United States
              Environmental Protection
              Agency
              Municipal Environmental Research
              Laboratory
              Cincinnati OH 45268
EPA-600/2-78-181
September 1978
              Research and Development
&EPA
Computer Cost Models
for Potable Water
Treatment Plants

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.  Environmental Health Effects Research
      2.  Environmental Protection Technology
      3.  Ecological Research '
      4.  Environmental Monitoring
      5.  Socioeconomic Environmental Studies
      6.  Scientific and Techniqal Assessment Reports (STAR)
      7.  Interagency Energy-Environment Research and Development
      8.  "Special" Reports   ;
      9.  Miscellaneous Reports

This report has  been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental  quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                                   .
                                            •September 1W8
COMPUTER COST MODELS FOR POTABLE WATER I'REATMENt TLSKTS
                          by  ;

                   Daniel X. Guttman
                    Robert M.  ..Clark

            Water Supply Research Division
      Municipal Environmental Research Laboratory
                Cincinnati, Ohio  45268
     MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
         OFFICE OF RESEARCH AND DEVELOPMENT
        U.S. ENVIRONMENTAL PROTECTION AGENCY
               CINCINNATI, OHIO  45268

-------
                             DISCLAIMER
     This report has been reviewed by the Municipal Environmental




Research Laboratory, U.S. Environmental Protection Agency, and




approved for publication.  Mention of trade names or commercial




products does not constitute endorsement or recommendation for use.
                                 ii

-------
                                 FOREWORD

      The Environmental Protection Agency was created because of inferfeas-


 ing public and government concern about the dangers of pollution to the


 health and welfare of the American people.   Noxious air,  foul water, and


 spoiled land are tragic .testimonies to the deterioration of ottf natural


'environment.  The complexity of that environment and interplay among its


 components require a concentrated and integrated attack on the problem.


      Research and development is that first step in problem solution,
                                                         9
 and it involves defining the problem, measuring its impact, and searching


 for solutions.   The Municipal Environmental Research Laboratory develops


 new and improved technology and systems (1) to prevent,  treat, and

 manage wastewater,  solid and hazardous waste,  and, pollutant discharges


 from municipal and community sources, (2)  to preserve and treat public


 drinking water supplies,  and (3)  to minimize the adverse economic*


 social,  health,  and aesthetic effects of pollution.   This publication is

 a  product of that research and is a most vital communications link

 between the researcher and the user community.


      The need to know the monetary costs associated with water treatment

 is fundemental to a realistic planning approach for potable water  supp'ly.

 It is the monetary cost,  in many cases,  that plays the decisive rdle in

 the determination of the technology used to make water safe for consump-

 tion.   This report  provides a series of  computer programs designed tb


 estimate the costs  of specific water treatment processes.   These programs

 allow the user  to vary a number of significant parameters which serve to
                                   111

-------
simulate the actual conditions -of a water treatment plant.  The use of

these programs should provide the water systems manager with a tool

which may be used to help formulate a strategy on how to best meet the

water needs of his community.;
                                    Francis T-. Mayo, Director
                                    Municipal Environmental E.esearqh
                                    Laboratory
                                  IV

-------
                              ABSTRACT






     A,series of computer programs have been developed which calculate




costs for specific unit treatment processes used in water treatment




plants.  The programs contained in this report are as follows::  chlorina-




tion, chlorine dioxide, chloramination, ozone and graular activated




carbon adsorption.  Tables are provided which display input and output




variables, standardized values for variables, a key for variable input,




and the costs associated with five different sized plants,, for all




programs.  In addition, program listings and sample outputs for all




programs are contained in. an appendix-;.  The costs generated by the




programs are catagorized as capital and O&M expenditures.
                                  v

-------

-------
                           TABLE OF CONTENTS






                                                               Page




Foreword .,.,.... 	 .  	 ill




Abstract	v




Tables   	 	 ........ vi




Figures	viii




Acknowledgments  	 ix




     1.   Introduction 	 1




     2,   Chlorination 	 4




     3.   Chlorine Dioxide	10




     4.   Chloramination	16




     5.   Ozonation	22




     6.   Granular Activated Carbon '..	29




     7.   Applications	37




     8.   Summary and Conclusions	43




     9.   Appendix	45
                               vix

-------
TABLES
Number
1.
2.
3.

4.
5.
6.
7.
8.

9,
10v

11.
12.
13.

14,
15.
16.
17.
18.

19.
i
Input Variable List - Chlorination . .... , . . .
Output Variable List - Chlorination ........
Standardized Vules Used for the Determination
of Sample Costs - Chlorination ...........
Key fpr Variable Input - Chlorination ...... . .
Chlorine Costs Assuming Standardized Design Levels „
Input Variable List - Chlorine Dioxide . . ... . .
Output Variable List - Chlorine Dioxide .......
Standarizedi Values Used for the Determination of
Samplfe Costs — Chlorine Dioxide ..........
Key fpr Variable Input - Chlorine Dioxide ,,.,., .,
Chlorine Dioxide 6osts Assuming; Standardized
Xtesf gfi; Levels ...................
Input Variable List - Chloramines , . . . ». . . . .
Output Variable List - Chloramines ..........
Standardized Values Used for the Determination of
Sample Costs - Chloramines 	 	 	 . . .
Key for Variable Input - Chloramine 	 	
Cfiloramine Costs Assuming Standardized Design Levels
Input Variable List - Ozone 	 	 » . . .
Output Variable List - Ozone 	 	 	
Standardized Values Used in the Determination of
Sample Costs - Ozone ...............
Key for Variable Input - Ozone ...........
Page
5
6

7
8
9
, 11
12.

, 13
.. 14

15
. 17
. 18

. 19
. 20
. 21
. 23
. 24

. 25
. 26
  V1XX

-------
TABLES (Continuted)
Number
20.
21.
22.
23.
24.
25.
26.
P
Ozone (Air) Costs Assuming Standardized Design
Ozone (Oxygen) Costs Assuming Standardized Design
Input Variable List - Granular Activated Carbon . . .
Output Variable List - Granular Activated Carbon . . .
Standardized Values Used for the Determination of
Key for Variable Input - Granular Activated Carbon . .
Granular Activated Carbon Costs Assuming Standardized
'age
27
28
.31
33
34
35
36
     ix

-------
                         ;     -FIGURES


Number                                                      Page

  1.      Cost for 100 MGD Sand Replacement System
            Based on Reactivation Frequency 	   38

  2.      Transportation Cost Versus On-Site Reactivation .   39

  3.      Effect of 6% inflation on the Cost of 150 MGD
            Sand Replacement System	   41

  4.      The Cost of Ozone and GAG versus Reactivation
            Requency in Months  «	   42

  1A.     Listings of Chlorine Cost Program	   45

  2A.     Sample Printoutifrom Chlorine Cost Program  ...   46

  3A.     Listing of Chlorine Dioxide Cost Program  ....   47

  4A.     Sample Printoug from Chlorine Dioxide Cost Program 48

  5A.     Listing of Chloramine Cost Program	   49

  6A.     Sample Printout of Chloramine Cost Program  .  .  '.   50

  7A.     Listing of Ozone Cost Program .,	  .   51

  8A.     Sample Printout;of Ozone (Air)  Cost Program ...   53

  9A.     Sample Printout |of Ozone (Oxgyen)  Cost Program  .   54

 10A.     Listing of Granular Activated Carbon Cost Program   55

 11A.
Sample Printoug ;from Granular Activated Carbon
  Cost Program  .  	
                                                             58
                               x

-------
                           ACKNOWLEDGEMENTS









     The author would like to express gratitude to Robert M. Clark,




Water Supply Research Division, for his assistance in preparing,this




report.  The author would also like to acknowledge Richard G. Eilfers,




Wastewater Research Division, as the writer of the original versions




of the computer programs* that were later modified for inclusion in




this report.
                                 xi

-------

-------
                              INTRODUCTION






     In December 1974, the 93rd Congress of  the United  States  enacted   .-




legislation which placed new and more  stringent regulations  on the




maximum contaminent level (MCL) for specified substances allowable  in




public drinking water supplies.  This  legislation has encouraged water




utilities throughout the country to take a closer look  at  their own




treatment processes and determine if they meet the legal and aesthetic




standards' set forth in the Safe Drinking Water Act.  Many  of these:  water,




utilities are now discovering that, the, drinking water, they produce  not




only exceeds suggested MCL's, but that the cost of upgrading their.




inadequate treatment systems may be significant.




     The variety of water treatment options  open to the potable water




producer are quite varied in type as well as price. . These treatment




techniques have proven to be dependent upon  a number of -intrinsic




factors pertaining to the water utility itself.  Among these factors.




are:  the location of the water utility; the size of the water utility;




the source of the raw water; the quality and characteristics of the




pollutants in,the,raw water; and energy costs




     This report contains a set. of computer programs which have been




developed to determine costs for ch'lorination, chlorine, dioxide, chlora-




mination, ozonation, and granular activated carbon 'processes ,for ,\




water treatment.  The programs contained in the report were  utilized to




calculate costs which were presented in an earlier report  entitled





                                   1

-------
"The Cost of Removing Chloriform land Other Trihalomethanes from Drinking

                o                !
Water Supplies."   These costs will provide the waterworks manager with


a. planning estimate on which he can base a detailed investigation into


particular water treatment systems.  The cost estimates produced by


these programs are based on cost ;curves generated by Black and Veatch


Consulting Engineers.    The computer programs were developed by the


Systems and Economic Analysis Sections of EPA's Wastewater Research and


Water Supply Research Division.


     The costs, generated by those programs are broken down into two
                                 I
categories: Capital Costs and. Operation and Maintenance Costs,.  Capital


costs include:  construction for site preparation; plant construction;

                             *    |
legal; fiscal and administrative services; interest during construction;


start-up costs
O
    Operation and Maintenance costs include:  chemical and
raw material costs; labor costs; operation and maintenance  costs  such  as

                                                        3
utilities, annual replacement  of:expendable  items,  etc.   These costs


are also adjusted to  current dollars using EPA's  Sewer  and  Sewage


Treatment Plant  Construction Cost  Index  and  the Wholesale Price Index.


Labor  costs are  derived  from the U. S. Department of  Labor's  Labor  Cost


Ind.ex.  This report is arranged so that  each of its major sections

                                                   3
parallel the major sections of the earlier report.    Each  section  also


corresponds to a particular treatment  type which  can  be used  to control


the level of trihalomethanes in drinking water  supplies.


     The tables  presented  in each  section are of  similar format.   Input


and important output  variables are defined in two separate  tables.   Values


for certain design variables are given so that  a  test run can be  made  on


the program and  compared to the sample printouts  shown  in the appendix.

-------
A key for variable input is given in each section.  (Note:  all of the




programs follow a similar procedure for variable input and utilize stand-




ard names for values used in more than one program.)  The final table in




each section shows the costs for each treatment process at five different




flow rates.  These costs will give the user a feel for the economies of




scale realized when larger plant sizes are utilized in the programs.
                                     3

-------
                             CHLORINATION


                                i
     Table 1 lists the input variables required for the program and


Table 2 lists the output variables and their definitions.  Table 3 contains


a specific set of the design variable values from which costs are generated.


Table 4 is a key for inputting the variables into the program.  Table 5


contains the cost information which would result from the design values at


various flow levels (1, 5, 10, 100, and 150 mgd), assuming 70% capacity.


Figure 1A (Appendix A) contains a listing of the chlorine cost program used


to calculate the costs for chlorination.  Figure 2A is a sample printout


from the chlorine cost program using standardized values found in Table 3.


     It is the process of chlorination which interacts with organics in
                                i

water and causes the formation of trihalomethanes.  In anticipation of the


establishment of a MCL to be set forth by the Safe Drinking Water Act,


chlorination may create problems.  It is important, therefore, to consider


some method of removing organics prior to disinfection or to consider


alternatives to chlorination as a disinfectant.  The following sections


are intended to provide this evaluation.

-------
Variable





Q:



DC12:




TC12:




CG12:




ECF1:




ECF2:




CGI:




WPI:




DHR:




PCT:









RI:




YRS:




NCASE:
              TABLE 1




INPUT VARIABLE LIST - CHLORINATION






                 Definition




         Average Daily Flow, M&D




         Dose of Chlorine, mgA




         Contact Time, minutes




         Cost of Chlorine, S/ton




         Excess Capacity  (contact basin)




         Excess Capacity  (chlcSrine feed system)




         Construction Cost Index




         Wholesale Price  Index




         Direct Hourly Wage Rate, $/hr




         Percent of total overhead to be applied to




         chlorine treatment section of treatment plant




         Amortization Interest Rate, percent




         Amortization Period, years




         Numbed of Data Sets to be Rurt

-------
Variable




BVOL:




CUSE:




CON:




CAP:




AMM




O&M




TOT
               TABLE 2




 OUTPUT VARIABLE LIST - CHLORINATION






             Definition




Basin Volutne, cu. ft.




Chlorine Use, tons/yr.




Construction Cost, $




Capital Co;st, $




Debt Cost, c/1000 gal




Operations and Maintenance Cost, £/1000 gal




Total Cost, C/1000 gal

-------
                               TABLE 3




STANDARDIZED VALUES USED FOR THE DETERMINATION OF SAMPLE COSTS - CHLORINATION
     Average Daily Flow (Q)




     Dose of Chlorine (DC12)




     Contact Time (TC12)




     Cost of Chlorine (CC12)




     Excels Capacity (ECF1 + ECF2)




   * Construction Cost Index (CCI)/100




  ** Wholesale Price Index  (WPI)/100




  ** Direct Hourly Wage Rate (DHR)




     Percent of Overhead (PCT)




     Amortization Interest Rate (RI)




     Amdrtization Period (YRS)
7 mgd




2 mg/A




20 minutes




300 $/tbn




1.43




2.567




1.781




5.19 $/hr




.15




.07




20 years
                 Plant operated at 70% capacity.
   * March 1976




  ** Feb* 1976

-------
                                     TABLE  4

                      KEY FOR VARIABLE  INPUT  -  CHLORINATION
Variable
NCASE
LIST
Q
DCL2
TCL2
CCL2
ECF1
ECF2
CGI
WPI
DHR
PCT
RI
YRS
Card
1
2
3
3
3
3
3
3
4
4
4
4
4
4
Columns
1 & 2
; 1-80
1^10
; 11-20
21-30
31-40
41-50
51-60
1-10
11-20
21-30
31-40
41-50
51-60
                                                             Comments

                                                   This  integer  sets the number
                                                   of  cases  to be  run.

                                                   Alphanumeric  title given  to
                                                   each  case

                                                   This  variable and the subsequent
                                                   ones  may  be placed anywhere
                                                   within its allotted  columns.
Cards 2, 3 and 4 are repeated for each new case.

-------





































in

S3

EH







































































a
a

Kl
rJ
s:
rH
CO
Id
Q

1
M
g ^
< rH
a CO
•Z. 50

EH 0
CO O
0
O rH

g Q
CO
to
CO
H
CO
O
0
u
s
rH
B4
3
S3
O































rH
CO U



•o
M
6

O
rH


H 0


S -u
t^J t)
0 C

to
•u u
vH CO
p. c
rH
eo -u



•a
g
o
o
rH



u to
O 0
H U

S -u
o c
o

!0
4-) J-l
•H U
CO C
0



rH
CO *J
u to


•a
o
rH




O O
H V

g »J



rH
to
•H tt
C. O
tfl CJ
O


rH
C3 4J
•U to



T>
M
S




O O
EH U


S rr1

O O

rH
10

•H CO
a. p
to c5

to -u
•U CO


•O
00
e

H

O O
EH U



O O
op
rH
10

iH CD
a. o
to o












O





o
o
o
o
o

rH

ON

rH


O
o
o

o


VO
rH




CO
CM
cn


o
o
o

o



CO
en




SO
en
-3-



O
o
p
o



VO
cn

o
rH



O
O
O

Q
O
rH
0\






c
•H
CO
10
pa

CM
tH
VO

cn



^f
o
en

rH
VO
O

0

cn


in
rH
cn



in
p




i^
o
r--


m





in
in
CM




CM
cn




VO
-a-
in



in
CXI
en


rH

CM
-3-
CM
P

rH
CM

rH .

"
C
ID
tfl
w

'O
0)
(U


CM
iH
VO
CM
m



^g.
o
m

o





in


m
tH
en




CM




m

O

rH
CM






-------
                           CHLORINE DIOXIDE



     Chlprine dioxide, since its! inception as a potable water treatment


agent; in 1944, has been used almost exclusively in the post-treatment


stage of the water treatment cycie.  It is more expensive than chlorine,
                                I

but: displays a disinfectant ability comparable to chlorine and at a


lower concentration in water.  In cases where excess chloroform and


other trihalomethanes are produced by chlorination (chlorine dioxide
                                i

produces no trihalomethanes), the existing chlorination equipment can be
                                I

modified to accommodate chlorine dioxide.  However, the harmful byproducts,


if any, resulting from use of chlorine dioxide are not known.


     Tables 6 and 7 contain the program's input and output variables,


respectively, together with the definitions for each variable.  Table 8


contains standardized values for; the design variables used in cal9ulating


costs.' Table 9 is a key for inputting the variables into the program,


Table 10 displays the costs associated with five  different flow rates  (all


at 70% capacity).  In the Appendix Figure 3A contains a listing of the


program which was utilized for calculating the costs for chlorine dioxide.


Figure 4A  is a sample printout from the  chlorine  dioxide program'utilizing


values found in Table 8.
                                     10

-------
                                TABLE 6

                INPUT VARIABLE LIST - CHLORINE DIOXIDE



Variable          Definition

   Q:        Average Daily Flow, mgd

   DC12:     Dose of Chlorine, mg/£

   TC12;     Contact Time, minutes    ;

   Cpl2:     Cost of Chlorine, $/ton

   CNC102:   Cost of Sodium Chloritej $/tpn

   RATIO:    Ratio of NaC102 to C±2

   ECF 1-3:   Excess capacity for plant

   CCI:      Construction Cost Index

   WPI;      Wholesale Price Index

   DHR:      Direct Hourly Wage Rate, $/hr

  ,PCT:      Percent of Total Overhead to be applied to
             chlorine dioxide section of treatment plant

   RI:       Amortization Interest Rate

   YRS:      Amortization Period, years

   FORK1:   'Control variable for program (not presently used
             by program - it is set at 1)

   NCASE:    Number of data sets program is to execute.
                                  11

-------
                            . TABLE 7
                  pyTPUT VARIABLE^ - CHLORINE DIOXIDE
Variable

  BVOL:

  CUSE:

  CNCUSE:

  CC102:

  CON:

  CAP:

  AMM:

  O&M:

  TOT:
    Definition

B,asin Volume, cu ft

Chlorine Use, tqns/yr

Sqdiunj Chlorite Use, tons/yr

Cpst of Chlorine Dioxide, $/yr

Construction Cost, $

Capital Cost, $
         i   i
Debt Cost1, 0/1000 gal

Operations & Maintenance, C/1000 gal

Tptal Cost, C/10QO gal
                               12

-------
                                  TABLE 8




                STANDARDIZED VALUES USED FOR THE DETERMINATION




                      OF SAMPLE COSTS - CHLORINE DIOXIDE






   Average Daily Flow (Q)                                ,      7 mgd




   Dose of Chlorine (DC12)                                     .5 mg/£




   Contact Time (TC12)                                         20 minutes




   Cost of Chlorine (CC12)                                     300 $/ton




   Cost of Sodium Chlorite (CNC102)                            144 $/ton




   Ratio of Sodium Chlorite to Chlorine (RATIO)                3.1:1




   Excess Capacity (ECF1 + ECF2)                  ,             1.43




   Program Control (FORK1)                                     1




 '* Construction Cost Index (CCI)/100                           2.567




** Wholesale Price Index  (WPI)/100                             1.781




*'* Direct Hourly Wage Rate (DHR)                               5.19 $/hr




   Percent of' Overhead (PCT)                                   .15




   Amortization Interest Rate  (RI)                             .07




   Amortization Period (YRS1)                                   20 years









       Plant run at 70% capacity.




       Sodium Chlorite assumed 80% pure.









 * March 1976




** Feb. 1976
                                    13

-------
                                TABLE 9
               KEY  FOR VARIABLE  INPUT  -  CHLORINE  DIOXIDE
Variable

NCASE


LIST
Card

 1
DCL2
TCC2
CCL2
CNC102
RATIO

ECF1
ECF2
ECF3
FORK1

CCI
WPI
DHR
POT
RI
YRS
 3
 3
 3
 3
 3

 4
 4
 4
 4

 5
 5
 5
 5
 5
 5
Columns

 1 & 2


 1-80


 1-10
 11-20
 21-30
 31-40
 41-50
 51-60

 1-10
 11-20
 21-30
 31-40

 1-10
 11-20
 21-30
 31-40
 41-50
 51-60
        Comments

This integer sets the number
of cases to be run.

Alphanumeric title given to
each case.

This variable and the sub-
sequent ones may be placed
anywhere within  its allotted
columns.
Card 2, 3, 4 and 5 are repeated for each new case
                                        14

-------














































o
rH

W

na

EH











































































CO
w

Ed


z;
o
CO
w
a

a
H
1SJ
H

e


H rH
CO CO
00
o
2i O
M O
S3 o

CO 	
CO <>
CO
EH
O
CJ

w
0
W
1
o

g
M
O


CJ






























rH
C3


•O
CX
B

0
3


_O


s

O

CO

•H
CX
CO
CJ
rH
CO



•o
ot
e

O
O
rH



JJ
o
H


S

O


rH
CO
JJ
iH

CO
CJ




rH
CO
JJ


•o


o
rH




O


S
3
o



rH
CO
JJ
iH
Ci
CD
CJ


^_l
O
JJ



"oo
g

m


O
H

a
3
o

rH
CO


a.

CJ
rH
efl
JJ


•a
CO
g

rH

p
EH

s

"o

rH
CO
JJ
•H

CD













u
CO
o



CO
o


JJ
CO
o
CJ


JJ
CO
o
o


JJ
CO
o
CJ



CO
o







JJ
CO
o


JJ
CO
o
CJ




JJ
CO
o
CJ




JJ
CO
o


^J
CO
o
CJ


JJ
CO
o
CJ


JJ
CO
0
CJ

JJ
CO
o
CJ

JJ
CO
o
CJ













o

rH


o
o
o
o
o

rH



o

rH



o
0
o

o

0

rH







CO

en



8
o

o



CO
CM
en





^Q
en
-3



o
o
o

o


en




rH
rH



0
o
o

o
rH
rH







c
•H
CO
«
CQ

CM
rH
CJ
ON
rH
rH


00
CO
o

__,
en
o



CM
en
rH



en

o



CO
en
o







en
CM
en



m
I-f





o

rH





en
r-




rH
en
CM



en

-------
                             CHLORAMINATION


     The use of chloramines as tyater disinfectants has been considered for


water utilities presently using '• chlorine and finding unsatisfactory amounts


of trihalomethanes in their product water.   (Chloramines do not produce


trihalomethanes.)  Chloramines are generated by the reaction of chlorine


and ammonia.  The costs of converting to chloramine disinfection are low

since existing chlorination equipment can easily be modified to produce


chloramines.


     Table 11 is a listing of input variables.   Table 12 is a listing of


output variables generated by the program.  Table 13 contains standard-


ized values for the design variables used in cost calculations.  Table 14


is a key to variable input into the program.  Table 15 displays the


associated with five different flow rates (all at 70% capacity).   In the


appendix, Figure 5A contains a listing of the chloramine cost programs.


Figure 6A is a sample printout flrom the program using standardized data.


(Note:  Construction, capital, and debt costs for the ammonia reactor are

                                                                          '
set to zero since they represent a small investment in relation to the


entire chloramine system.)
                                    16

-------
                                TABLE 11

                   INPUT VARIABLE LIST - CHLORAMINES



Variable                Definition

   Q:        Average Daily Flow, mgd

   DC12:     Dose of Chlorine, mg/£

   TC12:     Contact Time, minutes

   CC12:     Cost of Chlorine, $/ton

   CNH3:     Cost of Ammonia,'$/ton

   RATIO:    Ratio of NH3 to Cl

   ECF 1-3:  Excess capacity for plant

   CCI:      Construction Cost Index  '             :    .

   WPI:      Wholesale Price Index

   DHR:      Direct Hourly Wage Rate, $/hr

   PCT:      Percent of Total Overhead to be applied to
             chlorine dioxide section of treatment plant

   RI:       Amortization Interest Rate

   YRS:      Amortization Period, years

   FORK1:    Control variable for program (not presently used
             by program - it is set at 1)

   NCASE:    Number of data sets program is to execute.
                                  17

-------
                                TABLE 12


                     OUTPUT VARIABLES - Chloramines
Variable


  BVOL:


  CUSE:


  NHSUSE;


  GAMINE:


  CON:


  CAP:


  AMM:


  0+M:


  TOT:
      pefinitipn


Basin Volume, cu ft


Chlorine Use, tons/yr


Ammonia Use, tons/yr


Cost of Chloramines, $/yr


Construction Cost, $
              I

Capital Cost, $


Debt Cost, C/lOOO gal


Operations & Maintenance, c/1000 gal


Total Cost, £/1000 gal
                                    18

-------
                                  TABLE 13




               STANDARDIZED VALUES USED FOR THE DETERMINATION




                        OF SAMPLE COSTS - CHLORAMINES
   Average Daily  Flow (Q)




   Dose  of Chlorine  (DC12)




   Contact Time  (TC12)




   Cost  of Chlorine  (CC12)




   Cost  of Sodium Chlorite  (CNH3)




   Ratio of Ammonia  to  Chlorine  Cone.  (RATIO)




   Excess Capacity (ECF1 4-  ECF2)




   Program Control (FORK1)




 * Construction Cost  Index  (CCI)/100




** Wholesale Price Index  (WPI)/100




** Direct Hourly Wage Rate  (DHR)




   Percent of Overhead  (PCT)




   Amortization Interest Rate  (RI)




   Amortization Period  (YRS)
7 mgd




3.0 mg/£




20 minutes




300 $/ton




200 $/ton




1:5




1.43




1




2.567




1.781




5.19 $/hr




.15




.07




20 years
       Plant run at 70% capacity.
 * March 1976




#* Feb. 1976
                                    19

-------
                               TABLE 14

                KEY FOR VARIABLE INPUT - CHLORAMINES
Variable

NCASE


LIST
Card

 1
Columns               Comments

 1 & 2        This integer sets the number
              of cases to be run.

 1-80         Alphanumeric title given to
              each case.

 1-10         This variable and the sub-
              sequent ones may be placed
              anywhere within  its allotted
              columns.
DCL2
TCC2
CCL2
CNH3
RATIO

ECF1
ECF2
ECF3
FORK!

CCI
WPI
DHR
PCT
RI
YRS
 3
 3
 3
 3
 3

 4
 4
 4
 4

 5
 5
 5
 5
 5
 5
 11-20
 21-30
 31-40
 41-50
 51-60

 1-10
 11-20
 21-30
 31-40

 1-10
 11-20
 21-30
 31-40
 41-50
 51-60
Cards 2, 3, 4 and 5 are repeated for each new case
                                        20

-------
M
J



























(J
w
s

H ,
M
£4

Q
S

ft
g ^
!^ (0


eg
c/3
<
8
c*0
8

z
M
S

o
IT*
Cj




























Q
CJ
s

o
in
rH










O
Cj
H
o
0
tH







O
CJ

O









a

in











a

s
rH


















ra
4-1
o
H

s

o


CD

a.

CJ


a
tj
o
H
s

o

tH
a
• ft
a.
CJ

tH
a
0


§

t-i
US
•H
0.
u



«
I

O
iH
«
•H
a.
CD
o


rH
.U
O
H

S
O
rH
S
•H
a.
n
u









o
so
iH


o
o

o


o

rH



O

rH



0
0
0


o
tH


CO
CM
cn



o
o
d

00
CM
cn

so
cn




8
0

so
cn



t-H
rH
C\




8

C3
rH
r-l






O
25
a a
o a
o ca
o
CM
m
o
in



o


m

0

0


-a-
m
o


in
-a*
o


CM
0
o

cn
CM
ON
o

o>
rH
so
O

-d*
O
en

CM
CO
rH

rH
O
en
O

CN
in
-sf

o

SO
m
m
CM


SO
r—
CM

tH

-------
                               OZONATION


     Another potable water treatment process that compares favorably


in cost as well as disinfectant.ability with chlorination and chlorine


dioxide is ozonation.  Ozone can be generated from air or bottled oxygen,


air being slightly less expensive.  The fact that the law requires a


disinfectant residual remain in treated water, and ozone leaves none,


necessitates an additional disfectant treatment stage.  Therefore, along


with the cost of ozonation, an additional cost for a residual disinfectant


has to be considered.  As with chlorine dioxide, the'harmful byproducts,


if any, caused by ozone are not kinown.


     Tables 16 and 17 are listing's of input and output variables and their


definitions.  Table  18 contains the standardized values used for the design
                                 I

variables.  Table 19 is a key for inputting the variables into the program.


Tables 20 and 21 contain the costs associated with five different flow


rates  (all at 70% capacity).  In jthe appendix Figure 7A is a listing of  the


ozone cost program.  Figures 8A and 9A are sample printouts from this


program using the values found in Table 18.
                                      22

-------
                          TABLE 16

               INPUT VARIABLE LIST - OZONE
     Variable

 DMATX(1,1)  = D03

 DMATX(2,1)  = DT03

 DMATX (3,1)  = Q

 DMATX (4,1)  = CKWH


 DMATX (5,1)  = E03


 DMATX (6,1)  = 02CST

 DMATX (7,1)= QP

 DMATX (8,1)  = TANKC

 DMATX (9,1)  = FORK


 DMATX (10,1)

 DMATX (11,1)  to DMATX  (12,1)

 DMATX (13,1)  =  EOF

 DMATX (14,1)  =  ECF

 DMATX (15,1)  =  ECF


 DMATX (16,1)  =  ECF

 CGI

 WPI

 DHR

 PCT


 RI

YRS
        Definition

 Dose of 'ozone,  mg/£

 Contact time, minutes    . ,  ,-

 Average daily flow, mgd

 Cost of electrical power $/therm
 (1 term =  100,000 BTU)

 Electrical power needed to  generate
 ozone,  kw-hr/lb

 Cost of liquid  oxygen,  $/lb

 Peak flow,  mgd

 Cost of oxygen  storage  tank,  $

 Program control:   0 = ozonation  by  air;
 1  =  ozonation by oxygen

 0

 0

 Excess  capacity (oxygen storage  tank)

 Excess  capacity (diffused air/oxygen system)

 Excess  capacity (aeration basin, covers,
 baffles);

 Excess  capacity (ozone  regeneration facility)

 Construction Cost  Index

Wholesdale Price Index

Direct Hourly Wage  Rate, $/hr

Percent of.total overhead attributed to ozone
treatment section of  the water treatment plant

Amortization interest rate, percent

Amortization period, years

      23

-------
                              TABLE 17
                     OUTPUT VARIABLES - OZONE

Variable            Definition
 PPD03;    Ozone production, Ibs/day
 V03:      Reaptor volume, 1000 cu ft
 PPD.02:    Oxygen usage, Ibs/day
 DKWHR:    Electrical Power usage Kw-hr/day
 ECOST:    Yearly cost of  electrical power,  $/yr
 02C:      Yearly cost of  liquid 02> $/yr
 AF:       Amortization  factor
                             i

                           DIFFUSED AIR SYSTEM


 CFM:      Air  usage,  cu ft/min
 OHRS:     Operations  man-hours, hr/yr
 TMSU;     Materials and supply cost,  $/yr
                                  24

-------
                                  TABLE 18




                     STANDARDIZED VALUES USED FOR THE




                  DETERMINATION OF SAMPLE COSTS - OZONE






     Dose of Ozone (DOS)




     Contact Time (DT03)




     Average Daily Flow (Q)




     Electrical Power Cost (CKWH)




     Electric Power Needed to Generate Ozone (E03)




   * Cost of Liquid Oxygen (02CST)




     Peak Capacity for Plant (QP)




   * Cost for Oxygen Storage Tank (TANKC)




  ** Program Control (FORK1)




     Excess Capacity (ECF 1-4)




     Construction Cost Index (CCI)/100




     Wholesale Price Index (WPI)/100




     Direct Hourly Wage Rate (DHR)




     Percent of Overhead (PCT)




     Amortization Interest Rate (RI)




     Amortization Period (YRS)




                          Plant Run at 70% Capacity
20 minutes




7 mgd




.01 $/Therm




11 KWH/lb




.046 $/lb




10 mgd




37000. $




either 1 or 0




1.0




2.567




1.781




5.19 $/hr




.15




.07




20 years
*    These variables only have values when ozone is generated from oxygen.




**   See variable definitions.
                                    25

-------
                                  TABLE 19

                        KEY FOR VARIABLE INPUT - Ozone
Variable

NCASE


LIST


DOS
DT03
Q
CKWH
E03
02CST
QP   -
TANKC
FORK
Card

 1
ECF1
ECF2
ECF3
ECF4
CGI
WPI
DHR
PCT
RI
YRS
 3
 3
 3
 3
 3
 3
 3
 3
 4
 4
 4
 4
 4
 4
 4
 4

 5
 5
 5
 5
 5
 5
Cards 2, 3, 4 and 5 are repeated for
       Columns


        1 & 2


        1-80


        1-8
        9-16
        17-24
        25-32
        33-40
        41-48
        49-56
        57-64
        65-72

        1-8
        9-16
        17-24
        25-32
        33-40
        41-48
        49-56
        57-64
        65-72

        1-10
        11-20
        21-30
        31-40
        41-50
        51-60

each new case.
                                        26
        Comments
This integer sets the
number of cases to be run.

Alphanumeric title given
to each case.

This variable and the sub-
sequent ones may be placed
anywhere within its
allotted columns.
                                                       No variable corresponds to
                                                       this position.  Zero has
                                                       to be read in.

                                                       Same as above
                                                       See comment at beginning of
                                                       card 4.

-------













































o
CM

ta

to

H












































































CO

Id

Id

Z
O
CO
a
o

§
M
M
O

<

§rH~
CO
EH 00
CO
O
o o

M rH
5 -O
co x_>
CO
CO
H
CO
o
0

rH
^


Id
o

o

































rH
CO 4J
4J CO
O O

•O
00
B

o
in
rH


r* CJ


a 4J
VO CO
O 0
CJ
CO

•H CO
s-s
CJ
rH
CO ,4-1



00
s

0
o
rH




4J CO
o o
H U

a 4J

0 0
CJ
rH
CO
4J 4J
•H CO
P. O
to O
CJ



rH
CO 4J
4J CO


•o



0
rH




O O
H 0



a 4J
i£ CO
O 0
CJ



CO
4J 4J
•H CO
Q. O
CO CJ




rH
CO -U
4J CO


TJ
00
B

in



O O
H CJ

2 4J
<•£ CO
O O
CJ

rH
CO
4-1 4-1
•H CO
C. 0


CO 4J
4.) CO

TJ
oc
6
rH

H CJ


t& CO
0 cS
rH
CO

•H CO
p< O
CO CJ
CJ















CM
CM




rH
OX.
O


o
CO
CO
•

VO
CO
•a-


,_,

o



in








CM
CO
m



rH
OX
O





o


•




vo

, m


rH
0











in

o
rH
OX
o

CO
vO
in



00
e
•H
4J
CO
a 01
C CU
0) -H
O 4J
•H
0) rH
C -rt
O O
N CO
O E1*
0.
CM
CM



O
O
O

o
0\
CM
CM
•

vo
CO
CXJ


O
O
o

o

VO
CO
CM






CM

CO
•


O
o
o

. o



CM

CO





VO
CO
-a-


o
o
o

': O



00




-a-
CXI
rH
O
O
O
: o
• -a-
-a-
CN

rH


CO
a tu
1-1 rH
CO 
0) o

CO
rH



in
rH
rH


CO
CN
O
•

CO

rH


in
-a-
i— i



CO
CO
o






rH


•


O\
CM
VO





CM
rH
rH






rH
CM

rH
^ '
CO
O

rH


CO
CO
rH


rH
-a-
-a-
•*
CM

vO
fO
VO

O








E
01
13 4J
CO CO
CO >>
3 CO
U-4

•H iH
O ^
O
o
o

o

0
o
o

o
0
o
o
o

o
o
o

o
o
o
o

o

o
o
o

o




0
o
o
0


o
o
o

o



0
o
o
o




o
0
o

CD
o
0
o

0


o
o
o

o
o
o
o
o
o
o
o
0
0
o .
o

o


.M
B
CO

CU
00
CO
V4
o
4J
CO

CM
o
CO
f^-



vo
o
CM
1

^
CO
in
•

o
in
CO


^
CO
CXI
•


ro
rH
vo






m

VO
rH


rH
CM

•




-a-
CM
c^
•





VO
CM

CX)
vO
CM
rH

rH


CO

rH

rH
0

CO
VO
-3-
vO
f~
CO
VO

in

CM






4J
10
O
U

rH
CO
4J
O
EH
27

-------













































rH
CM

U
3
H













































































C/i
&

S


o
tH
Q

Q
a
N
M
9


§/— ^
rH
H to
to oo

CJ O
Z O
M 0
S rH

CO O
to »-••
g

o


•g
§

o.
[d
3
S
o


































rH
10 -U
4J to
O O

•0
00
g

0
m
•H



EH O


S 4J
S to
o o
o

rH
to

•H 10
p. O
CO CJ
rH
tO 4J



°s
S
O
O



4-1 to
O O
H U

S JJ
b3 to
O O
CJ
^
CO
•H W
CU 0
to cj
CJ


rH
CO 4J
4J tQ



OC
6

0
rH




O O
H CJ


S 4J
& to




rH
10
4J 4J
•rl 10
O. O
a o



rH
10 4J
AJ to


1

in



O O
H U
S 4->
«-SJ CO
o o
CJ

rH
to
4-1 4J
•H 10
0. O
to cj
CJ
rH
CO 4J
•u to


•0

E

rH

O O
H 0


L£ U3
O O

iH
cd

•H to
ctrS
CJ
















c\

cs




> T-H
! a\
o



CO

TH


^

£M


r-1
CT.
O

!

; m
; co

•




0\
CM
CO



C7\

CO





CM










| rH
O



m
in
CM



m

CO


,_,

o


CO
o

"

CO
c
TH

10
t-t
0) to
CJ 01
0) -H
CJ 4J
•H
•0) rH
C -H
O U
N 10
O F&<
en
CM
CM




O
O
O

O

CTl
CM
CM


vO
CO
CM


O
O
O

O

CO
CM





CM
p-
CO



O
O
O

0



CM
CO





VO
CO
-a-


o
o
o
o


vO
CO





^>
CM

rH
O
O
O

o
^

CM
rH


to
C O
•H rH
to 
.



CA
CM

•




CM
rH
rH






rH
CM

rH
-a-
CO
O
rH


CO
CO
rH




^j-
^

•*
CM

VD

CO
cn
VO

•







g
01
Tj 4J
01 to
to >.
3 to
U-t

•H -H
0 <
rH

rH




in
rH
rH



VO
in
o


0
CO
rH


in
rH
rH



-a-
vO
0





CM
CO
CO



m
rH
rH





VO
rH
CM










in
rH
rH
*


-a-
vO
CO



CO
0
VO

rH
in

o

o
00
CM
m
rH



C
10
H

01
00
to

o
4J
CO

CM
O
CM
rH
CO




rH
CM
CO



rH
ON
•a-


0

CO


CM
m
CO



rH
in
«




-a-

r^

TH

VO
CO
00





CO
CO





cr>
CM
in

CM
rH
CM
rH


CO
CO
CM

rH

CO
CO
VO

r*.
Ov
CO
CO

CO
-a-
•a-
CO
CO







4J

o
CJ

rH
10
4-1
O

28

-------
                    GRANULAR ACTIVATED CARBON





     The use of granular activated carbon  (GAC) for treatment of potable



water  (even when used at a large water utility at a high capacity factor)



is an  expensive treatment process.  The addition of a disinfectant



(i.e., chlorine) at some stage in the treatment cycle would further



increase the cost associated with GAC.  Therefore, the use of GAC is



economically justifiable when the use of less costly and effective



treatments cannot produce the quality of potable water required by the

                    i

law and demanded by the public.,



     The GAC plant is divided into two operational processes.   In the



first  process (treatment stage),  water is pumped through the carbon con-



tactors.  Microscopic pores in the activated carbon act to adsorb the



impurities in the water.  The second process involves the reactivation of



the activated carbon once it passes a predetermined point in its treatment



life.,  The program in Figure 10A (appendix) is designed to estimate reacti-



vation costs at the water utility site.   This situation, in test runs, has



produced excessively high costs for smaller water utilities due to the



great bulk of the cost for GAC treatment in smaller plants which lies in the



reactivation process.   However, a group of small waterworks could collec-



tively share in a regional reactivation facility.   This regional facility



could substantially reduce the excessive costs resulting from on-site


             8
reactivation.
                                    29

-------
     Tables 22 and 23 are input and!output variables and their definitions.

                                    i

Table 24 contains a set of standardized values for the design variables



in this program.  Table 25 is a key: for variable input and Table 26 contains



costs for plants of 1, 5, 10, 100, and 150 mgd, all operating at 70% of



capacity.  Figure 10A is a listing of the GAG Program and Figure 11A is a
                                    j


sample printout of the GAG prograjn using values found in Table 24.



     Two calculations are required in order to be able to input variables



to the program.  These calculations are for DCARB and RRATE and they are



as follows:
RRATE
GCAKB
                                9                     3
# of contactors (CONTN) x 855 ft /contactor x 30 lb/ft  wt. of gran, carbon

               1.4 month reactivation  x 30 days/month



                                 3                     3
 # of contactors (CONTN) x 865 ft /contactor x 30 lb/ft.

         1.4 month reactivation*x 30 days/month x QD
*    provided FORK1 = 1



**   The reactivation rate for GAG



     effect will be a change  in DCARB
                           may also be used as a variable and its



                              and KRATE.
                                        30

-------
                                    TABLE 22

                           INPUT VARIABLE LIST - GAG


Variable                           Definition

   QD:       Average daily volume flow used for design of system, mgd

   QP:       Peak flow, mgd

   RI:       Amortization Interest Rate, fraction

   YRS:      Amortization Period, years

   CGI:      Sewage Treatment Plant Construction Cost Index

   WPI:      Wholesale Price Index

   FORK1:    Program Control:  0 = number (CONTN) and size (VOLI) of
             the carbon contactors is to be calculated by the program,
             1 = number and size are program inputs

   FORK2:    Program Control:  0 = furnace size (HAREH) of the carbon
             reactivation system is to be calculated by the program,
             1' = furnace size is program input.

   DCARB:    Design carbon reactivation rate, Ibs/mil gal

   RRATE:    Design carbon reactivation rate, Ibs/day

   HAREA:    Hearth area for carbon reactivation (if not to be
             calculated by the program), sq ft

   HLOAD:    Hydraulic surface loading on the carbon contactors (not needed
             if CONTN & VOLI are program inputs), gpm/ sq ft

   CDIAM:    Diameter of the carbon contactors (not needed if CONTN &
             VOLI are program inputs)

   SERN:     Number of carbon contactors in series (not needed if CONTN
             & VOLI are program inputs).

   CT:       Carbon contact time, minutes

   CTYPE:    Program control for type of carbon contactors installed
             (not presently used by program)
                                     31

-------
Variable

 POWER:

 DHR:

 FUEL:

 CARBC:

 CARBM:

 PUMPF:



 CONTN:


 VOLI:


 NCASE:
               TABLE 22 (Cont.)


                 Definition

Electrical  Power Cost,  $/KWH

Direct Hourly  Wage Rate,  $/hr

Fuel  cost,  $/the'rm   1 therm =  100,000  BTU
                 i

Cost  of virgin granular carbon,  $/lb

Carbon make-up,  ifraction/yr

Fraction ,of pump|ing station  cost charged  to  carbon
adsorption when  [operating  filters and carbon contactors
in series, fraction
                 I

Number of carboni contactors  used (not needed if program
is calculate CONJIN)
                 i
Volume of each carbon contactor  (not needed  if program
is to calculate VOLI),  cu  ft               '

Number of data sets program  is to execute
                                  32

-------
                                  TABLE 23
Variable


  COHRS:


  CMHRS:


  CLHRS:


  CTHRS:


  CLAB:


  CMATM:


  GMATP:


  CTOT:


  ROHRS:


  RMHRS:


  RLHRS:


  RTHRS:


  RLAB: '


  RMATM:


  RMATP:


  RMATF:


  RMATC:


  RTOT:


  CONTN:


  TAREA:


  CAREA:


  CLENG:


  TVOL:


  VOL1:
              OUTPUT VARIABLE LIST - GAG

                         Definition


 Carbon contactor operation labor required,  hours/years


 Carbon contactor maintenance labor required,  hours/year
    >

 Carbon contactor laboratory labor required, hours/year


 Carbon contactor total labor requirement, hours/year


 Yearly labor  cost for carbon contactors,  $/year


 Yearly maintenance materials cost for  carbon  contactors,  $/year


 Yearly electrical power cost for carbon contactors,  $/year


 Total  yearly  operation and maintenance cost for carbon contactors,  $/year


 Carbon reactivation operation labor required, hours/year


 Carbon reactivation maintenance  labor  required,  hours/year


 Carbon reactivation laboratory labor required,  hours/year


 Carbon reactivation total  labor  requirement, hours/year


 Yearly labor  cost for carbon reactivation, $/year


 Yearly maintenance materials cost  for  carbon reactivation, $/year


 Yearly electrical power  cost for  carbon reactivation,  $/year


 Yearly fuel cost  for  carbon reactivation, $/year


 Yearly makeup carbon  cost  for  carbon reactivation, $/year


 Total  yearly operation and  maintenance cost for carbon  reactivation, $/year


 Number  of carbon  contactors  used  (as input or computed  by program)


 Total  surface area  of all carbon contactors, sq ft


 Surface area of each  carbon contactor, sq ft


 Effective carbon  column  length, ft


 Total  effective colume of all carbon contactors used, cu ft


Volume  of each carbon contactor  (as  input or computed by program), cu ft
                                          33

-------
                                       TABLE 24

                     STANDARDIZED VALUES USED FOR THE DETERMINATION
                                   OF SAMPLE COSTS
   Average Daily Flow (QD)

   Peak Flow (QP)

   Amortization Interest Rate (RI)

   Amortization Period (YRS)

 * Construction Cost Index  (CCI)/100

** Wholesale Price Index (WPI)/100
                                   I
   Program Control (FORK1)         ;

   Program Control (FORK2)

   Design Carbon Regeneration Rate (DCARB)

   Design Carbon Regeneration Rate (RRATE).

   Hearth Area (HAREA)

   Hydraulic Surface Loading (HLOAD)

   Diameter of Carbon Contactors  (CDIAM)

   Number of Carbon Contactors (SERN)

   Carbon Contact Time (CT)

   Program Control (not presently Used)  (CTYPE)

   Electrical Power Cost (POWER)

** Direct Hourly Wage Rate  (DHR)   i

   Fuel Cost (FUEL)

   Cost of Virgin Carbon (CARBC)

   Carbon Make-up (CARBM)

   Fraction of Pumpint Station Cost  (PUMPF)

   Number of Carbon Contactors Used  (CONTN)

   Volume of Each Carbon Contactor (VOLI)

   Excess Capacity (ECF 1-4)
        7 mgd

        10 mgd

        .07

        20 years

        2.567

        1.781

        1

        0

882.65 Ibs/m'il gal

   6178.57 Ibs/day

        0.

        0.

        0.

        0.

        4.5 min

        0.

        .01 $/KWH

        5.19 $/hr

        .26 $/therm

        .38 $/lb

        .1

        0.

        10

        865 ci^ft

        1.0
   *March 1976

  **February 1976
                                        34

-------
 Variable

 NCASE


 LIST


 QD
 QP
 RI
 YRS
 CGI
 WPI
 FORK1
 FORK2

 DCARB
 RRATE
 HAREH
 HLOAD
 CDIAM
 SERN
 CT
 CTYPE

 POWER
 DHR
 FUEL
 CARBC
 CARBM
 PUMPF
 CONTN
VOL1

ECF1
ECF2
ECF3
ECF4
                TABLE 25

      KEY FOR VARIABLE INPUT - GAG

 Card            Columns

  1               1 & 2
                         Comments
  3
  3
  3
  3
  3
  3
  3

'  4
  4
  4
  4
  4
  4
  4
  4

 5
 5
 5
 5
 5
 5
 5
 5

 6
 6
 6
 6
                  1-80
                  1-10
 11-20
 21-30
 31-40
 41-50
 51-60
 61-70
 71-80

 1-10
 11-20
 21-30
 31-40
 41-50
 51-60
 61-70
 71-80

 1-10
 11-20
 21-30
 31-4.0
 41-50
 51-60
 61-70
 71-80

 1-10
 11-20
 21-3.0
31-40
                 This integer sets the number of
                 cases to be run.

                 Alphanumeric title given to
                 each case

                 This variable and the subsequent
                 ones may be placed- anywhere
                 within their allotted columns.
                                         35

-------





















Sj
§

2
O
1-1
CO
§
i
I-H
e
CO

CO X-N
H rH
VD CO tO
CM 0 00
W O
n3 ss o
S 0 0
 co
°cS
co
4J W
fH 01
a o
cO U
0



CO 4J
4J CO
O O
H CJ

« CO

cj


I-l
CO
4J 4J
1-1 CO
Cu O
CO CJ
CJ


I-l
10 4J
4J CO
o c

H 4J
§1

I-l
1-1 0
a. o
CO CJ
CJ
r-l
CO 4J
4J CO
o o
H CJ

S -J
o c
^

CO

% 0
O. C





o
§
53

§
o

o
to
o
0
• to
to
g
B

o
o
o
to
o
;§
p




o
o
p
p


o
,o
o

0


o
o
0
o


1
o
g
lo

o
0
o
o
1
lo
10
o
d


o
o
o
d

o
0
o
o

o
o
o
o


^J
B e
01 O
3 i-l
r-t O. U
UJ B M
C 5; 4J

o
0\
in
in

m
en



vo

o
in
-cr

m

rH

in

m
i-H
m




vO
CM
O
VO


1 —
t-l
CO




a\
o
CM
in



en
CM
vO

CM
o
o
^

^
n
CM
in


i-i
r-.

O
CO
,_!

•a-

CM
in
CO

o
4J
c o
O CO
JZ 4J
M C
10 O
O CJ
36
r-
o
CO
sr

CO
rH

-*
CT»

VO


R
in

CM
VD

-*•
CM
i-l
00
•




o
t-H
i-l
•^

CM

CO


0



K
t^l
"*
in
m
o

^
o
en.
^


•-I
n
*3"
m
m
i-i

^c
in
VD
T-l
CM
|
4J
CO

C -H 6
J2 0 4J
CO 0) r>l
CJ p* CO


VD
VO


O
O
0

O
Cf
VO
VD

i-l
P--
VO
'

O
o
o
d
r-i
VO
"




CO
VD
*


O
O
o

o


•fl-
CC
vo



CO
V0
*

0
o
o
d

r-*
00
vO
"


TH
VO
•

O
O
o
to

rH

vo





•H O 00
4J ,n n
•rl JJ CO
C CO i£3
I-l CJ CJ

r^
vD
o
T-l
t— 1

CO
m
vO

"^"
^
iH

VO
0
00
in
t-l
I— 1
en
CO
o\
•*
Pv.
a\
m
vo




O
m
CO
r-I
rH

m
0

o\


vD
CO



VD
CO
CO
rH
CM
r--.
m
vD
rH

CO
CM
CM
0
rH

CO
CO
O
m
CO
r-
co
CO
CM
O
rH
vO
CM




rH
CO
O
H

vD
r-
m

CO
m
rH

•"*
CO
rH
CO
• rH
m

-------
                                APPLICATIONS
       The programs  contained in this  document can Be used to explore many
  important relationships with regard  to water treatment systems.   Examples
  of  the uses  to  which these programs  can be put is contained in the
  following discussion.The first three examples deal only with the use of
  Granular Activated Carbon.   The last example illustrates the use of two
  of  the programs to synthesize a Biological Activated Carbon System.
       Several economic relationships  can be explored with regard to the
  operation of GAG systems.   One is the effect of reactivation frequency.
,  Figure 1 shows  the total unit cost of, a 100 MGD GAG sand replacement
  system versus the  period between reactivations.  As can be seen from the
  figure,  costs escalate rapidly when  the period between reactivations is
  shortened.
       An important  economic option, particularly for small systems, is
  that of banding together,  either as  a group of small systems or with a
  larger system to minimize the cost of regeneration.  Figure 2, shows the
  tradeoffs that  exist between hauling activated carbon to a central
  reactivation site  furnish versus onsite reactivation.   In this case, it
  is  hypothesized that a group of ten  10MGD utilities have joined together
  to  provide regional reactivation services and are sharing the cost of a
  regional reactivation furnace jointly.
       The effect of changes in the level of inflation on GAG costs is
  highly significant.   To illustrate this effect, the cost for a 100 MGD
  sand replacement system have been assumed at 9.0^/1000 gal at year 0 and
                                    37

-------
O
E

CO


O
o

LU
ce



LU
                                                       CO

                                                       Q
                                                       O

                                                       5E
                                                             o
                                                             I

                                                             2
                                                             
-------
                                                      o
                                                      to
                      CO
                     I ml
                                                               O

                                                               <
                                                               LU
                                                               CC.

                                                               LLJ
                                                      o
                                                      ce
                                                               GO
                                                               OC
                                                               LU


                                                               *
                                                               t/5
                                                               O
                                                               O
                                                               O
                                                               Q_
                                                               CO



                                                               CC



                                                               
-------
then allowed to increase at 6% peir year for 10 years.  At  the  end of  the
                                         •
10 year period the unit cost has iincreased from 9.0C/100Q  gal  in year 0

to oyer 20
-------
                                                   Crt
                                                       to
                                                       to
                                                       O
                                                       Q

                                                       <
                                                       to

                                                       ce
                                                       O
                                                       e/3
                                                       O
                                                       O
                                               PO
O
g

5
                                                       (O

                                                       Ll_
                                                       O


                                                       O
                                                       CO

                                                       '1
                                                        O)
oooa/o 'isoo nwn IVIOJL
                41

-------
                                                      o
                                                           :
                                                          LU
                                                          O
                                                          o

                                                          2
                                                          cc
                                                     I-   CO
                                                     <   ±>

                                                     =:   2
O
                                                  _ LU

                                                  O DC
                                                     UJ
                                                     CO


                                                     Q

                                                     O
                                                          Q

                                                          i
                                                          o
                                                          M
                                                          O
                                                          8

          CM
(IBB ooo'i/o) 'isoo  nwn ivioi
                  42

-------
                       SUMMARY AND CONCLUSIONS






     An increasing awareness of the potential health hazards associated




with the public's drinking water is now being evidenced throughout the




country.  This awareness has caused traditional methods by which water is




made potable to come under severe scrutiny.  Alternate types of water




treatment have been shown to reduce dangerous pollutants and contaminants




in water while at the same time compare favorably in cost with traditional




treatment practices.  Still other water treatment processes, while com-




paratively expensive, can improve water quality significally in highly




polluted sources.  The treatment system utility used not only depends




upon intrinsic factor^ relating to the utility itself and the water source,




but also the cost of the finished product.  The cost of inadequately




produced water can be estimated; the cost this water has on the publics




health cannot.
                                   43

-------
                            REFERENCES
1.   Patterson, W. L., and Banker, R. F., Estimating Costs and Manpower
     Requirements of Conventional Wastewater Treatment Facilities for
     the Environmental Protection Agency, Black and Veatch, Consulting
     Engineers, Kansas City, Missouri, 1971.

2.   Clark, Robert M., Guttman,' Daniel L., Crawford, John L., and
     Machisko, John A., The Cost of Removing Chloriform and Other
     Trihalomethanes from Drinking Water Supplies, USEPA, MERL,
     Cincinnati, Ohio, 1976.

3.   Ibid., Robert M. Clark.

4.   Safe Drinking Water Act, Public Law 93-523, 93rd Congress, S.433,
     December 16, 1974.

5.   Suindell-Dressler Company, "Process Design Manual for Carbon
     Absorption", USEPA Technology Transfer, October 1973.

6.   Robert M. Clark, loc cit.

7.   Eilers, Richard M., Mathematical Models for Calculating Performance
     and Cost of Wastewater Treatment Systems, Environmental Modeling
     and Simulation, U. S. Environmental Protection Agency, 1976.
                                  44

-------
                           APPENDIX
    Figure 1A. Listing of  chlorine cost program
    (CL2N2)     COST OF  CHLQRINATION
     DIMENSION  LIST{40)
     OPEN(UNIT=1,NAME=!CL2,DAT',TYPE='OLD1)
     INsl
     I0s6
     READ(IN,10)  NCASE
  10  FORMATU2)
     DO  200  111=1,NCASE
     READ(IN,30)  LIST
  30  FORMAT(40A2)
     READUN,40)  Q,DCL2,TCL2,CCL2,ECF1,ECF2
     READ(IN,40)  CCI,WPI,DHR,PCT,R1,¥RS
  40  FORMAT(SFtO.O)
     CCI=CCI/1,506
     WPI=WPI/1.122
     AF=RI»(1.+RI)*«YRS/((1,+RI)«*YRS-1.)
     BVOL=Q*TCL2/1.44/7.48*1000.*ECF1
     XsALOG(BVOL/1000.)
     CON1»EXP(2.048061+.521909*X-.002674*X**2+.004159«X*»3)«1000,*CCI
     CAP1=CON1*1.35
     AMM1=CAP1»AF/Q/3650.
     OMClaO,
     TOT1=AMM1+OMC1
     CUSE=Q#DCL2*8.33#365./2000.
     XsALOGCCUSE*2000./365.*ECF2)
     XCOST=EXPC2.264294-.04427i«X+,065029*X«*2-.002536*X*«31*1000.
     CON2=XCOST«CCI
     CAP2aCON2*1.35
     RMM2=CAP2*AF/Q/3650.
     XaALOG(CUSE)
     OHRSaEXPC4.538517+.S43669*X3
     XMHRS=EXPC3.752071-.224812»X+.158849*X#»2-0006064*X**3)
     TMSU=EXP(6.126105-f.287016*X)*WPI
     TMSUC=CUSE*CCL2+TMSU
     OMC2sC(OHRS+XMHRS)*DHR*Cl.+PCT):+TMSUC)/Q/36SO.
     TOT2=AMM2-t-OMC2
     T1=CON1+CON2
     T2*CAP1+CAP2
     T3=AMM1+AMM2
     T4«OMC1+OMC2
     TS*TOT1+TOT2
     CCI=CCI»1.506
     WPI«WPI#1.122
     WRITECIO,100) LIST
100  FORMAT(////////,40A2,/)
     WRITE(10,110) Q,DCL2,TCL2,CCL2,ECF1,ECF2
110  FORMAT(9X,'Q',8X,'DCL2",8X,'TCL2',8X,ICCL2',8X,'ECF1I,8X»
   . 'ECF2',/,6F12.3,/)
     WRITE(10,114) CC1,WPI,DHR,PCT,RI,YRS
114 FORMAT(7X,'CCI«,9X,'WPI',9X,'DHRi,9X,IPCI',10X,IRII.9X,
   . 'YP5',/,6F12.3,//)
    WRITE(IO,120) BVOL.CUSE
120 FORMAT(6X,'BVOL',8X,'CUSE«,8X,/,2F12,3,//)
    WRITE(IO,130)
130 FORMAT(27X,'CON I,9X,'CAP«,9X»'AMMI,9Xr'0 + MI,9X«I TOT",9X,'ECF I ,/)
    WRITE(10,132) CON1,CAP1,AMM1,OHC1,TOT1,ECF1
132 FORMAT(2X,'CONTACT  BASIN 1,5X,2F12.0,3F12.3,F12,2)
    WRITE(IO,134) CON2,CAP2,AMM2,OMC2,TOT2,ECF2
134 FORMAT(2X,'CL2  FEED SYSTEM I,3X,2F12.0,3F12,3,F12.2,/)
    WRITE(IO,140) T1,T2,T3,T4,T5
140 FORMAK2X, * TOTAL * , 1 3X,2F12.0,3F12.3)
200 CONTINUE
    END

                                45

-------
                                                             no
                                                       u
  2
  D)
  O
                                              QO  r-
                                              rv  o
                                              *»>  r-
                                    un
                                    m
                                    O
                                                             o o    »-»
  O
  o
  0
                         o       o
                         ro       o
                         rr    ic o
                            o r«a
                            o in
                      2:     o <*•
                      •*-      •  •
                      o     o o
                                                       in
 o
 E
 o
                      U,  •>

                      U --(
                               HH O
                               be  •
                                                       OD

                                                       ST.
                                              O O
                      (N
                      -a
         o       in

           •>    u   •
         O    ft. O
         o    :
                                                       PJ.    l»—< OP"

                                                       ^    rjh, (7«-

                                                       O    OO OO
                                                             oo »-o
                                                                      cr,
                                                                      •JO
 Q.


 (0
(O
CM

 0)

 3
 O)
il
E-
rt.

LjJ

Ct
Ixi
z-

oc
o

3;
o

o

z

o
         o    ,   o
         o       o*
      cw c    ct --
      i-2   •    £r   *
      o o    Q un
      t~  -o
                                           CO OD
                                              in
                                              QD
                           cv o
                           ^o o
                           00- —<
                           IT- •-H
                           £> i/>
                                                      
-------
Figure  3A. Listing of chlorine dioxide  cost program

 C    (CL02)       COST  ESTIMATE  OF  CHLORINE  DIOXIDE  WATER TREATMENT
       DIMENSION  LIST(40)
       OPEN (UNIT = 1, NAME='CL02,DATATYPES ' OLD')

       IOS6
       READ(IN,10) NCASE
    10 FORMAT(12)
       DO  1000  111=1,NCASE
       READ(IN,30) LIST
    30 FORMAT(40A2)
       READ(IN,40) Q,DCL2,TCL2,CCL2,CNCL02,RATIO
       PEAD(IN,40) ECF1,ECF2,ECF3,FORKI  :
       READ(IN,40) CCI,WPI,DHP,PCT,RI,XPS
    40 FORMAT(8F10.0)
       CCI=CCI/1.506
       WPI=WPI/1.122
       AF=RI*(1.+RI)**T(RS/((1.+RI)*«YRS-1.)
       BVOLsQ«TCL2/l.44/7.48*1000.*ECF1
       X=ALOG(BVOL/tOOO.)
       CONl=EXP(2.04806i+.521909«X-.002674*X**2+.004159*X**3)*1000.*CCI
       CAP1*CON1»1.35
       AMMl»CAPl*AF/Q/3b50.
       OMClsO.
       TOT1=AMM1+OMC1
       CUSEsQ*DCL2#8,33*365./2000.
       X=ALOG(CUSE*2000./365.*ECF2)
       CON2sEXP(2,264294-.044271*X+.065029*X*«2",002536»X*»3)*1000.»CCI
       CAP2aCON2*1.35
     *. AMM2=CAP2*AF/Q/3650.
       XsALOG(CUSE)
       dHRS=EXP(4.538517+.543669*X)
       XHHRS*EXP(3.752071-.224812#X+.l58849*X«*2-.006064*X**3)
       TMSU=EXP(6.126105+.287016*X)*WPI
       TMSUC=CUSE*CCL2+TMSU
       OMC2a((OHRS+XMHRS)*DHR«(l.+PCT)+TMSUC)/Q/3650.
       TOT2aAMM2+OMC2
       ONCL02=DCL2*RATIO
       DCL02BDNCL02/1.68
       CNUSEaQ*DNCL02*8.33»365.X2000.
       IFCFORKH  50,50,60
    50 CONTINUE
    60 CON3=0.
       CAP3»0.
       AMM330.
       OMC3*CNCL02*CNUSE/Q/3650,
       CCL02=CNCL02«CNU5E+CCL2*CUSE
       TOT3sAMM3+OMC3
       T1PCON1+CON2+CON3
       T2»CAP1+CAP2+CAP3
       T3«AMM1+AMM2+AMM3
     ,  T4«OMC1+OMC2+OHC3
       T5»TOT1+TOT2+TOT3
       CCIaCCI*l,506
       !,T26,'DCL2',T36,ITCL2',T46,'CCL2',T54,ICNCL02',
   '•  'AT65, IRATIO',/,T11,6F10.3)
      ' WRITE(IO,130) CCI,WPI,DHR,PCT,RI»XRS,FORK1
   130 FORMAT(//,T17,"CCI',T27,•WPI',137,"DHRI,T47,IPCT',T58,'RII.T67,
      C'YRS',T75,'FORK1',/,T11,7F10.3)
      -WRfTEdO, 140) BVOL»eUSE,CNUSE,Cei;02fDCIi02
   140 FORMATC//.T17,IBVOL',T29,'CUSE',T40,ICNUSEI,T52,'CCL02',T64,
 .!    D»DCL02',/,8X,5F12,3,//)
    .
   150 FORMAT (27X, 'CON',9X, !CAP«,9X, IAMMI,9X, '0+Mi,9X, 'TOT',9X, 'EOF',/)
       WRITE(IO,160) CON1,CAP1,AMM1,OHC1,TOT1,ECF1
   160 FQRMAT(2X, 'CONTACT BASIN ' ,5X, 2F12.0, 3F12 . 3,F12.2)
       WRITE(IO,170) CON2,CAP2,AMM2,OMC2,TOT2,ECF2
   170 FORMAT(2X,'CL2 FEED SYSTEM ' , 3X, 2F12.0, 3F12.3.F12 .2)
       WRITE(IO,180) CON3,CAP3,AMM3,OMC3,TOT3,ECF3
   18p FORMAT(2X, 'CL02 REACTOR ' .6X.2F12.0, 3F12, 3, F12,2,/)
       WRITE(IO,190) T1,T2,T3,T4,T5
   190 rORMAT(2X,lTOTAL',13X,2F12.0,3F12.3)
  tOQO CONTINUE
       END
                                   47

-------
 S
 O)
 o
                                                              u
                                                              OJ
                         O
                      *-i O
                      AC O
                      cc.  •
                      o ^
                      u.
                               ac rrt r*>    in
                               !N CM fl '   OC
                                                              o     *  •   •
                                                              H-t    O O O
 o
 o
 0)
TJ
"x
 O
TJ
 0)
 O


 O
a.

£-<
               til
               «
               f-
             o
          o  o
          l-<  f\!
          a;
             o
         o>* o
         o o
         *3  «
         00
         Z: O
             o
         CM  O
         -J  O
         o   •
         5J  O
             o
            o
         <•>» o
         -3 O
         u   •
         E-i O
            tv
   o
03 O
ac o
^  -
   o
   (N
DC. O
                                  CM CN
                                  o in
                                  Q O
O »-§ ov    «-<
 •  <•>  «      «
o o o   . •«-»
                                                  ev
                                                  O
                                                              s
                                                              s
                                                              •*
                               QD o o
                               rv m o
                               m ^» o
                                *  »  «•
                               o o o
                                                                                cr,
   o
   if)
                                     a;
                                     PC
                                     0
               in
                                                  «J CN
                                                  ^3 O
                                                  z:.  •
                                                  U r-
                               m tv o
                               »-t ao
                               cr -o
                               to o
                               •x ^
                                                                                in
 Q.
 E
 CO
               o
               X
               o
               a:
               o
               X
               o

               o
            o
            O
         c o
            o
            o
            O
            CO CM
            £> 
                                                     OD.

                                                     t-
                                                          • Cil
                                                           at
                                                                    H    CM
                                                                    Z CM O
                                                                    O »4 ^J
                                                                    O U U
                                                                 6-i
                                                                 O
                                                                 E*
                                        48

-------
   Figure 5A. Listing of chloramine cost program
       •    COST ESTIMATE OF WATER TREATMENT BY CHLORAMINES
      REAL NH3USE
      DIMENSION LIST(40)
      OPEN f UNIT=1 f NAMEa I AMMON ,DAT ' , TYPE* ' OLD ' )
      IN = 1
      10*6
      READ(IN,10) NCASE
   10 FORMATCI2)
      DO 1000 IIIsl, NCASE
      READ(IN,30) LIST
   30 FORMAT(40A2)
      READ (IN, 40) Q,DCL2,TCL2,CCL2,CNH3, RATIO
      READ(IN,40) ECF1 ,ECF2, ECF3,FORK1
      READ (IN, 40> CCI,WPI,DHR,PCT,RI,XRS
   40 FOPMATC8F10.0)
      CCI=CCI/1.506
      WPI=WPI/1.J22
      AFsRI#( 1 .-fRI )**YRSX ( ( 1 ,+RI )*»YRS-1 , )
      BVOL=0*TCL2/ 1.44/7. 48*1 000. *ECF1
      XaALOG(BVOLX1000.)
      CON1=EXP(2.048061+.521909*X-.002674#X««2+.004159«X«*3)«1000.«CCI
      CAP1=CON1*1.35
      AMMlaCAPl*AF/Q/3650.
      OHClsO.
      TOTl»AMMl+OMCt
      CUSEsQ*DCL2#8.33*365,/2000,
      X=ALOG(CUSE*2000./365,«ECF2)
      CON2=EXP( 2. 264294-. 04427 1*X+.065029*X**2-,002536*X»*3)*1 000. «CCI
      CAP2=CON2«1.35
      AMH2=CAP2*AF/Q/3650,
      XsALOG(CUSE)
      OHRS*EXP(4.538517+.543669*X)
                 ..          .
      TMSUaEXP(6.126105+.287016«X)*WPl
      TMSUCaCUSE#CCL2+TMSU
      QMC2*((OHRS+XMHRS)*DHP«C1.+PCT)+TMSUC)/Q/3650,
      TOT2«AMM2+OMC2
      DNH3EDCL2/RATIO
      NH30SE»Q*DNH3*8.33*365,/2000.
      IF(FORKl)  50,50,60
 " 50  CONTINUE
   60  CON3«0.
      CAP3=0.
      AMM3«0.
      OMC3=CNH3»NH3USE/Q/36SO.
      CAMINE=CNH3«NH3U5E+CCL2*CUSE
      TOT3BAMM3+OMC3
      T1«CON1+CON2+CON3
      T2sCAPl+CAP2+CAP3
      T3«AMM1+AMM2+AMM3
 \     T4«OMC1+OHC2+OMC3
      T5STOT1+TOT2+TOT3
      CCI=CCI*1,506
      WPI«WPI«1.122
      WRITE(IO,100) LIST
 100  FORMATC'l', ///////, 40A2,/)
      WRITE(IO,110) Q,DCL2,TCL2,CCL2,CNH3, RATIO
 110  FORMAT(/,T18,«QI,T26,'DCL2',T36, ' TCL2 • ,146, >CCL2 ' ,T54, 'CNH3',
    AT63, CUSE',T40, >NH3USE' ,T52, 'CAMINE ' ,T64,
    D/,8X,3F12.3,1X,F12,3,/X)
      WRITE(IO,150)
 150 FOFMAT(27X, 'CON',9X, 'CAP • , 9X, ' AMM ' ,9X, 10+M I ,9X, >TOT' ,9X, 'ECF',/)
     WRITE(IO,160) CON1,CAP1,AMM1,OMC1,TOT1,ECF1
 160 FORMAT(2X,ICONTACT BASIN I ,5X, 2F12.0, 3F12.3,F12.2)
     WRITE (10, 170) CON2,CAP2,AHH2,OMC2,TOT2,ECF2
 170 FORMAT(2X, 'CL2 FEED SYSTEM • , 3X,2F12,0, 3F12.3,F12.2)
     WRITE(IO,180) CON3,CftP3,AMM3,OMC3,TOT3,ECF3
 180 FORMAT(2X,«NH3 REACTOR i ,6X, 2F12.0, IX, 3F12 ,3,F12,2,X)
^     WRITE(IO,190) T1,T2,T3,T4,T5     '.
 190 FORMAT(2X,'TOTAL',13X,2F12.0,3F12,3)
1000 CONTINUE
     END
                                49

-------
2
5)
o
                      o
                   ,-« o
                   54 O
                   PC  •
                   o -<
                                                         u-
                                                         Cd
                                                         a
                           DO f> O
                           c* CM in
                           m 
 3
 a>
il
l-f
a.
O
Ci
                         o
                       o o
                       l-i O
                       cc.
                          o
                          o
                          o
                       m  •
                       or o
                       •z, o
                       U {V
                       CM O
                       J O
                          o
                          o
           o
        IM O
        J[ O
        o  •
        E- O
           o*
           o
        CM O
        J O
        o   •
        C5 »•>
                           c?
                           o
                        c  o
                      o
                   WJ O
                   0. O
                   X  "
                      o
                                     o
                   ct o
                                   ex.   *
                                     o
   o
as cr»
                               •z. o
                                                 cc
                                                ,0
                                                 t»
            ba tn
            01 CV
            3 CP
            o  »
a
                                •J O
                                o o
                            o a>  o
                            o »H  in
                            O vO  O
                             «  e  it
                            O O  O
                            ao 
                                                 o ^p ac
                                                                            f-t
                                                                           •o
                                       50

-------
    Figure 7A. Listing of ozone  cost  program


!     DISINFECTION BY OZONATION
     DIMENSION DMATX(20,20),CCOST(5,5),CQSTOC!>,5),LISTC40)
     OPEN(UNITsl,NAMEs'OZONE,DAT",TYPES'OLD')
     IN*1
     10*6
     Ms!
     READ(IN,10) NCASE
  10 FORMATCI2)
     DO 1000 1=1,NCASE
     READfIN,15) LIST
  15 FQRMATC40A2)                                 v
     READCIN.20) CDMATXtJ,N),J=l,20)
  20 FORMAT(10F8.0,/,10F8.0)
     PEADCIN.22) CCI,WPI,DHR,PCT,RI,YRS
  22 FORMATC6F10.0)
     AFsRI*(l,+RI)-««YRS/(Cl,+RI)#**RS-l.)
     Q=DMATXC3,N)
     D03«DMATX(J,N)
     DT03sDMATX(2,N)
     CKHHaDMATXt4,N)
     E03=DMATXC5iN)
     02CST=DMATXC6,N)
     IF(DMATXC7,N)) 25,25,26
  25 DMATXC7,N)=1.78*DMATX(3,N)«*.92
  26 QP*DMATX(7.N)
     TANKCaDMATX(8,N)             '•
     FORK=DMATXC9,N)
     PPD03=DMATXtl,N)*DMATX(7,N)*8,33*DMATX(16,N)
     DKWHR»PPD03»DMATX(5,N)
     IFtDHATX(9,N5) 40,40,50
  40 PPD03»2.»PPD03
     PPD02=0.
     GO TO 60                   .  •
  50 PPD02=3.*PP003
  60 V03=DHATXC2,N)/1440,*DMATXt7,N)*1000./7,'18»DMATXtl5,N)
     X=ALOG(PPDn3)
     CCOST(N,1)»EXP(-.254135+,893452*X)*1000.«CCI/2.1785
     ECOST=DKWHR*DMATXC3,N)/DMATX(7,N)«DMATXC4,N)*365.
     COSTO(N,1)=ECOST/DMATX(3,N)/3650.
     X=ALOG(V03)
     CCOSTCN,2)=EXPC2.991571+.203122»X+,109297«X**2-.004996»X«*35«
    , 1000,*CCI/2.1785
     COSTO(N,2)*0.
     CFM37.71»DMATX(1,N)*DMATX(3,N)#DMATX(14,N)
     X»ALOG(CFM/1000.)
     CCOST(N,3)»EXPC4.400319+.625015*X+.031771*X*«2-.003994#X*»3)«
    , 1000,«CCI/2,1785
     OHRSsEXP(6.924807+,328936«X+.034333*X*«2)
     XMHRS*EXP(6.214495+,380521*X+.044713«X**2+,001010*X*«3-
    . ,000620*X*«4)
     X»ALOG(DHATXC3,N))
     TMSU«EXP(7.824046+,491136*X)#WPI/1,6160
     COSTO(N,3)=tCOHRS+XMHRS)*DHR«(l,+PCT)+lMSU)/DMATX(3,N)/3650,
     CCOSTCN,4)=DMATX(8,N)»DHATXtl3,N)
     O2CsPPD02*DMATX(3,N)/DMATXO,N)*DMATXC6,N)*365.
     COSTO(N,4)s02C/DMATXt3»N)/3650",
     CAP1»CCOSTCN,1)»1.35
     AlBCAPl»AF/DMATX(3,N)/3650,
     TlsCOSTO(N,l)+Al
     CAP2sCCOSTCN,2)*1.35
     A2»CAP2«AF/DMATX(3,N)/3650,
     T2*COSTO(N,2)+A2
     CAP3«CCOSTCN,3)«),35
     A3»CAP3*AF/DMATXt3,NJ/3650,
     T3«COSTO(N,3)+A3
     CAP4»CCOST(N,4)*1.35
     A4»CAP4*AF/DMATX(3,N)/3650.
     T4«COSTOCN,4)+A4
     TCON»CCOST(N,1)+CCOST(N,2)+CCOST(N,3)+CCOST(N,4)
     TCAP«CAP1+CAP2+CAP3+CAP4
     TAMMIA1+A2+A3+A4
     TOPR«COSTO(N,1)+COSTO(N,2)+COSTO(N,3)+COSTOCN,4)
     TTOT»T1+T2»T3+T4
     WRITECIO,100) LIST
 100 FORMAT(20X,40A2,/X)
     WRITE(10,120) Q,D03,DT03,rKWH,E03,02CSl,UP,TANKC,FORK
                               51

-------
Figure 7A. (continued)
,/,
 120  FORMAT (7X, 'Q',7X, 'D03',6X!f IDT03',6X, 'CKWH',7X, 'E03',5X,
    . '02CST '*8X,'OP',5X,'TAN^C',6X, "FORK ' , /, 9F10. 3. //}
     WRIT£CIO,125)  CCI,WPi,'DHR,pCT,RI,YRS
 125  FQRMATtSX, 'CCI ' ,7X, ' WPI ' ^7X, "DHR ' ,7X, ' PCI ' , 8X, "RI'.7X,
    . 6F10.4.//3              !
     WRITE(IC),130)  PPD03,V03,PPD02»DKWHR,ECOSlfQ2C,AF,CFM,OHRS>XMHRS,
    . TMSU
 130  FORMAT C3X»'PPD03',7X, IV03',5X, "PPD02',5X» «DKWHR',5X, "ECOST",
    . 7X,'02C«,8X,»AFI,7X,ICFH',6X,'OHRS',5X,'XMHRSI,6X,'THSU',
    . /,6F10.1,F10,4,4F10.t,//)
     WRITEtIO,140)
 140  FORMAT (39X, 'CON «,9X, 'CAP',9X, 'AMMI.9X, IQ + HI.9X, "TOTt^X, lECFi,/)
     WRITE CIO, 150)  CCOSTCN,l),CAPlrAl,COSTO(Nf 1 ) ,T1 ,DMATXC 16,N)
 150  FORMATC2X, "OZONE  REGENERATING  FACILITIES •, IX, 2F12.0, 3F12. 3, F12. 2)
     WRITE (ID, 160)  CCOST(N,2)»CAP2,A2,COSTOCN,2),T2,DMATXC15,N)
 160  FORMAT C2X, 'AERATION BASIN, COVERS, BAFFLES ' ,1X,2F12.0,3F12.3,F12.2)
     WRITE (10, 170)  CCOSTCN,3),CAP3,A3,COSTOCN,3),T3,DMATX(14,N)
 170  FORHAK2X, 'DIFFUSED AIR/OXYGEN  SYSTEM I ,4X , 2F12 ,0,3F12, 3,F12,2)
     WRITECIO,180)  CCOST(N,4),CAP4,A4,COSTOCN,4),T4,DMATX(13,N)
 180  FORMATC2X, 'OXXGEN STORAGE  TANK ' , 1 IX, 2F12.0, 3F12 ,3,F12.2)
     WRITE(IO,190)  TCON,TCAP,TAHM,TOPP,TTOT
 190  FORMAT (X,2X, 'TOTAL' ,25X, 2F1 2 . 0, 3F12. 3, //////)
1000  CONTINUE
     END
                                  52

-------
                                                        bu
                                                        O
                                                        W
                                                              O O O O
                                                              O O O p
                                                                      '
                                            03,-
 2

 2
 a
3
 o
 o
                       o
                       o
                    X o
                    oe  •
                    a. o
                    u.
                       o
                       o
                    o o
                    Sft  «
                    2 O
                                 W -r*

                                 Of ft
                                                   ounr- o    »»•

                                                   m *f un o    in
                                                    •  • •.'  *     «<
                                                   o. o a o    •*
                                                   (M O If* O    «
                                                   <3> o m o    *
                                                   o o •* o    in

                                                   o o o o-    o
 0)
 O
 s

 o
 3
 O
 a
jo
 a.

  O
         O  •
         E* O
         Q CM
                       O
                       O
                       o
                       O
                       o
                        o
                     «o o
                     ac o
                        O
                        O
                                   o
                                   o
                                e-> in
                                O'«-i
                                a.  »
                                   o
                                   o
                                ac ot
                        o

                     l-l 00
                     ou r~-
                     3   •
                                t-i >C

                                L> If)
                                «J   "'
                                   CM
                                               O
                                                »*

                                            CJ Q'

                                            O
                                             Q,.
                                                                       -  *
                                                                       o
                                            O ">
                                            t> ->
A o>
!*.
O
                                            CM O
                                            a
                                            o
                                            m ao
                                            O -»
C* «*>«•
oo m CM
an o< r«
                                                   TO U3
                                                   U id
                                                              1-4 CD W
                                                              O  -•><
                                                              «t 03 U3

                                                              fc flC
                                                                 DLi Z
                                 -o
                                 o
                                 €*»
                                                                    O tel
                                                                    • x xs
                                                      -<.»-*
                                                      cc -t
                                                                       OC
                                                                       a
                                 O  -D
                                 a,  -*
                                 CL
                                 a.
                                                              W 61 =) U    J
                                                              Z 
-------
                                                   o in
                                                   lO vO
                                                   x ••-•
                                                   H r-
                                                                      oooo
                                                                      o o o o
                                                   M I"
                                                   OC O)
                                                   3C CM
 <0
 I
             o
             o
          &c o
          «  •
          O -H
          b.
                                                                      o> in t- o>
                                                                      c>» t- vo CT>
                                                                      no »» «n CM
                                                                       o
                                                                       r-
                                                                       
                                    00 TJ>
                                    o -^
                                    O CM
                          (X sf>
                          3C -<
                          3: Ov
                                 CM o in in    »-i
                                 en o in =*H    *o
                                 o o ** «-«    ^

                                 0000    O
                                 r- in CN in    cr>
                                 <*> t^- »^ oo    c?
                                 CM 'J1 •-»»-»    O

                                 o o o o    •->
                                                         i in -JB o    r~~
                                                               cj    •* OD o on     «•»
                                                                      to CM f*i ^t*     r^
                                                       m o o o
                                                2     CN m CM O
                                                o     in m •* o
                                                O     r» in CM r-
                                                             CM

                                                             CM

                                                             O

                                                             CM
0>

 I
 O)
iZ
             o
             o
          m o
          o  •
          fn o
          o cv
                            o
                            o
                            o
                            o
                            o
                         a o
                o
                o
             
             a: -H
             O  "
                in
                          o
                          «H
                        I OD
                          O
                          r^
                        i -o
              CM Ol
              a •*
              o c*
              a
              a.
                                                   no cc
                                                   o -•
                                                  o ao
                                                  o
                                                  a.
                                                  a.
u ta
•-i *3
E-* b. £
>-l Et, bl
•a •« e-i
tH OD «1
O  «•>!
 U  Z
Z O O  <
>-t O »  gi
£-•«.>:
•« z o  w
CC M *x  O
u w a,  *t
z t r-t  K.
W 02   !B
Z «t U,  O
a at b.  >*
ej bi >-<  x
O «t Q  O
                                            54

-------
 Figure 10A. Listing of granular activated carbon cost program
10
DIMENSION LTST(40)
OPEN(UNITsl,NAME='CARB.DAT«,T¥PE
IN a 1
10 * 6
READ(IN,10) NCASE
FOPMAT(I2)
DO 1000 1=1. NCASE
PPAM1=0,
PRAM2=0.
PRAM3=0.
PRAM4=0,
CON1=0.
CON2sO,
CON3sO.
CON4=0.
CAP1=0,
CAP2=0.
CAP3»0.
CAP4*0,
AMM1=0.
                                    
-------
 Figure 10A. (continued)
   CON2sEXP(4.382026+.353985*X)*CONTN#1000.*CCI
   XaALOGCQD)
   CDHRS=EXPC6.310657+,446392*X)
   CMHRS=EXPC4.492027 + .
   CLHRS=EXP(5.U33<'4 + ,
   CTHRS=COHRS+CMHRS+Cl»HRS   :
   CLABsCTHPS*DHR
   CMATM=EXPC-1.231487.».,824386#X)*1000.#WPI
   CMATP=EXPC. 858226+, 9945 03*X 5*1 000 ,,*PQWER/, 02
   CTOTsCLAB+CMATM+CMATP
   QMC2sCTOT/QD/3650.
   IFCFORK2) 70,60,70
60 HAREAsl.2*DCARB»OD/40.
70 IFCHAREA-95.) 80,80,90
80 HAREA=95.
90 PRAM3=HAREA*ECF3
   XaALOG(PRAM3)             !
   CON3sEXPC3,673707+,4548404x)*1000.#CCI
   XsALOGCPRATE/lOOO.)       :
   ROHRSsEXP(8.676918+.440237*X1
   RMHRSsEXPCS. 434925+. 4521 11 *X)
   RLHRSsEXPCB. 007337*. 62 1430«XJ
   RTHRSsROHRStRMHRS+RLHRS
   FACTR=QD#DCARB/RPATE
   RLABsRTHRS#DHP*FACTR
   RMATMsEXPC.606648+.389098*X)#1000.*WPHtFACTR
   RHATPsEXPC". 826456+. 991 087«X)*1 000. *(POWEp/. 02 )*FACTR
   PMATFsEXPC-. 287682+1. 000000*X)*1 000. #( FUEL/, 065 )*FACTR
   RMATC=EXPC2.090e77+.983502#X)*1000.*(CARBC/,33)#(CARBM/,08)*FACTR:
   RTOTsRLAB+RMATM+RMaTP-i-RMATF*RMATC
   OMC3=RTOT/OD/3650.
   PRAM4aTVOL#ECF4
   XsALOG(VOL1*ECF4/lOOO,J
   CON4sEXP (2,302585+, 987 3 18«X)»CONTN*1 000. #CCI*(CARBC/» 33)
   OMC4=0,
   AF*RI*(1,+RI)##YRS/((1.+RI)**YRS-1.)
   TCONSCON1+CON2+CON3+CON4
   X*ALOG(TGON/1000000.)
   CELAI*EXPC, 24057 3+,990929*X)«l 000000, -ICON
   TCAPsTCON+CELAI
   RATIOsTCAP/TCON
   CAPlsCONl»RATIO
   CAP2=CON2*RATia
   CAP3=CON3*RATIO
   CAP4sCON4«RATIO
   AMMlsCAPl*AF/OD/3650.
   AMM2=CAP2*AF/OD/3650.
   AMM3sCAP3*AF/QD/3650,
   AMM4sCAP4*AF/QD/3650,
   TCS1»AMM1+OMC1
   TCS2zAMM2+OMC2
   TCS33AMM3+OMC3
   TCS4sAMM4+OMC4
   ftTOTaAMMl+AMM2+AMM3+AMM4
   OTOT?'OMCl+nMC2+OMC3+OMC4
   TTOT*TCS1 +TCS2+TC53+TCS4
   CCIsCCI*l,750
   WPI*WPI*1.191
   WRITE(IO,200) LIST
                                 56

-------
  Figure 10A. (continued)
:200 FORMATCW, /////. 20X,40A2,///J '
    WR-ITE(IO,210)
210 FOPMAT(53X,'COST  ESTIMATE',/,58X,•FOP',/,42X,
      'GRANULAR  ACTIVATED  CARBON  TREATMENT',
      ///,6X,'PROCESS  COMPONENTS',12X,'DESIGN',6X,'CONSTRUCTION',
      5X,'CAPITAL1,3X,'DEBT  COST',4X,'0+M COS1',2X,'TOTAL COSTJ,5X,
      'EXCESS',/,35X,'PARAMETERi,4X,'COST,  $',10X,'COST,  $',3X,
      'CTS/1000',5X,'CTS/1000',3X,'CTS/1000',5X,'CAPACITY',//)
    WRITE(IO,220)  PRAMl,CONl,CAPt,AMM,l,OMCl,ICSi,ECFl
220 FORMATdX,'INFLUENT PUMP STATION ', 8X. F12 ,2, IX, ' MGD ', 2X,
   ,  2F12.0,3F12.3,F12.2)
    WRITE CIO, 2 30)  PRAM2,CON2,CAP2,AMM,2,OMC2,TCS2,ECF2
230 FORMATUX, 'CARBON CONTACTORS ', 12X, F12 , 0 , IX, 'CU  FT',
   .  2F12.0,3F12,3,F12,2)
    WRITE(IO,240.)  PRAM3,CQN3»CAP3,AMM3,QMC3»TCS3(rE;CF3
240 FOPMATdX,'CARBON REGENERATION SYSTEM', 3X ,F12.0, IX,'SQ FT',
   .  2F12.0,3F12,3,F12.2)
    WRJTE(IO,250)  PRAM4,CON4,CAP4,AMW4»OMC4,ICS4,,ECF4
250 FORMATUX, 'INITIAL CARBON CHARGE',,8X,F12. 0 , IX,'CU FT',
260


270

380

290

300
     2F12.0,3F12.3,F12,2)
    WRITECIO,260)
    FORMATC50X,'"
                             ,2X,
                                                            r2X,
 310
 320
330

340
    WRITE(IO,.270) TCON,TCAP,ATOT,OTOT,TTOT
    FORM AT ( IX , '.SUBTOTAL ' , 39X , 2F 12.0* 3F 1 2 . 3 )
    WRITECIO,280) CELAI
    FORM AT (IX, 'E.NG, , LAND, ADMIN ., INT, , COSTS' ,19X,F12,0)
    WRITE(IO,290)                    :
    FOPMAT(50X, '--<•.—-—«')
    WRITE(IO,300) TCAP
    FORMATdx, 'GRAND TOTAL ', 3f3x,F12. 03
    WPITE(IO,290)
    WR|TE(IO,290)
    WPITE(IO,310)
    FOPMAT(/////)
                  QD,QP,RI,YPS,CCI,WPI,FOPK1,FORK2
                  DCARB,RRATEjHAREA,HLOAD,CDIAM,SERN,CT,CTYPE
                  POWER, DHP, FUEL »CARBC,CARBM,PUMPF,CONTN, VOL 1
    FORMAT ( 6X , ' QD « , 8X , ' QP ' , 8X „ ' RI ' , 7X , ' YRS ' , 7X, ' CCI ' , 7X , ' WPI ' ,
     5X, 'FORK1',5X, 'FORR2',/,8F10.3,/)
    FORMAT (3X,'DCAPB',5X, 'PRATE' ,5X, 'HAREA ' ,5X, »HLOAD',5X, 'CDIAM',
     6X, "SERN',8X, «CT',5X, 'CTYPE ' , /, 8F10, 3 , / )
     WRITE(IQ,320)
     WRITE(30,330)
     WRITE(IO,340)
     FORMAT (3X, • POWER ',7X, 'DHR«,6X, 'FUEL»,5X, 'CARBC«,5X, 'CARBM',
      5X,'PUMPF',5X,'CONTN'f6X,'VOLl',>',8F10,3,///)
     WRITE (10, 350) COHRSfCMHRS^CLHRSfCTHRS.CLAB^MATMjCMATPjCTOT
     FORMATC1X, 'CONTACTOR 0+M    - ' , 4X, 'COHRS ' , 5X, 'CMHRS ' ,5X, ' CLHRS » ,
      5X, 'CTHPS' ,6X, >CLAB' ,5X, 'CMATM' ,5X, 'CMA'IP' ,6X, »CTOT' ,/,
      20X,8F10,0,/)
     WRITE.(IO,360) ROHRS,RMHRS,,RLHRS,RTHRS,RLAB,RMATM,RMATP,RMATF,
      RMATC,RTOT
     FORMATdX, 'REGENERATION 0+M - ' , 4X, 'POHP-S ' , 5X, • RMHRS ' , 5X,
      5X, 'RTHRS' ,6X, 'RLAB' ,5X, »RMATM' ,5X, 'RMA1PI ,5X, 'RMATF' ,5X,
      'RMATC',6X, 'RTOT',/,20X,10FIO.O);
     WRITE (10, 370) CONTN,TAPEAPCAREA,CLENG,TVOL,yOI,l
     FORMAT C///,3X, 'CONTN',5X, «TAPEA',5X, 'CAREA ' ,5X, 'CLENG ' ,6X,
    , 'TVOL' ,6X, «VOL1 ' ,/,6F10,2)
1000 CONTINUE
     END
350
360
370
                                 57

-------
                                            o o o o
                                 bl CJ
                                 CJ«<
                                 x a.
                                   o
                                                                                                                              a »
                                                                                                                              EH o
                                                                                                                              us -i
                                                                                                                                CM
 s
 O)
 o
 c
 Q
•£
 00
 o
O
CO
        EH
        ss
        «*

        a.
v-    g
       bl

       S
       5
 (0

 3
 c
 (0
        o
        m
        sc
 O     ^

4_l     <
 3     a

I!

 ^    i
 Q>     S
 Q.    »
 E     ^

co     2

<
T-

 £
 D)
il
EH
Z
bl
Id
K
EH
                  id   O
                  EH   31
                  •4   CC
                  Z   f
                  ft   V
                  EH CC
                  to o a
                  M b. td
                       EH
                  EH   «:
                  oj   P-
                  O   M
                  O   EH
                        (X
                        <
                        -1
                                t-i
                                CO O
                                o o
                                u o
                                «t ta
                                E-l E-«
                                a u
                                EH O
                                to o
                                o o
                                E CO
                                + EH
                                O CJ
                                EH
                                CO O
                                a o
                                u o

                                EH >v
                                CQ ca
                                Cd EH
                                a o
        •H EH
        a co
        «t o
                   o £>>«• o
                   O O -^v
                                           O \O -H O
                   o r*- r* o
                   O » VO
o Ch r^ m
  m o CM
  00 O «
  at 10 tn
  o oo oo
        o
        »-i
        EH
                                OC
                                EH  -
                                CO EH
                                   (X
                                   U
                                Z. EH
                                U Cd
                                •-« S
                                CO 1
                                b] CC
                                o 
                                              »H CM *»
                                              Cu bd Eb

                                            > o o =1
                                                                a: o
                                                                o
                                                                   o
                                                                   o
                                                                -H O
                                                                o
                                                                u.
                                                                                         a,  •
                                                        o
                                                        o
                                                     ui o
                                                     a.  «
                                                     x o
                                                     EH
   o
   o
 EH 10
                                                                                                   o
                                                                                                   o
                                          o  •  •  •
                                          o o in o
                                           • m oo in
                                          O *X3 «-t ^O
                                          «H 00   00
                                to
                                EH
                                Z
                                u
                                z
                                o
                                Cu
                                £.
                                o
                                CJ

                                CO
                                to
                                o
                                CC
                                a.
                                                EH
                                                CO
                                                            1
                                                           to
                                                           E-t
                                                           CO
                                                           o
                                                          EH
                                                          Z
                  •Z    CO Cd
                  O      U
                  »-•    z oc
                  EH    O «t
                  •« IO 1-" X       -.
                  E- OC EH O       .
                  CO O «          Z
                     EH OC Z       (-1
                  Cu CJ bl O       Z

                  3 EH bl DC       <
                  o. z u «*       •»
                     O M O       O
                  EH CJ OC       J  Z
                  Z      ,3    <»  «t
                  id Z Z <    EH  .J
                  = O O M    O  •
                  •3 CO CO 6H    EH  o
                  b. oc oc >-i    m  (9
                  2 < < Z    =>  Z
                         > H    to  bl
                                                               EH
                                                               a
                                                               EH
                                                                   o
                                                                   o
                                                                to o
                                                                DC  »
                                                                p- O
                                                                   CM
                                                                                        l-H O
                                                                                        a  «
                                                                                          o
                                                                                          o
                                                                                          o
                                                                                        a. o
                                                                                        o  .
                                                o
                                                o
                                             Q O
                                             O  •
                                                r-
                                                                        DC
                                                                        Ii3
                                                                        UJ
                                                                                                •-H O

                                                                                                O
                                                        o
                                                        o
                                                     a o
                                                     «x  •
                                                     o o
                                                                           in
                                                                        i< m
                                                                        b)  •
                                                                        a. in
                                                                        < co
                                                                        x —
                                                                        id in
                                                                        EH  •
                                                                        «£ CO
                                                                        DCI~
                                                                        DC ~-
                                                                           VO
   in
03 >O
oc  •
«t CM
CJ 00
O 00
           o
           o
         «H O

         o in

           CO
o
o
o
                                                              o >H
                                                              u
                                                             u. o
                                                             a,  .
                                                             £ o
                                                                                                          o
                                                                                                        Z -H
                                                                                                        0}   •
                                                                                                        ac o
                                                                                                        CJ m
                                                                                                        CD  •
                                                                                                        OC O
                                                             bl
                                                             O
                                                             b.
                                                                                   O
                                                                                   cr>
                                                                                EC -<
                                                                                                       a. o
                                                                                                       bl  •
                                                                                                       * O
                                                                                                       O
                                                                                                       Cu
                                                                                      in
                                                                                   o <•»
                                                                                   EH 00
                                                                                   «C 0»
                                                                                   E K)
                                                                                   CC
                                                                           EH 00   b. CO
                                                                           O oo   EH cr>
                                                                           EH O   «C 00
                                                                           CJ CM   E
                                                                                   ac
                                                                                                                      Ou J5   CU **5
                                                                                                                      EH -H   EH m
                                                                                                                      4! 00   O
                                                                                                                      OC CM
                                                                                                      03 CM
                                                                                                      •at t~-
                                 CM
                              W fl
                              o
                                > 00
                                                                                                   O
                                                                                                   o

                                                                                                o o
                                                                                                s> in
                                                                                                EH «
                                                                                                                      O
                                                                                                                      O
                                           z o
                                           Id
                                   o
                                •t  •
                                b] O
                                DC
                                                                                                   o
                                                                                                   o
          OC      EH
          o      a,
          EH      OC
          CJ      Id
          •3.      Z'
          EH      bl
          Z      CJ
          O      bl
          CJ      CC
                                                                                                                                           cc
                                                                                                                                           «;
                                                                                                                                           E-
                                                                                                                     O
                                                                                                                     o
                                                                                                                   z  •
                                                                                                                   EH O
                                                                                                                   Z 1H
                                                                                                                   O
                                                                                                                   CJ
                                                                      58

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
1. REPORT NO.
   EPA-600/2-78-181
                              2.
                                                            3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
   Computer  Cost Models for Potable Water Treatment
   Plants
               5. REPORT DATE
                 September  1978 (Issuing Date
               6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
   Daniel L.  Guttman and Robert M.  Clark
                                                            8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
   Municipal  Environmental Research Laboratory-
   Office of  Research and Development
   U.S. Environmental Protection Agency
   Cincinnati,  Ohio  45268
     -Gin.,OH
10. PROGRAM ELEMENT NO.

    1CC614 SOS-1 Task 33
               11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS

   Same as  above
               13. TYPE OF REPORT AND PERIOD COVERED
                   Final
               14. SPONSORING,AGENCY CODE
                                                              EPA/600/14
15. SUPPLEMENTARY NOTES
16. ABSTRACT
   A series  of  computer programs  have been developed  which calculate  costs for specific
   unit treatment processes used  in water treatment plants.  The programs contained in
   this report  are as follows:  chlorination, chlorine dioxide, ozone and granular
   activated carbon adsorption.   Tables are provided  which display input and output
   variables,standardized values  for variables, a key for variable input, and the
   costs associated with five different sized plants  for all programs.   In addition
   program listings and sample outputs for all programs are contained, in an appendix.
   The costs generated by the programs are categorized as capital and O&M expenditures.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.lDENTIFIERS/OPEN ENDED TERMS
                             c.  COSATI Field/Group
   Computer Programs;  Cost Effectiveness;
   Cost Estimates;  Cost Control:  Simulation!
   Unit Costs; Water Supply Optimization}
   Water Treatment
  Unit Processes;
  Water Treatment
               13B
                 9B
18. DISTRIBUTION STATEMENT

   Release to public.
  19. SECURITY CLASS (ThisReport}'
  	Unclassified
              21. NO. OF PAGES
                71
                                               20. SECURITY CLASS (Thispage)
                                                   Unclassified
                                                                          22. PRICE
EPA Form 2220-1 (9-73)
59
                                                                     * U.S. GOVERNMENTPRINTINlSOFFICE: 1978— 757-140/1466

-------

-------

-------
M
 I
er\
o
o
\
ru
 I
-
O-
CD
z
m
€>
C
r-

0
PPORTUfs
H
<
m
S
TJ
r
O

m
TI
m
Z
1 —

"S
Tl
OR PRIVA
H
m
C
w
m
.
Ol
t\j
0)
00




m
— ^
o
1
CD
3
•-*•
m
ii Research
Information
o
CD
i— fr
CD
O
Q'
CD
0^

JJ
CD
CD
O
:r
Q.
D
CD
CD
O
73
3
__)
CD
13
i— t-
m
<
55
0

^
m
z
>
r—
TJ
JJ
OTECTION


Q
m
                                                                                                                (fl
                                                                                                               -a
                                                                                                                o>
                                                                                                                o
                                                                                                                Tl
                                                                                                           03   o
                                                                                                           o   c
                                                                                                           o   2.
                                                                                                                O
                                                                                                                0)

                                                                                                                0)
                                                                                                                          rn
o
H
                                                                                                                                        o
c
0)  •

m
Z

7)   T
o   o

I   ^
^   -
>   >
r-   Z
Ti   O
%   -n
O   m
H   m
m   en
     TJ
                                                                                                                               i   5
                                                                                                                               CD
                                                                                                                               m
                                                                                                                               Z
                                                                                                                               n

-------