(PROD( 1 )+PROD(NLAG)*COS(3i1*tl6*TEE)+2 ,0*SUMC)
      IF(EM-TEE) 106,106,107
  10? L=NLAG
      GO  TO 108
  106 SPEC(1)=0.54*VEE(1)+0846*VEE(2)
      DO  109  L=2,LAG
  109 SPECfL)=(0.23*VEE(L-1))+(0.5^*VEE(L))+(0.23*VEE(L+O)
      SPEC(NLAG)=0.54*VEE(NLAG)+0.46*VEE(LAG)
      SUM) =0.0
      DO  115  L=2,! AG
  115 Si:.'D=SUMD+Sr'EC(L)
      CI(?;M=(3J4l6/(  EM*DELT))*(0.5*(SPEC(1)+S PEC ( NLAG) )+SUMD)
      PRINT n6,CK?M,PROD(1)
  116 FORMAT(16HSUM OF SPECTRUM=,E14.8/18HAUTOCOV. AT  LAG  0=,E14 8/)
      DO 110  L=1,ril.AG                                        '
      NO=L-1

-------
      PRINT 111,NO,SPEC(L)
  111 FORMAT(5X I4.5X E14.8)
  110 PUNCH 111. NO, SPEC(L)                                               127
      READ 91, tAST
   91 FORMAT(!4)
      IF(LAST) 87,87,112
    7 PUNCH 91 ,LAST
      GO TO 92
  112 STOP
      END

RELOCATABLE SUBROUTINES CALLED
COS
OBJECT PROGRAM DATA TABLE
02140 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                          128
ENTER SOURCE PROGRAM
THEN PUSH START
C     CROSS SPECTRUM PROGRAM.   PARTONE
   92 READ 15,JPEE,LAG,DELT
   15 FORMAT(|4,|4,F6.0)
      DIMENSION X( 100), Y( 100), QPOS( 10) ,C ( 10) ,Q( 10) ,ARQ( 10)
      DIMENSION SPOS(10),SNEG(10),CTRAN(10),QTRAN(10),QNEG(10)
      PUNCH 14,|PEE,LAG,DELT
   14 FORMAT(10Xl4,7H VALUES, 10X14, 5H LAGS ,JOXF6. 0,1 4H HOUR INTERVAL)
      READ 48
   48 FORMAT(15X   49HSAYTHEMAGICWORDSOFPLEASEANDTHANKYOUANDHOPEITV/ORKS)
      PUNCH 48
      READ 9
    9 FORMAT(15X 14HSURFACE RECORD)
      PUNCH 9
      DO 101 1=1 ,IPEE,5
  101 READ 10,X( |),X( I + 1),X(I+2),X( l+3).XH+4)
   10 FORMAT(E14.8,E14.8,E14.8,E14.8,EJ4.8)
      READ 91
      NLAG=LAG+1
      READ 48
      PUNCH 48
      READ 9
      PUNCH 9
      PEE=IPEE
      DO 102 1=1 , 1 PEE, 5
  102 READ 10,Y(l),Y(l + l),Y(H-2),Y(l+3),Y(l+4)
      DO 121 L=1 ,NLAG
      SPOS(L)=0.0
      SNEG(L)=000
      TEE= L-1
      ILAG=IPEE-L-1
      DO 121 I =1,1 LAG
      SPOS(L)=SPOS(L)+(1./(2.*(PEE-TEE)))*(X(I)*Y(M)+X(M)*Y(I))
  121  SNEG(L)=SNEG(L) + (1 ,/(2.*(PEE-TEE) ))*(X( I )*Y(M)-X(M)*Y( I ) )
      SUMD=0."0
      DO 122 L=2,LAG
  122 SUMD=SUMD+SPOS(L)
      TINT=DELT/6.2832
      EM=LAG
      DO 192 L=1 ,MLAG
      QNEG(L)=SNEG(L)
  192 QPOS(L)=SPOS(L)
      CTRAM(1)=(TINT)*(0.5*(SPOS(1)+SPOS(NLAG))+SUMD)
      DO 124  L=2,LAG
      TEE=L-J
      FCOR=0.0
      DO 123 K=2,LAG
      ARQ(K)=K-1
  123 FCOR=FCOR+QPOS(K)*COS(3.1416*TEE*ARQ(K)/EM)
  124 CTRAN(L)=( 2. *T I NT)*(.5*(SPOS(1 )+((-!.)**( L-1 ))*SPOS(NLAG))+FCOR)
      SUMD=0.0
      DO 125 L=2.LAG
  125 SUMD=SUMD+(((-1 ,0)**( L-1 ) )*SPOS( L) )
      CTRAN(NLAG)=(  Tl NT)*(0.5*(SPOS( 1 )+( (-1 ,0)**LAG)*SPOS( NLAG) )+SUMD)
      QTRAN(1)=0.0
      Q TRAM (NLAG) =0.0
      DO 126 L=2,LAG
      TEE=L-1
      FCOR=0.0
      DO 1?7 K=2.l AG

-------
      ARQ(K)= K.~1
  127 FCOR=FCOR+QMF.G(K)*S IN(3.1416*TFE*ARQ( K)/EM)
  126 QTRAN(L)=(2. ,*TINT)*FCOP.                                              129
      C ( 1 ) =0 . 54*C TR A N ( 1 ) +0 . 46*C TRA M ( 2 }
      DO 128 [_=2,LAG
      C(L)=0.23*CTRAN(L-1)+0.54*CTRAN(L)+0.23*CTRAN(L+1)
  128 Q(L)=0.23*QTRAN(L-1)+0.54*QTRAM(L)+0.23*QTRAN(L+1)
      C(NLAG)=0.5^*CTRAN(NLAG)+0.46*CTRAN(LAG)            ......
      Q( NLAG)=0 ,54*QTRAN( MLAG)+0 046*QTRAN( LAG)
      Q(1)=0.54*QTRAN(1)+0.46*QTRAN(2)
      DO 129 L=1  ,NLAG
      ? N! o = L- 1
  129 PUNCH 161 ,MO,C(L).Q(L)
  161 -QRMAT(4X  |4,E14.8,E14.8)
      READ 91 ,LAST
   91 FORKAT(|4)
      !c (LAST) 87,87,112
   87 LAST=0
      PL'MCH 91, LAST
      CO TO 92
  112 PUNCH 91 ,LAST
      STOP
      EMD

RELOCATABLE SUBROUTINES CALLED
SIM
COS

 BJECT PROGRAM DATA TABLE
      STORAGE POSITIONS
PROCESSING COMPLETE

-------
                                                                  130
     (9)  Phase  la^  in  hours in  =  Hr     "r"  + Qt: 2
     Phase  la.
                                /      \
     PH(L)  =   Br  =  arc tan / Qr   x,
                                ~~
                                \
(c t  Transfer  inact I..T
     TRANS (L)   =     /
                    •V
(.d) . Response Spectrur
     R(L)  =  Rr  =   H^ •   SPV tD

(e)  Period
     PE(L)  =  Tf: =  :  - A>-
(f)  Phase lag  (hours,'*
     HRS(L)  =  Br   Tr
                 27T
     NOTE:  Adjustments  IP.  tho J T  factor aro necessary  ir  the
            phase  La^  is  i"  other  than c'nc :irst quadrant.

-------
                                                                      131
     (g)   Overall  Response
         RESP  =
                        z
                       r--o
.Linear  regression     *                                       v
          This  program calculates  a least  squares linear regression
     line  of  the  form
                   Y  =  A 4-  BX
          Input consists  of (1)  one lead card  containing the number
     of  pairs of  values to be used (2)  one lead card identifying the
     data  being used,  (3) a deck of data cards with three fields:
     (a) numeral  1,   (b)  y value,  (c)  corresponding x value, (4) term-
     ination  card.
     NOTE:  Because of read in and printout limitations on the IBM
     1620,  the  number of  data cards must be a  multiple of six.  Fill
    wall data fields with zeros  in filler  cards.   The program does"not
     use these  data in the computation.
          Output  is a printout of  the  data,  and a listing of the slope
     (B),  intercept (A),  and  variance  of y on  x.
          The arithmetic  operations are  these:
     (a) Formation  of sums.
          SUMN  =   n  =   total  number  of  data pairs       	
          SUMX       ^          <-
                    c =/
          SUMY  =
                          ,   -   s

-------
 ACCESS ING COMPLETE .- '
                                                                         132
310000300002R-S
ENTER SOURCE PROGRAM
THEN PUSH START
C     CROSS SPECTRUM PROGRAM.  PART TWO
      DIMENSION C(10),Q(10),H(10),PH(10),R(10),PE(10),HRS(10),ARQ(10)
      D IMENSION XSPEC(IO) ,YSPEC(10) ,TRANS( 10) ,RTH( 10)
   92 PR i NT 1 6
   16 rrORMAT(27X26HCROSS SPECTRUM CALCULAT I ON// 10X 5HINPUT/)
      ."EAD 13,IPEE,LAG,DELT
   13 FORMAT(10XI4,7H VALUES , 10X I 4,5H LAGS , 10XF6.0 ,14H HOUR INTERVAL)
      READ 48
   48 FORMAT(15X   49HSAYTHEMAG ICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS)
      PRINT 48
      READ 9
    9 FORMATdSX 14HSURFACE RECORD)
      PRINT 9
      PRINT 17
   17 FORMAT(/10X 6HOUTPUT/)
      READ 48
      PRINT 48
      READ 9
      PRINT 9
      PRINT 14,!PEE,LAG,DELT
   14 FORMAT(/10X|4,7H VALUES , 10X |4,5H LAGS,10XF6.0,14H HOUR INTERVAL//)
      NLAG =LAG + 1
      DO 118 L=1 ,NLAG
  118 READ 162,C(L).Q(L)                                          :'
  162 FORMAT(  8X E14.8, E14.8)
      READ 91
      READ 4"8
      R:AD 9
      DO 103 L=1 ,NLAG
  103 READ Hl.XSPEC(L)
  111 FORMAT(14X E14.8)
      READ 91
      READ 48
      READ 9
      DO 104 L=1 ,NLAG
  104 READ 111 ,  YSPEC(L)
      EM = LAG
      DO 129 L=1 ,NLAG
      H(L)=((C(L)**2) + (Q(L)**2))/ (XSPEC( L)*YSPEC( L)
      PH(L)= ATAN(Q(L)/C(L))
      TRAflS(L)=SQRT((C(L)**2) + (Q(L)**2))/XSPEC(L)
      RTH(L)=SQRT(H(L))
  129 R(L)=H(L)*YSPEC(L)
      L=2
  134 TEE-L-1
      P£(L)=(2.0)*EM*DELT/TEE
      IF(Q(L))  130,131,131
  131  IF(C(L))  132.133,133
  133 MRS (L)=(PH(L)/6. 2832 )*PE(L)
  135 IF(NLAG-L)  138,138,139
  139 L=L+1
      GO TO  134
  132 HRSm=((PH(L) + 1.5708)/6.2832)*PE(L)

-------
       GO TO 135
   130 !F(C(L)) 136,136,137
   136 HRS(L)=((PH(L) + 1.5708)/6.2832)*PE(L)                                133
       GO TO 135
   137 HRS(LH(6.2832+PH(L))/6.2832)*PE(L)
       GO TO 135
   138 PRINT 140
   140 FORMAT(19X18HINDIVIDUAL SPECTRA, 1 JX27HCOMPONE NTS OF CROSS SPECTRA)
       PRINT 141
   141 FORMAT(5X3HLAG,9X5HINPUT,12X6HOUTPUT,9X8HCOSPECT.,9X10HQUADSPECT.)
       PRINT 143
   143 FORMAT(/)
       DO 144 L=1,NLAG
       NO=L-J
   144 PRINT 142,NO.XSPEC(L),YSPEC(L),C(L),Q(L)
   14 2 F 0 R MA T (4X 14,4 X E14.8, 4X E14.8,1X E 14.8,3 X E14.8)
       PRINT 143
       PRINT 145
   145 FORMAT(5X3HLAG,6X6HPERIOD,5X9HCOHERENCE,11X8HRESPONSE,12X5HPHASE)
       PRINT 146
   146 FORMAT(14X7H(HOURS),24X8HSPECTRUM,6X5HHOURS,6X7HRADJANS/)
       PRINT 147,  H(1),R(1),PH(1)
   147 FORFAT(7X1HO,6X4HLONG,6XF10.6,5XE14.8,16XF8.5)
       DO 148 L=2,NLAG
       NO=L-1
   148 PRINT 149,  NO,PE(L),H(L),R(L),HRS(L),PH(L)
   149 FORMAT(5XI3,5XF6.2,5XF10.6,5XE1408,5XF6.2,5XF8.5)
       PRINT 152
   152 FORMAT(/5X3HLAG,6X17HTRANSFER  FUNCTION,6X14HCOHERENCE  ROOT/)
       DO 153 L=1,MLAG
       NO=L-1
   153 PR!NT 154,NO,TRANS(L).RTH(L)
   154 FORMAT(5X 13, 9X  El4.8,  6X F10.6)
       SUM!=0.0
       SU,".A=0.0
       DO 150 L=1,NLAG
       SUM!=SUM!+XSPEC(L)
   150 SUKR=SU.XR+R(L)
       RESP=SQRT(SUMR/SUMI)
       PRINT 1'51 ,  RESP
   151  FOR;iAT(//5X 17HOVERALL RESPONSE = ,F10,
       READ  91 ,LAST
    91  FORMAT(14)
       IF(LAST) 87,87,112
    87 PRINT 6
     6 FORHAT(///)
       GO TO 92
   112 STOP
       END

 RELOCATABLE SUBROUTINES CALLED
 A TAN
 SQRT

 OBJECT PROGRAM DATA TABLE
.01920 STORAGE  POSITIONS

 PROCESSING  COMPLETE

-------
                                                                      134
         SMEX  =
                     i" I
                                 - 5,
     (b)  Calculation of Slope  (B) and Intercept  (A),
         g  _
         A  =     Sv   -   B S
                         n
     (c)  Calculation of Variance

                 fs  2) -  AS    -  B S
         VAR  =  V y  /	^	xy _._
                        n - 2

Theoretical oxygen demand
         This program computes a theoretical oxygen demand according
    to the equation
                U  =  2.67 A  +  4.57 B
         Input is one card containing A and B.
         Output is both printed and punched values of U.

Ratios of surface to bottom values
         This program computes the ratios of surface to bottom data
    for a single pair of observations and the mean ratios and variance
    for one survey of a station.
         Input is the data deck used for Program A.
         Output is printed values of the ratios for each pair of
    surface and bottom observations, the mean value of all ratios,

-------
                                                                           135
C     FEED DATA CARD?  ONLY  IN  NUMBERS  DIVISIBLE  3Y  SIX.   IF  NECESSARY,
C     FILL SUFFICIF.NT  ADDITIONAL  CARD?  V.'ITH  ~~~OS  IN   ALL DATA  FIELDS
      TO COMPLETE NEAREST MULTIPLE.   PUf.'CH THIS  NUMBER IN ( 14}  FORMAT
      AND USE AS  LEAD  CARD.   PUNCH DEPENDENT VARIABLE  (Y AXIS)  IN FIRST
      FULL DATA FIELD.
   05 PRINT  10
   10 FORMAT(30X20HREGRESSION  OF  Y ON  X//)
      PPI NT  12
   12 FOPMAT(35X  10MY  = A +  BX///)
      READ 700,M
      READ 25
   25 FORM*J(15X,49HSAYTHEMAG!CV OFTSOFPLEASEA't'THANKYOUANDHOPE ITV'ORKS)
      PRINT  25
      DIMENSION X(100),Y(100),R(100)
      SUMN=0.0
      SUMX=C.O
      SUMY=0.0
      S;;EX=O.O
      SXY=0.0
      DC 41  J=1 M
      READ 40,R(J)  X(J),Y(J)
   40 FOnMAT(30XF3.0f2XF10.3,2XF1003)
      SUMN=SUMN+R( J)
      SL'MX=SUMX+X( J)
      ?U,MY=SUMY+Y( J)
      SMEX=SMEX+X(J)**2
   41 S",:Y=SXY+X(J)*Y(J)
      PR!NT  55
      DO 45  J=l,M,6
   45 PRINT  50,X(J),X(J+1),X(J+2),X(J+3),X(J+4),X(J+5)
   50 FORMAT(4XF10I>3,1XF1003,JXF1003,JXF1003,1XFJ003.1XF1093)
   55 FORMAT(//25X,30HVALUES  OF  INDEPENDENT  VARIABLE)
      PRINT  70
   70 FORMAT(//26X28h'VALUE?  OF DEPENDENT VARIABLE)
      DO 60  J=l,M,6
   60 PRINT  50,Y(J),Y(J+1),Y(J+2),Y(J+3),Y(J+4),Y(J+5)
      B = ((SUMM*SXY)-(SUMX*SUMY))/((S UMM*SMEX)-(SUMX**2))
      A = ((S UMY*SMEX)-(SUMX*SXY))/((?UMM*SMEX)-(SUMX**2))
      VAR = (SUMY**2-(A*SUMY)-(B*SXY))/(?.UMN-2.)
      PRINT  90,8
   90 FORMAT(//6X7HSLOPE  =7XEJ4.8)
      PP INT  95,A
   95 FORMAT(//6X11HINTERCFPT  =1XE14.8)
      PRINT  96,VAR                                         	
   96 FORMAT(//6X10HVAR|ANCE  =1XE14
      READ 100, LAST
   100 FORMAT(|4)
       IF(1-LAST)705.105805
   105 STOP
      END

OBJECT PROGRAM DATA TABLE
_03440 STORAGE POSITIONS

 "ROCESSING COMPLETE

-------
                                                                           136
ENTER SOURCE PROGRAM
THEN PUSH START
  JOO PRINT 1
     1 FCRMAT(21X36HRATIO  OF  SURFACE  TO  BOTTOM CHLORIDES/)
      READ 90
   90 FORrlAT(15Xif9HSAYT!-!EMAG!CV/OPDSOFPLEASEANDT!-!ANKYOUANDHOPEITV/ORKS)
      PR ! NT 90
      D i KENS ION  R( 30 ) ,SQ(30 ) ,A( 30 ) ,B( 30) ,C ( 30 ) ,D (30 )
      S MA =0.0
      S MR =0.0
      SMSQ=0.0
      L=30
      DO 17  1=1 ,L
      READ 53,A(I),B(I)>C(I),D(!)
   53 FGRMAT(3^XF3.0,1XF6.2,2XF3.0,1XF6.2)
      IF(A(I)+C( J)-J.)3,3,6
    3 R( l)=0.0
      GO TO 17
    6 SMA=SKA+A(|)
      SKR=SMR+R(I)
      SC( I)=R( !)**?.
      SMSQ=SMSC+?Q( I)
   17 CONTINUE
      SQSM=SMR**2
      RM=SMR/SMA
      DO 55  1=1,L,6
   55 PR^NT  7),R( !),R(!+!),R(I+2),R( 1+3),R( 1+4),R(1+5)

      PR I NT  10 RM
   10 FORMAT(//10X12HMEAM RATIO  =IXF604/)
      PRINT  11 ,VAR
   11 FORMAT(12X10HVARIANCE =1XEJ4.8////)
      READ 12,T>I
   12 FORMAT(|4)
      IF(N)100,100,13
   13 STOP
      END

OBJECT PROGRAM DATA TABLE
02200 STORAGE  POSITIONS

PROCESSING COMPLETE

-------
                                                                      137
    and the variance of the ratios from the mean.
         The arithmetic operations are these:
         B^    =  surface value

         D-   =   bottom value
    (a)  Computation of ratios
        R(I)   =  RI      Bj

    (b)  Formation of sums
         N  =  total number of values
       SMR  =   So. =  ""
       SMSQ  = S**  ~  ? £"*
     (c)  Calculation of Mean and Variance
         RM  =  Mean Ratio  =
         VAR
Other programs
         Several other programs in addition to these were written and
    debugged.  Calculations were made using them,  but the results have
    not been used in the report except as guides for further or different
    types of calculation.  For this reason a detailed discussion of
    of these programs is omitted, and only some general comments are
    offered.

-------
                                                                        138
  I.  Analysis of covariance

          The scheme followed is that in Bennett and Franklin,  pp. 451 -
      461.  This evaluates the variance ratios between two variables
      when allowance is made for regression of one on the other.
          This was not used because it is a much clumsier method than
      spectral computation and does not lend itself to interpretation of
      a dynamic system.  (We originally believed spectral analysis could
      not be used on the short records obtained her.  Comparison of
      initial covariance results with cross-spectral computations on
      comparable sets of data showed that the shortness of the  spectral
      records did not markedly affect the stability of the results in
      this particular case.  This is probably due to the basically
      deterministic nature of the environmental parameters being used,
      as opposed to the purely stochastic processes on which criteria
      for spectral analysis are ordinarily based.)
          This is a four-part program, and the final result is  a
      printed out table of variance estimates similar to that produced
      in the analysis of variance.
 II.  Pearson Coordinate Programs (Three)
          These programs were written to plot curves based on the
      Pearson coefficients as calculated in the basic statistical program.
      They were not used because the wide range of Pearson coefficients
      calculated made quantitative  estimates based on these values
      subject to considerable ambiguity.
III.  Calculation of Diffusion Factors and Salinity Gradients
          This program is based on  a theoretical statistical evaluation
      of diffusion factors and salinity gradients from the stream survey
      data.  The program showed considerable promise, but a simpler
      approach gave the results necessary for this study, so the
      usefulness of the program has not been thoroughly examined.

-------
                                                                139
3 1 0000300002^3 1 0000300002*13
ENTER SOURCE PROGRAM
THEN PUSH START
C     PREPROCESSOR FOR COVAR IANCE PROGRAM, PART ONE.
C     INPUT IS RAV/ DATA DECKS FOR STATION PARAMETERS, WITH  LEAD-TAIL CDS
      DIVISION A(30),B(30),C(30),D(30)
   92 READ 48
   48 FGRiMAT(!5X   49HSAYTHEMAG ICVORDSOFPLEASEANDTHANKYOUANDHOPE I TV/OR KS)
      ?U::CH 48
      su,v,n=o.o
      SUMC=0.0
      SUMO =0.0
      r r> o O i _ 1  I
      ^ U Zo i = I  L
   53 :rORMAT(34X F3.0.1X F602,2X F3.0,1X F602)
      : U;iD=SUMD+D( I)
      :/^AR= SUMB/SUMA
      C?AR= SUMD/SUMC
       F(A(|)) 101,101,102
       (|)=BBAR
       F(L-l) 98,93,97
       =1+1
      GO TO 36
       =1
       F(C(I)) 103,103,104
      D( I)=DBAR
      IF(L-I) 105,105,106
      1=1+1
      GO TO 107
      PUNCH 9
      FORMAT(15X 14HSURFACE RECORD)
      DO 108 1=1, L, 5
      PUNCH 10,BM).B( 1 + 1) ,B( 1+2) ,B( 1+3) .B( 1+4)
 95
101
102
 97

 98
107
103
104
106

105
  9

108
10 F
    LAS=0      '
    PUNCH 91,LAS
    PUNCH 48
    PUNCH 8
  8 FORMAT(15X 14HBOTTOM RECORD  )
    DO 109  1=1,L,5
109 PUNCH 10,D(I),D(I + 1),D( I + 2),D( !+3),D( 1+4)
    READ 91,LAST
 91 FORMAT(i4)
    !F(LAST) 87,87,111
 £7 LPST=O
    ?UNCH 91,LAST
    GO TO 92
~. * •  PUNCH 91 ,LAST

-------
       STOP
       END

 OBJECT PROGRAM DATA  TABLE                                                 14°
|01690  STORAGE  POSITIONS

 PROCESSING COMPLETE

-------
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
C     ANALYSIS OF COVARIANCE. PART ONE.  FORMATION OF XY SUMS.
      DIMENSION TIX(6). TIXY(6). TRD(6). TJXY(18)
      DIMENSION SY(18 6), SXY(l8,6)» SX(18,6)  X(30).Y(30)
      DIMENSION TSJ(6),SXP(18,6),TRX(6),XTI(18),YTI(18)
   92 READ 2, IPEE,JCUE,COMP
    2 FORMAT(18X |4,10H STATIONS ,, |4,9HSURVEYS, ,F6.0,11H REPLICATES)
      KCOMP = COMP
      TS=0.0
      GSXS=0.0
      STI=0.0
      STIXY=0.0
      STRD=0.0
      DO 118 J=1,XUE
      TRD(J)=0.0
      TIX(J)=0.0
      TIXY(J)=0.0
      TSJ(J)=0.0
      DO 117 1= 1. IPEE
      READ 48
      READ 9
      DO 102 K=1,KCOMP,5
  102 READ 10,X(K),X(K+1),X(K+2),X(Kvi3).X(K+4)

      READ 91
   91 FORMAT(I4)
   48 FORMATM5X   49HSAYTHEMAGICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS)
    9 FORMAT(15X  14HSURFACE RECORD)
      READ 48
      READ 9
      DO 202 K=J,KCOMP,5
  202 READ 10,Y(K),Y(K+1),Y(K+2),Y(K+3),Y(K+4)
      READ 91
      SXY(I,J)=0.0
      SX(I,J)=0.0
      SY(I,J)=000
      DO 106 K = 1, KCOMP
      SX( I,J)=SX(|,J)+X(K)
      SY(I.J)=SY(I.J)+Y(K)
  106 SXY(f,J)=SXY(l,J)+X(K)*Y(K)
      SXP(|,J)=SX(|,J)*SY(I,J)
      TIX(J)=TIX(J    '    '
      TRD(J)=TRD(J
      TSJ(J)=TSJ(J
                 +SY(I.J)
                 +SXP( I.J)
    i^w\wy — i «.' w \ vr i «* *\ i \ • • v /
117 TIXY(J)«TIXY(J)+SXY(I,J)
    TRX(J)=T|X(J)*TRD(J) .
    STI=STI+TIX(J)
    STIXY=STIXY+TRX(J)
    TS=TS+TSJ(J)
    GSXS=GSXS+TIXY(J)
118 STRD=STRD+TRD(J)
    STJXY=0.0
    DO 120 I =1,1 PEE
    TJXY( l)=0.0
    XTI(  l)=0.0
    YTI(I)=0.0
    DO 119 J=1 .JCUE
    XTI(0=XTI(0+SX(I,J)
119 YTI(I)=YTI(I)+SY(I.J)
    TJXY(I).XTI(.|)*YTI(I)
120 STJXY=STJXY+TJXY(I)
    PEE=IPEE

-------
      CUE = JCUE
      BIGN=COMP*PEE*CUE                                	
      PUNCH 200,PEE,CUE,COMP,BIGN,STRD                       __            142
  200 FORMAT(F6.0,F6.0,F6.0,F6.0,E1*t.8)
      PUNCH 121,GSXS,TS.STJXY.STIXY.STI
   121 FORMAT(2HXY.E11t.8.E14.8,E11f.8fE1^.8, E14.8)
      PRINT 121 .GSXS.TS^STJXY^TIXY.STI
      PAUSE
      GO TO 92
      END

OBJECT PROGRAM DATA TABLE
56220 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                         143
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
      ANALYSIS OF COVARIANCE.  PART TWO
   92 READ  101,PEE.CUE,COMP,BIGN,STRD
  101 FORMAT(F6.0,F6.0,F6.0,F6.0,E14.8)
      READ 102  ,GSXS,TS,STJXY,STIXY.STI
  102 FORMAT(2HX2.E14.8, El^.8, E14.8, E14.8, E1^.8)
      XYSA =GSXS-(TS/COMP)
      XYSI=(STJXY/(COMP*CUE))-(STI*STRD)/BIGN
      XYSJ=(STIXY/(COMP*PEE))-(STI*STRD)/BIGN
      XYSS=GSXS-(STI*STRD)/BIGN
      XYSIJ=TS/COMP-STJXY/(COMP*CUE)~XYSJ
      READ 102, YSA, YSIJ, YSI, YSJ, YSS
      READ 102, XSA, XSIJ, XSI, XSJ, XSS
      BA = XYSA/XSA
      BMIJ = XYSIJ/XSIJ
      BMJ = XYSJ/XSJ
      BMI = XYS1/XSI
      BO = XYSS/XSS
      SF = YSA - BA*XYSA
      ST = YSIJ - BMIJ*XYSIJ
      STV/ = YSJ - BMJ*XYSJ
      SO = YSI - BMI*XYSI
      SFV=YSS-BO*XYSS
      STP =((BMIJ-BA)**2)*((XSIJ*XSA)/(XSIJ+XSA))
      STWP =((BMJ-BA)**2)*((XSJ*XSA)/(XSJ+XSA))
      SOP = ((BMI-BA)**2)*((XSI*XSA)/(XSI+XSA))
      DFN = BIGN-PEE-CUE
      DSF = BIGN -(PEE*CUE) -1.0
      DST=(PEE-1.0)*(CUE-1.0) -1.0
      DSTV/= CUE - 2.0
      DSO = PEE-2..0
      DSFV=BIGN-2.0
      DFC=CUE-1.0
      DPC=DFP*DFC
      DONE=1.0
      FOA=(BA*XYSA*DSF)/SF
      FMA=((ST+STP)*DSF)/(DPC*SF)
      FMI =((SO+SOP)/DFP)*(DFN/(ST+STP+SF))
      FMJ=((STV/+STWP)/DFC)*(DFN/(ST+STP+SF))
      PUNCH 718 YSA,XSA XYSA,BA,YSIJ

      PUNCH 7l8,XSfj,XYSIJ,BMIJ,YSJ,XSJ
      PUNCH 718,XYSJ,BMJ,YSI,XSI,XYSI
      PUNCH 718,BMI,YSS,XSS,XYSS,BO
      PUNCH 718,SF,DSF,STP,DONE,ST
      PUNCH 718,DST,STWP,STW,DSTW,SOP
      PUNCH 718,SO,DSO,SFV,DSFV.FOA
      PUNCH 718,DPC,FMA,DFP,DFN.FMI
      PUNCH 719.DFC.FMJ
  719 FORMAT(EJ4.8,£1^.8)
      PAUSE
      GO TO 92
      END

 BJECT PROGRAM DATA TABLE
 0720 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                         144
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
C     ANALYSIS OF COVARIANCE.  PART THREE
   92 PRINT 103
  103 FORMAT(29X 22HANALYSIS OF COVARIANCE,20X 8HPAGE ONE//)
      PRINT 105
   105 FORMAT(22X 35HASSUMED LINEAR REGRESSION OF Y ON X/)
      PRINT 202
  202 FORMAT(I8HDEPENDENT VARIABLE)
      READ 100
  100 FORMAT(22X 36HCHLORIDE DATA FROM INTENSIVE SURVEYS)
      PRINT 100
      PRINT 201
  201 FORMAT(20HINDEPENDENT VARIABLE)
      READ 100
      PRINT 100
      PRINT 99
   99 FORMAT(//) '
      READ 141
  HI FORMAT(16X 30HSURVEYS AA, AB, B, C,  D,  E      )
      PRINT 141
      READ 142
  142 FORMAT(16X4QHSTATIONS,SURFACE, 12345678913    )
      PRINT 142
      READ 142
      PRINT 142
      PRINT 99
      READ  718,YSA,XSA,XYSA,BA,YSIJ
  718 FORMAT(E14.8,E1408,E14.8,E14.8,E14.8)
      READ  718,XSIJ,XYSIJ,BMIJ,YSJ,XSJ
      READ  718,XYSJ,BMJ,YSI,XSI,XYSI
      READ  718,BMI,YSS,XSS,XYSS,BO
      READ  718,SF,DSF,STP,DONE,ST
      READ  718,DST,STWP,STW,DSTW,SOP
      READ  718,SO,DSO,SFV,DSFV,FOA
      READ  718,DPC,FMA,DFP,DFN,FMI
      READ  719.DFC,FMJ
  719 FORMAT(El4.8,E14a8)
      PRINT 96
   96 FORMAT(/35X15HSUMS  OF SQUARES,17X10HREGRESSION/49X21X6HCOEFF.)
      PRINT 106
  106 FORMAT(8X9HSOURCE OF,5X8HY SQUARE,6X8HX SQUARE,5X9HX  TIMES  Y)
      PRINT 107
  107 FORMAT(8X 8HESTIMATE//4X  1HA,3X 7HBETWEEN)
      PRINT 108,YSA,XSA,XYSA,BA
  108 FORMAT(8X 10HREPLICATES,E14.8,1XE14.8,1XE14.8,2XE14.8)
      PRINT 109
  109 FORMAT(8X 11HIN STATIONS//4X 1HB,3X  7HBETWEEN)
      PRINT 110,YSIJ,XSIJ,XYSIJ,BMIJ
  110 FORMAT(8X 11HSTATIONS,IN,El4.8,1XE14.8,1XE14.8,2XE14.8)
      PRINT 111
  111 FORMAT(8X11HSURVEYS AND/8X8HSTATIONS//4X1HC.3X7HBETWEEN)
      PRINT 112,YSJ,XSJ,XYSJ,BMJ
  112 FORMAT(8X 7HSURVEYS,4XEl4.8,1XE14.8,1XEl4.8f2XE14.8//)
      PRINT 113,YSI,XS|,XYSI,BMI
  113 FORMAT(4X1HD,3X7HBETWEEN,4XE14.8,1XE14.8,1XE14.8,2XE14.8)
      PRINT 114
  114 FORMAT(8X 8HSTATIONS//)
      PRINT 115. YSS,XSS,XYSStBO
  115 FORMAT(4X1HE,3X5HTOTAL,6XE14.8,1XE14.8,1XE14.8,2XE14.8//)
      PRINT 302
  302

-------
      PRINT 303
  303 FORMAT(29X 22HANALYSIS OF COVARIANCE, 20X 8HPAGE TWO//)
      PRINT 116                                                          145
  116 FORMAT(20X 40HSUMS OF SQUARES CORRECTED FOR REGRESSION/)
      PRINT 117
  117 FORMAT(28X 14HSUM OF SQUARES, 10X 18HDEGREES OF FREEDOM)
      PRINT 118, SF,DSF
  118 FORMAT(8X11HA CORRECTED/8X14HFOR IN STATION,6XE14.8,14XF7.0)
      PRINT 119
  119 FORMAT(8X10HREGRESSION//8X10HDIFFERENCE/8X19HBETWEEN REGRESSIONS)
      PRINT 120,STP,DONE
  120 FORMAT(8X 11HFOR A AND B, 9X EH.8, 1 4X F7.0/)
      PRINT 121, ST,DST
  121 FORMAT(8X 17HB CORRECTED FOR A, 3X E14.8, 14X F7.0)
      PRINT 119
      PRINT 122 ,STWP,DONE
  122 FORMAT(8X 11HFOR C AND A,9X E14.8, 14X F7.0/)
      PRINT 123, STW,DSTW
  123 FORMAT(8X 17HC CORRECTED FOR A, 3X E14.8, 14XF7.0)
      PRINT 119
      PRINT 124, SOP,DONE
  124 FORMAT(8X 11HFOR D AND A, 9X E14.8, 14X F7.0/)
      PRINT 125, SO, DSO
  125 FORMAT(8X17HD CORRECTED FOR A,3XE14.8,14XF7.0 /8X10HREGRESSION/)
      PRINT 126
  126 FORMAT(8X 20HTOTAL SUM OF SQUARES/8X 13HCORRECTED FOR)
      PRINT 127,SFV,DSFV
  127 FORMAT(8X 18HOVERALL REGRESS ION,2X E14.8,14X F7.0/)
      PRINT  128
  128 FORMAT(23X34HSIGNIFICANCE OF VARIANCE ESTIMATES,5X10HLEVEL=.025//)
      PRINT 129
  129 FORMAT(8X10HHYPOTHESIS,8X2HN1,8X2HN2,10X11 RVALUES OF F.9X6HRESULT)
      PRINT 130
  130 FORMAT(43X 10HCALCUI_ATED,5X 9HTABULATED/)
      PRINT 131 ,DONE,DSF,FOA
  131 FORMAT(8X 7HBO = BA, 8XF7.0,2XF7.0,2XF11,2/)
      PRINT 132,DPC,DSF,FMA
  132 FORMAT(8X 9HBMIJ = BA, 6X F7.0,2XF7.0,2XF11.2/)
      PRINT 133,DFP,DFN,FMI
  133 FORMAT(8X 8HBMI = BA, 7X F7.0,2XF7.0,2XF11,2/)
      PRINT 134,DFC,DFN,FMJ
  134 FORMAT(8X 8HBMJ - BA, 7X F7.0,2XF7.0,2XF11.2)
      PAUSE
      GO TO 92
      END

OBJECT PROGRAM DATA TABLE
50970 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                          146
,310000300002RS
 ;NTER  SOURCE PROGRAM
 THEN  PUSH  START
 C      PEARSON FREQUENCY CURVES, COORDINATE PROGRAM 1
 C      AT LOAD DATA   FIRST  LOAD GAMMA FUNCTION DECK
       DIMENSION  NE(100), BIGG(IOO)
       DO 201 L=1.100,2
  201  READ 202,NE(L),BIGG{L),NE(L+1),B|GG(L+1)
 202 FORMAT(I5,F8.4,I5,F8.4).
  955  PRINT  11
  11 FORMAT(21X  31HPLOT OF  PEARSON FREQUENCY CURVE//)
       READ 12
    12  FORMAT(15X  49HTHIS  IS THE RAW DATA LEAD CARD
       PUNCH  12
       PRINT  12
  954  ARIG = 0.0
       PBO  =0.0
     PB1 = 0.0
       PB = 0.0
       SIGMA = Q.O
       SQUMO= 0.0
       SKEW =0.0
       BETA2 =0.0
       TOT  = 0.0
       XBAR =. 0.0
       READ 13
    13  FORMAT(26X  28HSTAT1STICS OF XXXXXXX RECORD)
       PUNCH  13
       PRINT  13
       READ 51, TOT, XBAR, SQUMO. SIGMA
    51  FORMAT(7X  F4.0, 9X F8.3, 6X F14.6, 7X F12.6)
       READ 52, SKEW, BETA2
    52  FORMAT(13X  F12.6, 17X F12.6)
       READ 54SABIG,PBO,PB1 ,PB
    54  FORMAT(6X  F12.6, 6X F12.6,6X F12.6,6X F12.6)
       PRINT 55
    55  FORMAT(//47HNUMBER OF VALUES AT PRODUCTS OF SIGMA FROM MEAN//)
       PRINT 802
  802  FORMAT(J5X  1HX, 10X JHY)
       GAM2 = 2.*(3.-BETA2)
       CUE2 = 4.*BETA2*SQUMO/GAM2
       PLOT = -6.0
       IF(PBI) 102,101,102
  101  PRINT 924
  924  FORMAT(24HUSE COORDINATE PROGRAM 2//)
       GO TO 923
  102  IF(PB) 121,109,121
  109  EFT  =(4. -(SKEW**2))/(SKEW**2)
       IF(EFT) 122,123,122
  123  PRINT  124
  124  FORMAT(37HASYMPTOTE HAS ACUTE ANGLE WITH X-AXIS)
       GO TO 923
  122  DINA = U+EFT
       DINB = 1 .
       KAPPA = 1
       GO TO 228
  228  LAPSE - 1
  250  IF(DINA -.1.) 222,223,224

-------
 223 GDINA = 1.0
     GO TO 252
                                                                        147

 22*t DO 2k}  MOM » 1 ,1000
     BINA  = NOM
     CINA  = DINA -  BINA
     IF(CINA -  2.0)  2k} ,241,243
 2k3 CONTINUE
 241 IDUNA=CINA*100.
     GO TO 225
 222 IDUNA=(D|NA+1.0)*100.
     B|NA=-J .0
 225 DO 226 L=1,100
     IF( IDUNA-NE(L))  226,227,226
 226 CONTINUE
 227 GD1A=EXP(BIGG(L)-10.)
     IF(BINA)244,245,246
 2kk GDINA=GD1A/DINA
     GO TO 252
 2^5 GDINA=GD1A
     GO TO 252


 246 DO NAN=1,1000
     GD1A=CINA*GD1A
     CINA  = CINA +  1.0
     IF(DINA-CINA)  247,247,248
 248 CONTINUE
 247 GDINA=GD1A
 252 GO TO (253,254),LAPSE
 253 LAPSE =2
     DINA=DINB
     GO TO 250
 254 GDINB=GD|NA
     GO 70(114,115),KAPPA
 114 GAM = SQRT(GAM2)
     WYEO  =1./(PB1*((PB1/GAM)**EFT)*(2.71828**(GAM/PB1))*GDINA)
     GO TO 397
 397 IF(PLOT -  5.0)  398,923,923
 398 PL07=PLOT+1.0
     ABSX  = PLOT*SIGMA
     GO 70(311,312),  KAPPA
 311  NORY  =WYEO*((1.+(ABSX/GAM))**EFT)/(2.71828**(ABSX/PB1))
     GO TO 399
 121  SEE =PB1/(2.*PB)
     DEE = PBO/PB
     GEE2  = DEE  -(SEE**2)
     AKAY  = (-PB1 +  SEE)/PB
     IF((PB1**2) -(4.*PB*PBO)) 125,126,125
 125 PRINT 806                 -
 806 FORMAT(24HUSE COORDINATE PROGRAM 3//)
     GO TO 923
 126 TEE2  =AKAY/(ABSX + SEE)
     DINA=((1./PB)-1.)
     DINB  =1.0
     KAPPA = 2
     GO TO 228
 115  SEEK  =  1./(AKAY*GDINA)
     V/YEO=SEEK/(((SEE/AKAY)**(1./PB))*(2.71828**(AKAY*SEE)))
     TEE = SQRT(TEE2)
     GO TO 397
312  NORY  =  SEEK*(TEE**(2./PB))/(2.71828**TEE2)
     GO TO 399
399  PRINT 801, ABSX, NORY
               ADCV

-------
  801 FORMAT(10X F12.6,  15)
      GO TO 397
  923 READ 91. LAST
   91 FORMAT(l*f)
      PUNCH 91, LAST
      IF(LAST) 95^,956,1111
  956 GO TO 955
 1111 STOP
      END

RELOCATABLE SUBROUTINES CALLED
EXP
SQRT

OBJECT PROGRAM DATA TABLE
03170 STORAGE POSITIONS

PROCESSING COMPLETE
148

-------
310000300002RS                                                            149
ENTER SOURCE PROGRAM
THEN PUSH START
C     PEARSON FREQUENCY CURVES. COORDINATE PROGRAM 2
C     AT LOAD DATA.  FIRST LOAD GAMMA FUNCTION DECK
      DIMENSION NE(IOO), BIGG(IOO)
      DO 201 L= 1 .100,2
  201 READ 202,NE(L),BIGG(L),NE(L+1),BIGG(L+1)
 202 FORMAT(I5,F8.4,I5,F8.4)
  955 PRINT 1!
  11 FORMAT(21X 31HPLOT OF PEARSON  FREQUENCY CURVE//)
     READ 12
   12 FORMAT(15X 49HTHIS IS THE RAW DATA LEAD CARD                    )
      PRINT 12
      PUNCH '12
  954 ABIG = 0.0
      PBO =0.0
     PB1 =0.0
      PB =0.0
      SIGMA = 0.0
      SOUMO= 0.0
      SKEW = 0.0                                       	
      BETA2 =0.0
      TOT = 0.0
      XBAR =0.0
      READ 13
•  13 FORMAT(26X 28HSTAT1STICS OF XXXXXXX RECORD)
      PUNCH 13
      PRINT 13
      READ 51,  TOT, XBAR,  SQUMO. SIGMA
   51 FORMAT(7X F4.0, 9X F8.3, bX F14.6, 7X F12.6)
      READ 52,  SKEW, BETA2
   52 FORMAT(13X F12.6, 1?X F12.6)
      READ 54,ABIG,PBO,PB1 ,PB
   54 FORMAT(6X F12.6, 6X  F12.6,6X  FJ2.6,6X F12.6)
    • PRINT 55
   55 FORMAT(//47HNUMBER- OF VALUES  AT PRODUCTS OF  SIGMA FROM MEAN//)
      PRINT 802
  802 FORMAT(15X 1HX, 10X  1HY)
      GAM2 = 20*(3.-BETA2)
      CUE2 = 4.*BETA2*SQUMO/GAM2
      PLOT = -6.0
     IF(PBI) 102,101 ,"102
  102 PRINT 925
  925 FORMAT(29HUSE COORDINATE PROGRAM 1 OR 3//)
  701 IF(PB) 103,104,105
  103 DINB = 1. +  ABIG/(2.*GAM2)
      DINA = 1.5 + AB|G/(2.*GAM2)
      GDINC = 1.77245
      KAPPA = 3
      GO TO 228
  228 LAPSE = 1
  250 IF(DINA - 1.) 222,223,224
  223 GDINA = 1.0
      GO TO 252


  224 DO 241 NOM = 1,1000
      BINA = NOM
      C I NA = D INA  - B INA
      IF(CINA - 2.0) 241 ,241,243
  243 CONTINUE
  241  IDUNA=C|NA*100.

-------
    GO TO 225
222 IDUNA=(D|NA+1.0)*100.
    BINA=-1.0                     '                                     150
225 DO 226 L=1,100
    IF(IDUNA-NE(L)) 226,227,226
226 CONTINUE
227 GD1A=EXP(BIGG(L)-10.)
    IF(BINA)244,245,246
244 GDINA=GD1A/D|NA
    GO TO 252
245 GDINA=GDJA
    GO TO 252


246 DO NAN=1 ,1000
    GD1A=CINA*GD1A
    C INA = C INA + 1 .0
    IF(DINA-CINA) 247,247,248
248 CONTINUE
247 GD|NA=GDJA -
252 GO TO (253,254),LAPSE
253 LAPSE = 2
    DINA=DINB
    GO TO 250
254 GDINB=GD|NA
    GO 10(111,112,113),KAPPA
113 BETAG = (GDINC*GDINB)/GDINA
    CUE = SQRT(CUE2)
    WYEO = 1./CUE*BETAG
    GO TO 397
397 IF(PLOT - 5.0) 398,923,923
398 PLOT=PLOT+1 .0
    ABSX = PLOT*SIGMA
    GO T0(311,312,313,314),KAPPA
313 NORY »WYEO*((1. -((ABSX**2)/CUE2))**(ABIG/(2.*GAM2)))
    GO TO 399
105 IF( BETA2 - 3.000000) 106,104,108
108 DINA = 1./(2.*PB)
    DINB » (1.-PB)/(2.*PB)
    KAPPA = 1
    GO TO 228
111 ELFA = SQRT(PBO/PB)
    WYEO =(1./ELFA*1.77245)*(GDINA/GDINB)
    GO TO 397
311 NORY - WYEO*(J.+(PB/PBO)*(ABSX**2))**(-DINA)
    GO TO 399
106 DINA = 1.5-J./(2.*PB)
    DINB = 1. - 1./(2.*PB)
    GDINC = 1.77245
    KAPPA = 2
    GO TO 228
112 BETAG = (GDINC*GDINB)/GDINA
    p = SQRT(-PBO/PB)
    V/YEO = l./P*BETAG
    GO TO 397
312 NORY= V/YEO*((1.-(ABSX**2)/(P**2))**(~J./2.*PB))
    GO TO 399
104 V/YEO = 1./(SIGMA*2.50663)
    KAPPA = 4
    GO TO 397
314 NORY = WYEO*2.71828**((-ABSX**2)/SQUMO)
399 PRINT 801, ABSX, NORY
    PUNCH 801, ABSX. NORY
801 FORMAT(10X F12.6, 15)
    GO TO 397

-------
   91 FORMAT(I4)
      PUNCH 91 , LAST
      IF(LAST) 95**,956,1111                                              151
  956 GO TO 955
  1111 STOP
      END

RELOCATABLE SUBROUTINES CALLED
EXP
SQRT

OBJECT PROGRAM DATA TABLE
03180 STORAGE POSITIONS

PROCESSING COMPLETE           *

-------
                                                                          152
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
C     PEARSON FREQUENCY CURVES, COORDINATE PROGRAM 3
  955 PRINT 11
   11 FORMAT(21X 31HPLOT OF PEARSON FREQUENCY CURVE//)
      READ 12
   12 FORMAT(15X 49HTHIS IS THE RAW DATA LEAD CARD                    )
      PRINT 12
      PUNCH T2
  954 ABIG - 0.0
      PBO =0.0
      PB1 = 0.0
      PB =0.0
      SIGMA = 0.0
      SQUMO= 0.0
      SKEW =0.0
      BETA2 = 0.0 .'
      TOT = 0.0
      XBAR =0.0
      READ 13
      PUNCH 13
   13 FORMAT(26X 2SHSTATISTICS OF XXXXXXX RECORD)
      PRINT 13
      READ 51. TOT, XBAR, SQUMO, SIGMA
      PUNCH 51,TOT,XBAR,SQUMO,SIGMA
   51 FORMAT(7X F4.0, 9X F8.3, 6X F14.6, 7X F12.6)
      READ 52, SKEW, BETA2
      PUNCH 52,SKEW,BETA2
   52 FORMAT(13X F12.6, 17X F12.6)
      READ 54.ABIG,PBO,PB1,PB
      PUNCH 54,ABIG,PBO,PB1,PB
   54 FORMAT(6X F12.6, 6X F12.6,6X  F12.6,6X F12.6)
      PRINT 55
   55 FORMATC//47HNUMBER OF VALUES  AT PRODUCTS OF SIGMA FROM MEAN//)
      PRINT 802
  802 FORMAT(15X 1HX, 10X 1HY)
      GAM2 = 2.*(3.-BETA2)
      CUE2 = 4.*RETA2*SQUMO/GAM2
      PLOT = -6 0
     IF(PBJ) 102,101,102
  102 IF(PB) 121,109,121
  109 PRINT 825
  825 FORMAT(24HUSE COORDINATE PROGRAM I//)
      GO TO 923
  101 PRINT 924
  924 FORMAT(24HUSE COORDINATE PROGRAM 2//)
      GO TO 923
  121 SEE =PB1/(2.*PB)
      DEE = PBO/PB
      GEE2 = DEE -(SEE**2)
      AKAY = (-PB1 + SEE)/PB                             	
      IF((PB1**2) -(4.*PB*PBO)) 125,109,127
  125 WYEO =15.
      MAP = 1
      PRINT 998
  998 FORMAT(21HAPBITRARY Y ZERO =  15//)
      GO TO 397
  397 GO T0(395,401),MAP
  395 IF(PLOT - 5.0) 398,923,923
  398 PLOT=PLOT+1.0
      ABSX = PLOT*S|GMA
      PARTI = f fAR?;X-fSF.E^**2+GEF.2WfSFF**2-i-nEF,2^

-------
      SGEE « SQRT(GEE2)
      PART2 = (-PB1+SEE)/(PB*SGEE)
      PART3 = ATAN((SGEE*ARSX)/((SEE*ABSX)+DEE))                          153
      NORY=V/YEO*(PART1**(-1./2.*PB))*((2./1828)**(PART2*PART3))
      GO TO 399
  127 WYEO =15.0
      MAP = 2
      PRINT 998
      IF(PLOT - 5.0) 406,923,923
      PLOT = PLOT + 1.0
      BEEU = (-PB1)*((2.*PB)-1.)
      BEEZ =PBO + ((PB1**2)*(PB - 1.))
      RTL = (-BEEU+SQRT((BEEU**2)-(4.*PB*BEEZ)))/(2.*PB)
      RTS = (-BEEU-SQRT((BEEU**2)~(4.*PB*BEEZ)))/(2.*PB)
      7.ETA=XBAR+PLOT*S IGMA
      EPEE = J./(PR*(RTL-RTS))
      PAR1=(1.-(7ETA/RTS))**(EPEE*RTS)
      PAR2 = (1.-(7ETA/RTL))**(-EPEE*RTL)
      NORY = V/YEO*PAR1*PAR2
      ABSX=XBAR-ZETA
      GO TO 399
  399 PRINT 801, ABSX, NORY
      PUNCH 801 , ABSX, NORY
  801 FORMAT(10X F12.6, 15)
      GO TO 397
  923 READ 91, LAST
   91 FORMAT(l*f)
      PUNCH 91 , LAST
      IF(LAST) 95^,956,1111
  956 GO TO 955
 1111 STOP
      END

RELOCATABLE SUBROUTINES CALLED
ATAN
SQRT

OBJECT PROGRAM DATA TABLE
50870 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                         154
310000300002RS
ENTER SOURCE PROGRAM
THEN PUSH START
C     CALCULATION OF DIFFUSION FACTORS AND SALINITY GRADIENTS
   92 READ 18,TAU,DELT,TEE,AMP
   18 FORMAT(3X F6.2,F3.0,F6.2 ,F6.2)
      DIMENSION A(30),B(30),C(30),D(30),S(30)
      READ Jf8
   k& FORMATM5X 49HSAYTHEMAGICWORDSOFPLEASEANDTHANKYOUANDHOPE ITWORKS)
      PRINT 48
      L=30
      Pl=3.14159
      EN=30.
      SUMA=0.0
      SUMB=0.0
      SUMC=0.0
      SUMD=0.0
      DO 28  1=1,L
      READ 53,A(I),B(I),C(I),D(I)
   53 FORMAT(34X F3.0,1X F6.2,2X F3.0,1X F6.2)
      SUMA=SUMA+A(|)
      SUMB = SUMB+B(I)
      SUMC=SUMC-HC( I)
   28 SUMD=SUMD-i-D( I)
      BBAR= SUMB/SUMA
      DBAR= SUMD/SUMC
      1=1
   96 IF(A(|)) 101,101,102
  101 B(I)=BBAR
  102 IF(L-I) 98,98,97
   97 1=1+1
      GO TO 96
   98 1=1
  107 IF(C(I)) 103,103,10^
  103 D( !)=DBAR
  10if IF(L-I) 105,105,106
  106 1=1+1
      GO TO 107
  105 K=1
      SONE= B(1)
      SBAR=BBAR
      DO 118 1=1,L
  118 S(I)=B(I)-BBAR
  212 SUMI=0.0
      DO 201 1=1 ,L
  201 SUMI=SUMI+S(l)**2
      VAR=SUMI/(EN-1.)
      V/=SBAR-SONE*(EN-1 ,)/EN
      Z=(((EN**2)-1.)/(2.*EN))-((EN-1.)/EN)
      TH=TAU/(PI*DELT)
      Y1=-(TH/2.)*COS(PI*TEE/TAU)*SIN(PI*DELT*(2.*EN-3.)/TAU)
      Y2=-(EN-1.)*((SIN(PI*DELT/TAU))**2)*SIN(PI*TEE/TAU)
      Y3=((TH/2.)+(EN-l.))*COS(PI*TEE/TAU)*SIN(P|*DELT/TAU)
      Y=(Y1+Y2+Y3)/EN
      U1=SIN(2.*PI*(TEE-DELT*(EN-1.))/TAU)+SIN(2.*PI*DELT*(EN-2.)/TAU)
      U2=-SIN(2.*PI*TEE/TAU)+SIN(2.*PI*DELT/TAU)
      U=(UJ+U2)*TH/(2.*(EN-1.))
      SEE 1 =( (((EN-1 .)**2)*(V/**2))/(3 .*( l**2)) )-VAR
      SEE2=(((EN-1.)*(SONE-SBAR))/(2.*7))*V/+((SONE-SBAR)**2)
      SEE=SEE1+SEE2
      BEE=(2.*Y*((EN-1.)**2))/(3.*(7.**2))+(Y*(FN-1.)*(SONE-SBAR))/(2.*Z)
      ACO=((Y**2)*((EN-1.)**2))/(3.*(Z**2))+1.0+U
      DISC=(BEE**2)-(4.*ACO*SEE)

-------
       IF(DISC) 202,203,203
  202 AKAY=-BEE/(ACO*2.)
      BKAY=AKAY                                                          155
      GO TO 316
  203 AKAY=(BEE-fSQRT(DISC))/(2.*ACO)
      BKAY=(BEE-SQRT(DISC))/(2.*/CG)
  316 FAC=(2.*(PI**2)*DELT)/((TAU**2)*AMP*SIN(P|*DELT/TAU))
      GRADA= AKAY*FAC
      GRADB=BKAY*FAC
      DIFFA=((W-Y*AKAY)/Z)/(GRADA*DELT)
      D|FFB=((V,'-Y*BKAY)/Z)/(GRADB*DELT)
      GO TO (304, 205), K
  205 PRINT 215
  215 FORMAT(15X J3HBOTTOM RECORD)
      GO TO 216
  304 PRINT 206
  206 FORMAT(15X 14HSURFACE RECORD)
      PRINT 207  .
  207 FORMAT(10X J8HPARAMETER GRADIENT, 10X 16HDIFFUSION FACTOR/)
  216 PRINT 208,GRADA,DIFFA,GRADB,DIFFB
  208 FORMAT(6HROOT 1 ,7XE14.8,12XE 14.8/6HROOT 2 ,7XE14.8,12XE14.8/)
      GO TO(209,210),K
  209 K=2
      SONE=D(1)
      SBAR=DBAR
      DO 211    1=1 ,L
  211 S(I)=D(I)-DBAR
      GO TO 212
  210 READ 91 , LAST
   91 FORMAT(I4)
      IF(LAST) 92,92,111
  111 STOP
RELOCATABLE SUBROUTINES CALLED
S IN
COS
SQRT

QBJECT PROGRAM DATA TABLE
02480 STORAGE POSITIONS

PROCESSING COMPLETE

-------
                                                                      156
                  COMPILATION OF BASIC DATA

     The following tabulations present the basic data collected
during the routine monitoring and the intensive surveys.  The routine
monitoring data are tabulated by station and by date collected
and are shown in Table 34.  The intensive survey data are
presented in Table  35     For those data run through the descriptive
statistics program, the tabulations show the basic data, the descriptive
statistics and the Pearson coefficients for each sampling station
for each survey.  The other intensive survey data are presented in
tabular form only.  It should be noted that in the intensive survey
data where zero values are listed, the values were missing and the
zeros were used only to facilitate the programming.
     Also included in the tabulations of intensive survey data is
the pertinent environmental information that was collected during
each survey.  These data are river discharge, tide height, rainfall,
wind velocity, solar radiation and air temperature and are shown in
Table 36.
     The last data tabulation is the chloride concentrations observed in
the hydraulic model of Charleston Harbor.  These data were collected during
the model verification studies and are listed in Table   37  .

-------
157
vO
— ^
00
• •^
0
^
•s^
vO
vO
-•^
0
r-l
vO
••^
m

o
vO
•^^
r-4
-•v^
O
r-4
vO
•*• —
O
CO
^^
ON
r-4 vO
6 -*•
ON
O CM
• O ""--
r-l ON
Q rJ
Q)
-J- O P, -cf
ro Z vO
f— i p* j ^°~^
[VI fy*t p^ 00
i-j o o CM
PQ H pn x--.
<; M M ON
HZ rJ
9 o
S o

(fl
CO

0 0
O CM
•


O O
o o
CM CO
CO r-l

O O
O OO
ro ON


O O
O CM
O OO
-i a)
J-l r-l -U £ U,
O 3 0 3 g
•u w ^Q C S3
•H CO
-Q 1 1 O
•H O O
js co w H 2;
t-t -^

* '"M0"'! I"*!

-------
                                                                                          158
13
O
O




















r-l
0
o
1-1

t(
(U
p-
§
o

M

O
0
H
O
H






















vO

Cn
CM
•* —
O
r-l
St
\o
•^^
oo
CM
»^_
O
r-l
VO

r**.
CM

O
r-l
2
CM
CM
^^
O
r-l

VO

r-l
CM

O
r-l
vO
*^
O
CM
•* —
0
r-l
n


o o
o o
o o
in vo
vO Is-



o o
o o
o o
CM CO
CM CM


o o
0 0
o o
r> CM
CM CO


o o
0 0
00 vO
•J
^o ^o
r-l



0 0
o o
^*
o^


o o
o o
vo in
O r-l
1-1


co pq
!-» I-*


0 0
o o
o o
oo oo
r-t CM



o o
o o
vO O
cn r^
CM


o o
0 0
oo oo
-* 1-1
i-(


o o
o o
vO O
en oo
1-1

0 0
o o
o o
f-» vO
I-l


0 0
0 0
OO vO
co in
r-l


0 0
o o
o o
o in
CM CO


0 0
o o
CM O
O st
r-l CM


co pq
00 00




1 1
1 1






1 1
1 1



o o

vO 00




o o
o o
O vO
O 00
r-l

0 0
o o
CM Is-
r~ vo




0 CJ

£3 £3
H H


0 0
-d- o
in co
I-l



0 0
Is- oo
co cn




co m



o o
o o
vO O
cn CM




o o
O vO
CO CO
r-l



0 0
O vO
oo cn

-------
159






—4
e
^-\ o
T3 O
r-4
4J

o 
0 CL
ro^ 0
a 3
FQ O
H

•^
s
H


















vO

CO
*~^
CM


*s.
r^
•*^
CM
r-l



^
VO
^-
~^^
CM
r-l

VD
•* —
CO
* —
CM
r-l
VO
•^^
CM
***^
CM
r-l

a
o
•u
2
CO

oo oo oo oo
OCO OO OO OvO
OCO vOO OCM vO f"
CM in i— 1 vO CM CM


oo oo oo oo
OO OO OO OOvD
ON -3- m CM vom vo f~-
t-( r-l 00 CO CM
l-t





II II O O O O
II II HO O O
ii i.i fe vo CM m
.CM »^ r-l


oo oo oo oo
o *»
CM

O O O O
O n
r*» i — i
r-l


0 O
O -sf
••
r~ CM


0 0
o o
OO vo
vo -*



0 0
o o
O CM
r-l ON
I-l


co PP
00 00


o o
o o
m o
CO CM


o o
o o
f^ vO
co co







1 1
1 1
1 1


0 O
o o

>* CM




1 1
1 1
1 1



CO PP
ON ON


o o
o o
0 CM
CM ON
CM

o o
0 0
vO vO
o o
I-l r-l





o o
o o
CM O
m CM
CO


O 0
o o
CM 00
CM CM
I-l r-l


o o
o o
sfr vO

-------
160
































r-l
6

<— > o
tJ^^ O
i*:
O 0)
o a
N^

.
<*•
"^»
CM


in
i^_
r-l
"^s.
04
in
vO
^^
CO
CM
r-l
VO
"^
m
CM
r-4
c
o
-, -J
4J
«tt
CO

CJ U
H H

t-i c^


O "">
vO ON
oo
r-l



O O
0 0
CO CO
in r-l



* •
co co

23* S3*


O O
O CM
co m



0 0
O CO
vo OO
d- •*


0 0
O vO
o in
r~ ro


o o
0 0
in d- CM


co pq



0 O
o o
csl vO
vQ OO
r-l

O O
o o
o **
ON r-4



o o
o o
O vo
r- o
r-l


O O
O O
-d- o



o o
o o
o in
r- co
r-l

O O
o o
vO ON
CM CO




O O
o o
r-l CM




O O
0 0
*d" CO
d* vo
o o
r-4 r-4

0 0
O CO
m r-i
*d" CO


• •
co co





o o
0 0
CM O




O 0
o o
CO ON
VO f-


o o
O CM
VO vo


% i
CO CO




co pq co P5
o o co co
1—4 i—4 r— 4 i— 1

-------
161

































1-1
6

•
Ci M
O 0)
o a.
x^
^r*
sf 2
ro O
fa
a ij
3 8
H
3
H
O
H





















vQ

CO

r^»

>n
o
••-^
m
r-l
••- —
VO
m
vO
•*^
^f
r-l
-•^
vO
m
•^
o
r-l
^^
vO
m
VO
^^
CO
•^.
vO
in
•O
—
p»
CM
m


in
vO
««^.
o
CM
•^^
in

m
vO
CO
r-i
^^^
m
m
0
- — ^
vO
^^
m

m
vO
^»^
cn
CM
Sf



a
o
, i
"f~1
4-1
ctf
CO
O O
o m
in co
r-l Sf




O •
O Oi
CO •
^* 1 1
*


O O
o o
VO Sf
sf sf


O O
o m
sf CM
O CO
r-l

O O
O vO
vO CM




O O
O CM
O 00
CO




O O
O O
sf sf




O O
O O
vo st
r-> r-l


o o
o m
oo en
sf



o o
o o
CM m
m r-i
i-4





co pq
r-l r-l
O 0
0 O
m vo
m sf
CM











i i
i i
i i


o o
o o
O CM
m o
CM CM

o o
O CO
m r»
r-~ r-l



o o
0 0
in oo
CM VO
r-i




o o
o o
0 Sf
O CO
co


o o
m o
CM O
CM O
r-l r-l

o o
O 0
o co
St vO
r-l


o o
o o
O vO
sf 00
CM r-l





co pq
CM CM
o o
O 0
o m
vO CM
r-l r-l



o o
0 0
in oo
cn co
r-4


o o
o o
0 sf
r** in
r-4


o o

ifei (Zk
H H

O 0
vO O
vO CO
CM



0 0
o o
vO O
m in




o o
m o
r^» vo
r-4 f"»



o o
o o
o o
Sf CM
r-4 CM

0 O
o E—I
0 Z
CM H
CM


O O
O 0
o m
r-l CO
sf CM





co pq
CO CO
o o
o o
oo o
m vo




o o
CO O
CO Cn
CO CM
CM


o o
vO O
vO CM
vO 00


O O
O O
00 O
O vO
CM

O O
o m
CM O
CO r-4



o o
o o
sf vO
vO CO




O 0
O O

O CM
r-l


O O
O O
0 0
CM 00
CM



1 1
1 1



O O
o o
0 0
•-i m
CM r-l





co pq
sf sf
o o
O 0
co f-*
CO r-l












1 1
1 1
1 1


O O
o o

CM CM
CM i .

O O
o m
CM Sf
CM r-l



o o
O vO
0 r-l
O r-l
I-l




o o
0 O
m m
CO CM
r-i


o o
o o
CM CM



O O
o o
00 CM
vO Sf



O O
O O
vO Cn
O CM
rH





co pq
m in
o
o •
o w
vO •
Sf f-k
•X










I i
i t
i i


O O
O vO
O vO
en 1-1
sf CO

o o
vO O
vO CO
VO f— 1
•*•


o o
0 0
^^ vO
ON CTN
CO




0 0
o o
O vO
CO vD
CM


o o
o o
0 0

CM r-l



1 |
1 1



O O
o o
o m
n 01
Sf Sf





CO PQ
vO vo
o o
0 0
00 r-l
m co

















o o
o o
VD r-l
Cn 00


o o
m o
I"1"* sf
vO CM



0 0
o o
CM en
vO CM




o o
o o
O CM
co co
r-4


o o
CO O
CO O
CM O
r-l r-4

o o
o o
o m
Q> 00
r-l


o o
o o
in co
in r-4
r-l r-l





CO pq
"
o o
0 O
CM Sf
r-l <(•




o o
0 0
CM in
CO CM
r-l r-l


0 0
o m
sf CM
m co


o o
o o
O vO
en o
CM r-l

O O
0 0
CM O
00 O
1-1


o o
o o
m vo
co m




0 0
o o
O CM
r-i cn
rH


0 0
o o
o m
O CO
CO r-l



\ i
i i



0 O
o o
m co
O CM

ii m n
I 1 ^
II frt I.
\\) f*
0) i-l
Li 01
>> >!
O O on
oo 2 2
*"^ *^" trt ctl
CMCO % %
0 0
rt n)
r-l r-l
n) ttf
crj CQ
TJ t3
0 0
co pq co pq Z Z
o o co co jf jf
r-l r-4 r-l r-l . *

-------
162





























T-l
e

/-v o
2^ o
^^^B r— 1
j^Jr
C !-<
o 
VO
-^
CO
CM
*> 	
CO
S
CM
••^
CO
in
VO
^^.
ON
"^s^
CO
2
in
•^^
CO

m
vo
**N^
CO
-*^.
CO



>n
vD
*-^.
O**
CM
^:



m
vO
^
m
r-H
"^,
r--
m
VO
CO
m
vO
-~^
f— i
•-^
c
o
lu
R)
4-)
CO


o m
o ^
m CM
r-l



• O
Di O
• vO


0 0
0 - co
o\ co






0 0
o o
o in
o >*
co





o o
o o
O CM
r-l >*
CM





O O
O vO
C3 O^

<(• r^

O O
CO vO
VO r-l
I-I


O O
0 O
VO CM
m <(•
i-i





0 0
O 0
in o
co 
-------
                                                                                                                                       163
                in
                VO
       £

      o
          o o    o  o
          o  CM
    O CM
          CM *  r-l
          CM  r-4
          o   «
          o  w
          o   .
          co  ij
          o o
          o o
          O vD
                m
                vO
                o
                CO
                CO
          o o
          C5 &*>
          •H CM
o o
O vO
CM in
o o
VO CO
VO CO
 • o
w m

m"*
o  o
O  CO

-------
                                                                                                             164
  , \
   N
      O
      o
 a
 o
fi
td
PQ
H
O
tu
O
o
      w
5
CO
•*^
o
r-l
vO
^^
O
r-l
St
^
m
*-%^
o
r-l
St
vO
•**^
r-l
^•^
O
r-l
St
VO
O
co
ON
st
vO
"»^
ON
CM
st
vO
-v.
CO
CM
0^
st
st
CM
•^^
ON
St
VO
^^
ro
CM
**-•*.
ON
vo
•^^
CM
CM
ON







J
4_l
2
CO
o in
O\ vO
CO

1 1
1 1



0 0
m vo
CM



O O
O St
O CO
CM


O O
O CM
r-l CO
CM


O O
CM O
St 00
r-l i-l


u m
H ON
z% CM


vO O
CTN CM
st



vO CO
r-l CM
r-l



o o
O r-l
St CM









CO PQ
i-l r-l

o o
00 r-<
m CM

o o
vO vO
St CM


0 0
CM O
vD CM



O O
0 0
vO 00
r-4 r-l


O O
O O
m o
co m


o o
o o
in st
CM CM


O CJ
St H
CO g


O O
m in
CM r-4



0 st
r-l CM
St -^



O O
VO CO
r-l CM









co PQ
CM CM

O O
st CM
CO St

O O
O CO
St ON
i-l

O O
st vO
vo m



o o
st co
0 st
r-l r-l


O O
O CM
r-l CO
CM r-l


O O
O vO
O ON
r-l


O O
CM O
r^» r*^


0 0
St CO
CO CO



o o
st st
i-l st
r-l


0 0
CM St
CM CO
*"*








CO PQ
co co

o m
m r-i
St CO

o o
O CO
in CM


0 0
o o
r-l CM
r-l


o o
o o
St ON
CO


o o
o co
r-l vO
CO


o o
O CM
CM m
co


O 0

£ in
H

o o
r^ r-l
CM CM



O CO
O CO
CM CM




1 1
1 1









CO PQ
St St

O O
m in
CO CM

o o
co a
CM CM


CO ON
ON O
CO r-l



O O
o o
co s^



o o
0 st
co st
r-i


o o
St CO
r- vo



O 0
pH (7s
f^ O~)
H

0 0
St CM
CO r-l



O O
r- o
CM r-l




i i
i i









CO PQ
m m

O O
o o
st st
r-i
o o
O CO
vo m
r-l r-l

CO CO
• •
r3 53



0 0
0 0
CO CM
r-l CM


O O
o o
CM cr\
m CM


o o
o o
o o
CM m


o o
'~*J <*!
o in
Csl CM

O O
r-» co
co
r-l


0 O
0 r-l
vO CO
CM



t 1
1 1









CO PQ
vO vD

0 0
vO CM
CO CO

0 05
CM st
m st



i 1
1 1



o o
0 r-4
i— 1 vO
I-l


O 0
O vO
C7\ St
r-t


o o
O vO
o m



o o
CO CO
tt m


CO 00
• •
53 t!Z



O O
O CM
Sf CM




1 1
1 1









CO PQ
r*. r*-

O O
0 r-l
CO CO
i-l
O 0
0 0
CM CO
CM CM


1 T
1 1



O O
CM VO
O CM
r-l


O O
O O
ON St
r-l


0 0
o o
o co
r-l r-l


O O
CO O
O"N 1"**


o o
st 0
CM st
r-l


O O
st vo
co m




i i










CO PQ
CO CO


1 1
1 1


1 1
1 1



1 1
1 1



oo o
m vo
r-l



1*- O
r-» r-l
r-l



m o
in o
CM



0 0
in r^
i-i


co co

»3 £5



o o
CM O
st st




1 1
1 1









CO PQ


O O
O vO
f> co
r-l CO

1
1



1
1



0 0
St 0
CO CO



o o
o o
St CM



o o
o o
r-l CO
r-l


0
0 1
r- i


o
o
m
* *


o o
o oo
r^ r-i
r-l



1 1
1 1









CO PQ
O O
t-H f-4


















































CJ

a
0)
0)
14-1
M
V
•M
a
•H
0)
•H

*

-------
165
1
CT\
CM
»*^
O
i— 1
VD

CO
CM
*-«<
O
2
r*^
CM
*v^
o
r-l
r-l
g
»•»
O vO
o ^
r-l CM
CM
!-i --^
(U O
O. r-l
K Si"
O vO
fK ->-
t~~ i frM
r4 CM

O O
r-l
W vo
Pn ^.
O
CM
"**^
O
"~4
s)-
•JD
^.
*^f
rH
-*-^.
O
r-l
«*
vO
*-^
co
T-l
^•^
o
r-l
»O
•r-l
U
n)
4J

1 1
1 1


o o
CO CJN
O CO
CM

o m
0 0
cr> CM
r-l





m co
lO ^O







o a>
CM st
r-l




1 1
1 1




O O
0 CO
m CM
CO



O 0
O CO
CO CM
^^



co m
r-l r-l

oo oo oo oo oo oo
II OO OCO StO OO CMvD O^O II II
ii COCM mst mm CMO mm co^- 11 11
i-ICMr-lr-lr-l CMCM t-lr-l

oo oo oo oo oo oo oo oo
OO OCO OO OON \OO \QO CMvO CMCJX
\ovb cor-i coco r^eM mst m\o »-<*•* 11 cs
CMCM r-lr-4 Stst r-l r-ICM r-4 r-lr-4 II

oo oo oo oo oo oo oo sj-o oo
oo oco OCM vost oo cMco oo mco oco
StCJN r-ICT\ Sj-00 I"*CO CDS}- COm COVO r-4 CO
r-l CM CO  O OO
oo oo ost vo\o o a OCM oo mo ost
mm r— co r-ico r-ico CMCPI coco mm r-i COCM
r-l r-4 CM Sf r-l m r-4r-l



oo oo oo oo oo oo oo com oo
OvD OO Or-4 CMO> OO OCM vOO mO OO
mco CMCM r^co CT>VD r-im !*» r-i i^vo r-i f«o
COr-tCOr-ICO CM r-l CMr-4
t. /


copQ ropQ com co M co pq ryipo COM com COM
CMCM coco sfsj- mm ^ovo r» r»> coco cr^cy* oo
r-l r-l

-------
                                                                                                                                      166
o
o
                                 o o

                                 in
                               o m

                               CM i-l
                                                     om
                                                               O O
                                                              o
                                                              co
                                                              o
                                                                                    0  O
                                                    o  o
                                                    CO  CO
                                                    r-  •-!
                                          RS
                                          CM r-l
                                                                                                        O O
                                                                                                        O O
                                                                                                        O *
                                                               CO  CD
                                                               CM
                                                              o  o
                                                              O  O>
                                                              co
                                                                         o o
                                                                         O CT»
                                                    O O
                                                    CO vO
                                                    vn r-i
                                          O O
                                          CO CM
                                          CM 1-4
                                                                                                       O O
                                                                                                       CO O
                                                                                                       n CM
VO


CO


CM
                      CM
                         co
                     o
                     00  I
                     I-l  I
                                           o o
                                           O 0%
           m in
           o n
                                                              co
                                                              vo
                                                                                    co
                                                   co PQ
                                                   co oo
                                         to «
                                         er\ cr>
                    CO  M
                    O  O

-------
167

»








r-<
e
X-N O
»s
M
O 0)
o a.
\»x
^ 0
3 §
PQ o
£ "
w






»

in
vO
CM
CM
m
vO
t-l
in
vO
CO
CM
m
r-l
CM
vO
CM
m
vO
CO
CM

m
vO
CM

m
VO
CM
1/23/65
m
m
CM
,— i



O
4-1
ttf
JJ
CO

H r4

co m
O CM
r-l CM
CM r-l

CO CO
z" z"


O CO
oo m
CM
0 0
O VO
m

o oo
00 vO

r- r-i
O o
Sfr r-l

O O
CM O
00 r-l



CO (O
r-l r-l


CJ
H O
Z CO
H CO

o m
oo co
o o
O ro
m ro

in o
CO r-4
r-4 r-l


o o
O vO
o o
o oo
m o
r-l

0 0
in oo
CO CM

O CO
oo m
o o
m CM
r-l

0 O
CM 00
•sfr vO



CO PQ
CM «M


0 0
H H

m o
oo m
t-l CM
o o
CO vO
m ON

m o
r> vo
CM r-l


o o
00 O
co co
0 0
0 -*
CO ON
1-1

O 0
m ON
m r--

C2 ON
vO CO
CM r-l
O 0
r-l

0 0
 in



CO PP
CO CO


0 O
H vO
Z  oo
r-i
o o
CM CM
co in

o o
m CM

o o
o m
O ON
CM r-l

O O
vO O
vO CM



CO pq


0 0
5 CO
H

o «n
CO r-l
CM r-l
O O
O CM
CM ^

O 1-4
r-4


0 O
o oo
-cf
o m
r~ r-i
CM CM

O O
O r-l
r-l

O 1*-
1—4 r^
CM
m vo
CM

O O
CM r-l



co «
r** r^


0 0
m 
-------
                                                                                    168
0
u






















T-H
C

o.
-
PH
0

I— t
jj
8
j3
CJ
w
CM



















0
"•^
LO
1—1
*-^
^o
vO
•v^
^d*
r-i
\o
^o
o
1-1
vO
in
vO
CO
"^s^
vo
m
vO
*x^
r-
CM

in
m
vO
-v.
o
CM
-^
m
m
vO
•»^
ro
i— 1
^^.
in
in
i^
vO
"•v^
in
m
vO
••-s.
ON
CM
•*
a
o
4J
t
CO

m o

CM r-l
r-4


O O
m oo
vO i-l





• CJ
W H
• a
J H



0 0
CM O
vO jO ~
CM O





1 1
1 1



o •
oo 04
CM •
rJ


co pq co pq
O O CO CO


-------
169
' m
vO
0
>C1
c5
m
VO
CO
CM
CO

o
CM
^-1
CO
in
VO
co
in
vO
in
co
vQ
4J i — I ~^
i e "
tg
r-l
ro r-i in
0) vO
., a, *£•
w ON
1-4 CM
PP S -x.
H O
r-4
rJ m
o VD
o --.
in
w
PH
m
00
\

in
vO
i-4

1 o
W TJ
ttf
co

i i
i i
*

0 0
vO CO
CO rH


o w
m •
vO r4
o o
O CM
CM m
rH
o m
m vo
CM

o o
ON oo
O CM
CO CM
o m
O 00


o.g
CM H

o o
CM St
CM

co PQ
rH rH


1 1
1 1


O O
O CO
co in


0 0
o o
CO CO
rH
o o
o m
0 ST
r-4 r-4
0 0
O vO
f"^ ST
rH

O O
vO O
rH
0 0
CO O
CM f~»
rH
o m
o f*»
CO CO
CM


o o
vo in
CM in
r-l rH

0 0
CM CM
CM rH

CO PP
CM 01


1 1


o m
0 Is*
vo m
rH


0 0
o r<-
CM CO
vO
0 0
0 0
co oo
CO CM
0 0
0 0
O t-H
m CM

o o
m in
ST CM
rH CM
• co
• CM
0 O
o in
1^ St
CM


0 0
o o
i-i in
00 rH

0 0
00 O

co m
CO CO


i i
i i


m m
r- o
O"N T"l


0 0
o o
ON in
rH
0 0
o m
CM rH
rH
0 0
00 CM
VO CM
r-4

O O
0 rH
CO St
rH
O O
ST H
0 0
o m
CO sT
CM


O O
SO CM
vO O
rH rH

0 0
o f*»
rH rH
i-H

co m


i i


o o
oo m
r-4 CM


m o
r- co
m CM
O vO
O vO
'CO r-4
O O
0 0
CM m
rH

O W
ON |J|
m o
r- CM
t*- rH
rH
0 0
o sr
O CM
CM

t
o/o
m CM
CM st
rH

0 0
O CM
00 r-l

CO CO
m m


i i


o o
O CO
vO 00
r-4 rH


O O
CO O
Sf rH
rH r-4
"0 0
O VO
vO 00
r-4
o m
CO CM
CJN vO

o o
o o
vo in
st
0 0
o o
O rH
CM CM
0 0
CM O
vO o
r-4 r-4


0 0
o in
Si" CO
Sj" rH
i-H

• O
ffj m
• m
•J rH

co m
vO vO


i i


(jq pj
TV. FTJ
*

O O
O CM
rH
O vO
O rH
ON CO
O O
sj- CM
m sr

o o
o o
o si-
CM rH
O O

-------
                                                                                                                                              170
          0




         O
 o
 o
w
I-J
M
CU

O.
         O
         o
         w
                    vO
                    CTN
                    m
                    vO
                              o oo
                              in co
                              CM
                               m
o o
o vo
CO CO
                     o o

                     00 SO
o  o
m    CM

!-«  CM
O  O
in  ^
i-l  CO
o o
o oo

CM
o o
o o
CO CM
o o
o m
O> CM
o o
p >  ^
o o
O CO

in ~*
                    m
                    vO
                    CO
                              o
                              o
                              co
                                 vO
                              O  r-4
                              m  en
                              CM  CO
                              .-i
o  in

00  ON
O r-t
CO r-t
m
o o
m in
o   «
O P4
o   .
o o
in CM
r-t m
o o
in CM
in vo
o o
in o
co oo
o o
o o
00 CM
                    4J

                    W
                              CO M
                              co  pq
                              CM  CM
CO  M
co  CO
                                                            CO  PQ
          to  pq
          m  in
                                                                                 copq
                                                                                           GO  M
                               co tq
                               co co
                              co  pq
                              cr\  ON
                              co  pq
                              co  co
                    VI

-------
 c
 o
 u
•d-
00
       oO
       6
8
        w
        CO
        co
        H
        O
vO
00
o
vO
vO
O
r-4
vO
in
o
r-l
VO
r-4
O
i-l
vO
O
CO
ON
V*
VO
ON
CM
ON
VO
~^.
oo
CM
ON
vO
CM
ON
vO
CO
CM
ON
vO
CM
CM
ON
i
cu
Itf
O
C
o
4J
rt
CO
CO
CM
l>"

1
1
r-4
r-l
m
o
ON
in
0
o
vO

O
O
vO

O
00
m

r-4
CO
VO

00
CM
o
vO

r-4
CO
vO





2

o
r-

i
0
o
vO
oo
vO
m
oo
oo
m

o
I-l
vO

r-4
ON
m

VO


ON m
vO vO





co «
CM CM

00 O
00 !*•
vO \O
O CO
-*d" vO
vo m
0 0
in r-4
m m
m Or
1-1 (-••;
m m
O ON
st CO
m m

CM r-4
CM ON
m J
m m
m vo
in m
o co1
ON 00
m in

CO CO
oo ON
in in

r-4 ON
OO 00
m m

co
O 1
vO

00 *
00 CO
in m

i i
II
1


-------
                                                                                               172
     60
     g
     o
     g
CO
vD

ON
CM
O
r-l
vO

00
£^
o
r-l
vD

p-
CM
O
r-l
3"  f^^ rs, rs» js^ ps» ps | |


vOOO vo sd"vD CMO ni oco in-d" inm voco covo !"*•o oosj vom oo CSIr-4 l-IO OOO
r»rs. vor*- vovo rs.r^. t~> .^. ^^D r~-r~ p%rs- r-»vo


CMOO OOCM vO-vt vOO CMOO vDO OOCM CO OO Or-l OCO OOA


ii r-iin CMCO min oo COCM cor-i coo COCM voo sj-o
rs,js% IS.P*, VDVD r»rs. rssps rs-rs, rs.rs, rs-r* r-is.


oco CMO CMO oin r-i
rs-fs. rsfs, voo ts-fs. psi-s. r»o rsps p-rs, r»Cf O
m r-t
vO OO


0 O
VO r-l
in r*


CM vO
rH m
PS co


o o
•H CO
vo r*^


O CM
CTi VO
VQ

r-i m
PS vO
PS in


o o
CO VO
m fs.


CO OS
m i-i
s3" t*»








co m
o o


-------
173
»
r-4
60
s
-a cj
•H
4J
C 25
O W
O ^5

* '°
P^
rT1 pr^
OQ v-3
<; o
Hrr\
V/J
oo
Q










t





*^J-
vO

00
CM
r-4
VO

p.
CM

vO
5
CM
i-H
VO
*-».
CO
CM
rH
S
CM
CM
i-l
g
4J
(0
CO





VO vO CM OO *^" O CO CO O 00 00 vO JvO CMvO O- oof^- oooo coco coco


<)-OvOCM vO-*OO
II II OOvTi Cn r-t II CMCQ CMO
r^r^r^oo oo^ooco
•vf r-)O
coco oooo oooo oooo co r^ coco

CO PQ CO PQ CO PQ CO CQ CO PQ CO PQ CO PQ
t-4i-4 CMCM coco <}•<}• inm vovo r^r**






CM 00 CO CM -



-------
                                                                                                174
-o
 C
 o
en

w










i-H
bO
e
•r-l
w
o
0
o
DISSO]









eg

5

m
vO
oo
*-..
CM
vO
m
CM
m
i-i
CM

m
vo
CM

m
vO
CM
in
vO
CM
in
vO
oo
r-4
vO
m
CM
r-4
c
o
4-1
CO
f~~ I—I
Os O
vo r^*
O O
r-i r*
ON oo
o O
r>» vo
oo co
CO CO
ZZ

O O
o m
ON ON

o m
vt O
ON ON

O O
m 1-4
ON ON
en o
ON. 00
co oo
m o
ON 00

o m
vO O
ON ON

CO PQ
ON O
vO vO
O O
cf en
oo oo

os m
st ^
os oo

in o
OS 
-------
                                                                                                            175
TJ
sl-
en

















T-1
00
e

d
•r-l
£;
W
O
K
i
Q
1
O
CO
co
H
Q

















in
NO
r-l
r~
in
NO
in
C^
NO
m
NO
st-
,— (
NO
in
NO
O
rH
NO
m
NO
en
NO


m
NO
r~
CM
m

in
NO
o
CM
m


m
NO
en
t-H
m
m
NO
^O
in
m
NO
ON
CM
st
a
0
•r-l
4-1
n!
^i
CO

00 St
O ON
NO in

00 f--
r*» m
m in


r-4 r-l
l-» vO
m m


O CM
O r-l
m m


r-- rn
CM ON
NO m




o o
m CM
m m


t-l ON
CM NO
NO NO



r-l r-.
NO CM
m NO


m oo
OO NO
NO NO



ON st
CJN O
<£> l~-


CO
pq
r-l r-l


st en
ON r-l
st m

Is- r-l
St O
in in


ON st
ON ON
St St


ON in
NO m
St St


St r-l
NO CM
in m




oo m
If'l St
St St


o m
in oo
in in



en !~-
CM CM
m m


in in
IA r-l
NO vO



r- r-l
^ St
NO vfj •



co pq
CM CM


m m
CM CM
St St

r-l CM
CM r~~
m st


0 r-.
NO m
st st


O CO
vO f"^
in st


St 0
o f-
in st




NO ON
OO en
st st


CM 00
CM vO
m m



en r-
CM O
m m


NO CM
CM ON.
NO m



r-l C7N
st en
NO NO



co m
m en


CM r~»
en ND
st st

00 r-l
ON O
st in


r- r-i
NO -


in ON
m m
st en

ON NO
en en
in st


ON CM
o o
in st


CM r-l
NO NO
en en


oo st
O NO
st st




co oo
ON r-l
St St


CO 00
ON en
m m



O NO
en CM
st st


r-» ON
NO r-l
NO NO



ON CO
en st
NO VO



co pq
oo oo


CM O
r» ON
st en

en CM
CM NO
m st


i*» oo
co en
st st


O NO
r- cV
m m


ON in
r-l in
in st




CO St
en ON
m st


CM CM
00 r-l
m m



st st
r-l 00
m st


st O
o r^
NO NO



o o
in en
NO NO



co pq
O> ON


0 st
O en
II * *
I, m m

co r*
' st 0
II * *
! ; ^ st


CM r-l
NO en
II * *
II ^ St


st oo
en O
II * *
II ""> St


r^ en
en st
ii • •
ii st en




m en
en st
ii * *
ii m en



i i
i i



ON !*••
r-l NO
NO St



1 1
1 1



oo in
en co
r» in



co pq w pq
oo 22
^-1 t— 1 ^"* '"""'

-------
176



















r-l
x^
60
^ e
-c? C '
•H
4J
c 2:
o o
x*^ £-J
X
xt O
CO
a
i1 W
rJ >
CQ i *]
H c/j
t/3
M
Q


















in
~x^
CO
\
OO
m
vO
•x^
CN
x^
OO
in
-x*.
o
C^
oo
in
vD
"--
-X,
OO



m
vD
-•x
-x^
oo



m
vO
x^_
ON
-x^
r*x


in
vD
-^
in
s
in
v£)
"^
~x.
1 —
m
vO
^
^
c
o
J-l
cd

CM O
"~- xt
xt xt



xt vD
vD 00
in  CO
in m in co oo
,.,. ^j. <)-<)- ^i


r^- m o\ xt o
in ON o co *-o
xt CO xt CO xt


i^- r-i co m  CN
xt xt


r-l ON
CO r-l
xt xt


cn ea
'^^

00 O
00 CM
CO CO



co r-»
CN ^D
m o
vO O
m 
CO CO
in xt

CM v£>
r^ oo
in co


O xt
O CO
in co


en m
ro co
r-l r-l

-------
177
r— 1
/-N 50
•"O £ .
•- *
4J £J
Ci *H
8 3

v"' O
>-l
^ 0
3 ?.
pq [^
2 i
00
CO
3















in "
\O
^v^
\Q
d
ON



SO
ON
ON


2
•"^
x^
ON
2
o
-V,
OO
s
VO
x^
OO
o
.U
to
CO


ON i— 1 i— 1 m in CO •:" • •" " CM 1 OO xt CM
vj-r^ONi^-oocM'-^i ^coincom
inin. sfco \oi^* COON coi — i
voin sDin v^in inin ^oin intn inin inxf inin


^* r^ ^j- co CO ON ON O -0 ro C7\ n> — i — i *£> \j- t~"* CM
COvt i— tOO O^D CTN i— * "ic-l "^ - ' — 1 CM CO O CM OO
in !n in -^ in vt in ^r, ^ *• • - ~ , ••"•) 10 in in *n xt

r^o oom O1^- <.- c • — vC OCM ooi— i ooi— i o i— i inin coo co r— r^.u-i ajvo OON voco
OCM ONf~- ONCM CMvD mcM vO,— l C> 'O r-ION mcM
mm xf^J- cOxt coco O • 0000 O^CTN



r** \^3
xt ON
xt ro




ON xT
ON in
xt
-------
178











r-l
•H

/—i tO
T3 O
J-J P2
C fT1
0 0
2 x
o
ro t-J
W CJ
J M
O
o
r-t
<3
Q
in







o
o
— t
^
~
0
, — 1


D
in
o
r-4
2
O
— t
•
C
O
tfl
4-J
to
OO l~~- ON i— 1 CM ONO CO ON CM CM G"i in r-l ^O
CM i-H r-lr-l i-4r-4 Or-) ^O CM -H OO r-IO

II O vD i— 1 CO i— 1 f"~ r ' •—- LO ON
r-IQ r-lr-l i-l C -J"- '—1 Ol



mco r-im CMO r-io coi^
•— 1 i-l i-JCM COCO i— 1 r-4 OO I) il II
O CO1
CM i— 1 i— li— 1 CM i— 1 i— 1 r-l i— 1 1 r-J i— 1 --) — 1 i— 1
voco r-iv£> r-ii r^>^3  r^r^ coco
i o m
1 r-H CM
CO

II II
II II




II II
CM O «"•" O
in in ^ i — i
CM
in o co vo
i-l r-l O r-l
fl

vt O r-l ON
r-l r-l r-4 CM
fi
vD ON O ON
r-l O r-4 
-------
179









rH
M
g
c
•H
P.
x — ££]
t O
J-J 72
c: w
0 0
O !><
O
CO rH
w u
rJ 1— 1
rc 3
""^ prj
r j t-j-|
V— 1

Q
m













\b
O\
CM
o
rH
sj-
vD
OO
CM
0
rH
vD
^
CN|
0
r-l
i)
CM
O
rH

3
,_4
CM
O
rH
O
^,
0
*sQ
•••^J"
-^
o
rH
VD
CO
O
rH

c
0
!u
rt
4.J
CO

ONO vOin O>MD CTNCM CTNCTv CMi — 1  — '
rHrH rHrH rHCM rHrH rHrH rHrH rHrH rHi-l OrH miN
CM



COrH rH COC^ rHCO CTiCO rH-vf OO i— 1 O
rHrH r-lr-l rHrH OrH OO rHO OrH i-lrH rHO X)vD r^r-. 0000 CTiCT> OO
rH rH







,.






















0
r-l
r-l
0)
rH
O

o
X
o
H


-------
180

1— 1
60
e
c
:r-f
^ C3
C W
O O
O ^
O
W U
nJ M
03 ^
p5 H
b
0
PQ
<
Q
iA
















5
CO
CM

0
5
 o> o o
"" i ^


-------
H
^
,— 1
\D
i ^
' M3>
O
i — 1
**o
\J~)
VD

•^
ro
1
' l^\
i 'J '
if
^
uo
:"* ! 'in
"~n i ^
-: ! IM
t"1
•H
a ^
< ^
•""> ^^~"~
- CM
I"1. LH
ro ^
hJ °°
< N
M
r^ *
s
8 1 5
r-i i 7:
ca i ^
£,M ;
P
i
•n ^
^O
_..._!

CM
vO
"~-^^_
CO
Csl
i—4
2
m
I ^ J

> 1 '
i .2
! .J
J 'TJ

ON ON 00 ON ON ON
O O O O O O
O 1"- 00 r-l r-4 r-l
r-l O O r-4 r-l r-l

O OO 00 O r-4 CM
r— 1 O O r— 1 r-l r— 1



ON 1^ ON UO CM O
O O O r-l r-4 CM

CO CO 00 - vt CM
r-4 i-l O r-4 r-l i-l

O ON CM CM O O
• • • • * •
r-l O r-4 r-4 O r-4


00 03 CO M to CQ
r-l r-l CM CM 00 00

vOOO Jc-x
r-IO OO Or-l r-l O


OO ON 00 00 O^ ON
o o o o o o o -



OOO OON r-4O 
-------
                                                                                                                                           182
AJ

C
O
o
w
        p
       •H
. Q

 53

 6

 x
 o
       H
       o
       o
       M
       TO
       Q
        I
                   u-i
                   00
                   vD
                   CO
             d
             O
             •H


             rt


             CO
                       m CN
                         •  •
                       o o
                              o o
CN   CO
                                                            C/3M
                                                                                 WM
                                                                                           co M
                                                   oo PQ
                                                   OO 00
                                                                                                               c/5fQ
oo  cq
CO  m

-------


































y
C,
^
9
#
M
r-J
ffl

O"
w
00
G
OO
CO
tu
3-1
x!
w
w
o
S2
•^tj
tH
O
0
6
0
o
(— I
(-U
o
w
PM
CO






•--^
ON
ON
CM

ON

1-H r-H



O O
0 0
ON \£3
VO i— 1
'~t
0 O
o o
o in
vO i — 1
1-1

0 O
o o
r-^ co
OO i-H
r~- 1




O 0
O 0
CM CO
r^* r^«


0 0
0 0
\t" CM
r*» oo

1 1
1 1
1 1




1 1
1 1
1 1



0 O
O O
CM f*^
OO r-H
r-H


O O
0 O
r-H i-H
ON CM
r-H



0 O
0 O
m oo
0 O
i-H i-H



O O
o o
CO ON
i-H vj-
r-H r-H
O 0
o o
r-H ^~-
O CO
i-H i-H

O 0 - '
O O
vO CO
ON  ON




i i
i i





O 0
O 0
CM CM
in r^


o o
•n o
r- vO
 in
                                                         00 CO,
OO M
oo oo
oo cq
O O

-------
                                                                                                      184
xt
•o
id

3



o
0
J
rd
^
ll 1
0
1 — 1
2?
r-1

•H
p-
r-i
>
H
p-
n-1
00
w
c/}
cr\
CM

O
r-l
SO
00
CM
*• —
0
—1
xt
SO
i^r
CM
1 1
1 1
1 1


0 0
o o
CT> m
xt O
t-l

O 0
0 0
•"•-. CM co
0 vf r-l
r-l r-l
^
CM
CM
O
r— 1
2
r— 1
r i ^
f*S *""*"**
S5 2
X
w
w
o
%
t — 1

CJ
d
0
o
L_I

S
0
w
CM
CO










•*
^~
o
CM
~x^
0

Co
^r
I—I
~\
O
1 — 1


Co
CO
I—I
— ^_
o
I—I
o
4J
cri
CO

O 0
0 O
VD OO
SO SO
r-l r-l
O 0
o o
m oo
SO F"^
t-l t-l





1 1
1 1



o o
0 0
o^ o
m in
, 	 (



O 0
0 0
CO CT\
m co
r-l

oo pq
t-i t-i

i i
i i
i i


O O
o o
O CTi
co m

0 O
o o

CM m

o o
0 0
en m
o m
tH r-l
0 O
0 O
CO xt
r-l SO
I—I r-l




0 O
0 0
CM CO
r-l t-l


0 O
O O
so r~"*
xt CM
, [



O 0
o o
xt CM
r-l

CO pq
CM CM

O 0
O 0
CM SO
in m

O 0
0 O
sO xt
xt m

o o
O 0
O^ \£)
co m

O 0
O 0
^ CO
oo r-i
r-l
O O
O O
0 







0 0
0 0
rH CO
t-i in
r-l r-l


O 0
O 0
JD CO
r-l
	








0 0
0 0
CO ^D
r- CM
r-l


"> O
~~ ! 	
J> 1 '"I
M O
-i




'.•> in
^J CM

CO KS
O O

o o
0 0
i — m
co m

o o
o o
in ^o
CO U'l

O *-:
~*




O O
o o
f^- p~»
t^ r-i
r-l
t 	
-"







O O
o o
so m
OO Cv|
r-l


•-) " •








\~~-~ ^ ~1
U-> r-l
r—)

,,
:-- r

O O
0 0
m m
r-l CO

0 0
0 O
r-l t-l
r-l CM

o o
o m
OO 



O 0
m m
o o
sO OO

CO pq


xt O
xt sO



xt xt
so in



in cr.
r-i r-i




o o
0> CO
in so

O 0
o o>
m o
. CM





0 0
so sO
CO CO
i— I


0 0
xt m
xt CM
r-l r-l



0 0

xt CT*
t-l r-l

co pq
0 0
r— ( ! — I

-------
          tj-i
           o
                                                                                                                                          185
•
                   OO
          o
          1-1
          o
          CM
          oo
en

CM
                  CM


                  CM
o o
0 0
\o o^
r-H 00
1-1 1-1
o o
o o
O- en
xj- CO
1-1 1-1
1 1
1 1
1 1

0 0
O 0
CM vT
r-t P~
r-H r-1

1 1
1 1
1 1
o o
O 0
\o o
vO 00
1-1
0 0
o o
oo o
r-1
1 1
i 1
1 1

O 0
0 0
vj" J3 en
en t-«
o
o
en

o
o
1— 1

0
0
'CM
f~-
o
0
vj-
00
o
o
*n
o>
o
o
1—1
r-H
o
o
\£)
CM
o
o
oo
1-1
r-H
o
0
v-Q
en
1—1
o
o
o
vt
o
o
in
0
i— i
o
o
CM

O
o
C7>
ON
O
0
CO
1— 1
1-1
o
o
1— <
o
o o o
0 O 0
c^ r~~* in
VO O ^O
1— 1 ,-1 r-l
O O 0
O O 0
p"** 

f^j
CD
en
en





•v
o
• in
o
o
en
•.o
O
O
m
->
r ^
d
O
in
1-1

o
• -^


f j
C^1
en
,-1
o
o
CO
C"l
o o o
on o
^-i r^~ v^j-
,^ •-. CM
O
CJ .j O
0 1-- CO
^^
00 O
o r> o
C ' ' ^ ^j"
•' c . CM
O
O
i — i Li"^ en
f~-  V VO
o
o
CJs
r-<
o
O
en
en
0
0
CJ>
o
r-1
o
o
en
en
1-1
o
o

oo
o o
o o
O vD
in en
•-i
0 O
o o
cj> 
-------
186











QJ
m
vO
•^
r-l
^_
CO
in
vO
•~^
CO

CM
• ^
J-.
O
r—
~— •
CJ

M-i
O
— f
00

m
vO
~-^
LO
r—l
C^

P f " '
*-* * vO

£, rH~
•r-i
r— (
"^,
£ CN
> LO
C ! vo
1 — '^
-^
P' CO
o o
o o
r-l CM
CM r~
r-l r-<



O 0
O O
OO CO
r-1




• •
OO OO

£ £


0 0
0 0
O O1
OO i-l
CM


O O
O 0
^ ^~^ r** r*»
?'
w
CM
LO
, V-O
1
~-,^
*•— ' • .Of
£~
-~ —
ft CM
X ;
W ,
W
O
J3
^*
M
O
p
6
o
i — *
.
i— '
r^
oo












LO
vO
-- —
r-l
	
CM

^
CO
CM

rH

LO
vO
	
m co
r—t

O 0
0 0
00 r-l
O co
r-H r-l




O O
0 O
O CO
CO t~~
1— 1 1— 1

o o
0 O
CM r-l
r-l vO
r-l r-l


0 O
0 O
LO r—l CM
r-l
c
o
•r-l
4J
s
00
m co



00 PQ
r-l r-l

o o
o o
OO vO
vo in
r-f



0 O
o o
vj VO
•
1-* O




o o
o o

CO CO




O 0
O 0
rH O
O rH
rH rH


O 0
o o
 o
LO O
rH




O O
0 0
r-l 10
VO rH
rH

0 0
0 0
CN] O
CO r\!
r-i


0 0
O O
CO O-i
r-H O



co cf;


O O
0 O
LO CM
r~ co
rH



0 O
0 0


O CO
rH rH


O 0
o o
vO f~~*
<]- CM
rH


0 0
o o
LO rH
ro vD

0 0
0 0

~vf G-H





O O
o o
O CM
CO CO
r-H

O O
o o
O "-i
vO vCf
rH


O ^'
• — ' >™>
"




-;~ ^


o o
o o
o-i o
CM CM
rH



0 0
0 0
r- O
rH CO




O O
O O
f-- o
in CM
rH


O O
o o
vO vO
CM r~



0 O
0 O
CM CM
rH m

0 O
0 O

CO OO





0 O
o o
r*"* r***
CM CM
i-H

0 O
o o
^o o
•CM O"*



O O
0 O
-j- in
H 00



GO pq
CO 00

o o
0 0
o> in
 vo
<)• vD





o o
0 O
r- CM
P~> rH
•-H

• •
to oo

53* 53*




• *
00 00
• •




oo PQ
O\ CTi

0 0
in o
O LO
rH CM




r^ o
rH CM






o o
LO LO
O CO
r-H CM


O O
o o
LO 00




a •
C/> 00
* *
is a

0 0
vO O
S3" OO






O O
in o
o-\ in
rH LO


O 0
CM O
vO O
rH



. •
OO GO
• *




GO PQ
O O
^J^ .-[


-------
187







vO

in

—
vO

i \£)
j -\
^j-
1—1

x^
^£>

VO
-\
O
r-H
.5 o
^

•r-l
c
r-1

^
U— i

r-4
"bO
t-
J
1
•ri
H
^
tr*
' — y*
v_/
""
3
n
••/"
J ^
r?
Pn
X
P3
w
u
§
^-4
- -\
in
vO
^^
*,
en
r-l
in


in
vO
^-^
vO
1 	 ) ; _
g
O
CJ
O
h— i

J_ 1
p
P-I
CO









in
vO
ON
CM
^


VO
CM
CM

0
•r-l
JJ
CO
o o
O 0
en vo
CM f-



o o
in o
O CM
CM vD
r-4 r-l


o o
0 O

ON i— 1
r-l




O O
0 O

vO l^*
r-l r-l

0 0
O O
m CM
o in
r-l r-l
0 O
en O
ON en
r-l 00
r-4 r-4


O O
in o
en en
r-i in
r-l r-l



o o
o o
1-4 m
CM vO
r— 1 i—4


0 0
o o
ON xt1
m VD
r-l r-l


ed
1)
+J
rd
Q
O


CO PQ
H --i

0 0
o o
oo m
co m
r-l


O 0
in o
o in
ON in
r-l


O O
o in
CM CO
00 ON




o o
in o
ON O
o xt
1-4 r-l

0*0
o in
i-i r-
00 r-l
r-H
O 0
o o
i— 1 r-l
CO vO
r-l r-4


O 0
m o
r* o
00 O
1-1



o o
0 0
ON vD
VO r-4
r-4


O O
in m
r-l r-4
r-l r-4








CO pq
CM CM

0 0
O 0
CM Is-
ON CM
r-l


O O
in o
CM m
ON CM
rH


O O
m o
oo in
OO ON




o
in
i in
i r-i
r-H

O O
0 O
CM CM
r-l r-4
r-l r-l
0 O
o in
oo in
OO CM
r-l


O O
m o
r-l VO
ON ON



o o
o in
r-l VO
vo r~



. o o
o in
O ON
r-t








oo PQ
en en


o o
m o
r-i m
oo 



O
0 0
o m
r-l r-l
f~~ r-H


C "• o
.-"
'


0 O
0 0
m CM
in en
-H r-H


0 O
0 O
OJ CO
vt OO
t-H




1 1
1 1




O O
m o
i — i xt~
 O
'-) O
') VQ
•i co



0 O
in o
en I-H
••xj" ^"**



' O
i 0
o en
:t~ i — I
i-H
0 O
m in
co in
oj en
r-H


0 0
.0 O
l"-~ <)-
Ol VO



0 O
in in
en rx.
CM OO



0 0
o o
p"« rx*
en xf








co pq
co oo


0 0
0 0
(- 1 p^.
vo CN


0 0
o m
CM CM
VO ON




0 0
ON in
r-H r-H



0 0
o m
vo f~»
r^ ON




O 0
in o
rH  
-------
188
in















01
•d
•H
o
r-4
O

O

O
CN]
oo
m
•^
CO
CM

oo
s
— ^_
CM
r-t
^^
GO


2
--^
<4-( ON
O
r-t
rs'
- — ^
00
m
c! ! vo
._ ;

^—
H
5
o-
• w

CO

-0 Q
W
jj CO
— 1 CO
^ W
'"-t OS
—4 pi i
w
w
CJ
J2j
^3
H
u
ID
g
o
0
CJ
r-J
fj_l
M
o
u
PL,
CO












-- —
in
•~^
00
in
\
co

CO


m
vO

ON
CM
--.


in
vO
•^^
m
r-4
— ^_
^~


m

— ^
00

P^«


LO
v0
•-^
r-l
""-^

d
o
4-1
CTj
4-1
co

o o
m o
o ^
j r— 4


o o
o in
vQ CM
CO O
r-l
0 0
O O
ON VO
CO CO
r-l r-l




O O
o in
CM ON
r-- ON

O 0
o o
r- in
  pa
CD CO



O O II
o m ii
vO vO
00 00


0 0
in o ii
CO vO II
r*s> r*»

O O II
o in ii
in vo
v£> OO





o o
in o ii
st VO 1 1
in m

O O II
O O II
vO CM
-t vO



O 0
in in
r-4 in II
CO vO II



O 0
O ON
O CO II
vO vO 1 1





O O 1
o m ii
t*** ON 1
in r^



o o
o m
ON 
-------
                                                                                                                                         189
 o


 o
 to
 e

 c
•H
o-
w

CO
Q
M
CO
CO
w
cd
Cu
X
w


w
o
o
CJ>
w
cu
CO
            en

            CT>
            m
            vO
            CM


            CTv
            o
            CO
            co
            c
            o
            n)
            4J
                      o o
                      o o
                      o o
                      in o
                      in r—
o  o
m  in
vO  O
r»  co
                                O  O
                                o  o
                                CM  CO
                      O O
                      o m
                      O r-l

                      00 r-4
                      o o
                      o m
                      CM x±
                      vO vO
O O
o in
vO O
                                O  O
                                o  m
                                o  m
o  o
in  o
xt  m
           o o
           in o
           co in
           o   CO
O  O
in  in
in    01
                                          co pq
                                          co co

-------
190












o
--
•
1—3 W
,-,-; p_j
< H
H &
W
H










vQ
CO
O
r— 1
VO
0
0
,— I
^"•^
o
vO
r- !
O
1— 1
vO
CO
ON
^
^
CM
vD
CM
OS
VD
CM
OS
vD
CO
s
vO
CM
O
gr4
OJ
Cfl
CO

O O
O O
CM CM


1 1
o m
VO vD
CM CM
O 0
vD VO
CM CM
in o
m in
CM CM

o o
in in
CM CM
o m
CM CM
o o
m in
CM CM

in o
CM CM
o o
xf CO
CM CM

co m


o o
O 0
CM CM

O O
CM CO
CM CM
O O
vO vD
CM CM
O O
vD VD
CM CM
0 O
in VD
CM CM

O O
in in
CM CM
0 O
 ' r-i O II CM r-i
01 CX CM CM CM CM

O O v,. . O O
OJ CM CM (N CM CO II II
CM CM CM CM CM CM II II

: ! i II II II
: ' II II II
o o m o o o
C\1CM CM CM CMCM CMCM CMCM
oo in in mo oo mo
i ^ Lf~) U"l i.O Lf*l tO ^^ ^O vO LT"1
~-! -•; ~- : c i CM CM CM CM CM CM

-'• '• 0 O m O 0 0
mm mm r~ m
CM CM CM CM CM CM
om in o mo oo mm
 Os O O
I— i r— t

-------
                                                                                191
%












CJ
o
J.
• :=>
H
3
PT"]
CLj
hM
0
H
erf
w
H
&i

















vo
ON
CNJ
•• —
O
r-l
VD
CO
\
0
r-4
S
d
o
r-l
2
CN
3


CO CO
r-l r-4

0 0
CO CO
r-l r-4
0 0
r^ co
1-4 r-l
m o
CO ON
r-4 r-4



in m
CO CO
r-l r-4




O O
CTS ON
r-l r-l

0 0
ON ON
r-l r-l



0 0
O-\ ON
i-l r-4



co pq
vj" si"

in o
• •
r*» co
r-l 1— 1

0 0
r-- co
i— i 1-1
in in
i^~ r-»
1— 1 T— 1
O O
CO OO
r-l r-4



O 0
OO 00
r-4 r-4




in o
CO ON
I—I 1— 1

o o
ON O\
r-l r-l



0 0
ON ON
r-l r-l



CO X)
.~1 ,.-)

in
*
r^
r-l

o
CO
r-l
O
r~
r-4
O
CO
r-l



O
CO
r-l




O
CO
r-l

0
ON
r-l



O
ON
r-4



CO
"°

o
•
CO
r-l

O
CO
r-l
O
r-
r-l
0
CO
r-l



O
CO
i-l




0
ON
r-l

O
ON
r-4



O
ON
r-l



PC
vO

o m
- •
co r-
r— 1 r-l

0 0
CO CO
r-4 r-l
O O
.-^ r^
r-l r-l
O O
CO CO
r-l 1-1



0 O
CO CO
r-l r-l




in o
OO ON
r-l 1-4

0 0
ON ON
r-4 r-l



0 O
ON ON
r-l- r-l



-r, r~


o
•
CO
r-l

O
CO
i— 1
O
r^
i— i
O
CO
r-l



O
OO
r-4




O
co
r-l

0
ON
r-4



0
ON
r-l



CO
X3

O
*
CO
1— 1

0
CO
r-l
o
r-~
r-i
o
00
r-4



o
CO
r-4




o
ON
r-l

o
ON
r-l



O
ON
r-4



pq
CO


I i
I i



I i
i I
O 0
r~- r^
r-4 r-4
O 0
CO CO
1-1 1-1



o o
CO CO
r-4 r-l




O O
CO ON
r-l r-4

O O
ON ON
1-4 r-l



O 0
ON ON
r-4 r-l



co pq
ON ON


1 |
1 l


0 0
ON CO
r-l r-l
O 0
r- t^
r-l i-<
in o
o oo
CM r-l



o o
oo oo
r-4 r-l




0 O
CO ON
r-l r-4

o m
CM ON
(N r-l



0 0
(N r-i

-------
1
SO
-d-
CM
in
\
t— I
CM
&
CM
r-4
m
SO
m
CM
^
SO
CM
r-4
^ SO
JJ C_3 OO
cp --
O CM
0 t-I
CO H «*
w w t^
< § 3
w -o> C^CTS o>oo oxen
o> OCTi OO OC^
r-4 rH rH rH
in in
co •<}" co  cooo mos
in SO
O o> r, CJs O> 1 1 II
, — 1
in to
rHrH rHrH r-l r-l rHr-4 rHrH rHrH

rH r-l rH rH rH rH
r-iON P-CO OO OO OO 00
inco coin CM^f CM O O
rH r-4
192

-------
                                                                              193
in











CJ
c

Lj
'J
-
-'-
^
1









~-,
; (_
CM
m
vO
s

.. 	
vO
m
vD
CM
in
\
CM
^
^
CO
s
CO
CM
m
o
in
r— i
CM
in
vO
j
r-4
CM

2
CO
CM

Station
m oo oo o
ON CM CO CO
CM CM CM C«J
m o o m
CM CM CO CO
CM CM CM CM
in o co co
r-4 O CM r-l
CM CM CM CM
o m
ON 00 ON 00
r-< i— 1 1—4 r—l

o co in co
ON OO OO CO
r-4 r-l r-l r-4

VD i— 1 r-4 r— 1
ON O ON O
r-l r-l
-Ct" vO in vO
o o o o
J_l , 	 | t 	 | r—fl

-d- r-
ii i— i i— i
II r-4 r-l

in ON in vo
CM r-l r-l r-4
r-4 r-4 r-l r-4

VO r-l P- CO
ON O ON o

r-4 r-l CM CM
in o
in — 1
r—l r—l

0 0
1— 1 1-1
r-4 r- 1

-d- oo
ON ON

~£> 00
m in
in m
CM CM
in co
CO CO
CM CM
m o
CM CM
CM CM

O O
CM CM

O CO
ON OO
r-l 1— 1

ON r-~
00 ON
CM CO
0 O
[ t ]

CO vO
i— 1 i— 1
1-1 r-l

00 VO
r-l r-4
r-4 r-(

CM in
o o
r-4 r-l

oo PQ
ON' ON
1
1
in in
en co
en CM

i
i

O O
CM CM

O 00
O CO
CM r-l

O ON
ON ON
r-l 1-4
O O
[ ( — [

CM 1^
r-4 r-l
i— 1 r-l

co in
0 0
r-4 r-4


I 1
1 1
1 1

oo m
0 O

-------
        194
O
^-~
! £
i CO
LO
vO
CO
-~-
CO
o

LO
,-H
^
vO
CO
->^.
1 —
LO
vO
1 ^

1 r-

CM


O
oo
CM



oo
rn


LO
l-~
CM

LO
OO
CM


vO
r^
CM
oo
oo
CM



o
r~-
CM

O
vO
CM


O
vO
CM


CO
vO
CM



OO
m
CM


O
[~.
CM



m
cn


00 LO in o 0
co oo r-~ i~~ co co
CM CM CM CM CM CM

O O O O O O
CO CO CO CO CO CO
CM CM CM CM CM CM



CM

0
CO
CM


1^
r-!
CM
CO
r~
CM



LO
vO
CM

LO
LO
CM


OO
LO
CM


00
vO
CM



LO
VD
CM


O
r^
CM



00
CTi


LO
CO
CM

o
oo
CM


co
i-^
CM
CM
CO
CM



LO
VO
CM

LO
LO
CM


O
vO
CM


cn
vO
CM



o
vO*
CM


O
r-.
CM



M
O>

 O O
 CO CO
 CM CM
 O O
 00 CO
 CM CM
 00 O
 r~ oo
 CM CM
 r- co
 CM CM
 O O
  •  •
 r— r-~
 CM CM
 O O
 vO vO
 CM CM
 CO CO
 LO LO
 CM CM
cn  oo
VO  LO
CM  CM
oo  cn
vo  vO
CM  CM
O  O
  *   •
r^  r^
CM  CM
(CO PP
cn cn

-------
          195
I
1 o
'; ---
^3
1 ^"""-
1 ON

in
o
! ON
~ —
ON
in
0
~--
o
CO
' — „
CO
in
o
^
CO
l_pj
vD
•--
<£j
--^
CO

o
~--
OJ
~--^_
CO
s
a\
— ^
CO


c
o
'^i
Ri

\o co o (^ O' — i inin
vovo i^. vo r- r^ r^vo
CMCM CMCM CM CM CMCM



Sj- CM xf ' — i ON vO *^DCO
r^*« r~* ^* r^^ r^ i^^* r** vo
CMCM CMCM CMCM CMCM



^DOO 00 i— ( CMCM m r- v£> r- vo r^o r~r^
CMCM CMCM CMCM CMCM CMCM



t^-r-J ON CO >~--CM O ONCO OO^ OON
CM CM ""> C>i C>! CN! "T CM CO CM


O o o o CN r~- co co r- m
ON ON ON ON OO CO CO ON ON ON
CMCM CMO! CM CM CMCM CMCM



oc L-^C c r? ou-> oo
O% CO 'ON .-7N CO ,7-- TN CO ON CO
r1 CM CM -,x o^; CM : CM CM CM

oo oo oi o oo mcM
COCO CO CO COCO CO 00 COCO
CMCM CMCM CMCM CMCM CMCM





com cow cow COM cow
inin *
-------

t
1








T)
4J
c
6 tu
^ s
CO
W
9 ;
rs, ,







|
^
\O
oo
O
T-i
vD
^0
O
r-l
vO
O
vO
t-l
0
I-l
vO
o
CO
vD
CM


vO
00
07
*
00 00 00 CO f^1 f- II

II II II II
t-ico com mcM vooo


^J ^^ t^} ** i^) ^^ fO ^^
coo r^o men CMCO



r~^ »^ lO *s^ ^1 CM r*^ *3"
r** r*** i"*^ Is* r** r*^ i*** r*^

co m 
-------
197
vO
ON
IN
O
r-4
vO
CO
O
r-4
-ct
vo
IN
O
r-4
^> -d"
T) VO
•P IN.
C— 1
\*t
• •*-.
0
BJ r-l
a
ro ^j-
vO
3 s
9 ^
Hi 0
'! i r"1
;' ', J
i : o
CM
••^^
O
T-l
vO
1— |
O
r-4
vD
CO
^,
O
• a
o
•rt
4J
2
CO




f^o ON i""* in in f^oo
r*^ oo f** i^ ' r*1* ^** I*** f*^


00 C5 OO ^^ ^J ^}* ^D C^



mcNi T-JCM r**o 1-1 co
0000 0000 ^"00 OOOO





t** r^ ON O ^ O O ON
^^3 ^^ ^^ 00 ^^ CO OO ^^



II II II II
II II II II


st"CN f'-o r~r~ CTN 1-4
r-»r-> r^oo r^t^ P~OO

\C O >4" P** CO vO P** O
P*< 00 P^ P^ P^ P** P** CO



copq copq co PQ com






O O ON vO CO vO Is* vO 1 1 %^ ON



r*"^ ON r*^ r** \ct co '*** 10 'O ^o ON vo



CMfO OvN i-l r-l P*-O ONON -J-CO
OO CO CO OO 00 CO ^^ CO ^^ ^^ ^^ f^





O i-l OO O ONr-l 0000 CD OO vo O
CO 00 ^^ CO ^^ 00 ^^* ^O ^^ ^^ ^^ ^^



II II II II II II
II II II II II II


P*r-l SfP~ P~00 P-P^ OOO Cvl-d'


P^O *O r-l Or-l vOP^ «^«* COON
P^OO P-OO oooo P^P* r^r* OOP-



copq co pq copq copq co pq mm
min vovo P^P* oooo ONON oo
^j ^j
r™< i™^

-------
                                                                                                                               198
a
o.
       so


       00


       CM
m so

t-^ t-^

en en

r-J r-
oo so

r^ r^!
T i-4
i^» so     O sO


i** i**     oo oo
       vD
       CM
                           sD OO

                           r^ r«
                    1-1 a\

                    oo r»
                                               CM
                                                         o  oo    oo  oo
                                        CJ f*

                                        oo oo
                                                                                       GO oo
                                         i   i
                                         i   i
                                        tn oo
                                         •   •

                                        oo oo
        C
        O
       3
       CO
                 cyj  ta
                           co  PQ
                           CM  CM
                    co  pq
                    en  en
          ton
          -*
-------
 o
 o
vt
fO
m
NO
r-l
CO
m
NO
oo
r-l
CM
m
vO
m
i-i
CM
in
r-l
r-l
CM
m
NO
33 CM
a.
m
NO
CM
in
i NO
r-l
m
NO
00
CM
r-l
m
NO
in
CM
i-H
a
o
4J
ctf
4J
CO
i-i «* coin coin com m NO cMin
i-»r% r^ r» r-- r-» r» r-> r- r-» r^ t-

CM CM O i-< - r» f- r»

coco i-i i-i -vftf-cf mm NDNO
mm CONO NONO oo«*


O r-l *^ O^ CO r-t *& CO


CO CO CO ^ 

crvr* r-ieo coco mco
•itCO NOi-l COCO COCO
r»r-« r^oo & K Z Z
^^ ^^ CO CO C^ ^^ CO C3
r-l r-l
                                                                                                 199

-------
                                                                                                                                 200
JJ
d
        g
EJ
                 m
                 vO
m
vd
                 cn
                 vO
                 VO

                 o


                 oo




                 vo

                 vo


                 oo
                  ti
                  o
                  «
                  4J
                  CO
i^ f^     t*^ f***    f** f*^    f**» i*^    r^ r**    r^ f***    r^ r^    r*^ f^    r^ ^^    !**• f^






                                       t  .
r~-    i*« (^    r^r-    r>>r>.    r«»f^    r^r^    r*«r>-    i-»r^    i^(~«







  .   .      ..      .  .      .   •     ..      .   .     •-r*    i^.r»    r>»r^    r»r^    i>.r~-







r-.r>.     r^r^    r-r^    r^r-    i^-r%    r>-r^    r«p»    h~r^    r^i-i    r^i^







co ^^     co co    i~i co    co co    co *^    co co    f^ co    o% co    co co    cy^ CT^

r*.r~     r^t^    r^r«»    r*«r-    r»r»    r^t~«    r»r»    vot^    t*«r»    vovo
                           cnpq     co PP    com
                           1-1 T*     c4 ts    nco
                                                           to    com    con    coco    COCQ     con    co
                                                                 mm    vovo
                                                                      co
                                                                      h«
                                                                                              coco

-------
                                                                                                                                      201
         E3
         W
         M


  «     I
*

  a
         a
         S3
                      C
                      O
                      CO


                      CO
in
vO


        o'o    oo    oo     oo    oo    oo     oo     oo    oo    oo
en



in
vO

co      en >±    en  en    en en     st ^*     in oo     vo "^    in in    in ^

        oo    oo    oo     oo    oo    oo     oo     oo    oo    oo

IN





vO


        oo    oo    oo     oo    oo    oo     oo     oo    oo    oo
                              co
                  com     com     com    com     co
                  CMCM     enrn     «*sj-    mm     \o
                                                                                         com    com    com     com
                                                                                         i^- r*»    oooo    ey>o\     oo

-------
                                                                                                                                                            202
         w
         w
         H
 a     r-i
 o     -^
 O      60
*-^      6

«*      c
f>     v-l
W
M
        W
        13
        M
                    in
                    vO
                    QO
 CM
                    vO
                    vO
10
\o
                    oo
                    u-i
                    VO
                    Cvl
                    vO
                    tvi
                    c
                    o
                    4J
                    CO
r-l r-l     r-l r-l     1-1 r-l     r-lr-4      r-l  r-l      r-l  r-l     r-l r-l     CM r-l     r-l  r-l      r-l  r-l


OO     OO     OO     OO      OO      OO     OO     OO     OO      o  m     co pq     cam     com      cart      cam     cam     cam     cam      cam
                                «-4r-t     c>ic^     cof>     »*>*      min      vo\o     r~r~     CQOOONO\      oo

-------
203
»
s
i 10
r-l
O
r-l
VO
H O

OO OO OO OO OO OO






*Cf r-l r^ r-4 CD CM CO ^"^ 1*** CO ON l4^*
OCM r-«CM «*St r-lr-l r-li-l r-lr-l
OO OO OO OO OO OO

MtM CMsf CMO f""»n COCO O^
oo oo oo oo oo oo




II II II II II II
II II II II II II
II II II II 11.11

II II II II II II
II II II II II II
II II II II II II

II II II 1 1 II II
II II II 1 1 II II
II II II II II II


UM to pq to M coM vi m MM
r-lrH CMtM COCO * mm vOvO



in*1"- CMCO CMON COCM
OO OO OO 00

£)S 23 tQIQ foIQ
oo oo oo oo






vo in f^ vo co t—i in CM
Or-l r-IO r-lr-l CO«~I
oo oo oo oo

r-ICO tMON CM^ CMCM
CMr-l r-lr-l r-4r-( CO r-l
OO OO OO OO




II II II II
II II II II
II II II II

II II II II
1 1 II II II
I 1 II II II

II II II II
II II II Ik
II II II II


COM MM toM COM
n»r» GOOD ONON OO
rH r^


-------
204
•
! i
i t
i
Pu
cn
O
"0 PU
—
W r-l
a --
f*. V,rt '
• ?!
£ >H I
M H |
M •-o> moo inoo invo voo
r-lr-l Or-l OO OO OO OO Or-l Or-4
OO OO OO OO OO OO OO OO


in in CM vo f** vo CO OACM l^r-l
II II r-lr-l i-lt-l II OrH Or-l Or-l
OO OO OO OO Of*
i^* in o ^* in ON ON r-i r-i <}• i^« ^4* in o oo f*^
OO r-lr-l OO Or-l r-lr-4 OrH Or-l Or-l
oo oo oo oo oo oo oo oo

• • vo vo oo in in ON o o vo ON r^ i"** in in
COCO OO O *-4 OO r-lr-< OO OO OO
ts s& oo oo oo oo oo oo oo


COP) CQIQ COPQ COM COM COM COB) COM
rrlr-l «M«M COCO >*«4- inm vOvO I^R COCO








r^ m .3- co
Or-l rH O
o o o o


00 00 CM O
O O r-l CM
O O 0 O



o o
II r-l r-l
(1 • •
1 • •
o o
m CM ^ i1—
Or-l O O
o o o o

• • CM m
CO GO O O
53 £3 CO C?


co M co m
ON cr> o o


-------
205
m
vO
i-i
CO
m
vO
oo
CM
m
vO
in
r-4
CM
in
vO
1-1
CM
m
vO
CM
m
vO
CM
m
vo
r-4
CM
in
vo
00
r-l
in
In
r-4
d
0
4J
3
01
vO vO
0 0
o o
co oo
0 0
0 O
CO CO

VO CO
0 O
0 0
m m
i—i n
o o
t"» 00
0 r-4
O O
Si" CM
r-l r-l
0 0
r-l CM
0 0
?°

CM -*
r-l r-l
O O

co M
i-l r-l
m oo
O 0
o o
ON 00
0 CM
o o
00 O
0 r-l
o o
vO OO
o o
p o
m CM
o o
aa
0 O
-l CM
O O

CO M
CM CM
O ON
r-l 0
O 0
vo in
r-l CM
0 O
vO vo
r-l CO
O O
O ON
CM r-l
O O
r-l CO
r-l 0
r-l r-l
^^ ^3
r-l CO
0 O
00 CM
r-l CO
O O

r-l r-4

-------