5245
                                               810R79107
              Environmental Protection Agency
                      ^WORKSHOP
                             on
             Water Quality Screening Methodology
                             for
                   Nondesignated 208 Areas
                    - Streams and Rivers -
                     November 7-9, 1979
                       Chicago, Illinois
                         U.S. Erivfronmental Protect/on Agency
                         Region V, Library
                         230 South Dearborn Street
                         Chicago, Wfnofs  60604

-------
      SOLUTION  TO  LONGITUDINAL DISTRIBUTION OF BOD PROBLEM




(1)  Apply Equation  IV-7  to  find L at location (C):


                  AQ  =  150/1.5 = 100 ft2


                     _  (50)  (24) (3600) _ R1o
                  AQ	5280	818

                  P   =  (100) (.6) + 818   , n7
                  t1         818          i.u/
                     soX1'07
TTST'V ' T757 j I 250 '      =  5J
                                  10  \  /1
                               - TTOTJ  ^2
(2)   Use Equation  IV-5  to  find L at  (F):


                  JLx =  .6/1.5/24/3600 x (5 x 5280) = .12


                  LF =  5.1 exp (-  .12) = 4.5




(3)   Use Equation  IV-5  to  find L just above (B):


                  JLx =  .6/.5/24/3600 x (4 x 5280) = .29


                  L = 4.5  exp (- .29) = 3.4




(4)  at (B):


               = (3.4)  (250-180) +15 (40) = y     „
             L        250  - 180 + 40         /.orng/i,  answer

-------
       PROBLEMS FOR STREAM SESSION




•  Water Balance


t  Nutrient Balance


t  Stream Temperature


•  Stream Segmentation


•  Longitudinal Distribution of BOD


t  Sediment Transport
•  Determination of the minimum dissolved
   oxygen concentration in a reach of stream

-------
                          WATER BUDGET
Problem:  Develop an annual water balance for water year 1976 for the
stretch of the Snake River from Heise, Idaho, to below American Falls,
Idaho, a distance of 150 miles (see next page).   Attached is flow
information for this stretch of the river.   Also determine the percent
error in your water balance.

Additional Data:
     - Surface area of American Falls Reservoir = 56,600 acres
     - Evaporation rate in this part of United States = 33 inches/year
     - Precipitation = 11  inches/year
     - Spring inflow into Snake River:   500 cfs
     - Spring inflow into American Falls Reservoir:   2,100 cfs

-------
  Water Resources Data
              for
            Idaho

     Water Year 1976
U.S. GEOLOGICAL SURVEY WATER-DATA REPORT ID-76-1

    Prepared in cooperation with the State of Idaho
         and with other agencies

-------
176
                                               SNAKE RIVER MAIN STEM

                                      13037500 SHAKE RIVER NEAR HEISE,  ID
LOCATION."Lat 43«36'45', long 111«39'33", in SEWWfc  sec.5,  T.3 N.,  R.41 E.,  Bonneville County, Hydrologic Unit
   17040104, on left bank, 850 ft  (259 m) upstream  from Anderson canal headgate,  2.4 mi (3.9 km)  upstream from
   Beise, 6 mi (9.7 km) east of Ririe, 24 mi  (38.6  km) upstream from Henrys Fork, and at mile 861.6 (1,386.3 km).

DRAINAGE AREA.—5,752 mia (14,898  tana) .  Mean altitude, 7,770 ft (2,368 m) .

                                             WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—September 1910  to current year.  Monthly  discharge only for some periods, published in WSP
   1317.  Prior to 1911, published as South Fork of Snake  River near Reise.

REVISED RECORDS.—WSP 1217:  Drainage area.  WSP 1347:  1912.

GAGE.—Water-stage recorder.  Datum of gage is  5,015.3 ft  (1,528.66  m) above mean sea level.  Prior to July 9,
   1913, nonrecording gage and July 9, 1913, to Sept. 29,  1922, water-stage recorder, at datum 2.65 ft (0.808 m).

REMARKS.—Records excellent.  Flow partly regulated by Jackson Lake  (see sta 13010500)  and Palisades Reservoir
   (see sta 13032450).  Some diurnal fluctuations during winter from powerplant operations at Palisades.   Station
   is above all irrigation diversions from main river except Riley ditch (6,639 acre-ft or 8.18 hm3) diverted during
   year) which diverts 1.5 mi (2.4 km) upstream from  station.  Diversions from tributaries above station for irri-
   gation in Wyoming and Idaho of  about 104,000 acres or  421 km3 (1966 determination).

AVERAGE DISCHARGE.—66 years, 6,968 ftVs  (197.3 mVs) , 5,048,000 acre-ft/yr (6,220 hmVyr) •

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge,  about  60,000 ft3/* (1,700 m3/*)  May 19, 1927,  result of washing
   out of landslide on Cros Ventre River (gage  height, about 16.0 ft or 4.88 m, present datum); minimum,  460 ft3/*
   (13.0 mVs) Nov. 10, 12, 1956 (gage height,  -0.18  ft or -0.055 m).

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in early  June 1894 was estimated as 65,000 ft3/* (1,840 m3/*)  by Corps
   of Engineers.

EXTREMES FOR CURRENT YEAR.—Maximum discharge,  24,200 ft3/*  (685 m3/*) May 24 (gage height,  8.06 ft or 2.457 m);
   minimum, 2,240 It*/* (63.4 m3/*) Nov. 21 (gage height,  1.76 ft or 0.536).


                   OISC«A*t»t. IN CUBIC rtET Ptn SECOND. »AltN lt»H UCTUHEK 19/3 TO SEf-TEMBtrt 1976
                                                  »t»N VALUE 5
DAY

  1
  2
  3
  7
  e
  9
 10

 11
 12
 13
 10
 15

 16
 17
 18
 10
 20

 21

 23
 20
 25
           I'CT

          7020
          6920
          6720
          6360
6120
39/0
5790
3030
3100

0710
OOOO
oooO
0070
oioo

ollO
0110

OllO
olin

0090
3980
3960

3910

J930
3960
3960
3910
3930
3930
 27

 29
 30
 31

TOTAL   lO7e*0
MEAN      0770
MAX
MIN
AC-FT   f
MEANt     4320
AC-FTt  265500
          J910
 MOV

39JO
-1910
3030
3930
3910

3930
J930
3910
3H30
3790

3K10
3810
3180
3080
3320

3200
3300
J290
32HO
3310
                   3S20
                   33/0
                   3170
                   33bO

                   33eO
                   3390
                   3390
                   30bO
                   3520
                 107360
                   35 78
                   3930
                   3840
                 228500
                   DEC


                  1380

                  3360
                            3/30
                            3760
                            3/60
                            3/hO
                            3780
3780
3730
3720
3/10
                            3090

                            3ortO
         36*0
         3680
         3/00
         3/011
         3/00

         3690
         3/00
         3670
         3&70
         3/00
         3700
                            378U
                  3708
                228000
         3/JO

         377'J
         3ooO

         3iuo
         J/90
         3/-50
         3->-0
                                      J900
                                      39UO
         0060
         OOBO
         0090
         0010
         OOOO



         00*0

         0090

         0100

         OluO
         0100
                  3270
                201100
 (•tn

oi30

oi7'j
                                              ****** 0
3700
3670
39bO
0000
oo 10
0010
J980
39MO
ooOO
oblO
                  »1?0

                  J7oo
                2J7000
                  3081
                177200
                           OUOO
                           OouO
                                                        6130

                                                        tjoo
                                                        7890
                                                        fouu
                                                        HBOO
                                                        Mb90
 97oO
 97
-------
                                                HENRYS FORK BASIN
                                                                                                                199
                                     13056500 HENRYS FORK NEAR REXBURG, ID

LOCATION.—Lat 43'49'34", long 111°54'15", in NW%NE% sec.30, T.6 N., R.39 E., Madison County,  Hydrologic Unit
   17040203, on right bank, 200 ft (61 m) downstream from highway bridge, 6 mi  (9.7  km)  west of  Rexburg, and at
   mile 9.3 (15.0 km).

DRAINAGE AREA.—2,920 mi' (7,560 km3), approximately.

                                             WATER-DISCHARGE RECORDS
                                                                                                      f
PERIOD OF RECORD.—April 1909 to current year.  Monthly discharge only for some  periods,  published in HSP 1317.
   Prior to 1911, published as North Fork of Snake River near Rexburg.

REVISED RECORDS.--WSP 1217:  Drainage area.

GAGE.—Water-stage recorder.  Datum of gage is 4,806.35 ft  (1,464.98 m) above mean sea  level.  Apr.  13,  1909,  to
   Sept. 28, 1912, nonrecording gage at datum 0.67 ft  (0.204 m) higher.  Sept.  29, 1912,  to Apr.  4,  1913, non-
   recording gage at present datum.

REMARKS.—Records good except those for winter periods, which are fair.  Flow regulated by operation of  powerplant
   near Ashton, and by Henrys Lake (see sta 13039000), Island Park  Reservoir  (see sta 13042000),  Grassy  Lake (see
   sta 13046500), and Teton Reservoir (see sta 13054800).   Diversions above station  for irrigation of about 5,000
   acres (2,000 hm1) below and about 204,000 acres (82,600  hm-1) above station of which  about 21,000  acres (8,500
   hm*) are by withdrawals from ground water  (1966 determination).  Considerable water  leaks above gage  into the
   Snake Plain aquifer.  Station is downstream from all tributaries except inflow from  ground  water  and  irriga-
   tion waste.  Part of ground-water flow escapes westward  beneath  the Snake River plains above  gaging station.

AVERAGE DISCHARGE.—67 years, 2,017 ftVs  (57.12 mVs) , 1,46,1,000 acre-ft/yr  (1,800  hmVyr) .

EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 79,000 ftVs  (2,240 mVs) June 5, 1976;  maximum gage
   height, 22.36 ft  (6.815 m) June 5, 1976, result of Teton Dam failure; minimum, 183 ftVs  (5.18 mVs)  Mar.
   24-28, 1934  (gage height, 1.45 ft or 0.442 m).

EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 79,000 ftVs (2,240 mVs) June  5;  maximum gage  height,  22.36
   ft  16.815 m) June 5, result of Teton Dam failure; minimum discharge, 1,390 ftVs  (39.4 mVs)  Oct.  4  (gage
   height, 4.35 ft or 1.326 m).
                   DISCHARGE. IN CUBIC FEET PER SECOND. WATER TEAR OCTOBER  197S TO SEPTEMBER  1976
                                                  MEAN VALUES
OAT
           OCT
1
a
3
*
S
6
7
a
9
10
11
12
13
1*
15
16
17
U
19
20
21
22
23
2*
25
26
27
28
29
30
31
T9TA1
MEAN
MAX
1*1 N
AC -FT
1570
1570
1550
1*90
1*10
1*20
1*60
15*0
1660
1700
1720
1900
2100
2250
2290
2350
2*00
2330
2270
2230
2250
2280
2440
23*0
2280
2J60
2590
2520
2*30
2370
2*00
63*90
20*8
2590
1*10
125900
                    NOV

                   2360
                   2*00
                   3360
                             DEC
                                      JAN
                                               FEB
                                                                 APR
                                                                                   JUN
                   2020
                   2100
                   2300
                   2350
                   2130
                  65640
                   2188
                   2*00
                   1940
                  130200
2100
2370
2590
2*20
2290
2230
22*0
2250
2220
2210
2190
2200
2200
2110
2180
2280
2160
2130
2270
2330
2170
2080
2210
2320
2300
2300
2350
2*00
2320
2*00
2*50
2*00
2150
2*00
2550
2500
2*50
2*00
2350
2350
                   2110

                   2050
                   2130
                   2*00
                   23*0
                   2360

                   2280
                   2280
                   2240
                   2220
                   2210

                   2230
                   2280
                   2220
                   2100
                   19*0
                   1980     2330     2350
                   1960     2360     2350
                   1960     2*00     2370
                   1990     2340     2*00
                   1990     2320     2*00
       2310
       2310
       2190
       2210
       2220
       2300
      2*60
      2*70
      2*50
      2440
      2*60
      2*60
      70260    73*60
       2266     2369
       2590     2550
       2100     2080
     139*00   1*5700
CAL TH 1975  TOTAL
*TR »R 1976  TOTAL
1090630
118*030
MEAN  2988
MEAN  3235
2*00
2200
2150
2150
2000
1750
2000
2*00
2350
2350
2350
2350
2350
2350
2300
2300
2300
2250
2290
2270
2150
2070
2160
2300
2220
2160
2120
2110
21*0
-«_

6*290
2216
2*00
17SO
2210
2130
2050
2110
2160
2170
2130
21*0
21*0
2160
2160
2120
2130
2150
2150
2130
2130
21SO
2220
2270
2220
2230
22*0
2260
2390
2440
2370
2330
23*0
21*0
1800
67770
2186
2440
1800
127500 13*400
MAX 10900
MAX 79000
MIN
MIN
1910
2030
20*0
2090
2230
2*70
2*10
2*20
2560
2670
2520
2560
2680
2710
2680
2680
2530
2300
2200
2160
2120
2100
2110
2190
2280
2610
2610
2*00
2290
2190
	
70750
2358
2710
1910
1*0300
1*10
1*10
22*0
2*50
2710
312U
3910
4380
4690
5380
6*10
7060
7080
7270
8050
7670
8620
9360
9030
8*10
8730
8720
7570
6800
6270
5690
5550
5530
5510
50*0
*900
4650
4200
187000
6032
9360
22*0
370900
AC-FT
AC -FT
3870
3*20
3390
3*60
79000
38000
9910
7*90
7370
7070
6850
7350
7530
6920
6120
5270
5120
5370
5390
5360
53*0
5*80
5820
5820
5*10
4920
*570
4250
3980
3890
—
2737*0
912*
79000
3390
5*3000
2163000
2349000
   JUL

  4020
  4230
  4290
  4100
  3860

  3620
  3*30
  3250
  3150
  2960

  2890
  2820
  2670
  26*0
  2520

  2370
  2280
  2*00
  2700
  3080

  3070
  28*0
  2680
  2500
  2440

  2*30
  2360
  2270
  2180
  2270
  2*90

 90810
  2929
  4290
  2180
180100
   AUG

  2710
  2920
  3100
  3090
  31SO

  2760
  2700
  2680
  2440
  2310

  2220
  2190
  2290
  2320
  2350

  2450
  2580
  2590
  2650
  27*0

  2680
  2610
  2780
  3080
  2910

  2680
  2600
  2550
  2530
  2500
  2440

 81600
  2632
  3150
  2190
161900
 SEP

2350
2310
22*0
2270
2200

2180
2190
2190
2130
2180

22*0
2*20
2530
2*80
2500

2560
2610
2730
2810
2790

2770
2730
2760
2750
27*0

2790
2760
28*0
2680
2*90
                                                                             75220
                                                                              2507
                                                                              28*0
                                                                              2130

-------
208
                                              SNAKE RIVER MAIN STEM

               13059500 DIVERSION FROM SNAKE RIVER BETWEEN HEISE AND SHELLEY  GAGING  STATIONS,  ID
   Between Heise and Shelley gaging stations,',47 (canals divert water  from  Snake  River  for  irrigation;  of these,
36 divert above mouth of Henrys Pork.  Records available during each  irrigation  season from 1919  to current year.
Three of the canals are equipped with water-stage recorders,  the others with  nonrecording  gages,  most  of which are
read about once daily.  Discharge combined to show total diverted flow.  Records include Riley  ditch which diverts
1.5 mi (2.4 km) above Heise gaging station.  Records fair May and June, good  July to September.
                    DISCHARGE.
                               IN CUBIC FEET PER SECOND. HATER YEAR OCTOBER  1*75  TO  SEPTEMBER  1976
                                                   MEAN VALUES
 DAY
   3
   4
   5

   6
   7
   8
   9
  10

  11
  1?
  13
  1*
  15

  16
  17
  IS
  19
  20

  21
  2?
  23
  24
  25

  26
  Z7
  2fl
  29
  30
  31

 TOTAL
 MEAN
 MAX
 MIN
 AC-FT
            OCT
                     NOV
                              DEC
                                                FEB
                                                                                                       AU6
                                                                                                                SEP
2d
2b
2b
28
181
182
JO*
33*
348
467
657
868
1140
1740
2160
2180
2B40
4000
4920
5360
5890
6S80
6860
7170
7490
7470
7b80
8020
8320
8590
8720
11078J
3573
8730
28
219700
10100
10400
10600
losno
9250
8520
8380
8660
9410
97SO
10000
9950
9440
9450
9890
9800
9470
8630
8590
8470
8860
9170
8970
90SO
8970
8780
8860
9100
9740
99SO
	
280910
9363
10600
8380
S57200
10200
10500
10400
10400
10600
10900
11100
11200
11600
12100
11800
11700
11500
11600
11800
11500
11100
10700
10900
11000
10900
10900
10800
10600
10300
10500
10800
10900
11000
11000
10400
340700
10990
12100
10200
675800
9920
9550
9510
9020
8400
8350
8190
8070
8330
8440
8660
8610
8480
8350
8220
8140
8110
8020
8010
7580
7520
7380
7110
6770
6340
6110
6000
5810
5850
6040
6580
241470
7789
9920
5810
479000
6890
7210
7570
7800
7660
7820
8040
7900
7820
7840
7590
7630
7550
7070
6630
6490
6700
6570
6460
6390
6260
6120
5970
5830
5670
5520
5540
5450
5360
5340
—
202690
6756
8040
5340
402000
 THE PERIOD:  AC-FT   2,333,700

-------
216
 DAY
                                       BLACKFOOT  RIVER BASIN

                          13068500 BLACKFOOT  RIVER NEAR BIACKFOOT,  ID—ContlAued

COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF  BLACKFOOT RIVER AND BYPASS CHANNEL NEAR BLACKFOOT,
                             WATER YEAR OCTOBER 1975  TO SEPTEMBER 1976
                                            MEAN  VALUES
            OCT
                     NOV
                               DEC
                                        JAN
                                                 FEB
                                                          MAR
                                                                   APR
                                                                            MAY
                                                                                     JUN
                                                                                              JUL
                                                                                                       AUG
                                                                                                                SEP
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
TOTAL
MEAN
MAX
HIN
AC-FT
CAL YR
WTO YR
233
265
254
244
245
239
259
317
39?
403
404
405
377
376
423
40<<
707
74?
640
608
587
591
6)R
61ft
611
655
697
681
674
673
666
15001
463
74?
233
?9750
1975 TOTAL
1976 TOTAL
643
578
557
544
535
535
558
565
574
571
553
560
549
541
554
505
512
508
488
497
470
466
462
456
446
421
377
309
236
285
	
14855
495
643
236
29460
143503.
166124
311
331
332
323
321
313
310
297
292
261
273
268
260
252
238
239
242
233
22*
221
226
236
241
259
266
261
265
236
240
251
244
8286
267
332
221
16440
,6 MEAN
MEAN
219
242
272
310
335
282
272
302
277
2*6
238
226
240
231
250
267
257
241
235
22*
219
196
189
210
239
??5
?22
262
235
216
209
7588
244
335
189
15050
393
453
209
217
213
207
191
180
168
180
210
20S
204
205
210
219
229
216
223
200
204
223
189
185
190
207
223
267
409
439
469
--.

6694
230
469
168
13280
MAX 2110
MAX 1870
333
304
240
232
222
213
208
218
231
235
285
247
221
238
248
250
297
466
566
349
275
268
327
321
391
383
301
261
249
246
244
8869
286
566
208
17590
MIN
MIN
342
432
373
451
602
637
476
476
622
626
604
642
648
634
744
769
789
831
821
828
852
865
921
1010
1090
1310
1270
1100
1160
1270

23195
773
1310
342
46010
58
25
1450
1510
1540
1610
1710
1770
1710
1750
1800
1640
1870
1850
1730
1690
1670
1650
1550
1380
1350
1270
1160
1080
1140
1170
1100
1070
1020
876
698
644
587
43245
1395
1870
587
85780
AC-FT
AC-FT
444
324
308
237
205
230
36?
159
114
75
23?
477
5S6
654
660
658
728
840
930
876
731
386
423
484
49«
54]
537
455
289
218
—
13631
454
930
75
27040
284600
329500
190
19?
205
293
305
223
140
75
25
58
109
190
206
150
130
159
210
243
335
333
257
222
202
204
248
275
221
171
133
133
172
6009
193
335
25
11920


267
310
332
419
525
534
455
393
362
308
29?
294
317
320
356
434
472
483
524
495
436
414
41?
514
520
501
400
356
285
2?7
113
12070
389
534
113
23940


75
94
90
73
82
125
154
183
206
223
263
306
363
366
326
271
221
214
240
306
315
295
278
272
276
246
229
213
200
174
™
6681
222
368
73
13250



-------
220
                                              SNAKE RIVER MAIN STEM

            13069000 DIVERSIONS FROM SNAKE RIVER BETWEEN SHELLEY AND BLACKFOOT GAGING  STATIONS,  ID
   Between Shelley and Blackfoot gaging stations, 13 canals divert water from Snake  River  for  irrigation of
158,000 acres (63,900 hm2) of land.  Records available during each irrigation season from  1919  to  current  year.
The two largest canals are equipped with recorders, the others with nonrecording gages most of  which  are read  about
once daily.  Discharge combined to show total diverted flow.  Records fair May  and June, good  July to September.
                   DISCHARGE.
                              IN CUBIC FEET PER SECOND.  MATER  YEAR
                                                  MEAN VALUES
                                                                    OCTOBER  1975  TO  SEPTEMBER  1976
DAY        OCT      NOV      DEC

  1
  2
  3
  4
  5

  6
  7
  e
  9
 10

 11
 i?
 13
 14
 15

 16
 17
 IS
 19
 20

 21
 2?
 23
 2*
 25

 26
 27
 28
 29
 30
 3!

TOTAL
MEAN
MAX
MIN
AC-FT

THE PERIOD:  AC-FT   800,900
                                               FEB
                                                                  APR
HAY
0
1 14
197
42b
425
42*
425
65*
*69
1010
1090
1120
1150
1100
1420
1470
IttSO
2140
2230
2490
2640
2180
2700
2690
2720
2*70
3020
3120
3200
3190
3210
5244*
1691
3210
0
104000
JUN
3340
3400
3480
34SO
34«0
2930
591
301
538
605
808
808
1180
2490
2490
2S?0
2780
2950
3040
3000
2960
3010
3060
3140
2990
3090
2990
2980
2930
2810

74171
2472
34SO
301
147100
JUL
3070
3430
3410
3480
3400
3420
3500
3560
3520
3960
4270
4130
3930
4020
4140
4190
3860
3840
4080
3980
3930
3840
3900
3840
3880
3870
3700
3840
3910
3900
3870
117670
3795
4270
3070
233400
•AUG
3660
3600
3590
3350
3100
2960
2820
2810
2820
2890
2920
2920
3010
2980
2930
2890
2790
2810
2830
2790
2750
2760
2770
2660
2530
2430
2370
2390
2390
2380
2500
88400
2851
3660
2370
175300
SEP
2660
2670
2690
2790
2880
2900
2850
2800
2780
2710
2680
2640
2540
2280
2230
2210
2220
2180
2070
2060
2060
2050
2040
2040
2040
2020
2020
2020
2000
1990
	
71120
2370
2900
1990
141100

-------
                                              PORTNEtTF RIVER BASIN                                              231

                                   13075500 PORTNEUF RIVER AT POCATEIAO, ID

LOCATION.—lat 42'52'20", long 112'28'OS', in SE%NW% sec.27, T.6 S., R.34 E., Bannock County, Hydrologic Onit
   17040208,  on left bank, 1,400 ft (430 m) downstream from Carson Street Bridge, at Pocatello,  1.2 mi  (1.9  ten)
   upstream from Pocatello Creek and at mile 17.8 (28.6 km).
DRAINAGE AREA.—1,250 mi* (3,240 km3), approximately.  Mean altitude, 5,850 ft  (1,780 m).

                                             WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—May to September 1897, March 1898 to October 1899, August 1911 to current year.
REVISED RECORDS.—WSP 1567:  Drainage area.
GAGE.—Water-stage recorder.  Datum of gage is 4,418.41 ft  (1,346.731 m) above mean sea  level  (a.S. Corps  of
   Engineers datum).  May 18, 1897, to Oct. 14, 1899, nonrecording gage at site 1.6 mi  (2.6 km)  upstream at  differ-
   ent datum.  Aug. 31, 1911, to May 13, 1927, and Oct. 13, 1927, to June 13, 1928, nonrecording gage 0.3  mi (0.5
   km) upstream at different datum.  May 14 to Oct. 12, 1927, water-stage recorder near  present  site at different
   datum.  June 14, 1928, to Sept. 28, 1950, water-stage recorder near Carson Street Bridge, 0.3 mi  (0.5 km) up-
   stream at same datum as former nonrecording gages at this site.  Sept. 29, 1950, to May 20, 1968, water-stage
   recorder at Fremont Street site, 1.0 mi (1.6 km) upstream at datum 18.57 ft  (5.660 m) higher.
REMARKS.—Records good.  Flow regulated by Portneuf Reservoir formed by earth dam completed in 1912 and raised
   7 ft  (2.1 m) in 1950  (capacity, 23,695 acre-ft or 29.2 hm3; 16,410 acre-ft or 20.2 hm3 prior  to 1950) and
   Chesterfield Reservoir (capacity, 685 acre-ft or 0.845 hm3) .  Diversions above station for irrigation of  about
   55,000 acres (22,000 hma) of which about 13,000 acres (5,300 hm*) are by withdrawals  from ground water  (1966
   determination).
AVERAGE DISCHARGE.—63 years (1912-16, 1917-76), 269 ftVs  (7.618 mVs) • 194,900 acre-ft/yr (240 hmVyr) .
EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 2,990 ftVs (84.7 mVs) Feb. 14, 1962 (gage height, 11.35 ft or
   3.459 m) j  minimum, 0.4 ftVs (0.011 mVs) July 3, 1961 (gage height, 2.90 ft or 0.884 m) .
EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,390 ft3/s  (39.4 mVs) May 13 (gage height, 9.00 ft or 2.743 m) ;
   minimum discharge, 52 ftVs (1.47 m3/s) Aug. 17-18 (gage height, 2.36 ft or 0.719 m) .

                   Rating table (gage height, in feet, and discharge, in cubic feet per  second)
           (Shifting-control method used Mar. 26 to May 24, July 13 to Sept. 25; stage-discharge  relation
                                      affected by ice Jan. 1-9, Feb. 4-10)
                                          2.2
                                          3.0
                                          5.0
 46
167
540
7.0
9.0
  983
1,440
                   OISCMArtliEt IN CUblC FEET PEK SECONDt »»TtK  YtArt OCTOBER  1*73  10  5EPTEM8ER  19/6
                                                  MtAN VALUtb
UAY
1
g
3
<*
5
•t
7
H
9
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
24
25
26
27
28
£9
30
31
TOTAL
MEAN
MAX
MLN
AC-F1
CAL r«
»TB YH
uCT
219
££3
££«•
£35
233
£30
£55
£/*
£07
£V9
3o6
32"
J45
363
35«
J41
334
329
J18
322
JOP

313
325
341
406
• 4J5
404
3eA
370
363
9778
315
4J5
219
19390
1973 TOTAL
Iv76 TOTAL
NOV
336
330
34V
349
349
347
J45
352
J47
346
343
318
329
336
339
345
354
350
339
326
3£7
320
324
332
340
331
344
343
346
327

10205
340
356
318
20240
1674J6
150871
OEC
350
367
JB3
380
384
404
43J
42V
422
406
394
391
398
364
343
341
339
326
J20
315
JlJ
J16
J21
320
329
32h
333
323
316
326
325
11041
356
433
313
21900
MEAN
MEAN
JAN
£70
230
£60,
£00
300
310
J10
300
£93
20 7
299
316
278
306
318
316
316
315
316
JUB
301
J01
308
311
HO
J06
305
306
JUB
309
309
9J£4
300
316
250
18490
430 MAX
-»12 MAX
FEB
304
304
307
300
' £70
£85
290
295
300
300
£95
292
295
302
297
301
£80
299
310
312
£98
293
303
309
308
314
326
343
371

	
8803
303
371
270
174AO
1520
1380
MAK
4£6
4£0
376
367
347
3-19
338
3JV
340
330
358
345
352
362
369
371
390
431
531
539
5*2
SJ7
57£
599
606
579
jeO
3*4
507
490
515
13781
444
606
336
27330
MIN 150
MIN 57
APK
596
677
738
767
S3£
940
981
99J
1040
1090
1170
1100
1170
1110
1040
981
928
874
836
Oil
803
810
820
834
910
9a<.
991
969
926
92
-------
                                              SNAKE RIVER MAIN STEM

                                      13077000 SNAKE RIVER AT NEELEY, IP
236
LOCATION.—Lat 42°46'06", long 112°52'42", in NEijSWii sec.31, T.7 S., R.31 E., Power  County,  Hydrologic Unit
   17040209, on right bank, 400 ft  (122 m) upstream from fish hatchery buildings,  0.9 mi  (1.4  km)  downstream
   from American Falls Dam, at mile 713.0  (1,147.2 km).  Records computed to  show  flow  at  former  site in sec.11,
   T.8 S., R.30 E., 0.5 mi  (0.8 km) north of Neeley and 2.5 mi  (4.0 km) downstream from present site, by adding
   inflow between sites.  Water-quality sampling site 300 ft  (91 m) downstream.

DRAINAGE AREA.—13,600 mi3  (35,200 tana), approximately, excluding indeterminate  nontributary area  on Snake
   River Plain.

                                             WATER-DISCHARGE RECORDS

PERIOD OP RECORD.—March 1906 to current year.  Monthly discharge only for some  periods, published in WSP 1317.

REVISED RECORDS.—WSP 1317:  1910.

GAGE.—Water-stage recorder.  Datum of gage is 4,241.6 ft  (1,292.840 m) above mean sea  level (levels by Bureau of
   Reclamation).  Prior to Aug. 8, 1910, nonrecording gages and Aug. 8, 1910, to June 6, 1930, water-stage recorder
   at site 2.5 mi (4.0 km) downstream at different datum.  June 7, 1930, to Mar. 19, 1945, water-stage recorder at
   site 0.4 mi  (0.6 km) upstream at datum 0.4 ft (0.12 m) higher.

REMARKS.—Records excellent.  Flow regulated by American Falls Reservoir  (see sta  13076500)  and other reservoirs,
   having a combined usable capacity of 4,600,000 acre-ft  (5,670 hm3) .  Diversions above station  for irrigation
   of about 1,080,000 acres (437,000 hm») of which about 228,000 acres  (92,000 hm2)  are by withdrawals from
   ground water  (1966 determination).  Considerable water leaks into the Snake Plain aquifer above the station
   some of which returns above American Falls Reservoir.

AVERAGE DISCHARGE.--50 years (1926-76), 7,226 ftVs (204.6 mVs) . 5,235,000 acre-ft/yr  (6,450  hmVyr) -

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 48,400 ftVs  (1,370 mVs) June 20,  1918  (gage height,
   13.5 ft or 4.11 m, site and datum then in use); minimum, 50 ftVs (1.42 mVs) Oct. 22, 23,  Nov.  14-16,  1941,
   Oct. 29, 1961, Nov. 6, 1970.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 27,900 ft3/s (790 mVs) May 23 (gage  height,  9.26  ft or 2.822 m) ;
   minimum discharge, 153 ft*/s <*.33 mVs) July 9 (gage height, 1.59 ft or 0.485  m) .
                   DISCHARGE.
DAY
           OCT
                               IN CUBIC FEET  PER  SECown. WATER  YEA*  OCTOBER  1975  TO  SEPTEMBER  1976
                                                  HE YR 1976 TOTAL
3655180
4156290
MEAN
MEAN
7660
7*60
7660
7660
7390
7190
7140
7150
7140
7160
7160
7170
7170
7210
7490
7620
7630
7660
76*0
7*60
7*60
7660
7*60
7690
7680
7640
7620
7860
8010
8090
8140
233950
7547
8140
7140
464000
10010
11360
8150
8160
8340
8440
8440
8430
8430
8440
8280
7950
7810
7820
7830
7850
7850
7880
8050
8160
8240
8310
8310
8310
8310
8320
8320
8360
8560
8700
8710
...
—
238760
8233
8710
7810
473600
MAX
Mil
8730
9300
9690
6430
2780
?660
2680
2680
2680
?690
6320
11000
11900
11900
12300
1?700
12900
17900
13400
14000
14000
14600
15000
15000
15000
15300
15700
15600
1^600
15600
15600
336640
1086"
15700
?660
667700
18800 MIN
27600 MIN
15600
15600
15100
15100
15000
15400
16100
16900
17400
18100
18100
18200
1850C
18700
18800
18800
18800
18800
18800
18900
19000
19100
19200
19400
19500
20000
20600
20900
21100
21200
	
546700
18220
21200
15000
1084000
3110
266"
21500
21700
Z1900
22000
22400
22700
23200
23500
23900
24200
24200
25000
2S500
25700
26SOO
26500
26dOO
26900
27200
26900
27200
27400
27600
27501,
26800
26900
26700
26100
25000
25300
24600
780100
25160
27600
21500
1547000
AC-FT
AC-FT
23700
22700
21800
19700
19100
20000
20200
21300
21900
21800
21500
21100
20900
20700
20400
19400
18600
17200
16800
16800
16800
16500
15400
14300
13600
13200
12800
12400
12000
11900
- —
544500
18150
23700
11900
1080QOO
7250000
az44jio.D
12500
12800
13100
13000
12900
12800
12700
12700
8760
13300
13000
13000
130C"
12900
12800
12700
12700
12600
12300
11800
11600
11500
11500
11600
12000
12000
11900
12100
12200
12100
11800
381860
12320
13300
8760
•»57400


11600
11400
11000
10400
9780
9280
9410
9860
10400
11200
11200
11300
11500
11900
11800
10900
9810
9460
9450
9370
9210
9170
9330
9420
9400
9400
9360
93?o
9300
9270
9230
313430
UllUl
11900
9170
&ai7oo


9590
10000
10400
10500
10400
10300
10000
9530
9250
9030
8650
8140
7480
6790
6260
6040
6040
6030
5990
6000
6000
6010
6200
6510
6490
6490
6510
6S3C
6480
6450
— .
230090
7A7JX
10500
5990
456400



-------
                      TOTAL PHOSPHORUS BUDGET
Problem:  Develop an annual total phosphorus balance for the same
stretch of the Snake River used in the water budget problem.  All the
information used in that problem is applicable to this problem.  Esti-
mate the phosphorus retention coefficient for American Falls Reservoir.*

Additional Data:

Concentrations of total  phosphorus (mg P/l):

     - In rainwater                0.03
     - Snake River near Heise      0.05
     - Henrys Fork                 0.11
     - Blackfoot River             0.26
     - Portneuf River              0.68
     - Spring inflow               0.23
     - Snake River near Neeley     0.08


                          1 mg/1 = 8.34 Ib/MG
                          1 MGD =1.55 cfs

-------
                       STREAM TEMPERATURE
Problem:   Determine the average daily surface water  equilibrium
temperature in Lansing, Michigan,  during  the month of August.  Perform
no more than two iterations.   Use  the following  wind speed  function:

                      f(U)  =  70. + 0.7 U2

-------
               STREAM SEGMENTATION


Problem: Segment the stream from location UU to (¥) in order to determine
      the instream BOD distribution. How would the segmentation differ
      when solving for DO?
                                                (cont.)
          (river widens)
   (river narrows)
                                    attached
                                    algae
                                                (cont.)
               reservoir
UTT-
                             diverted flows

-------
              LONGITUDINAL DISTRIBUTION  OF BOD
                                  CHARLES RIVER
Problem:  Determine the  CBOD concentration at location My in the
         Charles River.
   Data:  - Use k,  = 0.6/day
         - At location (T):
              velocity  =1.5 fps (constant down to (V) )
                 depth  = 2 feet
                   BOD  = 2 mg/1
                     Q  = 150 cfs
         - Source M/) :
              Lr = 10 mg/1
              AQ = 50 cfs/mile
              XL = 2 miles

-------
Source (2):



   L = 15 mg/1             Distance (C) to (F):  5 miles



   Q = 40 cfs





Diversion (3):



   Q = 180 cfs             Distance (F) to (B):  4 miles



   Velocity from (F) to (B) = 0.5 fps

-------
             CORRECTIONS TO STREAM METHODOLOGY CHAPTER

P. 150:
      L   uo
where k,  = CBOD decay rate, per day
      U  = stream velocity, fps
Note:  j, x in Eq. IV-5 needs to be dimensionless.  If x is expressed
       in miles, k,  in per day, and U  in fps, then multiply j.x by:

                       5280/24/3600 = 0.0611
P. 151
[Similar equations are also found on P. 170 (Eq. IV-19), P. 227 (Eq. IV-
41B), and P. 241 (Eq. IV-19).]
          L    + W/5.385
where
     L, = upstream CBOD concentration, mg/1
     Q.. = upstream flow rate, cfs
     Q,. = waste flow rate, cfs
     W  = mass rate of discharge of CBOD from waste source, Ib/day
L  . in Eq. IV-6 on p.  151 can be expressed as:
           0.185 W U
     I    = 	o
     Lrd     Q  X

-------
where L  , = mass rate of CBOD entering the river reach from a nonpoint
            source, nig/I/day

      W   = mass rate of CBOD entering the river reach from a nonpoint
            source, Ibs/day

      U   = stream velocity, miles/day

      Q   = stream flow rate, cfs
      X,   = length of river reach, miles
P. 152
In Eq. IV-7 Q can be expressed as follows:

     Q = QQ + A^ X
where
     Q  = stream flow rate at the upstream end of reach (X=0), cfs
      o
     Q  = stream flow rate at a distance X where the CBOD concentration
          is to be determined, cfs
     AJ, = incremental flow rate per unit distance of stream,cfs/mile

     X  = stream distance, miles
Note:  An which is used to determine E-, on P. 152 must be expressed
            2
       in ft /day.  The relationship between AQ and A' is:


        = 24-3600   ,   _
      Q     5280   AQ  ' 16'36 AQ
P. 154

In Figure IV-4, reach II should end downstream of source (8) but upstream
of source (9).  The beginning of reach III is correctly shown.

-------
P- 158 (The entire  page  is  reproduced here in corrected form)
Then, using L  from the  75 mile  point of Reach I as L
L                 —  O •
                 =  75-
                 =  3.2-2.3
                                            2.5
 In tabulated form:
x (mi)
0
20
40
50
Q (cfs)
331
405
480
517
L (mg/1)
0.9
1.8
2.3
2.5
 Note that the BOD  concentration  is  increasing  within  this  reach.




    For reach  III,  only enough  information  is given  to compute  the

 initial  concentration, which proportions the BOD at the  end  of reach

 II  with  that  entering  through  the  tributary (source (9)).
                         200(1)  +  517(2.5)

                             200 + 517
= 2.1 mg/1
                           -END OF  EXAMPLE  IV-1-

-------
 P. 168



 The last term in Eq. of IV-16 should be -0.00007774T3, not -0.0007774T3.
 Eq.  IV-17 should read:
                  -  p
               760 - F
              V,


 where all  the variables have been correctly defined on P. 168.





 P.  206



 It  is recommended that the following  wind speed function be used in lieu

 of  that given in the manual:



      f(U)  = 70 + 0.7 U2



 where


      U = mean daily windspeed, mph




 P.  217



 Equation IV-36 should  read:



                   -.061 Kx
     .
     Tm-E         pCpUd
where x is in miles

-------
P. 228 (Eg. IV-42B):



          TN Q        ,,v

     TN =   o-lo       WX
             }      5.385 Q





where all terms are as defined on P. 228.








P.  229 and P. 230




Equations IV-43A and  IV-43B  should read:





     Log1Q (TP)  = -1.831  + 0.0093  (%  agric.  +  %  urban)            (IV-43A)






     Log1Q (OPCONC) =  -2.208 + 0.0089 (%  agric.  + %  urban)        (IV-43B)
P. 241 (Eg. IV-50)




     <- _ So Qo      WX

     5     Q      5.385 Q



where all terms are defined on pp. 241-242.
P. 247 (Eg. IV-51)





     g .  = bed load (not bed material load), Ib/sec/ft of  river width
      s t               '

-------
 P. 248  (Figure IV-24)
4^ used in the figure is the same as the ¥ used in Eq. IV-51.  The units
           3
of ¥ are ft /Ib/sec.  In Figure IV-24 the units of 4* are incorrectly shown.
P. 256
     g .  is the bed load only,  not bed material  load.
P. 257
      'ss
.08 Ib/sec/ft at q = 8 cfs/ft
 1.0 Ib/sec/ft at q = 35 cfs/ft
P. 258
      ss
160 mg/£ at q = 8 cfs/ft
440 mg/Z at q = 35 cfs/ft
Appendix C. P.  C-8

The parameter group U// gH (which is known as the Froude Number) appears
incorrectly as  U/ gH .   ThJs mistake is made all  three times this group
appears:  in the caption at the top of the page,  on the label for the
horizontal  axis, and in the figure title.   Recall from the workshop,
however, that the method shown in Figure C-l to calculate the BOD decay
rate is not recommended.

-------
                      TOTAL PHOSPHORUS BUDGET


Problem:  Develop an annual total  phosphorus balance for the same
stretch of the Snake River used in the water budget problem.  All the
information used in that problem is applicable to this problem.  Esti-
mate the phosphorus retention coefficient for American Falls Reservoir.*

Additional Data:

Concentrations of total  phosphorus (mg P/l):

     - In rainwater                0.03
     - Snake River near Heise      0.05
     - Henrys Fork                 0.11
     - Blackfoot River             0.26
     - Portneuf River              0.68
     - Spring inflow               0.23
     - Snake River near Neeley     0.08


                          1 mg/1 = 8.34 Ib/MG
                          1 MGD =1.55 cfs

-------
           o
          -M
CO
LU
Q
co
          4J
           I/)
           OJ
          -p
           CO
           IT3

-------
I— Z
1—
oo
LU OO
00 i— i
00
o: "-i
Q.
X
LU
Z.
1— O
<£ *~~*
Z \—
i- «=c
O
ce. o
O — 1
o z.
•a: LU
Lu ^>
i— t
CD
• •
-•^ •-
Od
"*—*"

X
LU
Q
Z
t—i

>-
t—
*— <
^>
h-H
OO
o
Q£
LU

Lu
Lu
0
^**
- '
Gi

Q
•z
et

- i
	 1
^C
Lu
Z.
H— 4
^C
Q£
^£

i—


^j*»
o
H- 4
I—
-
CD
o:
LU
•z.
\ i 1
' ' '

CJ
1— H
h-
UJ
JjT^
I— 1
NX

LU
"^
i—
Lu
O
OO
h-
CJ
•^^
Q
0

a.

•^
&.
0
H-
00

_J

t— -(
CD
^y
*— <

LU
a:
h-

LL.
O

2T
0
»— i
i—

^^
^^
r=

a:
O
Lu

t~-m>
**

>-
1—

00
Z.
LU
1—
Z.
1 — 1

— 1
^J
Lu
^
^^
o:

LU
I—
ZD
z.
»— t

1
o
oo

s:

^^
t— t
X

^"

LU

1—

a
z
^c

x^^
LU


I
_l
ct
Lu
Z.

s

H- 1
LU

LU
Z
1—

•
Z.
o
»— 1
U—
^^
Di
LU
f""*<
t— (
00
o

££
LU
/^^
Z.


f~\
0

a:
LU
a.

LU
z
i—

z.
>— *
z

t— f
3

OO

a:
o
i—
oo

1—


-------
       O
       CQ
       cc
                     OO
                     LU

                     M
OC
S
       0
       CQ
X
LU
Q






LU


Lu
O



O
I—t


eC
       00
       LU
       oo
       cc
       LU
       o:
       o
       00
       a?
       00     LU
       CC     OO
              -
CQ

z.
LU
^>
i— t
O

OO
t— H

>—
03
DC
LU
^y
LU

O
F— 4
I—
LU
Z.
1— 4
i
r—
cn

ii

LU
^
z.
LU
O
3:
z.
1—4
I
LU
CC
CC
LU
Q.
OO
z.
o
h-
1
t-
8
LU

Z.
1—4

>-
f n
DC
LU
^*
LU

C_5
1—4
^—
LU
•^
1—4
NX

II

LU
NX

LU
CC
LU
3:
3


rj
o
3:

cc
LU
Q.

00
LU
3:
o
^**
1—4

S^
K- 4

>-
h-
1 	 1
OO
z.
LU
h-
z:
t— 4

II

•1—
D:
3:
z.
>— 4
OO
Lu
O
LU
_J
LU
00
cc
3;
z.
oo
A
ce
o
Lu
o;
3:
z.
OO
VI
DC
O
Lu
LU
NX

Q
~^
>_^
1 1

O
I—

Z.
o
*— 4
00
00
LU
CC
Q.
X
LU

00
1—4
3:
i—

LU
00
ID









•
Z.
0
1— 1
I—
cC
ZD
cr
LU

LU
^>
O
CQ-
»^£

.Z
h— (

«,--

fV
o
Lu
^»
OO
O
LU
•z
\ — 1
Lu
LU
a
00
t— 1
H-
^
0
i—
00
LU
3:
03
Z.
1—4
CC
0
_J
— 1
Lu
Z.
Lu
0
H-
1—4
00
2T
LU
H-
Z.
i — i

LU
h-

•^
t— i
^"
1
O
OO

^«^
=>
s:
t— 4
X
«^
S1"

LU
3:


00
t—t

t— t
OO
LU
h-
Z.
1— (
s:
LU
1—4
1—
LU
00
Z.
o
CJ
o
OO
z.
<^
>•— f

II

KM
LiJ

^~
C£
O
1—
oo

t^

fy
o
LU
                            CO
                                                                                   in
cc
LU

-------
              OO
LU
LU
O
OO
LU
^>
_l
<
>
2:
O
oo
-
	 1
co
O
oo
LU
ac
H- »
3
OO
h-
LU
s:
LU
OO
O
1—
t— 4
OO
0
oo
Q
1— 1
>
h— t
o
•z.
t-H

LU
Q
t— t
>
) — i
O

B


I—
•z.
LU
C3
LU
00
DZ
LU
ct:
o
Lu
LU
M
LU
•z.
h— 1
z:
LU
1—
LU
O

.


>-
LU
3C
h-
00
oo
LU
_J
Z.
0
*t
•z.
h— 4
Lf)
O
eC
OO
00
LU
_l
>-
00
a: oo
O I—
1— "Z.
OO ZD
o
cc. s:
o <:
u-
_i
00 _l
H- 
h— LU
	 1
•gi o
rs LU
00 -3Z.

• •


Lu
Lu
0
o:

i—
— i
~^
oo
LU
a;




2!
0
00
LU
_J
C3
Z.
oo
oo
H-
LU
ct:
H-
oo
0
«c
1C
i—
oo
oo
LU
	 1
CO
Q
LU

-------
CD
e£
3
cx o
o _i
U_ _l
cx 2

U- OO
O ZD
O
(— ZD
i— i z:
2: i— i
ZD h-
•z
CX O
LU O
a.
0
^-••s ij^it
LU _J
o: _j
O i— i
 u_


U.
o

LU
LU
C£
U-

H-
Q.
LU


0
Z.

Q
LU
_J
_J
H-t
(«•

Q
Z.

_J

LU
s:
LU
o^
~*^
<
LU
^^

OO
OO
0
_J
1
1
»— t
0
oo

U.
o

Q
0

rv
LU
0.

LU
T"
1—

CD
Z.
t»H
QL
~~5
O


•
^-**
O
LU
OO
O
o.
^r
0
O
LU
O

LU
•^^
j^
oz

00
LU
^1
Q
i — i
LU
Q£.

0-
o
ex.
CJ

cx
0
t-H
cx
o.
•z.
H-t
ex
Q.
OO
^
CJ

LU

Z.
o

1—
>-H
O
z.
o
o

o
UJ
co
Q
LU
LU
OO

z.

o


	 1
^£
z.
0
t— *
H-

LU
^>
2:
0
CJ

^^
t— t

Q
LU
^_j
^
__1
Q_

g^
~5*_
^£

o
LU
3
O
Q.

OO


1—
O

Q-

LU

1—


CSL
O

X
1—
3
0
Q**
CD

1
*^
h-
LU
O
LU
^>

|_
z.
LU
^>
UJ
£X
a.

o
i—

a
LU
Q
LU
LU
•z.

oo


*^~*
LU
a.
O

C/^

Q
•z.

_,J

O
h~~

-J
LU
J
^j
e?^
a:

ex
CJ

LU
CJ
=3;
u_

"~^
oo

oo
ZD
0

CX
LU
















































.
CX

00
oo
o
_J

_J

o
oo

oo

_
H-
1-^
1
H— 1
OQ
t— H
1—
a.
UJ
o
oo

oo

1 —

UJ
CX
UJ

z.



• .
^_
1—
1
H— t
CO

Q
O
CX
LU

1
|«H
O
oo

oo
LU
l — t
I—
LU
Q.
O

Q.

1
( !
O
oo

u_
o

•z.
o

h-
o
•z
ZD
U.

^^

oo


f—
1— (

. ft
u_
U.
o
•z.
ZD


Q
•z.


_J
	 1
<^
u_
z.
t—t

-------
GO

O
LU
Lu
Lu
LU

O
LU
co
o
o
       CD
GO
LU
GO

LU
cc.
o
LU
O

LU
                            GO
                            DC
Q
LU
Lu
LU
O
 I
                                   LU
                                   GO
                                   o:
                                   LU
                                                                             LU
                                                                             LU
                                          O

                                          CM
                                                 LU


                                                 O
                                                 _J

                                                 O
GO
LU
GO
LU

CU
LU
C£.
C£.
O
GO
GO
LU
O

GO

LU
LU
CC.
LU
GO
oe
o
o
o
13
O
a.
o
o

               II

              GO
                     LU
                     a;
                                                 LU
                                                 a.
                                                 o
                                                 _i
                                                 GO
                                                 CJ3
A

LU
Q-
o

GO

CtL
O
                            LO
                            o
                                                               
-------
oo
cc
o

o
<
00
»—I

3:
       Q


       O
       Q
       UJ
       D.

       OO
              u_


              00
              ID
              O
              O
              o
00
z.
o
Q
Z.
o
. — »
c_>
•*_•>

C£
o
1—
c_>
<
u.

I—
^^
^^
UJ
•SL
UJ
C3


-------
       UJ
       C3
       «=c
OO    i—i

LU    —i     Q
              LU
                             a:
                             ^3
                             O
                             H-


                             O
                             O


                             Q
a:
-H
                            a;


                            O
o
o
o
a;
o
o
a:
o
o
<.
C£.
a.
       O
       !y

       ZD
       Qi


       U_

       O
       O
       a.
       (S)
       O
       a:
       31
       I—


       LU

       <_)


       Q
       LU

       a:
               UJ
              oo
                     oo
                     oo
                     o
                     o
                     oo
              >     I—

              U_     UJ
              U.     (_)
              O     t-i
              OO     1—1

              S     a:
              LU     o
              t—     Q.
                     a.
                              .
                            o
                            CJ

                            oo
                            oo
                            UJ
                             oc.
                             a.
                             31
                             O
                             OO
                             ex.
                             o
                             oo
                            O    1-1
                                   a.
                                   o
                            ce.
                            O
              —i
a:
i—
oo

-------
                             EPA-600/9-77-023







                      CHAPTER 3.  ERRATA AND COMMENTS




          1.  Text and figures on pages 49 to 50 are not recommended for use.




          2.  Second paragraph page 46.  In terms of water quality considera-




tions, terracing has a substantial impact other than reducing slope length.




With terracing, P is about 20% of corresponding value for contour farming.




This reduction in P is for sediment reaching a stream channel, since there




is a substantial deposition of sediment in the terrace channels.




          3.  Note that characteristics of typical municipal wastewaters




are given in Tables 111-30 and 111-31 as pages 112 to 113.

-------
                            SELECTED REFERENCES
Agricultural Research Service, U.S. Department of Agriculture, Present and
  Prospective Technology for Predicting Sediment Yields and Sources,
  Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory,
  November 28 to 30, 1972, Oxford, Mississippi, ARS-S-40, June 1975.

Heany, James P., et al., Storm Water Management Model Level I, Preliminary
  Screening Procedures, EPA-600/2-76-275, October 1976.

McElroy, A. D., et al., Loading Functions for Assessment of Water Pollution
  from Nonpoint Sources, EPA-600/2-76-151, May 1976.

Metcalf and Eddy, Inc., Wastewater Engineering, Collection, Treatment,
  Disposal, McGraw-Hill, 1972.

Soil Conservation Society of America, Soil Erosion:  Prediction and Control,
  the proceedings of a national conference on soil erosion, Purdue University,
  May 24 to 26, 1976, Ankeny, Iowa, 1977.

Stewart, B. A., et al., Control of Water Pollution from Cropland, Vol. I,
  A Manual for Guideline Development, USEPA/USDA, EPA-600/2-75-026a,
  November 1975.

Stewart, B. A., et al., Control of Water Pollution from Cropland, Vol. II,
  An Overview, USEPA/USDA, EPA-600/2-75-026b, June 1976.

Wischmeier, W. H., "Use and Misuse of the Universal Soil Loss Equation,"
  J. Soil and Watejr Conservation, pp. 5-9, January-February 1976.

Wischmeier, W. H., C. B. Johnson, and B. V. Cross, "A Soil Erodibility
  Nomograph for Farmland and Construction Sites," J. Soil and Water Conservation,
  26(5), 189-193, September-October 1971.

Wischmeier, W. H., and D. D. Smith, "Rainfall Energy and Its Relationship to
  Soil Loss," Transactions, American Geophysical Union, 39(2), 285-291,
  April 1958.

Wischmeier, W. H. and D. D. Smith, Predicting Rainfall-Erosion Losses.  A
  Guide to Conservation Planning, Agriculture Handbook Ho.  532,  Science
  and Education Administration, U.S.  Department of Agriculture,
  December, 1978.

-------