-------
REFERENCES
Bard, Y. 1974. Nonlinear Parameter Estimation, Academic Press, N.Y. , 2341 PP.
Beven, K.J. and M.J. Kirkby. 1979. A physically based variable contributing area model of basin
hydrology. Hvdro. Sci. Bull., 24: 24:43-69.
Cosby, B.J., R.F. Wright, G.M. Hornberger and J.N. Galloway. 1985a. Modeling the effects of acid
deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Wat.
Resour. Res., 21: 51-63.
Cosby, B.J., R.F. Wright, G.M. Hornberger and J.N.Galloway 1985b. Modeling the effects of acid
deposition: estimation of long-term water quality responses in a small forested catchment. Wat. Resour.
Res., 21, 1591-1601.
Cosby, B.J., G.M. Hornberger, J.N. Galloway, and R.F. Wright. 1985c. Freshwater acidification from
atmospheric deposition of sulfuric acid: a quantitative model. Environ. Sci. Tec., 19: 1144-1149.
Cosby, B.J., G.M. Hornberger, R.F. Wright, E.B. Rastetter and J.N. Galloway. 1986a. Estimating
catchment water quality response to acid deposition using mathematical models of soil ion exchange
processes. Geoderma (in press).
Cosby, B.J, P.G. Whitehead and R. Neale. 1986b. A preliminary model of long-term changes in stream
acidity in southwest Scotland. J. Hydrol., (in press).
Chow, V.T. 1964. Handbook of Applied Hydrology. McGraw Hill, New York.
Conway, G.R., N.R. Glass and J.C. Wilcox. 1970. Fitting nonlinear models to biological data by
Marquardt's algorithm. Ecology, 51: 503-507.
Corps of Engineers, U.S. Army, North Pacific Division. 1956. Summary Report of the Snow Investigation,
Snow Hydrology.
Hamon, W.R. 1961. Estimating potential evapotranspiration. J. Hydraul. Div. Am. Soc. Civ. Ens. 87:107-118.
Hornberger, G.M. , K.J. Beven, B.J. Cosby, and D.E. Sappington. 1985. Shenandoah watershed study:
Calibration of a topography-based, variable contributing area hydrological model to a small forested
catchment. WRR 21: 1841-1850.
Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust.
Appl. Math. .11: 431-441.
Neal, C. , P.G. Whitehead, R. Neale and B.J. Cosby. 1986. The effects of acidic deposition and conifer
afforestation on stream acidity in the British uplands. J. Hydrol., (in press).
Rosenbrock, H.H. 1960. An automatic method for finding the greatest or least value of a function
Comput. J. 3: 175-184.
Whitehead, P. , Hornberger, G. , and R. Black. 1979. Effects of parameter uncertainty in a flow routing
model. Hydrol. Sci. Bull. , 24: 445-464.
Wright, R.F. , B.J. Cosby, G.M. Hornberger and J.N. Galloway. 1986. Interpretation of paleolimnological
reconstructions using the MAGIC model of soil and water acidification. J. Wat. Air Soil Pollut., (in press).
A. 1-3-4
-------
Table A.1
Table A.2
Table A.3
Figure A.1
Figure A.2
Figure A.3
SECTION A: SUMMARY
Values of MSB, RMSE and RMSE expressed as a percentage
of the observed mean value of the DDRP variables for
Woods Lake (calibration and corroboration periods)
Values of MSE, RMSE and RMSE expressed as a percentage
of the observed mean value of the DDRP variables for Panther
Lake (calibration and corroboration periods)
Values of MSE, RMSE and RMSE as expressed a percentage of
the observed mean value of the DDRP variables for Clear Pond
(entire period of record)
Output of calibrated model: long-term hindcast for Woods Lake
Output of calibrated model: long-term hindcast for Panther Lake
Output of calibrated model: long-term hindcast for Clear Pond
OTHER ASSORTED PRELIMINARIES:
Figure A.4 Conceptual basis of the hydrological model (TOPMODEL)
Figure A.5 Conceptual flux routing in the chemical flux model (MAGIC)
Figure A.6
Conceptual linking of TOPMODEL state variables to flow
routing parameters in MAGIC
A. 1-3-5
-------
Table A.1. MSE summary for Woods Lake (based on DDRP variables of interest). MSE = Mean Squared
Deviation, RMSE = Square Root of MSE, %MEAN = 100.*RMSE/(Mean of observed data).
Variable
Calibration period (1)
Units MSE RMSE %MEAN
Corrobration period (2)
MSE RMSE %MEAN
Discharge
Cum Disc.
Chloride
Sulfate
Alk(grn)
Calcium
Magnesium
Sodium
Potassium
Alum(tot)
H +
m3/s
m/yr
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
moi/m3
meq/m3
.0029
-
22.8
368.2
617.0
43.7
6.0
17.6
3.6
41.4
49.5
.05
-
4.8
19.2
24.8
6.6
2.4
4.2
1.9
6.4
7.0
-
50.5
14.7
-183.7
9.1
13.1
21.5
29.7
61.7
36.5
.0046
-
19.2
173.0
266.2
47.1
5.9
8.9
2.8
46.2
64.8
.07
-
4.4
13.2
16.3
6.9
2.4
3.0
1.7
6.8
8.0
-
48.4
10.7
-429.0
9.6
13.1
14.5
26.6
102.0
52.6
(1) 1 September 1978 - 31 May 1980
(2) 1 June 1980 -- 31 August 1981
A. 1-3-6
-------
Table A.2. MSE summary for Panther Lake (based on DDRP variables of interest). MSE = Mean
Squared Deviation, RMSE = Square Root of MSE, %MEAN = 100.*RMSE/(Mean of observed data).
Variable
Calibration period (1)
Units MSE RMSE %MEAN
Corrobration period (2)
MSE RMSE %MEAN
Discharge
Cum Disc.
Chloride
Sulfate
Alk(grn)
Calcium
Magnesium
Sodium
Potassium
Alum(tot)
H +
m3/s
m/yr
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
mol/m3
meq/m3
.0012
-
23.6
254.7
6194.2
1630.2
83.6
92.0
4.0
13.8
10.2
.03
-
4.9
16.0
78.6
40.4
9.1
9.6
2.0
3.7
3.2
-
39.5
12.7
61.9
20.1
18.0
24.0
17.0
133.7
290.9
.0025
-
5.2
215.7
3553.4
1597.6
69.5
108.4
7.8
3.5
2.4
.05
-
2.3
14.7
59.6
40.0
8.3
10.4
2.8
1.9
1.6
-
18.6
12.4
39.5
19.2
15.9
23.7
21.9
560.0
400.0
(1) 1 September 1978 - 31 May 1980
(2) 1 June 1980 - 31 August 1981
A. 1-3-7
-------
Table A.3. MSE summary for Clear Pond (based on DDRP variables of interest). MSE = Mean Squared
Deviation, RMSE = Square Root of MSE, %MEAN = 100.*RMSE/(Mean of observed data).
Variable
Period of Record (1)
Units MSE RMSE %MEAN
Discharge
Cum Disc.
Chloride
Sulfate
Alk(grn)
Calcium
Magnesium
Sodium
Potassium
Alum(tot)
H +
m3/s
m/yr
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
meq/m3
mol/rnS
meq/m3
.0219
-
21.7
90.2
347.4
444.0
22.0
25.0
.5
1.4
.0
.15
.
4.7
9.5
18.6
21.1
4.7
5.0
.7
1.2
.2
.
63.5
7.5
17.9
12.7
14.7
12.8
18.4
514.3
28.6
(1) 27 July 1982 -- 24 May 1984
A. 1-3-8
-------
SECTION B: OPTIMIZATION PROTOCOL FOR TOPMODEL (HYDROLOGICAL MODEL)
Table B.1
Table B.2
Table B.3
Table B.4
Description of optimization protocol
Values and sources of fixed parameter values
Ranges and optimal values of adjustable parameters (optimized
using both the calibration period and the entire period of record
for Woods and Panther)
Results of Hessian analysis on optimized parameters (Woods
Lake, calibration period)
Results of Hessian analysis on optimized parameters (Panther
Lake, calibration period)
Table B.5
Table B.6
Table B.7
Results of Hessian analysis on optimized parameters (Clear Pond,
entire period of record)
Results of Hessian analysis on optimized parameters (Woods
Lake, entire period of record)
Results of Hessian analysis on optimized parameter (Panther
Lake, entire period of record)
A. 1-3-9
-------
Hydrologicai Model
The hydrological model, TOPMODEL (Beven and Kirkby, 1979), will be used to determine routing
parameters for use in the chemistry model. TOPMODEL is a topography-based variable contributing area
catchment model. The model has an upper and a lower storage zone, with precipitation input and
evapotranspiration loss occurring only within the upper store. Flow paths within the model include
overland flow directly into the stream, drainage from the upper zone to the lower zone, and baseflow from
the lower zone into the stream. Precipitation can also bypass the upper zone and flow directly into the
lower store.
A detailed description of TOPMODEL is given in Hornberger et. al. (1985). They also present the
results of a sensitivity analysis which suggest a reduced TOPMODEL structure that captures the critical
elements of catchment hydrological behavior. Based on their findings, a simplified version of the model
is used for the DDRP. The inputs and parameters listed below correspond to those in Hornberger et.
al. (1985).
A simple snow accumulation and melt model was added to the "front end" of TOPMODEL to be
used for model applications where winter snowpack are significant. The optional TOPMODEL parameters
are determined during the warm months when possible errors from a snow model need not be
considered. The optimal TOPMODEL parameters are then taken as fixed and the optimal snow model
parameters are determined using the entire period of record.
Since TOPMODEL simulates the hydrology of only the terrestrial portion of watersheds, it was
necessary to include a simple reservoir routing routine on the "back-end" of TOPMODEL for those
catchments with lakes. This routine utilizes hypsographic information to delay water entering the lake
before it flows out through the outlet.
Inputs
PPT - Measured precipitation [mm/day]. Snow accumulation and melt calculated using empirical
formulas given in Chow (1964), and in Corps of Engineers (1956). The cutoff temperature for
snow accumulation and the temperature-induced snowmelt parameter were optimized whereas
the rain-induced snowmelt parameter was fixed to the value given in Chow (1964).
PET - Potential evapotranspiration [mm/day]. Daily values calculated from mean temperature and
daylength data using the equation of Hamon (1961).
TOPOGRAPHICAL INFORMATION. Includes A/TANB distribution, total blue line stream length and total
catchment area. The constants A and TANB are the upslope area and the local slope respectively. All
the information is derived from topographic maps.
DISCH - Measured flow [mm/day] .
Fixed Parameters
SUBV - Kinematic streamflow velocity [km/day]. Estimated from typical values given in the
literature.
RIP - Riparian area [fraction]. Calculated as:
RIP = WID * BLUE / CATCHAREA
where WID is the average stream width, BLUE is the total catchment blue line stream
length and CATCHAREA is the total catchment area.
ARLAK - Lake area [fraction].
UO - Saturated hydraulic conductivity [mm/day]. Estimated from available data or literature
sources.
A. 1-3-10
-------
SZQ - Maximum baseflow rate [mm/day]. Calculated as:
SZQ = KMAX * DEPTH * (2 * BLUE + PERIMETER)
TERRAREA where KMAX is the maximum saturated hydraulic conductivity,
DEPTH is the average till depth, BLUE is the blue line stream length, PERIMETER is the He
perimeter and TERRAREA is the terrestrial area of the catchment.
SRMAX - Maximum storage in upper layer [mm]. Calculated as SRMAX = ROOTDEPTH * FIELDCAP
where ROOTDEPTH is the rooting zone depth and FIELDCAP is the volumetric moisture
proportion at field capacity.
Adjustable parameters:
PMAC-
SZM-
Outputs
QTOT-
QOF-
SMDEF -
Macropore flow parameter [fraction]. Optimum value determined from the range of 0 - 0.75.
Baseflow recession parameter [mml. Optimum value determined from the range 4-180.
Total Streamflow per day [mm/day].
Total Overland flow per day [mm/day].
Average soil moisture deficit [mm].
A. 1-3-11
-------
Table B.1. Fixed parameter values.
Parameter
Woods
Panther
Clear Pond
RIP
ARLAK
SRMAX (mm)
SUBV12 (km/day)
DMAX3 (km)
UO1'4 (mm/day)
SZQ (mm/day)
RAINPRO8
total blue3 (m)
width blue9 (m)
total area2'6 (km2)
lake area1'2'6 (km2)
rooting depth (rrj)
average till depth |7 (m)
max permeability (mm/day)
field capacity4'10
lake perimeter (km)
1. 326X1 0"4
0.118
134.
5.
0.9
3.1 97X1 02
32.5
0.007
296.
0.9
2.12
0.25
1.0
2.3
0.134
1.76
1. 645X1 0'4
0.143
206.
5.
0.91
4.579X1 03
828.4
0.007
200.
0.9
1.12
0.17
1.0
24.5
1.12X104
0.206
1.45
1.51 9X1 0"3
0.134
150.
5.
4.21
4.493X1 02
212.3
0.007
8214.
0.9
5.21
0.7
1.0
55-° .
1.9X1049.5X102
0.150
2.95
RIP = total blue * width blue/total area
ARLAK = lake area/total area
SRMAX = rooting depth * field capacity
SYBV = approximate channel flow celerity
DMAX = maximum channel distance
UO = average permeability
SZQ = maximum baseflow rate
= max permeability * ave till depth
* (2 * total blue + lake perimeter)/terrestrial area
RAINPRO = empirical constant for snowmelt induced by rainfall
Peters and Murdoch, 1975. WASP 26:387-402.
Chen et al., 1982. ASCE J. Env. Eng. 108:455-472.
Digitization of 1:24000 scale topographic maps.
Smith College geology file.
Hank Shugart, U.Va., personal communication.
Robbins Church, personal communication.
Ron Munson, personal communication.
Chow, 1964. Handbook of Applied Hydrology.
Assumption.
0 April and Newton, 1985, WASP 26:373-386.
Assumed a circular lake.
Dunne and Leopold, 1978. Water in Environmental Planning.
A. 1-3-12
-------
Table B.2. Adjustable parameters.
Range for Optimization
Parameter
Minimum
Maximum
SZM (mm)
PMAC
TOUT (°F)
SNOPROP
4.0
0.0
10.0
0.0
180.0
0.75
50.0
0.5
Optimized Values
Period of
Catchment Optimization SZM (rnm)
Woods
Woods
Panther
Panther
Clear Pond
1 4/14/78 to 5/31/80
2 4/14/78 to 12/19/81
3 8/1/82 to 7/31/84
Calibration1
All Data2
Calibration
All data2
All data3
7.43
10.64
11.22
14.82
12.19
PMAC
0.36
0.51
0.49
0.53
0.30
TCUT(°F)
26.24
25.81
26.89
26.46
32.62
SNOPROP
0.03
0.03
0.06
0.04
0.04
A. 1-3-13
-------
Table B.3. Hessian analysis.
Woods - Calibration Period
Topmodel Parameters
Parameter
SZM
PMAC
Estimated
Optimum
7.426
.359
Std Dev
Estimate
2.742
.095
% Std Err
Estimate
36.92
26.32
Correlation matrix (R2*100) of parameter estimates
SZM PMAC
SZM
PMAC
100.0
50.7
50.7
100.0
Epsilon indifference region is: .19073E-01
(Based on Hessian Matrix with 2 parameters)
Snow Parameters
Parameter
TCUT
SNOPROP
Estimated
Optimum
26.244
.030
Std Dev
Estimate
1.406
.005
% Std Err
Estimate
5.36
16.60
Correlation matrix (R2*100) of parameter estimates
TCUT SNOPROP
TCUT
SNOPROP
100.0
-11.0
-11.0
100.0
Epsilon indifference region is: .51813
(Based on Hessian Matrix with 2 parameters)
A. 1-3-14
-------
Table B.4. Hessian analysis.
Panther - Calibration Period
Topmodel Parameters
Parameter
SZM
PMAC
Estimated
Optimum
11.223
.492
Std Dev
Estimate
19.625
.457
% Std Err
Estimate
174.87
92.79
Correlation matrix (R2*100) of parameter estimates
SZM PMAC
SZM
PMAC
100.0
96.4
96.4
100.0
Epsilon indifference region is: .53167E-02
(Based on Hessian Matrix with 2 parameters)
Snow Parameters
Parameter
TCUT
SNOPROP
Estimated
Optimum
26.888
.060
Std Dev
Estimate
.356
.003
% Std Err
Estimate
1.32
5.80
Correlation matrix (R2*100) of parameter estimates
TCUT SNOPROP
TCUT
SNOPROP
100.0
37.8
37.8
100.0
Epsilon indifference region is: 7.3171
(Based on Hessian Matrix with 2 parameters)
A. 1-3-15
-------
Table B.5. Hessian analysis.
Clear - All Data
Topmodel Parameters
Parameter
SZM
PMAC
Estimated
Optimum
12.193
.304
Std Dev
Estimate
9.402
.393
% Std Err
Estimate
77.11
129.15
Correlation matrix (R2*100) of parameter estimates
SZM PMAC
SZM
PMAC
100.0
.5
.5
100.0
Epsilon indifference region is: .28393E-02
(Based on Hessian Matrix with 2 parameters)
Snow Parameters
Parameter
TCUT
SNOPROP
Estimated
Optimum
32.619
.043
Std Dev
Estimate
.751
.005
% Std Err
Estimate
2.30
11.16
Correlation matrix (R2*100) of parameter estimates
TCUT SNOPROP
TCUT
SNOPROP
100.0
-1.2
-1.2
100.0
Epsilon indifference region is: 2.4680
(Based on Hessian Matrix with 2 parameters)
A. 1-3-16
-------
Table B.6. Hessian analysis.
Woods - All Data
Topmodel Parameters
Parameter
SZM
PMAC
Estimated
Optimum
10.645
.505
Std Dev
Estimate
5.021
.064
% Std Err
Estimate
47.17
12.75
Correlation matrix (R2*100) of parameter estimates
SZM PMAC
SZM
PMAC
100.0
-38.2
-38.2
100.0
Epsilon indifference region is: .11522
(Based on Hessian Matrix with 2 parameters)
Snow Parameters
Parameter
TCUT
SNOPROP
Estimated
Optimum
25.810
.030
Std Dev
Estimate
1.426
.006
% Std Err
Estimate
5.52
19.75
Correlation matrix (R2*100) of parameter estimates
TCUT SNOPROP
TCUT
SNOPROP
100.0
1.4
1.4
100.0
Epsilon indifference region is: .43858
(Based on Hessian Matrix with 2 parameters)
A. 1-3-17
-------
Table B.7. Hessian analysis.
Panther - All Data
Topmodel Parameters
Parameter
SZM
PMAC
Estimated
Optimum
14.818
.533
Std Dev
Estimate
***
***
% Std Err
Estimate
***
***
Correlation matrix (R2*100) of parameter estimates
SZM PMAC
SZM
PMAC
***
***
***
***
Epsilon indifference region is: 1.0508
(Based on Hessian Matrix with 2 parameters)
Snow Parameters
Parameter
TCUT
SNOPROP
Estimated
Optimum
26.463
.044
Std Dev
Estimate
.970
.005
% Std Err
Estimate
3.67
10.39
Correlation matrix (R2*100) of parameter estimates
TCUT SNOPROP
TCUT
SNOPROP
100.0
3.7
3.7
100.0
Epsilon indifference region is: 1.0230
(Based on Hessian Matrix with 2 parameters)
A. 1-3-18
-------
SECTION C: EVALUATION OF MSE FOR THE HYDROLOGICAL MODEL
Table C.1 MSE of cumulative flow
Table C.2 MSE of daily flow (in units of m3/s)
Table C.3 MSE of daily flow and efficiency (in units of mm/day)
Table C.4
In each table, entries are made for:
MSE of average monthly discharge and efficiency
(in units of mm/day)
a) Snowmodel vs. TOPMODEL contributions to MSE
b) Calibration vs. corroboration period MSE values (for Woods and Panther)
c) MSE values for the models calibrated to all available data (for Woods and Panther)
A. 1-3-19
-------
Table C.1. MSB of Cumulative Flow.
Watershed
Woods
Woods
Panther
Panther
Clear Pond
Period of
Optimization
Calibration1
All data2
Calibration1
Ail data2
All data3
Number of
Time steps
1287
1287
1287
1287
372
MSE ([mm]2)
5986.
11975.
103788.
98726.
35664.
MSE ([m3]2)
2.69X1 010
5.38X1 010
1.52X1011
1.44X1011
9.67X1 011
4/14/78 to 5/31/80
4/14/78 to 12/19/81
8/01/82 to 7/31/84
A. 1-3-20
-------
Table C.2. MSE ([m3/s]2) of daily flow.
Watershed
Woods
Woods
Woods
Woods
Woods
Woods
Panther
Panther
Panther
Panther
Panther
Panther
Clear Pond
Clear Pond
Period
Calibration1
Calibration
Corroboration2
Corroboration
All data3
All data3
Calibration
Calibration
Corroboration
Corroboration
All Data3
All Data3
All Data4
All Data4
Model
TOPMQDEL5
SNOW6
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
MSE ([m3/s]2)
69.X10'5
288.X10"5
188.X10'5
455.X10"5
101.X10"5
252.X10'5
7.X10'5
124X10"5
214.X10"5
429.X10"5
7.X10"5
45.X10'5
120X10"5
2190.X10"5
I 4/14/78 to 5/31/80
2 6/1/80 to 12/19/81
3 4/14/78 to 12/19/81
4 8/1/82 to 7/31/84
Optimizing TOPMODEL parameters from June to October.
Optimizing SNOW parameters during entire year.
A. 1-3-21
-------
Table C.3. MSB ([mm/day] ) and efficiency of daily flow.
Watershed
Woods
Woods
Woods
Woods
Woods
Woods
Panther
Panther
Panther
Panther
Panther
Panther
Clear Pond
Clear Pond
Period
Calibration1
Calibration
Corroboration2
Corroboration
All data3
All data3
Calibration
Calibration
Corroboration
Corroboration
All Data3
All Data3
All Data4
All Data4
Model
TOPMODEL5
SNOW6
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
MoSE o
([m3/s]2)
1.15
4.78
3.12
7.56
1.67
4.19
0.38
6.31
3.12
7.56
0.38
2.29
0.33
6.02
Number of
time steps
296
721
306
567
602
1288
295
720
306
567
601
1287
186
372
Eff
0.54
0.01
0.50
0.20
0.63
0.39
0.63
-0.75
-6.73
-5.38
0.70
0.21
0.76
0.38
I 4/14/78to 5/31/80
6/1/80 to 12/19/81
3 4/14/78 to 12/19/81
8/1/82 to 7/31/84
5 Optimizing TOPMODEL parameters from June to October.
Optimizing SNOW parameters during entire year.
A. 1-3-22
-------
Table C.4. ([mm/day] ) and efficiency of monthly-averaged flow.
Watershed
Woods
Woods
Woods
Woods
Woods
Woods
Panther
Panther
Panther
Panther
Panther
Panther
Clear Pond
Clear Pond
Period
Calibration1
Calibration
x Corroboration2
Corroboration
All data3
All data3
Calibration
Calibration
Corroboration
Corroboration
All Data3
All Data3
All Data4
All Data4
Model
TOPMQDEL5
SNOW6
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
TOPMODEL
SNOW
MSE ([mm/day]
0.18
0.30
0.31
1.32
0.30
1.32
0.17
0.76
0.25
0.72
0.16
0.63
0.22
3.08
Number of
)time steps
9
23
10
18
19
18
9
23
10
18
19
41
6
11
Eff
0.78
0.86
0.76
0.43
0.76
0.64
0.69
0.69
0.56
0.24
0.72
0.64
0.70
0.48
I 4/14/78to5/31/80
, 6/1/80 to 12/19/81
3 4/14/78 to 12/19/81
4 8/1/82 to 7/31/84
>*rf^l.ll I ll«_ll iy I V^l t VI V>« L-f 1—I— ^Jf^.1 dl I IGLtslO II Wl II WLJI 1C i\J
Optimizing SNOW parameters during entire year.
A. 1-3-23
-------
Table D.1. Woods calibration period (units of MSE are (m /s) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.1541E-04
-.4130E-03
0.
-.6622E-06
0.
.5015E-03
.6110E-04
.5460E-04
.2866E-01
.3336E-01
.5507E-03
.4999E-03
-.3066E-02
0.
-.8687E-04
0.
.6020E-07
.2197E-04
.1433E-02
.8619E-03
.2335E-03
.6502E-04
.1192E-04
-.4865E-03
0.
.1806E-06
0.
.5013E-03
-.4405E-03
-.3499E-03
-.8121E-02
.2192E-01
.4122E-03
.3867E-03
-.3613E-02
0.
.2516E-04
0.
.6020E-07
-.1583E-03
-.9182E-02
-.2442E-03
.1534E-03
.4864E-04
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/DeI(MSE)
Unnormalized Normalized
SZQ
SZM
SRMAX
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.6501E+05
-2422.
-.1542E+07
1994.
.1637E+05
.1831E+05
34.88
29.90
1816.
2000.
-326.1
-.1151E+05
.1504E+08
.4553E + 05
697.7
1160.
4282.
.1539E+05
.8404E + 05
-2055.
.5331E +07
1995.
-2270.
-2858.
-123.1
45.68
2426.
2586.
-276.7
.3978E + 05
.1504E + 08
-6316.
-109.0
-4094.
6517.
.2056E + 05
A. 1-3-24
-------
Table D.2. Woods corroboration period (units of MSB are (m /s) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.2101 E-04
-.3347E-03
0.
0.
0.
-.4687E-03
-.4250E-02
.4006E-03
-.3483E-01
-.2228E-01
-.3918E-03
.6836E-03
-.2485E-02
0.
0.
0.
-.6020E-07
-.1528E-02
.1051E-01
-.1047E-02
-.1559E-03
-.4623E-04
.1944E-04
-.3770E-03
0.
0.
0.
-.4688E-03
-.2237E-02
.2275E-03
.4298E-01
.1232E-01
-.4543E-03
.6335E-03
-.2799E-02
0.
0.
0.
-.6020E-07
-.8042E-03
.5971 E-02
.1293E-02
.8621 E-04
-.5358E-04
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.4754E+05
-2988.
-2134.
-235.4
2496.
-28.74
-44.85
-2552.
1463.
-402.3
-.1609E+08
-654.7
95.18
-954.7
-6413.
-.2163E+05
.5139E + 05
-2653.
-2133.
-447.0
4395.
23.26
81.23
-2201.
1581.
-357.3
.1608E+08
-1244.
167.4
773.6
.1160E + 05
-.1866E + 05
A. 1-3-25
-------
Table D.3. Panther calibration period (units of MSB are (m3/s)2).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
S2M
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.2548E-06
-.1232E-03
0.
-.3373E-04
0.
-.1213E-02
-.1393E-01
.5391 E-03
.1336E-01
.1345
-.1161E-02
.2046E-03
.1383E-02
0.
-.6951 E-02
0.
-.1960E-06
-.6862E-02
.1450E-01
.1450E-01
.9418E-03
-.1660E-03
.2548E-06
-.3489E-03
0.
-.1023E-03
0.
-.1214E-02
-.4611E-01
-.1886E-02
-.4333E-01
.1227
-.1260E-02
.2104E-03
-.3915E-02
0.
-.2107E-01
0.
-.1960E-06
-.2271 E-01
-.5071 E-01
-.2600E-02
.8588E-03
-.1801 E-03
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
SRMAX
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.4049E+07
8114.
-.2964E+05
-824.0
-71.94
1855.
75.00
7.653
-861.7
4888.
723.0
-143.9
-.5004E+07
-145.9
68.88
1248.
1062.
-6025.
.3938E+07
-2866.
-9778.
-824.0
-21.94
-530.1
-22.96
8.163
-793.9
4754.
-255.6
-47.45
.5003E+07
-43.88
-19.90
-384.7
1164.
-5552.
A. 1-3-26
-------
Table D.4. Panther corroboration period (units of MSE are (m3/s)2).
Gradients
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
Del(MSE)/Del(Par+)
Unnormalized Normalized
.8036E-06
-.4813E-03
0.
0.
0.
-.5364E-02
-.2861 E-01
-.4085E-03
.3067
.7861 E-01
-.5277E-02
.6605E-03
-.5402E-02
0.
0.
0.
-.8820E-06
-.1409E-01
-.1099E-01
.1840E-01
.5502E-03
-.7546E-03
Del(MSE)/Del(Par-)
Unnormalized Normalized
.8428E-06
-.4926E-03
0.
0.
0.
-.5364E-02
-.1304E-01
-.3724E-03
.2110
.7896E-01
-.5451 E-02
.6908E-03
-.5529E-02
0.
0.
0.
-.8820E-06
-.6423E-02
-.1001 E-01
.1266E-01
.5527E-03
-.7795E-03
Gradient Inverses
Parameter
SZQ
SZM
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
Del(Par+)/Del(MSE)
Unnormalized Normalized
.1254E+07
-2078.
-186.2
-34.69
-2447.
3.061
12.76
-189.3
1514.
-185.2
-.1132E + 07
-70.92
-90.82
54.59
1817.
-1325.
Del(Par-)/Del(MSE)
Unnormalized Normalized
.1199E+07
-2030.
-186.2
-76.53
-2685.
4.592
12.76
-183.7
1447.
-181.1
-.1132E + 07
-155.6
-100.0
79.08
1809.
-1283.
A. 1-3-27
-------
Table D.5. Clear Pond all data (units of MSE are (m3/s)2).
Gradients
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RA1NPRO
ARLAK
DeI(MSE)/Del(Par+)
Unnormalized Normalized
.2184E-05
-.2876E-03
0.
0.
0.
-.9724E-02
.1373E-01
.8605E-02
.1092
-.2618
-.9713E-02
.4575E-03
-.3506E-02
0.
0.
0.
-.1492E-04
.4178E-02
.2807
.4739E-02
-.1833E-02
-.1301E-02
Del(MSE)/DeI(Par-)
Unnormalized Normalized
.2912E-05
-.4142E-03
0.
0.
0.
-.9726E-02
.1384E-01
-.1908E-02
-.2277
-.2837
-.9835E-02
.6166E-03
-.5050E-02
0.
0.
0.
-.1492E-04
-.4210E-02
-.6225E-01
.9883E-02
-.1986E-02
-.1318E-02
Gradient Inverses
Parameter
SZQ
SZM
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
Del(Par+)/Del(MSE)
Unnormalized Normalized
.4640E+06
-3478.
-102.9
72.83
116.2
9.148
-3.819
-103.0
2185.
-285.2
-.6770E+05
239.3
3.571
211.0
-545.7
-768.4
Del(Par-)/Del(MSE)
Unnormalized Normalized
.3442E+06
-2415.
-102.8
72.28
-524.0
-4.396
-3.516
-101.7
1621.
-198.0
-.6768E+05
237.5
-16.07
-101.2
-503.6
-758.8
A. 1-3-28
-------
Table D.6. Woods all data (units of MSB are (m3/s)2).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.1385E-05
-.9734E-04
0.
-.3853E-05
0.
.1052E-02
-.2262E-03
.2349E-03
.1380E-01
-.4933E-02
.1151E-02
.4461 E-04
-.1036E-02
0.
-.5171E-03
0.
.1204E-04
-.1143E-03
.6062E-02
.4150E-03
-.3455E-04
.1359E-03
-.3612E-06
-.1286E-03
0.
-.5900E-05
0.
.1051E-02
-.3277E-02
-.1474E-03
-.1186E-01
-.1630E-01
.9971 E-03
-.1156E-04
-.1369E-02
0.
-.7921 E-03
0.
.1204E-06
-.1656E-02
-.3805E-02
-.3567E-03
-.11 41 E-03
.1153E-03
Gradient Inverses
Parameter Del(Par+)/DeI(MSE)
Unnormalized Normalized
DeI(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
SRMAX
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.7282E+06
-.1027E+05
-.2592E+06
951.0
-4421.
4258.
72.43
-202.7
868.4
.2241E +05
-965.3
-1934.
.7172E+07
-8745.
165.0
2410.
-.2896E + 05
7360.
-.2814E+07
-7774.
-.1692E + 06
951.2
-305.1
-6783.
-84.22
-61.30
1023.
-.8659E + 05
-730.2
-1262.
.7173E + 07
-603.7
-262.8
-2804.
-8765.
8673.
A. 1-3-29
-------
Table D.7. Panther all data (units of MSE are (m /s) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
DelI (MSE) /Del (Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARIAK
.1960E-07
-.8052E-04
0.
.2744E-06
0.
-.9157E-04
-.1767E-02
.7648E-04
.1145E-01
.8317E-02
-.7619E-04
.2207E-04
-.1193E-02
0.
.5517E-04
0.
-.1960E-07
-.9421 E-03
.2024E-02
.5033E-03
.5821 E-04
-.1090E-04
.3920E-07
-.1246E-03
0.
-.3332E-06
0.
-.91 61 E-04
-.5374E-02
-.1994E-03
-.9211E-02
-.1063E-02
-.1037E-03
.2558E-04
-.1847E-02
0.
-.6819E-04
0.
-.1960E-07
-.2865E-02
-.5277E-02
-.4050E-03
-.7448E-05
-.1482E-04
Gradient Inverses
Parameter Del (Par+)/Del (MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
SRMAX
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.3753E+08
-.1242E+05
.3734E+07
-565.8
.1308E+05
87.24
120.4
-.1313E+05
.4531 E +05
-838.3
.1813E + 05
-1062.
493.9
1987.
.1718E+05
-.9180E + 05
.3239E + 08
-8024.
-.3021 E+07
-186.2
-5015.
-108.7
-940.3
-9644.
.3910E + 05
-541.3
-.1466E + 05
-349.0
-189.3
-2469.
-.1343E+06
-.6744E+05
A. 1-3-30
-------
Table D.8. Woods calibration period (units of MSB are (mm/day)2).
Gradients
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RA1NPRO
ARLAK
Del(MSE)/Del(Par+)
Unnormalized Normalized
.0256
-.6860
.0000
-.0011
.0000
.8330
.1015
.0907
47.6024
55.4152
.9148
.8304
-5.0937
.0000
-.1443
.0000
.0001
.0365
2.3808
1.4317
.3879
.1080
Del(MSE)/Del(Par-)
Unnormalized Normalized
.0198
-.8082
.0000
.0003
.0000
.8327
-.7317
-.5812
-13.4899
36.4135
.6847
.6424
-6.0017
.0000
.0418
.0000
.0001
-.2630
-15.2533
-.4057
.2549
.0808
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized . Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
39.1370
-1.4578
***
-928.3128
***
1.2005
9.8520
11.0231
.0210
.0180
1.0931
1.2042
-.1963
***
-6.9277
***
9053.7399
27.4102
.4200
.6985
2.5779
9.2635
50.5895
- -1.2373
***
3209.0907
***
1.2010
-1.3667
-1.7206
-.0741
.0275
1.4604
1.5566
-.1666
***
23.9484
***
9056.9471
-3.8024
-.0656
-2.4647
3.9232
12.3765
A.1-3-31
-------
Table D.9. Woods corroboration period (units of MSB are (mm/day) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.0349
-.5560
.0000
.0000
.0000
-.7785
-7.0594
.6654
-57.8502
-37.0032
-,6509
1.1356
-4.1286
.0000
.0000
.0000
-.0001
-2.5374
17.4641
-1.7400
-.2590
-.0768
.0323
-.6262 '
.0000
.0000
.0000
-.7788
-3.7165
.3779
71.3914
20.4611
-.7546
1.0506
-4.6498
.0000
.0000
.0000
-.0001
-1.3358
9.9186
2.1472
.1432
-.0890
Gradient Inverses
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
Del(Par+)/Del(MSE)
Unnormalized Normalized
28.6199
-1.7986
***
***
***
-1.2845
-.1417
1.5028
-.0173
-.0270
-1.5364
.8806
-.2422
***
***
***
-9686.6915
-.3941
.0573
-.5747
-3.8607
-13.0207
Del(Par-)/Del(MSE)
Unnormalized Normalized
30.9360
-1.5970
***
***
***
-1.2840
-.2691
2.6460
.0140
.0489
-1.3253
.9519
-.2151
***
***
***
-9683.0026
-.7486
.1008
.4657
6.9819
-11.2312
A. 1-3-32
-------
Table D.10. Panther calibration period (units of MSB are (mm/day)2).
Gradients
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
Del(MSE)/Del(Par+)
Unnormalized Normalized
.0013
.6288
.0000
-.1721
.0000
-6.1907
-71.0944
2.7505
68.1417
686.4570
-5.9217
1.0437
7.0565
.0000
-35.4626
.0000
-.0010
-35.0101
73.9547
4.0885
4.8052
-.8468
Del(MSE)/Del(Par-)
Unnormalized Normalized
.0013
-1.7799
.0000
-.5218
.0000
-6.1914
-235.2789
-9.6232
-221.0526
625.9177
-6.4268
1.0733
-19.9757
.0000
-107.4959
.0000
-.0010
-115.8622
-258.7487
-13.2632
4.3814
-.9190
Gradient Inverses
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
Del(Par+)/DeI(MSE)
Unnormalized Normalized
793.6812
1.5904
***
-5.8089
***
-.1615
-.0141
.3636
.0147
.0015
-.1689
.9581
.1417
***
-.0282
***
-980.7610
-.0286
.0135
.2446
.2081
-1.1809
Del(Par-)/Del(MSE)
Unnormalized Normalized
771.7963
-.5618
***
-1.9164
***
-.1615
-.0043
-.1039
-.0045
.0016
-.1556
.9317
-.0501
***
-.0093
***
-980.6621
-.0086
-.0039
-.0754
.2282
-1.0881
A. 1-3-33
-------
Table D.11. Panther corroboration period (units of MSE are (mm/day) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
S2M
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
.0041
-2.4558
.0000
.0000
.0000
-27.3687
-145.9920
-2.0844
1564.8390
401.0485
-26.9225
3.3699
-27.5609
.0000
.0000
.0000
-.0045
-71.8932
-56.0466
93.8903
2.8073
-3.8499
.0043
-2.5134
.0000
.0000
.0000
-27.3697
-66.5425
-1.9002
1076.3864
402.8714
-27.8124
3.5247
-28.2079
.0000
.0000
.0000
-.0045
-32.7686
-51.0923
64.5832
2.8201
-3.9772
Gradient Inverses
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
Del (Par +) /Del (MSE)
Unnormalized Normalized
245.8209
-.4072
***
***
***
-.0365
-.0068
-.4797
.0006
.0025
-.0371
.2967
-.0363
***
***
***
-221.8466
-.0139
-.0178
.0107
.3562
-.2597
Del(Par-)/Del(MSE)
Unnormalized Normalized
235.0261
-.3979
***
***
***
-.0365
-.0150
-.5263
.0009
.0025
-.0360
.2837
-.0355
***
***
***
-221.8383
-.0305
-.0196
.0155
.3546
-.2514
A. 1-3-34
-------
Table D.12. Clear Pond all data (units of MSE are (mm/day)2).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.0006
-.0790
.0000
.0000
.0000
-2.6713
3.7721
2.3641
29.9893
-71.9266
-2.6683
.1257
-.9631
.0000
.0000
.0000
-.0041
1.1478
77.1153
1.3018
-.5035
-.3575
.0008
-.1138
.0000
.0000
.0000
-2.6721
3.801 1
-.5243
-62.5493
-77.9372
-2.7018
.1694
-1.3874
.0000
.0000
.0000
-.0041
1.1567
-17.1014
-2.7152
-.5456
-.3620
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
1688.8323
-12.6600
***
***
***
-.3744
.2651
.4230
.0333
-.0139
-.3748
7.9549
-1.0383
***
***
***
-246.4454
.8712
.0130
.7682
-1.9862
-2.7968
1252.9200
-8.7888
***
***
***
-.3742
.2631
-1.9074
-.0160
-.0128
-.3701
5.9016
-.7208
***
***
***
-246.3694
.8646
-.0585
-.3683
-1.8330
-2.7621
A. 1-3-35
-------
Table D.13. Panther all data (units of MSE are (mm/day)2).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/Del(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARU\K
.0001
-.4108
.0000
.0014
.0000
-.4672
-9.0147
.3902
58.4028
42.4317
-.3887
.1126
-6.0868
.0000
.2815
.0000
-.0001
-4.8065
10.3257
2.5680
.2970
-.0556
.0002
-.6358
.0000
-.0017
.0000
-.4674
-27.4182
-1.0174
-46.9972
-5.4257
-.5290
.1305
-9.4217
.0000
-.3479
.0000
-.0001
-14.6189
-26.9230
-2.0665
-.0380
-.0756
Gradient Inverses
Parameter Del(Par+)/Del(MSE)
Unnormalized Normalized
Del(Par-)/Del(MSE)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TCUT
SNOPROP
RAINPRO
ARLAK
7356.7523
-2.4344
***
731.8991
***
-2.1404
-.1109
2.5629
.0171
.0236
-2.5729
8.8807
-.1643
***
3.5529
***
***
-.2081
.0968
.3894
3.3668
-17.9922
6348.0179
-1.5728
***
-592.0814
***
-2.1396
-.0365
-.9829
-.0213
-.1843
-1.8903
7.6630
-.1061
***
-2.8742
***
***
-.0684
-.0371
-.4839
-26.3297
-13.2191
A. 1-3-36
-------
Table D.14. Woods all data (units of MSE are (mm/day) ).
Gradients
Parameter Del(MSE)/Del(Par+)
Unnormalized Normalized
Del(MSE)/De!(Par-)
Unnormalized Normalized
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
.0023
-.1617
.0000
-.0064
.0000
1.7468
-.3758
.3902
22.9272
-8.1943
1.9127
.0741
-1.7210
.0000
-.8589
.0000
.0002
-.1899
10.0697
.6893
-.0574
.2257
-.0006
-.2137
.0000
-.0098
.0000
1.7464
-5.4433
-.2449
-19.7071
-27.0751
1.6231
-.0192
-2.2746
.0000
-1.3157
.0000
.0002
-2.7515
-6.3207
-.5925
-.1895
.1915
Gradient Inverses
Parameter
SZQ
SZM
UO
SRMAX
SUBV
RIP
PMAC
TOUT
SNOPROP
RAINPRO
ARLAK
Del(Par+)/Del(MSE)
Unnormalized Normalized
438.3686
-6.1853
***
-156.0121
***
.5725
-2.6612
2.5631
.0436
-.1220
.5228
13.4883
-.5811
***
-1.1643
***
4317.3967
-5.2646
.0993
1.4508
-17.4338
4.4307
Del(Par-)/Del(MSE)
Unnormalized Normalized
-1694.0493
-4.6798
***
-101.8441
***
.5726
-.1837
-4.0833
-.0507
-.0369
.6161
-52.1246
-.4396
***
-.7600
***
4318.1945
-.3634
-.1582
-1.6879
-5.2763
5.2214
A. 1-3-37
-------
SECTION E: OPTIMIZATION PROTOCOL FOR MAGIC
(CHEMICAL FLUX MODEL)
Description of optimization protocol
Table E.1 Values and sources of fixed parameter values
Table E.2 Ranges adjustable parameters for optimization
Table E.3 Optimal values of adjustable parameters (Woods Lake, calibration period and entire record)
Table E.4 Optimal values of adjustable parameters (Panther Lake, calibration period and entire
record)
Table E.5 Optimal values of adjustable parameters (Clear Pond, entire record)
Table E.6 Results of Hessian analysis on optimized parameters (Woods Lake, calibration period)
Table E.7 Results of Hessian analysis on optimized parameters (Panther Lake, calibration period)
Table E.8 Results of Hessian analysis on optimized parameters (Clear Pond, entire period of record)
A. 1-3-38
-------
Table E.1. Fixed parameter values for MAGIC - DDRP northeast special interest watersheds.
Parameter
Woods
Panther
Clear
Soil Depth (m)1
A + B 0.62 0.68
C 1.68 23.82
Bulk Density (kg/m3)2
A+B 1009. 1283.
C 1620. 1549.
Porosity (frac)3
A + B 0.62 0.52
C 0.39 0.42
CEC (meq/kg)4
A+B 121.1 94.7
C 20.9 11.4
KAL(OH)35
A+B 7.9 7.9
C 9.6 9.6
Lake 8.9 8.9
SO4 Halfsat. (meq/m3)6
A + B 150 150
C 150 150
Lake Area/Basin Area7 0.12 0.14
Lake Residence Time(y)8 0.54 0.68
0.55
54.45
1140.
1590.
0.57
0.40
33.8
9.0
7.9
9.6
8.9
150
150
0.14
1.98
1 The average start depth of the "C" horizon for all available samples in the ILWAS file SMIGEOL on card
85 was used as the depth of the A+B horizons. The sample sizes and standard deviations were 12 and
0.14 m for Woods and 17 and 0.16 m for Panther. The Clear Pond catchment value was based on one
sample in RILWAS file COLX. The C horizon thickness was the difference between the average depth
to bedrock and the A+B depth. The average depths to bedrock were those cited by Peters and Murdoch
(1985) for Woods and Panther and a value of 55 m for Clear Pond was a preliminary value for the deep
till region determined by Robert Newton (Ron Munson, personal communication).
2 Bulk density = (1-porosity)*2.65*1000, where 2.65 g/cc is an assumed specific gravity of the soil
solids.
3 Porosity was assumed to be equal to the percent soil moisture by volume at saturation. The values
used are the depth-weighted averages of one profile each from the Woods and Panther catchments found
on card 93 of the SMIGEOL file. Since no data were available for the Clear Pond catchment, the
averages of Woods and Panther were used.
4 CEC data for Woods and Panther were obtained from the ILWAS file UMACEC. Depth-weighted
averages were used. For Woods 7 profiles were averaged for the A+B value and 6 for the C. The
A. 1-3-39
-------
Panther averages were based on 9 profiles of the A+B and 6 of the C. The values for Clear Pond were
based on one profile from the COLX RILWAS file.
Table E.1. Continued.
5 KALOH3 values were based on concentrations of total monomeric aluminum and hydrogen ion found
in the ILWAS file CORAL and from the analysis by Schofield (1983).
6 SO4 half-saturation constant. Assumed.
7 ILWAS values are from Peters and Murdoch (1985). Clear Pond lake and catchment areas supplied
by EPA (M. R. Church, pers. com.).
Q
Lake residence time was calculated as lake volume divided by mean annual discharge. Lake volumes
for Woods and Panther are from Peters and Murdoch (1985). Mean annual discharges were calculated
from the ILWAS file USGFLOW. Clear Pond volume was estimated from the hypsographic curve supplied
by Tetra Tech and discharge from RILWAS file USGSTAGE and the observed yield.
A. 1-3-40
-------
Table E.2. Adjustable parameters for MAGIC.
Parameter
Ranges for Optimization
Units Minimum Maximum
UP(NH4L) %
UP(N03L) %
UP(NH4A+B) %
UP(NO3A+B) %
0.0
0.0
0.0
0.0
100.0
100.0
100.0
100.0
EMX
WE(Ca)
WE(Mg)
WE(Na)
WE(K)
log(SAlCa)
log(SAIMg)
log(SAINa)
log(SA1K)
COZ(A+B)
COZ(C)
meq/kg
meq/m2/yr
meq/m2/yr
meq/m2/yr
meq/m2/yr
0.0
1.0
1.0
1.0
1.0
-5.00
-5.00
-5.00
-5.00
.30
.30
15.0
150.0
150.0
100.0
100.0
5.00
5.00
5.00
5.00
10.00
10.00
A. 1-3-41
-------
Table E.3. Adjustable parameters for MAGIC.
Optimized Values
Parameter
UP(NH4L)
UP(NO3L)
UP(NH4A+B)
UP(NO3A+B)
Woods Lake
calibration
Units period
% 86.3
% 59.8
% 92.2
% 73.9
Woods Lake
entire period
of record
87.3
57.1
91.8
68.2
EMX
WE(Ca)
WE(Mg)
WE(Na)
WE(K)
log(SAICa)
log(SAIMg)
log(SAINa)
log(SA1K)
COZ(A+B)
COZ(C)
meq/kg
meq/m2/yr
meq/m2/yr
meq/m2/yr
meq/m2/yr
8.30
13.4
1.3
1.0
1.2
2.62
1.70
-3.67
-4.99
10.00
1.55
7.14
13.5
1.5
1.0
1.0
3.45
.21
-2.96
-4.99
5.35
1.32
A. 1-3-42
-------
Table E.4. Adjustable parameters for MAGIC.
Optimized Values
Parameter
UP(NH4L)
UP(NO3L)
UP(NH4A+B)
UP(NO3A+B)
Panther Lake
calibration
Units period
% 91.2
% 55.0
% 93.8
% 60.8
Panther Lake
entire period
of record
93.0
56.5
94.9
60.9
EMX
WE(Ca)
WE(Mg)
WE(Na)
WE(K)
log(SAICa)
log(SAIMg)
log(SA1Na)
log(SA1K)
COZ(A+B)
COZ(C)
meq/kg
meq/m2/yr
meq/m2/yr
meq/m2/yr
meq/m2/yr
.67
112.7
22.8
24.5
7.6
3.63
4.44
3.76
-4.01
.33
4.68
.67
118.2
28.3
20.0
1.0
4.50
2.78
-2.46
2.22
2.94
4.36
A. 1-3-43
-------
Table E.5. Adjustable parameters for MAGIC.
Optimized Values
Parameter
Units
Clear Pond
entire period
of record
UP(NH4L)
UP(NO3L)
UP(NH4A+B)
UP(NO3A+B)
EMX
WE(Ca)
WE(Mg)
WE(Na)
WE(K)
log(SAlCa)
log(SAIMg)
log(SAINa)
log(SA1K)
COZ(A+B)
COZ(C)
meq/kg
meq/m2/yr
meq/m2/yr
meq/m2/yr
meq/m2/yr
93.1
90.9
96.6
95.4
.05
74.3
12.0
16.6
1.0
1.69
1.18
-2.30
-1.72
.30
3.39
A. 1-3-44
-------
Table E.6. Hessian Analysis: Woods Lake.
Parameter
Estimated
Optimum
Std Dev
Estimate
%Std Error
Estimate
UNH%L
UNO%L
UNH%B
UNO%B
EMX
86.260
59.770
92.220
73.880
8.302
2.955
1.163
1.790
0.742
1.113
3.43
1.95
1.94
1.00
1.36
Correlation Matrix (R2*100) of parameter estimates.
UNH%L UNO%L UNH%B
UNO%B
EMX
UNH%L
UNO%L
UNH%B
UNO%B
EMX
100.0
0.0
-6.6
0.0
-2.4
0.0
100.0
0.0
-18.8
3.1
-6.6
0.0
100.0
0.0
1.2
0.0
-18.8
0.0
.100.0
-0.9
-2.4
3.1
1.2
-0.9
100.0
The epsilon indifference region is: 119.74
(Based on Hessian Matrix with 5 parameters)
A. 1-3-45
-------
Table E.7. Hessian Analysis: Panther Lake.
Parameter
UNH%L
UNO%L
UNH%B
UNO%B
EMX
Estimated
Optimum
91.200
54.970
98.800
60.790
0.674
Std Dev
Estimate
3.032
1.062
2.440
0.901
0.006
%Std Error
Estimate
3.32
1.93
2.60
1.48
0.89
Correlation Matrix (R2*100) of parameter estimates.
UNH%L
UNO%L
UNH%B
UNO%B
EMX
UNH%L
UNO%L
UNH%B
UNO%B
EMX
100.0
0.0
-4.9
0.0
-2.7
0.0
100.0
0.0
-23.5
2.8
-4.9
0.0
100.0
0.0
0.7
0.0
-23.5
0.0
100.0
-1.1
-2.7
2.8
0.7
-1.1
100.0
The epsilon indifference region is: 121.95
(Based on Hessian Matrix with 5 parameters)
A. 1-3-46
-------
Table E.8. Hessian Analysis: Clear Pond.
Parameter
UNH%L
UNO%L
UNH%B
UNO%B
EMX
Estimated
Optimum
93.060
90.880
96.630
95.430
0.052
Std Dev
Estimate
6.969
2.488
4.066
1.593
0.002
%Std Error
Estimate
7.49
2.74
4.21
1.67
4.03
Correlation Matrix (R2*100) of parameter estimates.
UNH%L UNO%L UNH%B
UNO%B
EMX
UNH%L
UNO%L
UNH%B
UNO%B
EMX
100.0
-0.1
-6.2
0.1
-3.9
-0.1
100.0
0.0
-6.2
2.9
-6.2
0.0
100.0
0.0
1.4
0.1
-6.2
0.0
100.0
-1.1
-3.9
2.9
1.4
-1.1
100.0
The epsilon indifference region is: 32.928
(Based on Hessian Matrix with 5 parameters)
A. 1-3-47
-------
Chemical flux model
The chemical flux model is MAGIC (Cosby et al., 1985 a,b,c). Details of MAGIC and examples of
its use have been given elsewhere (Cosby et al., 1986b, Wright et. al., 1986, Neal et al., 1986), including
a sensitivity analysis (Cosby et al., 1986a). MAGIC has been modified for this work in the following ways:
the model now contains two soil layers; atmospheric inputs can be measured values when available
(rather than inferred annual means); atmospheric inputs can bypass the upper soil layer (macropore flow)-
atmospheric inputs can be accumulated and released from a snowpack. Several outputs from
TOPMODEL are used to set routing parameters and to control the snow accumulation and melt in
MAGIC. The basic chemical reactions modeled in MAGIC are unchanged. The inputs and parameters
listed below correspond to those in Cosby et al., (1985b) with the exception of the routing parameters
(identified with a*) which were introduced for this two layer version of MAGIC.
Inputs
Q-M
XX
W..
W.
XX
measured streamflow [mm/dayl.
(xx = Ca, Mg, Na, K, S04, Cl, N03, F) - Measured atmospheric deposition of ions
[meq/m2/day]. The rate at which the measured deposition is added to the soil is controlled
in the case of snow accumulation and melt by the outputs of TOPMODEL.
(xx = Ca, Mg, Na, K) - Weathering inputs of base cations [meq/nr/yr]. Measurements of
these rates are not available. These inputs will be treated as adjustable parameters that must
be optimized (see below).
(xx = S04, Cl, N03, F) - Net Uptake rates of anions [meq/m2/yr]. These net uptake rates
simulate biological utilization of the anions. The annual rates of these net uptakes will be
calculated from measured net fluxes of the anions.
PCO2 Partial pressure of CCL in the two soils [atm]. These partial are linearly scaled to temperature
(a measured input). The scaling factor (St) is an adjustable parameter that is optimized (see
below). v
T Temperature of the two soil layers and the surface water [deg. C]. Taken from measurements
or literature.
Fixed parameters:
CEC
D
BD
P
Ka,s
PMAC
IF*
Cation exchange capacities for the two soil layers [meg/kg]. Taken from appropriately
weighted measurements.
Sulfate adsorption parameters (C = half-saturation constant [meq/m3]), for the two soil
layers. Taken from appropriately weighted measurements.
Average depth of the two soil layers fm]. Taken from appropriately weighted measurements.
Bulk density of the two soils [kg/md]. Taken from appropriately weighted measurements or
the literature.
Porosity of the two soils [fractionl. Taken from measurements or literature.
Equilibrium constant for AI(OH)3 solubility in the stream. Calculated from observed pH-AI
relationships.
Lumped equilibrium constant for the solubility of AI(OH)3 in each soil layer.
Fraction of deposition (or snow melt) that bypasses the soils and enters surface waters
directly [fraction]. Derived from the calibration of TOPMODEL.
Fraction of deposition (or snowmelt) that bypasses the upper soil layer and enters the lower
soil layer directly [fraction]. Derived from the calibration of TOPMODEL.
Fraction of water leaving the upper soil layer and flowing directly to the surface waters
[fraction]. Derived from the calibration of TOPMODEL.
Thermodynamic equilibrium constants for the yy aqueous chemical yy reactions that occur
in the soil and surface waters (see Cosby et al., 1985b). Derived from the literature.
A. 1-3-48
-------
Adjustable parameters
St* Scaling parameter that relates PCO in the two soil layers and the surface waters to the
temperature [atm/deg] .
W^ (xx = Ca, Mg, Na, K) - Mineral weathering inputs of base cations for the soil layers
[meq/m /yr].
SA11.xx(xx = Ca, Mg, Na, K) - Selectivity coefficients for exchange of AI and base cations on the
two soil types.
Emx Maximum sulfate adsorption capacity for each soil (meq/kg).
Outputs:
The output variables of MAGIC are summarized in Cosby et al. (1985b).
A. 1-3-49
-------
SECTION F: EVALUATION OF MSE FOR CHEMICAL FLUX MODEL
Model driven by observed inputs
Table F.1
Table F.2
Table F.3
MSE values of the DDRP variables for Woods Lake (calibration and
corroboration periods)
MSE values of the DDRP variables for Panther Lake (calibration and
corroboration periods)
MSE values of the DDRP variables for Clear Pond (entire period of
record)
Model driven by average hydrological and chemical fluxes
Table F.4
Table F.5
Table F.6
MSE values of the DDRP variables for Woods Lake (calibration and
corroboration periods)
MSE values of the DDRP variables for Panther Lake (calibration and
corroboration periods)
MSE values of the DDRP variables for Clear Pond (entire period of
record)
A. 1-3-50
-------
Table F.1. MSE values of the DDRP variables for Woods Lake (calibration and corroboration periods)
Model driven by observed inputs.
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
Variable
CA
MG
NA
K
NH4
SO4
CL
N03
TOT F
ALK
H
TOTAL
N
109
109
108
108
109
109
109
109
0
88
106
61
N
66
66
66
66
66
66
66
66
7
62
65
75
MSE
43.7
6.0
17.6
3.6
4.2
368.2
22.8
210.9
0.0
617.0
49.5
372.8
MSE
47.1
5.9
8.9
2.8
3.5
183.0
19.2
451.8
0.5
266.2
64.8
415.4
VAR
33.8
3.1
17.4
0.9
3.7
152.0
18.3
191.8
0.0
604.0
38.9
250.3
VAR
24.7
1.3
3.5
0.9
3.5
86.9
3.7
411.9
0.1
113.6
57.2
271.2
EFF
-0.3
-0.9
0.0
-2.9
-0.2
-1.4
-0.2
-0.1
0.0
0.0
-0.3
-0.5
Corroboration
EFF
-0.9
-3.7
-1.5
-2.1
0.0
-1.0
-4.3
-0.1
-3.1
-1.3
-0.1
-0.5
MEAN
72.6
18.3
19.5
6.4
3.6
130.7
9.5
21.3
0.0
-13.5
19.2
31.3
Period
MEAN
72.2
18.3
20.7
6.4
2.4
123.5
9.1
23.5
2.7
-3.8
15.2
20.0
RMSE
6.6
2.4
4.2
1.9
2.1
19.2
4.8
14.5
0.0
24.8
7.0
19.3
RMSE
6.9
2.4
3.0
1.7
1.9
13.2
4.4
21.3
0.7
16.3
8.0
20.4
A. 1-3-51
-------
Table F.2. MSE values of the DDRP variables for Panther Lake (calibration and corroboration periods).
Model driven by observed inputs.
Calibration Period
Variable
CA
MG
NA
K
NH4
S04
CL
NO3
TOT F
ALK
H
TOT AL
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
1630.2
83.6
92.0
4.0
1.8
254.7
23.6
546.8
0.0
6194.2
10.2
124.3
MSE
1597.6
69.5
108.4
6.8
2.2
215.7
5.2
671.7
3.0
3553.3
2.4
31.1
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
VAR
1492.2
63.7
79.2
4.7
1.3
203.2
4.4
638.1
1.9
2980.7
2.4
22.2
EFF
0.0
0.0
0.0
-0.2
-0.3
-0.6
-0.1
0.0
0.0
0.0
-0.1
0.0
Corroboration
EFF
-0.1
-0.1
-0.4
-0.7
-0.7
-0.1
-0.2
-0.1
-0.6
-0.2
0.0
-0.4
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.9
0.4
1.0
RMSE
40.4
9.1
9.6
2.0
1.4
16.0
4.9
23.4
0.0
78.7
3.2
11.1
RMSE
40.0
8.3
10.4
2.8
1.5
14.7
2.3
25.9
1.7
59.6
1.6
5.6
A. 1-3-52
-------
Table F.3. MSE values of the DDRP variables for Clear Pond (entire period of record). Model driven by
observed inputs.
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
N03
TOT F
ALK
H
TOTAL
N
24
24
24
24
12
24
24
24
14
24
24
22
MSE
444.0
22.0
25.0
0.5
4.5
90.2
21.7
35.0
0.1
347.4
0.0
12.5
VAR
466.3
22.5
24.6
0.5
3.9
95.2
2.6
35.4
0.1
345.1
0.0
0.3
EFF
0.0
0.0
0.0
0.0
-0.2
0.1
-7.4
0.0
0.1
0.0
-0.1
-35.0
MEAN
165.7
32.0
39.0
3.8
1.8
126.6
7.4
3.6
0.7
104.0
0.2
0.7
RMSE
21.1
4.7
5.0
0.7
2.1
9.5
4.7
5.9
0.3
18.6
0.2
3.5
A. 1-3-53
-------
Table F.4. MSB values of the DDRP variables for Woods Lake (calibration and corroboration periods).
Model driven by average hydrological and chemical fluxes.
Calibration Period
Variable
CA
MG
NA
K
NH4
S04
CL
NO3
TOT F
ALK
H
TOTAL
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
109
109
108
108
109
109
109
109
0
88
106
61
N
66
66
66
66
66
66
66
66
7
62
65
75
MSE
35.2
4.2
17.7
2.8
3.7
202.3
23.7
213.7
0.0
617.8
42.5
290.9
MSE
29.8
2.5
7.1
2.7
4.1
92.1
11.0
417.6
0.5
293.7
63.0
455.9
VAR
33.8
3.1
17.4
0.9
3.7
152.0
18.3
191.8
0.0
604.0
38.9
250.3
VAR
24.7
1.3
3.5
0.9
3.5
86.9
3.7
411.9
0.1
113.6
57.2
271.2
EFF
0.0
-0.4
0.0
-2.1
0.0
-0.3
-0.3
-0.1
0.0
0.0
-0.1
-0.2
Corroboration
EFF
-0.2
-1.0
-1.0
-2.0
-0.2
-0.1
-2.0
0.0
-3.1
-1.6
-0.1
-0.7
MEAN
72.6
18.3
19.5
6.4
3.6
130.7
9.5
21.3
0.0
-13.5
19.2
31.3
Period
MEAN
72.2
18.3
20.7
6.4
2.4
123.5
9.1
23.5
2.7
-3.8
15.2
20.0
RMSE
5.9
2.1
4.2
1.7
1.9
14.2
4.9
14.6
0.0
24.9
6.5
17.1
RMSE
5.5
1.6
2.7
1.6
2.0
9.6
3.3
20.4
0.7
17.1
7.9
21.4
A. 1-3-54
-------
Table F.5. MSE values of the DDRP variables for Woods Lake (calibration and corroboration periods)
Model driven by average hydrological and chemical fluxes.
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
MSE
1634.8
84.2
91.8
4.1
1.9
211.5
23.3
545.9
0.0
6049.8
10.2
124.9
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
EFF
0.0
0.0
0.0
-0.2
-0.4
-0.4
-0.1
0.0
0.0
0.0
-0.1
0.0
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
RMSE
40.4
9.2
9.6
2.0
1.4
14.5
4.8
23.4
0.0
77.8
3.2
11.2
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
1629.4
70.2
109.9
8.0
2.5
189.8
6.1
676.5
3.0
3511.6
2.4
30.7
VAR
1492.2
63.7
79.2
4.7
1.3
203.2
4.4
638.1
1.9
2980.7
2.4
22.2
Corroboration
EFF
-0.1
-0.1
-0.4
-0.7
-0.9
0.1
-0.4
-0.1
-0.6
-0.2
0.0
-0.4
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.9
0.4
1.0
RMSE
40.4
8.4
10.5
2.8
1.6
13.8
2.5
26.0
1.7
59.3
1.6
5.5
A. 1-3-55
-------
Table F.6. MSE values of the DDRP variables for Clear Pond (entire period of record). Model driven by
average hydrological and chemical fluxes.
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
24
24
24
24
12
24
24
24
14
24
24
22
MSE
444.8
22.3
24.9
0.5
4.5
98.4
21.2
35.0
0.1
331.1
0.0
12.5
VAR
466.3
22.5
24.6
0.5
3.9
95.2
2.6
35.4
0.1
345.1
0.0
0.3
EFF
0.0
0.0
0.0
0.1
-0.2
0.0
-7.2
0.0
0.1
0.0
-0.1
-35.0
MEAN
165.7
32.0
39.0
3.8
1.8
126.6
7.4
3.6
0.7
104.0
0.2
0.7
RMSE
21.1
4.7
5.0
0.7
2.1
9.9
4.6
5.9
0.3
18.2
0.2
3.5
A. 1-3-56
-------
Table G.1. Sensitivity Analysis: Woods Lake.
DDRP Evaluations of MSE (Weathering at optimal values)
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOTF
ALK
H
TOTAL
N
109
109
108
108
109
109
109
109
0
88
106
61
MSE
43.7
6.0
17.6
3.6
4.2
368.2
22.8
210.9
0.0
617.0
49.5
372.8
VAR
33.8
3.1
17.4
0.9
3.7
152.0
18.3
191.8
0.0
604.0
38.9
250.3
EFF
-0.3
-0.9
0.0
-2.9
-0.2
-1.4
-0.2
-0.1
0.0
0.0
-0.3
-0.5
MEAN
72.6
18.3
19.5
6.4
3.6
130.7
90.5
21.3
0.0
-13.5
19.2
31.3
RMSE
6.6
2.4
4.2
1.9
2.1
19.2
4.8
14.5
0.0
24.8
7.0
19.3
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
7
62
65
75
MSE
47.1
5.9
8.9
2.8
.3-5
173.0
19.2
451.8
0.5
266.2
64.8
415.4
VAR
24.7
1.3
3.5
0.9
3.5
86.9
3.7
411.9
0.1
133.6
57.2
271.2
Corroboration
EFF
-0.9
-3.7
-1.5
-2.1
0.0
-1.0
-4.3
-0.1
-3.1
-1.3
-0.1
-0.5
Period
MEAN
72.2
18.3
20.7
6.4
2.4
123.5
9.1
23.5
2.7
-3.8
15.2
20.0
RMSE
6.9
2.4
3.0
1.7
1.9
13.2
4.4
21.3
0.7
16.3
8.0
20.4
A. 1-3-57
-------
Table G.1. Continued.
DDRP Evaluations of MSE (Weathering increased by 10%)
Variable
Variable
N
N
MSE
Calibration Period
VAR EFF
MEAN RMSE
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
109
109
108
108
109
109
109
109
0
88
106
61
39.0
5.1
17.4
2.9
4.2
366.9
22.8
210.9
0.0
612.9
54.1
394.2
33.8
3.1
17.4
0.9
3.7
152.0
18.3
191.8
0.0
604.0
38.9
250.3
-0.2
-0.7
0.0
-2.2
-0.2
-1.4
-0.2
-0.1
0.0
0.0
-0.4
-0.6
72.6
18.3
19.5
6.4
3.6
130.7
9.5
21.3
0.0
-13.5
19.2
31.3
6.2
2.3
4.2
1.7
2.1
19.2
4.8
14.5
0.0
24.8
7.4
19.9
MSE
Corroboration Period
VAR EFF MEAN
RMSE
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
66
66
66
66
66
66
66
66
7
62
65
75
43.3
4.8
8.4
2.2
3.5
172.6
19.2
451.8
0.5
246.3
64.4
376.0
24.7
1.3
3.5
0.9
3.5
786.9
3.7
411.9
0.1
113.6
57.2
271.2
-0.8
-2.9
-1.4
-1.5
0.0
-1.0
-4.3
-0.1
-3.1
-1.2
-0.1
-0.4
72.2
18.3
20.7
6.4
2.4
123.5
9.1
23.5
2.7
-3.8
15.2
20,0
6.6
2.2
2.9
1.5
1.9
13.1
4.4
21.3
0.7
15.7
8.0
19.4
A. 1-3-58
-------
Table G.1. Continued.
DDRP Evaluations of MSE (Weathering decreased by 10%)
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
N03
TOT F
ALK
H
TOTAL
N
109
109
108
108
109
109
109
109
0
88
106
61
MSE
63.7
7.1
17.8
4.4
4.2
369.3
22.8
210.9
0.0
620.4
46.4
370.2
VAR
33.8
3.1
17.4
0.9
3.7
152.0
18.3
191.8
0.0
604.0
38.9
250.3
EFF
-0.9
-1.3
0.0
-3.8
-0.2
-1.4
-0.2
-0.1
0.0
0.0
-0.2
-0.5
MEAN
72.6
18.3
19.5
6.4
3.6
130.7
9.5
21.3
0.0
-13.5
19.2
31.3
RMSE
8.0
2.7
4.2
2.1
2.1
19.2
4.8
14.5
0.0
24.9
6.8
19.2
Variable
CA
MG
NA
K
NH4
SO4
CL
N03
TOT F
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
7
62
65
75
MSE
63.7
7.0
9.4
3.4
3.5
173.4
19.2
451.8
0.5
287.1
67.7
473.2
VAR
24.7
1.3
3.5
0.9
3.5
86.9
3.7
411.9
0.1
113.6
57.2
271.2
Corroboration
EFF
-1.6
-4.5
-1.7
-2.9
0.0
-1.0
-4.3
-0.1
-3.1
-1.5
-0.2
-0.7
Period
MEAN
72.2
18.3
20.7
6.4
2.4
123.5
9.1
23.5
2.7
-3.8
15.2
20.0
RMSE
8.0
2.6
3.1
1.9
1.9
13.2
4.4
21.3
0.7
16.9
8.2
21.8
-
A. 1-3-59
-------
Table G.2. Sensitivity Analysis: Panther Lake.
DDRP Evaluations of MSE (Weathering at optimal values)
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
N03
TOT F"
ALK
H
TOTAL
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
1630.2
83.6
92.0
4.0
1.8
254.7
23.6
546.8
0.0
6194.2
10.2
124.3
MSE
1597.6
69.5
108.4
7.8
2.2
215.7
5.2
671.7
3.0
3553.3
2.4
31.1
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
VAR
1492.2
63.7
79.2
4.7
1.3
EFF
0.0
0.0
0.0
-0.2
-0.3
-0.6
-0.1
0.0
0.0
0.0
-0.1
0.0
Corroboration
EFF
-0.1
-0.1
-0.4
-0.7
-0.7
203.2 -0.1
4.4
638.1
1.9
2980.7
2.4
22.2
-0.2
-0.1
-0.6
-0.2
0.0
-0.4
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.9
0.4
1.0
RMSE
40.4
9.1
9.6
2.0
1.4
16.0
4.9
23.4
0.0
78.7
3.2
11.1
RMSE
40.0
8.3
10.4
2.8
1.5
14.7
2.3
25.9
1.7
59.6
1.6
5.6
A. 1-3-60
-------
Table G.2. Continued.
DDRP Evaluations of MSE (Weathering increased by 10%)
Calibration Period
Variable
CA
MG
NA
NH4
S04
CL
NO3
TOTF
ALK
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
MSE
1641.2
82.7
88.4
3.1
1.8
254.8
23.6
546.8
0.0
6607.7
10.3
120.2
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
EFF
0.0
0.0
0.0
0.0
-0.3
-0.6
-0.1
0.0
0.0
-0.1
-0.1
0.0
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
RMSE
40.5
9.1
9.4
1.8
1.4
16.0
4.9
23.4
0.0
81.3
3.2
11.0
Variable
CA
MG
NA
K
NH4
S04
CL
NO3
TOTF
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
1454.0
62.6
86.90
5.6
2.2
215.7
5.2
671.7
3.0
3083.7
2.5
35.5
VAR
1492.2
63.7
79.2
4.7
1.3
203.2
4.4
638.1
1.9
2980.7
2.4
22.2
Corroboration
EFF
0.0
0.0
-0.1
-0.2
-0.7
-0.1
-0.2
-0.1
-0.6
0.0
0.0
-0.6
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.9
0.4
1.0
RMSE
38.1
7.9
9.3
2.4
1.5
14.7
2.3
25.9
1 7
55.5
1.6
6.0
A. 1-3-61
-------
Table G.2. Continued.
DDRP Evaluations of MSE (Weathering decreased by 10%)
Calibration Period
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
MSE
1924.3
96.4
107.8
6.2
1.8
254.5
23.6
546.8
0.0
6450.5
10.2
129.2
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
EFF
-0.2
-0.2
-0.2
-0.9
-0.3
-0.6
-0.1
0.0
0.0
-0.1
-0.1
-0.1
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
RMSE
43.9
9.8
10.4
2.5
1.4
16.0
4.9
23.4
0.0
80.3
3.2
11.4
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
2051.5
88.6
142.3
11.3
2.2
215.7
5.2
671.7
3.0
4667.0
2.4
27.5
VAR
1492.2
63.7
79.2
4.7
1.3
203.2
4.4
638.1
1.9
2980.7
2.4
22.2
Corroboration
EFF
-0.4
-0.4
-0.8
-1.4
-0.7
-0.1
-0.2
-0.1
-0.6
-0.6
0.0
-0.2
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.90
0.4
1.0
RMSE
45.3
9.4
11.9
3.4
1.5
14.7
2.3
25.9
1.7
68.3
1 6
1 «*J
5.2
A. 1-3-62
-------
Table G.3. Sensitivity Analysis: Clear Pond.
and 10% decrease (bottom) of weathering.
Modified values of MSB resulting from 10% increase (top)
DDRP Evaluations of MSE
Calibration Period
Variable
CA
MG
NA
K
NH4
S04
CL
NO3
TOT F
ALK
H
TOTAL
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
24
24
24
24
12
24
24
24
14
24
24
22
N
24
24
24
24
12
24
24
24
14
24
24
22
MSE
593.0
21.4
36.0
0.5
4.5
90.2
21.7
35.0
0.1
533.6
0.0
16.5
MSE
522.3
27.2
23.9
0.5
4.5
50.1
21.7
35.0
0.1
564.7
0.0
9.0
VAR
466.3
22.5
24.6
0.5
3.9
95.2
2.6
35.4
0.1
345.1
0.0
0.3
VAR
466.3
22.5
24.6
0.5
3.9
95.2
2.6
35.4
0.1
345.1
0.0
0.3
EFF
-0.3
0.0
-0.5
0.0
-0.2
0.1
-7.4
0.0
0.1
-0.5
-0.2
-46.6
Corroboration
EFF
-0.1
-0.2
0.0
0.0
-0.2
0.1
-7.4
0.0
0.1
-0.6
0.0
-25.0
MEAN
165.7
32.0
39.0
3.8
1.8
126.6
7.4
3.6
0.7
104.0
0.2
0.7
Period
MEAN
165.7
32.0
39.0
3.8
1.8
126.6
7.4
3.6
0.7
104.0
0.2
0.7
RMSE
24.4
4.6
6.0
0.7
2.1
9.5
4.7
5.9
0.3
23.1
0.2
4.1
RMSE
22.9
5.2
4.9
0.7
2.1
9.5
4.7
5.9
0.3
23.8
0.2
3.0
A. 1-3-63
-------
Table G.2. Continued.
DDRP Evaluations of MSE (Weathering decreased by 10%)
Calibration Period
Variable
CA
MG
NA
K
NH4
S04
CL
NO3
TOT F
ALK
H
TOTAL
N
112
112
112
112
112
112
112
112
0
96
113
59
MSE
1924.3
96.4
107.8
6.2
1.8
254.5
23.6
546.8
0.0
6450.5
10.2
129.2
VAR
1621.0
83.8
90.5
3.3
1.4
156.6
21.9
535.0
0.0
5984.1
9.3
120.4
EFF
-0.2
-0.2
-0.2
-0.9
-0.3
-0.6
-0.1
0.0
0.0
-0.1
-0.1
-0.1
MEAN
201.4
50.6
40.0
11.8
1.4
125.9
12.4
29.2
0.0
127.2
1.1
8.3
RMSE
43.9
9.8
10.4
2.5
1.4
16.0
4.9
23.4
0.0
80.3
3.2
11.4
Variable
CA
MG
NA
K
NH4
SO4
CL
NO3
TOT F
ALK
H
TOTAL
N
66
66
66
66
66
66
66
66
5
66
71
82
MSE
2051.5
88.6
142.3
11.3
2.2
215.7
5.2
671.7
3.0
4667.0
2.4
27.5
VAR
1492.2
63.7
79.2
4.7
1.3
203.2
4.4
638.1
1.9
2980.7
2.4
22.2
Corroboration
EFF
-0.4
-0.4
-0.8
-1.4
-0.7
-0.1
-0.2
-0.1
-0.6
-0.6
0.0
-0.2
Period
MEAN
208.7
52.1
43.8
12.8
1.0
118.4
12.4
24.5
7.1
150.90
0.4
1.0
RMSE
45.3
9.4
11.9
3.4
1.5
14.7
2.3
25.9
1.7
68.3
1.6
5.2
A. 1-3-64
-------
INDEX
Section A: Summary
Section B: Optimization Protocol for TOPMODEL (Hydrological Model)
Section C: Evaluation of MSE for the Hydrological Model
Section E: Optimization Protocol for MAGIC (Chemical Flux Model)
Section F: Evaluation of MSE for the Chemical Flux Model
Section G: Predicted vs. Observed Plots
A. 1-3-65
-------
Section 6: Predicted vs. Observed Plots
Plots of simulated and observed ANC, S04, Cl and discharge for the data intensive calibration of Woods
Panther, and Clear.
In comparing the simulated to observed for the intensively studied sites several main points need to be
made.
1) TOPMODEL was applied using a daily time step, therefore, the hydrology simulations show rapid
response and simulate the discharges faithfully (including snowmelt). The mean monthly flow routings
from TOPMODEL were input to MAGIC.
2) MAGIC was applied using a monthly time step. MAGIC is formulated as a long-term model and thus
has (at best) a monthly (i.e., seasonal) variability. The mean observed monthly depositions were used
as inputs to MAGIC. MAGIC will not be able a priori to match episodic response. The model was
calibrated to match the volume weighted annual average concentrations over the period. For conservative
ions (i.e., chloride) which are not episodic, the match is very good. For ions which can be episodic (S04
and ANC) due to snowmelt, etc., the daily fit is not as good, but the average response is correct as
expected.
3) MAGIC does not have a detailed lake mixing component. The lake thus acts as a stirred reactor
which serves to further damp the short-term response of ionic concentrations. MAGIC is basically a soils
model and the soils reactions have longer time constants than the lake reactions or mixing.
4) Although MAGIC damps the episodic response, the MSE's from MAGIC are comparable to the other
models, suggesting that the best any of the models can do (in an MSE sense) is to faithfully model the
mean chemistry. That is, the short term models show more high-frequency variation, but the fit of that
variable output is equivalent to the damped output from MAGIC. The other models show episodic
response, but that response is well constrained.
5) Note that the plotted output from MAGIC appears as a piecewise linear graph. MAGIC only gives one
value for each month, so the model output is plotted as a series of flat (monthly) values.
A. 1-3-66
-------
Fixed Parameter Values for Maoic fconfd)
1. The average start depth of the "C" horizon for all available samples in the ILWAS file SMIGEOL on
card 85 was used as the depth of the A+B horizons. The sample sizes and standard deviations were
12 and 0.14 m for Woods and 17 and 0.16 m for Panther. The Clear Pond catchment value was based
on one sample in RILWAS file COLX. The C horizon thickness was the difference between the average
MJ u °edrock and the A+B depth. The average depths to bedrock were those cited by Peters and
Murdoch (1985) for Woods and Panther and a value of 55m for Clear Pond was a preliminary value for
the deep till region determined by Robert Newton (Ron Munson, personal communication).
2. Bulk density = (1-porosity)*2.65*1000, where 2.65 g/cc is an assumed specific gravity of the soil
SOI IQS.
3. Porosity was assumed to be equal to the percent soil moisture by volume at saturation The values
used are the depth=weighted averages of one profile each from the Woods and Panther catchments
tound on card 93 of the SMIGEOL file. Since no data were available for the Clear Pond catchment the
averages of Woods and Panther were used.
4. CEC data for Woods and Panther were obtained from the ILWAS file UMACEC. Depth-weighted
averages were used. For Woods, 7 profiles were averaged for the A+B value and 6 for the C The
Panther averages were based on 9 profiles of the A+B and 6 of the C. The values for Clear Pond were
based on one profile from the COLX RILWAS file.
5. KALOH3 values were based on concentrations of total monomeric aluminum and hydrogen ion found
in the ILWAS file CORAL and from the analysis by Schofield (1983).
6. S04 half-saturation constant. Assumed.
u ^ALVSluStare from Peters and Murdoch 0985). Clear Pond lake and catchment areas supplied
by EPA (M.R. Church, pers. com.).
8. Lake residence time was calculated as lake volume divided by mean annual discharge Lake volumes
for Woods and Panther are from Peters and Murdoch (1985). Mean annual discharges were calculated
trom the ILWAS file USGFLOW. Clear Pond volume was estimated from the hypsographic curve supplied
by Tetra Tech and discharge from RILWAS file USGSTAGE and the observed yield.
A. 1-3-67
-------
APPENDIX A.2
WATERSHED SIMULATED BY ETD, ILWAS, AND MAGIC
-------
Table A.2-1. Watersheds Simulated by MAGIC in the Northeast (Lakes) and
Southern Blue Ridge Province (Streams)
Lake ID
1A1-003 HAWK POND
1A1-012 WHITNEY LAKE
1A1-014 WILMURT LAKE
1A1-017 CONSTABLE POND
1A1-020 FOURTH LAKE (BISBY LAKES)
1A1-028 DRY CHANNEL POND
1A1-029 MIDDLE POND
1A1-033 KIWASSA LAKE
1A1-038 NICKS POND
1A1-039 JOHN POND .
1A1-046 PARTLOW LAKE
1A1-049 MIDDLE SOUTH POND
1A1-057 HITCHCOCK LAKE
1A1-061 WOLF LAKE
1A1-064 MT ARAB LAKE
1A1-066 WOODHULL LAKE
1A1-073 GULL LAKES (SOUTH)
1A2-002 ST. JOHN LAKE
1A2-006 LAKE FRANCES
1A2-037 FISH PONDS (NORTHEAST)
1A2-039 OXBOW LAKE
1A2-041 MUD LAKE
1A2-042 NORTH BRANCH LAKE
1A2-045 WOODS LAKE
1A2-046 NINE CORNER LAKE
1A2-048 (NO NAME)
1A2-052 CHUB LAKE
1A2-054 TROUT LAKE
1A3-001 NATE POND
1 A3 -040 ZACK POND
1A3-042 CHENEY POND
1A3-043 UNKNOWN POND
1A3-046 LONG POND
1 A3- 048 GRASS POND
1A3-065 SOUTH LAKE (EAST BRANCH)
1B1-010 GANOGA LAKE
1B1-023 TWIN LAKES (BRINK P)
1B1-029 NO NAME(WILSON CREEK DAM)
1B1-055 ROCK HILL POND
1B2-028 MILL CREEK RESERVOIR
1B3-004 GUILFORD LAKE
1B3-012 LITTLE BUTLER LAKE
1B3-019 HARTLEY POND
1B3-021 CORD POND
1B3-025 TROUT LAKE
1B3-032 WIXON POND
1B3-041 EAST STROUDSBURG RESERV.
1B3-043 TROUT LAKE
1B3-051 BARRETT POND
1B3-052 (NO NAME)
1B3-053 NO NAME(SNOWFLAKE LAKE)
1B3-059 ISLAND POND
1B3-060 SLY LAKE
1B3-062 BASSETT POND
State
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
PA
PA
PA
PA
PA
NY
PA
PA
PA
NY
NY
PA
PA
NY
NY
PA
NY
PA
PA
Latitude Longitude
43.9569 74.9583
43.5875 74.5625
43.4292 74.7250
43.8333 74.7958
43.5708 74.9708
44.3528 74.4375
44.3389 74.3792
44.2958 74.1583
44.1431 74.9680
44.1125 74.7639
44.0042 74.8333
43.9894 75.0183
43.8500 75.0417
43.6292 74.6542
44.1883 74.6008
43.5917 74.9869
43.8561 74.8208
43.4417 74.0611
44.6958 74.3250
43.5472 74.0611
43.4417 74.4833
43.3405 74.4539
43.3125 74.7944
43.2528 74.3167
43.1958 74.5500
43.1275 74.5889
43.2583 74.5305
43.3467 74.7139
43.8583 74.0917
43.9333 74.1833
43.8778 74.1625
43.8194 74.2833
43.6375 74.2889
43.6930 75.0611
43.5105 74.8922
41.3583 76.3208
41.3833 74.9042
41.2917 75.2389
41.3136 75.0161
41.2625 75.7500
42.4125 75.5000
41.8625 75.6278
41.6583 75.7083
41.6528 75.8500
41.5861 74.6805
41.3958 73.7347
41.0667 75.1667
41.0042 75.3417
41.4344 73.7403
41.4897 74.5389
41.9050 75.4103
41.2572 74.1403
41.8236 75.3372
41.5925 75.7111
ANC (peq L"1)
-21.7
11.4
30.0
-7.4
6.0
1.8
111.9
183.2
97.2
-1.7
56.3
-30.3
-18.0
-53.0
82.9
1.8
-28.1
1.8
33.5
161.2
140.9
22.4
6.2
7.8
12.9
-5.3
1.1
-14.7
76.9
69.2
30.0
238.4
18.2
7.3
0.5
-23.9
33.3
166.0
52.9
14.6
342.7
342.2
218.5
380.8
30.4
332.5
89.7
143.0
275.3
16.4
245.8
-4.4
190.9
376.4
Continued
A.2-1
-------
Table A.2-1 (Continued)
Lake ID
1C1-009 UPPER BAKER POND
1C1-017 WELHERN POND
1C1-018 DECKER PONDS (EASTERN)
1C1-021 CLEAR POND
1C1-031 HUNT POND
1C1-050 BILLINGS POND
1C1-084 UPPER BEECH POND
1C1-086 STAR LAKE
1C2-002 IRON POND
1C2-012 BLACK POND
1C2-016 TRAFTON POND
1C2-028 SUNSET LAKE
1C2-033 LONG POND
1C2-035 SMITH POND
1C2-037 HENDUMS POND
1C2-041 JUGGERNAUT POND
1C2-048 CRANBERRY POND
1C2-050 MOORES POND
1C2-056 DRURY POND
1C2-057 BABBIDGE RESERVOIR
1C2-062 PEMIGEWASSET LAKE
1C2-064 HANCOCK POND
1C2-066 TURTLE POND
1C2-068 QUIMBY POND
1C3-030 PEL HAM LAKE
1C3-031 SADAWGA LAKE
1C3-063 MARTIN MEADOW POND
10 1-034 ROCKY POND
1D1-037 EZEKIEL POND
1D1-046 ROBBINS POND
1D1-054 UPPER MILLPOND
1D1-056 LITTLE WEST POND
1D2-025 LITTLE QUITTACAS POND
1D2-074 STETSON POND
102-084 GOOSE POND
1D3-020 LITTLE ALUM POND
1D3-025 LONG POND
1D3-033 (NO NAME)
1D3-044 MIDDLE FARMS POND
1E1-009 PEEP LAKE
1E1-011 FOURTH DAVIS POND
1E1-025 BEAN PONDS (MIDDLE)
1E1-040 LT. GREENWOOD POND (WEST)
1E1-050 LOWER OXBROOK LAKE
1E1-054 DUCK LAKE
1E1-061 LITTLE SEAVEY LAKE
1E1-062 LONG POND
1E1-073 GEORGES POND
1E1-074 CRAIG POND
1E1-077 PARKER POND
1E1-082 STEVENS POND
1E1-092 GREAT POND
1E1-111 LONG POND
State
NH
ME
ME
ME
ME
NH
NH
NH
ME
ME
ME
NH
NH
NH
NH
NH
NY
MA
ME
NH
NH
ME
NH
ME
MA
VT
NH
MA
MA
MA
MA
MA
MA
MA
MA
MA
CT
CT
NY
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
Latitude Longitude
43.9083 71.9917
45.2125 70.4944
45.1958 69.9375
45.1083 69.9875
44.0833 71.0000
43.2833 71.9417
43.6483 71.2042
43.4619 72.0555
45.4583 70.3750
44.1458 70.8000
43.8458 70.8917
43.4708 71.3000
43.2039 71.8119
43.1542 72.0292
43.1750 71.0667
42.9597 72.0125
42.7444 73.4333
42.6555 72.3472
44.7042 70.2417
42.9347 72.2167
43.6153 71.5958
44.9556 69.9861
43.2542 71.5167
44.9908 70.7419
42.7000 72.8917
42.7833 72.8750
44.4417 71.6083
41.8861 70.6958
41.8042 70.6125
41.7056 70.1111
41.7308 70.1167
41.9214 70.7067
41.7917 70.9167
42.0278 70.8275
41.6939 70.0078
42.1292 72.1542
42.0208 71.8167
41.6583 73.1917
41.2750 71.9778
44.9083 67.8917
45.2583 69.3944
45.8125 69.1917
45.3667 69.4083
45.2833 67.8417
45.1500 68.1000
44.9375 67.6333
44.9167 68.2697
44.6167 68.2417
44.5833 68.6667
44.3722 68.7083
44.3667 69.3000
44.6008 68.2833
44.5339 68.1703
ANC (jteq L"1)
105.7
325.9
173.3
122.5
62.9
63.6
41.7
25.7
69.2
71.5
128.8
51.7
97.3
•64.7
5.5
2.2
11.5
45.0
213.0
19.6
36.4
86.2
67.7
285.5
86.8
122.4
325.9
9.8
5.3
13.1
63.4
3.5
71.8
80.3
142.5
104.0
162.1
368.5
41.5
11.1
19.5
98.0
36.8
43.8
33.4
66.0
86.2
52.3
70.2
81.0
89.0
77.5
6.3
Continued
A.2-2
-------
Table A.2-1 (Continued)
Lake ID
1E2-002
1E2-007
1E2-030
1E2-038
1E2-049
1E2-054
1E2-056
1E2-063
1E2-069
1E3-022
1E3-040
1E3-041
1E3-042
1E3-045
1E3-055
1E3-062
Stream
2A07701
2A07703
2A07802
2A07805
2A07806
2A07812
2A07813
2A07817
2A07821
2A07823
2A07826
2A07827
2A07828
2A07829
2A07830
2A07833
2A07834
2A07835
2A07882
2A08802
2A08803
2A08804
2A08805
2A08806
2A08808
2A08810
2A08811
2A08901
2A08904
2A08906
(NO NAME)
FAIRBANKS POND
ROUND LAKE
NELSON POND
GROSS POND
BRETTUNS POND
PEABODY POND
KALERS POND
(NO NAME)
NUMBER NINE L.AKE
NOKOMIS POND
ROUND POND
SAND POND
MCCLURE POND
TOGUE POND
CAIN POND
ID
SUGAR COVE BRANCH OF N. RIVER
HALL CREEK
PUNCHEON FORK
COSBY CREEK
ROARING FORK
CORRELL BRANCH
LITTLE SANDYMUSH CREEK
FORNEY CREEK
GRASSY CREEK
BRUSH CREEK
HENDERSON CREEK
WELCH HILL CREEK
WHITEOAK CREEK
CATHEYS CREEK
MUD CREEK
ALLISON CREEK
BRUSH CREEK
MIDDLE SALUDA RIVER
LITTLE BRANCH CREEK
DUNN MILL CREEK
OWENBY CREEK
BEAR CREEK
WEAVER CREEK
UNNAMED TRIB.TO KIUTUESTIA CR
WHITE PATH CREEK
BRYANT CREEK
HINTON CREEK
PERSIMMON CREEK
SHE CREEK
DEEP CREEK
State
ME
ME
ME
ME
ME
ME
ME
ME
ME
HE-
HE
ME
ME
ME
ME
ME
State
TN
TN
NC
TN
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SC
NC
GA
GA
GA
GA
. GA
GA
GA
GA
GA
GA
GA
Latitude
45.9944
44.3891
45.0167
44.4153
44.0583
44.3917
43.9422
44 .'1 080
46.1242
46.4167
44.8708
44.7389
44.5694
44.4833
46.9339
44.4922
Latitude
35.3222
35.0956
35.9100
35.7936
35.8214
35.6758
35.7033
35.5133
35.4642
35.3189
35.3783
35.1850
35.2258
35.2133
35.2547
35.1214
35.1139
35.1206
35.4497
34.9492
34.9869
34.8244
34.8711
34.8589
34.7375
34.6097
34.4853
34.9131
34.8350
34.6769
Longitude
69.7833
69.8311
67.2667
70.2625
69.3931
70.2500
70.6869
69.4228
68.7792
68.0500
69.3000
69.2250
70.1194
68.9639
68.8919
68.9675
Longitude
84.1003
84.3256
82.5489
83.2394
82,8925
83.0886
82.7606
83.5578
82.2819
83.5167
82.3847
83.8939
83.6186
82.7858
82.5006
83.4744
83.2578
82.5386
83.0639
84.4383
84.1464
84.5661
84.3000
84.0236
84.4331
83.9992
84.4214
83.5019
83.3450
83.4561
ANC (/teq L"1)
256.7
75
174
9
-3
228
58
25
238
222
229
349
162
141
299
153
.4
.3
.4
.7
.9
.8
.6
.1
.1
.1
.4
.5
.7
.5
.7
ANC (/teq L"1)
89
145
219
98
104
102
371
30
126
102
347
234
48
64
217
211
43
96
106
87
171
58
118
164
202
138
121
120
186
72
.3
.2
.5
.8
.4
.7
.7
.4
.5
.5
.7
.7
.2
.8
.2
.8
.2
.3
.5
.8
.1
.6
.2
.3
.8
.0
.3
.5
.5
.7
A.2-3
-------
Table A.2-2. Watersheds Simulated by ETD in the Northeast (Lakes)
Lake ID
1A1-003 HAWK POND
1A1-012 WHITNEY LAKE
1A1-014 WILMURT LAKE
1A1-017 CONSTABLE POND
1A1-020 FOURTH LAKE (BISBY LAKES)
1A1-028 DRY CHANNEL POND
1A1-029 MIDDLE POND
1A1-038 NICKS POND
1A1-039 JOHN POND
1A1-046 PART LOW LAKE
1A1-049 MIDDLE SOUTH POND
1A1-057 HITCHCOCK LAKE
1A1-061 WOLF LAKE
1A1-064 MT ARAB LAKE
1A1-066 WOODHULL LAKE
1A1-073 GULL LAKES (SOUTH)
1A2-002 ST. JOHN LAKE
1A2-004 DUCK LAKE
1A2-037 FISH PONDS (NORTHEAST)
1A2-041 MUD LAKE
1A2-042 NORTH BRANCH LAKE
1A2-045 WOODS LAKE
1A2-046 NINE CORNER LAKE
1A2-048 (NO NAME)
1A2-052 CHUB LAKE
1A2-054 TROUT LAKE
1A2-058 TROUT LAKE
1A3-001 NATE POND
1A3-040 ZACK POND
1A3-042 CHENEY POND
1 A3 -046 LONG POND
1A3-048 GRASS POND
1A3-065 SOUTH LAKE (EAST BRANCH)
1B1-010 GANOGA LAKE
1B1-055 ROCK HILL POND
1B2-028 MILL CREEK RESERVOIR
1B3-019 HARTLEY POND
1B3-025 TROUT LAKE
1B3-041 EAST STROUDSBURG RESERV.
1B3-053 NO NAME(SNOWFLAKE LAKE)
1B3-056 RIGA LAKE
1B3-059 ISLAND POND
1B3-060 SLY LAKE
1C1-009 UPPER BAKER POND
1C1-017 WELHERN POND
1C1-018 DECKER PONDS (EASTERN)
1C1-021 CLEAR POND
1C1-031 HUNT POND
1C1-068 LINCOLN POND
1C1-084 UPPER BEECH POND
State
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
NY
PA
PA
PA
PA
NY
PA
PA
CT
NY
PA
NH
ME
ME
ME
ME
MA
NH
Latitude
43.9569
43.5875
43.4292
43.8333
43.5708
44.3528
44.3389
44.1431
44.1125
44.0042
43.9894
43.8500
43. 6292
44.1883
43.5917
43.8561
43.4417
43.2355
43.5472
43.3405
43.3125
43.2528
43.1958
43.1275
43.2583
43.3467
44.3631
43.8583
43.9333
43.8778
43.6375
43.6930
43.5105
41 .3583
41.3136
41.2625
41 .6583
41.5861
41.0667
41 .9050
42.0217
41.2572
41 .8236
43.9083
45.2125
45.1958
45.1083
44.0833
42.6694
43.6483
Longitude
74.9583
74.5625
74.7250
74.7958
74.9708
74.4375
74.3792
74.9680
74.7639
74.8333
75.0183
75.0417
74.6542
74.6008
74.9869
74.8208
74.0611
74.4525
74.0611
74.4539
74.7944
74.3167
74.5500
74.5889
74.5305
74.7139
75.2689
74.0917
74.1833
74.1625
74.2889
75.0611
74.8922
76.3208
75.0161
75.7500
75.7083
74.6805
75.1667
75.4103
73.4833
74.1403
75.3372
71.9917
70.4944
69.9375
69.9875
71.0000
71.9125
71.2042
ANC (/teq L"1)
-21.7
11.4
30.0
-7.4
6.0
1.8
111.9
97.2
-1.7
56.3
-30.3
-18.0
-53.0
82.9
1.8
-28.1
1.8
-32.0
161.2
22.4
6.2
7.8
12.9
-5.3
1.1
-14.7
391.6
76.9
69.2
30.0
18.2
7.3
0.5
-23.9
52.9
14.6
218.5
30.4
89.7
245.8
-6.0
-4.4
190.9
105.7
325.9
173.3
122.5
62.9
-43.1
41.7
Continued
A.2-4
-------
Table A.2-2. Continued)
Lake ID
1C2-002 IRON POND
1C2-012 BLACK POND
1C2-028 SUNSET LAKE
1C2-033 LONG POND
1C2-035 SMITH POND
1C2-041 JUGGERNAUT POND
1C2-048 CRANBERRY POND
1C2-056 DRURY POND
1C2-057 BABBIDGE RESERVOIR
1C2-064 HANCOCK POND
1C2-068 QUIHBY POND
1D2-027 SANDY POND
1D3-002 DYKES POND
1D3-025 LONG POND
1E1-011 FOURTH DAVIS POND
1E1-025 BEAN PONDS (MIDDLE)
1E1-040 LT. GREENWOOD POND (WEST)
1E1-050 LOWER OXBROOK LAKE
1E1-054 DUCK LAKE
1E1-062 LONG POND
1E1-106 GREENWOOD POND
1E1-111 LONG POND
1E2-002 (NO NAME)
1E2-038 NELSON POND
1E2-049 GROSS POND
1E2-056 PEABODY POND
1E2-063 KALERS POND
1E3-022 NUMBER NINE LAKE
1E3-040 NOKOMIS POND
1E3-041 ROUND POND
1E3-055 TOGUE POND
State
ME
ME
NH
NH
NH
NH
NY
ME
NH
ME
ME
MA
MA
CT
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
ME
Latitude
45.4583
44.1458
43.4708
43.2039
43.1542
42.9597
42.7444
44.7042
42.9347
44.9556
44.9908
41.7722
42.6042
42.0208
45.2583
45.8125
45.3667
45.2833
45.1500
44.9167
45.5353
44.5339
45.9944
44.4153
44.0583
43.9422
44.1080
46.4167
44.8708
44.7389
46.9339
Longitude
70.3750
70.8000
71 .3000
71.8119
72.0292
72.0125
73.4333
70.2417
72.2167
69.9861
70.7419
70.6542
70.7294
71.8167
69.3944
69.1917
69.4083
67.8417
68.1000
68.2697
69.2328
68.1703
69.7833
70.2625
69.3931
70.6869
69.4228
68.0500
69.3000
69.2250
68.8919
ANC (Meq L"1)
69.2
71.5
51.7
97.3
64.7
2.2
11.5
213.0
19.6
86.2
285.5
-6.0
1.6
162.1
19.5
98.0
36.8
43.8
33.4
86.2
22.7
6.3
256.7
9.4
-3.7
58.8
25.6
222.1
229.1
349.4
299.5
A.2-5
-------
Table A.2-3. Watersheds Simulated by ILWAS in the Northeast (Lakes) and
Southern Blue Ridge Province (Streams)
Lake ID
1A1-003
1A1-064
1A2-002
1A2-042
1A2-045
1A2-048
1A2-052
1A3-048
1B1-010
1B1-055
1 82- 028
1B3-025
1B3-056
1C1-031
1C1-068
1C1-084
1C2-012
1C2-028
1C2-035
1C2-048
1C2-057
1D2-027
1E1-011
1E1-050
1E1-062
1E1-106
1E1-111
1E2-056
1E2-063
HAWK POND
HT ARAB LAKE
ST. JOHN LAKE
NORTH BRANCH LAKE
WOODS LAKE
(NO NAME)
CHUB LAKE
GRASS POND
GANOGA LAKE
ROCK HILL POND
MILL CREEK RESERVOIR
TROUT LAKE
RIGA LAKE
HUNT POND
LINCOLN POND
UPPER BEECH POND
BLACK POND
SUNSET LAKE
SMITH POND
CRANBERRY POND
BABBIDGE RESERVOIR
SANDY POND
FOURTH DAVIS POND
LOWER OXBROOK LAKE
LONG POND
GREENWOOD POND
LONG POND
PEABODY POND
KALERS POND
Stream ID
2A07701
2A07703
2A07805
2A07806
2A07811
2A07812
2A07823
2A07828
2A07829
2A07834
2A07835
2A08802
2A08805
2A08806
2A08810
2A08811
2A08901
2A08904
SUGAR COVE BRANCH OF N.
HALL CREEK
COSBY CREEK
ROARING FORK
FALSE GAP
CORRELL BRANCH
BRUSH" CREEK
WHITEOAK CREEK
CATHEYS CREEK
BRUSH CREEK
MIDDLE SALUDA RIVER
DUNN MILL CREEK
WEAVER CREEK
KIUTUESTIA CREEK
BRYANT CREEK
HINTON CREEK
PERSIMMON CREEK
SHE CREEK
State
NY
NY
NY
NY
NY
NY
NY
NY
PA
PA
PA
NY
CT
ME
MA
NH
ME
NH
NH
NY
NH
MA
ME
ME
ME
ME
ME
ME
ME
State
RIVER TN
TN
TN
NC
NC
NC
NC
NC
NC
NC
SC
GA
GA
GA
GA
GA
GA
GA
Latitude
43.9569
44.1883
43.4417
43.3125
43.2528
43.1275
43.2583
43.6930
41 .3583
41.3136
41 .2625
41.5861
42.0217
44.0833
42.6694
43.6483
44.1458
43.4708
43.1542
42.7444
42.9347
41.7722
45.2583
45.2833
44.9167
45.5353
44.5339
43.9422
44.1080
Lat i tude
35.3222
35.0956
35.7936
35.8214
35.6997
35.6758
35.3189
35.2258
35.2133
35.1139
35.1206
34.9492
34.8711
34.8589
34.6097
34.4853
34.9131
34.8350
Longitude
74.9583
74.6008
74.0611
74.7944
74.3167
74.5889
74.5305
75.0611
76.3208
75.0161
75.7500
74.6805
73.4833
71.0000
71.9125
71.2042
70.8000
71 .3000
72.0292
73.4333
72.2167
70.6542
69.3944
67.8417
68.2697
69.2328
68.1703
70.6869
69.4228
Longitude
84.1003
84.3256
83.2394
82.8925
83.3839
83.0886
83.5167
83.6186
82.7858
83.2578
82.5386
84.4383
84.3000
84.0236
83.9992
84.4214
83.5019
83.3450
ANC (Meq L'1)
-21.7
82.9
1.8
6.2
7.8
-5.3
1.1
7.3
-23.9
52.9
14.6
30.4
-6.0
62.9
-43.1
41.7
71.5
51.7
64.7
11.5
19.6
-6.0
19.5
43.8
86.2
22.7
6.3
58.8
25.6
ANC (/ieq L'b
89.3
145.2
98.8
104.4
16.2
102.7
102.5
48.2
64.8
43.2
96.3
87.8
118.2
164.2
138.0
121.3
120.5
186.5
A.2-6
-------
APPENDIX A.3
UNCERTAINTY ESTIMATES AND CONFIDENCE BOUNDS FOR MODEL PROJECTIONS
-------
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Constant
1.0 r
o
Q.
2 0.8
*= 0.4
JO
3
E
O 0.2
0.0
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (jxeq l_-i) at 20 Yr.
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
0.
CD
••C 0.4
E
Q 0.2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400
ANC (jieq L-1) at 20 Yr.
1.0 r
o 0.8
O
Q.
8 0.6
0_
-------
1.0r
O 0.8
O
Q.
O
CL
0.8
09
3= 0.4
J5
:a
E
O °-2
0.0
NE Lakes
Priority Class = A - \
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jieq L-1) at 20 Yr.
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
0>
•-C 0.4
E
O
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jaeq L-I) at 20 Yr.
1.0 r
O 0.8
o
Q.
O
0.6
CD
•-^ 0.4
.55
3
E
O 0.2
0.0
Priority Class = A - I
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100
[SO42-]
200 300
L-1) at 50 Yr.
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
O 0.8
o
Q.
S 0.6
Q.
<3>
•ft 0.4
JO
i
O 0.2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jj.eq L-1) at 50 Yr.
Figure A.3-2. Sulfate projections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - I lakes using MAGIC.
A.3-2
-------
1-Or
O 0.8
O
Q.
O
0.6
JO
3
E
O
0.4
0.0
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2+] (jxeq L-1) at 20 Yr.
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
JO
n
E
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (p.eq L-1) at 20 Yr.
.0
o
Q.
O
1.0r
0.8
0.6
= 0.4
CO
I
O 0.2
0.0
Priority Class = A - I
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (jieq L-1) at 50 Yr.
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
_o 0.8
£3
O
Q.
E 0.6
Q.
CD
>
~ 0.4
JS
3
E
O 0.2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (jo.eq L-I) at 50 Yr.
Figure A.3-3. Calcium projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - I lakes using MAGIC.
A.3-3
-------
1.0
O 0.8
O
Q.
O
0.6
~ 0.4
jcg
r:
E
O 0.2
0.0
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
50 100 150 200 250
*] (u.eq L-1) at 20 Yr.
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
O 0.8
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2*] (jxeq L-I) at 20 Yr.
1.0
O 0.8
0.6
O
0.
O
CL
0)
~ 0.4
£2
3
E
O 0.2
0.0
Priority Class = A - I
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
50 100 150 200 250
*] (jieq L-1) at 50 Yr,
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
0.6
QL
*3 0.4
to
3
E
O 0.2
0.0
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2+] (jieq L-1) at 50 Yr.
Figure A.3-4. Magnesium projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - I lakes using MAGIC.
A.3-4
-------
1.0
O 0.8
U-»
O
CL
8 0.6
CD
*5 0.4
E
O
o.o
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 20 Yr.
NE Lakes
Priority Class = A - I
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0
O 0.8
O
Q.
S. 0.6
-------
1.0 r
O 0.8
o
Q.
S 0.8
•^ 0.4
eg
=>
E
O °-2
Upper Bound
Predicted
Lower Bound
o.o
-100 0 100 200 300 400
ANC ([ieq L-I) at 50 Yr.
Figure A.3-6. ANC projections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - E lakes using ETD.
A.3-6
-------
1.0r
O
Q.
S 0.6
0
"~ 0.4
E
O
o.o
NE Lakes
Priority Class = A - E
Model = ETD
Deposition = Constant
Upper Bound
Predicted
Lower Bound
o 100 200 300
[SO42-] (jieq L-1) at 20 Yr.
O
NE Lakes
Priority Class = A - E
Model = ETD
Deposition = Ramp 30% Decrease
1.0 r
0.8
O
Q.
e 0.6
•~ 0.4
«
3
E
d
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (|J.eq L-1) at 20 Yr.
1.0 r
O
Q.
8 0.6
ra
3
E
o
0.4
0.0
Priority Class = A - E
Model = ETD
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (p.eq L-1) at 50 Yr.
Priority Class = A - E
Model = ETD
Deposition = Ramp 30% Decrease
1.0r
o
Q.
£ 0.6
Q.
O
*= 0.4
CO
I «
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jaeq L-1) at 50 Yr.
Figure A.3-7. Sulfate projections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - E lakes using MAGIC.
A.3-7
-------
1.0
c
_g
£3
l_
O
Q.
O
IX
CD
0.8
0.6
0.4
E
O °-2
0.0
NE Lakes
Priority Class = A - E
Model = ETD
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 3.5 7.0 7.5 8.0
pH at 20 Yr.
NE Lakes
Priority Class = A - E
Model = ETD
Deposition = Ramp 30% Decrease
to
.2 °-8
*3
o
Q.
2 0.6
0.
O
'JS 0.4
E
O
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 20 Yr.
1.0
O 0.8
O
a.
CD
«=
J5
n
E
o
0.4
0.0
Priority Class = A - E
Model = ETD
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 50 Yr.
Priority Class = A - E
Model = ETD
Deposition = Ramp 30% Decrease
1.0
O 0.8
o
Q.
2 0.6
~ 0.4
E
O
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 50 Yr.
Figure A.3-8. pH projections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - E lakes using ETD.
A.3-8
-------
1.0
O 0.8
O
Q.
O
0.6
CD
*S 0.4
s
o
0.0
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
-100 0 100
ANC (p.eq l
200 300 400
at 20 Yr.
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
o
Q.
O
0.6
0>
OB
3
E
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (jieq L-i) at 20 Yr.
1.0r
g 0.8
*-«
O
a.
S.
QL
3= 0.4
CO
3
E
O 0.2
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0.0
-100 0 100 200 300 400
ANC (|ieq L-i) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
tor
O 0.8
O
Q.
2 0.6
Q.
O
•S 0.4
JO
I'
o.o
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (p,eq L-I) at 50 Yr.
Figure A.3-9. ANC projections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - E lakes using MAGIC.
A.3-9
-------
1.0 r
o 0.8
o
o.
2 0.8
CD
~ 0.4
E
O 0-2
0.0
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (|J.eq L-1) at 20 Yr.
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
£ 0.6
0)
S= 0.4
.55
:D
E
O °-2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (u.eq L-i) at 20 Yr.
1.0 r
o o.s
o
Q.
S. 0.6
CD
£ 0.4
15
3
E
O 0-2
0.0
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100
[SO42-]
200 - 300
L-1) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
o
0.8
o
a.
0.6
JO
3
E
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO,2-] (jxeq L-i} at 50 Yr.
Figure A.3-10. Sulfate projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - E lakes using MAGIC.
A.3-10
-------
1.0 r
O 0.8
O
Q.
O
dl
CD
0.6
0.4
E
O
o.o
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100
[Ca2+]
200 300 400 500
l_"i) at 20 Yr.
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
£ 0.6
0.
0.4
.55
=}
E
O °-2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2+] (\ieq L-1) at 20 Yr.
1.0 r
O 0.8
O
Q.
O
0.6
0>
•~ 0.4
E
O
o.o
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2+] (\ieq L-1) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
O
Q.
O
ol
0>
0.6
0.4
3
E
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (p,eq L-1) at 50 Yr.
Figure A.3-11. Calcium projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - E lakes using MAGIC.
A.3-11
-------
1.0 r
o 0.8
O
Q.
O
0.6
0)
~ 0.4
jg
:D
E
O
0.0
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 , 50 100 150 200 250
[Mg2+] (ij.eq L-1) at 20 Yr.
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
.2
'+2
o
a.
8 0.6
ffi
+3 0.4
CO
3
E
O
0.0
Upper Bound
Predicted
Lower Bound
r.. 50, , 10° 15° 20° 250
[Mg2+] (j4.eq L-1) at 20 Yr.
O 0.8
O
Q.
O
0.6
'•(= 0.4
0.2
0.0
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2*] (^eq L-1) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
o
Q.
20.6
0)
*= 0.4
E
O
0.0
Upper Bound
Predicted
Lower Bound
0 r 50 100 150 200 250
[Mg2+] (p,eq L-1) at 50 Yr.
bounds for a 90
A.3-12
-------
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Constant
o.o
"4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 20 Yr.
NE Lakes
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
o.o
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 20 Yr.
1.0
O 0.8
O
CL
2 0.6
Q.
S= 0.4
JO
3
E
O 0.2
0.0
Priority Class = A - E
Model = MAGIC
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 50 Yr.
<, n. J?H Pr°iections with upper and lower bounds for a 90 percent confidence interval
for NE Priority Class A - E lakes using MAGIC.
A.3-13
-------
1.0r
O 0.8
0.6
o
Q.
O
IX
ffi
'*-• 0.4
ra
n
E
O 0.2
0.0
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Constant
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (jj.eq L-1) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
CL
-------
1.0
o
Q.
E 0.8
0.
03
3= 0.4
JO
l<
0.0
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO,2'] (jxeq L-1) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
JO
3
E
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (n.eq L-i) at 20 Yr.
1.0r
O 0.8
O
Q.
0.6
JO
1
3
O
0.4
0.0
Priority Class = A & B
Model = ETD
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jieq L-1) at 50 Yr.
Priority Class = A & B
Model = ETD
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
o
a.
E i
a.
a>
ss 0.4
E
O 0.2
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jaeq L-1) at 50 Yr.
Figure A.3-15. Sulfate projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - B lakes using ETD.
A.3-15
-------
1.0
o 0.8
0.8
o
a.
o
oZ
05
*3 0.4
19
3
E
O
0.0
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 20 Yr.
NE Lakes
Priority Class = A & B
Model = ETD
Deposition = Ramp 30% Decrease
to
o 0.8
O
Q.
E 0.6
0
~ 0.4
ro
3
E
Q 0-2
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 20 Yr.
1.0
O 0.8
O
Q.
2. 0.6
•~ 0.4
CO
3
E
O
0.0
Priority Class = A & B
Model = ETD
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 50 Yr.
Priority Class = A & B
Model = ETD
Deposition = Ramp 30% Decrease
to
O 0.8
o
Q.
0.6
*5 0.4
JO
1
O 0.2
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 50 Yr.
Pr?or«y
A.3-16
-------
1.0r
O 0.8
O
Q.
O
0.6
ffl
«= 0.4
a
13
E
O 0-2
0.0
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (neq I_-1) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1-Or
O 0.8
o
Q.
S 0.6
Q.
O
*s 0.4 -
OJ
3
Jc
0.0
Upper Bound
Predicted
Lower Bound
-100 0 100 200 300 400
ANC (p.eq L-I) at 20 Yr.
1.0
O 0.8
O
o.
0.6
-------
1.0r
O 0.8
0.8
O
Q.
O
CL
CD
~ 0.4
ca
3
E
O °-2
0.0
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jieq L-1) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
0.6
O
Q.
O
IX
o>
*= 0.4
CO
3
E
O
0.0
Upper Bound
Predicted
Lower Bound
100 200 300
[SO42-] (jxeq L-1) at 20 Yr.
1.0 r
Jj 0.8
k_
O
a.
a>
>
0.4
E
O
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300
[SO42-] (jxeq L-1) at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
O 0.8
O
Q.
0.6
15
^
E
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300
fSO42-] (|j.eq L-1) at 50 Yr.
nt!
interval for
_s.ul*fe Projections with upper and lower bounds for a 90 percent confidence
Priority Class A - B lakes using MAGIC.
A.3-18
-------
1.0r
O 0.8
O
Q.
CD
•~ 0.4
E
O
0.0
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2+] (jaeq L-I) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
O
0.
O
0.6
ffl
*= 0.4
a
13
E
O
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (|4.eq L-1) at 20 Yr.
1.0 r
O 0.8
0.6
O
Q.
O
ol
05
3= 0.4
J2
=J
E
O
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2+] (ueq L-1) at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
C
O
O
a.
0.8
0>
>
%-•
JS
I
O
0.4
0.0
Upper Bound
Predicted
Lower Bound
0 100 200 300 400 500
[Ca2*] (|4,eq L-1) at 50 Yr.
Figure A.3-19. Calcium projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - B lakes using MAGIC.
A.3-19
-------
1.0 r
O 0.8
O
a.
o
0.6
*= 0.4
E
Q 0.2
0.0
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2+] (u.eq L-1) at 20 Yr.
NE Lakes
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
+3
L_
O
a.
8 0.6
ffl
33
JO
3
E
O
0.4
o.o
Upper Bound
Predicted
Lower Bound
, 50
[Mg2+]
100 150 200 250
L-1) at 20 Yr.
1.0 r
O 0.8
*—
L_
O
Q.
8 0.6
CL
*3 0.4
CO
3
E
O 0.2
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2*] (|xeq L"0 at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
o
Q.
8 0.6
a.
33 0.4
<0
E
O
0.0
Upper Bound
Predicted
Lower Bound
0 50 100 150 200 250
[Mg2+] (jj.eq L-1) at 50 Yr.
Figure A 3-20. Magnesium projections with upper and lower bounds for a 90 percent confidence
interval for NE Priority Class A - B lakes using MAGIC.
A.3-20
-------
1.0
O 0.8
0.6
o
Q.
O
CL
*= 0.4
co
3
E
O °-2
0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 20 Yr.
1.0
O
0.8
O
Q.
O
CL
0.6
-------
O
O
Q.
O
1.0 r
0.8
0.6
•^3 0.4
co
3
E
O
o.o
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
-100 0 100 200 300 400
ANC (|ieq L-1) at 20 Yr.
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
Upper Bound
Projected
Lower Bound
0.0
-100 0 100 200 300 400
ANC (jieq L-i) at 20 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Constant
1.0r
O 0.8
O
0.
O
0.6
*= 0.4
E
o
Upper Bound
Projected
Lower Bound
o.o
-100 0 100 200 300 400
ANC (p.eq L-1) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
o
a.
o
0.6
*= 0.4
E
O
0.0
Upper Bound
Projected
Lower Bound
-100 0 100 200 300 400
ANC (jieq L-1) at 50 Yr.
*°unaa for"90 percent con(Idence
A.3-22
-------
1.0r
O 0.8
O
Q.
O
0.8
CD
JO
3
E
O
0.4
0.0
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 100 200 300
[SO,2-] (n.eq L-1) at 20 Yr.
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
.2 °-8
'•&
o
Q.
*= 0.4
-------
1.0r
O 0.8
o
Q.
O
ol
Ol
0.6
0.4
£
O 0.2
0.0
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 100 200 300 400 500
[Ca2+] (jieq L-1) at 20 Yr.
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
O
1.0r
0.8
O
a.
£ 0.6
E
O
0.0
Upper Bound
Projected
Lower Bound
100
[Ca2+]
200 300 400 500
I_-1) at 20 Yr.
1.0
O 0.8
o
a.
2 0.6
Q.
•-i= 0.4
E
O
0.0
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
100 200 300 400 500
] (|aeq l_-i) at 50 Yr.
o
Q.
O
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
0.6
JO
3
I
o
0.4
0.0
Upper Bound
Projected
Lower Bound
0 100 200 300 400 500
[Ca2+] (p,eq L-I) at 50 Yr.
A.3-24
-------
1.0r
O 0.8
O
QL
O
0.6
CD
U3
JO
3
E
6
Q.4
0.0
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 50 100 150 200 250
[Mg2*] (jj.eq L-i) at 20 Yr.
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
+3
O
a.
2 0.6
a.
CD
+3
to
rj
E
O
0.4
0.0
Upper Bound
Projected
Lower Bound
50 100 150 200 250
2*] (n.eq L-1) at 20 Yr.
1.0 r
O 0.8
o
Q.
2 0.6
a.
CD
*= 0.4
E
O
0.0
Priority Class = A - E
Model - MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 50 100 150 200 250
[Mg2*] (jj.eq L-1) at 50 Yr.
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
2 0.6
a.
CD
+5 0.4
ra
E
—J
O °-2
0.0
Upper Bound
Projected
Lower Bound
0 50 100 150 200 250
[Mg2*] (jo.eq L-1) at 50 Yr.
Figure A.3-25. Magnesium projections with upper and lower bounds for a 90 percent confidence
interval for SBRP Priority Class A - E streams using MAGIC.
A.3-25
-------
1.0
O 0.8
o
a.
o
t_
Q.
0>
1o
0.6
0.4
E
O 0.2
0.0
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Upper
Projected
Lower
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
pH at 20 Yr.
SBRP Stream Reaches
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0
O
Q.
2 0.6
ffl
'•P 0.4
E
O
0.0
Upper
Projected
Lower
4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 20 Yr.
0.0
Priority Class = A - E
Model = MAGIC
Deposition = Constant
Priority Class = A - E
Model = MAGIC
Deposition = Ramp 30% Decrease
to
O 0.8
o
Q.
O
0.6
05
>
*=
-------
1.0 r
o 0.8
O
a.
O
0.6
S= 0.4 -
a
Z3
E
O °
0.0
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
-100 0 100 200 300 400
ANC (p.eq L.-1) at 20 Yr.
SBRP Stream Reaches
Priority Class = A & B
' Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
*3
u.
O
Q.
£ 0.6
QL
-------
1.0 r
o 0.8
o
Q.
O
0.6
Q>
0.4
E
O 0.2
0.0
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 100 200 300
[SO,2-] (p.eq Li) at 20 Yr.
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
0~0.8
O
Q.
O
0.6
sa
3
E
O
0.4
0.0
Upper Bound
Projected
Lower Bound
0 , 100 200 300
[SO42-] (jaeq L-i) at 20 Yr.
1.0r
O 0.8
O
Q.
O
0.6
03
>
~ 0.4
_ro
13
E
O °-2
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 . 100
[SO42-]
200 300
L-1) at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0 r
O 0.8
o
Q.
S. 0.6
~ 0.4
ca
3
E
O 0-2
0.0
Upper Bound
Projected
Lower Bound
0 rcv/^ . 100 200 soo
[S042-] (ij.eq L-1) at 50 Yr.
for
A.3-28
-------
1.0r
O 0.8
O
Q.
2 0.8
O
z: 0.4
ro
3
E
O Q-z
o.o
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 100 200 300 400 500
[Ca2+] (jieq L-1) at 20 Yr.
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
o o.a
o
0.
2 o.e
o.
0>
si*
3
E
O
0.4
0.0
Upper Bound
Projected
Lower Bound
100
[Ca2t]
200 300 400 500
L-1) at 20 Yr.
1.0r
O 0.8
O
Q.
0.6
*= 0.4
CB
3
E
O 0.2
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 100 200 300 400 500
[Caz+] (|ieq L-1) at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
O 0.8
o
Q.
2 0.6
a.
o
*= 0.4
CO
E
o
0.0
Upper Bound
Projected
Lower Bound
0 100
[Ca2*]
200 300 400 500
l_-i) at 50 Yr.
nt0r,fcnB^nC-iUI? P™JectiA°ns wlth "PPe"" and lower bounds for a 90 percent confidence
interval for SBRP Priority Class A - B streams using MAGIC.
A.3-29
-------
1.0
o 0.8
O
a.
o
0.6
*= 0.4
19
rj
E
O
0.0
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
50 100 150 200 250
2*] (p.eq L-i) at 20 Yr.
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1.0r
O 0.8
O
Q.
O
0.6
JO
3
E
O
0.4
0.0
Upper Bound
Projected
Lower Bound
0 50
[Mg2+]
100 150 200 250
L.-1) at 20 Yr.
1.0 r
O 0.8
O
Q.
S 0.6
O.
ffl
= 0.4
JO
I
O 0.2
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper Bound
Projected
Lower Bound
0 50 100 150 200 250
[Mg2*] (jieq L"0 at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
1-0r
o 0.8
O
a.
o
0.6
O
"
0.4
(0
u
E
O 0.2
0.0
Upper Bound
Projected
Lower Bound
0 50 100 150 200 250
[Mg2+] (jieq L-1) at 50 Yr.
bounds for
A.3-30
-------
1.0
o 0.8
O
Q.
*5 0.4
JO
3
E
O
0.0
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Constant
Upper
Projected
Lower
4.0 4.5 5.0 5.5 6.0 6.5 7.0 75 80
pH at 20 Yr.
1.0
O 0.8
SBRP Stream Reaches
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
o
o.
o
0.6
o>
_>
4-»
JO
1
O
0.4
o.o
Upper
Projected
Lower
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 20 Yr.
to
O 0.8
O
O.
O
0.6
~ 0.4
JO
=J
E
O 0.2
0.0
Priority Class = A & B
Model = MAGIC
Deposition = Constant
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 50 Yr.
Priority Class = A & B
Model = MAGIC
Deposition = Ramp 30% Decrease
0.0
"4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 80
pH at 50 Yr.
«" • "
confidence interva,
A.3-31
-------