vvEPA
             United States
             Environmental Protection
             Agency
             Environmental Sciences Research
             Laboratory
             Research Triangle Park NC 27711
EPA-600 4-79-068
November
             Research and Development
Long-Range
Transport and
Transformation of
SO2  and Sulfate

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U S Environmental
Protection Agency, have been grouped into nine series These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping  was consciously
planned to foster technology transfer and a maximum interface in related fields
The nine series are

      1.  Environmental  Health  Effects Research
      2   Environmental  Protection Technology
      3.  Ecological Research
      4   Environmental  Monitoring
      5   Socioeconomic Environmental Studies
      6   Scientific and Technical Assessment Reports (STAR)
      7   Interagency Energy-Environment Research and Development
      8.  "Special" Reports
      9   Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL MONITORING series
This series describes research conducted to develop new or improved methods
and instrumentation for the identification and quantification of environmental
pollutants at the lowest conceivably significant concentrations  It also includes
studies to determine the ambient concentrations of pollutants in the environment
and/or the variance of pollutants as a function of time or meteorological factors.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia  22161

-------
                                                      EPA-600/4-79-068
                                                      November 1979
LONG-RANGE TRANSPORT AND TRANSFORMATION OF S02 AND SULFATE
                            By

              Teizi  Henmi  and Elmar R.  Reiter

             Department of Atmospheric  Science
                 Colorado  State University
               Fort  Collins,  Colorado  80523
                    Grant No.  R 805271
                      Project Officer

                    George C.  Holzworth
            Meteorology and Assessment Division
        Environmental  Sciences Research Laboratory
             Research  Triangle Park,  NC  27711
        ENVIRONMENTAL SCIENCES  RESEARCH  LABORATORY
            OFFICE  OF RESEARCH  AND  DEVELOPMENT
           U.S.  ENVIRONMENTAL PROTECTION AGENCY
             RESEARCH TRIANGLE  PARK,  NC   27711

-------
                                 DISCLAIMER
     This  report has  been reviewed  by  the Environmental  Science Research
Laboratory, U.S.  Environmental  Protection Agency, and  approved  for publica-
tion.  Approval  does not  signify that the  contents  necessarily reflect the
views  and  policies  of the  U.S.  Environmental  Protection Agency,  nor does
mention  of trade names  or  commercial  products  constitute endorsement  or
recommendation for use.

-------
                                  ABSTRACT


     This  report  provides  a technical  description  and  program  listing  of
computational  models  used  in the  calculation  of  long-range  transport  and
transformation of SOp and  sulfate.   Two computer schemes  have been developed

by which the concentrations of SOp and sulfate along trajectories, as well  as

the average  concentration  distribution  over  gridded regions,  can  be calcu-
lated.

     In Model A, the effect  of  the diurnal change of the  mixing layer height
is  not taken  into  consideration.   Trajectories of  mean  winds in  a single
layer  between  the  surface and the  top  of the daytime mixing  layer  are cal-
culated.  The thickness  of the layer is kept constant.  On the other hand,  in
Model  B, trajectories of the mean winds of the nighttime  ground-based stable
layer and  of  the  daytime  mixing  layer,  and trajectories  of the mean wind of
the layer between daytime  mixing height and nighttime stable layer height are
taken into consideration.

     Model B is applied  to study the effects of major point sources of SOp on

the air quality over the  area between  35°N  and 45°N  and between  75°W and
95°W,   encompassing  the  Ohio  River  basin.  The  calculated concentrations  of
SOp and of sulfate  are  compared with data of observed concentrations.  It is

found  that the distribution  patterns  of  calculated  concentrations  of both,
S02 and sulfate  are statistically correlated with those  of observed concen-

trations.

     The  observational  data on  transformation  rates of  SOp  to  sulfate  are

scrutinized and an  empirical  formula for  the transformation  rate  as a func-
tion of relative humidity  is deduced.    Using this  formula, calculations  are
made of the regional residence times  of SOp  and sulfate  over  the  region  of
the United States east of  105°W longitude, where major industrial sources are
located.  The regional  residence times of S0? are in the range between 15 and

30  hours  for  the  cold  season, and  between 15  and 40 hours for the warm sea-
son.

     The regional residence  time  of sulfate is  about one order of magnitude
greater than  that   of SOp,  ranging  between  150 and  450  hours  for  the cold

season and between 200 and 500 hours for the warm season.
                                       m

-------
     Using a cumulus model,  sulfate content in rainwater  is  calculated.   It
is found that  aerosol  capture by cloud water through microphysical processes
is efficient  enough to  produce  observed levels of  sulfate content in rain-
water.

     Future  research  needs  in further  development of  this  study  are also
described.

     This report was submitted in fulfillment of Grant No. R 805271 by Colo-
rado  State  University  under  the  sponsorship of the U.S.  Environmental Pro-
tection  Agency.   This  report covers the  period  May 1,  1977,  to  April  30,
1979.  Work was completed as of April 30, 1979.
                                       IV

-------
                                  CONTENTS
ABSTRACT	   iii
FIGURES	   vi i
TABLES	    xi
LIST OF SYMBOLS	   xii
ACKNOWLEDGMENT 	    xv
1.   Introduction  	     1
2.   Conclusion	     3
3.   Recommendations 	     5
     3.1.  Refinement of the Model	     5
     3.2.  Verification of the Model	     6
     3.3  Application of the Model to Study Future Air Quality ....     6
4.   Explanation of Models 	     7
     4.1  Calculations of Trajectories, Dispersion Parameter and Other
          Parameters 	     7
     4.2  Calculations of the Concentrations of S02 and Sulfate  ...    12
     4.3  Output of Models	    30
     4.4  Preliminary Comparison of the Output of Model A and Model B.    31
5.   Detailed Structure of the Models	    43
     5.1  Trajectory Program  	    43
     5.2  Concentration Calculation Program 	    49

-------
6.    Applications of the Model  	    56
     6.1  Introduction	    56
     6.2  Application (1)	    56
     6.3  Application (2)	    67
     6.4  Summary	    82
7.    Regional Residence Times of S09 and Sulfate Over the Eastern
     United States  	L	    83
     7.1  Introduction	    83
     7.2  Data Used	    83
     7.3  Approach	    84
     7.4  Results	    92
     7.5  Sensitivity Analysis  	    97
     7.6  Summary	    97
8.    Numerical Study on Sulfate Content in Rainwater  	    99
     8.1  Introduction	    99
     8.2  The Cloud Model	   100
     8.3  Sulfate Aerosols in the Atmosphere	   100
     8.4  Results	   102
     8.5  Conclusion  .	   104
References	   106
Appendices
     A.   Fortran Listing of Model A   	   109
     B.   Fortran Listing of Model B	   125
                                       VI

-------
                                   FIGURES
Number                                                                   Page
   1      Schematic diagram showing how trajectories starting at
          different times are calculated in Model  B. For each K the
          upper diagram shows how the horizontal  projection of tra-
          jectories may split and the lower diagram shows how tra-
          jectories appear in vertical layers 	      8
   2      Examples of trajectories originating at 38.4°N and 90.1°W,
          starting on May 1,  1974.   K=l, 2, 3, and 4 correspond to the
          starting times of 00, 06, 12, and 18 GMT, respectively.   M=l
          correspond to day number.  Number(s) at the end of trajectories
          are for identification.   Where trajectories have split,  the
          smaller number designates the layer between surface and night-
          time stable layer height  	     10
   3      Similar to Figure 2, except trajectories starting on May 2,
          1974	     11
   4      Example of I.  along trajectories for M=l, K=l.   S.L.  indicates
          "Single-Layer Model" A;  1, 2, 3 and 4 are trajectory numbers
          in Model B as shown in Fig.  2	     13
   5      Example of Ih along trajectories for M=l, K=2	     14
   6      Example of I.  along trajectories for M=l, K=3	     15
   7      Example of I, along trajectories for M=l, K=4	     16
   8      Definition of a, (3, d and t.  (For explanation see text.) . .     17
   9      Schematic diagram of the models 	     19
  10      Schematic diagram of determination of removal rate and trans-
          formation rate along a trajectory	     23
  11      Example of the concentrations of SOp and sulfate along tra-
          jectory 1 for M=l,  K=4	     24
  12      Example of the concentration of SOp and sulfate along tra-
          jectory 2 for M=2,  K=3	     25
                                      vn

-------
Number
13
14
15
16
17
18

Example of the concentration of S0« and sulfate along tra-
jectory 2 for M=2, K=4 . 	
Definition of angles a, p, a, &, 6-^ and 62; and distances
d and t 	
0
Distribution of average concentrations of SCL (ug/m).
Model A 	 	 	
0
Distribution of average concentrations of sulfate (ug/m ).
Model A 	
2
Distribution of deposition amounts of SCL (Kg/Km ). Model A.
2
Distribution of deposition amounts of sulfate (Kg/Km ).
Model A 	
Page
26
28
32
33
34
35
19      Distribution of average concentrations of SCL at the surface
        (ug/m3).   Model B	    36
20      Distribution of average concentrations of SCL above the
                                     3
        nighttime mixing height (ug/m ).   Model B 	    37
21      Distribution of average concentrations of sulfate at the
        surface (ug/m3).  Model B 	    38
22      Distribution of average concentrations of sulfate above
        the nighttime boundary layer (ug/m ).   Model B  	    39
                                                        2
23      Distribution of deposition amounts of S(L (Kg/Km ).  Model B.    40
                                                            2
24      Distribution of deposition amounts of sulfate (Kg/Km).
        Model B	    41
25      Flow diagram of trajectory program of Model A	    44
26      Flow diagram of trajectory program of Model B 	    45
27      Flow chart of concentration calculations by Model A 	    52
28      Flow chart of concentration calculations by Model B 	    53
29      Distribution of removal velocity (cm/sec) due to precipitation
        for warm season (May-October), 1974 	    57
30      Distribution of average ground level relative humidity
        (percent) for warm season (May-October), 1974 	    58
                                    vm

-------
Number                                                                   Page
                                                  0
  31      Locations  and emission intensities (x 10  ton/year)  of major
          S(L point  source  ......................     59
                                                          o
  32      Distribution of average SCL concentrations (ng/m )  at the
          surface for the period of May 1 through 10,  1974  ......     61

  33      Distribution of average S02 concentrations (yg/m )  above
          the nighttime mixing height for the period of May
          1 through  10, 1974  .....................     62
                                                             o
  34      Distribution of average sulfate concentration (pg/m ) at the
          surface for the period of May 1 through 10,  1974  ......     63
  35      Distribution of average sulfate concentrations
          the above nighttime mixing height for the period May 1
          through 10,  1974  ......................     64
                                         2
  36      Total  deposition amounts (Kg/Km ) of S02 due to dry
          deposition and precipitation scavenging for the period
          of May 1 through 10,  1974 ..................     65
                                                    2
  37      Total  deposition amounts of sulfate (Kg/Km ) due to dry
          deposition and precipitation scavenging for the period of
          May 1  through 10,  1974  ...................     66
                                                                 3
  38      Locations and intensities of S02 emission sources (x 10
          ton/year) ..........................     68
  39      Scheme of calculating 24-hour average concentrations  ....     70
                                                  3
  40      Distribution  of S0?  concentrations  (ng/m  at the surface level
          on May 11,  1974	     71
                                                  3
  41      Distribution  of S0?  concentrations  (ng/m ) above the night-
          time stable layer 	     72

  42      Distribution  of sulfate concentrations ((jg/m )  at the surface
          level  on May  11,  1974	     73
                                                      3
  43      Distribution  of sulfate concentrations (ng/m )  above the
          nighttime stable layer, on  May 11,  1974	     74
                                                       2
  44      Distribution  of S02  deposition amounts (Kg/Km ) due to dry
          deposition plus precipitation of May 11, 1974	     75
                                                           2
  45      Distribution  of sulfate deposition  amounts (Kg/Km ) due to
          dry deposition plus  precipitation on May 11, 1974	     76

-------
Number
46
47
48
49
50
51
52
53
F
2
Distribution of S0? deposition amounts (Kg/Km ) due to pre-
cipitation only on May 11, 1974 	
2
Distribution of sulfate deposition amounts (Kg/Km ) due to
precipitation only on May 11, 1974 	
Relationship between calculated and observed S02 concentration
Relationship between calculated and observed sulfate concen-
tration 	 	
Seasonally averaged relative humidity over the eastern United
States for the cold season 	
Seasonally averaged relative humidity over the eastern United
States for the warm season 	
Schematic plot of the concentrations of S0? and sulfate as a
function of time 	 	 	
Transformation rate of S00 to sulfate as a function of rela-
?age
77
78
80
Rl
85
8fi
88

        tive humidity	    90
54      The regional residence time of SO^ in hours, TSQ , for the
        cold season	    93
55      The regional residence time of S02 in hours, T<-Q , for the
        warm season	    94
56      The regional residence time of sulfate in hours, TSM,, for
        the cold season	    95
57      The regional residence time of sulfate in hours, TSM,, for
        the warm season	    96
58      Size distributions of typical urban and background aerosols
        (Whitby, 1978)  	   101
59      Sulfate content of rainwater as a function of L.W.C. of the
        cloud	   103
60      (-)v as a function of L.W.C. of the cloud	   105

-------
TABLES
Number
1
2
3
4
5
6
7
8
9

Input parameters for the trajectory program of Model A ...
Output parameters of Program A 	
Input parameters for the trajectory program of Program B . .
Output parameters for the trajectory program of Model B . . -.
Input data for the concentration calculations of Model A . .
Output parameters of the concentration calculation program
of Model A ... 	
Input data for the concentration calculations of Model B . .
Output parameters of the concentration calculation program
of Model B 	
Sensitivity analyses for oarameters 	
Page
47
48
50
51
54
54
54
55
98

-------
                                      LIST OF SYMBOLS

C-,             concentration of S00
 1                                L
C-.Q            initial  concentration of S02
C-j,            concentration of S02 after time interval t-,
Cy             concentration of sulfate
C2Q            initial  concentration of sulfate
Cp,            concentration of sulfate after time interval t-.
€2             maximum concentration of sulfate
d              length of trajectory segment
f              probability of precipitation
H-,             nighttime stable layer height
H2             daytime mixing layer height
H              mean mixing layer height
h              upper value of integral with respect to height
h              bottom value of integral with respect to height
K              transformation rate of S02 to sulfate
k ,            depletion rate of S02 due to precipitation
k 2            depletion rate of sulfate due to precipitation
L              mean width of pollutant plume
L              width of the original source area
L-,             width of pollutant plume at time step I
N              number  of  days multiplied  by the  number  of trajectories per
               day
                                       xii

-------
P              precipitation rate
P              mean precipitation rate
RH             relative humidity
R-,             quantity representing S02 removal terms
Rp             quantity representing sulfate removal terms
T^Q            residence time of S02
 SDL           residence time of sulfate
t              distance defined as a function of d and I.
t              time
t              time interval n
u              mean wind speed
Vd             vertical velocity through the top of the  mixing  layer
Vg             deposition velocity
Vg-,            deposition velocity of SO,,
Vg2            deposition velocity of sulfate
V              precipitation scavenging velocity
V              x-component of mean wind
 /\
V              ycomponent of mean wind
X-.             distance of trajectory segment at time interval  t-^
z              distance between grid point and trajectory endpoint
a              angle  between  a  latitude  circle  and   a  trajectory   segment
P              angle between distance d and distance t
a              angle  extending  between the  line  Z and  a  latitude circle
6-,             angle defined as a + n/2
6?             angle defined as a + 3n/2
e              angle defined as a function of d and I.
                                       xm

-------
6  -,           longitude of the  endpoint of trajectory segment at  time  step
 n"i           n-1
6              longitude of the endpoint of trajectory segment at  time step n
K              concentration of a pollutant in rainwater
X.             depletion rate of S09 due to dry deposition
 °1                                i
\,             depletion rate os sulfate due to dry deposition
 d2
\              scavenging rate due to precipitation
I.              mean width of pollutant plume
a              dispersion parameter
  h
a              standard deviation of x-component wind
  x
a              standard deviation of y-component wind
  y
i.             duration of dry period
T              duration of wet period
X              concentration of pollutant in air
iL -,           latitude  of  the endpoint  of trajectory segment at  time  step
 n"i           n-1
4*              latitude of  the  endpoint of trajectory segment at time step n
                                      xiv

-------
                               ACKNOWLEDGMENT


     The trajectory  calculation portion  of our models in  this  report is an
expansion and  modification of  an  original  scheme  developed by  Heffter and
Taylor (1975).

     Programming help by Ms. Ann M. Starr and Mr. Dan R. Westhoff are greatly
appreciated.
     The  distributions  of 10-day average concentrations  ot  S0« and sulfate,

were calculated  on the EPA  computer.   Mr.  Adrian Busse  was  very helpful  in
running  our program on  the computer.   Thanks  are also  due to  the  project
officer,  Mr.   G.C.  Holzworth,  for  giving  us  constructive  suggestions  and
providing necessary data.
                                     xv

-------
                                  CHAPTER 1

                                INTRODUCTION
     Growing reliance upon coal  as  a fuel  for power generation has increased
the  international   and  national  concern  about  S02  and  sulfate  pollution.

Recent observational evidence  in  the U.S.  and Europe indicates that exposure
to sulfate  aerosols and ozone  is possible over large  regions  extending  for
hundreds of kilometers  downwind from major  sources.

     In our previous studies  under EPA Grant No.  R803685,  we have developed a
long-range  transport  model  suitable for  keeping track of pollutants  down-
stream of  large  industrial complexes (Henmi et al.,  1977,  1978).   Transport
modelling  plays  an  important role in understanding  the relationship  between
anthropogenic S02 emission  and atmospheric  concentrations  of SO^ and sulfate,

and  serves  as  a basis  for  the  simulation of present and  future  changes  in
pollutant  concentrations and in  atmospheric  parameters such  as visibility,
turbidity and acidity of rainwater.

     In  order  to  estimate  the  fate of  pollutants  in the atmosphere,  the
transport in each of the following layers must be studied:

     (1)  Nighttime stable  layer  and daytime  mixing layer containing a near-
          uniform vertical  distribution  of  pollutants;

     (2)  The layer between  daytime  mixing height and nighttime stable-layer
          height,  in  which  pollutants  are  trapped  during  the  nighttime;

     (3)  The free  atmosphere  containing   pollution  which  has  been  carried
          up, beyond  the  range  of  boundary-layer  mixing,  by  large-scale
          ascent or by  penetrative convection.

     Taking into consideration  the  transports  in the layers described in  (1)
and  (2), we  have developed long-range transport and transformation models  of
S0?  and  sulfate.  The  details  of our models are  described  in  Chapters 4  and

5.   Comparisons  between the observed  concentrations of SOp and sulfate  and

those calculated by the model are described in Chapter 6.

     In  previous  studies  (Henmi  et  al.,  1977, 1978), we considered  the  de-
termination of the  residence time of S02 in the mixing layer.   Assuming that

-------
precipitation,  deposition  and  the  transformation  into  sulfate  are  the
mechanisms of removal,  the  regional  residence time of SOp was calculated for

the region of the  United States east of 105°W latitude.   However,  the short-
coming of  this  study was that  the  fate of sulfate had  not  been  considered.
During the  present contract  period,  we have extended this  study  to include
the  residence time  of  sulfate.   The  results  are  described in  Chapter  7.

     The  concentration  of  sulfate  in  precipitation  is a consequence  of
several microphysical processes occurring within and beneath  the clouds.  The
microphysical  processes  include  Brownian  motion,   inertial  impaction  and
nucleation.   In Chapter 8,  taking  into  consideration  these  processes,  a
numerical  study is  performed  on  the  sulfate  concentration in  rainwater.

-------
                                  CHAPTER 2

                                 CONCLUSION


     One of  our principal  objectives  under Research Grant No.  R  805271 has
been to  develop computer  models  for the  study of  long-range  transport and
transformation  of  S02 and  sulfate.   These models are  intended  for  use with

input parameters  obtainable routinely from the  national  meteorological ser-
vices.    We  have  developed two  computational   schemes  by which the  concen-
trations of S02  and  sulfate along trajectories, as  well  as  the average con-

centration distributions  over  gridded regions, can  be  calculated.   In Model
A,  trajectories  of the mean wind  in  a  single  layer between  the surface and
the top of the daytime mixing layer are calculated.   In Model  B, we take into
consideration the  trajectories  of  the mean wind in (a) the layer between the
surface  and  the top of the daytime  mixing layer,  (b)  the layer between the
surface  and  the top  of  the nighttime  stable  layer (i.e. the  height  of the
ground-based inversion layer  in which pollutants are essentially "trapped"),
and (c)  the  layer  between the nighttime stable  layer  and the daytime mixing
height.   Because of  the  more  realistic assumptions  on  the diurnal  variation
of  the  mixing height, Model  B is  superior to Model A,  however it  requires
more computer time to run.

     The characteristics  of these models can be summarized as follows:

     1.    As input data,  wind  speed and direction which  are  observed  by ra-
          diosonde, and relative  humidity  and  precipitation  data observed at
          the surface are utilized.

     2.    The transformation rate  of  S02 to sulfate is  expressed  as  a func-

          tion of  relative  humidity,  and the wet removal  rate  is  parameter-
          ized  as  a function  of  precipitation rate and  precipitation prob-
          ability.

     3.    The program  can be  applied to any region over  the northern hemi-
          sphere where input data are available.

     Model   B  was  applied  to  calculate  the  geographical  distributions  of
average  concentrations of SOp  and sulfate over the region between  35°N and

45°N and between  75°W and 95°W which encompasses  the  Ohio River basin.  The
distribution patterns of  the  calculated concentrations of S0? and of sulfate

were statistically correlated  with the patterns of  observed  concentrations.

-------
     The regional residence times  of  S02 and sulfate were calculated for the

region of the United  States  east of 105°W longitude.   The regional  residence
times of S02 were  in  the range between  15  and  30 hours for the  cold season

and in the  range  between 15  and 40 hours  for the warm season.   The regional
residence time of  sulfate  was  about one order of magnitude greater than that
of S02, ranging between 150 and 450 hours for the cold season and between 200

and 500 hours for the  warm season.

     Using  a cumulus  model,   sulfate  content  in  rainwater was  calculated.
Although the study  has  shown  that microphysical processes  such  as  condensa-
tion,  Brownian  diffusion, attachments  due  to  thermophoresis and  diffusio-
phoresis can be  efficient  enough to attain the  sulfate  content  of rainwater
which  has  been  observed,  this conclusion should  be regarded as  tentative.
The combined effects  of the  microphysical processes and  of S02  oxidation to

sulfate in water must be studied in the future.

-------
                                  CHAPTER 3

                               RECOMMENDATIONS
3.1. REFINEMENT OF THE MODEL

     Although  our efforts  of developing  the model  have reached  the  stage
where  the  distribution  of  average  concentrations,  as  well  as  deposition
amounts of  S0?  and  sulfate due to  a  multitude  of sources can be calculated,

there are still several aspects to be improved.

3.1.1.    Saving of Computing Time

     The model (Model B)  in the present version requires, on the EPA computer
(UNIVAC 1100A), about  five hours  of computing time to calculate 10-day aver-
age  concentrations  of S02 and  sulfate  emanating from  60 sources,  and  the

deposition  amounts of  these  two  pollutants over  an  area of 10 degrees lati-
tude by 20  degrees  longitude.   The results of the calculations are described
in  Chapter  6.   In the model, more  than  90 percent of the  computing  time is
spent in  interpolation schemes  of concentrations along the trajectories into
grid point values.  It seems that improvement of this interpolation scheme is
the key to utilizing computer time in a more economic way.

3.1.2.    Improvement of the Expression of Transport Process Near the Source

     In the  present  model,  the  assumption is  made  that  pollutants  are  in-
stantaneously and uniformly  mixed into the mixing layer  after being  emitted
from the  sources.   In order to  improve  the  performance  of  the  model, more
realistic formulas to express concentrations,  particularly for the first 6 to
12 hours,  must be considered.

3.1.3.    Use of Daily Radiosonde Data for the Calculation of the Mixing
         Height


     Climatological  averages of the heights of the daytime mixing layer  and
of  the  nighttime  stable  layer determined by Holzworth  (1972)  have been used
in  the  model.   For  the calculation of the  concentration distributions  for a
short time  period,  it  is desirable to determine  the  mixing heights based on
twice daily radiosonde data.

3.1.4.    Modification of  the Model for Climatological Data

     It  is   possible   to  calculate  long-term  (seasonal  or annual)  average
concentrations,  using  the  present model  repeatedly.   However,   due to  the

-------
large amount of computing time required for this process,  it is not practical
to do so.   Statistical  studies of trajectories,  dispersion parameters,  mixing
height, precipitation and  relative  humidity over the period of interest must
be carried  out.   The model  will have  to  be modified to  handle  statistical
distributions of these parameters.

3.2.  VERIFICATION OF THE MODEL

     In Chapter  6,  we  describe our preliminary  efforts to  verify the model.
Further tests  should  be  conducted  using  actual  concentration data  of  SOp

and sulfate observed at stations within the area of interest.   There exists a
strong correlation  between aerosol  mass concentrations in  the  size  range of
0.1  to 1   micron   in  diameter  and  the extinction  of  light  by  scattering
(Charlson,   1969; Hidy et a!., 1976).    Furthermore,  measurements  in  and near
St. Louis,  MO,  have shown that sulfates often account for 50 percent or more
of the aerosol  mass in  this  size  range (Charlson  et al., 1974).   Therefore,
comparisons  of  the  geographical distribution of visibility with  the sulfate
distribution derived from our calculations seems a useful  means to verify the
model.

3.3.  APPLICATION OF THE MODEL TO STUDY  FUTURE AIR QUALITY

     Once a reliable model performance  is assured, the model shall be applied
to study the  effects of future emission sources on regional air quality, dry
deposition  and  acid rain climatology.   The model application should focus on
such questions   as  the   impact  of  dramatically increasing  coal  use  in  the
Midwest,  the impact of  the  Ohio  River basin  emissions  on the  New England
states, etc.   The  results  of  such  studies  will serve  as useful  tools in
formulating a  national  pollution control in the face  of  the  urgently needed
development of new energy  sources.

-------
                                  CHAPTER 4

                            EXPLANATION OF MODELS



     Models A and B each consist of two separate programs:

     (1)  A program  that  calculates the trajectories of plumes  leaving from
          any  chosen source  area(s),  dispersion  parameters,  and the  para-
          meters  necessary  for  concentration  calculations  along  trajectory
          segments using observed wind data.

     (2)  A  program that  calculates  the  concentrations  of sulfur  dioxide
          and  sulfate  along trajectory  segments  and interpolates the  plume
          concentrations to grid intersections.

     A  program  that calculates  trajectories  was  originally  developed  by
NOAA's  Air  Resources Laboratories  (Heffter  and Taylor,  1975)  and  has  been
substantially modified for our purpose.  In the following,  the details of our
program will be described using examples.

4.1  CALCULATIONS OF TRAJECTORIES,  DISPERSION  PARAMETER AND OTHER PARAMETERS

4.1.1  Trajectories

     In Model  A, as mentioned previously, the effect of the diurnal change of
mixing  layer  height is  not taken  into  consideration.   Trajectories  of mean
winds in a single layer between the surface and the top of the daytime mixing
layer are calculated.   The  thickness of the layer  is  kept constant.   On the
other hand,  in Model B,  trajectories  of mean winds of  the  nighttime stable
layer and  daytime mixing  layer,  and  trajectories  of  the mean winds of the
layer between  daytime  mixing  height and  nighttime  stable  layer  height are
taken into  consideration.   In  Figure 1 we show  how trajectories  of  the mean
wind starting  at  different  times are calculated by  Model  B.  The program is
capable of  calculating trajectories  either  four times a  day originating at
00, 06,  12,  and 18 GMT, or two times a day originating at 00, and 12  GMT.  It
is designated in the program that the time between 00 GMT (18 CST) and 12 GMT
(6 CST) is  nighttime and the time between 12 GMT (6 CST) and 00 GMT  (18 CST)
is daytime.  In  Fig.  1, H,  is the nighttime mixing height and H~ is  the day-

time mixing height.  Solid lines and broken lines indicate daytime and night-
time trajectory  segments,   respectively.   K  = 1 describes the  case  in  which
the  air trajectory  leaves  the origin at  00  GMT (18 CST).  In this  case we
assume  that the  pollutants emanating  from  the  surface  are  contained  and
transported in the nighttime mixing layer.   At 12 GMT (6 CST),  the pollutants

-------







t
\
1
t
t

to
"
v'
.3-








II
*








/
/
l
t
1
1
\
\
\
V








\
\
\
\
\
\


1








t
\
\
\
\
\
t
/
/
/
/
/
/








/
/
/
/
/
/











/
*
/
/









•











II
l
1
1
T
1
? 3






t
1
1
1


if







if
l
1
I

=• c






I1
I

i

r <






N
N
N
O
N
IN
N
0
N
CJ
>~





M
o
N
M
N
O
N
(M
m
o
D







1
\
\
\
\
\ 1

t
u
X.







\
\

(N
it
^








i
i
i
i
\
\
\
\
\
\
V
I






/
/
/
/
r
\
\
\
\
\
\
\












/
i








i











\
\
\
\
\
\
\
\
/
/
i
»
i







\
\
\
\
t
/
t
/
/
/











i
i
i
i
i
i
i









/
/
/














^





/












TT Tl
IttI
It
1
I 1
t
e i c





l * + 1
t t III
1 1
1 1
l
1 i
N - '
r x
-0 ">
QJ O)
+J •!-
ra s-
r- 0
3 -P
c u
_— OJ
r^ •*'
fO '""»
£ U «
2 j_

S- (O r-
0) -P.^
M- C
"- 2 *-
5 '-STS
£ 13^1
g.|a
t*fe
IE^
in -l~>
•» ro
l" 0 S-
0> ^ -P
'£ " >
° E ?
o 2
•^ss
oj "3 5
?3^^=
•P in
5 g|§
^|^>
° o,"3.^
c o> -a
•i— x:
3E-P i.
O CD
M -«=i<£ S
M in o
x: •—
m ro »
^"5
5 «fe-g
^^ m
U -P
•r** * *^~
M -P00--
<3 to CL.
- E i— in
ai m
H J= T3 >,
* U O 03
O co s: E
(U
S-

-------
contained  in  this  nighttime stable  layer become  mixed uniformly  into  the
daytime mixing layer due to convective mixing spawned by radiational heating.
At 00  GMT (18 CST)  of  the second day, the pollutants  distributed uniformly
below the  daytime  mixing  height are separated into two layers, the layer be-
tween the  surface and the  nighttime  stable  layer height, and  the layer be-
tween the  nighttime  stable layer height and daytime  mixing  height.  The air
masses  in  the two  layers  take  different  tracks.   At 12 GMT  (6  CST)  of the
second  day,  the  pollutants  which  followed different tracks  during the pre-
vious night,  are  again  mixed into the daytime  mixing layer.   K = 2, 3 and 4
correspond to the  cases  where trajectories leave at  06  GMT  (24 CST),  12 GMT
(6 CST)  and  18  GMT (12 CST), respectively.  The  figure shows that, for two-
day  periods,  a  single  trajectory  at  the beginning separates  into four dif-
ferent trajectories.

     Figures 2 and  3  are  examples of  calculated trajectories starting on May
1 and 2,  1974,  respectively.   The origin of these trajectories is located at
38.4°N and 90.1°W.   In  these figures, trajectories calculated  using Model  A
are  drawn  with thick broken lines.  Trajectories drawn with  solid lines rep-
resent daytime segments  and those with broken lines represent nighttime seg-
ments of trajectories.

4.1.2  Dispersion Parameter
     The dispersion parameter av,  defined as
                  av

                                                                        (1)
is calculated  along each  trajectory  segment.   V   and V  are the x-  and y-
                                                 x       y
components of the mean  wind,  u is the mean  wind  speed, and av  and  av  are
defined as
" h
h
0

.

CVx[z] -

h -


V2 <*

h
0
                                                                        (2)
h
/ (
h
0

Vy[Z] - Vy)2 dZ

[ h'ho
                                                                        (3)
Here, h and  h   are  the top and  the  bottom  of the layer.   Details of deriva-
tion of av,  have been  described by  Henmi  et  al.  (1977, 1978).   After the

-------
                                                                             I   O)  O)
                                                                             S-  J-  £
                                                                             O  CU -T-
                                                                             U JC -U
                                                                               IS -P




*











/






'


/
i ''
i
\
, i
X*



•

/
f
'

/
\

-\


*




j
/\
\
\
\\ i
\





/
jr




\

i


m







\:
1
t


tr
UJ

i
i
i




•"'*
i


i F
t- t-
i 1





S;
,.'
i








>
f

!
-^- • ro to
r- >> u
Oi i — -i— (1)
r-H O) M- O
-•r- j_) 4—
rH -P C S-
>> O) T3 ">
tO CX.r-
>- 2: to c
c ^ ^ S
O M— 3t
., 	 f« S-
-P ra S-
S- 00 Ol
tO i— 1 "* >>
-P OJ ro
i/) "O '<~ i —
« ro 9 
01 - S- -P
uo -P ro
-a o c
c M- en
ro » o T-
o tn
^ o -a eu
0 c "0
•Sf <•- OJ
. 0 i-
00 n, 0»
CO */) ^- jD
\
                    ro



»_





^



r

'>





?
^
\
i\
•^ •



;




f
\
^
^





r


^
*
\
i
^






i-x

^»
14
t





T


"*«&
!








?\







•^
S/

<






\



en "J t-
c en 
a) • -P
•.-05--,-
j_ +j a> i—
0 JO Q. •
-> Q. > ••-
ro m v_ ro a)
s- eu fa jc jc
-P s- -n
s_ in S-
to «d- o i —
a) -a -P
i— TD C U OJ
a. c o eu i—
ro in ro n3
X - O) S- -P
                                                                         LU CO S- -P  Ul
                                                                         CNJ

                                                                          ai
                                                                          s~
                                                                          Z!
                                                                          cn
                     10

-------

 7
f
                                             ro
                                             cvj S-
                                                          £
                                                                                                     CM



                                                                                                      «
CD
C
                                                                                                      to
                                                                                                      01
                                                                                                      s
                                                                                                      0
                                                                                                      u
                                                                                                      01
                                                                                                      re
                                                                                                      S-
                                                                                                      Q.
                                                                                                      OJ
                                                                                                      U
                                                                                                      X
                                                                                                      OJ
                                                                                                     C\J
                                                                                                      OJ
                                                                                                     o
                                                                                                     -l->
                                                                                                      CO
                                                                                                     CO
                                                                                                     O)
                                                                                                     S-
                                                                                                     CJ>
                                    11

-------
trajectory analysis has been  repeated  for n time steps  of  equal  length,  the
mean width  of the pollutant  plume L or  Z,  along  the mean wind  is  given by

     L = Z,  = 2(ov.  i  •  t + 0v.  0 • t +	  + av.  „ -t)  + L          (4)
          n       h,l         h,2                h,n        o

where L   is  the  width of the original  source  area  perpendicular to the mean
wind.

     Figures 4,  5, 6  and  7 show examples of Zh with L  = 0.  These Z^ values

were calculated  along trajectories  exhibited in Figure 2.   M in Figure 4 in-
dicates the number of the day (e.g. 1,  2, 3,  etc.)  of the trajectory calcula-
tion and  K indicates the  number  of  the six-hour  interval  within  that day,
during  which  the  trajectory was  started.   The thick  solid lines  in these
figures  represent Z.-values  calculated  using  Model  A.   The  width  of  the

plume, Z. ,  is  given  in  degrees of latitude (1 degree latitude = 111.137 Km).

4.1.3  Other Parameters

     Other  parameters which are necessary for  concentration calculations in
the  second  program are the angles a and p,  the distances d and  t,  and the
direction indicator of  the  trajectory,  UK.   These parameters are defined in
Figure 8.

     The  distance  d  is  the length of the trajectory segment at time step t .
The distance t is defined as
                   • + zh(tn)2

where Z. (t ) is the dispersion parameter given by Eq. (4).

     a  is the  angle between  a latitude  circle  and the  trajectory segment
during time step t ; p is the angle between d and t.

     The direction indicator UK gives the quadrant  into which the trajectory
points.   East  has  been  chosen as  the  reference  direction.   Thus,  UK is
defined as
UK
UK
UK
UK
=
=
=
=
1
2
3
4
for



0
90
180
270
o
o
o
o
<
<
<
<
a
a
a
a
<
<
<
<
90
180
270
360
o
o
o
o
4.2  CALCULATIONS OF THE CONCENTRATIONS OF S02 AND SULFATE

4.2.1  Basic Equation

     Realizing  that our  knowledge about  the  transformation rate  of sulfur
dioxide  to  sulfate  at  the present does not justify incorporation of anything
more complex  than  the  parameterization of linearized kinetics, the following
two  equations  for  the  calculation of  concentrations  of sulfur  dioxide and
sulfate  are used:

                                      12

-------
                                                                         S.L.
           NIGHT
                                  TIME(hrs)
Figure 4.  Example  of  I.  along trajectories  for M = 1, K = 1.   S.L.  indicates

          "Single-Layer  Model" A;  1, 2,  3,  and 4  are  trajectory numbers  in
          Model B  as  shown  in  Fig.  2.
                                       13

-------
                                       NIGHT
                                   TIME(hrs)
NIGHT
Figure 5.   Example of I.  along  trajectories for  M  = 1, K = 2.
                                        14

-------
             DAY
                                   TIMEChra)
Figure 6.  Example  of  I.  along trajectories  for  M = 1,  K = 3.
                                       15

-------
Figure 7.   Example of 1  along trajectories for M = 1, K = 4.
                                      16

-------
                   !JK=2
                  UK =3
IJK =
Figure 8.  Definition of a, p, d and t.  (For explanation see text.)
                                17

-------
     Let us  assume  that  the  pollutants are  transported with  the  mean wind
speed u, as  shown  in  Fig. 9, from  an  initial  vertical  plane at location "0"
in which the  concentrations  C-,/, and C?n are  uniformly  distributed.   C-.Q and

C™ are, respectively,  the  initial  concentrations of sulfur dioxide and sul-

fate.   The width of the source area perpendicular  to  the mean wind is taken
as L ,  its height  is  h, equivalent to  the  height of the mixed layer.   After

time t  = x/u the pollutants cross  a vertical  plane P at a  distance  x, from
the source area.  The  width of the plume at P is defined as

          L(x) = LQ +  2avh • t                                        (5)


where av,  is the dispersion parameter.

     If C-,  and Cp are  the concentrations  of sulfur dioxide  and of sulfate

at distance  x, the rate  at  which pollutants_cross the  vertical  plane P are
U'h-L(x)'C-|  and  u*lvL(x)'C?.   Assuming that u and  h  are constant during the

time  interval   required  to  travel  the  distance dx, the net  rates  of loss

between planes at  x  and x  + dx  are given  by u-h'-r-  (LC-,)-dx  and  U'h-T-

(LC2)«dx.   These amounts  are  balanced  by removal processes such as dry depo-

sition, precipitation  scavenging and  loss  from the top  of  the mixed  layer,
and by transformation processes.

     The mass  balance  equations for  sulfur dioxide C-,  and  sulfate  C2 are

given by

                                                                      (6)


                                                                      (7)

where V  is  the deposition velocity, V . is the vertical velocity through the

top  of the  mixing layer,  h  is  the  height  of the mixing  layer, f  is the
probability  of precipitation during the time  x/u,  V   is  the precipitation

scavenging velocity  and  K  is the  transformation  rate  of  sulfur dioxide to
sulfate.   Subscripts  I and  2 stand for sulfur  dioxide  and sulfate,  respec-
                    o                                                   =
tively.  The ratio •*- is  the  ratio  of  molecular weights  of  sulfate (SO,) to

sulfur dioxide  (S0?).

     The solutions to Eqs. (6) and  (7)  are given by


                                         Rl  . xl                       (8)
= -[v '
- -tv <
h fVsl + Vdll •
• LCj - KCj • Lh
• LC2 + | KCj • Lh
                 L  + 2avh
                           u
                                      18

-------
                         TOP  OF   MIXING LAYER
Figure  9.  Schematic diagram of  the models.
                                  19

-------
            C2 = -*X-»	 •  exp
             L   LQ + 2avh *
il
                                 exp    -V*   9-1                 (9)
where R^ =  V  -  + fV$1 + Vdl + K-h, and R2 = V 2 + fVg2 + Vd2.   Equations (8)
and (9) can be applied along a trajectory as follows:   After the first inter-
val, t-., of trajectory analysis,  the concentrations of the pollutants at the
endpoint of a  trajectory  segment,  x-., are  calculated  as  C-.-.  and C^-i and are
regarded as the  concentrations  of  the new  hypothetical  line  source with the
width  of !_-,  = L  +2 v.-,  t-,.   By  repeating  this calculation  process for

successive  trajectory  elements, the  concentrations along the  trajectory at
any distance from the source area can be calculated.

4.2.2  Removal Mechanisms and Transformation of S02 to Sulfate

4.2.2a  Removal Due to Precipitation

     The removal of pollutants due to precipitation can be expressed in terms
of  scavenging velocity,  V  (Henmi  et al.,  1977,  1978).   The  parameter is
defined as

            V  = (-)   • P                                               (10)
                  x v

where K is the concentration of a pollutant in rainwater, x the concentration
of  a  pollutant  in air,  and P the precipitation  rate  during  a precipitation
                                              i/
event.  The subscript v means that the ratio  (-) is formed on a volume basis.
Since precipitation  is episodic,  the probability of a precipitation event f
must  be  multiplied to  V  .   The probability  of a precipitation  event is de-
fined as
            f =
 where,  t.  and t   are  the  duration  of  dry and  wet periods,  respectively.

      In  application  (1)  described in  Chapter  6, and  in the calculation  of
 regional  residence times of S02  and  sulfate  discussed  in Chapter  7,  the  pre-
 cipitation  rate P  and the  probability of a  precipitation  event f  based  on
 climatological  data  are used.   On  the  other  hand,  in  application (2)  in
                                       20

-------
Chapter  6  where 24-hour  average concentrations  of  S02 and  sulfate  are

calculated,  P  and f are computed  for every 12 hours  at  81  weather stations
and are interpolated for individual trajectory segments.

     The actual  values  of  the ratio  (K/X)  for  S0~  and sulfate are listed in
Chapters 6 and 7.

4.2.2b  Removal Due to Dry Deposition

     Removal of  SCL  due to dry deposition has been reviewed in detail in our

previous  reports  (Henmi et  al.,  1977 and 1978).   Dry deposition of sulfate
has  not  been  studied  extensively.   The  only  known measurements  of sulfate
deposition  velocity  in  the  atmosphere  yielded   approximately  0.1  cm/sec
(Engelman and Sehmel, 1976).

     Realizing the  difference of atmospheric conditions  between  daytime and
nighttime,  different values  of dry  deposition  velocities are assigned for
daytime and  nighttime.   Actual  values of dry deposition  velocities used for
the  concentration  calculations of  S00 and sulfate are described in Chapter
6.                                    l


4.2.2c  Removal Due  to  Vertical  Transport of Pollutants  into  the Free Atmo-
        sphere

     Pollutants  released  into the  mixing layer are dispersed  into the free
atmosphere  by several  processes,  such   as  turbulent   diffusion,  convective
activity,  large-scale   ascent  from  horizontal  convergence and upgliding  of
warm air  over cold  air.   The relative effectiveness  of  these  processes de-
pends on  meteorological conditions.   With  improved knowledge  of these pro-
cesses we  hope to  be able to parameterize their impact on vertical mixing by
chosing appropriate values for V,,  the vertical velocity through the top of

the  mixing  layer.   However,   in  the  present  models,  we  assume that  V,  =  0.

4.2.2d  Transformation of S00 to Sulfate
     The following empirical relationship between the transformation rate and
relative humidity is obtained:


          K = 3.304xlO~4-exp (0.063-RH) hr"1                          (12)


K is the  transformation  rate of S02 to sulfate and RH is the relative humid-

ity in  percent.   The  derivation of this equation  is  described in Chapter 7.

     The removal  rate  due  to precipitation scavenging and the transformation
rate of SO-  to  sulfate along trajectory segments  are  interpolated using the
                                      21

-------
data  of  meteorological  stations  which  are  surrounding  the  midpoint of  a
trajectory segment.   An interpolation  routine  from NCAR's  Software Support
Library was chosen and adapted in  the model.  The interpolation routine along
with  its attendant  subroutines  uses  a given  set  of  points  and their coordi-
nates  (latitude  and  longitude) to  set  up  a grid  of  triangles  using those
points as  vertices  (see Fig.  10).   A linear  interpolation  from the triangle
sides  surrounding the  midpoint of  a trajectory  segment is  performed.   If
points outside  the grid,  (x  ,  y  ),  must be  interpolated,  this routine will

extrapolate from the edge of the grid to those points.

4.2.4  Interpretation of Plume Concentrations to Grid Intersections

     Models A and B are capable of calculating the average concentrations of
sulfur dioxide and sulfate downstream from source areas over gridded regions.
The procedure can be summarized as follows:

      (i)  The concentrations  along  trajectories  are  calculated  using Eqs.
          (8) and (9).   Latitudes  and longitudes  of endpoints of trajectory
          segments,  and dispersion  parameters  are used  as  input data.  Ex-
          amples  of  the concentrations  of SCL and sulfate along trajectories

          are shown  in  Figs.  11  to  13.   In these  figures,  the source con-
                                                                       q
          centrations of S00  and  of sulfate are assumed to be 30 ug/m  and 0
              3
          ug/m ,  respectively.   Concentrations  were  calculated by  Model  B.
          They are  different along  different trajectories  due to different
          values of dispersion parameters and of removal terms.

      (ii) Each grid point over the  region  is examined as  to  whether or not
          it is located within the plume.  If a grid point is located  outside
          the plume, the concentration at that point is assigned the value 0.
           If  a  grid  point  is located  within the plume,  the concentrations
          based on Eqs.  (8) and (9) are assigned to that point.
          The criteria  of determining whether or not grid points are  located
          within the plume are discussed in the next section.

    (iii)  For each  trajectory segment,  step  (ii)  is repeated,  and the  values
          of concentrations at affected grid points are accumulated.

      (iv) The calculations  of concentrations for trajectories  from different
           source  areas  are  carried  out repeating  steps (i)  and  (ii).   In
          Model B, the  calculations of concentrations for trajectories  of the
          winds  in different  layers  are also  conducted  repeating steps (i)
          and (ii).   The concentrations due  to  different sources  and due to
          different trajectories are accumulated for each grid point.

      (v)  After  step (iv)  is completed, the  average  concentrations  at grid
           points  are calculated dividing the  accumulated  concentrations by
           N.   Here  N  is  defined  as  the  number  of days  multiplied  by the
           number  of trajectories per day.
                                      22

-------
Figure 10.  Schematic  diagram of determination of removal rate and transfor-
            mation rate along a trajectory.
                                    23

-------
(cW/0Tl)ONOO
                                                  s-
                                                  o
                                                  o
                                                  4J
                                                  u
                                                  0)
                                                  •f— 3
                                                  to
                                                  s_
                                                  O)
                                                  E
                                                  O

                                                  'ro

                                                  O)
                                                  -a
                                                   c.
                                                   re

                                                    CM
                                                  o
                                                  to
                                                   in
                                                   c.
                                                   o
                                                   (O
                                                   s_
                                                   OJ
                                                   o
                                                   c
                                                   o
                                                   o

                                                   0)
                                                   -C
                                                   -l->

                                                   M-
                                                   O

                                                   Ol

                                                   'o.

                                                   tt3
                                                   X
ai
s-
3
O5

-------
UW/9rl)'ONOO
                                                 CM
                                                  S_
                                                  o
                                                 CM
                                                  o
                                                 -M
                                                  (J
                                                  O)
                                                 •I-J
                                                  ro

                                                 -p

                                                  O5
                                                  O)
                                                 -P
                                                  3
                                                  IO

                                                 T3
                                                  C.
                                                  to

                                                  CM
                                                 O
                                                  o

                                                  c
                                                  o
                                                  (0
                                                  S-
                                                  HI
                                                  o
                                                  C
                                                  o
                                                  (J

                                                  Ol
                                                  CD

                                                 'o.

                                                  to
                                                  X
                                                 CM
OJ
S-
                                                  01
       25

-------
                                                         CM
                                                          S-
                                                          o
                                                         CM
                                                          u
                                                          o>
                                                         'T~>
                                                          03
                                                          Ol
                                                          -p
                                                          ro
                                                          T3
                                                           C

                                                           03
                                                          o
                                                          to
                                                          -t-J
                                                           ro
                                                           Ol
                                                           u
                                                           o
                                                           u
                                                           O


                                                           O)


                                                           Q.


                                                           (0

                                                           X
                                                           ro
                                                           01
26

-------
4.2.5  Criteria of Determining Locations of Grid Points Relative to the
       Plume
     Referring to Fig. 14, the following parameters are defined:
8n-i> ^n-r    longitude and latitude of the endpoint of trajectory
               segment at time step n-1.
    6 , ib :    longitude and latitude of the endpoint of trajectory
               segment at time step n.
         d:    the distance between (0  -,, »b  -,) and (0 , ib ) and de-
               fined as               n~l   "~l        n   n
                           " + y        in nautical miles
          where
                      = (6n-l - 6n) ' cos (Vl ' n/180)  ' 60     (13)
                    y = (tb  - ib  -,) • 60.
                    J   VYn   Tn-l
    t:    the distance defined as
                           71*                                 (15)
    z:    the distance between the grid point and the point (6n_i, ^n-r
    a:    the angle defined as
                    a = tan"1 £                                  (16)
    P:    the angle defined as

                    P = tan"1 ^                                 (17)
    y:    the angle  extending  between the line z and a latitude circle.
    s:    the angle defined as
                    e = tan"1 f                                 ™
                              *h
   5-,:    the angle defined as
                    dl = a + n/2                                 (19)
   52:    the angle defined as
                    62 = a + 27t                                  (2Q)
                               27

-------
    3aniiivi
                                       c.
                                       to
                                       in
                                       

                                       O


                                       00.
                                       01
                                       
-------
With these parameter definitions,  the criteria for determining whether or not
grid points are located within  the  trapezoidal  plume  segment are given such
that z and y must  satisfy  the  following conditions:

       ^n - Vl and 6n -  Vl ^IJK  = ^
       A.    p > a
       1.    a < y  <  a + p                 2.   In + (a-p) < y < 2n
                     d                                 d
              z -  cos (y-a)                      z - cos (ya)
       3.    0 < a  <  a                     H.    or + p  <  -^  «,  6-,
              . ,     d                           z <  .  cos
                  _^
                - cos  (y-a)                         -   cos  (crye)
       5.    62 < y < 2n  +  (a-p)
              a < t cos  j£+P)  ,
                   cos  (y-cre)
       B.    p < or
       1.    a-p  i);n_1  and 6n > 6n_1  (UK = 2) and
  [III]  »|»n  <  ^^  and 6n < 6n.1  (UK = 3)
       1.   a-p 2rt

       1.   a-p
-------
       3.    6^^ > y a + p - 2n

                < .  cos (e+p)
                -   cos (ors-y)

       B.    a + p < 2n
4.    69 < y < a - p
                                         2
          t cos (s+p)
                    "
                                           <
                                           -    cos
                                           2.   69  <  y  < a  -  p
              z
                                                        cos  (s+p)
3.
                - cos (a-y)

            a + p < y < 2n

                    cos (s+p)
              z < t
                -   cos
4.3  OUTPUT OF MODELS
      J2-

       z -   cos (y-cr£)

4.   0 < y < 6-^

       7 < t cos JL+P)
         -   cos (cry-£)
     Output parameters  calculated for  each grid point by  the  models are as
follows:
            Program A

1.   Average concentration of

     S02 (|jg/m3)

2.   Average concentration of

     sulfate (|jg/m)
                                              Program B

                            1.   Average  concentration  of SQ0 at the
                                              3
                                 surface  (fjg/m )

                            2.   Average  concentration  of  S02  above
                                 the  nighttime   stable  layer  height
3.   Deposition amount of SO,,      3.

     (Kg/Km2)
4.   Deposition amount of sulfate  4.
     (Kg/Km2)
                                   7.


                                   8.
                                 Average  concentration  of  sulfate at
                                                  o
                                 the surface (pg/m )
                                 Average  concentration  of  sulfate

                                 above  the  nighttime  stable   layer
                                             2
                                 height (ng/m )
                                 Total  deposition   amount   of  S09
                                       2
                                 (Kg/Km)  due  to  dry  deposition  and
                                 precipitation  scavenging
                                 Total  deposition  amount  of   sulfate
                                       2
                                 (Kg/Km )  due  to  dry  deposition  and
                                 precipitation  scavenging
                                 Deposition  amount  of S09 due  to  pre-
                                                  2
                                 cipitation  (Kg/Km )
                                 Deposition  amount  of  sulfate due to
                                                      2
                                 precipitation  (Kg/Km)
                                      30

-------
Here, the deposition amounts of SO,, and sulfate on the surface are calculated

from (V i+fV i)xC-, and (V 2+fV 2)xC2-  *n Model B, the deposition amounts due
to precipitation only are also calculated.

4.4  PRELIMINARY COMPARISON OF THE OUTPUT OF MODEL A AND MODEL B

     In  order to  compare  the performances  of Models A  and B,  the follow-
ing  preliminary  calculations were  conducted.   The source  was  assumed to be
located at  38.4°N  and  90.1°W.   The  region  between  30°N  and 45°N and between
90°W and  105°W was considered.   The source concentrations of S09 and sulfate
                       33
were assumed as 30 ug/m  and 0 ug/m  , respectively.

     It was also assumed that no precipitation fell  over the area.  Realizing
the  difference  of  atmospheric  conditions  between  daytime and nighttime,
different values of removal terms were assigned for these times.  The follow-
ing values were used for this calculation.

            Daytime                            Nighttime

     V -,       2         cm/sec              1         cm/sec

     V -       0-2       cm/sec              0.1       cm/sec

     K         6xlO"6    sec"1               3xlO"6    sec"1

     Vs-^       0         cm/sec              0         cm/sec

     V 2       0         cm/sec              0         cm/sec

     V.-,       0         cm/sec              0         cm/sec

     V >2       0         cm/sec              0         cm/sec

     The  calculation of  trajectories  and  dispersion  parameters were  made
using  observed  wind  data  supplied  by  NOAA's Air  Resources  Laboratory  at
Silver Spring, Maryland.   The  calculations  were conducted for two days, from
May  1,  1974 to  May 2,  1974.  Trajectories were initiated every 6 hours.  The
daytime mixing height H?  was assumed to  be  2000  m,  and the nighttime mixing

height H^ was  assumed  to be 500 m.   For this test-run the background concen-

trations  of both  S0?  and  sulfate  in  the  region  under  consideration were

assumed to be zero.

     Trajectories  and dispersion  parameters for this example have been shown
in Figs. 2 and 3 and Figs.  4 to 7, respectively.

     The  output  of Model  A is shown  in Figs. 15  to 18.   Figures  19 to 24
give  the output  of Model  B.    It   can  be  seen  from  a  comparison  of these
figures  that  S02  concentrations obtained from both Model A  and  Model  B are
                                      31

-------
                        5  ;   •   •  ;   -I •   •
                        -.  \   \   *  =.   Y  '   '
                        ?•?••/!•=
                                                                O>
                                                               -o
                                                                o
                                                                 CM
                                                               O
                                                               CO
                                                                m
                                                                s_
                                                               -P
                                                                c
                                                                O)
                                                                u
                                                                c
                                                                o
                                                                (J

                                                                O)
                                                                O5
                                                                (C
                                                                s-
                                                                OJ
                                                                >
                                                                to
                                                                o

                                                                c
                                                                o

                                                               -t->
                                                                3


                                                                si



                                                               o



                                                               Lf)
                                                                HI
                                                                S-
                                                                3
                                                                D5
32

-------
                                                                                             •   i
                                                                                                             OJ
                                                                                                             T3
                                                                                                             O
                                                                                                             O)
                                                                                                             IL
                                                                                                             OJ
                                                                                                             +J
                                                                                                             (O
                                                                                                             O


                                                                                                             1/5


                                                                                                             O
                                                                                                             03
                                                                                                             S-
                                                                                                             -t->
                                                                                                             c
                                                                                                             cu
                                                                                                             u
                                                                                                             c
                                                                                                             O
                                                                                                             u

                                                                                                             o>
                                                                                                             D5
                                                                                                             03
                                                                                                             s_
                                                                                                             QJ

                                                                                                             ro
                                                                                                             O

                                                                                                            -p
                                                                                                             01
                                                                                                             s_
                                                                                                             D5
M   }   M  M  M   M  ;  i   3  i  i   ;   ;•  :   ;   z  2
                                            33

-------
                                                          01
                                                         TD
                                                          O
                                                        CNJ
                                                          cn
                                                           CM
                                                          O
                                                          to
                                                          o

                                                          in
                                                          -P
                                                          c:
                                                          3
                                                          o

                                                          re

                                                          c.
                                                          o
                                                          o
                                                          Q.
                                                          O)
                                                          C.
                                                          o
                                                          in

                                                          o
                                                          
-------
                                                           O)
                                                          -o
                                                           o
                                                         CXJ
                                                           CD
                                                           CD
                                                          -P
                                                           (0
                                                           o

                                                           ra

                                                           c
                                                           a
                                                           in
                                                           O
                                                           Q.
                                                           c
                                                           o
                                                           S-
                                                          -p
                                                           to
                                                          00
                                                           o>
                                                           O5
35

-------
                                                                                                                              CO
i  i
    »'
    .
                                                                                                                              o>
                                                                                                                              TD
                                                                                                                              O
                                                                                                                               O)
                                                                                                                               U
                                                                                                                               s-
                                                                                                                               3
                                                                                                                               in

                                                                                                                               
                                                                                                                               (0
                                                                                                                              O
                                                                                                                              CO
                                                                                                                               in
                                                                                                                               c
                                                                                                                               O

                                                                                                                              -p
                                                                                                                               m
                                                                                                                               s_
                                                                                                                               0)
                                                                                                                               U
                                                                                                                               c:
                                                                                                                               o
                                                                                                                               O

                                                                                                                               0)
                                                                                                                               O5
                                                                                                                               (O
                                                                                                                               S-
                                                                                                                               d)
                                                                                                                               >
                                                                                                                               (D
 o

-p


 S-

 in
•i—
a



en
                                                                                                                               O)
                                                                                                                               s-
                                                                                                                               3
                                                                                                                               O5

-------
                                                             £

                                                             on
                                                             QJ
                                                            _c

                                                             01
                                                             c

                                                             x

                                                             E

                                                             Ol
                                                             O5

                                                             C

                                                             O)
                                                            ^:
                                                            -t->

                                                             OJ
                                                             >
                                                             o
                                                            XI
                                                             to

                                                              CM
                                                            O
                                                            I/)
                                                            c
                                                            o
                                                            to
                                                            S-
                                                            01
                                                            u
                                                            c
                                                            o
                                                            (J

                                                            QJ
                                                            CD
                                                            tO
                                                            s_
                                                            CD
                                                            >
                                                            to
                                                            c:
                                                            o
                                                            s_
                                                           Q  O
                                                           O
                                                           CSJ
                                                            O)
                                                            S-
                                                            02
37

-------
                                                                                                                          01
                                                                                                                         T3
                                                                                                                          O
                                tS»tttttlt

                                "•••*.?   ?   ' Xl
tr>
                                                                                                                          01
                                                                                                                          (J
                                                                                                                          
                                                                                                                          (0


                                                                                                                          0)
                                                                                                                          +J
                                                                                                                          03
                                                                                                                          in
                                                                                                                          c
                                                                                                                          o
                                                                                                                          ro
                                                                                                                          S-
                                                                                                                          O)
                                                                                                                          (J
                                                                                                                          o
                                                                                                                          u
                                                                                                                          o>
                                                                                                                          O5
                                                                                                                          (O
                                                                                                                          S-
                                                                                                                          o>
                                                                                                                          >
                                                                                                                          (XJ
                                                                                                                          _Q

                                                                                                                           si
                                                                                                                          -l->
                                                                                                                           to

                                                                                                                          o
H  H  M   M
                                                                                                                          CSJ
                                                                                                                           01
                                                       38

-------
                                                             O)
                                                             S-
                                                             QJ
i  i   i         ;
                                                             03
                                                            -D
                                                             C
                                                             o
                                                            _a
                                                             01
                                                             en

                                                             c.

                                                             0)
                                                            £:
                                                            -(->

                                                             O)

                                                             o
                                                            JD
                                                            a
                                                            to
                                                            C
                                                            o
                                                            (T3
                                                            O)
                                                            O
                                                            C
                                                            o
                                                            u

                                                            ai
                                                            D5
                                                            03

                                                            ai
                                                            o

                                                            c
                                                            o
                               M   H  H
                                                               CQ
                                                            S_ T3
                                                            -*->  O
O
                                                            CM
                                                            CSJ
                                                            a>
                                                            O)
39

-------
t:;;tt«::«:
»  «  »  !  !  i  *  •  •  S   !
                                                                          CQ
                                                                          0)
                                                                          -a
                                                                          o
                                                                          05
                                                                           CO
                                                                          o
                                                                           3
                                                                           O

                                                                           1
                                                                           o

                                                                          +3
                                                                           a
                                                                           o.
                                                                           01
                                                                          T3
                                                                           O

                                                                           c
                                                                           o
                                                                          •r—
                                                                          •4->
                                                                           3
                                                                           s
                                                                          +J
                                                                           l/l
                                                                          CO
                                                                          CM
                                                                           01
                                                                           S-
                40

-------
                                                               O)
                                                              -a
                                                               o
                                                               05
                                                               O)
                                                              -fJ
                                                               fO
                                                               o

                                                               in

                                                               c

                                                               o

                                                               rO


                                                               O
                                                               in
                                                               O
                                                               a.
                                                               01
                                                              TJ
                                                              c
                                                              o
                                                              3
                                                              _a

                                                              s-
                                                              CsJ
                                                              O)
                                                              CD
41

-------
very similar.  However,  the  sulfate  distribution calculated by Model A shows
different features from  that  calculated by Model B.   Because of the prelimi-
nary nature  of these  test-runs,  conclusions from the  above  results will not
be drawn.

     The  computing  time  required by  Model B  is  about three  times  longer
than  that  required  by  Model A.   Interpolation  schemes of  concentrations
along trajectory  into  grid  points use more than  90  percent of the computing
time.   The   computing  time  is  proportional to  the  number of  grid points,
number  of  sources,  number  of trajectories  and  number of  days  for  which
calculations are carried out.
                                      42

-------
                                  CHAPTER 5

                       DETAILED STRUCTURE OF THE MODELS
     In order  to calculate  the  distributions of SOp  and  sulfate concentra-

tions  due  to  multiple sources, Model A  as  well  as Model B  are  divided into
two major  routines,  a trajectory  program and a  concentration program.   The
present versions  of  either  Model  A  or  Model B can calculate  the concentra-
tions  due  to  five sources  at a  time.   The concentrations  due  to  more than
five sources can be calculated by applying the model  repeatedly.

     Both models can  be  used to calculate the average concentrations of S02

and sulfate for time  periods longer than 24 hours.

5.1  TRAJECTORY PROGRAM

5.1.1  Flow Charts

     Flow charts of the trajectory calculation routines for Model A and Model
B are shown in Figs.  25 and 26.

5.1.2  Description

     The function of  the trajectory program is to use upper-air multi-level
wind speed  and  direction observations from a randomly distributed network of
reporting  stations to compute trajectories, dispersion  parameters  and other
parameters  along  the trajectories  within  layers  of  specified thickness.

     The major  input parameters  to  the  program  are   latitude and  longitude
values  of  stations,  wind  direction  and  speed  data  as  a  function  of height
from rawinsonde observations.  These data are on magnetic tapes.

     The major  output consists of latitude and longitude  values of the end-
points  of  trajectory segments,  mean wind speeds, dispersion  parameters and
other parameters which have been described in the previous chapter.

Model A

     The program of   trajectory  calculations consist  of a  main  program and
nine subroutines, plus seven subroutines which are used  in the transmittal of
information from the data.
                                      43

-------
O5
s_
o
X
O)
0.
O)
4J
X
QJ
           Read governing
           parameters  from
           card
            Print  governing
            parameter  values
            Calculate

              u",  v",  ov  ,  av
                     A   y
            for each radiosonde
            station
                                          observed
                                          wind data
Calculate
 •  latitude and longitude of endpoint of trajectory
   segment
 •  mean wind and dispersion parameter along trajectory
 •  other parameters required in the second program
                 Print above  parameters
                                                   in file
                      Stop
  Figure  25.   Flow  diagram of trajectory program of Model  A.
                                  44

-------
        i.
        o
        X
        
-------
     TRAJET is the main  program in which the loops of number of days, number
of origins, number of trajectories per day,  and number of trajectory segments
are defined.   The output parameters are written in this program.

     INPUT is the  subroutine  to read control parameters from input cards and
to define  other  parameters.   The input parameters for  the  program are given
in Table 1.

     DTABKO is the subroutine to make data  blocks of averaged wind and dis-
persion parameters,  calling RDAVQ in which wind data are read in, and x- and
y-components of the mean wind are calculated for each station.

     AWIND is called from RDAVO to average winds and to calculate dispersion
parameters for each station.

     DISQ  is  the subroutine  in which  latitude  and   longitude  of trajectory
segments,  dispersion parameters, mean  wind speeds  and  other  parameters are
calculated using  the data block calculated in  DTABKO.   Subroutine ITSIW is
called from DISO  and calculates the weighting factors  and  the contributions
of  individual  data  to  a trajectory segment calculation.   Subroutine XSZ is
to calculate  angles  a and p,  and  distance  parameters t and d which are used
in the second program of concentration calculations.

     KKMM  is the subroutine to determine proper trajectory segments, and time
and day in a data block.

     ALTDTA  provides  alternate  data   for  the  output of  the program  when
outputs are not calculated because of unavailability of input data.

     CLSTM is a  subroutine  to provide  an alternate  set of  input data within
the closest synoptic time interval for the calculation of output parameters.

     Subroutines  BOUT,  POSTP,  RDDATE,  RDSTHD   RDWIND,  RDDATA and ATAPE are
used to read the data from the input tapes.Output parameters of the trajec-
tory program of Model A are given in Table 2.  These parameters for different
sources (origin)  are stored  in different files, since they are used as input
data for the concentration computation program.

Model B

     The structure of this  program is similar to that of Model A.  The major
differences of Model  B from Model A are:

     (i)   A  temporary file  to  store  wind  data  for repeated use  is added.

     (ii)  Subroutines DIS02   and  DIS03 are  added.   The  roles  of these sub-
           routines are similar to those of DISO, but DIS02 is for the wind of
           the  layer   between   the  surface  and  the   nighttime stable  layer
           height, and  DIS03  is for the wind of  the  layer between the night-
           time stable layer height and the daytime mixing height.
                                      46

-------
   TABLE  1.   INPUT PARAMETERS FOR THE TRAJECTORY PROGRAM OF MODEL A
Card No.
1
2*6
Parameter
Names
NO
NDY
OID
OLAT
OLON
Definition
Number of origins
Number of days for which computations are
desired
Name of origins (sources)
Latitude of origin (sources)
Longitude of origin (sources)
 7*11

-12
 13


 14

 15

 16
 17


 18
WIOROT

IBDY
IMO
IBYR
IHOUR
IBMO

IDIR
NDYDUR

NDYDTA

WTYPE
Width of sources

Day   \
Month (      of the beginning of
Year  I
Hour  )        computation
Month in logical card

Direction of trajectory,  forward (FORW)
Duration in days

Number of days of wind input data

Type of wind input data,  observed (OBS)
                                               of boundaries for
                                                  observed wind input
                                                  data
                          of transport layer in meters


                           boundaries for map
DTABT
DTABB
DTABL
DTABR
LBAAT
LTAAT
ALATT
ALATB
ALONL
Top latitude
Bottom latitude
Left longitude
Right longitude
Base | ,
Top I of
Top )
Bottom > b
Left )
                                   47

-------
Parameter
  Names
 TSLAT
 TSLON
 UBAR
 SPREAD
 ALPHA
 BETA
 T
 R2
 UK
 ICNT
 SICNT
TABLE 2.   OUTPUT PARAMETERS OF PROGRAM A

  Definition
  Latitude of the endpoint of trajectory segment
  Longitude of the endpoint of trajectory segment
  Mean wind speed along trajectory segment
  Dispersion parameter
  Angle a defined in Figure 8
  Angle p defined in Figure 8
  Distance t defined in Figure 8
  Distance d defined in Figure 8
  Direction indicator

  Parameters necessary for mapping
                                 48

-------
    (iii) Subroutine  CONVER  is  added  in which  output  parameters  are  re-
          placed by differently-named parameters.

     (iv) The main program TRAJET  becomes  longer to calculate simultaneously
          four trajectories and parameters along these trajectories.
          Governing input  parameters for Model  B are  read  in a  subroutine
          INPUT and are shown in Table 3.

     Output parameters of  Model  B  are given in Table  4.   Since trajectories
of mean winds  in  three different layers are computed,  there  are four trajec-
tories for two-day periods.  Output parameters  for each trajectory are stored
separately in a different file.

5.2  CONCENTRATION CALCULATION PROGRAM

5.2.1  Flow Charts

     Flow charts  of the  concentration  calculation programs of Models  A and
B are shown in Figs.  27 and 28.

5.2.2  Description

     The  function  of  the  concentration  calculation program is to  use  input
data  generated in  the trajectory  program  for  the  computation  of  average
concentrations and deposition  amounts  of  S0? and sulfate over gridded areas.


Model A

     The program consists of a main program and two subroutines.

     In the main  program  TRAJET,  governing parameters which  have  been  given
originally in  the trajectory program are transferred  into the concentration
calculation program.   Input data generated in the trajectory  program are also
read from files in the main program.

     Subroutine CONCAL is the  major part  of  the  concentration  calculation
program,  in   which"tfie  concentration  calculations  along  trajectories  and
interpolations of the  plume concentrations to grid points are made.
terms
     polations of the plume concentrations to grid points are made.

     Subroutine REMOVE  is  called  from  CONCAL to give the values  of  removal
       according  to  the number  of  loops  which represent the  time  of  day.

     Input data which must be read in from cards are source concentrations of
S0? and of  sulfate,  and the width of the  source.   These data and are shown

in Table 5.

Model B

     In addition  to  the main  program and  two subroutines  used  in Model  A,
Model  B  calls upon  the subroutines DETCON,  PRECIP,  TRIANG,  CONHUL,  BADGET,
TMESH, TMESHI,  SORTI,   PVEC, and  STEST,  and the functions TRINTR  and LTEST.
                                      49

-------
TABLE 3.   INPUT PARAMETERS FOR THE TRAJECTORY PROGRAM OF PROGRAM B

Card No.
1


2^6






4




5

6
7
8



9


10


Parameter
Names
NO
NDY

OID
OLAT
OLON
WIORT
ERS00
L
ERSUL

IBDY
IMO
IBYR
IHOUR
IBMO
TDIR
NDYDUR
NDYDTA
WTYPE
DTABT
DTABB
DTABL
DTABR
LBAAT
LTAAT
LMAAT
ALATT
ALATB
ALONL

Definition
Number of sources



Number of days for which computations are
desired
Name \
[»
Width )
Emission rate
of S02
Emission rate from sources
of sulfate
Day \
Month ( of the beginning of
Year ( computation
Hour J
Month in logical cord
Direction of trajectory, forward (FORW)
Duration in days
Number of days of wind input data
Type of wind input data, observed (OBS)

















Top latitude \
Bottom latitude I uounaaries tor
Left longitude ( observed wind i
Right longitude )
Bottom of mixing height
Daytime mixing height
Nighttime mixing height
Top )
Bottom \ boundaries for map
Left )
nput







                                    50

-------
     TABLE 4.   OUTPUT PARAMETERS FOR THE TRAJECTORY PROGRAM OF MODEL B
Parameter
  Names

TTLAT1
TTLON1
UBAR1
SPREA1
ALPHA!
BETA1
Tl
R21
IJK1

TTLAT2
TTLON2
UBAR2
SPREA2
ALPHA2
BETA2
T2
R22
IJK2

TTLAT3
TTLON3
UBAR3
SPREA3
ALPHAS
BETA3
T3
R23
IJK3

TTLAT4
TTLON4
UBAR4
SPREA4
ALPHA4
BETA4
T4
R24
IJK4
Definition

Latitude of endpoint of trajectory 1
Longitude of endpoint of trajectory 1
Mean wind speed along trajectory 1
Dispersion parameter along trajectory 1
Angle a along trajectory 1, defined in Fig.  8
Angle p along trajectory 1, defined in Fig.  8
Distance t along trajectory 1, defined in Fig. 8
Distance d along trajectory 1, defined in Fig. 8
Direction indicator along trajectory 1

Latitude of endpoint of trajectory 2
Longitude of endpoint of trajectory 2
Mean wind speed along trajectory 2
Dispersion parameter along trajectory 2
Angle a along trajectory 2
Angle p along trajectory 2
Distance t along trajectory 2
Distance d along trajectory 2
Direction indicator along trajectory 2

Latitude of endpoint of trajectory 3
Longitude of endpoint of trajectory 3
Mean wind speed along trajectory 3
Dispersion parameter along trajectory 3
Angle a along trajectory 3
Angle p along trajectory 3
Distance t along trajectory 3
Distance d along trajectory 3
Direction indicator along trajectory 3

Latitude of endpoint of trajectory 4
Longitude of endpoint of trajectory 4
Mean wind speed along trajectory 4
Dispersion parameter along trajectory 4
Angle a along trajectory 4
Angle p along trajectory 4
Distance t along trajectory 4
Distance d along trajectory 4
Direction indicator along trajectory 4
                                    51

-------
        O)
        u

        3
        O
        GO
        X
        O)
                Read governing parameters
                Read input data generated
                in trajectory program
                Calculate concentration
                of S02 and sulfate

                along trajectory
                           i
                Writo input data
                Calculate the concentrations
                and deposition amount
                on grid point
Accumulate the concentrations
and deposition amount
                Calculate the average
                concentrations due to present
                number  of sources
                                         Source concentrations
                                         of S02 and sulfate

                                         and source width
                Write the average concentration
                and deposition amounts
                due to present number of sources
                          Stop

Figure 27.   Flow chart of concentration calculations by Model A.
                                      52

-------
         O
         4J
         O
                    Read  governing  parameters
                                   File of governing
                                   parameters
                    Read  input  data  generated
                    in  trajecotry  program
                                   File of input data
Calculate concentration of
SOp and sulfate along tra-
jectory
* .

Precipitation rate
and relative humidity
data
                               I
                    Write  concentrations  along  trajectory
Calculate the concentrations and
deposition amounts on grid points
                               I
                    Accumulate  the  concentrations  and
                    deposition  amounts  in  file
                                Stop
                             Read  file
                    Calculate  the  average  concentrations
                    Write  the  average  concentrations  and
                    deposition amounts
                                                 Stop
Figure 28.   Flow chart of concentration calculations by Model  B.
                                    53

-------
TABLE 5.   INPUT DATA FOR THE CONCENTRATION CALCULATIONS OF MODEL A

     Parameter
       Name              Definition

      ORCON              Source concentration of SOp
      SORCON             Source concentration of sulfate
      WIORO              Width of source area
     Output  parameters  of  this program  are shown  in  Table 6.   These  out-
put parameters are written for every grid point.

TABLE 6.  OUTPUT  PARAMETERS  OF  THE CONCENTRATION  CALCULATIONS OF  MODEL A


     Parameter
       Name              Definition
                                                           o
      XXJ                Average concentration of S00 (ug/m )
                                                               3
      SXXJ               Average concentration of sulfate (|jg/m )

      DXXJ               Deposition amount of SO, (Kg/Km2)
                                                            2
      DSXXJ              Deposition amount of sulfate (Kg/Km )

The  role of  the subroutine  DETCON is  to  redefine the  concentration value
according  to  the  number  of  trajectories  and  the number  of  loops.   The
subroutine PRECIP calls upon TRIANG and its attendant routines to interpolate
precipitation  and  relative  humidity  data  for  the midpoints  of trajectory
segments.  CONHUL,  TMESH,  TMESHI,  SORTRI. PVEC, and STEST, and the functions
TRINTR  and  LTEST  are  the  attendant  routines to  TRIANG.   The subroutine
BADGET calculates the sulfur budget in the area of interest.

     Input data read from cards are given in Table 7.

TABLE 7.  INPUT DATA FOR THE CONCENTRATION CALCULATIONS OF MODEL B

     Parameter
       Name                   Definition

     1ST                      Station number
     LAT                      Latitude of station
     LON                      Longitude of station
     RH                       Relative humidity at stations
     PS                       Precipitation rate at  stations

     Output parameters  of  Model  B are shown  in  Table  8.   In addition to the
various  parameters  at  grid points, the concentrations along trajectories are
given as output.
                                      54

-------
TABLE 8.   OUTPUT  PARAMETERS  OF  THE  CONCENTRATION  CALCULATION  PROGRAM  OF
          MODEL B

Parameter
  Name              Definition

 I                  Number of trajectory
 TSLAT              Latitude of trajectory endpoint
 TSLON              Longitude of trajectory endpoint
 CONC               Concentration of S02 along trajectory

 SCONC              Concentration of sulfate along trajectory
 M                  Subscript for the loop of day
 K                  Subscript for the loop of trajectory per day
 J                  Subscript for the loop of trajectory segment

 XXJ                Average surface concentration of SO,, (ug/m )

 XXJ2               Average   concentration   of   S09  above   the   nighttime
                                         3
                      mixing height (ug/m )                       3
 SXXJ               Average surface concentration of sulfate (ug/m )
 SXXJ2              Average  concentration  of  sulfate  above  the  nighttime
                                         o
                      mixing height (ug/m )        9
 DXXJ               Deposition amount of S09 (Kg/Km)
                                                       2
 DSXXJ              Deposition amount of sulfate (Kg/Km )        ,,
 PXXJ               Precipitation deposition amount of S09 (Kg/Km)
                                                                           2
 PSXXJ              Precipitation  deposition  amount   of   sulfate  (Kg/Km )


     FORTRAN  programs  of  Model  A  and  Model   B  are  given  in  Appendix  A
and B, respectively.
                                      55

-------
                                  CHAPTER 6

                         APPLICATIONS OF THE MODEL
6.1  INTRODUCTION
     In this  chapter we  describe  the results  of model applications.   From
Model B we calculated the  geographical  distributions  of  average  concentra-
tions of S02 and of sulfate over the region between 35°N and 45°N and between

75°W and 95°W, which encompasses the Ohio River basin.   Two applications were
made.   In application  (1),  10-day  averaged  concentrations and  deposition
amounts of SOp  and sulfate  were calculated.   In application  (2),  24-hour
averaged  concentrations  and deposition  amounts  over the  region were calcu-
lated.   The computed concentrations  at the surface level  were  compared with
the concentrations observed at stations located in the region.

6.2  APPLICATION (1)

6.2.1  Input Data

     In   this   application  we   calculated  10-day  averaged  concentrations
for the period from May 1 to May 10, 1974.   Averaged precipitation  scavenging
velocities and  average relative humidities based on climatological data were
used to calculate  removal  rates of SOp  and  sulfate  and transformation rates

of  S02  to sulfate.  Figures  29 and  30  were obtained  by  interpolating the
data which were  observed at sixty weather  stations  in  the  eastern United
States.    The  data were  used  for the  period between May  and  October, 1974.
                                                                   c
     Sixty point sources of S02 whose emission rate is more than 10  ton/year

were taken into consideration.   The geographical  locations  and the emission
rates are shown in  Fig.  31  (Clark,  1978).   Other  input  data  used  for the
calculations,  in  addition  to  precipitation  scavenging  velocity,  relative
humidity and emission rate, are as follows:

          Daytime mixing height              1600 m

          Nighttime stable layer height       250 m
          Dry deposition velocity of SOp

               daytime                          2 cm/sec
               nighttime                        1 cm/sec
                                      56

-------
                                                              £-
                                                              O)
                                                             -Q
                                                              O
                                                             +J
                                                              (J
                                                             O
                                                              I
                                                              rO
                                                              O)
                                                              in
                                                              S-
                                                              rd


                                                              S-
                                                              O
                                                              c
                                                              O

                                                              -p
                                                              fO
                                                              -p
                                                              u
                                                              HI
                                                              J-
                                                              Q.
                                                              O)
                                                              u
                                                              o>
                                                              to
                                                              (J
                                                              o
                                                              o
                                                              o
                                                              TO
                                                              >
                                                              O
                                                              E
                                                              O)
                                                              S-
                                                               W) I—
                                                              ••- cn
                                                              Q i-l
                                                              CSJ
                                                               ID
                                                               S-
                                                               cn
57

-------
                                                              c:
                                                              o
                                                              to
                                                              ro
                                                              
                                                              u
                                                              S-
                                                              O)
                                                              O-
                                                               01
                                                               >
                                                               OJ
                                                               O)
                                                               >
                                                               Ol
                                                               o
                                                               S-
                                                               D)


                                                               O)
                                                               CD
                                                               CD

                                                               O)
                                                               >
                                                               rd
                                                               3
                                                               -Q
                                                               to  o

                                                               StJ
                                                                  o
                                                               o
                                                               OO
                                                               O)
                                                               S-
                                                               O5
58

-------
1-
CO

GO
CO
00
vS
-rO
 X
       CM

       X
V \ CM ~
JSV> i e
l
-------
          Dry deposition velocity of sulfate

               daytime                        0.2 cm/sec
               nighttime                      0.1 cm/sec

          The ratio (K/X) for S09             5xl04
                                                  4
          The ratio (K/X) for sulfate         5x10

(K/X)  are  the ratios  of the concentration  of S0?  or sulfate  in  rainwater

to the  concentrations of those  pollutants  in air.   The heights of  the  day-
time mixing  layer and  of  the nighttime  stable  layer were based on  data by
Holzworth (1972).

     Calculations   were  conducted  using wind  data provided  by the  Air  Re-
sources Laboratory, NOAA at  Maryland.   Trajecotries were initiated from each
source every 12 hours.

6.2.2  Results and Discussion

     The results  of our computations are shown  in  Figs.  32 through 37.   The
average concentrations  of $62 at the surface  level  and above the nighttime

stable layer height are shown in Figs.  32 and 33, respectively.  As expected,
high concentrations of S02 were found in the area surrounding strong sources.

The eastern  part  of Ohio,  the western part of Pennsylvania and West Virginia
were under a high  concentration of S02, where several point sources with high

emission rates were located.

     Distributions of sulfate were more uniform than those of S02, as can be

seen in Figs. 34 and 35.  This is due to the fact that sulfate is formed with
time, and that  a  maximum concentration of  sulfate  is  attained several hours
after S0~ emission from the  source.  The computed amounts of sulfate concen-

trations were several  factors   greater  than  the values  observed  normally.

     The concentrations  vary sensitively with changes  in  the removal terms,
as discussed in Chapter 7.

     The distribution patterns   at  the surface  level  (Figs.   32  and 34) and
at the  level above the nighttime  stable  layer  (Figs. 33  and 35)  were only
slightly different.  This is  probably due to the fact that during this 10-day
period the wind shear with  height was not large enough to produce a signifi-
cant difference between  the  concentrations at the surface level and those at
the level above the nighttime stable layer.

     The deposition  amounts   of  SOp and sulfate, for  the  10-day period, are

shown in Figs.  36 and 37.   It can be seen that the patterns of contour lines
of SOp as well  as of sulfate were similar to the patterns of concentrations

of  the  respective  pollutants at  the  surface level.   Since  the  deposition
amount  is  calculated  as the product  of  surface level  concentration times
                                      60

-------
CM
-a
 o

 s-
 O)
 Q.

 O>
_c
+J

 s_
 o
                                                                                  
                                                                                  1/5
                                                                                  C
                                                                                  O
                                                                                  HI
                                                                                  u
                                                                                  c
                                                                                  o
                                                                                  
-------
                                              s-
                                              o
                                               

                                               O)
                                               >
                                               o
                                              X)
                                               re

                                              /—>
                                             en
                                               E

                                               cn
                                               ^.
                                              *~-s


                                               in
                                               c
                                               o

                                              -p
                                               re
 01  ,


 g!
 u

 CM <
O
CO

 O)
                                                   en
                                               c:
                                               o
                                               -l->  CL
                                               in
                                               • r-  CU
                                               ro
                                               co
                                               O)
                                               S-
                                               D)
62

-------
                                                    £_
                                                    

                                                   -t->
                                                    03
                                                    in
                                                    c
                                                    o
                                                    s_
                                                   4->
                                                    c
                                                    
                                                   1-
                                                   3
                                                   O)
63

-------
                                                                                  J-
                                                                                  o
                                                                                  OJ
CJ
                                                                                  01


                                                                                  +J
                                                                                  +J
                                                                                  _c
                                                                                  O5

                                                                                  c

                                                                                  Ol
                                                                                  -C
                                                                                  -(->

                                                                                  O)
                                                                                  >
                                                                                  o
                                                                                  .0
                                                                                   in
                                                                                   c
                                                                                   o

                                                                                  -13
                                                                                   nj
                                                                                   Ol
                                                                                   u   •
                                                                                   c «*•
                                                                                   o r^
                                                                                   O CT)
                                                                                      1-H
                                                                                   Ol
                                                                                   -P   »
                                                                                   
                                                                                   re
                                                                                   s_
 W> O>

55
                                                                                   LD
                                                                                   CO


                                                                                    01


                                                                                    3
                                                                                    O)
                          64

-------
                                        05
                                        c

                                        en
                                        c
                                        O)
                                        U
                                        U)
                                        to
                                        u
                                        QJ
                                        S-
                                        Q.
                                        (0
                                        in
                                        o
                                        CL
                                        O)
                                       "O
                                       -a

                                        o
                                       -P

                                        QJ
                                        3
                                       T3

                                         CSJ
                                       O
                                       OO  I
                                      c\j
                                           05
                                        O5
                                        to
                                       •*->
                                        c
                                        3
                                        O
                                        O  "

                                       5  o
                                        w  'si
                                        li
                                       T3
                                           CLI
                                        ro
                                        -(j
                                        o
                                       OO


                                        Ol
                                        i.
                                        13
                                        CT)
65

-------
                                                             re
                                                            -p
                                                             u
                                                             CD

                                                             Q.

                                                             -a
                                                             s=.
                                                             03

                                                             c.
                                                             o
                                                             in
                                                             o
                                                             o.
                                                             OJ
                                                             T3
                                                                cr>
                                                             Q) r-l
                                                             3
                                                             -a   -
                                                                o
                                                             /—.T-l
                                                           CM
                                                                 =1
                                                                 O
                                                             O)
                                                                •a
                                                               >  o
                                                              3  OJ
                                                              o  a.
                                                             to  a>
                                                              o

                                                             +j  o
                                                              O  O5
                                                              O- C
                                                               •!-
                                                             T3  O5
                                                                 C
                                                             i—  OJ
                                                              m  >
                                                             -i->  nj
                                                              o  o
                                                             t—  wi
                                                             ro

                                                              a>
                                                              S-
                                                              Z3
                                                              05
66

-------
deposition  velocity,  including  dry  and  wet  deposition,  the  similarity
mentioned above could be expected.

6.3  APPLICATION (2)

     In this  application  we calculated the distributions  of 24-hour average
concentrations  and deposition  amounts of  SC^ and  sulfate over  the region
between 35°N  and  45°N  and between 75°W and 95°W.   The concentrations of S02

and  of sulfate were  measured most  extensively over  the  region on  May 11,
1974.   In  order to verify  our  model we calculated the  24-hour average con-
centrations for the same day.

6.3.1  Input Data

     From application  (1),  we learned that the concentration  values of sul-
fate calculated over  the  region were several  factors greater than the values
observed normally.  In order to obtain more realistic and dependable results,
we used the following assumptions for the removal  terms:

          Dry deposition velocity of SOp

                    Daytime                       2 cm/sec
                    Nighttime                     2 cm/sec

          Dry deposition velocity of sulfate

                    Daytime                     0.4 cm/sec
                    Nighttime                   0.4 cm/sec.

Because of  the  difficulty in obtaining hourly data of relative humidity over
the  region  for  the past,  the following values  were  used for the transforma-
tion rate of S02 to sulfate:


               Daytime K = 0.1 hr'1

               Nighttime  K = 0.01 hr"1

Such a  difference  in  the  magnitudes of transformation rates between daytime
and  nighttime is reported by Husar et al.  (1977).

     Another  change made  in the present calculations  is  in the value of the
dimensionless  ratio (K/X)V  for  SOp  and  sulfate.  Here  K  is  the pollutant
content  of rainwater  and x  is  the  concentration in  air.  In  the  previous
                                                                         A
application,  it was assumed that  (K/X) for both SO,, and sulfate is 5 x 10 .
                                                  f-        5
In the  present  application,  we assume that (K/X) is 5 x 10  .  Eventually the
assumption of equal values of this ratio for both, S02 and sulfate, will have

to yield  as  more  observational  evidence becomes available.   In  Fig.  38 the
locations and the  emission  rates of major S0?  sources used for the calcula-

tions  are  shown.   As  was  the case in  application (1), the  SO^ sources whose


                                      67

-------
                                                            S-
                                                            «j
                                                            O)
                                                            o
                                                            -p
                                                          CO
                                                            o
                                                            in
                                                            0)
                                                            u

                                                            3
                                                            O
                                                            in
                                                            in
                                                            in
                                                            O
                                                            to
                                                             in
                                                             cu
                                                             in
                                                             c
                                                             Ol
                                                            -a
                                                             c
                                                             (T3
                                                             C
                                                             O
                                                             u
                                                             o
                                                            ao
                                                            ro

                                                             a>
                                                             s-
                                                             ^
                                                             CD
68

-------
                                n
emission rates are more  than 10  ton/year are taken into consideration.   The
emission of  S0?  from  these  sources contains  about 90 percent  of  the total

emission over the area.

     Clark's (1978) original  emission rate estimate of S02 was revised after

application (1) was  carried  out.   For the present  purpose,  gridded emission
maps of  S0? for the United States  and  Canada east of the  Rocky Mountains

supplied by EPA (Clark, 1979) were used.

     The data  of  precipitation  rate  and precipitation  probability  for  81
stations located in the region were used to calculate the deposition amounts.
The following heights were used:

          Daytime mixing height              1600 m
          Nighttime stable layer  .            250 m

6.3.2  Method of Calculation

     Trajectories  from  each  source  area were  calculated  every   12  hours,
starting at 6  and  18 CST,  and  each  trajectory was  pursued for  48  hours.
Therefore,  in order to calculate 24-hour average concentrations,  we  must take
into consideration  the contributions  of trajectories which  started  up  to 2
days earlier.  In  Fig.  39,  the scheme for calculating 24-hour concentrations
is  shown.   Trajectory segments  drawn  in solid lines were  used  to  calculate
the  24-hour average concentrations.   For this  calculation, 1-degree  grid
spacing was used to save computing time.

6.3.3  Results and Discussion
     The distributions of  24-hour  average concentrations of SC^  at  the sur-
face and above  the  nighttime stable layer are  shown  in Figs.  40 and 41.   It
can be  seen that high concentrations  of  SC^ were calculated  over the  area
surrounding the sources.

     Figures 42 and  43  contain the distributions of sulfate concentration at
the surface  level  and at  the  level  above the  nighttime  stable  layer.   Both
figures show the very widespread area covering several states under high con-
centration  of  sulfate on  this day.    Clear  air covered  the western  part of
this region (Iowa and Missouri).

     The distributions of  deposition amounts of S0? and sulfate due to both,
dry deposition  and  precipitation,  are shown in  Figs.  44  and 45.   The dis-
tributions  of  deposition amounts  of SOp and  sulfate due  to  precipitation
only are  shown in  Figs.  46 and  47.  On May  11, 1974,  some  of the eastern
states did not receive precipitation, thus no deposition due to precipitation
was recounted there.
                                      69

-------









CM._

o" T
- T L L
OsJ.. 1
- T "
I
.. I - L
CM.. i -
".. i I
— CM —
II II II


T
T
1 T
T
T T T


. .


. 1





CM — CVJ
it it ii
I 1
T 1
T i
T 1
T 1
T I
T
1
ro

Q

CO
1


>-
§
— CM
n ii









^ 
-------
                                                                   cr>
                                                                    c
                                                                    o
                                                                    CD
                                                                    >

                                                                    Ol
                                                                    HI
                                                                    u
                                                                    S-
                                                                    3
                                                                    I/)


                                                                    Ol
                                                                    1/5
                                                                    C
                                                                    O
                                                                    c
                                                                    Ol
                                                                    o
                                                                    u

                                                                     CM
                                                                   o
                                                                   to
                                                                   Ol
                                                                   3

                                                                   O5
71

-------
CNJ
                                                                                         oi

                                                                                        S
                                                                                         CO
                                                                                        -P
                                                                                         in

                                                                                         O)
                                                                                        -t->

                                                                                         0)
                                                                                         >
                                                                                         o
                                                                                        .0
                                                                                         to
                                                                                         c.
                                                                                         o
                                                                                         (O
                                                                                         S-
                                                                                         (J
                                                                                         c
                                                                                         o
                                                                                           CSJ
                                                                                         o
                                                                                         oo
                                                                                          o

                                                                                         •13
                                                                                          ^
                                                                                         -Q

                                                                                          si
                                                                                         +J
                                                                                          en
                                                                                          O)
                                                                                          s_
                          72

-------
U>
                                                                                                           C
                                                                                                           o
                                                                                                           O)
                                                                                                           >
                                                                                                           QJ
                                                                                                           OJ
                                                                                                           U
                                                                                                           O)
                                                                                                           TO
                                                                                                           I/)
                                                                                                           c
                                                                                                           o
                                                                                                           o>
                                                                                                           u
                                                                                                           c
                                                                                                           o
                                                                                                           U

                                                                                                           OJ
                                                                                                          +J
                                                                                                           03
                                                                                                           o

                                                                                                           c
                                                                                                           o
                                                                                                          CM
                                                                                                          «d-


                                                                                                           Ol
                                                                                                           s_
                                                                                                           3
                                                                                                           05
                                            73

-------
                                                                S-
                                                                Ol
                                                                 01

                                                                !n
                                                                 (0
                                                                .u
                                                                 in

                                                                 Oi
                                                                -P

                                                                 O)
                                                                -l-i

                                                                 o>
                                                                 >
                                                                 o
                                                                _Q
                                                                 CO

                                                                /—-s
                                                               co
                                                                 
                                                                 c
                                                                 o
                                                                 (0

                                                                 -(->
                                                                 c:
                                                                 o>
                                                                 u
                                                                 c:
                                                                 o
                                                                 u

                                                                 Ol
                                                                 -l->
                                                                 (O
                                                                  c.
                                                                  o
                                                                  (fl
                                                                 CO
                                                                  
-------
                                                       c
                                                       o
                                                       c
                                                       o
                                                       rO
                                                      -t->

                                                       O-

                                                       U
                                                       
-------
CSJ
                                                                                 03
                                                                                 -P
U
Ol
i.
O-

tO
                                                                                  IS)
                                                                                  o
                                                                                  a.
                                                                                  o>
                                                                                 TD
                                                                                 T3

                                                                                  O
                                                                                 4->

                                                                                  Ol
                                                                                  3
                                                                                 •o
                                                                                  O)
                                                                                  3
                                                                                  O
                                                                                  C
                                                                                  O
                                                                                  in
                                                                                  o
                                                                                  O.
                                                                                  a>
                                                                                  -a
                                                                                  o>
 CVI
                                                                                   C. T
                                                                                   O
                                                                                  -!-> rH
                                                                                   to
                                                                                  •r- C
                                                                                  O O
                                                                                  LD
                                                                                   O)
                                                                                   S-
                                                                                   3
                                                                                   CT
                     76

-------
                                                          c
                                                          o

                                                          >>

                                                          c
                                                          o

                                                          c
                                                          o
                                                          •r—
                                                          +J
                                                          re
                                                          +j
                                                          •r~-
                                                          Q.
                                                          0)

                                                          Q.
                                                          
-------
                                                           ra
                                                          -P
                                                           u
                                                           CD

                                                           CL
                                                           O)
                                                           3
                                                          -o
                                                         esj

                                                          1

                                                           O)
                                                           o

                                                           (O

                                                           c
                                                           o

                                                          -J3
                                                          •r—

                                                           o
                                                           Q.
                                                           


                                                           3

                                                           O5
78

-------
     The sulfur budget over the region was calculated as follows:


          Sulfur emission                    24,546 tons

          Removal by wet deposition
               as S02                         4,293 tons

               as sulfate                     3,005 tons

                                              7,298 tons


          Removal by dry deposition
               as S02                        10,176 tons

               as sulfate                     2,771 tons
                                             12,947 tons
          Total deposition of sulfur         20,246 tons
          Amount exported from the boundaries
            of the region                     4,300 tons

According to  these calculations,  about  30 percent of  sulfur  are  removed by
precipitation,  about  53 percent  are  removed by  dry deposition and  only 17
percent  are  exported  from the  boundary  of the  region.   Of  course,  these
estimates are based on the removal parameters used.

     In order  to  verify the performance of  the model,  the concentrations of
S02 and  sulfate calculated for the surface  level  were  compared with concen-

trations observed  at  stations  located in the region.  Observed data supplied
by EPA were used.

     Numerous stations observed S02 concentrations on May 11, 1974.  In order

to avoid data  points  containing local effects,  we used only those data taken
at stations classified as "rural", "remote", and "suburban-residential" (EPA,
1974).   Data  taken at  73  stations defined as above, were  compared with the
calculated concentrations  of  S02.   On the other hand, the number of stations

which observed  the sulfate concentrations is limited.  Sulfate data taken at
41 stations,  regardless of their classifications,  were compared.

     The observed  concentrations  of  S02  are plotted in Fig.  48 against the
calculated ones.   Similar plots  for  sulfate are  shown in  Fig.  49.   Notice
that the scales are logarithmic in both  figures.   A few points in both dia-
grams are overlapping.

     The correlation  coefficients  between the mean deviation of the observed
concentrations  and  mean deviation of  the calculated concentrations were cal-
culated as follows:

     for S02 concentrations, r = 0.635,  r  = 0.302

     and for sulfate concentrations, r = 0.487,   r  = 0.393.
                                      79

-------
    fee
    i-  e
    2 \
    UJ
        CM
    LJ

    a:
    LU
    CO
    GO
    o
10
1.0
O.I
  0.1
                                   *»«
H*'hk  K'M' kik
          LJIlJ
   1.0
10
            CALCULATED  CONCENTRATION OF
Figure 48.  Relationship between calculated and observed S02 concentration.
                            80

-------
  If

  £l
  tt: 10
  H e
  LU CP
  O
     -
  o:
  LU
  en
  CD
  o
10 r
         CALCULATED  CONCENTRATION OF

                 SULFATE (/xg/m3) —
Figure 49.  Relationship between calculated and observed sulfate concentra-

        tion.
                       81

-------
Here, r  is the  correlation  coefficient, r   is  the critical  value  for cor-

relation coefficients with 99.9%  confidence  levels.   Since r  is  larger than
rc in both SCL and sulfate,  we can conclude that the distribution patterns of

calculated concentrations of SOp  and  sulfate are statistically  related  to

those of observed  concentrations  with  the correlation coefficients r = 0.635
and 0.487,  respectively.

6.4  SUMMARY

     The model was  applied  to calculate the distributions of SCL and sulfate

concentrations over  the  region between 35°N and 45°N, and  between  75°W and
95°W.  In  the  first example, using climatological data of relative  humidity
and precipitation  rate,  the  10-day average concentrations of SCL and sulfate
were  calculated.   Although  the   distribution   patterns   seem  qualitatively
reasonable, it was  noticed  that the magnitudes of sulfate concentration were
several   factors  greater  than  those observed normally.   The  reason  for this
discrepancy is that  the  magnitudes of removal terms used were inappropriate.
For  this  reason, the magnitudes  of these removal terms  were  changed  in the
second application, where the distribution of 24-hour average concentrations
were calculated.   The  concentrations  of both SCL and  sulfate  thus obtained

were compared  with those observed.  The  distribution  patterns of calculated
concentrations of  SC^ and  sulfate were  statistically  related to those  of
observed  concentrations   with  the correlation  coefficients   r  = 0.635  and
0.487, respectively.

     With  further  refinements,  we feel  confident  that correlation  coef-
ficients with even larger values can be obtained.  In order to save computing
time, we  calculated the  concentration values for  1 degree  grid spacing in
the  second application.   If  0.5 degree grid spacing had been used, as in the
first application, we might  have obtained better results.
                                    82

-------
                                  CHAPTER 7

               REGIONAL RESIDENCE TIMES OF S02 AND SULFATE OVER

                          THE EASTERN UNITED STATES
7.1  INTRODUCTION

     A  parameter  which adequately characterizes the  fate  of pollutants over
long time- and space-scales is the "residence time" or "turnover time" in the
atmosphere.  The  residence time  of  a  pollutant  can be defined  as  the time
required  to  decrease  the  burden  of  that pollutant in the  atmosphere over a
certain region to  a value which  is  1/e of the original  value, assuming that
no  further input of  the  pollutant into the atmosphere  from below or across
the lateral  boundaries of the region occurs.   The  turnover time is the time
equal   to   the  total  mass  of a  pollutant in  the  atmosphere over  a certain
region divided by the  removal flux of the pollutant.

     We calculated  the residence  time of SOp over the eastern U.S. (Henmi et

al.,  1977 and  1978).  However,  there  were  shortcomings  in those  earlier
studies:  (i)  the transformation rate of SOp to sulfate  was assumed to be
constant and (ii) the residence time  of sulfate was not considered.

     In  the  present  study,  the  observational  data  on  transformation rates
were scrutinized  and  an  empirical  formula for the transformation rate as a
function of relative humidity was deduced.  The residence time of sulfate was
defined mathematically.
     Calculations were made  of the regional residence  times  of S02 and sul-

fate over the region of the United States east of 105°W longitude where major
industrial activities are located.  The year was divided into the cold season
(January  -  April,  and November  and  December)  and  the  warm  season  (May -
October), and the regional residence times for each of these two seasons were
calculated.

7.2  DATA USED

7.2.1  Mean Mixing-Layer Height, H, and Precipitation Data

     Mean  mixing-layer  height and  precipitation  data were  analyzed  in a
previous  study  (Henmi  et  al. ,  1977 and 1978).   The same data were used here.
                                    83

-------
  7.2.2  Relative  Humidity  Data

       Since  the transformation  rate  of  S0?  to  sulfate  is derived  as  a  function

  of relative humidity, data on  relative  humidity are  necessary as input.  The
  monthly average  relative  humidities of the  year  of  1974 were  obtained  from
  the  Climatological  Data,  National  Summary   (U.S.   Department  of Commerce,
  1974),  and the  seasonal  average  values  for 61 stations  located in the  study
  area were used  for the computation  of  transformation  data.

       Figures  50  and  51 show  the seasonal average  relative humidities  over
  the  eastern  U.S.  for the cold  season  and   the  warm season,  respectively.

  7.3  APPROACH

  7.3.1  Residence Times of S02  and Sulfate


       In order to  calculate the  residence  times  of S02 and  sulfate, we  assume

  that they are distributed uniformly vertically through the  mixing layer,  that
  no significant  net transports  of the  pollutants occur across the  boundaries
  of the region,  that  the  pollutants are  removed  from  the  layer by dry deposi-
  tion and precipitation   scavenging, and that SOp  is  transformed into sulfate

  by a first-order reaction.  Under these  assumptions,  we can write


            dC-,

                  -     + k
                           Pl


            dC2                    3
            -af = -(xd2 + VC2 + I Kci


C, and C0  are  the concentrations of S00 and  of  sulfate,  A,  and A,  are the
 12                              2                '   d-.       dp
depletion  rates  due to dry  deposition,  k    and  k   are  the  depletion  rates
                                         pl       P2
due to  precipitation.   Subscripts 1 and 2 stand for S00 and sulfate.   The
                                                                        3
transformation rate from S02 to sulfate is  represented by K.   The ratio  j is
the ratio of molecular weights of sulfate (SOT) to sulfur dioxide (SOp).   The
solutions to these equations are given by

     C1 = C1Q exp[-(Ad  + kp  + K)t]                                  (23)
                                      84

-------
Figure  50.   Seasonally  averaged  relative  humidity  over the  eastern United
             States for the cold season.
                                      85

-------
Figure  51.   Seasonally  averaged  relative  humidity  over the  eastern United
              States for the warm season.
                                      86

-------
                         ~\f\
                                                        kp2)t]
                                            exp[-(\.  + k   +  K)t]j    (24)
                                                   dl    pl       '
where C-.Q and  C^g are initial concentrations of SCL and sulfate,  respective-

ly.  Since we  assumed that sulfate is produced only by the transformation of
S02, CpQ = 0.  Therefore,
                                          K)
                                            exp[-(\ri  + k   + K)t]|    (25)
                                                   °1    pl       '
     The concentrations  C-,  and C2 computed from Eqs. (23) and  (25) are shown

in Fig. 52.   According to this figure,  the  e-folding residence time of S0?
T<.Q ,  can be defined as
           S09   K .  + k   + K
             2    d     P
                                                                       (26)
The time  T  at  which the  concentration  of  sulfate,  Cp,  reaches a maximum,
2 ,
C  , can be calculated from

          dC
                        -i«
Therefore,
               = 0
                       -
                         K) -
                                        + k   + K)-exp[-(\.  +  k   + K)t]J
                                      1    "l              1    "l       '
                                          ln
                                                                      (27)
The maximum concentration of sulfate, Cp-, is given by
                                      87

-------
     0

Figure  52.
Tm    Ts
           S02
                 TIME
Tc
SUL
Schematic  plot of  the  concentrations  of
function of  time.
                                          and  sulfate  as a

-------
           3               K
     C2m = 1 (Ad  + k   + K) - (Ad  + k  ) C]
                            k_  + K
       •exp
                                           In
             (A ,  + A   + K) - (A.  + A  J    A,  + A   + K
                1    Pi           9    Po       1    Pi
          exp
         -i
(28)
We define the  residence  time of sulfate 1   -.  as  the time elapsed until the

concentration of sulfate, Cp, becomes e  'C*-.  Therefore,
 2  _
      exp  -(A,  + k   + K) T
sulj '
                                            -1
exp
~ P
~\ + V + K
-1
•
exp
(A. + kn + K\
dT P! \
n -1 1
\*\ )
- 1
(2<
0
Equation (29) is solved numerically with iteration methods.

7.3.2  Chemical Transformation

     There are  several  observational  studies available on the transformation
rate of  SOp to  sulfate.   Unfortunately,  the studies  conducted  in the field

reveal  a variability  of the transformation rate  over  three  orders of magni-
tude, depending  on  the  concentrations of the plume,  relative humidity,  etc.
In this study we are interested in the fates of SCL and of sulfate after both
pollutants have  been  uniformly mixed in the mixing  layer.   For this reason,
the  observational  data  of the  concentrations  of S0? and sulfate  taken  at

least one hour after emissions were scrutinized, and the transformation rates
were plotted in  Fig.   53  as  a function  of relative humidity.   From  this
figure, the transformation rate K is derived as
     K = 3.304 x 10"4 • exp(0.063 • RH)  hr"1

where RH is the relative humidity in percent.
                                         (30)
     In previous  studies  (Henmi  et al., 1977 and 1978), a constant value of

1  x 10  sec   was  used  for the transformation rate.   In  the present study,
the relationship of Eq. 30 was used.
                                      89

-------
  1.0
                         Smith and Jeffrey (1974)

                         University of Utah (1974)

                         Lusis and Phillips (1977)
                         Gartrell  (1963)
    .1
LU

OC
z
o
cr
O
P. 01
 .001
                40
                            60
Figure 53.
80
Transformation rate of S02 to  sulfate  as  a  function  of  relative
 humidity.
                                     90

-------
7.3.3  Dry Deposition and Precipitation Scavenging

     Deposition  velocities  for  SOp have  been  observed  by  a number  of in-

vestigators.   In  the  previous  study,  we reviewed several reports and assumed
that,  for  our purpose,  the dry deposition  velocity of  SCL  is  1 cm/sec re-
gardless of  the  region  and the season.  Little is known about the deposition
velocity  of   sulfate.    The only  known measurements  of sulfate  deposition
velocity  in  the  atmosphere yielded approximately  0.1 cm/sec  (Engelman and
Sehmel, 1976).

     Accordingly, the values

          V   = 1 cm/sec
           gl

          Vg2 =0.1 cm/sec

were  used  in the present  study.   Here,  V , is  the deposition  velocity  of
S00 and Vrt  is that of sulfate.            9
  2      g2
     The depletion rate A . due to dry deposition can be written as
               H

where H is the mean mixing layer height.

     The scavenging rate due to precipitation, \ ,  can be expressed as



          A  = (*)  . ! = !§
           p    x v   H   H

where K is the concentration of S02 or SOT in rainwater, x the concentrations

of  those  pollutants  in air,  and  P  the  mean precipitation  rate  during  a
precipitation  event.   The subscript  v  means that the  rat-'o  (K/X)  is formed
on a  volume  basis.   The depletion rate due to precipitation,  k ,  is given by
where f  is  the probability of precipitation events.  It can be expressed by

                 t
          f  =
i   is  the  length of the average wet period and i. is the length of the aver-

age  dry  period.   Data  of  t   and  T, were  shown  by Henmi  et al.  (1977  and
1978).                      p       d
                                      91

-------
     Values of (-)  for SCL have been scrutinized in our previous report, and
                    4
the value  of  5 x 10  has  been  chosen  as typical.  We  have  little  knowledge
about the  value of (-)  for  sulfate.   Therefore, in this study we  assume,

tentatively, the  value of  5  x 10   for that pollutant to be  identical  with
that for S02.


7.4  RESULTS

     The regional  residence times  of  S02 in  hours,  T<-Q ,  for  the  cold and

warm  seasons  are shown  in Figs.  54 and 55.   The regional  residence  times

of  sulfate in  hours,  T^y. , for the  cold and warm season are  given  in  Figs.

56 and 57.

     The following can be seen from these diagrams:


     1.    Both T^Q  and  T<.y,  are  longer in  the  warm  season  than in the cold

season  over the whole  region studied.  This  is due to  shorter dry periods
and  shallower  mixing  layers  in  the  cold  season than  in the  warm season.

     2.    Short  residence  times  characterize  the   region  surrounding  the
Great Lakes and the coastal regions.

     3.    Values  for  T<-Q  and  Tq,,  are found  to be relatively long in the

western parts  of  the  area under investigation, where the mixing layer height
is  large,  the  precipitation frequency is small  and  the relative humidity is
small.

     4.    The regional residence times of S0«, T™ , are in the range between

15  and  30  hours for the cold season and in the range between 15 and 40 hours
for the warm season.   T<.Q  in  the  present study  is  shorter than  the values

derived  in the previous study.  The reason  for this difference is  that in

the previous  study a  constant  value  of 1 x 10   sec    for the transforma-
tion rate was used.

     5.    The  regional  residence  time  of sulfate, T,  ,  defined in  the pre-
sent  study  is about  one order  of  magnitude greater than  T™ .   Values for

Tgy,   are  in  the  range between 150  and  450 hours for the cold season and in
the range between 200 and 500 hours for the warm season.
                                      92

-------
Figure 54.  The  regional  residence time of  SCL  in hours,
            season.
,  for the cold
                                      93

-------
40
  Figure 55.   The  regional  residence time of S00  in  hours,  Tcn ,  for the warm
              season.                            L             bU2
                                      94

-------
Figure 56.   The regional residence  time of sulfate in  hours,
             cold season.
                                ,  for the
95

-------
Figure 57.   The regional residence  time  of sulfate in  hours,
             warm season.
                                ,  for the
96

-------
7.5  SENSITIVITY ANALYSIS

     As can  be  seen  from Eqns. (26) and (29), the residence times of SOp and

sulfate are  dependent  on several  physical parameters whose values are deter-
mined  empirically  or experimentally.   These  parameters  include  the dry de-
position velocity  of  S0?,  Vg-,, the dry  deposition  velocity of sulfate, Vg^,

the  transformation rate of  SQ~ to sulfate, K,  and  the dimensionless ratios

of  SO, and  sulfate  contents in  rainwater  and air,  (-)cn   and  (-)Cn •   The
     ^                                               X ->U2       X ->u 4
actual   values  of  these  parameters may  be  different from  those  used in our
calculations of residence time.  Thus, it is necessary to perform sensitivity
analyses by varying systematically the values of these parameters.

     For each parameter, calculations were made with values varying about the
reference value, whereas  the other parameters remain at their reference val-
ues.   Changes in  residence  times  of S0?  and  sulfate are given in Table 9.

The  changes  of  residence times given in this table are based on climatologi-
cal  data for the  cold season obtained at Charleston, West Virgina.  Calcula-
tions  for  several  stations  show a  similar   range  of changes  in residence
times.

     This table also  indicates that the residence times change substantially
with the changes  of  these parameters.   Therefore, we must regard our results
as  approximate  until  better knowledge  about  these parameters  is obtained.

7.6  SUMMARY

     In this study, we have extended a previous investigation of the regional
residence times  of SCL,  using an empirical  relationship  between the trans-

formation rate  K  and  the relative humidity.   The  residence time of sulfate,
T<-y, , was defined mathematically and T^,,,  was also calculated over the region

of  the  United States  east of 105°W longitude  where  major industrial activi-
ties are located.

     The residence times  of S02 and sulfate were  calculated over the region
of  the  United States  east of 105°W longitude  where  major industrial activi-
ties are located.  The  regional residence times  of  S02 are in the range be-

tween  15 and  30  hours for the cold season and in the range between 15 and 40
hours for the warm season.

     The regional  residence  time  of sulfate is  about  one order of magnitude
greater than  that of  SO^,  ranging between  150 and 450  hours  for cold sea-

son and between 200 and 500 hours  for the warm season.
                                    97

-------






















CO
oc
LU
I—
LU
s:
—
1—
1 — 1
l>»
1 — 1
\—
CO
z
LU
CO


,
cn

LU
_J
OQ
£

























O>
XT
_4_3
o
in
<+- 1-
O CD
-P
tn o>
OJ E
rs re
t— t-
re re
> Q-

Ol

r-
O)
**• E
O -r-
CO I—

C 01
•i- U
C
~>
CO CO MIX MIX
> > *•—' v— •*





S3 &?
 CM
CM ro

+ i






a>
CM E
0 T-
CO r-

c ai
•r- U
t~~
ai a>
cn -o
C T-
re cn
-C CD
C_5 Q£






^^ ^^
f~^i f~^
co r^-

+ i





£-
x:
a> TD
=> 0)
i — in

> "^
\ s-
r~ x:
LO ^^
CM r^»
CD LO
CD CM

O)
U
C
at 
Qi
j-
x:
^»
r-
LO
CM
CD

CD


E 0
O -P
• r—
-P CM
ro CD
£-
O)
-P
0)
E
re

re
CL.
E CO
S-
0 t-
^» o
tn
C. O)
re -p ^d~
s- re o
1— S- CO ^£.


u
m
o in
0) \ t.
in E -c
"^v U ^^
E r^^
U i— 1 LO
CM
rH 0 O

II II o'

rH CM ||
cn cn
> > ^.


"&Q ^Q
csj i_n
. ,
00 U5
0 00
CO
|
-J-










^^
to ^^
• CD
CD
VO OT
p*^
+ i









^~ ID
0 O
i-H rH
X X
LO LO




LO
CD
rH -3-
X 0
LO CO
T3 C
C «r-
re re i^*
in S- o
tn CM co
0) O C. , — .
i— CO T- MIX
C "^t
O M- in
•i- 0 -P S-
in c -r— CM
c o a> re o
cu T- -P cn
'E -p c -a /->
•r- re o c: MIX
a s- o re ^




"^" LO
U CD O S-
a> T-H i— i x:
in x X \
^v LO LO r-~
E LO
O II II CM
i-H 0
CM *3" •
II 000
CO CO
T-\ ^ <~^ \\
cn M| x M| x
>





cn r^. to CM
• • * •
CM LO CO i—
1 II r—
1












^^ ^^ ^? ^^
CD CD CD CD
• • * •
CD O CD O





U
a>
tn
'*j
•P | *
• r— *f*.
in o CM
o o cn
a. i— >
Ol O)
o >



u
O) ^d" LD
tn O CD
-\^ f«— fl T~H
E X X
U LO LO
rH
II II
0
CM ^J
II 0 0
CO CO
CM /—s *~^
Cn Ml x Mix
> ^ ^





LO r*.
. .
00 LO
1 rH











^? fe^
0 0
* ,
co r*^«
CM CO
1 i







U U
a) 01
tn in

E E
U U
CM CO


(J

•1 — '1 —
CO O rH
o o cn
0. r~ >
0) CU
a >





i-
x:
**\
r^
LO
CM
o
,
o

II




































































-------
                                  CHAPTER 8

               NUMERICAL STUDY ON SULFATE CONTENT IN RAINWATER
8.1  INTRODUCTION

     The  extent,  severity,  and causes  of  acid  precipitation  are  becoming
topics of major concern in the United States.  In Europe it was reported many
years  ago that  the acidification  of  lakes and  rivers in  Scandinavia  was
caused mainly by long-range transport of pollutants from Biitain and from the
European  continent.  Acid  rain in  the northeastern United  States  is associ-
ated with air  parcels  that have travelled  through  major industrial  areas in
the midwestern and east-central states.

     Acid rains,  associated with sulfate pollution,  cause  structural,  agri-
cultural  and ecological  damage.   Because  of this  potential damage,  it is
important to  predict accurately air and water  quality under  future  use of
fuels with high sulfur content.

     Reliable continuous  precipitation  chemistry data  for  the  United  States
are sparse.   However, several attempts have been made to determine the chemi-
cal composition of  rain.   Junge and Werby (1958) measured the concentrations
of  chloride,  sodium, potassium, calcium,  and sulfate  in  rainwater  over  the
United States.   Average sulfate concentrations over the United States were in
the range of  1  mg/liter to 5 mg/liter.   Recent studies in a region surround-
ing the  St.  Louis  area (Hales and Dana,  1979)  show the extremely wide vari-
ability  in chemical  content from one event to another.  However, the average
sulfate  content of  rainwater  is  in the   range  between 4  mg/liter  and 17
mg/liter.  Sulfate  concentrations  in rainwater observed in Ithaca, N.Y.,  and
Aurora,  N.Y.,  are  within  the  range of 1  to  8 mg/liter  (Dittenhoefer  and
Dethier, 1976).   Thus, it may be concluded that, although the sulfate content
of rainwater varies with storm type, trajectory of air mass, geopraphical  lo-
cation, etc., it is within the range of 1 to 20 mg/liter.

     Recently,  Scott  (1978)  has  proposed   that  sufficient  sulfate  aerosol
exists to account  for  observed levels of sulfate in rainwater.   According to
Scott, sulfate  formation  from sulfur dioxide in cloud water and rainwater is
not  fast enough  to produce  appreciable quantities  of  sulfate  during  the
lifetime of the cloud particles contributing to precipitation.

     The concentration of sulfate in precipitation is a consequence of sever-
al  microphysical processes occurring within and  beneath  the  clouds.   Micro-
physical processes such as Brownian motion,  attachments due to thermophoresis
                                      99

-------
and diffusiophoresis,  inertia!  impaction  and nucleation serve to  remove the
sulfate aerosol  from the air.

     The purpose of  this  chapter is to examine the validity of Scott's idea.
Taking into consideration the  microphysical  processes mentioned above, model
calculations  of rainout  processes  of sulfate  aerosols  were carried  out.

8.2  THE CLOUD MODEL

     In  the case  of  a  precipitating cumulus  cloud, the  discrete  particle
                                                                    _0
sizes of importance  range  from aerosol particles of the order of 10   micro-

meters  in  diameter to  precipitation  drops as large  as  5x10   micrometers in
diameter.   Therefore,  in  order  to  study  the  interaction  of  pollutant  par-
ticles  and  cloudwater droplets, a  model  must be chosen in which  the micro-
physical processes are  incorporated in as much detail as possible.  One such
model is the  one-dimensional  cumulus  model by Cotton (1972a,  b).   This model
involves upward  integration with height following the rise of the convective
bubble or plume.

     A numerical model  which  is composed  of cloud  dynamics  and microphysics
of cloud particles and aerosol  has been developed (Henmi et al., 1977, 1978).
In this  model,  the aerosols  in the planetary  boundary layer  are transported
up into  the cumulus  cloud.   The cloud is  envisaged as an assembly of cloud-
water droplets  and rainwater droplets intermingled with aerosol  pollutants,
some  of  which are free-floating in the  cloud air  and  some are  collected by
the droplets.   This model  is  used for the  present calculations  to estimate
the amount  of  aerosol  pollutants captured by  cloudwater and  rainwater drop-
lets.

8.3  SULFATE AEROSOLS IN THE ATMOSPHERE

     Atmospheric aerosol  is  composed  of   "fine" particles  having  a diameter
smaller  than  2  micrometers  and  coarse" particles  having  a diameter greater
than  2  micrometers.   Those  fine and coarse modes are usually quite different
in chemical properties.  The physical  separation of the  fine and coarse modes
is justified because the condensation process produces fine particles whereas
mechanical  processes produce mostly coarse particles.  Practically all of the
sulfate  found  in  atmospheric  aerosol  is in  the  fine  mode  (Whitby, 1978).

     According  to  Whitby  (1978), on the average, the sulfate content of con-
tinental  aerosol  is  15  to  30  percent  of  the  total  aerosol  mass,  whereas
marine aerosols  contain sulfate in the range of 30  to 60 percent.

     In  Fig.  58 the  size distributions  of  typical  urban  aerosol and back-
ground  aerosol   are  shown.   The mass  concentrations  of  urban aerosol  and
                                                        3              3
background  aerosol  given in this  figure  are 99.6  |jg/m  and  48.7  ug/m , re-
                                                         3               3
spectively.   The  accumulation  modes  contain  61.3  ug/m  and 18.7  ugm , of
urban aerosol  and  background aerosol.  For the present  study, we  assume that
50 percent  of  the  mass of  aerosol  in the  accumulation mode  is composed of
sulfate.
                                      100

-------
         I05E
   ro
    i


    o

     a.
    Q


    £

    <
                            URBAN
                  BACKGROUND
          0.001
100
Figure  58.   Size distributions  of  typical urban  and background aerosols

          (Whitby, 1978).
                              101

-------
8.4  RESULTS

     Following the procedures described by Henmi  et al.  (1977,  1978), numeri-
cal  calculations  of  cumulus clouds  are  performed.   In  order to  generate
different clouds, different  input  data of sounding and entrainment constants
are used.   In  the present calculation, the concentration of cloudwater drop-
                            _0
lets is assumed to be 300 cm  ,  which is typical  for continental clouds.   The
theoretical  calculations  by Howell  (1949),  Mordy  (1960),  and  Neiburger and
Chi en (1960) show that the concentration of cloudwater droplets is determined
by  the number  of effective  condensation nuclei  in  the cloud  base region.
Furthermore, the  particles  effective as condensation nuclei are, in general,
hygroscopic.   Sulfate  particles  are known to be  very  hygroscopic (Fletcher,
1966).    Therefore,  two  cases are  studied.   In  the  first case,  the simple

assumption  is  made that  the 300  largest aerosol  particles  per cm   in the
accumulation mode are  consumed  as  condensation nuclei within the first layer
of integration above the cloud base.  In the second case, condensation nuclei
are assumed to be supplied by other sources.  Sulfate particles are captured
by  cloudwater  droplets and  rainwater droplets  through  microphysical mecha-
nisms  such  as Brownian  diffusion,  inertial impaction and  attachment due to
thermophoresis and diffusiophoresis.

     Using  the aerosol  spectra shown  in  Fig.   58,  the sulfate  content of
rainwater is  calculated.    In  Fig.  59,  the  sulfate content  of rainwater is
shown  as  a  function  of the  average  liquid water content (LWC) of the cloud.
This average  liquid  water content  is calculated as a value averaged over the
cloud height.   In general, LWC is proportional  to the height of the cloud and
to  the precipitation  amount.    In  Fig.  59 the  broken  lines  represent the
                                                                         3
result of the  first  case where the  300 largest  aerosol  particles per cm  in
the accumulation  mode  are consumed as  condensation  nuclei.   The solid lines
represent the  results of the second case where sulfate particles are not used
as condensation nuclei.

     From this figure, the following can be seen:

     i)   The  sulfate  content  in rainwater is inversely proportional to LWC.

    ii)   The  condensation  process  is  a dominant  mechanism  for determining
          the  sulfate content in rainwater.  However, about 60 percent of the
          sulfate mass  in rainwater is captured by other microphysical mech-
          anisms.

   iii)   The  concentration of aerosol  is a determining factor of the sulfate
          content in  rainwater.  Rainwater which has collected urban aerosol
          contains more sulfate than rainwater which has collected background
          aerosol.

    iv)   The  sulfate content  of  rainwater from these  simulated  clouds is
          within  the range of 1 and 8 mg/1.  These values are well within the
          range suggested by observations.
                                      102

-------
      
-------
     Figure 60 shows the  relationship  between (K/X) and  LWC,  where (K/X) is
the  dimension!ess  ratio  of  pollutant  concentrations  in  rainwater  and  air.
(K/X)  is  inversely  proportional  to LWC.   Hales and  Dana  (1979)  derived  a
similar relationship as

          (*) = 1.9xl06A-°'88
           A.
where, A is the rain amount (cm).
                                                 tf
     Similarly,  an inverse relationship between (-) and precipitation amount,
                                                 A
precipitation rate or  LWC has been found by  Engelmann (1971).   The observa-

tions by Scott and  Lanlainen (1979) show that  (K/X)  for  sulfate was 7.9x10

and  2.03x10   in  two  different rain events.    It  seems  that  (K/X) values from
our  simulated clouds are close to the observed values.

8.5  CONCLUSION

     Although the present study has shown  that  microphysical  processes such
as  condensation,  Brownian  diffusion,  attachment  due  to thermophoresis and
diffusiophoresis and inertial impaction can be efficient enough to attain the
sulfate content  of  rainwater,  this conclusion should be regarded as tenta-
tive.  The  sulfate  content of aerosol  in the present study was assumed to be
             3           3
about 30 ug/m  and 9 ug/m  for urban and background aerosols.   A recent study
by Hales and Dana (1979) is contradictory to the study by Scott (1978) and to
our  present  study.   According to Hales and Dana, a rapid oxidation of S02 to

sulfate occurs in cloud systems in warm, polluted environments and leads to  a
possible explanation for the observed sulfate content of rainwater.

     The combined effects of the microphysical processes and of S02 oxidation

to sulfate in water must be studied in the future.
                                      104

-------
          URBAN
          AEROSOL
           BACKGROUND
           AEROSOL
       3.0 r
   t
2.0
   in
   O
        1.0
                    WITH CONDENSATION
                    WITHOUT CONDENSATION
               	WITH CONDENSATION
               	WITHOUT CONDENSATION
              0.5   1.0    1.5    2.0
                L.W.C. (g/m3)
Figure 60. (-) as a function of L.W.C. of the cloud.
                       105

-------
                                  REFERENCES


Charlson, R.J. 1969:  Atmospheric visibility related to aerosol mass
     concentration.  Environ. Sci. Tech., 3, 915-918.

	,  R.J.  Vanderpol, D.S.  Covert,  A.P. Waggoner  and  N.C.  Ahlquist, 1976:
     Sulfuric acid and ammonium sulfate  aerosols:   Optical  detection in the
     St. Louis region.   Science, 184, p. 156.

Clark, T.L., 1978:  Private communication from Mr. Holzworth, EPA.

	, T.L.,  1979:   Gridded annual  pollutant emissions  east  of the Rockies.
     Private communication.

Cotton,  W.R., 1972:   Numerical  simulation  of precipitation  development in
     supercooled cumuli - Part  I.  Mon. Wea. Rev., 100, 757-763.

	,  1972:   Numerical  simulation  of precipitation development  in super-
     cooled cumuli - Part II.  Mon.  Wea. Rev., 100, 764-784.

Dittenhoeffer, A.C., and  B.E.  Dethier, 1976:  The precipitation chemistry of
     western  New  York State:   A  meteorological  interpretation.   Research
     Project  Technical  Completion Report OWRT,  Project No. A-044-NY.  Agree-
     ment  No.  14010001-3532, Cornell  University Water  Resources  and Marine
     Science Center, Ithaca, New York.


Engelmann, R.G.  and Schmel, G.A., 1976:  Atmosphere-sulfate exchange of par-
     ticulate and gaseous pollutants.   ERDA Document CONF-740921, U.S. Energy
     Research and Development Administration, Oak Ridge, TN.

	,  1971:   Scavenging  prediction using  ratios  of concentrations  in air
     and precipitation.  J. Appl. Met., 10, 493-497.
Gartrell, F.E., F.W. Thomas, and S.B. Carpenter, 1963:  Atmospheric oxidation
     of  S09  in  coal-burning  power plant  plumes.   American Industrial Hyg.
     Assoc/J., 24,  113-120.

Fletcher,  N.H.,  1966:   The  Physics of  Rainclouds.   Cambridge  at University
     Press, pp. 390.

Hales, J.M.  and  M.T. Dana, 1979:   Precipitation  scavenging of  urban pollut-
     ants  by convective storm systems.  Journal  of  App1ied Meteorology, 18,
     294-316.
                                      106

-------
Heffter, J.L.,  and A.D.  Taylor,  1975:   A  regional-continental  scale trans-
     port,   diffusion  and  deposition  model.   NOAA Technical Memorandum, ERL
     ARL-50.  Air Resources Laboratories, Silver Springs, Maryland.

Henmi,   T. ,  E.R.  Renter,  and  R.  Edson,  1977    Residence  time of atmospheric
     pollutants  and  long-range transport.  Environmental Research Paper, No.
     ]2_ Colorado State University, Fort Collins, Colorado.

	,  	  and 	,  1978:   Residence time  of  atmospheric pollutants and
     long-range transport.  EPA-600/4-78-003, Environmental Monitoring Series.
     Environmental  Sciences  Research Laboratory, Office  of  Research and De-
     velopment, U.S.  Environmental Protection Agency, Research Triangle Park,
     North Carolina  27711.

Hidy, G.M.   et al.,  1974:   Characterization of  aerosols  in California,  Final
     Report IV, California Air Resources Board.

Holzworth,  G.C., 1972:  Mixing heights, wind speeds, and potential for urban
     air pollution  throughout the contiguous United  States.   Ap-101, Office
     of Air Programs,  Environmental  Protection Agency.

Howe11, W.E.,  1949:   The  growth of cloud drops  in  uniformly cooled air.  J.
     Met.,  6, 134-149.

Junge,   C.E.,  and R.T.  Werby,  1958:   The concentration  of chloride, sodium,
     potassium, calcium,  and  sulfate  in rainwater over the United States, J.
     Meteorol., 15, 417-425.

Lusis,   M.A.,  and  C.R.  Phillips,  1977:  The oxidation  of  S02  to  sulfates

     in dispersing plumes.  Atmospheric Environment, jj, 239-241.

Mordy,  W.A.,  1959:  Computations  of the  growth  by  condensation  of a popula-
     tion of  cloud droplets.   Tell us, 11, 16-44.

Neiburger,   M. ,  and C.W.  Chein,  1960:   Computations  of  the  growth  of cloud
     drops  by condensation using  an electronic digital computer.  Physics of
     Precipitation, Geophysical  Monograph Series,  5,  191-208,  AGU,  Washing-
     ton,  D.C.

Scott,   B.C.,  1978:   Parameterization  of sulfate  removal  by precipitation.
     Journal  of Applied Meteorology, 17, 1375-1396.

	 and  N.S.  Lanlainen,  1979:   On the concentration of sulfate in precipi-
     tation.  Journal  £f Applied Meteorology, 18, 138-147.

Smith,   F.B.,  and G.H.  Jeffrey, 1975:    Airborne  transport of sulphur dioxide
     from the U.K.   Atmospheric Environment, 9,  643-659.

University  of Utah,  1974:   Cited  in "Power plant stack plumes  in complex
     terrain,  an  appraisal   of  current  research"  by  R.C.  Koch  et  al.
     EPA-600/7-77-020.   Environmental  Sciences  Research Laboratory  Office
     of  Research  and  Development.   U.S.  Environmental  Protection Agency.


                                      107

-------
United  States  Department  of Commerce,  1974:   Climatological  Data National
     Survey.

United States Environmental Protection Agency, 1976:   Directory of air
     quality monitoring  sites  active in 1974.  EPA  450/2-76-008.   U.S.  EPA.
     Monitoring and Data Analysis Division, Research Triangle Park, NC 27711.

Whitby,  K.T.,  1978:   The  physical  characteristics  of  sulfur aerosols,   At-
     mospheric Environment, 12, 135-159.
                                      108

-------
                                APPENDIX - A

                        FORTRAN LISTING OF MODEL A

                Trajectory  Calculation Program  (Model  A)
     PROGRAM THAJET
     COMMON /STAT/ SLAT(100.4.8), SLON(100.4.8), XAw(100.4.8).
    Z YAWllOO.4,8) t XSIGHA(100.4,8), YSIGMAUOO, 4,8)
••FORWARD AND BACKWARD TRAJECTORY MODEL
••USING OBSERVED AND ANALYZED INPUT WINDS

     LOGICAL SICNT
••FOR OBSERVED INPUT WINDS ONLY»*****»«*»*«*********»*»**********»***
     DIMENSION SLATT(IOO), SLONT(IOO), XAWTUOO). YAWT(lOO)
     DIMENSION NSTAI4. 8)
     DIMENSION XXSIGUOO). YYSIG(IOO)
     INTEGER SlU(100t 4)
     INTEGER TSLAT.TSLON
••SEE DATA MxNSTA
••*••*«*•«*•*••••*•«••••••**«•«««*«*•«••«••••••****«•«•••••••••••••*•
    »•••••*•»•»»•••••«»«»••••<
     LOGICAL SJTAG15).SICNTT
     INTEGER xiPod), YIP061 .XTSIPOOI »YTSIPOO) ,wip<30)
     DIMENSION 010(5)iOLAT(5)iOLON(5)
     DIMENSION wioHOT(5)
     INTEGER DXSIGP130),DYSIGP(30)
     _  	 ._. ._..  	.IBYR.NDY.TDIR,
 COMMON/INPyTl/IBDY.lBMO.IBYR.f
A          POLLAT.JHOUR.IMO.
A         NDYDUR,NOYOTA,tfTYPE.(
               ...... .......... _,DTAST»DTA8B,OTA8LfDTABRt
    A     LBAAT,LTAAT,ALATT,ALATB,ALONL
••MAXIMUM NUMBER OF ORIGINS
     DATA MXNO/S/
••MAXIMUM NUMBER OF STATIONS
     DATA MXNSTA/100/
     DATA OBStANA/3HOBS,3HANA/
     DATA BACK/4HBACK/
     DATA SJTAG/1H , 1H. , IH*, 1H«, 1H-X
     DATA ITS.ITPDY,IMM/20, 4, 8/
           0
    Z NTS, NMM)
••SET ITAB FORWARD/BACKWARD TO i FOR FORWARDI 2 FOR BACKWARD
     ITABF8«1
     IF (TDIR .EQ. BACK)  ITABFB«2

••LOOP THROUGH NUMBER OF  DAYS
     DO 400 M=1.NDY
     CALL   DTABKO   (  M, MXNSTA, NTPDY» NMM» NSTA, ITABF8, NDYDTA,
    z iTPDYt IMM, DTABT,  DTABB, DTABL, DTABR, LBAAT, LTAAT,
    Z OLON(l), SID)

••LOOP THROUGH NUMBER OF  ORIGINS
     DO 399 IO»1,NO

••LOOP THROUGH NUMBER OF  TRAJECTORIES PER DAY
     DO 300 K-l.NTPDY
     IF (ITABFB  ,EQ. 2)  GO TO 32
     MM«1
     KK«1
     GO TO 33
  32 MM«NMM
     KK = 4

••LOOP THROUGH NUMBER OF  TRAJECTORY SEGMENTS
  33 00 299
 DO 299 J =  1,  NTS
 IF(J.EQ.l)  80  TO 40
 IF (TSLAT .LE.  900)  GO TO 42
••TRAJECTORY HAS BEEN TERMINATED
••DUE TO INSUFFICIENT AMOUNT OF INPUT DATA-
••TERMINATION CODE INFORMATION
••REPLACES ALL REMAINING TRAJECTORY SEGMENT LAT,LON VALUES
                                      109

-------
     GO TO 200
  40 TSLAT1»OLAT(IO)
     TSLON1«OLON(IO)
     SPRED»0.
     SPREDl'O.
  42 JTAG*0
     CALL   KKMM   i  j. «• M. KK, MM, NMM, NDYDTA, NTSPDY»ITABFB,IRTNS>

••TRAJECTORY TERMINATED DUE TO NO DATA READ INTO DATA-BLOCK(DTA8K)
••OR CLOSEST-TIME(CLSTM) CALCULATION OUTSIDE DATA-BLOCK
TSLAT
TSL
        ON»9996

     UBAR»0.
     SPREAD=0.
     ALPHA=99.
     B£TA*99.
     T=99.
     R2=99.
     IJK«0
     ICNT»0
     SICNT=SJTAG<1)
     GO TO 200
  90 CALL   OISO   { J, K, M, KK, MM, MXNSTA, NSTA, ITABFB.
    A  ITS. ITPOY, IMM, RADIUS. TSDUR* MBIP. MEIP, SLATT, SLONT, TSLATi
    A, TSLON1, XAWT, YAWT. XXSIG, YYSIG, KKT, MMT, SJTAG, JTAG. ICNTMN,
    A ICNTMX, XIP. YIP, XTSIP, YTSIP, DXSIGP. OYSIGP, WIP, TSLATE,
    A TSLON2, ISNAP, wtOROT(lO), UBART. SIGMAH, ICNTT, SICNTT, SPRED1,
    A SPREDZ, ALPHAA, BETAA, TA, RSA, IJKA. IRTNSI
     IF (IRTNS .EQ. 1TO) GO TO 170
     CALL   ALTDTA   (  SJTAG, JTAG, TSLAT2, TSLON2, UBART, SIGMAH,
    2 ICNTT, SICNTT, ALPHAA, BETAA, TA, R2A, IJKA, IRTNS)
     IF (IRTNS .EQ. 170) GO TO 170
 UO CALL   CLSTM   ( J, KK, MM, JTAG, NTPDY, ITABFB, M, NDYDTA, NMM,
    Z KKT, MMT, IRTNS)
     IF (IRTNS .EQ. 90)  GO TO 90
     IF(IRTNS .EQ. 66)  GO TO 86
 170 TSLAT»TSLAT2»10,«,5
     TSLON=INT(TSLON2« 10.* 1800,5) -1800
     UBAR=UBART«.5
     ICNT»ICNTT
     SICNT«SICNTT
     TSLAT1»TSLAT2
     TSLON1»TSLON2
     SPRED1»SP»ED2
     SPRED=SPRED« SIGMAH
     SPREAD»SPRED/60.
     AlPHAaALPHAA
     BETA*BETAA
      T»TA
     R2>R2A
     IJK=IJKA
 200 KUNIT*20*IO
     WRITE(KUNlT) TSLAT, TSLON, USAR, SPREAD, ALPHA, BETA, T, R2,  UK,
    Z ICNTi SICNT
     IF(TSLON
 299 CONTINUE
IFJTSLON .EQ. 9996)  GO TO 300
 300 CONTINUE
 399 CONTINUE
 400 CONTINUE
••END OF TIME AND ORIGIN LOOPS


  WRITE TO A PERMANENT FILE THOSE VARIABLES WHICH
  WILL BE NEEDED BY THE SECOND PROGRAM.

     DO 475 I » 1, 5
        WRITElU, 455)  OlDtl), OLATII), OLONJI)
 475 CONTINUE
     WRIT£(14. 480) NO. NDY. NTS, NTPDY, LTAAT
     WRITEI14, 490) TSDUR, ALATT, ALONL
 455 FORMAT 
 480 FORMATI5I10)
 490 FORMAT13F15.5)
     SUBROUTINE ALTOTA(SJTAG, JTAG, TSLAT2, TSLON2, UBART, SIGMAH,
    Z ICNTT, SICNTT, ALPHAA, BETAA, TA, R2A, IJKA, IRTNS)

••ALTERNATE DATA SELECTION
LOGICAL SJTAG(S),SICNTT
DATA OSS,ANA/3HOBS,3HAN
IRTNS»0
JTAG«JTA6*1
IF (JTAG .LE. 4) RETURN
                           NA/
                                      110

-------
      F  (JTAG  .LE.  4)  RETURN
     w,-
     TSLAT2S99.9
     TSLON2=999.9
     UBART«0.
     SIGMAH*0,
     ALPHAA*99.
     BETAA-99.
     TA«99,
     R2A*99.
     IJKA»0
     ICNTT«--..
     SICNTT'SJ
     IRTNS-170
       NTT«ICNTT
     SICNTT«§JTAO(JTAGT)

     REJ
     ENC
     RETURN
     "NO
     SUBROUTINE AHlNOlSHTt SATH, 01, USAAT, LTAAT, WHT« XW, YMi NLVL,
    Z XAWt YAWi XSIGMA, YSIGMA)

••AVERAGE WINDS

     INTEGER SlD.SHT,SATHtBTH,TTH,TH
     INTEGER     SHT,SATHiBTH,TTH,TH
     INTEGER WHT(50)
     DIMENSION XW(50) ,YW(50)
     DIMENSION MHT(IOO)
      B«SHT*LBAAT
      F (LBAAT ,NE. 0  .OR. DI .GT. 60. .OR. SHT ,GT. SATH) |_B = 3ATH»LBAAT
     UT*SATH*LTAAT
     STHXW=0.
     STHYW«0.
     L
     I
          .
••CALCULATE M HEIGHTS FOR WIND LEVELS
     IF(NLVL.EO.l)  GO TO 21
     MLVL=NLVL«2-1
     DO 12 M=1,MLVL,2
     MHT(M)*WHT( (M*l)/2)
  12 CONTINUE
••CALCULATE M HEIGHTS FOR MID LEVELS
     DO 14 M«2iMLVL»2
     MHT(M)=(MHT(M-I)*MHT(M*1) ) /2
  H CONTINUE
••DETERMINE M LAYER FOR LB
     IF(LB.GE.MHTtl)) GO TO IB
     GO TO 30
  18 DO 20 M»2.MLVL
     IF(LB.LT.MHT(M»  GO TO 30
  20 CONTINUE
  21 XAW399.
     YAW*99.
     XSIGMAX99.
     YSIGMA=99.
     RETURN
••CALCULATE WEIGHT SUMS AT LB
  30 MLBoM
     BTH=MHT(M)-LB
       Mlz(M»l)/2
     STHXW»STHXW*BTH»XW (Ml )
     STHYW»STHYW*BTH»YW (Ml )
     STH=STH+BTH
••DETERMINE M LAyER FOR LT
     IF(LT.LE.MHT(MLVD)  GO TO 48
     MM-MLVL
     60 TO 70
     MLVLMI*ML .. .
     DO so M«I,MLVLMI
  48 MLVLMl«MLVL.l
     MM*MLVL«M
     IF(LT.GT.MHT(MM))  GO TO 70
  50 CONTINUE
     XAW'99.
     YAW*99.
     XSIGMA»99.
     YSIGMA=99.
     RETURN
••CALCULATE WEIGHT SUMS AT LT
  70 MMLTM1=MM-1
     TTH=LT-MHT(MM)
      MM2=(MM»^)/2
     STHXW»STHXW*TTH»XW(MM2)
     STHYW=STHYW»TTH«YW(MM2)
     STH=STH*TTH
     IFtMLB.GT.MMLTMl)  GO TO 300
••CALCULATE INTERMEDIATE WEIGHT SUMS
     DO 100 M»MLB,MMLTM1
                                      111

-------
    TH»MHT(M*i)-MHT(M)
     M2«(M*2)/2
    STHXW=STHXW»TH«XW-MHT(M)
    XSlGMA=XSlGMA*TH»(XW«M*2)/2)-XAW)««2
    YSlGMA»YSl6MA*TH»(YW((M*2)/2)-YAW)«»2
101 CONTINUE
    IFIXSIGMA.LT.O.O.OR.YSIGMA.LT.O.O) 30 TO 500
    IFtSTH.LEtO.O) GO TO 500
    XSIGMA»SgRTUS10MA/STH)
    YSIGMA*SQ«t(YSIGMA/STH)
    RETURN
500 XAW-99.
    YAW'99.
    XSIGMA»99.
    YS!9MA«99.
    ACTURN
    ENO
      POUTI**

           )
     IFjIJTAG.EQ.*) GO  TC
    :OND CLOSEST TIME,  w
     IF(ITABFB.EQ,2) GO 	
    1*  TRAJECTORIES
     IF(MOD(J,2),EQ.O)  GO  TO 30
     GO TO  10
     SUBROUTINt CLSTMU, KK, MM, JTAG, NTPDY, ITABFB, M, NDYDT*. NMM,
    2 KKT, «MT. IRTNS)

••CLOSEST TIME FOR ALTERNATE DATA

     IRTNS*86
     IFjIJTAG.EQ.4) GO TO 8
••SECOND CLOSEST TIME, JTAG«2
 >F.ORIF(ITA|FB.EQ42, GO TO 3

   2

•• BACK TRAJECTORIES
   3 IF(MOD(Jt£>«EQ.O> GO TO 10
     GO TO 30
  .  IRD CLOSEST TIME, JTAO*4(OBS ONLY)
   8 IF(ITABFB.EQ.2) GO TO 2
     GO TO 3
  10 KKT*KK*1
     IF (KKT.LE.NTPDY) GO TO 20
     KKT»1
     MMT»MM*1
     GO TO 60
  20 MMTsMM
     GO TO 60
    IF(KKT4SE.1> GO TO 40
  30 KKT-KK-1
     IFIKKT.GL
     KKT»NTPDY
     MMT*MM-1
     GO TO 60
  40 MMT-MM
  60 IF (MMT ,LT, 1. .OR. MMT .GT. NMM) RETURN
     IF(ITABFB.£5.2> §0 TO 62
     IF (M * MMT -1 .GT. NDYDTA) RETURN
     IHTNS»90
     RETURN
  62 IF (M«MMT-l .LT. NMM) RETURN
     IRTNS»90
     RETURN
     END
    SUBROUTINE DISOfJ, K, M, KK, MM, MXNSTA, NSTA, ITABFB,
   A  ITS, ITPOY, IMM. RADIUS, TSDuR. MBIP, MEIP, SLATT. SLONT, TSLATi
   A, TSLON1, XAWT, YAWT, XXSIG, YYSIG, KKT, MMT. SJTAG. JTAGf  ICNTMNI
   A ICNTMX, XIP, YIP, XTSIP, YTSIP, DXSIGP, DYS1GP, HIP, TSLAT2,
   A TSLON2, ISNAP, WIOROT    , UBART, SIGMAH, ICNTT, SICNTT, SPRED1,
   A SPRE02. ALPHAA, BETAA, TA, R2A, IJKA, IRTNSI
                                     112

-------
••DISPLACEMENT CALCULATION USING OBSERVED  WINDS

     LOGICAL SJTAG(5).SICNTT
     DIMENSION NSTA(ITPDY.IMM)
     DIMENSION XXSIGIMXNSTA),YYSIG,YAWT(MXNSTA>
     DIMENSION SLATT(MXNSTA),SLONT(MXNSTA)
     INTEGER XlPI,NSTADO
     SLATT=77\
      YYSIG(I)«77.
96 CALL   ITSIM   (  JTAG, RADIUS. SLAT < I ,KK,MM) . SLON ( I .KK.MM) ,
            , SLONT(I), XAW ( I ,KK,MM) , YAW ( I .KK.MM) , XSIG
            . KK. MM), XAMT(I). YAWT < I ) , XXSIG ( I ) , YY

    WI« IORT
   IF (IJRTNS ,EQ. 150) GO TO  150
      SLATT(I), SLONT(I), XAW ( I ,KK,MM) , YAW ( I .KK.MM) , XSIGMA ( I ,KK .MM) ,
    Z YSIGMA(I. KK. MM), XAMT(I). YAWT < I ) , XXSIG ( I ) , YYSIG(I),  TSDUR,
    Z TSLATli TSLONl, ITABFB, NEAR, XI, YI, XTSl, YTSI, DXSIGI, DYSlGI.
    Z WI« IORTNS)
     IF  (IJRTNS ,
     ICNTT"ICNTT»1
     XIP(ICNTTI«XI*,5
     YIP(ICNTT)"YI».5
     XTSIP(ICNTT)«xfsi/3.*.5
     YTSIP (ICNTT)»YTSI/3.».5
     DXSIGP(ICNTT)»DXSIG!/3.«0.5
     OYSIGP(ICNTT)=DYSIGI/3.*0,5
     W IP (ICNTT)=WI» 1000000.
     SWXTSI=SWXTSI+WI»XTSI
     SDXSIG»SOXSIG*Wl»QXSjGI
     SDYSIG*SDYSIG*Wl»DYSIGI
     SMl'SWUHl
 150 CONTINUE
     IFdCNTT .LT. ICNTMN .AND, NEAR ,NE. 1) RETURN
••NOT SUFFICIENT fiflSERVED WINDS
••TRAJECTORY SEGMENT DISPLACEMENT**************************************
     IF (SWl .EQ. 0.) SWI=.0001
     XTS=SWXTSI/SWl
     YTS=SWYTSI/S«I
     XSDX=SOXSIG/SWI
     YSOY«SOYSIG/SWI
     XTSP=XTS/3.*,5
     YTSP=YTS/3.*,5
     TSLAT2»TSLAT1«YTS/60,
   TSLAT2»TSLAT1«YTS/60,
   TSLON2«TSLONl-XTS/(60.*COS(TSLAT1*P1/180.))
   UBART«,515»SQRT(XTS»XTS*YTS«YTS)/TSDUR
   UBARTT«UBART/0,515
   SIGMAH«(AdS(XTS)*YSDY*ABS(YTS)»XSOX)/(UBARTT»TSDUR)
   SPRED2SSPRED1»SIGMAH
   CALL XSZ(TSLAT1.TSLON1.TSLAT2.TSLON2»XTS.YTS,SPRE02.ALPHAA,BETAA,
        IJKA.R2A,TA,WIOROT)
    lCNTT«SjtAG(JTAG*l)
    A
     S
     IF (M ,GE. MBIP .AND. M ,LE. MEIP) GO TO 172
     IRTNS»170
     RETURN
 172 IFUSNAP ,EO, 1) GO TO 175
••PRINT TRAJECTORY SEGMENT DISPLACEMENT ANO»»»»»»»««»»*»»*»»»**«»«»««««
••INDIVIDUAL STATION RELATIVE L-OCATIONS AND DISPLACEMENTS**************
                                      113

-------
    IF(ISNAP.EO.l) GO TO 175
    ISNAP-1
173 FORMATUH »i  j  «  M TAG CNT XTS vrst/
   A        1H ,i                              XI   YI XTSIYTSI Ml',
   A            i        XI   YI XTSIYTSI MI   XI   YI XTSIYTSI wl't
   A            «        XI   YI XTSIYTSI HIM
175 WRITE(6,1HO)  J,K,M, JTAG, ICNTT»XTSP»YTSP,
   A          (XlP(IP),YlP,XTSIP(IP),YTSIP, XSI6AA(io0.4i8), YSlGMAtiOOt 4
   COMMON /OATERO/IOMO.IOYR.tDOY.IOHR.NRSTiiNftEc
   DIMENSION SI (100), SLA JlOOtSLO (100), XA(l60),Y
                                                XAM (
                                                4,8)
                                                  lM
                                             ilM
                                         XA(l60),YA( 100) tXS(lOO),

     IF(M.GT.l) 00 TO 5
       YS(IOO)
         GT.
        ..
    MRIT£(6!4)
    FORMAT (1H ,27X,» NUMBER OF   NUMBER     NUMBER OF»/
   B       IM ,27X,»REPOHTIN6     OF      STATIONS IN*/
                    STAT10NS   "ECOROS    gOUN^ARIES t ) '
S DO 200 MM" 1, NMM
GO TO (l,2)!lTABFB
1 IF(M.Ea.I) 80 TO 8
1FXAW(I,K,MM»1)
     YAW(I.K.MM)«YAW(I,K,MM*1)
     XSlGMA(i,K,HM)«XSIGMA(I,K(MM»l)
     YSIGMAU,K,MM)*YSIGMA(I,K,MM»1)
   YSI8MA(I
 9 CONTINUE
10 CONTINUE
   GO TO 200
 8 DO 199 K»1»NTPDY
    A
      LL POSJP(M,MM,K)


    D0~l6i T«lil66
      ALL   RDAVO*  (  MXNSTA, DTABT, DTABB. DTABL* DTABR, LBAAT, LTAAT.
      OLAT,OLON,SI,SLA,SLO,XA,YA,XS,YS,NSTA(K,MM))
      o 101 v •  ---
     SID(I.>
     5LAT(Ii
     5LON(I,
    SLAT(I»K,MM)aSLA(|)
    SLON(I,K,MM)»SLO(I)
    XAW(I,K,MM)*XA(I)
    YAWil.K,MM)«YA(I)
    XSlGMA(I,KfMM)*XS(I)
    YSlGMA(i,K,MM)»YS(I)
101 CONTINUE
199 CONTINUE
200 CONTINUE
    RETURN
    END
    SUBROUTINE I-NPUT(NTPDY. TSDUR, RADIUS,  ICNTMN, ICNTMX, MBIP, MEIP.
   I !"!XNO,..Np, OID, OLAT, OLON, WlOROT, IHRINP, NLVLA, NTSPDY,
     NTS, NMM)

 •INPUT INFORMATION
                                     114

-------
     DIMENSION OID(MXNO).OLAT(MXNO).OLON(MXNO)
     DIMENSION wioROTisi
     COMMON/INPUT1/IBOY»IBMO,18YR.NDYtTOIR,
    A          POLLAT,IHOUR,1MO»
    A         NDYDUR,NDYDTA,WTYPE,DTABT,DT4BB,DTABL,DTABR,
    A     LBAAT.LTAAT.ALATT,ALATB,ALONL

»•»««••••»»»«•••»»»»•«««•••••••••••»«•»•«•••••»••••••••••••••*••••••••«
••INPUT DATA CARDS*************************** •****•**•*********•»••••*«
••CARD 0*»
••NUMBER OF ORIGINS
     READ(StlOO) NO.NDY
 100 FORMAT(I2ilX,I2)
••CARD 1»»
••ORIGIN IDENTIFIED BY LETTERS TDIRtNDYDUR
   3 FORMAT(A4tlXiI2)

"NUMBER*OF DAYS OF WIND  INPUT DATAJNDYDTAJ
     READ(5.4) NDYDTA
   4 FORMAT(I2)
••CARD 5»»

                                        AND ANALYZED (O.A,
   5
••CARD 6»»
••BOUNDARIES FOR OBSERVED WIND INPUT DATA
••TOP LATITUDE (DTABT)t BOTTOM LATITUDE (DT
••LEFT LONOITUOEJDTABL). RIGHT LONGlTyDE (DTAR>
   .  BEJp(5,6) OTABT.pTiBBjDTABL.DTABfi
                           OM LATITUDEtDTABBJlj,
                           GHT LONGITUDE
-------
     MBIP=0
     MEIP=0
••PRINTING iNTtRVAL  IN HQUHS
              ,
••NUMBER OF  ANALYSIS LEVELS
• •END INPUT PANAMETERS*«»**»«»««»»»*»»*«»**«*»«*»»»»»»»»«*»»«**»**»»»»*
«»«««««»<>««»•«•««*»««»•«»«»««»««»»»««»«<»«««•**««««*«»»•«««•«««*«»«»»•»«


••NUMBER OF TRAJECTORY  SEGMENTS PER DAY
     NTSPDY=24/TSDUR
••NUMBER OF TRAJECTORY SEGMENTS

••NUMBER*OF DAYS  IN DATA BLOCK  (DTABK)
     NMM»NDYDUR*1
• •PRINT^INPUT^iJATA CARD INFORMATION
   [NT U
   WRITE
     	    (Oini 10)«OLAT(IO),OLON(IO),IOal,NO)
     WRITE(6,2D  IBOY,IBMO.IHYH.NDY,
    3            TOIR.NnYDUK,
    4            NOYDTA,

    I            DTABTlt)TABB,DTABL«DTA8H,

  208FORMAT(1H1,16XA?INPUTAFOR TRAJECTORY COMPUTATIONS*/
    A1H ,«INPUT«/1H  ,»  DATA*/1H ,i CARD*/
    11H  4X.41H1  ORIGIN »••«»••••»•••*»••«•*«•»«••*•««« «
    A   A3XM'.F4;itlX,Fft.l,.)./10(46X,A3,»<«,F4.1,lX.F6.1,«)'/»

                 C~TE  THAT COMPUTATIONS BEGIN ••»•••••» ,12,IX,A3,IX,I

    B1H ,4X,41H  NUMBER OF DAYS COMPUTATIONS DESIRED  »• »I2/
    31H J4X,41H3  DIRECTION IN TIME ••«««•«••••••	A4/
    AIM ,4X»41rt  DURATION IN DAYS «•••	** «12/
    41H !4xt41H4  NUMBER OF DAYS OF WIND INPUT DATA •••• ,I2/
    51H I4X.41H5  TYPE  OF  WIND INPUT DATA •«•••••••••«•• ,A3/
    61H ,4X,41H6  BOUNDARIES FOR OBSERVED WIND INPUT DATA/
    A1H j4x!41H  TOP AND  BOTTOM LATITUDES ••••••«•••••• ,2X,F4.1,

    SIM ^X^I^'LEF^AND RIGHT LONGITUDES ••»	F6.i.u,F6.i/

    2 s ;tx:^tt  mir^l m ffil&M&ii	i4,ix,i4,
      ~-15 -  4--  ALATT,ALATB,ALONL

                 BOUNDARIES FOR MAPS IN SUBROUTINES/
    AIM i4X,41«  TOP LATITUDE •••»•••»••••••»•••••»•*•• .2X.F4.1/
    81H iJxUlM  BOTTOM LATITUDE «•«••••••••••••••»••«* ,2X,F4.1/
    C1H j4x!41H  LEFT  LONGITUDE «••«•»••••••••	•• ,F6.l>
     WRITE(6,3U)
  30 FORMAT(lHl)
     RETURN
     END



     SUBROUTINE ITSIWUTAG, RADIUS, SL^'vlkrr' 5femT,D* T^T!  *Tcl'om-*
    z XSIGMA, YSIGMA,  XAWT, YAWT, xxsis, YYSIG, TSOUR, TSLATI,  TSLONI,
    z ITABFH! NEAR,  x,  Y, XTS, YTS, DXSIG. DYSIG, w,  IJRTNS)
   LAfSH-JCATf  6° T° 3
  ILONSH-SLONT

3 SLATSH-SLAT
            L*T
            LON
                  H)«60.»COS(SLATSH«PI/180,)
                   ***0-
    %
 11  In5fAl:§S?5^§;To^R''1
    XAMSH»XAWT
    YAWSH«YAW!.
   XXSIGS»XXSIG
   YYSIGS»YYSIG
   60 TO 18
20 XAWSH«XAM
                                     116

-------
      YAWSH-YAW
      XXSIGS-XSIGMA
      YYSIGS-YSIGMA
   18  GO  TO  <21»22),ITABFB
   21  XTS»1.9*«XAWSH»TSDUR
      YTS«I.94«YAWSH«TSDUR
      DXSIG«1.9*«XXSIGS»TSOUR
      OYSIG"1,9*»YYSIGS«TSDUR
      GO  TO  23
   22  XTS«-1.94«XAWSH»TSOUR
      YTS*-1.94*YAWSH«TSDUR
      OXSIG«-1,94«XXSIGS»TSDUR
      DYSIG«-i.*4»YYSlGS«TSDUR
   23  CONTINUE
      DTS«SQRT(XTS»XTS*YTS«YTS>
      XW=-X*XTS/2,
      YW« Y-YTS/2,
      OWSQ)>XW»XM»YW«YW
      IF(OWSQ.EU.O.)  OWSQ=.OOOl
      DISTW-l./DWSQ
     AI_ I Ny • 1
     IFID ,N£.  0.  .AND.  DTS  .NE.  0.)  AUINW«1,-,5«ABS((YTS«X-XTS«Y)/
        (DTS»0*  .0001))
     W«OISTW«ALINW
     IJRTNSS0
     REJURN
w
              U.LVL)
     XW(LVL)=-«SPD»S:N(WC .
     YW(LVL>5-*SPO»COStw[>lR»Pl/180.)
  50 CONTINUE
     IF(LBAAT.NE.o) GO TO 60
     XI«(OLON-iLON(I))«fiO.»COS(SLAT(I)«PI/lflO.)
     YI»(SLAT(I)-OLAT)»60.
     OI»SQRT(Xl*XI«YI*YI)
  60 CALL   AwlNQ   ( SHT, SATH, DI, LbAAT, LTAAT,  *HT,  XW,  YW.  NLVL.
    Z XAW(I), YAW(I), XSIGMA(I), YSIGMA(D)
 loo CONTINUE
 110 «RITF. (6,120) MSTA
 '20 FORMAT(1H«,54X,13)
     KE'IJRN
     END
     SUBHOUTINE ROl)ATA(I)
     COMMON /iNuAT/onAr ISIOJ.IEND.NXTSTA.LSTSTA
     isw=o
 100 CALL TAPLX (iwINDUATA7,l,l,IOST,blO.OOAT,LEN)
      iFnOST.EQ.O.OR.IOST.EQ.*) GOTO  1J5
       IF(IOST.EQ.l) GOTO 116
       GOTO 117
 116 IF(ISW.NE.O)  GO TO 98
     GO TO 100
 117 *RITE<6,2002)
3002 FOHMATO FR RDDATA. I-O,02»)
 115 ISW«0
      IF (LtN.EQ.510) GO TO 150
     IF (LEN.EQ.510) GO TO 150
     WRITE (6,2003) LF.N
2003 FORMAT!' FH RODATA, BAD LENiIlO)
 150 IaI-170
     NXTSTA*NXTSTA-170
     GO TO 99
  98 IEND=10
  99 RETURN
     EM)
     SUBROUTINE RDDATE
 FOR CSU TAPES
     COMMON /DATERO/IDMO,IDYR»IDDY»IDHR,NRSTA,NREC,IM
     COMMON /INUAT/ODAT<5loi,IENO,NXTSTA,LSTSTA
     DATA 1ZEK/OX
     ISW»0
      CALL TAPtX( • «i I MUD AT A i ,1»1,IOST,510»ODAT,LEN)
      IF(IOST.EQ.O.OR.IOST,E0.4) GO TO lib
     IF(IOST.E'l.l) GO TO 116
       GO TO 11r
                                   117

-------
 116 IFUSrt.NEtO)  GO TO 98
     ISW*10
     GO TO ino
 117
     FORMATC  FR RDOATE, I-0«,02)
 lib ISW=0
         EN
     IF(LEN.<5T.20>  GO TO 100
     IDMO=OOAT(1)
     IDDY=OOAT<3)
     IDHRsQOAT (4)
     NRSTAsOOAT (5)
     NRECaODAT (6)
     IM=ODAT(7)
     NXTSTA=17l
     LSTSTA=171
     GO TO 99
  98 IENO=10
  99 RETURN
     END
     SUBROUTINE RDSTHD

     COMMON /STHORD/ISTNOiALAT,AUON,ISTH,ISATH,NLVL
     COMMON XI'MUAT/ODAT(510) , lENDtNXTSTA ,I_STSTA
     DIMENSION OAT(3iI70)
     EQUIVALENCE (ODATtn .DAT
-------
    INTEGER SIIMMXNSTAI ,SIOT»SHT,SATH
    INTEGER W*T(50)
    DIMENSION  SLAT(MXNSTA) , SLON (MXNST A )
    DIMENSION  XAw(MXNSTA),YAW(MXNSTA)
    DIMENSION  XSIGMAIMXNSTAI.YSIGMAIMXNSTA)
    DIMENSION  xw (bco ,vwtbo>
     DIMENSION MTH(ja)
    COMMON /DATERU/IUMO, IDYW, IDOY? IDHH,'\IWSTA,NREC, IM
    COMMON /STHURO/ISTNO»ALAT»ALON, I STh , I _ATH, NLVL
    COMMON XINOAT/ODAT (510) i I END ,NXTST A ,LSTST A
    COMMON /WINDRD/HDS (3«5o>
    DATA PI/3.14159/
     UATA MTH  /•JAN«f«FEb«,iMARi,iAPR',»MAY«. • JUN« , « JUL' , » AUG ' , ISEP« ,
   A   ,*
    EQUIVALENCE (ODAT ( 1 ) ,DAT ( 1 ) )
    IST=LSTSTA*2
    IF(IST,GT.170) CALL RDDATA(IST)
    IENsIST*
    HDS(2,K)«OAT(a,I)
    HDS(3,KisUAT(3,I)
 10 CONTINUE
    IF (JEN.EQ.IEN) GO TO 99
    CALL ROOATA(IEN)
    DO 20 1=1, IEN
    K=K*1
    HDSd ,K) sOAT( 1,1)
    HDS(?,K)sUAT(2,I)
    HDS(3,K)»UAT(3,I)
 20 CONTINUE
 99 RETURN
    END
                                  119

-------
     SUBROUTINE  XSZ(TSLAT1tTSLONl,TSLAT2,TSLON2.XTS,YTS.SPRED2,ALPHAA
    A ,BETAA,IJKA,R2A,TA,WIOROT)
	DETERMINES THE  DISTANCE,R2,AND  THE  ANGLES,ALPHAA.BETWEEN TRAJECTORY
    END POIMTS»  AND  THE  DISTANCE  TA,  AND THE  ANGLE,BETAA, BETWEEN  TRAJECTORY
   ENDPOINT  AND  SPREAD END  POINT—	._..—....
     PIB3. 14151*
     WORO»WIOROT/1852.0
     R2-XTS«XTS*YTS»YTS
     R2A=SQRT(R2)
     S2«(WORO/2,»SPRED2)«(WORO/2.*SPRED2»
     T2«R2»S2
     TA»SQRT(T2)
     iF(R2,EQ,0.) GO TO  101
     IFtXTS.EQ.O.)  60 TO 1
   F(R2.EQ.O.)  GO TO 1
   F0,
      ?F(t§lJf2tGE.TSLATl.AND,TSLON2,LE.TSLONl)  GO  TO 10
      F(TSLAT2.GE;TSLATl.ANDlTSLON2jGT.TSLONi)  GO  TO 20
     IF TSLAT2.LT.TSLAT1.AND.TSLON2IGT.TSLON1)  GO  TO 30
     IF TSLAT2.LTITSLAT1IANDITSLON2ILE.TSLONI)  GO  TO 40
  10 |JKA»1
     ALPHAA«ALPHAA
     RETURN
  20 IJKA»2
     RETURN
  30 IJKA=3
     ALPHAA-PI*ALPHAA
     RETURN
  40 IJKA*4
     ALPHAA»2,»PI-ALPHAA
     RETURN
 101 ALPHAA-0.
     BETAA-0.
     •A«0
        URN
         Program of Concentration Calculation (Model  A)


     PROGRAM TRAJET
  	 . ..__	.-j_, 	 -IN DATA COMPUTED FROM THE PREVEOUS
  TO  COMMUTE TM£ RESULTANT CONCENTRATIONS ETC.
  COMMON /OUTP1/ TSLAT(20,4,8), TSLON (20,4,8) , UBAH(20,4,8)
   , SPREAO(20,4»8)
  COMMON /OUTP2/ ALPHA(20,4,8)( BETA (20,4,8) , IJK(20(4,8)
   , T(20,4»8). R2(20,4,6)
  COMMON/6RIO/BLAT ( 31 ) ,8LON(31) , CONG (31,31 ) ,SCONG (31,31 ) ,XXJ (31,31 ),
      ^1?^
      i^ «£s?:
      NSION OID(
      0 I * 1, 5
      REAO(14, 1
      IMENSION OID(5),OLAT(5),OLON(5»
     DO 2
        -- -,~ -. 10) OID(I), OLAT(I), OLON(I)
10 FORMAT (A3, F4,l, F6.1)
20 CONTINUE
    READtU, 30)  NO, NOY, NTS, NTPDY, LTAAT
30 FORMAT(SIlO)
    READ(14, 40 )  TSOUR* ALATT, ALONL
40 FORMATOF15.5)
   00 500_IO"1,NO
   -  •••-  -  'SO
     IFINO.EQ.
     WRITE(6,4
 416 FORMAT(IHJ,A3,«
            )  GO TO 450
            6) 010(10),OLAT(IO)»OLON(IO)
     KUNIT-20*
     DO 425 M-
            0
            ,NDY

        DO"420  >' ^PP?
                0 J • 1,  NTS
              READ (KUNIT1  TSLAT(J.K.M),  TSLON(J,K,M),  UBARIJ,K,M),
      SPREAO(JtK,M). ALPHA(JfK,M).  BETA(J,K,M ),  T(J,K,M),  R2(0,K,M),
                , l{NT(J,K,M).  SICNT(J.K.M)
                                  120

-------
 420       CONTINUE
 422    CONTINUE
 425 CONTINUE
 450 CONTINUE
     CALL CONCAL (IO,NO,OLAT,OLONt                   NTS
    A .NTPDYiNDY,TSOUR,ALATT,ALONL.LTAAT)
     SUBROUTINE CONCALCIOINO.OLAT.OLON,
    ANTSiNTPDy.NDY.TSDURtALATTiALONL.LTAAT)
     -CALCULATE THE CONCENTRATIONS ON GRID POINTS--—- ---- -——.--
     COMMON /OUTPl/ TSLAT(20f4,8) , TSLON (20 .4 ,8) , U8AR(20»4,8)
    Z , SPREAD(20,4,8)
     COMMON /OUTP2/ ALPHA(20t4,8) , BETA (20 |4 1 8) ,  IJK(20i4,8)
    Z , T<20,4}8), R2(20,4,8)
     COMMON/GRlD/6LAT(31) iBLON(31) »CONC> < 31 • 31 > ,SCONG ( 31 . 31 ) »XX-J(31f 31)
    Z   SXXJ(3li31)tDXXJ(3l,31).DSXXJ(3i,31)
     DIMENSION VG1 (20.4) ,VG2(20,4) ,CONVR(20t4) ,H(20,4) ,RAMOA1 (2of4) .
    Z RAMDA2(20,«)
     INTEGER TSLAT.TSLON
     DIMENSION WOR(20,4,8), CONC (20 ,4, 8) , SCONC ( 20 t 4, 8)
     DIMENSION GAMMAISLS!) ,c(3i,3i)
     DIMENSION o«coN(5> ,SORCON
     DIMENSION OLAT< SI.OLONI s>
     DIMENSION^INDEX(31,31)«INDEX2(31»31)

     00 48oO Kal,NTPnY
     DO 3000 Jrl,NTS
     CALL REMOVE (K, J.VGA, VGB,TRAR,HGTtRAMAAtRAMBB,LTAAT)
     VG1 (0,K)=VGA
     CONVR( Jt K)=TRAR
     H(J,K)«HGT
     RAMOA1 ( J,K)=RAMAA
     RAMOA2(J,K)iRAMR8
3000 CONTINUE
4000 CONTINUE
     READI5.7T) ORCON(IO) .SORCON ( 10) , WIORO ( 10)
  77 FORMATI3F10.1)
     *ORO=WlORO(IO)
     DO 87 M  = 1, 8
        DO B6 K = 1 , 4
           00 85 J * 1, 20
              *OR(Jf K, M)aO.
              CONClJt K, M)ao.
              SCONCIJt Ki M)aO.
  85       CONTINUE
  86    CONTINUE
  87 CONTINUE
     IF (IO.NE.U GO TO 101
     DO 100 TI»1,31
     DO 99 JJ » 1, 31
     III=II-1
     JJK*JJ-1
     BLAT(II)=ALATT-0.5»III
     BLON(JJ) »ALONL-0.5«JJK
     CONG(II|JJ)»0,0
     XXvJ(II»JJ>»0.0
     SCONG(II.JJ) =0.0
     SXXJ(II,J>J)=0.0
     DXXJ(II,JJ)=0,0
     DSXXJ(IItJJ)«0.0
  99 CONTINUE
 100 CONTINUE
 101 CONTINUE ,
     00 800 MsliNDY
     DO 700 K«1«NTPDY
     DO 600 J=1»NTS
     REMVl^VGl ( J»K) *RAMDA1 ( J,K)«H(JfK) «CONVR ( J . K ) «H ( J ,K )
     REMV2=VG2(J.K) *RAMDA2 ( J,K) «H < J,K)
     DREMV=REMV1-REMV2
     VG1H=VG1 (JtK)/H(J,K)
     VG2H»VG2(J»K)/H(J,K)
     DA»EXP(-VG1H«TSDUR*360Q.)
     OB=EXP ( -V62H*TSDUR«3600. )
     DC=EXPJDREMVH»TSDUR«3600.0>
     DPlaEXP(-RAMDAl (JtK)»TSDUR«3600.)
     DP2«EXP(-RAMDA2(J«K)«TSDUR»3600.)
     DCON=EXP(-CONVR(J,K)»TSDUR»3600.)
     SWIDTH»WO«0*2.»1852.«SPREAD(J,K.M)«60.
     IF(J.NE.l)  GO TO 601
     WOR(J,K,M)»WORO
     CONC(J.KtM)a( (ORCON(IO)«WOR( JtKiM) ) /SWIDTH) »DA»DCON«DP1
     SCONC(J,K»M)a (SORCON(IO)»WOR(J,KiM)/SWlDTH)«DB»DP2
    A   * ( 1,5«CONVR(J»K)«H< J,K ) /OREMV) »CONC (J»KtM)«DC
     GO TO  600
 601 WOR(JtKfM) =«OHO*2,«60.«l852.«SPREAD(J.lfK,M)
                                   121

-------
    CONC(J«KiM)=( (CONC(J-1.K.M)»WOR(J,K,M) ) /SWIDTH) «DA»DCON«DPl
    SCONC(J»KtM)«( (SCONC(J-1»K,M)»WOR(J,K,M) ) /SWIOTH) »DB»DP2
   A * (1.5»CONVR1) ALPHA  tBET A ( JiK |M) . IJK ( J,K ,M) » T (si i K ,M)
   AiR2(J£K.M) t SPREAD! j,K,M) .UBAR ( J,K,M) .TSLAT ( J,K,M) , TSLON ( J tK , M)
651 FORMAT<2F10.3,I5,4F10.3,2I10)
    IF (  J ,EQ. 1) 60 TO 599
    IF (TSUATU, K, Ml/10. ,6T. BLAT(l) .AND.
   Z   TSLAT/10. .GE. BLAT(l) .OR.
   Z   TSLAT(0. K, MJ/10. .LT. BLATOll .AND,
   Z   TSLATlO-1. K, M)/IO. ,LE. BLAT (31 ) ) 60 TO 700
    IF (TSLONUi K, M)/10. ,GT. BLON(l) .AND.
   Z   TSLON(J-1» K, Ml/10. ,GE, BLON(l) .OR.
   Z   TSLON(J» K, M>/10. .LT. 8LONO1) .AND,
   Z   TSLON1J-1, K, M)/10. .LE. BLON(31» GO TO 700
          ON
599 CONTINUE ,
    DO 10 II-U31
    DO 9 JJ « 1. 31
             )  60
       ic

    IF(J.EQ.l)"6o"fo 50
    TTUAT»TSLAT(J-1,K,M)/10.
    mON*TSLON(J-l,K,M)/10.
    60 TO 51
 50 TTLAT»OLAT(|0)
    TTLON-OLON(IO)
 51 CONTINUE
    Gx«(TTLON-BLON(JJM»60,«COS(TTLAT»PI/lBO,)
    GY»(BLAT(II)-TTLAT)«60.
    IF(SLON(JJ).EQ.TTLON) GO TO 5
    IFJBLATJID.EQ.TTLAT) GO TO 6
    RATIO»ABS(GY/GX)
    6AMMA1II.JJ)sATAN(RATIO)
    IF.GE.TTLAT.AND.8LON(JJ),UE.TTLON) GO TO
    IF(BLAT(II).GE.TTLAT.AND,8LON(JJ).GT.TTLON) GO TO
    IF(BLAT(II),UT.TTLAT.AND.BLON(JJ).GT.TTUON) GO TO
    iF(8LAT(Il>.LT.TTLAT.AND.8LON(JJ).LE.TTLON) GO TO
 21 GAMMA(il«JJ)*GAMMA(II,JJ)
    GO TO 30
 22 GAMMA(II.JJ)ePI-GAMMA(Il,jJ)
    GO TO 30
 23 GAMMA(Il.JJ)*PI«GAMMA(II«JJ)
    GO TO 30
 24 GAMMA(II,JJ)»2.*PI-GAMMA(II,JJ)
    GO TO 30
  5 IF(BLAT(I1).GE,TTUAT) GO TO 4
    6AMMA(It,JJ)*l.S*PI
    GO TO 30
  4 GAMMA(ll.JJ)iO,5«PI
    GO TO 30
  6 IF(BLON(JJ).LE.TTLON) 60 TO 7
    GAMMA(IIiJJ)«Pl
    GO TO 30
  7 GAMMA(11,JJ)»0.
 30 C(II.JJ>'SQRT(GX»GX«6Y*GY)
  9 CONTINUE
 10 CONTINUE
    OELTA1«ALPHA»0.5»PI
    DELTA2«ALHHA(J,K,M)»1.5»Pf
    PH*Il«AUPHA(j,K,M)*B|TA(J»K,M)
    INDEX2I,
    CONTINUE
    CONTINUt
    DO 250 11*1.31
110
    DO 246 JJ « I, 31
   AIF(J.EQjI^ANO^BLAT(II).EQ.OLAT(IO).AND.BUON(JJ).EO,OLON(IO))

    IF(J,EQ.1.AND,C(II.JJ).LE,WORO/(2.«1852.) . AND. GAMMA (II ,JJ| ,EQ,
   A    DELTA1.0R. GAMMA ( II, JJ) .EQ.DELTA2) GO T^ 355
    EE » T(J. K, M)» T(J, K, M) - R2(J, K, M)«R2(J, K, M)
    E«SQRT (EE)
    F*R2(Jt K. M)»E
        (II. JJ) ,6T. F
        J!UJ,K,M):EQ:I)
        JK(J,K,M).EQ.2)
        JK(J.K,M).EQ.3)
        JK(J,K,M),EQ.4)        JO
     FdJK(J.KtM) ,|Q 0) GO TO 140
     F(BETA(J.KfM),LT,ALPHAjJ,K,M)) GO TO 111
     F (GAMMA < I I, JJ) . GE. ALPHA (J.K.M) , AND. GAMMA (II. JJ) .LE.PHAI 1 ,OR.
              i,jJK6E:<2.»PI»PHAI2).AN5.GAMMi(lTiJJ),L^,2.ip!,oA.
              l.JJj.GTtd. . AND. GAMMA ( II ,JJ) .LT.AtPHA (S.KjM? )  *  *
      R2(Jt K. M)»E
     F(C(II. JJ) ,6T. F) GO TO
     F
-------
    A   «(1.5*CONVrt »CONC(J»K,M)»D6
     INDEX(II,JJ)«2
     GO TO 249
 350 CONG(II,JJ)*ORCON(IO)
     SCONG(II,JJ)*SORCON(IO)
     INDEXlII»JJ)=2
     GO TO 249
 162 CONG(II,JJ)=CONC(J,K,M)
     SCONG(II,JJ)=SCONC(J,K,M)
     INDEX«2
     GO TO 249
 140 CONG(II,JJ)=0.
     SCONG(II,JJ)aO.O
     INDEX(II,JJ)=1
 249 1F(INDEX2(II,JJ),£0,2.AND.INDEX(II.JJ).EQ.2) GO TO  251
     GO TO 252

     SCONGdl, JJ) *0.0
 252 XXJtII»JJ>»XXJ(II,JJ)»CONG(lI«JJ>
     SxxJ(ll,JJ)=«SXXJ(II,vJJ)»SCONG(II,JJ)
     DCONG=CON6(II,JJ)«(V61(J,K)+RAMDA1(J,K))»H(J.K) «3, 6*6.0
     DSCONG*SCONG>0,0
     SCON6(II»JJ)«6.0
     GAMMA(II,JJ)«0.0
     C(IIiJJl*0.0
 660 CONTINUE
 661 CONTINUE
 650 CONTINUE
     IF(IO.NE.l) GO TO 700

CCCCCCC    JJJ « 4 TIMES THE NUMBER OF DAYS CONSIDERED

     JJJ=28
 700 CONTINUE
 800 CONTINUE
     DO 802 11*1,31
     DO 801 JJ • 1, 31
     XXJ(II,JJ>»XXJ(II.JJ)/FLOAT(JJJ)
     SXXJ(n,JO)«SXXJ(II,JJ»/FLOAT(JJJ)
 801 CONTINUE
 802 CONTINUE ,
     WRITE(6,914)
 914 FORMATUHU8X,' CONCENTRATION OF S02  «////)
     WRITE(6,915)  (BLON(JJ),JJ»1,16)
 915 FOftMAT(8X,l6Ffl.l/////)
     DO 903 II»1,31
     WRITE(6,904) BLAT(II),(XXJ(II,JJ)tJJ«l.!6)
 90* FORMAT(F8,l,l6E8.a////)
 903 CONTINUE
     «RITE(6.925)  (BLON(JJ),JJ»17,31)
 925 FORMAT(lHl,ax»l*F8.1/V///)
     DO 913 11*1,31
     WRITE(6,941) 8LAT(II),(XXJ(IIiJJ)tJJ=17,31)
 941 FORMAT(F8.1,15E8.2////)
 913 CONTINUE
     WRITE(6,9i>0)
 950 FORMATUHliSX, ' CONCENTRATION OF S04  •////)
     WRITE(6,915) (8LON(JJ),JJ»1,16)
     00 951 II*U3J
     WRITE(6,904) BLAT(11),(SXXJ(11,JJ),JJ = 1,16)
 951 CONTINUE
     WRITE(6,925) (8LON(JJ),JJ»17,31)
     DO 952 11*1,31
     WRITE(6,941) 8LAT(II),(SXXJ(II,JJ) ,JJ«17,31)
 952 CONTINUE
     WRITE(6,953)
     FORMAT(1H1,8x,'utposiiION or aoi
     WRITE(6,915)  (BLON(JJ),JJ«1,16)
953 FORMATUHl,8X,'DEPOSITION OF S02 (KG/KM2) • ////i
    WRITE(6,915)  (F -       . . -  - -
    00 954 11*1,31
     WRITE (6, 904)  BLATl II) , (DXXJ(II.JJ) ,JJ=1,16)
 954 CONTINUE
     WRlTEf6,925)  (BLON t JJ) , JJ»17 , 31 )
     00 955 11*1,31
     WRITE (6, 94 if  SLAT (I I) , (OXXJ(II,JJ) ,JJ«17,31)
 955 CONTINUE
 956 FQRMAT(1H1,8X, 'DEPOSITION OF S04 (KG/KM2) •////)
     WRITE(6,915)  (BLON(JJ) ,JJ«1,16)
     DO 957 11*1,31
     WRITE (6, 904)  BLAT(II> , (DSXXJ ( 1 1 » JJ> , JJ»1 , 16)
 957 CONTINUE
                                   123

-------
    WPITE<6,925) (  BLON(JJ),JJ«17»31)
    Do 958 II*1»31
    WRITE(6»9*1) BLAT(II),(OSXXJ(11,JJ)»JJ«17,31)
958 CONTINUE
    DO 920 11*1,31
    DO 9J9 JJ = 1,  31
    XXJ(IIiJJ>»XXJ(II,JJ)»FLOAT(JJJ)
    sxxj(iiiJJ>
919 CONTINUE
920 CONTINUE
    RETURN
    END
110
120
130
SUBROUTINE REMOVE(K,J,VGAfVGBtTRARtHGTtRAMAA,RAMBB,LTAAT>
IF(K.E«.1> GO TO "  "
lF.2> GO TO ...
lF(K.Ea,3  GO TO 130
!F(K.EO.*> GO TO 140
IF(J.LE,4) GO TO
IFulLE^e) GO TO
IFU.LE.l2) GO TO
IFIJiLEllb) GO TO
GO TO 111
IF(J.LE.2)
 111
                 ttt
                  m
               GO TO
                 111
                 112
            GO TO 111
            GO TO 112
            GO TO 111
JFIJ.LE.6) GO TO
IF(J.LE.IO) 	
IF{J.LE,14)
IF(J.Lt.lB)
GO TO 112
lF(J.Lt.4) GO TO
IFIJ.LE.8) GO TO
IF(jItEll2) GO TO
IF(J.LE.16) GO TO
GO TO 112
                 112
                 111
                  112
                  111
140  IF(J.LE.2) GO TO  112
     IFIJ.LE.6) GO TO  111
         .LE.10)
         • LE.14
IFIJ.LE.
            GO TO
            GO TO
            GO TO
IF(J.LE.IB)
GO TO 111
VGAsQ.Ol
VGBsO.OOl
TRAR»3.0E-6
HGT=FLOAT
-------
                              APPENDIX -  B

                      FORTRAN LISTING OF MODEL  B

              Trajectory Calculation Program (Model  B)
      PROGRAM  TRAJET
     1 (OUTPUT, DAT A 1,TAPFS=DATA1,TAPF6=OUT^UT,TAPE1=10"2H,TAPE2'
     2 TAPE21 = l002b,TA°F22=10G/e.B,TAPF23 = 1002B,TAWE2<»=l 10?B,
     3 TAPE25=lUO?b,TApE2t>=lreyH,TAPF2r=1002B,TAPE2fl=l 002H,
     4 TAPE29= 100 ?B,T APT 30 = 100 2B, TAPE 31 = 100 2B, TAPE 32= tOO 2B,TAPt33=1002R,
     5 TAPE3<*=lOO?B,TAPr35 = no 2*, TAPE 36 = 1 002B,TAPE37=tno2H,TAPt 38 = 10024,
     6 T APE3<5= 1 00?H »TAPF*0 = innaB, TAPE 1^ = 1 00 RH)
          DIMENSION F.hiSr>2(S) ft HSUL (S)
      DIMENSION OIDCi) ,OLAT (b) ,OLON(5) , ImlOHOT (»
     Z YAW  (flO,2,5) .XSlGMAteO.^.S) , YSIGKft I 80 ,2 ,5)
      COHMON/STAT2/SLA1?(80,?,5) ,  SLON2 ( 80 ,2 ,5)  , XAW2 ( «0,2»5>,
     Z YAW2<80.2,5> , *SIKM2<80,2,5) • YSI GM2 ( 40 , 2.5)
      COMMON/STATS/SLAT'HtHO.^.S) ,  SL"N3 ( 80 , 2 ,5 )  , XA W3 (
     Z YAw3(8Q»2,'S),XSIPM3(ao,2.S),Y?IGM3(BO,2»S)
C"»FORWARD  AND HACR^'ARU  TRAJECTORY MODEL
C*»USING OBSERVED  ANO  ANALYZED  INPUT '.VINOS

      LOGICAL  SICNT1.SICMT?,  SICNT3, SICNT4.SICNT
C»»FOR 08SERVEU INPUT  IsIrJDS  OfJLY«»»»»»«»»i>-»(**<»»»«»**»
      DIMENSION SLATT (HP) ,SLONT(HO) ,XAWT(dO) ,YAWT{80)
      DIMENSION NSTA(?i[;>iNSTA^(?,5).NSTA3(2i5)
      DIMENSION XXSI<3(aO) lYYSlG(flO)
      INTEGER  SID(80.2)
      INTEGER  SID2(aO. 2) ,5103(80.2)
      INTEGER  TSLAT.TSL""J
      INTEGER  TTLAT1.TTI.ON1,TTLAT?.,TTLON3,TTLAT3,TTLON3,TTLAT4»TTLON4
C»«SEE DATA
      LOGICAL SJTAGCS) .SICNTT
      INTEGER XIP(3())iYTP(.3Q)tXTSIP(10),YTSIP(3n),WlP(30)
      INTEGER OXSIGD(30) ,OYSIGP(30)
      COMMON/ 1 NPun/I3DY,IBMO,lHYRtNOYtTDIRt
     A          POLLST,IHOUR,IhO,
     A         NDYOt/^,NnY01A,wl YPE,PTAB1 , DT ABB ,DTABL .OTABK,
     A     LBAAT,LMAAT,LTAAT,ALATT, ALATH,ALONL
      COMMON/SOS T/TSI ATS, TSLONS , SpREDl ,
     A SPREO,S^«EAU,ALPHA,riETA,T,R?,IJK
C»»MAXIMUM NUMBER OF  STATIONS
      DATA MXNSTA/ RO/
      DATA OBS, ANA/3H03S,3HANA/
      DATA BACK/4H8ACK/
      DATA SJT*G/1H  , 1H. , 1H+ , 1H» , 1H-X
      DATA ITS«lTPOY«lMM/rt,2,5/
      ISNAP=0
      CALL   INPUT    ( NTPDY,  TSDIJR,  RADIUS, ICNTMN, ICNTMX,  MrilP,  MElP,
     z MXNO, NO, nin.  OLAT,  OLON,  WIOROT,  IHRIMP, NLVI.A,  NTSPOY,
     Z NTS, NMM,ERSO?,EKSUL)
C»»SET ITAB FO«WAHD/HACKWAHD  TO  1  FOR FORWARD, 2 F0« BACKWARD
      1TABFB=1
      IF  (TOIR .EQ,  PACK)  ITABFB = ?.

C«»LOOP THROUGH NUHPF.:? OF  DAyS
      00  400 "=1,NOY
      CALL   DTA8KO    (  M,  MXNSTA, MTPDY,  NMM, NST A,NST A2 ,NST A3 ,
     A IT58FR,NOYnTA,
     Z ITPOY, IMM, DTA8T,  DTAB^,  OTABL,  DTABR, LBAAT, LMAAT.LTAAT,
     Z OLAT   lOLON,   SI 0 , SID2, SID3)

C«»LOOP THROUG^ NUMBER OF  DAYS

      DO  399 10=1, NO
C
C
C»«LOOP THROUGH NUMBER OF  TRAJECTORIES PER DAY
      DO  300 N=l »4,NTPOY
                                     125

-------
             .l)  K=l
      IF(N.EQ.J)  K = 2
      K K T — K
      IF (ITABK4 .EQ.  GO TO 42
C««TRAJECTORV HAS BEEN TF.RHIMATEO
C««OUE TO INSUFFICIENT AMOUNT OF INPUT  DATA-
C»»TERMINATION CODE INFORMATION
C»«REPL ACES ALL REMAINING TRAJECTORY SEGMENT LAT«LON  VALUES
      GO TO 20
C ,»«*««»««»»»«» INI T I AL 1 7 AT I ON«n*»»*«»»**»»*»*«»*«»»»*
            =L.Af
      GO TO 200
     ««»««»»»«»
   40 TLATll=OL.AT(If»
      TLAT12=OLAT(IO)
      TLAT13=OLAT(IO)
      TLAT14=OLAT
      TLON12=OLON( 10)
      TLON13=OUON(IO)
      TLON14=OLON(IO)
      SPPD11=0.
      SPR02l=Ot
      SPRD3UO.
      SPRD41=0.
      SPRE1=0.
      SPRF2=0.
      SP»E3=0.
      SPRE4=0.
   42 JTAG=0
      JTG2=0
      JTG3=0
      JTG4=0
      CALL   KKMM    {  J,  N,  H, KK.  MMt  NMM,  NDYDTA,  NTSPDY » I T A«FB ,
      IF  (IRTNS  .FQ. -JO)  GO  TO 9Q
C««TRAJECTORY TErtHINATEO  OUE TO  MO  PATA READ INTO  DATA-HLOCK (0 r ABK )
C»»OR CLOSEST-riME(CLSTM)  CALCULATION  OUTblDE DATA-BLOCK
   ^6 TTLAT1=9V6
      TTLON3=9996
      TTLON4s9996
      UHAP1=0.0
      U8AR3=0.0
      U«AR4=0.0
      SPREA1=0.0
      SPREA2=0.0
      SPREA3=0.0
      $PREA4=0.0
      ALPHA2=99.
      ALPHA3=99.
      ALPHA4=99.
      8ETA1=99.
      BETA2=
-------
      SICNT1=SJTAG(1>
      SICNT2=SJT4G  l)
      SICNT3=SJTAG  1)
      SICNT4=SJTAG(1)
      GO TO 200
   90 IF(K.EQ.l)  GO  !'•>  1100
      IF(K.EO.Z)  GO  TO  13QO
      IF(J.GE.3.ANO.J.LF.  4)  GO  TO  1120
      IFfJ.GE.b.ANO.J.LF.fa)  GO TO  1130
      IF(J.GF..7.ANO.J.LF.B>  GO TO  1140
 1110 CALL DIS°2(J,K,y,KK,MM,i*!XNSTA;NSTA2,ITABF8, ITS,
     ZITPDY»TMM»RADIL'S,TSDUR,MBIP,MFIP,SLATT.SLONT, TLAT 1 1 . TL ONI 1, XAWT,
     Z YAWT,XX3lG,YYSIG.KK2.MM2«SJTAG,JTG2,ICNTMN,ICNTMX,XlP,YlP,
     Z XTSIP»YTSIP,DXSIfiPfDYSlGPfWIP.TSLAT?,TSLON2, I SNAP, W IOP.OT,
     Z UBAHT,SlGMAH,ICNTT,SICNTT,SPRnil,SPRE02,ALPHAA,BETAA,TA,R2A,IJKA,
     ZIRTNS)
      IF2,ALPHAA,BETAA,TA,R2A,IJKA,
     Z IRTNS)
      IF (IRTMS«t.Q,170) GO  TO 170
      CALL ALT
-------
     TLATl3=TSLAT5
     TLATl^TSLATS
     TLON11=TSLON5
     TLON12=TSLON5
     TLON14=TSLON5
     SPRD11=SPHED1
     SPRD31=SPKE01
     SPRD41=SPKED1
     SPRE2=SPHtD
     SPREA1=SP«EAD
     SPPEA2=SPHEAD
     SPREA3=SPREAD
     60 TO 200
  87 TTLAT1=9?6
     TTLAT3=996
     TTLON1=9996
     TTLON3*9996
     UBAR1=0.
     UBAH3=0.
     SPREA1=0.
     SPRtA3=0.
     ALPHA1=S°]TAG°JTG?,      TSLAT2, TSLON2 ..JBART .SIGMAH, ICNTT,
   Z SICNTT.ALPHAA,HETAA,TA,q2A,IJKA,IHTNS)
    iFdRTNSjEQ.]-   -- -- '-•
141 C    ------
 171 CALL       CONVEX(TSLAT2|TSLON?,UBART,ICNTT,SICNTT,SPRE1«SIGMAH,
    Z                  SHRE02,ALPHAA,BETAA,TA,R2A,IJKA,TSLAT,TSLON,
   .Z                  UHAR.ICNT.SICNT)
     TTLAT1=TSLAT
     TTLAT3»TSLAT
     TTLONl»TbLON
     TTLON3=TSLON
     UBAR3allBAR
     ALPHA1«ALPHA
     ALPHA3«ALPHA
     BETAl=flETA
     BETA3»RETA
     T1»T

     R2l=R2
     IJK1=UK
     IJK3=IJK
     ICNT1=TCNT
     ICNT3*ICNT
     SICNTUSICNT
     SICNT3=SICNT
     TLAT11=TSLAT5
               .
     TLONIUTSLONS
     SPRE3=SP«tn
     SPREAUSPREAO
     GO  TO  1321
  88
                                    128

-------
      TTLON2=9996
      TTLON4=9996
      UBAR2=0.
      U0AR4=0.
      ALPHA2=99.
      ALPriA4=99.
      BETA2=99.
      BETA4=99.
      T2=99.
      T4=99.
      R22=99.
      R24=99.
      IJK2=0
      IJK4=0
      ICNT?=0
      ICNT4=P
     GO TO  POO
  93 CONTINUE
1321 CALL DIS03tJ,K,M,KK,MM,MXNSTA,NSTA3»ITABFB, ITS,
    ZITP[>YiIMM»RADJIJS,TSDURt.18IP,MEIP,SLATTtSLONT,TLATl2tTLONl2.XAWTt
    Z YAWTtXXiIG,YYSlG,KK3»M>n»SJTAG, JT03, ICNTMN , 1CN TMX , XIP t Y t P,
    Z XTSIP,YTsiP,OXSIGP,QY5IGP,'-iIP,TSL4Ta,TSLON2,ISNAP,WlOROV,
    Z UBART.SlGMAHi JCMTTiSIChlTT,SPRD2l»SP«EOafALHHAA,BETAA,TA,R2A,IJKAt

     IF(IRTNS.EQ.170)  GO  TO  172
     CALL *LTOTA(     SJTAG,jrG3.       TSL AT2, TSLON2.UBART, SIGMAH, ICNTTt
    Z SlCNTT«*LPHAA,3c;TArt,TAtR2A,IJKA,IRTNS)
     IF(IRTNS.EQ.17fl)  GO  TO  172
     CALL ClSTM< J,KK,MM,JTG3tNTPDYfITABFHtvi,NDYDTAtNMM,KK3»MM3,IRTNS)
     IF (IRTNS.tQ.90)  GO  TO  93
     IF( IRTNS.tQ.86)  GO  TO  88
 172 CALL       COKlVEK(TSLAT?fTSLON?tUBARTiICNTT«SlCNTT,SPRF.2»SIGHAH,
    Z                  SPRED2,ALPHAA,8ETAAiTA,R2A, IJKA.TSLAT. TSLON,
    ZTTLAT2=TSUAT      U.AR , ICNT, SICNT,
     TTLON2=TSLON
     ALPHA2=ALPHA
     ALPHA4=ALPHA
     BETA2=PETA
     BETA4=8ETA
     R22=P2
     R24=R2
     IJK2=UK
     IJK4 = UK
     ICNT2=ICNT
     SlCNT2=SfCNT
     TLAT12= T5LAT5
     TLAT14= TSLAT5
     SPR021=SHHEDl
     SPRD41=SPHED1
         .
     GO TO 200
  89 TTLAT1=996
     TTLON1=9996
     TTLON3=9996
     UBARl^f).
     UBAR3=0.
     SPREA1=0.
     SPREA3=0.
     ALPHA3=99.
     BtTAl=99.
     BETA3=99.
     Tl=99.
     T3=99.
     R21=99.
     R23=99.
     IJK1=0
     IJK3=0
     ICNT3=n
     SICNT1=SJTAG(1 )
     SICNT3=SJTAG(1)
     fiO TO 13J1

  94 CONTINUE
1330 CALL OISO ( J , K ,M ,nK , MM ,MxNST A^-iSTl  ,ITArtFB,  ITS.
    Z I TPP Y.I MM. RAO I US, rSi)UR,i1UIP,Mf TP,SLATT,SLONT,TLAT11 ,TLONll ,XAwT,
                                    129

-------
    7 YAWT,XXi>IG,YYSir,,KKT.MMT,SJTAr;,JTAC>, ICNTMM,ICMT«X,X IP»Y1 P.
    7 xTSIP,YTSTP,nxsir.P,OYSlGP,^I",TSLAT?,TSLON?,t=;MAP,^IOflOr,
    I USAHT,SlGl5AH,l2riTT!stC'VrT;SPRRll,SPRtD2,ALPMAft,HETAA,TA,«?A,IJKA,
    7 Th?TNSl
                                ,       TSL ATP> , TSLON2 .U8ART , Si G*AH , ICNTT ,
    2 SICNTT,flLPHAA.8F.TAA,TA,M2A,IJKA,lWTNS)
                     ,
     IF (IRTNS. EG. 90)  GO  TO  9ft

 173 CALLRTNS'tQCONVE^TSLA?I,TSLON?,UHART, ICNTT, bICNTT.SPREl .SIGMAH,
 lfJL«LL        v.u     >5pwE0^;ALpHA«,dt

    7                   'JHAR.I'CNT.SICNT)
     TTLAT1=TSLAT
     TTLAT3=T3LAT
     TTLOM3=T3LON
     ALPHA1=ALPHA
     ALPHA3=ALPHA
     BETAl=RErA
     BETA3=RETA
     T1 = T
     T3 = T
     R2l=M2
     R23=R2
     ICNT3=ICNT
     SICNT1=S£CNT
     SICNT3=SlCNT
     TLATll=TSLATb
     TLAT13=TSLATS
     TLON11=TSLON5
     TLON13=TSLON5
     SPRD31=S^HE01
     GO TO 1331
  61 TTUAT2=996
     TTLON2=9996
     TTLON4=9
     UBAR2=0.
     SPREA2=0.
     SPREA4=0.
     BETA2=99,
     BETAft=99.
     T2=99.
     T*=99.
     R22=99.
     R24=99,
     IJK2=0
     IJK4=0
     ICNT2=n
     ICNT4=0
     SlCNT2=SJT4fi (1)
     SICNT4=SJTAG( I)
     GO TO 200
  95 CONTINUE
1331 CALL OIS" (JtK,M,KKiMM,MxNSTA,NSTA  ,ITARFB,  ITS.
    ZITPOYtTMM,RftOIl|S,TSOUH,MBIP,MFIP,SLATT»SLONT,TLATl?,TLONl2«XAWT,
    Z YAWT.XXSIG,YY5IG,KK2,MM2,SJTAG,JTG2,ICNTMN,ICNTMX,XlP,YlP,
    7. XTSIP.YTSIP.OXSIOP.DYSlGP.WIP.TSLATZtTSLONZilSNAP.HlOROr,
    Z UHART,SiliMAH, tCNTT . SI CMTT , SPHD21 , SPREU2, ALPHAA , BETA A , TA , H^A , IJK A ,
    Z IRTNS)
     lF(IRTNS.tQ.170) GO TO  174
     CALL ALTiJTAI    SJTAG.JTG2.       TSLAT2, TSLON2,uBART .SIGMAH, I CNTT .
    Z S ICNTT t ALPHA A.BETA A, TAtR2A, IJK A, IRTNS)
     iFtlRTNS.tQ,] 70) GO TO  174
     CALL CLSTM(J,KK,MM,JTG?,NTPDYiITABFb,M,NOYDTA,NMM,KK2tMM2, IRTNS)
     IF ( IRTNS. E.Q. 90! GO TO 95
     iFdRTMS.tQ.Hb) GO TO hi
 174 CALL       CONVER(TSLflT2.TSLON?,UBART.ICNTT,SICNTT,SPRE2.SIGMAH,
    Z                  SPHE02,ALPHAA.dETAAtTA,R2A, UKA,TSLAT» TSLON,
    Z                  UBAh.ICNT.SICNT)
     TTLAT2=TSLAT
     TTLAT4=TSLAT
     TTLON2=TSLCN
     TTLON4=TSLON
     ALPHA2=ALPHA
     ALPHA4sALPHA
                                   130

-------
     UK2=IJK
     IJKAsIJK
     ICNT2=ICNT
     ICHT<»=1C'NT
     SICNT2=SICNT
     SICM* = SlC\T
     TLAT12=TSLATS
     TLAT1*=TSLAT5
     TLON12=TSLON5
     60 TO 200
  62
     SPRFA1=0.
     IJK1=0
     SICNT1=S-JTAG(1)
     GO TO 13*1
  96 CONTINUE
1340 CALL DIS02(J,K.M»KK.MM,f«XNSTA,MSTA2tITABFi3,  ITS,
    ZITPOY«IMM,RAUI!JS,TSOUH,MKIP,MFIP,SL&TT,SLONT,TL
    ZITPOY«IMM,RAUI!JS,TSOUH,MKIP,MFIP,SL&TT,SLONT,TLATH,TLONH,XA«T,
    Z YAWT.XXSlQ,YYSIG,KKTiMMT«SJTAG»JTAG,ICMrMN,ICNrMX,XlPfYtP,
    2 XTSIH.YjSIP.OxsIGP.DYSISP.WIPf TSLAT2. TSLON2i I SNAP, W IOROT ,
    Z UBART,SIGMAH,1CNTT»SICNTT,SPRD11»SPHED2,ALPHAA,HETAA,TA.H2A,IJKA«
    Z IRTNS)
     IF(IRTNS.EQ.170I GO TO  1 7S
     CALL ALT>JTA(    SJTAG.JTAG,       TSL AT2, TSLON2 , U8ART t S IGMAH, ICNTT »
    z SICNTT.ALPHAA,I^:TAA,TA»«?A,IJKA,IRTNS)
     CALL CLSTM(J,KK,MM,JTAG«NTPOY, ITA6FB ,M,NOYOTA,NMM,KKT»MMT , IRTNSl
     IF(IRTMS.EQ.90) GO TO 96
     IF(IRTNS.EQ.86) 60 TO 62
 175 CALL       CONVER(TSLAT2,TSLON2iUBAKT.ICNTT,SICNTT.SPREl»SIGMAH,
    Z                  SPRE02,ALPHAA,HETAA,TA,R2A,IJKA,TSLAT, TSLON,
    Z                  UBAK.KNT.SICNT)
 510 TTLAT1=T^LAT                                         ^
     TTLON1=T5LON
     UBAR1=UHAR
     ALPHA1=ALPHA
     BETA1=8ETA
     T1*T
     R21=R2
     ICNT1=ICNT
     SICNT1=SICNT
     TLAT11=TSLAT5
     SPRD11=SP«ED1
     SPRE1=SPHED
     SP«EA1=SHREAD
     GO TO 13*1
  63 TTLAT2=9*6
      TLON2=9996
       AR2=0.
     TT
     U8
     ALPHA2=99.
     BETA2=99.
     P22=99.
     ICNT2=0
     SICNT2=SOTAG(1)
     GO TO 13*2
  97 CONTINUE
1341  CALL DIS02(J,K,M,KK»MM,MXNSTA,NSTA2,ITABFB,  ITS.
    ZITPDY»tMM,RAai!JS,TSUUR,M,*IP,M£lP,SLATT,SLONT,TLAT12,TLONl2,XAwT,
    Z
    Z   WT»XX,YYS'3,KK
-------
           ,86) GO TO 63
           CGNVtR(TSLAT2,TSLOM:>,UBART,ICNTT,SICNTT,SPRE2»SIGMAH,
                  SPREO«d,ALPHAA,BETAA,TA,R2A,IJKA,TSLAT. fSLON,
     IF ( IRTNS,tQ.B6)
 176 CALL
    2
    Z                  (JBAR, ICNTt SICNT)
 512 TTLAT2=TSLAT
     ALPHA3=ALPHA
     BtTA2=BETA
     T2 = T
     R22=R2
     IJK?=IJK
     ICNT2=ICNT
     S1CNT2»SICNT
            TSLAT-5
     SPRD2l=SPHEni
     SPREA2=SP«EAO
     GO TO 13*2
     TTLON3=9996
     SPREA3aO.
     ALPHA3s99.
     IJK3=0
     ICNT3=n
     SICNT3=SJTAG(1)
     <30 TO 13*3

1342 CALL DTS03< J,K,M,KK»MM,MXNSTA.NSTA3»1TABFR,  ITS.
    ZITPDY.TMM,RAUH1S,TSDUP,'1HIP,MF:iP,SLATT,SLONT,TLAT13,TLONl3,XAWT,
    2 YAWTtXXSIG,YYSlG,KK3,HM3.SJTAr,1JTG3,ICNJMN,ICNTMX,XlP,YlP,
                  " "
    Z XlblK.YISlH.ilXbUjH^UYIiltjK.WIK.IbLAI^.IbLUN^.IcNAP.WIOKOI,
    Z UBART.SlGMAH, ICiMTT, SIC'xITT ,SPR031 , SPKED2 , ALPHA A , SET A A , TA , R2A , UK A,
    Z IRTNS)
     IFflRTNS.EQ. 170) GO TO  177
     CALL ALTUTA(    SJTAG,jrG3.       TSLAT2»TSION2,UBART,SIGMAH,ICNTT,
    Z SICNTT,ALPHAA,BETAA,TA,R2A,IJKA,IHTNb>
     IFdRTNS.t-Q.170) GO TO 177
     CALL CLSTM(J,KK,MM,JTG3»NTPDY»ITABFB,M,NDYIHA,NMM,KK3,MM3,jRTNS)
     IF(IRTNS.EQ.90)  GO TO 9H
     IF(IRTNS.EQ.H^)  50 TO 64
 177 CALL       CONVE.R(TSLAT2,TSLON2,UBAHT,ICNTT,SICNTT,SPRE3»SIGrtAH,
    Z                  SPREU?,ALPHAAtdETAA,TA,R2A,IJKA,TSLAT,TSLON,
    Z                  llBAH.ICNT, SICNT)
 514 TTLAT3aTSLAT
     TTLON3=TSLON
     ALPHA3aALPHA
     BETA3=BETA
     T3 = T
     R23=R2
     IJK3=IJK
     ICNT3=ICNT
     SICNT3=SICNT
     TLATl3=TSLAT5
     TLON13=TSLON5
     SPPD3USPHED1
     GO TO 13*3
  65 TTLAT«=9*6
     TTLON4=9996
     UBAR4=0.
SPRPA4=0
ALPHA4
           =0.
           =99.
     T4=99.
     R24=99.
     ICNT4=0
     GO TO 200

1343 CALL Ols03o ro 65
 17S CALL       CONVt:H(TSLAT2,TSLON?,UBAr(T,ICNTT,SICNTT,SPRE4.SIGMAH,
                                     132

-------
      Z                   SPRED/',»LPHAA,8ETAA,TA,R2A, IJKA , TSLAT . I"SLON,
      2                   I|HAR,ICNT,SIC  GO TO 300
         IF(TTL*Tl.GT.^5n.ftND.'JTl.ftT2.6T.*50.AND.TTLATi.GT.450.AND.
     Z  TTLAT4.GT.450)  no TO ?50
         IF(TTLATl.UT.3Sn.AND.TTLAT2.LT.350.AND.TTLAT3.LT.350.ANO.
     Z  TTLAT4.LT.350)  GO TO 250
         IFM.LT.750.AND.TTLON2.LT.750.AND.TTLON3.LT.750.AND.
     Z  TTLON4.LT.350)  ^0 TO 250
         IF(TTI_ONl.GT.'J5n.AND.TTLON2.nT.950.AND.TTUON3.GT.<350.AND.
     Z  TTLON4.GT.950)  GO 10 250
         GO  TO
   250    IAL
   255  WRITEIKU^IT)  TTL AT 1 , TTl ONl , UH API , SPKEA 1 ,ALPMA1 ,HETA1,T1.W21.IJK1
     Z  , IALL
       WH1TF-(6.<^500)  TTL ATI , TTL ON] ,uR»«l t SPRtAl , ALPHA ] ,HETAl,Tl«R21t
     Z  IJKI.KU'NIT
 2500  FORMAT (lX,?HO,fiKl'S.3,  TTL AT4 , TTLON4 , UHAH4 , SPRE A4 , ALPhA4 . BET A4, T4.R24,
     Z IJK4,KUNIT
  299 CONTINUE
  300 CONTINUE
  399 CONTINUE
  400 CONTINUt
      DO 475  1=1,5
      WRITE (14) 010 ( r ) ,OLAT ( 1) ,OLON( I) ,WIUROT ( I ) ,EHS02 (I ) ,ERSUt-( I)
  475 CONTINUE
      WRITE (14)  NO,NL)Y,MTS,"JTPDY,LTAATiLMAAT,LRAAT
      WRITE(14) TSOUR,ALATT,ALONL
      STOP
      END



      SUBROUTINE ALFPTA (SJTAG,  JTAG, TSLAT^, TSLOM^, UBART,  SI&MAH,
     Z ICNTT, SICNTT. ALPHA A,  t^ETAA, TA, H2A, IJKA,
C
C»«ALTERNATE  DATA SELECTION
C
      LOGICAL SJTAG(^) ,SICNTT
      DATA ORS, ANA/3HOH?,3HAi\JA/
      IRTNS=n
      JTAG=JTAG»1
      IF (JTAG .LE.  4)  RETURN
      JTAGT=5
      TSLAT2=94.q
      TSLON2=999.9
      UBART=0.
      SIGMAH=0,
                                     133

-------
      JA=99.
      R2A=99.
      I JKA = 0
      ICNTT=ICNTT
      SICNTT = SJTAG(JTA'3T)
      IRTNS=170
      RETURN
      END



       SUBROUTINE  AWINf) (SHT, 5ATH, DI , LBAATt LTAAT.  WHT,  XW»  Y*,  NLVL,
     Z  XAW,  YAW,  xSlfiMA, YSK.MA)
C
C»«AVERAGE  WIN^S
c
       INTEGER      SHT,SATN,BTH,TTH,TH
       INTEGER  rfHT(50)
       DIMENSION  XW<5<1) ,YW(50)
       DIMENSION  MHTI ! ') *> )
       |_8 = SHT*LHAAT
       IF  (LBAAT  .NE.  0 .OR. DI .GT. f<0. .OR. SHT  ,GT.  SATH) LB=SATH+L3AAT
       LT=SATH+LTAAT
       STHXW=O.
       STHYW=0.
       STH=0.
C«»CALCULATE M HEIGHTS FOR WIN') LEVELS
       IF(NLVL.EU.I)  GO TO 21
       MLVL=NLVL»2-1
       DO 13  M=1,MLVL,2
        MDM»(M»1) /^
      MHT (M) =WHT (MOM)
   12 CONTINUE
C««CALCULATE M HEIGHTS FOR MI.) LEVELS
      DO l
-------
      00  iol  M=ML*,MMLTMI
      TH=MHT (M+l )-MHT(M)
        MDM=(M + 
      YSIGMA=SUKT(YSIGMA/STH)
      RETURN
   500 XAW=99.
      YAW=99.
      XSIGMA39?.
       RETURN
       END
     SUBROUTINE  BIN(LENtS,$,$)
      COMMON/INDATX  ODAT1510).NXTSTA.LSTSTA
      R|AD^2>2LEN,
      RETURN 2
      END



      SUBROUTINE CLST^1(J, KKt "IM.  JTAG.  NTPDYt  ITA8FB,  M,  NOYDTA, NMM,
     7. KKT, MMT, IRTNS)
C
C»»CLOSEST TIME FOR 4LT?:RNATE OATA

      IRTNS = (?h
      IF (JTAG. ta. 4) SO TO 1
C»»S£COND CLOSEST  TIMt, JTAG=?
      IF(IT*RFH.E0.2) GO TO  3
C#»FORw  TRAJECTORIES
    2 IF(MOD(J»2) .EQ.O) GO TO 30
      GO TO 10
C«* BACK TRAJECTORIES
    3 IF(MOD(J«2) .EQ.3) GO TO 10
      GO TO TO
C««THIRD CLOSEST TIME, JTAG=4(0»S  ONLY)
    8 lF(ITARFrf.EQ.2) GO TO  Z
      GO TO 3
   10 KKT=KK+1
      IF (KKT.L£..NTPrJV) 00 TO 20
      KKT = 1
      MMT=MM*1
      GO TO 60
   20 MMT=MM
      GO TO f>0
   30 KKT=KK-1
      IF(KKT.GE.I) GO TO 40
      KKT=NTPOY
      GO TO fiO
   40 MMT=MM
   60 IF (MMT .LT. 1. .OR. MMT  ,GT.  NMM)  HETUKN
      lF(ITABFc*.EO.H) ijO TO  62
      IF (M * MMT -1 ,«T. iMOYOfA)  RFTURN
      IRTNS=90
      RETURN
   62 IF (M+MMT-1 .LT. NMM)  RtTURN
      IRTNS=ALPHAA"JETAAfTAtR2AfIJKA'TSLATtTsLnNt
      LOGICAL SICNT,SICNTT
      INTEGER TSLAT,TSLON
      COMMON/SOST/TSl-ATS.TSLO»'i,SPRFDl,
     A SPREO, SPREAD, ALPHA, HET«,T,R2, UK
      TSLAT = TSLAT2«l'i.*,5
      TSLON=INT (TSLON2»10.*lfl00.5) -1300
      ICNT=ICNTT
      SICNT=SICNTT
                                     135

-------
      TSLAT5=T5LAT?
      TSLON5=TSLON2
      SPREDUSPUE02
      ALPHA=ALPMAA
      BETA=BETAA
      T = TA
      R2=R2A
      IJK=IJKA
      RETURN
      END

 FHC0025     31 PAGES PRINTED.


      SUBROUTINE niSO(J,  K,  M»  ^K,  MM,  MKNSTA, NSTA, ITABF8,
     A  ITS. ITPOY,  IMM,  RADIUS,  TSDUR, MBIP, MEIP, SLATT, SLONT,  TSLAfl
     A, TSLONlt XAWT» YAWT,  XXSIG,  YYSIG, KKT, MMT, SJTAG, JTAG,  ICNTMN,
     A  ICNTMX, XIP,  YIP,  XTSIP, YTSIP,  DXSIGP, OYSIGP, WIP,  TSLAT?,
     A  TSLON2, ISNAP, VIOHOT    ,  IJRART, SIGMAH, ICNTT, SICNTT.  SPRE01,
     A  SPRED2, ALPHAA,  RETAA,  TA,  R?A,  IJKA, IRTNSI
c
C»«DISPLACEMENT CALCULATION  USING  OBSERVED WINDS
C
      LOGICAL  SJTAG<5) tSICNTT
      DIMENSION NSTAUTPriY.IMM)
      DIMENSION XXSlG(f'XNSTA) , YYSIG (MXNSTA)
      DIMENSION XAWT(^XNSTA) , YAt»T {MXNSTA )
      DIMENSION SLATT(MXNSTA) ,Sl ONT(MXNSTA)
      INTEGER  XIP(ICNIMX) , YIP (ICNTMX) , XTSIP ( I CNTMX) , vTSIP ( ICNTMX) ,
     A         WIP(ICNTMX) ,XTSP,VTSP
      COMMON/STAT/SLAT  (  60,2,?i),  SLON  (80,2,5),XAw ( 8n.2»5),
     Z  YAW  (80f2,S) ,XSK'MA(80,?.B) , YSIGMA (80 ,2,5)
      INTEGER  UXSIGPdCNTMX) ,DYSIGP( ICNTMX)
      DATA  PI/J.14159/
      IRTNS=0
      SWXTSI=0.
      SWYTSIaQ.
      SDXSlGsO.
      SDYSIGaO.
      SWI=0.
      ICNTT=0
      NEAR=0
      IF(JTAG.EQ.O)  SO  TO <»0
      IF (NSTA(KKT,MMT) .FO.O)  f-FTURN
      NSTAOO=Ni>TA(KKT,MMT)
      DO 80  I=l,NSTAnO
      SLATT(I)=SLAT( I,KKT»MMT)
      SLONT in =SLON( T,KKT,MMTI
      XAWT(I)=XAW(I»KKT,MMT)
      YAWT(I)»YAw(I,KKT.MMT)
      XXSIG.. VAWT(I),XXSIG(1,,YYSI(5(I),  TSDUR, '
     I ISLAI11SrM2LONlt  IT4HfrR« NtAR, XI, YI, XTSI, YTSI,  DXSIGI,  OYSIGI,
     L W I , I JH I "NS )
      IF  (IJRTNS  .EQ.  1^0)  00 TO   1?0
      ICNTT=ICMTT*J
      XlP(lCNTT)sxl+.5
      YlP(ICNTn=Yl».S
                            .
      VTSIP(ICNTT)=yTSI/3.*.5
      DXSIGP(ICNTD=nxSIGI/-i. + n.S
      DYSlGPf ICNTT) =OvsiGI/3.* 0.5
      WIP( I CNTT)=wl»] 000000.
      SWXTSI=S"XTSI*WI»XTSI
      SDXSIG=SOXSIG+w!«PxSIGT
      SWI=SWI*WI
  150 CONTINUE
      IFdCNTT  .LT.  ICiNlTMN  .AND.  NEftR ,NE. 1) RETURN
C»«NOT SllFFICItNT 0«St"RVEO  WINDS
C»» TRAJECTORY SEGMENT  01 SPLICE ME NT »»•»»» «•»»»»•»»«»««».»« »««•»«»»«»««»«»«««««
      IF  (swi .EQ. n.)  swi=.noni
      XTS=SWXTSI/SvJl
                                     136

-------
   xsox=snxsiG/sv,i
   XTSP=XTS/3.+.S
   YTSP=YTS/J.+.5
   TSLAT2=TSLATl+vTS/60.
   TSLON2=T3LON1-XTSX(60,*COS(TSLATI*P 1/180.))
   U8A«T=.51b«SORT(XTS«XTS+rTS«YTS>/TSDUR
   SIGMAH=(Ae(S(XT5) *YSDY+AHS / (UB/\RTT*TSOUR V
      CAUL *SZ < TSLAT1 « I SLON1 , TSLAT2,TSLON2,XTS,YTS,SPKED?,ALPHAA,RETAA,
     A     IJKAf RJ?A,TA,WIOROT)
      SICNTT=SJTAG(JTAQ*1)
      IF  (M  .Gt.  MBIP  .AND.  M  .LE. MFIP) GO TO  172
      IRTNS = 17')
      RETURN
  172 IF(ISNAP  ,EQ.  1)  '"O  TO  17?
C»*PRINT  TRAJECTORY  Sfc'PMENT  n I SPL ACFMENT AND««»«#«*#»«««*«»««»«*»»»«»«««
C««INOIVIDUAL  STATION  KFLATIVf  LOCATIONS AND D I SPLACEMENTS*«*»*»*»»*«<»»»
      IF ( ISNAP.tQ.l)  GO TO 175
      ISNAP=1
      WRITER, 173)
  173 FORMATUH ,«   j   K   M  TA.5 CNT XTS YTS»/
     A         1H  ,«                                XI    YI XTSIYTSI WI»,
     A            «         XI    YI XTSIYTSI WI    XI    YI XTSIYTSI Wl«t
     A            »         XI    VI XTSIYTSI WI»)
  175 WRITE(6tldO) J«^ t'1, JTAfi, TCNTT, XTSP, YTSP,
     A           (XIP(IP),YIP(IP).XTSIP(IP)»YTSIP(IP),WIP(IP),IP=1,ICNTT)
  180 FORMAT)!* ,3I3»*I4/
     A       1H ,25x.*(lX»2It5»3-H)/1H t25X,4(3X»2l5»3I<»)/
     A       1H ,?5X,4(3Xt2I5i il4)/!H , 25X.4 (3X , 21 5, 3 I f ) /
             1H ,
  A        1H  ,25X,4(1Xi2IS, 3UI/JH , 2bX, 4 ( 3X , £15. 3 I 4)
  A        1H  ,2bX.*(3Xt/
   IRTNS=0
   SWXTSI=0.
   SWYTSI=0.
   SDXSIG=0.
   SDYSIG=0.
   SWI=0.
   ICNTT=0
   NEAR=0
   IF( JTAG.tQ.O) GO  TO  "»0
   IF(NSTA2(KKT,MMT) .EQ.01  RETURN
   NSTADO=NSTA2(KKT,MMT)
   DO 80 I=1.NSTADO
   SLATT( I) =SLAT2( I, KKT. MMT)
   SLONT(I) =SLON2(I , KKT, MMT )
   XAWT(I) =XAW2(I,K|
-------
      IF (IJ9TNS .EO. ISO) GO TO
      1CNTT=ICNTT»1
      XlP(ICNTT)=xI+.5
      YlP(ICNT1)=Yl + .S
      XTSIPUCNTT)=XTSI/3. + .S
      YTSIP(ICNTT)=YT'JI/1, + .5
                             .   .
      OYSIGPf ICNTT) =r>YSir, 1/3. +0.5
      wTP( iCNTT) =wi«iononoo.
      SWYTSI=SWYTSI+WI*YTSI
  150 CONTINUE
      IF(ICNTT .LT. IC.NTMN  ,ANO.  NEAR  .NE.  1)  RETUHN
C««NOT SUFFICItNT O'lSc^ ~"
C<»«TRAJECTORY StGMEMT
      IF (SWI «tQ. 0.)
      XTS=SWXTSI/SWI
      YTS=SWYTSI/SWl
      YSDY=SDYSIG/S
  175 WRITE(6tl80)  J,K ,M, JTAGt ICNTT t XTSP t YTSPt
      A           (XIO(H') ,YIP(IP),XTSIP(IP) .YTSIP(IP) ,WIP(IP) ,1^=1, ICNTT)
  180 FORMAT (1^  »3I3»"»I4/
      A        1-t  »i?5Xt4 (3X»2I5. jI/»)/lH ,25X,4(3X,2I5,3I4)/
      A        IN  ,25X,<»(TX,2I5»3U)/1H t 25X, 4 ( 3X , 2 15,31 *) X
      A        1*  t25X.4<3x»215.3U)/lH » 25X, 4 (3X, 2 15, 314) /
      A        I*  ,25X,4(.TX,2I5,3I4)/1H ,25X,4 (3X, 2 15 , 31*1 )
      IRTNS=17U
      RETURN
      END



      SUBROUTINE OI503(J,K,M,KK,MM,MXNSTA,NSTA3, ITAHFR,
     A  ITS, ITPDY, IMM, RADIUS,  TSDUR,  MBJP,  MEIP,  SLATT,  SLONT, TSLATl
     A,  TSLON1* XArtT, Y4WT,  XXSlG, YYSIG, KKT,  MMT,  SJTAG,  JTAli, ICNTMNt
     A ICNTMX, XIP, VIP, XTStf,  YTSIP, DXSIGP,  DYSIGP,  WIP,  TSLAT2,
     A TSLON?, ISNAP, *IOHOT     ,  URAUT,  SIGMAH,  ICNTT,  SICNTT, SPRE01,
     A SPREO?, ALPHAA, BETAA, TA,  R?A, IJKA,  IRTNSI
      DIMENSION NSTA3(ITPUY,IMM)
      DIMENSION XXSHHMXNSTA) , YYSIG (MXNSTA)
      DIMENSION XAWT fMXNSTA) , Y AWT (MXNSTA )
      DIMENSION SLATT(MXNSTA) , SLONT (MXNSTA)
      INTEGER *IP( ICNTMX) ,YIP< 1CNTMX) , XTS IP ( ICNTMX) , YTSIP (
     A        «ap=-<'»W3( I, KKT, MMT)
                                     138

-------
      XXSIG(I)=XSIGM'»(I,KKT,MMT)
      YYSrG(I)=YSIGM3(l,KKT,MMT)
   80 CONTINUE
      GO TO 95
   90 IF (NSTA3 
      YlP(ICNTDsYl*.S
      XTSIP(TC'NTT)=XTS!/3.*.5
      YTSlP(IC^TT)=YTSI/3.*.5
                             .
      DYSIGP(ICNTT) =DYSIGl/3.+0.5
      WlP(lCNTT)=WI*1000000.
      SWXTSI=S"XTSI+WI*XTSI
      SWYTSI=S*YTSI+WI«YTSI
      SDYSIG=SL>YSIG+WI«DYSIGI
  150 CONTINUE
      IFflCNTT  .LT,  TCNTMN ,A" J,K,M,JTAG, ICNTT , X TSP , YTSP,
     A        Iri  ,a5X,4(3Xi2I5,3l4)/lH ,25X,4 (3X , 215,
     A        1H  ,25X,*(TXi2I5.3U)/lH , ^5X , 4( 3X , 21 5 , 3 U )
     A        1H  ,25X,4(3X«2I5,3U)/1H , 25X,<* ( 3X , ? 15, 31 4) /
     A        1H  ,?5X,'»(3X»2I5,3U)/1H ,25X,4(3X,2I5,3I4) )
      IRTNS=170
      RETURN
      END



      SUBROUTINE OTARKO(H,  MXNSTA, NTPDY, NMM, NST A,NST A3 ,NST A3,
              1>
     2 OLON^'siu^siO?*SID3?TAB9t DTAflL' OTABR« L8AAT,  LMAAT.LTAAT.OLAT,
C
C««OATA BLOCK »-OR  OBSERVED INFORMATION
      INTFGtR JlC? («>.f'<;T.\. IT"Li\ ) , Sl^t ( ."XNS T A , I TPU Y )
      INTtGER 5 I (hO) iSr? (80) , r. I 3 (HO)
      DIMENSION SLA  (80»,SLO  (00), xA  (80), YA (HO),XS  (Hn),YS  («0)
      DIMENSION SLA? (HO) , SLO? (rtO) , XA?(80) »YA?(SO) ,XS?(HO) ,YS?(8o
      DIMENSION SLA3(fiO),SL.(J3{fO),XA3(HO)fYAj(80) tXS3 (HO) ,YS3(«0)
      COMMON/STAT/SLAT  (  60,?, 5),  SI ON < HO , 
-------
   2 YAW <30«<2»5) «XSIG*,b) . XAW2 ( 80,2,5),
   Z YAw2(flO«2,5) ,XSIRM2(flO,i;»S) ,YSI 6^2(80,2, 5)
    COMMON/STAT3/SLAT3(80.2»'J> ,  SI ON3 < HO . 2 , 5) , XAW3 < 80,2,5),
   Z YAW3(flO»^tS),XSIC-*'3(BOt2iSl,Y
    NSTA2(K,'v'f ) =NSTAT?
    DO 11  I=1,NSTAT2
    SLAT2(I,K,MM)=SLAT2(I,K,MM»l)
    SLON2(I,K»MM) =SLON2(I »KiMM«l)
    XAW2(I»K,MM)=X'iW2( I»K,MM+l)
    YAW2(I,K,MM)=YA*2(I,K,MM+1)
    XSIGM2( I ,K,MM) =XSIGM2(t ,K,MM+1 )
    YSIGM2(I«K,MM)=YSIGM2(I,K,MM»1)
 11 CONTINUE
    NSTAT3=NSTA3(K,MM+1)
    NSTA3(K,MM)=NSTAn
    DO 12  I=1,NSTAT3
    SLAT3(ItK»MM)=SLAT3(I,K,MM+l)
                     .
    XAW3(I,K,MM)=XAH3(I »K,MM*1)
    YAW3(I,K,MM)=YAW3(I,K,MM*1)
    XSIGM3(I»K,MM) =XSIPM3(I,K,MM*1)
    YSIGM3( I»K,MM) =YSK,W3( I tK,MM*l)
 12 CONTINUE
 10 CONTINUE
    60 TO  200
  8 DO 199  N=1,4,MTPI)Y
    IF(N.EQ.l)   K=\
    IF(N.E0.3)  K=?
    IFLAG=1
    CALL PnsfPtM.MM.K;)
    CALL   ^R^AVO   (  rtXNSTAt DTABT, DTAB8,  DTABL,  DTARR, LBAAj, LTAAT,
   Z OLAT.OLON.SI  ,SLA ,SLO  tXA ,YA ,XS  ,YS  ,NSTA  (K,MM))
    DO 101  I^*»80
    SID  (I,K)=SI(I)
    SLAT (IiK,MM)'SLA(I)
    SLON (I,K,MM)=SLO(I)
    XAW  (I,K,MM)=<4(I)
    YAW  (I,K,MM)=YA(I)
    XSIGMA(I,K,MM) =X5(I)
    YSIGMA( ^K.MM) =YS(I)
101 CONTINUE
    IFLAG=2
    REWIND  2
    CALL   POSTP (M,MM,K)
    CALL   RUAVO(MX'V9TA,OTARr.DTABR,DTAHL,OTABP,LBAAT,LMAAT,
   2 OLAT,OLON,SI?,SLA2.SL02,XA2,YA2,XS
-------
       YAW3(I,K«MM)=YA3(I )
       XSIGM3(I«K,MM)=XS-< (I)
       YSIGM3(I.K,MfM = YS3 < I)
   103 CONTINUE
       REWIND 2
   1^9 CONTINUE
   200 CONTINUE
       RETljHN
       END



       SUBROUTINE INPUT (NTPDY,  TSOUR,  RADIUS*  ICNTMN.  ICNTMX, WHIP, MElP,
      Z MXNO. NO. 010, 01 AT, OLON,  WIOKOT.  IHRINP,  NLVLA, NTSPOY,
      I NTS. NMM.ERSOP.EPSUL)

 C«*INPUT INFORMATION

           DIMENSION ERSO?(5) .t'RSULC?)
       DIMENSION OID ,EHSUL(!)
     1 FORMAT (A-Mx.K4.1,lX,F>'i.l,lX.F10.1,lX»F10.0.1X,F10.0)
   101 CONTINUE
 C««CARO 2«»
 C«»DATE COMPUTATIONS HEGIN: OAYdBDY).  MONTH(IRHO), YEAR(IBYR)
 C»«NUMBER OF DAYS COMPUTATIONS DESIRFDINDY)
       RE AD (5, 3)  I80Y.IMO, IBYC? . I HOUR , I HMO
     2 FORMAT(4(I2.1X) .£X,A3)
 C»»CARD 3«*
 C«»DIRECTION IN TiiEiTniq) , FORwARD(FOrtv«) .  BACKWARO(RACK)
 C»«DUHATION IN OAYSJNIIYDIJR)
       PEAO{5,3)  TDP?,NOYOUR
     3 FORMAT(A^»1X,I?)
 C««CARD 4«»
 C««NUM8ER OF DAYS OF ml NO  INPUT DATA (NOYOTA )
     4
 C»*CARD _
 C*«TYPF OF WIM> INPUT DATA(V»TYPE)
 C«*08SERVED(OaS), ANALYZED (ANA) ,OBSF«VED  AND  ANALYZED(0,A)
       READ<5,5> WTYfJF
     5 FORMAT(*3)

 C**CARD 6«»
 C»»BOUND4RIES ''OR OBSERVED WIND INPUT DATA
 C**TOP LATlTUDt(DTA8T!, BOTTOM LATITUDE(OT48B),
 C»»LEFT LONGITUDE(OTAHL), HIGnr LONGITUDE(OTABR)
       READ(5,6) QTABT«OTABB,QTABL»OTftHR
     f> FORMAT(F4.1,lX,M.l.lX,fL^.l.lX.F6,l)
 C»»CARD fl«»
 C«*TRANSPaRT L*YER BftSE(lBAAT), AND TOP(LTAAT)  IN  METERS
 C«»ABOVE AVERAGE TERRAIN
       READJ5.8) LBAAT.LTAAT.LMAAT

 C»*CARO 0»«
•C»*BOUNDAPIES K)R MAPS IN SIJBMOUTI NFS:
 C«»  LATITUDE 0*- MAP    TOP BOUNDARY ( ALATT)
 C»«  LATITUDE OF MAP BOTTOM BOUNDARY(ALATB)
 C»«LONGlTUDE OF MAP   LFFT BOUNDARY(ALONL)
 C«»(MAP WIDTH IN LONGITUDINAL DEGREES IS  OBTAINED
 C    SEPARATE TABULATION)
       READ(5,9) ALATT..M ATB,ALONL
 C*«END INPUT DATA
 C
 C
 Co» INPUT PARAMETERS4****"**4*4***'**"**0 ****<**<>*** ************************
 C««NUMBER OF TWAJECT^KIFS PEP DAY
       NTPDY=2
 C»«TRAJECTORY SEGMENT DURATION IN HOURS
 C»»RAOIUS IN NAUTICAL MILES FOK  INCIUOING  OBSERVED WINDS
 C*«IN DISPLACEMENT CALCULATIONS
 C««MINIMUM NUMWER OF STATIONS *ITHIH HADIUS
 C»«FOH  A DISPLACEMENT  CALCULATION
       iCNTMNr?
                                     141

-------
C*»MAXIMUM NUMBER OF STATIONS '*'ITHIM RADIUS
C*»FOR A DISPLACEMENT CALCULATION
      ICNTMX=JO
C*«LATITUD£ ABOVE WHICH DISTANCES ARE CALCULATED
c  IN A POLAR COORDINATE SYSTEM
      POLl AT=60.
c«»HEGiNNiNG AND ENDING -1  IN M-I,NOY LOOP  FOR  PRINTING
C«»TRAJECTORY SEGMENT DISPLACEMENTS AND  INDIVIDUAL  STATION
C»»RELATIVt LOCATIONS AMD  DISPLACEMENTS
      MBIPsO
      MEIP=0
C«»PRINTING INTERVAL IN HOURS
C»«NUMBER OF ANALYSIS LEVELS
      NLVLA=4
C««F.ND INPUT PARAMETERS*****
C********************************* **************************************
C
C»«NUMBER OF TRAJECTORY  SEGMENTS  PER  DAY
      NTSPDY=2*/TSDUW
C»»NUMBEH OF TRAJECTORY  SEGMENTS
      NTS=8
C«*NUMBER OF DAYS  IN DATA  SLOCK  (DTABKJ
      NMM=NDYDUR»1
C«»PRINT INPUT OATA CARD iwo^MATiorf
      WRITE (6.20)  (OTU(IO) .OLAT(IO) .OLON(IO) ,10=1, NO)
      WRITE (f. ,21)  IBOY
     3             TDIH.NDYDUR,
     4             NDYOTA,
     5             WTYPE,
     8            L«AAT,LTAAT
   30 FORMAT(lrtl,16X,*INPUT  FOR  TRAJECTORY COMPUTATIONS*/
     AIM  ,*INPUT*/1H  ,«  DATA»/1H ,*  CARD*/
     A   A3, «{«,F4. 1, IX, Ff>. 1, ») */10(46X, A3, *(»,F4.1,lx,F6. It «)«/))
   31 FORMAT (
     21H ,4X,4lHa DATE  THAT  COMPUTATIONS  BEGIN «««*»»»»* , 1 2, IX, A3, 1 X, I

     B?H ,4X,4lH  NUMBER  OF  DAYS  COMPUTATIONS DESIRED »« ,I2/
     31H ,4X,41M3 DIRECTION  IN  TIME  »»»««»*«»»*»»«»«*»»» ,A4/
     A1H ,4X,4lH  DURATION  IN OAyS  *«**«**»*»«*«»«*«»»** ,\Z/
     41H ,4x,4iH4 NUMBER  OF  DAYS  OF  WIND  INPUT DATA «««» ,ia/
     51H ,4X,4lH5 T^PE  OF  i^Ii-lD  INPUT DATA »»«»»»*»»«»»»» ,A3/
     6JH ,4X,4IH6 BOUNDARIES FOR  OBSERVED WIND INPUT DATA/
     AlH ,4X,4lH  TOP  AND  BOTTOM  LATITUDES ««««»««»«»««» ,2X,F*.l,
     A          3x,f-4.1/
     81H ,4X,4lH  LEFT  AND  RIGHT  LONGITUDES ««»»»««««*«» ,F6. 1 » 1 X ,F6. 1 /
     B1H ,4X,30H8 TRANSPORT  LAYER BASE AND TOP/
     AlH ,4X,4lH  IN  METERS  ABOVE AVERAGE TERRAIN »*»»«» ,14, IX, 14)
      WRITE<6,<25) ALATT,ALAT^,ALONL
   25 FORMAT (
     91H ,4X,3&Hq HOUNOARIES FOR  MAPS IN  SUBROUTINES/
     AlH ,4X,41H  TOP  LATITUDE  «««*«»***•»*»*»•»»»««««*«* ,?X,F4.1/
     B1H ,4X,4lri  BOTTOM  LATITUDE »*»*»««»*»««»»»*«*»*»» ,?X,F*.l/
     C1H ,4X,4lrt  LEFT  LONGITUDE  »*»*»»««««««««*»««««««« ,F6.1>
      WRITE(6,JO)
   30 FORMAT(lHl)
      RETURN
      END
      SUBROUTINE ITSI«< ( JTAO, RADIUS,  SLAT,  SLON,  SLATT,  SLONT, XAW, YAw,
     Z XSIGMA, YSIGMA,  XAWT, YAttT,  9.) RETURN
      GO  TO 12
   10 IF  (XAW .E<3. 9<).)  RETURN
   12 IFfO.LE. RADIUS/?.) NEAR=1
      IF ( JTAP.tQ.O) GO  TO  20
      XAWSH=XA«T
      YAWSH=YA»(T
      XXSIGS=XXSir,
      YYSIGS=YYSIG
      GO  TO 18
   20
                                     142

-------
      XXSIGSsXSIGMA
      YYSIGS=Y5IGMA
   18 GO TO  (21 .22) , ITAHFB
   21 XTS = 1 ,94»XAwSH«TSr>U»«
      YTS*l.UK
      DXSIG*! . V
      GO TO ?3
   22 XTS = -1 ,^'
      YTS=-1 . 9<*
      DXSIG=-1.<»4»XXS1GS»TSIHIR
      DYSIR=-1 • 'M«YYSlGS»Tsnijh
   23 CONTINUE
      OTS=SQPT (XTS«YTb*YTS"YTS)
      YW= Y-YTS/2.
      IF([>WSO.E«.n.)
      DISTW=1./UWSQ
      ALINW=1 .
      IF (0 .NE. 0. .AND. GTS  ,NE.  0.)  AL I NW= 1 . - . <5*A8s ( ( YTS«X-XTs«Y) /
     I  (DTS*D+ ,000\))
                ,
      W=DISTW»ALINW
      IJHTNS=0
      RETURN
      END



      SUBROUTINE KKMM(J,  K,  *l,  KK,  MM,  NMM, MOYDTA, NTSPOY , »T ABFB , IRTNs)

C»»OETERMINE PHQPER TRAJECTORY  SEGMFMT
C««TIME OF DAY(KK) ANO OAY(MM)  IN DATA  BLOCK DTABK

      IRTNS=0
      KKS=KK
      IF  (ITA6FB .EG. 2)  GO  TO  52
      KKT = 1. + .S">FI.OAT{J) *K-1
      KK=MOD(KKT-1«4) +1
      It (KK.I.T.KKS) MM=MM+1
      IF(M*MM-l.LE.Nr)YQTA)  IRTNS = QO
      RETURN
   52 KKT=5.5-.5#FLOAT(MOO( J-l .NTSPDY) +1 ) +K-1
      IF(KK.GT.KKS) MM=MM-1
      IF(M*MM-1.GE.NMM)
      RETURN
      END


      SUBROUTINE POSTP(M,MM,K)

C««POSITION TAPES FOR  STARTING  RUN AT DESIGNATED BEGINNING

      COMMON/INPUT 1/IPDY, I BMOtI8YR,NDYtTOIRf
     A          POLLAT,IHOUR»lMO,
     A         NO YOUR t NOYDTA,WTYPF.|OTAHT»OTABB,DTABL,OTABR»
     A   LBAAT»LMAAT,LTAAT,ALATT,ALATH,ALONL
      COMMON /UATERO/IOMO,IDYM,IODY«IOHR,NRSTA,NREC,IM
      COMMON /I NO AT/00 AT (510) • IENO.NXTST A « LSTSTA
      IEND=0
    5 CALL ROOATE
      IF (IENO.Nt.0) STOP  333
      IF (M.NF.l.OR.MM.NF. i .OR.K.NE. i )  GO TO 100
      IF (IM.NE.IMO) (JO TO  5
      IF ( IUDY.ME. IHDY) GO  TO  5
      IF(IDHR.NE.IHOIIH) GO TO 5
  100 RETURN
      END


      SUBROUTINE RUAVODAT(SlO)»!£NO,NXTSTA,LSTSTA
      COMMON X*INDRO/H|)S (3,bn)
      DATA Pt/J.141?;^/
      WRITE (6. 15) IDYHiIDMOt IDDY, IOHR,NRSTA,NHEC
   IS FORMATflH ,9X,I*»lXiA3,lX,l2,«-»,I2,«Z»t6x,U.f«X,I5)
      NSTA=0
      1SOVER=MXNSTA
                                     143

-------
     IF(NRSTA.EQ.O)  00 TO
     DO 100 I« = l ,l>"  ~
  56 CALL  RDSTHD
     SIDTslSTNO
     SUATT=AUAT
     IF < SUATT.UE.DTA6T.AND.SU ATT. GF.DTAHB. AND.
    A   SLONT.UE.OT ABU.AND.SLONT.GE.OTAUR) GO TO 40
     CALU RDWlNO
     GO TO 100
  40 NSTA=NSTA+1
     IFINSTA.LE.MXNSTA) GO TO 44
     1SOVER*IS>OVER*1
     WRITE (6, 42) ISOVER,MXNSTA»SIDT»SUATT,SUONT
  42 FORMATflH »70X.«lSTAOVER=»,l3,^X.»MXNSTA=*tI3,
    A       3X, 15, M«,F4.1, IX, Fft. !,»)»)
     NSTA=MXNSTA
  44 CONTINUE
     I=NSTA
     SID(I)=SIDT
     SUON< i) =SUONT
     CALL RDWIND
     DO 50 UVU=1,NLVL
     WHT(LVU)=HOS<1,UVL)
     WSPD=HDS(3,LVU)
     XW(UVU)=-WSPD»SIM(WOIR»PI/1BO.)
     YW(LVU) =-WSPD»COS('«/DIR«PI/iHO.)
  50 CONTINUE
     Xl=(OUON-SLON(T) > *fiO.«COS < SLAT f I ) «P 1/180 .)
     Yl=,200a> IOST
2002 FORMATC FR RDDATE, i-oi»02»
     IFUFUAG.EQ.2)  GO TO 120
     GO TO 130
   H4   CALL BOUT(LEN,$115,$10l)
   5 ISM»0
     IF(LEN.GT.20) GO TO 100
       IDMO»ODAT<1)
     IDYR»OOAT(2)
     IDDY»Ot)AT< J)
     IDHR«ODAT<4)
     NRSTA»OOAT<5)
     NREC»ODAT<6)
     IM»ODAT<7)
     NXTSTA«171
     LSTSTA«171
     GO TO 99
  98 IEND»10
     GO TO 99
 101 STOP 404
  99 RETURN
     END
                                   144

-------
      SUBROUTINE RDOATAM)
      COMMON XINOAT/00AT(510>,IEND,NXTSTA,LSTSTA
      COMMON/FLAG/IFLAG

  100 iniFLAG.EQ.2) GO  TO  120
   130 CALL TAPEX  (IWINOOATA
       ,!_!_ ,Kr^n ».w4.,u«^,-   •,1,1,IOST,S10,ODAT,LEN>
      IFUOST.EQ.O.OR.IOST.EQ.4) GO  TO  114
      IFdOST.EQ.l) GO TO 116
      GO TO 117
   120 CALL BIN  (LEN,$115,$116,$117)
  116 IF(ISW.NE.O) GO TO  §8
      ISW*10
      GO TO 100
  117 WRITE(6,2002) 10ST
 2002 FORMATt' FR HDOATA
  115
     ORMATM fH HDOATA, I-0«,02)
     F(IFLAG.ta.2) GO TO 120
     0 TO 130

      CALL BOUT(LEN,$115,5101)
      ir (LEN.EQ.5lO)  GO  TO  150
      WRITE(6,2003)  LEN
 2003 FORMAT!* ^R  RODATA,  BAD LEN*I10)
  150 I»I-170
      NXTSTA=NXTSTA-170
      GO TO 99
   98 IENDMO
      GO TO 99
  101 STOP M
   99 RETURN
      END
      SUBROUTINE HDSTHO
C FOR CSU TAPE5
      COMMON /5THDHO/I3TMO, ALM »ALOM,1STH,ISATH,NLVL
      COMMON /INOAT/O'JAT (blO).lEND,NXTSTA,LSTSTA
      COMMON/FLAQ/IFLflG
      DIMENSION DATO»171)
      EQUIVALENCE (OPAT(1),DA1(1))
      DATA IOU«/0/
      IF(NXTSTA.GT.l'O) CALL HOOATA(IDUM)
      ISTNO=OAT(1,N»TSTA)
      ALAT=DAT(^,MXTC.T«)
      ALON=OAT(3,NXT^TAJ
      I=NXTSTA»1
      IF(I.GT.l'O) CALL SODATA(I)
      ICNT=ICNT+l
      ISTH=OAT(1,1)
      ISATH=OAT(2,1)
      NLVL=IMT(3,I)
      LSTSTA=NXT«;TA
      NXTSTA=N*TSTA* (Ni.wL*2j
      RETURN
      END
      SUBROUTINE ROrtlNO
C FOR CSU TAPES
      COMMON /STHDHO/ISTNO,ALAT,ALOM,IST^.ISATH.NLVL
      COMMON /INOAT'OOAT(510) , lEND,NXTSTA,LSrSTA
      COMMON /HINDRD/HOS(3,50)
      DIMENSION l)ATn»170)
      EQUIVALENCE(OQAT(1),DAT(1))
      IST=LSTSTA*?
      IF( IST.GT.iro>  CALL  RODATA(IST)
      IEN=IST*(NLVL-1)
150
 10
   20
   99
      JEN=I£N
      K = 0
      IF(IEN.LT.171) GO TO ISO
      JEN=1 fn
      DO 10 I = 1ST. JEN
      K=K*1
      HOS ( 1 ,K) =OAT (I.I)
      HDS(2,K) =OAT(^, t )
      HDS ( .3»K) =UAT (1,1)
      CONTINUE
      IF{ JEN.EQ.IEN) GO TO 49
      CALL  RPOATAlUN)
      DO 20 I = U IhN
      K = K*1
      HOS(1,K) =OAT( 1,1)
      HDS(2»K) =U4T (S, I)
      HOS(3,K)=UftT (J.I)
      CONTINUE
      END
                                    145

-------
       §UBROUTINE  RDWIND
       SU TAPES
      COMMON  /STHORD/ISTNO»ALAT,ALON,IST8,ISATH,NLVL
      COMMON  /INOAT/OnAT(510),IEND,NXTSTA,LSTSTA
      COMMON  /WlNDRO/HDS(3.50)
      DIMENSION UATI3.170)
      EQUIVALENCE(ODATd) ,DAT(1) )
      IST=LSTSTA*2
      IF(IST.GT.170)  CALL  RDDATA(IST)
      IEN»IST*(NLVL-1)
      JEN=IEN

      IFIIEN.LT.171)  GO  TO 150
      JEN=170
  150 DO 10 I  = 1ST.  JEN
      K»K*1
      HDSd.K)=OAT(l,I)
      HDS(2.K)=UAT(2,I)
      HDS(3.K)=UAT(3,I)
   10 CONTINUE
      IF(JEN.EQ.IEN)  GO  TO 99
      CALL RODATA(IEN)
      DO 20 I=1.IEN
      K«K+1
      HOS(ltK)«UAT(l,I)
      HDS(2.K)»OAT(2,I)
      HDS(3.K)»L)AT(3,I)
   20 CONTINUE
   99 RETURN
      END


      SUgROyTINE XSZ(TSLAT1.TSLONUTSLAT2,TSLON2,XTS,YTS,SPRED2,ALPHAA
     A .BETAA.IJKA.f?A,TA»WIOHUT)
c	DETERMINES THE DISTANCE.^,AND THE ANGLES,ALPHAA.BETWEEN  TRAJECTORY
      PI=3. 14159
      WORO=XTOKOT/1HS2.')
      R2=XTS»XTS+YTS»YTS
      R2A=SQRT(R2)
      T2=R2*S2
      TA=SQHT(T2)
      IF(R2.EQ.O.) RO TO 101
      IF(XTS.EU.O.) GO TO 1
      Zl=ABS(YTS/XTS)
      ALPHAA=ATAN(71 )
      GO TO 5
    1 ALPHAA=.5«PI
    5 IF (HaA.E'J.O. ) GO TO <5>
      72=SORT(S2/R2)
      BETAA»AT*N(72)
      GO TO 7
    6 BETAA=0.
    7 CONTINUE
      IF(TSLAT^.GE.TSLAT1.ANO.TSLON?.LE.TSLON1) GO TO 10
      lF(TSLAT«;.GE.T?;LATt.flNO.TSI.Oh?.GT.TSLONl) GO TO 20
      IKITSLAT^.LT.TSLATI . ANO.TSLONP.GT.TSLON1 ) GO TO 30
      IF(TSLAT«J.LT.TSLAT1.AND.TSLON2.LE.TSLON1) GO TO *0
   10 IJKA=1
      ALPHAA=ALPHAA
      RETURN
   20 IJKA=2
      ALPHAAsPI-ALPHArt
      RETURN
   30 IJKA=3
      ALPHAAaPl+ALPHAA
      RETURN
   40 IJKA-54
      ALPHAA=2«»PI-ALPHAA
      RKTURN
  101 ALPHAAsO.
      BETAA=0.
      IJKAsO
      RETURN
      END
                                    146

-------
                Program  o4- Concentration Calculation (Model  B)


      PROGRAM CAl CON
     1 (OATA2,l)ATA1,(U,TH'llT,TAPtc> = PATA?, TAPE *> = OUTPUT ,
     A TAPE7=DATA3,
     2  TAPE?l = lnr)2fi.TAPF.22=1002B,TAPE23=1002B,TAPfc.24 = in02R,
     3TAPf:25=1002fl,TAPE?ft=1002H,TAPF?7 = lnO/;B,TAPE2H=i 00?fl , T APT. 29 = 1 002B .
     5 TAPE35=1002B, TAPE 16 = 1002 rt.TAPF 17=100 2B, TAPE 3 H = inO?H,TAPe.J9=10Q 28,
     6T*PE40= 10028, T'iPEl 4 = 1 002^, T APESO , T APE51 = 1 002B , TAPF.52 )

C  THIS PROGRAM wn_l_ READ  IN  DATA  COMPUTEU FROM THE PPEVEOUS PHQGRAM
C  TO  COMPUTE THE RESULTANT  CONCENTRATIONS ETC.

      COMMON /UUTPUT1/  TSLAT(8,2,5) ,TSLON(8,2,5> ,UBAR<8,2,5) ,
     Z  SPREAD (a»2»e>>
      COMMON /OUTPUT?/  ALPHA<8,2,5) ,BETA < 8 , 2, S> ,IJK(R,2, ) /2.
      X(I)=tALONL-LnN(I) )»COS(ABtON»PI/180.)»60.
      Y(I) = (ALATT-LAT(I))»f,0.
      N=f4* 1
  495 CONTINUE
      DO 500 IP=1,NO
      WHITE(f>,M6) OID(TO), OLAT(IO) .OLON(IO)
  416 F ORM A T ( 1 H 1 , A3 . » C " , F* . 1 , ] X » F 6 . 1 • " > " )
      IF(IO.EQ.I) GO TO  1
      IF(IO,FQ.2) GO TO  7
      IF(IO.FQ,3) GO TO  3
      IF(IO,EQ.*.) GO TO  4
      IF(IO.E0.5) GO TO  5
    1 111=21
      KKK=24
      GO TO 6
    2 III=2S
      KKK=28
      GO TO 6
    3 111=29
      KKK=32
      GO TO 6
    4 111=33
      KKK=36
      GO TO 6
    5 111=37
      KKK=40
    6 DO 100 I=III.KKK
      KUNIT=I
      DO 450 M=1,NOY
      DO 451 K = 1,NTP'1Y
      ICOUNT(M,K)=0
  451 CONTINUE
  450 CONTINUE
      00 425 M=1,NDY
         DO 422 K = 1,  fJTPDY
            00 420 vl =  1. NTS
               HEAD (KUNIT)  TSLAT(J,K,M) ,  TSLON ( J,K ,M) , UBAR(J.K.M),
     Z SPREAOf J,K,M) , ALPHA( J,K,M) ,  BETA(0,K,M ), T(J.K,M),  R2(J,K,M),
     Z IJK(J,K.M) ,IALL
        IFdALt. £0.999)  GO  TO 422
      ICOUNT(M,K)=ICOUNT(M,K) *1
  420       CONTINUE
  422    CONTINUE
  425 CONTINUE
      CALL CONCAL  t i, OL AT, OLON, NTS, NTPDY.NOY.TSOUR.AL ATT, ALONL. LTAAT.
     Z LMAAT,LBAAT,EPS02.fc.rtSUL,WIOROT,IO,ICOUNT,N)
                                    147

-------
    100 CONTINUE
    500 CONTINUE
        STOP
        END
        SUBROUTINE y*OGET
     Z             (REMV1»REMV2,DPEMV,AVGl,'
     2              A-i4MOAl,4HAMOA?,ACON\/RiAH,AUBAR,
     Z              AR£,AWOR,I,J,K,M,CS02»CS04,OS02,
     Z         •     1SULF»PSOa,PSULF,TSULF>
C»tnn>«»»THIS SUBPROGRAM CALCULATES THE  DEPOSITION AMOUNTS OF
C        502 AND S04 DlJF  TO DRY  AfjD WET DEPOSITIONS ALONG
C        TRAJECTORY AND ACCUMULATES THE VALUES  FOR f»f. AREA
C        OVER  THE E.'ITIKE  PERIOD
        COFF = 4.3?*1.0£.-5
C»»«*»««»»««
  100
  goo
  300
  400
  110
  111
TF{M.
IF(M
IF(M
IF(M
IF(M
IF(M
IF(M
IF(M
IF(H
•^ — »
Eg.
.tu
.EQ
. tu
.tu
.to
.EQ
IEQ
.EQ
l.ANO.
.l.ANO
.2.ANU
.2. AND
.2.ANLI
.3. AND
.3.ANO
.3. AND
.4. AND
?K
.K
.K
.K
.K
.K
.K
.K
EQ.l
.Eu.
.E'l.
.EQ.
.EQ.
.EO.
42-
.EQ.
,EQ.
^
1
?
?
i
i
2
GO
.AND
.AND
.AND
.AND
.AND
.AND
.AND
.AND
>
TO
.J
.J
.J
.J
.J
:d
.j
1000
.LE.7)
.LE.5)
.LE.3)
.F.Q.8)
.EU.l)
.GE.6)
.LE.4)
.GE.2)
GO
GO
GO
GO
GO
GO
GO
GO
GO
TO
TO
TO
TO
TO
TO
TO
TO
TO
1000
1000
1000
1000
1000
1000
1000
1000
1000
  SULn=CS02
   SUFT=CS04
   IJsMOU; (I-?]) .4)*1
   GO TO (IPO,?00,300,400),IJ
   GO TO (110,130),K
   GO TO (210,230),K
   GO TO (310,330)»K
   GO TO (410,430)»K
   IF(J.LE,2) GO TO 111
   IF(J.LE.4) GO TO 112
   IF(J.LE.6) GO TO 113
   IF(J.LE.S) GO TO
   CSUL'J=SULD
   CSUFT = SLIFT
   GO TO 2000
   GO TO HI
   GO TO 112
  IFU.UE.2) c,o TO 112
  IF(J.(-E.4) (50 TO 111
  1F(J.LE.6) GO TO 112
  IFU.LE.8) GO TO 111
      ~     '- -- 21?
it- (J.Lt.O)  (jU ID 211
IF(J.LE.B)  GO TO 112
CSULO=SULO
CSUFT=SUFT
GO TO 2000
CSULD»O.O
CSUFT=0.0
GO TO 2000
1FU.LE.2)  GO TO 212
1F(J.LE.4)  QO TO 211
IF(J.LE.6>  GO TO 112
GO TO 111
  113
  11*
  130
 210


 211


 212


 230



 310
 330


 Ho

1000

2000
C»»«»»»«» CALCULATION  JF  DRY DEPOSITION AMOUNTS»«««««***«
GO TO
IF(J.LE.6)
                  GO  TO  212
       GO TO 211
       GO TO 212
       IF(J.LE.b)  CO  TO  212
       GO TO 211
       CSULDsO.O
       CSUFTsO.O
       IF(REMV
-------
        PSULFSUSULF1»ABAMDA2
        TSULF=(DSO?*PSO?)/2.0+ ( DSUI.F*PSllLF )/3. 0
        KKK=1
       GO TO J500
3000    HS02=0.0
        (>SULF=O.O
        PS02=0.0
        PSULF=0.0
        TSULF=0.0
 3500    CONTINUE
         RETURN
         END

 FHCQ025     2b PAGCS



        SUBROUTINE CONCAL  (I.OUAT.OLON.NTS.  NTPOY.NDY.TSDUR.ALATT.ALONL,
       Z LTAAT,
       Z LMAAT»L.l*AAT.KHS03.tMSUL»WIORO,IOi ICOUNT «N>
  o— — CALCULATE. THE CONCENTRATIONS  ON  GRID POINTS-- ------- - —
        COMMON /OUTPUT!/ TSLAT(H,2,5) »TSLON(H,2.!3) ,U6AR(8,2»5) ,
       Z  SP«t:AO(8,2,5)
        COMMON /OUTPUT?/ ALPHAIH.S.SI ,RETA(8,2»5) ,UK<8,2,5) ,
       Z  T(8.2»^ ) .R2(8,2.5>
          DIMENSION PXXJ(11.21),PSXXJ (11.21)
          DIMtNSlON   PSI(13,100)
          DIMENSION  P«;A ( 1.1, ion)
          COMMON/INPUT!/ PS(IOO)
          COMMON/t>RID/*LAT
          DIMENSION  ORCONC5) .SORCO^(S) ,WIORO(5)
          DIMENSION  OLAT f'5) .OLON(S)
          DIMENSION  ERSO?(^>) ,EKSUL<5)
          DIMENSION  ICOLIr-JT (S,2)
              DO         ,
              PSI (i.KK) =O.U
      445      CONTINUE
            HEWING  7
             DO  555 11=2,7
             DO  55b KK=1.8l
             READ( '.5571  PSI ( II, KK)
      557     FORMAT(F4.3)
      556     CONTINUE
      555     CONTINUE
            DO 558  II=8,U
             DO  559 KK=l.ril
             PSI ( H.KK) =0.0
      559     CONTINUE
      558     CONTINUE
            REWIND  7
         DO 5000 *=1, NDV
         DO 4000 K = l,NTPl)Y
         ICC=ICOUNT(M,K)
             DO  4444 J=l,lcr,2
              DO 4S55 KK=1.81
              IF(M.tO.l.AND.K.EQ.l) r,0 TO llll
              If {M. tQ. LAND. K, KQ, 2) GO TO 1112
              IF(M.tQ.2.AND.K.E0.1) GO TO 1113
              lF(M.tQ.2.AND.K.EO.?) GO TO 1114
              IF (M.tQ.3.«ND.K.EQ.l) GO TO 111S
              IF (M.tQ.3.AND.K.EQ.2) GO TO 111&
              lF(M.tQ.4.ANU.K.EQ.]) GO TO 1117
              IFtM.EQ.4.AND.K.etl.2) GO TO 1118
     mi  jj=(j+n/2
            GO TO 1121
     1112  JJ=(J*D/2+l
          GO TO 1121
     1113  JJ=(J*l>/2+2
          GO TO 1121
     1114  JJ=(J+l)/2*3
          GO TO 1121
     1115  JJ=(J+l>/2*4
          GO TO 1121
     1116  JJ=(J*l>/2»5
          GO TO 1121
     1117  JJ=(J*l>/2*6
          GO TO 1121
     1118  JJ=(J*l)/2+7
     1121  PSA(J,KK)=PS1 ( JJ,KK)
          PSA(J*1«KK)=PSI ( JJ.KK)
     4555  CONTlNUt
     4444  CONTINUE.
                                      149

-------
     DO 3000 J=1,ICC
       IF(TSLAT(J,K,n.FU.990,
         AY=(ALATT-AY) «60.
     60 TO 299H
2999 AX30.5«(ULON( 10) * TSLON ( J , K , M) /in.)
     AY = 0.5«(OLAT(I1)*TSLAT »COS( A6LON»PI/iaO.) »60.
         AY=( ALATT-AY) *f.O.
2998 CONTINUE
       DO  399I3  KK=1.R1
       PS(KK) =PSA ( J.KK)
-JQQR   rnNTTNUE
J ^     "CALL   REMOVE (I,M,K,J, vGA,vGfl,T«AR,HGT,RAMAA,RftMaa,
    Z  LTAAT,LMAAT,L*AAT,AX,AY,AtATT»ALONL,M
     VG1 ( J»K»M) =V/GA
     VG2( JtK.M) =VGH
     COHVRI J.K,M)=tRAR
     H(J,K,M)=MGT
     RAMDAl (J«K,M) soAMAA
     RAMDA2(J«K,M) =HAMBR
3000 CONTINUE
       00  399-J J=1,ICC
       DO  399H KK=1 ,H1
       PSA(J|KK)=0.0
         PS(KK)=0.0
3998   CONTINUE
3999   CONTINUE
4000 CONTINUE
5000 CONTINUE
     WORO=WIO*0(IO)
     DO  87 M = 1, NOY
         DO 86  K =  1, NTPDY
      ICC=ICOUNT(MtK)
            DO  8S J =  1,  ICC
               WORY
      DO  700 K=ltNTPOY
      ICC=ICOUNT(M,K)
      DO  600 J=l tICC
        IF(TSLAT(J,K,M) . F.U. 999. OR. TSLON ( J,K .M) .EQ.999Q)
     Z    GO TO 6f6
      REMV1=VG1 (J, K.M) *BAMDA1 (JiK.M)          +CONVH (J,K,M)«H(J»K,M)
                ( J,K,M) *RAMDA2( J»K,M)
                    "
      VG1H=VG1
      VG2H = Vfi2 
-------
     SCONC(J,K,M)s  (SORCON(IO)«WOH(J,K?M)/SWIDTH)«()R«OP2
    A  *( 1 ,5«CONVR<>I»K,M)»H(J,K,M)/HrtEMV )»CONC(J,K,M)*OC
     GO  TO 577
 601 WOR(J,K,M) =WORO + ,f.»60.*l()b2.«r,PRt:An(J-l,K,M)
     CONC (J,K»M) = ( (CONC (J-UK,M)«WOP( J,K«M) ) /S WIDTH) *[)A«OCON«Opl
     SCONC(J,K,M)r((SCONC(J-1,K,M)»WOH(J,K,M))/SWIDTH)»Drt»DP2
    A * < l.b»CONVR(,.UK,M>*H( J,K?M)/OREMV  )
    A    *CnNC(J,K,M)"DC
 577 WRITE(ft,1001)  I»TSLAT(J,K,M),TSLON(J, ,M),CONC(J,K,M),SCONC(J ,K ,M)
    A f M , K i J
       IF (J.E'}.1) GO  TO  3333
       CS02sCONC(J-l,K.M)
       CS04=SCONC(J-1,K,M)
       GO TO  5555
3333   CS02=OHCON(IO)
       CS04*SOHCON(IO)
5555     CALL  «AfJ6ET
    Z          (REMVl,RFMV2inRfMv,VGl (J.K.M) ,VG?(J,K,M) ,
    Z          RAMDAl(J,KtM),RAMOA2(J,KtM),CONVR(J»K.M)»
    Z          H ( J»K,M) ,UBAR(.i,K,M) tR2 (J»K,M) ,WOR(J,K,M)
    Z          I
                          .
         APSULF=APSULF*PSULF
         ATSUL=ATSUL+TSULF
1001 FORMAT(10X,3no«?F20.5t3l7)
 600 CONTINUE
 666  CONTINUE
     oo ana 11=1.11
              =1,?J
       DO 221 JJ
       INDEx
-------
       _^ = AL^HA(J,-<,M).HETA(J,K,M)
      EE=T(J,K,M)«T!J.K,EQ.l. \NO.J.GE.2)  GO TO 150
       IF(M.tQ.4.AMD.K.EQ.2)             GO TO 150
    IF(J.EQ.1.AN0.9LAT(II).tfJ.OLAT { 10).AMU.BLON(JJ).EQ.OLON(IO))
   A      GO TO 350
    1F(J.E,LE,WORO/(2.«lb52.)  .AND.GAMMA(11,Jj).EQ.
   A    DELTA1.OR.GAMMMII,JJ) .EQ.DELTAS)  GO TO  350
    IF(C(II, JJ) .GT. F) GO  TO  150
    IF (IJK(J,K,M) .EQ.l) GO TO  HO
    IF (IJK(J,K,M).FU.2) GO TO  120
    IF(IJK(J«K,M).K«.3> GO TO  120
    lF(IJK(JtK,M» .F.Q.4) 60 TO  130
    IF(IJK(J,K,M) .F.lJ.O) GO TO  140
110 IF(BETA(J,K,M),LT.ALPHA(J,K,M))  GO  TO HI
    IF(GAMMA!II.JJ).G£.«LPHMJ.K»H).ANO.GAMMAjIT.JJ).LE.PHAI1.OR.
   A   GAMMA(I I,JJ) .OF.(2.«f'I*PHAI?).AND.GAMMA(11,JJ).LE,2.»PI.OR.
   A   GAMMAdl.JJl .OT.O.  . AND.GAMMA (I I , JJ) ,LT. ALPHA (J, K ,M) )
   A   GO TO IIP
    GO TO 113
112 D1=R2(J,K,M)/COS(Al.PHA(J,K,M)-GAMMA(II,JJ))
    D1=ABS(01)
    IF(C(II,JJ).LE.U1)  GO  TO 165
    GO TO 149
111 IF(GAMMA(II, JJ| ,GE.PHA]2.AND,r,AMMA(II,JJ) .LE.PHAI1) GO  TO  112
    GO TO 114
113 1F(GAMMA(II,JJ).GT.PHAIl.AND.GAMMA(IIiJJ).LE.DELTA1)  GO  TO 170
    IF(GAMMA(I I,JJ) .GE.DELTA2.AND.RAMMA(II,JJ),LT.(a.*PI*PHAl£))
   A GO TO 1/0
    GO TO 150
11V IF(GAMMAtII,JJ) ,GT.PHAI1.AND.GAMMA(II,JJ).LE.DELTA1) GO TO  170
    IF (GAMMA (I I, JJ) ,GF..DELTA2.AND.r,AMMA(II»JJ) ,LT.2.*PI .OR.
   A   GAMMAdl.JJ) .GE.O.  . AND.GAMMA (II , JJ) .LT.PHA I ?)   GO TO  170
    GO TO 150
120 IF(GAMMA(II,JJ>,GE.PHAI2.AND.GAMMA(II,JJ).LE.PHAI1) GO  TO  H2
    IF (GAMMA ( II, JJ) .GE.DELTA2.ANO.r,AMMA(II,JJ) ,l,T . PHAI 2. OR,
   A   GAMMAdl.JJI ,r,T.PHAIl.ANO.GAMMA0.
    IFlDOX.GT. WIDTH)  GO TO  150
    GO TO 160
                        ) *COX»(SPPFAO(J,K,M)«60.-WORO/(2.«lflS2.) )
   c«*j
IF(DDX.GT. WIDTH) fit) TO 150
 O
           ..
    GO TO  160

 ]49 AA = C(JIfJJ)»C(TI.JJ>*^(JjK,'"M<>H<'MJtK,M)-?.*C(IT , J J ) »R2 ( J ,K , M )
   A  «COS(ALHHA(J,K,M)-GAMMM(II,JJ) )
    A=SQRT(AA)
    lF(A.LF..ti  GO TO liS2
 150 CONG(II,JJ)=0.0
    SCONGI II , JJ) =0.0
    CONG2(II« JJ)=0.0
    SCONG2 ( I t , JJ) =0.0
    INDEX ( II' JJ) =1
    GO TO  ?4V
 165 CDX = C(II»JJ)«COS(GAMMA( 1 1 , J J) -ALPHA ( J ,K ,M) )
                                   152
     CONTINUE

-------
      JF (COx.tiE.R? ( J.K.M) ) GO  TO  150
                              ,K,M)          *CONV«(J,K,M)»H(J»K,M)
    DHEMVH=DHEMV/H(J,K,M)
    VG1H=VG1 ( J.K.M) /M ( J,K,M)
    VG?H = \/G2( J.K.M! /H( J,K,M)
    D4sEXP<-VGlH»Cnx»1852./llriAR(J,K.M) )
    D5»EXP(-VG2H»CrX'M852./UHAp/H(,J,K,M) )
    IF(U8AR( J,K,M) .hQ.0.0) GC  TO  140
    IF(R2(J,K,M) .Eo.o.O)  GO  TO  140
    IF(J.EO.l) GO TO  161
    SlGH = 2.»60.»lfir>2.» (SPREAO(J-1,K,M) * (COX/H2 IJ»K ,M) )«( SPREAD ( J.K.M)
   A   -SPREAOfJ-l.h.M)  ) )
    CONG! I! t JJ) = ( (COMC( J-l,K,M)»wOR( J-l »K.M) ) /(WQRO*SIGH) ) *04«07«DP4
    SCQNGdl «JJ) = ( (SCONCl J-l ,K,M) *WO« ( J-l t K,M) ) /( -JOPO + SIGH) ) »D5»DPS
   A  * (1 ,5«(.ONVR(J,K,M) »H(J,K,M) /DREMV)
   A    »CONC(J,K.M) <
    INDEX(II»JJ)=2
    GO TO 34V
161 SlGH=(2.*60.«lf«52.»SPREAD( J,K,M) »COX/R2 ( J ,K , M) )
    CONGf II, JJ) =( (OHCON(IO) "WOHO) /(WORO+SIGH) ) «04»07»f)P4
    SCONG(II»JJ) =( (SOBCON(IO)*WOHO) /(WOrtO»SlGHn*05»nP5
        *{I.5»CONVR(J,KiM)»H(J,K,M)/DHEMV)»CONC(JfK.M)«D6
    GO TO
350 CONG(IItJJ)=ORCON(lO)
    SCONG(IItJJ) =SOHCON( 10)
      GO TO 24 V
  162 CONG(II,JJ)=CONC(.J,«,M)
      SCONG(IItJJ) =?CCNC(J,K,M)
      INDEX(II»JJ)=2
      GO TO ?<*^
  140 CONG(II,JJ)=0.
      SCONGf tltjj)=0.0
      INDEX(II»JJ)=1
  249 IF(INDEX
  2*8 CONTINUE
  250 CONTINUE
      DO 661 11=1.11
      00 660 JJ = 1. ?l
      CONG( I It JJ) =0.0
      SCONGf II »JJ) =0.0
      CONG2(IItJJ)=0.0
      SCONG2(IItJJ)=0.0
      6AMMA ( I I» JJ) =0.0
      C(II.JJI=U.O
  660 CONTINUE
  661 CONTINUE
  650 CONTINUE
  700 CONTINUE
  800 CONTINUE
          REWIND 51
       DO 795 Il3l.lt
        WRITE (51) BLAT(U)
  795   CONTINUt
        DO 796 JJ=1,21
        WRITE(^l) HLON(JJ)
  796   CONTINUE
          REwINU
               SO
    00 802 11=1,11
     WRITE (50) (XXJ(IT.JJ) ,SXXJ(IT,JJ) ,XXJ2(II,JJ) ,SXX J2 ( 1 1 « JJ) .
   1 OxxJI 1 I »JJ) »OSXXJ( I I , JJ) ,PXXJ(II, JJ) tPSXXJdl. JJ) « JJ = 1 ,21 )
802  CONTINUt
                                  153

-------
      RE«rlNf)  5?
       WRITE C>2)  ADSO?,AOSULF,ftPS02»APSULF*ATSUL
     SUBROUTINE  CONHUL  ( X , > ,NPTS, IP. IP? t IER)            „ „  „
     COMMON/T«IAN1/I1.NP,ASCALE,YSCALE,XMIN,YMIN,XMAX.YMAX,NL«NT
     LOGICAL  EQUAL ,START,l.AH
     DIMENSION  X0 TO 111
     DO 107 I r«IL = l«N»TS
     IF(IPdTAIL) .f.Q.O) GO TO  108
 107 CONTINUE
 lOfl CONTINUE
 109 I2 = IP(ID
     JF( I2.EiJ.O)  RO TO 111
     IF(Y(I1).EQ. Y(I2) ,AND.<(I1) .EQ.Xdaj I  GO TO HO
     11 = 13
     GO TO 10V
 110 NP=NP-1
     IER=1

1500
     IP(I1)=I^(I2>
     IP(I2)=0
     IP(ITAIL)=I2
     ITAIL=I2
     GO TO 10*
 111 CALL PVEC(IP,IH)
     IF(NP,GE.4) GO TO 113
 113 CONTINUE
1501
     RETURN
 113 1=IP(1)
     XMIN=X(I)
     I=IP(NP)
     XMAX=X(I)
     YMIN=Y(D
     00 114 I=
     YMAX*AMAX1 (YMAX.Y ( I ) )
     YMINsAMlNl (YMIM,Y ( I) )
 114 CONTINUE
     DX=XMAX-XMIN
     DY=YMAX-YMIN
     IF(DX.NE.O. .AND. OY.NE.O.) GO  TO  115
     IEP=33
     WRITERS, 1502)
1502 FORMAT(1X,»IER=33»)
     RETURN
 115 XSCALE=. '07/OX
     YSCALE=. /07/OX
     00 116 1=2, NP
     J=IP(I)
     IF (X ( J) .NE.XMIN) GO TO 117
 1 16 CONTINUE
     IER=34
1S03 FORMAT ( IX, »IER=")'»
-------
 120 IF (ABS(DX2) + ABS (DY?)-AHS (DX3) -AHS(DYJ) )  12<>»122,121
 121 IP  GO TO  124
     11*11*1
     IF { .NOT.STAPT.OR. II .LT.3)  GO TO  123
     START=. FALSE.
     IP(NPTS+1>=IP(NP*1 )
     IP(NP*1)=IP(1)
     NP=NP*1
 123 IF(NP-I1.GE.2)  fin TO 118
     1ER=35
     WRITE<6,1504)
1504 FORMAT <1<<.»IER=35*)
     RETURN
 124 CONTINUE
     RETURN
     END



     SUBROUTINE DETCON ( I , J, K , SOLO, SUF T. SUL02. SUFT2, CSULD,CSUFT,CSULO;>,
    Z CSUFT?)
       IJ=MOP< (1-21) .4) *1
       GO TO (100,200.300.400) ,IJ
 100 IF(K.E0.1 ) GO  TO 110
     tF(K.EQ.2 ) GO  TO 130
 200 IF(K.E(J.l ) GO  TO 210
     IF(K.EO. 2) GO  TO 230
 300 IF  )  GO TO 212
     GO TO 211
 410  GO TO 212
 430  IF(J.LE.  6 >  GO TO 212
     GO TO 2H
     END
     COMMON /INpuri/ PSflOO)
     CALL  TRIANG(X, Y.N.I TR 1,1 SUP, IUSED,IE«)
     RAMAA=FI
     RAMB8=F1
     RETURN
     END
                                   155

-------
     INTEGER   riEAO
     N=0
     I=HEAD
 101  IF(I.tQ.O)  GO  TO 102
     N = N» 1
     J=LIST ( I)
     LIST (I) =<*
     I*J
     GO TO  101
 102  IF(N.EO.J)  RETURN
     J = N
     K=LIST(J>
     IF(K.E<}.  N)  GO 10 JOS
 103  I=LIST(J)
     IF(I.GT.O)  GO  TO \04
     LIST(J)=-I
     GO TO  105
 104  LlST(v))=-K
     K = J
     J=I
     IF(J.NF..N)  GO  TO 103
105
    GO TO  102
    END
    SUBROUTINE REMOVE (I tM,K » U . VGA, VGH , TH'AH, HGT, KAMA 4 , RAMBR.
   z LTAAT,LMAAT,LHAAT,AX,/\Y, A|_AT                         "•
      IJ = MOD«I-21)«M*1
       GO TO  COO. ?UO, 300, 400) ,IJ
100 IF(K.EQ.l) GO  TO  110
    IF(K.tQ. GO  TO  111
    IF(J.UE.4) GO  TO  U2
    IF(J.LE.6  )  GO  TO  113
    GO TO 11*
130 !F(J.LE.«i) GO  TO  131
    IF(J.I_F..4) GO  TO  132
    IF(J.LE.6  )  GO  TO   133
    GO TO 134
210 IF GO  TO
    IF(J.LF.4) GO  TO
    IF(J.LE.6  )  GO  TO  213
    GO TO 214
230 IF(J.LE.«J) GO  TO  231
    IF(J.LE.4) GO  TO  232
    IF(J.LE.6  )  GO  TO   233
    GO TO 234
310 IF(J.LF..2) GO  TO  311
                      312
               GO  TO
    IF(J.|_E.6  ) GO TO  313
    GO TO 31*
330 iFfj.LF.O GO  TO  331
    IF(J.LE.4) GO  TO  332
    IF(J.LF..O  ) GO TO   333
    GO TO 334
410 IFU.LE.O GO  TO  411
    IF(J.LE.4) GO  TO  4U
    IF(J.LE.6  ) GO TO  413
    GO TO 414
430 IF(J.LE.
-------
132 GO TO  111
133 GO TO  112
134 GO TO  111
211 GO TO  111
212 GO TO  112
213 VGA = f).Q
    VGH=0.0
                   -
     CALL PRtClP(AX,AY,A|_ATT.ALOW ,RAMAA ,RAMBB, N)
     RAMAA = RAMAA«0.11'>1 , OE5/j6flO.
     RAMBB=HAMHB«0.01»1 . OL5/3frnO.
      TRAW=0.01»(1
    RETURN
314 GO TO 112
231 GO TO 11
    INTEGER  DIRECT
    LOGICAL  LAB
    ASSIGN 101 TO NEXT
    LA8=.FALSE.
    RETURN
    ENTRY SO*T2
    GO TO NEXT,(101,103.121)
101 CONTINUE
    M=l
    DIRECT=Q
    1 = 1
    JHEAO=1
    LI5T(1)=0
    IHEAD(1)=0
102 IF(I.GE.N) GO TO  114
    11=1+1
    L1 = I
    L2=I1
    ASSIGN 103 TO NEXT
    RETURN
103 IF(ITE«5T) 105,104,111
104 IF(OIRF.CD 113,106,107
105 IFfOIKECn 110.10tMl07
106 DIRECT=1
    JHEAD=I
107 LIST(D=I1
    IHEAD(I)=0
108 1=11
    GO TO 102
109 LIST(D=0
    IH€AO(I)=0
110 IHEAD(M)=JHEAO
    M = M»1
    DIRECT=0
    GO TO 10H
111 IF (DIRECT) 113,H2,10
-------
117 M=MP
    IF(M.NE.I) GO  TO  115
    L1=IH£AU (1)
    IHEAO(l) =0
    RETURN
118
    IF(l.EQ.l) GO TO  117
    IHEAD(I)=0
    GO TO  11'
119 J1=IHEAU(I)
    J2sIHEAD(I*l)
    IHEAD(I)=0
    IHEAD(I*U=0

    I2 = J2

    NCHAIN=0
120 L)»J1

    ASSIGN  121 TO NEXT
    RETURN
121 IF(ITEST.LE.O)  PO  TO  1?2
    IF(NCHAIN.EQ. 0)  IHF.AO>
122 IF(NCHAIN.EQ.O) IHEAD(HP)sJl
    IF(NCHAIN.EQ.?) Llsr(I?)=Jl
    NCHAINal

    JlsLIST(Il)
    IF(JI.NE.O) GO  TO  120
    LlST(Il)=J2
    GO TO 116
    END



    SUBROUTINE STEST ( X . Y,LlNE,ITRI,LL«FLIP)
    COMMON/T^IANIX  II«NP,XsCftLE,YSCALE,XMIN,YMIN,XMAX,YMAx.NU,NT
    COMMON/TNIAN2/ L<^,L3t L*«L5
    DIMENSION X(l)fY(l)»LINE(5,l),ITBI(3,l)«E(5)iINEXT(3)
    LOGICAL f'LIP
    DATA lNEXT/2,3,1/
    DATA FAC/1.E13/
    DATA FACI/l.E-13/
    OX(I.J)aXSCALE»(X(J)-X(I))
    DY( I . J)=YSCALE»(Y(J)-Y(I))
    EL(I)=FACI«FLOAT(IA6S
    J2=LINE(2»L1)
    DO 101 I=H,3
    IF(IABS(ITRI (I-l,KTl) ) .EC.L1) GO TO  102
101 CONTINUE
    1 = 1
102 L2=ITRI (I.KT1)
    lalNEXT(I)
    L3=ITRI ( I.KT1)
    IF(L2.LT.O) GO TO 103
    GO TO 10*
103 L"-L2
    J3=LINE(1.L)
    DO 10S 1=2,3
    IF(IAHs]lTRI(I-1,KT2)) .EQ.L1) GO  TO  106
104 DO 10S 1=2,3
    IF(IAHS(	
105 CONTINUE
    151
106 L4=ITRI(I»KT2)
    L5=ITRI (I»KT2)
                GO TO 107
    GO TO 10H
107 L=-L4
108
                      .
    IFfAl.LE.O.) RETURN
    A2 = DX(J4«J2)
    IF(A2.LE.Oi.)
                                  158

-------
    LL2=IABS(L2)
    E<2)=ELsDX(Jl,J2)
    DY1?=OY(J1,J2)
    S3«(DX12»UY(J1.J3)-OY12»OX(J1,J3) ) /  Hf-TUHN
    LINE(1«H) =J4
    LINE(2,L1)=J3
    LINE(3,LI)=KTl
    LINE(b,H)=E43»FAC
    1=3
    IF(L2.LT. 0) I=t
    LINE(I.LL2)=KT2

    IF(L4.LT.O)  1=4
    LlNE(I.H.4)sKTl
    ITRI(1»KTI)=L1
    ITRI(2,KT1)=L3
    ITRI (3,KT1)=L4
   .ITRI (3.KT2)sL2
    FLI
    RETURN
    END
                .
    T=»SX«DY-UX«SY
    IF (T.fST. TOU! bO TO 10S
    IF (T.LT.-TOL )  GO TO 1C3
    IF(A8S(SY) .GT.  APStSX)) GO TO  101
    R=OX/OY
    60 TO 102
101 R=DY/SY
10^ IF(n..(_E.H .AND. R.LE.l.) GO TO 104
103 LTEST=-1
    RETURN
104 LTEST=0
    RETURN
105 LTEST=1
    RETURN
    END


    SUBROUTINE TMESH ( X . Y.NPTS, IP, LINE . 1 TRI , IER)
    COMMON/T-
-------
     i
f (I.EQ.I1)
TRI(1,I)*I
     ITRI <3,I)=-(I*I1-1>
     IF  1TRT(3,I)=-*|L
 103 CONTINUE
     DO 10^ 1=1, ML
     01=LINE(1»I)
     J2*LINE(2,n
     LINE(5, I)=FAC»
    1     SORT ( (XSCALE»(X(JD-X(J2) ) )«»2* (YSCALE»(Y ( J1)-Y(J2
    2  M>*»2>
 104 CONTINUE
     DO 105 L=I1P1,NL
     CALL STEST < X, Y ,L INE, ITRI »L .r L I PI)
 105 CONTINUE
     Kl=Kl*l
     IFlKltGT. NP) r-,0 TO 14?
     DO 141 K=K1,NP
     DO 11J KT=1,NT
                ,
     L13IT«I (l.KT)
     IF (Ll.t-T. 0) r,0 TO 106
     Jl»LINE(ltLl)
     GO TO 10f
 106 L=-L1
 107 DXl = XSCALt«(X(.J)-X(Jl) )
     OY1=YSCAUE«(Y(J)-Y(J1) )
     SXl=XSCALt« (X U12) -X(Jl) )
     SYl = YSCALt« ( Y( J<») -V( Jl) )
     LT=LT£ST(SXl,SYl»Dxl»UYl )
     IF(LT)  113, 10*. Id1?
 108 L2=ITRI <-?«KT>
     IF(L2.LT.O) GO TO
     J3=LINF.(£,L2)
     GO TO 110
 10^ L=-L2
     J3 = LINE(UL)
 110 IF(LT)  113,114,111
 111
     0X2=0X1-5X1
     DY2=DY1-SY1
     IF(LTEST(SX2,SY2,nx2,DY2) ) 113.120,112
 112 SX3=-(SX1*SX2)
     SY3=-(SYl*SY2)
     OX3=SX3*UX1
     DY3=SY3»UY1
     IER=36
     WRITEC6. 15101
1S10 FOHMAT(1X,*IER=
     RETURN
 114 LINE(1,NL+1)=J1
     LINE(2,NL*1)=J
     LINEO,NL*1)=NT
     LINE(4,NL+l) =KT
     LINE(5,NL*1)=FAC«SORT (0X3 »
     LINF. (2.NC + 2) =J
     LlNE(3,NL+2) =KT
     LINE(4,NL*2)=MT»1
     LlNE(5,NL»2)=FAC*SORT(DX2«»2*nY2«»2)
     LINE (l,NL+3) =J3
     LINE(3iNL*J)=NT*l
     LINE(4,Nl*3)=NT*2
     IF(L2.LT. 0)  fcO TO
     GO TO 116
 115 L=-L2
     LINE(4,L)=NT*1
 116 L3=ITRI(3,KT)
     IF(LS.LT.O)  GO TO 117
     LlHE(3,LJ)=NT+3
     GO TO 11*
 117 L=-L3
     LlNE(4,L)=NT+2
 118 CONTINUE
     ITRI(2,KT)=NL*?
     ITRI (3.KT|s.(fJL + l )
     ITRI (lfNT*n=L?
     ITRI(2,NT*l)=Nl. + 3
     ITRI(3,NT+l)s.(NL+2)
     ITRI(1,NT»2)=L3
     ITRI (3,NT*2) =- fNl.t
                                   160

-------
     CALL STEST(X,Y.LIMF»ITPI,L l,FI.TPl)
     CALL STEST(X,Y,LIME,ITRI,L?,FLIP1>
     CALL STEST(XtY.LINEiITHl,L3,FLIHl>
     GO TO 140
 119 L3*ITRI(J»KT)
     GO TO 122
 120 L3=L1
     L1=L2
     L2=ITRI<3»KT>
     JT=J3

     J1=J2
     J2=JT
     GO TO 122
 121 L3=L2
     L2=L1
     L1=ITRI(3.KT)
     JT=J2
     J2 = J1
     J1=J3

 122 CONTINUE
     IF(Ll.LT.O) GO TO 123
     KT2=LINE(4,L11
     GO TO 124
 123 L=-L1
     KT2=LINE(3,L)
 124 IF(KT2.NE.O) GO TO 125
     IER = 2
     WRITE(6tl5ll)
1511 FORMAT(1X,»IEW = ?«')
     GO TO 141
 125 CONTINUE
     IF(L1.EU.-ITRI(1,KT2)I JO TO  t?6
     IF (Ll.EQt-ITRT(2.KT2)) PO TO  1?7
     IF (Ll.EQ.-ITRI(3.KT2)) GO TO  l?fi
1512
     RETURN
 126 V>=ITRI
     L5=ITRI (3,KT?)
     GO TO 12^
 127 L4 = ITRI(-3»Kr2)
     L5=ITRI (1 tKT2)
     GO TO 12^
 12S L-+=I
 12^ IF(L*.LT.O)  GO TO 130
     J4 = LINF. () ))»»?)
 133 LINE(1,NL»2) =J3
     LINE(2tNL*2) =J
     LINE(3,NL+2)=KT
     LINE (*,NL*2) =NT»1
    1   SORT ( (^SCALE«{>( { J3) -X ( J) ) ) «»2+ ( Y SCALE* ( Y ( J3) -Y(J) ) )««2)
    LINE (1,NL+1) =J1
    LINE(2,NL*1)=J
    LINE(3,NL*1)=NT«1
    IF (KT2.EU.O)  GO  TO  134
     GO  TO
 134  LINE (4,NL+1) =0
 135  LINE(5,NI.+ 1)=FAC«
    1    SQRTt (XSCALE* (X(J1)-X{J)))»«2*(YSCALE»(Y(J1)-Y(J))
     IF(L3.LT«0)  GO TO 136
     LINE (3.L3) =NT+1
     GO  TO 137
 136  L=-L3
     LINE(4,L)=NT»1
 137  ITRI(1,KT)=L1
     ITRI (2,KT) =L2
     ITRI (3,KT)=NL + ?
     ITRI (l.NT*l)=NU + l
     ITRI (2,NT + 1)=-(NL*?)
     ITRI <3,NT+i)=L3
     LINE(1,NL»3)=J4
                                   161
     LINE (4,NL

-------
    IF(L4.LT« 0) GO  TO  138
    LINE <3.L<*1 = NT*?
    GO TO 13^
138 L = -L*
    LINF. <4,L>=NT + ?
139 ITRI (l,NT+2)=-(NL*l)
    ITRI (2,NT+2)=L4
    ITRI(3,NT*2)=NL»3
    ITRI <1,K12)=-LI
    ITRI <2,KT2)=-(ML+3)

    CALL'STEST (xt?, LIMP. ITRI. L3,FLi Pi)
        L
    CALL STEST  ( X , Y.L T NE , I T*I ,L4 .

                              '
          "                        Y, L
CALL STEST(X,Y,LINF.,ITPI,U1,FLIP1)  ,
CALL STE^T  (X,Y.LTNEtIT*I.ML+l.FLIPl>
                                     5 Y, LINE, ITRI, NL*3,FLIP1>
 140  CONTINUE
     NL=NL+3
     NT = NT*2
 141  CONTINUE
 142  CONTINUE
     RETURN
     END


     SUHROUTI^E TMESHI(XtY,LlN(i,lTRIfIEK)
     COMMON/T^IANl/NO.MP.XSCAl.E.YSCALE.XMIN.YMIN.XMAX.YMAX.NL.NT
     COMMON/TWJAN3/ LL(4)
     DIMENSION X(l) ,Y (1 ) tLINEfb,!) , IT" I (3,1 )
     LOGICAL  I-LIP
     LM=N8*1
     KOUNT=3«NL
 101  CONTINUE
     LMIN=LM
     LM = NL
     00  103 L=LMIN.NL
     It (  LINE(S,L) .LT.O) GO TO  10T
     CALL STEST
     KOUNT=KOUNT-1
     iFfKOUNT.tQ. 0)   PO TO 104
     LINE(5,L)=ISIGN(LINE(5,I.).-I)
     IF(. NOT. CLIP) GO TO 103
     DO  102 1=1,4
     LI = IABS(LL( I) )
     IF(LINEC*,LI) .EQ.n.OH.LlNF,(3.1 I) ,EO.O)  GO TO 10?
     LINE<5,LI)=IA3S(UNE(S,LI) )
     IF(LI.LT.U) UMrMIMO(LM,Lt)
 102  CONTINUE
 103  CONTINUE
     IF(LM.LT.NL) GO TO  101
     GO  TO 10b
 104  CONTINUE
     WRITEI6.1S1S)
1515 FORMAT! 1X»MER = 3»)
 105 CONTINUE
     LMIN=NH* I
     DO 106 L=LMIN,NL

     LINE(!s,L)=IAHS(LINF. (b.D)
 106 CONTINUE
     RETURN
     END


     SUBROUTINE TRIANG  ( X. Y , N, I TRI . I SUP , IUSER, IER )
     DIMENSION  X(M)  .Y(N), ITRI(ISHP)
     COMMON/T-iIANl/Nie,MPTS,XSCALE,YSCALE«XMIN,YMIN,xMAX,YMAX,ML,NT
     CALL  CO^HUL  (X.Y.'M. ITRI (?) , ITRI (N*3) ,ItR)
     IF (IF.R .O.E.  32) RETURN
     ITRI (1) = NB
     NL = 2«Nd*3«(NPTS-Nd-2)
     NT =NtU
-------
    DO 102 1=1, NL
    J1=ITHI(IU)
    J2=ITRI (IL+l)
    DX=X(J2)-X(J1)
    DY=Y(J2) -Y(J1)
    DXX=XX-X (Jl )
    DYY=YY-Y
    IFtD.LT.U. .OR. O.GT.OP)  <*0  TO  101
    D=DXX»DXX+DYY»OYY-G<»D/OH
    IF(D.LT.U. )  0=0.
    IF (D.GE.UMIN.ANi'.pMlN.GE.O. )  GO TO  101
    DMIN=0
    ILSAV=IL
101  IL=IL*5
103  CONTINUE
    K=ITRI <2>
    0*
    TRINTR«Z(J1) »K1+Z( J2) *F?+Z( J3)»F3
    RETURN
103 T= (DX«DXX*DY»OYY)/ (DX«DX+DY»DY)
    RETURN
104 CONTINUE
    TRINTR=Z»XXJ2UI,JJ),SXXJ2(II,JJ),
                                   163

-------
   1 UXXJ ( T I »JJ) ,nsXKJ ( II »JJ! »»XXJdIiJJ) »PSXXJdI»JJ) « JJ=1 ,
200 CONTINUE
    DO «02  11=1,11
    DO 801  JJ  =  I.  21
    XXJ( II ,J>J) =XXJ ( II.JJ) /FLOAT (JJ.I)
    SXXJ(II«JJ)=SXX.J (Hi JJ I/FLO AT(JJJ)
    XXJ2(IIfJJ)=XXJ2(IIiJJ)/FLOAT/2,0 + nsXXJdI, JJl/3.0
       03 = l.  (BLON(JJ) , JJ=17,?1)
925 FORMAT ( 1^1 ,8X,5f"8. 1/////1
    DO 913  1 1 = 1 ,11
    WRITE (ft, *41)  ALATdl) , (XXJ(II,JJ) ,JJ = 17,21)
941 FORMAT   (8LON(JJ) ,JJ=17,21)
    00 952  11=1,11
    WHITE! ft.^*l)  BL AT(II) , (SXX.JtII ,JJ) ,JJ=17,21)
952 CONTINUE
953 FORMAT ( 1^1 ,HX, »OF.POS I T I ON OF «;02 ( KG/KM2 )»////)
    WRITE(6»l)l5)  (PLON(JJ) ,JJ=l,lf,)
    00 P54  11=1,1]
    WRITEX6iy04)  HLAT (II) , (UXXJI II , JJ) ,JJ=1, 16)

      ITE(6,^25)  (t'LON(JJ) ,JvJ=17.21)
       955  11=1,11
      ITE<6.*41)  HLAT(II),(DXXJ(II,JJ) ,JJS17,21)
955 CONTINUE
956 FORMAT (im, fiX, ^DEPOSITION OF S04 (KG/KM2) *////)
    WRITE (^,^15)  (BLON( JJ) ,J,J = l,lft)
    00 957  11=1,11
    WHITE (6,904)  RLATdI>»(OsXxJ(II»JJ)»JJ = l»lf>)
957 CONTINUE
    WRITE(6,^25)  (  HLON(JJ) ,JJ = 17,?1)
    DO 958  11=1,11
    WRITE (ft, 'Ml)  HI. AT (I I) , (OSXXJdl »JJ) ,JJ=17,21)
95H CONTINUE
    WRITE (ft,^7Q)
970 FORMAT(lHltHX,«CONCENTH«TION OFS02  ABOVE B.  LA YER (M IGRAM/M3) »
   Z////)
    WRITE (ft, ^15)  (4LON( JJ) , JJ=1 , 16)
    DO 971  11=1,11
    WRITE (ft, ^04)  f»I..U(II),(XXJ?(ITfJJ)»JJ=l,\6)

971 CONTINUE
    WRITE (ft, '
-------
      '/.MITE (
  980 hORMAT ( 1^1 , 8X , ^COMCENTnM f I0'j OF SULFATE ABOVE  B . L AYEP ( Ml GRAM/M3 ) <
  981                    ' T ' ' ' ' SX *J? ' " ' JJ ' ' JJ= l '
      goI3i^iii?!irLON'JJ=17';'1>

  982 CONTINue"411 "l "T ' l l' ' ' SXX J? ( 11 ' JJ > ' JJ= 1 7 ''2l '
        WRITF (-5,700)
  700   FORMAT dm ,ax, !>nF.posisiON  OF  502 DUE TO HAI,
        00 710 I 1 = 1,11
                     riL*T(!I),;PXXJ(II,JJ),JJ=l,16)
 710

        gg'Tinj
                   1  ^LATtII),(PxXJ(IItJJ),JJ=17,21)
              Ht
        CONTTNUc
        WRITF (6,730)

  730    FOHMAT(lHl,»Jx,*nEPOSISION  OF  SULFATE DUE TO PA IN (KR/KM^J #////)
  740    CONTINUE9041 HLAT«"'"pSXXJ(II,JJ),JJ = l

        WRITE (6.925) (RLON(JJ) . JJ=17,21)
750
           .

850            1'1D'<>A'0llNT °r SULFUR(KG)  IN  THt


851
        WRITF.(6tH«;0)
  852    FORMAT(10X.»RAIN OEP03ISTOK  OF  SULFUR ( KG) =» ,F 1 5.
        REMIND 5?
                 AOS02,AOSULr , APS02,APSULF,ATSUL
        WRITE(6.1111)  ADSO?
        WRITE(6,l]l2)  AOSULF
        WRITE(6,m3)  APS02
           TE (b, l ] IS)  ATSUL

1111     FORMAT MH] , IPX, «UMY DEPOSITION  OF  SO? ( KG ) =» . E 1 •=, . 5 )
}J}|    £OW^I   OX,«nRY nEPCSlTION OF  SCH
-------
 APSO?=0.0
 APSULF*0.0
     _
 REWIND 52
 WRITE(i>2) ADSOa.ADSULf , APSO? , APSULF .ATSUL
STOP
END
                              166

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
 1 REPORT NO
  EPA-600/4-79-068
                                                          3 RECIPIENT'S ACCESSI ON-NO.
4. TITLE AND SUBTITLE

  LONG-RANGE TRANSPORT AND  TRANSFORMATION OF SO,
  AND SULFATE                                   i
5 REPORT DATE
  November  1979
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)

  Teizi Henmi and  Elmar  R.  Reiter
                                                          8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS

  Colorado State University
  Fort Collins, Colorado 80523
                                                           10. PROGRAM ELEMENT NO.
  1AA603A  AE-009   (FY-78)
11. CONTRACT/GRANT NO.
                                                            R-805271
 12. SPONSORING AGENCY NAME AND ADDRESS
  Environmental Sciences Research  Laboratory - RTP, NC
  Office of Research and Development
  U.S. Environmental Protection  Agency
  Research Triangle Park, North  Carolina 27711
                                                           13. TYPE OF REPORT AND PERIOD COVERED
  Final  5/77 - 4/79
14. SPONSORING AGENCY CODE
  EPA/600/09
 15. SUPPLEMENTARY NOTES
16. ABSTRACT
      Technical descriptions  and computer programs are presented  for two models that
 calculate long-range  transport, diffusion, transformation of  S02  to sulfate,
 and dry and precipitation  deposition of initially emitted S02.   One model  treats the
 mixing layer height as  constant;  the other (at the expense of computer time)  varies
 the mixing layer height diurnally and tracks pollutants in three  layers—the  daytime
 mixing layer, the nocturnal  ground-based stable layer, and the daytime mixed  layer
 that remains above the  nocturnal  stable layer.  Application of the  multi-layer model
 over a region encompassing the  Ohio  River Basin produced patterns of S02  and  sulfate
 concentrations that are statistically correlated with observed concentrations.

      An empirical formula  for the transformation rate of S02  to  sulfate is  derived
 and used in calculations of  regional  residence times of S02 (TS02) and  sulfate (TSUL)
 for the U.S. east of  105°W longitude.   TS02 ranges 15-30 and  15-40  hours  for  the cold
 and warm seasons, respectively; TSUL  ranges 150-450 and 200-500  hours  for  the cold
 and warm seasons, respectively.

      Using a cumulus  cloud model,  results showed that sulfate aerosol  capture by
 cloud water through microphysical  processes is sufficient to  produce observed levels
 of sulfate in rain water.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                             b. IDENTIFIERS/OPEN ENDED TERMS
             c.  COS AT I Field/Group
  Air  pollution
  Sulfur  dioxide
* Atmospheric  diffusion
  Conversion
  Distance
  Sulfates
  Computer  programs
                   13B
                   07B
                   04A
                   09B
13. DISTRIBUTION STATEMENT
                       RELEASE TO PUBLIC
                                             19. SECURITY CLASS (This Report)
                                                      UNCLASSIFIED
              21. NO. OF PAGES
                    183
                                             20. SECURITY CLASS (Thispage)
                                                      UNCLASSIFIED
                                                                        22. PRICE
EPA Form 2220-1 (9-73)
                                            167

-------