United States
Environmental Protection
Agency
Municipal Environmental Research
Laboratory
Cincinnati OH 45268
EPA-600/2-78-181
September 1978
Research and Development
&EPA
Computer Cost Models
for Potable Water
Treatment Plants
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research '
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Techniqal Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports ;
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
.
•September 1W8
COMPUTER COST MODELS FOR POTABLE WATER I'REATMENt TLSKTS
by ;
Daniel X. Guttman
Robert M. ..Clark
Water Supply Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental
Research Laboratory, U.S. Environmental Protection Agency, and
approved for publication. Mention of trade names or commercial
products does not constitute endorsement or recommendation for use.
ii
-------
FOREWORD
The Environmental Protection Agency was created because of inferfeas-
ing public and government concern about the dangers of pollution to the
health and welfare of the American people. Noxious air, foul water, and
spoiled land are tragic .testimonies to the deterioration of ottf natural
'environment. The complexity of that environment and interplay among its
components require a concentrated and integrated attack on the problem.
Research and development is that first step in problem solution,
9
and it involves defining the problem, measuring its impact, and searching
for solutions. The Municipal Environmental Research Laboratory develops
new and improved technology and systems (1) to prevent, treat, and
manage wastewater, solid and hazardous waste, and, pollutant discharges
from municipal and community sources, (2) to preserve and treat public
drinking water supplies, and (3) to minimize the adverse economic*
social, health, and aesthetic effects of pollution. This publication is
a product of that research and is a most vital communications link
between the researcher and the user community.
The need to know the monetary costs associated with water treatment
is fundemental to a realistic planning approach for potable water supp'ly.
It is the monetary cost, in many cases, that plays the decisive rdle in
the determination of the technology used to make water safe for consump-
tion. This report provides a series of computer programs designed tb
estimate the costs of specific water treatment processes. These programs
allow the user to vary a number of significant parameters which serve to
111
-------
simulate the actual conditions -of a water treatment plant. The use of
these programs should provide the water systems manager with a tool
which may be used to help formulate a strategy on how to best meet the
water needs of his community.;
Francis T-. Mayo, Director
Municipal Environmental E.esearqh
Laboratory
IV
-------
ABSTRACT
A,series of computer programs have been developed which calculate
costs for specific unit treatment processes used in water treatment
plants. The programs contained in this report are as follows:: chlorina-
tion, chlorine dioxide, chloramination, ozone and graular activated
carbon adsorption. Tables are provided which display input and output
variables, standardized values for variables, a key for variable input,
and the costs associated with five different sized plants,, for all
programs. In addition, program listings and sample outputs for all
programs are contained in. an appendix-;. The costs generated by the
programs are catagorized as capital and O&M expenditures.
v
-------
-------
TABLE OF CONTENTS
Page
Foreword .,.,.... . ill
Abstract v
Tables ........ vi
Figures viii
Acknowledgments ix
1. Introduction 1
2, Chlorination 4
3. Chlorine Dioxide 10
4. Chloramination 16
5. Ozonation 22
6. Granular Activated Carbon '.. 29
7. Applications 37
8. Summary and Conclusions 43
9. Appendix 45
vix
-------
TABLES
Number
1.
2.
3.
4.
5.
6.
7.
8.
9,
10v
11.
12.
13.
14,
15.
16.
17.
18.
19.
i
Input Variable List - Chlorination . .... , . . .
Output Variable List - Chlorination ........
Standardized Vules Used for the Determination
of Sample Costs - Chlorination ...........
Key fpr Variable Input - Chlorination ...... . .
Chlorine Costs Assuming Standardized Design Levels „
Input Variable List - Chlorine Dioxide . . ... . .
Output Variable List - Chlorine Dioxide .......
Standarizedi Values Used for the Determination of
Samplfe Costs — Chlorine Dioxide ..........
Key fpr Variable Input - Chlorine Dioxide ,,.,., .,
Chlorine Dioxide 6osts Assuming; Standardized
Xtesf gfi; Levels ...................
Input Variable List - Chloramines , . . . ». . . . .
Output Variable List - Chloramines ..........
Standardized Values Used for the Determination of
Sample Costs - Chloramines . . .
Key for Variable Input - Chloramine
Cfiloramine Costs Assuming Standardized Design Levels
Input Variable List - Ozone » . . .
Output Variable List - Ozone
Standardized Values Used in the Determination of
Sample Costs - Ozone ...............
Key for Variable Input - Ozone ...........
Page
5
6
7
8
9
, 11
12.
, 13
.. 14
15
. 17
. 18
. 19
. 20
. 21
. 23
. 24
. 25
. 26
V1XX
-------
TABLES (Continuted)
Number
20.
21.
22.
23.
24.
25.
26.
P
Ozone (Air) Costs Assuming Standardized Design
Ozone (Oxygen) Costs Assuming Standardized Design
Input Variable List - Granular Activated Carbon . . .
Output Variable List - Granular Activated Carbon . . .
Standardized Values Used for the Determination of
Key for Variable Input - Granular Activated Carbon . .
Granular Activated Carbon Costs Assuming Standardized
'age
27
28
.31
33
34
35
36
ix
-------
; -FIGURES
Number Page
1. Cost for 100 MGD Sand Replacement System
Based on Reactivation Frequency 38
2. Transportation Cost Versus On-Site Reactivation . 39
3. Effect of 6% inflation on the Cost of 150 MGD
Sand Replacement System 41
4. The Cost of Ozone and GAG versus Reactivation
Requency in Months « 42
1A. Listings of Chlorine Cost Program 45
2A. Sample Printoutifrom Chlorine Cost Program ... 46
3A. Listing of Chlorine Dioxide Cost Program .... 47
4A. Sample Printoug from Chlorine Dioxide Cost Program 48
5A. Listing of Chloramine Cost Program 49
6A. Sample Printout of Chloramine Cost Program . . '. 50
7A. Listing of Ozone Cost Program ., . 51
8A. Sample Printout;of Ozone (Air) Cost Program ... 53
9A. Sample Printout |of Ozone (Oxgyen) Cost Program . 54
10A. Listing of Granular Activated Carbon Cost Program 55
11A.
Sample Printoug ;from Granular Activated Carbon
Cost Program .
58
x
-------
ACKNOWLEDGEMENTS
The author would like to express gratitude to Robert M. Clark,
Water Supply Research Division, for his assistance in preparing,this
report. The author would also like to acknowledge Richard G. Eilfers,
Wastewater Research Division, as the writer of the original versions
of the computer programs* that were later modified for inclusion in
this report.
xi
-------
-------
INTRODUCTION
In December 1974, the 93rd Congress of the United States enacted .-
legislation which placed new and more stringent regulations on the
maximum contaminent level (MCL) for specified substances allowable in
public drinking water supplies. This legislation has encouraged water
utilities throughout the country to take a closer look at their own
treatment processes and determine if they meet the legal and aesthetic
standards' set forth in the Safe Drinking Water Act. Many of these: water,
utilities are now discovering that, the, drinking water, they produce not
only exceeds suggested MCL's, but that the cost of upgrading their.
inadequate treatment systems may be significant.
The variety of water treatment options open to the potable water
producer are quite varied in type as well as price. . These treatment
techniques have proven to be dependent upon a number of -intrinsic
factors pertaining to the water utility itself. Among these factors.
are: the location of the water utility; the size of the water utility;
the source of the raw water; the quality and characteristics of the
pollutants in,the,raw water; and energy costs
This report contains a set. of computer programs which have been
developed to determine costs for ch'lorination, chlorine, dioxide, chlora-
mination, ozonation, and granular activated carbon 'processes ,for ,\
water treatment. The programs contained in the report were utilized to
calculate costs which were presented in an earlier report entitled
1
-------
"The Cost of Removing Chloriform land Other Trihalomethanes from Drinking
o !
Water Supplies." These costs will provide the waterworks manager with
a. planning estimate on which he can base a detailed investigation into
particular water treatment systems. The cost estimates produced by
these programs are based on cost ;curves generated by Black and Veatch
Consulting Engineers. The computer programs were developed by the
Systems and Economic Analysis Sections of EPA's Wastewater Research and
Water Supply Research Division.
The costs, generated by those programs are broken down into two
I
categories: Capital Costs and. Operation and Maintenance Costs,. Capital
costs include: construction for site preparation; plant construction;
* |
legal; fiscal and administrative services; interest during construction;
start-up costs
O
Operation and Maintenance costs include: chemical and
raw material costs; labor costs; operation and maintenance costs such as
3
utilities, annual replacement of:expendable items, etc. These costs
are also adjusted to current dollars using EPA's Sewer and Sewage
Treatment Plant Construction Cost Index and the Wholesale Price Index.
Labor costs are derived from the U. S. Department of Labor's Labor Cost
Ind.ex. This report is arranged so that each of its major sections
3
parallel the major sections of the earlier report. Each section also
corresponds to a particular treatment type which can be used to control
the level of trihalomethanes in drinking water supplies.
The tables presented in each section are of similar format. Input
and important output variables are defined in two separate tables. Values
for certain design variables are given so that a test run can be made on
the program and compared to the sample printouts shown in the appendix.
-------
A key for variable input is given in each section. (Note: all of the
programs follow a similar procedure for variable input and utilize stand-
ard names for values used in more than one program.) The final table in
each section shows the costs for each treatment process at five different
flow rates. These costs will give the user a feel for the economies of
scale realized when larger plant sizes are utilized in the programs.
3
-------
CHLORINATION
i
Table 1 lists the input variables required for the program and
Table 2 lists the output variables and their definitions. Table 3 contains
a specific set of the design variable values from which costs are generated.
Table 4 is a key for inputting the variables into the program. Table 5
contains the cost information which would result from the design values at
various flow levels (1, 5, 10, 100, and 150 mgd), assuming 70% capacity.
Figure 1A (Appendix A) contains a listing of the chlorine cost program used
to calculate the costs for chlorination. Figure 2A is a sample printout
from the chlorine cost program using standardized values found in Table 3.
It is the process of chlorination which interacts with organics in
i
water and causes the formation of trihalomethanes. In anticipation of the
establishment of a MCL to be set forth by the Safe Drinking Water Act,
chlorination may create problems. It is important, therefore, to consider
some method of removing organics prior to disinfection or to consider
alternatives to chlorination as a disinfectant. The following sections
are intended to provide this evaluation.
-------
Variable
Q:
DC12:
TC12:
CG12:
ECF1:
ECF2:
CGI:
WPI:
DHR:
PCT:
RI:
YRS:
NCASE:
TABLE 1
INPUT VARIABLE LIST - CHLORINATION
Definition
Average Daily Flow, M&D
Dose of Chlorine, mgA
Contact Time, minutes
Cost of Chlorine, S/ton
Excess Capacity (contact basin)
Excess Capacity (chlcSrine feed system)
Construction Cost Index
Wholesale Price Index
Direct Hourly Wage Rate, $/hr
Percent of total overhead to be applied to
chlorine treatment section of treatment plant
Amortization Interest Rate, percent
Amortization Period, years
Numbed of Data Sets to be Rurt
-------
Variable
BVOL:
CUSE:
CON:
CAP:
AMM
O&M
TOT
TABLE 2
OUTPUT VARIABLE LIST - CHLORINATION
Definition
Basin Volutne, cu. ft.
Chlorine Use, tons/yr.
Construction Cost, $
Capital Co;st, $
Debt Cost, c/1000 gal
Operations and Maintenance Cost, £/1000 gal
Total Cost, C/1000 gal
-------
TABLE 3
STANDARDIZED VALUES USED FOR THE DETERMINATION OF SAMPLE COSTS - CHLORINATION
Average Daily Flow (Q)
Dose of Chlorine (DC12)
Contact Time (TC12)
Cost of Chlorine (CC12)
Excels Capacity (ECF1 + ECF2)
* Construction Cost Index (CCI)/100
** Wholesale Price Index (WPI)/100
** Direct Hourly Wage Rate (DHR)
Percent of Overhead (PCT)
Amortization Interest Rate (RI)
Amdrtization Period (YRS)
7 mgd
2 mg/A
20 minutes
300 $/tbn
1.43
2.567
1.781
5.19 $/hr
.15
.07
20 years
Plant operated at 70% capacity.
* March 1976
** Feb* 1976
-------
TABLE 4
KEY FOR VARIABLE INPUT - CHLORINATION
Variable
NCASE
LIST
Q
DCL2
TCL2
CCL2
ECF1
ECF2
CGI
WPI
DHR
PCT
RI
YRS
Card
1
2
3
3
3
3
3
3
4
4
4
4
4
4
Columns
1 & 2
; 1-80
1^10
; 11-20
21-30
31-40
41-50
51-60
1-10
11-20
21-30
31-40
41-50
51-60
Comments
This integer sets the number
of cases to be run.
Alphanumeric title given to
each case
This variable and the subsequent
ones may be placed anywhere
within its allotted columns.
Cards 2, 3 and 4 are repeated for each new case.
-------
in
S3
EH
a
a
Kl
rJ
s:
rH
CO
Id
Q
1
M
g ^
< rH
a CO
•Z. 50
EH 0
CO O
0
O rH
g Q
CO
to
CO
H
CO
O
0
u
s
rH
B4
3
S3
O
rH
CO U
•o
M
6
O
rH
H 0
S -u
t^J t)
0 C
to
•u u
vH CO
p. c
rH
eo -u
•a
g
o
o
rH
u to
O 0
H U
S -u
o c
o
!0
4-) J-l
•H U
CO C
0
rH
CO *J
u to
•a
o
rH
O O
H V
g »J
rH
to
•H tt
C. O
tfl CJ
O
rH
C3 4J
•U to
T>
M
S
O O
EH U
S rr1
O O
rH
10
•H CO
a. p
to c5
to -u
•U CO
•O
00
e
H
O O
EH U
O O
op
rH
10
iH CD
a. o
to o
O
o
o
o
o
o
rH
ON
rH
O
o
o
o
VO
rH
CO
CM
cn
o
o
o
o
CO
en
SO
en
-3-
O
o
p
o
VO
cn
o
rH
O
O
O
Q
O
rH
0\
c
•H
CO
10
pa
CM
tH
VO
cn
^f
o
en
rH
VO
O
0
cn
in
rH
cn
in
p
i^
o
r--
m
in
in
CM
CM
cn
VO
-a-
in
in
CXI
en
rH
CM
-3-
CM
P
rH
CM
rH .
"
C
ID
tfl
w
'O
0)
(U
CM
iH
VO
CM
m
^g.
o
m
o
in
m
tH
en
CM
m
O
rH
CM
-------
CHLORINE DIOXIDE
Chlprine dioxide, since its! inception as a potable water treatment
agent; in 1944, has been used almost exclusively in the post-treatment
stage of the water treatment cycie. It is more expensive than chlorine,
I
but: displays a disinfectant ability comparable to chlorine and at a
lower concentration in water. In cases where excess chloroform and
other trihalomethanes are produced by chlorination (chlorine dioxide
i
produces no trihalomethanes), the existing chlorination equipment can be
I
modified to accommodate chlorine dioxide. However, the harmful byproducts,
if any, resulting from use of chlorine dioxide are not known.
Tables 6 and 7 contain the program's input and output variables,
respectively, together with the definitions for each variable. Table 8
contains standardized values for; the design variables used in cal9ulating
costs.' Table 9 is a key for inputting the variables into the program,
Table 10 displays the costs associated with five different flow rates (all
at 70% capacity). In the Appendix Figure 3A contains a listing of the
program which was utilized for calculating the costs for chlorine dioxide.
Figure 4A is a sample printout from the chlorine dioxide program'utilizing
values found in Table 8.
10
-------
TABLE 6
INPUT VARIABLE LIST - CHLORINE DIOXIDE
Variable Definition
Q: Average Daily Flow, mgd
DC12: Dose of Chlorine, mg/£
TC12; Contact Time, minutes ;
Cpl2: Cost of Chlorine, $/ton
CNC102: Cost of Sodium Chloritej $/tpn
RATIO: Ratio of NaC102 to C±2
ECF 1-3: Excess capacity for plant
CCI: Construction Cost Index
WPI; Wholesale Price Index
DHR: Direct Hourly Wage Rate, $/hr
,PCT: Percent of Total Overhead to be applied to
chlorine dioxide section of treatment plant
RI: Amortization Interest Rate
YRS: Amortization Period, years
FORK1: 'Control variable for program (not presently used
by program - it is set at 1)
NCASE: Number of data sets program is to execute.
11
-------
. TABLE 7
pyTPUT VARIABLE^ - CHLORINE DIOXIDE
Variable
BVOL:
CUSE:
CNCUSE:
CC102:
CON:
CAP:
AMM:
O&M:
TOT:
Definition
B,asin Volume, cu ft
Chlorine Use, tqns/yr
Sqdiunj Chlorite Use, tons/yr
Cpst of Chlorine Dioxide, $/yr
Construction Cost, $
Capital Cost, $
i i
Debt Cost1, 0/1000 gal
Operations & Maintenance, C/1000 gal
Tptal Cost, C/10QO gal
12
-------
TABLE 8
STANDARDIZED VALUES USED FOR THE DETERMINATION
OF SAMPLE COSTS - CHLORINE DIOXIDE
Average Daily Flow (Q) , 7 mgd
Dose of Chlorine (DC12) .5 mg/£
Contact Time (TC12) 20 minutes
Cost of Chlorine (CC12) 300 $/ton
Cost of Sodium Chlorite (CNC102) 144 $/ton
Ratio of Sodium Chlorite to Chlorine (RATIO) 3.1:1
Excess Capacity (ECF1 + ECF2) , 1.43
Program Control (FORK1) 1
'* Construction Cost Index (CCI)/100 2.567
** Wholesale Price Index (WPI)/100 1.781
*'* Direct Hourly Wage Rate (DHR) 5.19 $/hr
Percent of' Overhead (PCT) .15
Amortization Interest Rate (RI) .07
Amortization Period (YRS1) 20 years
Plant run at 70% capacity.
Sodium Chlorite assumed 80% pure.
* March 1976
** Feb. 1976
13
-------
TABLE 9
KEY FOR VARIABLE INPUT - CHLORINE DIOXIDE
Variable
NCASE
LIST
Card
1
DCL2
TCC2
CCL2
CNC102
RATIO
ECF1
ECF2
ECF3
FORK1
CCI
WPI
DHR
POT
RI
YRS
3
3
3
3
3
4
4
4
4
5
5
5
5
5
5
Columns
1 & 2
1-80
1-10
11-20
21-30
31-40
41-50
51-60
1-10
11-20
21-30
31-40
1-10
11-20
21-30
31-40
41-50
51-60
Comments
This integer sets the number
of cases to be run.
Alphanumeric title given to
each case.
This variable and the sub-
sequent ones may be placed
anywhere within its allotted
columns.
Card 2, 3, 4 and 5 are repeated for each new case
14
-------
o
rH
W
na
EH
CO
w
Ed
z;
o
CO
w
a
a
H
1SJ
H
e
H rH
CO CO
00
o
2i O
M O
S3 o
CO
CO <>
CO
EH
O
CJ
w
0
W
1
o
g
M
O
CJ
rH
C3
•O
CX
B
0
3
_O
s
O
CO
•H
CX
CO
CJ
rH
CO
•o
ot
e
O
O
rH
JJ
o
H
S
O
rH
CO
JJ
iH
CO
CJ
rH
CO
JJ
•o
o
rH
O
S
3
o
rH
CO
JJ
iH
Ci
CD
CJ
^_l
O
JJ
"oo
g
m
O
H
a
3
o
rH
CO
a.
CJ
rH
efl
JJ
•a
CO
g
rH
p
EH
s
"o
rH
CO
JJ
•H
CD
u
CO
o
CO
o
JJ
CO
o
CJ
JJ
CO
o
o
JJ
CO
o
CJ
CO
o
JJ
CO
o
JJ
CO
o
CJ
JJ
CO
o
CJ
JJ
CO
o
^J
CO
o
CJ
JJ
CO
o
CJ
JJ
CO
0
CJ
JJ
CO
o
CJ
JJ
CO
o
CJ
o
rH
o
o
o
o
o
rH
o
rH
o
0
o
o
0
rH
CO
en
8
o
o
CO
CM
en
^Q
en
-3
o
o
o
o
en
rH
rH
0
o
o
o
rH
rH
c
•H
CO
«
CQ
CM
rH
CJ
ON
rH
rH
00
CO
o
__,
en
o
CM
en
rH
en
o
CO
en
o
en
CM
en
m
I-f
o
rH
en
r-
rH
en
CM
en
-------
CHLORAMINATION
The use of chloramines as tyater disinfectants has been considered for
water utilities presently using '• chlorine and finding unsatisfactory amounts
of trihalomethanes in their product water. (Chloramines do not produce
trihalomethanes.) Chloramines are generated by the reaction of chlorine
and ammonia. The costs of converting to chloramine disinfection are low
since existing chlorination equipment can easily be modified to produce
chloramines.
Table 11 is a listing of input variables. Table 12 is a listing of
output variables generated by the program. Table 13 contains standard-
ized values for the design variables used in cost calculations. Table 14
is a key to variable input into the program. Table 15 displays the
associated with five different flow rates (all at 70% capacity). In the
appendix, Figure 5A contains a listing of the chloramine cost programs.
Figure 6A is a sample printout flrom the program using standardized data.
(Note: Construction, capital, and debt costs for the ammonia reactor are
'
set to zero since they represent a small investment in relation to the
entire chloramine system.)
16
-------
TABLE 11
INPUT VARIABLE LIST - CHLORAMINES
Variable Definition
Q: Average Daily Flow, mgd
DC12: Dose of Chlorine, mg/£
TC12: Contact Time, minutes
CC12: Cost of Chlorine, $/ton
CNH3: Cost of Ammonia,'$/ton
RATIO: Ratio of NH3 to Cl
ECF 1-3: Excess capacity for plant
CCI: Construction Cost Index ' : .
WPI: Wholesale Price Index
DHR: Direct Hourly Wage Rate, $/hr
PCT: Percent of Total Overhead to be applied to
chlorine dioxide section of treatment plant
RI: Amortization Interest Rate
YRS: Amortization Period, years
FORK1: Control variable for program (not presently used
by program - it is set at 1)
NCASE: Number of data sets program is to execute.
17
-------
TABLE 12
OUTPUT VARIABLES - Chloramines
Variable
BVOL:
CUSE:
NHSUSE;
GAMINE:
CON:
CAP:
AMM:
0+M:
TOT:
pefinitipn
Basin Volume, cu ft
Chlorine Use, tons/yr
Ammonia Use, tons/yr
Cost of Chloramines, $/yr
Construction Cost, $
I
Capital Cost, $
Debt Cost, C/lOOO gal
Operations & Maintenance, c/1000 gal
Total Cost, £/1000 gal
18
-------
TABLE 13
STANDARDIZED VALUES USED FOR THE DETERMINATION
OF SAMPLE COSTS - CHLORAMINES
Average Daily Flow (Q)
Dose of Chlorine (DC12)
Contact Time (TC12)
Cost of Chlorine (CC12)
Cost of Sodium Chlorite (CNH3)
Ratio of Ammonia to Chlorine Cone. (RATIO)
Excess Capacity (ECF1 4- ECF2)
Program Control (FORK1)
* Construction Cost Index (CCI)/100
** Wholesale Price Index (WPI)/100
** Direct Hourly Wage Rate (DHR)
Percent of Overhead (PCT)
Amortization Interest Rate (RI)
Amortization Period (YRS)
7 mgd
3.0 mg/£
20 minutes
300 $/ton
200 $/ton
1:5
1.43
1
2.567
1.781
5.19 $/hr
.15
.07
20 years
Plant run at 70% capacity.
* March 1976
#* Feb. 1976
19
-------
TABLE 14
KEY FOR VARIABLE INPUT - CHLORAMINES
Variable
NCASE
LIST
Card
1
Columns Comments
1 & 2 This integer sets the number
of cases to be run.
1-80 Alphanumeric title given to
each case.
1-10 This variable and the sub-
sequent ones may be placed
anywhere within its allotted
columns.
DCL2
TCC2
CCL2
CNH3
RATIO
ECF1
ECF2
ECF3
FORK!
CCI
WPI
DHR
PCT
RI
YRS
3
3
3
3
3
4
4
4
4
5
5
5
5
5
5
11-20
21-30
31-40
41-50
51-60
1-10
11-20
21-30
31-40
1-10
11-20
21-30
31-40
41-50
51-60
Cards 2, 3, 4 and 5 are repeated for each new case
20
-------
M
J
(J
w
s
H ,
M
£4
Q
S
ft
g ^
!^ (0
eg
c/3
<
8
c*0
8
z
M
S
o
IT*
Cj
Q
CJ
s
o
in
rH
O
Cj
H
o
0
tH
O
CJ
O
a
in
a
s
rH
ra
4-1
o
H
s
o
CD
a.
CJ
a
tj
o
H
s
o
tH
a
• ft
a.
CJ
tH
a
0
§
t-i
US
•H
0.
u
«
I
O
iH
«
•H
a.
CD
o
rH
.U
O
H
S
O
rH
S
•H
a.
n
u
o
so
iH
o
o
o
o
rH
O
rH
0
0
0
o
tH
CO
CM
cn
o
o
d
00
CM
cn
so
cn
8
0
so
cn
t-H
rH
C\
8
C3
rH
r-l
O
25
a a
o a
o ca
o
CM
m
o
in
o
m
0
0
-a-
m
o
in
-a*
o
CM
0
o
cn
CM
ON
o
o>
rH
so
O
-d*
O
en
CM
CO
rH
rH
O
en
O
CN
in
-sf
o
SO
m
m
CM
SO
r—
CM
tH
-------
OZONATION
Another potable water treatment process that compares favorably
in cost as well as disinfectant.ability with chlorination and chlorine
dioxide is ozonation. Ozone can be generated from air or bottled oxygen,
air being slightly less expensive. The fact that the law requires a
disinfectant residual remain in treated water, and ozone leaves none,
necessitates an additional disfectant treatment stage. Therefore, along
with the cost of ozonation, an additional cost for a residual disinfectant
has to be considered. As with chlorine dioxide, the'harmful byproducts,
if any, caused by ozone are not kinown.
Tables 16 and 17 are listing's of input and output variables and their
definitions. Table 18 contains the standardized values used for the design
I
variables. Table 19 is a key for inputting the variables into the program.
Tables 20 and 21 contain the costs associated with five different flow
rates (all at 70% capacity). In jthe appendix Figure 7A is a listing of the
ozone cost program. Figures 8A and 9A are sample printouts from this
program using the values found in Table 18.
22
-------
TABLE 16
INPUT VARIABLE LIST - OZONE
Variable
DMATX(1,1) = D03
DMATX(2,1) = DT03
DMATX (3,1) = Q
DMATX (4,1) = CKWH
DMATX (5,1) = E03
DMATX (6,1) = 02CST
DMATX (7,1)= QP
DMATX (8,1) = TANKC
DMATX (9,1) = FORK
DMATX (10,1)
DMATX (11,1) to DMATX (12,1)
DMATX (13,1) = EOF
DMATX (14,1) = ECF
DMATX (15,1) = ECF
DMATX (16,1) = ECF
CGI
WPI
DHR
PCT
RI
YRS
Definition
Dose of 'ozone, mg/£
Contact time, minutes . , ,-
Average daily flow, mgd
Cost of electrical power $/therm
(1 term = 100,000 BTU)
Electrical power needed to generate
ozone, kw-hr/lb
Cost of liquid oxygen, $/lb
Peak flow, mgd
Cost of oxygen storage tank, $
Program control: 0 = ozonation by air;
1 = ozonation by oxygen
0
0
Excess capacity (oxygen storage tank)
Excess capacity (diffused air/oxygen system)
Excess capacity (aeration basin, covers,
baffles);
Excess capacity (ozone regeneration facility)
Construction Cost Index
Wholesdale Price Index
Direct Hourly Wage Rate, $/hr
Percent of.total overhead attributed to ozone
treatment section of the water treatment plant
Amortization interest rate, percent
Amortization period, years
23
-------
TABLE 17
OUTPUT VARIABLES - OZONE
Variable Definition
PPD03; Ozone production, Ibs/day
V03: Reaptor volume, 1000 cu ft
PPD.02: Oxygen usage, Ibs/day
DKWHR: Electrical Power usage Kw-hr/day
ECOST: Yearly cost of electrical power, $/yr
02C: Yearly cost of liquid 02> $/yr
AF: Amortization factor
i
DIFFUSED AIR SYSTEM
CFM: Air usage, cu ft/min
OHRS: Operations man-hours, hr/yr
TMSU; Materials and supply cost, $/yr
24
-------
TABLE 18
STANDARDIZED VALUES USED FOR THE
DETERMINATION OF SAMPLE COSTS - OZONE
Dose of Ozone (DOS)
Contact Time (DT03)
Average Daily Flow (Q)
Electrical Power Cost (CKWH)
Electric Power Needed to Generate Ozone (E03)
* Cost of Liquid Oxygen (02CST)
Peak Capacity for Plant (QP)
* Cost for Oxygen Storage Tank (TANKC)
** Program Control (FORK1)
Excess Capacity (ECF 1-4)
Construction Cost Index (CCI)/100
Wholesale Price Index (WPI)/100
Direct Hourly Wage Rate (DHR)
Percent of Overhead (PCT)
Amortization Interest Rate (RI)
Amortization Period (YRS)
Plant Run at 70% Capacity
20 minutes
7 mgd
.01 $/Therm
11 KWH/lb
.046 $/lb
10 mgd
37000. $
either 1 or 0
1.0
2.567
1.781
5.19 $/hr
.15
.07
20 years
* These variables only have values when ozone is generated from oxygen.
** See variable definitions.
25
-------
TABLE 19
KEY FOR VARIABLE INPUT - Ozone
Variable
NCASE
LIST
DOS
DT03
Q
CKWH
E03
02CST
QP -
TANKC
FORK
Card
1
ECF1
ECF2
ECF3
ECF4
CGI
WPI
DHR
PCT
RI
YRS
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
Cards 2, 3, 4 and 5 are repeated for
Columns
1 & 2
1-80
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-64
65-72
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-64
65-72
1-10
11-20
21-30
31-40
41-50
51-60
each new case.
26
Comments
This integer sets the
number of cases to be run.
Alphanumeric title given
to each case.
This variable and the sub-
sequent ones may be placed
anywhere within its
allotted columns.
No variable corresponds to
this position. Zero has
to be read in.
Same as above
See comment at beginning of
card 4.
-------
o
CM
ta
to
H
CO
Id
Id
Z
O
CO
a
o
§
M
M
O
<
§rH~
CO
EH 00
CO
O
o o
M rH
5 -O
co x_>
CO
CO
H
CO
o
0
rH
^
Id
o
o
rH
CO 4J
4J CO
O O
•O
00
B
o
in
rH
r* CJ
a 4J
VO CO
O 0
CJ
CO
•H CO
s-s
CJ
rH
CO ,4-1
00
s
0
o
rH
4J CO
o o
H U
a 4J
0 0
CJ
rH
CO
4J 4J
•H CO
P. O
to O
CJ
rH
CO 4J
4J CO
•o
0
rH
O O
H 0
a 4J
i£ CO
O 0
CJ
CO
4J 4J
•H CO
Q. O
CO CJ
rH
CO -U
4J CO
TJ
00
B
in
O O
H CJ
2 4J
<•£ CO
O O
CJ
rH
CO
4-1 4-1
•H CO
C. 0
CO 4J
4.) CO
TJ
oc
6
rH
H CJ
t& CO
0 cS
rH
CO
•H CO
p< O
CO CJ
CJ
CM
CM
rH
OX.
O
o
CO
CO
•
VO
CO
•a-
,_,
o
in
CM
CO
m
rH
OX
O
o
•
vo
, m
rH
0
in
o
rH
OX
o
CO
vO
in
00
e
•H
4J
CO
a 01
C CU
0) -H
O 4J
•H
0) rH
C -rt
O O
N CO
O E1*
0.
CM
CM
O
O
O
o
0\
CM
CM
•
vo
CO
CXJ
O
O
o
o
VO
CO
CM
CM
CO
•
O
o
o
. o
CM
CO
VO
CO
-a-
o
o
o
': O
00
-a-
CXI
rH
O
O
O
: o
• -a-
-a-
CN
rH
CO
a tu
1-1 rH
CO
0) o
CO
rH
in
rH
rH
CO
CN
O
•
CO
rH
in
-a-
i— i
CO
CO
o
rH
•
O\
CM
VO
CM
rH
rH
rH
CM
rH
^ '
CO
O
rH
CO
CO
rH
rH
-a-
-a-
•*
CM
vO
fO
VO
O
E
01
13 4J
CO CO
CO >>
3 CO
U-4
•H iH
O ^
O
o
o
o
0
o
o
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
o
o
0
o
o
o
o
0
o
o
o
o
0
o
CD
o
0
o
0
o
o
o
o
o
o
o
o
o
o
o
0
0
o .
o
o
.M
B
CO
CU
00
CO
V4
o
4J
CO
CM
o
CO
f^-
vo
o
CM
1
^
CO
in
•
o
in
CO
^
CO
CXI
•
ro
rH
vo
m
VO
rH
rH
CM
•
-a-
CM
c^
•
VO
CM
CX)
vO
CM
rH
rH
CO
rH
rH
0
CO
VO
-3-
vO
f~
CO
VO
in
CM
4J
10
O
U
rH
CO
4J
O
EH
27
-------
rH
CM
U
3
H
C/i
&
S
o
tH
Q
Q
a
N
M
9
§/— ^
rH
H to
to oo
CJ O
Z O
M 0
S rH
CO O
to »-••
g
o
•g
§
o.
[d
3
S
o
rH
10 -U
4J to
O O
•0
00
g
0
m
•H
EH O
S 4J
S to
o o
o
rH
to
•H 10
p. O
CO CJ
rH
tO 4J
°s
S
O
O
4-1 to
O O
H U
S JJ
b3 to
O O
CJ
^
CO
•H W
CU 0
to cj
CJ
rH
CO 4J
4J tQ
OC
6
0
rH
O O
H CJ
S 4J
& to
rH
10
4J 4J
•rl 10
O. O
a o
rH
10 4J
AJ to
1
in
O O
H U
S 4->
«-SJ CO
o o
CJ
rH
to
4-1 4J
•H 10
0. O
to cj
CJ
rH
CO 4J
•u to
•0
E
rH
O O
H 0
L£ U3
O O
iH
cd
•H to
ctrS
CJ
c\
cs
> T-H
! a\
o
CO
TH
^
£M
r-1
CT.
O
!
; m
; co
•
0\
CM
CO
C7\
CO
CM
| rH
O
m
in
CM
m
CO
,_,
o
CO
o
"
CO
c
TH
10
t-t
0) to
CJ 01
0) -H
CJ 4J
•H
•0) rH
C -H
O U
N 10
O F&<
en
CM
CM
O
O
O
O
CTl
CM
CM
vO
CO
CM
O
O
O
O
CO
CM
CM
p-
CO
O
O
O
0
CM
CO
VO
CO
-a-
o
o
o
o
vO
CO
^>
CM
rH
O
O
O
o
^
CM
rH
to
C O
•H rH
to
.
CA
CM
•
CM
rH
rH
rH
CM
rH
-a-
CO
O
rH
CO
CO
rH
^j-
^
•*
CM
VD
CO
cn
VO
•
g
01
Tj 4J
01 to
to >.
3 to
U-t
•H -H
0 <
rH
rH
in
rH
rH
VO
in
o
0
CO
rH
in
rH
rH
-a-
vO
0
CM
CO
CO
m
rH
rH
VO
rH
CM
in
rH
rH
*
-a-
vO
CO
CO
0
VO
rH
in
o
o
00
CM
m
rH
C
10
H
01
00
to
o
4J
CO
CM
O
CM
rH
CO
rH
CM
CO
rH
ON
•a-
0
CO
CM
m
CO
rH
in
«
-a-
r^
TH
VO
CO
00
CO
CO
cr>
CM
in
CM
rH
CM
rH
CO
CO
CM
rH
CO
CO
VO
r*.
Ov
CO
CO
CO
-a-
•a-
CO
CO
4J
o
CJ
rH
10
4-1
O
28
-------
GRANULAR ACTIVATED CARBON
The use of granular activated carbon (GAC) for treatment of potable
water (even when used at a large water utility at a high capacity factor)
is an expensive treatment process. The addition of a disinfectant
(i.e., chlorine) at some stage in the treatment cycle would further
increase the cost associated with GAC. Therefore, the use of GAC is
economically justifiable when the use of less costly and effective
treatments cannot produce the quality of potable water required by the
i
law and demanded by the public.,
The GAC plant is divided into two operational processes. In the
first process (treatment stage), water is pumped through the carbon con-
tactors. Microscopic pores in the activated carbon act to adsorb the
impurities in the water. The second process involves the reactivation of
the activated carbon once it passes a predetermined point in its treatment
life., The program in Figure 10A (appendix) is designed to estimate reacti-
vation costs at the water utility site. This situation, in test runs, has
produced excessively high costs for smaller water utilities due to the
great bulk of the cost for GAC treatment in smaller plants which lies in the
reactivation process. However, a group of small waterworks could collec-
tively share in a regional reactivation facility. This regional facility
could substantially reduce the excessive costs resulting from on-site
8
reactivation.
29
-------
Tables 22 and 23 are input and!output variables and their definitions.
i
Table 24 contains a set of standardized values for the design variables
in this program. Table 25 is a key: for variable input and Table 26 contains
costs for plants of 1, 5, 10, 100, and 150 mgd, all operating at 70% of
capacity. Figure 10A is a listing of the GAG Program and Figure 11A is a
j
sample printout of the GAG prograjn using values found in Table 24.
Two calculations are required in order to be able to input variables
to the program. These calculations are for DCARB and RRATE and they are
as follows:
RRATE
GCAKB
9 3
# of contactors (CONTN) x 855 ft /contactor x 30 lb/ft wt. of gran, carbon
1.4 month reactivation x 30 days/month
3 3
# of contactors (CONTN) x 865 ft /contactor x 30 lb/ft.
1.4 month reactivation*x 30 days/month x QD
* provided FORK1 = 1
** The reactivation rate for GAG
effect will be a change in DCARB
may also be used as a variable and its
and KRATE.
30
-------
TABLE 22
INPUT VARIABLE LIST - GAG
Variable Definition
QD: Average daily volume flow used for design of system, mgd
QP: Peak flow, mgd
RI: Amortization Interest Rate, fraction
YRS: Amortization Period, years
CGI: Sewage Treatment Plant Construction Cost Index
WPI: Wholesale Price Index
FORK1: Program Control: 0 = number (CONTN) and size (VOLI) of
the carbon contactors is to be calculated by the program,
1 = number and size are program inputs
FORK2: Program Control: 0 = furnace size (HAREH) of the carbon
reactivation system is to be calculated by the program,
1' = furnace size is program input.
DCARB: Design carbon reactivation rate, Ibs/mil gal
RRATE: Design carbon reactivation rate, Ibs/day
HAREA: Hearth area for carbon reactivation (if not to be
calculated by the program), sq ft
HLOAD: Hydraulic surface loading on the carbon contactors (not needed
if CONTN & VOLI are program inputs), gpm/ sq ft
CDIAM: Diameter of the carbon contactors (not needed if CONTN &
VOLI are program inputs)
SERN: Number of carbon contactors in series (not needed if CONTN
& VOLI are program inputs).
CT: Carbon contact time, minutes
CTYPE: Program control for type of carbon contactors installed
(not presently used by program)
31
-------
Variable
POWER:
DHR:
FUEL:
CARBC:
CARBM:
PUMPF:
CONTN:
VOLI:
NCASE:
TABLE 22 (Cont.)
Definition
Electrical Power Cost, $/KWH
Direct Hourly Wage Rate, $/hr
Fuel cost, $/the'rm 1 therm = 100,000 BTU
i
Cost of virgin granular carbon, $/lb
Carbon make-up, ifraction/yr
Fraction ,of pump|ing station cost charged to carbon
adsorption when [operating filters and carbon contactors
in series, fraction
I
Number of carboni contactors used (not needed if program
is calculate CONJIN)
i
Volume of each carbon contactor (not needed if program
is to calculate VOLI), cu ft '
Number of data sets program is to execute
32
-------
TABLE 23
Variable
COHRS:
CMHRS:
CLHRS:
CTHRS:
CLAB:
CMATM:
GMATP:
CTOT:
ROHRS:
RMHRS:
RLHRS:
RTHRS:
RLAB: '
RMATM:
RMATP:
RMATF:
RMATC:
RTOT:
CONTN:
TAREA:
CAREA:
CLENG:
TVOL:
VOL1:
OUTPUT VARIABLE LIST - GAG
Definition
Carbon contactor operation labor required, hours/years
Carbon contactor maintenance labor required, hours/year
>
Carbon contactor laboratory labor required, hours/year
Carbon contactor total labor requirement, hours/year
Yearly labor cost for carbon contactors, $/year
Yearly maintenance materials cost for carbon contactors, $/year
Yearly electrical power cost for carbon contactors, $/year
Total yearly operation and maintenance cost for carbon contactors, $/year
Carbon reactivation operation labor required, hours/year
Carbon reactivation maintenance labor required, hours/year
Carbon reactivation laboratory labor required, hours/year
Carbon reactivation total labor requirement, hours/year
Yearly labor cost for carbon reactivation, $/year
Yearly maintenance materials cost for carbon reactivation, $/year
Yearly electrical power cost for carbon reactivation, $/year
Yearly fuel cost for carbon reactivation, $/year
Yearly makeup carbon cost for carbon reactivation, $/year
Total yearly operation and maintenance cost for carbon reactivation, $/year
Number of carbon contactors used (as input or computed by program)
Total surface area of all carbon contactors, sq ft
Surface area of each carbon contactor, sq ft
Effective carbon column length, ft
Total effective colume of all carbon contactors used, cu ft
Volume of each carbon contactor (as input or computed by program), cu ft
33
-------
TABLE 24
STANDARDIZED VALUES USED FOR THE DETERMINATION
OF SAMPLE COSTS
Average Daily Flow (QD)
Peak Flow (QP)
Amortization Interest Rate (RI)
Amortization Period (YRS)
* Construction Cost Index (CCI)/100
** Wholesale Price Index (WPI)/100
I
Program Control (FORK1) ;
Program Control (FORK2)
Design Carbon Regeneration Rate (DCARB)
Design Carbon Regeneration Rate (RRATE).
Hearth Area (HAREA)
Hydraulic Surface Loading (HLOAD)
Diameter of Carbon Contactors (CDIAM)
Number of Carbon Contactors (SERN)
Carbon Contact Time (CT)
Program Control (not presently Used) (CTYPE)
Electrical Power Cost (POWER)
** Direct Hourly Wage Rate (DHR) i
Fuel Cost (FUEL)
Cost of Virgin Carbon (CARBC)
Carbon Make-up (CARBM)
Fraction of Pumpint Station Cost (PUMPF)
Number of Carbon Contactors Used (CONTN)
Volume of Each Carbon Contactor (VOLI)
Excess Capacity (ECF 1-4)
7 mgd
10 mgd
.07
20 years
2.567
1.781
1
0
882.65 Ibs/m'il gal
6178.57 Ibs/day
0.
0.
0.
0.
4.5 min
0.
.01 $/KWH
5.19 $/hr
.26 $/therm
.38 $/lb
.1
0.
10
865 ci^ft
1.0
*March 1976
**February 1976
34
-------
Variable
NCASE
LIST
QD
QP
RI
YRS
CGI
WPI
FORK1
FORK2
DCARB
RRATE
HAREH
HLOAD
CDIAM
SERN
CT
CTYPE
POWER
DHR
FUEL
CARBC
CARBM
PUMPF
CONTN
VOL1
ECF1
ECF2
ECF3
ECF4
TABLE 25
KEY FOR VARIABLE INPUT - GAG
Card Columns
1 1 & 2
Comments
3
3
3
3
3
3
3
' 4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
1-80
1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
1-10
11-20
21-30
31-4.0
41-50
51-60
61-70
71-80
1-10
11-20
21-3.0
31-40
This integer sets the number of
cases to be run.
Alphanumeric title given to
each case
This variable and the subsequent
ones may be placed- anywhere
within their allotted columns.
35
-------
Sj
§
2
O
1-1
CO
§
i
I-H
e
CO
CO X-N
H rH
VD CO tO
CM 0 00
W O
n3 ss o
S 0 0
co
°cS
co
4J W
fH 01
a o
cO U
0
CO 4J
4J CO
O O
H CJ
« CO
cj
I-l
CO
4J 4J
1-1 CO
Cu O
CO CJ
CJ
I-l
10 4J
4J CO
o c
H 4J
§1
I-l
1-1 0
a. o
CO CJ
CJ
r-l
CO 4J
4J CO
o o
H CJ
S -J
o c
^
CO
% 0
O. C
o
§
53
§
o
o
to
o
0
• to
to
g
B
o
o
o
to
o
;§
p
o
o
p
p
o
,o
o
0
o
o
0
o
1
o
g
lo
o
0
o
o
1
lo
10
o
d
o
o
o
d
o
0
o
o
o
o
o
o
^J
B e
01 O
3 i-l
r-t O. U
UJ B M
C 5; 4J
o
0\
in
in
m
en
vo
o
in
-cr
m
rH
in
m
i-H
m
vO
CM
O
VO
1 —
t-l
CO
a\
o
CM
in
en
CM
vO
CM
o
o
^
^
n
CM
in
i-i
r-.
O
CO
,_!
•a-
CM
in
CO
o
4J
c o
O CO
JZ 4J
M C
10 O
O CJ
36
r-
o
CO
sr
CO
rH
-*
CT»
VO
R
in
CM
VD
-*•
CM
i-l
00
•
o
t-H
i-l
•^
CM
CO
0
K
t^l
"*
in
m
o
^
o
en.
^
•-I
n
*3"
m
m
i-i
^c
in
VD
T-l
CM
|
4J
CO
C -H 6
J2 0 4J
CO 0) r>l
CJ p* CO
VD
VO
O
O
0
O
Cf
VO
VD
i-l
P--
VO
'
O
o
o
d
r-i
VO
"
CO
VD
*
O
O
o
o
•fl-
CC
vo
CO
V0
*
0
o
o
d
r-*
00
vO
"
TH
VO
•
O
O
o
to
rH
vo
•H O 00
4J ,n n
•rl JJ CO
C CO i£3
I-l CJ CJ
r^
vD
o
T-l
t— 1
CO
m
vO
"^"
^
iH
VO
0
00
in
t-l
I— 1
en
CO
o\
•*
Pv.
a\
m
vo
O
m
CO
r-I
rH
m
0
o\
vD
CO
VD
CO
CO
rH
CM
r--.
m
vD
rH
CO
CM
CM
0
rH
CO
CO
O
m
CO
r-
co
CO
CM
O
rH
vO
CM
rH
CO
O
H
vD
r-
m
CO
m
rH
•"*
CO
rH
CO
• rH
m
-------
APPLICATIONS
The programs contained in this document can Be used to explore many
important relationships with regard to water treatment systems. Examples
of the uses to which these programs can be put is contained in the
following discussion.The first three examples deal only with the use of
Granular Activated Carbon. The last example illustrates the use of two
of the programs to synthesize a Biological Activated Carbon System.
Several economic relationships can be explored with regard to the
operation of GAG systems. One is the effect of reactivation frequency.
, Figure 1 shows the total unit cost of, a 100 MGD GAG sand replacement
system versus the period between reactivations. As can be seen from the
figure, costs escalate rapidly when the period between reactivations is
shortened.
An important economic option, particularly for small systems, is
that of banding together, either as a group of small systems or with a
larger system to minimize the cost of regeneration. Figure 2, shows the
tradeoffs that exist between hauling activated carbon to a central
reactivation site furnish versus onsite reactivation. In this case, it
is hypothesized that a group of ten 10MGD utilities have joined together
to provide regional reactivation services and are sharing the cost of a
regional reactivation furnace jointly.
The effect of changes in the level of inflation on GAG costs is
highly significant. To illustrate this effect, the cost for a 100 MGD
sand replacement system have been assumed at 9.0^/1000 gal at year 0 and
37
-------
O
E
CO
O
o
LU
ce
LU
CO
Q
O
5E
o
I
2
-------
o
to
CO
I ml
O
<
LU
CC.
LLJ
o
ce
GO
OC
LU
*
t/5
O
O
O
Q_
CO
CC
-------
then allowed to increase at 6% peir year for 10 years. At the end of the
•
10 year period the unit cost has iincreased from 9.0C/100Q gal in year 0
to oyer 20/1000 gal in year 10, :as shown in Figure 3.
For systems requiring high carbon loading rates and short reactivation
periods, there is the possibility of combing processes together to
minimize costs. One such combination is ozonation and GAG used to form a
biological activated carbon (BAC)| system. In this type of system, the water
is ozonated before it is placed oh the activated carbon bed and biological
'
action takes place on or near the] surface of the bed. Organics are broken
down, biological growth is encouraged, and biodegradtion aids adsorption.
Dramatic increases in the period between reactivation haye been reported
using this technique. From Figure 1 it can be seen that lengthening the
period between reactivation can reduce costs dramatically. Figure 4 shows
a set of hypothetical cost curves for BAG versus GAG. Assming the GAG
system has a period between reactivations of 1.1 months and cost 14£/1000
gal. If an ozone dosage of 2 mg/fe can increase the period between reactiva-
tions frpm 1.1 months to 2 months or greater,•cost savings can be realized.
Research is continuing on the use of this approach to minimize costs.
40
-------
Crt
to
to
O
Q
<
to
ce
O
e/3
O
O
PO
O
g
5
(O
Ll_
O
O
CO
'1
O)
oooa/o 'isoo nwn IVIOJL
41
-------
o
:
LU
O
o
2
cc
I- CO
< ±>
=: 2
O
_ LU
O DC
UJ
CO
Q
O
Q
i
o
M
O
8
CM
(IBB ooo'i/o) 'isoo nwn ivioi
42
-------
SUMMARY AND CONCLUSIONS
An increasing awareness of the potential health hazards associated
with the public's drinking water is now being evidenced throughout the
country. This awareness has caused traditional methods by which water is
made potable to come under severe scrutiny. Alternate types of water
treatment have been shown to reduce dangerous pollutants and contaminants
in water while at the same time compare favorably in cost with traditional
treatment practices. Still other water treatment processes, while com-
paratively expensive, can improve water quality significally in highly
polluted sources. The treatment system utility used not only depends
upon intrinsic factor^ relating to the utility itself and the water source,
but also the cost of the finished product. The cost of inadequately
produced water can be estimated; the cost this water has on the publics
health cannot.
43
-------
REFERENCES
1. Patterson, W. L., and Banker, R. F., Estimating Costs and Manpower
Requirements of Conventional Wastewater Treatment Facilities for
the Environmental Protection Agency, Black and Veatch, Consulting
Engineers, Kansas City, Missouri, 1971.
2. Clark, Robert M., Guttman,' Daniel L., Crawford, John L., and
Machisko, John A., The Cost of Removing Chloriform and Other
Trihalomethanes from Drinking Water Supplies, USEPA, MERL,
Cincinnati, Ohio, 1976.
3. Ibid., Robert M. Clark.
4. Safe Drinking Water Act, Public Law 93-523, 93rd Congress, S.433,
December 16, 1974.
5. Suindell-Dressler Company, "Process Design Manual for Carbon
Absorption", USEPA Technology Transfer, October 1973.
6. Robert M. Clark, loc cit.
7. Eilers, Richard M., Mathematical Models for Calculating Performance
and Cost of Wastewater Treatment Systems, Environmental Modeling
and Simulation, U. S. Environmental Protection Agency, 1976.
44
-------
APPENDIX
Figure 1A. Listing of chlorine cost program
(CL2N2) COST OF CHLQRINATION
DIMENSION LIST{40)
OPEN(UNIT=1,NAME=!CL2,DAT',TYPE='OLD1)
INsl
I0s6
READ(IN,10) NCASE
10 FORMATU2)
DO 200 111=1,NCASE
READ(IN,30) LIST
30 FORMAT(40A2)
READUN,40) Q,DCL2,TCL2,CCL2,ECF1,ECF2
READ(IN,40) CCI,WPI,DHR,PCT,R1,¥RS
40 FORMAT(SFtO.O)
CCI=CCI/1,506
WPI=WPI/1.122
AF=RI»(1.+RI)*«YRS/((1,+RI)«*YRS-1.)
BVOL=Q*TCL2/1.44/7.48*1000.*ECF1
XsALOG(BVOL/1000.)
CON1»EXP(2.048061+.521909*X-.002674*X**2+.004159«X*»3)«1000,*CCI
CAP1=CON1*1.35
AMM1=CAP1»AF/Q/3650.
OMClaO,
TOT1=AMM1+OMC1
CUSE=Q#DCL2*8.33#365./2000.
XsALOGCCUSE*2000./365.*ECF2)
XCOST=EXPC2.264294-.04427i«X+,065029*X«*2-.002536*X*«31*1000.
CON2=XCOST«CCI
CAP2aCON2*1.35
RMM2=CAP2*AF/Q/3650.
XaALOG(CUSE)
OHRSaEXPC4.538517+.S43669*X3
XMHRS=EXPC3.752071-.224812»X+.158849*X#»2-0006064*X**3)
TMSU=EXP(6.126105-f.287016*X)*WPI
TMSUC=CUSE*CCL2+TMSU
OMC2sC(OHRS+XMHRS)*DHR*Cl.+PCT):+TMSUC)/Q/36SO.
TOT2=AMM2-t-OMC2
T1=CON1+CON2
T2*CAP1+CAP2
T3=AMM1+AMM2
T4«OMC1+OMC2
TS*TOT1+TOT2
CCI=CCI»1.506
WPI«WPI#1.122
WRITECIO,100) LIST
100 FORMAT(////////,40A2,/)
WRITE(10,110) Q,DCL2,TCL2,CCL2,ECF1,ECF2
110 FORMAT(9X,'Q',8X,'DCL2",8X,'TCL2',8X,ICCL2',8X,'ECF1I,8X»
. 'ECF2',/,6F12.3,/)
WRITE(10,114) CC1,WPI,DHR,PCT,RI,YRS
114 FORMAT(7X,'CCI«,9X,'WPI',9X,'DHRi,9X,IPCI',10X,IRII.9X,
. 'YP5',/,6F12.3,//)
WRITE(IO,120) BVOL.CUSE
120 FORMAT(6X,'BVOL',8X,'CUSE«,8X,/,2F12,3,//)
WRITE(IO,130)
130 FORMAT(27X,'CON I,9X,'CAP«,9X»'AMMI,9Xr'0 + MI,9X«I TOT",9X,'ECF I ,/)
WRITE(10,132) CON1,CAP1,AMM1,OHC1,TOT1,ECF1
132 FORMAT(2X,'CONTACT BASIN 1,5X,2F12.0,3F12.3,F12,2)
WRITE(IO,134) CON2,CAP2,AMM2,OMC2,TOT2,ECF2
134 FORMAT(2X,'CL2 FEED SYSTEM I,3X,2F12.0,3F12,3,F12.2,/)
WRITE(IO,140) T1,T2,T3,T4,T5
140 FORMAK2X, * TOTAL * , 1 3X,2F12.0,3F12.3)
200 CONTINUE
END
45
-------
no
u
2
D)
O
QO r-
rv o
*»> r-
un
m
O
o o »-»
O
o
0
o o
ro o
rr ic o
o r«a
o in
2: o <*•
•*- • •
o o o
in
o
E
o
U, •>
U --(
HH O
be •
OD
ST.
O O
(N
-a
o in
•> u •
O ft. O
o :
PJ. l»—< OP"
^ rjh, (7«-
O OO OO
oo »-o
cr,
•JO
Q.
(0
(O
CM
0)
3
O)
il
E-
rt.
LjJ
Ct
Ixi
z-
oc
o
3;
o
o
z
o
o , o
o o*
cw c ct --
i-2 • £r *
o o Q un
t~ -o
CO OD
in
QD
cv o
^o o
00- —<
IT- •-H
£> i/>
-------
Figure 3A. Listing of chlorine dioxide cost program
C (CL02) COST ESTIMATE OF CHLORINE DIOXIDE WATER TREATMENT
DIMENSION LIST(40)
OPEN (UNIT = 1, NAME='CL02,DATATYPES ' OLD')
IOS6
READ(IN,10) NCASE
10 FORMAT(12)
DO 1000 111=1,NCASE
READ(IN,30) LIST
30 FORMAT(40A2)
READ(IN,40) Q,DCL2,TCL2,CCL2,CNCL02,RATIO
PEAD(IN,40) ECF1,ECF2,ECF3,FORKI :
READ(IN,40) CCI,WPI,DHP,PCT,RI,XPS
40 FORMAT(8F10.0)
CCI=CCI/1.506
WPI=WPI/1.122
AF=RI*(1.+RI)**T(RS/((1.+RI)*«YRS-1.)
BVOLsQ«TCL2/l.44/7.48*1000.*ECF1
X=ALOG(BVOL/tOOO.)
CONl=EXP(2.04806i+.521909«X-.002674*X**2+.004159*X**3)*1000.*CCI
CAP1*CON1»1.35
AMMl»CAPl*AF/Q/3b50.
OMClsO.
TOT1=AMM1+OMC1
CUSEsQ*DCL2#8,33*365./2000.
X=ALOG(CUSE*2000./365.*ECF2)
CON2sEXP(2,264294-.044271*X+.065029*X*«2",002536»X*»3)*1000.»CCI
CAP2aCON2*1.35
*. AMM2=CAP2*AF/Q/3650.
XsALOG(CUSE)
dHRS=EXP(4.538517+.543669*X)
XHHRS*EXP(3.752071-.224812#X+.l58849*X«*2-.006064*X**3)
TMSU=EXP(6.126105+.287016*X)*WPI
TMSUC=CUSE*CCL2+TMSU
OMC2a((OHRS+XMHRS)*DHR«(l.+PCT)+TMSUC)/Q/3650.
TOT2aAMM2+OMC2
ONCL02=DCL2*RATIO
DCL02BDNCL02/1.68
CNUSEaQ*DNCL02*8.33»365.X2000.
IFCFORKH 50,50,60
50 CONTINUE
60 CON3=0.
CAP3»0.
AMM330.
OMC3*CNCL02*CNUSE/Q/3650,
CCL02=CNCL02«CNU5E+CCL2*CUSE
TOT3sAMM3+OMC3
T1PCON1+CON2+CON3
T2»CAP1+CAP2+CAP3
T3«AMM1+AMM2+AMM3
, T4«OMC1+OMC2+OHC3
T5»TOT1+TOT2+TOT3
CCIaCCI*l,506
!,T26,'DCL2',T36,ITCL2',T46,'CCL2',T54,ICNCL02',
'• 'AT65, IRATIO',/,T11,6F10.3)
' WRITE(IO,130) CCI,WPI,DHR,PCT,RI»XRS,FORK1
130 FORMAT(//,T17,"CCI',T27,•WPI',137,"DHRI,T47,IPCT',T58,'RII.T67,
C'YRS',T75,'FORK1',/,T11,7F10.3)
-WRfTEdO, 140) BVOL»eUSE,CNUSE,Cei;02fDCIi02
140 FORMATC//.T17,IBVOL',T29,'CUSE',T40,ICNUSEI,T52,'CCL02',T64,
.! D»DCL02',/,8X,5F12,3,//)
.
150 FORMAT (27X, 'CON',9X, !CAP«,9X, IAMMI,9X, '0+Mi,9X, 'TOT',9X, 'EOF',/)
WRITE(IO,160) CON1,CAP1,AMM1,OHC1,TOT1,ECF1
160 FQRMAT(2X, 'CONTACT BASIN ' ,5X, 2F12.0, 3F12 . 3,F12.2)
WRITE(IO,170) CON2,CAP2,AMM2,OMC2,TOT2,ECF2
170 FORMAT(2X,'CL2 FEED SYSTEM ' , 3X, 2F12.0, 3F12.3.F12 .2)
WRITE(IO,180) CON3,CAP3,AMM3,OMC3,TOT3,ECF3
18p FORMAT(2X, 'CL02 REACTOR ' .6X.2F12.0, 3F12, 3, F12,2,/)
WRITE(IO,190) T1,T2,T3,T4,T5
190 rORMAT(2X,lTOTAL',13X,2F12.0,3F12.3)
tOQO CONTINUE
END
47
-------
S
O)
o
u
OJ
O
*-i O
AC O
cc. •
o ^
u.
ac rrt r*> in
!N CM fl ' OC
o * • •
H-t O O O
o
o
0)
TJ
"x
O
TJ
0)
O
O
a.
£-<
til
«
f-
o
o o
l-< f\!
a;
o
o>* o
o o
*3 «
00
Z: O
o
CM O
-J O
o •
5J O
o
o
<•>» o
-3 O
u •
E-i O
tv
o
03 O
ac o
^ -
o
(N
DC. O
CM CN
o in
Q O
O »-§ ov «-<
• <•> « «
o o o . •«-»
ev
O
s
s
•*
QD o o
rv m o
m ^» o
* » «•
o o o
cr,
o
if)
a;
PC
0
in
«J CN
^3 O
z:. •
U r-
m tv o
»-t ao
cr -o
to o
•x ^
in
Q.
E
CO
o
X
o
a:
o
X
o
o
o
O
c o
o
o
O
CO CM
£>
OD.
t-
• Cil
at
H CM
Z CM O
O »4 ^J
O U U
6-i
O
E*
48
-------
Figure 5A. Listing of chloramine cost program
• COST ESTIMATE OF WATER TREATMENT BY CHLORAMINES
REAL NH3USE
DIMENSION LIST(40)
OPEN f UNIT=1 f NAMEa I AMMON ,DAT ' , TYPE* ' OLD ' )
IN = 1
10*6
READ(IN,10) NCASE
10 FORMATCI2)
DO 1000 IIIsl, NCASE
READ(IN,30) LIST
30 FORMAT(40A2)
READ (IN, 40) Q,DCL2,TCL2,CCL2,CNH3, RATIO
READ(IN,40) ECF1 ,ECF2, ECF3,FORK1
READ (IN, 40> CCI,WPI,DHR,PCT,RI,XRS
40 FOPMATC8F10.0)
CCI=CCI/1.506
WPI=WPI/1.J22
AFsRI#( 1 .-fRI )**YRSX ( ( 1 ,+RI )*»YRS-1 , )
BVOL=0*TCL2/ 1.44/7. 48*1 000. *ECF1
XaALOG(BVOLX1000.)
CON1=EXP(2.048061+.521909*X-.002674#X««2+.004159«X«*3)«1000.«CCI
CAP1=CON1*1.35
AMMlaCAPl*AF/Q/3650.
OHClsO.
TOTl»AMMl+OMCt
CUSEsQ*DCL2#8.33*365,/2000,
X=ALOG(CUSE*2000./365,«ECF2)
CON2=EXP( 2. 264294-. 04427 1*X+.065029*X**2-,002536*X»*3)*1 000. «CCI
CAP2=CON2«1.35
AMH2=CAP2*AF/Q/3650,
XsALOG(CUSE)
OHRS*EXP(4.538517+.543669*X)
.. .
TMSUaEXP(6.126105+.287016«X)*WPl
TMSUCaCUSE#CCL2+TMSU
QMC2*((OHRS+XMHRS)*DHP«C1.+PCT)+TMSUC)/Q/3650,
TOT2«AMM2+OMC2
DNH3EDCL2/RATIO
NH30SE»Q*DNH3*8.33*365,/2000.
IF(FORKl) 50,50,60
" 50 CONTINUE
60 CON3«0.
CAP3=0.
AMM3«0.
OMC3=CNH3»NH3USE/Q/36SO.
CAMINE=CNH3«NH3U5E+CCL2*CUSE
TOT3BAMM3+OMC3
T1«CON1+CON2+CON3
T2sCAPl+CAP2+CAP3
T3«AMM1+AMM2+AMM3
\ T4«OMC1+OHC2+OMC3
T5STOT1+TOT2+TOT3
CCI=CCI*1,506
WPI«WPI«1.122
WRITE(IO,100) LIST
100 FORMATC'l', ///////, 40A2,/)
WRITE(IO,110) Q,DCL2,TCL2,CCL2,CNH3, RATIO
110 FORMAT(/,T18,«QI,T26,'DCL2',T36, ' TCL2 • ,146, >CCL2 ' ,T54, 'CNH3',
AT63, CUSE',T40, >NH3USE' ,T52, 'CAMINE ' ,T64,
D/,8X,3F12.3,1X,F12,3,/X)
WRITE(IO,150)
150 FOFMAT(27X, 'CON',9X, 'CAP • , 9X, ' AMM ' ,9X, 10+M I ,9X, >TOT' ,9X, 'ECF',/)
WRITE(IO,160) CON1,CAP1,AMM1,OMC1,TOT1,ECF1
160 FORMAT(2X,ICONTACT BASIN I ,5X, 2F12.0, 3F12.3,F12.2)
WRITE (10, 170) CON2,CAP2,AHH2,OMC2,TOT2,ECF2
170 FORMAT(2X, 'CL2 FEED SYSTEM • , 3X,2F12,0, 3F12.3,F12.2)
WRITE(IO,180) CON3,CftP3,AMM3,OMC3,TOT3,ECF3
180 FORMAT(2X,«NH3 REACTOR i ,6X, 2F12.0, IX, 3F12 ,3,F12,2,X)
^ WRITE(IO,190) T1,T2,T3,T4,T5 '.
190 FORMAT(2X,'TOTAL',13X,2F12.0,3F12,3)
1000 CONTINUE
END
49
-------
2
5)
o
o
,-« o
54 O
PC •
o -<
u-
Cd
a
DO f> O
c* CM in
m
3
a>
il
l-f
a.
O
Ci
o
o o
l-i O
cc.
o
o
o
m •
or o
•z, o
U {V
CM O
J O
o
o
o
IM O
J[ O
o •
E- O
o*
o
CM O
J O
o •
C5 »•>
c?
o
c o
o
WJ O
0. O
X "
o
o
ct o
ex. *
o
o
as cr»
•z. o
cc
,0
t»
ba tn
01 CV
3 CP
o »
a
•J O
o o
o a> o
o »H in
O vO O
« e it
O O O
ao
o ^p ac
f-t
•o
50
-------
Figure 7A. Listing of ozone cost program
! DISINFECTION BY OZONATION
DIMENSION DMATX(20,20),CCOST(5,5),CQSTOC!>,5),LISTC40)
OPEN(UNITsl,NAMEs'OZONE,DAT",TYPES'OLD')
IN*1
10*6
Ms!
READ(IN,10) NCASE
10 FORMATCI2)
DO 1000 1=1,NCASE
READfIN,15) LIST
15 FQRMATC40A2) v
READCIN.20) CDMATXtJ,N),J=l,20)
20 FORMAT(10F8.0,/,10F8.0)
PEADCIN.22) CCI,WPI,DHR,PCT,RI,YRS
22 FORMATC6F10.0)
AFsRI*(l,+RI)-««YRS/(Cl,+RI)#**RS-l.)
Q=DMATXC3,N)
D03«DMATX(J,N)
DT03sDMATX(2,N)
CKHHaDMATXt4,N)
E03=DMATXC5iN)
02CST=DMATXC6,N)
IF(DMATXC7,N)) 25,25,26
25 DMATXC7,N)=1.78*DMATX(3,N)«*.92
26 QP*DMATX(7.N)
TANKCaDMATX(8,N) '•
FORK=DMATXC9,N)
PPD03=DMATXtl,N)*DMATX(7,N)*8,33*DMATX(16,N)
DKWHR»PPD03»DMATX(5,N)
IFtDHATX(9,N5) 40,40,50
40 PPD03»2.»PPD03
PPD02=0.
GO TO 60 . •
50 PPD02=3.*PP003
60 V03=DHATXC2,N)/1440,*DMATXt7,N)*1000./7,'18»DMATXtl5,N)
X=ALOG(PPDn3)
CCOST(N,1)»EXP(-.254135+,893452*X)*1000.«CCI/2.1785
ECOST=DKWHR*DMATXC3,N)/DMATX(7,N)«DMATXC4,N)*365.
COSTO(N,1)=ECOST/DMATX(3,N)/3650.
X=ALOG(V03)
CCOSTCN,2)=EXPC2.991571+.203122»X+,109297«X**2-.004996»X«*35«
, 1000,*CCI/2.1785
COSTO(N,2)*0.
CFM37.71»DMATX(1,N)*DMATX(3,N)#DMATX(14,N)
X»ALOG(CFM/1000.)
CCOST(N,3)»EXPC4.400319+.625015*X+.031771*X*«2-.003994#X*»3)«
, 1000,«CCI/2,1785
OHRSsEXP(6.924807+,328936«X+.034333*X*«2)
XMHRS*EXP(6.214495+,380521*X+.044713«X**2+,001010*X*«3-
. ,000620*X*«4)
X»ALOG(DHATXC3,N))
TMSU«EXP(7.824046+,491136*X)#WPI/1,6160
COSTO(N,3)=tCOHRS+XMHRS)*DHR«(l,+PCT)+lMSU)/DMATX(3,N)/3650,
CCOSTCN,4)=DMATX(8,N)»DHATXtl3,N)
O2CsPPD02*DMATX(3,N)/DMATXO,N)*DMATXC6,N)*365.
COSTO(N,4)s02C/DMATXt3»N)/3650",
CAP1»CCOSTCN,1)»1.35
AlBCAPl»AF/DMATX(3,N)/3650,
TlsCOSTO(N,l)+Al
CAP2sCCOSTCN,2)*1.35
A2»CAP2«AF/DMATX(3,N)/3650,
T2*COSTO(N,2)+A2
CAP3«CCOSTCN,3)«),35
A3»CAP3*AF/DMATXt3,NJ/3650,
T3«COSTO(N,3)+A3
CAP4»CCOST(N,4)*1.35
A4»CAP4*AF/DMATX(3,N)/3650.
T4«COSTOCN,4)+A4
TCON»CCOST(N,1)+CCOST(N,2)+CCOST(N,3)+CCOST(N,4)
TCAP«CAP1+CAP2+CAP3+CAP4
TAMMIA1+A2+A3+A4
TOPR«COSTO(N,1)+COSTO(N,2)+COSTO(N,3)+COSTOCN,4)
TTOT»T1+T2»T3+T4
WRITECIO,100) LIST
100 FORMAT(20X,40A2,/X)
WRITE(10,120) Q,D03,DT03,rKWH,E03,02CSl,UP,TANKC,FORK
51
-------
Figure 7A. (continued)
,/,
120 FORMAT (7X, 'Q',7X, 'D03',6X!f IDT03',6X, 'CKWH',7X, 'E03',5X,
. '02CST '*8X,'OP',5X,'TAN^C',6X, "FORK ' , /, 9F10. 3. //}
WRIT£CIO,125) CCI,WPi,'DHR,pCT,RI,YRS
125 FQRMATtSX, 'CCI ' ,7X, ' WPI ' ^7X, "DHR ' ,7X, ' PCI ' , 8X, "RI'.7X,
. 6F10.4.//3 !
WRITE(IC),130) PPD03,V03,PPD02»DKWHR,ECOSlfQ2C,AF,CFM,OHRS>XMHRS,
. TMSU
130 FORMAT C3X»'PPD03',7X, IV03',5X, "PPD02',5X» «DKWHR',5X, "ECOST",
. 7X,'02C«,8X,»AFI,7X,ICFH',6X,'OHRS',5X,'XMHRSI,6X,'THSU',
. /,6F10.1,F10,4,4F10.t,//)
WRITEtIO,140)
140 FORMAT (39X, 'CON «,9X, 'CAP',9X, 'AMMI.9X, IQ + HI.9X, "TOTt^X, lECFi,/)
WRITE CIO, 150) CCOSTCN,l),CAPlrAl,COSTO(Nf 1 ) ,T1 ,DMATXC 16,N)
150 FORMATC2X, "OZONE REGENERATING FACILITIES •, IX, 2F12.0, 3F12. 3, F12. 2)
WRITE (ID, 160) CCOST(N,2)»CAP2,A2,COSTOCN,2),T2,DMATXC15,N)
160 FORMAT C2X, 'AERATION BASIN, COVERS, BAFFLES ' ,1X,2F12.0,3F12.3,F12.2)
WRITE (10, 170) CCOSTCN,3),CAP3,A3,COSTOCN,3),T3,DMATX(14,N)
170 FORHAK2X, 'DIFFUSED AIR/OXYGEN SYSTEM I ,4X , 2F12 ,0,3F12, 3,F12,2)
WRITECIO,180) CCOST(N,4),CAP4,A4,COSTOCN,4),T4,DMATX(13,N)
180 FORMATC2X, 'OXXGEN STORAGE TANK ' , 1 IX, 2F12.0, 3F12 ,3,F12.2)
WRITE(IO,190) TCON,TCAP,TAHM,TOPP,TTOT
190 FORMAT (X,2X, 'TOTAL' ,25X, 2F1 2 . 0, 3F12. 3, //////)
1000 CONTINUE
END
52
-------
bu
O
W
O O O O
O O O p
'
03,-
2
2
a
3
o
o
o
o
X o
oe •
a. o
u.
o
o
o o
Sft «
2 O
W -r*
Of ft
ounr- o »»•
m *f un o in
• • •.' * «<
o. o a o •*
(M O If* O «
<3> o m o *
o o •* o in
o o o o- o
0)
O
s
o
3
O
a
jo
a.
O
O •
E* O
Q CM
O
O
o
O
o
o
«o o
ac o
O
O
o
o
e-> in
O'«-i
a. »
o
o
ac ot
o
l-l 00
ou r~-
3 •
t-i >C
L> If)
«J "'
CM
O
»*
CJ Q'
O
Q,.
- *
o
O ">
t> ->
A o>
!*.
O
CM O
a
o
m ao
O -»
C* «*>«•
oo m CM
an o< r«
TO U3
U id
1-4 CD W
O -•><
«t 03 U3
fc flC
DLi Z
-o
o
€*»
O tel
• x xs
-<.»-*
cc -t
OC
a
O -D
a, -*
CL
a.
W 61 =) U J
Z
-------
o in
lO vO
x ••-•
H r-
oooo
o o o o
M I"
OC O)
3C CM
<0
I
o
o
&c o
« •
O -H
b.
o> in t- o>
c>» t- vo CT>
no »» «n CM
o
r-
00 TJ>
o -^
O CM
(X sf>
3C -<
3: Ov
CM o in in »-i
en o in =*H *o
o o ** «-« ^
0000 O
r- in CN in cr>
<*> t^- »^ oo c?
CM 'J1 •-»»-» O
o o o o •->
i in -JB o r~~
cj •* OD o on «•»
to CM f*i ^t* r^
m o o o
2 CN m CM O
o in m •* o
O r» in CM r-
CM
CM
O
CM
0>
I
O)
iZ
o
o
m o
o •
fn o
o cv
o
o
o
o
o
a o
o
o
a: -H
O "
in
o
«H
I OD
O
r^
i -o
CM Ol
a •*
o c*
a
a.
no cc
o -•
o ao
o
a.
a.
u ta
•-i *3
E-* b. £
>-l Et, bl
•a •« e-i
tH OD «1
O «•>!
U Z
Z O O <
>-t O » gi
£-•«.>:
•« z o w
CC M *x O
u w a, *t
z t r-t K.
W 02 !B
Z «t U, O
a at b. >*
ej bi >-< x
O «t Q O
54
-------
Figure 10A. Listing of granular activated carbon cost program
10
DIMENSION LTST(40)
OPEN(UNITsl,NAME='CARB.DAT«,T¥PE
IN a 1
10 * 6
READ(IN,10) NCASE
FOPMAT(I2)
DO 1000 1=1. NCASE
PPAM1=0,
PRAM2=0.
PRAM3=0.
PRAM4=0,
CON1=0.
CON2sO,
CON3sO.
CON4=0.
CAP1=0,
CAP2=0.
CAP3»0.
CAP4*0,
AMM1=0.
-------
Figure 10A. (continued)
CON2sEXP(4.382026+.353985*X)*CONTN#1000.*CCI
XaALOGCQD)
CDHRS=EXPC6.310657+,446392*X)
CMHRS=EXPC4.492027 + .
CLHRS=EXP(5.U33<'4 + ,
CTHRS=COHRS+CMHRS+Cl»HRS :
CLABsCTHPS*DHR
CMATM=EXPC-1.231487.».,824386#X)*1000.#WPI
CMATP=EXPC. 858226+, 9945 03*X 5*1 000 ,,*PQWER/, 02
CTOTsCLAB+CMATM+CMATP
QMC2sCTOT/QD/3650.
IFCFORK2) 70,60,70
60 HAREAsl.2*DCARB»OD/40.
70 IFCHAREA-95.) 80,80,90
80 HAREA=95.
90 PRAM3=HAREA*ECF3
XaALOG(PRAM3) !
CON3sEXPC3,673707+,4548404x)*1000.#CCI
XsALOGCPRATE/lOOO.) :
ROHRSsEXP(8.676918+.440237*X1
RMHRSsEXPCS. 434925+. 4521 11 *X)
RLHRSsEXPCB. 007337*. 62 1430«XJ
RTHRSsROHRStRMHRS+RLHRS
FACTR=QD#DCARB/RPATE
RLABsRTHRS#DHP*FACTR
RMATMsEXPC.606648+.389098*X)#1000.*WPHtFACTR
RHATPsEXPC". 826456+. 991 087«X)*1 000. *(POWEp/. 02 )*FACTR
PMATFsEXPC-. 287682+1. 000000*X)*1 000. #( FUEL/, 065 )*FACTR
RMATC=EXPC2.090e77+.983502#X)*1000.*(CARBC/,33)#(CARBM/,08)*FACTR:
RTOTsRLAB+RMATM+RMaTP-i-RMATF*RMATC
OMC3=RTOT/OD/3650.
PRAM4aTVOL#ECF4
XsALOG(VOL1*ECF4/lOOO,J
CON4sEXP (2,302585+, 987 3 18«X)»CONTN*1 000. #CCI*(CARBC/» 33)
OMC4=0,
AF*RI*(1,+RI)##YRS/((1.+RI)**YRS-1.)
TCONSCON1+CON2+CON3+CON4
X*ALOG(TGON/1000000.)
CELAI*EXPC, 24057 3+,990929*X)«l 000000, -ICON
TCAPsTCON+CELAI
RATIOsTCAP/TCON
CAPlsCONl»RATIO
CAP2=CON2*RATia
CAP3=CON3*RATIO
CAP4sCON4«RATIO
AMMlsCAPl*AF/OD/3650.
AMM2=CAP2*AF/OD/3650.
AMM3sCAP3*AF/QD/3650,
AMM4sCAP4*AF/QD/3650,
TCS1»AMM1+OMC1
TCS2zAMM2+OMC2
TCS33AMM3+OMC3
TCS4sAMM4+OMC4
ftTOTaAMMl+AMM2+AMM3+AMM4
OTOT?'OMCl+nMC2+OMC3+OMC4
TTOT*TCS1 +TCS2+TC53+TCS4
CCIsCCI*l,750
WPI*WPI*1.191
WRITE(IO,200) LIST
56
-------
Figure 10A. (continued)
:200 FORMATCW, /////. 20X,40A2,///J '
WR-ITE(IO,210)
210 FOPMAT(53X,'COST ESTIMATE',/,58X,•FOP',/,42X,
'GRANULAR ACTIVATED CARBON TREATMENT',
///,6X,'PROCESS COMPONENTS',12X,'DESIGN',6X,'CONSTRUCTION',
5X,'CAPITAL1,3X,'DEBT COST',4X,'0+M COS1',2X,'TOTAL COSTJ,5X,
'EXCESS',/,35X,'PARAMETERi,4X,'COST, $',10X,'COST, $',3X,
'CTS/1000',5X,'CTS/1000',3X,'CTS/1000',5X,'CAPACITY',//)
WRITE(IO,220) PRAMl,CONl,CAPt,AMM,l,OMCl,ICSi,ECFl
220 FORMATdX,'INFLUENT PUMP STATION ', 8X. F12 ,2, IX, ' MGD ', 2X,
, 2F12.0,3F12.3,F12.2)
WRITE CIO, 2 30) PRAM2,CON2,CAP2,AMM,2,OMC2,TCS2,ECF2
230 FORMATUX, 'CARBON CONTACTORS ', 12X, F12 , 0 , IX, 'CU FT',
. 2F12.0,3F12,3,F12,2)
WRITE(IO,240.) PRAM3,CQN3»CAP3,AMM3,QMC3»TCS3(rE;CF3
240 FOPMATdX,'CARBON REGENERATION SYSTEM', 3X ,F12.0, IX,'SQ FT',
. 2F12.0,3F12,3,F12.2)
WRJTE(IO,250) PRAM4,CON4,CAP4,AMW4»OMC4,ICS4,,ECF4
250 FORMATUX, 'INITIAL CARBON CHARGE',,8X,F12. 0 , IX,'CU FT',
260
270
380
290
300
2F12.0,3F12.3,F12,2)
WRITECIO,260)
FORMATC50X,'"
,2X,
r2X,
310
320
330
340
WRITE(IO,.270) TCON,TCAP,ATOT,OTOT,TTOT
FORM AT ( IX , '.SUBTOTAL ' , 39X , 2F 12.0* 3F 1 2 . 3 )
WRITECIO,280) CELAI
FORM AT (IX, 'E.NG, , LAND, ADMIN ., INT, , COSTS' ,19X,F12,0)
WRITE(IO,290) :
FOPMAT(50X, '--<•.—-—«')
WRITE(IO,300) TCAP
FORMATdx, 'GRAND TOTAL ', 3f3x,F12. 03
WPITE(IO,290)
WR|TE(IO,290)
WPITE(IO,310)
FOPMAT(/////)
QD,QP,RI,YPS,CCI,WPI,FOPK1,FORK2
DCARB,RRATEjHAREA,HLOAD,CDIAM,SERN,CT,CTYPE
POWER, DHP, FUEL »CARBC,CARBM,PUMPF,CONTN, VOL 1
FORMAT ( 6X , ' QD « , 8X , ' QP ' , 8X „ ' RI ' , 7X , ' YRS ' , 7X, ' CCI ' , 7X , ' WPI ' ,
5X, 'FORK1',5X, 'FORR2',/,8F10.3,/)
FORMAT (3X,'DCAPB',5X, 'PRATE' ,5X, 'HAREA ' ,5X, »HLOAD',5X, 'CDIAM',
6X, "SERN',8X, «CT',5X, 'CTYPE ' , /, 8F10, 3 , / )
WRITE(IQ,320)
WRITE(30,330)
WRITE(IO,340)
FORMAT (3X, • POWER ',7X, 'DHR«,6X, 'FUEL»,5X, 'CARBC«,5X, 'CARBM',
5X,'PUMPF',5X,'CONTN'f6X,'VOLl',>',8F10,3,///)
WRITE (10, 350) COHRSfCMHRS^CLHRSfCTHRS.CLAB^MATMjCMATPjCTOT
FORMATC1X, 'CONTACTOR 0+M - ' , 4X, 'COHRS ' , 5X, 'CMHRS ' ,5X, ' CLHRS » ,
5X, 'CTHPS' ,6X, >CLAB' ,5X, 'CMATM' ,5X, 'CMA'IP' ,6X, »CTOT' ,/,
20X,8F10,0,/)
WRITE.(IO,360) ROHRS,RMHRS,,RLHRS,RTHRS,RLAB,RMATM,RMATP,RMATF,
RMATC,RTOT
FORMATdX, 'REGENERATION 0+M - ' , 4X, 'POHP-S ' , 5X, • RMHRS ' , 5X,
5X, 'RTHRS' ,6X, 'RLAB' ,5X, »RMATM' ,5X, 'RMA1PI ,5X, 'RMATF' ,5X,
'RMATC',6X, 'RTOT',/,20X,10FIO.O);
WRITE (10, 370) CONTN,TAPEAPCAREA,CLENG,TVOL,yOI,l
FORMAT C///,3X, 'CONTN',5X, «TAPEA',5X, 'CAREA ' ,5X, 'CLENG ' ,6X,
, 'TVOL' ,6X, «VOL1 ' ,/,6F10,2)
1000 CONTINUE
END
350
360
370
57
-------
o o o o
bl CJ
CJ«<
x a.
o
a »
EH o
us -i
CM
s
O)
o
c
Q
•£
00
o
O
CO
EH
ss
«*
a.
v- g
bl
S
5
(0
3
c
(0
o
m
sc
O ^
4_l <
3 a
I!
^ i
Q> S
Q. »
E ^
co 2
<
T-
£
D)
il
EH
Z
bl
Id
K
EH
id O
EH 31
•4 CC
Z f
ft V
EH CC
to o a
M b. td
EH
EH «:
oj P-
O M
O EH
(X
<
-1
t-i
CO O
o o
u o
«t ta
E-l E-«
a u
EH O
to o
o o
E CO
+ EH
O CJ
EH
CO O
a o
u o
EH >v
CQ ca
Cd EH
a o
•H EH
a co
«t o
o £>>«• o
O O -^v
O \O -H O
o r*- r* o
O » VO
o Ch r^ m
m o CM
00 O «
at 10 tn
o oo oo
o
»-i
EH
OC
EH -
CO EH
(X
U
Z. EH
U Cd
•-« S
CO 1
b] CC
o
»H CM *»
Cu bd Eb
> o o =1
a: o
o
o
o
-H O
o
u.
a, •
o
o
ui o
a. «
x o
EH
o
o
EH 10
o
o
o • • •
o o in o
• m oo in
O *X3 «-t ^O
«H 00 00
to
EH
Z
u
z
o
Cu
£.
o
CJ
CO
to
o
CC
a.
EH
CO
1
to
E-t
CO
o
EH
Z
•Z CO Cd
O U
»-• z oc
EH O «t
•« IO 1-" X -.
E- OC EH O .
CO O « Z
EH OC Z (-1
Cu CJ bl O Z
3 EH bl DC <
o. z u «* •»
O M O O
EH CJ OC J Z
Z ,3 <» «t
id Z Z < EH .J
= O O M O •
•3 CO CO 6H EH o
b. oc oc >-i m (9
2 < < Z => Z
> H to bl
EH
a
EH
o
o
to o
DC »
p- O
CM
l-H O
a «
o
o
o
a. o
o .
o
o
Q O
O •
r-
DC
Ii3
UJ
•-H O
O
o
o
a o
«x •
o o
in
i< m
b) •
a. in
< co
x —
id in
EH •
«£ CO
DCI~
DC ~-
VO
in
03 >O
oc •
«t CM
CJ 00
O 00
o
o
«H O
o in
CO
o
o
o
o >H
u
u. o
a, .
£ o
o
Z -H
0} •
ac o
CJ m
CD •
OC O
bl
O
b.
O
cr>
EC -<
a. o
bl •
* O
O
Cu
in
o <•»
EH 00
«C 0»
E K)
CC
EH 00 b. CO
O oo EH cr>
EH O «C 00
CJ CM E
ac
Ou J5 CU **5
EH -H EH m
4! 00 O
OC CM
03 CM
•at t~-
CM
W fl
o
> 00
O
o
o o
s> in
EH «
O
O
z o
Id
o
•t •
b] O
DC
o
o
OC EH
o a,
EH OC
CJ Id
•3. Z'
EH bl
Z CJ
O bl
CJ CC
cc
«;
E-
O
o
z •
EH O
Z 1H
O
CJ
58
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/2-78-181
2.
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Computer Cost Models for Potable Water Treatment
Plants
5. REPORT DATE
September 1978 (Issuing Date
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Daniel L. Guttman and Robert M. Clark
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Municipal Environmental Research Laboratory-
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
-Gin.,OH
10. PROGRAM ELEMENT NO.
1CC614 SOS-1 Task 33
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Same as above
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING,AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
16. ABSTRACT
A series of computer programs have been developed which calculate costs for specific
unit treatment processes used in water treatment plants. The programs contained in
this report are as follows: chlorination, chlorine dioxide, ozone and granular
activated carbon adsorption. Tables are provided which display input and output
variables,standardized values for variables, a key for variable input, and the
costs associated with five different sized plants for all programs. In addition
program listings and sample outputs for all programs are contained, in an appendix.
The costs generated by the programs are categorized as capital and O&M expenditures.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Computer Programs; Cost Effectiveness;
Cost Estimates; Cost Control: Simulation!
Unit Costs; Water Supply Optimization}
Water Treatment
Unit Processes;
Water Treatment
13B
9B
18. DISTRIBUTION STATEMENT
Release to public.
19. SECURITY CLASS (ThisReport}'
Unclassified
21. NO. OF PAGES
71
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
59
* U.S. GOVERNMENTPRINTINlSOFFICE: 1978— 757-140/1466
-------
-------
-------
M
I
er\
o
o
\
ru
I
-
O-
CD
z
m
€>
C
r-
0
PPORTUfs
H
<
m
S
TJ
r
O
m
TI
m
Z
1 —
"S
Tl
OR PRIVA
H
m
C
w
m
.
Ol
t\j
0)
00
m
— ^
o
1
CD
3
•-*•
m
ii Research
Information
o
CD
i— fr
CD
O
Q'
CD
0^
JJ
CD
CD
O
:r
Q.
D
CD
CD
O
73
3
__)
CD
13
i— t-
m
<
55
0
^
m
z
>
r—
TJ
JJ
OTECTION
Q
m
(fl
-a
o>
o
Tl
03 o
o c
o 2.
O
0)
0)
rn
o
H
o
c
0) •
m
Z
7) T
o o
I ^
^ -
> >
r- Z
Ti O
% -n
O m
H m
m en
TJ
i 5
CD
m
Z
n
------- |