EPA-600/2-77-0648
March 1977
Environmental Protection Technology Series
                         NATIONWIDE  EVALUATION OF
                 COMBINED  SEWER OVERFLOWS  AND
                  URBAN STORMWATER DISCHARGES
                                             Volume II:
                       Cost  Assessment and Impacts
                                Municipal Environmental Research Laboratory
                                     Office of Research and Development
                                    U-S. Environmental Protection Agency
                                            Cincinnati, Ohio 45268

-------
                 RESEARCH  REPORTING SERIES

 Research reports of the Office of Research and Development, U.S. Environmental
 Protection  Agency, have been grouped into five series. These five broad
 categories were established to facilitate further development and application of
 environmental technology. Elimination of traditional grouping was conscious?
 planned to foster technology transfer and a maximum interface in related fields
 I ne five series are:
     1.
     2.
     3.
     4.
     5.
Environmental Health Effects Research
Environmental Protection Technology
Ecological Research
Environmental Monitoring
Socioeconomic Environmental Studies
TFPHMni nr-v   beer>  assigned to the ENVIRONMENTAL PROTECTION
i«S   7 ?  • Y!eries" Thls senes describes research performed to develop and
demonstrate  instrumentation, equipment, and methodology to repair or prevent
wnT^-H   
-------
                                            EPA-600/2-77-064
                                            March 1977
                NATIONWIDE EVALUATION OF
COMBINED SEWER OVERFLOWS AND URBAN STORMWATER DISCHARGES

         Volume II:  Cost Assessment and Impacts
                           by

                     James P. Heaney
                     Wayne C.* Huber
                  Miguel A. Medina, Jr.
                    Michael P. Murphy
                     Stephan J. Nix
                     Sheikh M. Hasan
    Department of Environmental Engineering Sciences
                  University of Florida
               Gainesville, Florida  32611
                 Contract No. 68-03-0283
                     Project Officer

                      Richard Field
            Storm and Combined Sewer Section
              Wastewater Research Division
Municipal Environmental Research Laboratory (Cincinnati)
                Edison, New Jersey  08817
       MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
           OFFICE OF RESEARCH AND DEVELOPMENT
          U.S. ENVIRONMENTAL PROTECTION AGENCY
                 CINCINNATI, OHIO  45268

-------
                                DISCLAIMER
Laboratorf n?%ber reviewfd ** the Municipal Environmental Research
catiS  ^n^ ??YJr0nment:al Protection Agency,: and approved for puSi-  ^
                                  ii

-------
                                FOREWORD
The US Environmental Protection Agency was created because of increasing
public and government concern about the dangers of pollution to the health
and welfare of the American people.:  Noxious air, foul water, and spoiled
land are tragic testimony to the deterioration of our natural environment.
The complexity of that environment and the interplay between its components
require a concentrated and integrated attack on the problem.

Research and development is that necessary first step in problem solution
and it involves defining the problem, measuring its impact, and searching
for solutions.  The Municipal Environmental Research Laboratory develops
new and improved technology and systems for the prevention, treatment, and
management of wastewater and solid and hazardous waste pollutant discharges
from municipal and community sources, for the preservation and treatment of
public drinking water supplies and to minimize the adverse economic, social,
health, and aesthetic effects of pollution.  This publication is one of the
products of that research; a most vital communications link between the
researcher and the user community.

A nationwide evaluation of combined sewer overflows and stormwater
discharges can be used by policy makers in allocating resources among
various environmental management programs.  This report estimates, for
urban areas in the United States, the population and area served by type
of sewerage system;  the quantity and quality of stormwater discharges from
these areas; the cost for various levels of control either as a single pur-
pose program or as a multiple purpose program wherein some of the costs are
assigned to dry-weather sewage treatment and/or urban storm drainage; and
evaluates receiving  water impacts for a test city, Des Moines, Iowa.
                                      Francis T.  Mayo
                                      Director
                                      Municipal Environmental Research
                                      Laboratory
                                     iii

-------
                                  ABSTRACT •

 A nationwide assessment has been made of the quantity and quality of urban
 storm flow emanating from combined sewers, storm sewers,  and unsewered
 portions of all 248 urbanized areas and other urban areas in the United
 States.  Available control alternatives and  their associated costs were also
 determined.  Continuous simulation runs using one year of hourly data were
 made to determine the attainable level of pollution control with a specified
 availability of storage volume and treatment rate in five cities:   Atlanta,
 Denver, Minneapolis, San Francisco,  and Washington,  DC.   This procedure was
 used to derive generalized equations relating pollution control  to storage
 and treatment. . These results were combined  into a simple optimization model
 which determined the optimal Ttrfx of storage  and treatment for any feasible
 level of control for any city.  Then the nationwide assessment is  presented.
 The results indicate annual costs ranging from $297 million for 25  percent
 pollution control to $5,029 million for 85 percent pollution control.   The
 corresponding initial capital investment ranges from $2,47$. million for
 25 percent control to $41,900 million for 85  percent control.  These costs
 can be reduced significantly if stormwater pollution control is  integrated
 with best management practices and  integrated into a multi-purpose program.

 The entire results from this project are contained in  the three  volumes
 listed below:

           1.   American Public Works  Association and  University
               of Florida,
               Nationwide Evaluation  of Combined Sewer  Overflows
               and Urban Stormwater  Discharges:  Volume I,
               Executive Summary,
               USEPA.  197?,

           2.   Heaney,  J. P.,  W.  C. Huber, M.  A. Medina, Jr.,
               M.  P.  Murphy,  S.  J. Nix,  and S. M. Hasan,
               Nationwide Evaluation  of Combined Sewer  Overflows
               and Urban Stormwater  Discharges:  Volume II,
               Cost Assessment and Impacts,
               USEPA,  1977.

           3.   Sullivan,  R. H., M. J. Manning, and  T. M. Kipp,
               Nationwide Evaluation  of Combined Sewer Overflows
               and Urban  Stormwater Discharges:  Volume III,
               Characterization of Discharges,             *
               USEPA,  1977.             .

This report is submitted in fulfillment of Contract No. 68-03-0283 by the
American Public Works Association and  the University of Florida under
sponsorship of the US Environmental Protection Agency.  Work was completed
in November,, 1976.

                                     iv  •

-------
                               CONTENTS
    Disclaimer. *>  .  .  .  .  .  .  .-  .  .  •  •  •  •  •  •  •  •  •  •  •'  •	  13-
                               =   " .    '    •''-".•  • - -  -' f i " ' '       -'. v,
    Foreword.  ,  .  .  .  .  .  .  .  •  •  •	.*...»  .  ...  .  .  . iii

    Abstract.  .	  .,	iv

    Figures	•	 vii

    Tables	xi

    Acknowledgments	.,....*.......-......•••   xv

  I Conclusions  ...........•••••»•••	•  •    1

         Demographic Characteristics of  the Urbanized Areas  	    1.
         Runoff  Analysis.  ...  		   11
         Prediction  of Urban Runoff  Quality 	   11
         Nationwide  Quality Assessment.  .  . .  * .  .  .........   16
         Cost Assessment Methodology	   16
         Relative Impact of Wet- and Dry-Weather Flows on
               Receiving Water	  	   32

 II Recommendations  . . .  . . .  . .  . •  .  . 	•  •  •  •  • •  •  •   35

         Demographic Characteristics	35
         Runoff  and  Quality Prediction	   35
         Cost Assessment Methodology. ..........."	36
          Impact  of Urban Water Pollution Control on
               Receiving Water Quality	   36

III Description of the Urbanized Areas.  .   . . . .	•  •   38

          Urban Areas	   38
          Population, Land Area,  and Location.	   40
          Population Density and Land Use Distribution	   40
          Population and Area Served by Type of Sewer System .....   60
          Abbreviations and Symbols.  .... . . ^ .   .	   96
          References	•	   97

-------
                           CONTENTS  (concluded)
   IV  Quantity Analysis	   98

           Modeling of Urban Runoff	   98
           Precipitation Analysis.  .	   99
           Runoff Analysis Using STORM	   99
           Runoff Analysis Using SWMM.  .	,	102
           Runoff Prediction for Nationwide Assessment  .  . 	  103
           Abbreviatipns and Symbols	 .  124
           References.  .	  125

   V  Quality Analysis		127

           Quality Parameters.  .	127
           Predictive Techniques ..... 	 ..  132
           Loading Prediction for Nationwide Assessment	139
           Tabulation of Nationwide BOD Loads	154
           Abbreviations and Symbols  .	-..••*.	172
           References	  175

  VI  Overall Cost Assessment.	• • • •  177

           Background. .. . . .  . . .... . . .  . .	177
           Methodology	 .  .	173
           Control Technology and Associated Costs	
           Relationship Between Storage/Treatment and
                Percent Pollution Control	137-
           STORM Results .		^.92
           Overall Cost Assessment	........  235
           Summary	254
           Abbreviations and Symbols  	 ............  268
           References		273

 VII  Impact of Urban Water Pollution Control on
           Receiving Water Quality ..... 	  275

           Problem Definition.	275
           Methodology 	  .......  278
           Effect on Streams .  . . .  .	 . .  . . . .  3QQ
           Application to Des Moines, Iowa	^07
           Economic Evaluation of Treatment Alternatives  .	332
           Other Recent Receiving Water Impact Studies  ........ 343
           Conclusions ........................ 359
           Abbreviations and Symbols	353
           References	35,7

VIII  Glossary 		  ....... 350
                                    vi

-------
                                    FIGURES
Number

  I-'l


  1-2


III-l

III-2


III-3

III-4

III-5


 IV-li


 IV-2


 IV-3

 IV-4


  V-l

  V-2

  V-3

  V-4

  V-5.

  V-6
Single Purpose and Multiple Purpose Stormwater Pollution
     Contrbl Costs for US. .'."'.'.'	T . . ."."". ... 31

Overall Percent Precipitation Control vs Rainfall Intensity -
     Atlanta, GA (1948-1972) .................. 33
1970 Urbanized Areas and .Five Regions.
39
Percent Undeveloped Land Use (US) and Open.Spaqe Land Use
     (Ontario) vs Population Density . . ,. ... », . ..... .50

Relationship Between Gross and Developed .Population Density. .52

Population Density Distribution of Albany, New York, . .... 51

Characterization of Population Density in.Urban Areas. .... 64


Mean Annual Precipitation in the United States, in Inches,
     and Regional Boundaries Used for Nationwide Assessment. .1QO

Month-to-Month Variation of Precipitation in the United
     States.	  . . .... .  . . lol

Imperviousness as a Function of Developed Population Density .105

Comparative Magnitude of Annual Wet- and Dry-Weather Flows  . .123


Relationships Among Solids Parameters. .,.-.:;.  . . .;: ., . .  . .130
                                                             *
Relationships Among Nitrogen Parameters*,.-.., . .  .... . .  . .131

Relationships Among Phosphorus Parameters. ... ..«•,- • •  • .131

Residential BOD Loadings vs Developed Population Density .  . .141

Normalized BOD Loadings vs Developed Population Density. .  . .146

BOD Concentration Variation Using Estimating Equation. * ... 148
                                      vii

-------
                              FIGURES (continued)
 Number
   V-7      Effect of Street Sweeping Frequency on Annual BOD Concen-
                 tration in Urban Stormwater Runoff - Des Moines
                 Iowa	..........  .'.  .  .  .


  VI-l      Determination of Least-Cost Combination of Inputs	179

  VI-2      Storage-Treatment Configuration Used in STORM Model.  .  .  .  .  .184

  VI-3      Average Twenty-Five Year  Rainfall Duration .  for Each Study     193
                Area	                J

  VI-4      Selected One-Year Rainfall  Duration  for Each Study Area  .  .  .194

  VI-5      Monthly Rainfall  Distribution for Study Year  for  Each Study
                Area.  .  	
                                   	  .195

  VI-6      Storage-Treatment  Isoquants for Percent BOD Removal with
                First Flush  - Region I - San Francisco.	199

 VI-7       Storage-Treatment Isoquants for Percent BOD Removal with
                First Flush - Region II - Denver	200

 VI-8      Storage-Treatment Isoquants for Percent BOD Removal with     ''
                First Flush - Region III - Minneapolis	201

 VI-9      Storage-Treatment Isoquants for Percent BOD Removal with
                First Flush - Region IV - Atlanta	202

 VI-10     Storage-Treatment Isoquants for Percent BOD Removal with
                First Flush - Region  V - Washington,  DC	203

 VI-11     Control Costs  for Primary  and  Secondary Units  in Storm
                Sewered Areas, Atlanta	       207

 VI-12     Effect  of Storage  and  Treatment  Capacity on Number of
                Overflow  Events 	
                                                              * . * * * • •''CijJL
 VI-13     Effect  of Minimum  Interevent Time  on  the Annual Number of
                Storm Events	           233

 VT-14    Relationship Between Percent Runoff Control and Annual
               Number of Overflow Events	   234

VI-15     Cost Allocation Factors for Five Cities. . . . . .  . . .  ,  .  ,252
                                    Viil

-------
                             FIGURES (continued)
Number

 VI-16     Effect of Design Storm and Number of Purposes on Cost
                Allocation Factor for Various Levels of Control	253

 VI-17     Storm Water Pollution Control Costs for the United
                States	256

 VI-18     Percent of Total Precipitation Volume vs Rainfall Intensity -
                Atlanta, GA (1948-1972).... ..'.'.'	260

 VI-19     Percent of Total Precipitation Hours vs Rainfall Intensity -
                Atlanta, GA (1948-1972)	V	261

 VI-20     Overall Percent Precipitation Control vs Rainfall Intensity -
                Atlanta, GA (1948-1972)	263

 VI-21     Percent of Total Precipitation Volume vs Rainfall Intensity -
                San Francisco, CA (1948-1972)	 .,265

 VI-22     Percent of Total Precipitation Hours vs Rainfall Intensity -
                San Francisco, CA (1948-1972)	266

 VI-23     Overall Percent Precipitation Control vs Rainfall Intensity -
                San Francisco, CA (1948-1972)	267


VII-1      Simplified Configuration of Mixed Waste Inputs to
                Receiving Water	282

VII-2      Point Rainfall for Des Moines, Iowa	286

VII-3      Lag-k Autocorrelation Function of Des Moines, Iowa,
                Hourly Rainfall, 1968	  292

VII-4      Autocorrelation Function of Hourly Urban Runoff for Des
                Moines, Iowa, 1968	294

VII-5      Definition of a Wet-Weather Event  for Des Moines by Graphic
                Procedure	297

VII-6      Hypothetical Results of Simulation.	308

VII-7      Map of Des Moines Area	309

VII-8      Location Map:  River Sampling Points.	 . 314

VII-9      Application  to Des Moines, Iowa	319

-------
Number

VII-10


VII-11


VII-12


VII-13

VII-14

VII-15

VII-16


VII-17

VII-18

VII-19

VII-20


VII-21
                              FIGURES (concluded)
 Minimum DO Frequency Curves  for Existing Conditions  in  the
      Des Moines River	321

 Minimiim DO Frequency Curves  for Varied Percent of Combined
      Sewer' Area.  .  . . :'l  . .  .•"/'.'.-. -.''".•'.  . ."'.'' V" .''*' '1  .  .  .  322

'Minimum DO Frequency Curves'  f or'Varied'Per cent of Actual
      Measured Upstream River Flow.  ,  . . .  .  . . ., .  .  ....  323

 Minimum DO Frequency Curves  for Varied DWF  Treatment  .  .  .  .  .  324

 Minimum DO Frequency Curves  for Varied WWF  Treatment.  .  .  .  ,  .  325

 Minimum DO Frequency Curves  for Varied Treatment Alternatives.  326

 Dry-Weather Minimum DO Frequency Curves for Varied DWF
      Treatment Alternatives. ......... ....  ....  329

 Annual Minimum DO Frequency*  Curves V  .~ . .  .  . .	330

 Existing DWF Process Profile . . .  .'  . . .  ... .:.  .  .  .  .  .'333

 Trickling Filtration/Activated Sludge System  . . . ...  .  .  .  334
'Added Tertiary Treatment Uriit Processes, Incineration of
      Chemical Sludge	
335
 Activated Sludge-Coagulation-Filtration Process Profile,. .  . ..  340

-------
                                 TABLES           .


 1-1      Demographic Characteristics of the Urban Areas. ......   3

 1-2      Land Use Distribution for the Urban Areas, in the US . . .  .   4

 1-3      Land Use by Type' of Sewerage System	   6

 1-4      Population by Type of Sewerage System  .  .	   8

 1-5      Population Density by Type of Sewerage System  .......  IQ

 1-6      Annual Wet-Weather Runoff for Combined,  Storm, and
               Unsewered Areas.  .  . .  . .  ...  ........ . .. .  .  12

 1-7      Annual Dry-Weather Flow  for Combined,  Storm, and
               Unsewered Areas.  .	  ^'4

 1-8      Dry-Weather BOD  Loadings	,  .  ...... .........  17

 1-9      Wet-Weather BOD  Loadings. .  . .  .  .  .  .  • •  '  '  *  ' .*. • •  •  19

 1-10    Annual Control Costs - Combined  Areas  .  . .  .... ... , .  .  21

 1-11    Annual Control Costs - Storm Areas.  .....  	  22

 1-12    Annual Control Costs - Unsewered Areas.	  23

 1-13    Optimal  Percent  Control  for  Specified  Overall  Percent
               Control		25

  1-14    Optimal  Annual Cost per  Acre for Specified  Percent Control.  27

  1-15    Optimal  Annual and Capital Control Costs.  .  .  	  29


III-l     Demographic Characteristics  of  the Urban Areas.  ......  41

1II-2     Land Use Distributions in Nine  Ontario, Cities  .	49

III-3     Distribution  of  Developed Land  Uses in Ontario Test
                Cities  and  US Cities ......  	  51

III-4      Land Use Distribution  for the Urban Areas  in the
                United  States.	  53

                                    xi

-------
                            TABLES  (continued)


III-5      Minimum Population Density for Sewered Portion of
                Seven Urbanized Areas in Ontario. . . .	66

III-6      Land Use by Type of Sewerage System	67

III-7      Population by Type of Sewerage System	 75

III-8      Developed Population Density by Type of Sewerage System.  .  . 82

III-9      Values of Coefficients ........ k  .......... 89


 IV-1      Precipitation Characteristics of Study Areas .  	1Q2

 IV-2      Effect of Urban Block Size on Ctkrb Length Density and
                Imperviousness  Due to Streets	107

 IV-3      Annual Wet-Weather Runoff..........  ^	108

 IV-4      Annual Dry-Weather Flow	
                                          i

 V-l      Typical Quality Parameters of Urban Runoff Models	128

 V-2      Quality Parameters Used in Nationwide Assessment  . . . . . . 132

 V-3      Parameters for  Surface Pollutant Accumulation Used in
               SWMM and/or STORM  	 135

 V-4      Measured Curb Lengths for Various Land Uses. . .	137

 V-5       Surface BOD Loadings for Residential Areas as Derived
               From Effluent Measurements	  .  .  .  140

 V-6      Normalized BOD Loading Data	      145

 V-7      Surface Loading and Pollutant Fraction Data.  ... 	  152

 V-8      Pollutant Loading Factors for Nationwide Assessment.  ....  155

 V-9      Comparison of BOD Loadings	 156

 V-10     Wet-Weather BOD Loadings	   158

 V-ll     Dry-Weather BOD Loadings	-."..... 165

-------
                           TABLES (continued)


VI-1      Wet-Weather Treatment Plant Performance Data	182

VI-2      Installed Costs for Wet-Weather Treatment Devices 	 185

VI-3      Cost Functions for Wet-Weather Control Devices. ...... 186

VI-4      Capital Cost of Storage Facilities.	188

VI-5      STORM Input Data for Study Areas	190

VI-6      Hydrologic Data for Study Areas . .	191

VI-7      Values of Parameters and Correlation Coefficients for
               Isoquant Equations for Percent BOD Control
               Without First Flush	...;...	• 198

VI-8      Values of Parameters and Correlation Coefficients for
               Isoquant Equations for Percent BOD Control
               With First Flush	198

Vl-9      Annual Control Costs - Combined Areas  	 209

VI-10    Annual Control Costs - Storm Areas. .  .  .  .  .  ....... 216

VI-11    Annual Control Costs - Unsewered Areas	223

VI-12    General  Information .  .  .  .  .  .  . . .  ...  •  •  •  •  •  •  • • 236

VI-13    Land Use by Type of Use	'.  '  ' ' 236

 VI-14    Land Use and Population by Type of  Sewerage System.  .  .  . . 236

 VI-15     Quantity and Quality of  Sewage and  Stormwater  Runoff.  .  .  . 237

 VI-16    Annual Control Costs per  Unit of Developed Urban Area  .  .  . 237

 VI-17     Optimal Percent Control for Specified Overall  Percent
                Control	241

 VI-18     Optimal Annual Cost per Acre for Specified Percent
                Control	-...:....	243

 VI-19     Optimal Annual Control Costs	'•  •  245

 VI-20     Comparison of Annual  Cost of  Optimal  Control  Strategy for
                Anytown, U.S.A.  Using Storage-Treatment  Alone  and  in
                Combination with Best Management Practices  	
                                    xiii

-------
                              TABLES (concluded)




  VII-1      Land Use in the United States	        277



  VII-2      Pollution and Contamination Indices ............  279




  VII-3      Pollu*** Unit  Loads  for Drainage  Area Above

                 Des  Moines,  Iowa.  .
                                        	  ••/••••••••• 308


 VII-4       Summary of Present Annual Metro Area Discharges. . . ... . 311


 VII-5      Options Used for Des Moines Simulations. ..... . . . . . 315


 VII-6      Volume of DO Deficit
                                                           * • • • • • • O JJ.


 VII-7      Capital Costs for Tertiary and Intermediate-Stage

                 Treatment ...........
                                                     *  *  *  * •  •  *  •  •  •  «J J /


 VII-8      Operating Costs for Tertiary and Intermediate-Stage
                 Treatment	                 6
                                                 *  *  •  •  ',  •  .  .  .  ,.  , JJo


 VII-9      Dry-Weather Flow Costs  for Advanced  Treatment	  .  .342


 VII-10     Wet-Weather Flow   Control Costs	       342



 VII-11     DWF Tertiary Treatment  vs WWF  Control.	.344



 VII-12      Control Costs vs Violations of DO Standard  	 346


 VII-13      Increase in Surface Runoff 	
                                                       ***•••••• J.DJ.


VII-14     Increase in Annual BOD Mass Discharge. . .   .	351
                                   XXV

-------
                              ACKNOWLEDGMENTS
This volume is one part of a joiat effort between the American Public
Works Association of Chicago and the University of ?lorxda.. The; coop-
eration of Martin Manning, former project director for APWA and
William F. Henson of APWA was very helpful.  Richard H  Sullivan of APWA- ,,
provided overall project coordination and management.  The advice and
guidance of our advisory committees on this US assessment and the Canadian.
assessment were very useful.

Richard Field of USEPA provided invaluable overall guidance and detailed
critical review of findings throughout the study.

Numerous persons at the University of Florida  contributed..'to this effort.
Michael Fladmark and Dave Wolters coded  and checked  the input data  for
the,248 urbanized areas.  Henry Malec did  the  initial work of deriving
the isoquant  equations.   Gordon Quesenberry developed the storm event
definition.   Typing of the numerous  drafts and final report was done by
Ms. Mary  Polinski who  deserved special  credit  for her patience and  per-
 sistence  in completing the manuscript.
                                       xv

-------

-------
                                 SECTION I

                                CONCLUSIONS


During the past decade, much effort has been expended in identifying
and analyzing the wet^-weather pollution control problem.  The initial
concern with combined sewer overflows expanded to consideration of
stormwater runoff in general.  This study assesses the costs of control-
ling wet-weather pollution to varying degrees.  A key question is what  .
is the relative importance of various sources of wet-weather pollution
and how does wet-weather pollution control compare to dry-weather pollu-
tion control?   Also, what is its impact on receiving water?

Control of wet-weather pollution is distinctly different than the
traditional dry-weather problem.  In wet-weather pollution control, one
would normally use a mix of  storage and treatment, not  treatment alone.
Thus, new techniques are needed  to determine  optimal mixes of storage
and treatment.  Numerous effectiveness criteria for wet-weather control
have been used, e.g., number of  overflows, percent runoff control, per-
cent BOD  control.  For wet-weather control, the most critical impact on the
receiving water does not necessarily occur under low flow conditions.
How should  the critical conditions be defined?  Basic questions of this
nature  arose  throughout the  study because it  is such a  relatively new
area of concern.  Thus, the  final estimate could vary widely if some of
these assumptions are  changed.   However, the  approach is a  fairly general
one and assumptions  are stated  explicitly.  Thus,  the interested reader
can refine  the estimates  as  better  information becomes  available.  The
remainder of  this section presents  conclusions.  The following  section
 on recommendations will  focus  on data  gaps and related  matters.
 DEMOGRAPHIC CHARACTERISTICS OF THE URBANIZED AREAS

 Urban areas in this study have been taken as the 248 urbanized areas
 defined by the Bureau of the Census of the US Department of Commerce in
 the 1970 census and other urban areas.  The 248 urbanized areas defined
 in 1970 are generally characterized as having:

             a central city or urban core of 50,000 or
          *  more inhabitantsj

-------
              closely inhabited surroundings,  consisting
              of incorporated places of 100 housing units
           9  or more;  and small unincorporated  parcels        .
              with population densities of 1,000 inhabitants
              per square mile or more (386 per square km)J
              and

              other small unincorporated areas that may
              eliminate enclaves, square up  the  geometry          '
              of  the urbanized  area  or  provide a linkage      ,
           •  to  other  enumeration districts fulfilling
              the overall criteria within  1 1/2  miles                      '
              (2.5  km)  of the main body of the urbanized
              area.

 All 248 urbanized areas  in the United  States were analyzed in varying
 levels of detail.  Population density distribution functions were
 developed for 50 urbanized areas.   These results were extrapolated
 to the other 198 urbanized areas.   Land use information was derived
 based on a statistical analysis of 106 cities.   The results for all
 USEPA regions and the entire US are shown in Table 1-1, Demographic
 Cfraragteri-stics of the Urban Areas.  A total of almost  150 million people
 live, in urbanized areas in the United States at an overall average popu-
 lation density of 5.1 persons per  acre (12.6 persons  per  ha).   Urbanized
 areas, as defined, are about 46.2  percent undeveloped as  estimated in
 Table 1-2, Land Use Distribution for the Urban  Areas  in the US.  The
 distribution of the develpped land uses is approximately  as follows:

                       Residential
                       Industrial
                       Commercial
                       Other
                         Total
100.0
 Information  on population and area  served by combined sewerage systems'
 were provided by APWA.  The population and area served by storm sewers
 and in the unsewered area were estimated as residuals.  All areas with
 a developed  population density of less than five persons per acre were
 assumed to be unsewered.  The results, shown in Table-1-3, Land Use by
 Type of Sewerapp System, indicate that about 14.4 percent of ,the urban
 area is served by combined sewers,  38.3 percent by storm sewers", and the
 balance of the developed area is unsewered.  Table 1-4, Population by
Type of Sewerage System indicates; that 25.2 percent of urban population
is served by combined sewer systems, 52.1 percent by storm sewer systems.
and the remaining 22.7 percent is unsewered.  Table 1-5,.Population
Density by Type of Sewerage System indicates nationwide average developed
population densities of 16.73 (41.30), 13.00 (32.09), and 4.59 (11 33)
persons per acre (persons per ha) in combined,  storm and unsewered'areas

"

-------
..
TARI F 1-1
1
E°A 1 STATf;
FGI T^
1 i c.r
1 1 y.F
11 MA
1 1 MM
\ \ PT
1 1 VT
1. RFG 1
21 N.T.
21 NY
TL RFG 2
31 DE
31 nc
31 MO
31 PA
31 VA
31 i«v
TI PEG 3
41 At
41 Fl.
41 G*
41 KY
a i M.S
. 4 1 WC
...1.....
41 RC
4 1 TN
Tl RFG
51 MT
51 . MN
5 1 PW
51 WT
Tl RFG
O-PMOG
1 ofo
ACPES
5*9.
235.
966.
1?5.
162.
35.
?082.
1479.
830.
?309.
75.
39.
403.
13*0.
569.

?598.
6«3.
1275.
607.
304.
276
34 4
719
"778
1092
696
1714
6P8

r?APHTC CH
970 PHP.
1000
2344.
•507.
4813.
417.
P26.
.143.
9050.
637?.
15611.
21983.
395.
757.
3005.
8433.
2933.
680.
1 6203 .
2011.
54fe5.
2768.
1687
987
2287
2307
18745
"""317*
6559
2527
802*
291 1
32610
ARAfrrp
POP
VE PP
4.191
2.1*1
4.9BI
3.3i),
5.00
4.1/1
4.3*
a. 3.«
18.8?
9.5?
5.27
19.? A
7.46

5.15

6.2/4
2.9fl
4.?«
3.97
5.54
""3!57
3.51
""3!?9
3.21
""7?7"
""a!33
6.0*
3.63

a,?3
5.30
ISTTTS OF
i
EPA 1 STATF
PFGI I1"1
61 AP
61 LA
6! MM

. 61 TV
TL REG 6
71 1A
71 KS
71 MO
71 ME
TL REG 7
81 CO
81 MT
81 NO
.81 , SO
81 UT
.81 WY
TL REG 8
91 AK
91 AZ
. 91 CA
9! HI
91 WV
TL'REG""
.10! IP
1 o i nR
"Toi""^4
TI""REG"TO
TL. u. P.

THF HRfl
i o o at '
ACRES
301.
328.
175.
599.
2546.
3948.
5*6.
3?8.
710.

1758.
335.

50.
68.
231.

-------
EPA
REG
1
I
I
1
STATE
ID
CT
UNDV
bO.O
IRES
129.2
» 1
ICOMMI
1 4.3!
S.M |
1NDL
7. a
• • 1 .U |_
10TH
I 9_1
« "f r. 0
1
(TOTAL
M f>/> _ n
   1! . NH
    i f ....i
    I. . Rl
 ——— | —————
 UV RER.
         56.9
                25;2J 3,71 6J4! 7.81100.0
         4?.,1 33.81 R.OJ 8.6110.51100.0

         2!:!!!!;! i If;! 11!-!] ?;! " & r o
I A i <  r*r- r*  i  >.M ~ '__•»— i——•*— l""""^«»4—."*"• m . — . .
ii^?!L»i  I!:2 5J'SL2*fl{-7-5'  °*2 10()«°
f   2!.,NvI F46T5lIorH"4^~7*6!  fTa tOo"'o
 -- i --7-1 s:s! H::B [ -ss! 7?:;! is:; i TSS:;

[E?E.l I!!:!»i«• 111!;E j IE-! i in I' •»«r« i
                                    JOO.fl
  ,31 .MD


 T3l""pA'
    I i
, 31  VA
           22.ai41.8l  6*2110.6113.0

           36l3  sfril'^rsi''^^?;!'^
           46.9
                31.0!  fl. 6 I. 7.9.1. 9.7
                   -
                30.71
                           7.8!  P. 6
1,31.WV 147.5


fAJ/"RER""3l3777 36.4!  5.4f  9,211,1.3
 """ J «<--- I -w-. | --,- ! ...,. 4 .... I .„«
   41, . AL 161.3122.61  3.3J  5.7!  7.0

 • i4l.  FL 150.10129.2!  4»3J,7,4J,p  1
            ***•* I ^"*V^ I **mmm I ••*• — . h— ...
                                  1 0 0 . 0 I

                                  TppTo
                                  100.0
                                  •»•""••?*
                                  100.0
                                  — •• — — »
                                  100.0
t  , fll   6A
I...|.....
   ^ I  , KY
 .-—).—————
  ..41  , MS
.«••*•• i-*WM IP W
L  . 4 I. . NC

  a    c  i

   aJ  ,TN  159.4
   -i-----!.--.
   . RER a  53.6
                    i "sTp }"6Ta 1 "a!I
           28.7
               23.71 3.5J 6,01.7.4
               "2"l" I «*•*!•» l-.^.j--«^
               27.1! A.01 6.91 B.4
                               -   100.0

              4176 I"6?"11o!5I 13^0 ITooZo
                                   •n*>v*"ii
                                   lOp.O

                                   looZo

                                   TonTo
                                   100.0
                                  1 00 . 0
                    i
          47.1J30.91  4,61,7.8! 9.61100.0

-------
.TABLE  *-?    LAND  USF  DISTRIBUTION FOR THE URBAN AREAS IN THE U.P,
1 !
EPA (STATE!
RFC! . 10 I
6
. 6
, 6
, 6
. 6
! . AP I
I.LAI
I . NM I
I . OK I

AW SET, 6!
7
, 7
. 7
7
AV
. 8
. 8
. 8
- 8
8
. 8
AV
. 9
. . 9
1 9
... , 9
9
LAV
,10
I"1* i
1 , KS !
I . MO !
J . WE 1
REG. 7«
I CO 1
J. . . MT I
I . NO 1
1 .SO !
!. . UT I
!. ' . WY !
ISEP 8!
! AK I
1 . A7 I
1 . CA.
! , HI 1
1. NV
RER 9
I , 10
Ti»l • OR.
.1 0 I . . WA
LAV.
IAV
5EG 10
| mmmfm
U.S.
LAND
1
UNDV |
58.81
39.1 I
50.1 I
61.11
56.01
55.3!

46.41
46.71
43.01
50. a
41.9
46.5
39.2
47.8
53.7
50.0
46.5
60.1
53.7
35.4
36", 0
57.1
38.6
45.9
45. P
46. *
46.1
146,2
USE AS %, OF THTAL AREA
RES ICnMMINnLinTH I TOTAL

35.6!
s"-,2!
22.71
25.7!

23.1 !

31.1 1
33.31
28.9!
33?9!
31.31
3^5!
30.5!
2731!

31,?j
23^3 !
27.0!
37.71
37.41
25.0!
35, 9j
31.61
31.61
131.41
31.5!
mmmmt
31.4!
3.51
5.?!
/i . 3 1.
3.31
3.PJ
3.FI
""3;^! l'
fl.6l

fl.91
tf.3!
5.01

5.?!
«.5I
. 4.01
4,'?!

3,4!
4.01
5.6!
5.a5l
3.7!
5.13!
«.7I
4.71
4.61
-»«,-!
fl.6l

6.1 1
9.0!
7.4!
5.8!
6:si
6.6!.
TSj
7.9!
7.9!
8,4!
7.31
. 8.6!
7.9!
. 9.01
7.7,
. 6.91
7.4!
. 7,91
5.9!
.6.9!
. 9.61
9.5!
6.'3I
9.11
8.0J
8.01
7.91
«•»•»• |
.8.01
mmmm \

7.51100.0
1.1 .11 100.0
P.I
7,1
«.0
100.0
300*0
1 0 0 . 0
,8,1 1 100.0
"7^1100.0
9,81100.0
9.71 1.00.0
10.4 If 00.0
9 . 0 i ! 0 0 . 0
1 n . 6
9.7
100.0
100.0
1 1.1 I 1 0 0 . 0
P. 5116 0.0
p.4i.ion.o
9.1
-9,7
•7-i.
P. 4
1.1.8
11 .6
.7.8
77.2
9.B
9.9
;p.e
*p*8
fmmm
9.8
ioo.o
10 0.0
s o o . o
100.0
100.0
100.0
100.0
1 00.0
100,0
100.0
100.0
looTo
100.0
1- — ...

-------
   TABLE 1-3     LA.NO  USE .BY TYPE OF SEWFBABE
  L   '    ,. '    Af?EA  SFRVED BY TYPF hp SYSTEM
  ! EPA I STATE I        ,      1000 ACPF.e

  l«2i..I2.|  "NnV  '  CfWp. I. STPPMf.' UNSFWJ  TOTALI

  [II! i IlEiI i IE!!-! i II!F*'"""•?' r"^?*i i "58*78 l

*  L.i ! _.HL I .I." • * I " "^ \ """'-<> I """2675 ''"23573 I

  ill! I IIE-I-! If It H \ Ii£i ' 2 j "po" I "27678 I "96*"7o I

  I	Li!	, _ i _ _    i  51-71    0 „ 0 I ,  «-u.ll.l2^l.9j
  TI  REG

 j2 I
    31
   .. I.
       • NV. I  197..11  245.61 2(11.11,1^5791 829.7


       """" I "9147"" ""*72"*T 1 "5fl5"'Z I ""*7"*"3 ' •"•"-"-
            i       j  '-''-'••'. -'•»r.ni,3f7.e:
        .2E.J.  ^°>61    6«8!'  1'7.2'lr
   •31   MD  I
 I...I.....I

 1  .31.  PA  I
 I...).....I,
                      12-7'
                     ""
                                     '*••*» 1'
                                      0.01
                                n   3395
 [  .31  • VA j  266."8|   28jo'j. 15«r3 i 7l2o7o I ~56*"7""
 i•»—i.....t......|......i....—_i„...  _i_     "
 '-  .31  . WV I   76 71   *^76I    "?'^f'*^'7i7ZTZ

 iTP'sr"""" • •"-"""
 I...I.
 i  . a i:
          31 979.6!  19«%5J  B2P.61, 601,4 I 2598.2

 AL

"FL" i "6377*4!
          -i
                      . 0.01 . 105.J I, 159, J. J  68?!. 0
                     •"•"»'»' .«*«•••»» l .•
                       O.fll. 3H.6I
           i.
 I-  41.  KY j  I19..flj
 !•«••• I ..... I ...... | i

 I- • «J   MS I  551.21
 I ...|.....|......|,

 L.!!..i!E.!  '?^9-11

 j.""**!"'""""""!"""*"?!'
 I--., i..... i...... i.
 I .41,  TM I  «27.0!


 !.TL"?E""4i265!78i"

 ""51 ""IL" I "34-7*"!'
     I.....|......I.
             *607"" I "lO?77 I "18178 ! "6967""

               9.6 I "  88.7)~"8774 t~30"""7""

             '.£;2!II!I;^j "I**-*' "2767"?

             "o7oi"rr377i"r787r!"65o79
             •"•^w 1 ....»|. I ...... I ......
               0.01   62..1 I.  94.81  343.6
                                              .
                                          .....
                     25, 7J   9fi.P|, 167.51 718,9
                     ..^,. i ...... | ...... i ...... i

                     95.91. 933. 61.1267. 4(4948, fej
  •51  IN  j  366.3,
 ...I .....i......|

I.' 5! ' MI  '  fl06.'8l


[II! i """5" '"^'-*i

f"""5l*""*nH"j"77577|


I ""5 f """wi"| "341 79 I
                    167,91. . 57.3llfl6l'
                   ....q,. j ....^. [ ...... i ......

                    233.8! 156.pl. 295.«li09?»0

                   "T^^r '""rr"1" ' --••-•s* i««...^.
                     fl7.9. 9fl.il, 172.9!
                                                !
I-TI. 5FR.  5 12609 .'2 I
I ... ..... ......i
                   •"••""*•* P»«""W»|.  '..OT... | ......

                    211.21. 237.61. fle9..0U7is76
                   ""S7"*" ....^. | ...... j ......

                     31,81 Iflfl.fll, 170.01  688, 2

                   'Z!T!!''l"> ' »~<"»^» I w"«-»«ii» «*.-.«.

                    999,51 9tP. 01.1635. 816156. 6

-------
.TABLE 1*3
.EPAISTATE
REG!. , ID.
I- , 61 AR
I . 61- , LA
I ,61 - NM
1,61- OK
1,61 TX
| wnm I mmmrn**
ITL , REP 6
-71 I A
,7.1- . KS
,71 , MO
, , 7'l . NE
TL REG- 7
,8! -CO
, 8! - . MT
. . 8J.. , ND

1 . 81- . UT.
I , 81- WY
IT!. £E(3, 8
1 91 , . AK
1.. . 91. . AZ
I Q 1 f* fl
. , 91. . HI
, . 91, , NV.
ITL: REG, , 9
I. 101. • ID
1 ,101. - OR
LAND USE BY -TVPE-t
AREA SERVED BY TYF
1000 ACRE
. UNDV. 1 COMB. J . .STORM
!77.0
128,2
87.4
365.8
1426.8
„„„_— —
2185.2
•»•>•* w •( •*
323,8
.151.9
. 331.6
79,1
866,4
140.5
3P.2
1-9.5
3?. 7
124.1
24.6
379.5
29.6
206.2
1002.0
38.3
68.3
1344.4
36.8
139.8
i 101 , WA j 252.6

431.2

I.TL U.S.. . 13409.
11,6.1

0.0!
. , 0,0!
, 5,1 1
16.71
.8.91
.30.1
. 130.0
, .38.?
. 87.6
«89.3
,775.3
. 76.5
21.31, 66.8
163.6 J - 29. ft
•29.61
223,31
1 • • 1.8J
1 0.0
1,1.0
| 0.7
1 .0.0
1 0.0
1. .3.4
1 0.7
1 0.0
1 67,1
1 0.0
1 2,8
70.6
1 0.0
1 32.7
1 79.9
1 112.6

1 2248.
. . 19.4
192.6
)F SEWERAGE SYS
>F OF SYSTEM •
"A ' . . -
..UNSEWI TOTAL
r"82?4l"'30?"o
, 69.5
, 48.9
, 145.3
, 624.8
, 970.9
. 126,7
.. 87.6
. 185.4
f 55.8
. 43575
...9B.r. 94.5
. 24. ?i. 19, 8
. 18.5 , 10.6
, . 15.PI.. 20.1
46.31, 60.8
1. 11.3 , 13.4
1, 213.3 . 219.3
1, 6,7i, 12.1
1. 80.71, 97.1
11050.4 , 708.7
1. 36.9 < 31.1
1 . 1 7 . 3 1 , 31.1
IM9J..9 , 880.1
1, , 2.1.9 , 23.8
1 45.7 , 86.7
I. 68.8 . 14/1.3
1, 136.5 , 254.6

J.59873 739^3
1 327.7
1 598,8
1,2546,0
13948.21
1 535,9
J 327*5
1 710.4
I 183.9
11757.7
1 334,9
I .8?. 2
1 49.7
1 68.4
1 231,2
I 4P,3
I 815.6

} 384.0
J 2828.1
1 106,?
I H9.6
13487,0

1 305.0
1 545.6
1 935.1

J29Q37.
TEM
•

-------
TABLE ]>4
I'EPAI STATE
IRFGI . ID
!..:!. .El.
1. . 1 1 MP
j. . 11 MA
1.. . 1! , NH
1. . 11. . R!
1. 11. VT
IT| , ?EG 1
1 . , 21- , NJ
1 21.. NY
ITI REG 2
I..JI..2E.
1 31, . DC
1 31 . MD
t. .31. PA
1 31 VA.
1,31 , WV
ITI.. REG. 3
l..f!..;b.
!:..f J.^t.
1., , 41 GA
1 . fll. . KY
I. , 41 .MS
I-. .{.....

I . til, . SC
I .41 . TN
LT|.. PER 4
I.I.SL T-
'POP
COMB
692
372
1155
. 286
3«6.
69.
. 2919,
405.
- 9603.
10007.
83.
400.
r 0,
"3*54,
298.
515.
?651.
0.
6.
590.
. U6.
0.
0.
0.
3123
. toisr
6109.
J .51 IN 18457
1 , 5J , . MI 3293.
1. .51..MN 593.
1 .51 .OH. 26473
L . 51 WI 679.
j-TL. REfi 5 15166.
ULATIHN RY TYD
POPULATIOW SER
ciooo PERSONS
STORM), UNSE
.979.1 673
0?i . 135
2404. !, 12e54
•0,1 131.
178.1, 202?
. 0.1. 74.
366*. J, 247oT
4473.1. 14953
5369.1. . 639.
9842. 1. 2*34,
210.1, 101.
357.1,, o3
2545.1 460,.
58023! 187?:
2143. I. . 4923
4?.!. . .l?23
1H00.1. 2451.
123fl!l, 7733
4075?! 13fl53
Tl563l 10223
l787. ! 3843
. 596. J. 39l3
TiTi.f . 97?3
697.1- 5363
12493 1, . 7463
11512.1 6209.
1582. I, 1530.
715.1. . 8,1 1,
1885. 1. 13B2.
1218. 1 7163
3429. J. 19443
1272.] 960*3
"0101.1 73433
E OF SEW
VFD
3
. TOTAL.
.. 23443
5073
48?33
• 417.
8263
1433
. 905o3
, • 63723
, 156113
. 219833
""35i3
"^7i73
. 30053
, 84333
, 29333
6803
162033
2011.
546^3
2768.1
1637.
9873
2287*3
?2333
23073 1
......^ |
18745.1
922l3l
337l3l
""65593!
""25273!
80?l3l
2911 3 1
"126103!
EPARE SYSTEM
1
1
1
1
1
1

-------
.TABl
1
I.EPA.
IREG
1 6
1 6
! . : 6
«. ,6
I . 6
I.-PI-
IT! f
1- 7
! . . 7
1.7
I. , 7
.E 1-4
STATE
. . IP.
. . AR
LA
. ' NM
. . OK
, . TX
?E(5 6
1 IA
. KS
. . MO
, . NE
I.TL, REG . 7
1 , 8
I..B
I, 8
1- , 8
1.8
I 8
tTl"f
I, .9
! . 9
! 9
1, . 9

1 9
•
. , CO
. MT
. ND
. , SD
, . UT
, WY
?EG . 8
. . AK
. , AZ.
CA
, . HI,

. NV
POPl
f
. COMB
. 80.
. o.
0,
0,
101.
181,
252.
254?
1635.
419.
?5S9?
36,
0.
10.
. 8.
0.
. 0?
55.
10.
0.
1663,
0.
41.
IT|., Bli. 9 . 1713?

1 10
!-..
1 , .10
1. . ID , 0.
. . OR 427?
L . WA. 903.
JLATION
SOPULAT'
(1000 f
STORM
345.
2012?
. 485.
«••»»«•»«!
1150.
6031.
10023.
754.
. 768.
254.
""260?
""2036?
1260?
256.
197.
183,
589?
126.
2610.
93.
989.
13493.
499.
217.
15291?
23?.
574.
871.
ITI.REP. 10 1330. 1677?
ITL"!


37606. 77853?
BY TYPE
[ON SER\
'ERSnNS'
, UN SEW
537?
. . 394.
, 226?
. 590,
2801?
. 45^9?
609?
. 463,
mmmmmm
. -1389,
. 234.
. 2695.
, 341,
. 1.16*
67?
. 106?
. 265,
. 75?
1070?
"""44?
. 419.
"2986?
139,
- • 139,
. 3727?
. 155,
- 402.
""701?
. 1258?
p> . m
:. OF SEWE
/PD
. TOTAL
962.
, 2406?


, 8934.
. 14753,
. 1615?
. 1485.
mmwmmm^
. 3278.
. 913.
, 7291?
, 1737.
, 372?
. 274,
- 297?
. 854?
, . 201.
. 3735?
147*
- 1408?
. 638?
396?
. 20731?
, 387.
. 1403?
""2475?
. 4265?

"TTfQ/ii I 4 f\ Q ft f- t-
t5 j <* *.' O M J1 »i ** ' «P O O ^
•RAGE SYSTEM
.

-------
      TABLE 1-5   POPULATION  DENSITY BY TYPE OF SEWERAGE SYSTEM
    i


.II |

Hi I
... i.

  21
...I.
  21
         '
           rnMBISTPPMIWRFW! i AVER
       JH I  9.021 0.0 I "7<5? l~7775 I
       * [  «.75l"o7n~l~7773l"p779l

        7177. ?717177 71""? 7! "p"7tp I
       -_ i.....i_____i_____i_____i
       J_[lq.?7ll«.fl3i  T./ISI  R.*7I


       "2! sft"7«'' "•"•-' --^--' --:.-1


        -! i.:!!!'23?si"a79Pi"PTfl71
 .    .   -   -  ••--  >"ivii."-ri*i-i-o'"'AVER I



 '.» I __L-_ i .2:2-! "s-'"' "**« 1i?7o6'i



 ..2!—2.  I"""' 7377s I "7o6! "77i«7 \


 A V"R i?"~r} 7n"p"' "^"5"' --^--' --:!-1


 II! I II7r! ^*" ™'"'•"' "* •"~' "7"i'


 ""7!"Tin"!"""'"'••"•"'--••-'--^--I
 ...!_.^2.|i2:no1 P
-------
RUNOFF ANALYSIS        •

An examination of precipitation patterns led to the division of the
country into five zones for purposes of analysis with the Corps of
Engineers' STORM model:  Pacific Coast, Rocky Mountain, Midwest and
Texas, South and Southeast, and Northeast.  STORM was run on a repre-
sentative city for each of these regions:  San Francisco, Denver,
Minneapolis, Atlanta, and Washington, DC.  Results from these runs
were used in developing the nationwide assessment methodology and also
used to calibrate the elementary technique used for r^unoff prediction
for the 248 urbanized areas.

Annual wet-weather runoff was generated using a runoff coefficient
that is a function of imperviousness which in turn is a function of
population density.  Table 1-6, Annual Wet-Weather Runoff for Combined,
Storm, and Unsewered Areas indicates average runoff of 16.5 inches (41.9
cm) per year, 14.8 inches  (37.6 cm) per year, and 10.8 inches (27.4 cm)
per year from an average precipitation of 33.4 inches  (84.8 cm) per year
in combined, storm and unsewered urban areas, respectively.  Dry-weather
flow is a function of population density on the basis of 100 gallons per
person-day  (379 liters per person-day).  Table 1-7, Annual Dry-Weather
Flow for Combined, Storm, and Unsewered Areas illustrates runoff magnitudes
by USEPA region and for the US as a whole.

Average annual dry-weather flow  (DWF)  is  significantly greater than average
Jwet-weather flow (WWF) only  in the arid areas of USEPA regions 8 and 9.  The
'heavily urbanized  regions  2  and  3 produce the highest  dry-weather flows
 (although above  average precipitation  partially offsets  these values).  How-
 ever,  in  most parts  of the country,  dry-weather flows  represent 30-50 percent
of the total  (wet plus dry)  runoff from urban areas.


PREDICTION.  OF URBAN RUNOFF QUALITY                           .

Analysis  of available urban  runoff quality  data indicates  a great number
 of disaggregated urban runoff  studies  from  which it  is highly difficult
 to draw meaningful conclusions'as  to pollutant  loading rates.  For
 instance,  there  are no known studies in which both.: surface, and effluent
 data have been gathered  simultaneously.   In;addition,  there is a wide
 variation in the manner  in which data are reported (e.g.;  "average"  con-
 centrations)  and in the  amount  of  related information provided about
 the  catchment areas (e.g., population density)..

 On the basis of  the available  data,  pollutant  loading estimates  were
 developed for wet weather for  BOD5,  suspended  solids,  volatile solids,
 total phosphate (PO.) and total nitrogen (N),  and derived as functions
 of precipitation,  land use and population density, the latter, only for
 residential land use.  Other land uses are commercial, industrial and
 open.  These estimates indicate that,  for the same population density,
 loads from combined sewered areas are approximately four times higher
 than those from separate sewered areas.   Furthermore, higher population
                                      11

-------
  TABLE 1-6    ANJNUAI • WET-WEATHE«? RUNOFF
  IRFG!
  I — I
           _ I


         ID"IPPEHP
            I
    1 I
     1! i
 1  . 1 1
        ME  I  03.5
            I
 1.1'
 I.-., i
        MA  !  (U3.6
            |
        MH  I  ai.O
           COMdJSTnPMIUNisfW! W/ER  j
                                         i«!
                                           I
                                         -I
           16.01   O.Ol ?3:6.l"Ti:2l
           17.6J  ,19.6!  l?:?!*?^!
                                        .-I
           15.41.  O.Oj"I!:5f"7oT7.i
 '   I'  RT  j 40,0   18.51  .16.SI  12.0!
 Immm|.....j.....
 i   ii   VT  i 35:0
 IAV BEG
 I.-. I
                   -..,-|„...,.|..**.Imrnm+mI

                    13.11   0.01  J?V.6I  J2?-
                    17.21
 l .21.  NJ j  42.8  19.11  19.41  52:2!
 1---I-----!---*.!...-. i. ._..i_;	_i
             38.11
 f™?™-*!1™-'51 25'2J ?0-31  ll-9!  18T2

 j""31""DE"i"45:0!"I?:?1""9:0!"73rii "T?"?
 I mmm I ..... |

                                         -!
 |  -3|   DC j  41.01 24.81,18.2! .0.0!  20;7*
  ... 1 ..... J .»..„. j mmmm.mLmmmm.m \ -„.„., | m „ . _ .
 i  • *'   wn j  aa.o!.  o.o! i8,5i nai  16:9
     i      i      i '     i  **-••»*-' i  j. _i v» * '  j. <;* % v

   , 3j""PA"i"3I?oj"I7!61"7e:2!"17:4!"7i:5
             42:91 16j9i
 1.31   WV  I  41.01  15J4!

 i A-V/'RFR""! i "42:7! "77^4!
 I...J..... [,
 L.fl!'  Ah  '  55-81   °-01 23-'"22:71"7?:sI"75:6
                                        i-1
                                        ,-i
t-41 . NC
!,*»•» I
I. . 4 I  SC
•l-.-l
           !
            46
                    0.01. J 8. 61  14%6  J6..4I
                        .   .!
!:-.fi..^.|.!S;!  .12;Jj.!2;2iIi?S
f«.?EG  4! it9'6-1  18-5J  '?i-7'
       IL  I 35.0
\mm5\'m IJj I  ^7.2
I""!I'""MI" t"=r''"
I--.-I
t  .51  MN
(...« |.....
L  . 51. . OH

l*"5[""wl"
L—I
                                O, .3
                                     W._^

                                     18:61
                                     13.4

                     ••* ,  M - - 1 i   - -  •»W««^|— I
                   l«,7   .15.1   .10..9  13.31
                 ...^. J mmm,m,m \ ..._w | ..... I

                   13.6!  12.91  , 9^1  lt:9l
!AV REG
I —(-..
            26.01 i0.5l"7o":6l"~7:4
                 •"•-»•• I mmmw^m I .....
                  14.6J  J5.6!  10^2


                 "74:5j"7o:8!""9:2!
51 32.7
• I.....
                                 -I
                  14.8J 12.9!  9:81

                   12

-------
-TABLE 1-6 ANNUAL WET-WEATHER RUNOFF
L 1 • IN/YR WFT-WEATHER,. FLOW I
EPA1STATE ANNL. (INCHES PER .-YEARV- . 1
LREGI, . ID PRECP . COHBlSTORMIUNSrW 'AVER.- 1
t. , 61. . AP «8.6
, , 61 , LA
1
15, OJ P0.6I 1.6-.4
56.0 0.01 27.5.1 J.7.4
...61- • NM . 1 9^0 oToi . 3.6J . 2U5
L 61.. DK
L -61 TX.
LAV REG 6
L ,71-. I*
L , 7 1 . . K 8
. , 71. MO
.32.7 0.01 ,14.2! . 9.7
31.0 24.71 ,14.21 .10.1
35^3
31,3
IITo
36?8
.: : 71 , NE. 26.5
,AW. RES- 7 . 31.9
. . B! , CO- 14.5
L. , 81, . MT.
L . 81. . NO
. . si. , sr>
14.0
2l!o
Is!o
.. r 81, . UT 15;0
1,. ,8j,. WY 15.0
17.91. .16,21 JO, 7
. 18.01. .12.1! 9,7
14.1 1 13. ?l JO. 4
1 1'
14.21. 13.31 12W7
11.41 M.5I .7*7
14,01 12.61 .10te8
6.11. 5.81 . a.O
0,0 J. , i.'fll' - 4tal
8.3! 8.31 - 6.9
10,41, 10.4! . 7,91
0.01 , 6.3f 4W4
0.01.. -5.?| .flfc7
IAV. ais. 8 IT*?!! 7?si, 6^4 i «r?
, , 91 . AK, , 30,0 13.1 ). 13.1 ! ,.8.6
. . 91. • AZ. 9.0
L 9! CA
L, . 91. . HI
L , 91. , NV
IAV REG. 9
O.OJ 3.1! : 2.2
17.2 11. 3J . 5.91 . ll»6
23.0 o!oi - 9.9! . 6.9
in
2.91. , 1.6! . U2
16.9 10.91 , 5.8 J . «T3
L 101 .ID. 11.0
1. 10 J. , HR 39.3
I 101. WA. . 30.3
• <••> | ••«.»«« m atv mm
,AV RES, iO ^6.9
.«<*• | «••«••» ««•«!«•
• AV.y.S. 33.4
0.0 I . 4.21 . 3fc5
I7.2i 16.8! 12,2
12.0! 15.51 .10,6
o9«*«p«n>|PM>lirtE*iq|W 1 W n» w «t **
13,51 lfl.ll 10.5
mm**m* | •»•»'«»•*•< ! <*w WSt1"
16.51., ia.81 .10,8
17,4!
2fl.ll
XI 1
«p.»i
M..7I
ts.sl
.13.41
-mmar^m I
11. 1 1
12.11
13 v5!
9,7,
12,2!
*•••<••*•• 1
.5.1!
5,01
Mow^w |
7.8!
9,1!
5.31
5;3!
5.V.
•ra—.^— 1
10,6!
2?7i
5?7!
. 8,7!
T!5l
5?5i
3.91
14.7!
12.3!
mm mm." \
12.4!
«*•*•>• t
••is. aj
13

-------
TABLE 1*7
I
EPA 1 STATE
RFC! ID
1 1 CT
. . J ! ME
.11 MA
11, NH
.1! RI
.11 . VT
AV PER 1
21, ,. NJ
21 K'Y
AV PEG 2
• 31. DE
, - 31 DC
31 MD
•»••* | *mm •
31 .PA
3! . VA
31 . WV
AV PER 3
.4! . AL
HI FL
41. GA
41 KY
• ••i 1 «• ™
.01 , MS
4! NIC
, fl! SC
«»•» 1 ^ •
41 TW
AV PER 4
51. II
5! IN
51 MT
5J . MM
.51. OH
""SI""HT"
AV PEG 5
AMNt
IIM/YR
ANNL.
PRECP
43?7
43.5
^3.6
41?0
40.0
35.'0
air?
Jirsi
38?1!
40.5!
45?0!
4t?oi
42,01
4i;oi
42.A9j
41.01
42.11
SSJ8J
56.5)

42.3!
54.5!
. fl6.'OI
46.71
48.31
49.61
35.01
. 37^2!
31.0!
?6.0I
37,21
...... |
R9.7I
32.*7I
JAL DRY-WFATHER FLOW
DRY-WFATHER. FLQVJ 1
(INCHES PER YEA.R.3 ... 1
COMB 1 STORM I UMSFWI £VER*
18.11 15.91 6,2! 1i;3!
1 Jl. 21 0.01 .6,91 9.6!
15.2! 20,1 1 .. 6,1 1 t2.0l
12.1! -0.0! , 8,0! 10.4!
21.31 15.61 5.61 11.81
11.8! 0.0! 10^4! H.OI
15.1! 18.41 6J3! )1.5!
20.5! J9.9! . 4,6! H ?2 1
S2.5J- 29.91 5.9! 33?2 I
49.4] 24.4' . 5.01 21.21
16.4! 16.41 6.71 S2.0!
42.21 19.1 1 .0.01 26.9!
0.0! 16,0! ,6,31 14,0!
20.41 18. 0! 5,1 1 13.2!
14. 3{ 16.71 . 5.5! 13.01
12.01 16,21 . 6.9! 10.81
18,31 J8.1 ! , 5.5! J3.5I
0.01 35.8! 6,51 10,2!
19,11 17.61 . 5.71 11.5!
J3.2! J5.ll .7,6! 10.8!
16,21 1B..1 ! .5.9! 12.3!
O.OJ 15.6! .7,1! 10.61
O.Oi. -15,51 . 7..3I 10.51
O.OJ 15.1 1 .7.61 10.6!
16.31. J 7.01. . 6V0'. !0.6I
14.4J 16.61 ,6.6! 11.01
26.81 . q.7! 6,4! 14. 6J
14. 8j .16.81 . 5.8! 11.0!
18.9,|. .16.2! . 6B3l 12.91
16.61 16.7! 5^6! To.6l
16.81 JP.4! 5.3! U.5I
»•"»««• 1 mfnim I «r-W^« I mm*~.*i |
28,7' .11.8! .7,61 H.3!
20T«i J4. 91 6.0! 12:»4I
14

-------
TABLE 1-7
EPA STATE
RFG . ID
, 6 AR
6 LA
••;•£ m
. , 6 .1 OK
6! TX
AM REB 6
,7 -IA
. 7 . KS
. 7 HH
/in. . 'ME"'
AV »E6 7
,8 . . CO
. . 8 MT
81 WD
. , 8 an
.. , e , UT
,8 WY
AV Rf-G 8
. t-9 • AK
.•,;? '. AZ
91. C A
5 I.' HI
, 9! ' . NV
AM. SER 9
. Jy ID
...10 -OR
10 . WA
«M« mmmmm
AV REG. ,10
* mm ! i»f> <••»-!•
• •IKK •»»•»"•«
.AV U.S.
ANNUAL DRV-WEATHEP FLOW .
IN/YRI DPY-WEATHER. FLOW 1
AMNL.I flWCWES PKR YF.Apy I
PRECPI. COMB J STORM IUN3PWI AVER , 1
08. or 9^3! 15.AI . 8J8I 10,4!
56.01 O.OJ ?0.8! . 7W6« 16.21
9,01 0.0! .17.01 . 6*21 11,01
32.71 O.OJ .17.61 5*51 10.01
31.01 iJ6,6l J6.6I . 6WQ! 10,7!
^5^3! l«:6i"17.a» . 6.31 11.21
31.3! 38;i) 13. ?!. 6,5! -10.21
33, Oi 16.01. 'IS* 51 . 7.11 11.41
36.8! 13.41. 11.41 10.11 1J.6I
26.51 19.01 18,01 5^6! 11.7!
31.9! 15.41 14.21 8,0! 11.21
14.51 26.81 17.3! .6.3! 12.01
.14;OI 0.01 .14.2,' 7W9! 11.4!
21.0! 14;3i ,14.31 8J3! 1-2.21
25.01 16.4J 16.41 ,:'7.1I 11.21
15.01 0?Q! 17.1! ,5.9! 10.71
15.0! 0;0i 15.0! 7>6I 11,0!
J7.4"! 21.4! ,16.4! ,6.61 11.51
. 30VO 18.51 .1.8.5!' 4.91 10.11
9;o O.OJ .1,6.51 , 5,8 1 10,6!
17.2! 33.3! 17.31 , 5.71 13.41
P3.0! 0.0! 18.2F . 6,0! 12.6!
SJS! 19.31 16.8! 6.01 10.41
16.9! 32.61 17.2! . 5.7! 13.0!
H.QI o.oi .1.4.?! . 8wei ii;4i
39.3 17.5J 16,91 . 6J2 ' 11.4!
30.3 15, 2 i 17,d 6.5! 11.4!
»«•••••. | •»•»«••!•• \ «•»••«»• | •»•««.<• I !"«••»•«« f
26.91 15.91 16.51 6.61 11.41
.mmmmm \ mmm,mp> \ mfmmm \ ftmtfmf I mm.mm1* I
•••«••«•» 1 «•••••• 1 «ifnr» mm ( mmmm.'* \ mmmm<" 1
33.4! 22,5.1: J7.5! ,6.2! 12.81
15

-------
  densities  in combined sewered  areas will  increase  the ratio even more

  density.       SS  "*  ***""** t0 be ™  increasinS function of population


  NATIONWIDE QUALITY ASSESSMENT

  Annual BOD5 loads were calculated for  the 248 urbanized areas for
  both wet and dry-weather  conditions, the  latter under the assumption
  of  0.17 pounds per person-day  CO. 08 kg per person-day).  Annual loads
  *JL°S^r  Pafameters mfy  Be easily calculated for  any urbanized area
  from information  provided in Section y.

  The national summary as shown  in Table 1-8, Dry-Weather BOD Loadings
  and Table  1-9, Wet-Weather BOD Loadings.  Loading  rates for untreated
  dry-weather  flow  are higher than for wet-weather flow.  However  if 85
 percent secondary treatment is assumed for dry-weather BOD generation
 wet-weather loads are seen to he'one. third of the total residual
 loadings i* urban areas. .Moreover, BOD. loadings from combined sewered
 areas are  comparable ' to loads ' due to secondary effluent,
 COST ASSESSMENT METHODOLOGY

 A generalized method for evaluating the optimal mix of storage and

 Thif Sn,   ^l deS±r^ leWl °f P°llutant control was presented.
 This method can be used for any city in the United States to  obtain  a
 first approximation of control costs.   Five cities CAtlanta,  Denver,
 Minneapolis, San Francisco, and Washington, DC)  were used in  the more

 flush ^     r J";  ^ effSCtS °f treatment Pla<* efficiency and  first
 rj.usn are included.
 An evaluation was made of the relative desirability of using a mix of
 storage with either primary treatment or secondary treatment.  The
 basic tradeoff to be evaluated is whether primary treatment is suffi-
 ciently less expensive than secondary treatment to offset its lower
 removal efficiency which necessitates treating a much larger amount of
 flow to effect an equivalent BOD removal.  The results indicate that a
 primary type of facility is preferable  up to BOD removals of about ten
 percent.  A secondary facility is preferable  for higher levels of
 control.

 The annual average percent runoff control and the annual number of over-
 flow events were correlated to permit the reader to  use either criterion
 as an effectiveness metric.  A precipitation event was assumed to  termi-
 nate following 12 hours  of no  precipitation.

The final assessment: results (annual costs per acre) are shown in Table 1-10,
Annual Control Costs - Combined Areas, Table 1-11, Annual Control Costs -
Storm Areas, and Table 1-12, Annual Control Costs - Unsewered Areas.
                                     16

-------
TABLE 1-8
1
EPA I STATF.
RFGI in
, 1 ! CT
1! ME
1 ! HA
1
. 1 I NH
1
1 ! RT
.11 VT
AV PEC 1
5 i . . Nil
.21. NY
AV PER 2
31 DE
3i PC
. 3! M.D
31. PA
31 VA
. 31 WV
AV PEG 3
. ai At,
. 4 i FL
a! GA
41 KV
4i MS
4 ! . NC
. 4 ! SC
ai TN
AV PEG 4
5! It
DRY-WEAK"
IM/YRI OP
AN'N!..| (I
PPEf.PI COMB
43.71 836.
03.51 51«.
.0 3 . 6 ! 7 0 a .
41.01 560.
ao.Ol 984.
35.01 544.
a 1.11 700.
42.8! 948.
38.1 12428,
40.512284.
45.01
41.0
fll.O
41.0
42.91
760.
1950.
0.
94?..
660.
41.0 555.
42.1
55.8
846.
0.
56.5 88?.
46.5
42.3
! 54.5
46.0
1 46.7
48.3
49.6
1 35.0
. 51. . IN. 1 37,2
,51 Ml
5! MM
1 31,0
609.
747.
0.
0.
0.
755.
663.
1236.
683.
875.
26.0 768,
51 PH 37.2 778.
.51 WT 29.7
AV PEG 51 32,7
1324.
94?.
ER POD
Y— WFAT
BP/ACR
STDPM
736.
. 0.
931.
0.
721.
0.
«51.
9?1.
13P3.
1 126.
760.
884.
830.
834.
86?.
748.
838.
73?.
PI?.
699.
837.
719.
718.
697.
785,
766.
450.
. 775.
750.
771."
896.
, 547?
688.
I n«Dl
HFR BC
E-YFAP
JMSFW
?8P.
318.
?81.
368.
P6J .
460.
?9().
?lfl«
27?.
229.
309,
. n.
29?.
?34.
?Sfl.
320.
?53.
302,
264.
349.
273.
330,
339.
351,
277.
304.,
295.
?70,
290.
257,
247.
35-1..
279,,
SIRS
0
)
AVER
521.
444.
554.
flfll.
546.
509.
533,
520.
1533.
979.
553.
T?43.
647.
60P.
60?.
49P.
62?.
473.
533.
490.
566.
490.
487.
488.
49.1 .
507.
676.
50P.
594.
49?.
531 .
522.
. 571.
17

-------
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
I
1
1
!
1
TABLE 1-8
1 1
EPA (STATE!
RFGI I'D 1
6!
61
61
. 6j
61

LA j


TX I
AV REP 61
7!
7!
7J
. 71.
IA !
. KS |

NE 1
IAV REG 7!
L


1
• 8!
. 81
8!
81,

81
I...I-.




. 91. .


. 91 .
! 9!
I.-.I..
IAV RES

1
IA
10!
JO!
v sip
IAV. u.q
i »..i..
CO !
MT- 1

SO |
LIT 1
WY C
; 8i
AK I
AZ !
CA f
HI 1
NV I
Wain
91
10 1
OR I

. !
— I.
HRY-WEATHER Ptin IOADINGS-
JN/YRi DRY-W.FATHFR- SOD
£nckA (I. BS/ACRE-YPAR)
P°ECPI COMB! STORM IUMSFW 'AVER
48.0 1
56.0!
9.0!
32.71
31.01
35.'3|

33.0
36.8



26.51
31?9I
14.51

21?OI
?5.0I
15?0
15?0
17.4
30.0
9.'0
17.2
23.0
5.'5
mmmmm
16?9
rr?o
39?3





430. I
0. 1
O.I
0. 1
1228?!
675.1
1763. 1
741."]
621.1
880?i
712. J
1238?!
O.I.
662?J
759?|
O.I
0?l
988. 1.
854?!
0.1
1539? r

O.I
893?!
ISO??]"


30?3
--*-!.
33.411
0. I
810.1
703?)
039?!"
712. 1
961. I
786. !
815. 1
766. 1
803. I
612.1!
714.'!
529j!
833?!
657. 1
798.1
657.1
662. 1
759.1
790. !
405. 48?
352. 749


?87. 506
25?. 464
278. 496
29J. 520
299. 473
328. 525,
465,
?60.
367.
290.





537.
541.
520.
555.
364? 52R.
384. 563.
328? 516.
271. 495.

693.! 349. 506.
760. 1
854.. !
761. 1
798. 1
841. I
303. 53?.
?27.
268.
262,
277?
777.1 277.
797?! "263?
657?!
780.1
785. 1
55"!-
405.
288.
302.
mmmm
285.
466.
49?.
617.
583.
->mmm*l
480.
"601?
526.
528.
525.
mmmmm
526.
mmmmm
594.

18

-------
                             I
  1 I.  CT  !
mmm\mmmmm\m
 , H ,ME  !
mmm\mmmmm\m
:,ij-  MAJ

""I (""NH"
M
                                          i
                                     >«••>••> 1
                                     68.5!
          1A9.6I  3B.7J  31.3  fe?.2
          w™»«« | «,»«.«!«. f mvm^f *"*•«"
          160;U  S9.2I  30.1  36.2
!
OE !
                 187^8J*«oTi!"2912 11  64.4'
                       mmmmm^mmmmm


                             I
 , , 31,  DC. !

 "3!""HD"|
 mmmlmmmmm
 . , 3!  PA
 mmm\mmmmm
   31  VA

l""3l""wv'"
\mm»lmmmmm
1 AV.  RES   3
|mmm\mmmmm
\  , 41.  . At

iTSir'Ft"

l""2]r"5r

!*"4!.""KY"

i.""4! ""MS"

I!""«I""NC*
lmmm\mmmmm
! ,41. SC

|'"""4l"*TN"
1    I    —,
LITRES  ^4

JTii'Tit"

!'.**5!"™IN*
U—[— ---
 I. . 51- • Ml
  Immm|mmmmm
  .  51. • MM

 !'"75l"*OH"
 tn^o|mmmmm
 I  5 I -  WI
 I    t    M tt)
 |.Ay*PEG.' 5

                               ,OjOl  87.81

                        "IeToi"3Trol  35^6
                       ,Jw,W»>S»|-«.?«»!fjW» = ^W
           »!. W««3 |
            41.01

           "42!o
           • ni. ^j~
            41,0

           "42?9

           "srro

           "flSTT

           "sirs

           "56?5
           wir>n|^
            HO,3>  *«/'.»'. r- ».<•»••  —"-w~     ~  i
           ««»•»! I re'*"•*&'* \ mmmm^m I mmmmm \ '""5'^lT I
            42?3I153.21.  37.2!  30.0   39.8
                  „„«,» I ,»»«B«» I mmm^m \ mmmm.m J
                    0.0!  46.2!  40.5   "2.9

                  ""orOl'sSTol  34!o
                  mmmmm j MWW^" I »»«»«*«j*»
                    0.01,40.2!  35.3
                  ».«^«< I mm mmm J -
                  *• ^"* ^ T* "TT'IT-r~~^^»1   • ^ .»
                  147.01  37.4! ?8»0
                  •i»w««pl»»»«^«l"«»«^l<"tl»""^"
                  147.8!  38.31 31.8   45.8
                  mmmmm | mmmm,m \ w^».^w j w«w-^-
                  137,61  38.61 S2.3  lOfl.l
                  ».«»- J W«W«?- I IP.-^W  """S^S
                  147^5!  37.81 ?9.6   47.9
                  mmmmm Immm^m ) mmmm,m ] mmm m,m 1
                    O.OJ  48.71 41.6!  44.41
                  „„.-» ......
                  „„-
                  190?01 51.0!  40.8   45.9
                  mmmm.m I mmmm,m \ mmmm.m \ mmmm.m \
                  159.71.40.4!  35W3   58.6
             54.5
             mmm,m
             46.0
            V«»ffP OB«t
             46.7
             48.3
                               36.0
           166:21742:3!  34J7
           mvw^m J „».».«;<» | w-w^" I "•"
                                  .
                               37.21

                              "
            "49^6 16l!oi,"'44r9!1"l7!2)^45.5!
            .35.0
            mmmm.m
             37.2
             31.0
            mtnmam
            . 26.0
           13381.
                                   ,
                                ?4W6  64.6
                  J, ^ -uf *p ** r • ft.^v*^**'  •-• w i       I

                  ""'*" f "IHS I "?6!I I "68!8 I
                        I mmmmm I — «^- ! --*•*•
                  ;27-1!-?-*-!"-UJ!
           W9o!s!"22?!!"Ti^Ij ^52;!!
     "37:2 i25?3!"3T!9!"?4?8r49?3j
     "29!?iTi6!2 i"2537!"?i3i!"li?ij
     mmmmm I mmfrnm \ mmmmm \ mmmrn^m \ *1™'""*™ J
      32?7 124!0!  27.41  23.5  52.8
                    19

-------

TABLE 1-9
     ^**
    STA-IE
REG   ID
   WET-WEATHER  Bor<  LOADING?
    R     WFT-WFATHfTR BOD'
    -     (LBS/ACBE.YPAP)- -
PRECP  COMB I STORM fLIMSrWI AVER
t, , 6!
6!
61
. 61
. . 61
AR
LA
NM
OK
TX
AV REG 6
. . 71

7!
7!
IA
KS
MO
ME
AV REG 7
. 81
81. .
...j .
. 81
81 .
cn

MD
SD
UT.
Av"RiG~"a
, 91
. 91

91
9J. .
.AV REG
. to J
. .101
.»••<* J mm
»•['
AV. REG

AV U.S
AK,
AZ
CA
HI
NV
9
ID
OR
WA
10

•
48.01138.41
56*0
0.01
9.0 0.01
32.7 . 0;0!
3i!o loon!.
35?! ISTTlsi

33.0
36.8
26.5
31.9
121.91
125.21
96?8J
Tsir^j
14.5 50r2l
14.0
0,0,1.
21.0 73.51
25.0 90. li
15.0 fl!o!
tiTo
--"•«-
«!;£J:
64.2l"
soTo inroi
9.0
0.0!

23.0
O.OJ.
5.5 26321
16?9
"l.O
39^3
mmmmm
30.3

oroi
mmmmm I m
103;9J
26 ?.9 116:11.

33.4 136761
43.2!
. 55. 11
, , 7.9!
29.41
29.71
33,4)

27.91
29.2!
23, fll
27.01
12.4!
12.0!
17.91
21.91
13.41
1*3 O t
C tt ' t
"lir?!"
27.01
. 7.0!

20.6!
. 4.0!
J2.4J
. 9.31
34.9!
-•.-!«. | ~
32, J f
37!2l
40^0 !
6T6!
?3.6!
?4T3!
?5!si

?4 4 •
?8.5(
jsrpi
25!OI

10.51
16.11
t8,7l
< 0*9 1
n.3t
2"!ll


.16.7!
.3.'SI

. 8J5I
29.0J
•r *H vf* I m
25W3I
46.1 !
49.91
7.21
25.8!

30.21


70,3!


*«»m«« |
11.31
19.01
I
• MPW^m |
21.3!





18..8J
4.91
a.9i
53.8!
— ,-!
48.31
29.4! 25fcOI 46.5!
V* + m \ mr *•**•* 1 m <**„•* \
30. 5f
25.91
43?6I
                     20

-------
T*6(_E I-1C
EPA 1 STATE
IRFC. 1 10
"l CT
TI ME
, "l MA
II NH
1 1 RI
1 1 VT
AV' PEG 1
21 NJ
?l NY
AV REP ?
31 DE
31 OC
31 MD
31 PA
.31 VA
31 wv
A*' RFC 3
Hi AL
ill FL
. ai s*
fll K,Y
iil MS
til NC
C 1 SC
«l TN
AU »EG U.
7?.
'!<••.
1X0.
7!7.
77.
165.
flOU.
381.
60.
fl^O.
0.
]ai.
6*;.
'IP*
I!«.
0.
1«6.
77.
7Q.
0.
0.
ti.
i nK
1 61 TX
AV. PER 6
1 71 IA
17! KS
l 71 MH
1 71 ME
IAV PEG 7
I^a^.ii si cfl
O.H 9i MT
.Iliz!!..!!..^.
305.11 81 SD
P06.M 81 UT
676. jj 81 WY
0.
610.
310.
3SO.
0.
0.
0.
Sar.
UV PEG 8
91 AK
..!!„£.
..!!.. SL
91 HI
1 91 NV
IAV REG 9
"91 io
336.11 lit OR
1225.11 101 WA
505.IIAV RE6 10

22".
J65.
1305.
550.
iREAS
25X 1
I«.
».
0.
o.
Io.
35.
96.
26.
22.
2«.
26.
46.
0.
13.
2".
0.
0.
32.
HO.
0.
80.
0.
1ft.
77.
0.
«8.
30.
Ii!
«7.
CONTHt
($/«
SOX
37.
0.
0.
0.
277.
ITT.
38-3.
71.
59.
77.
75.
Ifll.
0.
355.
ia.
0.
0.
95.
107.
0.
2«7.
0^
36.
237.
0.
12ft.
80.
L- cusr
CRE5
75X 1 85X
96.
0.
0.
0.
992.
371.
l^li?.
193.
158.
21«.
22ft.
43U.
0.
«ft.
Tafi.
0.
0.
286.
2fi7.
0.
76".
0.
96.
732.
0.
343.
Z«.
9«. 250.
	 501.
^
1
Ifll.
0.
0.
. o.
1665.
608.
268S.
2fl7.
235.
3?2.
3«9.
6flfl.
0.
lao.
221. j
0.
0.
3«5.

-------
  TABLE T-ll

 ICPAISTATEI.
 IRFJGI  in  i
  ...I.....I.
    II  MH I
  ...I.....|.
    II  RI I
  ""["'"VT"!'
  ...I..... I.
  AV PEG  ii

  ""2i~"j"l"
  ... I ...«. 1 I

  AV °EG  i» I
  ... I ..... I ,

    31   OE I
  .--'-..-.I.
              AMNIJAI.  COHTf
JJ5X


 "I)


""

~?3


^36




'b'.':
 ...I.....I.
   tl   AL  I

 ""C!""FL"I'
              ao.

             "io7
 ...t.._-.i
 AV RFP  41
   5
             an
   5j
       HH
   51

IAV%ER
      .«t I   15.
I.
         Bl  25.
 5C*



   U

"l27

   0

 "67

   i!
                            .
                            ysr
                   •'"?
      103.
      "e77
      7oo7
      77o7
                    oo

                    "
                   57
                  UP
                   "1.
                   6".
                       7,'r'?M 4" A8
                       !!IE*!ST*!
 7S'/.  I fib*  ll^ftGJ " ID
^..-.!»__.. ||... l.,_.
 ?30.l 552.II  61  AR
.....i.....M...i....
   I'.'   (I. II  61  L*
	..I	.III...!....
 3«' . ' ?o?. II  61  MM
..... i ..... i|«... i ....
   P. I   O.H  61  OK
. — .-I-....JI... I....
 195.1 297.11  61-  TX
       31^.1  ii9)  II  71   TA
      ..... I ..._.|l... (..__.
       36«. i  SCiS. II  71   K9
      »..._ i .„... (I .«,. i .....
      -------   ||  71   yn
                         r 4 w . i  ,•* f "4 . 11 0 v K £ rj  '
                        "3067 i "fl737 H "*8 I "so"
                        -----'	--II... I—.—
      29"..' a«"5  IIAV PFG  »
     ..... i	. n ... | _____
      3BO.I 57U.II   91   AK

     ___.. i._..: ii... i __„:_
                        "^,"571 "-"^27 n A "PER"?

                         3<»r>.!  trie, it "i? i "TO"
                         .... I -._.„ || ,a, | ___._
                         3':3. i  flS". II  1C I   rj»
                         	i._..i || .ill...1..
                         lio.j  j^a.ii  ]||   WA
                         int.i  ?7u. n...i....
                         r^:l-;«:.'!^.V:2:.
                                                 25X
                                                  86
                                                  3!

                                                  16.
                                                 •737
                                   _22.

                                   "«"T
                                                 «
                                                 32.
  37

"~8/I

^76"

"7o"

'"so"


'"/I57
                                                        35.

                                                       *!f:
                                                       *6fl7
                                                       07

                                                        2
                                                       o
                                                             717
                                                              7t
                                                            287,
                                                            "77!
                                                            775!
                                                Hi .

                                               n~>',

                                               "as!

                                               317!

                                               1^2!
                                                            279.
                                                                    «5S

                                                                   ""7?
 139

-SU7
                                          213

                                          7fl3'

                                          216'



                                          III:
                                          771)]

                                          3ia!



                                          "771
                                                                  39
                        315.1  /I77.I
                         11 O.I  16?. 1
                                    22

-------
TABLli I-12
1
FGl' ID
11 KE
~7i ""
"7!~~MH


AW PEG 1
?l MY
~3l"~E



31 VA
"°3l""v~
AV PEP 3
~"l"~FL
""!"""
(11 KY


a i TN
... i...-
AV RE ft
... 1..--
51 TL
5! MI
51 MM
5 1 OH
51 wl
AV PER
AMNU
25*
7«7
57
10.
P.
11.
....
7.
""77
10.
0.
•».
7.
8.
JO.
8.
~"7~7
12.
13.
«.
12
""73"
11
"""5
~"~~
6
6
8
8
8
M. coki
50X
27.
2U.
2P.
20.
••>'.
JH:
i<).
"757
26.
0.
24.
79.
22.
26.
21.
31.
3?.
"5r
3!
"5"
27
"57"
"22
19
1U
7o
21
20
T»nl r
Cp^s;
7?.
63.
76.
52.
P7.
"""
_^:
6«.
0.
61.
50.
57.

•35.
(•*•>•« ••
78.
83.
'""577
7".
~ 63
!3 *l
y?
3^
<;*
«?3

!i EPA i. STATE
107.11 61 IA
93.11 6j «M
1~3.ll 61 HK

130. MAV PER 6
9«.ll 71 I A
_..:i|...l 	
72.) 7" KS
-7i7!i"ii"Sr
7o7.HAv REG 7
O.ll 81 en

73.11 ei M"
fiS.II 81 SO
1 0 1 '1 81 '•-'^
-.21: !! ..*!..!--
"7?77ii AV'REG »
7t3.jj 5j Ii<
121.JJ "j A7
""357ii""51""^""
77a.il 5j w"
721.1' * v PER «>
""»*!! Ilsill'ft
"""HAV PER i

51. I — 1 	
7U.
77.
71.
251; 1
"7s7
i".
«.
7.
e.

. !:
"""67
u.
6.


7.
6.
_ 7.
6.
«.
3.
1.
"""77
2.
".
6
""l2"
.....
_._.^
H
.....
coNiRy
37.

IB.
?0.
2?.
20.
""227
38.
.....
27.

18.
77.
17.
u.
IP.
1".
7.
11.
"777
a.
77
16
•»»•• ••*
27
"27"
S 22

L COST
5IL
"7t5o.
05.
21.
/!6.
52.
56.
50.
M*tfB«*
•57.-
""177


43.


35.
""377
«e.
7e.
27.
10.
27.
"77"
""e"
•56

2J.
13«.
32:
ftSs
75.
82.
73.
""e?7
'"I:
""537

'48.
62.
6S:
62.
50.
""37
62:
?^:
flO.
«.«.•»«*
61.
1".
'Si
"7i27
II!5:
"7oo7
Bl.

23

-------
  In order to obtain an overall wet-weather pollutant control of, say  50
  percent in a given urbanized area,' the optimal strategy is to use a blend
  of control in the combined, storm, and unsewered portions of the urbanized
  areas such that the marginal cost of control in each of these three areas
  is equal.  The results are shown in Table 1-13, Optimal Percent Control for
  Specified Overall Percent Control.  Knowing this result and the control cost
  equations for each type of sewerage system in each urbanized area  the
  optimal cost per acre can be determined as shown in Table 1-14,  Optimal
  Annual Cost per Acre for Specified Percent Control.   Lastly,  the costs per
  CA?P™? multiplied by the acreage in the combined,  storm,  and unsewered
  I  15   ESJS A     ? ^ final assessment results which are shown in Table
  for thePeur!re^rathan^ ??™  ^^  ^^  The results  indicate  that,





 wet-weather control increase significantly.  This is due to the

              ^ C°ntr01 Un±tS ^^^ t          the less
 An analysis was made of the possibility of cost allocation among wet-weather
 wet weLh°f    ^ dr^Weathf 4«*Ut7 control (with flow equalilation) and
 STS?    SUan  y C°?tr01 (W±th St°rage "quired to reduce runoff rates -
 « ,hn   f ^     Te?UltS SUggSSt that sig*"icant savings might be realized
 as shown in Figure 1-1, Single Purpose and Multiple Purpose Stormwatsr Pm^I
 tion Control Costs for TTS, which indicates reductions ranging from 70 percent
 at low control levels to 30 percent at high levels.'                   Percent

 Son^other %
-------
fABLE 1-13 OPT
!Ee!STIOE COMB
"I "~CT" ""17"
IMAL PERCENT
25X 1
3TORMIUNSEWI
™! I "?!•?!
1 ME 27.9 O.oi 3.01
,mm\ mmmmm mmmmm ..... I ..... 1
1 MA 34.61 0.01 26. Ij
I NH 28.3
...1..... .....
1 RI 26.5
... 1 ..... .....
1 VT 32.0
0.0! 3.71
mmmmm ) mmmmm \
O.OI 0.81

2 NJ 29.0
""I ""NY" "277"
4.01 42.7!
"~276 1 "5475 !
CONTROL FDR SPECIFIED OVERALL PERCFNT CON
OPTIMAL PERCENT CONTROL
COMBISTOHMIUNSEw! COMB 1 STORM 1 UN3EW COMB 1
mmmmm \mmmmm mmmmm j ..... | ..... ..... .....
54.61 29.1 56.11 78.11 54,2 83.5 85.0
mmmmm \ mmmmm
60.51 18,4
53.2! 0.0
mmmmm \ mmmmm
50.51 32.1

28.1
*"i7" "*77"
	 	 	 i 	 ! 	 ! 	
31 DE 36.7
3.51 27.51
31 PC 25.8 22.'5i O.oi
3 MO 0.0
~16.ll 46.2]
31 PA 32.21 8.5! 42.4
3 "A 44.6
... ..... .....
3 WV 27.2
3.81 36.51
mmmmm | mmmmm \
O.OI 6.51
1 II
4 AL 0.0
41 PL 40.9
4 GA 37.8
41 KY 44.0
41 MS 0.0
...I..... .....
4! NC 0.0
0 1 SC 0.0
... ! ..... .....
41 TN 39.0
1
10.41 36.3
9.91 43.0
0.91 II. 4
6.61 37.3
12.11 35.3
"II77! ~3477
1 13.1 | 33.9
1
61 in 27.9!
48. 9j 52.8
O.OI 40.4
...i. \mm-m- \
54.41 84.91
29.51 78.11
...... 1 ..... I
59.41 75.11
mmmmm \ mmmm_m \
?6.0! 81.81
1 1
70.21 77.9!
"""7"I""~75J
. 	 !...,.!
54. "0! 85.01
O.OI 72.01
73.01 0.0!
55.71 33.51 70. 3i 83.31
69.21 27.8
..... 1 mmmmm
52.31 9.6
1
O.OI 34.4
63.51 B5.0
mmmmm \mmmmm
33.11 77.2
1 1
62.1! 0.0
64B7I 33.9! 69.21 85.0
62. 3j 25.4
47.41 85.0
68.41 30.6! 64. 0'l 85.0
O.OI 36.2
mmmmm \ mmmmm
O.OI 35.8
O.OI 37.3
mmmmm 1 mmmmm
63.31 25.2
1
5! IL 22.01 24. 7l 40.8 45. 7J 52.6
.i! I*1 28.4
51 MI 28.2
... 1 ..... .....
.51 MN 34.4
... ! ..... .....
51 OH 30.6
... | ..... .....
5i WI 18.6
0.0! 19.31 53. 7j 1/1.6
0.81 27.7
..... 1 .....
O.OI ?9.5
!..... 1 .....
O.OI 28.3
I ..... \mm-mm
1 20.41 35.8
52,61 25.9
"5875 1*2376
i "**7" 1*1 "7*
! "39771*467"
61.01 0.0
..... 1 mmmm^m
60.4! 0.0
1 *9."l 0.0
..... 1 ...«f .
58.11 85.0

I 70.41 71.9
46.81 78.3
1 54.81 77.0
"""71 1*8*71
mmmmm | mmmmm
56.9| 80.7
mmmmm | mmmmm
63.51 63.7
mmmmm mmmmm
42.2 81.2
0.0
mmmmm
57,8
~""7o

63.0
mmmmm
54.3

52.7
82.8
70.8
55.3
mmmmm
85.0
mmmmm
51.21
1
85.0
"*"7"
TR01.
S?§RM.IUNSEW
"8*7"i"e"7"
..... ..... .....I
85.01 85.0 85.01
85.0 0.0 85.0
mmmmm mmmmm | mmmmm \
85.0 85.01 85.01
..... ..... ..... 1
85.0 0.0 85,01

85.0
"""7"
1
85.0.
mmmm^m
85.0

81.0
0.0
85.0
62.41 85.0
61.5
"337"

62.1
"""7"

85.0
66,61 85.0
51.6
75.1
62.5 85.0
62.5
*6l73
85.0
*8~7o
61. 6J 85.0

83. 5j 85.0
85.0
85.01
mmmmm
85.0


85.0 85.0 0.0
0.0

85.0 85. Oi 85.01
85.0
mmmmm
85.0

.....
85.0



. 1
85.0J
85.0 85.0! 85.01
85.0
85.0 85,01
85.0 85.6 85.6J
0.0
"•*7o
0.0
"""7o

85.0
mmmm,m
85.0
.....
85.0
85.0
..... 1
85,0
"eilo
|
85. Ol 85.0 85. OJ
39.11 73.61 85.0
51.01 82.0
I "~77"l """7"
! mmmmm \ mmm~m
40.91 84.0
1 85.0
1 ......
1 85.0
*857"
mmmmm
85.0
85.0 85.0
85.0
mmmmm
85.0
mmmmm
85.0
1 mmmm.m
85.0
1 85.0
\mmmmm
1 85.0
mmmmm
65.0
"""7"
25

-------
TABLE 1-13
E^AlSTATE
RECI ID
"*6
""S
WWW
6
6
"*6

AR
""LA"
wwwww
NM
.....
OK
"~TX"
WWWWW
71 I A
WWW I WWwWw
71 K3
•ww 1 wwwWw
71. MO


WWW
-.2
1 8
WWW
1...
NE

mmmm
""MT"
WW«*QW
ND
mmmmm
9D
mmmmm
8 UT
13
WY j
...L 	 i
91 AK j

9
""5
""5
""5
WWW

"T5
"T5
1".
* W
AZ
~"CA~
""HI"
"f3v"
WW W W W |

""ID" i
..... t
OR 1
.....1
MA 1

COMB
"mllll
""b"7o
i""o7o
1.....
I o.o
— - - — 	 	 ~ __• . - — 1_ ' *T V *" *•••»»' * I- "• <-/*(. I>riUb, r t,'\Wl 11 1 HJ
25X , §(J| PERffEKIT CnN|§9L
STORMIUNSEWI COMB I 3TOHM 1 LJNSEW 1 COMB ISTORM 1 UNSEW ! COMB
WWWWW, | WWwWW \ WWWWW f WWWWW
1.41 19.31 80.11 25.5
mmmmm I mmmmm 1 mm mm mm mm mm t mm mm. mm mm
1 wwwww
! ««•*
"85?0
~»™^w~» | mjmimi-m'mM | wwWWW I Www^W | mm mm 9* mi m* wwwww
_13.6J 54.31 .0.01 37.71 81.6 0.0
""772 1 "3176 1 "~o7o 1 "5175 1 "677s
""575 1*3975
1 wWwWw | wwwww i wwwww
25.71 10.21 39.1
I...*.
1 12.7
| wWwWw

15.7

| . O.Oj 29*4
1 ..... | ... — .
1 44.91 3/1.3
! 	 I 	
wwwww
o7o
1 65.5 0.0
I wwwww
1 65.3
i •
1 36. 5 i 30.91 4l74l 63.9
mm.mm - 1'Z\ ^ '' i

27.7


""o7o
WWwWW
mlm'mm
.22:2
0.0
WWwWW
0.0

"3671

0.0
"1577 i
WWwWW
0.0
I!°P
mmmmm
0.0
wWwWw
31.9
WWwWW
J2:2'
O.OJ 4.2
0.0

[ 62.61 28.7
! wwwww 1 wwwww
[ 56.31 2/1.1
j 28.71 52.5 20.3


II.I!
1 36.7
!_____
-

""o7o
"I575r32^4i~7671
..... 1 ..... I — - ...
9.51 35.51 68.9
wwwww | WWwWw t wwwWw
3/1.0
ss7s
.....
69.2

| WWWWW
1 56.8
1"
WWWWW
1 71.1
1 WWwWW
i 64,4
..... 1 .....
77.51 85.0
.•-.. I mmmmm
85.01 0.0
..... 1 . — — ..
85.0 0.0
1 "6*177 i~8_J7o
o7o
!"6479l"857o "es"o
! 	 !

53, 7j 73.5 85.0 85.0
.....
85.0
!~54.4
wwwww wwwww | mmmmm
?9.8| 81.21 49.2
56.3

70 9
	 	
76.8
1 44.8
	 I 	
73.8
wwwww wwwww wwwww
mm.'ll ---'-- — ?«?
"407I
"3J.76
w w-» w^
SB. 3
"6l7/»
1 67.3
1 .....
! 67.9
wwwww | wwwww
85.01 67.6
WWWWW | WWWWW
85.01 61,8
6.91 41.91 . o.O 30. 9[ 67.8 o.'O
~Is7oi "36751

!__„_!
WWWWW | wtvwww |
0.3J 39.0]


1 WWWWW |
1 	 *_ 1
mmmmm
II!:2! !.!-£!
"To76l""67ol
"~27s I "35*761
— _____ 1 '_ _ 1
.....
WWWWW |
"1673 rso i
"""7o

27.71
..... t
23.8,

. 0.0

"6071
WWWWW

37.41
1
...... 1
2/1.41
WWWWW |
32.61
mmmm
""177 "38*76 j
""o7o
wwwww
54.1
mm mm mmmm mw i
35.01
WWWWW |
27.01
wwwww 1 vwwww |
1
wwwww
..(>:<>
mlmmm
.....i
__ * _ 1
2276 !
"157?!

62.*1 0.0

wwwww wwwww
64.9 85.0
wwwww | wwnww
..I:!1 °'°
~747«
"7779
..... i .... .
_80.8 85.0
"5574l"857o

1
85.0
WWWMW
85.0
wwwww
85.0
...••.t
85.0
! www-ww | wwwWw
| 64.3 85.0
85.0
.....
0.0
.....
85.0
.....
85.0
.....
0.0
1 ... --I----- --— --

wwwww
56.4
1..—..
65.1
WWWWW | WWWWW
_69.9I 71.1
""o7o
~6i77l"8o7r
.....
"597!
"547T
"077
WWWWW
""o7o
WWWWW
81.6
wwwww
82.5

WWWWW
68.2
WWWWW
53.5

wwwmw
85.0

85.0

.....
85.0

o7o
..— — . 1 .....
85.0 85.0
WWwWW
85.0
""o"7o
••••w t wwwww
85.01 85.0!
Ii
wwwWw
65.6
wwwww
47.2
WWWWW
44.3
"8475
WWWWW
80.1
WWWWW
76.6
""o7oj
WWWHW I

'" ! "UU
85X
1 STORM IUN8EW
1 mmmmm \ mmmmm
1 85.01 85.0
1 aw — — «t t — mmmm
I 85.01 85.0
1 WWWWW | WWwVw
1 85.0! 85.0
I WWWWW 1 WWwWW
1 85.01 85.0
1 mmmmm \ mmmmm
i i I
1 wwwww | wwwww
1 85.01 85.0
I wwwww | wwwww
1 85.01 85.0
1 WWWWW 1 WWWWW
j 85. Oj 85.0


85.0
mmmmm
85.0

85.0
WWWWW
85.0
WWWWW | WWWWW |
85.01 85.01
----- \mmmmm I
85.01 85.0
WWWWW | WWwWW
_|J5.0 JJJ5.0


mmmmm
85.0

"857o
"857o
"857o
WWwWW
85.0

WWwWW |
85.01
WWwWW
85.0
WWWWW
85.0
wwwww | wwwww
85,01 85tO
wwwww | wwwww
wwww.w
85.0
wwwww
85.0
WWWWW
WWwWW
85.0
.....
85,0
ww'www'

                                     26

-------
                  EMT
fABLE 1-14 nPTIMAL ANNUAL (
:*»A STATE
?CSI ID
25X 1
CQMBI STORM IUNSEWI
... ----- "j;57j""ll7 "11".
».. ...... .».»«« I ...«•«• ....
1 ME 18.1 ^0. ^4.
"T "MA" ""4i7i "7 "57
swot mmmmm «aOw»«t |
1 NH 19.!
11 RI ^46.
*"I "VT" ""Is"
i
amm | ••••• ••»•«
2 NJ 55.
"I "NY" "Ii67
i...-.
31 DC
"31 ""DC"
""31 ""MO"
48.
.....
i25.-

11. ^10.
..... .....
"°i67 "°i^7

:tJST PE« *CRt rni«
0 Tlos ' V
COMB 1 STORM IUNSEWJ
*i!IlIIIi:l
"5o7i""o7
30.J
"117 1
ll«7j"°3l7j^287j
....^.....^..-.-^
133.
mm (• Wo
.49.
"1577

..... —j|-j
.....i
46.
"4507 1 "557

12. IT.
""517 """o7
.....j..... — |--
"31 "PA" ""627 i" H7 ""137
"I "~v*j""55:




..... — -|-
.. .....
.125:
"4607
I"".:
Ijji:

	 ._.!
..22:
30.1
"iT«7 "~~o7|
""57
56.1
	 »_« 1
"l837j""«97 ""41, i
"T5&7


4 AL 1 0.1 15. 21.
""l"""
"ToT7 \""W. ""47
"4 ! "5 A"! ""477 l"!^ ""IT7
... I .....
4 , KY
""41 "MS"
"H7
— S7
"*4l""c~ """S7
""4 "55"

~I~2*

1 1
...I.....I— ...
"Ii7 ^"137
"117 ""IT7
..... — ---
"157 "^T|7

"• li" ""57
"51 "IN" ""3T:i"""o" """7"
""51 ""Hi"
.....
...I..... i.— i
51. MN 30.
...I.....
51. OH
...1 ...e.
51 WI
«*«90*CP
! ->"-- — --
"*"o" ""T
113 112
""117 ""15
"397


",2!sl
..12s I

0. 59. 54.
"2667 ""57
"IIi7!"327
3!ls
""o7
.....
mmt» 9Btm
' 2:
""17
""557
"lit
.....
W*aw«»
..21: '
"i^
"497 "Si!
"°io7
"*627 ""/ill
46.
"367
"1557 l"~467l ""467
"I?: I "517 1 "157
"Toil !"Ii7! "237
•»B»a*»w
80.
"TII7
CV0W W
.if!:
"Io7
"157
t 4>a»w«*
18.
""Ii7
"*367i"~34j
si*uuir
A u U run^u'1!! vL.'tip(\v*^
PER ACRE
COMB 1 STORM IUNSEWI COMB 1 STORM UN8EW
°37l7|
I!!!:!
"3557l
"l477l
^396. j
"l377i
Il2I:l
i9i57j
|
374.1
16967
m • -<•» i
...2:
"6i27
°3ol7
"l497

..-.2:
.61E.
"Ilo7
"350*7

111°:

"3877
"6677
"III7
•IVM0W
285.
"5117
"0&7
l"4597
92» -8I° .51°:L2":
°""o7i"I17 ]|T*' •!""*£:
.*.•
"To7j
....ii....: ^«__= i .».»i !.»»»:

196.1 0.
....:i«...: ....:
O.j 33.
lllll
"4257

—22:
~4367
»BW«^ |
"?I7
157.
10687
113.
297 *!...:
"""7
"lii:
130.
131:
"?47 2797.J2271. 74.

"^877
o7
.....
. 	 I.....

35467 "48l7
..... f .....
: ' ' »»
101,
III!:
233.1 90. j O.j 430. -<(90.
"l7l7|""737 "7 Ii7j "4747 "*7S7
"ill:
"Hi"
„,
178.
..82:
.....


127.
305. 473.
"Io67j*36o7

0.
"l7T7rTiI7|"6ro7
""9o7l"l37
"164°
i"l647
111!.
1.121:
1 115.
j;ig:
(....«
!"~697
310.
84. 350.
"i'2:
0.
3^*U»2:
"Ii7j""o7
""997



340.
88.
»o..o;
101.

1277
"ITS;
3S:
"iiilu.lS:
"4oI7l"Tl3.
"3487
311:
387.J 458.
"?87 T?2?7
""527 i "5o57
"fe37! "§967
j"527j^~«77
229.
"isn:
flVW «•«•<•
364.
114.
3in
99e
""i:
""7?:
270. j _70.
"in:
ri!!:!ll*!l I!t!sil.iii
81.
13?
i"Ti77i"777 TIo57j"ni7 -WJJ«
27

-------
, TABLE I«14 OPTIMAL ANNUAL CCST^ER^ACRE FOR SPECIFIED PERCENT
IEPAISTATE
IREGI ID
I www | mm mmm
1 61 AR
25X
COMBISTORMIUNSEW
45^1 ""7^ ""75"
j»ww|..ww. Iww.w. j...~ mmmm
6 LA 0.
1 www 1 wwwww 1 mmmmm
I 6| NH I 0.
1 www 1 wwwww 1 mmmmm
1. .1 °. ' °*
|""6l""TX"|""827
1 ww. { www.w | mmmmm
\mrnm
j •
j 71 IA
""{""KS"
""(""MO"
WW. 1 WWW..
49
WWWWW
""28*7
! W.w.w
m.l\m,mm.\ mmmmm
mmm
""a
i.w...
I...2.
I'mJml.
53 . 44.
mmmm mmmmm
7 6.
""TJu ~"l2T
""lil ""I"

""Til ""TH
"To" ""To7
wwww — .wwww
0. 7.
mmmmm mmmmm
I
WWWWW 1— -- _
— .*;
{""a; ND i 37.
1 WWW | WWWWW | .....
8
mmm
mmm
1 8
l.ww
9
WWW
9
9
""£
1 9

10
ww.
wi2
!.i!l
j SO 1 44.
'...I.!....;
! 1111"! "I
| AK j" 627
1 WWW.W |w..W.
| AZ 1 0.
I WW... | W.W..
..C- | w63*
Hi"
""NV"

ID
mmmmm
nD t
0.
WWw.W,
w.il:

— .•
; OR 1 6i.
.....I W.WW.
.....!....:
mm i_S ..U'
""T57 ""TT7
.HE: """'"
_COMB 1 STORM 1 UNSEW 1 COMB 1 S?§^M 1 UNSEW
1 . . 1 w.www ..... J ww.ww
www.W wwwwwl . 1— — --I 12*»j 110.
..„.' _l/|8.j""2T7
III.:
""o7
IEiI:
,.18'i 16«
""377j"~327
mm 6°9*' 13*"
"""o7
mmmmm
0.
mmmtf m | •*•»•*.»•» nw •§•»•»
41.1 36. 743,
""637j""3o7
..... | mmmmm
-...:' 66
"1397
.""II ~~: ! -•— —
J347
-ii2:
.1!!:

"1157
W..W.
• o.
•i •»•».••»
36.
"°277
1 WW.WW
18.
132

"in
«*•»•*•»«
30.
"337 1*4727
HI!.


•»•»•>•?•»
126.
"2877 1 "~757
mmmmm ] mmmmm
202. 47.
mm •»•»•»
230.
mmmmm

mmmmm mmmmm
29. 412.
mmmmm \ mmmmm
..!!.•!.••
mmmmm
mmllm

mmmmm
mlmmm
1 «"•»«"•»
75.
wwwww
CPNTROL
COMB STfi^MI UNSEW
mmmmm. mmmmm mmmmm \
141. 372. 146.1
mmmmm mmmmm mmmmm \
0. 1096. 138.1
mmmmm mmmmm mmmmm \
0« 139. *0.
mmmmm
0.
mmmmm
1665.

WW.WW WWWWW
73 2688.
mmmmm
-mlmm
""477
mmmmm
50.
mmmmm

mmmmm
~..i
"~627

""TT7 ""To7 "116^
mmmmm mmmmm mmmmm
12. 11. 0.
mmmmm mmmmm mmmmm
12. 11. 0.
mmmmm mmmmm mmmmm
15. 13. 160.1
mmmmm mmmm-r mmmmm !
6. 5.- . 0.
mmmmm mmmmm mmmmm
mm i°. 10*
— ... —-JJ-
w.2fl'! 26«
""177 ""277
mmmmm mmmmm
31. 28.
mmmmm
m.llm
••••w. wwBk
mmmmm
T*X
mmmmm
22l7j
mmmmm \
mm
mmmmm
«26.
wwwww 1
.Immm m *"* '* 1 2?&r
•»«•»»•»
75.
WWWW.
""737
"827
mmmmm
147.
"I.-.

mmmmm
mmmm.
140.1 62.1
— -— — — . .WWW | WWWWW
mmtm'm .mm* ml *** '
""si)7 """o7'"2437
— — — — — W — WWW 1 WWWWW
mmmmm °'1 185'
"~697
WW.WW
25.
•ww.w I wwwww
426.1 426.1
mmmmm
62.
•»•«*•«
50.
WWW..
ww6w*
mmmmm
69.
•wwww | wwww. | www..
0.! 112.1 25.
WWWWW ..WWW | WWWW. I.W.WW
tO. 201.! 170.1 40.
t*mmnm
61.
""TS7

54.
...!: ...hi.ff.:,'^^- "5^
33. 28.1 2847l""887 ""737
w.w.w mmmmm\mmmmm\ mmmmm \mmmmm
""o7
7427

mmmm
mmmm
5097
wwwww
M4.
"6o7l
""6l7
""T37
wwwww 1 mmmmm
|
""157
469.
WWW. | ..WWW
314.1 432.
wwww 1 wwwww |
mmmmm
55.
112.
" * •" •
-S
28

-------
 TAB'. I:  1-15

IEPAISTATE
IREGI   ID
 ""71 "MA"

 "7l" NH
 ---I .....
   It   PI
 ...I .....
   1 I   VT
._-I----•
n. "»t:B j.


""31""oc"

""'""n"
"31 ""PA"
.....I.
  6.7i
...,-l.
.  2-1!
"7771'
.....i.
  H.2I
                       OF


                     li ' "$".5 1
'5.4!   73.SI
..,.1,	1-
 1.91    5.ai

*57i) i ~""37£ i
.-,_l-~----l.
 Q <$!    1 . 'I I
                                  5t


                                  8T6 1 "o7(i39 1
                                                o" 1 3 1
        8*771 0.0061

       ?472l"o7(i75j'
                                               0.2121
                                               _c.af»- I
                                               0.0161

                                               o7o«2 i
                                   0.330J  0.5731

                                         "o7o931
                                         ma»mmom~7« i ~""7«' "I?761 ""i",? i "o7"Ic i

          """67" I ~~~77« I """" I "~9o77 I "7(157 j

          ""777«i""577si~75"7i"2937?i""7746
                                              ouol

                                              S7299 1

                                              77209 !
                                                       T7l 75J

                                                       "961 1

                                                      "47517 1

                                                      "5797I i

                                                      "
                                                 "17273 1

                                                 "77918 1

                                                 7o7392 1

                                                 7175701
                                                0.1461

                                               "o7\  O.(l2?l

[9l"("7o43 I
..l_^....| ,
.11  0.0241
                                               0.0711

                                               o7o58l
                                 ,.._.-I
                                 0.0631
                                                              o.631l
 0.2101

"o77sir


"o7764l'

 0.4091
r..... I
 0.2551
tf» »««<• I
 0.5001


'o7268l
                                                                  >l
   41   TM
 ___! .„---
 TI
             s./n
          "4772 1
                       31
                 [3 I""7394l'
           0.1191

          "77o43j
                                                        57838
                                                  n.599l

                                                  i7o7oi
                                                             3.6471

                                                             "o77?5l
   5
              ?P.5i   85.Si '63.M 437.01 O.?38j  £.714 I_2.200j

              "676l'""7:r>74|""^77l""«679l "()7"55I  0.1621  0.4351
   51
                           5^

            '7279i""3i72i""96r7ri557«i""o7T6«i~0.294r 0.802J 1.2971
                                                    • I.
   51
                     35.

                     "«".

                    "a?"
                                    0.2941

                                    "o7o74l"

                                    "o7357|'
                                         * T'
                                                           • i-
   51   MM
  ..!_._--
   51   nH
          ...!:SI
             12.61
    »l
    :. I •
    81
   .31   4?

   "«r224
,i'll  0.0221

!7l"o7"o5l
             23

            77s

575l""7i76i""4u7?i~*73iri~0~o46i  0~130j  0.371J  n.652j
 0.195]

 "967
                                                           •l«
 0.3541

"778751
   51   to I
                    15.61   44.51   75.II 0.0461 0.1301 0.3711

T""RE""   "687? i "20771' "S9s7^ I 7o247^l I ""?73 I "77730 I "Z7970 I  8.549 i
                                 29

-------
 TABLE J-15  0PTIKAI. AWMUAL  4NO  C*PIT4|
 —'-- -lnPTf
  PAJSTATE
 RFGj   10

 ""l""AR
 ...I....
   61   LA
 ...I....
   61  nK
 ...t....
   61  TX

 TL"725.415029.0
 rM>Ol«a«J f

 0.0521
 >*»»«VWM |

 0.0111


 O7o06j


 O7o08l


 b"7o26l


 0*7o06l


 "77o*9l


 'o"7o()6l


 'o7o21l
 '«VWW I

 0.4941
 mmmm** I
 mmmmmmI
 ^0.1421

 "o"7o27

 "07018
 mmm»mm
 0.023
 mmm»tam
 0.068

 "o7oiii'

 ""i^ir


12*2^!'

I2:£§!'
""7439
                                      •••"••• i
                                      0.0031

                                        -
 	.  .  J.587

"o*7oo8i"o7oar
                                      "07(139!
 - .... .  0,230

"o7l24ro7Il7
 0.0411
 ......f
 0.0281
 •m.m.m|
 0.0391
 ......|

 .2:llf
 "o7o?Si

 "S7494I
 ......i
^0.0341

"o7o96l

"57400!
••><••!<•• |
 0.1131
B>..... |
 0.0!6|
*.....I
 2.6981
•....«|
 0.0331
»•»••»•••• |
 0.3991
>.T...i
 0.5771
                                            ......(a.m...

                                             7.391122.744
                                            ......(....„.
                              30

-------
   540O
                                                          EQUATIONS- '
                                                         89.9aO.046R,
                  SINGLE  PURPOSE :  STORAGE - TREATMENT
                                  ONLY
                  MULTIPLE  PURPOSE : PORTION OF STORAGE
                  TREATMENT  COSTS ASSIGNED TO OTHER
                  PURPOSES
                  SINGLE  PURPOSE :  STORAGE-TREATMENT
                  AND BEST  MANAGEMENT  PRACTICES
                  SINGLE  PURPOSE :  STORAGE -TREATMENt
                  ONLY -  RESULTS FOR  COMBINED
                  SEWERED  AREAS
CO
o
O 2400
              U.S.  URBAN POPULATION =  149 XIO

              U.S.  DEVELOPED URBAN AREA = 15.6 X IO6 OC
                                    %  BOD  REMOVAL ,  R,
  Figure  1-1.   Single Purpose and Multiple Purpose Stormwater Pollution
                  Control  Costs for US
                                                31

-------
                                        ~ The NCWQ estimate includes   '
                            for constructing storm sewers.   This study
                does not view storm sewers as chargeable to pollution
                control.

            2.   Choice of a Design Storm - The NCWQ studies used control
                °f,^,tW°/ear'  °f hour storm as the  basis for their mean
                estxmate of control costs.   The concept of  a design  storm
                was  not used in this study because it was felt  that  a
                continuous  characterization in terms of percent of the
                runoff which could be treated was  more  appropriate
                since  no accepted  design  event condition exists which
                also specifies  a design antecedent dry-weather  period.
                Figure 1-2,  Overall Percent Precipitation Control vs.   •  '
                Rainfall  Intensity.  Atlanta,  GA  (1948-1972^  gh™.Tg «.vn-
               using  a  frequency  of  one month would permit, capture of
                90 percent of the precipitation volume.  Sizing for the
               two year, one hour storm yields relatively little in-
               cremented control and requires a much higher control
               volume .
 Improved estimates  can be obtained using local data,      particular
                         "* knowledSe °f the numbers  of  oStfalls  permits
                                                                   of
RELATIVE IMPACT OF WET- AND DRY-WEATHER FLOWS ON RECEIVING WATER
              on J f^<   S °f Wet weathe^ the urban runoff
              contribution of BOD is the most significant
              among all of the urban BOD sources;
                                    32

-------
q
to"
             to
                                                         OJ
o
rf1
             cc
             O
             h-
             co
             H

             CO

             UJ
                                                         CvJ
                                                                 +J
                                                                 •r)
   O
   o
                         . S ..
                      0 - .    -  -
                      UJ
                            UJ
                                 UJ
                      O CO  O h-  U_
                          O TJ  
-------
 2*  IoLSXifin§ treatment facilities in Des Moines,
     XUWel. US. T)Ot"r»^-r» •*- f\f f-T-i— - — *.     f               '
                      ot the wet-weather events were
          cted                                     e
     a 4 0 S/!  7- ^ mathematical models to violate
     a 4.0 m/1 minimum DO standard.  During these
3.  During periods  of  dry weather,  effluent  from the
    secondary treatment  facilities  violated  the  same
    stream DO standard two percent  of all the dry^
    weather days in 1968.                        y


4.  Combining  the  effects of wet weather and dry
    weather, the models  predicted that  DO standard
    violations  would occur  33.total days out of  the


5.  An evaluation of costs incurred indicates that
    25 percent  BOD  control of wet-weather flow,
    while providing secondary treatment  of dry-weather
    sanitary flow,  is  an  effective  treatment strategy
    Violations  are  reduced to 26 days out of the  year
    at an incremental  cost of approximately $800,000/yr.

6;  The benefits received from a reduction of shock
    loads from urban runoff are not readily quanti-
    fiable but  should be considered when compared to
    strategies  that involve, high levels  of municipal
    wastewater  control.

-------
                               SECTION II

                             RECOMMENDATIONS
DEMOGRAPHIC CHARACTERISTICS

There does not exist,  at present, reliable information regarding  land
use in urban areas in  the United States which is developed from a
consistent set of assumptions and definitions.  This information  is
vital to assessments such as this one which are based on contro  costs
per acre of "urban" land.  A comprehensive and meticulous data gathering
effort is needed to provide the improved information base on land use.

Significant gaps exist in  available information on population and area
served by" type of sewerage system.   More refined estimates are needed
Xr combLed'sewer systems .  First  estimates need to be made of star*
sewered and unsewered areas.   Also, the number of overflow points needs
to be inventoried.  This effort would need  to include an unambiguous
way to distinguish "drainage channels"  from "receiving waters."  Given
some standardized definition of terms,  much valuable information could
be obtained from current USEPA 208 planning studies.
 RUNOFF AND QUALITY PREDICTION

 Both runoff and quality prediction techniques may be improved through
 use of additional data!   Since a large amount of data prese ntly  exists
 it needs to be aggregated to enable comparative analyses to be performed.
 In tnis manner, useful statistical and regression relationships  can be
 developed incorporating several demographic and hydrologic paramet ers,
 and regional variations may be more easily discerned.  J^^Stlon
 part of current USEPA 208 studies should be incorporated.  In addition,
 studies are needed in which, both, surface  (e.g.,  dust and dirt ) and
 effluent  Ce.g., concentration), data are gathered simultaneously so that
 their  relationship may be determined.

 •Future reports containing data should be  careful to  define precisely



 m.ZXS?£^x£^^
 should be reported for each area on which sampling is being  conducted.
                                       35

-------
 COST ASSESSMENT METHODOLOGY
The general methodology  appears  to work well.   It needs  to be  extended  to
cover a wider range of situations.  More  sensitivity  analysis  is needed?
                                              treatment
                                                             need
The methodology should be extended to account for the interrelationship
      detentf" r   trf tment especially at higher levels of control  ?
          ^ K  timeS/n St°raSe are significant.  Associated with this
           A    a   Udy °f thS lmpact °f diffe^nt reservoir operating
           A constant release rate is assumed at present.

The isoquant equations should be refined to account for snowmelt.  An

                             annual ove?: flow event* and
                    analys±S of the cost Allocation formulation needs to
IMPACT OF URBAN WATER POLLUTION CONTROL ON RECEIVING WATER QUALITY

In order to have basic information on the behavior of receiving waters
cfacit   cont *" P°11Utant StreSSSS beyond their natural alsililative
•rnrif-fT^r.' C°*  nuous "ydrologic models coupled with pollutant transport
routines must be applied.  It was found throughout this study that large
                     available; however, these data were somewhat less
                    leling purposes.  In the area of data requirements
     specific recommendations are;

          1.   The water quality indicators that will be used
              for planning purposes should be clearly identi-
              fied before actual data collection.

              The data  collection system should be designed
              to  be representative of the receiving water
              being investigated.   Flow velocities,  diffusion
              and dispersion  coefficients,  tidal cycles,  etc.,
              affect the  frequency of sampling.

              Sampling  of receiving waters  should  be  conducted
              before> during, and  after periods  of urban  runoff.
         2.
         3.
                                 36

-------
    4   The laboratory procedures utilized should be clearly
        described, for example, whether natural or artificial
        (deionized) dilution water was used in performing the
        standard BOD, test and the particle size and settling
        velocity definition of suspended solids.

    5.  Kinetic reactions of biochemical tests (i.e.,
        deoxygenation rates of BOD) should be reported.    ,
        and compared with other locally obtained values.

    6.  Additional data on photosynthesis, algal respir-
        ation, and benthic demand of water bodies are
        needed.

    7.  Measurements of the nitrogenous oxygen demand of
        waste inputs and the receiving water 'are needed,
        as they  are becoming more  significant since  greater
        numbers  of secondary treatment plants are operational.

     8.  Both mass loadings  and concentrations of pollutants
         should be estimated and reported.

In the realm of modeling efforts,  further  work is  required:

     1.   The response of receiving waters  to urban runoff
         and dry-weather flow inputs should be characterized
         when storage of waste streams is considered in combi-
         nation with treatment.

     2.  Simplified techniques to approximate the complex
         mechanisms of pollutant transport in lakes, bays, and
         estuaries should be developed.
                                  37

-------
                                SECTION III

                      DESCRIPTION OF THE URBANIZED,AREAS


 This section presents a summary and -analysis of data on the followine
 characteristics of urban areas:

            •    population, land area and location; and

            »    population density and land use distribution.

 These categories are discussed below.
 URBAN AREAS

 Urban areas in this study have been taken as the 248 urbanized areas
 defined by the Bureau of the Census of the US Department of Commerce
 in the 1970 census and other urban areas.  The 248 urbanized areas
 defined in 1970 are generally characterized as having:1

           9    a central city or urban core of 50,000 or
                more inhabitants;

                closely inhabited surroundings, consisting
                of incorporated places  of 100 housing units
           e    or more;  and small unincorporated parcels
                with population densities of 1,000 inhabi-
                tants per square mile or more (386 per square
                km);  and

                other small  unincorporated areas  that may
                eliminate enclaves,  square up' the geometry
                of the urbanized area or provide.a linkage
                to other  enumeration districts  fulfilling
                the overall  criteria within 1  1/2 miles
                2.4 km) of the main  body of the urbanized
                area.

The distribution  of urbanized areas across  the United States is shown
in Figure III-l,  1970 Urbanized Areas and  Five Regions.

The choice of a sample of 50 urbanized areas was based upon a
representative distribution reflecting variations in climate and geo-
graphy.  This sample of 20 percent of all urbanized areas was selected


                                  38

-------
                                             co


                                            I
                                             &0
                                               U
                                                    0)
                                                    o

                                                    !=!
                                                    o
39

-------
 for further analysis.  The 50 selected urbanized areas are listed in
 Table III-l, Demographic Characteristics of the Urban Areag.^ along '
 with the remaining urbanized areas and the residual urban areas not
 located within urbanized areas.  These 50 urbanized areas are denoted
 under column 7, "CODE" with a C.  All other cities are coded "E"   The
 population distribution of the sample of urbanized areas was" as follows:
                    Population
                      Range

           50,000 <_ Population <_   100,000

          100,000 < Population <_   250,000

          250,000 < Population <_   500,000

          500,000 < Population <_ 1,000,000

        1,000,000 < Population
   Number of
Urbanized Areas
       12

       11

        7

       13
 A sub-sample of the five cities selected for more intensive  analysis
 (San Francisco,  Denver,  Minneapolis, Atlanta,  and Washington, DC)  is
 shown in Figure III-l  along with the five regions into which the
 country was  partitioned.


 POPULATION,  LAND AREA, AND  LOCATION

 The  1970 census  population  and  land area for each of the 248 urbanized
 areas were obtained  from the County and  City Data Book, 1972.1  In
 addition, the total  urban population for each state was obtained from
 the  same source.  If an  urbanized area encompassed more than one state,
 its  area and population were apportioned to  the states based on the
 population of the major  cities  constituting  the urbanized area.  The
 results,  presented by state and EPA region,  are shown in Table III-l.


 POPULATION DENSITY AND LAND USE DISTRIBUTION

 The  overall population density for an urbanized area may be obtained
 using the data in Table III-l.  In general, population densities have
 decreased during the past generation reflecting the availability of
 improved transportation systems, the desire of individual home owner-
 ship, etc.  No detailed data on urban land use for all of the urbanized
areas in the US could be found.

For nine urbanized areas in Ontario,  the area occupied by each of the
following five types of land uses was determined:   residential,
institutional, industrial, commercial,  and open space.2  Land use maps,
if available, were used.   Aerial photographs were employed if land use
                                  40

-------
TABLE 2II-1 DFMOGRAPHTC. CHABACT
LEPAISTATE) URBANI7ED AREA
LRPGI ID 1
11 CT 1 BRIDGEPORT
11 CT (BRISTOL
ii CT IOANBURY
11 CT (HARTFORD
11 CT IMERIDEN
11 CT (NEW BRITAIN
1 1 CT INFW HAVEN
11 CT INORWALK
11 CT 1 STAMFORD
11 CT (WATFRRURY
11 CT (OTHER URBAN ARFAS
i i
i i CT ITDTAL FOR STATF.
11 ME ILFWISTON
1! MF IPHRTLAND
11 ME IOTHFR URBAN APFAS
1 1
11 ME ITOTAL FOR STATF
11 MA (BOSTON
11 MA (BROCKTON
1 1 MA IFALl. RIVER
11 MA IFTTCHBURG
11 MA (LAWRENCE
i i MA ILHWFLL
11 MA (NEW BEDFORD
1! MA IPITTSFIELD
1 1 MA ISPRTNGFIEI D
11 MA (WORCESTER
11 MA IOTHFR URBAN APFAS
1 " 1
11' MA ITHTAL FOR STATF
11 WH (MANCHESTER
11 NH (NASHUA
11 NH IOTHFR URBAN APFAS
1 1
11 MM I THTAL FOR STATF
11 RI IPROVIOENCF
11 PI IOTHFR URBAN AREAS
1 1
1 1 PT (TOTAL FOR STATF
11 VT IIJPBAN AREAS
1 1
1 1 VT (TOTAL FOR STATE
11 ITHTAL FOR REGION l
21 NJ (ATLANTIC CITY
§1 NJ INFW YORK CITY METRO
1 NJ (PHILADELPHIA METRn
21 NJ (TRENTON
21 NJ IVTNFLAND
21 NJ ITOTAL FOR STATE
21 NY IA| BANY
21 NY (BfNRHAMPTON
21 NY (BUFFALO
21 NY INF.H YORK CITY
21 NY (ROCHESTER
21 NY (SYRACUSE
?l NY (UTICA
21 NY IOTHFR URBAN AREAS
21 NY ITHTAL FOR STATE
. 21 . .IT"TAL FOR RFGION 2
rRisnr
1000
ACRFS
05:
»:
41:
25.
6P.
27.
45.
3P.
7?.
. 550 .'
44,
36.
156.
235.'
•H:
55:
It:
2?,
28.
15?:
54.
91.
966.'
•™:
?S:
. 1?5.
156.
6.
16?.'
35.
. 35.'
208?.
47,.
130«,
31.
4?.
54.
1479.'
97,
33:
137.
243.
93.
61,
48,
117.
830."
. 2309?
S OF THE
197" POP
in On
— -sis:
7i-
67.
465:
9s:
m:
346.
107.
185:
157.
301.
?344.
"""65:
m:
507.
. ?t»:
^ :
200:
!«:
134.
63.
514.
247.
454.
/'813.
05.
61.
261.
417.
7«5.
31.
8?6.
143.
143.'
P050.
134.
«?688.
202.
274:
74:
6372.
486.
167.
1086.
1^519:
601:
376:
180.
?196.
15611.
21983.
URBAN AREAS
1
POP 1
AVE PDICODE
4.331 E
3.041 E
1.901 E
5.551 C
2.161 E
5.251 E
5.081 E
3.981 E
4.131 E
4.191 E
4.191
1
4.191
1.491 E
2.961 C
2.151
...:1!L—
6.241 C
4.391 E
5.051 E
2.001 E
3.72" E
4.611 E
6.161 E
?..?4I F
3.371 F
4.591 E
4.981
4.981
3.811 C
2.801 E
3.341
1
3.341
5.091 C
5.091
5.091
1 4.1«l E
, 1
4.141
4.^51
3.131 E
4.351 E
( 6.44" E
1 6.591 E
1 1.361 E
1 1
!...:..!.—
! IJi: i
1 7.931 E
1 43.251 E
1 6.431 E
1 6.121 E
I 3.751 E
1 18.821
! 18.82J
1 9.521
41

-------
TABLE  III-l DFMDGRAPHTC  CHARACTrRlSTlrS OF THF

                                       1070 nfipj
r,,.,.,STA,IEI   "RBANI7En  ARFA
RFGi   i"  i

 "31 ""OF" i WILMINGTON!       ""
  3   nr  IOTRFR URBAN APEAS

  3[   OF  ITOTAL'FOR STATF

  3[   nc  [WASHINGTON"^"""

                FOR
                     DC MFTPfl
          OTHPR URBAN ARFAS
  3 I  MD
  31  nn
  31  MD
   I

..!!  M2  ITnTAL F|""*  STATE

  31""PA"|ALLFNTOWN    "     """
  31   p*  !^LT!?OMA

      PA
 31
 31

 1

 II
 31
 31
 31
 31
 3
         IHARRTSBURR
      PA  IRFADIMG
      PA  ISCRANTPN
         IWTLK-FS-BABRF
         IYHRK-
         IHTHFR  URRANi  APFAS
      PA
      PA
      PA
 31  PA  iTHTAL FOR  STATF
 3
     VA  MFWPOBT  NFWS
     VA  1 NORFOLK
     VA  IPETPRSBURr:
     VA  IRTCWMOND
     VA  IROAMOKE

         DTHFP URBAN A»FAfi
     VA [TDTAL FOR STATF

    "wv"iCHARLESTON"""""""
     ,*iX !Hi|!^Tif(JGTnM
 | 1
 31
 3j   WV lOTHFR URBAN APFAS

 3|   WV ITnTAL FOR STATF
..  .....|....................
 3       ITHTAL FOR RFGlOM  3
•-!-----|--..-..__....._.__..
                                 1000
                                 ACRF

                                """70
                                    5

                                   75
                                  3"
                                  ill
  13.


  II'-

 ^Io:
 381 .

  63l
  53.

 15ft.*

1350.
                                 •3f
100.
  0 .

56°;
                                         1 n 0 0
               'IPBAN  ARFAS

                 POP  I     I
               AVf: PC
          3«5 ,"|

         "757"!

          757.!
               """96l""E
                 6.161  F
                                         30r,5.'|  7.461
             .
          1P3.I
                                          101.1
                                          416.1
                                         1251.1
                                            ill
  6.411  E
  ft.21!  E
  4.P3I  F
  5.361  E
  4.691  E
  A.491  E
  4. A4 I  F

  !:§?!  1

  5:f«!  i
  ft.241

  6.241
...... I....
  3.001  E
  2.931
  3.491
  3.761
  4.4AI
  3.721
 12.451
  5.15'
                                                         E
                                                         E
                                                         E
                                                         C
                                                         E
                                                         E
                                                 5.151
                                                     I
                                           40.1
                                           93:i
                                          2ft8. |

                                          6flO.'|

                                        'Tft203"i'
                                                 3.341   E
                                                 5.191   E
                                                 4.21 1
                                             >l<
                          42

-------
TABLE III-l DEMOGRAPHIC CHARACT
1 1
EPAISTATEI URBANIZED AREA
IRFGI ID 1
l
19999999 9
1
1
01
01
01
01
01
01
01
01
01
01
01
1
ti 1
til
til
til
til
til.
01
1
til
til
til
01
01
01
1
til
ti 1
01
01
til
01
til
til
til
til
til
til
01
01
01
1
01
01
01
til
til
1
01
01
01
til
01
01
41
fll-
AL IBYRMINGHAM
AL IGADSDEN
AL IHHNTSVILLF
AL IMOBTLE
AL (MONTGOMERY
AL ITUSCALOOSA
AL IOTHFR URBAN AREAS
t
AL 1 TOTAL FOR STATE
FL IFT.l AUDERDAI.F
FL (GAINESVILLE
FL (JACKSONVILLE
FL (MIAMI
FL 1 ORLANDO
FL IPF.NSACOLA
FL IS7. PETERSBURG
FL ITALI AHASSEE
FL ITAMPA
FL IWFST PALM BEACH
FL IOTHFR URBAN AREAS
FL (TOTAL FOR STATE
GA IAIBANY
GA (ATLANTA
GA 1 AUGUSTA
GA (COLUMBUS
GA IMACON
GA (SAVANNAH
GA IOTHFR URBAN APFAS
1
GA (TOTAL FOR STATE
KY IHHNTINGTON MFTRO
KY ILFXTNGTON
KY ILOUTSVILLE
KY (OWENSBORO
KY IPTHER URBAN AREAS
1
KY (TOTAL FOR STATF
MS I8TLHXI
MS IJACKSON
MS (OTHER URBAN AREAS
f
MS (TOTAL FOB STATE
NC IASHEVILLE
Nf (CHARLOTTE
NC (DURHAM
NC IFAYFTTEVILLF
NC 1 GREENSBORO
NC IHTGHPOTNT
NC IRALFIGH
NC lnTNSTON.SALFM
NC (OTHER URBAN AREAS
1
NC (TOTAL FOR STATE
Sr (CHARLESTON
SC (COLUMBIA
SC IGREFNVILLE
SC .IOTHFR URBAN AREAS
1
SC (TOTAL FOR STATE
TN ICHATTANQOGA
TN IKWOXVILLE
TN (MEMPHIS
TN 1 NASHVILLE
TN IOTHFR URBAN AREAS
, T*J !TOTAL FOR STATE
1 TOTAL FOR REGION . 0.
ERISTIC
1000
ACRFS
10'J.
J:
Ji
683."
166 1
80.
0?.
103.
8ol
87.
310.
33*.
01 .
697.
13.
26.
130.
ft.
120.
30 u.'
01 .
189!
?76.
20.
6ft.
07 1
39.
fs:
4? I
306.
65!.'
63.
66.
169!
. 30U.
IS:
iSS:
203.
719.
09«9.
S OF THE URBAN AREAS
1 1
1970 POP! POP 1
IfiOO IAVE PHICODE
558.1
66.1
106al
P6*.l
POlJ.'j
610.1
69.1
530*1
jlfjj
1330*1
1
•5065. 1
1173,1
209*1
l?8.l
160. 1
86911
1
17.1
160.1
739*)
6«8* 1
121.1
190.1
676.1
9ft7.'l
280*1
10ll{
107Sri
157^1
606.1
.1233.1
220^1
660^1
ooa.i
?307.'|
l«705.l
1*931
1.851
2.001
0.261 ,
3.051
I
0.531
3.721
2.361
7.361
3*951
O.BOI
0.061
«.00 1
3.311
0.291
1
3.601
3I08I
3.921
a. oo(
3.971
3.971
3.731
6.25!
5.501
6.901
5.5til
5.50!
2.951
0.121
3*571
3.57i
2.961
31671
3.05!
3.P9I
2.B2I
3 'ill
3*361
3.511
3.511
3.601
3.671
3.ti6l
3.591
3.591
2.9
-------
TABLE  III-l  DEMOGRAPHIC  CHARACTERISTICS OF THE
|EG'*TIOE!    URB*NIZEO  AREA
   51
   51
                              I  1000 11970  POP
                               •ACRES!   1»00
      i  1 AURORA
       L IBLOOMINGTON
       L (CHAMPAIGN
      TL
      IL
          (CHICAGO
          JDAVFNPORT MFTRH
      IL  IDECATUR
               T
   1    it  ip^RJA
   5    IL  IROCKFORD
   5    IL  ISPRTNGFIEID
   5}   IL  (OTHER UR

 .»(...!:  ,ITnTAL FOR STATF
   ~!   *M  !ANDERSON"""""""""""
       IN  CHICAGO MFTRO
URBAN AREAS

  POP I     I
AVE PD CODE
..to...(....
  4.731
  5.391
  9.681
  9.131
  4.971
  4.221
  4.431
                RBAN AREAS
      IN  IEVAMSVILI.F
      IN  IFORT WAYNF
  51
  51



  51  IN isoUTfTBEND
  5   IN (TERRA HAUTE
  51  TN inTHFR URBAN APFAS

^51  IN (TOTAL FOP,STATE

*"si""MI"iINN"ARBOR"""""""""""
  51  MI I BAY CITY
  51  MI iorr°oiT
  51  MI IFIIMT
  51  "I IG"AND RAPTOS
  51  MT IJACICSHN
  51  MI IRALAMAZOn
  51  MI (LANSING
  51  MT (MMSKEGON
  51  MI (SAGTNAW
  5  , MI JOTHFR URBAN APEAS


..El-.^I jTnTAl- Pri" STATE
     MN ID'JLHTH
     MN (FARBO METPO
     MN (MINNEAPOLIS
     MM I	
     MN I
        I
     MN [TOTAL FOR  STATE
          ROCHESTER
          OTHFR  URBAN AREAS
     DH (CANTON
     OH (CINCINNATI
     OH  CLEVELAND
     OH (COLUMBUS
     OH (DAYTON
     OH (HAMILTON
     OH ILTMA
     OH ILORAIN
     M  !fSiNVIlLF
     OH  IYOUMGSTOWW
     OH   OTHER URBAN AREAS
     OH
        [TOTAL FOR STATE
        iS?«s5c;™"""
     WT  IDIJLUTH
     WI
     WI
     WI
     WI
     WI
     WI
        (LA CROSSE
        (MADISON
        (MILWAUKEE
        IOSHKOSH
        (RACINE.
        (OTHER URBAN AREAS
    WI  ITOTAL FOR. STATE
        1 TOTAL. FOR REGION  5

-------
TABLE III-l DFMOGRAPHTC CHAPACTFRlSTirS OF THF URBAM AREAS
II
LEPAI STATE 1 URBANIZED AREA
IRFGI IR 1
61 " AO (FORT SMITH
61 AR ILTTTLE ROCK
61 A° IPTNF BLUFF
61 AP IOTHFR URBAN ARFAS
II
61. , AR ITOTAL FOR STATE
61 I.A (BATON ROUGE
61 LA ILAFAYETTE
6i LA ILAKF CHARLES
6l LA (MONROE
61 1 A INFW ORLEANS
61 LA ISHRFVEPORT
61 LA IOTHFR URBAN AREAS
61 LA ITOTAL FOR STATF
61 NM 1 ALBUQUERQUE
61 MM IOTHFR URBAN APFAS
61 MM ITOTAL FOR STATF
61 OK ILAWTON
61 OK (OKLAHOMA CITY
6 1 OK | T'lL'^A
61 OK IOTHFR URBAN ARFA.S
i i
6i. OK ITOTAL FOR STATE .
61 TX IARILENE
61 TX IAMARILLO
61 TX (AUSTIN
61 TX IBEAilMONT
61 TX IBPQWNSVILI.E
61 TX IBRYAN
61 TX (CORPUS CHRIST!
61 TX IOALI AS
61 TX IEL PASO
61 TX IFnRT WORTH
61 TX IGALVESTON
61 TX IHARlINGEN
61 TX (HOUSTON
6i TX ILARFOO
61 TX ILUBROCK
61 TV IMCA1.LEN
61 TX IMTOLAND
61 TX (ODESSA
61 TX IPORT ARTHUR :.
61 TX ISAN ANGELO
61 TX ISAN ANTONT.P
61 TX 1 SHERMAN
61 TX ITEXARKANA
6i TX ITF.XAS CITY
61 TX (TYLER
61 TX (WACO
61 TX IWICWITA FALL . '
61 TX IOTHF.R URBAN AREAS
61 TX (TOTAL FOR STATE
"~6l""~""lTofAL~FOR~R!?GlOKl 6

1000
ACRES
61*

1 8P .

301.'
!ft*
2*1
26,

6«I
32P.'
73.
102.
175,
2171
238!
590.'
|ft.
51"
4P,
i°*
:!
,11:
is:
21.
20,
lo »
ill:
ii:
53.
16.
5*,
5?o:
2546.
"!!5!:
1
197" POP I POP 1
1000. lAVT PDICOOE
76.1 1.981 E
2?3ll 3.671 C
61.1 2-5,2! E
602.1 3.?OI
. 1 , 1
9*2.1 3.?0l
249.'l 4.581 C
78*1 4.M8I E
B8.I 4.041 E
90.1 3.521 C
962.1 17.891 E,
234.1 3.B9I E
705.1 7.341
?406.| 7.341
297!! 4.071 C
41.4.1 4.071
.711.'! 4.07!
580*1 2.671 E
371*1 3.?2I C
693.1 2.«»ll
1740. 'I P.91I
90. 1.801 E
4—ry* T*4CI IT
1?7» 3«?5 1 E
?64. a.floi E
116. ?.42 1 E
53. 1 5.521 E
f4l *1/I4I IT
i:l 1:5!! I
1338.1 3.101 C
lg:j l:»! .i
16T8*| 4*86! E
70. I 4.971 E
150.1 3.041 t
91 . 1 4 .31 J t
60,1 C*«TI P
J 2 . 1 5. 1-3 J E
64*1 2*941 E
772ll 5. UK E
5b*l 2.461 E
58*1 ?.92I E
60*1 31751 E
142- 1-2?! I
9o . 5 *O5 I t
1999T 3.511
P934.' l£l\mmmm
"14753T ""3174 j""""
45

-------
TABLE HI-i DEMOGRAPHIC CHARACTFRISTICS OF THF KRRAN AREAS
RFGI8TTRE! "RBANI7ED ARFA
••»l---«- 1 ..--..-..._
71 IA IDAVFNp'**^™""""""""
71 TA IRF^ MnVkJFc
Z' I* IDUBIIQUE
71 IA ISTOUX CITY
71 IA (OTHER URBAN AREAS
7j IA (TOTAL FOR STATE
71* 1
-------
.TABLE TII-1 DEMOGRAPHIC CHAPACT
LEPAISTATEI HRBANI7ED AREA
RFiGI ID 1 . .
91 AK IIJPBAN AREAS
I 1
9.1 AK ITOTAL FOR STATE
91 AZ IPHOFNIX.
91 A7 ITIIC80N
91 -A7 IOTHFR URBAN A&FAS
91 AZ ITOTAL FOR STATE .
91 CA IBAKFRSFIELD
91 CA IFPESNO
91 CA ILOS ANGELFS
91 CA IMOOPSTO
9! CA IOYNARD
91 CA ISACRAMENTO
91 CA ISALTNAS
91 CA ISAN BERNAND.INn
9! CA ISAN DIEGO
• 91 CA ISAN .FRANCTSCO
91 CA ISAM JOSE
9i CA ISANTA BARBARA
91 CA ISANTA ROSA
91 CA ISEASIOF
91 CA ISTMT VALLEY
91 CA ISTOrKTON
91 CA IOTHFR URBAN ARFAS
i i
.91 CA ITOTAL FOR STATF
91 HI (HONOLULU
91 HI IOTHER URBAN APFAS
II
91 HI ITOTAL FOR STATF
91 NV ILAS VEGAS
91 NV • iRENn
91 MV IOTHFR URBAN APE*S
1 t
9i NV ITOTAL FOR STATE
9i ITOTAL FOR RERTON 9
"91 TD IBHISE
inl ID IOTHFR URBAN A=>FAS
1 I
101 ID (TOTAL FOR STATE
101 OR IEUGFNE
101 OP IP"RTLAND
191 OR ISALFM
inl HR IOTHFR URBAN APEAS
'. \ \
,101 OP ITHTAL FOR STATE
Tol WA I8FATTLE
101 WA (SPOKANE
101 WA ITACHHA
in| WA .IOTHFR URBAN AREAS
- 1 1
101 WA ITOTAL FOR STATE
"ol . 1 TOTAL FOR RFGION "o
___l____-l-_________-_--------
1 . (TOTAL FOR THE U.S.
rRisTir
'i 0 o n
ACRrs
.49.
**:
"&*1
67.
6*?.'
38U.
it:
1006.
7?r
156.
10.
19««
?4U.
436.
-177.
2U.
2fl.
!•=;.
16,
30.
311.
2«2P.
74.
3-5.
106."
77.
24,
i*r
.
. 120.
3487.
19.
66.
8«5.'
i
w —
o -»irj-4w
in jitz^A
• , t * > • j
264.
50.
83.
149.
. 546,
. 935.
P9037T
S OF THE
1970 POP
inoo
.. I«7;
ia.7.
863.
294.
. 25lT
1408.
176.
263.
*3<51.
Ml:
' 6ll:
'584.
110B.
?hl:
l^i:
3:
160.
• 1995.
1M«2."
442.
196.
638."
237.
100.
59.
3P6.
2C731.
3?!:
3P7.
Hii
346.
1403.
1236.
230t
332^
67b.
?475.

— — — •__ — _
149366.
DRBAM AREAS
1
POP 1
AVE PDICODEI
2.991 E
2.991
3.481 C
4.381 C
3.671
1
3.671
J.82I E
5.?OI E
«.30! E
•a. ATI E
3.421 E
4. "61 C
6.461 E
2.941 E
4.011 E
6>6I C
5.781 E.
5.491 E
3.081 E
6.051 F-
3.561 E
5.321 E
6.411
6.411
6.011 E
6.01 1
6.011
3.061 E
4.111 C
3.311
3.M I
5.951
4.581 C
4.581
4.581
3.951 E
4.R3I C
3.931 E
4.601
4.601
a. 6ii E
4.021 E
4.541
1 .
4.541

5.141
47

-------
  maps were unavailable.  These photos presented a problem  in that








       '  Land Use Distributions -in Nine Ontario r-ft-f^   w *  ^.i     .












 Thnc  JM   A  ^ ",        W as  °ne Person  Per acre (2.5 persons per ha)


 mdevel±d fr  S inCl?deS  S±^ificant acreages of laL  whJch^re  * '
 undeveloped and would not  be served by  sewerage systems.
is ^SveLped! i?e.!° ^^^ "^ Perceat °f tKe ^-iz.d area which.
where
      Z = 1.0 e-                  _
                                (r -  -0.57)



 Z - proportion undeveloped land,




PD - average gross (developed and undeveloped)

     population density, persons per acre, and




 r = correlation coefficient (-1.0 £ r £ 1.0).
                     PD.
                                   PD e
                                       0.17PD
                                                                   (III-l)
                                                                  (.IIIr-2)
                                    48

-------
n)
 co


 H
 H
 H
 O


 O




 I
1


•a
 01
 4J
 co
 u
            o


            M
                 O

                 H
                  s
                 •O
                 •H
                  W
            CO fH  net


           -•3 §  §8
            o. oi  ran

            £ Q  S S
                 •o
                  01
                  N
8



o
in





o
m






o
CO


o
co






0
co


00 •









Burlington
o



o
sr





o
vo






O
oo


o
CO






o
CM


N "-I
a- o
*m








a
3
0



o
sr





0
CM
ft





o
*"*


o
>n






o
Jo


i-» o\
CO CO
CM O
iH i-l








Kingston
8



o
r-
m





o
CM






0
O


o
.3.






0
CM


voO
in vo
CM




o
o
H
H
Kitchener-Wate
Cl



o
CO





o
VO






o
VO


o

-------
                                   PD, persons/hectare
                                             40
                                                        50
                                                                   60
                                                                              70
                           -:?& UNDEVELOPED • 100 x e-°''7PD
                                          r --0.57
                    XXX
         ©-U.S. % UNDEVELOPED LAND

         X- ONTARIO % OPEN SPACE
' 0
                            10            15            20

                       POPULATION DENSITY, PD, persons/acre
  Figure III-2.  Percent Undeveloped Land Use  (US) and Open Space
                  Land Use (Ontario)  vs Population Density.   Note
                  that best fit line  is forced  through point 100
                  percent at PD = 0.
                                     50

-------
                                                                      r'
Equation III-2 is shown in Figure III-3, Relationship Between Gross
and Developed Population Density.  Note that the developed population
density is about six persons per acre at the lowest level of urbani-
zation (one person per acre).  The developed population density
approaches the gross population density as PD increases.  Indeed, they
are quite close at PD >_ 25 persons per acre (62 persons per ha).

After correcting for the percent undeveloped, the proportion of the
land in the developed uses was determined as a percent of developed
urba.n land only.  After this transformation, was made, the. percent of
land in the developed uses was statistically independent of population
density.  The resultant distribution of developed land by use and
undeveloped land is shown in Table III-3, Distribution of Developed
Land Uses in Ontario Test Cities and US Cities.  Note the similarity of
the Ontario and US land use distributions.

The land distributions for all US cities are determined using equation
III-l and the US land use distributions shown in Table III-3.  The
results are presented in Table III-4, Land Use Distribution for the Urban
Areas in the United States.  In  determining the control costs, only the
developed portion of the urbanized area is considered.  Thus,  it is
important to check the validity  of this assumption in future assessments.
Actual field data need to be gathered and analyzed using a consistent
set of assumptions regarding land use categories.
Table III-3.  DISTRIBUTION OF DEVELOPED LAND USES IN ONTARIO TEST CITIES
              AND US CITIES
                                          of Total
Land Use
Residential
Commercial
Industrial
Othera
Ontario
52.5
9.0
14.1
24.4
US
58.4
_8.6
14.8
18.2
aRecreational, schools and colleges, and cemeteries.
^American Public Works Association and University of Florida,
 "Evaluation of"the Magnitude and Significance of Pollution Loading
 from Urban Stormwater Runoff - Ontario," Environmental Protection^Ser-
 vice and Ontario Ministry of Environment, Toronto, 1976.
                                    51

-------
                      persons/hectare
                    20      30
  0         5          ,10         15         20
  GROSS  POPULATION  DENSITY, PD,  persons/acre
                                                      60
                                                         60
Figure III-3.
                               Gr°SS and Developed Population
                           52

-------
TABLF III-4 LAND USF DISTRIBUTION FOR THE
T i i LAND USF
E«»A!STATEI . "RBANIZEH APFA 1 1
FGI . ID 1 IIINDVIPFS
11
II
1 I
•11
1 1
11
1"
11
ij
11
11
11
: 1 1
11
jj
11
1 1
n
?i
21
. 21
l\
CT
H
CT
H
CT
CT
CT
ME
ME
ME
ME
MA
MA
MA
MA
MA
MA
MA
MA
MA
MA
MA
MA
NH
NH
NH
NH
Rl
Rl
PI
VT
VT

NJ
NJ
NJ
NJ
NJ
NJ
NY
NY
NY
MY
NY
NY
NY
NY
NY
•BRIDGEPORT
(BRISTOL
IDANBURY
(HARTFORD •
IMFRTDEN
(NEW BRITAIN
INFW HAVEN
INfiRWALK
ISTAMFjDRO
IWATFRBURY
IOTHFR URBAN APFAS
i
IAVE. FOR STATF
ILFWTSTON
(PORTLAND
IOTHFR URBAN AREAS
1
IAVE. FOR STATE
1 BOSTON
IBROfTKTON
IFALL RIVEP
(LAWRENCE
ILOWFLL
INF> BEDFORD
IPITTSFIELO
(SPRINGFIELD
(WORCESTER
IOTHFR URBAN APEAS
IAVE." FOR STATF
(MANCHESTER
(NASHUA
(OTHER URBAN AREAS
IAVE.' FOR PTATF
IPRQVIDENCF
IOTHFR URBAN AREAS
IAVE.' FOR 8T»TF
IUP8AN AREAS
1 AVEC FOR 'STA'TF ,
1 AvIT FOR REGION 1
(ATLANTIC CITY
(NEW YORK CITY METPO
(PHILADELPHIA METRO
(TRENTON
IVTNFLANO
i
IAVE. FOR STATF
(ALBANY
IBINGHAMPTON
(BUFFALO
(NEW YORK CITY
(ROCHESTER
(SYRACUSE
IUTICA
IOTHFR URBAN APEAS
IAVE.* FOR STATF
"l AvI?~FOR""pERinN .2
147. 9130. a
|72l4ll6ll
I69l3ll7l9
I02l2l33l8
ISO.BI28.7
(49.6129.5
149.9129.3
1*0.0120.21
1 1 1
i*o.0'29.?
177.6113.1 1
160.5123. 1
149.9(17.6
1 . 1
169.9117.6
.134.6138.21
107.4130.7
It'2.41.33.7
171.21 16.81
I35lll37l9
168.41 !«.5
Ifl5lsi3ll7
144. 213?. 6
1 1
144. 213?. 6
152.4127.8
162*112?. 1
1^6. 912*. 2
1 . t
I*l2lll33l8
109.5129.5
..!,.. ..L..... ...
149.3120.6
1*8.8120.1
I33l5(3al9
131.6139*3
179.411?.!
1 a8. 5130.1
(02.5(33.6
(42.6133.5
I26.0I43.?
I33l5(38l8
135.3137.8
152.9127.5
03.8(4a.5
!?3.8I44.5
.|.---t— —
.139. 613*. 3
URBAN AREAS IN THE II.
AS X OF TOTAL AREA 1
1 1 1
tOMMJlNDL OTH (TOTAL 1
4.5! 7.7
3.51 6.0
2.41 a.ll
5.31 9.0
Sill 8l7
5.01 P. 6
«.2I 7.3
4.31 7.5
4.31 7.4
4.31 7. a
4.31 7.4
1.91 3.31
2.'6l a. 5
5.61 9.7
5lO( 8^5
a*5! 4"?
4l7l Rio
5.61 9.6
§:I! fe?
4.71 8.01
" 1
4.81 8.3
4.11 7.1
" 1
3.7( 6. a
5.01 8.6
5.01 «. 6
5."OI 8.6
4.31 7.5
1 i
1 a. 31 7.5

1 3.5'j 6.T
5l7l 9l8
1 a .'41 7.6
4^91 8.5
4l9l 8.5
1 6.4UUO
1 8l6lia.8
1 5.71 9.8
5l6l 9l6
( 4.K 7.0
1 6.6111.3
|. .!.)..»
9.5'ino.oi
7.31100.01
5.01100.01
11.11100.01
5. 6HOO. 01
10.7UOO.OI
10. 51100. OJ
8.91100.01
9.21100.01
9.1UOQ.OI
9.1 1100.0)
.1 .1
9.1 1100.01
4.11100.01
" 1 1
5.51100.01
11.91100.01
9. 6UOO.OI
10.51100.01
5.21 100.01
8l§ll06loi
9l9HOoIol
11.81100.01
5.81100.01
7.91100.01
9.91100.01
10.21100.01
10.2MOO.OI
8.71100.01
6.91100.01
7l8[100.0j
7.81 100.01
10.51100.01
10.5MOO. 01
. 1 1
10.51 100.01
9.21100.01

7.51100.01
9»5'lOO»Ot
12*1 ' i^0«0 1
9.41100.01
10,41 lOoIol
13151100.01
18.21100.01
112.11100.01
1 11.81100.01
8.61100.01
13.91100.01
13.91100,01
TI'oiTooToi
53

-------
(TABL
            LANJO USF r>TSTRTt*UT

                       ARFA
...I
  31
  31

  31
-..|
  31
    I
  31
...I.
  3 I
  31
  31
    I
  x i
 .- I .
  3'
  31
  31
  31
  31
  31
  31
  31
  31
  3 I
  31
  31
  31

  31
.. I.
  31
  3 I
  3 I
  31 -
  31
  31
  31
  31

  31
..I..
  31

 I!
 31
 * I
  !
 31
E III--4

STATFI




  OF  If.iTHPR liRBifJ APFAS


..°^  !AV^." FpR STATF
 ION FOR THE

 I     i     I  '
 IMMBVIPFS I. ~
 |.—-|..._)_.
 MO. 8 I 34. 6 I  5
 M0.8,34.ft!  5

 Ifi0.8l3fl.fel  5
          JAVF."  FOR  STATF

          I RALTIMQRt-"••--"-
          ,           nf.
                                                 AREAS IN THF  n  <;
                                             .  nr TOTAL AREA   i

                                               .lNOL ,OTH (TnT4| j
                                            «- 1 .... i .... i ..... i
                                            .) I  «.*! 10. 81100. oi
                                            .1   ^.flltO.flllOOroi

                                            .11  «.*Mio.ftil00.ni
                                             . i .... | ._.._ | mmmmm i
                                            .3}ia.2M7. 51100. 01
 MH


"PA"
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PI
 PA
 PA
 PA
 PA

 PA


'VA
 VA
 VA
 VA
         J,nTHFR URBAN  APFAS
          i A»E::.; FOR

          I AI.'""""""""
          I Al
          IEPIF
         I LANCASTER
         IPWII AI?EI P
         I PTTTSRUI7RM
         I A VET Fflf? ST4TF
.1..;.
 i?5.e
 135.1
 IPP./.1
 I
137.7
133.7
134.8


l"5:t
l?3:6
I « 3 . 9
143731*6]
137.91 5.
M1.PJ 6<
141 .PI 6.

I3"7"l""]
I3S.7I 5.

il5:J!l-
!!?:?! «:
MU.6I 6.
|3^.7| a*
                                            .    .
                                        2 10.61 13.01100^01

                                        ?UO.A|13.0I100.0I
              71
              fel
              p i
                                                 ..
                                                ?•!  120.01
                                                       .
                                                     00.0!
                                                     OQ.oi
         IMF-.PORT
               l K
                             .
                          M9.0
                          I /Jl .a
                          136.3
                          I.
                          136.3
                         . | --•,-
                          1^6.t
                                           .71
     '3a.?l ,..„
     I37.?| S.<5

     I37.?| 5.S
                                                .
                                               7.
                      r ..  100.0!
                    1  9.3UOO.OI
                    I 10.71 100.01

                               I
                                     I
              4 I
              PI
      VA
      VA
                              MA^ISI :i i

                nc
           URBAN
                                           .0 I
                "pjT?J!^i
                7:0! 8R:i!}88:o°!
                1-2  2-Z!J2o«0'
      VA  IAVE.  FHR  STATF
     •---I---- — -.---.-.-...



      i«V  I STEliBFWv/Ti.LF  "FTPn
     ^ V  I 1THFR IJRBAN .ARFAS

     s«V  IAVE. FDR  STATF

         1 T"^'!~FnR"pE"TnN   3
                         I 46.9131.0
                         II     .
                         I U6.9-I 3 1.0|  4
                         . I..-.I.._.)_.

                         1^6:3137:?!  5


                         i'j7:5i3o:7i  4
                         I     I     I
                         M7.5130.71  a,

                         I3777I3"~!~5!
                                        I  4:&i  T'.QI
             :Ij  W,MW!J88:fl°!
             ,Qi  8.7110.71100:01
             51  7.P,! 9.61100.01

             51  7.fl| 9.61100.01
        l--.:._. . ERTnN   3 I^7.7I3A.UI  5.41  9.2111.31100.01
                           54

-------
TABLE III-4 LAND USF DISTRIBUTlnN FOR THE URBAN AREAS IN THE U.S.
.1 1 1 L*NPi USF AS X OF TOTAL AREA 1
EPAI9TATEI HRBANI7En AREA II 1 1 |
PF.GI in 1 . . IUNDVIRFS irtlMM | IMDL IOTH ITOTALI
9444444 41
44999999999 9.
.
41
41
41
41
41
41
41
41
1
199949 9
I
1
41
41
.• 41
1
41
41
. 41
41
41
41
41
41
41
41
41
41
41
41
41
41
1
41
i
144444 4
1
• ':
1
AL
AL
At
AL
&
AL
1
Ft
FL
FL
Ft
'FL
GA
GA
GA
GA
GA
GA
GA
KY
KY
KY
KY
KY
KY
MS
MS
MS
MS
N.C
NC
NC
NC
NC
NC
8*
NC
NC
NC
SC
£
SC
. SC
TN
TN
TN
TN
TN

(BIRMINGHAM
IGADSDEN
IHUNTSVILLF
(MOBILE
IMONTGOMERV
(TUSCALOOSA
10THF.R URBAN AREAS
IAVE.* FOR STATE
IFT.I AUDERPIAI.E
IGAINESVIL1 E
(JACKSONVILLE
IMTAMI
(ORLANDO
IPFNSACOLA
1ST. PETERSBURG
(TALLAHASSEE
(TAMPA
IWFST PALM BFACH
IOTHER URBAN AREAS
IAVE.' FOR STATE
I Al BANY
i ATL»NTA
IAUGUSTA
1 COLUMBUS
IMACHN
rS»VANNAH
IOTHFR URBAN AREAS
i
IAVE. FOR STATE
IHUNTINGTON METRH
ILEXTNGTON
ILOUTSVILLE
(OWENSBORO
IOTHFR URBAN APFAS
i
IAVE. FOR STATF
iBTLnxi
(JACKSON
IOTHFR URBAN APFAS
IAVE." FOR STATE
1ASHFVILLE
(CHARLOTTE
(DURHAM
IFAYFTTEVILLE
IGREFNSBORO
IHTGHPOINT
IRALFIGH
IWTLMTNGTON
(WINSTON-SALEM
IOTHFR URBAN AREAS
1
IAVE. FOR STATE
(CHARLESTON
(COLUMBIA
GREFNVILLF
OTHFR URBAN AREAS
AVE.' FOR STATE
(CHATTANOOGA
IKNOVVILLE
IMFMPHIS
(NASHVILLE
(OTHER URBAN AREAS
1
IAVE. FOR STATE
IAVE. FOR REGION
15171 2" ?
172.0116.3
I66l5llo",6
148.513(1.1

2.41 4.1
2.31 4.0
l'l\ 5-2
159.5123.7 3l5i 6^0
161. 3(2?. 6 3.31 5.7
I.I 1
161. 31??. 6 3.3| 5.7
146.3131.3
I67".OI 19l3
. 154.1126.8
I501ll29ll
147. 3130.8
157.0125.1
150.0129.?
150.0129.2
143.2133.2
la8. 9129. 9
ISO. 5(28. 9
(50l6l2'O
ISO. 5128. 9
1 I
1*3.1 127.4
I34.6I3«.2
I3ol9(4ol3
i«;lls^
160.5123.1
(49.6129.4
1 _. 1
160.5123.1
149.6129.4
(S3. 6127. I
IS5.7I2S.9
l6lZ9l2?l3
IS6l6l2d!l'
1*6.5125.4
155. 2126. 2
(55.2(26.2
IS4.2I26.7
153.6127.1
I55.6I2S.9
154. 3126. 7
IS4.3I26.7
160.1123.3
I55.6I2S.9
140. 7134. 7
170.8117.1
159. 4123. 7
159.4123.7
4 (S3. 6127.1
4.61 7.9
4.01 6.9
2.81 4.9
"»?' 7'-Z
4l6l flT3
4.31 7.4-
4.51 7.8
3l7l 6.4
* | *
4.31 7.4
4.91 «.4
4.4| 7.6
4.31 7.3
3.51 6.0
4.21 7.2
4.2" 7.3
4.3IC7.3
4.-3J 7.3

5. 1H
4.9i;
6.11:

00.01
00.01
•00.01
ooloi
7. 01166. oi
7.'0j 100.0 j
9.8H
8.51:
6.0J
sl9i :
10:21:
?:li
?;!|1
9,1 jl
10.31]
9.31
9.01
7.41 1
8.9 H
9.01
9.01
1
9.0H
00.01, -...
00.01
00.01'
ooZoi
00.01
00.01
00.01
ooZoi
00.01
00.01
00.01
00.01
00.01
00.01
00.01
00.01
00.01
4.01 6.9 . s.siioo.oi
5.61 9. 7111. 91100. 01
5.21 9.0 11.1HOO.OI
5.9110. 2M2.6HOO.OI
5.21 9.0111.11100.01
5.21 9.0 11.1(100. 01
I:§! ':§ l:\\
3l9l 6l7 fl!?l
3."9I 6.7
B;?I
3^41 S.9J 7.2*
4*101 6*191 8l4l
3.81 6.61 8. 11
4l2i 7l2 elei
3.31 5.6 6.91
|I7I 6.41 7.91
3l7l Ili! 7lll
3.91 6.6 8.21
3 ."91 6.61 B.2J
!:?! 8:5
3:«j 8:8
8.31
i*4i
! 3.41 5.9J 7.3J
1 3.81 6.61 6. 11
1 5.11 «. 8110.81
1 2l5l 4^31 5*^31
1 3T5I 6.01 7.41
. 3.'5I 6.01 7.4

j.2:2
00.0 1
.00.01
LOO. 01
,00.01 .
A:\\
§§:§!
^§:§!
00.01
100.01
100.01
100.01
100.01
LOO. 01
m:i\
§§:§!
100.01
100.01

55

-------
TABLE III-4  LAND USE DISTRIBUTION FOR  THE  URBAN AREAS IN THE L

IS* STiJE    "RBANIZED AREA    !  UN? "SE,48  *,PF W*CptF.

£-£ ~£2.	.„	} "NO V [RES  I COMM j INDL HTM  T0TAL !
  5   IL (AURR                       "  "      -   "     -
  51
  SI
  5
  5
 5
 mm
 5
         ICHlrAG
      IL
   L (JOLIET
     IPEORIA
     IROCKFORD
     ISPRTNGFIEID
     (OTHER  URBAN  ARFAS
ia0U8l3?.3|

J?2:9I45:0
 ?1.2146.0
 42.9133.3
148.8129.9
147.1130.91
I54.2IP6.8
140.8134.6
138.9135.7
                                         s:?.i
                                          ".'
                                          8, '
                                         $.$iji:«if2:oj
                                         *.S!il.?M«rs
•«*.jiHE:."5.2IiIf       —.--»..o, o.i
  IN  rAWDERSON""""""""""""':=":'~~~~'"~~"
  IN   CHICAGO  MFTPO

 .18  IJiA-rt-
                           0.01
            «:9i*A:ii!o:«i o§:o!

            *"*' f:!' !J!!i§§$
138.9(35.7(  5;3i 9*0  llinioo'jii
 ?8.7141.6 I  6. II 10.5113.0 1100.0 I
                              I
                                   I
     MUNCIE
     .
     TN
     IN
     IN
     IN
     IN


     IN JAVE.* FOR STATF
   — ... .....;...             a  i   >     '
                       " ~~   """" ""''
         IM
         I SOUTH BEND
         (TERRA HALltE
         [OTHER URBAN ARMS
 i!
 51
 SI
 SI
 51
 SI

 5!
 5
                .
        (ANN ARBOR
        (BAY C
        IDFTPQ
        (BAY CITY
             QfT
        (FLINT
        (GRA
            ND RAPIDS
        IJACKSON
        IKALAMAZDO
        (LANSING
        (MUSKEGON
        ISAGTNAW
        IOTHFR URBAN APFAS

        IAVE; FOR RTATF
 MN (MINNEAPOLIS
 HN I ROCHESTER
    IOTHER URBAN AREAS
     HN
 51

'Si'
 51
 MN

"OH"
 OH
 OH
              FOR  STATF
        (AKRON
        ICANTON
     -..   CLEVELAND
     OH  (COLUMBUS
     OH  (DAYTON
     OH  (HAMILTON
5    OH  (LIMA
s    OH  ILORAIN

?    Rg  !8*8?SiftiLD

     SB  l?J!E!«5MmLfr
     OH  IYOUNGSTOWN
     OH  (CITHER URBAN AREAS

     OH  IAVE.' FOR STATF
  «•«"• I ••••MMWW«MMMM«»MW««
     WI  IAPPLETON
     w   IDMLUTH METRO
     WI  (GREEN BAY
     wl  IKENOSHA
     WI  (LA CROSSE
     w:   IMADISON
     WI  (MILWAUKEE
5    WI  OSHKOSH
51    WI  (RACINE
5j    WI  JOTHFR URBAN AREAS

51   WI  IAVE. FOR J
-...;. .-:;.^:.::::..... i   :'r"*a
                                                   °:9!lo6:6i

                                 .
                         151.1128.61
                         147.1130.91

                         147.1130.91
                             136.41
                             IS4.1I
                             •I     I
                                 1
                                813631
                                8I3U7
                                 13?.51
                                 13?.01
                                4120.8
                                0I41.S
                                8129.
                                3130.21
                                5139.4
                                 139.2
                                 ,29.4,
                            56

-------

 TABLE  LH-4  LAND  USE DISTRIBUTION FOP
ill                     I  LAND
IEPAISTATEI    URBANIZED ARFA    I     '
  FGI   m i                      IIN[H,- - -  ,
  ..I...»-I.-•...-•----------"--1—«•-1--"i "
   61   AP IFHRT SMITH          I74*£US*7
   £l   AP II TTTLE  ROCK         1*3.6127.1
   t\   AR IPINF BLUFF          Sg^Sill-?,
   61   AR IOTHFR URBAN AREAS     *8.8J2fl.l

   6i   AP IAVE: FOR STATE  ___ J^SiS}E2:l!
   61
   61
   61
   61
   61
     I
I. A

if A

t'i
iBATnN ROURE
ILAFAYETTE
ILAKF CHARLES
IMDNPOE
INF*I ORLEANS
      "URBAN AREAS
                               IU5.9I31.
I '4.815*.6!

l^9ll I3**6|
I     I     I
179.113*.61
                                                    IN  THE  U.S,

                                           ,-   T~-tREA   !
                                        v,., uNDurtTw J32I1L!
                                        ilii'uTii'iT^iiooToi

                                        4l6l  Ol  9l8HOoloi
                                        3T5I  6lll  7.*jlOO.O| .

                                        3.'5I  6.11  7.5J100.0J

                                        4r7l"8"oi°9l6l"oo.OI
                                        '• L-  813110131100.01
                                             7.41  9.0;I100.0I
                                             *.7!  g.i'100.0!
                                           all
8.21;
5!§]-
                                                 I 8. 81100. P
                                                 ill. 1U

                                                       OO.OI
           i.'  FOR  STATE
    , .•_I•••....•••••••••«•
    OK  JLAniTHN
    PK  IDKLAHOMA  CITY
                                IFO.1120.?
 6)   LA, IAVE.*  FOR  RTATF      . -   --.-  ^m.

*6l""NM  IAIBIIQUROUF     _      j15?*!!??*^'

 fe!
 6<
..I.
 61
 61
 61
 61
               .
           IQTHFR  URBAN  AREAS
 61
 6!
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 6<
 61
 61
 61
 61
 61
 61
 61


 6!
• mm \

 *!
mmm I
           IAVE.'  FOR  STATF

           i ABILENE""""   ""
           IAMARILLO
           I AUSTIN
           I BEAUMONT
           IB»OWNSVILI E
           I B R Y A N
           I CORPUS  CHRIST!
           I DALLAS
                         163.5121 ."51
                         1*7.8120.61

                         1*1*1
                         161.112?,Tl
           IFriRT WORTH
           IGALVESTOKI
           IHARLINGEN
           ILARFDO
     OK

    "TV"
     TX
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TV
     TX
     TX
     TX
     TX
     TX

     TX  lAVE.' FOR STATE

    —-1 wirFsr si jjinr ^r j g:;. is-i
                                 5.21  9.OM.1.1 MOO.Pj

                                ""J7II """»I "9"! I 100. OJ
                                 al3l  7l4!  9.11100.OJ

                                 4.'3 I  7.4J  9.1II00.0|

                                "i"e i ~".s i "elo i Too .01

                                 111!  Wl  fifliS?!?1.
                                 llSI  *I«I  7.1H00.01
                                    I     I.I      I
                                    I  *.8I  7.11100.01
           IMCAI.LEN
           IMTDL AND
           infiESSA
           (PORT ARTHUR
           ISAN ANGELP
           ISAN ANTONIO
            ITFXARKANA
            ITFXAS CITY
            1 TYLER
                                           j 3."8I 6.61 8.1J100.0I
                                           j....|.»-•|.--•I•»•••I
                                 57

-------
TABLE
   IJI
         Ij4 LAND USE DISTRIBUTION FOR THE URBAN  AREAS  IN  THF  U  S
         i    ,.„„.	 .  _.    I  LAND IISF AS X  TIP TrtTAi  *DC» ~  . •'
  71
  71
  71
  71
  71
  71

  71

 "7l"
 7!
 71
 .-I.
 71
 71
 71

 7!

..!!,
 71
 71

 7!
 71

"71"

"si"
 81
 81

 81
  I
 fll
.-I.
 81
 81
 81
  I
 81
..).
 81

  I
  IA
  IA


  IA
  IA
      KS'
      KS
      Kfl

      KS

     "MO"
      MH
      MO
      MO
      MO
      MO
                   AREA
      CEDAR RAPTDS
     IDAVFNPORT
     |DPS MOINES
     ID'IBUOUE
     •SIOUX CITY
     I WATERLOO
     IOTHPR URBAN AREAS
                          156.8125.?
                       . • -•-»--• ^_ _•»• | .j • i  t
                       169.4117.91 2^61
                       I53.7l27:n  S:oi
                       140.3134:9  -*y!
                       165.4120.?!
                                         AS  XfOF  TOTAL  AREA

                                             iiNDLinTH  ITOTAU
                                             i----1 ....1.....i
                                          I'll  6*2'  7.91100.ni
     I
                                                   5.61 100. ni
                                          5*li fl'ei e:£1 2-5! 7'ai '.iiioo.oi
    !A!!• .F^R  REGio"""ria67siir7i!~47&!"77?!"577!Too7o!
        .................|....,....,mm_m,mmmm,mmm_,_____,
                        58

-------
TABLE
IH-4 LAND USE DISTRIBUTION ^.^^UPB A^AREA^I^THE- U .S
PAISTATE! URBANIZED AREA
F.SI
91
1
91
91
91
91
1
91
91
91
91
91
91
91
91
91
91
91
91
91
91
9,
9,
1
91
9,
91
91
91
9 1
91

91
91
101
101
101
101
10!
101
101
101
10!
101
. 1
101
"Toi
... i
...,
. ID 1
AK ,U»3AN AREAS
1
AK IAVE.* FOR STATE
AZ IPHOPNIX
AZ ITUCSON
AZ IOTHER URBAN APF.AS
i
AZ IAVE.' FOR STATF . .
CA IBAKF.RSFIEI. D
CA IFRESNO
CA ILOS ANGELFS
CA IMHOFSTO
CA IOVNARD
CA (SACRAMENTO
CA ISALTNAS
CA ISAN BERNANDTNP
CA ISAN DIEGO
CA ISAN FRANCTSTO
CA ISAN JOSE
CA ISANTA PARRAPA
CA ISANTA ROSA
CA ISFASIDE
CA ISTMT VALLFY
CA ISTOrKTON
CA IOTHFR URBAN APPAS
i
CA IAVE. FOR STATF
Hi IHnNflLULU
HI IOTHFR URBAN AREAS
i
HI IAVE. FOR STATE
NV ILAS VEGAS
NV IRENH
MV IOTHFR URBAN AREAS
i
NV IAVE.' FOR STATF
lAvIT FOR REPIOM 5
ID IB"ISE
TD IOTHFR URBAN AREAS
ID IAVE. FOR STATE
OR IEUGFNE
OR IPORTLAND
OR 1 SALEM . . •
OR IOTHFR URBAN APFAS
OR IAVE.* FOR STATF
WA ISF.ATTLE
WA 1 SPOKANE
WA ITACOMA
WA IOTHFR URBAN AREAS
INA IAVE.' FOR STATF

._...,----.-----«..-----*-
1 AVERAGE FDR. THE U.S
I 1 1 1 1 II
|H\r>ViRFS ITO^HIIMDL OTH ITOTALI
IAO. 1123. 31- 3.41 5.9 7. 3UOO. 0!
1 1 I.I I.I I
I60.'ll?3.3l 3.41 5.9 7.3U00.01
155.4126.11 3.81 6.6 8.11100,01
147.5130.6! 4.51 7.8 9.5 100.01
IS3.7I27.0J 4.01 6.9 8. 41100. PI
1 III I 1
IF3.7I27.0I 4.01 6.9 8.41100.01
144. 013?. 71 4.81 8.3 10.2HOO.OI
IU1.3I34.3I 5.0I 8.7I10.7HOO.OI
IP4.4I44.2I 6.5I11.2 13.8HOO.OI
1/43:713?.°! 4l«l 8.3 10.2100.0!
I55.9I2S.7I 3*81 6.51 8.0HOO.OI
S0»ll?9*ll Ol 7.41 9.1HOO.OI
I33.4I3».<»I 5.7, q.Q 12.11100. 01
160.6123. 01 3.41 5.8 7. SHOO. 01
!5J:S!2M!-§:?!iS:Sili:Iil88:8!
!x7*4n».5l 5^41 9^311. 1.41100.0!
|T9r3C?«;.4l 5.2, 9.0111 .OHOO.OI
59l2l'23l8l 3*51 6.0 7.4HOO.O'
m5*7l37.«5l 5^51 9.5 11.71100.01
|4ol5l34^P| 5^11 8lfl| 10*61100*0!
I35!«I37.7I 5.61 9.6M 1 .8 HOO.O 1
1*5. 4l37.7i 5.6! 9.6I11.8HOO.OI
136.0137.41 5.51 9. 5111.61100. 0'
n6"oi37'4l 5^5, 9:5111.61100.0!
1 1 I.I 1 I.I
136.0137.41 5.51 •?. 51U. 61100. Oj
1^9. 4123. 7| 3.51 6.01 7.4,100.0!
149.7129.4, 4.31 7.41 9.2HOO.OJ
1*57.112^.0! 3.7, 6.3! 7.8] 100. 01
1 1 1 ' 1 ''
IS7.1I2S.OI 3.71 6.31 7.8HOO.OI
138.6135.9! 5.3-1 9.1111.21100.01
05:9131:21 4T7! Ol 9:81100.01
1 I'll 1 1
145.9,31.61 4.71 ».0, 9. 81100.01
IS1. 1128.61 4.21 7.21 8.9HOO.O|
144. 013?. 71 4,ei 8.3 10.2 100.0
!^:I!!?:a6! S:5! l:l\ *:?U88:°o!
i t ii i i i
145.8131.6, 4.71 8.0J 9.91100.0!
lilrfii?:*! &\ SiJPWIISilrSi
IS:!!!?:!-! S:i|:?:3j JrijlWj
146. 313.1. fll «. 61 7.91 9.8HOO.OJ
"luSITisTTii'flTS, sToi 9T8|ioo.oi
. | .... 1 .... | .--" 1 ..-- 1 .... I m-mmmm I
T ! 46TH ! 3*7^ ! "HIS i "sTo i "9*8 n oo . o i
59

-------
. POPULATION AND AREA SERVED BY TYPE OF SEWER SYSTEM  .....

 Combined Sewers












for S£?nJT:CVf  dfa.was  a 1967 inventory conducted by the APWA   ,
for USEPA of local authorities with combined sewer systems:5 For that •

                         SSL'
 would underestimate the total area If
 was available, but is compeSaSd for
 If the calculated
                                            were av^ilable.   This

                                                P°pulation estimate
                                           °Ve°Pulati°n estimate.
                                          t proportion °f
              a.-=riE
by population density and gouped
lowest density to highest densitv
Albany, New York, SsJoL S Sure
bution of Albany! New YoS.      §


An equation of the form
                                    five  C!nSUS.tracts were ranked
                                         Cateories Banging from

                                                      ity °f
                                                    Density Distri-
                          PD
                               ax
                                                              (III-3)
                                  60

-------
o
tn
o
12
CO
UJ
0
.§•
2
.
15-
.
-
H
10-

•
t


5-

0-
(





























.-
D 20 40


.














,. '- .-








60

-40
-35

-30

-25


-20

-15
-10
-5
-O
80 100


o>
w.
"o
0>
-x
CO
c
o
0)
Q.



                      %  OF  URBANIZED AREA
           Figure III-4.  Population Density Distribution of
                        Albany, New York
                                61

-------
   where     PD = gross population density, persons  per
                                                        acre
              x - percent of urbanized area (0 < x £ 100) , and


            a,b = parameters, •
         K2,

                                       "'Potion density in any interval,



                                          /x?


                                          «.

                                  *  x    Xl
                                               ,
                                               QX •
                                                                     (IH-4)
    ^-100   PDcalc-
                  5.03
                                    for Albany,




                            PD «  108 x~°'933



                                    density is  5.1
                                      108

                                                                     (III-5)
                         100-x,
                                                                    (III-6)

                                    LOO

                  PD      - — 1    r     b
                    2-100 - 100-2  / -  ax dx»
                                                                   (III-7)
or
                       a =
                              98 PDC1+M
                           100(1+b)  -  _


Thus, the final equation for gross population  density  is



                           b
                    PD = ax  with x.. <_ x <_ 100.
                                                                   (III-8)
                                                                  (III-9)
                                    62

-------
Given.the equation in the form PD = axb, one can find the average population
density, the proportion of the population within certain densities and so
forth.

The method for determining which of the 50 cities would ^selected for
the city in question was as follows.  All 50 cities were divided into their
respective USEPA regions.  The mean and standard deviation of the population,
land area, and population density were determined.  Then a range of 1:
acceptable values was found for these parameters withto each. TJSEPA region.

For each city in question, two approaches were used in selecting the
                                                                   were
                "those'test cities outside the respective TJSEPA region
                 10 percent of the mean values for the parameters of  the
                 listed.   The order of priority in selecting tha reference
test city was as follows:

          1.  proximity of population density and land area
              in same USEPA region; and

          2.  proximity of population density and land area
              outside USEPA region.

 In selecting the "best"  reference test  city,  location and  land  area
 were the dominant factors because they  have a definite influence on
 population density.   Similar location implies that  the city in  ques-
 tion would probably have developed at the same time and  have been
 influenced by similar national population shifts, manufacturing tech-   ,
 nologies, urban growth patterns,  etc.  Land  area was chosen simply
 because population density is a function of  the size of  the urbanized
 area.  For the above reasons, the majority of the cities in question
 were referenced to a test city outside their respective  USEPA region.

 The population density function,  PD = axb, is given in terms of the
 total urbanized area.  Thus, it needs to be modified to  integrate
 over only the developed portion of the urban area as shown in Figure
 IH-5, Characterization of Population Density in Urban Areas.  In
 order'for the area under the two curves to be equal, one must
 that
                                                                have
                        100
                           ax dx
                                     100(1-Z)
                                             a'x dx
                                                                    (111-10)
  or
        a' = a{100
                            C1+b>i/Kiooa-z))C1+b) -
                                                                    (III-ll)
                                       63

-------
9aoD/suosjad'ad'A1,SN3a
              SSOd9
64

-------
Then,
                                                                  (IU-12)
                           PDj = a'x
                             d      -*•

where     PD  = population density in developed portion of
                the urban area,

           a" = adjusted coefficient from equation III-ll, and

           x  = calibrated lower limit on percent urbanized area.


The  percent of the urban area which is sewered is known for the nine Ontario
cities.   Computing the  corresponding PD  for  seven of the  cities resulted
'in the values shown  in  Table III-5, Minimum  Population Density for Sewered
Portion  of  Seven  Urbanized Areas in Ontario.  Guelph and West Toronto
were considered extreme values  and not entered into  Table  III-5.   Based  on
 these data, a cutoff minimum  developed  population density of five persons
 per  acre (12.4 persons  per ha)  was used  to  delineate the sewered part  of
 the  urban area.   Solving  equation  111-12 for  x2  yields
                    x,.
                         min [(5/a)1/b,  lOQ(l-Z)]
                                                        (111-13)
 where
x  = percent of the urban area which is sewered.
 Knowing the percent of the urbanized area which is undeveloped, i.e.,
 100Z, the combined sewered area from the survey data and the
 percent of the urban area which is severed  *   then the other sewered
 and unsewered developed areas can Be calculated as residuals.  The cal-
 culation procedure is summarized below:


        Sewered Areas as a Percentage of Total Urbanized Area

        1.  Undeveloped Area = 100(Z) = xu

        2.  Sewered Area = x^

        3.  Combined  Sewer Area =  XG, from APWA data

        4.  Storm Sewer Area = X2  ~ xc

        5.  Unsewered Developed Area =  100  ~ xu ~ X2
                                       65

-------
Table
        City
Miaimum  Sewered Population Density, PD

      (persons/acre)   (persons/ha)    d
 Burlington


 Kingston


 Kitchener


 St. Catharines


 Sault Ste. Marie


 Thunder Bay


 Windsor


    Average of 7 cities
3.93
7.28
4.49
5.79
4.67
6.12
3.87
5.16
.
9.7
18.0
11.1
14.3
11.5
15.1
9.6
12.8
                          are sho™ ta Table IIt-6,

  Population Served by Type of Sewerag


  1.  Combined Sewers CP ) ;
                        c


               Pp = APWA estimate
                           66

-------
.TABLE-IH-6
II      I
 EPA I STATE I
   61   10 I
           LAND USE BY TYPE

           URBANIZED AREA
                                                    OF SYSTEM
II
i!
II
II
   i
   11
   CT  IBRinGEPORT
   CT  IBPISTOL
   CT  IDANBURY
   CT  (HARTFORD
   CT  IMFRTDFN
   CT  INFW BRITAIN
   CT  INFW HAVEN
   CT  INORWALK
   CT  (STAMFORD
   CT  IWATFRBURY
   CT  lOTHgR URBAN AREAS

   CT  ITOTAL FOR STATE
   .«•. i..-.-.».««--—---'
    ME  ILP.WfSTON

tj   SI  PMBAN AREAS

II   ME  (TOTAL FOR STATE

7 i """MA*" i BOSTON"*""""""
    MA  (BROCKTON
    MA  (FALL RIVER
    MA  IFTTCH8URG
    MA  (LAURENCE
    MA (LOWELL
    MA IN'W  BEDFORD
    MA IPTTTSFIEL15
    MA (SPRINGFIELD
    MA  (WORCESTER
    MA  (OTHER URBAN

    MA  ITOTAL FOR  STATED

   "NH"iMANCHESTER
    NH  (NASHUA
    NH  IOTHFR  URBAN  AREAS
        i
    NH  ITOTAL
STORM rUNSEWI TOTAL I
• •»••• | ••»«•••• I »«»•»—^" I
    ""   26.61  95.41
         5>l  23.71
  S;5I    6.21  15.21
  fclll   2«'5!  81.8!
    11
    II

   .11.

    li
 — I
  21


  It
 .11.
  2t
  I!
  i!
         NJ

         NJ
         KJ
         NJ

         NJ
        .=>•<
         NY
         NY
         NY
         NY
         NY
         NY
         NY
         NY
UNDV. (  COMB I
    .(..«=.«»

         §.»,
   .11    0.01
 25.51    0-01
                                                               36.91
                                                               aa.si
                                                               38.ai
                                                  O.'OI  26.51 155.31
                                                         48.21 162.2
                                                ««..•*•> I «----- I «-a»-
                                                   o.oi
      VT   uAN  AREAS

      VT  (TOTAL  FOP STATE
     11
                             ...  .
    -   -            '
         I Mr "  I 'J"r\  '.• 4. • i  "£I_^
         (PHILADELPHIA  METRO
         I TRENTON
         IVTNFLAND

         ITOTAL  FOR STATE


        'I ALBANY*"""
         IBfNSHAMPTON
         (BUFFALO
         INFW  YOBK  CITY
         (ROCHESTER
         I8VRACI.IS

         loTHFR  URBAN AREAS
                                   67

-------
 TAPI
    I

 RFC I

 ""!
  31

  31
  31



 .*!.
  3!

  31
  31
  31
 31
 31
 31
 31

 31
..I.
E III-6

STATE I
  ID I
             I AND USE RY TYPE

             "RBANI7EO ARFA
 DC

 DC

"MD'

 MD

 MD

"PA"
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA

 PA
     'OTHER  URBAN AREAS

    JTOTAL  FDR STATE

    'iWASHINGTri"^??"""

     •TOTAL  FOR
     BALTIMORE   	
     WASHINGTON nc METRO
     HTHFR URBAN AREAS
        •i LLFNTOWN
         LANCASTER
         WTLKES-BAPRF
                                              X5I OP SYSTEM
                            JO.6 I
                            "us!1
                            .-1*5'
                            "|p2l"
                             36T3I1
                                23. <
                                                                I

                                                           THTALI
                                                           mmm^m{
                                                            70.41
                                                             4.61
                                      -i-i:i--:!;>!...2:2L *><*{
                                                       -
                                                     22.7
                                                     31.0
           0.01
           n.oi
           o.oj  66:41
          .2:2! i90*51  9?.9
          "«r4.r"?o^5i""r8r6
                 4T6i   1:2
                 8.41   ^!6
                                                           63.41
                                                           IglSI
                                                           28.21
 II
 31
  I
 31
-.1.
 31
 31


  I
 31   wv

"31""""
..I.....
 VA
 VA
 VA
 VA
 VA
 VA
 VA

 VA

"v"
 WV
 WV
 WV
 WV
         [OTHFR URBAN AREAS

         [THTAL FOR STATE

         ILYNCHBERG""""""""
              I K
        JPFTFRSBURR
        IRTCWMOND
        JQTHFP. URBAN AREAS

              FOR STATE
       JOTHFR URBAN AREAS

       [TnTAL FOR STATE

       I TnTAL"FOR~RFGlnNi""'
       I— ——..._.«...„_.
         31.51
          0.01   12.51
         17.11    fl.OI
          •5.9    6»6I
         .".0    a;6l
         10.3   49^91

	^(..Sf^Lf'S-OI
                            8.81
                           36.1 I
                           26%ot
                            9.SI
                           56.61
                                                .Wl
                                                           53
                           H:Z.
                          '?!:?!
                           43T3I
                           22.51
                           12.11
                            0.1 I
         10.41
          0.01
          0.0!
          ».OI
         1".9I
          n.3l
          1.51
          n.O"
                                          Q.
                                                OI
                                                   339.5
                                                   •-"•t»
                                                     0.0
                                                   '
                                         ft.QI
                                        86^91
                                         O.M
                                       is«;3-l
 !J:JI
  0.01
120,'OJ
                                                          iSI-.fii
                                                       0.21
 n-i{   »-oj    o.ii    0:01  * on
66.81  2«.0  154;3J  120;o!  569.'2

^I""P "HJi™:?!"l!-i
H'll  J:f|    8:|!    S-S   fl-f
                            68

-------
TABLE III-6
   I      I
 PA I STATE I
 F.GI   10 I
            I AND  USE BY  TYPE

            URBANIZED  AREA
   rl,
         . I.
                        OF SEWERAGE SYSTEM
                            AREA SERVED BY TYPE
                                     1000  ACRE?
                          UNDV I COMB I STQRMI
                                     .!<
                                           .1.
                      OF SYSTEM  i
                     UNSEWI  TOTAL I
                     •-35:51-*""
                      iMI
                      JWI
                      SWI
 41   AL  IBTRMINGHAM
 41   AL  IGAOPOEN
 41   AL  IHIINTSVILLF
 41   AL  IMflBTLE
 41   AL  IHONTGOMERY
 41   AL  IT'ISCALOOSA
 41   Al.  IHTHFR  URBAN  AREAS
  I      I
 41   AL  (TOTAL  FOR  STATE
..(...•.I,
                           74,51




                           lI'Sl
                           » J %~ *
                           16,81
       0.0
       o.O
       O.OJ
       o.O.I
       0.01
       o.o!
  41
  41
  41
  41
  41
  41
  41
  41
  41
  4 I
  41
    1
  41
     Ft

     Ft
     Ft
     FL

     Pb
     FL
     FL
     FL

     FL
   IFT I AUDERHAlF
   (GAINESVILLE
   I JACKSONVIILF
                                418:81
                                — ,-|.
   (ORLANDO
   IPFNSACOLA
   I ST.PETERSBURG
   ITAIJ AHASSFE
   (TAMPA
   IWFST PALM BF.ACH
   IOTHFR URBAN AREAS
   i
   (TOTAL FOP STATE
  9.91
150.41
 "7.41
 45.71

 45:51
  9.61
 39.71
 49^1
      I
       0.0 I

       "oTc
       o.O
       0.0
       0.0
       0.3
       0.0
       0.0
       0:0
       o.o
       o.o
       ".1
                                                            1
                   35.21
                   78.71
                   OTlSI
                   52:6!
637.41   0.4! 311.61
                                          31'
 41   GA (ALBANY
 41   GA (ATLANTA
 41   GA U'lGHSTA
 41   GA (COLUMBUS
 Ul   GA IMACON
 4t   GA ISAVANNAH
 fll   ,r,A IOTHFR URBAN AREAS
  II
 iii   GA ITOTAL FDR STATE
                                    .
                                 40.2!
                                 110.51

                                 352.il
                                     ' I«
                                   'J:«!
                                  •*:*!
                                   i*.9'
                                   6fi.?|
              102."7I 181.8i 696J9I
              ,...^. | „«•-•>- | mmmmqm \
                 1.81   3.51  12.61
                li:ai   5*4|  ?5*6I
 41
 41
 41
 41
 41
   I
 41
      KY.
      KY
      KY
      KY
      kY
    IHUNTINGTON
    ILFXTNGTON
    ILOUTSVILLE
    lOI-'ENSBORO
    IOTHFR URBAN APF.AS
    i
 6,71
5§*l!
 |:«i
U8.7I
!!:t!
       KY  i TOTAL  FOR  STATF
                                          -"i     ;  i
                                          9.61  S8.ll
                              7*71
                            124:2!
                                                87.41 SOfli'ill
   41   MS  IRILOXI
   41   MS  (JACKSON
   tt)   MR  IHTHFR  URBAN  APFAS
    II
   U)   Hfi  IT«T4L  FOR  STATE
                                24.Rl
                               i?5:2!
   4 I
   41
   41
   41
   a!
   4l
   41
   41
   41
  41
• *tm 1 a
  41
  41
  4 I
  41

  41
... I.
  41
  41
  41
  41
  41
   I
  41
...I.
  41
 MC  (A9HFVILLE
 MC  IC^ARLOTTE
 MC  (DURHAM
 NC  IF6YFTTEVILLE
 Mr  IRPEFNSBORO
 NC  IHtGHPOINT
 NC  (RALEIGH

 NC  IWTNSTON«SALFM
 NC  IOTHFR URBAN ARFAS
    I "
 NC  I TOTAL FOR  STATE

"sc" i CHARLESTON"""
 sr  ICOL'.'MRIA
 sr.  IGREFNVILLF
 sc  IOTHFR URBAN AREAS

 SC. ITOTAL FOR  STATE.

"TN"iCHATTANOOGA"*
 TN  IKNOXVILLE
 TN  (MEMPHIS
 TN  INASHVTLLE
 TN  IOTHFR URBAN AREAS

 TN  I TOTAL FOR  STATE..
....I..................
                                 359.11
  11:1!
  91.fit

. 186.'7I
WHdMWtM | 1
  45.Ol
  30.61
  5i:«
                                        0.0
                                        0.0
                                        0.0
                                        0.0
                                        0.0
                                        0.0
                                        0.0
                                        0.6 \

                                        P.O
                 2.91
                 not
                53.51

               It 3." 7 I

              ""11*61
                                          b.ol
                                          0:01
                                          0,0'  /10.5I
                                          0.01   62.lt
                                        ""iril*"'!!!!
                                     01
,427.01
.„..,.!.
2651.81
                    i!S:iLiiii.i
                     JJ:|!  .{|;]|
                     46:61  16819)
                     94.81  3a3.6|
                   »»«•>««• | mmtsmcttf |
                     18.81   74,91
                     J|:?!   "-
       25.71  98,'8I 167..5

       "95T9.r5sI?6 U 267^4
                                                             7i8.'9l
                                69

-------
TAILC  III-6
  ..I.
   51
   51

   3!
   51
  I!
  51


 .2!
  51
  il
 I!   *
          LAND  USE  BY  TYPE

          URBANIZED AREA
  * *•*  I




  ft

  it




  1

  IL
 — •••
  IN
         JDAVFNPORT MF.TRO
         \w$"*
          ISPRTVCFTFIb
          jOThf.rt urtciAN  AREAS

          I TOTAL FOR STATE  .
  51


  ii

  55j

  51
 ..I.
  51
  51
  51


  '!

 .=!,
  51
  51
  51
  51
  51
  SI
  51
  51
 51


 51
 51
 51

 5!
 51
..I.

 ||


 51


 51



 II.

 *!.
  TN
  IM
  TM
  IN
  IN

  IN
  IN


  1*
 mmtn

  MT
  Mt
  MT
  MT
  MT
  MT
  MT
  MT
  VI
  MT
  Ml
          ifVlNSViu.-r.
          FORT WAYNF
         IMMNCIL
         ISnUTH BEND
         ITFRRA HAUTE
         JOTHFR URBAN ARFAS

         jTf.iAL FOR STATE.

         IAMN'ARBOR""""""""
         'BAY CITY
         IOFTSOIT
         !?LIMT
                RAPIDS
        IKALAMAZOO
        iLANSING
         MUSIfESON
     ISAGTMAW
     [OTHFR  URBAN  ARFAS

  -^ I TOTAL  FOR  STATE

 M" i O'"LIITH"""""""""""""
     IFARRO  METRO
     IMTN^EAPOLTS
     (ROCHESTER
     IOTHFR  URBAN  APE/SS
     I
 .-  JTOTAL  FOR  STATE

 oH-iZ?RnN	•
     ICANTPN
     ICTNCINNATT
     MI
 MN
 MN
 MN
 MM

 MN
 OH
 nw
 OH
 n"
 OH
 nn
 ow
 OH
 nw
 OK
 OH
 nw
 OH
 OH
        ICI.EVFLANO
        i COLUMBUS
        ILORAIN
        'MANSFIELD
        ISPRTNGFIFLD
        'OTHER URBAN ARFAS
    OH ITDTAL FOR STATE
    ••"•«• I »«*V«V»W«M«MWWMWo.B.

    •'• IAPPLETON
                 :TRn
mmmm
 wi
 wf
 WT
    IKF.NOSHA

    "-Sffl"
       IMADTSON
       IHTLWAUKEE
 WI
 WT
 wi
 *• I  -..»_,, „ ^
 wi  IOSHKOSH
 wi  IRACTNE
 wt  IOTHFR URBAN  AREAS

 WI  [TOTAL FOR  STATE
•»•" I Bif^mmmmmmmmmmfimmmmt
    [TOTAL FOR  REGION .  5.
                                                     UNSEWI
                                                    .......
                                         n.fl
                                         0.0
                                         0.0
                                       204?9
                                                     166.61
                                                   ••-»»•

                                                :   11 :   «*!:!
                                                    172.9  695.'5I

                                                    "Ifr?!"!^!!!
                            1260.9.21
                            Immmmmmj
                             70

-------
TABLE
I1I-6 1 AND USE BY TYPE OF SEWERAGE SYST
EPAISTATE
FT, 1 ID
61
61
61
61
. 61
6 1

6 1
6 1
61
61
61
1
61
61
l
1
61
61
6 I
61
61
6>
61
61
6 1
6 1
61
61
61
61
6 1
d '
6 1
61
61
6 1
*> 1
r5 '
61
61
61
61
61
61
61
61
61
61
'J
-mm 1
AR
A*
AR
AP
LA
LA
LA
L A
ts
LA
1 A
NH
MM
OK
OK
PK
nx
TX
TX
TX
TX
TX
TX
TV
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TV
TV
TX
TX
TX
TX
TX
TX
TX
TX

1 URBANIZED AREA
1
IFORT SMITH
(LITTLE ROCK
IPTNE BLUFF
IOTHFR URBAN AREAS
(TOTAL FOR STATF
i BATON ROUGE
II iFAYETTE
ILAKF CHARI. ES
IMONROF
INFW ORLEANS
ISWRFVEPORT
inTHFR URBAN AREAS
1
(TOTAL FOR STATF.
(ALBUQUERQUE „ ie
IOTHPR URBAN AREAS
I
(TOTAL FOR STATF
IIAWTON
(OKLAHOMA CITY
1 TUL^A
iritHFR URBAN AREAS
1
(TOTAL FOR STATF
1 ARII ENE
1 AMARILLO
1 AUSTIN
1 BPAIIMONT
IBROWNRVILI E
IBOY4N
(CORPUS CHRISTT
(DALLAS
IFI PASO
IFORT WORTH
IRALVESTON
1 HARI INGEN
1 HOUSTON
ii & R F" nn
ILUBROCK
IMCAI LFN
1 MTDLAND
1 ODESSA
IPORT ARTHUR
IRAN ANGELO
IRAN ANTONTO
ISHERMAN
ITFXARKANA
(TEXAS CITY
ITYLER
1 WACO
IWTCMITA FALl
IOTHFR URBAN AREAS
ITOTAL FOR STATE
~ITnTAL""FOR~REGlON 6
UMDV 1
27la!
32.61
6.2)
110.8)
1
177 ."01
25.01
7.01
10.91
14.1 1
2.61
31.11
37.61
128.21
36.51
50.91
1
87.41
137:71
66.6)
145.71
1
365.81
36.71
22.51
24.41
31.81
. 3. PI
14.0 1
53:81
254.61
35.91
16S-?1
7.2 1
14.71
150.91
6.01
.''9.41
1 0 .2 1
12.41
6.71
30.61
13.2 1
56.91
12:il
40.61
8,51
40.51
14.51
319.21
.14 26. "81
?185?2I
EM
BY TYPE
1000 ACRES
COMB 1 STORM!
*".;!"
0.01
o.Ol

"•5!
0.0
» . r, 1
O.Ol
O.Ol
0,01
o.Ol
n.Oj
O.Ol
O.fll
O.Oj
O.Ol
O.Ol
O.Ol
o . r, l
n.Oj
O.Ol
0.01
n.fll
? . 8 1
0.0 1
0 : 0 1
o.Ol
?•?!
1 . ! 1
o.o
tl.fi i
o.Oj
O.Ol
Ofk 1
.0
0.0
O.Ol
0.01
0,01
0 : 0 1
0.0
o.oi
0.01
0.01
...!:i!
"16171
.•?:*',
* i
30.11
ig.sj
5.1
,4.9 1
3.8!
51.21
12.61
38.11
130.01
?2" 1
38.31
29151
1
87.61
1^:9'
3.1'
4.4 1,
*\ f I
% »o '
i o :9 1
74.21
18.21
*§•§
I!
106161
« * I
^•7 '
C * 3 1
:
«:7i
•541
11
4.4 1
6l2t
4.41
109, 5j
489. '31
mmmmm^m I
775.31
OF SYSTEM 1
UNSEWI
20I7I
1
82.41

e *e
5 *"S "I
. ' • ~ *
0.01
1*>.5
20.4
69.51

48.9
49 1 7
I?:?
145.-3
8.41
10.0
J0.2
•!
iff if
58.0
8?:S
3*3
i?»2
l!-8
1
TOTAL 1
60.81
lil:!!!
301.01
m 1 A I
16.01
** 4 O 1
14*2
II •§
53.81
60.21
96.01
^ I
101.71
174.'7I
28,21
217.01
T * c o i
1 15»H 1
238.51
. 1
598.81
49.91
39.01
55.01
9*^1
.6 1
41i:4!
76.21
253.4 1
2i:«'
3U5lOt
I •• . i '
>?*1 1
1 16101
1 46.71
i «< • i
44:2! iSi:?!
6.2! 32.41
5^1 19:8!
8:ij 53.11
amU\ 16.01
10.91 57.61
8.01 ?6.9I
139.81 569..7I
624.8
mmmitnf*
970.9
I?546.'OI
!3948?2I
71

-------
  I
TABLE  III-6  I AND USE RY TYPE

         [    "RBANl7En AREA

         I ...........„.„.„.
EPA I
PFGI
— .1
  71
  71
  71
  71
  71
  71
  71
    I
  71
...|
  71
  71
  71
  71
   I
  71
71
71
71
71
7 I
  I
71
  71
  71
   I
  71
 .. I,
  71

 "pi"
  Rl
  Rl
  Rl
  Rl
   I
  PI
 .. I.
  Rl

  Rl
  I
  Rl
 .. I.
  81
  Rl
  I
  Rl

"fit"
  01

  81
-.1.
  81
  Rl
 fll
 81
  I
 81
— I.
 81
  I
 Rl
 -I-.
     STATE
       I"


      ir
       TA
       TA
       TA
       IA
       TA

       IA
      m m»•
       KS
       KS
       KS
       KS

       KS
        IDA'VENPORT
        IDFS  MOINES
        IDUBUOUF
        ISTOUX CITY
        'WATERLOO
        IOTHFR URBAN  AREAS
        [TOTAL FOR STATF  .
        I WTCHITA
        IOTHFR URBAN  AREAS
              F0» STATF
 MO  (KANSAS CITY

 M"  JST.TOSEPH1^
 "2  ST. LOUIS
 MO  IflTHFR URBAN

 wn  [TOTAL FOR STATF

 WE:  iLTNroLN"      '
 NJF  IOMAWA
 MF  IHTHFP URBAN APFAS

."L !TnTAL FnR STATF  •
    CO ICnCnRADO SPPTUGS
    rn I DENVER
    en IPIIERI n
    rn IQTHFR URBAN AREAS

    Cn [TnTAL FHR STATE

   'MT"!B?L"NGS	'
    MT IGREAT FALLS
    MT IfiTHFR URBAN APFAS

    MT ITnTAL FOR STATF
   N'D
  «• «•
   SP
   sn

   sn
  m m m
   |lT
   UT
   UT
   NT

   UT

  "WY"

   WY
    IOTMFR  URBAN  AREAS

    [TnTAL  FOR  STATE

    I STn'ix'pALL S~"""    "
    IOTHFR  URBAN  APFAS

    I TOTAL  FDR  STATF
    IPPOVO
    [SALT LAKE CtTY
    IOTHFR URBAN AREAS

    [TnTAL FOR STATE

    i UPB AN'AREAS"""""""

    {TOTAL FOR STATE

          FOR'REGIP""
                          OF SEWERARE SYSTEM
                              APEA SEPVFD RY
                                                     OF SYSTEM  I

                                                   	L^J/LI
                                                  i§:;
                            323.81

                           "23?6I

                             >ll3l
                                                         laiii
                                                        278171
                                         ".'
                                         .
                                        •5.71
                                 79:5'   i":?!

                                1*51."I   2.1.3!'
                               • ---,-I...... I,
                                 18.5 I   o.OI
                                151.7}   21.01
                                 ?4.?|   o.OI
                                 6.11   1/1 /i i
                                 ?9.7I
            10.41
             3.41
            1R.1 I
            35161
                                             66.81  87.6
                                                3.11
                                               17.81
                                                  I—.-:
                               331."6I 163. b\
                               -»...|-..__„ |,
                                15.? I   o.OI
                                10.71  20.91
                                23.2,   8.7,

                                79.11  2".61
                                             29.81
                                            .....|
                                              8."4 I
                                             19.
                                    o.OI
                                    O.OI
                                    0.31

                                    0^31
                                       I
                                              • -T-I
                                               4.61
                                              10.51
                                              S9.RI
                                               5.51
                                              17.71
                                                .  I
                   695:li

                   '«[

                  •JWI
                 _185.4|

                    9.6|
                   29.'8
                   16.41
                   55.81
                 .-...,.
                 455.51
                 """"791
                   15>
                   54.91
                33.91
                67T2I
               171.41

               327.51
              •«-•»• I
                ?6.9|
               260.51

                28 :i!

               2?f:i!
                                -
                                '^3.61

                                38.21

                                 irii .
                                15.61

                                19. 51
                                         .
                                        o.OI   15 T

                                        o.OI   ?

                                        orai""!!'
                                        o.fil   laT

                                        l.fl
                                                     i?:il
                                                     94.^1
                                                   """«"TI
                                                      2191
           ?1.2[  19.81

          "ilrll'TJ!
           18.51  10.81
                                32.7)    0,71

                                20 ."3 I    "oi"

                                ?9Toi    ol01
                                17.61    "  - '

                                ?4.1 I

                                ?S /I  f. i
                                          15.01

                                          "alii'
                                                    ,1:5 i
                                                    20.l!
                                                   ......I
      V •-•
     .1.0
     o.O

     0.0

>i   ""7o
 i
     o.o
                                             26.3
                                              6T6
                                   i      • i       i
                               £f.6|___0.0l__11.3l
     I
     I
 46.31
...,-(.

   .  r
 11.31
    1 I •
    ;i
  60.81

"137JI1

  13.4|*
*mm + m* I
?19.3
 —.—..•|
   33 ."31
   96.61
   54.01

 _l«3.9l

 175777!
 -...^.|
   9.01
   57l6l
 l'»7.5l



 334.'9 I
 ..«.*.|
   17.31
  1411 I
  soTSi

  82.21
......I
   9.81
  39T9I

  49.7!
--•-,.|
  17.31
  51.11
    .  I
  68.4 I
"mmm^m\
  39.01
  41:61
 117.81
  32181

 231 ."2 I
•...^.|
 49.31

 49.'3 I
i...^«|
 815.61
...... I
                           72

-------
TABI E
III-6 1 AND USE BY TYPE OF SEWERAGE SYS
1 ' ARF* SERVED
1EPAISTATE
RFGI ID
91
1
91
91
91
91

91
91
9 1
91
91
9.1
91
91
91
91
91
91
91
91
91
91
91
91
1
91
91
91
j
91
91
91
91
1
. 91
91
101
101
. 1
1->l
101
1 0 1
101
- 1
101
101
101
101
101
1
1'}l
*""!"
AK,

AK
A7
A7
A 7

A7
CA
CA
CA
CA
P. A
C A
CA
CA
C*
CA
CA
CA
CA
CA
CA
CA
CA
CA
HI
H!

HI
K'V
MV
NV

MV

ID
ID
TO
0»
nR
OR
OR
OR
MA
WA
MA
WA
«•*!
! URBANl7Er> ARFA
1
IURBAN AREAS
I
ITOTAL FOR STATE
1 PHOENIX
1 TUCSON
IOTHFR URBAN APFAS
1
ITOTAL FOR STATF
IBAKFRSFIELD
IFRESNO
ILOS ANGELFS
IMODESTO
IOXNARD
(SACRAMENTO
ISALTNAS
ISAN BERNARDINO
ISAN DIEGO
ISAN FRANCISCO
ISAN JOSE
(SANTA BARBARA
1 SANTA ROSA
I8FASIDE .
ISTMT VALLEY
1 STOCKTON
IOTHFR URBAN AREAS
i
(TOTAL FOR STATE
1 HONOLULU
lOTHFR URBAN ARFAS
I
(TOTAL FOR STATE
ILAS VEGAS
IRFNO
lOTHFR URBAN ARFAS
t
ITOTAL FOR STATE
ITOTAL FOR REGION 9
IBOIfiE
IOTHER URBAN AREAS
ITOTAL FOR STATE .
IEUGFNE
IPORTLAND
ISALFM
IOTHER URBAN AREAS
1
ITOTAL FOR STATE
1 SEATTLE
(SpOKANE
ITACOMA
lOTHFR URBAN AREAS
ITOTAL FOR STATE
" i THT AL~FOR"RFGIO"I o~
"'" 1 •"""* | TOTAL"FOR"THE*ursr""


i
29.61
137.51

36:«l
, |

16.1 1
§.91
.4 1
9.51
40.11
78 .3 1
3.21
1 ?0 .3 1
105.81
135.91
66.31
9.31
i a. 4 i
5.51
8.71
12.21
110.21
1
.1002.01
26%5I
-11.81
1
. 38.31
46.01
12.1 1
tO. 21
1
68.31


30.31
, 1
18.01
75:21
12.11
34.5 1
139.81
119.21
22. PI
41.71
68.91
1
. 252.61
"ZsiTi!
..-.., i
13409.1
TEH
BY TYPE OF SYSTEM 1
1000 ACRES 1
CO^B 1 STORM 1 UNSEWI TOTAL I
0.71

0.7J
o.oi
O.OI
o.OI
1
n.Oj
o.oi
O.OI
o.oi
O.OI
O.OI
•5.61
o.OI
O.OI
0.0
54.1
0.0
O.OI
O.fl
o.o
0.0
0.0
7.4
67.1
o.O
0.0

o.O
O.OI
/5 _ ft
0.4
•

70.6
0.0
0,0
0.0
24*?
n,o
*'. i
3?. 7
37.9
19.4
".7
21.*
79t,9
~11?I6
"?248?
6.71

6.'7
49.6
16.7
14.4

80.7
..9.8
16.4
5*8.3
6 .7
1 2 .7
?9 .7
' 4.6
*9 .5
67 .2
80 .5
55.8
8.8
2 .7
8.7
2 »9
1 0 .6
115.5
1050. '4
25.5
11.3

3 6. '9
12.2
? »y
2 • o

17.3
1191.9
4^8
1 7 » 1

.2:3
5 *i
1 1 «3
45.7
i«:8
i 68.8
"IsST-S
5987.
12.11 49.21
1 . 1
12.11 49.21
61.2
18.5
17.3

97.1
To. 7
1.3 . 2
172.5
5.5
248.31
67.21
68.41
. 1
3*4.01
36.51
50.61
1006.11
?1.6I
1 8 .9 | 71 .7 I
4.2.6 156.21
1.71 9 .6 1
48.71 198.4J
7S •
1 65.3
2«3.B
415.8 1
1 55.1 177 mi I
1 5.6 23.7 1
7,3
1.1
?4 .3 1
1 5 .4 1
4.4 16.01
7 .3 30.11
1 77.9 311.01
1 708.7
28?8.*l!
1 21.5 73^6 i
1 9.6 32.61
. 1
31.11 106.21

1 T » 3
1 £l .ft
1 " '
1 31.1
1 880.1

1 1 ™ .6
I 23.8
' 2-S
i a6:l

1 21.4
1 86.7
( 2 C, m ™
1 ^ Q ^1
I
1 144.3
I "54T5
1 7393.
40 »j 1
17.81
J
119.** 1
3487.01
18.61
65 .9 1
84. 5 !
55-|j
23 «7 1
75.21
305. '01
49.91
82:61
148.81
. 1
545.61
"its?! 1
29037.1
73

-------
             2.   Storm Sewers (P  ):
                               s
                        P   =
dx - P
                                                                       (111-14)
            3.  Unsewered  (P  ):
                        P  = P - P  - P
                         u        c    s
                            (111-15)
            where  A = total acreage of urbanized area, and



                   P = total population of urbanized area.



The resulting population by type of sewerage system is shown in Table

II:t~7» Population by Type of Sewerage System.  The population densities

by type of sewer system are shown in Table III-8, Developed Population

Density by Type of Sewerage System.  Lastly, the values of the coeffi-

cients used in the .above calculations are shown in Table III-9,- Values

of Coefficients.                                             '  	
                                     74

-------
TABLE IH-7
EPA 1 STATE 1
EGI ID 1
POPULATION BY TYPE
URBANIZED AREA
11 CT (BRIDGEPORT
11 CT (BRISTOL
it CT IDANBURY
11 CT (HARTFORD
11 CT- IMERTDEN
11 CT INEW BRITAIN
11 CT INFk HAVEN
11 CT NORWALK
II CT 1 STAMFORD
1 1 CT 1 WATERBURY
11 CT (OTHER URBAN AREAS
t 1
1 1 CT ITOTAL FOR STATE
11 ME 1
11 ME 1
1, MF ,
11 ME 1
LEWISTON
PHRTLAND
OTHER URBAN A&FAS
TOTAL FOR STATE
Jl MA (BOSTON
11 MA 1 BROCKTON
11 MA (FALL RIVER
1 1 MA IFITCHBURG
H MA ILiWRENCE
ii MA ILHWFLL
1 1 MA (NEW BEDFORD
1 1 MA IPITTSFI-ELH
11 MA ISPRTNGFIEIO
11 MA 1 WORCESTER
1 1 MA IOTHFR URBAN APFAS
11 MA ITOTAL FOR STATF
11 NH 1
11 NH 1
1 1 NH
11 NH- 1
MANCHESTER
NASHUA
OTHFR URBAN AREAS
TOTAL FOR STATF
11 RT (PROVIDENCE
11 RI IOTHFR URBAN AREAS
1 1 RI TdTAL FOR STATE
11 VT,
11 VT
"l! 	
URBAN AREAS
TOTAL FOR STATE
TOTAL FOR REGION 1
21 NJ ATLANTIC CITY
11 NJ INFW YORK CITY METRO
21 NJ IPHU AOELPHIA MFTRH
gl NJ TRENTON
21 NJ VTNFLAND
2! NJ ITOTAL FOR STATE
21 NY
•21 NY
21 NY
I' NY
21 NY
21 NY
21 NY
21 NY
... 1 .»...
(ALBANY
(BINGHAMPTHN
BUFFALO
NFW YORK CITY
(ROCHESTER
(SYRACUSE
IOTHFR URBAN AREAS
ITOTAL FOR STATE
OF SEW
P
•COMB
0*
0*.
0.
170.
so:
69?;
Ii
335.
0.
92.
8?:
101.
0.
109^
71.
36.
170.
333.
13.
^
69;
1910.
0.
?04.
20V
o!
27?,
145*
642.
676U.
240
1351
9603
--•--•»
ERASE SYSTEM
OPUI.ATIOM 8ERV
(1000 PERSONS)
STORMI UNSEW
42ll
M.I
i«.4.l
97Tl
76.1
19.1
l?6:i
979.'!
8:1
"•.!
O.I
1798.1
"i:l
li-J
Q.I
138.1
2?7.l
0.
8:
0.
267.
10. I
278.'
0.
0.

94.
4102.
22§:
4473.
94.
o.
3755:
243.
141.
5369.
ill:
18:
1?:
50.
86.
673.
i?:
7 U o
135.
510.
45.
36.
24:
22.
'«:
118.
1254.
25:
82.
131.
195.
?02.
74.
74.
2470.
1382.
40:
32.
1495.
120
146
0
1 118
65
90
639
EP
TOTAL
1
Hi:
IK-
ill:
301.
2344.
507.
2652.
S?:
.-2J«:
163.
.-Jjf:
454:
4813.
95.
61.
261.
417.
795.
31.
926.
143.
143.
9050.
74;
6372.
illg:
10519.
601 .
376:
180.
2196.
15611.
"219831
75

-------
        POPULATION BY TYPE

        URBANIZED AREA.   j
TABLE IXI-7

•!*»*' STATE I
WEB I . - ID  I   .


""! ! "If" ! WTLMINCf ON ---------- I
  5j  OE   OTHFR URBAN APEAS   I


,.2L'PS  |TOTAL FOR STATE     I

""5 1 ""DC"  W A5HIN6TONT57C?"    |
      MD
      MD
      MD

      MD
     PA
     PA
     PA
     PA
                     OF SEWERAGE SYSTEM
                          POPULATION  SERVED
                           (1000 PERSONS)
                     COMB  I STORM I  UNSEWI TOTAL
                    —---„!-....

      198.
      13.

83.'I   210.'
      FOR STATE

i BALTIMORE"""""""  ""
 WASHINGTON DC METRO
 OTHER URBAN AREAS

 TOTAL FOR STATE
     SCRANTON
    JWILKE5-BARRE
     PA jOfHER URBAN AREAS

     PA  TOTAL FOR STATE
         -•--.-........_._.

         NEWPORT NFWS
         NORFOLK
 VA

 VA

"wv"
 WV
 WV
 WV
 WV
                 STATE

  j .11.1 j 121* "FOR'RESION""!"
         ROANQK

         otSfR URBAV'ARE'AS

         TOTAL. FOR.STATE
      JTON
     -JTON
     JNVILLE METRO

       BAN AREAS
        CHARLEST
        IHUNTlRST
        ta
                                 3577

                          «00.'l   3^7.
                        mmmm*m\..___^

                            S:!  'IT!:
                            O.I   806.

                            O.I  25
-------
TABI E III-7 POPULATION; RY TYPP OF SFuEOAfJE SYSTE* . ,
II
EPAISTATEI URBANIZED AREA
RFGI 10 1

Ul AL IGADSDEN
Ul AL IHUNTSVILLF
ai AL 1 MOBILE
ai AL (MONTGOMERY
ai AI ITUSCALOOSA
ai AL IOTHFR URBAN A»FAS
ai AL 1 TOTAL FOR STATE
Ul FL (FT.l.AUDEPnAI F ,
Ul FL 1 GAINESVILLE
U 1 FL 1 JACKSONVII LF
Ul FL IMTAMf
Ul FL IOPLANDO
Ul FL IPFNSACDLA
ai FL 1 ST. PETERSBURG
ai FL ITALI.AHASSFE
Ul FL ItAMPA
U 1 Fl 1 WFST PAL" BFACW
Ul Fl IHTHFR URBAN AREAS
II
Ul Fl (TOTAL FOR STATE
ui GA IAI.BANY
Ul GA (ATLANTA
a( • GA (AUGUSTA
al GA (COLUMBUS
ui GA IM*CON
Ul GA ISAVANNAH
al C* ItlTHFR URBAN APF.AP
1 1
al GA ITOTAL FOR PTATF
Ul KY 1 Hl'INTIMGTP*1 MFTRn
Ul KY (LEXINGTON
ai KY ILOUTSVILLF
at KY lOWENtSBORO
U| KY IQTHFR URBAN ARE'S
II
ai KY (TOTAL FOR STATF
ai MR IBTL.OXT
Ul MS IJACKSON,
Ul MS IHTHFR URBAN APFA.S
1 1 .
Ul MS ITOTAL FOP STATF
ai NC IASHPVILLE
Ul NC 1 CHARLOTTE .
ui Kir. (DURHAM :
al NC IFAYFTTEVIl LF
• Ul K'C IGPEFNSBORO
al N'C IHTGHPOINT
Ul NC IRALFIGH
Ul NC 1 WTLMINGTOK'
Ul NC IwTNITON-SALFM
ui NC IOTHFR URBAN AREAS
a' NC (TOTAL FOR STATF
U| SC 1 CHARLESTON
a! <*C (COLUMBIA
Ul SC IGREFNVILLE
al RC IOTHFR URBAN ARMS
ai $c ITOTAL FOR STATF
a 1 TN (CHATTANOOGA
al TN IKNOyVlLLE
Ul TN (MEMPHIS
U 1 TN (NASHVILLE
ui TN IOTHFR URBAN AREAS
UI TN ITOTAL FOR STATE
""("""" ITOTAL"FOR~RFGTON «
POPUI ATIHN S^RVtn
CHMR
ft
n.
ft .
o!
P .
0 .
0.
n.
ft*
ol
a.
ol
ol
0 .
1 .
6.'
76?
1 0 ^ .
73.
U7 .
0.
100.
1 8^ .

59ft.
7.
0.
tl? »
3°.
U7 .
116.
ft .
ft .
0.
8
0
ft
ft
p
ft
n
ft
p
0
0
0
ft
uo
p
180
106
. 31?
"Toiu
(flOOO PERSONS')
STORM L'NSEW
3*1."! ?07.
'J3.I 25.
06.1 50.
1 ** 9 ^ ^^ •
°5.i au.
30.1 56.
1238. 773.
uai. 173.
UO.I ?9.
3^6.1 17«,
10T8». 1fi?«
215. 86.
113. 5U.
368. .127.
2751 9Ul
1»1. 107.
002.1 "?37.
'J175. . 1385.
O.I 0.
6^6.1 U20.
O.I 76.
A 1 . 1 101.
»>a. I aa.
1 ? . I 52.
3A3. I.- 321 .
1" s
1l«;6j( 102?.
30.1' 20.
131.1 ? 9 .
5 U 5 . 1 ' 1 7 2 *
/ » 1 * " " •
a8 a i l 1 57.
, i
Al . 1 . 60.
UosT 1 ?68l
506.1 391.
i75li ib'1;,
U7. j 5'4
oi.l 7,0
t n3 . U15
?8. 66
B ii . o °
U 1 , 17
618T «57
1315. 07?

PSl 69
607.' 536
102. 96
107. 83
hi: ii|
U?3. ?53
' 12U9. 7a6
ITsTI? ~6209
TOTAL

68^
1 U6.
25 ° •
139.
756*.
2011.
,53oi
1 220 i
'. , .i *
167;
'195.
_ Q T
78.
369.
288.
1330.
5^65,
76.
i 1 7 3 ,
i 4 9- »
2f)9 ,
1 2^ •
a A. ft *
860.

?768*
• U7;
• L f\
160.
TTO
73q .
'• ton *
> 68^ .
1687.
121 .
190.
67°:
067.
' 101.:
161
« e 3
I be «
2 3 "
CO *
la?!
1075.
2287.
?u>"
C *» 1 a
157.
606.
1233.
190:
661.
"si:
2307.

77

-------
( TABLE III-7

IEPAISTATEI
JUPGI   ID  I


l"|!""lL"lAURnRA
       IL  '-•	
       IL


       ft
       i J- • W W Vrf M | \J
       IL IjnLTET
          IPF-OPIA
          IROCKFORD
          ISPRINGFIEID
           OTHFR  URBAN AREAS


                 FOR STATF
51





51


I!
51

51
            POPULATIHM pv TYPE

            URBANIZED ARFA
                   MFTPn
                               OF RE»ESA,R!,5YSTEM
     ITt
     II
     IL
51





51

1!
  51

  51
  51
  51
  51
  51


  I!
  51

  51
 -_l _
  5!
  51

  |!

   I

 .2!.
  51

 1!
  51
  51







 51
 51
 51

 51
 ._ I..
 51
 51
 51

 I!
 51
 SI
 51



 51

 5I~
 -I-
       IN  IANOFRSON
       TN  [CHICAGO MFTPfl
       IKV  I"*L'S.VILLF
    IN ISnUTH'BEND
    IN ITFRRA HAUTE
    TN IPTHFR URBAN

    IN (TOTAL FDR STATF

    MI IANN'ARBOR"     ""
    MI  BAY CITY
    MI (FLINT
    MT IG"AMD RAPTP>S
    MI (JACKSON
    MI iKALAMAZnO


   .jjj .'"'jI^EGON

    Ml
              URBAN  iPEAS

    -  jTOTAL  FOR  STATF
       I
    MN  IFARfiO METRO
    MN  (MINNEAPOLIS
    MN  IRDCHESTER
    "N  InTHFR URBAN


    MN  ITHTAL FOR STATF
   HH
   OH  ICTNCINNATT
   njj  ICI.EVELANO
   OM  ICOL'IMRUS
   nH  lOAYTHN
   nH  (HAMILTON
   nH  ILTMA
   nn  IL^RAIN
   OH  IMANRFIELD
   HH  ISPRTNGFIEI R
   HH  ISTEIIBENVII LF
   nH IVnUNGSTOWM
   rt» IOTHFR URBAN

   nH iTnTAi  FOR STATF

  "WT"iAPP'ETON""""""
   Wi  DHLIITH METRO
   wi IGREFN BAY
   Kl IKFNHSHA
   WT ILA CROSSE
   WT (MADISON
   WI (MILWAUKEE
   wi IHSHKOSH
   WI IRACTNE
   WI (OTHER  URBAN ARFAS  '

  _WI_jTnTAL  FOR STATE

      ITnTlL"FOR"REGlnN""i"
         46. I
        197.1

»8«S.|  138?.!
                                 jllOlnl.l 7343.1 32610.1
                              ....|......|......|......i|
                         78

-------
TABLE
III-7 POPULATE PY TYPF Of ^^PAn^SYSTEM^^
EPAISTATEI IJRBANI7ED ARFA
FT, 1 ID 1
61
61
6<
*!
1
61
61
I!
t\
61
61
1
*!
61
61
1
61
61
61
61
1
61
61
61
61
61
61
6 1
61
61
61
6 1
61
61
61
61
61
1!
!!
6|
*:
61
•61
6 1
61
61
1
6!
...1
AR (FORT SMITH
AR ILTTTLE ROCK
AR IPTNF BLUFF
AR IOTHFR URBAN APE»S
-AR (TOTAL FOR STATF
LA 1 BATON ROUGE
I A ILAFAYETTE
I A ILAKF1 CHARLES
LA 1 MONROE
LA INFW ORLEANS
LA ISHRFVF.PORT
1.. A IOTHFR URBAN APE*R
1 A ITOTAL FOR STiTF
MM 1 ALBUQUERQUE
NM IOTHFR URBAN APFAS
MM I.TOTAL FOR STATF
HK ILAWTON
OK (OKLAHOMA CITY
OK ITULSA
HK IOTHFR URBAN ABFAP
1
OK ITOTAL FOR STATE
TX 1 ABILENE
TX IAMAPILLO
TX (AUSTIN
TX IBFAUMONT
TX (BROWNSVILLE
TX ICnRPU!? CHPISTT
TX IDALI.AS
TX IEI PASO
TX IFORT WORTH
TX IGALVESTON
TX IHARI INGFN
TX I HOUSTON.
TX ILARFDO
TX ILtlBROCK
TX IMCALL.EN
TX (MIDLAND
TX lOHESSA
TX IPHRT ARTHUR
TX ISAN ANGELP
TX ISAN ANTONTO
TX (SHERMAN
TX ITFXARKANA
TX ITFXAS CITY
TX (TYLER
T X \ W A C ^
TX IWICHITA FALL „,._
TX IOTHFR URBAN ARpAS
TX ITOTAL FOR STATF
•"•" i JOT AL"FOR~REGION~~6
COMP
30.
.8:
50.
80. '

oC
o:
8:
n.'
0.
o!
0.
0.
0 .
0.
oZ
n.
0.
0 .
o.
0.
40.
^ *
0*
0
0
0
0
0
ft
0
ft
0
ft
A
W
ft
23
, 101
mmm~m
. 181
STTRMI
oil
»9.l
2u:j
345.1
172.1
962ll
I'lO.I
58911
2012.
2fl!*
fl«5.'
249^

59.'
i»?r
U2.
43r
)t\ 4 '4
011.
2^2.
471.
Q *
V e
1lff:
AOl
5j|:
50 .
77*
~ •
13^0 r
6031.
10023^
1
rp^pMSV 1
UMSCWI TOTAL I"
134.1
i2!"!
" 1
537.1
ll'\
23 . 1
34.1
51.1
C.I
94.1
116.1
394. j
94.1 ,
?26.l
176.1
122.1
?35 . 1
1
590.1
31.J
76ll
37.1
^'l
1 -^*f 1
'§?:!
! 206.1
22.1
/< « I
U 1 • 1
/I Q 11 I
t4*T U e 1
20.1
73.1
39.1
1 /111
1 t* 1 • 1
1 22.1
1 43^1
1 182.1
1 43.1
1 40.1
1 f . /I 1
I 3*» • '
1 =>C 1 '
1 CT> • I
l c *z * I
j 627-..
1 2801.1
| "454971"
76.1
223.1
61.1
602.1

^78'!
L *
90*1
962.1
234.1
705.1-
1
297.1
414.1
7H.|
580.1
371.1
693.1
1
1740.1
90.1
264^1
llfell
53*!
21|. j
677^1
62.1
1 fcTn * I
isoli
1S6*I
a/i* |
o ** • *
60 1
O '/ • '
119.1
98 1
7 rj o i
1999.1
8934.1
147537 j
79

-------
 TABLE  III-7

 EPA I STATE I
 RF.GI   ID  I
—-I
  71
  71
  71
  71
  71
             °OPULATIr)N BY TYDE

             "RRANI7ED AREA
    "*"•""*•* I "•••»•••»• WMMVMMHW
           CEDAR  RAPTDS
          IDAVFNPORT
          IDES  MOINFS
      I A'
          STOUX CITY
          WATERLOO
         'OTHER URBAN ARFAS
 71   IA

 7l~"s
 71   KS
      KS
      KS
 71  KS
-- I.......
 71  MO
 71  MO
 71  MO
 71  MD
 71  MO
 71  MO
   I
 71  MO
.. I.....
 71  ME
         'TOTAL FOR STATE
         [WICHITA
          OTHER URBAN AREAS

         ({TOTAL FOR STATF

         '(COLUMBIA""""""""""
          KANSAS CITY
         iST.inuis
         'OTHER URHAN

          THTAL FOR STATF

         'LINCOLN!      '•
         IOMAHA
         OTHPR URBAN ARFAS
   I       ,..  --  <> | ^ L,' M 11  M IT r »* «j


 71   NF  'TOTAL  FOR  STATF
 71
..I.
 81
 81
 81
 81
 81

 81   CO
mm \ mm~m
 ft I   HT
 81
     CO
     CO
     CO
     CO
     CO
 I . - --.  FOR REGlOM  7

 iBOU'DER"""""
 ICHLnRADO  SPPTK'r;"*!   8cl*!   '3A-'   loaf;!
  29:J   «!•'!    22-!    i93.!
                                                           I
                                       12AO.I   «flt. I   1737. i
                                       256.1   116.1    372.1
                                        46
                                               791

                                              106.1   297.1
                          O.I  3*5:i
                          0. I   P3. I
                            ,1       I
                          O.I  5«9.|
              144.1   479.1
               3«.l   12lTl
              265.1   --" '

  o?i   r?6ri""*7?ri""

.-2*!..i?^*i    75v'   201-|!
 55.1  26*0? I "107"' ""373s7 I
                           80

-------
 TABLE  IH-7  POPULATION BY TYPE


lEPAISTATEl
       10
IRF6I
                       AREA
|-»|-ar

   91   AK
   im \ «•••§••
   91   AZ
   91   AZ
   91   AZ
    I
   91   AZ
  ._!..—-
   91   CA
   91   CA
   91   CA
   91   CA
   91   CA

       CC*A

       cd

       cd
       CA

       Sj
 T I

 ?!
        I ORBA""AREAS"""""""""

        'TOTAL FOR  STATE.

        ! PHOENIX""""""""
        iTUCSON
        (OTHER URBAN AREAS

        ITOTAL FOR STATE

        IBAKFRSFliLo"
        I FRESNO
        (LOS ANGELES
        (MODESTO
        IOXNARD
   91

   I!
   91
   91
   91
   91  ...
   91  CA
   91  CA
   91
     I
  . 91
            UACRAMENTQ
            AL
       CA

       CA
       Si
  91

  ",
  91   Hi
...I.....
  91   NV
  91   NV
  91   NV


  91   NV
... (..—
  91.
...I.—
 101   ID
 101   ID
	TNAJ.
I SAN BERNANDTNP

iltK FRISCO
I SAN JOSE
(SANTA BARBARA
(SANTA ROSA
(SEASIDE
ISTMT VALLEY
(STOCKTON
(OTHER URBAN AREAS

'ITOTAL FOR STAT.EMM_


SoTHFR URBAN AREAS
I
ITOTAL FOR ST*TF_--I..

"!LAS'VEGAS
I pirun
IOTHER URBAN AREAS

 ! TOTAL F(3R STA3E._.-.

" 5 TOT AL'FQR'REGJO""?"


'\lrnl	
                                               iia.i
                                           TOTAL

                                           "u"

                                             1,47.
                                                          i
                             COMB I  STORM
                             ___«^ | --••-«<
                               10.1  .  «3.

                               10." I    93.'

                             '"""o:i""6?0~.

                                S:l   i?!:

                             ,..2;L.!:!;L.^:L-i^:
                                o'l   l?9.l    47.!    17§.

                                §:!  747!:.   ..i;.;   _iM.
                                                    121:
                                                      863.
                                                      294^
                                                      251.
                                    O.'l   099.
                                .. -—,i— «-*
                                -    0.!   ISI-
                                                139.1   638.1
                                                ...........I

                                                «2.!   ??."•
                                   41.'!
                                           !.l
                                         2! 7.
                                 1713.115291.
               URBAN AREAS

101   10 (TOTAL  FOR STATE

         EUGENE"""""""""""
   101
   \l\
   -l?
   101
        OR
        OR
        OR
        OR

        OR
          (PORTLAND

          !OTHER URBAN AREAS


.  _.   _   |-°-,*L_™!L2ItI!:---"
1 "To! ""A" i SEATTLE"""""""
  191   WA  ISPQKANE
  i"!   "«  iTirnMi
          IOTHER URBAN AREAS

          I TOTAL FOR STATE
         .I.........-.-——-
          ITOTAL FOR RFGION 10

         ii i ziiziizinm--'
          (TOTAL FOR THE. U^.^
    101  'WA

    101  WA
   ...I....
   . 1« I.
                                    o.'l
                                         232.
                                    6.1
                                          *5.
                                                38.1
                                                21.
                                                       396.1
 3727.1  20731.1
	,	...

          3ol:;

  155.1    387.1
                                                *^-*«'    	   |
                                                ._. ..  «265;|
                                              ......|.......I

                                 57606:!77853:!33906:11093661j
                              81

-------
 TABLE  HI-

(EPA!,STATE
       ?D
     ^• 2 ! *?*?** I
         (SPRINGFIELD
             CESTER
             ER URBAN  APEAS
         I
        JAVE.  FOR  STATE .
         {MANCHESTER
                                ,3fl| |4.'9«
                                  . |..^..
         JOTHER  URBAN APEAS   |
      I
      I AVE.  FOR STATE

      .PROVIDENCE""""""""
       OTHER URBAN AREAS

       AVEJ^FOR STATE.
       URBAN'AREAS"""""""

      IAVE: FOR STATE.
                               n
                                    o.o
                                     To
                                     o

                                     0.0.
                                           ^-»i»-
                                          S-'l  I.!?i
               ?.:iii i-fti
                                              r
                                   m
                            I11.27IJ3
                             -r
                                      . 60
                                      mm
                                      .0

                                      .'o.
                                      mm
                                      71
 .i..i«j.;;;;,   2*9?' 7'75'

 jtsras'jiirto   4:lo{ Srr?!
 115.85111

 j"5775!"o

 I. 8.751. 0
 !""•»!= I »"
                                         4.'20
                                         mm-mn
                                         7:73

                                         7 .'73
                                          «.67I
                                                8 .'79
                                               mmmmm
                                                8.1?

                                                8.'19
                                             8.58
 .2"
              FOR STATF
         ALB 1 157
       JAVE.'^FOR  STATE .
                        82

-------
ABLE IH-8   DEVELOPED POPULATION I^nYJ* TYPE,*

PA..STATE.   nRBAN,I7F.n  ARFA      cnMp j ,TnRM ,
                                                   SYSTEM


                                                AVER  I
 31
 31
   OF
   DF
1 WILMINGTON
IDTHFR URBAN &PFAS
 31  DF.  IAVE."  FOR  STATF
                              2.21112.231 u.98l  8.91
                              2.23112.231 tt.9«|  8.911
                                  1,1   .1   ,1
                              2.23112.231 «.9fl|  8.911
 31
   DC

   nr
IAVE.' FOR STATF

I BALTIMORE
                                1.'
                                1.'
                                         I  0.0  120,
                                         I   .   I
                                        i i  o.o  i?o,
                                              , i,
                                                     0?l
 31
 3'
 31
   MO
   MO
   MO
 WASHINGTON 'nc  MFTRP
IOTHFR URBAN  APFAS
 31   MD  IAVE..'  FOR STATF
                              0.0  113.271  4.8411.0.741
                              0.0  113.7?<  a.41|  9.49I
                              0^0  llsTiM  OoilO.a?!

                              0.0  M3.3M  4.70llOe'aP|
 31
 3'
  31
  31
  31

  V,
  31
  31
    pA
    PA
    PA
    PA
    PA
    PA
    PA
    pA
    PA
    PA
    PA
    pi
    PA
| A! LFNTOWN
i AL THHNA
 IH4RPISBURR
 IJHHNSTOWN
 ILANTASTER
 1 PHILADELPHIA
 IPTTTSBURGH
 IRFAniNR
 ISftRANITON
                                 29
                                    U.«0|  9
                                    51531  9
                                    5.5UI  9
                                    fl.Ofcl
                                 9.9RI .
                                 l»l?l t
                                      .ai  -5.10111
                              ?l.iai?l.ia  2.3"  8
  31   PA
  31
  3!
  31
31
31
    VA
    VA
    VA
    VA
    VA

    VA
    VA
 I ynpK
 IOTHFR  URBAN AREAS

 IAVE."  FOR STATF
,i_.-...-.------------
 ILVNCHBFRG
 t NFvJPQRT NFWS
                                           8

                                           8

                        8l67i'6;0pi  5I8UI  7

                        0*0  I1ol6?l  6^001  8


                        15.17113.431  3,'7SI  9
.221
.661
.531
.621

1531
.11 I
.63!
.6S I
.661
.231

*80I
   I
.801
         IPFTFPSBURG
31   VA

31   wV
31   '«iV
    wv
    wV
 I
 IRfiAWOKE
 I WASHINGTON
 IHTHFR URBANJ ARFAS

 lAVt.' FOR STATF
. I -.--.„_.-- — -------
                        88'!13:72!  1:11!  J-.WI
                       12161  121611  «:71'  5-gl!
                                           7.9fl
                                         H4.16
                                11.23111.2^1 -5.5«
                                16.00114.1?! C.O
                                10T63M3.89I «.
                                            . 70!
   I
  3 i
  31

  3)  wV
 ...l-.--
          IHHMTTNGTOM
          ISTEI'BENVII LF MFTRr,
        IHTHFR  IJRBAN  AREAS

        IAVE.' FOR  STATE
      . | -__,---_----- — ---•
                                .10.6', M3."«e| U.'lOl 9.70
                         P.1SI  0.0  I  0.0 I  8.1PI
                         6*061  0.0  I  0.0 I  |«g|

                        1 §^.'4 I12l0fll  5^161  8^011

                        . fl.9flll2.'o
-------
( TABLE  Iii-s

IEPAISTATEI
IREGI   ID  i
          DEVELOPED POPULATION
       (HUNTSVILLE
       'MOBILE
       IMHNTGOMERY ,

       jo^iMiN

             FOR STATE
      A,L
      AL
      AL
      AL
      AL


      AL
     .FL  IOPLANDO
      EL  IPENSACOLA
                     AREA*
  a j

  S!
  si
  a 1
  ai   EJ  IWEST"PALM BEACH
  aj   EL  IOTHFR URBAN  AREAS

  ai   EL  IAVE: FOR STATE
                          CnMRI5TORM||JN8EW| AVER |
                         I'liii

                                               7.61 I
                            III !j|:|5| \:\k\  |:2?|
                            2*8 !.1S"?S! ?^5!  sl?§!
      RA  i ALBANY'
      PA  • • -• —
      GA
       ISAVANNAH
       IOTHFR URBAN AREAS

       IAVE.' FOR STATE
        lOWENSBORO
        lOTHFg URBAN APEAS
at
  «|
 «l
 a i
 ..i.
 4 i
 * i
 ai
 41
 4 i
 u\
 41
 u\
 41
  i
 til
.-i.
 41
 41
 4 I
 ai

 a i
 41  TW IMEMPHls-
 al  TN (NASHVILLE
 aj  TN IOTHER URBAN AREAS


 fL—il !AVE*  FOR STATF

 a I     JAVEr"FOR"REGlf5N"""4"
 "" ' •••••** ( HWMWW**M«"l«*">«WWMV«iHM
                            1 1.06111.06 I
                            •0.0  I 12.01
                            15.381  4.90J
                             9.81 I 1 1 .25 I


                             9.81 Ml.2^!
                            TT"T-!—i—!•

                                    ^ao|
                            !iHp!!i
                              *
                                         a.n i
                                         8.03I

                                         J.'oi!
                                        .
                                        .5^1 9.991
               STATE

  "Ms'isiLnxi
   MS ijACK'snN
   MS IOTHFR URBAN AREAS
     wr
     WC
     Nf
NC
NC


NC
NC


NC
     SC  IGREFNVILLF
     sc  IOTHFR URBAN  AREAS

     sc  IAVE.' FOR  STATE
IASHEVILLE
ICHA&LOTTi
I DURHAM
IFAYETTEVII.LF        i
IGPEENSBORH
IHIGHPOINT
IRALEIGH
IWJLMINGTON
IWINSTON-SALFM
IOTHER URBAN"AREAS.   i

     FOR STATE       I
                            12. 03113.ad
                            -----1.....I,
                             o.o  iti.ooi
                             0.0  111.871
                             0.0  Ilir57l
                                 I     I
                             0.0  111.571
                                    a.an i
                                   ••1—i
                                    5.661
                                     .!:1?i
                                     "z^ifi
0.0
O.'O
0.0
0.0
0.0
O.P
                                       :?i
                                         7.901

                                           491

                                         2.-{?l
                                    :
                                  12.5?  al6t   sloa
                               1
                               1  9. 55
                               112. oa
                               11/i.O1?
                               iu.i«;
                               111.5*
                                        5:33
                                        3*57
                                        5^60
                           0.0 ill.'56 I
                           ---.i.-,..|,
                           " " 111.01 I

                               !H:WI

                               ,ln-  ,
                           0.0 111.2?)
-?:?!!

 ?:!!!
 7.841

                            .'61 Ml.61 .

                           o.o  114Tia i
                           2.241 9.81 |
                           2.16H2.641

                           2.16ll"2."6a[
                           -— |—,—|
                                  I 5.66!  7.861

                                   5."66 |  7.'86 I


                                   slssi
                                   a!n i

                                       a.a-;!

                                      "a"9n!'
                                        7.90 j
                                        —i—i
                                        R.16I
                                        .-..-I
                      84

-------
TABLE IH-8'^DEVELOPED POPULATION WS™™'™^*^^™?™
     _fATEj    IIRBANI7EO AREA

JRFGI   ID   .._.___._.._;	.
  "ii""IL"iAHRnRA""
   51   IL IBLOnHINGTflN
   1l   IL (CHAMPAIGN
    il   IL (CHICAGO
           3AVENPORT MFTRH
           DFCATUR
           JHLTET
           »EOPJA
          IRnCKFQRD
          I SPRINGFIELD
                              I  COMPISTORMIU

                              l-o:rlT5:g"
                              I  0,0 113,3*
                              I  P.O_I12.70
                                  SEW I  AVEFM
                              ?1.
                               9.
                                   SI
                                   UI
          IOTHFR URBAN APEA8
  51  -IL  IAVE.' FOR STATF
                           a
                           9.84
                           o.o
                       87l .0.0  I
                     0.0  U4.2UI
                     ils'?! 11. 2" I
                    19:911 7:201

                     9.9! I 7,"3fl
                               i e.201
                               I 0.0
                               I 7l8
                               I
                                               I   .   !
                                           4.75(10.88!
 |!


 I'
 I!
 51
..I..

 I

 51
 ||
 51
 51
...I.

 ||

..!i-

 is
 ii

 II

  51
  51

.  »i
  5!
...I.
  I!
  11

  51
  I!
..!',
  51
          (ANDERSON .
          (CHICAGO MFTRO
          IEVANSVILLE
           ~ORT WAYNF
            WDIANAPOLIS
            AFAYETTE

          ,^JUTH BEND
          iTERRA HAUTE
          IOTHFR URBAN AREAS

          IAVE.* FOR STATF

          "IANN'ARBOR"""""""
          IBAY CITY
          (DETROIT
          IFLINT
          IGRAND RAPTDS
          I JACKSON
           IKALAHAZOO
           ILANSING
           (MUSKEGON
           ISAGTNAW
           IOTHPR URBAN  AREAS

           IAVE.* FOR  STATF. '

          "IDULUTH"""""""
           IFARRO METRO
           IMINNEAPgLIS

                        AREAS.

        MN IAVE."  FOR  STATF

       "OH" i AKRH""""
        OH I CANTON
        OH (CINCINNATI
        OH (CLEVELAND
        OH (COLUMBUS
        OH I DAYTON
           (HAMILTON
           (LIMA
           ILHRAIN
           (MANSFIELD
                               I .4.051 .0.0
                               I 11.01 I 14.01
                               I  8^901.0.0
                               na.i6iia.ift
                               I13.«OI13.«0
                               114.501
                                 0.0  I 4.051
                                 4.101 8.8BJ
                                 0.0  I 8.991
                                 4^061 8.791
       OH

       M
       n»
       OH
        „..  ISPRINGFIEID
        OH  (STEIIBENVILLE
        OH  (TOLEDO
        OH  (YnUNGSTOWN
        OH  (OTHER URBAN 4REAS

        nH  IAVE.' FOR STATE
        Wl
        w!
        WT
        Wl
        Wl
        WI
        Wl
        Wl
        wt
        w!
        WI
IGREFN BAY
IKENDSHA
(LA CROSSE
IMADTSON
(MILWAUKEE
(OSHKOSH

ioTHF^URBAN AREAS
IAVE.* FOR
                                  0.0  I
                                  6.541
                                  7^901
                                  6.8UI
                                  4.341
                                     111.  ,
                               I . 6.531  0.0 I
                               I 14.89111.93 I
                               112.01112.01 I
                               I13.43M3.43
                               I  S.Sni .0
                               I.0.0 112.23
                                  .0 112.
                               I  8.901 .0.
                               I 14.0*M~
                               114.08112.0^
                                112. 37112. 411

                                M2.3712.'4l
                                (10.71 I .0.0
                     112.841 11.91
                            l2.
                                I124fll
                                112.53114.43
                                !i2.53H"4.4*
                                              4.071
                                              Wt\ 7.27
                                                   llE:!t.
                                 lll.lo  !!•12   S»?5   S'ti i
                                 l?J:Jprl:J?   l:tt\  m\
                                 I  oHo  I  9.791  0.0fel  9.79
                                 I21.3?l  8.811  5.651  8.411
                              ... I ..... | .-•.— mm^mm — - —
                               5  "5.17111.081  4.491  9.19
                              ,..|.....|.....I —--I —.-I
                           85

-------
TABLE WI-8


!™!!T!?E|'
"l!""Ji"!f55!."SMITH
  61   AR
  61   AR
             DEVELOPED POPULATION
              URBANIZED  AREA
 . 61  AP
 -- I ...,»
          OTHFR URBAN APEAS

          AVE." FOR STATF
  61
  61
  6.1
  61
  61
  61
  6
      LA
      LA
      LA
      LA

      w
      LA

      LA
          OTHER URBAN
  61
 — •• I — .
  61  MM
  61  NM
                   .1TATF
 .Si
 61
 61
 61
 61
   I
 61
 -I.
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
 61
61
61
61
6!
«• I *
61
  I.
        JOTHFR URBAN APEAS

                  STATF
      NM
     OK IL 	
     OK  OKLAHOMA CITY
     OK ITULSA
     OK JOTHER URBAN APEAS

    -2!L!i)!E'"FOR STATE
    ~TX"I ABILENE     	"
     TX IAMAPILLO
     TX (AUSTIN
     TV  gPAUMONT
     TX IBJWNSVILLE

     ~* (CORPUS CHPISTT
     TX ir>ii i AC u  i0'1

     TX |
                            0.0  .

                           "o"o"i
                            0.0  I
                            0.0  I
                            0.0  I

                            o.o  i
                           .....(
                            0.0  I
        12.66) 4.6?!

        To"o9|"fc;6^j
        13.67  3:55
        12.901 4,lfl|

        -_"   I  "°*l

                                                    01
         --------.—
         2.231  3.741  6
         3«0^l  42151  7
               5.161  8
                                                 7 ."47
                               8:8
                                   I .«
                                                   831
                                                   661
                                                   60|
 TX   HARLINGEN
 TX   HnysTON
 TX  (LAREDO
 TX  ILIJBBOCK
 TX   MCALLEN
 X   MiB'-AMO

 Iv  !2?B*SJRTHIJR.
 TX   SAN ANGELO
 TX   SAN ANTONTO
 TX   SHERMAN
 I*   TEXARKANA
 TX   TFXAS CITY
 TX  (TYLER
 TX  (WACO
 TX  (WICHITA FALL
TX  JOTHFR URBAN*

TXjAVE.'jrOR STATE.   .
                         !  8:8 i:
                         I  0.0 (•
I
I
I

I
I
I
I
I
I
I
I
0.0
0.0
2-2
0.0
0.0
o.o
0.0
2*2
0.0
o.o
0.8
o.
                                   110.651
                                   111.041
                                     9.99)
                                    -9.70
                                    10.631
                                    10.6^1
                                   I  ?.71
                                          5.651 III
                                          6.001 e:7,
                                          5.651 7.53,
                                          6.791 8.30
                                          g T/l I - ~- !
                                          6:
                                         >
      7.47J
      §*§!
                                  (Hi
                                  !!2,
                                      » J**

                                      :»
6:74|
411*51
5.651
3^01
6.631
4.481
    I
                                                 .001
                                                 .201
                                                    )
                                                1:81
                           'irorsTuar??!
                                          4.481 7.9fl|

                                          *?65l"87s7!
                                          ...»|.....j
                       86

-------
 TABLE  III-8 DEVELOPED POPULATION DENSITY

!EPA|STATEJ   URBANIZED AREA
IRP.GI
(..•I
I
      'ID  I
                              NSITY BY TYPE OF SEWERAGE SYSTEM
                              r^uxusmsK^v-
ii

7l  I*
          i CED AR'RAPIDS"""""
          (DAVENPORT
                            j	" O»ER$nNS/ACRE)
                            I. COMB I STORM|UNSEWI JMER_j
                         .. I ..«.. | mmm..m \ mmm.m. ( "•^~ ,


                                               77,021
     ii
          IS«BL
                   uN AREAS
 , ,   *,-  ,„,...  FOR STATE.
mm\mmmmm\mmmmmmmmmmmmmmmmmmt
 71   KS  (KANSAS  CITY METRO
 71   KS  ITOPFKA
 71   KS  (WICHITA         .
 71   KS  (OTHER URBAN AREAS

 7J.  KS  JAVE,"  FOR STATE
                               11.82(11.8?  5.16
                              112.12112.1?!  4.91
                              I. 0.0 1 11.
                                 , -93 1 11.
                               .
                               Ml

                               !.11.93M1.'50
71


Ii
71
— I-
71

?!
71
 81
 81
 81
 81
 81

 81
..I.
 81
 81
 8t

 81
-.1
 81
 81
  I
           COLUMBIA
           KANSAS
           SPRIN6F
           ST..JO
                 1$
                 :PH
    mmm-mm I
     MO
     MO
     M6
     MO I
     MQ IST.I auis
     MO IDTfipR URBAN AREAS

     Mn IAVE.* FOR STATE

    "NC"iLINCOLN"
     NE I OMAHA
     NE (OTHER URBAN AREAS.

     NE IAVE.' FOR STATE

    "*""IAVE?"FOR"""""""""'
          2"69
   I 0.0 112.08
   I 5.351 0.0
   I 9.721 O.jL
   110.001 8.5?

   I JO."00 I 8.52
mmm \ .-•-» | Hm*fmm
   1.6.0 112.931
                                               8.721
                                         ....  8.041

                                         fill! «-41'

 5.291  8.45
mmm.mm \ mmm.mm \
 3.85  7.051

 ! ?!!  hli!
 OTO I  5.351
 9^531  9.641
 7:491  8l6«5l

 7."491  8.'651
mmmmm\mmm^mm\
 4.591  8.481
 4^061  8.791
                                     I
     en
     en
     en

     CO

     CO

     "MT
     MT
     MT
           IBOUIOER
           (CnLnRADO SPRINGS
           (DENVER

           !5V5?!s%B.N
                               M4.'17I13.'41
                                 0.
            ;;.'j;i:j.£l''

             5"!"r"""!rT"'::
            AVE:
                       AREAS

                FOR STATE
           (GRfAT FALLS
           (OTHER URBAN AREAS
   ia5:55iii:5^! !:!S! W!

   !!l:il!i!:SII i:ttl »:H

   !.19.<>3M2.84! H,b(t\ 8.91(1
 ,.. | mmmmm ( mmmmm \ --•»-» I "7 VS !
     0.0 111.}*  5.6?. 8.17
   I  0.0 ItO.l?  6.1*  |-j£
   I  0^0 110.571 5.86  8.46
        MT  IAVE.* FOR STATE __.

        kin  i c ADftn
                ?  URBAN AREAS

                FOR STATE.
                               I. 0.0 S°i)0.57l  5;86j 8.'46i

                             ""i!8:lT!!8:i?!"I:!l!T:"

 ft)  NR IAVE.
                              . U0.67lfO.*67
                             •• I .-•» = - | 9m^mm
    81
    81
    8
     I
    81
    81
    81
    8 1

    81
     81.


     81
     . I

     81
    .• t
   ! -.80 I,
                      AREAS

      SO UvE.* FOR  STATE
     .mmmImmmmmmmmmmmmmmmmm*
      UT IOGDEN

      UT '."^LAKE CITY  4Q
      l!T (OTHER-URBAN AREAS

     . UT IAVE.* FOR- STATE
     ...•. | mmmmm^mmmmmmmmmm,
      MY IURB^N AREAS

      WY IAVE.''FOR STATE

     """"uvi:"FOR"REGln"£
                                !?2»'23ll'2.''23
                             mm | .«.««•- I •-•-•
                                (' 0.0 112.50
                 6."18|  9."06


                T5IIT31

                 5.'28l  8.'32
                •••••Immmmm

                 i:KI  !:SJ

                 8i§5i  f:U|

                 4.'37!  7.'9«
             mm i mm>m.mm | mmm^mm \
             161 5.621  8.161

             U! 5.6?!  8.161
             mm I mmmmm | mmm^mm \
                ,47881  8.561
                ••••• (•••••• |
                            87

-------
 TABLE III-8
             DEVELOPED POPULATION

              URBANIZED AREA
   91    *
  91
...I.
  91
  91.

 ~9l'
  91
  91
  9!
  91
  91
  91
  91
  91
  91

  I!
  91
  91
  91
  91
  91

  91

 *9 !"
  91

 91.
         JURBAN'AREAS
         IAVE." FOR STATF
                              DENSITY BY TYPE OF SEWERAGE SYSTEM

                               [DEVELOPS POPULATION DENSITY,

                               j  f RUB I MVMMtj I . . I 2 Sit"? *• »•*.  I
      ..
      "*?" I PHO?NIX"	
       AZ  I TUCSON
       AZ  JOTHER URBAN AREAS

               FOR STATF  .
                      I   .....      ,
                     .lihl!!^:^!..^:!"!.!'501

      « T  ' b.' "U M "4l>
      CA  (MODESTO
      CA  IOVNARD"

      CA
     CA  I

     CA
     CA
     CA
     CA
     CA

     CA

    "HI"
     HI
isTOCK^LEY
JOTHFR URBAN AREAS

[AVE." FOR  STATE
                              I  A  A    	


                              \  III  \Mi\
                                0.0
                                0.0


                                olo
    111.29 I
    I  9.871
    I  9.801
    111.061
                                        10.981

                                         frtfl
                                         i:i«
                                         7.48
                                         6.68

                                         MS
                                         1^561
                              IP1.79I
                                 *
                 •Wfl

                  9.93!
          OTHER  URBAN  ARFAS
  I      |   • -   „..„-„ •r-tmo   ,  y>0 | { } , 5 ^ |  Q fl^j  9 7 
-------
TABLE 'III-9
   I      1
 PAISTATEI
 FGI   I
           VALUES OF

           URBANIZED
                            •ITNTS
                             I
1)   CT (BRIDGEPORT
II   CT (BRISTOL
II   CT IDANBURY
II   CT IHARTFORD
{|   CT IMFRTDEN
1 I   CT INF* BRITATN
1 I   CT INFW HAVEN
II   CT INORU'ALK
II   CT ISTAMFQRD
I I   CT IWATFRBURY
 1 I   MF
 1 I   ME
..!...-.
 1 1
 11
 11
 1 I
 1 1
 MA
 MA
 MA
 MA
 MA
 MA
 MA
 MA
 MA
 MA


~NH'
..i!
  n
  11
  II   Rl
...i—-,
  1 I   VT
..-(—.-
...I...-
  21
  ?l
ILFWTSTON
(PORTLAND
I.»....------
(BOSTON
|BROCKTON
IFALI. .RIVER
IFTTCHBURG
ILAWRENCE
ILOWFLL
INF*  BEDFORD
IPTTTSFIELn
ISPRTNGFIEID
I WORCESTER
. |. ..... — ---•
I MANCHESTER
(NASHUA

"(PRO"'IDENCF

" I URBAN AREAS
      NJ
  ?l   NJ
  21   Nj
  2 I   N J
...|...-.
  21   NY
  §1   MY
      NY
      NY
      NY
      NY
      NY
                    CITY
                    CITY
          .
         IATLANTIC
         INFW YORK
         IPHIl ADE
         ITREK'TON
         IVINELAND
         I Al BANY
         IBT'NGHAMPTON
         (BUFFALO
         INE* YORK CITY
    21
    2!

                              57
                               65
                               a3
                                   ,71 75
                                   .71116
                                   1 I
                                   7|
                               55.61
                               66.51
                               ttfl.l I
                               57.61
    f8 b" '   Xl  j   x2  j

   £|Io"77|  2.'00|  2«.3irv,
   1 1-1.06!  2.001  1^-S1!!'
i^lio-EI!  1:52!  3?
89'Io|-lI06J  2.001  11

.?I:3i:S:W  1:85!  !j

8«:5|:8:»i!  i:W
7*111-0.791  2.001  2?
                                                        . 5io
                                                        .1IO
                                                             aid
                                                             a2?l
                               30
                               92,
                                 5B,
                                 71,
                                 60(
                                 30
                                  011
                                  51
                                 ,?|\
                                         .
                                       19.7!-
                                     76
                                     . 8R
                                       .91
                                       .6I
                               47.ai 63.1
   C- • W V 1  A *?
   2.291  2«
   ....|———
tl  2.651  31
i!  2^01  •"'
   2.00
   2.00!  . »-
   2.001  22
   2.00!
   2.001
   2:0^1
   2.00!
   2.001
-i"""

-0:791
-1*061
-0.61 I
-0.93!
-0.61 I
-1.061
-0^661
-0.6RI
                   29
                                                         ?f

                                                         II
.710,

IBIO"

:3io!

:3io
.ti|0
,fl|0
.610
.6|0
                                                             6051
                                                             ... -|
                                                             3U6!
                                                             a2JI
                                                             .531 I
                                                             ,«57I
                                                             .351 I
                                                             .68fll
                                                             .56?)
                                126.
                                . 1?.
          (SYRACUSE
          IIJTITA
                                  fl  23.5|-0.tttf  2.001  22.*»IO,

                              108 6 ! "29^9 I-C,9?I  2.29I  28.2'Oc  _
                              730^9 I T5"5 I -1 "'0 B i "2?0 0 I "22^9 j 0^95 j
                              „..-. i.——1.-"2"2! II^II I III" i III3I i
                              "5H""l"T"6l-I 061  2*00|  I5.«|0.58f»l


                              WMI iili "Bit*!
                                      _1_i.-.--i----- I ----- I -----i
                              T08T3M2PT7I-0;93J |:05I 26.9]0.fl|5j
                                 113,
                                                   ^051  2(S-9|J|-2||j
                                          1-0:79'  |:0oo!  h:6!S:26fli
                                  fi
                                  :?!  2i:?!:8:7§
                                                  2.00
                                                  2.00
                                 89

-------
TARI F
   I
III-9
    I
     VALUES nr
 ...|
   31
 ...I.
   31
 mmm I i
   31
   2 I
 ... i.
   31
   31
   3"
   3!
   31


   31

   li
   31
   31

"*3l"
   31
   3!
   31


   31
... I..
   31
   31
   31
   31
... i ..
iHARRISPlJRr,
..--i........	
 PA  I Al
 PA  I Al
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA
 PA

"VA"
 VA
 VA
     ADELPWIA
IPTTT.sBl.JRGM
ISr.RAMTdK;
i WT.LKCS-BAPWF
     VA  |
     VA  |
     VA   .. _  	|v

     n!V  ICWARLFSTO"'""'

     wv  isTEi'BENvii, I_F
                         a

                        59
                                   .5
                                   l-(
                                          [Hl.««l  3?7o|Jo"740P|
                       1 07
                                 51
                                10?
                                 23
                                 35
                                1 0 6
.0 I 124.-? j
--I—...|
.41 1 14.H

I? I  64*/j|,
.71 123.1 |,
.?!  32.«!•
.ft I  49.1 |.
                                             .---.|.-...|...
                                             •0.791  2.00|  si
                                             •0.3ft|  2.001  35
 53,
 11 ,


 31'
"13*
 61,
1 12.

15«:
 30.
                                    4 I
                                    0 I
                                    91
                                    ft I
                                  I-
    65.B I-
    20. ft I
    65.0|
                                         .
                                       0.611
                                       0.931
                                       0.41 I

                                         :??!
                                       1.471
                                       0.61 1
                                       0.341
                                   -0.51 1
                          73
                          79
                          22
 0 I  22.ft j
 41  83.7)
 ft I 137.0 |
 9 I 1 4 ? . «9 |
 9 I  7ft." I •
 ft I  45.s | ,
 fr, 11 fe 7. a |,
 -I.--..I.

 «l  87lft|I

 ^1  32l?ll
 .|----- | .
 2.001
 2.00)
 2.001
 2.00 I
 2.001
 2.00 I
 2.00|
 2.001
 2.00 I
 2.001
 2.00|
 2.001

"Ilaoi"
 2.00|
                                                 32
                                                      .4(0

                                                      7^10
                                                                    I
                                                                ----I
                                                                    I
                                   il

                                 ,377
                                .
                          29.0)0.^51 1
                                                   ..
                                                 15.0 IO.AOP !
                                    0.771
                                    0.61 1
                                     .
                                    1.11
                                    0,41
                                               2.601  IP!
                                               1.84)  2«,
                                               2.001  .19,
                                               2.001  88,
                                              ...-.(....
                                               2.071  ?1,
                                               2.001  63,
                                               2.00)  3«,
                                               2.001  3",
                                                   010.1201
                                                            0 1 O
                                                            -I.
                      90

-------
TABLE; in-;
LEPA STATE
IREG IP
4
41-
. 41 '
41
41
'a!
f\ 1
41
41
41
41
4t
41
. 41
1 41
'i
F
F
F
F
F
"
L
? VALUES OF COF
' URBANI7EO ARE
BIRMINGHAM
GADSDEN
IHUNTSVILLE
ITUSCALOOSA .
IFT.LAUDERpALE
(GAINESVILLE
1JACKSQNV1LLF
IMIAM1
ORLANDO
1 PENSACOLA
1ST. PETERSBURG
1TALLAHASSEE
ITAMPA
1WEST PALM BEACH
                                                      10.1 10.720
                                                       9^910.730
                                                        .110.6651
                                                           0.48«;i
41
41
4i
49
41
4
41
41
41
41
tf I w
41
 GA
 GA
 GA
 GA
 GA
 SA

"KV"
 KY
 KY
 KY

"MS"
       I ALBANY
        ATLANTA
        AUGUSTA
 41
 41
 41
 41
 4<
 41
 41
 41
 41

•jy

 8!
     NC
     NC
     NC
     NC
 COLUMBUS
 MACON
 SAVANNAH

 HUNTINGTON*
 (LEXINGTON
 ILOUISVILLE
 10WEWSBORO

'iBIL'nxi""""
 1JACKSQN

'IASHEVILLE""""
 I CHARLOTTE
 1DHRHAH
 1FAYETTEVILLE
                                     a  I
                                    ....I
                                    53.0
                                    83.1
                                    94.4
                                    73.5
                                    68.7
                                    24.4
I. 60.1 I

'"I?"!
I  51.01
                                                      2^.910.463
                                                      19.510*53?
                                                      13.010.670
                                                      49.0(0.266
                                                       8^310.541
                                                       lt410.511
                                                       5.510.
                                                           0
                          i"89"3iTT3"fi
                          I 30.31 44.1
     NC
     WC
      1'
     (RALEIGH
     IWTLMINGTOM
     1WIN8TON.SALEM
      BSBVaB9BBJ
                    2.00
                    1.291
                    2.001
                    2.00
                                   -0.571
             :8:l7j  f:§8   is:j
             -0^611  f-oj'.i7.:?.
             -o^ii'I^oo   lf».7
                                91

-------
TABLE HI-9
   1 -    I
EPAJSTATEI

    ........immmmmmmmmmmmm
      T  I AiionoA
VALUES OF

URBANIZED AREA
       ."jAURORA
       -   BLOOMING!

       :   atg?M8N
         I IS A UP Linn PSW>
       —  • w w* w 9« I u

       t  IfflW"
      *u  i gut. JLC I
       L   PEORIA

      |L   ROCKFORD
      IL^  SPRINGFIELD  . .

      'U  I iHMSSSSr™"*"™""'""''"''
       K  *NBFR30N
       N  CHICAGO
       ki tptf«fctAr««.
51  OH
51.  OH
i
                                                COEFFICIENTS
                                                   x
                                       VALUES  OF

                                                        ;**-1 »«••«.
                              i  62*
                              (-76.6
                             -!-«•»-1—.
                                    I  95.7
                                    M25*?
                                    i  9?:?
                            -I--T--I— *..
                                    I .64.4
                                    1120.3

                             ! ^"e- —•
                               §?.?I101.
          ANNARBOR
         GRAND RAPIDS
         K4LAMAZOO
         LANSING
                             I  «£.*.! 6*:o
                             -  f2-
                               65.91 87.9
         MUSKEGON

         FARSO METRO
                                   I -33.
                                   H47.1
                                    108.4
                                    125.6
                                     42. S
                                    533.9
                                    180.?
                                    100.?
                                                           10.458
                                                           10.443
     MI
     [JT .'JACKSON
     M:
     M:
     M:
         AKRON
         CANTON
         CINCINNATI
         CLEVELAND
        JJ|JJJLTON

        LORAIN
        MANSFIELD
        fPBTNGFIELp
        ISTEUBENVILLF
        (TOLEDO
        YOUNGSTOWN

        IAPPLETON""""
        DULUfH METRO
        GREEN BAY
        KEN03HA
        I LA CROSSE
        MADISON
        MILWAUKEE

        IgJS!"
                              92

-------
TABLE IH-9
   I      !
 PAISTATEI
 FGI   ID i
           VALUES OF f.OFFF

           URBANl?En
  61
  61
  61

 "61
 I!
 61

*6I
..I
 6!
 61
 AR IFORT SMITH
 AR ILtTTLE 7?OPK
 AR IPINF BLUFF

 "LA"iBATON ROD^E
 LA ILAFAYETTE
 LA ILAKF CHARLES
    I MONROE
    (NEW ORLEANS
 I, A ISHRFVEPORT

'"NM" i ALBUQUERQUE""""

'"OK"ILAWTON""
 OK (OKLAHOMA  CITY
 HK ITULSA
.....i..............
                          IrI"TS   VALHE*

                               a   !   a'.!
                              ....I....-I-
                              59.7!  84.5
                              11.61  l0.^
                              27.61  39.P
                              ....|...-.
                              46.41  61.5
                              29.6!  01.«5
                              30.71  44.A
61

61
61
61

tl
61
61
61
61
61
6t
61
61
61
61
61
61
61
61
6(
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
TX
IAMARILLO
(AUSTIN
I BEAUMONT
(BROWNSVILLE
(BRYAN
(CORPUS CHRISTT
(DALLAS
(EL PASO
I FORT WORTH
1GALVESTON
IHARLINGEN
(HOUSTON
(LARFDO
IL"BROCK
(MCALLEN.
(MIDLAND
(ODESSA
IPDRT ARTHUR
(SAN ANGELO
I SAN ANTONIO,
(SHERMAN
(TEXARKANA
(TFXAS  CITY


                                        OF COEFFICIENTS       I

                                        b  !  «i  I  "2  !  7   !
                                       -.». | --«!— 1 ----- 1 — .--»
                                          -0^51 I  2^001  ^"j'J-JJf.

                                          °ol6*!"1^70!"2673I olop
                                           . ' K .. - !  MWA*I  *9 ^ A • A H ~> »f
                                                            o:
                             *5775!"75lfrl-
                             a,.... | .....
                              14.71 25.7
                              91.3(116.
                                  1.
                                  8.
                               68.01 90.a
                              .....)...-.
                               66.61 92.5
                               68.31 90.3
                               49.51 65.')
                               - - -'8.0
                                 82.5110
                                 24.01
                                  2. 51
                                4.01 33. J
                                     107. "
                                                   2.00
                                             ....I..«.—
                                             0.791  1.87
            • 0.41!
            •1,11 (

            !.;..i-
            • l-.ioi
            • 0,931
            • 0.6AI
            -Ull I
            -0»41 I
                                 87.ani
                                  0. 6128
         .«
240.6(284.6
130.71161.3l
 91.PI116.5
 32.81 46.9!
  9.0| 21.6
 36.9! 50.2
 30.?! 42.01
 25.11 40.5
 16.41 25.9
 12.7! 23.J

 14:11 §6:?
 12.71 24.0
                                               l
                                             .36
                                           6
                                             -
                                           •1.111
                                           •0:591
                                           • 0.41!
                                           • 0.581
                                           •0.51 I
                                           • 0,611

                                           :o:4i i
                                           • 0.511
                                           -0^61 I
                                           0.41!
                                           0.92!
                                           0.01!
                                            ".Oil
                                  29^1  S3I7I-0.59J
                                  - -  -•  -"  • '.I.06!
                                             -0.41
 2.00
 2.00
 2.06
>....
 2.00
 2.00
 2.00
 2,001
 2.001
 2.00!

 Hi!
 J m C. C !
 2.611
 2.001
 2.00
 2.00
 2.00
 2.00
 2.00
 ^.00
  l.OQ
 21.010.516
».—.«i .«.<••
 21.910.505
>.••>. |.«»».
 14.010.560
 13.610.635
 16.710.578
• . —— — | .«• — !••
  9.610.736
 16.810.5751
 28.910,00-
                                              2.00
                                              2.00
                                              2,00
                                              2.001
                                              2^00
                                              2.00
                                              2.00
                                              2.00

                                             i i:JX
 l»:tl«:M
  !:?!S:r
o

5!
                                                          5:3 0
                                                         30.910.0
                                                         33.310.029
                                                         10.110.596
                                                         24:410.081
                                                          9:7(0.608
                                                          5.3(0.018
                                                          0.110.656
                                                          9:810.60?
                                                         29.110.399
                          9.610.6081

                          l?:8lO:529i



                         ..«(B. | ..... I
                                  93

-------
   LE III-9   VALUES OF CHFFFlciFNTS
                                VALUES OF CHEFFIC

                              !  a'  j  b  I   x   I

                                    -?-r-l—»—i
                                           2.00.
                                           2.001
                                            «54|
                                            oOOl
                                            .001
             URBANIZED AREA
                                    683
                                 .0110617
                                                       0.510
                                                       0.210
                                                      fit. 910
                                                      1 2 . fl I 0
                                                      10.610

                CITY  FTP
                                                           -=». (
                                                           .429!
                                                           .5161
                                                     21.010
                                                     26.9 I 0
                                         ""•?•» I «•«••«-



                                   I   :
...I.
 81
 81

 J!
 —i.
 81
 8!
 •»l.
 «l
 >• I.
 »}
 *• I •
 81
..
•-1.
 61
HT IMIfcrWLLa
                            t  32.01 46,
     UT  JSALTULAKE
                  	!'""] J "pT| j:pji 'poo
:2.:2!i.!;2|.«:!|J:H>
"5-§-!  z:t;|jJiljfrjjli
        •50 [.,39??["39?!
           i"22r»i"'
                                                    li:tlJ:8lf
                                                '-_ • ~_ —1""*«^» i
                                                •001 22.9|n.5001

                                                .— !-.«.«.. i Z3"I |
                           94

-------
TABLE

 91
..I.
 91
 91
 91
 91
 91
 91

 9!

 1!
 91
 91
 91
 91
 91
 91
...I.
  91
   91.
III-9   VALUES OF COEFFirirNTS

   !    URBANIZED AREA   I

   1                     I  ---
   ! UPB AN'AREAS"""""""" j ^2:?'1*a '7'"

   iPHOENIX"""""        !11S'
   I TUCSON                35.
                                      OF COEFFICIENTS


                                      .... | -.,— I ----- I ---•
                                      i.odi  j--22j_ i2:Ej2;tii
      A7
    IBAKFRSFIELD
    IFRESNO
    ILHS ANGELFS
    IRODESTO
    IOXNARD
    ISACRAMENTn
                              ! lh
8S
to
CA ISAN DIEGO
CA ISAN FRANCISCO
CA ISAN JOSE
CA ISANTA BARBARA

ii !8«5$o6°"

^ llT5?K^^LEY
       HI
                        I  72.
                        I  I!:
7 116.a -0.75
oi 5o:oi-o:s«i
61 9a..5l-0.93l
71 90.7 -0.8*51
Bl 66:? -0.611
                                      o-Bii-IlQoiiqioTaao!
                                                   J.OOI
                                                   5:001
                                                        17.710.5591
                                                        22. 610. 501 I
                               1638161676^1-
                               I1l7.:6ll36.a|
                           1 5 •
                           26.
                                    3!
                                 ai .f i
                                 57.81
                                        ati
                                        5RI
                                        6H
               |:8.o  silflioosyj

               2*00
                           il"!lll'l
                         j J2:i j ,«2:2
  101  10
 OR
 OR	-
 OR I SALEM
.... |........—---•
 WA (SEATTLE
 WA (SPOKANE
 WA '  '- "•
 101
 101
 101
..«I •
 101
 101
 101
                                     .
                                     -0.8SI 2.00

                                      o
                                      O
                                      .
                                      .
                                     -0

                                     -o
                                     -O
                                     -O.Sfll
                                     ..... |
                                       ...
                                       .371
 IB:I
 35.1.  . ^
"3a77in7360i
                                                           .
                                                           . no.
                                                           .3|ft.a05l
                                                  	   15.71
                                                  0.8?   20.at  .
                                                  >..-.I.....I .....I
                                                  ,__tf.I.....I..... I
                                                  -    •  25.911" ""'
                                        l85l
                                        TSSI

                                        '
                                                  "o ( 1      1 0 .«;  j
                                                   2.131  2J.3 O.flao
                                                   2.00|_2l.aj0.513

                                                  "2^2? i "26^7 1 o"a7
                                  95

-------
  ABBREVIATIONS AND SYMBOLS
  A

  b
  C

  E
  P
  P
  u
 PD

 PD
 PD
 PD
x
  Coefficient

  Adjusted coefficient

  Total area of urbanized area, acres
  Coefficient

  Urban area with computed population density

  Urban area with estimated population density
  Population of urbanized area

  Population served by combined sewer system,  persons
  Population  served by storm sewer  system,  persons
  Unsewered population, persons

  Gross population  density,  persons per acre
   calc      Calculated average population density,  persons per acre
             Correlation coefficient
             Percent of  urbanized area
            t  tninte               »
            to cne integrated average PD
                                                          PD Corresponds
tfthff t Uppf /imit on x such ^at average PD corresponds
is sewered ^     ^^ PD 3nd P6rCent °f Urban area

Combined sewer area as percent of urbanized area
Undeveloped area as percent of urbanized area
Proportion undeveloped area
                                   96

-------
REFERENCES

1.  US Bureau of the Census, County and City Data Book,  1972,  USGPO,  1972.

2. ' American Public Works Association and University of Florida,
    "Evaluation of the Magnitude and Significance of Pollutxon Loading
    frlm Urban StomSater^unoff - Ontario," Environmental Protection Ser-
    vice and Ontario Ministry of Environment, Toronto, 19/b.
    Washington, DC, 1968.

 4.  US Environmental Protection Agency, "1968 Inventory of Municipal Waste
    Facilities  -  A Cooperative State Report,  1971.

 5.  American Public Works  Association,  "Problems  of  CombinecI  Sewer Facilities
    and Overflows," USEPA  Report  No. 11020	12/67  (WP-20-11), NTIS
    PB 217 469, 1967.

 6.  National Planning Data Corporation, Ithaca, NY.
                                        97

-------
                                  SECTION IV




                              QUANTITY ANALYSIS
MODELING OF URBAN RUNOFF
                                  98

-------
and ;design purposes.  Hence, the ultimate goal of acquisition of
salient field data remains worthwhile and necessary.  Throughout
this section, gaps in available data for input and calibration/
verification will be apparent.  But the useful analyses which can
still be performed without these data should also be clear.

The modeling procedures developed for the nationwide assessment will
S discu-sse! L detail.  Two levels of sophistication - ia the assess-
ment are considered:  use of STORM for the development of the
"famet^rs used in  the assessment methodology described in Section VI,
Ld use of a very simple runoff prediction technique  f or the 248
urbanized areas of  the nationwidei assessment itself.  Preliminary to
both is a description of climato logical considerations that influence
selection of modeling sites and parameters.
 PRECIPITATION ANALYSIS

 Anv analysis of stormwater runoff must first examine the associated
 rtLXS patterns and volumes.   The intensity, duration, ^frequency
 of the rainfall have profound effects on the amount of runoff produced
 Precipitation patterns vary widely across the United States. '
 variation is found not only in total annual volume, as showr in Figure
 IV-1  Mean Annual Precipitation in the United States, in Inches, and
 T^q-tAt^l .Boundaries. used for Nationwide Assessment, but also in the
 seasonal distribution as shown in Figure 1V-2, Montti-to-M ont ^Variation
 of Precipitation In the United States.,  Among the more dominant regional
 characteristics are the dry summers"^ the West Coast  the Abrupt changes
 in the desert states such as Arizona, the peaks occurring in spring and
 winter in the Central Gulf and Ohio Valley states, .and the  uniformity of
 monthly totals throughout tke year ,iu. .'tke New ; England , spates .

 In order to  analyze the effect that precipitation  patterns  have on
 rSnoff patterns,  and thus control alternatives, study areas were  chosen
 which reflected varying rainfall characteristics.   The five cities
 which were  chosen are fisted  in Table  IV-1,  PrfMp1f .f.1 on  Characteristics
 !SsLlvAreaS< along with  the regions  they  represent and  the  mam  char-
  aeterislics which distinguish each  city from the  others   .^her
  discussion  of precipitation characteristics  is  presented 3* Section VI.
  RUNOFF ANALYSIS USING STORM

  STORM was developed by Water Resources Engineers, Inc., for the Hydrologic
  Engineering Center of the Corps of Engineers.8/9  The model was designed for
  planning purposes, i.e., for long-term simulation of many storm events using
  an hourly time step.  For instance, the model has been used to simulate
  runoff quality and simple storage-treatment options from a 63-year record
  of hourly rainfalls in San Francisco.9
                                        99,

-------
                                                  CO
                                                  4J
                                                 4-J
                                                 &  CO
                                                    >£>
                                                 CO  O\
100

-------
                                  ca
                                  a)


                                  3
                                  CO

                                  13
                                  Q)
                                  p.

                                  CD
                                 •I
                                  tfl
                                  3
                                  £

                                  •8
                                  FM
                                  •H

                                  ^


                                  1
                                   f
                                   o
                                   4J


                                   J.

                                   ti
 to
 0)
'44
 B)


 CO
:.H
  co
  rt
  0)
  4-1
  rH

  CJ
                                         j
  ti
  
  P r-i
   a)
   o

   S
   Q
   co
                                  •a
101

-------
             TABLE  IV-1.   PRECIPITATION  CHARACTERISTICS  OF STUDY AREAS
     Atlanta, Georgia
     Region



 Southeast
                                                         Characteristics
                                                     Large volume;  peaks in
                                                     spring
     Denver, Colorado
                                 Rocky Mountain
                     Low volume
     Minneapolis,  Minnesota
Midwest
     San Francisco,  California   West Coast
    Washington, D.  C.
Northeast
                                                     Large number of events;
                                                     uniform distribution
                                                     Dry summers
                                                     Large volume;   peaks  in
                                                     summer  and winter

RUNOFF ANALYSIS USING SWMM
                                     s
                                    102

-------
The SWMM methodology, verification and usage are well documented in
the original final reports11/12/13'14 and in more recent publications.-13"10
and will not be described here.  In general, the SWMM provides a com-
plete description (in both a spatial and temporal sense)' of flows and
pollutant concentrations from the point of rainfall, through the surface
and subsurface drainage network, through storage-treatment facilities,
and into the receiving waters.

During formulation of the research plan, it was felt that SWMM would
play the dominant role in fulfilling the modeling needs of the study.
This concept was later revised in light of altered techniques available
for accomplishment of project objectives.  In particular, _it became
apparent that detailed modeling of a few cities would not suffice when
the nationwide assessment must encompass 248 urbanized areas.  Conse-
quently, much simpler means had to be developed for  the overall assessment.
In addition, the need for long-term simulation developed  (e.g., simulation
periods on  the order of years) for which the SWMM, at the time, was, un-
suitable.   STOEM was later adopted for  this purpose.  Valuable runs of
SWMM were still made on catchments in all  of the  five,test, cities  as .
described briefly  in Volume III, but they served more to. enhance the
model's usefulness than to aid in  the assessment.  Hence, these results
are being incorporated into updated SWMM documentation  (EPA Grant No..   ,
R-802411) and.are  not presented here.
 RUNOFF PREDICTION FOR NATIONWIDE ASSESSMENT

 Form of Equation                           .'..,'.'..

 As discussed, techniques for prediction of runoff quantities vary
 from very simple methods of the Rational Method type to sophisticated
 models of the nature of SWMM.  The technique used in STORM is rela-
 tively simple, relying on weighted average runoff'coefficients and a,,
 simple loss  function to predicthourly runoff volumes. , Nonetheless,  ,
 because of the nature of the continuous simulation involved, it is at
 a  considerably higher level, and therefore more complex, than earlier,
 desk-top techniques.

 .Due  to the complexities and data requirements of  STORM, it was riot
 possible to  run  the model  on all cities of the nationwide assessment,
 or even a majority.  Rather, it was  run only on the  five test cities
 discussed earlier (plus the Des Moines example of Section VII).   How-
 ever,  in its limited application,  useful  information was learned
 regarding formulation  of  a simple  runoff  prediction  method  for  appli-
  cation to all the cities  of  the  assessment.               \         .

 'Runoff is  a function  of meteordlogic, hydrologic, topographic and"
  demographic factors.   On  an  annual basis, many  of the factors .may^be
  considered  constant,  so that runoff is  predicted  on the basis of  dif-
  ferences between areas rather than reflecting seasonal variations
                                       103

-------
         a. year.  Hence, the. prime meteorologic and hydrologtc factor
  is annual precipitation, and other factors are incorporated into a
  conversion to annual runoff.

  These considerations led  directly to the use of a simple runoff
  coefficient method in which runoff is merely a fraction of rainfall.
  This approach has been used successfully by Miller and Viessman17 for
  runoff prediction on an individual storm basis in urban areas.   This
  equation was
                     AR - 1.165(1 - 0.17)(P - I )
                                                              (IV-1)
  where     AR  = runoff,  in.,
             I  - fraction imperviousness ,

             P  » precipitation,  in.,  and

             Ia  = initial abstraction,  in.

 The recommended value  of I   which accounts  for  depression  storage,
 interception,  etc., was between 0.10  and  0.15  in.  (0.25 ~ 0.38' cm)
 and the equation was deemed valid  for a range  of imperviousness between
 35 and 80 percent.  Extrapolation  for use on an  annual average basis,
 however, may be questionable, particularly in  the matter of how much
 water should be abstracted out  of  the cycle  on an annual basis.  Hence,
 an equation will be used that is similar  in  form to equation IV-1,
 in S^Mn  ,S,TC°nS SlTl **th thS STORM si*»^tion runs, described
 in Section VI, on which the overall assessment is based.
                    C°efficient»  C*>
                                                   between pervious
                     CR - 0.15(1 - I) + 0.90 I

                        • 0.15 + 0.75 I
                                                             (IV-2)
i,
              ff °? imPerviousness and the coefficients 0.15  and 0.90
                 T      USSd ** STOEM for runoff  ^efficients  from per-
   -l  a   IV^^f eaS'/rPeCtiVely'   N°te  that  in both  equations
 IV 1  and  IV-2,  the effect  of demographic factors (e.g.,  land  use
 population  density)  is  incorporated into the  imperviousness,  I?

               °JafinSton>  D(;>>  the American  Public Works Association
            ,  and Stankowski (New Jersey), have developed  equations  to
predict imperviousness  as  a function of population density.^, 1 9
The imperviousness is to be estimated for  the developed  portion  of the
urbanized area  only.  Also  the weighted average  imperviousness and
population  density were calculated  for nine Ontario cities.20  These
OH!* PS afe+.?10"ed °n Figure IV~3>  Iiaperviousness as a  Function of HO^T.
oped Population Density, along with  the three estimating curves.   Also  a
tabulation was made of the  Imperviousness due to streets alone for
                                    104

-------
 100
                            .persons/hectare
                           30      40      50      60     70      60
                                         GRAHAM ET AL.,
                                         WASHINGTON, D.C
                                            NEW JERSEY,
                                            567 MUNICIPALITIES
                                              WASHINGTON, D.C.

                                            O ONTARIO
                                       IMPERVIOUSNESS DUE TO STREETS ONLY
       0        5         10        15
            DEVELOPED POPULATION DENSITY, PDd> persons/acre

Figure IV-3.  Imperviousness  as  a Function of Developed Population Density

                                    105

-------
                  I = 9.6 PD
                             (0.573-0.0391 log  PD,)
                                  '10
                                                                    (IV-3)
  where
I  - imperviousness, percent,
                 u          density in developed portion of the
                 urbanized area,  persons per acre.

 The simplified  equation for estimating annual runoff (AR)  is  now

                       AR =  (0.15+0.75 I/100)P                   (IV_4)

 where     AR - annual runoff, inches/year,


            I s imperviousness j percent/from equation IV-3, and

            P - annual precipitation, inches/year.

 A comparison of STORM simulated runoff versus calculated runoff
 for the five test cities using equation IV-4 indicated that the
 average difference is about 0.3 inches  (0.76 cm) per year.  A
 ofo r-fZT^r^111 ?* tot«*° «»«*««*«: indicated a difference
  L ; V      C  2? Cm)  Per year-2°  Th^» a correction factor was
 added  to equation IV-4 to reflect this difference.  The final
 equation is
                   AR - (0.15 + 0.75 I/100)P - 0.3
                                                       (IV-5)
 Based  on equation IV-5, wet-weather flow estimate^ were-inade for the.
 248 urbanized  areas for the combined,  storm,-  and-unsewered areas.
 The results  are  shown  in  Table IV-3? 'Annual'Wet^.Weather Runoff.   Pre-
 cipitation data  are from  reference 2l1        '       	""	


_Dry-Weather  Flow Prediction

Dry-weather  flow is predicted based on an average  flow  of  100 gallons
per person-day (379 litersper person-day).  Upon multiplication^  by
population density and conversion to appropriate units
                         DWF = 1.34 PD.
                                                                  (IV-6)
                                    106

-------
CO
H
CO
o
H

W

P

CO
CO
CO
o
1-1

p^
JV|
£j
M
1
H
H
CO
fyl
o

1
m
j_q

1
o
w
H
CO
0
O
£
|
§
EH
O
IS
w
CM
1
I-l
0)
r—1
H




CD
3
*O
cd
co to
en 4-i
CD 0)
fi CD
CO M
o to
> 0
M 4-1
(0
ft
6
H

4-1
•H
CO ^
!£
£2'
,<-j '•«->
4-1
60 O
g-J
m
rQ
^
5

'rt
6
ca



N §
*rH S
CO ^^
rM 4-1
O H-l
0 X
» ,-14-1
















C3 1^ CTi C3~>
in r- co tH
^ 00 0
• • • *
o o o o








c? o vo co
• • • •
in o\ •* C;
ey. -* f- "
CM i-H ^
\_x ^-x ^-^ ^-^
o o o m
CM oo  c?>
cy» o% c^ ' *^3"
CO i-H





CM CJ\ O O
o o 
S_X <-> ^S
m o o o
10 CM . oo o

O^H OrH OCM OlQ
COO VDO CMO -*0
COt-l VOCM CO «* \OOO
i-H CM
XX XX XX XX
Oi-i OCM oin SS
\OO CMO -vl-O COO
CocM CO-* VOOO CMVO
^ •HV-' CM^-> mrH


































4-1
CD
CD
4J
co
CD
•H
3
CD

£
ICO
CO
g
CO
CO
-f
107

-------
  TABLE IV-3
 I    I      I
 IEPAISTATEI
  RFGI   ID  I
    i!
    H
        ANNUAL 'WET-WEATHER
         URBANIZED AREA
  CT I BRISTOL
  CT IDANRURY
                                 RUNOFF
                                 TN/YRI
                                 ANNL.l
                                 PRECPI
                                 """mm I
                                  42.01
                                  43.01
                                  42.01
       II  !B|B BL_
       CT  NORWALK
       CT  STAMFORD
       CT  WATERBURY
       CT  OTHER URBAN AREAS
   II

   l i
   it
   1!
   1!
   it

   II
      "ME"iLFWISTON"""""""""
       ME (PORTLAND
       ME  OTHFR URBAN AREAS

      .-mmltmm' F°R STATF
          ILHWFLL
          JHIS.5IBFOBD
 MA
 MA
 MA
 MA
 MA
 MA

 W jftRgiSTig
    JOTHFR URBAN AREAS

          FOR STATE
      MA
  1 1
      NH


      «
      RI
—   .
  1 1 "VT"
  l
      VT

      VT
    "
  21


  !!
  21
 mm | •
  21
    JOTHER  URBAN  AREAS

   JAVE: FOR  STATE

   ' I PROVIDENCE""""""*""
    {OTHER  URBAN,AREAS

    [AVE.* FOR  STATF

    IURBAN'AREAS	"

    JAVE: FOR  STATE
    I 7 w ? ** ** ^ "•«•«••»• mtmmm mm mm m i
    lAVEa POR  REf5inKl   i
NJ
IATLANTIC'CITY"""
     Y9g.»<«ClTY METRO
     1Rr'""*•  METRO
 J IVINFLAND

 1  AVE." FOR ,.-,,„ IC

 f"iALBANY""""""	
     K'Y
     NY
 21




 21  NY
mm I....
     NY  IOTHFR, URBAN AREAS

         JAVE." FOR STATE
                                ••;«•• 1
                                42.01
                                4|.OI
                                43.01
                                42.01
                                44.01


-------
 TABLE  IV-3
It    -I
I EPAiSTATE I
IRFG!   ID I
             ANNUAL  WET-WEATHER.RUNOFF

              URBANIZED AREA   !iM!^!
                     IpREePI
                                WET-WEATHER FLO
                               (INCH
(WILMINGTON
(OTHER URBAN AREAS
1   31   DE
I   31   DE

!  , 3!   DE (AVE.* FOR STATE
| ... I mmmmm \:.mmmmmmmmmmmmmm
I   31   DC I WASHINGTON,D.C

I  3!.  DC IAVE.* FOR STATE
(mmm
I
31
3(
3t
    I
       MD
       MD
       MD
I BALTIMORE      Fvrtn
(WASHINGTON DC METRO
IOTHER URBAN AREAS

!AVE,* FOR STATE
| mmmmmmmmmm.mmmmmmmmm
(ALLENTOWN
(ALTHONA
 ER
           (E
           IHARR
           (JOHN
      SBURG
      TOWN
        PA
 LANCASTER
 (PHILADELPHIA
 (PITTSBURGH
 (READING
 ISCRANTON
 (WILKES-B.ARRE
 (YORK
 lOTHFR  URBAN. AREAS

 (AVEl FOR  STATE
  LYNCHBERG
  NEWPORT  NEWS
  NORFOLK
  PETERSBURG
  RICHMOND .  ' .  . .

  WASHINGTON  DC METRO
  OTHER URBAN AREAS

  AVEj  FOR STATE

  CHARLESTON'""-""""'"
  HUNTINGTON    '   ^.-
  STEU8ENVILLE METRO

  gm'S^N \nu

  AVE.'FOR STATE
  mmmmmmmmmmmmmmimmmtmm —
  AVE.  FOR REGION   3.
                                  42.01
                       45.01
                       ••«>«•• I
                       41.01
                                               0,0s
                                              16.11
                                              16.01
                                              18,2
                                  43
                                  44
                                  42
                                  4UOI
                                  42.91
                      109

-------
 TABLE  IV-3   ANNUAL WET-WFATHER RUNOFF
(ES»AlSTATEl
! RF.G I  . ID  I
              "RBANI7ED. AREA
   41
   41

   41
   41
   41
   41
    I
   41
          8I
              NGHAM
     AL
     AL
     AL
     AL
          I MONTGOMERY

          (OTHER URBAN AREAS
                        IPRECPI

                      "'"p!
                          «:8!
                          13:81
         IAVE.*
                   STATE
      COMR'("STORM7UNSEW| AJVER •
      •""'-":;! -pi"-'
                  15.11
                                                       I-«i
                                                       !•'
... ..:=. :.-:.:_:.:::r^      \.
                       	-
 41
 41
 41
 41
 41
 41
 41
 41
 41
 41

 41

*4l"
 at
 41
 41
 41
 41
 41
  I
 41
         (MIAMI
                NVILLE
          ORLANDO
         1PENSACOLA
ft
FL
a
FL
      FL (OTHER URBANAREAS

     .--.|   E*  FDR  STATE
     "GA" ALBANY"""""""""""
      GA (ATLANTA
      GA (AUGUSTA
      GA (COLUMBUS
      G* IMACnN
      GA (SAVANNAH
      GA (OTHER URBAN AREAS

      GA IAVE.'  FOR  STATE

                    "METRO""

         JLoOfSviLLE
         OWENSBORO
         (OTHER  URBAN AREAS
Pi
53.01
  :§!

Ip'
11:8!
iS:i!
     NC

     NC
       [  [AVE.' FOR STATE

       i"iBiCnxi""""""""""""""
       !  (JACKSON
       I  (OTHER URBAN AREAS

       |  IAVE.' FOR STATE

       " 1 ASHEVILLE"""""~"""""
         (CHARLOTTE
         (DURHAM
         IFAYFTTEVILLF
         IGREENSBORn
         IHIGHPOINT
         IRALFIGH
         (WILMINGTON
         WfRftfON-SALEM
         OTHER URBAN AREAS

        IAVE; FOR STATE

        'JS^LESTON—"""'

              'itLF
               URBAN AREAS
                               48.0
                              I 47^1
                              I 39.01
                              I 49.01

                              i 33:8!


                              (.46.51
                             .)_....|
                              I 40.01
                              I 44.01
                              I 4i:oi
                              I 44.01
                              I «2.3I
                             !  58.01
                                4Mi
                                  0 I
         AVE."  FOR  STATF
                            I. 54.SI

                            !~4§Toi
                            I  43.01
                            I  43.01
                            I  47.51
                            I  42.01

                            I  S*:8I

                            !  i?:8l
                            I  46.01
                            I      |
                            I. 46.01
                            |...*.),
                            I  47.01

                            !  tl:tl
                            I  46.7,
     TN IKNOXVILLE
     TN (MEMPHIS
     TN (NASHVILLE
     TN IOTHFR URBAN AREAS

     TN  AVE.* FOR STATE
                             I 54.01
                             " fl-OI
                              48.01
                              45.0 I
                              48:31
                           . I. 48.:
               .«».•.••«w..«
        IAVE. FOR REGION.  . «  .
— — I      |    —   ~ • •  .- — -.-»,..». . -r . I « -T ' • U I , A >-' 9 i.)
                                      Pi'OI 26.01
                                       o.oi
                                       o.o
                                       o.o
                                     2?.
                                       0.0
                                       0.0
                                       0.0
                                       0.0
                                     •  o.o
                                     22.7
                                    _j
                                         21.71
                                        .»..•i

-------
TABLE . IV-3  ANNUAL WET-WEATHER.RUNOFF

                                NNL.I
                                RECPI
IEPAISTATE
  EGI   ID
       -3
            URBANIZED  AREA
                                      WET-WEATHER FLOW
                                     ClfiCHES PER YEJRJ^
                                   CDMRI STORM IUNSEWI AVER
                                              •I-
                                                    •(•
 51   IL  (AURORA
 51   IL  IBLODMINGTON
 51   IL  (CHAMPAIGN
 51   IL  (CHICAGO
 51   IL  (DAVENPORT  MfTRO .
 51   IL  IDECATUR
 51   IL  IJOLIET
 51   IL  IPFQRIA
 51   IL  IROCKFORD
 51   TL  ISPRINGFIELD
 51   IL  IOTHER URBAN  AREAS

 51. . IL  IAVE." FOR  STATE.
                             34.01
                                ,01
                                ,0)
                                ,01
                             37.01
                             33.01
                             35.01
                             36.01
                                       0.0
                                       0.0 .

                                      i|:?

                                      ll'.b
                                       0.0

                                       o'.n
                             35.01 16.61
                                             15.0
                                             15.6
                                             15.8
                                             10.1
                                             13.21
                                              0.01
                                             14.01
                                              0.0
                                             16.0
                                             14.3
                                             11.61
            10.Oj  12.61
            10.91  13.61
            13:61  13;6J
            10.11  12.11
            12.61  12.61
               "  1H!
                  ll:'!
      10.6

      10^
                             35.01 16.61 11.61 10.31 13.4
                                  • I.
                                              • (•
 51   IN
  fl   IN
  I   IN
  tl   IN
  I   IN
 51   IN
 51   TN
 ll   fN
  §1   TN
  |   *N

. 51  . IN,
       (ANDERSON
       (CHICAGO  .. .
       IEVANSVILLE
       (FORT WAYNE
       (INDIANAPOLIS
       (LAFAYETTE
       IMUNCIE
       I SOUTH BEND
       ITERRA HAUTE
       (OTHER URBAN AREAS

       (AVET FOR STA.TE
                                36 0, 10.6,

                                41.01
                                34.01
                                40.01
                                35.01
                                3?.01
                                3*
                                    .01
                                    .01
                                    .21
 f'JI
 5:8

 i;!
 0.01
14.71
                                              0.01
                                             1M\
                                             15.01

                                             11:11
                                                  0.0   10.61
16.1!

15.11  10
":«l

i.01
S^l
   t
                                37.21 14.71 15.11 10.91 13.31
                                  .1.
                                              • I-
                                                   •(•
 51  MI
       (ANN  ARBOR
       (BAY  CITY
       (GRAND  RAPIDS
       (JACKSON
       IKALAMAZOO
       (LANSING
       IMDSKEGON
       ISAGTNAW
       (OTHER  URBAN  AREAS
       I
       IAVE. FOR  STATF
                                                       t:3!
     MN
     MN
     MN
     MN
     MN
 51 • MN
       IDULUTH
       IFARGO METRO
       (MINNEAPOLIS
       (ROCHESTER
       (OTHER URBAN AREAS
       IAVE." FOR STATE
 5



 I!
I
s!
5!
       OH
       OH
       OH
       OH
       DH
       OH
       flH
       OH
       OH
       OH
       OH
       OH
       OH
       OH
       OH
      OH
       I AKRON
       (CANTON
       (CINCINNATI
       (CLEVELAND
       (COLUMBUS
       IDAYTON
       (HAMILTON
         (LIMA
         ILHRAIN
         1 MANSFIELD
           ISPRINGFIELD
           ISTEUBENVILLE
           I TOLEDO
           IYOUNGSTOWN
           (OTHER URBAN AREAS

           IAVE.' FOR STATF.
          . | •••!»••••• — —••• — ••«•
            APPLETON
           IDHLIJTH METRO
           (GREEN BAY
           IKENDSHA
           ILA CROSSE
           (MADISON
           (MILWAUKEE
           IOSHKOSH

           IOTHFREURBAN AREAS
  51   Wl
             FOR,STATE..

       'lAvir'FOR'RlGION* "5
                                  1.0 I  12.6
                                  .01   0.0
                                  .01  15..0
                                28.01   0.0

                                P:?!  iX:«

                                29. 7«V 14.5
                                             15.61  I*.Z'..^^-


                                             io:ai   el
                                             12.31   0.01
                                             -- ••  ig.S!
  51
                                32.71  1«.B
                                             12.9
                            111

-------
L
  TABLE  IV-3  AMNUAL WET-WEATHER RUNOFF
  EPA
  REG

  ""6
   61
   61
   61
    I
   61

  "~6t"
   61
   61
   61
   61
   61
   61

   61
 ... I-.
   61
   61
   61
   61
   61
    I
   61
I-..!
   6
   6
   6
   6
   6
   61
   61
   61
   61
   61
   6
 "AR" ! FORT'SMIT """""""
 Ag 'LITTLE ROCK
 AR IPTNF. BLUFF
 AR IOTHER.URBAN AREAS
 _AR IAVE.' FOR STATE


 "tfiEWWEwF	
 t  !i«HARLE*
 LA I NEW ORLEANS
 LA  SHRFVEPORT
 LA  OTHER URBAN AREAS

 (LAJAVE.* FOR STATF

 OK  IAVE.* FOR STATE
• 9 • f* I ^ —• ^ — —	
 TX
 TX
  i
  61
  6
  6
  6
  6
  6
  6
  6
  6
  6
  61
  61
  61
  61
  61


..t\
  61
T*
TX
TX
TX
TX
TX
TX
TX
TX

TX
TX
TX
TX

          oeH""TT
   IFHRT WORTH
   I6ALVESTON
   luAraiT

   i  i
      TX
      TX
      TX
      T.X
    TEXARKANA
          CITV
   IWACn
   (WICHITA  FALL
    OTHFR  URBAN AREAS
     .li.lJ!!' FOR STATF
             .
                               35.31
                           112

-------
TABLE IV-3
EPAISTATEI
FGI. ID 1
ANNUAL WET-WEATHER
URBANIZED AREA
71 I A ICFDAR RAPIDS
71 IA IDAVFNPORT
71 IA IDES MOINE8
71 I A IDUBUQUE
71 IA ISIOUX CITY .
71 IA (WATERLOO
71 IA IOTHFR URBAN AREAS
.7! IA JAVE.* FOR STATF
71 K3 1 KANSAS CITY MFTRO
71 KS ITOPFKA
71 KS IWICHITA
71 KS IOTHER URBAN AREAS
J 1 ,
.71 KS lAVE. FOR STATF.
71 MO 1 COLUMBIA
71 MO (KANSAS CITY
71 MO (SPRINGFIELD
71 MO 1ST. JOSEPH
VI MO 1ST. LOUIS
J'l MO IOTHFR URBAN AREAS
71 MO !
71 NE 1
71 NE 1
7j NE I
71 NE 1
7!
81 CO 1
81 CO 1
81 CO 1
§i rn
1 CO 1
81 CO
81 MT
81 MT 1
81 MT 1
t 1
81 MT 1
81 NO 1
81 NO
81 ND
8> SD
81 SO
e! so
AVE.* FOR STATE
LINCOLN
DMAHA
OTHER URBAN AREAS
AVE.' FOR STATE
AVE. FOR REGION 7
BOULDER
COLORADO SPRINGS
DENVER .
OTHFR URBAN AREAS
AVE." FOR STATF
BILLINGS
GREAT FALLS
OTHER URBAN AREAS
AVE.' FOR STATF
OTHFR URBAN AREAS
AVE.* FOR STATE
SIOUX FALLS
OTHFR URBAN APF.AS
AVE.* FOR STATE
81 UT IQSDEN
81 UT IPROVO
81 UT ISALT LAKE CITY
81 UT IOTHER URBAN AREAS
81 UT
mmml «•••«.
81 WY
} , si . WY
\mmm 1 »aa,w-
1 81
AVE." FOR STATE.
URBAN'AREAS""""
AVET FOR STATE
AvirForTREGinT"!!
RUNOFF
N/Y8I
NNL.I
RFCPI
33.01
34.01
31.01
3
3
r-s
f:S
3J.3
34.0
34.0
33^0
33.0
37.0
34.0
41.0
35.0
1
7.0
6.P
36.8
27.0
26.0
26.5
26.5
31.9
1
i
i

9.0
3.0
4.0
4*5
14.5

:4*.o
14.0

21.0
21 . 0
. 21.0




m


§5:0
25.0
WET-WEATHER FLOW 1
CTNCHES PER YEAR) 1
. COMP STORM IUNSEWIAVER |
0.0 13.41 10.71
14.1 14.11 10.21
18.? 10. ?l 9.31
0.0 12.9| 11.21
0.0 10.71 .7.1!
0.0
18.0
18.0
14.! I
14.?
0.0
14.1
14.1
0.0
15.2
0.0
11.?
14, ^
14.?
14.?
Oe()
11.4
1 11.4
;I:ii l?^7J
i?.l
14.1
14.2
11:1
9.7!
To. 71
10.61
10.01
10.41
13.21 10.4!
15.7
11.6
17.2
0.0
l!:$

10.61
11.11
12.71
0.01
1217*1
12.7J
11.51 S.2I
11.41 7.61
11.51 7.7|
11.4 11.51 7.71
1. 14.0
12.6
10.81
1 0.0 8.0i 5.8-i
O.n 5.11 4.01
7.71 5.91 4.0|
t 5*,7 4. a 3.71
1 6.1
! 6..1
1 0.0
1 O.n
1 0.0
1 O.n
1 8.3
1 8.3
I. 8.3
1 10.4
I 10. a
15^01 0^
15.01 0.0
15.01. 0.0
15.01 0.0
15. ol. 0.0
17.41 7.5
5.8 4.01
5.8
4.01
5l7 4.9|
5.41 4.31
5.4
8:3
-2:2
4.31

«,.«!
il:l JrS!
10.4
2:1
6.3
T.,l
3.6
4.4
4.4
4.U
5.9 4.7
5.9
4.7
6.41 4.7
11.81
ll^!
If'?!
\\:i\
11.1 !
12.7)
12.31
11.41
12.11
12.11
12.5!
12.11
it:!!
13.5!
9.9|
3:?!
9.71
12.21
7.4
4l5|
5.11
4.31
5.11

5:o!
5.01




4*Ui
3:1!
5.31
"iiii
mmlil\

H3

-------
      -IV-3,   ANNUAL  WET-WEATHER

              URBANIZEH  ARFA
•TABLE


f!!!l"!?!i._
i""9i""AK"jORBAN"AREAS""""
                    STATF
          I TUCSON
          (OTHER URBAN AREAS
                   aTATE
         IOVNAR
          SAN BERNANDTNO
         ISAN DIEGO
         ISANTA BARBARA
          SANTA ROSA
          SFARIDE
          SIMI VALLEY
          STOCKTON
          OTHER URBAN AREAS
               FOR
     IS la
     ID  O

         (OTHER URBAN AREAS

         JAVE.'  FOR STATE.

        '  LAS'VESAS"	'
         (RENO
         (OTHER URBAN AREAS

         lAVEj  FOR STATF

         j Avlr"FOR"REGinN"""«
         OTHFR  URBAN  AREAS

101
101
101
     OR
         	  FOR STATF

         ! EUGENE	'
         (PORTLAND
         , SALFM
          OTHER URBAN AREAS

         JAVE;  FOR STATE

          SEATTLE""""""""""""
         SPOKANE
        iT
        ..ACOMA
        IOTHER URBAN AREAS
              FOR STATE
.. mmmmm
         AVEFoi?REGinN"
        | mmmmmmmmmmmmmmmm
        j .............__.__

                     THE  IJ-
                           o
                               RUNOFF
                               TN/Yli
                               ANN"
                               PRE
 23.0)

 23.0! - 0.0

""jJToi""oTo
  7.01  ~
  5.51

  5.5l'
 ™ ** ^ • | W ^- -. ^ I^
 16.91 10.9

 irroi"*oTo
 11.01  0.0

 11.01.  0.0
     I  17.?
     I   0.01
     I  17.?|

 39.31. 17.?|




       12lo

 30.3L 12.0
                                                  3.5
                                           mmmm\mmmmm
                                           15.91  11.9
  3.9
>....
 I?.?
                                •"mm|.....|..... .....
                           114

-------
where     DWF  = annual dry-weather flow, inches per year, and

           PD, = developed population density, persons per acre.
             a •          ,

Results of these runoff calculations are shown in Table IV-4, Annual
Dry-Weather Flow.

Dry-weather flow and wet-weather flow for the developed portion of
an urbanized area with a precipitation of 15, 30, or 45 inches per year
are shown in Figure IV-4, Comparative Magnitude of Annual life.t»-and Dry-
Weather Flows.  Note that dry-weather flow predominates: at" higher
population densities which have historically prevailed in cities.  How-
ever, with the trend towards lower density urban living, wet-weather
flows take on greater relative importance.  Indeed, they are larger
than dry-weather flows at the lower population densities.
                                    115

-------
 L,
  TABLE IV-4.

     ISTATE
  RE6I. . ZD
  •»•}••<*••

    t    "
    II

     J
  ,il.
  TI *
            ANNUAL DRY-WEATHER.FLOW

             URBANXZE.D .AREA
           R

          DAN
       •A -NEW'
       IT I NEW
                 JPORT

                 1Y
                   A IN
        .
        CT   NORWALK
        CT   STAMFORD
        CT  iWATERBl/RY
        CT   OTHER URBAN AREAS
L

I

I


I*


i
   : I

   : I
    I
    I
           AVE.'. FOR STATE,

           SHHF      '
  -if

   II
.CT

"ME"
 ME
 ME

 ME

"MA"
 MA
 •MA
 MA
 MA
 MA
 MA
 MA ipmSFXELD"
 MJ .'SPRINeFiELD

 MA
 MA

"NH"
 NH
 NH  I
           OTHER URBAN AREA'S.,. '
           AVE.* FOR STATE.   .
           BOSTON"*""""""""""'"

           $EK5?«E»
           tIWIs
UNSEWjAVER
      '>•••»• i


       IP
       !f:8:
       tt:Z!
       IIJI
  ».s|  n.'i!
  m^m]mmmmmj

  w  «I:!|.
                E
         I NEW BEDFORD
         I
         J
         I WORCEST
         OTHER URBAN AREAS

         AVE * FOR STATE
         OTHER URBAN AREAS

         AVE.* FOR STATE.
  .11.  NH  AVE.* FOR STATE.        41.01 12.j

 "i ""«" ssSPSE?""!!!;"      i?:?!"!?:!
i-,
     RX

     RX
     imttm
     VT

 II  VT

'"i!""—
    I
   .1.
           OTHER URBA^N AREAS

           AVE^FOR STATE.

           URBAN"AREAST"""


           AVE* FOR STATE
           <
           I
l"
 2
 m\
 21
  mm\
   I
  •il:
       NJ
       N
       N
      , NJ
      •••.
      NY
      NY
      NY
      NY
      NY
      NY
      NY
      NY

      NY
           XLAOE
           ENTON
           NELAN
                     TY
                .... __TY METRO
                ELPHfA METRO
    AT
    NE
    PH

    VINELAND

    AVE." FOR STATE
    mmmttmmmmmmmmmmm
    ALBANY
          THER URBAN AREAS

         AVE.* FOR STATE
         AVE.  FOR. RESIGN. . . 2, I,
                            116

-------
 TABLE IV-4

tEPAlSTATE
IREGI   ID
             AMNUAL DRY-WEATHER

              UMMIXED ARE*
                                FLO
                                  OW
                                          nRY-WEAtHER FLO
                                       CO
fc
    I   DE
           WILMINGTON          I  45.0
           OTHER URBAN AREAS   J  45.01

           AVE.' FOR STATE ... I, 45.01
                               '\
                                       «:!
                                       16.4
                                             16.4
                                             16.4

                                             16.4
                  6.7


                  6.7
                                                         12
                                                           .0
              .0

              75

              .9
t , 3
       .
       DC
           WASHINGTON75rcT

           AVE."  FOR  STATE .,
                                 41.01

                               K41.0 I
     42.?

     42.2
19.1

19.1
0.0

0.0
                                                         26

                                                         26
   1
       MD
       MD
       MD

       MD
           BALTIMORE       .    I  43.01
           WASHINGTON DC METRO I  4
           OTHER URBAN AREAS   I  4

           AVE.* FOR STATE-
J:8!
                                      i
                                        0.0
                                        0.0
                                        0.0
                                ,42.01,  o.o
                                     111
18.0

18.0
       6.3

       6.3
                                                         14
       .01

       .0
                                 44.0
                                 44.0
           LANCASTER
           PHILADELPHIA
                 BURG

            ..NC:/°*N
           .HILA	
           PITTSBURGH
           READING
          fSCRANTON
          IWILKE3-BARRE
          1YORK
          IOTHF.R URBAN AREAS

i  .3!   PA IAVE.* FOR STATE,   .  . i,4i.oi 20.4
                                 4'
                                 4'
                                 4'
                                   *«oi
                                 42.01
                                 3f.OI
                                 39.01
                                 40.01
                                 41.01
                                        ^•*
                                        28*,a
                                         o.o
                                        1U7
                                        16.2
                                         0.0
                                        20.4
                                              18.0
                                                    i:
                  6.

                  I:!
                  5.1
                         •
                         u
                                                          13.2
I.

   ?!
       VA
       VA
       VA
       VA
       VA


       V*
       VA

       VA
           L
           N
            YNCHBEf
            .RWPORT
           NORFOLK
           PETERSBURG
           RICHMOND
           ROANQKE
           WASHINGTON DC  METRO
           OTHER URBAN  AREAS

           AVET FOR  STATE
                                                '
                                               «:
                                              18.7
                  J"2
                  «•!
                   .,,
                   •(,
                  sis
                  5.5
                                                          13.0
       WV
       wv
       wv
       wv
       wv

       w'v
           CHARLSTON
                         METRO
            AVE.*  FOR  STATE.     f I, 41.0
            mmm^mmmmmmmmmmmmmmmm\•*»"•j
            AVE.  FOR  REGION   3.I,42.1
                                             16,6
                                              0.0


                                             16. 2

                                            . 16.2
                                            m*mmm
                                             18.1
                                                     6*3
                                                     8:8
                                                     2:8

                                                    '575
                              117

-------
            ANNUAL DRY-WEATHER FLOW

             URBANIZED ARFA     ANN*?!
I •—"    I
I EPA(STATE I
I REG I   ID I


I   41   AL
I   41   AL
I   41
   41
   41
   41

   **'  -.-— - n • •• «  i i.j|^ u i *> i r
     AL  (MONTGOMERY
                URBAN  AREAS

    . AL  JAVE." FOR STATF
 .4
   41
   41
   41
   41
 41
 . .
 41
 41
 41
 41
 41

 41
— I.
 41
 41
 41
 41
 41
                   LF
FL
PC

FL
        IWFST PALM BFACH
         OTH^R URBAN AREAS
          JAVE."  FOR -STATF

      »-"lALB4NY"""	*
      GA  (ATLANTA
      GA  (AUGUSTA
      GA  ICDLUMBUS
      GA  IMACPN
      GA  (SAVANNAH
      GA  (OTHER URBAN AREAS


     .£!.!„!• FOR ST!!F	
     "KY"
      KY
      KY
      KY
      KY
   (LOUISVILLE
    OWENSBORO
   (OTHER URBAN AREAS
     KY IAVE.* FOR STATE
                                    rtRV-WEATHER  FLOW    i
                                 „  (INCHES  P?R YESR}
                                 COMBjSTORMJUNSEWj  AVER I
                                  O.o
                                  0.0
                                  0.0
                                  0.0
                                  0.0
                                  0.0
                                  0.0
                                                 ---.I-.--.
                                             5.71 11.5
                                            -«™. ..... I
                                14.9!
                                 0.0
                                20^7
                                13.
                               32:?! lu-e
                               41.01
                               44.01
                               42^
                               42.31  16.2
                          48.0
                          43.0 I
                          43.01
                          47.01
                          42.ni
                                46.01  0.0
                                .... I.....
                                47.01  0.0
                                       0.0
                                       0.0
                                           14. fl
                                           15.41
                                           15.0
                                           15.1 I

                                           15.l!
         Bl
         Jt _
         OTHER"URBAN AREAS

        IAVE." FOR STATE
        (DURHAM
        IFAYF.TTEVIILE
        (GREENSBORO
        IHIGHPOINT
        (RALEIGH
 41
• -!.
 41
 41
 41

 *{
 41.
..I.
 41
 41
 41
 41
 41

 4>
..I-
 41
..I.
 SC
 SC
 SC
 SC

 SC
• ••••
 TN
 TN
 TN
 TN
 TN
   (OTHER  URBAN  AREAS

   IAVE.' FOR  STATE

  ' iCHARLESTON""""""""
   (COLUMBIA
   .-..^IL
   (OTHER URBAN AREAS
        FOR STATE

  i CHATTANOORA"""""""
        (NASHVILLE
        (OTHER URBAN AREAS
    TN  IAVE.* FOR STATE

            ''
                         46.01
                         48.01
                         45.01 16l
                         48.31 16:3

                         4fl.3l 16.3
                                                 10.61
                                                          • I
                              49.61. 14.UJ  16.61  6.M Jl.ftl
                          118

-------
TABLE IV-4
1
EPAISTATE
Gl 10
51
51
I!
51
51
51
I!
51
51
51
51
II
51
51
1
IL
|
!L
I
T1
IN
IN
IN
IN
TN
. IN
IN
IN
TN
IN
ANNUAL nRY-WEATHER
1 URBANI7EH ARFA
1
(AURORA
IBLOOMINGTON
ICHAMPAIGN
ICHICAGO
IDAVFNPORT METPO
IOECATUR
i JOLTET
IPEQRIA
IROCKFORD
ISPRTNGFIELD
IOTHER URBAN AREAS
SAVE.' FOR STATE
1 ANDFRSON
ICHICAGO MFTRO
I-EVAMSVILLF
IFORT WAYNE
TNDTANAPCI IS
iCAFAYETTE
IMUNCIE
ISOUTH BEND
1TFRRA HAUTE
(OTHER. URBAN AREAS
i
FLOW .
1 TN/YPI
1 ANNL. 1
1PRECPI
1 34.01
1 36.01
1 37.01
1 33.01
1 34.01
1 37.01
1 33.01
1 35.01
1 36.01
1 35.01
1 35.01
! 35.01
1 36.01
1 33.01
1 41.01
1 34.0 1
1 39lO!
1 36.01
OR
(TN
COMP
0.0
0.0
!?:*
n.i
0.0
10. ft
O.n
15.?
26.8
26.8
18.8
1 " . 0
0^0
14.8
Y-WEATHER FLOW 1
CHES PER YEAR) 1.
STORM MJN3EWI AVER 1
18.81 5.51 11.51
18.01 6.01 12.11
17.11 6.9| 15.11
6.31 5.91 15.61
13.?.! 9.11 il.7|
0.0 1 11.11 11.11
16.9| 6.31 11.31
0.01 10.61 10.61
19;tl 5.51 12.01
15.21 7.ai 12. ?l
9.71 6.41 14.61
- j | j
9.7| 6.4| 14.61
IS^SI 5l6l U:9I
1 ^ • 0 1 5 » 5 1 1 1 • ft 1
1A n. 1 £1 & 1 1 ^ til
13:31 «:*i 12:31
S:OI 10.6! 11.21
13.01 9.21 10.91
16.8| 5.81 11.01
1 1 . 1
 51   IN  lAVEj  FOR  STATF	I _37 .2 I _14.8 I _16.8 j __ %8 j _ll.n j
 51

 I!
 51
 51
 51
 51
Ml

MT
Hi
MI
Ml
MI
Ml

MI
MI
MI
MT
    IANN ARBOR
    IBAY CITY
    IDFTROIT
    iFLINT
    IGPAND RAPTDS
    I JACKSON
    IKALAMAZOO
    ILANSING
    IMHSKEGON
    ISAGINAW
    IHTHFR URBAN ARFAS
    I
31.0
28.01
31.0 I
30.01
31.01
34.0 I
3a.o
   o.o i
  11 .5!
  20.0 I
  16.1 I
                               i?:5!
                               28
                               31
I   0.01
  15.01
   0.01
  L 2 . 0 I
   01
   0 I
   o i
15.1 I
 0*0|
16.01
16.1 I
18.1 I
 O.Ot
16 . '1 I
15.91
17.ai
 0.01
16. ?l
-u:l!
               5.51
               9.31
               6.31
12.(
11 .M
I2:i!
10.71
10.a i
10.31


11!
    i
 51   MI IAVE.' FOR PTATF
                         I. 31.01 18.9) 16.21  6.31 12.9|
 5!
 51
 I!
 51
 51
 I!

 I!
 51
 51
 I!
 5!
 51
 5
HN
MN
MN
MN
MN
    IDHLUTH
    IFAR'GQ METRO
     IHINMEAPOLTS
     I ROCHESTER
     IOTH.FR URBAN APFAS

 MN  UVE." FOR STATE
,._..I-.-----------------1
 OH  I AKRON
 '"'  ICANTON
     (CINCINNATI
     (CLEVELAND
     iCOLUMBUS
     IDAYTON
     (HAMILTON
     ILTMA
     ILORAIN
     IMANSFIELD
     ISPRTNGFIELD
     ISTEUBENVII LF
29.01
21.01
25.01
29.01
26.01
                     96
                    12.21
                    10.61
                    12.61
                    10.61
                             I. 26.01
                             1
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
     ITOLFOO
     IYOUNGSTOWM
     IOTHFR URBAN AREAS
     i
  51   OH  IAVE.  FOR  STATF
3«.OI
38.01
3a.oi
32.01
36.01
35.01
ao.o i
36.01
35.01
43.0 I
ao.oi
•ao.oi
33.01
«2.0 I
37.21
  51
  51

  i:
  51


  51

   I
  51
    I APPLETON
    ID'ILHTH METRO
    IGREF.N BAY
    IKENOSHA
    ILA CROSSE
    IMADTSON
    MILWAUKEE
    IOSHKOSH

    IOTHEREUnBAN AREAS

 W! 'IAVE. FOR STATE
  Wl
  wl
  Wl
  Wl
  wl

  wl
  Wl
  w!
  wl
...j....-^_.-,----------.

...I._.--!----	— ....—
                               .37.2
 32.01
 31 .01
 31.01
 28.01
 28.01
 32.01
                          i.29.71 28.71 11.8 {__3;J;} .11:' |
                             119

-------
             ANNUAL DRY-WEATHER

              URBANIZED ARFA
 TABLE IV-4

 EPA I STATE I
 RFGI  . ID |
 ... I ----- I ........mmmmmmmmmmmm

   61

   i[

  . 61
 .«•« f i
   61
   61
   61
   61
   61
   61
   61
 A* 'LITTLE ROCK
 AR  PINE BLUFF
 AR IOTHFR URBAN AREAS

 AR IAVE; FOR STATE

"A" IE

 LA ILAKE'CHARLES
 LA I MONROE
 LA (NEW ORLEANS
 LA ISHRFVEPORT .
 LA JOTHFR URBAN AREAS
.
  61
  61

  61
•..I.,
  61
  61
  61
  61

 . 61.
---!..
  61
  61
  61
  61
    :
    1
  6j
  6
  6
  6
  6i
  61
  6
  6
  61
  6
  6
  6
  6
  6

  il
  61
  61
  61
 NM
 NM

 NM
• mm*
 OK
 OK
 OK
 OK

 OK

'TX"
 TX
 TX
 TX
       FOR STATE

" i ALBUQUERQUE"""""""'
 •OTHER URBAN ARFAS

.JAVE; FOR STATE

'!LAWTON""""""""""""
 '"	    CITY
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX
      TX

      ?!
      TX
      TX
      TX
 JOTHFR URBAN AREAS

JAVE^FOR  STATE

" iABILENE""""""""""'

 !J5*?!bLO
 I BEAUMONT
 HR^NSVILLE

        CHRISTI
          O
   (FORT WORTH
   IGALVESTON
   JHARLINGEN
   (HOUSTON
   ILAREDO
   ILUBBOCK
   IflCALLEN
   (MIDLAND
   (ODESSA
   IPflRT ARTHUR
   (SAN ANGELO
   ISAN ANTONIO
   (SHERMAN
   ITEXARKANA

          CITV
                          FLOW
                          TN/YRI
   (WACO
   IWICMITA  FALI
   IOTHER URBAN~ARFAS
               FOR STATE
                        ..... .....

                               0.0
                        -=•••   0.0
                        48.0   9*3
                                 48.01  9.3  15.fl,
                                 •"-••-••••I——I
                                              -*•
                                              i:§
                                              §:2
 58.01
 50.01
 64.01
 .45.01
 56.01

 56.01.
                                  9.01

                                  9.01
 •j _• • w f

 ij:«!
 32.71

 32.71

IP'"'

 il-2'1
 54.01
 27.01

 I|:§!

 3S:?I
,0.0
0.0
0.0
0.0
0.0
0.0

o.o
        0.0

        0.0
                                        0.0
                                        0.0
                                        0.0

                                        0.0
                                              S:
                    S:J

                    8.8
                    • mmm
                    6.8
                                             20.8
      10.4



     II

      25-1
      C. •+ m J
      10.8
      16.2

      16.2
      7.0

     17.0
    .--.. |
     li'M
         i
8.8
0.0
7.7
7.6

7.6
 6.21  11.0
>... \ mmmmm



 5l6l  I0l3j
 5.S|  10.01
                         :
                       26.01
                       46.01
                       19.01
                       18.01
                       f?.-01
                       14.01
                       14.01
                       54.01
                       19.01
                       i2»oi
                       39.01
                       46.01
                       45.01
                       45.01
                       32.01
                       29.01
                       31.01

                      . 31.o!

                      "1575!"
                            120

-------
      IV-4  ANNUAL
 TABLE   .

!EPA!STATE
IRFGI   ID  I        _ ••___•	
             URBANIZED
I
I
I
I
I

I   71
  71
      It
       IA
       5S
       It
        ICFDAR RAPIDS
        IDAVENPORT
        IDES MOINES
                                                  FLOW    I
                                        	  . _..  YEAR;    i
                                        1STORMIUNSEWI AVER I
                                        I..... I...— I —— I
                                                 _ _.  4Q/J,
                                                      «:«
                                                      10.6)
   71   JA
         I8«KLB8B»N

         IAVE.* FOR STATF
' ""-•• ""^"^"'•"T^TTT^TT^^"^^ —r»**   i  t « A i  «er a
       KS  (KANSAS CITY
       KS.  (TOPEKA
   71   KS  IWICWITA
   7!   KS  IOTHER URBAN

   71.  KS  IAVE.' FOR
        ~ (COLUMBIA
          (KANSAS  CITY
          (SPRINGFIELD
          1ST.JOSEPH
                                                        I'l*
                                                       10.21

                                                       10.21!
                                                        U'Z1
                                                        10.81
                                                        11.31
                                                        11.41

                                                        11.«l
                                                   5.21   9.51
                                                   7.71  10.21
                                                   6.31  10.11
                                                   '  "   Z.?l
                   BAN
                                     iW   8:81  iS:«|  i}:||
                                     13:4  11.41  10.II  11.61
       MO JAVE; FOR  STATF

I ""7 l""" I LINCOLN"
I  71   NE (OMAHA
I   71  NE (OTHER URBAN-AREAS

I   71   NE IAVE." FOR  STATF

I "" I """"" | AviT~FOR~REG ION""?
  •—v I
   -81
   81
   at
   BI
   si

   8f'
      CO I BOULDER
      CO I COLORADO SPRINGS
      CO (DENVER

         .IOTHER URBAN AREAS

         IAVE.". FOR STATF
        CO
        CO
        CO

    I!
    8!
        MT
        MT
        MT

        MT
       mm — •
        ND
        ND
          iHk«NHu8
          IOTHFR URBAN
          i
           UVE."
                 URBAN
  .8
I...I
I   81
I   81   ..-  . .

[  . 8i   ND  IAVE.' ^OR.^1*3^.

i ""5! ""so" i "=="""""""
|   81   SO  II

       SD  IAVE.* FOR  STATE
                                            — — 1. — -    -       -



                                                          "
                                       13.41 11.4

                                      """o7ol"l7T4i  6.21  11.4!

                                       i2-°! J2'2!
                                       19.0! 1«.01

                                      .19.01 IB.01
                                  5.01 16.U

                                 25.o!. 16.4
 I  i!
        UT
        UT
        UT
           IPROVO
           ISALT LAKE CITY
           (OTHER URBAN AREAS

           IAVE." FOR STATE

           i URBAN"ARE"AS"""

           JAVEJ FOR STATE

   ""5 I •"""" I A VE7"l?OR"RlGION"""
I   81   UT
I...)...•.
t   81   WV
I    I
   8!
                                I
             6;4i  7;n

t	   16.4J  7.1J

iWlTrifpfl:!!
ii:SI  W\  K:H  W\
15.ol  O.o!  17.l!  5.9!
....(.--..
        WY
                              -.)
                              8.
                              ...
                                      I

                                 . 15. ol,  0.0
                                 .-—- 1 -----
                                 . 17.41  21. fl
                                 ..... I -----
                                            15
                                               .o!
                                                            !l

                                                           ,2',
                                                           •-I
»:»!
10.71!


11.o!
                              121

-------
             ANNUAL DRY-WEATHER
              URBANIZED AREA
TABLE  IV-4

EPAISTATEI
RFC I   ID  I

"~9I "*AK~ (URBAN*"7""""""""1""11"

  91   A K  I 1 \/F *
    I '**   | * v £ • r < .1 n DiHfc


  91
  91


...|..^»  :"•«-• i u« i-ii»,ic.      |  V.OI,  0.
  G I  f» A  lnilxe>n»Ar»w»-*  ^mmmmmmm** I .....{....
          JOTHER  URBAN  AREAS

          IAVE." FOR  STATE
                        FLOW
                        TN/YRI
                        ANNL..I
                        PRECPI
                        .....|,
                         30.01
                              I
                                       COM* I STHRM | UN3EW
                                        8"7s-|-r« 75
                                                       AVER!
                              .....(.....(...;.
                                0.0  16.81   5.3
                                O.Oi  15.51   7lfl
                                0.01  16.51   5.fl|
                       J   9.01,  o.n
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
  I
91
CA

It

«
CA
CA
CA
CA
CA

K

&
CA
CA
CA

CA
ILOS ANGELFS
I MODESTO
IOVNARD
•SACRAMENTO
ISALTNAS
(SAN
 SAN


         ise
JOTHFR URBAN AREAS
 ..i   ~m }AVE- FOR STATF
 "51 "HI" i •-"-•?•——       •
  91   HI i
   i      i

  2!..«.!AVE* FOR 8TATF
  9l""NV~ """""
      NV
      NV
                                I?
                                   ll
                                      i
                                0.01
                                0.01
                                  01
                                  01
      8
      0
      0

    5j
    0.0
    o.oi
    o.o
                                             16. 5    5.8!
                                              .
                                            1 :
                                                       10.61

                                                       10.61
21  33.3
                               .....|.
                                23.01
                                23.01

                                23.o!
                                              .








                                            17.31
                              33.3
                              	.1
                               0.01
                               0.01

                               o.o!
                                            4.7








                                            5.7
                                          17.31  5.7.

                                          lfl.2l""6*7o|
                                          18.?|  6.01
                                                         10.01


                                                           II
                                                        13.«l
                                                        13.4 !
                                                        12761
                                                        12.61
                                                 6.0J 12.6
 .!!..«.IA!E;.!2I!.!IfI!......!  .!;!,'.i!:^  i6;«l   *.ol  io.«
101
101

101
-.1.
toi
101
101
101

.101
.•I.
101
101
101
101
 ID
 ID

 ID

"PR"
 OR
 OR
 OR

 OR

"WA"
 WA
 WA
 WA
         [BOISE
         IOTHFR
         UVE;  FOR  STA.TF
         1 EUGENE

         !SP?LR^AND
         OTHER URBAN  AREAS
                      I .....I ..... I...
                      |  }|.oi   o.o!  ja
                                            — I-.
                                 oi   o;oi  lallj
                               11. 01  0.0

                              ""  ""
JOI
..i,
..i.
  i
..i.
 i
 IAVE.  FOR  STATE

' iSEATTLE""""""
 (SPOKANE
 ITACHMA
 JOTHER URBAN  AREAS
              F°R STATF
        IAVE. FOR REGION  10
       1J •••...—......«......,

        IAVERAGE"FOR"THE"urs!
       11........'...........,
                               38


                               3?
01
01
01
31
 I
                                 ?
                                :
                                39. s, 17. 5

                              35.01

                              fi:!l
                              30.3!
                                      ll'i
                                      U'M

                                      ill?
                                                   lit \

                                                    :«!
                                                    .AI
                                                11. fl
 16,

 II:

 16,

"*?

 li
                                             21
                                             61
                                             6.61
                                             6.01
                                             7.61
                                              10
                                              I
                                         .1
                                        •*l —
                                         J!
                                         81
                                         01
                      .9
                      l6
                                                  6.2
                                                  -—I

                                                  *:JI
                                                  6.
                                                     1
                     '(.....(.....
                      I- 26.91  15.9
                     11.....|.....

                      i "33721"II75
                                     15.?  17. fl   6.5
                                              11

                                              II
                                              11
                                              11
                      .«
                      :si
                      •:!
                      .«i
                          122

-------
               persons /  hectare
                                                140
                     DRY-WEATHER FLOW
0      10      20      3O      40      50     60

DEVELOPED  POPULATION  DENSITY , PDrf .persons/acre

 Figure IV-4. Comparative Magnitude of Annual Wet- and
 :          . Dry-Weather Flows
                       123

-------
 ABBREVIATIONS AND SYMBOLS
AR


CR


DWF
P


PD


PD.
Wet-weather  runoff,  inches per year


Runoff  coefficient


Abbreviation for dry-weather flow and dry-weather flow runoff,
inches  per year


Imperviousness as a  fraction or percent


Initial abstraction  (loss) from precipitation, inches


Precipitation, inches per year


Population density, persons per acre


Developed population density, persons per acre
                                  124

-------
REFERENCES

 1.  Bowers, C. E. , Harris, G. S. and Pabst, A. F., "The Real-Time
     Computation of Runoff and Storm Flow in the Minneapolis-St. Paul
   '  Interceptor Sewers," St. Anthony Falls Hydraulic Laboratory  Memo
     No. M-118, University of Minnesota, Minneapolis, December iyt>».
2.  Leiser, C.  P., "Computer Management of a
    Office of Research and Development, USEPA Report
    NTIS-PB 235 717, July 1974.
                                                               -74-022,
     1975.

 •4.  Huber,  W.  C. ,  "Modeling  for Storm Water  Strategies," APWA Reporter,
     Vol.  42, No.  5,  pp.  10-14,  May 1975.

  5.  DiGiano, F.  A. and Mangarella, P. A.,  eds. ,  "Application of Storm-
     water Management Models," USEPA Report EPA-670/ 2-75-065,
     'NTIS-PB 247  163, June 1975.

  6.  American Society of Civil Engineers,  "^ban Hydrology Research, "
     'Report, Engineering Foundation Research Conference  Andover
      New Hampshire, ASCE Urban Hydrology Research. Council, August 197.5,

  7.  McPherson, M. B. and Schneider, W. J., ^laofl to f^J^
      Watersheds," Water Resources Research, Vol. 10, No. 3, pp. 434-440,
      June 1974.

  8.  Hydrologic Engineering  Center,  Corps,  of Engineers, "Urban  Storm
      Water  Runoff:   STORM,"  Generalized Computer Program 723-5b-L2i>^U,
      May  1975.

  9.  Roesner,  L. A. ,  et  al. . "A Model for  Evaluating Runoff -Quality  in
      Metropolitan  Master Planning," ASCE Urban ^ater Resources  Research
      Program,  Technical  Memo No.  23, ASCE, 345  E 47 St., NY,  NY  10017,
      72 pp., April 1974.

  10.  Smith, G. F., "Adaptation of the EPA Storm Water  Management Model ^
      for  Use in  Preliminary Planning for  Control of Urban Storm Runoff,
      MS Thesis,  Department of Environmental Engineering Sciences,
      University  of Florida, Gainesville,  May 1975.

  11.   Metcalf and Eddy, Inc., University of Florida  and Water Resources
       Engineers,  Inc., "Storm Water Management Model,  Volume I - Final
       Report," USEPA Report  11024DOC07/71, NTIS-PB 203 289, September
       1971.
                                       125

-------
                                   ***°Tt
                                                    NTIS-PB  203  290,
         andTEddy'..onC" Universlty °f Florida and Water Resources
                                                                  .
 Listing,  USEPA Report 11024DOC10/71, HTIS-PB 203 292, Sap tembef 1971 .
          '  •  E"ber> "' C" et al- • "frban Stor™ater Management
                                      Report                8m
                                                              Model

18.
Graham, -P. H. , Costello, L.  S. and Mallon, E. J .,  "Estimation of
Impervxousness and Specific  Curb Length, for Forecasting StorLater
      19.74d QUantlty'  ***<*• Vol« ">  No. 4, pp.  717^25,
wi          S'/V "Magnitude and Frequency of Floods in New Jersey
with Effects of Urbanization," Special Report 38, US Geological
Survey, Water Resources Division, Trenton, NJ, 1974.
                              I"formtl°'> Center,  Inc., Port Washix«-
                              126

-------
                                SECTION V

                            QUALITY ANALYSIS
•subcatchments within a city to a broad representation of
loads  for an entire urbanized area, state, or region.  It has been
necessary to consider the entire spectrum during the course of this
research.          -.  .

It  is.  unfortunate that perhaps the  only  consistent  remark  about
urban  runoff quality analysis in general is that fata /^.^J^
of  previous studies are  so  remarkably inconsistent.  As  discussed
in  Volume III of this report,  few studies have  been  made  of charac-
teristics  of  street  litter,  and they  offer  a wide range  of values
of  concentrations and  loads.  Effluent data show a  similar scatter.
However  it is necessary that a decision be made regarding actual
vaSIs foJ use in the Salysis.  This section will  describe methods
 used for predicting runoff quality, data required  for  their use,
 and final results used in this study.
 QUALITY PARAMETERS

 Parameter Definitions

 Urban  runoff  quality may be  characterized by a variety of
  that even at this juncture,  a serious problem or  def inition
  arises because of various possibilities for analyzing and reporting
  quality paramlters.   The assurance that analyses  have been performed
  T^LTTn Standard Methods^ is not enough information   For example,
  solids are sometimes reported as "residue" instead of solids,  and

                                ^^
      and PO   leading to unrealistically low values if the reader mis-
          thinks of tnem as total  (soluble plus insoluble) concentrations
                                      '127

-------
  TABLE V-l.  TYPICAL QUALITY PARAMETERS OF URBAN RUNOFF MODELS
  Quality Characteristic
  Solids
 Oxygen Demand
Health Hazards
 Representative Quality Parameters
 	—	——	
 Surface "Dust and Dirt"

 Surface "Solids"

 .Total Solids

 Suspended Solids

 Dissolved Solids

 Volatile Solids

 Settleable Solids

 BOD, COD

 Total Organic Carbon

 Organic N, N02> NHg


 Total Coliforms

Fecal Coliforms
Aquatic Growth Potential     Ortho-
      PO,
                             Total PO,
                             N02, N03, Total N
                           128

-------
                                              **
pared to those that are soluble.



                                                          —


 draw conclusions  from all  data considered  together.

 in this report,  the solids relationship %2*£
 fraction of suspended solids.  Note
 the size of total solids reported is imposed ^        megh screen)
 openings in the sampling equipment  (e.g., a quarter in
  Similar diagrams  may  be  prepared
  shown in Figure V-2,
  Parameters for Assessment

  fcr purpo.es  of  the
   Parameters Used in Nationwide Assessment.
F1,e-day BOB is used because of
role in water quality analysis
by the great difficulty ^
analyses.  For instance, there is no
                                             -e  --
                                                          ± tent laboratory
                                                 for laboratory comparison,
                                                       susceptible to
                                                   Hale sho^ that results
                                        129

-------
 z
 o
 or
 o
 Q_
 UJ


 ffi

 CO
 Q

Hi
o
CO







o
o
O
CO
5
o
UJ
o:
O
f

1 **"*

.5L"






f^m
r
i
i
CO
9
i
o
CO
0
Q
2
UJ
CL
CO
CO
o
-J
o
CO
UJ
• 1
	 DQ
"~^
UJ
H
h-
UJ
CO



o
UJ
— 	 — x
LL.



             10
            o

            l£
            £
o
LL.
U- o"
O a
>s
§5
                                    UJ
                                                   
-------
                      TOTAL  N
N02
N03
KJELDAHL  N
                            ORGANIC N
      Figure V-2.  Relationships Among Nitrogen Parameters,
                                    NH,
                      TOTAL P04
       ORTHO-P04
      (HYDROLIZED)
                         OTHER
      Figure V-3.  Relationships Among Phosphorus Parameters.
                          131

-------
        TABLE V-2.   QUALITY PARAMETERS USED IN NATIONWIDE ASSESSMENT

        Note:   All  parameters (except suspended solids)  are totals that '.".
               include dissolved and insoluble portions, .and are usually,
               determined as in Standard Methods.1    All are usually
               reported in concentration units  of mg/1 (equivalent to ppm)
       Parameter
                                                 Abbreviation
       1.  Five-Day Biochemical Oxygen Demand

       2.  Suspended Solids         .

       3.  Volatile Solids (Total)

       4.  Total Phosphate (as PO )

       5.  Total Nitrogen (as N)
BOD5 or BOD
SS

VS
PO,  or TPO.
•  4        4
N   -.  .."   .
  are  affected  by the percent  dilution and are generally not
  reproducible.2  In addition,  samples are affected by amounts of
  heavy metals  and other parameters  present.   Use of COD and/or TOG
  avoids these  problems for the most part, but their relationship
  with traditional stream sanitation analysis  (i.e.,  prediction of
  dissolved  oxygen)  is unclear,  and  most  people are used to thinking
  StionT °f B°D'   Xt ±S USed  ±n  this st"dF,  realizing its limi-


  The  other  four parameters  are  used because of general acceptance
  and^availability of  data.  It  should be borne in  mind that many
  options are available  for  modeling purposes,  and  the  choice  of
  parameters is  somewhat  arbitrary.                    ,   . -


 PREDICTIVE TECHNIQUES

 Pollutant loads

 The quality prediction techniques found in most urban runoff models
  (e.g., SWMM,  STORM) rely upon generation of an initial surface load
' of pollutants.  This load is usually expressed in units of Ibs
 Ibs/acre,  Ibs/curb-mile, Ibs/day-acre, or Ibs/day-curb-mile (or
 equivalent metric units).  Normalized loads are, of course,  multi-
 plied by a unit of area, dry days,  etc., to produce an initial'mass
                                   132

-------
of pollutants at the start of the storm.  Pollutants are then
                                 =

 utilized. in the development that follows.

 Surface Accumulation Methods^

 Both SWMM and STORM use this method for prediction of the total
 soluble mass of pollutants available at the beginning of a storm.
 I? is based upon the following equation, given in US customary
 units
  where
           i'
                 dd,
     total soluble pounds of pollutant j on urban
     land use i at the beginning of the storm,
                                                                         (V-l)
         dd    = pounds of accumulated dust and dirt on land
           1     use i (or '^surface solids") per curb-mile per
                 dry day,

          F  . = soluble pounds of pollutant j per- pound of
           ij3   dust and dirt found on land use i,
          G
           L,
           D
    =  curb-miles  per  acre  of  land  use  i,

    =  area of land use i,  acres,

    =  number of dry days since last storm,  and

    =  total soluble pounds of pollutant remaining on
0     land use i at end of last storm.
                                       133

-------
               diysiSsLheeen^eLs°tf *?
 This is due to the Set that  in volt™
 between storms is less than the street
 generally ranges from one ?o too J
 street sweeping is in^r^laS in
                                                                   not
                                                    clean±nS 'Ption.
                                                  .intera"ival  time
                                                  interval-   The latter
                                                        are usually base
                             •.-  -.*..
                       the 1969 APWA Chicago
  Table v-3, Param^t^s for Surfa^ PolSt2t° f^    ' ^ ^ **™^
  ™v°*™wr^i^^^^

  report allow the updating of all  nara a°,CUmentf in VoluieZiroT-EhiS
  described subsequently           parameters of this table, as will be
  effluent concentration ^of      oJS^0?^"'?"1 tO Predicted
  adds five percent  of  the SS ?on   ?   - P °rtlon) •   For example,  SWMM  .
  to obtain total BO?!  on the basis" of  T-K^ ^ SOlUble B°D -concentration
  SWMM in San Francisco   This  ifh    cal^ration of the original
                     °   "
accumulatioa simply
srs
                        a
                                                 sufa" P°U«tant

where
         PD.
                                                PD
                    GL = 0.0782 - 0.0668 •  0.839 d

             curb-miles per area,  mile/acre, and

             developed population  density, persons/acre.
                                                                     (V-2)
                                   134

-------
       Table  V-3.   PARAMETERS FOR SURFACE POLLUTANT ACCUMULATION USED
                     IN  SWMM AND/OR STORM
               Except as noted, values are for soluble portion and derived from the
               1969  APWA Chicago study.7
	 __ 	 	 	

Lau
1. Single- 2. Multi-
Parameter . Units family res. family res. 3.
Dust and dirt
loading, dd± lb/ day-curb-mile
kg/day-curb-km
Pollutant frac-
tionsb, F
i»3
SS (SWMM)
SSa (STORM)
Settleable Solids0
(SWMM)
Settleable S.olidsc
(STORM)
BOD 5
COD
Total P04
Total N
Grease3
Total Coliforms MPN/g
	 . 	 • 	 — 	
40.0
11.4


1f\
.0
0.111
0.1
0.011
0.005
0.04
0.00005
0.00048
0.001
1.3 x 106
121.0
34.4


i n
X . U
0.08
0.1
0.008
0.0036
0.04
0.00005
0.00061
0.001
2.7 x 106
	 ' '
td Use

Commercial 4. Industrial 5.
___ 	 • 	
174.0
49.4


1.0
0.17
0.1
0.017
0.0077
0.039
0.00007
0.00041
0.001
1.7 x 106
243.0
69.0


1.0
0.067
0.1
0.007
0.003
0.04
0.00003
0.00043
0.001
1.0 x 106

a
, Open
79.2
22.5


1.0
0.111
01
. J.
0.011
0.005
0.02
0.00001
0.00005
0.001
0.00
aAll values assumed.
fraction refers only to soluble fraction of dust and dirt  (except for solids),

CA11 values assumed at 10% of value for SS.
                                            135

-------
  lenjth^olcjprirtroubleso^11  ^  res±dential areas» but the curb
   -










  To summarize, the surface accumulation methods are convenient for

  tive StoTpOS™ ^ lllustrate the ^^ages between ™Sous fausa-
  tive factors.  The key missing factor is a link between the surface


  both* ^ntiftntfi1^^ ^f ?aS beSn Ver±f±ed b^ -*-emeSf S
  it?li-bf i,  ^%   accomplished, such a link must be hypothesized in
  its  mathematical formulation, as done in SWMM and STORM   However

  equation V-l is used in developments that follow to relate llalinL

  between different land uses  and pollutants;  hence,  the reason for"

  Previous developments.   The  other side of the coin,  that S

  derivable from effluent data alone,  will be  discussed  next?'
 Effluent Concentration Method

rate
                                   reP°rted -asured concentrations

                            Combined sewer discharges.  If the flow

                    o       S fl°W P°llut°8^Ph may be determined

 e«l            BOD), and integrated to produce the total mass

 emission for the storm discharge.  When distributed over the area of


           e   ^  ^^ by ^ number °f Preceding dry days,

         ror  ^SS ^'f" mass-BOD/^-day) may be determLed.   Some

         f ?f       ValUeS directly'  while others report a lesser


   om « ™f inf°?nati011-   In Senera1'  the Surface loadi^ ^ay be deduced
 from a measured average concentration  and assumed runoff quantity
                          = P
                                    CR
                                                                  (V-3)
 where
         M = pollutant loading, mass/area-time,

         P = precipitation, depth/ time,


         c "    rc             • °ass of pollutmt
        CR



         p
              runoff coefficient, and



              water density, mass/ volume.
                        preceded
                                     N
preci                K
precipitation, P , may be given.  Then,
                o                     ™
                                                      total depth of
                                     136

-------
















CO
H
CO

p
^
^n


co
!=>
O
M

 c
< O CU '

• to to
o —
O CJ
^d
'


tu
C K
° il
•H ^
0 M MJ
O OJ O
rJ «> 0
S
S 1
«
° .
0 rJ
(H CJ

M-l
0
O

01
. 10
0)
rH «
S

CD
M
O
to
CJ
rH
,-H
'B










^j - r-* oo CM ' '
. • • 1 • 1

CO





CO CO CO CJ;
CM CM tH 0 |
O O O O



_
o\ o •» co
°. ° s. 1 °. • t •
o o o o





CM o CO t^ ^ .
CM CO rH O rH



CT» CJN
"H ^ ° °. "~i
0 0 0 00

CM t- m m o
S 8 S , S S
o o o o o




m
• o <^ <^ ^ *°
^f •& CM CM - O





en
o CM r*^ r- ^
C^ fO i-H rH O -
o o o o o


^j ,_! CM  .
•H
^
O
CO
. DC ' •'
a
•H
M
•p.

3. :
OJ
1..1975,
-Tindsor .
•0
•H "
O 4J
ta 0
0 t-l
& «
•H CJ
to ts
I-l
u -
•H 10
£2 fT
!=>
->,!tu

10 s
a) .*"!
4_) £-1
o
0) -
rH 0)
• rH i-l
O V<
0 3
to
to a
- TJ 4-1
13
0) 4J
J3 rH
.53
.H tO
,£1
3 *
fx en
cj a)
§ s
-H
o rt
Q) 4J
&o nj
oJ o
n
0) -

-------
                          M =
                              P  •  C •  CR •  p
                               o
                                  N.
                                   D
Fo^annual average confutations it may be assumed that,

  and
  where
                               P  =

                                s   n
                               D
                                                                  CV-41
                                                          on an average
                                                                 (V-5)
                                    n
           n
             '  average annual precipitation,  depth/year,



               average precipitation per  storm, depth/storm,



               average number  of dry days between storms, and



               average number  of storms per year.
 Equation V-3
                   e converted to
May-acreJ
                         10  lb



                          yr
                                   CR • 62.
                                           ft
                                                  acre

..ft

12 in.
 or
where
                    365  day









                M - 6.21 x 10~4 . P  . c  • CR




        M = average surface loading, Ib/day-acre,



        P - annual precipitation, In/yr,



        C =
                                                                  CV-7)
         CR
              runoff coefficient, fraction.
            of
                                   138

-------
generated by the simplest of methods,  that  of  a runoff  coefficient
with all of its well-documented errors.
 nationwide assessment  performed in this
 In the same manner that  surface  accumulations could be considered
 functions of population  density  and  land use, so can surface loadings
 derived from efrluent data.   In  particular, both the concentration and
 runoff coefficient are clearly such  functions; th* latt*£ j^Monal
 .cussed in the previous section.   In  order  to ascerta in f * j^10^.
 relationship between the surface loadings  and population density, avail
 able data for the residential areas  for which population density is given
 have been tabulated.  Derived surface loadings are *J*^ Table V-5,
 Surface BOD Lo«din«e for Residential Areas *° "^j^f J™ *f g^V,.
 Measurements.  The cities included in the table  all had data for^ resi
 dential areas for which population density was  specified and from which
 surface loadings could be derived.  The list is  not meant to be exclusive
 but represents data that were readily available during the  study.
                                          s^as
  are omitted from subsequent analysis.   The remaining data  still  show
  Considerable scatter, but will be utilized to derive required  relation-
  ships.
   LOADING PREDICTION FOR NATIONWIDE ASSESSMENT       :>,      ;

   Form of Equation                                     ._.-.-

   Surface pollutant loads  generated by the pollutant load estimating
   equation  will be assumed to  "wash off" on an annual basis for purposes
   of the nationwide assessment.  Hence, they must be representative of
   actual measured effluent loads.  Moreover ,. they should be functionally^
   related  to causative factors in  a reasonable manner,  ^hey are expected
   to be functions of  land  use  and  population density.  In addition, the  ;
   extensive presentation of Volume II! showed geographical variations inv '
                                      139

-------
              Table V-5.
SURFACE BOD LOADINGS FOR RESIDENTIAL AREAS AS
DERIVED FROM EFFLUENT MEASUREMENTS
                          Note:
        Surface loadings are taken directly from
        the source  if computed  therein, or  derived
        from mass emission (e.g.,  Ibs/storm)  data,
        if  listed.  Otherwise equation V-7  is used
        (for cities for which runoff coefficient
        and BOD concentration are  listed).
City
•^— • — _« «_
Tulsa




Bucyrus
Atlanta
Rosnoke
Milwaukee
-- Wash. D.C.

Dss Koines
Cincinnati
Durhaa
Seattle


Windsor
•^— «^VM^__H^_
Sit* OT ststio:
Site or
Station*
— — — — .^— ^____
3
5

8
9
11
13
15
8
17
23
Confed. Ave.
Blvd.
KcDan St.
Marian
Casplsn
Fed. Frls.
Trout Run
Hurray Run
24 St.
Havley Rd.
Cood Hope Run
B4
04
S-l
S-3
0-3
0-6
0-8
0-SA
Ht. Wsshlngton
E-l
W-l
W-2A
U-2B
K-l
Lov Dens.
Ked. Dens.
High Dens.

Labadie Rd.
a SS listed in «niir
Sever
System
— — — ^ — —
Separate

"
it.
it
Combined
Combihed
Separate
Separate
Combined
Separate
Combined
11 '
Separate
Combined
Separate
Separate
Separate
ii
it

Separate

— 	 • 	 _
Catchment Annual
Area Precip.
ac (ha) in. (cm)
	 	 	 • 	
550
507
197
211
64
815
212
74
179
614
378
1129
2421
968
954
517
1498
997
909
1034
495
265
105
222
315
356
4050
5600
1350
927
27
56
169
69
138
183
c


30

(223) 48 (122)
(80)
(85)
(26)
(330)
(86)
(30)
( 72) 35 ((!?)
• (249)
(153)
(457) 48 (122)
(980)
(392)
(386)
(209)
(606)
(404) 34 (86)
(368)
(419)
(200) 31 (79)
(107) 41 (104)
(43)
(90)
(128) 31 (79)
(144)
(1640)
(2267)
(547)
(375)
(11) 40 (102)
(23) 45 (114)
(68)
(28)
(56)
(74)
36 (01)


(12) 33 (84)

Runoff
Coef.




0.39
0.41
0.35
0.31
0.42
0.42
0.33
0.56
0.31
0:40


0.10
0.10
0.15
0.15
0.15
0.15
0.29?
0.35°
0.34b
0.36°
0.36b





BOD
Cone.
mg/1




120
107
108
210
84
286
7
20
26
49


48
63
69
95
68
77
25
61
38
51
71





— ' 	 	 	
BOD
Surface Loading
Ib/ac-day
(kg/ha - day)
0.0381 (0.0428)
0.0901 (0.1012)
0.0417 (0.0468)
0.0899 (0.1009)
0.0544 (0.0611)
0.0963 (0.1081)
0.0679 (0.0762)
0.0688 (0.0772)
1.017 (1.142)
0.953 (1.070)
0.821 (0.922)
1.94 (2.178)
1.05 (1.179)
3.58 (4.019)
0.069 (0.077)
0.334 (0.375)
0.240 (0.269)
0.0363 (0.0408)
0.0428 (0.0481)
0.0233 (0.0262)
0.377 (0.423)
0.063 (0.071)
0.247 (0.277)
0.381 (0.428)
0.093 (0.104)
0.121 (0.136) 4
0.199 (0.223)
0.275 (0.309)
0.197 (0.221)
0.222 (0.249)
0.0904 (0.1015)
6.202 (0.227)
0.596 (0.669)
0.361 (0.405)
0.513 (0.576)
0.714 (0.802)
0.04 (0.045)
0.07 (0.079)
0.13 (0.146)
0.059 (0.066)

— ^ 	
Population
Density
Persons/ac
(persons/ha) Reference
7.13 (17.61) 9
8.93 (22.06)
11.55 (28.53)
11.37 (28.08)
13.67 (33.76)
9.57 (23.64)
2.36 (5.83)
11.22 (27.71)
11.7 (28.9) 1"
9.1 (22.5)
. - 5.0 (12.4)
10.9 (26.9) 11
16.6 (41.0)
13.2 (32.6)
9.7 (24.0)
7.3 (18.0)
4.8 (11.9)
11.0 (27.2) 17
6.6 (16.3)
9.7 (24.0)
35.0 (86.5) 13
37.6 (92.9) M
43.6 (107.7)
52.6 (129.9)
• 7.4 (18.3) 15
, 5.3 (13.1)
7.5 (18.5)
8.3 (20.5)
10.9 (26.9)
10.9 (26.9)
9.0 (22.2) Ifi
14.9 (36.8) 17
2.6 (6.4)
11.0 (27.2)
13.4 (33.1)
4.2 (10.4)
11. Od (27.2) 1R
22.0° (54.3)
30. Od (74.1)
20.0 (49.4) 19
— 	 • 	 	 	 : 	 ^
°V«lu« computed uaing lapervlousness.

"Hypothetical are'a based on measured data.

•UssoMd on basis of dwelling unite per acre.
                                        140

-------
                persons / hectare
o


1.0-
0.9 H

1

Ofi— 1
W.U 1
1


f\ f
O.7 —

Q o
O -a
CD i
i fl)
f* O
— o
'
o
Z 0.5-
o

1
0.4-



; 03-

0,2-

0.1-


0
20 40 60
O
V



WASHINGTON,
V DES MOINES
ATLANTA
BUCYRUS
MILWAUKEE
Till <5A
ROANOKE

CINCINNATI
DURHAM
SEATTLE

WINDSOR
A


A






A
•
O
B
0
10 QA
»


• H V O
^ T»V

^__^_^____— ^
	 , 	 , 	 r 	 1
0 10 20
.80 100 120 140
, ' t . i 	 1 	 1 — •—* 	 ' 	 1
1;

•

SEPARATE COMBINED
D.C... A &
' 0 0
B D
y
O
y
•

»

u

Sr : :





'-••


.
O. A .......
. .

A


a

*

30 40 50 <

.2

.1
• -P



-0.9


f^ Q
-O.8



-O 7 5^
v/ » * ^\
f*\
0 T
CD a>
-0.6 i a
S t>
O)
I"*1

0.5
, -

•
0.4

-0.3

-0.2

-O.I

-0
30
DEVELOPED POPULATION DENSITY, PDd  persons/acre


  Figure V-4.   Residential BOD  Loadings vs
               Developed Population Density

               Data are from Table V-5.
                       141

-------
 3=
it is also a function of
                                of street sweeping efficiency   Thi
                                       - -
     • •« i  J.T.   •*                      *-**P-^^X* j. uu.&tu. L, J.4JJ.1O *
    will thus be represented functionally  as:


          M- a • f (P) • f(PDj  • f  (N )
                   A       z   a     3s
                                                                    (V-8)
where  the coefficient a and functions f   f   and  f   are to be
below  and N  is the street: sm^em-ino- -tr-.-f-i~—4   Tt,^ 3   •  ,  ..     _
                                                The procedure to be fol-
Precipitation Function


                                                                   (V-9)
                                              °f  the
                                                            remaining
                                   142

-------
                   7  loading.   i  '  Ki
               . i  7  	—— = v  2  • ^—.
               "7        P.        i=l  i
                                                                  (V-10)
                    „ Ib-BOD _
                             ~
                                    kg-BOD
where
Annual average BOD loadings for residential areas are now predicted by

                M - 0.80   - P • f2(PDd)  ' f3
-------
   Population Function
   density implied by equions       d V
   base slightly further  it will L
   increased popul^Ln d^ty*
   area loadings.  The data base can thin
  . by the average loadings for separate S
   from Atlanta,  Bucyrus and DuSS  JaS
   jay be prepared.   Finally,  tS datf of
   in Figure  V-5,  Normalized BOD
   point has  been
   Ib-BOD/ac-day
   is
      population
                                     toscbattder f 1 no
  The concentration of stormwater pollutants is M/AR, or
                       M
 where
I

I
                0.096 PD
                        8.   K[0.15  + 0.75 I]P

                         CO.573-0.0391  log   PD )
                               nn
                               10
               0.096 PD°'54
                       d
         in the
                                                  or
(V-14)

(V-15a)


(V-15b)
where
                    _
                   AR
              KtO.15 + 0.072  PD  °'54]
                                      PD
                                         m
                                                                  (V-16)
                              'd                        (V-17)

a = 0.142 = value at PDd = 0  (from open space value),
                                   144

-------
                    Table  V-6.   NORMALIZED  BOD LOADING DATA





Note:   Values  obtained from Table V-5,  omitting data from Atlanta,  Bucyrus and Durham.
Average
Loading
Ib-BOD
ac— dav City
(kg-BOD^
ha- day
Separate 0.0693 Tulsa
Areas (0.0778) .





Roanoke


Wash. D.C.
Des Moines

Cincinnati
Seattle

Windsor
Combined 0.271 Wash. D.C.
Areas
(0.304) Milwaukee
Des Moines



Loading
Ave. Loading


0.550
1.300
0.060'
1.297
0.785
1.390
0.980
0.993
0.524
0.617
0.336
0.909
1.342
1.746
1.305
0.577
1.010
1.876
0.851
0.911
1.405
1.391
0.734
1.014
0.727
0.819
Population
Density
Persons/ac (Persons/ha)


7.13
8.93
11.55
11.37
13.67
9.57
2.36
11.22
11.0
6.6
9.7
37.6
7.4
5.3
9.0
11.0
22.0
30.0
20.0
43.6
52.6
35.0
7.5
8.3
10.9
10.9


( 17.61)
( 22.06)
( 28.53)
( 28.08)
( 33.76)
( 23.64)
( 5.83)
( 27.71)
( 27.2)
( 16.3)
( 24.0)
( 92.9)
( 18.3)
( 13.1)
( 22.2)
( 27.2)
( 54.3)
( 74.1)
( 61.8)
(107.7)
(129.9)
( 86.5)
( 18.5)
( 20.5)
( 26.9)
( 26.9)
                                         145

-------
3.0
                    persons / hectare
                40     so     so
                                      K)0
                                 120
140
                            SEPARATE
      WASHINGTON  D. C
      DES MOINES •
      MILWAUKEE
      TULSA
      ROANOKE
      CINCINNATI
      SEATTLE 	
      WINDSOR	
      CALIBRATION POINT	
                              COMBINED
                                  =  0.142+ 0.218 POP'84
     LAND  USE =  OPEN
                  20      3*0       
-------
and developed population density will be used for consistency.  Note
that, depending on the assumed value of m, the concentration of storm
water pollution will vary accordingly.  Since no firm arguments can Be
made on the nature of the concentration function, it will Be assumed
that m is equal to the approximate exponent in the runoff equations or
m = 0.54.  Thus, £2(PD.) =0.142 + b PD °'54.  Lastly, all data points
with a PD . ranging2from 5 to 15 personsVr acre  (12 to  37 persons/ha)
are averaged to obtain a calibrated value  of f2(P$ = 0.895 at 10
persons per acre (25 persons/ha).  This range xs  chosen  because data
from most cities fall within it.  Thus, the final equation is
                                             0.54
                  f2(PDd)  =  0.142  + 0.218  PDd


where    PD,  = developed population density,  persons per acre
            d
                                                                (V-18)
 The reasonableness of equation V-18 can be checked by estimating the
 variation in concentration as a function of population density.  From
 equations V-ll and V-18, the annual BOD loading is
              M - 0.80  •  P •  (0.142 + 0.218
                                                 '5
                                                                (V-19)
 and annual runoff, AR, using the approximate New Jersey21 equation
 (equation V-J.5b) for imperviousness is:
ad. annuaJ. runorr, .HJX, usj-ug UM.C a.VVi.\jj».
equation V-J.5b)  for imperviousness is:

                AR - [0.15 + 0.75(0.096)PDd°*54] • P
 Thus,
                       M
                       AR
                           0.113 + 0.174 PDd

                          K[0.15 + 0.072
                                              0.54
                                                                  (V-20)
(V-21)
 Using K = 0.227 to convert to mg/1  from the ratio of Ibs/ac-yr per  in./yr
 this ratio, which is plotted in Figure V-6, BOD Concentration Variation
 Using Estimating Equation, shows concentration increasing with,  population
 density which does seem reasonable.  The range of  average annual concen-
 trations 'is lower than values  shown  in Table V-5 since  it represents  the
 average over the total residential area of a city.  Unquestionably, the
 data base for estimating  pollutant loads is very weak,  and  the  resulting
 estimating equation, supported by  such a weak foundation should be used
 with extreme cautipn.
                                     147

-------
  15
CP
E
or
                       persons/hectare

            20     40     60     80
                                         100
120
                          -EQUATION  V-21
                       —I—
                       20
 0        10       20       30       40       50


DEVELOPED  POPULATION  DENSITY,  PDd/ persons/acre

Figure V-6i. SOD Concentration Variation Using Estimating Equation
                          L48

-------
Adjustment for Street Sweeping
 puted as
           Po'
                                                             (1-e)]
                                                                        (V-22)
 where
            N,
             D
            DD.
             N
               = total pounds of pollutant j  on land use
                 i at the beginning of the storm,

               = pounds of pollutant j per pound of dust
                 and dirt for land use i,

               - number of days without runoff since the
                 last storm,

               = total pounds of pollutant j remaining on
                 land use i  at  the end of the last  storm,

               - dust and dirt  loading for land use i,
                 Ib/day = dd.  •  G_  ,  -A.  from equation V-l,
                      J      0.   Li, 3-     J-

                - number of  days between  street  sweeping,

                =  number of  times the  street  was swept since
                  the last storm, and

           e    = street sweeping efficiency.

Note that total pounds of pollutant Cnot soluble only) are used in the
equation! in keeping with ?he discussion following equation V-l.
              s
             n
                                        149

-------
    s Mo     •     T68' IOWa WaS Ch°Sen to demonstrate this contention.
  Des Moxnes xs a moderately sized city with approximately 255,000 people
  STO^vrT     Average precipitation comparable* to the national aveJage?
  STORM was run usxng the precipitation record for the year 1968   Pre-
  vxously calibrated loading factors were also used.  T£ street sweejin,
  EO^Tl WaS IT ^^ the GffeCt °n the —P^ation of annuafaJerafe
  JSL™ v 7 PSJ ed s°ildS concentration noted.  The results are shown if
  Figure V-7  Effect of Street Sw>^tog Frequency on Annual BOD Co^-
  tration in Urban Stormwater Runoff - Des Moines,  Iowa.' — -

  The results show that there is a point after which the magnitude of
  the street sweeping frequency has no effect  on  the computfd values  of
  average annual BOD and suspended solids  concentrations   In
 where
                                Ng/20 If 0 <_ N ' '< 20 days
                     1 otherwise

Y = proportion of pollutant load remaining after
    street sweeping, and

N,
                                                                   (v_23)
            s13 street ^Keeping interval, days.
 Conversion for Alternate Land Uses and Pollutants

 Different pollutants and land uses will generate different loadings
 for at  least  three reasons.   First the dust and dirt loadings for
 different land uses differ.   Second,  the conversion factor of curb
 length  per area is different for different  land uses.   Third  the
 pollutant fractions (as  a fraction of dust  and  dirt)  are  different
 for dxfferent land uses.   These  factors are used to extend the
 equations developed for  BOD  for  residential areas to  similar equations
 for commercxal,  industrial . and open land uses and for suspended  solids,
 volatile  solxds, total P04 and total  N.

 It  is assumed that  fractions  and  ratios of  pollutants as;  they appear
 in  effluents  will be, the  same as  those  determined from  analysis  of
 surface accumulation data.  The parameters  shown  in Table V-7  Surface
Loading and Pollutant Fraction n.t-a   are  used for conversion purposes.
They are  selected from the  extensive survey material presented  in
Volume III.
 Where no data are available for pollutant
                                                     s Ss a fraction
                                                                   n
of surface dust and dirt, use is made (as, a second choice) of similar
                                   150

-------
O
•*  I/BUI 'aoa
            151

-------
               Table V-7.   SURFACE LOADING AND POLLUTANT FRACTION DATA
                                        n°ted' a11 data  are from Volume III,
                                    l      ^Dally DUSt and Dirt Accumulation
                             and Related Pollutant Concentrations for  Select
                             Field  Observations."  Missing entries are not
                             given  in original table or not used in analysis
 BOD - ppm of
             - £ _
             day-curb mile
     ppm of dd£
     ppm of total solids (TS)a

Total P04 - ppm of dd<
       • ppo of TS4

Total N - PPB of ddj
        ppn of TSS

Suspended Sollds-ppm of TSa

Volatile Solids-ppn of TSa


'Values taken  from Volume III, Table
 Sum of K-N plus NO.J-N.
"Value of organic  - N onlyl
62 "3 87.5 166
17 32 24.8 47
5260 3370 719Q
29840 83800
609200 582300
353000 367700
319
90
2920
25850
619500
306100
50
14.2
18990
1670
101 70C
453200
437500
159
45
170
664b
                                          152

-------
                                ddi     GL.i  .    i*BOD          (v_24)
data developed for pollutants .as a fraction of total solids (TS).

The BOD data are first converted to other land uses using equation V-l
as indicated below, and using i = residential (res) land use as the
reference:

         a(i,BOD)  - a(res,BOD)  *

 where     dd.      = dust and dirt accumulation on land use i,
             •*•       lb/day-curb mile,

            G  .    = curb miles per acre for land use  i from
             L>i     Table V-4, and
            F.     = fraction of dust and dirt that is BOD on
             i,BOD   land use i.

 For example, the  parameter  a for BOD for commercial land use  for separate
 areas is
                                        166 x  7190  0.070
                    a(com,BOD) =  0.80  •  	353455   ' Q.059
                                                                   (V-25)
                                                                    = BOD
                                            -  .  kg-BOD
                                   ac-in.        ha-cm
  where the number 353,465 is the average product of dd± •  ?.. for j
  and i = single and multi-family residential and is equal to

                              62 x 5260 + 113 x 3370
                                      —
After determination of BOD for each land use, i, other quality param-
tteri,j!a?e computed on the basis of relative values of the fractions,
F.  ..  Thus,

                          aCU) - a(i,BOD) £**- .              GT-26)
                                            *i,BOD

For example, the parameter a for total P04  in commercial areas is

                                                    lb-PO,
                    a(com,P04)  =  3.2  x U^ = 0.076 —^        .(V-27)
                               - °'034 ha^c^ •
 For total nitrogen, N, in residential areas the calculation is similar but
 includes the average product of dd± • Fi}j>
                                     153

-------
a(res,N)
0.80  • 664  .  ffi?
           353,465

0.058 r^SrN
      ha-cm
                                     =
                                         '
                                                           ib-N
                                                          ac-in.
                                                           (V-28)

                                   "
      a(com,SS) =3.;
                                      582.300
                                      83,800"
                                   22
                           Ib-SS
                           ac-in.
                                                          (V-29)
                               9.8
                                   ha-cm
 Computations for  combined  areas  are  carried oni- -fr, M,

                                                              "
                                           and










TABULATION OF NATIONWIDE BOD LOADS
In order to minimize the volume of material presented  for  each citv in
                                  154

-------
Table V-8.   POLLDTAH1  LOADING IACTORS FOE NATIONWIDE ASSESSMENT
                                                            ssa.
   density.

   Separate


   Combined Areas:


            where
                                         •acre-yr
    Land Uses;
                  M  - pounds of pollutant j generated per acre of
                       land use i per year,
                  P  = annual precipitation, inches per year,
                  PD  = developed population  density, persons per acre,
                 a,Bd = factors given in table  below,
                  Y  - street sweeping effectiveness factor, and
             f (PD )  = population density function.


        1=1  Residential
        1=2  Commercial                          ...

        j: 4  ^Developed,  e.g.,  parks, cemeteries, schools
                    (assume PD,  =0)
     Pollutants: j = 1  BOD , Total ..      .-
                i = 2  Suspended Solids CSS)
                j = 3  Volatile Solids, Total  (VS)

                j
                j = 5  Total N
             4  Total P04  (as P04)
     Population.Function:
                   i = 1    f,(PD.) = 0.142 + 0.218 ..
                   i - 2,3  f,(PD°) =1.0
                     = 4  • • f> = 0.142   -
                                                            PD
                                                               0.54
                    0.442.
                                        Pollutant,
            Land Use,  i


          1. Residential   0.799
Separate  2. Commercial    3.20
Areas,  a  3. Industrial    1.21
          4. Other         0.1J-J

          1, Residential   3.29
Combined   2.  Commercial    13.2
Areas,  6   3.  Industrial    5.00
           4.  Other        O.4b/
 67.2    38.9    0.139
 91.8    57.9    0.312
120.0    59.2    0.291
 11.1    10.8    0.0411
                                                   3. VS   4, P04    5. N


                                            16 3    9.45   0.0336    0.131
                                            22 2   14.0   0.0757    0.296
                                            29 1   14 3   0.0705    0.277
                                             2 70   2.6    0.00994   0.0605
                                                                     0.540
                                                                     1.22
                                                                     1.1*
                                                                     0.250
                                     -,  a function of street sweeping interval,
           Street Sweeping:   Factor Y is a function
                '   Ng, (days):
                                     {a. 720  if o <_ N^ i

                                     1.0   if N >: 20 d
                                        <_'N  <^ 20 days „   ,;

                                            days
                                           155

-------
                   Table V-9.  COMPARISON OF BOD LOADINGS

          Assume residential land use; PD  = 10 persons/acre (24.7
          persons/ha), P = 30 in./yr (76 cm/yr), and y = 1.

Separate Areas
Combined Areas
Dry Weather
DWF at 85% Treatment3
Ib/ac-yr
21
88
621
93
kg/ha-yr
24
99
697
105
          Assuming 0.17 Ib-BOD/persons-day  (0.08 kg-BOD/person-day)
                                                                        (V-30)
The land use distribution fractions, w±, are given b.low from Table III-3:
                            Land Use
                                            Fraction, w.
1
2
3
4

Residential
Commercial
Industrial
Open

-f-.
0.584
0.086
0.148
0.182
1.000
                                    156

-------
When equation V-30 is applied to BOD loadings for separate areas, the
result is
            M  =  0.42  -  P  •  (0.142  + 0.218
                                                     + 0.46P
(V-31)
where
             M  = average annual BOD loadings over four land uses,
                  Ib-BOD/ac-yr,
             P  = annual precipitation,  in./yr,  and

            PD  = developed population density,  persons/acre.
              d

For application to combined areas, the result is

             M
                   1.73 •  P -  (0.142+ 0.218 PDd°'54)  + 1.9P.
 (V-32)
These composite equations may easily be applied over  the  selected areas.
STresulL  are shown "for combined, storm (separate)  unsewered  (using
loadings  for separate areas) and  total land  areas  in  Table J^0' J^
wither BOD  Loadings.   BOD  loadings are the  only ones computed for  the
sake of brevity.   Values  for other pollutants may  be  easily calculated
using Table  V-8 and equation V-30.

Dry-weather  flow  loadings are  computed simply -
 density assuming  average annual BOD  generation of
 (0.08 kg/person-day).   Thus, BOD loadings are
                                                     .17  Ib/person  day
                                                                    (V-33)
  where
                average annual dry-weather flow BOD loading,
                Ib-BOD/ac-yr.                 ,
  However, this refinement was not included in the assessment.

  •Values calculated using equation V-33 are presented in Table 7-11, -
  weather BOD Loadings.  As would be expected, the. most heavily ^a
  Ireas! USEPA regions 2 and 3, have the highest wet-and dry-weather BOD
  loadings.  It may be also .noted that for the same population density,
  areas with a large  component of combined sewers produce higher  loads.
                                      157

-------
             WET-WEATHEP BOD

             URBANIZED  AREA
 TABLE V-10
I    I      I
IEPAISTATEI
I REG I   ID |

I ""l I ""CT"| BRIDGEPORT	'
1   1   CT (BRISTOL
   1   CT IDANBURY
           HARTFORD
           MERIDEN
           NEW  BRITAIN
          •NFW  HAVEN
          INORW/
  II
  it
  i!
  11
  11
                      LOADINGS
                       iIK^"!    ?FJow!*THER Bno    i
                        £Hcl:-'    fLBS/ACRE-YEAR)
                      ..I  2!C I cnMR'8TORM|i|NSEW| AVER I
                      "! "|7o j 15777  "3&791 "307e "r:""'
                                     38.7'  ~-
                                                 .
                                              30.4
2

2
  CT INORWALK
  CT I STAMFORD
  CT IWATERBURY
  CT  OTHER URBAN AREAS


..El |AVE- FOR STATE
                                                          .
                                                        33.
     ME
      MA
      MA
      MA
      MA
      MA
      MA
      MA
      MA
      MA
      MA
      MA
                              I
                            .-!.-.:Zu!*:''i ^7.81 31.si 56.
                              i tin « i 7c5T i ™T"7 . TTT ! T?"
                                                       -I
               URBAN AREAS


              FOR STATE
     I BOSTON
      BROCKTON
      FALL  RIVEt
        TCHBUR.G
                              .         .
                             I..... | .....
                             I   3.0ll6tt.-j
        |F
        I LOWELL
        I NEW BEDFORD
        IPTTTSFIELD
        I SPRINGFIELD
        [WORCESTER
         OTHFR  URBAN AREAS
                                            0.01
     MA  IAVE.*  FOR  STATF
     NH

     NH

     I?
     RI

     RI

     VT
 IOTHER  URBAN  AREAS

 IAVE." FOR  STATF
 !-••—---«---.-.»....
 I PROVIDENCE
 IOTHER  URBAN  AREAS

JAVE.* FOR  STATE.

' iUPBAN'AREAS~~""""~"

 IAVE.' FOR  STATE

JAVEr"FOR~REGinN~~~r'

'IATLANTIC'CITY"	
 (NEW YORK CITY METRO
            A METRO
                              .
                            fl5.
                          I  16.01177.0
                          j  03. 61 152:9

                          I- 13.61152.9
                          (.....)..._.
                          J  fO.01138.5
                            12.0I136>
                          I  
               36.01

               38 .'I!


               39:71

               39.7 I
              ..... (.,
               0.01

               §:§!

               0.0
                                          32.11102.«
                                          'js"?rii"f'
                                          !?:"! I lilfl
 ji:
 28:
 30.8
 11:1
 33?:I
                                                       56.9
                                                  31.61  56.9)

                                                  29*5 i "9377!
                                                  33.2
                                                   1.0
                                            31.6

                              I.10.oll5?.9   Sa.ft!  28.8

                              ,      (    .     o7oi""""~

                              I  35.01117.7)   o.o!

                              ["ir7r!"l976J"3877J

                              !~iI7o!'
                                             31.0 I 91.0 |
                                             — --• | ...__ i
                                             28. 81 59. t
                                             28.81 59:iJ
 NJ

 NJ
»••*•
 NY
 NY
 NY
 NY
 NY
 NY
 NY
 NY

 NY
         VINELAND

         AVE.' FOR STATE
  12.01  0.0
I  1|.0lt99:»|

i  i?:oi  0:0
i  11.01  o:n

I-12.81160.1


I  36:o!l39:s
     -!2:!'
27.9i"6875!
27.9!  68.5!
     ~627?!

     ll-Ii
     i||:lj
                                               —«...
                                                ?9.6
                                                I?:?
                                                30.1
                                                'Iz72l
                                                   J103.6J
       JOTHFR URBAN AREAS

       JAVE.' FOR STATE

       |AVE7"FOR"REGION"""2"
                                   37.'a I

                                   39.2!
                                  «....11
                                   31.3
                             I  3«:i!i9o:'| 11:?! C0.3, ,,.v,
                              .38.11190.8  M.l! 26.s! 95.9 ('

                             j"lo75!T8778J"lo7T!"2972!"6p!
                         158

-------
 TABLE  V-10|

!EPA I STATE I
            WET-WEATHER

            URBANIZED AREA
                      LOADINGS
                       I1N/YRI
                       I»NNL.I
                          FCPI
WET-WEATHER BOO
CIRS/ACRE-YEAR5
                              . .           .
                              •
       So  I OTHER URBAN  AREAS
           IHARRISBURG
                                                        54.21
                                                        32.71
                                                        45.1
           ISCRANTON
            WIUKES-BARRE
                  URBAN APEAS

                 FOR STATE
                                 .         .     .
            PETERSBURG
        VA  I RICHMOND
                                                          iB:»,
                                                          125.71
                                                     3?.3l04.1

  31

 ..3.i.
  31
     i!
     1!
I

i.»..
 V **  in****'11*-"'*'

 V*A  ISl^lrON DC METRO
 VA  IOTHFR URBAN AREAS


 VA  IAVE." POR.f.J.*!!;	

"wv"I CHARLESTON

 SVV MMta' METRP

 wv" j OTHER URBAN AREAS

          FOR  STATE,
             mro.  _
   ... i...». i -.«•••«——•«•"••"••'•
                                159

-------
  TABLE V-10

 IEPAISTATEI1
 IRFGI   IP  I
               WET-WEATHER BOO
               URBANI7ER AREA
                                           WET-WEATHER BOD
 I

 I
 I
 I

 I,
 I
 I


 I
 I

 I
 I
I
I
I
    41
    41
    41
    41
    41
     I
    41
   41
   41
   41
   41
   ai
   4!
   41
   41
   41
   41
   41

   41
 AL IGADSDEN
 AL IHUNTSVILLE
 AL (MOBILE
 AL  MONTGOMERY

 AL (OTHER URBAN AREAS

.*-.!!!!•  FOR STATe
"pLV^LAUDERDArE
        a  IL...
        FL  (ORLANDO
        PL   PF.NSACOLA
        R   ITf,p?,t?5§3y»6
  LOADINGS
   IIN/YP.I
   UNNL.l
 ^ IPKCC PI wW-T-I i o i i.rpcn

  "'"II"o i ""o"!"""""
    SI*8!  2*"
    52.01  0.0
   I 54*01
   ! 11*2!  °'<('! *'«:
   I 55.P|  o.O  ''

.^!-H:!L.2:Hl.*!:l}.fi-6i "u.ai
    (JACKS!
    (MIAMI
FL
FL
     3.01  0.0

    [1:8!  8:8
    bO.OI  0^
    51.0(190.0
    i|.0    0.0
                                         0*0
                                         0.0
                                          *
12:11 ":t'
 _ «}   FL  AVE. FOR STATE      [  56 siJ90 0
i  "4i""5A" ALBANY""""""""'	!-rs--'—--
I   41   BA  !Vi»M?A                48.01!52.0
   41
   41
   41
   41
   41
   41
   41
    I
   41
       GA
       GA
       GA
       GA
       GA
       GA
       GA
          I AUGUSTA
          I COLUMBUS
          JMACON
          (SAVANNAH
          IOTHER  URBAN  ARFAS
  i  ? 7 " ii ' '  l f » V I  -3*4 » C \  ** *>  E
  I  56.5H90.0I  Sllol  40T>

                51.01  40.fl
               •————|mmmmm
                   li  0.0
                   M  35:4,
                   H  31.4
                            .0U66I9
                          39.01129.?
                          49.0(172.8
            41.31
            49.0
            45:9 |

            45.9J
I---I-----j »..«•      STATE
 i yi /i      *  '
 i 52:01195:2!
   46.51159:71

 |. 46.51159.7
-I -----|.....
                                        .
                                       8.51
                                             «0i4   ISril SSlS
          lAVE.' FOR STATE
           OTHER  URBAN AREAS
                              I  43.3!15^;2|

                               . 42.3I153.?
           AVE.  FOR  STATE

           5	
          'JACKSON
           OTHFg  URBAN  APEAS
                              I. 54. 5 I

                              '"48701
                                                  40.5| 42.9|'
      NC  IASHFVILLE
      NC  (CHARLOTTE
      NC  (DURHAM T
      N t
      NC
         !OTHER URBiVAPEAS

          AVE; FOR STATE
                               46.

                              ! 11:81
                               4466:§!
                               46.7l'
         'GREENVILLE
         IOTHER URBAN
          AVE.  FOR STATE.
          m
                                                 34.71 48.fl|
                             I  48.3|66.?
 41
 41
   I
     TN

     TN

     TN

     TN
          NASHVILL
          OTHER  URBAN  AREAS
         [*VE:_FOR STATE
                 "
                           J-C

-------
 TABLE  V-10

}ERAISTATEJ
I RFC!   ID  I
     WET-WEATHER BOP LOADINGS

     URBANI7ET) AREA   I ANN1'
                     METRO
          IDECATUR
          IJOLIET
           PEORIA
       IE i&WTOItf  AREAS
       IL IAVE.' POR_STATE	j J5.0
                              L22:: 1.5S:!l-5ii*!---«!
                       AREAS
        H
        MI
        Ml
I DETROIT
 FLINT
(GRAND  RAPIDS
IJACKSON
(KALAMAZUO

IMUSKEGON
           t
                        AREA.S
        MI IAVE. FOR STATE
       .... I .«.—.--——----—
        MN
        MN
         MN
         MM
            ,MTNNEAP~_
            I ROCHESTER
                    ILTS
        mm •

         8'
    ioTHER'URBAN AREAS

 MM  IAVE.' FOR STATE
  ._ | ........-—------'
  JH  (AKRON
  H  (CANTON
 OH  ICINnlNl^
 OH  ICLEVELANI
 OH  ICOLUM8US
 PH  (DAYTON^
 OH  (HAMILTON
 OH  (LIMA
 OH   LORAIN
 OH   MANSFIELD

 gS  IMBlllWftE.

 8S IY^ITOWN    rA,
 OH I OTHER URBAN AREAS

 OH IAVE." FOR.^ItI-—

  W?
  W
  W
  W
  W
  W

  Wl  ioSHKOSH

  S!  jg^lf URBAN  AREAS

  WI  IAVE. P0".^*.!^..

"""*"iAVE?"FOR"REGION
.....Immmmmmmmmmmmmmmmm
             (GREEN BAY
                                           -
                                   .01126.6
                                   .01147.1
                                  5loil31.0
                           .   . o.o
                           .01110.9
                           :8!
                                I  26.01  90.
                                  Soloitsol
                                   37.21125.3
                                           ,31 ii
                                           «:4| 5!:t|.
                     .  ,.^.7iu6.? juii-SLiSl-SiiM
                    "i"i"32T7it2fl7r'
                                               ».«|
                                                     23.5  52.81
                                 161

-------
J4BLE
     V-10
6
6
61
       AR
       AR
            WET-WEATHER P0f> LOADINGS
            URBANIZED AREA   '1^*1
                             IPRECPI

i^INEUiLUFFK
IOTHFR URBAN AREAS

                                           WET-WEATHER BOO
                                           'LBS/ACRE-YEAR)
                                            T3TORMiuNSEwi AVER  i
                                               rt n i  it 7 I "«?•?*!? !

—tj..f2.j*VE-  FOR STATE
                                      i
          •-6:">  ii:f| i?.:;i  !!;H
..i.;^::i:^^:j|.f2:!j.27*?|1  aa-1'
  I  60.n l   n it ""co""!T i T.'!'.*— \ T?"™
                             L22:2
                                        j       575 '5575 1
                                       '    -"• 1 m"mmm \ mm*mm |
                         3.62

-------
 TABLE  V-10
I    I      I
I EPAiSTATE|
  FG i    D  i
            WET WEATHER

            IJRBANIZEO ARFA
                           I TN
                           IAN
                                          WEATHER BO

    I
    I







   7!   IA
   IA ICFDAR RAPIDS
   fA (DAVENPORT
   IA IDFS MOINES
   TA IDUBIIQUF.
   I* !SIOUX CITY
      if
                   AREAS
               FOR STATE
       0.0 I

      Ikl I
       0.01
       0*01
                                       11
  /I   ±f* i * v c. •  r wi* «•' ' •* * •-•

•"'r'KriKlNSAs'ciTY"""""" '
  71   KS I.TQPFKA,
                      ARFA8   I
                            I 31.3M38.Ij

                            i'piiipli
                            1 *i:8iiz?:SI
  7!  KS IAVE.*
  71
        MO  1KAN8AS CITY
                 FIE
                 FPH
      MO  I SPRINGFIELD
      MO  IST.JO
                      AREAS
    7!
    71   MH  ininf]

    71   MO  IAVE.* run  a . - • -
   ..)...-. 1———————'
          i LINCOLN
   7!   Kl  jS'THFJR.  URBAN  AREAS

   71   NE  IAVE.* FOR  STATF
 ...I.....I...«--.......-...-»•
   7)      IAVE. FOR  REGION    7
    si  cn

  \  |i  CCS

  i  PI  co  UVE.'

  1 "" I "MT" i BT[r ING

    Ii  MMT

    fil  MT  IAVE
                            I  37.01   0.0
                            I  34.01127.6

                            I  35"oiio7*.7l
                            I  37.01127.0
                            I  36.81125.?!
                            I      I -     I
                            I. 36.81J25.?
                           .!_....)..-»!•
                            I  27.01   O.o
                            I  26.01  96.P
                            I  26.51  96.PI

                            I  26.5J  96.81
                           .i.....|..... I
                            I. 31.9M21.71

                            r||"T9lol""oTol
                            I 13.01  0.01
            27.71  25
            2?*3I  17
            27.21  24
            26.31  23

            26.?!  23
           .....| —
            29.61  25
            29.71  25
            26.6  23
            27.91  24

            27.9J  24

           "5176!~26
            26.41  25
                                                   ':?i"ii:ii
                                                    «i 37.?!
                                                    • — . ««•  £ >
                                                    ?S
                                                     :?  48.01
                                                     •*  85*2!
                                                     .4| 37.5

                                                     .41^37.51
                                                  28
            &?l  !?
             23.8.  t«

             23.81  18

            '27^0l"Ii

            *16l8l
                    •oli!?;?1,
                    :?| H:!!
                        70.3!
                        'IITj!
                        tt 8 , 3 I
 .51

 :I|
   i
 .9
                       AREAS
                       AREAS
     61

     1 i
                               14.51 50.?l
                            .1	'—"n|

                             i  i^Ioi  ol
                             I  14.01  0.

                             I  14.01  O.flj
                    9

                   13
                   10

                   10
                             I
                         41.81
                     —,.....|
                     .01  50.21

                     "!"u7(5i
                     .81  1?.3I
                     III  11.51
                     .11  13.41
                     .11  11.*l

                     .ii  n.6i
                                  ii:oi
                                      01
     ND

      B
     so
    ...
     UT

     B?
     UT
     UT
     "WY
      WY
... i .....
... t ..... i
           IAVE.'  FOR  STATE  __

          "
I  21.01.73.51
• .....|..... I

,  11:8!  $8:1
             12.01 10.51 11.3

            "l779l"T6Tll"l5To
             17:91 16.11 I'.O


             17.91 l*1^1,.^:!''
     a i

     1!
     ei

     ei

     e i
           IAVE.' FOR 5T4T^<.._...
            """IE"""
                      CITY A
           IOTHFR URBAN AREAS
           I AVE . r wi\ w i - • -
          _ | ...__. — — - — — -•

            URBAN AREAS
             VE."
  i..—. i -
  17.01
  13*.OI
  15.01
  15.01
I.25.01  90.1
 .....I.....
   - - •   o.o
         0.0
         0.0
         o.o!

 . 15.01.  0.0
 ..... I .....
  15.01  0.0

 .xis.o!  o.o
 .....I .....
 . 17.41.64.?l
              21.9J_18,
                                                          21.3
10.91  12.01
10.9|  12.01
              13.4i 10.9  12.01
             ~mmmmImmmmmI mm*mm \
              12.91 11.31  12.01

              12.91! 11.3  12.01
             .....|..... I ..... I
              13.71 11.51 13.01
             .....j.....j.....I
                              163

-------
  TABLE V-10
           WET -WEATHER 800

           URBANIZED AREA
 IEPAISTATEI
 IREG1  ID  I

 I "5 j "ZK" j URBAN-AREAS "——
 I  9}  AK  IAVE.' FOR STATE
 "5 •":?• ZZZZT.ZZ	
                               .
                                 !M,YR
                                 WL
91
91
91

91
       AZ jPHOENIX"
       A7 I TUCSON
       AZ JOTHER URBAN AREAS

       AZ  AVE.' FOR STATE
                       iiiifi.1-1    WET-WEATHER ROD    i
                       jpfepj COM^^^^F.NslwrAVER !
                       I "30" j rri" i 'ir9i \mir.?, \ "26:? I

                      .!-2£i£|iii:2j.£Ii°'  21*2'  26<5'

                      !  9:°!   °-"!   7,'<>!   *:«!   "l?!
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91
   91

   91
 >«••• | •
   91
   91

   91

 "51-


   '!
  91

"9l"
...I.

 101


...I.,
 101
 101
 101
 101

       ft  I SHI  5BftCI8cn
       CA  (SANTA  BARBARA
       £A   §*NTA  ROSA
       CA
       CA

       CA
 101
 101
 101
 to!
...i.
 101,
  mmmmm
   HI
   HI

   HI

  "NV"

   NV

   .NV


  .(
     26.2
     mmmmm
     86.0
     •....
      0.0
      0.0
         •r vr • w i
         20.61
        i 20:.6!
        I .....I
        '  ".51

           :J[
        I  a.oi
        i..-.. i
        i 12.a!
        .....i.
          2-31
          9.^51
                                                        lil.9)
                                                       -i-I.
                                                        lfl.8
BB.7J 12.sj
,0.0
 0.0
,0.0
• ...         ^ _	

iiiifj-si  .iiiflij
                  11.51
                 "TS'Ti
                  16..7I  	
                  16.71  18.fl
                        •••I

                        ir:
    IIII i 5JiE*5!l!22 JHE"U
                               39,

                               Si!
                      30

                      30

                     "26
                     • •••i

                     "s!
     01
     01
    :S.I
    .3!
    :sl
      0.0   9.3|
     "•"•JsTSl

           fiiil
           .3^.0!
          "SS's!
                         31146.0
                           127.3
                            56^8
    103.Pj  32:i|

    103.9

    1167"
                                      'J 32.1
                                      » I m~mm»m
                                      I 29.4
                                  ;ui
                                  -I
                                 .....
                                 J36.A
            I——.,
            I 30.51
            I-——I
             3.?!
           >—. |
            10.91
           ..._.|
             8.51
             8y5 I

          mmmm*'
          "|«7Ti'
           12 "4
           23§:f

           29^6
          mmmmm

           %3
          J5:H

            «.9|
           •---.I
           i«.?!
           »..--j
            I:S{

           .-!:"1
           '3372!
           60,?|
           iwr
           53.81
          .....
           ||:|l.;
              25*31 48.'
                .....)....»I
                .....|
                 25.91
                ——I
                          164

-------
TAP!. F V-ll
EPA i
RFGI
"11"
  11
  11
  !!
  11
  11
  11
  1!
   1 I


   \
          URBANI7EO  ARFA
                                      nRV-MEATHEP "OP
   TT
  T.T
   CT
   CT
   CT
   CT
   CT
   CT
   CT
         ' I BRIDGEPORT
          IB"I«TOL
          IHARTFORD
          IMEP.TREN
          INF.W  RPITATM
          INFW  HAVFN
          INHRWAIK
          IWATFRBURY
                 URRAN A"FAR
       MF
          I A V E J FOR S t A T F
                                     i
                          42.

                          4?*.
                          4?.
                          45.

                          *2-
                          45.
                          44.
                          45.
                          46.
                             oZj
                             0.
                        01 8?3.l
                        01   O.I
                        01   O.I
                        01 744.1
                        Ol?277.(
                        01   ~  '
          JOTHFRAURBAK APFAS

          I AVE." FOR STATF
   1 I
   1 I
   1 I
   1 I
   1 I
   1 I
   1 I

   t I    MA
 MA
 MA
 MA
 MA
 MA
•MA
 MA
 MA
 MA
 MA
 Mi
          IFALI  RIVER
                .
           INFW  BEDFORD
                           43

                          "44'
                           43
                           43

                           43
                        71 836.1
                          I     -I
                        71.836.1
                        ..I....*!
                        01 638.1
                           465.1
                           519.1

                           5 19.'I
                                .01
                                ^51

                                . SI
           iOTHFR' URBAN APFA?
l|
t!
        IgH
        v| H

        MM
       • '— — •
        PT
        PT

        PT
       • « «• i
        VT
       IAVE.* FOR STATF
       I — — — — — ——— — — —— — — *• — — — "'
       IMANCHESTE0
                     ' 43
                      45
                      45
                      46
                      41
                      40
                      41
                      44
                      45
                     I 46
                     I 43

                      43
                                    __  .--
                                    .01  9*2.1
                                      O.I
                                    7«9.l
                                    7M.
                                    637.1
                                    8A4.I
                                    699.1
                                      O.I
    II
    ..I

    I!
    1!
    ?l
     IHTHFR  IIRHAN
     I    ,
     I AVE. FOR
    .!_.-.---------------•
     IPOOV/IOENCF
     IOTHFR  URBAN  AREAS

     I AWE.'  FOR  ?TATE
    .\.mmmmm.mmmm.mm.mm.m.

     (URBAN  AREAS

  VT I AVE.'  FOR  PTATF




""" "           "
  MJ
  Nj
  NJ
  N J
     21
     2"

     21
  I   ?l

     21
         MY
         NY
         MY

         MY
IPMII AOFLPWIA
ITREMTON


I AVE.* FOR STATF
       BK TITY
| )-H C. •*  I * ' " " "
IRHCMESTEP
(SYRACUSE
IIITITA
IPTHFP IJRBAN

I AVE." FOR STATF
                        .01
                        .01
                        .01
                        ."I
                        .11
                        .01
                        .01
                        .01  ...
                        . 0 M 0 1 1 .
                        .t>\  704.1

                        .61  704."
                      a?
                      41

                      41
                        :S! S18:.
                        .M 560.,
                        .0 I 560 . I
                                 mm-*Immmmm]•
                                 769.I  296.I

                                 I!?:!  IS:
                                 8P.3.I  278.I
                                 779.I  240. I
                                 702.I  342.1
                                 744.I  315.I
                                 276.1  275.1
                                 745^1  309.1
                                 773ll  291.1
                                 736.1  2S8.I

                                 736.'! 288.1

                                 """o^'rioiii
           .1

        mmm'|.
       "9821!!"
        770.1
        789.1
        761.1
          O.I
        664.1
        699.1
        788.1
          O.I
        685.1
        931.1
            .1
        931.1
       — — -I
          O.I
          O.I
          o!i
                       I
                   .... =n

                   5167 I
                   466.1
                   428.1
                   564.1
                   436.1
                   552.1
                   546.1
                   503.1
                   508.1
                    521.1

                    531.1

                   "HI I
MH:
226^ I
296.1
291.1
244.1
362.1
252.1
344.1
238.1
480.1

81:'
                                                          444.
                                                         .1
544.1
431.1
493.1
527.1
5S9.I
439.1
480.1
526.1
554.1
     I
                                                    281.1 554.1
                                                           !»:!
                                                           481.1
                                                           481.1
                                              368.1
                                   40.01  984."!  72i;j  261.'  54fe.l
                                     "'"""""  509.1
                                   35.01. 544."
                                             O.'l 480.'I 509.1
                               42,
                               •44,
                                   3«
                                   36
                        32
                        38
                        ilU
                                      01
                                                       _.l  -4,-
                                                       lll 517.1
                                                       9ll 601.1
                                                       ~Tl 607.1
                              '8:1  664:! in:* 409-.\
                                         214.'! 520."
'n 1*87371"""
•SiiSSh   5661:;
 0  38791  1730.1
• '!•**•   *  * » .. f~ ^ i
,011045.
•ol  ?38:
                                                    .-----•—•
                                                         -
                                    1
                                    i
                                   1
                                               ,
                                           1045.1
                                            749ll
                                            740.1
                                               3
                                               I
                                                       ll
                                                      272
        601.
        588.
        494.
       1533.
                                    3*  1  ?4?8.M383;i  272.11533.
                                    --L-|«---nl-"~""''""'™""*'"'fo™
                                   ~7«"ei52Rii  Ml?6-l  2?9.l  979.

                                 165

-------
TABLE V-ll

EPA I STATE I
REG I   ID I
              ORY-WEATHEP BOD LOADINGS

              URBANIZED ARFA
                             ITN/Y9I
                             IANKIL;I
             FOR
31
  11

  31

"31"
  31
  31
  31
  31
  31

 !!

 1!
 31
 31
 31
 31


 31



 31

 31


 31
 31
 3!
 31
       DC

       DC

      "MD"
       MD
       MD
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
      PA
                               < -»'»•- h. ^ |
                               JPRECPI

                               !~?I-°"'
                               I  45.01

                               j.45.0 I
                                  ^RV-WEATHEP  BOO
                                  :V*S'A"F-y;EAR5
                                    760
                                    760.'
                                            760;  309
                                            760.1  309?
                                              '
                                            760.'  309.'
        . -  _. i OR oiAir

       'BALTIMORE  •"•-•---

       'WASHINGTON DC MFTRO
        OTHFR URBAN AREAS
                                                ~ -•- — ^ -iv

                                                ill:
       IAVE,
                   STATE
       JHARRISBURG

 IWILKE3-BAPRE

 JHTHFR  URBAN AREAS
            FOR STATF
      VA
      VA
      VA
      VA
      VA
      VA
      VA
      VA
      I
      IffillPSEI
     VA

     "wv"
     WV
     WV
     WV
     WV

 3!  wv
.«• I .....
 31
-.(.....
'WASHINGTON DC METRO
[HTHFR URBAN AREAS
IAVE; FOR STATF

IHUNTINGTON
!5IlF.lKILLfr METRn
IOTHFR URBAN AREAS
JAVE." FOR STATE
! 7r!r
-------
TAPLE V-ll
FPASTATFI
  61  ID  1
           DRY-WEATHER ROD

           MRBANI7EH AREA
                         LOADINGS
                          ITN/YPI
                                          DRY-WEATHER  BOO
                                          a^S/AeRE-YEARl
                          IANML .
                          IPREgpl COM^ISTHRMIUNSFWI
                                                       ....-.,
                                                      AVER
41   AL (BIRMINGHAM
41   AL IGAI5SOEN
41   AL IHMNTSVK.LE
41   AL (MOBILE
41   AL (MONTGOMERY
4i   AL ITHSCALOOSA
41   AL (OTHER URBAN
 I
                       APFAS
  41   AL  IAVE.  FOR  STATE
                           I 53vOI
                            55.01
                            52.01
                            68.01

                            5fi-8!
                                81
                                 I
                                   .
                                 53.
                                 5«5
                                      ij|f:
                                      (hi  753ll
                                      Oil  611.1
                                      O.I  —~  '
                                              330.
                                              246.1
                                              230.1
                                              267.1
                                              3«5.l
                                              417.1
                                              302.1
                                         0.1  732.1  302.
41
41
41
41

IS!
4 I
41
41
ai
 I
41
FL
FL
FL
FL

EL"
El
       FL
(GAINESVILLE
(JACKSONVILLE
IMIA"!
(ORLANDO
IPENSACOLA
1ST.PETERSBURG
IT»LlAHASSEE
(TAMPA
(WEST PALM BEACH
(OTHER URBAN AREAS

IAVE." FOR STATF
                                 60
                                 52
                                 53
                                 60
                                01
                                "1
                                01
                                01
                               1  51,01
                                 63.01.
                                 55.01
                                 57.01

                                 62:oi
                                 56.^1

                                 56.51
                                       0.
                                       0.
                                       0.
                                       0,
                                     882.1
                                         612
                                         691.1
                                         758.1
                                         794.1
                                       I  779.1
                                                 275.1
                                                 351.1
                                                 240.1
                                                 304.1
                                                 2?9.l
     499.1
     429.1
     426.1
     445.1
     513.1
     466.1
     473.1

   I  473.1
   I.....I
     524.1
     493.1
     443.1
                                     O.I

                                     °o:!
                                   882.1
                                   8*2." I
                                          •IB: I
                                           756.1
                                           612.1
                                                _ J b. % I
                                                !H:I
                                                lll:\
 4 I
 41
 4 I
 4(
 41

 4 I
  1
 41
-.1 •
 4 I
 41

 a!
 41
 41
    GA
    GA
    GA
    GA

    G»
    GA

    GA

    "KY'
    KY

    KY
    KY
    I AI BANY
    I ATLANTA
    (AUGUSTA
    (COLUMBUS
    IMACON
    I SAVANNAH
    (OTHER  URBAN APFAS

    IAVE.' FOR  STATF
                                 49
                                 44
                                 52
                                 46
                                01
                                01
                                01
                                51
                                     6«7.l
                                       O.I
                                     9S5.
                                     609. 1
                                                       til* I
                                                       478'.
                                                       533.1
                                           812."l 264. j  533.'!
                                                393.1
                                                512.1
                                                504.1
                                                469.1
                                                500.1
                                                504.1
                                                4 99., I
                                             .
                                         ^7.1
                                         748.1
                                         MO.
                                         699. 1
   , I

550^1
$06.1
'85.1
?49:i
   Ul  KY
        IHUNTINGTOM
        (LEXINGTON
        l|_nUTSVILLF
        IOWENSBORO
        IOTHFR URtfAN  AREAS

        IAVE." FOR STATE
                                I. 46.51  609." I  699." I  349
                              44.0 I
                              41.01
                              44.01
                              42.31
                                  I
                                          0.   714.1
                                        883.
                                        69?. 1
                                        747.
                                         683.1
                                         697,
                                         637.1
                                             ->56.l
                                             347:1
                                             273.1
                                                499.1
                                               ..—-I
                                                493.1
                                                593.1
                                                562.1
                                                621.1
                                                566.1
                              42.31  747.
                            i...;... I. — *
   41
   ai
   41
   MS  IBTLHXI
   MS  IJACKSON
   MS  IOTHER URBAN  APFAS
     !   MS  IAVE.'  FOR  STATE
                                58,
                              !  li:
                              !  54,
                                  01
                                  0 1
                                  51

                                  51
                                        0
                                        0.
                                        0.
                                        I  637."i  273.'!  566.1
                                        I _.__., I--.--(-«--
                                              6831
                                               -
                                             352.

                                             ?3?-'
                                                      465.1
                                                      508.1
                                        i  7t*:i  350:1
                                        !  7l9.'i  330.1  490.
    a i
    ai
    ai
    a!
    41
    ai
    41
    41 -
    41
    ai
   NC
   NC
   NT
   MC
   Nf
   NC
   MC
   • NIC"
   MC
   MC
         (CHARLOTTE
         (DURHAM
         IFAYFTTEVILLF
         IGREENSBOR"
         IHIGHPOINT
         IRALFIGH
                              48.01
                              43.01
                              43.01
                              47.01
                              42.01
                              46.01
                              46.01
         IWINSTON-SALEM
         (OTHER URBAN APFAS
        NC lAVE." FOR STATF
                            I  52.
                            I  47.
                            I  46,

41
41
41
41
 I
4 |
        8C
        sc
       1 CWASLESTOM
       ICOLUMBIA
                        AREAS
           IAVE." FOR STATF
                                47.
                                47.
                                46.
                                46.

                                46,
                                   0 I
                                   01
                                   0 I

                                   01

                                   o r
                                   01
                                   ,01
                                   ,7)

                                   ,71
                                    §;.

                                    §:!
                                    0.
                                    0.
                                    0.
                                    O.I
                                    O.I
                                    0.1
                                    0.
                                    0.
                                    0
                                    0
                                            852.1
                                            686.1
                                            631.1
                                            694.1
                                            778.1
                                            593.1
                                            747.1
                                            873.1
                                            693.1
                                            718.1
                                          226.1
                                          355:i
                                          412.1
                                          347:1
                                          286.1
                                          4?0.l
                                          331.1
                                          222.1
                                          3«8;l
                                          339.1
                                                        465.1
                                                        508.1
                                                        491.1
                                                        483.1
                                                        499.1
                                                        460.1
                                              718.1 339,'i 487.
                                            .1
                                 .....
4 I
41
41
41
41
        T
        TN
                                   45
                                   48
                                    '\

                                   » ft I
                                   , ft I
                                   .01

                                   .31
                                     72o:!
                                     76§:
                                     755.
         IKNOYVILLE
         IMFMPHIS
      TN (NASHVILLE
      TM (OTHER URBAN AREAS
   i      |                      I
  41   TN IAVE." FOR STATF       J
———i———••' •••^™">™""™Tsrzr.™—™Ti™ iflST i"Ztt^
  /i      IAVE  FOR REGION    4  I. u^.o!  ooj.
... I —— I —1 —— — ———I -«.— !——
                                     684.1
                                     710.1
                                     694.1
                                     697.1

                                     697.'I
                                            878.1
                                            609.1
                                            785.1
                                                  358.1
                                                  346.1
                                                  347.
                                                  35i:i
       488.1
       491.1
       483.1
       488.1
           I
                                              351.1 486.1

                                             "3T67i""rr"
                                              343.1
                                              255.1
                                              253.1  .,_.
                                              277^ 491.1
                                               7*5." I  377'l.a*iil
                                              "766?!"304?I"507.I
                                              ...._|—————|—————|
                                167

-------
 TARI.F V-ll
I    I      I
IEPAISTATFI
 RFGI   in i
 ...i.._._i
   51
   si
   si
       Tl
       TL  IBI
       II.
                          Ppn

                        APFA
  si
  ^.,
  5
      II
      II.
      Tl
      !!
      IL
          IDAVFMPDRT  MPT or
          UPLIFT
          IPPOPI4
                                        I
                                                    s?o:i
  51   II
SI


SI
S I
SI
  «; i

  q i
  51
  SI
  51
  SI
  SI
  SI
  SI
  SI
  si
  51
  I
  SI

"il"
  SI
  51
  51
 51
  I
 51

"si"
 SI
 SI
 51
 SI
 SI
 51
 51
 51


 51
 51
      TM
      T?
      T«J
      I*
      TK1
      1^1
      TM
      IJ"
      i>
      T"
          "  *'"
          PTMFR

         UVE.' FOP

         i AMDFRsrt"
         ICHIPAGP
         IFIRT
         I H'DTANAPPI
         IL4FAYETTE
           .
         I SOUTH
          HTHFR URBAN APF1S
         IAVF.' FHR 0{  '
                                            775.'!
                                 I
                                i -
                                   !!
                                    Hill

                                      2J5.I 7so.'| 200.1
                                                      5"4.
                                                     ---..|
     MM  IHTHFB  URBAM

     MM  AVE." FOR  "5TATF
51
51
SI
51
51
5 i

I!
SI
51
  I
Si
-I
PH
PH
PH
PH
PH
f)H
PH
PH
PH
PH
OH
OH

PH

P.H
                                      76R."|  771.'   257.
          ANTOK!
          TNCI^
        ICLFVELAND
        I DAYTON
        IHAMTLTON
        ILTMA
                                    9"8
                                         :
                                                  ?7a. I

                                                  \A'\
        IMANSFIELD
        ISPRTMGFIEI o
        ISTE'IBENVII LF
        IT"LPDP
        i YPUMGSTP//KI
        IPThFR IIRBAW

        IAVE.' FPR STATF

        I APPLETON    --
         OMLllTH METRP
               BAY
                                  :
                                        :
                                 :   »t
                               an. 01 6A5.
                                             O.I
                               37. ?  778
                                           806

                                           696
                                                   01
                                                 l?|=
                                                 2U7.I
                                                         *
                                                        "1:!
                                                      571
                                                       !  •
                                                      531.*!
                                                      531 .'I
     WI
     rtl

     3?
     rtT
     *I

     WI
      i LA  rpnssF
      IMADTSON
      IMTLWAUKEf
      IRACTME
      IPTHF.R URBAN  APFAS
                               <- • . " I    u i
                               27.01  666.
                               32.01  865
                               31.01  603;

                                ffllftI« ut<"
                                fl.OI
                                      l«:
                                      603*
                                     5.1
      IAVE. FOR  STATF
      IAVE? FOR'PEGIPM""?
                                   I
                               29.7l13?a

                               5577 I
                                         l  507

358.1

2s?:!




351.1
---- •
?70.l
                                                  5?fl. I
                                                  lot:!
                                                  lll:\
                                                  522. I
                                                  57l7l
                           168

-------
 TABLE V-ll    DRY-WEATHER BOO

IEPA!STATEI    URBANIZED AREA
 RFCi   ID i

 "*~61"" AR" i FORT'SMITH
   61   AR ILITTLE ROCK
   61   AR IPINC BLUFF     •
   61   AR IOTHFR URBAN AREAS

   61   AR IAVE. FOR STATE
 mmm [mm mm m\ mmmm mm mm <* *<*»*•****'*•'
                           LOADINGS
                            ITN/YSI
                            IANNL.I
                                            Y-WEATHER; BOO
                                            BS/ACR£>YEAR)
                            i  43.0
                            I  49.0
                            I  52,0
                            I  48,0

                            I, 48,0
I.
!
I
61
61
LA

LA.
L*
LA
LA
LA

LA
                              6
        LAKE  CHARLES
                                  0.
                                  9.
       I
                    AREAS
       NM
       NM

       NM.
      M«a **p
       OK
       OK
       OK
       OK
                    .
        AVE.  FOR STATE
50.0
64.0
45.01
56,01
     I
                                                 IUNSEW
                                                  ammmm
                                   , 430.
           ALBUQUERQUE
           OTHER URBAN  AREAS

           AVE, FOR  STATE
           mmmmmmmmmm***"*m*"»mm'
           LAWTON
           OKLAHOMA  CITY

           OTHER URBAN  AREAS
                             1,56.01    0.
                            i I tsfffftm \ •»«>»*«
                             J  9.0!    0.
                               9.01    0.
                                                   405.
                                                 I
                                             961.
                                       786*
                                       786?
                                                     I:
                                                   352.
                                                   408.
                                                     0»
                                                   356.
                                                   352.

                                                   352.
                                                     AVER
 430.
 491.
 524.
 482.

 482.*
mmm.mm

 mi

 III:
1167^
 499.
 749:

 749.
                                                287.  506.
                                                287.1 506.
61   OK.IAVE, FOR STATE
    TX
    TX
    TX
    TX
    TX
   ,«, | ww*l»«t I m mm mf ft"" *"<"»'>•">"• m"
   61   TX  IABILENE
   61   TX  IAMARILLO
       TX  (AUSTIN
       TX  IBEAUMONT
       TX  I BROWNSVILLE
           IBRYAN
           CORPUS CHRISTI
           DALLAS
           EL PASO
           FORT WORTH
           GALVESTON
           HARLINGEN
       TX  HOUSTON
       TX  LAREDO
       TX  LUBBOCK
       TX  MCALLEN
       TX  IMIDLAND
       TX  IODESSA
       TX  IPORT  ARTHUR
       TX  1SAN  ANGELD
       TX  ISAN  ANTONIO
       TX  ISHERMAN
           ITEXARKANA
           ITEXAS  CITY
       TX  ITYLER
        "X  IWACO
        "X  IWICHITA  FALL „„_
        "X  IOTHER URBAN AREAS

            AVE. FOR STATE-
    61
    61
    61
    61
    61
    6!

    61
    6
    I
    61
    6

    J
    6
 61
   .61  TX

   "6 I*"*""
            AVE* FOR REGION.
                                           540
                                           602
                                           704^
                              ,35.3J 675,
                            169

-------
 TABL
I    1
 IRFGI
 I ...I
   71
   71
   71
   71
   71
   71
   71
    I
   7'
 ...I.
   71
   71
   71
   71
    I
   71

 "*7I~
   71
   71
  71
    I
  71

 *7l'
  71
  71
    I
  7 I
 .. I .
  7J

 "l"
  A I
  8 I
  fll
  A I
   I
  A I

 'A I "
  fll
  fll
   I
 F V-ll
      I
 STATEI
   jn I
               ^RY-WE'ATWFR


                         ARFA
       JA
       TA  I
       i*  IDHBIIOUE
       TA  isjnnx  CITV
       I*  IwATPRLOQ
       TA  friTHFR  URBAN  ARFAS

       T*  AVE. FOR STATF
  K*  JOTHFP.  URBAN


  *S  IAVF. FOR STATF
 ---- ---|	....


  tl n  I n n fi B i _ _ ** *  I
  1-j; ;sT;.rosEPH"i;
  Mp 1ST.I GUIS
  MH JHTHFP  IIRRAM APFAS


 .--.It**' Fnn STATF
  VF •'	-------..-.•
                               I TKJ/YPI

                                  '
                                                  ROD
                             33.01
                             3?.01
                             31.01
                             33.01
                             25.01
                             32.01
                             31.31-
                                 I
       i      i    ---_. _ - , v ,

  _31.3lt763.!  612.! 299.'
                                    "'  734.|  734.
                                       752.1  752*1
                                        .?•!  s??:
      tir  IPTHFR  I'RPAN' APFAS

      ^F  IAVE. FOR  STATF
     en
     en
     en
                                33.01

                                P377oj'
                           I 36>l

                           .36.A|
                                I

                                               299.
                                               290.


                                               l

                                                         AVER

         i BHU'DER
                                                  81:1
                                                        Ilfl
                                                  465.  537.1
                               .--:!!_f!2*!  f-53-1  260-' 5ai.!
 A I
 A I
   I
 Al

~8l'
 A I
   I
 81
--I.
 81
 PI
 Rl
 fll

 81
.-I.
 PI
  I
 81
.- I.
 ai
 -i.,
 r.n

"MT"


 MT

""5"



"sn'
        JOTHFP IJRBAVJ ARFAS

        i AVE. FOR STATF

        I RTLl'lMSS
        I6BEAT FALI S
        IOTHFR URBAN AREAS

        !AVE- rnr? STATF

        IFAPRH       "    '
        IDTHFR IJRRAM
 • •^•^•"1 * * e- ^ i  t» ~i / 0 |

 "|i:8l""l:riJi:l
;   f:oft!i!f»:l  S3}-!
I  11.SI1238.I  798:!

 .--:!il"2-J.I98-'
  Tiroi""""* "—--'•


                                             290.  555.
        I AVE.  FOR

             ""
        IOTHFR  URBAN  A"F,AS

             FOR  STATF
UT
IIT

i!T
 2UOI

 21. o!
-----I
 25.0 i
 25To
                                   0.1 657.1 364.1 525.1

                                "Sj?:! 662! |"s;:J-5K-1
                                 ^»AP  I f* t* 3  I TO/    "*"-»•!
                                 662.1  662.1
                                                   563

                         I
                                 759.1
                                 759  | 759;i 328:.

                           --:"!.!!!;,.!!!•' 328-'
                            |:oi
                         '  15.0)
                           15.0|

                           15.01

                         "1570!'

                         .15.01

                         "1774]
                                  07[ 79071

                                ,__0;(l_790.l^271.|

                                  O.I 6937l"3497l

                                  0.! 693.1 349.
                                                       516.
                                                       ••.•a
                                                       497.
                                                       aas;
                                                       5062
                                    9ft8.|
                                                       506.

                                                       506.
                           170

-------
TARI E
   I
   V-ll
          HRBANl7En ARFA
                      IHADINGS
                        ITM/Y9I
FGI
P W» t •* •
 9 I
   I
 9 I
.. I -.
 9 I
 91
 91
   I
 9 I
.- I-
 9 I
 9 I
 91
 91
 9 I
 91
 91
 91
 9 I
 9 I
 91
 91
 91
  91
  9 I
  91
  9 I
   I
  91
... I .
  91
  91
   I
  91
..-1.
  9 I
  91
  91

  91
...I .
  9.1 .
...I.
 1 01
 1.1 I
      AK

      AK
      • m •* «
      A7
      A7
      A7

      A7
      »«•«•!
      CA
    CA
    TA
    PA
    CA
    PA
    CA
    CA
    CA
    CA
    fA
    CA
   mm — •

    NT

    WT

   ""v*
    MV
    MV

    MV
  IU&PAM AREAS
  I
  IAVE. FOR STATF

  ' IPMQFNIX
  IT'ICSON
  IOTHFR URBAN

  IAVF. FDR «TATF

  " IBAKFRSFIELD""

     IS' ANGELFS
                                 .
                            IPRFCP
                               7.01
                              ll.o
                               *.n\
                                 , „ /_w£ *THER  Pnn     |
                                 fLBS/ACRE-YEAP)   .  I
                                 B I STOR^IUNSEW | AVER I
                               ..„|——-|-----|-----|
                                        I  227.1  466.1
                                        I      I      I
                                    ... I  2?7. I  466. I
                               -.1i_---.,|----- I -----i
                                O.I  777.1  246.1  484.1
                                O.I  715.1  340.1  518.1
                                Oil  761.1  268.1  492.1
                                      O.I 7M.I 268.1 492.1
                                    .„_„)--_-.,|-----|-----|
 inYMARD
 ISACRAMENTP
 iSALINAS
 ISAN  BFRNAMDTMP
 ISAM  DIFGH
 ISAN  FRANCTSCn
 ISAN  JOSE
 ISANTA  BARBARA
 ISANTA  ROSA
 ISFASIDF
 ISIMT VAI.LFY
 I STOCKTON
 IHTHER  URBAN ARFAS

 IAVE. FOR STATF

" I HONOLULU
 IOTHFR  URRJM AREAS

 IAVE. FOR STATF
-, | _......	..----.
 ILAS VFGAS
 I RFNn
 IHTHFR URBAN AREAS

 IAVE. FOR STATF

 "IAVE^'FOR REGION
                               I 15:51   8:
                               I'M 8!...8:
                                      BS-.I 1??:!
                                     I-WI:I

                                                            !:
                                I 25.01    O.I
                                I 14.01    O.I
                                I 17.?H539.I
                                I      I -     I
                                I. 17.211539. I

                             "*"!""3loi~""o'"l
                                I 23.01    O.I

                                ! 23.01    0.
                             .-- | -----|--•—•I
                                I   4.0 I    0.1
                                I   7.01  893.1
                                I   5.51  893.1
                                I      I   .  !
                                           I  354.1
                                       .  _,l  342.1
                                       798.1  262.1

                                       798.1  262.1

                                      """I"I
                                       841.1

                                       841.!  277.
                                      .-.*-|«----|
                                       80UI  258.1
                                       66lZl  326.1
                                       777.1  277.1
              • * I
            555ll
            617.1

            617.1
            ,-.— |
            583.1
            583.1

            583. I
            ...-.)
            469. I
            508.1
                                                       I
        inTHFR  URBAN  APFAS   I
                          '""l"l6"9n507. I
                                              '7~7"l 263.1 601.1

  l'   n"R  1 PORTLAND
  tn I   in  IAVE.  FOR  STATF

 '?"l
  101
  1 VI
  1 -M
    I
  1«l

 "lOl
 OR'IOTHFR URBAN AREAS

 PR  IAVE.  FOR STATE

"~A"|SFATTLE
 WA  lsisCDKAMt
 WA
                       I. ll.oi    O.I
                    .-- i ----- | -,--—« l
                       I  3*.0I  748,'
                       I  40.61  81U
                         40.01
                             1
                                          0.
                                        810.
                                          I
  " " " I      I
 657.1  405.1
....-(..---|<
 748.1  306.1
 811,1  276.1
 690.1  352.1
 780.1  288..I
                                                       526.1
                                                       — •*!
                                                       502.1
                                                       52
     WA
                  URBAN ARFAS
in!
        I
        WA IAVE. FOR STATF
       .... I ...„... —--------
                             1  39.31 810.  780.
                                                0.
                                              774.
                                              785.

                                              785.
                                                      I
                                                      1.
                                                      8.1
                                                               '
                       I  39.01 774.
                       I  30.31 703.

                       !.30.3! 703.
                    „-.|.---.|----•I
                    10 I  26.91 734.1
       288.
      wmmmm

       15?:.
       290.1
       302.1
       302.1 525.1
                                                           528..

                                                          *530~.l
                                                           527.1
                                                           504.1
                                                           525.1
        I AVERAGE'EPR'THF""
                              :": I *33Ta ! TO""*
                                       "5.o7:| "iss: i
                                                         "i"a.1
                             171

-------
  ABBREVIATIONS AND SYMBOLS
   i
 AR

 a


 b

 BOD

 BOD5

 3


 C

 COD

 com

 CR

   i


  i
e

DWF
   Coefficient

  Area of land use i                            .

  Wet-weather runoff, inches per year

  %£?£ Lo"-S>loadlns £actor f°r sep°r«* «»*-«-.

  Coefficient

  Biochemical oxygen demand

  Biochemical oxygen demand  at five days

                     loading factor for combined sewered areas
                                                          a'° 9
  Concentration,  mass pollutant per total mass or mg/1

  Chemical oxygen demand

 Abbreviation for commercial

 Runoff coefficient

 Pounds of accumulated dust  and dirt (or "surface solids")  on
 land use i per  curb-mile -  dry day

•Dust and dirt loading for land use i,  pounds per day

 Street sweeping efficiency

                         tier flow and  dry-weather flow runoff,
           inches per year
                                o£ p°llutant
                                of pouutant
                                   poiiutmt
                                          function  of


                                                   of


                                                   of
           JSlutantl ^^ aUd d±rt ^ ^^ ^  ± that C°nSiStS  °f
           Length of curb per  area of land use  i, curb-miles
                                                          per acre
                                 172

-------
Y

I

K

m

M

M


M
 M
 n
 N
 N.
  D
 P

 P
   s
  PD

  PDd

  P04
  r

  res
 Street  sweeping  factor

 Imperviousness as  a fraction or percent

 Conversion factor

 Coefficient

 Pollutant loading, pounds per acre-year

 Pollutant loading averaged over different land uses,
 pounds per acre-year

 Pollutant loading in combined sewered areas, pounds per
 acre-year                                                  ,'-

 Pollutant loading under dry weather conditions, pounds per
 acre-year                             .      .        ,

 Pollutant loading in separate sewered areas, pounds per
• acre-year

 Number of storms per year,  also number of times street swept
 since  last storm

 Total  nitrogen                                 '

 Number of dry days  since last storm

  Street sweeping interval, days

  Precipitation rate, inches per year

  Mass of  pollutant on surface at  end of previous  storm, pounds

.  Mass of  pollutant j on surface of land use i at  beginning of
  storm, pounds

  Precipitation depth during one storm, inches

  Population density, persons per acre

  Population density in developed area, persons per acre

  Phosphate or total phosphate

  Correlation  coefficient

  Abbreviation for residential

  Water density, pounds per cubic  foot
                                     173

-------
 ss
 TOG
TPO,
TS
VS
w.
 Suspended solids




 Total  organic  carbon




 Total  phosphate



 Total  solids




Total volatile solids




Fraction of total area consisting ,0f land
                                                      use i
                                  174

-------
REFERENCES

1.  American Public Health Association, American Public Works Associ-
    ation, Water Pollution Control Federation, Standard Methods for
    the Examination of Water and Wastewater, 13th Edition, American
    Public Health Association, Washington, DC, 1971.

2   Colston  N. V., "Characterization and Treatment of Urban Land Run-
    off," USEPA Report EPA-670/2-74-096, NTIS-PB 240 987, December 1974.

3.  Metcalf and Eddy, Inc., University of Florida, and Water Resources
    Engineers, Inc., "Storm Water Management Model, Volume I - Final
    Report," USEPA Report 11024DOC07/71, NTIS-PB 203 289, September 1971.

4.  Huber, W.  C., Heaney, J. P., et  al., "Storm Water Management Model
    User's Manual Version II," USEPA Report EPA-670/2-75-017, March 1975.

5.  Hydrologic Engineering Center,  Corps of Engineers,  "Urban  Storm
    Water Runoff:   STORM," Generalized Computer Program 723-58-L2520,
    May 1975.

 6   Roesner,  L.  A.,  et  al.,  "A Model for  Evaluating Runoff-Quality in
     Metropolitan Master Planning,"  ASCE Urban Water Resources  Research,
     Program,• Technical Memo  No.  23, ASCE,  New York,  NY, April  1974.

 7   APWA, "Water Pollution Aspects  of Urban Runoff," USEPA Report
     11030DNS01/69 (WP-20-15),  NTIS-PB 215  532, January 1969.

 8   Graham,  P. H.,  Costello, L.  S.  and Mallon, H.  J.,  "Estimation of
     Imperviousness and Specific Curb Length for Forecasting St°rmwater _
     Quality and Quantity," JWPCF, Vol. 46, No. 4,  pp.  717-725, April 1974.

 9   AVCO Economic Systems Corporation, "Storm Water Pollution from Urban
     Land Activity," USEPA Report 11034FK07/70, NTIS-PB 195 281, July 1970.

10.  Burgess and Niple, Ltd., '-'Stream Pollution, and Abatement from Com-
     bined Sewer Overflows, Bucyrus, Ohio," USEPA Report 11024FKN11/69,
     NTIS-PB 195,162, November 1969.

11.  Black, Crow andEidsness, Inc.,  "Storm and Combined Sewe*
     Sources and Abatement, Atlanta, Georgia," USEPA Report
     NTIS-PB 201  725, January 1971.

12   Haves, Seay, Mattern and Mattern,  "Engineering  Investigation  of
      Sewer Overflow Problem," USEPA Report  11024DMS05/70, NTIS-PB  195  201,
     May 1970.

 13.   Rex Chainbelt,  Inc.,  "Screening/Flotation Treatment  of  Combined
     ' Sewer  Overflows,"  USEPA Report 11020FDC01/72,  January 1972.
                                       175

-------
    '
  "'





  "


 18.  Cornell, Rowland, Hayes and MerrvfiPlH w-rn  r     »* TT
      Management Program  Vol ™a Jafrry?lejd-Hill, Inc., "A Water Resources
 2°'   TaSn%J'  A'  TV"1"1'  B-  G-,  "Urban Stormater Management and


       eSSmen"                                "IS-PB
     Survey Water Resources Division  Trenton! £,1974?
                , Ottawa, Ontario, April 1971



23.  American Public Works Association and
                                                      of
             and Ontario Miniatr

Report WPD 03-76-, Januar  19^?
                                                           Seminars,"
                                  176

-------
                                 SECTION VI

                           OVERALL COST ASSESSMENT
This section develops and applies a methodology to estimate the cost of
controlling pollution from urban storm-related discharges nationwide.
Costs of controlling combined sewer overflows, stormwater runoff, and/or
providing tertiary treatment are compared.

                                                     I
BACKGROUND

In 1967, the APWA conducted a survey to gain information related to wet-
weather pollution. 1  All urban communities with a population greater than
25,000 persons were involved.  Results indicated that approximately $56
billion (1974 dollars) would be needed to complete separation of all
eSting combined sewers.  An additional $34 billion (1974 Collars) in
plumbing changes on private property would be required to ef feet the
separation,  These costs do not include any indirect costs brought about
by the disruption in a dense urban  area which would occur if the

separation  actually took place.
 trolling wet-weather pollution could be assessed.    Due to a lack of
                           ^^
                            .
 .and/or Control of Itormwater) of the 1974 Needs Survey were greater than
 tSe cost of all other categories combined.  Reported costs included con-
 struction of storm sewers and elements of flood control.

 The next part of this section presents a general methodology for deter-
 - mining wet-weather pollution control costs.  Then, a procedure is
 'described for determining the relationship between storage, treatment,
 and pollutant control for control  of wet-weather flows.  Generalized
 predictive  equations are developed based  on relatively  intensive studies
 of five  cities:  Atlanta, Denver,  Minneapolis,  San Francisco, and
 Washington.  Knowing this "production  function" one can determine _the
 optima!  combination of  storage  and treatment by combining  this information
                                       177

-------
  assessment.   Results are presented for all

            1.  urbanized  areas  in  the US,
           •»
            2.  states, and

           3.  USEPA  regions.
 METHODOLOGY

 There are several economic theories which, when applied to environ-

 O^f ^Hr^^^r^' aSS±St ±n thS decisi°n-making process.
 One such theory is production theory, which provides techniques that
 aid in evaluating items such as the optimal size of a reservoir for
 water supply and flood control, or a wastewater treatment plan? for
 pollution control.  When the cost of inputs such as the reservoir

 of oJtnuTf P     I5 ^^ then the C°St °f achieving a desired level
 of output (e.g., water supply or pollution control) may be determined.

 In stormwater management,  the inputs may be in the form of a storage
 capacity and a treatment rate.   Storage is expressed in terms of

 Sini°L?ia  T °Ji inCh<:S  °Ver a Certaln area' typically the watershed
 being analyzed.  The unit  for treatment is either million gallons  per
 day or inches per hour,  using the same area as storage.

 When the degree of wet-weather  control is considered as  a single
 output,  it can be expressed either in terms of the percent of the  run-
 tf aS^fS  °ri    number  °f  overflows per year.   This is  with respect
 to quantity  only and is  therefore dependent upon  the input storage
 capacity and treatment rate.
     *                            ±t: '±S feaslble to use a graphical
method to find the optimal combinations.  Isoquants can be constructed
which represent equal levels of output for different combinations of
input (see Figure VI-1, Determination of Least-Cost Combination of
iBEgs).  For example, each isoquant could represent a specific percent
of the runoff treated for different combinations of storage and treat-
ment.  Isoquants have the following properties:3
          1.
          2.
Two isoquants cannot intersect.  Intersecting
isoquants would imply two different levels of
output from the same input.

Isoquants slope downward and to the right
because as one input increases it takes less
of the other input to achieve the same level
of output.
                                  178

-------
                  UNIT  COST  OF  INPUT  !
                  UNIT  COST  OF  INPUT 2
       ISOQUANT
                      EXPANSION  RATH
                               ISOCOST  LINE
                   INPUT  2

Figure VI-1.  Determination of Least-Cost Combination, of
             Inputs                 .
                       179

-------
            3.  Isoquants are convex to the origin because of
                the decreasing ability of one input to be sub-
                stxtuted for another to obtain a given level of
                output.  This is known as the principle of
                diminishing marginal rate of substitution.

  Also on Figure VI-1, a series of parallel lines has  been constructed
  These lines represent combinations of input 1 and input  2 which
  to produce a desired level of output  is  the point whe?e the ifocost

  output    ^   n§ent t0 ^ 1S°qUant  reP— nting the desired level of
                                                           isoquants
                        XS  Called the expansion path.  After the
                     determlned» the optimal combination of input

                                                        ass
                             th±S info™ati°»>  the isocost  line my be
 minimize
subject to
where
                 Z  =
             •cs_ o


total control costs,

storage costs,
                                           (VI-1)
             c,j,(T)   = treatment costs.
                                    180

-------
                 s

                 T

                 R,
         f(Ri;S,T)
= storage volume,

= treatment rate,

= percent pollutant control, and

= production function relating the level
  of pollutant control (R.,) attainable
  with specified availabilities of storage
  (S) and treatment (T) .
The next three subsections describe

             the available storage/treatment options - their costs
          *  and effectiveness;

             the production functions for evaluating tradeoffs
          *  between storage and treatment; and

             the solution to the optimization problem yielding the
          *  optimal expansion path for any city.

Given this information, the final assessment is presented.
CONTROL TECHNOLOGY AND ASSOCIATED COSTS

A wide variety  of control  alternatives are  available  for improving
the quality of  wet-weather flows.4/5/6  Rooftops  and  parking lot
storage,  surface and underground tanks and  storage  in treatment units
are the  flow attenuation control alternatives.  Wet-weather quality
control  alternatives can be subdivided into two categories:  primary
devices  and secondary devices.   Primary devices take  advantage of
physical processes  such as screening, settling and  flotation.  Secon-
dary devices take advantage of  biological processes and physical-
chemical processes.   These control  devices  are suitable for treating
stormwater runoff as well  as combined sewer overflows.  However, the
 contact  stabilization process is feasible only if the existing waste
 treatment plant is  of an activated  sludge type.   The  quantities  of wet-
weather flows that  can be treated by this process are limited by the
 amount of excess activated sludge available from the  dry^weather plant.
 At the present time, there are several  installations  throughout  the US
 designed to evaluate the effectiveness  of various primary and  secondary
 devices.  A summary of the design criteria and performance of  these
 devices is presented in Table VI-1, Wet~Weather  Treatment Plant  Per-
 formance Data.  Based on these data, the. representative performance
 of primary devices  is assumed to be 40 percent BOD  removal efficiency
 and that of secondary devices to be 85 percent BOD   removal efficiency.
                                     181

-------
          Table  VI-1.  WET-WEATHER TREATMENT  PLANT  PERFORMANCE  DATA
  Device     Control Alternatives



 Primary    Swirl Concentrator3'15


            Microstrainer0
                      •

            Dissolved Air Flotation
             w/ Chemical Addition*3


            Sedimentation6
            Representative Performance
Secondary  Contact  Stabilizationf
           Physical-Chemical8
           Representative Performance
                         Reported
   Design Criteria   .  BOD5 Removal
gpm/sq ft (1/min-m2)   Efficiency, n
   60.0 (2,448.0)


   20.0 (  816.0)


    2.5 (  102.0)



    0.5 (   20.4)
 0.25  - 0.50


 0.40  - 0.60


 0.50  - 0.60



 0.25  - 0.40



    0.40



0.75 - 0.88



0.85 - 0.95



    0.85
      1, 1976.7

bSullivan, 1974.8

°Maher, 1974.9

 jLager and Smith, 1974.5
S
 Performance data based on domestic wastewater treatment.

fAgnew et al..  1975.10
ff
 Estimate based on performance of these units for domestic .wastewater.
                                    182

-------
 "Storage"  devices will typically be used in conjunction with the
 above "treatment" devices.  ,The two purposes are interrelated.
 Wastewater detained a sufficient time in a storage unit will undergo
.treatment.  On the other hand,  treatment units also functxon as
 storage units in that they equalize fluctuations in influent flow and
 concentration.  DiToro presents approaches for evaluating the equali-
 zation and treatment which occur  in both of these units.   The STORM   ,
 model, which was used in this assessment, assumes the configuration
 for storage and treatment shown in Figure VI-2, Storage-Treatment
 nnnflpiiratlon Used in STOEM Model.  No treatment is assumed to occur
 in storage and "treatment" is assumed to be complete removal of all
 pollutants routed through treatment.  Thus, for the, purposes of this
 assessment, no treatment is assumed to occur in storage and control
 costs are assigned accordingly.  This assumption tends to underesti-
 mate the costs of storage since all provisions for solids handling
 are included  in  treatment.

  Cost data for installed wet-weather treatment devices are listed .Ln
  Shi P VT>2  Installed Costs for Wet-Wither Treatment Devices. - Since











               quality control devices  are presented in Table Vi.
                  leather Control  Devices.   These  costs
                    eather Contro   evces.
visions for sludge handling, engineerinJTcontingencies and land costs.
   ^•r^eS'. thlbreakeven pipe length, L, is found

                   Two plants      One plant + pipeline

                  s(10)Z +  s(10)Z = s(20)Z + K(10)y(D

   where     s,  z, K and y = coefficients.
                                                                  (VI-2)
                                    183

-------
                                                      o
                                                      H
                                                      OT
                                                      0)

                                                     .3


                                                      g
                                                     •H
                                                     4J
                                                      Cfl
                                                     o
                                                     o

                                                     4J
                                                     0)


                                                     £?
                                                     O
                                                    
-------
         Table VI-2.   INSTALLED COSTS  FOR WET-WEATHER TREATMENT  DEVICES
Annual Cost: $/yr
Control Device
Swirl Concentrator0
. d
Microstrainer
Dissolved' Air Flotation
Contact Stabilization8
Capacity
mgd (m3/d«y)
6.8 (26,400)
7.4 (28,700)
25.0 (96,900)
20.0 (77,500)
Amortized Capital3'
5,600
14,230
71,706
120,000
Operation and Maintenance
2,100.
3,895
16,700f
24,000
Total
7,700
18,125
88,406
144,000
aBased on 8 percent interest for 20 years.
instruction cost.  Does not include sludge handling costs.
°Field, 1976. 7
     r, 1974.9

8Agnew et al., 1975."  Operation and maintenance costs based on 960 hours of operation.
                                                185

-------
             TSble .VI-3.   COST  FUNCTIONS FOR WET-WEATHER CONTROL DEVICES
  Device
 Secondary
 Storage
                                           Amortized Capital  Operation and Maintenance
                                                                                          Total
                 Control Alternative
                                                 CA = IT"

                                                  or lSm

                                                 1    .  m
                                                                      OM = pTq
                                                                                           or  sS

Primary

Swirl Concenttaforc>d'e
Micros trainer6'
Dissolved Air Flotation
Sedimentation3

1,971.0
7,343.8
8,161.4
32,634.7

0.70
0.76
0.84
0.70
f
493.0
1,836.0
2,036.7
8,157.8
q
0.70
0.76
, 0.84
0.70
s
2,464.0
9,179.8
10,198.1
40. 707. S
z
0.70
0.76
0.84
n 7n
               Representative Primary Device Total Annual Cost ? $4.000 per mgd ($1.05/m3/day)
              Contact Stabilization8
              Physical-Chemical6
              Representative Secondary Device Total Annual Cost = $15,000 per mgd  ($3.93/m3/day)
              .High Density (15 per/ac)
              Low Density (5 per/ac)
              Parking Loth
              Rooftop'1
                                                                                      51,000.0
                                                                                      10,200.0
                                                                                      10,200.0
                                                                                       5,100.0
Tk - Wet-Weather Treatment Rate in mgd; s
                                            Storage Volume in mil gal

                     lz
 Benjes et al..  1975. l
ftager and Smith,  1974. 5
*Haher, 1974. 8
gAgnew et al.'. 1975. 10
         and Robbins, 1975. 13
    .0T             e5onomles of scale beyond ioo  mgd, (378.500 m
    - gross  population density, persons/acre.                     <
                 J
e
.One agd « 3,785 m3/day.
 One nil gal - 3,785 m3.
1.00
1.00
1.00
1.00
              Representative Annual Storage Costj ($ per ac-in)  -  $122 e0
                                               186

-------
Unfortunately, data on the number and flow rate of stormwater     . •
discharges in urban areas could not be found.  Thus, it is not
possible to determine the optimal mix of treatment plants and
pipelines.  Therefore, :the representative treatment costs shown
in Table VI-3 were based on using relatively small plant sizes.

Cost data on detention basins built in the Chicago'area for tern-
porary storage of runoff are listed in Table VI-4, Capital Cost of
Storage Facilities.  Costs  of storage tanks built  for the purpose
of wet-weather quantity and quality control as well as for dry-
weather quantity control are also  included in this table.  Due to
the wide variations  in these figures, an  attempt was made to verify
these  costs using excavation costs as the &asis.   St°raSe «>s
based  on unit excavation costs  are listed in Table VI-4.
cost of equalization and the estimated  costs of rooftop   and
lot  storage basins  for  sewage  treatment plants  are also  shown  m^
Table  VI-4.   Lastly, analysis  of recent estimates of  storage costs
 developed by  Benjes et  al.  indicates the  following unamortized capi-
 tal  cost  C ($ x 106) as a function of storage  volume,  S  (mil gal):

                                           Unit Cost @ S =10 mil gal
                                                 $/gal ($/liter)
        Type

 Earthen

 Concrete w/o Cover

 Concrete w/ Cover
Equation
C
C
C
= 0
= 0
= 0
.025
.350
.400
S0.73
S0.58
S0.79
$0.013 C$0.0034)

$0.133 ($0.0350)

$0.250 (.$0.0660)
 The data  indicate wide variation in the costs of storage.  Thus, the
 relatively  simple relationship  shown  in Table VI-3 was used.  Annual
 storage costs  are estimated  as  a function of gross. P°P^ion Density,
 The curve was  derived using  an  unamortized  capital cost of $0.10 per
 gallon ($0.026/liter) for  PD =  5 persons per acre  C12.4/ha)  and $0.50
 per gallon  ($0.132/liter)  for PD = 15 persons per  acre  (37.1/ha).


 RELATIONSHIP BETWEEN STORAGE/TEEATMENT AND  PERCENT POLLUTION CONTROL

 Use of STORM

  STORM was used to evaluate various storage/treatment options Jor  «m-
  trolling stormwater runoff pollution.  This model assumes that the
  study area can be characterized as a single catchment from which hourly
  runoff is directed to storage .and treatment.

  STORM uses a  simplified rainfall/runoff relationship, neglects the
  transport  of  water through  the city  and assumes a very s^a^ion-
  ship  between  storage and  treatment.  However, these Ji^Ufxcations
  are essential if one hopes  to  do a continuous simulation.  The contin
        simulation approach was  used because no general concurrence exists
                                      187

-------
         Table  VI-4.   CAPITAL  COST  OF  STORAGE  FACILITIES*
                                 .Capacity •
                              mil gal (1000 m3)
                    Capital Cost
                  $/gal (S/liter^
 Storage Reservoirs
 Hillside Park
 Heritage Park
 Oak Lawn
 Middle Fork North Branch
 Wilke-Kirchoff
 Melv'ina Dutch
 Oak Mill Park
 Dolphin Park

    Average
 Storage Tankse

 Cottage Farm,  Boston0
 Spring Creek,  New Yorkc
 Chippewa Falls,  Wisconsin0
 Humboldt Avenue, Milwaukee0
 Seattle,  Washington
 Hhittier Narrow, Columbus0
    Average

 Based  on  Excavation Costsf
 $2/cu  yd  ($2.62/cu m)
 $5/cu  yd  ($6.54/cu a)

 Equalization Basins for Dry
  Weather Sewage Treatment
 11.4 ( 43.1)
 36.5 (138.0)
  7.8 ( 29.5)
195.5 (740.0)
 32.6 (123.0)
 53.8 (204.0)
 25.1 ( 95.0)
      (204.0)
53.8
52.1 (19710)
  1.3  (   4".9)
 10.0  (  37.8)
  2.8  (  10.6)
  4.0  (  15.1)
 32.0  (121.0)
  4.0  (  15.1)
  9.0  (  34.1)
0.01
0.01
0.02
0.02
0.03
0.03
0.02
0.01
(0.003)
(0.003)
(0.005)
(0.005)
(0.008)
(0.008)
(0.005)
(0.003)
Earthen
Earthen
Earthen
Earthen
Earthen
Earthen
Earthen
Earthen
Basin
Basin
Basin
Basin
Basin
Basin
Basin
Basin
                   0.019  (0.005)
                  5.21"
                  2.33
                  0.29
                  0.55
                  0.25
                  1.70
      (1.38)
      (0.62)
      (0.08)
      (0.14)
      (0.07)
      (0.45)
                 1.72   (0.45)
                 •0.01  (0.003)
                  0.025 (0.007)
         Covered Cone. Tanks
         Covered Cone; Tanks
         Asphalt Paved Basin
         Covered Cone. Tanks
         In-line
         Open Concrete Tanks
                                 Earthen Basin
                                 Earthen Basin in Rock
PlantsS




h
Other
Parking Lots
Rooftops
i
3
io
i
3
10



.0
.0
.0
.0
.0
.0



( 3.
(11.
(37.
( 3.
(11.
(37.



8)
4)
8)
8)
4)
8)



0.22
0.10
0.
0.
0.
0.

0.
0.
06
39
28
25

10
05
(0.
(0.
(0.
(0.
(0.
(0.

(0.
(0.
06)
03)
02)
10)
07)
07)

03)
02)
Earthen
'Earthen
Earthen
Concrete
Concrete
Concrete



Basin
Basin
Basin
Basin
Basin
Basin



 Source:  Metropolitan Sanitary District  of  Greater Chicago.
 Also used for stormwater treatment.

 Includes pumping station, chlorination and  outfall facilities.
eSource:  Lager and Smith, 1974.5
 Soil Conservation Service, Gainesville,  FL

8Source:  Anon.,  "Flow Equalization-Plus for Wastewater Treatment  Plants'"
          Civil Engineering, Vol. 45, No.  9,  September 1975,  pp. 66-68.21
 Source:  Wiswall and  Robbins, 1975.13
                                         188

-------
of pollutants discharged to the receiving waters.
As described in the User's
on the composite runoff cof ^^^fore the. runoff coefficient
The depression storage .^f J^J^he Amount of depression storage
is applied to the precxpxtatxon. . T^amoun,t o^   P        faction of






 runoff is sent  to storage.   If ^e^unot^ occurs.   when runoff falls
 to exceed the storage "P^^Hs depleted at  the excess treat-
 below the treatment rate then storage xs aep              d runof£  and
 ment rate.  The hourly °^^£t£~*f tS entire record of rain-
 runoff that has overflowed is tabulatea ror           overflow events
 fall,  included in the outpus the annu^n^ber^     ^^
                                       for different storage capacxties
 and treatment rates.
  tion III).  The percent imperviousness and ^8thoJt^SggStantowski:8
  Were found by their relationship to^ P°P^^ndgSr ^ lejgth density
  equation for imperviousness and APWA a e^ion to           evaporation
  (Volume IIS described in the two praams J^xouB;    ^^^.16
  rates  for each month are from a report by Jhornthwa
  The depression storage ; is assumed to be 0 01 inches ^
  all cities.  A summary of xnput data f or all ot tn      ^        data .
  in Table VI-5, STOEMInput Data f or S^^gM^^^^
  for the study areas are shown xn laoxe vx o, r^^^ - fi - __
  Areas.
   Hourly precipitation data were »^y!£v  y     (ary SS
   ser,lce in Ashevil le  Morg Carol^   ^Sd*™ the five test cities.
   £,D3r££S)7£r«Sy "70 to Bece?er 1972, of data »ere
   obtained for all stations in the United States.
                                        189

-------
           Table VI-5.   STORM INPUT  DATA FOR STUDY AREAS
  Study Area:
  Area:
  Depression Storage:
                            Atlanta
                            278,400 ac  (112,800 ha)
                            0.01  in. (.0.025  cm)

 n «,  e^aP°ration rates for each month, Jan-Dec, in  in/day  (cm/day)
.0.01  0.02  0.04  0.07  0.10  0.11  0.10   0.08  0.06   0.04   0020  01
(0.03) (0.05) (0.10) (0.18) (0.25) (0.28) (0.25) (0.20) (.0.15) (0.10) (0.05) (003)
  Study Arear
  Area:
  Depression Storage:
                            Denver
                            187,500 ac (75,900 ha)
                            0.01 in. (0.025 cm)
 Daily evaporation rates for each month, Jan-Dec, in in/day (cm/dav^
  0'°  O'O   0.01   0.02   0.04  0.07  0.09  0.08  6.06  005Co3  0 01
 (0.0) (0.0) (0.03) (0.05) (0.10) (0.18) (0.23) (0.20) (0.15) (0.13) (0.08) (O.'S)
 Study Area:
 Area:
 Depression Storage:
                           Minneapolis
                           461,400 ac (186,700 ha)
                           0.01  in. (0.025 cm)
 Daily evaporation rates for each month,  Jan-Dec,  in in/day (cm/day)
 Study Area;
 Area:
 Depression Storage:
Study Area:
Area:
Depression Storage:
                           San Francisco
                           435,800 ac (176,400 ha)
                           0.01 in. (0.025 cm)
                          Washington,  DC
                          316,800 ac (128,200 ha)
                          0.01  in. (0.025 cm)
                                   190

-------
1








<3
w
<1

>-<
\=>
H
W
p*
O
1*4

^
^
3
4«J
CO


o1 o" o o o
,-j cs i~< oo i~»
^ ^ VO f} °2
s d. ^ ci • .s
'
00 CTl O l~^ ^
"~j "1 "^ .
VO IT) O  t^>
iH •-< i-H

r-, oo t~* os o
CO CO CO CO -5T
o o o o o











cy> -* CO CTi CTi
CM CO CM CO CO
0 0 Op O '







X~N /^N
o" S >* «£> o
. • • • •
CO 00 -* i-H O
_4 cri r^. vO T— 1
In "-*

^^^^
5 S CM ^ °
• • • • *
^] rH CM CM •*

(y, O I-H ' r-. 0%
VO VO I-* ^O ^
°* "^ 2 rH H
r-1 I—I


O
o o
o
CO CO «
•H -H 0
i— ) cj o
0 0 W
nj PJ TO oo
*J jjj S fe -S
5 t»i l"^ i~t
^ ? c 0 CO
1j S 'rl TO TO
<1 O 53 CO I3B

































: 0
0
rH
H
O
Oi
D
0
O CO
H -H
>>. CO
H rH
1 .TO
O TO
iT> P5
rH 0
• H
O CO
ii a
o
Pd M
O 1*1
rt ,fl
191

-------
                                                                °f

                apparent
               tO ada1uate1!' determine
   the  effectiveness of
  '
for each city was expensive and time
  consuming
 STORM RESULTS


















          1.  treatment  efficiency,  and


          2.  variable concentration due  to  first  flush effects.


Adjustment for Treatment Efficienr.v








                                    192

-------
200
                      .2
cm / hr
  .3
                        .4
.5
                MINNEAPOLIS

                WASHINGTON, D. C.

                 ATLANTA

                     DENVER

                         SAN  FRANCISCO
    Figure VI-3
 .06   .08   .10   .12

      RAINFALL,  in/ hr


Average Twenty-Five Year Rainfall
Duration  for Each Study Area
                           193

-------
                            cm / hr
               SAN  FRANCISCO

                        WASHINGTON, D. C
0    .02   .04  .06  .08  JO   .12   .14   .16   :i8   .20

                   RAINFALL,   in/hr

Figure VI-4.   Selected One-Year Rainfall -Duration  for
              Each Study Area
                        194

-------
 10
    J   M  M   0  S   N
                        -24

                        716 E ATLANTA
                        -8
                          0
                             o
10

 5

 0
n
             n
    J   M   M  J   S   N
-24
-16
 8
 O
                              I SAN  FRANCISCO
  10


   5
     J  M   M   J   S   N
                         -24
                         -16
                         -8
                          0
                       |  DENVER
a:
  10

   5

   0
     J  M  M   JSN
                    -24


                    ^-8 *
                      0
                               WASHINGTON
                           -24 ;" ' '  •'  \'

                           ~I6E  MINNEAPOLIS
                           -8°
      J   M  M  J   S  N
           MONTH

    FigureVI-5.  Monthly Rainfall Distribution for
                Study Year for Each Study Area
                      195

-------
  treatment efficiencies, in terms of BOD, removal, were derived for
  primary and secondary devices.  These vllues are as follows!
             Treatment Device


                 Primary

                 Secondary
                         Assumed Efficiency, n
                            (BOD5 Removal)


                                 °-40

                                 0.85
     deS±reS 25 percent BOD5 remov*l with a primary  device
  percent of the runoff volume must  be processed wherels only

          6 rUn                         '-
  thonfio
  then 62

  is'seltctef  hus   t                                            e
  is  selected.  Thus,  to  convert percent runoff control isoauant^ m
  percent pollutant control isoquants, one uses         ^quants to
                                  Rl
                              R " — •    0 <. R < 100
                                  11         —   —
                                                         (VI-3)
 Adjustment for First Flush

 remaxning and that a uniform  runoff  of one-half inch, per hour would
 wash away 90 percent of the pollutant in one hour."   If a first  flush
 is assumed,  then storage and treatment can be operated more ef Ac-
 tively because of the greater relative importance of  capturing  the
 initial runoff.   The first  flush is  accounted for by  defining tfuTout-
 put in terms of pollutant control directly.           aermxng the out-
Mathematical Representation of Isoquants:

The storage/treatment isoquants are of the form: ;

                                       ,-KS
where
            T = Tl'+  (T2 ~

T  = wet-weather treatment rate, inches per hour,

Tl " treatment rate at which isoquant becomes
     asymptotic to the -ordihat'e, inches per
     hour,        -

T2 = treatment rate at which isoquant intersects  ',
     the abscissa, inches per hour,
                                                                 (Vl-4)
                                   196

-------
            S  = storage volume, inches, and

            K  = constant, inch. .

A relatively large storage reservoir is required to operate the
treatment unit continuously.   Thus, first flush effects would be
dampened out and the effluent concentration from the reservoir
should be relatively uniform.  Thus, if sfcormwater entering the
treatment plant has a relatively uniform concentration, then T^
can be found as follows (using 8,760 hours per year):
                                                                  (VI-5)
where     AR = annual runoff, inches per year, and       '      .  :

           R = percent runoff control.

By relating the parameters T, , T -^ and K to the level of control
R, one equation was developed for each of the five cities.  The
T -T  and K terms versus R were found to be of the following general
•Fr*i*m *

                                     hR
 form:
                          T  - T   =
                          12   1
                               K
                                    de
                                                                  (VI-7)
 Based on this analysis the following general equation for the isbquants
 is obtained:
                          aR + be
                                       —•FT?
                                 hR-(de r )S
                                                                  (VI-8)
 The values of parameters a, b, h, d and f for various cities are
 presented in Table VI-7, Values of Parameters and Correlation Coeffi-
 cients for Isoquant .Equations for Percent BOD Control Without First Flush
 and Table VI-8? Values of Parameters and Correlation Coefficients for
 Isoquant Equations for Percent BOD Control With First Flush.  The
 correlation coefficients: for the, equations, for the four cities are also
 shown in these tables.  In general, the fits are excellent.

 The results for the five cities  are shown in Figures VI-6, Storage-
 Treatment Isoquants for Percent  BOD Removal with First Flush - Region I -
 San Francisco. VI-7, Storage-Treatment Isoauants for Percent BOD Removal
 with First Flush - Region II  - Denver. VI-8, Storage-Treatment Isoquants
 for Percent BOD Removal with  First Flush - Region III - Minneapolis,
 VI-9, Storage-Treatment Isoquants for Percent BOD Removal with First
 Flush - Region IV - Atlanta,  and VI-10, Storage-Treatment Isoquants
 for Percent BOD Removal with  First Flush - Region V  - Washington. DC.
 Each  figure shows the  isoquants  calculated by the isoquant  equation.
 Also  shown are some actual -data  points  for a treatment rate of 0.01
 inches per hour and varying  amounts of  storage.

                                    197

-------
 Table VI-7.  VALUES OF PARAMETERS AND CORRELATION COEFFICIENTS
              FOR ISOQUANT EQUATIONS FOR PERCENT, BOD CONTROL
              WITHOUT FIRST FLUSH


              Note:   Values are for developed portion  of test
                     cities and for n = 1.0.
a b
in.hr^a R)"1 in.hr"1
Test City
San Francisco
Denver :
Minneapolis
Atlanta
Washington, DC
(cm hr" )
0.0000107
(0.0000272)
0.0000064
(0.0000163)
0.0000120
(0.0000305)
0.0000185
(0.0000470)
0.0000197
(0.0000500)
(cm hr"1)
0.0021466
(0.0054524)
0.0012194
(0.0030973)
0.0012909
(0.0032789)
0.0022832
(0.0057993)
0.0020464
(0.0051979)
h • ' d f Correlation
(% R)"1 : in."1 (% R)-1 T.-T =becR
— 1 2 !
(cm X)
0.0377090 108.5330 0.0335173 0.9821
(275.6738)
0.0397305 119.8106 0.0279204 0.9931
(304.3189)
0.0487845 191.2782 0.0322136 0.9963
.(485.8466)
0.0486532 112.2002 0.0348027 0.9905
.(284.9885)
0.0567454 117.5456 0.0398007 0.9925
• (298.5650)
Coefficient
K=de"fR

-0.9888
-0.9791
-0.9913
-0.9712
: -0.9759

Table VI-8.  VALUES OF PARAMETERS AND CORRELATION COEFFICIENTS
             FOR ISOQUANT EQUATIONS FOR PERCENT BOD CONTROL
             WITH FIRST FLUSH


             Note:   Values are for developed portion  of test
                    cities and for n = 1.0.

Test City
San Francisco
Denver
Minneapolis
Atlanta
Washington, DC
a
in. hr~1(% R)"1
(cm hr"1)
0.0000107
(O; 0000271)
0.0000064
(0.0000162)
• 0.0000120
(0.0000304)
0.0000185
(0.0000469)
0.0000197
(0.0000500)
'•* i
b
in.hr"1
(cm hr"1)
0.0021654
(0.0055001)
0.0013631
(0.0034622)
0.0013656
(0.0034686)
0.0025864
(0.0065694)
0.0018959
(0.0048155)
. .- .
h
(% R)"1

0.0388910
6.0439822
0.0481981
0.0468175
0.0487876
d
in:1
(cm )
211.2763
(536.6418)
184.9639
(469.8083)
241.6141
(613.6998)
190.2240
(483.1690)
228.8434
(581.2.622)

f
(% R)"1

0/0320226
0.0279177
0.0301648
0.0312484
0.0339322

Correlation
2 1
0.9893
0.9903
0.9956
0.9857
0.9933
— — -^— — ^— ^— __
Coefficient
V A ~fR
K»de
-0.9898
-0.9926
-0.9958
-0.9899
-0.9896
                               198

-------
     .00
  .90
  .80-
  .70-
  .60-
  .50-
V)
 ..40H
LJ
CC
 T, cm/hr
.01      02
                T,  cm/hr

000   004   .008  .012   .016  .020 -
•       *.    '.      !'•   .*!
                          .15-
                            -000
                        002     .DO 4     .006
                             T, in/hr
                        .010
                 TREATMENT ,T,  in/hr
                                ,020
                                                                  - 1.2
                                       - 1.0
               ANNUAL RUNOFF = 9.37in.
                                     .030
    Figure VI-6.
     Storage-Treatment Isoquants for Percent B'OD Removal  , • '
     with First Flush - Region I -: San,Francisco       	_	
                                  199

-------
.90
   .00
.80-
.70-
.60-
.50-
.00-
 .000
 T, cm /hr
.01      .02
               Tf cm/hr
.000  .094  .OQ8   .012   .016
                         .000
                       .002     .004     .006
                             T, in/hr
                      ANNUAL RUNOFF = 5.59 in.
           .010
   TREATMENT,!,  in/hr
               .020
.020

   -.40
                                                               rl.2
                                                               k 1.0
                                                               -.80
 Figure VI-7.  Storage-Treatment Isoquants for Percent BOD Removal
              with First Flush ^- Region II - Denver
                              200

-------
    .00
 .90
  .70-
  .60-
  ,50-
c

tO
 T, cm/hr
,01      .02
                                           T,  cm/hr
.000
                          .15-
,004  .008
  '    —L
.016   ,020
  '   	L
                .000    .002    .004    .006
                              T, in/hr
                      ANNUAL  RUNOFF = 10.5O in..
  .00-
    .000
             .010
     TREATMENT ,T,  in/hr
                                            .020
                                                            008
                                                               .00
                                                                 ri.2
                                                                  -1.0
                                                                   .00
                                                    .030
    Figure VI-8.  Storage-Treatment Isoquants for Percent BOD Removal
                 with First Flush - Region III - Minneapolis
                                  201

-------
.90
   .00
.00
  .000
.01
T,  cm/hr
      .02
               T, cm/hr
.000  .004  .008  .012   .016   .020
                                   002    .004    ,006
                                        T, in/hr
                        ANNUAL RUNOFF = 16,18 in.
           .010,
    TREATMENT, T,  in/hr
                             .020
                                                                .00
                                                             .030
  Figure VI-9.  Storage-Treatment Isoquants  for Percent BOD Removal
               with First Flush - Region- IV - Atlanta
                               ..202

-------
            T, cm/hr
                               T, cm/hr
   .00
.90
.80-
 .10
 .004
  .000
.01
.000  ,004  .008   ,012   .Oj6   .020
                                  . 002    .004    .006
                                        T,  in/hr
                        ANNUAL RUNOFF - 17.22 in
            .010
     TREATMENT, T, in/hr
                .020
                                                       .00
.030
   Figure VI-10.  Storage-Treatment Isoquants for Percent BOD Removal
                with First Flush - Region V - Washington, DC
                                 203

-------
                                                                   (VI-9)
 The optimal expansion path can be found using


                            CT

                           •cs

where        cg  = unit  cost of storage,

             CT  = unit  cost of treatment, and

          MRSgT = marginal  rate of substitution of
                  storage for  treatment.

The values of cg and CT were presented in Table VI-3.


Analysis of the figures indicates -that if c /c  < 25, then treatment
alone should be used.  From Table VI-3,


                       °T       CT
                        CS   122 e°-16(PD) '


 For primary treatment, CT - $2,610/acr^nch.   Thus,  even at zero

 population density,  c /c  - 21.4 so that the optimal  policy is  to
 use treatment only.   For secondary treatment,  letting c /c  = 25  and
 knowing that c  - $9,800/acre~lnch, yields                 ?
                     122  e
                          0.16CPD)
                                           or
                               PD »  7.29 persons/acre.

If PD is higher than about 7.5, then the relative cost of storage is
such that it is again optimal  to use treatment only.  Using 7.5 per-
sons per acre as the cutoff, then some.of the 248 cities, would use
treatment only for the secondary; control level.  The, remaining
cities would select a anix of storage and treatment.

It is simple to find the optimal expansion path graphically for the
five test cities.  Unfortunately, these results need to be'extrapolated'
to the other 243 cities.  It appeared that an analytical approach would
provide a more general and consistent procedure.  Thus, the isoquant
parameters were adjusted based on the runoff in the city under consid-
eration  relative to the reference city, i.e.,
                                   204

-------
     let AR. = annual runoff in city i; i =  1,2,...,248

         AR  = annual runoff in test city for  region j;
           j   j = 1, 2,  3, 4, 5,

Then, the isoquant coefficients are                     :

                                  AR.
                              (8.76  x 10 ).
                              AR.
CVI-10)



(VI-11)


(VI-12)
                              AR
                                    '  and
(VI-13)


CVI-14)
where a..,:b..,  h..,  d  , and f.. are parameters for city i in region
j  and b.-J h.^Jd.,^nd K are the0parameters for the test city in region
j.   The-'tesl ciries  are-1 denoted as follows:   .;,                         •
                     j  =           City

                      1       San Francisco

                      2       Denver

                      3       Minneapolis

                      4       Atlanta

                      5      . Washington, J)C.
 Wet-Weather Quality Control Optimization      •,",.•  •'                '

 The wet-weather optimization problem,  assuming  linear .costs,  may be   ,
 stated as follows:                                        .  ,    .--.;-..-
 minimize
                             Z  = cgS
                                     205

-------
 subject to
                                    - T1)e
                    T,S >_ p.
 Solving this constrained optimization problem yields
       S* = max I- In -
                                               .  •-.
                                         - T^J, OJ
                                                        (VI-16)
 where

 and
 S* * optimal amount of storage, inches,
                           (T2 ~
                                                        (VI-17)
 where     T* - optimal amount of treatment, inches per hour.

 Note that T* is expressed as a function of'S*, so it is necessary to
 find S* first.  Knowing S* and T*, the optimal solution is
where
               Z*  =  CgS* + cTT* ,          ,           ,.... (yi-18)


Z* =  total  annual cost for optimal  solution,  dollars
      per acre.                       ,
Data needed  to  estimate T ,  T   and K have already been presented in
the previous subsection.
                                                                   o
For a primary device,  c  = $4,000/mgd =  $2,610/a6t^:t]:lch «  $1.05/m—.
                                                   riour           dav
For storage cost,
                  cs($/acre-inch) = 122 e0-16(PD)
                                                       (VI-19)
where
PD
               gross population density in persons per acre.
The above optimization procedure was programmed to generate curves,
e.g., Figure VI-11, Control.Costs for Primary and Secondary Units in
Storm Sewered Areas. Atlanta^ .<^m^ng p0^OT; r^lll1tnnt rcmo--cd
versus total annual costs for primary and secondary treatment in con-
junction with storage.  Note that,, for wet-weather control, marginal
costs are increasing because of the disproportionately larger sized
control units needed to capture the less frequent larger runoff volumes,
                                    206

-------
                                       CO
                                       tfl
                                       0)
                                       13
                                       0)
                                       O
                                       4-J
                                       C/3
                                       CO
                                       •u
                                       •H
                                       a
                                       §
                                       OT
                                       3
                                       O
                                       M-l
                                       CO
                                       O
                                       CJ

                                       H tO
                                       O 4J

                                       •M CO
                                       ti H
                                       O 4J
                                       O -<4


                                        •
                                       rH



                                       M



                                       0)
                                       60
                                       •H
   e
   m
'S1SOO  1VHNNV  "1V101
            207

-------
                                                 "
 in


 The^curves shown  in  Figure  VI-11 were  approximated  by functions  of the
                             Z* = ke
                                     SR,
 where
             Z*


           k,3
      total annual cost for optimal  solution,
      dollars per acre,

      parameters,


RX =  percent pollutant removal, 0 <_ IL <_ R  , and


Rj_ = maximum percent pollutant removal.
                                                                    (VI-20)
Estimating Number of Overflow Event
                           the nUmber of ^erflow events per year







           -
                                   208

-------
TABI F vl-9 ANHHAI. CMMTPIH COST? - rnMBi*;Er» AREAS
EPAISTATEI itRBAMlTri ARE* 1 pEF 1 ' 'C'1£P8."
(PEG' ID 1 IfTYl k ' g 25%
1
:
:
!
1
1 CT IBRIOGEPnnt
I CT (BRISTOL
1 CT IDANBljPY
1 CT IHARTFOPD
I CT IMERIDE^
1 CT INFW PR1TAIN
1 CT INEW HAVF*'
1 CT INTRWALK
1 CT ISTA^FDpn
i CT I«ATERBURY
1 CT (OTHER URBAN /i?F*S
1 CT IAVE. FOP STA1F
1! ME ILEWlSTflN
1 ME (PORTLAND
1 MF (OTHER URBAN ATEAS
1 1 ME 1 AVF.. FOR STATF
11 MA IBOSTtiN
SI MA (BROCKTON
1 MA (FALL RIVE1!?
1 MA (FITCHBURT,
H MA (LAWRENCE
11 MA (LOWELL
11 MA INFw BERFOI'D
1 ! MA IFITTSrjEI r»
11 HA I SPRl^GFIF.I P
Jl nA ! WORCESTER
11 MA (OTHER URBAN AI^FAP
11 MA IAVE. FOR ?T*TF




1 I MH iMANCHESltr-
11 MH |NASHUA
H MM IOTHEP URBAN. AFFAS
i i
11. NH IAVE. FfjP STATE
11 RI IPROVIDENCF
it RI IOTHFR URBAN ARE*?
1 1 RT IAVE. For? STATF
VT IU&BAK: AREAS
i i
1 1 VT IAVE. FOR Sf*TF
1 1 i AVE. FOR RgPirw i
21 NJ IATLAMTIC CITY
21 Nj IK'EW YORK CITY MET!M.<
21 MJ 1 PHILADELPHIA MfTRI.i
21 NJ IVlNELAWD
21 MJ IAVE. FOR STATE


21 NY IAL3ANY
§1 MY |BIMGHAMPTnM
1 NY (BUFFALO
21 NY (NEW YORK CITY
81 NY 1 ROCHESTER
|l NY (SYRACUSE
21 NY IUTICA
21 MY (OTHER URBAN-APEAS
21 «IY IAVE. FOR STATF
21 IAVE. FOR BEGIMM 2
r
F,
I
l\

5
c
5
r,
5
5
5
5
' 5
5
5

olu i
o.u
10.65
0> 1
?9.6l
""n^o i
10.48
10.5^
10.56!
iilc
c.C i
»:<••
(>:c
i' : r, 4 ?> i
7.4? 0.04?
4.91. I n.041 I
5.69 (1.041
5.6° P. 041
7 Q "^
0 * 0
17131
9.t()

-------
 TABIE e
"c"

 DC
    IflTHER  ORHAM A--5i-:4;

    lAVp. rnp STATF

    I WASHING ri'lM.n i* ^
    I         -    ...

    IAVE. FOR .STATC
                     nr  MFT'JO
     MO IHTHFP ijR^Av

     ••ID IAVE. -FOR srArc
        I AI.LEMTOUN
        I Al T"riMA
        I ERIE
        IJOHMSTOHM
        (LANCASTER
        IPHH.AOEI PHJA
        IPlTTSBURGH
        1 READING
        !if^ES-BAPRL
?A
PA
PA

tt

«
PA
PA
DA
OA
PA
OA
      VA  (.NEWPORT nr»'ti
      VA  IMDRFQLK       ft
      VA  (PETERSBURG-    *
      VA  I RICHMOND
      VA  IROANQKE
      VA  I WASHINGTON rc  ...
      V'A  IOTHFR  URPAV APfAp

      VA  IAVE. FOR RTATF
                  STATF
      WV  lUHEFflKG"11" "F1r"'
      fV  I OTHER  UPRA\  AfFAp

     _*'V  JA^E. FPR  STATE

          IAVE. FOR'PECI"'?""";!"
     >*»n<. I •*•••• — — — — •*««»«•.»-. — — _
                                                      CnNTRQI. COST
                                                        rS/ACRE)
                                                             *  i S
                                 5!
 J   2,,,
;i   29.1
«4l

R«.
                                    I      I       II
                                    I2B."710.0571 1!9.!
                                   . I— .,-.1	I—... |.
                                   i!  O.IJ IM.O   I   0,1
                                   »   Oi'.' I'.'.O   I   Oil
                                    i  O.'J |n.r,   I   o.|
                                    I     . i       i      |
                                    i  O.M l".0   '   O.I
                                   • I ----- I ----- I -----j.
                                   jl11.51 In.0431  ^u.)
                                   !'  e.r?T!i).o42|  25!"
                                                   22.1
                                                  490.

                                                  ""o7
                                                     C.
                                                     0.
                                                     p,

                                                  To"7
                                    P . U 1 (' . 0
                                        i'
                                         'l   75!l
                              i
                            .-112:
                            5, «.
                            si o;
                            si o:
                            Ji!p;
                              ! p,
                                                     .
                                                   isTi
                                                   24.,
                                                      I

                            51 6
                              I 6

                           J.*:
                              Ill
                                      00|{i.C46l  44. i

                                      lr» i d.ofln i""n . l'
                                      0  Ki.O   I   O.I
                                      0  I I-. r,   |   O.I
                                      '.!  1 'i. 0   !   0.!
                                                 24.1
                                 0?H'.041   14.1
                                 73 I''.040 I   10.1
                                 33IC.042I   18.1
                                 01'('.C«2I   17.I

                                 01 I c.0421   17.!

                                 2?l"7o48l""a7l'
                                 i 9 jf 1(543 I

                                 1°IH.04?|  24.1
                                                    0
                                                   «i
                                                   70
        16%7:
         60.
                                                       30.
                                                       27l
                                                       51.
                                                       48.
                                                                   374
                                                                   374.
                                                            	_, 374.

                                                            ""7 I 35467
                                                       >....(....«
                                                          O.I   0.
                                                          O.I   0.
                                                          0 .    0 .
                 O.I
              "29471
             0.

          "4537
                                                               !Z2:|  ill:
                                                               193. I  294.
                                                               34611  5351
     II«:!"IT$:
     203.1  311.
       O.I    0.
     447.1  7ii.

    (447.l  711.

    '"i71 "1277
       0.1    0.
       0.    0.
       O.I    0.
     254.1  390.
     l«2.l  293.
     415.1  646.
     199.1  305.

     199.1  305.
              107.   162i
               74.   110.
              144.1  219.
              136.1  206.

             _136.'j  206.

             "4157l"&767
                               210

-------
TABLE vT=9 ANM.-AL r.n\r«tjL CUSTS •
i i i
EPA (STATE! URBANIZED APFA IpfF
REGI 10 1 IrTY
ai AL IBIRMINGHAM
ai AL IG40SDEN
41 AL IHUNTSVIILE
41 AL (MOBILE
41 AL MONTGOMERY
ill AL ITUSCALCIPSA
41 AL (OTHER URBAN 4FEA?
II
41 AL IAVE. Fen STATE
tt! FI. IFT LAUDERHAI, F
al -PL (GAINESVILLE
41 FL IJACKSOMVILt t"
41 FL IMIA^J
41 FL (ORLANDO
41 FL IPENSACOI.A
41 FL IST.OETERSP.lmr;
41 FL ITALLAHAS3FE
41 FL IT*MPA
4' FL (WEST PAI.M BPAt>
41 FL'I OTHER L'KPAN! 4RFAS
1 1
41 FL IAVE. FOR PTATF
41 GA (ALBANY
41 G* (ATLANTA
41 GA (AUGUSTA
41 GA 1 CnL''MRiig
41 GA 1 n»ACnN
41 GA ISAVAWAH'
al GA IOTHF.R URBAN A&FAS
II
41 GA IAVE, FOR STATF
ai KY (HUNT INC TON «FT»"
41 KY ILEXl'iGTO'. STSIE
41 SC ICHARLEST'"1'"'
41 SC (CniUMBlA
41 SC I6REENVII I.F.
41 SC 1 OTHER URBAN A Rf .»..
U
.'1
4
14
4
'»
4
U
l-\
<\
i\
4
4
4
4
k
0.0
0.0
o.u
O.U
O.U
0.0
0.0,
0.0
o.'o
olo
18.99
0.0
O.d
O.U
0.0
0.0
IP. 99
li'.bl
l6!4?
10.4?
7.1s
O.U
U*fi3
9.2'B
0.0
bio
0.0
O.U
olo
O.U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.9?
0.0
12. 8*5
KEn AT
•T-20
~CS.
B
(i.O
o.O
?:S
o.O
o.C
n. 0
(i.O
''.0
c.c
t'.O
o.O
0.041
0,0
o.O
0.0
0.0
n. r,
'i.r.4i
_" » 0 4 1
0.038
0.040
%0
'1.040
olo««
'.>Io'c3
t1 . 0 M
'i.O
'•.C
•1.0
".0
'1.0
o.o
.i.C
't.n
'i.O
o.O
n fi
".C
•1.0
'i.O
0.0
0.0
o.C
i.i . 0
'i.O
o . o
». 040
(i.O
U.O
(1.040
0.040
11.040
41 IAvI. FOR REGION a \ 10.9fii 0.040
?EAS
25%
S:
0.
jj:
o.
oZ
1:
8:
si:
53.
-
23.
21,
27?
0.
0*
Ol
0.
o«*
o"
0*
8:
0.
o,
i:
o.
38.
j:
35*
35,
30.
CONTRt
($/
SOX
9,
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
146.
0.
0.
0.
0.
0.
1«6.
146.
37.
86.
41.
P4.
0.
ISO.
77.
77.
61.
0.
1.04.
70.
79.
0.
0.
0.
0.
0.
8:
0.
c.
0.
c.
0.
0.
0.
0.
0.
0.
ot
0.
10§:
•>«•:
95.
95,
82.
& E^s
kCRE)
7SX
0.
8:
jj:
0.
p
0.
406.
8:
jj:
406:
406.
10?:
?2a:
o.
2os:
208.
176.
0.
Ill:
0.
o.
f>.
0.
o.
o.
o:
o:
0.
0.
0.
0.
.8:
0.
o.
o.
o:
0.
Z7l'
0.
259.
2?5.
r
0.
«•
8:
8:
0.
8s
2*
o.
0.
610.
8:
8:
610*
610.
^47*
ill:
3i"§:
310.
4791:
307:
3!50.
0.
0.
0.
0.
0,
I'-
ll
8*
0.
£•
0.
0.
0.
0.
§:
0.
0.
^o9,
387,
336.
211

-------
• U.F-M I O I A

 REG    I!

 »4»| «•«<
  IV t   •<
        -P   ANNUAL C'lNrR'U

        E [   URBANIZED ARP.A


        "       """    """"'
                             C"STS - CHMPIHED ARFAS
                               I    I  EON VT-20 I
                                       CORPS.
                                                  CONTROL COST
                                                        CRE)
         I CHAMPAIGN
         (CHICAGO
         !!?*VENPQ|U
         IDECATUR
         UOLIET  ... -'
         IPFORIA
         IROCKFORD
         (SPRINGFIELD
         i OTHER URBAN;  APP;»S

          AVE. FOR  STA-TF.  *
     IN
         ! CHICAGO   .
         lEVANsVILLF
         IFHRT WAVNF
         ! INDTANftPm'r
         (LAFAYETTE
         IMUNCIE
        .I SOUTH DENH
         TERRA HAUTE
         I OTHER URBAN

         JAVE. FOR STATF

         i AN"AR,ROR
         I BAY CITY -
         I DETROIT
                "
          -
        ISLAND RAPIDS
        I JAC*SON
        IKALAMAZHO
         [SAGINAW
         IOTHER URBAN APFAS

         JAVE. FOR STATE

        "'DULUTH
        i MINNEAPOLIS
         ROCHESTER
         OTHER URBAV! ARCAS

        JAVE.  FOR STATE

              """"""""""""
        I CANTON
        IClNCINKJAfl
         CLEVELAND
                 -
        •HAMILTON
    OH  IVOUNeSIOWM
    OH  IOTHER URBAN  APEAS
    OH  JAVE. FOR STATE

    "WI'UPPLETON"	
    wi
            }§HA'
       IWof888E
51
 KI I RACINE
 WI [OTHER URBAN AREAS

^Wl^jAVE^rOR STATE —
 „!,.         -            (S/ACRE)     •  |

Dl-l—i—.j.-J—|.SSL|.2£i.U75x j  8?x
  ""  • 	 -       oa|   o.l   ni    ft
                   O.I

  3i?6T$fli(i:647   "2*!
     7118111.039'
                                  31 • o: o ! o: o
                                  3  0.0 lll.O
                                  I i r
                                                     O.I
                                                     o..!
                                                              -o.l
                                                                     O.I
                             3i 5:§i!'!:o38i
                             31 0.0  10.0   I
                              'I23:86|(!:o46l
                               123.86 Ic.. 046 I
                             li'sTriioToirr
                                  5IJ.1JII.. .U«11
                                  31 13.91? I/I.C41 I
                                  3 11 /1. 12 I (!. C 41 I
                                  31 8.3410.0391
                                  31 >6.3*!O.C39|
                                  31 0.0   n.0   I
                                   I 10.04 I('.C40 I
                                   !      I      I
                                                  ||:j  2||:|  Jjjij
                                                  u;i   37;i   97:1  i«s:
                                                  25"!   66*1   7B1*1  '  °*
                                                  7&:   242:i  Hi:fills:
                                                  76.1. 242.1  771.
                                             35; I
                                             20*1
                                                  106.1 29;
                                                   7-5.1
                                                       7-5.1  204!

                                                       75'. I  204.
                                         Id.C   I
                             i! a-
                             3l!3l:if!?:Kil
                                                                  1225.

                                                                  "ill.

                                                                   185:1
                                                                   438. I
                                                                   462.1

                                                                   IZfcl
                                                              305.
                                 3| 6.1610.0391
                                 31 0.0  10.0   I
                                 31 8.67KV.040I
                                                 30
                                     '.041 I
                                                        O.I
                                                        o: i
                                                       31.:-]
                                                               '.-i  i28°:i
                                                               !.!  SI7.I
                                                             O.I
                              '0. I
                             93.1
                            262:
                                                                 ?'*:!
                                                                 137. I
                                                                 3§6. I
                                 .l.'12.0!»|(i.0«l
                                 ..-  — -  i"~ "i  " /' m-1    - -* a *  cDc0J j 9o 9 I

                                ' • "sla2 I "o4?. I "23" I "kZ~ | "16?! "25!! !
                                   "021" ft'tQ i  1-51   *.« " I  12.Z«! ?21*!
                                'i;a?io.o39i
                             -»t  7.7? I o. 040 I
                             31  0..0  10.0   I
                              I  7.56|(i.C40l

                              I  7.56JII.040
                                                         :
                                                                  122.
                                                                  23«.
                                                                    0.1
                                                                  229.
                               .:—!»!:!*i2:222j..!i:i_-«ii  153'' ??9*'
                                 31  c.J2 I o.O  I    0.    0 . l"""o" I ""*™o"* I
                                ..Ihi-SS S-JISi!   59-  122-!  ?2Z:  602.*!
                             li  «.0010.0391
                             3117.4310.0421
                             3117,0810.0421
                             31  0.0  I 0.0'  I
                             1.116166 11«:041 I

                              35:i5|ti:o56|
                                O.O.io.O   I
                                    9;61|0.039
                                 ^110.3110.0401
                                 3112.9610.0401
                                  111.2610.041)

                                             22:
                                             it:!
                                             if: I
                                                            18:
                                                            3
                                                                  226,
                                                        O.l   O.I   O.I
                                                      130.  365.  550:I

                                                      s?j: aS5|:Li5J:l
                                                       .5*  .,8. ••«..!
                                                       ill  i.8«:i
                                                       6

                                                       fc
                                                       l*:\
                                                          i  i5s:i
                                  I- - — —	--—»..   ~ * v i   vf«i


                                   ll.26lo.C4ll   31.1   87,1
                            Ui:
                            ?42:
                            242.

                                        10.041    32.1   88.   246.
 9       #VE. FOR REGION   5      15 06
..I.....|mmm*mmmmmmmmm2™	^|_„ |iSl.Z
                                        10.041
                                         0.040
                                         0,0   .
                                         0.0501
                                         g.o   i

                                         8:849!
                                                 i?:l   42:
                                                 JI
                                                 e§:
                                                 g:
                                                 69, •
                       ?i
                      27!:
                        6«
                      23§:
                                                         %'
                                                       Wi
                                                            12
                                                             0.
                                                           95I:
                                                             9-
                                        -ii—u_£!; i .225*1'
                                                           7«»
«:
                                    2s2!!!|_.!^:| 13T« •
                                                           79*.
                                                           >.•«!,

                                                           416.
                                                           »(9B»W«
                                                             365.1
    S71.I
    IB*:!
    IB?: i
    **%'\
   157?:
      O.I
                                                                ISO
8:1
                                                                      i
                                                                130S.I
                                                                <•«.>•
                                                                690.
                               212

-------
TABI P Vl-9 AMM.JAL CM'irtJ'M C'l?
if !
IEPAISTATEI . MR6AN.'17t~v 4 TX lAVt. FOR STATE
, ; 61, IAVE. FOR PEGIiU 6
rS • C'VlPI' fi AT
1 r>i-.; VT-20
?TV| kC''C
-~H\'".v
•'U 0.0
ill 0.0
1 5.5?
1
1 5.5?
"I P . 0
a i o.o
41 n . 0
fll n.O
41 O.U
••fll 0.0
1 0.0 -
1
1 0.0
21 0.0
1 0.0
. . 1

3 1 0.0
31 0.0
31 0.0

: I
1 0.0
SI' 0.0
31 0.0
31 Olo
31 IB. ft?
31 0.0
3 ! 0.0
*!• 0.0
^1 8:8
31 0.0
3li7l77
3 1 0.0
3!JpTo

' 31 0 1 0
•31 0.0
31 0.0
31 0.0
3| no
31, 0.0
31 0.0
'31 0.0
31 oTo
31 0,0
310.0
."•.l?2l§0
122.50
110.34
FS.
3
[«.03B

ii. 0
ii . 03fl

O.C3P
c r,
'i.O
n. 0
ii. 0

i'*0
».. o

'i.O
(I.O
".0

t'.O
'.' . 0
(i.C
n. 0


'I . 0
(i.O
!).0
(i.O
0,040
ii. 0
'I.O
".0
't'.l
'( ^056
! *.r,
(.' . C
i) . 0
il. 0
ii . 0
n.O
ii. C
U. 0-
(i.C
II. 0
".0
0.0
(i.C
".0 "
f'.O
•1.051
(1.051
n.0«8
F'AS
CHNTRTL COST
25X
14.
0.
o.
1 y .

14.
0.
o.
0.
0.
0.
0.
0.

o.
o.
0.

o.

ol
o.
o.

'0.
o.
o.
o-I
51*
0.
0.
o.
o.
- o .
1"3^
140 I
o.
0.
0.

o .
0.
0.
o.
o.
o .
0.
«8:
*»o.
35.
($/«
502
37.
0.
,2*
37.

37.
0.
0.
0.
0.
0.
0.
0.

0.
C.
0.

0.
0.
0.
0.
. 0.

0.
0.
0.
0.
1 ^ 1 •
n.
^ m.
0.
0.
61
621.
•si*:
0.
0.
0.
0.
0.
0.
2-
0.
0,
• 0.
0.
0.
0.
277>
277.
111.
ORE.;
75*:
96.
0.
«°-
"6.

96.
0.
0.
0.
0.
o.
0.
0.

o.
0.
0.

0.
0.
0.
o.
o.

0.
0.
0.
0.
3*7.
0.
0.
0.
3:
o.
2516.
187?.-
o:
0.
0*
!;
0.
0.
0.
o.
0.
0.
0.
99!:
992.
371.
B5X
141 »
0.
0.
1 4 1 .

141.
0.
0.
0.
0.
0.
0.
0.

0.
0.
n.

0.
0.
0.
0.
0 0

0.
0.
0.
fl°*

ol
0.
0.
8.
0.
0.
4 U 0 4 ,
0.
3157.
0.
0.
0.
0.
8:
0.
0.
0.
0.
0.
0.
0.
1 J665*
1665.
608.
213

-------
r
.TABLE VT-9 ANNUAL CONTROL Cl'STS - CHMPIN'EO ARPAS
IEPAISTATEI URBANI7EO ACJEA
IREGI ID 1
71 IA
?! IA
1! 8
71 14
KS
71 KS
71 (C9
71 KS
71 KS
71 MO
71 MO
71 MO
71 MO
71 MO
MO
71 ME
71 ME
71 ME
7"
1! ®
fll CO
81 CO
81 CO
81 CO
81 MT
81 MT
• 1
81 MT
81 ND
81 ND
81 3*
1
ICEDAR RAPIDS
IDAVENPORT
IDES MOINES
IDUBUQUE
ISIOUX CITY
IWATERLOO
IOTHER URBAM ARFAS
IAVE. FOR STATF
ITOPEKA
IWICHITA
IOTHER URRAM A&EAS
i
IAVE. FOR STAT^
(KANSAS CITY
ISPRINGFIEI.D
IST. JOSEPH
1ST. LOUIS
IOTHER IJRPA.N AREAS
SAVE. FOR STATF
IOMAHA
IOTHER URRAN ARTAS
IAVE. FOR STATE

(COLORADO SPRIGS
IDFNVER
1 PUEBLO
IOTHER URBAN AREAS
IAVE. FOR STATF
BILLINGS
1 GREAT FALLS
IOTHER IJRBAM AREAS
IAVE. Ff)R STATE
IOTHER URBAN AREAS
IAVE. FOR STATH
ISIOUX FALLS
OTHER URBAN ARC4S
^81 SO JAVE. FOR STATF
81 UT IOGDFN"" """
g UT IPROVO
si UT ISALT LAKE CITY
8 UT IOTHER URBAN A°EAS
I...).....
i
1 81 WY
... I.....
81
WMM«WM *
URBAN A«iAS
AVE. FOR $T»Tr

1,'EFl "'COEFSJ
" ll 9*6l!o°§40
312510710:056
3 0.0 0.0
CONTROL COS
CS/ACRE)
1 25% 1 50% 75%
T
65X
i "26- i "7?: "tiJF 'ill'
I lOlJl 405: 162&: 283$:
310.010.0 1 O.I 0 . 0 1
3j?il:{i5 !i:g55| ,8:j 3ei: ,548:
12/1. 05l". 055
31 9.53 0.040
3i o!o"i6:o
1 9.68 ".040
1 9.68 0.040
31 P.O 0.0
3II4;ol 0.041
31 o.O M'.O
31 7^69 o:G39
I fi.19 0.039
1 8.19 d.039
31 C . U o.O
3i °.98 0.041
1 9.9810.041
1 9.98 0.041

l\ O.U ",0
21 P.O 0^
2119.37 0.051
211/1.42 0.041
115.04 0.045
1 15.04 (1.045
21 0.0 10.0
21 0.0 O.C
1 0.0 0.0
1 0.0 0.0
31 /I. 93 10. 039
/l.°3 0.039
31 7.36 0.040
1 7.36 0.0401
1 7i36 C',040
gjTo'o'lo.O "l
I 0.0 0.0 1
21 0,0 10.0 1
1 0.0 0.0 1
1 fl . 0 0.0
21 o7o 0.0
1 0.0 0.0
llSr?? (U044
1 96.1 385. 1542.
26,! 70. IS?!
27,1 73. 199.
0. 0, 0.
26TI 7\, 195:
j 26. j 71. 193.
O.I 0. 0.
39^ 109. 306:
O.I 0. 0.
10 ?tt <,«
ii:l 13: id:
22. j 59. 158.
1 0,1 0. 0.
28.1 77,1 214.'
..!.:!..!!:! 22"-
8« °-i °r
! rf: Hli ill:
1 «6.j 141. «34.
«6. 141.1 434.
2" 2*1 °«
8: 8: 8:
	 £- .0.1 o.
n:! "";: -•;«:
13.1 35.1 94:
..ihl.Jh! M-
18:! 12:! 13i:
20.1 54.1 148.
O.I O.I "~0^l
8:| 8:1 8:
O.I 0.! 0.
o.i o.i °°or
O.I O.I 0.
""II^i "SIT rilST
U« 1
1 0 e
2688?
26B8.
2P2.I
297e
1 Os
2B7.
2S7.
«6l:
ill:
235.
322°
322:
322.
349.
0.
0.
1468.
438,
684.
684.
O.I
0.
140.
140.
140.
221.1
221 J
221.1
0,1
2*1
O.I
O.j
0.

O.I
&&3 1
                                                    214

-------
TABLE VT-9 ANMIJAL -Ci fiTO' •!.. C"?
EPA 1 STATE 1 URBANIZED A»FA.
RFGI 10 1 • - .
91 AK 1 URBAN 4REA<3
91 AK IAVE. FQ3 STATE .
91 AZ 1 PHOENIX
91 AZ 1 TUCSON
91 AZ 1 OTHER -URPAM .'.t-'FAS
II
91 A 7 IAVE. FOR STATF
.91 CA IBAKEPSFIKlD
91 CA IFR.ESNO
91 CA ILnS ANCELFS
91 CA IMODESTO
91 CA IfJXNARD
91 CA (SACRAMENTO
91 CA ISALtNAS
9 1 CA ISAN rjFRNANrT',0
91 CA ISAN DIF.GO
91 CA ISAM FRA>4C15i;n
91 CA ISAKi JOSE
,91 CA 1 SANTA BARBARA
91 CA 1 SANTA ROSA
9i CA ISEASTOE
9' CA ISTMI VAI.LFY
91 CA 1 STOCKTON
91 , CA IHTHFR IIRPA": Ar?rs«
1 '!
91 CA IAVE. FOR PTATr
91 Hi 1 HONOLULU
91 .Hi InTHFR .||?RAK- VF"''
II
91 HI. IAVE. FOR STA ru
91 NV ILAS VEGAS
91 MV IREMO
91 MV lOTHF" USBANi AI»EA3
1 1
91 MV IAVE. F'.IR STATr
• 91 • IAVE. rOR RFT.TO'J O
101 p IB'MSC
toi ID IOTHFR URBAN; A^EAS
101 in IAVE. FUrt P'fArF
TSl OR 1 EUGENE
10,1 OR IPORTLAN'0
101 OR 1 SALEM
101 nR IOTHF.R UR^AN AT is
.1 i
101 OR IAVE. FOIJ STATH
Toi WA 1 SEATTLE
101 *A ISPHKANE
10! W* TAC"MA
101 WA' (OTHER UR3*N /.QFAS
.11
101 WA IAVE. FOR STATfT
Tot IAVE. FOR REGION To
i IAVERA^F. FOR THF u.s.
TS - CHM3I
rn.-i v
t»EF COF
pTV fc
1 i /( . fi 3
2 O.U
?. o^u
0.0
0.0
1 O.D
1 0.0
ti o.o
t o.u
1 7*29
1.1 olo
1 O.U
1 0.0
i 27>y
3 o.u
I o:u
1 0.0
1 ' O.U
1 O.U
1 ->r'^r,
i
1 O.U
0.')
O..IJ
ij1 p.°,
J2/I.76
Zl 0 . 0
O.U
O.U
T T«.7|
I j tug
17.94
Hl3ll69
1 l!:iS
11.22
113.17
npn AR
T-20
FS.
B
C.04C
(i.O
(i.O
n.O
0 . 0
(i.O
(i.O
n.O
0,0
»i.f.
"lo
n.O
c.O
'i.O^S
• Ho
•'.C-
i.O
'.0
n'.n
'1.0
c.O
(|.03
-------
.TABLE  Vl-10
 EPA!
 RFC I
 •T.« I
   1!
   i!
   1!

   I!
       CT
       CT



       I
       CT
       CT

       CT
     • MM«
       MF
       ME,
              URBANI7F..D
     .1—.-	
     (BRIDGEPORT
     (BRISTOL
     I-DANBURY
     I HARTFORD
     IMERIDEN
     •••"••  BRITAIN
         (STAMFORD
         IWATE9I3IJRY
         IOTHFR U^B*^• ATtEAS

         [AVE. FOR ST,*.TF

         I LFuilST",""••"""-•"•
         I PORTLAND
         IOTHFR URBAN
  1 1
 .. i

  I!
  i:
  1 1
  1 1
  ti
  ] i
   !"
  M 1 ••
  1 j

   I

  1!.
  1 1
 MF

~",l"
 MA
 MA
 MA
 MA
 ,MA
 MA
 MA
 HA
 MA
 "A

 MA

"NH"
 WH
 MH

 WH
«...
 RI
 PT

 RI

'VT"

 VT
           PTATF
 I BOSTON
 I BROCKTON
 IFALI-  RIVER
     JOTMFR URBAN A"FAS

     JAVE. FOP .«!./•!F

    'IHANCHESTE!?
         I OTHER  UR3AN
              FOR STATF
I OTHER 'JP?Ah;

"AVE. FOt? STATF

i URBAN" AREAS"*"""""

 AVE. FOR .STATE
  II
 I!


 21
 NJ
 NJ
 wj
 NJ
 MJ

 NJ

"NY"
 NY
 NY
 MY
 NY
 NY
 NY
 NY

 NY
         JAVE.

        'IATLANTIC'CITY"
         NEW YORK CITY
             ADEI.PHIA
'VINELA'JO

JAV£.  FOR STATF

i ALBANY""""""""
IBINGHAMPTON
I BUFFALO
     YORK CITY
IUTICA
IOTHFR  URBAN  AREAS
     FOR  STATF
.£!-....!*y.Ei FOR REc;inN   2
                          - STORM AREAS
                       PEF!
                       rTY!
                                                     CON
                                                              D9T
                         51  9.4610.043)
                         pill.75(0.043)
                         51  9.0710.0431
                         5110.6510.0431
                         5110.39lo.043l
                         5  fi.35 I 0.042 I
                         51  9.6110.0431
                         51  3.2610.0391
                            "
                                              !  25% I  50%' r?5X I
  5llo:48Jo:6'43i
   I  9.3610.0431

   I  9.36|o.043

  pi  cTo i".o
  5  0.0 10.0  I
     0.0 I 0.0  I
   I      I      I
   i  o.o -IM.O  l
---!.._..|.....|
  5.115.23
                            5M0
                            5
                                            28.1
                                            12:!
                                            lh\
                                            24^1
                                            Z5:l
                                            28.
                          ,1
                                         H
81.

8:
                                                        19'
                                                        234:
                                                         4:1
85% I

358.1
469.1
339.1
416.1
395.1
303.1
358.)
 «?.!
                                 i'.0«.SI   27.1  79.1 230.1 352.1

                                 .:£--!. JZ:L.Z!:i_230'' 352.l
                                                        0.1
                                                     §:
                                                     O.
                              1 10. 043
                                                             0.1

                                                          II
                                                                '
                                                               O.I
                                                               O.I
                                                               O.I

                                                               O.I
                          j §:2  io-rr!  35:!  *    »j
                        51 ) I.OP It'.0431  33!l  97!  pflg
                        51 7.9PIO.&42!  23!l  65!)  JR8*
                        p !8:g5l3:H  '8:!  8§:,'  25§:
                        51 8.62IO.O«2I  25!l  71!  an**
                                5 I C . 0  I 0 '. 6
                                5l 8.6210.
                                  j 1 4 . 01 I

                               	114.01 |f>.G44i

                                p!~oio"iu"rc"~r'
                                5  0.0  10.0   I
                                  I 0.0  lo.c   |

                                  I 0.0  I 0.0   I
                              0.
                            203.
                            381.

                      127.1 381.
                                                  ..... | .
                                                     o . j
                                               0.     0.
                                               0.     O.I
                                ..
                             !  P.09 to.
                             I      I   :   I
                             I  *».09l(!.042l
                                   0.0 I (.' . 0
                                I

                     l^'ill-i'
                     ....I:!.1!*'!
                     ""oil """or!1
                        o.l    o.l
                     »....i.....i,
                      107.1  318.1
           657.
           385.,
           406.1
           3B4.I
            O.I

           isl'l
           ill:
            O.I
           310.1
           592.1

           592.1
           ....(
            O.I
            O.I
            Oil
              I

         ....If
          297.1
          297.1.

          297.1
         • MMMHI |
            O.I

            O.I
                                P!14.09|(l.c _.
                                51  0.0 iO.O   !
                                51  8.091 o.0*»2 I
                                5 I  7.ft7| t

                               Jl3.54J,

                               '51107721?	
                                p  0.0 10.0   I
                                51  5.15 I 0.041 I
                                5j29.8Jlo:o55j  :

                                i\  8!lPl()!c4l|
                                51  9.3010.0431
                                 121.90 I 0.0551
                                 I      I      I
                                . 121.9010.0551
                               ••I .....|.....j..
                                 I16.7PI0.051!
                                                102.

                                                12J«
                                                  0.
                                                 67.
                                                 64.

                                                122.
                                               MMMMM
                                                 94.


                                                .»!:


                                                'B:
                                                335,

                                                335.
                                               B»»»MM
                                                216.
                            301.
                            382.
                              0.
                            i?42!

                          I  364.
                          | mmtmmm
                          I  27?'

                          !i9oi:

                            8!l
                           1313!

                           1313.
                           .....
                            786.
                                                                   0.
                                                                 293.
                                                                 279! I
          565.1
         .....
          432.1
          178:1
         3m:\
        !  3SZ.-I
        I 2271.j
         2271.1
         .....
        liShl
                               216

-------
TABIF Vl-10  ANNUAL COM RrH.
   I      '
 PAiSTATE I
 FG|__ID_I

 "3I""DE t
  3!   DC I OTHER UPBAM
  .2L.2E.
  3.  DC,

  31  DC

  "31MD"
  3<  MD
  31  MD

  31  MD
  ..i-----
  3!  PA
  31  PA
  31  PA
  31  PA
  31  PA
  3!  PA
  31  PA
  31  PA
  §1  • PA
  31  PA
  31  PA
  31  PA
  31  PA
           . fCT, STATF

       I WASHI~!cTo»»r»Tc.
            FOR  *TATF

       IBALTIMORF
       IWASHIMOT'.U'  OC "fTWf.1
       IQTHFR  URBAN A&FAS
       I AVE.  FOR  STATF



       IAI..TUQN.A
       II.ANCASHT
       (PHILADCI P
       I PITTSBURGH
       I READING
       ISCRAMTCiN
        '
 31  PA
              UI78A-M

       I AVE. POT STATf-'
31
31
31
31
31
 3!
.-!.
 31
 31
  31
...|.
  3t
...I.
    VA
    VA
    VA
    VA
    VA
    VA
    VA
        I
              U'^fiAN
    VA iAVE. rnn STATF
      wv
      wv
      wv
      wv
      wv

      wv
        ISTE'.'RENVIi.l.r yrTR;l
        I WHEELING
        I OTHER URBAN AT AS

        I AV£. FOR STATIC
                                       AREAS  '
                                     VT-20  I
                             FFI   CHEFS.   j

                             IILJu-S-JU-USSL
                                 0.9ai().C«3l  29.
                                                    CONTROL COST
                                                      CiR/ACRE)
                                   .
                                I 9l94IO.O*m
                                 i 11 .S6H'.P4'.ll
                                . i ..... I ----- I
                                5110. 9310
                                 !l0.96|0.043 I

                               "siTusl! JU043Y
                                    .
                                ?l RllOUi.Ctt?
                                ci 1 0.0  (.' . 0   I
                                -._.
                                51  0.0  If . 0   I
                                5 II C. 6* It' •
                                HI 13. 5« I d.
                                    .
                                 I 11.7«IO.C«3I
5 I 10.KM 0.043
5!  0,0  in.O  I
rt I  0.0  IO.C  I
 I  9.61 It}.043 I
 I      I     -I
               29.
               29.


               35.
               • »*•

               3?.r
               32.

               II"


               i
               ?§:
               22-
               ?2;
               20!
               34.
               34,
               • •»•«••
                 0,
               31,
                UO,
               "0.
                30,
                23
 35
• MM<
 29
  0


 1*
 28

 28

"II
                                                     52L
                                                    ""B".
                                                      84.1
                                                     S4,l  244.
                                                          75X

                                                         "2441
                 85X
                9 Wfl*B
                 374.
                 370.


                 374.
                                                    105.1  311.
                                                     31:1 2-79;
                                                     95.1 279.
                                                     '7?:!

                                                     till
                                                     58.1
                                                     67.1
                                                     86.1
                                                     248.1
                                                     67.1
                                                       O.I
                                                     70.1
                                                     58.1
                                                     101.

                                                     101.

                                                    ""o"
                                                     91.
                                                      103.
                                                      103.

                                                      103.
                                                       0.

                                                      5?:!
                                                      81. I

                                                      81.1

                                                     Tool i
           294.
           203.
           168.
           278.
           166.

           151:

           !«:

           203'.
           164.
           305.

           305.

           """"
           267.
           359.

           2541
                                                             306.

                                                             306.
                                                             M»«W
                                                             249.

                                                                S-
                                                                0.
                                                              144.
                                                              235.

                                                              235.
 481.
mm^mm
 427.

 430^

 430.

"4531
 310.
 257.
 429.
 252.
 294.
 384.
1317.
 294.
   0.
 311.
 250.
 474.

 474.
• «•.—••
   0.
 409.

 3ft

 1%
 471
 47S

 473

 "381
    0
    0
 219
 360

 360

 "461
                                 217

-------
T4PLE VT-10  ANNUAL Cf]NT,7!)L
 ...I.
   41
   41

   41
   41
   41
   41

   41
 ••«•» | •
   41
   41
   41
   41
   41
   41
   4 I
   41
   41
   41
   41
    I
   41


   41
   41
   4 I
   41
   41
   41

   41
—.-(-,
   4 I
   41
   41
  4 I
  4 I
   I
  41
...I..
  4 I
  41
  41
   I
  41
 .-I..
  41
  41
  41
  41

  41
  4 I
  41
  41
       STATE
             URBANIZES
         AL
         At
         at
         AA(:
         AL-
         AL J
 FL



 I
 FL

 ft
 FL

 FL

"GA"
 GA
 GA
 GA
 GA
 RA
 RA
         (BIRMINGHAM
         IGADSDEN
         IMQBTLE
         I MONTGOMERY
         ITL/SCAI.OOSA
          OTHEP UR3AM
         {JAcKpViiTE

         !ORLANDO
         MEST  PAI.M  3&ACH
         OTHER U984.-J  Ar*r
                 Fdi?

            lALBAMy""1
            (ATIAMTA
            I-AUG'JSTA
            'COL'IMBUS
           IOTHFR

           IAVE. FPI
                  RTATF
        KV

        KY
        I OTHER
                     A.~<(TAS
        MR
        58
     we
     MC

     NC
     MC
        (AtfE. FOP S'TiTf

        I BT" "i

              For?
     NC
     MC
     VC
        IHlGHPQi»jf
        'RALEIGH
                     A u *\ - .
                  inaA'j A'jfr*s

                 FOR  STATF
41
41
41
41

.41
-I.
41
41
41
       §c  (CHARLESTON!	""'
       SC  (COLUMBIA
       |C  IGPEENVIILE
       SC  OTHER IJR'JAN  APEAS

      _SC^JAVE. FDR STATE
       TN (MEMPHIS
       TN INASHVII IF
       TN IOTHER UR'SA

                FOR STATF
}__«{	..|AVE. For? REGIPN   4"
CilSTS - STOPM AREAS

                   !



       15. 2fM 0.040
                                                          lHfe,i9
                                                           1ST,
                                   J14.92lo.04d

                                    14.9? 1 0.040
                                     !ifl
         &!
         11:1
         40.1
         •40.1
       ""3*71'
         34^1
         Si:!
         ft:!
         j!f:|

"U040J   5o!l
                                            	(1.50X_| 7SX  I  85%  I
                                            "ii" rr?s"! "*$?•!*«* •'
                                             a2"' J}?«  3??.   460.1
                          iii;  302.  451;
                          HI. I 388: j 57$: |
                             "  302.  450.1
                          , ;-•  199.  295.1
                          110,1 298.1 445.1
                                                          110.i
                                                         ...... I
                                         IO.
                                  I IP. 37 l!i.r,4oi

                                 ''!  o.o K
                                 it i   "   ' *
                                 •;l 10.0 II..,.
                                 '"I 11 .6310.040
                                 '[i 12.03 I 0.040 I
                                    I .57(11.0401
    5IJl.83lo.044l
    ^1  P.47|(i.c4i|
     ! 10.97(0.0431

      10. 97o. 043
    lt  13.631 0.04
     I 13.6*10.040 I
     I      I      I
    ^113.6510.040!

    "I 16.6°I 0.041
    '•I10.1PI0.04C
    «I  P.9410.039
    f|ll.35 I 0.0401
    'f  1?.31 10.0401
    "I  fl.74 I 0.039 I
    '
-------
T\PI £ vT-lo ^N'l'JA' i~<":TRCil Cnf.rS - STOP" ARfrAS
I 1 " ' , -
;PAI STATE' I'RBANlZEn ARFA
SI 11 IAURHRA
SI IL 1 B '.00 MI Ml rfi
si IL IOECATU.<
51 IL I.IOLTFT
S' TL IPFDOIA
SI IL IROrKFORO
SI T L ISPRTfcGFlH 1".)
S! TL U'lTHFR '.'R3A>< AKTA9
1 I
^ 1 TL lAVf:, rr-n STATF.
SI TK' 1 A^OFRSPN.
si Tw ICHICAGP HFTRP
51 IN | FVAMRVT| 1 r
51 TM i FORT :-IA\ "i .
5 ! T-M 1 Ik-ir>I ANAPOi T*
Si TK> ii AFAYFT IF
-. si IN IM'.ujCTF
C | T N! 1 S 0 ' ' T H 1 * *-" '• '• lx
SI TK1 lTFF;r'A HAlJTE.
e; i .f-t IPTMF? i,:p;-AM A'r-fis
| |
si TK-i i A"r.. Fnr, STATF
51 MI 1 A*'".' ARnrR
si M T i B 'w t'liY
5 1 M J I n F T R T 1 T
si MI iFfrt
si' "i ii;i*A''-r> PASTES
Si MT i JACT.ON
SI ,-tT i KAl As. A 7 HO
SI "T 'L'^iSJNC
SI «T ' Mlls^FG^-N
SI MI I s A r, T v 4 v,
SI Ml IMTHFP Uri'^VT-PO 1 CONTROL COPT
•fvl k t 7 1 25% 1 50%
3 1 12.?-C 1 0.041 1 36, 1 ^8.
?H?.5?I 0.0411 3^.1 95.
3! M .8!' |*«.0«OI 32.1 «6.
31 7*lM''Io39| 19*1 5U
3 1 0 . 0 1 c . f. I O.I 0 .
3110. ?4ir.. 0401 23,1 76.
31 0.0 1 0.0 1 C.I 0.
"* 1 1'UOS 1 (1.041 I 39. I 109.
31 q.lfi.i.cflCI 25.1 66 4
1 O.PM".C39I 15.1 ait
! 1 1 1

31 0.0 Id.O 1 O.I 0.
311?. ""10.0411 35.1 °6«
3 1 0 . 0 1 (i . 0 1 0,1 0.
31 13. 1? IM.041 I 36.1 101,
311 •5.951,.. cMj 39.1 106.
31 2.17 1 -).r,3f» 1 5.1 13.
31 8.3'«l(-.-039! 22.1 59.
3 1 0 . y - 1 " • f- ' O.I 0 .
31 4;p7l'.:o39l 24^1 63.
111*631-1.0411 32.1 88.
1 1 i 1

31 R.Otlc.OUOl ?2.l 5fl.
31 0.0 I".G 1 O.I 0,
31 8. 801'!. 0401 24,1 65.
31 8.61 lti.0401 23.1 63.
3110.331(1.0411 30.1 82.
31 0.0 10.0 1 0,1 0.
3110. 09|(i. 0401 ?7.l 75.
31 8.671(1.040! 23.1 64.
311^ 46i'l.040i 29.1 79,
310.010.0 1 3.1 0.
1 9.0/JI -i.O-aoi 25.) 67.
Ill
1 •?. 0410. 0401 25.1 67.
31 8.4?!0.040I ?3.l 62.
3! 7l72lo!o40l 2l!'l 57^
3 ; A. 72 10. o39i ta. i ae.
1 7. '361". 0401 21.1 570
III)
I 7.66)0,0401 21.1 57.
3113. 68| --), 041 I 33.1 104.
71 l'l.2'5l(!.0«l I 59.1 109.
31 8. (Ml 1 i!.039| 21-,! 57.
3117 4310.04?) 50.1 l^Sf
31 I7.(j8|:i.0«2l a8.l 137.
3111*911". 0401 33.1 90,
3) 16.66lo.041 1 47.1 130,
3)0.010.0 1 O.I 0 ,
3)10. SOKi. 0"OI 29.) 76,
31 9-OOKI.039) 24,t 63.
31 «.4H |n.r,39| 22.) 6n.
3) 0.0 10.0 1 0.! 0,
31 9.,i7lc. 0401 25.) 67.
3)j?. 961'!. 0401 35. i 96.
1 14.21 td.041 ! 40.1 112.
1 ! 1 1
llfl.2Uti.OMI "0.1 It?.
31 11. 401 ('.CM 1 32.1 88.
31 6.6«|n.030| 1P.I 48.
31 &*.44H>.0319| i7*j a6.
3i 6*4210.0391 17,1 45.
3! 7.901(1.0*01 21.1 57.
3Hl.04iu.oail 30.1 84.
31 3.56!«.038I 9.) 23.
31 5.f
-------
 TaBLE VT-lO  A.JMUI  r't-Tani  r.
II      i       ' "  ''
lEOAISTATEl
I RFC I   TD  I

   61   AR  IF!lP,T  S'lTTw    "  """
   6'   AR  JLITTLE  nOCK
   61   Ap  I PT\'F  C
  61
  61
  6|
  f> I
  61
  61
  61
  61
  61
  61
?x  I&I.K1;-
TV  IRRVA'.    "' "
TX  IC^R^US rrtiiT«TT
TX  IOALIAS "
TV  I EL PASri
TV  IFHPT iv.'ipri-
Tj[  !PJLyE3ioJ
TX
           i. LE,1'
* I
?l-,

*L,
     TV
     TX
     •   • •  i- • *i ^ i n i v

     H  3tt ^^Ln
     TX
     TV
     TV ITev«<5 PT'.TY
     TV ITYLF.R
     TV lv»A(-''1
     TV IWIC^ITA FA"t
     TX IDTHFo !JU3A'j  APFA1?
        I               ~ •'
     TV "AVE. FOR  STATF
                                         ARtAS

                                             I
                                 •   .
                                •; l J.u7i '
                                  12. 62|(i.
                            |  13.25l'i.0401
                            "! 13.92ld.040l
                            « I in!?1 n '--'
                                                  O.I
                                                 35:1
                                                 3i:i
                                                CONTROL COPT
                                                  CS/ACl?E)v
                                                 50X .j 75% I

                                                "^iilii
                                                      "2.1

                            1 !10.651•
                             • 29.87 In^0*2i

                             "29.A7lo.042l
 38.1
 29:1
126:1
 ?o
                                                        'I
                                                86.1
                                              ""I"!'
                                              ..12:1.
      til'!
-ii-. 273:I
368:|tg?|:i
?.^m.\ f??:i
S"'.! 7t7.l
                   85X

                  """"
                   390.
                   337.
                   372.

                   372.
                  • •»*»•»«
                   S'5.
                                                 .-I:,1..!!;1
                               3IH;i^i/.:o4tj
                                                17 I   46   «?X
                                                Ii*!   2?:I  236;
                                 1      I      I
                                 I I 1 .161(1.040 I

                                31  77(161"""""
                                    .    .
                                3! IP. 62 I o.
                               31 li.3«l|i.040l
                                                        .
                                                      '1.1
                                                      84.
                                                             ,~.l
                                                             42*1
                                •3 i  «.2«?l-i.o3RI
                                JM 1 .7-) I (i.c^oi
                                it'  'I.'13IM.039|
                                3   'i.a3id.r,«0l
                                ^   «.*7ln.o39l
                                3   ^. SO ln.039,1
                                31  3.2) I'

                                   .
                              31 11.80 10.
                                  ..
                                1 6.39|o.r39l
                                I 10.21 K'.C«OI
                                i      !     ' i ;
                                J IP. 21 IC.040 I
.11:!.

 IB^I
 9<; .i
30.1
 °*!
n:
31.1
12^
i?:i
llll
 7.1
 ^Ti
34.1
                                               !!•!
                                               II: i
                                                       8"..  .-...,

                                                      "sH!"""""'
                                                         1
1096.!
.-.-»)
 139.1
 139.1

 139.1
....«!


 HI


 347.1
                                                          pifrf-iil:
                                                                 ,202.1
                                                                  272.1
                                                                  5flT. 1
                                                                310. I
                                                                398. I
                                                                 88.1
                                                       95;

                                                 If;]   'l-:l

                                                 livi  ill-!
                                                 67»l  17!:
                                                 §§«!  ?3?:i
                                                 §3.   223:1
                                                 72.   196.1
                                                 »J:MMI
                 >62.l
                 344. I
                 332:!
                 292.1
                 178.1
                 310.1
                                                     .I6:
                                                     1*0*5"
                                                         208.  310.1
                                                        ••»-» nmmmmj
                                                         292. i4«0.l
                            220

-------
T&^LE vl-to AiJ'lUAi. rt.vrrr?Ml CM.S
EPA! STATFI H3RANi?F.n AREA
REG1' IP 1 , ' - .

71 IA inAvESPORI
7! I A IQF.S HCVINE'*
7! IA IDilBU'llJF.
71 i A isrnuic CTTV
71 I A 1 rfATFRLO')
71 I A IQTHFi} GR3«V ASF AS
• ! -. I ' .
71 ' TA IAVE. FUR STATF

71 • -KS' IT'IPFKA .; * ' • '' .
71 : 'KB l/Jir>UT4
71, KS inTHFP I.RMAJJ • ARFA.S
• • i i '•' .
71 KS 1 A\'F. FC.IT STATF
71 ,,.Mn (COLUMBIA . • .
71. ' wn tgplm-GFtF^r '
'! i MO i ST jnstPr
• ?i --Mn isOouis
•"•VI Mp IOT,HF7 lirj,ja,v AGFA'S
1 I'
71 An i AVF,, 'rrirt STATF. ,
- 7 i- ME I LT;.iCOi.M
71.",. *.F. inTHF.5 LlTbAN- APE.AS
• - r • • i '
71 .."iE l-AVE. rti'R «*TA.TF'.-'
71 - ". • u"I. FOR t?f.'c-inv . 7
• » i en .1 B^ULO'EI?
, « ! 'en 1 DENVER • ' •--.''.
£1 CF1 1 pTHFr?1' u'rjlitf: A."FA$
1 1 - " '
81 ..CO 1 A-VE. FflR STATF
PI »T I8-ILI.IKT.S
'.- 81 " MT ''GR'pAT F;A! IS'

• ' ;',-•'•' T j ,,' ,. ,'F
••.. s i-.--;:J!n IFA^GO ••-.. .,
31 Kjn inTriFi* • 'inp/.M APFA.^
: I , 1 " •=•:-•. •..".•
• •. fl" -»|D 1 AVF.. FHR. STATF
S1 ; sii 'iio'iv- FAi.i.s
"': 6 1 ' so IOTHFR ur>hiN' ARFAS •
j» 1 SI IAVE. FOR STATE..
HI UT 1 OGOB"! '
: .Ri ijT ippnv'n
• ,-91 • LIT-- | SALT l.AKf CITV
- " ' f ' ' ' ' ' 1 ' ' "
81 I'T lAVE. FOP STATF
PI wV HIPBAN' ARF«CS
| I
g' WY IAVE. F0,7 STATK
°"B i "" "IAVE. FHR PFGIII^ 5
TS -
PEP
STflR" Ar'fc'AE
k °| "e.
5i R-4U i'l.OCC
3
3

^

3

3
3
;S

' -
3
•


.
p
?



?


. 3

3


?


3




9.6! ld.0401
3.6 11 ".03 7
7.1(H'ii-03e»
P. 3 (I 10. 040
7.64 1 '1.039
h.97 1 0.039.
c.,971 0.039

o*93 1 o .0"0
7.VU 1 0.040
1
o.f>7 1 0.040
\ 1 . 6 1 ( o . 0^ C
/I /j1^ 1 n ^ Q3 ^
r . o I o . iy •
0.0 1 0 . 0 .
6 94IM.039
1
6.94 lfi.039
P.7gi;;.c4o
9:.2.a,i.n .0.41

9.24IO,04il
7.73 10.040
12.39 1 0.03?
«:60 1 'UOi/
9.0710.038
1
25%
, 23.
• 26.
,1:
. 13:
. 19°
•19.

27.
li:
23.
32.
ii:
0.'
0 .(,.
18.

.18.
IP:
I . :3rj*
'
25.
21.
32.
1 17.
12^
24:
1
0.07(0.0381 24.
6.46I0.03PI 17.
6. 4" I 0.037 I )6i.
6. 42 1C. 03 7
<>.4H! 0.037
4.9310.039
4. "3 10.03"
/! .""3 In. 039
7.361 0.040
7.3610.040
7. 361". 040
Ic.42ln.o3R
'9:401 o:o38
1
Q. 49 | n,038
O.Q38
1
7.50! 0.038
g"?q 1 n.038

1 16.
16.
H:
1 13.
i 20 :
I ?0 .

1 22!
! 2§:
i
1 25.
19.

19.
1 22.

" ' ($/A
50%
61.
' 71,
11:
50.
50.
70.
73.
57,
63!
, 63.
97.
0-*
• • 0.
49,

49,
»*:
70,

70.
56.
43:
66.
29,
62.

. 62.
42.
41.
42.
4.2.
- 35:
35.
54.
54.
54.
70.
58,
63;
•64,

64.
49.

49e
56.

^in
163.1
19-1.1
60.1
133.1
\lh\
134.1
134.1

199. j
!?<>:!
170.1

0. I
'
|
'130.1
V\\°\
194.1
1
194. j
152.1
fn§:l
iiim\
161.1

•1.61.
108.
1 n6«
1 06.
'94.
. 94:
«4.
Us:
148.
181.
151.
164.
166.

166.
126.

126.
85X
242.
2R5.
87.
1
-------
             AM!UAI. f.P.VT!9M|_


             ""EANlZr.r  4(?FA
 TAB'f Vl-10

itPAISTATEI
IRFPI   i" i

 ~~51 ~~ AK" i UPBA "AREAS""""""'

   91   AK IAVf.  FOR .STtIF

 ""9i""AZ"iPHOENIX
   91   AZ ITUC-SPf:
   91   AZ iriTHEp Ur>BA\-  APEAR

 ^91   AZ IAVE.  FOR STATF
             CMSTS  -  STORM  ARFAS
               1    !  f*K  VT-?0  I
               I»EF|    CHEFS.   |
  9'
  9 !
  91
  91
  9«
  91

  5!

  ?!
  91
  91
  9i
  
-------
TABLE Vl-11

 PAISTATEI
 F.G   10
         ANNUAL CONTROL COSTS  -

         URBANIZED AREA    J»EF
                         UNSEWFRED AREAS   -_M_Bril
                                           CONJROL


                                 6                "
                                 J:_.
  P9">* I wwwww»w »»»*••
  CT  BRIDGEPORT
  CT  BRISTOL
  CT  DANBURY
  CT  HARTFORD
  CT  MERIDEN
  CT  NEW BRITAIN
  CT  (NEW HAVEN
  CT  INORWALK
  CT  (STAMFORD
  CT  IWATERBURY
  CT  IOTHER  URBAN  AREAS

  CT  UVE. FOR  STATE
   ME
   ME
   ME

   ME
          I
,EWISTON

    I URBAN  AREAS

VE. FOR  STATE

iolTON*"""""1"
ROCKTON
       MA  IP
       MA  IS. „
       MA  IWORMuu.u.-.     _._
       MA  IOTHER URBAN AREAS

       MA  IAVE. FOR STATE

     "NH" i MANCHESTER""*"
       NH UVE. FOR STATE
       •••••••*••
       IPROVIDENCE
           R URBAN
       RI
       R! IOTHER URB

       RI IAVE. FOR STATE
      __.. I mmm*mmmm9mm
       VT IURBAN AREAS

       VT UVE. FOR STATF
     mmmmm I •••• — •• — • — — <••••••• — -••
                FOR REGION
    NJ
    N5
    NJ
    NJ

    NJ

           INEW YORK CIT
           (PHILADELPHIA  METRO
           (TRENTON
           IVINELAND

                 FOR STATE
        NY
       .NV
        NY
        NY
        NY
       i ROCHESTER"™
       iSYRACUSE
       lOTfiER URBAN AREAS
    2  . NY IAVE. FOR STATE
m
21
            ••«•••<••*»••<••
           IAVE. FOR REGION
               .
  mmm I ••••• I ••-•-•-••••
                                    3.2610.039
                                    2!B3«).0|9
                                     3.6elo.040
                          3.80(0,040
                         «<•••• I -•••••-
                          2.85 0.039
                          2:8510.039
                                  2.85(0,039
                                                 ._»_•> I ««•-
                           2.74I0.03B
                                                          ra.i
                                                         ,mmmm\
                                  223

-------
   TABLE VI-1J
     ANNUAL  criNTRHL

               AREA
  ICPAISTATE
  IRFGI  ID  ,

  " "51 ""DE" I "~~M	""	•
    31  DC  [OTHER URBAN AREAS

  -.2i..25.if!!: Fn" STATF
    3|  DC  •"•-••-   -        m
                              CrisrS .
"jgfjgSo-
                                               APEAS
   ipEFl -"cni
    21! !...k.. I ..p.. i —
      5 I "ISo I "0391 ""To"
         3.6oio:o39i  IS;

 	!-2:!2!!!:£22Li2:
   I   5(0-0  IM _ n  l   n
                                                      "N
                                                     I   26.
                                                     I   26.'I
                                                               1ST
                                                             75X  I 85X I
                                                            .---(.-...I
                                                   68.1

                                                                  101,
                 FOR
    31
    31
    31
    31

    I!
    33!
                               I  - -  I     • I    u • I

                               °«0  I    O.I    o.l
                 _26i, i   oo. p  101.

                 ""\""'\   o"Ti

                         o.!   o.l
        MD
        MB
            DC ..w ,
         BAN AREAS

          STATE
               .......
               ENTOWN

        is

        PA
           (LANCASTER
     ®*""
ibTHE
               R URBAN AREAS
   3j  PA IAVE. FOR STATE
   I


   3
       yA IROANOKE
       WV IHUNTlNGTON
!   31
       WV
                      AREAS
-•-,!_— i.2:".j°:0  '    0-!

      i! ]:oII8:81S!    2-!   |?-|   *f-j'  jg."
                        '   is:i   If:!  gg'j
   	jJ:ff|n.C39I	9.J_  23.1   61.1  90.1

                        !   II*!   Si*!*"^?!
                           IS'    ??.•  H0:i
                           in*    6,2«   '5.1
                           i|»    2?.   71.1
                           II'   Si-  135:1
                           II:   Z5-  US'!
                       I


                        I  2.7llo.o39J
                       i
                       5
                                    1:818:8381
                                    3.3910.0391
                                    *:}5  8:840!
            ?
            9!
                        .-i2:..22:L
                           °-'   5§:l
                                52:1
                          24: i   B:l
                                            B:l
                                                                 '73-:!
                                                                  73.1
                                    ^.^  ...OJy    e.   22.1  5?:i   «5

                                .--!.2:i2  £:22! ...2: M5!-|  ".I   B5
                                 51  *.46lii-nTO    a    tT"—-"-—.-
                                II
                      3'
                                                        0. I
                                                       nsli
    .      i — -,,_,. >^ i^ LJ n IY Mr«t.MO




 ..21..-m.\t~ll F°R STATE
I..  I      j""t« rin<
                               -
                         Irfef&l
            8:1
           IS:!
                         I*:!
                         26.1
                               5-7:i
                                '5.1
                                ?.!
                                   !j   * - • j  "-"• I   OO.

                              -i222L.i2:L.2*:L *!•
  3 • I
  - *"* I
 96. I
  O.I


101.'I

101.1

                              224

-------
TABLE Vl-jl

  AISTATEI
  Gl  ID
            ANNUAL CONTROL

            URBANIZED AREA
                            C"STS - UNStrWFRED  AREAS
  41
  4!
  41
  41
  41
  41
  41
  41
  41
      A
      A
      A



      AL
        (BIRMINGHAM
        IGADSDEN
        IHUNTSVILLE
I MO
 MO

           INTGOME
           ISCALOO
       RV

     URBAN
                     AREAS
     AL IAVE.
   ...<•• I
     tL
               FOR  STATF
     FL i JACKS~5Nvi
     ft l8itH»o
     F[ IPENSACQU
     FL

     ft
   41   FL
      BA
      SA
      5A
   4
   4 .
   41
   41
   41

   Si
AVE. FOR STATE
• »••«•»•§»— — «••""•
ALBANY
ATLANTA
AUGUSTA
      It  !S^E«BAN AREAS

      GA  UVE.  FOR STATE
  41   KY
  41   KY
  41   KY

  4!   KY
... I ...<;.
  fll   MS
  41   MS
  41   MS

 . U\   MS

~*4l"*NC"'
  41   NC
  41   NC
  41   NC
  41   NC
  41   NC


  ii  i
  41  NC

  41  NC

 "3 I ""siT
  41  K



   4!  SC

  -Sr-TN
          I L.C- A * '^ w 1 \J1V
          (LOUISVILLE
          lOWENSBORO    „,...
          IOTHER URBAN AREAS

          IAVE. FOR STATE
          I ......-...-—.«—-'
          IBILOXI

          loTHER URBAN A"EAS
                 FOR  STATE
            ASHEVILLJ
            CHARLOTTE
      ,.EVILLE
  	INSBORO
 IHI8HPOINT
 (RALEIGH

 I UTMSiflN^SAt-PM
 IOTHER URBAN AREAS

 IAVE. FOR STATE

 'iCHARLElTON*""


 igTHER'uHBAN AREAS

 IAVE. FOR STATE
 , I..........--••-"-
      -   gOOGA
    41  TN
  !... ....
    «l
  I mmm I ••••
                       AREAS

           AVE. FOR STATF

           AVEI"?OR"RIGION^
                                     3.3310.037
                                     ?
                            4.9510.03

                            4.9510,038
                            3.
                            3.04M).039

                            nieioZpHi
                                      S;64lO.O|7

                                      4l94|olo|8|
                                      4^6910.0381
                                      4.6910,038
                                       :5:
                                           0.038.
                                           .«.•. I
                                           0.0
                                           0.0
                                           0,0
                                           0,0
                                                           114.1
                                    225

-------
        ANNUAL  CONTROL  COSTS  •
 TABLE Vl-11

ICPA!STATE
I REG I   ID .

 ""I!""IL"!AURORA——
                               UNSKWFRED  AREAS
                               —"
       URBANIZED  AREA
     HICAGO
    (DAVENPORT MFTRO
                '
   IROrKFORD
•• — . — - •-i^'Grli.t.u
IL IOTHER URBAN AREAS
IL IAVE. FOR STATF
IN IEVAN3V

 N
   (SOUTH BEND
    TERRA HAUTE
   IAVE.  FOR STATE
   IMUS
   JSAGINAW
   OTHER URBAN AREAS
  IFARGO METRO
  !MINNEAPOLIS

           BAN AREAS
  JAVE. FOR STATE
  [CANTON
   CINCINNATI
  IYOUNSSTOWN
   OTHER  URBAN AREAS
 51  OH
..I....
  IAVE.  FOR  STATF
   r*-.-=—• •——
  OTHER URBAN AREAS
  IAVE. FOR STATE.
                            •--. i».«.,, i ..•.
                            3.08 0.037    8.
                         226

-------
       Vl
 CPA  STATE
IRC6I   ID

  °6!<*"'AR
   61   AR
    tl   A"
    f   AR

   61   AR

  °6I°"LA°
   61   LA
   61   LA
   6!   LA
   61   LA
   61   LA
   61   LA

   61   LA

  "'("NM"
   61   NM
       11  ANNUAL CONTROL

       !    URBANIZED
B f («J » «B ^ «* «» «D ^ S" ITO «3 OJ «t W »• — — •"
 I FORT SMITH
 I LITTLE ROCK
 IPINE.BLUFF,
 (OTHER URBAN AREAS

 IAVE. FOR STATE

'!BATON'ROUGE""""""'
 ILAFAYETTE
 (LAKE CHARLES
 (MONROE
 (NEW ORLEANS
 iSHREVEPORT
 (OTHER URBAN AREAS

 IAVE. FOR STATE


 |SBSD5iiyriREw"

      FDR STATF
 11   BKK
 I!   RK
 61   n«
"6("°TX°
 61   ;?
 61
 6!
 61
 61
 61
 It
 61
 61
 61
       TX
       TX
       TX
       TX
       TX
       TX

       TX
       TX
       TX

       TX
 IOKLAKOMA  CITY

 inTHER*  URBAN  AREAS

 IAVE. FOR  STATE



 (AUSTIN
 (BEAUMONT
 BROWNSVILLE

 (CORPUS CHRISTI
 (DALLAS
 (EL PASO
    )RT. WORTH
 61  TX
 ll  TX

   I  8
 ISiLVESTON
 (HARLINBEN
 (HOUSTON
 ILAREDO
 ILUBBOCK
 IRCALLEN
 I MIDLAND
 (ODESSA
 (PORT ARTHUR

 jI'AN ANfO
  SHERMAN
        I^NA
          (SAN ANGELH
           SAN ANTON]
           SHERMAN
       8
  ITYLEF
  WACO
  IwICH]
  IOTHEF
        ,B.JHITA FALL
        (OTHER URBAN AREAS
     TX IAVE. FOR STATE
                                            AREAS
              25% j

              II: I
                 5£*J
                •-•-•j
                                                          96,

                                                            "
                                                   •  w;i  100:

                                                     39,1  idOa
                                                   • ma oao* | C9a3®WC»

                                               it:i   35:   ill:
                                               16^1   tlO^I  1041
                                               16IJ   HI.!  iO|6
                                                Q» I   0«

                                               11:1   If:
               15.
               (ti»t5?i» j


               i!:!
               I6l!
II
IS

ll
 ,_  0,036.
o:!|!li:0o!7!
l:W8:flI.
3*5310.0||I
5^2210.037
2^2110.037
1*9810.037

!:ZS!S:81J
i:HI3:m
                                3
i:jl
 •I
I:ii
                                     i.
        "«§ll
        8:«p
        8:W
        8:i!2
            7i
                                     3122 Oi

                                     3.'22 I 0.037
                [4;

                14.1
               »»-r

                «:!

                4.
               n«B«9«»
                to.
                                                  7.
*l
 i!
  i
I
i«:
U:l
13.1
                                                8.
                                                     37,
                                                   9B»6*caer

                                                      ?:
                        ^5Q
                        so oses


                        II
                85S !
                BOB iBSfB*" |
                ifli.f
                isg.i
                taa*!
                I«&8|

                ia&J
                it ^a ma ea ta J
                140*1
                16S.I
                151*1
                15«.«
                  eai

                t«:.l

                isaj
                0099(903 I
                 30,
                 30,
                                                        i   21.1   30.!
                                                        •».   21,,
                                                           qifBCBcnfix J

                                                             &?.
                                                             ll
                  fl:
                  ?i:
                  isj  46.
                 vwocara \ r>«>9a>Q

                  pi'  '
                  II*
                                 5S»!
                                 75* *
                                 66. t

                                 66 J
                                227

-------
TABLE VI-11
 CPA
 REG
    STIADTE!
              ANNUAL CONTROL COSTS -

              URBANIZED AREA   IoEF
                      .  ' -      ITTY
                                     UNSEWERED AREAS
                                                   CONTROL COST
                                                     CS/ACRE)
                                                    50X .   75!!  I
,   II
i   II.  i
!l
        !
          ICEDAR RAPIDS
          IDA
          IDEl
           DUBUQUE
            yENPORT
           El MOINES
            OUX CITY
            TERLOO
            HER URBAN AREAS
       IA  AVE. FOR STATE.
   "5-
   ••*!
    KS
    KS
!i
          1 KANSAS CITY METRO
           TOPEK
           WICHI
           OTHER
            CHITA
                URBAN
                       AREAS
          IAVE.  FOR STATE
         > I <
   71
   71
   71
      MO
      MO
      MO
      MO
      MO
      HO
          (COLUMBIA
             NSAS  C
             RI
             . J
            T'L
          IOTHER URBAN  AREAS
            AS CITY
           INGFI
            OSEP
            OUls
       IKAR
       'SPRINGFIELD
       !§}•«
                  PH
       MO IAVE.  FOR STATF
!   I
      NE
      WE
      NE

  7!   NE:
          'LINCOLN
          IQWAHA
          I OTHER  URBAN AREAS

          IAVE. FOR STATE
          IAVE.  FOR  REGION
   §1
   I
   §1
   I
  81

  81
        O
        O
       co
          I BOULDER
          (COLORADO SPRINGS

          mm
          ?OTHER URBAN AREAS
          IAVE. FOR STATE,
   81
   SI
   8!
  .2!.
     BJ
     MT

     MT
             LINGS

             ER URBAN AREAS

          AVE. FOR STATE
     NO
     ND

     ND
          OTHER URBAN AREAS
               FOR STATE
  8
  8

  8!
  •<• i >
  81
  81

  gj

  8

  •|

  8
  ..I.

  .SI.
     85
     so

     so
     mmmm
     UT

     H?
     UT

     UT
     mmmm
     WY

     WY
          SIOUX FALLS
         JOTHER URBAN AREAS

         JAVE. FOR STATE
         I »•••••<•••*••• wwnvapM•»*•*•
         lOGDEN
         IPROVO
         I SALT LAKE CITY
          OTHER URBAN AREAS

         IAVE. FOR STATE
         I mmmmmmmmm^mmmmm•-•t.n
         IURBAN AREAS

          AVE. FOR STATE

          AVir"FOR"REGION"""l"
         i | «n«pVe*MwwMWMmg»wva»^«
                                228

-------
 TABLE Vl-11

!EPA!STATE! -
IRF-SI   ID I
            ANNUAL CONTROL COSTS - UMSrWFRED AREAS

            URBANIZED AREA
                             IttEFl
                              CTVI
                                                25X  t  50%
                                                        COST

                                                       75%  I  85*
      •t 1 URB AN AREAS
   91   AK IAVE. FOR STATE
                                II 2.98

                                  I 2.9B
                                   0,037

                                   0.037
                                                   ,  ,  19. i
                                                    •••?»
                                               48.1   69.1

                                               48 J.   69.1

                                                    "Soil
   91
   91
   91
     VAZ I PHOENIX

     AZ I(!)TH!R URBAN AREAS
       AZ
         AVE. FOR STATE
                                   1.2S
                                    0.035
                                    0,036
                                    0.036

                                    0.036
   91
   91
   91
   Ii
   I!;
   i!
   91
   91
   91
   91
   91
    •CA
     CA
     CA
     £A
    •CA
     CA
     CA
     •CA
    -CA
     PA

      i

     •«

     es
     CA
         BAKERSFIELD
         FRESNO  •
         LOS ANGELFS
        I MODESTO -
        IQXNARD
             _,.-NANDlNO
        I SAN DIEGO
         SAN FRANCISCO
        I SAN JOSE
        I9ANTA BARBARA
        I SANTA'ROSA
        (SEASIDE;
         SIMI VALLEV
          STOCKTON.
          THER URBAN .AREAS
 91.  CA IAVE. FOR STATE
                                    0,0371
                                   10,037
                               l,5B  o.O
                               3.47IO«0
                               1,56  0.0

                               2*P8!"«2l§
                               1.69  0,037

                               t:W  °'°-*Z
                               s,* o y

                               2:41

                               1:18
                                     1.69
                           0.0|7

                           o':8f
                           0,02
                           0,01
                           0.03
                           0,0|
                                         0.037
 I!

                       AREAS
 91  HI IAVE. FOR STATE
                               2.60


                               2.60  0,037
                                                        j.7.
                                                               4|.|.  61,j
                                                             «2.
                                                                   61
 91
 91
 91

 9!
       NV
       NV
       NV
         OTHER URBAN ARRAS

         AVE. FOR STATE  :
                               0.50  0.035
                               1.231O.Q36
                               0.7010.036

                               0.70 I 0.0361  ;  2.
                                         •I-
                                                               10.

                                                               10.
                                                     10, I
                                                     ?!:!
       ....\t%
 91. ,..   fAVEa  FOR
                                    1.66  0.037
                                   • woiwv I «wweaf J
                                    2*5510,0361
                                    I:55|o:o36l

                                    2.55J6,03>
                                              ;Ui;
                                                                     38.
 i«i
 101
 il
I8
 ID
           BOIS
           OTH
?  URBAN  AREAS

FOR 9TATF
                                  ai
,61.!

''6.'
"!;6»
 16.
                                                               38.    55.
"lit   OR
1II'   OR
 181   OR
 10 j   OR

"lit  -OR  IAVE.  FOR  STATE.
                                     .4.74  0,
            TfiER URBAN -AREAS
                                      ft. 72
                                         8:§I|
                                         8:8!?
                                         0.037
                                                  50 „ I
                                               77.  UZ.

                                               77.]-:
IS!  SS  jIMM

1i':f,SlJ.opRAURBAN  AREAS

10IwA  IAVE. FOR  STATE  ,
                                     S-JX
                                    0,037
                                    0.038
                                    0.037
                                    0,037

                                    0,037

                                                   ii.
                                                        ,-

                                                      .51:
                                                       27,
                                               66.1

                                               68.
                                                                   99.
   oi
           v.  FOR ReoN  10
                                 „— I •
                                      «.2lio,037
                                                ,'.:
                                                 i27.
                                               69.
                 100,1
             vRACE  FOR .THE .U^S*     1 ...

                                              f. r~ i *s '-  -.?*• '"»>


                                              iYi'^i*  :-'-y^
                                  229

-------
 Because of this definition, the number of overflows may increase
 with an increase in treatment rate as shown in  Figure VI-12, Effect
 of Storage and Treatment Capacity on Number of Overflow Events"If
 the treatment rate is high enough to deplete storage after the first
 overflow, then the event is over.  When storage is utilized later a
 new event starts, and any overflow occurring in this event is consi-
 dered separate from the first overflow.  Thus, the number of overflow
 events was increased from one to two events, even though the treat-
 ment rate was increased.

 The number of overflow events appears to provide a more meaningful
 parameter if the event is defined differently than the definition used
 by STORM.  The overflows shown in case 2 in Figure VI-12, should be
 considered as a single event since they occur so closely together. The
 event would then be redefined to be a separate overflow event if there
 was a specified length of time between it and the overflows preceding
 and following the event.


 Determination of a National Precipitation Event Definition

 A methodology is presented by which, separate precipitation events may
 be defined on a national scale.   Several valid, but totally different,
 alternate approaches will be briefly discussed and evaluated with regard
 to each one's usefulness in deriving a national event definition.   The
 main portion will be devoted to  the derivation of a precipitation event
 definition for the five test cities.   Each, city has precipitation
 records which are representative of the climatologic region in which it
 is located.   From the results for each region,a national precipitation
 event definition will be formulated for the contiguous United States.
 Given an event definition the relationship between tKe mimB'er of oyer-
 flow events  and volume of runoff controlled will be presented.

 Meteorologic studies are one approach which may provide a useful
 insight into the definition of a national precipitation event.   Since
 the atmospheric mechanisms for the cooling that creates saturation
 are of three types — cyclonic,  orographic,  and convective — an event
 definition could be based upon storm origination (e.g., all
 precipitation resulting from one frontal movement would be considered
a  single event even if the front became stationary with extended periods
of zero precipitation).  This would dictate'an event duration range of
from an extended period  (i.e., 12 to 72 hours) for a cyclonic storm to a
short period  (i.e., seldom more than one hour) for a convective
storm. 7  This causal concept would not be applicable for even a local
precipitation event definition since localities are subjected to both
cyclonic and convective storms.  Even a twofold definition — one each
for cyclonic and convective origination — is inappropriate as cyclonic
storms may be divided into frontal and nonfrental varieties.  Over-
shadowing the possibly solvable problem of regionalizing cyclonic and
convective precipitation events is the problem of identifying all future
                                  230

-------
0£'  02'   Of  DOS' ,0
      I    -I - U - L
                      0£-  02"  01'
                                                                         Q)


                                                                        1
                                                                        S3

                                                                         ci
                                                                        , o
                                                                         -P
                                                                         •rl
                                                                         a
                                                                         rt1
                                                                         cu
                                                                         cd
                                                                         u
                                                                         S
                                                                         rt
                                                                         (U
                                                                         g.
                                                                         60 ••
                                                                         rt  to
                                                                         V< ,-u
                                                                         o  0
                                                                         u  
                                                                           w
                                                                         O <+-)
                                                                         Q)  M
                                                                         <-H  
                                                                         w.o
                                                                         r-i



                                                                         I-l
                                                                         •H
or    so'
                             or   so1
                             S3HONI

                           39VM01S
                                   231

-------
 storm types in order to determine the number of events.  These
 difficulties make the envisioned national precipitation event
 definition an unattainable entity via this approach.
                                                              ^
 A second approach to this event definition is a statistical one.
 The^examination of the probability distribution of storm character-
 istics is accomplished first by separating a time-series of point
 rainfall observations into events which are statistically independent
 by use of the rank correlation coefficient.18/-19  Then, combination
 with a significance test allows selection of a limiting time interval
 (i.e., a minimum interevent time) between nonzero rainfall pulses,
 such that the hypothesis of independence may be rejected with a chosen
 level of assurance for nonzero pulses which are closer together.  This
 time between independent precipitation events has been observed to
 follow closely the Weibull distribution.18/19  Use of this approach
 would be applicable for a specific region at best.   Extensive studies
 would be required to determine the parameters of the Weibull distri-
 bution.   Furthermore,  comprehensive validity of this technique is open
 to question as it was  developed through studies of convective storms
 only in northeastern North America  and Tucson, Arizona.18/19

 A final approach  could be one which established a minimum number  of
 consecutive dry (i.e.,  no measurable precipitation)  hours  that must
 precede and follow individual storm events.   This rather elementary
 concept  is  probably the best  current approach to providing a useable
 event definition  that  can readily be applied on a national scale.   This
 dry hour or zero  precipitation approach is presented next.

 In general,  the following  procedures were utilized to develop  the
 event definition  for each  of  the  study  cities.   A one year precipitation
 record that  approximates  the  average rainfall distribution was  obtained
 for each city.  Precipitation events were tabulated  by varying  the
 number of zero  rainfall hours  necessary  to divide two  separate  events.

 A  "minimum interevent time" is defined as the minimum number of
 consecutive  zero precipitation hours which must  occur between two
 separate  storm events.  By varying the "minimum interevent time" the
 number of separate storm events generated is tabulated.  The results
 are shown in Figure VI-13, Effect of Minimum Interevent Time on the
 Annual Number of Storm Events.  Based on a qualitative analysis, a value
 of 12 hours is chosen for the national precipitation event definition.
Using this event definition and the results of the STORM analysis,
 one can derive the relationship between percent runoff control and
number of overflow events per year.  The results, shown in Figure Vl-14,
 Relationship Between Percent Runoff Control and Annual Number of Over-
 flow Events, can be used to transform the final estimates to a base  of
events per year.  The no-first-flush isoquant parameters can be used
to estimate the level of runoff control.
                                  232

-------
HV3A d3d S1N3A3 dO
                233

-------
   100
                                                REGION
                         	 SAN FRANCISCO.	  I
                         	•	DENVER........	 IE
                         	— MINNEAPOLIS	 IH
                                ATLANTA	 EC
                         	:— WASHINGTON, D,C	 2Z
Figure VI-14.
 % CONTROL OF VOLUME,R
Relationship Between Percent Runoff Control
and Annual Number  of Overflow Events
                          234

-------
OVERALL COST ASSESSMENT

Overall Results

General results thus far are summarized in Table VI-12, General Information,
Table VI-13, Land Use by Type of Use, Table VI-14, Land Use and Population
by Type of Sewerage System, Table VI-15, Quantity and 'Quality of Sewage
and Stormwater Runoff, and Table VI-16, Annual Control Costs per Unit of
Developed Urban Area.

The only  remaining  problem is  to  estimate  the nation-wide costs  for 25,  50,
75, and 85 percent  control.  As a first  approximation,  assume that an overall
25 percent control  level is achieved by  25 percent control on the  combined
(A..), storm  (A?) and unsewered (Aj areas at  annual unit  costs  ($  per acre)
of C  , C9, and C«,  respectively.   Thus,  the approximate total annual costs,
TAG,  are
             (TAG)
                                  (C2)
                                              (C3)
(VI-21)
 From Tables  VI-14  and  VI-16, we obtain
    (TAC)9,  -  47(2.248  x 1Q6)  + 32(5.987)  x 106)  +8(7.393 x 106)
 Likewise,
              $356.4 x 10 /hr.
              (TAG)
                   50
                       $1,065 x 10
                                                                   CVI-22)
             (TAC)?5 = $3,210 x 10°

             (TAC)QC = $5,029 x 106.
                  OJ
Recall that -the cost of wet-weather control using secondary facilities is
                                    6R,                       '
                            Z* = ke  -1                    ..-.'.   (vi-24)
                             s

                 annual cost for optimal solution, dollars per acre,

           k, 6  = constants, and

             R  = percent BOD removal  (0 ± RI  <_ 85) .


The  cost  of  wet weather control  in terms  of pounds of pollutant  removed, w,
is                                -        „
where
             Z*
              S

                                                                    (VI-25)
 where     w = pollutant  removal,  Ibs/acre-yr, and

           M = pollutants available,  Ibs/acre-yr.
                                     235

-------
                    Table VI-12.  GENERAL INFORMATION
 Total Urbanized Area




 Total Population       :




 Average Population  Density'




 Average Precipitation
 29.037 x 106 ac (11.751 x 106 ha)




149.366 x 106 persons




  5.14 persons/acre (12.7 persons/ha)




 33.4 inches/year (84.8 cm/year)
              Table VI-13.  LAND USE BY TYPE OF USE
                   -Use
     .106 Acres  (ha)
              Undeveloped




              Residential




             ,Commercial




              Industrial



              Other     '




                Total '
     13.409  ( 5.426)




      9.120  ( 3.691)



      1.337  ( 0.541)




      2.324  ( 0.941)




      2.847  ( 1.152)




     29.037  (11.751)
Table VI-14.  LAND* USE AND POPULATION BY TYPE OF SEWERAGE SYSTEM





Undeveloped
Combined
Storm
Unsewered
e - •
.

6
f: 10° Acres (ha)
13.409 ( 5.426) •'•?.
,- 2.248 ( 0.910).
5.987 ( 2.423)
7.393 ( 2.992)
. ',' Developed ;
; ' Population
Density"
g '"' Persons/
10 Persons ,.; Acre;, (ha)
,o o : ;
37.606 16. 7.! (41. 3)'
77. .853 13.0 (32.1)
33.906 ' 4.6, (11.4)
                   29.037 (11.751)       149.366
                        9.6 (23.7)
                               236

-------














P4
o
5
t*j

S
rrj[
•^i
gj
s
8
CO
— _
fe-
-. •.-
,y
4J
• -rl
'8'
CO ,

e
cu
0}
to
CU
60
cd

••• cu

cu
CO






/^x '*~\ s~*.
co co in
• • •
co in vo
m co CM
rH , ,
S^ S_X N*^*

vo m ess
vo - o in
CO CO CM
rH


^~\ /-S /" N
r^» i » d
vo ' ' CD" 'CM
H 01 CO
rH

cr\ r> in
co o co
.0 oo CM
H


,






<^\ /—s s~*
CT> vO  , '^-'
in oo oo
• • ,*
vO 
<1
13
cu
•M
&0
-H
0)











^"S
-H
S
-^_

N«X

g
P
•^^
•C/V

• ..
- . -A, ^j
W
' §
^"M
1"
P^

1

O
Ed
CP t>
rH W
t>
prj
CU O
iJ3 EH
cd H
EH S3
*T"J r™^

Crf
S
rH
rH CO
1 EH
. > CO
o
CU O
rH
O - - 1
Id o
H B
U H

o
U

cu ~i
































CO.





-' r^







in
oo






.in







o
m








m
CM



CU
4-S
CO

cU
60
cd
cu
•cu
CO
t4H
O
•
p»
. £








CO CO CO
*^" **d~ co
0 0 O
• • *
o o o

in CM rH
O 00 CO
« • ' »
 vo
O r>» in
m CM

X~N X™\ X"~X

co* CM . . sr ,.
i-~ co m
CO CM
V»X N*^ **^^
H ,-<5- CM :
m cjx CM
rH • •• . ' ••• '

^~S '^N ST**
i — ! CO
vb' a\ , Oi
	 rH f"*^ rH
rH . '
V^ V-^ -' N,-''
r-~ CM , 03 .
•

a>
lea
•j^
HH
0


o
HI
H
^>

CU
rH
I
rC?
'T
-tr^
jw*-

iH
•s
C8







237

-------
 The marginal cost  of  BOD  removal is
                        d7*             100g  w
                          s _ 100  0 k   ~1
                        dw
                                M
                                           (VI-26)
 Given these convex cost functions, the optimal mix  of  control  of  storm
 runoff from combined,storm,and unsewered areas is found  by  equating
 "        C?7?S;  ^-^ equati°n VI~26 with the subscript (1) denoting
         ,  (2) denoting storm,and  (3) denoting unsewered, yields
               100
ioo elW;L             100
   M,       100 B^kL     I
                  Ml
              M
                                                                    (VI-27)
                                              100
                                    100
,:f marginal  costs  for,  say,  50% BOD removal are compared, one obtains
             MC  -  100(0.048)0.4.0$   100(0.04a) (0.5)
               1        136.6        e


                 =  $5.44/lb BOD  ($li;99/ke.,SOj))


             MC  -  100(0.043)qp.82)  100(0.043)(0.5)
               2        30.5         e

                 - $13.10/lb BOD ($28.85/kg BOD)


             MC  = 100(0.038) (3.^1')   100(0.038) (0.5)
               3        25.9

                 = $3.25/lb BOD ($7l.i5/kg JBQD.)
                                          (VI-28)
                                          (VI-29)
                                          (VI-30)
Ihis result indicates  that,  to  achieve 50 percent control, storm sewered
areas should be controlled less intensively due to their relatively
.;igh marginal costs and unsewered  areas should be controlled more
intensively because of their relatively low marginal cost.

The r.orrect solution can be  found  by  solving for w.  and w0 as functions
of "   i.e.,                                       ±       j
Wl = a!2
           b!2w2
                                                     . 85
(VI-31)
                                   238

-------
                         W3= a32 + b32w2    0
                                                                   (VI-32)
where
                  Ml        02  k2  "l
                   •*•   i,, r f  \ f—=-^ (  \
                    ;~ -Ln L *. Q Mi, MM ->
           !2
                  M
                                k2   M3
          •v
          b
            32
                      M
                                                          are as
               defined earlier.

The  total wet-weather pollution load, WP (pounds/year), is
                           WP =   2 M^                           (VI-33)


                                            - 4-1.
where     M, = annual pounds per  acre from i   area,  and

                         4-T-l        .    .           - "
          A. = area  of  ±  area,  acres.        .•••••



Let p denote the proportion  of WP that one wishes to control.  Then, the
optimal removal, w|, for a given  p is found by substituting equations

VI-31 and yi-32 into VI-33,  or        .        .    -     "

                                    L, + w,A«                      (VI-34)
                   p (WP) = w^ +

                   p(WP) = Ca'+
                                       ^ b32VA3
                    "•W2-
                                !- a12Al - a32A3
                                                                    (VI-35)
                                                                    (VI-36)
where
Knowing w$
and VI-327
              = optimal annual pounds per acre: removed "from
                the ±th source area.

             one can find w* and w* by substituting into equations VI-31
                  ' '        x     ' J
                                    239

-------
The optimal percent control of the ith source for control level, p, in


                                100(w*)A
 terms of w* is
                                    M.
0
                                                 (R*)   < 85.
                                                   i p
                                                                   (VI-37)
 The optimal percent control for 25, 50, 75, and 85 percent is shown in
 Table VI-17, Optimal Percent Control For Specified Overall Percent
 Control.  Knowing  (R-)  , one can find the cost per acre by simply
 substituting into  equation VI-24, i.e.,
                                   3R-,
                                                                    (VI-38)
to obtain the optimal annual cost per acre as shown in Table VI-18, Optimal
Annual Cost per Acre for Specified Percent Control.  Thus, the optimal annual
control costs are shown in Table VI-19, Optimal Annual Control Costs.  These
costs are approximately 17 percent less than the approximate values reported
earlier for 25, 50, and 75 percent control, i.e. equations VIr21 and. VI-22.


 Tertiary Treatment vs Wet-Weather-Treatment

 The optimal mix of tertiary treatment and wet-weather control can be
 found by equating the marginal cost of tertiary treatment with the
 marginal cost of wet-weather pollution control.  The estimated total
 annual incremental cost of a tertiary treatment plant is:20
                                        °'787
                              =  87,000 D
 where     C     = total annual incremental cost of tertiary
                   treatment plant, dollars per year, and
           D
                                                                  (VI-39)
                = plant size, mgd.

Assume a 25 mgd plant.  Then, C     = $1,096,000 per year.  The plant
is assumed to increase the BOD removal from 85 percent to 95 percent
or about 0.017 pounds  (7.71 g) per capita-day or 1,550,000 pounds
(704,000 kg) per year for the city of 250,000 people.  Thus, the
unit cost of tertiary treatment, c    , is $0.71 per pound  ($1.55 per
kg) of BOD removed.

Equating the marginal cost of wet weather control to the unit cost of
tertiary treatment yields
                     "tert
                           IQOg k
                             M
                                    IPO e
                                      M
                                                                    (VI-40 )
                                    240

-------
 TABLE  Vl-17
                      DEPCF^T
IEPA
IRfG


  "t
  • «•

   1
  • M

   1


  "T



  • •

   i
   STATE

      .
   "CT"

   ""ME"

   ""MA"

   ""H"

           25X        '
     cuvniSTOrt"iuNSE:wi


     5l7o!~"I°! ?.P.6j
     __.._ I-__,-|.....I.
     27.91   n.OI  3.01
                  CT.NTRCt  FOP SPECIFIED fiVFRALL PERCENT CONTROL

                       OPTIMAL PERCENT cnNTR°L       ,       85X

                  rn^BiSTOPMiu^sE^! COMBiSTORMIUNSEWI COMBiSTORMIUNSEW



                  *f ;. i -..;-1 ...i-1 ...1-1 ...i-1 —.-. i "—••• i "'•••" \ mzz"n
                  •>?.8l   O.Ol 28.71 77.71  0.0  54.5I 85.0    0.0   85.0
                      I       I  _.•)*._..(•*• I «••»*• I •«• w I •«••»• I «•»••€• I mmmmm |
                  "•^•"*(~~~*~W?'TT -.!  „.. -* t A.  •» i *«- MI «e 'A i  Be  rtl
         °2&7i; I ""7*0! "52?"! "5O! "5*71 j "5572! ^75711 "5775 j jji7o I ^57o j "es7o! "5i7o i

         mmmmm \ »«•«»•-» I mm~m,m | *•*•••'*•? . ***"T*?T.IItT**AiJT a!   A A I  C *  51  AC ft I  « rt i  ft** - fl
                                                                j   O.Ol 85.0

 2


"5
» a


• <•

 3


"5

*3
 NJ
»••••
 NY
mmm,



"E"
•..•
 DC


"MD"
                till

            I57o i ""-I.7o i "Ji?771 "«e75 j
                                         i


s^?!""^^"??^^

2578l*2?"T[""o7o|'

'"o7o!"l6l7l"4672l
       p*
   *3l""vA

   "5i""wv'
                • I.
                      .1.
                              61.1}
                               no i
 ?fi.ll  70.21  77.91


"2774["ft53oi°7875l




"2775j"i«"ot"si.Oj^


"279r"o7or72°0|'
.....1 ..... I.....I.
 40 41  73.01   0.01
                                           63.0   85.01
                                          •mmmm\mmmmm\«

                                           54.31  85.01
                                          ..... 1..... 11

                                               I      I
                            I
                       ..... I..... i .»«>•»
                        85.01  95.01  85,0
                       ..... j ...=?. I .«.»•
                        85.01  85.01  8S.O
                       ..... I .....I.»=»•I
                                                       82.81
                                                      ,mmmm I <

                                                       70.8
                   0.01

                  5s7oi
                   85.01  85.0
                  .....I.....

                   85.01  85.0:
                  ..... I ...t*«
                    O.Ol  85.0
                         89.0
                        »<*m9m

                        . £i£
                        "3i7o
          32.2!  6.91 «2;a|_

          4iir6!""5!!3l"367il
          ,..._|...r.i....>1.

          27.21  0.01  6.51
                        55.M 33.51 70.31 83.31 62.4! 85.01
                        .... I ..... I ..... I ..... I ..... I .....
                        69.21 ?7.8l 63.51 «5.0I^61.5 I^BS.O!

                        '^275 i ""5761 "?57"i! "77721 "55751 "55751
                                                       65.Oi  85.01  85.0
                                                      »mmmm\mmmmm\mmm»*

                                                       85.01  85.Oi  85.0

                                                      "6l"oi"857oic"ei,o

                             I
   41   AL
  tmmImmmmm

   41   FL
  i..I.....
   at   GA
  • mm Immmmm
        KY
     MS
     ...
     NC
    a i   sc
   >.i....
    41   TN
   ..)....
     mmmmm \ m-mmfim \ mmmm_m , — _ —	.	—  .  -    .
      37.81   0.91  21.41  62.31 23.4   07.4
     .._._!.....!....-!-....!--..-I««T-T!"
      44.01  .6.61  37.31  68.41

     ""o7o! "117" * "55751 "o7o i
     .....|.....!...^.'
       0.01  11.7!  34.71

     "o7i)i"T577i"5375i
     .....i.....;...*-i
      39.01   1.21  31.91
                 ,..2:2!
                 i..2:2!

                 u*h2!
•mmmm\«

 23.4J
tmmm** I '

 30.61


'3671 j'


"55781'
                                  ...-!,
                                   25.21
                                         64.01
                                        ,.-..(<
60.41
immmm | i

?".5i


'587ll
  0.01



.....I<

 B5.0I
 ....11

 85.01^



 ..1-1.

  0.01
 ..— I.
  0.01
 ....(

      85.01
     mmmmm\

      85.0


     "5570
     .....
      85.01
     m«mmm]

      85.01
     •....I
      85.01
     mmmmm

      85.0
 85.0
ummmm
 85.0

"557o

"5i7o


 85.0
9mmmm*
 85.0
>....I
 85.0<
mmmmm
 85,0
ammmm
 85.0

*8i7o
mmmmm
 85.0

"5173
.....

• 0...

,25s2
"5i7S

^I57o
m<*m*»m
 85.0

"5i7o
mmmmrm.
 85.0
                                         241

-------
TABLE VI-
EPAI STATE
RPGI 10
•61 AR
.£\1.±L
..*!..?-.
61 OK
61 TX

71 IA
7' K9
7 1 MO
71 ME

81 CO
81 "T
SI NO
81 SD
._£!..£-
81 WY
1
91 AK
.-.2L.1L
91 CA
91 HI
91 NV
1
10« ID
-1SL.21L
:»!..!£.
17 npTiMAf PFRr-.ENr cr-A'tnni ^np. SPEC
OPTIMAL PER
25x i •so*
COMB STORM IUNSF!-)! -'COMB I 3TOPM 1 U*pSrh
55.0
0.0
0.0
0.0
25.7

I?. 7
l.aj 19.31 PO.l
13.6! 54.31 0.0
7.ai aj.ei o.o
5.81 39.51 0.0
10. ?I 39.1
|
15.71 36.5
38.21 4.?1 ?7.1
31. «
27.7
•
o.ot a . a
0.01 it*. 7
i
2a.6l--9.6J M. ?
!UO
si. a
a« .8
0.0
0.0

.36.1
0.0
16.7:1 36,. /
15.51 32.4
9.51 35.5
' 6.9; /M.,9
13.01 36.5
.1 ' "
0.31 39.0
3.6*1 ai..6
19.71 13.41 47. 6
0.0
10.61 46. '0
30,21 2.5 1 35^6
,
o.o
1
_--_,"£?
31.91 O.'oi 27.7
3Z;2I 0.01 .zl.B
44.9

*0.9
6?. ft
•^6.3
53.5

a5,a
0.0
76.1
6d.9
0.0
0.0
.-
ft(>,2
0.0
rt .1 .7
0.0
54.1

0.0
57.0
«•!*
?r,.5\ ud.b
37.71 PI. 6
31.51 ft7.5
.-29.4J 65.5
3/1.3

41.4
2fl.7
?rt.l
P0.3

•Jfl.U
a 1.3.
'iO.l
33.6
'50...9
37.4

2ft. «
^2.8
38.6
3!3.0
27.0

at.O
?2.6
65.3

63.9
53.3
?9.e
56.3

70.9
62.3
5R.3
61,4
67. fl
/.?.!

64.9
67.4
<'4.«
71.9
61^7

59.1
54.1
IFIT^ OVERALL PERCf
:ENT CONTROL
75«
COMB 1 STORM IUNSEW
B5.0
0.0
0.0
0.0
69.2

53.7
"85.0
81. S
76.8

73.6
0.0
85.0
85.0
0.0
0.0

85.0
0.0
69.9
0.0
80.1

o.b
56.8
71.1
64,4
61.7
64.9
1
73,5
54.4
"9.2
4a.a

67.3(
67.9
67.6
61.8
64.3
64.6

56.4
65.1
71.1
68.1
53.5
1
65.6
81.61 47.2
T5*Ti 50. 7i 82. 5i 44.3
T7.5
85.0
85.0
85.0
85.0

85.0
80.8
55.4
83.4
1
85.0
85.0
85.0
85.0
85.0
85.0

65.0
65.0
85.0
85.0
85.0

84.5
80*1
76.6
'NT .CO
COMB
85.0
0.0
0.0
0.0
85.0

85.0
85.6.
85.0
85.0

85.0
0.0
85.0
85.0
o.o:
0.0

85.0
^ITPOL
STORM JUN8EW
85.0
' 85.0
85.0
85."0
85.0

85.0
85.0
85,0
85.0

85.0
• 85.0
85.0
85. '0
85.0
85.01
85.0
85,0
85,0
85,0

85,0
85,0
85.0
85.0

85.0
85,0
85.0
85.0
85.0
85.0 85,0


85.01 85,0
0.0 85.0 85.0
85.0
0.0
85.0

0.0
85.0
85.0
85.0 85, (5
85.0

85,0
85.0

?5,0
85.0 85.0 85.0
85.0
85,0
95.0
242

-------
TARI.E Vl-18  OPTIMAL AN'JIIAl.
 EGI   10



 ..I...-.
  1 I   ME
  II,  MH

cn*3

 7fll
 'HIT
 751
                 i
 n.
'"o"
"o"
'""
'IT!
  0.
 10.

 "'4.
..--




• •*••>

 JO.


 °t.


                                                                CHNTUOL
                                               COST  P||xACRr   ,        ?5?
                              a^.j   n,
 30:
771
P2«r
"in
"29!
cn^s

37"7

"39!

355?

1471
• •••*•»
396.
                                                     TQ^MI


                                                       o
                                         UMSFWI  rOMBlSTORMIUNSEW.!

                                          "B"l~51o!!"3527   "92.1!
                                                            771
                                                                       297.

                                                                      """o.
107.

"'!;
III!

Ill:
IsoT
  21   NJ
... I...—
  21   NY
... I ..»•»-
   I
_..(-...-
  31  DC

""ii"""

"°5l"~PA"

""ii"vA"
...I..-—
  3!  4V
             l6
             *
       46.

       "I^"




       "liT




       "22'

       "If
            1S7.I   «-
                                                  37.1  206.1  360
                                                                              T2.
                                                      lot.

                                                     III5I
                                                       90.1

                                                     ""si!
                                                      ...: i
                                                      loi.!
.-.!-..--
  41  AL
..-I .....
  41  FL

""3|l"GA"

"«r"xY°
...I..---
  SI ' MS
...!-.-->
  a i  NC

°""4i""sc
... i ..->.
  41  TN
   51  IL

  "si""i5
  „.!„,.-
   51  MI

  "i|~~MM

   0


"Tol
•»•«•«»
  47
   0

   n
 .....





 "~66

 "3!



 "30



 ""SO

       ?t.
      *!• «•«•


      "•»» •

       11.


      "71"
                                                MO

   0

 "o

 'M
  is
 ...


 •--

 ""9

 "7i
                             "Iop"t""H6

                             "~*!'iII*I
                             "ToiTj""??
                          46

                         "l9

                         "II

                         "Ifl
      350.
      !•»••*•••

      »•» 1« M ^
        0

      """"

      '337"




      °667

      °233

      "285

      "l2

      "306

      "45?
                                                             B4.I 350.1
                                                      t64
                                                      131

                                                      71?
                                                      127.1
                                                      •.•^1
                                                      113.

                                                      Hill
                                                      *8«"!l
                                                      .....I
                                                      133.1

                                                      7I«j|

                                                      7511
                                                                                 .l
              52.1 305.1 364
              • •MB I •••OWBI I M«*
-------
TARJ.P VT-
1
EPA 3TATE
RFGI Id

61 I,'

6
6


7
7
7
1 OK
1 TX

1 I*

i pn



8
8
8
8




SO
I'T






HI


To
ID


18 MPTTMAi AM.'.'JAJ C"ST
1 M 25* __ ;[
45.
0.
".
0.
82.

49.
'4'1.
2».
31.

45.
n.
37.
«4.
n.
0.

62.
0.
63.
°.
17.

0.
63.
40.
13.
53.
7.
U.
15.

U.
10.
0.
0.

13.
12.
9.
11.

1?.

15.

Ifl.
ir.
3.


0.
12.1. tl'7.
?p:? ACT FnR S"(;CI
PTI,UU .Ak'M'JAL COST
'ST04''1 1-'IMSE^ ! CDMR
35.

:54.
93.
i-'SiU!*:
CpWTRHL
( 85X
141.
0.
0.
0.
1665.

268«.
287.
?35.
322.

684.
0.
72"

0.
0.


0.
1201.
0.
7257

0.
37?.
1096.
139.
347.
310.

198.
"?54.
193.
290.

236.

72o.
?I7.
22i.
183.

426.
146.
138.
30.
66.
75.

73.1
82.
147.
53?

48.
62.
62.
62,
50?


	 691:
112. 25.
170. 40.
314. 61.
60. 72.

119. 55.
509.1 469. 112.
314.
432. 94.
244

-------
TABLE V.T-1
1 ) 1
IE.PAISTATE
IRFGI TD
IH
1 11
1 11
1 1 1

,...,-
ITL *E
1 21
l .21
PT
MF
MA
MM
E
DC

PA
VA
11 V
-.3 3
AL
FL
. r,A
KV
MS
NC
«|C
TM
PS il
IL
TN
Ml
MN
OH
VI
HS
9 MPTIMAI 1 r.|:JA' C!'K|THOl. Ci'Si
nPrlMAi. AKVi'iA!. C'i'jT-^n1. cnsn
'J.6I 13.51
0:. 9. 1 ' ? . T 1
. £:-!!. .2S:i'!.

1.71 s.aj
n.21 0.51

12.51. 35.^1
37.')| 1
-------
 TABLF  VI-19  OPTIMAL ANNUAL CMNTRDL  COSTS
|EPA!STATE!°PTIMM 	  	  """
IRFGI ID 1 25* 1

61 LA



TL "EG 6
71 IA
71 KS
'71 MCI
fr"PE""7
81 CO
81 MT
8j ND

81 IJT
81 WY
TL PEG 8




91 NV

10j ID
~Toi~~o5~

T"u7s7~"

97oT
0.61
3.01
1'->.5I
32.0!
3-. U 1

.
III!:!!"
""11761 "
... 2:2 L
0.51
0.31
0.41
1.21
0 . .5 i

._
1.01

1.1,
0.2,
2«.5l
0.4!
— sril-
296.71 a
' 50X 'l
5.01
27.71
1.51
7.91
U3.5I
•55.51
a. ii
6.51
16.21
4.01
6.21
1.3.
0.81
1.01
3.11
0.71
13.11
0.81
?.6I
59.21
?.6I
0.41
65. ?!
l.Ol
TJI.9I
'26741*
7S5 1 *5"< 1
T3. 31 24. s!
38.71 152.21
3.91 6. At
21.51 40.lt
lle.il 206.?!
2U6.7I 430.71
23.11 48.?!
I'.'Tl 30.31
43. j?l 71.51
10.71 "s.l!
17.01 28. 9J
3.21 5.01
2.11 3.41
2.71 !i.7l
fl.ll 1U. 31
LSI 2.91
35.0! 59721
2.11 fl.OI
6.71 "T.5!
I7?.at 287.61
7.9| 13.51
l.II 1.91
190. Tl 318.51
?.5I 3.91
39.2! 69.21
"697?l"r2o79l
«5. 712725. a!5o29. 01
               246

-------
or
                          w* =
                                 M
                               1003
                                       r
                                       L
^ert^,
1000 (k)J
                                                                    (VI-41)
where
          w* = optimal pounds of wet-weather pollution to control
               prior to using tertiary treatment, pounds/acre-yr.
The optimal percent, control in .terms of R^ is  ..

                                       c ert.(M)
                       R* - max X-g In  [1QQg  (k)L: 0) .


The overall average BOD loading per acre, M  (pounds/acre-yr),  is

                        '  —   WP      6.81 x 106
                                                                     (VI-42)
                                                                     (VI-43)
 where
            tot
                              Atot   15.63 x.lO

                          M = 43.6  Ib  Bpp/ac-yr  (34.0  kg BOD/ha-yr)
                                                 i    ,
                =  total  developed  area  in US,  acres.
                                                  0.047JR.,
 The overall cost function for the US is Z = 5.37e    ;

                            'r  1'  •;     0.71(43.6)   . nl
                   Rl = max [07047 ln 100(0.047)(5.37)' UJ
                                                            Thus,
                                                                     (VI-44)
                   R* =
                        4.3%.
 Thus, for these assumed  conditions,  approximately '-"4  percent  of the wet-
 weather pollution  should be  controlled prior  to  initiating tertiary
 treatment.  While  these  results  are  for  one specific set  of assumptions,
 they do suggest that  it  is highly desirable to do this  tradeoff analysis
 before committing  a community to tertiary treatment.


 Potential Savings  Due to Multipurpose Planning

 The cost of wet-weather  quality  control  can be  reduced by integrating
 this purpose  with  dry-weather sewage treatment  plants and/or  storage
 facilities  for stormwater  quantity control.  Therefore, it has been
 suggested  that flow equalization be considered  as  an alternative to
 conventional  design.21  The  storage volume needed  for dry-weather
 flow equalization  is estimated to be 10  to 20 percent of the  average
 dry-weather flow.22  Integration of wet-weather quality control with
 dry-weather control affords  the opportunity for equalizatxon of dry-
 weather flow since the wet-weather quality, in general, must be
                                      247

-------

           Z£ - cost of dry-weather control at a secondary plant,
                dollars per year


              = amortized capital costs and annual Q & M costs
               118,000(D
                                      55,000 D
                                              °'83
                                                                      CVI-45)
               °
 allo                   =    mgd 3nd a Per caP±ta sewa§e
gallons per day, computing Z£ and dividing by area A - D
                                                               of

 where
Also,
           PD
                                Z,  = 15.6 PDj
                                            d

                annual cost of dry-weather quality control,
                dollars per acre, and

            "d - developed population density, persons per acre.
           Z2 = annual  cost  of wet-weather quality  control,
                dollars per  acre
where all terms are as defined earlier,

and
                annual cost of wet-weather quantity control
                dollars per acre,
                                                                      (VI-46)
                                                                     (VI-4 7)
                                                                    (VI-48)
                                    248

-------
where      V   = storage volume required for wet-weather quantity
                 control, inches,

               = CR'(i), with

          CR/  = runoff coefficient in developed state minus runoff
                 coefficient in undeveloped state, and

            i   = 24-hour rainfall  for design  frequency,  inches.

 If  dry-weather quality  control and wet-weather  quality  control  are
 integrated, then

            Z   = joint  annual  cost of two purposes,  dollars
                 per acre,

               =15.6  PD   + cE + cS*
                                                                   (VI-49)
                              CT.[ TL - E
 where      E   = excess capacity per total area,  inches ,per
                  hour = 1.535 x 10~4PDd assuming E' = 10 mgd
                  generated using 100 gal/capita-day and
                  converting from mgd to ac-in./hr; ,and

            c   = annual cost of treating E at dry-weather
                  plant,

                = $1,960 per acre-inch/hour (assumed using
                  $3,000 per mgd from analysis of treatment
                  costs).

 If wei^weather quality  control is integrated with wet-weather quantity
 control, then

             Z   = ioint  annual  cost  of  two purposes,  dollars per
             23
             "   acre,
                                            -KS*,
                          CTIT1 + (T2  -
where
             S*  = max (V,  | In [^- K(T2 - T^ J ,  0) .
                                                                    (VI-50)


                                                                    (VI-51)
  It is assumed that dry-weather control cannot be integrated with wet-
  weather quantity control.  Therefore,
                                     249

-------
              i,- ~ joint annual cost of two purposes,  dollars per
                   acre,
                   Zl + Z3
                 = 15.6  PD , + c0V.
                           d    S
                                                                      (VI-52)


                                                                      (VI-53)
 If all three purposes are integrated, then
            Z123 S 15'6
                                     cgS*
                                                       -KS*
                                                                      (VI-54)
 To determine the potential savings in wet-weather quality control due to
 integrating this purpose with the other two purposes, it is first neces-
 sary to apportion the total cost among the three purposes.  For cost
 allocation, the use of facility method, most commonly applied in the
 wastewater field, cannot be applied in this case because there is no sin-
 gle facility utilization parameter that is common to all three purposes.
 Hasan has demonstrated that the alternative.cost method is appropriate
 for cost allocation.**  ,    Briefly, the alternative cost'method assigns
 each purpose its separable cost plus a portion, of the joint or non-  • ':'
 separable cost  on the basis;,of; alternative cost. , These .costs site "defined
 as  follows:     ,      '.    . .•  '  .•>    >               ...... .-  ...  ; ;. .,„-
Then,
where
           SC^ -  separable cost ,to purpose i            •   ', <      Y ....

              -  cost  of the total project  minus cost  of  the  project
                 with  purpose i excluded,  and

         NSC  s  non-separable cost

              =  total project cost minus  sum of  the  separable costs
                 to all  purposes.
           +± = SC^ + Y±(NSC)                                         (VI-55)


           ij>  » cost allocation to purpose i, and  .*•....,,

           Y£ = fraction of the non-separable cost assigned- to i.   -
In light of the above discussion, • the cost assigned to stormwater quality
control, 2, (purpose 2) is as follows:              .'.".     ,
                                                                      (VI-56)
                                     250

-------
where
         SC
        NSC
                      Z
                        13

                        3

                       i=l
                         SC
    (VI-57)



    (VI-58)
                Z12+Z13+Z23 ~2Z123'
                       Z2 - SC2
                                  3
                       2 + z3)  -  z sc.
                                                                     (VI-59)
                                     Z2 " (Z123   Z13)
                           ZJ -
                                    123
                                           Z23}
CZ123   Z13)
(Z123 ~ Z12)]
     (vi-eo)
Then, the potential savings are Z2 ~ ^2*

The above procedure was used to derive Figure VI-15S Cost Allocation Factors
for Five Cities, for the two year storm.  The sensitivity analysis
reflecting the variations in cost allocation relationship for various
frequency storms for region III is presented in Figure VI-16, Effect of.
Design Storm and Number of Purposes on Cost Allocation Factor for Various
Levels of Control.  Based on the results in Figure VI-15, the following
cost allocation proportions can be used for all urbanized areas.
          % Pollutant Control

                  25

                  50

                  75

                  85
                                    Cost Allocation Factor,

                                                0.46

                                                0.50

                                                0.70

                                                0.80
 Potential Savings Using Best Management  Practices

 In addition to using storage-treatment devices  to  control wet-weather pol-
 lution,  other options,  popularly called  best  management  practices  (BMP  s),
 are available.  In  a related study,  Heaney and  Nix evaluated the-savings  in,
 control costs if BMP's  are used in conjunction  with storage-treatment.
 The procedure was applied to Anytown, U.S.A., a hypothetical city  of one
 million people whose characteristics were determined based  on average values
                                      251

-------
                                             to
                                             
-------
253

-------
 derived in this study.  The results, shown in Table VI-20, Comparison of
 Annual Cost of Optimal Control Strategy for Anytown, U.S.A." Using Storage-
 Treatment Alone and in Combination with Best Management Practices, indicate
 significant savings could be realized by using BMP's in conjunction with
 storage-treatment devices.  These results can be incorporated into the final
 assessment by multiplying the storage-treatment costs by the % savings shown
 below.
           % Pollutant Control

                   25

                   50

                   75

                   85
% Savings Using BMP's

        54

        37

        37

        39
SUMMARY
                    assessment is to evaluate the cost of controlling
       ™     <   w*fc-weather Pollution, emanating from the 149 x 10?
          , §  ? Urban areaS ±n the United States'  **iable procedures
            S St0rTater P°Hution are not yet available.  Thus, a con!
 ™       TJ °f devel°Pment^ effort was expended in devising such
procedures.  Major results are presented, by item, in the nex^f ragraphs ,

       1.   Total  Single Purpose  Control Costs

            Relatively detailed studies  in  five  cities provided
            the basis for  evaluating  storage-treatment alter-
            natives for wet-weather control.  One  year of hourly
            data was simulated to predict the performance
            of various storage-treatment configurations.
            These results were put in analytical form to
            expedite extrapolation to the other 243 urban-
            ized areas and other urban areas.  These
            results are combined with data on the cost of
            storage and treatment to derive the optimal
           mix of storage and treatment to use to obtain
            a given level of control.   The final result is
            shown in Figure VI-17, Storm Water Pollution Control
            Costs for the United States.  A striking feature
           of curve A is that it bends upward (convex) indicating
            increasing incremental costs (particularly at higher
           levels of control) .  The primary reason the curve has
           this shape is due to the disproportionately larger
           amounts of storage and treatment required to control
           the larger storms.
                                    254

-------
1
CU
60

O
4-1
CO
60
•H
CO
P
CO
£3
d CO
g CU
o o
4-1 -H
!!
M-J 4J
d
>•> CU
60 g
CU CU
4-J 60
cd cd
4-1 Cd
CO S
rH 4-1
O CD
V4 CU
4-1 FQ
§*
u -P
•H
•d * •
S d
•H O
4-1 -H
pt 4_J
o td
<4-< -H
o ,n
4J o
co o
O
'r-1
a "d
d cd

o
CJ
t-H
cd
PI
































H .
' ^
H.'C
d) O
cB



^ .
o
CtJ W
0) -
&
i oa
a>
'S* g
M cd
O
+J
CO





_^
E-
i
CO
' — '
PI
CD
. B
•P !>>
Cd r-l
£ <§
E~*
CD
, W>
2
0
4J
CO



I— (
Q O
0 fH
ca 4-1
p
o\° C
CJ






O  - - -,.' - ' •- ' ".'"""•" *
,i - - i ....._.-;„_.


'•'••' ' . "'....


. . -......-
'in t^j L/"I Ln ' ' LO C^ LO J-O
|_T) C^ L/") LO LO CP LO l/j JJ J J--^ M^ ^^ ^^^ ^^ ^^ QQ
^Nl tO t"^ C3O CM LO »^" ^J, ^^ • 	 . - •
--'•••-* ..-.:•• -.•.-
....-•-'- .•_ ' •••_, ••.-.- • ' :'

- :.- . . ..'••- •• • •,•;_-'



' ;" ' ' '••-.' '-••. .'•'"-. .• y '..' ••'- •"''- -,••'• ':'. '.
T3 • • , ' g .-U ,- ., .-•• ,, ;..•'••
s'1 : a :•"•' 1 ' '••3-"'V.'
2 ' "i o • *> • ^
0 « ^§..-T . - ^
U ™ ~..,-. , - : ", , ....
s ..'-.- . •


255

-------
    5400
                                                           EQUATION: 1-
                                                          89.9aO.046R,
SINGLE PURPOSE :  STORAGE - TREATMENT
                ONLY
MULTIPLE PURPOSE : PORTION OF  STORAGE
TREATMENT  COSTS ASSIGNED TO  OTHER
PURPOSES
SINGLE PURPOSE :  STORAGE-TREATMENT
AND BEST  MANAGEMENT PRACTICES
SINGLE PURPOSE :  STORAGE-TREATMENT
ONLY - RESULTS FOR COMBINED
SEWERED  AREAS
to
a
O 2400
              U.S.  URBAN POPULATION =  149 XIO
              U.S.  DEVELOPED URBAN AREA = 15.6 X I06 flc
                10
    2O     30     40     50     60     7O     80     90
                                   %   BOD  REMOVAL , R
         Figure VI-17.   Storm Water Pollution  Control Costs  for
                           the United States
                                             256

-------
2.  Total Multiple Purpose Control Costs

    Significant savings can be realized if one
    integrates dry and wet-weather treatment and
    storage for quality as well as quantity control.
    Curve B in Figure VI-17 indicates the cost
    ofTtormwaterVality control in an integrated sys-
    tem.  This result suggests that the potential
    savings are significant enough to.warrant further
    study in  evaluating stormwater systems.

 3.  Total Costs of Storage-Treatment and Best Management
    Practices

    Potentially significant savings  can be  achieved by

    re?ebc>?
    high pollutant loading rates  and sewer  flushing where
    heavy deposition occurs  in combined sewers  appear  to
    be especially promising.as options to storage-treatment.
     Furthermore,  a significant portion of the costs of
     BMP's could be allocated to other  purposes.

 4.  Tertiary Treatment vs Stormwater Quality Management

     A comparison of the marginal costs of tertiary-
     treatment of sewage for further BOD control with.
     initiating control of wet-weather  quality  indicates
     that one should initiate  some level of wet-weather
     quality  control prior to  using  tertiary treatment.
     Of  course, a different result would occur  if  nutrient
     control  is used instead  of BOD  control.  Nevertheless,
     the relatively low marginal  costs of wet-weather  con-
     trol at  low  levels of control indicate that it should
     be given serious  consideration  as an alternative  to
      tertiary treatment.

  5.  Comparison of  Control Costs  with  Other Studies

     Previous studies  have indicated that  stormwater control
      is quite expensive.   Table VI-21, Control  Costs Reported
      in Other Studies  indicates that the 1974 Needs Survey
      estimated total control costs as  $266 billion whereas  the
      more recent National Commission on Water Quality  estimate
      is $278 6 x 109 25' 26  This assessment indicates initial
      capital'costs ranging from 2.5  billion for 25 percent  con-
      trol to 41.9 billion for 85 percent pollutant control, a
      small fraction of the above estimates.  Two reasons why
      the estimates vary by such a large amount are discussed
      below.
                                257

-------
               Table VI-21.   CONTROL COSTS REPORTED IN OTHER STUDIES
 1974 Needs Survey
 National Commission
 on Water Quality0
                                         Combined
                                         Sewers3
                                         Stormb
                                         Sewers

                                         Total
Combined
Sewersdj'
Storm
                                         Total
 266.1


 79.6

199.0


278.6
                  estimates -*ns various  assumptions  regarding  design  storm,

cEstimate includes collection sewer costs

.STS.'c.r^.STS?;^ *t*A* «"1SSi°'> ;« »«~ Q-Uty, Washing-
eUsed 2 year, 1 hour .design'1 "storm."

                                   258

-------
A.  Collection System Costs -
                                       9
    The NCWQ estimate includes $84 x 10  for
    constructing storm sewers.  This study did not
    view storm sewers as chargeable to pollution
    control.

B.  Choice of a Design Storm -

    The NCWQ studies used control of the two year,
    one hour storm as the basis for their mean esti-
    mate of control costs.  The concept of a design
    storm was not used because it was felt that a
    continuous characterization in terms of percent
    of the runoff which  could be treated (or events
    per year) was more appropriate since no accepted
    design event condition  exists which also speci-
    fies a design antecedent  dry-weather period.
    Also, sizing storm water  quality control units
    to treat runoff from storm intensities associ-
    ated..with less frequent events, e.g., two
    year - one hour storm,  requires relatively
    large treatment and  storage capacities'.''

     Using 25 years of hourly rainfall data for
     San Francisco,  CA,  and Atlanta,  GA, the
     relationship between percent  of precipi-
     tation "treated" and the design storm was
     determined.  Figure VI-18,  Percent of Total
     Precipitation Volume vs Rainfall Intensity -
     Atlanta, GA (1948-1972), indicates the per-
     centage of total volume less than or :equal
    - to a given value.  For example,  approximately
     65 percent . of the total- precipitation volume
     occurs from rainfall rates of 0.30 inch per
     hour (0.76 cm/hour) or less.  Thus, a treat-
     ment unit of this capacity could treat the
     entire precipitation during those hours.  It
     could also treat a portion of the remaining
     more intense storms.  The additional volume
     treated equals the number of hours during
     which the precipitation'was greater than
     the indicated treatment rate times the
     treatment.  From Figure VI-19, Percent of
     Total Precipitation Hours vs Rainfall Inten-
     sity - Atlanta, GA  (1948-1972), approximately
     five percent '• of the rainfall hours exceed 0.30
     inch per hour (0.76 cm/hour).  The average
     precipitation in Atlanta is 47.1 inches per
     year (120 cm/year) occurring during an average
                           259

-------
Npiiviidioaud-. iN30d3d
           260

-------
p-
to
 .
(NJ
                                                             04
                                                     OJ
                                                             00
                                                     00
                                                        to
                                                     a 3
                                                        H
                                                      to
                                                     1*2
 •o
                                                             fl)
                                                             4-1
                                                             OJ
                                                             4-)
                                                             M
                                                             H
                                                             •a
                                                             m
         cti
                                                              to
                                                              ft)
                                                              4-1
                                                              cd
                                                              4J
                                                              O
                                                              H
                                                              o
                                                              4J
                                                              PM
                                                              §
   s30N3a,anooo Noiiviidioaad Ivioi
                              261

-------
 of 537 hours per year.   Thus, the additional
 percent  volume treated during intensities
 greater than 0.30 inch per hour (0.76 cm/hour)
 is 100[0.05(0.30 in./hr)(537 hr/yr)/47.1 in./yr],
 or 17.1 percent.

 Thus,  the total percent  of volume treated
 with a unit  capable of  handling precipitation
 of 0.30 inch per  hour  (0.76 cm/hour)  is about
 65 + 17 =-82 percent.    In general, to  find
 percent  treated  use:

 PT = Fra + (100  -  F  )(I  )(N     WP
       B  - v   v    rc'v TMiNTOTAL;/

where   PT      = annual overall percent of
     ,.            precipitation treated,

         XR     = rainfall intensity,  in./hr,

         IT     = design treatment rate, in./hr,

         •Fg     = percent volume for all I _< I


       , ...Fc     = percent of total rain-
                  fall hours with I  <_ I ,


                  total  number of rainfall
                  hours per year, and

         P      = average annual precipi-
   *               tation, in./yr.

 Note that the result is conservative (the
 estimate of  PT is slightly  low) since the
 frequency analysis  has  been performed using
 precipitation volumes and hours rather.than
 runoff-volumes and  hours.  ' This was done to
 insure: comparison with  the NCWQ study in '
 which only precipitation frequencies  are '
 reported.

 The-general  results for Atlanta,  GA,  are, shown
 in Figure VI-20,  Overall Percent Precipitation
 Control vs Rainfall Intensity - Atlanta,  GA
 (1948-1972) -.  Also  shown on Figure VI-20 are
 the intensities for storms ranging in frequency
 from two weeks  to 25 years.-   Treating at the
 intensity  equal to  the  two week storm would
 prpcess over  80 percent of the rainfall  volume.
                                           (VI-61)
N,
 TOTAL
            262

-------
lOdlNOO
                   263

-------
                 Frequencies  larger  than a month or two ap-
                 proach  total capture of the volume.  These
                 results  indicate that for the NCWQ study,
                 virtually all of the volume would be processed
                 with a  control unit operating at an intensity
                 associated with the two year - one hour storm.
                 However,  one could control nearly as much
                 precipitation by using a much smaller size con-
                 trol  unit.   Alternatively, the marginal gain
                 from  using these much larger units is quite
                 small.  For  comparative results, the same
                 three figures were generated using 25 years of
                 hourly data  for San Francisco.   The results
                 are presented in Figure VI-21,  Percent of Total
                 Precipitation Volume vs Rainfall Intensity -
                 San Francisco, CA (1948-1972).  Figure VI-22,
                 Percent of Total Precipitation  Hours  vs Rainfall
                 Intensity - San Francisco,  CA (1948-1972).  and
                Figure VI-23, Overall Percent Precipitation
                Control vs Rainfall  Intensity - San Francisco
                CA (1948-1972).             - — '
                                         sj£
                                 sr ES
Improved estimates for a specified city can be obtained using Seal  data?
S™?^1
-------
                                                                                         CO
                                                                                         g
                                                                                         4->
                                                                                         a
                                                                                         fl)
                                                                                        M-l
                                                                                         •H CM
                                                                                         4J l-»
                                                                                         n) er»
                                                                                  —    «H  I
                                                                                         p. oo
                                                                                         •H -*
                                                                                         O CTi
                                                                                         (!) H

                                                                                         CM

                                                                                         i-l U

                                                                                         4J  «
                                                                                         O O
                                                                                         H O
                                                                                            CO
                                                                                         M-l -H
                                                                                          
-------
  o
   • I
  CVJ
  CD
O
.0

"o

'
                     o
                     o
                     en

                     o
                                             00
                                             O
                                                                 CM

                                                                 O
       -M
       •H
       CO

       g
                                                                        H
   N •.." "*

       •rt
CD >- '

  c/5

  LU
  h-
                                                    'to


                                                    CO
                                                    3
                                                    fi
                                                    O x-s
                                                    •H CM,
                                                                        43 ^
                                                                        •H I
                                                                        CUCX3 '
                                                                        •H <1*
                                                                        O CTi
                                                                        CU H


                                                                        * ^

                                                                        •i*
                                                                        4-1 •>
                                                                        O O
                                                                        H O
                                                                          CO

                                                                        O O
                                                                        H.
                                                                        co
                                                                       CM

                                                                       7
                                                                       H
                                                                       >

                                                                       OJ
                      NOIlVlldl03dd  1V101
                                    266

-------
                                                           4J
                                                           •H
                                                           w

                                                           §
                                                           4-1
                                                           F!
                                                           rH
                                                            CO

                                                           M-l
                                                            ctf
                                                            Pi
                                                       :=    co
                                                            o
                                                            M

                                                            I
                                                            o
o
•H
4J
R)
4J
                                                              H
                                                            •H OO
                                                            Q) O
                                                            O O
                                                            M CO
                                                            0) -rt
                                                            CM o
                                                            cd
                                                            M
                                                            m
                                                            >
                                                            o
                                                            CO

                                                            7
                                                             0)
                                                             H


                                                             60
                                                             •H
lOdlNOO  NOIlVlldl03Md
                           '267

-------
 ABBREVIATIONS'AND SYMBOLS


 a           Coefficient, inches per hour


 A           Catchment :or 'sewerage area, acres


 Al           Combined sewered area, acres


A2           Storm sewered' area,  acres


A3           Unsewered area,  acres


             Total  developed  area,  acres


            Annual runoff, inches  per year   "


            Coefficient,  inches per  hour


            Biochemical oxygfen demand     --•„•;••••


            Five-day biochemical oxygen demand
  tot

 AR


 b


 BOD
 3


 c
  tert



CS


CT
 Jtert
CR


CR-
            Coefficient,' percent"1 '?  '   '     ^''  '' :  '"" "''''''''•':'""''      :


            Coefficient, percent R                             '"'


            Unit treatment cost for excess capacity, annual dollars per
            acre-inch/hour                       „


            Unit incremental cost of tertiary treatment, annual dollars
            per  pound


            Unit cost of storage,  annual dollars per acre-inch


            Unit cost of treatment,  annual dollars per acre-inch/hour


            Unamortized  capital cost,  dollars, also annual unit costs,
            dollars per  acre                          ...     u     :


            Total annual incremental cost of tertiary treatment plant  '
            dollars                                                   '


            Gross runoff coefficient


           Net  runoff coefficient = developed runoff  coefficient minus
           undeveloped  runoff  coefficient       :     -   ../'. ...i •'.       ;


           Coefficient, inch"1     ;•'  ,,, •••.•>. •-:.-;     :: :  ,; ; ,.  ,  ;
                                    268,

-------
 D

 E'

.E


 ENR

 n

 f
 h

 i

 I
 k

 K

 1

 L

 m

 mg

 mgd

 M
 Actual sewage flow, mgd                    ,,

 Excess capacity at sewage treatment plant, mgd"  ,. !? ' -,

 Excess capacity at sewage treatment plant per total area,
 inches per hour

 Engineering NewsRecord Cost Index

 Treatment plant efficiency              '  ,,.•:•••-

 Coefficient,  percent  R           .

 Production  function  relating percent pollutant control  (RI>  to
 storage  (S)  and treatment (T)

 Percent  of  annual precipitation volume for which 1^ _< 1^

 Percent  of  total  annual precipitation hours  for  which IR j£ ;IT

 Coefficient                                .         •       '. ' :

 Fraction of non-separable cost assigned  to purpose i       ;
                                   ,2 '£:-  . - *••  *  " ->' -
 Coefficient                  ....'...          '

 24-hour  rainfall for design  frequency, inches

 Percent  imperviousness                 ...

 -Rainfall intensity, inches per hour      ;

 Design treatment rate, inches per  hour
    ,'"..' ?t '• ' =''.'.- - ' '•-  '"•'•'">  "  *"• '•--•'' ' ''•''  • '"   ' '   •/,,'"--•-• .'•     ..--.-
  Coefficient

  Coefficient

" Coefficient                           ,-:     ..,     .          '   ,

 .Pipe length L       .       :	           ..'•-    .

  Urban land use

  Million gallons

  Million gallons  per  day      •             •

  Annual pollutant loading, pounds per acre-year
                                       269

-------
    ST
 M

 MC

 MRS

 NSC


 NTOTAL

 OE


 P

 P

 PD


 PDd


 PT


 *i

 q

R



R,
R|
s

S

S*


S2

SCi

ss
  Average annual pollutant  loading,  pounds per acre-year

  Marginal cost  of  pollutant  removal, annual dollars per pound

  Marginal rate  of  substitution.of storage for treatment

  Non-separable  cost, annual  dollars per acre

  Total number of precipitation hours per year

 Number of overflow events per, year      .   -

 Coefficient

 Annual precipitation, inches per year

 Gross population density,  persons per acre

 Population density in developed portion of urban area,
 persons per acre


 Annual overall percent of  precipitation control (treated)

 Annual cost assigned to purpose i,  .dollars  per  year

 Coefficient

 Percent runoff  control = percent of annual  runoff volume
 passing through treatment  unit

 Percent pollutant  control .(removal)

 Maximum percent pollutant  control  (removal)  .

 Optimal percent pollutant  control prior to using tertiary
 treatment


 Fraction  of total wet-wea'ther pollution load controlled
 (removed)

 Coefficient

 Storage volume, inches


Optimal storage volume for wet-weatherpollution control,  inches

Maximum of S* or V, inches

Separable cost assigned ta'purpose i, annual dollars  per  acre

Suspended .solids           .
                                    270

-------
T

X*
TAG

v

V


w

w.
w*



TO


y

z

Z

Z*

Z
 Zi
Treatment rate,  inches  per hour

Optimal treatment  rate  for wet-weather pollution control,
inches per hour       -                 r"'   '   '   '**

Treatment rate at  which isoquant is parallel to the ordinate,
inches per hour      ,
                    < * -  .•,-..     '.-"•>*> >•'•' 3 *J fi i"*""' '-'' •  '.-" • /          • -  '
Treatment rate at  which.isoquant intersects the abscissa,
inches per hour            •         ;  ,. .= -     -           .

Total annual  costs,  dollars per year'--''"-        "'

Coefficient                              r .  -'.

Volume of storage  required for wet-^weather quantity control,
inches

Pollutant removal, pounds per acre-year

Pollutant removal  from type of sewered  area'- ±$ pounds  per
acre-year        »

Optimal pollutant  removal from type of  sewered  area i,
pounds per  acre-year        -    =;.-'•.•«  : t.--  .  •••;.-.•

Optimal annual pounds per acre of wet-weather pollutants to
control  (remove) prior to using tertiary  treatment, pounds
per acre-year   •     •              • • - ' ''"~J.. • '

Total annual wet-weather pollution  load from developed
urbanized area,  pounds per year   ,    --,.. i   '=-

Coefficient'- '    - ' ' •':' ' ''  ~ >'••"-'•-••'.I  -^.»^~ "-^•"•"•- '

Coefficient  -        •••-"-'   --'.••''>••"  s  ;-'-^' m. -:- :;:'  \  '           '/"

Total annual cost, dollars per  acre

Optimal total annual cost,  dollars  per acre

Annual cost  for primary control unit,  dollars  per acre

Annual cost  for secondary control unit^ dollars per acre

Annual cost  of dry-weather quality  control,--dollars

Annual cost  of dry-weather quality  control,  dollars per acre

•Annual cost  of wet-weather quality  control', Jdollars per acre

 Annual cost  of wet-weather quantity control,;dollars  per acre
                                      271

-------
"13
J123
 Annual cost  of dry-weather quality  and wet-weather  quality
 control,  dollars per  acre


 Annual cost  of dry-weather quality  control and wet-weather
 quantity  control, dollars  per acre


 Annual cost  of wet-weather quantity and quality control,
 dollars per  acre


Annual cost  of dry-weather  quality, wet-weather quality, and
wet-weather  quantity control, dollars per acre
                                  272

-------
REFERENCES

 1.  American Public Works Association,/'Problems of Combined Sewer
     Facilities and Overflows, 1967," USEPA Report No. 11020	12/67
     NTIS-PB 214 469, December 1967.

 2.  American Public Works Association, "A Study of the Costs Associ-
     ated with Meeting the Requirements of PL 92-500'," Draft Report
     to National Commission on Water Quality, 1974.

 3.  James, L. D. and Lee, R. R., Economics of Water Resources Planning,
     McGraw-Hill, Inc., NY, 1971.

 4.  Field, R. I. and Struzeski, E. J. , Jr., "Management and Control of
     Combined Sewer Overflows," JWPCF, Vol. 44, No. 7, 1972, pp. 1393-
     1415.

 5.  Lager, J. and Smith, W., "Urban Stormwater Management and Technology:
     An Assessment," USEPA Report EPA-670/2-74-040, NTIS-PB 240 697,
     December, 1974.
 6.  Becker, B. C., et al., "Approaches to Stormwater Management," Hittman
     and Associates, USDI Contract 14-31-001-9025, 1973.

 7.  Field, R. I.,  "Treatability Determinations for a Prototype Swirl
     Combined Sewer Overflow Regulator/Solids-Separator,"  Proceedings
     Urban Stormwater Management Seminars,  Atlanta, GA,  November 4-6,
     1975, Denver,  CO, December 2-4,  1975,  USEPA Report  WPD 03-76-04,
     pp.  II-98-II-111, January 1976.

 8.  Sullivan, R. H., et al..  "The Swirl Concentrator as a Grit Separator
     Device," USEPA Report EPA-670/2-74-026,  June 1974.

 9.  Maher, M. B.,  "Microstraining and Disinfection of Combined Sewer
     Overflows - Phase III," USEPA Report EPA-670/2-74-049, NTIS-PB
     235 771, August, 1974.

10^  Agnew, R. W.,  et al., "Biological Treatment of Combined Sewer
     Overflow at Kenosha, Wisconsin," USEPA Report EPA-670/2-75-019,
     NTIS-PB 242 120, .April,  1975.

11.  DiToro, D. M., "Statistical Design of Equalization  Basins," JEE
     Div., ASCE, Vol. 10, No. EE6, pp.  917-933,  December 1975.

12.  Benjes, H., et al., "Estimating Initial Investment Costs and
     Operation'and Maintenance Requirements of Stormwater Treatment
     Process, USEPA Cont. 68-03-2186  (unpublished), 1975.

13.  Wiswall, K. C. and Robbins, J. C., "Implications of On-Site
     Detention in Urban Watersheds," ASCE Hyd. Div. Conf., Seattle, WA,
     1975.
                                    273

-------
 14.



 15.



 16.




 17.

 18.



 19.




 20,f


 21.-


 22.

 23.
  Hydrologic Engineering Center,  "Urban Stormwater Runoff:   STORM,"
  US Army Corps of Engineers,  Generalized Computer Program 723-58-
  L2520, 1975.

  Stankowski, S. J., "Magnitude and  Frequency of Floods in New Jersey
  with Effects of Urbanization,"  Special Report  38,  USGS,  Water
  Resources Div., Trenton, NJ, 1974.

  Thornthwaite, C. W. and Mather, J. R. ,  "Instructions and Tables for
  Computing Potential. Evapotranspiration and  the Water Balance,"
  Drexel Institute' of "Technology, Publications in Climatology,  Vol. 10,
  No. 3, Centerton, NJ, 1957.

  Eagleson,  P. S., Dynamic Hydrology, McGraw-Hill Book Company,  NY, 1970.

  Grace, R.  A, and Eaglespn* ••?>: S. , .."The Synthesis of  Short-Time-
  Increment-Rainfall. Sequences,," MIT Dept. of Civil  Eng., Hydrodynamics
  LaK Report 91, Cambridge, MA,; May ,1966..

  Sariahmed, A.  and Jcisiei, C . C., "Synthesis of ' Sequences  of ^Summer
  Thunderstorms ; Volumes for the Atterbury Watershed  in the  Tucson
  Area," Prpc. lASH Symp.  Use Analog Digital  Computers in Hydrol.,
  Vol.  2, ..pp. 439-447,, .Tucson, 1968.         ,           •,..,-'.•
 Hasan» ;,?,?.».. in;te8rat?d Strategies for Urban Water Duality Management,
 PhD Dissertation,  University .of .Florida, Gainesville,* 1976.
     •          it. t" y    »•                  •        '         '
       » # . .  -,    f ,„,  '<   t' „ ^   . J. ,V _',?' T-  . ,r\ ' t>. ^jS  " '' ' Jl ,'  ,   " ; *   ' '.'•"-',, '.   "" '.  •; ''
. Anonymous,-. "Flow; EquaMzation'-Plus. for Wastewater Treatment, Plants?"
 Civil Engineering, t. Vol.  45, No. 9, pp. 66-68, September 1975.

 Anonymous, J'FlowiU Equalization," USEPA Technology Transfer, 1974.

 •Battelle-Nprthwestj, ^fevaluation of. Municipal Sewage Treatment
 Alternatives" : Council _ on Environmental Quality, NTIS-PB 233 489,
 1974.  ' -     ,•;'•'-,.•.*' .". '. ,-  .  ..     ',- ..''....'     '     .      ." ' .  ":"
24.



25. ,



26.

27.
 Heaney;; J.-P., -and S. ,J, Niic, "Storm Water Management Model:  Level I—
 Comparative Evaluation of Storage-Treatment and Best Management Prac-
 tices," USEPA, Cincinnati, OH.,  1977 (in press).

 .US Environmental Protection Agency,  "Cost Estimates .for Construction
 of.Publicly OwnedrWastewater Treatment "Facilities^"^1974 Needs
 Survey,.- February 1975.   ;,<   ,.   • :    ; ,   .   :,.:,  .,  ,'.,"   ..-,•,'  ,

•.Staff .Report to -the National Commission 6n Water Quality,  USGPO, 1976.

:Heaney,  J.,^P., Huber,' -W. C., and Nix, S.  J., 'Storm Water. Management
 Model:   Levelil^-Preliminary-Screening'Procedures,"  USEPA Report EPA-
 600/2-^76-2 75»-; October -1976.   ;  :     ^ ,.:,-::.           .
                                    .274

-------
                                SECTION VII-

                  IMPACT OF URBAN WATER POLLUTION CONTROL
                         ON RECEIVING WATER QUALITY
PROBLEM DEFINITION

Unquestionably, the nationwide commitment toward control of water
pollution and the efficient use of available water resources has led
to the need for comprehensive and integrated river hasiti planning...  An.
average annual precipitation of 30 inches (762 mm) constitutes the
basic source of water supply for the conterminous US, an area of
3,022,387 square miles.(7,827,982 sq kms).1  This amount corresponds to
approximately 4,300 billion gallons per day (16.3 x 10y cu m/day).
Surface runoff, interflow and groundwater flow result in an average
annual streamflow of about 1,200 billion gallons per day (4.54 x 10y
cu m/day).2  This is a simplified measure of the total available fresh-
water supply.  Estimates of water use in the United States for 1970
indicate that 370 billion gallons per day (1.40 x 109 cum/day) were
withdrawn to satisfy off-channel demand.  Of the. total withdrawn, 87
billion gallons per day (0.-33 x 109 cu m/day) were estimated to be con-
sumed — that is, water made unavailable f6r further possible withdrawal
by natural evaporation, incorporation into crops and manufactured
products, and other causes.  For the 5-year period from 1965 to 1970,
withdrawals increased by 19 percent and consumptive water use increased
12 percent.  It is not difficult to visualize that if withdrawals
in 1970 were already 31 percent of the total available supply,_and
consumption was 7 percent, strict water management practices will ..b.e.
absolutely necessary to cope with an increasing water demand upon a
fixed water resource.  The quality of a scarce freshwater supply will
have an added  significance for obvious reasons.

The  water quality  cycle is a  dynamic system existing within each phase
of the hydrologic  cycle.  The amount of pollution entering  or  leaving
a water body  is determined by the quantity  of .flow and  concentration of
pollutants  in  each of  the hydrologic components  of the  physical  system.
The  retention of pollutants  in  the water body  is  riot solely a  function
of the quantity and quality  of hydraulic  flows,  since  it  also  depends
upon the  location  of the  pollutants within  the water body.  The  pollu-
 tants  exist in the water, bottom sediments,  and  the aquatic life.   When
 area sources  such  as bottom sediments  are  the  greatest  pollutant contri-
butors,  it  may be  necessary  to  consider treatment of the  water body
 itself;  for example, stream aeration.   Thus, one of-the initial steps  in
 the  planning process is water quality  problem identification.
                                   275

-------
 Urban areas represent the centers of most intense human activity.
 Urban land use is small within a river basin, as evidenced in Table
 VII-1, Land Use in the United States.3  Point discharges resulting
 from commercial, industrial, and residential wastes, generally enter
 the receiving stream within relatively short distances of each other,
 and in some cases all such wastes are processed by municipal facili-
 ties and discharged to the water body at one location.  Thus,  these
 continuous waste products are concentrated within a relatively small
 volume of the receiving water.  Intermittent precipitation falling on
 urban areas becomes contaminated as it enters and passes through or
 within the manmade environment.   The first quality degradation occurs
 When the rainwater comes into contact with pollutants in the air.
 Next,  the surface runoff passes  over ground and building surfaces,
 carrying suspended sediment 'from erosion sites and dissolving other
 impurities.   Finally,  the stormwater runoff comes into contact with:
 1)  solid residues deposited from earlier storms throughout the con-
 veyance system and appurtenances;  and 2)  dry weather  'flow (DWF)  in
 combined sewer systems.   This storm runoff is well mixed with:sanitary
 sewage under conditions  of turbulent flow in a combined•sewer'system,
 and it eventually discharges to  the receiving stream.   The degradation
 undergone by urban stormwater passing through the surface runoff phase
 of  the hydrologic cycle  can be several orders of magnitude greater  than
 that experienced by rainwater during the precipitation phase.4   The
 pollutants either decompose (nonconservative),  accumulate (benthic
 deposits),  or are carried further  downstream Conservative,  suspended
 and dissolved matter).              ,

 The essence  of a rational water  quality and quantity management  program
 is  the decision making process.  The high cost  of pollution-;.control
 facilities,  in terms of  both energy utilization and financial burden,
 obligates  the planning agency to select the optimal strategy  for  areawide
 wastewater management.   Such a process  must  focus on a systematic pro-
 cedure that  identifies and defines:   1)  the  cause/effect  relationships
 of  the physical environment,'  2) the economic  realities  of  control alter-
 natives; and  3)  the benefits  to be  derived  from implementation of these
 controls.  A  preliminary analysis that  provides  an approximation  of
 system responses  to proposed  treatment  measures  should  aid the selection
 of  the best strategy for restoration of water bodies to accepted water
 quality standards.  Such an  analysis must never be interpreted as other
 than a guide  to be tempered by professional judgment.  The mathematical
models  applied need not  incorporate  all phenomena but rather should be
 relevant to the problem  under consideration.  The problem of specific
 interest is to assess the  separate and  combined effects of the major
urban  sources of water pollution upon the quality of the receiving waters.
Oxygen  concentration is  considered the key to the quality of natural water
bodies, although it certainly is not the only water quality indicator.5
Thus, the relative impact of these wastewater sources is appraised by their
effect  on the dissolved oxygen concentrations downstream from the urban area.
                                    276

-------
-CO
  oo
  VO

co
cu
cd
4-)

1
o
o
o
CM

oo
*t
VO
CO
m
o
0
o
rH
rH
00
f\
CM
0
O
O
I--.
OS
CO
«t
O
o
o
o
CO

oo
«
*
8
o
«^.
OO
vO
**
CM
o
0,,
o

vO
CO
f*
o
CO
o
o
o
VO
CM
o
**
rH
                 (U
                 b(
                 CD
                 O
                 H
                 Q)
                 PM
                                                     CO
                        m
                                                            CO
                                                            CO
                   O
                   o
                  :H
                   8
o
o
o
CM

VO
vO
CM
CO
O
O
O
^
O
CO
. "tH
VD

O
O
O
O
O
-*
o
m

o
o
o
o\
ITi
0
i-^


o
o
o
CO
OA
OS
o
vO

o
0
o
oC

**
OS
in
^
o
o
o
0"
"
m
vo
CM
                                                                     
-------

       0    generate stormwater runoff pollutant loads and dry-
            weather sanitary flow pollutant loads;

            simulate the pollutant removal efficiency of various
            treatment schemes;                            various


       0    simulate the conveyance system,  including mixing
            in combined  sewers  of  wet- and  dry- weather pollutants;

           mix the  various pollutant  inflow combinations with
       •   pollutants already  in  the  receiving water  (.from
           upstream sources);  and

       m    predict  the oxygen balance of the polluted waters
           downstream from the waste sources,
data
of cost
or cost
          0
                                          quantity and
                                                                   the
         effecvene                alternative *• ^ighed on the basis
         effectiveness:  the annual total cost and the water
                                                                     ,
 to Des  Moines,  Iowa,  is presented.   Computed values for dissolved oxveen
 are compared with field measurements.                    dissolved oxygen
METHODOLOGY

Characterization of Wastewater Discharges and Polluted Wa
n        faraferf e the strength of wastewater discharges and the
quality of polluted waters, large and diverse numbers of chemical
dSSSid blT°i:glCs1' 3nd bact--l°S-al methods of anal^JT^ been
developed.,  The most common parameters measured are listed in Table
I    ' Poll-utl°n and Contamination Indices.  The bacteriological nroce-
ofrthea::terw£hdbt0 ^^^ P°tentISr^th haZards fromL"t Lotion
of the water with human or animal feces.  The sampling technique
                                  °f  — tion'should bl tailored to

                                  278

-------
Table VII-2.   POLLUTION AND CONTAMINATION  INDICES
           Physical Parameters:        ,    .. .':

              Temperature
            ,  Turbidity       ,         '   '
              Color     .            '      -•'-••

           Chemical Parameters:

              Oxygen Demand             ' .   .

                 Biochemical Oxygen Demand  (BOD)
                • Chemical Oxygen Dei-tan d  (COD) • .
                 Total  Organic Carbon  (TOC)

              Nitrogen  Compounds

                 Organic •  '           .  -    ••"-  •
                 Nitrite
                 Nitrate           . . .-  --.

              Phosphorus Compounds

                 Ortho  Phosphorus
                 Poly Phosphates  .•  •   .J  •;.: ;

              Total  Solids

            "''   .Dissolved                 ' .
                . Suspended      '             ;
                 Volatile and Fixed
                 Settleahle  ..   .-. ,..-)•"•    , -,'• ...

              Chlorides                  .
              Sulfates                 '•.''.',.
              PH              ' •   '-•- -  '-•-•- "  '••
              Alkalinity
              Hardness
              Heavy Metals

                 Lead
               :   Copper                    '  -
                  Zinc
                  Chromium           ,
                  Mercury

             Biological  Parameters:     • •  ••  .•••••>

               Plankton     .      .     ,  ,;•
               Periphyton
               Macrophyton                    ,
               Macroinvertebrates
             .   Fish Bioassays

             Bacteriological  Parameters:    ,.	 ;,

                Total Coliform Count
                Fecal Coliform •'•"•'
                Fecal Streptococci
                Total Plate  Count             	
                            279

-------
         S? r C°nS^tU1ents that affect ^e distribution of dissolved
          f     a na      WatSr SyStSm are WSl1 docu*ented.  The oxygen
  ™f or SK;iSraSe,treatment PlaUt effluent> Polluted stormwaLr
  runoff or industrial wastes is exerted by three types of materials:5/6

            1.   carbonaceous organic matter oxidized by
                heterotrophic bacteria for energy and cell
            2.
 synthesis;

 organic nitrogen  compounds hydrolyzed  into
 ammonia-nitrogen  (NH -N), then oxidized by
 autotrophic bacteria (Nitrosomonas europaea)
 to nitrite-nitrogen (NO -N), further oxidized
 by Nitrobacter winogradskvi to nitrate-nitrogen
 (N03~N); and
           3.
certain chemical reducing compounds (ferrous
iron, sulfite, and sulfide) which will react
with molecularly dissolved oxygen.
     l OXygen.demand ls the response of aquatic biota to an adequate food
 supply and is commonly referred to as the biochemical oxygen demand (BOD)
          at°ry,T techni«ue is an empirical bioassay-typ! procedure :    '
        T^r   7 micr°bial llfe in an ^cubated bottle is measured with
         If r    ^ a SPSf f±ed temPerature'  The actual environmental con-
            temPer^ure changes, biological population, water movement,
 rn   L^  +?"*,  ^ aer°bic and ^aerobic processes cannot be faithfully
 reproduced in the laboratory.  Thus,  the "bottled" system,  on a kinetic
 comparison, is completely accurate in representing itself but may be
 relatively unreliable as a representation of the source from which the
 sample was taken. The basic assumption that consumption of DO is an
 absolute and complete parameter of biological decomposition in the BOD
 bottle constitutes a simplification of complex interactions.
 evorv.         hSVe been developed to measure the oxygen demand
 exerted by organic matter.   The chemical oxygen demand (COD)  and  total
 organic carbon (TOG)  tests  are more -precise chemical methods, but the
              S     arS n0t  accurate if the  organic material measured is not
                   °rganic matter act"ally being utilized by the micro-
     evn "S^-  MUCh Can be  d°ne  t0  lmpr°Ve the '-curacy  of the
 a natural XoS»S  f^1™ Water from  the receiving  stream, thus  introducing
                        rSe  °rganisms  into  the bottle system.  With all of
                          Procedure is  still  considered to be the  best
            evaluatln§ the e«ect  of waste inputs on  the  oxygen balance of a
Model Overview
*.^~ ~~~t T	J •"•'"* aLC used to simulate the hypothetical response of
the receiving water to the separate and combined effects of BOD waste inputs
                                    280

-------
from:  1) upstream sources, 2) dry-weather urban sources, and  3) wet-
weather urban sources.  The general concept is illustrated  in  Figure
           ^ ifled Configuration of Mixed Waste Inputs  to Receiving   -
             --1-*1- *"*      P-.I.  • "• ' "™   . ""             "  ~__	 *—,-r « •#- fiff,  T.T-1 ~\ 1
VH-1,
iimpllJ
        The urban community served by a separate sewer system will  con-
               runoff and municipal sewage through  conduits which are
 (Q  )  and  the flow (DWFCMB)  intercepted for treatment by the DOT ^^
 iri identical   Any degree  of treatment desired may be imposed at both
 III JwF and the SwJ treatment plants.   The concentration of the combined
 BOD inputs in the receiving water is given by:
               BOD  =
                  m
                                                                    (VII-D
 where     BOD  = mixed BOD concentration in receiving water,
              m   mg/1,

           BOD  = mixed BOD concentration from sources upstream
              u   of urban area, mg/1,

           BOD  = BOD  concentration  of  dry-weather  flow  treat-
              d   ment plant  effluent,  mg/1,

           BOD  = BOD  concentration  of  wet-weather  flow  treat-'
              w   ment facility effluent, mg/1,

              Q  = upstream flow, cfs,

              Q  = DWF  treated effluent, cfs,  and

              0  = WWF  treated effluent, cfs.

  The technique for calculation'of the quantity and quality of  storm-
  water and combined sewer overflows is discussed in further detail
  lubsequently   The BOD concentrations of the DWF and WWF treated effluents
  are given by:
                   [BOD,,  • DWFSEP + BOD
                                  DWFCMB ](l-Rd)
           BOD.
                            DWFSEP + DWFCMB
                                                                      (VII-2)
            BOD   =
              w
           [BOD  •  QQ + BOD  •  Q 1(1-R )
               S 	S      _*-•    v^
                     Q  + Q
                     x
                                                                      (VII-3)
                                       281

-------
                Q«,BOD$
                            URBAN AREA

                            SEPARATE
                              SEWER

                              SOURCE
UPSTREAM

 SOURCES
DWFSEP, BOD*
                                URBAN AREA

                                 COMBINED
                                   SEWER

                                  SOURCE
      Qu,BOD0
                        RECEIVING  WATER
        BOD
                                                      m
      Figure VII-1.  Simplified Configuration of Mixed Waste
                   Inputs to Receiving Water,
                             282

-------
where
BOD,
BOD concentration of municipal sewage, mg/1,
             BOD  = mixed BOD concentration in the combined sewer,
                    mg/1,

             BOD  = BOD concentration of urban stormwater runoff, mg/1,
                s
          DWFSEP  = DWF contribution from separate sewer area, cfs,

          DWFCMB  = DWF contribution from combined sewer area, cfs,

               Q  = urban runoff carried by the separate storm
                    sewer, cfs,

               Q  = combined sewer  flow:, cfs,
                c
               R  = fraction removal of BOD achieved by the
                    DWF treatment facility, and

               R  = fraction removal of BOD achieved by the
                w
                    WWF  treatment  facility.
 The  initial conditions  of BOD  in the river are defined by equation VII-1,
 and  the  hypothetical impact  on the oxygen balance of the receiving stream
 is estimated by using simplified mathematical modeling approaches.  The
 total hours of runoff-preducing rainfall throughout the year are separated
 into storm events by defining  a minimum interevent time.  The procedure
 is discussed in detail subsequently.  For a given'storm event, the runoff
 and  pollutant loads are summed and the critical. DO deficit is estimated
 as a function of several stream parameters:  temperature, flow, oxygen, :..,,:,
 concentration, deoxygenation and reaeration rates," and BOD concentrations.
 The  minimum DO is calculated subsequently and a frequency analysis is '
 performed.  Stream velocity is computed as a function of the discharged and/
 the  time and distance to each  critical deficit point are obtained for each,
 event.                    .......                    ...

 The  options used for the simulations include:

           1.  five inflow combinations:

               a.  river flow + DWF
               b.  river flow + DWF + separate flow
               c.  river flow + DWF + combined flow
               d.  river flow + separate flow + combined flow
               e.  river flow + separate flow + combined flow
                   + DWF,

           2.  four  DWF treatment rates  (variable),

           3.  three WWF treatment rates  (variable), and
                                     283

-------
            4.   three fractions  of measured upstream flow

 may be  investigated.  ,            ...                             •

 Item 4 is included  as a model  option to investigate whether the relative
 impact of urban stormwater runoff is most significant in the upstream
 portions of river basins.  This effect may.be simulated by simply reducing
 the upstream flow to any desired fraction of its actual measured-value.
 Thus, discharge into a dry river bed may be studied.


 Technique for Calculation of Urban Runoff Quantity and Quality       -

 This section briefly .describes the methods used to generate storm runoff
 and pollutant concentrations.  The Hydrologic Engineering Center model,  '
 STORM ,  is utilized to obtain hydrographs and pollutographs for Des Moines
 for the year 1968 on an hourly time step.                           ,     •,
 Urban Runoff Quantity ,--       .           '..            ,:           ^

 As described in Section VI,  STOSM computes urban runoff as a function of
 land use and rainfall/snowmelt losses:
                          AR
                            u
                     CR (P  - f )
                       uv u    u''
                                                                    (VII-4)
 where
ARu = urban area runoff, in./hr,
           CR  -  composite runoff coefficient  dependent
                 on urban land use,

           pu ~  hourly  rainfall/snowmelt  in inches  over
                 the urban area,  and

           fu m  available urban  depression  storage,  in.


A maximum depression storage  of  a hundredth of an inch (0.25 mm) is assumed
for Des Moines,  Iowa.   The hourly urban runoff values, expressed in cfs,
are saved in  a file for later recall by the simplified mathematical model.


Urban Runoff  Quality —     •                               "

The basic water  quality parameters modeled  by "STORM are suspended and
settleable solids, BOD, total nitrogen (N),  and total phosphate (PO ).  It
is important  to  emphasize  that the BOD values are expressed in terms of the
standard BOD5 test:  incubation at a temperature of 20°C for 5 days.  These
values represent most of the carbonaceous oxygen demand exerted by organic
matter present in the urban runoff, and include the BOD contribution from
suspended and settleable solids.  The BOD loading rates generated by STORM
                                    284

-------
 are based on land use and other factors such as number of- dry days without
 runoff since the last storm and the street sweeping intervals.
 However,  these loading rates were calibrated against yearly averages
 and single storm values obtained from a detailed study of Des  Moines
 by Davis ,and,.Borchardt. 9  The hourly BOD,, pollutdgraphs, in pounds
 per hour  and mg/1, are also saved.in a-dxgital computer file for later
.recall tby the receiving, water simulation.1  -  •'•   :   '


 Definition of an Event

 As stated previously., rainfall input to STORM is prepared as a sequence
 of consecutive hourly values (including zeros for no measurable preci-
 pitation) .   -.These inputs are- used by STORM to' generate the corresponding
 series of hourly urban,runoff.  The basic approach  to define a wet-
 weather event is to analyze the hydrdlogic time series and establish the
 minimum number of consecutive dry-weather hoursr (DWH)  that separates
 independent storm events.  The independence of these storm events is not
 strictly  climatological and is discussed later.  The dry-weather hours
 refer to  periods during which no runoff was produce'd.  . thus, depression
 storage and evaporation rates must be satisfied before any runoff is
 generated by STORM. ,         '    • ' • '"'  •  ; ""'•        f  ;   :      "

 Two techniques are used to analyze the hydrologic time series:  1) an
 analytic  approach, autocorrelation, and 2) a" graphic procedure.  The
 precipitation time series is presented in Figure VII-2, Point Rainfall
 for Des Moines, Iowa.  The abscissa represents the  10-month period, in -.
 hours, from March 1 to December 30, 1968.  An examination of the rainfall
 record provides considerable insight as to rhe storm.groupings, their
 intensity and duration, and frequency of occurrence.  The-broken line on
 the abscissa indicates dry-weather periods cit least 9 hours in length.
 Figure VII-2 provides necessary info-.m-iti' .1 to; apply both techniques
 and define a minimum interevent t3it.c.       .. .      ,

 For hydrologic processes, it is practical .to,estimate the autocorrelation
 coefficients by an open-series approach:-10; -11

""' 'J'" - ' 	 	 VXiXi+k
x=l
"n-k „ , fn-k 12"
Z-o- . I V -ir \
X. , L X. j
Li-i x n~k 1 1-1 XJ J
'i
n-l
0.5


k
r
,i=
~n-k n
. V -o-
i
.1=1 ^J
n 2
=k+l x
" n
V V
i
,i=k+l .
I' ( -
T~k.U


n -.2-
E__ \
X.
=k+l X-J .


0.5
-
                                                                       Cvn-f
where
        '  ;r'T (k)  = "sampie estimate of ,lag-k autocorrelation
                   coefficient for hydrologic process I,

         ;  x'.    - discrete data series (observations) of
         " "-•'• ..... 'hydrblogic process I,  for i = l,2,...,n,
                                     285.

-------
                                            lilD
                                                                                             q
                                                                                             Q
                                                                                               oo
                       00
                       CD
                                                                        O
                                                                        IO
                                                                       •to
                       Q
                       or
                       o
                       o
                       LJ
                       o:
o

cc

UJ
                                                                                               00
                                                                                               CM
                                                                                                   o
                                                                                                  .c
                                                                                                          co
                                                                                                          0)
                                                                                                          Q
                                                                                              co
                                                                                                  UJ
                                                                                             q
                                                                                             d-
in
                                                             1O
                                                             o"
                                                                    q
                                                                    d
                                                   286
                                                                                                         •S
                                                                                                          o
                                                                                              00
                                                                                             •
                                                                                              K>

                                                                                              00
                                                                                                         M


                                                                                                         V

                                                                                                          0)



                                                                                                          60
                                                                                                         •H

-------
q
ro
 UUO


_J—
.O.
O
                                                                             CM

                                                                             CM
                                                                             CM

                                                                            "CO
                                                                             CM

                                                                             10
                                                                            -CO
                                                                             CM
                                                                 cd

                                                                 H

                                                                 co
                                                     "53
                                                      o>
                                                     -in
                                                      IO
                                                      CM
                                                                                         CO
                                                                              co

                                                                              CM
                                                       IO
                                                     ..to
                                                       CM
                                                     '  co
                                                     -se
                                                       CM
                                                                                  (O
                                                                                         cd
                                                                                        M-l
                                                                                         •rl
                                                                                         0
                                                                              o
                                                                              co
                                                                             -o
                                                                              CM
                                                                              CM
                                                                             "O
                                                                              CM
                                                                               CM
                                                                               in
                                                                              -co
                                                                            ,o
                                                                            d
                                    287

-------
                  o
                  to
UUO

q
cvi
o
0-
                                                                                CM
                                                                                O
                                                                               .O
                                                                                IO
                                                                                <*•
                                                                               -CM
                                                                                M-

                                                                                r-
                                                                                «o
                                                                               -o
                                                                                *
                                                                                CO
                                                                                <*•
                                                                               "O
                                                    1
                                                   H
                                                   CD
                                                   0)
                                                                                IO
                                                                                co
                                                                               -co
                                                                               , •**

                                                                                tn
                                                                                CO
                                                                               -co
                                                                                to
in
                                'NOIlVl!dl03cJd
                                                   CO
                                                   0)
                                                   Q
                                                                                         ed
                                                                                         M-I
                                                                                         a
                                                                                         •rl
                                                                                         o
                                                                                        •S
                                                                                        4-1

                                                                                        g
                                                                                        CJ
                                                                                        CM

                                                                                        H
                                                                                        H
                                           288

-------
                  o

                  10
U10

 o

 04
9.

T
                                                                                                   8
                                                                                                   to

                                                                                                   CJ
                                                                                                   (0
                                                                                                   in
                                                                                                   in
                                                                                                    u>


                                                                                                    m
                                                                                                    en
                                                                                                    r-
                                                                                                    CM
                                                                                                    m
                                                                                                                rt



                                                                                                               H
                                                                      to


                                                                     I

                                                                     4

                                                                      CO
                                                                      a)
                                                                     fi
                                                                                                     (M
                                                                                                     OJ

                                                                                                     in


                                                                                                     Si
                                                                                                     o
                                                                                                     in
                                                                     rH
                                                                      OJ


                                                                     3
                                                                                                     o>
                                                                                                     CO
                                                                                                                4-1

                                                                                                                •S
                                                                                                                o
                                                                                                                PH
                                                                                                     O
                                                                                                     to
                                                                                                     00
                                                                                                     •u-
                                                                                                     in

                                                                      0


                                                                      8
"
                                                                                                                M
                                                                                                      O
                                                                                                      OJ
                                                                                                      on
                                                                                                      «*•

                                                                                                      OJ
                                                                       a
                                                                      •H
                                                       289

-------
If)
                    O
                     •

                    CM
                                                         O

                                                         d
                                                              to.
                                                           to

                                                        >4.£

                                                           N
                                                          ro  O
                                                          10  J=

                                                          t~-


                                                              uf

                                                              s
                                                             to
                                                             r-
                                                             o
        ?J"1  v" ' •  "'"•••"-  •_  '"uj-



         •|ll  '»



      •i,..- ,
                                                             t^-
                                                             ro

                                                             «>
                                                                        co
                                                                        
-------
          n     = total number of data points or observations,
                  and

          k     = number of hourly lags.

A plot of the serial correlation coefficients, r(k), against the number
of lags, k, is called a correlogram.  The technique of autocorrelation
analysis is essentially a study of the behavior of the correlogram of
the process under investigation.12  The correlogram shape, or curve
joining each point to the next, is henceforth referred to as the auto-
correlation function.  An analysis of the precipitation time series of
Figure VII-2 results in the curve shown in Figure VII-3, Lag-k Auto-
correlation Function of Des Moines, Iowa, Hourly Rainfall.  At a lag of
zero hours, the correlation of the discrete open series is unity because
this point on the c^rve represents the linear dependence of the data
series on itself.  The number of observations (including zero values)
totals 7,372 consecutive values, and lags up to 720 hours were investi-
gated.  The first minimum of the autocorrelation function occurs at a lag
of 10 hours, "and the value of the function is also zero at this point.
The physical interpretation is that periods without rainfall-  for at least
10 hours separate uncorrelated, and therefore independent, storm events.

Actually any point of the autocorrelation function which lies outside of
the 95 percent tolerance limits indicated in Figure VII-3 suggests a
significantly non-zero correlation between storm events at that particular
time lag.  The Des Moines rainfall record obviously exhibits  nonrandom
behavior at lags of  377 hours  (a, 16 days) and 421 hours (^ 18 days) in
particular.  The tolerance limits for  a normal  random time series of n
values, and an open-series approach at a 95 percent probability level, are
given by: -1 °       .
                    TL  (95%)
                                -1  ±  1.645
                                     n-k
(VII-6)
 where     TL(95%)  =  tolerance limits  at  a 95%  probability  level.
 As the number of lags,  k,  increases the tolerance limits  diverge.   However,
 the divergance is not noticeable for large, n.   Values of  the autocorrelation
 function between lags of 100 to 300 hours-and  500 to 720  hours fell between
 the 95 percent tolerance limits and are not shown in Figure VII-3.

 Similarly,  autocorrelation analysis was performed on the  sequence of hourly
 runoff values generated by STORM from the rainfall input.  The lag-k serial
 correlation coefficients,  r (k), are plotted against the  number of lags in
 Figure VII-4, Autocorrelation Function of Hourly "Urban Runoff for Des
 Moines. Iowa.  The analytic technique establishes that the minimum interevent
 time of consecutive DWH that separates "independent runoff events is 9 hours.
 Examination of Figure VII-4 reveals that the. runoff time -series is not
 purely random either.  Linear dependence is observed at time lags of 377
 hours (<\,  16 days) and  436 hours (^  18 days), as expected, because of the
 high correlation between rainfall and runoff processes.
                                     291

-------
  1.0-
  O.8.
  0.6-
  0.4J
 0.2
 0,0
-0,2-
-0.4-
                    95%  T. L.
                                               95% XL.
   0.0     10
20     3O    40   ,  50    60     7Q   •  80 .,  90  ,•
           LAG   K,  hours
                                                                      100
   Figure VII-3.   Lag-k Autocorrelation  Function of Des Moines, Iowa
                   Hourly Rainfall, 1968.     ;          •"'   - -••-•
                                  292

-------
V. f. -
O.I -
Of) —
H
Oo
r 3(
95% T. L. j\ 1
/ A /"V ' V\ A N
V /~ \ ;V V
95% T. L.
DO 310 320 330 340 350 360 370


\j \/VV

380 ' 390 4(




DO
                             hours
!. 400   410    420   430   440  . 450    460   470   480    490
500
                          LAG . K,  hours                  ,


  Figure' VII-3 (continued) .   Lag-k Autocorrelation Function of
                             Des Moines,  Iowa, Hourly Rainfall,
                             1968.                             '
                               293

-------
-0.2-
-0,4-
                              MINIMUM INTEREVENT  TIME:
                                9  HOURS  OF DRY  WEATHER
                                          95 % T. L.
   0-0    10    20     30     40    50    60     7O    SO    90     100
                   ...  • .    LAG  K,   hours
                          \
   Figure yiI-4.  Autocorrelation Function of Hourly Urfita Runoff
                 for  Des Moines, Iowa, 1968.
                                294

-------
 0.2
  0,2-r-
  0.1-
^'o.o-
 -0,1-
                                            95% T. L.
                         ±^S£gIXL-ALV    ~7ZSHZ
                   T. L.
                         _L
  -0.2-
           ,
400   410
Figure
               420   430   44O   45O -460   470   480   490   500
                          LAG  K,  hours

                (.continued} >  Autocorrel'ati-pn SunctiDn of
                             Urban Runoff for Des Moines, Iowa,
                             1968.
                                295

-------
  Slight  differences  are  observed between the correlograms of Figures
  VII-3 and VII-4.  These are due to the fact that depression storage
  and evaporation rates must be satisfied before runoff is generated by
  STORM.  Thus, the digital simulation of the runoff process By STORM
  acts as a filter and has a slight smoothing effect.

 The graphic procedure requires the number of dry-weather hours immediately
 preceding each hourly runoff occurrence.  These values are determined
 directly by the chronological record provided by STORM of all the runoff
 events it^generates from the input rainfall.  If a hydrologic model such
 as STORM is not available, a close approximation may be obtained by assum-
 ing that the same numbers of DWH precede the rainfall and runoff events.
 Thus,  the information provided by the precipitation records or the rainfall
 time series (such as Figure VII-2) is sufficient.  A plot of the number of
 wet-weather events obtained by varying the minimum interevent time is shown
 in Figure VII-5,  Definition of a Wet-Weather Event for Des Moines by Graphic
 Procedure.   It is evident that a time value exists after which an increase
 in the minimum interevent time does not result in a correspondingly signi-
 ficant reduction  in the number of storm events.   The graphic procedure
 selects  a period  of 8 consecutive DWH as the minimum interevent time.   The
 result is remarkably close to .that obtained by the analytic technique,
 autocorrelation.   In some cases,  however,  the graphical  approach may not
 exhibit  a curve with such a well-defined transition point.   It is then
 necessary to  apply classical statistical techniques to  investigate the
 sequential properties of the hydrologic series.

 Based  on the  above analyses, a wet-weather event  and  its duration are
 defined  in the mathematical model  as  follows:

          1.   Any  runoff occurrence having nine or  more DWH
               preceding  it denotes the beginning  of the
               event  (see below).

          2.   The event  continues as long  as all  of the
               subsequent runoff occurrences have  a DWH value
               immediately preceding them equal to or less than
               eight  hours.

          3.   The event  runoff duration  (in hours) is equal to
               the sum of all the runoff occurrences in (2).

          4.  The actual event duration (in hours) must be
              determined by examining the date and hour of the
              first  runoff value and the date and hour of
              occurrence of the last runoff value within the
              event.

The hourly urban runoff  and associated pollutant loads within each event
 (including DWF pollutant loads  during DWH periods less than nine hours
duration) are summed, average conditions are determined,  and the model
proceeds with the receiving water analysis.
                                    296

-------
   100-
QL

UJ
>-

cc
UJ
Q_
UJ
cc
UJ
UJ
UJ
O

d
z
   80-
   60-
   40-
0  20H
                               DES MOINES, IOWA

                    PRECIPITATION YEAR OF  RECORD =  1968
                    SELECTED MINIMUM INTEREVENT TIME'

                              8 HOURS OF DRY WEATHER
                          40       60        80

                  MINIMUM INTEREVENT TIME, hours
                                                       100
       Figure VII-5.  Definition of a Wet-Weather Event for Des Moines by
                   Graphic Procedure
                              297

-------
Separate  Storm.  Combined  and Dry-Weather Loading

All of the following methodology can be used regardless of the technlaue

*!Sf V^r116^.6 St°rm rUn°ff aUd qUallty' as l^g /as these values <
pertain to the entire area being modeled.  :,       ''     .    •••-.•   -•,•:..

Separate  Storm Flows and Loadings —        ,'


              °f
                             fl°W  W BOD' loading^ made on the basis of
                             S£Parate ^d: combined  sewers.  Runoff from
 separate sewered areas is thus (refer  to Figure VII-1) :.          ,. ',.    '.,
                             Q  -^
                              s   A.
                                                                    .(vir-7)
 where     Qg = stormwater flows from separate sewered
                areas, cfs,

           Ag - area served by separate sewers, acres,

           Qt - total (storm plus combined) urban runoff, cfs, and

           At = total area of catchment, acres.


 The concentration of BOD in separate storm sewers,  BOD , is simply the
 hourly value computed by STORM,  BOD? (mg/1),  for the tStal urban runoff.

 Dry-Weather  Flow and Loadings —

 Dry-weather  flow and BOD loadings  are assumed known from data on point
 sources in the area.   Thus,  Q represents the flow  Ccfs) into receiving
 waters of  treated wastewater,  and  BOD  represents the BOD concentration
 at  68  F (20°C)  for 5 days,  mg/1.   The amount  of  treatment-can be varied
 in  the analysis,  as stated  earlier.

 Combined Flows  and Loadings —                 .      -  '

 Dry-weather  flow (DWF) is assumed  to cause only  a negligible increase  in
llow in a  combined sewer'during  a  storm event.   However, two factors
 related to DWF may increase  significantly the BOD concentration  of the
 combined sewer  storm water:

           1.  the  BOD strength of  the municipal  sewage with   '      :   '''
              which it mixes; and

           2.   the BOD exerted by sediment  accumulation in
              each section of the  sewer under DWF conditions
              which is subject to  the "first flush" effect
              induced by the initial runoff.
                                   298

-------
To incorporate the "first flush" effect, it/is assumed that the hourly
in-sewer sediment build-up is constant over consecutive dry-weather
hours.  This assumption is reasonable although*it is evident that particle
size and specific gravity, depth of flow, and the slope of the conduit
are important factors affecting deposition.  Data,collected by Davis and -
Borchardt9 at Various combined sewer overflow stations in Des Moines, Iowa,
support the first flush theory.  BOD and total suspended solids  (TSS) con-
centrations decreased with time with little or no relation to the flow
pattern.  Furthermore, pollutographs.(BOD vs time,, and. TSS vs -time) for
these stations seem to indicate that the flushing occurs mostly during the
first hour of runoff generated by the storm event.              .   ,

Thus, the mathematical model computes the sewer solids build-up  that occurs
during the consecutive DWH, then the BOD load contribution from  these
solids is lumped into the first hour of runoff.  The first flush BOD load
is given by                                             ,
                        FF = FFLBS  • DWH  • A
•(VII-8)
where        FF  = first flush BOD.load, Ibs/hour,

          FFLBS  = first flush factor, Ibs/first  flush hour
                   per DWH-acre,                      .

            DWH  = number of dry-weather hours preceding
                   each runoff event, and            -

              A  = area served by combined  sewers,  acres.

The first flush factor, FFLBS, must be determined from

          1.  the total flow generated by the combined sewer       f
              area (including dry—weather flow contribution)
              during the wet year;                                 '

          2.  the difference in annual average concentration
              between BOD   (excluding factor FFi  and the.
              measured annual average value; and            ,  .

          3.  the total number of DWH. for the. entire, .year
              under study.                        ,      .'

An example of this calculation is presented in the  application  of  the
model to Des Moines, Iowa,                          ,-••••'

Apportionment of the total  flow; on the basis, of relatj&re. area g£yes.f
                                     299

-------
                                                              (VII-9)
 where
           Qc - combined sewer overflow rate, cfs.
           I - factor to convert FF • from lb/hr to cfs ^mg/l:^ 4.
                                                           45
 EFFECT ON STREAMS

 Introduction
                                                               ,-... . j '..rt.i


                                                               • s- !. ? r r ':
are determined for a large SmLr ff   J  *§ minimum D0 concentrations
££*• ^-^  "s ^si^ars^^r sr1-:r
earlier.  The construction of * detailed	-•—-^    .    • "pi-i-ons ,given
                                 to
severely limited their own applicability?
                                                   have consequently
                        °f th->ypieal of models for interim planning,
            Temporal steady-state conditions prevail,
            where all system parameters, and .' inputs, v are. 'con-
            st^at with, respect .to time; However, a
        2.
            Stream system parameters (such as river flow
            velocity, depth, deoxygenation rate/and
            reaeration rate) are spatially constant'along
            the  flow axis throughout each time'step.
                               300

-------
         3.  All waste inflows occur at one point on the
             receiving stream.

         4.  The effects of various natural biological
             processes (algal photosynthesis  and respiration,
             benthal stabilization) are incorporated into
             a background quality which is reflected by DO
             deficit (if none, by saturation), upstream, from
             the waste inflow point.  Any benthic buildup is
             incorporated into the  BOD decay  rate.

          5. Waste treatment facilities operate at constant
              efficiencies,  independent of hydraulic and  ,
              organic loadings, for the entire period of
              simulation.  '   '-'••'•
Initial Conditions

Initial conditions of BOD in the river are defined b,y equation
In subsequent equations, the mixed BOD concentration in  the  river _will  be
denoted by L .  Thus, ,              -
     •  •" :    " ";     '  ' "'  '  ' L   = BOD               -.-.'.
     ,, •   < .-•-•.•  •',•;.'." '•'..'••-•    '•'' ' '  • O - •    m        '      .'

The assumption that  all waste inflows occur  at one point; is not unreasonable
for Dea  Moin.es ;.• but in  some locations the distribution of inflows along  i%
the river may need:.to be considered.  It is  important  to emphasize that all
of the-BOD  contributors  in equation VII-1 represent BOD^ values.  Thus, the
mixed BOD concentration  in the-river, BOD ,  is also in terms of the standard
BOD test...The^ultimate  first-stage  (carbonaceous) demand;is related to the
BOD- ; value  by:.,  ,;:,.   -••'••   :                   '              :    ._	
                                      BOD,
                                       -5K,
                                                                    '(VII-12)
                                    1-e
 where     (L )   = ultimate first-stage BOD demand, mg/1, and
                                               •    '•     A  -I
              K  = first-order BOD decay rate constant, day  .

 Through verification analysis the value of K^ was determined to ,  - 0.7
 day"1.   Thus, for Des Moines,
                          CL0-)C
                                                                     (VII-13)
 and the conversion "'is unnecessary.,*  .Of course, generalizations  cannot be made
 because the decay rate may vary considerably for different river  systems.
                                      301

-------
  The  other initial  condition required is  the initial oxygen deficit

                                                        ™
                         .D  =
                                   D Q
                                                                      (VII-14)
  where
Do = initial DO deficit, mg/1, and
            D
             u
     DO deficit in receiving waters upstream
     of inflow point, mg/1.
  Oxygen Balance of Polluted Streams        '   • "  •  '  •''"

  Pollutant  transport processes in a s'tream system may be adeauatelv
 where
                 concentration of water quality parameter
                 (pollutant), M/L3,

                 time, T,          .           ••-..'•
                                                                     (VII-15)
          -E9x - mass flux due to longitudinal dispersion along
                 the flow axis, the x direction, M/L2T,.

            UC = mass flux due to advection by the fluid con-
                 taining the mass of pollutant, M/L2T,

             S = sources or sinks of ±he substance -C, M/L3T,

             U = flow velocity, L/T,  and

             E - longitudinal dispersion coefficient,, L2/T.           ,

The equation  assumes no diffusion of pollutants through the river
boundaries  (other than what  is included in the source-sink term) and
i-L   * fu±ted  t° predict concentrations relatively far downstream from
soL^S °  WS8te inJection'  Since critical DO deficits usually occur
some distance downstream from the waste source, equation VII-15 is
particularly well suited for such predictions.    '        -   .
                 °f dissolved o^^n in the stream are atmospheric
                 ygen pr°ductio11 ^'Photosynthesis.  The major sinks
        Carbonaceous oxygen d«mm,d (CBOD),  nitrogenous oxv^en d^Sf

                                    302

-------
(NBOD), benthai demand, and respiration of aquatic plants.  All stream
system parameters are assumed  spatially constant along the flow axis,
and .by substituting the various  sources and sinks'of'Db into"equation
VII-15 the following expression  is  obtained:        va;       ';
             2

            gx^"
                                          S.
                                                                    (yn-16)
                - K-L - K N
                   1      n n
                                            P - R  - B
where
C  = concentration of DO. in  the  stream*  mg/1  ,
                                            • 2
E  = longitudinal dispersion coefficient,  ft /sec?

U  = freshwater stream velocity, ft/see, ,

K_ = atmospheric reaeration  coefficient , hours ?,.

    ,.:..•'.     .•      -     "-.  .-. ,' >...?.L • .. •'!>'.» i-;'J"   '•••''• '
C ' = dissolved oxygen saturation, mg/1,
 S   I '   ..''.-        •"'•'-  ..-••-•   -;. .   .......  .  ..
           C  -C
           s
     dissolved  oxygen deficit,  mg/1 = D,
              K..  = deoxygenation Constant ,of carbonaceous BOD,
                   hours" ,

              L  = remaining carbonaceous  BOD concentration, mg/1,
              K  = oxidation coefficient of nitrogenous  BOD,  hours
               n
              N  = remaining nitrogenous BOD concentration, mg/1,
               n    .> . . •       •;-...    .   -.._''•>•; -i '  • .-.,;•  -  ;'".
              P  = oxygen production rate by algal photosynthesis,
                   mg/1-hour,

              R  = algal respiration rate,: mg'/l-hour,  arid

              B  = benthal demand of bottom deposits,1  mg/1-hour.

 For freshwater streams, the advective  flux is  significantly larger
 than the mass flux due to longitudinal dispersion.13   For steady-
 state analysis, all1 system parameters  are assumed constant  in time,
 Since.it is ;,desired , to,,solve, for the DO  deficit and   v


             ; : !;   ,"'!f;' 0;-.E.";OJ' 3^='~^"".- .^rV:V'-'.'^

 equation Vli-16 reduces to an ordinary .differential equation:
                                                        (VII-17)
               0 = u- + K0D - K-L
                '  •   dx    2      1
C N + P -;R  <-' B>
. n n , .     e
                                                       (yn-i'8l
                                     303

-------
measured upstream  o deficit
oxygen by these processes after
             1.   the amount  of organic  and ammonia' nitrogen
                 present  in  all wastewater inputs  is
                                                         BOD
                                                                 of
                    0 = U^+K2D-
                                               U
                                                                     (VII-19)
                                          -       -K,t
                                           )•+ D e  2
                                                                    (VII-20)
where     D  - DO deficit,  mg/i,

           ^  ='deoxygenation  coefficient,  hours'1,

           K2  =  reaeration coefficient, hours"1, and

           t   = elapsed time, hours.

The critical  (maximum) deficit is found through differentiation to be
                            ^L

                       Dc = -Kf e
                                                                   (VII-21)
                                   304


-------
where     D  = critical (maximum) oxygen deficit, mg/1, and
           c
          t  = elapsed time at which critical deficit
           c   occurs, hours.
The value of t  is given by
where
           f  =  self-purification ratio
                                                                    (VII-22)
 The minimum DO level is calculated as
                            C .   = C  - D
                             mm    s    c
                                                                    (VII-23)
 where     C .   = concentration of DO at maximum
            mn   deficit, mg/1, and

           C    = saturation concentration of DO, mg/1.
            s
 The saturation concentration is determined from the regression relation-
 ship developed by ASCE,11*
                                           2               3
        C  = 14.652 - 0.41022T + 0.0079910T  - 0.000077774T
         s
                                                                     (VII-24)
 where     T = water temperature, °C,
 Values of K- and K,,

 The deoxygenation coefficient, K.,  represents  the  loss  of DO  in_Jhe
 water due to reduction of BOD.  XA  calibrated  value of 0.7 day   is  used
 for this simulation  for K^  at  20°C  (68°F).   A  temperature correction  and
 conversion  to hour" gives:
                       K1(T)  =
                                            ,T-20
                                                                     (VII-25)
  A variety of formulas exists for prediction of the reaeration coefficient
  K ,  almost all of which depend upon velocity, U, and depth, H.  The
  equation'of Langbein and Durum15 was chosen because it is most closely
  related to subsequent procedures used to obtain U and H.
                                      305

-------
                          K
                               2.303
 where   -,,K2-=reaeration  coefficient  at  20°C,  day"1,

           u •'" stream velocity,  ft /sec, and'  '
           H
                stream depth, ft.
                                                                     (VII-26)
. The problem lies in obtaining values of U and H, since the stream-
 flow varies with time.  In the absence of measurements, or if the
 data cannot be obtained in an expedient manner  (as in the ensuing
 application to the.Des *foines River), an approximation can be made
 based on the, work of Leopold and Haddock^ ln which they show strong
 correlations between velocity vs flow and depth vs flow, namely:
                               U
                               H
                                      0,
                                                                     (VII-27)


                                                                     (VII-28)
 where
           "l' a2
                         s t reamflow, cfs, and

                        ,regression coefficients.
The nofiel presentlylutilizes  coefficients which were determined for
the Kansas Rxver  System in Kansas  and. Nebraska,  for which   ,
                              c^ - 1.60

                              
-------
Total Volume of DO Deficit

One reason for determining DO levels for several inflow options, is to
attempt to establish the relative effect of one source versus another.
Unfortunately, the critical deficit, equation VII-21, is nonlinear in
terms of the initial BOD, L , thus effects cannot be separated directly.
One measure of the relative°importance is the integral, or summation of
the deficit  equation VII-20  over all time,
                               D dt =
                                      D  + L
                                       o    o
CV1I-31)
where V may be interpreted as the total volume of deficit, with units of
mg-hours/1.  Values of ^ are displayed By the model for each, inflow
combination.
Presentation of Results

The impact of urban runoff on the receiving waters, is evaluated in terms
of violations of potential DO standards, i.e., by the number of times
predicted DO levels fall below a specified value.  The receiving program,
running on an hourly time step for rainy events only, maintains a tabu-
lation of the frequency of DO values within specified intervals, .from which
the cumulative,relative frequency may be plotted, as sketched in Figure
VII-6, Hypothetical Results of Simulation.  For example, from the figure,
the percent of wet-weather events during which a DO standard of, say, 4 mg/1
is violated may be readily obtained.  Different input options will produce
different curves in Figure VII-6 and they may be compared in this manner.
Curves are also developed for dry-weather periods and a cumulative annual
frequency is obtained.                                 .  .,,

In addition, the total "volume" of DO deficit, equation VII-31, may be
compared 'for each option.  This will give some indication of the relative
impact of one option versus another, although the results have no special
physical significance.


APPLICATION TO DES MOINES, IOWA                                      /'

General Description .
                                            ; *  . :
The City of Des Moines, Iowa is located near  the confluence of the Des
Moines River and the Raccoon River as shown in Figure.VII-7, Map of
Des Moines Area.  It contains approximately 200,000 people out of the total
of 288,000 for the metropolitan area.9  The mean annual precipitation is
31.27 inches  (795 mm) which is approximately  equal to the United States
average.  Based on an extensive sampling program, annual pollutant unit loads
upstream from the city were determined  (see Table VII-3, Pollutant Unit Loads
                                    307

-------
                      100
      •%  of Wet-Weather
      Events with DO
      Greater than
      Indicated Value
                                         DO; mg/1  —•—fe.

           Figure VII-6.  Hypothetical Results of Simulation
          Table VII-3.
POLLUTANT UNIT LOADS FOR DRAINAGE AREA2
ABOVE DES MOINES, IOWA
(Davis and Borchardt, 1974)9
                               Des Moines
                                 River
 Drainage Area, acres (ha)     3,738,000
                              (1,512,769)

 Unit Average Annual Runoff,      0.42
      acre-ft/acre (ha-m/ha)     (0.13)
 Unit BOD,  Ibs/acre (kg/ha)



 Unit N03,  Ibs/acre £kg/ha)
 »

 Unit P04,  Ibs/acre (kg/ha)


a
 On an annual basis.
         13.40
        (15.02)

          3.75
         (4.20)

          0.54
         (0.61)
                      Raccoon River
                        2,202,000
                         (891,149)

                           0.40
                          (0.12)
 6.93
(7.77)

 3.74
(4.19)

 0.42
(0.47)
                                                                 Total
             5,940,000
             (2,403,918)

            ••'   0.41
                (0.12)
 11.01
(12.34)

  3.75
 (4.20)

  0.50
 (0.56)
                                 •308

-------
                        S.DJ	^	--
          K)  HBANKENYx,



          \    1 WINDSW
          V.   LHEIOHTS
Figure VII-7.   Map of Des Moines Area (Davis and  Borchardt, 1974)'

                                309

-------
 for Drainage Area Above Des Moines, Iowa).   The estimated annual loading
 from the urban area's 45,000 acres of separate sewer and 4,000 acres  of
 combined sewer systems is shown in Table VII-4, Summary of Present  Am,,,?i
 Metro Area Discharges.                              —^~	:——	•	—
               f} upstream drainage area for the  Raccoon  and  Des  Moines
         nnn  ^"^contributions are:   65,225,000 pounds  of BOD
        ,000  kg);  22,222,000  pounds of NO.  (10,080,000 kg); and 2,940,000
 pounds  of PO  (1,334,000  kg).   The urban3area loadings  (when added to
 upstream values)  represent,  respectively:  15 percent, 3  percent  and 51  '

 £vernL?f *£ t0tf B°?' N°3'  and P°4  »Ma Ioadin8s to  the  Des  Moines
 River below  the metropolitanJarea.   Tne Davis and Borchardt  report esti-
 mates made_from river sampling  data taken  below  Des Moines indicate
 J5? SJ 1f^nt8  fVSoagf annual r±Ver loadinss:  70,000,000 pounds  of BOD
 (31,751,466  kg);  25,400,000  pounds  of NO   (11,521,250 kg); and 7,950,000
pounds of PO  (3,606,059 kg).   These figures reveal that:  (1) 6 610 000
pounds of Soft  (2,998,246 kg) are "lost" in  transit through the urban
                      ,*1? (2>  by  Contra5t  2,474,360 pounds of NO,
addition            'I'40? POUndS °f P°4  <869'718 k§)  are gained5 in
addition to  the measured urban  sources.

Davis and Borchardt offer some  explanations:

          The "sometimes" decrease in organic load through, the
          metro area may be attributable to treatment realized
          in the low head impoundments  at Scott and Center
          Streets on the Des  Moines River and just below Fleur
          Drive on the Raccoon.   To some extent these impound-
          ments may be serving as intermittent  sedimentation
          and stabilization units.

         All BOD data,  including that used from  the two  other
          studies, were  obtained from unfiltered  samples..  HOWT
         ever, since  the  analytical technique was  the same for
         all samples, the relative magnitude of  the data should
         not be affected.

         There has been some speculation that treated wastewater
         effluents may  exert an antagonistic or  retardant effect
         on  the BOD exertion rate  of the receiving  stream.   If
         true,  this may be due  to  surfactants or to the,  expected
         lower exertion rate of the. effluent.  In this- regard,
         the decreased  BOD in 4 or  5 measurements between R-5
         and R-6  is of  interest.   Increased loads between the
         summation of R-4 and R-9 versus R-5 are likely due  to
         raw and  combined sewage bypassing  the intervening area.

         Another,  and probably  the most practical, possibility for
         the discrepancies is the fact  that the data are biological
         and biochemical in nature and  such data do not  always
         provide predictable comparative summations.-
                                  310

-------
:.. ; .'.V

ctt
CO '
w . , ,.
O

S "
u
co •;.-•.
H "
Q '. ; i
o :

•*
3g

p^l n
•3 4-J
TJ
H -H-
£2! TO
S +£
W O

p2 o
P-l FQ
o "a
CO
>J
pd CO


1
H
M
|>
(1)
cd
£_|








CO x-v
•v
0
P-l
''&-"
..... -...,..
*co' '"^ '
rH i--~
, ^~t ' • '
•*
0 ' ' "


CO x-s •- .
,0 60
t~H i^fi
e
o



CO
o

























g| |S §S
r*"* r^* ^3 ^d* r^ CNJ
! ^^ ^ N ci

•' ' x"\ x"s x^»
o in o •<(• o 'Cr>
,C5 *
, O iH f*» r^ co o\
O 00 CO O CO 00,
^- H CM rH VO CM
. ' ^^ ^ . •

f . 's~<* ' x-s x^
' " J o r>» o O o r-,
, o m o in o o
VO OO vf CT> O 00
O 00 CM O CO CO
^. ,-j c\l H VO CM


.
• " - r*N co , ,in
; ' ' - in o *»o
CM , r-H CO





4J

Q)
3 . - '•"' • •
 U> m co
w Q -
.* ' • • '.
§§
CO CTv
,VO rH
CM iH

^ X
O 0
S* ^7
"^
a\ -&
N*-'


X"N
O rH
o m "
vO O
CM O
CM H


CO
CO
o
rH











O
£

0
!-i
0)

4J
, cS
a>
^
= r^
f
a)

to oo CD ^o 'H"X r^., „ . . - ., -i -•. ••'- c^ co
co oo oi to c>j **' o . . • i , ,
'M "" " '. ' ' •'
ni cd ' ctj ctf cd cd
co psi. P4 . Prf . , Prf CK!
:

^3 rH rH rH in "*
g . . ...
O ON 00 O^ O^ ^1*
i-' C3 • -* *^3; •' •* CO -k- • rH
S**'. r '^TT • r ^"^^ . rg4
a "el """ c d ts _s *J
^ -H -H • iH iH ^
rt m m ^
o) CM o m r^ ^* -^
^ r^ in r^ co rH co
Jl CM rH O 0 O
1 . ' '
3.11

-------







CO
w
g
CJ
CO
H

gf
<«
O
£5
H
1
i
*s
i
CO

2
prf
a
g
CO
.
•T?
CO
I
4-1
«
^
M
0)
H
•s
H
tO ^-N








,
ocn" o co o en OCN" o CN* oo-i" o S
SrS S [H S"^ Or"1 OVD Oir> ooo

cociCTlS^}i3VDCi'H'> f^l° ^ <^
^ 0 -*

co"i-T



o -* o o o -* o C-? o r? o S o Co"
S S O-^f OlO Oc^ OvO Ocn SS
ot^o coo^ nr^. cri-* ooo r->vo VOH
^ S iQiS 0°" °^-* COr-T.<^>^ Co"oT
^^ "^ IO OJ O M
^

^^
ililllllllil §3
SIS Jo^ ^SS "^^ ^^ ocT  o 5. "*^J, •-fv-' ^OM «OH
CN tH r-Tio"


»-! «0 CM CO O VD 10
r~< *~1 , CNJ to \O
ro






T3
to
0)
oO
1 -3 -3 ^ -a 5
I s a a 'a a
•H x"*\. W)
H i i I B 1 ^
CD t-l — i __. °
_LI r~' '"i ^O ^ rn
« Q; o^ • • -3
£s S M ** Q
1 5 5 ! i i i i
sKS^SRl ^
gl^tOrscOH^ ,_,
•g ^ -H 0 0 CD 2
5 o
H




1
4J
s

60
 4J S
•s «s & .« '*•
o 2M g» ft -g
0 4J >, fl H 
-------
The  sampling  stations  (Numbers  4,  5,  6,  9) are  shown in Figure VII-S,
Location Map:  River Sampling Points.  Intervening creeks, such as Beaver
Creek, which  carries nutrient loads of 2,860,000 pounds of NO  per year
'(I 297 274 kg per year)  and  390,000 pounds of PO, per year (176,900 kg
per  year), may be an answer  to  observed  differences in the nitrate loads.
However, the  phosphate totals are  still  unbalanced and the cause unresolved.

As stated earlier,  the relative importance of a city is expected to increase
as the size of the  upstream drainage  area decreases.  To  simulate this
effect the model application to Des Moines investigates the  response  of  the
receiving water when upstream river  flow, Q  , is reduced  to  various fractions
of measured  flow.   This option  and others used  for the Des Moines simulations
 are  summarized in Table VII-5,  Options  Used  for Des Moines Simulatxons.
Thus, there  is output  for 5 • 4 •  3  • 3 = 180  combinations  for each of  four
 different  combined  area fractions.  Conditions  particular to Des Moines, Iowa,
 and  the  Des  Moines  River are investigated as well as  the  response  of  the
 receiving stream to hypothetical situations.
 Data Sources

 The data may be broken into categories describing needs for the runoff
 simulation. All land use, population density, areas, curb lengths  etc.,
 were obtained from data prepared by APWA for STORM simulatxons (Volume III) .
 Hourly rainfall values for the year 1968 were obtained from the Natxonal
 Weather Records Center at Asheville, North Carolina.  The area served by com
 bined sewers, AC = 4,000 acres, is given on p. 2 of the Davis and Borchardt
 report.9 Dry-weather flow values are taken from Table 5, p. 52.  Receiving
 water upstream flows, temperatures, BOD and DO levels are taken from
 pp. 285-308.  Total urban runoff (Qt) and its BOD concentration (BOD ) are
                                              l  basis.  BOD     , BOD, Q,
  .         .
obtained from the STORM simulation on an hourly basis.  BOD, Q, BOD
                                                                      d,
                                                            g
  BOD  ,  BOD   and 0   are  computed  from input  data  and  appropriate mixing
  equationsWby  the  simplified  mathematical model  described in .this, section.


  The  first  flush factor,  FFLBS,  was  determined as  follows:

                            DWH/year = 6,993 hour
                                                 8
                 Total  flow combined = 1.55 x 10  cf/yr
                                        (4.39 x 10b cu m/yrl,.

  Mixed concentration of storm water (from STORM) plus DWF = BODc  =  62 mg/1.


  The annual average BOD concentration in the combined sewer was measured by
  Davis and Borchardt9 to be 72 mg/1.

                       BOD difference = 10 mg/1

                                      - 0.0006243 lbs/ft3
                                       313

-------
               LEGEND
             A louo Slalf Unlvtrtily
               Enfinttrlag  Rasaarch Institut*
             D Slolt  Hyglinic Laboratory
             # This Project
             © USGS Strtamflow Station
Figure  VII-8.  Location Map:   River Sampling Points
                   (Davis and Borchardt, 1974)9
                                      314

-------
  TABLE VII-5.   OPTIONS USED FOR DES MOINES SIMULATIONS


The following five inflow combinations (M^ are used:

   1.  River flow + DWF                  •
   2.  River flow + DWF + separate flow
   3.  River flow + DWF + combined flow
   4.  River flow + separate flow + combined  flow
   5.  River flow + DWF + separate flow +  combined  flow

and  the following four DWF  treatment  rates (J) are  used:

   1   0%  (no  treatment)
   2.  30%  (primary)
   3.  85%  (secondary)
   4.  95%  (tertiary)

and  the following three WWF treatment rates (L)  are used:

   1.   0%  (no  treatment)
   2.   25%
   '3.   75%                             *

and  the following  three river flows (K)  are used:

    1.     0% of  measured flow
    2.   25% of  .measured flow
    3.   100% of  measured flow '

 and the fraction of combined area is varied, four times:

    1.     0% of total urban area
     2.     8.16% of total urban area (existing conditions)
     3.    50% of total urban, area
     4.   100% of total urban area
 Parameters J, K, L and M were used as subscripts in the
  computer output and aerve to aid in labeling the various
  combinations.
                             315

-------
                                FFLBS  =
                            BOD load = (0.0006243 Ibs/cf)(1.55xl08 cf/yr)

                                     = 96,766.50 Ibs/yr (43,892.50 kg/yr)
                                       that can be attributed to first
                                       flush effects


                                            96,766.50  Ibs/yr
                                       (6993 DWH/yr)(4000  acres)'

                                     = 0.0035 Ibs/DWH-acre

                                     = 0.0039 kg/DWH-ha.

This factor, as demonstrated earlier,  is then used  in  equation VII-8  to
estimate the first flush BOD load, FF, during the first hour of. runoff
generated by each storm event.                           , •'• •
 Special Problems
                  application to Des Moines, various problems were encountered
 revolving around the critical deficit (D ) and critical time (t ) equations?
 equations VII-21 and VII-22, respective^.  Due to the- large number of con!'
 *™t!!?! ^TlSlm^at^' including dry watercourses in which, the waste inputs
 constituted the only flow, situations were encountered in which:
           1.   the deficit load ratio, R ,  was undefined
                    '"  '   •'"  Ko'" L~           '           '"       (VH-32)
                •  -       '' •  ,  •     o

              because  both DQ and L  were equal to zero;

           2.  the  self-purification ratio,  f,  was  equal           .      .
              to one,  causing equation VII-22  to be undefined-
              and              :."•:>,               . ..  ..

           3.  values of RQ were such that negative values  of
              t  were  obtained.                    ,         :  .


Mathematical analysis  led to  the  incorporation of  certain  modifications
and safeguards.  Thus, equations  VII-21 and VII-22  were defined only for:
          2.  L  ^ 0, and
          3.  0 < R  < 1/f.
                —  f\ ^—
                                    316

-------
Otherwise, in order, if

          1.  f = 1, then
                                   R -1
                                    o
                           D  = L e
                            c    o
          2.  f 1 1, LQ = 0, then

                           D  = D
                            c    o
           3.   f 1  1, L0 =  0, RQ > 1/f, then
                            D  = D  .
                            c   o
                                                                   (VII-33)
                 (VII-34)
                                                                    (VII-35)
 These equations,  obtained by taking limits,  are  not^particular  to Des
 Moines and are applicable to any receiving stream.
17
 Verification Analysis

 An important part of the total effort required to develop a mathematical
 model of water quality in a stream is devoted to verification and improve-
 ment of model accuracy.  The verification procedure recommended for
 steady-state water quality models includes:

           1.  examination of model output using preliminary
               coefficients on a diverse set of data (dif-
               ferent waste loads and temperatures under
               conditions of high and low flow, and variable
               initial stream quality);

           2.  assessment of the closeness of fit of observed
               field data to computed values;

           3.  adjustment of the model coefficients until the
               desired  accuracy is obtained; and

           4.  achievement  of  a mathematical abstraction that
               reasonably reproduces  observed stream response
               and establishes the necessary validity  for
               planning purposes.            ..  v  . .._   ,.

  The verification procedure was preceded by calibration of  the urban
  runoff BOD   loading rates  for Des Moines,  Iowa,  as computed by STORM.
  The dust and dirt surface  loading  factors  were adjusted  to obtain an
,  annual average  BOD,, concentration  of 53 mg/1  for urban stormwater run-
  off.  The above concentration was  the average value determined by the
  field monitoring program in the separate sewer system.y   The  developed
  mathematical model, as discussed in the methodology,  simulates the mixing

                                      317

-------
of stormwater runoff and sanitary sewage in the combined sewer system.
S££eT£a£ ?? 5 "nCentf*i0n of c°^i-d sewer, overflows wal
computed to be 75 mg/1, including the effects of first flush.  The
              determin*d fy the field monitoring program in the
                                                                          The
                                    e   montorng pr
  combined sewer system was determined to be 72 mg/1.
  verJf            B°D reactlon "efficient,  KI,  was refined during the   :
  verification process to a final value of 0.70 day"1 (at 20°C) .   The
  model,  of course, converts to units of hour-1 and adjusts  for  temperature
  c±±t-Tf i°n V^~25'   Th£ atmosP^ric reaeration coefficient?^? is
  e±SonevTTn^rnSly f  a fUnCti°n °f stre-^ and temperatur^ by"
  equation VII-30;  therefore,  no adjustment was necessary.   Measured and
                                           R±VerS  are  comPared in Figure
                                           C°^elation between the calcu-
      -f    l                   is quite good.  The  point corresponds to
   mpling  location no.  6 as shown previously in Figure VII-8.

 fofefch ^F±8U^ VII~9 3^ rainfa11 and ave^ge total river flow values
 for each wet-weather event (as defined in Figure VII-4).  Differences
 between measured and computed DO concentrations may be attributed to such

 X?S aS!  K(1? the t±me °f day durlng which the ^le -s taklrca)
 variaSonfL Sr6; 8?°? ^^ ** ,laboratory anal^i« ^nd the temperature
 variations in the receiving water during the day; and (3) a lack of data
 on photosynthesis, algal respiration, a?d benthlc demand   The tif scale
                   -
            Again, it should be reemphasized that thes,e. DO -values are not
 the minimum DO's resulting from maximum deficits.  The maximum deficits
 occur much further downstream (10 - 30 miles or 16 - 48 £ Tand water
 quality standards are violated much more frequently.

 Further verification of the model can be achieved by simulating the
 stream response to hydrologic and waste inputs  for,  say,  the year 1969
 However, such a time-consuming task was no? deemed 'justifiable ?n view'
 of the accuracy already obtained and the study  objectives.
Results
                                        Carolina>> the total precipitation
  HPM                      Iowa,  during 1968 was 27.59 inches  (701 mm).
STORM computed a total runoff of 10.28 inches (261 mm) over a watershed

Scienf otn ?7aCr™  (19'60° ?°' f°r m °Vera11 Urb- area runof? "Sel-
recorded  f ™  \ • l*ll ™* " dayS ^ tKe year durln^ **<*• rainfall was
recorded, from which  58 wet-weather events were defined.  The results arp
presented in the form of minimum DO frequency curves for thewet-weather
and dry-weather periods throughout the calendar year.  The reader is

modeled in'tf D° ^ VII~5 ^ * ^™ °f th^ multit"de "
modeled in the Des Moines application.
                                    318

-------
O.O-i I
". 0.5-
d i.o-
J£
2 1.5-
<
01 2.0 J
14-
12-
_ 10-
•*N.
f 8-
J 6-
d 4-
2
0
1 MIT 1




» '. f
ISA •
V
\\
\'/
\
hi i i ' 1
                               MEASURED FLOW
                                +  URBAN RUNOFF
i-O- ... 4 , .
-1 •• ' ,..-" •'
-<* e'*-'' '•"-'.
: , - O •. •'• -
- 3 •• • • • •
-4
--^0' :•-•
>-5









f—

•

— 2000

— 4000

- ., „
J-6000
- ; -
jf-8000
^ i
^-topoo
- •' -,• .
^-12,000
. ^--.,

•'-. -
i


;, i • '• '
0-
1
- _^«1* -
10
*• =
*T-
:"?f"
,5
iU...
cc
Ul
S
e>
3

                                                                    •^•100
                                                                    — 200
                                                                    — 300
                                                                          o

                                                                          I
                                                                          10
  [
         50
  MARCH
           10
Figure VII-9.
                 IOO
                  20
150
DAYS
                                200
250     30O
         DEC.,
1968
                        30
                              40
                                         50
                                     and
                                    319

-------
           1.   combination M = 5, all waste inputs;      .


           2.   secondary treatment (85 percent BOD removal)
               of DWF,  J = 2;


           3.   no stormwater treatment, L = 1;


           4.   river flow 100 percent of measured flow,
               K = 3, and


           5.   the fraction  of combined area is  8.16  percent
               of the total  urban  area.

Figure VII-10, Minimum DO Freouenr.v Tu             «~r,
Des Moines Riv^^ -Mlu-trntr-. ..71  _  ,     rT       sinS  on

                                                                     ,
                                 320

-------
lOO-i—:.—.
     PRECIPITATION  YEAR OF RECORD • 1968

  DWF TREATMENT RATE' 85%(SECONDARY)
  WWF TREATMENT RATE • 0% (NO TREATMENT)
  RIVER FLOW = 100% (OF MEASURED FLOW)
  COMBINED SEWER AREA •• 8.16% (OF TOTAL URBAN AREA)

                INFLOW COMBINATION

  	RIVER FLOW + DWF
  	RIVER FLOW + DWF ••• SEPARATE FLOW
       RIVER FLOW + DWF 4-COMBINED FLOW
       RIVER FLOW + SEPARATE FLOW_4- COMBINED^FLOW



Y\r
           2.0      4.0     6.0      8.0      10.0     12.0

            DISSOLVED OXYGEN CONCENTRATION, mg/l
                                                        14.0
    Figure VII-10.   Minimum DO  Frequency Curves for Existing  Conditions
                     in the Des  Moines River
                                        321

-------
                           PRECIPITATION YEAR  OF RECORD • 1968
                       DWF TREATMENT RATE> 85 % (SECONDARY)
                       WWF TREATMENT RATE: 0% (NO TREATMENT)
                       RIVER FLOW =100% (OF MEASURED FLOW)
                       INFLQW COMBINATION' ,
                      ,  RIVp FLOW + DWF t COMBINED  FLOW.+ SEPARATE FLOW

                          COMBINED AREA»                       '

                      — ^   0% (OF TOTAL URBAN  AREA)
                             8.16% (OF TOTAL URBAN-AREA)
                           50% (OF TOTAL URBAN AREA)             :
                          100% (OF TOTAL URBAN AREA)        •     •'
        2.0
          DISSOLVED OXYGEN  CONCENTRATION, mg/j
                                                     KO
Figure ;VII-11., Mnimiun;Dp Frequehcy Curves for  Varied'
                 •Percent of Combined Se^er Area
                          322

-------
  100 n
K  90
UJ  80-
   70-
Q
UJ
x
UJ
co  50-
UJ
   40-1
cr
UJ
UJ
I-
UJ
20


 10


 0
                         PRECIPITATION YEAR  OF  RECORD = 1968

                  •   DWF TREATMENT f?AT.E • 85.% (SECONDARY)  .   ,
     Xx              WWF TREATMENT 8ATE ;07o (NO TREATMENT)
     \.s\            COMBINED AREA ' 8:I6%!(OF TOTAL URBAN AREA)
   X._  \  \   . ;                     '; , '      '      .    -
      '"-A  \      '   INFLOW COMBINATIONS1   •  -              r
       \\   \^           RIVER FLOW t DWF + SEPARATE FLOW* COMBINED FLOW

        \'V \           RIVER FLOW;             "•  '.    .
          ""--.. \ \    	  0% (OF MEASURED FLOW)   ' /
            \\    \	 25% (OF.'MEASURED FLOW)   ,
             \\   \	 "lOO % (OF MEASURED FLOW)-•'
      0
                                             T
          2.O      4.0      6.0      8.O.     !0.0    :.I2,C
             DISSOLVED OXYGEN CONCENTRATION,,mg/1
.~:f:V'   •"T~-"1
'.t2.0;   :•• 14.0
   Figure VII-12.   Minimum DO Frequency..Curves. .'for JVaried
                     Percent of Actual Measured Upstream
                     River  Flow         ,               :;
                                 323

-------
100
                             PRECIPITATION YEAR OF, RECORD- 1968
                        COMBINED AREA '8.16% (OF TOTAL URBAN AREA)
                        WWF TREATMENT RATE = 0%  (NO TREATMENT)      -
                        RIVER FLOW • 100% (OF MEASURED FLOW)
                        INFLOW COMBINATION =,
                        ,  , RIVER, FLOW + DWF + SEPARATE FLOW + COMBINED FLoitf

                             DWF TREATMENT RATE '  C  .    .
                                                             a ** '   ' 'f,
                        "••-•"- 30 % (PRIMARY)                      ,    £
                        	-85% (SECONDARY)                   ...•'£
                        — .-—9.5 % (TERTIARY)       ••«•••"	-	
                        —-—INDICATES EVENTS EXCEEDING         \
                             DESIRED D.O. LEVEL                  ' " ;:
Ul
* .oJ
5§
0-

"
''•••.



• 1 • ' • T7~I — "^ 	 1 	 	 — i —
0 2.0 4.0 6.0
                                8-°      IQ.O    f|2.0
           DISSOLVED OXYGEN CONCENTRATION,  mg/l

 Figure VII-13.  Minimum DO Frequency Curves for Varied
                  DWF  Treatment    ' -  •-•'•-.••     -  ' ..-    -..-,.>•.
                            324

-------
IOO-
0 90-
Q
ui. so-

ts
0 70-
8
UJ 60-
§ •
to 50-
UJ
gj 40-
I 30
UJ
* 20
H
UJ
^ 10
sS
0
^...-.v.— .;— ^. _ PRECIPITATION YEAR OF RECORD « 1968
x :\. j \ DWF TREATMENT RATE = 85% (SECONDARY)
V , "•••"—•^ \ \ COMBINED AREA ' 8.16% (OF TOTAL URBAN AREA)
\ \
. ./",-^..-\:
\ ' RIVER FLOW-' 100% (OF MEASURED FLOW)
\ INFLOW COMBINATION' , , | . .
\ RIVER FLOW + DWF + SEPARATE FLOW + COMBINED FLOW
1 	 \ \ i • . • - •, • •
\
\
L_1JN











t 	 ' 1 ' •
0 2.O '
V WWF TREATMENT RATE'
\ . 	 0% (NO TREATMENT)
\ V 	 25% .
\ V. 	 75%
\ \ \ 	 INDICATES EVENTS EXCEEDING
\ \ \ ^ DESIRED D.O. LEVEL,
\ \ \
\\ \
\ \ \ ,
. \\ \ •..:. ' ; . ,
\\ \ 	
\ \ \
^-4 \ •.•"' •' .'."••

^\.'\ \ • ...-:'-.'•
^i-^-X,...-^ .;.-.... -: , , . .
~~^\ • - , ' • •••
..-, 	 p- 	 , 	 --.. V | 	 ^—^
.0 6.0 8.0 10.0 12.0 i4.0 , .
         DISSOLVED OXYGEN CONCENTRATION, mg/I


Figure VII-14.  Minimum DQ Frequency Curves  for Varied
                WWF Treatment                ,
                              325

-------
                     \
                       \
    PRECIPITATION  YEAR OF  RECORD'1968

INFLOW COMBINATION'
  RIVER FLOW* DWF+COMBINED FLOW +• SEPARATE FLOW
COMBINED AREA,' 8.16% (OF TOTAL URBAN AREA)

RIVER FLOW- 100% (OF MEASURED FLOW)
                                 DWF TREATMENT RATE'
                              	95 % (TERTIARY)
                              	; 85 % (SECONDARY)
                              	 85 % (SECONDARY)
                                   85 % (SECONDARY)
                              \	3O% (PRIMARY)
                                    0% (NO TREATMENT)
                          WWF TREATMENT RATE-
                             0 % (NO TREATMENT)
                            75%
                            25 %
                             0 % (NO TREATMENT)
                             O % (NO TREATMENT!
                             0%(NO TREATMENT)
                              V	INDICATES EVENTS EXCEEDING DESIRED  D.O.  LEVEL
               4.0     6.0     8.0     10.0     12.0     14.0
          DISSOLVED  OXYGEN CONCENTRATION,   mg/l
Figure VII-15.  Minimum DO  Frequency  Curves for Varied Treatment
                 Alternatives
                                  326

-------
          1.  'for all of the precipitation  events  defined
              by the model, upstream; 'river"' flow was  on            .'';;'
    ''••'•      ; ;' the; average" 50 percent pf ,'t;he total  river          ',/  '
         '•'''  flow5 and                            •            ••','•'''    •"*.•

          2.  this percentage ranged from as low as  6        : /
              percent to as high as 97 percent  of  total
    •'•'•''••' '"'   river flow.   '' *"!"...',-'•'  ,'.'..,..              .'.••'.-•

For the Des Moihes application,.Vand the .particular rainfall year selected
(196.8.),v urban runoff seems to.:be the,key  factor in receiving water     i;:,
critical-DQ levels.  However, an- urban'-area located very/far upstream .in
a river basin would have a mo're detrimental impact on wliter quality down-
stream from':the; urban area than if the same'urban  are6 was located on 'a'"'
higher order stream within the network.           •   ',-

Figure VII-13 shows the effect of varying the degree of treatment of DWF
while holding the other parameters constant.  It-can be inferred that   „,.
there is no significant improvement  of stream, water quality (DO) by up-
grading DWF treatment from secondary to  tertiary' during p.eriods of wet
weather.  However, it is clear that,the  improvement in minimum DO
levels by upgrading DWF treatment  from primary to secondary is probably
worthwhile:   7 percent more wet-weather events would, exceed a.JDO. >v ;,. ;
value of 4.0 mg/1. "Examination  of,rFigure VlI-14 feveals,,,that critical.
DO  levels  are improved appreciably with  25 percent" treatment of WWF
and markedly with  75 percent  treatment ;bf WWF, while providing secondary
treatment  of DWF.  The minimum DO  frequency curves 'in Figure VII-15
compare  f our;. treatment alternatives  to.. reduce water .pollution during   '
periods  of  urban runoff:         ,            ...-.'--i ••.•-vr'' :.'..-:*

           1.  95 percent  treatment of  DWF and no treatment
              of urban runoff,

           2.  85 percent  treatment of  DWF and 25 percent
              treatment  (BOD  removal)  of WWF,

           3.  85 percent  treatment of DWF and 75 percent
              treatment  of WWF,  and

           4. -  85 percent treatment of DWF and no treatment
              or urban runoff.

The zero treatment and primary treatment curves are also  shown for  com-
parison, but are not considered acceptable  alternatives.   I.t  appears
that options 1  and 4 above result in comparable critical  DO levels  in
the receiving stream.   However, options  2  and  3 result in much more im-
proved critical DO levels.  An economic  evaluation  of these treatment
 alternatives, on an annual basis, is presented in  a later subsection.
                                      327

-------
           , appr°prx ate to examine the results  of applying  the model  to
   ™     J hr°UghoUt the y£ar durin§ ^ich no urban runoff  was produced.
  Dry weather was  experienced for approximately 300 days  throughout 1968.
  The model Was  applied to these  periods  using  a daily  time step.  This
  modification is  certainly justified since conditions  are  more truly
  steady-state than  during periods  of precipitation and subsequent runoff
  for example, waste loadings (DWF  treatment  plant  effluent) and river flow
                                 day'   F°r the  dry-weather  simulation
                                 °n  the  average  94 Percent  of total r^er
   ™   rr     n°m TT   PrCSnt t0  "'6 Percent-  The results are shown in
  Figure VII-16, Dry-Weather  Minimum  DO Frequency Curves  for Varied DWF
  S^S6nt f-!erna^ves-  A  remarkable 97 percent of the dry-weather days
  exceed a minimum DO concentration of 4.0 mg/1.  Upgrading of DWF treatment
 becomes meaningful only  if  stream DO standards areset higher than T£
 mg/1.  From Table VII-3, it is  clear that the Des Koines River in particular
  carries a high BOD load upstream of the Des Moines urban area.   ?Ms
 SPtnfDW tre!^ J^8 f ^weather Period« onl7, a significant increase
 tL ^f f*atmenVate   !S n0t reSUlt ±n a corresP°nding increase in
 the critical DO levels,, as shown in Figure VII-16.

 To maintain the proper perspective, it is desirable to view the  effects
 of urban runoff on an annual basis, not just during periods of wet
 weather.   The frequency curves shown in Figures VII-15 and VII-16 are
 combined by weighting on the basis of the number of rainfall  days and dry.
 W^thf davs *n ^e year.  The composite totals are presented in  Figure
 !**"^;/Tf „    mUm D° Frequency Curves-   *°r example,  a given stream
 standard  of 4.0 mg/1 is exceeded 90 percent of the time  for existing
 conditions in Des Moines, Iowa,  throughout the year 1968.   A significant
 amount of treatment (75% BOD removal)  of WWF in addition to secXdary
 treatment of DWF  results in  critical DO  levels such that the same stream
 standard  is exceeded 97 percent  of the days  in the year.   Annual DO
 duration  curves tend to mask the impact  of shock loads of  organic pollu-
 tants discharged  during periods  of urban runoff.   A few  extended violations
 of stream DO  standards may cause anaerobic conditions  resulting in fish
 kills and  proliferation of undesirable microorganisms.

 The  integral  of the DO deficit equation  over all time, equation VII-31
 has  been suggested  as  a measure  of the relative effect of one waste   '
 source versus another.  Denoted  as V, the volume of DO deficit  this
«S£ter ^ r^^f  f°r eaCh treatment °Ption during both wet- and dry-
weather Periods.  The  average values obtained are given in Table VII-6

                f±C't'  ^         ind±Cate  the same ™»^  of the treat-
            .        '                   ae   e same ™»S of the t
ment alternatives as suggested by the curves in Figure VII-17, from a
water quality viewpoint.  This implies that the integrated DO deficit
V, may provide, a simple method of comparing the impact upon receiving'
waters of alternative input configurations.  However,  interpretation
of the numerical value of V, in an absolute sense, remains ambiguous.
                                    328

-------
iuu-

_? OO —
O 9O
UJ 80-
o

O 70-
z
o
UJ 60-
o
X
UJ
5O-
co ou
1
^40-
UJ
I
^ 30-
UJ
*
>20-
o
3? 10-

O-
<
^^v^^*
••.]
	 J

	 ; 	 _. 	
















D 2.0 4
_. 	
N^^-.:
V \
XA
3















i
.0

•j>

\\
. :\
\ \\
• \ ii
\\"^
\ \ V.
. \ 'A
\ \ ''•
\\ '
\\
\\
v
\
\


i




— i 	 <~
6.0

DRY WEATHER DAYS OF 1968
WASTE INPUT--
URBAN DWF+ UPSTREAM SOURCES
RIVER FLOW = IOO%, OF MEASURED FLOW
DWF TREATMENT RATE =
	 QC oi fTPRTIARYl

	 QE Cy ^OCr*AKinADV^

-\ 	 30% (PRIMARY)
\\ 	 0% (NO TREATMENT)
\\ 	 INDICATES EVENTS EXCEEDING
V\ DESIRED D.O. LEVEL
•. \
': \
': \
\ I
,\\\
\^\
^k v "••V
\>^>x
^^ ":^»s;^>.^
^>*v'\
%
%,„
8.0 IO.O 12.0 14.0
         DISSOLVED. OXYGEN CONCENTRATION, mg/l
Figure VII-16.
Dry-Weather Minimum DO Frequency Curves for
Varied DWF Treatment Alternatives
                             329

-------
0
                                  SIMULATION PERIOD'1968

                                  WASTE INPUT' UPSTREAM SOURCES + DWF +
                                    SEPARATE SEWER FLOW* COMBINED SEWER FLOW
                                  RIVER FLOW = 100% OF MEASURED FLOW
                                  COMBINED SEWER AREA = 8.16% OF URBAN AREA
                                   • DWF TREATMENT RATE=
                                  	 95 % (TERTIARY)
                                  	85 % (SECONDARY)
                                   — 85 % (SECONDARY)
                                      85 % (SECONDARY)
                                      30 % (PRIMARY)
                                       0 % (NO TREATMENT)
WWF TREATMENT RATE'
   0 % (NO TREATMENT)
  75%
  25%
   0 %(NO TREATMENT)
   0%(NO TREATMENT)
   0%(NO TREATMENT)
                                   — INDICATES EVENTS EXCEEDING DESIRED D.O. LEVEL
       2.0
                4-°     6.0     8.0     10.0     12.0
        DISSOLVED OXYGEN CONCENTRATION, mg/l

       Figure VII-17.  Annual Minimum DO Frequency  Curves
                                  330

-------
















ctf
H
H
0
H
W
Q
O
n
o

C£

P^j
£3
o
•
i
M
H


0)
rH
ft
CO
H


















0) >>
60 H cd
cd cd TJ
M 0) 1
 e
 -H ~>V
M cd
O 01 T3
00 P4 1
Cd 60
•H !=-. g
OJ M ^
> O
i-l
o ra ^-,
o ^-1
rf» 'rH ^"»
J-l Cd
60 P4 1
t3 &0
^i ) i £2
CJ QJ * —
•5. '



(U
4J
cd ^-N
P< rH
cd
4-> >
Si
S a)
S*

g i
S &
4-J pj
(0
^ O
H PQ
F^* 5*5
Q ^^





1
4-1
IX
O
CO CO vo
O OO O
r*H rH






CO CO CO
V ,* *
vo S- r-







' U™| VO *«O
• » •
pj ^ cQ



^-^
I—t
S
•rH
S

4-1 ,13
a - o
0) rH
g (3 - ^
4J 0 rH rH
03 -H Cd Cd
01 60 O 0
!H O -H -ri
E-l rH 01 CO
O >, X
0 -H J3 ^3
K pq PL, pj
O **-^ ^

o in in
t-~ CM








l~~\ s~^
j^~^ !>* t>
M Cd cd
cd T3 13
•H s rt
4J O O
!-i O O
cu a) ^
condar
0)
^
m
CO






"^

oo ,
H






co
•
CM







m
•
£!







. — ^
4-1
rt
s
4J
cd
 W
cd t^
































§
4J
cd
J-i
4J
rJ
a)
S




4J

1
O
4-1
TJ
O
p^
CO
a)
£j
o
o

CO
a>
"«
°
331

-------
  ECONOMIC EVALUATION OF TREATMENT, ALTERNATIVES

  Alternatives

            alternatives to existing conditions are considered in this


            1.   upgrading the existing DWF treatment facility
                from^a high-rate trickling filter  plant  to  a
                tertiary treatment  process ,  or

            2.   providing two separate levels of urban stormwater
                runoff control

                i.  25  percent  BOD  removal, or
                ii.  75  percent  BOD  removal,

               while maintaining existing DWF  removal
               efficiencies .
 Upgrading DWF Treatment

 To achieve a tertiary treatment configuration, the Des Moines DWF
 treatment facility must undergo an intermediate-staga modification to
 SSr^J ?J  *?'  A Si^lif^d Profile of the existing DWF treatment
 SOT*       I characteristics is presented in Figure VII-18,  Existing
 f! *™CeS^r0file-  m&n aU ac£ivated «^dge uSit is . added, the
 trickling filter acts as a roughing filter.   The capital costs of this
 iSr"? di^e-stafe grading are evaluated separately and must be added
 Xater to the capital costs associated 'with a tertiary treatment
 capability.   A profile of the* trickling filtration/activated  sludge
        1STSh?^,^ ^S^ro-lQ,  Trickling  Filtration /Act ±v*t*A  M
              ^5 d°llarS 'CENR 2200^»  ^r a design flow of 35.3 mgd .       '
          cu  m/day),  the intermediate-r-staga capital costs are  approximately 4 18
       Aeration Tank(s)
       Sludge Recirculation
       Clarifier Modifications
$1,560,026
   574,746
    88,000
          Total •
supervision
                                            $2,222,772-

                          -. engineering design, bonding, and construction
The unit processes added to achieve tertiary treatment (95 percent BOD    L
removal or better) are shown in Figure VII-20, Added Tertiary Treat^V   ;
Unit Processes.  It is assumed that disposal of chemical sludge is' By —
incineration.  Cost figures were obtained from a report by Battelle-Pacific
                                     332

-------
UJ
3
UJ
                                  E.

                                  to
                                  CM
                                  tO
                                  UJ
                                  Q

                                  O
                                  00
                                  Q
                                  CO
                                  to
                                  IO
                                  to
O)



I-
z
UJ
                                  I    S
Q

O
00
        IO
        CO
                                                UJ
                                                cc

                                                Q
                                                O
                                     0)
                                     iH
                                     •rl
                                                                              O
                                                                              5-1
W
CD
0)
O
O
n
p-l
                                                                              Q

                                                                              60
                                  CO
                                  UJ
                                  O
                                        o
                                        CM
                                        CD
CM
                                         Q
                                         UJ
UJ
CO

cc
o
a.
                                                                              00
                                                                              M .
                                                                              M '
                                      •H
                               333

-------
 Z<  h-
 PP  Z
 (CO Z  UJ
 ^ PS.
 ?S O  _

 U LJ  0 .
    CO  ^
        co;
'     UJ  Q


 UJ  UI  ^
Q
O
        < <
        DC H
        UJ
         UJ
         _J
         o
         >-
         o
         UJ
         o:

         UJ
         CD
         o


         CO


         5?
         O
         o
                         UJ
                                                      LU

                                                      £  2
                                                      <  2
                                                      UJ  H
                                                      o:  o
                                                      h-  ui
                                 5  W
            CO
        UJ  °Z
        5  w
        a:  H
                                                              o
                                                              CO
                                                              ;=: UJ
*.—J
cc
UJ
                                                 o
                                                 h-

    u.  co
    ui
    m
    •2
    O
"ocS"
 P-5
    UJ
                                                                            §
                                                                            4-)
                                                                            CO
                                                                                 0)
                                                                                 60
                                                                            0)
                                                                            JJ
                                                                            Cfl
                                                                            o
                                                                           •H
                                                                            1.1
                                                           (-1
                                                           rH
                                                           •H
                                                                                •S
                                                                                rH
                                                                                A!
                                                                                O
                                                                                •H
                                                                           H
                                                                           H


                                                                           0)

                                                                           3

                                                                           •H
                              334

-------
                    I
                      z
                      o
                      cc
X
CO
o
<
00
                
-------
 Northwest Laboratories.19  Capital cost changes due to variations in
 plant size are approximated through use of the exponential rule:19

           1.  if plant size changes by a factor of X,
               the cost will change by a factor of XN
               where N varies from 0.0 to 1.0, and

           2.  an average exponential factor of N = 0.6
               is used, for wastewater treatment facili-
               ties and equipment designed for plants with
               100 mgd (378,500 cu m/day) flow or less, as
               in the case for Des Moines, Iowa.

 Capital costs presented in the Battelle Report are expressed in 1973
 dollars (ENR-1900).   Capital costs presented in this section have
 been updated by multiplying the base cost by the ratio of the current (197C>)
 ENR index (2200) to  the 1973 index.  Local cost multipliers were not
 available to adjust  national average costs to figures reflecting the
 price structure likely to prevail in Des Moines.   Thus,  for example,
 a land value of $1000 per acre ($2500 per ha)  has  Been assumed.

 Operating costs may  vary significantly from the estimates provided in
 this section as a result of local differences  in costs for power,  fuel,
 chemicals,  labor,  transportation, supervision  and  maintenance.   An
 exponential rule is  used to adjust approximately for variations  in plant
 size as  follows:

          1.   N =  0.58 for  labor and  supervision,

          2.   N =  0.55 for  electrical,  and

          3.   N =  1.00 for  chemicals  and  fuel,

 for  flow rates up  to  100 mgd  (378,500  cu m/day).   Total  annual costs
 are  then calculated by adding amortized capital  costs  to  the  operating
 and maintenance costs.

 Capital  costs  are  shown itemized  in Table yi.I-7, Capital  Costs:'for
 Tertiary  and Intermediate-Stage Treatment.  These,  figures  do  not include
 costs of primary and  secondary treatment, as they  pertain  to  already
 existing  conditions in Des Moines.  Operating costs are listed in
 Table VII-8, Operating Costs for  Tertiary and Intermediate'stage • Treat•=•
ment.  The following  assumptions  are-made;

          1.   overall costs of labor are $8 per man hour
               for an  8 hour day,

          2.  power costs are $0.025 per kilowatt-hour,
                                    336

-------
       TABLE VII-7.   CAPITAL  COSTS  FOR TERTIARY AND  INTERMEDIATE-STAGE
                     TREATMENT,  35.3 MGD  (1.55 cu m/sec)
Item
1.
2.
3.
4.



Liquid Treatment
Liquid Disposal
Chemical Sludge
Organic Sludge
Land for (1.)
(3.)
(4.)
Base Cost
$4.7 x 106
0.043 x 106
1.9 x 106
1.0 x 106
12,000
21,000
4,100
r*
Scale Factor, ENR
XN Ratio
(3.53)0'6
2.13
2.13
2.13
2.13
2.13
2.13
2200
1900
1.16
1.16
1.16
1.16
1.16
1.16
Adjusted
Cost
$11.60 x
0.11 x
4.69 x
2.47 x
0.03 x
0.05 x
0.01 x
io6
io6
io6
"I
106
106
10°
                    TERTIARY CAPITAL EXPENDITURE

                           Intermediate-Stage Cost

                    TOTAL CAPITAL EXPENDITURE


                    Amortization:  20 years at 8%

                    Amortized Annual Capital Cost =
$  18,960,000

 +  2,222,772

   21,182,772




   $2,157,508
See definition in text.
Reference 19 (Strategy no. 9) for 10 mgd plant.
                                     337

-------
         TABLE VII-8.
OPERATING COSTS  FOR TERTIARY AND INTERMEDIATE-STAGE
 TREATMENT, 35.3 MGD (1.55 eu m/sec)
  Item
         Base Costb
                                              Scale' Factor,
                                                    X
                                                     .N
                                        Adjusted Cost
 1.   Base Labor
      (i)  Liquid Treatment       214,912
      (ii)  Chemical Sludjge      233,600
      (iii)   Organic\Sludge   ""151,840'

 2.   Electrical Power,, ,r" ,*"• '^.,, ' 7.
      (i) ' Liquid', Treatment"  ',..'  197,100
      (ii)   ChemiQal Slu'dgeJ I'T. 29,337
      (iii)   Organic Sludge      16,516'

 3.   Chemicals     _.   , 	,
     '(i)  Liquid Treatment V. J  ,,"".,.
          a)  Lime,:'  ,''"",''   * 153,300
          b)  CO  ./   *,..;  .  -.19X450
          c)  ci    , :,,;v;:,/.'.; "is, 396"
          d)  Polymer  f I., ,','.", '.".' 15,330
      (ii)  Organic Slu"dge J"  I,'      "'"
          • .(Polymer) ',. ^•"•Jf7.''r1^00Q'.

 4.  Fuel    ,/ '  ,,\ ,  .  [., V~7"" " /'", ','  ,/.
     (i)  Liquid .Treatment,  ,-     ,3,164
     (ii)  Chemical Sludge '     109,208
     (iii)  Organic Sludge  ,.   40,150
                        3.53
                        2.08
                        2-Q8
                        2^0,8
                            o;58
                       (3, .53)
                        2.0Q
                        2 ... 00 '
                        2.00

                      j(3.53)-

                        3^53
                      ' ,"3.53 .
                        3.53
                        3.53^

                      .,3.53
                            sO.55'
                        3-53
                        3.53
                        3.53
$446,653/yr
 485,492  ,
.315,57Q, ,rf.
 394,423,
.-', 5-8»7 0.7.'
', .33,051
 ,541,149
..682,879
  64,938
 .54,115;

 ,515,380
,12,756
385,504
1.41,730,
                                        ..; TOTAL ANNUAL CpST   . $•.' 4,132,347
a            •  •       .•.•'"•
 See definition in;text.         V;
 Reference 19  (Strategy no. 9) for 10 mgd plant.
                                     338

-------
          3.   chlorine costs are $0.12 per pound
              ($0.26 per kg),

          4.   polymer costs are $2.00 per pound
              ($4.41 per kg),                              ;

          5.   lime costs are $0.02 per pound ($0.04 per kg),

          6.   C0? costs are $0.02 per pound ($0.04 per kg),
    •          ' and

          7.   fuel costs are $0.11 per therm ($0.11 per
              1000 kg-caloriei.

Transportation costs are not included since the sludge is assumed to be
disposed on site by incineration.  The total annual cost (including
amortized capital cost) is $6,289,855.  This figure represents a cost
of $0.49 per 1000 gallons  ($0.13 per cu m) for conversion to activated
sludge from high-rate trickling filtration, the intermediate-stage
and addition of tertiary treatment with incineration of chemical and
organic sludges.

The tertiary treatment configuration shown in Figure VII-20 constitutes
a rather complete and sophisticated process profile.  Battelle-Pacific
Northwest Laboratories recommends this strategy as an alternative to
existing secondary activated sludge plants which are required to provide
additional organic and nutrient removal.19  Furthermore, such a process
configuration will produce a higher quality effluent than any of the
other strategies considered.19  However, examination of Tables VII-7 and
VII-8 reveals that the incremental cost of providing such a facility is
quite high.   If organic waste removal is the primary consideration, a
lower cost control strategy may be considered.:  activated sludge^coagu-
lation-filtration (Battelle Northwest, 1974; Strategy 8) ,19

Assuming that the intermediate-stage conversion has been accomplished  (see
Figure VII-19), an alternative to complete tertiary treatment is shown
in Figure VII-21, Activated  Sludge-Coagulation-Filtration Process Profile.
This control  strategy compares favorably with  the more advanced option
in BOD removal  capabilities.  Treatment plant  efficiencies vary consi-
derably with  the input  flow  rate and waste concentration.  Battelle
assumed a medium strength  sewage of 200 mg/1.19  For 10 mgd  (38,000 cu m/day),
100 mgd  (380,000 cu m/day) and 1000 mgd  (3,800,000  cu m/day) plant sizes
BOD removal efficiencies up  to  (1) 99 percent  for  tertiary  treatment,  and
 (2) 98 percent  for  activated sludge-coagulation-filtration  are given.

In  general terms, any type of post-secondary treatment  (other than
chlorine disinfection)  is  classified  as  tertiary  treatment  in the water
pollution control literature.  The option depicted by  Figure VII-21 has
been assumed  as a type of  tertiary treatment and  exclusively referred  to
                                     339

-------
        ui ,—
           U.
                     UI
         m
         o
UJ
2'
IT
                                    O
                                                 LL)
                          111
                                                           o
                                                           13
                                                           H.
                                                           s,
03 H-LU
                     340

-------
as such in the analysis presented in Section VI.  The more descriptive
title is used in this section- to distinguish the process from the more
advanced profile of Figure VII-20.  It is appropriate to emphasize that
the type of post-secondary DWF process adopted by a municipality will
depend on such local factors as sewage characteristics, energy resources,
and receiving water quality.                      ... |
                                                  '- ' t
The incremental cost of providing the facilities of an activated sludge-
coagulation-filtration system may be estimated by:20
                          C     - 87,000 D
                           tert     '      p
                                           0.787
                                                  (VII-36)
where
            tert
           D
= annual cost, dollars, including amortized capital
  costs (20 years, 8 percent) and operating and
  maintenance costs, and

= plant size, mgd.           '    ,   .
Total annual costs of both types of post-secondary treatment are summarized
in Table VII-9, Dry-Weather Flow Costs for Advanced Treatment.  The
amortized capital cost of intermediate-stage conversion has  been added to
the  cost computed by equation VII-36  for the activated sludge-coagulation-
filtration design.  The large difference in annual costs is due to:

          1.   the added expense for chemicals during ammonia
               removal, and

          2.   added fuel costs during incineration of chemical
               and organic sludges,

for  the complete tertiary treatment configuration.
 Control of Urban Runoff

 The methodology for assessing the cost of providing storage/treatment
 facilities for wet-weather flows is presented in Section VI.   A basic
 assumption is that a secondary treatment technology is applied to achieve
 four  levels of control for the" total BOD generated by urban  runoff:   25,
 50, 75 and 85 percent BOD removal.  Various control alternatives were
 evaluated:  dissolved air flotation, biological treatment,  physical-
 chemical treatment and sedimentation.21

 The cost of wet-weather control for the storm sewered'area of Des Moines,
 Iowa, may be estimated by (Table VI-10):
                                   0.
                        ST
                             3.61 e
                    037^
                                                  (VII-37)
                                     341

-------
                 CO
                 O
                O
                n)
                cd
                4J
                O
               H
T
M
M
CN
  «\
VO
                                 4J
                                 1
                                 8
                                 cd
                                 0)
                                CJ
                                         o
                                         VO
                                         VO
                                        M
                                        cd
                                        60
                                       13
                                       CO
                                        (U
                                •U      4J
      •H
                                       CM
                             m
                             in
                                    CO
                                                                                      M
                                                                                      l-l
                                                                                                    CO
                                                                  CJ
                                                                 NI
                                                                                                   CO s-^
                                                                                                   O  Cfl
                                                                                                  1-1 •-
                                                                                                  0) v^
                                                                 
-------
where     Z   = annual cost, dollars per acre of storm sewer
                area, and
          R   = percent BOD control,
and
                               0 < R  < 85.
                                                          (VII-38)
The cost of>wet-weather control  for  the urban area  served by  combined
sewers may be approximated by  (Table VI-9):
 where
    :                          0.056^
                  ZCQ - 25.07 e

Z   ?=• annual cost, dollars per acre of combined
      sewer area.        •        ;
                                                                     (VII-39)
 These equations yield unit costs, not total costs, ;but they are derived  _
 by a procedure that estimates the total developed acreage of an urban
 area (see Section' -VI).  The average annual runoff associated with
 equations VII-37 and VII-39 is 11.2 inches (284 mm), computed from a mean
 annual precipitation of 30.37 inches (771 mm).  The length of the preci- •
 pitation records is 30 years (1931-1960).22

 The cost figures for 25 percent and 75 percent BOD removal of WWF are
 presented in Table VII-10.. Wet-Weather Flow Control Costs.  These values
.rare based on a total drainage area of 49,000 acres ,(19,600 ha), of which :
 45,000 acres (18,000 ha) are served by separate sewers and 4,000 acres
 (1,600 ha) are served by combined sewers.  The annual runoff for 1968
 for Des Moines, Iowa, is 10.28 inches (261 mm); thus, the unit  costs ob-
 tained from equation's VII-37 and VII-39' are slightly high but an ^ adjust-
 meht is not considered necessary.'  The total annual costs shown in Table
 VII-10 include amortized capital :costs and annual:; operating and maintenance
 ' COStS'.  .    ........  '   ;'        ;_ '     ,.'   '.      -.•'-• .'.


 •Tradeoff  in Alternatives                                    ,

 To view the control  strategies in the proper perspective, the status  quo
 .:conditions are included as a base:for comparisons.  Any  alternative plans
 that depart from this base must  be justified  on  their  cost-effectiveness.
 Thus,  the cost figures  shown in  Table VII-11, DWF Tertiary  Treatment
 vs WWF Control,.represent  the additional expense incurred  in providing
 storage/treatment beyond  that  already available  with secondary  treatment
 of DWF and no  control of  urban runoff.   Figures  VII-15,  VII-16  and VII-17
 :Show the  effects of  various control  strategies upon the minimum DO con-
 centrations of the. Des Moines River.
                                      343

-------














o
PH
£-j
Iz;
o

|

CO
J>

EH
Is

s
S3

Ps
f-{

§
M
H
P3
^^

£f
j^g
0
i-H

I
M
rH
H


4-1
CO
O
O
rH
cd /— s
,
•p cd ^^
cti C 
o. a
O -H
cd
g



rH
Cd s-^
?•>->**
d co co
_§ 0
co"
a) cd >-,
N 4-1
•H -H 0
4-1 ftCN
M cd v-'
0 U

Jj *°'



Options







0
o
0
o
CN
«v
VO










O
O
o

CN
CO

*d"










O
0
0
CO
10
f\
C«J







DWF Complete Tertiary
Treatment, No WWF
Treatment

.
1-1




o
o
o
VO
r-T













1
•













1
1
1








DWF Activated Sludge-
Coagulation-Filtration,
No WWF Treatment

.
CN1




o
o
o
m
CN
a\













i
1'













i
i








WWF 75% BOD Removal,
DWF Secondary Treatment

^
CO




o
o
0
vO
rH
OO













^
1
1













1
1








WWF 25% BOD Removal,
DWF Secondary Treatment


•* <
T3
CU Cj
4J O
3 -H
p, ,p
S cd
O i-t
O Q)
4J O
CO
O 13
0 nl
t— j
cd /—N
3 e-s
C co
a
cd *»
CO
cd k
4J
o o
4J 
-------
The Des Moines River stretches for 200 miles (322 km)  from the^City
of Des Moines to its junction with the Mississippi River and  in
general  the river is wide and swift with occasional deep holes and
f broad'flood plain.  According to the State Hygienic ^oratory,
bottom material is composed of silt deposits, sand  ?ra-f *n^ubble
providing numerous habitats for fish and other aquatic life.Recre
ational activities such as fishing and boating are quite heavy   The
entire reach is classified as warm water "B" stream by the Iowa Water
Quality Standards,23 such that the Absolute minimum dissolved oxygen
?evel specSied 1^ 4.0 mg/1.  The Iowa Standards also require a minimum
of5.0 mg/1 during at least 16 hours per day.2"  Thus, taking 4.0 mg/1
as  the  standard or basis for water quality  comparisons,  the different
control options may be judged by  the  following criteria:

           1.   total  annual  cost,  and

           2.   .violations  of the minimum  allowable  dissolved
               oxygen level.

 T.KIo VTI-12  Control Hosts vs Violations of the DO Standard,  summarizes
 tne cost-effectiveness of two advanced waste treatment  options  two wet-
 weather control options,  and existing DWF secondary treatment facilities,
 Sfcomparat^e purposes!  two additional treatment conditions which are
 not presently acceptable by government regulation are presented.

 Examination of Figures VI1-15, VII-16, vII-17 and Table VII-12 reveals
 that:        "    •

           1.  since both types of tertiary treatment remove
               essentially the same amount  of BOD, option 1
               is justified over  option 2 only t&ea.mitrwat
               removal is.necessary;

            2.  option  4 is  preferred  over any form of advanced
               waste treatment;

            3   option 3 is  attractive because it causes  the
                least amount of damage to the receiving  stream,
                but it is  the most expensive alternative;
                and

            4.  any reduction in the degree of DWF treatment
                for existing conditions,  option 5, results in a
                substantial deterioration to receiving water
                dissolved oxygen levels and must be weighed
                against the savings incurred.
                                     345

-------















^^
1
CO
g
O
CO
•S
O
M
1 •
w
w
£>

cO
CO
R
CO
o
u

. *[
O
i
o
CJ

.
oi
T
H
1
H


T3
- O Qt
!d' ra
Q ca • o
H- -C *H
O " !>
. M W
0 3 -H
^-* T3
^H K
•« CO cd
2 c •«
H * S
EH 3 4J
a co
cd
4-1
C 4J
a) w
E 0 /-«
OJ U M
0 rH -£?
c re 
M 3 "w
•-j e
nJ ^j
•U
O
H


to
d C
•U TJ
0) ttf M
. >•> i—! rt
« olfd
x^B-
n £ w
0)
5*5 ^* • :

to
. e
M -H
: 
S cd
JJ r-l T3
nj O M
 -a .
i n
4J 0 3
-) • "tH • CN " CN • -. ,6j->
1 ' ' ' . > ' ' >>'•,

'• . \ , ~ ' "-'•- ' - 'i' • , ,•'*

'- •• ', •' •'•• • - '-- '• ' , •' -• . "

", * •:",'• \ ; '; ..-,,/• \) . i ^ * „ '. , *, '



O O. -CO O CM -
"* ~ J^"i ..-,.. , °^ Sf




•'- ''-' :' ! '',:. '•',.••: - ' - , ' . v , ' ", <-
4-J '.-''- 1J , W'- •
£ r -.' 8 •....' g g • .'g-'
M OJ-H ' e s • m ''
•3 f^^ -s-d 'tt-d -i •
• i fe .3- H & - . • <" > • « > Si afa
° m « 7= cold td M *-•••«£.. #1.
fa aj 0) fa g1 S S' fa fa ta to r.,' &"
§^ gS£fi gg || |§

• • " ' ' '
-1 "CM CO ., ^ ,X •



, 4 '- • , ,

oj in "
-* IT)

. n








T3 T3
0, '0
0 0
0^ 0
,.ocT. , co"
• '-CO -: ,-N± ' •
 '" '
•• , • • •
co ' . ^ r-N
•' '"'' r' ' ::'*




' " *: : 'p.' t .'', ,.
; - ' -• ,-..:..

,,'•' - t'.it

O" ' 'CO * .-'


1 V ' - ;

.f * v •"., ;,'t ; •
,
'DWF Primary Treatment,-
No WWF Treatment : ;
No DWF Treatment'; '' .
No WWF Treatment .
• , •' •- s? i

' *
\0 , . -'i' . ..f^ ; . 4


• ,;
: i.

















;
^
. v™>
- to
C
O
•H
'.T*
" ti
o
••0;

' 60
PJ.
; 4-1
to
'•H

•>
"M"
o
>v
'to
4J.
addition to control bos

(3





,'. .
















*. ''
r-3
s
o

•d-
o

/:!'
•H

' cd

^4J
0)
-o

,o
• o
o
q
. ~
0)
ed on a minimum ,-allowab
to
«

' '*


















••*

.'M




>
:r<.
• ' •
',.§

_-
f.
;- 'o
"p-
'•H
>4J.
4J
a
„ CD
>
•-U
,
^3
•s
^

a)
M cq Q
T! ja cP '


' .1
V '• '.

^
a)
CD '

"i"
3
o

f-^


i
CO
CO
o
4-1
a
iH •
, ' P. '

0)
;,'!.'•;
- i". 60 '•'
^'-'

' ,Sj
- O' .•
i M'-', •
_
O.

rt :.*
S •
,cd

-------
Again, the issue of shock loads is important, and favors high levels
of WWF control.

The reader should be cautioned that advanced tertiary treatment is
rarely imposed just to improve the BOD removal capabilities of
existing facilities.  It is usually designed specifically for nitrogen
and/or phosphorus removal.  For the heavy precipitation months of
June, July and August, 1968, Davis and Borchardt9 reported the following
nutrient concentrations at a point approximately 5.5 miles (9.0 km)
downstream from the confluence of the Raccoon and Des Koines Rivers:

             1.  total organic nitrogen ranged from 1.6
                 to 3.7 mg/1,

             2.  nitrate nitrogen ranged from 0.2 to
                 7.8 mg/1, averaging 3 to 4 mg/1, and

             3.  orthophosphate (OK),) ranged from 0.6
                 to 1.8 mg/1,  averaging slightly over
                 1.0 mg/1.

 Since most  of  the  urban runoff would overflow untreated to the
 receiving water, any program of  advanced treatment  given to  all  urban
 DWF would be relatively ineffective.  It would also be  questionable
 whether a level of WWF control consisting of secondary  treatment (such
 as that evaluated  for  75  percent BOD removal)  could reduce nutrient
 levels  in the Des  Moines  River and Red Rock Reservoir to inhibit aquatic
 plant growth.   Davis  and  Borchardt9 observed high  algal densities in
 both the Des Moines and Raccoon Rivers,  and they also state  that nutrient
 concentrations are almost always present at levels reported  by Sawyer
 to be sufficient for nuisance algal growths:  0.3  mg/1  for inorganxc
 nitrogen (NH,, NO,, NO )  and 0.015 mg/1 of  inorganic phosphorus.  Further-
 more, since nitrates are abundant in groundwater and the surface and
 subsurface hydrologic systems are not independent  of each other, nutrient
 control seems highly complex and improbable.

 The total annual precipitation for the year 1968 was 27.59 inches  (701 mm),
 The frequency and intensity of precipitation over an urban area has a
 direct bearing on the magnitude of stormwater pollution and, consequently,
 dissolved oxygen levels in the receiving water.   In the selection  of the
 "best" control strategy, other factors may become important, such  as:

          1.   recovery of receiving waters from shock loads
               during runoff periods,

          2.   local and regional water quality goals,

          3.   public willingness  to pay the  costs associ-
               ated with each level  of control, and
                                     347

-------
             4.   consideration of alternate use of WWF
                 facilities as DWF treatment facilities
                 during periods of no urban runoff.









                                                                        ;


  OTHER RECENT RECEIVING WATER IMPACT STUDIES
                                                     .
 simulate the effects of a oin   r™ ?  T D^vls:ion> "». applied, to
dissolved oxygen, were predicted for over 40 miles (64 km) downstream
                                  348

-------
and the minimum dissolved oxygen concentration was computed to be
1.4 mg/1.                                   ...

Hydrocomp International (Palo Alto, California) conducted dynamic
simulation of a large watershed in the South Platte River basin for
Black & Veatch and the Denver Regional Council pf Governments.28
The 750 square mile (194,256 ha) area included metropolitan'Denver
within its boundaries.  Simulations of streamflow and stream water
quality conditions for given precipitation, wastewater loadings, and
diversions (irrigation) were performed for each of several proposed
wastewater system configurations.  The water quality calibration
process to adapt the Hydrocomp Simulation Program (HSP) to actual
environmental conditions was hindered by the lack of a continuous
data base within the designated study area, a problem prevalent through-
out the nation.  An analysis of a 20-year simulation for one plant con-
figuration indicated that the calendar year 1954 represented one of the
most critical periods from a water quality standpoint.  It had the
lowest annual streamflow for the 20-year historical record, and some of
the lowest stream.-dissolved,oxygen concentrations were predicted.

The Hydrocomp study did not specifically address urban stormwater control
facilities as a treatment alternative.  Five' levels of wastewater treat-
ment (DWF) were tested for the critical year:  .(1) secondary,  (2)
secondary with filtration, (3) secondary with nitrification,  (4) tertiary
and (5) zero pollutants discharged.  Daily duration curves were computed
for minimum dissolved .oxygen for each DWF. treatment level.  Of the five
levels, the effluents from secondary treatment with nitrification,
tertiary treatment, and absolute treatment  (zero pollutant discharge from
DWF sources, financially prohibitive) did not exceed the stream standards
imposed by the regulatory agency.  Treatment levels 3 and 4 were thus
considered the only acceptable options from an effluent viewpoint.  Three
possible treatment plant discharge configurations were tested  at these
two treatment levels.  The resulting minimum daily DO duration curves
 (such  as Figure VII-6) were practically identical.

From the DO duration  curves.for  zero pollutant discharge from dry-weather
sources, some interesting inferences may be drawn ori the effects of urban
runoff.  The average  annual precipitation  over the study area for the
period 1935-1974, was 14.58 inches  (370 mm), less than half the national
average.29  The entire modeling  area may be classified as semi-arid.  The
total  annual precipitation for  the  critical year 1954 was 7.51 inches
 (190 mm), or about one-fourth of the total  annual precipitation recorded
 in 1968 over Des  Moines, Iowa.   The minimum ^daily DO duration curve for
 the zero pollutant discharge  (DWF)  treatment level was entirely above the
minimum DO standard,  5.0 mg/1,  for  the reach of the South Platte River
below  .the Denver  metropolitan  area.  This  curve represents the minimum
 daily  DO, concentration history  of the receiving stream-resulting exclusively
                                    349

-------
      f   rt ^ rUB?ff ^^ inpUt>  ThUS' the Urban runoff Pollutant
 load for the drought year 1954 was insufficient to drive the critical
 DO levels below the fish and wildlife standard.  The cost of storm-
 water control would not be justified.
     aaul,               °f the  effects  of urbanization.
     aquatic  ecology and  hydrologic  regimes for the Office of Water
 Research and  Technology,  Department  of the Interior. 30  Urbani2ation
 affects  flood frequency,  flow  duration,  total volume  of runoff, and
 has an impact because of  additional  pollutant load on stream BOD, DO
 and nutrient  concentrations.   Computer simulation was employed to
 generate synthetic data series in  the  absence of historic series for
 three hypothetical cities representing  the Pacific Northwest, eastern
 slope of the  Rocky Mountains,  and  the  central Atlantic states.  Of
 particular interest is  a  comparison  among these regions of the effect
 of urbanization on:  (1) surface runoff quantity (Table VII-13
 in Surface Runoff) , and (2) pollutant loadings (Table VII-U
 in Annual BOD Mass mBrh»rpp) .  The hypothetical watersheds
                              .                    waerses  co
 of a drainage area of 60 square miles  (155.4 sq km)  having all of  the
 i£LT?1     'Jf racteristics  of ^e test watersheds  (for which HSP was
 regionally calibrated) ,  including impervious area.   For  the  urbanized
 case,  the  lower half of  each  watershed was  assumed to be intensively
 urbanized  with 35  percent imperviousness and directly connected to the
 Iw™ ir^   ^ hydrol°g±c  P"^  °f study  extended  from 1948  to
 J.y/2.  The average percent increase of annual runoff due to  urbanization
 tne S^ffT \V°r th^ ar±d Wate-bed.  •*>* the very wet va2»£ed?
 the Pacific Northwest, high soil moistures  resulted  in almost  as much
 runoff from rural  land as from  impervious (urban) areas.  A  substantial
 increase in peak flows was  observed for  one year  return  period  events
 Again, the percentage increase  in peak flows  due  to  increased  impervious-
 ness was observed  to decrease from  arid  to wet  regions.  For the 25-year
 peak f lows, _ the  percent  increase due to  urbanization was slight.  This,
 of  course,  is largely due  to  the magnitude of these events.  It is
 interesting to note from Table VII-14  that the  annual BOD mass discharge
was increased at least 100 percent by urbanization.
CONCLUSIONS

A methodology has been
importance of separate,
generated by the urban
                  *
in the Des Moines River
treatment alternatives
uous  model which shows
                       presented in Section VII to assess the relative
                        combined, and DWF sewer runoff as waste sources
                       environment.  The effects of WWF and DWF pollutants
                         °f ^ Urban Stream are P^ented on a frequency
                        to Des Koines-, Iowa, demonstrated clearly the
                          n rUn°ff P°llution °n critical DO concentrations
                          The cost-effectiveness of various wastewater
                       can be determined realistically only by a contin-
                        the frequency of water quality violations in  the
                                   350

-------
                     Table VII-13.   INCREASE IN SURFACE
                                       (Hydrocomp, 1975)30:;;
Basin ... .•
Eastern Slope Rocky Mountains
Central Atlantic,
Pacific Northwest
Mean Annual Precipitation
in (mm)
18.2 ( 462,0)
43.5 (1105.0)..
56.2 (1427.0)
%. Increase,- Annual .Runoff Z., Increase -Beak
" VV. ..'.'" . . .. '. -. -,1 yr-2^.^.
" ; ], 91'.'. ... '... .... •. 2800 -...9
,;.., •- '.;.. \,.. 53.-. •* , •' ~ "- ' 1460 ^ 4-
'Fjows


               Table.  V-II-14.
   INCREASE IN ANNUAL.BOD MASS DISCHARGE'
   (Hydrocomp,  19-75)30- •:   -;:r.-:v; ••'.-•   •  -  -
          Basin
      Rural BOD
   .lbs/yr  (kg/yr)'
   ''  tfrban BOD '
   lbs'/yr (kg/,yr) ,
                                                                                 Urban/Rural Ratio
Eastern Slope Rocky Mountains

Central Atlantic

Pacific Northwest   .
0.65 x 105 (0.29 x-105)

1.30 x 105 (0.59 x 105)

2.10 x 105 (0.95 x 10 ) ;
2.1 "x 105'(6::95 x 105)  : '

3.0 .x_' lg5; (1.36 x 105)

4.4 x'lO5 (2TOO x,105)-; -'
                                                                                   -•-• ' 3.2
                                              351

-------
 For 1968  65 days of rainfall were recorded .over Des Moines, Iowa,
 interevent f? ^^^ events — ***»* according to a minimum
 interevent time of nme dry-weather hours.  The annual precipitation
 total was 27.59 inches (701 mm), producing 10.28 inches (261 *£ of
 urban runoff.  For existing treatment facilities, 42 percent of the
 wet-weather events were predicted to violate a 4.0 mg/1 DO standard,
 as well as two percent of all the dry-weather days.  Thus, the model
 predicted that violations of such a standard would occur 33 days out
 of the year.  The highest control strategy would reduce the number of
 Sfectivf8^' atVan lncremental cost °f $9 million.  The most cost-
 effective alternative seems to be 25 percent control of WWF and
 secondary treatment of DWF, at a cost of $816,000 per year, and
 resulting in stream standard violations 26 days  out of the year.


The methodology that ha,s been applied  to the Des Moines urban area
should serve as a decision-making tool for planning  purposes only.
   ^        eX1St thSt Sre better SUited for the inten? of design and
               SP tS °f ^ USS °f ^P1"^ mathematical modeling
                ? agreement was achieved with field measured data through
             analysis, and the primary purpose of the modeling effort
was accomplished.  The reader should review the numerous assumptions
S£?rf   ^ m 1U^al Part °f m°del devel°P^nt and application and
should understand that the final numbers obtained are intended as a
guide for screening alternatives.
                                  352

-------
ABBREVIATIONS AND SYMBOLS
 B

 BOD
 BOD
 BOD
 BOD
 BOD
    m
 BOD
 BOD
 BOD
    u
BOD

B-,
C
C
     w
  "min
  utert

  CBOD
Area served by combined sewers, acres

Area served by separate sewers, acres

Total area of catchment, acres

Urban area runoff, inches per hour

Regression coefficients

Benthal demand of bottom deposits, mg  per  1-hour

Biochemical  oxygen demand,  mg/1

Standard  BOD test, 5 days  at 68°F (20°C),  mg/1

Mixed BOD concentration in the combined sewer, mg/1

BOD concentration of wet-weather flow treatment facility
effluent, mg/1
 BOD concentration of municipal sewage, mg/1

Mixed BOD concentration in receiving water, mg/1

 BOD concentration of urban stormwater runoff, mg/1

 Hourly BOD concentration of total urban runoff, mg/1

 Mixed BOD concentration from sources  upstream of urban area,
 mg/1
 BOD concentration of treated wet-weather  effluent, mg/1

 Regression  coefficients
 Concentration of water quality parameter,  M/L
 Concentration of dissolved oxygen (DO)  in the stream, mg/1

 Concentration of DO at maximum deficit, mg/1

  Saturation concentration of DO, mg/1
                                  f   -       •%
  Conversion factor,  pounds per hour to mg/1 • cfs
  Annual cost of activated sludge-coagulation-filtration system,
  dollars
  Carbonaceous biochemical oxygen demand

                         353

-------
  COD



  CR
    u


  D



  D
  c



  Du



  Do




 DP


 DO



 DWF



 DWFSEP



 DWFCMB



 DWH



 E



 ENR



 f




 fu


 FF



 FFLBS



 H



 k



 K
  n



 Kl


 K2



L



L
  Chemical oxygen demand                         .'  . ,"




  Composites-runoff coefficient dependent on urban  land  use



  Dissolved oxygen deficit = O . - .C, mg/1          .•,;.,
                              s


  Critical (maximum)''deficit, mg/1      ."       ,  ,




  DO  deficit in receiving waters upstream of, inflow-point, mg/1



  Initial  DO deficit, mg/1-   ,-". -;...-.-   -     ...  ..,.,..




  Size bf  activated sludge-coagulation-filtration plant, mgd



 Dissolved  oxygen                          -..•




 Dry weather  flow,  cfs        ';   ,:  ,   -,.,-...  ^t^yy,	




 Dry-weather  flow contribution from separates, sewer area, cfs



 DWF, contribution--from--combined- sewer area,  cfs     f




 Number of ,• dry-weather hours-preceding each rurioff-event


                                           r\

 Longitudinal dispersion  coefficient,  feet . per second




 Engineering Kfews. R^c.ord  Cost  Index                 , ,




•Self-purification rat-id,;K'/K            ••-...

                      '     21


 Available .urban depression  storage,  inches   ...   -•..-•




 First  flush BOD load:|- pounds per hour  ,-..-, ••.-.••




 •First  flush .fa'ctbr', pounds/hour per DWH-acre, >.



 Stream depth, feet




 Number  of hourly lags
Oxidation coefficient of nitrogenous BOD, hours




Deoxygenation constant of carbonaceous BOD, hours




Atmospheric  reaeration coefficient, hours""1"




Remaining carbonaceous BOD concentration, mg/1



Mixed BOD concentration in the river, mg/1



Ultimate  first-stage  BOD demand,  mg/1
                                    354

-------
n

N
 n
N
NBOD
OP04
P
P
 t
Q
Q,
u
 R
 R
 R
 R
  o
 rQ(k)

 Rw
 S
 T
 t
 t
Total number of data points or observations of a hydrologic
process
Remaining nitrogenous BOD concentrations mg/1
Exponent in scale factor
Nitrogenous biochemical oxygen demand
Orthophosphate
Oxygen production rate by algal photosynthesis, mg/1-hour
Hourly rainfall/snowmelt in inches over the urban area
Streamflow, cfs
Combined  sewer flow,  cfs
DWF treated effluent,  cfs
Urban runoff  carried by  the separate storm sewer, cfs
Total (storm  plus  combined) urban runoff,  cfs
Upstream flow,  cfs                                ,
Wet-weather flow (WWF)  treated effluent,  cfs
Percent BOD control (removal) by wet-weather storage-treatment
 Fraction removal of BOD achieved by the DWF treatment facility
Algal respiration rate,  mg/1-hour
 Sample estimate of lag-k autocorrelation coefficient for
 rainfall
 Deficit load ratio = BO/LQ
 Sample estimate of lag-k autocorrelation coefficient for runoff
 Fraction removal of BOD achieved by  the WWF  treatment facility
                                 •        ' 3
 Sources  and  sinks of the substance C, M/L T
 Stream temperature,  °C   .
 Time, hours  or  days
 Elapsed  time at which critical  deficit occurs, hours or days
                                     355

-------
 TL(95%)


 TOG


 TSS


 U


 ¥•


 WWF


 x



 xl

 X



 zco



ZST
 Tolerance limits at a 95 percent probability level


 Total organic carbon


 Total suspended solids
 Flow


 Volume
velocity in stream, feet per second
  of
DO deficit, mg-hours/1 or mg-day/1
 Wet-weather flow,  cfs


 Distance downstream,  feet  or miles


 Discrete data  series  (observations)  of a hydrologic
                                               process
Scale factor
Optimal annual/cost of wet-weather control for combined
sewered areas, dollars per acre                comoxneci


Optimal annual cost of wet-weather control for
areas, dollars per acre
                                                           storm, sewered
                                  356

-------
REFERENCES	 -..  _   . •   '...  .      '   '  '•    ;       '*  "'' ' '

 1.   Geraghty, J. J., et al., Water Atlas of the United States, Water
     Information Center, Inc., Port Washington, NY, 1973.
                                         • .    .•:: ','•:." -IB-,1':'
 2.   Murray, C. R. and Reeves, E. B., "Estimated Use of Water in the •
     United States in 1970," USGS Circular 676, 1972.''"

 3.   US Department of Agriculture, "Major Uses of'Land and Water in
     the United States with Special Reference to Agriculture:  Summary ,
     for 1964," Econ. Rept. 149, 1968.            'f^r-ty.

 4.   Medina, M. A., Jr., "Data- Needs for Stbrmwater Treatment and
     Control," Proceedings of Third Annual Environmental Short Course,
  .,.  Florida Engineering Society, Lake Buena Vista, Florida, October,
     1974.
£,
 5.  Liptak, Bela G., Environmental Engineers' Handbook, Vol.  1:  Water
     Pollution, -.Se.ction-2.10, Chilton Book Company';'Radnor^, PA,  1974.

 6.  American Public Health Association, Standard Methods  for  the
     Examination -of Water and Wastewater, 13th Edition; Washington,  DC,'
 	1971.                                :         •'•''•••

 7.  Nemerow, N. L., Scientific  Stream Pollution Analysis, McGraw-Hill
     Book Company, NY,  1974.

 8.  Hydrologic Engineering Center, Corps of  Engineers,  "Urban  Storm-
     water Runoff:   STORM," Generalized  Computer Program 723-58-L2520,
     1975.       '                                                         '

 9.  Davis, P. L. and Borchardt, F.,  "Combined Sewer  Overflow  Abatement
     Plan," USEPA Report EPA-R2-73-170,  April,  1974.                   .

 10.  Yevjevich, V.,  Stochastic Processes in Hydrology, Water Resources
     Publications,  Fort Collins, CO,  1972.                             •

 11.  Fiering, M. B.  and Jackson, B. B.,  Synthetic  Streamflows," Water
     Resources Monograph 1, American  Geophysical Union,  Washington,  DC,
     1971.

 12.  Quimpo, R. G.,  "Autocorrelation  and Spectral Analyses in  Hydrology,"
     J. Hyd. Div., Proc. ASCE, Vol. 94,  No. HY2, pp.  363-373,  March  1968.

 13.  Hydroscience,  Inc., "Simplified  Mathematical Modeling of  Water
     Quality," USEPA, March 1971.

 14.  ASCE, Committee on Sanitary Engineering  Research, "Solubility of
     Atmospheric Oxygen in Water," JSE Div.,  Proc.  ASCE, Vol.  86, No.  SA4,
     pp. 41-53, July 1960.
                                     357

-------


                                                  :'
  17.
      Arbabi  M.  et_al._,  "The Oxygen Sag Equation:  New Properties and a
               sr? s:
      USEPA Technology Transfer, October 1971.
 19.  Battelle-PacificNortlwest Laboratories, "Evaluation of
                                    " — °f -ironmental
 20.  Hasan, S .M.  Integrated Strategies for Urban Water Quality
      Management, PhD Dissertation,  University of Florida,  Gainesville, 1976,
                     d

                            '  W'  G. ,  "Urban Stormwater Management and
      wT                     °f  IOWa'" Climates of th* S.^go  Vol. II
      Water Information  Center,  Inc., Port Washington, NY, 1974.          '

 23.   State Hygienic Laboratory,  "Des Moines River - Limnology Study,"
      Report submitted to the Department of Enyirornnental Quality Jd the
      Iowa  Water Quality Commission, April 1974.                7

 24.   State Hygienic Laboratory,  "Water Quality Survey of the Des Moines
      October S?Sf SUbmltted t0 the Iowa Dilution Control CommissS"


 25.   Sawyer, C. N. , "Basic Concepts of Eutrophication,"  JWPCF Vol  38
     No. 5, pp. 737-744, May 1966.                                '    '
26-
2?*
28.
                                           controi'M
          ; ?ro«r & Eidsness,  Inc., and Jordan,  Jones  &  Goulding,  Inc.,
          Poxnt Pollution Evaluation - Atlanta Urban Area," Report to
     US Army Corps of Engineers,  Savannah District,  GA, January  1975.

     Black and Veatch, "Volume II - Hydro Quality Model Report, "
     Denver Regional Council  of Governments, Water Quality Management
     Program Project No.  IGA-00034,  May 1974.   •              cigemenc
                                    358

-------
29.  Private Communication, National Oceanic and Atmospheric Admini-
     stration, Asheville, NC, September 1975.

30.  Hydrocomp, Inc., "Evaluation of the Effects of Urbanization on
     Aquatic Ecology and Hydrologic Regimes," Office of Water Re'search
     and Technology, Contract No. 14-31-001-4203, July 1975.

31.  Texas Water'Development Board, "DOSAG-I Simulation of Water Quality
     in Streams and Canals, Program Documentation and User's Manual,"
     Austin, Texas, NTIS-PB 202 974, September 1970.
                                  359

-------
                                SECTION VIII

                                 GLOSSARY
 Antecedent conditions—Initial conditions in catchment as determined from
 hydrologic events prior to storm.

 Biological treatment processes—Means of treatment in which bacterial or
 biochemical action is intensified to stabilize, oxidize, and nitrify the
 unstable organic matter present.  Trickling filters, activated sludge
 processes, and lagoons are examples.

 Catchment—Surface drainage area.

 Combined sewage—Sewage containing both domestic sewage and surface water
 or stormwater, with or without industrial wastes.   Includes flow in heavily
 infiltrated sanitary sewer systems as well as combined sewer  systems.

 Combined sewer—A sewer receiving both intercepted surface runoff and
 municipal sewage.

 Combined sewer overflow—Flow from a combined sewer in excess  of the inter-
 ceptor capacity that  is discharged into  a receiving water.

 Conservative—Non-interacting  substance,'  undergoing no  kinetic  reaction;
 examples are  salinity,  total  dissolved solids,  total nitrogen,  total
 phosphorus.

 Convective Precipitation—Precipifai-f nr,  caused  by  lifting due  to  convective
 currents, as  in thunderstorms.

 Cyclonic Precipitation—Precipifai-lnr, caused by lifting associated with
 junctions of different air masses, as for instance, with most warm and '
 cold fronts.

Depression Storage—Amount of precipitation which  can fall on an area
without  causing runoff.

Detention—The slowing, dampening, or attenuating of flows either enter-
ing the  sewer system or within the sewer system by temporarily holding
the water on a surface area, in a storage basin, or within the sewer
itself.
                                    360

-------
Domestic sewage—Sewage derived principally from dwellings, business      _ -
buildings, institutions, and the like.  It may or may not contain ground-
water.

Economies of scale—Unit costs decrease as output increases.

Equalization—The averaging (or method for averaging) of variations in
flow and composition of a liquid.

Expansion path—Locus of points connecting numerous isoquants indicating
the optimal combination of inputs.

First flush—The condition, often occurring in storm sewer discharges and
combined sewer overflows, in which a  disproportionately high pollutional
load  is carried in the first portion  of the discharge or overflow.

Frequency diagram—Curve which relates the number of occurences of  events
to their magnitude.

Initial abstraction—Initial precipitation loss  including  interception
and depression storage.

In-system—Within  the  physical confines of the  sewer pipe  network.

Interception—Initial  lost  of precipitation due to  vegetation.

Isocost Lines—Lines of equal  cost.

Isoquants—Curves  representing  combinations of  the  inputs  yielding the  same
amount  of output.

Non-conservative—substance undergoing kinetic  interaction,  assumed to  be
 a first-order reaction;' examples are biochemical oxygen demand (BOD),
 coliform bacteria, dissolved oxygen  (DO).

 Orographic Precipitation—Precipitation caused  by lifting of an  air mass
 over mountains.

 Orthophospate—Phosphate that appears as PoJ, HP04  or H2P04, i.e. is hydroli-
 zable.   Creates a growth response in algae.

 Physical-chemical treatment .processes—Means of treatment in which the _
 removal of pollutants is brought about primarily by chemical clarification
 in conjunction with physical processes.  The process string generally in-
 cludes preliminary treatment, chemical clarification, filtration, carbon
 adsorption, and disinfection.

 Pollutant—Any harmful or objectionable material in, or change in, physical
 characteristic of water or sewage.
                                      361

-------
 Precipitation event—A precipitation  event  terminates if zero rainfall
 has been recorded  for  the previous  specified time  interval.     -

 Primary  treatment—Process which removes about 35% of the biochemical
 oxygen demand of the waste.           .                   , ,             .: ..

 Retention—The prevention of runoff from entering the sewer system by
 storing  on a  surface area or in a storage basis.

 Runoff coefficient—Fraction of rainfall that appears as runoff after
 subtracting depression  storage and interception.  Typically accounts for
 infiltration  into ground and evaporation.

 Sanitary  sewer—A sewer that carries liquid and water-carried wastes from
 residences, commercial buildings, industrial plants,  and institutions,
 together with relatively low quantities of ground,  storm, and surface
 waters that are not admitted intentionally.

 Secondary treatment—Process which removes about 85%  of  the biochemical
 oxygen demand of the waste.

 Sewer—A pipe or conduit generally closed,  but  normally  not  flowing full,
 for carrying sewage or other waste liquids.

 Sewerage—System of piping,  with appurtenances,  for collecting and con-
 veying  wastewaters from source to discharge.

 Storm flow—Overland  flow,  sewer flow,  or receiving stream flow caused
 totally  or partially  by surface runoff or snowmelt.

 Storm sewer—A sewer  that carries  intercepted surface runoff,  street  wash
 and other wash waters,  or drainage,  but  excludes  domestic sewage and  in-
 dustrial  wastes.

 Storm  sewer discharge—Flow  from a storm sewer that is discharged  into  a
 receiving water.

 Stormwater—Water resulting  from precipitation which either percolates
 into the  soil,  runs off  freely  from  the  surface,  or is captured  by storm
 sewer, combined sewer,  and to a  limited  degree,sanitary sewer facilities.

 Surface runoff—Precipitation that falls onto the surfaces of roofs,
 streets,  ground, etc., and is not absorbed or retained by that surface,
 thereby collecting and running off.

 Tertiary  treatment—Process which removes about 96% of the biochemical
 oxygen demand  of the waste.   •

Urbanized  area—Central  city, or cities, and surrounding closely settled
 territory.  Central city (cities) has  population of 50,000 or more.
Peripheral areas-with population density of 1,000 persons per acre  or
more are included.
                                    362

-------
Urban runoff—Surface runoff from an urban drainage area that reaches a
stream or other body of water or a sewer.

Wastewater—The spent water of a community.
                                     363

-------
                                   TECHNICAL REPORT DATA
                            Iflease read Instructions on the reverse before completing)
   EPA-600/2-77-064
                                                           3. RECIPIENT'S ACCESSIOWNO.
  NATIONWIDE EVALUATION OF COMBINED SEWER 'OVERFLOWS AND
  URBAN  STORMWATER DISCHARGES
  Volume i'f;   Cost Assessment and Impacts	
                      5. REPORT DATE
                      March 1977..C.Issulag Date
                      i. PERFORMING ORGANIZATION CODE
  James P. Heaney,  Wayne C.  Huber, Miguel A. Medina, Jr.
  Michael P. Murphy,  Stephan J.  Nix and Sheikh M. Hasan
                                                           8. PERFORMING ORGANIZATION REPORT NO.
  Department of Environmental Engineering Sciences
  University of Florida
 •Gainesville, FL  32611
                     10. PROGRAM ELEMENT NO.

                      1BC611
                                                           68-03-0283
 12. SPONSORING AGENCY NAME AND ADDRESS
  Municipal Environmental'Research  Laboratory—Gin.,OH
  Office of Research and Development
  US Environmental Protection Agency
  Cincinnati,  Ohio  45268
                     13. TYPE OF REPORT AND PERIOD COVERED
                     Final.  6/75-12/76
                      4. SPONSORING AGENCY CODE

                     EPA/600/14
  Richard Field, Storm and Combined Sewer  Section,  Edison,  NJ . (201)  321-6674
     .	                           FTS  340-6674  ''
    *n         asses^en^ has been made of  the  quantity and quality of urban storm flow
  emanating from combined sewers, storm sewers,  and  unsewered portions of all 248
  urbanized areas and other urban areas in  the United  States.  Available control alter-
  uS6L^     I fso"a*ed costs were als°  determined.   Continuous simulation runs
  using one year_of hourly data were made to determine the  attainable level of pollu-
  tion control with a specified availability of  storage volume and treatment ra?e in
  five cities:  Atlanta  Denver, Minneapolis, San Francisco,  and Washington, DC.  This
  procedure was used to derive generalized  equations relating pollution control to
  wSgL^l-ref ^nt' ,™T *6SUitS W6re combined  int°  *  simple optimization model
  which determined the optimal mix of storage and treatment for any feasible level of
  control  for any city.   Then the nationwide assessment is  presented.  - The results  :
  S? 09? !-??"UaV°Ssr  ranging £r°m $297 million £or  2S Percent Pollution control to
  §5,022 million for 85  percent pollution control.  The corresponding  initial capital
  investment ranges from $2,476 million for 25 percent  control  to $41  968  million for
  SL?**?6?  ?ontro1-  ^f5* costs can be reduced significantly if stormwater pollution
  control  is integrated  with dry-weather quality control and wet-weather quantity
  control.   Also,  the relative impact of wet-weather versus dry-weather flows is
  illustrated for  a case study of Des Moines,  Iowa.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                                             b.lDENTIFIERS/OPEN ENDED TERMS
                                                                       c. COSATI Field/Group
 Combined sewers
 Water pollution
 Cost analysis
 Mathematical models
Water pollution control,  Water
pollution effects, Water  pollu-
tion treatment,'Urban  runoff
pollution, Separated sewers,
Urban drainage, Des Moines,  San
Francisco, Denver, Minneapolis,

                     DC'  Urban"
13B
 RELEASE TO PUBLIC
       19. SECURITY CLASS (ThisReport)'
         UNCLASSIFIED
                                                                       21. NO. OF PAGES

                                                                              380
       20. SECURITY CLASS (Thispage)
         UNCLASSIFIED
                                                                       22. PRICE
   orm 2220-1 (9-73)
                                          364

-------

-------

-------

-------

-------

-------
Q>  Co
O- 2
  t~"^ o  a- 5

  -i  §  » 3
  ?  S*  8) 2.
  Q)  >•• O **
  ^  5  O -r.
      ^' f
      I-s
  35-
     8
<§
CD


§
I
            CD
>
z
m
O
c
>
r
0
D
PORTU
Z
H
m

r
<
~n
O
JO
TJ
aj
<
>
m
C
rn
&
CO
o
o



O
Tl
Tl
o
>
r
CO
c
CO
z
m
CO
CO


p
£•)

cu
r-4-
O
:T
o'
.&.
O)
00




1
—H
3
o'
O)
— h
o
i
cu
r-f
o'
CO
5?
— f,
— h


g
m
O
3D
CD
co
CD
m
o-
IT
co
Q.
0
CD
<
o"
•D
3
CD
«-
j»
1

1
£
m
1;
"D
3D

1
— |
o

0
m
                                                                                                       0





03
O
O
T:









CO
"D
(D
O
y>
\ Fourth-Cl
m
(/)
CO
s.

-------