5245
810R79107
Environmental Protection Agency
^WORKSHOP
on
Water Quality Screening Methodology
for
Nondesignated 208 Areas
- Streams and Rivers -
November 7-9, 1979
Chicago, Illinois
U.S. Erivfronmental Protect/on Agency
Region V, Library
230 South Dearborn Street
Chicago, Wfnofs 60604
-------
SOLUTION TO LONGITUDINAL DISTRIBUTION OF BOD PROBLEM
(1) Apply Equation IV-7 to find L at location (C):
AQ = 150/1.5 = 100 ft2
_ (50) (24) (3600) _ R1o
AQ 5280 818
P = (100) (.6) + 818 , n7
t1 818 i.u/
soX1'07
TTST'V ' T757 j I 250 ' = 5J
10 \ /1
- TTOTJ ^2
(2) Use Equation IV-5 to find L at (F):
JLx = .6/1.5/24/3600 x (5 x 5280) = .12
LF = 5.1 exp (- .12) = 4.5
(3) Use Equation IV-5 to find L just above (B):
JLx = .6/.5/24/3600 x (4 x 5280) = .29
L = 4.5 exp (- .29) = 3.4
(4) at (B):
= (3.4) (250-180) +15 (40) = y „
L 250 - 180 + 40 /.orng/i, answer
-------
PROBLEMS FOR STREAM SESSION
• Water Balance
t Nutrient Balance
t Stream Temperature
• Stream Segmentation
• Longitudinal Distribution of BOD
t Sediment Transport
• Determination of the minimum dissolved
oxygen concentration in a reach of stream
-------
WATER BUDGET
Problem: Develop an annual water balance for water year 1976 for the
stretch of the Snake River from Heise, Idaho, to below American Falls,
Idaho, a distance of 150 miles (see next page). Attached is flow
information for this stretch of the river. Also determine the percent
error in your water balance.
Additional Data:
- Surface area of American Falls Reservoir = 56,600 acres
- Evaporation rate in this part of United States = 33 inches/year
- Precipitation = 11 inches/year
- Spring inflow into Snake River: 500 cfs
- Spring inflow into American Falls Reservoir: 2,100 cfs
-------
Water Resources Data
for
Idaho
Water Year 1976
U.S. GEOLOGICAL SURVEY WATER-DATA REPORT ID-76-1
Prepared in cooperation with the State of Idaho
and with other agencies
-------
176
SNAKE RIVER MAIN STEM
13037500 SHAKE RIVER NEAR HEISE, ID
LOCATION."Lat 43«36'45', long 111«39'33", in SEWWfc sec.5, T.3 N., R.41 E., Bonneville County, Hydrologic Unit
17040104, on left bank, 850 ft (259 m) upstream from Anderson canal headgate, 2.4 mi (3.9 km) upstream from
Beise, 6 mi (9.7 km) east of Ririe, 24 mi (38.6 km) upstream from Henrys Fork, and at mile 861.6 (1,386.3 km).
DRAINAGE AREA.—5,752 mia (14,898 tana) . Mean altitude, 7,770 ft (2,368 m) .
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.—September 1910 to current year. Monthly discharge only for some periods, published in WSP
1317. Prior to 1911, published as South Fork of Snake River near Reise.
REVISED RECORDS.—WSP 1217: Drainage area. WSP 1347: 1912.
GAGE.—Water-stage recorder. Datum of gage is 5,015.3 ft (1,528.66 m) above mean sea level. Prior to July 9,
1913, nonrecording gage and July 9, 1913, to Sept. 29, 1922, water-stage recorder, at datum 2.65 ft (0.808 m).
REMARKS.—Records excellent. Flow partly regulated by Jackson Lake (see sta 13010500) and Palisades Reservoir
(see sta 13032450). Some diurnal fluctuations during winter from powerplant operations at Palisades. Station
is above all irrigation diversions from main river except Riley ditch (6,639 acre-ft or 8.18 hm3) diverted during
year) which diverts 1.5 mi (2.4 km) upstream from station. Diversions from tributaries above station for irri-
gation in Wyoming and Idaho of about 104,000 acres or 421 km3 (1966 determination).
AVERAGE DISCHARGE.—66 years, 6,968 ftVs (197.3 mVs) , 5,048,000 acre-ft/yr (6,220 hmVyr) •
EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, about 60,000 ft3/* (1,700 m3/*) May 19, 1927, result of washing
out of landslide on Cros Ventre River (gage height, about 16.0 ft or 4.88 m, present datum); minimum, 460 ft3/*
(13.0 mVs) Nov. 10, 12, 1956 (gage height, -0.18 ft or -0.055 m).
EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in early June 1894 was estimated as 65,000 ft3/* (1,840 m3/*) by Corps
of Engineers.
EXTREMES FOR CURRENT YEAR.—Maximum discharge, 24,200 ft3/* (685 m3/*) May 24 (gage height, 8.06 ft or 2.457 m);
minimum, 2,240 It*/* (63.4 m3/*) Nov. 21 (gage height, 1.76 ft or 0.536).
OISC«A*t»t. IN CUBIC rtET Ptn SECOND. »AltN lt»H UCTUHEK 19/3 TO SEf-TEMBtrt 1976
»t»N VALUE 5
DAY
1
2
3
7
e
9
10
11
12
13
10
15
16
17
18
10
20
21
23
20
25
I'CT
7020
6920
6720
6360
6120
39/0
5790
3030
3100
0710
OOOO
oooO
0070
oioo
ollO
0110
OllO
olin
0090
3980
3960
3910
J930
3960
3960
3910
3930
3930
27
29
30
31
TOTAL lO7e*0
MEAN 0770
MAX
MIN
AC-FT f
MEANt 4320
AC-FTt 265500
J910
MOV
39JO
-1910
3030
3930
3910
3930
J930
3910
3H30
3790
3K10
3810
3180
3080
3320
3200
3300
J290
32HO
3310
3S20
33/0
3170
33bO
33eO
3390
3390
30bO
3520
107360
35 78
3930
3840
228500
DEC
1380
3360
3/30
3760
3/60
3/hO
3780
3780
3730
3720
3/10
3090
3ortO
36*0
3680
3/00
3/011
3/00
3690
3/00
3670
3&70
3/00
3700
378U
3708
228000
3/JO
377'J
3ooO
3iuo
J/90
3/-50
3->-0
J900
39UO
0060
OOBO
0090
0010
OOOO
00*0
0090
0100
OluO
0100
3270
201100
(•tn
oi30
oi7'j
****** 0
3700
3670
39bO
0000
oo 10
0010
J980
39MO
ooOO
oblO
»1?0
J7oo
2J7000
3081
177200
OUOO
OouO
6130
tjoo
7890
fouu
HBOO
Mb90
97oO
97
-------
HENRYS FORK BASIN
199
13056500 HENRYS FORK NEAR REXBURG, ID
LOCATION.—Lat 43'49'34", long 111°54'15", in NW%NE% sec.30, T.6 N., R.39 E., Madison County, Hydrologic Unit
17040203, on right bank, 200 ft (61 m) downstream from highway bridge, 6 mi (9.7 km) west of Rexburg, and at
mile 9.3 (15.0 km).
DRAINAGE AREA.—2,920 mi' (7,560 km3), approximately.
WATER-DISCHARGE RECORDS
f
PERIOD OF RECORD.—April 1909 to current year. Monthly discharge only for some periods, published in HSP 1317.
Prior to 1911, published as North Fork of Snake River near Rexburg.
REVISED RECORDS.--WSP 1217: Drainage area.
GAGE.—Water-stage recorder. Datum of gage is 4,806.35 ft (1,464.98 m) above mean sea level. Apr. 13, 1909, to
Sept. 28, 1912, nonrecording gage at datum 0.67 ft (0.204 m) higher. Sept. 29, 1912, to Apr. 4, 1913, non-
recording gage at present datum.
REMARKS.—Records good except those for winter periods, which are fair. Flow regulated by operation of powerplant
near Ashton, and by Henrys Lake (see sta 13039000), Island Park Reservoir (see sta 13042000), Grassy Lake (see
sta 13046500), and Teton Reservoir (see sta 13054800). Diversions above station for irrigation of about 5,000
acres (2,000 hm1) below and about 204,000 acres (82,600 hm-1) above station of which about 21,000 acres (8,500
hm*) are by withdrawals from ground water (1966 determination). Considerable water leaks above gage into the
Snake Plain aquifer. Station is downstream from all tributaries except inflow from ground water and irriga-
tion waste. Part of ground-water flow escapes westward beneath the Snake River plains above gaging station.
AVERAGE DISCHARGE.—67 years, 2,017 ftVs (57.12 mVs) , 1,46,1,000 acre-ft/yr (1,800 hmVyr) .
EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 79,000 ftVs (2,240 mVs) June 5, 1976; maximum gage
height, 22.36 ft (6.815 m) June 5, 1976, result of Teton Dam failure; minimum, 183 ftVs (5.18 mVs) Mar.
24-28, 1934 (gage height, 1.45 ft or 0.442 m).
EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 79,000 ftVs (2,240 mVs) June 5; maximum gage height, 22.36
ft 16.815 m) June 5, result of Teton Dam failure; minimum discharge, 1,390 ftVs (39.4 mVs) Oct. 4 (gage
height, 4.35 ft or 1.326 m).
DISCHARGE. IN CUBIC FEET PER SECOND. WATER TEAR OCTOBER 197S TO SEPTEMBER 1976
MEAN VALUES
OAT
OCT
1
a
3
*
S
6
7
a
9
10
11
12
13
1*
15
16
17
U
19
20
21
22
23
2*
25
26
27
28
29
30
31
T9TA1
MEAN
MAX
1*1 N
AC -FT
1570
1570
1550
1*90
1*10
1*20
1*60
15*0
1660
1700
1720
1900
2100
2250
2290
2350
2*00
2330
2270
2230
2250
2280
2440
23*0
2280
2J60
2590
2520
2*30
2370
2*00
63*90
20*8
2590
1*10
125900
NOV
2360
2*00
3360
DEC
JAN
FEB
APR
JUN
2020
2100
2300
2350
2130
65640
2188
2*00
1940
130200
2100
2370
2590
2*20
2290
2230
22*0
2250
2220
2210
2190
2200
2200
2110
2180
2280
2160
2130
2270
2330
2170
2080
2210
2320
2300
2300
2350
2*00
2320
2*00
2*50
2*00
2150
2*00
2550
2500
2*50
2*00
2350
2350
2110
2050
2130
2*00
23*0
2360
2280
2280
2240
2220
2210
2230
2280
2220
2100
19*0
1980 2330 2350
1960 2360 2350
1960 2*00 2370
1990 2340 2*00
1990 2320 2*00
2310
2310
2190
2210
2220
2300
2*60
2*70
2*50
2440
2*60
2*60
70260 73*60
2266 2369
2590 2550
2100 2080
139*00 1*5700
CAL TH 1975 TOTAL
*TR »R 1976 TOTAL
1090630
118*030
MEAN 2988
MEAN 3235
2*00
2200
2150
2150
2000
1750
2000
2*00
2350
2350
2350
2350
2350
2350
2300
2300
2300
2250
2290
2270
2150
2070
2160
2300
2220
2160
2120
2110
21*0
-«_
6*290
2216
2*00
17SO
2210
2130
2050
2110
2160
2170
2130
21*0
21*0
2160
2160
2120
2130
2150
2150
2130
2130
21SO
2220
2270
2220
2230
22*0
2260
2390
2440
2370
2330
23*0
21*0
1800
67770
2186
2440
1800
127500 13*400
MAX 10900
MAX 79000
MIN
MIN
1910
2030
20*0
2090
2230
2*70
2*10
2*20
2560
2670
2520
2560
2680
2710
2680
2680
2530
2300
2200
2160
2120
2100
2110
2190
2280
2610
2610
2*00
2290
2190
70750
2358
2710
1910
1*0300
1*10
1*10
22*0
2*50
2710
312U
3910
4380
4690
5380
6*10
7060
7080
7270
8050
7670
8620
9360
9030
8*10
8730
8720
7570
6800
6270
5690
5550
5530
5510
50*0
*900
4650
4200
187000
6032
9360
22*0
370900
AC-FT
AC -FT
3870
3*20
3390
3*60
79000
38000
9910
7*90
7370
7070
6850
7350
7530
6920
6120
5270
5120
5370
5390
5360
53*0
5*80
5820
5820
5*10
4920
*570
4250
3980
3890
—
2737*0
912*
79000
3390
5*3000
2163000
2349000
JUL
4020
4230
4290
4100
3860
3620
3*30
3250
3150
2960
2890
2820
2670
26*0
2520
2370
2280
2*00
2700
3080
3070
28*0
2680
2500
2440
2*30
2360
2270
2180
2270
2*90
90810
2929
4290
2180
180100
AUG
2710
2920
3100
3090
31SO
2760
2700
2680
2440
2310
2220
2190
2290
2320
2350
2450
2580
2590
2650
27*0
2680
2610
2780
3080
2910
2680
2600
2550
2530
2500
2440
81600
2632
3150
2190
161900
SEP
2350
2310
22*0
2270
2200
2180
2190
2190
2130
2180
22*0
2*20
2530
2*80
2500
2560
2610
2730
2810
2790
2770
2730
2760
2750
27*0
2790
2760
28*0
2680
2*90
75220
2507
28*0
2130
-------
208
SNAKE RIVER MAIN STEM
13059500 DIVERSION FROM SNAKE RIVER BETWEEN HEISE AND SHELLEY GAGING STATIONS, ID
Between Heise and Shelley gaging stations,',47 (canals divert water from Snake River for irrigation; of these,
36 divert above mouth of Henrys Pork. Records available during each irrigation season from 1919 to current year.
Three of the canals are equipped with water-stage recorders, the others with nonrecording gages, most of which are
read about once daily. Discharge combined to show total diverted flow. Records include Riley ditch which diverts
1.5 mi (2.4 km) above Heise gaging station. Records fair May and June, good July to September.
DISCHARGE.
IN CUBIC FEET PER SECOND. HATER YEAR OCTOBER 1*75 TO SEPTEMBER 1976
MEAN VALUES
DAY
3
4
5
6
7
8
9
10
11
1?
13
1*
15
16
17
IS
19
20
21
2?
23
24
25
26
Z7
2fl
29
30
31
TOTAL
MEAN
MAX
MIN
AC-FT
OCT
NOV
DEC
FEB
AU6
SEP
2d
2b
2b
28
181
182
JO*
33*
348
467
657
868
1140
1740
2160
2180
2B40
4000
4920
5360
5890
6S80
6860
7170
7490
7470
7b80
8020
8320
8590
8720
11078J
3573
8730
28
219700
10100
10400
10600
losno
9250
8520
8380
8660
9410
97SO
10000
9950
9440
9450
9890
9800
9470
8630
8590
8470
8860
9170
8970
90SO
8970
8780
8860
9100
9740
99SO
280910
9363
10600
8380
S57200
10200
10500
10400
10400
10600
10900
11100
11200
11600
12100
11800
11700
11500
11600
11800
11500
11100
10700
10900
11000
10900
10900
10800
10600
10300
10500
10800
10900
11000
11000
10400
340700
10990
12100
10200
675800
9920
9550
9510
9020
8400
8350
8190
8070
8330
8440
8660
8610
8480
8350
8220
8140
8110
8020
8010
7580
7520
7380
7110
6770
6340
6110
6000
5810
5850
6040
6580
241470
7789
9920
5810
479000
6890
7210
7570
7800
7660
7820
8040
7900
7820
7840
7590
7630
7550
7070
6630
6490
6700
6570
6460
6390
6260
6120
5970
5830
5670
5520
5540
5450
5360
5340
—
202690
6756
8040
5340
402000
THE PERIOD: AC-FT 2,333,700
-------
216
DAY
BLACKFOOT RIVER BASIN
13068500 BLACKFOOT RIVER NEAR BIACKFOOT, ID—ContlAued
COMBINED DISCHARGE, IN CUBIC FEET PER SECOND, OF BLACKFOOT RIVER AND BYPASS CHANNEL NEAR BLACKFOOT,
WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976
MEAN VALUES
OCT
NOV
DEC
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
TOTAL
MEAN
MAX
HIN
AC-FT
CAL YR
WTO YR
233
265
254
244
245
239
259
317
39?
403
404
405
377
376
423
40<<
707
74?
640
608
587
591
6)R
61ft
611
655
697
681
674
673
666
15001
463
74?
233
?9750
1975 TOTAL
1976 TOTAL
643
578
557
544
535
535
558
565
574
571
553
560
549
541
554
505
512
508
488
497
470
466
462
456
446
421
377
309
236
285
14855
495
643
236
29460
143503.
166124
311
331
332
323
321
313
310
297
292
261
273
268
260
252
238
239
242
233
22*
221
226
236
241
259
266
261
265
236
240
251
244
8286
267
332
221
16440
,6 MEAN
MEAN
219
242
272
310
335
282
272
302
277
2*6
238
226
240
231
250
267
257
241
235
22*
219
196
189
210
239
??5
?22
262
235
216
209
7588
244
335
189
15050
393
453
209
217
213
207
191
180
168
180
210
20S
204
205
210
219
229
216
223
200
204
223
189
185
190
207
223
267
409
439
469
--.
6694
230
469
168
13280
MAX 2110
MAX 1870
333
304
240
232
222
213
208
218
231
235
285
247
221
238
248
250
297
466
566
349
275
268
327
321
391
383
301
261
249
246
244
8869
286
566
208
17590
MIN
MIN
342
432
373
451
602
637
476
476
622
626
604
642
648
634
744
769
789
831
821
828
852
865
921
1010
1090
1310
1270
1100
1160
1270
23195
773
1310
342
46010
58
25
1450
1510
1540
1610
1710
1770
1710
1750
1800
1640
1870
1850
1730
1690
1670
1650
1550
1380
1350
1270
1160
1080
1140
1170
1100
1070
1020
876
698
644
587
43245
1395
1870
587
85780
AC-FT
AC-FT
444
324
308
237
205
230
36?
159
114
75
23?
477
5S6
654
660
658
728
840
930
876
731
386
423
484
49«
54]
537
455
289
218
—
13631
454
930
75
27040
284600
329500
190
19?
205
293
305
223
140
75
25
58
109
190
206
150
130
159
210
243
335
333
257
222
202
204
248
275
221
171
133
133
172
6009
193
335
25
11920
267
310
332
419
525
534
455
393
362
308
29?
294
317
320
356
434
472
483
524
495
436
414
41?
514
520
501
400
356
285
2?7
113
12070
389
534
113
23940
75
94
90
73
82
125
154
183
206
223
263
306
363
366
326
271
221
214
240
306
315
295
278
272
276
246
229
213
200
174
™
6681
222
368
73
13250
-------
220
SNAKE RIVER MAIN STEM
13069000 DIVERSIONS FROM SNAKE RIVER BETWEEN SHELLEY AND BLACKFOOT GAGING STATIONS, ID
Between Shelley and Blackfoot gaging stations, 13 canals divert water from Snake River for irrigation of
158,000 acres (63,900 hm2) of land. Records available during each irrigation season from 1919 to current year.
The two largest canals are equipped with recorders, the others with nonrecording gages most of which are read about
once daily. Discharge combined to show total diverted flow. Records fair May and June, good July to September.
DISCHARGE.
IN CUBIC FEET PER SECOND. MATER YEAR
MEAN VALUES
OCTOBER 1975 TO SEPTEMBER 1976
DAY OCT NOV DEC
1
2
3
4
5
6
7
e
9
10
11
i?
13
14
15
16
17
IS
19
20
21
2?
23
2*
25
26
27
28
29
30
3!
TOTAL
MEAN
MAX
MIN
AC-FT
THE PERIOD: AC-FT 800,900
FEB
APR
HAY
0
1 14
197
42b
425
42*
425
65*
*69
1010
1090
1120
1150
1100
1420
1470
IttSO
2140
2230
2490
2640
2180
2700
2690
2720
2*70
3020
3120
3200
3190
3210
5244*
1691
3210
0
104000
JUN
3340
3400
3480
34SO
34«0
2930
591
301
538
605
808
808
1180
2490
2490
2S?0
2780
2950
3040
3000
2960
3010
3060
3140
2990
3090
2990
2980
2930
2810
74171
2472
34SO
301
147100
JUL
3070
3430
3410
3480
3400
3420
3500
3560
3520
3960
4270
4130
3930
4020
4140
4190
3860
3840
4080
3980
3930
3840
3900
3840
3880
3870
3700
3840
3910
3900
3870
117670
3795
4270
3070
233400
•AUG
3660
3600
3590
3350
3100
2960
2820
2810
2820
2890
2920
2920
3010
2980
2930
2890
2790
2810
2830
2790
2750
2760
2770
2660
2530
2430
2370
2390
2390
2380
2500
88400
2851
3660
2370
175300
SEP
2660
2670
2690
2790
2880
2900
2850
2800
2780
2710
2680
2640
2540
2280
2230
2210
2220
2180
2070
2060
2060
2050
2040
2040
2040
2020
2020
2020
2000
1990
71120
2370
2900
1990
141100
-------
PORTNEtTF RIVER BASIN 231
13075500 PORTNEUF RIVER AT POCATEIAO, ID
LOCATION.—lat 42'52'20", long 112'28'OS', in SE%NW% sec.27, T.6 S., R.34 E., Bannock County, Hydrologic Onit
17040208, on left bank, 1,400 ft (430 m) downstream from Carson Street Bridge, at Pocatello, 1.2 mi (1.9 ten)
upstream from Pocatello Creek and at mile 17.8 (28.6 km).
DRAINAGE AREA.—1,250 mi* (3,240 km3), approximately. Mean altitude, 5,850 ft (1,780 m).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.—May to September 1897, March 1898 to October 1899, August 1911 to current year.
REVISED RECORDS.—WSP 1567: Drainage area.
GAGE.—Water-stage recorder. Datum of gage is 4,418.41 ft (1,346.731 m) above mean sea level (a.S. Corps of
Engineers datum). May 18, 1897, to Oct. 14, 1899, nonrecording gage at site 1.6 mi (2.6 km) upstream at differ-
ent datum. Aug. 31, 1911, to May 13, 1927, and Oct. 13, 1927, to June 13, 1928, nonrecording gage 0.3 mi (0.5
km) upstream at different datum. May 14 to Oct. 12, 1927, water-stage recorder near present site at different
datum. June 14, 1928, to Sept. 28, 1950, water-stage recorder near Carson Street Bridge, 0.3 mi (0.5 km) up-
stream at same datum as former nonrecording gages at this site. Sept. 29, 1950, to May 20, 1968, water-stage
recorder at Fremont Street site, 1.0 mi (1.6 km) upstream at datum 18.57 ft (5.660 m) higher.
REMARKS.—Records good. Flow regulated by Portneuf Reservoir formed by earth dam completed in 1912 and raised
7 ft (2.1 m) in 1950 (capacity, 23,695 acre-ft or 29.2 hm3; 16,410 acre-ft or 20.2 hm3 prior to 1950) and
Chesterfield Reservoir (capacity, 685 acre-ft or 0.845 hm3) . Diversions above station for irrigation of about
55,000 acres (22,000 hma) of which about 13,000 acres (5,300 hm*) are by withdrawals from ground water (1966
determination).
AVERAGE DISCHARGE.—63 years (1912-16, 1917-76), 269 ftVs (7.618 mVs) • 194,900 acre-ft/yr (240 hmVyr) .
EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 2,990 ftVs (84.7 mVs) Feb. 14, 1962 (gage height, 11.35 ft or
3.459 m) j minimum, 0.4 ftVs (0.011 mVs) July 3, 1961 (gage height, 2.90 ft or 0.884 m) .
EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,390 ft3/s (39.4 mVs) May 13 (gage height, 9.00 ft or 2.743 m) ;
minimum discharge, 52 ftVs (1.47 m3/s) Aug. 17-18 (gage height, 2.36 ft or 0.719 m) .
Rating table (gage height, in feet, and discharge, in cubic feet per second)
(Shifting-control method used Mar. 26 to May 24, July 13 to Sept. 25; stage-discharge relation
affected by ice Jan. 1-9, Feb. 4-10)
2.2
3.0
5.0
46
167
540
7.0
9.0
983
1,440
OISCMArtliEt IN CUblC FEET PEK SECONDt »»TtK YtArt OCTOBER 1*73 10 5EPTEM8ER 19/6
MtAN VALUtb
UAY
1
g
3
<*
5
•t
7
H
9
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
24
25
26
27
28
£9
30
31
TOTAL
MEAN
MAX
MLN
AC-F1
CAL r«
»TB YH
uCT
219
££3
££«•
£35
233
£30
£55
£/*
£07
£V9
3o6
32"
J45
363
35«
J41
334
329
J18
322
JOP
313
325
341
406
• 4J5
404
3eA
370
363
9778
315
4J5
219
19390
1973 TOTAL
Iv76 TOTAL
NOV
336
330
34V
349
349
347
J45
352
J47
346
343
318
329
336
339
345
354
350
339
326
3£7
320
324
332
340
331
344
343
346
327
10205
340
356
318
20240
1674J6
150871
OEC
350
367
JB3
380
384
404
43J
42V
422
406
394
391
398
364
343
341
339
326
J20
315
JlJ
J16
J21
320
329
32h
333
323
316
326
325
11041
356
433
313
21900
MEAN
MEAN
JAN
£70
230
£60,
£00
300
310
J10
300
£93
20 7
299
316
278
306
318
316
316
315
316
JUB
301
J01
308
311
HO
J06
305
306
JUB
309
309
9J£4
300
316
250
18490
430 MAX
-»12 MAX
FEB
304
304
307
300
' £70
£85
290
295
300
300
£95
292
295
302
297
301
£80
299
310
312
£98
293
303
309
308
314
326
343
371
8803
303
371
270
174AO
1520
1380
MAK
4£6
4£0
376
367
347
3-19
338
3JV
340
330
358
345
352
362
369
371
390
431
531
539
5*2
SJ7
57£
599
606
579
jeO
3*4
507
490
515
13781
444
606
336
27330
MIN 150
MIN 57
APK
596
677
738
767
S3£
940
981
99J
1040
1090
1170
1100
1170
1110
1040
981
928
874
836
Oil
803
810
820
834
910
9a<.
991
969
926
92
-------
SNAKE RIVER MAIN STEM
13077000 SNAKE RIVER AT NEELEY, IP
236
LOCATION.—Lat 42°46'06", long 112°52'42", in NEijSWii sec.31, T.7 S., R.31 E., Power County, Hydrologic Unit
17040209, on right bank, 400 ft (122 m) upstream from fish hatchery buildings, 0.9 mi (1.4 km) downstream
from American Falls Dam, at mile 713.0 (1,147.2 km). Records computed to show flow at former site in sec.11,
T.8 S., R.30 E., 0.5 mi (0.8 km) north of Neeley and 2.5 mi (4.0 km) downstream from present site, by adding
inflow between sites. Water-quality sampling site 300 ft (91 m) downstream.
DRAINAGE AREA.—13,600 mi3 (35,200 tana), approximately, excluding indeterminate nontributary area on Snake
River Plain.
WATER-DISCHARGE RECORDS
PERIOD OP RECORD.—March 1906 to current year. Monthly discharge only for some periods, published in WSP 1317.
REVISED RECORDS.—WSP 1317: 1910.
GAGE.—Water-stage recorder. Datum of gage is 4,241.6 ft (1,292.840 m) above mean sea level (levels by Bureau of
Reclamation). Prior to Aug. 8, 1910, nonrecording gages and Aug. 8, 1910, to June 6, 1930, water-stage recorder
at site 2.5 mi (4.0 km) downstream at different datum. June 7, 1930, to Mar. 19, 1945, water-stage recorder at
site 0.4 mi (0.6 km) upstream at datum 0.4 ft (0.12 m) higher.
REMARKS.—Records excellent. Flow regulated by American Falls Reservoir (see sta 13076500) and other reservoirs,
having a combined usable capacity of 4,600,000 acre-ft (5,670 hm3) . Diversions above station for irrigation
of about 1,080,000 acres (437,000 hm») of which about 228,000 acres (92,000 hm2) are by withdrawals from
ground water (1966 determination). Considerable water leaks into the Snake Plain aquifer above the station
some of which returns above American Falls Reservoir.
AVERAGE DISCHARGE.--50 years (1926-76), 7,226 ftVs (204.6 mVs) . 5,235,000 acre-ft/yr (6,450 hmVyr) -
EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 48,400 ftVs (1,370 mVs) June 20, 1918 (gage height,
13.5 ft or 4.11 m, site and datum then in use); minimum, 50 ftVs (1.42 mVs) Oct. 22, 23, Nov. 14-16, 1941,
Oct. 29, 1961, Nov. 6, 1970.
EXTREMES FOR CURRENT YEAR.—Maximum discharge, 27,900 ft3/s (790 mVs) May 23 (gage height, 9.26 ft or 2.822 m) ;
minimum discharge, 153 ft*/s <*.33 mVs) July 9 (gage height, 1.59 ft or 0.485 m) .
DISCHARGE.
DAY
OCT
IN CUBIC FEET PER SECown. WATER YEA* OCTOBER 1975 TO SEPTEMBER 1976
HE YR 1976 TOTAL
3655180
4156290
MEAN
MEAN
7660
7*60
7660
7660
7390
7190
7140
7150
7140
7160
7160
7170
7170
7210
7490
7620
7630
7660
76*0
7*60
7*60
7660
7*60
7690
7680
7640
7620
7860
8010
8090
8140
233950
7547
8140
7140
464000
10010
11360
8150
8160
8340
8440
8440
8430
8430
8440
8280
7950
7810
7820
7830
7850
7850
7880
8050
8160
8240
8310
8310
8310
8310
8320
8320
8360
8560
8700
8710
...
—
238760
8233
8710
7810
473600
MAX
Mil
8730
9300
9690
6430
2780
?660
2680
2680
2680
?690
6320
11000
11900
11900
12300
1?700
12900
17900
13400
14000
14000
14600
15000
15000
15000
15300
15700
15600
1^600
15600
15600
336640
1086"
15700
?660
667700
18800 MIN
27600 MIN
15600
15600
15100
15100
15000
15400
16100
16900
17400
18100
18100
18200
1850C
18700
18800
18800
18800
18800
18800
18900
19000
19100
19200
19400
19500
20000
20600
20900
21100
21200
546700
18220
21200
15000
1084000
3110
266"
21500
21700
Z1900
22000
22400
22700
23200
23500
23900
24200
24200
25000
2S500
25700
26SOO
26500
26dOO
26900
27200
26900
27200
27400
27600
27501,
26800
26900
26700
26100
25000
25300
24600
780100
25160
27600
21500
1547000
AC-FT
AC-FT
23700
22700
21800
19700
19100
20000
20200
21300
21900
21800
21500
21100
20900
20700
20400
19400
18600
17200
16800
16800
16800
16500
15400
14300
13600
13200
12800
12400
12000
11900
- —
544500
18150
23700
11900
1080QOO
7250000
az44jio.D
12500
12800
13100
13000
12900
12800
12700
12700
8760
13300
13000
13000
130C"
12900
12800
12700
12700
12600
12300
11800
11600
11500
11500
11600
12000
12000
11900
12100
12200
12100
11800
381860
12320
13300
8760
•»57400
11600
11400
11000
10400
9780
9280
9410
9860
10400
11200
11200
11300
11500
11900
11800
10900
9810
9460
9450
9370
9210
9170
9330
9420
9400
9400
9360
93?o
9300
9270
9230
313430
UllUl
11900
9170
&ai7oo
9590
10000
10400
10500
10400
10300
10000
9530
9250
9030
8650
8140
7480
6790
6260
6040
6040
6030
5990
6000
6000
6010
6200
6510
6490
6490
6510
6S3C
6480
6450
— .
230090
7A7JX
10500
5990
456400
-------
TOTAL PHOSPHORUS BUDGET
Problem: Develop an annual total phosphorus balance for the same
stretch of the Snake River used in the water budget problem. All the
information used in that problem is applicable to this problem. Esti-
mate the phosphorus retention coefficient for American Falls Reservoir.*
Additional Data:
Concentrations of total phosphorus (mg P/l):
- In rainwater 0.03
- Snake River near Heise 0.05
- Henrys Fork 0.11
- Blackfoot River 0.26
- Portneuf River 0.68
- Spring inflow 0.23
- Snake River near Neeley 0.08
1 mg/1 = 8.34 Ib/MG
1 MGD =1.55 cfs
-------
STREAM TEMPERATURE
Problem: Determine the average daily surface water equilibrium
temperature in Lansing, Michigan, during the month of August. Perform
no more than two iterations. Use the following wind speed function:
f(U) = 70. + 0.7 U2
-------
STREAM SEGMENTATION
Problem: Segment the stream from location UU to (¥) in order to determine
the instream BOD distribution. How would the segmentation differ
when solving for DO?
(cont.)
(river widens)
(river narrows)
attached
algae
(cont.)
reservoir
UTT-
diverted flows
-------
LONGITUDINAL DISTRIBUTION OF BOD
CHARLES RIVER
Problem: Determine the CBOD concentration at location My in the
Charles River.
Data: - Use k, = 0.6/day
- At location (T):
velocity =1.5 fps (constant down to (V) )
depth = 2 feet
BOD = 2 mg/1
Q = 150 cfs
- Source M/) :
Lr = 10 mg/1
AQ = 50 cfs/mile
XL = 2 miles
-------
Source (2):
L = 15 mg/1 Distance (C) to (F): 5 miles
Q = 40 cfs
Diversion (3):
Q = 180 cfs Distance (F) to (B): 4 miles
Velocity from (F) to (B) = 0.5 fps
-------
CORRECTIONS TO STREAM METHODOLOGY CHAPTER
P. 150:
L uo
where k, = CBOD decay rate, per day
U = stream velocity, fps
Note: j, x in Eq. IV-5 needs to be dimensionless. If x is expressed
in miles, k, in per day, and U in fps, then multiply j.x by:
5280/24/3600 = 0.0611
P. 151
[Similar equations are also found on P. 170 (Eq. IV-19), P. 227 (Eq. IV-
41B), and P. 241 (Eq. IV-19).]
L + W/5.385
where
L, = upstream CBOD concentration, mg/1
Q.. = upstream flow rate, cfs
Q,. = waste flow rate, cfs
W = mass rate of discharge of CBOD from waste source, Ib/day
L . in Eq. IV-6 on p. 151 can be expressed as:
0.185 W U
I = o
Lrd Q X
-------
where L , = mass rate of CBOD entering the river reach from a nonpoint
source, nig/I/day
W = mass rate of CBOD entering the river reach from a nonpoint
source, Ibs/day
U = stream velocity, miles/day
Q = stream flow rate, cfs
X, = length of river reach, miles
P. 152
In Eq. IV-7 Q can be expressed as follows:
Q = QQ + A^ X
where
Q = stream flow rate at the upstream end of reach (X=0), cfs
o
Q = stream flow rate at a distance X where the CBOD concentration
is to be determined, cfs
AJ, = incremental flow rate per unit distance of stream,cfs/mile
X = stream distance, miles
Note: An which is used to determine E-, on P. 152 must be expressed
2
in ft /day. The relationship between AQ and A' is:
= 24-3600 , _
Q 5280 AQ ' 16'36 AQ
P. 154
In Figure IV-4, reach II should end downstream of source (8) but upstream
of source (9). The beginning of reach III is correctly shown.
-------
P- 158 (The entire page is reproduced here in corrected form)
Then, using L from the 75 mile point of Reach I as L
L — O •
= 75-
= 3.2-2.3
2.5
In tabulated form:
x (mi)
0
20
40
50
Q (cfs)
331
405
480
517
L (mg/1)
0.9
1.8
2.3
2.5
Note that the BOD concentration is increasing within this reach.
For reach III, only enough information is given to compute the
initial concentration, which proportions the BOD at the end of reach
II with that entering through the tributary (source (9)).
200(1) + 517(2.5)
200 + 517
= 2.1 mg/1
-END OF EXAMPLE IV-1-
-------
P. 168
The last term in Eq. of IV-16 should be -0.00007774T3, not -0.0007774T3.
Eq. IV-17 should read:
- p
760 - F
V,
where all the variables have been correctly defined on P. 168.
P. 206
It is recommended that the following wind speed function be used in lieu
of that given in the manual:
f(U) = 70 + 0.7 U2
where
U = mean daily windspeed, mph
P. 217
Equation IV-36 should read:
-.061 Kx
.
Tm-E pCpUd
where x is in miles
-------
P. 228 (Eg. IV-42B):
TN Q ,,v
TN = o-lo WX
} 5.385 Q
where all terms are as defined on P. 228.
P. 229 and P. 230
Equations IV-43A and IV-43B should read:
Log1Q (TP) = -1.831 + 0.0093 (% agric. + % urban) (IV-43A)
Log1Q (OPCONC) = -2.208 + 0.0089 (% agric. + % urban) (IV-43B)
P. 241 (Eg. IV-50)
<- _ So Qo WX
5 Q 5.385 Q
where all terms are defined on pp. 241-242.
P. 247 (Eg. IV-51)
g . = bed load (not bed material load), Ib/sec/ft of river width
s t '
-------
P. 248 (Figure IV-24)
4^ used in the figure is the same as the ¥ used in Eq. IV-51. The units
3
of ¥ are ft /Ib/sec. In Figure IV-24 the units of 4* are incorrectly shown.
P. 256
g . is the bed load only, not bed material load.
P. 257
'ss
.08 Ib/sec/ft at q = 8 cfs/ft
1.0 Ib/sec/ft at q = 35 cfs/ft
P. 258
ss
160 mg/£ at q = 8 cfs/ft
440 mg/Z at q = 35 cfs/ft
Appendix C. P. C-8
The parameter group U// gH (which is known as the Froude Number) appears
incorrectly as U/ gH . ThJs mistake is made all three times this group
appears: in the caption at the top of the page, on the label for the
horizontal axis, and in the figure title. Recall from the workshop,
however, that the method shown in Figure C-l to calculate the BOD decay
rate is not recommended.
-------
TOTAL PHOSPHORUS BUDGET
Problem: Develop an annual total phosphorus balance for the same
stretch of the Snake River used in the water budget problem. All the
information used in that problem is applicable to this problem. Esti-
mate the phosphorus retention coefficient for American Falls Reservoir.*
Additional Data:
Concentrations of total phosphorus (mg P/l):
- In rainwater 0.03
- Snake River near Heise 0.05
- Henrys Fork 0.11
- Blackfoot River 0.26
- Portneuf River 0.68
- Spring inflow 0.23
- Snake River near Neeley 0.08
1 mg/1 = 8.34 Ib/MG
1 MGD =1.55 cfs
-------
o
-M
CO
LU
Q
co
4J
I/)
OJ
-p
CO
IT3
-------
I— Z
1—
oo
LU OO
00 i— i
00
o: "-i
Q.
X
LU
Z.
1— O
<£ *~~*
Z \—
i- «=c
O
ce. o
O — 1
o z.
•a: LU
Lu ^>
i— t
CD
• •
-•^ •-
Od
"*—*"
X
LU
Q
Z
t—i
>-
t—
*— <
^>
h-H
OO
o
Q£
LU
Lu
Lu
0
^**
- '
Gi
Q
•z
et
- i
1
^C
Lu
Z.
H— 4
^C
Q£
^£
i—
^j*»
o
H- 4
I—
-
CD
o:
LU
•z.
\ i 1
' ' '
CJ
1— H
h-
UJ
JjT^
I— 1
NX
LU
"^
i—
Lu
O
OO
h-
CJ
•^^
Q
0
a.
•^
&.
0
H-
00
_J
t— -(
CD
^y
*— <
LU
a:
h-
LL.
O
2T
0
»— i
i—
^^
^^
r=
a:
O
Lu
t~-m>
**
>-
1—
00
Z.
LU
1—
Z.
1 — 1
— 1
^J
Lu
^
^^
o:
LU
I—
ZD
z.
»— t
1
o
oo
s:
^^
t— t
X
^"
LU
1—
a
z
^c
x^^
LU
I
_l
ct
Lu
Z.
s
H- 1
LU
LU
Z
1—
•
Z.
o
»— 1
U—
^^
Di
LU
f""*<
t— (
00
o
££
LU
/^^
Z.
f~\
0
a:
LU
a.
LU
z
i—
z.
>— *
z
t— f
3
OO
a:
o
i—
oo
1—
-------
O
CQ
cc
OO
LU
M
OC
S
0
CQ
X
LU
Q
LU
Lu
O
O
I—t
eC
00
LU
oo
cc
LU
o:
o
00
a?
00 LU
CC OO
-
CQ
z.
LU
^>
i— t
O
OO
t— H
>—
03
DC
LU
^y
LU
O
F— 4
I—
LU
Z.
1— 4
i
r—
cn
ii
LU
^
z.
LU
O
3:
z.
1—4
I
LU
CC
CC
LU
Q.
OO
z.
o
h-
1
t-
8
LU
Z.
1—4
>-
f n
DC
LU
^*
LU
C_5
1—4
^—
LU
•^
1—4
NX
II
LU
NX
LU
CC
LU
3:
3
rj
o
3:
cc
LU
Q.
00
LU
3:
o
^**
1—4
S^
K- 4
>-
h-
1 1
OO
z.
LU
h-
z:
t— 4
II
•1—
D:
3:
z.
>— 4
OO
Lu
O
LU
_J
LU
00
cc
3;
z.
oo
A
ce
o
Lu
o;
3:
z.
OO
VI
DC
O
Lu
LU
NX
Q
~^
>_^
1 1
O
I—
Z.
o
*— 4
00
00
LU
CC
Q.
X
LU
00
1—4
3:
i—
LU
00
ID
•
Z.
0
1— 1
I—
cC
ZD
cr
LU
LU
^>
O
CQ-
»^£
.Z
h— (
«,--
fV
o
Lu
^»
OO
O
LU
•z
\ — 1
Lu
LU
a
00
t— 1
H-
^
0
i—
00
LU
3:
03
Z.
1—4
CC
0
_J
— 1
Lu
Z.
Lu
0
H-
1—4
00
2T
LU
H-
Z.
i — i
LU
h-
•^
t— i
^"
1
O
OO
^«^
=>
s:
t— 4
X
«^
S1"
LU
3:
00
t—t
t— t
OO
LU
h-
Z.
1— (
s:
LU
1—4
1—
LU
00
Z.
o
CJ
o
OO
z.
<^
>•— f
II
KM
LiJ
^~
C£
O
1—
oo
t^
fy
o
LU
CO
in
cc
LU
-------
OO
LU
LU
O
OO
LU
^>
_l
<
>
2:
O
oo
-
1
co
O
oo
LU
ac
H- »
3
OO
h-
LU
s:
LU
OO
O
1—
t— 4
OO
0
oo
Q
1— 1
>
h— t
o
•z.
t-H
LU
Q
t— t
>
) — i
O
B
I—
•z.
LU
C3
LU
00
DZ
LU
ct:
o
Lu
LU
M
LU
•z.
h— 1
z:
LU
1—
LU
O
.
>-
LU
3C
h-
00
oo
LU
_J
Z.
0
*t
•z.
h— 4
Lf)
O
eC
OO
00
LU
_l
>-
00
a: oo
O I—
1— "Z.
OO ZD
o
cc. s:
o <:
u-
_i
00 _l
H-
h— LU
1
•gi o
rs LU
00 -3Z.
• •
Lu
Lu
0
o:
i—
— i
~^
oo
LU
a;
2!
0
00
LU
_J
C3
Z.
oo
oo
H-
LU
ct:
H-
oo
0
«c
1C
i—
oo
oo
LU
1
CO
Q
LU
-------
CD
e£
3
cx o
o _i
U_ _l
cx 2
U- OO
O ZD
O
(— ZD
i— i z:
2: i— i
ZD h-
•z
CX O
LU O
a.
0
^-••s ij^it
LU _J
o: _j
O i— i
u_
U.
o
LU
LU
C£
U-
H-
Q.
LU
0
Z.
Q
LU
_J
_J
H-t
(«•
Q
Z.
_J
LU
s:
LU
o^
~*^
<
LU
^^
OO
OO
0
_J
1
1
»— t
0
oo
U.
o
Q
0
rv
LU
0.
LU
T"
1—
CD
Z.
t»H
QL
~~5
O
•
^-**
O
LU
OO
O
o.
^r
0
O
LU
O
LU
•^^
j^
oz
00
LU
^1
Q
i — i
LU
Q£.
0-
o
ex.
CJ
cx
0
t-H
cx
o.
•z.
H-t
ex
Q.
OO
^
CJ
LU
Z.
o
1—
>-H
O
z.
o
o
o
UJ
co
Q
LU
LU
OO
z.
o
1
^£
z.
0
t— *
H-
LU
^>
2:
0
CJ
^^
t— t
Q
LU
^_j
^
__1
Q_
g^
~5*_
^£
o
LU
3
O
Q.
OO
1—
O
Q-
LU
1—
CSL
O
X
1—
3
0
Q**
CD
1
*^
h-
LU
O
LU
^>
|_
z.
LU
^>
UJ
£X
a.
o
i—
a
LU
Q
LU
LU
•z.
oo
*^~*
LU
a.
O
C/^
Q
•z.
_,J
O
h~~
-J
LU
J
^j
e?^
a:
ex
CJ
LU
CJ
=3;
u_
"~^
oo
oo
ZD
0
CX
LU
.
CX
00
oo
o
_J
_J
o
oo
oo
_
H-
1-^
1
H— 1
OQ
t— H
1—
a.
UJ
o
oo
oo
1 —
UJ
CX
UJ
z.
• .
^_
1—
1
H— t
CO
Q
O
CX
LU
1
|«H
O
oo
oo
LU
l — t
I—
LU
Q.
O
Q.
1
( !
O
oo
u_
o
•z.
o
h-
o
•z
ZD
U.
^^
oo
f—
1— (
. ft
u_
U.
o
•z.
ZD
Q
•z.
_J
1
<^
u_
z.
t—t
-------
GO
O
LU
Lu
Lu
LU
O
LU
co
o
o
CD
GO
LU
GO
LU
cc.
o
LU
O
LU
GO
DC
Q
LU
Lu
LU
O
I
LU
GO
o:
LU
LU
LU
O
CM
LU
O
_J
O
GO
LU
GO
LU
CU
LU
C£.
C£.
O
GO
GO
LU
O
GO
LU
LU
CC.
LU
GO
oe
o
o
o
13
O
a.
o
o
II
GO
LU
a;
LU
a.
o
_i
GO
CJ3
A
LU
Q-
o
GO
CtL
O
LO
o
-------
oo
cc
o
o
<
00
»—I
3:
Q
O
Q
UJ
D.
OO
u_
00
ID
O
O
o
00
z.
o
Q
Z.
o
. — »
c_>
•*_•>
C£
o
1—
c_>
<
u.
I—
^^
^^
UJ
•SL
UJ
C3
-------
UJ
C3
«=c
OO i—i
LU —i Q
LU
a:
^3
O
H-
O
O
Q
a:
-H
a;
O
o
o
o
a;
o
o
a:
o
o
<.
C£.
a.
O
!y
ZD
Qi
U_
O
O
a.
(S)
O
a:
31
I—
LU
<_)
Q
LU
a:
UJ
oo
oo
oo
o
o
oo
> I—
U_ UJ
U. (_)
O t-i
OO 1—1
S a:
LU o
t— Q.
a.
.
o
CJ
oo
oo
UJ
oc.
a.
31
O
OO
ex.
o
oo
O 1-1
a.
o
ce.
O
—i
a:
i—
oo
-------
EPA-600/9-77-023
CHAPTER 3. ERRATA AND COMMENTS
1. Text and figures on pages 49 to 50 are not recommended for use.
2. Second paragraph page 46. In terms of water quality considera-
tions, terracing has a substantial impact other than reducing slope length.
With terracing, P is about 20% of corresponding value for contour farming.
This reduction in P is for sediment reaching a stream channel, since there
is a substantial deposition of sediment in the terrace channels.
3. Note that characteristics of typical municipal wastewaters
are given in Tables 111-30 and 111-31 as pages 112 to 113.
-------
SELECTED REFERENCES
Agricultural Research Service, U.S. Department of Agriculture, Present and
Prospective Technology for Predicting Sediment Yields and Sources,
Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory,
November 28 to 30, 1972, Oxford, Mississippi, ARS-S-40, June 1975.
Heany, James P., et al., Storm Water Management Model Level I, Preliminary
Screening Procedures, EPA-600/2-76-275, October 1976.
McElroy, A. D., et al., Loading Functions for Assessment of Water Pollution
from Nonpoint Sources, EPA-600/2-76-151, May 1976.
Metcalf and Eddy, Inc., Wastewater Engineering, Collection, Treatment,
Disposal, McGraw-Hill, 1972.
Soil Conservation Society of America, Soil Erosion: Prediction and Control,
the proceedings of a national conference on soil erosion, Purdue University,
May 24 to 26, 1976, Ankeny, Iowa, 1977.
Stewart, B. A., et al., Control of Water Pollution from Cropland, Vol. I,
A Manual for Guideline Development, USEPA/USDA, EPA-600/2-75-026a,
November 1975.
Stewart, B. A., et al., Control of Water Pollution from Cropland, Vol. II,
An Overview, USEPA/USDA, EPA-600/2-75-026b, June 1976.
Wischmeier, W. H., "Use and Misuse of the Universal Soil Loss Equation,"
J. Soil and Watejr Conservation, pp. 5-9, January-February 1976.
Wischmeier, W. H., C. B. Johnson, and B. V. Cross, "A Soil Erodibility
Nomograph for Farmland and Construction Sites," J. Soil and Water Conservation,
26(5), 189-193, September-October 1971.
Wischmeier, W. H., and D. D. Smith, "Rainfall Energy and Its Relationship to
Soil Loss," Transactions, American Geophysical Union, 39(2), 285-291,
April 1958.
Wischmeier, W. H. and D. D. Smith, Predicting Rainfall-Erosion Losses. A
Guide to Conservation Planning, Agriculture Handbook Ho. 532, Science
and Education Administration, U.S. Department of Agriculture,
December, 1978.
------- |