United States
Environmental Protection
Agency
Municipal Environmental Research
Laboratory
Cincinnati OH 45268
EPA-600/2-80-112
August 1980
Research and Development
Monitoring Septage
Addition to
Wastewater
Treatment  Plants

Volume II:
Vacuum  Filtration of
Septage

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional  grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.  Environmental Health Effects Research
      2.  Environmental Protection Technology
      3.  Ecological Research
      4.  Environmental Monitoring
      5.  Socioeconomic Environmental Studies
      6.  Scientific and Technical Assessment Reports (STAR)
      7.  Interagency Energy-Environment Research and Development
      8.  "Special" Reports
     9.  Miscellaneous Reports

This report has  been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and  methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution-sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                    EPA-600/2-80-112
                                    August 1980
      MONITORING SEPTAGE ADDITION TO
        WASTEWATER TREATMENT PLANTS

            Volume II.  Vacuum
           Filtration of Septage
                    by

              Charles R. Ott
             Burton A. Segall
           University of Lowell
        Lowell, Massachusetts 01854
           Grant No. R805406010
              Project Officer

            Steven W. Hathaway
       Wastewater Research Division
Municipal Environmental Research Laboratory
          Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U.S. ENVIRONMENTAL PROTECTION AGENCY
          CINCINNATI, OHIO 45268

-------
                           DISCLAIMER
     This report has been reviewed by the Municipal Environ-
mental Research Laboratory, U.S. Environmental Protection
Agency, and approved for publication.  Approval does not signify
that the contents necessarily reflect the views and policies of
the U.S. Environmental Protection Agency, nor does mention of
trade names or commercial products constitute endorsement or
recommendation for use.

-------
                            FOREWORD


     The U.S. Environmental Protection Agency was created be-
cause of increasing public and government concern about the
dangers of pollution to the health and welfare of the American
people.  Noxious air, foul water, and spoiled land are tragic
testimony to the deterioration of our natural environment.  The
complexity .of that environment and the interplay between its
components require a concentrated and integrated attack on the
problem.

     Research and development is that necessary first step in_
problem solution and it involves defining the problem, measuring
its impact, and searching for solutions.  The Municipal Environ-
mental Research Laboratory develops new and improved technology
and systems for the prevention, treatment, and management of
wastewater and solid and hazardous waste pollutant discharges
from municipal and community sources, for the preservation and
treatment of public drinking water  supplies and for minimizing
the adverse economic, social, health, and aesthetic effects of
pollution.  This publication is one of the products of that
research; ,a most vital communications link between the research-
er and the user community.

     This report assesses the feasibility of dewatering septic
tank wastes  (septage) with conventional vacuum filters.  A
method of treating septage in combination with thickened_waste
activated sludge is demonstrated for adaptation at municipal
wastewater treatment plants.,


                                Francis T. Mayo
                                Director
                                Municipal Environmental Research
                                    Laboratory
                               111

-------
                            ABSTRACT
     The study examined the feasibility of using conventional
vacuum filtration to dewater conditioned septage sludge, by
itself and in combination with thickened waste activated
sludge.  The septage was conditioned with aluminum sulfate,
ferric chloride and sulfuric acid, each used independently.
Laboratory experiments were conducted .with a filter leaf appara-
tus that simulates a coil spring vacuum filter.  The Capillary
Suction Test, CST, was used to estimate filterability.  Field
studies, utilizing a full-scale vacuum filter and large quanti-
ties of septage, were conducted at the Medfield, Massachusetts,
wastewater treatment plant.

     The studies showed that vacuum filtration of a combined
mixture of thickened waste activated sludge and septage con-
ditioned with either alum, ferric chloride or acid is feasible.
Excellent cake yields and filtrate quality were obtained.

     The cost of treating septage in the solids handling train
at Medfield was less than the cost of adding septage to the
liquid stream at the plant inlet.

     This report was .submitted in fulfillment of Grant No.
R805406010 by the- University of Lowell under the sponsorship of
the UVS.- Environmental Protection Agency.  This report covers
the period January 1978 to December 1979, and work was completed
as of March  1980.
                              IV

-------
                            CONTENTS
Foreword	1:[-:L
Abstract .,	fy
Figures	vii
Tables	Yifi
Abbreviations and Symbols	xiii
Acknowledgments.	X1V

     1.  Introduction	•  •    1
            Treatment Objectives 	    1
            The Scope of Research	    1
            Literature Review	    2
     2. Summary and Conclusions	    5
            Summary of Research	    5
            Conclusions	    7
            Recommendations	    8
     3.  Laboratory Test Results	•    9
            Task A - Determination of Optimum Chemical
               Dosing.	    9
            Task B - Vacuum Filtration of Conditioned
               Septage Sludge	19
            Task C - Neutral pH Adjustment after
               Conditioning	21
            Task D - Vacuum Filtration of Septage and TWAS .  24
     4.  Field Tests	31
            Experimental Facilities	31
            Liquid Waste and Cake Characteristics. .....  31
            Field Test Selections	36
            Field Test Procedures	•  36
     5.  Field Test Results	38
            Septage Treatment with Aluminum Sulfate	38
            Septage Treatment with Ferric Chloride 	  47
            Acid Treatment of Septage	50
     6.  Synthesis of Field Results  	  59
            Cake Yield	59
            Filtrate Quality 	  61
            Practical Considerations 	  61
     7.  Heavy Metals	64
            Determination of Metal Location	64
     8.  Cost of Septage Treatment	67
            Operating and Mciintenance Costs	67
            Method of Analysis	67
            Cost Comparison	71
                                v

-------
References 	
Appendices
     A.  Task A - Determination of Optimum Chemical Dosing .
     B.  Task B - Vacuum Filtration of Conditioned Septage
            Sludge 	
     C.  Task C - Neutral pH Adjustment after Conditioning .
     D.  Task D - Vacuum Filtration of Septage and TWAS.  . .
 76

 77

 85
 95
100
                              VI

-------
                           FIGURES
Number
                                                 Page
  7

  8


  9

 10


 11


 12

 13
CST vs. chemical dosage for mixed
chemically-treated septage, Task A 	  11

CST vs. chemical dosage for thickened septage,
Task A	13

CST vs. total solids and Al(III) dosage,
Task A	14

CST vs. total solids and Fe(III) dosage,
Task A	15

CST as a function of Al(III) dosage and
septage total solids concentration, Task A ...  16

CST as a function of Fe(III) dosage and
septage total solids concentration, Task A ...  17

Supernatant COD vs. chemical dosage, Task A   .  .  18

Supernatant, solids concentrations vs.
chemical dosage, Task A	19

Coilfilter leaf test apparatus	20

CST vs. chemical dosage for treated septage,
Task C	23

Process schematic - Medfield Wastewater Treat-
ment Plant .	32

Solids handling train at Medfield   	  33

Cake yield vs. vacuum filter cycle time,
field test	46
                             VII

-------
                             TABLES
Number                                                     Page
  1       Chemical Dosages Used in Task A	   9
  2       Characteristics of Raw Septage and Raw
          Thickened Septage - Task A	10
  3       Filter Leaf Test Cake Results - Task B	21
  4       Filter Leaf Test Filtrate Results - Task B  ...  22
  5       CST of Acid Treated Septage Sludges with
          and Without pH Adjustment - Task C	23
  6       Supernatant Characteristics for pH Adjusted and
          Non-Adjusted Samples - Task C	24
  7       Filter Leaf Test, Cake Yields - Task D	26
  8       Filter Leaf Test, Cake Yields - Task D  .....  27
  9       Filter Leaf Test, Filtrate Results, Task D,
          Mode I, 20% Septage/80% TWAS	28
 10       Filter Leaf Test, Filtrate Results, Task D,
          Mode I, 50% Septage/50% TWAS	;  29
 11       Filter Leaf Test, Filtrate Results, Task D,
          Mode II, 20% Septage/80% TWAS	29
 12       Filter Leaf Test, Filtrate Results, Task D,
          Mode II, 50% Septage/50% TWAS	  30
 13       Vacuum Filter Dimensions,  Medfield  	  34
 14       Baseline Mixed Liquor, Secondary Sludge
          Thickener Supernatant and Vacuum Filtrate
          Characteristics (1978)	  34
 15       Thickened Waste Activated Sludge and Vacuum
          Filter Cake - Baseline Study (1978)	35
 16       Thickened Waste Activated Sludge and Vacuum
          Filter Cake - This Study,  Test #1	36
 17       Vacuum Filtration Field Tests 	  37
 18       Field Test Results,  Septage, Alum Treatment ...  38
 19       Cake and Filtrate Characteristics,  Septage,
          Alum Treatment	40
 20       Field Test Results,  Septage and TWAS,  Alum
          Treatment	,	41
                            viii

-------
Number

  21

  22


  23

  24

  25


  26


  27


  28


  29

  30
  31

  32


  33

  34

  35

  36

  37

  38

  39
  40
  41
  42
             TABLES (continued)
                                               Page

Cake and Filtrate Characteristics, Septage and
TWAS, Alum Treatment	   43
Field Test Results, Septage and TWAS, Alum
Treatment	   44
Cake and Filtrate Characteristics, Septage
and TWAS, Alum Treatment	   45
Field Test Results, Septage and TWAS, Iron
Treatment	   48
Cake and Filtrate Characteristics, Septage
and TWAS, Iron Treatment	   49
Field Test Results, Septage and TWAS, Iron
Treatment	   50
Cake and Filtrate Characteristics, Septage and
TWAS, Iron Treatment	   51
Field Test Results, Septage and TWAS, Acid
Treatment	   52
Cake and Filtrate Characteristics, Septage and
TWAS, Acid Treatment	   53
Field Test Results, Septage, Acid Treatment   .   54
Cake and Filtrate Characteristics, Septage,
Acid Treatment  	 ......   55
Field Test Results, Septage and TWAS, No
Treatment  ..... 	  ....   56
Cake and Filtrate Characteristics, Septage and
TWAS, No Treatment	  .   57
Cake Yield Comparison  for  Chemical Treatments
and  Septage/TWAS Mixtures   .	   60
Filtrate Comparison for Chemical  Treatments
and  Septage/TWAS Mixtures   	   62
Metals  in Raw Septage	   64
Percentage of Metal in Supernatant After
Indicated Treatment	••   66
Medfield Treatment  Plant Averages and Yearly
Totals	   68
Percent Distribution - Medfield - Method  1  .  .   68
Cost Distribution  - Medfield  - Method 1  ...   70
Cost Distribution  - Method 1	   72
Incremental  Costs  - Methods 2  and 3, 2% Sep-
tage Addition	   74
                               IX

-------
 Number
A-l
A-2
A-3
A-4
B-l
B-2

B-3
B-4
B-5
B-6
C-l
C-2
C-3
D-l

D-2

D-3

D-4

D-5

D-6
                        TABLES  (continued)
                           APPENDIX A
 Task  A -  Raw Septage  	
 Task  A -  Treated  Septage  Before  Settling
 Task  A -  Septage  Sludge After  Settling  .
 Task  A -  Supernatant  After  Settling   .  .

               APPENDIX B
                                                           Page
76
77
79
82
Task B  -  Cake  Characteristics, Alum  Treatment.    84
Task B  -  Cake  Characteristics, Ferric Chloride
Treatment	    86
Task B  -  Cake  Characteristics, Acid  Treatment.    88
Task B  -  Filtrate, Alum Treatment	    90
Task B  -  Filtrate, Ferric Chloride Treatment  .    92
Task B  -  Filtrate, Acid Treatment	    93

               APPENDIX C
Task C  -  pH Adjusted Raw Septage	    94
Task C  -  pH Adjusted Treated Thickened Septage    95
Task C  -  pH Adjusted Treated Supernatant ...    97

               APPENDIX D
Task D  -  Cake Characteristics, Mode  I, 20%
Septage/80% TWAS, Alum Treatment 	    99
Task D  -  Cake Characteristics, Mode  I, 20%
Septage/80% TWAS, Ferric Chloride Treatment   .  101
Task D  -  Cake Characteristics, Mode  I, 20%
Septage/80% TWAS, Acid Treatment .......  103
Task D  -  Cake Characteristics, Mode  I, 50%
Septage/50% TWAS, Alum Treatment .......  105
Task D  -  Cake Characteristics, Mode  I, 50%
Septage/50% TWAS, Ferric Chloride Treatment   .  107
Task D  -  Cake Characteristics, Mode  I, 50%
Septage/50% TWAS, Acid Treatment 	  109
                               x

-------
                       TABLES (continued)
Number                                                      Page
D-7        Task D - Septage and TWAS Mixture Character-
         ;  is tics, Mode I, 20% Septage/80% TWAS	Ill
D-8        Task D - Septage and TWAS Mixture Character-
           istics, Mode I, 50% Septage/50% TWAS	112
D-9        Task D - TWAS Cake Characteristics, No Septage .  113
D-10       Task D - TWAS and Septage Mixture Character-
           istics, Mode II, 20%/80% and 50%/50% Mixtures  .  115
D-ll       Task D - Cake Characteristics, Mode II, 20%
           Septage/80% TWAS, Alum Treatment 	  116
D-12       Task D - Cake Characteristics, Mode II, 20%
           Septage/80% TWAS, Ferric Chloride Treatment  . .  118
D-13       Task D - Cake Characteristics, Mode II, 20%
           Septage/80% TWAS, Acid Treatment 	  120
D-14       Task D - Cake Characteristics, Mode II, 50%
           Septage/50% TWAS, Alum Treatment 	  122
D-15     :  Task D - Cake Characteristics, Mode II, 50%
           Septage/50% TWAS, Ferric Chloride Treatment  . .  124
D-16       Task D - Cake Characteristics, Mode II, 50%
           Septage/50% TWAS, Acid Treatment 	  126
D-17       Task D - Filtrate Characteristics, Mode I,
           TWAS Only	128
D-18       Task D - Filtrate Characteristics, Mode I, 20%
           Septage/80% TWAS, Alum Treatment ... 	  129
D-19     i  Task D - Filtrate Characteristics, Mode I, 20%
           Septage/80% TWAS, Ferric Chloride Treatment  . .  130
D-20       Task D - Filtrate Characteristics, Mode I, 20%  '
           Septage/80% TWAS, Acid Treatment 	  131
D-21       Task D - Filtrate Characteristics, Mode I, 50%
           Septage/50% TWAS, Alum Treatment ... 	  132
D-22     ,  Task D - Filtrate Characteristics, Mode I, 50%
           Septage/50% TWAS, Ferric Chloride Treatment  . .  133
D-23       Task D - Filtrate Characteristics, Mode I, 50%
           Septage/50% TWAS, Acid Treatment ........  134
D-24     ,  Task D - Filtrate Characteristics, Mode II,
           20% Septage/80% TWAS, Alum Treatment 	  135
D-25       Task D - Filtrate Characteristics, Mode II,
           20% Septage/80% TWAS, Ferric Chloride Treatment.  136
                              XI

-------
Number

D-26


D-27

D-28


D-29
                       TABLES  (.continued)
Task D - Filtrate Characteristics, Mode II,
20% Septage/80% TWAS, Acid Treatment . . .
                                                Page
137
Task D - Filtrate Characteristics, Mode II,
50% Septage/50% TWAS, Alum Treatment 	 138

Task D - Filtrate Characteristics, Mode II,
50% Septage/50% TWAS, Ferric Chloride Treatment. 139

Task D - Filtrate Characteristics, Mode II,
50% Septage/50% TWAS, Acid Treatment 	 140
                             XII

-------
           LIST OF ABBREVIATIONS AND SYMBOLS
ABBREVIATIONS
cm
COD
CST
cu ft
cu m
gal
hr
kg
kw-h
L
Ibs
mgd
mg/1
ml
sec
sq ft
sq m
 -centimeter
 -chemical oxygen demand
 -capillary section time
 -cubic feet
 -cubic meter
 -gallon
 -hour
 -kilogram
 -kilowatt hour
 -liter
 -pounds
 -million gallons per day
 -milligrams per liter
 -milliliter
 -second
 -square feet
 -square meter
SYMBOLS
A1(1 1 1)
Cd
Cr
Cu
Fe(III)
H2S04
Ni
P
Pb
s
SS
TS
TVS
TWAS
x
Zn
—trivalent aluminum ion
—calcium carbonate
—cadmium
—chromium
—copper
—trivalent iron ion
—sulfuric acid
—nickel
—-phosphorus
—lead
—standard deviation
—suspended solids
—total solids
—total volatile solids
—thickened waste activated sludge
—mean
—zinc
                              Xlll

-------
                        ACKNOWLEDGMENTS


     The authors gratefully acknowledge the contributions
made by their graduate research assistants, Diane Robinson and
Edward Znoj.  The accomplishments of the research were in
large measure the results of their commitment, to the laboratory
and field projects.

     The authors also acknowledge the cooperation and assis-
tance given by the Medfield treatment plant staff, Plant
Supervisor Kenneth Feeney, Peter lafolla and Robert LaPlante.
Mr. Feeney facilitated scheduling research activities with
plant operation, provided equipment for material handling and
septage transfer, and managed septage deliveries.

     Appreciation is expressed to the Town of Medfield for
permitting the use of its excellent facilities for research.
                              xiv

-------
                          SECTION I

                        INTRODUCTION
TREATMENT OBJECTIVES:

     Liquid and solids separation is a principal objective in
the treatment of municipal wastewaters.  At conventional ac-
tivated sludge treatment facilities separation occurs both in
primary sedimentation basins and following secondary biological
conversion of dissolved organics to organisms.  At primary
plants only the former process is employed; at extended aeration
plants only the latter.  Septage can be introduced into the
liquid waste stream at a treatment plant where it settles well
in primary basins and is oxidized in aeration processes. However,
oxidizing septage organics is costly and the solids concentra-
tion in septage is often on a par with the concentration of    /-,
solids in streams generated in primary and secondary processes .

     Septage introduction directly into the sludge processing
train at municipal wastewater treatment plants is not generally
practiced and the efficacy of treating septage with only sludge
processing facilities has not been adequately studied.

     Adding septage directly to the sludge processing train
could reduce treatment costs at -plants and would reduce the
organic loading on conventional aerobic treatment processes.
The technology is appropriate for proposed treatment plants
and for existing plants where excess vacuum filtration capacity
is available.

THE SCOPE OF RESEARCH

     The purpose of this research was to determine the feasi-
bility of dewatering chemically conditioned septage.  The de-
watering process utilized was a conventional coil spring vacuum
filter.  Septage was treated and vacuum filtered alone and in
combination with thickened waste activated sludge, TWAS.  Chemi-
cal conditioners used independently for the study were aluminum
sulfate (alum), ferric chloride and sulfuric acid.

     The laboratory phase of the study was conducted at the
University of Lowell, where ten septage samples were chemically
treated over a range of chemical dosages.  Settled sludges
were dewatered on a filter leaf apparatus at various form and

-------
drying time intervals and vacuum pressures.  Cake yields and
solids contents were determined; filtrates and  supernatants
were analyzed.

     The laboratory tests were  followed by full  scale tests at
the Medfield, Massachusetts Wastewater Treatment Plant.
Selection of chemical treatments and dosages for the field
tests were based upon the laboratory work.  Ten  full-scale
field tests were conducted at Medfield, each utilizing about
45.4 cu m  (12,000 gal) of septage.  Septage was  chemically
treated, the supernatant decanted, and the thickened septage
vacuum filtered alone or in combination with thickened waste
activated sludge.  Filter yield, cake composition and filtrate
characteristics were monitored.  For each filter run, the cake
formation time, drying time and vacuum pressure  were periodi-
cally changed.

     The study also included an analysis of effects of neutral
pH adjustment after chemical treatment; filtration of acid
treated septage with and without polymer conditioning; and
effects of adding untreated septage to thickened waste activated
sludge.

     The cost of chemically treating septage and adding it to
the solids handling train at Medfield was compared with the cost
of adding septage to the liquid train (adding it directly with
incoming sewage) as reported in Volume One:  Monitoring Septage
Addition to Wastewater Treatment Plants.

     Heavy metals in sludges, cakes and filtrates were monitored
to assess concentrations and the extent of metal association
with liquid and solids fractions.

LITERATURE REVIEW

     Thickening and dewatering of septage has been investigated
by a number of researchers (2, 3, 4, 5) .

     Feige, et al./ ' Tilsworth, ^ ' and Perrin^ found that
raw septage settled poorly, if at all.  Perrin    found that
aeration for as long as one month was required before settling
improved significantly.  Condren(4), using screened raw septage,
also observed poor separation by settling alone.

     In an effort to improve separation, chemical coagulation-
flocculation schemes using various conditioning  agents have been
investigated (2, 4, 6, 7).  Condren(^) used alum, ferric chlor-
ide, ferric chloride-lime, and acidification with sulfuric acid.
He found that very high chemical dosages and two-stage acid-
lime coagulation were needed to produce a high quality super-
natant.  Following separation, the sludge was dewatered using

-------
sand beds, pressure filtration, solid bowl centrifugation, or
cloth belt vacuum filtration.  He concluded that sand bed and
pressure filtration worked best.

     Tilsworth    found that solids-liquids separation could only
be achieved using very high chemical dosages.  For example,
lime requirements were approximately 10,000 mg/1.  Feige, et al.
(2) had to add similar quantities of lime (about 0.090 kg/kg dry
solids) in order to achieve acceptable septage dewatering on
sand drying beds.
     Shaboo   , using either alum or sulfuric acid, was able to:

     1.  effect good solids- liquid separation;
     2.  produce a relatively clear supernatant with substan-
         tially reduced contaminant concentration, and
     3.  dewater the thickened septage satisfactorily on
         laboratory scale sand beds.

His samples were all rapid mixed for one minute, slow mixed
for twenty minutes and settled for 22 hours prior to decanting
and placement on the sand beds.

     Crowe    investigated septage dewatering without prior
settling and supernatant decanting.  He vacuum filtered septage
and mixtures of septage and digested municipal sludge that had
been treated with lime, ferric chloride and polymers.  He found
that mixtures of digested sludge and up to 20 percent raw
septage by volume were readily dewatered.
           / -D \
     Perrinv '  used capillary suction time (GST) as a laboratory
measure of dewaterability and found that raw septages with GST's
of 125 to 825 seconds could be successfully lowered to 50
seconds through the addition of either ferric chloride, alum,
and some polymers.  Septages with GST values of 50 seconds or
lower were satisfactorily dewatered on sand beds.

     For approximately twelve years the community of Islip,
Long Island, has chemically treated raw septage with ferric
chloride and lime and dewatered the sludge on a coil belt
vacuum filter.   Septage is screened, degritted and sent to an
equalization basin before chemicals are added to a flash mixer.
Solids-liquid separation occurs in a clarif locculator .  Chemi-
cal requirements average about 0.095 kg lime/kg solids and 0.21
liters of standard strength ferric chloride solution/kg dry
solids.  Cake production rates are good, cakes are relatively
dry and release from the coil very well.

     The total chemical cost of ferric chloride and lime treat-
ment was estimated at $2.04/cu m  ($7.70/1000 gal) of septage.
These estimates were based upon chemical costs and average
septage concentrations used in this, study:  FeCl3 cost $0.795/Jl

-------
 ($165.50/55 gal drum), lime cost  $0.198/kg  ($0.09/lb) and
 average septage solids concentrations were  11,550 mg/1  (96.3 lb/
 1000 gal).
Summary of Volume One
                      (1)
     In Volume One of this report the effects and costs of high
septage loadings were examined at treatment plants located at
Medfield and Marlborough, Massachusetts and on the University
of Lowell campus.  Large quantities of septage were fed to the
plants on both continuous and shock loading schedules.  Process
changes, influent and effluent quality were monitored.  Moni-
tored characteristics included organic, nutrient and solids
concentrations, plant operating parameters, biological indica-
tors and sludge production.

     In Volume One it was concluded that septage is readily
treated biologically with domestic sewage and the organic and
solids content of septage averages about 50 times that of
domestic sewage.  The efficiency of septage solids separation
in primary clarification was demonstrated.  It was shown that
vacuum filtration was only affected to the extent that more
solids must be processed when septage is added to the liquid
stream.  The studies at Lowell, Medfield and Marlborough indi-
cated that aeration capacity is likely to be the critical para-
meter in a plant's capacity for treating septage.  The septage
receiving capacity of a plant can be determined by assuming
septage has an average BOD of 6,000 mg/1, and oxygen utilization
for septage treated with sewage is the same as for sewage alone.
In Medfield and Marlborough utilization averaged about 0.7 kg
O2/kg BOD5.

     The liquid stream study (Volume One)  indicated that thick-
ener and vacuum filter design for extended aeration and con-
ventional activated sludge plants can be based upon total anti-
cipated solids in the combined influent sewage and septage with
septage contributing 50 times that of an equivalent volume of
sewage.

     Practical difficulties inherent in handling and treating
septage were discussed in Volume One and these are included in
Section 6 of this Volume.

-------
                           SECTION 2

                    SUMMARY AND CONCLUSIONS
SUMMARY OF RESEARCH

     The purpose of this research was to determine the feasi-
bility of dewatering chemically conditioned septage, alone and
in combination with thickened waste activated sludge.  The
research encompassed laboratory experimentation with a filter
leaf apparatus and field experimentation with a Komline-Sander-
son coil spring vacuum filter.  The chemical conditioners used
independently for septage treatment were aluminum sulfate (alum),
ferric chloride and sulfuric acid.

Laboratory Experiments

     The laboratory work was divided into five tasks, A through
E.  In Task A optimum dosages of Al(III), Fe(III) and H2SO4
were determined for ten different septage samples.  Septage
settling characteristics, Capillary Suction Time (CST) levels
and supernatant characteristics were examined.  The results of
Task A experiments indicated optimum Al(III) dosages between
100 and 180 mg/1, iron dosages between 220 and 400 mg/1 as
Fe(III) and optimum acidification for conditioning between pH2
and pH3.  A tenfold  reduction in supernatant COD and total
solids concentration was observed with optimum chemical treat-
ments.

     Treated septage sludge samples were vacuum  filtered in
Task B, on a filter leaf apparatus.  Various cake form and
drying times, and vacuum pressures were used.  Cake dryness and
yield and filtrate quality were monitored.  The  leaf tests
showed the feasibility of forming cakes on a simulated coil
spring filtering medium and appreciably the same  results were
obtained with the three chemical conditioners.

     In Task C the pH of conditioned septage sludges and
supernatants were adjusted to pH7.  This was done to protect
dewatering equipment from corrosion.  The tests  showed that
pH adjustment with lime had little or no effect  on dewater-
ability as measured by the CST Test.

     In Task D, septage was combined with thickened waste
activated sludge, TWAS, and vacuum filtered on the leaf appara-

-------
 tus.   Two modes of combination were used:

      Mode I  - Septage was chemically treated and settled.
               The thickened septage was  mixed with TWAS,
               polymer was added and the  mixture  was vacuum
               filtered.

      Mode II- Septage and TWAS were combined then chemically
               treated with coagulant or  acid and polymer.

      Septage and TWAS were combined in ratios of 20% septage to
 80% TWAS  and 50% septage  to 50% TWAS on  a  total  solids  basis.
 Cake  dryness,  yield and filtrate characteristics were monitored.

      Task D  tests showed  that  the same results were accom-
 plished with Modes I and  II but twice the  quantity of chemical
 was required for Mode II.   The test showed the feasibility of
 dewatering conditioned septage in combination with TWAS and
 that  comparable results were obtained with either the aluminum
 or iron coagulants or with acidification.

      Heavy metals in conditioned septage sludges and super-
 natants were monitored in Task E.   These laboratory tests
 showed that  Cd,  Cr,  Cu, Ni,  Pb and Zn associate  with the
 solids after treatment with either iron  or alum  coagulants.
 Acid  conditioning tended  to increase metal concentration in
 the supernatant,  particularly  Cd and Ni.

 Field Experiments

      Ten  vacuum filter tests were conducted with a full-scale
 vacuum filter  at the Medfield,  Massachusetts wastewater treat-
 ment  plant.   Septage was  conditioned with  either acid,  alum  or
 ferric chloride.   In each test chemicals were mixed with
 about 45.5 cu  m (12,000 gal) of septage.   The septage was
 settled,  the supernatant  decanted and the  conditioned septage
 sludge either  fed directly to  the vacuum filter  or combined
 with  TWAS.   The  mixture was  then treated with polymer,  followed
 by vacuum filtration.  The tests included  three  experiments
 with^alum:   a  septage only test,   and runs with  mixtures con-
 taining 14.6%  and 55%  conditioned thickened septage.  Two  mix-
 ture  tests were  conducted  with ferric chloride conditioned
 septage:   23.1%  and  44.8%  septage combinations.   Acidified
 septage was  used in  three  tests,  one with  a 46.7%  septage/
 53.3% TWAS mixture and the others  with only septage  - one  with
 polymer,  the other without.  For comparison a filter  run on
 thickened waste  activated  sludge was monitored and in a final
 test  a quantity  of untreated septage was added to  TWAS  and the
mixture vacuum filtered.

-------
     Cake yields, cake solids concentrations and filtrate
quality were monitored in filter runs, during which vacuum
pressures and drum speeds were varied.

     The costs of treating septage in both the liquid and
solids trains at Medfield, were determined.

CONCLUSIONS

     Coil spring vacuum filtration of a combined mixture of
thickened waste activated sludge and septage conditioned with
either alum, ferric chloride or sulfuric acid is feasible.
This research showed conclusively that excellent cake yields
were obtained with combined mixtures having up to 55% septage
solids content.  Cake release and filtrate quality were good.
In fact, when conditioned septage was added to thickened waste
activated sludge its dewatering characteristics were improved.
The cost of treating septage in the solids handling train at the
Medfield, Massachusetts wastewater treatment plant was between
$1.79/cu m  ($6.76/1000 gal) and $4.04/cu m  ($15.28/1000 gal).
These costs compare with between $2.02/cu m ($8.30/1000 gal)
and $5.26/cu m  ($19.82/1000 gal) for adding septage with raw
sewage at Medfield.

     The laboratory and field studies also showed:

     1.  Conditioned septage, by itself is not dewaterable on
         coil spring vacuum filters.  Fines in the septage
    i     rapidly clog the filtering medium.

     2.  The CST of conditioned septage sludge was always
         higher than thickened waste activated sludge values.
         But, when conditioned septage was combined with TWAS
         and polymer added, CST levels comparable, to polymer
         treated TWAS were achieved.

     3.  Based upon observed dewaterability of the conditioned
         septage/TWAS mixture, the inability to dewater condi-
         tioned septage alone and the CST results stated in
         item 2, it is hypothesized that when septage was
         mixed with TWAS, fine septage particles were incorpor-
         ated into the biological floes.  The net effects of
         combining septage particles and TWAS was the ability
         to dewater septage with vacuum filtration and enhance-
         ment of TWAS filtration.

     4.  Laboratory filter leaf tests showed that conditioned
         septage should be amenable to vacuum filtration.  The
         coil spring filter leaf model overestimated cake
         yields subsequently obtained in the field when filtering
         only conditioned septage.  The filter leaf apparatus

-------
         underestimated yields obtained with combined septage
         and TWAS mixtures.  The leaf apparatus also overesti-
         mated obtainable cake dryness.

     5.  Based upon experience with the leaf apparatus and full
         scale testing it is concluded that the leaf apparatus
         had limited application for scaling-up purposes but
         did indicate feasibility.

     6.  The GST measurement is an effective way of determining
         optimum coagulant dosage for vacuum filtration.

     7.  Based upon ease of handling, quality of filtrate,
         cake yield and cost, alum treatment is the method of
         choice.

RECOMMENDATIONS

     1.  This research did not investigate the limits of the
         septage/TWAS ratio nor were binder materials other than
         TWAS studied.  It is recommended that these are worth-
         while areas for study.

     2.  Full-scale implementation of an alum treatment system
         is recommended for wastewater treatment plants.  The
         system should include, properly designed septage
         storage, mixing and pumping equipment, chemical feeders
         and facilities for combining conditioned septage with
         TWAS for vacuum filtration.   The system should be
         designed to permit the flexibility of liquid stream as
         well as solid stream addition.

-------
                           SECTION 3

                     LABORATORY TEST RESULTS


TASK A - DETERMINATION OF OPTIMUM CHEMICAL DOSING

     Aluminum potassium sulfate, ferric chloride and sulfuric
acid were added separately, to ten different septages.  The
chemicals were added to series of 1 000 ml samples in the do-
sages shown in Table 1.
          TABLE 1.  CHEMICAL DOSAGES USED IN TASK A
   Chemical
    Dosage Range
Aluminum Potassium
    Sulfate
Ferric Chloride
Sulfuric Acid
 80 to 800 mg/1 as Al(III)

100 to 400 mg/1 as Fe(III)

    to pH 2 and pH 3
    The range of dosages selected for each test was based upon
alkalinity and estimated septage strengths.  Septage strength
was appraised visually.  .Chemical dosage selection began at
80 mg/1 of either Fe(III) or Al(III) when measured alkalinity
was less than about 400 mg/1.  At alkalinity levels above 600
mg/1 the selected chemical dosage range began at 100 to 120 mg/1.
CST (Capillary Suction Time) of settled septage sludges were
used to determine optimum coagulant dosages or pH adjustment.
Analyses were conducted on raw septage, raw thickened septage,
raw septage supernatant, treated septage before settling and
thickened septage and supernatant after settling.

     Characterization data for raw septage and thickened septage
prior to treatment are shown on Table 2. .  The full set of com-
piled test results are included as Appendix A of this report.
The data in Table 2 show that septage used for this laboratory
study had comparatively high solids and organic content.
Measured CST values of both the mixed septage and settled
sludge  (before chemical addition) were very high.  This indi-
cated that these materials would not filter well.  The settled

-------
          TABLE  2.  CHARACTERISTICS OF RAW SEPTAGE AND

                   RAW THICKENED SEPTAGE - TASK A
                              Raw Septage
  Raw  Thickened
    Septage
                                         **
Analysis
COD, mg/1
Total Solids, mg/1
X
36 770
29 840
s
13 600
12 180
X
49 880
55 880
s
15 350
21 640
 Total Volatile Solids,
 mg/1                     19 910     6 410

 pH                          6,2       0.5

 Alkalinity, mg/1 as
 CaCO3                     1 090       698

 CST (Capillary Suction
 Time)                       295       113

 Settling Cone, ml
 Sludge/ml total

 *   Average values
 **  Standard deviations
37 310
8 820
   234
   88
465/930   110/20
portion of the raw septage occupied about half of the total
sample volume and had about twice the solids concentration of
the mixture prior to settling.

     Total solids and total volatile solids measurements of
mixed samples (replications of the raw septage measurements)
after chemical addition show that chemical additives increased
the weights slightly.  The values shown .in Table 2 for total
and volatile solids are the results of more than 280 analyses.

     CST values for mixed septage samples  (before settling)
were markedly changed by chemical'conditioning. .. These changes
are shown on Figure 1, as functions of chemical additives and
dosage.  Figure 1 shows average values for Al(ill) and Fe(III).
CST was a function.of .initial solids concentration and alka-
linity as well as chemical dosage.  Acid quantities used to
reach pH values of 2 or 3 were also dependent upon alkalinity
and solids concentrations.  .While a trend of increasing chemical
                               10

-------
o
w
^
H-
O
                240

                220

                200

                180

                160

                140

                120

                100

                 80

                 60


                 40

                 20

                  0
                    H2SO/, TREATMENT

                                CST
                                         82
                                         77
                     2
                     3
                    Fe(lll)
- Al(lll)
                       I
                   0
      100
200
                              300     400
                          CHEMICAL DOSAGE, mg/t


 Figure 1.  CST vs.  chemical  dosage  for  mixed chemically-
            treated  septage,  Task A.
requirements and initial CST was observed with increasing alka-
linity and initial solids concentration, no definitive relation-
ships were discernible.

     The optimum range for the aluminum coagulant was between
100 and 180 mg/1 as Al(III) and between 220 and 400 mg/1 as
Fe(III) for the iron coagulant.  Optimum pH values for acidi-
fication were between 2 and 3.  The addition of either 100 mg/1
of Al(III) or Fe(III) caused about a 1 unit drop in initial
                              11

-------
 septage  pH.   Any Additional  100  to 200 mg/1  of  coagulant  used
 caused a further reduction of  about 0.5  pH unit.

      Task A was  conducted to determine optimum  chemical dosing
 for vacuum filter tests.  Either the mixed conditioned septage
 or the settled portion  of the  septage can be filtered.  To
 examine  both  prospects, analyses were conducted on both mixed
 and chemically settled  sludge.   Supernatant  quality was monitored.

      Solids concentrations in  settled septage sludge were about
 the same as observed without chemical addition.  Type and quan-
 tity  of  chemical additive did  not influence  sludge solids con-
 centrations.  The average total  solids concentration after chemi-
 cal conditioning and settling  was 52,850 mg/1;  the average vola-
 tile  solids concentration was  35,260 mg'/l.   The results were based
 on a  total of 280 analyses,  and  compare  with averages of  55,880
 mg/1  and 37,310  mg/1 for total and volatile  solids, respectively,
 before conditioning.  Sludge volumes in  settling cones were about
 50% of the total volume both before and  after chemical addition.
 However,  increased supernatant clarity after chemical addition
 indicates additional solids  incorporation in the settled  sludge.

      CST values  for the thickened septage are shown on Figure 2.
 A comparison  of  this figure  and  Figure 1 shows  average CST
 values 20 to  60  units higher for thickened samples than for the
 mixed unsettled  samples.  This was  due to the increased solids
 concentrations in the settled  samples.   Since CST is, at  best,
 an indirect measure of filterability, no comparison was made of
 CST values for the Al(III),  Fe(III)  and  acid treated samples.
 However, a comparison of chemical treatments  was made using the
 filter leaf apparatus in Tasks B and D and in the field tests
 conducted at  the  Medfield wastewater treatment  plant.

      Relationships between initial  septage total solids concentra-
 tion, coagulant  dosage and CST are  shown in  Figures 3 and 4.
 Data  for each coagulant dosage were  fitted to an exponential
 curve.   Coefficients of determination, r , for  the least  squares
 curves,  averaged  0.58 for the alum  treatment  and 0.23 for the
 ferric chloride  treatment.    The  fitted exponential curves, plotted
 on Figures 3 and  4, are transposed  on Figures 5 and 6, where CST
 is shown as a function of dosage  for septages with varying initial
 total solids content.  The results  shown on  these last two exhib-
 its can be used  to approximate chemical  dosage  requirements.

     Supernatant  COD is shown as  a  function  of  chemical addi-
tion in Figure 7 and results of .solids analyses are shown in
Figure 8.  At optimum dosages,  supernatant COD  and solids con-
                               12

-------
          o
          
          CO
          CO
          o
240

220

200

180

160

140

120

100

 80

 60

 40

 20

  0
                       Al(lll)
                                       H2S04 TREATMENT
        pH
         2
         3
                                               CST
                                                64
                                                97
         Fe(111)
                  0
          100
200
300
400
                         CHEMICAL DOSAGE,  mg/l
Figure 2.  CST vs. chemical  dosage .for  thickened septage,  Task A.
centrations were a full order of magnitude less than raw sep-
tage concentrations.  Increasing chemical dosages generally re-
sulted in decreasing COD and supernatant solids concentrations
but this effect was minor.when compared with the ten-fold re-
ductions that occurred with the initial 100 mg/1 of either
Al(III) or Fe(III).  Solids concentration in acidified sample
supernatant was on the average more than twice as high as ob-
tained with the iron and aluminum coagulants.
                               13

-------
    o
    0)
    to
    co
    O
240


220



200


180



160



140


120



100


 80



 60


 40



 20



  0
           0
                                        Al(lll)

                                        DOSAGE
           10
20
30
40
                                       .-3
                       TOTAL SOLIDS-, 10  mg/l
50
Figure 3.  CST vs.  total  solids and Al(III) dosage, Task A.
                               14

-------
    240



    220



    200



    180



    160
 o  140
 cu
 H-
 co
 o
120




100




 80



 60




 40



 20




  0'
        0
          10
20
                            Fe(lll)

                            DOSAGE

                             mg/l
30
40
                                   -3
                   TOTAL SOLIDS,  10  mg/l
50
Figure 4.  CST vs. total  solids  and Fe(III)  dosage, Task A.
                           15

-------
           o
           cu
           CD
          CO
          O
240


220

200

180

160


140

120

100

 80

 60

 40

 20

  0
                                    TOTAL SOLIDS
                                        mg/l
                          I
                                   50 000
                                   40 000
                                   30 000

                                   20 000
                                   10 000
                                    5 000
                  0       100      200      300

                       CHEMICAL DOSAGE,  mg/l
Figure 5.  CST as a function of Al(III) dosage  and  septage
           total solids concentration, Task A.
                             16

-------
      o
      CD
      w
      O
240


220


200



180



160


140



120


100


 80



 60



 40



 20


   0
              0
                  TOTAL  SOLIDS, 'mg/£
                   50  000
                   40  000
                   10 000
                    5 000
           100
200
300
Figure 6.
                   CHEMICAL DOSAGE, mg/l
 GST  as  a function of Fe(III)  dosage and septage

 total  solids concentration, Task A.
                            17

-------
   01
   £

    -\
   Q
       50 000
       40 000
30 000
       20 000
       10 000
            0
                  Al(lll)
                            H2SO/+ TREATMENT

                              EH      COD
                               2      2310
                               3      2720
                           Fe(lll)
             0      100     200     300     400
                      CHEMICAL DOSAGE,
Figure 7.  Supernatant COD vs. chemical  dosage,  Task A.
                           18

-------

=s?
**-^
CT\
^OJ
s
6 000
-\
CO
2
Hi
O
m 5 000
LU
_J •
1^^
<
_J
> 4 000
_i
<
H~
O
Q 3 000
CO
O
It
^ 2 000
CO
_1
L«
r^
° 1 000
11 1
1
Ho SO/, TREATMENT
*
_ TOTAL
PH SOLIDS
.£*-* 	 	
2 10130
3 6130

—



—
Q0TS, Al(lll)
~s
°^^^3--CL^n-^a^xE!
^^ TS,
Q ^
V ^^^3^^
^^^TS-^S,
TVS, Al(lll)
1 1 1
0 100 200 300

VOLATILE
SOLIDS

5190
2590

	



—


Fe(lll)


Fe(lll)

|
400
                       CHEMICAL  DOSAGE,  m3/l
Figure 8.  Supernatant solids concentrations vs.  chemical"dosage,
           Task A.
TASK B - VACUUM FILTRATION OF CONDITIONED SEPTAGE SLUDGE

     Thickened septage samples, obtained from experimentation in
Task A, were filtered using a filter lea,f apparatus.  The de-
vice simulates a coil spring vacuum filter and was obtained
from the Komline-Sanderson Company.  The filter membrane was
the K-S standard reference screen which has a 93 sq cm  (0.1 sq
ft) filtering area.  Figure 9 is a schematic diagram of the test
apparatus.
                              19

-------
               VACUUM
               GAUGE
      TO
      VACUUM
      PUMP
      FILTRATE
                                 VACUUM
                                 FLASK
                                       SLURRY-
                                       TEST
                                       LEAF
        Figure  9.  Coilfliter  leaf test apparatus.
     Thickened septage samples tested with the filter leaf
apparatus were those treated at optimum chemical dosage.  Each
of the ten thickened septage samples, treated independently
with Al(III), Fe(III), or acid at optimum dosage, were filtered
at 52 kPa (7.5 psi) and 103 kPa (15 psi) and at 1, 2 and 4
minute form-times.  One hundred and eighty filter leaf tests
were conducted in Task B on thickened septage.  Measured
characteristics included cake thickness, dry cake weight,
percent total solids, percent total volatile solids and cake
yield.

     Task B results, for percent total solids and cake yield,
are summarized in Table 3.  The complete results are shown in
Appendix B of this report.  Total volatile solids averaged
72% of total solids and cake thickness and dry weights were
consistent with the cake yields shown in Table 3.  Greater
yields were obtained with increased pressure but after the
first minute of forming little additional solids capture was
observed.  This is indicated by a sharp decline in yield,
                              20

-------
        TABLE 3.  FILTER LEAF TEST .CAKE RESULTS - TASK B


Form Time, min
Aluminum Potassium
Sulfate
103 kPa(15psi)
52 kPa(7.5psi)
Ferric Chloride
103 kPa(15psi)
52 kPa(7.5psi)
Sulfuric Acid, pH2-
pH3
103 kPa(15psi)
52 kPa(7.5psi)
Cake

1
24.5
22.0
24.7
22.3

27.4
23.9
Total
%
2
27.5
24.0
27.6
24.6

29.8
25.7
*
Solids

4
29.5
26.3
30.2
25.5

31.7
26.4
*
Cake Yield
Ib/sq
1
1.37
.92
1.20
.90

'l.ll
.82
ft-hr**
2
.66
.57
.53
.51

.51
.33 • ,

4
36
30
29
23

32
16
**
Ten Sample Averages
1 Ib/sq ft-hr = 4.844 kg/sq m-hr
 almost in an inverse proportion to changes in form-time.
 Essentially the same yields and percent solids were obtained
 with the aluminum potassium sulfate, ferric chloride and the
 acid treatments.

      Leaf test filtrate characteristics are summarized.in Table
 4 and shown fully in Appendix B.  Filtrate total solids and
 COD concentrations were about the same at all form-times and
 vacuum pressures.  Filtrate COD was slightly less,in samples
 treated with Al(III) than with either acid for Fe(III).
 Filtrate total solids were considerably higher in acidified
 samples than in samples treated with aluminum or iron.

 TASK C - NEUTRAL pH ADJUSTMENT AFTER CONDITIONING

      Ferric chloride and aluminum potassium sulfate are salts
 of strong acids and weak bases and thus tend to depress pH be-
 low 7 when added to septage.  The acidic conditions caused by
 these coagulants can in time corrode a vacuum filter.  Sludges
 acidified with sulfuric acid are, of course, highly corrosive.
 The objective of Task C was to readjust sludge samples to
 a pH of 7 after chemical treatment and sedimentation as a means
 of protecting dewatering equipment.  Lime was added to thicken-
 ed septage and supernatant samples obtained from Task A.  The
                               21

-------
       TABLE 4.  FILTER LEAF TEST FILTRATE RESULTS - TASK B
                        Filtrate COD'
                            mg/1
                     Filtrate Total Solids
                              mg/1
 Form Time,  min
 Aluminum Potassium
 Sulfate
   103 kPa(15psi)
    52 kPa(7.5psi)
 8630   9380   8800     6350   7130   6920
12290  10430   9860     9050   7900   7090
Ferric  Chloride
   103 kPa(15psi)      9300   10790   11070      5590    7660    7860
    52 kPa(7.5psi)    14600   13240   11770     10220    9420    7910
Sulfuric Acid, pH2-
pH3
   103 kPa(15psi)     12280
   52 kPa(7.5psi)    13700

*   Ten Sample Averages
       12270  11240    11930  11390  11690
       13070  12050    12030  11310  10250
supernatant samples were adjusted to  see  if any additional
separation would occur which would tend to improve  super-
natant clarity.  Lime increased the average total solids con-
centration in'the  septage  sludge from 52,850 mg/1,  found in
Task A, to 56,360  mg/1.
                                          S
     GST values for treated and pH adjusted thickened septage
are shown in Figure 10 and Table 5.   The  non-adjusted data
obtained in Task A are shown for comparison.  Figure 10 shows
that GST values for alum treated sludges  averaged about 30
GST units above those obtained for the unlimed samples.  A
similar result was observed with the  ferric chloride treat-
ment.  Results obtained for the first nine tests with acidi-
fied samples, shown in Table 5, indicates that pH adjustment
with lime had no effect on GST.

     Table 6 shows the effects of adding  lime to supernatant
samples.  pH adjustment had no effect on  the samples of super-
natant obtained from treatment with either aluminum or iron.
However, the acidified supernatant clarity was improved by
the addition of lime.  COD, total solids  and volatile solids
concentrations were reduced by lime addition but total solids
levels were still  double values obtained  with the Al(III)  and
Fe(III) treatments.
                              22

-------





o
cu
CQ
H
CO
o



220
200
180
160
140
120
100
80
60
40
20
°C
1 1 1 1
— _
— - —
- s-* Fe(lll), TASK C~
~ 0®" — ^"C1~^------r-L ~~
\ X\ .<— Fe(lll),
Ov XV^ TASK A
\ ^VT« AI CT T T) , TASK C
- \ • \D
^ * A1 ( T T T ) TA^K A

~ TASK C - pH ADJUSTMENT TO pH7 ~
_ TASK A - NO pH ADJUSTMENT
1 I 1 1
) 100 200 300 400 '
                     CHEMICAL DOSAGE,  rng/l


 Figure 10.  CST vs.  chemical dosage  for treated septage, Task C.



         TABLE  5.   CST OF ACID TREATED SEPTAGE SLUDGES

         WITH AND WITHOUT pH ADJUSTMENT - TASK C
pH After
Coagulant or Acid
Treatment
2
2
3
3

pH After
Lime Addition
2
7.0
3
7.0

_*
X
67
49
103
82

CST
s**
29
53
65
63

Task
A
C
A
C
 *Average
**Standard Deviation
                               23

-------
            TABLE 6.   SUPERNATANT CHARACTERISTICS FOR

            pH ADJUSTED AND NON-ADJUSTED SAMPLES  - TASK C
    Treatment
COD,
mg/1
 TOTAL
SOLIDS,
 mg/1
VOLATILE
 SOLIDS,
  mg/1
Al(III)
  No pH adjustment      2130
  pH adjusted to  7      1970
             2440
             3560
                840
                920
Fe(III)
  No pH adjustment      2360
  pH adjusted to  7      2490
             2160
             2610
               1150
               1190
  S04, pH2
  No lime adjustment   2490
  pH adjusted to 7     1820
            11560
             8000
               6020
               1020
H2S04/ pH 3
  No lime adjustment   2770
  pH adjusted to 7     1600
             6970
             5860
               2940
               1150
TASK D - VACUUM FILTRATION OF SEPTAGE AND TWAS

     Septage samples, combined with thickened waste activated
sludge (TWAS) were dewatered on a filter leaf apparatus.  The
apparatus used for this task and for Task B is shown in
Figure 9.  Septage and thickened waste activated sludge were
combined in ratios of 20% septage to 80% TWAS and 50% septage
to 50% TWAS, on a solids weight basis.

     Two procedures were used for combination and treatment.
For the first procedure, Mode I, septage and TWAS were chemi-
cally treated separately, the septage settled and then thicken-
ed septage and TWAS were combined for dewatering.  Septage
was treated with acid or coagulant and the TWAS was treated
with Nalco 7120 polymer.  In the second procedure, Mode II,
septage and TWAS were combined prior to treatment with coagu-
lant and polymer and no settling or decanting employed.

     After chemical treatment the combined sludges were filter-
ed.  Cake thicknesses, dry weights, percent total and volatile
solids were determined and cake yields were cdmputed.  These
                              24

-------
data are tabulated in Appendix D.  Appendix D also includes
TWAS. and filtrate characteristics.

     A summary of results for Mode I  (chemical treatment before
combination) is shown in Table 7.  This table shows total solids
and cake yield averages for the 20%/80% and 50%/50% combinations
at three form-times and at two vacuum pressures.

     Table 7 indicates the following:

     1.  Increased vacuum pressure did not affect percent
         solids in the 20%/80% samples but caused about an
         18% increase in percent  solids in the 50%/50% samples.

     2.  Cake yield was the same  at 103 kPa  (15psi) and at
         52 kPa  (7.5psi).

     3.  Cake dryness increcised with  increasing  form-time.

     4.  Cake yields declined almost  in proportion to increases
         in form-time.  This indicates that only small amounts
         of material accumulated  after the first minute of
         forming.

     5.  A comparison of cake dryness and yield  values for  the
         th^ee chemical treatments indicates  little difference
         in the observed results.  Yields were low and about
         the same  in all three cases.

     6.  A comparison of mixture  compositions indicates that
         dryer cakes were obtained with the  50%/50%.  This
         was expected since septage  solids would tend to  add
         weight to a cake.  However,  better  yields were ob-
         tained with the 20% septage/80% TWAS mixture, indi-
         cating better  pick-up and cake thickness.

     The results of Mode II  Cseptage  and TWAS combination be-
 fore treatment)  are summarized in Table 8.   The  results of  the
 Mode II testing  are very similar  to  what was achieved in  Mode
 I and  the above  stated  results for Table 7  are  also  appro-
 priate for  Table 8.  Total  solids concentrations were again
 higher for  the  50%/50%  mixtures  than for the 20% septage/
 80% TWAS mixtures. Cake yields  were again  superior  for the 20%/
 80% mixtures.

     A comparison  of Tables  7  and 8  shows yields about the
 same for the  20%/80% mixture  for both chemical  addition pro-
 cedures.  For  the  50%/50% mixtures  adding coagulant  or  acid
 prior  to combination of septage  and  TWAS was advantageous.
 However, in all  cases yields  obtained on the filter  leaf
 apparatus were very  low when  compared with  customary full-scale
                               25

-------














Q


V.
a
EH
1

CO
Q
H
H
>H
W
&
a.
O
EH"
CO
W
EH
P4
rt
P-l
Hi

PH
W
EH
Hi
H
pq

•
^
fr"!
f*A
5j
^






























S CO
0 rtj
H |S^
<£
t3
H W
eg c5
§ Q
o D
CJ Hi
CO
K Q
o m
h EH
Ixl rf!
w >
H
Q EH
W O
EH  m
1-1
K
Q
Hi
Ixl
H
t«

W tfP
W o
(< 00
O \
dP
O
CM









dP
O
in
dP \
d°
«• 0
CQ in
p
H

^^
CO
111

o
Hi
£
O o
EH oo
dP
O
CM


..
0)
tn
fd
-P CO
ft P£
0) !2
rrt p i
UJ t^

dP dP


•=!<



CM


^










CM



rH





"*



CM






rH




«5f



CM


rH


CD
•rl *~^
EH F4
•rl
6 S
w
o
h


CM



O
in


r-
^
in
•
r-





m
CM



rH


VO
r-
*



'rH

,


CM
g


in
rH
rH



CO
OO
rH



in
VD
i-H



CM

rH



00
rl


&
0
rH
O
•
O
rH

(0 — . (C
(^_4 *> m LJ
H ft
H CO in CM
H o rH in

0)



o
CM



oo
co
*

co
t--
*



rH

^


^o
VD



a
rH



oo
o
VO
rH



CM
-*
rH



Cft
v
rH
rH



CM
rl'


CM
O
rH
CM
•
cyi

•"rT
CO
Oi
CM
.
r~





CM
*


00
co
*

CM
00
*



r-

^«


0
0


CO
CM
rH



CO
rH
CM



in
00
rH



00

£



in
CM
rH


CO
e
•-H
rH
in
•
o
rH

CM co td — ^ (d
EC W Pn -H Oi

ft
-31 co in CM
O o rH in
CO rH *-*
CM



00
rH
*


co
co
*

oo
VD
*



<-J*

^


m
9


CM
CM
H



rH
00
i-H



OO
VO
rH



C">
8
co
rH



VD
CM
rH


CO
i-H
rH
in
0
rH

•"H"
CO
Q.
m

r-
**^











































.
I
k
K
CO
\
^
,,
•vf
00
„
II
g
1
4J
m
G1
CO

Q
rH

rH

*
26

-------










P
NH
CO
I^J
EH
1

CO
P
H
H
t*
H

H
EH
O
^


















O
in
* \
MfAQ
OV
it^*l C3
I m
4J
MH
U1
CO
\
rH
«.
P
i-3 
pq o
H 00
>H \

O
CM








oV>
0
in
tX>
o
in

o\°

^
CO
P
H

O
CO
|J]
p^
EH o\°
O o
EH oo
0\°
0
CM


\^
Q)
Cn
nS
•t-> CO

OJ !5
co EH

o\o o\°
^

CM



rH



«vf



CM




i — i



"*




CM




rH






•<*



CM



rH


0)
g ^_^
•H d
EH-H

g — '
J_j
o
fa
in
rH

o
CO



VD
in



m
co
•


co
*


oo
CM
rH


°l
ro
CM



0^
CO
rH



in
•
CM
CM




<4<
in


**o
rH


-a-
CM
rH

a
P4 —
ly< Br_|
— ' CO
rH
*

vo
CM



in
in



m
•


VD
vo
*


CM
rH


CM
rH



r--
i-H



•
in
rH




r-l
in
i-H


in
co
rH


•*
rl

(0 —
PM -H
X to
p.
H co DjcM in
I-H o in
I~H i™H rH
•» — ^ ^— *
rH
<<
in •
r^
— *


3

co
CM
•


00



CM
*


CM
in
*


o
O^
ft


CM
ft
CM
CM



C-i
ft
0
CM



H
ft
O^
rH




CM
ft
rH


ID
rH


0
oo
rH

{rj
PM —
}£ -H
*-. CO
d-

rH
CM
•


in



oo
*


in
*


in
•


m
rH



00
rH



CM
ft
OO
rH




CTl
*
rH


in
ft
oo
rH


•*
rH
rH

a ^
CM -H
^ CO
ft
rT
'
rH
ft


•<*
co



CM
*


00



vo
00
ft


^
CM



rH
ft
oo
CM



^O
ft
o
CM




O">
(Tl
rH


r~
rH


•*
in
rH
1
CM CO
K HJ td ^^
CU ft PM -H
^4 co
H oo DJCM in ft
u o in
H rH rH
' — *~*
(!)
fa
in •
r~
— "


>* oo in
O OH
CO H — '
CM
^
0

CO
H
ft


vo
co



CM
*


0
in



CM
00
ft
H


H
ft
H
CM



H
ft
O^
H



r-;
^O
H




H
•a


(Tl
ft
in
H


**.
H

^^
(0 -H
PM CO
_v/ ft
in
CM •
in r~
*^-^




































M
,£4
1
S

C71
CO
&1
^4

•vl*
CO
^f

II
M
1
4J
UH

tJ1
CO
^^
^Q
H

H
*
27

-------
vacuum filter yields.  In part this was due to the  low polymer
dosages used in the laboratory tests.  Chemical treatment after
combination, Mode II, did improve cake dryness.  Percent total
cake solids were higher in Mode II than in Mode I.

     About twice the quantity of chemical was needed to perform
the Mode II tests for a prescribed quantity of septage since
coagulant or acid was added to TWAS and septage.  Based upon
the similarity of results in Tables 7 and 8 it was  concluded
that septage treatment prior to combination with TWAS, Mode I,
is a preferable procedure for field implementation.

     A comparison of Task B and Task D results indicates that
conditioned septage alone filters as well as it does in com-
bination with TWAS.  These results were later contradicted
by field testing.

     Summaries of filtrate characteristics for Task D are shown
in Tables 9 through 12.  The complete results are included in
Appendix D.  Tables 9 through 12 indicate the following:
      TABLE 9.  FILTER LEAF TEST FILTRATE RESULTS, TASK D,
                MODE I, 20% SEPTAGE, 80% TWAS

Form Time,
Al(III)
103 kPa
52 kPa
Fe(III)
103 kPa
52 kPa
min

(15psi)
(7.5psi)

(15psi)
(7.5psi)
Sulfuric Acid,
pH2-pH3
103 kPa
52 kPa

(15psi)
(7.5psi)



Filtrate COD

1

4300
5140

6630
5710


5240
5020
mg/1
2

5310
3860

6260
4070


4970
3490

4

4760
3460

5040
3330


4570
3460
Filtrate


1

4540
5040

6210
5190


5330
4720
Solids
mg/1
2

5190
3500

5850
3600


5050
3850
Total


4

4660
3900

4640
2840


4450
3040
                              28

-------
TABLE 10.   FILTER LEAF TEST,FILTRATE  RESULTS, TASK D
            MODE I,  50% SEPTAGE/50%  TWAS

Form Time , min
Al(III)
103 kPa (15psi)
52 kPa (7.5psi)
Pe(III)
103 kPa (15psi)
52 kPa (7.5psi)
Sulfuric Acid,
pH2-pH3
103 kPa (15psi)
52 kPa (7.5psl)
Filtrate COD
mg/1
124
5790 5350 4950
6260 4940 4350
7150 6850 6460
7640 6490 5490
7340 7430 6300
8170 6240 5460
Filtrate Total
Solids
mg/1
1 2
>
4820 5090
5660 4120
6240 5740
6350 5380
6660 6540
7680 6150
4
4790
3620
5510
4600
6090
5180
TABLE 11.  FILTER LEAF TEST,FILTRATE  RESULTS,  TASK D
           MODE  II,  20% SEPTAGE/80% TWAS

Form Time,
Al(III)
103 kPa
52 kPa
Fe(III)
103 kPa
52 kPa
loin
(15psi)
(7.5psi)
(15psi)
<7.5psi)
Sulfuric Acid,
pH2-pH3
103 kPa (15psi)
52 kPa (7.5psi)
Filtrate COD
mg/1
1 2
5050 5480
5080 4210
7220 7150
5480 5000
8370 7880
7010 5880
4
5200
3700
6130
4220
7640
6890
Filtrate Total
Solids
mg/1
1
5660
5870
7430
6070
9140
9560
2
5930
5070
7070
4850
10540
8900
4
5840
4290
6120
4410
9590
8470
                           29

-------
TABLE 12.  FILTER LEAF TEST,FILTRATE RESULTS, TASK D
           MODE II, 50% SEPTAGE/50% TWAS

Form Time,
Al(III)
103 kPa
52 kPa
Fe(III)
103 kPa
52 kPa
min
(15psi)
(V.Spsi)
(15psi)
(7.5psi)
Sulfuric Acid,
pH2-pH3
103 kPa (15psi)
52 kPa (V.Spsi)
Filtrate COD
mg/1
1
6840
7060
8130
7880
10020
8510
2 4
7260 6330
6150 5920
8330 7850
7500 6890
9710 8230
8000 7330
Filtrate Total
Solids
mg/1
1
7040
7180
7350
6800
13870
12440
2
7430
6370
7450
6470
13380
12050
4
7410
6120
7400
6020
12540
10770
     COD and total solids concentrations in the leaf
     apparatus filtrate were more than twice as high as
     usually experienced when dewatering TWAS with full-
     scale vacuum filters.   Average field test filtrate
     total solids concentration in this study was 2,800 mg/1;
     the average concentration measured with the leaf
     apparatus was 6,400 mg/1.

     Increased vacuum pressure expectedly resulted in an
     increase in filtrate solids and, COD concentrations.

     Concentrations decreased with increasing form-time,
     reflecting a filtering action of deposited material.

     Filtering combined septage and TWAS with Al(III)  pro-
     duced the best quality filtrate.  Results shown for
     ferric chloride and acid treatments are appreciably
     higher than aluminum treatment results.

     Better filtrate quality was obtained with the 20%
     septage/80% TWAS mixtures than with the 50%/50% mix-
     tures and Mode I gave  better results than Mode II.
                          30

-------
                           SECTION 4

                          FIELD TESTS
EXPERIMENTAL FACILITIES

     Field tests for the research were conducted at the Med-
field, Massachusetts Wastewater Treatment Plant during the
months of July and August 1979.  Figure 11 is a schematic
diagram of the treatment plant with the processes in use during
the experimental period shown with bold lines.  Sewage passes
through a 56.8 cu m  (15,000 gal) aerated grit chamber into the
first of four aeration tanks which are in series.  The volume
of each aeration tank is 302 cu m  (80,800 gal).  At the average
flow rate during July and August, 0.013 cu m/sec, the deten-
tion time in the four basins was about 28 hours.  The overflow
rate in the single 13.1 m (40 ft) diameter final clarifier,
in use, was 9.5 cu m/sq m-day  (235 gpd/sq ft).  The plant was
designed for a flow of 0.055 cu m/sec  (1.5 mgd).  Sewage flow
during the study was only 20% of the design flow rate.  As
a result the primary sedimentation basins were bypassed;
aeration basin and final clarifier detention  times were long,
and loading parameters were low. . Thickener and vacuum filters
were normally used only one day each week and were available
for experimentation.  Thickened waste  activated sludge used
for combination with septage contained no primary sludge.
Figure 12 is a schematic diagram of the sludge handling system
at Medfield.  Thickener, pump and vacuum filter dimensions and
operating parameters are given in Table 13.

LIQUID WASTE AND CAKE CHARACTERISTICS

     During a monitoring study conducted at Medfield in 1978,
under this research  contract, plant wastewater  streams were
monitored for a period of three weeks.  The results of that
baseline study are valid for operating conditions during this
study and are shown  in Tables  14 and 15.  Total solids concen-r
tration in waste secondary sludge  averaged about 1%.  The CST
of this material was very low  at 9.1 sec.  Table 14 also shows
vacuum filter filtrate COD and  solids  average values that can
be compared with the results of the septage filtration tests.
                               31

-------
n:
CO

|

o
    SAND FILTER
I
I VACUUM
, FILTERS


L-P
    0
UJ
<

<
2:
QC
UJ
Q.

CO
                                           SECONDARY
                                           CLARIFIER
                           SLUDGE
                           HOLDING
           SEWAGE
c
1
I
1

1
A
r


mmmmm
3

1
1
(
X.
31
~*s
f?. 1 AERATION
•ZL LU
UJ CD
^*- Q
i—. i
I CO




ujl
CD |
Q '
_J '
CO,
I'
2 1
H- 1
S 1
1
1
I





»• —


[THICKENERS '

r
- — < 	

— J


/
AERATED


ih


SEPTATE

"^
GRIT
®
e














1®


Z| •



•5 •
2


«^














PRIMARY
CCTTTI TM/s
  © SAMPLING LOCATIONS



Figure 11.'  Process schematic - Medfield Wastewater Treatment
            Plant.
                            32

-------
    CAKE
    CONVEYOR
     BELT—-
WASTE   -
ACTIVATED
SLUDGE
POLYMER
MIXING
DRUM
                                       VAT
                                                  PLUNGER
                                                     PUMP
                   DISSOLVED AIR
                      FLOTATION
                      THICKENER
                      SEPTAGE
                    SEPTAGE &• TWAS
                    TREATMENT AND
                    MIXING TANK
                                                         AIR
                                                       MIXING
    Figure  12.   Solids  handling  train at Medfield.
                               33

-------
        TABLE 13.  VACUUM FILTER DIMENSIONS, MEDFIELD
 VACUUM FILTER
      Type:
      Drum Diameter:
      Drum Width:
      Surface Area:
      Drum Speed:
      Filter Springs:

      Vacuum Pump:
  Coilfilter
  1.83 m (6 feet)
  2.44 m (8 feet)
  13.9 sq m (150 sq ft)
  1 to 10 min/rotation
  Stainless steel, Rerolled Type 304,
  42.5 kg/sq m (8.7 Ib/sq ft)
  13.9 cu m/min at 33 cm Hg
  (490 cu ft/min at 13 inch Hg)
  ^T-   TABLE 14.   BASELINE MIXED LIQUOR, SECONDARY SLUDGE
  THICKENER SUPERNATANT AND VACUUM FILTRATE CHARACTERISTICS (1978)
                          Mixed   Secondary
                                Vacuum
                     Thickener   Filter
Characteristics
COD-Total, mg/1
BOD5-Total, mg/1"
BODg-N Suppressed,
mg/1
TOC , mg/1
Total Solids, mg/1
Total Volatile
Solids, mg/1
Suspended Solids, mg/1
Volatile Suspended
Solids, mg/1
PH
Liquor Sludge




7910 9830
4670 5850
7580
4570
7.0
Supernatant
26
4.4
0.7
12
329
71
1
1

Filtrate
358
120
101
91
768
381
83
55

Alkalinity, mg/1
  as CaCO,

Metals, mg/1
  Cadmium
  Chromium
  Copper
  Nickel
  Lead
  Zinc

CST, sec

30-minute Settlo-
  meter, ml/ml total
 =241
                   0.03
                   0.01
                   0.07
                   0.09
                   0.45
                   0.23
           9.1


695/1000  803/1000

      34
0.02
0.08
0.15
0.10
0.23
1.31

-------
TABLE 15.  THICKENED WASTE ACTIVATED SLUDGE AND VACUUM FILTER
                CAKE - BASELINE STUDY  (1978)
Characteristics
 Thickened Waste
   Activated
	Sludge	
Vacuum Filter
    Cake
Total Solids, %                5.6

Total Volatile Solids,
              % of Total        61

Volume, cu m/day              5.36
       (gal/day)    '          (1420)

Capillary Suction Time,,
                 (sec)          12

Metals, mg/kg dry cake
  Cadmium
  Chromium
  Copper
  Nickel
  Lead
  Zinc

 *after polymer treatment
                               12.2
                                 61
                                 38
                                306
                               1240
                                179
                               1330
                               1080
     Table  15  shows  average  thickened waste activated sludge
 and  cake  characteristics measured during the baseline period.
 At an  average  flow rate of'0.012  cu m/sec (0.28  mgd)  during the
 baseline  period  the  plant produced 185 kg/day (407  Ib/day)  of
 dry  solids  with  a  cake solids  dbntent of 12.2%..

     During the  course of this septage conditioning and vacuum
 filtration  study with plant  flow  averaging 0.013 cu m/sec (0.3
 mgd) thickened sludge and vacuum  filter cake characteristics,
 shown  in  Table 16, are similar to values obtained during the
 baseline  period.   The results  shown on Table 16  were for Test
 1, conducted during  the same period that chemically treated
 septages  were  filtered.  Samples  of vacuum filter filtrate
 taken  during this  test were  atypical.   During the baseline per-
 iod  filtrate COD averaged 820  mg/1;  total solids averaged 1,150
 mg/1.   Volatile  solids were  63% of the total solids concen-
 tration .                                                    '-
                               35

-------
TABLE 16.  THICKENED WASTE ACTIVATED SLUDGE AND VACUUM FILTER
                CAKE - THIS STUDY, TEST #1
Characteristics
Thickened Waste
   Activated
	Sludge
Vacuum Filter
    Cake
Total Solids, %

Total Volatile Solids,

GST, sec

Yield, kg/sq m-hr
       Ib/sg ft-hr
       4.6

        62

        16
    10.3

      61
                         12.1
                         (  2.5)
 FIELD TEST SELECTIONS

      Laboratory experimentation with septage and TWAS indica-
 ted that both chemically treated septage and septage combined
 with TWAS should vacuum filter well.  Based upon the laboratory
 results an initial decision was made to vacuum filter septage
 alone, treated separately with alum, ferric chloride and sul-
 furic acid and conditioned septage in combination with treated
 waste activated sludge.  This schedule was modified when it
 became apparent that chemically treated septage cannot be de-
 watered on coil spring filters without the addition of thicken-
 ed waste activated sludge.

          Table 17 shows the field test program.  Aluminum and
 acid treated septage was filtered alone without the aid of
 polymer, as was done in the laboratory tests.  The acid treated
 septage was also filtered with polymer after the failure of
 the septage-without-polymer test.  Septage and TWAS were com-
 bined in approximately equal mixtures, on a solids weight
 basis, after the septage had been treated with either alum,
 acid or ferric chloride. In addition, tests were conducted with
 TWAS only, alum added to a 14.6% septage mixture, and iron
 added to a 23.1% septage mixture.  At the request of the plant
 operators a final test was conducted in which 1.9 cu m (500
 gal) of untreated septage was added to 8.3 cu m  (2,200 gal) of
 thickened waste activated sludge.

 FIELD TEST PROCEDURES

      Septage used for field testing was held in one of two  .:
 45.5 cu m (12,000 gal) tanks normally used to hold thickened
 waste activated sludge prior to vacuum filtration.  A diffuser
 in the tank provided mixing.  Septage was either discharged
                               36

-------
           TABLE 17.  VACUUM FILTRATION FIELD TESTS
Test
 No.
Chemical
Treatment
            Coagulant
             Dosage
                                  Septage
                                              TWAS
  1

  2

  3

  4

  5

  6

  7

  8

  9

 10
Polymer

Al(III) &

Al(III) &

Al(III) &

Fe(III) &

Fe(III) &

       (no

       (no
H?SO,
H2SO4
Polymer
Polymer

Polymer

Polymer

Polymer

Polymer

polymer)

polymer)

  polymer)
                          80
                         100

                         130

                         180

                         270

                        pH 3

                        pH 4 . 4

                        pH 3
 100

14.6

  55

23.1

44.8

46.7

 100

 100
 1.4
 100

   0

85.4

  45

76.9

55.2

53.3

   0


98.6
 directly from incoming trucks to the tank or transferred by
 pump from an aerated grit chamber, where excess septage was
 stored.  Septage was not screened and every effort was made to
 obtain high solids concentrations.  Settlometer and Capillary
 Suction Time  (CST) tests were conducted on septage samples and
 optimum chemical dosages determined.  Based upon these tests
 required quantities of either acid, alum or ferric chloride
 were added to full tanks of septage.  Septage and chemicals were
 mixed for 30 minutes and settled for 24 hours.  Supernatant
 was decanted and the treated sludge was either fed directly
 to the vacuum filter or mixed with TWAS and fed to the filter.
 Settling cones were used to predict thickened • septage quantity
 and the amount of supernatant to be drawn off.  The interface
 between solids and supernatant was distinct and while pumping
 supernatant, the liquid darkened quickly upon reaching the'in-
 ter face.

      The decision to treat septage prior to mixing with
 thickened waste activated sludge was based upon the labora-
 ,tory work which showed that cake yields, cake dryness and  fil-
 trate quality were'about the same whether chemical condition-
 ing was done before or  after combination.  The before-com-
 bination procedure (Mode I) was used in the field test to  re-
 duce chemical usage.  In addition, more sample could be treat-
 ed in the 45.,4 cu m  (12,000 gal) tank, with pretreatment and
 decanting prior to combination, because of the need to mix
 TWAS and conditioned septage prior to filtration.
                                37

-------
                            SECTION 5

                        FIELD TEST RESULTS


 SEPTAGE  TREATMENT WITH ALUMINUM SULFATE

      On  three  occasions powdered aluminum sulfate was mixed
 with  about  45  cu m (12,000  gal)  of septage.   Quantities of
 septage  and thickened waste activated sludge, and the chemical
 concentrations used in each test are shown in Tables 18 through
 23.   These  tables also show the effects of chemical  condition-
 ing and  septage/TWAS mixture ratio,  on cake production, and
 supernatant and filtrate quality.
     TABLE 18.  FIELD TEST RESULTS, SEPTAGE,  ALUM TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
                         7/10/79
                         100% Septage
                         80 mg/1 as Al(III)
Initial Septage Volume:  47.3 cu m (12,500 gal)
Thickened Septage Volume:11.7 cu m (3,100 gal)
Characteristic
Total Solids, mg/1
Volatile Solids, mg/1
COD, mg/1
CST, sec
pH
Alk, mg/1 CaCO3
Raw
Septage
9 950
7 450
16 730
169
6.3
595
Thickened
Septage
;
37 180
27 190
54 150
40
5.0

Septage
Supernatant
9.50
490
750



                               38

-------
Alum Conditioned Septage Without TWAS - Test 2

     Table 18 shows the effects of adding 80 mg/1 of Al(III)
to 47.3 cu m (12,500 gal) of septage with an initial total
solids concentration of 9,950 mg/1.  This concentration of
Al(III) was the lowest used in all tests but in the mixed
condit'ioned septage CST was reduced from 169 seconds to 10.3
seconds.  Increasing the dosage to 140 mg/1 only reduced the
CST furthur to 9.7 seconds.  The conditioned septage solids
settled to 27% of the original volume.  The CST was reduced
from 169 seconds in raw septage to 40 seconds in the thickened
septage.  At the initial value the septage could not be vacuum
filtered, at 40 seconds filtration should be possible.  De-
canted supernatant COD and solids concentrations were only_
about twice that of domestic sewage and constituted an insig-
nificant load on the treatment plant liquid stream.  For example,
treating a volume of septage equal to 2% of a plant'1 s flow
rate would only increase the COD and solids input to the liquid
stream by 4%.                                           '

     Table 19 shows vacuum, filter test results.  At each
selected vacuum pressure and drum rotational speed three
samples were taken at ten minute intervals.  Form and_
drying times were dependent upon drum submergence, which ranged
from 15 to 25% and averaged about 20%.  Drying time averaged
50% and the remaining 30% was release time.

     Table 19 shows the characteristics of conditioned thicken-
ed septage in the vacuum filter vat, during the course of the
test.  Average COD and total solids were 54,140 mg/1- and 37,180
mg/1 respectively.  Concentrations were consistent throughout
the run and were the same as those measured in the septage
holding tank shown on Table 17.

     Septage produced a comparatively dry cake but the dry
solids yield averaged only 4.75 kg/sq m-hr  (0.20 Ib/sq ft-hr).
Based upon this result coil spring vacuum filtration of -alum
treated septage, without the addition of thickened waste
activated sludge and without polymer is not considered feasible.
Cake yields shown in Table 19 progressively decreased during
the course of the test.  This was'caused by granular material
in the septage progressively clogging the filter medium.
At the end of the septage filter run filtration was attempted
with a 50% alum conditioned septage/50% TWAS mixture.  This
mixture should have filtered well but no cake was produced.
After  filtration several hours were spent washing the filter
medium with a fire hose.  This is not normal practice at the
plant nor was it necessary after .filtering mixtures of septage
and thickened waste activated sludge.

     The failure of this attempt to vacuum filter conditioned
septage is also indicated by the filtrate data,  included on

                             39

-------
        TABLE 19.  CAKE AND FILTRATE CHARACTERISTICS
                   SEPTAGE, ALUM TREATMENT
Field Test Number: 2
Mixture: 100% Septage
Chemical Treatment: 80 mg/1 as Al(I.II)
Filtration Pressure,
psi*
Cycle Time, min:sec
Vat Contents
COD, mg/1** ^
Total Solids, mg/1
Volatile Solids, ^
** mg/1
pH
Vacuum Filter Cake
Total Solids, %t
Volatile Solids,1"
% of Total
Cake Yield, (lb/
sq ft-hr)tt
Filtrate
COD, mg/1**
Total Solids, mg/1**
Volatile Solids,
% of Total
pH**

9
8:50

52930
37830

27140
5.6

18.6

72.5

0 . 32

18020
13350

69.4
5.6

15
8:50

54710
39360

28300
5.6

19.1

75.3

0.27

21150
15290

70.7
5.9

15
4:59

57510
38190

28070
5.0

20.3

76.6

0.20

24080
15100

72.2
5.6

7
4:59

53690
36360

26800
5.4

21.3

78.1

0.14

18860
13810

72.9
5.9

15
10:14

51910
34180

25650
5.3

20.7

78.4

0.09

19770
13620

74.0
6.0
  1 psi = 6.9 kPa
**Averages of 3 samples taken at 10 minute intervals
t Averages of 2 samples taken at 10 minute intervals
ttDry solids' yield, one sample
  1 Ib/sq ft = 4.844 kg/sq m
 Table  19.   Filtrate COD and total solids concentrations were
 ten  times  higher than values monitored during both normal
 filter operation with TWAS (See Table 14)  and operation with
 mixtures of septage and TWAS.

 Alum Conditioned Septage Combined with TWAS  - Test 3

     In the third test 46.6 cu  m (12,300 gal)  of a compara-
 tively weak septage was treated with  100 mg/1 of aluminum sul-

                              40

-------
  fate.   The  settled solids occupied only 5.3 cu m (1,400, gal)
  at  a  solids concentration of slightly over 2%.

       Experimentation with large quantities of septage over
  the course  of  this and previous research has shown that, weak
  septage,  with, total solids concentrations between 3,000 mg/1
  and 7,000 mg/1 are the rule.  Loads in excess of 20,000 mg/1
  were  seldom encountered in pumpage from domestic septic tanks.
  This  suggests  that a large quantity of septage could be held
  for dewatering by collecting solids in a tank.   This could be
  accomplished by chemically treating and mixing when a tank
  was full, decanting supernatant, adding more septage and
  repeating the  process.

       In Test 3 a thickened waste activated sludge, TWAS was
  added to the chemically treated septage sludge in a ratio of
  14.6% septage  to 85.4% TWAS.  The measured total solids con-
  centration  of!the mixture was over 4%.  Chemical characteris-
  tics  of the septage, thickened septage and supernatant, TWAS
  and the mixture are shown on Table 20.
TABLE 20.  FIELD TEST RESULTS, SEPTAGE AND TWAS, ALUM TREATMENT

Field Test Number:      3
Test Date:              7/2/79
Mixture:                14.6% Septage/85.4% TWAS
Chemical Treatment:     100 mg/1 as Al(III)
Initial Septage Volume: 46.6 cu m(12,300 gal)
Thickened Septage Vol:  5.3 cu m(1,400 gal)
     ;~~:Thickened
                       Raw    Thickened   Super-         .Septage &
Characteristic Septage
Total Solids, mg/1
Volatile Solids, mg/1
COD, mg/1
CST, sec
pH . _ . •
Alk, mg/1 CaCO3
3059
2073
4730
48
5.5
207
Septage, natant TWAS
21520 1650
16150 640
920
,
4.4

43390
26830
30040
16
6.9

TWAS
44960
29100,


6.9

       polymer was added to waste activated sludge during thick-
  ening jand it was again added to the septage/TWAS mixture during
  vacuuri filtration.  For addition to the septage/TWAS mixture
                                41

-------
polymer was -diluted  to  16%  of  its  commercial  strength  and  this
solution was  fed  at  a rate  of  94.6 £/hr  (25 gal/hr) .   This
solution and  feed rate  were used for  all  tests employing poly-
mer  addition  with the exception of Test 10.   In Test 10 a  50%
stronger solution was used.  Polymer  was  added in  all  tests
except Tests  2  and 8.   The  results of the vacuum filter test
are  shown on  Table 21.   Cake yields averaged  80.7  kg/sq m-hr
 (3.4  Ib/sq ft-hr).   This yield was as good or better than
usually achieved,  treating  secondary  sludge,  at this plant.
Table 16 showed a yield of  59.3 kg/sq m-hr (2.5 Ib/sq  ft-hr)
for  the initial test with TWAS and no septage.   Cake dryness
in Tests 1 and  3  (Tables 16  and 21) were  about the same.
The  fairly wet, 10%  to  12%  solids  content, is characteristic
of polymer treated secondary sludge.   In  addition,  vacuum
pressure on the drying  cycle was low  during all tests.
Attempts to increase pressure  were not successful.  Yields
were  slightly improved  at the  higher  drum rotational speeds,
indicated by  a  comparison of the last four columns in  Table
21.   Filter clogging was not experienced  with the  septage/TWAS'
mixture as it was  in the previous  test -  the  highest yield was
measured at the end  of  the  test period.

      Table 21 also shows polymer conditioned,septage and TWAS
mixture solids  content,  measured in the vacuum filter  vat.
These values  were  consistent with  holding tank concentrations.

      Filtrate characteristics  are  also shown  on Table  21.
The filtrate  varied  from a  relatively clear solution,  monitored
at 27.6 kPa (4  psi)  to  a moderately high  solids content solu-
tion  at pressures of 41  kPa  (6 psi) and above.

      This test  showed conclusively that alum  treated septage
in combination  with  TWAS in  the proportions used,  is easily
vacuum filtered.  Yields were  better  than average  for  Medfield
and filtrate  quality was acceptable.

Alum  Conditioned Septage Combined  with TWAS -  Test  4

      Septage  was again treated with aluminum  sulfate in Test
4 and combined  with  TWAS after decanting  the  septage super-
natant.  The mixture used in this  test was 55%  septage and 45%
TWAS, on a solids weight basis.  Table 22  shows  septage, TWAS
and mixture characteristics.   Septage  settled  to about half
of its original volume before decanting.   The  decanted super-
natant was clear with the COD and  solids  concentrations shown
on Table 22,   characteristic  of alum treated septage.  Alum
conditioning  of the  relatively strong  septage  produced a sludge
with better than 4%  solids.  In combination with TWAS the mix-
ture  solids content  averaged about  5%.  The CST of the initial
septage was a high 148 seconds.'  After conditioning and com-
bination with TWAS the CST was a very  low  5.1  sec.   A solids
                              42

-------
EH
55
W
A
EH
(^
s
EH

a
y
1-3
P-s

co

is
^
Q





rH 0 0
' CM CM CM
rH W3



oo r~

rH 00
rH m





o\° (J1
W
CD* •> \
*4* ra* ^3
fd c\° rCi* rH
Vacuum Filter C
Total Solids,
Volatile Soli
of Total
Cake Yield, (
f t-hr) T


o o "3* en
in f- • •
V^ ^f i — 1 **D
'*3> m <*D





o o en en
*£> r^ • •
OO VD "sf VD
rH H in



o o o en
o a\ H vo
"* "* ^°




o o in en
in o en vo
^ in ^o




o o oo en
CM in • •
<*D en oo vo
CM CM «3



o o r-> r~
0 l> • •
«3 00 CM VD
CM CM in



4-
IH4-
4- O rH
4- fd
rH *o -P
\ O
&i .-En
g CQ
rd
Filtrate
COD, mg/l^t
Total Solids,
Volatile Soli
--pHtt -






d
rt o o
00 •
M-i oo in
O en vs
•=F
fd
d
H







do oo
2 m •
PH O OO
1 o vo
•H
s




d
0 l>
M-I r~ •
O oo oo
-P rH
(ti '
-P
CO



4-
IH4- '
4- O rH
4- fd
H o\° -P
\ O
CT> -En
g^
Vat Contents:
Total Solids,
Volatile Soli













,— *
s
tr1
w
tn
•^
^
oo
e
•^

II
W -P W
rH M-l rH
fd fd
> & >
M en M
CD ^ CD
-P ft 4J
Cl rH S-H
•H -H
rH
' CD (D
-P 1 -P
j3 3
d w d
-H CD -H
S tri £
fd
o M o
rH O rH
-P fd -P
td fd
CD

-------
TABLE 22.  FIELD TEST RESULTS, SEPTAGE AND TWAS, ALUM TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Septage Volume:
Thickened Septage Vol:
7/12/79
55% Septage/45% TWAS
130 mg/1 as Al(III)
43.9 cu m(ll,600 gal)
24.2 cu m(6,400 gal)
Characteristic
Total Solids, mg/1
Volatile Solids, mg/1
COD, mg/1
GST, sec
PH
Alk, mg/1 CaCO_
Raw Thickened Super-
Septage Septaoe natant
16400
11760
27730
148
6.3
670
45690 1070
32620 280
60870 810 '
31
5.6 6.0

Thickened
Septage &
TWAS TWAS
47900 52770
26430 35170

13 5.1
6.5 > 6.2

 content of 5%,  a CST value of 5.1 seconds and the appearance
 of the mixture  after polymer addition all indicated that the
 sludge would filter well.   Table 23 shows the results of the
 filter run.

      Vat contents in Test  4 were consistent over the course of
 the run and  appreciably the same as in the holding tank.
 The contents of the holding tank were well mixed with air during
 the filter run.   A comparison of percent volatile solids in
 septage (72%),  TWAS (55%)  and the mixture (67%), also shows
 that no separation of septage and TWAS occurred either in
 transfer or  during filtration.

      Cake yields monitored during Test 4 were the highest ob-
 tained during the experimental period and were more than double
 yields normally recorded at Medfield.   The maximum yield,
 44 kg of dry solids/sq m-hr (9.0 Ib/sq ft-hr)  was extraordin-
 ary and exceeded the capacity of the sludge transfer pump.
 The diaphragm,  thickened sludge transfer pump at Medfield has
 a  maximum capacity of  3£/sec (48 gpm).   At maximum pump out-
 put and a drum  speed of 2  minutes and 32 seconds per cycle the

                              44

-------
  TABLE  23.   CAKE  AND  FILTRATE  CHARACTERISTICS,  SEPTAGE  AND
                    TWAS,  ALUM TREATMENT.

Field Test Number:   4
Mixture:             55% Septage/45% TWAS
Chemical Treatment:  130 mg/1 as Al(III)
Filtration
Pressure, psi
Cycle Time, min:sec

6
9:07

6
5:36

8
4:00

5
3:53

8
2:32
Vat Contents
  Total Solids,mg/1
  Volatile Solids,
55200   55220
44530
48690
*  1 psi = 6.9 kPa
** Averages of 3 samples taken at 10 minute intervals
t  Dry solids yield, two-sample averages.
   1 Ib/sq ft = 4.844 kg/sq m
60200
c
1
PH
'5 of Total
67.8
6.2
67.1
6.2
65.1
6.3
66.0
6.3
66.9
6.2
Vacuum Filter Cake^
Total Solids, %
Volatile Solids,
•*••*•
% of Total
Cake Yield, (lb/
sq ft-hr) f

13.

67.

4.

8

7

8

12

66

5

.7

.7

.9

11

64

6

.5

.2

.9

12

62

6

.2

.3

.7

12.

62.

9.

7

1

0
Filtrate
COD, mg/1**
Total Solids,


mg/1**

710
940

920
1210 .

1850
2290

1820
2290

2850
2830
Volatile Solids, % of
Total**
PH**


31.6
6.6
41.4
6.9
54.0
6.9
55.6
6.9
62.8
6.9
 vacuum filter vat contents were rapidly depleted.  The drum
 was operated at maximum speed.  Pressure variation did not
 appear to affect cake yield but yields were significantly in-
 creased by increasing drum speeds.  Figure 13  shows cake
 yield as a function of cycle time.  The curve  shows an increa-
 sing rate of yield with increasing drum speed.  It is quite
 possible that if drum speed could have 'been increased and
 sludge pumpage to the filter vat increased, yields in excess
 of 44 kg/sq m-hr  (9 lb sq ft-hr) would have been achieved.
 The average yield during Test 4 was 32.5 kg/sq m-hr  (6.7 Ib/sq
 ft-hr).  Cake total solids content averaged 12.6% in this test

                               45

-------
               10
                8
            i
            -P
            -'   4
             -\
            Q

            LU
            I— «

            >-   2
            UJ
                0
                                         Al(l11), TEST
                                        55%/457o MIXTURE
   Fe(lll), TEST 5

23.17o/76.97o MIXTURE
                 0
       4
10
                              CYCLE TIME,  min


Figure 13.  Cake yield vs. vacuum  filter  cycle  time,  field test.
 as  compared with 11.4% for the 14.6%/85.4% mixture test and
 10.3%  for the Test 1 (TWAS only.)   Septage solids increased
 cake dryness as well as cake yield.

     Filtrate COD,' total and volatile solids data for Test
 4 are  also included in Table 23.   Filtrate quality was ex-
 cellent  during the entire run but solids content increased
 steadily with increasing drum speed.   Volatile solids data
 indicate increasing organic solids in the filtrate with
                              46

-------
increasing rotational speed.  At the low speeds the major
solids fraction was composed of dissolved inorganic consti-
tuents, however, as the drum speed increased particulate or-
ganics filtered through the filtering medium.

     Field Test 4 showed the feasibility of alum-conditioning
and filtering septage in about equal mixture in combination ,
with thickened waste activated sludge.  In fact, Test 4 showed
that improved cake yields are obtained when alum conditioned
septage is filtered with an equal weight of TWAS.

     Septage odor was apparent in the vacuum filter building
but was not deemed excessive or objectionable by plant per-
sonnel.  Odor production was substantially increased in later
tests conducted at low pH.

SEPTAGE TREATMENT WITH FERRIC CHLORIDE

     A 42% solution of ferric chloride was used to .condition
two quantities of septage prior to combination with TWAS and
vacuum filtration.  The results of these tests are summarized
in Tables 24 through 27:  Tests 5 and 6.  Septage was treated
with Fe(III), settled for 24 hours and the supernatant decan-
ted.  The conditioned sludge was combined with thickened
waste activated sludge, TWAS, in ratios of 23.1% septage to
76.9% TWAS and 44.8% septage to 55.2% TWAS.  Based upon_the
failure encountered in attempting to filter alum conditioned
septage without TWAS, filtration of ferric chloride treated
septage was not tried.

Ferric Chloride Conditioned Septage with TWAS - Test 5

     Table 24 shows characteristics of the raw and conditioned
sludges used for Test 5.  Fe(III) treatment reduced the septage
to  30% of its initial volume.  The supernatant was low  in
solids and organic content  and similar in quality to the alum
treated supernatant.  Conditioned thickened septage and TWAS
had a  solids content in excess of 5% and a CST of 6.0 sec.
These  characteristics and the appearance of the  sludge  indi-
cated  that it should filter well. •

     Table 25 shows the results of the filter test.  Vat_con-
tents  were maintained at  solids concentrations measured ini-
tially in the holding tank.  Cake yields averaged 21.3  kg/sq m-
hr  (4.4 Ib/sq ft-hr) and  reached a maximum of 31 kg/sq  m-hr
 (6.4 Ib/sq ft-hr)  at a drum speed of  3 minutes and 50 seconds
per cycle.   This compares with a similar yield of 33 kg/sq' m-hr
 (6.8 Ib/sq ft-hr)  at a rotational speed of 4 minutes per cycle
for the 55%/45%  alum treated mixture.  However,  the yields,
although  excellent, were  less than experienced with alum.
Yields monitored in Test  5  are shown  on Figure  13.  Filtrate
                               47

-------
TABLE  24.   FIELD  TEST  RESULTS,  SEPTAGE AND  TWAS,  IRON  TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Septage Volume:
Thickened Septage Vol:
   7/17/79
   23.1% Septage/76.9% TWAS
   180 mg/1 as Fe(III)
   36.3 cu m(9,600 gal)
   10.8 cu m(2,850 gal)
Characteristic
  Raw  Thickened    Super-
Septage Sept acre	natant
     Thickened
     Septage &
TWAS   TWAS
Total Solids, mg/1      5340    28080    1110

Volatile Solids, mg/1   4200    22150     530

COD, mg/1               9270    42500     750

CST, sec                 138

PH                       7.2      5.9      5.6
                            51130

                            30100

                            33590

                               15

                              5.6
        55120

        35720



          6.0

          6.4
Alk, mg/1 CaCO.
   580
 quality was excellent over the course of the Fe(III) test.
 However, filtrate solids and COD values increased with in-
 creasing drum speed.

 Ferric Chloride Conditioned Septage with TWAS - Test 6

      A moderately strong septage was used for the second
 Fe(III)  test.   Sludge characteristics are shown on Table 26. .
 The combined mixture of 44.8% conditioned septage and 55.2%
 TWAS had a solids content in excess of 5%.  The CST was re-
 duced from 155 seconds in raw septage to 121 seconds in
 thickened septage and to 5.4 seconds in the conditioned sep-
 tage-TWAS mixture.   The thickened septage CST measurement was
 considerably higher than values 'obtained in laboratory experi-
 ments.   CST measurements of the conditioned septage prior to
 settling in settlometers at Medfield for chemical dosing
 between 140 mg/1 and 300 mg/1 of Fe(III),  was between 16.8
 seconds and 6.0 seconds.
                              48

-------
 TABLE  25.   CAKE  AND FILTRATE CHARACTERISTICS,  SEPTAGE AND
                    TWAS,  IRON TREATMENT
Field Test Number:   5
Mixture:             23.1% Septage/76.9% TWAS
Chemical Treatment:  180 mg/1 as Fe(III)
Filtration Pressure,
psi*
Cycle Time, min:sec

7
9:13

7
6:50

7
4:55

8
3:50
Vat Contents
  Total Solids, mg/1
  Volatile Solids
**
    45600
60700
55750
58410
mg/1**
PH**
Vacuum Filter Cake
Total Solids, %**
Volatile Solids,
% of Total**
Cake Yield, (lb/ .
sq ft-hr)t
Filtrate ^
COD, mg/1 i
Total Solids, mg/1
Volatile Solids, %
Total**
„**
pH
30950
6.2

13.3

62.9

3.3

t* 77°
890
of
48.1
6.8
40550
6.4

12.8

61.9

3.8

1060
1030

62.4
6.7
35150
6.4

10.1

60.0

4.1

2390
2580

62.3
6.8
36220
6.4

10.1

57.0

6.4

2550
2980

61.9
6.9
 *   1 psi =6.9 kPa
 **  Averages  of 3  samples  taken  at  10  minute  intervals
 t   Dry  Solids yield,  two-sample averages.
    1 Ib/sq ft = 4.844 kg/sq  m
      Table 27 shows cake and  filtrate characteristics measured
 for the polymer treated, 44.8% septage/55.2%  TWAS mixture.
 Cake solids content averaged  12.2%, yield  averaged  19.7 kg/sq
 m-hr  (4.1 Ib/sq ft-hr).  Cake yield was  again excellent and
 increased with increasing drum speed.  Filtrate  quality was
 excellent at the low  drum speeds but deteriorated at_a
 rotational speed of 3 minutes and  44 seconds. Volatile
                               49

-------
 TABLE  26.  FIELD TEST  RESULTS,  SEPTAGE AND TWAS,  IRON TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Septage Volume:
Thickened Septage Vol:
                         7/20/79
                         44.8% Septage/55.2% TWAS
                         220 mg/1 as Fe(III)
                         44.3 cu m(ll,700 gal)
                         15.5 cu m(4,100 gal)
                                                         Thickened
                        Raw    Thickened  Super-         Septage  &
                      Septage    Septage   natant   TWAS	TWAS
Characteristics
Total Solids, mg/1

Volatile Solids, mg/1

COD, mg/1

GST, sec

pH

Alk, mg/1 CaCO_
11790
9410
17810
155
6.1
680
25610
19920
37580
121
5.2

                                         1600

                                          880

                                         2760



                                           5.2
49230

31020

36860

  7.0

  6.6
51470

35760



  5.4

  6.0
 solids values also indicate the increasing organic solids
 breakthrough with increasing drum speed.

 ACID TREATMENT OF SEPTAGE

      Three filter runs were conducted with septage that had
 been chemically treated with sulfuric acid.   Septage was
 acidified to a pH between 2 and 3,  settled and the supernatant
 decanted.  In the first test acidified thickened septage was
 combined with TWAS in a ratio of 46.7% septage to 53.3% TWAS,
 conditioned with polymer, and filtered.   This was followed
 by two tests with just acidified septage:   one with polymer
 conditioning, the other without.

 Acid Conditioned Septage with TWAS  - Test  7

      Sulfuric acid added to 43.7 cu m (11,550 gal)  of raw
 septage reduced the pH to 3.   Settled solids  occupied 36% of
 the initial volume.   Combined septage and  TWAS sludge had
 a  solids content in excess of 4%, comparable  to the alum and
 ferric chloride treated sludges and adequate  for filtration.
                               50

-------
 TABLE  27.   CAKE  AND FILTRATE CHARACTERISTICS,   SEPTAGE AND
	TWAS,  IRON TREATMENT
Field Test Number:
Mixture:
Chemical Treatment:
44.8% Septage/55.2% TWAS
220 mg/1 as Pe(III)
Filtration Pressure,
psi*
Cycle Time, min:sec
Vat Contents ^*
Total Solids, mg/1
Volatile Solids ^^
..mg/1
Vacuum Filter Cake
Total Solids, %**
Volatile Solids, %
of Total**
Cake Yield, (lb/
sq f t-hr) t
Filtrate AA
COD, mg/1 ^A
Total Solids, mg/1
Volatile Solids, %
of Total**
pH** ,

7
9:35

44360

30590

14.3

67.3

3.8

1130
1160

43.9
5.9

7
6:34

51220

34920

12.8

64.5

3.9

1420
1370

53.2
6.2

8
4:48

55130

39170

12.2

' 63.1

3.8

2310
2130

61.2
6.2

9
3:44

55160

38340

10.6

64.6

4.8

5440
4890

63.7
6.0

10
6:49





10.9

65.5

4.0
>
2650
2310

55.5
6.1
*  1 psi = 6.9 kPa
** Averages of. 3 samples taken at 10 minute intervals
t  Dry Solids yield, two-sample averages
   1 Ib/sq ft = 4.844 kg/sq m
 Septage CST,  shown on Table 28,  was' reduced to a low value,
 also  comparable with the other types of treatment,  and indi-
 cative of  good filtering sludge.

      Supernatant COD and solids  content were about  twice as
 high  as experienced with the, iron and aluminum coagulants.
 This  result was consistent with  the laboratory test results.
 At an organic and solids concentration of about 5 times that
 of domestic sewage, the supernatant load on the plant was in-
 significant.
                               51

-------
 TABLE 28.  FIELD TEST RESULTS, SEPTAGE AND TWAS, ACID TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Se'ptage Volume:
Thickened Septage Vol:
7/24/79
46.7% Septage/53.3% TWAS
H2SO4 to pH 3.0
43.7 cu m(ll,550 gal)
15.9 cu m(4,200 gal)
Thickened
Characteristics
Total Solids, mg/1
Volatile Solids, mg/1
COD , mg/1
GST, sec
pH
Alk, mg/1 CaCO3
Raw Thickened
Septage Septage
8480
6530
14330
116
5.9
610
31720
26030
45670
48
3.8

Super- Septage &
natant TWAS TWAS
2440 47780
1130 . 27920
1860 30709
7.0
3.0 6.4

43360
31920

5.4
6.4

      Table 29 shows the results of the filter run.  The con-
 centration of the vat mixture increased during the course of
 the test.  This trend observed in this test and to a slight
 extent in other tests, may have been caused by vacuum dewater-
 ing through the submerged belt in excess of the collected
 cake.  Cake yield in this test averaged 18 kg/sq m-hr  (3.8 lb/
 sq ft-hr), which is comparable with the other septage/TWAS
 test results and better than achieved with only TWAS.  The
 cake produced with acidified septage was significantly dryer
 than those produced with the chemical coagulants.  Percent
 solids averaged 15.2%.  This was the dryest cake obtained in
 the study.

      At  comparable drum speeds and septage to TWAS ratios fil-
 trate COD and solids concentrations were about the same with
 either alum or ferric chloride treatment.  Concentrations were
 higher with acidification.  For example with about 50/50 mix-
 tures of septage and TWAS, cycle times between 4 and  9 minutes,
 filtration pressures between 27 and 62 kPa  (6 and  9 psi) fil-
 trate total solids concentrations for alum, ferric chloride
                                52

-------
 TABLE  29.   CAKE AND FILTRATE CHARACTERISTICS,  SEPTAGE AND
                    TWAS,  ACID TREATMENT
Field Test Number:
Mixture:
Chemical Treatment:
46.7% Septage/53.3% TWAS
H2S04 to pH 3.0
Filtration Pressure,
psi*
Cycle Time, min:sec
Vat Contents
Total Solids, mg/1**
Volatile Solids,
mg/1**
Vacuum Filter Cake
Total Solids, %**
Volatile Solids,
% of Total**
Cake Yield, (lb/
sq f t-hr) t
Filtrate
COD, mg/1**
Total Solids, mg/1**
Volatile Solids,
% of Total**
pH**

7
8:12

39090

28850

14.6

70.4

3.6

1310
2010

47.2
5.0

9
6:13

43300

29600

13.6

70.8

3.1

1840
2640

50.6
5.0

10
4:48

44310

32260

15.9

71.2

3.6

3370
4050

57.3
4.9

13
3:32

49730

36940

16.6



4.7

6060
6060

63.4
5.0

11
6:30











2990
3540

58.5
5.5
*   1 psi =6.9 kPa
**  Average of 3 samples taken at 10 minute intervals
t   Dry Solids yield, two-sample intervals
    1 Ib/sq ft = 4.844 kg/sq m
and acid treatments were  1,480 mg/1,  1,550 mg/1  and  2,320  mg/1,
respectively.  Comparatively, high vacuum pressures,  up  to ,
90 kPa  (13 psi) were possible during  tests with  acidified
septage but not when alum or ferric chloride  was used.

Filtration of Acid Conditioned Septage  -  Tests 8 and 9

     Table 30 shows solids  concentrations in  sludges used  for
Tests 8 and 9.  The septage settled to  49% of its initial
                               53

-------
        TABLE  30.- FIELD TEST RESULTS, SEPTAGE, ACID TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Septage Volume:
Thickened Septage Vol:
   8 and 9
   7/26/79
   100% Septage/0% TWAS
   H2SO4 to pH 2.6
   38.6 cu m(10,200 gal)
   18.7 cu m(4,950 gal.)
Characteristics
  Raw   Thickened   Super-
Septage  Septage    natant
TWAS
Thickened"
Septage &'
  TWAS
Total Solids, mg/1      27200   51160    4980

Volatile Solids, mg/1   18730   36100    1520

COD, mg/1               38800            2550

CST, sec                  133      66

pH                        5.2     4.2     2.5

Alk, mg/1 CaC03           9.80
 volume at pH 2.6.  The  supernatant was characteristically high
 in solids content, although extremely strong  septage was used
 for the test.  Treated  sludge  solids content  exceeded  5%
 which is more than adequate for  filtration but the high CST
 indicated poor filterability.  The pH of the  supernatant was
 2.5, prior to decanting.  Acid conditioned septage in  the vat
 had a pH of 4.5 in Test 8 and  3.8 in Test 9.  This was the
 result of chemical reactions involving the solid materials.

      Table 31 shows the results  of the two tests:  Test 8,
 filtration without polymer and Test 9, with polymer added to
 the sludge.  In both tests a slow drum speed  was used  and the
 filter was cleaned between tests.  The yield  in Test 8 was
 only 3 kg/sq m-hr  (0.61 Ib/sq  ft-hr) and in Test 9 the filter
 did not produce a cake.  In both tests filtrate quality was
 extremely poor with COD and solids concentrations exceeding
 10,000 mg/1.

      The two tests demonstrated  the infeasibility of filtering
 acid treated septage, with or  without polymer conditioning
                                54

-------
    TABLE 31.   CAKE AND FILTRATE CHARACTERISTICS,  SEPTAGE,
                       ACID TREATMENT
Field Test Number:
Mixture:
Chemical Treatment:
                      8 and 9
                      100% Septage/0% TWAS
                      H2S04 to pH 2.6
Filtration
Pressure, psi*
Cycle Time, min:sec
Test No. 8
9**
8:15
Test No. 9
g***
8:26
Vat Contents
  Total Solids, mg/1
  Volatile Solids,
                           62280
40030
mg/1
pH
Vacuum Filter Cake
Total Solids, %
Volatile Solids,
% of Total
Cake Yield, (lb/
sq f t-hr) t
Filtrate
COD, mg/1
Total Solids/mg/1
Volatile Solids,
% of Total
pH
'
44050
.4.5

16.8

75.6

0.61

15680
10430

66.7
4.4

28150
3.8

18.3

76.9

Not Measurable

17450
13730

65.8
3.0

**
    1 psi =6.9 kPa
    No polymer added
*** Polymer added at 150% of normal rate
t-   Dry solids yield, two-sample intervals
    1 Ib/sq ft. = 4.844 kg/sq m
 on  coil  spring  filters.   The filters produced little or no
 cake, .clogged rapidly and produced high solids content
 filtrate.
                                55

-------
 Thickened Waste Activated Sludge with Untreated Septage - Test
 To                          ~               :	

      In this final test 8.3 cu m (2,200 gal)  of thickened
 waste activated sludge was mixed with 1.9 cu m (500  gal)  of
 untreated septage.  The  mixture was conditioned with polymer
 and  vacuum filtered.   Results are shown in Tables  32 and 33.
 TABLE  32.  FIELD TEST RESULTS, SEPTAGE AND TWAS, NO TREATMENT
Field Test Number:
Test Date:
Mixture:
Chemical Treatment:
Initial Septage Volume:
Thickened Septage Vol:
   10
   7/31/79
   1.4% Septage/98.6% TWAS
   None other than polymer
   1.9 cu m(500 gal)
Characteristics
  Raw   Thickened   Super-
Septage  Septage	natant
TWAS
Thickened
 Septage &
   TWAS
Total Solids, mg/1     3030

Volatile Solids, mg/1  2360

COD, mg/1              4520

CST, sec                 11

pH                      6.6
Alk, mg/1 CaCO.
  290
                             72430

                             39800
*Calculated from raw septage and vat contents values


Septage strength in this test was extremely weak and appeared
only to dilute the TWAS and change its color from brown to
gray.  The polymer feed tank was filled with leftover solution
which was fifty percent stronger than that used in the previous
runs.  As a result coagulation of the mixture resulted, in an
oatmeal appearance with obvious separation of solids and liquid
in the filter vat.

     Attempts were made to maintain approximately 25% filter
submergence.  However, the vat contents became so thick that
as the mat formed the sludge in the vat balled up and stripped
                              56

-------
   TABLE  33.   CAKE AND FILTRATE CHARACTERISTICS,  SEPTAGE AND
                      TWAS,  NO TREATMENT	
Field Test Number:
Mixture:
Chemical Treatment:
                        10
                        1.4%  Septage/98.6%  TWAS
                       None other than polymer
Filtration Pressure
psi*
Cycle Time, min:sec

6
10:26

4 10
5:31 3:34
Vat Contents
  Total Solids,mg/1**        22590
  Volatile Solids, mg/1**   ,14880
  pH**                         5.8
                                      68430
                                      36400
                                        5.9
           69220
           38320
             6.0
Vacuum Filter Cake
Total Solids, %**
Volatile Solids,
% of Total**
Cake Yield, (Ib/sq
•ft-hr) t

13-. 9

61.4

0.74

12.1

51.6

5.74

9.7

53.9

3.84
Filtrate
  COD, mg/1**
  Total Solids, mg/1**
  Volatile Solids,
    % of Total**
  pH**
                         1150
                         1430

                         55.6
                          6.3
 690
 808

50.0
 6,5
4830
5970

•61.4
 6.2
 *
 **
 t
1 psi =6.9 kPa
Averages of 3 samples taken at I'O minute intervals
Dry solids yield, two-sample intervals
1 Ib/sq ft = 4.844 kg/sq m
the mat from the coils.  This definitely reduced  the  observed
yields obtained, although they were highly  satisfactory.   In
order to filter this material optimally it  would  have been
necessary to reduce submergence to perhaps  15%.   This was
made clear when emptying the vat at the end of the  run.  As
vat depth decreased the cake formed well on the coils - uni-
formly covering the coils to a depth of 1/2 to 3/4  inch.

     TWAS 'solids concentrations were calculated from  mass
balance considerations using measured quantities  from vat  con-
                              57

-------
tents and raw septage.  TWAS solids concentrations were high
because of the ease with which water was withdrawn from this
mixture.  As filtration progressed liquid was withdrawn leaving
solids in the tank, increasing observed concentrations.

     Based upon yield, and filtrate quality it is concluded
that raw septage, in small quantities,.can be combined with
TWAS and satisfactorily dewatered.  While the solids septage/
TWAS ratio was only 1.4%/98.6%, volumetric septage/TWAS ratio
was 18.5%/81.5%. . Since this test was successfully accomplished
using very weak septage it is suggested that results would also
have been satisfactory using strong septage.
                               58

-------
                           SECTION 6

                    SYNTHESIS OF FIELD RESULTS
CAKE YIELD

     The vacuum filter at Medfield is normally operated at
about 55 kPa (8 psi) and at a rotational speed of 6.5 minutes
per cycle.  At 25% drum submergence this corresponds to a form
time of 1.6 minutes which is the filter manufacturer's recom-
mendation for the Medfield filter.  Field Test 1 was conducted
with thickened waste activated sludge, at 55 kPa (8 psi) and
with the drum rotating once every 6.7 minutes.  The cake yield
averaged 12.1 kg/sq m-hr (2.5 Ib/sq ft-hr).

     A comparison of septage and TWAS cake yield for the various
types 'of treatment and septage/TWAS mixtures was made for these
normal operating conditions; i.e., 55 kPa (8 psi) and 6.5
min/cycle.                                                •

     For each filter test, data for vacuum pressures above 41
kPa  (6 psi) were statistically analyzed.  An exponential least
squares curve"was fitted through paired yield and cycle
time data.  The results of these statistical analyses are com-
pared on Table 34 with Field Test 1.  Table 34 lists computed
cake yields corresponding to a cycle time of 6.5 minutes.
Coefficients, r2, indicate the quality of the least squares
fit.  The following conclusions can be drawn from the computed
yield values shown on Table 34.

     1.  Septage conditioned with either coagulant or acid
         could not be filtered unless combined with thickened
         waste activated sludge.  Reduction in cake yields
         observed during the course of septage only runs was
         due to filter coil clogging with septage particles.

     2.  Sept^age treated with sulfuric acid, ferric chloride
         or aluminum sulfate when combined in equal weight
         proportion with TWAS vacuum filtered well on a coil
         spring medium.

     3.  Conditioned septage in combination with TWAS produced
         better yields than normally experienced with just
         TWAS.
                               59

-------


co
p
p:
C
EH
X
H
^1
CO
ri
IS
EH
"X,
M
cj
ri
EH
CM
W
CO

Q
rt

CO
EH
|2
K
§
E-
P
EH

i-3
(3
2HEMIC
P;
o
5Z
O
CO
H
P3
*3<
Pj
0
o
Q
W
H
>H
H
O

.
^J*
oo
w
(-I)
CQ
IS
4->
Q)
•H
U
•r)CN
!,[._[ I
m
0)
o
u


*
M
•D X!
0) T3 1
-P Q) rH 4-)
jj fj^ (J) 14.
Oi (0 -H
g o >H tr
o w
u \
,c


0) W
CPi — ! T3
*T3 (0 -H
3 4J rH o\°
rH O O
CO EH CO






tH
O QJ
tn
QJ id
PJ 3
EH CO










.p
rH C
(0 QJ
U g
•H 4J
E CO 4-lCO 4-ICO
Qj ff* f^J o .-H rv  VO'tf rHCTiOOCM r-~in 4J 4J
IS QJ -sj
H H, H, H H 0 .
H — — — ' ^1 • CM CN
*— rH rH Q) QJ OO
1 1 P-H f-I] ' Pq PM |T| }T}
rtl M M 5-1 M'MMCliOjSH
rHQJrHQJrHQJrHQJ D-jQJ QJ
QJ ^^ cri^tn^tn^-itnl^ i>i R
g tP grH grH grH grH ^rH ^- ^,H
>ig O O O OOOO O'O
H Op^Opj Opi, Opu COO) CO COpi)
OOO OO 00 0\] CM CNCM
P-l OO rH<-3 rHoS rHo3 CM^3 t!j<-3 JjJ tbo3








i-HcNoo •<* m VD r- OO — ^
tn

•=*•
co
^

II
M
I
4->
m
D1
0)

rH

	 i
*
60

-------
     4.   The best yields were obtained with aluminum sulfate
         conditioning and a 55% septage/45% TWAS mixture.
         Fe(III)  and acid conditioning also produced excellent
         yields.

     5.   There was a slight correlation between sludge solids
         concentration and yield (r2=.33).  Within the range
         of sludge concentrations used, the three types of
         chemicals produced similar results.

FILTRATE QUALITY

     Table 35 shows computed vacuum filter filtrate concen-
trations.  Filtrate concentrations were dependent upon drum
speed, chemical treatment, septage/TWAS mixture and to some
extent,  vacuum pressure and the length of filter run.  Values
shown in Table 35 are average values.

     Average filtrate COD and solids concentrations for condi-
tioned septage filtration, Tests 2, 8 and 9, were 5 to 10
times as high as septage/TWAS mixture concentrations.  The
mixture results, Tests 3 through 7, were similar to concentra-
tion levels usually achieved with just TWAS.  The table also
includes ratios of average volatile solids concentration in
filtrate to the volatile solids content of vat sludge.  Low
ratios are indicative of good solids removal and reflect a
lower proportion of particulates and associated organics in
the filtrate.

PRACTICAL .CONSIDERATIONS

     The three chemical treatments tested in this study worked
well.  They produced excellent cake yields when conditioned
septage was combined with thickened waste activated sludge.
Filtrate quality was adequate.  Selection of one method  for
application at an existing or proposed treatment plant
should be based upon treatment economics and the particular ad-
vantages or disadvantages of each chemical.  Treatment econo-
mics are covered in Section 8 of this report.

     Alum is available in liquid or powdered form.  Chemical
feeding equipment is readily available.  Alum is an easy chemi-
cal to handle - it's non-corrosive and non-toxic.  Alum  sludge
pH is only slightly acidic.  CST testing  is required  at  various
alum concentrations in a jar•test apparatus, prior to condition-
ing large quantities of septage.

     Sulfuric acid is a difficult chemical  to handle  but not
unknown to water treatment personnel.  The  acidified  sludge
can corrode a vacuum filter unless lime pH  adjustment is also
used.  The conditioning effects of acid.were not diminished by
the later addition of lime.  The advantage  of acid treatment is

                               61

-------



to
PL
2
E-
X
\-
co
a
EH
m
O
rt
PI
to
Q
JZ
rf
to
EH
!2
E-
rt
o:
,_q
C
H
g
W
u
o
§
CO
H
o
u

W
EH
EH
H
Pq
in
ro
W
in"
1
0) CD 1
rH -PC
•H W fd O
•P Ti O M U CO
rd -H -H -P 4J
rH H -P rH -P CJ
O O rd -H rd CD
> to # pt) > -p


0)
•H W rH
•H  EH
O CO
>


W
rH T3
rd -H rH
-P rH \
o o m
EH CO g


i—
Q \
O cn
0 g





m
O 0)
m
CD R3
p, £3
EH to






•-P
rd CD
0 g
-H 4J
5 fd
CD CD
O EH

^
-P
W •
CU O
EH &




in ^ ^
o cn r~
,_)




co in H
rH O H
. g jn g g rH
>i g O
rH O O ft
O o o oo
ft CO tH tH ta



rH : CN , OO -vf




H 0
CTi CO





r^ in
co in
m m




0 0
r~ r~
CO OO
rH CN


o o
CTv C7>
VD m
tH CN

CD 0)
tn in
rd td
-P CO -P CO
Cl4(< CL, r<
CD !2 CD |S
CO EH CO EH
0\° 0\° 0\<> 0\°
rH CTi CO CN
OO VD ^ in
CN i — * *3* m

H H
H H
H H,

CD CU
pf i . FT i
M M
rH CD H CD
g rH g rH
o o
0 ft 0 ft
CO CN
rH ta CN !
"*rH
0 0
CO ft
CN



^




^
O^
•





r^
VD
VD




0
OO
O
H


O
CO
VD
in
rH




0)
cn
rd
-P
CD
CO


VD
*
CN

DJ
1
•3*
O
CO
CN
a



00




^f O
O*i O
, — 1




co r^-
in in
VD in




o
OO O
C"- "3*
oo r-
tH CN


o o
in CN
•^ CN
r~- CN
rH

0)
in
rd co
•P  oV> VD
CD • 00
CO rH CTl


VD

CN

HI
P-i M
CD
f g
"^rH
O O CD -
CO ft C
CN O




-------
in the simplicity of pH adjustment as compared with jar- testing.
All septages tested were optimally conditioned between pH2 and
pH3.

     Acidifying septage has two other distinct disadvantages.
Septage odors are significantly more pronounced at low pH
and at low pH phosphorus remains in solution returning to the
plant in both supernatant and filtrate.  The cost of treating
this additional phosphorus is shown in Section 8 to be a dis-
tinct economic disadvantage.

     Ferric chloride has some of the disadvantages of both the
alum and the acid.  It is difficult to handle, highly corrosive
and testing is needed to determine dosage.  However, many
wastewater treatment plants use ferric chloride in their sludge
management scheme.

     Chemical selection will depend in large measure upon con-
ditions found at a specific site.  These conditions can include:
tertiary treatment requirements for phosphorus removal, local
chemical costs, available chemical storage and feeding equip-
ment, operator experience and preference.

Septage Handling and Receiving

     Large quantities of septage are not easily fed to either
the liquid or solids train a't municipal treatment plants, un-
less facilities are constructed or available to accommodate the
unique characteristics of this waste.  Septage can contain
large quantities of grit and stringy material.  It is highly
odoriferous and is a health hazard.  The combination of these
characteristics make it a difficult material to pump and pass
through constrictions and conduits.  Maintenance of improperly
designed facilities is objectionable and hazardous.  Invariably,
when septage handling at a plant is troublesome, haulers are
turned away.

     New facility design should permit the flexibility of  t
various modes of liquid and solids train addition.  Control
strategies differ, depending upon the size and type of plant
accepting septage, plant sewage and septage loading, excess
process capacity, and personnel and budgetary constraints.
Generally the most cost-effective way of handling septage is
to move it to the dewatering stage with as little dilution as
possible.
                               63

-------
                             SECTION 7

                            HEAVY METALS
  DETERMINATION  OF METAL  LOCATION

       Raw septage samples were  treated  in  the  laboratory with
  coagulants  and acids.   Samples of  the  raw septage,  supernatants
  and  conditioned thickened  septages were examined  for  Cd,  Cr,
  Cu,  Ni,  Pb,  and Zn.  Analyses  were conducted  to determine the
  total amounts  present and  their  distribution  after  treatment.
  A total  of  115 samples  were  analyzed.  In most cases, only
  those supernatants and  sludges resulting  from optimum chemical
  dosing were  examined.   Table 36  shows  these results expressed
  in terms of  mg of metal per  kilogram of total solids.  Values
  reported in  studies conducted  by the Environmental  Protection
  Agency are also shown.(8)
            TABLE 36.  METALS IN RAW SEPTAGE
                                 mg/kg Total Solids
                      This Study
                    *            ' **
 *Mean
**Standard Deviation
Lebanon, Ohio
Metal
Cd
Cr
Cu
Ni
Pb
Zn
X
10.0
54.8
570.3
36.1
156.4
257.0
s
11.5
22.6
276.9
8.0
85.3
93.8
X
5.5
21.0
28.1
28.5
—
1,280.0
                               64

-------
     Table 37 indicates that metals were associated with or
incorporated in the solids fraction of septage.  Only nickel
and cadmium showed increases in the percentage of metal re-
maining in solution over that of the settled raw septage and
then only in samples which were acidified.  Samples treated
with ferric chloride appeared to remove the greatest amount of
metals from the supernatant fraction.  This was true of all
metals tested.
                               65

-------
o

H
O
ro
          
                        ro
                       in
                  IX
                       CN
                  IX  en
                  H.    in

                   m   in
                      U
                              ro
                              ro
                             oo
                               •

                             CM
                             ro
                             CO
                                     ro
                                    ro
                                    ro
                                    CN
                                     •

                                    CN
                                    CTl
                                    CT\
                                    in
                                   ro
                                   H
                                           oo
                                           ro
                                          00
                                          CN
                                          CN
                                          in
                                          ro
                                         oo
                                          in
                                         ro
                                           •

                                         CTi
                                                 o
 in
'  •
 ro
 in
  •
 in
                                                oo
                                                ro
                                                in
                                                       CN
CN
 *

ro
                                                       CN
                                                      in
                                                      ro
                                                      CTi

                                                      CN
                                                      IS!
                                                                    O
                                                                   •H
                    (U
                    P
                                                                    (ti
                                                                   T3
                                                                 fl  fl
                                                                 nJ  nj
                                                                 CD 4J
                                                                S cn
                                  66

-------
                            SECTION 8

                    COST OF SEPTAGE TREATMENT
OPERATING AND MAINTENANCE COSTS

     The cost of treating septage through the solids train at
Medfield was calculated using the three methods of the earlier
study.CD  Method 1 distributed the cost of septage treatment
across all items in the treatment plant budget.  Methods 2
and 3 distributed the costs over only those items considered
to be expressly involved with treatment of septage, i.e.,
electrical, chemical, truck fuel, motor repair, and personnel
costs.  In Method 2 plant staff was increased by one person.
Septage input was assumed to be 2% of the plant flow.  For
Method 3, a personnel increase of 19 man hours/week was assumed
for the 2% addition of septage.

     The following chemical costs were used for these analyses:
sulfuric acid, $0.292/£($1.10/gal); alum $0.317/kg,  ($0.144/lb);
and ferric chloride, $0.795/&  ($3.01/gal) supplied as a 42%
solution.  Personnel- costs were estimated at $49.20 per day and
electrical costs at $0.066/kw-h.   Polymer cost $0.52/£ ($1.96/
gal) .
METHOD OF ANALYSIS
                   (1)
     Records at the Medfield plant for the period prior to
initiation of the research program indicated a fairly consis-
tent addition of about 0.5%, by volume, of septage.  This level
of addition did not cause any modifications in plant operation,
nor any disruption in performance.  However, it was a substan-
tial contribution to plant organic and solids loading and pro-
vided a baseline condition for estimating the cost of septage
treatment.  The baseline condition is shown in Table 38.

Method 1 - Budget Item Cost Distribution                  '

     The operating budget of the plant was divided into
thirteen accounts as shown on Table 39.  Each of the accounts
was apportioned between four characteristics of the waste-
water:  flow, organic loading, total solids and phosphorus.
Both BOD and COD were used as measures of wastewater organic
content.
                              67

-------
TABLE 38.  MEDFIELD TREATMENT PLANT  AVERAGES  AND YEARLY TOTALS
Parameter
Influent
  Septage
  Yearly
  Totals
Flow


Organic
Loading
     BOD

     COD


Total Solids


Phosphorus
1,135 cu m/day
(0.30 mgd)
138 mg/1
(156.6 kg/day)
293 mg/1
(332.5 kg/day)

437 mg/1
(496 kg/day)

10.9 mg/1
(12.4 kg/day)
1,740 cu m/yr
(460,000 gal/yr)
4,664 mg/1
(8,115 kg/yr)
14,564 mg/1
(25,340 kg/yr)

11,549 mg/1
(20,100 kg/yr)

127 mg/1
(221 kg/yr)
 416,400 cu m
 (HOxlO6 gal)
 65,300 kg/yr
(144,000 Ib/yr)
 147,000 kg/yr
 (324,000 Ib/yr)

 201,000 kg/yr
 (443,000 Ib/yr)

 4,740  kg/yr
 (10,440 Ib/yr)
TABLE 39.  PERCENT DISTRIBUTION - MEDFIELD  - METHOD  1





Electrical
Chemical
Supplies
Outside Services
Clean Sewer
Travel
Uniforms
Telephone
Heat
Truck Fuel
Motor Repair
Consultant
Personnel


% Cost
Based
on Flow
36
10
30
33
100
30
33
30
15


10
15

% Cost
Based on
Organic
Loading
21
-
30
33

30
33
30
15


20
25
% Cost
Based
on Total
Solids
Loading
42
17.6
30
33

30
33
30
65
100
100
60
55

% Cost
Based On
Phosphorus
Loading
1
72.4
10
1

10
1
10
5


10
5
                               68

-------
     The cost distribution for Method 1 is shown on Tables 39
and 40.  It was fairly easy to apportion power and chemical
costs with reasonable accuracy, and these two budget items
represent more than 40% of the total cost.  The distribution
of salaries representing an additional 35% of overall costs,
were based upon operator judgment.  Some of the other ten
budget items are specific to one characteristic of the waste-
water, but most can only be distributed arbitrarily according,
to someone's most reasonable estimate, with due regard to floor
space occupied, or in proportion to power consumed, etc.  Justi-
fication is essentially subjective for these costs.

     Unit costs of removal for each wastewater characteristic
given on Table 40 were applied to average characteristics of
septage.  Values for total treatment cost were computed in
accordance with:

     C = S(v + w-BOD + y-SS +  z-P)

                  or

     C - S(v + x-COD + y-SS +  z-P)

where C =  the cost of treatment per cu m  (1,000 gal) of septage

    BOD =  the organic loading  in  kg/cu m  (lb/1,000  gal) as  bio-
           chemical oxygen demand
    GOD =  the organic loading  in  kg/cu m  (lb/1,000  gal) as
           chemical oxygen demand
      SS =  the  suspended  solids concentration  in kg/cu m (lb/
           1,000  gal)
       P =  the  phosphorus concentration  in kg/cu m (lb/1,000 gal)

       v =  cost  per cu m  (1,000 gal) of  liquid

       w =  cost  per kg  (lb)  of  BOD

       x =  cost per kg  (lb)  of  COD
       y =  cost per kg  (lb)  of  suspended solids

       z =  cost per kg  (lb)  of  phosphorus


     A second method was employed in which a different initial
assumption was made.

Method 2 - Limited Budget Cost Distribution

     Fundamental to the  second method is  the assumption that
many budget cost items are independent of septage addition.
These items were not included  in  the septage treatment cost
determination.
                               69

-------









r—

Q
C
E-
fx
2

1
1


£
H
C
g

1

3
0
H
EH
D
H

EH
CO
H
Q
EH
CO
O
r_>
o
•*
S
s
EH










10
3
SH
O P4
ft tr
CO M

X! V
CO CO
•d co
•H
o ^
CO \
to-


o
o
Cj

en

0 \
H 
O
O O
O
ffl

cn





O 3
A 0
^ ^




^kj
^C ^D EH
EH 2 CO  (0
4-J SH QJ
3 0) rH
O CO U


ro ^
in rH
o o
0 0
• •
0 0


*NP 1 	 1
0 rH
0 0
0 0
0 0





in in
O H
0 0
0 0
• f
o o




rH ro
rH CO
o o
o o
d d



CN in
o o
0 0
o o
0 0




o o
in in
CM VO





CO
g
rH S-l
(U O
t> '[ 1
(ti -rH
SH C



•^r in
CM in
rH CO
0 0
• *
o o


CTi CM ^O
O VD O
O CM O
O O O
O O O





CM ro
rH CO
O 0
o o
• •
o o




I — {£>
CM CO
0 H
0 0
o ' o



^ CTl
O CM
o o
o o
o o




co o in
CO 0 rH
in rH rH
00


rH
 O
rH (ti 3
(U ' Q) SH
c~i ffi c~^


^
00
o
•
o


in cri
rH rH
0 rH
0 0
C3 f"-^





*sf*
in
o
o

0




ro
CM
rH
o
o



o
rH
o
o
o




o o
o o
CO O
s.


-p
d

4J
SH H
SH-H s
O 

CO
CO

•c/f







^

•10-



Q
s

o
rH
^>

\ — 1
(0
CT>
o
o
o
^
\
•u>



















ro
o
o
0

CM


ro
ro
0
rH
o





rH
CM
0

o




VD
in
ro
rH
d



in
CTl
cr>
rH
O














i_q
rtl
r;^
o
EH
70

-------
     Items included in the estimate were increased in various
ways.  Electrical costs were increased by whole machine units,
i.e., power for an additional aerator, thickener or vacuum
filter was put in service for septage treatment.  Chemical costs
were increased as flow, suspended solids, and phosphorus were
increased.  The personnel costs expanded incrementally by_the
addition of an additional staff member.  Small increases in
fuel and motor repair accounts were included for complete-
ness.

     This approach is somewhat dependent upon economics of
scale.  It is very unlikely that a large plant having many
operators would experience anything approaching the 33% man-
power increase called for in the Medfield case, where allow-
ance for an additional full-time staff member was made on a
three-man base.  Some discrepancy might also be expected in the
electrical budget if operational flexibility were allowed.
This analysis did not allow variation in equipment use over-
time; a rather extreme position in any circumstances.

Method 3 - Incremented Effort Cost Evaluation

     The same limited inventory of item cost categories was
used as in Method 2.  In Method 3 approximations were made
of the change in effort induced by a 2% septage loading.
These estimates were based upon the constant loading tests
 (Phase 2, Vol. 1).  There was no constraint to assume whole-unit
increments of costs.  The indicated treatment costs are there-
fore more independent of the economics of scale.

     Based upon oxygen demand data, aerator output was increa-
sed  four hours each day at the 2% loading.  For liquid stream
treatment, labor costs were increased by four man-hours per
day, based upon observation of the plant operation during the
test period  (Phase 2, Vol. 1 study).  ,

COST COMPARISON

     Table 41  shows a  comparison of the unit costs of treating
 septage through the liquid and solids trains and gives the
estimated total costs  of each component.  Table 42 is a compari-
 son  of costs derived by Methods 2 and  3  for both treatment
trains.

      Results of Method 1  indicate that  a substantial cost
 savings can be realized by handling  septage through the solids
 treatment train.  Method  2 indicates  little cost difference
 between liquid and  solid  train treatment.  The  results of
 Method  3,  shown on Table  42,  indicate some savings if alum  is
 used as a coagulant.   Aluminum conditioning of  the septage
 appears to offer  the  lowest  cost of  the three  chemical
 conditioning methods  studied, with  acid treatment  second  and

                               71

-------

EH EH
a a
§ a co
EH O O

§ O
EH U
M
3
EH
CO

CO frj
Q EH
H O
1-3 a
0 H
CO g
EH
CO


H EH
^ *
9 H
2 a EH
g O CO
t"i PJ O
IV! f* i &< p \
E_j IT1 «=-< LJ
s a o
i § °

S r3*
s §
p B

H 
O X! 0
\rH O
CT1**^ O
rX r-



i — |
*\
tn
g


-P
§
-P g -P
-H -P CO
S (0 O
Df]\ r \
vJ VJ
M
EH



-P
C
(!)
rt
o
I
u

** ro vo rH
H in o CM
o o o o
	 N 	



CM CM H CD
o in "sj* "^
• • • •
rH CO O CO
— • —




in o
CO CO
*3* fO
rH CM





, — ,
o in
o m
• •
CM r~
• — •



vo
^'
rH




^i
VO
in
• ^
^r
rH

CPX! tJi,£! &£l
M rH ^ rH 44 rH
0 rH 0 iH 0 rH
r^ CM r-- CN r^ CM
CO VO CO VO CO VD
rH O rH O H O
o o o o o o
•CO-CO- -CO- -CO- -CO- -CO-


0)
-P
1 -P (0
rH M fi M
(0 G) nj -P
-P &1-P rH
O 3 (0 -H
Q EH CO P! fa
O
U

•* in o o in o
vo  »-* o CM
CM CTi O O
— * • — *



VO CO CD CD
, t > 	
rH.VO
i — I G^





CTl O
•*
in
•».
rH




— • 5» — x— >
•5f in t^ CM in o
VO — s > 	


	 	 ^ ^^
VD CO CO VO
• • rH 0
rH VO • •
H CTl O rH




• in *
r~-co oo cMcn H'-^
CNOrHomcTi nJM
CMH -vfO OrH^^ U<1)
oo -3-i
•CO-CO- -CO--CO- -CO-CO-tTl (UrH
' fi O
U PM
•H en
(0 d
C -H
o rc^
•H ^3'
IS -r) O
O. T3 d
CO |_1 rrj |_|
CO CU fa <-^




^









































rH rH rH
03 (d rt!
tn Cr> &i
go go go
O 0 0
O rH O rH O rH
in o r-- oo rH •*
O CM O CM rH •<*
•co-   -co- -co- -co-






^ g c
•H rj O
OHM
rt! (< H

72

-------
 CD
 3
 C!
•H
 O
 O
 ffl
 <;
 EH
                  rd
   o
go
   o
3 rH
   rH
   rd
   tn

   o
go
   o

O
                                         fd
   o
go
   o
                                                  rH
                                                   rd
go
   o
              VD CO
              CM   •
              IT) rH
              -co-•co-
             rn r-
             vo   •
               • ro
             CO rH
         •^f CN
         o  •
           . in

         •CO--CO-
                                               r- o
                                                 • in
                                               CO rH
        H
        P
        s.
        EH
              II  II
               H
EH
to
O
U

i ~] "


 tT1 CD
 CD  -P
    fd
 CD  SH
                                        rH -iH CD


                                         g^I
                                        -p  d o
                                         d  fd >
                                         fd
                                        •P  CD CD

                                         d  3 fd
                                         SH rH -P
                                         (1)004
                                         DJ > CD
                                         S     to
                                         to  CD
                                                                     d  fd o
                                                                     O  -P
                                                      rd  CD
                                                      QJ  tn rH
                                                      to
                                                      rd m  O
                                                      m  o -p
                                                                    I
                                                                   tn -P
                                                                   o d
                                                                      CD
                                                               •H  tT*
                                                                O -H
                                                                fd rH

                                                                   tn
                                                                                       •3
                                                                                        CD
                                                                                       •P
                                                                                        rd
                                                                                   •d   CD
                                                                                    CD   SH
                                                                                    [ i   11
                                                                                    rd
                                                                                        cu
                                               . O  fd   .
                                              i g-H  -P
                                               -P -P  O  -P
                                               rd -H  -p  cn
                                                  5
                                                  -P
                                                  tn
                                                  CD
> CD
O SH
g -P
CD

   •H
CD O
                                                   O
                                                  •H
                                                  -P rH
    O
 d  O
•H
    -P
l"(3  PH
 CD  CD
-P  d
 U  O
 CD  0j
    g
                                                                                                  a)
                                                                                                      a
                                                                                        CD
                                                                                        to
                                                                                                      (0
                                           rH CD rH
                                           45 to  O
                                            U fd  tn
                                               45
                                            O (i d
                                           •rH    -H
                                            SH
                                            SH
                                            CD
                                                                             4H  O
                                                                             0)  O
                                                                                            in
                                                                                                 fd
                                                                          SH O
                                                                             g -P
                                                                             CD  to
                                                    •  
                                                  -P  —

                                                   CD  g
                                                                                         fit M O
                                                                                            CO
                                                                                               O
                                                   to
                                                O  O
                                                SH 45  P
                                               UH  & SH
                                                      O   to fd
                                            -P  O  fd  O CD
                                                                   rH
                                                                    fd
                                                      O
                                                      m
                                                   CD
                                                pjrH CU-P
                                                   (d  o
                                                   CD  \

                                                   4->, fO

                                                   g  ^
                                                   fd  o
                                                   CD  

                                                   -p  -p
                                                   to  fd
                                                               73

-------
 TABLE  42.   INCREMENTAL COSTS - METHODS 2  and 3
	         2%  SEPTAGE ADDITION
               Liquid Stream
                 Treatment
Solids Stream
  Treatment
Item
Electrical
$/cu m
($/1000 gal)
Chemicals
Liquid Stream
$/cu m
($/1000 gal)
Acid $/cu m
($/1000 gal)
Alum $/cu m
($/1000 gal)
Iron $/cu m
($/1000 gal)
Truck Fuel
$/cu m
($/1000 gal)
Motor Repair
$/cu m
($/1000 gal)
Personnel $/cu m
($/1000 gal)
TOTAL COSTS
Liquid Stream
$/cu m
($/1000 gal)
Acid Treatment
$/cu m
($/1000 gal)
Alum Treatment
$/cu m
($/1000 gal)
Iron Treatment
$/cu m
($/1000 gal)
Method 2

0.24
(0.91)


0.75
(2.89)







0.01
(0.03)

0.02
(.0.07)
2.06
(7.80)


3.08
(11.70)








-
Method 3

0.08
(0.31)


0.87
(3.29)







0.01
(0.03)

0.02
(0.07)
1.22
(4.60)


2.20
(8.30)









Method 2

0.01
(0.04)




1.11
(4.21)
0.77
(2.92)
1.18
(4.47)

0.01
(0.03)

0.02
(0.07)
2.06
(7.80)





3.21
(12.15)

2.87
(10.81)

3.28
(12.41)
Method 3

0.01
(0.04) ''




1.11
(4.21)
' 0.77
(2.92)
1.18
(4.47)

0.01
(0.03)

0.02
(0.07)
0.98
(3.70)





2.13
(8.05)

1.79
(6.76)

2.20
(8.31)
                       74

-------
iron the most expensive.  Acid treatment is more expensive
at Medfield because of the need to remove phosphorus from the
final effluent.  If phosphorus removal were not required acid
treatment would be the least expensive method.
   \   •   •              '     •
Comparison of Capital Costs

     Physical facilities would be needed for receiving, storing,
feeding and treating septage if it is fed to either the liquid
or solid streams at a plant.,  The cost of these facilities
is. site specific and would largely depend upon facilities al-
ready available at a particular plant.  Flexibility to prac-
tice either mode of addition is desirable.  Liquid stream addi-
tion would require utilization or expansion of aeration capa-
city and both modes of septage addition would require utili-
zation or expansion of thickening and dewatering processes.

     Land disposal costs for septage disposal is dependent
upon site availability and cost, equipment cost and operation
and operator salaries.  In the Marlborough study  (Vol. 1) '•"-'*
the added expense for a truck driver and disposal site opera-
tor was estimated at $0.11/cu m  ($0.43/1000 gal) of septage.
However, the truck costs were included in the Medfield costs
shown on Tables 41 and 42.
                               75

-------
                          REFERENCES
1.
2.
3.
4.
5.
6.
7.
 Segall,  B.A.,  Ott,  C.R.,  and Moeller, W.B.,  "Monitoring
 Septage  Addition  to Wastewater  Treatment  Plants, Volume  I:
 Addition to  the Liquid  Stream,"  EPA-600/2-79-132, U.S. En-
 vironmental  Protection  Agency,  Cincinnati., Ohio, 1979.

 Feige, W.A., Oppelt, E.T., and  Kreissl, J.F.,  "An Alter-
 native Septage Treatment  Method:  Lime Stabilization/Sand-
 Bed Dewatering,"  Environmental  Protection Technology
 Series,  EPA-600/2-75-036, September  1975.  ~

 Perrin,  D.R.,  "Physical and Chemical Treatment of Septic
 Tank Sludge,"  M.S.  Thesis, University of  Vermont,
 February 1974.

 Condren,  A.J., "Pilot Scale Evaluations of Septage Treat-
 ment Alternatives," Environmental Protection Technology
 Series,  EPA-600/2-78-164, September  1978.

 Tilsworth, T.  "The Characteristics  and Ultimate Disposal
 of Waste- Septic Tank Sludge," Report No.  IWR-56, Institute
 of Water  Resources, University of Alaska  at Fairbanks,
Alaska, November  1974.

 Shaboo, A.A.,  "Selected Septage Conditioning Enhancing
 Settling  and Dewatering,: M.S. Thesis, University of
Lowell, December  1978.

Crowe, T.L.,  "Dewatering of Septage  by Vacuum Filtration,"
M.S. Thesis,  Clarkson College of Technology,  September,
1974.
                             76

-------
X
H
Q

W
04

%
 CM
                                                        co in
                                         r-
                                         00
                                         rH
                                                        CM -
                                                              CO
                                                           o o
                                                           CM m
                                                           r~ CM
                                                           in -a*
                                                           vo «»
                             o o o co co in
                                        O O rH OO CM
                                        P CA  • VO t
                                        O O vo VO CO
                                        in vo
                                        •a1 CM
                     CM r-- r-~
                     O\ rH ^*
                     •31 CO CM
                                O ^3*
                                00 O
                                O CO
                        o o oo r- co
                        VO CO  • rH rH
                        f-, CA VO VO CM
                        CM CA
O O O t~ O i-H
CA t3* rH  • CO in
r— vo o vo -a* in
oo oo in    CM
CO CO CM
                     o o o
                     r^ co in
                     rH in r-
                     r- m in
                     CM rH rH
                                            in
                                            r~
                                      O O O CM O O
                                      vo ro in   • in r-
                                      in o vo vo co CM
                                      vo CM co
                              ro -
                                    CM
                                      O O O O    rH
                                      «* r— CM   •    in
                                      CO 00 CO VO    rH
                                                        VO rH •*
                                                        O ^- O1
                                                        co in co
                                                           o o
                                                           o o
                                                           r- •*
                                                           in vo
                                                           00 -31
                                                        o o o
                                                        "» O O
                                                        in M o
                                                        vo t~ r~
                                                        vo «g« co
                              o o
                              en <3<
                              co o
                                                        o o o
                                                        OD CM CM
                                                        cn oo in
                                                        ^j- co vo
                                                        vo r* «*
                                                        o en r~
                                                        CM 1-- CM
                                                        ^f CM CM
                                                           O O
                                                           P- rH
                                                           CO O
                                                           00 t~
                                                           00 -^
                                                        o o o
                                                        ••r vo co
                                                        VO CM CO
                                                        in CM oo
                                                        CO CO CM
                                                                    O «»
                                                                    in CM
                                                                    CA CM
                                      O CO
                                      CM O
                                      CA CM

                                      O
                                      in
                                      o -^
                                      ro co
                                      C1 CM

                                      O
                                      CM
                                      VO
                                                                            CO rH
                                                                            ffl O4
                                                                    O
                                                                    O
                                      in o
                                      in *j*
                                      CA ^r
                                      x.
                                      o
                                      o
                                      m
                                       in  t~
                                       o  vo
                                       CA  rH
                                       in en
                                       O rH
                                       CA CO

                                       in
                                          CO
                                          CM















w
o
<
E-.

Ed
W

S
K

rH
•v.

s

Q
O
CJ








rH

S

K
in
•a
-r)
rH
O
01

rH
rtj
-P
0
EH

cn
E

•.
01
•a
•H
rH
0
CO


rH
a
4J
O 5
EH '

CO
O
CJ
ffl
CJ

01
- (8

\
IT*
s

«.
><
4->
•r(
C
-r*
rH
m
^
G rJ
ifll





















C*
01
U

                                                         pggs
                                77

-------



































CM
1
fS
a

W
E*






















































u
z
I-H
fj
W
cn

g
O
Pa
a
m

M
cn
<
&
H
CO
o
K
£H
w
I
*
M
52
<
**























CM
CM
VO
0

in
r-
VO

CO
o
vo
o

r-
o
vo
o

cn
CM
in
o



r-
CM
in
o





i—i
iH
in
o




CO
o
•sr
o


CO
CM
CM
O

p»
CM
r-H
O












d
3
M
&
S
<
31
O O O O O O
j^ o o co in vo
rH rH rH CM CM i-H
&\ cn » O CM rH
0 O O O O O
^ vo cn *3* ^3* oo
cn CM co in co co
CO CO CM CO CO CO
CM CM CM CM CM CM
O O O O 0 O
r~ CM o co rr r-
cn co vo co *
in ON ON O m rH
ro CM CM ro ro CN
•*• *P -* Tp -sp ^
o o o o o o
O CM rH CM -^ CM
ON O CM rH r* VD
O rH rH rH O O
ro ro ro ro ro ro


O O O O O O
in ON ON in 00 rH
o <* rH r- ON ro
ro CM ro CM CM CM
H rH rH i-H rH rH




o o o o o o
^ o -53* ^p ro r-
P- CO ON O\ CN 0
CO CO [^ [^ rH O
ro ro ro ro *p ^p



o o o o o o
ON O CO ON ON CM
ON CM O ON ON O
rH CM CM rH rH CM

o o o o o o
VO rH ro 00 rH CO
•sp ro vo -O ^* in
CM m ^ rH CM CM
^ ** "* "* "^ "*
O 0 0 O O
rH O «5* ^ rH
VD ^j. CM ^r ro
•^ r-» op r* r**
rH rH rH rH rH

CncnCncncnCnCnCn
(d(dtdrtJn3fOnj(d
oooooooo
QQQOCIQQQ

WHHHHHMH
HHHHHHHH
HMHWHHHH
aJ4)a)4)
Cn ftfididirffd'tiidfd
SO O O O O O O
O Q Q Q Q Q Q
CO
•H MMrHWHMHhH
rH HtMHHHHHM
O HMMHHHHH
W rHHrH^^^^^
0) i<
-------
CM
CM
O
in
1-1
o
CO
o
o
rH
O
O
m
IT
0
^
*-~ ir
1 °
p
C
•rt
•4J
C
0 ^
CJ H
o
1
CM
1
ft
H r"
£ 5
g
a
c
p-
c









c
. fc,
t—
ft



rH O-O"> CO P- m
inm^^^^
CM o o*» co \o m
m m "31 •* ^ *3*












'








in m m m m
co in CM o
m in m in
Q) Q) Q) d) Q) QJ (D
Cn 0^ CT^ tn 0*1 en cr>
(d  CO CM rH rH
rH
CM in rH O\ CM CO
0 CO CM \O \£> CM
CN rH rH rH

^CO rH






co r- o vo in **
CM CM CM H~

_


CM O P- H VO ^
AO co ro CM rH rn

CO O CM in CM P- *
CM en r* in ^ co
rH
Cn CO iH rH in
CO «3* CO CM (H

§,«§,«§,§,§,«

oooooooo
QQQQQQQQ
H M IH M 1H In 1H HH
H H M M M 1-H M,H
04)-(!)
-------

































CO
J>

CO
ID
<
EH
















































1
£
W
CO
a
CO
1

Ed


D
CO
HI
o
8
CO
(0
1
«
CO
g
EH

















c<
c>
v.
o

IT
i-
vo
o

CO
o
ID
O

r™
C
VJ
O

cn
CM
If
o


£
ir
o



i-
t-

o


m
o
o


cc
cs
ex
o
CN
rH
O








O

1
CO







































0 O O O O O O
o co co co o^ ^* r*»
co o co co in co vo
*& If) *ep *ff ^f *? *?






O O O O
in rH r~ co
o cn [** r**
f> rH O VO
co co ^r co
O Q) Q) 0 (D  1 1 I 1 1 | |
-rH rH rH rH r-H rH H
g> g"g g'g'g'g'i'
O O O O O O O
Q rH rH rH rH CN •q-
O
CJ







































O O O O O O
rH m CN co co r*
in vo CM o t^ CN
rH CN cn co en o
in in -^ -sr *a« in






ooooo
ID CM CN CO 0
^1- VO CO H CO
co co o m in
CO CO CO CO CO
Q) » ** •«• ^i-
O O 0 O O O
' ^* CO CO CO CO t"^
W cn vo co CM r-
^j* VD co co r^ co
p- p- r- p-co r-
o o o o o o
o o o o o o
VO VO O CO O OO
ro ro tn P*- P*« co
TP ^p ^r ^ -v •*#

o o o o o o o
g" J* •-* g f*- P- rH
p^ co cn co cn cn cn
CM CM CM CM CM CM CM


OOOOOOOO
oenororo^cnro
CM ^* CM VO CM P"* CO in

p- p- vo r- P- r- P- vo


oo ooooo oo
55 co SI co" m co1 Sc?!

. o o o o o
n cn cn ^ CN
o o CN o o
["* ^3* ^* ^1* Tj"
COCOCOCO CO
o o o o o o
•*• CM Cn CO rH VO
CM ^ VO O O O

ro co ro ro ro ro

S'S'S1S1S'S>S1§1S1
tococfiCiOcodQuitncfl
aaaaaaaaa
MMMHHHHMH
rHHHHHHHHHH
\HHHHMHH.MH
grHrHrHrHrHr-iiHrHrH
ra I I I I I I I I i
•a
•H rH rH i~H rH rH rH rH rH rH
| 11 t 11 11 fl
CMCO rHOOOOOOOOO
EEffi (OCOOCM^VOOOOOO
OiOl -P rHrHrHHHCM^rCO
o
EH
o o o o o o
«H in p- ro o vo
P^ P"- CO CO CM rH
^ ro CM cn r— i o

o o o o o o o
ro tn o vo o vo r*-
vo vo m o o in co
^ cn cn in CM in cn
vo in in vo vo vo in
o o o o o o
O rH P1* VD VO P*-
o in ro co ^r CM
oo p** co p"- co cn
"* ^ ^ "* "^"^
O O O O 0 O
CM CO VO VO VO VD
rH CO VO rH VO CM
CM CO P^ «tf O CM

O O O O O O
O O O O O O
O CM O VO O O
 *& ^j» g>g i"!"!1
0 O O,O O 0 0 O
rHr-HrHCSCNrOCO*r

o o

co r-
cn en
*cj* CO
o o
CO rH
CN CO

vo in
o o
CO •»
CN VO
CO CN
in ^r
o o
VO CO
t~ CN
n- in
co r^
o o
o o
CM «a*
in cn


o o
r-> in
0 O
. CO CO


o o
CO VO
r~* r— 4
O rH
r> r*


o o
CM cn
Tjt CN
0 rH
co ,m

0 O
CO I-~
O CM
in cn
cn co
o o
t- r-
O VO
CO CM










CM CO
33 K

































T3

-------




































^_^
TJ
 co r- in in in





o o o o o o
^* ro eft eft r*- *^*
^* P"* Cft VO CO ^*
r*» co ^* in *3* t**
CN CN CN CN CN CN



O O O O O O
p- vo vo vo vo in
p* iH ro co o •*
Cft VO Cft O VO VO
tn ^ ^* in *3* "^j*


o o o o o
t"* rH VO VO Cft
^ r- m in o
in rH eft o r-
CN ro CN ro CN

eni'gr'eni'

O O O 0 O 0 O.O
O-^PCOCNVOO-^O



o o
in r-4
p~ in
05 VO
CM CN
o o
0 '-0
co tn
in I-H
,»
o o
en in
r-l P-
P- O
CO CO


0 0
en co
in ro
in vo
in **



o o
o o
CO O
m I-H
ro ro


o o
CO ^J1
p" "a1
CO CO
CM CM





O 0
cr\ o
en co
in vo
•3' CM




o o
p- en
0 rH
<3- CM
M CM



O O
ro p-
rH P-

If) ^P


0 O
in co
«T ro
in co
CM CN

















CN ro
S3 33
a. a












































































x^
0)
o>
T3
3
rH
tn
£
«,
.^\
o o o o o o
en o co en en en
^r in ^r ^r -^ ^>
in o o o o m
ro m ^* m in vo
O\ Cft Cft Cft Cft Cft
"^'x *xs x^ x^ x^-x^
in o o o o in
ro ro ro co co co
m m m m in in

o o o o in m
in T ^ vo in in
Cft. ON Cft Cft Cft Cft
*X,X*s. X^x^ x^X^
O 0 0 O 0 O
" O Cft CO CO CO P"-
r— vo vo vo vo vo -
o o o o m m o

Cft Cft Cft Cft Cft Cft Cft
x^x^x^ x^x^x^ x^
o o o o o in o
in -^ ^ vo in in m
*3* "Q1 ^P "^ ^ ^* ^4



oinoooooo
in ^* ^* in vo in o p~*
Cft Cft Cft ON ON Cft Cft Cft
X^X^ x^x^ X^ X^X^X^
oinoooooo
inincor^vDvooro
inminmininvovo


o m o o m o o
•^ ^ m in ^t* in M
Cft Cft Cft Cft Cft Cft O
NXsX,"XiXxXNt X^ r— |
o m o o in o x^
o vo o o ro oo
vo in vo vo vo vo 01
vo
o o in o in
eft ro ^* co vo
Cft ON ON Cft ON

in o m o m
O\ CO O ^* CN
<3* ^* m m m






0a)fl>a>®®
Cn Cn Cn Cn en Cn Cn Cn en
nj(CfO(Cni(0(i3njfO

S OOOOOOOO
QQQQQQQQ
-P
O ^^.^^^-x^—*-^^-**— .^*.*-*
4JrHHrHHHHiHrHJH
HMHHrHHHtHH
rHrHrHrHfHtHrHrHrH
F^I^P^Jf^cir^rtlrfJrfl

1 i 1 1 I I 1 i 1

'rHrHrHrHrHfHrHrHrH

i1 Ifs e slfs g If

ooooooooo
COOCN^VOCOOOO
rHrHrHrHrHCN^CO












O 0 O 0 O O
VD co co in ON r--
Cft Cft ON ON ON ON
*x,"xs x^ x^ x^ x^
O O O O O O
m vo m -sr in vo
^^^^^^
in o o o o o
m vo co m co rH
ON Cft Cft ON ON O
X^X^X^X^X^ ,—j
in o o o o x^
O rH rH O O 0
in m m in m ro
in
o o o in o o
in vo co t-* co ro
ON ON ON ON ON ON
 ^> CNJ Cft
** ro


o o o o o o
in in m co co eft
ON ON ON ON ON Cft
*x, "x^x^x^x^x^
o o o o o o
o rH CN m in m
m in m in in in


o o o o o o
in tn vo P- co co
Cft Cft ON ON ON ON
^x. "x^ x^ x^x^x^
o o o o o o
in *«3* co o co p-
m in in vo m in

o in o in o in
in ro -ta* co P- eft
Cft ON Cft ON Cft ON

o o o in in o
m vo m ON ON o
«tf -^ ^ *3« ^ in







-------
          CM
          CM
          VO
          O
                                                       CO O CM CO VO rH
                                                       rH O CO VO VO *7
                                                       rH r-f
          vo
          o
                       r-l O VO CO CO 1—
                       ^> rH rH H CO CO
                                                       en ro ro CM in     CMO
                                                       invor-* in in •*!•
                                                                             CM'co
                                                                             ro CM
en
 tH VO O CO O
                                                       CO CM CO VO CO rH
                                                                   cr\ ot
                                                                   o co
                                                                   rH CM
%


§
          CO
          o
                   co cn CM CM cs
                   vo vo ^r ro co
                                       vo rr
                                      .CM CM
                                             co cn i— r- o o
                                             co 10 in ro tn in
          CM
          O
                       Ol "O- CM rH
                       H rH rH r-<
                                             o r- co  in vo CM    in r~
                                             CO CO *3*  CO O O    O CO
                                             rHiHrHrHiHrH    rHrH
r-
CM
rH
O
                   co n o n
                   r~ m m CM
                                                   CO rH rH CM in
                                                   rH VO in •* CO
                    fO(tf^[lT]rCIlTllQ(d'Q
                    taiai/itocniauiinoi
                    ooooooooo
                   QQQQQQQQQ
                                                    U) O fl) C)  
-------






























1
o

Ed
,-3
O
c<

























































U
55
M
|]
£-t
w
en
w
EH
Cu
SC
EH
J3
rij
EH
ri!j
§
H
0)
ID
cn

i
X
en
B



























CM
CM
VO
o
in
rH
VO
O
CO
o
VO
o
rH
O
VO
o

Ol
CM
in
o


rH
01
in
o



rH
rH
in
O





ro
o
^J*
o


CO
ol
Ol
o
^
ol
rH
o











>
o
3
w
tJ
Pn
S

CO
O 0 0 O 0 0
1- 00 VO O O VO
vo 01 CM o en 01
Ol Ol Ol O4 rH rH
o o o o o o
in •* o 01 o o
o co in in vo in
ro 01 04 01 01 ol
O 0 O 0 0 0 0
Ol Ol Ol ^* P~ P^ p"»
co co p~ in vo -^* in
VO rH rH rH rH rH rH
o o o o o o o
o rH co en vo oo ^*
co CM en o o cn~-cn
VO H rH rH

o o o o o o o
in co "3> 01 in 01 in
01 01 p- in c-,m in
in


oooooooo
oiininorHinrHt-
rHinincNt^-min^j'
04


,
O 0 O O O O 0
in Ol Ol rH ro VO CM
in "* p~ r- vo ro vo
in •"* ro ro ro ro 04





0 O 0 0 O O O
r- rH CO 01 CO rH rH
in ^r cn co r~- r~ r*-
ro ro 01 01 01 CM 04


o o o o o
CO CM O ^- O
ol vo ro ro ro
ro 04 04 04 01
O 0 0 O
O P- CO O
CO CO rH rO
01 01 CM 01
vUvUvVvUvUvUvVvV
Oi Oi Oi Oi Oi Oi Oi Ol
(OiCidfdtdtdidtd
IQUltQUltOGQUlU]
oooooooo
QQDQQQQQ
HHHrHrHHt-HrH
HMHrHHHHH
rHrHrHrHrHrHrHrH
<;<«:» CM vo
O4 CM Ol Ol Ol Ol
O O O O O O
in cn in o co cn
co vo in vo r- cn
rH rH rH rH rH rH
O O O O O O
O VO CO i-H CO rO
co ^i* ro ro o co
i-H i-H rH i-H CM rH

o .0 o o o o
rH r- 01 o vo I-H
i-H O Ol Ol rH VO
01 CM rH rH CM CO


O O 0 O O O
CO Ol rH CO in CM
co r- 01 01 o 01
rH rH



O O O O O O
CO VO. H CO VO CO
O P~ in 01 rH rH
^ ro ro 01 ro ro





o o o o o o
vo 01 o o in •*
rf ro ro 01 ro rH
Ol Ol Ol Ol Ol Ol


o o o o o o
rH 01 VO rO rH 00
• r- •» •» 01 r-H 01
Ol CM CM CM CM Ol
O O O O O
01 cn cn CM p--
rH VO VO 03 P-
01 rH rH rH I-H

fcl fe fu 64 fe b
1 1 1 1 1 1

rH rH rH rH rH rH

E E S IfsT S

O O O O O O O
O •* 00 01 VO 0 •«-
I-H rH rH CM Ol rO ro


O O
in •>»
O rH
P"" CO
rH
0 0
01 cn
rH CM
in ro
O O

O CO
cn **
o o
P~ OD
rH O
Ol •>*
ro i-H
o o
VO CO

in ro


o o

ro p-
CO rH



o o
cn en
O ^3*
CO CO





o o
Ol CO

in p-


o o
in vo
vo vo
cn in -
o o
in cn

in ro
f














01 ro
K 03
ft ft































^
0)

c
•H
+J
G
O
o




































83

-------
CJ
J
ffi
CM
CM
10
O
IT,
rH
O
CO
o
ID
o
rH
O
O
en
CM
m
o
r-l
CM
in
o
rH
rH
in
CO
o
o
CO
CM
CM
O
CM
rH
O





SAMPLE NO.
oooo o o
r> in co co en in
Cft VO VO *T VO VO
O .2 O O O C O
I""* CO CM f"* P"* CO rH
in p* o co co p** p*
CM rH
O OOOOOO
•sr co o o en o w
o ID in^in in ID vo
O OOOOOO
co CM co rH o in en
CO
O OOOOOO
o vo en -a* in m vo
ID co vo co co cn co
CM
OOOOOO OO
oooo oooo
cMcoincn r- CM co *r
o o o o o o o
r- o vo o p- co rH
co o r~ co r- vo VD
rH rH
OOOO O
o -3" vo o in
o co vo co vo
rH
oooo
in O r-(rH
p~ in in in
a>
x. & m S. & c> o. o. S> o>
g oooooooo
Q Q Q Q Q Q Q Q
crj

« 3533S3355
•H 1 1 1 1 1 1 1 1 1
4J
(0 rH rH rH rH rH rH rH rH rH rH
§• s i^g'i^i'gi'^i'i1
r-HOOOOOO OOOO
(0 COOCNTVDCOOOO
-P rHMf-HrHr-ICM'Cj'03
g
OOOOOO
t^ ro o co CM ^*
co in >» CM rH en
o c c; o o o o
rH en rH en co CM vo
•>* rH ro o en co co
rH rH rH rH rH
OOOOOO
O rH »* O CM CM
CM o en co cn o
r-H rH , rH
OOOOOO
in CM o CM r~ en
rH rH
OOOOOO
^3* O T VO in CO
^* CO rH Cn rH O
•H rH rH rH CO
OOOOOO'
^* CO CO CO CO CO
tr co co co in co
OOOOOO
co o co en i*~ r*«
cn in CM ro co co
CM CM CM rH rH rH
OOOOOO
^« in en ^j* vo CM
-a- CM o H co co
rH rH rH rH rH rH
OOOOOO
•T CM ^l* CO O VD
r- •«• •«? CM en rH
rH rH rH rH rH
O O OO O
o vo OD in in
^3* en en co r^
rH

g, g, g, g, & §> S, 0.
oooooooo
QQDDQQQQ
HMMMHHMH
fa.SSSSfaSS
1 1 1 1 1 1 1 1
rH rH rH rH rH rH rH>rH
OOOOOOOO
rHrHrHCMCMCOCO-r4t
O O
in o
in co
CM rH
O O
T CO
•a1 en
rH
o o
in vo
in co
CM rH
O 0
CO P-
r~ en
CM
o o
VO rH
o r-
CM rH
O O
O VO
r- vo
rH
O O
f~ CO
rH VO
O O
•0" CO
co r*
CO rH
O 0
in o
CO CO
•« CM
0 0
en in
•» CO
CM rH





CM ro
                                                                                               en in CM G\ r- vo

                                                                                               in in in ^ ^3* ^
                                                                                                                               inminininin
                                                                                                                              r- r* vo co vo "*o
                                                                                            m in m m
                            in ^  CM CM cs

                            in in  m m m
                                                                                                                                                     rH U5


                                                                                                                                                     CM >»
S OOOOOOOO
DQQQQQQQ
                                                                                                                            0)  fl) Q) d)  Q)  
-------

*





tyi
o
Q
to.


O
CM
to

J--N
w
o
H
EH
H
Q
Is
O
m u
X fa
g °
s £3
H O
PU H
S e?
g
EH
rH1
H
fa
s
D
D
•jj
£*
>>
I

PQ

to
1^4
EH
















'

























C_i
§
EH
<«
es
EH
g;
£2 '
h3
<
. W
rH 0
1 M
MC_|
CH
CO
S 3
§M
EH S
1

s

«
u
1


fctf
w
&































CM
CN
O
in
rH
VO
O
00
^
o


rH
~
O


crv
rt
O



rH
in
o


rH
In
O



CO
•*
o



CO
CM
O


r-
*M
O





















O


r--|
t-5
s
1
H
j"H_
: rH
tH
M
rH
rH
M
M
'H
rH
65
H
H
"•H
j-j

H
H
"

rH


M
IH
ii
,_-4
rij

H
H
III.
rH


IH
H
^
rH
<

£^
M
.^
rH
<
IH
H
" "
rH

















T3
0)
U]
D

-P
C
18
rH
en
<8
O
O VO
00 CM

O CTt
00 CO
rH
o in
CO ^J*



O Gt
CO ^*



o r-
-^ o




o m
rH



o r~
•* rH




o
. rH




O
rH



O 0
^r ^











rH
\^
gl
g


Q)
Cn
18
U
O
Q EH

rH U
18
O 0)
•H en
§rrj
3
t> CO
in
^H

in
rH

in
'•H



in
rH
\


in
rH




in
rH



in
1-1





in





in
1-1



in
*—'



to
S"5
•H
1
1 o*
(Q tO
PJ *\
^ 43
rH
•. ^-*
0)
M
3
in
in
0)
a.

c
o
•tH
JJ
18
M
rH
•rl
4 •<*•»
O O O

•»• T •*
O O O

00 CO CO
O C3 O



CM CM CM
•*H rH rH



CM CM **
^H ft ^




rH rH rH




rH rH rH





ro M n





* in
, S So
1 s s •


in in in
rH rH rH












C
•H

*
to
01 C « fi
0) -H -rl -rl
fi g g H
O rH CM T
•rl
Si II

MH
Q) -P
44 «
O

^ rH rH
f** CA VO
CM CO ^<
= OVO
VO W €O
CM CM CM
rHrHrH
OJ ^* Oi
x* m m


vo ro f)
n O rH
r-vovo


O if O
m in CM
m CM CM



CM CM in
o »» in
CM CM CM


CM VO CO
en ^ CM
CO -5T >*



rH O *!•
. . .
VO VO CO



(O CM CO
'"i^ °,
CO CM CO


CM m r-
in o in
r- i— en











Cn

«.
4J
a
0> C fi c
-H -rl -rl -rl
» CO O rH

CMCMCO invOVO CMrH


inoH r~rHrH cncMoo
t CJ ^* rH
rH CM CM r~ r- r- rH



rncoco .CMCOVO r-Oi-H
ocoin cocncn ^^"^
CM CM CM r- r- r-


voint-H co o vo o^j-in
•<*cr»cM ocncn ...
CM CM CO r~ VO VO rH



coincM cninvo cncorH

CMCMCM CO CO CO CMrH

1

rHCOcrv COCOCM cocoin
COOCO' OCtvo ...
CMCOCO ^•'a-in rH,


^OVO CTirHCO OCMVO

CM CM CO CO CO CO rH

03
EH
IH
O —
rl
<*> a .
1
-P
00 M >H
•o
•• ' -iH ' O1
0) ' rH 01
•a o \
•H 03 A
rH rH
occe tucfifi— ccc
CO -H -H -H rH -H -rl -H -H -H -H
ggg-Hggg -ggg
rH +J T3
OJrHCM'* iSrHCMt!' rHrHCM'W
-P rH HI
Oil OH 'H II
EH • > >t
MH m MH
03 -P ' D -P CD -P
•^ IB *«
u u u

m
*

in
"

in
*



in
*



in
*




in
^



in
t^




in
[»!




in
r-



in
•
r"



CM "J
** -rl

1 a
18 01
&t ^^
_^i* ^Q
H

Q)
j_j
3
in
tn
0)
rl
Ol

G
o
-H
4J .
18
M
4J
rH
•H
til
™
O O O

^ Ttf <3«
o o o

CO 00 00
O O O '
.


00 00 00
o o o



rr -* «*
o o o




rH rH H
• • •
f


in in m
o o o




CM CM CM
. . .




S S S
3 & &



m o m
rH CM <-H
*











c
•H

*
in
u a c c
<]) .H -H -H
fig gg
O rH CM •«?
-H
Si II

• t[ ]
(D -P
xl
r_)




























S1
CD
3
a
•H
.P
c
o
o



















c
-rl

4-1

1

(1)
rH

(8

4) 3
g in
•rl IB
4J 0)

£

O O
IH z

II H
4-» S
-P S
- -K *
85

-------

















,w.
•a



CM CO rH
"^ ° °
rH CM CM
cn cn CM
cn (-• o
CM CM ro





ro en o
• • .
CM ro ro




I— CM <0>
*r co r»
*nn in
ID vo in
in ro CM
rH CM CM
en r- t>
• • •
in vo in







^
4J
0,
•H C C C
(U -rl -rl -rl
SEES

dl rH CM T
^
« II
O


it
a











































dP


10
•0
•H
O
K)
(d
4J
O


ID

(3
CJ

rH CO ro
O CM 1<
CM CM CM
vo o ro
in r^ ro
CM CM CO
en rH ^
CO CM Tf
rH CM CM
VD ^* CO
VD r- en
CM CM CM
cn [^ co
CO rH CM
H CM CM
en rH co
[•» O CM
rH CM CM





o r» •»
rH «* in
CM CM CM




in en vo
ro o VD
CM CM CM
cn co in
in en o
CM CM CO
o in o
CM ro *3«
CM CM CM










C C c
•rl -lH -H
E E E

rH CM •q'

II



01

a
u

Cn O rH
ro in in
t- r- r~
r- CM in
O CM CO

CM in co
r- vo ro
^^"
o r- «
cn co co
in in in
H ro VD
cn o o
P^ CO O3
VO CM CO
cn en t-
r- r- r~





o VD ro
rH O CM
r- r- r~




•0- rHO
rH rOr)<
cor-r.
in ^J* rH
co co r~
^r qi •qi
O T p~
ro CM CM
CO CO OO










C C C
•rt -rl -H
E E E

rH CM -W

II

IH
-p












































i
4J


O1
to
\
rH

rH
ID
•H
X

?

a
U

CM CO O
CO -q| CO

o^r-
^* m rH

VD a\ ^o
CO IT) (*)

m ch c\
rn in rn
H
...
m ro rH

en vo in
.cn . CN






O rH VD
cn in CM





00 VO .
rj> cn fl<
rH
CM en cn
in ro, rH
o o o
ro o on
CM r-4 CO
i-HrH










a a a
•rl *rH -H
E E E

rH CM •»

II

IH
-P



                                           86
.

-------



























CM
1
CO
ta
a
ca
<
EH




















































EH
Z
EH
ta
OH
EH
13
Q
5
O
(_)

U
H
K
W
fa
CO
u
HI
EH
CD
H
ta

<
03
<
O
fa

CJ
i
CO


tn
EH

























CM
CM
VO
o

in
rH
VO
O

CO
o
vo
o


rH
O
VO
,o


CJ1
CM
in
o



rH
IN
C





II
in
o




ro
c
o




CO
CM
o



f»
IN
O


















C



«
S
H
M
HI o ro in
dj ro
fa
HI
Hi
HI o o in
~- O •«* rH
0) •* rH
H
HI
H O ro in
~-» O «3* rH
(1) ro rH

HI
M o *r in
^ p r~ H
fa

*-*
H
H
H o oo in
•*— O CO r- )
OJ CO r— 4
fa


H?
HI
H O r-f in
"— • CM (N r-
0) CM rH



,_,
H
HI
M o ro in
— ~ O in rH
 tn
T3 Oi 3)
0) 15 M
|I3 O

4J cn o
C rH CJ -H
(0(0 -P
rH O VTJ 10
3 -H Oi i-l
O* E tJ -P
CO 0) 3 rH
*C O •£« rH -rt
tnl cj cj CQ fa
•* CO g
O O 2 •

00 0


S S S
S3 13 !S


CO CM CM
O rH rH



„„ oo
o o o




rHrH rH
. . .





rHrH rH
.





("fi-H (H
...




ES m
o




in in in
rHT rH rH











C
•H

^_
01
01
< ^Pf*l
CM M m




G\ rH n
r* rn r*-
u^ in vo



f-^H
^* rH in
ro ro ro



01 r- oo
oo in vo
in vo in










at

,.
4J
A
01
•ri c e c
U> -H -rl -rH
E E E E

4) rH CN fl-
IS II

MH

S-l
a

«* ro rH
in r^ oo
CM CM CM
rH O rl"
CM ro ro

r*> o ro
ro -^ r~
CM CM CM

01 in 'S'
in H vo
CM co ro


ro o CM
rH ^* VO
CM CM CM



co 01 r~
rH CM >*
CM CM CM

-


r*^ ro ro
•«• 00 rH
CM CM rO




f^ cn 01
•CO Ol rH •
CM CM ro



00 in rH
in oo ro
CM CM ro



T? ro 01
ro vo vo
CM CM CM








0P


0]

•H
rH
M G G C
•H -H -H
rH g E S
ta
•P rH CM "*
O
EH II

tu IM
^ 1 1
n)
CJ

Ol O rH
ro ro ro
r~ t- r~
r- r~ co
O rH O
r- t— r-

o o r-
rH r> VO
r- r- r~

ro o ro
oo o 01
in vo in


r- vo rH
Crt CO Ol
r~ p- r-



T r- o
o o o
00 00 CO '




vo ^ co
ro r* 01
r- vo vo




in 01 CM
tn •vf m
CO CO 00



CM vo in
vo CM r*
in in *rj*



ro r- rH
in in vo
O3 CO CO
tn
EH
in
O

<*>


ta
•O
•H
rH
O
cn

a)
M c c a
•rl -|H -H -rl
•P E g g
m
rH rH CM •*
§,,


tO £
pi .r
*J*
o-
•« tn

-------

















t~.
13
a
c
•H
4J
§
O
"— '
CM
a


^




























<
1

U
vc
o
0
V
o
r-
VI
o
en
i/
o
(•l.
ir
o




*-
if
o


ro
•a-
O
CO
CN
cs
o
r*
H
O















"
O
Z
S
PJ
a
CO
Hr-^
...
rHr-H rH
rH in CO
*? <

^
4J
X
01
•rl C C C
CU -H -rl -rl
& s s e

(U rH CM •»

13 H
frlJj"
1-1
Q











































OP

01
•a
•H

o
CO

C]
tj
0

00 P>^
^p in in

o r* H
i-4 CM CM

in ^» cn
vo ro Tp
r- r- r*
O .-i T
00 CO CM
in in vo
in vo in
m cn en
[*- r- r^
vo vo vo
H i-l O
CO CO CO




vo co in
i-H O rH
r- r- t—


GO in vo
r* r«j co
vo r* vo
co cn ro
o r* cn
T «* in
CM co m
r*» ^* ^j*
CO CO CO













c c a
•H -rl -rl
see

rH CM -q-

II
JJ



CO CO i-H
^* rH rH

OH C—
CC?^ H

voco ^r
in oj rH

r* o in
fO VO ^*
rH
.^
in CM H

H CM Ol
VO fO i-H





VO O ^
r*» in CM



CO rH **
VO CO CO
•-H i-H O
o in o
P* ^* CM
O O O
co •«! in
m co co
rH O O




J3
1

VH
IT
01

^Q

a ti a
* -H -rl -H
-0 g E E

0 i-H CM rr
.,H
X II
CD 
-------





















CO
1
£Q
a
a
m
C_|






















































>
EH

a
EH
Q
H
O
CO
O
M
EH.
co
H
OS
H
CJ
§

tc
CJ

0
1
CQ
r*4
CO
EH































CN
CN
O
in
rH
VO
O
CO
O
O
rH
O
VO
o
en
CN
m
o

H
CN
in
o


rH
IT
o




CO
o

o

cc
£
c


!>
f^
c




















c


£
(-^
a

^
U
«*
O mm
CO CN ^1* rH
CN

O u"i &
CO CN ^ rH
CN
O ro in
CO ro ^* «H
CN rH

O in in
co ro in rH
CN
K
O o in
CO CN VO rH
CN
33

O co in
CO ro ro «H
CN rH

t

O. co in
CO CO *3* r-
CN H
S



«3*
O i^
CO ro iH
CN
W

o* m
CO CN t—
CN
X


O ^f if
CO CN P^ r-
CN
s

CO
o
rH
1

(Tj C
O) -r

£
* 0
0) \
H X
3 rH
01 • —
CO

1"3 rl
0 A*
0}
a c< c
CO O
iH CJ -rl
(Tj 4J
O (U IB
•H O> H
CU 3 rH
Si B3 rH -H
o a co CK
a a a vo co en
£5 3 23 CO CO CM
rH iH
T 1 •<* IN rH VC
o o o p* CM vo
CM CM CM
ssa oco «*
!2 Z 53 in oo oo
rl rH iH
oo co CM ro o\ co
o o rH in o fn
*r co ^p
^33 t— o vo
o "z z r~\m, "~i
CM rH rH

rH rH rH VO 03 iH
CM ^ r-
CO CM CM


rH in rH en 00 ^3*
'• . ...
CM iH CO




co co M in co o
... "3" rH CM
...
_, . VO O3 O
rH

S S 3 OTf r-l
•Z Z 53 ""l"^ "~I
rH rH rH


in in o CM co r^
iH rH CM in O in
r-c-m










C CJ1
•H


0] JS
w tp
O C C C -rl C C C
.iSEEE SEES
O
•H rH CM -a- (U rH CM T
XI ^
^u a ii
u
U) IH MH

0 Q


en o co
CO rH O
-CM CO CO
r,^

co ro fO
^ fo r*
m r- r^
CN CN CN
[•*. P«H to
cr» H ^r
CN ro ro
o o r-
^Jt yj ^Q
CN (N CN

CO CO O
cn -^ co
rH < I! -H
4J
04-1 (Tj
(0 -U
CJ rH
-H
fa
333
*2 2S S


•^* CO CO
O O O


333


00 •* •*
o o o


333



rHrHrH '



5
in in H s
o o • c
. . -H
•P
rH)
O
U
*-*

rH iH in
• • o
»

^
ill




in in in
...











G
•H


U
W
(1) C C C
5 "E E E
O
-H rH.CM T*
^3
£H ||

(V <4H
X 4J
10
CJ


89

-------

















•a
SB
3
C
•rl
•P
C
CJ

CO
1
SO
a
«
1





























r
u
o
u
VI
o
00
u
o
g
VO
o
cn
ir
o

ir
o





r-
ir
o




ro
.3.
o
CO
CM
CN
0
CM
rH
O















Q
55

&3

1
w
• II

(U MH

U

rHrHrH
("O C-! rH

••a* o^ r-
rH CO If)
rH
o co 
-------





















EH
Z
jg
£4
f£
d
OS
EH
S
•# <
I
SO -
M
W EH
a £
<: EH
6- 1-5
H
PH

1

X
s
6-1





































CN

O
in

vo-
o

CO
o

o
rH
O
VO
o

CN
in
o


iH
CN
IT)
O



rH
rH
'ID
0





ro
o
•"3*
o



CO
CN

O


r-.
CN

O


















C


p
V—
a
2
t3
rj
H O
H CO

H
H O
H CO

iH

H
H O
H CO

rH
H
H O
H CO
*-* rH
rH
H
H O
H VO

rH

'—
IH O
H O
— * rH
rH
 in *a*












000
a\ o in
vo •q- r-
m in in


o o o
rH CM -*
rH VO VO
CM rH rH















C C C
•H -H -H
E e e

iH CM «*

II

rH 4-1
X.4J
E •


o o o
VO CM CO
CO CO CM
P- VO VO
O O O
^ CM VO
r* in *»
vo r- cn

o o o
co r- co
en co in
in r— vo
000
cn vo in
co co r*
CM CO CO
o o o
iH ^1* CO
vo'cn r-
CO rH O
iH rH


O O O
O O *J-
rH vr> cn
in •* ^>



o o o
•«• en CM
cn t— co
rH CM rH
rH rH rH




O O O
rH O Cn
co t- r-
cni— vo



o o o
CO I— CO
VO rH I—
CM T CO
rH 1-H rH

000
rH CO CO
CM CM 
e


a c c c
O -iH -iH -H
o e e e

(1) rH CM ^1
4J
IS II
M
1 1 IH
rH 4J
•H


•<*• ro (^
• • •
m in m

r* co co
• • •
^< ^« ^«


O CO CO
I • *
in •<* T
• f
^ m CN

m in m







a\ cn o

in in vo




r» in »««

r^ r> t^






CM rH O
• • •
in in m




in ** in
V • * •
in in m






















C c: C
5; -H -H -r4
as e s

0) rH CN -tf
4J
[fl II

4-J 4-4
rH 4J
^.H


in
•
t—

in
•
f«n.


in
*
. r-

in
*
r-

in
•
p^



in

r*.




in

r^






in
•
r-




m
•
r-



m
•
j^.


^»
w X
3 rH
01 ~
01
0).
04

C
o
•H
-P
IS
IH
4J
rH
•H
£H
O O O
en CM en
co cn cn
t— vo in
o o o
CM P- O
co co in
cn vo I-H
rH rH rH
O O O
O CM O
CM in CM
r* vo vo
o o o
co co in
CO O CO
in vo in
o o o
CO CO rH
in o co
o en co
rH


o o o
in CM r~
tH in r-
CO CO CO



o o o
CM vo cn
CO CM CO
in in co












o o o.
O rH O
•3- co cn
CO ^ O
rH rH rH

O O O
•^t Cn CM
r** o ^i*
CO CO CO
rH
v^
Cn
S

M
in
•a
•tH
rH
O
w

rH
IS
-p a a a
O -rl -H -rl
EH e e e

 e e s

CU i-H CM ^f
4J
IS II
J-)
4J rH m
rH ^X, 4J
-H t7>
pL< S


91

-------
                   o o o
                   r-i m co
                   U> CO O1
                   co r»  o *r
                  in u> i~-
                  cn co C7t
                         o i-t o

                         m in in
         CM
         CM
         o
         o o o
         r- in in
         oo crt r*i
         o r~ m
         CM rH r-t
CM
rH

O
                  o o o
                  o o m
                  *r in •**
               Q  a s  c        c  c  c
               O -rl -H -H    33 -H -H -H
               oEEg     B-ese
        O
        2
[I]

J
O.

 ^
              4J   IW

              rH 4J
                              ro  ii
                              Ll
                              4J   *
                                                                          92

-------





































in
1
M

a
§
£-4














































CN

VD
O


in
r-l

o

CO
o
VO
o


rH
o

o


IS CN
£3 m

^ °
&
ca
-
Cd . 1
Q CN
w in
A o
S
u
r-l ' rH
Ci r-l
a! in
H O
fa
w
En
S CO
EH 0

H O
fa
1
(O

jaj OC
Cfl CN
ri] c\
&4 O

r-
H
in to a<
o o
Q . C
4J C
§rH -H
18 4J
r-l O 18
d -H IH
cn g 4J
18 CU rH
O J3 -H
U O fa

o o o
T CO CM

•sp "3* in


O 0 O
•^ji -^ cn
•^i VO CM
v m m
, rH rH
O O O
in rH in
o co cn
r- o cn
rH

O O O
VO O O
cn co in
co ^r in

o o o

CO i-H CM
cn cn co




o o o
CM CM CO
r-- o co
co in in


o o o
00 CM CM
rH CO in












o o o
o cn t-
cn ^p vo
CO CO O
rH
0 O 0
"31 «3* ^J*
in r~ vo
-* r- co


rH
in
g


W
•a
•rl
rH
O
cn

rH
18
-P C S fi
O -H -H -H
EH g g g

CD rH CM •**
4J
18 II
iH
[ I i] |
rH 4J
•H
fa



O O O

•3- rH in
CM CO CO


O 0 O
vo CM in
r- co o
CM cn cn

o o o
C"~ O VO
O -* CM
in r- r^


o o o

o co o
CM CM CO

o o o
cn in o
r*- co co





O'O O
rH in cn
in in in
CM CO CO


0 O 0
CM C- CO
O VO rH












o o o
co -=p i-H
co o in
in in vo

0 O O
•» O CM
rH CM CM
co in CM

Cn
g
K
01
"O
•rl
rH
O
cn

<0
rH
-H
4-1
18
rH G S C
O -H -i-l -rl
> g S g

CD rH CM -*
4J
18 II
)H
4-1 >M
rH 4J
•H
fa



O O O
in o o

in vo r-


0 O O
r- in o
cn -sp vo
in as r~
rH rH
o o o
r-H a) vo
i-l in in
in in .in
rHr-lrH

O O O
in co co
•» O CO
T U) VO

'O O O
Cn O rH
r- r- o
CM i-l CM
rH rH l-l



O 0 O
o cn vo
T rH rH
"fl" VO l~-


O O 0
co rH cn
r- CM cri
<* r- t-
rH H rH


O O O
cn •* CM
•cf CM CM
O rH CO
r-l rH



O 0 0
vo o cn
r- o cn
CM O CM
rH rH i-H
O 0 0
CO 0 rH
cn vo CM
r-- in in










rH

cn
g

^
Q C S G
O -H -H -H
u e g g

0) rH CM «*
4-1
id II
M
4J M-l
rH 4J
•H




o r~ r-

vo in in



o cn cn
• • •
in n- •>*


vovor-
• • •
in in in



CO O CO

vo vo in










oo co r^

in in in



CO ^* CO
• • •
P~ f-» r««




CO C~ VO
• • •
in in in





CO CO CO
• • •
in in in






















ass
33 -rl -H -rd
a g g g

0) rH CM •>»
4J
ID 11
VH

rH 4J
•H
fa



in

t^.



in
•
r»


in
•
r-



in

P-.


in

f^.





tn
.
[^



in

f^.




in
•
r-





m
,
r-


m
•
f^



c
"
tj
Ul

,C


•.
CD
»

ia
to
0
0.

c
c

4-
(8
>-
4-

• r
fa

in in co
CO rH CM

co r- vo


o o o
H r- co
vo O CO
t> in rH
H rH rH
O O O
*3* ^* t^
cn ^i* o
CM rH r-l
rH rH rH

O O O
•0- 00 CO
•» [- 0
VO P^ VO

o o o
VO CO VO
CM p- cn
rH Cn f^
rH



O O O
CM •«• vo
CM CM ^p
I"* C** VO


' O O O
CO CO O
co r- rH
•>» CO VO











o o o
CM CO CM
i-H CO i-H
cn ^p CM
rH i-H rH
O O O
cn CM r*
O CM VO
•a- co co


v^
^^
S


to
rrj
•rl
rH
O


rH
id
•u fi S c
O -rl -H -H
EH S g g

CD rH CM «3«
4J

M
4J VH
rH 4J
•rl
fa



O O O
o cn *3-
^r r- rH
in ^- ^


o o o
CM T Ol
in vo •*
H en r~
rH
o o o
I— CO •*
COO CO
cn co p"


o o o
O CO CO
vo tf •*
CO •» CO

o o o
co cn cn
r- H co
r- r~ in




o o o
in vo o
on cn •*
tp ^p ^ji


o o o
VO O CO
^i ^3< fo
CO VO TT











O 0 O
CM i~- -a-
cn r^ co
O CO VO
i-l
0 O 0
co o r--
r-- cn co
CM rH CM

(31
g
fc
(0
•o
•H

O
cn

CD
rH
•H
4J
id
r-l C C C
O -H -H M
> g S g

0) rH CM ^P
•P
id II

4J 4H
rH 4J
-rl
fa



O O O
co in cn
r- co cn
rH Cn CO
rH

o o o
en o r-
CM O VO
r- o vo
CM CM rH
O O O
o CM r~
in rH <*
CO CO VO
rH rH rH

0 O O
CO rH rH
O Cft ^
r> CO VO

O O O
cn CM cn
rH rH CO
in in rH
i-H rH i-H



o o o
co CM cn
CO fl1 CM
cn cn co


o o o
CM VO VO
CM O CO
CO CO VO
rH rH rH


O O O
CM cn co
r-- o CM
O rH CM
rH rH rH



O O O
in rH VO
' O rH O
CM O3 VO
CM rH rH
O O O
CO r^ CM
co r- co
in co ^r










rH
\^
cn


• h
Q S C C
O -H -rl -rl
U g g g

0) r-l CM •<*
4J
(fl H
i-i
4J M-t
i — 1 4-J
•H
fa



**• r- r-

m m m



O\ G\ G\
• • •
*3* *?f ^j*


m m <*
• • •
•* in m m



a\ o\ - 1-»
• • *
in in. in



-^-3- M
* * *
r- r- r-




r^. \o vo
• • •
m m m





CN CO CM
* • •
m in in






















C G C
33 ••-! -H -H
a g s g

Q) rH CN ^3*
-P
fO 11
i-l
4-1 M-f
i-H -P
•H
fa


93

-------

























1
EH

8
EH
O
vo O
1 <
tn

a co
•* S
§ 3
EH EH
£

1

CD
1


































CM
CM
VO
O


in
,_
vo
o

CO
0
vo
o


C
vo
o

cv
in
o


cs
in
o



rH
rH
in
o



en
o
^*
o


CO
CM
CM
O

e-
CM
rH
O


















0
•z.

t3
ij


CQ
O*
CQ CM
CM
33

T
O
CQ CM
CM


O
co tn
CM
S

O
CQ CO
CM
S3
0*
CQ CM
CM
X

o*
CQ tn
CM
83


•T
O
CQ CO
CM
33



cT
CO en
CM
X


0*
CQ CM
_CM

O*
CQ CM
CM
33

















•§
to
B
H
ID
O
•rl
E
 O PI • • . • (NJ vQ o PO ^3* CO Cn CT\ Cn • • •
co i-H o o cn ^i1 Hr-d CM CM CM r- H «-H r- m in o r^-nn CM CM CM
en o o vo vo ID H o o rH o en r^vo^o CN o o
HrH rHi-HrH rHrH. Hr-trH

ooo ooo ooo or-\o in ooo ooo ooo vovovo
MO^OO Hr*w \OCMH ... . oocoo* incovo QO^P^« ...
(N CO 00 ,r*CNO fOHr-» fOCN(N P* VOVOn 'sfCOCO n^CO CVJOJCV1
** M CM r- r- r*- \o in ^ t^» rH o o m -^ m m en
rH rH r-H r-l i-H rH rH rH rH rH rH rH
ooo ooo ooo inmtn in ooo ooo oo ininin
O^PO c^ o M "S'^cn ... . m*^m ^*^rH omiH r*- vooi-<* fiocn r-rrom
coi-o. ^••q-vo psvovo r~t-i- wm vo in r-
rH
rH X.
rH £P CM rH E
X. E in \

E in' i E ta
•0 — -0
- -H a a - -H
CO rH ft4 
•rl E 3 rH -H B
rH -P 01 -^ rH .p

•P !-• C C rH (3CC4QCCrj CJrJrJ fll -PCCC3 rH CJCC OC£3C Cdd
O -H -H -H O -rl -H -rl O -rl -H 'rl tO -H -rl -H M O -H -H -H O -H -H -H O -H -H -rl 23 -H -H -rl
EHEEE > e e e o s s e O.EEE o< M-EEE > e e e UEBE aEgs
QJrHC'J^' (UHCM^I* OHCM^I* d)HCM'3t C tDrHCM** (UrHCM^J* OJrH-CM^T U-( -P1H +1MH
rH-P rH-P rH4J rH+) )H rH+J rH+J rHJJ H4J
•rl -rl -H -H -P -rl -H -rl -H
rH fo PH &4 H&4 [X4 ft4 Ctl
-rl
t,
94

-------
o
s
H

§
H
EH
H
a

I
u

PH
Ix]
U

X
H
a
53
H
PH
03
<
      Cl    rH
      W    rH
      EH    m
      a
      1

      o
                   o    o
                   CO    CO
                   O    CO
                   r«    co
                   in    m
                    co
                    o
                    o
                    o
                    CO
                         o
                         in
                                          o
                                          o
                                                        0>
                                                        c—
                                                        rH
                    O    O
                    CM    O
                    m    T
                    rH    ^*
                    O    O
                    c^    o
                    CM    CO
                    i-H    OM
                    in    fo
                    o
                    i-l
                             o    o
                             o    o
                             IN    O
                             in    o
                    o
                    0-1
                    o
                    en
                    CN
                                          o
                                          o
                          o
                          m
                          o
                          CM
                                                        VO
                                                        O
                                                        rH
                                                         •W
                                                         O
                                                         CM
                                                         in
                                                         m
O
in
in
                                                 if)
                                                 VO
                                                         •w
                                                         rH
                                                         CM
                     in
                     13
                     o
                     co
                     o
                     EH
                           O
                           co
                                s
                                 01
                                 3
                                •n
                                13
                                                 a.

                                                 a
                                                          EH
                                                          to
                                                          o
                                                    95

-------













cs
O
ti
j
§
E-i























g
cu
H
cn
a
:ICKENE
33
a
w
TREAT
a
Cd
C~*
CO
|
S
1
o
to













c\
cs
v
it
\
o
CO
o
vo
o
c
\D
O
cn
cs
in
o



u
o



\t
o



CO
o
o


CO
cs
cs
o
CN
H
O







d
s
w
vj
rti
CO
o o o o o o
cn co o vo co *3«
co co r- o in r-
p*« vo vo H in co
co co co *j* ^ ro
o o o o o o
in co cs -v vo r-
vo co co p*» ^ o
^* cn o o r*» P"*
r- in vo vo vo vo
o o o o o o
o o o o o o
VO CS CS Tp ^p VO
VD p*» o rH ^* en
*j« ^» in «3« in ^.
o o o p o o
cs co cn o co cs
o in co vo cn co
in -q* r- en co r^

o o o o o o
vo •«* cs cn r» rH
o cn cs co vo vo
*3* en co rH cn r>«
«3* in ^ in ^* ^



o o o o o o o
cn rH «:r cn co cn co
rH co rp cn m cn co
rH co ro cs in cs ro
co co ro co co co co



o o
O 0
VO CO
cn co
r*- vo



o o o o o o o
cn vo co rH -<3« in co
vo o co vo cs vo in
r* co ^« r^ in vo p-
co co co co ro co co


o o o o o
cn rH vo p*- cn
cn cs cn co co
f^ «H rH CO ro
en o rH r*1* cn
rH rH
O O O 0
m vo vo rH
r- cs «H r^
in co vo co

0)0)000)0)0)0)0)
aJidnJfljtftaKjtrjid

ooooooooo
aaaaaaaao
X \HHHMHHHHM
04 vnHHrHMHHHHiH
O rHrHrHrHrHHrHiHrH
*a *S -
<1) •HiHrHrHrHrHrHrHrHrH
.3 wEgjTgEi'i'es
*b rHOOOOOOOOO
rt! ajcoocs^rvocoooo
(X EH
O O *$• O O O
rH r>- cn cn rH cs
in m rH o co o
r** co cn rH co co
CO CO CO *s3« CO CO
o o o o o o o
*P rH CO O CS VO **
r- cs cn co cn o co
vo vo in vo in vo vo
o o o o o o
o o o o o o
CO CO CO CS CO O
co co ro cs cn o
o o o o o o
co r*- m rH cn ro
r- rH co cs r- co
co co cn cn co ^*
r^r^cor.
O O O O 0 0
vo rH «* vo co in
c-» r^ in M
-POOOOOOOOO
(d CO O.CS "3* VO CO O O O
r-4 rHrHrHrHrHtN^CO
O
O O O O 0 0
cs cn cs o m ^r
co co -«p o in H
«* m vo co VD r-
cs cs cs cs cs cs
o o o o o o o
cn in co ^ m cn in
r* rH co P^- co p^ cn
in cs cn cs cn o cs
*3* *^1* CO ^* CO *cj* ^t*
o o o o o o
o o o o o o
cs cs o vo vo vo
co ro o co co in
C^o ro co cs co co
o o o o o o
VO VO VO O VD ^
co *3* cs ** o r^
o cs ^* co r^> o

0 O 0 O 0 O
[** co r*" ^* rH P^
cs vo o co co r^-
T vo -31 r* cs m
ro co co co ^t* co


o o o o o o
cs co co p- rH in
cn 
-------












inued)
c
o
o
CM
1









e*:
CM
vo

in
vo

OS
o
vo

H
o

Cn
CM
in

H
CM
in

rH
rH
in

ro
O

OS
CM
CM
CM
rH
O



SAMPLE NO.



-* O rH rH rH O
rH rH rH rH rH rH

*a* CN rH o cn p-
rH rH rH rH

CO CN rH O CT\ CO
rH rH rH rH

*3* oo ^* co rH cn
rH H H «H rH

p- ^ CN cn r- vo -^
rH rH H

CO CN
rH
'
VO P- VO VO in CO rH

CN rH in <* H
CN  pH7
Dosage 146
Dosage 93
Dosage 82
Dosage 67
Dosage
Dosage
Dosage
Dosage
Dosage
4JHHHHHHHIHH
-PHHMHHHrHHM
SrHrHrHrHrHiHfHrHrH
•n <<<<<<;<;<<
T3
iHrHrHtHrHrHrHrHrH
4Jgg£?eeeees
- (flOOOOOOOOO
COOCN^VOCOOOO
E-l rHrHrHiHiHCNTCO
cn
CJ



cNOOcnovom rovo
rH rH rH rH

••a* *P CN VQ O ^F COO

OOCOr*-VD^P rHrH
rH rH

CN CO rH rH *3* rH CO in
rH rH rH rH rH CN ,

o in in cn vo r- oocn
CN rH rH rH rH rH rHrH

COrHCNrHCNCn -Sp in
CN CO CO CO CO CN rH

•cp CO CO CN CN CN iHH

ocNfNOCNcn mo
CN CM CN CN CN rH rH
co r- CN co vo co
in co co ro rH CN
Q) Q) Q) Q) <1) fl) d)
(Q rcj (tl (3 rtJ fC ft)
ro w .w w w in to
O O O O O O O
Q Q Q Q Q Q Q
tH H H H M H W

0) CO Q) G) 
-------



















CO
1
o
W
tj
CD
<
E-i



























g
1
W
&t

03
a
H
s
Q
w
03
O
a
s
u
cn
g













CM
CM
VO
o
If
vt
o
00
o
vo
o
c
o
cn
CM
in
o
r-
CM
tn
o



H
tn
o



CO
o
o

CO
CM
CM
O
CM
i— 1
O






O
W
I

w




o
[^
CM
^p co tn ^r
vo tn -a* co
o o
CO i-l
tn vo




o o o o o
CM CO CO CM CO
CO CM CM CO CM




•fPtf Hd OH £
1-1



o o o o
vo vo o vo
in in CM rH
CO ^" CO CO

o o o o o
CO O CM CM CO
^p in in r* *a*
CM CM CM CM CM
O O O 0
tn r^ TP vo
CM in (^ o
CM CM rH CM
(UO)ID(U
0 CM
r-* in
o o
co ro
CM ro
in ro








CM CO
ffi K





















S
0)
•^
•rl
C
O
U















98

-------











inued)
0
o
ro
1
O
s
«j






CN
CN
vo

in
rH
VO

00
o
VO

rH
O
VO

en
CN
in

in

rH
rH
in

ro
0
•a1

00
CN
CN
rH
O


SAMPLE NO.
o
rH
VO

O
VO

O O O O
p* CN VO O
vo vo vo in

o o
•a* P*
co in





o
p-
cn

o o o o
ro in ro rH
in in en co

o o o o o
rH r-4 P- -a1 O
rH CN rH O O
O O O O
in ^ co co
CN en p- co
rH
rHQQQQQQQQD
HWWMI-HH1-IHH
-H M H H H M M H H
T3rHrHrHrHrHrHrHrHrH
rH
MrHrHrHrHrHrHrHrHrH
•rl
4JOOOOOOOOO
rH rHrHrHi-Hi-HCN'*CO
§
o

o o o o o o 'o
00 ^- O CN P- P- 00
o o rH oo en vo ^*

o o o o o o
ro •» oo ro rH vo
oo fy\ oo oo oo p*

o o o
CN CN VO
in oo oo


•




o o o o o o
in -a* p^ ro ^ vo
OO p* ^P P* rH CO

O O O O O O
o oo en vo ^- o
p* in vo in *a" ro
) Dosage 1340
) Dosage 1170 3
) Dosage 1040 :
) Dosage 920 :
) Dosage 1000 !
) Dosage '.
) Dosage 3
) Dosage
HHMHHHWH
WHMHHHHH
ssssssss
gi'g'gg'ggi'
oooooooo
o o
ro vo
o vo

0 0
CN VO
in oo

o o
en •»
vo p-

o o
ro r~
T VO





o o
rH VO

0 O
ro p-
ro co

o o
CO >*
O 0
o o


CN ro
eL a
o
1 1 1 1 1 p-
cn p* oo en *a* rH
' p* r- P* P- P* vo
O O O O VO CN
:~- r^- P- p- p- P*
00 O O O VO CN
rH O O O O O
rH O 00 ro rH CO
p* p* in in in TT
p" r* P* p^ p^
r~ p- r~ vo in
in in in ro CN rH
in in tn ro CN rH
in rH O O O O O
' p- p- r- P- p- r~ r»
in rH p* in en in in
p* p^ VO VO ^1* 'sj' "31
CO CO
p- p-
co ro
O CN O O rH rH O
O CN rH CN CO VO O
0 0 O
1. p- P- P- 1
P-- CO •*? O VO
r* vo vo vo in
tniainuitnoitntocfi
KOOOOOOQOO
ChQQQQQQQQQ
DHMMMMMHHH
01WI-HH.MHHrHrHrH
'£< <<<<<<<<
£BrHrHrHrHrHrHrHrHrH
rHEEEggggES
•rIOOOOOOOOO
-PCOOCN^VOCOOOO
•rl i-HrHrHrHrHCN'3'00
C
M
CN
1 1 1 1 1 P~
O O O O O O O
o en oo en p* in -co
vo in in in in m in
o o o o o o
CO rH CTV O O CO
vo vo in vo vo vo
o o o o
A' A O P- VO P*
vo ^j* in ro o oo
vo ^* in ro o oo
CN O O O O O
.p* p^ p* P"- P* P""
CN P* VD CN in O
P* VO VO VO VO VO
in CN rH in ro vo
in CN rH in ro vo
0 VO 0 rH 0 rH
p* ^ r^- p"- p* p*
p^ p^ vo vo in vo
o o o
I I I r- r- p-
ro CN I-H vo in o
) Dosage 7
) Dosage 7
) Dosage 7
) Dosage 6
) Dosage 6
) Dosage 6
) Dosage
H H H M H H H
H W H H H H H
H M H H H H H

-------
































Q

X
Q
W

S
















































C/3

fe
|-i|


Q

fjj

U
ty

EH
CM
W
W
CM
O


0
H
EH
rx
rH
EH
5
H
PH
a

g
0
>





























s
g

PQ
EH
S
D
rij
__
oi"

i
o
cn
l£
EH






•





CV
vc
o

in
\2
o
CO
o
vo
o

c
vo
o




CM
in
o





H
in
o




rH
rH
in
o



CO
o

o




CO

o

l>
rH
o













. i
AMPLE
cn
f7
H O
[_( CO
*" rH
rH
fl!
in"
w o
HH GO
— rH
rH
* IH
H O
H CO
— ' H
rH
H
H 0
— rH
rH
ff


H
H O
rH VO

rH




M
H O
rH O

rH



^^
M
M O
H O



~
H O
M ^P
— rH
rH
*£


H
H O
M VO
^-* rH
rH
^
H O
— rH
rH






rH

cn
S
*
<1)
•a &
a m
tn tn

a
C H
IB a
rH O
id tu
O A
u o

CM If



rH IT)
CM I—


CO IT



rH IT






p~ in
in r-







CM IT






CO If,




CO IT)
CO rH






r~ in
CO rH



CM in





CM.
s
•H
rH


0)
3
tn
in
a)
u

§
•H
•P
(TJ
EH H
W -H
U Cn

CM CO CO rH O tn
* * .
VO CTl CO

ro co ro CM PO vo
• . •
in vo co
CN CM CM VO ** «*
r» ^r o

co ^« m

cn m co r** in I-H
• ^ •
co •«* in




CN CM CM t^ rH ^
. . .
CM CN CO





m in in CM r* vo
rH CO "tf
ro ro ro




m m m t-* cri co
CM CO CO
*


ill c\ vo in
rH 0^ VO
m co ^p




in in r- cn CM ro
co CM in

CM co in

in rH rH CO P^ CN
rH CM in in

vo vo vo








g
*• J-)
M X
SflCG -r?ccc!
C -H -rl -rl Q) -H -rj -rH
^eee sees
o
•HrHCN'* OJiHCM^
EH II IB I)
CJ
ID HH MH
iS -P N-P
IB M
CJ Q


rH rH rH
CM CM CO


TP CM CO
O (N CM
rH rH rH
T CO-CM
O rH CO
rH rH rH

in co r^
cn cn o
rH




VO VO CO
Cn rH rH
rH rH





« VO rH
co cn iH
rH




VO CO CN
cn o CM
rH rH



in cn cn
O O rH
rH rH rH




CO CO CO
cn ^ f^

cn iH CM
rH rH
cn •a- vo
CO O CO
rH rH





SP


tn
•a ,
•H
rH
O
cn c c s
•rl -H -rH
rH s e e

•P rH CM T
Hi in
M -P
CJ


CO CO rH
rH O CM
VO VO VO

o CM in
ro •<»• in
vo vo vo
0 CM CO
CM *3« CO
vo vo tn

in vo rH
o o cn
vo vo tn




O CM CO
in r- vo
vo vo vo





cn r~
co r-
vo vo




coo-*
vo in vo
in in in



00 CM "^
m m r-
m m in




t^- O CM
rH CM r-
vo in ^

a\ p^ co
CO O rH
m vo vo




dp
tn
•0
•rl
rH
0
cn

o
rH C C C
•H -H -H -H
•p e e e

rH rH CM fl-
(U MH
*£ 4J
nS
U


cn CM CM
*~1 "^ ^
CM rH

VO O CM
Cn rH C"
rH rH
** CO CN
CM r~ ^
rH

in cn *j*
CM r* ^
rH




co tn in
r- ^p CM






co vo en
o in CM
rH




in CO rH
• • •



in in co
O VO CO
rH




VO CO VO
cn in "»



vo cn ^3*
o o in
CM rH




-£•
1
CM

t[ J
^.
rH
ace
- -rl -H -r)
v s s e

CO rH CM -^
•H
>H II


-------

















f^.
•d
o
3
C
•H
JJ
S
o
U

1-t
f
Q
IB

i




























CM
CM
VO
O
in
rH
VO
o
00
o
VO
o
•H
o
o
o\
CM
m
o
r-H
CN
in
0






H
in
o



n
§
o
CO
cv
CM
O
r--
,_
o












C
23

£
*—
ft
S
ri
cn
ro m in
?*•• CM o
CO CO OO
r- o co
co t— i cr\
in r* vo
m ro r-
vo cpi ("••
ro co ro
r^» co **
in ro (**
"""
rH CTI rH
^j* in in
CM CM CM
rH 00 rH
ro in r~
CN CN CO






r- o o
co r~ cn
ro in CM



o\ o^ r—
CO p- CO
CM co ro
000 •*
CO CM CM
CM CO -a1
CM in rH
co ro cn
^r in vo






-P
Cn
•H fi c C
1-P

Q


00 fl-  II

(0 IJH
X JJ
13
CJ


c*vor-
. . .
CM rH
•3- i- CO
. . .
rH rH
rH in I-H
. . .
rH
oo CM cn
""1 "~I m.
rH
O CO rH
CO ^1* CN

VO CO H
^ ^ •







CO •«* •«)•
. .. .
rH



VO CO CN
. .. .

co ^3" in
a\ ui co


cnrar-
. . .
rH
"(H
1
CM
JJ
I4H
\
•ja
d
c « a
- -H -r< -rl
•a e e e
rH '
0) rH CN rp
•H
!" II

0) <«
X -P
(rj
U


101

-------

























.







i

et

so

EH























































§"

EH
EH

Q
s
3
S3
CJ

CJ
i
h
i


OP
O
00
O

EH
CM
H


gp
O
CM

I-l
W

0
S
CO
CJ
H
94
CO
H
K
W
s


rtj

CJ
o
i

a
.,
cn
rij
EH


















O
V£
O

ir
vc
o


a
vc
o


^
vc
0




en
IT
O


rH
O4
in
o




rH
rH
in
o





CO
Q

o




CO
CM
o



t>
CM
H
o
















•

[2

C9

a<
S
03

H
H
ii
CD
fa
H
H
tt
(U
fa
H
H
ti
CO

H
I-l
}_{

CO


,n
M
H
^
0)
fa
£
I-l
—
(1)


^
H
H
H
*-*
CO




£••
H
1^

CO
fa

^
H
W
•~^
CO
fa

H
H
H
^^
CO
fa













•s
cn
O

•P
a
• rH
CO CO ^*


CO CO CO CO VO "S1
CM C3 CM
corr^



rH rH rH
CO Cn rH
rH CM CO


in in in vo CM rH
CM CM CM ...
CM CM CM




in in in rH cn
CO CM

CO CO





III , CM O rf
CD cn vo

CO CO *3"




in in in • ** in c*-
...
CM <» CO



in in in oo oo CM
CM r~ r—
r~ ...
in in vo






OP

i 6 t7* fc
E cn
•d
4J -rl
01 43 rH
in 01 o
coccc -H e c c cn
C -rl -rl -rl CO -rl -rl -H
M s e e sees rH
u td
•rlrHCM-ST airHCMTr JJ

EH II cd II EH
O
O MH 4H (U
— £ 1 * ^i \ * vy*
id JH id
CJ D CJ

102

CO CM VD
Cn rH CM
rH i-l

vo cn q*
O O CM
rH rH rH


cn o o
O rH rH



VO CM CO
co cn I-H
rH




CM CO CO
rH O rH
i-H I-H rH


CO CM VO
co o in
•-H i-H




CO VO
CM O
rH rH





rH t~ O
O 0 rH
I-H rH rH




in vo CM
O CM rH
rH rH rH



O I- O

CO Cn rH
rH














C C C
•H -rl -rl
SEE
rH CM ^P

Jj



CO
X.
id
CJ



co CM in
O rH CTl
vo vo in

in VO rH
in -s1 T
vo vo vo


cn o VD
I-H CO rH
vo vo vo


CM VO VD
CM O *»
VO VO VO




in vo CM
o c- vo
p~ VD VO


in en cn
cn co co
vo vo r-




in rH
vo r*
vo in





rH r^ cn
CO CO 00
in vo in




CM co r^
r- •* vo
in vo in





















fi C C
•H -rl -H
SEE
rH CM •*

||

MH
4J





rH -^ CM
rH CO CO
CM i-H

CM co ^r
CO CM VO
i-l rH


co'r- in
o in co
i-H


r- r* in
O VO CO
i-H




r- co vo
in^-cM


inr- r-
'^''l ''I





o in

i-l





o in oo
o vo to
rH




'J CM CS
cn r^ co












	 ,
M
1
CN
JJ
. <4-<
\
XI
rH

~" C C fi
- -rl -rl 'rl
^ E E E
CO i-H CM ^
•rl
X II


-------

















	
•a
CJ
3
C
•H
C
O
CJ

CM
1
C
ca

CQ
**




























CM
CM
VO
o
in
rH
vo
o
CO
o
VO
o
rH
O
vo
o
cn
CM
in
o
rH
in
o





i— '
IT
O




CO
o
o
0
o
o
r-
^
o














C

£L

C

f.
co
VO *3* rH
O CM rH
r- r- oo
•** »n ro
P* rH rH
in vo oo
00 O H
co vo in
roco.
en rH oo
CM CO ^3*

CM CO 1—
en in CM
rH CM CO
H en o
r-4 'Sj VO
01 CM CM





o o en
<3- CO O
CM CO CO




i-i in vo
CM «* r-
rococo
in oa CM
vo ro CM
CM CO -^
in •* I-H
"^ ^ .
co -w in





Cpi

^
4J
A '

•r? C C C
0) -rl -rl ,rH
S g E S

0) rH CM ^1-
A!
(0 II
U UH
S_ JJ
U
Q


en in t^
en rH CM
rH r-4
O CM «O
O rH rH
r-4 i-4 rH
cn ot o
co en H
1 rH
o oo in
cn en rH

rH in O
cn cn o
r-t
oo co cn
00 O O
rH rH





•qi [-•»•
cn cn rH
rH




^- 0 CM
Cn rH CM
rH i-H
CO CM ^
Cn rH rH
rH rH
CM O r-
00 00 O




(*p

«.
11)
•o
•rl
rH
O
CO C C C
rH 'g 'g "g
8)
JJ rH CM «3-
O
EH II
0) tH
A! -P
10
U


ro oo ^i*
O ON O
vo in VD
ON CO 0*i
ro o 0*1
vo vo in
H o in
o o o
vo vo vo
in vo *3-
f> m irt

00 VO^
o% r*- m

n eft p**
oo m r-
VO VO VO





m c^ 0*1
ro \o r-
vo in m




rH O\ rH
"* O CN
vo vo vo
o co in
n CM «at
vo m m



dp

^
CQ
'O
•H
r-H
o
CO

a)
rH C C fi
•rl -H -rl -H
4J g B g
a
rH i-H CM •*
0
> II
fl) MH
X 4J '
10
CJ


ro o r*-
ro CM vo

CM rH
o CM r-
fj^ Q ^0

rH i-H
CM O C--
. . .
rH '
cn co r*"
o vo co

rH
CO CM t~
. . .

O rH rH
[^ *4* CM







cn in vo
r** in CM






VO !-* rH
. . .
r-4
co vo in
. . .





17
JS
1
CM
JJ
UH
\
A
rH

a G a
-•rl -H -H
•d E g g
r-4
*
•H
>4 II
4) IW
*! -P
(0
u


103

-------






















i
a
w
m

































6,
EH

EH
a
o
CO
rt
P
30
CO
«*.
!PTAGE/
MH)
CO
OP
o
CM
M
W
a
s
-
g
CO
H
w
s
2
^
u
g
1
a
EH











CN
c\
vfl
a
tr
i
c
CO
o
V
o

c
vo
o


a\
if
o


1-
ir
o



£
c



c
o



ce
CN
O

r-
CN
C











o
3
3
cu
co
0*
CO
CM
*
O*
CO
CM
o*
CO
CM
33

O
CO
CM


O*
CO
CM
33


o"
CO
CM



O
CO
CM



O*
CO
CM
33



o*
CO
CM
EC

CO
CM
03











hemical Used
o
in IT
t— i i—


** in
CM rH r-

CO ^* r-



vo ir



o in
CM ^ r-




CM in
CO in rH



rH 'in
CO [*^ r-




m in
CO CM ' i—




•« in
CM CM rH



co in
CM CM rH


C>P
C
•H
]Q
rH

*
CJ>
V4
3
01
H
ST
iltration Pres
o. u &.
CM CM CM vo r- in
• • .
vo vo eh
CM CM CM rH CO in
T VO CO
CM CM CM O in O
00 O O

CM rp in

co co co en in o
co co "d*


CM CM CM CM [^ VO
en vo oo
CM CM CO


in tn in o 01 r*«
• • CM rH P^
CM CM ...
CM CM CM



in in in rH in r-
CM CM CM



III CO CO CA
CM CM «»



in in in en o ro
. .."^ >
CO TP «3"

O C^ CM *3« ro VO
rH rH CM rH r* VO
VO OO rH
rH






g Dl

k.
- -P
01 Si
01 Ol
ttlCCfi -HCCS3
C -H -r-l -H 0) -H -H -rl
x e e e s e e e
•rtrHCM-3- (UrHCMTT
t* it a u
01 » rH
co r- r~
vo vo vo


CM VD CM
co r~ co
vo vo vo



r^ o r^
CO >» CO
in in in



rH VO CO
CM VO CM
VD in vo



CM co in
co in co
in in in

ro co
CO CM
co r*



00
01
t!
•H
rH
o
CO

0)
r-l C C C
•rH -H -H -H
•w e s e
fo
(H tH CN *3«
O
> II
 IT
rH rH t**
04 rH
. 01 o o in
^p «H r-
. . . r-N
iH rH
n r- H m
Crt ^0 ^J1
• * . (-w


oj o r- tn
O U? CO
. . * r^
rH


r* ^p CM in
CTl ^* O*)



co \o ro in
r*- ro 04 •



ro p- »H in
Cfi ^1* O4 •



^co*. m
CO ^P C*l •
... r-.



c\ ro r- in
rH r- ro •
iH

ro in
o vo .
• en r^


CM
•H

X! rH

-M

V. jjj
x-j ^
rH (0
— 01
C3 £3 C O
- -H -H -H M
^ e a E oc
(D.H CM ^* 13
•H* 0
>< II -H
4J
01 
-------



















•a
01
3
C
•H
U
O
U
ro
I
O
w
CO
EH

























CM
CM
O
in
rH
VO
0
00
o
VO
o

rH
O
VO
o
- cn
in
o
rH
CM
in
o





(H
in
o



CO
0
o

CO
w
o
r-
CN
C













O
2
K

S
§
m a\ o
VO O C4
vo r- cn
ro vo r^
vo cn o
n> vo r»
** in r-i
*3* CO CN
ro ro in

in rr e'-
en in ro
CM ro ^
oo co cn
•qiO CO
CN CO ro
ro r- CM
'"i '"I "?
CM CM CM





0 VD ^*.
iH vo cn
CM CM 
O O rH
rH rH rH
co o cn
CO O O
rH rH





t— •* VO
fO rH CM
rH rH rH



CO P~ 00
rH CO CO
rH rH iH

cn r- ro-
cs CM co
rH rH rH
r-,ncn
cn a rH
rH rH


^
ID

•H
rH
O
tn c c c
•H -H -H
rH e s e
18
-P rH CM «•
O
EH II
a) u-i
J4 -p
10
u
en rH cn
r- co r-
in in in
in oo ro
• o cn o
vo in vo
VO ^ CM
rH •«• iH
VO VO VO

r-- ro vo
CM in rH
vo vo vo
ro co. co
r-- in in
VO VO VO
«• I^CVl
o oo o
[*•* vo r**





CO vo CM
ro in cn
in in in



o cn vo
vo r~ r-
in in in

o ro CM
VO CO CM
in in vo
o in in
«* in iH
VO VO VO
in
rQ
•H
iH
o


ffl
rH C C S3
-H -H -H -H
-p s e e
(8
rH rH CM «3-
O
> II
ta 14-1
X 4J
10
U
O P- VO
^ "~I ^
CM iH
ro in co
in iH in
rH rH
•*^< ro
rH VO •*

rH

• co cn vo
. . .

CM rH CM
co in ro


0 VO rH







cn ^* *<3*
VO ^ CM




en to o
. . .

ro CM co
. . .
rH
tH CO CM
CM CO 03
CM rH
1
CN
JJ
MH

XI
rH

G C C
- «H -H -H
•a e s e
rH
0) rH CM «»
•H
X II
a) «-i
y 4J
IB .
O
.105

-------













z
1
g
s
EH
2
jjj

1
EH
o
in
•s.
M)
rt
EH
cu
H
M

•» tfp
1 o
m

W -
H) H
ca
< a
EH Q
g

tn
U
H
EH
CO
K
W
EH
rj
1
U

w
A
O
1
Q
CO
A


















CN
CN
vc
0

a
«
o


00
U
o



Jj
V£
0



en
ir
o



£
if
o






H
tfl
0





CO
•*r
o





00
CM
o


P-
rH
O















•
O
z

a
1
CO
r7
HI
-_*
l-l
<
H
^_l

i-H
A
H
H
*—
rH
A

H?
H
rH
A

H?
H
rH


^^
H
^
HI
*— •
rH




HI
H
—
rH
A



H
H
p_l

i-H
A


^
H
H
}_j
rH
_
HI
HI
—
rH
"*













*$
Ul
D


C
(0

ID
O
U




O
H



O
rH




O
rH



VO




O
Q
rH







O
Q







O
rH






O
rH












rH
N.
o!
E

0.

o
Q

i-H








ro
in







ro


























EH
co
U
if



if




If





if




if




in








in
1-1






in
,_^







in



in





CM
5
a
rH

1-P
a H
o a

CN \O i-l
CO CN -^
rH CN CN

ro ^3* 00
in P- CM
rH i-H CN


•a- en en
ro ro p-
l-l rH rH



rH CO rH
rH rH rH



P- P- P-
CM ro p~
rH rH l-l



ro CN in
oj ro in
l-l l-l rH






eyi in in
ro CM en
rH rH rH





CM rO rH
O i-H in
ro CM CN





CN P» O
U> U> U9
rH rH CM


•^ IO ID
en CN co
i-H rH






Of

01
"0
•rl
l-l
O
tQ C C C
•H -H -rl
rH E E S
rd


&4 II

(11  r- P~

P* CO CN
co en rH
ID \O P*


en ^* en
00 VO 00
\O VO VO



*!• "3* CN
CM T CN
V0 VO VO



vo en co
CN CM CM
P- P- P-



pw vo ^>
ro CM .ro
P- P- t—






CO rH O
ro p* ro
in ^* vo





p- ro ^r
00 ro P*
ro vo vo





CN ^r oo
o o o
in «5 in


co en ^*
a\ ro in
vo vo vo




dP
»
01
•a
•H
rH
O
CO

CD
rH £ C CJ
•H -H -H -rf
v e e e

rH rH CN **

t^ 11

0) MH
ri4 -P
fd

VO 0^ P^
CO CO iH


f^- rH CO
rH in CN
i-i


rH en p^
CM vo ro
H



r- p- o
i— 1 VD ^*
i-l



CM p* en
• • •



•* CM rH
CO *3* CM







o en in
rH ^T •*
rH





en o en
ro in rH
rH





p* ro co
p* in i— i


CO VO rH
\O ** CM





„
jjj
1
CM
vtj
x^

i-H

a a a
- -rl -rl -rl
•a e E E
rH
QJ i-H CM -^
•H
X II

CD >4H
X -P
18
0

in
p*


in
P,



in
P-




in
r~



in
^



in
^







^
r-






m
r*-






m
r-


in
r*-




fM
£
•rl
J2
rH

<1)


tn
01
(U
rl
(^

a
o
•H
•P
2
-P
rM
.,-(

o: CN CN



ro ro CN




ro fO n





ro CO ro




rH rH (N




m I-H H
CN




^^
*d


-------


































in
I
a
5S
J
CQ
«e
EH

































ex
vc
o

ir
vc
o

EH
Z
EH C
g g

EH
W
a
H
a: M
So
vo
EC O
O
CJ
H
05
H CTl
CM CN
in
•• o
05
«>
0 rH
in CM
X, m
S3 0
U
a
en
rH
0* rH
o in
in o

•.
j_i
w
Q
O CO
S o
^*
- o
en
CJ
M
05
K CO
CJ CM
EH CM
O O
|
Si
O r-
CM
W rH
^* O
CJ
Q

01
g









O
z
03
I
to
M
H
—
0)
b
H O
H O

0)
b

~
H O
H O
"— CO
dl
b


^^
1-1
I-H O
rH O

0)
b


r7
H O
H O

01
b
H
M O
H CM

01
b

rH
H O
I-H O
— CO
 fi « c
C -rl >r( *rl
XH6E
•rl rH CM ^«

(3
CJ

vo co m
CO rH rH
VO t- 1—

^* o in
o o o
r- c~ r-



co r- vo
vo t— vo
vo vo vo





CO O CO
CM CM CO
VO VO VO




in co p*
(N CO ^f
r- c- r~


rH CM rH
CM l-H O
r* r- r--



a\ p.
r^- co
in in





p- co en
vo co -*
VD VO p*



P* CO CM
o in o
in in in









so

in
•a
• rl
rH
O
O]

l II
0) MH
(0
CJ

in
P-


in
P-




in
P.





in
^





in
P^



in
pj




m
r-





in
P-




in
pj



in
^



CM

A
i-H



a)


01
01
a>
a<
§
•H
IB
JH
4-1
i-H
b
CM rH rH



dl CO CO





CM CM CM






CM CO CM






rH i-H rH




rH rH rH





in in in
CM CM CM





in in in
CM CM CM




S S S
'Z'ZZ



sss











a


0]
01
»
EH II
O IM
ai
CJ



































T?
0)
C
•H

G
Q
u

































108

-------
          CM
          VO
                    r- vo in
                    VO •» rH
                  CM CM CO

                  ro r* co
                  rH VO rH

                  o o •*)*
  in *3» o
  in CM r-H
           vo
           o
                  rH O  CO
                  rH rO  VO
                  rH rH  rH
                  f- VD CA
                  vo vo vo
           vo
           o
                    ro m co
                    CO CM CM
                  cri •*  in

                  rH ro  r-
                                  rH CM ro
                                  VO VO'VO
                    en in 
                                                 (3
                                                 CJ
                                                       CM
                                                M
                                               A
                                                I
                                              CM
                                               4J
                                               UH
    c  c  c:
 . -rl -H -H
•a  E  s  e
                                                us
                                                u
                                                                  I  
-------








EH
Z
EH
I


O
O
CO
1
e*>
O
in
O


w
CO
o
in
vo
1 -.
Q t-H

Ed U
i-7 Q
O O
«: s
EH
O
£4
CO
w
a
EH
CJ
S
ri!
2
0
W
CC
U

1

a
I
EH
























CN
vc
o
in
VC
o
00
\o
o



rH
VO
O

cn
in
o



rH
in
o




rH
rH
in
O




CO
•Q1
O




00
Ol
Ol
o


p~
Ol
rH
O


















•
O
z

s

3

CQ
d*
01
93
O
CN
X
o
CO CO
CM
X


•»
O
01
X

o*
CO Ol
01
X


•«•
O
Ol
X




0
CO CO
CM
X




o*
CO co
01
X




o3"
CO Ol
01
X

9
o
CO CM
CM
X
















•a
o
W
G

i-H

0
•H
S
 MH
(0
CJ


vo cn en
ol ol o

CO CM 01
re co ri
in co vo
CO CO CO
o vo p-
• CM CC*
\o r~~ ^o
o oo CM
[** ^O P1*
VD VO VO
r** oo oil
in oo vo
r^ vo vo



 II

0) UH
i! 4J
id
U


CO CO P-
. . .
rt
CO f S
rH VO CO
rH
VO CM rH
** ^ CM




P~ CO CM
01 m ^i*


cn cn P^
VO Ol rH



CTl O 01
CO Ol O





in rH P~
. . .
rH




CO rH O
CO CO Ol





in in cn
CO rH CD



O 0
O CO

rH 0






^ H
J3
1
01
4J
U-t

^Q
i-H

G a a
s -rl -rl -H
T3 E E E
rH
ID rH 01 •»
•rl
» II

(1) IH
y -p
id
u


in
r^

m
r^

in
^




in
p!


in
p-



in
p*





m
r-*





in
^





in
p*



in

r^




01
fi
'H

a
rH


11
!H
3
in
01
0)

fi
O
•rH
4J
id
n
^j
rH
.rl
Cm
Ol Ol Ol


Ol Ol Ol


3 rH rH
^




CO Ol Ol



rH rH rH




rH rH 3
^





in in in
ol ol ol





rH i-H rH






s a a
,Z tt *Z>



H in rH

Ol












S

te
CO
CO
01 fi fi G
fi -rl .-rl -H
M S S S
o
•rl rH 01 «*
JS
EH II

CD 
-------
        CM
        CM
        VO
        o
«* CO O
r-J i-H CM
                               in o CM
                               in 

         o
 i-H ro vo
 rH i-l M
                  CM CM CM
                  P" C~- VD
                                in in t~-
                                CM in iH
13
•H
r-1
 O
03  C  C  13
   •H -H -rl
M  6  S  H



 O
                 0)  
              H  II

 (D   IH
AJ -P
 a
o
                                                     c G
                                                     -rl -H
                                                     SS

                                                     CMT
                                                                             111

-------










TO
1
Off
o
CO
•x
W
O
e.
W
TO

<*>
O
CM
-
W
Q

2

^
TO
U
M
fr.
TO
r- H
ioj
a
£**
W U
£3 (2
E* X
u

8
o
EH
2
a
31
£**

a
2
W
O
iflj
s
tJ
TO
a
TO
EH














CM
CM
to
O
if
r*
to
O

CO
o
to
o



).
o
to
0




. en
CM
in
o



r—
CM
in
o






H
r-l
in
o




o
^j«
0


CO
CM
CM
O


p^
CM
rH
O












0
z
a
a
c*
E
TO






1-
H
H
*•*
f—
a

hH
H
H
*-*
r-
rt

^.^
I—
(-
H
"*— *
r-
•*

1—
H
H
»«-•
r-
rf



^H^
H
M
H
*—*
H
151

*^
H
H
H
^^
r-l
*
H
H
H
^^
rH
rt
r7
H
H
r-H








TJ
0)
in
rj
4,
G
a

a
tJl
(d
0
u


o
o
to
^t
^*


o
to
fj\
• ^*
^



0-
rH
cn
o
^»


o
r^
o
in
CO





o
o
to
CO
•*



o
o
in
^r

o
o
o
en
CO

o
CO
o
CM







rH
E

in
-a
•H
rH
O
TO

rH
10
4J
g






O CM
CM T
00
en
CM


O
en
^*
CO
CM



0
CM
CO
r*.
CM


O
^t
to
CO
CM





O
0
en
in
CM



O CO
in co
00
r-
CM

o
rH
CO
in
CM

O
O
CO
o
CO





1-1
"oi
e
in
•a

rH
0
TO
0
rH
•H
JJ
id
rH EH
O TO
> u






h
H
W
^*
(1


H
M
H
*^-
(U
fu


o
fe



^^,
H
H
H
*— f
a
CD

^.^
tH
H
M
s_^
0)
Cu
H
W
H
*-*
0)
Cu
p
H
H
0)
t.







•a

in
J3
4-1
e
id
rH
3

03
s


O
^
to
^*


o

H
in




o
CO
CO
rH
*3*


O
CO
^l1
to
CO





0

o
<=*
•*



o
to
o
in
*3*

o
f-
en
00
CO




ta
id







rH
E

in
•a
•rl
rH
0
TO

i-l
id
4J
g






o o
r- in
o
rH
CO


o
o
to
CO
CM



O
•qt
en
r~
CM


O
r-
•sr

CM





O
O
a>
in
CM



 0







g"
CM
S3


^
O
TO
CM
OS



^t
o
W
CM
a;


*3'
o
TO
CM
ta





**3*
o
TO
CM
X



"*?
O
TO
CM
K


O
TO
CM
X

•d"
O
TO
IN









•a

ta

rH
id
o
•rl

(U
Si
O


0
to
to

^


o
p-
00
*)*




o
to
r-
o



o
to
rH
in
CO





o

in

•q-



o
to
o
in


o
CO
en
00
ro



in
n)







rH
I"

in

•rl
rH
O
TO

rH
id
4J
g






O
00
en
CM


o
CO

CO
CM



0
CM
CM
r-
IN


O
O
r*
CO
(N





O
CM

in




o
in
00
r-
CM

o
CM
00
in
IN

a)

o
J3
id





rH
Oi
e

-------


































CO
1
Q

W

ca
EH













































1
cfP
O
in

ca
O
EH
Ed
s

dP
O
LD
H
Ed
a
o
& '

..
01
U
M
EH
tn
H

IV]
EH
CJ

2
33
CJ
rj
05

EH

H '
s
CO
rtj

EH

Q
W
O
EH
Oi
W
CO
1
a
en
EH















in
vo
o

GO
O
VO
O


rH
O
VO
0



Cn
CM
in
o




r-l
CM
in
o






^
r_
IT
o




ro
o

o



CO
CM
CM
O

r~
CV
c














C


£
.;
(1
2
cr



H
H
H

r-l
<
H
H
IH

rH
<

H
M
H

rH
<

tf^
H
H
rH

rH
rfj




HH
H
H

rH



r7
H
M

rH
i=C

M
H
h-

s
M
H
M
r-
. <








tr^
(U
a


1 1
rj
(0
rH
3
 CJ



--
H
H
*^
01
fe
H
H
H

a>
fa

H
H
M

0)
fa

ji— ^
M
W
W
•«*
0)
fe




H
,H
H

'  u



„
o*
en
CM
s

-*
o
en
CM
33


•3*
O
tn
CM
W



•"3*
O
en
CM
X





•^
" o
en
CM
it!



^*
O
en
CM
\a


f
o
tn
CM
B!

5
CO





__,
•x.
fc
01
T3
•H
iH
O
tn

(U
rH
•H
JJ
5)
rH EH
o en
> u
113

-------






















1
Q
ta
i
EH










































H
W
s
o
IS

«fc
CO
o
H
W
1
0
0

w
s
o

en
7
o
«
en
a:
EH



















c*
vo
o
V
vc
o
CC
o
vo
o

c
vo
o
CTl
ir
o

(>
If
0



ir
o


CO
c
^*
o

00
CM
CM
O



^
CN
rH
O












6
s
S
i
en
o
in
rH
in
o o
p* CM
CM CM
in "»
CO *3*
CM o
^ in
rH ^3*

O
CM
CM
O

O
VTl
CO
o
«





o
t-H
o


0
rH
in
p"»


o o
in vo
*r in
VO CO
ro ro













rH

tn
^
0]
•a
•rl
rH I-H
\ 0
gl W
rH
» r3
a w
O 0
U EH
o
m
CM
CO
o
00
vo
03
CM
O
o
o
en
CM
o
CO
o
vo
CM
O
ro
00
in
CM





o
o
vo
CM


O
CO
en
o
ro

o
H
rH
VO
CM










r-l
\
tj*
£;

^
01
3
H
O
ca
S
•rl
4J
IB
rH
O
>
oo in
rH I-



CM CM in
i-H • r-
vo
oo in
rH i-



' if


If


vo' in




^s* if



co co in
rH • I—
VO



in in
in i—




rtt in
rH H


CM
•H
^.
XI
rH

*
f>| .,_] rll «H *rH -H
^eee seee
•HrHCM-a1 fUrHCM-q-
EH II fO ||
vu IM MH
^ -P >|4J
(B !H
O Q










































dp

^
01
•a
•H
rH
O
ea
'a
4J
O
EH
a)
tB
u

O CPl rr
en o I-H
rH rH

in rJ -^
~™
CM in en
i-H On rH
rH rH

O CO O
en oo o
rH

LO VO CO
oo en o
rH

0 i-H vo
en en rH
rH


O CO ^>
t-r-en


r~ CM oo
co oo r^



en co I-H
en H H
rH rH



vo ro re
en CM o
rH rH










S H H
"g 'e "E
i-H CM rr
II
>4H
4-1


comn.
o vo en
vo in in

VO CM rJ
co in vo
in in m
en ro f^
co oo r^<
in in vo

in in -*
rH r}i rH
VO VD VO

CM r- o
CO CM CM
vo vo vo

t^ in r^
in CM oo
vo vo vo


Hr-*r
VO rH VO
vo vo vo


VO CM 0
•» rH O
VO VO VO


rH CM r~
vo en •*
in in in



en vo o
en o oo
in vo in

OP
^
01
•a
•H
i-H
o
en

(U
rH C C C
4J g s e
0) MH
M 4->
IB

rH co in in
^ °? ""^ r^
CO i-H rH

o CM ro in
... r-
r^

r^ r* r--



vo vo p~

vo vo vo



ro ro co


in in «y



in in in-
CM CM CM

~
CD
rH i-H rH 3
•H
J-)
O
o

rH i-H rH









CM CM CM







g
S


01
01
g s s s
C *H -H -H
^eee
•rl I-H CM -^
EH II
CD VM
U

114

-------


















•a
CD
3
c
-H
4J
o
u
crt
1
a
w
03


























CM
CM
VO
o
in
rH
VO
O
CO
O
O
rH
O
VO
o
a,
 CA

*y ro co
 II


iij 4-J
rti
CJ

r^ ro CM
ro CM CM

o vo co
. . .
rH
CA CM O
. . .
i-H rH
rH in ro

i-H
OM-CA
. . .

CM -* rH
. . .





ro vo r~
. . .




rH O r-
. . l .

CO O> CO
. . .

CM rH CO
. . •
rH rH
u
1
CM
-P
MH
J2"
rH
C C C
>-H -rl -H
•0 g g g
rH
0) rH CM ^P
•rl
K~< II


-------
              CM
              CM
              
                                                                   o
                                                                   vo
                                                                   CS
                                                                   in
                                                                   CM
o
rH
in

co
                                                             o
                                                             r-
                                                             r-
                                                                   in
                                                                   in
                  O    CM
                  tn    en
                    CM  CO
                        •a
                                   in
                                   CM
     o
     CO
                                                       O
                                                       tn
                                                       •a

                                                        ns
                                                             o
                                                             en
                                                             in
                                                             CM










•
o
z
t3

Ci
jg

M
W
g

£•(

dP
O
CO
'Ss

o

S
H
CO

US
o
CM
<
1

•a
(D
to
s

ta
4J
c
m
rH
3
tn
nj
O
U


H

tn
e


01
•a
•rt
rH
o
tn
rH
a)

o
EH


tn
g

^
01
•a
•H
rH
O
tn




                                   EH
                                   cn
                                   CJ
<4
tn

o
in
\
0

EH

W
CO

ct&
CD
in

I
•a

in
j~i

01
C
nj

3
O^
ra
0
o



H
-x.
s"

k.
in
-a
•H
rH
0
tn

rH
a
4-1
0
EH


rj*
g

01
•O
•H
rH
O
cn
u
rH
-H
•M
rfl
rH

^


                                                                        EH
                                                                        tn
                                                                        116

-------




































rH
rH
1
D

H

03

EH

























































3
EH
S
g
S
D
^

fc
CQ

|2
EH
Of
o
CO

Cd
CJ
rt!
EH
ft
a
CQ

rt°
O
CN
K
M
H

H
a
o
a
fc
CQ
CJ
H
cn
/VJ
H
EH
CJ

rt!
a
CJ
w
<
CJ
1
a
CQ
<
EH
























CN
Cv|
VO
o

in
rH
VO
O

CO
O
VO
O

rH
O
VO
o



cn

in
o





rH
in
o






rH
rH
in
0






ro
o
o




00
CJ
CN
0



r-
M
rH
O



















C


ft]
j_j
P_!
S
rf
tc
tH
W
li
rH
H
H
H
rH
M
M
H
rH

H
H
rH


H
M
IH

rH
rt



M
M
IH
rH
j3j



^^
H
H
H
rH




_ -.
M
H
H
rH
rtj


M
H
H
rH
<

—
H
IH
rH














T3
ID
01
D

4-J
G

iH
3

IB
O
CJ

O
CO


0
CO
rH


O
CO
rH


O
CO
rH




O

rH






O
O
r-H







O
O







O
rH





O
rH




0
rH








rH
•v^
Cn
e

^
a)
en
IB
01
O
Q

rH
10
O
•H
g
03

CJ

CN
iH


«•
rH


CO
rH


rH
CN




VO
CN







rH
CO







**
O
rH







cn
rH





**
CN




r-
rH



















•*






EH
CQ
CJ

in
rH


in
r-H


in
iH


in
rH




in
rH







in
rH







in
r-H







in
rH





in
rH




in
rH



CN
G
•r|
_££
rH

^
(U
rl
3
01
01
01

ft

G
O
•H

10

+J

•H
fa

rH rH rH VO Cn rH
"~! ""1 1
n> m vo

ro ro co vc trt H
in in vo
VO VO VO

VO CO CO
.q. VO O
co co in

CO CO CO rH in rH
rH rH ^*
<3"-*m



in vo co
\£> cH O
• • •
oj fo n





rH rH r-
in rn rH
rH rH rH






in m in T o ^y
CJ CN CN ...
i-H rH CM






VO ^3" in
r*- CN rn
CM ro n




in in m co ro o
CM CN ...
CN rn ro



r*- in CN a\ ro -^*
rH rH rH \O -^ Vi3
r- ^o m








6 tT1
^
fc,
4J
01 ,J3
01 cn
CUGCG -HGGG
G -H -H -H CO -H -H -H
5 E e e s s s s
o
•rHHCN'T COrHCN-*

EH 11 IB 11
CJ
ui IH M-I

IB M
U Q



cn cn co
in in in
rH rH i-H

vo o vo
rH CO •*
rH rH rH

cn co in
CO ^- •»
rHrHrH

T CO VO
O CO CO
rH rH rH



^p o in
• * .
o co in
.rH rH rH





r- <» on
•* r- o
rH rH CN






VO CO VO
oo in o
rH rH






rH VO in
CO -^ VO
rH rH rH




I~ Cn r-H
co in co
rH rH rH



CO VO •*
rH CN •*
rH rH rH






<#>

*
01
•d
•H
rH
O
CQ G G G
•H -H -rl
rH E E E
IB
JJ r-H CN "*
0
EH II

0)  II

<1) iH
iy> jj
IB
CJ



co vo CN in
... t~!
rH

-> co in in
rH o in •
... r-
CN rH

rr rH CN in
""J ^ ^1 r-
rH O O

vo cn in • m
... rl
rH



oo CN in in
oo in CN
... r-






o CN o in
... r~







^ r^ rH in
... t-







rH -3- CO in
°I "I ^ r~





in co vo in
... t-




^* vo p* U"
"i °, "^ t-^
CN rH


CN
C
;H
SH .n
J3 rH
1
CN
4J 0)
MH M
X^ r
XI 01
rH 01
c e G o>
-•H -H -rl H
•OSES ft
rH
0) i-H CN ^- C
•H. C
X II

CJ MH IB
i! 4J !H
IB 4J
u

&

rH rH rH



CO CO CO







CN CO CO





















•a
CD
in in in 3
CN CN CN -H
-M
fi
o
CJ










in in in





r- CN r-
1-1 .












^
01
01
CO G C G
G -H -H -H
X S E E
o
•H rH CN «3-
,G
EH II

QJ IH
ij> j_i
IB
CJ


117

-------
















'O
0)
3
C
•H
•P
C
0
—
rH
rH
1
a
ea
a
<
^*




























CM
VC
o
ir
vc
0
cc
VC
0

vo
o
cn
U1
o
rH
Ul
O





rH
in
o




CO
s
o
CO
CM
O
^
H
O














0
S3

pa

BJ
s
^•vor-
VC) CD VO
•*r in co
CO CO **
•a« cn cn
in vo vo
o co r~
tr co r--
co ^* m
in CM co
vo in r-
CO •** VO
O O rH
cn co cn

CM CM CM
cncM co
""1 ""} *"!
rH rH iH





•H CM CM
CO -"a* CM
rH rH rH




in vo H
vo in co
CM CO CO
cn co r~
in o in
CM CO CO
cni-cn
vo vo in
in vo in



cr>


4J
JS
tJI
•H e c e
vD .H -H -H
s e E E


;y|
IS II
u
IH
^1 4J
U
a
in CM CM
T VO CO
rH rH rH
CM CO •«)•
CM CM *]•

Ti* in co
rH CO CO
rH H rH
cn vo ^
rH CM CO
rH rH rH
rH 0 in
O CM rl<
rH rH i-l
r** cn r^
CM in vo
rH iH rH





CO O CM
r- rH co
rH rH




vo vo cn
o co in
H rH H
r- vo rH
O «3- VO
•HrH H
CO ->•»
rH H Tl>


Of

•*
to

•H
rH
O
w c c c
•H -ri -H
rH g g g
a
4-> rH CM ^1*
O
EH II

0)  II

0) VH
££ ; 1
id
U
CO^-0
in co co
rH
rH in r-
co rH in
rH rH
CM CM CO
. ^ ^
rH O O
rH in vo
CM r-- in
rH
• iH eft
co in CN

CO O VD
CO iH *3*
rH rH

^
I
CM
4J

x^
J3
rH
G £ £
»• -H -H -H
TJ £ g g
rH
(U ,_! CN ^P
•H
X II

(U *w
^4 4J

O
118

-------



































CM
rH
Q

w

m

EH

















































EH
3


EH
ft
&
W
Q
5

l-H1
U
U
H
§
w
fa

en
s
EH

o
CO
fa
o
B

w

dp
O
CM


M

[VI
0
0
s
K
cn
u
rH
EH
i
CJ
S3
CJ

W
1

Q

cn

EH




















CM
to
O
in
to
, o


03
O
to
O



rH
to
O




Cn
m
O




rH
in
o




H
in
o






0
^j,
o




CO
CM
CM
O

CM
rH
O


















.
O
z

JVJ
1_5
cu
53

cn
M
H
o
. fa
r7
H
w
(D
' fa
H
H
H

(U
fa

H
.H
^
0)
fa

^_^
H
H
ii
Q)
fa

."- •.
IH
H
v
0)
fa

.-x
H
H
,_
0)
fa



— *

S
,_
0)


. — .
M
HI
HI
0)

H
H
^_,
0)
fa













•d

01


4J
C
IS
rH
3
Qn
id
O
CJ
o co in
ro rH

o ro in
•3* "



o to m
O r-l rH





o co in
CO





o to in
ro





o to in
CM





0 rH tn
CO rH ^







o o in
CO





o in in
^1* CM rH
ro

o r* in
CM



CM
C
•H
S)
iH
iH
X.

S iH
3
01
d) 01
Cn 
o id
•H VH
E 4J
ffl EH rH
43 cn -H
CJ CJ fa
rH «H S to ro to
CO IO C3

rH
ro co co ^j* to r^*
. . .
•«• in r~


cn "3* to
T in to

ro ^« ro



CM CM CO CO iH to
^ . ^
CO CO ^1*




0 CO CN
in in CM
CM CO ro




in in in CM -a1 to
CM CM CM ...
iH r-l




ro r- o
•* CM in
r-t r-t iH






r» •v cn
...
CM CM CM




in in in r- r^ to
CM CM CM ...
CM CO r-l

iH rH rH f~* Crt iH
^ . "^
tr -^ in








S cn

..

w ij
w tn
Ocjc^d -HCJI3G
C -H -H -H tU -H -H -H
.MSEE SEEE
O
•HiHCM'* (UrHCM-q-
A iA
EH II 10 II
U
CO M-l tH
^ ^ ><4J
Id !-l
cj a


o ro CM
o co r-
rH iH iH
r- ro r-
rj. in •»
•H rn; iH


r— o r*
...
ro -31 to
rH r-l iH



co cn in
CM «3* ^
TH r-l -H




to o cn
CM CN -^
rH iH r-l




cn o cn
o in iH
H (H CM




o cn to
CO ^J1 CO
rH r-l rH






CO C"O t^-
in to o
r-l iH iH




o cn CM
in in rH
rH iH CM

to iH to
CM ^J* *3*
rH r-l iH






OP

*
01
T3
•H
iH
O
w z a a
•H -H 'H
rH E S E
IS
4J rH CM T
O
EH II

.0) IH
44 +J
10
CJ


co co cn
cn cn i—
to to to
m^^i.
cn rH co
in to in


co in
. .
CM I-
to to



to co in
CM CM O
to to to




CM to in
r- -y in'
to to to




co in co
O\ CJ* CO
to to to




CM en o
cn o o
to r- t-






in co to
CM CM ro
to to to




in in T
CO CO CO
in in in

rH rH in
CO •=* CM
in to to




C)P
..
01 ,
•a
•H
rH
O
cn

a)
rH c a c
•H -H -H -rl
•USES
id
|H r-l CM •S'
O
> II

(!)  CO

H



in o cn
. . .
rH




co co r^-
co in CM





r-- cn co
in CM C2





r> »H CM
•*TCM rH







co r- co
r-- ^r CM





CO iH to
• • •

rH ro to
in co *r
rH





H

1
CM
4J
tH

f\
rH
CCS
- -H -H -H
•a s e E
rH
CJ) rH CM ^P
•H
>< II

(!) iw
44 -P
id
CJ


in
r-

m
P^



in
.





in
P^





in
r-





in
r-





in
r-







in
r.J





m
r-

in
r-



CM
C
•H
^
rH

*

J^
3
01
(Jl

M


C
0
-H
4J
id

4J
r-l
•H
fa
s a s
12 ^ ^


-------
















^
•a
a
a
a
•rl
4J
c
O
o

CM
rH
1
a
H

§




























CM
CM
VO
O
in
rH
VO
O
CO
O
VO
o
rH
O
VD
0
cn
in
o
rH
CM
in
o






rH
rH
in
o




CO
G
O
a
c\
o
!—
CN
C













C
2

ft

B
S
U
p- vo cn
O "4* VO
rHrH rH
in cn CM
cn cn o
in in vo
en VD cn
rH cn p*
CO CO ^"
inrH rH
CS *~i in
n «* in
moo o
in co ^"
C-J CM CO
\O CO Is*
^•0*3*
rHrH H






CO CO ^"
cn co cn
rH rH rH




CM CO rH
CO VD VO
CM CM CO
•*}• CO O
01 CM p-
rH CM CM
p- co vo
O CO GO
in in VD



O^

^
4J


•rl C C C
s 'e 'g 'g

CI *^ f^ "*!*
JLj*
m n
u

&*i 4J
M
a

»» rH t-
00 CM VO
i-H rH
in CM co
CM i" in
rHrHrH
•» C~ i-H
rH CO in
H rH rH
VO 00 VO
CM CM TT
rH rH rH
rH cn co
CM CM *3*
rH rH rH
in co H
rH in r~
rH rH rH






CM CM <•
oo cn o
rH




in rH ^1
coin in
rH rH rH
vo in ^*
rH VD VD
rH rH rH
O O rH
CM CO T
rH rH rH

Of

*
0]
•0
•H
rH
o
M C C C
•H -rl -H
rH g g g
id
4J rH CM •«•
O
EH II

a) MH
^ u i
(0
CJ

O rH rH
rH r~ co
r~ vo VD
CM co m
CO CT O^
in in in
vo cn o
CO O rH

in vo co
rH rH CO
vo VD VO
•w cn r~
vo to <—
VO VD VD
co in
r- co
vo vo






co 1-1 in
in vo r-
VD VD VO




o co r-
ro ro in
VO VD VD
CO CO CO
co in oo
in in in
co vo r^
in rH cn
VO VD VD
dP
in
•a
•rl
rH
O
CO

 II

CD ItH

H)
U

in ^r ^r
CO CM rH


r- cn o
. . .
rH
in in o
. . .
rH
r» co vo
O vo ^*

rH
rl* CO CO
. . .










^* O VD
VO CO rH






r~ •<* o
. . .

VO CO CM
rH CO CM

CO 1— p.
"i . .
rH

Si
t
CM

I4H
•v.
a
rH
c c a
-•H -rl >H
•0 S g g
rH
(!) rH CM «*
•H
>< II


-------





























m
rH
j
Q

H
a

*3J
EH



















































..
CO
S
EH
0
CO
IB
CJ
EH
Cu
£d
to
<*>
01
^
M
H EH
Z,
pq M
Q «S
O EH
H
*• r**!
r_rj £_|
U
M Q
EH H
CQ CJ
H i4J
« IH
cj Q



in o ro
rft tn in
Ol 01 01
o ro o
O VO *!"
CM Ol CM
CM ro in
in vo vo
rH rH rH
01 ro o
ro rr in
rH rH rH



Ol ro I-
01 r*^ ro
rH Ol




Ol Ol Ol
VO Ol rH
rH rH 01




Ol vo *ej*
co 01 in
rH






Ol VO O
tn •sr 01
rH rH CM



Ol rH VO

P- CO CO


in in I-H
ro in r--
rH-HrH




00

^
01
TJ
•H
rH
O
co e c c
•H -H -H
rH e e g
a
JJ rH 01 •«•
o
EH II

(1) MH
•^ ^

U



P- O O
•-H 01 CO
p- r* r-
n. vo ro
vo CO •q-

CM rH VO
r- r- ro
VO VO VD
ro 01 01
ro o rH
VO VO VO



rH r- VO
•w vo vo
p- r- r-




01 ro o
i-H 01 rH
p* r- r--




rH VO O
in "a* vo
vo vo r-^






O VO Ol
ro o co
vo r- vo



CO 0 01

ro ro ro
in in in


VD Ol O
r- co ro
in in vo


dP
»
01
T3
•H
rH
O
CO

Q)
rH C C C
••H -H -rH -H
-P S g g
10
rH rH Ol -^*
O
> II

Q) *W
M jj

CJ



O VO CO
" '"i ^

vooir-
^ '"i '"J

i-H CM O
. . .

O CO rH
rH VO *»
H



VO r- rH
ro ro rH





CM vo ro
in 01 rH





vo o in
in ro CM








CM rH r-»
. . .




ro p- 01

rH


O CO P-
...
rH rH



^
_f-J
1
CM
jJ
VM
\^
a
rH
C £3 C
* -H -H -H
•a e E e
rH
(U rH CM -a-
-H
X II

(U tH
rM 4^
.•a
CJ



in
r-!

in
r-

in
[-1

in
r-




in
r-





m
p~





m
r-







m
P^




in

r-


in
r-

01
a
•H
^Q
rH

ih

-------
















^^
TJ
 II

< II

01 tM
_v> -M
a
o

122

-------





























*?
rH
1
Q

65
J—l
P3
^
EH



















































EH
S

EH
S
<

«,
tn
!
0
in
V.
W
O

EH
0,
W
03
sp
o
in


H
H

63
Q
o
a
*
cn
O
EH
cn
H
OS
W
P_|
S

S3
O
H
rtl
O
1
Q
a
E-<





















CM
3
o
in
\a
0
CO
o
o
r-H
\0
O



o*»
CM
m
o


rH
CM
m
o





rH
rH
m
o






ft
o
<3<
O





CO
CM
O


r-
rH
O















*
o


H

QJ
S
1 J?
O3
H
M
rH
H
^L
rH
IH
IH
H
rH
w
M
-^
rH


H
H
IH
— '
rH

H
H
H
— '
rH




^
H
H
*— *
rH
 cn co
2: 2 S cn CM o
• • •
f rH rH






OCO O
°"~J °i
rHrH rH





a a a co co.m
S Z a in ^r p»



in in in  rH
rH rH CM



rH r* *3*
...
CO 10 CM
rH rH CM


VO rH in

t— O O
rH CM CM





CM r- CO
...
c- in cn







r- CM cn
O CM CM
CM CM CM





CM CM in
CO I— CO
CM rH CO


rH CO CO
• co r^
vo vo vo
rH -^ CO
•^« in co
r- r~ r-
•cj* rH in
cn co co
in in in



o •«•
. .
CM CO
r~ p~


rH P- CO

CM rH ^0






• cn
•
cn
VD






rH in •*
T -a- in
r^ r^ r^





in rH ••a*
I- t- CO
in co r^


cn o CM
CO O O
vo oo r-



OP
01
•H
rH
o
cn

 II

tU IW

CO
CJ


co iri in
CM

oo co -a1
1-1

cn in in
CM

cn o o
CN CM rH




to co co
rH




in in rH

CO CM






cn in CM









co in -a-







in CM in
rH



vo co in
CM rH *
r-






CM
) i
1H
v^
XI
rH
G G G
- -H -H -H
•a g g g
rH
a) rH CM -a-
•H


C) 4H
X 4->
to
o


in
r-1

in
t^

in
r-

in
t-!




in
•
t-



in

r^






in
.
[•^







in
p!






in
t-!



LO
p-



CM
G
•H
rH
fc

-------
















*-" »
•§
3
C
•H
_;
c
O
O

•3*
r-t
Q
1
S
r-





























CM
CM
O
in
rH
VD
O
CO
O
VO
o
r-t
O
VO
o
en
0*4
in
o
rH
in
o



rH
in
o


<->
°
o
CO
CM
CM
O
r-
CM
rH
O














i
O
z

w

pj
s
w
CO VO O
VD ro TT
rH rH rH
•W •* VD
CM p~ P^
CO rH CM
r~rr o
co p* *3*
rH rH CM
O O P-
o rr cn
""m
o co in
•» CM CO
rHrHrH
^rvo co
^ VO VD




co o en
• . . ^7
rH CM rH


in in o
CM CM en
rH rH H
CO CO O
co CM in

CM CO CO
p^ o en
rH rH rH




6*

*.
i)
x:
Cn
•H e c c

rH CO VD
VD VD VD
O rH rH
^ co in
P"» ^ ^Q
to
*
to
•a
•rl
rH
O
cn

a)
rH C C cJ
•rl -rl 'H -H
•U E E E
B!
rH rH CM -^
O
> II

a) 
-------


































in
1
Q

65

CQ

EH






















































Z
EH
<
§
EH
fa
o
H
o

23
CJ

o
H
w
fa
CO

3
EH
0
in

§
^
EH
Cj
CO
o
in
h
H
M

a
Q

a
^
co
CJ
H
EH
CO
tH
W
EH
CJ

2
03
CJ
H
rti
CJ

1
a
CO

EH























CN
CM
O
in
rH
O



CO
o
o




rH
O
CO
o


cn
CM
in
• o




iH
CN
in
o



H
in
0






CO
5
o





CO
CN
O



I—
cs
o



















t
o
z

K

s
S

a.
H
H
r4
01
H
H
0)
fa

H
H
H
a)
fa



M
H
ti
0)
fa

M
ii
01
fa

^_^
H
H
ti
01
fa


H
H
01
fa



,«.

H
ti
 1

01 P.
o
Q G
c
iH -H
10 4-
O ns
•H M
S 4J
01 EH rH
x: co -H
O CJ fa
3* a rH cn CM in
IT Z iH cn vo
rH rH
CM CN co in r~ -»
co ro C3
CO CM CO



t- T ^>
in o •>a'
r-l rH rH




CN CN CN •* CO CO
•* cn CM
CN CM CO


rH rH rH in O *>£>
in r- co
rH rH CM




vo o cn
TI* in co




aSS vein CN
2: Z Z t> cn cn
iH iH rH






in vo us
°^ . °2
rH





S a a o in ro
z z z •* tfi •»




s s a co •«• o
Z Z Z cn r~ en










g tn

^
- 41 -
01 X!
01 Cn
01 C G G -H C G G
G -H -H -H 01 -H -H -H
ilSgS SEES
o
-HrHCN-y* OlrHCM-y

EH II 10 II
CJ
0) 4H 14H
^ -P >i -P
CO M
CJ Q


r~ •q' in
CM co in
CM CN CN
CM O ^O
•H CN ^»
CN CN CN



•^ r* in
rH rH CN
CN CN CN




CN t> in
cn cn co
rH rH CN


t-cn^.
uj co cn
rH rH rH




CO CO VO
I- O rH
rH CN CN



^j* m co •
co cn H
rH






co cn tn
O CM •**
CM CM CN





rH Cn rH
^ CM CO
CN CO CN



co CN in
oo r- o
rH rH CN







tip

^
01

•rl
rH
o
CO G G C
•H -H -H
rH E E E

4J rH CN ^P
Q
EH II

01 IH
M -P
18
CJ


•H in co
CO CO O

rH •>» rH
in co r-
\Q ^Q \&



kD rH CX
CN co in
r- r- r»




r~ rH co
CN rH CO
vo vo vo


r^ cn o
cn CN CN
\O P^ C^-




r~ o co
rH CO rH
p~ t— r-



<£> i> CM
r~ r- co
4O VO CO






r~ in r^
in «st* --a*
r- r~ r~





•3* in cn
CO CM rH
\o ^3* r^



in oo i—
^i o i^
\o c- vo





t»
^
01
•a
•H
rH
0
CO

W
^ -P
10
CJ


in
r-!

m
t--




m
t^





in
r4



in
r-





in
t-!




in
t—







in
r-!






in
t-I




in
r-




CN
C
x^
£*
r—

>,
0


Ul
01
01
M
a<

c
c
•f-
4-
CO
L
4-
, —
.(-
fa
Z Z


rH CN CM












CM CM CN




rH 3 rH












a a s —
zz z -d
•s
G
•H

G
0
O








SSS





s a a
z z z










g.
jjj-


01
01
01 C G G
C -rl -H -H
X S E E
O
-rt rH CM -^
r;
EH II

01 
-------
















^
"O
1)
3
C
OJ
C
o
fj


in
i
o
3
03

EH




























CM
U
o
If
V
o
cc
5
o

vc
o
01
cs
in
o
s
in
o





H
in
o



CO
^
o
CO
CN
o
r.
i-l
O














.
O
•z

&3
i_3

1
i-H CO VO
^i VO Cn
i-H
CO P- CO
p. vo vo
H CM CN
CN CO TC
xp CO VO
CM rH i-H
vo in in
r-t VO VO
CN CN CM
H O CN
VO •<)• VO


VO i-H CO
...






I-H in 01
• • .
rH rH rH



CO CM CM
. . ^
H rH
•W p. CM
...

01 n- CN
...





Cn

*
-P
A

•rl C C C
0) -H -rl -H
s e g g

Q) r-i CN -V
J^
13 II
rj
VM
>l-P

Q
01 vo O
CO CO rH
i-H rH CN
01 01 H
01 i-l CO
rH CN CM
•* CO P-
P- P- 01
CN i-H i-H
C\ VO CO
P- CO O1

••r p- CN
in p. 01
rH i-H rH
in in o
in in vo
rHi-HrH





CO 0 p-
i-H CM CO




COrH 0
rH O1 rH
CM i-H CN
VO CO VO
P* i-H *!•
rH CM CM
co co r-
in in vo
i-H i-H i-H


of

*.
to
•a
•H

o
cn c c G
•rl -rl -H
-1 g g g
13
4-> rH CN •«•
O



»
U]
•a
•H

0
co

CD
rH c c e
•H -rl -rl -rl
u S B g
rO
i-H rH CN -^*
o
> II

0 IM
0* 4J
(3
u
P- i-l CO
^ "~]j °

O1 ^* CM
in rr CM

O CO <3-
CO CN i-H

rH -» CN
P* "SP O)

CO CO CO
in CM I-H

O% CO ^*
"~1 ^ °.






CO i-H CTi
^ CM O




i-H ** rH
^J* rH rH

co in co
°. °, ^

o vo in
CO rH O


M
£1

CN
-U
VH

Ct
rH
C C C
~-H -rl -rl
•d g g g
rH

•H
X II

03 in
ii JJ

CJ
126

-------































rH
|
Q
W
i-5
EH
















































EH
S
EH
H
g
a
M
CJ
•1
co
f3j
s
EH
*>
0
in
\
CJ

EH
m ,
CO
*
O
in

H
H
Q
O
S
-
CD
U
H
EH
to
w
OS
w
y
1
33
CJ
w
s
1
Q
M
CO

EH '
















CN
l£
O
in
vc
o
CO
o
vo
o


rH
VC,
O



cn
CN
in
o





.H
in
o



rH
rH
in
0


10
o
o







CO
CM
CN
O


CN
rH
O
















O
2
W

dj
<
to
' O CN
CO
CM
33
O CM
CO

33
O to
CO
CM
33


O CM
CO
CM
33



O CM
to
CM
33




^<
O co
CM
33



• O co
CO
•CM
33


«3*
O co
CO
OJ
EC





*3*
O CN
CO
OJ
E


O CM
CO
CM
33















•a
4)
M
D
rH
IT)
O
•H
E
-C 35
U Q.
CO
to


CO


CO




CO
CN





in
"V






CO





rH
CO




in








vo




m
CM





















EH
to
U
ir


ir


ir




ir





IT
r~°






ul





in





rH








in
,_!




in
^




CN
c
•rl
XI
1-H

^
0)
rl
3
[0
01
0)
m.
0
•rt
n)

4J
rH
•H

;a a a vo co m
' . • .

CN rH a •* in cn
£3 O CN rH

CN rH rH
,H«5U3
• • •



H CN CN cn oo in
to CD •»
CN lO CO



a rH rH CO H Cn
SZi CO CM O
I-H rH





rH rH in
r~ «» in




a a a « -a"*
oo in ^
rH rH rH



r- CM CN
. ^ .
rH






a a a o o co
13 <2 tZi m in ^




a a H CN CN co
' rH









§O>

».
4J
ra J3
w cn
(DCJCC -Hqc3G
CJ *H -H -H H) -H -rl -H
•*SEE SEES
•Hi-HCN^* ClJrHCM^
£! A!
EH II (8 II
(D w IH

nj ' ^
cj Q

cncN rH
mm P-
~CMtN CM
COCN CO
in 03 cn
CNCN CN
"*iocn
cn ^* -^
rH CN CN


CO i— 1 ^"
CN i-H 

ih
to
•a
•rl
rH
O
CO G C C
•rl -H -H
rH E E g
JJ i-H CM •"J-
Si.
CJ IH

10
CJ

CM in oo
•» U> 00

rH CN rH
CO rH CO
10 p- r-
comvo
O IO rH
CO 00 OO


GO o in
CM to CO
vo \o vo



I-H to cn
vo cn co






r- r-- CM
•*.CO CO




p» m co
r- r~ co
vo vo vo



P- CN CM
r~ P- vo







O p* ^
P- VO CN
in in vo


cn p- CM
O CM P-
p- cn vo





OP
»
to
•a
•rl
rH
O
co

111
H c c e
•rl -H -H -H
-PEES
id
rH rH CN ^l-
01 IH
^ 4J
IS
CJ




























































!H

1
CM
4->

*\

rH
•a
rH
a)
•H
>t

G
Q
U











a a a
J2J 13 El



i-l <~f rH










g
S
.
fc
w
01
<1) G G G
|lE-g
•H i-i cv *y
M H
0) 
-------
















•a
0)
3
e
•H
4J
c
o


v>
1
Q
CO
m
§




























CM
CM
O
in
H
o
CO
o
o
rH
O
1C
o
en
CM
tn
o
rH
CM
tn
0






rH
rH
in




CO
O
o
CO
CM
CM
O
p-
CM
rH
O













,
O
z

w
>-l
§
fC
tn
rH O CO
co p* tn

\Q \Q \f)
CO CO CO
rH rH rH
CM CM CO
00 ^J* ^*

CO 10 O
CM P* CO
CM CO CM
•3* en co
O U3 o
rH rH
P- rH VO
p> <» tt>







rH O CO
VO rH CM
rH rH



in co, -a-
en in *3*

p- en p-
CM rH **!*

CO H 00
10 10 en
rHrH rH



tn

^
4J
A

•rl C C C3
. HI -rl 'rl -rl
SEES

41 ^ rH CM •*
Id II
u

" ^1 4J
g


o in H
en o co
rH CM CM
o en o
rH CO in
CM CM CM
rH'W CO
co in o
rH rH CM
CO CO CO
en p* co
rH CM CM
VO *g« O
T en CM
rH rH CM
P- rH CO
P- CO CO
rH rH rH






CM o in
O O CO
rH rH rH



rH en CM
r> p- o
rH rH CM
p- p* CO
P- rH CM
rH CM CM
^ CO CO
CM VD CM
rH rH CM

dP

*,
01

•H
rH
O
w c e s
•rl -H -H
-rH e e s
a
4J rH CM >fl>
S'«

0}' tH
" Jrf -P
id
u


i-H en co
^« CM en
p- P-P-
p* en vo
p* en CM

rH rH 'T
co co in
p- CO 00
CM CO P*
co rH in
10 p* *O
en *r r-
^o tn co

en in co
p* O P*'
P- CO P-






CM H en
r~ en H
vo u> r~



00 CO P*
p* 1C 10
p» p- p-
«» p- en
in CM co
\o vo in
O CO V0
^" CO CO
vo p- p-
DP
in
•0
•H
rH
O
tn

(jj
H c c e
•rl -H -H -rl
4J S S E
» CM en
"^ "2 ""J

^* rH en
" "~l .

in p* in
• . t







O CO rH
^ "^ ^
t



rH O rr
. . •

en co '»
'"J ° °

•» p- «3
U1 CM rH


g
1
CM
4J

"*«^
ft
rH
a a a
-•H -H -rl
•a s e e
rH
(I) I-H CM T
•H

(1) IM
pM -U
U


128

-------





























f-
rH
1
Q
H
m
EH




















































X
rl
z
o

to
1
M
H
Q
S

C/l
U
EH
03
M
K
Bl
g
rt
B3
CJ

W
s
EH
H
fa

1

Q
cn
EH























CN
CN
\£
O
IT,
1C
O
CO
o
10
o
rH
O
vo
o




C71
CN
in
o
rH
CN
in
o




rH
rH
in
o



P*I
0
•3*
O


00
CN

0


r-
CN
o














CO
 H
in o r-i
^o 10 in




ooo
CO CN CN
rH m in
'- in cTi in
ooo
in en n
o n oo




ooo

o m oo
^r TT ^


















1
CO
•a
rH
0
to

CD
rH
•H
JJ .
n
rH C C C
O -rl -H -H
> E E E
(B rH CN "S-
cd II
M

rH -P
•H


CT O O
^J1 Cft t^-
CO CTN 00

000
VC O\ Cl
CO rH rH
OOO
V3 •V O
vo co m
^rHr-l
OOO

r^ ^31 m
co en vo




ooo
O\ O\ ^'
prj ^j* 03
eo ro t~.
rH
OOO
I-H ro oo

rH rH rH



OOO

CN CN O
rHrHrH












>











rH

O>
B

Q C C C
O -rl -H -H
U g g E
0 rH CN 'S-
+J
id II

.p MH
rH 4J
fa


ooo in
• • • • •
r^ p^ r^ I**-

•vmo^ in
VO VO VO P^

"'•d* o rH m
* . * .
VO P* P* P1*

co cr\ o in

\O VD P- PH





CA CO O> IT
... *
\D VO U3 t1**

O) CM rH in
... .
p-p-p- p-




rH o o m

p^ p- p* p-




m

p-



m
.
p-



m



tN
'*
"****.
A
rH


CD

S
in
CO
a a G 
* *H
CO rH
•a o
•H CQ,
rH
O CD
CQ rH.

3cflC fefifi
: O -H -H -H " O -H -rl -rl
• EH g g B ,>,E E g
CD i-H CN TP CD ,rH CN rf
4-1 4J
id II cd ||

4J 
-------


















•0
3
C
•H
4J
C
o
0

1
a
W

CQ
^




























CM
CM
VO
O
in
rH
VD
O
CO
o
VO
o
H
vo
o
cn
in
o
rH
in
o





rH
in
o



ro
5
O
CO
CN
CM
O
r-
CM
rH
0












.
0
3

K

a
s
K
cn CN vo
CM CO CO
CM rH CM
rHin^
t** I"** VO
COCOCN
r^ cncn
^| CO CO
CO CO •<*
r*- in rH
CO O CO
CO •cf <3*
•» CO CO
r-. vo vo
rH H CM
co m ^
. . .
rH rH rH





r~ r- o
in r-j in
CM CN CM



in o in
CM rH in

CM CM *»
rH CO ^1*
VD CO CM
rHrHrH
VO CO

* (
CM CM





*
^J
fl
o>
-i-l C C! C
t-p
S-l •
a

VO 0 t-
in vo cn
rH rH rH
CO *1« CM
»j. VD VO
rH rH rH
r^vnn.
rH CO ^«
rH rH rH
CO 0 CO
O CO «^
rH rH rH
co co in
O iH CM
rH rH rH
CO -^ VO
CM rf VO
rH rH rH





CM in CO
co co cn
rH rH rH



in •* co
I— O CO
rH CM rH
O CO VD
•ST Cn CO
rH rH rH
t- O

•3- r-
rH rH

00


10

•rt
rH
O
w c a a
•H -H -H
rH g g B-
JJ rH CN T

EH It

0) VH
VI 1 1
(TJ
u

cyi in CM
cn o cn
vo r"- VD
in cn co
cn cn o
vo vo r*
•» co r-
p~ in r-
VO VO VO
co •» r~
IN •>* rH
VD VO VD
vo VO «*
CO CM CM
r~ r- r-
co ro cn
rH CO CO
r^ r- S





in rH vo
rH cn in
VD vo in



cn co VD
O «• rH
VO VO VO
r—rH r-
"3- O rH
in in in
r~ CM
• •
in o
in vo

at
T3
-H
rH
O
to

01
rH C C C
-r4 -H -H -H
•u e e g
(S
rH rH CM Tl-
0
> II

a) VH
_vj* -4J
(0
O

VO CM *er
. . .

CO CM CM
CM VO CM
rH
in vo vo
rH in co

rH
co r~ vo
CM VO CO
rH
CO CO CM
in CM CN


CM r* in
. . .






in VO rH
CO CO CM





in in r^
t-. CO CO


"" CO CM O
in CM rH

VO CM
CO CM
• •


1
CM
4J
M-l

J3
rH
^^
q c c
- -ri -H -rt
•ogee
rH
(D rH CM •«*
-H
X II

Q) UH
ij j i
n)
U

107
P~ in CN (H OOO CN H rH oo ^* ^* p* p* p-. rH rH in vo ^* • • • O rH ^3* P4 P* P* CO O CO OOO Cn CN ^ VD ro o ... iH •.<"" rH X. w . : . i a a p a ; c « c , O -H -H.-rl . .S3 -rt :H 'H ,0 E g'g . p. E B E - CD rH CN-^ = Q) rH CN <* 4J '-P' cd II cd II 4J IM , +J 14H rH 4J , rH -P ' •3 -n' ; 129
-------









EH
!3
EH
S

EH
S
a
£T

DP
O
03
X
«i
ft
H
CO
c#>
O
CM
CO
1 H

W
W Q
m i
EH
CJ
>-l

0)
s
1

id
s

W
1

IJ
H

o
I
"



















CM

vo
o
in
rH
vo
0
CO
O
o



H
o
VO
o
CM
in
o




^
CM
in
o




H
rH
in
o



en
o

o


CO
CM
CM
o



p*
CM
rH
O













,
c


ft

a
tn
H
HO in
H CO rH
•— rH

H
HO in
H CO H
rH
H
HO in
H CO rH
— -rH

*

.^
H
HO in
H CO rH
<^
H
HO in
H VO rH

i-H
<


^^
HO in
HO r-l
rH
<


^-*
H
HO in
HO rH

rH
«!

~
H
HO in
H ^* rH

rH
*

H
HO in
H VO rH
rH
rt

H
HO in

— rH
rH

CM
C
^
s>
rH
rH

tn a]
g U
w
a) 01
•O en a)
0) id )H
01 01 dl
D O
Q C
JJ C
C rH -r!
id id 4-
i-H O Id
9 -rl rl
0>g 4-
Id  g g g

0) rH CM f

id II
M
4-1 MH
rH 4J
•rl
fa

OOO

in co 03
rH rH rH
OOO
O i-H i-H
0 COrH
CO CO CO
ooo
in in CM
CM in ^<



ooo
co in ro

ooo
VO rH VO

rH



OOO

vo in ^i*




ooo
O *3* CM
CO ^J* C^
*J* CO *3*



ooo

VO CO CO
CM CO CO


000
in co in
vo o vo
in «* in



ooo
P* rH ^T
vo o p*
r-l rH CO






rH

1


O -H -H -H
uses

<1J rH CN •«*

(d 11
M
4-> M-4
•-1 4J
•H
fa

in in in

vo vo \o

co m m
V£> V£l *J3

m in ^j»
VD VO V£




eft r- co
vo u? vo

CO CO CT\
vo vo vo





en r-l ro
vo r^t^





CO r-4 CM
> • •
vo p- r*«




cr\ o crv
• • •
vo r^ vo









m co co
• • •
r"** P* r*"












C fi C
ffl -rH *|H -H
o>s e s

0) iH IN •*
4J
(d II

4J IM
i-H 4J
•H

in

p^

in
^

in
p!




in
^

in
P^





m
r-





m

p*




in
.
p-



in

^



in
•
t^«


CM
C
X,
f.
r-


a

V
01
a
P.

c
c


n
j.
4-
fr
OOO
i-H O VO
CO CO 03
CM CM i-H
OOO
in vo co
00 rH P~
CM CM rH
OOO
VO CO VO
CM P- CO
CO CM CN



OOO
rH VO CO
r~ in o
r- co m
ooo
VO CTl CO
^ p~ p»
rH CO in
H



OOO
03 CO rH
CO CO M
^* rH CO




OOO
rH in co
CM ^1* CO
p~ in in



• ooo
vo co o
I-H cn ^t*
CO CM CM


OOO
03 ^ VO
CO CM CO
in co CN



o o'o
^* rH ^l1
CM O P-
(N CN rH
i-H
1
^
01
rrj
•rl
rH
0
cn
H
id
O -rl -H -rl
EH g g g

Q) H CM •*!»
4J
Id II

4J  g S g

fl) i— 1  en
^* vo



ooo
03 CO CM
CO CO O\
CO CM CO
>

OOO
en co f**
vo in co



ooo
CM in CM
p* r~ o
CM rH (N






rH
X
tn


O -H -H -H
0 g g g

0) rH CM «»
+J
id II

4-1 4H
rH 4J
•H
fa

in vo vo

vo vo vo

co in in
vo vo vo

P- 10 VO
vo vo vo




en o co
vo r^r^

ooo
p- p- p-





CO CO CN
r- p- P-





co mcM
• • •
r^ o* p*-




ro co H
• * •
["•* vo r**









rH O CM
> • •
CO CO CO












c c c
*£ -rt -H -H
a g g g

(D i— 1 CM T
4J
id II

4J H-t
f-i -P
•H
fa

130

-------














































en
rH
1
a

m
j
<
EH
























































EH
3
S
EH

fff

EH
W
a
H
PH
I

o

CJ
H
a
OS
H
fa

ik
co

S
EH

O
CO
V.

C3
EH
W
M
c^>
0
CM

i.
H
W
Q
0
S


CO
CJ
H
EH
CO
El
EH
U

§
S
CJ
fcl
EH

(2
EH
rH1
fa

1
Q

^
S
EH
















CM
CM

O

in
H

o




CO
o
10
o





rH
0
IO
O






O>
CM
in
o





rH
CM
in
o



i-H
rH
in
o





CO
o

p




CO
CM
CM
o



!^.
CM
i-H
O
















.
O
z

Ed

f\t
2J




^^
H
H O
H (M
* — CM
11


h7
H O
H 0
— CO
1)
fa


^.
I-l
I-H O
H O

0)
fa


___
H
H 0
I-H •=)•
— CO
1)
fa

—
H
H
*— "
0)









rH
X-

e
^
0)
ai id
o o
Q
4J
C rH
id id
i-H O
3-H

id (!)
OJ3
U O
in
rH



in
rH






in
rH







in
i-H








in
rH







in
rH





in
i-H







in
rH






in
rH





in
rH







CM
a

*\
rH

CJ
, 3
in
in
a)
a,

c
o
•H
4J
id

4J
,^
•H
fa
OOO
CO CO O
CM en cr.
CM r-l i-H

ooo
CM *!• fO
CM co ^r
CM CM CM




000
CM •» CO
CO O ^1*






ooo
I-H in in
rH CM CM
O CO t~-
rH





OOO
en co co
co ^o ^p
I-H i-l r~
rH rH




O CM O
CO t** CO

in in ^*



o o o-
VH t- in
\O CM CO
CM en co
rH




ooo
r^ co co

CM CM CM




ooo
VO O CO
•3* CM O
vo co in



ooo
•» O CM
["* v0 r--
i-H rH rH



rH

Cn
g

«.
01
•a
•rl
O
CO
rH
a
jj a c G
O -H -rl -rl
EH E S S

fl) rH CM T
' 4J
id II

4J U-i
rH 4J
•H



ooo ooo p- vo in m ooo ooo ooo m vo vo
o in vo a\ co co ... • CM rH \o en o co cr CM rH ...
^ rH O VD O CT\ \O VO \Q C** ^* O f*" ^* rH G\ ' ^ rH CO \O VO VO
rHrHrH (SOJrH CMMH i-Hi-1 C>JC>Jf-l

ooo ooo in-^Tj' in ooo ooo o o mr^m
m ro r*- co m c*i • • • • p** co ^o ^o o rH o o • . •
c*j vo ro io ro ^j* VD *>o ^o r^ ^* o ^o n CN o\ co o vo vo \o
rHHrH  »
10 G g 01
•a -H 13. .
•H \ » -H
i-H XI 01 r-l
O rH T3 O
CO -H CO .
1) \ (DO 1) X,'
i-H tjl M CO rH ' tn
•H . S 3 -H • g
4-1 01 t-H 4-1
10 - W OS geeogE0aggg a. Enggg. >ggguggg ESS
Si
Di-HOITC Oi-HCM'* (BrHCM-a- C Di-HCM^T (DrHCMI- DrHCMrr CU rH CM T
4J 4J [ i Q 4J - 4J [ t
18 II , 18 II 18 II -H 18 II 18 II 18 II (1) II

4J 4H 4J IW 4-) MH Id 4J '1 1 4J i| | 1 1' i; [ ' • • (g i] [
rH 4J rH 4-1 rH 4J Vj rH 4J rH 4-1 rH 4-> 1H 4->
•H -H -H 4J -rl -H -H 4J
fa fa fa rH'fa fa fa rH
•rl . . .rl •
[V, ' ' [V)
131

-------
































o
CM

P
a
a

EH




















































EH
r~.
5
EH
W
g
Q
H
o

a
s
^

o
CO
a
04
Id
03

so
o
CM
H

W
a
i

O]
u
W
EH
03
H
a
w
0
s
rt
S3
CJ

w
EH
EH
HH


I

Q

O3
,rr
EH











"









CM

10
O

rH

O
CO
o
10
o



rH
0
O


Ct
CM
in
o


rH
CM
in
o




rH
rH
in
o




CO
o

o




CO
CM
CM
o


r>
CM
rH
0


















,
o
vz

K
a.
E
V.
o
03
CM

O CM
O3
CM
X
O ("0
03
CM
33



O CO
03
CM
X


O CM
03
CM
X

*r
O ro
03
CM
X




O rn
C/3
CM




o
03
CM





O CM

CM
23

^j,
O
O3
CM
33
















•d
jo m^*o% mmm
i-Hi-l CMtNrH n(M(N iHiHi-l C>JCNrH
ooo 'ooo Hr*r^ in ooo ooo o'o o co co co

i0^P^< mr^-co mmin r^ o^f-i moco OOJH mmm
rH ,_(,_! m 04 01 CO 01 0) rH r-f CO Ol Ol
ooo ooo otrHrH m ooo ooo ooo rHm o
*ymco ^*o4oi ... * cocor-4 rooao r-*r*-o ...
min^» tnr»c\ m^ovo r* coooj cor^-co rocQ.t-H ^o^o^o
focooj t^ 10 *y mmcrj ^I-HH -^ro^


,
ooo ooo rHONCft m ooo ooo ooo ^rom
co r** ^ ^o co ^ ... • 01 "sj* c^ ^t1 01 ^ in vo ^i* . • •
cnofo tpOirH p^-vovor- r^-cni-H vomoi i-nvoin r-r-r-
^* in rn vo vo in r*1* ^ *3* •fl* 01 01 vo fo ro


ooo ooo CMCNCO m ooo ooo ooo OMO

r*n^j< ertrHrH vovoin r* ro^«co rocnm coc-r-i vovovo
^3* ^i* ro !"•• vo vo r^ in ^* ^* cs 01 vo ^j* ^j*


ooo ooo Oi-4cr\ m ooo ooo o o rHcr\a%
j^ ft) ^t ^ ^Q Q • . * . ^O CO ^ OJ VO VO ^* O ...

^PTTCO r*-vom 04^*01 ojrorH rom




ooo ooo ror-to m ooo ooo ooo rococo
vo ^ oo oo 04 ro ... • o% co c^ o p"« in • ^* ^s* in • • •
tn ^ TJ* vovor^ covoro mrOrHcoinm




ooo o'oo rococn m ooo ooo ooo ococo
voro^r t^- ro ro ..» • coc-nco OHfO rococo ...
ro ^3* in r*« oj t*^ in in in r** oo o ^* co p** rH oj r**1 oo vo in in
fvJrHi-H .OirOrO fOfOOJ OJrHrH VOCMOJ




ooo ooo m ooo ooo ooo ^•^
^jt*^co rH^co « incoin cninm r^mo •»
roo.if1*' P-OOJ p* ^"corH coom voom p-vo
ojcovo ^rvovo inroro ojeNrH ^ornoi


ooo oo voojoi in ooo ooo ooo oiroro
cor-vo ooo ... . rop-in «*roo vococo ...
COVOP^ inn p^inin P* cnojoj p^cop- o«-ir-* inmin
O404' f-(CN . 01 rH 4J
rHCGCCacSCc: CCC3 S2ccc3rHCCIC£3CSCC CCC
O -H -H -H O -rl -H -rH K -H -H -H M O -H -H -H O -H -H *H O '"H -H -H EG -rt -H -H
> S'S S USES P4E6E d. frtgSg_>g6S USEE O.ESS

(DrHCM^P (UrHCM-'S1 (UrHCM^ C3 OJrHCM'sP CJrHCM'* (UHCM-^* {UrHrN'-r*
4\J 4-> 4J'O4J 4J.4J 4J
OS II 18 II rd II -H IS II  rH -P rH4-> <-(4J
-H -rH -H U -H -H -H -H

CLH
132

-------


(N
CN
to
O
L-;
rH
^O
O

00
EH O
13 \D
H o
e<
1
£H

S o
D 1C
< °
cn
<
EH cr>
CM
op in
o o
in
a
u
EH
fX i— 1
W CM
cn m
o
dp
O
in
-•rH H
CM i-l
1 W rH
Q Q in
O O
m
a: cn
EH CJ
^ H
EH m
to o
H *P
Pi O
H
EH
U
1
33 CO
U CM
CM
„ 0
EH
pj
H ' p-
p4 CM
H
1 O
' Q

cn
<
EH











•


.
o


W

cu
a

cn
H
H
H O
— CO
rH rH
H
• H O
H CO

rH
r7
H O
H CO

i-H


- ' |— |
WO
W CO
— 'I-l
i-H

~»
W O
H 1C

i-H .
<


. r7
• W O'
H O
— rH

|6jJ


H
r-t O
H 0

i-l


*•— •.
W
M O
(H ^«
-— ' p-f
rH



~
W O
W 1C
^•^ rH
a
^
HH
' M
t-H
-— •
rH
<








i— 1
v^
DI
£

•.
0)
'O O*
a) 18
01 cn
> a o
a
4J
G rH
IB  e
a a
O J2
o u


m
^


• in
rH



in






in
rH




in
i-H






in
• i— i






in







in
i-H






, m
i— i




•in
rH






CM
a
•H

,_ i

v
0)
M
3
W
w
(U


CJ
O
•H
4->
(0
M
•M
r-l
•H
fo


ooo ooo ooo m co m in ooo ooo ooo m ro CN
»D ^o co o*co^r r*- rH  i— I o y\ o vo in r*** ro co rH (*•• vo
rH rH rH rH



OOO OOO .OOO CNTjtfOin OOO 000 OO CN^DrH
rHinOO CNlAfO COCOf* ... * rHO>in vD[**fO fO^1 •*•
fNinr> cftrH^ ^a«^cft. r-r-r*« r^ OOOCN mcno m** t"-^or-
ySfOCN fOCNrH ^fOCN COfOfOCNrHCS *3«m




OOO OOO OOO rOrHO in OOO OOO OOO rHrHO
ro [*• ^o CN o ON • in. o^ r** • • • ' • ^* ^* o M in o ro ^* *a* • • *
co in CN ro r^ ^j* o^ ^o r** r** r*** r^ r** ^o CA oo ro ^i* M o rH rH r^ r*» r^
•^mm CNCNCN rH-*^ - t— *r«* ^cNCN.r-^'*




ooo ooo ooo or*- co in oocs ooo ooo cNor-
rO CO CN *«O rH O rH C4 Cft ' • • • ' • ^ Cft CJ%. CO M5 rH CO ^O *3* ...
^oro^r oc^-co rocft^* ^1010 r- cnvocO' rHo^r rocftin vo^om
cororo cNrHrH inrorH corocN CNCNrH in^fcn




ooo ooo ooo.mcocft m ooo ooo ooo
inO** CT\OCO COfOO .....^ "TfOCN ff\ ^j« ^ ovoi*-
rH rH rH rH rH rH ' :


ooo ooo ooo-, .r^cft^p in ooo oo ooo kovor-*
*a* ' CO P^ O ^» CA .iH CO fN . • • / * rH CO ^*; r** '•O , ^ CO O"i ...
inro^ cncncn focNvo r^r-r» r- r^-ovo O»H OCNO r^r^r*
rororo rHrHrH coroco CNCNCN cNrH ^j»^ji^
rH
vJ ' ^
rH Ol rH ' S
\ g ' \
.U> CN &1 **
-e c s to
•5 < . 3 .
01 -H a U> .rH
.•a I-H I-H -a o
•HO -H cn
rH Cn r-l » i-l i-H
O m \ CO O CO ' V.
cn °J cn !H cn rH &>
.H 6 3 ,-rl g
rH rj M r-l 4J
ra • « ~ oi'<8<8, »
4JfifiG J2C.CC C1CC, C -CCC CO 4JCCC rHCCG Q.C3GS CCG
O -H -H -rl „ -H -rl -rl Q -rt -rl -H 33 -rl -H -rl (4 O -rl -H -rl Q -rl 'H -rl Q -H -rl -H 33 -H -rl -rl
EH s e e Sees uses aggg & H s s e > g s g usgs a g g g

Q) rH CM ^* ^) i-H CM ^* <]J i-H CM "31 Q) i— 1 CM *3* C • (U i— 1 CM ^* d) r4 CM ^* CJ rH CM 'T CJ i— 1 CM ^*
4J 4-1 4-1 4J O 4-> -P 4J ,.•-'.'.- +1
« 11 IB 11 0 II 18 II -H 10 II ' (8 II 18 11 18 II

4J 44 4J 144 4-> !*4 4J 1*4 (8 >4-> 44 4J 1JH. 4J ' UH ' 4J 44
rHJJ rH4-> I-I4J I-H4J HrH4-l ,i-H4J, rH4-l r44J
•rl -H -rl . -H 4-1 -rl -rl - -H -rl
&H &J &l &4 rH frl &4 n &4 ' ' . IV,
•H •
fcj
133

-------








£4
a
EH
|


W
Q
S
O
23
O

O
l-l

fa
^
m
ic£
g

OP
O
in
W
O


pi
H
tn
Of
o
CM in
CM
1 «.
Q H

a H

EH

tn
o
M
EH
CO
H
a
S
g
eC
S
O
M
>

EH
iJ
M
fa
1

Q
i M
^ 3
EH


















CM
CM

O

in

vo
o


CO
o

o




l-l
o

o



en
CM
in
o





H
CM
in
o






r_|
in
o




CO
o

o




CO
CM
CM
O




CM
rH
O














.
O
z

w
[ -]
p,
s

W
H
H
H

(!)
fa
H
H O
H O
— ' "3*
0
fa

H
H O
H O
~- CO
ID
fa


H
H O
H O
— ' CO
<1)
fa

JH
H O
H 0
—• CO
a)
fa



H
l-l 0
H CM
•— CM
O
fa


^^
H
H O
H O
— CO
0)
fa

__
H
H O
H 0
— • CO
0
fa


P
M O
••* CO

fa

H
H
H
•w*
<0
fa







r—{

2
«,
 CO in *P *3*
•

* H rH en ^unn •ep -*p CO CM CM CM ooo ooo CO CO CM O CM P~ in en co o vo co ooo ooo ^ CT\ VO in C^ ^1* "» CM «S- CO i-HCM ooo ooo vo vo en co co CM en vo o ^* co P-* VO *3* -SJ1 ^* CO CM ooo u> o o co co vo co en o CO *3- fO CM CMCM OOO OOO vo co in co a\ vo VO CM •*!« O P~ CTi rH rH rH rH OOO OOO co vo m o *r o rH in vo en o "3* CO -q* CO rH CO CM ' £^ cr rH S fr s .3 - - -H 01 i-H •rl tn i-H O 0) W rH •H rH 4J id id 4J C C C M C C C O -H -rl -H O -H -r, -rl EHggg > e s s (UrHCM-* QJrHCM1^ •U -U id II id II VI VI JJ l)H 4-> MH rH -P r-H JJ -rl -H fa fa ooo CM •* CM en o vo ooo CM VO CO en in in ooo VD CO VO in •H fa m -3, •» VD VO VO vo p~ in ... in in in CO ON CO ... in in in CM O O C- P- P» o co o ... r-vop- CT» O H • • • rH m O r** r*1* r*» fO CO G\ K • • oo p^ in in n iH t*^ ^o r*1 C C G ffi 'rl -rl -H a e g e 0) i-H CM -^ +J id II Vl •M m M -P •H &* in f»» m • r* m • f«H m , i^- m • r» in • r*- m • CN. m • m in f^. M •H fQ l-i tu 3 w to 0) O. G O •H -JJ (d 4J r-! •H b OOO O VO 00 ro p*« t^* in rp ro ooo CT> in co M.CO CN ^» fO M OOO rH CO C** *3* O ^* in in m ooo o m VD o m in in fo m ooo m ^« c^ a\ vo vo ooo M vo r** m ^ A ooo ro oo co ^p ^j* ^3* OOO r^- in ro o en p- m TI> ro ooo m co m m o co r-H r-H ooo ^p o O ro in in rH 1 in -a rH o tn rH •U fi fi C O -H -rl -H 6H g g g 0) i-H CM «S" 4-1 id II VI -P g g g 0) rH CM -3" 4J id II H aJ <4H rH 4-> -H fa OOO ih OO rH vo in in ooo O CM i-H o en co in rp ^c ooo en rH o r-l O O p* vo in ooo vo en vo p^ in vo in ^« co ooo o co o in co H rH OOO *3* p*. 03 in co CM vo in -a1 ooo vo CM rp r-l O CJ1 in vo in ooo CM in in en co co ooo CO O OO en co en rH r-l O 0 in o rH VO vo in rH 1 *. Q C C fi O -H -H -H U g g g a) i-H CM «* -P id II VI 4-1 !W rH 4J •rt fa vo vo vo vo vo in • » • in m m CO CO CO • • • in m m G\ O *$!* * * * vo r- r- H H rH • * • P-I> r* , O Oi r-H • * • CO r-H O • • • c^ r^ r** o ^ vo • • • CO CO r- r- . . r** r*1* G C C EC 'H -H -H a. g g g 0 rH CM T 4J id II -P


-------




























CO
CM
1
Q

ca
at
EH














































EH
3

jgj
EH
EH
Q
tH

<
1
*
o
~C
W
EH
a
H

dP
0
in
H
H
Q
O
a
en
O
H
EH
03
HH
A
w ,
EH '
O
&
S3
CJ
pq
EH
EH
CM
1
Q
en

EH
























CM
CM

O
in
rH
10
O
CO
O
VO
o


,_,
o
vo
o

en
CM
in
o


rH
CM
in
0



rH
rH
in
0



ro
o
o




CO
CM
CM
O

p-
CN
C


















c


Ct


s

o.

o
w
CM

O CM
03
CM
33
O CO
03
CM
33


O co
03
CM
S3

O CM
03
CM
33.


O co
03
CM
S3



O CO
03
CM
S3



O ro
03
CM
S3



*3*
O CM
O3
CM
' X

*3*
O
cn
CM
S3
















'O
« to .^i
fO^TT

OOO
in in CM
r* 03 p-


ooo
CM rH CM
in in in



ooo
CM in CM
VO VO rH
i- in vo



ooo
^* ^J* CO




ooo
p- rH vo
rH rH rH

CO O O
in •* in
CO fo ro


t-H
\
en
e
fc
III
T3
•H
rH
O
en

rH

4-> C3 £3 c


Hi rH CM rf
4J
id II
rl

rH 4J
•H




ooo

rH VO CO

OOO
in vo "3*

ooo

«3* in ^*


ooo

CO CM CM
rH CM CM

OOO
o in vo
•* •* (O


ooo
CM rH CM
CO CO CO



OOO
CO VO CM
p* T3* CO
-Ji CO to



ooo
rH ("*• CO
Cn in rH'
CM CM CM




in o o
CO CM Cn
CO CO VO

ooo
CO CM CO
i-H rH rH
i-H
cn
s

m
•rl
rH
O
03

(1)

•rH
JJ
a

§• E S B

0) rHCM T»
13 II


H ±>
•H




o o o vo ^i* ^i* in

m o CM ^* ^* *!? r**
•» in in
ooo cn co co in
cn m vo ... .
vo co cn *j* "31 ^* r*

ooo r^ I-H CM in
o o rH '^* in'in c***
O rH CTl
rH rH

ooo o r~ in in

co I-H rH p* vo ys r*~
co in ^<

ooo o r* r- in
vo t*^ co in "31 *v ^
vo r~ in


o o o o r^ cn m
o vo vo *3* ro m p*
p^ vo vo



ooo vo r^ rH in
rH O CM . . • .
^1* CO VO VO VO VO P^
vo vo in



ooo cn o rH in
in vo ro ... .
vo in ^




ooo CM in co in
rH rH CO ...
in vo CM '
rH rH rH

ooo <* •* •* in
•t? ^r co



CM
c
\
^


r-l

"Si 2

5
» 0
OC3C3C3 £3£3(3 Q
O .,_) «rl '|H S3 'lH 'H 'r( &•
oggs agee &

CDrHCM-* OrHCM-31 C
4J -P C

rl rl 4.

rH -P rH -l-l '-
•rl -rl 4J
ft) &, r-

?H
135
ooo

CM CM CO
r^voin
OOO
^J* 00 VO

ooo

00 00 V£>


ooo

co r*» in
^» co ro

ooo
o in in
rH o r^-
rH


OOO
CM rH ^
VO in CO



OOO
•^P CM OO
CT"l rH ^*
r-r-vo



ooo
rH 00 in
vo ^* ^*




ooo
CO CM O
in o r~
rH rH

ooo
CM O CO
Cn rH rH


r— 1
1?
g
^
01

•H
rH
0
w

rH
(fl
Q .rl -rH *rl


-P
id II
^1

. rH 4J
•H
CM



OOO

O CO VO
"CO CM
OOO
VO CM O

ooo

in in co


ooo

m o c\
CM CM rH

OOO
rH in in
oo in CM
in ro ro


ooo.
(in o o
vo in ^
^ CO CM



ooo
VD \O t**
CA CM r^
^J« ^J«



ooo
CO CM O
00 00 VO
CO CM CM


'

oop
mm ro

ooo
VO CO CO
•«• in in
CM i-H rH
rH
\
g
_
T!
•H
i-H
o
co

Q)
rH
-H
4J
(d
:O *rl -H -rl
> E S S

4J
id II
SH

rH 4-1
•H
f»



ooo

CM CM cn

ooo
CO VO O
co en in

ooo
I-H in co

o cn p-
^

ooo

rH Cn ^
**coco

o o in
cr\ r^ o
mm'*


ooo
o co vo
00 VO ^



o o
r*- CM
O*i *3*
p- p-



O 0 O
co p- in
p^ vo in




• ooo
in in vo
r~ ^ o
co cn cn
i-H

ooo
VO CO CM
re tf ro
VO ** "3"









rH
"\
^
£

•»•
Q >rj .^ -H
U g g g

(U rH CM -^T
4J ,
id ll
M

rH -P
•H
&i



^f roro

^* ^f ^*

00 OO 00
"=1* "* **

CM CM CM




r> oo vo

vo vo vo


oo vo vo
•^4 
-------




























CM
1
Q
a
1
EH









































EH
EH
1
i
a
CO
3:
r^|
00
O
CO
^
^s
u
w
ol
H
U]
OP
o
CM
H
H
H
Q
i
CO
u
H
EH
10
H
«
u
EH
O
$
(flj
X
u
63
EH
EH

H
1
Q
CO
EH
















CM
c>
\o
o
in

SJ
O
00
o
10
o

c
c



CT
CM
in
0



£
LT
O



tr
o



r-
c
o




CO
CM
CM
O



1—
O)
rH
O














O
&
s
si
CO
H
HO in
H CO i-H
•-* rH
rH
rt
HO in
H CO i-H
^•* r-l
rH
HO in
H CO rH
r-l

HH
HO in
H CO i-H
— r-l
r-l

^^.
H
HO in
H IO r-l
"—* rH
rH
^

H
HO in
HO rH
r-l

„
H
HO in
HO rH
r-l

^^
H
HO IT
H


„
H
HO in
H VO r-l
rH
' <
^
HH
H in
H rH
rH


°C
•H
"v^
.43
rH
rH
Ol O
£ r4
•j m
0) 01

0 HJ M
CO U) 04
a o
*° §
G rH -H
a id 4J
33 2
O* £ -P
 •<* CO CM CM H ^ CO CM



ooo ooo ooo focoo in o o o o ooo ^o«=t«in
C4p-co cMcoin- mp-co ... . 0 co co H HH^P ...
cochin cMinco .cococo vo^ovo r*- co *# co CM incMp-^ voya^
cocovo irjrHco coooin ^oco corn ^DCOCM



ocoo ooo ooo cocop- in ooo ooo ooo COCMCM
rHrHCTl P^in-^1 COCMP- ... . *3*inCT\ COtncO" COrHQ ....
Cn f*} f** rH P** CO P* ^* P*« yj VO **O P* rH O CM ^3 O ^* CO rH \O U3 f^ P**
vo vo in ^3* co fo in in ^p vo tn ^t* co co CM ^ ^* co



ooo ooo ooo cftino in ooo ooo ooo CMU?*I»
^* CO ^ rH O P^ rH O rH ... * c^ CO CM P"- O CO P"* rH CM ...
vop*in OrHo inp^in **CMO^ c^p-^o ficMiH
HrHrHHHrHrHrHrH rHrH ^H,-]^



ooo OCMO oooo covovo in ooo ooo ooo cM^rin
CO^«CM OOOO CMCOCO ... . OP-CO ^«OO OACOCTi ...
inrooi CMP-^J1 cn^cM ininin p* COCOP* ^*p^r* inroiKO r^^ovo
^inTj" CMCMCM ^inin TprOCO CMrHrH rpCOCO




ooo ooo ooo cr\inin in ooo ooo ooo co\^m
inCO-V COVDCM CMinOD ... . rHCOin COCMP- rHP-P- ...
rHcrtiH cooin crir-ipo ininin p- OrHrH ^p»r- ^DP-P* ininin



ooo ooo ooo incocn in ooo ooo ooo oococo
rH*3"CM ^Cft^l1 COOOVO ••• . ,^« COOO CMCOCft IOOO « • -• •
rHcMrH O\I-HCM o%u3p»- inmm P* voroo incorH cTirofo minm
COCOCO i-HrH CMCOCO POCOCO rHrHrH COCOCO
rH H
H S ,H 1" '
tT> - CM &l •*
e w c g w
'd -r-i rrj
-H \ ^ .H
M rH J3 • 0) rH
•O ,. O . rH T3 O
•H CO -H CO
rH rH * i-H |_|
O (U ^ — 03 O Q) ^*
O3 rH tjl H CO i-l 01
'•HE ' S -H g
rH , -P 01 i-H JJ
id id •• 01 id id ••

O -H -H -H 0 -H -H -H O -H -H -H K -H -H -H M Q -H -H -H Q -H -ri -H O -rl -H -H 33 -rl -H -H
EHEEE >EEE UEES O.EEE & EHESE >sss UEEE &EEE
Q) rH^ "3* (DrHCM1^1 GlrHCN1^ CDrHCM^r C QJrHCM^ (UrHCM^ (UrHCVJ^* (DrHCM^*
2 "^ 2 "^ 2 "^ 2 "^ • 5 2 "' 2 " 2 " 2 "
rH4J rH4J rH4J rH-P MrH4J rH-P rH-M rH4J
*TJ ~ , *H -iH . -H 4-) -H -H -H -H
m ^ tn fy ^j fa
fn
136

-------






























in
I
a
w
ca
EH






































EH
'tZt
9
EH
EH

§
H
OS
O
tJ
s
U
U
H
K
K
W
fa
a
3
EH
ofl
0
CO
EH
CM
CO
O
CM
H
M
W
Q

t/1
U
M
EH
W
H
K
"
U
1
m
u
P
EH
M
fa
1
Q
CQ
jgj
EH
















CM
O
y
O

ir
t~
o



CO
o
o





c
IO
o


CTV
CM
in
o


CN
in
0



IT
o



CO
o

o




CO
CM
CM
O



6


•a tn
01 01
= S
4J
C rH
IB IB
rH 0
3-H
Dig
id j p* in in in





ooo rt« in in
\o cs m in in in


OOO CN «* xy
p- in ^o


ooo o> vo vo



OOO ^ "31 P-
2^5



OOO (H O O
rH CO in ...

vo ^o in




OOO 00 P- P--
O CN) CN ...
o ^£> OT in in in
O 03 P-
(-1


O O O O"» C7\ OS
r— i rn OY * • •.
 in in in
co ^" ro








rH

e


Q C -C fi C C C
Q >P^ -,-| ,r-j ^ -H -H 'H
uses as eg
QJ/H^> in in in


ooo cr» cri o%
o o co ...
^JTOCN ^^^








^
<
en
g


Q fi C C CCS
CJSSE tiggg
0)(HCM^ 
-------






















CM
Q
M
tJ
03
<
EH




































EH
Z
EH
rf
EH
Q
H
CO
rt
DP
O
CO
o

EH
O<
63
CO
so
o
w"
H
W
Q
g
CO
U
M
EH
CO
w
PS
1
g
£
u
1
EH
H!
H
1
Q
54
CO
<
EH



















CM
CM
VD
O
in
r-l
VD
o


CO
o
VD
O



o
vo
o


rj*
CM
in
o





H
CM
in
o

rH
in
o





CO
o
o



CO
CM
CM
0



c

















C
B
£

C

O CM in
CO i-l
X
O CM in
CO i-l
CM
X


O co in
en rH
CM
X



O co in
CO H
CM
X


O CM in
(0 i-I
CM





O co tn
CO H
CM
X

O co in
CO r-l
CM
x





O co in
CO H
CM
X



O CM in
CO r-l
CM
X



O CM in
CO i-l
CM
X




CM
C
C^
£
^

Q
]

1
I


in in ro
CO O O
r-H r-l


r-l
\
Cn
g
^
tn
•a
•rl
"2
CO

r-l

•P C G C3
S 'g g £
»
^ CO CO

ooo
en vo ^
r~ r~ in
rH iH 1— 1




ooo
CM co in
in •* in



ooo
CM CM r-H
vo en ro
co ro ^j»



ooo
VD in en
o r-l en
ro co CM










r-l
en
g

».
Q fi C C
O '--I *H -rl
u e e a
•p
nt 11
J4
4J *W
•H
fo

13
CO rH O tn
co ro M r**

(N f-l r- i in
(N oj c»j r-»



fv) rH O in
^ *!••<£ P*



^ ,H ,_H tn
-

in o o^ in
ro m CN r-





r* GO co in
m i« «* t-^

ro ^ c^ in
p- r- vo p-





vo CM CM in



CM o o in
ro f> fO P^



CM CM ro .in
ro ro co p*




CM
£
' \
rC
r-

fl
i-
^
en
U)
c a G a>
H *rl *iH -H J.
ag g g a.
(1) i-H CM •>* C
4J O
a n -r
IH 4-
•H 4
fa 1-
&J
8
ooo
O «* CO

ooo
C\ ro rH
0% «SP CO
rH f-H r-H


ooo
^ oo ro
o cr* co



ooo
CO VO O
ys in m


ooo
p^ VD ro
 in
rH rH rH




ooo
VO rH Cn

ooo
CM CO O
co m ^
rH rH rH




ooo
co m m
m CM o
vo tn in



ooo
rH O CT»
CO CO P^



ooo
co ro CA
vo p- in
ooo
rH rH rH


rH
v^

g
h.
01
'O
•H
o
CO


m
4-J C C C

0) rH CM «tf
JJ
id n
n
4J UH
.7! "^
fa


ooo
VO ^* CO
o O ro

ooo
ro in ro
en CM CM



ooo
CM ro en
*!• rH O
CO CM CM



ooo
p* in o
co in ^
CM (N CM


ooo
CM CM CO
ro CM en





ooo
CO 0 (M
r*i *? o
CM CM CM

ooo
CM rH en
*» co en
CO P* VO





O CM O
CM VO ro
^ ^t* i-H
ro CM CM



ooo
CM m p-
-tf CO VO
ro CM CM



ooo
*3* CQ-VO
en co vo
ro ro ro

rH
^.
fi
».
•S
•H
rH -
o
CO
0)
rH
•H
4->
id
i— i d fi C
> g g'E
0) r-l CM •*
4J
13 II
IH
4J 14-1
•rl -
fa


ooo
i-H -
-------

































p-
CN
1
Q



m
EH














































EH
55


EH
3
EH
a
D
H!


cn
an
o
in
\
0
EH
W
to
o
m
H
M
SI
Q
o
s


co
O
S
co
M
W
EH
U
S
<
S3
0
H
§
EH
H

1
Q
to
EH




















CM
CN
VO
O

in
VC
o


00
o
vo
o



rH
O
IO
O

CA
CN
in
o



i-H
CN
in
o



rH
rH
in
O





fi
O
*3"
O





00
CN
CN
O


[-.
CN
rH
O
















O
s

s

CO
H
M 0
H CO
•*-* rH
rH
(H
H O
I-H CO

rH

H
H O
HI CO
— rH
rH

^_^
H
H 0
H 00
— rH
rH
H
H O
H VO
•"^ rH
rH

^^
.H
H O
H 0
rH


H
H 0
H O

rH



^^
H
H O
H •O-
^•^ rH
rH




M
I-H O
H IO
— -rH
rH
"*
~
H O
— rH
Sj







rH
en
E


(U
'CJ W
(D rd
ui to
D O
Q
4J
G rH
id id
rH 0
3--H
en g
id tu
O £
U U
in
r-



in




in
rH





in
rH



in
rH





in
rH




in
rH







in
rH







in
rH



in
rH



CN
, G
•rl
xT
rH

0)
!^
3
to
til
CD
in

C
O
•H
4J
U
4J
rH
•H
t,
OOO
fO VO rH
CN n ^i1
r~ co co

ooo
o in in
vo co in
CN ro'^j"


ooo

in *o p-*
in in**



ooo

cri in vo
«,„

' OOO
^* in o
00 P- rH
r- in 10



ooo
C3^ 00 03
•**»••<*



000
cn p^ in

O rH O
rH rH rH




OOO
P- ^* rH
in •>» co
in in rp





ooo
en co rH
in M in
CO i-H rH
rH CN CN

OOO
CNP^S
m m m

rH
Cn
g
,
to
t3
•rl
0
CO

rH
id

. S'g'g'g

CD rH CN T
4J
, id II
4J 
^ CN CN



OOO
CO P* CO
CNCN CN



OOO
CN 00 O
^p oo in
p- in p~





ooo
o o ^*
CO rH CN





OOO
rH in O
O CN ^P
rH CN CN
rH i-H rH

OOO
n in ^r
rH rH rH
\
1"
»
to
•H
i-H
O
tfl
<0
rH
•H
4J
a

§• 'e "E 'E

CO rH CN •«•
JJ

M
•H

ooo oo'o ooo
CTN VO If) 03 G"* f"* *^ CN VC
\O O ^ ^ O O^ iH \O *3*
i OOOOt^- CNtNrH ncNCN

ooo ooo ooo
in t— 1 CO , rH 00 VO rH fO O\
m ro CN rH in ••31 n


ooo ooo 'ooo

rH o\ {"•* &> n c*i oo ro rn




ooo ooo ooo

r^-ooin ^mro oor^
^^^ rHrHfH CNCNrH

OOO OOO OO

<3«mat cncricN voo
r^ ^* ^* ro rH M n ^*



ooo ooo ooo
CN'fr- coro^o <^CNVO
^•va- CNCNCN m^^p



ooo ooo ooo
p-oo mi— i "*o ^pinrH

OCTif- P^VOin fOrHCrt
rH . rH rH




OOO OOO OOO
ovocn inrHi-H p-co'a'

in^r^p CNCNCN intnm





ooo ooo ooo
ncNin ooc^Tti romcN
cooom roorH rHino
ininm cncnm cNr-oo
i-H rH rH CN rH rH

OOO OOO OOO
rH in r-- co o o CN rH r^-
ooo r-cr*co cnrocN
** rj« ^r H rH.i-n -^ m m
rH
rH g1 •
C7»
S CO
13
W rH
T3 O
•H CO
rH rH
O ese oeee


-------






EH

M
is
EH

W
H
Q
H
«
O

DM
u
o
IH
o:

H
£

CO
g
p

OP
O
in
X
8
EH

a
CO

<*>
o
tn
H
CO H
CM
1 U
a a
o
M s
ij
a
< CO
EH O
p
CO
H

EH
O
£
O

w
g
EH
H


1

Q
CO
EH
























CM
CM
VO
O

tn
rH
VO
O



CO
O
VO
O




rH
O

O




Cft
CM
tn
o




rH
CM
tn
0




rH

tn
o





ro
o
^i
o


CO
CM
CM
O


t-_
CM
rH
O

















•
0
z
CO

pt
2
• *2
CO
H
H
H O

a) to
PH
~
H O
H 0

CD
PH

H
H O
H O
— CO
0)
PH

^,
H
H O
H O
— CO
(U
PH


H
H O
H O
• — fO
0)
PH

^^
H
H O
H CM
^prf fM
O
PH

^.^
H
M 0
H O

ID
PH



~
H. O
HO
— CO
CD
PH

HH
H O
M 0

0)

„
H O
H VO

CD
BH








rH
tn
E


(U
•O en
 ^* vo
^P CA rH
«* in in


i-H
»
e

^
ra
•a

rH
0
CO


id
-P rt q e
O -rl -H -rl
EH g E E

(1) rH CM«»
4J
a n

rH 4-)
•H
fV|




OOO
co CM P-
P- CO P-
CMCM rH

OOO
cn cn f)
CO ^ "^3*
rH rH



OOO
ff) f~^ [•-•
ro in ro
CM CM CO




ooo
o% in o
CO O 0
rH CM CM




O O
O P-
in o
«r3« 
id
O -r| -rl -rl
> e e s

(U rH CM ^3*
4J
 *!* CM
co in co
in m vo




ooo
rH rH CM
VO i-H (Ti
CM CO CM




OOO
vo n* co
CT\ O3 CTt
in p- vo




ooo
r^ co co
P- CO CO
in in in




ooo
OO 0"> CO
co ro CM
vo co in
i-H rH i-H




OOO
P- CO CO
VO CO CO
VO P- VO


OOO
Cf\ CO VD
rH O in
^i ^« ff)
CM CM CM

OOO

cn o o\
in co vo










\
Crt
G

K
O -rl -rl -rl
0 E g g

(U f~t o] "^
4->
(d ii

rH 4J
•H
p-[




CO CO ^*
• ' . *
^« in in

-
O> O"\ CT\
...
^t ^* **3*




O rH i-H
. < .
in in m





•-H in in

in in in





o in in
....
p— vo vo





CO CM *J*
...
'VO VO VO





^t: [*« If)

P- P- C"»






co ro co
...
in in in



VO P- P-
. . *
in in m



co vo vo

in in in
















C C c;
K -H -ri -H
cu s H e

d) i-H CM *4*
JJ
id II
rl
[ t l^|
rH JJ
•rl
PH




in
•
r~


in
•
p*




in
«
t~





in

r-^





tn
•
P^





in
•
[•^





in

t-






m
•
p-



in
•
t-



m

p-




CM
C
•rl
X

i-H

(D
i_i
3
01

CM

rj
O
•H
,4-»
M
-P
rH
•rH
fo


OOO OOO
r- co in co ^r vo
CO CT\ in O% rH P—
CO CO CO rH CM r-H

OOO OOO
rH VO CO VO CM CO
i-H CT> f"* O O rH
CO CM CM rH rH rH



ooo ooo
in -^ rH CO CM VO
^* ro P— co co o\
*& *V CO CM CM rH




OOO OOO
CM O CO in rH CM
co in in co TT co
^« •=*• CO CM CM rH




000 OOO
CJ\ VO P*- (N P— 'CO
*3* VD P*> ' *4* rH *3*
co VD in in «* co




ooo ooo
CO "*S" Crt O% O fO
^j* p- co CM co in
vo in in *y ro co




OOO O O 'O
p— vo ^ cr\ in co
P- in CO rH CM ^3"
O CT\ O\ P— VD VO
rH




OOO OOO
O"» CM CO VD VD rH
CO VO VO CM P— d
in in ^p co co CM


ooo ooo
O rH P- CM P- CO
in VO P— • VD "*3f CT\
VD VD in o o en
rH rH rH i-H rH

OOO OOO

VD P- CM OO O"\ CO
^J1 "31 LD - CM CM CO

rH
•s^
\
g tn

•H
W rH . '
TJ O
-rH O3 l
O OJ :
CO - rH
•H
rH 4->
ra rti
O -rH -H -H O tH -H -rl
^ees >eee

0) rH CS "3* 4) rH (N ^*
-P H-l .
id II id II

i-H 4-1 rH 4J
•H -H
[T| fT| .




ooo
rH VD CO
CT\ O Tf
CO ^J1 CO

ooo
rH CM "*T
in co in
^p -^ co



•o o o
CT\ ^1* O
vo in co
^ ^P n




ooo
(N *J* O
CA P- CO
CM CO CM




OOO
CM o in
o en co
Cn VD VO




OOO
CM P- CM
cn CM o\
in in *sj*




ooo
o vo p-
p- r- o
CO CM CO
rH rH rH




OOO
OO O rH
CO CO P-
r- P- m


ooo
CM VO r— t
cr\ p- p-
cn cn P-
rH rH rH

OOO
VO CM CM
ca co in
VO VO P**










I — 1
CP
a

„
O -H -H -H
o e s e

(U i— 1 CM ^
V
id II

rH 4-J
-H
fcj




^ ^f ^*
• • •
in in in


cn cn cn
...
•Sjt «3« <^«




rH rH rH
...
in in in





P- CO P-
* * *
in in in





co cn co
* ' * .
VD VO VO





VD vo vo
...
vo vo vo





in in T*

p- r- p-






«* CO CM
...
in in in



co p- cn
...
in in in



in o cn

vo VD in
















fl G C
o/e'e'g

d) r— 1 CM *3*
4J
id II

rH 4J
•H
p4


140

-------
CM
CM
VO
o
in
rH
vo
o
EH
£ 00
EH 0
PC VD
£3 O
Q
H
o
» vo
en o
o
in VTI
\ CM
H in
C5 o

ft
W
cn
df>. i-H
O CM
in in
o
H
H
W
cn Q
Q i?
* o
64 cn
a O
< EH
EH CO
H
>: OS co
:.. B S
O 0
•g
rt
8
H CO
s
M
.1 P~
CM
Q r-
cn
rt
EH













b

K



e/
O'CM
cn
CM
03
cTcM
cn

O co
en
CM
93


•sr
8."
CM
33
O CM
en
CM
33




O co
CM
Hi •



O co
• cn
CM
,



O co
cn
CM
33



O CM
en
CM

o*
cn
CM
03













•o
01
01

I—I
id
0
•H
E
0)
.£ 03
U ft
in
in
rH

in
i-H


in
H
in
rH




IT



in




if



in

ir




CM
c
^
^


1
!
i
t
a
fl

>r;


_
r.

£
OOO OOO OOO i-HOO in OOO OOO OOO OOO
p-vocn -wrocM cn>*rH ... . voeo^p ocnr- co o co • • •
r-^_Ho p~ ** vo VOCOCM rococo p* p-cMvo incnin cn p* co rococo
H o en vein"* cn p- vo oooop- n- co ro in in T
ooo ooo ooo I-HOO in ooo ooo ooo ooo
va CM n» p- cn p- vo *3* o ... . cn p- in r-HP*-* corHco ....
• co oo CM o-oo H -"S-rHO rororo r- rococo en-a-vo ' vo rH o roroco
CM •* o CM CM en vo CM P- covoco voinvo p~ cn p-
Tp'r* *3i CM CM rH H rOCOCOrHrHi-H

ooo ooo ooo rp co co in ooo ooo ooo rororo
picnro inn-rp enoom 	 rocMOO ocnrj. coo" •''
caincn cop^^» cncoco rp^-er P* ^rcni-H corHvo OP*CM ^«^i«rp
SrorH Scop;- p- n- in ' • cn cn en in vo in °°°
rHrHrH rHrHl-H . . rH rH rH


0 O O OOO OOO COrHrH in OOO OOO OOP OOO
I-HCMCO CMrHco Tpcncn ... . oocooo cnrHin oocnco ...
•WCOCO rOCOCM p-OrH •»•*•«• P- COCMi-HrHrHO "^Cj^J •*'»1'
invoincMCMCM ro^pro voininrofMCM rproco
OOO OOO OOO COrHrH in OOO OOO OOO. i-Hi-HO
OCMCM COVOt-l CMCnvO ... . ^PrPVO "cPCOrp CMP-rH ...
cnoo-^pvocMO OCMOO roroco p* rocnoop^voco o^i*in rococo
Tpinrp P-COP- cncnoo ^PCOCM vovoin cnvoco
rH rH rH H rH H



OOO OOO -OOO VOP~P- in OOO. OOO OOO «3*CMCM
corHcn inoovo p*p^in ... . rop»co r-cop^ ocnvo *. ••
vorvip- covoco CMP-I-H in^-* p- cncni-H i"3-co OCMM- ininin
invoin rococo incoin ininincococM minrp



ooo ooo ooo rovop- tn ooo ooo ooo vomr>
•00^ p-voin rHop- ... , vorHO cMCMrH oocncn ...
i-Hinco VOTCO Hcocn P-P-P- P- p- in in incocM cMco-3- P-P-P-
TCMO cnoop- oo^rH cMrHO oot^-p* incorp
rHrHrH rH rH rH rH rH rH , rH iH rH



boo ooo ooo •ycocM in ooo ooo .000 CMgeecjeeg e.gg o)Engsa>ssgoH. eg^ssg-
(UrHCM-q- (UrHCM-W 0) rH CM -* ftrHCM'* S 0)rHCM*3" 0) rH CM -=P <1) rH CM •* . . Q. rH CM "*
jj JJ Jj O 41 41 4>
Id II * II id li • H JJ '. IH JJ' ' IT) MH .
rH JJ -1 JJ rH JJ -1 JJ M ' rH JJ rH JJ . rH Jj;. '•;*•»
•rl -rl -H 4J JJ iH -H. -H . - . JJ
fa, fa fa .1-1 i-Hfa. fa- fa.rH
•rl -rl . ' . - »• -H
fa fa ;...-.&,
141.

-------
                                    TECHNICAL REPORT DATA
                             (Please read Instructions on the reverse before completing)
 1. REPORT NO.
   EPA-600/2-80-112  .2
              3. RECIPIENT'S ACCESSION-NO.
 4. TITLE AND SUBTITLE

   MONITORING "SEPTAGE ADDITION TO WASTEWATER TREATMENT
   PLANTS   Volume II.  Vacuum Filtration  of Septage
              5. REPORT DATE
               August  1980  (Issuing Date)
              6. PERFORMING ORGANIZATION CODE
 7. AUTHOR(S)

  Charles  R.  Ott and Burton A.  Segal!
              8. PERFORMING ORGANIZATION REPORT NO
 9. PERFORMING ORGANIZATION NAME AND ADDRESS
  University  of Lowell
  Department  of Civil Engineering
  One University Avenue
  Lowell.  Massachusetts  01854	
              10. PROGRAM ELEMENT NO.
                 35B1C
              11. CONTRACT/GRANT NO.
                Grant No. R805406010
 12. SPONSORING AGENCY NAME AND ADDRESS
   Municipal Environmental Research Laboratory--Cin.,OH
   Office of Research and Development
   U.S.  Environmental Protection  Agency
   Cincinnati. Ohio  45268	
              13. TYPE OF REPORT AND PERIOD CQV
               Final  Vol.  II  1/78-12/79
                                       VERED
              14. SPONSORING AGENCY CODE
               EPA/600/14
 15. SUPPLEMENTARY NOTES
  See  also Volume I (EPA-600/2-79-132,  NTIS PB80-143613)
  Project  Officer:  Steven W. Hathaway  (513)  684-7615
 16. ABSTRACT                                                               .	
  The study  examined the feasibility  of using conventional vacuum filtration to dewater
  conditioned  septage sludge,.alone and in combination with thickened waste activated
  sludge.  The septage was conditioned  with aluminum sulfate,  ferric chloride, and
  sulfuric acid,  each used independently.   Lab experiments were  conducted with a filter
  leaf apparatus  that simulates a coil  spring vacuum filter.   The capillary suction tes
  CST, was used to estimate filterability.   Field studies, utilizing a full-scale
  vacuum filter and large quantities  of septage, were conducted  at the Medfield,
  Massachusetts wastewater treatment  plant.  The studies showed  that vacuum filtration
  of a combined mixture of the thickened waste activated sludge  and septage conditioned
  with either  alum, ferric chloride,  or acid is feasible.  Excellent cake yields and
  filtrate quality were obtained.  The  cost of treating septage  in the solids handling
  train at Medfield was less than the cost of adding septage to  the liquid stream at
  the plant  inlet.
 7.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS
                                                                         c. COS AT I Field/Group
  Waste Treatment
  Sludge Disposal
  Dewatering
  Septic Tanks
    Septic Tank Sludge
    Septage Treatment
    Vacuum Filtration
     13B
 8. DISTRIBUTION STATEMENT

   RELEASE TO  PUBLIC
19. SECURITY CLASS (ThisReport)'
   UNCLASSIFIED
                                              20. SECURITY CLASS (Thispage)
                                                 UNCLASSIFIED
21. NO. OF PAGES
     156
                                                                         22. PRICE
EPA Form 2220-1 (9-73)
                                             142
                                                           U.S. GOVERNMENT PRINTING OFFICE: 1980--657-165/0127

-------