-J..
  xvEPA
             United States
             Environmental Protection
             Agency
                Office of Acid Deposition
                Environmental Monitoring
                and Quality Assurance
                Washington DC 20460
EPA/600/3-90/043
March 1990
             Research and Development
Intensive Studies of
Stream Fish Populations
in  Maine

-------

-------
                            FINAL REPORT
       INTENSIVE STUDIES OF STREAM FISH POPULATIONS IN MAINE
                                By

Terry A. Haines, Stephen A. Norton,  Jeffrey S. Kahl,  demon W. Fay,
             Stanislas J. Pauwels, and Charles H. Jagoe
      The research described in this document has been
      funded wholly  (or in part) by the U.S. Environmental
      Protection Agency through interagency agreement
      DW14930695 with the U.S. Fish and Wildlife Service.
      The report has been subjected to the Agency's peer and
      administrative review and approved for publication as
      an EPA document.

-------

-------
                       FINAL REPORT
  INTENSIVE STUDIES OF STREAM FISH POPULATIONS IN MAINE
                            by
   Terry A. Raines, Stephen A. Norton, Jeffrey S. Kahl,
demon W. Fay, Stanislas J. Pauwels, and Charles H. Jagoe
      Departments of Geological Sciences and Zoology
                   University of Maine
                    Orono, Maine 04469
          Cooperative Agreement # CR-812481-01-4
              Project Officer: Dixon Landers
                      Performed For

           U.S.  Environmental Protection Agency
            Environmental Research Laboratory
                     200 SW 35th St.
                 Corvallis, Oregon 97333

-------
                                   ii
                            EXECUTIVE SUMMARY

    Streams are an important aquatic resource  and  are  affected by  acidic
precipitation, but have been studied less intensively  than  lakes.  The
objectives of this investigation were to determine the influence of
variations in precipitation chemistry, volume,  form, and  intensity on
stream chemical and hydrological factors, and  on resident fish
communities.  Six small streams in eastern Maine were  studied for  two
years (1986-87).  In addition, artificial stream channels were
constructed adjacent to one stream and used  to  test the effects of
chemically manipulated stream water on Atlantic salmon physiology  and
gill morphology.
    Precipitation amounts and chemistry were monitored from samples
collected by an NADP-protocol site, centrally  located  between the  two
main drainages.  Precipitation amounts were  also monitored  by
continuously-recording rain gauges located within  each major drainage.
Approximately 1 m of precipitation fell in each year of the project with
no distinct seasonal pattern for amounts.  Between-season variation was
large within years.  Precipitation fell dominantly as  rain, with about
15 to 20% falling as snow.  Most precipitation  fell from  cyclonic
storms? less than 10% occurred as a result of  convective  storms.
    Precipitation chemistry is determined by a  mixture of (1) "pristine"
rain chemistry, (2) marine aerosol salts incorporated  into  snow and
rain, and (3) dilute strong acids (H SO,, HNO-), and (4)  (NH^,  SO.) from
polluted air masses.  Individual precipitation  events  occurred that
represented each end member: events generally  occurred with various
combinations of the above.  Water yield was  about  60%  for five of  the
watersheds (one had anomalously low yield).  Using this figure to
calculate evapotranspiration, it is clear that  dry deposition is
important, contributing up to an additional  35% to the S  chemical  budget
and up to 200% for marine aerosols.  The pH  of  precipitation ranged from
3.8 to 5.4 with a volume weighted mean of about 4.5.   The SO^
concentration averaged about 28 ueq/1, and NO.  averaged about 16 yeq/1.
    The six watersheds are relatively flashy with  respect to discharge.
High flow episodes are generated by high rainfall  and/or  snowmelt.
Continuous hydrologic data indicate that streams return to  near
pre-event discharge values within a week.  About 90% of the total
discharge is produced in about 10% of the time.
    Stream chemistry was measured at least biweekly.   All episodes of
elevated discharge resulted in depressions of  pH.   Approximately six
events occurred per year when the pH dropped more  than 1  pH unit in less
than 24 hours.  During the study period, pH  remained above  5.0 in  all
streams, and alkalinity was always positive.  The  pH depression episodes
were caused by four principal mechanisms.  First,  simple  dilution  of low
flow waters commonly was responsible for reduction of  alkalinity by 50
to 100 yeq/1.  Secondly, precipitation containing  high concentrations of
marine salts (especially Na and Mg) may have caused acidification
through cation exchange in the soils, releasing Ca, H,  and  Al.  The
latter probably was also derived from stream substrates during acidic
episodes.  Acidification from this soil-related mechanism may also have
been caused by non-salty precipitation flushing dry-deposited marine
aerosols through the soil.  Thirdly, hydrologic routing of  soil waters
through organic horizons and bypassing deeper  soil strata resulted in
elevated concentrations of dissolved organic carbon (DOC) in runoff.  A

-------
                                    ill
 certain  fraction of  this  DOC is dissociated organic acids, which in some
 hydrologic  events were  the  dominant acidifying anion.   Fourthly, and
 superimposed  on  all  these natural causes of acidity,  is the loading of
                                                 NO,
excess atmospheric  SO, and,  to  a  lesser  degree,
    On the average,  the  surface waters contained  ab"out 65 yeq SO./l,  10
of which was ascribed to background,  about  7  was  related to marine
salts, and the remaining 45+ was  from excess  SO,  in precipitation.
There was a strong  seasonal  cycling of SO,  in the watershed with storage
occurring over the  summer period  followed by  release in the fall.
Winter values remain high but discharge  was typically lower.   Elevated
NO, up to 15 yeq/1  occurred  during high  flow  but  typically remained
below 5 yeq/1.  At  no time did  SO concentration  drop below what might
be expected from background  contributions plus marine salt
contributions.  Thus the effect of excess SO,  is  to make the  systems
more sensitive to the episodic  influence of Salt,  DOC,  and dilution.
The systems are not  chronically acidic and would  not be even with modest
increases of precipitation sulfate.
    Concentrations  of base cations during low flow were typically
greater than 150 yeq/1,  and  alkalinity typically  exceeded 100 yeq/1.
Even with excess SO, at  present concentrations, a combination of at
least two of the natural acidifying mechanisms was required to acidify
the streams sufficiently to  impair indigenous  fish populations.   The
three Union drainage streams had  relatively high  concentrations  of  F
that controlled, to  some degree,  the  amount and ionic speciation of the
dissolved Al.  This effect was  greatly diminished  at high flow.   The
three Narraguagus drainage streams contained higher DOC,  which typically
complexes up to 75%  of the total  Al.  The uniformity of response of the
six streams to various acidifying mechanisms  (both episodic and  chronic)
indicates that the  processes related  to  the responses are probably
representative of drainage basins of  this general  size  in this region,
with similar hydrology and geology.
    Because of the  impossibility  of accurately measuring  dry  and occult
deposition to the six watersheds, precise budgets  can not be  derived.
However, if Cl is assumed  to be entirely of marine  origin and  used  to
calculate the total input  of marine salts, the following  ranges  for net
release rates of chemical  components  from ion  exchange  and  chemical
weathering result: Ca, 400 to 900 keq/ha/y; Mg, 100 to  300  keq/ha/y; Na,
200 to 400 keq/ha/y; K,   20 to 100 keq/ha/y; Al, 300 to  500  mol/ha/y;
SiO ,  100 to 200 kmol/ha/y.  The  total loading of  SO, was about  400
eq/fia/y, assuming no geologic sulfur  in  the watersheds.   None  is known
to be present in the bedrock or surficial material.
    All six streams contained brook trout, and the  three  Narraguagus
drainage streams contained Atlantic salmon.  Blacknose  dace occurred in
all streams except Sinclair Brook; other species  including  creek chub,
white sucker, and common  shiner were  occasionally  present.  All  are
natural populations.
2.4 g/in
                      Atlantic salmon standing stock biomass was 0.26 to
          and annual production was 0.38 to 1.52 g/m , values which are
similar to other streams in northeastern North America.  Although  fish
populations were not strongly affected by stream acidity, mortality of
Atlantic salmon presmolts in Sinclair Brook was high between fall  1986
and spring 1987, which may be related to an episodic decrease in stream
pH during this period.  Brook trout populations were typical of small,
infertile streams in eastern North America, and were not affected  by
observed water quality.  The absence of forage species from Sinclair

-------
                                   iv
Brook may have resulted from the effects of acidity, unsuitable habitat,
or a combination of these.  The abundance of forage species in Indian
Gamp Brook, primarily blacknose dace, was reduced during 1986, when
exchangeable aluminum concentrations were high.
    Survival of brook trout embryos exposed to ambient stream conditions
in artificial redds during 1985-86 was poor because of poor egg quality
and transportation stress.  Hatching success of Atlantic salmon embryos
during the same period was low but emergence rate was average.  This
experiment coincided with a dry period and streams had relatively high
pHs.  Survival of Atlantic salmon smolts exposed to stream conditions in
floating cages was also high.  During the spring of 1986 there was
little runoff and stream pH was high; during 1987 a flood damaged the
cages; after they were repaired and restocked stream pHs remained
relatively high.  Analysis of blood plasma Na and Cl in 1987 indicated
the fish were not under physiological stress.
    Exposure of Atlantic salmon smolts to elevated acidity or elevated
acidity and Al concentrations in artificial stream channels showed that
a combination of pH less than 5.5 and exchangeable Al concentrations
greater than 200 ug/1 caused osmoregulatory stress.  Blood plasma Na and
Cl declined significantly, and hematocrit increased.  Observations of
behavior  also demonstrated that the fish were experiencing sublethal
stress under these conditions.  Some mortality occurred on the last day
of the experiment.  Microscopic examination of gills from these fish
showed that the number of chloride cells increased in fish exposed to
acid alone, but decreased in fish exposed to acid and Al.  Cell size
decreased in both treatments.  We hypothesize that acid stress induces
chloride cell hyperplasia as an adaptation to ionoregulatory stress
caused by hydrogen ion, but that Al damages chloride cells that are then
sloughed off.  Histochemical staining demonstrated that Al penetrated
the gill epithelia and was localized within chloride cells.
    The number of mucous cells increased in fish exposed to acid but not
in fish exposed to acid plus Al.  However, mucous cell size increased in
fish exposed to acid plus Al, but not in fish exposed to acid only.
Lanthanum permeation demonstrated that gill epithelial tight junctions
were opened by exposure to acid or acid plus Al, that the opening
occurred very quickly, and that there was no apparent difference in
effect between the two treatments.  Opening of cell junctions is related
to loss of ions from the blood, resulting in ionic stress.
    Atlantic salmon fry exposed to pH 5.3 in the artificial stream
channels had significantly increased mortality compared to fish exposed
to unaltered stream water.  For the first half of the experiment,
toxicity was similar in the channels receiving acid or acid plus Al.
During the latter half of the experiment, when exchangeable Al exceeded
120 Mg/l» mortality of fish exposed to Al slightly exceeded that of fish
exposed to acid only.  Fish growth was reduced in both treatments.
Whole-body concentrations of Na, Ca, and Cl were little affected until
fish were near death.  Scanning electron microscopic examination of fry
gills demonstrated severe gill deformities in fish exposed to Al, but
not in those exposed to acid only.  The deformities were caused by
hyperplasia of undifferentiated and chloride cells.  These deformities
could cause delayed mortality in these fish.

-------
                            TABLE OF CONTENTS

                                                                   Page
EXECUTIVE SUMMARY	ii

LIST OF FIGURES	..	viii

LIST OF TABLES	xii

ACKNOWLEDGMENTS	...	xiv

INTRODUCTION	...	 1

METHODS	.2
  Site Selection and Description	2
  Discharge and Precipitation	7
    Discharge	7
    Precipitation	8
  Water Sample Collection and Analysis	9
    Laboratory Preparation for Field Sampling	9
    Field Procedures for Sample Collection	...9
    Procedures for Processing Samples Upon Arrival	.	....10
    Analytical Procedures	10
    pH/Conductance/Temperature Monitors.	14
    Chemical Calculations	.............................15
  Fisheries Studies	15
    Characterization of Study Areas	15
    Fish Population Sampling	..16
    Fecundity and Trace Metals	19
    In Situ Salmonid Egg Exposures	.....19
    In Situ Salmon Smolt Exposures	21
    Artificial Stream Channels 	23

RESULTS AND DISCUSSION.	29
  Discharge and Precipitation	,	.................29
    Discharge	29
    Precipitation	34
    Loading	.....54
  Stream Chemistry.	...54
    General Characteristics	54
    Chemical Episodes	..76
    Acidity Status	92
    Discharge/Water Chemistry Relationships	98
    Chemical Budgets	98
  Fisheries Studies	......117
    Fish Habitat	117
    Fish Populations	126
      Atlantic salmon	 129
      Brook trout	 138
      Forage species	..........................148
    Fecundity and Trace Metals	150
    In Situ Salmonid Egg Exposures..	150
    In Situ Salmon Smolt Exposures	152
    Artificial Stream Channel Experiments	.....154

-------
                                   vi

      Smolt Blood Chemistry, Growth, and Mortality	154
      Sraolt Gill Morphology	160
      Fry Whole Body Ions, Growth, and Mortality	171
      Fry Gill Morphology	178

CONCLUSIONS	184

LITERATURE CITED	...,	185

APPENDIX A. Quality Assurance	198

APPENDIX B. Precipitation Volume and Chemistry Data	217

APPENDIX C. Discharge Data	•	223

APPENDIX D. Stream Chemistry Data..	248

APPENDIX E. pH/Conductance/Temperature Monitor Data	255

APPENDIX F. Fish Population Data	298

-------
                                   vii
                             LIST OF FIGURES

Figure                          •<.                                   Page
   1   Map showing the locations of the six streams	3

   2   Map showing the locations of the study area (S), and
       discharge (H), and precipitation (P) gauges in each
       of the Union drainage streams.	5

   3   Map showing the locations of the study area (S), artificial
       channel location (C), and discharge (H) and precipitation
       (P) gauges in each of the Narraguagus drainage streams	6

   4   Daily discharge in the Union drainage streams	.31

   5   Daily discharge in the Narraguagus drainage streams	....32

   6   Comparison of monthly precipitation amounts at Silsby Hill
       and at the Union River and Narraguagus River	36

   7   Mean snowpack depth at open and forested sites for winter,
       1986-1987	41

   8   Monthly water inputs and discharge for Union drainage
       streams.	42

   9   Monthly water inputs and discharge for Narraguagus drainage
       streams.	.......43
  10
  11
  17
Relationship between precipitation SO,, N0», and pH, and
volume at Silsby Hill, Maine	45
Relationship between precipitation pH, and SO, plus NO-
concentrations at Silsby Hill, Maine	
                                                                    .48
  12   Relationship between precipitation pH, and SO, plus N0_
       concentrations for Silsby Hill, Maine.	
                                                              ,49
  13   Seasonal variation in SO, concentration in precipitation
       at Silsby Hill, Maine.	51

  14   Seasonal variation in N0» concentration in precipitation
       at Silsby Hill, Maine...:...	52
  15   Seasonal variation in pH of precipitation at Silsby Hill,
       Maine	,

  16   Variation over time of air-equilibrated pH in the study
       streams	
Variation of acid neutralizing capacity (ANC) over time
in the study streams	
  18   Variation of Ca over time in the, study streams.
.53


.57


.59

.60

-------
                                 viii
19   Variation of Mg over time in the study streams	61

20   Variation of Na over time in the study streams	62

21   Variation of K over time in the study streams	64

22   Variation of Si09 over time in the study streams	65

23   Variation of Cl over time in the study streams	66

24   Variation of F over time in the study streams	68

25   Variation of NO. over time in the study streams	69

26   Variation of SO, over time in the study streams	»	70

27   Variation of dissolved organic carbon (DOC) over time in
     the study streams	•	»	72

28   Variation of cation:anion ratio over time in the study
     streams	»	74

29   Variation of total Al over time in the study streams...	75

30   Variation of exchangeable Al over time in the study
     streams.	*	77

31   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Halfmile Brook during an episode in July, 1986	78

32   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Indian Camp Brook during an episode in July,  1986	79

33   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Rocky Brook during  an episode in July, 1986	80

34   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Sinclair Brook during an episode in July, 1986	81

35   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Rocky Brook during  an episode in December, 1986	82

36   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Sinclair Brook during an episode in December, 1986	83

37   Variation in amount of  precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Halfmile Brook during an episode  in March, 1987	84

-------
                                  ix
38   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Indian Camp Brook during an episode in March, 1987	85

39   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Sinclair Brook during an episode in March, 1987	86

40   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Indian Camp Brook during an episode in September, 1987.	87

41   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Rocky Brook during an episode in September, 1987	88

42   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Sinclair Brook during an episode in September, 1987	....89

43   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance
     for Rocky Brook during an episode in December, 1987....	90

44   Variation in amount of precipitation per 3 hr interval,
     and stream discharge, pH, and specific conductance for
     Sinclair Brook during an episode in December, 1987	91

45   Variation in SO, fraction of measured anions
     (SO */sum of anions) over time in the study streams...........94

46   Granplot ANC versus the sum of nonmarine cations for the
     Union drainage streams	96

47   Granplot ANC versus the sum of nonmarine cations for the
     Narraguagus drainage streams	....97

48   Discharge versus pH during 1986-1987 for Union and
     Narraguagus streams	..............99

49   Discharge versus ANC during 1986-1987 for Union and
     Narraguagus s trearns	100

50   Discharge versus Ca + Mg during 1986-1987 for Union and
     Narraguagus streams	101

51   Discharge versus Na during 1986-1987 for Union and
     Narraguagus streams	.,	.......102

52   Discharge versus NarCl ratio during 1986-1987 for Union
     and Narraguagus streams.	103

53   Discharge versus K during 1986-1987 for Union and
     Narraguagus streams	..104

-------
                                  X
54   Discharge versus SiO» during 1986-1987 for Union and
     Narraguagus streams	
60
64

65
68


69


70


71


72
                                                            ,105
55   Discharge versus Cl during 1986-1987 for Union and
     Narraguagus streams	106
56   Discharge versus F during 1986-1987 for Union and
     Narraguagus streams	
                                                             ,107
57   Discharge versus SO, during 1986-1987 for Union and
     Narraguagus streams.	
                                                             108
58   Discharge streams versus SO, fraction during 1986-1987
     for Union and Narraguagus streams	«	109
59   Discharge streams versus dissolved organic carbon (DOC)
     during 1986-1987 for Union and Narraguagus streams	,
                                                             ,110
Discharge streams versus cation:anion ratio during
1986-1987 for Union and Narraguagus streams....	Ill
61   Discharge streams versus specific conductance during
     1986-1987 for Union and Narraguagus streams	„	112
62   Discharge streams versus total Al during  1986-1987 for
     Union and Narraguagus streams	....<>..
                                                             ,113
63   Discharge streams versus exchangeable Al during  1986-1987
     for Union and Narraguagus streams	.,	
                                                             ,114
Annual cation flux for the study streams	«	118

Annual anion flux for the study streams	119
66   Annual flux for Al, DOC, and Si02 for  the  study streams.

67   Monthly NO- input and output from Halfmile and Sinclair
     brooks	*	»••<
                                                             ,120
                                                             ,121
Monthly SO, input and output from Halfmile and Sinclair
brooks	»• • •

Fish species distribution and occurrence by season and
site in the six study streams	
,122
,128
Atlantic salmon abundance per unit area by yearclass and
season in the Narraguagus drainage streams....	
,130
Atlantic salmon biomass by age, season, and site in the
Narraguagus drainage streams	132

Atlantic salmon increase in weight by yearclass and
season in the Narraguagus drainage streams	134

-------
                                  xi
73   Variation in water temperature over time for the study
     streams.	135

74   Variation in closed-cell pH over time for the study
     streams	.	....139

75   Brook trout abundance per unit area by yearclass and
     season in the Union drainage streams	140

76   Brook trout abundance per unit area by yearclass and
     season in the Narraguagus drainage streams...	142

77   Brook trout biomass by age and season for the study
     streams.	..	 .143

78   Brook trout increase in weight by yearclass and season
     in the Union drainage streams	 145

79   Brook trout increase in weight by yearclass and season
     in the Narraguagus drainage streams	...........146

80   Forage fish biomass per unit area by species and season
     for the study streams.	.149

81   Stream chemistry during the 1987 Atlantic salmon smolt
     cage study.	.155

82   Water chemistry and Atlantic salmon smolt blood
     characteristics from the artificial stream channels.......... 156

83   Lanthanum permeation of Atlantic salmon smolt gills	...168

84   Histological staining for Al in Atlantic salmon smolt
     gills		170

85   Succinate dehydrogenase activity and Al in Atlantic
     salmon smolt gills.	172

86   Water chemistry and Atlantic salmon fry blood chemistry
     from the artificial stream channels	..>	174

87   Mortality and condition factor of Atlantic salmon fry
     from the artificial stream channels	.176

88   Scanning electron micrographs of Atlantic salmon fry
     gills	179

89   Light microscopy of Atlantic salmon fry gills.	 180

90   Transmission electron micrographs of Atlantic salmon fry
     gills exposed to pH 3.5 and treated with La	....182

91   Transmission electron micrographs of Atlantic salmon fry
     gills exposed to pH 4.0 and treated with La	183

-------
                                   xii
                             LIST OF TABLES

Table                                .  r „                          Page
   1  Physical characteristics of the watersheds of the study
      streams.	..4

   2  Methods for processing of water samples	11

   3  Equipment used to analyze water samples	12

   4  Formulae used to estimate fish population size..	.20

   5  Calibration equations used to calculate stream discharge
      from stage height	30

   6  Average discharge by year for the six study streams	33

   7  Maximum and minimum discharge for the six study streams.......35

   8  Yearly water yields for the six study streams	35

   9  Monthly precipitation amounts at Silsby Hill, Maine	37

  10  The ten highest weekly precipitation amounts at
      Silsby Hill,' Maine	39

  11  The ten largest liquid precipitation events measured at
      Silsby Hill, Maine	40

  12  Volume-weighted chemical means in precipitation collected
      at Silsby Hill, Maine^ during 1986-87	46

  13  Volume-weighted chemical annual means in precipitation
      collected at Silsby Hill, Maine, 1986-87	47

  14  Volume-weighted chemical annual means in precipitation
      collected at Silsby Hill, Maine, compared to the
      National Atmospheric Deposition Program stations closest
      to the site, 1986-87	50

  15  Precipitation loading of major chemical species at
      Silsby Hill, Maine, by month	55

  16  Precipitation loading of major chemical species at
      Silsby Hill, Maine, by year and project period	...56

  17  Input-output budgets of major chemical species for the
      Union drainage streams	...115

  18  Input-output budgets of major chemical species for the
      Narraguagus drainage streams	.116

  19  Calculated dry deposition of major chemical species	123

-------
                                xili
20  Physical characteristics of fish habitat in the study
    streams	...124

21  Common and scientific names of fishes collected from the
    study streams	.127

22  Annual and average production of Atlantic salmon and
    brook trout	* .......136

23  Total instantaneous mortality of Atlantic salmon and
    brook trout	137

24  Brook trout fecundity	........151

25  Survival of Atlantic salmon embryos during in situ
    exposure..........................	..............153

26  Water chemistry in the artificial stream channels during
    the Atlantic salmon smolt experiment	 158

27  Nested analysis of variance of chloride cell counts in
    Atlantic salmon smelts.....	161

28  Effects of low pH and Al on chloride cell numbers in
    Atlantic salmon smolts	.162

29  Effects of low pH and Al on chloride cell size in
    Atlantic salmon smolts.	...........165

30  Effects of low pH and Al on mucous cell size and number
    in Atlantic salmon smolts.	.......166

31  Water chemistry in the artificial stream channels during
    the Atlantic salmon fry experiment.....	..175

-------
                                   xiv
                             ACKNOWLEDGMENTS

    This project would not have been possible without  the assistance of
many people and organizations.  We acknowledge with gratitude the
assistance of the following people and organizations:

    Russell MacRae, Amy Gumprecht, Cynthia Thayer, Anthony Taylor, and
Marianne Fisher for assistance in chemical analyses of water samples;
    Ruth Williams, Rand Erway, John Martha, Tim Trefts, Gail
Wipplehauser, Willard Fay, Todd Holbrook, Lisa Inzirillo and Katy
Houghton for assistance with field and laboratory work;
    Champion International Paper Co., Diamond International Paper Co.,
Prentiss and Carlisle Co., Bernard Kenney, and Mr. Hanscom for allowing
access and use of their property;
    Linwood Swett for allowing use of his property for installation of
the precipitation chemistry sampling equipment, and equipment operation;
    Craig Brook National Fish Hatchery and Phillips (Maine) State Fish
Hatchery for supplying Atlantic salmon embryos, fry, and smolts, and
brook trout embryos;
    Willem Brutsaert for assistance with stream discharge measurements
and calculations, and with the design of the water supply for the
artificial stream channels;
    Kenneth Beland, Maine Sea-Run Atlantic Salmon Commission, and
Richard Jordan, Maine Department of Inland Fisheries and Wildlife, for
assistance with selection of streams and advice on locating artificial
redds;
    Wayne Persons, Eloise Kleban, and William Halteman for assistance
with computer analysis of data and statistical procedures;
    Bruce Sidell and Malcolm Shick for loaning equipment used in fish
physiological measurements;
    Susan Anderson for balancing the accounts, typing reports, and
otherwise keeping order in the chaos.

-------
                              INTRODUCTION

    The National Acid Precipitation Assessment Program (NAPAP) was
established by the Acid Precipitation Act of 1980 (PL 96-294) to develop
and implement a program to increase understanding of the causes and
effects of acidic deposition, and their history and prognosis.  The
National Program is operationally divided into seven Task Groups to
accomplish Program objectives.  Task Group VI, the Aquatic Effects
Research Task Group, is conducting research to quantify the chemical and
biological effects of acidic deposition on lakes and streams in the
U.S., and to elucidate the factors that control surface water
sensitivity to acidification.  Specific objectives of the Task Group
are :
    1. To quantify the extent, location, and characteristics of
       sensitive and acidic lakes and streams in the U.S.
    2. To identify and quantify the factors that control sensitivity of
       surface waters to  acidic deposition, and prediction of aquatic
       acidification under different loading rates.
    3. To determine the relationship between surface water acidification
       and biological processes, populations, and communities, and how
       these relationships can be used  to predict ecological effects.
    4. To determine the potential effects of freshwater acidification  on
       human health.
    5. To analyze and evaluate techniques for restoring or protecting
       acidic lakes and streams in the  U.S.
Our project, Intensive Studies of Stream Fish Populations  in Maine, was
an  integrated,  intensive  study of small stream  ecosystems  that addressed
objectives #1,  #2, and #3 above.
    Streams are  important aquatic ecosystems in all  areas  of  the  United
States,  and constitute virtually the entire aquatic  resource  in  some
regions.  Streams have been  studied less intensively than  lakes,  in  part
because  of the  intrinsic  difficulty of  measuring  stream  components.
Streams  are highly variable  ecosystems, both spatially and  temporally.
They  are biologically more open systems than lakes,  with both
invertebrates and vertebrates  frequently moving from one reach to
another.  Variations  in  stream chemistry may  affect  movement  or  survival
of  organisms.   Stream  chemistry may vary because  of  mixing of waters
from different  hydrologic pathways,  including  such  combinations  as
mixing two first-order  streams of  differing  chemistry, mixing base  flow
with surface  flow,  or  mixing of  interflow  or  overland flow with stream
flow.  These  various  scenarios may  bring  about  a  variety of  chemical
changes, with potential  consequent  effects  on aquatic biota.
     The objectives  of  this  project  were to  determine the influence  of
precipitation chemistry,  precipitation amount  and character,  and stream
hydrologic  components  on biologically important stream chemistry
parameters;  and to  determine the  response  of fish to episodic and
chronic changes in these parameters.   We  selected six streams in eastern
Maine for intensive monitoring of stream discharge,  temperature, major
 chemical variables,  and fish populations.   Precipitation volume and
 chemistry were measured at a central site,  using NADP compatible
 equipment and methods.   Artificial stream channels were constructed
 adjacent to  one stream to conduct manipulation experiments testing
 hypotheses concerning episodic and chronic effects of acid and Al on  two
 Atlantic salmon life history stages.

-------
                                  METHODS

                      Site Selection and Description

     A total  of 75  first-and second-order streams in Hancock and
 Washington counties,  Maine, were visited from June to August,  1985.
 Candidate  streams  were tributaries of the Machias, Narraguagus, Union,
 or  Orland  River drainages.   The preliminary search was restricted to
 these drainages in eastern  Maine for logistical  reasons,  and because of
 present  or historical occurrence of Atlantic salmon populations.   After
 this preliminary assessment,  15 streams were selected for further
 consideration.   Rationale for eliminating the others included  one or
 more of  the  following:
     1) recent  or ongoing  disturbance in the watershed.
     2) paved or salted roads  upstream of potential study  areas.
     3) lack  of  an  accessible,  physically and chemically homogenous
       study area.
     4) high  color,  DOC, or  alkalinity relative to  other streams in
       this  region.
     5) stream  size  too  small  or large.
     The  remaining  candidate streams were revisited.   The  presence of key
 fish species,  location, accessibility,  and watershed characteristics
 were investigated.  Based on  this  second assessment  and aspects of
 experimental design,  the  six  final sites were selected.   They  included
 three adjacent  tributaries  to  the  Union River drainage: Halfmile,  Indian
 Camp, and  Spring brooks,  and  three adjacent tributaries to  the
 Narraguagus  River drainage, Sinclair,  Rocky and  Baker brooks (Figure 1).
 As a group,  these  streams represented  a range of alkalinity, color,  and
 source character (e.g., pond,  upland,  wetland) while also minimizing
 logistical problems and strengthening  the overall  experimental design.
 These were the  smallest streams located that contained the  desired fish
 species.
     Each study  stream was surveyed extensively on  foot- to locate
 potential  study areas.  Accessibility,  physical  and  chemical
 homogeneity, and fish populations  were again priority criteria.   A
 representative  100 ra  reach  called  the  study area was chosen for fish
 population studies.   Water  chemistry,  discharge, and precipitation
 monitoring equipment  were located  in or near the study area.
     The study streams are in eastern Maine,  25 to  50 km east of Bangor,
 and just north  of Maine Route  9.   Three of the watersheds are  drained to
 the  southeast into  the Union River (Halfmile,  Indian Camp,  and Spring
 brooks) and  three are drained  to the west  into the Narraguagus River (by
 Sinclair, Rocky, and  Baker  brooks)  (Figure 1).   Selected  physical
 characteristics  are shown in Table 1.   Detailed  maps of the watersheds
 and locations of study areas are shown  in  Figures  2  and 3.
    The vegetation  in the three Union  River  drainages  consists of  mixed
hardwoods (including  white and  yellow  birch,  American  beech, red  and
 sugar maple)  and softwoods  (red spruce,  balsam fir,  and eastern hemlock,
locally northern white cedar and white  pine).  Little  cutting  has
occurred in  these drainages for 30 to  40  years.
    The vegetation in the drainage  basins  of  the Narraguagus streams is
similar in composition to the Union  drainages.   The  western halves of
 the drainages have nearly all been cut  over  within the last  40 years,
largely in block cuts.  Timber harvest  in  the eastern  upland areas has

-------
ffl
o>
c
1.
Q.
CO





.T
ffl

a
E
CO
O
c
.2
•5
C-
xm
a>
^^
E
M—
15
X.




UJ
                                     •H
                                      CO
                                      QJ
                                     ,fl
                                     JJ
                                      W
                                      d
                                      o
                                     •H
                                      4->
                                      cd
                                      a
                                      o
                                      a)
                                     ,£-
                                      4-1


                                      M
                                      §
                                       bO
                                      •H

-------
Table 1.  Location and physical characteristics of the study stream
watersheds, based on U.S. Geological Survey 15 minute topographic maps.
Stream
Halfraile
Indian Camp
Spring
Sinclair
Rocky
Baker
Latitude
44
44
44
44
44
44
49
49
52
52
53
54
50
50
40
48
58
50
Longitude
68
68
68
68
68
68
24
24
21
04
04
05
20
20
30
25
55
05
Watershed
area (ha)
' .800
1480
570
990
640
1190
Total
relief (m)
182
233
239
313
279
109
Elevation of
study site (m)
67
49
67
104
110
110

-------
                       Km
Figure 2.  Map showing the locations of the study area (S), and
           discharge (H) and precipitation (P) gauges in each
           of the Union drainage streams.

-------
 !
N
Figure 3.
           Km

Map showing the locations of the study areas (S), artificial
channel location (C), and discharge (H) and precipitation
(P) gauges in each of the Narraguagus drainage streams.

-------
been less intensive in the last 40 years.   Much of the recent cutting
in this area was conducted to salvage softwoods damaged by spruce
budworm.

                       Discharge and Precipitation

Discharge
    An objective of this project was to examine how precipitation events
and their chemistry influence stream discharge and chemistry.  Stevens
Model 68 Type F continuous water level recorders were installed in or
near the study area on each stream in January, 1986.  Specific location
(see Figures 2 and 3), design, and construction of the level recorder
stations were based on consultation and site inspection with Dr. Willem
Brutsaert, Prof, of Civil Engineering at the University of Maine.  The
recorder station was located in an area with relatively high banks,  if
available near the study area, to minimize bank flooding at the station.
The presence of a low turbulence, U-shaped cross section stream reach
was also a priority site selection criterion.  The recorder was placed
on a platform inside a locked, wooden shelter.  The float end of the
pulley cable was suspended inside a 10 cm diameter PVC pipe (15 cm on
Halfmile Brook).  This pipe was installed vertically into the stream
bank, extending below the bottom of the stream bed.  An accompanying 4
cm PVC pipe for the counterweight was situated alongside the float pipe,
extending into the bank as deeply as the float pipe.  The hydraulic  head
access pipe (5 cm PVC) led from the bottom of the float pipe, laterally
through the stream bank and underneath the stream bed, to the deepest
point of the stream at that cross section.  Two connected PVC elbows
were used to bring the access tube up through the stream bed and
reorient it downstream to minimize turbulence over the access tube
opening.
    A 16-day period was chosen for the stage height records.  This
period allowed broad potential for selection of temporal detail for
merging or comparing discharge data with other data sets, such as stream
chemistry.  Depending on the gear ratio of the recorder, stage height
readings to the nearest 0.1 cm or 0.2 cm were taken from the continuous
records once for each 24-hour period, at 0000 hours.  In addition, major
peaks in stage height following precipitation or snowmelt runoff events
were recorded regardless of the time of day they occurred.  Artificial
peaks in stage height caused by ice dams were easily recognized and  were
excluded from the data.  In instances when the float froze  in the
standpipe during 1986, linear interpolation between the last two known
accurate stage heights was employed to estimate true stage  height.
    For each stream, discharge vs. stage height calibration curves were
developed by measuring discharge at six to nine different stage heights
spanning the normal range of stage fluctuation for each calibration
season.  A meter tape was stretched perpendicular  to the stream at a
point near the  stage height recorder.  The stream width was divided  into
10  cm or wider  intervals, such that 8 to  12 equidistant measurement
points would occur along the  tape.  Depth  (nearest 0.5 cm)  and current
velocity (nearest cm/s) at 60% depth  (Chow 1964) were measured at  each
interval midpoint.  Velocity was measured with an  electromagnetic
current meter (Marsh-McBirney model 201).  Discharge was then  calculated
as  follows (Hynes  1970):

             Q =|_1(D.V.I.a)/106

-------
                                    8
                                      o
where Q is the discharge estimate in m /s, I is  the measurement interval
(in era), D. and V. are the depth (in cm) and velocity (in cm/s),
respectively, at an interval point, and a is a friction-correction
constant of 0.8 for rough bottoms.
    Separate calibration curves were developed for iced-in and open
water seasons because of the influence of shelf  and anchor ice on
channel geometry and apparent stage height.  Point discharge estimates
for winter calibrations were collected after the shelf and anchor ice
had developed.  Data points collected during both winters (1986 and
1987) were pooled for each stream prior to calculating the calibration
equations.
    Linear, quadratic, cubic, and logarithmic (both base 10 and natural)
models were fitted to the point discharge estimates.  Through
consultation with Dr. Brutsaert, the precision of each model was
assessed, and the most appropriate curve or curves for each season were
selected.  In many cases, two selections were made for each stream and
season, one for the low range of stage height and one for the high
range.  Although cubic models often had the best fit, at very high stage
heights the third degree polynomial yielded unreasonable discharge
predictions for streams of this size.  As stage heights increased, the
divergence of cubic versus quadratic discharge predictions was the
criterion used for determining when to switch to the quadratic
calibration curve.  The selected calibration curve for each stream,
season, and stage height range was then applied  to stage height data to
generate discharge estimates.
    There were short time intervals, in late March or early April, when
neither the winter nor the open water calibration curves were applicable
because the shelf and anchor ice were in the process of melting,
dislodging, and floating downstream.  For these  transition periods,
discharge data were calculated by linear interpolation between the last
available winter estimate and the first available open water estimate.
Although transition periods occurred at slightly different times among
the six streams, they were easily recognized on  the graphical stage
height records.  Transition periods also occurred as the streams iced in
during late December, 1986.  However, because the transition from open
water to iced-in conditions was much more gradual than in the spring, no
clear distinction was evident in the hydrology records.  Thus, the
arbitrary date of January 1, 1987 was selected for changing calibration
equations on all streams for the winter of 1986-87.

Precipitation
    Three types of precipitation collectors and  recorders were employed
to collect precipitation in order to relate precipitation events and
their chemistry to changes in stream discharge and chemistry.  An
Aerochem Metrics Model 301 automatic precipitation collector with a
complementary Belfort Model 5-780 universal recording rain gauge was
installed in January, 1986.  The station was located on Silsby Hill in
Aurora Township, Hancock County, 3 to 7 km east of the Union River
tributary study sites and about 19 km west of the Narraguagus River
tributary sites.  This equipment recorded timing and depth of
precipitation events in the centralized location and automatically
collected wet-only precipitation for chemical analysis.  The graph paper
and acid-washed precipitation collection bucket were changed weekly, on
Tuesday (National Atmospheric Deposition Program standard protocol with

-------
the exception of acid washed collection buckets).  Precipitation in the
collection bucket was transported back to the laboratory for chemical
analysis.  Daily depth of precipitation was determined from the
graphical records and then summed to get the total depth of
precipitation associated with the wet precipitation sample.
    A Qualimetrics Model 6113 event recorder with complementary Model
6010 tipping bucket rain gauge was centrally located on each of the two
river drainages to examine variation in depth of precipitation among the
two river drainages, and to monitor the occurrence of drainage-specific
and precipitation events (see Figures 2 and 3).  This equipment was
installed in May 1986 and operated through November 10, 1986, and then
again from April 25, 1987 through November 17, 1987.  Removal of the
recorders in the winter was necessary as they were not designed for
sub-freezing temperatures or frozen precipitation.  Graph papers were
changed weekly, on Tuesday, to correspond with the Aerochem Metrics
station routine.
    Plastic bulk rain collectors were installed in an open area near
each stream site to monitor the occurrence of localized precipitation
events.  The precipitation depth was checked and the collector dumped
biweekly, on Tuesday.  These collectors were used only from May through
mid-November because they were not designed to collect frozen
precipitation.
    Snow depths were monitored in 1986 and 1987 at a centrally located
site in each river drainage.  At each site, two metal stakes marked in
10 cm intervals were driven into the ground, one in the open area and
one under a forest canopy*  Snow depth readings estimated to the nearest
cm were taken routinely in conjunction with other field activities.

                  Water Sample Collection and Analysis

Laboratory Preparation for Field Sampling
    All bottles for field collection or laboratory subsampling were
acid-soaked at least overnight, rinsed three times with tap-water, then
rinsed four to six times with distilled water (DW).  At no time was the
container allowed to dry between removal from the acid bath and final
rinsing.  Bottles were drained in an inverted position on an inert,
DW-rinsed plastic surface for up to several hours, then at least partly
re-filled with DW for storage as an additional precaution against
contamination.  Prior to use in the field, the conductance of the DW in
a subset of each batch of bottles was checked; if the original DW
measured greater than 2.0 uS/cm, the bottle was rinsed and the DW
replaced with water having conductance 1.2 uS/cm or less.

Field Procedures for Sample Collection
    Three separate water samples were collected from each stream in 500
ml .High Density Polyethylene (HOPE) bottles.  In addition, one sample
per site was taken in a 50 ml syringe for closed-cell (non
air-equilibrated) pH.  One 60 ml HOPE bottle was collected for dissolved
inorganic carbon (DIG) determination.  One replicate set of samples was
collected from one stream on a random rotating basis on each sampling
date.  For most sampling dates, a DW aliquot from a subset of the 500 ml
field bottles was collected as a field blank for later analysis of pH,
conductance, and/or anions, as a check on potential container
contamination.  The field crew was supplied with labeled bottles

-------
                                   10

specifying the site(s) to be sampled, including  replicate(s), and  the
holding conditions (if any) to be used in the laboratory.
    Prior to sample collection, each bottle was  emptied of distilled
water, rinsed at least three times with stream water, then filled  to
overflowing with sample.  Samples were taken from mid-channel, mid-depth
whenever possible.  The bottle was tightly capped, underwater if
practical, to minimize or eliminate the air space, and placed on ice as
soon as possible.  Water temperature and sampling time were  determined
and recorded in the field.

Procedures for Processing Samples Upon Arrival at the Laboratory
    Table 2 lists the various procedures performed on each sample  upon
arrival at the laboratory.  Precipitation samples were handled in  the
same manner as stream samples.  As a rule, every attempt was made  to
completely process each sample the day of arrival.  However, when
samples arrived late in the day, some procedures were postponed until
the following day, according to the order of priority in Table 1.  All
unprocessed samples were refrigerated until processing was completed.
After processing, aliquots for cations, anions,  Al, NHL, and SiCL  were
refrigerated until analyzed.
    Samples used in the exchangeable Al procedure were warmed to
approximately room temperature in a water bath,  and then processed
immediately.  Approximately 100 ml of sample were passed through 20 ml
of Dowex 20-50 mesh exchange resin (Na form).  Flow was by constant-head
gravity, taking approximately 45 seconds.  The middle 60 ml  were
collected as the sample.  The resin was regenerated with a pH 3.0
solution of 10   M NaCl between each sample.  Blanks and column
efficiency checks were processed with each field batch.  Column
efficiency checks were of two types:  1) DW spiked with 100  Mg/1 Al
(this spike solution was made up in advance); 2) an actual sample  spiked
with 100 Hg/1 Al, then exchanged immediately.

Analytical Procedures
    Table 3 contains a listing of equipment used in the operations
described below.
PH
    After a  two-buffer  calibration  of  pH meters,  following  the
manufacturer's directions,  the  electrode slope  was  recorded,  and  at
least one standard  acid and distilled  water  were  checked  for  proper  pH.
The standard acid was made  by dilution of  a  titrant acid,  typically  a
1:1000 dilution.  The true  pH of  the solution was calculated  as  the
negative log of  the diluted normality.
    All samples were warmed in  a  water bath  to  25  C.   Two  operationally
different pH values were recorded,  each being done  at  least in
duplicate.   The  first was the closed-cell  pH.  A  portion  of the  50 ml
sample in the syringe was slowly  injected  into  a  closed system pH cell
(Hillman et  al.  1986);  the  system remained quiescent until  a  stable  pH
reading was  obtained, typically taking 5 to  15  minutes.  The  remainder
of the sample was then  injected and another  reading taken*  The  other pH
value measured was  the  air-equilibrated pH.   Bottled air  of known CO-
concentration (range 290 to 315 mg/1)  was  used  to equilibrate samples.
Samples were decanted into  100  ml beakers, and  vigorously aerated for 10
to 20 minutes.  After aeration, the pH was measured in quiescent

-------
                                          11
Table 2.  Sample preparation upon arrival from  the  field, and  procedure priority.
Acidified means addition of HN(>
                                         for DOC)  to  a  final  pU of <2.
Priority Parameter
1
2
3
4
5
Dissolved inorganic carbon
(DIG)
Dissolved organic carbon
(DOC)
Exchangeable Al
Closed-cell pH
Cation, anions, total Al
Preparation
None
Filtered (0.7 ym
GF/F), acidified
Exchanged on DOWEX
resin, acidified
No.ne
Filtered (0.4 urn
Storage
Refrigerated, analyzed
within 96 hours
Room temperature,
analyzed within 2 weeks
Refrigerated , analyzed
within 2 months
None
Refrigerated, analyzed
  6     Air-equilibrated pH


  7     Acid neutralizing capacity
          (ANC)

  8     Specific conductance

  9     True color

 10     Apparent color
                                      polycarbonate),
                                      acidified

                                      Aerated with 300
                                      mg/1 C02 air

                                      Purged with standard
                                      air below pH 5.0

                                      None

                                      Filtered (0.7 ym GF/F)

                                      None
within 1 month


None


None


None'

None

None

-------
                                     12

Table 3.  Equipment used to analyze water samples.
Parameter
                Method
PH

Aerated pH

Conductance

Color


Major cations


Major anions

Al

Exchanged Al

Silica


DIG

DOC


Ammonium
Orion 920 meters, Ross combination electrodes

Orion 920 meters, Ross combination electrodes

Yellow Springs Instrument Co. meter

Hach Ft-Co color kit or Bausch and Lomb
Spectronic 70 spectrophotometer

Perkin-Elmer model 703 flame atomic absorption
spectrophotometer (AA)

Dionex 20201 ion chromatograph

Perkin-Elmer 703 AA with HGA 400 and AS-1

Perkin-Elmer 703 AA with HGA 400 and AS-1

Jarrel-Ash inductively coupled plasma emission
spectrometer, or Technicon TRAACS 800 autoanalyzer

Oceanography International carbon analyzer

Ampulated; Oceanography International carbon
analyzer

Ion chromatograph or Technicon TRAACS 800
autoanalyzer

-------
                                    13

 solutions,  typically  after  10  to 15 minutes.   The sample was re-aerated,
 and  the pH  measured again on a different  pH electrode.   If pH agreement
 was  not within  0.1 units, aeration and  electrode cross  checking were
 continued until agreement was  reached.

 Specific Conductance
     The conductance of  a standard solution was determined daily prior to
 sample analysis.  The cell  constant was recalculated at least monthly.
 The  sample  was  decanted into a 100 ml beaker,  or the probe was inserted
 directly into the field collection bottle if sufficient sample remained.
 The  solution was swirled, and  the conductance  was read.  This procedure
 was  repeated until the  value was consistant to within 0.1 yS/cra.

 Color
     Color was measured  using a Hach color wheel only during 1986.   A
 Bausch and  Lomb Spectronic  70  spectrophotometer was used for the
 remainder of the project, calibrated with a range of diluted 500  PCU
 stock solution.  Apparent color was determined on an unfiltered sample;
.true color  was  determined using a filtered sample.   The same person made
 all  determinations on a given  sampling  day.   Spectrophotometer
 calibrations were made  with at least four color standards, diluted  from
 500  PCU stock.

 Aluminum
     Aluminum aliquots were  analyzed via atomic absorption graphite
 furnace, using  non-pyrolytic tubes.

 Major Cations
     Calcium and Mg were determined by nitrous  oxide-acetylene flame AA,
 and  Na and  K were determined by air-acetylene  flame AA.  No additions
 were made to the solutions  prior to analysis,  except for the HNO,
 preservative (pH <2).

 Maj or Anions
     Fluoride, Cl, N0_,  and  SO,  were determined using ion chromatography.
 Standard Dionex HCO-7CO- eluant was used  with  H SO,  regenerant in anion
 micro-membrane  suppressors.  A 1:100 dilution  of 100X concentrated
 eluant was  added to each sample to yield  an eluant  matrix.   This
 procedure was calibrated for each batch of eluant,  and  was generally
 effective in resolving  the  F peak from  the water dip in the
 chromatogram.   Samples  were generally run twice,  and a  third time if
 agreement was not within 5% on the first  two.   Ion  chromatography F
 results are similar to, but occasionally  higher than, electrode F
 results, due to organic anion  co-elution  with  F.

 Ammonium
     Ammonium was determined with ion chromatography,  using H SO, eluant,
 and  Ba(OH). regenerant  in cation micro-membrane suppressors ror the
 first year.  During the second  year a Technicon TRAACS  800 autoanalyzer
 was  used for the analysis.  Stream samples were generally run only  once,
 due  to the  insignificant or non-detectable levels of NH,  in Maine
 surface waters.

-------
                                    14

Silica
    Silica was analyzed on a Jarrel-Ash inductively coupled  plasma
emission spectrometer  (ICP), using  standard methods, or on a TRAACS  800
autoanalyzer.  We have found that the  ICP  technology yields  the  same
accuracy and often better precision compared  to  the wet chemical
methods.

DOC and DIG
    Carbon dioxide was analyzed on  an  Oceanography International carbon
analyzer using standard methods, either by direct injection  (DIG) or
after ampulation and oxidation by persulfate  (DOC).

pH/Conductance/Temperature Monitors
    Six Hydrolab model 2020 Datasondes were used in 1985, and  two
additional units were acquired in 1986 to  provide additional coverage.
All eight units were outfitted with Lazaran low-ionic  strength pH
reference electrodes.  All units were  refurbished with new computer
software and casings during July and August of 1987.   A model  5200-20XX
Data Management Unit (DMU) was used for calibration and data recovery.
    Numerous problems and limitations  were encountered with  the
Datasondes, particularly during the first  year of the  project:
    1) A long recharge period was necessary for  the reference  electrode.
    2) Improperly machined seals at the 0-ring gaskets allowed water to
       leak into the internal housing, resulting in damage to  the
       computer components and battery pack,  as  well as loss of  data.
    3) Rapid depletion of the battery  pack charge and  erratic
       performance of  the reference electrode occurred during  any
       extended deployment, limiting data  recording intervals  to a
       maximum of two weeks.
    4) Four units consistently exhibited discrepencies between
       pre-programmed  sampling times and those printed out during data
       recovery.
    5) Sometimes units failed to calibrate properly, even when
       multiple attempts were made  with freshly  prepared calibration
       solutions.
    6) We experienced instances of  unexplainable loss  of data  during the
       data recovery procedure.
    Given all of these circumstances,  we were forced to carefully select
when and where we deployed the monitors.   We  based selection of  site and
time interval on the following:
    1) From grab sample pH values collected during the first several
       months of the study, those streams  expected to  exhibit  the
       greatest pH depression and/or lowest pH following a precipitation
       or snowmelt event were given priority  for deployment.
    2) It was necessary to anticipate  probable precipitation or  snowmelt
       runoff events, or normally wet  seasons such as  spring and fall.
    3) Streams with fisheries experiments  in  progress, such  as the smolt
       cage and artificial channel  study segments, were given  priority.
    Calibration procedures were conducted  according to the manual
provided by Hydrolab.  After calibration,  standard acid(s) and several
other solutions of known pH were checked for  accuracy.  Performance  of
the conductance cell was similarly  evaluated  with solutions  of known
conductance.  When available, field pH of  routine grab samples was

-------
                                   15

compared to the monitor pH reading nearest  in  time  to  the  grab  sample.
Supplemental grab samples, specifically for evaluating the accuracy of
monitor pH readings, were collected when  possible.  Detailed  records  of
calibration proceedings and pH comparisons were maintained.
    Datasondes were deployed by placing them inside a  15 cm diameter  PVC
tube with numerous 19 mm diameter holes drilled through the tube walls*
These PVC housings were then either attached vertically to a  stream bank
structure near a deep portion of the stream, or were submerged
horizontally in a deep pool and chained to  a tree or other sturdy
structure.  Deployment periods ranged  from  one to two  weeks.
    Upon retrieval from the field, 'the reference electrodes were
recharged by soaking them in 4.0 M KC1 solution provided by Hydrolab.
Data recovered was uploaded into a mainframe computer  file.   The units
seemed to need a short period of time  after deployment for readings to
stabilize.  Thus, several data points  from  the beginning and  end of each
interval were often deleted, when inaccuracy or instability of  readings
was evident.
Chemical Calculations
    Various calculations were performed on  the data as  follows:
Ion balance.  The sum of positive 'ions was  defined as  [H+Ca+Mg+K+Na] ,
except for precipitation, when NH, was also added.  The sum of negative
ions was defined as  [FH-C1+NO,.+SO,+ANC] .  The ion balance (+/- ratio) was
the sum of positive  ions, divided by the sum of negative ions.
Non-marine concentrations.  Marine corrections to cations and SO,  in
stream water were based on Cl concentrations as follows (based on
seawater composition from Stumm and Morgan, 1981):
    nmCa   = Ca- (0.038*C1)
nmMg
nmK
nraNa
           = Mg- (0.194*C1)
           = K-  (0.018*C1)
           = Na- (0.858*C1)
           = S04-(0.103*C1)

Marine corrections for precipitation data were based on Mg
concentrations as follows:
    nmCa   = Ca- (0.194*Mg)
    nmK    = K-  (0.096*Mg)
    nmNa   = Na- (4.414*Mg)
    nmSO,  = SO,-(0.531*Mg)
    nmCl4  = Cl- (5.144*Mg)

Sulfate fraction.  The relative contribution of sulfate to  the  acidity
status was estimated by calculating a  sulfate fraction of total anions.
Because cation sum is necessarily equal  to anion sum and the cations  can
be more completely measured  than anions, the formula for the variable
was as follows:  nmSO, /(nmCa+nmMg+nmNa+nmK+H) .

                             Fisheries  Studies

Characterization of Study Areas
    A 100 m study area was established in each stream.  Transects
perpendicular to the stream  thread were  established every 10 m  within
the study area (11 transects  per stream) for determination  of average
stream width, depth, and current velocity.  Depth  (nearest  cm)  and

-------
                                   16

current velocity (nearest cm/s) were measured at 3 to 5 equidistant
points along each transect, depending on stream width, and averaged.
    In order to evaluate habitat quality for salmonids in the study area
of each stream, several physical variables considered important in
determining survival, growth, and production of salmonids in streams
were investigated.  These variables included substrate composition,
percentage of pool, riffle, rapid, and backwater habitat, abundance and
type of cover, and pool quality index (Platts 1974, Platts et al. 1983).
Measurements of all variables except pool quality index were
qualitative, collected by visual estimation along 21 equidistant (5m
apart) transects in the study area of each stream.  The same observer
made all estimates and all data were collected during the same time
period and under similar hydrological conditions.   Substrate
composition was characterized by visually estimating the percent
occurrence of five substrate size classes along each transect.  The size
classes were:  sand and silt «0.25 cm diameter), gravel (0.25 to 4.9
cm), rubble (5.0 to 25.4 cm), boulder (>25.4 cm), and bedrock.
    Classification of habitat types (e.g., pool, riffle, etc.) occurring
along each transect was based on velocity and depth profiles in the
immediate stream area surrounding the transect line.  The types were:
    1) Pool - decrease then increase in velocity and increase then
       decrease in depth from upstream to downstream portion of reach in
       question; low or zero gradient.
    2) Riffle - Uniform or nearly uniform velocity and depth profile
       across the reach; gradient and velocity low to moderate.
    3) Rapid - Uniformly high velocity, high gradient, shallow depth;
       fish unlikely to be able to sustain position for any length of
       time.
    4) Backwater - Pocket of water along bank of stream, connected to
       the main channel but without measurable velocity and with low
       rate of water interchange with mainstream.
    Cover intercepted along transects was classified by type and
abundance.  Types included bank snag, bank boulder, in-stream snag,
in-stream boulder, overhead bank vegetation, undercut bank, and
in-stream vegetation.  A pool quality index was quantitatively measured
based on techniques and formulae described in Platts et al. (1983) and
Armour et al. (1983).  The composite index incorporates measurements of
pool diameter, maximum pool depth, and cover abundance in individual
pools.

Fish Population Sampling
Electrofishing Procedure
    To assess the age structure, biomass, production, and growth
characteristics of the fish populations in each study stream, we
conducted a total of six closed-system removal samples in each study
area.  These occurred in September 1985, June, August, and October 1986,
and July and October 1987.  Prior to electrofishing, blocknets were
placed at each end of the study area to prevent fish movement.  A
Coffelt Electronics model BP-1C (1985,86) or model BP-6 (1987) backpack
electrofishing unit was used to stun fish.  Pulsed DC current (250 pps
in 1985 and 1986, 500 pps in 1987) was selected with power output
maintenance between 80 and 130 watts. The field crew of two netters and
one backpack operator worked systematically from the downstream to the

-------
                                    17
 upstream blocknet.   Wide stream sections were split and the subsections
 fished  sequentially to  improve fish catching efficiency.
     Netters  used 3  mm mesh D-shaped dipnets for large fish and small
 aquarium nets  for salmonid fry and small forage species.  All sizes and
 species of fish were collected during the sampling procedure, with the
 following exceptions:
     1)  American eels (Attguilla rostrata).
     2)  In June 1986,  age 0 salmonid fry; as many as possible were
        collected but capture efficiency in some streams was low and
        inconsistant due to small fish size and variation in emergence
        time  among streams.
     3)  Age 0 individuals of forage species such as blacknose dace and
        creek chubs  were too small and thus not vulnerable enough to the
        sampling gear to allow effective depletion or valid population
        estimation.
        Subsamples of these individuals were collected in fall samples,
        where available, to estimate average length and weight.
     Fishing  and netting effort was maintained as consistently as
 possible among electrofishing runs, by following similar fishing
 routines and by monitoring the time expended in each run.  Consistency
 in effort was  facilitated by using the same backpack operator for all
 runs on a given stream.  A minimum of three runs was conducted.   If
 necessary, additional runs were conducted until the inequality given
 below was satisfied:

         Nfc _<0.2

 where Nfc  was the  number of a particular fish species captured in the
 last run and N^ was  the number of that species captured in a previous
 run.  The rationale  for using this formula is that the coefficient of
 variation and  width  of  confidence intervals bracketing populations
 estimates both increase rapidly when  the number of fish caught on the
 last run exceeds  20% of the previous  cumulative total (Zippin 1958;  C.
 MacKenzie, Vermont Agency of Environmental Conservation,  pers.  comm.
 1986).   Only Atlantic salmon,  brook trout,  and blacknose dace were
 considered (each  independently)  in formulating a decision on additional
 electrofishing runs, because occurrence of other species was too
 sporadic  and/or  their numbers  too  low.
     At  the end of an electrofishing run,  the downstream blocknet  was
 resampled and  any fish  captured were  added to that run.   Data were
 immediately  collected,from all  fish taken in a run,  allowing shocked  but
 uncaptured fish remaining  in the  study area to recover and  redistribute
 for  a period of 0.5  to  1.5  hours.   Allowing this  recovery period  has
 been shown to  help stabilize  capture  probability  and significantly
 tighten  confidence intervals  on  population estimates calculated  from
 removal data (Peterson  and  Cederholm  1984).

Fish Handling  and Data  Collection
    A small  amount of NaCl  was added  to  the  fish  collection  bucket prior
 to beginning each run to help  captured  fish compensate for  ionic  and
osmotic  imbalance caused by  electronarcosis.   Fish were  anesthetized
with Tricaine Methanesulfonate (TMS)  in  a  bucket  of  stream water  at an
approximate concentration of  70 mg/1  (salmonids)  or  80 mg/1  (forage
species).  Beginning with  the  October  1986  sample, bicarbonate buffer

-------
                                   18

was added to the anesthetic solution after it was discovered  that  the
TMS significantly lowered the pH of the stream water.  All  fish were
measured to the nearest mm (total length with tail  squeezed)  and a
subsample of each species weighed to the nearest 0.1 g.  A  subsample of
salmonids representing the range in length of fish  captured was selected
for age and growth determination using scale samples.  Scales were
lifted from the body area between the adipose and dorsal fins, and the
exact location was varied at each sampling event to minimize  occurrence
of regenerated scales in the sample.  In September  of  1985, blacknose
dace, finescale dace, and creek chubs were also scaled, but this
procedure was terminated when we discovered  that age determination using
scales was inconsistent and inconclusive for these  species.   During the
June 1986, August 1986, and July 1987 sampling events, all  salmonids
over 120 mm were marked with a 3 mm diameter hole punched in  the middle
of the dorsal fin tissue.  By monitoring recaptures (fin ray  scars) in
subsequent samples we were able to estimate  the degree of residence, vs.
transience of individual salmonid^ in the study area.       ,         • -.
    After recovery, fish were placed in  flow-through holding  buckets in
the stream, outside of the sampling area.  When all electrofishing,runs
were completed, mortality in the holding buckets was assessed, and then
the fish were released throughout the study  area and allowed  to       .,
redistribute for 15 to 30 minutes, at which  time the blocknets were
removed.        ,                • •.;....•„        ,          : •  :. ' • t •'.'-•
    Scale samples were wet-mounted between two glass slides,  allowed to
dry, and the number of annuli and their  radial distances determined by
two or three independent observers.  Occasional disagreement  occurred
and was resolved first by remounting and  rereading  the scale  samples.
If conflicts still existed, resolution was by collaboration"among  ail
readers, using both mounts.                                           -

Population Data Analysis                            •     ;        ;
    Salmonids for which scale samples were, not  taken were  assigned,ages
based on  the age-length relationship derived from  scale  data.
Population estimates  and standard errors  were calculated  incorporating
formulae and probability relationships  for  removal  samples'(Zippin
1958).  For salmonids, separate  estimates  by age were  made  whenever .
possible because catchability  coefficients  tend  to  be  lower for  younger
and therefore smaller fish.  When depletion  of  a  specific  age class of,
trout or  salmon was  poor,  or  sample  size was very  small,  population
estimation using the  Zippin method was  either not  possible or produced
unrealistic estimates.  For  calculations or  graphics  which involved an,
unavailable population estimate,  the actual  total  number of fish
captured  was substituted as  the  best  available  value.   In,addition,
catchability of age  0 salmonids  in  the  June  1986  sample was low and
inconsistent in  some  of  the  streams,  due to  small  fish size.   In those
instances,  population estimates  were not calculated and the capture data
were  not  used  for  determination  of mortality rate.   All ages  were pooled
 for  individual  forage species  population estimates, after  aging by both
 scales  and length  frequency distributions proved unreliable and
 inconsistent.  Blacknose dace  and  finescale  dace 42 mm or  less were not
 considered  in  any  calculations  involving these  species.   We determined
 that  42  mm was  the  approximate  size  that these  species became
 susceptable  to  the  sampling gear.   Though a few individuals  smaller than

-------
                                    19

42 mm were captured, catchability was considered  too  low and
inconsistent to provide representative estimates.
    Condition factor, standing stock biomass,  production,  and
instantaneous rates of growth and mortality were  calculated using
formulae from Ricker (1968)fand Ridker (1975)  (Table  4).   Biomass  and
production were calculated on a per unit area  basis to  account  for
differences in stream size.  Instantaneous growth and mortality rates
were calculated on a per day basis  for each interval  between population
estimates.            ...:•-.-.•.   .-.!.-•             •  _-••   ••,•••

Fecundity and Trace Metal Fish Collections  •     '
    We were not able to collect representative samples  of adult female
brook trout 'from all streams for fecundity determination.  We
supplemented the few fish collected in 1987 with  a few  additional  ripe
females from among the trace metals specimens  obtained  in the fall of
1985.  Even with the pooled collections, the sample sizes are extremely
small and certainly not representative.             !
   ;Brook trout for trace metal tissues Analysis  were collected from all
streams in October'1985, after most had spawned,  from stream reaches
outside of the study area.  Additional collections in November  1986
supplemented those 1985 samples"which lacked sufficient'numbers or true
representativeness in terms of size :range.  Fish  for  trace metal
analysis were measured for length and weight,  sexed,  and  a scale sample
taken for'age determination i  -Each  fish was/lndividually  bagged ;and
labeled, and ha6 been"stored frozen since collection.

In Situ Salmonid Egg Exposures 's"-;   '  •         ,  " -  •   ..;'••,.-..••,      :
    A study of salmonid egg and alevin survival under natural      :
fluctuations in stream chemistry was conducted in 1985.   The three
Narraguagus tributaries (Sinclair, Rocky, and  Baker brooks) were
selected for this study because they contained natural  populations of
Atlantic salmon and brook'trout.1  Artificial redds were constructed from
pre-washed stream gravel and located in or near the study; area  in  areas
of increasing current, such as the  tail end of a  pool (R.  Jordan,  Maine
Dept. Inland Fisheries and Wildlife, peirs. comm.,  1985).'  Nylon;mesh
bags containing appropriate" spawning-size gravel  for  each species-and a
known number of green eggs (either Atlantic salmon or brook trout)  were
implanted within the redds.  The 6 ;mm mesh salmon egg bags:and  5;mm mesh
trout egg - bags allowed movement of hatched alevins into the redd.  ;An
outer containment net with larger gravel'• and mesh too small for alevins
to escape enclosed each egg bag as a sampling  unit.   A  series of these
double bag units placed together constituted a redd.  This design
allowed removal of a portion of a redd, containing a  known initial
number of eggs, while minimizing disturbance to the remainder.
    Two brook trout redds and three to five salmon redds  were
constructed per stream.  The number of double-bag sampling units per
redd ranged from two to six, depending on space available  at each  redd
site.  A total of 1800 brook trout eggs from the  Phillips  State Fish
Hatchery in,Phillips, Maine, and 1600 Atlantic salmon eggs from the
Craig Brook National Fish Hatchery in East Orland, Maine,  were  planted
in each stream in late October and early November of  1985.  Of  these,
800 per species were"left for fry emergence estimates in May and June.
The remainder were sampled at key stages during development, including
post eye-up, pre-hatch,  and post-hatch (alevin) stages.   Samples of

-------
20
4J
CO
•>
CO CU
CO r-1
CO Cu
a a
O CO
•H CO
oT-H
N JS
•H CO
CO -H
B 0
O M
•H 4J
4J U
CO CU
3 "Si

o* a
Cu O
M
CU  4J
CO B

•3 jj
SCO
B
O *rl

•O
TJ B

CO

CO B
B 0
O i-l
•H 4J
4-1 U
a. 3
•H -a
P O
U M
CO CU
CU
tc*
M 4J
CU S
4J O
CU M
B bo
CO
M CO
CO 3
fM O
CU
B
• cO
 .:»•',•
o *™^
ri .. ' . ,„. 	 	 ;E3 _
x-x x-v :,--- • . . -,- '• 0) -
CM ' CM 	 bO
^a :•,!•& . . . , , o

M • CM 1
CO O ^*-» x-%
CU • .; . '•; ; . ' -, x~». CM
M CM " CM B!
CO 1 tJ P9 ^^
— ^ ^ x-\ CU
x^ CU +IM bO
1 & bO O
« o *-!•& 1-5
a ij pa o v-'

n H ; H II I' •:.

•pa O |pq PLI N ..-.-.-





- - , . ., : 'CO
• • ' • •' 	 .. : ' :•-- 	 •'g _,
* ^^\ 3 ^O
•' • x-s • • . t*. i-i B Co
a co • o co cu
...-•• a TJ . B ; 4J
X— \ B "•»• *rl rS CO
^ & B O — 1 UMCUCO 4JOCO t— ) .
UMc3 OcO UCUrHM cO CObOCO
O (0 t-l 0) COCU cOCuCubOMCO B>
4J bO 4J J2 bO B MO'H
•HBMbOCUM OWWi-l 4J,Q CO
bOBf-l BCUCU C0; •Hg-^'rlCU
B 3 »B CU ^ t* CU B *rj CO rH 3 *4-4 ^
•H 4J AJi-JAJCO 4J O (3 W COBCU, 1-1
•T3 M^ ^CU COlHCOCO 4J i— I •* 4J '
BCUbO OB^II O^^ca B MBCup^cO
COCUi-| P-rl i— 1 O O "rl a 4J bO
4J CU bO "IrJ "J3 1-4 B TO -H 01
co pB ^ cu t*% ^-x X-N co cu »jQ cu co i— i a
CO CObOCO PM t-l r-l CObOCO
• ••HCU 3BTJCM v-x«t-lCucU SBBW •
x~\ M-lbO OCO BW OCflOM'B
CQ CO CUrBpcU B^WcOcO CUJ^MOBO
x--<4-lM BOCUr-l OOCOM BO>WBO-H
OCUcOCuCUtH CUCO -H4J
CO > 4J <4-l a 4J CO C > 4J<4-44Jr-|4JCO
W 4J TO BO4JTO UCOCUCO BOBTOcOM
cOrB CO ^BM 3OCU cO CUMMbO
BbOH JJCUbO TfrH&ll 4Ja)W3bO
-------
                                    21

interstitial water  (water  passing  through the redds)  from one or more
redds were collected  periodically  from December 5  through May 7, and
analyzed for dissolved oxygen, pH,  and conductance.   Stream water
samples were collected at:  the  same  time for  comparison.
    During the  first  week  of May,  1986,  fry  emergence traps modified
from the design of  Porter  (1973) were  installed over  the remaining
sample bags in  each redd.   Traps were  checked and  fry removed every
three to four days  during  late May  and early June, but less frequently
as emergence decreased.  The traps  were removed on July  1.

In Situ Salmon  Smolt  Experiments
Cage Construction
    In order to study Atlantic salmon  smolt  survival  (1986 and 1987) and
blood chemistry (1987) under naturally occurring spring  runoff      '.
conditions, ten floating fish  cages were constructed  from plywood,
styrofoam floatation, and  rectangular  bag nets. The  floatation
platforms were  170  em long by  100 cm wide (155 cm  by  85  cm for Rocky
Brook) with a rectangular  hole, 120 cm by 45 cm, cut  in  the center.   A
45 cm deep, 0.6 cm!mesh bag net was hung from the  rectangular hole.
Each cage afforded  an approximate  total living space  of  0.25 m .  A
hinged, locked wooden cover was added  to prevent escape  of smolts from
the cage, to provide  protection from predators, arid to discourage
poachers and vandals.

1986 - Exposure             ;                    "•            ;   '
    Two smolt cages per stream were deployed just  after  ice-out in five
of the six streams.   Spring Brook was  excluded due to difficult early
season access and lack of  cage locations with sufficient depth.  The
deepest and largest pools  available in or near the study area of each
stream were selected  for cage locations.   Cages in Halfmile Brook were
installed first and stocked with 50 one-year-old Atlantic salmon smolts
per cage on March 27.  The smolts twere obtained from  the Craig Brook
National Fish Hatchery in  East Orland,  Maine.   Within three days,  all
smolts from one cage  and half from  the other cage had died.   A failure
to acclimate the smolts to_ the stream  water  prior  to  stocking,  and the
lack of current deflectors'in front of the cages, contributed to the
mortality.                   ...   .:.                             '     -
    The stocking procedure  was modified  to allow acclimation,  current '
deflectors were anchored upstream of each cage,  and the  remaining cages
were stocked with 60  smolts per cage;  Rocky  and Sinclair brooks on April
3 and Indian Camp and Baker brooks  on  April  10.  A subsample of the  fish
stocked on April 3 was collected to obtain initial length and weight
values.  The cages were checked for mortalities, usually every two to
three days, but at least once every four  days.   Smolts were  fed
appropriate size hatchery  food pellets to satiation at each visit.
Qualitative observations on feeding intensity,  general behavior,  and
apparent external condition were also  recorded.  Cages were  removed,
survivors counted, and a subsample  of  the survivors were weighed and
measured on June 2 (Rocky  and Sinclair brooks)  or June 9 (Baker and
Indian Camp brooks).

1987 - Exposure                         '•"     '   ••                    ••• :-.
    In 1987,  each cage was  modified by attaching the  main current
deflector directly to the  front of  the cage.   The deflector  was angled

-------
                                   22

so that the cage would ride over oncoming current, deflecting  flow
beneath the net containing the smolts.  Each cage and deflector were
free to move up and down in unison as stream water levels  fluctuated.
Additional protection from current was achieved by attaching wooden
walls around the outside of the cage net.
    Two cages each were located in Indian Camp, Halfmile,  and  Sinclair
brooks.  One-year-old smolts from the Craig Brook National Fish Hatchery
were stocked at 60 per cage.  No mortality related to transportation or
handling was observed.  Runoff from heavy rain and melting snow caused a
major flood on April 1, and the resulting turbulence in  the cages killed
all the fish in Indian Camp and Halfmile brooks, and 80% of the fish in
Sinclair Brook.  After the peak discharge, the cages in  Halfmile arid
Sinclair brooks were repaired and restocked with 60  fresh  smolts each on
April 8.                                    ,
    The sraolt cage experiment lasted from April 8 through  May  7, 1987.
Blood samples were obtained from smolts from each stream twice a week,
totaling nine samples per stream, to determine hematocrit, Na, and Cl
concentrations as a measure of physiological stress.  In addition, blood
samples were taken from eight Atlantic salmon smolts from  Craig Brook
Hatchery on April 15.  On each blood sampling day, water temperature was
measured and a water sample was collected.  Water samples  were
collected, handled, and analyzed as described previously.   The
pH/conductance/temperature monitors were deployed in both  streams for
the duration of the experiment.  Notes were taken on the general
appearance of the smolts and dead smolts were counted and  removed at
each visit.  The smolts were not fed throughout the  experiment.

Blood Chemistry
    On each sampling day, three smolts per cage were randomly  netted,
put in a bucket and anesthetized in buffered (pH 4^ 6.5)  TMS.   The amount
of TMS used ranged from 0.5 g to 0.9 g per 8 1 of water, depending on
temperature,  to ensure that fish would be anesthetized  in roughly the
same amount of time on each day.  Using these concentrations,  the smolts
were immobilized in 2 to 3 minutes.  The  fish were bled  from  the caudal
blood vessels using a 1 ml preheparinized (NH.-heparinj  Sigma  Chemical)
syringe equipped with a 22 gauge needle.  The blood  volumes obtained
varied from 0.1 to 0.8 ml.  The blood sample was  transferred  to a
preheparinized 1 ml microcentrifuge tube, removing the  syringe needle  to
avoid red blood cell lysing during the transfer.  The  tube was tightly
capped and carefully inverted several times  to  thoroughly  mix  the blood
with the heparin, then centrifuged at 3000 RPM for five  minutes.  A
preheparinized hematocrit  tube was filled with blood and centrifuged  for
four minutes.  The hematocrit value was recorded  and the hematocrit  tube
discarded.  The blood plasma was removed  from the microcentrifuge  tube
using a clean pasteur pipet and transferred  to a  clean,  unheparinized
raicrocentrifuge tube.  The tube was  tightly  capped and  the plasma  sample
immediately placed on ice, transported  to  the laboratory,  and  stored  at
-12° C.
    Blood plasma samples were removed from  the  freezer  and thawed  in a
25° C water bath for 20  to 30 minutes.  During  the  thawing period  a
filamentous material precipitated  out of  many  samples.   In order  to
prevent the micropipettor  from clogging during  sample  transfer,  all
samples were centrifuged for  two minutes  at  7000  RPM to  remove this
material.  Plasma Cl concentrations were  determined  using  a Buchler

-------
                                   23-

Cotlove Chloridometer (model 4-2008) equipped with a rheostat toallow
the use of 10 yl plasma sample size.  From two to six readings per
sample were taken.  Plasma Na, Ca, and Mg concentrations were determined
by inductively coupled plasma emission spectrophotometry at  the Plant
and Soil Science Analytical Laboratory at the University of  Maine.
Forty yl of plasma sample was pipetted in a clean, dry vial  and diluted
in 3.0 ml of 2% HNO.,.  All vials were capped and the contents mixed  for
several seconds using a test tube mixer.  Two readings per sample were
taken.                                                 '               • -  -

Artificial Stream Channels
Channel Construction
    A gravity fed water delivery system was installed on Baker Brook, at
a site approximately 1 km downstream from the study area,  to supply
unaltered stream water for chemical manipulation in artificial stream
channels.  A valved 5 cm ID intake hose delivered stream-water to three
wooden reservoir boxes,' each holding approximately 0.9 m ."  The
reservoir boxes were designed to store stream water for use  in case  of
delivery system malfunction, and to establish and maintain predictable
gravity head to drive the water through the channels.  From  the
reservoir box, stream water flowed into a wooden mixing box  (no mixing
box for control channel), 50 cm long by 40 "cm wide by 30 cm  deep.  The
acid or acid plus Al solutions entered the stream water at the head  of
the mixing box and the solution then flowed through a series of baffles
before entering each channel compartment separately through  a valved 1.9
cm pipe.     '-'•      :                                             ;
    Three channels were constructed from plywood, and each was divided
into two equal compartments to serve as experimental replicates.  The
channels were fiberglassed, and sealed with silicone caulking.
Completed channels were 420 cm long by 65 cm wide (outside dimensions).
Each replicate compartment was 410 cm long by 30 cm wide by  30 cm deep.
When maintained.at a depth of 25 cm with a standpipe^ each compartment
provided 0.31 m  of living space.  Water flow was about 2.5  1/min. per
channel'.  Two channels held manipulated stream water.  The third was a
control, receiving unaltered stream water.  Acidified water  flowed out
of the channels and into a wooden neutralization box containing crushed
limestone (80% CaCO_ content), and then flowed back into the stream,
       --"""-     "^               ,          "   .                      i
Chemical Manipulations                                     ;      -'"'••'
    Chemical dosing systems were installed to manipulate the chemistry
of four of the six channels.  One pair received additions  of HC1  and
were termed  the acid channels.  A second pair received additions  of  HC1
and A1C1- and:were termed the acid + Al channels.  Based on  extensive
laboratory trials, we designed and constructed a  set of Marriot bottles
to deliver the acid and Al solutions to the channels.  After
installation at the field site, however, daily temperature fluctuations
changed the  air pressure inside the bottles and altered  the  rate  of
delivery.  On May 16, the entire delivery system  was dismantled and
replaced by  a flow-through system.  This design consisted  of three
bottles located at three different heights.  The  upper bottle  dripped
solution into the middle bottle, which  served as  the  actual  delivery
bottle.  More solution dripped into this delivery bottle  than  dripped
out of it in the mixing boxes, and  the  excess was  siphoned to  a lower
bottle, yielding  a constant head  in bottle two.   A metering  value was

-------
                                   24
used to further regulate the rate of delivery of  the  solutions  into  the
mixing boxes.
    The target pH level of the two treatent channels  in  the Atlantic
salmon smolt and fry experiments was 5.0,  to induce chronic stress
rather than acute mortality.  On the last  3 to 4  days of each
experiment, the pH was gradually decreased to 4.5 or  lower to cause
acute stress.  Exchangeable Al in the acid + Al channel  for the smolt
and fry experiments was gradually increased to a  target  concentration of
300 Ug/1, and pH was maintained at 5.0.  Acid stock solutions were
prepared in the laboratory by mixing concentrated HC1 (Baker Reagent
grade) with distilled water to produce a 0.2 N HC1 solution.  The acid +
Al stock solutions were prepared in the same fashion  but in addition,
A1C1 * 6 H_0 powder was dissolved in this solution.  The  amount  of Aid.
addea was increased with successive batches in order  to  increase the
concentration of exchangeable Al in the channel.
    The pH of the channel water was determined using  Fisher 107 and  Cole
Farmer Digi-Sense digital pH meters equipped with Ross combination pH
electrodes.  One to five samples were taken daily and analyzed  on site.
Depending on the pH readings, the drip rate of the delivery bottles  was
adjusted.
    Water samples were collected five to six times a week in each of the
experimental channels, and from Baker Brook, for  Al analysis.   The
samples were collected and speciated for Al as described for stream
samples.  The concentrations of total and  organic Al were determined
using the catechol violet method (Dougan and Wilson 1974).  Duplicate
samples were periodically analyzed by graphite furnace atomic absorption
spectrophotoraetry as a check on the accuracy of this method.
    Dissolved oxygen concentration and water temperature were measured
three to six times per week.  Dissolved oxygen was measured with a Hach
Color Reagent Kit during the first week of May.   All  subsequent readings
were obtained using a meter (Yellow Springs Instrument Co. model 57).

Salmon Smolt Experiments
    On April 30, 1987, 350 one-year-old Atlantic  salmon  smolts were
obtained 'from Craig Brook National Fish Hatchery  for use in the
artificial channel experiment.  Fish were  acclimated  to  stream water for
45 minutes, then 110 smolts were transferred to each  of  the three
headboxes and left undisturbed until May 4, 1987.  No mortality occurred
during transportation or acclimation.  On May 4,  50 smolts were placed
in each of the six channel compartments and dosing with  acid and acid +
Al began.  This experiment lasted from May 4 through  June 1, 1987.   The
channels were cleaned with a plastic siphon every two to four days.
Mortality was checked daily and dead smolts were  promptly removed and
counted.  The smolts were not fed for the duration of the experiment,
Blood sampling was started on May 8 and samples were  taken at regular
intervals three times a week from each of  the three channels.  There was
a total of 11 sampling days.  Blood samples were  collected and  processed
as described previously.
    A two factor ANOVA with treatment and  sampling date  as independent
variables, and plasma Na, plasma Cl, blood hematocrit, and condition
factor as dependent variables, was used to test the significance of  the
treatment effects.  An arcsine transformation was used for the
hematocrit and condition factor data to normalize the data (Zar 1984).
The results for plasma Na, plasma Cl, and blood hematocrit were

-------
                                   25

inconclusive because a significant interaction existed between' the
dependent variables.  For these factors, a one-way ANOVA was performed
for each sampling date, with treatment as the independent variable.  A
Tukey multiple comparison test was used to determine significant
differences between means on each date.  A significance level  of 0.005
was selected to correct for the increased probability of committing a
type I error.

Gill Morphometry Study
    On May 22, 1987 and May 29, 1987 smolts were collected from each
channel with dip nets and anesthetized with buffered TMS, and  the  second
gill arch from the right side of each was excised and fixed in a
modified Trumps fixative (McDowell 1978) consisting of 1% glutaraldehyde
and 4% formaldehyde (from paraformaldehyde) in 0.1 M phosphate buffer,
pH 7.4, containing 10% w/v sucrose.  Tissues were stored under
refrigeration in this solution.
    Five individuals from each treatment and date were randomly chosen
for raorphoraetric analysis.  Several primary lamellae were dissected free
from the bend region of each gill arch.  Care was taken to collect
primary lamellae from the same region of each arch, and to select only
from the longer hemibranch.  Filaments were dehydrated through a graded
ethanol series, infiltrated with propylene oxide, and embedded in  epoxy
(a mixture of Epon 812 and Araldite 502).  Individual filaments were cut
free from the hardened blocks with a jewelers saw, and mounted for
longitudinal sectioning.
    Sections 1pm thick were cut using a Dupont Sorvall JB4 microtome
equipped with a modified Butler trough (Butler  1979).  Two slides  were
prepared from each filament, each consisting of about ten sections.  The
knife was advanced 50 to 100 um between slides, so each represented a
different region of the primary lamella.  Slides were stained  with
periodic acid-Schiffs reagent (Humason 1967) then lightly counterstained
with 0.5% Toluidine blue, so that both chloride cells and mucous cells
could be seen on the same slide, and examined at 1000 x.  Cell counts
and measurements were made using a Zeiss Videoplan image analysis
computer.  The experimental design, or optimum  number of replicates at
each sampling level, was determined using a nested analysis of variance
technique as described by Raines et al. (1986)  and Jagoe (1988).
    Chloride cells were counted and measured in the area defined by six
secondary lamellae and the interlamellar spaces between them.  Three
such areas were examined from the same section  on each slide,  and  two
slides were  examined from each  filament.  Two filaments per individual
were used.  Thus, a total of 60 interlamellar spaces were examined per
individual.  Chloride cells associated with  primary lamellar epithelium
and secondary lamellar epithelium were recorded separately.
    Mucous cells were counted and measured in an area consisting of 10
interlamellar spaces, and two areas were examined per section. One
section  per  slide,  and two slides per  filament  were examined.  Two
filaments were examined per individual, resulting in a total of 40
interlamellar spaces used per individual.

Lanthanum Tracer Study
    Smolts were sampled on May  20,  1987 and  on  June  1,  1987.   Fish were
anaesthetized and handled as described  above.   The  second gill arches
were removed  and fixed in  1% glutaraldehyde,  4% formaldehyde  (from

-------
                                    26

 paraforraaldehyde),  and  5%  sucrose in 0.1  M sodium cacodylate containing
 0.5% La prepared  according to  the method  of Revel and Karnovsky (1967).
 Tissues were  fixed  for  four to six hours, then rinsed several times with
 0.1 M cacodylate  containing 5% sucrose and 0.5% La.   Some tissues were
 stored in  the primary fixative under refrigeration for about two weeks
 before use.   There  was  no  apparent difference in the degree of La
 penetration in these  tissues despite the  longer storage.   Primary
 lamellae from the bend  region  of  the gill arch were  dissected free of
 the arch,  and postfixed on ice in 1% osmium tetroxide in 0.1 M
 cacodylate, containing  5%  sucrose and 0.5% La for one hour.
    After  post-fixation, tissues  were rinsed three times in cacodylate
 buffer containing  0.5% La, and dehydrated and embedded as described
 above.  Sections  were cut  longitudinally, so that each included a length
 of primary lamella  with projecting secondary lamellae.  Sections of gold
 to silver  interference  color were cut using glass knives and mounted on
 formic-acid-etched  copper  grids.   Sections were examined without
 post-staining using a Philips  EM201 electron microscope equipped with a
 goniometer stage, operating at 60 kV.
    Two to four individuals per treatment per date were randomly
 selected for  detailed analysis.   Sections from each  were examined at
 intermediate  power  (magnification about 4000x to 7000x) by moving the
 specimen and  visually scanning along the  edge of the tissue.  Specimen
 tilt was adjusted with  the goniometer as  necessary to clearly visualize
 membranes.

 Localization  of Al
    Gills  were collected on May 22,  May 29  and June  1,  1987, from fish
 anaesthetized and handled  as described above.  The first gill arch from
 the left side of  each fish was quickly coated with Histoprep O.C.T.
 Compound,  then plunged  into isopentane (2-methylbutane)  cooled in liquid
 nitrogen.  Freezing was  complete  within seconds,  and tissues were then
 placed in  liquid  nitrogen  for  transport to the laboratory.   Upon
 arrival, they were  warmed  to -80° C,  and  stored in a Revco  Ultralow
 Temperature freezer until  used.
    Tissues were  sectioned at  -30° C using  a Reichert Histostat cryostat
microtome  set at  10 to  20  vm.  Sections were collected on glass
 coverslips, allowed to warm to room temperature for  a few seconds,  and
 immediately stained.  Solochrome  azurine  (1%;  Denton et al.  1984)  in 0.1
M acetate  buffer, pH  5.0,  was  used to  stain for Al.   Some sections  were
 stained for the enzyme  succinic dehydrogenase by incubation in a
 reaction medium containing 80  mM  sodium succinate, 50 mm sodium
 phosphate  buffer, and approximately 0.1%  nitro blue  tetrazoleum
 (Egginton  and Johnston  1982).

 Salmon Fry Experiments
    On June 2, 1987,  approximately 1800 Atlantic  salmon fry (strongly
 feeding, mean length  =  26.8  mm) were obtained  from Craig  Brook National
 Fish Hatchery.  The fry were transported  on ice in plastic  jugs.  Upon
 arrival at the site the  fish were first temperature-acclimated for  three
 hours by putting  the  jugs  in the  channels,  then water acclimated  by
 adding Baker  Brook water to  the jugs  and  leaving  the fish undisturbed
 for an additional hour.  After  this,  the  jugs  were opened and  the  fry
 released into their respective compartments.   Transportation,
acclimation,   and handling mortalities  were  negligible.

-------
                                    27

    For the duration of the experiment,  the  fry were fed 4% body weight
per day of the hatchery food  (ASD2-30,  open  formula, USFWS diet) that
they had been reared on.  An  automatic  feeder (Zeigler Bros. Model
19-200) was set to deliver  food  daily  from 1530 to 1930 hours.  Feeding
was started the day after stocking.  The amount of food, delivered was
adjusted twice a week  to account for increasing body weight.  On a daily
basis, each channel compartment  was cleaned,  notes were taken on the
general appearance of  the fry, and. mortalities were recorded and
removed.                                   - .,,  '   .,•;... v  ...   .,-,...

Whole Body Ion Content                                  .  ;.    ..
    Fry were sampled on four  consecutive days after the June 2 st.ocking
and then twice weekly  for the remainder^of the experiment to determine
whole body ion, composition.   At  the very end  of the, experiment, .fry were,
also sampled on four consecutive days.   All  fry samples were taken in
the morning before any food was  presented.  On each (sampling day, eight
fry were randomly chosen from the same  area  in each compartment for a,
total of 16 fry per channel.  Moribund  fry were normally avoided but    \
were sampled separately on  several, occasions, for .comparison purposes.
Each fry was quick frozen on  dry ice and stored separately in a, clean
cryogenic vial on dry  ice for the rest  of the day.  At the laboratory,
the fry were stored at -12  C until processed.,           ..-.'.  ,...
    Four fry per compartment, per sampling day were thawed^,,, jweighed, and,
measured.  Each fry was gutted and placed in a dry, preweighed 20 ;ml,
pyrex beaker.  The beakers  were  heated  in a  dessicator oven at 80  C for
40 to 48 hours, and the dry beakers and fry  weighed to the neares,t 0.1
mg to determine dry weight..  They were  then ashed in a muffle furnace at
550  C for 24 hours and weighed  again to, obtain ash weight. , Ash-fr.ee
dry weight was obtained by  difference.      ,
    The beakers were transferred to a hotplate under a;hood at 65 to .
70° C and 3 ml of pure, concentrated HNO. (Baker IJnst:ra-Analyzed) wer,e
added to each.  All the UNO,  was allowed to  slowly, boil off,,until;, the
beakers were dry.  The beakers were then removed from the hotplate and  ,',
allowed to cool for 15 minutes,  and an  additional 2,, ml of, HNO  were ,,..,
added to each beaker.  Using  a clean pyrex rod, any precipitate, .on, the
bottom of the beaker was carefully scraped off.  The rod was. rinsed with
double-distilled,, deionized water and the beaker filled, with,   ... , •„,.
approximately 15 ml of water. The dissolved sample was then  transferred
to a 50 ml volumetric  flask.  The beaker was rinsed four times with  ,f.  ,,
double-distilled, deionized water, the  controls transferred^ to a      ,_
volumetric flask, and  volume  brought to 50 ml.  The digestate was    .
transferred from the volumetric  flask to a 60 ,ml polyethylene storage
bottle.  Two to three  blank 20 ml pyrex beakers per batch were treated
in the same fashion as the  samples to check for possible contamination
during the procedure.

Morphometric Study
    Fry were collected for  morphological examination on June  17, June
24, and June 29, 1987.  Whole heads were fixed in modified  Trumps
fixative, described above.  Whole gill  arches were dissected  free from
the fixed heads, and  prepared for either scanning.electron microscopy; or
light microscopy.  For light  microscopy, gills were dehydrated,
embedded, and sectioned as  previously described for smolt gills.

-------
                                    28

    For scanning electron microscopy, gill  arches  were  postfixed in 1%
osmium tetroxide in 0.1 M phosphate buffer.   They  were  then dehydrated
through a graded ethanol series,  and dried  under liquid CCL in a
Tousimis Samidri critical point drier.  Arches  were  attached to specimen
stubs with conducting  silver paste,  sputter  coated to a nominal depth of
250 angstroms with a gold-palladium mixture,  and examined  using an AMR
1000A scanning electron microscope  operating  at 5  kV.
    Fry that had been  held in  the control channel  for four weeks were
used in an experiment  to examine  the effect  of  short-term  exposure to
low pH.  Five fry were collected  from the channel  by dip netting and
placed in a polyethylene bucket containing Baker Brook  water which had
been adjusted to pH 4.5 with hydrochloric acid.  The bucket had been
acid-washed and thoroughly rinsed with distilled water  before use.
After 20 minutes of exposure,  the fish were  removed  from the acidified
water and killed by decapitation.  Whole heads  were  fixed  in an aldehyde
fixative containing La, as previously described for  sraolts.   This
protocol was repeated  using water adjusted to pH 4.0, and  repeated again
with water adjusted to pH 3.5.  Controls were handled in the same  way,
and held in the bucket in unacidified stream water for  20  minutes.  The
bucket was thoroughly  rinsed in several changes of stream  water between
exposures.  Gill tissue treated with the La  tracer was  prepared and
examined as described  for smolts.

-------
                                   29

                         RESULTS AND DISCUSSION

                       Discharge and Precipitation

Discharge
    Stage height records were obtained nearly continuously from the  six
streams from mid-January 1986, through December 1987.  A few  scattered
data points were missed due to mechanical malfunction of the  recorders.
Between six and nine point discharge measurements were obtained for  each
stream and calibration season.  All stage height data, point  discharge
measurements, and predicted discharges from these data are presented in
Appendix C.
    Calibration equations used to predict discharge  from stage height
are given in Table 5, according to stream, application period, and stage
height range.  These same calibration curves are presiented graphically
in Appendix C.  All equations had R  values above 0.91, and all but  two
were above 0.98, demonstrating excellent fit of the  predictive models.
Cubic regression models had the best overall fit, and therefore were
used in most situations.  For mid-range stage height data, both cubic
and quadratic models predicted equally well.  However, at extremely  low
stage heights, quadratic curves reversed direction,  thus predicting
higher discharge as stage height decreased.  In contrast, for very high
stage heights, quadratic regression models yielded more realistic
discharge estimates than did cubic models.
    Time series plots of stream discharge over the course of  the study
are presented in Figures 4 (Union River tributaries) and 5 (Narraguagus
River tributaries).  Major hydrological events in December 1986, April
1987, and December 1987, are well illustrated.  The  streams grouped
within drainage parallel each other closely.  Rapid  increase  in
discharge with more gradual recessional behavior was evident.
    Average annual discharge is given in Table 6.  Patterns between
years, river drainages, and individual sites reflect the influence of
watershed area, precipitation volume and form (rain  vs. snow), watershed
aspect, and presence of ponded waters.  In general,  average unweighted
discharge increased proportionally with watershed area (see also Table
4) in 1986, when precipitation volume was fairly similar among stream
drainages.  In 1987, the Narraguagus drainage received substantially
more precipitation than the Union drainage, as evidenced by snow depth
and event recorder data.  Thus the overall relationship of unweighted
discharge and watershed area among all six streams in  1987 changed,  but
within each river drainage the relationship remained consistent.
Average weighted discharge per km  of drainage area  in Halfmile and
Indian Camp brooks decreased about 17% between 1986  and 1987, and Spring
Brook decreased 30%.  Precipitation at the Silsby Hill collector was
about 11% lower.
    Two factors that may partially explain the discrepency between
percent decline in discharge and percent decline in  precipitation volume
are the proportion of snow in the annual precipitation, and the
proportion of sunny days during the growing season.  There was a greater
proportion of snow in the 1987 annual precipitation  than in 1986, and
most of the Union drainage snow pack melted and ran  off with  the April  1
event (see Figure 7).  Because our discharges are calculated  from one
daily reading, such a situation would produce a lower  average discharge
than if the accumulated 1987 winter precipitation had melted  and run off

-------






•k
g
a
u
u
a

^>
63
8
cd

o
ta
•rl
•0 B
GJ *rl
4-1 U
id id
| 1 M
W - - .......
O
0 -rl
4J -t -f
a 8
*O i™|

4J U

bo
3
bO
(0
U
S
na .0
O *2*
1-1
"cl
o.
tj « k CU M4
O «lj
• u
m cd
o s
a TI el
r-l r-l V
,00, u
cd a. u
H cd to


^*N X*»
CO CO

CO CO

in CM
CO —1
o o
0 O
s §
t 9
o o
+ +
CM CM CM CM
a a a a
CO CO CO CO

in sr o vo
sr co CM co
CM O O O
o o o o
o o o o
o o o o
1. + 1 +
a a a a
CO CO CO CO

en in en co
en co CM CM
VO CM CO CO
in 1-1 o o
O O O O
O O O O

+ 1 + 1

vo o r^ i».
en sr co sr
en CM co m
VO VO Q «-l
CO ~* O O
o o o o
U II M 1
O'O'O'O'

t*N t^ O\ O\

in co en en
en -* en co.
en en en. ,cn
OOOO


en en co co
r^ t>« CM CM
CO CO CO: CO
O A O A




Ll
JJ
%5 f]E
1
•o d
s &
H ,0

4)

•rf
3
w

,^
CO /"s
a co
co a
*-* CO
CO v«^
sr "-i
o sr
0 0
8 8
o o

o d

CM «NCM a
a a a co
CO CO CO v-/

co co r^ en
•-H c-i r— vo
§000
o o o
o o o o
o o o o
1 + 1 •(•
CO CO . CO CO

O — » Cfl i-l
vo CM en vo
sr m f- CM
o o o o
o o o o
o o o O

H- 1 •»• 1

vo co o m
^J* CO ^J* ^%
CO vo t-l  r>»

en in vo o
o\ en en en
en en en. en
o a o o


o o o o
O O CO CO
VO VO CM CM
0 /V. 0 /S




u ,
V
5 §
•o d
.8 g.



S
•rl
•O
30 ^ ^
CO CO
r*v a ^N ^^ a
*•% co co co co co
co a ^^ a a ^^ o
a co vo co co sr u
CO v,^ O v-' v^> o
v-> CM o vo en o o
CM «-4 O •-» O O
sr o o o o o u
§o o o o o
O O O Q O tJ
O O • O O « £
• • O « • O bO
00 O O -rl
,. + ..+• 2
CM CM CM BtM"^ CM CM CM CM~* a>l CO
a aa toa aaaa coa «
CO COCO VXCO COCOCOCO "^ Vi U

CO CM -^ CO<-< STvOVOO COVO
r-l 'CMST'-OCM COCMCMsr Or^ U
cn'oo oo oooo oo cd
Soo oo oooo oo
OO OO OOOO OO , -P
O OO OO OOOO OO -rl
o

CO CO, CO CO CO tO 10 CO CO CO COCO Id*

voocno O-H sr-*oen cocn *J
inr»»cneo t^oo «-. oo, cdbo
mooo oo rjooo.oo -H-H
oooo oo oooo oo on)
OOOO OO OOOO OO VM
'• -rl 01
I++I + + +1 + 1 ++ «bO
ti cd
vo en o oo coo vo co o —i vom a u
invosrin t>.o osrocn inco w
srcoinco inco vocncMtn encM B
cMOOrH sro r^vooco mo cdS
—< o o o oo oooo oo o
o o o o op oooo oo •a
II II B a HI IRIIR B U -0 'el"'
o-o-o-o- o-o- o-o-o-o- o-o- 3 -riS
(U U i-l
O. B (d
vo en en vo oo ^ >

o •" a»
•rl Cd >
cMcneno.enen vot>>cni-i co f-. u s*ri
. o> *•! vCn en en en .. en co en oo en co cd o4 xj
. .CA en cn.cn . en en* - en en en ov en en O o cd
oooo oo oooo oo i-i BO?
C,  ' o, ai
£5 B«Bld B« % ° g>
Y» -rlSY& Y3 #r.Cd
'SS'SS'SS "Sg 0<21
oa. o a. o a o a x n -H
H-O MO M O MO -H 0-3
B vi a
,, « (0 u
vJ S* «i 2
d S „ < "5
U if a 8 BS
»« !rj 5 id co co 4)
to to p2 M id jo

-------
                                    31
o
LiJ
f)
Ul
o
a:
<
o

  to
  LU


  n:
  o '

  a 2-

    1 -

    0 -
        INOC
  o
  UJ
  10
  o
  o:
  o
  01
     0-
        HLFM
' '  I '  '
 APR86
' '  I '
 JUI.86
  JAN86
                              i »  'I '
                               OCT86
                                          I
                                     JAN87

                                      DATE
                                                APR87
                                                         JUL87
                                             OCT87
                                                                           JAN88
    Figure 4.  Daily discharge in the Union drainage streams.  SPRG is
                Spring Brook;  INDC is  Indian Camp Brook; HLFM is HalfmiJle
                Brook.

-------
                                  32
ti  3-
LU
ul 2
o
o

s'
   0-
      BAKR
o
Ul
O
ce

Li
      RCKY
J 3
UJ



I


ul 2
o
OS
  0-
      SNCL
       * *  * * i  * *  * • *  t * *  • •  • i •
  JAN86    APR86    JUL86    OCT86
                                   JAN87


                                    DATE
APR87    JUL87
1 '  l ' '  ' ' '  I

 OCT87    JAN88
  Figure  5.   Daily discharge in  the  Narraguagus drainage streams.

              BAKR is Baker Brook;  RCKY is Rocky Brook; SNCL  is

              Sinclair Brook.

-------
                                    33
                                     o
Table 6.  Average stream discharge (m /s), by year and for the entire
study period, unweighted and weighted by watershed area (yield/km ).
 Stream
                Average Unweighted
                 Discharge (m /s)
 1986
1987
                                Comb.
                                 Average Weighted
                                Discharge (m /s km )
1986
                                       1987
                                                              Comb.
Halfmile

Indian Camp

Spring

Sinclair

Rocky

Baker
0.1623  0.1355  0.1486

0.3019  0.2510  0.2754

0.0867  0.0611  0.0731

0.2317  0.2397  0.2360

0.1404  0.1463  0.1435

0.2782  0.2883  0.2841
                     0.0203  0.0169  0.0186

                     0.0204  0.0170  0.0186

                     0.0152  0.0107  0.0128

                     0.0234  0.0242  0.0238

                     0.0219  0.0228  0.0224

                     0.0234  0.0243  0.0239

-------
                                   34

over a period of several days.  There also was a greater number of sunny
days during the growing season in 1987 than in 1986, particularly in
August and September, thus increasing evapotranspiration and lowering
observed surface flow in these streams.
    Average weighted (by watershed area) discharge  increased slightly
between 1986 and 1987 for the three Narraguagus tributaries.  This
drainage received more precipitation;in 1987 than in 1986, based on snow
depths and watershed event recorder data.  In addition, when compared
with the Union drainage, a smaller proportion of the Narraguagus snow
pack melted during the April flood, allowing the remaining portion of
the snow pack to melt slowly and thus"maintain elevated discharges for  a
longer period of time (see Figure 7),.  In turn, this increased the
average annual discharge values, which are calculated  from daily
readings.  This phenomenon is illustrated when Figures 4 and.5. (March to
April 1987) are compared.
    The influence of watershed aspect was evident when the 1986 average
weighted discharge in the Union tributaries and'Narraguagus  tributaries
was compared.  Discharge was about 7 to 13% lower in Halfmile and Indian
Camp brooks and 31 to 35% lower iii Spring Brook.  These watersheds
contain one or more pondsfand their aspect is generally southerly to
southeasterly.  The Narraguagus watersheds do not contain ponds and
their aspect is generally westerlyi  The greater evapotranspiration due
to a southerly aspect probably accounts in part for these differences in
weighted discharge in 1986.                .               ,
    The 1987 annum includjed both the highest and lowest discharges
observed over the course of study (Table 7).  All six  streams  reached
the discharge minimum in late August and early September of  1987.
Maximum discharge occurred in December of 1987 in the  three  Narraguagus
tributaries and Indian Camp Brook, while maxima in  Halfmiletand Spring
brooks occurred in April of 1987*(Figures 4 and 5). rThe relationship
described earlier between unweighted discharge and  watershed area also
applies to discharge maxima.  Larger watersheds exhibit higher peak
discharges.  This relationsip does not hold for discharge minima, and in
fact, the stream with the smallest watershed (Spring Brook).maintained
the highest minimum surface flow during very dry conditions  in late
August, 1987.  Also,- the largest watershed (Indian  Camp) had the second
lowest discharge minima during the same time period.
    Water yields from the individual watersheds generally averaged 50 to
60% during the two years of study, except in Spring Brook (Table 8).
The low yield for this watershed is probably due to loss to  subsurface
flow, either to deep groundwater, or through a confined aquifer within
the watershed.  This stream is excluded from subsequent water budget
discussions, and from estimates of chemical budgets.   Yearly yields
averaged 61% in the Narraguagus drainage, and 51% in the Union drainage.
The difference may be related .to inaccurate estimates  of winter
precipitation inputs, when only the Silsby Hill volumes were available.
In our judgement, the more likely explanation is related to  the
watershed aspect, as discussed previously.

Precipitation
Volume
    Monthly precipitation recorded at  the Silsby Hill  station  (Figure 6)
and the event recorders located on each River drainage is given  in Table

-------
                            35
         .  .   ..        3
Table 7.  Discharge (m /s).minima and maxima recorded
at the stream gauging stations by year.
,1986 :
Stream
Halfmile
Indian Camp
Spring
Sinclair
Rocky
Baker
Min.
0.0228
'; 0.0246
6.0266
0.0125
0.0146
"0;.0042
Max.'
1/5676
'::..!
4.5272
&. 6796
2.576;
1.6508
2*.9638
1987
' Min« '
0.0034
0.0014
0.0054
0.0015
0.0006
0.0028
. . ^ .
Max.
2.9969
8.2547
1.8355
3.5.120
2.8553
3.9556
Table 8.  Yearly water yields, by stream.  Yield =
(yearly discharge/yearly wet precipitation) x 100.
 Year   Baker   B.ocky   Sinclair   Halfmile  Indian Camp  Spring
1986    60%     54%       64%


1987    64%     60%       63%
                                      56%


                                      51%
49%
 40%

'.34%

-------
                              36
O
Osl
 I

o
 I

10
                                               00

                                             u °°
                                               o
                                               o
                                               S.
                                               00
                                               o
                                               o
                               X
                               I—
                               2:
                               o
                                               CO
                                               00
 r

O
                                                               a)
                                                               a
                                          O
                                          CO
                                                            O
                                                            II
                                                            ^
                                                            W
                                                            ID
                                                            O
                                       O


                                       CE
                                                               i->
                                                               cd
                                                               •P CO
                                                                 s
                                          §
                                          o
                                                                 60
                                cd  too
                                  cd
                                a  *
                                O  M
                               •rl  Cd'
                               4J T3
                               •H a
                               ft cd
                                                               o
                                                               (U
                                  g
                                                               s.s
                                                              M-< a
                                                               O C3

                                                               0 CU
                                                               O jj
                                                               CO 4-J
                                                              •H

                                                               cd cd
                                                               ft
                                                               S T3
                                                               o a
                                                              U cd
                                                               bO
                                                               •H
            f  -JLWV  'idd  A-DI33M

-------
                                  37,
 Table 9.   Monthly precipitation (cm) recorded at Silsby Hill
 collector, and at the event recorders located in the Union River,
 and Narraguagus River drainages.
Month
January
February
March
April
May
June
July
August '
September
October
November
December
Totals
30 Year
Average
8.8
8.1 '
8.3
8.7
, f
7.5
9.0
8.0
9.2 ;
9.4 -
11.2
10.6
106.4
,_, Monthly Precipitation (cm)
1986
Silsby Union Narr.
9.6
5.1
11.9 	
9.1
7.3
6.7 6.2 ' 5.0
15.7 1,5.7 14.1
15.1 15.5 14,0
7.2 7.2 6.4
3.3; •,;;• 3.4 3.6
9.6 1.3 1.6
10.0
110.6 49.3 44.7

Silsby
,7.1-
2.1
9.6
4.8
7.9
10.9
5.3
6.5
19.3
7.1
9.0
8.6
98.2
1987
Union Narr.




7.0 8.7
9.2 15.9
5.1 3.0
5.4 6.4
18.5 19.6
6.6 7.6
1.2 2.1

53.0 63.3
 In. 1986, Aerochem Metrics records did not begin until January 17.
b,'
 In 1986, event records through November 11; in 1987, through
 November 17.

-------
                                   38

9.  Daily volumes from these monitoring devices are presented in
Appendix B.  Over "the two year period of record, the data for the Silsby
Hill site were highly variable from month to month.  Comparison of our
data with the 30 year average for the region from Bangor International
Airport, Maine, located 38 km west of the collector, illustrates this
variability (Table 9).  Precipitation totals for 1986 (49 weeks only
were collected) and 1987 were 110.6 and 98.3 cm, respectively.
Precipitation amount for the National Atmospheric Deposition Program
collector at Acadia National Park, located 45 km to the south was 139.8
cm for 1986 and 101.0 cm for 1987.  Much of the difference relates to
the greater percentage of rain in winter precipitation at the coastal
site.
    Precipitation amounts in individual storms and weekly samples were
highly variable as well.  Table 10 lists the ten highest weekly totals
for each of the two years.  For both years, approximately 50% of the
precipitation occurred in 20% of the time.  For 1987, 20% of the
precipitation occurred in 4% (two consecutive weeks) of the time.  Table
11 summarizes the ten largest wet precipitation events recorded during
the period of study.  An eleventh event is included to illustrate the
occasionally large difference in localized precipitation volumes.
    Each river drainage contained an event sampler that was operated
in the frost-free part of the years.  Figure 6 compares the collection
amounts (cm) of the centrally located Silsby Hill collector with the
Union and Narraguagus event collectors.  Fairly close correspondence
exists.  Slightly more precipitation was recorded in the Union drainage
than in the Narraguagus drainage during 1986.  In 1987 the reverse was
true.  One obvious exception to the general conformability of all three
recorders was in June of 1987, when a convective storm produced about
7.6 cm of rain localized in the Narraguagus drainage.  Because of the
local variablity of precipitation amounts, we used the drainage event
sample volumes (when available) for hydrologic calculations specific to
that drainage.
    Correspondence between stream-specific bulk precipitation collector
volumes and event samplers was generally close.  Small, systematic
positive differences were noted between Spring Brook and the Indian Camp
and Halfmile bulk collectors.  About 7% more precipitation fell at
Spring Brook in 1986, and about 4% more in 1987.
    Snow pack measurements were conducted in the latter half of winter
1986, and through the winter of 1987 in two watersheds (Figure 7).
Meaningful analysis would have required the installation of additional
snow stake sites in all watersheds, as well as measuring water content
of the snow pack.  The water storage can be assessed by evaluating
Figures 8 and 9.  For example, in April 1987, the equivalent of 20 cm of
water left the Baker drainage whereas only 8.2 cm entered as liquid
precipitation in March and April.  At least 11.8 cm must have been
present in the snow pack or stored in the ground.
    Although there was a general relationship between precipitation
volume and discharge, maximum discharge occurred in Halfmile and Spring
brooks during a major snow melt event (March 31 to April 1, 1987)
associated with only a moderate amount of precipitation.  For the other
four streams, maximum discharge occurred on December 1, 1987, following
a 6.7 cm rain event plus melting of a 15 to 20 cm snow pack.  Discharge
on April 1, 1987 in these four streams was nearly as high.  The two week

-------
                        39

Table 10.  The ten weeks of highest precipitation.
volume (cm), recorded at the Silsby Hill site.
1986
Month and Day
7/8
12/9
8/26
1/27
. 8/19
11/25
5/27
8/5
7/29
3/18


Volume
63
54
53
52
52
52
50
46
45
41
508
1987
Month and Day
9/22
12/1
9/15
6/2
8/4
6/9
3/31
10/6
12/22
4/7


Volume
104
88
63
50
42
41
35
34
.- 33
25
515

-------
                             40

Table 11.  The ten largest liquid precipitation events (cm),
recorded from January 17, 1986 to December 29, 1987, ranked
by depth recorded at Silsby Hill.  The eleventh record is
included to illustrate an event largely localized to the
Narraguagus River drainage.
Date(s)a
Sept. 20-21, 1987
Nov. 30-Dec. 1, 1987b
Jan. 26-28, 1986b
Dec. 3, 1986
Aug. 24, 1986
Aug. 18-19, 1986
July 26-28, 1986
July 7, 1986
Mar. 31-Apr. 1, 1987b
Nov. 21-22, 1986
June 27-28, 1987
Precipitation Depth (cm)
Aerochem Union Narrag.
9.7 9.7 11.4
6.7
6.5
5.2
4.9 5.0 4.1
4.7 5.4 3.9
4.5 4.3 3.7
4.2 4.3 2.0
4.1 '
3.9
1.8 1.2 7.6
 A range of dates indicates that the precipitation event
 occurred continuously within that time period.

 Associated discharge event also included snowmelt.

-------
41
                                                  LU
                                                           fl
                                                          •H
                                                           O
                                                          M-t
                                                           4-1
                                                          •H
                                                           CO
                                                           CO
                                                           OJ
                                                           O
                                                          M-l
                                                          13
fl
Q)
                                                           o  oo
                                                           fl  0\
                                                           CO  ^-1

                                                           (3  VO
                                                           CS  OO
                                                           Q)  CTi
                                                          r^
                                                           0)

                                                           a
                                                          •H

-------
                             42
LU
H-
LU
2:
LU
O
20-


16-


12-


 8-


 4


 0

20


16


12


 8


 4


 0

20


16


12


 8-i


 4


 0-
       SPRING
       INDIAN CAMP
       HALFMILE
          R
                                                    J?
JA86
i | r
AP
1 1 '
JL
,.,-j — ,
OC
—• — I — »-
JA87
~> — I — r
AP
—" — I — '
JL
1 I '
OC
1 I
JA88
                             MONTH


     Figure 8.  Monthly water inputs  and discharge for Union
                drainage streams.   P  = precipitation input.
                D = discharge.

-------
                          43
                                           OC    JA88
                       MONTH
Figure 9.  Monthly water inputs and discharge for Narraguagus
           drainage streams.  P = precipitation input, D =
           discharge.

-------
44
                             -2
                           '4  »
 period of highest precipitation (September 9 to 22, 16.7 cm, including a
 9.7 to 11.4 cm continuous event) produced only a modest increase in
 discharge because of antecedent dry conditions.  Figures 8 and 9 display
 the relationship between precipitation and discharge for the six
 streams.   (Note that precipitation data are based on drainage event
 samplers  during the snow free season and on the Silsby Hill collector
 for the remainder of the period).

 Chemistry
     The chemistry of all wet-only samples from Silsby Hill is presented
 in  Appendix B.   Samples were not collected from the first three weeks of
 1986.   Other missing data indicate that no precipitation occurred.   No
 strong relationship exists between the chemistry and volume of
 precipitation^ except that the highest concentrations of H+, SO.
 NO- ,  and NH,   occurred in events  with lower precipitation volumes
 (Figure 10).                ......    .. _;	
     Volume weighted chemical means are shown for the entire project
 period (Table 12)  and for individual years (Table 13).   The•non-marine
 component of the chemistry was calculated from the concentration of Mg,
 rather than Cl.   Individual weekly samples can be identified as examples
 of  three  chemical  types:   marine aerosols dominated on January 27,  1986;
 background chemistry dominated on  February 11,  1986; apparently polluted
 precipitation dominated on July 21,  1987.
     The pH of precipitation samples  was strongly correlated with SO,  and
 with N0»  and  even  more'strongly correlated with the sum of the- two
 (Figure!  11  and  12).
     The pH of precipitation varied seasonally (Table 14;  Figures 13 to
 15)  as it has been shown to do in  many studies  and is demonstrated  by
 NADP data for Maine (Fernandez et  al.  1986).   The causes of these
 variations were  partly related to  parallel variations in NO  and SO,
 concentrations (Figures 13  and 14).   Snow typically has considerably
 lower  concentrations  of NO, and SO,  than rain.   The concentrations  of
marine salts  were  also  controlled  by season and by storm track.   For  the
 two  year  record, there  were no major sea-salt laden precipitation events
during the period  May to  August.   Cyclonic storms coming up the  coast
 typically occur  in the  fall-winter-spring  seasons.   Storms from the
west,  although commonly laden with excess  SO, and N0_,  may have  nearly
unmeasurably  low Cl.   Convective storms,  typically developing west  to
east,  are  also low in marine  salts.
    Considering  concentrations of  constituents  in precipitation  in
comparison with  stream  chemistries,  it  is  clear that dry deposition is
an  important  phenomenon for the  input of at  least SO, and  Cl  (plus  the
associated marine  salts).   For example,  the mean volume, weighted  SO.  in
precipitation was  about  30  yeq/1.  The  average  hydrologic  yield  for the
watersheds was about  60%, because  of evapotranspiration.   This
relationship  should yield a concentration  of  about  45 yeq/1  in
streamwaters, if SO,  is  conservative in the  watershed over  an annual
cycle.  Average volume  weighted  stream  SO, Values  were  in  the 60  ueq/1
range,  suggesting  that  about  15 peq/1 were contributed  by  dry
deposition.  We assume  there  are no  geologic  sources of S.   Similar
conclusions can be  reached  for Cl, with more  Cl  present in  stream waters
(two year  average  for the six  streams ca.  55 yeq/1)  than can  be
accounted  for by wet  precipitation (20 neq/1) or  wet deposition  plus
evapotranspiration  (which raises input  concentrations to about 33

-------
                         45
120




100




 80-










 40




 20




  0

100





 80-
 v.

 S 60
 a
 ui
 o
 o
 U)
 z
 0
 UJ

 5
   40
   20-
    0-


   5.5
   5.0
a
UJ
R-EQU
  3.5-
 a


  o
DQ      a

  Q   _™

      a
   a o a
D  B
         aft
a a   a

     a
      o^  "
     °  n   a
        n
            03   D
          IP
                     0
      a  o
  	1	1	:	1	,	

    1.5     3.0      4.5      6.0

   PRECIPITATION  AMOUNT.  CM.
                                       7.5
  Figure 10.   Relationship between precipitation

               SO,, NO  ,  and pH,  and volume  at

               Silsby Hill, Maine.

-------
                        46

Table 12.  Volume weighted means of precipitation
chemistry at Silsby Hill during 1986-87.  All data
are in ueq/1 except pH and specific conductance,
which is pS/cm.

Variable
H
PH
ANC
Sp. Cond.
Ca
nmCa
MgD
K
nmK
Na
nmNa
NH
C1 b
nrnCl0
N03
S04
nmS04

N
93
93
69
86
80
80
80
80
80
80
80
79
85
80
85
85
80
Minimum
Value
4.27
3.73
-163.70
3.60
O.OQ
-0.95
0.00
-0.51
-0.67
0.43
-64.94
0.00
0.00
-68.17
0.90
3.00
1.88

Mean
30.89
4.51
-27.97
18.03
3.02
2.33
3.55
0.90
0.56
12.73
-2.93
10.13
19.98
1.36
15.84
28.39
25.35
Maximum
Value
186.21
5.37
-0.50
88.00
33.43
30.56
51.82
21.73
20.31
194.88
8.70
50.45
289.00
22.42
128.00
119.00
111.25
a
nm = non-marine.
 Mg was used to calculate the non-marine component
 of precipitation.

-------
                                  47

Table 13.  Silsby Hill precipitation chemistry compared with NADP
data.  All data are volume weighted means in yeq/1 except pH, specific
conductance (yS/cm), and the cation:anion ratio.  The Acadia NADP site
is 45 km south of Silsby Hill, and the Greenville NADP site is 112 km
northwest.
1986
Variable
H
PH
ANC
Sp. Cond.
Ca
nmCaa
Mg
K
nmK
Na
nmNa
NH4
Cl
nmCl
N03
S04
nmS04
Sum positive
Sum negative
Ratio
N
49
49
31
46
41
41
41
41
41
41
41
40
43
41
43
43
41
41
43
41
Mean
33.98
4.47
-27.93
19.06
2.76
2.15
3.12
0.96
0.66
12.17
-1.63
11.60
18.28
1.69
17.42
31.17
28.49
61.44
66.87
0.93
1987
N
44
44
38
40
39
39
39
39
39
39
39
39
42
39
42
42
39
38
38
38
Mean
27.45
4.56
-28.05
16.88
3.32
2.54
4.02
0.83
0.45
13.37
-4.40
8.49
21.92
0.99
14.08
25.30
21.83
71.22
78.59
0.91
Acadia
NADP
32.35
4.49


3.50

7.70
0.90

33.0

6.1
39.44

14.0
35.2
31.4


Greenville
NADP
28.18
4.55


2.50

1.30
0.30

2.70

7.80
2.81

12.4
30.8
30.1


  nm = non-marine, based on Mg.

  3Ratio = sum of cations/sum of anions.

-------
                            48
   5.5-
   5.0-
   4.5
   4.0
o_

S  3.5
\—
eg
m
           D


         1  DD
          D
             D On
            D nn
            iS^Lo.
                            B
                            a
                                        a D
                                    DcP
                                               D
             20
40     60     80     100     120

 SULFATE, UEQ/L
g  5.51
LU
I
   5.0-
   4.5-
   4.0-
   3.5-
           a
         n'B  a
                         n


                  ""Vo
                                 aa     nD
               20
                      —r~
                       40
          —I—
           60
—I—
 80
—r
 100
                      NITRATE, UEQ/L
     Figure 11.  Relationship between .precipitation pH, SO,  and
                 N03  concentrations  (yeq/1)  at Silsby Hill,  Maine.

-------
49
0 °



D


D
n

n
n


nu
LJ^^
D
a
a
a Da


aaD
"Hfj]
igj
n
ffib n

r"T_- »^ " .
n SfE&
°n/
nopOI3

^r^^n

- O &
CM co
rH
ft
O (U
^o ci
cj S
m
TO
0 «H
- IO W H
^_ ft -rl
d ^
O t>i
1^ >r< r°
ro w to
O rt  cr
u.. a) a)
O & 3-
] 1 v_^
•__ cu
5- & co
•'•"• ^ |l
fl 5-<
_ O -H S
IT) -u — ' rT.
IO Q IO O IO
• • • • •
IO IO "4- -^ TO

-------
                                 50

Table 14.  Volume weighted means of Silsby Hill precipitation
chemistry during 1986-87.  All data are in yeq/1 except pH, specific
conductance (yS/cm), and the cationranion ratio.
Variable
H
pH
ANG
Sp. Cond.
Ca
nmCaa
Mg
K
nmK
Na
nmNa
NH4
01
nraCl
N03
S04
nmS04
Sura pos
Sura neg
Ratio
Season

N
17
17
10
16
17
17
17
17
17
17
17
16
18
17
18
18
17
16
18
16
Fall
Mean
28.21
4.55
-20.47
16.70
4.23
3.18
5.39
1.33
0.81
19.81
-3.97
7.62
33.15
5.20
14.76
25.65
21.99
61.46
73.56
0.89
Winter
N
29
29
24
25
25
25
25
25
25
25
25
22
26
25
26
26
25
25
26
25
Mean
18.89
4.72
-15.65
11.99
2.44
1.47
5.03
0.78
0.30
20.19
-2.03
5.72
26.58
0.61
13.00
16.24
13.56
52.63
55.82
0.94
Spring
N
17
17
10
17
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
Mean
37.70
4.42
-26.95
23.10
3.89
2.92
5.00
0.80
0.32
16.62
-5.45
14.35
23.84
-1.88
16.89
30.40
27.75
72.08
71.15
1.00
Summer
N
30
30
25
28
26
26
26
26
26
26
26
29
29
26
29
29
26
26
29
26
Mean
38.33
4.42
-40.16
21.21
2.66
2.42
1.26
0.85
0.72
3.27
-2.31
12.90
8.72
1.44
17.97
37.55
34.35
55.37
64.24
0.92
 nm « non-marine,  based on Mg.

 Ratio » sum of cations/sum of  anions,

-------
                                  51
o
CM
•WO  'INnOWV  -idd  A1M33M

 CO        CM        00        "3-
O
                                                      -  o
                                                      -  CE
                                                      -  0_
     00
     00
                                                         N.   zr

                                                         *   £
                                                         
                                                          CO
                                                          rH
                                                          •H 0)

                                                          M 13
                                                          4J
                                                          cd to
                                                             Q)
                                                          d CO
                                                          O 3
                                                          •H rH
                                                          •U &,
                                                          cd
                                                          4-1 'O
                                                          •H d
                                                          & cd
                                                          •H
                                                          o d
                                                          
                                                          CO rH
                                                          cd rH
                                                          a) -H
                     O
                     -H
                     w
                     Cd
                     4-1

                     pvt
                     -H
                     O
                     a)
                                                                    60
                                                                   •H
                                     001

-------
                                  52
             •WO   "IWV  -Idd  ADG3M
o
C\J
   OJ
00
                                                        on
                                                        N.
                                                        00

                                                      -  <
                                       00
                                       00
                                                        O
                                                        I   -
                                                        <•   Z
                                                              O
O
o
o
            1/030   '31VyilN   001
                                                      -  O.
                                                         OD
                                                         00
                       •  in
                       •  oo
                          Q-
                          UJ
                          C/D
                                                                    •S
                                                                    H
                                                                    •H  Q)
                                                                    W  (-1
                                                                       n)
                                                                    *J
                                                                    cd  co
                                                                       0)

                                                                    §  §
                                                                    •H •-!
                                                   •rl S
                                                   PU Cd
                                                   •H
                                                   O p!
                                                   CD O

                                                   Qj JJ
                                                     td
                                                   S rl
                                                   •rl 4-1

                                                   Pi 0)
                                                   O O

                                                   4J O
                                                   ctf O

                                                   4-1  CO
                                                   PI O

                                                   o
                                                   fj toQ
                                                   o o
                                                   O H

                                                    COO)
                                                   O !H
                                                   £3 cd

                                                   Pi CO  •
                                                   •H a)  a)


                                                   O 3 rH
                                                   •H CT1  O
                                                   4-1 C/3  >
                                                   rt
                                                   •rl    Pi
                                                   rl  •  O
                                                   Cd 0) -rl

                                                     •H  Cd
                                                   rH Cd 4-1
                                                   Cd r*\ «H
                                                   Pi    f< |
                                                   O  •> -rl
                                                   CO rH  O
                                                   Cd rH  CU
                                                   CD -rl  r!
                                                   CO iT"]  f^|
                                                                   
-------
                                 53
O
   Q
                                                             i—I
                                                         -    z:

                                                        o   x
                                                             o
                                                             z:
in
 »
in
             o    in    o    in    o    in
              •     •      •      •     •     •
             in    "3-    M-    ro    ro    c\j

                Hd  oaivaaninoa-yiv
                                                     - 0_
                                                     -  co
                                                     -co
                                           -  m
                                           -  oo
                                           -  o_
                                              UJ
                                        O    CV)
                                                                    OJ
                                                                    fl
                                                                   •H
                                                                   •H tH
                                                                   OT O
                                                             cd  £1

                                                             d5
                                                             O  -I-J
                                                             •H  td
                                                             4J  4-3
                                                             cd  -H
                                                             4J  O.
                                                             •H  -rl
                                                             ft  O
                                                             •H  OJ
                                                             O  J-l
                                                             0)  ft

                                                             ft  CD
                                                                CO
                                                             £3  0)
                                                             ft  to
                                                                3
                                                             (3 H
                                                             •H  ft


                                                             O  pj
                                                             •H  cd

                                                             « !H
                                                             •H  P*
                                                             M.
                                                             cd  0)

                                                             >S
                                                             rH
                                                             cd  to
                                                             S3  O)
                                                             O  !-l
                                                             to  cd
                                                             cd  3
                                                             (U  cr1
                                                             cw en
                                                                   60
                                                                   •H

-------
                                   54

yeq/1).  The enrichment of Cl in streamflow over  that of wet input was
about 3=1 whereas for SO, it was closer to 2:1, suggesting different
input mechanisms for dry input of these two components: alternatively
but not likely, S may be accumulating (long term) in the watersheds.

Loading
    The loading of chemical constituents was highly variabile  from month
to month (Table 15) and between years (Table 16).  Months and  seasons
where the precipitation was dominantly rain were  characterized with
higher inputs of SO, and NO-, whereas marine salt loading was  higher in
the winter.  Similar to many areas in the eastern U.S. the ratio of
SO,:NO_ was approximately 2.  NH,, which is an acidifying substance when
taken up by vegetation, had peak values in the spring-summer-fall period
but negligible input in the winter months.  Total nitrogen inputs via;
precipitation are about 60% as NO- and 40% as NH,.  Loadings of SO, and
N0_ were less than at Acadia National Park (nearest NADP station)
because of a 30% lower precipitation volume and 14% lower SO,
concentration.

                            Stream Chemistry
General Characteristics
    A tabulation of chemical analyses of all water samples from the six
streams is presented in Appendix D.  All the streams are characterized
by having wide variations in all parameters over short term, seasonal,
and yearly cycles.  These variations are best illustrated by
time-concentration plots.  We have combined the three Union and three
Narraguagus streams on separate plots because the Union streams have
consistently lower DOC and consistently higher F values than the
Narraguagus streams.  These two major differences are reflected in other
parameters, including pH, ANC, and total and exchangeable Al.

PH
    Figure 16 shows the air-equilibrated pH as a function of time.  The
mean discharge (m /s) was also plotted against time on all parallel
figures in this section.  The discharge shown was the mean from the
three relevant watersheds.  The time-weighted average pH ranges between
6.5 and 6.8, with similar behavior by all streams over time.  All pH
depressions are related to episodes of elevated discharge.  Short
duration episodes commonly yield a drop of over 1 pH unit.  Our sampling
regime typically did not physically sample at the peak of either
discharge or acidity.  However, the pH/conductance/temperature monitor
data suggest that a number of the depressions were to lower pHs than
shown on the figure.  One episode (July 1987) was seen only in the
Narraguagus streams.  This was related to a thundershower that produced
over 7 cm of rain in those watersheds.
    The closed-cell pH was the biologically important pH.  Inspection of
Appendix D shows that all the stream samples had natural overpressures
of CO-, resulting in higher air-equilibrated pH than closed-cell pH.
Degassing commonly raised the pH as much as one pH unit.  This change
(delta pH) was greatest in the generally low-flow periods (summer and
winter) when pH was highest.  During the highest flow event (4/1/87),
delta pH approached zero.

-------
                                    55

Table 15.  Wet deposition loading at Silsby Hill by month during 1986 to
87,' in eq/ha.                      -
Year


1986
1986
1986
1986
1986
1986
1986
1986
1986
1986
1986
1987
1987
1987
1987:
1987'
198Z-
1987
1987
1987
1987
1987
1987
Month


Feb
Mar;
Apr :.
May
Jun
Jul ;
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
; -May
; -:•. Jun
Jul
Aug
•*•> Sep
Oct
- iNov
Dec
H+
*, ; i . ,
' : '
7.4
'33.3
39.6
20.6
43.6
24.2
108.1
31.7
•13.3
24.7
14.3
10.5
10.5
10.4
• = : 5.6
•40.8
30.7
27.7
47.4
- 14. 1
38.2
24.2
. 13.4
Ca


'•0.4
3.5
2 . 7
0.6
3*5
3.0
3.3
3.4
i.o;
3.3
2.9
2.7
0.4
1.7
1.0
6.0
2.8
1.4
1.7
4.3
5. 7
'3.5
0..5
Mg

i ' '
0.3"
3.3
-4.1-'
0.6
1.4
1.2
1.9
1.3
0.3
3.1
3.1
5.5
0.3
4.0
, 6.3
3.8
1.3
0.6
0.7
1.9
7.9
5.2-
0.1
K
' ; • .

0.1
0.9
0.8
0.-2
0.4
2.1
0.7
2.0
0.3
0.8
0.5
0.6
0.1
0.4
0.4
IVl
1.0
0.2
0 . 3
0.4
2.3
0.9
0.2
Na
.' : .'.'.':.'•'. 1 '

:2-. 1
8.9
16.0 r
2.2
1.3'
•0.6
13.3
3.5 :
1.6 v
12.9
15.8
21.6
1.7
15.5
25.8
4.4
^3.5
0.8
2.4
--' 1.5
27.9
18.3
iLil
NH.
4

i-. . t .
3.6
15. 1
14.6
5.6
20.2
9.8
32.5
14.9
2.9
3.3
0.7
2.4
2.4
3.5
2.0
16.6
8.7
10.2
10.4
5.3
7.1
13.5
1.9
N03

•;•:••.'.' r:
4.3
25.4
22.3
7.3
19.6
14.4
41.0
21.1-
7.7
11.1
5.7
7.1
9.4
4.2
1.8
18.1
14.4
12.1
25.1
•'- 4,1
15.4
17.2
10.3
Total N
as N0«
' ! -'

8.0
40.5
36'.'9
12.9
39.7
24.2
73^6
36.0
' 10.7
14.4
6.4
9.5
11.9
7.8
3.8
34.7
23.1
22.4
35.5
9.4
22; 5
30. 7
12.2
Cl


4.2
12.8
22.9
3.9
3.3
6.5
29.6
7.5
3.4
19.6
17.7
29.2
3.6
20.5
30.3
14.6
6.4
2.9
5.3!
9.0
48.4
•'31.0
2.9
so4


5.5
36.0
34.9
9.3
41.5
26.4
103.0
34.8
10.2
18.4
10.0
7.1
6.3
12.1
7.4
41.2
26.0
30.1
• 39.8
: 12.6
32.7
• 28.0
6.9

-------
                                  56

Table 16.  Wet deposition loading at Silsby Hill during 1986 to 87,  in
eq/ha.  N is the number of months.
1986
Variable

H-J-
Ca
Mg
K
Na
NH4
N03
Total N (as N03)
GL
S04
N

11
11
11
11
11
11
11
11
11
11
Sum

360.8
27.8
20.5
8.8
78.2
123.2
180.0
303.2
131.1
329.8
1987
N

12
12
12
12
12
12
12
12
12
12
Sum

273.5
31.8
37.6
8.0
124.3
84.1
139.3
223.4
204.2
250.1
N

23
23
23
23
23
23
23
23
23
23
Total
Sum

634.2
59.6
58.1
16.8
202.5
207.3
319.2
526.6
335.3
579.9

Annual
Mean
317
29.8
29.0
8.4
101.2
103.6
159.6
263.3
167.6
290.0

-------
                             57
S/CH   '30HVHOSIQ   NV3W
oos.toin-'i-tocvj   —   ooo^toini-iocM
     -"	1——i	1	1	1	1	u.
                         I	I	I

                                                              - o
                                                                o
                            —r—
                             O
                                                          i
                                                         in
 i
in
—«—
 o
 i
in
                                                                oo
                                                                03
                                                                o:
                                                              - a.
                                                                00
                                                                                     - o
                                                                                       o
                                                                0_
                                                                CD
                                                                00
                                                               O
                                                               a
                  oo
                                 .  CU
                                                                                               4J CU
                                                                                               CO !-i

                                                                                                 CO
                                                                                               O -H   •
                                                                                                    H
                                                                                               a  cu   n  cu
                                                                       00
                                                                       •H
    Hd

-------
                                   58

Acid Neutralizing Capacity
    The time-averaged mean acid-neutralizing capacity (ANC) ranged from
62 to 117 yeq/1, with excursions to close to zero during several high
discharge episodes.  The Narraguagus streams were slightly more alkaline
(83 yeq/1) on the average than the Union streams (73 peq/1).  However
this difference was due to Baker Brook, which was substantially more
alkaline than the other Narraguagus streams (average ANC is 117 peq/1).
Depressions of ANC and pH are associated with high discharge (Figure
17).  Little seasonality was present in the data except for the spring
snow melt each year.

Calcium
    Total Ca comprised 60 to 70% of the base cations on a time-weighted
average.  Periods of low flow (Figure  18) are characterized by
increasing Ca concentrations, a trend  that was rapidly reversed by
increasing discharge.  However, in the highest discharge event recorded
in the project (April 1987), Ca concentrations did not fall as
precipitously as some bedrock-originated elements (e.g., F, see below).
During base flow, deep groundwaters yield excess Ca from the chemical
weathering of mineral soils while during high flow events, considerable
Ca must be released from the organic layer comprising the forest floor,
and from stream substrates (Norton et  al. a, in press) as a result of a
drop in pH and shifting of cation exchange equilibria.

Magnesium
    Non-marine Mg typically comprised  about 10% of the total cation
concentrations while marine-originated Mg was about 5%.  Magnesium for
individual streams ranged up to 30 peq/1 and behaved generally in
parallel to Ca (Figure 19).  Because of the relative abundance of Mg
versus Ca in marine aerosols (Mg = 0.2C1 versus Ca = 0.04C1), several
high salt episodes (see Cl discussion) resulted in a slight depletion of
Mg in runoff, relative to Ca.  Mg was  exchanged in the soils for Ca, H,
and Al (Wright et al. 1988; Reuss 1983).

Sodium
    Sodium was either the first or second most abundant cation in the
streams, with an average value ranging from 79 to 87 peq/1 for the six
streams.  However, over half of the  total Na was assumed to be from
marine aerosols.  The weathering or  ion-exchange contribution was
therefore about 30 to 40 ueq/1.  It was therefore the second most
important cation in terms of alkalinity production.  There was little
inter-stream variation for each of the two drainages (Figure 20)
apparently because of the large amount of marine aerosols  that had
nearly equal loading rates, based on Cl.  Variations were  driven by
hydrology.  There was a brief peak in  Na concentrations starting in  the
fall of  1985 and extending into early  1986, related to higher loadings
of marine aerosols (NADP  1985; 1986).
    The major discharge episode of April 1,  1987 demonstrated that
significant Na must be associated with very shallow soils,  either
adsorbed, present  as dryfall, or concentrated  in the snow  pack.  At  that
time, dilution of  groundwater was so extensive that F decreased on the
order of  90 to 95% but Na decreased  only about 30%.  Precipitation over
the preceeding  few months had far less Cl  than was present in the
runoff,  implying  significant dryfall of marine aerosols.   On several

-------
                                             59
                     s/zn   'BOHVHOsia

oos-*
 r
o
in
 i
                                                                              o
                                                                                     a)
                                                                                   a ja
                                                                                  •H 4J

                                                                                   a) w
                                                                                   e o
                                                                                     Ml
                                                                                  s~\ CO
                                                                                  O -H
                                                                                 ^ $
                                                                                  >> cu
                                                                                  4-1 S
                                                                                 •rl
                                                                                  O CD   •
                                                                                  cd _cj i—i
                                                                                  ft 4J CU
                                                                                  cd   a
                                                                                  O co cd

                                                                                  M
                                                                                  0 cu x!
                                                                                 •H bO O
                                                                                  co ^i cd
                                                                                 •H cd CU

                                                                                  cd o a
                                                                                .  s-i co -ri
                                                                                 4-> -H
                                                                                  3 P TJ
                                                                                  cu   cu

                                                                                     • e
                                                                                 nd co cu
                                                                                 •rl g CO
                                                                                  O co CU
                                                                                  cd cu ^i

                                                                                 m 4-1 cu
                                                                                  O CO M
                                                                                  a
                                                                                  5
                                                                                       co
                                                                                       CU
                                                                                  4J 4-1
                                                                                  cd co !-i
                                                                                  •H    4-1
                                                                                  s-i cu co
                                                                                  > 4-1 CO
                                                                                  §
                i/03n  'Aiiovdvo  QNiznvcJinBN  aiov

-------
                    60
                                                   CO
                                                   CXI
                                                   o
                                                   o
                                                   o.
                                                   K.
                                                   co
                                                   o   ss
                                                   0   O
                                                    a:
                                                    to
                                                    CO
                                                  - o
t>0
!-i
to

•S
CO
•rl.
O
                                                                o
                                                                td
                                                                
 CO
u

M-t
 O

 a
 o
•rl
4-1
 CO
•rl

 CO
>
   d)
   M
                                                                CO
                                                                3
   0)   •
   J3  H
   4-1  (!)
      S
   to  to
   -H  Pu
oo
<—I

 CD
i/D3n   'wnioivo

-------
                                                  61
                                  '30dVHOSIQ

                                 »—   o   09   1s*
                                    j
o
to
o
10
—i	1	[—
 ooo
 n    CNJ    —
                                                                                           cu 'o
                                                                                           txO cd
                                                                                           S-) CU
                                                                                           cd
                                                                                                 CO
                                                                                                •H T3
                                                                                                Q (1)
                                                                                                   4->
                                                                                                   Ci
                                                                                                 • (U
                                                                                                 CO CO
                                                                                                 8 a)
                                                                                                 Co !-i
                                                                                                 CU PL,
                                                                                                 3 0)
                                                                                                W H
                                                                                                 CO J-J
                                                                                                   CO
                                                                                                 cu
                                                                                                fi CO
                                                                                                4J
                                                                                                   0)
                                                                                                 S rS
                                                                                                •H 4-1

                                                                                                CU !-i
                                                                                                e o
                                                                                                •H in
                                                                                                4J
                                                                                                   CU
                                                                                                S-i t>0
                                                                                                2  -S
                                                                                                2
                                                                                         •H

                                                                                         tci
                                                                                                   CU
                                                                                                •H  4J  CU
                                                                                                   CO
                                                                                                  •H
                                                                                                CU
                                                                                                M

                                                                                                50

-------
                                                                62
                                       S/Crt   '30dVHOSia  NV3N
                   coh-tDio^-rocvj   —   ocos.om^-ioN*-'?
                    i.   •    *    '	1	1	1	1	4_H	'	'  , ±.	'	'	'	'	n-
00
00
                                                                                                        CD CU
Q) ft
bO
>-< ^3
rt a
jd rt
CJ CU
                                                                                                         • 0)
                                                                                                         CO 4-1

                                                                                                         § §
                                                                                                         CU CO
                                                                                                         H CU
                                                                                                         •u n
                                                                                                         CO PJ
                                                                                                           cu
                                                                                                         co TO
                                                                                                           CU
                                                                                                         CU 5-1
                                                                                                        ^a w
                                                                                                         4-1 CO

                                                                                                         0 CO
                                                                                                        •H
                                                                                                           CU
                                                                                                         0) fi
                                                                                                         S4,

                                                                                                         4-1 M
                                                                                                           o
                                                                                                         >-l 14-1
                                                                                                         CU
                                                                                                         > 
-------
                                   63

occasions, sharp increases in runoff Cl concentrations were not
accompanied by increases in total Na.  This effect was partly to be
expected because of the dilution of the watershed-originated component
of the Na.  However, the non-marine component of Na become negative for
all streams but Halfmile Brook in the January 1986 episode.  The values
were more negative than the precipitation that caused the hydrologic
episode.  Several streams had negative non-marine Na for other events,
primary evidence for the existence of a significant acidifying sea-salt
effect.

Potassium
    Intra-drainage variation in K is quite low, but the Narraguagus
streams have approximately twice as much dissolved K as do Union streams
(Figure 21).  Most of the K was derived from the drainage basin, rather
than marine aerosols.  Consequently K concentrations parallel those of
Ca.  It is the least important of the base cations in terms of
alkalinity generation.  The incidence of hydrologic episodes was
sufficiently frequent that little seasonal trend was obvious from spring
onset of tree growth to leaf senescence in the fall, and seasonal means
do not differ appreciably from each other.

Silica
    Virtually all the dissolved SiCL was derived from chemical
weathering.  All six streams had very similar patterns of concentrations
and the time-weighted means were all close to 6 mg/1 (Figure 22).  This
corresponds to about 10   mol/1 released on the average from chemical
weathering.  In contrast, the releases of_Ca, Na, Mg,, and K were
approximately 0.5xlO~ , 0.3xlO~ , 0.15xlO~ , and 10   mol/1,
respectively.  Whereas the bedrock and soil contain 70 to 80% SiO , the
solid weathering products are enriched in SiO-.
    Trends with time are controlled by hydrology, as for the base
cations.  The amount of dilution was comparable with that of Ca and Mg,
suggesting a comparable control mechanism.  If, as has been postulated,
the dilution in the April 1987 event was as large as proposed (90 to
95%), the lack of very low concentrations of SiO_ suggests the existence
of an easily mobilized pool of SiO_ either in the forest floor or in
stream substrates.

Chloride
    The range of mean values for Cl was from 51 to 61 peq/1.  The source
of the Cl is assumed to be entirely from marine aerosols, either in the
wet deposition or deposited as dryfall.  The volume-weighted mean Cl for
wet deposition (Table 11) was 20 peq/1.  For watersheds with an average
water yield of 60% (see section on hydrology), concentration of Cl in
streams should be about 33 yeq/1.  The balance (18 to 28 yeq/1) is
attributed to dry deposition.
    The behavior of Cl during hydrologic episodes was commonly opposite
that of the cations (Figure 23).  For example, the major snow melt and
low-Cl rain episode of April 1, 1987 resulted in an increase in Cl.  An
increase also occurred in January of 1986, following a particularly
Cl-rich rainstorm on top of a snow pack.  Chloride in streams rarely
reaches concentrations as low as most of the wet input.  This
relationship was interpreted to be due primarily to dryfall marine
aerosols deposited in the period prior to major rains, and secondarily

-------
                                   64
10  NV3W

N.   to   in   f   to      60
                                                                               m  co
                                                                                o -H
                                                                                  T3
                                                                                a
                                                                                o  a
                                                                               •H  nj
                                                                               4J  CU
                                                                                S-l  (U
                                                                               CN

                                                                                cu
                                                                                M
                                                                                3
                                                                                M
                                                                               •H
                                  O      IO
                                  CM      ^«
             1/D3H   '

-------
                               65
                   '30yVHOSIQ  NV3W
    a.     B*-fl



ui  <    ^
UJ  o


t-Oz

F=z:<     ta-
li. •-"•-(     ura
-JQiQ      Q-

                                                                oo
                                                                o
                                                                o
Q)
&0
n
rt

•g
   0)
   4-1
   e
   a)
   01
CO CD
   n


13 CO

4-1 TO
co a)
   M
a)
                                                                            4-i
                                                                            CO

                                                                            co


                                                                            a)
   a)
   t>o
                                                                         O
                                                                         •H
   9
   0)
   0)  •
   j3 r-i
   4-1  CU
      fi
   co  cs
   -H  ft
bO

id
                                     00
             "1/OW  '301X010  NOOniS

-------
                                  66
               S/CW  '30yVHOSIQ  NV3W
CO
       CD  in
                 to  CM  —
                               CO
                                      
                                                               o;
                                                              - Q-
                                                               CO
                                                              - o  z
                                                               o  o
                                                              - 0-
                                                              • to

                                                               CO

                                                              - 2
                                                              - o
                                                               a
o
o
o
CO
o
OJ
o
o
If)
K.
o
to
10
CJ
                                                              - =>
                                                               -J
                                                                        p)
                                                                        bO
                        1/030 '3QIM01HO'

-------
                                   67

to the mixing of deeper groundwaters containing Cl concentrations that
have been elevated by evapotranspiration.
    The values for Cl in 1985 were 10 to 25 yg/1 higher than for 1986 to
1987, for the Union and Narraguagus streams, respectively.  The result
of such a trend could be an alkalinization due to a reversal of the salt
effect in 1986 and 1987.  The absolute impact of such a decrease in
marine aerosol loading can not be calculated with existing data, but the
increase in alkalinity could reasonably be as much as 50% of the change
in Na loading.  Such changes have been modelled by Cosby et al. (1986)
and Norton et al. (1987b).

Fluoride
    All of the F in the streams were assumed to be from the weathering
of inorganic material in the watersheds for two reasons:  1) F
concentrations were near zero in precipitation, and 2) only, streams in
the Lucerne Granite in Maine have consistently measurable F
concentration.  The Narraguagus streams had values always between 0 and
5 yeq/1 whereas the Union streams ranged up to 20 to 25 peq/1 during
base flow (Figure 24).  The bedrock for the Union drainages is largely
the Lucerne Granite, weathering of which yields high concentrations of
F.  Spring Brook has the largest percentage of its drainage underlain by
the Lucerne, and had the highest concentrations of F.  The reverse was
true for Halfmile Brook.  No seasonal nor long term trends existed for F
concentrations.  Depressions in the F concentrations occurred in the
Union drainages during high flow.  High flow associated with either snow
melt or high inputs of precipitation dilute the groundwater contribution
of F.  These depressions in concentration may be partly an artifact of
the analytical methodology.  Fluoride was determined by ion
chromatography.  As pH was depressed during high flow events, Al was
mobilized and complexed with stream F.  The F in the Al-F complex would
not be detected by normal ion chromatography, thus reducing the amount
of reported F.  The lack of any seasonal trends or tendency to increase
during long periods of low flow, as Ca and Mg do, suggests that F
concentrations were controlled by several mechanisms, including
hydrology, and the availability of Al and other potential ligands.

Nitrate
    The volume weighted input of N0_ from precipitation was 16 ueq/1.
The time—weighted runoff values for N0~ are markedly lower; 2 and 4
peq/1 for the Union and Narraguagus streams, respectively (Figure 25).
The origin of the differences between concentrations in the two
drainages may be attributed to greater forest management disturbances in
the Narraguagus drainage.  Streams in the same drainage had very similar
concentrations and time trends.  Increases in flow associated with rain
and snow melt were generally associated with decreases in concentrations
of N0_.  Maximum concentrations were during winter low flow, suggesting
either that nitrification was occurring in deep groundwater systems, or
NO- uptake in streams and forests was low, or both.

Sulfate
    The time trends for SO, concentrations were similar in all six
streams (Figure 26).  Strong seasonal variation was present, with
minimum values reached in late summer-early fall during low flow.  A
dramatic increase in concentration followed fall rains.  The

-------
68
     NV3W
                                                o
   •3
cu   cd
                                                      cd  £
                                                      v*3  *H

                                                      CO  13
                                                      'rl-  CU
                                                          0)
                                                       •  w
                                                      0)  0)

                                                      £3  PJ
                                                      Q)  CU
                                                      4-1  4J
                                                      CO  CO
                                                      0) CO
                                                      >a
                                                      4->  0)
                                                      cu  o
                                                      •rl
                                                      4-1  CU
                                                       0)  cd
                                                       >  ^3
                                                       o  o
                                                          CO
                                                       fl  CD

                                                      -3  B
                                                      4->  CU   •
                                                       0)  J3 rH
                                                      •r)  4J  CU
                                                       H      C
                                                       Cd  CO  Cfl
                                                      >  -H  ft
                                                      CN
                                                       M
                                                      •rl

-------
                                                       69
coi^ioio^rrooj^-oop   ^    ,  w

3  1
•U  01
co  M
    4-1
(U  CO

4-1 CO

C  a)
•H J3
    4J
CU
e  ^
•H  O
4-1 <4-l

s-i  cu
CU  bO
>  !-i
O  Cfl

 COO
O  CO
                                                                O

                                                                a
                                                               4J  CU   •
                                                               cfl j; iH
                                                               •H  4-1  CU
                                                               S-i     tS
                                                               CO  CO  CO
                                                               > -H  O.
                                                               CM

                                                                CU
                                                                M

                                                                60
                                                               •rl
                in
                               in
                                       o   in
                                       —   eg
                                        i
                                                       in
                                                                   in
                                          in    o
                                           i     «-
                                                i
                                   1/030   '

-------
                                                           70
                                  s/cw   '3oyvHosia

                                   tocM  —  oor   s.  
                                                                                                 
-------
                                    71

time-weighted  SO, concentration was about  twice  that  of  the  wet  input
(28 ueq/1).  Between  10  and  15 yeq/1 of  excess (non-marine)  SO,  were
associated with dry deposition, based  on our  assumptions.
    The low-flow depression  of stream  SO,  concentration  occurred during
the period when precipitation SO, values are  normally at their highest,
and were still at or  above precipitation values  (see  Table 11).   Because
low flow corresponded to  the input  of  deeper  groundwater, we postulate
that this water source has been depleted of SO,  by one or more of the
following mechanisms:  SO, reduction with temporary storage of sulfides;
adsorption of  SO, on  sesquioxide deposits  within the  B horizon as the
groundwater table lowers; or conversions of inorganic S  to organic
forms.  With the influx of oxygenated  water from fall rains,  these pools
are mobilized  and the temporarily stored SO,  was flushed from the soils.
This release of SO, provides a mobile  anion generally in excess  of
available base cations, resulting in the depression of pH.   Cycles such
as this have been described  for other  watersheds (Christophersen et al.
1983) and apparently  require the presence  of  relatively  thick soils.
Two watersheds on Lead Mountain, just  west of the Narraguagus streams
did not exhibit a similar seasonal  cycle (Norton et al.  1988).   Those
watersheds have thinner soils and shorter  water  residence times.
    The role of excess SO, in acidification was  central  to this  study.
Although background SO, concentrations can only  be estimated  (perhaps 10
yeq/1 non-marine), it was clear that the majority of  the total SO,  was
anthropogenic.  Sulfate was  also the principal agent  for acidification
of the stream waters  during  high flow, typically contributing about 50
Ueq/1 to the acidity  status  of the  streams.   During periods  of low flow,
sulfate contributed considerably less  to the  acidity  of  the  streams.
During these periods, HCO- becomes  the dominant  ion.

Dissolved Organic Carbon
    Dissolved organic carbon (DOC)  concentrations in  the Narraguagus
streams averaged approximately twice those of the Union  streams  (Figure
27).  For both drainages, the stream with  the highest DOC concentrations
had the greatest amount of wetlands  in the watershed.  Also,  there  was a
slight tendency during warm months  for DOC to increase.  These two
observations suggest  that production was an important part of the
observed differences  between the two drainages.
    DOC production occurs primarily  in the forest floor.  Lysimeter
studies (e.g., Cronan and Aiken 1985)  suggest that initial DOC
concentrations may exceed 100 mg/1  in  soil water descending through
the forest floor.  However,  as these waters descend,  metabolism  and
precipitation of the  DOC reduce these values  by  as much  as a  factor of
ten or more.  Consequently,  base flow  typically  has lower concentrations
of DOC.  During high  flow when a considerable fraction of the runoff was
routed only through the 0 horizon, concentrations of  DOC became  elevated
in stream water (e.g., late  summer of  1986 and December  to January  of
1986 to 1987).  However, some high flow  events,  such  as  April 1,  1987,
occurred when production of DOC and  discharge of soil-water were
minimal; in addition, what DOC was released from the  soil was strongly
diluted by the melting snow  pack.  Even  with  the complexities that
determine the concentration of DOC,   the  temporal patterns for the two
drainages were very similar, differing only in absolute  amounts.
    Dissolved organic carbon was important for two reasons.   First, DOC
is responsible for complexing much of the  dissolved Al in the streams.

-------
                                        72
                s/ew
s.  to  in   •<*•   n   oj  «-   o   cv
tOlO^IOej'-OOO
                               oo
                                                                        - o
                                                                          o
                                                                          a?
                               oo

                               3
                             - o
                                                                          Di
                                                                          a.
                                                                          CO
                                                                          o
                                                                          a
                                                                                      o
                                                                                   a) M-I

                                                                                   I  o
                                                                                   4-1  W)

                                                                                   )-i  ct!
                                                                                   O  CO
                                                                                      •H
                                                                                   ^-N 'TI)
                                                                                   U

                                                                                   s  fl
                                                                                      a)
                                                                                   aj
                                                                                   a  co
                                                                                      •H
                                                                                   .
                                        o t)
                                        •H 3
                                        4J 4-1
                                        Cfl CO
                                        •H
                                                                                   cfl
                                                                                   >
                                        CM

                                        cu
                                        M

                                        60
                                        •H
                                                                                      a)
                                              3
                                              CO
                                              a)
                                                                                         s
                                              CO

                                             ro
      CO
                         —   o
                                         O
                                         10
      O      O
      CJ      —
            vow  'Noayvo  oiNvoyo QBAIOSSIQ

-------
                                   73

This complexation is discussed in detail in the Al section below.
Second, a certain fraction of the DOC consists of organic acids with pK
values such that some of the DOC was dissociated, contributing to the
ion balance of the solution and to the acidity status.  Cronan and Aiken
(1985), Brakke et al. (1987), and Henriksen et al. (1988a) demonstrate
that the organic anion contribution to the ion balance was typically in
the range of 4 to 5 yeq/mg DOC.  In this study, the median value was 3.9
(Appendix A).  Consequently the time-weighted mean DOC values for
Halfmile (4.6 mg/1), Indian Camp (4.3), Spring (2.4), Sinclair (7.3),
Rocky (11.7), and Baker brooks (11.4) contributed up to 50 yeq/1
acidity.  This contribution varied both as the amount of DOC varied, and
probably with the nature of the produced DOC, from season to season.
The acidity contribution was highly significant for some pH depression
events, e.g.,  December to January, 1986 to 1987.  At other times, e.g.,
August to September 1986,, the organic anion contribution was probably
considerable, depressing the pH at the time.
    Organic anions are generally determined indirectly by difference,
using the anion deficit or the difference between HCO- and ANC, as in
this study.  Figure 28 shows the measured cation:anion ratio.  With only
a few exceptions, this ratio was always greater than one, suggesting the
existence of an unmeasured anion.  Figure A7 shows the adjusted ratio,
considering the influence of DOC.  Comparison of Figure 27 and 28 shows
the close correspondence between elevated cation:anion ratios and the
incidence of elevated DOC values.  Figure 28 shows the importance of DOC
in the determination of the acidity status of the streams.  For example,
if DOC concentrations are responsible for the cation:anion ratio being
1.5, then organic anions would be balancing (charge) 33% of the cations
in the solution.

Total Al
    Considerable variation existed among total dissolved Al
concentrations in the three Union streams (Figure 29).  Comparison of
Figures 29 and 16 indicates that concentrations of total Al were a
function of pH.  For example, minima for pH in Halfmile Brook, which was
typically the most acidic of the Union streams during episodes,
corresponded to the maximum total Al values.  The lowest total Al
concentrations were from the stream with the highest pH, Spring Brook.
    The concentrations of total Al in the Narraguagus streams (Figure
29) had a very similar pattern to that of the Union streams, with the
exception of the thunderstorm event in the Narraguagus drainage.  The
three streams also had more similar values for any given time.  Five of
the streams had an average total Al close to 150 Pg/1, with a similar
range of values.  Spring Brook averaged about 100 Pg/1.
     Unlike the base cations, Al was not diluted by high flow, low pH
episodes.  A major source for the increased total Al was from desorption
or dissolution from the stream substrates during pH depressions
(Henriksen et al. 1988b; Norton et al. 1989), a phenomenon that has been
demonstrated experimentally in a number of similar streams (Hall et al.
1980; Henriksen et al. 1984; Norton et al. 1987a).  The mobilized Al has
been emplaced during intervening periods of low  flow when groundwater
emerges with lower pH and elevated dissolved Al due to elevated soil CO-
pressures.  Degassing of the C02 results in precipitation of the Al as
pH rises.  Much of this Al becomes associated with the stream
substrates, later to be mobilized (Norton and Henriksen, 1983; Henriksen

-------
                  74
00
CO

<
                                                   o
                                                   o
                                                   -J

                                                   -J
0£.
0.
<
                                                   s.
                                                   CO

                                                   <
                                                   o  z
                                                   o  o
CK
o.
CD
CO
O
O
                                                               0)
                                                               M
                                                             a)
                                                             >
                                                             o

                                                             o
                                                            •H
         O
         •H
         4-1
         ct)
         •H
            +J
            CO

            CO

            0)

            4-1



            o


            CD


            n)
                                                               co
                                                               -H
          a

         •S
         4-1
          rt
          a

         m
          o
                                                               0)
                                                               ,£•
                                                               4-1  •
                                                                 TH
                                                               co  cu
                                                               -ri  a
                                                                  ra
                                                               cu  ft
                                                               £>0
                                                               !-i &
                                                               cfl  O
                                                               ^  td
                                                               o  a)
                                                               en
                                                            oo
                                                            CN


                                                            8
                                                            3
                                                            60
                                                            •H
                                                            P-4
         O   —         r-

oiivy  NOINV/NOIIVO

-------
                                           75
             S/CW  '36yVHOSIQ  NV3W


             WCM»-OO)K.«>U>'*'WW«-'O
     B
o
o
o
o
n
o     o
o     o
CJ     •-
o
to
                                                              co
                                                              co
                                                              z
                                                                            o
                                                                            o
                                                                            r>
                                                                            o:
                                                                            a.
                                                                            N.
                                                                            co
                                                                            o
                                                                            o
                                                                            o.
                                                                            CO


                                                                            •J




                                                                          - o
O  O
    o
                         von  '
o
o
to


 IVlOi
o
o
CSI
o
o
o
to
                                                                                     CS

                                                                                     J3

                                                                                     U rfl
                                                                                     CO  O

                                                                                     •H  CO
                                                                                     O  CU


                                                                                        G
                                                                                      •-H
                                                                               0) 4-1

                                                                               H fi
                                                                               4J CU

                                                                               CO CO

                                                                                 CU

                                                                               >% H
                                                                              T3 ft
                                                                               3 cu

                                                                               4J H

                                                                               CO

                                                                                 CO

                                                                               CU &
                                                                               r\ CO

                                                                               4-1 CU
                                                                                 (-1

                                                                               fi 4J
                                                                              •H CO


                                                                               CU CO


                                                                              •H cu
                                                                                     CU >-f
                                                                                     > o
                                                                                     o m
                                                                                     iH rt
                                                                                     ca ja
                                                                                     4J a
                                                                                     o co
                                                                                     4-1 -rl
                                                                               C CU
                                                                               o d
                                                                              •rl
                                                                               4-1 CU  •


                                                                              •H 4-1 CU


                                                                               cd co cd
                                                                              > -H ft
                                                                                     CTi
                                                                                     CSI


                                                                                      cu
                                                                                      l-l


                                                                                      M
                                                                                     •H

-------
                                    76

et al. 1988).  Some of  the Al  remains  in  suspension.   Unfiltered  samples
from the six streams contained 20  to 39 ug/1 more Al  than  filtered
samples.
    For many episodes there was a  coincidence  of elevated  DOC  and total
Al, suggesting a causal linkage.   However,  some pH  episodes  are
accompanied by a decrease in DOC but there  was still  a peak  in total  Al.
Thus the release mechanisms are coincident  in  time  but not space.
Nonetheless, the common association of higher  DOC and total  Al in these
streams resulted in much of the Al  being  coraplexed  with organic ligands,
making the Al less important biologically.

Exchangeable Al
    The terra exchangeable Al includes  all dissolved Al species that do
not pass through the ion exchange  column.   Presumably this includes all
the -(OH), -(S04), -(F), and -(Cl)  complexes as well  as Al  .
Increases in total Al during episodes  commonly exceeded 100  yg/1  and
were as great as 300.  However, exchangeable Al never exceeded 100 Pg/1
for the Narraguagus streams and 150 for the Union streams  (Figure 30). *
Typically about half of the increase in total  Al was  equated with
increases in exchangeable Al.  The  rest became complexed with  DOC.  This
result is consistent with the  findings of Al spikes added  to waters used
in the channel studies  (see below).  It was necessary to add a
considerable excess of Al to satisfy the  complexing capacity of the DOC
in the stream water.
    The three Union streams had mean exchangeable Al  values  of about  20
Jig/1, about 2 yeg/1 higher than the Narraguagus streams.   We suggest
that the higher values were caused  in  large part by the significantly
higher F concentrations in waters  draining  the Lucerne Granite.   The  F
increases the rate of export of Al  from the soils by  increasing the
total Al solubility for any given  pH (Hem 1968).  Additionally, the
higher concentrations of DOC in the Narraguagus streams would  complex
more Al, resulting in more non-exchangeable Al.

Chemical Episodes
    The study streams were subject  to  common high-flow events  related to
snow melt and high rainfall.   The  episodes  were often accompanied by
wide variations in stream chemistry, including depression  of pH.  Most
chemical variations occur in phase  in  all six  streams,  the differences
being the absolute values of the various  chemical parameters.  We have
high quality, high resolution, continuous stage height measurements and
either Silsby Hill or watershed event  recorder information on  the timing
and amount of precipitation.   We also  obtained data from in  situ
pH/conductance/temperature monitors.   These units behaved  erratically
and were seldom accurate with  respect  to  pH, commonly yielding pH values
between 0.4 and 0.5 units too  low.  However, they yielded  valuable
relative information about short term  trends.  Similarly,  conductance
and temperature measurements were  often in  error.  These two
measurements commonly had unexplained  step  functions  in value  when pH
exhibited gradual change.
    Figures 31 to 44 display the profiles of five separate events.  In
all cases we had a laboratory-measured sample  (with a full suite  of
analytes) for the pH depression, as indicated  by the  monitors.  For many
of the episodes we also had a  sample taken  several days prior  to  the
event.  In all cases we had a  sample taken  within a week on  both  sides

-------
                                      77
                         '39HVHOS1Q  NV3W
                          —  0
                                           00
                                           00
                                           z
                                                                    o
                                                                    o

                                                                    Q.
                                           W.


                                           •>
                                           O
                                           o
                                                                    -J
                                                                    ce
                                                                  "Ss
                                                                    (0
                                                                    CO
                                                                  — o
                                                                    o
                                      13
                                     . CU
                                    CO 4-J

                                    1 cu
                                    cu co
                                    !-l CU
                                    4-J }4
                                    CO ft
                                       CU
                                                                             O M

                                                                            rH cd
                                                                            <*

                                                                             CU CO
                                                                            H -H
                                                                            ,n T3
                                                                             cd
                                                                             cu pi
                                                                             00 a)
                                                    o cu
                                                    !*! ^3
                                                    CU 4J  •
                                                        H
                                                    O -H
                                                   o
                                                   ro
                                                                             s,
                                                                            •H
o   o  o   o
in   o  w   o
CJ   OJ  ^-   »-
o  o  o
in  o  <\J
 i   •-  »-
o
N.
O
CM
O
W.
o
00
                     I/On  'TV  313V30NVHOX3

-------
                                      78
       m  'Noiivi
                       :S/CN  '39HVHOSia
tr>
_LJ
                       co
                          OJ
                         ...* * • ' '-
.-          O  00
 1	* I
               o
               to
                    o
                    <\J
uo/sn  "QNOO   -ds
                                               JH
                                                          []

                                                          {]
                                                 El

                                                 El

                                                 El
                                                            - o
                                                •HI

                                                  I

                                                  1

                                                  I
                                                                  ui
                                                            '. 00
                                                              to
   ti
   o
60 -rl
(3  4->
•H  TO
                                                                          3 -rl

                                                                           •rl
                                                                              d
                                                                              O
a
CU
60
s
                                                                o
                                                                8  p,
                                                                       ro
                           a)

                           ^H cd
                           e w
                           m co
                           H
                           TO •"
                           W CD
                             a

                           o TO
                           M-) 4J
                             O'

                           O T3
                           d d
                           TO O
                                                                              cu
                                                                              rH
                                                                              60
     CU
     60
     rl
     TO

     a
     CO
     •H
                                                                       •H  O
                                                                         id
                                                                          d
                                                                          o
                                                                          a
                                                                     cu
                                                                     TO
                                                                       a
                                                                       cu
                                                                            fx,
                                                                              a-
                                                                              co
                                                                         •rl v£>
                                                                          O CX3
                                                                          cu en
                                                                          ftrH
                                                                          co
                                                                §  3
                                                                  1-3
                                                                       O
                                                                       •H

                                                                       TO
                                                                       •H
                                                                       rl
                                                                       TO
                                                                       ro
                                                                       3
                                                                       60
                                                                       •H
                                                                 »v CU
                                                                cu id
                                                                60 O
                                                                rl  CO
                                                                TO
                                                                              cu
                                                                              rl
                                                                   'H 4J
                           U CU
                           CO
                           •H ti
                           T3 TO
     §
     O

-------
79
'NQiiviidioayd
  '30HVHOSia
flW 1 1 V/ 1 .t f J. 1 \i
in ^r
i 	 	 i 	































y
4
T
1
T
\

/
J
/
-kf
\
\

• •

/
0 0
•<*• co
wo/sn ••
•* v -J >•« ^r «-• CQ J-4
M CM- 0 CM £ ,£ g
• ' 	 ' 	 i . i . i i i i i i i i i .


[

t

[
/



\ I
V
A
/
f «
\
\






/
• "




-
^ 1
i t
i i

i [

J

]

]

]
]
3

I

' I
m
1
I
nj
i
|
in
|
m

1
m
I
UJ
/
1m
i'
/


i
J\
mk
JUSI
/ I
\ v nf a
* v V
« rL M
x ^ fi
CO O CU Co
_ iw a -H
O M pj M
«— cu' cu cd 4J
- _J P4 O 4J
O fl 0 ••>
-> pj co s cu
O 4J T3 bO
•H a c n
4J ^3 O eg
cd T3 CJ J3
4-1 C 0
•H O II CO
PL, O -H
O> UJ •!-) CO T3
_J 1— O O 3
~ Z> •< CU -H r-H 1!
• =} Q !^ D-l PM
' " a. -H CU
O !-i
M-I cu • cd
O Oi vO J3
co oo cr
4-1 CT. CO
C! T3 <- 1
. s c "•
.CO o 5 •> co
^1 pj ^^ (i
~ *-^ § r, f 	 [ rj
' -> M 3 0
C! Pj ^ rQ
•H
« a co
C CU -H
O bO CO
•H H CU 3
" 4J td ^ o
• i^_ cd ^3 O -H
• "^ -H 0 CO >
- =J !-l CO -r) CU
. -3 cd -H ft S-i
/ t> ^3 CU P<
•
• •
CU
to n
-=! S)
•'"'• 1 •«••••••• I 	 • -H
0 0 0 ^ f"
C\J —
•QNOO -ds n/oan 'H

-------
                                               80
        m   '
in
                            to
                                         CM
                                                                          CO
                                                                      1

                                                                      1

                                                                      1

                                                                      ]

                                                                      ]

                                                                      I

                                                                     n

                                                                     n

                                                                     n

                                                                    •i]
-i-1
o
•<*•
                                  o
»  i i'
 o
                                                                          en

                                                                          ID
                                                                         oo
                                                                         S.
                                                                         _J
                                                                         :3
                                                                    O
           wo/sn   '-QNOO   -ds   n/03n
                                                                                             d
                                                                                             o
                                                                                             •H
                                                                                    a) ni
                                                                                            CD
                                                                                            60
                                                                                    03
                                                                                          4-1 >>
                                     60 -H  O
                                     a 4-1  *
                                    •H CO
                                  T3  !-i
                                  ti  3 -H
                                  CQ Tj Q r
                                       •H  II
                                   «\  v; cj
                                  rH  O 0)  0)
                                  «  P M  -H
                                          60
                                                                                          II
                                  M CQ
                                  CU
                                  4J  !>.
                                                                                    •H  O  cd
                                                                                       O  4-1
                                                                                    M  Pi  CO
                                                                                            tU
                                                                                    CO  O
                                                                                    a)   rH  O
                                                                                       K  3 -H
                                                                                     CS ft '
                                                                                    O
                                                                                    •H
                                                                                       60
                                                                                          a
                                                                                         •H

                                                                                          a)
                                                                                            CD
                                                                                       Cd T3 4J
                                                                                    ctf ,-d  o £
                                                                                    •H O  co 3
                                                                                    H CO -rl O
                                                                                    CO -H  ft fi
                                                                                    > 13  CD CO
                                                                                   CO
                                                                                   CO
3
60
•H
Pn

-------
                   81



m 'NO .
IT) •^C


~






4.'

--

4-
/
<
\
V
\
J


•
7
/
-f
\






.

7
t
\
V






/
/
•f
\
\
t
J-
/^
/
\
V
T

0 0
M- to



LVlldiOHcJd !S/£N 'HOrJVHOSIQ
to ca —



















-


{




C "
\


/ .
1
;

J
Q
I
L m
LLr
1
v rn

\
y













0 0





o
j


]

J

]

]

1

I

1































L
r

1
1

1


||
l
O

4-1
a
fi 0
cd &
B cd
cd 60
ru Q) a C
^^ M -H O
*~" 4-1 J-l »H •
- _J CO 3 4-1 CJ
^> Td cd o
— J T3 4J Tl
a ^ -H
cd o ft PJ
o -H a)
•> ^ o to
iH pq Q) o
CD ^-1 S-l
. • ' ^ }-i p> i *°^j
^_) .p^ S^
*~ (!) Cd II fl
~ —1 4-1 ^
^) fi 0 ^ ||
"5 -rl f3 Cd
•H 4-1 CD
!-l CW CO r-H
X! M
CO O CD cd
m o -H
O S-i a !-l
.— a) a) cd 4-i
_ _j ft a 4-1
^ d o •<*
z: c! cd 3 a)
' O 4-1 T3 tD
•H O p! }-i
4J 3 O- cd
cd T3 O J!
4J S 0
•H O II CO
ft O -H
CO LU 'rj r. 2 ^
	 it 	 OO3
- =5 ^ Q) -H iH ||
~> Q ft 'H 0)
CJ M
m  co
- ^ cl ^ rH* 3
*"% |xi 3 O
pi ft 1-3 J3
•H
•> P! CO
S Q) -H
O 60 CO
•H S-i CU 3
4J cd 13 O
cO lt*{ o «p^
"^ vH O CO >
_ _J !-) CO -H 0)
13 cd -H ft !-i
-j > 13 a) ft

^
CO
CU
to £
t 3
- =^ 60
=^ -H .
' P"4

uo/sn
QNOO 'dS *l/D3n  'H

-------
                                        82
        m  'Noiivridiosyd  '
to          M-           co          cv
     d  §
     O -rl


U}  C\J c^  QJ
rl    4J  60
4J  60 -rl  O
CO  C3 ft S-l
   •H -H 13
13  M O  >>
                                                                            a-5*
                                                                            cfl
   o
>  s
>-(  pq
0)
                                                                            rj  ***
                                                                            •H  O

                                                                            MS

                                                                            *  H
                                                                            CO  O
                                                                            cu  cu
                                                                            ft  a
                                                                               d

                                                                            O  4-1
                                                                            •rl  O
II  CU
  H
M  60
cs  a
4-J  Cd
CO -rl
   M
.» 4J
CU
o  •*
pj  cU
cti  60
4-1  rl
O  Cfl
3 ,C
i3  O
d  w
O 'rl
O T3

II  II
                                                                                   rt
ctf *o CD
4->  a s
•H  O r-H
ft O P-i
•rl
O  O
CU -H  •
                                                                            ft -rl OO CO
                                                                              O O> rl
                                                                            H-) CU r-1 0
                                                                            O ft   O
                                                                              CO
                                                                            4-1
                                                                            C! 13

                                                                            O n)
                                                                            d  ft
                                                                            •H
     ^4
     CU CO
     ,£>
     g  CO
     CU  3
     o  o
       •H
                                                                            d
                                                                            o
                                                                            •H
                                                                            «£
                                                                            •H  O
                                                                            M  CO
                                                                            Ct) -rl
                                                                            > 13
                                                                            LO
                                                                            CO
                                                                            S,
                                                                            •rl
     d  rl
     •rl  ft

     cu   «
     13  4-1
     o  d
     co  3
     •H  O

     CU  TO
           wo/sn  '-QNOO   -ds   «i/D3n

-------
                                   83
NO  'Nouviidioayd  -s/zn
                                                                 I  §
                                                                 0)
                                                                 M  60
                                                                 4-1  C5
                                                                 CO -H

                                                                 *Tj  £3
                                                                 s -a
                                                                     « o
                                                                    rH O
                                                                     cd -n
                                                                     CU V4
                                                                     4-1 -H
                                                                     rt cd
                                                                     •H rH
                                                                       a

                                                                     3 -H
                                                                     O C/3
 d §
 O -rl
•H
4J a
 Cd 0)
4-1 60
•H O
 pt l t j
•H T3
 O !>,
 Q) JC

 ft II

 II  0)
   H
 M 60
 cd fl
4-1 Cd
 CO -H

 .« jj
 OJ
 o •«
                                                                    !-i cd  60
                                                                 CO  O 4J  M
                                                                   M-) o  cd

                                                                 a)  a) T3  o
                                                                 ft  o a  to
                                                                    a o -H
                                                                 p4  Co O *X3
                                                                 O 4J
                                                                 •H  O II  II
                                                                 •y  3
                                                                 Co Tj CO  Q)
                                                                 a.)  a -3  •
                                                                 •r-l
                                                                 ft  O
                                                                 •H
                                                                 o  o
                                                                 (U -H

                                                                 ft -H
                                                                    o
                                                                 4-1  0)
                                                                 O  ft
                                                                    CO
                                                                 4-1

                                                                 §
                                                                 o
                                                                       O H cd
                                                                            3
                                                                            a*
                                                                            CD
                                                                         co co
                                                                         0*1 M
                                                                         r-l 3
                                                                            o
                                                                     pi ft
                                                                    •H

                                                                     Pi dT
                                                                     O 60
                                                                    •H M
                                                                    4J cd
                                                                     Cd rd
                                                                    •H O
                                                                     !-) CO
                                                                    ro

                                                                     a)
                                                                     60
                                                                    •H

   a)

•S ft

cu  «
13 4J
O S3
CO 3
•H O
Q., g
aj cd
wo/sn
                 QNOO   -ds   n/oan

-------
                            84 '
'NOiiviidi03yd  -s/zvi  'BOUVHOSIQ
                                                     (O
                                                     a;
                                                     Q_
                                                     01
                                                     a.
                                                     cc
                                                     0.
ro

a.
~.
ti ^ ft £1
CO  O
                                                               .8
                                                              rH pq
                                                              cO
                                                              > OJ
     O  II
     0)
     M  0)

     ft H
  H II
                                                                     60
                                                              Q)  . .

                                                              4J  B  H -H
                                                              fi H-l  ctf H

                                                              •H r-H  4-1 4-1
                                                                 Ctf  CO
                                                              o
                                                              •H
                                                              4J
                                                              CO
                                                              +j
                                                              •H
                                                              Pw
                                                              •H
                                                              o
                                                                13 Cl)  CO
                                                              co
 cu
 t-t
 60
wo/sn  '-QNOO   -ds  o/oan   JH

-------
                                    85
                                                               CD
                                                               oa
                                                               a.
                                                               in
                                                               a:
                                                            ^  a.
                                                              a:
                                                              a.
                                                              to

                                                              a.
                                                              CVJ
                                                            _ a:
                                                              o_
                                                              ce
                                                              a.
                                                              10
                                                            - a:
                                                              o
                                                              to
                                                            - a:
                                                                    UJ
                                                                    O
      o
 S bO S

 CU >rl
 s-i M a
 4J 3 O
 CO *O 'rl
      4J  •
T3 f^t CtJ fi
 a o 4J o
 Cd O -H -rl


rT ^ O Cl)
 Cd ft CU bO
      >-i O
      f^t ^-1
 >

 0)
 4J
 a
•H
                                                                          s  a
                                                                          o w
                                                                            •H CO II
                                                                            T3 W
                                                                               CO 0)
ro O
 cu cu
 ft O

 a cd
 O 4->
•rl O
4J 3
 cd *T3
4.) a
•rl O
 ft CJ
•rl
 a a
 cu -ri
 S-l 4-1
 ft *H
   O
4-1 CU
 O ft
   CO
4-1
 Cj rl3
 3 a
 o cd
  . w
   ft
      cu  a
      O  CS

      STl
                                                                                  0)
                                                                                  &0
      fl
      o
      O  cd
         J3
      ii  o
         w
      03  -rl
      3  T3
                                                                               oo
                                                                               X! co
                                                                               O M
                                                                               li pj
                                                                               cd o
                                                                             « rj  co
                                                                            a) -H
                                                                            bO    co
                                                                            M cu  3
                                                                            cd
 a
 o
•H
4-1 Cd  T3  O
 cd ,a  o -H
•rl O  CO  >
 ^ CO  -H  CU
 cd -H  ft !-)
> T3  CU  ft
                                                                         oo
                                                                         CO
                                                                          bO
                                                                         •H
wo/sn   • -QNOO   -ds   -'i/o3n

-------
                   86
m
               '-SAM 'BOUVHOSIQ
                                        LU
                                        Q
                                             4-j d
                                                CO
                                           CO

                                            0)
                                            60
                                            •rl
NO/SO  "QNOO
                       1/030  'H

-------
                                             87
in
              I  I
                           to
                         rili
                O
                ro
                                                                            UJ
     o a
   60 O O
   d -rl -H
   >rl 4J
   !-i CO d
   3 4J 0)
   •d -H 60
     ft O

d  O O T3
CO  O 0) >s
                                                                                   CU
 to
                                                                                   CU O cd
                                                                                   4-)    4J
                                                                                   d fi co
                                                                                  •H cd
                                                                                     •H
                                                                                           CD
                                                                                          rH
                                                                                           60
                                                                                        "• 5-1
                                                                                        Q)  4J

                                                                                     q a  ••
                                                                                        cd  a;
 o M

   M  4J  60
nook
 cu cu
 ft O

 c cd
 O 4-)
•rl O

 co ^td
4-1 C
•H O
 ft a
•H
 o o
o -H

ft -H
   o

O ft
   co
     a  o
     o  co
     O 'H

     II
        II
     CO
     3  a)
    H  n
    PM  cd

        a-
      •  co

    oo  •«
                                                                                          3
                                                                                        •> o
                                                                                  o
                                                                                     ffl
                                                                                     ft
                                                                                  a  cu
                                                                                  O  60
                                                                                  •H  k
                                                                                  4-1  CO
                                                                                  cd ^3
                                                                                  •H  O
                                                                                  5-1  CO
                                                                                  cd -H
                                                                                  > T3
                                                                                  3
                                                                                  60
                                                                                 •H
     ,n co

      cu co
     •u 3
      ft o
      CU •!-)
     c/u ^
        0)

     •H ft

     Q)  »>
     13 4J
     o a
     co 3
     •H O

     cu §
            wo/sn   • -QNOO   -ds   «n/03n   JH

-------
                            88
 'NOIlVlldl03yd
                                                            LU
                                     o
                                     CO
                                     •rl  "
                                   S ft 4->
                                   co cu  £
                                   cu    a
                                   M d  g

                                   co    3
                                     oo

                                   a IH  o p
                                   tO rl  -H -rl
                                     3  4J
                                    •> Td  cO c«
                                   r-l    4-1 CU
                                   ct) ^  -H 00
                                   > O  ft O
                                   rl O  -H rl
                                   CU rl  U ^
                                                                    O  II
                                   3
                                   O
                                   X!

                                   co  o

                                   rl
                                   cu    3
                                   Ct)  -O
                                   4J  C!
                                   •rl  O
                                   ft O
                                   •rl
                                   O  O
                                   Q)  -rl
                                   Ji  III

                                   ft -rl
                                      O
                                   H-l  CU
                                   O  ft
                                      CO
                                                                  a  a
                                                                  O  ct)
                                                                       rl r-l
                                                                       Ct) 00
                                                                       4J 0
                                                                       CO CO
                                                                         •rl


                                                                       0) 4-1
                                                                       U


                                                                       a) cu"
                                                                       4-1 60
                                                                       ft O
                                                                       O CO
                                                                       0 -rl
                                                                         rt

                                                                         CT1
                                                                         CO
                                                                          CO
                                                                  .s  "-a*
                                                                     •> ,£1 CO
                                                                  fl  CU  g
                                                                  o  oo cu  co
                                                                  •H  rl  4J  3
                                                                  4J  Cd  ft O
                                                                  VI  CO
                                                                  CO -rl fl
                                                                  sf



                                                                  I
                                                                  00
                                                                  •rl
NO/SO   "QNOO
1/030  'H

-------
                                  89
wo  ' NO i ivi i d 1 03yd
                                    '30dVHosia
                                                                 UJ
                                                                 Q
                                                                          5-1
                                                                        " 
                                                                       60 e
                                                                       5-1  cu
                                                                       cd 4-i ••>
                                                                       ,fi  ft to
                                                                       O  CU 5-1
                                                                       CO M 3
                                                                       S    ro
                                                                       CD 
                                                                       tJ Q) d)
                                                                       a    >-i
                                                                       rt a a
                                                                         tti
                                                                      M 60
                                                                       cd d
                                                                       > -H
                                                                       5-1 M
                                                                       cu 0
                                                                      4-1 T3
                                                                       d
                                                                      •H ^
                                                                         o
                                                                       !-) O
CO
   H
M -H
Q) cfl
ft iH
   CJ
d d
O -H
•H W
4J
CO H
4J O
•H «n
ft
•H CU
O O
cu d
s-i cd
ft 4-1
                                                                             a
                                                                             o
                                                                             -H
                                                                             4->  •
                                                                             ni  d
                                                                             4->  O
                                                                             -rl -H
                                                                             ft
                                                                             -H  d
                                                                             O  0)
                                                                             CU  60
                                                                             n  o
                                                                             ft  H
                                                                               'TJ
                                                                             II  >,
                                                                               43
                                                                             S-i
                                                                             td  H
                                                                             4J
                                                                             CO  CU
                                                                               r-l
                                                                             •«  so
                                                                             cu  d
                                                                             O  Ct)
                                                                      O ^O 4-J 4J
                                                                         d a
                                                                      4J o 3 •-
                                                                      c o TJ  00 3
                                                                        cd £xj CTN o*
                                                                       > ft ,-1 to
                                                                      §
                                                                      60
NO/SO   '-QNOO  -ds  n/oan

-------
                                    90
                                                                 CD
                                                                      UJ
                                                                      O
         s
      a  o
      o -H

a  a  4J  a
a)  cd  cd  cu
S-i     4-1  M
4-3  bO -H  O
CO  fl  ft S-I
   •H  -H "a

      CU  t"1
                                                                            0
                                                                            cfl
                                                                                     II

                                                                                     cu
                                                                            H O  II
                                                                            Cd O     rH
                                                                            > S-I  S-I  W

                                                                            CU    4-1  ra
                                                                            4-1 >> CO  -rl
                                                                               O  •«
    _, CU
J_l rv\ (J  •*»
^!    ti  CU
    M cd  bO
CO  O 4-1  5-(
   M-l O  Cd

cu  cu is  o
ft  O (3  CO
    a o  -H
Ci  cd O  13

•H  O II  II
4-1  3
cd T3
4J  a 3
•H  O H
ft  O f^
•H
a  o
CU -rl  •
M 4-j r^-  • **
ft -H CO  CO
    O CT\  M
4-1  CU i-(  3
O  ft    O
    CO  " rd
4-1    * j
pj TTIJ CU  CO

O  cd fi  co

cd   •* o  o
   W CU  -rl
a  ft P  >
•H       CU
     "CM
fl  cu
      CO  CU
      3  M
         Cd

         g.
         CO
                                                                                     ft
                                                                                     4J
                                                                                     a
•H '!-! 0|
4-i cd
cd 43 O
•H O CO  .
>-) CO -H  O
cd -H ft s
wo/sn   •  -QNOO   -ds   n/o3n

-------
                               91
                                                           LU
                                                                     ft II
 cd ^ co cu
 4J a 3 u
•H o i-H cd
 ft O FL, 3
•H     o'
 00   CO
 0) -H  •
 ri m r-. "•
•ft •!-! CO CD
   O CTl rl
«H 0) t-1 .3
 O ft   O
   CO  «43
4-J   ? I
 S 13 0) CO
                                                                   " O  O
                                                                  HI
                                                                  cu
                                                                    a
       'H

       Q)
     C H
     H ft
                                                                O ou
                                                               •H M  cd 13 4J
                                                                cd 43 O  p!
                                                               •H. O w  3
                                                                cd -H ft
                                                               > 13 0)
                                                                cu
                                                                Vi

                                                                60
                                                               •H
wo/sn  •  -QNOO  -ds   n/o3n

-------
                                   92

of the pH depression.  These data all confirmed that the monitor pH was
0.4 to 0.5 pH units too low.  However, the pH bias was constant and the
shape of the pH depression was apparently correct.  These events enable
us to explore the nature of acidic episodes for the six streams.
    Acidification was associated with three mechanisms.  First and most
consistent was the process of dilution of base flow chemistry by more
dilute precipitation or snow melt.  Snow melt was associated with the
March and December, 1987 events (Figures 37 to 39, 43 and 44).  All
others were rainfall-driven.  For all the pH depressions presented, SO,
in the precipitation was lower than that of the base flow.  However, SO^
increased above base flow values for one event (September 1987) (Figures
40 to 42), perhaps due to flushing of oxidized S from the soil after a
dry summer.  Thus when SO, was linked to the acidification, it must
generally be coupled with dilution of the base cations.  That is, SO^
commonly decreased during depressions in ANC, although it was present in
amounts in excess of marine and background contributions.  Were it not
present in excess, acidification would still occur but to a lesser
extent.  Thus the dilution and SO, effects were additive.  A third
mechanism of episodic acidification was that of the salt effect
(Skartveit 1981; Norton et al. 1987b; Wright et al. 1988).  It is
particularly pronounced for the March to April 1987 event (Figures 37 to
39) when between 30 and 40 peq/1 of Na were removed from the runoff by
cation exchange with the soil.  During that event, sea-salt corrected Na
was reduced nearly to zero, even though considerable F was in solution,
implying that dilution was not overwhelming the non-marine component of
Na.  The most pronounced salt effect was seen in  January 1986.
Discharge data were not available  for that episode, but the water
chemistry indicates a salt-effect  of greater than  50 peq/1.  The results
of the salt effect were generally  recovered within a few weeks of  flow.
    Nitrate was released from some watersheds during these events  and
may contribute up  to  10 to  12 peq/1.  However,  for many events, and for
the Union drainages  in particular, NO  typically  remained below 5 peq/1.
Higher N0_ in  the  Narraguagus streams result  from more  extensive  forest
cutting  in the Narraguagus watersheds, resulting  in  increased
nitrification  and  loss of N03 where  vegetation  is not  utilizing all the
available  amount.
    Dissolved  organic  carbon  played  a mixed but  temporally  important
role  in  the acidification  status  of  the  streams.   The  Union drainages
had  considerably lower DOC  than  the  Narraguagus  streams  (Figure  27).
For both drainages,  increases  in discharge  were typically  accompanied  by
increases  in DOC,  commonly 3  to  6  mg/1.  This  increased DOC would
contribute  15  to 30  peq/1  additional anions,  further contributing  to  the
lowering of ANC and  pH (Brakke  et  al.  1987).  However,  for  the  April
1987  event, DOC was  diluted in all streams  and  thus  its  importance in
the  acidity  status was  diminished.  Additionally, there was  less  DOC
available for  complexing  of exchangeable Al during such events,  with
implications  for  fish.

Acidity Status
     During the 27  month period  of observation,  the six streams had air
 equilibrated  pHs  that ranged from a low of 5.3 to a maximum of 7.6.
None was chronically acidic.   All of the streams underwent 6  or 7
 episodic pH depressions of one pH unit or more.   All of these episodes
were associated  with increased discharge.   However,  different mechanisms

-------
                                    93

 operated  at  different  times  to  bring about the acidification.   Four
 mechanisms have  been identified:
     1.  dilution,
     2.  increases  in organic anions,
     3.  the  salt effect  driven  by marine aerosols,  primarily Na
        and  Mg,  and
     4.  addition of  the  strong  acids HNO~  and  H SO,.
     The first  three  mechanisms  are natural;  their  relative roles  in
 episodic  acidification vary  from  event  to  event.   In  the  absence  of
 strong acid  inputs ,in  precipitation, rain  and  snow melt would  generally
 dilute the elevated  cation concentrations  and  associated  ANC in emerging
 groundwaters.  The result would be a pH depression, the extent of which
 was  determined by  the  proportions of the two waters.   The pH of the six
 streams would never  approach 5  and would rarely be  below  6;  alkalinity
 would generally  remain above 30 to 50 Meq/1, even with current
 concentrations of DOC  and marine  aerosols.
     Evidence to  the  contrary lacking, we assume that  the  pattern  of
 release and  the  absolute amounts  of DOC and  associated organic acidity
 have remained substantially  unchanged in recent time.  Our data clearly
 indicate  that DOC partly determines the acid-base  status  of the streams.
 For  many  hydrologic  events,  increased DOC  concentrations  may add  an
 additional 20 to 30  peq/1 of organic anions  above the  concentrations at
 low  flow.  This  amount of acidification was  significant when considering
 that the  cations were  being  diluted at  the same time.  For example in
 the  Narraguagus  streams, during the September  1987  event,  Ca
 concentrations (and  to a lesser extent  the other base  cations)  decreased
 between 25 and 50 peq/1, whereas  organic anions increased over  50 peq/1.
 These changes resulted in an ANC  decrease  of up to  100 peq/1 for
 dilution  and DOC-related mechanisms.  Nonetheless,  the pH would have
 remained  in  excess of  6  in the  absence  of  strong acid  anions.
     Marine aerosols  figured  heavily in  episodic acidification  of  the six
 watershed streams.   Two  events  stand out for the Narraguagus streams:
 late January 1986, and April  1, 1987.   The former involved  a winter
 storm with the Union drainages  on the cold (snow) side of the  low
 pressure  and the Narraguagus  streams on the  warm (rain) side.   Snow
 typically contains appreciably  less marine aerosol.  On the  Narraguagus
 streams,  5.2 cm of rain with  119  peq/1  Cl  fell  raising stream Cl
 concentrations from  about: 70  to 115 peq/1.   Marine  salt corrected  Na
became negative.   The minimum acidification  due to this event was  -18,
 -16, and -24 peq/1 for Sinclair,  Rocky,  and  Baker brooks,  respectively.
Considering  the dilution of  stream  Ca that occured and thus  the
watershed originated Na  that  should have been present, the salt effect
was  probably considerabl}'' greater.  The  second major salt effect event
affected all six watersheds, due  to the  precipitation  being  rain  in  all
watersheds.
     The cumulative effect of dilution,  organic  acids,   and  the sea-salt
effect were not sufficient in any of,the events to lower  the pH below 6
 (20  to 40 peq/1 ANC).  There was no correlation between either high
stream SO^ or high concentrations of SO, in  the precipitation that
caused the hydrologic events, and pH depressions.  Stream SO, goes down
during some pH depression episodes  and up in others.  However,  the
sulfate fraction (SO,/sum of anions) of  the measured anions generally
increases during episodic acidification, demonstrating the important
role that SO^ plays in the acidity status of the streams  (Figure 45).

-------
                                          94
                   S/CW  '30yVHOSIQ  NV3W
oo
                                  oo
                                               tn
                                                       to   CM   —   o
                             CO
                             oo
                             o
                             o
                                                                     - r>
                                                                       a.
                                                                       N.
                                                                       oo
                                                                       o  55
                                                                       0  g
                                                                     - n_
                                                                     •    ^3
                                                                               o  o
                                                                                  0}
                                                                               W  -H
                                                                               cu  a)
                                                                               ^3  S
                                                                               a)   -U
                                                                                60
                                                                                •H
                        cu
                        •U

                        cu
                        CO
                        cu
                        M
                        a.
                                                                                  CO  S-i

                                                                                  >•  CO
                                                                                    CO
                                   tn
                                   s.
o
(O
o
 •
o
V)
«>M
 •
o
o
o
                           Nouovyj

-------
                                    95
 Figure  45  indicates  that  SO,  contributes  from 0 to 65%  of  the anions
 that  control  the  acid-base  status  of  the  streams.   The  absolute
 contribution  of SO,  to  the  acid-base  status,  in peq/1,  depends on the
 magnitude  of  the  anion  sum.   The stream SO, concentrations,  with the
 exception  of  several weeks  in later summer, were higher than
 precipitation values and  always higher than pre-anthropogenic values,
 which have been judged  to be  about 10 peq/1 (Brakke et  al.  1989).
 Marine-corrected  excess SO, (in excess of background) ranged from about
 10  to 70 yeq/1.   Some fraction of  this excess input acidity undoubtedly
 resulted in accelerated export of  cations either through increased
 cation  desorption or, less  likely, increased  chemical weathering
 (Henriksen 1984).  Additionally, it is possible that some  of the
 dissociated organic  acids may become  protonated, thus neutralizing some
 of  the  acid sulfate.  This  latter  effect  is believed to be small,
 particularly  where the  systems are not yet chronically  acidic.   It was
 not possible  to evaluate  increased weathering without complete knowledge
 of many watershed  and soil  specific processes.   Consequently,  precise
 evaluation of the  acidifying  influence of the excess sulfate was not
 possible.   The possible range was  the same as the  range for  the
 concentration of  excess sulfate, 0 to 70  yeq/1.  Certain events can be
 argued  qualitatively.  For  example, during the  late summer  acidification
 of  1987, there was no salt  effect.  As a  result, changes in  DOC could
 only  account  for  up  to 25 yeq/1 decline in ANC,  dilution appeared  to
 range up to 25%,  and yet  the  ANC declined by  100 to 200 yeq/1,  depending
 on  the  stream.  A conservative estimation of  increased  cation release of
 50% means  that half  of the  excess  SO, in  the  system was utilized for
 increased  acidification.
    An  alternative approach is to  evaluate the  relationship  between the
 sum of  the  concentrations of  non-marine cations  and ANC (Figures 46 and
 47).  In all cases the intercepts  at  zero ANC were  positive,  with  base
 cation  sums ranging  from  65 (Spring)  to 127 (Baker)  yeq/1.   These  sums
 must  be balanced  against  the  sum of organic anions,  excess SO,,  F,  and
 N0».  Nitrate and  F  are small" and  can be  ignored.   Sulfate must balance
 60 to 70 yeq/1, the  same  conclusion reached by  evaluation of the sulfate
 fraction given in  Figure  45.
    The importance of S0> to  the acidity  status of  the  streams  on  a non-
 episodic basis was thus comparable to or  greater than that of  the  DOC.
 During  late summer, when  SO,  values decline by  some process  of  storage
 in the  terrestrial system,  it  is possible that  alkalinity was generated
 for several months, involving  SO,  reduction.  This  process would raise
 the pH  above the value where  it would- be  in the absence of excess  SO,.
 This  process was  then reversed as soon as  the sulfur was released  from
 the system  in the  fall.
    Nitrate does not contribute measurably to the acidity status of the
 Union streams except for  a small effect on several  episodes.  However,
 NO g values were approximately  twice as high in the  Narraguagus  streams.
 During low  flow in the winter, values commonly reached  10 yeq/1 but were
diluted during high flow  regimes.
    In summary,  none of the six streams are chronically acidic  and none
 are likely  to be so under any  scenario of  continued  loading of  either
NO g  or SO,, near present values.   However, because of  the occasional
juxtaposition of several  acidification mechanisms,   episodic
 acidification is easily achieved.   More serious episodic acidifications
 than  those observed over  the  27 month period  of study are likely to

-------
                              96
O
UJ
250-

200-

150-

100-

 50-

   0-
        HALFMILE
   250-!  INDIAN  CAMP
              1
             50
                 100   150   200   250   300

     ACID NEUTRALIZING CAPACITY,  UEQ/L
     Figure 46.  Granplot ANC versus the sum of nonmarine cations
               for the Union drainage streams.  Squares = calcium;
               triangles = magnesium; diamonds = potassium;  stars
               = sodium.

-------
                            97
Z
O
z

u.
o
CO
300



250



200



150-



100-



 50-



  0


300



250



200



150



100



 50



  0-
       BAKER
  300



  250



  200



  150



  100



   50



    0
       ROCKY
           B
    I • ' ' '  I '

    SINCLAIR
        3*3
      0    50   100   150   200    250   300


         ACID NEUTRALIZING CAPACITY. UEO/L



    Figure 47.  Granplot ANC versus the sum of

                nonmarine cations for the Narraguagus

                drainage streams.  Squares  = calcium;

                triangles = magnesium;  diamonds = potassium;

                stars  = sodium.

-------
                                   98

occur.  They could result from one or more of the following: slight
increases in SO, in precipitation, a gradual breakthrough in NO-,
particularly salty precipitation events, or a warm and dry summer
followed by normal fall rains. ' The order of susceptibility to
acidification is probably Halfmile (most) to Baker brooks (least), with
the other four streams nearly indistinguishable in their sensitivity.

Discharge/Water Chemistry Relationships
    Watershed-originated material, such as Ca, Mg, Na, K, F, and ANC,
which apparently were transmitted directly from the groundwater to the
stream water had the best relationship with discharge (Figures 48 to
63).  Dissolved constituents not derived directly from the mineral soil,
include SiO~, Al, and DOC.  Their relationship with discharge was less
clear.  Those elements derived from outside the drainage (e.g., Cl and
SO,) had even weaker relationships with discharge.  Chloride was not
well-correlated with either season or discharge.  Sulfate was largely
related to season and only secondarily to discharge.

Chemical Budget
    Chemical budgets were determined for each of the study streams.
Chemical data and discharge records were merged using the mid-point
method of Scheider et al. (1978).  Chemical data points were assumed to
represent the midpoint of a given time interval of discharge.  Because
of our effort to sample hydrologic events, this calculation method was
likely to yield more accurate results than an end-point assignment
method.  Atmospheric chemical inputs were calculated using chemistry
from the Silsby Hill Aerochem Metrics wet-only collector, and
precipitation volume from the watershed specific volume recorders during
the period May to November, and the volume from Silsby Hill during the
remainder of the year.  Chemical outputs were calculated from stream
chemistry and discharge records, and normalized to watershed area.  All
data reported are thus directly comparable among streams.  Atmospheric
inputs were obviously higher than we measured as indicated by the net
export of Cl, based on wet-only inputs.  Dry deposition of marine
aerosols over the period 1986 to 1987 appears to be equal to wet
deposition of Cl and related marine aerosols.  This augmented input
decreases the calculated amount of Na (in particular), Ca, Mg, and K
derived from the watershed.
    The consistency of the water budgets discussed earlier both between
years and among sites suggest that reasonable accuracy of chemical
budgets is likely.  The notable exception was Spring Brook with its
anomalously low water yield, as previously mentioned.  Chemical budget
data are presented for Spring Brook, but are not an accurate assessment
of the mass balance status of the watershed, due to the apparent lack of
hydrologic integrity.
    Chemical precipitation inputs for each set of three streams in the
major drainages were necessarily the same for each year because of
common precipitation chemistry (all six streams) and common water input
(three or six streams, depending on season) (Tables 17 and 18).  Net
watershed flux was expressed as the difference between the input and
output, with negative values indicating net loss from the watershed.
For all streams in both years (except Spring Brook), net export occurred
for all measured parameters except nitrogen and hydrogen ion.  Flux of H
was greater in  1986 due to higher inputs.  Cl loss and N retention also

-------
                         99
8-
7-

x 6-
Q_
Q
UJ
1—
ct:
m 5.
>-< 8 -
a
UJ
i
cc
H-H
7-

6-

5-
1
UNION D HALFMILE
X SPRING
A INDIAN CAMF
m
^^lA A A
^ iD a.,
° A
DA
B a A
DA

i i I
NARRAGUAGUS
_ a BAKER
&. . x SINCLAIR
gap A ROCKY
hi°
^«* ® ;xo°
^ x& ^
A ?>

' r
3 1 10
                DISCH ARGE M/HA/DAY

Figure 48.  Discharge versus pH during 1986-1987 for Union
           and Narraguagus streams.

-------
                         100
200-


150-
-i 100-
a
UJ
>: so-
J— .
1—4
O
< 0 -
a HALFMILE
a x SPRING
v A INDIAN CAMP
I
L
Mm
fts
^^na x A A^
^^f fH A .
n D A A
UNION a
O | 1 1
o 200-
•z.
I I
M
j
| 150-
LU
a 100-

o

50-


0-
D a
tB D BAKER
x SINCLAIR
m A ROCKY
A
^^

D

an an
^ D X^D
•^ A /AX,
A ^5v
NARRAGUAGUS
i i i
0 1 10
               DISCH ARGE M/HA/DAY

Figure 49.  Discharge  versus ANC during 1986-1987  for Union
           and Narraguagus streams.

-------
                      101




_J
o
LU
-^
ik
z:
t— H
CO
LU
2;
O
^£
^~
+
51
ID
O

^

LU
i — i
a:

21

O
:2~






190-
180-
170-
160-
150-
140-
130-

120-
1 10-

100-
90-

80-
70-
XUNI°N o HALFMILE
?, x SPRING
$ A INDIAN CAMP
^
^ D

figl A
riffru D r-i
mkr D A A
^g^A A

l^g D A A
x$gD£]@AX H D
** x ^ ^ ^^
cP SA A
a a
i i i
300-





200-







100-

0-
NARRAGUAGUS
a
QD a BAKER
^ x SINCLAIR
S A ROCKY
laCQ

A __
Q
D
OPvQ Q
^ D
x . Q ^\xc
X O X fl^
A Q< @
A AXxD

i l
0 1 10
               DISCHARGE M/HA/DAY

Figure 50.  Discharge versus Ca + Mg during  1986-1987
           for Union and Narraguagus streams.

-------
                       102
80-1 UNION
                           D HALFMILE
                           X SPRING
                           A INDIAN  CAMP
                DISCHARGE M/HA/DAY
 Figure 51.  Discharge versus Na during 1986-1987 for Union
           and Narraguagus streams.

-------
                         103















o
t— H
H~~
<

_i
o

z









2.

2.
1 .


1 .
1 .
1 .

1 .

0.
0.
o.

o.
o.













2-

0-
8-


6-
4-
2-

0-

8-
6-
4-

2-
0-
UNION D HALFMILE
n< x SPRING
|^ A INDIAN CAMP
^OAp,
y^^OyX ^^«M ^j

*yS A A
^fAana^x ^ D A
^z^^ ^ tf A A A
AJ-] B
n
A D A \ -
A





i ii
3-




NARRAGUAGUS
n D BAKER
D x SINCLAIR
n A ROCKY
n
B U D
3. cP
- ffi.A X
2 -moAnL
IfeSK Hk n . . n



IBkxx Afc
W$L x
H ° a „
1  -
0-
a
                      x
                       1
                  DISCHARGE M/HA/DAY
                                    10
 Figure 52.  Discharge versus Na:Cl ratio during 1986-1987
            for Union and Narraguagus streams.

-------
                         104








_J
X
o
UJ

to
z:

CO
CO
<
o
Q_
UJ
•z
H-l
<
« •
ZI
•z
o
^











13-
12-

11 -
10-
9-
8-
7-
6-

5-

-

3-
2-

1 -
UNION
A
n
A
A
XA D n
ffi^ A A
WA A a ^ P
ilm^ A A
T KuX^«^7\ A n ^^
S®, p n 0 ^
SLr^A—— XA D A
j®3 BjCy S
!§A KX
^ a HALFMILE
x SPRING
A INDIAN CAMP

i i i
25-
23-
21 -
19-

17-
15-

13-
1 1 -
9-

7-

5-
NARRAGUAGUS x

1 X
a
a
&

^Bo /A
Ji&@2 D X CS?0
|^^Ip^A % A^jX
wlL a x ^ A
J^^n x a BAKER
x x SINCLAIR
XA a A ROCKY

i i 	 r
0 1 10
                DISCHARGE M/HA/DAY

Figure 53.  Discharge versus K during 1986-1987 for
           Union and Narraguagus s treams.

-------
                           105
v.
o
21
LU
O
i—<
X
O
o
o
CO
       \
      0
     Figure 54
                               D HALFMILE
                               X SPRING
                               A INDIAN CAMP
                               A
                               D BAKER
                               X SINCLAIR
                               A ROCKY
                         1                  10

                    DISCHARGE M/HA/DAY

                Discharge versus SiO  during 1986-1987
                for Union and Narraguagus  streams.

-------
                        106
90-1 UNION
a HALFMILE
X SPRING
A INDIAN CAMP








_J
a
LU
1 1 1
* * *
o
a;
o
n:
o















80-

70-


60-
50-

40-
30-
ti
D A
A ^ A
AgA Q
A^fev A D
c^»A A
9w\ D n "A
^•jWip D A a A
I^S^-^D^ A ^
LJ 7s /3~1 ^
$

I i i
120-
110-
100-
90-
80-

70-
60-

50-

40-

30-

20-
NARRAGUAGUS D BAKER
X SINCLAIR
A A ROCKY



fctA x ^^
ijj& x >£
jjij; A x AX
..*21K£5r 1— ^ . . LJ . ^
ai^ rfin A "3£v

^"^ x D ISsn
dp AT-I D X n
M^ D
a

i i i
0 1 10
                 DISCH ARGE M/HA/DAY
  Figure 55.  Discharge versus Cl during 1986-1987 for
            Union and Narraguagus streams.

-------
                      107









_l
\
o
LU
:D

to
UJ
Q
t— 4
C£
O
ID
_1
U_










30-


20-



10-







0 -
UNION n HALFMILE
X SPRING
A INDIAN CAMP
x
1
KXX° p,x
^^^Kcn DX n
^L&D a D a A A a
^^ & £ JA- ^ A
A A A
D.




x a A

1 i '
6-


5-

4-

3-


2-
1 -
0-
NARRAGUAGUS D BAKER
X SINCLAIR
AX A ROCKY
GBKDD A

AKJ XD D X
a
HQ>OEX A XE2X
X
na A x A
OCZKCK x a oa x

uxr>mi*!M\\ vw IT1 D A n
OBOBtCDElEa A X QCMD
i i i
0 1 1C
                DISCHARGEM/HA/DAY
Figure 56,
Discharge versus F during 1986-1987 for
Union and Narraguagus streams.

-------
                     108





	 1
X.
o
LU
ID
LU
1—
=J
CO







90-
80-
70-
60-
50-
40-
30-
20-
10-
100-
90-

80-
70-
60-
50-
40-
30-
20-
10-
UNION
A
J|^A AA A A^ A
ft " .
f*
f
I
B a HALFMILE
. x SPRING
A A INDIAN CAMP

i i i
NARRAGUAGUS



^^^% D ^X*#Q
i x ° *B*a
A °
m
3§1 D
» D
F D BAKER
f X SINCLAIR
A ROCKY
' i i
0 1 10
                DISCHARGE M/HA/DAY

Figure 57.  Discharge versus SO  during 1986-1987 for
           Union and Narraguagus streams.

-------
                         109
O
0.7-


0.6-


0.5-


0.4-


0.3-


0.2-


0.1 -
        UNION
                         •—«4i


                         g
o
g  0.0-
u_      i

uj  °'6-
CO
   0.5-
   0.4-
0.3-


0.2-


0.1 -


0.0-
     NARRAGUAGUS
          D         A
           x
        D  X
                  D
D HALFMILE
X SPRING
A INDIAN  CAMP
                               n BAKER
                               X SINCLAIR
                               A ROCKY
                    DISCHARGEM/HA/DAY

     Figure 58.  Discharge versus SO, fraction during
               1986-1987 for Union and Narraguagus streams

-------
                      110








_J
o
^
z
o
CO
CE
O

o
H-4
^
O
o
O
UJ
_J
O
CO
CO
1 — 1
o






12-
1 1 -
10-
9-
8-
7-

6 -
v
5-
4-
3-

2-
1 -

0 -
V
UNION D HALFMILt
X SPRING
x n A INDIAN CAM


D D
Q A
rQgl D A
• gf^^
jlr A A x

TS Q __ E] A
TO\ D AT-j '-'A A^J
rfffl. jp-i ^^A A n A A A
«9^^s §£
•^Siu x n
^r^ n
jjK A
5T"

1 1 1
40-


30-




20-

10-



0-
NARRAGUAGUS n BAKER
x SINCLAIR
A A ROCKY
A
D
X
A X

A .
^^ j"|
3« ili ^ X D
^^^^A
SBvfi l^i ^ Oi
/*5^\ T2 fsAr^ ^ .n^A T-J x n
/K&k ^Hr^ ^ ^
x XA^X
x
Figure  59,
         1                   10

    DISCHARGE M/HA/DAY

Discharge versus dissolved organic carbon
during  1986-1987 for Union and Narraguagus
streams.

-------
                    Ill




o
1—4
H-
ce
o
i — i
2
O
i — <
I —
O




1 .31 -
1 .27 -
1 .22-
1.17-
1 .12-
1 .07-
1 .02-
0.97-
0.92-
2.3-
2.2-
2.1 -
2.0-
1 .9-
1 .8-
1 .7-
1 .6-
1 .5-
1 .4-
1 .3-
1 .2-
1.1-
1 .0-
5 S»fc
A INDIAN CAM
A A
xa D
^ D A
So A A D
B"v A°° A *
F"D°x* ° &:
x A
A
i l i
NARRAGUAGUS o BAKER
, X SINCLAIR
A ROCKY
A A
A
X
£ On
n A
AAXn A D
||L ra D x
P?l°;^
i ii
0 1 - . 10
               DISCHARGE M/HA/DAY

Figure 60.  Discharge versus cation:anion ratio during
           1986-1987 for Union and Narraguagus streams,

-------
                           112
30-
    UNION
    A
30-
20-
10-

                       fi
                  n HALFMILE
                  x SPRING
                  A INDIAN  CAMP
o 20-
V.
CO
ZD

UJ
0
•z. iQ-
< IU
i —
g 50-
o
•z.
o
o
o 40-
u_
o
UJ
P|X^AA «Q A A
y^ ^X n A^ A
p\ 
-------
                             113
o
o
500-
400-

300-
200-
100-
0-
500-
400-
300-
200-
100-

0-
UNION D HALFMILE
UNION x SPRING
A INDIAN C

A
D ° A
A^ 0 B >
Jto^Bj * *ta A
m°*t
*
' l l
NARRAGUAGUS n BAKER
X SINCLAIR
A ROCKY
a
*A .dp"
A N
A CP D \
^^Sp>a n D ^^
fpaj^ ° AT D

-------
                           114
  300 -I
  200-
  100-
x
o
    0-
                  UNION
D   D
                      A


                      A
                             D HALFMILE

                             X SPRING

                             A INDIAN CAMP

-------
                               115

Table 17.  Mass balance calculations for the Union drainage
streams.  Units are eq/ha except for DOG, Al, and SiO_, which are
kg/ha.                                               Z
Stream Variable
Half mile H
HC03
Ca
Mg
K
Na
%
ND
S04
DOC
Al
Si02
Indian Camp H
HC03
Ca
Mg
K
Na
Cl
N
S04
DOC
Al
Si02
Spring Brook H
HC03
Ca
Mg
K
Na
Cl
N
S04
DOC
Al
Si02

input
361
_a
28
20
9
78
131
303
330
-
-
—
361
-
28
20
9
78
131
303
330
-
-
—
361
-
28
20
9
78
131
303
330
-
-
"
1986
output
3
141
435
160
33
393
273
3
362
26
1
34
3
178
438~
186
34
401
293
9
412
24
1
33
1
158
366
99
20
266
205
5
257
9
3
23

flux
358
. -141
-407
-139
-24
-315
-141
300
-32
-26
-1
-34
358
-178
-410
-166
-25
-322
-162
295
-82
-24
-1
-33
360
-158
-338
-78
-11
-188
-74
298
72
-9
-0
-23

input
273
-
32
38
8
124
204
223
250
-
-
—
273
—
32
38
8
124
204
223
250
-
- •
•'• —
273
. -
32
38
8
124
204
223
250
•!•
-
-M
1987
output
6
137
394
149
40
387
270
4
290
12
1
27
6
190
431
186
46
429
304
6
346
13
1
27
0
185
426
113
26
304
184
. 4
227
5
0
22

flux
267
-137
-362
-111
-32
-263
-66
219
-40
-12
-1
-27
268
-190
-399
-149
-38
-305
-100
217
-96
-13
-1
-27
273
-185
-394
-76
-18
-179
20
219
23
— S
-0
-22
 - = not determined.
N includes
                and

-------
                               116

Table 18.  Mass balance calculation for the Narraguagus drainage
streams.  Units are eq/ha except for DOC, Al, and SiO^, which are
kg/ha.
Stream Variable
Baker H
HC03
Ca
Mg
K
Na
C£
N5
S04
DOC
Al
Si02
Rocky H
HC03
Ca
Mg
K
Na
Cl
N
S04
DOC
Al
Si02
Sinclair H
HC03
Ca
Mg
K
Na
Cl
N
S04
DOC
Al
Si02

input
364
a
27
20
9
78
131
292
313
-
-
-
364
-
27
20
9
78
131
292
313
-
—
—
364
-
27
20
9
78
131
292
313
-
—
—
1986
output
2
333
883
315
86
482
341
21
425
82
1
42
4
126
489
215
57
352
280
23
316
58
1
30
4
209
525
296
76
521
385
23
416
56
1
46

flux
362
-333
-856
-295
-77
-404
-211
271
-112
-82
-1
-42
360
-126
-462
-195
-49
-274
-149
269
-4
-58
-1
-30
360
-209
-498
-275
-67
-443
-254
270
-103
-56
-1
-46

input
288
-
34
41
9
133
219
230
258
-
-
-
288
-
34
41
9
133
219
230
258
-
-
—
288
-
34
41
9
133
219
230
258
-
-
"""
1987
output
4
410
921
338
99
534
357
9
366
53
1
43
9
221
704
310
79
518
383
13
404
55
I
39
9
295
527
280
81
530
419
23
414
30
1
45

flux
284
-410
-887
-297
-90
-401
-138
220
-108
-53
-1
-43
279
-221
-669
-269
-70
-385
-164
216
-146
-55
-1
-39
279
-295
-493
-240
-72
-39)
-200
207
-155
-30
-1
-45
 - « not determined.
 N includes NO. and NH,,.

-------
                                    117

 tended  to be higher  in  1986.   The  higher  N retention reflected  higher
 inputs, but the higher  Cl  flux was  a  function  of  constant  output  between
 years,  and a period  of  lower deposition in 1986.   This  latter
 observation indicates that  transport  lag-times or  temporary storage may
 be important for Cl  mobility in  these systems.
    In  all streams,  the relative order of export  for cations was
 Ca>Na>Mg>K.  Over  100 eq/ha of the  calculated  Na  flux was  due to  dry
 deposition of marine aerosols.   Silica export  rates  were very similar
 among streams in the same drainage, with  the Narraguagus watersheds
 exporting at least 25 percent  more  Si than the Union watersheds.  Within
 drainages, the relative export of  Si  did  not necessarily follow the
 pattern of ANC concentrations.   Sinclair  Brook had an export rate of Si
 slightly in excess of that  of  Baker Brook,  yet typically had
 substantially lower  ANC.  Figures  64  through 66 summarize  the annual
 chemical flux from the  watersheds.  Although the  input  and
 neutralization of hydrogen  ion is nearly  identical,  exports of  cations
 (especially Ca), HC03,  and  DOC vary widely among  streams.
    Nitrate and SO,  budgets are  of  special  interest  due to potential
 effects of acidic precipitation.  Nitrate input was  generally far in
 excess  of export (e.g., Halfmile and  Sinclair brooks, Figure 67).
 Neither N0» concentrations  nor export of  NO- appear  to  respond  to
 seasonally high inputs  from precipitation.  High episodic  flux  was a
 function of unusual  hydrologic and  chemical events,  or  as  a result of
 antecedent conditions during the spring run-off period.
    As  indicated in  Figure  68  (for  Halfmile and Sinclair),  SO,  flux was
 partially seasonal,  with outputs exceeding  inputs during all seasons
 except  in the summer during low  flow.  The  excess  S  was either
 remobilized S from a previous  dry period  accumulation phase, or from dry
 deposition.  Dry deposition estimates from mass balance calculations
 (Table  19) agree well with  the estimates  discussed previously.

                            Fisheries Studies

 Fish Habitat
    In general, stream  gradient  and velocity varied  directly with each
 other and inversely  with depth among  streams (Table  20).   Indian  Camp
 Brook appeared to be significantly  deeper  than the other streams, but
 this was primarily due  to a single, very  large and deep pool in the
 study area.  Although there was  some  variability in  velocity, depth, and
 gradient among the sites, the  total range  of these variables represents
 only a  small portion of the inhabitable range for Atlantic  salmon, brook
 trout, and blacknose dace,  the three  primary species  under
 consideration.
    Substrate composition varied widely among streams.  In  general, 75%
 to 99% of the substrates present were within the three  intermediate size
 classes (gravel, rubble, or boulder).  Halfmile,  Indian Camp, and Baker
 brooks contained high proportions of  boulder substrate  (>_  25.4  cm).  In
 contrast, Sinclair Brook had no  substrates greater than If5.4 cm,  and
 contained by far the higher percentage of gravel.  Indian  Camp  and
 Spring brooks contained significant proportions of fine substrates,
 however, this size class was represented  primarily by silt  in Indian
Camp Brook versus sand  in Spring Brook.   The siltation  in  Indian  Camp
Brook was due to a small scale logging operation and associated haul

-------
                           118
CA
MG
NA
RJRFAM
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING






K\\\\\X\\\\\\XXXNXXV
N\\xSN\\\
KX\\\\\\\
K\\\\\\\X\\XS:
^\\\\x\\\\\S
K\\\\\xv

t^^S^S^
n
KsSSvV
|\\\\V
E
E
E
E
£
tsSNS^sSNS\
NNSXS^
fsX^NNS,
KVv\\\\N
K\\\\\\\\N

cc^^^vV^
•cs>^c<^^
^C^CsXXI
X\\^\\ \|XI
vNXXVvXI
\VNXXNI






1 	 1 	 1 i i i
0 2 4
18642 0 C
00000 0 C
D 0 0 0 0
J ' «|-^ ^k *r TTT T /T T A
     Figure 64.  Annual cation flux for the study streams

-------
                       119
CL
HC03
NH4
N03
S04
  STREAM
BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING

BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING

BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING

BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING

BAKER
HALFMILE
INDIAN-C
ROCKY
SINCLAIR
SPRING
                                 g
            -400 -300 -200 -100
                                100  200
                        EQUIV/HA
      Figure  65.  Annual anion flux, for the study streams

-------
                        120
        STREAM
AL    BAKER

      HALFMILE

      INDIAN-C

      ROCKY

      SINCLAIR

      SPRING


DOC   BAKER

      HALFMILE

      INDIAN-C

      ROCKY

      SINCLAIR

      SPRING


SI02  BAKER

      HALFMILE

      INDIAN-C

      ROCKY

      SINCLAIR

      SPRING
              -6   -5    -4    -3    -2    -1    0
                    KMOLES/HA (AL MOLES*100)

      Figure 66:  Annual flux for Al, DOC,  and Si02 from
                  the study streams.

-------
                            121
LU
_l
t—t

U.
_J

X
o
10
     o
     <\J
o
OJ
o
(O
o
to
                                                          o
                                                              o
                                                              8
                                                              •H
                                                              cd
                                                              rH
                                                              O
                                                              n)
                                                              w

                                                              I
                                                              M
                                                              M-l

                                                              4-)
                                                              3
                                                              O
                                                              •U

                                                              I
                                                              •H
                                                              i
                                                              rH
                                                              •a.

                                                              I
                                                              M
                                                              •H
                   VH/D3   '31VdlIN

-------
                                       122
UJ
U.
   ct


r  o
                                                  Q-;
                                                                     CO
                                                                     CO
                                                                     o
                                                                     o
                                                                               O
                                                                               s
                                                                     Q_
                                                                     <
                    _ CO

                      ~>
                                                                   _ o
                                                                     o
                                                                   - Q-
                                                                  ^ <
                                                                     CO
                                                                   _ CO
                                                                  ^ <
                                                                         o
                                                                         2:
                                                                              •a
                                I
                                                                               Pw

                                                                               4-1


                                                                               g
o    o
If)    CM
            o    o    o    o    o    o
            o>    to    to          10    cvj
o
O)
                     o
                     (O
o
10
                                                                               O


                                                                               !*.
                                                                               .-1

                                                                               +J
                                oo
                                VO
                                                                               60
                                                                               •rl
                     VH/03  '

-------
                   123
Table 19.  Calculated dry deposition3 of
major chemical species from input-output
budgets.  Spring Brook is not included
because of anomolous hydrology.
Stream
Halfmile
Indian Camp
Sinclair
Rocky
Baker
1986
SZ
10
25
33
1
36
C1Z
107
122
194
114
162
1987
SZ
16
38
60
56
42
Cl%
32
48
91
75
63
 [(Output-input)/input]  x 100

-------
                                       124

 Table  20.   Selected physical characteristics of fish habitat in the study area
 of each stream.
Stream
Characteristic
Average stream width (m)a
Average depth (cm)
Average velocity (cm/s)a
Gradient (a/km)
Substrate composition
Z sand/silt «0.25 cm)
Z' gravel (0.25-4.9 cm)
Z rubble. (5.0-25.4 cm)
Z boulder (>25.4 cm)
Z bedrock
Habitat composition
Z pool
Z riffle
Z rapid
Z backwater
Halfmile
3.7
16.8
21.5
26

1.2
23.6
45.2
30.0
0.0

24.8
61.2
12.8
1.2
Indian
4.8
22.8
13.2
6

11.7
11.7
30.0
35.2
11.4

31.0
50.0
19.0
0.0
Spring
3.4
14.2
18.3
14

7.9
23.6
54.5
14.0
0.0

32.6
48.3
15.7
3.3
Sinclair
3.9
17.0
13.8
9

3.8
53.8
42.4
0.0
0.0

27.1
63.8
7.1
1.9
Rocky
3.9
14.7
20.3
18

1.7
34.0
31.0
10.0
23.3

17.9
54.5
25.7
1.9
Baker
4.8
17.3
15.5
11

1.9
21.7
50.9
25.5
0.0

20.0
54.3
25.7
0.0
"Major fish  cover  types

Pish cover  rating0

Number of pools
                     «
Average pool size (m )

Pool quality index
XBL,BBL  IBL.OBV IBL.UCB UCB.OBV  IBL.ISN IBL.UCB

  1.9      1.4     1.8     2.2      0.9      1.7

   35       25      20      11       19       18

  1.7      7.0     5.0     9.9      3.2      5.4

  2.1      1.7     2.8     3.4      2.1      1.9
 Grand average of all data collected on fish population sample days.

 IBL - Znstream boulder, BBL - Bank boulder, OBV - Overhead bank vegetation,
 UCB - Undercut bank, ISH - Instream snag.
£
 Composite index of general cover available throughout study area and
 abundance of cover within pool habitat.

*Prom Platts et al. 1983.

-------
                                    125

road located near the easternmost headwater  tributary  of  the  watershed.
Indian Camp and Rocky brooks were the only streams with exposed  bedrock
as a substrate, and Rocky Brook contained nearly  twice as much bedrock
as Indian Camp Brook.  In both study areas,  exposed bedrock was
primarily present in short reaches  where gradient was  atypically high
for the site, indicating that any smaller substrates that accumulate in
these areas were scoured out seasonally, leaving  the exposed  bedrock.
    Peterson (1978) found that 80 to 100% of the  spawning gravel in
Atlantic salmon redds in New Brunswick streams was between 0.2 and 25.6
cm in diameter.  This range corresponded almost exactly to the pooled
gravel and rubble size classes we used.  If  preferences are similar in
Maine streams, then Sinclair Brook  would appear to have the highest
availability of appropriately sized gravel for salmon  redds,  followed  by
Baker and Rocky brooks.  Raleigh (1982), reviewing data from  several
studies on brook trout spawning, stated that optimum spawning gravel
size for that species was 0.3 to 8.0 cm.  This would include  all
substrates we classified as gravel  plus a portion of those classified  as
rubble.  Again, assuming similar preferences in Maine, this would rank
Sinclair Brook highest in available spawning substrates,  followed by
Spring, Halfmile, Rocky, Baker, and Indian Camp brooks.   Other variables
that we did not measure, such as availability of appropriate  depth, and
velocity for locations of redds, are also important for spawning of both
species (Beland et al. 1982; Raleigh 1982).   However,  these species can
usually find at least a few suitable locations if the  appropriate sized
spawning gravel is available.
    The proportion of major habitat types (e.g., pool, riffle, etc.)
varied considerably among sites.  Rocky and  Baker brooks  contained more
high velocity, high gradient microhabitats than the other four streams,
and the two lowest percentages of pools.  Spring Brook had the highest
percentage of pools, but was closely followed by Indian Camp  and
Sinclair brooks.  Percent pools and average  pool size  for Indian Camp
Brook are somewhat misleading, because these characteristics  are heavily
influenced by a single, large pool  in the study area.
    Comparison of the number of pools, average pool size, and  pool
quality indicated wide differences  in the structure and quality  of this
habitat type among sites.  For example, Halfmile Brook had the most
individual pools but also the smallest average pool size  and  average
pool quality was only intermediate.  Many of  the pools in .this stream
would likely be classified as pocket water (Platts et  al. 1983).  In
contrast,  Sinclair Brook contained  less than one-third the number of
pools,  but each averaged nearly six times the size of  Halfmile Brook
pools,  and average pool qualitiy was 62% higher.  Spring Brook was
intermediate to the other streams in both numbers and  size of  pools, but
had the second highest average pool quality  rating.  Indian Camp Brook
had the second highest average pool size, because of the aforementioned
unusually large pool at the site, but the lowest pool  quality  rating.
This indicates that the pool quality rating may be the best overall
index of habitat quality (for salmonids)  available from our data, since
it is not  heavily influenced by any single pool but rather is  a
composite  rating of all pools present (Armour et al. 1983; Platts et al.
1983).
    Cover  ratings generally followed the pattern of pool quality
ratings,  and the two indices do overlap somewhat in terms of their
determinate components.  Sinclair Brook had  the highest abundance and

-------
                                   126

quality of cover, whereas Rocky and Indian Camp brooks had the lowest.
One highly significant difference between Sinclair Brook and the other
five sites was the primary type of cover present.  In Sinclair Brook,
the majority of cover was represented by undercut banks, followed by
overhead vegetation, while the primary cover type at the other sites was
instream boulders.  In general, undercut bank and overhead cover types
are preferred by brook trout over other types, and often hold the most
trout per unit area of cover (Raleigh 1982).  Additionally, although not
shown in Table 19, Sinclair Brook contained large amounts of attached,
submerged vegetation, which was rare or absent in the other five
streams.  Observations during electrofishing samples indicated that
these patches of vegetation provided a significant source of cover for
underyearling trout, and to a lesser extent for underyearling salmon.

Fish Populations
    Raw fish population data and summary statistics are presented in
Appendix F.  Capture efficiency of fish populations inhabiting these
streams was generally very high.  Of 375 individual efficiency
comparisons of the actual number of fish captured versus the population
estimate for that species and age group, only  13.8% were less than 85%
efficient.  Nearly all individual capture efficiencies less than 85%
involved extremely small sample sizes (i.e., population estimate less
than 10), or a non-salmonid species (usually blacknose dace or finescale
dace), or one of the earliest samples (fall 1985, when the netting crew
was inexperienced).  The remaining occurrences of low efficiency
involved underyearling salmonids, but these instances were very few.
Mean capture efficiency, for all species pooled within a stream and
sampling date, ranged from 82.7% to 98.9%, and 97% (35 of 36) of the
mean capture efficiencies were greater than 85%.

Species Occurrence and Distribution
    Common and scientific names of all fish species captured in
electrofishing samples are listed in Table 21.  Species representation
by individual site and season is presented in  Figure 69.  Brook trout
were captured from all streams in all seasons, and Atlantic salmon in
all seasons from the Narraguagus tributaries.  The only other salmonid
present was brown trout, which was occasionally captured in Spring
Brook, and likely represented wild progeny from recent  trial stockings
of that species  in the Union River drainage.   Among forage species,
blacknose dace were the most abundant and ubiquitous, and  occurred in
all seasons and  streams except Sinclair Brook.  Creek chubs and white
suckers were also commonly encountered in most streams.  Species
captured  in fair numbers but only during certain  seasons or in certain
streams included sticklebacks  (both three and  nine spined), common
shiner, and finescale dace.  Species captured  infrequently or only at
one site  included golden shiner, smallmouth bass, fallfish, and chain
pickerel.
    The highest  species diversity invariably  occurred in either Indian
Camp or Spring brooks, with a minimum of 6 and a  maximum of 10 species
represented in a sample.  There was no apparent seasonal pattern as  to
which  stream had the higher diversity.  Rocky and Baker brooks followed
in diversity with 5-to 7 and 3 to 6 species,  respectively, represented.
Except for  the fall  1987 sample, when one white  sucker  and one creek

-------
                             127

Table 21.  Common and scientific names of all fish species
captured in electrofishing samples from the six study
streams.
   Common Name
                                      Scientific Name
  Brook trout

  Atlantic salmon

  Brown trout

  Blacknose dace

  Finescale dace

  Creek chub

  Common shiner

  Fallfish

  Golden shiner

  White sucker

  Three spine stickleback5

  Ninespine stickleback3

  Chain pickerel

  Smallmouth bass
 Salvelinus  fontinalis

 Salmo  salar

 Salmo  trutta

 Rhinichthys atratulus

 Phoxinus neogaeus

 Semotilus atromaculatus

 Notropis cornutus

 Semotilus corporalis

 Notemigonus crysoleucas

 Catostomus  commersoni

 Gasterosteus aculeatus

 Pungitius pungitius

Esox niger

Micropterus dolomieui
These  two species grouped  together  in  all  subsequent  tables
and figures.

-------
                          128
UJ
»-
•-«
in
                                                         Ml
                                                         
                                                                         T)  a) p3  to
                                                                         d -H P4 pq
                                                                         to  > co
                        cr>
                        vo




                         §
                         60
oaanidvo S3io3ds Jo

-------
                                    129

 chub were  captured  in Halfmile  Brook,  Sinclair and Halfmile brook study
 areas  supported  only two  species  each  (both salmonids  in Sinclair Brook,
 brook  trout  and  blacknose dace  in Halfmile Brook).  American eels were
 observed occasionally in  each of  the Narraguagus  tributaries but  were
 absent in  the Union streams, probably because  of  the same impassable
 barriers that preclude the presence of  Atlantic salmon in these streams.
    Although many factors,  including stream temperature and chemistry,
 habitat diversity,  stream size, and flow regime (Hynes 1970),  are
 involved in  determining species richness in streams, it is likely that
 proximity  of the Indian Camp and  Spring brook  study areas to their
 respective confluence with the Union River (50 to  500  m)  contributed to
 the comparatively high species diversitiy observed in  those two streams.
 Species such as  fallfish,  golden  shiner, smallmouth bass, and  common
 shiner contributed  to diversity but were sporadic  or transient in
 occurrence.  It  is  likely that they migrated seasonally from the  Union
 River, to  satisfy spawning, feeding, temperature preference,
 competitive, predator avoidance,  or other driving  mechanisms.  The
 occurrence of only  two species, in most instances,  from Halfmile  Brook
 lends  some support  to this  proximity-diversity hypothesis,  since  the
 study  area on that  stream is located about 3 km from the  Union River.
 However, water temperatures in Halfmile Brook  also averaged slightly
 cooler than  in Indian Camp and Spring brooks,  and  this may also limit
 diversity.
    The lack of a forage  species  in Sinclair Brook,  particularly  one as
 ubiquitous as blacknose dace, may be the result of marginally  unsuitable
 stream characteristics, unsuitable water chemistry,  or both.   Review of
 habitat suitability index (HSI) specifications for blacknose dace,  from
 Trial  et al. (1983)  and other ecological literature, indicated that
 blacknose  dace rarely inhabit streams or stream reaches with gradients
_<_5 m/km (Gibbons and  Gee  1972).   In addition,  water  temperatures  during
 the reproduction season must be at least 15° C for spawning to occur and
 embryos to develop  properly (Traver 1929;  Schwartz  1958).   Gradient at
 the Sinclair Brook  study  area is  roughly 6 m/km, as  estimated  from
 topographical maps,  and thus is marginal  at  best.  Average  daytime water
 temperature  in Sinclair Brook during June and  July,  which is the
 spawning period in  Maine  (Scott and Grossman 1973), was  13.2°  C and
 14.6  C, respectively.  Other HSI variables  which may  be marginal  for
 blacknose  dace in Sinclair Brook  include  average riffle velocity  (too
 slow) and  stream margin substrates (not  enough fine  substrates) (Trial
 et al. 1983). Possible effects of water  chemistry  on forage  species
distribution is discussed below.

Atlantic Salmon
    Abundance of Atlantic salmon  (number  per 100 m  of  habitat) in the
three Narraguagus tributaries,  by yearclass, is presented in Figure 70.
Yearclass  strength of  salmon was highly variable among  sites,  and  among
yearclasses within  sites.   For example,  Baker  Brook had a strong
representation of salmon from the 1984 and 1986 cohorts, a weak
representation of salmon born in  1985,  and no  individuals from the 1987
yearclass.   The 1985 yearclass  did not appear  in this  stream until 1986,
as yearling immigrants.  In contrast,  Rocky Brook had  relatively  strong
representation of the  1985 and  1987 cohorts.and weak representation from
1984 and 1986,   Sinclair Brook,  differing from both Baker and Rocky

-------
                                            130
o
cc
                                                                             •s
                                                                              V)
                       o
                       1C
                                        r-
                                        co
                                                                             .»  S
             O
             in
o   o
V   to
o   10
—   o
o
in
o
ci
o   ui
•™   o
                                                                                        60
 o
 tt
                                         CO
                                         CO
                        O
                        1C
                                                                               £
                                                                               to
                                                                              . <»
                             o   to
                             —   O
                                             o  o  o   in
                                             ro  
-------
                                    131

 brooks,  had  relatively equal  and strong yearclass representation in the
 first  three  years,  with a moderate  decline in 1987 yearclass strength.
     Immigration of  yearling salmon, produced in 1986,  occurred in all
 three  streams  in 1987,  arid to the greatest extent in Baker Brook.
 Consultation with two  regional salmon biologists (R. Jordan 1985; K.
 Beland 1987, personal  communications) indicated that,  because of the
 large  size of  spawning adults and the need for fairly  large, continuous
 spawning sites,  spawning of salmon  occurs  at best sporadically in
 streams  of the size we studied in the Narraguagus drainage.  Neither
 salmon spawning activities nor redds were  observed at  any time in or
 near the study areas of our streams. Spawning was observed in Sinclair
 Brook  in 1980.   Successful spawning requires a period  of high discharge
 during a relatively short period in early  November.  Survival of any
 successfully deposited embryos requires flow rates high enough to
 maintain water flow through the redds during the fall  and winter.
    For  these  three streams,  it is  unlikely that spawning in Rocky Brook
 has ever occurred,  because of its small size and the subdivided nature
 of the lower 600 m  of  stream  channel.   It  is also unlikely that
 successful spawning occurs in Baker Brook  anywhere near the study area,
 because  of the distance from  its mouth, lack of appropriate locations,
 and the  tendency for this stream to return rapidly to  baseflow
 conditions after any runoff events.   Sinclair Brook appears to be the
 only stream  where successful  spawning could occur with any regularity.
 Rationale for  this  possibility includes the proximity  of the study area
 to the confluence with the Narraguagus, the deep, slow,  obstruction free
 characteristics  of  the  lower  channel, and  the presence of large
 quantities of  appropriate size spawning substrates and suitable
 locations.  However, it is still unlikely  that spawning  in or near the
 study  area occurs annually.   The strong homing tendency of this species
 is also  involved.   The  only source  of stream born individuals would be
 progeny  from any non-homing adult strays (occur occasionally in this
 species)  that  sporadically enter the lower  reaches of  these streams when
 conditions permit.
    In light of  the above,  it  is likely that all  or  nearly all Atlantic
 salmon observed  in  these  streams are the result of immigration of river
 born progeny.   Seasonal  emigration  of smolts to the  sea,  as well  as parr
 back to  the main river,  also  occurs.  This  is fairly typical in Atlantic
 salmon nursery  streams  such as  these.   Randall and Paim  (1982)  studied
 salmon immigration  on  somewhat  larger but  otherwise  similar streams in
 New Brunswick, Canada,  and  reported  immigration rates  ranging from 0% to
 53% of the sampled  population,  depending on site  and season.   Average
 percent  immmigration was  about  20%.    Immigration  presents  numerous
 problems  in accurately  determining  aspects  such as yearclass strength,
growth,  production,  and mortality,  and  evaluating any  interactions with
 stream chemistry, because  information obtained at least  partly reflects
 conditions experienced  by these  fish in the  main  river drainage.   The
mouth  of  Sinclair Brook is  a known  salmon spawning area, whereas  river
 spawning  areas near Rocky  and Baker  brooks  are  located farther  from the
respective stream mouths  (K. Beland  1987, personal communication).  This
 could  explain why Rocky and Baker brooks had  variable  yearclass strength
and peaked in different years, whereas  Sinclair Brook  had  relatively
constant  yearclass  strength from  year to year.
    Figure 71  illustrates  the biomass per unit  area  represented by each
age group of Atlantic salmon at each site and  season.  Baker  Brook

-------
                                         132
                                           UJ
                                           »-•
                                           •-•
                                           O
                                            cnzo-j  u.
 a)
 >  co
•H  fl
P3  o
   •H
 01  4-1
 3  cd
 60 -rl
 n)  >
 3  0)
 &0 M
                                                                0)  PL,
                                                                CU  3
                                                                !-)  O

                                                               4-1  SO

                                                                CU  CU

                                                               •^  SP
                                                               4-1  Cd
                                                                   3
                                                                e  cu vo
                                                               -~~.  4J
                                                                SO -rl  CU
                                                               —' CO  !-J

                                                                CO   -  00
                                                                CO  fi -H
                                                                cd  O tn
                                                                g  CO
                                                                owe
                                                               •rl  CU -H
                                                               fl  CO
                                                                C
                                                                O
      ,  CU
 _ _- f>
 e    -H
 rH  "  M
 cd  co  o
 co  cu  co
    •H  cu
 O  M "^
 •H  cd
 4J  4J  CO
 a  3  cd
 cd ,0
 iH -H  a)
 4J  *•)  M
 -
-------
                                   133

contained the highest standing stock of salmon biomass at each sampling
event, and ranged from just slightly higher than in Sinclair Brook to
nearly 2.5 times as high.  Rocky Brook consistently supported the lowest
biomass of salmon, and varied little from season to season.  Age groups
contributing to standing stock of salmon differed among streams and
seasons.  Baker Brook generally supported an older population of salmon,
with the majority of biomass made up of yearling, or older, parr.  This
suggests a high rate of immigration in this stream.  Baker Brook was
also the only site supporting three-year-old parr, and occurrence of
parr of this age is unusual in Maine streams (K. Beland 1987, personal
communication).  In contrast, the majority of salmon biomass in Rocky
and Sinclair brooks consisted of underyearlings and yearlings,  The
range of standing stock biomass of salmon found in our streams (0.26 to
2,4 g/m ) was very similar to the range reported by Randall and Paim
(1982) (0.16 to 3.02 g/m ) for New Brunswick streams.
    Growth in weight of Atlantic salmon (Figure 72) was similar in Rocky
and Sinclair brooks for all four yearclasses sampled, but higher in
Baker Brook for the 1984 and 1985 yearclasses.  Baker Brook is warmer
during the growing season., by 1 to 4° C on average compared to Sinclair
Brook (Figure 73), and this may explain the higher growth rates.
However, immigration and emigration can strongly influence growth rates,
by infiltration and departure of larger or smaller than average fish,
when individually marked fish are not available.
    Total annual production of Atlantic-salmon for the 1986 annum (fall
1985 to fall 1986) ranged from 0.38 g/m  in Rocky Brook up to 1.52 g/m
in Sinclair (Table 22).  For the 1987 annum, total-salmon production
decreased in all streams, and ranged from 0.24 g/m  in Rocky Brook to
1.15 g/m  in Sinclair Brook.  The decline in production probably
resulted from the large difference in average discharge during the
growing seasons of 1986 and 1987.  July, August, and September of 1986
were unusually wet, and this maintained higher than average discharge
through the second half of the growing season.  In contrast, July,
August, and early September of 1987 were very dry, and the streams
remained at minimum baseflow through the period.  Even though production
is calculated on a per unit area basis, it cannot fully account for the
difference in volume, which geometrically increases living space for
fish and their food items, as discharge increases.
    The range of annual production at our study sites (0.24 to 1.52
g/m ) was within the lower end of the range reported by Randall and Paim
(1982) (0.3 to 5.1 g/m ) for tributaries of the Miramichi River in New
Brunswick, Canada, and somewhat higher than the range reported by Power
(1973) for Norwegian streams (0.01 to 1.3 g/m ).  Streams studied by
Randall and Paim (1982) were third order tributaries and about twice as
wide as our streams, whereas those studied in Power (1973) ranged widely
from first order streams to rivers.  Both of these studies, and ours,
found salmon production rates considerably lower than those found by Gee
et al. (1978a) in Wales, Mann (1971) in England, and Egglishaw and
Shackley (1977) in Scotland.
    Total mortality of Atlantic salmon, including losses to emigration,
is given in Table 23, for the 1986 and 1987 annums and for
underyearlings produced in each of the two growing seasons sampled.
Many of the possible mortality calculations were not included, due to
immigration between samples, very small sample sizes, and occasionally
poor depletions during sampling events.  For streams with sufficient

-------
                                                  134
                                           O
                                           e
       Boino
       io«r«r
                moinotnomo
                                               uioinoinoiooinotoo
o
e
                                        .  w
                                        ^  <
o
a
                                                                                                CO
                                                                                                a)  en
                                                                                               •rl  Q)
                                                                                                M  H
                                                                                                ca  3
                                                                                               4J  60
                                                                                                3 -H
                                                                                                   13
                                                                                                    a)
                                                                                                    a
                                                                                                w   co
                                                                                                3   cu
                                                     3  co
                                                     60 03

                                                     f-i  CU

                                                     cfl  cfl

                                                        CO
                                                     cu  S
                                                     cu  o
                                                     H  -H
                                                    ^J  -U
                                                    4J  Cfl
                                                        •H
                                                     cu  >

                                                                                               •rl
                                                                                               CU
                                                                                               CU
                                                                                               CO
                                                                                               n)
                                                                                               cu
           (0) 1HOI3M 30VU3AV
           (9)  XH9I3M 30VH3AV
                                                    S
                                                   rH
                                                    cfl
                                                    CO

                                                    o
                                                   •H
                                                                                               •M
                                                                                              
-------
   20-j
   15
o

V)
O in
UJ ' V

o
    5-
a:
LJ
a.
   -5-
                              135
   20-j
o

en
UJ
LlJ
a:
o
UJ
o
UJ
a.
   15-
10-
    5-
    0-
   -5-
   SEP85    JAN86    APR86    AUG86    JAN87    APR87    AUG87   DEC87


                                  DATE



Figure 73.  Variation in water temperature  over time in the study

            streams.  Abbreviations  are  as  described in Figure 69.

-------
                                  136

Table 22. Total annual production (g/m ) of Atlantic salmon and brook  trout
in the six study areas, for 1986 and 1987.
Site
Species
Atlantic
Salmon

Brook
Trout

Total
Salmonids

Annuraa Half mile
1986
1987
Avg
1986 2.56
1987 2.71
Avg 2.64
1986 2.56
1987 2.71
Avg 2.64
Indian Spring



0.80 1.86
0.18 0.97
0.49 1.42
0.80 1.86
0.18 0.97
0.49 1.42
Sinclair
1.52
0.78
1.15
3.65
1.85
2.75
5.17
2.63
3.90
Rocky
0.38
0.24
0.31
0.96
0.68
0.82
1.34
0.92
1.13
Baker
1.14
0.80
0.97
0.96
0.78
0.87
2.10
1.58
1.84
a
 indicated,  and the number of days in each annum varies slightly from site
 to site.

 For the 1986 annum in this stream, the total number of fish captured,
 rather than the Zippin population estimates, were used in production
 calculations,  because of poor depletion during sampling.

-------
137
O)
U
CO
tl
O
4J U
d 1H
CO r-l
r-l CO
4J 4J
< IJ
r,i
O
«H JS
Tj
. «
I*
4J AJ
23
•rl co
0 O)

>

31
CO <->
4J CO

IS
CO
CO
SJ
O> 4J
co d
i-l 1-1
d
CO 4J
4J 3
8 s
i-l 4-»

•a 3
4J O
° .0

co rt
d
ot o
S5
CO CO
EH w



i— t
CO
4J
0
4J
bo
d
iH
3'

iH


£»•»
"S
4J
i-H
g
o
r-l
CO
O
.2
•rl

jj
•H
rH
U
O
§
O
d

4J

rt
*J

^

rH
iH
CO •
O CO
J2 y.
CO O

jj
d >
IS
"2
CO O
•H 0




















01
4J
^H
CO
























,j












1
CO
pa





1?
0
S

p
iH
*jj
d
CO




S1
5
*


d
cO
iH
•o

M

0)

1
W


J
0)

<

3
73
«

10
CO
 t^ co
CS vO VO O>
f-l CO CO CO
OO CO ~»- 00 ^» — ~ —<
CO o\ ES CO S3 S5 vo
— 1 O O rH


o\ co ^^ cr\
00 f*** ^^ 00
CO t) CO CO CO
s 5 S S s o s
rH rH O rH
^^ <^ /-> /^ x-\
f» t»- f\ vO VO !>•
00 00 O> ^ t** CO
• CO CO C-J CO CO CO
C^ C-^ VO OO O^ ^ CM
h» O 
r«.
CO

CM
ON
t
o

•»
CO
S





o



1
00



EH




t^ ^^
vO vO
CO O\
O 0
rH O


CO ^^

CO 00
S §
o o
/-N
VO /-N
CO 00
~O ' 03
CM 0%
-H O


<^N
ON ^"N
CO ON
m f»
O i—i




^^ ^^
ts ss



-*
co
f-H *^»
VO SS





-H O



% g
00 CO



EH H
pa pa






-
00
ON
rH

MH
O
1
•a
MH
0
vO
00
rH
VW
O
rH
rH
CO
UH


t r^
4J 00
Svo"
U 00

fM *H

O ^M
rl O

iH
• -A

pa
d*S
li
CO
<4H
O 0
IK
U iH

rH >M
4J

i g
<1

CO ••
0) 73
iH O
U iH
S.S
CO 0-1
CO J=




d
o
•rl

a
> «

SJ r"j W

r* 3
11 M §
a) *H
ftj 1J
S d o
CO -H 4J

CO U-l OJ
O 3
• 73
00 d 0)
ON iH iH
p -H r-l
CU bOlH
rO 0) CO
0 .0 >
4J CO
(J 4J
0
O 43 d
U CO
•H >^
4J MH 4J
CO iH
bo O CO
< V (J
U^^

co cu 4t!
vo bb-~.
"oV8

















•
U
d°
•juj
p
CO
 73
<1) iH
73
bO
d w
iH CO
"o.iH
S 0
10 M
CO CO
jf J
U iH
T^EH
01

-------
                                    138

data in both  1986 and  1987  (Baker  and Sinclair  brooks),  total mortality
was generally lower in Baker Brook than  in  Sinclair Brook, and  lower  in
1987 than in  1986.  For  the only period  during  which mortality  estimates
were available for all three streams (underyearlings produced in  the
1986 growing  season),  rates were similar in Rocky  and Baker brooks and
about 27% higher in Sinclair Brook.  From this  very scant data  base,  it
seems that mortality could  be density dependent in these streams, as  has
often been reported for  stream  salmonids (e.g.,  Gee et al. 1978b).
However, sample sizes  were  small througout, except in Sinclair  Brook,
and further comparisons  of  long term mortality  trends in these  streams
cannot be made without considerably more data.
    Atlantic  salmon populations do not appear to be strongly influenced
by water chemistry in  these streams.  Sinclair  Brook, the stream  that
reached the lowest closed-cell  pH  measured  (5.07,  Figure 74), had the
highest average annual production  (Table 22).   However,  the stream with
the lowest mean closed-cell pH, Rocky Brook (mean  6.08 ± 0.40 SD), also
had the lowest average annual production.   Additionally, Sinclair Brook,
although having the highest average annual  production, also had the
highest total instantaneous mortality rate  for  every Atlantic salmon  age
group and time period  except one (Table  23).  Inspection of Figure 70
reveals few instances  where a marked decline in Atlantic salmon
abundance occured during a  time interval where  water chemistry  could  be
a factor.  One possible  instance is the  interval fall 1985 to spring
1986 for the  1984 yearclass in  Sinclair  Brook.   A  similar decline did
not occur in  Rocky Brook during this time interval, and such a  decline
did not occur in any stream for the 1985 yearclass during the interval
fall 1986 to  spring 1987.   During the interval  fall 1985 to spring
1986, the lowest measured closed-cell pH occurred  in Sinclair Brook
(Figure 74).  This was the  only period and  stream  in which the
closed—cell pH declined  below 5.3,  except for the  event in December,
1987.  During the latter event, both Sinclair and  Rocky brooks declined
below pH 5.3; however, the  effects  of this  event on salmon populations,
if any, would not be detected until spring  1988.   During the interval
fall 1985 to  spring 1986 the 1984  yearclass salmon would have been
presraolts, a  life stage  known to be sensitive to acidification
(Henriksen et al. 1984; Rosseland  and Skogheim  1984; Rosseland et al.
1986).  The maximum exchangeable Al concentration  during this time
interval was  63 Pg/1 (Figure 30),  not an especially high concentration
but one of the higher  concentrations measured in the Narraguagus
drainage streams, which  are high in DOC.  The artificial stream channel
experiments, discussed below, indicate that pH may be the major toxic
factor in these streams, and that  a pH of about  5.0 may be toxic  to this
species.  Although out-migration of smolts may  account for the decline
in Atlantic salmon abundance during this interval, acidity may also have
been a factor.

Brook Trout
    Yearclass abundance of  brook trout in the Union River tributaries
(Figure 75) varied considerably among sites.  Halfmile Brook generally
supported the highest  abundance, followed closely  by Spring Brook.
Indian Camp Brook consistently  held the  lowest  trout populations
throughout the study.   Maximum  underyearling abundance ranged from about
2.5/100 ra  in Indian Camp Brook to  45/I00m  in Halfmile Brook, and
occurred from the 1985 yearclass.  Yearclass strength was somewhat

-------
                                139
       UNION
a.
                                                  HALFMILE
                                                •+• SPRING
                                                •e INDIAN CAMP
   5.0-
  7.0
  6.9-
  6.8-
  6.7-
  6.6-
  6.5-
  6.4-
  6.3-
  6.2-
  6.1 -
  6.0-
  5.9-
  5.8-
  5.7-
  5.6-
  5.5-
  5.4-
  5.3-
  5.2-
  5.1 -
  5.0-
NARRAGUAGUS
                                           BAKER
                                        e ROCKY
                                        •«• SINCLAIR
                   T
                         T
                                T
                                     ' ' I ' ' '  ' ' I ' ' ' ' ' I ' '  ' ' ' I i ' i i i |
    OCT85  JAN86  APR86  JUL86 OCT86  JAN87   APR87  JUL87   OCT87  JAN88
                                  DATE

   Figure 74.  Variation in closed-cell  pH over time  in the study
               streams.

-------
                                                       140
o
ce
                                    o
                                    B
ooooooooo

QOoom*rncj*»
                                                  o  o  o  o o

                                                  o  o  o  o in
                                                  T  n  «  "
                                                                      o  o  o  n  o
 o
 EC

 E
        II   I
        •4O   +
2   8   S
^   2   &
   ooooooooootno
              ooi/'ON)
                                       oooooooooomo

                                       S*ooe3oio
                                                                                                  OJ
                                                                                                  0)
                                                                                                  a   •
                                                                                                  fi T3
                                                                                                  cd  CU
                                                                                                      a
                                                                                                  o  o
                                                                                                      cu
                                                                                                 ,i<3  CD

                                                                                                  o 'd
                                                                                                  M  g
                                                                                                 pq  cd
                                                                                                  M
                                                                                                 •H

-------
                                   141

lower, but relatively consistent within sites, for the remaining three
cohorts examined.  Some immigration occurred in all three study areas
during the 1986 sampling season, but the cohorts responsible differed
among streams.  In Spring Brook, yearlings from the 1985 cohort and
two-year-old fish from 1984 immigrated, while immigrants in Halfmile and
Indian Camp brooks were underyearlings produced in 1986.
    Abundance of brook trout in the Narraguagus River tributaries
(Figure 76) also varied among sites.  Sinclair Brook consistently
contained the highest density of trout, and on average, supported 10
times the number of trout per unit area that Baker Brook held.  Maximum
underyearling abundance occurred in Sinclair (32/100m ) and Rocky (8/100
m ) brooks from the 1987 cohort, whereas Baker Brook produced the
highest underyearling abundance (3.5/100 m ) in 1985.  Immigration of
trout into the study areas of these streams was minimal, or else well
balanced with emigration,.  The apparent increase in abundance between
spring and summer samples in 1986, in all three streams (see upper right
plot in Figure 76), was not due to immigration, but rather represents
recruitment to the population susceptible to the sampling gear.  Only
the larger individuals of the 1986 yearclass were vulnerable to the
sampling gear in the spring, whereas all individuals were vulnerable by
the summer sample.
    Variation in abundance of brook trout in all six study areas can at
least partially be attributed to habitat quality.  For instance, within
the Union River tributaries, Halfmile Brook had the highest cover
rating, the second highest pool quality, the highest number of pools,
and the highest density of brook trout.  Conversely, Indian Camp Brook
had the lowest cover rating, the lowest pool quality rating, and the
lowest trout abundance.  Similarly, for the Narraguagus tributaries,
Sinclair Brook was the highest in pool quality, cover rating, and brook
trout density, whereas Baker Brook had the lowest pool quality and the
lowest trout density.  Direct comparisons of trout densities in these
study areas across drainages (e.g., Sinclair vs. Halfmile brooks) should
not be made, because one drainage contains salmon and the other does
not.  Competition between these two species for living space definitely
occurs (Bley 1986), and probably also occurs for food and cover
resources (Chapman 1966), and the presence of salmon will cause a niche
shift and decrease trout densities and biomass in sympatric populations
(Bley 1986).
    Examination of standing stock biomass of brook trout per unit area
(Figure 77) indicated some differences among study areas in age
structure, and contribution of age classes to total biomass.  In
general, the largest portion of the biomass at a given site was
represented by yearling fish, although two-year-old individuals were a
significant component when they were present.  Halfmile and Sinclair
brooks were the only sites supporting three-year-old trout, as well as
large populations of underyearling, yearling, and two-year-old
individuals.  In contrast, Rocky, Indian Camp, and Spring brooks held
few if any two-year-old trout, the exception being the fall of 1987 when
some large, spawning adults immigrated into the study areas of Rocky and
Spring brooks prior to the sampling date.  Total standing stock biomass
per unit area was almost always lowest in Indian Camp Brook, while
Halfmile and Sinclair brooks were consistently higher in biomass than
the other four sites (one exception in fall 1987).

-------
                                            142
                                                                      i
                                   s
o   o  o  o   o  o  o
o   Q  o  o   in  T  n
o   in  o     oooooooooino

-   »  °     ?  8
                                   u
                                                                                   Ll
OOOOOOOOOMO
                                            O   O  O  O

                                                O
                                                n
(ZH  OOl/'ON) aONYONIlBY
                                 o  o  o  o  in  p
                                  ^a
                                                                                        •H -H
                                                                                        K  H
                                                                                            O
                                                                                        CQ  en
                                                                                        ctf

                                                                                        M  cd
                                                                                        n)
                                                                                        M  cu
                                                                                        !-<  H
                                                                                        ca  ca
                                                                                        !3
                                                                                            CO
                                                                                        a)  a
                                                                                        CU  O
                                                                                        H -H
                                                                                        43 4J
                                                                                        4-1  Ct)
                                                                                           •H
                                                                                        CU  >
                                                                                        ^3  a)
                                                                                        4-1  !-i
                                                                                        cu
                                                                                        o   .
                                                                                        fi 13
                                                                                        tfl  CU
                                                                                       r
                                                                                        Cfl  CS
                                                                                            O

                                                                                        ^  d
                                                                                        o  o
                                                                                        !-)  CO
                                                                                        4-J  n)
                                                                                            cu
                                                                                       ^  co

                                                                                        O "T3
                                                                                        M  S
                                                                                       PQ  S
                                                                                       VD
                                                                                       r-.

                                                                                        cu
                                                                                        M
                                                                                        3
                                                                                        M
                                                                                       •H

-------
                                              143
                                              UJ
                                              I—
                                              to
  X>M>(>(>MtXi!!S!^^
EKXXXXXXIS«SSSSSSSJSS!«^
                  tSJKXXXXXXXXXXXXXXXXX
                                       fcw/
                                              COZU-!
                                              co 0.0:0
                                              MZOO
                                              wo. 0:0
                                              x_iu.s
                                              COZO-I
                                                   to
                                          o:o*:>-   co
                                          COZO-J   —
                                          co 0.0:0   _i
                                              xju-r
                                                                 CO VD

                                                                  «  CU

                                                                 §  3
                                                                 CO  60
                                                                 CO -H
                                                                 CU P4
                                                                 en  .
                                                            .  *  cu
                                                             CO rQ

                                                             TO  !-4
                                                             -.  CO
                                                            TS  tO

                                                             4-1  CU
                                                             CO.  S-l
                                                              ..tO
                                                             CU
                                                            J3  CO
                                                             4-1  a
                                                                O
                                                             0 -H
                                                            •H  4-1
                                                                cO
                                                             CO -H
                                                                 O  PJ
                                                                 H  3
                                                                 4J  O
                                                                 o
                                                                 O  CU
(ZH/0) V3UY UNO
                              SSVWOI8
                                                                  3
                                                                  60
                                                                 •H
                                                                   '

-------
                                   144

    Two additional points can be made based on the data in Figure 77.
First, the influence of the high density of the 1985 yearclass in
Halfmile and Spring brooks can be seen by following these yearclasses
through the seasons, and noting the bulge of biomass represented by
underyearlings in 1985, yearlings in 1986, and two-year-olds in 1987.
This yearclass was first sampled in the fall of 1985, which indicates
that densities at fry emergence must have been extraordinarily high.
Second, in light of the earlier discussion concerning habitat quality
and competitive interactions with salmon, the biomass results confirm
the excellent habitat quality of Sinclair Brook for salmonids.  Despite
the presence of large numbers of a serious competitor species such as
the Atlantic salmon, trout biomass at this site nearly equalled or
exceeded that in Halfmile Brook, a high quality trout stream that does
not contain salmon.
    Growth in average weight of brook trout in the Union tributaries is
presented in Figure 78.  Growth rate in Halfmile Brook was consistently
lower than at the other two sites.  Trout in Spring Brook reached
weights 1.5 to 2.5 times as great as those in Halfmile Brook, by the
time the last sample for a given yearclass was completed.  Growth rate
of trout in Indian Camp Brook equalled or exceeded that observed in
Spring Brook, but the population was so short lived that Spring Brook
still produced the largest adults from each yearclass.
    A. partial explanation for higher growth rates in Spring and Indian
Camp brooks, compared to Halfmile Brook, may be that these sites
averaged 1 to 2° C warmer during the growing season (Figure 73).  Spring
Brook also seems to have substantially different water chemistry from
all other sites, and this may contribute to faster growth.  In addition,
both Spring and Indian Camp brooks support large populations of forage
species, and these species breed throughout the study areas, saturating
available habitat with fry.  It is not known when, or at what size,
brook trout in these streams add fish to their diet, but if they do, the
availability of numerous minnow fry would accelerate growth, compared to
populations that feed almost entirely on invertebrates, as in Halfmile
Brook.
    For the Narraguagus tributaries, brook trout growth rates (Figure
79) in Rocky and Sinclair brooks were nearly identical for all
yearclasses examined.  Trout in Baker Brook reached weights 2 to 3  times
as great as those in Sinclair and Rocky brooks by the time the last
sample for a yearclass was completed.  Higher average water temperature
in Baker Brook during the growing season (1 to 4  C warmer) partially
explains the difference in growth between Baker and Sinclair brooks.
But Rocky Brook is nearly as warm as Baker Brook yet growth rates were
similar to those in Sinclair Brook.  One possible explanation for this
is the difference in substrates between Rocky and Sinclair brooks.   It
is well known that gravel, rubble, and boulder substrates are better for
production of invertebrates than bedrock, because of more surface area
for colonization per unit area of streambed.  Invertebrates likely
constituted a major food resource for trout in these streams.  Rocky
Brook contained about 23% bedrock substrate and 75% of the pooled
cobbles.  Sinclair Brook contained no bedrock and over 96% of the cobble
substrates.  Thus, greater potential availability of invertebrate food
organisms in Sinclair Brook may have offset the lower average
temperature, in terms of resultant growth rates.  Another possible
explanation is that Rocky Brook had  the lowest mean closed-cell pH,

-------
                                              145
o
e
«
w

o
o:
                                                                           II
                                                                          • CO
                                                                         . CO

                                                                          Ef
                                          t»ov»oinoOTowov>ow
                                        ot»ov»oino
                                        <0v>inv  a)
                                                                                    CO  !-J
                                                                                    (U  3
                                                                                    •H  60
                                                                                    H -H
                                                                                    ttf P4
                                                                                    •U
                                                                                    si  c
                                                                                    ,a -H
                                                                                    •H
                                                                                    M T3
                                                                                    4-1  0)
                                                                               3.   3
                                                                                     s
                                                                                     o
                                                                                     •H
                                                                                     a
                                                                                     CD
                                                                                     
-------
                                                    146
                                             w


                                             u

                                             u
 o o o o o
 n CM — o t»
                   oooooooo
u
I
o

u
    Soooooooooooo
    BK-

           (0) 1HOI3M 30YU3AY
    Sqoooooeoooooo
  _n»o«>ai<.i0invnM>-

           (0) 1H9I3M 30Va3AV
                                                      CO
                                                      CO
                                                     •H

                                                      to  a
                                                      4J  -rl


                                                     •H  CU
                                                      )-l  rQ
                                                      •U  -H

                                                      S-J  O
                                                      CU  CO
                                                      >  cu
                                                         CO
                                                      CO  CO

                                                      60 CO
                                                      tO  M
                                                      3  CO
                                                      60
                                                      tO  CO
                                                                                                  a) -H
                                                                                                  cu  >
                                                                                                  ^  cu
                                                                                                  Jd  M
                                                                                                  +J ,0

                                                                                                  (U ^
                                                                                                  C
                                                                                                  •H
 60 O.
•rt  CO
 CU  CJ

    fi
 a  o
•H  CO
    cO
 cu  cu
 ca  ca
 to
 to  T3  O
 M  ti  f^
 O  CO

•H  to  C
    to  cO
4J  tfl
 3  rH  CTi
 O  CJ  vo
 !-<
U  M  CO
    CO  CO
    cu  •
                                                                                                 ^  cu   n
                                                                                                  O  >">  3
                                                                                                  O      60
                                                                                                  M  >, -H
                                                                                                 r--

                                                                                                  cu
 60
•H

-------
                                    147
which may have depressed  brook trout  growth.   Rocky Brook also  had the
lowest  production of Atlantic  salmon.
    Total annual production  of brook  trout  (Table  21)  in 1986 ranged
from 0.8 g/m  in Indian Camp Brook  to  3.65  g/m  in Sinclair Brook.
Production decreased moderately (Baker and  Rocky brooks) to severely
(Sinclair, Spring, and Indian  Camp  brooks)  in  1987,  except in Halfmile
Brook,  where  production increased slightly  from 198& to 1987.   Average
annual  production for the  two?years of study ranged from 0.49 g/m  in
Indian  Camp Brook to 2.75  g/m   in Sinclair  Brook.   Halfmile Brook was
very similar  to Sinclair Brook in average trout production (2.64  g/m  ).
However, Sinclair Brook also contained salmon,  and average total
salmonid biomass in this  stream far exceeded that  in any of the other
streams.
    The general decline in trout production from 1986  to 1987,  similar
to that found for Atlantic salmon,  may have resulted in part from lower
flow rates during the growing  season  in 1987,  thus limiting habitat for
both predator and prey.  However, the  floodievent  of April,  1987  could
also have contributed to lower production,  through direct physical
trauma or forced emigration  of existing trout,  and destruction  of redds,
Waters  (1983) found that major flood events caused production to  decline
the following year by about  50% in  a Minnesota  trout stream, compared to
years without such events,,   The most likely reason that production in
Halfmile Brook was nearly  equal in  both 1986 and; 1987,  while declining
in the other  five streams, is  the influence of  the extremely strong 1985
yearclass in  this stream.  These fish  were  present in  large numbers as
one-year-olds in fall of 1986  and two-year-olds in 1987.   This  factor
was evident when the individual yearclass contributions to annual
production were examined.  Except for  Halfmile  and Sinclair brooks, few
two-year-old  trout were present in  these streams,  thus  this contribution
to 1987 production would not be available in the other  four streams.
    Waters (1977), in a review of secondary production  literature,
stated that in most small,, softwater streams, annual production of brook
trout ranged  from 1.5 to 5.0 g/m ,  over the native range of the species.
The range of production observed in our six study  areas (0.18 to  3.65
g/m ) is within the lower  end  of the published  range for this species.
However, our estimates are comparable  to other  streams  of similar
physical and chemical characteristics.  For instance,  total  annual brook
trout production was reported  at 0.54  to 1.93 g/m   for  small, low
conductivity, low alkalinity streams in southwest  Virginia (Neves and
Pardue 1983), 0.3 to 4.2 g/m2  in Virginia and West Virginia (Lucchetti
and Pardue 19,82), 1.5 to 6.6 g/m  in Quebec (O'Connor and  Power 1986),
and 1.74 g/m  in Tennessee (Whitworth  and Strange  1983).  Whitworth and
Strange (1983) also reported that brook trout production in the same
stream decreased to 1.26 g/ra   in a  section  where rainbow trout  were
sympatric with brook trout.  The rainbow trout  represents  a  competitor
to brook trout similar in effect to Atlantic salmon.  In contrast  to
these similarities of our  production rates  to other  studies, Hunt  (1974)
reported a range in annual brook trout  production of 10.6  to 12.9  g/m
in Lawrence Creek,  a larger,  high conductivity, high alkalinity stream
in Wisconsin.
    Within the Union tributaries, brook trout total mortality in
Halfmile and Indian Camp brooks of  the  1985 yearclass in  1986 was
similar, and about  half the rate observed in Spring Brook  (Table  23).
However, for the 1984 cohort in 1986,  Spring Brook fish experienced

-------
                                   148

considerably lower mortality than those in Halfmile Brook, possibly
because Halfmile Brook receives some fishing pressure (and this
yearclass would be vulnerable) whereas Spring Brook receives little, if
any.  Within the Narraguagus tributaries, mortality of the 1985 cohort
during 1986 was lower in Sinclair Brook than in Baker and Rocky brooks,
but the rate for one-year-olds (1984 cohort) was similar among all three
streams.  In general, mortality during the 1987 annum was lower than in
1986 for all three yearclasses examined.
    Brook trout populations do not appear to be related to acidity in
these streams.  There was no apparent relation between brook trout
production (Table 22) or mortality (Table 23) to stream closed-cell pH
(Figure 74).  In fact, populations in Sinclair Brook, one of the more
acidic streams, had the highest average production and moderate
mortality.  Mortality was generally highest in Spring Brook, the least
acidic stream.  However, growth rate was lower than expected in Rocky
Brook, the stream with the lowest mean closed-cell pH.  This is not
surprising inasmuch as brook trout is a relatively acid-tolerant species
(Grande et al. 1978, Rosseland and Skogheim 1984), and these streams
were not chronically acidic.

Forage Species
    Blacknose dace were captured in all study areas and seasons except
Sinclair Brook, and in nearly all cases constituted the majority of
forage species standing stock biomass (Figure 80).  Creek chubs were
also commonly encountered in Rocky, Indian Camp, and Spring brooks, and
in most cases where they occurred were second in biomass to blacknose
dace.  White suckers contributed only a small portion of biomass in most
of  the study areas, but in Rocky Brook in the spring 1986 sample, they
were the most abundant non-salmonid present.  All other forage species
combined (miscellaneous in Figure 80) generally contributed less than
20% to the  total standing stock.  In Spring and Indian Camp brooks, most
of  the miscellaneous component was represented by finescale dace.  In
Baker Brook in the summer of  1986, the large miscellaneous component
resulted from two moderate size chain pickerel, representing a transient
predator rather than a forage species.
    For every sample conducted, either  Indian Camp Brook or Spring Brook
had the highest total standing stock biomass of forage fish, generally  2
to  5 times  the amount in Baker, Rocky, and Halfmile brooks.  Both Indian
Camp and Spring brooks supported 2 to 3  times the 1986 to  1987 average
forage biomass during the fall of 1985.  After the  1985 sample, levels
of  forage in both streams decreased and  then remained relatively
consistent  throughout the remainder of  the  study.  A decline in
abundance of both blacknose  dace and creek  chub occurred  between  1985
and 1986 samples.  Close examination of  the  three 1986 samples indicated
that total  biomass  in Indian Camp Brook  continued to decline through  the
summer  and  fall, whereas biomass in Spring  Brook  increased over  the  same
period.  Changes  in  abundance and proportion of blacknose  dace appeared
to  be  the primary component  involved.   In contrast  to  1986,  1987  samples
showed  very stable  populations in summer  and  fall in both streams.  Mean
discharge for  the months of  June, July,  August, and^eptember was more
than 2  times  greater  in  1986 (Indian  Camp =  0.194 m /s;  Spring =  0.054
ra /s)  than  in  1987  (0.096  and 0.026 m  /s, respectively).   If only
quantity of habitat  was  limiting  abundance  of  forage,  we  would expect
the biomass  versus  time  relationship observed  in  Spring  Brook.

-------
                                       149
                                                              a)
                                                              M
                                                              cd
                                                              !-i
                                                              O
              mm//////////////
                                     E
                                         caotae
                                         X-IU.C
                                         x_iu.a:
                                         coo.o:o
                                                  _i
                                         —zoo  ^
                                         X-IU.E  "•
                                         100.0:0   o:
                                        010.0:0
         z  «
—zoo  5  o!
         o.
         (A
X-JU.Z
                                        co 0.0:0

                                        — ZQO

                                        x_iu.r
(ztvo) vnav UNO y3d  ssvnoia
                                                              o
                                                              C
                         O
                     CO  CU

                     ci  co
                     cu
                     5-1 13
                     4J  g
                     CO  Cfl
                     ^CU  CU CT\
                     S 4-1 VD
                     4J -H
                     CO  CO  CU

                     X  «  3
                     •H  C3  60
                     CO  O -H
                                                                 0)
                                                                 CO
                     o ,n  a)

                     CU  •> -H

                     •H S"  O
                     m o  co
                        o  a)

                     •H cq
                            CO
                     W 5-1  CS
                     CO -H
                     cd cd  cu
 O  u  cd
•H  (3
,Q -H  CO
   C/2  II]
^3     O
 CO  pj -H
•H -H  4J
<4-(     Cd
    CO -H
 CU  CU  >
 60 -H  CU
 cd  O  5-1
 !-l  CU fi
                                                                 CO
                                                                   ,0
                                                                   
-------
                                   150

    No forage fish species were ever collected in Sinclair Brook, the
stream having the lowest measured closed-cell pH values, although not
the lowest mean.  Although forage fish species vary in tolerance to pH,
many species of cyprinids are quite sensitive to acidity, and are
frequently absent from acidic lakes (Harvey 1980, Wiener 1983, Langdon
1983; 1984, Haines et al. 1986).  Although absence of forage species
from Sinclair Brook may be related to habitat suitability, acidity may
also be a factor.  Although closed-cell pH did not decline below 5.6 in
Indian Camp Brook during this interval (Figure 74), it was the most
acidic of the Union drainage streams.  Further, exchangeable Al
concentrations in this stream were quite high during this period, the
highest concentration reaching 240 yg/1 (Figure 30).  During 1987, when
forage fish biomass in Indian Camp Brook was stable, exchangeable Al
concentrations did not exceed 125 yg/1.  Johnson et al. (1987) found
blacknose dace to be the most sensitive to acidity of four fish species
tested.  In one of their experiments, blacknose dace in the egg to
feeding fry stage were exposed in cages to a lake outlet where pH ranged
from 5.84 to 5.87 and exchangeable Al from 130 to 250 ug/1.  Survival
was only 25% over 168 hr.  The conditions in Indian Camp Brook in 1986
(pH ca. 5.6, exchangeable Al ca. 240 yg/1) should have been highly toxic
to blacknose dace.

Fecundity and Trace Metals
    Collections of female brook  trout for fecundity analysis were
insufficient to meet project objectives.  The  reason  for  the difficulty
of capture of ripe females  in these  streams  is unknown.  The  few data
obtained  (Table 24) were  insufficient for any  analysis.  We had  planned
to use the fish collected for fecundity analysis  for  trace metal
analysis, in order to minimize  removal of fish from  the  streams  that
might affect population  studies.  Because of the  poor  collections of
females in 1985 and  1986, trace  metal analyses were not  attempted.
Inasmuch  as differences  in  stream acidity were not as  great  as
anticipated, based on  base-flow ANC  data,  it is  likely that  trace metal
content would not differ  greatly among  these fish populations.

In Situ Salmonid  Egg Exposures

Salmonid  Egg  Survival
     Survival  of brook  trout eggs in  the  artificial redds was
consistently  poor.   Average percent  eye-up  ranged from only 3%  in Baker
Brook to  25%  in Rocky  Brook.   Average percent  hatching was  1  to  2%,  and
no emergent  fry were captured  from any trout redd.   Probable factors
contributing  to poor survival  included:
     1.   Prolonged freezing  of  portions  of some of the redds.   Trout
redds were located  in somewhat  shallower  areas and slower
currents  than salmon redds  and therefore were more prone to
 freezing.
     2.   An extremely high sand content in the egg and containment bags
         after January, deposited by runoff from heavy rain and snowmelt
  in late January.  The redd gravel was  virtually devoid of sand
 at planting time.  The sand accumulation did not appear to be as
 severe in the salmon redds, probably because of location in
 swifter current and because of larger gravel used for the redds.

-------
                                   151

Table 24.  Fecundity data for adult female brook trout from four of the
six streams.
Stream
Halfmile


Sinclair



Rocky


Baker

Date
9/4/85
9/4/85
9/4/85
10/24/85
10/24/85
10/14/87
10/14/87
10/24/85
10/24/85
10/24/85
10/12/87
10/12/87
Length
(mm)
117
210
221
108
116
125
145
136
137
143
159
183
Weight
(g)
18.2
111.6
122.9
11.0
14.0
18.2
30.9
24.0
24.0
30.0
37.7
68.5
No. Mature Ova
45
279
198
64
66
77
96
98
126
88
134
207
No. Ova per
g Body Weight
2.5
2.5
1.6
5.8
4.7
4.2
3.1
4.1.
5.2
2.9
3.6
3.0













-------
                                   152

    3.  Long transportation time (3 to 4 hours) from the hatchery to the
        streams, forcing the handling of green eggs too advanced (up to
        28 hours) in embryonic development.
    4.  Failure to disinfect eggs at the hatchery prior to
        transportation, resulting in a high rate of egg suffocation by
        fungal envelopment.
    Although continuous measurements of pH of interstitial water were
not made, frequent point samples gave no indication that interstitial pH
was a contributing factor to poor survival.  The lowest interstitial pH
recorded in a trout redd was 5.65 in one of the Baker Brook redds on 29
April.  Most other values (N = 25) fell into the pH range of 5.9 to 6.0,
and differed little from the stream water pH.  Dissolved oxygen in the
redds was at or near saturation at all times it was measured (N = 26).
    The Atlantic salmon redds produced more definitive results.  Percent
survival to eye-up and percent hatching (Table 25) varied widely among
the three streams.  Percent emergence from individual redds (N = 6) also
ranged widely from 0.25% to 12.0%, but average emergence (two redds per
stream) was very similar among streams and ranged from 5.1% to 6.4%.
Lacroix (1985b) found a hatching success rate of 78% for Atlantic salmon
eggs in a Nova Scotia stream with an interstitial pH above 4.9, and
MacKenzie and Moring (1988) reported an average hatching success of 74%
in a stream of pH 5.6.  Our results are much lower.  However, survival
to emergence in our streams was apparently normal.  MacKenzie and Moring
(1988) reported survival to emergence ranging  from 0 to 7%, averaging
1.7%, and Gustafson-Marjanen (1982) found survival rates of 0.8 to 6.7%
in three redds.  Variation in time period of emergence among streams
(Table 25) was primarily the result of differences in spring time water
temperature.  Baker Brook was warmer throughout the period, ranging from
1 to 5° C higher than Sinclair Brook, which on average was the coldest
stream (see Figure 73).  Slightly later planting dates in Rocky and
Sinclair brooks also contributed to later emergence in those two
streams.  Interstitial pH did not appear to be a significant factor in
these results.  The lowest interstitial pH recorded in salmon redds was
5.73  in one of  the Sinclair redds on April 3.  Most other values  (N =
28) fell into the range of 5.75 to 6.25, and differed little from  the
stream water pH.  Dissolved oxygen remained at or near saturation  in all
samples measured (N ~ 29).

In Situ Salmon  Smolt Exposures

1986  Smolt Survival
    Of 577 Atlantic salmon smolts stocked  in cages in five of the  six
study streams,  263 (45.5%) were lost  to a  variety of  sources by the
termination of  the study.  Of these  263, 93  (35.4%) were due to
vandalism, 93 (35.4%) were due  to methodology  problems,  including
improper cage location and failure to  properly acclimate  fish, 56
(21.3%)  escaped  from ruptured cage nets (torn  by debris  or predators),
and only 21 (8.0%) resulted  from unknown or  indeterminable causes.
Water sample  analyses  and  pH/temperature/conductance monitor records
indicate  that stream pH was  probably not a contributing  factor  to  these
mortalities.  However, we  feel  that  results  obtained were  somewhat
inconclusive  because of the  lack of  significant  precipitation  and  runoff
events,  other than  the  spring  snowmelt, during the  test  period.   In
addition, the snowmelt  and  ice-out on  the  streams occurred  so  rapidly,

-------
                           153

Table  25.  Percent  survival  to  eye-up,  hatching,  and
emergence  stages  for Atlantic salmon  eggs  planted in
artificially constructed  redds  on Baker, Rocky, and
Sinclair Brooks.
Date(s)
4/3/86
5/6/86
5/13-6/10/86
5/22-6/17/86
6/2-6/30/86
Stage
Eyed-up
Hatched
Emerged
Emerged
Emerged
Percent Survival3
Baker Rocky Sinclair
61 19 19
48b 7 15C
5.1
6.1
6.4
A f
 Average of two redds per stream.
cPlus 1% live but unhatched eggs at sampling time.
 Plus 3% live but unhatched eggs at sampling time.

-------
                                   154

over a period of only four days, that we were unable to deploy all cages
in time to expose the smolts to the full influence of the runoff.
    Feeding by caged smolts on hatchery pellets was at best sporadic.
Only rarely did a large number of fish in any cage show a feeding
response.  The smolts remained very skittish throughout the test period,
but variation of the feeding technique to prevent startling the fish did
not seem to help.  Significant dietary supplement from natural sources
seemed unlikely, based on stomach contents of fish used for final
lengths and weights.  This lack of feeding was reflected in the
length-weight data for Sinclair Brook smolts.  At stocking time, the
smolts averaged 198.2 mm and 77.6 g.  After two months in the cages,
they averaged 203.9 mm but only 69.4 g.  Average condition factor
dropped from 0.99 initially to 0.80 at termination.  Smolts in the other
streams showed similar changes in length, weight, and condition over the
test period.

1987 Smolt Survival and Blood Chemistry
    Following the April 8 stocking, the water levels in both streams
dropped continuously.  As a result, during the night of April 9 to 10,
one of the cages in Sinclair Brook dropped to the bottom of the stream.
Part of the holding net became caught between one of the lateral current
deflectors and the stream bottom, trapping about 30 smolts and killing
22.  On the following day, the two cages  in Sinclair Brook were
carefully moved  to nearby deeper  spots  to prevent a recurrence.
    Two minor precipitation events occurred  towards the end of the
stream cage experiment, on April  29  to  30 and May 5 to  6.  The response
in  stream discharge and chemistry was minimal  (Figure 81).  Stream  pH
only declined to 6.32 in Halfmile Brook and  6.00  in Sinclair  Brook.
Exchangeable Al  never exceeded  30 pg/1  in either  stream.  The minor
changes  in  stream  chemistry during  smolt  exposure resulted  in only minor
changes  in blood chemistry.   In Halfmile  Brook,  smolts  had  an average
plasma sodium content of  127  meq/1  (range 121  to  133),  and  in Sinclair
Brook  an  average of  126  (range  117  to 134).   The  differences  were not
significant  between  streams nor over time.   Similarly,  mean  plasma  Cl
was 123 meq/1  (range  107  to  133)  in Halfmile Brook  and  127  meq/1 (range
 112 to 138)  in  Sinclair  Brook,  and  mean hematocrit  was  40%  (range  37 to
43) in Halfmile Brook and  39% (range 36 to  44)  in Sinclair  Brook,  and
were  not different between streams  or over  time.   Plasma Na levels  were
 somewhat lower  than  values  reported by Byrne et al.  (1972)  and Johnston
et al.  (1984).   Except  for May 5, plasma Cl  levels  were very similar to
values reported by Houston and Threadgold (1963)  and  Rosseland and
 Skogheim (1984).

Artificial  Stream Channel  Experiments

 Smolt Blood Chemistry,  Growth,  and Mortality
     Following the introduction of fish, the pH in the acid only and acid
 + Al channels was lowered over a two hour period, from 6.35 to 5.30 and
 5.55,  respectively.   For the next 12 days,  the pH fluctuated (Figure
 82), for reasons described earlier.  Modifications made to the delivery
 system on May 16 reduced but did not eliminate the variability.   On May
 22, the top and middle bottles of the delivery system were wrapped in
 insulation to dampen the daily fluctuations in temperature of the

-------
                                  155
 7.0

 6.5-

 6.0

 5.5

 5.0
  60-

N
  50-
 o
 UJ
 o 40-
   30
   1.4
y-^
a 1.2
§ i.o-
5 0.8-
S 0.6
oz
^ 0.4-
w 0.2-
Q 0.0-
   14
   12-
 ^ 10-
 S  8-
 UJ
 •-  4
    2
    0-1
                                                   S HALFMILE
                                                   * SINCLAIR
                                                            B
                                              •tr"
    APRILS   APRIL10  APRIL15  APRIL20  APRIL25  APRIL30   MAYS     MAY10
                              DATE  (1987)
 Figure 81.  Stream chemistry  during the April-May 1987 stream cage
             experiment with Atlantic salmon  smolts.

-------
                         156
^ ISO-)
< 140
^ 130
~ 120-
Z110
iioo
s  90
 -  80
  120
"110
=jioo
3 90
a.
  80
   60'-

S 55-

- 50-
o:
u
£ 45 H
   -lo-
   ss
  7.5-
 tu 7.0-
 26.5

 a ....
 ?5*0-
 ^4.5-
  4.0-

 2500
 ^400
 j 300

 o200
 o 100
l-*'t>"i.
v^J^^viA
              \
 £ APRIL30  HAYS   HAY 10   HAY 15   HAY20  HAY25   MAY30   JUNE4
                        DATE  (1987)
 Figure 82.   Atlantic salmon smolt  blood characteristics and
             water pH and exchangeable Al during  the May 1987
             artificial stream channel experiment.  Square and
             solid line is control  channel mean,  diamond and
             dotted line is  acid  channel mean,  and triangle
             and dashed line is acid  + Al channel mean.  Vertical
             bars are ranges.   Arrows indicate  fish mortality
             (and number) in the  acid + Al channel.  Blackened
             symbols indicate significant difference (see text).

-------
                                    157

solutions inside the bottles, and  the pH levels  in  the  treatment were
reasonably stable thereafter.
    Except for June 1, the mean daily pH in  the  treatment  channels
ranged between 6.0 and 4.9, whereas  the control  channels ranged from 6.2
to 6.9  (Figure 82, Table 26).  The  pH in all channels  decreased
significantly on the last day of the experiment  because of a  decrease  in
stream pH caused by heavy rainfall  on the previous  night.
    For the duration of the experiment, exchangeable Al in the control
and acid channels ranged from 0 pg/1 to 91 pg/1  (mean = 24 Ug/1; N = 35,
Figure 82, Table 26).  These values  represent normal background
concentrations of exchangeable Al  in Baker Brook.   In the  acid + Al
channel, however, exchangeable Al  was increased  steadily,  from 23 ug/1
to 369 yg/1 (mean = 158 ug/1; N =  20).  For  the  first week,
concentrations were below 100 pg/1.  Dosing  rate was then  increased, and
on May 20 concentrations reached the target  of 200  ug/1.   During the
last week, exchangeable Al remained  above 200 Pg/1, and exceeded 300
yg/1 on May 26 and June 1.             ,
    Water temperature ranged from  7.5° C to  19°  C during the  course  of
the experiment (Table 26), and was  similar in all channels.   Dissolved
oxygen concentrations ranged from  8.1 to 11.0 mg/1, and Ca from 105  to
135 ueq/1 (Table 26).  Concentrations were very  similar among the
channels for the duration of the experiment.
    The night after the smolts were  introduced into the channels,
approximately 95 fish jumped out.   Surviving fish (35)  were returned to
the channels in the morning, and 24  additional fish held in reserve  were
added.  The number of smolts in each compartment were counted and the
fish redistributed evenly, resulting in 90 fish  in  the  control channels
and 88 each in the treatment channels.  Screens  were installed to
prevent any recurrence.  During the  next two weeks, 8 smolts  died in the
control channels, and 4 smolts died  in the acid  channels,   Most fish
that had jumped out and survived were returned to the control channels.
After two weeks, mortality in the  control and acid  channels ceased.  No
fish mortality that could specifically be ascribed  to acid or acid + Al
stress was observed until the last week of the experiment.
    With the exception of the first  and last sampling day  (May 8 and
June 1), the average plasma Na and Cl (Hh SE) were 134 meq/1 (;+ 2.0)  and
123 meq/1 (+ 1.2) in the control channels, 136 meq/1 (+ 2.0)  and 125
meq/1 (+_ 1.2) in the acid channels,  and 135  meq/1 (+_ 2.4)  and 125 meq/1
(+ 2.0) in the acid + Al channels.   Plasma Na was very  similar to that
of unstressed Atlantic salmon (Byrne et. al.  1972; Johnston et al. 1984).
Plasma Cl was somewhat lower than values for unstressed fish  as reported
by Byrne et al. (1972) and Johnston  et al. (1984),  but  very similar  to
values reported by Houston and Threadgold (1963) and Rosseland and
Skogheim (1984).  The low plasma Na  and Cl concentrations  on  May 8
(Figure 82) probably reflect handling stress (Soivio and Virtanen 1984;
Rosseland et al. 1986).  On the last day of  the  experiment, mean plasma
Na and Cl of the acid + Al channel  smolts (94 and 90 meq/1,
respectively) were significantly lower than  controls (139  and 125 meq/1,
respectively).
    Hematocrit values were significantly higher  (23% and 29%,
respectively) in the acid and acid + Al channel  smolts  compared to
controls on the last day of the experiment.  With the exception of this
date, average hematocrit values were 44% in  the  control and acid channel

-------




a
u
4J
%
CO
en
rH

»
fl)
1

0
vH
V>
flj
r-5
1
U
£

u
1
•g
(4
M
•J

•O

^j
8

0)
03

O
CO
• o
v<
ia
vl

4J •
• g
U <0
•H B
W *H
id M
CO (U
0.
• $
vO
*"«!
CJ d
tO. tO
W .C
H 0

a


1
(0 CJ
3 rt
<:a


is


w '
CO




i-l 0)
0) bO
11
g
13
•H
o d
«U a

*



a
CO



i
Ml
d CJ
d bo
O Co
r-J
O
4J
d d
O f$
o 





53


Q)
r-4
rO
10
•H
t.
>
in
CO
o

d
in
vo
vO
co
5
in

CM
^
m
CO
o
d


in
VO

VO
VO
•

co
m
in
CM

vo
CM
0
f
o


CM
o

r-4
CM
vo



vO
•
vO



*3>
CO





ft

in

d
7.5-19.0
r^
CO
r-l

VO
CO


in
d


en

00
r-i
in


CM
CO
m
CO



in
*
o


o

o\
•— i
m





•*
CO
r-4



^t1
CO





g.
§ CJ
H Zf

CM

O
o
rH
r-l
tl
t
Sf
O\

CM



r-l
d


o

,_(
T
o
co


sj-
•
CM



r-4
•
O


o

r-4
r-l
O
•
co




r-l
W



CM




-, ^N
QJ i^|
II
j — i

vO
r-l
23-369

So

o
CM



co




r-4
T



a
co
rH





CO




o
o






0
CM



vO
r-l


y-J
** ^
• H
11
O
CO
*
CM
in
NO
•
CM
CT\
CO

o\



rx
rH


VO

r-4
28.7-4


vO
•
CO
0.



•—I

«-H


fm^
9
*sf
\Q
t


en
-32.5-63.0
VO
*
vO
CM

en



co
co


CO
•

00
•


CM
•
O
CO
en



sr

co

o
•
CO
vo
rH
VO
9
CO
co



co
m
CM
rH


en




P
^^
O V

vO

CM
O
d
o
rH
CO
•
rH
00
CO
CO
CO

r^



en
rH


CM

CM
I
sr


CM
CO
co
en



ix.
9
CM


f^,.
t
tn
Z
CO




CO
co
co •



en




P
^^
a5

m

co
CM
m
co
r-4
«
r>4
r-l
•
sr

i>.



r-4
CO

CM

in
CO
rH
CO
VO
O
rH


CO
*
CM
rH
rH
CTl



CM

CO

f^
•
co
CO
£
«*
o
rH


00
rH
r*4
rH


O\




Q
^^
a

CM

2
o
•
s
I
vO
o
vO
K

o.



rH
in

o
•
CO
CO
•
vO
o
rH


*4*
•
^



O

CM


O
t
0
VO
o
co
co



oo
CO



^




Q
^^
cr
V
33.

0

rH
O
9
co
o
d
m
cr»
•
CO
m

r>.



Oi
d


o

CO
V
o
o
m


rH
• •
« «
1
«
•{•_

o>

o o
"^
T)
o u
• 4J
en w
in 3
I 1-1
• n)
rH
in ' Jj
§

V
co o
• d
in u
9
3
•a
en d
q
u
u
•H
P ' -H
^^ o
sfd) CU
o a w
co O 
-------
                                   159

smolts, and 46% in the acid + Al channel smolts.   These values are
similar to those reported by Lacroix (1985a) for Atlantic salmon parr.
    Elevated hematocrits have been shown to result from acid or acid +
Al exposure (Dively et al. 1977; Milligan and Wood 1982; Fraser and
Harvey 1984; Giles et al. 1984; Stuart and Morris 1985; Witters 1986),
and is thought to be caused by erythrocyte swelling, reduction in plasma
volume, mobilization of erythrocytes from the spleen, or a combination
of these factors.
    Despite the absence of significant mortality in the acid channels,
the significant reduction in plasma Na and Cl and increase in hematocrit
in these fish on June 1 suggests sublethal ionoregulatory stress
occurred.  In the acid + Al channels, the increased mortality, greater
reduction in plasma Na and Cl, and larger increase in hematocrit as
compared to acid channel fish indicates more severe stress as a result
of Al toxicity.
    Mean pH levels above 5.0 have been shown not to affect plasma Na and
Cl in several salmonid species (Edwards and Hjeldness 1977; Leivestad et
al. 1980, Giles et al. 1984; Johnston et al. 1984).  However,
mortalities have been reported for Atlantic salmon smolts in water at pH
5.0  to 5.1 with exchangeable Al concentrations of 50  to 130 ug/1
(Henriksen et al. 1984; Rosseland and Skogheim 1984; Skogheim and
Rosseland 1986).   In our study, mortalities only occurred when pH was
below 5.5 and exchangeable Al exceeded 200 ug/1.   One possible
explanation is that Ca concentrations in our study were higher than
those reported by Henriksen et al. (1984) and Skogheim and Rosseland
(1986).  Calcium concentrations of 100 ueq/1 have been shown to
dramatically improve survival in brown trout fry exposed to acid + Al
(Brown 1983),  and probably improved smolt survival in our channels.
Although the analytical methods for determination of exchangeable Al
were similar in all studies, this is an operationally defined
separation.  It is possible that the actual Al species present differed
in our study.
    On several occasions towards the end of the experiment, the water
chemistry of the treatment channels became severe enough to alter the
behavior of the smolts.  On May 26, when the mean pH was 4.97 (range:
4.82 to 5.15)  and exchangeable Al was 369 ug/1 in the acid + Al
channels,  the smolts appeared lethargic.  Most were on the bottom of
the channel, but a few were swimming just underneath the surface of the
water, bumping into the sides of the channel.  All fish were exhibiting
gaping of the mouth and rapid opercular contraction, best characterized
as a coughing response.  Other instances of lethargy and coughing were
observed in fish in the acid + Al channels on May 28 and 29,  and June 1,
and some of these fish died.  Such behavior was only observed once in
the acid only channels, when pH declined to 4.6,  but no mortalities
occurred there.
    Smolt behavior appeared to be a more sensitive measure of stress
from exposure to acid or acid + Al than was blood chemistry or
hematocrit.  The coughing behavior was reversible,  and rapidly ceased
when concentrations of acid, Al, or both decreased.  This behavior has
been reported previously (Sharpe et al.,  1983;  Neville 1985;  Youson and
Neville 1987)  and may be the result of severe irritation to the gill
epithelium by acid or Al (Youson and Neville 1987).  Lethargy and
disorientation of fish were reported by Leivestad et al. 1976, Giles et
al. 1984, Henriksen et al. 1984, and Rosseland and Skogheim 1984,  and

-------
                                   160

are a sign of severe acid or acid + Al stress.  These behavioral
patterns were also rapidly reversed when conditions improved.
    The stress and mortality patterns observed during the last week of
the experiment suggest that there was a progressive response by smolts
to low pH and high exchangeable Al.  For five days prior to May 25 the
water chemistry in the acid + Al channels was not stressful to the
smolts (pH >5.5 and exchangeable Al <210 Ug/1), and as a result the
sraolts were able to withstand the May 25 to 26 episode.  However, prior
to second episode, (May 28 to 29) fish only had one day to recover from
the stress from the first.  Therefore, even though the pH and
exchangeable Al levels were no more severe, more fish died during the
second event than during the first.  A similar pattern has been reported
for Atlantic salmon parr (Henriksen et al. 1984).

Smolt Gill Morphology
  Sampling Design
    Nested analysis of variance of chloride cell counts showed that
variation between individuals was small compared to variation within
individuals on each date (Table 27).  Results from mucous cell counts
were similar, the within slide variation accounting for more than half
of the variance.  The amount of structural variation that can occur in
certain tissues may be highly constrained by functional requirements
(Egginton 1988).  Therefore, variation in chloride cell numbers was
small between individuals because individuals of the same size required
about the same number of chloride cells to maintain ionic homeostasis.
Variation within individuals depends on the exact region of the gill
examined, and depends on the filament selected, the sectioning angle,
and other variables.  Thus, for this tissue, a sampling strategy of
examining a relatively large number of preparations from a relatively
small number of individuals was most efficient.

  Chloride Cell Numbers
    In the May 22 sample, fish held in acidified water had more gill
chloride cells (total number) than those held in acidified water with Al
added, or controls (Table 28).  Gill chloride cell numbers did not
differ between fish exposed to Al at low pH and controls.  In the May 29
sample, fish from the acid only treatment had the greatest total number
of chloride cells, followed by those exposed to both acid and Al.
Control fish had the lowest number of chloride cells.  Total chloride
cell number did not change between May 22 and May 29 in the fish exposed
to acid or acid + Al.  However, total chloride cell number did decrease
significantly in the control fish during this period.
    Numbers of chloride cells on primary lamellar epithelia and
secondary lamellar epithelia responded differently to the treatments
(Table 28).  On May 22, primary lamellar chloride cells were most
numerous in the fish exposed to acid + Al.  By May 29, numbers of the
cells had increased significantly in fish exposed to acid only, so that
these fish had as many primary lamellar chloride cells as those exposed
to both acid and Al.  Control fish always had the fewest primary
lamellar chloride cells, and their numbers did not change over time.
    The number of secondary lamellar chloride cells was greatest in the
fish exposed to acid alone (Table 28).  Fish held in acidic, Al-enriched
water did not have more secondary lamellar chloride cells than controls.

-------
                                    161

Table 27.  Nested analyses of variance of chloride cell counts in Atlantic
salmon smolts.
Date
May 22





May 29





Level
Total
Treatment
Individual
Filament
Slide
Within Slides
Total
Treatment
Individual
Filament
Slide
Within Slides
df
179
~ 2
12
15
30
120
179
2
12
15
30
120
Mean Sq.
50.78
289.11
174.71
96.24
33.08
33.17
40.90
886.71 ,
101.29
43.56
17.17
26.37
Variance Comp.
52.14
1.91
6.54
10.53
-0.30
33.17
48.66
13.09
4.81
4.40
-3.06
26.37
Percent
100
3.66
12.54
20.19
0
63.61
100
26.90
9.88
9.04
0
54.18

-------
                                    162

Table 28.  Effects of low pH and aluminum on numbers of primary lamellar,
secondary lamellar and total chloride cells in Atlantic salmon.  Data are
given as mean number of chloride cells per five interlamellar spaces ±
standard error.  Within each date, means with the same superscript are not
significantly different.  N = 60 for each.
   No. Live
 Chloride Cells
 Date
Acid
                         Acid + Aluminum
Control
     Total
May 22     22.02 + 1.10    19.10 + 0.83

between treatments:  F = 6.01, p <0.01

May 29     22.58a+ 0.87    17.87b+ 0.58

between treatments:  F = 28.29, p <0.001

between dates:  F = 0.18     F = 1.48
                 (ns)         (ns)
                                                             17.72 + 0.72
                                                             14.97 + 0.68
                                                               F = 7.73
                                                               (p <
      Primary     May 22      7.20a+ 0.31     9.07 + 0.36

                  between treatments:  F = 25.06, p <0.001

                  May 29      9.05a+ 0.34     8.53a+ 0.31

                  between treatments:  F = 20.19, p <0.001

                  between dates:  F =  16.19    F = 1.25
                                  (p <0.001)     (ns)
                                            5.98 + 0.25
                                            6.47 + 0.25
                                             F = 1.85
                                               (ns)
      Secondary   May  22
           14.82a+ 0.94    10.03 + 0.73    11.73 + 0.56
                  between  treatments:  F =  6.01,  p <0.01

                  May  29      13.53a+ 0.69     9.33b+ 0.43

                  between  treatments:  F =  21.23, p <0.001

                  between  dates:  F =  1.21     F=0.68
                                   (ns)          (ns)
                                            8.50 + 0.60
                                             F =  15.39
                                             (p <0.

-------
                                    163

These cells did not change  in  number  over  time  in  either  of  the
experimental  treatments, but their  numbers decreased  between May 22  and
May 29 in the controls.    ••.<•-.
    At the initiation of the experiment, a number  of  fish escaped from
the control channel and spent  an unknown period of time struggling on
damp ground and in small pools of water.   As  sufficient replacement  fish
were not available, survivors  of this event had to be used in the
experiment.  Some redistribution was  done,  but  most of these stressed
fish were placed in the control channel.   Handling and the struggling
that accompanies it is known to be  stressful  to fish,  producing
characteristic responses in blood glucose  and cortisol (Schreck  1981).
Cortisol was involved in the regulation of ion  balance, and  was  known to
cause chloride cell proliferation in  opercular  epithelia  (Zadunaisky
1984).  Thus, control fish  that spent a period  of  time struggling after
escaping from the channel might be  expected to  have artificially high
chloride cell numbers.
    Chloride cell number had decreased significantly  in the  fish from
the control channel by the  second sampling date, primarily due to
decreased secondary lamellar chloride cell  number.  This  was exactly
what would be expected if the  escape-produced stress  caused  a transient
increase in production of chloride  cell precursors, which migrated out
onto the secondary lamellae (Zenker et al.  1987),  differentiated,  and
were later lost.  Recovery  from stress, as  assayed by plasma
corticosteroids, takes a week  or more in salmonids (Schreck  1981).
Chretien and Pisam (1986) have shown  that  chloride cell differentiation
in the primary lamellar epithelia takes about 4 days,  and presumably
migration onto the secondary lamellae before differentiation takes
somewhat longer.  Thus, the time course of  the  transient  increase in
chloride cell number is about  right.  It seems  safe to conclude  that
control chloride cell numbers, especially  secondary lamellar chloride
cell numbers, were elevated in,control fish because of handling,  stress
at the first sampling date, and that  the second sampling  (May 29)
represents a more normal, unstressed condition.
    Fish exposed to low pH  water had higher numbers of chloride  cells in
their gills than did controls on both sampling  dates,  despite the
confounding effects of stress on the controls.   Increased  chloride cell
numbers with acid stress have been  reported by  several workers (Leino
and McCormick 1984; Chevalier et al.  1985;  Leino et al. 1987).
Proliferation of chloride cells following  transfer  to  dilute
circumneutral media (Laurent and Dunel 1980; Laurent  et al.  1985;  Avella
et al. 1987) has also been  reported.  Increased  chloride  cell number
seems be a response to an increased need for ionic  uptake.   Given that
fish exposed to low pH experience increased passive ion losses
(McWilliams 1980,  1982; McDonald et al. 1983),  increased  numbers  of
chloride cells would compensate for this by allowing  increased active
uptake of ions, thus restoring ionic homeostasis.
    Differences in chloride cell number and distribution  were found  when
Al was added at low pH.  It should be noted that the  pH levels of the
acid and the acid + Al treatments were very similar,  so the  observed
differences resulted only from the effects  of Al.   Fish held  in  water
with added Al had fewer chloride cells than those held at  a  similar  pH
without Al, because of smaller numbers of  secondary lamellar  chloride
cells in acid exposed fish.

-------
                                   164

    Aluminum has been shown to accumulate in chloride cells (Karlsson-
Norrgren et al. 1986b; Youson and Neville 1987).  Aluminum interferes
with ion regulation (Witters 1986; Goss and Wood 1988), perhaps by
interfering with Na /K  ATPase (Kjartansson 1984; Stuarnes et al. 1984).
Youson and Neville (1987) have reported ultrastructural abnormalities in
chloride cells of Al exposed fish.  It appears that Al enters chloride
cells, disturbing their normal function and damaging them, and these
nonfunctional cells are then lost from the secondary lamellae.  Fish
exposed to acid + Al would therefore be unable to increase the number of
chloride cells in their gills to compensate for ionic losses, as can
fish exposed to low pH alone.

  Chloride Cell Sizes
    Cell profile areas were largest in fish exposed to acid or acid + Al
in the May 22 sample (Table 29).  On May 29, cell areas in control fish
had increased significantly, whereas cell areas in both experimental
treatments had significantly decreased.  Thus, in the May 29 sample,
chloride cells from the control individuals had the largest areas, and
those from acid + Al exposed individuals the smallest.
    Areas of primary lamellar chloride cells were marginally larger in
fish exposed to acid + Al on May 22 (Table 29).  This difference was
just significant by analysis of variance, but not significant by the
nonparametric Kruskal-Wallis test.  On May 29, primary lamellar chloride
cells in fish from both experimental treatments had significantly
decreased in size, while the size of those in control individuals had
not changed. This resulted in primary lamellar chloride cells in
controls that were significantly larger than those from either of the
experimental treatments.
    On May 22, fish exposed to low pH without Al had secondary lamellar
chloride cells that were significantly larger than those  from fish
exposed to acid + Al or controls (Table 29).  On May 29,  these cells
were largest in controls, and smallest in fish exposed to acid + Al.
Comparisons between sampling dates revealed that these cells had
decreased in size in both experimental treatments and increased in size
in the controls.
    The decrease in cell size in the acid and acid + Al treatments was
paradoxical, inasmuch as is generally accepted that  increased size
reflects increased activity.  Perhaps the decrease resulted  from the
fish not being fed.  Increased energy demand for ion  transport and
production of new chloride cells might result in production  of smaller
cells.  With energy reserves becoming scarce, production  of  more but
smaller chloride cells could also be an adaptation to produce more
transport sites, particularly if the effectiveness of each cell is
impaired by Al.

  Mucous Cell Numbers and Areas
    Mucous cells were present in significantly lower numbers in acid  and
acid + Al exposed fish than in control fish in the May 22 sample (Table
30).  By May 29, mucous cell numbers had increased significantly in the
acid exposed fish and decreased  in the control fish.  Cell numbers were
not different between the sampling dates in the  acid + Al exposed  fish.
In the May 29  sample, mucous cells were most numerous in  fish held in
low pH water, and least numerous in  fish held in low pH water with added
Al.

-------
                                    165

Table 29. Effects of low pH and aluminum on areas of primary lamellar,
secondary lamellar and total chloride cells in Atlantic salmon.  Data are
presented as mean cell profile area in square micrometers _+ standard error
with associated (N).  Within each date, means with the same superscript are
not significantly different.
   No. Live
 Chloride Cells  Date
                  Acid
                 Acid + Aluminum
  Control
    Total       May 22      89.46 JH 1.05     88.28 + 1.17
                            (1319)           (1189)
                between treatments:  F = 14.80, p <0.001

                May 29      76.91a+ 0.79     72.74b+ 0.95
                            (1352)           (1026)
                between treatments:  F = 61.87, p <0,001

                between dates:  F = 92.11     F = 101.76
                                (p <0.001)    (p <0.001)
                                              81.50 + 1.03
                                              (1059)
                                              88.48 + 1.24
                                              (887)
                                                F = 19.16
                                               (p <0.001)
    Primary
May 22
97.39ab+ 1.79
94.00 + 1.97
                  _         100.66 + 1.77           _
           (430)             (578)            (357)
between treatments:  F = 3.19,  p <0.05

(no significant differences by Kruskall-Wallis test)

May 29      86.69a+ 1.30     82.44a+ 1.52     95.59b+ 1.85
            (542) ~          (489) ~~          (388)
between treatments:  F = 17.22, p <0.001
                between dates:  F = 24.24     F = 58.55
                               (p <0.001)    (p <0.001)
                                                F = 0.35
                                                  (ns)
    Secondary   May 22
            85.63 + 1.27     76.57 + 1.39
            (889)            (611)
between treatments:  F = 21.96, p <0.001

May 29      70.37a+ 0.93     63.87b+ 1.05
            (810)            (537)
between treatments:  F = 58.38, p <0.001

between dates:  F = 91.45     F = 50.84
                (p <0.001)    (p <0.001)
                                   75.15 + 1.07
                                   (702)
                                                              82.96 + 1.63
                                                               (499)
                                                                F = 16.90
                                                                (p <0.001)

-------
                                    166

Table 30.  Effects of low pH and aluminum on mucous cell size and number in
Atlantic salmon.  Within each date, numbers with the same superscript are
not significantly different.  Data are given as means _+ standard error,
with associated (N).
Factor Date
Area May 22
(pm )
between
May 29
between
between
Number May 22
between
May 29
between
between
Acid
42.21a+
(357)
treatments: F =
40.02a+
(567) -
treatments: F =
dates: F = 3.31
(ns)
8.97a+
(40) ~
treatments: F =
14.17a+
(40) ~
treatments: F =
Acid + Aluminum Control
1.06
7.85,
0.68
12.00,

0.58
30.62,
0.68
14.81,
dates: F = 33.73
(p <0.001)
37.54b+ 1.65
(365)
p <0.001
47.04b+ 1.17
(341)
p <0.001
F = 26.59
(p <0.001)
9.40a+ 0.55
(40)
p <0.001
8.55b+ 0.55
(40) ~
p <0.001
F = 1.19
(ns)
36.21b+ 0.
(603)
42.79°+ 1.
(519)
F = 21.55
(p <0.001)
15.10b+ 0.
(40) "
11.88°+ 0.
(40)
F = 7.66
(p <0.01)
73
08

71
92


-------
                                   167

    Mucous cells were largest in fish exposed to acid without Al in the
May 22 sample (Table 30).  In the May 29 sample, cells were largest in
fish held in low pH water with added Al, and smallest in fish held in
low pH water without Al.  Between the two dates, mucous cells in the
acid + Al exposed fish had increased in size, as had those in the
controls.
    Over time, mucous cell number decreased in control fish, and
increased in acid stressed fish.  It was possible that stress resulting
from escape as discussed above caused a transient increase in mucous
cell number.  The increase in number of mucous cells without an increase
in size upon exposure to low pH has now been demonstrated in several
species of fish (Zuchelkowski et al. 1981; Raines et al. 1986) and
appears to be a universal response.  Increased mucus secretion may
assist in Ca (Flik et al. 1984) and monovalent ion regulation (Marshall
1978; Solanki and Benjamin 1982).
    Increased mucus secretion with Al exposure has been widely reported
(Freeman and Everhart 1971; Muniz and Leivestad 1980; Rosseland and
Skogheim 1984).  It was therefore surprising that mucous cell numbers
were not elevated in fish exposed to acid + Al.  In fact, fewer mucous
cells were present in gills of Al-exposed fish than controls on the
second sampling date.  However, mucous cell size increased significantly
over time in Al exposed fish, so that this group had the largest mucous
cells.  It appears that acid + Al, in contrast to acid alone, results in
mucous cell hypertrophy.  It is possible that the lower number of mucous
cells found with Al exposure resulted from recent discharge of some
mucous cells.  Since the stain used was specific for secretion product,
recently discharged cells, or those beginning their synthesis cycle
would have been missed.  Recently, Segner et al. (1988) reported that
exposure of newly hatched brown trout to Al at low pH did not cause an
increase in number of mucous cells in skin.  Despite the increased mucus
production that has been reported, mucous cell hyperplasia does not
appear to be a response to Al exposure.

Lanthanum Tracer Experiment
    Lanthanum outside the tissue was readily visible as electron dense,
flocculent material.  In smolts exposed to acid water, La had clearly
penetrated between the epithelial cells (Figure 83).  Lanthanum deposits
were visible in intercellular spaces between chloride cells and pavement
cells (Figure 83a,b), between mucous cells and pavement cells (Figure
83c), and beneath the outermost epithelial layer on the secondary
lamellae (Figure 83d).  Lanthanum was not observed to penetrate between
epithelial cells in smolts held in the control channel.  Lanthanum
penetration was also observed in smolts exposed to acid + Al.  This
penetration was not visibly different from that observed with acid
exposure alone.
    Both the present study and the work of Sardet et al. (1979) and
Sardet (1980) have demonstrated that the epithelia of gills of fresh
water fish are normally impermeable to La.  Sardet (1980) has shown that
tight junctions are present between adjacent cells in freshwater fish.
Farquhar and Palade (1963) classify such junctions as diffusion
barriers, characteristic of epithelia of low permeability.  This was
consistent with electrophysiological measurements, which indicated that
the permeability of gill epithelia to sodium was normally quite low in
freshwater fish (Potts 1984).

-------
                                                         168
4 , , t     .       „     ja        ,     i,       jt
j	,	!	;	'	illlii	.,'l!i!!.r   jit . ~ „!	   I       I Jill II 111.1  <[
-	:	'•	r.    	!	     	     i,     r   MI
liliimn,,, 	i ,i •   CU
 cd  a
 ft
    4J
n3  p3
 c!  cu
 cd  g
    cu
rH  >
    n)
                                                                                                                                      o
                                                                                                                                      o
                                                                                                                                      o
                                                                                                                                  o  cd
                                                                                                                                  O rH
4->  O
-l
                                                                                                                            13  O
                                                                                                                            4J  rH
                                                                                                                            CU  ^3
                                                                                                                           rQ  CJ

                                                                                                                            a  a
                                                                                                                            O  CU
                                                                                                                           •H  CU
                                                                                                                            4-J  S
                                                                                                                            O  4-J
                                                                                                                            a  cu
        CU  >*
        O  H
            cd
        4-J T3
        0  d
        cu  o
        S  o
        CU  CU
        >  CO
        cd

            o

        C! rH
        cd H
            CU
       rH  O
       rH
        CU rH
        o  cd
           •H
        CO rH
        3  CU
        O i *~{
        O  4-J
        3 -H
        s  ft
            cu
        d
        CU  4-1
        cu  d
        &  CU

        a!,  i
•H          cd
 o      d   ft
 cd   •  o
    pq -H   60
 60    4J   d
 d      o  -H
•H   •  d   1^

•H  O >-)   !H
 a)  o      cu
 o  o     Ti)

 M  rH O   §

-------
                                   169

    Upon exposure to low pH efflux of sodium and chloride greatly
increases (McWilliams 1980; McDonald et al. 1983).  Changes in
transepithelial potential with acid exposure are consistent with an
increase in permeability of the gills to sodium (McWilliams and Potts
1978).  Electrophysiological and non-ionic tracer methods show that this
increased permeability resulted from the paracellular pathway becoming
more open to diffusion in isolated opercular epithelia (Marshall 1985).
Electron microscopy, has revealed that permeability of frog skin
increases upon exposure to low pH because of alterations in the tight
junctions that normally seal the skin (Ferreira and Hill 1982).  Matey
(1984) has noted altered junctional structure in fish chronically
exposed to acid conditions and suggested that those changes were an
adaptation to minimize Na losses.
    The results here support the idea that increased paracellular
permeability causes the increased ionic efflux observed at low pH.  Upon
exposure to low pH, changes in cell junctions between pavement cells and
chloride cells, mucous cells and other pavement cells loosen, changing
from tight junctions to something more leaky.  Lanthanum hydroxide
colloid, with a diameter of about 2 nm, is able to pass these leaky
junctions and thus a Na ion, which has an ionic radius of less the 0.1  '
nm (Chemical Rubber Company 1970), would also pass.
    Vertebrate epithelial permeability is affected by Ca concentration
(Alberts et al. 1983), and permeability is greatly increased when Ca is
removed.  Increased environmental Ca has been shown to improve the
survival of fish in low pH water (Brown 1981, 1982) by lessening the
ionic losses characteristic of acid stress (McDonald et al. 1980).
McWilliams (1983) found that bound Ca was lost from the gills of brown
trout exposed to acid water.  Hunn (1985) has reviewed the interactions
of low pH and Ca on fish gill function, and McDonald (1983) has
concluded that the evidence supports the hypothesis that elevated
environmental H  displaces Ca from paracellular channels, increasing
their permeability and permitting increased ionic effluxes.  The present
study is consistent with this hypothesis.
    Witters (1986) and Goss and Wood (1988) have shown that losses of
plasma ions are much more severe in fish exposed to acid + Al than in
fish exposed to acid alone.  They suggest that the greater losses result
more from increased efflux than inhibited uptake.  In the present study,
no qualitative difference was observed in permeability between fish
exposed to acid alone or acid + Al.  The apparent discrepancy between
our findings and those of Witters (1986) and Goss and Wood (1988) may be
resolved by a quantitative explanation rather than a qualitative one.
It is possible that Al competes with Ca for binding sites in the gill
(Pagenkopf 1983).  As discussed above, increased H ion activity seems to
displace gill Ca.  Adding Al at low pH would thus create more areas of
compromised junctional integrity than low pH alone, rather than
producing a qualitatively different junctional response.

  Aluminum Localization
    Cryostat sections of gills from fish held in acidified water or
untreated water in the artificial stream channels did not stain for Al
even after several hours in the solochrome azurine stain (Figure 84).
Sections from fish exposed to acid + Al in the artificial stream
channels, however, showed intensely stained areas after about one half

-------
170
                -   ,f«  <,       £  <  < - ,7*  M  M
            4       f>  ...       f"       i  I  hn  n .
                    f  V'    '  ^  '  • *   '  I  o
                    *!   J .                     SJ

-------
                                   171

to one hour In the solochrome azurine solution (Figures 84b,c,d).  All
individuals exposed to Al examined showed such stained areas.  The
localization of the reaction within the gill varied somewhat within
individuals.  Some staining appeared within cells (Figures 84b,d), and
some appeared to be spread out along epithelial surfaces (Figures
84b,c).  Intensely stained materials appeared within cells at the bases
of the secondary lamellae (Figure 84d), as well as in cells along the
surfaces of the secondary lamellae.  The location and morphology of
these cells suggested that they were chloride cells.
    All gills examined showed highly localized SDH activity, which
appeared within discrete cells.  There was no apparent difference in
degree of staining for the enzyme among the treatments.  It was not
possible to stain the same slide for both Al and SDH activity.
Following incubation in solochrome azurine, SDH activity was not
detectable.  If the slide was first incubated in SDH stain, the product
of this reaction faded in the solochrome azurine.  However, it was
possible to stain sequential slides from the same individual in the
different solutions.  Using this approach, it appeared that the same
cell type was staining within both solutions (Figure 85).
    Karlsson-Norrgren et al. (1986b) and Youson and Neville (1987)
examined fixed, embedded, and sectioned material using X-ray
microanalysis and electron microscopy, and concluded that chloride cells
accumulated Al when fish were exposed to the metal at low pH.  However,
their technique required that tissue be immersed in a variety of aqueous
solutions, alcohols and plastics.  During processing, the tissue was
subject to many changes, in pH, hydration, and ionic strength.  Soluble
or labile materials such as Al may be leached out into solutions or move
within tissues (Chandler 1977; Morgan et al. 1978; Morgan 1980).  These
problems were avoided in frozen material, which can be examined without
chemical processing.
    SDH serves to identify chloride cells in frozen sections.  Chloride
cells are rich in mitochondria (Zaidunaisky 1984; Karnaky 1986), which
are the site of SDH activity within the cell (Alberts et al. 1983).
Therefore, cells richest in SDH in the gill are chloride cells (Mommsen
1984).  SDH has been employed to histochemically stain chloride cells by
Chernitsky (1980),  The location, size, and shape of the cells that
stained for SDH were the same as those which stained for Al.  These
results support the observations of Karlsson-Norrgren et al. (1986) and
Youson and Neville (1987) that Al does accumulate in chloride cells.

Fry Growth, Mortality, and Whole Body Ion Concentrations

    Atlantic salmon fry were placed in the channels June 2 and chemical
manipulation was begun on June 4.  From June 4 to June 9, the pH  in the
treatment channels was gradually decreased to about 5.5 (Figure 86,
Table 31), then to 5.0 by June 25.  At the end of the experiment, the
mean daily pH was lowered to below 5.0, and on the very last day  it
declined to below 4.0 as the result of heavy rain during the previous
night.  The mean daily pH in the control channel increased from 6.5 to
above 7.0 at the end of the experiment, then declined to 6.3 on the last
day.
    Exchangeable Al in the control and acid channels ranged from 0 to 68
yg/1 (mean = 26 yg/1; N = 33), and from 27 to 330 yg/1 (mean = 160 yg/1;

-------
                            172
Figure 85.  Micrographs of frozen gill tissue of an Atlantic
            salmon smolt, from the acid plus Al channel,
            sectioned using a cryostat and stained for succinic
            dehydrogenase or aluminum.  The fish were collected
            on May 29.  Magnification 500x.  A.  Stained for
            aluminum with acidic solochrome azurine.  B.   Stained
            for succinic dehydrogenase.

-------
                                   173
N = 22, Figure 86, Table 31) in the acid 4- Al channels.  Water
temperature ranged from 12° C to 18° C and dissolved oxygen  from 8.5  to
10.2 mg/1 (Table 31) over the experimental period, and values were
similar among channels.
    Throughout the experiment, fry in the control channel looked
healthy, ate well, and appeared vigorous and alert.  Most of the fry
congregated at the upstream screen and maintained their  positions in
midwater.  The fry in the treatment channels, however, appared  thin,  did
not feed as well, and were more lethargic.  During latter part  of the
experiment, most fry in the treatment channels were not  congregating  at
the upstream screen, but rather were distributed throughout  the channel
and were lying on the bottom.  This behavior became more pronounced
during the last three days.  The treatment channels invariably  contained
more uningested food and less fecal casts than the control channel.   As
the experiment proceeded, many more and moribund fry were observed in
the treatment channels.  These moribund fry characteristically  were
emaciated and would lie on their side on the bottom of the channel.
Breathing was slow and irregular, and death usually occured  within
hours.
    By June 7, pH was less than 6.0 in the treatment channels,  and the
rate of fry mortality in these channels increased over that  in  the
control channels (Figure 87).  The mortality rate was similar in the
treatment channels until June 15.  Therefore, fry mortality  increased in
the acid + Al channels as compared to the acid channels.
    The condition factor of fry in the experimental channels increased
until June 15, then remained constant.  Although condition factor was
generally lower in the treatment channels, the ^nly significant
difference between these channels and the control channels was  on June
25 (Figure 87).
    The only significant difference in whole body Ca occurred on June 25
when whole body Ca in the control channel fry were significantly lower
as compared to the treatment channel fry (Figure 86).  Whole body Ca  was
quite variable; however, it tended to be lower in the control channel
fry throughout the experiment.  Control fish also tended to  be  larger
than treatment channel fry.  The only significant difference in whole
body Mg occurred on June 22, when concentrations in acid + Al channel
fry were significantly lower than in the acid channel fry, but  not the
control channel fry.  Whole body Mg was generally less variable than  Ca
in this study.
    Significant differences in whole body Na concentration among
treatments occurred on several occasions (Figure 86).  On June  8, whole
body Na of the control fry was significantly lower than  that of
treatment fry.  On June 27, acid + Al channel fry values were
significantly lower than control channel fry, and June 28, fish from
both treatment channels were significantly lower than control channel
fry.
    The whole body Ca, Mg, and Na values from the channel fry (except
the last two days) were similar to values obtained by Lacroix (1985c) in
feeding Atlantic salmon fry.  The decline in whole body Na on the last
two days of the experiment probably resulted from reduced of
osmoregulatory ability of the treatment channel fry.  The lack  of
response of whole body Ca and Mg to acute acid + Al exposure probably
reflects the more conservative nature of these elements.  The lack of

-------
                             174
     45-
<    40-
* 2 35-
8 g 30-

a i'25'
o S 20-
* ~ 15
     10
     15
S  ~ 14-
o  g
g  2 13
§   g!30
   2120
a £?"<>•
I 3100-
     90
     80
 X
 a.
    7.5
    7.0
    6.5
    6.0
    5.5
    5.0-
    4.5-
    4.0
   . 3.5-
 _,  500
 ^

 I 33oo-

 1 3200'
 25  100-
      o-
      HAY31



•<
o,
11 •
160-
ISO-

•^140-

1I 	 r 	 , 	 , 	 , | r
o


A V»^ ./' V

                                       M^
             JUNES   JUNE10   JUNE15   JUNE20   JUNE25    JUNE30
                          DATE (1987)

Figure  86.   Atlantic salmon fry whole body ion content  and
             water pH and exchangeable Al  content during the June
             1987 artificial channel experiment.  Square and solid
             line is control channel mean,  diamond and dotted line
             is acid channel mean, and triangle and dashed line is
             acid + Al channel mean.  Vertical bars are  ranges.
             Blackened symbols indicate  significant differences
             (see text).

-------
175

,_(

o 
O
O



(^
t
I
ON

CO


in
CM
in



CO

^
o

o



o
t—
•
vO

•
CO



VO
CO

in


en
VO

CM
o

d


VO

ff
7
CO
CO
ff
vO

VD
•"7
vO




co




p.
CO
d


f^
ff

t-4

CM
1-4



CM
in
r-4


VO
CO

CO

d



ft*.
(
IX,
f— 1
o
»
CM
f-l




CM

in
•"•

vO
CO


CO
9
o


o\
9
r**
t-4
o
CM
t— I


CM
in




CO



9*
3 O

^
d


o
•
o
1-4
VO

co




CO
ON



vO
CO

«— 4
ff
o



CM

d
l-l

00





CO

CT\


VO
CO


•—I
•
o


CM
*
O
T
in
CO



CM
9
a\




vO
co


g rH
*> S>
£5





^^
CO
S
CM






O
CO
•H

CM
CM



CO





ON
S









CO
CM

vO





co




00
VO
CM





Is*
CM



ff-4

•5j
^P

w<3
00
c4
1

CO
t
co
f

*^
CM



°9
CO
CO


^


m
f
C4



vO
t
r^4
I
9
•*
CM




CM

CM
CO

jv.



m
t
^


!%•

CM
CO
**
CO
CM


0
e -
f*»
CM



r>

A
i~
•58
.^
OT»3
r^
m
•—4
in

ON

S

VO
1-4



O
•<+•
sr


vO


CM
f
CO
f-4

oo

d
CM


00
1-4




CM
•
VO
sf

(S,



m
9
u^
r-4
VO

i-H

v
vO
*
CM
1—4
1-4

«n
St
sr
i-i


•^

^s
H
U O

t^
1-4


CM
0
a\
o

f»«
t*«



m
«

co


^


co

•-4



Sf
•
|%«
?
0
in





i>»

•-4
00

1^



vO

r-4


0

fl.
03
— 1
VO
t>.


•^
i-t
CO



•**


^J
S"
^3
m
CO

CM

4^f
«*
I
*
oo

p«4


"I
CM
CO
•H

^


CM
c
m


r^
«
CO
m
S
ff

v-4
1—4



00 .

CM
CO

(^



sf
f


CM


<*•
T
CM
9
|^
i—4
1-4

in
o
co
rH


r-


P
o*
o3
CO
i—4
CM
0

fy\
CO
S
ff
CO
CM
9-1


t*.
9
ON
r*»
1-4

vO


VO
«
CM
CM

O

CM
CO
O

O
O
•-4



CM

vO
m

vO



ON
ff
1-4


O

CM
t
O
ON
CM


0
VO
CO



VO


p
V

CM
CM


0
f
O
0

ON
CO



^
CM
<)•


VO


in
•
CM



O

CM
m

CO
CO




CO
•
CO >>
^

VO U
0
<0
+td
m
• h
CM O
U-l
TJ
o  o.
o a w
CO >— ' Itf

-------
                             176
OS
O
o
<
  i.o-j
  0.9
  0.8
  0.7
  0.6-
  0.5-
  0.4-
OJ
o
o
  400-
  350
  300-
  250-
  200
  150
  100
   SO-
    0-
    HAY31
Figure 87.
             JUNES    JUNE10    JUNE15   JUNE20
                             DATE (1987)
JUNE25
JUNE30
             Cumulative mortality and condition factor of Atlantic
             salmon fry for the June 1987  artificial channel
             experiment.  Square is control  channel mean, diamond
             is acid channel 'mean, and triangle is  acid + Al
             channel mean.  Blackened symbols  indicate significant
             differences (see text) .

-------
                                    177

response in whole body ion concentration  to  acid  and Al  stress  in our
experiment may also be the result of an experimental artifact.  When
collecting fish for ion analysis, we avoided moribund  individuals.  We
may therefore have selected fish that were able to  regulate body ion
stores, under the experimental conditions.
    Between June 7 and June 15, pH  and fish  mortality  rates were similar
in the treatment channels.  Therefore the mortality in both acid and
acid + Al channels was probably the result of acid  stress alone (Figure
87).  On June 15, fry mortality in  the acid  + Al  channels increased
slightly above that in the acid channel (Figure. 87).   Because pH
remained similar, the increased mortality must have resulted from
exchangeable Al, which exceeded 120 pg/1  at  this  time.   However, the
difference in mortality between acid and  acid + Al  treatments remained
small, even though exchangeable Al  concentrations in the acid + Al
channels exceeded 200 pg/1 for 10 days.   The decrease  in rate of
mortality after June 15 may have resulted from acclimation to
experimental conditions, or because the more sensitive individuals had
died previously.  Acclimation of fish to  acid or  acid  +  Al has  been
reported by Farmer et al. 1980; Kwain and Rose 1985; Lacroix et al.
1985c; Orr et al. 1986; Wood et al. 1988a; and Wood et al. 1988b.
    Increased mortality at low pH resulting  from  exchangeable Al has
been reported for brook trout, white sucker, and  brown trout fry
(Schofield and Trojnar 1980; Baker  and Schofield  1982; Brown 1983).
Baker (1982) showed that the survival of  brook trout and white  sucker
fry in laboratory bioassays correlated most  strongly with inorganic Al
concentrations, suggesting that Al  was the principal cause of mortality.
Schofield and Trojnar (1980) suggested that  Al concentration, rather
than pH or Ca, was the primary factor determining survival success for
brook trout stocked in acidic Adirondack  lakes.
    Mortality of fry was higher than that for smolts in  our study.  This
is probably because our ability to  control chemical conditions  improved
during the fry experiments and treatment  channel  pH was  consistently
below 5.5, whereas it frequently exceeded 5.5 during the smolt
experiment.  Therefore, fry were exposed  to more  rigorous conditions
than were smolts.  In contrast to our results, Rosseland and Skogheim
(1984) found that smolts were more  sensitive than fry when exposed to
water of pH 5.0 and exchangeable Al concentrations  of  130 to 245 Pg/1.
In addition, Henriksen et al. (1984) observed mortality  of Atlantic
salmon smolts but not fry when both were  exposed  to episodic declines in
pH to 5.1 and increases in exchangeable Al to 50 yg/1.
    The poor growth of the fry in the treatment channels may have
resulted from at least two factors.  First,  fry in  the treatment
channels did not feed strongly.  This lack of appetite was probably
caused by the chemical stress and has been noted  previously (Farmer et
al. 1980; Henriksen et al. 1984; Lacroix et 'al. 1985c).  In addition,
fish in the treatment channels may have increased metabolic activity in
order to maintain internal homeostasis in the face  of  osmotic stress
(Rosseland 1980;  Sherer et al. 1986).   This would reduce the amount of
energy available for growth.  Reduced growth in salmonid fry exposed to
acid or acid + Al has also been reported by Menendez (1976), Baker and
Schofield (1982), Kwain and Rose (1985), and Lacroix et  al. (1985c).

-------
                                   178

   Fry Gill Morphology
    Gills from fry collected from the control channel on all three dates
appeared well formed and morphologically normal (Figure 88a).  No gross
morphological abnormalities were observed in the fish exposed  to acid
without Al from any of the three sampling dates.  Gills from fry exposed
to Al at low pH for 2 weeks (June 17 collection) appeared
morphologically normal (Figure 88b).  After 3 weeks of exposure to Al at
low pH (June 24 collection), all gills examined showed abnormalities,
including thickening of primary and secondary lamellae and  fusion of
adjacent secondary lamellae (Figure 88c).  At the end of the experiment,
fry held in the acid + Al channel had severe gill abnormalities,
including loss of secondary lamellae over large areas of primary
lamellae and partial fusion of adjacent  primary lamellae (Figure 88d).
    Examination of sections from fry gills by light microscopy confirmed
the impression of loss of secondary lamellae and progressive hyperplasia
of epithelial cells.  Controls from the  June 17 and June 24 samples had
well developed secondary lamellae (Figures 89a and 89c, respectively).
Gills from fry exposed to acid + Al collected on June 17 were  not
visibly different (Figure 89b).  Gills  from fry collected on June 24  had
only a few stubby secondary lamellae, which were often fused together,
and the primary lamellar epithelium appeared thickened (Figure 89d).
    Karlsson-Norrgren et al. (1986a, 1986b) found  that Al caused gill
abnormalities in yearling brown trout (Salmo trutta).  Jagoe et al.
(1987) reported similar abnormalities in the gills of Atlantic salmon
fry exposed to Al in laboratory bioassays.  Compared  to the laboratory
results, lesions in fry in  the channels  took 2 to  3  times longer  to
develop.  This may be related  to  the somewhat  fluctuating Al
concentrations in the channels, which might have allowed  some  time  for
recovery, or  some other factors.  Nonetheless,  these  findings  confirm
that gill abnormalities can be produced  by Al  in natural  waters.
    In this study, as well  as  those of  Jagoe et  al.  (1987),
undifferentiated cells and  chloride cells appeared  to  proliferate  in  fry
exposed to Al sometimes to  the point that individual  lamellae  were  not
identifiable.  This contrasts with  observations  in smolts,  where Al
caused decreased numbers  of secondary  lamellar chloride  cells.  The
reasons for this may  include  age  related factors.  Morgan (1974a,  1974b)
noted  that chloride cells  are more  numerous  in fry than  adults,  and
suggested  that  this may be  a  response  to the osmotic problems  faced by
the  fry due to  its high surface  area  to volume ratio.   Because fry
experience losses of  body ions  in acid  water  (Lacroix et  al.  1985c),
some  increase in chloride  cell number  would  represent a compensatory
response.  With  added  Al, many chloride cells  might  be rendered
nonfunctional,  and hyperplasia of chloride cells and their precursors
would occur as  the animal  attempted to  increase  the  number of  ion uptake
sites.  Fry absorb much of their  oxygen across the body wall (El-Fiky et
al.  1987), and  thus  the hyperplasia resulting  in the loss of gill
structure  can be tolerated without producing lethal anoxia as  it would
in larger  fish.   Additionally,  because  of the  smaller role of gills in
gas  exchange  in fry,  perhaps ventilation is less frequent or forceful.
Then, damaged or poorly functioning cells would not be washed  away as
 seems to  happen in the secondary lamellae of older fish.

-------
179

-------
180

-------
                                    181

   Lanthanum  Tracer Experiment
     In control  fry, La  was visible  as electron dense material  Outside
 the  tissue,  often deposited  as  a layer  along  the  outer epithelial
 surface (Figure 90a).   The tracer was not  observed  to penetrate into  the
 tissue (Figures 90a, 91a).   Fry exposed to pH 3.5 for 20  minutes had  La
 in intercellular spaces, often  below the pavement cells which  constitute
 the  secondary lamellar  epithelium (Figure  90b).   This penetration  was
 also observed after 20  minutes  of exposure to pH  4.0 and  pH 4.5.
 Lanthanum permeation into a  secondary lamella and adjacent  primary
 lamellar epithelium after 20 minutes of exposure  to  pH 4.0  is  shown in
 Figure 91b.  In comparison to a similar area  from a  control fish (Figure
 91a), the increase in permeability  was  striking.
    Exposure to pH of 4.5 or less for 20 minutes  was sufficient to
 greatly increase paracellular permeability.   These results  suggest that
 effluxes of  sodium and  chloride via the intercellular spaces will
 increase very rapidly with acid exposure,  resulting  in ion  losses.
 McWilliams and Potts (1978)  found rapid changes in gill transepithelial
 potential when the environmental  pH was lowered,  and Marshall  (1985)
 reported immediate changes in the resistance  of opercular epithelium
 following acid exposure.
    Marshall (1985) found that  the  threshold  for  immediate  reduction  of
 transepithelial resistance -was  about pH 4.0 in brook trout.  In the
 present study, exposure to pH 4.5 caused increased permeability of
Atlantic salmon fry gills,,   It  is known that  brook trout  are more
 resistant to acid water than Atlantic salmon  (Grande et al.  1978).  As
 previously discussed,  Ca is essential in the  maintenence  of low
 paracellular peremability,  McWilliaras  (1983)  has shown that the rate of
loss of bound Ca from gills in  acid water  differs among strains  within  a
 species: an acid tolerant strain  lost Ca slower than an intolerant one.
These results suggest thai: differences  in  junctional  sensitivity to Ca
concentrations, or different affinities  for Ca at the  cell junctions may
account to some extent  for differential  sensitivities  among species or
among strains to acid  stress.

-------
                            182
       IT  i    in      if]      ltd- is       jS$s»P i> *T* *S *%  <
Figure 90.  Transmission  electron micrographs of Atlantic
            salmon  fry  gill  epithelium treated with La.
            A.  Control fry,  6000x.   B.  Fry exposed to
            pH 3.5  water  for 20 minutes, 1400x.

-------
                         183
Figure 91.  Transmission electron micrographs of Atlantic
            salmon fry gill secondary lamellae,  treated
            with La.   Magnification 2500x.   A.   Control
            fry.  B.   Fry exposed to pH 4.0 water for
            20 minutes.

-------
                                   184
                              CONCLUSIONS

1.  Precipitation  at  the  study area  is  acidic  (mean  pH =  4.5), with  pH
    strongly correlated with concentrations  of N03 and SO^.
2.  Marine  aerosols episodically dominate  wet  precipitation  chemistry.
3.  Dry  deposition of marine aerosols exceeds  wet.
4.  Dry  deposition of SO,  ranges up  to  35% of  total  wet.
5.  Stream  discharge  is characterized by short-term  increases  of 10  to
    100X base flow associated with snowmelt  and rain storms.
6.  Alkalinity of  the streams ranges over more than  200 yeq/1.
    Associated cation export is  in the  order Ca>Na>Mg>K.
7.  Episodic depressions  of pH  to near  5.0 are associated with dilution
    of cations, mobilization of  DOC, sea-salt effects, and excess S04
    and  NO  .  No single mechanism was sufficient to  cause pH
    depressions below 6.0.
8.  A large percentage of the Al mobilized during low pH episodes is
    complexed with DOC.
9.  Nitrate export is limited to extreme hydrologic  episodes,  and to
     snowmelt periods.
10.   Sulfate export exceeds measured wet input on an annual basis.
     Temporary retention occurs  during summer base flow.
11.   Atlantic salmon and  brook trout populations in the streams had
     standing stock biomass and  annual production values that were low
     but  similar to other infertile North American streams.
12.   Atlantic salmon mortality rate was increased by an acidic episode
     during one winter in one of the three salmon streams.  Such events
     may occur periodically and could potentially depress salmon
     production.
13.   Forage fish species distribution may have been related in part to
     stream acidity,  and blacknose dace biomass  in one stream may have
     been reduced during one  season by elevated  exchangeable Al
     concentrations along  with reduced pH.
14.   Atlantic  salmon  smolts exhibited physiological and morphological
     symptoms  of ionoregulatory  stress  in  artificial stream channels
     when pH was reduced to 5.5  and  exchangeable Al exceeded 200 Pg/1.
15.   Atlantic  salmon  fry growth  decreased  and  mortality increased when
     pH was decreased to 5.5  in  artificial stream channels.  Addition of
     Al  increased mortality only slightly  above that caused by acid
     alone.
16.  Whole  body ion content was  not  a good indicator of ionoregulatory
     stress  in Atlantic salmon fry,  but growth,  gill morphology,  and
     behavior  were.
17.  Exposure  to acid caused  gill  chloride cell hyperplasia  but  not
     hypertrophy in Atlantic salmon  smolts.   Addition of  Al  reduced
     chloride cell numbers,  possibly by directly poisoning the  cells.
18.  Aluminum exposure caused severe gill  deformities  in  Atlantic salmon
     fry.

-------
                                    185
                             LITERATURE CITED

Alberts, B.,  D. Bray,  J.  Lewis, M.  Raff,  K.  Roberts,  and J.  Watson.
     1983.  Molecular  Biology of  the Cell.   Garland Publishing,  New York,
     NY, USA.   •
Armour, C., K. Burnham,  and W.  Platts.  1983.   Field methods and
     statistical  analyses for monitoring small  salmonid streams.
     Fish & Wildlife  Service FWS/OBS-83/33.   200  pp.
   U.S.
Avella, M., A. Masoni, M.  Bornancin,  and  N.  Mayer-Gostan.  1987.   Gill
    morphology and  sodium  influx  in rainbow trout  (Salmo gairdneri)
    acclimated to artificial  freshwater environments.   J.  Exp.  Zool.
    241:  159-169.

Baker, J.  1982.  Effects on fish  of metals  associated  with
    acidification.  Pages  165-176 jln  R.E. Johnson  (ed).   Acid  rain/
    fisheries.  Proc. Internat. Symp.  on  Acidic  Rain and Fisheries
    Impacts in northeastern North America.   American Fisheries  Society,
    Bethesda, Maryland, USA.

Baker, J., and C. Schofield.  1980.  Aluminum toxicity  to fish  as  related
    to acid precipitation  and Adirondack  surface water quality.   Pages
    292-293 J.n Drablos, D., and A. Tollan (eds).  Ecological Impact of
    Acid   Precipitation.   Acid Rain - Effects on Forest  and Fish
    Project, Aas, Norway,,

Baker, J., and C. Schofield.  1982.  Aluminum toxicity  to fish  in  acidic
    waters.  Water Air Soil Pollut. 18: 289-309.

Beland, K., R. Jordan, and A. Meister. 1982.  Water depth  and velocity
    preferences of spawning Atlantic  salmon  in Maine rivers.  North
    Amer. J. Fish. Mgt. 2: 11-13.

Bley,  P.  1986.  Seasonal habitat  selection of juvenile brook trout
    (Salvelinus fontinalis) and landlocked Atlantic salmon (Salmo salar)
    in  streams:  evidence  of competition.  MS Thesis,  Univ. of Maine,
    Orono.  69 pp.

Brakke, D., A. Henriksen,  and S.  Norton.  1987.   Strong acids due  to
    sulfate control pH of  humic and clearwater lakes in  Norway.   Nature
    (London) 329: 432-434.
Brakke, D., A. Henriksen, and S. Norton. 1989.  Background
    concentrations of sulfate in lakes.  Water Resour. Res.:
In Press.
Brown, D. 1981.  The effects of various cations on the survival of brown
    trout, (Salmo trutta) at low pH's.  J. Fish Biol. 18: 31-40.

Brown, D. 1982.  The effect of pH and calcium on fish and fisheries.
    Water Air Soil Poll. 18: 343-351.

-------
                                   186

Brown, D. 1983.  Effect of calcium and aluminum concentrations on the
    survival of brown trout (Salmo trutta) at low pH.  Bull,, Environ.
    Contam. Toxicol. 30: 582-587.

Butler, J. 1979.  Methods for improved light microscope microtomy.
    Stain Tech. 54: 53-69.

Byrne, J., F. Beamish, and R. Saunders.  1972.  Influence of salinity,
    temperature, and exercise on plasma  osmolality and ionic
    concentration  in Atlantic salmon (Salmo salar).  J. Fish. Res. Bd.
    Can. 29: 1217-1220.

Chandler, J. 1977.  X-ray microanalysis  in the electron microscope. JEn
    A.M. Glauert (ed).  Practical Methods in Electron Microscopy, Volume
    5, Part 2.  Amsterdam, North-Holland.

Chapman, D. 1966.  Food and  space as regulators of salmonid populations
    in streams.  Am. Nat.  100: 345-357.

Chemical Rubber Company.  1973.  Handbook of Chemistry and  Physics.  54th
    Edition.  CRC  Press,  Cleveland, Ohio, USA.

Chernitsky, A.  1980.   Functional state  of chloride cells of Baltic
    salmon  (Salmo  salar L.)  at different stages of its life cycle.
    Cotap. Biochem.  Physiol.  67A: 519-522.

Chevalier,  G., L.  Gauthier,  and  G. Moreau.  1985.  Histopathological and
    electron microscopic  studies of gills of brook trout,  (Salvelinus
    fontinalis), from acidified  lakes.   Can. J. Zool.  63:  2062-2070.

Chow,  V.  1964.  Handbook of  Applied Hydrology.  McGraw-Hill Book Co.,
    New York,  NY,  USA.

Chretien, M.,  and  M.  Pisam.  1986.   Cell renewal  and  differentiation in
    the gill  epithelium of fresh-  or  salt-water-adapted euryhaline  fish
    as revealed by (3H)-Thymidine  radioautography.   Biol.  Cell.  56:
     137-150.

Christophersen, N.,  L. Dymbe, M. Johannssen,  and  H.  Seip,  1983.   A model
     for sulphate  in stream-water at Storgama,  southern Norway.  Ecol.
    Model.  21:  35-61.

Cosby, B.,  P.  Whitehead,  and R.  Neale.   1986.   A preliminary model of
     long-term changes in stream acidity in southwestern Scotland.  J.
    Hydrology 84:  381-401.

Cronan, C., and G. Aiken. 1985.   Chemistry and transport of soluble
     humic substances in forested watersheds of the Adirondack Park, New
     York.  Geochim. Cosmochim Acta 49:   1697-1705.

 Denton, J., A. Freeraont, and J.  Ball. 1984.  Detection and distribution
     of aluminum in bone.  J. Clin. Pathol. 37: 136-142.

-------
                                    187

 Dougan, W.,  and  A.  Wilson.  1974.   The absorptionmetric determination of
      aluminum  in water.   A  comparison of some chronogenic reagents and
      the  development  of  an  improved method.   Analyst 99:  413-430.

 Dively, J.,  J. Mudge, W.  Neff,  and A.  Anthony.  1977.  Blood P0_,  PCO»
     and pH changes  in brook trout (Salvelinus fontinalis) exposed  to
     sublethal  levels  of  acidity.   Comp.  Biochem.  Physiol. 57A:  347-351.

 Edwards,  D., and S. Hjeldnes.  1977.   Growth  and survival  of salmonids in
     water of different pH.   Acid  Precipitation -  Effects  on Forest and
     Fish  Project, Aas, Norway.  Res.  Rep.  10.   12  pp.

 Egginton,  S. 1988.  Effect  of  inter-animal variation on a nested
     sampling design for  stereological analysis of skeletal muscle.  Acta
     Stereologica:   In Press.

 Egginton,  S.,  and I. Johnston.  1982.  Muscle  fiber differentiation and
     vascularization in the  juvenile  European  eel  (Anguilla anguilla L.).
     Cell.  Tiss.  Res.  222: 563-577.

 Egglishaw, H., and  P. Shackley. 1977.  Growth,  survival,  and production
     of juvenile  salmon and  trout  in  a Scottish stream,  1966-1975.   J.
     Fish.  Biol.  11: 647-672.

 El-Fiky,  N., S.  Hinterleitner,  and W. Wieser.  1987.   Differentiation of
     swimming muscles, and development of  anaerobic power  in the larvae
     of cyprinid  fish (Pisces, Teleostei).  Zoomorphology  107: 126-132.

 Farmer, G., T. Goff, D. Ashfield,  and H.  Samant.  1980.  Some effects of
     the acidification of Atlantic  salmon  rivers in Nova Scotia.  Can.
     Tech.  Rep. Fish. Aquat.  Sci. 972.  13 pp.

 Farquhar, M., and G. Palade. 1963.  Junctional  complexes  in various
     epithelia.   J.  Cell. Biol.  17: 345-412.

 Fernandez, I., L. Wortmari,  and  S.  Norton. 1986.   Composition of
     precipitation at the National  Atmospheric Deposition  Program/
     National Trends Network (NADP/NTN) site in Greenville,  Maine.  Maine
     Ag. Exp. Sta. Tech. Bull. 18.  24 pp.

 Ferreira, K., and B. Hill.  1982.   The effect of low external  pH on
     properties of the paracellular pathway and Junctional structure  in
     frog  skin.  J. Physiol. 332: 59-67.

Flik, G., J. Van Rijs, arid  S. Wendelaar Bonga.  1984.  Evidence  for the
     presence of calmodulin  in fish mucus.  Eur. J. Biochem,  138:
     651-654.

Fraser, G., and H. Harvey.  1984.  Effects of environmental  pH on ionic
     composition of the white sucker (Catastomus commersoni)  and the
     pumpkinseed (Lepomis gibbosus).  Can. J.  Zool. 62:  249-259.

-------
                                   188

Freeman, R., and W. Everhart. 1971.  Toxicity of aluminum hydroxide
    complexes in neutral and basic media to rainbow trout.  Trans. Amer.
    Fish. Soc. 4: 644-658.

Gee, A., N. Milner, and R. Hemsworth.  1978a.  The production of juvenile
    Atlantic salmon, (Salmo salar), in the upper Wye, Wales.  J. Fish.
    Biol. 13: 439-451.

Gee, A., N. Milner, and R. Hemsworth.  1978b.  The effect of density  on
    mortality in juvenile Atlantic salmon (Salmo salar).  J. Anim. Ecol.
    47: 497-505.

Gibbons, J., and J. Gee.  1972.  Ecological segregation  between longnose
    and blacknose dace in the Mink River, Manitoba.   J. Fish. Resear.
    Bd. Canada 29:  1245-1252.

Giles, M., H. Majewski, and B.  Hobden. 1984.  Osmoregulatory and
    hematological responses of  rainbow trout  (Salmo gairdneri) to
    extended environmental acidification.  Can. J. Fish Aquat. Sci.  41:
    1686-1694.

Gjedrem, T.  1976.   Genetic variation  in tolerance of  brown  trout  to  acid
    water.   SNSF Project, Report  5, Aas, Norway.

Goss,  G.,  and C. Wood.  1988.  The effects of  acid and acid/aluminum
    exposure on circulating plasma cortisol  levels and  other blood
    parameters in  the rainbow trout,  (Salmo  gairdneri).  J. Fish.  Biol.
    32:  63-76.

Grande,  M.,  I. Muniz, and S.  Andersen. 1978.  Relative tolerance  of  some
    salmonids to acid waters.   Verh.  Internat.  Verein.  Limnol.  20:
    2076-2084.

Gustafson-Marjanen. K.  1982.  Atlantic salmon (Salmo  salar  L.)  fry
    emergence: success,  timing, distribution.  Master of  Science  Thesis,
    Dept.  of Zoology, Univ.  of  Maine, Orono,  Maine.

Raines,  T.,  S. Pauwels,  and  C.  Jagoe. 1986.   Predicting and evaluating
    the effects  of acidic precipitation on water chemistry and endemic
    fish populations in the  northeastern United States.  U.S.  Fish and
    Wildlife Service,  Eastern Energy and Land Use Team. Biol.  Rep.
    80(40.23).   139 pp.

Haines,  T., C.  Jagoe,  F.  Dwyer, and D. Buckler. 1988.  Trace metal body
    burdens and  gill damage  in fish as related to surface water
    acidification from atmospheric deposition.   Pages 90-104 in
    R. Ryans (ed).  Fate and Effects of Pollutants on Aquatic
    Ecosystems,  Proceedings  of USA-USSR Symposium,  Oct. 19-21 1987.
    U.S. Environmental Protection Agency,  Athens,  Georgia.
    EPA/600/9-88/001.

Hall, R.,  G. Likens, S. Fiance, and G. Hendrey. 1980.  Experimental
     acidification of a stream in the Hubbard Brook Experimental Forest,
     New Hampshire.  Ecol. 61: 976-989.

-------
                                    189

 Harvey, H. 1980.  Widespread and diverse changes in the biota of North
     American lakes and rivers coincident with acidification.  Pages
     93-98 in Drablos, D. and A. Tollan (eds).  Ecological Impact of
     Acid Precipitation.  Acid Rain - Effects on Forest and Fish Project,
     Aas, Norway.

 Hem, J. 1968.   Graphical methods for studies of aqueous aluminum
     hydroxide,  fluoride, and sulfate complexes.  Geological Survey
     Water-Supply Paper 1827-B.   U.S. Gebl. Survey.  33 pp.

 Henriksen, A.  1984.   Changes in base cation concentrations due to
     freshwater  acidification.  Verh. Internat. Verein. Limnol. 22:
     692-698.

 Henriksen, A.,  0.  Skogheim,  and B.  Rosseland. 1984.  Episodic changes in
     pH and aluminum-speciation  kill fish in a Norwegian salmon river.
     Vatten 40:  255-260.

 Henriksen, A.,  D.  Brakke,  and S.  Norton.  1988a.  Total organic
     concentrations in acidic lakes  in southern Norway.  Environ.  Sci.
     Tech.  22: 1103-1105.

 Henriksen, A.,  B.  Wathne,  E. Rogeber,  S.  Norton,  and D.  Brakke.  1988b.
     The role of stream substrates in aluminum mobility and acid
     neutralization.   Water.  Res.  22:  1069-1073.

 Holeton, G., J.  Booth;  and G. Jansz.  1983.   Acid  base  balance and Na+
     regulation  in  Rainbow  trout during exposure to, and  recovery from,
     low environmental pH.  J. Exp.  Zool.  228:  21-32.

 Houston A., and L. Threadgold.  1963.   Body fluid  regulation in smolting
     Atlantic salmon.   J. Fish.  Res.  Bd. Can.  20:  1355-1369.

 Humason, G. (1967).   Animal  Tissue  Techniques.  W.H. Freeman and  Co.,
     San Francisco, California,  USA.

 Hunn, J. 1985.   Role  of calcium in  gill functiom  in freshwater fishes.
     Comp.  Biochem. Physiol.  82A:  543-547.

 Hunt, R. 1974.   Annual  production by brook  trout  in Lawrence  Creek
     during eleven  successive years.  Wise.  Dept.  Nat.  Resour.  Tech. Bui.
     82.  29 pp.                                 '

Hynes, H.  1970.   The  ecology of running waters.   University  of Toronto
     Press, Toronto, Canada.

Jagoe, C., T. Haines, and D. Buckler.  1987.  Abnormal  gill development
     in Atlantic  salmon  (Salmo salar) fry exposed  to aluminum at low pH.
    JEn Witters,  H., and 0. Vanderborght (eds).  Ecophysiology  of Acid
     Stress in Aquatic Organisms.  Annls. Soc. R.  Zool. Belg.  117 (suppl.
     1): 375-386.

-------
                                   190
Jagoe, C. 1988.  A histological and ultrastructural study of the effects
    of low pH and aluminum upon the gills of Atlantic salmon.  Ph.D.
    Dissertation, University of Maine, Orono, Maine.  230 pp.

Johnson, D., H. Simonin, J. Colquhoun, and F. Flask. 1987.  In situ
    toxicity tests of fishes in acid waters.  Biogeochemistry 3:
    181-208.

Johnston, C., R. Saunders, E. Henderson, P. Harmon, and K. Davidson.
    1984.  Chronic effects of low pH on some physiological aspects of
    smoltification in Atlantic salmon (Salmo salar).  Can. Tech. Rep.
    Fish. Aquat. Sci. 1294.  7 pp.

Karlsson-Norrgren, L., W. Dickson, 0. Ljungberg, and P. Runn. 1986a.
    Acid water and aluminum exposure: gill lesions and aluminum
    accumulation in farmed brown trout, (Salmo trutta L.).  J. Fish.
    Diseases 9: 1-9.

Karlsson-Norgren, L, I. Bjorklund, 0. Ljungberg, and Runn P. 1986b.
    Acid water and aluminum exposure: experimentally induced gill
    lesions in brown trout, (Salmo trutta L.).  J. Fish Diseases 9:
    11-25.

Karnaky, K. 1986.  Structure and function of the chloride cell of
    Fundulus heteroclitus and other teleosts.  Amer. Zool. 26: 209-224.

Kjartansson H. 1984.  Na-K-ATPase and residual Mg-ATPase activity of
    gill, pseudobranch and kidney tissues from salmonids before and
    after exposure to aqueous aluminum at low pH.  Can. Scient. Thesis,
    University of Bergen, Bergen, Norway.

Kwain, W., and G. Rose. 1985. Growth of brook trout (Salvelinus
    fontinalis) subject to sudden reductions of pH during their early
    life history.  Trans. Am. Fish. Soc.  114: 564-570.

Lacroix, G. 1985a.  Plasma ionic composition of the Atlantic salmon
    (Salmo salar), white sucker (Catostomus  commersoni), and alewife
    (Alosa pseudoharengus) in some acidic rivers of Nova Scotia.  Can.
    J. Zool. 63:  2254-2261.

Lacroix, G. 1985b.  Survival of eggs and  alevins of Atlantic salmon
    (Salmo salar) in relation to the chemistry of interstitial water in
    redds  in some acidic streams of Atlantic Canada.   Can. J. Fish.
    Aquat. Sci. 42: 292-299.

Lacroix, G., D. Gordon, and D. Johnston.  1985c.  Effects of  low
    environmental pH on the survival, growth, and ionic composition of
    postemergent  Atlantic  salon (Salmo  salar).  Can. J. Fish. Aquat.
    Sci. 42: 768-775.

Langdon, R.  1983.  Fisheries status  in  relation to  acidity in selected
    Vermont lakes.  Vermont Agency of Environmental Conservation Report.

-------
                                    191

Langdon,  R.  1984.   Fishery status  in relation to acidity in selected
     Vermont  lakes,  1983.   Report of the Dept. of Water Resources and
     Environmental Engineering,  Agency of Environmental Conservation,
     Montpelier,  Vermont.

Laurent.  P.,  and S.  Dunel.  1980.   Morphology of gill epithelia in fish.
     Am. J. Physiol.  238:  R17-R159.

Laurent,  P,  H. Kobe,  and  S.  Dunel-Erb.  1985.   The role of environmental
     sodium chloride  relative to calcium in gill morphology of freshwater
     salmonid  fish.   Cell.  Tissue Res. 240:  675-692.

Leino, R, and J. McCormick.  1984.   Morphological and morphometrical
     changes  in chloride cells of the gills of Pimephales promelas after
     chronic  exposure  to acid water.   Cell.  Tissue Res.  236:  121-128.

Leino, R, P.  Wilkinson, and  J.  Anderson.  1987.   Histopathological
     changes  in the gills  of  pearl  dace  (Semotiilus margarita) ,  and
     fathead minnows ,  (Pimephales promleas) ,  from experimentally
     acidified Canadian lakes.   Can.  J.  Fish.  Aquat.  Sci.  44:  126-143.

Leivestad, H. , and  I. Muniz.  1976.   Fish kill at low pH in a Norwegian
     river.  Nature  (London)  259: 391-392.

Leivestad, H. , I. Miniz,  and B.  Rosseland.  1980.   Acid stress in trout
     from  a dilute mountain stream.   Pages  318-319 jin Drablos, D. ,  and  A.
     Tollan (eds.).  Proc.  Internal.  Conf.  Ecol.  Impact of Acid Precip.,
     Aas,  Norway.

Lucchetti, G. , and G. Pardue. 1982.   The production  ecology of brook
     trout in  southwest Virginia.   Virginia  J.  Sci. 33(3):  81.

MacKenzie, C. , and J. Moring. 1988.   Estimating survival of  Atlantic
     salmon during the intragravel  period.   N.  Am.  J.  Fish. Mgt.  8:
     45-49.
Mann, R. 1971.  The population, growth, and production of  fish  in  four
    small streams in southern England.  J. Anim. Ecol. 40:  155-190.

Marshall, W. 1978.  On the involvement of mucous secretion in teleost
    osmo regulation. Can. J. Zool. 56: 1088-1091.

Marshall, W. 1985.  Paracellular ion transport in trout opercular
    epithelium models osmoregulatory effects of acid precipitation.
    Can. J. Zool. 63: 1816-1822.

Matey, V. 1984.  Comparative analysis of the gill epithelium
    ultrastructure in the perch from basins with a different ion
    composition.  Tsitologiya 26: 778-782.

McDonald, D. 1983.  The effects of H+ upon the gills of freshwater fish.
    Can. J. Zool. 61: 691-703.

-------
                                   192

McDonald, D., H. Hobe, and C. Wood. 1980.  The influence of calcium on
    the physiologiacal responses of the rainbow trout, (Salmo
    gairdneri), to low environmental pH.  J. Exp. Biol. 88: 109-131.

McDonald, D., R. Walker, and P. Wilkes. 1983.  The  interaction of
    environmental calcium and low pH on the physiology of the rainbow
    trout, (Salmo gairdneri. II.) Branchial ionoregulatory mechanism.
    J. Exp. Biol. 102: 141-155.

McDowell, E. 1978.  Fixation and processing.  JCn Trump, B. and R. Jones
    (eds).  Diagnostic Electron Microscopy. Vol. 1.  J. Wiley and Sons.
    New York, NY, USA.

McWilliams, P.  1980.  Acclimation to an acid medium in the brown trout
    (Salmo trutta).  J. Exp. Biol. 88: 269-280.

McWilliams, P.  1982.  The effects of calcium on sodium fluxes in the
    brown trout,  (Salmo trutta), in neutral and acid water.  J. Exp.
    Biol. 96: 439-442.

McWilliams,  P.  1983.  An investigation of  the  loss  of bound calcium from
    the gills of  the brown trout, (Salmo trutta), in acid media.  Comp.
    Biochem. Physiol. 74A: 107-116.

McWilliams,  P., and W. Potts. 1978.  The effects of pH and calcium
    concentration on gill potentials in the brown trout  (Salmo trutta).
    J. Comp. Physiol. 126: 227-286.

Menendez, R. 1976.  Chronic effects of reduced pH on brook trout
    (Salvelinus fontinalis).  J. Fish. Res. Bd. Can. 33:  118-123.

Milligan, C., and C. Wood. 1982.  Disturbances in haematology, fluid
    volume distribution and circulatory function associated with low
    environmental pH in the rainbow trout,  (Salmo gairdneri).  J. Exp.
    Biol. 99: 397-415.

Momrasen, T.  1984.  Metabolism of  the fish  gill.  jLn Hoar, W.S., and D.J.
    Randall  (eds).  Fish Physiology 10B: 203-238.   Academic Press,
    New York, NY, USA.

Morgan, A.  1980.  Preparation of  specimens:  Changes in  chemical
    integrity.  _In Hayat, M.A.  (ed).  X-ray Microanalysis in Biology.
    University  Park Press, Baltimore, Maryland, USA.

Morgan, A.,  T.  Davies, and D. Erasmus.  1978.   Chapter  4.   In Erasmus,
    D.A.  (ed).  Electron Microprobe Analysis  in Biology.   Chapman Hall,
    London,  England.

Morgan, M.  1974a. The development  of gill arches  and  gill  blood  vessels
    of the  rainbow trout,  (Salmo  gairdneri).   J. Morphol.  142:  351-364.

Morgan, M.  1974b. Development  of secondary lamellae of the  gills  of  the
    trout,  (Salmo gairdneri  (Richardson)).   Cell.  Tiss.  Res.  151:
    509-523.

-------
                                    193

National Atmospheric Deposition Program.  1986.  NADP/NTN Annual  Data
    Summary:  Precipitation Chemistry in  the United  States.   1985.
    Natural Resource Ecology Laboratory,  Colorado  State University, Fort
    Collins, Co.  363 pp.

National Atmospheric Deposition Program.  1987.  NADP/NTN Annual  Data
    Summary:  Precipitation Chemistry in  the United  States.   1986.
    Natural Resource Ecology Laboratory,  Colorado  State University, Fort
    Collins, Co.  353 pp.

Neves, R., and G. Pardue.  1983.  Abundance and production of  fishes in  a
    small Appalachian stream.  Trans. Am. Fish. Soc.  112: 21-26.

Neville, C. 1985.  Physiological response of juvenile rainbow trout,
    (Salmo gairdneri) to acid and aluminum - prediction of field
    responses from laboratory data.  Can. J. Fish. Aquat. Sci. 42:
    2004-2019.

Norton, S., and A. Henriksen. 1983.  The  importance  of CO  in evaluation
    of effects of acidic deposition.  Vatten 39: 346-354.

Norton, S., A. Henriksen, B. Wathne, and  A. Veidel.  1987a.  Aluminum
    dynamics in response to experimental  additions of acid to a  small
    Norwegian stream jln Proc. Internat. Symp. on "Acidification  and
    Water Pathways".  UNESCO 1: 249-258.

Norton, S., A. Henriksen, R. Wright, and  D. Brakke.  1987b.  Episodes of
    natural acidification of surface waters by neutral salts jln
    Extended Abstracts, Moldan and Paces  (eds).  Proceedings  of
    Internat. Workshop on "Geochemistry and Monitoring in
    Representative Basins" United Nations Envirn.  Prog. 148-150.

Norton, S., I. Fernandez, T. Haines, J. Kahl, S. Nodvin, L. Rustad, P.
    Wigington,  H. Erickson. 1988.  The Watershed Manipulation Project,
    (WMP) in Maine (Abs.).  Water Pollut. Con. Fed.  Annual Meeting,
    Hartford, CT, USA.

Norton, S., J. Kahl, A. Henriksen, and R. Wright.  1989.  Buffering of pH
    by sediments in streams and lakes.  In Advances  in Environmental
    Science, Acidic Precipitation.  Springer-Verlag:  In Press.

O'Connor, J., and G. Power. 1976.  Production by brook trout  (Salvelinus
    fontinalis) in four streams in the Mafamek watersheds, Quebec.  J.
    Fish. Res. Bd. Canada 33: 6-18.

Orr, P., R. Bradley, J. Sprague, and N. Hutchinson.  1986.  Acclimation
    induced change in toxicity of aluminum to rainbow trout (Salmo
    gairdneri).  Can. J. Fish. Aquat. Sci. 43: 243-246.

Osberg, P., H. Hussey III, and G. Boone,  (eds). 1985.  Bedrock geologic
    map of Maine.  Maine Geol. Survey, Augusta, Maine.

-------
                                   194

Pagenkopf, G. 1983.  Gill surface interaction model for trace-metal
    toxicity to fishes: role of complexation, pH and water hardness.
    Environ. Sci. Tech. 17: 342-347.

Peterson, N., and C. Cederholm. 1984.  A comparison of the removal and
    mark-recapture methods of population estimation for juvenile Coho
    salmon in a small stream.  North Am. J..Fish. Mgt. 4: 99-102.

Peterson, R. 1978.  Physical characteristics of Atlantic salmon spawning
    gravel in some New Brunswick streams.  Fisheries and Marine Service
    Technical Rep. 785, St. Andrews, New Brunswick.  28 pp.

Platts, W. 1974.  Geomorphic and aquatic conditions influencing
    salmonids and stream classification, with application to ecosystem
    management.  U.S. Forest Service, SEAM Program, Billings, Montana.
    199 pp.

Platts, W., W. Megahan, and G. Minshall. 1983.  Methods for evaluating
    stream, riparian and biotic conditions.  U.S. Dept. Agric. General
    Tech. Rep. INT-138.  70 pp.

Porter, T. 1973.  Fry emergence trap and holding box.  Prog. Fish-Cult.
    35: 104-106.

Potts, W. 1984.  Transepithelial potentials  in fish gills.  Jin Hoar,
    W.S., and D.J. Randall (eds).  Fish Physiology 10B: 105-128.
    Academic Press, New York, NY, USA.

Power, G. 1973.  Estimates of age, growth, standing crop and production
    of salmonids in some North Norwegian rivers and streams.  Rep. Inst.
    Freshw. Res. Drottningholm.  53: 78-111.

Raleigh, R. 1982.  Habitat suitability index models: Brook trout.  U.S.
    Dept. Fish & Wildlife Serv.  FWS/OBS-82/10.24.  42 pp.

Randall, R., and V. Paim. 1982.  Growth, biomass, and production of
    juvenile Atlantic salmon (Salmo salar L.) in two Miramichi River,
    New Brunswick, tributary streams.  Can.  J. Zool. 60: 1647-1659.

Reuss, J. 1983.  Implications of the Ca-Al exchange system for the
    effect of acid precipitation on soils.   J. Environ. Qual. 14: 26-31.

Revel, J., and M. Karnovsky. 1967.  Hexagonal array of subunits in
    intercellular junctions of the mouse heart and liver.  J. Cell.
    Biol. 33: C7-C12.

Ricker, W. 1968.  Methods for assessment of  fish population in fresh
    waters.  IBP Handbook No. 3, Blackwell  Scientific Publications,
    Oxford, Great Britain.

Ricker, W. 1975.  Computation and interpretation of biological
    statistics for fish populations.  Bui. Fish. Res. Bd. Canada, 191.
    382 pp.

-------
                                    195

Rosseland, B. 1980.  Physiological  responses  to acid water  in  fish.   2.
    Effects of acid water on metabolism and gill ventilation in  brown
    trout, (Salmo trutta L.) and brook trout,  (Salvelinus fontinalis
    Mitchill).  Pages 348-349 jln D. Drablos,  and A. Tollan  (eds).  Proc.
    Internat. Conf. Ecol. Impact of Acid Precip., Norway, 1980.

Rosseland, B., and 0. Skogheim. 1984.  A comparative study  on  salmonid
    fish species in acid aluminum-rich waters  II.  Physiological stress
    and mortality of one and two year old  fish.  Rep.  Inst. Freshw. Res.
    Drottningholm 61: 186-194.

Rosseland, B., 0. Skogheim, H. Abrahamsen, and D. Matzow. 1986.
    Limestone slurry reduces physiological stress and  increases  survival
    of Atlantic salmon (Salmo salar) in an acidic Norwegian river.  Can.
    J. Fish. Aquat. Sci. 43: 1880-1893.

Sardet, C., M. Pisam, and J. Maetz. 1979.  The surface epithelium of
    teleostean fish gills: cellular and functional adaptations of the
    chloride cell in relation to salt adaptation.  J.  Cell. Biol.:
    96-117.

Sardet C. 1980.  Freeze fracture of the gill  epithelium of  euryhaline
    teleost fish.  Am. J. Physiol.  238: R207-R212.

Scheider, W., J. Moss, and P. Dillon. 1978.  Measurement and uses of
    hydraulic and nutrient budgets.  NALMS proceedings X: 77-83.

Schofield, C., and Trojnar, J. 1980.  Aluminum toxicity to  fish  in
    acidified waters.  Pages 341-366 in Toribara, T., M. Miller, and  P.
    Morrow (eds).  Polluted rain.   Plenum Press, New York,  NY, USA.

Schreck, C. 1981.  Stress and compensation in  teleostean fishes:
    Response to social and physical factors.  _In Pickering, A.D. (ed).
    Stress and Fish.  Academic Press, New York, NY, USA.

Schwartz, F. 1958.  The breeding behavior of  the southern blacknose
    dace, (Rhinichthys atratulus obtusus) Agassiz.  Copeia  1958:
    141-143.

Scott, W., and E. Grossman. 1973.   Freshwater  fishes of Canada.  Bull.
    Fish Res. Bd. Canada 184.  966  pp.

Segner, H., R. Marthaler, and M. Linnenbach.  1988.  Growth, aluminum
    uptake and mucous cell morphometrics of early life stages of brown
    trout, (Salmo trutta), in low pH water.  Env. Biol. Fish. 21:
    153-159.

Sharpe, E., W. Kimmel, E. Young, and D. DeWalle. 1983.  In  situ
    bioassays of fish mortality in  two Pennsylvania streams acidified by
    atmospheric deposition.  Northeast. Environ. Sci.  2: 171-178.

-------
                                   196

Sherer, E., S. Harrison, S. Brown. 1986.  Locomotor activity and blood
    plasma parameters of acid-exposed lake whitefish (Coregonus
    clupeaformis).  Can. J. Fish. Aquat. Sci. 43: 1556-1561.,

Skartveit, A. 1981.  Relationships between precipitation chemistry,
    hydrology, and runoff acidity.  Nordic Hydrology 65-80.

Soivio, A., and E. Virtanen. 1984.  Physiological effects of stocking
    stress on Baltic salmon (Salmo salar).  EIFAC Techn. Paper 42,
    Suppl. Vol. 1,217.

Sokal, R., and F. Rohlf. 1969.  Biometry: The principles and practice of
    statistics in biological research.  1st edition.  W.H. Freeman and
    Company, San Francisco, CA, USA.

Solanki, T,, and M. Benjamin.  1982.  Changes in the mucous cells of the
    gills, buccal cavity and epidermis of the nine-spined stickleback,
    (Pungitus pungitus L.) induced by transferring the  fish to sea
    water.  J. Fish. Biol. 21: 563-575.

Stuarnes, M., T. Sigholt, and  0. Reite. 1984.  Reduced  carbonic
    anhydrase and Na-K-ATPase  activity in gills of salmonids exposed
    aluminum containing acid water.  Experimentia 40: 226-227.

Stuart, S., and R. Morris. 1985.  The effects of season and exposure to
    reduced pH (abrupt and gradual) on some physiological parameters in
    brown trout (Salmo trutta).  Can. J. Zool. 63: 1078-1083.

Thompson, W., and H. Borns Jr. 1985.  Surficial Geologic Map of Maine.
    Maine Geol. Survey, Auguata, Maine.

Traver, J. 1929.  The habits of the blacknose dace, (Rhinichthys
    atronasus).  J. Elisha Mitchell.  Sci. Soc. 45(1):  101-129.

Trial, J., J. Stanley, M. Batcheller, G. Gebhart, 0. Manghan," and P.
    Nelson. 1983.  Habitat suitability information:  Blacknose dace.
    U.S.  Dept. Fish & Wildlife Service, FWS/OBS-82/10.41.  28 pp.

Waters, T. 1977.  Secondary production in inland waters.  Adr. Ecol.
    Res. 10: 91-164.

Waters, T. 1983.  Replacement  of brook trout by brown trout over 15
    years in a Minnesota stream: production and abundance.  Trans. Am.
    Fish. Soc. 112: 137-146.

Whitworth, W., and R. Strange. 1983.  Growth and production of sympatric
    brook and rainbow trout in an Appalachian stream.   Trans. Am. Fish.
    Soc. 112: 469-475.

Wiener, J. 1983.  Comparative  analyses of fish populations in naturally
    acidic and circumneutral lakes in northern Wisconsin.  U.S. Fish and
    Wildlife Service, Eastern  Energy and Land Use Team,
    FWS/OBS-80/40.16.  107 pp.

-------
                                   197

Witters, H. 1986.  Acute acid exposure of rainbow trout (Salmo gairdneri
    Richardson): effects of aluminum and calcium on ion balance and
    haematology.  Aquatic Toxicology 8: 197-210.

Wood, C., and D. McDonald. 1982.  Physiological mechanisms of acid
    toxicity to fish.  Pages 197-226 jLn R.E. Johnson (ed).  Acid
    Rain/Fisheries.  American Fisheries Society, Bethesda, Maryland.

Wood, C., D. McDonald, C. Booth, B. Simons, C. Ingersoll, and H.
    Bergman. 1988a.  Physiological evidence of acclimation to
    acid/aluminum stress in adult brook trout (Salvelinus fontinalis).
    1. Blood composition and net sodium fluxes.  Can. J. Fish. Aquat.
    Sci. 45: 1587-1596.

Wood, C., B. Simons, D* Mount, and H. Bergman. 1988b.  Physiological
    evidence of acclimation to acid/aluminum stress in adult brook trout
    (Salvelinus fontinalis).  Can. J. Fish. Aquat. Sci. 45: 1597-1605.

Wright, R., S. Norton, D. Brakke, and T. Frogner. 1988.  Experimental
    verification of episodic acidification of freshwaters by sea salts.
    Nature (London) 334: 422-424.

Youson, J., and C. Neville. 1987.  Deposition of aluminum in the gill
    epithelium of rainbow trout (Salmo gairdneri Richardson) subjected
    to sublethal concentrations of the metal.  Can. J. Zool. 65:
    647-656.

Zadunaisky, J. 1984.  The chloride cell: The active transport of
    chloride and the paracellular pathways.  Pages 129-176 in Hoar,
    W.S., and D.J. Randall (eds).  Fish Physiology Vol. 10B, Academic
    Press, New York, NY, USA.

Zar, J. 1984.  Biostatistical Analysis. 2nd ed.  Prentice Hall,
    Englewood Cliffs, New Jersey.

Zenker, W., H. Ferguson, I. Barker, and B. Woodward. 1987.  Epithelial
    and pillar cell replacement in gills of juvenile trout, (Salmo
    gairdneri Richardson).  Comp. Biochem. Physiol. 86A: 423-428.

Zippin, C. 1958.  The removal method of population estimation.  J.
    Wildl. Mgt. 22(1): 82-90.

Zuchelkowsi, E., R. Lantz, and D. Hinton. 1981.  Effects of acid-stress
    on epidermal mucous cells of the brown bullhead (Ictalurus nebulosis
    (LeSeur)): A morphometric study.  Anat. Rec. 200: 33-39.

-------
                                    198
                                 APPENDIX A

                             QUALITY ASSURANCE

I.  Precision
    Replicate Sample Chemistry
    In each batch of water samples from up to six streams, one location was
sampled twice, with one set used as a field duplicate.  The standard
deviation was computed for each parameter in the pair.  Table Al lists the
means of these standard deviations for the project period.  Table A2
presents a complete listing results of chemical analyses of replicate
        The following abbreviations and units were used in the tables:
                                      M0=month
                                      SPCOND=specific conductance, yS/cm
                                      EQPH=air-equilibrated pH
pairs.
YR=year
DA=day
CLPH-closed-cell pH
ANC=acid neutralizing capacity, yeq/1 DIC=dissolved inorganic carbon,  mg/1
DOC=dissolved organic carbon, mg/1
CA=calcium, yeq/1
K-potasslum, yeq/1
SI02-silicon dioxide, mg/1
AL-filtered total aluminum, yg/1
F-fluoride, yeq/1
N03=nitrate,
                                      TCOLOR=true color, Pt/Co units
                                      MG=magnesium, yeq/1
                                      NA=sodium, yeq/1
                                      ALUN=unfiltered total aluminum, yg/1
                                      ALEXCH=exchanged aluminum, yg/1
                                      CL=chloride, yeq/1
                                      S04=sulfate, yeq/1

-------
                                    199

Table Al.  Mean, minimum, and maximum standard deviations for
chemical analyses of field duplicate sample pairs.
VARIABLE
SPCOND
CLPH
EQPH
ANC
DIG
DOC
TCOLOR
CA
MG
K
NA
SI02
ALUN
AL
ALEXCH
CL
N03
S04
N
65
65
65
64
56
53
64
59
59
59
59
56
54
60
60
60
60
60
MEAN
0.44
0.03
0.03
1.80
0.08
0.53
1.37
1.33
0.52
0.32
0.92
0.09
10.04
7.11
12.88
1.27
0.39
0.75
MINIMUM
VALUE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MAXIMUM
VALUE
4.24
0.26
0.22
""*'' 15.13
1.48
6.58
14.14
9.88
4.65
2.71
5.84
1.06
65.76
63.64
110.31
7.07
3.54
2.83

-------
                                   200
Table A2.  Results of chemical analysis of pairs of water samples collected
as field duplicates.
STREAK
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
BAKER
HALFHILE
HALFKILB
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
YR HO DA
86 1 7
86 1 7
86 3 3
86 3 3
86 5 22
86 5 22
86 7 31
86 7 31
86 11 4
86 11 4
87 1 13
87 1 13
87 4 21
87 4 21
87 5 19
87 5 19
87 7 28
87 7 28
87 9 8
87 9 8
87 11 17
87 11 17
85 12 18
85 12 18
86 1 27
86 1 27
86 1 30
86 1 30
86 3 20
86 3 20
86 6 3
86 6 3
86 8 12
86 8 12
SECOND
31
32
31
31
26
26
29
29
30
29
28
28
24
24
27
27
37
31
38
32
31
31
22
22
23
23
22
22
22
20
21
22
27
27
CLPH EQPH ANC DIC DOC
6.04 7.05 '140 . .
6.03 7.02 143 . .
6.57 7.26 161 2.0 11
6.58 7.23 160 2.0 10
6.65 7.04 129 1.4 11
6.68 7.03 128 1.3 9.6
6.18 6.90 109 1.8 19
6,23 6.96 109 1.9 18
6.56 7.09 136 1.5 9.8
6.61 7.09 136 1.5 9.6
6.03 7.07 129 3.3 9.4
6.00 7.07 123 3.2 9.2
6,35 6.87 78.2 0.9 8.3
6.31 6.91 91.4 1.1 8.4
6.48 7.11 105 0.9 8.8
6.56 7.03 110 0.9 8.8
6.73 7.40 212 3.0 12
6.75 7.41 212 2.8 12
6.98 7.63 269 3.3 3.2
6.95 7.62 270 3.4 3.2
6.44 7.03 103 1.6 10
6.34 7.03 103 1.6 11
6.21 6.57 64.5 1.5 5.6
6.27 6.26 61.5 1.5 4.0
5.29 5.46 10.7 0.8 6.6
5.28 5.48 10.7 0.8 6.6
5.52 5.55 . . .
5.66 5.70 .
5.96 6.44 41.4 0.8 3.9
5.98 6.48 39.4 0.8 3.6
6.48 6.72 58.6 0.7 4.9
6.50 6.72 60.2 0.7 3.5
6.58 7.16 103 1.2 5.8
6.56 7.11 108 1.3 6.3
TCOLOR
100
120
87
84
100
100
120
120
95
97
110
110
10
10
88
87
133
125
102
102
96
96
30
30
40
40
•
35
30
45
43
48
48
CA KG K
184 64 15
185 65 15
197 59 14
197 59 14
149 46 14
163 53 14
155 52 13
158 52 14
141 53 14
139 49 14
129 48 12
131 49 12
94 38 13
96 38 13
104 41 13
188 58 16
190 58 17
213 67 23
215 67 22
143 54 13
143 53 14
96 37 6
95 36 6
78 32 10
79 30 10
. . ,
75 29 6
74 28 6
i t i
98 35 7
100 35 7
HA SI02
89 9.2
90 9.2
78 9.4
77 9.4
70 3.9
70 3.9
77 7.5
77 7.3
83 7.1
84 7.1
77 8.6
77 8.8
69 4.3
70 4.3
80 3.2
88 6.4
92 6.2
99 5.1
97 4.7
88 7.1
90 7.1
94 8.1
90 7.7
70 4.3
69 4,3
• •
70 6.2
69 6.4
• •
87 6.4
87 6.4
ALUN
174
172
105
112
157
159
320
258
137
145
115
125
133
138
142
152
152
108
100
140
151
171
186
491
398
•
229
253
,
161
165
AL
150
148
84
88
124
120
194
227
136
122
107
105
123
121
138
138
143
78
70
138
141
155
157
263
279
•
167
178
,
158
141
ALEXCH
7
10
11
11
22
21
75
45
59
34
2
16
4
15
14
0
14
3
0
5
6
37
12
0
156
•
75
68
,
58
64
F CL
0 70
0 71
0 74
0 70
1 44
1 45
5 39
2 34
0 54
0 52
3 53
0 50
0 47
0 47
0 44
2 41
2 43
0 50
5 51
3 67
1 68
14 59
14 59
6 63
6 63
• •
15 48
15 51
, ,
20 53
20 55
H03 S04
5.0 66
6,0 67
8.0 58
7,0 56
0.0 50
0.0 51
7,0 61
6,0 63
2.0 46
2,0 47
4.6 57
4,4 58
1.3 54
1,4 54
0.7 53
1.7 26
1,6 27
4.8 20
3,2 19
0,0 65
0,0 67
0.0 73
1,0 71
10.0 64
10,0 64
•
1.0 70
1.0 73
• •
2.0 42
3.0 41

-------
                                       201
STREAM
HAIFHILK
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFHILE
HALFKILE
HALFHILE
HALFHILE
HALFHILB
HALFHILE
INDIAN CAKP
INDIAN CAHP
INDIAN CAHP
INDIAN CAHP
YR HO DA
86 11 18
86 11 18
87 1 27
87 1 27
87 4 7
87 4 7
87 7 14
87 7 14
87 10 21
67 10 21
87 12 15
87 12 15
85 11 6
85 11 6
86 1 20
86 1 20
SPCOND
26
26
24
25
18
19
28
28
26
27
25
26
31
31
26
26
CLPH EQPH AHC DIC DOC
6,60 6.93 101 1.5 3.1
6.59 7.00 103 1.1 2.6
6.38 6.96 90.1 1,3 2.4
6.44 6.95 90.1 1.3 2.5
5.74 6.09 19.9 0.2 2.9
5.82 6.04 19.4 0.3 2.0
6.70 7.09 127 4.3 3.8
6.79 7.16 116 2.2 .
6.49 6.89 75.2 1.0 6.0
6.57 6.93 77.0 0.9 5.9
6.22 6.61 45.8 . .
6.15 6.71 50.5 . .
6.05 6,40 68.3 1.9 11
6.05 6.42 70.1 1.8 11
6.01 6.56 56.7 2,2 ,
6.00 6.56 56.1 2.1 .
TCOLOR
22
25
23
24
23
30
44
42
45
46
37
35
81
80
26
23
CA HG
91 39
89 39
102 39
102 40
63 25
63 25
107 35
106 35
100 37
100 38
91 35
91 34
109 48
108 47
110 48
K
7
7
8
8
6
6
9
7
8
8
7
7
8
9
9
NA SI02
97 8.6
97 8.6
94 9.4
94 9.4
64 4.9
64 4.9
104 5.4
105 5.6
97 6.4
97 6.4
91 7.7
91 7.7
98 6.6
81 6.0
79 6.0
ALUN AL
115 119
136 104
151 132
143 150
206 194
202 195
143 132
148 143
167 145
177 169-
178 175
185 178
420 279
405 280
. 163
. 142
ALEXCH
37
40
- 44
42
41
72
30
14
19
26
32
, 33
:59
53
138
92
F CL
20 54
18 51
14 54
15 55
1 51
1 52
23 54
20 53
17 59
18 60
14 59
16 59
11 73
10 83
10 66
10 66
N03 S04
1.0 58
0.0 59
3.0 72
2.2 71
0.0 62
0.0 62
5,2 34
5.7 34
0.0 68
3.0 67
0,9 81
0.4 79
4.0 76
4.0 75
4.0 84
9.0 83
STREAK

INDIAN CAHP
INDIAN CAKP

INDIAN CAK?
INDIAN CAKP

INDIAN CAHP
INDIAN CAHP

INDIAN CAHP
INDIAN CAHP

INDIAN CAHP
INDIAN CAHP

INDIAN CAHP
INDIAN CAHP

INDIAN CAHP
INDIAN CAHP

INDIAN CAHP
INDIAN CAHP
YR HO DA SPCOND CLPH EQPH MC  DIC DOC TCOLOR CA  KG K   NA SI02 ALUN  AL ALKXCH  F CL N03  S04
86  3 31
86  3 31

86  4 28
86  4 28

86  6 17
86  6 17

86  9  9
86  9  9

86 12  2
86 12  2

87  2 10
87  2 10

87  4  1
87  4  1

87  8 11
87  8 11
16   5.65
15   5.73

21   6.07
20   6.08

22   6.42
21   6.45

21   6.14
23   5.84

22   5.97
23   6.01

25   6.26
24   6.32

21   5.49
21   5,47

30   6.50
28   6.49
6.05
6.16

6.48
6.47

7.40
7.46

6.89
6.89

6.39
6.45

7.06
6.96

5.54
5.63

7.01
7.15
22,9
23,2

36.1
35.9

B3.6
82.1

66.5
65.1

41,0
41.1

80.8
80,3

12.7
13.4

 129
 124
0.6 3.0
0.6 3.1

0.7 3.0
0.6 3.4

1.3 3.7
1.3 3.2

1.2 6.5
1.2 5.6

0.9 3.5
0.9 3.2

1,3 2.0
1.3 1.6

 .  0.5
 .   0.6

2.1 5.5
2,2 5.7
25
25

30
30

35
35

40
38
 64
 62

 75
 83

'95
 99

 87
 88
30    66
30,    66

18   101
17   101
31
29
 64
 61
47   111
43   110
26  6  60 4.5
30  6  57 4.5

29  5  66 5.1
30  5  67 5.1

35  6  79 5.8
37  6  79 5.8

33  5  85 6.4
33  5  86 4.9

33  5  77 6.2
32  5  78 6.2

40  8  88 7,7
39  8  87 7.7

29 11  67 3.6
30 11  67 3.6

44 10 101 5.8
44  9 100 5.8
346  174  114   11 49
  .185    0   10 47

205  153   41   10 49
292  154  150   10 48

  .   92   59   11 55
163   99   29   11 53

214  148   24   11 50
  .   107   35   11 48

227  156   86   14 47
211  159   71   15 46

140   85   46   14 50
156  101   42   13 52
  .   205  126
363   237  100
9 74
9 74
                         81    20    14  69
                         90    71    1267
2.0 72
2.0 70

0.0 71
0.0 71

1.0 63
1.0 62

0.0 60
0.0 58

0.0 88
1.0 84

3.8 76
3.7 79

1.8 65
1.6 64

3.0 41
2,0 40

-------
                                                 202
STREAM
YR HO DA SECOND  CLPH  EQPH ANC  DIG DOC TCOIOR CA  HG K    NA  SI02 ALUN  AL ALEXCH  F CL  N03  504
INDIAN CMP 87
INDIAN CAHP 87
INDIAN CAHP 87
INDIAN CAHP 87
INDIAN CAHP 88
INDIAN CAHP 88
ROCKY 85
ROCKY 85
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 86
ROCKY 87
ROCKY 87
ROCKY 87
ROCKY 87
ROCKY 87
ROCKY 87
SINCLAIR 85
SINCLAIR 85
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 86
SINCLAIR 87
SINCLAIR 87
11 3
11 3
12 29
12 29
1 29
1 28
11 25
11 25
2 18
2 18
5 8
5 8
7 29
7 29
12 29
12 29
3 26
3 26
6 16
6 16
9 22
9 22
12 5
12 5
3"l7
3 17
5 25
5 25
7 22
7 22
12 16
12 16
3 11
3 11
26
26
27
27
31
30
23
23
25
26
21
21
26
25
24
25
23
23
22
22
26
27
23
23
22
22
22
22
27
28
24
23^
25
25
6.16 6.81 57.6 1,3 .
6.17 6.79 55.9 1.4 '.
6.12 6.86 59.3 . .
6.10 6.88 59.8 . .
6.14 6.86 67.7 . .
6.08 6.89 66.9 . .
5.73 5.90 33.9 0.9 14
5.73 5.90 31.2 0.9 14
6.07 6.68 66.8 1.0 14
6.18 6.78 70.9 1.1 8.0
6.18 6.61 47.6 0.7 8.9
6.16 6.66 46.6 0.7 8.7
6.53 7.01 108 1.1 16
6.54 7.04 122 1.2 17
5.86 6.25 41.6 0.9 7.5
5.91 6.30 41.0 0.7 7.4
5.75 6.38 47.7 1.4 6.2
5.78 6.45 48.3 1.2 6.0
6.45 6.70 85.5 0.5 9.6
6.39 6.67 86.0 0.4 10
5.30 5.40 44.9 1.0 31
5.29 5.40 45.0 0.9 34
5 .'92 6.10 38.9 1.1 .
5.92 6.10 42.4 1.0 .
6.06 6.76 46.1 1.0 5.4
6.03 6.73 42.5 1.0 5.6
5.98 6.30 45.4 0.9 12
5.97 6.27 43.6 0.8 13
6.67 7.30 136 1.7 6.0
6.63 7.30 137 1.9 6.0
6.27 6.59 55.1,0.7 15
6.27 6.63 55.2 0.7 5.5
6.51 7.05 78.8 1.0 2.9
6.51 7.03 82.5 0.9 2.6
31
30
21
20
22
20
100
105
55
55
80
82
100
100
75
70
67
67
121
121
161
162
57
53
44
45
100
105
53
54
30
30
28
27
88 36 7
67 36 7
94 39 12
94 39 9
94 39 8
95 39 6
114 50 10
112 50 10
92 40 10
95 40 10
83 36 10
82 36 10
124 44 12
126 45 11
89 46 9
90 47 9
92 46 13
96 46 12
100 43 8
100 43 8
142 63 12
140 63 12
74 49 13
73 49 13
78 52 12
78 50 12
90 47 11
86 46 11
113 53 13
111 53 13
78 46 11
78 46 12
90 55 14
91 54 12
92 5.8
93 5.8
97 .
93 .
94 .
94 .
79 6.4
78 6.4
65 5.6
65 7.1
64 3.6
64 3.6
81 5.1
80 5.4
74 5.8
75 5.8
80 6.2
77 6.2
80 .
80 4.5
77 4.7
77 4.5
87 7.3
86 7.1
79 7.1
78 7.1
78 5.8
79 5.8
91 7.9
93 8.1
81 6,9
81 6.9
97 9.2
95 9.0
163
198
170
160
172
170
185
205
101
104
243
201
185
139
102
125
121
121
190
192
356
360
208
200
183
168
295
289
115
114
107
105
98
80
140
134
122
113
114
121
174
174
89
. 78
122
129
132
143
121
119
113
124
187
190
355
332
184
196
143
142
323
319
110
111
104
95
78
62
7
27
48
32
27
44
2
3
0
42
88
45
58
43
0
5
3
4
7
8
27
37
22
16
34
51
4
27
33
41
9
5
8
6
11 64
10 64
16 66
14 62
11 59
12 58
1 74
1 71
0 55
0 57
1 46
1 48
4 49
5 46
2 61
2 61
0 63
0 63
2 39
5 39
2 44
5 45
0 74
1 73
0 68
0 65
1 37
1 43
1 54
1 53
1 61
0 56
0 59
0 57
0.0 73
0.0 73
0.0 83
1.9 84
4,0 83
3.8 84
0.0 71
2.0 69
8.0 58
8.0 58
1.0 55
1.0 56
2.0 23
1.0 22
3.0 71
3.0 71
4,4 65
4,1 64
1.9 39
1.7 39
1.0 66
0.0 67
6.0 78
6.0 80
12.0 73
12.0 74
1.0 60
0.0 60
4.0 41
4.0 41
8.0 68
7,0 65
10,6 63
10,0 64

-------
203
STREAH
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SINCLAIR
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
SPRING
YR HO DA £
87 5 5
87 5 5
87 6 30
87 6 30
87 6 30
87 10 6
87 10 6
87 12 1
87 12 1
88 2 25
88 2 25
85 11 14
85 11 14
86 2 6
86 2 6
86 4 10
86 4 10
86 7 1
86 7 1
86 9 23
86 9 23
86 10 14
86 10 14
86 12 4
86 12 4
87 2 24
87 2 24
87 6 2
87 6 2
87 8 25
87 8 25
iPCONI
22
22
22
22
22
27
27
25
26
23
23
22
24
22
21
21
21
26
27
24
24
23
24
18
18
30
30
27
27
31
31
) CLPH BQPH ANC DIC DOC
6.37 6.77 59.3 0.5 4.1
6.32 6.84 57.0 0,5 4.0
6.19'6.51 60.4 0.2 13
6.19 6.51 60.4 0.2 13
6.14 6.4.1 59.1 0.2 12
6.21 6.73 64.3 0.8 9.2
6.19 6.47 63.6 0.7 9.1
5.07 5.07 15.0 . .
5.09 5.14 14.5 0.7 .
5.82 6.36 32.1 . ,
5.77 6.38 34.8 . .
5.81 6.50 55.0 1.4 3.1
6. IB 6.52 76.4 1.3 1.7
6.12 6.05 38.9 0.9 1.5
6.09 6.13 47.8 0.8 1.7
6.30 6.52 36.9 0.6 2.4
6.32 6.65 38.0 0.5 2.5
6.71 7.13 107 1.2 1.9
6.70 7.14 104 1.2 1.9
6.70 7.02 103 . 1.9
6.65 6.99 99.6 . 2.6
6.58 7.01 108 1.3 0.4
6.67 7.03 109 1.2 0.2
6.08 6.12 38.8 0.4 3.8
6.03 6.15 39.6 0.4 5.5
6.67 7.19 123 1.3 0.6
6.77 7.16 128 1.4 0.5
6.66 7.17 89.6 0.5 .
6.70 7.13 89.4 0.6 .
6.92 7.45 157 1.9 2.6
6.87 7.45 158 2.0 2.7
TCOLO!
37
37
109
109
109
79
82
106
107
46
43
15
15
9
10
9
10
23
20
20
20
9
9
40
35
9
7
15
16
9
9
\ CA KG K
65 37 12
65 38 12
82 45 8
82 45 8
. . .
85 47 13
87 48 14
85 48 26
•85 49 22

. . .
114 35 7
108 31 7
91 26 5
91 26 5
8022 5
79 21 5
115 31 5
117 31 5
109 28 6
122 28 7
129 33 9
124 32 8

79 22 8
150 36 8
150 36 9
110 29 7
107 29 7
146 37 7
145 37 7
' HA SI02
81 5.6
82 5.4
83 6.0
83 6.0

94 7.7
97 7.7
72 4.3
68 4.3

* «
81 6.6
82 6.4
68 6.4
67 6.4
60 5.4
60 5.4
79 4.1
79 4.1
84 7.1
87 7.1
88 7.7
87 7.5

51 4.9
94 9.0
99 8.8
82 4.1
90 4.1
108 3.4
107 3.4
ALUN
108
111
268
268
• •
204
201
396
412

•
125
118
126
132
122
114
68
59
75
86
66
72

268
58
72
89
95
45
46
AL 1
100
107
269
269
•
201
196
296
288

»
97
94
108
110
115
113
58
52
75
74
150
60

206
54
57
80
76
44
42
U.EXCI
11
9
42
42
•
31
16
65
44

t
33
19
67
68
39
35
31
28
18
21
27
35

80
1
20
17
15
10
12
i P CL i
0 52
0 52
2 43
2 43
. . .
1 65
0 67
3 61
4 57
0 57
i *
17 65
17 62
16 61
14 61
15 47
14 49
22 51
22 50
19 49
20 52
18 52
19 51

15 37
21 47
23 50
19 44
19 43
26 52
26 52
K03 S04
1.6 58
1.6 59
0.4 46
0.4 46
•
0.0 62
0.0 62
1.4 63
0.8 64
4,4 75

0.0 65
0.0 65
2.0 71
2.0 69
1.0 70
0.0 68
1.0 52
2.0 52
1.0 50
1.0 51
0.0 50
0.0 52

0.0 66
2.4 62
2.0 63
0.7 55
0.7 55
3.0 48
2.0 48

-------
                                    204

II.  Accuracy
     Field and Laboratory Blanks
     Field and laboratory blanks were generally collected for each sampling
date, and comprised at least 10% of the sample load.  All blanks were
subjected to the same handling, filtering, preservation, and storage
procedures as regular samples.  Field blanks were transported to the field
in the sampling containers, and aliquots were taken just prior to sampling.
Laboratory blanks were distilled water aliquots introduced into the sample
stream once the samples arrived in the laboratory.  The mean concentrations
of analyses in each blank type are summarized in Table A3.  The Student's
t-test value, and the probability that the mean is not zero are given in
the last two columns for appropriate parameters.  For each blank type,
specific conductance, and pH means are not expected to be zero, and the t
statistics are omitted.  Sample results were not adjusted for non-zero
blank concentrations.

-------
                                    205

Table A3.  Listing of number of samples means, minimum values, maximum values,
Student's t value testing whether the blank is different from zero, and
probability of exceeding t for sample blanks.
Variable
Field Blanks
SPCOND
CLPH
EQPH
ANC
DOC
TCOLOR
CA
MG
K
NA
SI02
AL
F
CL
N03
S04
N
29
32
2
25
1
1
39
39
38
38
33
36
37
37
37
36
Mean
1.79
5.55
5.79
1.14
0.00
5.00
0.33
0.00
-0.09
-0.42
0.05
0.78
0.03
0.51
0.00
0.00
Minimum
1.20
5.34
5.77
-1.90
0.00
5.00
-0.50
-1.65
-0.51
-2.61
-0.21
-3.00
0.00
0.00
0.00
0.00
Maximum
2.90
5.88
5.82
6.20
0.00
5.00
1.50
0.82
0.26
1.30
0.21
17.00
1.00
5.00
0.00
0.00
T
23.21
233.34
231.80
3.05
-
-
3.14
0.00
-2.22
-2.43
2.51
1.34
1.00
2.48
—
-
P
0.0001
0.0001
0.0027
0.0055
- .
—
0.0032
1.0000
0.0329
0.0199
0.0171
0.1898
0.3240
0.0181
—
-
Laboratory Blanks
SPCOND
CLPH
EQPH
ANC
DOC
TCOLOR
CA
MG
K
NA
SI02
AL
F
CL
N03
S04
15
31
3
37
42
7
61
62
61
62
61
68
62
63
63
62
1.17
5.59
5.47
1.27
0.28
1.29
0.47
-0.01
0.01
-0.48
0.01
1.59
0.39
0.86
0.00
0.00
0.90
4.91
4.87
-5.40
-0.40
0.00
-1.00
-1.65
-0.51
-2.61
-0.21
-7.00
0.00
0.00
0.00
0.00
1.90
5.80
6.03
4.30
2.10
4.00
7.98
0.82
1.79
3.48
0.21
22.00
9.00
10.00
0.00
0.00
19.39
202.94
16.30
3.79
3.74
2.46
2.59
-0.19
0.30
-3.13
1.43
3.16
2.01
3.15
—
—
0.0001
0.0001
0.0037
0.0006
0.0006
0.0488
0.0120
0.8492
0.7658
0.0027
0.1590
0.0024
0.0492
0.0025
—
-

-------
                                    206
III.  Data handling and verification/validation
    The validity of the chemical data was determined by numerous empirical and
graphical methods.  Quality control was maintained by analyzing standards and
known solutions prior to analysis.  Problems were generally detected prior to
analysis, and could be remedied before problems with sample data occurred.
Field data were inspected for relationships between pH, ANC, conductance, and
color within 48 hours of sample collection.  Questionable values were
re-checked immediately.  Both field and laboratory data were inspected with
regard to known ranges in the specific sites.  After determination that no
gross errors existed, all data were entered into Statistical Analysis System
(SAS) data sets.  Routine QA evaluation in SAS consisted of
calculation-evalution of the following empirical or chemical relationships:
    (A)  Field data:
                     1)  closed-cell pH v. air-equilibrated  pH
                     2)  calculated ANC v. ANC
                     3)  calculated air-equilibrated pH v. air-equilibrated
                         pH
                     4)  air-equilibrated pH v. ANC
                     5)  DOC v.  true color
                     6)  ratio of calculated to measured  air-equilibrated
                         pH v. true color
                     7)  ratio of calculated to measured  air-equilibrated
                         pH v. DOC
                     8)  ratio of calculated to measured  air-equilibrated
                         pH v. measured air-equilibrated  pH
    (B)
Complete analysis:
            1)  ratio
            2)
                      3)
                      4)

                      5)
                      6)
                      7)
                      8a)
                      8b)
                      9)
                      10)
                      11)
                      12)
                      13)
      of the sum of cations to the sum of anions
ratio of measured to calculated specific
conductance
ratio of total aluminum to air-equilibrated pH
ratio of exchanged aluminum to total aluminum v.
air-equilibrated pH
        Ca
        Mg
        sum of cations
       cations - sum of anions v. DOC
sum of anions - sum of cations v. exchanged Al
specific conductance v. sum of cations
specific conductance v. sum of anions
ratio of Na to Cl
ANC v. sum of non-marine Ca and Mg
All parameters v. discharge (streams) or volume
(precipitation)
                SiO  v
                SiO, v
                Si°2 V
                sum of
     In  addition,  chemical relationships were evaluated for reasonableness from
X-Y  plots  (e.g.,  Figures  A1-A6),  and the series of plots of stream chemistry
over time,  plotted against discharge (Figures 16-30).   Questionable data were
re-analyzed if  sample volume permitted.  Detailed evaluation of unresolved
questionable data often allowed the data to be accepted.  The most common
example is  poor ion balance.  The Narraguagus streams  often had ion ratios

-------
                                    207

with the sum of positive ions in large excess of the sum of negative ions.
However, estimating DOC contributions to the ion balance resulted in ion
balance estimates that were nearly 1.0.  Numerous studies in the literature
have reported DOC contributions to anionic charge as being from 3 to 5 yeq/mg
DOC.  The median for this project was 3.9 peq/1, with the Narraguagus streams
being slightly higher than the Union streams.  The value of 3.9 was calculated
from the difference between ANC and correlated HCO, concentrations.  This
value was used in the calculation of the adjusted ion ratio.  The raw ion
balance for the project was 1.12 (12 percent excess cations).  With the
empirically determined DOC contribution, and allowing for all exchangeable Al
to have a +3 charge, the mean calculated ion ratio for the project was 1.01.
The high ratios (maximum 1.68) decreased significantly (new maximum 1.29;
Figure A7).
    Questionable data that could not be resolved or explained were deleted
from the final dataset (Appendix D).  Of the nearly 13,000 individual analyses
performed for the project, 8 data points were deleted from the results.

-------
                             208
  300-


  250-


  200-


  150-


§100-

 *     *

£   50-
o

§    0-
o
       UNION

        D  HALFMILE
        A  INDIAN CAMP
        .*  SPRING
N
a:
   300-
   250-
Q
i—i
O
   200-


£150-


   100-


    50-


     0-
        NARRAGUAGUS

         n  BAKER
         *  SINCLAIR
         A  ROCKY
                                                a
                                                 D
       •j—i—i—i—i—i—i—i—i—i—|—i—r

       5                6
                              -i—i—i—i—r
                                         -i—i—i—r
                      AIR-EQUILIBRATED PH
                                                        8
     Figure Al.  The relationship of ANC to air-equilibrated pH, by
               drainage and stream.

-------
                          209
  7-
  6-
X
Q_
LU
O
 I
Q
LU
CO
O

O
  5n
     UNION

      n  HALFMILE
      A  INDIAN  CAMP
      *  SPRING
  8H
  7-
  6-
  5-
NARRAGUAGUS

  D BAKER
  * SINCLAIR
  A ROCKY
                      D
     i
     5
                 |  I  ! I  I  I  I I -I 1^

                 6                 7

                AIR-EQUILIBRATED PH
                                                          i
                                                          8
  Figure A2.  The relationship of  closed-cell pH to air-equilibrated
             pH, by drainage and  stream.   Solid line is the 1:1
             line.

-------
                          210
      UNION

       a HALFMILE
       A INDIAN CAMP
       * SPRING
  7-
  6-
:E
Q_

Q
UJ
m
a
UJ

tx.
  5-
                    D A
  —i—i—i—i—i—i—r—i—i—|  i i

   NARRAGUAGUS

     a BAKER
     * SINCLAIR
     A ROCKY
  7
                    l  t  > i  i  i  i  i t  i  i
                    6                  7
                      CALCULATED PH
                                                          8
Figure A3.
              The relationship of calculated pH (from DIG and ANC)
              to measured air-equilibrated pH, by drainage and
              streams.  Solid line is the 1:1 line.

-------
                            211
a
UJ
•=3
CO
z
o
f—4
I—
<
o

u_
o

2:
ID
V)
500-




400-i




300-i



200




100



  0


500:




400-j




300-




200-




100-i
        UNION

         a HALFMILE
         A INDIAN  CAMP
         * SPRING
     0-
NARRAGUAGUS


  D BAKER
  * SINCLAIR
  A ROCKY
                100
                      I I I I I

                      200
                           300

                SUM  OF ANIONS  UEQ/L
400
500
   Figure A4.
           The relationship of the sum. of cations to the sum

           of anions, by drainage and stream.  Solid line is
           the 1:1 line.

-------
                           212
  500:
  400 -i
  300 •!
   200 •;
a
LU
   too-;
2:

CO

z
o
*—4
I—

o
     0-
UNION

 D  HALFMILE
 A  INDIAN CAMP
 *  SPRING
   500-j
§  400-
to
   300-
   200-
   100-
     0-
                                 '''' I
 NARRAGUAGUS

  'D  BAKER
  *  SINCLAIR
  A  ROCKY
                                        a
       T1

       D
   Figure A5.
        100       200      300       400

              ADJUSTED AN ION  SUM UEQ/L
                                                       500
      The relationship of  the sum of cations adjusted for
      contribution from Al to the sum of anions adjusted
      for contribution from DOC, by drainage and stream.

-------
                           213
21
O
X
in
UJ
o
o
rj
Q
•z.
O
o

o
o
LU
Q.
CO
40-

35-

30-

25-

20-

15-

10-

 5-

 0-
      UNION

       a HALFMILE
       A INDIAN  CAMP
       * SPRING
40-


35-

30-


25-


20-


15-

10-


 5-


 0-
NARRAGUAGUS

  a BAKER
  * SINCLAIR
  A ROCKY
                 10    15    20    25    30    35

                     CALC. CONDUCTANCE US/CM
                                                   40
   Figure A6.  The relationship of calculated to measured specific
             conductance, by drainage and stream.

-------
                                        214
                      S/2W  '30HVHOSia NV3W
                                                         to
                                                                  —   o
  z
  o
      Q
                                      Cg
                                         00
                                         09
                                                                          O
                                                                          O

                                                                          N.
                                                                          00
                                                                          o
                                                                          o

                                                                          0*
                                                                          O.
                                                                          <0
                                                                          00
                                                                        - O
                                                                          o
CM
                O
                O
in  o
N.  If)
in
CM
o
o
in
K.
                                                                                     3
                                                   T3 0)
                                                   0) >
                                                   •u o
                                                   01
                                                   S CU
                                                   •r-j 60
                                                   T3 M
                                                   rt id

                                                   4-1 O
                                                   o to
                                                     •H
                                                   O 13
                                                   •H
                                                   4J 13
                                                   CO C!
                                                   !-j n)
                                                                                   a) CD
                                                                                   o a
                                                                                   fl o
                                                                                   cfl -H
                                                                                   i-l d
                                                                                   cd to
                                                                                   a  o
                                                                                   o
                                                                                   •H  I  •

                                                                                   ^J  CO CO
                                                                                   cu    co
                                                                                   4-> 13 >-l
                                                                                   CD  CU 4J
                                                                                   3  -P w
                                                                                        ..
                                                                                   o    a
                                                                                   •H  CO vH
                                                                                   JJ  C cO
                                                                                   CO  O >-i
                                                                                   •H -H 13
                                                                                   H JJ
                                                                                   CO  cO !>i
                                O  »          —

                    ooo HUH  ouvy  NOI  oaisnrov
                                                                                   60
                                                                                   •H

-------
                                    215

IV. Exchangeable Al laboratory blank and sample spike results.
    For all sampling days, two exchange column efficiency checks were run and
analyzed.  The first was a laboratory blank spike with 100 yg/1 Al as A1C1. in
dilute HC1.  If the column were 100 percent efficient in exchanging ionic Al,
the effluent concentration would be zero.  As the data indicate (Table A4),
the columns extracted over 97% of the Al from a simple matrix.  The second
check was an actual sample spiked with 100 ppb Al, and then exchanged
immediately (within about 5 seconds).  The results are more variable, due
potentially to rapid complexation of Al by chelators in the sample matrix
(Table A5).  These results also show some site and season specificity.  In
general, sample spike results indicate that Al complexation is more rapid in
the spring, and decreases to a minimum in the fall.  Indian Camp Brook water
exhibited the least ability to rapidly complex the added Al, and Baker and
Rocky brooks had the greatest ability.  There was considerable varience in
these latter results, in part due to between-season differences.

-------
                                    216

Table A4.  Exchangeable Al laboratory blank, and blank spike results.
Laboratory blanks were distilled water passed through the exchange resin
check for contamination from possible Al release from previous samples.
Blank spikes are distilled water with 100 pg/1 Al added as A1C1- in dilute
HC1 (pH - 4).
                                                    to
         Sample
      N   Mean   Min.  Max. Std.  Err.
Blanks
Blank spikes
49
52
2.5
3.9
0
0
14
23
3.24
5.56
Table A5.  Summary of Al exchange sample spike results.  A duplicate sample
was spiked with 100 ug/1 Al, and within about 5 seconds passed through  the
exchange resin.  Complete removal of the added Al could cause the  complexed
Al value in the following table to be 0, i.e., all Al  remained ionic, and was
retained in the column.  The higher the value,  the more Al was rapidly
complexed by the matrix of the sample.
      Site/Season
     Complexed Al
(percent of added Al)
N
Std. Err.
All samples
Baker
Rocky
Sinclair
Halfmile
Indian Camp
Spring
Fall (all sites)
Winter (all sites)
Spring (all sites)
Summer (all sites)
39%
63
61
36
36
6
36
19
33
68
40
52
9
7
8
9
10
9
7
20
8
17
43.3
49.3
41.5
49.2
24.0
24.0
43.5
18.2
40.3
27.5
52.4

-------
                                     217

                                 APPENDIX B

                  PRECIPITATION VOLUME AND CHEMISTRY DATA
    Daily precipitation volume, in cm, recorded at the Silsby Hill wet/dry
collector and at event recorders centrally located in the Union and
Narraguagus River drainages are presented here.  Abbreviations and special
notation used in the comments field are as follows: N/A = not available, TM
= timer malfunction on recording unit, CEV = continuous precipitation
event, EVR = event recorders.  The notation "*X.XX cm to next week" was
used to indicate that precipitation occurred on the day the Silsby Hill
collection bucket was changed, and that the 24-hr precipitation volume had
to be split between weeks for accurate weekly, volume-weighted chemical
parameters to be determined.  For days noted as such, the true daily volume
can be obtained by adding "silppt" to the value following the asterisk, and
subtracting the value following the asterisk from "silppt" from the next
day.  These notations do not apply to data in "unnppt" and "nrgppt"
columns, since these values are not used for precipitation chemistry.  The
weekly precipitation chemistry data follow the volume data.  Chemical
abbreviations are the same as in Appendix A.

-------
                                                                       218
 PMC1PITAT10MI  DAILY VOLUHC  (CHI t
•cox  Y«  HO  OA   SILPPT  UHNPPT
S1LSIY HILL AND EVENT  RECORDERS
       COHHEHTS
 PRECIPITATION: DAILY VOLUME ICHlr

DCODE  YR   HO  OA  SILPPT  UNNPPT
SILSBY HILL  AND  EVENT RECORDERS

NRGPPT COHHEHTS
III It 1 17
111 «» 1 111
314 It 1 19
m it i 20
Itt It 1 Zl
It? It 1 2Z
111 It 1 ZJ
Itt It 1 ^^
110 It 1 ZS
Itl It 1 26
1ft It 1 27
3f3 It 1 28
JU It 1 29
3*1 It 1 30
Jtt ft 1 11
It? It 2 1
391 It t Z
317 It Z 1
(00 It 2 4
(01 It Z I
402 It I t
401 It 2 7
«04 it z a
(05 It 2 *
(0* It Z 10
(0? It Z 11
(01 It 2 12
(Of It Z 13
(10 It Z 14
(11 It Z 15
(SZ It Z It
(11 It Z 17
414 It Z 18
(11 It 2 1?
(It It Z 20
(17 It Z Zl
(11 It Z 2J,
419 It Z Z>
(Z0 It Z Z(
(Zl It Z 25
422 It Z 26
(Zl It 2 2?
414 It Z 21
(Z> It 3 1
(Zt It 1 Z
(Z? It J J
Ul It J (
m it j s
(30 It J t
(11 It 1 7
(>Z It 1 1
(>> It J »
434 It ) 10
455 It ] 11
(It It } 12
0.18
0.00
1.32
O.f7
0.13
0.03
0.28
0.00
0.03
Z.82
2.31
1.35
0.00
0.00
0.20
0.00
1.42
0.00
o.oo
0.99
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
O.ZI
0.00
0.00
0.00
.
,
.
2.16
0.13
0.1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.
.
.
.
2.44
0.00
0.11
MUIPITATISNl DAILY VOLUME ICHI t
ocoBt Y* no OA
(12 It 7
473 It a
4*4 It 9
(t> It 10
(ft It 11
((? It 12
(ft It 11
(?f at u
>00 It 15
531 3t It
SOI It 17
SOI It 11
501 It If
JOS It 20
sot it zi
507 It ZZ
SOI at 23
S0» It 24
sie it js
til It Zt
112 56 Z?
Sl> It Zl
514 It 29
Sll It 10
lit 81 31
SI? >t 1
Sll It Z
Sit «t 3
510 It (
III It "5
SZZ (t t
»23 It 7
SZ( It 1
SIS If f
Sit It 10
SZ? It 11
Sll It 12
sit at 11
510 It 14
Sll It IS
Sll It It
Sll It 17
m it ii
SIS It If
Sit It 20
si? at zi
Sll It Z2
Sit It 21
540 It 24
541 It 25
542 It Zt
543 It 27
S(( It 21
343 It t 29
S(t It t 10
SILPPT UNNPPT
.
t ,
^ B
. .
. ,
O.S1 •
0.00
0.00 .
0.00 .
0.11
0.18
0.00 .
0.00 .
0.00
0.00 .
1.17
0.79
2.47 .
O.lt .
0.00 .
0.00 .
0.31 .
0.00 0.00
0.00 S.OO
O.St 0.18
1.04 0.99
O.f7 0.91
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.76 0.76
0.00 0.00
0.00 0.00
0.43 O.S1
0.00 0.00
O.tl 0.69
0.00 0.01
0.00 0.00
0.00 0.00
o.os o.oa
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.01
0.00 0.00
OtOO 0.00
0.00 0.00
O.tt 0.74
1.47 0.41
O.tf 1.07
0.00 0.00
f
.
RAIN
CEV

,
,
s
^
. RAIN
CEV
. CEV
t
.
.
„
. SNOU
,
.
. SNOU
.
,
.
.
.
.
.
.
.
.
•
.
.
.
.
. SILPPT N/A;
. SILPPT N/A:
SILPPT N/A!
LUMP SILPPT
.
.
,
.
.
.
.
.
.
. SILPPT H/A;
. SILPPT N/A:
. SILPPT N/A;
SILPPT N/A:
. LUHP SILPPT
• *0.1> CM TO
•



































TH
TH
TH
FOR UEEK: TH









TH
IM
TH
TH '
FOR UEEK; IH
NEXT UEEK

SILSBY HILL AND EVENT RECORDERS
NRGPPT COItKENTS
SILPPT H/A;
. SILPPT N/A;
• SILPPT N/A:
SILPPT H/A:
. SILPPT N/A;
. LUHP SILPPr
.
.
.
.
•
.
.
,
.
.
«
CEV
. CCV
.
.
,
0.00 BEGIN 1786
0.00
0.53
1.07
0.71 CEV
0.00
0.00
0.00
0.00
0.00
0.66
0.00
0.00
0.41
0.00
0.2S
0.00
0.00
0.08
o.os
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00
0.00
O.tl
0.61 CEV
0.41
0.00

TH
TH
TH
TM
TK
FOR UEEK;TH
















EVR
































437
438
(39
440
441
442
443
444
445
446
447
448
449
4SO
151
452
453
454
455
456
457
458
459
460
461
462
463
464
46S
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
4CS
486
487
488
489
490
491
86 3 13
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 3
86 4
36 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 4
86 5
86 5
86 5
86 5
86 5
86 5
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
0.46
1.09
2.26
0.13
0.00
0.05
2.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.17
0.08
0.08
0.00
0.00
0.00
.
.
.
.
.
1.65
0.00
0.81
0.10
0.63
0.30
0.00
0.00
0.00
.
.
.
.
.
3.40
0.00
0.13
1.02
0.18
0.91
0.00
0.00
0.00
0.00
0.00
0.63
0.00
0.00
0.00
0.00
^
,
.
,
,
.
,
.
t
»

f
f
.
.
,
.
f
.
m
.
»
.
.
,
•
,
.
t
,
,
.
.
,
,
.
,
.
.
.
,
,
,
.
.
,
,
,
,
,
.
f
f
,
*
PRECIPITATION: DAILY VOLUHE ICHI*
DCODE
547
548
549
550
551
552
553
555
556
557
558
559
560
561
562
563
564
56S
566
S67
568
569
570
571
572
573
574
575
576
577
573
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
S94
595
596
597
598
599
600
601
YR HO
86 7
86 7
86 7
36 7
86 7
86 7
DA
1
2
3
4
5
6
86 7 7
86 7
86 7
86 7
86 7
86 7
86 7
86 7
86 7
86 7
36 7
86 7
86 J
36 7
86 7
86 7
86 1
86 7
36 7
86 7
86 7
86
86 7
86 7
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27.
23
29
30
31
1
2
3
4
5
6
7
a
9
10
11
12
13
• 14
IS
16
17
18
19
20
21
22
23
24
SILPPT
0.00
1.83
0.00
0.03
0.10
0.10
4.17
0. 00
0.03
0.00
0.00
0.00
0.05
0.53
0.13
0.05
0.00
0.48
0.00
0.00
0.10
0.00
0.00
0.00
0.00
1.27
2.67
0.53
0.00
1.90
1.65
0.00
0.03
1.02
0.00
0.00
0.00
0.13
0.30
0.18
0.00
0.94
0.00
0.00
0.00
0.00
0.46
0.00
4.27
0.46
0.00
0.00
0.33
0.00
4.95
UNMPPY
0.00
1.90
0.00
0.10
0.05
0.05
4.32
0* 00
0.03
0*00
0.00
0*00
o.os
0.56
0.23
0.00
0.00
0.33
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
1.38
1.90
0.48
0.00
1.65
2.11
0.00
0.10
0.99
0.00
0.00
0*00
0.48
0.00
0.18
0.00
0.99
0.00
0.00
0*00
0.00
0.41
0.00
4.42
1.02
0.00
0.00
0.33
0*00
S.OO
t
,
.
t
f
f
t
t
t
t
t
t
f
f
,
,
,
t
f
t
,
,
,
,
f
,
t
.
,
,
,
,
.
t
,
,
B
r
.
.
,
.
,
.
.
.
f
.
f
t
.
t
f
f
•
SILSDV
NROPPT
0.00
1.83
0.00
0.03
0.23
0.20
1.98
0.00
0.00
0.00
0.00
0.00
0.00
0.71
0.13
0.00
o.oo
0.97
0.00
0.00
0.08
0.00
0.00
0.00
0.00
1.17
1.98
0.51
0.00
2.18
2.16
0.00
0.08
0.89
0.00
0.00
0.00
0.00
0.41
1.19
0.00
0.58
0.00
0.00
0.00
0.00
0.61
0.00
3.30
0.63
0.00
0.00
0.20
0.00
4.14
RAIN
CEV
CEV


'O.OS CH TO NEXT KEEK








RAIN
CEV
CEV



SILPPT N/A! TH
SILPPT N/A: TH
SILPPT N/A: TH
SILPPT N/A: TH
SILPPT N/A: TH
LUHP SILPPT FOR UEEK; TH
'0.79 CH TO NEXT UEEK







SILPPT N/A; TH
SILPPT N/A; TH
SILPPT N/A: TH
SILPPT N/A: TH
SILPPT N/A; TH
LUHP SILPPT FOX UEEK: TH















HILL AND EVENT RECORDERS
CQHHENTS






CEV






00.05 CH TO NEXT UEEK











CEV
CEV


CEV


















CEV






-------
                                                                       219
 PRECIPITATION:  DAILY  VOLUHE  ten), SILSBY HILL AND EVENT RECORDERS
OCOOE  YR  HO  DA  SILPPT   UNHPPT  NRGPPT COMMENTS
 PRECIPITATION:  CHXLY  VOLUHE  (CH»»  SILSBY  KILL  AND EVENT RECORDERS
OCOOE  YR  HO  DA  SILPPT  UNNPPT   NRGPPT  COMMENTS
602 Si 8 25
605 36 3 26
604 86 8 27
60S 86 8 23
606 36 8 2?
607 86 8 30
608 36 8 31
609 86 9 1
610 it 1 2
611 86 9 3
612 36 9 4
613 86 9 S
614 86 9 6
615 86 9 7
616 86 9 8
617 86 9 9
618 86 9 10
619 86 9 11
620 86 912
621 86 9 13
622 86 9 14
623 86 9 IS
624 86 9 16
625 86 9 17
626 86 9 18
627 86 9 19
628 86 9 20
629 86 9 21
630 86 9 22
631 86 9 23
632 36 9 24
633 86 9 25
634 36 9 26
635 86 9 27
636 86 9 28
637 86 9 >29
638 86 9 30
639 36 10 1
640 86 10 2
641 86 10 3
642 86 10 4
643 86 10 5
644 86 10 6
645 36 10 7
646 86 10 ' 8
647 86 10 9
648 86 10 10
649 86 10 11
650 36 10 12
651 86 10 13
6S2 86 10 14
653 86 10 IS
654 86 10 16
655 86 10 17
656 36 10 IS
0.05 0.05 0.03
0.00 0.00 0.00
1.98 1.55 1.98
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.10 0.03 0.10
0.00 0.00 0.00
0.00 0.00 0.00
1.04 1.68 0.79
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.23 0.00 «0.05 CH
0.18 0.05 0.10
0.56 0.43 0.53
0.20 0.20 0.48
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
1.78 1.45 1.37
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 1.50 1.45 «1.47 CH
1.52 0.00 0.00
0.69 0.71 0.66
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.33 0.30 0.30
0.79 0.61 0.63
0.00 0.00 0.00
0.03 0.00 0.15
0.00 0.00 0.00
0.94 0.97 0.99
0.41 0.46 0.51
0.28 0.38 0.46
0.00 0.00 0.00
0.00 0.00 0.00
0.23 0.28 0.23
0.00 0.00 0.00
0.00 0.00 0.08
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.81 0.53 *0.79 CH
0.86 0.08 0.00 CEV
0.00 0.00 0.00
0.08 0.00 0.23
0.00 0.00 0.00















TO NEXT UEEK













TO NEXT UEEK




















TO NEXT WEEK




PRECIPITATION: DAILY VOLUME tcnit SILSSY HIM. AND EVENT RECORDERS
DCODE YR HO DA
712 86 12 13
713 36 12 14
714 86 12 15
713 86 12 16
716 86 12 17
717 36 12 18
713 36 12 19
719 86 12 20
720 86 12 21
721 36 12 22
722 86 12 23
723 36 12 24
724 86 12 25
725 86 12 26
726 86 12 27
727 86 12 28
728 86 12 29
729 86 12 30
730 36 12 31
731 37 1 1
732 87 1 2
733 87 1 3
734 87 1 4
735 87 1 5
736 87 1 6
737 87 1 7
733 87 1 3
739 87 1 9
740 87 1 10
741 87 1 11
742 87 1 12
743 87 1 13
744 37 1 14
745 87 1 IS
746 87 1 16
747 87 1 17
743 87 1 18
74? 37 1 19
750 37 1 20
751 87 1 21
752 87 1 22
753 87 1 23
7S4 87 1 24
755 87 1 25
756 87 1 26
757 87 1 27
758 87 1 28
759 87 1 29
760 87 1 30
761 87 1 31
762 87 2 1
763 87 2 2
764 87 2 3
765 87 2 4
766 87 Z 5
SILPPT UNNPPT NRGPPT COMMENTS
0.00
0,08
0.00
0.00
0.00
0.00
0.23
0.00
0.00
0.00
0.00
0.00
3.17
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
1.27
0.69
0.00
0.00
0.00
0.00
0.00
0.00
0.20
1.78
0.00
0.00
0.00
0.00
0.00
0.00
1.30
o.os
0.00
0.00
0.63
O.S1
0.00
0.00
0.00
0.00
0.00
0.00
o.os
0.61
0.00
0.00
0.00
0.00
0.00

































































RAIN







SNOU
CEV






SNOU
CEV






SNOU



SNOU
CEV






SNOU
CEV





























































657 86
658 86
659 86
660 86
661 86
662 86
663 86
664 86
665 36
666 36
667 86
668 86
669 86
670 36
671 86
672 86
673 86
674 86
675 86
676 86
677 86
678 86
679 86
680 86
681 86
682 86
683 86
6t>4 86
68S 86
686 86
687 36
633 86
639 86
690 36
691 86
692 86
693 86
694 86
695 36
696 86
697 86
698 86
699 86
700 86
701 86
702 86
703 36
704 36
70S 86
706 86
707 86
708 86
709 86
710 86
711 86
10 19
10 20
10 21
10 22
10 23
10 24
10 25
10 26
10 27
10 23
10 29
10 30
10 31
11 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
11 10
11 11
11 12
11 13
11 14
11 15
11 16
11 17
11 18
11 19
11 20
11 21
11 22
11 23
11 24
11 25
11 26
11 27
11 28
11 29
11 30
12 1
12 2
12 3
12 4
12 S
12 6
12 7
12 8
12 9
12 10
12 11
12 12
0.00 0.00 0.00
0.00 0.00 0.00
o.oo o.io b.io >o.io en TO NEXT UEEK
0.10 0.00 0.00
o.oo o.oo o.oo
o.oo o.oo o.oo
0.00 0.00 0.00
0.00 0.00 0.00
0.33 0.36 0.33
0*00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.36 0.33 0.43
0.00 0.00 0.00
0.10 0.03 0.41
0.00 0.00 0.00
0.41 0.43 0.41
0.00 0.00 0.00
0.18 0.18 0.08
0.25 0.33 0.30 CEV
0.00 0.00 0.00 END 1936 EVR
0.00 . . . *0.38 CK TO NEXT UEEK
0.38 . . MIXED RAIN AND SNOU
0.03
0.00
0.00 . .
0.00 . .
0.00 ..
0.00
0.00 . .
0.00 . .
3.81 . . RAIN
0.08 . . CEV
0.00 . '.
1.30 . . SNOU
0.00 . .
2.16 . . RAIN
0.61 . . CEV
0.00
0.00 . .
0.00 . .
0.00 . .
0.00 .
5.26 . . RAIN
0.00 .
0.00 .
, 0.00
0.18
0.00
0.00 . . 11.02 CH TO NEXT UEEK:SNOU
1.14 . . CEV
0.00 .
0.00 . .
PRECIPITATION! DAILY VOLUBE ICHI, SILSBY HILL AND EVENT RECORDERS
DCOOE YR
767 87
768 87
769 37
770 87
771 57
772 87
773 87
774 37
775 87
776 87
777 37
778 37
. 779 87
780 87
781 87
782 87
763 87
784 87
785 37
786 87
737 87
788 87
789 87
790 87
791 87
792 87
793 37
794 67
795 37
796 37
797 87
798 87
799 87
300 87
801 87
602 87
E03 87
604 87
305 37
806 , 87
307 87
808 87
809 87
810 87
311 87
812 87
813 87
814 87
815 87
816 87
817 87
816 87
819 87 .
820 87
821 87
HO DA
2 6
2 7
2 8
2 9
2 10
2 11
2 12
2 13
2 14
2 IS
2 16
2 17
2 18
2 19
2 20
2 21
2 22
2 23
2 24
2 25
2 26
2 27
2 28
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
3 11
3 12
3 13
3 14
3 15
3 16
3 17
3 18
3 19
3 20
3 21
3 22
3 23
3 24
3 25
3 26
3 27
3 28
3 29
3 30
3 31
4 1
SILPPT UNNPPT NRCPPT COMMENTS
0.00
0.41
0.00
0.89
0.76
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.76
0.81
0.10
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.os
0.51
0.71
0.46
0.69
0.30
1.57
0.18
0.00
0.00
0.00
0.97
0.00
0.00
0.00
0.00
2.51
1.60















































SNOU
SNOU
CEV


















SNOU
CEV
CSV











' SNOU
«0.28 C« TO NEXT UEEK: CEV
CEV
CEV
" CEV
CEV
CEV



RAIh




RAIN
CEV

-------
                                                                        220
 NtCtriTAMCHt DAILY VOLUME (CHI,  S1LS1Y HILL AND EVENT RECORDERS
•coot  i*  BO  »  SILPPT  UHNPPT   KRGPPT COHHEHTS
 PRECIPITATION: DAILY VOLUME ICHII siLSiv HILL  AND  event  RECORDERS
DCODE  VS  no  DA  S1LPPT  UHIIPPT  NRGPPT COflHENTS
122
121
C2t
125

127
12 J
•29
US
111
112
113
114
IIS
Hi
C17
111
tit
1(0
C(l
1(2
141
144
14S
144
1(7
Id

199
IS1
IS2
tsi
CS(

Hi
1ST
ISI
ist
169
til
Ii2
lil
144
145
lit
147
lit
lit
179
171
172
171
174
17}
I7i
17 4 2
17 4 1
17 4 4
17 4 S
17 .( 4
37 ( 7
17 ( 1
17 ( 9
17 4 10
17 4 11
17 ( 12
17 4 11
17 ( 14
17 4 IS
17 ( li
17 ( 17
37 4 11
17 4 19
37 4 20
t7 4 21
17 4 22
17 4 21
17 4 24
17 4 25
17 4 2i
17 4 27
17 ( 21
17 4 29
17 4 30
17 S 1
17 S 2
17 S 1
17 S 4
17 S S
17 S i
17 S 7
17 S I
17 S 9
17 S 19
17 S 11
17 S 12
17 S 11
17 S 14
17 S IS
17 S li
17 S 17
17 S It
17 S It
17 S 20
17 S 21
17 S 22
17 S 23
17 S 24
17 S 23
17 S 24
0.00
9.95
0.00
0.0)
0.11
0.16
0.00
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
1.99
0.11
0.00
0.00
0.09
0.00
0.2S
1.70
0.00
0.09
9.09
9.00
0.00
0.41
0.00
0.00
0.79
9.00
0.00
0.00
0.00
0.00
0.00
0.00
0.11
1.12
0.00
0.00
'.
.
.
,
.
.
,
.
,
,
.
.
.
.
.
,
,
.
,
.
0.00
0.00
0.00
O.OS
1.90
0.1S
0.00
0.00
0.00
0.00
0.46
1.42
0.03
0.00
0.00
0.00
0.00
0.28
0.00
0.00
0.81
0.00
0.00
0.00
0.00
0.00
0.00
0.00
O.OS
1.02
0.00
0.00
PIUCIP1TATIOKI DAILY VOLUME (CKIt
3CCDC
M2
til
934
MS
S"34
t!7
lit
Mf
t40
t«
f 42
943
9 *4
us

f 47
t(l
t(t
tso
til
tS2
tsi
934
935
954
tJT
ts<
tit

fit
942
til
9 44
tiS

t*7
til
tit
970
t71
972
t71
t7(.
975
t7i
t77
t71
t7t
910
VII
982
til
914
tit
94i
Y« no DA
17 7 21
17 7 22
17 7 23
S7 7 24
Z7 7 25
17 7 26
17 7 27
17 7 21
17 7 2»
17 7 30
17 7 11
17
87
17
17
17
17
17
17
17
17
17
37
17
17
17
37
17
17
17
J7
17
17
17
17
37
17
17
37
•7
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

«







10
11
12
11
14
IS
li
17
11
It
20
21
22
21
24
23
2i
27
21
29
10
31









10
11
12
13
SIIPPT
1.22
0.1S
9.99
9.09
0.09
1.49
0.08
0.00
0.00
1.35
0.00
o.oo
0.00
2.90
0.00
0.00
0.00
0.09
1.32
0.01
0.13
9.99
9.09
0.99
0.00
0.00
0.00
0.00
0.00
0.46
0.00
0.09
9.00
0.41
0.00
0.00
0.99
0.09
9.09
0.97
9.00
0.00
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.09
3.13
0.00
0.33
0.00
0.51
UNNPPT
1.32
0.03
0.00
0.00
0.00
1.30
O.OS
0.00
o.oo
1.32
0.00
0.01
0.00
2.11
0.00
0.00
o.oo
o.oo
0.91
0.03
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09
9. 41
0.00
0.00
0.00
0.43
0.00
0.00
0.00
a. oo
0.00
0.99
0.00
0.00
0.41
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
1.12
0.00
0.03
0.00
0.41
:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9.00
0.09
0.99
0.90
1.70
1.85
0.00
0.00
0.00
0.09
0.16
2.26
0.00
0.00
0.00
0.00
0.00
0.36
0.00
0.00
0.81
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.15
1.07
0.00
0.00
SILSBY
NRGPPT
0.94
0.00
0.00
o.oo
0.00
1.09
o.io
0.00
0.00
0.00
0.00
O.OS
0.00
2.11
0.00
0.00
0.00
0.00
2.31
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.03
0.00
0.00
0.41
0.00
0.93
0.00
0.00
0.00
1.02
0.00
0.00
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.93
0.00
0.03
0.00
0.46
RAIN
CEV
ccv

RAIN















BEGIN 1917 EVR


•0.08 CH TO NEXT UCEK
CEV
CEV




•0.2S CH TO NEXT WEEK
CEV




















HILL AND EVENT RECORDERS
connENTS
•0.13 CH TO NEXT UEEK








LOCALIZED COUVECT. STORK













































177
878
C79
330
Col
852
863
«44
CSS
886
857
£08
IS9
$90
89 1
892
693
694
695
896
«I97
898
899
900
901
902
903
904
90S
906
907
903
909
910
911
912
913
9U
915
916
917
919
919
920
921
922
923
924
925
926
927
928
929
930
931
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
67
87
87
37
87
87
87
87
.87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
37
87
5
S
5
5
5
6
6
6
6
6
6
6
•6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
S
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
0.00
0.00
0.00
2.97
O.S6
1.45
0.00
0.00
0.33
0.71
1.32
0.00
0.89
0.84
0.74
0.00
0.08
0.00
O.OS
0.1S
0.00
0.41
0.00
0.20
0.00
0.00
0.00
1.24
0.53
0.00
0.00
1.52
0.30
0.00
0.00
0.18
0.00
0.08
0.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.91
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.87
0.10
O.S8
0.00
0.00
0.23
0.94
1.35
0.00
0.79
1.17
0.15
0.00
0.08
0.00
0.03
0.1S
0.15
0.20
0.00
0.20
0.00
0.00
0.00
1.37
0.43
0.00
0.00
0.34
0.36
0.00
0.23
0.03
0.00
0.13
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.76
0.00
0.00
0.00
0.00
0.00
0.00
O.OS
0.00
2.26
0.84
0.48
0.00
0.00
0.33
0.58 CEV
1.42
0.00
0.86
l.SS -0.51 CH TO NEXT UEEK
0.30 CEV
0.00
0.10
0.00
0.00
0.25
0.15 '0.20 CH TO NEXT UEEK
0.1S CEV
0.00
0.36
0.00
0.00
0.00
1.12
0.63
0.00
0.00
6.98 HEAVY PPT LOCAL TO NRG R
0.58 CEV
0.00
O.OS '0.18 CH TO NEXT UEEK
0.00
0.00
O.OS
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.76
0.00
0.00
0.00
0.00
0.00
                                                                                     PRECIPITATION: DAILY  VOLUME  (CH)t  SILSBY HILL AND EVENT RECORDERS
                                                                                    OCOOE  VR  »0  DA   SILPPT   UNNPPT   NRGPPT CDHHENTS
987
938
989
990
991
992
993
994
995
996
997
993
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
toil
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1034
1037
1038
1039
1040
1041
87
87
87
87
37
87
37
87
87
87
87
87
37
S7
87
87
87
87
37
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
Z
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
S
6
7
2.36
0.00
0.51
0.10
0.00
0.00
5.99
3.71
O.OS
0.00
0.00
0.00
0.03
0.00
0.00
0.00
2.11
O.OS
0.00
0.51
0.69
0.00
0.00
1.19
1.19
0.00
0.00
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.43
0.00
0.00
0.00
0.84
0.00
0.00
2.11
0.00
0.00
0.00
0.00
0.00
0.00
0.23
0.23
0.00
0.00
2.41
0.00
O.S1
0.08
0.00
0.00
6.02
3.66
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
1.83
0.03
0.00
0.00
1.04
0.03
0.00
1.32
0.79
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.36
0.00
0.00
0.00
0.81
0.00
0.00
2.08
0.00
0.00
0.08
0.00
0.00
0.08
0.00
0.33
0.00
0.00
2.39 CEV
0.00
0.36
0.10 CEV
0.00
0.03
6.53
4.83 CEV
0.10 CEV
0.00
0.00
0.00
0.03
0.00
0.00
0.00
2.49
0.03
0.00
0.20
1.07
0.00
0.00
1.37
1.19 CEV
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
O.OS
0.00
0.00
0.51
0.03
0.00
0.00
0.86
0.00
0.00
2.13
0.03
0.00
0.03
0.00
0.00
0.20 0.18 CN TO NEXT UEEK
0.10
0.20
0.00
0.00

-------
                                                                   221
 PRECIPITATION:  DAILY VOLUME tcHit SILSBY  HILL AND EVENT RECORDERS
OCQDE  YR   HO  DA  SILPPT  UNNPPT  NRGPPT  COMMENTS
1042
1043
1044
1045
1046
1047
1048
1049
10SO
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
'12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
8
9
10
11
12
13
•14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
0.00 0
0.30 0
0.00 0
0.00 0
0.84 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.63
0.00
0.91
0.00
0.00
0.00
0.05
0.00
1.93
0.20
0.00
0.00
3.71
2.97
0.00
0.00
0.08
0.05
0.00
0.00
0.00
0.00
0.25 .
0.74
0.00
0.00
0.00
0.00
2.41
0.18
0.00
0.13
0.43
0.18
0.00
0.13
0.00
1.04
0.00
0.00
0.00
0.00
00 0
20 0
00 0
00 0
58 1
00 0
00 0
00 0
00 0
00 0










































00
33
00
00
27 EVR
00
00
00
00
00 END








SNOil
CEV


RAIN
CEV








RAIN
SKOU



• 0.5
CEV



SNOU




SHOU




                                         •0.51 CH TO NEXT WEEK; SHOW

-------
                                          222
        I


        i
        ti

        I


   S    ""
   a    s
                               • *• <•• *• •»«-*«•"»«"•« ^ »*» w»
        g  ----
  gss

  S M

  ^a
  i!    •
  la    s

*S^3*-^3S3J5**3S3RWSSS'





 B
 s


       S  "" T ~
       a
       B
       a
gc     S  s~s -s-r 'T '= ' = !???T  's




-------
                                    223

                                 APPENDIX C

                               DISCHARGE DATA
    Daily stage height and discharge data by drainage and stream are
presented here.  The data include: date code (running date with 0 = Jan. 1,
1985), year, month, day and hour, graphical record number, stage height in
cm, measured discharge (Qestim), calibration season, and discharge
predicted from calibration, equations.

-------
                                                       224
    HTBKOLoer t»r»»  BMLY STAKC HEIGHT ANB DISCHARGE
ICOOC YR  .10  B*  H» RCCKO  XTA6CHT QESTIfl CNLXBEQ DISCHC

373
374
375
377
378
m
380
381
381
391
III
311
387
388
389
390
391
392
393
394
396
197
399
199
400
400
491
401
404
403
406
407
401
409
410
411
411
413
414
414
413
414
417
41«
41*
420
• 21
422
421
424
425
426
427
428
429
430
431
432
433
414
435
436
437
431
439
440
440
441
442
443
443
444
443
44t
447
448
449
450
431
432
453
434
454
435
435
436
43
45
45
4>
46
44
44
461
444
445
463
446
467
468
464
410
471
86
86
84
86
4
6
4
6
6
4
86
94
84
84
86
84
84
86
84
84
86
84
86
84
84
86
86
86
36
84
116
84
86
66
16
86
86
86
It
36
n6
«6
1ft
36
36
36
86
It
84
86
84
84
84
84
84
84
84
84
64
86
86
84
84
44
86
86
86
86
86
84
86
86
86
86
86
86
86
86
84
84
86
86
86
86
66
66
86
86
86
16
86
36
d6
86
46
36
M
46
16
86
86
6
9
10
11
12
13
14
j}
14
17
18
19
20
21
22
23
24
23
26
27
28
29
31

2
3
4
3
7
8
9
11
11
11
14
It
l»
17
11
1 3
K
21
I!
.')
25
26
27
23
1
2
J
4
S
4
7
8
9
10
11
12
13
14
15
16
16
17
18
19
19
20
21
22
23
24
25
26
27
28
29
30
30
31
11
1
2
1
4
5
6
7
7
8
9
10
10
11
12
13
14
15
14
11
0
0
0
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0
0
II
0
0
0
0
d
0
0
0
0
0
0
0
0
0
c c G
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
9
0
14
0
0
0
0
0
0
0
10
0
0
0
10
1)
u
0
0
0
0
1101H
HOIK
1101H
1101H
1101H
1101H
1I01H
1101H
1101H
1101H
1101H
1101H
1101H
11P2.H
1102H
1102H
1102H
1102H
1102H
1102H
1102H
1102H
1102H
1102H
1102H
1103H
1I01H
110IH
1101H
110IH
I101H
ItlSlH
I1J1H
HOIH
11U1H
1104H
not*
1IJ4H
Hot*
1I04H
1104H
1104H
1104H
1104H
1104H
1105H
110SH
1105H
110SH
110SH
110SH
110SH
1105*
105H
10SH
10SH
10SH
10SH
10SH
10SH
110SH
1104H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
1106H
H06H
H07H
1107H
H07H
1107H
1107H
1107H
1107H
1107H
11U7H
1107H
1107H
110IH
1108H
1108H
H08H
HOnH
I104H
1108H
24.2
23.8
23.0
23.4
23.2
22.6
24.8
24.8
22.8
22.8
38.8
26.2
25.6
35.2
37.6
37.6
63.4
35.6
47.6
42.8
41.2
40.0
39.2
38.6
37.4
37.2
36.8
35.2
33.7
31.1
12.9
12.8
32.7
12.4
32.2
12.11
11.3
12.0
31.3
10.6
10.4
29.8
29.2
28.7
28.4
28.0
27.8
27.8
27.6
27.8
28.0
28.0
28.0
29.2
28.2
27.4
31.2
41.2
43.2
37. S
36.
16.
39. 0
54.
54.
51.
48.2
44.8
41.4
39.4
42.7
37.9
44.7
46.7
44.7
51.1
49.5
48.3
44.7
41.5
38.3
15.5
32.9
30.9
12.2 0
33.3
39.7
37.1
36.1
35. 1
35.1
15.5
11. 1
11.5
10.1
ICED-IN
ICED-IH
1CEO-1N
1CED-1N
ICEO-IN
ICED-IN
1CED-IN
1CEO-IN
ICED-IN
ICED-IN
ICED-IN
ICEO-IN
ICED-IN
ICEO-IN
ICEO-IN
ICED-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN
ICED-IN
1CEO-IH
ICEO-IN
1CCO-IN
ICEO-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN
ICEO-IN
1CEO-IN
ICED-IN
CEO-IN
CEO-1N
CEO-IN
CED-IN
CCD- N
CtD- h
CED- N
ICED-IN
XCEO-IN
ICED-IN
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
2180 1C
1C
1C
Tft
Til
T«
TR
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
OP
1054 OP
UP
OP
OP
OP
0-IN
D-IN
D-IN
D-IN
D-IN
D-IN
D-IN
D-IN
D-IN
D-IN
0-IN
0-IN
0-tN
D-IN
0-IH
D-IN
0-IK
0-IN
D-IH
D-IN
N5IT
NSIT
N5IT
NSIT
NUAT
NWAT
NUAT
NWAT
NWAT
NbAT
Nw T
NW t
NW T
hw T
NV T
NW T
NU T
NU T
NW T
NW T
NW T
NW T
NW r
NUAT
OPENWiif
QPENUAT
UPfihuAT
QPEPiiJAT
.0704
.0704
.0705
.0706
.0705
.0706
.0704
.0704
.0706
.0706
.1757
• 0709
.0706
.1269
.1697
.1697
.7204
.4990
• 3211
.2352
.2101
.1924
.1811
.1730
.1655
.1614
.1516
.1269
.1160
.1077
.1014
.0993
.0986
• 0977
• 0934
.0914
.0332
.0913
• 0427
.0817
• 0789
.0746
.0750
.0742
.0733
.0729
.0729
.0725
.0729
.0733
.0733
.0733
.0766
.0737
.0725
.0862
.2101
.2418
.1676
• 1394
.1394
.1895
.4599
.4647
.4617
.4588
.4559
.4510
.4471
.5339
.0353
.6497
.6497
.3904
.7905
.7377
.6V93
.5904
.5014
.4198
.1545
.2989
.2641
.3026
.3113
.4546
• 1Y11
.1680
.1456
.3436
.3543
.3071
OPENUAT 0.2816
OPENUAI 0.2533


472
474
475
476
477
477
479
480
4>1
492
483
494
485
486
499
489
490
491
492
493
493
494
495
496
498
500
501
502
503
SOS
506
507
507
SOS
509
510
511
512
512
515
514
515
516
517
518
519
519
520
521
522
523
524
525
526
327
528
529
530
531
532
533
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
547
548
549
550
551
552
SSI
553
554
554
555
556
557
55S
554
560
561
561
562
561
564
56S
560
567
560

86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
at,
86
86
86
86
86
86
86
86
36
16
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
66
86
66
86
86
46
46
86
46
86
86
36
«6
86
56
36
46
«
*6
46
86
46

4
4
4
4
4
4
4
4
4
4
4
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
S
S
5
S
5
5
S
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

17
19
20
21
22
22
24
26
27
28
30
1
3
4
5
6
7
8
8
9
10
11
13
IS
16
17
18
20
21
22
22
23
24
25
26
27
27
28
29
30
2
3
5
5
6
7
8
9
10
11
12
13
14
IS
16
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
1
2
3
4
5
6
7
7
8
8
9
10
11
12
1}
14
15
15
16
17
18
19
20
21
22


1

1

<
1
t
(
(

1108H
1108H
1108H
I108H
1108H
1109H
1109H
1109H
1109H
1109H
1109H
1109H
1109H
1109H
I110H
1110H
HIOH
1110H
HIOH
HIOH
HIOH
HIOH
HIOH
1HOH
HUH
HUH
1H1H
111IH
1H1H
HUH
HUH
HUH
HUH
0 1111H
0 111 IK
16 1111H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
0 1112H
8 1112H
0 111JK
0 1113H
0 111JH
0 HUH
0 HUH
0 HUH
0 HUH
0 1113H
0 1113H
0 HUH
0 HUH
0 HUH
0 1113H
0 HUH
9 HUH
0 1114H
0 HUH
0 HUH
0 HUH
0 11KH
0 HUH
12 1114H
0 llltH
15 HUH
0 HUH
0 HUH
0 HUH
0 HUH
0 HUM
0 HUH
0 HUH
16 HUH
0 IH5H
u 1HSH
o UI>H
0 1H5H
0 H1SH
0 1U5H
O H15H


26.7
25.9
25.1
29.1
43.5
36.7
34.3
27.3
26.7
25.9
25.5
26.5
26.7
23.5
21.1
19.5
20.1
17.5
18.1
17.9
2]. 7
24.3
27.7
16.1
31.5
24.1
25.5
27.7
25.9
22.9
21.5
20.7
19.7
21.5
19.3
18.1
18.7
17.3
19.1
17.5
15.5
14.7
15.7
14.3
13.9
13.9
13.1
12.1
11.3
10.7
9.7
9.1
9.S
13.9
13.1
11.7
10.3
10.1
10.1
18.3
15.
13.
12.
12.
29.
27.
24. 0
22.
11.
15.
12.
11.
U.
12.
12.
U.
11.
10.
11. S
11.5
10.7
10.3
OPENWAT 0.1770
OFENUAT 0.1629
OPENWAT 0.1497
OPENUAT 0.3818
OPENWAT 0.3282
OPENUAT 0.1922
OPENWAT 0.1770
OPENUAT 0.1562
OPENUAT 0.1734
OPENUAT 0.1770
OPCNUAT 0.1260
DPENWAT 0. 01161
OPENWAT 0.0640
OPENUAT 0*0686
OPENVAr 0.0670
OPENUAT O.US7
OPENWAT 0.1961
OPEHWAT 0.3726
OPENUAT 0*2036
OPENbAT 0.2042
optNwur 0.1*62
OPENUAT 0.1961
OPENUAT O.U29
OPEHWAT 0.1179
OPENUAT 0.1009
OPENUAT 0.0922
OPENUAT 0.0823
OPENUAT 0*1009
OPENWAT 0.0786
OPENWAT 0.0686
OPENWAT 0.0734
OPENUAT 0.0626
OPENUAT 0.0640
OPENUAT 0.0510
OPENWAT 0.0466
OPfNUAT O.OS22
OPENWAT 0.0446
OPENWAT 0.0427
QPCNUar 0.0427
OPENWAT 0.0391
OPENWAT 0.0352
OPENWAT 0.0323
QPEHUAT 0.0304
OPENUAT 0.0274
OPENWAT 0.02S8
OPENWAT 0.0269
OPEHWAT 0.0427
QPENWAT 0.0391
OPENUAT 0.0337
OPENUAT 0.0292
OPENUAT 0.0286
OPENUAT 0.0236
OPENUAT 0.0701
OPENWAT 0.0510
OPENUAT 0.0409
OPENyAT 0.0359
OPENUAT 0.0359
OPENUAT 0.24J7
OPENUAT 0.1922
441 OPENUAT 0.1434
OPENUAT 0.1104
OPENUAT 0.0701
OPENUHT 0.0534
OPENWAT 0.037S
OPENU4T 0.0344
OPEfiWAT 0.0 MO
OPENWAT 0.03S9
QPENUAT O.UJ59
OPEH-P.T O.OS91
OPENwAT O.OJ44
OPENWAT 0.0304
OPEhVAT 0.0330
OPE. WAT 0.0330
OPENWAT 0.0304
OPENUAT 0.0292

-------
                                                           225
    HYDROLOGY DATAt  DAILV  STASE  HEZ6HT AfID DISCHARGE
       - ORA1NA6E*UNXON R.
                              STREAfl'HAl.ntlt.E BROOK •
OCOOC  Yft  NO  OA  H» RECNO  STAGEHT  QESVIH CALItEQ OISCHC
568
569
570
571
572
573
574
575
575
S76
577
57f
580
' 591
592
5(3
586
587
599
590
591
592
591
394
595
596
596
597
599
599
600
601
601
602
602
603
604
606
604
609
610
612
614
615
616
617
617
618
619
620
621
624
625
626
627
628
629
630
631
632
633
635
636
637
639
640
641
642
643
644
643
645
646
64<
649
650
651
652
651
655
656
657
658
659
659
660
661
62
61
64
65
66
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
A6
86
36
36
16
86
86
46
its
86
86
86
96
86
8
8
e
86
36
86
86
86
86
86
86
86
36
86
86
r 22
23
24
25
26
27
28
29
29
30
2
3
4
3
6
9
10
11
13
14
15
16
17
19
19
20
21
22
21
24
24
25
26
29
11
2
4
6
i
»
9
10
11
12
11
16
17
18
19
20
21
22
23
24
25
27
28
29
86 10 1
86 10 2
86 10 1
86 10 6
86 10 7
86 10 7
86 10 8
36 10 10
86 10 11
86 10 12
86 10 13
86 10 14
36 10 15
6 10 18
6 10 19
6 10 20
6 10 71
6 10 21
6 10 22
6 10 21
6 10 24
6 10 25
6 10 26
6 10 27
6 10 28
15 1115H
0 1115H
0 111SH
0 111SH '
0 1115H
0 1115H
0 1115M
0 1115H
16 1115H
0
0
0
0
0
116H
116H
116H
116H
0 1116H
0 1116H
0 1116H
0 1117H
0 1117H
0 1117H
0 1117H
0 1117H
4 1117H
0 I117H
0 1117H
0 1117H
0 1117H
13 1117H
o man
o max
0 1118H
0 1I19H
0 HUM
o mim
0 1118H
0 HUM
9 1118H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1119H
0 1I19H
0 1119H
0 1120H
0 1120H
0 1120H
0 1120H
0 1120K
0 1120H
0 1120H
0 1120H
0 1120H
0 1120H
0 1I20H
15 1120H
0 121K
0
0
0
0
0
0
0
0
0
0
11
0
0
o
12IH
121
121
121
121
121
121
121H
121H
12IH
12114
122M
122H
122H
122H
122M
122H
122H
10.3 0
10. 1
9.1
9.3
7.9
11.9
17.9
16.7
15.5
22.3
19.9
20.3
15.5
14.3
14.3
13.1
12.3
16.7
13.1
12.3
11.9
13.1
30.3
35.1
30.5
23.1
21.5
19.3
49.3
12.7
10.7
25.9
23.1
21.1
22.3
22.7
21.1
20.9
20.9
20.3
20.3
2O. 3
16.1
22.7
20.7
19.5
18.7
21.5
19.9
20.1
17.5
21.1
20.7
19.7
19.5
19.1
18.1
17.5
17.9
20.1
17.9
17.5
17.1
16.7
16.7
16.7
16.1
15.9
14.7
14.7
14.7
15.9
0355 OPENUAT 0.0292
QPEKUAT 0.0292
OPENUAT 0.0256
OPENUAT 0.0238
OPENWAT 0.0228
OPENbAr 0.0144
OPENUAT 0.0670
OPENUAT 0.0534
OPENUAT 0.0510
OPENUAT .1104
OPENUAT .0342
OPENUAT .0881
OPENUAT .0510
OPESUAT 0.0446
OPENUAT 0.0391
OPENUAT 0.0359
OPEHUAT 0.0584
OPENUAT
OPENUAT
OPENUAT

OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENteAT
OPEMrfAT
OPENUAT
OPENUAT
OPENWAT
OPENtlAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
QPENUAT
DPENriAT
OPENUAT
OPENUAT
OPENUAT
OPE'lUAT
OPENUAT
OPENUAT
OPENUAT
OPESUAT
OPENUAT
OPENUAT
.0191
.0159
.0191

.2511
.1206
.1009
.0305
.7312
.2943
.2611
.1629
.1206
• 09S5
.0331
.1104
.1134
.0943
.0553
.1154
.1009
.0842
.0381
.0321
.0769
.0701
.0670
.0831
.0670
.0640
.0611
.U534
.0534
.05X4
.0553
.0514
.0466
• 0466
.b466
3.0514

OCODC
667
66S
'69
672
673
675
676
67S
679
679
680
6<1
612
683
634
696
697
6S9
701
702
704
705
707
70S
710
711
712
713
71S
71S
717
718
719
720
721
722
725
726
727
72S
729
730
731
732
734
735
736
737
739
739
740
741
745
746
747
748
749
750
751
752
755
756
757
758
759
759
7 2
7 3
7 4
7 5
7 6
7 7
7 S
7 9
7 0
7 1
7 1
772
773
774

V*
86
86
86
86
96
86
86
86
86
86
86
86
86
86
86
86
>6
86
86
86
86
86
86
U6
86
86
if,
86
86
86
86
86
86
86
86
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
37
7
7
7
7
8
3
8
B
3
4
8
S
8
37

no
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
\f
12
12
U
12
12
12
12
12
12
12
12
12
1
1
1
1
1
1
1
1
}
1
1
1
1
1
1
1
1
I
1
1
2
2
2
2
2
7
2
2
2
2
2
2
2
2

0*
29
30
2
4
6
7
9
10
10
11
12
13
15
18
20
2
5
6
8
9
11
12
14
16
16
16
21
22
26
27
28
29
30
31
1
2
4
5
7
8
9
10
15
16
17
IS
20
21
22
25
26
27
23
29
29
1
2
1-
4
5
6
7
a
9
10
10
11
12
11

HR
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
11
0
0
0
*.
• ECHO
1122H
1122H
1122H
1123H
1123H
11Z1H
1121H
1123K
1123H
1123H
1123H
1124H
1125H
1125*
1125H
1125H
1125H
11251*
112SH
I126B
11261
1126H
1126H
112611
1127H
1127H
112711
1127M
1127H
1127H
1127"
1127H
1123H
1123H
1123H
1123H
1123N
1123H
1128H
112S»
112JH
112.1H
112JH
1123"
1I2-»M
1 2-J*»
1 2-»H
1 29M
1 >•"<
1 24*
ll-'J"
1114*
112""
112«
11JOH
1130M
I11CN

STA6EHT Of
IS. 9
15.5

14.7
15. S
16.3
15.5 0
14.9
14.9
13.7
13.7
16.3
49.5
41.1
16.1
14.7
29.1
28.9
26. V
24.3
45. 1
37.1
31.5
30.7
29.5
30.
27.
27.
26.
25.
JS.S
23.9
.23.1
22.
22.
22.
22.
22.
22.
22.
21.
20.
19.
14.
19.
18.
13.
7.6
7.2
&.a
6.3
6.8
19.4
16.0
lo.4
17.4
16.11
16.2
15.6
SI in CAIIIEI OISCHC
OPENUAT 0.0334
OPENUAT 0.0310


OPENUAT 0.0310
OPEN. AT 0.0518
QPENMAT 0.0*13
OPENbAT 0.0558

OPE-HUAT 0.3169
OPE-i.AT 0.7253
OPCH.AT 0.2211
OPEN. AT 0. 307
OPES-AT 0.1374
OPENUAT
OPENUAT
OPENVAT
OPENWAF
OPENUAT
OPENUAT
ICED-1N
1CEO-IN
ICEO-IN
UEO-IN
ICED- IN
1CEO-1N
XCEO-1N
ICED-1N
ICEO-IH
1CEO-IH
XCEO-IN
1CED-IN
XCEO-IN
ICED-IN
ICEO-1H
ICEO-IN
ICEO-IN
ICfcO-lN
ICEO-IK
XCEO-IN
ICED-IN
ICE3-IN
ICED-IN
ICED-IN
ICtD-IN
ICE3-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN
ICED-IN
ICEO-IN
ICEO-IN
ICtD-IN
ICEO-IN
ICEO-IN
ICEO-IN
.6029
.3911
.2836*
.2732
.2631
.2144
.0932
.0723
.0762
.0723
.0709
.0707
.0705
.0705
.0707
.0706
.0707
.0707
.0707
.0707
.0707
.0707
.0705
.0707
.0707
.0706
.0699
.0690
.0090
.0694
.0681
.0672
.JoSO
.0616
.0619
.0619
.Oolv
.0601
.1*580
.0601
.0641
.0619
.0591
.0*57

-------
                                                       226
 MTIKOIOCV ««I«I 1*11.1 ST*» HtlCKT ••! IXICHMCI
—— •««I««tfU«IO> I.     ITIIM>l»irillLE IHOOC -
                                                                         HTOHOLOCV D»I«t OMIT ITKtt HCKHT ••> OIICHOCC
.OH T« It
771 17
776 17
777 17
771 17
779 17
710 17
711 17
712 17
731 17
714 17
715 17
716 17
717 17
719 17
790 17
791 17
792 17
793 17
791 97
795 (7
796 17
797 17
791 87
799 17
109 17
100 17
•01 17
102 87
191 17
104 17
105 17
106 (7
107 17
101 17
«0» 17
• 11 17
112 «7
111 «7
• 14 17
• 13 17
• U 87
117 17
«1» 17
111 17
*21 17
• 21 >7
122 17
126 17
•21 17
127 17
121 17
III 17
• 29 17
•31 17
•33 17
•34 17
•33 17
•37 17
•29 B7
• 40 87
•41 B7
142 «7
•42 87
•43 <7
•44 <7
•49 B7
830 87
• 34 87
• 5) B7
• 34 B7
•37 87
•41 A7
442 *7
•41 37
444 47
847 47
•4V 17
871 17
• 72 47
875 »/
E 14 0 1130H IS.
E 13 0 1130H 14.
16 0 1120H 14.
17 11 1120H 13.
!• 0 1120H 12.
21 0 1120H 15.
22 0 1120H 12.
22 0 1120H 12.
24 12 1130H 12.
23 0 1131H 12.
24 0 1121H 12.
28 0 1131H 12.
0 1131H 12.
0 1131H 12.
0 1131H 13.
0 1151H 13.
0 1131H 13.
0 1131H 12.
0 U31H 12.
0 1131H 12*
0 1131H 13.
10 0 115IH 13.
11 0 1131H 12*
11 15 1131H 12.
12 0 1132N It*
12 0 1132H tl.
0 1152H 11.
0 12H 11*
0 32M 10*
0 32M 11.
0 32H 12.
0 52H 12*
20 0 1132H 15.
21 0 11J2H 13.
22 0 1132H 21*
23 0 1132H 24.
t 16 1152H 24.
2 0 1133M 26.
2 0 1133M 30.
2 0 1I53M 44.
2 0 1155H 43.
3 0 1155H 46.
3 0 1133H 52.
0 1131H 79.
4 1133H 9).
0 1153M 82.
0 1132H 34.
0 1123H 32.
0 1133H 47.
10 1133H 43.
0 1134H 43.
1 0 1134H 38.
1 0 1134H 24.
1 0 1124K 22.
13 0 1134H 31.
17 0 1134H 29.
19 0 1134H 27*
20 0 1134H 27.
21 0 1134H 26.
22 0 1134H 25.
22 10 1134M 25.
23 0 1133H 24.
24 0 1135H 24.
30 0 1135M 28.
0 1135M 23.
0 113SH 22.
0 1116M 23.
13 0 1136M 22.
14 0 115AM 20.
17 U 1I36M 20*
19 0 1136H 16.
19 16 HUM U.
21 0 1137H 16.
22 0 1137M 16.
25 0 1137H la.

0


3
3
L
E
3
3
3
1
3
*
E
I
0












E
2
*
3
b
I CEO- Id
IClO-Ih
ICEO-IN
0416 ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICCO-IN
ZCEO-IN
tCED-IN
tCED-IN
CCO-1*
CED-IN
CCD-IN
CEO-IN
CED-IN
CEO-IN
CED-IN
ICEO-IN
ICED-IN
ZCCO-1N
1CCD-1N
ICCO-IfT
ICCO-IN
ICED-IN
ICEO-IN
ICEO-IN
ICCO-1N
ice o- it
tCCO-lN
ICEO-IN
ICED-IN
ICEO-IN
ICEO-IN
ICEO-IN
ICED-IN
0719 ICEO-IN
ICEO-IN
ICEO-IN
ICEO-IN
TRANSIT
OPENrfAT
OPCNtfAT
OPtltiAT
OPENrfAT
OPCNUAT
QPENUAT
OPENUAT
QPCNifAT
OPCNUAT
OPCNUAT
OPENUAT
OPENUAT
QPCNtfAT
OPENUAT
OPCNUAT
OPCNUAT
OPENUAT
QPENUAT
OPENWAT
QPENUAT
OPENUAT
OPENUAI
OPEtlUAr
OPENUAT
OPENUAT
OPENUAI

OPENtfriT
OPCNUAT
QPCNilAT
OPESUAT
UPtftrfAT
.0532
.0503
.0472
.0410
.0400
.0358
.0315
.0315
.0267
.0242
.0216
.0216
.0216
• 0267
.0359
.0338
.0338
.0338
•0315
• 0216
.0400
.0359
.0315
.0216
.0161
.0161
.0102
.0071
• 01)39
.0102
.0216
• U267
.0359
.3559
.0707
• 0704
.0704
• 0707
.J797
• 3369
.3920
.3409
.3178
.9969
.2161
.9196
.6712
.6050
.5590
.4321
.3304
.2971
.2758
.2277
.1981
.1941
.1681
.1612
.1578
• 1450
• 1330
• 2146
.1192
.1067
.1246
.1067
• 0912
.1219
• 069 1
.0691
.0591
.0540
.0578
•76
171
176
• 77
•71
•79
• 10
Ml
• 12
III
• 13
• It
115
• 16
117
117
• 88
• 19
•90
•91
•92
197
197
•98
899
900
901
902
901
904
905
906
907
lot
911
Vll
9U
915
916
917
919
920
921
>>22
921
92t
925
923
926
927
92S
929
910
931
933
914
935
936
937
938
939
939
940
941
942
943
944
943
945
946
947
94>
949
950
951
952
953
934
955
95
95
95
96
96
961
963
963
970
971
•7
•7
•7
• 7
87
87
87
•7
87
87
87
87
87
87
87
87
• 7
87
37
87
87
87
87
87
87
87
87
87
H7
87
87
87
>7
87
87
d7
if
S7
S7
37
7
7
7
7
7
7
7
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
»7
87
A7
87
87
87
37
H7
87
24
26
7
8
9
0
1
1
2
2
10
16
16
17
18
19
20
21
22
21
24
25
26
11)
30
3
4
5
6
8
9
10
11
12
11
14
14
15
16
17
IS
19
20
22
23
24
25
26
27
28
29
10
j
11
12
13
14
16
17
18
20
21
21
23
29
29
0
0
0
0
0
0
0
0
0
16
0
0
0
0
10
0
0
0
0
0
0
16
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
U
0
0
1137H
1117H
1137H
1137H
1117H
H37H
1137H
11J7H
1137H
1118H
113SH
1138H
1138H
1118H
111SH
1138H
1118H
1138H
1118H
1139H
1139H
1139H
1139H
1139H
1139H
11J9H
1139K
1119H
1119K
1139H
1140H
1140H
I140H
1140H
man
1UOH
1140H
1140H
1141H
1141H
1141H
1141H
1141H
1141H
1141H
1141H
1141H
mix
1141H
1142H
1142H
1142H
1142H
1142H
1142H
1142H
1142H
1142H
1142H
1142H
1143H
U4JH
1143H
1143H
II43H
1143H
1144H
15.4
17.2
16.0
14.8
14.4
11.2
26.4
22.0
20.0
17.6
11.6
23.6
20.0
22.4
25.2
24.4
20.4
17.2
16.4
13.2
14.4
14.2
13.2
11.0
12.2
11.6
11.6
16.0
14.4
13.6
12.1
10.8
10.4
11.0
.4
.0
.0
7
•
10
1
7
7
9
12
10
8
10
9
1
1
9
9
1
8




Z
0
2
13.6
11.4
8


'
'
s
2
0
0 0
8
8
2
6
8 0
0
2.2
OPENUAT O.OS04
OPEHUAT 0.0619
OPENUAT 0.0340
QPENUAT 0.0472
OPENUAT 0.0451
OPENUAT 0.0395
OPENUAT 0.1716
OPENUAT 0.1067
OPENUAT 0.0852
OPENUAT 0*0647
OPENriAT 0.0516
OPENUAT 0.1274
OPENUAT O.OB52
OPENUAT 0.1116
OPENUAT 0.1513
OPENUAT 0.1389
OPENUAT 0.0619
OPENUAT 0.0565
OPENUAT 0.0493
OPENUAT 0.0451
OPENUAT 0.0441
OPENUAT 0.0395
OPENUAT 0.0387
OPENWAT 0.0355
OPENUAT 0.0334
OPENUAT 0.0334
OPENWAT 0.0540
OPENUAT 0*0451
OPENUAT 0.0413
OPENtfAT 0.0379
OPENyAT 0.0307
OPEIUAT 0.0313
OPEfiwAr 0.0266
QPEMUAT 0.0/53
OPENUAT
OPEMUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
QPCTtUAT
OPC1UAT
OPEftVAT
OPENUAT
OPENWAT
OPENUAT
OPCHWAT
OPENUAT
OPENilAT
OPENUAT
OPENUAT
QPENUAT
QPEhbAT
OPEhtfAT
OPCN«AT
OPEN-AT
0106 UPE-fAT
OPEtUAT
QPE'iMAC
.0235
•0226
.0230
.0283
.0235
.0221
.0212
.0266
.0250
.0348
.0295
.0250
.0271
.0250
.0230
.0277
.0261
.0230
• 0413
.0327
.0261
.0203
.015 ?
.0163
.0132
.0113
• 0141
• 0121
.Otlfrt

-------
                                                  227
HVDIOtOSV OATA1 DAILY STASE HEtCHT UNO OI5CHAIGC


971 87
975 87
976 87
979 87
981 87
982 87
982 87
985 87
98* 87
987 87
990 87
991 87
992 87
991 87
994 87
595 87
»95 87
997 87
996 87
1002 87
1005 37
1006 97
1007 87
1008 87
10O9 87
1010 87
1012 87
1014 47
JOIS 87
1017 A7
10 U 47
1020 87
1022 87
1024 87
1024 87
102S 87
1029 87
1010 87
1011 87
1014 87
103S 87
1016 87
1017 87
1017 87
019 87
041 87
042 87
1044 87
104S 87
1046 87
1047 87
1048 37
1049 87
1061 «'
1065 vt
1065 rt7
1066 HI
1067 17
1068 117

.
8 11
9 2
9 1
9 6
9 8
9 9
9 9
9 10
9 12
9 1]
9 14
9 17
9 18
9 19
9 20
9 21
9 22
9 22
9 24
9 2S
9 29
9 10
10
10
10
10
10
10
10 11
10 12
10 IS
10 17
10 19
10 21
10 22
10 26
10 27
10 28
10 11
11 1
11 2
11 1
11 1
11 5
11 7
11 8
11 10
11 11
11 12
11 11
11 14
11 IS
11 29
12 1
12 1
12 I
12 1
12 4


0 1144H
0 1144H
0 1144H
0 1144H
0 114SH
9 114SK
0 114JH
0 114SH
0 1145H
0 114SH
0 114SH
0 1145K
0 114SH
10 1145H
0 114SH
17 114SH
0 1146H
0 1146H
0 1146H

V I146H
0 1147H
0 1147K
0 1147H
0 1147H
0 1147H
0 1147H
0 1147H
0 1148H
0 1148H
0 1148H
0 1148H
0 1148H
0 1148H
' 10 1148H
0 1149H
1149H
1149H
1149H
1149H
1149H
1150H
0 1151H
0 11S1H
0 11S1H


1.
2.
1.2
0.8
0.0
0.0
7.6
5.6
4.4
3.6
S.2
9.4
9.4
7.8
7.0
39.2
11.4
27.4
21.6
15.0

18.8
17.8
24.8
19.6
17.2
16.2
IS. 2
11.8
16.2
1S.O
21.0
20.2
19.6
19.6
19. 6
19.4
18.8
18.4
16.8
16.2
16.6
19.0
61.0
44.6
41.0


OPENUAT 0.0118
OPENUAT 0.0098
OPENUAT 0.0071
OPENUAT O.OOS9
OPENUAT 0.0014
OPENUAT 0.0014
OPENUAT 0.0221
OPENUAT 0.0176
OPENUAT 0.01SO
OPENUAI 0.0112
OPENUAT 0.0168
OPENUAT- 0.0266
OPENUAT 0.0266
OPENUAT 0.0226
OPEHUAT 0.0207
OPEHUAT 0.1092
OPENUAT 0.1902
OPENUAT 0.1102
OPENUAT 0.0482
OPENUAT 0.0413
OPENUAT 0.0741
OPENUAT 0.0662

OPENUAT 0.0414

OPENUAT O.OSS2
OPENUAT 0.049]
OPENUAT 0.0422
OPENUAT O.OSS2
OPENyAT 0.0482
OPENUAT 0.1192
OPENWAT 0.0871
OPENUAT 0.0813
OPENUAT 0.0814
OPEHuar 0.0814

OPENUAT 0.0745
OPENUAT 0.0709

OPENWAT 0.0552
OPENUAT 0.0760
OPENjaT 1.1580
OPE«iWAT 0./U4S
OPENUAI O.bad2

ocooc
1069
1070
1071
1072
107}
1074
107S
1076
1077
1078
1079
1079
10BO
1011
1082
1081
lost
1035
1086
1087
loss
1089
1090
1091
1092
109J
1091

S7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

5
6
7
8
9
10
11
12
11
U
IS
IS
16
17
18
19
20
21
22
21
24
25
26
27
IS
29
29

0
0
0
0
0
0
0
0
0
0
0
IS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16


11S1H
11S1H
11S1H
11S1H
11S1H
11S1H
11S1H
11S1H
11S1H
1151H
US1H
11S2H
11S2H
11S2H
11S2H
11S2K
11S2H
11S2H
1152H
1152H
1152M
1152H
11S2H


14.6
12.6
11.0
29.8
29.4
29.4
29.2
28.2
27.2
28.2
27.2
26.2
2S.6
21.4
21.0
21.0
21.0
22.6
22.4
22.2
22.2
OPENUAT
OPENU4T
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENriAT
OPENI.AT
OPENUAT
OPENUAT
OPENUAT
OPCNUAI
OPEhUAT
OPENUAT
OPEN«AT
QPENUAT


0.1147
0.2928
0.2707
0.2414
0.2122
0.2322
0.2277
0.2062
0.1864
0.1864
0.16)1
0.1S78
0.1246
0.1192
0.1192
0.1192
0.1141
0.1116
0.1091

-------
                                                           228
    NVMOIQCT BATAl    DAILY STAGE HEIGHT AND DISCHARGE



    — BRAINAC(«UNXaH  X.   STREAR-XKBIAN CARP tXOOK 	
                                                                            HYDKOLOGV OATAt    DAILY  STAGE HEIGHT AND DISCHARGE
»C08t  V*  HO  0*   HR  RECKO  STACCHT QESTIH CALIBEQ BZSCKC
toa it 2
tot i* 2
<01 16 2
tOt It 2
tOl 86 I
«0> It 2
<07 It 2
tOB It 2
t09 It 2
tlO It 2
til It 2
t!2 It 2
tlJ t 2
tit t 2
til t 2
til 1 2
t!7 t 2
til it ;
(1* It 2
t26 It 2
t21 It 2
t22 It 2
t23 it :
t2t M :
t2> It 3
t2l It 3
t27 It 3
til It 3
t2? It 3
t30 II 3
tJI It 3
t32 It 1
t3> It 3
t3t It ]
C3t Id 3
tn » i
tu it i
t>« It 3
ttO It 3
ttl 16 S
tt3 It !
ttt It
It5 86
ttt 16
tt7 It
ttl It
tie it
ttl It
t>2 It
t!2 It
t5> It
111 It
til It
tit It
t!9 It
«40 It 1
til It 1
t!2 It 1
ttl If 4
t<] It 4
tfl It 4
ttl It 4
It? It 4
til It 4
t71 It 4
t72 It 4
173 It 4
t7t It 4
475 It 4
t74 It 4
t77 It
«7I It
I7f It
t7f It
til It
t!3 It
tit It
t!7 It
til It
t!9 It
t90 It
tfl It
tf2 It
tfl It
tfl It
tft It
ttl It
tft It
t»7 16
tff II
109 II
191 It
101 II
101 It
101 II
107 It
107 It

10
11
12
13
It
11
It
17
11
If
20
21
22
23
2t
25
21
27
21
7
1
»
10
12
It
15
11
11
17
If
20
21
22
2]
24
21
1 27
1 21
I 21
1 2f
1 31
1 31
I 1
I t
>
t
7
7
•
10
10
12
13
11
17
11
If
20
21
22
23
2t
2t
2t
21

t
10
11
12
It
11
11
If
20
21
22
22
11 1203K
0 1203H
0 120IH
0 1201H
0 1201H
0 120IH
0 I203H
0 1203H
0 120SH
0 1203H
0 1203H
0 120JH
0 120tH
0 120tH
0 120tH
0 120tH
0 I20tn
0 1201H
0 120IH
0 I204H
0 120tH
0 UOtH
0 1206 5
512 86 5
513 86 5
514 86 5
515 86 5
516 16 5
23
24
25
26
27
27
28
29
30
31
519 86 t 3
519 86 6 3
520 86 6 t
521 86 6 5
522 86 6 6
523 86 6 7
524 86 6 8
525 86 6 9
526 86 6 10
527 86 6 11
528 86 t 12
529 86 6 13
530 86 6 14
531 86-6 15
532 86 6 16
533 86 6 17
533 86 6 17
536 86 6 20
537 86 6 21
538 86 6 22
539 86 6 23
540 86 6 24
541 86 6 25
544 86 6 28
5(5 86 6 29
5(6 86 6 30
5(7 86 7 1
5(7 86 7 1
5(9 86 7 3
553 86 7 7
556 86 7 10
557 86 7 11
558 86 7 12
560 86 1
561 86
561 86
562 86
563 86
564 86 1
565 86
566 86
567 86
568 86 1
569 86
570 86
571 86 :
572 86
573 86 1
574 86 ;
575 86
575 86 1
576 86
578 86
579 86
580 86
562 86
586 86
588 86
589 86
589 86
590 86
591 86
592 86
593 86
59( 86
595 16
596 86
596 86
597 86
598 86
599 86
600 86
601 86
601 86
602 86
602 86
It
17
19
20
21
22
23
24
25
26
27
28
29
29
30
1
2
3
5
9
11
2
2
3
4
1
1
1
I
1
20
21
22
23
24
24
1 25
I 25
0 1211H
0 1211H
0 1211H
14 1211H
0 1211H
0 1211H
0 1211H
0 1211H
0 1211H
15 1211H
0 1212H
0 1212H
0 1212K
0 1212H
0 1212H
0 1212H
0 1212H
0 1212H
0 12I2H
0 1212H
0 1212H
0 I212H
0 1212H
0 1212H
0 1213H
0 121 3H
0 1213H
0 1213K
0 1213H
q 1211H
0 I2IJH
0 121JH
10 1211H
0 1214H
0 1214M
0 12KH
0 121tH
0 121tH
0 121SH
0 121SH
0 1215M
0 1215H
0 1215H
0 1215H
0 1215H
0 1215H
0 1215H
0 1215H
15 1215H
0 1216H
0 1216H
0 1216H
0 1216H
0 1216H
0 1216H
0 1216H
10 1216H
0 1217H
0 1217H
0 1217H
0 1217H
0 1217K
0 1217H
0 1217H
6 1217H
0 1217H
0 1217H
0 1217H
0 1217H
0 1217H
10 1217H
0 1217H
14 1217H
17.6
23.4 0
21.8
21.2
16.8
21.0
19.2
16*8
15.6
It. 4
15.6
lt.0
12.4
13.6
11.8
lt.0
12.8
ll.t
10.8
9.2
8.4
8.0
7.2
7.
7.
6.
6.
10.
12.
9.4
7.2
8.0
lt.0
11.6
10.0
7.6
7.1
7.6
6.0
5.2
t.8
t.O
t.O
10. t
17.6
17.6
15.2
30.8
19. «
20.8
17.6
14.8
10. t
15.2
It.t
12.8
11.2
9.6
8.4
10.8
10. (
41.6
51.6
35.6
26.4
21.6
19.2
16. t
63.6
48. t
3t. e
OPENWAT 0
OPCHWAT
OPCHWAT

OPEHWAT
OPCHWRT
.1(56
.3249
.2629
.1296
.1259

.0917
.0866
OPEHWAT 0.0819
OPEHWAT 0.0866
OPEHWAT 0.0733
OPENWAT O.OS65
S"1"1" 'I'll
OPCNWAT 0.0366
OPEHUAT 0.0326
OPChUAT C
OPENkAT {
OPCNUAT
OPENUAT
OPEHUAT
OPCNUAT
OPENWAT
OPCNWAT
OPCNUAT
OPCNUAT
OPCNUAT
OPENWAT
QPCNWAT
OPCNUAT
OPCHUAT
OPCNUAT
OPCHUAT
OPCHWAT
.0513
.075]
.0135
.0861
.0625
.0513
.0391
.0391
.0295
.0279
.02(6
• 0538
.1(56
.1028
.0119
.1940
.9502
.5869
.19(0
.2294
0.1456
0.0970
OPCHWAT 0.0538
OPCHWAT 0.1028
OPCHWAT 0.0917
OPCNUAT 0.0733
OPCNUAT 0.0594
OPCNUAT 0.0489
OPENWAT 0.0427
OPCNUAT 0.0565
OPCNUAT 0.0558
OPCNWAT 1.0983
OPCNUAT 1.7152
OPCNUAT 0.7943
OPCNUAT 0.4719
OPCHUAT 0.2119
QPCNUAT 0.1833
OPENUAT 0.1223
OPCNUAI 2.6178
OPCNUAT 1.5026
OPCNUAT 0.8511

-------
                                                         229
    HVOROLOCV BATAI    DAILY STAGE HP.ICHT AND BIICHADtC
      • OAAINASE-UNION  R.    STREAR-INOIAN COUP HOOK
BCOOC  VK  HO  BA  HR  RCCHO   STAGEHT QES1TIN CALIBEO OISCH6
603 86
604 86
605 86
607 86
609 86
611 86
612 86
614 86
615 86
616 86
617 86
617 86
618 86
619 86
621 86
622 B6
624 86
624 86
625 86
626 86
628 86
629 86
631 66
632 86
634 86
635 86
640 86
641 86
642 86
643 86
645 66
645 86
646 86
647 66
648 86
650 86
652 86
653 86
6S4 86
656 86
657 86
658 86
659 86
659 86
66O 86
662 86
665 86
666 86
667 86
668 86
669 86
670 86
671 86
672 86
673 86
674 86
675 86
676 86
677 66
678 86
681 86
682 86
6 3 86
6 4 86
65 86
6 6 86
6 7 86
6 7 86
6 8 86
89 86
90 86
91 86
92 86
93 86
94 86
695 66
696 86
696 86
697 66
698 86
699 66
700 86
701 it
8 26
8 27
8 28
S 30
9 1
9 3
9 4
9 6
9 7
9 8
9 9
9 9
9 10
9 11
9 13
9 14
9 16
9 16
9 17
9 18
? 20
9 21
9 23
9 24
9 26
9 2
10
10
10
10
10
10
10
10
10 1
10 12
10 14
10 15
10 16
10 18
10 19
10 20
10 21
10 21
10 22
10 24
10 27
10 28
10 29
10 30
10 31
11 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
11 12
1 13
1 14
1 15
1 16
1 17
1 18
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
11 27
11 27
11 28
11 29
11 30
12 1
12 2
0 1218H
0 1218H
0 121SH
0 1218H
0 1218H
0 121SH
0 1218H
0 1218H
0 121614
0 1218H
0 1218H
10 1218H
0 1219H
0 1219H
0 1219H
0 1219H
12 12I9K
0 1219H
0 1219H
0 1219H
0 1219H
0 1219H
0 1220H
0 1220H
0 1220H
0 1220N
0 1220H
0 1220H
0 1220H
0 1220H
14 1220H
0 1221N
0 1221H
0 1221M
0 1221H
0 1221H
0 1221H
0 1221H
0 1221H
0 1221H
0 1221H
0 1221H
13 1221H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
0 1222H
11 1222H
0 1223H
0 1223H
0 1223K
0 1223K
0 1223H
0 I223H
0 1223H
0 1223H
0 1223H
0 1223H
0 1223H
0 1223H
10 I223H
0 1224H
0 1224H
0 1224H
0 1224M
0 1224H
0 1224H
0 1224H
0 1224H
0 I224H
8 1224H
0 1224H
0 1224H
0 1224H
0 1224H
0 1224H
30.8
24.4
39.6
23.6
18.4
15.2
14.4
17.8
17.8
15.2
14.8
14.4
13.6
15.2
13.6
21.2
19.2
15.6
. 12.8
12.4
11.2
17.6
19.6
16.8
14.4
16.4
15.2
14.4
17.2
19.2
17.6
16.4
15.2
15.6
14.4
14.0
17.6
16.4
15.6
14.8
14.0
13.6
13.2
13.0
13.2
13.0
12.6
12.4
12.0
13.0
13.0
12.8
12.4
12.0
11. 6
12.4
12.4
12.2
12.4
12.6
12.8
13.2
13.4
13.8
13.0
13.0
13.0
11.6
11.6
11.6
11.8
11.6
11.6
10.2
10.6
27.2
21.8
18.0
28.6
24.6
43.6
59.6
44.4
33.2
28.4
25.0
21.6
OPENUAT 0.5869
OPENWAT 0.3692
OPENUAT 0.9914
OPENUAT 0.3334
OPENUAT 0.1634
OPENUAT 0.1028
OPENUAT 0.0917
OPENUAT 0.1499
OPENUAT 0.1499
OPENUAT 0.1028
OPENUAT 0.0970
OPENUAT 0.0917
OPENUAT 0.0819
OPENUAr 0.1028
OPENWAT 0.0819
OPENWAT 0.1633
OPENWAT 0.0695
OPENUAT 0.0594
OPENUAT 0.1456
OPENUAT 0.2294
OPENWAT 0.1296
OPENWAT 0.0717
OPENWAT 0.1U24
OPENWAT 0.0917
OPENWAT 0.1174
OPEftWAI 0.1333
OPENWAT 0.1456
OPENUAT 0.1223
OPENWAT 0.1023
OPENWAT 0.1089
OPENWAT 0.0917
OPEHUAT 0.0866
OPCNUAT 0.1456
OPENWAT 0.1223
OPENUAT 0.1089
OPENUAT 0.0866
OPENWAT 0.0619
OPENWAT 0.0775
OPEHUAT 0.0754
OPENWAT 0.0714
OPENUAT 0.0695
OPEHUAT 0.0659
OPENWAT 0.0733
OPENUAT 0.0625
OPENUAT 0.0714
OPENUAT 0.0796
OPENUAT 0.0842
OPEHUAT 0.0754
QPEHUAI 0.0754
OPENUAT 0.0754
OPENWAT 0.0625
OPENWAT 0.0625
OPEHUAT 0.0625
OPENWAT 0.0642
OPENUAT 0.0625
OPENWAT 0.0625
OPENWAT 0.0525
QPEHUAT 0.0552
OPEHUAT 0.5185
OPEHWAT O.2629
OPENUAT 0.1543
OPEHUAT 0.5025
OPEHUAT 0.3882
QPENUAT 1.2106
OPENUAt 2.3082
OPENUAT 1.2571
OPENWAT 0.6866
OPENUAT 0.4952
OPENWAT 0.3980
OPENWAT 0*2559
HYOHOLOSY DATA! OAIir S
DCODE vn no OA MR RECHO
703 86 12 4 0 1225K
70« 86 12 5 0 122SH
705 86 12 6 0 1225H
706 86 12 7 0 1225H
707 86 12 i 0 1225H
708 86 12 90 1225H
709 86 12 10 0 122SH
710 86 12 11 0 1225H
711 86 12 12 0 1225H
712 86 12 13 0 1225H
713 86 12 U 0 1225H
715 86 12 16 0 1225H
717 86 12 18 0 1226H
718 86 12 19 0 1226H
719 86 12 20 0 1226H
720 86 12 21 . 0 1226H
721 86 12 22 0 1226H
72« 86 12 25 0 1226H
726 86 12 27 0 1226H
728 86 12 29 12 1226H
729 86 12 30 0 1227H
731 87 1 1 0 1227H
713 87 1 3 0 1227H
734 87 1 4 0 1227H
736 87 16 0 1227H
737 87 1 7 0 1227H
738 87 1 8 0 1227H
739 87 1 9 0 1227H
740 87 1 10 0 1227H
741 87 1 11 0 1227M
743 87 1 13 0 122711
743 87 1 13 10 122711
744 07 1 14 0 1228H
745 87 1 IS 12 122811
746 87 1 16 0 1228H
747 87 1 17 0 1228H
748 87 1 18 0 122814
749 27 1 19 O 122814
750 87 1 20 0 1228H
751 87 1 21 0 1228H
752 87 1 22 0 1JZSH
753 87 1 23 0 1228M
734 87 1 24 0 122SH
755 87 1 25 0 1228H
756 87 1 26 0 1228H
757 67 1 27 0 122SH
758 87 1 28 0 1228H
759 87 1- 29 0 1228H
759 87 1 29 9 1228H
760 87 1 SO 0 1229H
761 87 1 31 0 1229H
762 87 2 1 0 1229H
763 87 2 2 0 1229H
764 87 2 3 0 1229H
765 87 2 4 0 1229H
766 87 2 5 0 1229H
767 87 2 6 0 1229H
768 87 2 7 0 1229H
769 87 2 8 0 1229H
770 87 2 9 0 1229H
772 87 2 11 0 1230H
775 87 2 14 0 1230H
776 87 2 15 0 1230H
77 87 2 17 0 1230H
77 87 2 IS 0 1230H
78 87 2 20 0 1230H
78 87 2 21 0 1230H
78 87 2 22 0 1230H
78 87 2 24 0 1230H
78 87 2 24 11 I230H
78 87 2 25 0 1231H
78 87 2 26 0 1231H
78 87 2 27 0 123111
76 87 2 28 0 1231H
79 87 3 1 0 1251M
79 87 3 2 0 1231H
79 87 3 3 0 1231H
79 87 3 4 0 1231H
79 87 3 S 0 1231H
79 87 3 6 0 1231H
79 87 3 7 0 1231H
79 87 3 S 0 1231H
79 87 J 9 0 1231H
79 87 3 10 0 1231H

STA6EHT QESTIfl CAIIBEO 015CH6
44.4
34.0
28.8
26.0
24.4
23.2
22.0
20.4
18.8
18.0
16.8
16.4
16.4
16.0
12.8
29.4
24.8
21.2
19.0
19.0
19.0
19.0
17.4
17.0
15.8
14.4
15.0
18.0
20.0
18.0
16.6
14.2 O
14.0
12.8
13.2
14.0
15.0
13.6
13.2
13.0
12.6
12.4
12.2
12.0
11.8
11.6
11.6
11.6
11.6
12.4
11.6
11.0
10.4
9.8
9.4
9.2
9.0
8.6
9.0
7.2
6.8
6.6
5.8
5.4
5.2
5.0
5.0
4.6
4.8
4.8
4.8
• 4.8
4.8
4.8
4.8
4.8
4. a
4.8
4.8
4.8
5.2
8.6
7.4
OPEKUAT 1.2571
OPENUAT 0.5099
OPENUAT 0.4498
OPEHUAT 0.3166
OPENUAT 0.2701
OPENUAT 0.2170
OPENWAT 0.1731
OPENWAT 0.1543
OPENWAT 0.1296
OPENWAT 0.1223
OPENWAT 0.1223
OPENWAT 0.1134
OPENWAT 0. 2423
ICED-IN 0.1138
ICEO-IK 0.1138
1CEO-IN 0.1133
ICEO-IH 0.1138
ICEO-IN 0.1091
ICEO-IH 0.1082
ICED-IN 0.1051
ICED-1H 0.101;
ICEO-IN 0.1109
icto-tN o.io«
ICEO-IN 0.1164
ICEO-IN 0.1109
ICEO-IN 0.1072
ICEO-IN 0.1032
013 ICEO-IN 0.1012
ICEO-IN O.lOOd
ICCD-IN 0.0979
ICEO-IN 0.0989
ICE a- IN 0.1 00*
ICSO-IN 0.1032
ICEO-IN 0.0998
' ICEO-IN 0.0989
XCED-IM 0.0984
ICEO-IN 0.0979
ICEO-IN 0.0970
ICEO-IN 0.0965
ICED-IN 0.0960
ICED-IN 0.0956
ICEO-IH 0.0951
ICEO-IN 0.0951
ICEO-IN 0.0951
ICED-IN 0.0951
ICEO-IN 0.0970
ICEO-IN 0.0951
ICEO-IN 0.0937
ICED-IN 0.0922
ICED-IN 0.0908
ICEO-IN 0.0898
XCEO-IN 0.0893
ICEO-IN 0.0888
ICEO-IN 0.0878 ;
ICED-IN 0.0883
ICEO-IH o.oasa
ICEO-IN 0.0867
ICED-IN 0.0351
ICED-IN 0.0840
ICEO-IN O.OS29
ICEO-IN 0.0829
ICEO-IN 0.0324
ICED-IN 0.0300
ICED-IN 0.0794
ICEO-IN 0.0788
ICEO-IN 0.0782
ICEO-IN 0.0769
ICEO-IN 0.0769
ICED-IN 0.0769
ICED-IN 0.0769
ICED-IN 0.0769
ICEfi-lN 0.0769
1CED-IN 0.0769
ICED-IN 0.0769
ICED-IN 0.0769
IC6D-IN 0.0769
ICED-IN 0.0769
ICEO-IN 0.0769
ICEO-IN 0.0769
ICEO-IN 0.0782
ICED-IN 0.0(178
ICED-IN 0.0146

-------
                                                                                          230
                                     xnioicir I»TM   DHL* ir»t HEIGHT «HB  oiscmmc

                                ""      I«>X««E*U»IO« I.   STICAHUHBZAH CHRP HOOK ———

                                  •COIE  n  no  »  Ht nccxo  STACEHT OCJTIH CAIIIEO BIICHC

                                    109  17
                                    • 09  17
                                    101  87
                                    • 02  87
                                    • 01  <7
                                    804  97
                                    191  97
                                    101  17
                                    197  17
                                    101  87
                                    • Of  87
                                    119  97
                                    811  97
                                    • 11  97
                                    • II  17
                                    911  <7
                                    • 13  87
                                    lit  17
                                    • It  87
                                    • It  17
                                    117  17
                                    • U  17
                                    • If  17
                                    •29  »7
                                    • 21  97
                                    •11  87
                                    • II  87
                                    • 14  17
                                    111  17
                                    821  87
                                    117  87
                                   •21  87
                                    828  87
                                   •It  87
                                    139  17
                                   • 31  87
                                    131  87
                                 .  133  17
                                   • 34  87
                                   • It  57
                                    136  17
                                   137  17
                                   8)8  IT
                                   • >«  87
                                   149  87
                                   941  97
                                   841  87
                                   94t  87
                                   141  97
                                   144  97
                                   145  87
                                   844  17
                                   947  97
                                   • 41  97
                                    • 49  87
                                   • 19  17
                                   •11  17
                                   • 11  17
                                   • II  87
                                   • It  17
                                   • It  17
                                   • II  87
                                   • It  97
                                   • 57  87
                                   • II  17
                                   • If  87
                                   143  87
                                   841  87
                                   847  87
                                   ••3  17
                                   •It  (7
                                   Itl  (7
                                   • ••  17
                                   187  17
                                   848  87
                                   • 49  87
                                   Itf   17
                                   •70  17
                                   • 71   17
                                   • 71   <7
                                   • 71   17
                                   • 74   17
                                   • 71   17
                                   • 76   17
                                   • 77   17
                                   178   87
                                   179   17
                                   • 89   87
                                   189   17
                                   • II   17
                                   111   17
                                   113   17
                                   III   17
                                   114   87
                                   • It   17
                                   996   97
                                   997   17
                                   117   17
                                   199   17
                                   • It   17
                                   119   «7
                                   • 99   17
                                   •fl   17
                                   192   17
                                   • 93   17
                                   194   17
                                   191   17
                                   996   97
                                                                                                            HYDKOLOCY DATA:   DAILY STME «£I=HT AHO DI1CHAKE
BCOOC  VX  HO  DA  HR
3 11
1 11 1
3 11
3 13
1 14
3 It
i «
1 11
1 19
3 10
1 11
3 12
3 It 1
3 13
3 24
3 14 1
3 21
3 24
3 27
I 29
1 29
> 30
3 31
4 1
4 1
4 3
« 4
t I
4 t
4 7
t 1
4 1 1
4 9
4 10
4 11
4 12
* 11
4 14
4 11
4 11
4 17
4 U
4 19
4 20
4 21
4 11 1
4 22
4 23
4 14
4 21
4 It
4 17
« If
4 30
t
1
1
I
1
1
I
t
t
I
I 10
1 11
1 12
1 11
1 14
I 11
1 It
1 17
1 U
1 If
1 If 1
1 19
1 11
1 11
1 13
I 14
I 11
1 16
1 17
I 19
1 If
1 19
131
1 3
t
t
6 1
t
t
t
t
t
6
t
t
t
t 1
t 11
t 11
t 11
6 14
t 11
0 1131H
I 1231H
9 1111H
0 1231H
9 1232H
0 1232H
0 1232H
9 1232H
9 1232H
9 1132H
0 1232H
9 1232H
9 1232H
3 1132H
9 1232H
9 1232H
S 1131H
0 1133H
0 1133H
9 1133H
9 1233H
0 1233H
1233H
1233H
1133H
1133H
I133H
1233H
123IH
1231H
I233H
1233H
12I3H
I234H
1234H
1254H
I214H
I214H
1214H
1214H
1234H
1234H
1214H
1215H
1231H
111SH
12J5H
I1S5H
1231H
I13IH
1111H
1231H
123IH
123SH
123611
1236H
I2S6H

1236H
1216H
I136H
1237H
1237H
1237H
1237H
1137H
1137H
1237H
1137H
I137H
I137H
1237H
1217H
I237H
1237*
I237H
1238K
1233H
12KH
123SB
1118K
1211H
12I1H
121IH
12XH
1218H
I21SH
I231H
1231H
1219H
I23SH
7.4
1.4
1.4
3.1
1.2
1.2
1.2
1.2
1.6
S.4
6.6
7.2
48.4
12.8
40.2
52.6
tl.l 9
14. •
64.1
if. 6
49.0
62.0
12.0
41.0
101. 1
• 6.0
13.6
44.4
41.1
41.2
31.6
34.1
11.6
29.0
21.0
12. •
19.4
II. t
K.4
17.8
16.6
11.6
14.8
14.6
14.0
13.2
12.0
11.2
14.4
23.6
10.8
16.0
14.8
14.4
13.2
12.4
14.4
12.0
11.4
10.6
10.0
10.0
13.0
11.8.
9.8
9.2
l.t
29.8
21.8
18.2
18.2
16.4
15.0
12.4
12.4
16.8
26.4
22.0
16.6
18.6
24.2
24. U
21.8
18.2
17.0
15.0
11.4
ICEO-IH 0.0846
KED-IK 0.0788
ICEO-IK 0.0788
ICEO-IN 0.0792
ICEO-IH 0.0782
ICED-IH 0.0782
XCED-IH 0.0782
XCEO-IH 0.0782
ICEO-IH 0.0794
ICEO-IH 0.0789
ICEO-IH 0.0824
ICEO-IH 0.0840
XCEO-IH 0.4037
XCEO-IH 0.6963
XCEO-IH 0.6363
XCEO-IH 0.5010
4636 ICEO-IH 0.4664
ICEO-IH 0.5599
ICEO-IR 0.7446
ICED-IH 0.8679
ICEO-IK 0.8519
TMHS1T 1.0603
THAHSIT 1.2688
OPCHUAT 1.4772
OPCHUAT 4.8913
OPCHUAT 1.9552
OPEHUAT 1.2571
OPENUAT 1.3045
OPEHWAT 1.0765
OPEHWAT 0.7305
OPCHWAT 0.6193
OPEHUAT 0.5173
OPEHWAT 0.3004
OPENUAT 0.1885
OPENWAr 0.1682
OPCNUAT 0.1499
OPE1U4T 0.1259
OPENUAT 0.1089
OPENUAT 0.0775
OPEHWAT 0.0619
OPEKWAT 0.1188
OPEHUAT 0.3334
OPCHUAT 0.0970
OPEHIIAT 0.0917
OPEHUAT 0.0775
OPENUAT 0.0195


OPEHUAT 0.0552
OPEKU1T 0.0513,
OPEKWAT 0.0754
OPEHUAT 0.0501
OPEHWAT 0.3*21
OPCNUAT 0.1588
OPENWAT 0.1583
OPENWAT 0.1223
DPENUAT 0*0999
OPCNUAT 0.0195
OPCNUAT 0.0695
OPEHUAT 0.1296
OPCHUAT 0.4719
OPENUAT 0.2701
OPCNUAT 0.1259
OPENWAT 13.1182
OPENWAT O.J100
OPCNWAT 0.3510
OPCNUAT 0.2629
OPCNWAT 0.1588
OPCNUAt 0.1355
OPCNWAT 0.0791

898
899
901
902
903
904
905
906
907
90S
909
910
911
911
912
913
914
91S
916
917
918
921
923
924
925
925
926
927
928
929
931
932
933
934
935
936
939
940
941
943
945
945
946
948
953
953
954
955
956
957
960
96L
962
965
964
965
966
967
967
968
970
971
974
975
978
979
980
981
981
982
983
984
985
986
987
987
983
989
990
991
99?


87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87
67
87
87
87
87
87
87
87
87
87
87
87
87
7
7
7
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
37
87
37
87
87
87
87
87
87
87
87
37
37


6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
3
8
8
8
8
8
8
8
8
8
8
ft
8
8
8
8
8
S
8
a
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9


17
18
20
21
22
23
26
27
28
29
30
30
1
2
3
4
5
6
7
10
12
13
14
14
15
16
17
18
20
21
22
23
24
25
28
29
30
1
3
5
4
6
It
12
13
14
18
19
?0
21
22
23
24
25
25
?6
28
29
1
2
5
6
7
8
8
9
10
11
12
13
14
14
15
16
17
13
19


0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
16
0
0
0
0
16
0
0
13
0
0
0
IS
0
n
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
10
16
0
0
0
0
0
6
0
0
0
0
0


1239H
1239H
1239H
1239K
1239H
1239H
1239M
1239H
1239H
1239H
1239H
1239H
1240H
1240H
124QH
1240H
1240H
1240H
1240H
1240H
1240H
1240H
1240H
I240H
1241H
1241H
1241H
124IM
1241H
124 1H
1241H
1241H
1241H
1241H
1241H
1242H
1242H
1242H
1242M
1242H
1242H
1242H
1242H
1243H
1243H
1243H
1243H
1243H
1243H
1243H
1243H
1244H
1244H
1244H
1244H
1244H
1244H
1244H
1244H
1244H
1244H
1245H
1245H
1245H
1245H
1245M
1245M
1245M
1245M


11.0
10.2
9.6
9.2
8.2
8.0
10.0
9.0
11.6
12.6
10.2
10.2
10.2
8.
7.
6*
5.
5.
5.
5.
5.
5.
7.
5*
4.
3.6
7*8
.2
.4
.6
.8
.2
.6
.0
.2
5.2
3*8
16.2
15.2
7.6
5.2
5.2
4.4
3.2 0
3.0
2.
2.
2.
1.
0.
1.
0*
2.
2.
2.
1.0
0.8
0.4
0.4
0.0
9.C.
3.0
• fc. i
4.8
4.4
20.6
1 .2
.3
.2
.4


OPENWAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPEHUAT
OPENUAT
OPCNUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPENUAT
OPENUAT
OPCNUAT
OPENUAT
OPENUAT
OPENWAT
OPCNUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCNUAT
OP NWAT
OP NWAT
OP NUAT
OP HtlAI
OPENUAT
OPENUAT
OPCNUAT
OPEHWAT
OPENUAT
OPEN* AT
0121 OPENUAT
OPENUAT
OPENUAT
OPENUAT
OP C St. AT
OPEN. AT
OPENUAT
QPENtiAT
OPCNhAT
OPChhAT
OPENoAT
OPCHVtAT
OPCStfAT
OPEt.AT
OPESUAT
OPCNWAT
OPCSitAT
OPESwAT
3PEHWAT
OPENUAT
OPCV«AT
QPfi.AT

.0659
.0580
.0525
.0489
.0467
.0418
.0409
.0513
• 0457
.0625
.0714
.0525
.0525
.0525
.0447
.0383
.0391
.0427
.0303
.0303
.031
.031
.031
.031
*03S
.031
.027
.0229
.0261
.0400
.0374
.0342
.0311
. 334
. 311
. 237
* 255
• 0295
.0238
.11/1)1
.1028
.0391
.0295
.0342
.0263
.0210
.0149
.0125
.0059
.0100
.0074
.0149
.OU9
.0037
.0074
.0045
.OJ45
.0014
.0*39
.0409
.0279
.0263
.2231
.0775
.0447
.0374
.0342
.»il9
-

-------
                                                         231
     MnROLOBV »*T«t   MXLV STAGE HEX6HT AND exSCHARSE



....... DRAtMAGE'UNXON R.   STREAH*INDXAN CHRP BROOK  —-•••"




 •CODE  VR  HO   0*  HR RECNO  STA6EHT 9ESTIN CALIIEQ  BISCH«
»94
t9S
99$
996
997
f»8
»99
1000
1001
1002
1003
1004
1005
loot
1007
loos
1009
loot
1010
1011
1011
1012
101}
1914
1015
1016
1017
1011
1019
1020
1021
1012
102]
102*
1024
102S
102*
102?
102S
1029
1010
1011
1012
1033
1034
1035
1036
1037
1037
1031
1039
1040
1041
1042
1043
1044
1041
104*
1047
104>
1049
toil
1051
1052
1053
1054
1055
1056
1057
105S
, 1059
1060
1061
1042
1065
1064
106S
1065
1065
1066
1068
1069
1070
• 1071
1073
1076
1077
1078
1079
108]
' 108<
1085
108
108
108
109
109
109
109
109
87
17
87
87
87
87
87
87
87
87
8?
87
87
87
87
8?
87
87
87
87
87
87
87
•7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
17
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
»7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
J7
87
«7
87
97
87
87
9
*
9
»
»
*
9
»
9
t
*
10
10
10
10
10
10
10
10
10
10
10
10
19
10
10
10
10
10
10
te
19
10
10
10
10
10
19
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
It
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
21 11
22 t
22 1<
23
24
21
26
2?
28
29
30
1
10
11
12
13
14
15
It
17
18
If
29
21
21 1
22
21
24
25
2t
27
28
30
31
1
2
3
3 1
4
S
t
7
8
9
10
11
12
13
14
15
18
19
20
21
22
23
24
2t
28
29
1
1 1
2
4
5
t
7
9
12
13
U
15
19
22
2]
26
27
28
29
29 1
1245H
124SH
1245H
124tH
1244M
1244*
U46H
1244*
1244*
124
-------
                                                 232
HYRRCL04T OM«   BAiur STASE HCICHI AHD DISCHARGE

f
43»
440
441
441
442
443
444
44S
44<
447
441
44*
* 410
4)1
412
45]
434
411
41*
4)1
417
41*
4)f
448
4il
442
4<3
444
4<1
4
47*
47*
419
411
412
413
414
4tl
las
417
4*1
41*
4*a
4*1
4*2
4*3
4*3
4*4
4*1
4«t
4*7
4*1
41*
109
191
102
103
104
101

84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
4
4
4
4
4
4
4
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84

t
2
1
2
Z
I
2
2
*
t
2
i
3
3
3
3
3
3
3
1
}
3
3
3
3
>
3
I
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
I
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
)
I
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
I
1
1
1

18
1*
20
21
22
23
24
21
24
27
2









1
11
12
13
14
11
1)
14
17
17
18
1*
29
21
22
23
24
21
24
27
28
2*
30
31
31
1
2
3
4
3
4
7
>
*
10
11
12
I)
14
17
18
I*
20
21
22
22
23
24
24
2!
24
27
28
2*
30
1
2
3
4
1
4
7
8
8
*
10
11
12
13
14
11
14
17
18
1*
20

14 1303H .
0 1303H
0 1303H
0 1303H
0 1303H
0 1303H
0 1303H
0 1393H
0 1303H
0 13Q3H
0 1393H
0 1303H
0 1303H
0 1303H
0 1304H
0 1304H
0 1304H
0 1104H
0 1304H
0 1394H
0 1304H
0 1394H
0 1304H
9 1304H
9 1304H
0 1304H
14 1304H
0 1304H
9 1304H
13 1304H
9 130SH
0 1305H
0 130SH
0 130SH
0 1301H
0 130JH
0 D01H
0 1J05H
9 1301H
9 1301H
9 130SH
0 D9IH
0 UOSH
0 1J03H
12 1301H
9 1396H
0 1304H
0 1304H
0 1304H
9 UOSH
9 1394H
0 1304H
0 1304H
9 1397H
0 1307H
0 1307H
0 1307H
0 1307H
0 1307H
0 1307H
9 1197H
11 1397H
9 1397H
0 1397H
11 1307H
9 I309H
0 110*11
0 130*H
0 1309H
0 130*H
0 130*«
9 130*11
0 130*H
0 1309H
0 1309K
0 130*H
0 1309H
0 1309H
0 1309H
11 1J09H
9 I310H
0 1310H
0 1310M
0 1J1QH
0 1110M
0 1310H
0 1310H
0 U1CH
0 1I10H
0 1110M
0 1310H
0 1310H

8.8
9.4
*.o
8.1
8.8
8.8
8.4
7.4
7.2
7.0
4.*
8.1
.7
.0
.3
• 0
.7
1.4
4.1
1.8
.7
.1
.9
.3
.7
.9
1 .2
11.2
11.4
11.2
11.3
10.8
22.8
22.1
21.2
19.9
18.4
17.3
14.0
14.6
34.4
>1.2
32.8
37.9
31. 1
31.2
33.2
31.2
28.8
27.2
21.0
28.4
27.3
24.2
22.2
20.0
18.4
18.2
17.4
17.3
20.9
30.2
27.8
23.4
21.3
21.0
23.4
21.2
24.2
22.1
20.3
19.4
19. J
18.7
18.1
17.1
14.9-
14.7
14.4
14.4
14.0
IS. i
14.4
13.4
12.8
12.4
11.9
11.2
10.7
10.*
10.4
9.B

0497 ICCe-lN 0.0491
1CCD-ZN 0.0752
1CEO-IN 0.0709
1CCO-1N 0.0641
1CEO-1N 0.0491
ICCD-lrt 0.0491
icea-iN 0.0&S1
1CCO-1N 0.0)58
leeo-lM 0.0)09
ICeO-lH 0.0484
1CCO-IN 0.0472
icee-ii 0.0417
1CCO-IN 0.0448
1CCO-1H 0.0484
1CCD-IN 0.0402
1CCO-1H 0.0370
ICte-tN 0.0340
1C18-IN 0.0332
1CCO-1N 0.0380
ICtO-l« 0.0350
ICtB-IH 0.0448
ZCCO-XN 0.0496
ICCO-1N 0.0472
1CCO-1N 0.0402
ICCe-lN 0.0273
ICeo-I* 0.0606
1CCD-1N 0.1210
ICCO-IN 0.1133
ICCO-IN 0.0734
0749 lCCO-1* 0.0710
JCEO-IN 0.0742
ICCO-IN 0.0770
ICCO-IN 0.1719
ICCO-IN 0.1696
ICCO-IN 0.1595
TRANSIT 0.1414
TRANSIT 0.1234
OfCNUAT 0.10)3
OPCNUAT 0.0941
OPCNUAT 0.4463
OPCNUAT 0.5337
4724 OPCNUAT 0.463)
OPCNUAT 0.4670
OPENUAT 0.400*
OPCNUAT 0.3426
OPENUAT 0.2821
OPENUAT 0.2470
OPCHUAT 0.20)1
OPCNUAT 0.2729
OPCHUAT 0.2491
OPCNUAT 0.2271
OPCNUAT 0.1332
OPCNUAT 0.1159
OPCNUAT 0.1139 •
OPCNUAT 0.1081
OPENUAT 0.1332
QPCNUAT 0.3162
OPCNUAT 0.2)97
OPCNUAT 0.1820
OPCNUAT 0.210)
OPCNUAT 0.20)1
OPENUAT 0.1820
OPCNUAT 0.2087
OPCNUAT 0.1916
OPCNUAT 0.1)99
OPCNUAT 0.1367
OPCNUAT 0.1286
OPCNUAT 0.1253
OPCNUAT 0.1190
OPCNrfAT 0.1129
OPCNUAT 0.1072
OPENUAT 0.1017
OPCNUAT 0.1000
OPCNteAT 0.0974
OPCNUAT 0.0974
OPCNUAT 0.0941
OPCNUAT 0.0885
OPCNUAT 0.0419
OPENUAT 0.0764
OPChUAT O.O712
OPCNUAT 0*0700
OPENUAT 0.0657
OPENUAt 0.06U
OPENUAT 0.0)90
OPENUAT O.OS01
OPCSUAT 0.0)85
OPENUAT 0.0)43
HYDROLOGY DATA* DAILY
OCODE
506
507
507
' 508
509
510
510
511
512
513
514
515
516
518
519
520
521
522
523
524
525
526
527
S2S
529
530
531
533
534
536
538
540
541
542
545
546
547
549
550
551
552
555
553
556
557
558
559
560
561
561
562
563
565
566
567
570
572
573
574
575
575
576
$77
578
579
580
581
582
583
584
585
586
$87
588
589
589
590
591
$92
593
594
595
596
$97
598
599
600
601
601
Vlt
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
6
6
6
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
8
8
a
a
8
a
a
86
86
86
86
86
86
86
86
86
86
86
RO DA HR KECNO
$ 2
5 2
S 2
5
5
5
5
5
I 0 131CH
! 11 131 OH
I 0 1311H
t 0 1311H
5 0 1311H
5 12 1311H
7 0 131 1H
590 131 1H
5 30 0 1311H
5 31 0 1311H
6 2 1311K
6 3 1311H
6 4 1312H
6 5 1312H
6 6 1312H
6 7 1312H
6 9 1312H
6 10 1312H
6 11 1312K
6 12 1312H
6 13 0 1312H
640 1312H
650 1312H
6 7 11 1312H
6 20 0 1313H
6 22 0 1J13H
6 24 0 1313H
6 25 0 1313H
6 26 0 1313K
6 29 0 1313H
6 30 0 1313H
7
7
7
7 1
7 1
7 1
7 1
7 1
7 1
7 1
7 1
7 1
12 I313H
0 1314H
0 I314H
0 1314H
0 1314H
0 1314H
0 1314H
0 1314H
0 1314H
0 1314H
0 1314M
13 1314H
0 1315H
f 0 1315H
7 19 0 1315H
7 20 0 1315H
7 21 0 131SH
7 26 0 131SH
7 29 0 131SH
7 29 13 131SH
7 30 0 U16H
7 31 0 1316H
810 1516H
820 1316H
830 1316H
840 13I6H
8 $ 0 1316H
880 1316K
890 1316H
8 10 0 131&H
8 11 0 1316H
8 12 0 1316H
8 12 8 UI6H
8 13 0 13I7H
8 14 0 1317H
8 IS 0 1317H
8 16 0 1317H
870 1317H
880 1317H
8 9
8 0
8 21
6 22
8 23
8 24
8 24
13 1J17H
0 1317H
0 1317H
0 1317H
0 U17H
16 1317H
STAGE HEIGHT AND DISCHARGE
STACCHT QESTIII CALXIEC
9.1
10*8 0
11.8
13.9
24.4
IK. 4
15.6
15.2
' 13*8
14.4
16.9
13.6
14.6
13.2
11.8
11.9
10.4
10.1
10.0
9.5
10.0
9.8
fi.4
5.9
5.2
5.2
4*8
5.6
6.6
6.S
$.7 0
6.6
6.6
6.2
5.4
7.4
£.4
6.2
6*0
5.8
5.9
5.9
.9
.6
.2
.2
4.0
0.8
8.
7.
8.
13.
11.
10.
10.
9.
8.
8.
7.
7.
8.
8.
9.
9.1
8.6
8.0
7.4
7.0
7.2
7.
19.
17.
11.
11.
28.
OPENUAT
OA35 QPENUAT
OPENUAT
OPENUAT
OPENVAT
OPENVAT
OPENUAT

.OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPENUAT
OPENUAT
OPEftVAT
OPENUAT
OPENUAf
OPENUAT


OMNUAT
OPENWAT
OPENUAT

OPENUAT
OPENUAT
OPENVAT
OPENUAT
OPENUAT
OPENUAT
OPEhUAT
QPENVAT
OPENUAT
OP£NbAT
OPENUAT
QPENUAT
OPEHUAT
OPENVAT
OPENVAT
OPEHUAT
OPENVAT
OPENVAT
OPENWAT
OPENVAT
OPENVAT
OPENWAT
OPENUAT
OPENUAT
OPENVAT
OPENUAT
OPENVAT
OPENVAT
OPENUAT
OPENUAT
OPENUAT
OISCHC
0.0507
0.0507
0.059$
0.0652
0.0784
0.1949
0.1159
0.0982
0.0777

0.0909
0.0652
0.0657
0.0558
0.0553
0.0553
0.0383
0.0379
0.0355
0.0123
O.OJC2
0.0383


0.03&9
0.0151
0.0332

0.0369
0.0360
0.03S1
0.03S5
0.03SS
0.035$
0.0323
0.0323
0.0313
0.0493
0.0435
0.0725
0.0563
0.0543
0.045
0.044
0.044
0.045
0.045
0.050
0.050
0.0(8
0.045
0.0425
0.0407
0.0416
0.0425
0.1286
0.1100
0.0652
0.0606
0.2821

-------
233

ocooe
602
602
603
604
60S
606
607
608
609
610
611
612
613
614
615
616
617
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
631
632
63
63
63
63
63
63
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
6SS
656
657
658
659
660
661
664
665
666
, 667
670
671
672
673
673
674
679
681
685
686
667
692
693
698
699
700
701

86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86 1
86 1
66 .1
86 1
86 1
86 11
25
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
23
24
25
27
28
29
30
1
2
3
4
5
' 6
86 10 7
86 10 8
86 10 9
86 10 10
86 10 11
86 10 12
86 10 11
86 10 14
86 10 15
86 10 16
86 10 17
86 10 18
86 10 19
86 10 20
86 10 21
86 10 22
86 10 23
86 10 26
86 10 27
86 10 28
86 10 29
86 11 1
86 11 2
86 11 3
86 11 4
86 11 4
86 11 5
86 11 16
86 11 17
86 11 18
86 11 23
86 11 24
86 11 29


0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0


1317H
1317H
1318H
1318H
1318H
1318H
131SH
1318H
1318H
1318K
1318H
1318H
131IH
1318H
1318H
1318H
men
1318M
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1319H
1320H
1320M
D20H
1320H
1320H
1320H
1320H
1320H
1320H
1320H
1320H
1320H
D21H
1321H
1321H
1321H
1321H
I321H
1321H
1321H
1321H
1321H
1321H
1121H
1321H
1322H
1322H
1322K
1322H
1322H
1322H
1322H
1322H
1322H
1322H
1322H
1322H
1323H

1323H
1324H
1324H
1324H



25.1
20. i
IS.,
IS.
25.
18.
16.
14.
13.
12.
11.
11.
11.
11.
13.
11.
10.
10.
10.
9.
9.
9.
8.
|(
10.
9.
e.
7'.
7.
7.
8.
9.
9.
8.
a.
a!
.
,t
.
i .
i .<
,j
.
7!
7.
7.
0
i
i
1
7.
7.
7.
7.
7.
6.
7.
6.8
6.3
6.6
.0
.O
.2
6.0

Ji
?:
17.






STXN CALXIEQ
OPENUAT
OPENUAT
OPENUAT
OPEHUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
QPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAJ
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPCNWAI
QPENUAI
OPENUAT
OP6NUAT
OPtNUAT
OPENUAf
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
QPENUAT
OPENUAT

OPEKUAT
OPtfiwar
OPCNUAT
OPENUAT
OPENUAT
OISCH6
0.2196
0.1139
0.0909
0.2087
0.11S9
0.0941
0.07SO
0.0629
0.0725
O.OS95
0*0574
0.0532
0.0532
0.0512
0.0435
0.0425
0.0493
0.0543
O.OS02
0.0473
0.0463
0.0463
0.0483
0.0483
0.0553
0.0463
0.0444
0.04J5
0.0416
0.0444
0.0416
0.0407
0.0407
0.0388
0.0360
0.0360
0.0369
0.0342
0.0332
0.0497
0.0435
0.1379
0.1026

HVDROL06Y DATA! DAILY
OCODE
701
702
702
703
70*
70S
706
707
708
709
710
711
712
713
71«
71S
715
716
717
718
719
720
721
722
723
724
725
726
728
728
729
730
731
732
733
734
735
736
737
738
739
7(0
741
742
743
743
744
745
745
746
747
748
749
750
752
753
754
755
756
757
757
758
759
761
762
763
764
765
766
767
768
769
770
771
772
776
777
778
779
780
781
782
783
784
786
787
788
7«9
790
792
793
794
795
796
797
798
799
800
v« no D«
86 12 2
86 12 3
86 12 3
86 12 4
>6 12 5
86 12 6
86 12 7
86 12 8
86 12 9
86 12 10
86 12 11
86 12 12
86 12 13
86 12 14
86 12 15
86 12 16
86 12 16
86 12 17
86 12 13
86 12 19
6 12 20
6 12 21
6 12 22
6 12 23
6 12 24
6 12 25
6 12 26
6 12 27
6 1
6 1
6 1
6 1
87
87
7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87 1
I 29
I 29
2 30
8 31
1
2
3
4
5
6
7
8
9
10
11
12
13
13
14
15
15
16
17
18
19
20
22
23
24
25
26
27
27
28
29
87 1 31
87 2 1
87 2 2
87 2 3
87 2 4
87 2 5
87 2 6
87 2 7
87 2 8
87 2 9
87 2 10
87 2 11
87 i
87 2
87 i
87 i
87 ;
87 !
87 1
87 i
87 :
87
87
87
87
87
15
16
17
18
20
21
22
23
25
26
27
28
1
«7 s
87 4
87 3
87 6
87 7
87 8
87 9
87 10
87 3 11
HI HECNO
12 1324H
0 1325H
21 1325H
0 132SH
0 1325H
0 132SH
0 1325H
0 132SH
0 132SH
0 132SH
0 132SH
0 I325H
0 1325H
0 1325H
0 1325H
0 1325H
11 1325H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
0 1326H
12 1326H
0 1327M
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
0 1327H
11 1327H
0 1328H
0 1328H
11 1328H
0 1328H
0 1328H
O 1328H
0 I328B
0 1328H
0 1328H
0 1328H
0 1328H
0 1328H
0 1328H
0 1328K
IS 1328H
0 1329H
0 1329H
0 1329H
' 0 1329H
0 1329H
0 1J29H
0 1329K
0 1329H
0 1329H
13 1329K
0 1330M
0 1330H
0 1330H
0 1330H
0 1330H
0 331H
0 331K
0 331H
0 331H
0 331H
0 331H
0 331H
0 331H
0 1331H
0 1331H
0 1331H
0 1331H
0 1331H
STASl HEIGHT «»0 01SCHAUE
STA6EHT 9
12.5
12.2
40.
38.
25.
19.
16.
IS.
14.
14.
13.
12.
12.
11.
11.
10.
10.
10.
10.
.0
34*
14.
11.
10.
10.
10.
10.
9!
.0
.6
.5
.3
8.2
8.1
8.0 0
7.9'
7.
7.
8k
7.
7.
7.
7.
7.
7.
6.
7.
6.
7.
>.6
7.8
S.S
5.3
5.2
5.0
S.I
5.1
5.5
5.8
6.0 0
6.3
6.0
5.6
5.0
4.5
4.2
, 4.0
3.9
3.9
3.9
3.8
3.8
3.8
3.7
3.?
3.7
3.6
4.3
4.2
4.1
EST1N CALIIEO OISCH6
OPENUAT 0.0693
OPENUAT 0.0675
OPENUAT 0.6796
OPENUAT 0.6073
OPENUAT 0.2123
OPENUAT 0.1286
OPENUAT 0.1008
OPENUAT 0.0833
OPENUAT 0.0791
OPENUAT 0.0718
OPENWAT 0.0687
OPENUAT 0.0652
OPENUAT 0.0623
OPENU*
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
OPENUA
ICED-I
ICE 0-1
ICEO-l
ICED-1
ICEO-l
ICEO-I
ICEO-l
ICEO-l
ICEO-I
ICEO-I
ICEO-I
ICEO-l
ICEO-f
ICEO-l
ICEO-l
ICEO-l
0576 ICEO-l
ICED-I
ICED-I
ICEO-l
ICEO-I
iceo-i
ICED-I
' ICEO-I
ICED-1
ICEO-I
ICED-I
ICED-I
ICEO-I
ICEO-I
ICEO-I
ICED-I1
I 0.05S8
I 0.0543
T 0.0 27
I 0.0 17
r o.o 02
r o.o 93
r o.o 73
r o.o 68
0.4 64
0.0 33
0.0 87
0.0618
0.0601
0.0583
0.0574
0.0774
0.0752
0.0762
0.0762
0.0726
0.0709
0.0691
0.0672
0.0672
0.0661
0.0661
0.06S1
0.06S1
0.0640
0.0629
0.0617
0.0606
0.0594
0.0582
O.OS94
0.0629
0.0582
0.0533
0.0509 *
0.0484
0.0358
0.0484
0.0460
0.0484
0.0460
0.0484
0.0672
ICED-IN 0.0582
ICED-IN 0.0413
ICED-IN 0.0332
ICED-IH 0.0323
ICEO-IH 0.0307
ICED-IN 0.0307
ICED-IH 0.0300
ICED-IH 0.0300
ICED-IN 0.0288
ICEO-IN 0.0294
ICED-IN 0.0294
CED-IN 0.0323
CED-IN 0.0350
CED-IN 0.0402
CED-IH 0.0370
CEO-1N 0.0332
ICEO-IN 0.0288
ICEO-IN 0.0273
ICE&-IN 0.0267
ICEO-IN 0.0262
ICED-IN 0.0265
1CED-IN 0.0265
ICED-IN 0.0265
ICEQ-IN 0.0267
ICED-IN 0.0267
ICEO-IN 0.0267
ICEO-IN 0.0271
ICED-IN 0.0271
ICEO-IN 0.0271
ICEO-IN 0.0273
ICEO-IN 0.0263
ICED-IN 0.0262
ICEO-IN 0.0262

-------
234


Boa
• 01
102
191
IBS
•et
• 07
108
•09
•ie
in
•12
111
lit
•It
III
lit
117
118
• It
•29
121
• 22
• 21
824
• 25
• 21
• 27
•21
129
829
• 11
112
• 11
lit
115
lit
117
111
lit
•to
111
Itl
842
111
• tt
Itl
Itt
147
IK
• tt
• 59
III
•32
•51
854
• 35
155
•36
•57
•38
•St
• 19
Itl
862
•tl
Itt
its
•It
147
•tl
•it
•70
•71
172
17]
• 71
•75
I7t
877
871
179
• BO
811
112
• 11
111
885
lit
117
BBS
189
890
Itl
892
891
Itt
895
896
• 97
197
198
899
too


17
17
17
•7
•7
•7
•7
17
17
•7
•7
•7
•7
•7
•7
•7
•7
•7
•7
•7
B7
17
17
•7
•7
•7
17
17
•7
•7
17
17
17
• 7
•7
•7
17
87
•7
17
•7
•7
87
• 7
17
•7
•7
•7
•7
87
87
(7
•7
87
•7
B7
87
•7
•7
17
•7
•7
17
17
•7
•7
•7
17
87
87
87
87
•7
17
•7
17
• 7
87
87
• 7
•7
•7
87
87
87
87
• 7
17
•7
17
87
87
• 7
87
•7
87
87
87
87
87
87
87
87
87
87
87
87
87
11 1
12
11
It
11
It
17
It
29
21
22
21 (
24 (
25 (
25 1
21
27
28
29
30
31
1
10
11
12
11
It
15
11
17
IB
It
20
21
21 1
22
21
24
25
26
27
21
29
ie
1
19
11
12
11
It
15
It
17
11
19
It 1
20
21
22
21
21
25
26
27
28
29
30
31
1
2
2 1
3
4
3
1
7
8
t
10
11
12
11
It
15
18
It 1
17
It
It
1331H
1332H
1332H
1312H
1332H
1332H
1332H
1312H
1312H
1312M
) 1332H
) 1332H
> 1332H
1332H
) 1132H
1332H
> HUH
) 1331H
1333H
1133H
1333H
HUM
1133H
1333H
1133H
1313H
1133H
HUH
1111H
1I11H
1333H
HUH
1334H
1134H
1334H
1334H
1314H
1334H
1334H
HUH
1114H
1334H
1334H
131411
1134H
1133H
1313H
1333H
1331H
1533H
1333H
1333H
1133H
1115H
1335H
1313H
1133H
I335H
11I5H
1I35H
1314H
13I6H
133IH
Illtn
133 H
131 H
133 H
133 H
133 H
1336H
1336H
!33tH
llltll
11I6K
llltll
1337H
1337H
1337H
1337H
1337H
1337H
1337H
337K
337H
337H
3I7H
137H
117H
337M
337H
338H
338H
338H
33 8H
man
1338H
131BH
1338H
1338H
1338H
1338H
1338H
I138H
1338H
1338H
1339H
1339H
1339H


t.l
t.l
t.)
3.9
1.7
3.6
3.1
3.1
3.1
3.8
l.«
7.»
1.0
7.4
«.4
t. 0
10.
11.
It.
11.
20.
21.
61.
37.
50.
44.
31.
11.
21.
23.
23.0
21.8
lt.1
17.4
11.3
13.0
13.9
12.8
11. B
11.3
11.1
10.9
10.1
9.9
t.t
9.2
a. 3
8.2
• .2
a.i
7.7
7.1
7.2
t.t
t.i
B.I
t.l
7.3
7.S
7.4
7.1
.7
.2
.1
.4
.2
.4
.4
.5
.1
.7
.5
5.8
3.1
5.4
5.2
5.0
4.8
4.8
4.8
t.l
5.9
3.1
4.7
4.4
4.1
8.7
7.4
9.9
9.7
8.8
7.1
7.0
7.9
9.9
8.5
8.6
10.5
10. S
9.4
8.7
8.2
7.7
1.4
6.4
t.l
6.4
6.0
ICCD-IN
ICCD-1H
ICCO-IN
XCCD-IN
ICCD-ZH
ICCO-IH
ICCO-IH
ICCO-IH
1CCD-IH
ICCO-IN
ICCO-IN
ICCO-IH
ICED-IN
ICCO-IH
ICCO-IH
0731 ICCO-IN
1CEO-IH
OPtHUAT
OPCNUAT
OPENUAT
OPEHUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPEHUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCNWAT
OPCNWAT
OPCNWAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPCHUAT
OPCNUAT
OPCNUAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCNUAT
OPCHUAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPCNUAT
OPCNUAT
OPCNMAT
OPCNUAT
OPCNWAT
OPCNUAT


0.0262
0.0262
0.0263
0.0265
0.0271
0.0275
0.0275
0.0273
0.0275
0.0267
0.0217
0.0582
0.0606
0.031!
0.0651
0.0709
0.077
0.064
0.079
0.097
0.142
0.188
1.8155
1.2481
0.9812
0.5779
0.3593
0.1851
0.1558
0.1253
0.1042
0.0966
0.0862
0.0784
0.0712
0.0652
0.0601
O.OS85
0.0512
0.0468
0.0459
0.0421
0.0411
0.0322
0.0532
0.0483
0.0439
0.0430
0.0423
0.0415
0.0312
0.0459
0.0369
0.0379
0.0379
0.0183
0.0365
0.0383
0.0331
0.0123
0.0311
0.0304
0.0174
0.0133
0.0518
0.0348
0.0478
0.0483
0.0579
O.US79
0.0522
0.04D8
0.0461
0.0440
0.0179
0.0179
0.0174
0.0179
0.0360


toi
902
903
904
90S
901
907
908
909
tio
911
911
912
913
914
915
911
917
918
919
920
921
922
t2t
925
925
926
927
928
929
930
931
934
913
936
937
938
939
939
960
941
942
943
944
945
946
947
948
949
950
,H
953
951
954
955
951
957
958
961
912
963
964
965
966
970
972
973
976
977
978
979
980
981
981
982
983
984
985
986
987
987
988
989
990
991
992
993
994
994
995
995
996
997
998


87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
37
37
87
37
RAXHA6E*UNIOH R.
1
1
6
1
1
t
1
1
1
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
a
a
8
8
8
S
a
8
B
8
B
B
B
8
8
B
8
B
S
8
S
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
20
21
22
23
24
21
28
30
30
1
2
3
10
11
13
14
15
16
17
18
19
22
23
24
23
26
27
28
28
29
30
31
1
2
1
4
1
7
B
9
10
11
11
12
13
14
IS
11
19
21
22
24
28
30
31
1
4
3
6
7
a
8
9
10
11
12
13
14
14
15
16,
17
18
19
20
21
21
22
22
21
24
25
0
0
0
0
0
0
0
0
10
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
0
o
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
14
0
0
0
0
0
0
0
8
0
1$
0
0
0
m-n
1339H
1339H
1339H
1339H
1339M
1340H
1340H
13 4 OH
1340M
134 OH
1340H
1340H
1340K
1340H
1340H
U40H
1340H
1341H
1341H
1341H
1341H
1341H
1341H
1341H
134IH
1341H
1341H
I34IH
1JUH
1341H
1342H
1342H
1342H
1342H
1342H
S342K
134ZM
1342M
IJ42M
1342H
1342H
1342H
1342H
1343K
1343H
1343H
1343H
1343H
1343H
I343H
1343H
1343H
1344H
1344H
1344H
1344H
1344H
1344H
1344H
1344H
1344H
1344H
134SH
1345H
134SH
134SH
U45H
1345H
1345M
1341H
134SH
134SH
134SH
1345H
I345H
1345H
1345H
1345H
1345H
1346H
I346H
1346H
TAGC HEI6HT AN» BMC
STKCAfi-spKiNe IROQ

4.a
5.7
«.*
5,4
5.2
5.0
4.1
3.8
3.8
4.1
3*8
3.S
3.3
3.2
3.2
3.0
2.9
3.0
3.5
3.1
2.7
2.3
2.0
2.0
3.3
3.3
3*0
2.7
2.3
3.S
3.1
2.7
2.
2.
3.
2.
1.
1.
4*
3* '
2.
2.
2*
2.
2.
2.
1.
1.
1.
1.
1.4
1.0
1.1
1.1
0.8
0.6
0.
0.
0*
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.1
0.1
0.0
0.0
0.1
3.2
3.0
2.4
1.4
1.2
4.
3.
2.
t!
13.
18.
14.
10.
3.
S.
4AKGE


OPCNUAT
OPCNU
OPCNUI
QPCNU
QPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPENU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPENU
QPCNU
OPCHU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPENU
OPCNU
OPCNU
OPENU
OPCXU
OPENW
OPENU
O'CNW
OPCNU
OPEtu
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPCNU
OPENU
OPCNb
OPCNd
OPCNk
OPCNU
QPCNtf
OPCNtf
OPCMU
OPCNU
T
T
T
T
T
T
T
f
T
T
T
T
T
T
T
r
T
T
T
T
T
T
T
T
f
T
T
r
T
f
T
T
T
r
t
r
r
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
f
T
OPEKHftf
OPCH-AT
OPCNUAT
OPEN war
OPF.Nle-AT
OPENUAT
OPENWAT
OPENUAT
OPCNxAT
OPCNUAT
OPCNWAI
OPENUAT
OPENHAT
OPtNHAT
OPCNtfAY
OPC'tWAT
OPENUAT
OPENUAT
OFENtfAT
OPEhhAT
OPEItfAT
OPEttwAT
OPE SWAT
OPEfUAr
OPE SWAT
OPCHtfAT
OPESWAT
OPEHwAT
OPENUAT
OPE -UK A?


0.0304
0.0304
0.0342
0.0323
0.0313
0.0271
0.025*
0.025*
0.0271
0.025*
0.0242
0.0232
0.0227
0.0227
0.0217
0.0212
0.0212
0.0217
0.0217
0.0242
0.0222
0.0202
0.0112
0.016*
0.016*
0*0232
0*0232
0*0217
0.0202
0.0182
0.0242
0.0222
0.0202
0.0202
0.0187
0.0217
0.0192
0.0161
0.0161
0.0388
0.0222
0.0197
0.0171
0.0212
0.0207
0.01*2
0.016*'
0.0155
0.0155
0.014S
0.0134
0.0134
o.c::»
0.0117
0*01)7
0,0.0)
C.'.jfiV
o!fli,.-B
o.oy/i
O.OU2
0.0072
0.0072
0.0060
0.0060
0.0060
0.00)4
0.0060
0.0227
0.0217
0.01*7
0.0134
0.0123
0.0161
0.031)
0.0309
0.0242
0.0212
0.0152
0.0110
0.0121
O.OM4
0.1210
0.0412
0.0579
0.0463
0.03)5
0.0109

-------
                                                235
KTOPOLOCr OUTAI MILV IT>M HtlCHT AM OlSCHAICE
ocooe
999
1000
1001
1002
1003
1004
1005
1006
1008
1009
1009
1010
1011
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1023
1029
1050
10)2
10))
10)4
'10)5
1016
10)7
1017
10)8
1019
1040
1042
1043
1044
. 1045
1046
1047
1048
1049
1050
1051
1051
1052
1053
1054
loss
1056
1057
1060
1061
1062
1063
1064
1065
1065
1066
106?
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1073
1079
1079
ICSO
1081
1083
1089
1090
1091
10''2
1093
Y«
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
47
87
87
87
87
87
87
87
87
87
87
87
47
8?
87
47
47
47
47
4?
It
17
37
87
87
il
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
37
37
87
37
87
87
87
87
87
87
87
87
87
87
87
87
47
47
47
87
no
9
9
9
9
10
in
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
DA
26
27
28
29
30


10
11
12
13
14
IS
16
17
19
20
21
22
24
25
26
27
29
31


11
12
13
14
15
16
17
17
IS
19
20
21
22
23
26
27
28
30
1
1
2
3
3
4
5
6
1
1
12
13
14
15
15
16
17
26
27
28
29
HI (ECHO
0 1344H
0 1346H
0 1346H
0 .1346H
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
7
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
1346H
1346H
1347H
1347H
1347K
1347H
1347H
1347H
1347H
1347H
1347H
1347H
1348H
1348H
1348H
1348H
1343H
1344H
1348H
1348H
1344H
1344H
1349H
1349H
134 911
1349H
1349H
1349H
1349H
1349K
135 OH
1330H
1350H
13SOH
1350H
1350H
13SOH
13SOH
13SOK
1350H
13SOH
1350H
13SOH
13SOH
1351H
13S1H
1151H
13S1H
1351H
1351H
13S1H
1351H
1351H
135 1H
135 1H
NONE
NONE
NONE

STACEHT HI
6.S
4.1
3.9
3.7
6.6
5.6
7.5
8.1
7.6
7.5
6.4
6.3
6.2
S.
9.3
8.0
7.1
6.9
6.7
6.8
6.5
.4
.2
,9
.7
.4
.3
.8
.6
7.7
7.
7.
6.
7.
6.
32.
62.
32.3
22.3
16.6
15.1
13.
11.
12.
11. •
10.5
9.4
.1

STIK CALMED
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
01SCHC
0.0290
0.0271
0.0261
0.0252
O.U242
.0313
.0)97
.0)42
OPENWAT .0410
OPENWAT
OPENWAT
OPENWAT
OPENWAI
OPfcNWAT
OPENWAT
OPENWriT
OPENWAT
OPEIIWAT
OPENUAT
UCENWAT
OPENWAT
. OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT

OPENWAT
OPE SWAT
OPENWAT
OPENWAT
OPEHWAT
OPENWAI

.04)5
0.0337
0.0146
O.OS17
0.0.48
J.U.54
O.O.J2
0.019?
0.0411
0.0141
0.0)79
0.0169
0.0374
0.0374
0.0397
0.0421
0.0346
0.0402
0.0384
0.0374
0.3917
1.5076
O.lo26

0.065?
0.0693
O.U034
0.0579
0.0522
0.0517
0.0.71
0.0459


-------
                                                          236
    MmOlOCr OATAI    DAILY 5T»tt HEIGHT ««D DISCHARGE
— D««I«ACC»IAIMCUAG
-------
                                                   237
HVDROLOGY OATAI    DAILY STAGE  HEIGHT AND DISCHARGE
                                                                              DATA:   DAILY STAGE HEICHT AND DISCHAKE

610
611
612
613
617
619
620
621
622
623
624
625
626
627
628
630
631
631
632
633
634
633
637
638
639
640
641
643
643
644
645
647
648
649
651
652
654
655
656
657
659
660
661
663
664
665
666
667
669
670
671
672
673
673
674
675
676
677
678
679
680
684
685
686
688
689
690
693
701
702
702
703
704
708
709
710
711
712
715
715
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
6
6
6
86
86
86
86
86
86
66
86
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
2
3
4
5
9
11
12
13
14
16
19
20
23
23
24
25
26
27
29
30
1
2
3
5
5
6
7
9
10
13
14
16
17
18
19
21
22
23
25
26
27
28
29
31
1
3
4
4
5
6
7
8
9
11
15
16
17
19
20
21
24
2
3
4
5
9
10
11
13
16
0
0
0
0
0
14
0
0
0
0
0
0
0
0
19
0
0
0
b
0
0
0
0
0
0
10
0

0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
13
2118H
2118H
211BK
2118H
2118H
211 BH
2119H
2119H
2119H
2119H
2119H
2I19H
2119H
2119H
2120H
2120H
2120H
2120H
217. OH
2120H
2120H
2I20H
2120H
2120H
2120H

2121H
2121H
2121H
2121H
2121H
2121H
2121M
2121H
2121H
2122H
2122H
2122H
2122H
2122H
2122H
2122H
2122H
2122H
2122H
2122K
2123H
2123H
2123H
2123H
2123H
2123H
2123H
2123H
2124H
2I24H
2124H
2125H
2125H
2125H
2125H
2125H
212SH
2125H

13.2
12.8
12.4
12.0
15.2
12.0
11.8
10.8
14.8
13.2
10.8
14.0
13.2
11.6
13.2
16.4
22.8
20.0
13.2
13.2
17.2
15.6
14.0
18.0
22.0
20.0

14.8
14.8
13.2
13.2
15.2
14.0
13.2
12.3
12.8
12.4
12.6
12.2
12.0
12.0
13.2
13.2
12.4
12.0
13.6
13.0
13.2
14.0
13.2
13.6
14.0
13.8
13.2
12.2
12.0
12.2
12.4
12.4
11.4
24.4
14.0
86.0
50.0
17.0
16.2
14.0
12.8
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENWAI
OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
0.1581
0.1520
0.1400
0.1370
0.1282
0.1224
0*1632
0.1561
0.1224
0.1581
0.1341
0.2094
0.2722
0.1581
0.1581
0.1961
0.1705
0.1581
0.2366
0.3095
0.2722
0.2297
0.1832
0.1832
0.1381
0.1581
0.1961
0.1896
0.1705
0.1581
0.1520
0.1459
0.1489
0.1459
0.1429
0.1400
0.1400
0.1581
0.1581
0.1459
0.1400
0.1643
0.1550
0.1705
0.1581
0.1643
0.1705
0.1674
0.1581
0.1429
0.1400
0.1429
0.1459

OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENWAT
OPENWAI
OPEHWAT
OPENWAT
0.1311
1.3087
0.3564
0.1703
2.3888
1.0075
0.2297
0.2195
0.2060
0.1800
0.1705
0.1520

716
717
718
719
721
722
724
725
726
727
729
731
732
733
734
735
736
738
738
739
740
741
742
743
744
745
746
748
749
751
752
753
754
755
756
757
757
756
761
762
764
765
766
767
768
769
770
771
772
77J
774
776
777
778
780
780
781
7<2
783
784
785
785
786
787
788
789
90
93
94
795
796
798
799
800
801
802
803
804
' 805
806
80<
809
810
811
812
813

86
86
86
86
86
86
86
86
86
86
86
87
87
87
87
87
87
87
87
87-
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

12
12
12
12
12
12
12
12
12
12
12
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
i
2
2
2
2
2
3


3
3
3
3


17
18
19
20
22
23
25
26
27
28
30
1
2
3
4
5
6
a
g
9
10
11
12
13
14
15
16
18
19
21
22
23
24
25
27
31
1
3
4
5
6
7
8
9
10
11
12
13
15
16
17
19
19
20
21
22
23
24
24
25
26
2
2

1
1
12
13
14
15
16
17
19
20
21
22
23
24

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IS
0
0
0
0
0
12
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2126H
2126H
2126H
2126H
2I26H
2126H
2126H
2126H
2126H
2126K
2127H
2127H
2127K
2127H
2127H
2127M
2127H
2127H
2127K
2127H
2127H
2127H
2127H
2127H
2128H
2128H
2128H
2128H
2128H
2128H
2128H
2128H
2128H
2128H
2128*
2129H
2129H
2129H
2129H
2129H
2129H
2129H
2129H
ZI29H
2129H
2129H
2130H
2130H
2130H
2130M
2130H
2130H
2130H
2130H
2130H
2130H
2130N
2130H
2131H
2131H
2131H
2131H
2131H
213IH
2131H
2131H
2131M
2131H
2131H
2132H
2132H
2132H
2132K
2132H
2132H
2132H
2132H
2132H
2132H
2132H
2132H

17.2
14.
12.
13.
10.
10.
9.6
66.2
51. 2
44.0
17.2
11.2
12.6
13.4
12.4
12.4
13.4
13.0
13.0 0
11.4
12.6
14.4
16.2
13.2
12.
12.
11.
10.
11.
10.
9.
9.
9.
10.
1.8
13.
13.
9.
8.
>.
7.
7.2
6.7
6.2
S.7
5.3
4.4
4.1
4.0
3.8
3.5
3.4 0
3.4
3.3
3.2
3.1
3.0
3.0
3.0
3.0
2.9
2.9
3.0
3.0
3.0
3.0
28.0
13.2
7.4
- 4.6 •
4.6
3.8
3.6
3.6
3.6
3.6
3.6
3.6
32.8
66.4
82.0

OPENUAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
ICED-IN
ICED-IN
ICEO-IH
ICED-IN
1CED-IK
ICEO-IN
ICEO-IN
1024 ICEO-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN
ICED-IN
ICED-IN
ICEO-IN
ICEO-IN
ICEO-IN
CED-1N
CED-IH
CED-IN
1C£D-IN
ICED-IN
ICEO-IN
ICEO-IN
1CCO-IN
ICED-IN
ICED-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ZCEO-IN
ICCD-IH
ICED-IN
ICED-IN
ICEO-IN
ICEO-IN
ICED-IN
ICEO-IH
0606 I.CEO-IN
ICED-IN
ICED-IN
ICED-IN
ICED- H
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICEO-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICEO-IH
1CED-1N
ICED-IH
ICED-1H
ICEO-IN
ICEOflN
ICEO-IH
ICCD-IN
1CED-IH
ICEO-IN
ICEO-IH
ICEO-IH
ICEB-IN

0.2229
0.1705
0.1520
0.1581
0.1224
0.1224
0.1055
1.5617
0.2229
0.0927
0.0995
0.1034
0.0985
0.0985
0.1034
0.1015
0.101S
0.0937
0.0995
0.108S
0.1180
0.1024
0.1005
0.0965
0.0946
0.08S9
0.0913
0.0871
0.0832
0.0334
O.OS62
O.OS89
0.0956
0.1005
0.1045
0.1015
0.0862
0.0816
0.0794
0.0772
0.0746
0.0724
0.0703
0.0682
0.0665
0.0628
0.0616
0.0612
0.0604
0.0592
0.0588
0.0588
0.0584
0.0580
0.0576
0.0572
0.0572
0.0572
O.OS72
0.0568
0.0568
O.OS72
0.0572
0.0572
0.0572
0.1916
0.1024
0.0754
0.0645
0.0636
0.0604
0.0596
0.0396
0.0596
0.0596
0.0596
0.0596
0.2281
O.*302
0.9248

-------
                                                        238
HYDROLOGY 8ATJU    BAILV STAGE HEIGHT AND DISCHAR6E



 ORAINAK-NARRAGUACUS  R.     STRCAK'SINCLAIR HOOK —



   VR  ItO  0A  HR RCCNQ   STAGtHT QESTIN CALIBEQ OISCH6
                                                                        HVDRQLOUV OATA:    DAILY STAGE  HEIGHT AND DISCHARGE
113 87
• U 87
81} 87
lit 87
117 87
118 87
• 20 17
821 87
821 87
823 87
824 87
I2S 17
• 2t 87
827 87
827 87
828 17
I2t 17
810 87
831 17
833 87
lit 87
83> 87
1)4 87
(37 17
138 17
139 57
8(9 87
Itl 87
HI 87
8(2 87
It 87
It 87
t< 87
It 87
It9 87
110 87
8S1 87
812 87
ID 87
tit 87
US 87
8S7 87
818 87
819 87
810 87
811 87
111 17
Itt 17
115 17
Itt 87
117 17
Itl 17 '
It* 17
870 87
171 17
172 17
173 17
171 17
171 87
877 87
871 87
879 17
110 17
111 17
112 17
III 17
113 17
IK 17
881 87
8lt 87
117 87
817 87
888 87
119 17
190 17
191 87
191 87
892 87
193 17
191 87
89} 87
111 87
897 87
197 17
191 17
899 17
«00 87
901 87
902 87
903 87
901 17
90] 87
90t 17
907 17
901 17
909 87
909 87
910 87
It
21
2t
27
28
29
31
1
1
3
t
S
t
7
7
8
9
10
U
13
It
IS
It
17
18
19
20
21
21
22
2«
25
2t
27
29
10
1
2
3
5
1
7
8
9
10
11
13
It
1}
It
17
11
19
20
21
22
23
21
2t
27
21
29
JO
11
1
2
2
3
t
}
1
1
1
1
1
1
1
It
It
17
18
19
20
21
22
23
2t
21
2t
27
28
28
29
11 2132H
0 2133H
0 2133H
0 2133H
0 2133H
0 213JH
0 2133H
0 2133H
0 21J3K
0 2133M
0 2133H
0 2133K
0 2133H
11 2133H
0 2134M
0 21J«H
0 213tH
0 21>tH
0 213<«
0 213(H
0 213
-------
                                                     239
HVOIIOLOCV OATAI   DAILY SI/IGE HEIGHT  HUD OISCHUBtC


1009
1011
1011
1013
1014
1015
lot?
1018
1019
ooooa
1025
1026
1027
1028
1030
1031
1032
1035
1036
103?
1037
1040
1041
1042
1043
1044
1045
1049
1050
105
105
105
105
105
1057
1058
1060
1061
1062
1063
10000
. o> o> <* »
1068
1070
1071
1073
1074
1075
1077
1081
1085
1087
1088
1090
1092
1093


87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 10
87 11
87 11
87 11
87 11
87 11
87 11
87 11
57 11
87 11
87 11
87 11
87 11
87 11
87 11
87 11
87 11
87 11
87 11
87 12
87 U
87 12
87 12
87 12
87 12
8? 12
87 12
87 12
87 12
87 12
87 12
87 12
87 12
87 12
87 12


6
8
8
10
11
12
14
IS
16
18
19
20
21
23
24
25
27
28
1
3
3
7
9
10
11
15
17
18
19
21
22
29
24
26
27
28
1
2
4
6
7
9
10
11
13
17
21
23
24
26
28
29


14
0
16
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
0
9 OO OOG
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
12


2146H
2147H
2147H
2147H
2147H
2147H
2147H
2147H
2147H
2147H
2147H
21 8H
21 8H
21 8H
21 8H
21 8H

2149H
2149H
2149H
2149H
2150H
2150H
2150H
2150H
2150H
Z150H
2150H
21SOH
21SOH
2150H
21S1H
2151H
2151H
2151H
2151H
2152H
2152H
2152H
2152H
2 52H
2 52K
2152H


12.2
14.0
52.0
18.0
13.6
12.2
10.8
10.6
9.2
9.6
8.8
10.2
9.4
9.0
11.2
9.8

10.0
10.0
11.4
10.0
13.0
23.8
24.8
18.0
13.4
12.0
12.0
12.0
12. 1
108.2
27.0
18.0
14.6
16.2
15.4
14.2
18.4
15.8
15.4
13.6
13.0
12.4
12.2


OPENWAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPEHWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAt
OPENWAT
OPENWAT
OPENWAt
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPE AT
OPE T
OPE T
OPE T
OPE T
OPE T
OPE T
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENUAT


0.1489
0.1429
0.1705
1.0700
0.2366
0.1643
0.1429
0.1224
0.1196
0.1139
0.1055
0.1000
0.1055
0.1000
0.1139
0.1028
0.0973
0.1282
0.1083
0.1370
0.1253
0.1111
0.1028
0.1111
0.1028
0.1311
0.1111
0.1550
0.3644
0.2366
0.1643
0.1400
0.1400
0.1400
0.1429
0.2094
1.6842
0.2366
0.2060
0.1929
0.1736
0.1612
0.1768
0.2416
0.2686
0.229?
0.1994
0.1929
0.1643
0.1550
0.1459
0.1429

-------
                                                      240
 HYDROt.Q«Y OAT**  DAILY STAGE HEIGHT AND  DISCHARGE



— BRAIKAGC-NARRAGUAGUS R.   STREAM"ROCKY IROOK —
378
37»
390
381
382
384
3J5
384
387
387
388
390
3*1
191
m
393
394
39 S
396
397
at
199
409
401
402
403
404
40S
406
407
408
409
410
411
412
413
414
411
417
41*
417
421
422
423
421
426
424
429
430
411
412
434
431
• 436
437
438
439
440
440
441
442
442
444
448
449
411
412
4S4
414
416
417
4}»
419
441
442
462
443
461
461
4 it
447
470
471
472
471
471
86 1
86 1
86 1
SI 1
86 1
86 1
86 1
86 1
86 1
86 1
8t 1
16 1
86 1
•6 1
86 1
86 I
86 1
86 1
86 1
86 2
86 2
86 2
86 2
84 2
86 Z
It 2
86 2
86 Z
86 2
86 2
86 2
86 2
86 2
86 2
86 Z
16 2
86 2
8> 2
86 2
86 Z
86 2
66 Z
16 2
K6 2
86 3
66 1
86 1
86 1
86 3
16 1
86 1
86 1
66 1
86 3
86 3
86 3
86 3
86 1
86 3
86 3
86 I
86 1
66 1
86 1
86 3
86 1
16 3
86 1
86 3
86 6
66 4
86 4
16 4
• 6 4
66 4
86 4
86 4
<6 4
96 4
86 4
a6 4
86 4
66 4
86 4
86 4
86 4
11
14
IS
16
17
19
20
21
22
22
23
25
26
Z7
Z7
Z8
Z9
30
31
1
2
0
1
Z
3
4
11
16
17
18
19
21
Z2
23
25
26
27
1
2
4
i
6
7
«
IS
11
12
13
14
11
16
16
17
18
18
20
24
25
27
28
30
30
1
2

1
1
11
1Z
11
14
17
18
ZO
13 2201H
0 220 1H
0 2201H
0 Z201K
0 Z201H
0 220 1H
0 220 IK
0 2201H
0 ZZ01H
14 220 1H
0 2Z01H
0 Z201H
0 2Z01H
0 ZZ01H
17 Z201K
0 ZZ01H
0 ZZ01H
0 2201H
0 2Z02H
0 2202H
0 2202H
0 ZZOZH
0 ZZOZH
0 2202H
0 2202H
0 2202H
0 ZZOZH
0 ZZOZH
0 ZZOZH
0 ZZOZH
0 2203ri
0 2203H
0 2203H
0 2203H
0 2201H
0 2203H
0 ZZ03H
0 ZZ03H
0 Z203H
0 2203H
0 2203H
0 2203H
0 2203K
0 2Z03H
0 ZZ03H
0 Z203H
0 2204H
0 2Z04H
0 2204H
0 2204H
0 ZZ04H
0 2Z04H
0 ZZ04H
0 2204H
0 2204H
0 Z204H
0 2204H
0 2204H
16 Z204H
12 Z204H
0 220SH
11 2205H
16 2205H
0 2201H
0 Z201H
15 Z205H
0 2Z06H
0 ZZ06H
0 2206H
0 2206H
0 2206H
0 ZZ06H
14 2206H
0 2206H
0 2206H
14 2206N
0 2207H
0 2207H
0 2207H
0 2207H
0 2207M
16.2
16.1
11.5
15.1
16.7
15.8
20.6
64.6
75.8
82.3
70.6
61.2
IS. 4
57.0
92.4
90.0
S8.2
54.4
52. 1
44.9
41.5
38.4
36.6
32.8
28.8
Z4.8
22.9
21. 0
10. 0
19.7
20.7
19.
19.
16.
18.
17.
17.
11.
14.
14.
15.
14.
14.3
14. Z
13.7
13.2
12.4
12.3
12.4
12. S
1Z.7
12.3
12.1
11.9
13.7
14.4
13.6
11.8
17.3
37.1
56*3
31.3 0
65.4
29. 4
4Z.1
55.3
56.1
50.7
47.7
43.7
36.1
3Z.9
3Z.5
3Z.Z
41.9
41.4
39.1
37.7
26.
27.
24.
ICED-IN 0.0330
ICEO-IN 0.0328
ICEO-IH 0.0319
ICEO-IN 0.0312
ICEO-IN 0.0305
ICEO-IN 0.0324
ICED-IN 0.0398
ICED-IN 0.7061
ICEO-IN 1.0395
ICED-IN 1.2618
ICED-IN 0.0775
ICEO-IN 0.6234
ICED-1M 0.5526
ICED-IN 0.5203
ICED-Ih 1.6506
ICEO-IS 1.3535
ICtO-Ifi 0.5480
ICEO-IN 0.4630
ICED-IN 0.4152
ICED-Ih 0.2333
ICEO-IN 0.2304
ICED-IN 0.1375
ICED-IS 0.1739
ICED-Ih 0.1142
ICEO-IN 0.0742
ICCC-IS 0.0516
ICED-IN 0.0452
ICEO-IN 0.0406
ICED-IN 0.0387
ICED-IH 0.0382
ICEO-IH 0.0400
ICED-IN 0.0336
ICED-IN 0.0176
ICED-IN 0.0368 .
ICED-IN 0.0363
ICEO-Ih 0.0346
ICEO-IN 0.0353
ICEO-Ih 0.0312
ICEO-IN 0.0298
ICEO-IN 0.0298
ICEO-IN 0*0325
ICED-IN 0.0305
ICED-Ih 0.0298
ICEO-IN 0.0296
ICEO-IH 0.0285
ICED-IN 0.0274
ICEO-IH 0.0254
tCEO-IN 0.0252
ICEO-IN 0*0254
ICED-IN 0.0257
ICEO-IN 0.0262
ICED-IN 0.0252
ICED-IN 0.0240
ICEO-IN 0.028S
ICED-IH 0.0299
ICEO-IN 0.0283
ICED-IH 0.0238
ICEO-IN 0.0346
1CCD-IH 0.1083
1073 ICEO-IN O.OV68
ICEO-IN 0.0735
ICCO-IH 0.7296
ICtO-IN 0.0790
ICED-IH 0.2393
OPENWAT 0.9682
GPEhWAT 1.0399
OPENUAT 0.7217
OPENWAT 0.5931
OPENwAT 0.4-48
OPEhWAT 0.2414
OPENwAT 0.1418
1774 OPENWAT 0.1753
OPEhWAT 0.1706
OPE»W«T 0.3379
OPENWAT 0.3732
OPEN*AT 0.3208
OPENWAT 0.2766
OPENWAT 0.1229
OPENWAT 0.1075
OPENWAT 0.0621


476
478
479
480
•482
403
484
485
486
487
488
48?
490
491
493
495
496
498
499
501
S02
S03
504
SOS
506
507
508
509
510
511
512
514
515
516
517
519
522
523
525
527
528
529
530
532
533
534
536
538
539
S40
S42
543
544
545
547
549
550
553
553
554
557
558
560
561
561
S62
563
566
567
S69
570
571
572


86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
46
86
86
86
86
86
»6
86
86
86
86
86


4
4
4
4
4
4
4
4
S
5
5
5
5
5
5
5
5
S
S
i
S
5
5
S
5
S
S
5
5
S
S
S
S
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7


21
23
24
25
27
28
29
30
1
2
3
4
S
6
8
10
11
13
14
16
17
18
19
20
21
22
23
24
25
26
27
29
30
31
1
3
6
7
9
11
12
13
14
16
18
20
22
23
24
26
27
28
29




11
12
14
15
15
16
17
20
21
24
2S
26


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
16
11
0
0
0
0
0
10
0
0
0
0
0
0
0
0


2207H
2207H
2207H
2208H
2208H
220SK
2208H
2208H
2208H
2208H
2ZOSH
2ZOSH
2208H
2208H
2208H
2209H
2209H
2209H
2209H
2209H
2209H
2209H
2209H
2209H
Z209H
2209H
2209H
2210H
2210H
2210H
2210H
221 OX
2210H
2210H
2210H
2210H
2Z10H
2211H
2211H
2211H
2211H
2211H
2211H
221 1H
2211H
2211H
221 1H
2212K
2212H
2212H
2212H
2212H
2212H
2212H
2212H
2212H
2212H
2213H
2213H
2213H
2213H
2213H
2213H
2213H
2213H
2213H
2213H
2214H
2214H
2214H
2214H


21.7
41.7
37.7
38.1
38.3
37.5
32.7
28.5
26.4
24.9
24.3
23.1
21.8
20.9
20.9
20.5
19.3
18.2
16. S
14.6
13. tf
13.1
14.0
13.4
13.4
13.2
12.9
15.5
21.1
39.3
33.7
26.1
19.9
18.3
17.1
21.4
21.0
20.7
IV. 3
18.5
16.5
15.3
14.7
14.4
13.4
13.0
11.1
9.9
8.6
7.7
7.1
6.1
5.6
5.1
5.7
6.3
5.3
8.1
6.9
15.1
12.5
9.3
7.9
6.8
7.7
7.3 0
6.7
5.7
S.I
5.1


OP6NWAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPEMUAT
OPEHWAT
OPEhUAT
OPENWAT
OPENUAT
OPENUAT
OPEhWAT
OPENUAT
OPENUAT
OP6NWAT
OPENWAT
OPENHAT
OPENUAT
OPENyAT
OPENUAT
OPENUAT
OP£NWAT
OPENWAT
OPENWAT
OPEhwAT
OPENUAT
OPENnAT
OPfcNWAT
OPEIIWAT
OPENUAT
OPChuAT
OPEhWAT
OPEhWAT
OPENWAT
OPENWAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENWAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPfcNUAT
OPENUAT
OPEhWAT
OPthUAT
OPENUAT
UPENWAT
OPENWAT
OPENWAT


0.0630
0.3820
0.2766
0.2860
0.2908
0.1206
0.0805
0.0718
0.0636
0.0586
0.0586
0.056S
0.0508
0.0348
0.0329
0.0313
0.0333
0.0319
0.0319
0.0315
0.0308
0.0372
0.3156
O.KSS
0.095?
0.0535
0.0466
0.0422
0.0613
0.0591
0.0575
0.0474
0.0402
0.0367
0.0351
0.0343
0.0319
0.0310
0.0271
0.0260
0.0254
0.0248
0.0223
0.0206
0.0194
0*0172
0.0161
0.0149
0.0163
0.0154
0.0154
0.0214
0.0214
0.0194
0.0189
0.0361
O.U300
0.0237
0.0210
0.0187
0.0206
0.0194
0.0185
.0163
.0149
.0149

-------
241


573
574
575
576
577
579
580
581
533
585
587
588
589
591
592
593
594
595
598
599
600
602
602
604
604
605
607
608
613
616
617
617
613
621
623
6Z4
628
•629
632
633
636
637
638
639
641
642
643
645
645
648
649
650
652
653
655
657
660
661
662
663
664
665
666
667
663
669
670
671
672



36
86
86
86
86
86
B6
86
36
86
86
86
86
86
86
86
86
86
86
86
(96
86
36
a&
36
96
tJ6
36
36
H6
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
06
86
1)6
86
36
66
46
36
86
46
S6
86
a6
36



7
7
7
7
8
8
8
8
8
8
B
8
8
8
8
8
8
8
3
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11



28
29
30
31
2
3
4
6
8
10
11
12
14
15
16
17
18
21
22
23
25
25
27
27
28
30
31
5
9
9
10
13
15
16
20
21
24
25
?f>
28
29
30
1
- 4
5
7
7
10
11
12
14
IS
17
19
22
23
24
25
26
27
28
29
30
31
1
2
3



0 2214K
0 2214H
0 221SH
0 2215H
0 221SH
0 221SH
0 2Z15H
0 2215H
0 2215H
0 221SH
14 22ISH
0 2216H
0 2216H
0 2216H
0 2Z16H
0 2Z16H
0 2216K
0 2216H
0 2Z16H
12 2Z16H
0 2217H
13 2217H
0 22I7M
0 2217H
0 ZZI7H
0 2217H
0 221 7H
14 2217M
0 2218H
0 2218H
0 221SH
0 2Z18H
0 ZZ18H
0 2218H
0 2219H
0 2219H
0 2219H
0 2219H
0 2219H
0 2219H
0 2Z19H
il 2Z19H
0 2220H
0 Z220H
0 2220H
0 Z220H
0 2Z20H
0 ZZZOH
0 ZZZOH
0 ZZZ1H
0 2221H
0 2221H
0 2221H
0 2221H
0 Z221K
0 ZZ21H
0 2221H
0 ZZ21H
0 22Z1H
10 2221H
0 2221H
0 Z221H



8.3
10.9
9.9
20.1
32.7
26.1
25.5
21.7
14.7
16.5
14.9
16.3
15.7
13.9
12.3
11.3
15.9
26.9
21.5
16.3
4Z.3
27.7
35.3
3Z.1
IS.v
12.5
11.7
1Z.9
9.4
U.5
11.7
11.5
19.3
16.3
17.7
17.7
22.1
ZZ.l
19.7
19.7
22.7
21.7
25.7
30.7
29.7
29.1
27.3
26.1
25.3
24.7
24.5
25.5
26.9
25. S
23.8
23.
22.
22.
22.
21.
22.
22.
22.
22.
21.
21.
22.



QPENrfAT 0
OPENUAT 0
OP EN WAT Q
OPE.WAT 0
QPEhWAT Q
OPENUAT fl

QPENUAT C
OPChUAT C
OPE MAT C
OPENUAT C
OPENJAT C
OPENWAT I
OPtNWAT i
OPEhUAT
OPESUAT
OPESWAT
UPENWAT

OPENrfAT
QPENUAT
OPENUAT
OPENUAT <
OPENUAT
OPENUAT
OPESUAT
OPENWAT
QPENUAT
OPE. SWAT
OPENUAT
OPEHJOT
OPENUAT
DPENWAf
QPtNUAT
OPENWAT
OPENUAT
OPENrfAT
OPENUAT
OPtNJiU
OPthJAT
UPENUAT
UPEtJAT
OPENWAT
OPENJAT
UPEhUAT
QPtNUAT
UPtNuAT
OPENUAT


.0177
.0267
.0248
.0545
.1786
.0351
.0378

.0384
.1*84
.1034
.0619
.4001
.1117
.2252
.1659
.0334
.0300
.0233

.0300
.0346
.0283
.0396
.0443
}.05Z6
1.0526
).U692
1.0921
1.1434
1.1160
3.1075
J.0957
D.OU37
O.OV04
0.0337
0.0768
O.J739
0.0705
0.0679
0.0066
0.0642
0.0666
0.0666
O.U654
0.0646
0*0607
0.0607
0.0692
                   HYDROLOGY DATAt DAILY STAGE  HEIGHT AND DISCHARGE
              DCODE  Y(t   HO  DA  KR RECNO  STAGEHT QESTIN CALIBEQ DISCH6
675
673
674
675
676
678
679
691
682
683
685
636
687
687
669
690
691
692
701
702
703
704
705
706
707
703
709
710
711
712
713
714
715
715
716
717
718
721
724
726
727
72S
728
730
731
732
733
734
735
•738
740
742
743
744
745
746
747
751
752
752
753
754
755
756
757
758
759
760
761
763
764
765
766
767
768
769
770
771
772
772
773
774
775
776
777
778
779
86 11 4
86 11 41
86 11 5
86 11 6
86 11 7
86 11 9
86 11 10
86 11 12
86 11 13
86 11 14
86 11 16
36 11 17
86 11 18
86 11 18 1
86 11 20
86 11 21
86 11 22
86 11 23
86 12 2 1
86 12 3
86 12 4
86- 12 5
86 2 7
86 2 9
86 2 10
86 2 11
86 2 12
86 2 13
86 2 14
86 12 15
36 12 16 1
86 12 17
86 12 IB
86 12 22
86 12 25
86 12 27
86 12 28
86 12 29
86 1 29 1
86 1
87
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
31
1
2
3
4
5
7
8
10
13
14
IS
16
17
21
22
23
24
25
26
27
28
29
30
31
822
823
8 24
825
326
827
328
329
g 2 10
37 2 11
87 2 11 1
87 2 12
87 2 13
87 2 14
87 2 15
37 2 16
37 2 17
87 I IS
2221H
2221H
2222H
2222H
2222H
2222H
2222H
2222H
2222M
2222H
2222H
2222H
2223H
2223H
222 iH
2223H
2224H
2224H
2224H
2224«
2224H
2224H
2224H
2224H
22Z4H
2224H
222SH
2225H
2225H
2225H
2225H
222 5H
222 H
222 H
222 H
222 H
222 H
2226H
2226H
2226H
222 6H
2227H
2227H
2227H
2227H
2227H
2227H
2227H
2227H
2227H
2227H
2227H
2229H
2228H
2228H
2228H
2228H
2228H
2228H
222BH
2228H
2228H
222BH
2228H
2228H
2228H
2223H
2229H
2229H
2229H
2229H
2229H
> 2229H •
) 2229H
22.3
22.7
23.1
23.1
23.4
24.4
25.3
24.9
22.5
22.2
22.0
21.9
22.9
20.3
33.9
27.3
69.7
48.7
35.3
31.7
30.9,
30.3
29.0
27.7
27.1
26.3
24.9
24.3
23.7
21.7
50.5
61.1
36.9
33.0
27.5
26.5
2S.9
24.7
24.5
24.0
22.8
21.1
20.7
19.9
20.6
19.7
19.0
13.8
18.3
18.1
18.0
17.9
17.8
17.7
17.6
16.9
16.8
16.3
15.9
15. 1
15.9
16.1
16.0
15.4
14.6,
14.1
13.9
13.9
14.3
13.9
11.7
13.1
12.6
12.3
12.2
11.9
11.7
OPENUAT 0.0666
OPENUAT 0.0718

UPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENVAT
OPENWAT
OPENWAT
OPENWAT
OPENWAT
OPcNWAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPENUAT
UPENUAT
OPtftWAT
OPENUAT
OPENWAT
OPENWAT
OPENUAT
UPfcNWAT
OPENWAT
XCED-IH
1CED-IN
ICED-IN
ICED-1N
ICED-IN
ICED-IN
ICED-IN
ICEO-IH
1CEO-IN
ICED-IN
ICED-IN
ICEO-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN
ICE -IN
ICE -IN
ICE -IN
ICE -IN
ICE -IN
ICED- N
ICED- N
ICED- N
ICED- N
ICEU- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICCD- N
ICED- N
ICED- N
ICED- N
ICtD- N
1CED-
ICED-1
ICtO-I
ICEO-I
ICEO-I
ICEO-I
, ICEO-I
ICEO-I
ICEU-I
1CED-I
ice o-i
ICtD-l

.0353
.U660
.0642
.0705
.0155
.1V90
.1075
.4941
.6352
.2252
.1029
.1512
.1430
.1264
.1117
.1054
.0353
.0305
.0760
.Ut.30
./162
.0777
.2535
.1335
.10V5
.0595
.0565
.0512
.0505
.04S6
.0470
.0467
.0449
.0417
.0408
.0417
.0426
.0400
.0391
.0386
.0398
.0332
.0371
.0371
.0371
.0363
.0361
.0358
.0356
.0355
.0353
.0352
.0350
.0349
.0340
.0319
.0331
.0325
.0325
.0325
.0325
• 0326
.0327
.0117
.0303
.0294
.0290
.0290
.0293
.0290
.0235
.0272
.0260
.0252
.024V
.11240
9.0234

-------
                                                           242
                                                                              HVOKOLOGV OATHI DAILY JTAGE  HEIGHT UNO DISCHARGE
——— DRAINACC*NARRACUACUS R.   STREAH'AQCKy  BROOK -



 DCCOC  V*  HO  0»   KR RCCNO  STACEHT SEST1I1 CAL18EO OISCHG
710
710
711
7«2
781
715
783
786
718
789
790
791
793
794
793
7V7
798
• 00
100
101
102
101
• 04
•05
• 06
•07
•01
109
• 10
• 12
814
lit
• 16
817
• 18
117
120
322
321
125
»27
127
32t
•27
• 10
111
• S3
115
156
• 17
• !•
• 17
141
141
142
• 41
•45
116
• 47
149
110
• SI
• 11
IS5
• SI
•56
• 57
• 5<
• 17
161
•62
• 61
864
161
•66
•67
167
• 70
171
• 72
174
177
873
• 79
•7 ;
«7 i
•7 :
•7 1
17 :
17 i
17 1
17 i
87 ]
•7
97
•7
•7
87
87
87
•7
• 7
87
• 7
97
87
67
97
47
»7
67
17
• 7
87
17
• 7
17
87
17
17
87
17
• 7
97
• 7
17
17
»7
17
•7
•7
•7
17
17
• 7
•7
17
•7
• 7
•7
17
• 7
•7
•7
17
17
17
•7
87
17
17
87
17
67
17
• 7
87
•7
• 7
17
• 7
•7
17
17
17
• 7
•7
tl
• 7
87
17
47
17
20
21
22
24
24
25
27
28
1
2
4
1
6
7
7
10
11
11
12
11
14
15
14
17
18
19
20
21
21
25
26
27
28
29
10
11
2
1
5
6
7
1
9
10
11
15
It
17
17
21
21
22
21
23
26
27
27
10



11
12
11
14
13
16
17
18
17
17
20
21
22
24
26
27
28
27
11 2229H
0 2229H
0 2229H
0 2229H
0 2229H
11 2229H
0 2230H
0 2230H
0 2230H
0 2230H
0 2230H
0 2230H
0 2230H
0 2230H
0 2230H
0 2210K
0 2330H
0 2230H
0 2230H
10 2230H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2231H
0 2211H
0 2211H
0 2211H
0 2212H
0 2212H
0 2212H
0 2212H
0 2212H
0 2212H
0 2212H
0 2212»
0 2212H
0 2212H
0 2231H
0 22I1H
0 2233H
0 2233H
0 2233H
0 2231H
0 2233H
0 2211H
0 2233H
0 2233H
11 2233H
0 2234H
0 2234H
0 2234H
0 2234H
0 223«H
0 Z234H
0 2234H
0 2234H
0 2234H
0 223 4H
14 2234H
0 2235H
0 223SH
0 2233H
0 2235H
0 223SH
0 2233H
0 2235H

0 2236*
0 2236H
0 2236H
0 2216H
0 2236H
11.2 0
11.1
11.0
10.9
10.6
10.4
10.3
10.2
10.4
10.7
10.7
10.9
10.5
10.1
10.1
10.1
12.1
14.1
13.1
12.7
12.3
11.9
11.5
11.5
11.4
11.5
11.7
11.5
11.7
11.7
29.5
33.0
13.7
45.0
66.1
59.3
77.7
68.5
61.7
61.9
67.1
52.7
47.4
43.9
42.0
38.7
35.7
33.6
31.8
27.4
29.7
26.7
22.9
24.9
24.0
21.9
21.2
19.7
It. 5
28.7
33.3
29.0
23.1
22.7
21.9,
31.8
27.7
21.0
19.7
16.7
20.1
15.6
17.1
15.7
14.0
14.7
11.5
12.5
11.1
14.8
14.2
12.5
11.8
0173 CCD-IH
CEO-IH
CEO-IH
CED-IH
CEO-IH
CEO-IH
CEO-IH
CED-IN
CEO-IK
CEO-IH
CEO-IH
CEO-IH
CEO-IN
CED-IH
CEO-IH
CEO-IH
ICEO-IN
ICED-IH
ICED-IH
ICEO-IH
ICED-IH
ICED-IH
ICED-IH
ICEO-IH
ICED-IH
ICED-IH
ICED-IH
ICEO-IH
ICEO-IH
ICEO-IH
ICEO-IN
ICEO-IH
ICEU-IH
ICEO-IH
TRANSIT
UPEHUAT
OPEHWAT
OPEHUAT
OPEHUAT
OPEHWAT
OPEhUAT
OPENWAT
OPEHUAT
OPENUAT
OPENUAT
OPEHUAT
OPEHUAT
OPEH'WAT
OPEHUAT
OPEHUAT
OPEHUAT
OPEKUAT
OPEHUAT
OPEHUAT
OPEHUAT
OPEHWAT
OPthWAT
OPENWAT
OPEHWAT
OPENUAT
OPENUAT
OPEHUAT
OPEHUAT
OPEN. AT
OPESWAT
OPE.1UAT
OPENWAT
OPEHnAT
OPEhwAT
OPEHWAT
OPEHWAT
OPENWAT
QPE.WAT
OPENWAT
QPtN-WAT
OPEHWAT
9.0218
J.0215
1.0211
1.0203
.0197
.0169
.0146
.0142
.0149
.0201
.0201
.0208
.0193
Ioi7s
.0173
.0265
.0294
.0272
.0262
.0252
1.0240
1.022B
1.0223
1.0225
1.022B
1.0214
1.0224
1.0214
1.0240
1.U794
1.1164
l.loll
1.2950
1.4164
1.4066
1.1027
L.llll
9.4251
9.1910
9.1055
9.2171
9.1917
9.1644
9.1118
9.1151
9.1014
9.0705
0.0351
9.0783
9.0642
9.0602
0.0526
9.0474
9.1229
0.1485
0.1264
0.0718
0.0692
0.1644
0.1138
0.0591
0*0526
0.0409
0.0545
0.0478
0.11422
0.037B
0.0111
0.0151
0.0122
0.1)100
0.0129
0.0151
0.0138
0.0100
0.0285

880 87 i
881 87 i
882 87 <
883 87 I
883 87 <
88< 87 <
BBS 87 !
•886 87 <
888 87 t
889 87 <
891 87 t

896 87 <
897 87 (
898 87 t
899 87 <
900 87 t
901 87 1
902 87 t
903 S7 t
904 87 «
905 87 t
908 87 *
909 87 I
910 87 (
911 87 <
V12 87 7
913 B7 ]
914 87 1
915 H7 7
917 87 7
922 37 7
924 47 7
725 it 7
926 H7 7
928 87 1
930 87 1
931 87 1
932 87
934 87 1
936 87 1
937 87 5
V3S 87
93? 87 1
939 87
940 87
941 87

946 87
948 87
949 87
950 87
951 87
953 87
954 87
1H 87
960 47
962 87
964 87
965 87
966 87
967 tl
96! i?
969 37
970 47
•'71 117
372 87
973 87
974 47
'75 17
•'76 47

30 0 2236H
31 0 2236H
0 2236H
10 2236H
0 2237H
0 2237H
0 2237H
10 0 2237H

15 0 2237H
16 11 2237H
17 0 2238K
18 0 2238H
20 0 2238H
21 0 2338H
22 0 223SH
23 0 2238H
24 0 223BH
27 0 2238H
28 0 2238H
29 0 2238H
30 0 2238H
3 0 2239H
4 0 2239H
6 0 2239H

13 0 2239H
14 15 223'H
13 0 2240H
17 0 2240H
19 0 2240H
20 0 2240H
21 0 2240H
23 0 2240H
25 0 2240H
27 0 2240H
30 0 2241H

4 0 2241H
6 0 2241H
8 9 2241H
11 10 2241H
12 0 2242H
17 0 2242H
20 0 2242H
22 0 2242H
23 0 2242H
24 0 2242H
25 0 2242H
26 0 2243H
27 0 2243H
28 0 2243H
29 0 2243H
30 0 2243H
31 0 2243H
1 0 224 3K
I a 2243H
3 0 2241H

10.5
22.3
25.3
22.5
15.9
19.1
18.2
28.1
22.0
16.7
13.6
13.1
11.0
9.7
8.0
6.9
6.1
9.8
8.2
7.5
47.7
30.1
15.8
14.4
11.2
>.o
8.0
7.3
7.5
7.1
7.2
6.5
5.0
4.5
S.I
0.1
5.9
8.2
S.O
4.4
12.6
9.0
20.2
9.4
4.0
2.7
1.0
0.9
0.7
0.1
0.4
0.2
0.2
0.0
1.7
0.5
1*3
1*0

OPEtVAT 0.0260
OPEHWAT .0066
QPENWAT .0324
OPENWAT .0499
OPENWAT .0462
QPEI4WAT .1160
UPENWAT .0648
OPtNWAT .0409
OPEKUAT .0324
OPEHUAT .0313
QPEh-'AT .0269
OPENUAT .0212
PE WAT .0149
PE WAT .0172
PE WAT *0246
PE WAT .0216
PC WAT .0202
OPt 4AT .i931
OPE UAT .(te20
OPfcNvAT I.1J75
UPEN1.AT .0341
OPthWAT .034)
OPE'.-.AT 0.0273
OPtNWAT U.0112
OPtrf.AT J.0212
OPtNUAf i). 0202
OPtNWAF O.U144
UP£*UAT 0*019*
OPEHUAT 0.0181
OPEHUAT 0.0146
OPENWAT 0.0134
OPCNWAT 0.0149
OPEhUAT 0.0172
OPENUAT 0.0 Ud
OPESUAT 0.015*
OPENWAT 0.0146
OPENWAT 0.0131
OPtNWAT 0.0302
OPENWAT 0.0231

OPENWAT 0.0120
OPE THAT 0.0021
OPENUAT 0*0014
OPt (WAT 0.0010
UPt.WAT 0.0006
QPtNWAT J.UVO*
UPENrfAT 0.0007
OPEN WAT 0.0007
GPCftWitT O.OUOd
OPtNWAT U.0004
OPEN'WAT O.OJJi
OPfc*W«T O.OJ21

-------
                                                       243
HYDROLOGY DATA:  OAZLV  STAGE HEIGHT AND DISCHARGE


973
930
981
981
982
982
934
985
986
"87
9B7
988
989
990
992
993
994
994
995
995
997
998
1000
1001
1003
1004
1006
1007
1009
1009
1010
1011
1012
1U13
1014
1010
1017
1019
1020
102}
1023
1024
1024
1025
1026
1027
1030
1034
1036
1037
1038
1039
1041
1042
1043
1045
1046
1047
1050
1051
1056
1057
1053
1060
1061
1063
1064
1065
1065
1060
1U63
1070
1071


87
87
87
a?
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
37
17
117
87
87
37
87
<7
87
87
37
87
87
87
37
87
11
87
87
87
87
87
87
87
67
87
87
37
87
37
37
7
7
7
7
7
7
87


9
1
9
9
9
V
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12




11
12
13
14
14
IS
16
17
20
21
21
22
22
24
25
27
28
30
1
3
4
6
6
i
11
13
14
16
17
18
20
21
21
22
24
27
31
2
3
4
5
7
8
9
11
12
13
16
17
23
24
26
27
29
30
1
1
2
*
6
7


0
0
0
13
0
12
0
0
0
0
6
0
0
0
0
0
18
0
11
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
It
0
0
0
0
0
0
0
12
0
0
0
0


2243H
2243H
2243H
2243H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2244H
2245H
2245H
2245H
2245H
2245H
2245H
2245H
2245H
2245H
2245H
2246H
2246H
2246H
2246H
2246H
2246H
2246H
2246H
2247H
2247H
2247H
2247H
224SH
2248H
2248H
2248H
2248H
2248H
2248H
2248H
2249H
2249H
2249H
2249H
224VH
2249H
2249H
2250H
22SOK
22SOH
2250H


0.0
0.2
0.0
0.3
0.3
6.1
3.2
2.7
10.2
10.0
10.0
9.7
6.5
42.7
71.3
63.7
48.5 0
39.8
33.8
28.0
26.6.
25.5
33.8
31.3
30.7
30.9
30.8
34.0
30.2
28.9
27.6
27.0
26.1
26.0
26.1
26.3
26.0
27.1
28. S
28.0
27.0
26.6
26.2
26.2
26.4
26.8
26.8
34.1
31.8
29.9
30.9
30.5
29.1
63.7
78.7
41.9
31.3
28.9


OPENWAT
OPENUAT
OPENUAT
Ot*ENUAT
OPENUAT
OPENWAT
OPENWAT
OPENUAT
OPEN'WAT
OPENWAT
OPENWAT
OPENUAT
OPENWAT
OPENUAT
6439 OPENUAT
OPENWAT
OPENUAT
OPEHUAT
OPENWAT
OPfcNdAT
OPENWAT
OPENUAT
OPEhWAT
OPENUAT
OPtNUAT
OPErtWAT
OPEVWAT
OPEVWAT
UPbNWAT
JPESWAT
OPE.SUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT
OPESUAT
OPENUAT
OPENWAT
OPENWAT
OPENWAT
OPfcNUAT
OPENWAT
OPENWAT
OPENWAT
OPtttwAT
OPENWAT
UPENWAT
OPENWA1
OPENWAT
OPENWAT
UPENUAT


0.0006
0.0007
0.0006
0.1)007
0.0007
0.0172
0.0097
0.0082
0.0112
0.0254
0.0250
0.0131
0.4125
1.5425
1.1332
0.6266
0.3287
0.1972
0.1149
0.1005
0.0404
0.1972
0.1644
0.1434
0.1512
0.2003
0.1*16
0.1252
0.1106
0.1044
0.1005
0.0*57
0.0948
0.0957
0.0976
0.0967
0.0939
0.2766
0.2175
0.1416
0.1206
0.1160
0.1149
0.1044
0.1005
O.OV67
0.0935
0.1024
U.1024
0.1106
0.2312
0.2026
0.1644
0.1377
0.1512
0.14S7
0.1276
1.1382
2.3553
1.9318
0.3879
0.1571)
0.1252
                                                                         HYDROLOGY DATA!  DAILY STAGE HEIGHT AHO DISCHARGE



                                                                        — OilAINAGE'NARRAGUAGUS R.   STKEA,1«AOCKV BROOK —
1073
1074
1076
1078
1079
1079
1080
1081
1032
1033
1084
1085
1086
1037
1089
1091
1092
1093
1093
87
87
87
87
87
87
87
37
37
87
87
87
87
87
87
87
87
87
87
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
;12
12
12
12
9
10
12
It
15
15
16
17
18
19
20
21
22
23
25
27
28
29
29
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
0
11
22 5 OH
2250H
2250H
22SOH
2250K
2250H
2251H
2251H
22S1H
22S1H
2251H
2251H
2251H
225 IK
2251H
2251H
2251H
2251H
22S1H
26. S
26.4
27. S
26.4
25.6
25.4
25.7
26.0 .
26.2
26.1
25.5
24.7
23.7
23.2
23.2
23.5
23.5
23.5
21.5
OPEHU
OPENU
OPENW
, OPENU
OPENW
OPENW
, OPENU
OPENW
OPENW
OPENU
OPE.W
OPENW
OPENW
OPENW
OPENW
OPENU
OPENU
OPENU
OPCNU
T 0.0995
T O.OV8S
T 0.1095
T 0.0935
T U.0912
T 0.0395
T 0.0921
T 0.0943
T 0.0*47
T 0.0957
T 0.0904
T U.0337
T 0.0760
T 0.0725
T 0.0725
T 0.0746
T 0.0746
T 0.0746
T 0.074%

-------
                                                   244
K»»«oi.o6Y ••»>   DAILY STAGE HEIGHT KID  DISCHARGE

393 8t
376 Bt
378 Bt
399 Bt
401 at
402 at
404 8t
4os at
40t at
407 86
408 86
409 86
410 84
411 86
412 84
413 6t
414 84
413 B4
4U at
417 at
4ia at
419 8t
420 tt
421 Bt
422 tt
42) at
424 86
42> at
426 8t
427 at
42t Bt
428 at
429 at
410 at
431 at
t)2 at
41) ti
434 at
4)5 at
43t Bt
437 Bt
4)t at
439 tt
440 86
441 Bt
441 Bt
441 8t
442 84
44) at
444 at
444 tt
443 84
44 Bt
44 84
44 86
44 at
44 at
43 at
451 at
452 84
432 86
453 66
454 8t
434 Bt
455 84
43t 8t
457 at
438 8t
459 8t
440 8t
4ti at
442 8t
413 at
444 84
443 8t
4ts at

1 30
1- 31
2
2
2
2
2
2 10
2 11
2 12
2 13
2 14
2 13
2 16
2 17
2 18
2 19
2 20
2 21
2 22
2 23
2 24
2 25
2 26
2 27
2 28
3 1
] 2
] 3
I 4
3 4
] 3
3 t
3 7
) a
3 9
3 10
3 11
3 12
3 13
) 14
3 13
3 It
3 17
) 17
3 17
3 18
) 19
3 20
3 20
3 21
3 21
3 22
3 23
3 24
1 25
3 24
] 27
3 28
3 28
3 29
3 30
3 30
3 31
4 I
4 2
4 3
4 4
4 5
4 t
4 7
4 8
4 9
4 10
4 10

12 2302H 89.2
0 2302H 65.4
0 2302H 35.
0 2302H 31.
0 2302H 21.
0 2302H 18.
0 2J02H 1 .0
0 2302H 1 .4
0 2303H 1 .1
0 2303H 1 .3
0 2301H 1 .4
0 2303H 1 .2
0 2303H 1 .2
0 2303H .7
0 2303H .4
0 2301H .1
0 2303H .0
0 2303H .6
0 2303H .t
0 2303H .6
0 2303H .6
0 2303H .6
0 2303H .6
0 2303H .t
0 2303H .2
0 2303H 7.9
0 2303H 7.7
0 2303H 7.4
0 2304H 7.4
13 2304H 7.4 0
0 2304H 7.5
0 2304H 7.5
0 2304H 7.5
0 2304H 7.5
0 2304H 7.5
0 2304H 7.5
0 2304H 7.S
0 2304H 9.3
0 2304H ' 10.3
0 230411 10.3
0 2304H 9.1
0 2304K 16.7
0 2304H 4S.9
11 2304H 52.4 0
16 2305H SB.l
0 2305H 52.1
0 2305H 40.5
0 230SH 76.3
11 230SH 111.3
0 230SH 90.3
18 2303H 99.3
0 2305H 85.9
0 230SH 63. S
0 230SH 51.3
0 2305H 46.9
0 230SH 7.9
0 230SH 4.3
0 2305H 8.5
2 230SH 1 3.5
0 2305H 3.3
0 2303K 3.9
13 2303H 7.
0 2306H 41.
0 2306H 36.
0 2306H 31.
0 2306H 29.
0 2306H 26.
0 2306H 23.
0 2306H 21.
0 2306H 20.
0 230tH 20.7
0 2306H 26.9
0 2306H 29. S
IS 2306H 27.4

ICED-IN 0.6S49
ICEO-IN 0.59S2
ICEO-IH 0.2S6S
ICEO-IN 0.08SS
ICED-IN 0.0786
ICED-IN 0.0714
ICED-IN 0.0707
ICCD-IH 0.0642
ICEO-IN O.J379
ICED-IN 0.0670
ICED-IN 0.0666
ICED-IN 0.0366
ICED-IN 0.0660
ICtD-IH O.UOS7
ICEO-IN 0.0354
ICED-IN 0.03S3
ICED-IN 0.0649
ICEO-IN 0.0649
ICED-IN° 0.0649
ICED-IH 0.0649
ICEO-1K 0.0649
ICEO-IH 0.0649
XCED-IN 0.0649
ICED-IR 0.0645
ICED-IH 0.0642
ICEO-IN 0.0640
ICEO-IH 0.0638
ICED-IH 0.0638
741 ICED-IN 0.0638
ZCEO-IH 0.0639
ICED-IH 0.0639
ICEO-IH 0.0639
ICED-IH 0.0639
ICEO-IH 0.0639
ICEO-IH 0.0639
ICED-IH 0.0639
ICED-IH 0.0656
ZCED-IH 0.0667
ICEO-IN 0.0667
ICEO-IH 0.0654
ICED-IH 0.0761
ICEO-IN 0.1869
2271 ICED-IH 0.2306
ICED-IH 0.2758
ICEO-IN 0.2284
ICEO-IN 0.1565
ICEO-IN 0.4682
ICED-IN 1.0882
ICED-IN 0.6729
ICEO-IN 0.8340
ICED-IH 0.6028
ICEO-IN 0.3249
ICED-IH 0.2227
ICED-IN 0.1931
ICED-IN 0.1437
ICEO-IN 0.3327
ICED-IN 0.9187
ICED-IN 0.9177
ICED-IH O.S639
OPEHUAT 1.5022
OPEHUAT 1.1070
OPEHUAT 1.344S
OPENUAT 1.0330
OPENUAT 0.7916
OPENUAT 0.6784
OPENUAT 0.5493
OPENUAT 0.4SS9
OPENUAT 0.3847
OPENUAT 0.3321
OPEHUAT 0.3449
OPENUAT 0.5740
OPEHUAT 0.687S
5788 OPENUAI 0.5951


166
tit
469
470
471
472
476
477
479
490
410
491
493
495
496
497
99
90
91
92
93
94
95
96
97
99
499
500
501
502
503
504
505
506
507
509
509
509
S10
Sll
512
514
515
516
517
519
519
519
520
. 521
522
523
525
526
529
529
531
532
533
534
535
536
537
539
542
544
545
547
549
550
551
552
5S1
553
554
S5S
557
559
560
561
562


96
96
16
96
96
96
96
96
96
16
96
16
96
96
96
96
86
96
96
96
16
16
96
96
96
86
96
96
96
16
96
96
16
16
86
86
96
86
96
96
96
96
96
96
86
96
96
96
96
86
96
96
86
96
96
96
96
96
96
94
86
86
86
86
86
96
86
96
96
96
96
86
86
86
86
86
96
96
96
86


4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
S
5
5
5
5
5
S
S
S
s
5
5
S
5
S
5
S
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6




7
7
7
7
7
7
7
7
7
7
7


11
13
14
IS
16
17
21
22
24
25
25
26
21
30

1
1
U
14
IS
16
17
11
19
20
21
22
23
24
24
25
26
27
29
30
31
1
2
3
3
4
S
6
7
9
10
12
13
15
16
17
11
19
20
21
23
26
28
29
1
3
4
S
6
7
7
9
9
11
3
S
16


0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
10
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19
0
0
0
0
0
0


2307H
2307H
2307H
2307H
2307H
2307H
2307H
2307H
2307H
2307H
2308H
2308H
2308H
2309H
2308H
2301H
2J09H
2309H
2309H
2309H
2309K
2309H
2309H
23 9H
23 9H
23 9H
23 9H
23 9H
23 9H
23 9H
23 9H
2309H
2309H
2J09H
2310K
2310H
2310H
2310H
2310H
2310M
23IOH
2310H
2310H
2310H
2310H
2310H
2311H
23*11H
2311H
2311H
2311H
2311H
2311H
2311H
2311H
2311H
2311H
2312H
2312H
2312H
2312H
,2312H
2312H
2312H
2312H
2312H
2S1SH
2313H
2313H
2313H
2313H
2313H
2S1SM
2313H
2313H
2313H
2313H
2314H


27.1
29.7
25.3
23.3
20.4
16.5
17.7
26.1
28.5
28.3
26.7
28.9
22. 5
20.7
19.3
19.4
17.0
16.3
16.2
16.7
16.1
14.9
13.
13.
12.
11.
10.
10.
9.
10.
10.2
.4
.6
.7
1 .0
1 *S
1 .5
3 .9
33.9
27.9
22.5
19.3
11. S
16.3
• 15.3
17.
20.
19. 0
16.
14.
'13.
12.
12.
11.2
9.1
8.7
.1
.6
.7
• 5
.9
.1
2.S
1.7
.1
.9
2.
6.
6.
3.
S.
3.9
14.5
11.9
8.9
.5
.3
.3
4.5



OPENWAr
OPENUAT
OPENUAT
DPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPCNUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAI
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENJAT
OPENUAT
OPENUAT
OPENUAT
3393 OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUNT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT

OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPtNUAT
QPENUAT
OPENUAT
it


0.651S
O.S093
0.1779
0.2718
0.2440
0.2228
0.2549
0.5412
0.40S4
0.3449
0.2359
0.2177
0.2126
0.1133
0.1607
0.1416
0.127S
0.1068
0.1019
0.0984
0.06*9
0.1741
0.9030
0.3012
0.2177
0.3384
0.2952
0.2333
0.1741
0.1457
0.1218
0.1315
0.0672
0.0591
0.0412
0.0320
0.0218
0.0175
0.0126
0.0064
0.0046
0.0149

0.0423
0.03S9
0.0175
0.0175
0.0175
0.1741
0.1607
0.0701
0.0401
0.0115
0.0203
0.0218

-------
                                                      245
HVOtOLOtV  0«T«=   OAILV StASI  HEIGHT AND DISCHKISt
                                                                       HVngOLOCV D«I»1   0«H.» STAtC  HEIGHT AND DISCHARGE

563
564
567
568
569
570
571
574
575
575
577
577
579
580
581
582
583
S84
S87
588
591
592
593
598
599
600
601
603
60S
60S
609
610
611
612
613
61*
615
616
617
617
618
619
620
621
622
623
624
625
628
630
631
632
633
633
634
635
636
637
638
639
641
642
643
644
645
647
648
649
650
653
654
655
656
6S8
659
659
660

86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86'
B6
86
86
36
86
86
86
86
86
86
86
86
6
6
6
6
6
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86

7
7
7
7
7
7
7
7
7
7
7
8
8
a
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

17
18
21
22
23
24
25
28
29
29
31
2
3
6
7
10
11
14
15
16
21
22
24
28
1
3
4
S
6
7
S
9
9
10
11
12
13
14
IS
16
17
20
22
23
24
25
25
26
27
28
29
30
1
3
4
5
6
7
9
10
11
12
IS
16
17
18
20
21
21
22

0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0

23UH
23UH
23UH
2314H
2314H
2314H
2314H
2314H
23l*H
231SH
2315H
2J1SH
2313H
2315H
2315H
2315M
2316H
2316H
2316H
2316H
2316H
2317H
2317H
2317H
2317K
2317H
2317H
2317H
2317H
2S17H
2317H
2318H
2318H
2318H
2318H
2318H
2318H
2318H
2318H
2318H
231SH
2S1SK
231 8M
2318H
2319H
Z319H
2319H
2319H
2319H
2319H
2319H
2319H
2319K
2320H
2320H
2320H
2320H
2320H
2320H
2320H
2320H
2320H
2320H
2320H
2J21M

3.5
2.5


3.5
3.1
2-3
1.9
1.3
1.3
7.7
10.7 0
16.1

23.9
19.9
14.9
11.9
13.3
13.3
10.1
6.
7.S
22.
IS.
13.
32.




1 .9
1 .
1 .
Ill
10.
9.
9.
9.
8.
10.
11.
10.
9.
8.
17.
10.
7.
12.
13.
16.
13.
19.
10.
10.
IS.
13.
12.
15.
18.
17.
17.
14.
14.
13.
12.
12.
13.
12.
12.
11.
10.
10.
10.
9
1
9
9
9
9
9
4
3
9
1
7
r -
r
s
5
7
9
S
9
7
9
7
9
9
3
9
7
9
9
9
8
7
3
5
7
9
1
1
1
1
5
3
3
OPENWAT 0.0149
OPENWAT 0.0149
OPEHWAT 0.0126
OfENWAT
OPENWAT
QPENWAT
850 OPENUAT
OPENWAT
QPtNUAT
OPENWAT
OPENWAT

OPENUAT
OPENWAT

OPENUAT
UPENWAI
OPENUAT
OPCNwAf
OPENUAT
OPENUAT
.0052
.0052
.0540
.0983
.2126
.8515
.4559
.4559
.1833
.1199
.1053
.1237
.0884
.0423

.1520
.3253
.8313
.5331
.2333
.1833
.1199
.1053
OPENUAT 0.1018
OPENUAT 0.0852
OPENUAT 0.0774
OPEHWAT 0.1161
OPENUAT 0.091*3
OPENUAT 0.0730
OPENUAT 0.1 24
OPENUAT 0.0 83
OPENUAT 0.0 S2
OPENUAT 0.0 01
OPENWAT 0.0565
OPENWAT 0.13 S
OPENWAT 0.16 7
OPENUAT 0.22 0
OPENWAT 0.22 0
OPENWAT 0.16 7
OPENWAT 0.31 4
OPENWAT 0.10 3
OPEHWAT 0.10 8
OPENWAT 0.19 8
OPENWAT 0.16 7
OPENUAT 0.13 5
OfEHUST 0.12 5
CPENUAT 0.28 3
OPENUAT 0.26 5
OPENWAT 0.2S 7
OPENUAI 0,1696
OPEhUAT 0.1520
OPENUAT 0.1355
OPENUAT
OPEhUAT
OPENUAT
OPCNUAT
OPENWAT
QPEhWAT
OPEhWAT
OPENWAT
0.1395
0.1436
0.1237
0.1237
0.1124
0.1053
0.0949
0.0916
0.0916

661
662
663
665
666
667
668
671
672
67
67
67
67
67
68
68
685
686
688
690
691
693
696
698
699
700
702
702
70S
704
706
707
701
710
711
712
714
715
715
716
717
719
721
722
724
725
726
727
728
728
730
731
732
733
736
738
739
740
741
742
743
745
746
747
747
750
751
752
752
753
754
755
756
757

86 1C
86 1C
86 1C
86 1C
86 1C
86 1C
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 I
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 1
86 li
86 li
86 1,
86 11
86 1,
86 li
86 1,
86 1.
86 1
86 1
86 1
86 1
86 1
86 1,
86' 1,
86 1
86 1
86 1
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

23
24
25
27
29
30
2
)
4
4
5
7
9
12
L 13
1 16
1 17
I 19
1 21
1 22
1 24
1 27
1 29
1 30
! 1
? 3
! 3
! 4
'. 5
! 7
'. S
I 9
11
12
11
15
16
16
17
18
20
22
23
25
26
27
28
' 29
! 29
! 31
1
2
3
6
8
9
10
11
12
13
15
16
17
17
20
21
22
22
23
24
25
26
27

0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
11
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
11
0
0
0
0
0

2321H
232 1H
2321H
2321H
2321H
2321H
2321H
2321H
2321H
2322H
2322H
2322H
2322H
2322H
2322H
2323H
2323H
2323H
2323H
2323H
2323H
2323H
2323H
2324H
2324H.
2J24K
2324H
2324H
2324H
2324H
2324H
2324H
2324H
232 4H
2324H
2325H
2J25H
2325H
232SH
232SH
2325H
2325H
2325H
232JH
2325H
2325H
2326K
2326K
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2326H
2327H
2327H
2327K
2327H
2327H
2327H
2327H
2327H
2327H

10.2
10.0
9.5
9.1
10.1
11.1
10.8
9.4
10.3
10.4
12.1
13.0
11.4
11.2
9.6
9.5
9.8
8.1
29.3
19.7
25.3
20.7
18.5
61.9
58.7
39.9
23.4
22.3
20.7
19.8
19.0
17.3
16.1
16.6
16.5
16.4
14.1
12.3
12.7
12.3
52.5
42.1
42.1
40.7
40.0
19.5
19.5
17.7
16.5
14.9
13.5
13.1
1 .1
1 .4
1 .7
1 .0
12.7
12.3
11.9
11.9
12.4
11.8
11.4
11.1 a
11.7
12.1
12.3
12.5
12.5

OPENUAT
OPENUAT
OPEhUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENUAr
OPENUAT
OPENUAT
OPENWAT
OPENUAT
OPENUAT
OPENUAT

QPENWAT
OPENUAT
OPCNUAT
OPCNUA
OPENWA
OPENUA
OPENWA
QPENWA
OPENUA
OPENUA
OP NU T
OP NW T
OP NW T
OP NU T
PENU T
PENW T
PENU T
PENU T
PENU T
OPENU T
1CEO- N
ICED- H
ICED- N
ICED- N
ICED- H
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED- N
ICED-IN
ICED-IN
ICEO-1N
ICED-IN
ICED-IN
ICED-IN
ICED-IN
0645. ICED-IN
1CEO-IN
ICEO-IN
ICED-IN
ICED-IN
ICED-IN

0.0900
0.0884
0.1053
0.1000
0.0916
0.0916
0.0933
0.0933
0.0933
0.1416
0.1106
0.0805
0.0820
0.0836
0.0591
0.3134

0.2776
0.3984
0.3449
0.3164
0.2922
0.2440
0.2126
0.2254
0.2228
0.2202
0.1651
0.1275
0.1355
0.1275
2.1391
1.3831
1.3831
1.2939
1.2504
0.3072
0.0817
0.0780
0.0758
0.0765
0.0740
0.0730
0.0709
0.0703
0.0703
0.0707
0.0744
0.0732
0.0697
0.0692
0.0687
0.0647
0.0692
0.0693
0.0685
0.0680
0.0679
0.0684
0.0689
0.0692
0.0695
0.0695

-------
246

scoot
. 757
718
7J9
710
741
762
74}
744
71}
764
747
748
7>9
770
771
772
772
773
774
77S
774
777
778
779
780
781
782
783
784
715
734
78t
789
790
791
792
793
794
79S
797
798
798
799
800
800
101
801
893
101
80<
804
807
808
809
810
811
812
813
8I«
81]
815
814
817
818
819
820
821
821
822
823
824
81}
824
827
817
828
829
830
831
832
833
831
83}
834
837
838
839
810
841
«U
8«2
a<3
144
843
844
147
848
849
HO
IS I
Sit
812
• 51
8)4
YR P.O an
87 1 27
87 1 28
87 1 29
87 1 30
87 1 31
87 2 1
87 2 2
87 2 J
87 Z *
87 2 }
87 2 4
87 2 7
87 2 8
a? 2 9
«7 2 10
87 2 11
87 2 It
87 2 12
87 2 13
87 2 14
87 2 13
87 2 14
87 2 17
87 2 18
87 2 19
87 2 20
87 2 21
87 2 22
87 2 23
87 2 24
87 2 25
87 i
87 i
87 1
37
87
87
87
87
«7
87
87
>7
87
47
87
87
87
87
87
87
87
87
87
87
87
87
87
87
»7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
17
87
87
87
87
87
87
87
87
87
87
87
87
87
97
87
87
37
87
87
87
97
97
«7
97
87
87
87
2
2
10
11
11
12
13
1}
14
17
18
19
20
21
22
23
24
2S
24
27
28
29
30
31
1
1
2
3
4
S
4
7
7
I 8
( 9
4 10
1 11
4 12
1 13
4 14
4 13
4 It
4 17
t II
4 19
4 20
4 21
I 21
4 22
4 23
, 24
4 23
4 24
4 27
4 28
29
30
1
1
2
3
4

KR RECNO
0 2323H
0 2328H
0 Z3Z8K
0 2328K
0 2328H
0 2328H
0 2328H
0 2328H
0 232SH
0 2328H
0 2328H
0 2328H
0 2328H
0 2329H
0 2328H
10 2328H
0 2329H
0 2329K
0 2329H
0 2329H
0 2329H
0 2329H
0 2329H
0 2329H
0 2329H
0 2329H
0 2329H
0 2330K
0 2330H
0 2330H
0 2330H
0 2S30K
0 2330H
0 2330N
0 2330H
0 2330H
10 2330M
0 2330H
0 2330H
9 2330H
0 2331H
0 2131H
0 2331H
0 2JS1K
0 233 IK
0 2331H
0 2331H
0 2331H
0 2331H
0 233 1H
0 2331H
0 233 1H
0 2332H
0 233ZH
0 2332H
0 2332H
0 2332H
0 2332H
It 2332H
0 2332H
0 2332H
0 2332H
0 2332H
0 2332H
0 2332H
14 2332K
0 2333H
0 2333H
0 2333H
0 2333H
0 2333H
0 2333H
0 2333H
0 2333H
0 2333K
0 2333H
0 2333H
0 2333H
0 Z333K
0 2333K
10 Z333H
0 2334K
0 23S4»
0 2334H
0 2334K
0 2334H
0 Z334H
0 2334H
0 2334H
0 2334H
0 2334H
• 233411
0 2334H
0 2334N
0 2334H

STAGEHT OCST1H CAtlBEQ OISCHG
12.
12.
11.
11.
11.
11.
11.
10.
10.
9.
9.
9.
9.
9.
9.
9.7
9.7
9.3
9.1
9.0
9.0
9.1
9.0
8.9
8.7
8.7
8.5
1.1
7.7
7.7
7.7
7.7
7.7
7.7
.1
1 .0
1 .V
11.2
9.9
9.7
9.1
9.0
9.0
9.0
».0
9.3
9.0
29.3
28.1
33.1
78.9
84.3
87.9
70.9
54.9
53.9
43.3
70.7
68.9
56.9
51.3
52.7
45.9
51.3
48.3
45.2
38.9
34.9
32.7
31.7
29.7
26.9
24.5
22.
21.
21.
20.
20.
18.
18.
17.
15.
14.
14.
13.
12.
11.
11.
19.
22.
23.
20.
18.
16.
ZCED-IN 0.0692
ICEO-IN 0.0689
ICEO-IN 0.06a7
ICED-IN 0.06B4
ICED-IH 0.0687
ICEO-IN 0.0684
1CEO-1H 0.0675
ICEO-IH 0.0669
ICED-IN 0.0667
ICED-IN 0.0662
ICED-IN 0.0660
ICED-IN 0.0659
ICEO-IN 0.0654
ICED-IN 0.0662
ICEO-IN 0.0660
ICEO-IH 0.0660
ICEO-IN 0.0656
ICED-IN 0.0634
ICED-IH 0.0653
ICEO-IN 0.0653
ICED-IH 0.0654
ICED-IN 0.0653
ICED-IN 0.0652
ICED-IH 0.0651
ICED-IN 0*0650
ICEO-IH 0.0650
ICED-IN 0.0648
ICED-IN 0.0647
ICEO-IN 0.0644
ICEO-IN .0640
ICEO-IN .0640
ICEO-IN .0640
ICEO-IH .0640
ICEO-IN .0640
ICED-IN .0640
CED-IN 0.0644
CED-1N 0.0675*
CED-IH O.ObS7
CEO-IH 0.067.1
1CEO-IH 0.0662
ICEO-IH 0.0661
ICCO-IN 0.0660
ICED-IH 0.0654
ICED-IN 0.0653
ZCED-IN 0.0653
XCED-IH 0.0653
ZCEO-1N 0.0653
ICED-IN 0.0656
ICED-IN 0.0653
ICED-IN 0.1087
ICED-IN 0.1047
ICEO-IN 0.1228
ICEO-IH 0.5022
ICEO-IN 0.6089
ICED-IN 0.6340
TRANSIT 1.5712
OPENWAT 2.5084
OPENWAT 3.1175
OPENUAT 3.8576
OPENWAT 3.6652
OPENUAT 2.3084
OPENWAT 2.0435
OPENWAT 1.6403
OPENWAT 2.0435
OPEHWAT 0.9561
OPENWAT 0.7916
OPEHWAT 0.4967
OPENWAT 0.4784
QPENWAT 0.4195
OPENWAT 0.3813
QPENWAT 0.3579
OPEHWAT 0.3313
OPENWAT 0.3226
OPENWAT 0.2805
OPENWAT 0.2051
OPENWAT 0.1810
OPENWAT 0.1741
OPENUAT 0.1542
QPENWAT 0.1315
OPEhWAT 0.1143
OPENWAT 0.1070
OPENWAT 0.3134
OPEhMAT 0.419}
OPENWAT 0.4411
OPENWAT 0.3481
QPENWAT 0.2747
QPENWAT 0.2202
                KVDROLOCV DATA:    DAILY STACK HEIGHT AND DISCHARGE


853 8
856 8
857 S
858 8
861 8
862 8
863 8
865 8
866 8
867 8
870 fl
870 8
872 e
873 I
874 g
875 I
876 1
878 1
879 I
880 t
881 I
882 !
883 I
884 1
885 t
887 I
S«9 !
891 <
891 I
892 1
895 I
898 t
899 (
900 t
901 1
904 1
90S
906
907
908
909
909
910
911
911
913
914
915
916
917
919
920
922
923
925
926
928
929
931
932
933
934
935
936
937
939
939
940
>41
942
943
944
945
946
947
948
949
950
950
951
952


7 S
7 S
7 S
7 5
7 S tl
7 5 12
7 5 13
7 S 15
7 5 16
7 5 17
7 5 20
7 5 20
7 5 22
7 5 23
7 5 24
7 5 25
7 S 26
7- 5 21
7 5 25
7 5 30
7 5 31
7 6 1
7 6 2
7 6 3
7 6 t
7 6 <
7 6
7 6 11
7 6 1C
7 6 It
761!
7 6 11
7 6 13
7 6 2G
742
7 6 24
742!
7 6 21
742!
7 6 21
7 6 21
762!
7 6 3(
7 6 3C
7 7 !
7 7 3
7 7 <
7 7 !
7 7 <
7 7 I
771
7 7 1
7 7 1
7 7
7 7
7 7
772
772
772
772
772
J7 7 2
S7 72
!7 7 2
17 7 2
!7 72
\7 7 S
17 7 3
17 8
17 8
17 8
!7 8
7 8
7 a
7 8
7 8
7 8
7 8
7 a i


1 2334H
233SH
2335H
233SH
233SH
Z33SH
0 2335H
0 2335H
0 233SH
0 2335H
0 2335H
12 2335H
0 2336H
0 2336H
0 2336H
0 2336H
0 2336H
0 2334H
0 2336H
0 2236H
0 2336H
0 2336H
0 2336H
0 2337H
0 2337H
0 2337H
0 23J7H
0 2337H
12 2337H
0 23J7H
0 233IH
0 2331H
0 231BH
0 2338H
0 2338H
0 233811
0 2338H
0 2338H
0 2338H
10 2338H
0 2338H
0 2338H
16 2338H
0 2339H
0 2339H
0 2339H
0 2339H
0 2339H
0 2339H
0 2339H
0 2339H
0 2339H
0 2340H
0 2340H
0 2340H
1 0 2340H
0 2340H
0 2340H
1 0 2340H
I 0 2340H
0 2340H
0 2340H
0 2340H
10 2340H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
0 2341H
IB 2341H
0 2341H
0 2341H


14.
IS.
25.
22.
14.
13.
13.
11.
14.
13.
11.
10.4
9.3
9.1
7.8
7.5
7.7
1 .3
.8
.0
.3
25.4
23.2
22.2
17.6
14.0
5.2
5.2
3.0
15.
13.
12.
1.5
6.9
5.6
2.7
S.7
5.3
3.9
3.3
18.2
49.0
40.8
29.
21.
16.
13.
11.
11.
9.
6.
4.
3.
3.
i.
S.
4.
2.
2.
.6
.1
.7
.2
.6
.5
.9
.6
.9
.3
.4
2!
12.
9.
6.
5.2
4.0
14.9
14.4
9.6


OPENWAT 0.1741
OPENWAT 0.1953
QPENWAT 0.5132
OPENWAT 0.2202
OPENWAT 0. 810
OPENWAT 0. 457
OPENWAT 0. 542
OPENWAT 0. 035
OPENWAT 0. 718
OPENWAT 0. 499
OPENWAT 0. 106
OPENWAT 0. 933
OPENWAT 0. 759
OPENWAT 0. 730
OPENWAT 0. 553
OPENWAT 0. 515
DPENUAT 0. 540
OPENWAT 0.1081
OPENWAT 0.0349
OPENWAT 0.0284
OPENWAT 0.5132
OPENWAT 0.2522
OPENWAT 0.1629
OPENWAT 0.1V04
OPENWAT 0.1904
OPENUAT 0.4231
OPENUAT 0.1904
OPENUAT U.1499
QPENUAT 0.129$
OPENWAT 0.0645
OPENUAT 0.044*
OPENWAT 0*0311
OPEMWAT 0.010S
OPENUAT 0.0320
OPCHUAT 0.0137
OPENUAT 0*3711
OPENUAT 0.2228
OPENUAT 0*1607
OPENUAT 0.1089
OPENUAT 0.1124
OPENUAT 0.0774
OP-ENUAT 0.03S9
OPENWAT 0.0168
OPENUAT 0.0168
QPENUAT 0.02.54
OPENUAT 0.0330
OPENUAT 0.0203
OPENUAT 0.0115
OPENWAT 0.0100
OPENUAT 0.0226
OPENUAT 0*0196
OPCNWAT 0.0155
OPENUAT 0.0401
OPENUAT 0*0340
OPENWAT 0.0226
OPCNUAT 0.017$
OPENUAT 0*0137
OPENUAT 0.0143
OPENUAT 0.0110
OPENWAT 0.0110
OPENWAT 0.137S
OPENWAT 0.0774
UPENWAT 0.0401
* OPENWAT 0.027)
OPCNUAT O.OU2
OPENUAT 0.1H33
OPENWAT 0.1718
OPENUAT 0.0805

-------
                                                   247
HYDROLOGY DATA* '  DAILY STA6E HEIGHT  AND DISCHARGE

953
953
954
955
956
957
959
960
961
962
963
963
966
967
967
970
971
972
973
974
975
976
977
980
981
981
982
985
986
989
990
991
992
993
995
996
997
998
999
1001
1002
1003
1004
1005
1006
1007
1009
1010
1011
1011
1012
1013
1014
1015
1016
1017
1013
1021
1022

87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
37
37.
87
87
37
37
87
37
87
37
17
87
67
87
37
47
37
47

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
ID
10
10
10
10
10
10
10
10
10
10
10
10
10

11
11
13
14
17
18
19
21
21
24
25
25
76
28
29
30
31
1
2
3
4
8
8
9
12
13
16
17
18
19
20
22
23
24
25
26
28
29
30
1
2
3
4
6
7
8
3
9
10
11
12
13
14
15
18
19

0 2341H
9 2341H
0 2342H
0 2342H
0 2342H
0 2342H
0 2342H
0 2342H
0 2342H
9 2342H
0 2343H
0 2343H
0 2343H
0 2343H
0 2343H
0 2343H
0 2343H
14 2343H
0 2344H
0 2344H
O 2344H
0 2344H
0 2344H
0 2344H
0 2344H
0 2344H
0 2344K
0 2345K
0 2345H
0 2345H
0 2345H
0 2345H
0 234SH
0 2345H
0 2345H
0 2345H
* 0 2345H
0 2345H
15 2345H
0 2346H
14 2346H
0 2346H
0 2346H
0 2346H
0 2346H
0 2346H
0 2346H
0 2346H
0 2346H

7.8
7.4 0
5.5
4.7
2.8
2.5
1.9
1.4
1.3
0.7
0.7
0.4
0.2
2.1
2.9
2.0
1.4
1.0
0.4
0.4
0.0
.0
.0
1 .0
1 .0
6*3
5.6
5.3
55.8
51.0
34.6
27.0
22.6
19.2
15.0
14.0
12.6
22.0
21.2
17.8
16.6
19.6
17.0
17.2
29.3
27.4
22.0
IV. 1
16.2
15.4
14.6
12.8
12.7

563 OPENUAT 0.0503
OPENUAT .0302
OPENUAT .0110
OPENUAT 0.0071
OPENUAT 0.0054
OPENUAT 0.0052
OPENUAT 0.0044
OPENUAT 0.0030
OPENUAT 0.0079
OPEHUAT 0.0115
OPENUAT- 0.0075
OPENUAT 0.0075
OPENUAT 0.0054
OPENUAT 0.0033
OPENUAT 0.0033
OPENUAT 0.0028
OPENUAT 0.0203
OPENUAT 0.0137
OPENUAT 0.0102
OPENUAT 0.1416
OPENUAT O.0380
OPENUAT 0.0311
OPENUAT 0.0284
OPENUAT 2.4133
OPENUAT 2.0199
OPENUAT 1.219!!
OPENUAT 0*9400
OPENUAT 0.5732
OPENUAT 0.4089
OPENUAT 0.2306
OPENuAT 0.1357
OPENUAT O.1&29
OPENUAT 0.1355
OPENUAT 0.3831
OPENUAT 0.3el2
OPENUAT 0.2254
OPENUAT 0.3103
OPENUAT U.260S
OPENUAT 0.2359
OPtNUAT 0.2413
OPE..UAT 0.7U13
OPENUAT tj.5951
OPENUAT 0.3t>31
OpfcNUMT 0.2^52
OPENWAT 0.2151
OPENnAT 0.1453
OPENUAT U.1764
OPENUAT 0.1375
OPENUAT 0.1355
H

1023
1024
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1036
1037
1037
1038
1039
1042
1043
1044
1047
1048
1049
1050
1051
1051
1053
1055
1056
1057
1058
1059
1060
1061
1062
1063
1C64
1065
1065
1005
1066
1067
1063
106V
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
. 1082
1083
1084
1035
1086
1087
1088
1089
1090
1091
1092
1093
0«AINAtE"»«««ASU«CUS 1
87
87
87
37
87
37
37
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
rt7
87
17
87
87
87
37
37
37
37
37
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
37
87
87
87
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
20
21
21
22
23
24
25
26
27
28
30
2
3
3
4
5
9
10
13
14
15
16
17
17
19
21
22
23
24
25
26
27
23
29
30
1
1
1
2
3
4
5
7
8
9
10
11
12
11
14
It
15
16
17
18
19
20
21
22
23
24
25
26
27
29
0
0
13
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
11
13
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
2346H
2346H
2346H
2347H
2347H
2347H
2347H
2347H
2347H
2347H
2347H
2347H
2348H
2348H
2348H
2348H
2348H
2348N
2348H
234SH
2349K
2349H
2349H
2349H
2349H
2349H
2349H
2349K
2S49H
2349H
2349H
2349H
2349M
2349H
23SOH
2350H
2350K
2350H
2350H
2350H
2350H
2350H
2350H
2350H
2350H
2350H
23SOH
23SOH
23SOH
HONE
NONE
NONE
NONE
NONE
NONE
HONE
NONE
NONE
NONE
NONE
NONE
. STIEA
12.2
12.0
12.1
12.7
12.8
12.2
11.8
14.4
14.2
13.0
17.8
15.2
14.9
15.0
15.0
12.8
12.9
13.2
13.1
14.6
15.0
14.7
24.0
22.2
21.3
18.8
17.0
16.8
16.4
16.6
16.2
15.8
15.5
46.6
71.6
69.0
55.2
46.9
31.0
27.0
24.2
22.2
20.5
19.0
18.8
19.7
20.7
19.5
18.2
17.2
16.9
13.6
23.7
25.5
24.0
22.7
20.4
22.2
17.5
15.7
16.8
15.7



OPENUAT 0.1256
OPENUAT 0.1218
QPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
OPENUAT
.1355
.1375
.1256
.1713
.1673
.1416
.6165
.2577
.1333
.1857
OPENUAT 0.1629
OPENUAT 0.1375
OPENUAT 0.1457
OPEHUAT 0.1436
OPENUAT 0.1764
OPENUAT 0.1357
OPENUAT 0*1737
OPENUAT 0.4596
OPENUAT 0.3289
UPENUAT 0.3113
OPENUAT 0.2863
OPEKUAT 0.2359
OPENUAT 0.2306
OPENUAT 0.2202
OPENUAT 0.2254
OPENUAT 0*2151
OPENUAT 0.2051
OPENUAT 0.1V77
OPENUAT 1.6VOO
OPENUAT 3.»556
UPEiiUAT 3.6757
OPENUAT 2.3622
OPENUAT 1.7116
OPEhUHT 0*7577
OPEfcUAT 0.5782
OPENUAT 0.4671
OPENUAT 0.3949
OPENUAT 0.3384
OPENUAT 0.2922
OPENUAT 0.2863
OPENUAT 0.3134
OPENUAT 0.3449
OPENUAT 0.3072
OPENUAT 0.2690
OPENUAT 0.2413
OPENUAT 0.2333
OPENUAT 0.2805
OPENUAT 0.4435
OPENUAT 0.5172
OPENUAT 0.4596
OPENUAT 0*4124
OPENUAT 0.3352
OPENUAT 0.3949
OPENUAT 0
OPENUAT 0
OPENUAT 0
OPENUAT 0
.2494
.2026
.2306
.2151
.2100
.2026

-------
                                     248


                                 APPENDIX D

                           STREAM CHEMISTRY DATA
    All validated stream chemistry data are presented here.  The chemical
abbreviations used are the same as in Appendix A; an asterisk indicates the
values have been corrected for marine aerosol contribution.  Type A samples
are regular samples and type B are field duplicates.  Q is discharge in
m /s.

-------
                               249
g   1"~t""'"~s   "       «.-.-~~~-,«r-,.-..-.-«     g    ss.
                                                       a

                                                       a
     5S35sSH  5S5553

a-   asssass
a    *3 5 3 5 5 5 2
•S SSSBSSSSH

s    s Q s;
S    -:-:,-:.
                                g    _**->r*~4.-t**Mr*»*


                                ££    •"{ "5 **! ^J *t *! *"5 •; "^






                                •4    »-MM*«w{w»«**nw{w«>X
^g  s^sgsssqssssjcssssssssssggsssassssa  | ^g


S                                                   2  **
j—    <^M*>^i^«<*<^(i4«<*<<4w»*4«a«<«<*4«^i4*4«)«<,4*«•!»«»«««»*.






g    SSaSKSSBKKSSSHS  SSKSJKSSISSSKSKS; SSSSSSSKSSSiSCKKSss









I




2.   SSSSSfSSSSirEs  SsEEEiiiiisS§ EiiiEE^ =s===SsaKs

».   rSEniS^E^i^^^^  aaSaS33S3a5s5 5SS5S55 sSms-aas
a"   sssssssRRRSsKca  a  sssaanasasa SKKESSSS ssssrssRass
a    ««sas!S!s;5:s!Rssss  sssssaaanassas SSSSSKKS KSKRSSSSKS

a-   aKHa2s5S2SHHS5  5  55SRS = S!sSS~ 5SS52S5 SHSS^S-3"55

3    s5H5552SS55HSH  52SSSssssS2S2 Sss=22S sHisiiisii






S    BSSs:3:=!:sa:s:R = 32!:5  ~S3Ss-»!3 = si5 = = ssssssKaSs~S5S3ssS
ta    \» 9*9 •• *• «««^  «*                          "         *^ ** ** *^ "^ *"* ^* ^* ^*


S    ^T^:!~:5s.~~iSS3SSSK:sKS5S3SSS33aS3KS»sn5s5£sSsS5£- =
G    — — ••-»«- — -•-•-;'• — — — •;-;»; — -: — -;«;»:«:^ — ^ — o:^^^-:^^^^^"^:.^"^!^^"""
-8

-------
                               250

   ?: .  ...-_.._-._.«_, __ ,*___ _„ „„ __    r;
   s?   ~ K s — r: ?; s; s s as:c: ssssssisssaas:    s
                                          5 Sic 52s 5 5 is •• •• S H  •~!"™

   g-  •5«« —— —~->s —KKsas~ssaJ3»     ~,


       bSSSSSwSSSSSSSSsSS^S  f

1  p   ~,-,*~*m***M*«*m*******  =

   a   «•««>•» »»r^~im«SS!I»r!nI!~S  £



I   -
i   sass
a
          S  SKKCSCKKSSSSS  SS  = = SS 3 S RS OS SK S KSSSS S5! 5 3 3  = K
a   SSr2
       HSs  5SSS5522223SS  SssaS255S5SSSS5SSS5:KSS55S:::!~':!sss
       55S  -SH-HSsaSSSSS  53  55S5S5S5S2SSS2si~ia«=522iiii

  a-
  a
  U
  a*
     : = ss assaastKSsssss  KSKSSSSR SSSSSKKPJSSKSSSSSP  s  s
     :a=a s-~saass-~-s-  aa aaaa- aaa3B-a~--saaaaa3  =  -
     !?~? aaaaaaaaassa-«  asaaaas- aaa33aaa~"a3aaaaa  s  s
                                                                  a
                                                                  a
                                                                  a
                                                 SSSSRffiJ-JSiSSSB  K

  §   aa»aaa»a»aaa»aaaaaaaaaaaaaaaa»aaa»aaa»aa»aa,aa:
      §.._—«_._•_____._,___.__-.
               ^  *^ ^ ^ ^* ^ ** " Jjj 55 J3 jj •• jjj ^ *j »•  ••* •*• •** *•* »*» »^ ^ t^ ^ ** ^« ^ w *-• ^ >^ *+ i-* «
                                 ** ** *^  *^ *^ ••*              • •


-------
                            251
     : S S S RRSKKSiSSRSSSSRS    R '
     .«,„«, -,--.»-..«,«.- = = _- „.,    g

                                      SSSasSSSSKKSSSS   S-S  K
   §   "«^2  iz»«r!»x!~»^i^!^ri^~>-     §
   a«  """"""'"  •"•»"»•"•• »»»
-------
                                  252
s-
g

a-
a
IKKSSSKJSKSSSSSJJKSSS::














^SCSSSSSRSSSSSS-SSS
                                             s    pissprssaessizssstss  ss


                                                   -S-   ~

                                             o    •"!  ^ * *t ^    *? t **5 "5 *t 5 •;  "? ^
                                             »-4    «»W«Jr*o«n*«  «*M»««VM»«*«*U»V*  «*«*d


                                             a*   KSSPSSS  SKSJSSSSS S =

                                             g    S R K 55 E; 55  S? S* P» 55 5? 5! 55 55 5? S

                                             d.   Assess  SSSKKSSS KS
S
                                             Si   £S*3«S3!nS?£»CSPiS*r£!n*£*4  PJ KI


                                             U   W*£fM«*«s«C»r*«»^ir»«%Mt«««VVC*W>V-l»
                                             C   ••«*>«*— ww»*»*»>*->*-«v«»r*Mi««*n»*r*wt»i
                                     a"  3  §
                                     —  s  a
     ^__-,^^»_^™_^._«,___-__«^^-  g

w    nn  —-«-i]i   "^  —zrzr!-!2-=r-»m!iii^iim!!"r  n   Tr       ~

§	„.____„   .._  ~»-^-.»..-^»_.->.ZI,"«.ZZI  ~   III       I








r+    "^"^  "I*t^S*^*^""5   "^"^*!MS*"^"^*^*t*"J*"?^*^w?*^""!*"J*-5**t^*^""J—**^***  *~   ^» •* ••       ^
J*    *• «•  •^»«w»t*»«^»rt   *nw««^tnM««^««wr*r^t^w«*wt>*v*M»^v!vC«nMa0  »-I   «f«*Ji^       tn


d    **•**  w,«-**»^s:«^   ssiss



























++

-------
                                            253
   a1
   I
   I
   a-
   a
   a
   a1


                                         a*  KKsaaaaaaaac;:;'?   sxsaaK  s
                                         a    KSSSSSS
         E;aaa3Si335!J£aS5!;aasaaaa      g    *j»«.«oj.jpjMjj^j»pjj«jjjjj»  £•*»£££»*-*£•  «»

                                                       s s s ssss; !s sss s s n  SSSSSSRR

                                                       R R •? •?•? R " ^5 * ^ *~ ""j*?5: = = "5 *••«? •• •? •?•?
3
g
a axaaKsaaasajsaassaKK  U  {f    aaaaRaaaaaaaanaKaaapjaaa



s asssss s s s ass sasa aats  3    n                                  sscss;
                                                   •8
    2

    3

    S


                                         3    •" SS SS3S55SSS
    8
    d
    a-
    a
    S'
    s
    a1
    a
  SK  SSSSSSKS  KKS:  saasRstSRSRStssssssKSRSs:  a      KKSSJS
  -s  a = -ss-aa  ssn  saaasssa=sa = =:s--Kaasnas  -      	sa
  **"*  5~«3ss!s!-  s5as5~55S3~aasssaa3Ssssaa!5S5:as3  s  asc;as
  Sa  a  SaaSSa    =i  HSSS52  aa=S5siiiiisi22ii  i  ~iiis

  ~*t  •!"! -: 11 •*.«: r  t«t-!-:ir-5<^'-%^'»-;~fj-;~~»-'»-»-;»-»-»-»-«  -.      «. —^, —„
  *••"  ••••««»««•«•«.-•  —« ——— r^ — vi-^^^u;^:^^^^ ^^^rC^;^;^: ^^  „•      ^^5^»;«:

  K3  ssssancs  aasaaaas  sassssaassasssaaa  s      sssss
                  fsssass   KRSRSSSS   sssK



         * •"•   ~» »~»"»~i "•"'•"• ~"i"";~i   '• ~ ~~^ ~   "^ *";  ~; ^ "j ^j "j *^ •* •* *^ •*• ** *^ *• •*  ^*
                                                                                          *^ r^ w
   I
    •8   55
   g
   s
   s
   a
                                                                                     ^



«^»>>(^i-t«^*>*«^-«^.mtnw>M .«•«• •^•^t-*»^r*««MV1v ***Sj;S3£J£«j3'S3S3~*~r'*fNir*f"*"'*'"><'*<"*''*^*^""''*'«*¥

-------
                             254

3   KSSSS
vit   »« M» ** w* r^
a-  scssa
S"  KSSSS
a   ssssss;
g,   SSSSB

Ml   *• JJ* ~* J^ ^
 -8  55;-2:

§   — — • —— ~ — «».-.-, — -•-.« — .„„„  —-«^.^MM^.r<»-_«^,_^M«^M»^M^^«,

tj   """S5 SKR:=SS~:::::5K:::K!35!:S  KSSSKSSSSKSSSaSSSSCSSKKKSK

g   sssss ssaRS"s-asaKs; = s»;  sa»sss-*5ass-s»cs:s53s-sKsss
a   SS^PS RSstsssss^KsgsKSK  ssssssssssrsnssSSSSSSKSSSSS


a-  sassn  cs»»ans  sssnaass  sasjsssBsaansssa
a   aaaac:  snsssss  asasssKSR  »saaRAKs;K»»RSs
a.  sssas  5SSHSSS  sBSSSS-3  ~«-ssS5525!S5;=:S5Ss;SSSS2S235
d   ssssa  SSHS525  HSSSS5S-  s~s2S5SS52I=!::52sHS!5552 = 2525




-------
                                    255

                                 APPENDIX E

                  PH/TEMPERATURE/CONDUCTANCE MONITOR DATA

    Data recorded by the monitors is presented here.  Temperature is
degrees Celsius and specific conductance is mS/cm.

-------
256
HALFKILC BROOK 1

Cii
1
)
t
t
t
7
1
t
19
11
U
1)
It
It
U
IT
11
It
29
tl

I)
It
It
it
17
il
It
19
j|
Jl
JJ
J«
JJ
14
JJ
Jl
Jt
to
tl
tt
tl
tt
tt
tl
17
ti
tt
19
11
It
t)
It
tt

H* no o*
UOO
1000
0
too
100
1100
1400
I0«9
0
too
•00
1100
1400
2900
•o
too
130
1100
1100
A
490
1200
MOO
0
400
1199
1100
o
490
1190
1109
g
199
1209
1109
9
409
1299
UOO

490
1199
1199
Q
400
I too
o
too
1100
17
17
11
11
11
11
11
11
It
It
It
It
It
It
20
20
20
2!
2!
It
It
It
21
17
27
17
17
tl
ia
21
11
It
It
It
It
JO
JO
JO
30
Jl
Jl
31
Jl






uoo t
0 t
too t
1109 t
1109 t

V«
16
16
36
It
86
16
16
16
16
16
46
16
14
16
16
16
16
14
16
86
16
It
16
16
It
It
36
It
tt
16
16
16
It
It
It
It
It
16
it
It
It
•6
14
16
14
It
14
44
16
06
46
16
46
16

UUP
o!ot
0.00
O.OJ
0.04
0.06
0.09
0.13
0.11
0.11
0.11
0.11
0.21
0.21
0.04
-0.05
-0.07
• -0.10
1.01
1.09
1.00
0.99
1.66
1.44
1.13
1.14
1.33
0.80
0.14
0,11
0.19
l.t!
1.0!
1.07
1.13
1.17
1.61
1.42
2.60
3.63
l.t?
1.91
3.1!
4.62
1.81
1.9!
3.36
t.ll
1.79
3.17
t.ll
3.83
l.tt
3. 32
4.02
10:00 THURSDAY, HAV 5, 1988
SPCOH PH COKHENT
0.019
0.018
0.02?
0.031
0.028
0.019
0.027
0.026
0.02!
0.026
0.02!
0.02!
0.025
0.027
0.021
0.028
0.017
0.023
0.02!
0.024
0.024
0.021
0.024
0.023
0.023
0.024
0.023
0.021
0.011
.61 011086 IN 4 HR INTERVALS
.64
.64
.63
.62
.63
.63
.65
.61
.62
.63
.19
.60
.11
.38
.26
.17 LAB PH* 6.0!
.19 HALFHILE 9A 032186 TO
.14 040186 IN 6 HR INTERVALS
.16
.13
.10
.11
.11
.0!
.0! LAB PH* 6.00
.96
.82
.81
0.011 5.30
0.011 5.81
0.011 1.82
0.021 1.86
9.022 1.82
0.022 1.81
0.022 1.81
0.023 1.80
0.021 1.71
0.021 1.71
0.021 1.69
0.021 5.72
0.021 1.61 LAB PH* 1.81
0.021 1.66
0.021 1.70
0.022 5.71
0.024 1.71
0.021 1.73 HALFnlLE 9E 040186 TO
0.011 1.71 041496 IN 6 HR INTERVALS
0.020 1.61
0.021 S.68
0.020 5.73
0.019 1.71
0.020 1.63
0.010 5.73
HALPHILC BROCK .. 3

CIS
111
111
U)
lit
111
lit
117
111
Ut
119
111
lit
It)
lit
Itl
lit
117
III
lit
1JO
1)1
Ut
m
ut
ut
1)4
137
Ul
Ut
It9
Itt
Itt
It)
Ut
Itt
Itt
147
Itl
Itt
lie
itl
J JJ
it)
itt
itt
itt
117
Itt
lit
ite
iti
itt
it)
itt
ut



H» H3 OA VR TCHP
11B9 t 13 it
9 t t
490 t t
1190 t 1
1100 t 1
0 t 2
too t :
1109 t 1
1109 t I
0 t 2
t«9 t 2
ItOO t 1
HOB t i
9 t Z
too t i
1100 t 2
1100 t I
9 t 1
too t i
UOO
0
400
1209
1109
o
4«9
ItOO
uto
0
409
1199
1109
0
199
1109
UOO
9
499
1190
1109
0
400
1109
1199
0
too
1109
1100
9
too
ItOO
u«a
9
109
1109

















1
1(
1(
1(
1
1
1
1
1
1
1
1
1
1
1
1.
II
14
t It
t It
t It
t It
1 16
I 14
i 16
1 16
1 It
t 14
1 84
i 16
7 It
7 16
t It
! 16
1 84
1 16
If
16
16
16
16
It
14
16
It
16
16
16
ti
14
11
it
it
It
16
) it
> It
It
it
It
it
It
It
it
it
1 It
14
It
86
It
84
It It
6.3!
6.1!
1.6!
1.99
6.71
6.9!
f.71
7.11
7.42
7.90
7.10
1.31
9.09
9.39
I.tl
9.46
10.74
10.80
10.02
13.79
13.86
13.17
13.70
It. 61
13.99
13.lt
It. 92
11.33
It. 40
It. 08
it. to
It. 79
It. 79
It. 23
14.15
it. to
13.83
13.10
It. 29
11.17
It. 61
14.2!
It. 48
11.07
14.16
13.12
13.17
13.64
12.73
12.24
11.81
12.02
11.11
11.74
12.76

SPCON
0.022
0.021
0.021
0.020
0.021
0.021
0.021
0.022
0.021
0.022
0.022
0.022
0.022
0.022
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.022
0.022
0.022
0.022
0.023
0.021
0.023
0.022
0.023
0.022
0.022
0.023
0.022
0.024
0.022
0.023
0.011
0.013
0.023
0.022
0.023
0.023
0.023
0.022
0.023
0.022
0.023
0.023
0.014
0.013
0.023
0.023
0.023
0.023
10:00 THURSDAY, HAY It 1988
PH COnnENT
i.17
5.56
1.83
5.88
1.84
1.88
1.88
1.81
5.83
1.83
5.90
5.88
5.83
5.90
1.92
1.82
1.87
5.90
1.91
5.83 HALFHILE 9A 060586 TO
1.74 061786 IN 6 HR INTERVALS
1.82
5.87
1.84
5.82
1.86
1.91
1.90
5.87
5.90
5.90
5.82
5.78
1.86
5.96
1.92
1.92
1.91
1.96
1.87
1.87
1.88
1.90
1.90
5.88
5.94
6.01
1.95
5.92
5.94
1.96
1.98
1.9!
5.97
1.97
HALFHIL6 OROOK 2

DBS
56
17
58
19
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
81
86
87
88
89
90
91
92
93
9t
9!
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

HR
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200

no
4
4
4
4
4
4
4
4
4
4
4
4
t
4
4
4
4
4
t
t
t
t
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
t
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

DA
7
7
7
7
8
8
8
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23

VR
86
16
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
36
• 86
86

TEHP
4.09
3.59
2.95
2.72
2.58
2.41
2.42
2.30
2.26
2.27
2.60
3.12
3.14
2.72
3.47
4.00
4.02
3.64
4.09
4.55
4.08
3.47
3.94
4.60
4.59
3.71
4.83
S.82
5.62
4.55
5.40
8.31
7.63
6.88
8.14
8.28
7.38
6.37
7.75
8.08
6.91
5.88
7.99
8.16
7.53
6.86
7.60
7.70
7.23
7.02
7.31
8.27
7.81
6.59
6.27

SPCOH
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.020
0.022
0.020
0.021
0.020
0.021
0.020
0.020
0.020
0.020
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.021
0.022
0.022
0.022
0.022
0.021
0.022
0.022
0.022
0.023
0.022
0.022
0.022
0.023
0.023
0.023
0.022
0.022
0.021
0.021
0.021
0.021
0.021
10:00 THURSDAV, HAV Si 1988
PH COHHENT
5.75
1.76
5.78 LAB PH* 6.14
5.76
5.71
5.77
5.75
1.68
1.66
1.69
1.63
5.63
5.63
5.71
5.63
5.60
5.64
5.71
1.67
1.67
5.72
5.72
5.61
5.65
5.66
5.73
5.63
5.66
5.70
5.75
5.66 LAB PH* 6.20
0.33 HALFnitE 9E 041786 TO
6.23 042986 IN 6 HK INTERVALS
6.18
6.10
6.10
6.15
6.13
6.05
6.12
6.10
6.16
6.01
6.02
6.08
6.08
6.11
6.08
6.06
5.89
1.81
5.76
5.81
5.87
5.31
HAtFHILE BROOK 4

0»S
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
181
186
187
183
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
110
211
212
213
lit
215
Z16
217
218
219
220

HR
1800
0
600
1200
1800
0
600
1200
1800
0
600
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
a
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
1800
2100
0
300
600
900

no
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

DA
14
1!
11
1!
15
16
16
16
16
17
17
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
1
6
6
6
6
7
7
7
• 7
8






9
10
10
10
10
11
15
11
16
16
16
16

VR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86

TEHP
13.84
13.65
12.93
14.47
15.53
15.08
14.36
15.89
16.44
16.04
15.84
15.89
14.94
14.11
14.34
13.86
14.02
13.77
14.03
14.22
14.05
13.13
14.26
15.01
14.45
14.20
14.85
11.12
14.99
14.51
15.20
15.66
11.43
14.47
14.43
14.82
14.81
14.42
15.49
16.88
16.98
16.88
17.49
18.12
17.28
16.10
16.41
16.61
15.94
15.56
15.39
15.07
14.68
14.26
14.51

SPCON
0.021
0.023
0.022
0.023
0.023
0.023
0.024
0.023
0.024
0.024
0.024
0.026
0.026
0.02!
0.026
0.024
0.025
0.02!
0.02!
0.024
0.021
0.024
0.021
0.02!
0.025
0.026
0.025
0.026
0.026
0.025
0.021
0.026
0.026
0.023
0.02!
0.025
0.024
0.025
0.025
0.026
0.021
0.026
0.025
0.021
•0.025
0.026
0.026
0.026
0.025
0.025
0.021
0.025
0.025
0.025
0.025
10:00 THURSDAY, HAY Si 1988
PH COHHENT
1.91
1.91
1.92
1.97
5.91
5.89
1.92
1.96
1.94
i.97
1.94
6.43 HALFniLE 7A 070186 TO
6.47 071086 IN 6 HR INTERVALS
6.43
6.49
6.42
6.39
6.40
6.50
6.47
6.41
6.45
6.50
6.46
6.46
6.43
6.47
6.38
6.37
6.40
6.49
6.41
6.43
6.17
6.26
6.28
6.19
6.24
6.29
6.29
6.23
6.26
6.29
6.29
6.29
6.34
6.38
6.36
6.34
6.60 HALFHILE 90 071586 TO
6.48 072486 IN 3 HR INTERVALS
6.33
6.31
6.32
6.28

-------
                                                    257
HALFKILE BROOK
                   10:00 THURSDAY, HAY 5, 1988
               SPCON     PH     COMMENT























































221
222
223
224
225
226
227
223
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
24S
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274.
275
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
4100
0
300
600
7
7
7
7
7
7
7
7
7
7
7
7
7
7
r
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
. 7
7
7
7
7
7
7
7
7
7
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
25
86
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
It,
86
86
86
86
86
86
86
06
86
86
86
86
86
86
86
86
86
86
15.50
16.49
16.63
16.46
16.13
15.69
15.24
15.39
16.60
17.63
17.81
17.52
17.17
16.95
16.79
16.78
16.93
17.20
17.33
17.23
17.00
16.78
16.62
16.54
16.79
17.03
17.12
17.04
16.84
16.64
16.31
16.34
16.73
17.13
17.20
17.06
16.90
16.75
16.66
16.91
17.51
18.11
17.87
17.46
16.63
15.90
15.30
15.47
16.42
17.39
17.38
16.99
16.19
15.49
14.63
0.025
0.025
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.026
0.025
0.026
0.026
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.025
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.026
HALFHILE BROOK

OBS
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
3S2
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

HR
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800

HO
8
8
8
8
a
a
8
e
a
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
a
8
8
8
a
8
3
a
8
6
8
8
8
8
8
8
a
8
3
8
8
8
8
8
8
8
8
6
6
8
8

OA
4
4
4
4
4
4
4
4
5
5
5
5
5
5
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24

YR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86 •
86
86
J6
86

TEHP
16.32
16.27
16.20
16.47
17.15
17.83
17.89
17.68
17.15
16.62
16.22
16.36
17.20
17.92
17.36
17.30
17.20
16.90
16.73
16.72
16.85
17.00
17.10
17.11
17.02
16.81
16.40
16.40
16.86
17.59
17.48
17.33
17.00
16.93
16.87
17.01
17.36
17.66
17.60
17.13
16.51
15.92
15.29
15.25
15.91"
16.15
16.13
15.84
15.59
15.54
15.46
15.51
15.60
15.52
15.70

SPCON
0.026
0.026
0.026
0.025
0.026
0.025
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.027
0.027
0.026
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.028
0.027
0.023
0.028
0.027
0.028
0.028
0.028
0.028
0.027
0.028
0.027
0.027
0.027
0.028
0.027
0.025
0.024
0.025
10:
6.21
6.18
6.14
6.16
6.19
6.15
6.18
6.20
6.11
6.13
6.21
6.20
6.28
6.23
6.18
6.21
6.25
6.23
6.24
6.25
6.27
6.24
6.19
6.22
6.27
6.19
6.14
6.25
6.26
6.22
6.22
6.24
6.33
6.30
6.26
6.29
6.27
6.31
6.17
6.25
6.30
6.30
6.24
6.23
6.27
6.29
6.30
6.21
6.18
6.16
6.13
6.10
6.15
6.21
6.25
7
00 THURSDAY, HAY i, 1988
PH CONHENT
5.32
5.29
5.27
5.37
5.36
5.29
5.28
5.31
5.39
5.49
5.59
5.56
5.45
5.33
6.23 HA
6.11 09
6.08
6.03
6.04
5.98
5.96
5.93
5.86
5.86
5.89
5.87
5.86
5.88
5.87
5.90
5.85
5.87
5.87
5.85
5.83
5.86
5.90
5.89
5.88
5.89
5.91
5.94
5.99
5.99
6.02
6.00
5.96
5.94
5.95
5.92
5.77
5.58
5.48
5.43
5.19














LFHILE 91; 081986 TO
0286 IN 3 HR INTERVALS







































OBS
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
Hit
900
1200
1500
1300
2100
0
300
600
900
1200
1500
iaoo
2100
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
• 600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
HO
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
8
8
8
8
8
8
8
8
8
OA
23
23
23
23
23
24
24
24
24
24
24
24
24
29
29
50
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
Y8
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
HALFHILE BROOK 6
10:00 THURSDAY, HAY 5, 1988
TEHP SPCON PH COHHENT
14.96 0.026 6.21
16.37 0.026 6.15
17.55 0.027 6.09
17.54 0.027 6.07
17.25 0.026 6.12
16.50 0.027 6.16
15.81 0.027 6.20
15.16 0.026 6.25
15.31 0.027 6.24
16.46 0.027 6.12
17.56 0.026 6.09
17.65 0.027 6.10
17.40 0.027 6.11
18.24 0.026 6.04 HALFHILE 7A 072986 TO
18.19 0.026 5.95 080586 IN 3 HR INTERVALS
18.05 0.025 6.03
17.76 0.025 6.04
17.34 0.025 6.11
17.16 0.025 6.10
17.05 0.026 6.09
16.96 0.026 6.14
16.82 0.026 6.10
16.58 0.025 6.07
16.29 0.025 5.95
16.29 0.025 5.95
16.19 0.024 5.97





























15.
16.
16.
16.
16.
16.
15.
15.
IS.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
97
07
18
31
26
10
88
74
76
10
31
56
57
39
33
27
24
28
38
45
43
35
31
25
25
30
46
46
37
0.024
0.025
0.025
0.024
0.023
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.027
•0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
.85
.84
.85
.80
.79
.93
.82
.87
.82
.88
.72
.79
.79
.77
.76
.72
.74
.76
.84
.73
.72
.75
.71
.65
.25
.32
.33
.32




























5.36
HALFHILE BROOK


























































OBS
386
387'
388
389
390
391
592
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

HR
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500

no
8
8
3
8
8
'8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
• 8
8
8
8
8
8
8
8
8
8
8


























































OA
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31


























































YR
86
86
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86

TEHP
15.64
15.29
14.85
14.51
14.29
14.45
14.70
14.97
15.04
14.87
14.54
14.18
14.03
14.39
14.91
15.38
15.41
15.27
15.11
15.03
15.11
15.29
15.34
15.27
15.18
15.12
15.03
14.67
14.29
14.22
14.16
14.14
13.83
13.46
13.04
12.55
12.28
12.38
12.69
12.94
12.75
12.40
12.02
11.66
11.80
12.65
13.18
13.43
15.51
13.42
13.34
13.35
13.49
14.01
14.51

























































10:
SPCON
0.025
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.0'25
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.026
0.025
0.025
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.026
8
00 THURSDAY* HAY 5t 1988
PH COHHENT
5.39
5.40
5.42
5.43
5.48
5.50
5.50
5.46
5.45
5.46
5.47
5.53
5.56
5.60
5.59
5.56
5.57
5.61
5.62
5.62
5.60
5.60
5.56
5. 51
5.55
5. 50
5.54
5.56
5.58
5.61
5.61
5.62
5.59
5.62
5.68
5.71
5.73
5.76
5.75
5.71
5.74
5.75
5.73
5.75
5.76
5.79
5.76
5.73
5.74
5.72
5.71
5.72
5.75
5.76
5.75

-------
258
HALFHILE SHOOK
oat K« no
(41 1100
4(2 2100
4(1 9
4(4 309
((I fOO
44t too
((7 1209
(41 1100
44t 1100
450 2100
(tl 9
412 309
(S3 tOO
(K tOO
(11 1100 19
(SI 2100 10
(17 9 19
(11 100 19
(it too 10
(to too 10
(tl 1200 10
4*2 1100 10
(tl 1109 10
4*4 2100 10
(t! 0 10
(tt 309 10
(17 100 10
(II tOO 10
(ft 1200 10
(79 1100 10
(71 1300 10
(72 2109 10
(7) 0 10
474 300 10
(7S 400 19
47* tOO 10
(77 1200 10
(71 1100 10
(7t 1100 10
(10 2100 19
(11 9 11
(12 300 11
(11 fOO 11
(14 t09 It
(II 1200 11
(It 1100 11
(17 1909 11
(II 2109 11
(It 9 11
(99 309 11
(71 400 11
49? tOO 11
(tl 1209 11
(t( 1109 11
(tl 1100 11
DA
11
31
1
1
1
1
1
1
1
1
2
2
2
2
21
21
29
2t
2t
29
29
29
29
29
30
39
30
30
30
30
30
30
11
31
31
31
31
31
31
31
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
Y«
It
it
It
If
It
It
If
It
It
If
if
It
it
If
It
If
It
if
If
If
If
It
If
If
It
It
If
if
If
It
It
If
If
It
If
if
if
If
If
it
It
if
It
It
It
It .
It
If
if
it
It
It
It
3t
at
TEKP
14.43
14.40
13.97
13. fO
13.11
13.11
14.12
14.11
IS. Of
14. tf
14.59
14.23
13.13
13. tS
7.30
7.33
7.02
6.42
5.96
6.72
7.56
7.62
7.35
7.05
7.07
7.03
7.16
7.70
7.71
7.08
f.47
5.13
5.31
4.94
4.59
4.95
5.31
5.11
4.47
4.03
3.59
3.43
3.97
4.13
l.fS
5.77
5.73
5.76
5.13
5.19
6.07
f.18
f.OS
5.67
5.04
SPCOK
0.02f
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.027
0.025
0.024
0.024
0.025
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.02S
0.025
0.025
0.025
0.023
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.024
0.024
0.024
0.024
0.024
0.025
0.025
0.024
0.02S
0.025
0.024
0.025
0.024
0.025
0.025
PH
5.74
5.76
5.74
5.76
5.76
5.78
5. SO
5.71
5.71
5.74
5.74
S.75
5.76
5.71
6.25
6.34
t.43
6.S4
6.35
6.35
6.08
6.20
6.48
6.50
6.46
6.40
6.40
6.27
6.51
6.54
6.46
6.46
6.53
6.49
6.50
6.48
6.48
6.43
6.46
6 .46
6.47
6.47
6.42
6.56
6.43
6.41
f .39
6.41
6.42
6.43
6.37
f .41
6.41
6.43
6.46
HALFHILE iROOK

Oil H«
111 100
112 100
111 tOO
IK 1200
SIS 1109
lit 1100
117 2100
SSI 9
lit 100
no too
sti too
It2 1200
1*3 1100
Sl( 1109
SIS 2100
lit 0
St7 100
lit too
stt too
170 1200
171 1100
172 1109
17} 21W
17( 0
171 309
576 tOO
177 900
171 1200
17t 1190
110 1109
111 2100
SI2 9
SI3 109
Sl( tOO
sis too
Sit 1200
S17 1100
111 1109
lit 2100
ito o
Itl 300
It2 too
Itl tOO
lt( 1200
its isoo
Iti 1109
597 2100
!t» 0
Itt 100
too too
101 tOO
t92 1290
191 1100
*04 1109
tOl 2109

HO
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

0*
13
13
13
11
13
13
13
14
14
14
14
14
14
14
14
11
15
IS
IS
11
IS
IS
IS
It
It
It
It
It
It
It
It
17
17
17
17
17
17
17
17
IS
11
11
11
11
11
11
It
19
It
It
It
It
It
19
It

Y«
86
It
If
It
If
It
If
86
If
If
If
It
tt
If
It
It
If
It
If
at
it
it
it
it
it
it
it
it
it
it
if
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it
if

TtHP
0.03
0.03
0.19
0.33
0.40
0.33
0.27
0.11
-0.04
-0.04
-0.04
0.08
0.13
0.06
-0.07
-O.Of
-0.04
-O.Of
-0.04
-0.04
0.00
-0.04
-0.04
-0.04
-0.04
-O.Of
-0.04
0.00
O.Of
0.13
0.20
0.26
0.33
0.34
0.41
0.41
0.15
0.41
0.54
0.54
9.54
0.53
0.57
O.fS
0.57
0.50
0.36
0.21
O.Of
o.ot
0.05
O.Of
o.ot
o.ot
-0.04
1C
SPCON
0.021
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.022
0.021
0.020
0.020
0.020
0.021
0.021
0.022
0.022
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.021
0.022
0.021
0.019
0.019
0.020
0.021
0.022
0.022
0.021
0.021
0.021
0.022
0.022
0.022
0.021
0.021
0.021
0.022
0.022
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.021
0.022
0.022

COHNENT














HALFKILE 9B 102886 TO
110436 IN 3 HR INTERVALS






































11
:00 THURSDAY, HAY Si 1938
PH COHKENT
S.80
5.81
5.79
5.77
5.79
S.81
5.80
5.81
5.82
5.82
5.83
5.78
5.80
5.82
S.82
5.86
5.36
5.33
5.78
5.75
5.32
5.62
5.31
S.81
5.82
5.81
5.78
5.78
5.81
5.81
S.I9
5.90
5.37
5.86
5.14
5.84
5.85
5.90
5.92
5.92
5.90
5.93
5.70
S.88
5.91
5.90
5.92
5.91
S.94
5.92
5.92
5.90
5.91
5.92
5.93
HALFH1LE BRUOK IQ

OBS
496
497
498
499
500
SOI
502
503
504
SOS
506
507
503
509
510
511
512
513
514
SIS
516
517
518
519
S20
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
S40
541
S42
543
544
545
S46
547
548
549
550

HR
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0

no
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

DA
;2
3
3
3
3
3
3
3
3
4
4
4
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13

VR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
66

TEMP
4.69
4.54
4.09
3.64
4.07
4.51
4.36
3.82
3.6S
3.66
3.78
4.03
0.00
-0.02
0.00
-0.02
0.00
-0.01
-0.01
-0.02
-0.04
-0.02
-0.02
-0.02
-0.02
-0.02
0.00
0.00
-0.01
0.00
0.04
0.20
0.21
0.31
0.43
0.43
0.35
0.32
0.26
0.12
0.01
-0.04
-0.04
-0.05
-0.05
-0.05
-O.OS
-0.04
-0.04
-0.05
-0.04
-0.03
-0.04
-0.03
0.02

SPCON
0.024
0.025
0.027
0.025
0.024
0.025
0.025
0.023
0.024
0.025
0.02S
0.026
0.020
0.021
0.021
0.020
0.020
0.019
0.020
0.020
0.020
0.019
0.020
0.020
0.021
0.020
0.020
0.020
0.020
0.019
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.019
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.021
0.021
0.020
0.020
0.021
0.021
0.020
10:00 THURSDAY. MAY St 1988
PH CONHENT
6.43
6.41
6.44
6.45
6.48
6.44
6.43
6.44
6.39
6.45
6.41
6.39
6.44 HALFHILE 9C 120886 TO
5. 95 122386 IN 3 HR INTERVALS
5.88
S.83
S.84
5.81
5.80
S.79
5.81
5.78
5.77
5.74
5*84
5.32
5.70
5.74
5.71
S.72
5.74
5.74
5.71
5.73
5.69
5.70
5.72
5.72
5.74
5.76
5.77
5.84
S.S2
5.81
5.84
5.30
5.83
5.79
5. SO
5.80
S.78
5.81
5. 75
5.78
S.80
HALFnILE BROOK ]2
OBS
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
6SO
651
652
653
654
655
656
657
058
659
660
HR
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1600
2100
0
300
600
900
1200
1500
1800
no
12
12
12
12
12
12
12
12
12
12
12
12
12
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
DA
20
20
20
20
20
20
20
20
21
21
21
21
21
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31






VR
86
86
86
36
86
86
86
86
86
86
86
86
86
87
87
87
87
87
37
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
TEHP
-0.06
-0.04
-0.06
-0.06
-0.04
0.02
0.02
-0.01
-0.03
0.00
0.05
0.15
0.22
-0.03
-0.06
-0.07
-0.06
-0.07
-0.15
-0.06
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.03
0.00
-0.03
0.00
-0.03
-0.01
-0.01
-0.03
-0.03
0.02
0.03
0.00
0.00
0.10
0.03
0.02
O.OS
0.05
0.06
0.06
0.06
O.OS
0.06
0.10
0.12
0.13
0.1!
0.12
SPCON
0.021
0.022
0.022
0.022
0.022
0.023
0.022
0.023
0.023
0.022
0.023
0.025
0.024
0.025
0.025
0.026
0.026
0.02S
0.02S
0.025
0.025
0.026
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.027
0.026
0.026
0.025
0.025
0.025
0.025
0*027
0.025
0.025
0.025
0.025
0.025
0.027
0.025
0.025
0.02S
0.025
0.025
0.025
0.025
0.02S
0.025
0.024
O.OZS
0.026
10:00 THURSDAY. HAY S. 1988
PH COHHENT
5.99
5.95
S.92
5.89
5.32
5,88
5.92
5.92
5.91
5.93
5.93
5.93
5.91
6.13 021087 IN 3 HR INTERVALS
6.1<
6* IS
6.14
6.23
6.26
6.2V
6.39
6.47
6.44
6.39
6.38
6.43
6.41
6.4.4
6.43
6.47
6.5 3
6.45
6.4V
6.40
6. 39
6.47
6.48
6.41
6.46
6.46
6.49
6.4S
6.47
6.44
6*49
6*51
6.42
6.51
6. SO
6.41
6* 46
6.45
6.44

-------
259

DBS HR
661 2100






































662
663
664
665
667
668
669
670
671
672
673
674
675
676
677
678
679
680
631
682
683
684
635
646
687
688
689
691
692
693
694
695
696
697
698
699
700
701
702
703
704
70S
706
707
708
710
711
713-
714
715
0
300
600
900
1500
1800
2100
0
300
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
0
300
900
1200
1500
NO
2
2
2
2
2 '
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
DA
1
2
2
2
2
2
2
3
3
3
3
3
5
3
4
4
4
4 •
4
4
4
5
5
5
S
S
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
8
8
S
8
8

Yft TEHP SPCON
67 0.12 0.026
87 0.12 0.025
87 0.10 0.025
87 0.12 0.024
67
87
87
87
87
87
87
87
87
87
87
87
87
67
87
S?
67
87
67
37
37
37
87
67
87
87
67
87
87
87
37
87
87
67
67
87
87
87
87
87
87
87
37
37
0.20 0.025
0.15 0.025
0.15 0.024
0.14 0.025
0.21 0.024
0.22 0.025
0.24 0.025
0.24 0.025
0.24 0.025
026 0 .025
0.24 0.025
0*26 O.O22
0.27 0.020
0.31 0.020
0.27 0.013
0.26 0.016
0.21 0.015
0.17 0.025
0.12 0.025
0.07 0.025
0.07 0.025
0.14 0.025
0.15 0.025
0.12 0.025
0.07 0.025
0.08 0.025
O.OB 0.027
0.12 0.028
0.14 0.029
0.21 0.030
0.21 0.031
0.19 0.033
0.12 0.034
0.10 0.026
0.12 0.024
0.12 0.026
0.14 0.025
0.16 0.025
0.28 0.026
0.26 0.026
0.23 0*026
0.19 0.025
0.16 0.025
0.11 0.025
0.03 0.025
0.07 0.026

PH COHHENT
6.41
6.41
6.49
6.43
6.42
6.45
6.40
6.43
6.52
6.49
6.42
6.42
6.44
6.47
6.46
6.52
6.44
6.47
6.49
6.44
6.47
6.52
6.48
6.44
6.43
6.44
6.41
6.42
6.41
6.42
6.41
6.39
6.39
6.39
6.44
6.39
6.33
6.41
6.37
6.38
6.36
6.42
6.38
6.35
6.36
6.37
6.39
.43
.40
.32
.42
.39
6.35
6.35
HALFM1LE BROOK

OflS
771
772
773
774
775
776
777
778
779
750
781
783
784
785
786
787
758
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
B07
806
809
810
ttll
812
813
81S
816
817
818
819
820
821
822
823
824
825

HR
1800
2100
0
300
600
900
1200
1500
1800
2100
0
600
900
1200
1500
1500
2100
o
300
600
900
1200
1500
1300
2100
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
600
900
1200
1SOO
1800
2100
0
300
600
900
1200

HO
3
3
3
3
3
3
3
3
3
S
3
3
3
3
3
3
3
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4 '
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

DA
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
1
I
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
5
5
5

YR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
67
87
87
87
87
87
87
87
67
67
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87

TEMP
0.15
0.13
0.10
0.08
0.10
0.29
0.57
0.42
0.39
0.32
0.30
0.35
0.41
0.37
0.17
0.19
0.20
0.19
0.19
0.19
0.20
0.27
0.3S
0.38
0.38
0.31
0.29
0.38
1.63
1.56
0.91
0* 63
O.SO
0.48
0.79
1.64
2.68
2.99
1.74
1.54
1.80
2.50
3.38
3.79
3.46
2.76
2.27
2.14
2.23
2.65
lo-.oc
SPCON PH
0.033 5.82
0.032 5.81
0.032 5.79
0.032 5.79
0.032 5.77
0.033 5.75
0.033 5.75
0.031 5.73
0.031 5.73
0.031 5.69
0.031 5.69
0.030 5.70
0.031 5.68
0.031 5.62
0.030 5.50
0.029 5.36
0.029 5.22
0.029 4.98
0.029 4.84
0.029 4.80
0.029 4.77
0*023 4.31
0.029 4.79
0.026 4.81
0.026 4.63
0.026 4.74
0.028 4.77
0.028 4.85
0.028 4.85
0.030 4.80
0.028 4.90
0.027 5.00
0.029 4.98
0.029 S.07
0.030 5.06
0.029 5.05
0.029 5.04
0.030 5.11
0.026 5.14
0.030 5.16
0.029 5.16
0.023 5.13
0.028 5.13
0.023 5.15
0.029 5.15
0.029 5.19
0.029 5.22
0.029 S.23
0.028 5.23
THURSDAY, HAY
COnHENT






EVENT PH FOR
IS 6.04



EVENT PH FOR
IS 5.91





13







































15
S, 1988







033067



033187





LAB PH FOR 040167
IS 5.45

















































716
717
718
719
720
721
722
723
724
725
726
723
729
730
731
732
733
734
735
736
737
736
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
085
826
827
828
629
830
831
632
833
834
835
836
837
638
839
840
841
842
843
844
845
848
849
850
851
852
853
854
855
656
857
858
860
361
862
863
664
865
666
667
868
869
870
871
872
373
674
675
876
»77
878
879
880

1800
2100
0
300
600
900
1200
1500
1800
2100
0
600
900
1200
1800
2100
0
300
600
900
1200
1500
1600
2100
0
300
600
900
1200
1500
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
HR
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1500
1300
1200
1500
0
300
600
900
1200
1500
1800
2100
0
300
600
1200
1500
1800
2100
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1600
2100
0

2
2
2
2
2
2
2
2
2
2
2
2
2
3 '
3
3
3
3
3
3
3
3
3
3
3
3
3
S
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

8 67
8 87
9 87
9 87
9 87
9 87
9 87
9 87
9 37
10 87
10 87
10 87
10 87
24 87
24 87
25 87
25 87
25 87
25 87
25 87
25 87
25 87
25 87
26 87
26 87
26 87
26 87
26 87
26 87
26 87
27 87
27 87
27 37
27 87
27 87
27 87
27 87
27 87
28 87
28 87
28 87
28 87
28 87
28 87
28 87
29 87
29 87
29 87
29 37
29 37
29 87
5
S
6
6
6
6
6
6
6
6
'7
7
7
7
7
7
8
8
8
a
8
8
8
9
9
9
9
9
9
9
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12


0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
-0.
-0.
-0,
0.
0,
0.
0.
0.
0.
0.
0,
0.
0,
0.
0.
0
0
0
. 0.
0
0
0
D
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
67
87
87
87
87
67
87
37
67
87
.37
87
87
37
87
47
87
87
37
37
87
87
87
87
87
87
87


26 ' 0.
39 0.
42 0.
42 0.
50 0.
53 0.
57 0.
32 0.
20 0.
21 0.
14 0.
07 0.
07 0.
07 0.
11 0.
01 0.
OS 0.
04 0.
01 0.
.00 0.
.32 0.
,12 0.
,00 0.
.02 0.
,02 0.
,01 0.
,05 0.
,03 0.
,03 0.
.00 0.
.02 0.
,00 0.
,00 0.
,03 0.
.08 0.
.03 0.
.03 0.
.03 0.
.05 0.
.21 0.
.16 0.
.08 0.
.06 0.
.06 0,
.03 0.


026 6.37
025 6.43
025 6.42
025 6.41
026 6.36
026 6.42
025 6.38
025 6.42
025 6.37
025 6.45
025 6.38
026 6.36
026 6.40
026 6.61
026 6.42
037 6.44
037 6.35
036 6.33
037 6.31
036 6.31
037 6.27
036 6.23
036 6.19
036 6.15
037 6.17
036 6.12
036 6.13
036 6.09
035 6.11
035 6.03
036 6.00
036 6.01
035 6.04
035 5.99
035 6.00
034 5.99
035 5.97
035 5.96
034 5.95
.033 5.96
.034 5.94
.033 5.90
.034 5.91
,033 5.116
,033 5.87
.23 0.033 5.64
HALFHILE BROOK

3.29
3.26
3.1?
3.14
3.17
3.32
3.49
3.65
3.58
3.41
3.18
3.05
3.21
2.82
3.21
3.18
- 2.43
2.61
3.12
3.58
3.63
3.40
3.03
2.60
3.45
4.84
5.55
5.96
5.27
4.55
4.23
5.02
6.45
6.63
6.54
6.11
5.39
4.97
5.48
6.40
6.74
6.69
6.43

0.029
0.028
0.027
0.027 .
0.028
0.027
0.028
0.028
0.023
0.028
0.027
0.023
0.023
0.026
0.027
0.031
0.034
0.037
0.036
0.036
0.036
0.036
0.038
0.035
0.034
0.037
0.036
0.037
0.034
0.027
0.028
0.036
0.037
0.036
0.030
0.026
0.024
0.025
• 0.025
0.025
0.024
0.025
10:00 1
HALFH1
04078;
10:00
PH
5.21 '
5.20
S.24
5.21
5.23
5.26
5.24
5.24
5.21
5.22
5.24
5.25
5.29
5.29
5.67
5.67
5.67
5.69
5.70
S.68
5.63
5.67
5.66
5.69
5.71
5.73
5.73
5.63
5.65
5.70
5.74
5.71
5.71
S.72
5.71
5.76
5.30
5.80
5.79
5.76
5.66
5.75
5.75
5.79
14
IT
ILE 9E 032487 TO
r IH 3 HR INTERVALS
16
THURSDAY, HAY it 1988
COHHENI
HALFHILE 2036 040787
TO 042187 IN 3 HR
INTERVALS
IS 5.79
EVENT PH FOR 040887
IS 5.91.
EVENT PH FOR 041087
IS 6.01.

-------
260

OH
III
lit
111
IK
• 15
lit
III
111
lit
MO
«tl
Itl
Itl
tn
m
in
ItJ
iti
tit
tee
toi
tfll
tci
4 It
101
t«l
to?
tei
tot
»IO
til
til
til
»H
tit
»lt
tu
til
tit
tJO
til
til
til
tit
tit
tu
«>
tu
tit
tio
fit
t»
tu
tu
t»

Ml
109
400
ISO
1199
1180
1109
J1CO
0
loo
400
too
uoo
uoo
uoo
1109
0
100
400
too
uoo
1109
1100
1100
0
109
tOO
103
1199
IJOO
1130
1109
o
100
199
t09
1109
tieo
1109
ilOO
0
100
tee
too
ueo
II 00
IIOO
1100
9
100
too
tie
uoo
use
1190
UOO

«a
t
t
4
4
4
I
4
4
4
4
4
4
«
4
4
4
I
4
C
4
4
4
4
4
4
4
4
4
4
4
4
«
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

00
11
11
12
12
12
12
12
11
11
U
11
11
11
11
11
14
14
It
14
14
14
14
14
15
15
IS
IS
15
15
15
15
It
It
It
It
It
It
It
It
1?
17
17
17
17
17
17
17
11
It
11
It
:i
u
u
1>

T«
17
17
17
17
17
17
17
•7
17
17
«7
17
>7
17
17
17
17
17
17
17
•7
If 7
17
• 7
17
«7
17
17
17
17
17
17
17
87
17
47
17
17
17
•7
97
17
17
• 7
• 7
17
17
• 7
17
17
17
• 7
17
17
57
NAIFMLE
TCnp
4.06
5.47
4.94
5.10
5'70
5.71
5.45
5.10
4.t7
4.20
1.7«
4.4>
5. It
5.7?
5.59
5.2t
4.?3
4.tl
4. 55
5.2?
5.95
t*27
t.ot
5.72
$.17
5.2}
5.16
i.ll
6.70
t.ll
t.7>
t.tl
US
6.39
t.41
6.56
t.74
6.79
6.76
6.73
6.67
t.i4
6.77
7.01
7.47
7. to
7.63
7.65
7. to
7.58
7.34
1.77
9.78
10. Ot
9.96
BROU<
SPCON
0.025
0.025
0.024
0.025
0.024
0.024
0.021
0.024
0.024
0.024
0.024
0.024
0.024
0.02}
0.021
0.024
0.021
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.024
0.023
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.024
0.025
0.025
17
PH COHKEHT
5.10
5.79
5.79
5.79
5.78
5.7>
5.10
5.81
5.82
5.82
5.81
5.74
5.79
5.78
5.82
5.84
5.84
5.84
5.81
S.78
5.84 IS 6.15.
5. Hi
5.88
5.87
5. 88
5.87
5.88
5.89
5.88
5.91
5.94
5.93
5.94
5.92
S.V3
5.95
5.96
S.93
5.94
5.96
5.97
5.96
5.96
5.94 EVEHT PH FOR 041787
5.92 15 6.36.
5.93
5.91
5.91
5.94
5.96
5.91
5.42
5.91

936
937
938
939
940
94 1
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900

4
4
4
t.
4
4
4
4
4
4
^
4
4
4
4
4
4
4
4
4
4
4
t,
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
HALFHILE BROOK
19
19
19
19
19
19
19
20
20
20
20
'20
20
20
22
22
22
22
23
23
23
23
23
23
23
24
24
24
24
24
2(
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
87
87
87
87
87
17
87
87
87
87
S7
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
9.77
9.45
9.05
9.12
10.42
11.52
11.40
11.27
11.14
10.92
10.97
12.18
13.22
13.22
11.33
11.94
11.18
10.41
9.68
9.02
9.01
10.04
9.83
9.53
9.42
9.23
9.15
9.07
9.11
9.09
8.97
8.80
8.35
7.83
7.25
7.30
8.47
9.03
8.93
8.50
7.87
7.64
7.16
7.30
8.60
9.18
9.02
8.55
7.92
7.35
6.77
7.01
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.023
0.022
0.025
0.024
0.026
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.026
0.025
0.025
0.022
0.023
0.024
0.025
0.025
0.026
0.025
0.025
0.024
0.025
0.024
0.025
0.026
0.025
0.026
5.93
5.94
5.97
6.00
6.00
5.95
5.97
5.97
5.99
6.00
6.00
6.03
6.04
6.00
6.00
6.07
5.98
5.89
5.91
5.90
5.89
5.90
5.89
5.83
5.87
5.86
5.86
5.87
5.84
5.87
5.85
5.84
5.86
5.86
5.37
5. VI
5.91
5.86
5.82
5.82
5.81
5.83
5.86
5.88
5.90
5.90
5.82
5.83
5.80
5.85
5.85
5.91
5.91
18














EDITED ALG.
HAlFfllLE 9C 042257
050587 IN 3 HR INTERVALS













EVEKT PH FOR 042487
15 6.48*





















CIS
til
ttl
ttl
m
ttj
tft
tt7
ttl
ttt
tooe
1601
tool
1041
1004
lOOi
IWJ
1001
lest
1010
1011
1011
1014
101J
1014
1917
101 1
101 1
1010
1011
toil
1011
teit
101 1
toit
1017
1011
lOlt
1010
1011
10JJ
1011
IOH
1911
1011
I01J
1011
1019
1040
1041
1041
1041
leu
101)

««
1100
1)00
1100
1100
0
300
too
too
1100
1100
itoo
1100
e
190
tco
too
1109
1100
1109
2100
0
100
too
too
uoo
1199
1100
1100
0
199
too
too
1100
1199
1)90
1100
0
100
too
tae
ueo
1103
1150
1109
0
339
430
toe
1100
1109
1100
1100
9
lee
109

US
t
4
4
t
4
4
t
t
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
1
J
J
S
S
J
i
j
5
J
1
1
5
1
S
i
J
I
J
5
J
5
1

GA
27
27
27
27
21
21
11
28
21
11
11
18
1?
2?
It
1?
2?
2?
1?
10
10
10
10
10
10
10
10
1
I
1
1
I
1
1
1
2
1
2
2
1
1
1
2
I
1
1
1
1
1
3
1
4
4
4

YH
17
•7
17
87
17
17
17
17
37
17
17
17
17
• 7
17
17
• 7
37
87
17
17
87
17
17
17
17
37
17
17
17
17
17
17
17
17
17
87
• 7
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
HALFHIL
TtltP
1.50
9.02
i.to
8.17
7.41
7.37
4.91
6.90
7.76
7.72
7.51
7.11
t.?7
5.57
5.14
5.44
5.40
5.53
5.50
5.45
5.17
4.94
4.75
4.90
5.24
5.84
6.01
5.90
5.72
5.42
5. If
5.41
6.0?
4.71
4.71
6.41
5.7?
5.11
4.12
5.13
t.4S
t.72
7.11
7.10
7.00
6.67
t.22
4.33
7.82
8.34
1.51
1.2V
8.04
7.7?
7.17
E HROQK
SPCON
0.025
0.026
0.025
0.025
0.024
0.026
0.026
0.026
0.025
0.024
0.023
0.024
0.026
0.025
0.026
0.025
0.025
0.024
0.023
0.025
0.125
0.025
0.025
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.024
0.024
0.024
0.024
0.021
0.025
0.02t
0.025
0.022
0.025
0.026
0.024
0.026
0.026
0.026
0.026
0.025
0.025
0.024
0.026
0.025
0.026
0.025
19
10:00 THURSDAY) HAY St 1983
PH COnKENT
5.87
5.82
5.83 •
S. 82
5.82
5.86
5.90
5.92
5.90
5.85
5.17
5.85
5.17
5.9?
5.97
5.93
5.90
5.39
5.87
5.88
5.88
5.91
5.91
5.90
5.88
5.85
5.81 EVENT PH FOR 043087
5.82 IS 6.32.
5.84
5.87
5.83
5.86
5.83
5.76
5.75
5.75
5.79
5.84
5.86
5.17
5*81
5.76
5.74
5.72
5.75
5.75
5.80
5.80
5.75
5.72
5.73
5.71
5.73
5.77
5.10
HALFHZLE BROOK

03S
1046
1047
1048
1049
1050
1051
1052
1053
105;
loss
1056
1057
1053
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1073
1079
1030
1081
1032
1083
1084
1085
1036
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

HR
900
1200
1500
1800
2100
0
300
600
900
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900

no
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 •
5
5
5
5
5
5
5
5
5

DA
4
4
4
4
4
5
5
5
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
3
8
8
8
1
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11

YR
67
87
87
87
87
87
37
87
37
87
37
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

TEHP
7.36
3.55
9.23
9.26
8.96
8.54
8.41
8.23
8.09
8.08
8.02
7.98
7.91
7.37
7.94
8. 12
3.18
8.24
8.05
7.85
7.66
7.49
7.73
9.00
9.51
9.70
9.48
9.17
3.53
7.95
8.38
9.36
9.90
9.97
9.57
8.89
8.27
7.72
8.19
10.03
10.33
10.55
10,26
9.86
9.36
9.06
9.65
11.53
12.39
12.42
12.14
11.50
10.90
10.28
10.33

SPC01I
0.026
0.025
0.025
0.025
0.026
0.026
0.026
0.026
,
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.021
0.021
0.022
0.021
0.021
0.022
0.021
0.021
0.021
0.021
0.022
0.021
0.022
0.021
0.021
0.022
0.021
0.021
0.022
0.021
0.021
0.022
0.022
0.022
0.021
0.021
0.022
0.021
0.021
0.022
0.021
0.019
0.022
0.021
0.021
0.022
0.021
0.022
0.021
20
10:00 THURSDAY. nAY 5t 1988
PH COfinENT
5.82
5.79
5.76
5.75
5.76
5.75 EDITED ALG 5/8/87
5.78 HAIFHILE UNIT 9A
5.30 050587 TO 051987
. 050587 LA8 PH>6.50
6.24
4.17
6.18
6.14
6.13
6.16
6.17
6.10
6.06
6.08
6.08
6.06
6.08
6.08
' 6.06
6.03
6.01
6.01
6.04
6.10
6.12
6.10
6.05
6.05
6.02
6.04
6.07
6.07
6.13
6.08
6.10
6.04
6.00
6.00
6.03
6.06
6.05
6.06
6.01
5.98
5.95
5.97
6.00
6.03
6.05

-------
261
OIS
1101
1102
1103
1104
1105
1106
1107
1103
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1154
1135
1136
1137
1133
1139
1140
1141


1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1233
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
12S1
1252
1253
1254
1255
12S6
1257
1258
1259
1260
1261
1262
1263
1264
1265
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1300
1900
100
700
1300
1900
100
700
1300
1900
100
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
HR
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
10:00 THURSDAY. HAY Si 1988
no DA YR TEHP SPCOH PH COHHEHT
5 11 87 11.67 0.022 6.05
5 11 87 12.03 0.020 4.00
5 11 87 11.71 0.022 6.00
5 11 87 11.30 0.022 5.99
5 12 87 11.02 0.022 5.99
S 12 87 10,78 0.022 6.00
5 12 87 10.77 0.022 6.00
5 12 87 11.01 0.022 6.03
5 12 87 11.12 0.022 6.02

300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
17
17
18
18
18
lit
19
19
19
19
20
20
20
27
27
28
28
22
28
29
29
29
29
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
S
5
S
5
S
5
S
5
5
5
5
5
5
5
5
5
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87
87
87
87
87
87
87
30 87
30 87
30
31
31
31
31
1
1
1
1
2
2
i
i
















87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
37
87
87
12 87 11.43 0.022 6.02
12 87 10. VO 0.022 6.02
13 87 10.43 0.022 6.03
13 87 9.04 0.022 6.07
13 87 9.39 0.022 6.09
13 87 10.97 0.021 6.08
13 37 11.38 0.022 6.06
13 87 11.19 0.022 6.01
13 87 10.75 0.022 6.00
14 87 10.05 0.022 6.00
14 87 9.39 0.022 6.03
14 87 8.85 0.022 6.06
14 87 9.48 0.022 6.09
14 37 11.23 0.022 6.07
14 87 11.61 0.023 6.04
14 37 11.19 0.022 4.03
14 87 10.90 0.022 6.03
15 87 10.71 0.022 6.02
15 87 10.59 0.023 6.03
15 37 10.52 0.022 6.04
IS 87 10.63 0.022 6.06
15 87 10.74 0.022 6.00
IS 87 10.77 0.022 6.01
IS 87 10.71 0.022 6.03
15 87 10.31 0.023 6.03
16 87 9.93 0.023 6.03
16 87 9.36 0.022 6.04
16 87 8.83 0.022 6.06
16 37 8.79 0.022 6.08
16 87 10.21 0.022 6.09
16 87 10
16 87 10
17 87 10
17 87 10
17 37 9
17 87 10
17 87 12
17 8? 12
17 87 12
17 S7 12
18 87 12
18 87 11
IB 87 11
HALFHILE BSD
6.93
7.81
7.94
8.62
9.12
8.32
8.24
8.83
7.73
7.05
7.43
5.83
5.83
5.70
6.17
7.69
7.90
7.98
3.19
7.77
7.18
7.05
6.84
6.55
6.63
7.01
6.80
6.34
5.91
6.55
6.17
5.11
4.35
4.90
4.22
3.51
3.59
4.56
4.82
4.98
S.28
6.04
6.38
6.59
6.17
7.35
6.88
5.49
4.91
4.77
3.84
0.027
0.029
0.028
0.026
0.028
0.026
0.028
0.028
0.029
0.024
0.026
0.038
0.039
0.042
0.039
0.030
0.031
0.031
0.030
O.OS1
0.033
0.034
0.036
0.038
0.037
0.035
0.037
0.040
0.041
0.040
0.042
0.046
0.033
0.035
0.032
0.033
0.032
0.032
0.031
0.032
0.047
0.042
0.041
0.041
0.042
0.039
0.039
0.046
0.031
0.031
0.032
81 0.022 6.01
71 0.022 6.00
51 0.022 6.00
02 0.022 6.01
66 0.021 6.02
JO 0.022 6.06
13 0.022 6.08
84 0.021 6.03
86 0.022 5.99
67 0.022 5.97
74 0.022 6.01
36 0.022. 6.01
OK 23
10:00 THURSDAY* HAY 5i 1988
PH COHHEHT
6.09
6.14
6.15
6.04
6.06
6.33
6.25
6.06
6.30
6.26
6.24
6.39 HALFHILE 102787 TO 111087
6.33 IN 6 HR INTERVALS
6.27
6.29
6.20
6.14
6.13
6.13
6.10
6.11
6*13
6.13
6.09
6.09
6.09
6.12
6.09
6.13
6.11
6.12
6.13
6.12
6.13
6.16
6.16
6.16
6.14
6.13
6.11
6.12
6.10
6.14
6.09
6.09
6.10
6.14
6.15
6.17
6.17
6.22
6.22
                       HftLfMlLE BROOK
DBS
list
1157
1156
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
lit?
1188
1189
1190
1191
1192
119]
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
HR
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1SOO
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
HO
5
5
5
5
S
5
5
5
5
5
S
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
DA
18
18
18
18
16
19
19
19
19
19
19
6
6
7
7
7
7
8
6
8
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
U
H
14
IS
15
15
IS
16
16
16
16
17
17
YR
87
87
87
87
87
87
87
87
87
87
87
87
87
17
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
TEHP
11.20
12.29
12.56
12.45
11*94
11.30
10.63
10.03
10.50
11.99
12.41
10.43
11.11
10.90
10.90
11.24
11.40
11.40
11.40
12.08
12.33
11.28
10.26
9.88
9.76
9.38
9.33
9.80
10.01
8.87
8.07
8.03
7.69
6.97
6.29
6.63
7.01
5.74
5. 15
5.91
6.38
5.24
4.69
5.62
6.29
5.53
4.90
5.96
7.01
6.29
6.00
6.72
7.35
6.59
6.04
SPCON
0.022
0.022
0.022
0.022
0.022
0.023
0.023
0.022
0.022
0.022
0.029
0.026
0.029
0.029
0.026
0.028
0.026
0.028
0.028
0.028
0.026
0.029
0.027
0.027
0.025
0.025
0.027
0.027
0.025
0.026
0.028
0.029
0.024
0.027
0.025
0.027
0.025
0.026
0.028
0.027
0.025
0.026
0.025
0.027
0.028
0.028
0.025
0.027
0.027
0.025
0.024
0.026
0.027
0.025
PH COHHEHT
6.07
6.07
6.05
5.99
6.00
6.01
6.06
6.08
6.08 051987 LAB PH«6.SO
6.05 EDITED ALG 6/7/87 ' ,
6.18 KALFHILE 5343 100687
6.11 10 102087 IH 6 HR INTERVAL
6.11
6. 16
6.16
6.02
6.01
5.95
6.00
6.03
6.27
6.25
6.19
6.14
6.15
6.10
5.98
5.98
6.27
6.25
6.22
6.22
6.26
6.24
6.19
6.08
6.23
6. .11
6.13
6.04
6.27
6.31
6.11
6.03
6.25
6.28
6.08
5.94
6.24
6.24
6.06
5.97
6.31
6.27
HALFHILE BROOK 24

OSS
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

HR
100
700
1300
1900
100
700
1300
1900
100
700
1300
1900
100
700
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

7
7
7
7
8
8
8
8
9
9
9
9
10
10
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27

87
87
87
37
87
87
87
87
87
87
87
87
87
37
«7
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

2.91
2.28
2.79
2.37
1.65
1.73
2.79
2.79
2.75
2.91
3.46
3.51
3.13
2.79
3.08
3.29
4.01
5.20
5.07
5.11
4.73
4.90
4.35
3.42
3.21
3.59
3.59
2.87
2.49
1.61
1.01
0.59
0.80
0.63
0.38
0.17
0.68
0.84
0.80
1.27
1.94
1.73
1.69
1.73
2.37
2.32
1.56
0.42
0.00
0.55
0.00
0.13
0.21
0.21

0.033
0.032
0.033
0.032
0.034
0.033
0.032
0.033
0.032
0.033
0.033
0.033
0.033
0.032
0.031
0.031
0.029
0.028
0.028
0.028
0.028
0.028
0.023
0.029
0.029
0.029
0.0.29
0.023
0.028
0.023
0.028
0.029
0.028
0.027
0.029
0.029
0.029
0.028
0.023
0.029
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.027
0.028
0.029
0.028
0.027
0.027
0.027
10:00 THURSDAY. HAY 5f 1988
6.22
6.25
6.24
6.26
6.25
6.25
6.25
6.23
6.22
6.17
6.22
6.22
6.24
6.24
6.40 HALFHILE 111737 TO 120187
6.40 IN 6 HR INTERVALS
6.33
6.33
6.25
6.27
6.27
6.29
6.29
6.29
6.29
6.29
6.27
6 .29
6.30
6.30
6.30
6.30
6.29
6.32
6.29
6.29
6.29
6.28
6.26
6.26
6.24
6.27
6.25
6.24
6.23
6.25
6.25
6.26
6.28
6.30
6.28
6.31
6.30
6.30
6.27

-------
262
HKI.PIIILC tuooic is
en
no
mi
ill)
mi
mi
1)14
1111
UK
tilt
1110
mi
i»i
mi
UK
nit
ui>
m»
mi
nit
lite
1111
lit!
lit)
im
lltl
im
i)(i
1111
lilt
me
mi
IM!
mi
list
UJ>
list
1)17
1)11
111*
1)40
mi
Dtt
D«)
mi
im
1141
114)
IJ4I
llif
1)74
1)71
I»M
1)7)
1)71
1)11
«*
e
toe
1200
1100
e
409
lloe
1130
e
too
lloe
1100
0
tee
1100
0
toe
1100
tioe
e
too
1200
uoo
e
too
uoo
1100
e
too
1100
uoo
e
tee
1100
uoe
e
tee
uoe
uoe
e
too
uoo
1100
e
too
uoe
uoe
e
tee
UOO
1100
e
toe
uoe
1100
na
11
11
11
11
11
11
u
11
u
u
11
u
u
u
u
u
u
u
u
u
u
u
it
u
11
u
It
It
u
11
u
11
It
11
11
11
u
11
11
11
u
It
11
12
12
11
11
U
11
U
It
It
11
It
It
>*
11
11
21
21
tt
If
It
2t
10
)0
30
>e







10
10
to
10
11
11
11
It
u
11
11
11
1)
11
1)
1)
14
u
u
11
1}
1}
IS
15
It
11
It
It
17
17
17
17
U
U
11
It
»«
17
17
17
17
17
17
47
17
17
<7
17
17
17
17
17
17
17
17
17
17
17
»>
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
<7
17
• 7
17
17
17
tin*
o.oe
o.oe
o.oo
0.00
o.eo
0.00
e.oi
0.01
0.11
O.I«
0.25
0.11
0.72
O.f7
' 0.17
O.K
0.51
O.I?
1.10
1.27
l.U
1.41
1.49
1.71
1.12
l.fO
1.11
1.27
1.10
1.11
l.Ot
0.72
0.12
0.5?
O.I!
O.li
0.21
O.lt
0.21
-0.17
-0.31
-0.01
-0.01
-0.72
-0.7t
-0.76
-0.43
-0.10
-O.SI
-0.11
-O.J1
-0.72
-0.71
-0.7t
-0.7»
ireox
0.029
0.021
0.02?
0.02?
0.029
0.029
0.02?
0.02?
0.02?
0.02?
0.02?
0.021
0.027
0.021
0.02?
0.024
0.026
0.02?
0.027
0.024
0.027
0.027
0.027
0.021
0.021
0.027
0.027
0.024
0.02«
0.024
0.021
0.021
0.026
0.021
0.02?
0.026
0.026
0.024
0.024
0.027
0.027
0.027
0.028
0.027
0.027
0.029
0.027
0.027
0.027
0.027
0.027
0.026
0.024
0.027
0.027
FH COliflEHT
6.2!
6.2!
1.21
6.24
4.24
6.2S
6.24
4.26
6.26
4.26
6.17
6.06

t
S.16 NKt-FmLt 1 120t<7 TO
5.79 122297 III 6 KB INTC«V«L5
1.77
5.74
5.10
5.71
5.11
1.71
1.71
1.70
1.71
1.72
1.72
1.72
1.7)
1.72
1.71
1.7}
1.77
1.77
I.7t
1.71
1.7?
1.77
1.79
1.79
1.11
1.7?
1.11
;.?t
1.91
i.ia
1.17
1.11
1.11
1.17
5.VO
1.91
1.48
1.91
S.92
  Oil

  1176
  1377
  1378
  1379
  1380
  1381
  1382
  1383
  1381
  1381
  1384
  1387
  1388
  138?
  1390
 600
1200
UOO
   0
 600
1200
UOO
   0
 600
1200
1800
   0
 600
1200
1100

12
12
12
12
12
12
12
12
12
12
12
12
12
U
12
12

19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
HALFMLC 9AOOIC
87
87
87
87
17
87
87
87
87
87
87
87
87
87
87
87
-0.76
-0.76
-0.80
-0.76
-0.80
-0.76
-0.80
-0.80
-0.76
-O.SI
-0.11
-0.12
-0.12
-O.lt
-0.17
-0.30
10100
0.027
0.027
0.027
0.027
0.027
0.027
0.029
0.027
0.027
0.02?
0.027
0.027
0.027
0.027
0.027
0.028
THURSDAY, KAV 1
1.90
1.81
1.8}
1.88
1.86
1.81
S.81
5.82
S.89
1.90
5.91
5.95
1.88
5.91
1.91
5.91
                                                                      26
                                                                     1988

-------
263
DBS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
52
5J
54
*<
HR
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1200
1500
1800
2100
0
300
600
900
1200
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1800
2100
0
300
Ann
no
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
1J
11
1 1
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
t?
OA
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
27
27
27
27
28
28
28
23
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
1
1
1
YR
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
65
85
85
85
85
85
85
85
85
85
85
85
85
85
55
85
85
85
85
85
85
85 '
85
85
85
85
85
85
85
85
85
85
85
85
85
85
TEMP
2.95
2.79
2.31
2.10
1.89
2.05
2.22
2.60
2.79
2.68
2.42
2.27
1.92
1.72
1.68
2.00
2.27
2. 27
2.17
1.96
1.73
1.45
1.19
1.35
0.35
0.46
0.44
0.43
0.43
0.42
0.42
0.41
0.69
0.58
0.46
0.36
0.19
0.10
0.08
0.32
0.37
0.21
0.14
0.10
0.03
0.05
0.05
0.23
0.18
0.11
0.02
0.02
0.03
SPCON
0.023
0.024
0.024
0.024
0.024
0.024
0.028
0.026
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.025
0.025
0.025
0.024
0.025
0.025
0.029
0.029
0.029
0.02?
0.029
0.029
0.02V
0.029
0.029
0.030
0.030
0.029
0.029
0.030
0.030
0.02V
0.030
0.029
0.029
0.030
0.029
0.030
0.030
0.030
0.031
0.029
0.029
0.031
0.031
PK COnn£NT
6.13 INDIAN 90 112285 TO
6.09
6.05
6.05
6.03
6.02
6.02
6.00
6.04
6.00
6.03
6.04
6.05
6.01
6.06
6.01
6.05
6.03
6.06
6.03
6.04
6.08
6.10
6.25 INDIAN 90 112785 TO
6.10
6.11
6.14
6.14
6.16
6.17
6.17
6.16
6.17
6.18
6.17
6.18
6.17
6.18
6.20
6.1V
6.20
6.21
6.18
6.17
6.16
6.17
6!l7
6.17
6.19
6.18
6.20

DBS
56
57
S9
59
60
61
62
63
64
66
67
48
69
70
71
72
75
74
75
76
77
78
79
BO
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
lot
105
106
107
108
109
110

HR
900
1200
1500
1800
2100
0
300
600
900
1500
1800
2100
0
300
600
900
1200
1500
1200
1600
2000
0
(00
800
1200
1600
2000
0
(00
SOO
1200
1600
2000
0
100
too
1200
1600
2000
0
400
800
1200
1600
2000
0
400
600
1200
1600
2000
0
(00
800

no
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

1
1
1
1
1
2
2
2
Z
2
2
2
3
3
3
3
3
3
5
5
5
6
6
6
6
6
6
7
7
7
7
7
7
8
8
8
8
8
8
9
9
9
9
9
9
10
10
10
10
10
10
11
11
11

85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
as
85
65
85
85
65
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85

0.05
0.25
0.38
0.25
0.25
0.25
0.27
0.40
0.55
.62
.73
.49
.27
.05
.73
0.34
0.38
0.24
0.07
0.20
0.12
0.11
0.11
0.17
0.35
0.39
0.29
0.16
0.10
0.11
0.13
0.14
0.10
0.10
0.11
0.10
0.21
0.1J
0.16
0.16
0.13
0.10
0.22
0.15
0.08
0.10
0.10
0.12
0.12
0.15
0.10
0.12
0.12
0.10

0.030
0.030
0.030
0.031
0.030
0.030
0.030
0.030
0.029
0.030
0.030
0.030
0.030
0.029
0.029
0.028
0.029
0.029
0.022
0.022
0.023
0.022
0.023
0.021
0.023
0.022
0.022
0.022
0.023
0.022
0.022
0.023
0.023
0.023
0.023
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.023
0.023
0.023
0.021
0.023
0.023
0.023
0.020
0.022
0.023

6.17
6.17
6.19
6.20
6.18
6.19
6.20
6.21
6.06
5.86
5.84
5.80
5.78
5.77
5.76
5.79
5.77
5.79
6.16 INDIAN 7A 1205S5 TO
6.04 121185 in 4 Hfi INTERVALS
5.94
5.97
5.92
5.99
6.01
5.99
5.97
5.95
5.97
5.98
5.96
5.99
5.97
6.01
6.00
5.97
5.93
5.88
5.97
5.99
.97
.99
.95
.99
.01
.05
.01
.95
.02
.99
.01
.96
.99
.05
1NDIANCAHP BROOK 3
111
112
113
114
115
116
117
118
119
120
121
122
121
124
125
126
127
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
155
156
157
158
159
160
161
162
163
164
16!
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
600
1200
1800
0
600
1200
1800
0
600
1200
1200
1600
0
600
1200
1800
0
600
1200
1800
0,
600
1200
1300
0
1200
1800
0
600
1200
1300
0
600
1200
1100
0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 '
4
4
4
25
26
26
26
26
27
27
27
27
28
28
28
28
29
29
29
29
30
30
30
31
31
31
31
1
1
1
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8






10
10
10
10
11
86
66
66
66
86
86
86
86
86
86
86
66
86
36
86
86
86
86
86
66
66
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
66
86
86
66
86
86
86
86
86
86
86
86
86
66
86
66
86
86
-0.01
-0.01
0.02
0.17
0.43
0.36
0.36
0.64
0.43
0.08
0.23
0.72
0.70
0.54
0.66
2.16
1.43
1.01
2.68
1.76
1.28
1.46
3.00
2.18
1.31
1.10
3.11
3.47
3.69
2.55
1.73
3.40
3.45
2.01
1.07
3.16
3.64
2.69
2.39
2.33
2.23
1.95
1.82
2.05
1.76
1.66
1.72
2.25
2.70
2.41
2.14
3.39
1.35
2.94
0.023
0.028
0.027
0.027
0.026
0.025
0.018
0.014
0.027
0.027
0.032
0.029
0.030
0.036
0.024
0.034
0.034
0.024
0.022
0.022
0.023
0.023
0.023
0.024
0.023
0.024
0.023
•
,
.
.
.
.

.
.
.
.
.
.
•
',
.
.
.
,
.
,
.
,
,
•
5.90 INDIAN 98 032586 TO
5.93 040186 IN 6 Kg INTERVALS
5.96
5.93
5.95
5.90
5.90
5.72
5.57
5.44
5.35
5.37
5.38
5.45
5.47
5.45
5.53
5.50
5.39
5.48
5.48
5.44
5.38
5.43
5.45
5.48
S.42
5.89 INDIAN 7A 040486 TO
5.73
5.73
5.75
5.81
5.78
5.82
5.76
5.86
5.66
5.87
5.84
5.69
5.86
5*85
5.87
5.80
5.70
5.69
5.74
5.71
5.73
5.72
5.74
5.71
S.71
INDIANCAnP tROOK 4

166
167
168
169
170
171
172
173
174
175
176
177
178
17?
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
?17
218
219
220

600
1200
1800
0
600
1200
1800
0
600
1800
0
600
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
' 1200
1800
0
600
1200
moo
0
600
1200
uoo
0

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

11
11
11
12
12
12
12
13
13
13
14
14
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
21

86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
16

2.88
3.76
4.04
2.86
2.42
3.64
4.00
2.98
2.62
5.27
3.78
2.75
8.73
6.66
5.03
7.30
8.52
6.17
4.45
6.74
8.29
5.98
4.19
6.73
6.80
6.85
5.50
6.01
6.75
6.28
5.59
6.52
7.28
6.44
5.63
5.77
5.90
5.65
5.19
5.81
6.74
6.67
6.34
7.16
7.46
7.46
7.42
8.50
9.30
8.74
8.22
9.80
10.78
9.6!


.
.
.
.
.
,
,
•
i
.
^
0.018
0.021
0.022
0.021
0.021
0.021
0.024
0.022
0.022
0.022
0.024
0.022
0.022
0.022
0.023
0.022
0.022
0.023
0.022
0.021
0.022
0.021
0.021
0.021
0.021
0.020
0.020
0.019
0.019
0.019
0.021
0.021
0.020
0.021
0.021
0.020
0.021
0.022
0.021
0.021
0.021
9:58 THURSDAY* HAY 5t 1988
5.76
5.75
5.79
5.77
5.60
5.77
5.76
5.76
5.81
5.80
5.78
5.76
6.00 INDIAN 90 041786 TO
5.V2 042986 IN 6 »R INTERVALS
5.92
5.46
5. S3
5.87
5.90
5.85
5.85
5.87
5.88
5.89
5.84
5.88
5.93
5.93
5.93
5.62
5.49
5.47
5.52
5.52
5.59
5.54
5.59
5.58
5.57
5.56
5.53
5.57
5.58
5.56
5.56
5.60
5.61
5.62
5.52
5.52
S.52
5.54
S.57

-------
264

CIS
III
III
121

II]
Hi
117
III
lit
110
111
tit
111
J J4
13)
111
117
111
13t
140
J41
tit
143
141
14)
141
1(7
241
ut
2)0
1)1
lit
III
1)4
IS)
211
2)7
1)1
li¥
210
It)
lit
It)
114
21)'
lit
117
lit
tit
170
171
171
17)
274
27)

HR
199
1200
1100
9
too
1100
1199
0
too
lloo
1100
9
too
1100
1199
0
100
1109
1100
0
too
1199
1109
0
109
1100
1100
0
199
1190
1190
9
too
1100
1109
9
too
1109
1109
e
100
1100
1109
0
109
1109
1100
0
too
1109
1100
1100
9
199
1109

HO DA »R
4 11 It




















































1 It
1 It
2 It
2 II
2 It
2 11
3 It
3 It
3 It
3 It
4 36
4 It
4 11
4 11
) 11



















It
It
It
11
11
11
11
11
It
11
11
11

-------
265

441
442
443

445
446
447
448
449
450
451
• 452
453
454
455
456
457
453
459
460
461
462
463
464
465
466
467
469
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

085
551
552
553
554
555
556
557
553
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
573
579
580
531
582
583
584
585
586
587
533
589
590
591
592
59!
594
595
596
597
598
599
600
601
602
603
604
C05

900
1200
1500
1800
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1900
2100
0
300
600
900
1200
1500
1900
2100
0

HR
0
300
600
900
1200
1200
1500
1300
2100
0
300
600
900
1200
1500
1900
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1 800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500

8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9







9
9

HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

18
16
18
18
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
29
29
28
28
29
29
29
29
29
29
29
29
30

DA
7
7
7
7
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4

96
96
96
96
96
86
86
86
86
86
86
86
86
86
86
86
86
116
96
86
86
86
86
66
86
86
66
96
86
86
86
86
86
86
86
36
86
86
96
96
96
86
86
66
36
86
86
86
86
36
86
36
86
86

YR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
96
86
86 .
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
96
86
86
86
36
86
86
36
86
36
86
86
86
86
86
86
86

16.28
16.55
16.87
17.16
10.54
10.49
10.53
10.53
10.40
10.42
10.67
10.91
11.01
10.88
10.83
10.80
10.68
10.66
11.28
12.03
12.17
11.66
11.19
10.84
10.30
10.72
11.37
11.47
11.38
11.23
10.79
10.32
9.98
10.49
11.63
11,36
10.63
9.95
9.31
8.71
8.24
8.83
10.11
9.95
9.41
9.36
9.51
9.32
9.33
10.52
10.68
10.59
10.65

3.55
7.57
7.24
7.73
7.49
7.71
7.69
7.68
7.52
7.12
6.72
6.90
7.67
8.01
7.60
7.07
7.06
7.14
7. 33
7.80
7.76
7.22
6.56
6.12
5.70
5.17
4.98
5.26
5.35
4.68
3.49
3.21
3.21
3.50
4.27
4.77
4.13
4.30
4.63
5.24
5.49
5.49
5.13
4.85
4.70
4.33
3.90
3.78
4.13
4.23

0.026
0.025
0.024
0.024
0.022
0.023
0.022
0.023
0.023
0.024
0.023
0.023
0.023
0*023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.023
0.024
0.023
0.023
0.023
0.023
0.022
0.024
0.023
0.022
0.023
0.022
0.023
0.022
0.022
0.022
0.022
0.022
0.023
0.023
0.023
0.022
0.023
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.022

0.023
0.024
0.023
0.023
0.031
0.031
0.032
0.031
0.031
0.031
0.031
0.032
0.031
0.031
0.032
0.031
0.031
0.032
0.031
0.031
0.031
0.031
0.031
0.031
0.031
0.031
0.031
0.032
0.031
0.031
0.031
0.030
0.030
0.031
0.030
0.030
0.030
0.030
0.030
0.029
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030


.
.
.
6.15
6.12
6.16
6.02
5.83
6.00
6.02
6.00
5.95
5.96
5.94
5.94
5.91
5.97
5.94
6.02
5.87
5.83
5.88
5.85
5.37
5.90
5.85
5.89
5.81
5.38
5.83
5.77
5.38
5.83
5.85
5.77
5.76
5.76
5.79
5.73
5.79
5.74
5.73
5.73
5.76
5.76
5.70
5.71
5.72
5.71
5.66
5.64
5.64
OC
5.54
5.60
5.60
5.60
6.19
6.17
6.15
6.12
6.11
6.11
6*10
6.07
6.10
6.06 ,
6.03
6.04
6.05
6.03
6.00
5.99
5.94
5.94
5.92
5.91
5.91
5.92
5.89
5.90
S.S9
5.91
5.90
5.91
5.90
5.89
5.90
5.89
5.37
5.87
5.37
5.37
5.87
5.37
5.87
5.88
5.89
5.36
5.33
5.89
S.SV
5.83
5.90
9:58 THURSDAY* HAY 5t 198




INDIAN 7A 092386 TO
100786 IN 3 HR INTERVALS















































11




INDIAN 2036 102986 TO
110486 IN 3 HR INTERVALS












































                      INDIANCAHP BROOK





















































CBS
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
643
649
650
651
652
653
654
655
656
657
658
659
660
OBS
496
497
499
499
500
501
502
503
504
505
506
507
•509
509
510
511
512
513
514
515
516
517
518
519
520
521
523
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550


1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
500
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
HR
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1600
2100
0
300
600
1200
1800
2100
0
300
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
.1800
2100


12
12
12
12
12
12
12
12
12
12
12
12
12
12 •
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
no
9
9
9




1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10


2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
11
11
11
1 1
12
12
12
12
12
12
12
13
13
13
13
1 3
13
13
13
14
14
14
14
14
14
14
14
15
15
15
15























































66
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
96
86
86
86
86
86
86
86
86
86
86
96
86
86
86
86
86
86
86
86
86
86
86
86
86
86
66
36
86
86
86
96
86
96
36
DA
30
30
30
30
30
30
30
1
1






2
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6


















































YR
86
86
86
86
86
86
86
86
86
86
86
86
86
96
86
86
86
86
86
86
86
80
86
86
86
86
36
66
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
TtHP
-0.05
—0*08
-0.07
-0.05
0.01
0.06
0.26
0.69
1.28
1.66
1.81
1.90
1.85
1.66
2.10
1.84
0.65
0.11
-0.33
-0.67
-o'.a
-0.07
-0.08
-0.09
-oas
-0.14
0.00
-0.15
-0.07
-0.11
-0.14
-0.15
-0.15
-0.17
-0.19
—0. 16
-0.17
-0.19
-0.19
-0.17
-0.16
-0.19
-0.19
-0.16
-0.17
-0.13
-0.16
-0.19
-0.26
-0.17
-0.14
TEHP
10.75
10.89
10.99
11.20
12.42
12.76
12.69
12.71
12.69
12.63
12.91
13.55
14.58
14.23
13.84
13.27
12.65
12.01
11.62
11.94
12.20
11.96
11.76
11.73
11.67
11.40
11.87
12.60
12.25
12.22
12.23
11.99
12.09
12.43
12.54
12.41
12.30
12.04
11.55
11.05
11.30
11.94
11.56
10.84
10.17
9.50
8.89
8.54
6.67
9.24
9.14
3.93
SPCON
0.025
0.025
0.025
0.025
0.024
0.024
0.024
0.022
0.023
0.022
0.022
.
,
.
.
.
.
*
.
• .
.
0.019
0.020
0.020
0.015
0.020
0.020
0.020
0.019
0.020
0.020
0.019
0.020
0.020
0.020
0.021
0.020
0.020
0.021
0.017
0.021
0.020
0.020
0.021
0.020
0.022
0.021
0.021
0.021
0.020
SPCON PH COMKENT
0.023
0.023
0.023
0.023
0.024
0.024
0.024
0.025
0.024
0.025
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.023
0.024
0.024
0.025
0.024
0.024
0.023
0.024
0.023
0.023
0.024
0.023
0.023
0.024
0.024
0.023
0.023
0.024
0.024
0.025
0.026
0.024
0.024
0.025
0.024
0.025
0.025
0.025
0.025
0.024
0.024
0.024
0.023
0.023
•0.024
5.66
S.53
5.54
5.53
5.50
5.46
5.45
5.43
5.41
5.37
5.42
5.38
5.35
5.33
5.35
5.34
5.36
5.39
5.43
5.40
5.41
5.41
5.44
5.41
5.43
5.44
5.44
5. 34
5.35
5.37
5.38
5.40
5.41
5.38
5.39
5.33
5.36
5.38
5.44
5. 50
5.57
5.60
5 .-52
5.50
5.55
5.62
5.59
5.5«
5.60
5.66
5.59
5.62
5.56
1 1
9: SB THURSDAY^ HAY Si 1988
PH COHnENT
5.96 INDIAN 2036 120286 TO
5.93
5.96
5.90
5.87
5.77
5.49 .
5.20
5.13
5.06
5.05
5.45
5.42
5.36
4.92
4.44
4.84
4.94
4.36
5.03
5.10
6.01 IND1
6.07 1223
6.04
6.02
6.00
6.02
6.05
5.99
5.99
6.00
6.02
6.00
6.01
6.01
5.99
6.00
5.97
5.99
5.99
5.99
5.99
5.99
5.99
5.98
5.98
5.96
5.97
5.97
5.99


















AH 9A 121156 TO
86 1M 3 HR INTERVALS
"



























-------
                                               266
• IKOI«KC«rf KOOK
Oil
Itl
ttl
til
tit
111
tft
It?
ttl
ttt
179
tft
171
471
474
17!
474
17?
171
479
110
111
til
ttl
tit
111
lit
117
til
tit
tto
Itl
ttl
Itl
m
iti
4ft
it?
i«i
ttt
709
791
791
79}
70<
791
104
707
701
?9t
719
711
711
71}
m
711

OS
771
771
771
77t
77J
774
777
77J
77t
719
711
JJI
71}
m
711
744
71?
711
?lt
7te
?ti
7tl
7tl
?f i
7tl
7tl
7t7
7tl
7tt
109
101
lot
101
SOI
191
got
• 9?
101
• Of
119
Itt
Itt
It)
• 14
• 11
III
11?
• 11
lit
• 10
• 11
• II
It)
l}t
It!
KK no
1100 It
1100 11
IIOO 12
1109 11
0 11
190 12
100 12
too it
ttoo it
1109 It
1109 12
2190 1!
0 It
199 12
109 12
tOO 12
1190 12
1109 It
IIOO 11
1199 11
0 It
100 12
409 12
tOO 12
llliO It
1109 It
1199 12
1199 It
0 11
100 It
too it
too it
1100 12
1100 It
1199 12
9 12
199 It
100 It
tOO 12
1200 12
1100 12
IIOO • 12
1199 It
0 It
300 12
tOO 12
tOO 12
1100 It
1100 It
IIOO 12
tioo it
0 12
199 11
1119 It

x» no
too it
1100 It
1100 12
IIOO It
2190 12
9 11
300 11
too it
too it
1100 12
1190 12
IIOO It
1100 12
9 It
300 11
too 11
too it
1100 It
1109 It
IIOO It
1100 12
0
}£d
too
too
IIOO
IIOO *
1100
tioo
0
100
too
too
1290
1199
1109
1190
9
109
too
t99
1200
1109
IIOO
tioo
0
100
too
too
nee
1100
1100
2109
0
109
01 IK
1! It
1! 14
11 14
1} It
It It
It 14
14 16
It It
14 It
14 It
14 16
It It
17 86
1? 16
17 86
17 86
17 86
1? >6
17 84
1? 84
18 84
13 86
18 84
13 86
11 86
18 It"
18 34
18 86
19 86
It 86
It 84
11 84
It 84
If 44
If 36
20 54
29 86
29 8i
29 36
20 36
20 86
10 34
20 94
11 84
21 84
21 84
21 >4
21 86
tl 86
21 86
11 84
12 at
22 84
21 it
• mi.*
DA V«
27 84
It 34
It 44
2t 16
If 14
30 It
19 84
10 84
10 14
30 36
30 It
10 8!
19 84
31 84
11 It
11 14
31 31
11 16
11 44
11 It
11 16
1?
17
1?
87
17
17
8?
•7
17
37
17
87
17
I?
17
37
47
17
17
87
17
17
17
17
17
37
4 87
4 3?
4 I?
4 37
4 17
1 87
1 47

-0.11
-0.11
-0.13
-0.14
-0.14
-o.to
-0.29
-9.16
-0.13
-0.13
-0.18
-0.21
-0.20
-9.29
-9.14
-9.16
-9.16
-0.1!
-0.20
-0.23
-0.16
-0.13
-0.20
-0.15
-0.13
-6.15
-0.15
-0.15
-0.13
-0.13
-0.11
-0.11
-0.03
-0.11
-0.13
-9.16
-0.13
-0.13
-0.11
-0.04
-0.06
-0.10
-0.13
-0.13
-0.12
-0.13
-0.13
-0.10
-0.13
-0,15
-0.15
-0.15
-0.15
-0.15
c«np inooi:
TCKP
-0.03
-0.01
0.00
0.00
-0.01
0.00
0.00
-0.01
0.00
0.00
0.02
0.02
0.02
0.03
0.05
0.02
0.03
0.07
O.OS
0.02
-0.01
-0.01
0.00
0.00
0.02
0.00
0.02
0.03
0.02
0.03
0.92
9.03
0.0}
0.05
0.03
9.03
0.03
0.03
0.05
O.OS
0.03
0.03
0.0}
O.OS'
0.0}
0.05
0.9!
0.95
0.97
0.05
0.93
9.03
0.05
0.03

9.021
0.020
0.020
0.020
0.021
9.020
0.020
0.020
0.022
0.020
0.021
0.021
0.021
0.021
0.022
0.022
0.021
0.021
0.020
0.021
0.022
0.022
0.021
0.021
0.021
9.022
0.021
0.021
0.021
0.020
0.021
0.022
0.022
0.021
0.021
0.021
0.021
9.021
0.021
0.021
0.022
0.022
0.021
0.021
0.021
0.021
0.022
0.022
0.022
0.021
0.021
0.022
0.022
0.022

SPCON
0.918
0.018
0.018
0.018
0.018
0.018
0.018
9.018
0.018
0.017
0.018
0.018
0.019
0.018
0.018
0.017
0.016
0.01!
0.015
0.013
0.011
0.010
0.919
0.018
0.019
0.019
0.020
0.019
0.019
0.019
0.020
0.021
0.022
9.024
0.02!
0.026
0.027
0.021
0.019
0.019
0.018
9.918
0.018
0.013
0.019
0.018
0.019
0.020
0.020
0.019
0.019
0.018
0.018
0.019

1
1
5
5
5
S
5
5
5
S
5
5
5
5
5
5
5
S
S
5
5
S
5
S
S
5
5
5
S
5
S
5
5
5
S
1
5
S
5
5

5
5
5
5
5
5
1
1
S
5
5
4
5


S
S
5

5
5
S
5
5
S
S
!
5
5
S
5
5
5
S
S
S
5
S
5
6
S
5
6
5
6

S
5
5
5
!.

5
5.
S.
I.
1.
1.
S.
S.
5.
I.
5.
1.
S.
5.
S.
5.
5.

.99
.98
.97
.97
.98
.97
.94
.96
.91
.92
.93
.93
.95
.95
.98
.96
.95
.93
.92
• 90
.91
.93
.92
.93
.90
.92
.91
.91
.91
.92
.92
.92
.93
.93
.93
.91
.9!
.95
.96
.96
• 96
• 95
.98
.97
.98
.98
.98
.98
.98
.98
99
98
99
01
99
IS
PH connfcNT
.27
.86
.78
.83
.81
.86
.37
.91
.39
.89
.90
83
91
.90
84
89
92
91
86
89
89
89
95
99
01
98
99
02
95
00
93
94
37
38
84
90
87
83
83
81
84
30
82
75
82
33
83
34
82
31
BO
81
80
75
INDIANCAHP IROQK n

714
717
71S
719
720
721
722
723
724
725
726
727
723
72?
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
7«6
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
743
764
765
766
767
768
769
770

DBS
826
827
828
829
830
831
832
833
834
835
836
837
S38
839
840
841
842
843
844
845
846
f47
848
849
850
851
£52
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

900
1200
1500
1800
2100
0
300
400
900
1200
1800
2100
0
300
400
900
1200
1500
1800
2100
o
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2 100
0
300
600

HR
600
900
1200
1500
1800
2100
0
300
600
900
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
400
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
000

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
j2
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
j2
12

no
l
1
1
1
1
1
1
1
1
1
1
1
1
l
l
1
l
l
1
1
1
1
1
1
1
1
l
1
l
1
1
1
1
1
1
1
1
j
I
1
1
1
1
1
1
1
1
1
l
1
1
1
1
1
1

22
22
22
22
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29

5
5
5
5
5
5
6
6
6
6
6
6
7
7
7
. 7
7
7
7
7
*
a
8
8
8
B
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12

86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
36
86
116
86
84
86
86

-------
                                                  267
INDXflNCAHP BROOK
                                         17
                   9:58 THURSDAY* HAY 5t  1988
               SPCON     PH     COHHENT
881
882
883
885
836
887
883
889
890
891
892
893
894
S95
396
897
89S
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
900 1
1200 1
1500
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800

















2100 1
0 1
300 1
600 1
900 1
1200 1
1500 1
1300
2100
0
300
600
9?0
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0



























300
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
IS
IS
IS
15
15
IS
15
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
13
18
13
18
18
18
13
18
19
19
37
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
37
87
37
87
87
87
87
87
87
37
87
87
87
87
87
37
87
87
87
d7
87
87
-0.14
-0.14
-0.14
-0.15
-0.15
-0.18
-0.22
-0.16
-0.15
-0.15
-0.16
-0.15
-0.15
-0.18
-0.16
-0.18
-0.15
-0.13
-0.16
-0.13
-0.15
-0.15
-0.15
-0.15
-0.19
-0.15
-0.15
-0.13
-0.16
-0.13
-0.15
-0.16
-0.13
-0.16
-0.16
-0.15
-0.15
-0,13
-0.17
-0.17
-0.1S
-0.15
-0.13
-0.15
-0.13
-0.1S
-0.15
-0.17
-0.12
-0.13
-0.15
-0.15
-0.13
-0.15
0.019 5
0.020 5
0.020 5
0.019 5
0.019 5
0.019 5
0.019 5
0.020 5
0.020 5
0.020 5
0.020 5
0.020 5
0.020 5
0.020 5
0.020 S
0.020 S
0.020 S
0.020 5
0.021 5
0.021 5
0.020 5
0.021 5
0.020 5
0.020 5
0.020 5
0.020 S
0.021 S
0.020 5
0.021 5
0.020 S
0.021 5
0.022 5
0.020 5
0.021 5
0.021 5
0.020 S
0.020 5
0.020 5
0.021 5
0.021 5
0.021 5
0.021 S
0.021 S
0.021 5
0.021 S
0.021 S
0.021 5
0.021 5
0.021 5
0.022 5
0.021 5
0.022 5
0.022 S
0.021 S
INDXANCAHP BROOK

991
992
993
994
995
996
997
993
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1013
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2

2
2
2
2-
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
S
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
o

87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87
37
87
87
87
87
37
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
37
87
87
87

-0.01
-0.03
-0.01
-0.01
-0.01
-0.03
-0.01
-0.03
0.02
-0.01
0.00
0.00
-0.01
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.02
0.02
0.02
0.00
0.02
0.02
0.03
0.03
0.03
0.05
0.03
0.03
0.03
0.05
0.03
0.03
0.04
0.05
0.07
0.07
0.07
0.05
0.07
0.07
0.07
0.05
0.07
0.07
0.07
0.05
0.05
0.05
0.05
0.09
0.09
9:58
0.022
0.022
0.022
0.022
0.022
0.022
0.021
0.022
0.022
0.023
0.022
0.023
0.022
0.022
0.022
0.022
0.023
0.022
0.022
0.022
0.023
0.022
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.023
0.022
0.022
0.024
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.022
0.023
0.022
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.024
.80
.79
.80
.80
.82
.84
.83
.85
.83
.85
.84
.35 '
.33
.85
.85
.84
.84
.33
.84
.35
.85
.85
.85
.84
.84
.85
.33
.83
.84
.85
.85
.36
.86
.36
.36
.86
.86
.86
.86
.86
.86
.86
.84
.84
.85
.83
.84
.84
.82
.82
.81
.81
.79
.79
19
THURSOAVt NAY St 1988
5.81
5.78
5.80
S.73
S.80
5.78
5.79
5.80
5.80
5.82
5.81
5.81
5.81
5.79
5.79
5.79
5.79
5.78
5.78
5.81
5.83
5.81
5.82
5.79
5.83
5.85
5.84
5.83
5.84
S.8S
5.87
S.86
5.83
5.81
5.85
S.BS
5.85
5.84
S.8S
5.84
5.84
5.86
5.86
S.8S
5.85
5.34
5.84
5.37
5.84
5.85
5.85
5.84
5.86
S.8S
5.84

OBS HR nO
936 600 1
937 900 1
938 1200 1
939 1500 1
940 1300 1
941 2100 1
942 0 1
943 300 1
944 600 1
945 900 1
946 1200 1
947 1500 1
948 1800 1
949 1800 1
9SO 2100 1
9S1 0 1
952 300 1
953 600 1
954 900 1
955 1200 1
956 1500 1
957 1800 1
958 2100 1
959 0 1
960 300 1
961 600 1
962 900 1
963 1200 1
964 1500 1
965 1800 1
966 2100 1
967 0 1
968 300 1
969 600 1
971 1200 1
972 1500 1
973 1800 1
974 2100 1
975 0 1
976 300 1
977 600 1
97S 900 1
979 1200 1
980 1500 1
931 1800 1
982 2100 1
983 0 2
984 300 2
985 600 2
986 900 2
987 1200 2
988 1500 2
989 1800 2
990 2100 2

085 HR HO
1046 2100 2
1047 1800 3
1048 2100 3
1049 0 3
1050 300 3
1051 600 3
1052 900 3
1053 1200 3
1054 1500 3
1055 1800 3
1056 2100 3
1057 0 3
1058 300 3
1059 600 3
1060 900 3
1061 1200 3
1062 1500 3
1063 1800 3
1064 2100 3
1065 0 3
1066 300 3
1067 600 3
1068 900 3
1069 1200- 3
1070 1500 3
1071 1800 3
1072 2100 3
1073 0 3
1Q74 300 3
1075 600 3
1076 900 3
1077 1200 3
1078 1500 3
1079 1800 3
1080 2100 3
1031 0 3
1082 300 3
1083 600 3
1034 900 3
1085 1200 3
1086 1SOO 3
1087 1800 3
1088 2100 3
1089 0 3
1090 300 3
1091 600 3
1092 900 3
1093 1200 3
1094 1500 3
1095 1800 3
1096 2100 3
1097 0 3
1098 300 3
1099 600 3
1100 900 3
1NDIANCAHP BROOK
DA YR TEMP SPOOK PB
19 87 -0.15 0.022 5.78
19 87 -0.15 0.021 5.77
19 87 -0.15 0.021 5.78
19 87 -0.15 0.021 5.77
19 87 -0.15 0.022 5.78
19 87 -0.13 0.022 5.78
20 87 -0.13 0.022 5.78
20 87 -0.15 0.021 5.80
20 87 -0.15 0.021 5.82
20 87 -0.15 0.021 5.82
20 87 -O.U 0,020 S.81
20 87 -0.17 0.021 5.82
20 87 -0.14 0.020 5.32
27 87 0.04 0.025 6.03
27 87 0.01 0.022 6.00
28 87 0.01 0.023 6.06
28 87 0.00 0.023 5.99
28 37 0.01 0.022 6.03
28 87 -0.01 0.022 6.05
28 87 0.00 0.023 5.99
28 87 -0.01 0.022 5.97
28 87 -0.01 0.023 5.89
28 87 -0.01 0.022 5.86
29 87 0.00 0.022 5.82
29 87 -0.01 0.024 5.35
29 87 -0.01 0.023 5.80
29 87 -0.03 0.022 5.84
29 87 -0.01 0.023 5.82
29 87 -0.03 0.022 5.81
29 87 -0.03 0.022 5.82
29 87 -0.01 0.020 5.79
30 87 -0.04 0.023 5.78
30 87 -0.03 0.022 5.80
30 87 -0.03 0.023 5.81
30 87 -0.03 0.022 5.79
30 87 -0.01 0.023 5.83
30 87 0.00 0.022 5.81
30 87 -0.03 0.023 5.81
31 87 -0.01 0.023 5.78
31 87 -0.03 0.023 5.81
31 87 -0.03 0.022 5.80
31 87 -0.03 0.022 5.83
31 87 -0.01 0.022 5.80
31 87 -0.03 0.022 5.31
31 87 -0.03 0.022 5.32
31 87 -0.01 0.022 5.79
87 -0.03 0.022 5.79
87 -0.01 0.021 5.79
87 -0.01 0.022 5.79
87 -0.01 0.021 5.76
87 -0.01 0.022 5.77
87 0.00 0.022 S.77
87 -0.01 0.022 5.84
87 -0.03 0.022 5.82
INDIANCAHP 8ROOK
00 YR TEKP SPCON PH
8 87 0.02 0.023 5.34
11 87 -0.10 0.029 6.29
11 87 -0.10 0.031 6.27
12 87 -0.10 0.031 6.25
12 87 -0.13 0.032 6.25
12 87 -0.12 0.031 6.22
12 87 -0.13 0.029 6.22
12 87 -0.10 0.029 6.20
12 87 -0.12 0.029 6.21
12 87 -0.10 0.030 6.18
12 87 -0.13 0.030 6.21
13 87 -0.13 0.031 6.18
13 87 -0.12 0.031 6.19
13 87 -0.10 0.030 6.17
13 87 -0.13 0.030 6.13
13 87 -0.10 0.029 6.16
13 87 -0.12 0.029 6.17
13 87 -0.12 0.029 6.17
13 87 -0.12 0.029 6.16
14 87 -0.10 0.029 6.15
14 87 -0.13 0.029 6.16
14 37 -0.12 0.029 6.13
14 87 -0.10 0.030 6.14
14 87 -0.12 0.029 6.16
14 87 -0.12 0.029 6.17
14 87 -0.10 0.028 6.16
14 87 -0.10 0.029 6.15
15 87 -0.10 0.029 6.18
IS 87 -0.12 0.029 6.22
15 87 -0.10 0.029 6.21
IS 87 -0.10 0.029 6.18
IS 87 -0.10 0.029 6.16
IS 87 -0.10 0.029 6.17
IS 87 -0.12 0.029 6.19
IS 87 -0.12 0.029 6.17
16 87 -0.12 0.028 6.17
16 87 -0.12 0.028 6.17
16 87 -0.13 0.029 6.18
16 87 -0.12 0.028 6.18
16 87 -0.12 0.029 6.16
16 87 -0.14 0.028 6.16
16 87 -0.14 0.028 6.17
16 87 -0.12 0.028 6.17
17 87 -0.12 0.029 6.16
17 87 -0.11 0.028 6.16
17 87 -0.12 0.028 6.16
17 87 -0.14 0.028 6.16
17 87 -0.12 0.027 6.15
17 87 -0.12 0.027 6.15
17 87 -0.12 0.028 6.13
17 87 -0.15 0.028 6.13
13 87 -0.14 0.028 6.12
18 87 -0.12 0.028 6.12
18 87 -0.12 0.028 6.13
18 87 -0.14 0.028 6.12
18
connENt













INDIAN 7A 012787 TO
021087 IN 3 HR INTERVALS







































20
9:58 THURSDAYt HAY 5i 1988
COHHENT
INDIAN 2035 031187 TO
032487 IN 3 HR INTERVAL





















































-------
268

Oil
1101
not
m>
1)04
not
not
us?
not
list
1110
nil
mi
111!
11U
nil
nit
in?
nit
nit
ItiO
1111
im
Hi)
1111
im
im
113?
tin
im
IDS
lilt
till
Itll
till
111S
tilt
1117
1111
nit
1110
1U1
tut
1141
i:u
mi
114ft
1147
1UI
mt
ma
im
nit
mi
tm
im
OIJ
nit
mi
till
im
mi
int
in?
1111
Ult
1118
1111
III!
1111
>H4
Hit
1114
tit?
tilt
lilt
1219
mi
nit
mi
1114
tut
tut
1117
lit*
itit
1248
1J41
1141
1141
1144
114J
1144
1147
1 1(1
114t
tito
lit!
till
1JJJ
Ilt4
UJ1
lltt
11)7
1111
list
ll«0
lit!
till
mi
mi
tits

»«
1JOO
uoo
ttoo
lieo
0
100
too
100
1100
1100
1100
1100
0
100
too
too
1100
HOO
UOO
1100
0
100
400
too
1100
1100
1190
1109
0
100
too
too
uoo
tsoo
1100
itoo
0
100
too
too
1100
uoo
1100
1100
0
100
too
too
uoo
uoo
uoo
1100 3
0 1
i«9 :
too 3
M* f
too 4
tOO 4
itoo <
1KO 4
1100 4
ItOO 4
0 4
100
too
too
itoo
ttoo
1100
1109
0
300
too
too
1100
1100
1150
itoo
0
100
too
too
1100
ttoo
1100
1100
0
100
too
too
1100
uoo
tieo
1100
0
100
too
no
ttoo
uoo
uoo
1100
e
100
too
too
1109
uoo
uoo
itoo
uoo

no

























;
1
i
3
,
i
1
2
i
;
;
1
1
;
;
t
1
;
2
I
;
;
]
;
i
;
i
J
i
1
ii e








,



',

',
I
4
1
I
(
4
4
4
4
4
4
4
4
,
4
I
(
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

)• IK
1 17
t 17
1 17
» 17
t J7
t 17
t 17
t 17
t 17
t 17
t 17
t 17
0 17
0 17
0 17
0 <7
to 17
!0 17
0 17
0 1?
1 17
t 17
1 17
1 17
1 »?
1 17
1 1?
1 17
t 17
t 17
1 17
t 17
1 17
2 17
2 17
1 17
1 17
} >7
1 17
1 17
1 17
1 17
1 t?
1 17
4 57
4 17
4 17
4 17
4 17
4 >?
4 17
4 17
> 17
I 17
i <7
> VII
17
17
1?
17
17
17
17
17
17
17
•7
17
17
1?
1?
$7
17
17
17
17
17
17
17
17
17
17
17
17
17
17
1?
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
7 17
» 17
' 17
7 17
IKB1
T£nf
-0.14
-0.12
-0.14
-0.12
-0.14
-0.14
-0.14
-0.14
-0.11
-0.1S
"-0.14
-0. It
-0.15
-O.li
-0.14
-O.U
-o.u
-0.14
-0.lt
-0.lt
-0.lt
-O.l«
-o.u
-9.lt
-0.17
-O.U
-0.lt
-0.lt
-0.14
-0.14
-0.14
-O.U
-0.14
-O.li
-0.17
-0.17
-O.li
-0.1?
-0.17
-O.li
-0.14
-0.17
-O.li
-0.lt
-0.17
-0. 14
-O.U
-0.14
-0.1?
-0.17
-0.01
-0.04
-0.04
-0.04
-0.0*
Tiff
0.04
0.2t
0.15
O.it
O.iO
0.45
0.41
0.44
0.44
0.14
l.ot
1.70
1.1S
0.74
O.li
0.10
0.72
l.»l
2.7?
2.20
1.42
1.21
1.22
l.tt
1.74
2.41
1.27
1.0?
2.41
l.tt
1.71
1.72
2.01
2.40
2.1?
2.44
t.to
1.14
2.12
2.4«
2. it
2.17
2.t?
1.00
2.71
2.tt
2. SO
2.11
2.11
2.11
2.44
2. It
2>41
2. It
AKCAHP BROO
SPCOK
0.027
0.027
0.027
0.021
0.027
0.02?
0.02?
0.027
0.02?
0.026
0.02?
0.02?
0.027
0.027
0.027
0.02?
0.027
0.027
0.027
0.028
0.027
0.02!
0.027
0.02?
0.021
0.021
0.029
0.011
0.010
0.010
0.011
0.011
0.011
0.010
0.010
0.029 5
0.029 S
0.029 S
0.029 S
0.021 S
0.021 t
0.023 S
0.021 i
0.021 S
0.027 t
0*02? '
0.027 S
0.027 S
0.02? !
0.026 S
0.011 S
0.011 t
0.011 S
0.012 t
0.011 S
SPCOK P
0.02S 4.
0.02S 4.
0.021 4.
0.020 S.
0.020 S.
0.020 4
0.011 S.
0.020 S
0.020 S
0.021 t
0.011 S
0.011 S
0.01? S
0.019 t
0.019 S
0.011 t
0.017 t
0.02S i
.0.025 S
0.021 S
0.02S S
0.021 S
0.024 S
0.02S S
0.025 t
0.024 S
0.024 i
0.024 S
0.024 S
0.014 S
0.024 S
0.021 t
0.024 S
0.024 S
0.021 S
0.021 t
0.021 S
0.02! S
0.021 S
0.021 i
0.021 S
0.021 t
0.022 S
0.021 t
0.022 t
0.020 S
0.021 S
0.019 t
0.020 S
0.022 S
0.022 t
0.024 S
0.02! S
0.021 t
c
f>H
.12
.12
.11
.12
.12
.11
.12
.09
.10
.09
.09
.07
.04
.04
.04
.04
.04
.07
.01
.0?
.06
.OS
.OS
.04
.0!
.99
.95
.92
.17
.14
.12
.74
.71
.72
.70
.71
.41
.41
.47
.4t
.44
.44
.41
.42
.42
.41
.41
.41
.40
.42
.41
.41
.57
.SI
.52
H
71
77
99
OS
OS
97
00
09
14
11
19
19
24
21
27
JO
10
04
OS
07
10
11
11
is
1!
11
11
12
11
IS
17
11
19
17
14
14
14
IS
14
17
IS
IS
12
14
IS
14
.11
.19
.18
.17
.18
.20
.SI
.ss
21
connem












































IH01AH UXII 9C 012487 TO
17 IN 1 Ht IHTEKVALS







23
9:S8 THURSDAY* MAY tt 1988
COnnENT









































INDIAN 9A 04071? TO
04218? IK 1 XX INTERVALS







                         IHOIANCAMP BROOK
                                                                22
                                            9:58 THUKSDAYt KAY 5?  J9S6
005
1156
1157
1158
1159
1160
1141
1162
1143
1164
1146'
1167
1169
1170
1171
1172
117!
1174
1175
1176
1177
1178
1179
1160
1181
1182
1181
1184
1115
1186
1187
1181
1119
1190
1191
1192
1191
1194
1196
1197
1191
1199
1200
1201
1202
1201
1204
1205
1206
1207
1209
1210
OBS
1266
1267
1269
1270
1271
1272
1271
1274
1275
1276
1277
1278
1280
1251
1252
1283
1284
1215
1286
1287
1288
1289
1290
1291
1272
1291
1294
1296
1297
1298
1299
1300
1301
1302
1101
1304
130S
1306
1107
1308
1309
1310
1111
1112
1111
1314
1315
1316
1317
1318
1319
1320
900
1200
1500
1800
2100
0
300
600
900
1500
1100
0
300
600
900
1200
1SOO
1100
2100
0
300
400
900
1200
1500
1100
2100
0
300
400
900
1200
1500
1800
2100
0
300
900
1200
1500
1100
2'100
0
300
600
900
1200
1SOO
1100
0
300

1100
2100
300
600
900
1200
1SOO
1800
2100
0
300
600
1200
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600 '
1200
1500
1100
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1100
2100
0
300
600
900
1200
3
3
1
3
3
3
3
!
3
!
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
25
25
25
25
25
26
26
26
26
26
26
27
27
27
2 7
27
27
27
27
21
28
28
21
21
28
21
21
29
29
29
29
29
29
29
29
30
30
30
10
30
30
30
31
31
11
11
31
31
31
1
1

7








9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
1 1
11
11
12
12
12
12
12
12
12
12
I!
13
11
13
13
13
13
13
14
14
14
14
14
37
87
37
87
87
87
87
87
87
87
87
87
87
17
87
87
87
87
87
87
87
17
87
87
87
87
87
1?
87
87
87
87
«7
87
17
87
87
87
87
17
87
87
87
87
17
87
87
87
87
37
87

37
37
8?
87
87
87
87
87
87
87
57
37
37
87
17
87
87
87
37
87
87
87
87
87
87
87
17
87
87
87
87
87
87
37
87
87
87
87
37
37
17
a?
17
87
37
87
87
17
57
87
-0.03
-0.03
-0.03
-0.06
-0.04
-0.04
-0.06
-0.06
-0.01
-0.04
-0.04
-0^04
-0.06
-0.04
—0.07
-0.04
-0.03
-0.04
-0.04
-0.04
-0.03
-0.06
-0.03
—0.03
-0.06
-0.04
-0.04
-0.06
-0.06
-0.06
-0.04
-0.01
0.00
-0.04
-0.14
-0.16
-0.14
0.06
0.3]
0.50
0.35
0.26
0.28
0.12
0.33
0.50
0.58
0.28
0.05
0.06
0.06

2.32
1.11
1.90
2.39
3.11
3.30
2.90
2.53
2.07
1.81
1.74
3.45
5.03
4.85
4.48
3.78
3.26
3.11
4.69
6.10
6.72
5.96
5.25
4.39
3.13
3.62
6.8?
7.10
6.28
5.59
4.91
4.28
3.8?
4.39
6.11
5.92
4.93
4.13
3.45
2.11
2.42
3.83
6.21
6.60
5.37
4.48
3.72
3.04
2.75
3.99
6.16
0.032
0.032
0.031
0.030
0.032
0.030
0.030
0.030
0.030
0.030
0.029
0.029
0.028
0.029
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.026
0.026
0.025
0.025
0.025
0.025
0.027
0.026
0.026
0.025
0.025
0.026
0. 026
0.025
0.025
0.025
0.025
0.024
0.024
0.024
0.025
0.024
0.024
0.025
0.024
0.025
0.026
9:5

0.023
0.024
0.023
0.023
0.023
0.023
0.022
0.022
0.022
0.023
0.023
0 .022
0.023
o!o23
0.023
0.023
0.022
0.023
0.023
0.026
0.022
0.023
0.023
0.022
0.021
0.022
0.024
0.023
0.023
0.022
0.023
0.022
0.023
0.021
0.022
0.022
0.022
0.023
0.022
0.023
0.023
0.023
0.023
0.022
0.023
0.023
0.023
0.021
0.022
0.022
PK COMKEHT
5.43
5.52
5.47
5.50
5.47
5.50
5.48
5.44
5.42
5.40
5.40
5.39
5.41
5.43
5.4J
5.45
5.44
5.40
5.39
5.37
5.39
5.35
5.35
5.35
5.32
5.33
5.38
5. IS
5.31
5.30
5.15
5.1?
5.19
5.24
5.23
5.25
5.20
5.13
5.25
5.30
5.31
5.33
5.32
5.34
5.32
5.30
5.30
5.23
5.07
4.75
4.71
24
pn connENT
5.56
5.58
5.62
5.61
S.61
5.59
5.59
5.59
5.63
5.63
5.65
5.05
5. 62
5.56
i'.OO
5.62
5.60
5.64
S.63
5.62
5.59
5.61
5.61
5.62
5.65
5.66
5.64
5.63
5.64
5.67
5.67
5.70
5.71
5.70
5,69
5.70
5.71
5.73
5.76
5.76
5.79
5.77
5.70
5.71
5.74
5.75
5.77
5.78
5.81
5.79
5.76

-------
                                269
INOIAHCAflP BROOK
CBS
1321
1322
1523
132(
1325
1326
1327
1322
1329
1330
1331
13J2
1333
1534
1336
1337
1333
1339
130
13(1
1342
13(3
13(4
13(5
13(6
1347
1348
13(9
1350
1351
1352
13S3
1354
1355
1356
1357
135S
1359
1360
1361
1362
1363
1364
1365
1366
1367
1363
136?
1370
1371
1372
1373
U74
1375
1500 4 K
1JOO 4
2100 (
0 (
300 4
600 4
900 (
1200 4
1500 (
1SOO 4
2100 4
0 4
300 4
600 4
1200 4
1500 4
1300 4
14
14
15
15
15
15
15
15
15
15
16
16
16
16
16
16
04 17
300 4
600 4
900 4
1200 4
1500 4
1SOO 4
2100 <
0 <
17
17
17
17
17
17
17
IS
300 4 18
600 4 IS
900 4 . 16
1200 <
1500 <
1300 I
2100 <
0 <
300 4
600 <
900 • <
1200
1500
1BOO
2100
0
300
600
900
1200
1800
2100
Q
300
600
900
1200
IS
Id
IS
IS
19
19
19
19
19
19
19
19
20
20
20
20
20
21
21
22
22
22
22
22
67
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
7.00
6.11
5.20
4.45
3.90
3.85
5.46
6.63
6.94
6.54
6.16
S.S3
5.56
5.43
6.19
6.40
6.31
6.01
5.92
6.00
6.39
6.96
7.35
7.33
7.13
6.95
6.82
7.02
8.21
10.40
11.00
10.53
9.71
9.03
8.36
8.17
9.69
11.57
12.35
12.24
11.50
10.86
10. (2
10.24
11.60
13.50
14.25
14.09
13.15
12.16
11.17
10.55
10.89
0.023
0.023
0.023
0.023
0.023
0.024
0.023
0.024
0.024
0.023
0.023
0.024
0.024
0.024
0.023
0.023
0.023
0.024
0.025
0.024
0.024
0.024
0.025
0.024
0.025
0.025
0.024
0.024
0.024
0.024
0.023
0.024
0.024
0.023
0.022
0.023
0.023
0.019
0.020
0.019
0.020
0.018
0.019
0.020
0.024
0.025
0.025
0*025
0.025
0.025
0.026
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
5
5
5
5
5
5
5
25
79
SO
82
.83
.86
.86
.82
.80
.83
.81
.83
.84
.85
.86
.86
.87
.87
.88
. 86
.87
.85
.87
.86
.85
.87
.86
.85
.83
.82
.82
.80
.80
.80
.85
.83
.90
.96
.99
.96
.99
.06
.04
.07
.09
.11
.06
.04
.66 INDIAN 90 042187 TO
.64 0505S7 IN 3 HI INTERVAL
.62
.62
.61
.61
.5S
INDIANCAHP BROOK
DBS
1431
1432
1(33
1(3(
1(35
1(36
1437
1438
1439
14(0
1441
1(42
1443
1(44
1((5
1446
1((7
1((S
14(9
1450
1(51
1(52
1(53
1(54
1455
1456
1457
14SB
1459
1460
1461
1462
1463
1464
1465
1466
1467
1(68
1(69
1(70
1471
1472
1473
1(74
• 1475
1476
1477
1473
1479
1(80
1(81
1(32
1(83
1484
1(85
HR
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1800
2100
0
300
600
900
1200
HO
4
(
(
(
4
(
4
4
(
(
4
(
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
DA
29
29
29
29
30
30
30
30
30
30
30
30
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
Z
i
3
3
3
3
3
3
3
(
(
4
4
4
4
4
4
5
5
5
5
19
19
20
20
20
20
20
YR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
TEMP
3.76
4.37
(.63
(.(1
(.20
(.07
3.92
(.03
(.85
6.05
6.40
5.90
5.33
4.84
(.(8
(.50
5.82
7.39
7.56
6.87
5.82
(.95
(.16
3.93
5.28
6.24
7.25
7.23
6.35
6.25
5.78
5.73
7.59
8.86
9.34
9.32
8.62
7.76
6.95
6.74
8.05
10.13
10.32
10.17
9.65
8.84
8.12
7.6(
13.81
12. 3(
11.74
11.19 .
10.36
10. 34
12.23
SPCON
0.025
0.026
0.027
0.027
0.027
0.027
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.025
0.026
0.025
0.026
0.025
0.025
0.026
0.026
0.025
0.025
0.026
0.026
0.025
0.026
0.025
0.026
0.025
0.026
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.028
0.028
0.023
0.028
0.029
0.029
0.029
PH
5.74
5.65
5.59
5.60
5.61
5.64
5.62
5.51
5.39
5.43
5. (5
5.52
5.57
5.58
5.63
5.57
5. (8
5.38
5.43
5. 51
5.70
5.82
5.77
5.72
5.54
5.51
5.45
5. (8
5.54
5.63
5.72
5. 4
5. 4
5. 5
5. 6
5. 9
5. 5
5.77
5.77
5.72
5.55
5.44
5. (9
5.55
5.63
5.80
5.76
5.72
6.00
5.90
5.86
5.82
5.30
5.83
5.82
9:56 THURSDAY* KAY St 1988
  £01 TED  ALC 05208?
  INDIAN  9fc 051 V(J 7 TO
  0602B7  IN 3 HR INTERVAL
  051967  LAB PH«6.3S

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1369
1390
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1(02
1(03
1(04
1(05
1406
1(07
1(08
1(09
1(10
1(11
1(12
1(13
1(14
1415
1(16
1(17
1(18
1(19
1(20
1(21
1(22
1(23
1(2(
1(25
1(26
1(27
1(28
1(29
1430

1(86
1(87
1(88
1(89
1(90
1(91
1(92
1493
1494
1(95
1(96
1497
1(98
1(99
1500
1501
1502
1503
150(
1505
1506
1507
1SOS
1509
1510
1511
1512
1513
15K
1515
1516
1517
1511
1519
1520
1521
1522
1523
152(
1525
1526
1527
1528
1529
1530
1531
1532
1533
1S3(
1535
1536
1537
1538
1539
15(0

1500
1100
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1500
2100
0
300
600
900
1200
1500
1800
2100
300
600
900
1200
1500
I SOO
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900

1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900

4
(
(
4
(
(
(
(
(
(
(
4
4
4
4
(
(
4
(
4
(
(
4
4
4
4
4
(
(
(
4
4
4
4
4
4
4
(
(
4
4
(
(
(
(
(
(
4
(
(
(

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

22
22
22
23
23
23
23
23
23
23
23
2(
2(
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
INI
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23 '
23
23
23
23
2(
24
24
24
2(
24
24
2(
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27

87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87
87
87
87
87
87
37
87
87
87
87
87
87
37
87
87
87
87
37
87

87
67
87
87
87
87
87
87
87
87
87
87
87
87
87
87
57
87
87
87
87
87
'87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67

12.59
12.60
11.93
10.56
9.1(
7.98
7.43
8.44
9.59
9.39
9.83
9.38
8.72
8.17
7.90
8.15
7.75
7.14
6.44
6.16
7.79
9.90
9.98
9.73
7.86
6.67
6.03
7.68
9.67
9.58
9.20
8.75
7.75
6. (8
5.83
7.44
9.19
8.67
8. (5
8.32
7.75
6.66
6.05
7.11
7.57
7.36
7.15
7.00
5.81
4.86
4.20

13.85
13.39
11.87
11.71
11.28
10.59
10.53
12.78
K.52
13.57
12.60
13.23
13.50
13.35
13.39
14.89
16.10
15. (9
14.99
15.20
15.20
14.44
13.99
17.04
17.26
15.83
14.41
14.16
13.78
13.18
12. ((
11.88
11. (5
10.95
10.31
9.69
9.23
9.27
11.20
11.50
11.83
11.69
11.37
10.86
10.26
10.31
12.73
K.21
14.17
13.31
13.24
12.94
12.53
12.68
9:58
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.022
0.023
0.023
0.022
0.024
0.023
0.024
0.025
0.025
0.023
0.025
0.026
0.026
0. 026
0.026
0.022
0.025
0.024
0.026
0.026
0.026
0.026
0.026
0.025
0.022
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.025
0.026
0.026
9158
0.028
0.028
0.029
0.029
0.029
0.028
0.029
0.029
0.028
0.028
0.028
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.029
0.029
0.028
0.029
0.029
0.029
0.029
0.02V
0.028
0.029
0.024
0.029
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.029
0.029
0.029
0.028
0.029
0.028
0.029
0.029
0.029
0.029
0.028
0.028
0.028
0.029
0.029
0.029
CO
THURSOAYt RAY 5t 1988
5.55
5.57
5.57
5.58
5.64
5.64
5.65
5.59
5.54
5.56
5.54
5.56
5.60
5.oO
5.60
5.57
5.56
5.57
5.57
5.60
5.63
5.65
5.64
5.53
5.51
5.55
5.58
5.60
5.66
5.70
5.68
5.56
5.53
5.57
5.SV
5.62
5.68
5.76
5.76
5.61
5.57
5.64
5.66
5.66
5.70
5.78
5.78
5.67
5.63
5.69
5.71
5.74
5.83
5.89
5.83
28
5.81
5.79
5.77
5.77
5.77
5.80
5.77
5.77
5.76
5.76
5.73
5.71
5.72
5.73
5.75
5.71
5.73
5.73
5.71
5.71
5.73
5.79
5.75
5.69
5.66
5.72
5.76
5.74
5.74
5.74
5.77
5. 75
5.76
5.76
5.72
5.76
5.76
5.77
5.71
5.72
5.73
5.73
5.73
5.73
5.76
S.7(
5.69
5.66
5.65
5.68
5.69
5.63
5.70
5.73

-------
270

Cll
mi
mi
lltl
11U
lltl
11U
!»«
lltl
mt
1110
1111
1111
mi
mt
mi
nit
IS17
lilt
111*
1110
lilt
1J4J
tit)
IIt«
lltl
1)44
1117
1)41
mt
wo
1171
1171
117]
iin
1171
1171
1177
1171
!17»
me
1111
111!
I)>1
lilt
till
lilt
1117
1111
lilt
lite
mi
lit;
ii«>
ni«.
iiti

Cli
ttti
U12
itii
UH
111!
Itit
Itl7
Itil
Itlt
1413
Ittt
144?
144J
Ittt
1441
Ittt
1447
mi
Itit
1470
1471
147?
U7I
1471
1«7)
1t?t
1477
U7«
147*
Itl9
till
141!
mi
ttn
1411
1414
1417
Itil
14«>
itto
Ittl
Ittt
Itt)
Ittt
Ittl
Ittt
Stt7
Ittl
tttt
1)09
1J01
179}
1791
1701
1101

HI no OA
1109
1109
1100
2100
Q
100
too
too
1200
1100
ueo
2100

109
t09
too
1280
1100
14Q0
1100
0
109
too
too
1200
1100
1100
2109
0
100
too
too
1200
1100
11019
2100
0
103
too
too
1200
1100
1100
2100
0
100
too
too
1200
1109
1109
27
27
27
27
21
21
21
21
21
21
21
21
2t
2t
2t
2t
2t
29
2t
2t
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
i
2
2
2
2
2
2
2
1
1
1
1
3
1
11
a » it
too t it
1209 t It
UOO t It

T«
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
87
• 7
17
17
17
17
17
• 7
• 7 •
17
17
17
17
• 7
17
17
17
• 7
17
17
• 7
17
17
17
17
07
17
17
17
17
• 7
17
• 7
17
17
<7
17

TtnP
It. 11
ii>t;
it.it
11.74
11. tt
11. 75
11. 41
11.71
It. 17
U.ej
17.04
It.tt
11.11
ll.il
11.10
11.13
17.20
20.lt
20. 13
It. 17
19.12
17. 11
It. to
11.71
13.46
13.70
11. tl
11.10
11.21
11. Ot
12.10
12.tl
It.t2
It.t2
17.20
It. 70
It. 21
11. tt
11.72
11. tO
17.79
ll.it
It. 10
11.57
17.64
14.47
It. 04
It. 00
17.27
14.61
It.Ot
It. 70
11. tt
It.tt
It. 81

IPCOK
0.02t
0.029
0.029
0.029
0.021
0.02t
0.029
0.029
0.021
0.029
0.029
0.029
0.029
0.029
0.029
0.029
0.030
0.029
0.029
0.029
0.029
0.021
0.029
0.029
0.029
0.030
0.029
0.029
0.029
0.029
0.029
0.021
0.029
0.029
0.029
0.021
0.029
0.029
0.029
0.021
0.021
0.021
0.021
0.029
0.029
0.029
0.029
0.029
0.029
.
,
,
(
•
OK 29
PH COHKEHT
I. 71
5.65
1.68
1.71
5.69
1.70
5.69
1.7!
5.72
5.6!
5.59
5.60
1.63
5.41
1.63
5.66
5.65
i.it
5.47
5.56
5.61
5.53
5.57
S.It
5.51
5.47
5.50
5.45
5.46
5.44
l.tl
5.41
s.to
i.37
i.19
1.31
i.li
!.3S
l.tl
5.35
5. If
1.39
1.3! 060297 1.0 J PU-6.22
l.tl
5.40
5.43
5.42
5.46
5.44
1.90 INDIAN 091117 TO 092997
5.88 IN 6 Hit INTERVALS
s.ia
5.49
1.97
1N01ANCANP 8ROUK 31
IIOO t 10
0 10 1
109 10 t
1209 10 1
1100 10 1
a to 2
tOO 10 2
1200 10 2
1100 10 2
0 10 1
too 10 i
1200 10 1
1109 10 1
0 10 *
t09 10 t
1200 10 «
1109 10 «
0 10 i
too 10 i
1200 10 1
1100 10 1
0 10 t
too 10 t
1200 10 t
1100 10 t
a 10 7
iOO 10 7
1200 10 7
iiao 10 7
0 10 1
too to i
1200 10 1
1100 10 1
0 10 t
too 10 t
I2» 10 t
1100 10 t
0 10 10
too 10 to
1200 10 10
1100 10 10
0 10 11
too to 11
1200 10 11
1109 10 II
0 10 12
tOO 10 12
1200 10 12
IIOO 10 12
0 10 11
too u u
103 11 1
2019 It 1
210 11 t
mo u t
17
17
17
17
17
17
17
17
17
(7
17
17
17
17
17
17
17
17
17
17
17
• 7
• 7
17
•7
17
17
17
17
• 7
17
17
17
»?
17
17
17
17
17
17
• 7
• 7
17
• 7
«7
17
17
17
17
<7
17
17
17
• 7
17
12.21
12. (2
12. 2t
12. It
12.71
12.00
10. tO
11. tO
12.12
ll.il
11.1!
11. ti
11.17
12.00
12. Ot
12.10
12.lt
12.00
10.it
10.it
11.11
10.26
t.ll
10.11
ll.lt
10.lt
10.16
11.12
12. Co
11. tl
11. ti
11.11
12.10
11. tt
10.lt
10.01
10.10
t.17
l.7t
t.*2
10.01
t.21
1.2t
1.07
7.tt
7.10
t.21
4.5V
7.11
• .21
1.12
1.10
t.22
t.tt
1.11
0.026
0.027
0.02«
0.010
0.030
0.029
0.021
0.021
0.027
0.027
0.027
0.029
0.026
0.027
0.027
0.027
0.029
0.027
0.029
0.029
0.029
0.027
0.027
0.026
0.027
0.027
0.027
0.027
0.026
0.024
0.021
0.029
0.021
0.029
0.029
0.027
0.027
0.027
0.027
0.021
0.026
0.026
0.026
0.024
0.026
0.02!
0.02!
0.02}
0.026
0.02!
0.02!
0.02.
0.027
0.02.1
0.026
PH COHHENT
i.73
5.67
5.70
5.72
S.71
1.71
5.73
5.67
5.69
5.67
5.6S
1.61
5.66
5.65
1.67
5.64
1.19
1.70
1.71
5.74
1.72
1.73
1.72
5.70
5.6»
5.68
5.66
5.66
5.68
i.6S
5.56
5.54
5.53
5.53
1.55
5.55
5.54
S.56
5.56
5.5!
5.56
1.57
5.61
5.62
5.66
5.64
5.66
5.66
1.62
5.05
1.69
5.94 INDIAN 110317 TO 111787
1.90 IN i Hit INTERVALS
5.85
5.S4
INDIANCAMP BROOK
1196 0
1597 600
1598 1200
1599 1900
1600 0
1601 600
1602 1200
1603 1900
1604 0
160! 600
1606 1200
1607 1900
1609 600
1610 1200
1611- 1900
1612 0
1611 600
1614 1200
1615 1900
1616 0
1617 600
1619 1200
1619 1300
1621 600
1622 1200
1623 1900
1624 0
1625 600
1626 1200
1629 0
1629 600
1630 1200
1631 1900
1633 600
1634 1200
1635 1900
1636 0
1637 600
1638 1200
1639 1900
1640 0
Ittl 600
1642 1200
1643 1800
1644 0
16t5 600
1646 1200
16t7 1800
164« 0
1649 600
1650 1200
DBS
1706
1709
1709
1710
1711
1712
1713
171t
171 S
1716
1717
1718
1719
1720
1721
1722
1723
1724
172!
1726
1727
1728
1729
' 1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
17(2
17tl
1744
17t!
17(6
1747
17(8
17(9
1750
1751
1712
1753
175(
1755
1756
1757
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
. 9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
H8
1430
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
830
1(30
2030
230
430
1(30
2030
230
130
1(30
2030
230
830
17
17
17
17
18
18
13
18
19
19
19
19
20
20
20
21
21
21
21
22
22
22
22
23
23
23
24
2(
24
2!
2!
25
2!
26
26
26
27
27
27
27
28
28
28
28
29
29
29
30
30
30
no
11
11
11
11
11
11
11
11
11
11
11
n
11
11
11
1 J
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
u
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
87
87
57
87
87
87
87
87
87
67
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
47
87
87
87
87
87
87
87
87
87
97
97
87
87
87
87
15
It
It
16
It
12
13
It
13
12
12
12
12
12
12
11
11
11
12
12
11
12
12
12
12
13
12
12
13
11
10
10
11
1C
8
9
9
9
8
a
10
8
7
8
9
9
9
10
11
11
12
Da
(












5
5
5










9
9
1C
1C
1C
10
11
11
11
11
12
12
12
12
13
13
13
13
14
U
14
U
1!
IS
15
IS
16
16
U
16
17
17






























.50
.36
.57
.52
.(0
.38
.01
.23
.60
.54
.5(
.71
.29
.Ot
.16
.66
.66
.78
.33
.25
.91
.(2
.67
.21
.71
.(7
.59
.33
.05
.62
.26
.60
.36
.10
.66
.21
.88
.33
.(9
.95
.26
,7t
.(8
.07
.76
.08
.21
.10
.87
.74
.12
IK
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87
87
87
87
87
17
87
87
87
87
87
87















































0
0
0














































026
026
026
TEKP
6.29
6.55
6.50
7.18
6.59
5.70
5.11
5.07
3.84
2.62
2.41
1.82
1.01
1.73
1.69
1.94
2.41
3.29
3.29
3.25
3.08
3.27
2.83
2.32
1.86
2.53
2.28
1.86
0.93
0.76
0.55
0.21
0.17
1.01
0.89
1.14
1.39
2.28
2.20
1.90
1.82
2. (9
1.77
1.14
0.59
1.3!
0.84
0.84
1.01
5.88
5.84
I.S9
5.88
5.88
S.89
5.86
5.90
5.89
5.86
5.91
5.90
1.91
5.89
5.92
5.85
5.54
5.16
5.07
5.05
5.07
5.13
5.20
5.24
5)34
5.39
s.to
S.(3
5.47
5. (7
5. 55
5.54
5.62
5.58
5 . 66
5.67
5.70
5.69
5.70
5.73
5.72
5.72
5.75
5.76
5.76
5.7t
5.74
5.71
5.72
5.79
5.76
5.76
SPCON
0.025
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.027
0.025
0.02t
0.025
0.026
0.026
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.025
0.025
0.026
0.025
0.025
0.026
0.025
0.02!
0.02(
0.026
0.026
0.025
0.025
0.026
0.025
0.02t
0*026
0.026
0.026
0*025
0.026
0.028
0.027
0.026
0.028
0.027
0.028















































•
30















































101387 IN 6 MM INTERVAL


9:58 THURSDAY, nil 5,
PM COHBENT
1.86
5.88
5.85
5.90
5.90
5.87
5.89
5.93
5.94
5. 97
5.97
5.95
5.99
5.98
5.94
S.9(
5.91
5. 86
5.S9
5.89
5.92
5.91
S.9t
5.92
5.97
5.97
5.98
5.96
5.96
6.00
6.01
6.00
6.01
S.99
5.96
5.9(
5.99
5.99
5.98
5.92
• 9t
.92
.98
.01
.00
.03
5.90
1.92
1.92
5.94


32
1988












































-------
                                 271
SPRING VBROOK

IBS
1
2
3
4
5
6
7
8
9
10
U
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
33
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55

HR
1500
1600
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
leoo
2100
0
300
600
900
1200
1500
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1600
2000
0
400
800

no
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
* 11
11
11
11
1
I
1
1
1

on
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
27
27
27
28
2S
28
28
28
28
28
28
29
29
29
29
29
29
29
2V
30
30
30
30
30
30
21
21
22
22
22

YR
85
85
8S
85
35
85
85
85
85
85
85
85
85
85
85
35
85
85
85
85
85
85
85
85
85
85
85
35
85
'85
IS
85
85
85
35
85
85
35
85
85
85
85
85
85
85
85
85
85
85
35
86
86
86
86
86

TEMP
2.83
2.72
2.10
2.02
2.18
2.23
2.23
2.40
2.43
2.33
2.16
2.11
1.84
1.70
1.83
2.22
2.53
2.47
2.27
2.13
1.90
1.75
1.62
1.55
1.S4
2.83
2.72
2.10
2.02
2.18
2.23
2.23
2.40
2.48
2.33
2.16
2.11
1.84
1.70
1.83
2.22
2. S3
2.47
2.27
2.13
1.90
1.75
1.62
1.55
1.54
0.33
0.39
0.41
0.34
0.40

SPCON
0.030
0.031
0.031
0.031
0.031
0.030
0.031
0.031
0.030
0.032
0.031
0.032
0.031
0.031
0.031
0.031
0.032
0.031
0.030
0.031
0.031
0.030
0.031
0.031
0.031
0.030
0.031
0.031
0.031
0.031
0.030
0.031
0.031
0.030
0.032
0.031
0.032
0.031
0.031
0.031
0.031
0.032
0.031
0.030
0.031
0.031
0.030
0.031
0.031
0.031
0.025
0.025
0.025
0.025
0.02S

PH
6.83
6.83
6.81
6.80
6.78
6.81
6.73
6.77
6.76
6.76
6.75
6.76
6.76
6.74
6.75
6.75
6.74
6.75
6.75
6.74
6.73
6.74
6.75
6.73
6.75
6.88
6.83
6.81
6.80
6.78
6.81
6.78
6.77
6.76
6.76
6.75
6.76
6.76
6.74
6.75
6.75
6.74
6.75
6.75
6.74
6.73
6.74
6.75
6.73
6.75
6.79
6.60
6.58
6.57
0.53
1
9:55 THURSDAY* HAY St 1988
COMMENT
SPRING 9B 112285 TO
112585 IN 3 hR INTERVALS























SPRING 9& 11278S TO
113085 IN 3 HR INTERVALS























SPRING 90 012186 TO
012386 Id 4 HR INTERVALS



SPRING BROOK

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
33
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

1200 1
1600 1
2000 1
0 1
400 1
800 1
1200 1
1300 1
0 1
600 1
1200 1
1800 1
0 1
600 1
1200 1
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4
1200 4
1800 4
0 4
600 4

22
22
22
23
23
23
23
27
28
28
28
28
29
29
29
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23

86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86

0.45
0.72
0.77
0.71
0.67
0.27
0.08
0.03
0.05
0.05
0.03
0.05
0.03
0.02
0.03
3.53
3.61
3. 52
3.57
4.06
4.29
3.56
3.55
4.38
4.35
3.78
3.72
5.25
5.05
3.94
3.53
10.01
8.97
8.05
9.57
9.9?
8.90
7.81
9.21
9.89
8.72
7.80
9.78
10.77
9.23
8.70
9.33
9.51
9.02
8.83
9.37
10.11
9.10
a. is

0.025
0.025
0.024
0.02S
0.025
0.02S
0.024
0.020
0.020
0.020
0.025
0.022
0.019
0.020
0.020
0.019
0.020
0.019
0.019
0.019
0.020
0.019
0.019
0.019
0.019
0.018
0.019
0.016
0.018
0.016
0.015
.
.
.
,
.
.
,
,
.
.
.
.
.
.
. -
.
.
.
.
.
,
,
•

6.54
6.SS
6.56
6.55
6.53
6.54
6.54
5.86
5.92
5.87
5.86
5.87
5.87
5.88
S.90
6.41
6.29
6.18
6. IS
6.11
6.11
6.11
6.09
6.08
6.08
6.10
6.10
6.03
6.08
6.08
6.05
6.32
6.31
6.31
6.35
6.28
6.37
6.39
6.3S
6.38
6.39
6.37
6.37
6.40
6.40
6.38
6.42
6.41
6.35
6.31
6.27
6.26
6.30
6.28
6.27
2
9:55 THURSDAY, HAY St 1988







SPUING 90 012786 TO
012986 IN 6 HR INTERVALS






SPRING 90 041086 TO
041486 IN 6 HR INTERVALS














SPRING 7A 041786 TO
042886 IN 6 HR INTERVALS





















SPRING BROOK
DBS
111
112
113
114
115
116
117
118
119
120
121
122
123
124
12S
126
127
123
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
ISO
151
152
153
154
155
156
157
158
159
loO
lol.
162
163
164
165
HR
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
1200
HO
4
4
4
4
4
4
4
4
4
4







4
4
4
5
5
5
5
5
S
5
5
5
5
5
5
S
S
S
5
5
5
5
S
5
5
5
5
S
S
5
S
5
S
5
S
S
5
S
DA
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
28
30
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
S
S
6
6
6
6
7
7
7
7
8
8
3
8
9
9
9
YR
36
86
86
86
86
86
86
86
86
86
86
86
36
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
36
86
86
86
36
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
TEHP
7.37
6.86
6.33
6.67
7.35
7.25
7.10
7.77
3.17
8.36
8.38
9.16
9.99
9.93
9.66
10.63
11.69
11.22
10.93
13.81
13.03
12.50
13.53
14.00
13.10
12.82
12.94
12.71
11.09
9.90
9.50
9.87
8.62
7.53
7.90
8.38
7.42
7.09
7.61
8.10
7.95
7.62
7.91
8.75
3.37
7.95
8.30
8.73
8.48
8.13
7.97
9. OS
8.29
7.23
8.43
SPCON
t
.
.
,
.
.
,
.
.
,
.
,
.
.
.

.
.
,
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.021
0.023
0.023
0.024
0.024
0.023
0.023
0.024
0.023
0.023
0.023
0.023
0.023
0.024
0.024
0.023
0.023
P«
6.28
6.27
6.26
6.24
6.29
6.26
6.29
6.28
6.25
6.23
6.28
6.33
6.29
6.31
6.29
6.32
6.31
6.35
6.31
6.44
6.41
6.40
6.40
6.43
6.41
6.40
6.41
6.41
6.42
6.44
6.41
6.41
6.41
6.43
6.44
6.42
6.39
6.42
6.43
6.40
6.40
6.44
6.41
6.42
6.43
6.44
6.44
6.43
6.41
6.45
6.43
6.41
6.44
6. 45
6.43
9:55 THURSOAV, HAY Si 1988
COMMENT
                                                             SPRING BROOK
SPRING 9B 043086  TO
OS1386 IN 6 ItR  INTERVALS

OSS
166
167
163
169
170
171
172
173
174
175
176
177
178
179
130
181
182
133
184
185
136
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
213
219
220

Hit
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0

HO
S
5
5
5
5
5
5
S
5
5
S
5
5
S
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

OA
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
17
18
13
18
18
19
19
19
19
20
20
20
20
21
21
21,
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27

YR
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
36
86
86
86
36
36
86
86

TEHP
10.05
9.12
8.10
9.94
11.36
10.17
9.16
10.79
12.10
10.97
10.20
10.15
10.78
10.21
9.32
10.63
12.25
16.48
15.53
14.74
15.35
15.75
14.93
14.23
15.29
15.83
14.39
13.43
14.39
15.82
15.29
14.39
15.77
16.82
16.02
14.59
16.53
17.69
16.85
15.26
16.94
16.97
16.96
16.47
17.91
18.32
17.77
16.08
15.44
IS. 15
14. 54
13.85
14.82
15.29
14.62

SPCON
0.023
0.024
0.024
0.023
0.024
0.024
0.024
0.023
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.024
0.025
0.026
0.026
0.025
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.020
0.025
0.027
0.026
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.028
0.026
0.026
0.027
0.028
0.026
0.027
0.027
0.027
0.026
0.026
0.027
9:55 THURSDAY, HAY S, 19E
PH COMMENT
6.38
6.41
6.41
6.40
6.26
6.45
6.46
6.33
6.2S
6.43
6.48
6.49
6.43
6.48
6.46
6.43
6.22
6.28 SPRING 9C 061786 TO
6.30 062636 IN 6 HR INTERVALS
6.33
6.31
6.28
6.29
6.31
6.30
6.27
6.29
6.30
6.30
6.25
6.28
6.30
6.30
6.22
6.25
6.30
0.28
6.19
6.21
6.28
6.28
6.23
6.23
6.26
6.24
6.20
6.23
6.30
6.33
6.32
6.31
6.34
6.33
6.28
6.30

-------
272
SPRING HHOOK 5
9155 THUKSDAYt HAY St 1968
tiki
ttl
tit
221
IM
its
lit
117
ttt

lie
tit
111
til
21(

lit
117
lit
4)7
MO
Ml
Id
Ml
Mt
MS

M7
ttt
Mt
ISO
111
tst
111
tst
its
tst
tS7
tst
tst
ito
ttl
ttt
ttl
144
It!
lit
147
ttl
Itt
179
171
171
171
t7(
its
H»
1100
tioo
0
100
too
too
itoo
ISOO
uoo
ttoo
0
100
too
too
tioo
ISOO
uoo
tioo
0
100
609
too
itoo
tsoo
uoo
tioo
0
100
too
too
itoo
tsoo
uoo
tioo
9
100
400
too
1109
ISOO
UDO
tioo
0
100
too
900
1100
ISOO
1100
itoo
0
100
too
too
tioo
no
to
to
10
to
10
to
19
10
10
10
10
19
19
19
10
10
10
to
to
19
19
10
to
to
19
19
19
19
10
to
10
10
10
10
19
10
to
10
19
10
10
to
10
10
10
10
19
19
19
10
to
10
19
10
to
on
It
It
IS
IS
IS
IS
IS
IS
IS
IS
It
It
14
14
14
14
It
14
17
17
17
17
17
17
17
17
11
11
13
It
11
11
11
11
19
It
19
tt
19
It
It
19
to
to
to
to
to
to
20
to
tl
11
11
tt
11
»«
14
14
14
14
14
14
16
14
14
14
14
14
14
14
14
14
14
14
16
14
14
14
14
14
14
14
14
14
14
14
16
It
14
14
16
It
It
It
It
16
14
14
14
14
16
14
14
16
14
14
14
14
34
14
14
HHP
10. 31
10.35
10.41
10.43
10.07
9.79
9.92



















.99
.98
.71
.41
.02
.42
.17
.79
.21
.47
.34
.21
.00
.71
.55
.45
.39
.11
.11
7.89
7.58
7.21
7.00
7.09
7.19
7.15
6.52
S.91
5.43



















.11
.02
.84
.S3
• 13
.50

• 34
.03
.01
.42
.94
.90
.39
.90
.52
.11
.34
.74
SPCOK
0.040
0.041
0.041
0.042
0.044
0.048
0.043
0.047
0.049
0.052
0.053
0.040
0.041
0.040
0.039
0.040
0.040
0.040
0.040
0.040
0.040
0.041
0.040
0.040
0.040
0.040
0.040
0.041
0.041
0.040
0.039
0.040
0.040
0.040
0.041
0.040
0.040
O.Otl
0.039
0.039
0.039
0.040
0.040
0.041
0.040
0.040
0.040
0.040
0.039
0.040
0.039
0.039
0.039
9. 040
0.039
PH COMMENT
4.75 SPRING 2036 101436 TO
4.72 102186 IN 3 HR INTERVALS
6.75
6.84
6.76
6.76
6.77
6.72
6.69
6.65
6.62
4.59
6. 55
6.55
6.S4
6.53
6. S3
6.S2
6.52
6.52
4. S3
6.55
6. S3
6.55
6.SS
6.54
6.54
6.54
6.54
6. S3
6.53
4. 52
4.51
6.49
4.49
4.48
4.48
4.47
4.49
6.46
6.46
6.47
6.47
4.46
6.46
6.47
6.48
6.47
6.46
6.46
6.45
6.44
6.44
6.44
6.45
                            SPRING BROOK

                          TEHP   SPCON
276
277
278
279
280
281
283
284
285
286
287
288
289
290
291
292
?93
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
1800
2100
0
300
600
900
1500
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
ISOO
1300
2100
0
300
600
900
1200
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
18
18
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21;
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
36
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
36
86
86
86
86
36
2.74
2.38
2.10
1.77
1.30
0.93
0.63
0.43
0.15
-0.12
-0.15
-0.10
-0.12
-0.13
-0.10
0.04
0.26
0.50
0.01
0.11
-0.07
-0.09
0.24
1.16
1.36
1.18
1.19
1.20
1.09
1.25
1.29
1.21
0.85
0.68
0.57
0.46
0.55
0.87
1.14
1.30
1.44
1.59
1.82
2.02'
2.19
2.42
2.49
2.44
2.23
2.07
1.82
1.61
1.49
1.66
O.U29
0.031
0.030
0.030
0.030
0.030
0.029
0.029
0.032
0.030
0.030
0.030
0.031
0.033
0.031
0.031
0.031
0.032
0.032
0.032
0.030
0.028
0.028
0.029
0.030
0.031
0.030
0.030
0.030
0.030
0.029
0.029
0.029
0.028
0.029
0.030
0.027
0.028
0.029
0.029
0.030
0.030
0.029
0.029
0.029
0.028
0.029
0.029
0.029
0.028
0.027
0.027
0.027
0.027
6.81
6.80
6.79
6.30
6.80
6.87
6.84
6.84
6.85"
6.84
6.87
6.84
6.82
6.82
6.34
6.85
6.84
6.84
6.85
6.85
6.84
6.79
6.71
6.74
6.75
6.76
6.77
6.76
6.80
6.76
6.76
6.76
6.76
6.75
6.76
6.74
6.73
6.73
6.71
6.70
6.70
6.70
6.69
6.68
6.67
6.65
6.64
6.63
6.63
6.63
6.63
6.62
6.62
6.61
9:55 THURSDAVi  MAY  5,  1988
COMMENT
                                                SPRING 9E 111886  TO
                                                120286 IN 3 Hit INTERVALS


on
111
lit
111
lit
«s
lit
117
111
119
340
HI
Ul
1(1
144
34J
344
1(7
1(1
149
ISO
1S1
lit
111
154
IIS
1S4
1S7
1S1
lit
1*0
Jtl
Itt
Itl
144
its
141
1*7
Itt
145
J70
171
17t
171
374
17S
174
177
17t
17»
HO
lit
Itt
mi
114
345


HI
1500
1100
tioo
0
100
400
fOO
ttoo
1SOO
1100
tioo
0
100
too
900
1100
ISOO
tioo
2100
0
100
too
too
ttoo
tsoo
1100
tioo
0
109
too
too
itoo
ssoo
tioo
tioo
0
109
too
voo
itoo
isoo
1100
1100
0
100
too
900
1200
1100
uoo
1100
0
100
too
400


no
11
11
11
11
tl
11
11
tl
11
tl
11
11
11
11
11
11
11
11
11
11
It
11
It
11
11
11
11
11
11
11
11
11
11
11
11
tl
It
11
11
11
11
11
11
It
tl
It
12
11
It
It
11
It
12
tt
tt


on
ts
25
25
26
24
24
24
24
14
16
24
17
17
17
17
27
17
27
27
21
21
11
tt
It
21
11
11
19
29
29
29
29
29
tt
tt
10
10
10
30
30
30
10
30





1
1
1
1
2
2
2
SPtlKG 3 ROOK

V« rtnp
14 1.71
14 1.S3
84 1.41
14 l.SS
. 84 1.17
86 1.11
14 1.12
86 1.73
14 2.14
16 2.34
84 2.63
14 2.91
14 3.04
14 2.5S
14 2.21
14
14
84
It
84
14
14
14
14
14
14
14
14
36
36
It
16
It
It
14
14
It
34
86
it
86
.31
• 31
.94
.79
.41
.35
.11
.14
.65
.68
.(9
.(3
.43
.56
.42
.65
.86
.96
.10
.76
.74
.12
.57
.26
.12
.02
16 0.81
It 0.73
86 0.44
36 O.S1
46 0.47
84 0.49
36 0.80
36 1.01
16 1.03
44 0.93
16 0.91
14 0.77
14 O.S1
It O.S4

9:
SPCOH
0.021
0.028
0.021
0.027
0.023
0.028
0.021
0.028
0.027
0.028
0.026
0.026
0.026
0.026
0.014
0.01S
0.02S
0.02S
0.013
0.014
0.024
0.025
0.023
0.024
0.024
0.02S
0.02S
0.02S
0.02S
0.025
0.024
0.024
0.024
0.024
0.024
0.02S
0.024
0.024
0.024
0.024
0.025
0.02S
0.024
0.025
0.02S
0.02S
0.025
0.025
0.026
0.026
0.027
0.026
0.026
0.026
0.025
7
SS THURSDAY, HAV S> 1938
PH COMMENT
6.60
6.62
6.62
6.63
6.61
6.41
6.62
6.60
6.60
6.58
6.57
6.41
6.41
6.38
6.37
6. 35
6.31
6.28
6.24
6.24
4.24
6.25
6.26
6.24
6.26
6.27
6.27
6.26
6.26
6.26
6.26
6.28
6.28
6.29
6.30
6.30
6.30
4.29
6.31
6.31
6.32
6.32
6.35
6.36
6.35
6.35
6.35
6.38
6.37
6.39
6.38
6.39
6.37
6.37
6.38
SPRING BROOK
OBS
386
387
383
389
390
391
392
393
394
395
396
397
393
399
400
401
402
403
404
405
406
407
403
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
4-37
433
439
440
Hit
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
no
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
OA
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
1






1
2
2
2
2
2
2
2
2
3
3
3
3
3
VR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
37
37
87
TEHP
-0.03
-0.03
-0.03
-0.04
-0.03
-0.04
-0.01
-0.03
-0.01
-0.03
-0.01
-0.04
-0.03
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.03
0.03
0.05
0.05
0.05
0.05
0.03
0.05
0.05
0.07
0.10
0.10
0.10
0.10
0.12
0.15
0.15
0.15
0.17
0.15
0.15
0.17
0.19
0.23
0.21
0.23
0.21
0.17
0.19
0.21
0.23
SPCON
0.025
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.025
0.026
0.025
0.026
0.027
0.027
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.027
0.026
0.027
0.026
0.026
0.026
0.026
0.027
0.026
0.027
0.028
0.029
0.029
0.029
0.029
0.028
0.028
0.027
0.026
0.025
0.025
0.026
0.025
0.025
0.025
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.026
PH
6.65
6.53
6.52
6.55
6.45
6.45
6.40
6.43
6.45
6.47
6.46
6.43
6.41
6.41
6.39
6.39
6.44
6.44
6.47
6.44
6.47
6.46
6.40
6.47
6.47
6.50
6.52
6.52
6.51
6.54
6.52
6.50
6.55
6.59
6.58
6.62
6.51
6.57
6.57
6.59
6.63
6.61
6.61
6.60
6.60
6.59
6.53
6.61
6.60
6.56
0.53
6.58
6.64
6.55
6.57
                                             9:55 THURSDAY* HAY St  1988
                                                     COHHEHT
                                             SPRING UNIT 90 012787 TO
                                             021087 IN 3 HR INTERVALS

-------
                                                  273
SPRING BROOK
                  9:55 THURSDAY* HAV  St 1988
              SPCON     PH     COMMENT


DBS
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
573
579
580
581
582
533
584
585
586
5S7
538
539
590
591
592
593
594
595
596
597
598
599
600
601
602
<>03
604
605
441
442
443
444
445
446
447
448
449
451
452
453
454
455
456
457
453
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
430
431
482
433
434
435
436
487
438
43V
490
491
492
493
494
495
HR
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1800
2100
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1300 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
1200 2
1500 2
1800 2
2100 2
0 2
300 2
600 2
900 2
MO
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
OA
13
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
5
5
YR
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
H7
87
87
87
37
87
87
87
87
87
87
87
87
37
87
87
87
67
87
87
87
87
37
3 37
3 87
3 37
4 37
4 87
4 87
4 87
4 87
4 37
0.23
0.24
0.28
0.32
0.33
0.32
0.33
0.33
0.35
0.026 6.57
0.025 6.60
0.025 6.57
0.026 6.59
0.025 6.62
0.025 6.62
0.026 6.60
0.026 6.61
0.026 6.55
n nm t . at.
4 87 0.32 0.026 6.64
5 37 0.26 0.026 6.61
5 87 0.23 0.026 6.60
5 87 0.17 0.026 6.58
5 87 0.14 0.026 6.61
5 87 0.14 0.025 6.58
5 87 0.14 0.026 6.58
5 37 0.16 0.026 6.60
5 17 0.16 0.025 6.61
6 37 0.12 0.025 6.64
6 87 0.14 0.023 6.60
6 87 0.16 0.021 6.58
6 87 0.14 0.021 6.64
6 87 0.18 0.023 6.54
6 37 0.23 0.023 6.57
6 87 0.20 0.025 6.62
6 87 0.16 0.025 6.61
7 87 0.14 0.026 6.57
7 37 0.14 0.026 6.64
7 87 0.14 0.026 6.64
7 87 0.16 0.027 6.64
7 37 0.18 0.027 6.66
7 87 0.22 0.026 6.63
7 87 0.23 0.027 6.63
7 37 0.27 0.026 6.55
i 87 0.27 0.026 6.66
8 37 0.29 0.026 6.62
8 87 0.32 0.027 6.61
8 87 0.31 0.026 6.58
8 87 0.32 0.027 6.64
8 37 0.36 0.026 6.60
8 87 0.40 0.026 6.56
8 87 0.30 0.027 6.60
9 87 0.36 0.026 6.62
9 37 0.33 0.026 6.64
9 87 0.29 0.026 6.67
9 87 0.29 0.026 6.66
'9 37 0.34 0.026 6.62
9 87 . 0.34 0.026 6.64
9 87 0.33 0.026 6.66
9 87 0.29 0.026 6.63
10 87 0.24 0.026 6.66
10 87 0.16 0.027 6.70
10 37 0.09 0.027 6.72
10 37 0.11 0.027 6.65
SPRING BROOK
TEMP
0.12
0.25
0.34
0.41
0.46
0.38
0.38
0.36
0.32
0.29
0.29
0.34
0.34
0.36
0.38
0.33
0.40
0.43
0.41
0.45
0.45
0.42
0.36
0.36
0.35
0.31
0.14
0.00
0.00
-0.01
0.00
0.02
0.00
0.02
0.02
0.03
0.02
0.00
0.02
0.05
0.07
0.19
0.24
0.23
0.17
0.12
0.11
0.14
0.12
0.30
0.51
0.42
0.17
9.62
9.47
SPCON
0.026
0.027
0.027
0.027
0.027
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.027
0.027
0.027
0.027
0.026
0.027
0.027
0.027
0.027
0.026
0.027
0.027
0.027
0.027
0.027
0.028
0.023
0.028
0.027
0.028
0.028
0.026
0.027
'0.027
0.027
0.027
0.027
0.027
0.026
0.025
0.025
0.025
0.026
0.025
0.026
0.026
0.026
0.025
0.020
0.025
0.024
0.024
PH COMMENT
6.51
6.53
6.52
6.51
6.49
6.51
6.50
6.50
6.51
6.51
6.51
6.49
6.50
6.51
6.52
6.49
6.52
6.51
6.48
6.51
6.50
6.50
6.52
6.52
6.49
6.49
6.45
6.44
6.41
6.41
6.33
6.37
6.38
6.36
6.36
6.36
6.35
6.35
6.37
6.36
6.35
6.37
6.33
6.37
6.34
6.32
6.35
6.33
6.35
6.37
6.33
6.32
6.35
6.64 SPRING 2036 O'iOSS?
6.62 051987 IN 3 Hll INTI

DBS
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

HR
1200
1500
1800
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300

MO
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 •
3
3
3
3
3
3
3
3
3
3

.OA
10
10
10
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
15
IS
15
15
IS
IS
15
16
16
16
16
16
16
16
• 16
17
17
17
17
17
17
17
17
18
18

YR
87
87
a?
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
37
87
87

T6HP
0.16
0.18
0.22
0.12
0.08
0.06
0.01
0.01
0.03
0.06
0.06
0.06
0.09
0.06
0.04
0.06
0.07
0.11
0.12
0.17
0.13
0.13
0.13
0.13
0.16
0.16
0.21
0.21
0.19
0.21
0.21
0.21
0.21
0.24
0.27
0.26
0.24
0.24
0.23
0.23
0.23
0.25
0.26
0.23
0.20
0.19
0.15
0.15
0.13
0.15
0.15
0.15
0.19
0.19
0.19

SPCON
0.027
0.026
0.027
0.028
0.027
0.026
0.027
0.027
0.027
0.027
0.028
0.027
0.026
0.028
0.027
0.026
0.029
0.027
0.026
0.027
0.027
0.027
0.027
0.028
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.027
0.026
0.026
0.026
0.026
0.027
0.027
0.026
0.026
0.025
0.026
0.026
0.026
0.026
0.026
0.025
0.029
0.027
0.027
0.027
0.026
IK 10
9:55 THURSDAY, M«Y 5, 1988
PH COMMENT
6.64
6.66
6.60
6.82 SPRING UNIT 7A 031187 TO
6.30 032487 IN 3 HI! INTERVALS
6.76
6.79
6.78
6.73
6.72
6.76
6.67
6.58
6.51
6.53
6.51
6.47
6.52
6.48
6.51
6.53
6.52
6.54
6. 54
6.50
6.54
6.54
6.58
6.57
6.58
6.58
6.56
6.54
6.56
6.55
6.57
6.55
6.55
6.55
6.56
6.53
0.55
6.54
6.55
6.54
6.54
6.54
6.55
6.54
6.53
6.52
6.54
6.52
6.52
6.54
                                        11
                                      1988
SPRING BROOK

OSS
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

HR MO
0 5
300 5
600 5
900 5
1200 5
1500 5
1300 5
2100 5
0 5
300 5
600 5
900 5
1200 5
1500 5
1800 5
2100 5
0 5.
300 5
600 5
900 5
1200 5
1500 5
1800 5
2100 5
0 5
300 5
600 5
900 5
1200 5
1500 5
1800 5
2100 5
0 5
300 5
600 5
900 5
1200 5
1500 5
1800 5
2100 5
0 5
300 5
600 5
900 5
1200 5
1500 5
1800 5
2100 5
0 5
300 5
600 5
900 5
1200 5
1500 5
1800 5

DA
6
6
6
6
6
6
6
6
7
7
7'
7
7
7
7
7
8
8
8
3
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12

YR
87
87
87
87
87
87
87
87
87
87
87
87 •
87
87
87
87
87
87
87
87
87
' 37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
8?
87
87
87
87
37
87
37
87

TEMP
9.29
9.11
8.99
9.01
9.22
9.44
9.36
9.07
8.75
8.59
8.43
8.63
9.81
10.52
10.84
10.64
10.34
9.61
8.90
9.28
10.25
11.02
11.19
10.74
10.06
9.38
3.81
9.36
11.10
11.97
12.14
11.69
11.14
10.61
10.23
10.87
12.59
13.70
13.83
13.29
12.59
11.86
11.15
11.26
12.30
13.04
13.06
12.53
12.09
11.82
11.73
11.95
12.17
12.57
12.46
9:
SPCUN
0.025
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.023
0.024
0.024
0.024
0.024
0.024
0.023
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.026
0.029
0.024
0.024
0.024
0.025
0.024
0.026
0.030
0.029
0.030
0.027
0.026
0.025
0.024
0.031
0.030
0.030
0.030
0.031
0.031
0.031
0.030
0.029
0.029
0.029
0.029
55 THUR:
PH
6.59
6.57
6.56
6.57
6.58
6.54
6.53
6.54
6.50
6.49
6.49
6.51
6.50
6.49
6.47
6.46
6.45
6.45
6.44
6.47
6.46
6.47
6.45
6.46
6.46
6.46
6.46
6.46
6.46
6.45
6.44
6.44
6.45
6.45
6.43
6.46
6.45
6.41
6.43
6.42
6.43
6.44
6.45
6.45
6.44
6.42
6.42
6.43
6.45
6.43
6.43
6.45
6.40
6.43
6.45
            12
AY»  HAY Sf 1988
 COMMENT

-------
                                                      274
SPR1J.C  BROOK

Oti
til
III
ill
tit
441
tit
it?
441
it*
470
471
t;l
471
474
475
474
477
471
t7t
410
ill
tit
ill
tit
US
ill
4»7
ill
tit
ttfl
tfl
ifl
4tJ
4ft
if!
tft
477
m
tt»
JOB
701
702
701
70 «
70S
70*
191
JCI
J0»
Tie
711
711
7I>
714
m

N»
1100
0
100
too
too
1109
1500
1109
2109
0
JOO
too
too
1200
1500
1109
2100
0
}00
too
It)
1200
1109
1100
2100
0
100
toe
too
1200
1SOO
1100
2100
4
100
too
toe
1209
lioo
HBO
2100
0
JOO
too
too
1200
1900
tiao
2100
0
]«0
too
too
1200
1200

no
s
I
S
5
S
)
I
1
5
S
S
s
5
S
s
s
5
$
S
5
S
J
S
S
S
S
I
5
I
5
S
5
i
i
S
S
J
I
s
i
i
s
J
5
5
S
5
I
S
S
J
S
S
S
10

OA
12
13
13
1]
13
13
U
13
13
14
14
14
14
14
U
U
14
IS
15
IS
IS
IS
IS
IS
IS
16
It
It
It
16
It
It
It
17
17
17
17
17
17
17
17
It
1*
11
It
11
1*
11
18
If
1»
IV
It
IV
ft

YK
87
17
17
17
• 7
87
17
87
17
17
17
• 7
17
17
87
17
87
87
17
17
17
17
17
87
17
87
17
17
87
87
17
<7
17
87
17
17
87
87
17
17
17
17
17
17
17
17
17
17
87
17
17
17
17
17
17

TCHP
11.96
11.35
10.60
9.80
10.12
11.27
12.11
12.49
12.02
11.22
10.53
9.96
10.62
12.01
12.74
12.69
12.25
11.88
11.75
11.74
11.14
11.93
12.08
12.01
11.45
10.90
10.23
9.56
9.37
10.40
11.23
11.66
11.56
11.40
10.95
10.42
11.07
12.73
13.75
14.03
13.79
13.29
12.10
12.37
12.11
12.14
13.35
13.45
13.14
12.41
11.64
10.96
11.46
12.45
11.49

SPCON
0.029
0.029
0.029
0.029
0.027
0.027
0.026
0.026
0.026
0.028
0.027
0.026
0.025
0.024
0.024
0.025
0.026
0.025
0.025
0.02S
0.025
0.025
0.025
0.025
0.02S
0.025
0.025
0.025
0.024
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.026
0.026
0.025
0.024
0.025
0.02S
0.02S
0.02S
0.025
0.026
0.02S
0.025
0.02S
0.032
9:55 THURSDAY! HAY Sf
PH CUXHENT
6.44
6.44
6.44
6.45
6.44
6.44
6.45
6.42
6.43
6.43
6.44
6.43
6.45
6.45
6.4S
6.45
6.43
6.44
6.46
6.42
6.46
6.44
6.42
6.46
6.45
6.44
6.46
6.47
6.47
6.46
6.45
6.44
6.44
6.44
6.44
6.44
6.46
6.46
6.43
6.42
6.43
6.43
6.43
6.45
6.46
6.46
6.43
6.44
6.42
6.43
6.43
6.44
6.47
6.46 EDITED ALG 0520B7
6.31 SPUING 5342 100687 TO
SPRING BROOK
DBS
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
736
739
740
7*1
742
743
744
745
746
747
741
749
750
751
752
753
754
755
756
757
758
759
760'
761
762
763
764
765
766
767
768
769
770
HR
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
on
6
7
7
7
7
8
8
8
8
9
9
9
9>
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15
15
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
19
20
20
VR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
TEHP
12.38
12.16
12.16
12.46
12.80
12.63
12.76
13.35
13.73
12.59
11.36
10.86
10.73
10.43
10.35
10.86
11.11
10.01
9.04
9.04
8.95
8.11
7.35
7.73
8.24
7.27
6.50
7.18
7.77
6.84
6.17
6.97
7.81
7.05
6.38
7.35
8.4S
7.94
7.77
8.28
8.83
8.15
7.60
8.41
9.17
9.46
9.63
10.18
10.52
9.84
8.83
9.59
10.22
9.04
8.45 .
SPCON
0.031
0.031
0.031
0.033
0.033
0.031
0.033
0.030
0.032
0.031
0.032
0.030
0.032
0.030
0.030
0.030
0.030
0.028
0.031
0.029
0.029
0.027
0.030
0.030
0.030
0.028
0.031
0.030
0.030
0.031
0.031
0.028
0.030
0.031
0.034
0.030
0.027
0.030
0.030
0.030
0.032
0.030
0.030
0.030
0.031
0.031
0.031
0.031
0.030
0.031
0.032
0.031
0.028
0.031
0.027
PK
6.39
6.38
6.40
6.41
6.38
6.32
6.19
6.30
6.23
6.32
6.37
6.36
6.36
6.35
6.35
6.33
6.J1
6.35
6.36
6.37
6.39
6.37
6.41
6.40
6.38
6.39
6.40
6.41
6.40
6.36
6.37
6.40
6.37
6.40
6.38
6.44
6.34
6.34
6.38
6.36
6.36
6.35
6.35
6.34
6.35
6.35
6.31
6.34
6.28
6.32
6.31
6.35
6.31
6.30
6.10
                                                                                                   9:55  THURSOAVi HAY 5t  1988
                                                                                                          CUHHEHT
                                                                                                   102037  IN 6 MR INTERVAL

-------
275
BAKER BROOK
OBS
1
2
3
4
5
•6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
S3
54
55
OBS
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
133
139
140
141
142
143
144
145
146
147
148
149
ISO
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
HR
1600
1300
2000
2200
0
200
400
600
800
1000
1200
1400
1600
1300
2000
2200
0
200
400
600
800
1000
1200
1400
1600
1300
2000
2200
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
0
400
600
800
1000
1200
1400
1600
1300
2000
2200
0
200
400
1200
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
1800
0
600
1200
1300
0
600
1200
1800
0
606
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1300
MO
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
1 1
11
11
11
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
DA
IS
IS
15
IS
16
16
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
13
18
18
18
18
18
IB
19
19
19
19
19
19
I?
19
19
19
19
20
20
20
31
31
1
1
1
1
2
2
2
2
3
3
3
3
4
5
5
5
S
6
6
6
6
7
7
7







9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
YR
35
85
85
35
85
85
85
85
35
85
85
85
85
85
85
85
85
85
as
35
85
35
as
85
as
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
35
as
85
85
35
85
85
85
85
85
85
85
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
36
36
86
86
36
36
36
36
86
86
86
36
36
36
86
36
36
.36
36
86
36
36
36
86
86
36
36
86
36
86
86
36
TEMP
2.54
2.2S
1.96
1.64
1.34
1.07
0.84
0.60
0.49
0.5S
0.91
1.21
1.30
1.28
1.20
1.03
1.06
1.05
1.10
0.57
0.47
0.96
1.S2
2.07
2.28
2.12
1.36
1.72
1.74
1.73
1.92
1.92
1.94
2.14
2.59
3. OS
3.12
2.97
2.81
2.61
2.43
2.17
2.18
2.24
2.48
2.91
3.40
3.60
3.66
3.70
3.73
3.80
3.83
3.83
2.99
3.23
1.47
0.39
3.20
4.27
3.02
1.87
3.15
3.41
2.28
1.32
3.46
4.56
5.74
3.94
2.81
4.48
5.65
3.49
2.44
4.87
6.09
4.36
3.56
3.03
3.02
2.47
2.21
2.71
2.42
2.25
2. OS
2.25
2.97
2.58
2.03
:.26
3.59
3.33
3.17
3.86
4.65
3.64
3,06
4,18
4.87
4.05
3.43
5.82
7.14
5.68
4.64
7.15
8.00
SPCON
0.029
0.030
0.029
0.030
0.031
0.029
0.029
0.030
0.030
0.031
0.0:0
0.0:1
0.029
0.029
0.030
0.030
0.0:0
0.030
0.0:0
0.029
0.030
0.029
0.030
0.030
0.030
0.030
0.0:0
0.0:0
0.029
0.028
0.030
0.029
0.030
0.029
0.030
0.030
0.029
0.029
0.023
0.029
0.030
0.030
0.030
0.030
0.029
0.029
0.029
0.029
0.029
0.02V
0.029
0.030
0.029
0.020
0.021
0.020
0.020
0.020
0.023
0.020
0.020
0.021
0.020
0,020
0.021
0.021
0.020
0.017
0.018
0.017
0.018
0.017
0.017
0.013
0.018
0.018
0.017
0.020
0.018
0.018
0.019
0.019
0.019
0.019
0.021
0.020
0.021,
0.020
0.020
0.021
0.020
0.020
0.019
0.019
0.021
0.020
0.019
0,020
0.020
0.020
0.020
0.020
0.020
0.020
0.021
0.021
0.021
0.021
PH COMMENT
5.98 BAKER 111505 TO 112035
5.90 IN 2 HR INTERVALS
5.85
5.81
5.79
5.77
5.75
5.75
5.75
5.75
5.75
5.74
5.74
5.73
5.73
5.75
5.73
5.72
5.72
5.73
5.72
5.72
5.72
5.70
5.70
5.66
5.64
5.61
5.63
5.60
5.60
5.59
5.59
5.59
5.58
5.56
5.56
5.55
5.55
5.55
5.55
5.55
5.57
5. 55
5.55
5. 56
5.56
5.56
S.SS
S.S5
5.53
5.53
5.54
5.54
5.69
5.69
5. 65
5.65
5.59
5.65
5.66
5.69
5.64
S.73
5.76
5.75
S.71
5.73
6.12 BAKER «A 040486 TO
6.07 041486 IN 6 HR INTERVALS
6.04
6.01
5.98
5.97
5.93
5.94
5.94
5.96
6.00
5.93
6.00
S.99
6.02
5.99
6.00
5.94
5.33
5.36
5.38
5.34
5.86
5.33
5.84
5.36
S.8S
S.65
5.83
5.85
S. 87
5. 35
5.81
5.84
5.83
5.80
5.30
s.ai
5.84
5.33
5.84
BAKER SHOOK

OBS
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
81
82
8}
84
85
36
87
88
89
90
91
92
93
94
9S
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

HR
600
800
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1600
2000
0
400
300
1200
1600
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1200
1300
0
600

no
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1
1
1
1
1












on
20
20
S
S
6
6
6
6
6
6
7
7
7
7
7
7
i
8
8
8
8
8
9
9
9
9
9
10
10
10
10
10
10
11
11
11
11
11
21
21
22
22
22
22
22
22
23
23
23
23
30
JO
31
31

Y8
85
35
35
as
35
35
85
85
85
85
85
as
85
85
35
85
as
85
85
85
85
35
35
85
35
85
85
85.
It
85
85
85
35
85
85
85
85
85
85
86
86
86
86
86
86
86
86
86
86
86
86
86
36
. 86
86

TEMP
4.05
4.17
-0.07
-0.09
-0.04
-0.06
-0.06
-0.06
-0.07
-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.03
-0.04
-0.01
-0.03
-0.01
-0.01
-0.01
0, 00
0.00
0.00
0.00
0.00
0.00
-0.01
-0.04
0.10
0.05
0.03
0.02
0.02
0.02
-0.11
-0.05
-0.04
-O.OS
-0.05
-0.07
-O.OS
-0.07
-0.08
-0.03
-0.08
-0.03
-0.02
0.92
2.11
0.90
6.46

SPCON
0.029
0.029
0.027
0.023
0.029
0.028
0.028
0.028
0.027
0.027
0.029
0.028
0.023
0.028
0.029
0.029
0.029
0.027
0.029
0.029
0.028
0.029
0.029
0.029
0.0:0
0.029
0.029
0.030
0.029
0.030
0.010
0.030
0.030
0.030
O.OJO
0.031
0.030
0.0:1
0.030
0.026
0.026
0.027
0.027
0,026
0.027
0.026
0.027
0.027
0.026
0.028
0.021
0.022
0.020
0.020

PH
5.55
5.54
5.93
5.90
5.87
5.87
5.87
5.37
5.92
S.91
5,91
S.91
5.93
5.9:
5.93
5.95
5.95
5.93
S.98
S.9S
5.97
5.99
5.98
5.98
6.02
6.02
6.0}
6.0!
6.03
6.04
6.02
6.01
6.00
6.01
6.01
6.0:
6.07
6.01
5.98
5.84
5.78
5.72
5.70
5.68
S.61
5.56
5.SS
5.56
5.56
5.56
5.90
5.91
5.37
5.82
2
10:01 THURSDAY, NAY 5, 1918
COMMENT


BAKER 9C 120585 TO
121135 IN 4 HR INTERVALS

















''
















BAKER 9E 012186 TO 012)8
IN 4 HR INTERVALS










BAKER 90 033086 TO
040386 IN 6 HI! 'INTERVALS


BAKER BROCK
OBS
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
139
190
191
192
193
194
195
176
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
213
219
220
HR
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
HO
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
S
S
S
S
S
5
5
5
5
S
DA
17
17
18
18
»8
18
19
19
19
19
20
20
20
20
21
21
2'1
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
23
23
28
IS
16
16
16
16
17
17
17
17
18
VR
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
36
86
86
86
86
86
86
86
at
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
36
36
86
86
TEMP
9.13
11.12
3,40
6.54
9.38
10.34
7.86
5.83
8.47
10.49
7.55
5.55
8.64
11.45
8.98
7.11
7.92
8.76
7.72
7.13
7.58
7.52
9.86
4.82
S, IS
5.16
4.94
4.45
5.22
5.93
5.83
5.59
6.37
6.84
7.02
7.07
8.50
9.29
3.80
8.17
9.25
11.09
10.26
9.33
11.28
IS. 73
14.28
12.06
14.42
15.74
14.83
13.43
12.88
13.23
13.35
SPCON
0.023
0.023
0.023
0.023
0.023
0.024
0.022
0.025
0.020
0.024
0.024
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.025
0.025
0.024
0.024
0.024
0.024
0.015
0.024
0.023
0.023
0.023
0.02S
0.027
0.02S
0.023
0.023
0.023
0.022
0.024
0.024
0.023
0.024
0.023
0.023
0.024
0.02S
0.02S
0.025
0.025
0.025
0.026
0.026
0.025
0.026
PH
6.J5
6.15
6.05
6.06
6.05
5.99
6.06
6.11
5.46
5.37
6.13
6.12
5.94
5.37
0.16
6.15
6.17
6.02
6.13
6.05
5.78
5.67
5.74
5.80
S.83
5.79
5,35
5.86
5.65
5.56
S.74
S.82
5.60
5.61
5.69
5.75
S.49
5.61
5.80
5.73
S.57
5.52
5.73
5.80
S.51
6.40
6.22
6.05
6,13
6,13
6.06
6.11
6.15
6.19
6.13
                                                10:01 THURSDAY* MAY Sv 1988
                                                 COMMENT

                                                 BAKER 9B  041786  TO
                                                 042886 IN i  HR INr£«V«LS
                                                 BAKER 90 051586 TO
                                                 052786 It) 6 HR INTERVALS

-------
                                                    276
                  10:01 THUHSOAVt KAY St  1988
                   COMMENT
tit
lit
«i
tt<
IIS
tit
tt7
113
«»
tJO
lit
lit
111
tit
135
tit
{17
III
11?
140
III
Kt
HI
tu
US
I4t
HI
t«l
lt»
ISO
t$l
IS!
IS1
IS<
1SS
ISt
IS?
IS!
IS?
2tO
Itt
Itl
It]
ti(
its
itt
It7
ttl
Itt
170
in
in
t7i
lit
t?s
too
1100
1100
0
too
1 100
1100
0
too
1100
1100
0
too
1100
1100
0
too
tioo
ttoo
0
too
1100
1100
0
too
ttoo
1100
0
too
1100
1300
0
530
1JOO
0
too
ttoo
1100
0
too
itoe
1900
0
too
itoe
1100
a
too
1200
1100
0
too
1209
laoo
0
5
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
t
s
5
s
s
s
s
s
s
s
s
s
s
s
s
s
t
t
t
t
t
t
t
«
•
t
t
t
t
t
t
t
t
ft
*
t
t
t
u
18
u
19
19
1?
1?
to
20
20
20
21
21
21
21
12
22
22
22
23
23
21
21
24
24
24
24
25
2S
2$
2S
24
Z4
1?
ia
19
U
19
1?
If
1?
1?
20
20
20
20
21
21
21
21
22
22
22
22
21
Bt
96
it
at
86
It
• 6
54
tt
46
It
86
It
86
!6
96
at
at
at
at
at
at
at
at
it
at
at
tt
it
at
at
at
at
at
at
at
at
at
«t
at
at
at
at
at
at
at
at
lit
at
at
at
at
at
at
at
12.96
16.04
ia. 70
Id. 01
It. 20
18.17
20.42
19.39
17.10
16.12
15. tl
14.93
14.18
15.01
It. 20
It. 04
15.11
u. at
15.11
15.09
11.22
14.15
14.48
13.46
12.45
11.44
11.73
11.03
10.62
11.40
12.59
11. 78
10.27
17.11
15.11
14.20
It. 75
It. 27
14.41
12.lt
It. 33
It. 81
14.1?
11. St
15.08
14.46
14.lt
12.41
lt.ll
17.60
15.10
.12.31
17.22
18.89
1S.S7
0.026
0.025
0.025
0.026
0.026
0.026
0.025
0.027
0.027
0.026
0.026
0.027
0.027
0.026
0.026
0.027
0.02t
0.026
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.023
0.022
0.022
0.022
0.021
0.022
0.021
0.033
0.031
0.031
0.039
0.038
0.011
0.031
0.010
0.035
0.012
0.012
0.030
0.018
0.032
0.033
0.032
0.034
0.031
0.033
0.039
0.032
0.015
6.11
6.06
5.85
6.12
6.10
6.14
5.84
6.09
6.08
6.16
6.15
6.12
t.ll
6.17
6.14
6.09
6.01
6. 08
t.Ol
5.96
5.96
5.95
5.96
5.83
5.81
5.64
5.42
5.26
5.31
5.36
5.26
5.38
5.37
6.55
6.49
6.49
6.59
t.io
6.50
6.56
6.46
6.50
6.53
6.60
6.60
6.44
6.57
6.59
6.17
6.47
6.50
6. tO
6.33
6.46
6.51
                   UAKER 93 061736 TO

                   062686 IK 6 HR INTERVALS
BAKER bROOK 6
DBS
276
277
276
279
230
281
232
283
284
285
286
267
263
289
290
291
292
293
294
295
296
297
29S
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
326
329
330
HR
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
too
HO
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
DA
23
23
23
24
24
24
24
25 '
25
25
25
26
26
26
26
27
15
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
VR
86
86
86
36
86
86
66
' 86
86
86
86
86
86
86
86
86
86
86
66
66
66
86
86
86
86
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
86
66
86
66
66
86
86
86
86
66
86
86
86
66
86
TEMP
12.97
17.37
16.88
16.02
14.79
'18.83
18.81
16.62
14.58
14.33
15.21
13.33
12.29
15.02
16.58
13.81
16.74
15.29
13.88
17.73
19.03
17.41
15.66
19.83
20.72
18.85
17.76
18.26
18.54
17.71
17.18
17.87
18.58
17.81
17.33
19.36
20.14
18.80
18.17
20.13
20.56
17.85
15.43
19.44
20.29
17.52
15.41
19.57
20.70
17.71
15.17
18. S6
20.79
18.74
18.16
SPOON
0.034
0.042
0.039
0.035
0.035
0.037
0.033
0.045
0.036
0.034
0.033
0.036
0.037
0.034
0.044
0.037
0.035
0.035
0.035
0.035
0.035
0.036
0.035
0.034
0.036
0.038
0.038
0.035
0.035
0.036
0.037
0.036
0.036
0.039
0.037
0.035
0.036
0.037
0.037
0.035
0.037
0.039
0.038
0.036
0.038
0.040
0.039
0.036
0.039
0.041
0.041
0.038
0.039
0.043
0.042
PH COMMENT
6.56
6.40
6.61
6.50
6.49
6.25
6.52
6.55
6.53
6.77
6.65
6*62
6.61
6.75
6.65
6.57
6.41 BAKER 9C 071586 TO
6.28 072986 IN 6 HR INTERVALS
6.27
6.41
6.32
6.19
6.24
•- 6.37
6.36
6.19
6.16
6.34
6.30
6.19
6.20
6.36
6.33
6.19
6.20
6.42
6.31
6.20
6. 19
6.39
6.28
6.25
6.28
6.39
6.31
6.24
6.29
6.38
6.31
6.25
6.31
6.42
6. 36
6.24
6.20
SAKE* B«00<

OS
ill
lit
Jll
lit
315
Jit
317
311
Jit
1(0
141
lit
1*1
344
its
14t
147
ita
1*»
ISO
1S1
IS!
IS1
J54
IS!
ISt
JS7
3SJ
lit
340
Itl
HI
Itl
114
its
144
147
III
Jt»
170
171
171
171
m
175
17t
177
173
17?
1JO
lit
lit
III
lit
111

HA It
1109 1
tioo ;
0 7
too i
1:00 •>
HOO ]
0 )
too ]
tlOO :
1100
0 3
too 3
1200
1100
taoo
1 100
0
100
too
TOO
1200
tsoo
1100
2100
0
300
too
700
1100
1SOO
1130
1100
0
100
too
»00
tioo
tioo
1900
tioo
0
100
toe
too
ttoo
tsoo
ttoo
1100
0
100
too
too
ttoo
tsoo
ttoo

0 OA
IS
2S
tt
2t
tt
It
27
27
27
27
2*
2n
2>
ta
it
tt
tl
11
11
11
11
11
11
u
14
14
It
14
14
14
14
U
IS
IS
ts
ts
IS
IS
ts
ts
It
It
It
tt
It
It
tt
It
17
17
17
17
17
17
17

V*
at
at
at
at
at
at
at
at
at
at
at
tt
at
at
Bt
91
at
at
at
at
at
at
tt
at
at
at
tt
St.
it
at
at
at
at
at
at
at
at
at
tt
at
tt
tt
at
4t
at
tt
at
at
at
at
it
at
36
at
at

TCtlf
21.10
22.77
17.71
18.51
21.lt
21.15
20.8?
20.12
19.37
17.15
18.35
17.12
17.BS
IB. 02
19.12
17.03
Id. 46
17.68
It.t4
17.01
13.21
IS. 82
17.02
18. tS
ia.lt
17.51
It. 12
17.20
ta.si
19.15
17.32
11. t?
ta.tt
17.4?
It. 77
17.15
13.04
la.tt
1D.71
17.77
17. SS
17.31
17.2V
17.14
17.50
17.4?
17. sa
17.39
17.33
17.31
17.lt
17.52
IB. 04
14.11
17.55

5PCOH
0.039
0.036
0.045
0.044
0.040
0.0(0
0.043
0.044
0.040
0.033
0.038
0.033
0.038
O.Olt
0.02t
0.02?
0.02V
0.02?
0.023
0.02?
0.02?
0.029
0.023
0.029
0.02?
0.02?
0.030
0.02?
0.02?
0.02?
0.02?
0.02?
0.02?
0.010
0.011
0.011
0.010
0.030
0.02?
0.010
0.010
0.031
0.011
0.011
0.011
0.011
0.011
0.031
0.031
0.034
0.032
0.031
O.Q11
0.012
0.012
10:01 THURSDAY, HOY St 19
PH COMMENT
6.36
6.33
6.22
6.21
6.39
t.ll
6.16
6.15
6.14
t.OO
6.02
6.08
t.ll
t.ll
6.05 aAKER ?C 081286 TO
5.75 031786 IN 1 HR INTERVALS
5.72
5.91
5.74
S.75
5.95
5.7?
5.96
5.74
5.74
5.73
5.94
5.96
5.7?
5.77
5.77
5.96
5.97
5.97
5.98
t.OO
6.04
6.02
t.Ol
t.OO
t.Ol
t.OO
5.97
5.96
5.77
5.79
5.77
5.96
5.75
5.73
5.72
S.98
t.Ol
6.03
6.00
                                                                                   BAKER  BROOK
                                                                                                    10:01 THURSDAY.  MAY  5,  1988
                                                                                                     COMMENT
336
387
338
389
390
391
392
393
394
395
396
397
378
399
400
401
402
403
404
405
406
407
406
409
410
411
412
413
414
415
416
417
413
419
420
421
422
423
424
425
426
<27
428
42?
430
431
412
433
434
435
436
437
433
41?
440
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
too
900
1200
1500
1600
2100
0
300
600
700
1200
8
8
S
3
8
8
8
8
8
8
3
8
8
a
8
8
9
9
9
9
9
7
7
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
7
9
9
7
10
10
10
10
10
17
18
18
13
18
18
18
18
18
19
19
19
19
19
19
19
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
1
1
1
1
1
86
86
86
86
86
86
86
86
86
36
86
36
86
86
66
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
36
86
86
36
66
86
66
86
86
86
86
86
86
86
86
86
86
36
36
86
86
86
19.19
19.01
18.82
18.55
18.60
18.69
16.76
18,52
18.07
17.55
16.90
17.02
16.44
16.43
16.76
17.16
12.03
12.07
11.77
11.17
10.43
10.12
10.59
10.91
10.92
10.63
10.13
9.50
8.87
8.74
9.78
10.19
10.12
10.11
10.46
10.43
10.13
10.58
11.14
11.85
11.87
11.94
12.12
12.20
12.20
12.32
12.99
13.45
13.48
15.70
13.72
13.51
13.31
13.40
13.98
0.031
0.033
0.031
0.032
0.032
0.032
0.032
0.032
0.031
0.034
0.034
0.031
0.030
0.029
0.029
0.029
0.027
0.027
0.027
0.026
0.027
0.027
0.027
0.025
0.026
0.025
0.024
0.027
0.026
0.027
0.027
0.025
0.026
0.025
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
11.027
0.027
0.026
0.028
0.023
0.028
0.028
0.028
0.023
0.027
0.027
0.026
5.99
6.00
6.01
6.00
6.03
6.03
6.04
6.01
5.95
5.76
5.69
5.50
5.41
5.37
5.37
5.36
5.95
5.91
5.90
5.90
5.39
5.90
5.88
5.86
5.85
5.84
5.83
5.83
5.86
5.86
5.91
5.87
5.84
5.84
5.81
5.30
5.81
5.84
5.65
5.65
5.41
5.82
5.79
5.77
5.77
5.75
5.77
5.76
5.73
5.72
5.69
5.66
5.64
S.6?
5.70
                                                                                                     BAKER 9C 092686  TO
                                                                                                     100786 IK 5 HR INTERVALS

-------
277
BAKER BROOK 9
oas
441
442
443
444
445
446
447
448
449
(SO
451
452
4S3
454
455
456
457
453
459
460
461
462
463
464
465
466
467
463
469
470
471
472
473
474
475
476
477
47S
479
480
481
452
433
434
485
486
487
488
489
490
491
492
493
494
495
HR
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1300
2100
0
300
600
900
1200
HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
OA
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
S
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
9
9
10
10
10
10
10
VH
86
36
86
86
86
86
86
86
86
86
36
86
86
86
86
36
86
86
86
36
86
36
86
86
36
36
86
86
36
86
86
86
86
36
86
86
86
86
86
86
36
86
86
86
86
86
86
86
36
36
36
36
86
86
86
TEMP
14.56
14.58
14.34
13.72
13.06
12.31
11.96
12.31
12.61
12.44
12.50
12.50
12.41
12.00
11.92
12.66
12.86
12.64
12.53
12.56
12.57
12.52
12.49
12.65
12.87
12.83
12.77
12.64
12.27
11.64
11.14
11.22
11.67
11.34
11.29
10.49
9.64
8.39
8.65
8.76
9.01
9.32
9.13
8.73
8.20
7.61
7.33
9.30
9. 59
9.39
9.00
8.33
7.65
7.14
7.46
SPCON
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.027
0.027
0.027 -.
O.OZ7
0.028
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.023
0.023
0.028
0.028
0.028
0.028
0.028
0.027
0.027
0.027
0.028
0.027
0.028
0.028
0.028
0.027
0.027
0.027
0.027
0.027
0.028
0.028
0.027
0.032
0.032
0.032
0.032
0.033
0.032
0.033
BAKES SHOOK
OSS
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
530
581
582
583
584
585
536
587
588
5SV
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
n»
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
4200
1500
1300
2100
0
no
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10'
10
10
10
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
OA
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
IS
IS
IS
15
15
IS
IS
IS
16
Y8
86
36
86
36
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
36
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
36
86
86
86 .
86
86
86
86
86
86
86
86
86
36
86
TEMP
8.29
7.99
7.80
7.68
7.43
7.17
6.75
6.67
6.82
6.90
6.61
6.13
5.86
5.43
4.95
4.70
S.41
5.65
5.43
-0.03
-0.04
-0.06
-0.06
-0.01
-0.01
0.02
-0.01
-0.01
-0.01
0.00
0.00
-0.01
-0.01
0.02
0.00
0.02
-0.01
0.02
0.00
0.02
0.00
0.00
0.03
. 0.02
0.02
0.02
0.02
0.03
0.03
0.05
0.03
0.03
0.05
0.03
0.03
SPCON
0.034
0.035
0.034
0.034
0.036
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.029
0.032
0.031
0.024
0.034
0.025
0.024
0.025
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.026
0.027
0.027
0.026
0.027
0.028
0.027
0.028
0.023
0.027
0.026
0.026
0.028
0.028
0.023
0.028
0.023
0.028
0.029
0.023
0.027
0.028
0.023
0.028
10:01 THURSDAY, MAY 5» 1988
PH COMMENT
5.71
5.68
5.67
5.67
5.67
5.70
5.70
5.71
5.73
5.71
5.70 '
5.69
5.66
5.67
5.67
5.69
5.69
5.68
5.68
5.66
S.66
5.66
5.65
5.66
S.68
5.67
5.67
5.65
5.65
5.65
5.66
5.66
5.64
5.63
5.63
5.65
5.66
5.67
5.68
5.68
5.68
5.67
5.65
5.65
5.65
5.65
5.67
5.68
6.25 BAKER 98 100936 TO
6.21 101986 IN 3 MR INTERVALS
6.1 1
6.13
6.19
6.23
11
PH COMMENT
6.18
6.20
6.18
6.17
6.21
6.17
6.19
6.19
6.21
6.22
6.19
6.19
6.19
6.22
6.24
6.24
6.20
6.26
6.20
5.63 BAKER 9E 121186 TO
5*61 122286 IN 3 HR INTERVALS
5.56
5.60
5.62
5.64
5.62
5.65
5.62
5.64
5.64
5.67
5.62
5.64
5.63
5.64
5.62
5.59
5.59
S.62
5.62
5.60
S.S9
5.62
5.61
5.64
5.66
5.65
5.67
5.69
5.71
5.67
5.67
5.71
5.71
5.74
BAKER BROOK

OBS HR
496 1500
497 1800
498 2100
499 0
500 300
501 600
502 900
503 1200
S04 1SOO
SOS 1800
S06 2100
507 0
508 300
509 600
510 900
511 1200
512 1500
513 1300
514 2100
515 0
516 300
517 600
513 900
519 1200
520 1500
521 1800
522 2100
523 0
524 300
525 600
526 900
527 1200
528 1500
529 1800
530 2100
531 0
532 300
533 600
534 900
535 1200
536 1500
537 1800
538 2100
539 0
540 300
S41 600
542 900
S43 1200
544 1500
545 1800
546 2100
547 0
548 300
549 600
550 900

MO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

OA
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
15
IS
15
IS
15
IS
IS
16
16
16
16
16
16
16
16
1?
17
17
17

YR
86
86
86
86
86
86
86
36
86
36
86
36
86
86
86
86
86
86
86
36
86
86
36
86
86
86
86
86
86
86
86
36
86
86
86
36
36
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
Bo

TEMP
7.38
7.23
7.01
6.6S
5.76
5.30
5.04
5.79
6.02
6.00
6.19
6.21
5.96
5.65
5. S3
6.64
6.93
7.02
7.29
7.44
7.54
7.55
7.56
7.87
8.17
8.34
3.65
8.98
9.12
9.24
9.38
9.70
9.37
9.99
10.17
10.28
10.32
9.92
9.76
10.17
10.18
9.88
9.84
9.70
9.10
8.45
8.23
8.58
3.66
3.72
3.75
8.79
8.64
3.41
3.33
11
SPCON
0.032
0.033
0.031
0.032
0.033
0.031
0.032
0.033
0.033
0.032
0.032
0.030
0.032
0.032
0.033
0.034
0.033
0.033
0.032
0.033
0.034
0.033
0.033
0.033
0.033
0.033
0.033
0.034
0.034
0.034
0.034
0.034
0.034
0.035
0.034
0.034
0.033
0.035
0.033
0.033
0.033
0.034
0.034
0.034
0.033
0.034
0.033
0.034
0.033
0.033
0.034
0.034
0.034
0.034
0.034
BAKER BROOK

035 HR MO
606 300 12
607 600 12
603 900 12
609 1200 12
610 1500 12
611 1800 12
612 2100 U
613 0 12
614 300 12
615 600 12
616 900 12
617 1200 12
618 1500 12
619 1300 12
620 2100 12
621 0 12
622 300 12
623 600 12
624 900 12
625 1200 12
626 1500 12
627 1300 12
628 2100 12
629 0 12
630 300 12
631 600 12
632 900 12
633 1200 12
634 1500 12
635 1800 12
636 2100 12
637 0 12
638 300 12
639 600 12
640 900 12
641 1200 12
642 1SOO 12
643 1800 12
644 2100 12
645 0 12
646 300 12
647 600 12
648 900 12
649 1200 12
650 1500 12
651 1800 12
652 2100 12
653 0 12
654 300 12
655 600 12
656 1200 1
657 1500 1
6S3 1800 1
659 2100 1
660 0 1

OA
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
8
3
8
8
9

YR
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
36
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
37
87
87
87
87

TEMP
0.05
0.03
0.05
0.05
0.07
0.05
0.05
O.OS
0.05
0.05
O.OS
0.08
0.07
0.07
O.OS
0.07
0.07
0.09
0.07
0.09
0.11
0.07
0.09
0.11
0.11
0.11
0.13
0.13
0.13
0.13
0.16
0.14
0.14
0.16
0.14
0.18
0.13
0.16
0.14
0.16
0.1S
0.15
0.15
0.13
O.OS
0.22
a. 22
0.19
0.16
0.19
-0.04
-0.03
-0.04
-0.03
-0.03

SPCON
0.027
0.028
0.028
0.023
0.028
0.023
0.028
0.028
0.028
0.029
0.029
0.028
0.029
0.029
0.030
0.029
0.029
0.030
0.029
0.030
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.030
0.029
0.029
0.030
0.030
0.02V
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.029
0.029
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.029
0.026
0.026
0.026
0.026
0.025

PH
5.79
5.75
5.76
5.77
5.75
5.78
5.7S
5.77
5.75
5.75
5.76
5.76
5.74
5.72
5.69
5.71
5.69
5.69
5.71
5.68
5.68
5.69
5.69
5.71
5.73
5.76
5*78
5.78
5.83
5.83
5.83
5. 85
5. 85
5.90
5.89
5.87
S.87
5.38
5.89
5.90
S.91
5.91
5.93
5.93
5.93
5.92
5.92
5.90
5.93
5.96
5.94
5.94
5.97
5.95
5.92
10
3:01 THURSDAY, HAY St 1988
PH COMMENT
6.22
6.17
6.13
6.16
6.17
6. IS
6.19
6.22
6.14
6.16-
6.19
6.19
6. 15
6.22
6.26
6.21
6.22
6. 19
6.21
6.20
6.14
6.15
6.24
6.20
6.05
6.09
6.07
6.04
6.05
6.13
6.09
6.06
6.13
6. 14
6.13
6.11
6.21
6.20
6.20
6.17
6.14
6.18
6.16
6.16
6.17
6.20
6.18
6.15
6.20
6.16
6. 18
6.1?
6.17
6.19
6.17
12
10:01 THURSDAY. HAY St 1988
COMMENT


















































BAKER 9E 010837 TO
011787 IN 3 HR INTERVALS




-------
278

061
441
411
4»
444
441
444
447
64S
44?
470
471
472
471
474
475
474
477
471
47t
4*0
4
-------
279
BAKER BROOK
03S
831
832
333
384
865
886
88?
388
389
890
891
392
893
394
895
396
89?
898
899
900
901
902
903
904
90S
906
907
908
709
910
911
912
91]
914
915
916
917
918
919
920
921
922
925
924
925
926
927
928
929
950
931
9i2
933
934
935
HR
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1600
2200
400
1000
1600
2200
400
1000
1600
2200
400
1000
1600
2200
400
1000
1600
2200
400
1000
loOO
2200
400
1000
1600
2200
400
1000
1600
2200
400
HO
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
II
11
11
11
11
DA
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
3
8
8
8
9
9
9
9
10
10
10
10
11
YR
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
37
87
87
87
87
87
87
87
87
87
87
8?
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
TEHP
15.90
16.37
15.66
14.43
13.31
12.35
12.49
14.15
16.13
16.38
16.47
15.63
14.60
13.77
13.50
14.57
14.58
14.86
14.55
14.23
13.64
13.43
13.34
13.51
4.32
5.49
5.70
6.08
6.88
7. It)
6.88
7.H
7.60
0.97
5.79
4.82
4.27
3.29
2.32
1.82
1.69
1.44
1.10
1.35
1.77
2.28
2.87
3.25
3.80
3.34
3.51
3.04
2.70
2.28
1.94
SPCOS
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.024
0.02S
0.025
0.025
0.025
0.025'
0.025
0.025
0.025
0.025
0.026
0.025
0.026
0.026
0.025
0.026
0.025
0.031
0.030
0.030
0.031
0.031
0.030
0.031
0.030
0.030
0.030
0.030
0.030
0.030
0.031
0.030
0.031
0.031
0.031
0.032
0.031
0.031
0.030
0.031
0.031
0.031
0.032
0.031
0.033
0.031
0.030
0.031
17
PH COHHEHT
5.73
5.63 -
5.64
5.66
5.70
5.72
5.74
5.77
5.72
5.65
5.64
5 . 66 ;
5.70
5.73
5.75
5.80
5.75
5.72
5.70
5.71
5.72
5.68
5.65
5.63
5.96 BAKER 11038? 10 111787
5.96 IN 6 HR INTERVALS
5.94
5.96
6.02
5.99
6.00
6.00
5.98
6.03
6.09
6.08
6.13
6.15
6.13
6.18
6.20
6.17
6.20
6.17
6.20
0.09
6.08
6.12
6.09
6.09
6.10
6.12
6.12
6.10
6.11

-------
280
ROCKY SHOOK 1

Cli
1
I
1
*
i
t
»
i
»
IS
11
12
U
U
1)
u
tr
11
IT
19
11
21
It
It
«
It
17
II
If
IS
11
U
JJ
J(
11
It
17
11
If
CO
(1
tt
o
u
(»
u
O
(i
(»
10
11
I/
u
It
11

X*
1400
1JCO
2990
2230
0
K3
(09
«00
109
1999
1290
1103
1409
1109
2009
1109
9
109
too
490
108
1009
1200
itoo
S490
1109
2009
2109
0
200
too
430
100
1090
1299
H99
1409
1199
2999
2139
9
239
tag
490
139
1999
1209
1(99
1489
1(39
2901)
ttao
9
209
(09

110
11
11
11
11
It
11
11
11
11
11
11
11
11
11
11
It
11
It
11
11
11
11
It
11
11
11
11
It
11
11
It
11
11
11
11
tt
11
tt
It
It
11
11
11
It
It
11
11
11
It
11
11
II
It
It
It

5ft
IS
IS
IS
IS
14
16
16
16
16
14
14
14
16
16
14
16
17
17
17
t7
17
17
17
17
17
17
17
17
19
13
li
It
IS
11
U
It
u
tl
11
11
1?
If
11
If
If
If
If
If
If
If
IV
if
29
20
29

YR
as
is
is
is
as
us
as
IS
IS
85
8i
as
is
is
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
is
as
as
as
as
as
as
as
as
as
as
IS
as
as
IS
as
as
as

TEHP
2.69
2. S3
2.33
2.21
2.12
2.02
I.a2
1.S7
t.(9
1.70
2. OS
2.29
2.33
2.19
2.02
2.00
2.12
2.20
2.17
1.19
1.90
2.16
2.50
2. at
2.7t
2. S3
2.28
2.21
2.33
2. SO
2.SS
2.39
2.21
2.3t
2.76
3.03
3.03
3.02
3.00
2.94
2.31
2.40
2. (4
2.39
2.39
2. S3
2.90
3.21
3.t2
3.SS
1.72
3.V2
(.06
(.11
t.21

SPCOH
0.027
0.023
0.023
0.027
0.028
0.027
0.027
0.027
0.028
0.028
0.028
0.023
0.023
0.029
0.028
0.028
0.028
0.028
0.023
0.027
0.027
0.027
0.028
0.028
0.028
0.028
0.028
0.027
0.026
0.026
0.026
0.027
0.024
0.026
0.027
9.026
0.024
0.026
0.02S
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.027
0.030
0.029
0.028
0.023
0.026
0.027
0.026
10:03 THURSDAY. MAY Si 1933
PH COMMENT
S.68 ROCKY 90 1US8S TO
5.64 1120S5 IN Z HR INTERVALS
S.60
S.60
S.S9
S.S8
5.57
5.SS
S.SS
s.st
S.S<
s.st
S.S2
5.52
S.S2
5.51
S.52
5.51
5.53
5.53
5.52
5. SO
5. S3
5.55
5.55
5.55
5. S3
5.53
S.51
5.55
s.st
S.SS
S.S6
5. S3
5.56
S.SS
5. S3
5.57
5.59
5.58
S.S6
5.58
s.st
S.SS
5.53
5.55
s.st
s.st
s.st
5.53
5.55
5.52
5. S3
S.S3
S.S1
9«S
111
it:
it)
ut
us
114
it;
in
ID
1:9
ut
ut
Ul
in
its
K*
It?
tt<
It*
1)9
lit
lit
11)
131
IIS
tit
137
111
in
1(0
1(1
i(t
I(>
ut
1<5
1(4
1(7
ui
1 ja
III
IS?
m
lit
Ul
lit
II?
Ill
IJf
110
141
14{
Ul
Itt
Itl
H» n3 CA
1230 11 f
1430 11 f
2330 It f
9 11 19
(90 It 10
130 It 10
U80 It 19
1409 It 19
1039 It 10
9 11 11
(99 It 11
199 It 11
1199 It 11
1199
!499
2009
9
(09
199
1290
1199
1999
g
(99
100
1199
1390
9
490
1109
1199
9
409
1199
1109
0
400
1199
1190
A
499
1303
0
409
UOO
1*39
9
409
1 1«9
1199
0
499
1199
1109
tl
11
tl
tt
21
tt
It
11
11
11
1)
13
13
39
31
31
31
11
1
I

1
2
1
2
2
3
t
^
t
4
S
S
S
S
4
4
4
4
0(7
V*
IS
IS
IS
as
as
as
as
as
is
as
as
is
as
14
14
14
86
86
14
14
14
14
34
84
16
36
86
86
34
16
86
16
16
86
14
34
16
16
84
84
34
84
84
at
86
86
14
14
14
86
50
14
14
114
ROCKY MROOK
TEMP SPCON PH
O.OS 0.027 5.91
0.23 0.025 5.98
O.OS 0.026 5.99
0.03 0.025 5.96
0.03 0.026 5.92
O.OS 0.027 5.91
0.93 0.026 5.91
0.07 0.025 6.00
O.OS 0.025 6.01
0.07 0.026 6.03
O.OS 0.026 6.06
0.97 0.026 6.07
0.12
0.22
0.17
0.16
0.16
9.16
0.15
0.16
9. IS
9.12
9.15
0.11
0.11
0.20
1.05
0.22
o.ot
1.47
2. It
o.st
-o.ot
1.62
2.79
l.Vt
0.7S
1.62
2.45
O.SS
3.7(
3.91
I.(S
2.97
(.17
3.63
1.64
2.97
(.99
3.12
1.41
3.33
(.03
t.ot
0.026
0.027
9.026
0.025
0.025
0.025
0.025
0.025
0.026
0.026
0.02S
0.026
0.026
0.028
0.022
0.020
0.019
0.017
0.019
0.019
0.019
0.019
0.019
0.017
0.020
0.020
0.020
0.018
9.019
0.018
0.018
0.019
0.019
0.019
0.019
0.019
9.919
0.919
0.019
0.019
0.020
0.020
0.019
6.07
$.77
S.t7
S.tl
5.39
5.33
5.29
5.21
5.22
5.20
5.21
5.25
5.16
S.25
5.65
S.(8
5. (3
5.47
S.tl
5.43
5.43
5.42
S.tl
5.43
5.47
5.49
5.47
S.48
S.S2
5.11
5.77
S.10
5.63
5.62
5.77
5.32
S.66
5.64
5.82
5.85
5.63
5.70
5.79
3
10103 THURSDAY? HAY S? 1983
COMMENT

ROCKY 7A 012186 TO
012386 IN 4 HR INTERVALS










ROCKY 9E 033086 TO
040386 IN 6 HR INTUEVALS











ROCKY 9B 040386 TO
Otlt86 IN 6 HR INTERVALS













ROCKY BROOK 2

OBS
56
57
S3
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
32
83
84
85
86
87
33
89
90
91
92
93
94
95
96
97
9«
99
100
101
102
103
lot
105
106
107
108
109
110

HR
600
300
1600
1900
2200
100
too
700
1000
1300
1600
1900
2200
100
400
700
1000
1300
1600
1900
2200
100
too
700
1000
1300
1600
1900
2200
100
400
700
1000
2000
0
400
300
1200
1600
2000
0
too
300
1200
1600
2000
0
400
800
1200
1600
2000
0
too
800

HO
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

OA
20
20
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
5
6
6
6
6
6
7
7
7
7
7
7
8
8
S
S
8
3
9
9
9

YR
85
85
85
85
85
85
85
85
85
35
35
85
85
85
35
85
85
85
85
85
85
85
85
•85
85
85
85
85
85
85
85
35
85
35
35
35
US
85
85
85
85
85
85
85
85
35
85
85
85
85
85
85
85
85

TEHP
4.28
4.33
4.31
4.37
4.05
3.70
3.19
2.66
2.39
2.56
2.55
2.39
1.89
1.97
2.14
2.16
2.16
2.39
2.34
2.05
.71
.73
.57
.51
.78
.19
.25
.97
.63
.39
.23
.17
0.93
0.27
0.10
0.18
0.43
0.60
0.25
0.12
0.12
0.05
0.05
0.13
0.27
0.17
0.25
0.32
0.74
0.81
0.59
0.34
0.15
0.05

SPCON
0.027
0.027
0.026
0.026
0.027
0.027
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.027
0.027
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.027
0.025
0.026
0.025
0.025
0.026
0.025
0.026
0.025
0.026
0.025
0.026
0.025
0.026
0.025
0.026
0.026
0.025
0.026
0.026
0.03U
0.031
0.029
0.030
0.031
10:03 THURSDAY, HAY 5, 1983
PH COMMENT
5.53
5.56
5.69 ROCKY' 9D 112185 TO
5.58 112585 IN 3 HR INTERVALS
5.54
5.50
5.49
5.49
5.45
4.46
5.39
5.37
5.34
5.35
5.34
5.33
5.32
5.33
5.32
5.33
5.34
5.35
5.35
5.35
5.36
5.37
5.40
S.tl
5.41
5.43
5.43
5.43
S.tl
5.65 ROCKY 9D 120585 TO
5.57 121185 IN 4 HK INTERVALS
5.59
5.62
5.64
5.67
5.72
5.71
5.71
5.73
5.76
5.78
5.82
5.32
5.35
5.39
5.39
5.91
5.92
5.94
5.95
ROCKY BROOK t

DBS
166
167
168
169
170
171
172
173
17t
175
176
177
173
179
180
181
132
183
184
185
186
187
183
139
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
213
219
220

HR
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600

HO
4
t
t
t
t
4
4
4
4
4
4
4
4
4
4
4
4
4
t
t
t
t
t
t
t
t
4
4
4
4
4
t
t
t
4
t
4
4
4
4
4
t
t
4
4
4
4
4
4
t
t
4
4
4
4

DA
7
7
7
8
8
3
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
17
17
18
18
18
13
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
25
23

YR
36
86
86
36
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86

TEHP
2.37
1.73
1.72
1.46
1.26
1.49
1.43
1.37
1.12
1.53
2.21
2.22
1.64
2.31
3.02
2.89
2.41
2.80
3.33
3.19
2.51
2.80
4.10
4.08
2.68
4.69
6.24
6.03
4.11
S.SS
6.61
8.04
9.13
8.09
6.93
8.83
9.24
7.40
6.38
8.31
9.07
6.91
5.59
3.39
• 10.14
8.20
7.08
7.S6
7.96
7.43
6.5?
7.03
7.65
7.19
5.74

SPCON
0.019
0.020
0.019
0.020
0.020
0.020
0.021
0.024
0.021
0.021
0.021
0.021
0.023
0.022
0.022
0.022
0.021
0.021
0.021
0.021
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.020
0.021
0.022
0.022
0.019
0.022
0.022
0.022
0.020
0.022
0.022
0.022
0.022
0.022
0.023
0.023
0.021
0.021
0.022
0.021
0.023
0.023
0.020
10:03 THURSDAYi HAY 5, 1988
PH COMMENT
5.89
5.90
5.87
5.90
S.82
5.89
S.82
5.77
5.73
5.71
5.70
5.65
5.65
5.67
5.66
5.64
5.62
5.63
5.53
5.70
5.68
5.71
s.st
5.68
5.82
5.51
5.47
5.68
S.7S
5.69
S.54
5.65 ROCKY 9C 041786 TO
5.80 042886 IN 6 HR INTERVALS
5.72
5.73
S.71
5.69
5.70
5.70
5.70
S.67
5.70
5.74
5.72
5.71
5.75
5.81
5.79
S.77
5.74
5.70
5.63
5.51
5.41
5.39

-------
                                                    281
ROCKY BROOK
OBS
221
222
223
224
225
226
227
224
229
230
231
232
233
234
23S
236
237
233
23V
240
241
242
243
244
245
246
247
245
249
250
251
252
253
254
255
256
257
256
259
260
261
262
263
264
265
266
267
263
26V
270
271
272
273
274
275
HR
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
laoo
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
HO
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
S
S
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
DA
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
28
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10
VR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
Si
86
86
86
86
86
86
86
26
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
it
86
86
86
TEMP
5.29
5.15
4.85
4.25
4.68
S.51
5.31
5.61
6.05
6.44
6.74
6.66
7.76
8.62
8.70
8.05
8.58
10. 54
10.54
9.51
12.01
13.90
12.05
11.69
11.92
11.59
10.07
8. 74
8.58
9.29
7.73
6.32
7.33
8.65
7.17
6.66
7.06
7.69
7.41
6.77
7.26
3.69
8.22
7.62
' 8.38
9.46
9.08
8.22
8.01
V.S2
8.36
6.V2
8.39
11.06
9.33
SPCON
0.020
0.021
0.022
0.023
0.022
0.022
0.023
0.022
0.021
0.022
0.022
0.022
0.021
0.021
0.022
0.021
0.022
0.020
0.021
0.021
0.023
0.023
0.023
0.022
0.023
0.023
0.021
0.023
0.023
0.023
0.023
0.026
0.023
0.022
0.022
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.020
0.023
0.023
0.024
0.023
0.024
0.022
0.024
0.023
0.023
0.023
10:03 THURSDAY, MAY 5, 198
PH COHMENT
5.58
5.35
S.3S
5.36 '
5.38
5.33
5.33
5.36
5.36
5.33
5.35
5.33
5.34
5.30
5.32
5.34
5.32
5.29
5.33
5.34
5.49 ROCKY 9C 050186 10
5.63 051386 IN 6 HR INTERVALS
5.64
5.69
5.72
5.75
5.73
5.73
5.74
5.72
5.72
5.77
5.77
5.73
5.75
5.76
5.79
1.74
5.76
S.77
5.80
5.76
5.76
5.78
5.85
5.75
5.74
5.79
5.80
5.75
5.78
5.80
5.82
5.74
5.79
ROCKY BROOK 6
095
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
303
309
310
311
312
313
314
315
316
317
313
319
320
321
322
323
324
325
326
327
328
329
330
HR
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
1800
0
600
1200
1300
0
600
1200
1300
0
400
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
no
S
S
5
5
5
5
S
S
5
5
S '
5
5
5
5
6
6
o
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
DA
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
5
£
6
6
6
7
7
7
7
8
8
S
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
15
15
IS
YR
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
TEBP
7.48
9.69
12.14
10.33
8.36
10.22
12.57
10.58
9.38
9.74
10.68
9.67
8.53
10.19
22.43
17.78
16.94
15.76
16.87
18.60
17.08
15.56
15.88
16.65
16.53
15.36
15.36
16.51
15.25
13.23
15. 39
17.93
16.31
15.38
15.37
16.55
15.02
13.49
14.12
15.03
13.81
12.71
12.42
12.59
12.48
12.23
13.69
15.62
15.17
13.67
15.44
17.63
16.90
15.01
16.51
SPCON
0.024
0.024
0.023
0.024
0.024
0.023
0.023
0.025
0.025
0.025
0.024
0.024
0.025
0.024
0.026
0.024
0.025
0.024
0.02S
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.025
0.026
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.028
0.027
0.026
0.026
0.028
0.027
0.027
PH COHKENT
5.80
5.81
5.7V
5.81
5.84
5.84
5.31
5.85
5.85
5.86
5.82
5.84
5.87 ABOVE PH VALUES DIFFER
5.88 BY " .4 H UNITS FROM
5.72 050886 SAMPLING RD.
6.05 ROCKY 7A 060586 TO
6.03
6.11
6.09
6.07
6.09
6.11
6. 11
6.06
. 10
. 14
.11
.'12
.07
.10
.12
.10
.09
.10
6.12
6.09
6.10
6.16
6. IS
6.12
6.15
6.18
6.15
6.16
6.18
6.17
6.15
6.14
6. 13
6.17
6.15
6.14
6. IS
6.24
ROCKY  BROOK
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
353
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
373
379
380
331
382
3S3
334
335
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
1800
0
600
1200
iaoo
0
600
1200
1800
0
600
1200
1800
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
15
16
16
16
1
2
2
2
2
3
3
3
3
4
4



6
6
7
7
7
7
8
8
8
8
9
9
V
9
10
10
10
10
11
IS
16
16
16
16
17
17
17
17
18
18
16
18
86
86
86
86
• 36
86
86
86
86
86
86
36
86
36
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86'
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
17.76
17.24
16.53
15.46
IS. 28
14.23
13.15
13.55
12.98
12.73
12,21
12.91
15.39
13.40
12.92
14.09
14.98
14.40
14.14
14.86
14.83
14.74
13.95
14.77
15.32
15.06
14.46
14.51
15.54
15.53
14.74
16.83
19.23
17.37
16.87
18.17
19.79
17.72
IS. 43
16.16
17.08
16.06
15.69
14.84
13.27
15.06
16.68
16.40
15.09
16.90
18.00
17.55
17.07
17.01
17.12
0.027
0.023
0.023
0.027
0.034
0.036
0.036
0.034
0.034
0.027
0.030
0.027
0.027
0.027
0.02S
0.028
0.030
0.028
0.027
0.030
0.029
0.029
0.026
0.029
0.030
0.029
0.026
0.026
0.025
0.025
0.026
0.025
0.026
0.027
0.026
0.025
0.026
0.027
0.025
0.026
0.027
0.026
0.029
0.027
0.028
0.026
0.027
0.028
0.028
0.027
0.028
0.029
0.029
0.027
0.027
6. 18
6.22
6.25
6.31
6.69
6.65
6 .64
6.68
6.62
6.61
6.56
6.59
6.52
6.48
6.48
6.48
6.41
6.35
6.35
6.39
6.33
" 6.26
6.30
6.36
6. 52
6.29
6.23
6.16
6.11
6.08
6.07
6.12
6.07
6.08
6.07
6.14
6.09
6.11
6.13
6.21
6.17
6.19
6.42
6.38
6.40
6.38
6*34
6.32
6.32
6.56
6.16
6.37
6.36
6.37
6.37
                 10:03 THURSDAY, HAY S,  1988
                  COMMENT
                  ROCKY 2036 070186  TO
                  071086 IN 6 HR  INTERVALS
                 ROCKY 98 071586  TO
                 072986 IN 6 HR INTERVALS
ROCKY BROOK „
DBS
386
337
383
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
<09
410
411
412
413
414
415
416
417
418
419
420
421
422
425
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
HR
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
no
7
7
7
7
7
7
7
7
7
7
• 7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
OA'
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
23
28
28
27
27
2B
28
28
28
28
29
28
28
29
29
29
29
29
YR
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
36
86
86
TEHP
16.75
16.35
16.65
17.33
17.54
17.32
18.16
19.35
18.68
18.19
18.90
19.10
17.20
14.83
16.45
17.39
16.23
14.64
16.69
17.78
16.31
14.44
16.36
17.53
17.15
17.05
18.65
19.64
18.47
17.56
19.18
20.15
19.39
19.11
18.71
18.34
17.82
17.71
18.55
18.84
11.92
12.89
12.86
12.34
11.94
11.18
10.26
9.96
10.71
11.84
11.90
11.10
10.05
9.21
8.54
SPCON
0.029
0.027
0.027
0.027
0.027
0.026
0.02S
0.026
0.027
0.027
0.027
0.028
0.028
0.028
0.028
0.028
0.028
0.029
0.028
0.029
0.029
0.030
0.029
0.029
0.031
0.031
0.029
0.030
0.031
0.032
0.030
0.032
0.031
0.031
0.031
0.029
0.029
0*028
0.027
0.026
0.023
0.023
0.025
0.023
0.023
0.021
0.023
0.023
0.023
0.024
0.023
0.023
0.025
0.024
0.024
10:03 THURSDAY, BAY 5, 1988
PH COnHENT
6.34
6.34
6.36
6.22
6.21
6.25
6.11
5.95
6.36
6.28
6.20
6.22
6.32
6.34
6.35
6. 32
6.31
6.34
6. 35
6.30
6.28
6.31
6.37
6.34
6.34
6.32
6.37
6.12
6.32
6.32
6.34
6.09
6.27
6.2S
6.28
6.30
6.27
6.22
6. 16
6.12
6.24 ROCKY 90 092786 TO
6.07 100786 IN 3 HR INTERVALS
5.97
5.97
5.98
6. OS
6.07
6*06
5.94
5.84
5.90
S.96
5.98
5.95
5.94

-------
                                                                      282
                  ROCKY  SHOOK
Oil
((1
(41
((}
(((
((1

(47

((t
(19
(It
(12
(11
(K
(II
(It
(17
(II
(it
(19
(11
(12
(tl
4*4
(11
(tt
(17
(11
(It
(70

(72
(71
(74
(71
(71
(77
(71

(19
(11
(12
(11
(14
(11
(tl
(17
(It
(It
(99
(tl
492
(tl

(tl
H«
1103
1809
2199
0
100
199
t09
1209
1189
1109
2199
0
100
199
too
1209
1199
1109
2199
9
109
199
190
1209
1199
1109
2109
0
too
109
109
1299
1109
UOO
1109
9
100
109
too
1100
1199
1199
2199
9
109*
109
103
1299
1190
1109
1100
0
109
too
109
MO
9










10
10
10
to
19
10
to
to
10
10
10
10
10
19
to
10
19
10
10
10
10
10
10
10
19
10
10
10
19
19
19
19
10
10
to
10
10
10
10
19
10
10
19
19
OA
29
29
29
19
19
19
10
10
10
30
10
1
1
1
1
1
t
1
1
2
2
2
2

2
2
2
1
1
1
1
1
3
1
1
I
4
4
4
4 "
(
4
4
S
1
I
S
S
S
1
1
t
4
t
1
VR
81
81
at
81
at
81
81
81
81
•SI
it
86
36
at
81
It
at
at
81
at
31
81
81
at
at
at
81
16
81
81
86
at
at
at
at
16
86
at
at
at
at
81
81
at
81
81
11
at
81
81
at
at
at
(it
81
TEnr
8.41
9.70
11.22
11. (0
11.11
10.87
10.79
10.41
. 10.78
11.31
12.21
12.53
12.16
12.13
12.62
12.51
12.73
11.15
14.00
14.27
14.26
14.12
11.95
13.87
14.10
14.56
14.99
14.32
13.40
12.10
11.93
11.21
11.26
12.25
13.10
13.30
13.27
11.04
12.73
12.17
11.94
12.71
13.46
13.63
13.46
13.17
12.91
12.80
12.78
12.93
13.31
13.31
13.00
12.59
12.13
SPCON
0.023
0.023
0.022
0.023
0.023
0.024
0.024
0.024
0.024
0.022
0.025
0.024
0.024
0.025
0.025
0.925
0.924
0.024
0.024
0.024
0.025
0.025
0.025
0.02S
0.024
0.024
0.024
0.02S
0.02S
0.024
0.025
0.025
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.023
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.024
0.024
0.025
0.024
0.024
0.024
PH
S.91
5.92
5.88
5.87
5.88
5.86
5.87
5.89
5.91
5.98
5.77
5.87
5.88
5.88
5.89
5. 67
5.87
5.87
5.82
5.79
5.81
5.79
5.78
5.78
5.05
5.86
5. as
5.86
5.90
5.88
5.87
5.88
5.88
5.83
5.84
5.88
5.90
5.89
5.90
5.90
5.94
5.91
5.86
5.88
5.90
5.94
5.94
5.96
5.93
S.91
5.88
5.38
5.91
5.92
5.91
                                   10:03 THURSDAY. HAY 5«
                                                COMMENT
                   ROCKY  88001;
no   o»   »«   uiir
                                    10103 THURSDAYi MAV 5> 1988
                                     COMMENT
lit
III
»11
IK
IIS
ill
117
MS
lit
119
111
112
111
III
lit
117
111
173
171
171
JJJ
»7(
171
J77
171
17 »
119
lit
112
111
ll(
ill
lit
117
111
lit
170
lit
112
111
11$
lit
117
ill

too
tot

191
19 1
i91
too
193
1190
1100
1199
1109
0
100
199
109
1103
1109
1100
2100
0
199
tag
109
1290
1199
1109
2109
0
199
too
199
1200
1100
1109
2100
0
199
too
109
1209
1199
1109
1199
2199
9
100
too
199
1299
1109
1109
1199
g
300
too
too
1209
1100
1109
1109
19
19
19
10
10
19
19
19
10
19
19
19
10
10
10
10
10
10
10
19
19
19
19
19
10
19
10
10
19
10
10
10
to
19
19
10
19
12
12
12
12
12
12
12
12
11
12
12
U
tl
12
12
12
12
12
11
IS
11
11
11
tl
11
11
It
It
tt
It
11
It
17
17
17
17
17
17
17
17
tl
11
11
11
tt
11
11
11
11
It
11
11
11
11
2
2
1
1
1
1
1
1
1
3

I
4
(

4
I
It
It
at
it
at
it
it
it
81
at
it
at
81
at
81
at
at
81
11
at
it
81
It
tt
at
it
at
tt
91
tt
at
81
81
at
at
at
it
at
it
at
at
at
at
tt
at
it
at
tt
at
41
at
at
at
at
il
10.12
9.63
9.13
10.12
9.99
y.tt
9.41
1.95
1.21
7.72
1.49
9.10
9.53
9.50
9.25
a. 9t
1.15
1.42
1.41
1.43
8.22
8.00
7.75
7.49
7.09
1.17
7.11
7.41
7.34
1.S2
5.71
S.14
4.70
(.51
5.41
4.74
7.01
9. 55
9.15
9. 38
0.62
0.89
1.01
1.01
1.14
0.87
o.ts
0.31
9.27
0.19
0.41
0.73
o.ai
0.71
O.tl
0.027
0.027
0.021
0.026
0.021
0.026
0.021
0.027
0.025
0.926
0.926
9.025
0.026
0.026
0.025
0.021
0.021
0.025
0.026
0.025
0.025
0.026
0.025
0.026
0.025
0.925
0.026
0.025
0.026
0.021
0.026
0.026
0.026
0.026
0.025
0.021
0.026
0.028
0.028
0.026
0.026
0.021
0.025
0.025
0.025
0.023
0.022
0.023
0.023
0.022
0.023
0.024
0.023
0.023
0.024
5.93
5.95
5.97
5.96
5.97
5.96
5.92
5.91
5.91
5.93
S.93
5.41
5.90
5.90
5.89
5.90
5.89
5.91
5.92
5.90
5.92
5.92
5.92
5.93
5.94
5.95
5.95
5.91
5.95
5.95
S.97
5.98
5.98
6.00
6.00
5.97
5.9S
5.71
5.68
5.67
S.66
5.66
5.17
5.12
5.47
5.19
5.29
5.13
5.05
5.01
5.01
4.99
4.48
(.97
S.OO
                                       ROCKY  2035  120286 TO
                                       121686 IN 3 HR  INTERVALS
MUCKY BKOUK
DBS
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
HR
1200
1500
1800
2100
0
300
600
900
1200
1500
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
OA YR
6 86
6 86
6 86
6 86
7 86
7 86
7 86
7 86
7 86
7 86
7 86
9 86
9 86
10 86
10 86
10 86
10 86
10 86
10 86
10 86
10 86
11 86
11 86
11 86
11 86
11 86
11 86
11 86
11 86
12 86
12 36
12 86
12 86
12 86
12 86
12 86
12 86
13 86
13 86
13 86
13 86
13 86
13 86
13 86
13 86
14 86
14 86
14 86
14 86
14 86
14 86
14 86
14 86
IS 86
15 86
TEMP
11.46
10.99
11.44
12.08
11.98
11.22
10.31
9.64
9.18
9.26
9.87
9.54
9/22
8.75
8.13
7.41
6.93
7.25
7.99
7.95
7.34
6.67
5.94
5.34
5.06
5.97
7.23
7.S2
7.56
7.22
6.58
6.00
S.70
6.75
8.00
8.44
8.56
8.33
7.99
8.01
8.13
8.52
a. 97
9.18
9.32
9.39
9.37
9.38
9.49
9.73
10.05
10.21
10.52
10.54
. 10.59
10
SPCON PH COMMENT
0.024 5.90
0.024 5.91
0.024 5.88
0.024 5.90
0.024 5.39
0.024 S.85
0.023 5.93
0.022 5.85
0.023 5.86
0.022 5.86
0.024 5.81
0.026 6.13 ROCK
0.026 6.15 1019
0.026 6.18
0.026 6.14
0.026 6.14
0.027 6.15
0.026 6,11
0.026 6.08
0.026 6. OS
0.027 6.05
0.026 6.04
0.028 6.02
0.026 6.01
0.027 6.01
0.027 6.02
0.026 S.99
0.026 5.97
0.027 5.97
0.026 5.93
0.027 5.93
0.027 5.97
0.026 5.98
0*026 6.00
0.026 5.97
0.027 5.95
0.026 5.95
0.026 5.97
0.027 S.96
0.026 5.96
0.026 S.97
0.026 5.97
0.026 S.V8
0.02S 5.94
0.026 5.96
0.026 5.91
0.026 5.91
0.026 S.92
0.027 5.95
0.026 5.97
0.027 S.94
0.027 5.92
0.026 5.94
0.026 5.93
0.026 5.93
ROCKY BROOK
10:03


OBS
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
HR
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
ISOO
1800
2100
0
300
600
900
1200
1500
1800
no
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
DA YR
5 86
5 86
5 86
5 86
5 86
5 86
5 86
5 36
6 86
6 86
6 86
6 86
6 86
6 86
6 86
6 86
7 86
7 86
7 86
7 86
7 86
7 86
7 86
7 86
8 86
8 86
8 86
8 86
86
86
86
86
86
86
86
86
86
86
9 86
9 86
10 86
10 86
10 86
10 86
10 86
10 86
10 86
10 86
11 86
11 86
11 86
11 86
11 86
11 86
11 86
TEMP SPCON
0.51 0.023
0.40 0.025
0.29 0.024
0.31 0.023
0.60 0.024
0.80 0.024
0.58 0.023
0.40 0.023
0.15 0.023
-0.01 0.023
-0.10 0.022
-0.10 0.023
0.26 0.023
0.57 0.023
0.68 0.024
0.57 0.023
0.38 0.023
0.11 0.023
-0.10 0.023
-0.16 0.023
0.12 0.024
0.35 0.024
0.35 0.023
0.24 0.025
0.57 0.02!
0.40 0.023
-0.15 0.023
-0.15 0.023
-0.17 0.023
-0.17 0.023
-0.17 0.022
-0.14 0.023
-0.12 0.023'
-0.11 0.023
-0.14 0.024
-0.15 0.024
-0.17 0.024
-0.19 0.024
-0.17 0.025
-0.17 0.026
-0.17 0.02S
-0.17 0.025
-0.17 0.024
-0.17 0.024
-0.19 0*025
-0*21 0.024
-0.22 0.025
-0.22 0.024
-0.22 0.025
-0.21 0.023
-0.19 0.024
-0*17 0.024
-0.17 0.023
-0.15 0.024
-0.16 0.024











9E 100986 TO
6 IN 3 HR INTERVALS










































12
THURSDAY! HAY Si 1988
PH COMMENT
S.OO
5.01
5.04
5.06
5.09
5.07
5.07
5.07
5.10
5.11
5.11
5.14
5.17
5.16
5.16
5.15
5.18
5.19
5.20
S.22
5.23
5.22
5.21
5.25
S.28
5.28
5.26
5.35
5.36
5.38
5.35
5.34
5.39
5.40
5.38
5.37
5.37
S.39
5.39
5.39
5.33
5.40
5.40
5.41
5.43
5.44
5.47
5.48
5. 51
5.51
5.52
5.52
5.53
5.5}
5.52

-------
283
ROCKY 8KOOK 13

085
661
662
663
664
66S
666
667
663
669
670
671
672
673
674
67S
676
677
673
679
630
681
632
683
634
635
636
687
633
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
70J
709
710
711
712
713
714
715

MR
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
300
600
900
1200
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300

HO
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

DA
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
15
IS
15
15
15
15
rs
16
16
16
16
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25

YR
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
36
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
36
86
86
86
86
86
36
86
86
86
86
86
86
86

TEMP
-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.14
-0.09
-0.07
-0.13
-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.17
-0.16
-0.16
-0.16
-0.16
-0.16
-0.16
-0.14
-0.16
-0.17
-0.14
-0.07
0.00
-0.03
-0.04
-0.20
-0.16
-0.20
-0.20
0.17
0.17
0.23
0.14
0.19
0.14
0.21
0.24
0.21
0.11
0.05
0.00
0.02
O.OS
0.11
0.02
-0.01

SPCON
0.024
0.024
0.023
0.024
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.024
0.024
0.024
0.023
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.024
0.021
0.020
0.021
0.021
0.020
0.021
0.021
0.020
0.021
0.021
0.021
0.020
0.021
0.020
0.021
0.020
0.021
10103 THURSDAY* HAY St 1988
PH COMMENT
5.54
5.54
5.56
5.58
5.59
5.60
5.60
S.62
S.64
5.66
5.66
5.65
5.62
5.61
S.60
5.59
5.57
5.57
5.56
5. S3
5.53
5.53
5.59
5.61
5.64
5.67
S.67
5.68
5.69
5.73
5.72
5.72
5.74
5.76
5.73
5.71
5.70
5.S6 ROCKY 7A 122386 TO
5.92 010687 IN 3 HR INTERVALS
5.96
5.93
5.93
5.91
5.91
5.92
5.91
5.91
5.89
5.88
5.37
5.87
5.83
5.76
5.55
                             ROCKY BROOK
                                                                   U
                                             10:05 THURSDAY* HAY  5» 1988
                                         SPCON     PH    COMMENT
ROCKY 9ROOK IS
10:03 THURSDAY, MAY St 1988
oas
771
772
773
774
775
776
777
778
779
780
781
782
733
734
785
786
787
788
789
790
791
792
793
794
795
796
797
793
799
800
801
802
803
804
805
806
807
60S
309
810
Bit
812
313
814
815
816
817
818
S19
820
821
322
623
534
S2S
HR no DA
1800 1 1
2100 1 1
01 2
300 1 2
600 1 2
900 1 2
1200 1 2
1500 1 2
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
S
5
5
5
6
6
6
6
6
6
6
8
8
8
8
9
9
9
9
9
9
V
9
10
10
YR
37
S7
S7
87
47
87
37
»7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
«7
87
37
87
87
87
37
T£MP
0.00
0.00
0.00
-0.01
0.08
0.23
0.26
-0.01
0.00
0.00
0.02
0.00
0.00
0.02
O.OS
0.03
0.03
0.02
0.02
0.00
0.00
0.02
0.03
0.03
0.00
-0.01
0.00
0.00
. 0.02
0.02
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.03
-0.09
-0.09
-0.06
-0.09
-0.14
-0.15
-0.15
-0.14
-0.15
-0.19
-0.19
-0.20
-0.21
-0.15
SPCON
0.020
0.020
0.021
0.020
0.020
0.020
0.020
0.020
0.019
0.021
0.021
0.021
0.021
0.021
0.021
0.020
0.021
0.020
0.021
0.021
0.021
0.021
0.022
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.020
0.020
0.021
0.021
0.021
0.022
0.022
0.022
0.021
0.021
0.022
0.023
0.023
0.022
0.022
0.022
0.022
0.022
0.022
PH COMMENT
5. 56
S.58
5.62
5.65
S.68
5.69
S.72
5.75
5.73
5.71
5.72
5.71
5.67
5.67
5.70
5.70
5.72
5.73
5.74
5.75
5.73
5.75
5.75
5.75
5.76
5.76
5.75
5.75
5.75
5.74
5.75
5.76
5.74
5.76
5.73
5.74
S.71
5.69
5.66
5.68
S.69
5.71 ROCKY 2035 010887 TO
S.7S 011737 IN 3 HR INTERVALS
5.79
5.76
5.73
5.87
5.94
5.91
5.97
5.96
5.95
5.93
5.91
5.39
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
900
1200
1500
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1
•1
1
1
I
25
26
26
26
26
26
26
26
26 .
27
27 -
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
1
1
1
1
1
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
36
36
86
86
86
36
86
86
SO
86
86
87
87
87
87
87
0.00
-0.03
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.03
-0.01
-0.03
-0.03
-0.03
-0.03
0.00
0.00
-0.03
-0.03
-0.03
-0.04
-0.01
-0.01
-0.03
—0 .03
-0.03
-0.04
-0.03
-0.01
-0.03
0.02
0.07
0.10
0.05
0.05
0.10
0.14
0.12
0.24
0.23
0.24
.0.24
0.23
0.15
0.15
0.10
0.10
0.11
O.OS
-0.03
-0.03
-0.01
-0.01
-0.01
-0.01
0.020
0.020
0*019
0.019
0.017
0.019
0.019
0.019
0.019
0.023
0.020
0.020
0.020
0.020
0.019
0.019
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.019
0.019
0.020
0.020
0.019
0.020
0.020
0.019
0.020
0.020
0.019
0.020
0.020
0.020
0.019
0.019
0.020
0.019
0.019
0.019
0.020
0.020
0.019
0.019
0.019
0.020
0.020
0.020
0.020
ROCKY BROOK

OSS
326
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
352
853
354
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
378
879
880

NR
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
100
600
900
1200
1500
1800
2100
0

HO
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

DA
io
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
IS
IS
15
15
15
15
15
16
16
16
16
16
16
16
16
17

YR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

T£MP
-0.15
-0.15
-0.14
-0.14
-0.14
-0.14
-0.14
-0.12
-6.14
-0.12
-0.14
-0.14
-0.16
-0.16
-0.14
-0.14
-0.14
-0.14
-0.14
-0.13
-0.13
-0.13
-0.14
-0.13
-0.11
-0.11
-0.09
-0.09
-0.07
-0.11
-0.09
-0.10
-0.11
-0.11 •
-0.11
-0.11
-o.n
-0.13
-0.11
-0.11
-0.10
-0.07
-0.07
-0.04
-0.06
-0.03
-0.04
-0.06
-0.07
-0.07
-0.07
TO. 10
-O.M
-0.13
-O.U
10
SPCON
0.022
0.022
0.022
0.022
0.021
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.021
0.022
0.022
0.021
0.022
0.022
0.022
0.021
0.022
0.021
0.022
0.021
0.022
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.020
0.021
0.021
0.022
0.022
0.022
S.46
5.45 •
5.42
5.42
5.40
5.37
5.40
5.33
5.30
5.27
5.29
5.26
5.23
S.25
5.20
5.21
5.23
5. 23
5.22
5.24
5.22
5.18
5.18
S.28
5.31
5.33
5.34
5.35
5.34
5.39
5.40
5.39
5.42
5.44
5.45
S.46
5.48
5.50
5.52
5.52
5.52
5.55
5.53
5.56
5.S7
5.56
5.57
5.60
5.61
S.6S
5.63
5.58
5.55
16
:03 THURSDAY. HAY 5. 1988
PH COMMENT
5.34
S.82
5.80
5.79
5.60
5.82
S.82
5.81
5.82
S.79
5.76
5.75
5.75
5.77
5.79
5.80
5.82
5.82
5.82
5.81
S.83
5.33
5.83
5.84
5.86
5.86
5.87
S.36
5.36
5.87
5.88
5.88
S.88
5.88
S.86
5.86
5.85
5.84
5.83
5.84
5.85
5.35
5.34
s.es
5.85
5.86
5.88
5.89
5.89
5.91
5.93
5.93
5.95
5.96
5.95

-------
284
ROCKY moot

01 1
Ml
112
111
IX.
19s
ist
IS?
»i
389
•90
Itl
S9Z
893
»»l
«9i
lit
497
•99
S99
900
901
902
903
904
90}
904
907
901
939
910
911
912
913
911
91>
9lt
917
911
919
920
921
til
923
9H
92$
924
927
913
929
930
911
1)1
933
934
13t

XX
300
400
900
2109
0
300
400
900
1200
1199
1100
2100
0
300
400
900
1200
1103
1109
2100
0
300
409
90»
12QO
1500
1100
2100
0
300
400
900
1200
1500
1103
2100
0
300
400
900
1200
1500
1100
2100
0
309
400
909
1200
1SOO
1*00
2100
0
300
400

no
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
I
2
2
2
2
2
2
2
2
2
2
2
2
2
I
I

0»
17
17
17
27
21
21
29
24
29
29
23
29
29
Z9
29
29
29
29
29
29
30
30
30
39
30
30
30
30
31
31
31
31
31
31
31
31
1
1
1
1
1
1
1
1
2
2
t
2
2
2
i
2
3
3
3

It
17
17
97
97
97
47
17
17
97
97
97
a
87
97
97
97
97
17
97
97
97
97
97
97
97
47
97
97
17
17
97
97
97
97
97
97
97
87
17
17
97
97
97
97
87
87
97
97
97
87
17
97
37
87
97

jtnr
-0.14
-0.14
-9.14
-9.07
-0.99
-0.99
-0.19
-9.03
-0.97
-0.08
-0.07
-0.07
-9.99
-9.11
-0.97
-9.97
-9.99
-0.04
-9.9?
-9.94
-0.07
-0.99
-O.Of
rO.09
-0.04
-0.99
-9.04
-0.07
-0.07
-9.07
-0.97
-0.07
-9.0?
-9.99
-9.09
-0.07
-0.07
-0.04
-0.96
-0.04
-0.07
-9.94
-9.94
-9.04
-0.94
-9.04
-0.97
-9.04
-9.04
-9.04
-0.93
-9.93
-0.04
-9.04
-9.94

SPCUH
0.022
0.922
0.022
9.025
0.924
9.024
9.924
0.924
0.024
9.924
9.024
0.025
9.024
9.024
9.924
0.9Z4
0.924
9.024
0.025
0.025
0.024
0.924
0.924
9.024
0.024
0.024
0.024
9.024
0.024
0.024
0.024
9.024
0.924
0.925
0.024
0.924
0.024
9.024
9.924
9.024
9.024
0.024
9.023
9.024
9.024
0.024
9.024
9.924
9.024
0.024
0.024
9.924
0.024
0.024
0.924
ROCKY SROUK

Oil
991
992
993
994
99t
114
997
991
999
1080
1001
1092
1093
loot
loot
1004
1007
1001
1809
loie
1011
1012
1013
10U
101S
1014
1017
1014
1019
1020
1021
1021
1023
1024
102*
1024
1027
1021
1029
1030
1031
1032
1033
1034
1031
1034
1037
1033
1039
1040
1041
1042
1043
1044
1045

Hit
400
909
1209
1900
1999
1109
2199
9
309
400
900
1209
ISCO
1109
2190
0
300
490
909
1209
1199
1900
2109
0
309
409
900
1209
1500
1909
2109
9
309
490
999
1290
1SOO
1909
2100
0
309
490
900
1299
1199
1990
2100
0
309
409
909
1299
1500
1109
2109

nO
2
2
2
2
2
3
}
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

OA
10
19
10
10
10
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
IS
11
IS
IS
IS
IS
IS
IS
14
14
14
14
14
14
14
14
17
17
17
17
17
17
17
17

Y«
87
87
97
97
97
97
97
97
97
17
87
37
87
87
87
87
87
87
87
87
87
97
97
87
87
87
97
97
97
97
97
97
4?
97
87
47
37
97
97
97
97
17
87
37
87
47
47
87
37
17
87
117
87
97
87

TlltP
-9.04
-0.04
-9. OS
-9.93
-9.91
-9.97
-0.07
-9.19
-9.12
-9.10
-0.09
-O.Oi
-0.07
-0.03
-0.03
-0.03
-0.93
-9.93
-9.9S
-9.94
-9.04
-9.9S
-9.07
-9.05
-0.04
-9.04
-0.04
-9.03
-0.04
-0.04
-0.94
-9.94
-9.04
-0.94
-9.01
0.03
0.02
-0.04
-9.94
-0.07
-0.03
-9.01
-0.93
-9.03
-9.91
9.00
-0.04
-0.04
-0.04
-0.04
-0.07
-0.04
-9.07
-9.07
-0.04

5PCOH
9.924
0.025
9.024
0.024
9.024
0.029
0.028
0.030
0.02?
0.92?
9.928
9.02?
9.029
0.92?
0.924
0.929
0.039
9.928
9.92?
9.92?
0.029
0.928
0.028
9.029
0.929
0.92?
0.024
0.028
9.928
9.928
0.028
0.928
9.02?
9.929
0.023
9.023
0.024
0.928
0.029
0.029
0.92?
0.928
0.028
0.028
0.028
0.028
0.024
0.028
9.927
0.028
0.928
0.921
9.928
0.028
9.023
17
10:93 THUKSOAV, HAY 5, 1983
PM COMMENT
5.95
S.93
5.92
4.05 ROCKY UNIT 2034 012787
4.01 TO 021087 IK 3 Hft
4.04 INTERVALS
4.15
4.18
4.14
4.12
4.12
4.12
4.13
4.14
4.14
4.14
4.0?
4. OH
4.09
4.11
4.12
4.13
4.13
4.12
4.11
4.98
4.99
4.10
4.0?
4.19
4.08
4.08
4.08
4.19
4.19
4.11
4.11
4.11
4.11
4.10
4.12
4.19
6.19
4.11
4.14
4.14
4.14
4.14
4.12
6.03
t. 10
4.13
4.14
6.15
4.13
1?
19:93 THURSDAY, MAY St I9»8
PH COMMENT
4.20
6.18
4.17
4.15
4. IS
4.44 ROCKY 2035 031187 TO
4.45 032487 IN 3 Hi INTERVALS
4.44
4.43
4.41
4.38
4.34
4.3)
4.32
4.33
4.34
4.34
4.34
4.32
4.34
4.31
4.39
4.39
4.30
4.30
4.31
4.32
4.34
4.34
4.32
4.32
4.32
4.34
4.33
4.3S
4.34
4.35
4.34
4.32
4.35
4.37
4.35
4.35
4.34
4.37
4.37
4.34
4.3S
4.35
4.35
4.34
4.34
4.34
4.34
4.34
                              ROCKY  BROOK
                                                                     IS
                                               10:03 THURSDAY* HAY  S* 1988
936
937
933

940
941
942
943
944
945
946
947
948
949
959
951
952
953
954
955
956
?57
?S8
?S9
949
961
962
963
964
965
944
947
968
969
970
971
972
973
974
975
976
977
973
979
980
981
982
983
984
935
986
937
983
989
990
900
1209
1500
1809
2190
9
300
400
900
1290
1500
1809
2100
0
300
400
909
1200
1590
1890
2100
0
300
400
900
1290
1500
1800
2190
0
300
609
909
1200
1500
1800
2100
0
309
609
909
1209
1500
1800
2190
0
300
600
909
1200
1500
1800
2100
0
300
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
4
6
7
7
7
7
7
7
7
7
8
8







9
9
9
9
9
9
19
10
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
37
87
37
87
87
87
87
37
87
37
87
37
87
87
8?
87
-0.04
-0.06
-0.93
-0.03
-0.03
-9.91
-9.01
9.00
-0.03
-0.01
-0.01
-0.08
-0.04
-0.03
0.00
-0.03
-9.04
-0.01
0.00
-0.03
-0.03
-0.04
-0.03
-0.93
-0.03
-0.01
-9.03
-0.01
-0.03
-0.01
-9.01
-9.93
-0.01
-0.01
0.90
0.00
0.00
0.00
0.09
-0.01
-0.01
9.00
0.90
0.00
0.92
0.00
0.00
-0.91
-0.01
9.02
0.02
0.02
-0.01
-0.06
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.924
0.024
0.924
9.923
0.925
9.024
0.024
0.024
0.024
0.02)
0.024
0.025
0.024
0.024
0.024
0.024
0.924
9.024
0.924
0.024
0.024
0.024
0.024
9.924
9.024
9.924
0.924
0.924
0.024
0.024
0.024
0.024
0.024
0.024
0.024
9.924
0.025 '
0.024
9.025
0.025
0.925
0.025
0.024
0.025
9.024
0.024
ROCKY BROOK

OBS
1046
1047
1043
1049
1059
1051
1052
1053
1054
105S
1956
1957
1053
1959
1969
1961
1962
1963
1964
1965
1966
1967
1968
1969
1070
1071
1072
1073
1974
1975
1076
1077
1078
1079
1080
1081
1082
1983
1984
1085
1036
1087
1088
1089
1999
1091
1992
1993
1994
1095
1996
1997
1093
1999
1100

HR
0
300
699
990
1200
1599
1890
2199
9
300
600
900
1200
1509
1300
2100
9
300
"600
900
1200
1599
1899
2199
9
309
699
900
1200
1590
1800
2199
0
300
600
909
1200
1500
1800
2100
0
300
699
999
1299
1599
1800
2190
0
300
600
990
1209
1599
1800

no
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
)
3
3
^3

3
3
3
3
3
3
3
3
3
3
3

on
18
18
18
18
18
13
18
18
1?
I?
19
19
19
1?
19
19
20
20
20
20
20
20
29
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24

YR
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
37
37
37
87
87
87
87
87
37
87
87
87
87
87
87
87
87
37
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87

reup
-0.03
-0.03
-0.01
-0.01
-0.01
0.00
-0.03
-0.03
-0.01
0.90
-0.04
-0.94
-9.04
-9.01
-0.01
-0.01
-0.01
-0.03
-0.06
-0.01
-0.01
0.02
-0.93
-9.04
-0.04
-0.03
-0.03
-0.07
-0.11
-0.13
-0.14
-0.14
-0.16
-0.14
-0.14
-0.14
-0.13
-0.16
-0.14
-0.14
-0.13
-0.16
-9.14
-9.14
•-9. 16
-9.11
-9.16
-9.13
-9.14
-9.13
-0.14
-0.14
-0.13
-9.14
-9.15
10:
SPCON
0.028
0.028
0.020
0.028
0.028
0.028
0.923
0.028
0.028
0.028
0.028
0.027
0.027
0.027
0.027
0.027
0.028
9.02?
0.023
0.028
0.028
0.928
.0.028
0.028
0.027
0.027
0.027
0.027
0.028
0.029
0.030
9.0)0
0.031
0.030
9.030
0.030
0.029
0.029
0.02?
0.030
9.030
0.030
0.030
0.030
0.039
9.029
0.030
0.92?
0.02?
0.029
0.929
0.028
9.928
0.028
0.028
PH conntNi
6.11
6.05
6.0)
6.03
6.06
6.97
6.07
6.08
6.10
6.10
6.11
6.07
6.0?
6.11
6.14
6.16
6.16
6.17
6.17
6.18
6.29
6.1?
6.21
6.20
6.18
6.18
6.15
6.13
6.19
6.19
6.18
6.18
6.15
6.14
6.11
6'. 11
6.13
6.15
6.16
6.18
6.18
6.15
6.14
6.13
6.13
6.13
6.14
6.13
6.13
6.14
6.17
6.13
6.20
6.1?
20
03 THURSDAY. KAY St 1?88
PH COMMENT
6.32
6.34
6.32
6.14
6.34
6.34
6.32
6.34
6.33
6.3)
6.))
6.32
6.34
6.32
6.30
6.30
6.31
6.31
6.31
6.12
6.31
6.32
6.32
6.32
6.32
6.31
6.30
6.31
6.2?
6.22
6.16
6.13
6.09
6.04
5.99
5.94
5.90
5.87
5.31
5.76
5.74
5.69
5.65
5.63
5.59
5.55
5.55
5.57
5.56
5.55
5.54
5.54
5.51
5.48
5.43

-------
285
RUCKY BROOK

OBS
11C1
1102
1103
1104
uos
1106
1107
1108
1109
1110
1111
III!
Ill]
1114
111S
1116
1117
1113
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1133
1139
1140
1U1
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

HR
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900

HO
4
4
I
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
I
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

DA
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
$
5
5
S
5
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9

YR
87
37
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
37
87
87
37
37
87
87
87
37
87
87
87
87
87
87
37
87
37
87
S7
87
37
37
47

TEMP
0.13
-0.01
-0.08
-0.08
-0.08
-0.01
0.09
0.63
0.57
0.23
0.03
0.00
0.01
0.00
0.34
0.72
0.93
0.59
0.24
0.13
O.OS
0.10
0.21
0.43
O.SB
0.58
0.52
0.40
0.44
0.47
0.63
0.90
1.09
1.01
0.82
0.67
0.52
0.41
0.46
0.63
0.91
0.96
0.88
0.74
0.65
0.60
0.81
1.31
1.58
1.58
1.30
O.VS
0.79
0.64
0.79

SPCON
0.021
0.021
0.021
0.020
0.020
0.020
0.020
0.020
0.017
0.019
0.022
0.019
0.019
0.020
0.020
0.020
0.019
0.013
0.018
0.019
0.018
0.017
0.018
0.018
0.018
0.017
0.021
0.018
0.018
0.017
0.013
0.013
0.018
0.017
0.017
0.018
0.018
0.018
0.018
0.016
0.018
0.018
0.018
'0.018
O.'OIS
0.017
0.019
0.018
0.017
0.017
0.018
0.018
0.013
0.018
0.020

PH
4.70
4.66
4.66
4.67
4.69
4.73
4.72
4.75
4.76
4.79
4.79
4.80
4.80
4.81
4.81
4.83
4.87
4.86
4.89
4.37
4.85
4.89
4.93
4.87
4.91
4.92
4.92
4.91
4.93
4.91
4.93
4.98
4.96
4.93
4.94
4.96
4.98
4.96
4.96
4.93
4.93
4.97
4.99
5.00
S.07
5.04
S.06
5.04
S.02
5.04
S.10
5.19
5.14
5.12
5.19
ROCKY BROOK

03S
1211
1212
1213
1214
1215
1216
1217
1215
1219
1220
1221
1222
1223
1224
1225
1226
1227
122S
1229
1230
1251
1252
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1252
1253
1254
1255
1256
1257
1253
1259
1260
1261
1262
1263
1264
1265

HA
900
1200
1500
1SOO
1300
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0

MO
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
S
5
5
5
5

DA
16
16
16
16
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30








2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5

YR
87
87
87
37
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

-------
                                                                           286

Bli HK BO 0*
1111 9 I 12
1)22 100 3 12
1111 400 5 12
132* 1200 15
D« ttog
1)24 9
1)27 400
1111 1209
1127 1199
1)13 9
11J1 499
lilt 1199
111) li:0
UK 9
111) 409
l»4 1199
11)7 1409
t))l 9
1)37 499
13*0 1209
13*1 1199
11(1 9
DO 439
13*4 1199
ms 1499
D(4 9
11(7 409
tl(l 1299
11(7 1309
1110 9
1151 499
till 1209
I3S1 1193
135* 9
1355 409
I1U 1209
1)17 1199
115J 9
UiV 409
1149 U09
1141 1199
1141 0
114) 499
t)l( 1199
lilt 1199
1)44 9
1)47 409
1141 1200
lit* U99
1)79 9
1171 SCO
1372 1199
1)71 1399
137* 9
1171 499
15
14
14
14
14
17
17
17
17
11
11
11
11
17
17
17
17
20
29
29
29
21
21
21
21
22
22
22
2)
2)
21
21
24
24
24
24
25
23
15
25
24
24
26
24
27
27
27
27
21
21

Yd
37
17
17
17
17
17
17
17
17
17
17
17
87
17
17
17
17
17
17
17
37
17
47
17
17
87
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
37
17
17
17
47
17
17
ROCKY bROOK 25
TEMP SPCON PK COMMENT
12.20 0
11.80 0
11.44 0
14.21
15.18
15.16
11.47
14.21
15.11
15.29
14.40
14.40
15.0*
13.0?
11.02
11.13
12.71
12. S?
11.75
12.04
12.42
12.2?
11.75
11.74
12.04
12.63
12.21
11.13
12.00
11.46
11.32
11.57
12.42
12.16
11.78
12.33
13.47
13.47
13.03
12.84
13.60
12.29
11.32
11.74
11.75
10.56
7.63
7.77
11.32
10.22
V.21
V.17
10.64
U.VS
7.52
021 5.63
021 5.64
021 5.63 EDITED PH OS1S87.
6.23 ROCKY 091537 TO 092987 IN
6.12 6 HR INTERVALS
6.13
6.13
6.1?
6.10
6.11
6.12
6.17
6.15
6.16
6.22
6.30
6,24
6.26
6.23
6.24
6.22
6.22
6.23
6.22
6.14
5.54
5.43
4.73
4.6S
4.64
4.65
4.68
4.68
4.70
4.76
4.80
4.83
4.78
4.82
4.91
4.97
5.02
5.10
5.11
5.16
S.22
S.26
5.26
5.28
S.31
5.37
5.37
5.41
5.48
ROCKY BROOK

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1372
1393
1394
1395
1376
1377
1398
139?
1400
1401
1402
1403
1404
1405
1406
1407
1408
140?
1410
• 1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0

9 28
9 28
9 29
9 29
9 29
10 6
10 7
10 7
10 7
10 7
10 8
10 8
10 8
10 8
10 9
10 9
10 9
10 9
10 10
10 10
10 10
10 10
10 11
10 11
10 11
10 11
10 12
10 12
10 12
10 12
10 13
10 13
10 13
10 13
10 14
10 14
10 14
10 14
10 IS
10 IS
10 IS
10 IS
10 16
10 16
10 16
10 16
10 17
10 17
10 17
10 17
10 18
10 IS
10 18
10 13
10 19

87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
67
87
87
87
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

8. 57
11.62
11.91
10.77
11.45
13.35
12.67
12.21
12.25
13.22
12.76
12.63
12.93
13.26
12.12
11.32
10.73
10.78
10.52
10.43
10.64
10.77
7.42
8.53
8.74
8.74
7.60
6.76
7.10
8.41
6.33
5.7?
6.21
7.65
6.17
5.15
5.71
7.52
7.10
6.08
6.73
8.4?
7.22
6.21
6.77
8.41
7.27
6.50
7.35
9.04
7.17
9.21
9.76
10.43
8.91

;
(
0.028
0.028
0.028
0.028
0.028
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.028
0.028
0.029
0.029
0.028
0.021
0.028
0.027
0.028
0.028
0.028
0.028
0.028
0.02?
0.029
0.027
0.027
0.027
0.028
0.027
0.027
0.027
0.027
0.027
0.026
0.027
0.027
0.028
0.027
0.026
0.027
0.026
0.026
0.027
0.027
26
10:03 THURSDAY. HAY S. 1988
5*. 55
S.«9
5.49
S.*9
5.56
S.80 ROCKY 2035 100687 TO 102087
5.81 IN 6 HR INTERVALS
5.82
S.B3
5.7?
5.76
5.61
S.S6
5.54
5.4?
S.42'
5.46
5.44
5.45
5.45
5.45
5.45
S.4B
5.51
5.52
5.54
5.55
5.58
5.60
5.61
5.65
S.66
S.70
5.68
5.71
S.73
5.76
5.75
5.76
5.76
5.77
S.dO
5.77
5.7?
5.83
5.85
5.84
S.3S
S.V1
5.36
S.dil
5.88
5.85
5.86
                      KOCKV 1ROOK
M«   MS   0»   Y«
10:03  THURSDAY) MAY 5
         COMMENT
                                                                27
                                                              1988
1(11
tot
1(11
Kl(
Kit
t()4
1*17
1(11
IO7
t((9
H*l
H*7
1(()
K((
1*41
t((4
1*17
t((l
1((7
1(19
Kit
t()2
1*13
1(54
1(11
KI4
KJ7
tut
tot
1(49
1(41
1(41
1(4)
tt4t
1(4)
1(44
1(47
1(41
1(47
mo
H71
1(71
KM
1*7*
1*75
1(74
1(77
KM
1(77
t(19
1(11
1(12
l*J)
HI*
Kit
499
1299
1)99
9
409
1190
1199
11)9
>9
419
11)9
1119
19
410
11)9
11)9
30
439
1119
1119
19
419
1219
1119
19
419
1119
1110
19
4)9
11)9
1119
39
419
me
1119
10
4)0
1119
U19
10
4)9
1119
13)0
10
419
1219
1110
19
419
1230
1110
19
419
1119
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
10
19
19
10
10
10
1)
It
11
It
11
11
11
11
U
11
It
11
It
It
11
11
It
11
11
11
11
11
11
11
11
11
11
11
11
11
11
17
17
17
19
20
20
10
27
28
24
21
11
27
17
27
27
30
39
10
10
11
31
31
31
1
I
1
1
£
2
2
2
1
1
)
)
4
(
«;
4
j
5
J
i
4
6
6
4
7
7
7
7
4
1
4
17
17
17
17
17
17
17
J7
17
17
17
17
17
17
17
17
17
17
«7
17
17
17
17
17
87
17
17
17
17
17
47
17
17
17
17
17
17
17
17
17
17
17
17
17
17
it
17
87
17
17
17
17
17
17
17
7.41
t.(l
7.19
1.45
7.52
7.7*
1.71
4.30
6.19
7.10
8.15
1.71
7.04
8.13
7.17
4.17
7.70
6.31
7.31
7.37
4.34
4.14
7.3?
7.22
4.50
6.91
6.47
4.72
5.74
4.73
5.93
3.11
4.44
4.82
5.66
6.04
6.00
5.74
4.5?
7.03
7.05
6.67
7.77
7.43
3.71
5.93
4.74
4.27
3.21
2.21
2.46
2.7?
2.12
2.15
1.55
9.026
9.027
0.027
0.026
0.026
0.026
0.027
0.024
0.024
0.023
0.021
0.024
0.020
0.011
0.017
0.016
0.026
0.026
0.021
0.026
0.02?
0.02?
0.026
0.027
0.028
0.028
0.021
0.023
0.028
0.028
0.02?
0.028
0.028
0.023
0.016
0.011
0.026
0.023
0.018
O.OK
0.017
0.023
0.021
0.026
0.027
0.021
0.027
0.027
0.1924
0.030
0.027
0.027
O.d29
0.027
0.024
5.3?
5.96
5.89
5.91
5.93
5.99
5.95
6.09
6.10
6.13
6.04
5.8?
5.33
5.80
5.75
5.63
5.53
S.S1
5.48
5.46
5.48
5.46
5.47
S.43
5.49
5.53
5.55
5.52
5.53
5.57
s.sa
5.60
5.62
5.64
5.65
5.61
5.60
5.61
5.64
5.65
S.&5
5.66
5.68
5.70
5.72
5.73
5.75
S.7S
5.75
5.72
5.77
5.76
5.76
5.74
5.80
  ROCKY SHOOK

TEMP   SPCOH
                                         RUCKY 102787 TO 111087
                                         IN 6 HR INTERVALS
1486
1487
1488
1489
1490
1491
1492
1493
1494
14?5
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1S06
1507
1503
1509
1510
1511
1512
1513
1514
ISIS
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1S28
152?
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1830
30
630
1230
1830
30
630
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
1200
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
8
9
?
?
9
10
10
24
25
25
25
25
26
26
26
26
27
27
27
27
28
23
28
28
29
29
29
29
30
30
30
30
1
1
1
I
2
2
2
2
3
3
3
3
4
4
4
4
5
S
5
5
6
6
6
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
4.10
3.89
4.10
4.60
4.56
3.30
3. 3d
2.32
2.11
1.82
2.58
2.62
1.69
0.55
0.33
0.84
0.51
0.46
0.46
O.SS
-0.04
-0.08
-0.08
-0.04
-0.04
-0.04
-0.04
0.00
0.38
0.68
0.97
1.01
1.01
O.SS
0.30
1.27
1.27
1.39
1.77
1.86
1.39
0.76
1.01
1.06
0.72
0.46
0.76
0.76
0.76
O.S9
0.68
0.68
0.59
0.59
0.93
0.027
0.026
0.027
0.019
0.027
0.027
0.026
0.028
0.031
0.029
0.023
0.020
0.02?
0.024
0.024
0.027
0.027
0.024
0.027
0.030
0.027
0.027
0.027
0.027
0.030
0.030
0.030
0.018
0.021
0.327
0.032
0*029
0.032
0.027
0.030
0.029
0.026
0.029
0.02?
0.026
0.029
0.027
0.026
0.026
0.021
0.027
0.024
0.021
0.021
0.013
0.015
0.018
0.013
0.018
0.021
5.76
5. 76
5.76
5.77
5.79
5.81
5.81
5.84
5.79
5.77
5.74
5.76
5.84
5.91
S.89
5.80
5.81
S.83
5.84
5.63
5.92
S.36
S.82
5.83
5.83
5.86
5.78
5.83
5.91
5.90
5.80
S.56
5.39
4.91
4.73
4.60
4.68
4.76
4.76
4.79
4 .86
4.84
4.87
4.88
4 .93
4.94
* .98
5.04
5.02
S.17
5.19
5.20
5.20
5.26
5.27
                                                                                                                          10:03  THURSDAY. MAY 5. 1988
                                                                                                                                  COMMENT
                                                                                                                           HOCKY 112487 TO 120887
                                                                                                                           IN 6 HR INTERVALS

-------
287
ROCKY BROOK

OBS
1541
1543
1545
1544
1545
1546
ISA?
1543
1549
1550
1551
1552
1553
1554
I5S5
1SS6
1557
1SS3
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1573
1579
1580
1SS1
1582
1583
1584
1585 •
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

MR
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600

no
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

DO
6
7
7
7
7
8
8
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15
IS
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21

YR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87

. TEMP
0.72
0.72
0.46
0.59
0.68
0.34
0.21
1.39
1.39
1.39
1.44
1.39
1.39
1.39
1.39
1.39
0.97
1.06
1.22
1.31
1.06
0.59
0.42
0.80
0.93
0.63
0.46
0.63
0.55
0.08
0.08
0.08
0.46
0.08
0.03
0.03
0.08
0.08
0.03
0.08
0.08
0.08
0.08
0.08
0.03
0.08
0.08
0.08
0.08
0.08
0.03
0.08
0.03
0.08
0.13

SPCON
0.021
0.018
0.021
0.021
0.018
0.020
0.024
0.025
0.026
0.025
0.025
0.025
0.023
0.025
0.025
0.023
0.024
0.024
0.023
0.023
0.024
0.022
0.023
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
29
10:03 THURSDAY* HAY 5t 1988
PH COHRENT
5.27
5.29
5.35
5.35
5.35
5.40
5.40
5.55 ROCKY 120987 TO 122887
5.50 IN 6 HR INTERVALS
5.45
5.41
5.44
5.43
5.39
5.43
5.41
5.40
5.39
5.41
5.44
5.42
5.44
5.42
5.46
5.45
5.46
5.46
5.49
5.47
5.49
5.50
5.51
5.54
5.54
5.51
5.50
5.47
5.47
5.47
5.49
5.51
5.54
5.49
5.47
5.50
5.49
5.43
5.46
5.48
5.49
5.43
5.48
5.50
5.14
5.56
     OSS

     1596
     1597
     1598
     1599
     1600
     1601
 HR

1200
1800
   0
 600
1200
1800
                                ROCKY BROOK

                                YR    TtHP
                                     10:03  THURSOflY, HAY Si 1988
                                 SPCON     PH      COKKENT
12
12
12
12
12
12
21
21
22
22
22
22
87
87
87
87
87
87
0.13
0.13
0.13
0.13
0.17
0.13
0.026
0.026
0.026
0.026
0.026
0.026
5.59
5.59
5.60
5.63
5.64
5.65

-------
                                                       288
  SINCLAIR BROOK
HIS
1
!
1
4
S
t
}
«
»
to
11
11
11
!<
t)
It
1?
1!
If
20
tt
11
21
24
It
11
11
21
it
)0
11
12
1)
«
IS
Ji
37
:»
>T
40
41
42
4J
U
41
U
47
ti
t*
50
SI
SI
SI
14
ss
H«
1409
1400
1(09
2990
mo
0
208
400
too
109
1009
1109
1400
1400
1100
toeo
2209
9
109
400
too
109
1000
1209
1400
ItOO
1109
2009
2200
9
209
400
t09
100
1009
1100
uoo
UOO
1100
:oo9
2209
0
290
499
too '
100
1030
1299
1400
ItOO
1109
lOgg
2209
9
109
no
It
It
11
11
11
11
11
11
11
11
It
11
It
It
11
11
11
11
II
It
It
11
11
11
11
11
11
It
11
11
11
It
It
11
tt
11
11
tt
tl
11
11
tl
11
11
It
it
11
11
11
11
11
11
11
If
11
Oa
IS
IS
IS
IS
IS
It
It
It
It
tt
It
It
It
It
It
It
It
17
t?
17
17
17
17
17
17
17
17
17
17
18
It
11
IS
11
11
11
11
11
11
11
tl
14
1?
t?
If
17
19
17
19
19
19
I?
17
20
ia
YR
IS
IS
IS
IS
85
IS
IS
IS
IS
IS
IS
IS
BS
SS
IS
IS
IS
ss
BS
IS
BS
IS
as
is
BS
IS
BS
IS
IS
SS
IS
IS
IS
BS
35
SS
SS
IS
SS
SS
SS
ss
SS
SS
ss
SS
SS
SS
SS
SS
SS
IS
SS
SS
IS
TEMP
3.17
3.S9
3. IS
3.07
2.16
2.61
2.36
2.12
1.S2
l.SS
1.81
2.21
2.31
2.27
2.17
2. OS
1.96
2.00
2.10
2.13
1.92
2.19
2.52
3.00
3.37
3.38
1.14
3.37
3.37
3.13
3.40
3.46
3.42
3.42
3.64
3.91
4.12
4. OB
3.98
3.83
3.66
3.48
1.32
3. IB
3.21
1.13
1.60
4.20
4.44
4.S5
4.64
(.71
4.76
4.81
4.BS
0.023
0.02]
0.023
0.023
0.023
0.023
0.022
0.021
0.022
0.021
0.022
0.022
0.023
0.022
0.022
0.022
0.023
0.022
0.021
0.023
0.022
0.022
0.022
0.021
0.021
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
9.023
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.022
0.021
0.022
0.023
0.022
0.022
6.02 SINCLAIR 90 111585 TO
5.98 112385 IN 2 HR INTERVALS
5.96
S.91
s. a?
5.88
5.87
5.86
5.B7
5.37
5.37
5.8*
5.89
5.89
5.36
S.8e
m
tit
113
124
US
lit
u;
in
12*
119
111
1)1
111
114
US
tit
117
IIS
l)«
1(9
Id
HI
14)
H4
US
ut
147
141
14»
ISO
ISI
112
ISI
114
ISS
154
is;
ISI
lit
tta
lit
14?
tti
in
us
190
mo
u:o
2009
9
409
too
UOO
U99
2900
0
400
109
1209
u:o
2999
9
400
100
UOO
1199
UOO
1009
9
400
too
UOO
ItOO
20«0
9
400
too
UOO
KOO
2000
9
400
109
UOO
1109
2999
9
400
109
1299
U39
2099
9
409
t90
1199
1430
2099
0
4«9
II
11
11
II
12
12
12
12
12
12
II
12
12
12
ti
12
12
12
12
12
12
12
12
12
12
12
12
12
12
U
12
12
12
12
U
12
12
12
12
12
U
12
12
12
12
12
12
12
12
12
12
12
12
12
12
19
10
10
10
1
1
1
1
t
1
2
2
2
2
2
2
1
1
1
1
S
S
s
t
t
t
t
t
t
7
7
7
7
7
7












19
10
10
10
19
10
11
11
IS
IS
SS
IS
BS
IS
SS
SS
SS
IS
IS
SS
SS
BS
IS
IS
IS
IS
IS
BS
ss
SS
ss
BS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
SS
SS
IS
IS
IS
IS
IS
tt
•s
IS
IS
IS
SS
SS
IS
IS
SS
IS
0.10
0.1S
0.24
0.12
0.07
0.10
0.12
0.21
9.26
0.22
0.11
O.SO
1.08
1.41
1.S1
t.Sl
1.22
0.71
0.39
0.08
-O.OS
-0.10
-O.OS
-0.10
-0.07
-0.07
0.01
-0.01
-0.10
-0.12
-0.12
-0.14
-0.12
"-0.14
-0.09
-9.14
-9.14
-0.lt
0.06
0.02
-0.01
-0.01
-0.07
-0.16
-0.94
-0.07
-0.17
-0.17
-O.It
-0.16
-0.11
-0.13
-0.14
-0.11
-0.11
0.026
0.028
0.028
0.027
0.023
0.028
0.028
0.029
0.927
0.028
0.027
0.027
0.026
0.027
0.02S
0.028
0.028
0.028
0.029
0.028
0.025
0.025
0.024
0.02S
0.024
0.024
0.021
0.024
0.925
9.921
9.024
0.025
0.023
0.02]
0.024
0.024
0.02S
0.024
0.023
0.024
0.024
0.024
0.025
0.021
0.923
0.023
0.024
0.024
0.024
0.02S
0.022
0.024
0.023
0.021
0.02S
6.09
t.10
6.14
6.15
6.15
6.17
6.13
6.13
6.18
6.17
6.16
6. IS
5.97
5.68
5.44
S.4S
S.43
S.43
S.45
S.24
6.07
5.99
5.91
5.71
S.91
5.88
S.78
$.97
S.78
5.77
6.00
6.01
6.03
t.Ol
6.03
6.03
t.Ol
6.01
6.06
6.07
6.04
6.06
6.08
6.10
6.08
6.09
6.10
6.14
t.ot
6.05
6.06
6.07
6.07
6.08
6.08
                     SINCLAIR 7E 120585  TO
                     121185 IH 4 HR INTERVALS
SINCLAIR BROOK 2

DBS
56
57
53
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9<
95
96
97
98
99
100
101
102
103
104
IOS
106
107
106
109
110

HR
400
600
800
1600
1800
2000
2200
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
0
200
400
600
800
1000
1200
1400
1600
1300
2000
2200
0
200
400
600
BOO
1000
1200
1400
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1600
2000
0
400

HO
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
H
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

DA
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
27
27
28
28
28
28
28
28
29
29
29
29
29
29
30
30

VR
85
85
85
85
85
85
85
85
85
85
35
85
35
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
35
85
85
85
85
85
85
85
85
85
as
85
85
85
85
OS
85
35

TEMP
4.90
4.98
S.07
4.91
4.61
4.32
4.06
3.82
3.63
3.38
3.16
3.00
'3.03
3.19
3.12
3.07
2.93
2.74
2.31
2.27
2.32
2.37
2.37
2.44
2.52
2.82
3.05
2.89
2.74
2.51
2.32
2.24
2.01
1.82
1.65
1.65
1.92
2.28
2.58
0.83
0.96
0.90
0.76
0.74
0.91
0.95
0.78
0.37
0.06
0.08
0.27
0.24
0.10
0.08
0.14

SPCON
0.021
0.022
0.022
0.027
0.026
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.026
0.026
0.027
0.026
0.027
0.027
0.027
0.027
0.027
0.026
0.026
0.027
0.027
0.027
0.026
0.026
0.027
0.027
0.027
0.026
0.026
0.027
0.027
0.027
0.027
0.027
0.028
0.027
0.027
0.028
0.028
0.027
0.027
0.027
0.027
10:03 THURSDAY* NAY St 1988
PH COMMENT
5.53
5.53
5.55
5.83
5.81
5.82
5.84
5.82
5.84
5.84
5.83
5.35
5.85
5.87
5.88
5.87
5.87
5.87
5.38
S.89
5.89
5.89
5.90
5.92
5.92
5.94
5.95
5.93
5.93
5. 94
5.94
5.95
5.95
.96
.95
.17
.01
.98
.97
.15 120385 IN 4 HR INTERVALS
6.13
6.13
6.13
6.16
6.15
6.14
6.12
6.13
6.11
6.12
6.11
6.13
6.13
6.11 .
SINCLAIR (ROOK 4
OSS
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
18!
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
214
219
220
HR
800
1200
1200
1600
2000
0
400
800
1200
1600
2000
0
400
800
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
no
12
12






1
1
1
1
1
1
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
DA
11
11
21
21
21
22
22
22
22
22
22
23
23
23
23
30
31
31
31
31
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
»
9
VR
85
85
86
86
86
86
86
86
36
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
36
36
86
86
86
86
86
86
86
86
86
86
86
Uo
TEMP
-0.11
-0.03
-0.10
-0.12
-0.09
-0.07
-0.06
-0.11
-0.07
-0.09
-0.07
-0.07
-0.06
-0.09
-0.11
0.81
0.62
0.33
1.96
1.58
0.50
0.20
2.03
2.29
1.37
1.06
2.13
2.12
1.21
0.82
2.50
2.72
1.50
0.84
2.66
2.99
1.85
0.81
2.42
2.38
1.15
0.15
2.49
2.46
1.84
1.20
1.15
1.20
1.01
0.97
1.33
1.22
1.16
1.07
1.39
SPCON
0.024
0.026
0.026
0.026
0.026
0.026
0.025
0.024
0.025
0.026
0.026
0.026
0.026
0.025
0.027

.

.
s
t
,
,
.
.
t
t
t
t
t
«
0.018
0.021
0.020
0.020
0.024
0.021
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.021
PH COMMENT
6.08
6.12
5.57 SINCLAIR 9C 012186 TO
5.40 012380 IN 4 HR INTERVALS
5.35
5.31
5.29
5.29
5.30
5.32
5.33
5.33
5.32
5.33
5.24
5.72 SINCLAIR 7A 033086 TO
5.51 040386 IN 6 HR INTERVALS
5.52
5.47
5.49
5.55
5.45
5.51
5.55
5.58
5.58
5.59
5.59
.63
.61
.6:
.63 SINCLAIR 9C 040386 TO
.46 041486 IN 6 HR INTERVALS
.42
5.38
5.35
5.38
5.37
5.37
5.35
5.39
5.40
5.39
5.41
5.44
5.45
5.47
5.44
5.44
5.44
5.46
5.39
5.30
5.25
5.23

-------
                                                      289
SINCLAIR BROOK
OBS
221
222
223
224
225
226
227
223
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
24S
249
250
251
252
253
254
255
256
257
253
259
260
261
262
263
265
266
267
268
269
270
271
272
273
274
275
HR
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1300
600
1200
1300
0
600
1200
1300
0
600
1200
1800
BO
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
i
5
5
5
5
5
5
5
S
5
5
5
5
5
5
S
DA
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
14
14
14
14
17
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
1
1
2
2
2
2
3
3
3
4
4
4
4
S
5
5
5
VR
86
86
86
86
86
86
86
86
36
86
86
36
86
36
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
36
86
36
86
86
86
86
36
86
86
86
86
36
86
86
86
86
36
86
36
86
86
TEMP
1.71
1.49
1.19
2.35
2.32
1.96
1.94
2.43
2.77
1.93
1.60
2.47
2.81
2.17
1.83
3.89
4.20
3.01
2.09
4.29
4.67
6.53
6.76
5.58
4.14
6.65
6.56
5.02
• 3.62
6.16
6.31
4.65
3.45
6.49
6.95
5.50
4.36
9.97
10.71
9.17
8.57
8.79
9.11
S.dl
6.01
6.52
5.01
3.33
5.43
6.09
4.45
4.09
4.77
5.23
SPCON
0.023
0.022
0.022
0.023
0.022
0.022
0.022
0.022
0.024
0.022
0.021
0.025
0.022
0.023
0.025
0.022
0.022
0.023
0.023
0.022
0.023
0.020
0.021
0.020
0.020
0.021
0.021
0.021
0.021
0.020
0.021
0.021
0.021
0.020
0.021
0.022
0.021
0.022
0.022
0.022
0.023
0.023
0.023
0.023
0.022
0.023
0.023
0.025
0.022
0.023
0.023
0.023
0.023
0.023
PH
5.22
5.23
5.24
5.28
5.26
5.27
5.28
5.29
5.33
5.30
5.30
5.31
5.27
5.26
5.27
5.27
5.26
5.30
5.33
5.31
5.32
6.00
6.04
5.97
5.94
5.92
5.90
5.39
5.91
5.91
5.89
5.39
5.95
5.94
5.91
5.87
5.91
6.03
5.93
5.82
5.77
5.78
5.78
5.77.
5.77
5.85
.84
.82
.84
.87
.85
.82
.86
.90
5.37
                     10:03 THURSDAY, HAY 5, 1988
                     COMMENT
                     SINCLAIR 9A 041786 TO
                     042186 IN 6 HR INTERVALS
                     SINCLAIR 9D 050136 TO
                     051336 IN 6 HR INTERVALS
SINCLAIR BROOK 6
oas
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
S12
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
HR
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
• o
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
NO
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
5
, 5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
S
5
S
5
5
5
5
DA
6
6
6
6
7
7
7
7
8
S
8
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
IS
IS
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
VR
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
TEMP
5.13
5.03
6.07
7.25
6.42
5.96
6.80
7.32
6.82
6.20
6.14
7.33
6.26
4.89
7.37
8.62
6.68
5.03
7.95
8.99
7.25
5.64
8.64
9.64
7.SS
6.57
7.94
8.58
7.31
6.12
9.51
10.54
11.62
9.17
7.65
11.28
11.95
10.40
9.37
9.26
10.05
9.64
9.15
12.75
14.42
12.56
11.34
14.45
16.13
13.67
12.22
12.03
12.27
11.36
10.71
SPCON
0.024
0.024
0.023
0.020
0.023
0.023
0.021
0.023
0.022
0.021
0.022
0.023
0.024
0.022
0.023
0.023
0.024
0.024
0.023
0.023
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.025
0.024
0.023
0.022
0.022
0.024
0.023
0.021
0.022
0.022
0.023
0.023
0.022
0.021
0.023
0.023
0.023
0.024
0.024
0.023
0.023
0.024
0.024
0.023
0.023
0.025
0.024
PH COHKENT
5.33
5.83
5.93
5.92
5.83
5.80
5.90
5.86
5.79
5.81
5.91
5.86
5.86
5.88
5.92
5.93
5.87
5.90
5. 95
5.97
5.92
S.9S
6.03
5.98
5.96
5.98
6.07
6.06
5.97
6.02 PH DIFFERS .3 PH UNITS
6.07 FROM 050886 SAMPLING 80.
6.46 SINCLAIR 9C 051586 TU
6.10 052686 IN 6 HR INTERVALS
5.94
5.93
5.98
5.94
5.86
5.36
5.93
5.92
5.81
5.31
5.88
5.83
5.78
5.79
5. 95
5.34
5.76
5.79
5.93
5.89
5.82
5.83
SINCLAIR BROOK
                    10:03  THURSDAY.  HAY  5t  1988
                     COMMENT
331
332
333
334
335
336
337
333
339
340
341
342
343
344
345
346
347
343
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
373
379
380
381
332
383
334
385
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1300
0
5
5
5
S
i
5
5
S
5
5
5
t
5
5
5
S
i
S
5
S
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
b
6
6
6
6
6
6
6
6
6
6
6
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
a
8
9
9
9
9
10
10
10
10
11
11
11
11
12
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
36
36
86
36
86
86
86
36
86
86
86
86
86
86
86
36
86
86
86
86
86
11.65
13.39
12.14
11.33
11.64
11.83
11.27
10.32
11.22
11.16
10.64
10.16
10.02
10.41
10.07
9.72
10.29
11.10
10.22
8.97
10.59
10.82
9.45
9.21
11.45
11.94
10.85
9.84
12.56
12.71
12.06
11.32
12.93
13.73
12.27
11.55
14.46
14.51
12.82
11.72
12.73
15.04
12.41
11.63
13.16
13.36
11.76
10.14
13.43
14.48
12.72
12.00
12.44
13.37
11.57
0.023
0.022
0.023
0.024
0.022
0.022
0.022
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.022
0.021
0.022
0.022
0.021
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.028
0.027
0.027
0.028
0.027
0.026
0.027
0.028
0.027
0.026
0.027
0.027
0.027
0.026
0.026
0.028
0.027
0.026
0.026
0.027
0.028
0.026
0.026
0.027
5.99
5.93
5.32
5.79
5.84
5.77
5.69
5.67
5.76
5.69
5.63
5.61
5.48
5.29
5.29
5.28
5.32
5.32
5.36
5.43
5.43
6.17
6.15
6.19
6.29
6.24
6.19
6.21
6.35
6.24
6.16
6.24
6.38
6.29
6.24
6.27
6.41
6.32
6.27
6.30
6.45
6.36
6.24
6.27
6.41
6.32
6.25
6.27
6.45
6.34
6.Z7
6.29
6.40
6.38
6.29
                    SINCLAIR 2035 060386 TO
                    061386 III 6 HR INTERVALS
SINCLAIR BROOK

•DBS
386
387
388
389
390
391
392
393
394
39S
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
41S
416
417
413
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

HR
600
1200
1800
0
600
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
• 1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200

KO
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7

DA
12
12
12
13
13
17
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
1
2
2
2
'2
3
3
3
3
4
4
4

VR
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
36
36
86
86
86
86
36
86
86
86
86
86
86
36
36
86
86
86
36
36
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
36
86
86
86
86

TEHP
10.65
15.56
18.03
14.65
11.19
14.90
12.30
10.83
12.93
14.02
11.62
9.61
12.27
14.64
11.94
9.14
11.20
13.63
11.57
9.97
12.50
15.31
13.06
10.24
12.92
15.93
13.42
10.77
13.39
14.49
13.46
11.97
14.66
16.12
14.44
12.65
12.62
13.37
11.84
10.73
12.59
14.67
12.45
14.44
14.22
12.73
12.95
12.45
11.71
11.31
11.91
12.15
11.86
11.44
13.40

SPCON
0.027
0.027
0.028
0.029
0.030
0.027
0.027
0.028
0.027
0.026
0.028
0.028
0.027
0.027
0.029
0.028
0.028
0.027
0.028
0.029
0.028
0.028
0.028
0.029
0.028
0.029
0.029
0.029
0.029
0.029
0.030
0.030
0.030
0.028
0.029
0.030
0.030
0.029
0.030
0.030
0.029
0.029
0.030
0.032
0.033
0.033
0.033
0.032
0.031
0.031
0.029
0.029
0.030
0.030
0.029

PH
6.32
6.36
6.27
6.30
6.34
6.21
6.15
6.15
6.26
6.33
6.23
6.22
6.28
5.97
6.22
6.25
6.35
6.22
6.23
6.25
6.30
5.99
6.23
6.32
.6.32
6.02
6.24
6.25
6.34
6.23
6.24
6.24
6.18
6.16
6.20
6.24
6.40
6.41
6.26
6.26
6.39
6.25
6.20
6.51
6.39
6.39
6.50
6.43
6*28
6.16
6. 19
6.18
6.14
6.16
6.26
8
10:03 THURSDAY, HAV St 1988
COMMENT •





SINCLAIR 90 061786 TO
062686 IN 6 HR INTERVALS




































SINCLAIR 2035 070186 TO
. 071086 IN 6 HR INTERVALS











-------
                                                                         290
                 SINCLAIR IRQOK
no   o»   if   TEMP
                                     10:0] THURSDAY, MAY Si  1983
                                      COMMENT
                                                                                                    SINCLAIR 8ROOK
      10:05 THURSDAY, HAY i,
  5PCOH     PH     COMMENT
                                                                                                                                                 10
                                                                                                                                               1988
(U
((I
((1
(((
((I
((4
((7
«a
«t
do
(ii
tn
(ii
(«
(ii
tit
(17
(ii
(it
(48
(tl
(41
(i>
(<(
(41
(44
(47
(41
(4t
(70
(71
(71
(71
(?(
(71
(74
(77
(71
(7t
(18
((I
(IS
(11
(I(
(11
(14
(17
(11
(11
(10
(VI
(tl
(tl
(1(
(ft
uoo
0
400
1100
U09
a
400
1100
1100
0
400
UOO
lies
0
400
1200
1400
e
400
1100
1100
0
400
1109
1100
e
1100
1100
0
100
400
TOO
1109
JlOO
1109
2100
0
100
408
703
iiaa
1)03
1133
1103
e
300
403
t03
1100
1103
1100
1103
0
105
403
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7





















1
1
1
1
1
2
I
t
2
2
2
2
2
2
I
2
2<
2
2
2
2
21
21
2
2
2
2
1
2
2
2
2
2
2
14
it
84
14
84
84
34
84
16
It
84
84
84
84
84
84
84
84
84
84
84
9 44
3 84
9 44
9 84
1 14
I 84
! 14
1 84
I 14
> 14
1 84
1 14
1 14
1 84
1 84
14
I 14
I It
I 84
84
>4
14
84
84
1 84
I 84
( 84
1 84
I >4
\ it
1 84
k 14
I 14
t 14
K.I?
12.97
12.44
11.71
11.57
12.98
12. 45
13.70
K.14
13.18
12.77
12.19
12.52
12.30
11.72
11.90
15.56
1(.(9
U.10
15.74
14.71
K.15
12.90
U.73
IS. 22
13. (4
17.40
I4.S1
15.43
K.29
13.22
13.07
IS. 11
17.77
18.12
17.25
15.17
1(.(7
13.19
12. VO
14.93
17.11
17.11
17.13
14.15
15.99
15.11
15.79
17.39
19.37
19.92
15.94
17.91
17. 1(
14. 01
0.030
0.030
0.031
0.030
0.030
0.031
0.032
0.030
0.030
0.031
0.029
0.029
0.029
0.030
0.029
0.029
0.021
0.029
0.030
0.029
0.029
0.030
0.031
0.010
0.010
0.030
0.032
0.032
0.033
0.012
0.033
0.034
0.012
0.032
0.032
0.033
0.033
0.033
0.034
0.034
0.033
0.033
0.033
0.033
0.034
0.033
0.034
0.034
0.031
0.031
0.033
0.034
0.014
0.034
0.014
6.26
4.20
6.22
6.32
6.25
6.16
6.21
6.32
6.32
6.22
6.22
6.01
5.94
5.87
5.87
5.94
5.95
5.93
5.97
6.07
6.06
6.05
4.11
6.18
6.17
6.15
6. (6
6.39
6.34
6.3«
6.36
6.39
6. (7
6. (8
6.44
6.34
6.30
6.32
6.33
4.11
6.47
6.50
6.46
6.37
6.12
6.32
6.33
6.36
6.47
6.51
6.46
6.33
6.29
6.28
6.30
                                      SINCLAIR 2035 072286  TO
                                      080486 IN 3 HR INTERVALS
496
497
498
499
500
501
502
503
504
505
506
507
501
509
510
511
512
513
514
SIS
516
517
518
519
520
521
522
523
524
525
526 .
S27
528
529
530
531
532
531
534
SIS
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
900 7
1200 7
1500 7
1800 7
2100 7
0 7
300 7
600 7
900 7
1200 7
1500 7
1100 7
2100 7
0 7
300 7
600 7
900 7
1200 7
1500 7
1300 7
2100 7
0 7
300 7
600 7
900 7
1200 7
1500 7
1100 7
2100 7
0 7
300 7
600 7
900 7
1200 7
1500 7
1800 7
2100 7
0 7
300 7
600 7
900 7
1200 7
1500 . 7
1800 7
2100 7
0
300
600
900
1200
1500
1100
2100
0
300
26
26
26
26
26
27
27
27
27
27
27
27
27
21
21
28
23
28
28
23
21
29
29
29
29
29
29
Z9
29
30
30
30
30
30
30
30
30
11
31
31
31
31
31
31
31
1





1
1
2
2
86
86
86
86
36
16
86
86
86
16
86
86
86
»6
86
86
86
36
36
16
36
36
86
86
86
86
86
86
86
16
86
86
86
86
86
86
86
36
86
86
86
86
86
16
36
16
36
86
86
36
86
86
86
36
86
16.53
18.04
20.37
20.62
19.56
11.72
18.02
17.47
17.23
17.16
16.92
16.54
16.15
15.82
15.66
15.56
15.59
15.73
15.78
15.75
19.64
15.51
15.30
15.05
15.02
15.47
15.77
15.16
15.64
15.50
15.27
14.95
14.88
14.99
14.9]
14.78
14.50
14.31
14.07
13.89
13.72
13.84
13.95
' 14.00
11.92'
13.77
13.66
13.52
13.61
13.92
14.23
14.50
14.42
14.16
14.00
0.015
0.014
0.033
0.033
0.033
0.033
0.033
0.034
0.033
0.033
0.031
0.031
0.011
0.031
0.031
0.031
0.030
0.030
0.030
0.029
0.029
0.030
0.030
0.029
0.029
0.029
0.02?
0.029
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.029
0.028
0.028
0.02?
0.010
0.010
0.032
0.032
0.032
0.031
0.032
0.030
0.02V
0.031
0.02?
0.02?
0.028
0.028
0.02B
0.02?
6.35
6.46
6.43
6.37
6.23
6.23
6.21
6.24
6.31
6.34
6.30
6.27
6.19
6.15
6.09
6.05
6.03
6.00
5.96
5.94
5.VO
5.92
5.92
5.93
5.95
5.??
5.98
6.01
5.?7
5.99
6.02
6.05
6.07
6.12
6.12
6.08
6.00
5.81
5.62
5.48
5.40
5.31
5.24
5.23
5.24
5.26
5.30
5.31
5.37
5.40
5.42
5.44
5.46
5.51
5.54
               SINCLAIR  1KOOK
                                  10103 THURSDAY, MAY 5, 1988
                                   COMMENT
                                                                                                  SINCLAIR BROOK
                             12
    10:03 THURSDAY.  MAY  5,  1938
SPCON     PH     COMMENT
151
111
111
IK
III
114
117
lit
11*
140
141
142
141
544
141
144
147
14t
5 If
570
171
171
171
IT1*
171
174
177
174
!7»
lie
in
lit
in
i«
in
114
1S7
111
lit
119
191
111
Itl
J94
Ifl
If4
117
Itl
If?
409
401
let
• 01
40(
401
409
109
UOO
1100
1190
JtOO
9
109
409
909
1100
1100
UOO
1,100
9
100
400
909
1109
1109
1109
1109
1109
0
100
490
too
1100
1500
1109
1100
0
109
409
too
1200
1100
UOO
2100
0
100
400
too
1209
1100
1100
1100
a
190
400
too
uoe
1100
uco
1100
i
2
2
2
I
2








(
(
(
(
(
(
(
14
24
27
17
27
27
17
27
27
17
21
11
21
11
21
21
28
21
29
29
29
It
2t
It
29
It
10
19
19
10
10
10
10
10
14
16
14
14
14
14
44
16
14
It
It
It
16
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
It
It
16
14
14
16
81
84
4i
It
It
It
It
It
44
• 4
14
44
16
14
14
It
It
14
It
13.15
13.14
13. tt
14.10
14.26
14.25
14. JO
14.14
14.08
14.04
14.20
14.44
14.53
14.47
14.33
14.23
K.14
14.23
15.05
16.04
16.26
10.77
* 10.51
10.22
9.19
1.97
1.63
t.ti
10.44
9.9S
9.22
1.33
7.34
4.77
6.45
8.32
9.40
9.30
a. 95
9.06
9.01
8.61
8.14
9.63
10.50
10.37
10.20
10. (4
10.43
10.47
10.41
11.29
11.11
12.11
11.01
0.029
0.021
0.021
0.021
0.027
0.027
0.026
0.026
0.027
0.026
0.026
0.025
0.025
0.025
0.026
0.025
0.026
0.026
0.026
0.026
0.025
0.024
0.024
0.017
0.027
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.021
0.024
0.02C
0.024
0.023
0.025
0.021
0.025
0.025
0.021
6.024
0.025
0.025
5.51
5.61
5.64
5.6S
5.61
5.69
5.70
5.73
5.74
5.76
5.74
5.54
5.41
5.37
5.34
5.35
5.36
5.40
5.46
5.49
5. SO
6.00
S.97
5.91
5.91
6.00
6.04
6.04
6.02.
6.03
5.99
6.04
6.03
6.04
6.01
6.01
6.05
6.05
6.04
6.03
6.02
6.02
6.04
4.01
6.09
6.02
6.01
5.97
5.96
1.97
5.96
5.V7
5.96
1.46
1.12
                                   SINCLAIR 9A 092636 TO
                                   100716 IH 3 HR INTERVALS
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
623
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
641
649
650
651
652
653
654
655
656
657
658
659
660
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1100
2100
0
300
600
900
1200
1500
1100
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
100
601)
900
1200
1500
1800
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7"
7
7
86
86
86
86
86
36
36
36
86
36
36
86
86
66
86
86
86
86
86
86
86
86
36
36
86
86
16
36
86
86
86
86
36
36
86
36
86
86
86
86
36
86
86
86
86
36
86
86
86
86
16
86
86
86
16
12.13
12.01
11.95
12.12
12.92
13.65
12.16
12.10
11.25
10.53
9.94
9.65
10.10
11.41
11.19
10.91
10.73
10.52
10.14
9.78
11.22
12.06
11.28
10. ?4
10.01
111.71
10.73
10.07
11.14
11.53
11.53
11.2?
11. OS
10.79
10.33
9.86
10.26
10.63
10.19
9.52
8.7?
8.10
7.56
7.50
7.95
8.42
8.26
7.3?
7.50
7.24
6.16
6.69
" 6.83 	
7.24
9.26
0.025
0.026
0.024
0.025
0.024
0.025
0.024
0.024
0.025
0.024
0.025
0.024
0.025
0.024
0.024
0.024
0.025
0.025
0.022
0.025
0.024
0.024
0.024
0.021
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.024
0.024
0.025
0.025
0.025
0.024
0.025
0.025
0.024
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0.021
.
0.026
11.021
S.83
5.77
5. 75
5.79
5.84
5.83
5.80
5.79
5.79
5.81
5.82
5.35
5.88
5.18
5.15
5.14
5.13
5.85
5.85
5.87
5.86
5.87
5.16
5. 84
5.85
5.87
5.36
5.85
S.87
5.86
5.31
5.78
5.77
5.76
5.75
5.71
5.73
5.72
5.69
5.67
5.69
5.71
5.73
S.74
5.76
5.75
5.74
5.75
5.76
5.77
5.78
5.80
5.91
5.61
5.55

-------
                                                    291
SINCLAIR BROOK
DBS
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
632
633
664
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
70S
704
707
706
709
710
711
712
713
714
715
HR
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Dfl
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
IS
15
15
IS
15
IS
15
16
16
la
16
16
YR
86
86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
46
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
36
86
86
86
86
86
36
86
86
86
86
86
36
86
TEMP
9.06
3.65
3.19
7.54
6.75
6.23
7.20
7.77
6.23
5.50
5.37
4.67
•3.96
3.63
5.33
6.55
6.01
5. 45
5.03
4. 65
4.14
3.94
S.30
7.27
6.92
6.48
6.26
6.05
6.35
6.63
7.23
7.95
8.15
8.2S
8.34
8.43
8.48
8.56
8.98
9.42
9.51
9.61
9.59
9.63
9.25
8. 65
9.56
9.96
9.21
8.72
8.55
7.7V
7. OS
6.64
7.69
SPCON
0.031
0.031
0.030
0.031
0.031
0.030
0.030
0.030
0.031
0.031
0.031
0.030
0.031
0.030
0.030
0.029
0.030
0.030
0.030
0.030
0.029
0.030
0.030
0.030
0.030
0.030
0.029
0.030
0.030
0.030
0.031
0.030
0.031
0.030
0.030
0.030
0.030
0.030
0.030
0.029
0.030
0.030
0.030
0.031
0.031
0.030
0.029
0.031
•0.029
0.029
0.029
0.029
0.029
0.029
0.029
PH
6.06
6.02
6.18
6.17
6.16
6.16
6.16
6.15
6.13
6.10
6.09
6.09
6.09
6.10
6.12
6.12
6.09
6.08
6.09
6.09
6.10
6.10
6.11
6.11
6.08
6.05
6.06
6.05
6.06
6.05
6.08
6.09
6.06
6.04
6.03
6.03
6.01
6.02
6.07
6.01
5.97
5.97
S.96
5.95
5.94
5.94
5.97
5.96
5.93
5.92
5.92
5.91
5.93
5.95
5.98
                   10:03  THURSDAVt HAY S* 1988
                   COMMENT
                   SINCLAIR 2035 100986 TO
                   101986  IN 3 HR INTERVALS
SINCLAIK  BKUUK
                                            IS
                   10:03 THURSDAVt KAY 5t  1988
               SPCON     PH     COMMENT
771
772
773
774
775
776
777
778
779
730
781
782
783
734
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
307
808
809
810
811
812
813
814
815
816
817
318
819
820
821
822
323
824
825
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1600
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
V
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
36
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86
86
86
86
86
36
36
36
86
36
0.22
0.57
0.73
0.92
0.96
0.90
0.72
0.37
0.13
0.29
0.37
0.32
0.03
0.51
0.63
0.15
-0.03
-0.04
-0.01
-0.04
-0.03
-0.03
-0.03
-0.01
-0.03
0.00
0.00
-0.01
-0.03
0.00
-0.01
0.00
0.00
0.00
-0.01
0.00
0.02
0.02
0.02
0.00
0.02
0.03
0.03
0.03
0.03
0.05
0.03
O.OS
0.07
0.12
0.12
0.14
0.12
0.10
0.03
0.020
0.021
0.021
0.021
0.021
0.021
0.020
0.020
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.021
0.022
0.022
0.022
0.022
0.022
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.020
0.018
0.017
0.015
0.013
0.012
0.019
0.022
0.023
0.021
0.022
0.021
0.022
0.021
0.023
0.024
0.025
0.027
0.028
0.029
0.031
0.023
0.022
5.60
5.57
5.55
S.SS
5.59
5.66
5.78
S.84
5.90
5.77
5.79
5.80
5.88
5.76
5.78
5.92
6.01
6.03
5.96
5.93
5.90
5.91
5.93
5.91
S.39
5.93
S.94
5.92
5.91
5.89
5.88
5.88
5.89
5.93
5.97
5.95
5.95
5.95
5.96
6.03
6.03
6.04
6.06
5.98
5.94
5.99
S.96
6.00
6.00
6.01
6.13
6.05
6.00
5.99
6.04
OBS
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
HR
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
700
1200
1500
1300
2100
0
300
600
HO
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
DA
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
13
ii
18
18
19
19
19
19
19
19
19
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
S
5
S
i
6
6
6

86
86
86
36
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
86. '
86
86
86
86
86
86
86
86
66
86

8.25
8.20
7.99
7.67
7.52
7.24
7.12
7.27
7.16
6.95
6.7S
6.50
6.29
5.96
S.32
6.40
6.92
6.53
5.60
4.84
4.17
3.64
3.48
5.07
6.43
5.90
-0.07
-0.09
-0.06
0.00
0.10
0.42
0.72
1.16
1.67
1.86
1-.7S
1.70
1.78
1.87
2.03
2.19
2.03
1.83
1.72
1.51
1.33
1.38
1.62
1.70
1.44
1.09
0.83
0.58
0.33

0.029
0.029
0.029
0.029
0.029
0.029
0.030
0.029
0.029
0.030
0.030
0.029
0.030
0.030
0.029
0.028
0.029
0.029
0.030
0.030
0.029
0.029
0.029
0.029
0.029
0.029
0.023
0.022
0.022
0.022
0.022
0.018
0.021
0.020
0.022
0.021
0.022
0.022
0.023
0.022
0.022
0.022
0.021
0.022
0.022
0.021
0.021
0.021
0.021
0.023
0.021
0.021
0.02.1
0.021
0.021

5.98
5.95
5.92
5.92
5.94
5.96
5.97
6.00
6.00
S.98
5.98
5.99
5.99
6.00
6.03
6.06
6.04
6.02
6.01
6.05
6.04
6.03
6.05
6.06
6.05
6.03
5.71
5.71
5.77
5.73
5.79
5.78
5.63
5.23
4.92
4.92
4.90
4.99
4.99
5.04
5.06
5.11
5.20
5.27
5.23
5.26
5.29
5.27
S.27
5.38
5.49
5.58
5.59
5.64
5.65
SINCLAIR BROOK
OBS
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
356
857
858
859
360
861
862
863
864
665
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
HR
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
no
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
DA
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
15
15
15
IS
15
15
15
16
16
16
16
16
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
.V«
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
' 86
86
86
86
86
86
86
«6
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
86
36
86
86
86
86
TCHP-
0.03
0.03
0.07
0.03
0.02
0.03
0.05-
0.02
0.02
0.05
0.03
0.03
0.05
0.03
0.05
0.05
0.21
0.32
0.26
0.21
• 0.20
0.17
0.14
0.07
0.05
0.08
0.14
-O.OS
-0.04
-0.04
-0.02
-0.04
-0.03
0.00
0.02
-0.03
-0.03-
-0.07
-0.07
-0.03
-0.03
0.00
-0.04
-0.04
-0.06
-0.04
-0.06
-0.06
-0.06
-0.03
-0.03
-0.06
-0.08
-0.04
-0.04
SPCON
0.021
0.022
0.022
0.022
0.022
0.021
0.022
0.022
0.022
0.022
0.021
0.022.
0.022
0.022
0.022
0.023
0.022
0.022
0.022
0.021
0.022
0.022
0.021
0.023
0.023
0.023
0.023
0.018
0.019
0.018
0.018
0.018
0.01S
0.019
0.018
0.019
0.019
0.019
0.019
0.019
0.01V
0.019
0.019
0.018
0.018
0.018
0.018
0.019
0.018
0.018
0.019
0.018
0.018
0.017
0.018
PH
6.06
6.07
6.13
6*08
6.07
6.06
6.07
6.06
6.10
6.07
6.09
6.04
6.03
6.05
6.06
6.07
6.10
6.05
6.07
6.12
6.06
6.10
6.12
6.16
6.13
6.11
6.11
6.04
6.01
5.98
5.96
5.98
5.93
S.98
5.97
6.03
6.05
6.08
6.04
6.03
6.04
6.09
6.04
5.84
5.59
5.42
S.38
5.45
5.38
5.37
5.35
S.4S
5.45
5.58
5.53
14
10:03 THURSDAY, HAY S, 1988


























SINCLAIR 9B 1202S6 TO
121686 IN 3 HR INTERVALS



























16
10:03 THURSDAY, HAY 5, 1988
COMMENT



























010687 IN 3 HR INTERVALS


























-------
                                                      292
SINCLA1K UROOK
                                          17
                   10:03 THURSDAY, MAY 5,  1988
ots
III
u:
ID
•it
tit
lit
117
111
11*
110
Itl
111
m
w
us
m
it)
Hi
itt
too
tot
«2
toi
tB(
tOi
J!4
to?
fOI
tSt
tia
tu
tu
MI
tu
711
tli
tI7
til
tit
t»0
til
til
til
m
tM
tn
t27
tn
tjt
tio
tu
t»
tu
tK
til
«00 12 27
tOO 1!
uoo i:
1100 i;
1100 i:
2100 13
0 12
100 11
too i:
too 13
uoo 13
UOO 13
1100 li
2100 It
a 11
100 li
too li
too li
1200 li
1100 1.
1109 1
1100 1
0 1.
100 1
too r
too i
UOO 1.
1500 1
1100 1.
2100 li
0 1.
100 i;
ISO li
too i
1200 li
1100 li
UOO 1.
uoo r
0
100
too
too
uoo
1100
1100
llOa
a
100
too
too
1109
1100
1100
2100
0
27
27
27
27
27
21
23
21
28
21
21
21
21
29
29
29
2t
29
2?
2t
29
30
JO
30
10
10
10
10
30
11
31
31
11
11
31
11
31















2
1
It
It
46
It
16
16
It
»6
It
It
It
It
It
16
It
It
86
86
It
It
It
lit
It
It
It
It
It
16
It
It
It
It
It
It
It
It
It
It
17
I?
17
17
17
17
17
17
47
17
17
17
17
17
17
17
17
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0
-0
-0
-0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
-0
-0
0
0
0
0
0
0
0
-0
0
0
0
0
0
0
0
0
0
.04
.04
.04
.04
.06
.06
.04
.04
.04
.04
.03
.03
.04
.03
.04
.03
.01
.01
.00
.01
.01
.01
.00
.02
.03
.05
.03
.08
.08
.10
.12
.03
.03
.0!
.14
.07
.01
.03
.00
.00
.00
.00
.00
.03
.00
.01
.02
.00
.00
.00
.03
.02
.02
.02
.00
0.018
0.011
0.013
0.018
0.013
0.013
0.011
0.019
0.018
0.018
0.013
0.018
0.018
0.018
0.018
0.013
0.017
0.018
0.018
0.019
0.019
0.020
0.021
0.020
0.020
0.01?
0.018
0.018
0.018
0.018
0.017
0.011
0.018
0.017
0.017
0.017
0.013
0.018
0.019
0.013
0.013
0.013
0.019
0.018
0.019
0.019
0.018
0.013
0.013
0.011
0.013
0.013
0.018
0.018
0.017
5.60
5.62
5.61
S.60
S.66
5.64
5.72
S.70
S.67
5.67
5.70
5.71
5.68
S.73
5.76
S.77
5.83
S.81
5.37
5.83
5.34
S.89
5.90
S.92
S.94
S.89
S.94
5.95
5.98
S.9S
5.98
6.04
6.03
S.99
6.03
6.07
6.10
6. IS
6.11
6.13
6.08
6.05
6.03
6.08
6.07
6.08
6.10
6.12
6.09
6.08
6.01
6.07
6.03
6.05
6.04
SINCLAIR BROOK

01 J
l«l
ttl
ttl
HI
tti
ttl
ttT
ttl
ttt
1000
1091
1091
100)
ioo«
1001
1001
lea?
tool
loot
1010
ton
leti
ton
1014
lots
10U
1017
1011
toit
1020
ten
lot!
1021
lOit
1021
102t
totr
10J1
tOJt
laio
tail
tail
1911
ion
toit
10)*
1017
1011
lOlt
iota
10U
10(1
1011
10(4
lOtJ

M« na e«
tioa
2103
a
joa
ISO
too
uoo
1J03
uoo
2100
0
100
tea
too
uoo
1500
1100
2100
0
300
109
too
1200
1100
UOO
tioo

103
too
toa
1200
lioo
1IJ9
2103
0
100
toa
too
1200
1100
uoo
aoo

109
too
t03
1200
1100
2100
a
JM
too
toa
iiao
HOJ
11
11
12
12
12
12
12
It
12
u
1)
1)
11
u
11
13
13
13
14
14
14
14
14
It
U
14
IS
IS
IS
li
li
u
li
li
It
11
It
It
It
It
It
It
17
17
17
17
17
27
27
21
21
21
21
21
21

V*
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
S?
97

rexr
-0.04
-0.04
-0.03
—0.04
-0.04
-0.04
-0.07
-0.lt
-0.14
-0.14
-0.13
-0.13
-0.11
-0.09
-0.04
O.OS
o.ot
0.01
o.ot
O.OS
0.03
0.00
0.02
OiOO
-0.01
-0.03
-0.01
-0.04
-0.04
-0.04
-0.01
-0.04
-0.03
-0.03
-0.03
-0.04
-0.01
-0.01
-0.03
-0.03
-0.01
-0.03
-0.03
-0.01
-0.04
-0.04
-0.01
-O.Of
-0.07
-0.07
-o.ot
-o.ot
-O.J7
-0.09
-0.09

SPCON
0.021
0.021
0.020
0.020
0.020
0.011
0.018
0.020
0.020
0.020
0.020
0.020
0.021
0.020
0.020
0.021
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.021
0.020
0.020
0.020
0.020
0.021
0.020
0.021
0.020
0.022
0.023
0.023
0.022
0.022
0.022
0.022
0.022
0.022
0.021
0.021
0.021
0.02S
0.02S
0.02S
0.02$
0.025
0.02S
0.024
0.02S
19
10:03 THURSDAY, MAY 5, 1988
PH COMMENT
S.90
5.19
s.si
S.90
S.S8
S.93
S.91
S.91
5.90
i.92
5.91
S.92
S.92
S.92
5.94
S.94
5.95
5.94
5.95
5.96
5.96
S.97
5.97
5.97
5.97
5.97
5.96
S.97
5.97
5.97
S.97
5.93
S.96
5.97
5.97
S.98
t.OO
S.99
6.02
6.02
6.01
6.00
S.9V
S.97
5.97
S.9S
5.97
6.00 SINCLAIR UNIT 9E 012787
5.96 TO 021037 IN 3 HR
S.9S INTERVALS
5.94
5.93
S.92
S.91
5.90
SINCLAIR DRUOK

DBS HR HO
936 300 1
937 600 1
938 900 1
939 1200 1
940 1500 1
941 1800 1
942 2100 1
943 0 1
944 300 1
945 600 1
916 900 1
947 1200 1
948 1500 1
949 1800 1
9SO 2100 1
951 0 1
952 300 1
953 600 1
954 900 1
955 1200 1
956 1SOO 1
957 1800 1
958 2100 1
959 0 1
960 300 1
961 600 1
962 900 1
964 1500 1
965 1800 1
966 1500 1
967 1800 1
968 2100 1
969 0 1
970 300 1
971 600 1
972 900 1
973 1200 1
974 1500 1
97S 1800 1
976 2100 1
977 0 1
978 300 1
979 600 1
930 900 1
931 1200 1
982 1500 1
983 1800 1
964 2100 1
935' 01
936 300 1
93? 600 1
988 900 1
939 1200 1
990 1500 1

DA
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
S
5
5
5
5
5
5
6
6
6
6
6
6
3
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11

YR
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

TEMP
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.03
0.05
O.OS
0.05
0.03
0.05
0.07
0.07
0.05
O.OS
0.07
0.09
0.03
-0.01
-0.02
-0.04
-0.04
-0.04
-0.06
-0.01
-0.03
-0.04
-0.06
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.01
-0.03
-0.03
-0.03
-0.01
-0.03
-0.04

SPCON
0.015
0.015
0.016
0.016
0.016
0.017
0.018
0.018
0.019
0.013
0.018
0.018
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.020
0.020
0.019
0.019
0.020
0.020
0.020
0.020
0.020
0.020
0.021
0.021
0.020
0.021
0.021
0.020
0.021
0.021
0.021
0.021
0.021
0.020
0.022
0.021
0.020
0.020
0.020
0.021
0.020

Pri
6.08
5.92
5.95
6.06
6.03
6.00
S.9S
i.9a
6.03
6.02
6.03
6.03
6.10
6.09
6.08
6.05
6.08
6.08
6.09
6.12
6.13
6.10
6.09
6.10
6.09
6.08
6.08
6.01
6.01
6.08
6.09
6.11
6.10
6.12
6.12
6.06
6.03
6.04
6.03
6.02
6.00
5.99
5.97
S.91
5.93
S.92
5.93
S.93
S.94
5.93
5.91
5. 92
5*90
5.90
10:03 THURSO
COMMENT





























SINCLAIR 9C
011787 IN 3























SINCLAIR BROOK

01$ HI!
1046 1800
1047 2100
1043 0
1049 300
1050 600
1051 900
1052 1200
1053 1500
10S4 1800
1055 2100
1056 0
1057 300
1058 600
1099 900
1060 1200
1061 1500
1062 1800
1063 2100
1064 0
1065 300
1066 600
1067 900
1068 1200
1069 1500
1070 1800
1071 2100
1072 0
1073 300
1074 600
1075 900
1076 1200
1077 1500
•1073 1800
1079 2100
1080 0
1081 300
1082 600
1083 900
1084 1200
108S 1500
1086 1800
1037 2100
1088 0
1039 300
1090 600
1091 900
1092 1200
1093 1500
1094 1800
1095 2100
1096 0
1097 300
1093 600
1099 900
1100 1200

MO
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

OA
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4

YR
37
87
87
87
87
87
87
87
87
87
87
37
37
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
37
87
87
87
87
87
37
87
87
«7
87
87
87

ienp
-0.04
-0.06
-0.04
-0.04
-0.04
-0.03
-0.04
-0.03
-0.06
-0.04
-0.03
-0.06
-0.01
-0.03
-0.03
-0.03
-0.06
-0.03
-0.01
0.00
-0.01
0.00
0.02
0.02
0.00
0.00
0.02
0.00
0.00
0.02
0.02
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.05
0.02
0.03
O.OS
0.03
O.OS
O.OS
0.03
O.OS
0.05
0.03
0.03
0.07
0.06
0.08
0.08
10
SPCON
0.024
0.026
0.02S
0.025
0.02S
0.025
0.02S
0.025
0.026
0.02S
0.025
0.025
0.025
0.025
0.025
0.02S
0.025
0.02S
0.02S
0.026
0.025
0.02S
0.025
0.025
0.02S
0.02S
0.025
0.024
0.024
0.02S
0.025
0.025
0.025
0.025
0.02S
0.025
0.02S
0.025
0.026
0.026
0.026
0.025
0.02S
0.025
0.025
0.025
0.025
0.025
0.025
0.025
'0.025
0.025
0.025
0.025
0.024
:03 THURSDAY
PH
5. 83
5.87
S.87
5.39
5.88
S.89
5.88
5.36
S.86
S.86
5.86
5.87
5.38
5.87
S.87
5.87
S.39
5.83
5.89
5.89
5.90
5.90
5.90
5.92
5.90
5.90
5.92
S.92
5.92
5.93
S.93
5.93
5.92
S.92
S.93
5.94
5.94
5.93
S.92
5.90
5.92
5.92
5.92
S.93
5.92
5.93
5.95
5.96
5.96
5.95
5.96
S.9S
5.V6
S.16
5.98
1
AY. HAY Si 198






























010887 TO
HR INTERVALS























20
. MAY St 1983
COMMENT
























































-------
293
• SINCLAIR BROOK
OBS
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1133
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

OSS
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
122S
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1243
1249
12SO
12S1
1252
1253
1254
125S
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
HR
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
1800
2100
0
300

HR
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
no
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3

no
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
DA
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
11
11
12
12

DA
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
YR
87
87
87
87
87
87
37
87
87
37
87
87
37
87
87
87
87
87
87
87
87
87
87
87.
37
87
37
87
87
87
87
87
37
87
87
37
87
87
87
87
87
87
87
37
37
87
87
87
87
87
87
37
87
A7
YR
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
37
57
TEHP
0.03
O.OS
0.08
0.07
0.07
0.07
0.07
O.OS
0.03
0.08
0.08
0.10
0.10
0.08
0.10
0.03
0.10
0.10
0.10
0.10
0.12
0.14
0.12
0.11
0.11
0.14
0.14
0.14
0.14
0.14
0.14
0.16
0.14
0.16
0.17
0.17
0.17
0.14
0.14
0. 16
0.16
0.14
0.16
0.14
0.17
0.16
0.17
0.16
0.16
0.14
-0. 10
-0.10
0.00
-0.12
-0.08
T£np
0.05
0.10
0.08
0.10
0.06
0.06
0.07
0.03
0.03
0.14
0.17
0.17
0.03
0.07
0.03
0.03
0.07
0.05
0.03
0.02
0.02
0.03
0.03
0.03
0.02
0.03
0.03
0.03
0.02
0.03
0.03
0.03
0.03
0.03
O.OS
O.OS
0.03
O.OS
0.05
0.07
0.05
O.OS
-0.04
-0.06
-0.04
-0.04
-0.04
-0.04
-0.01
-0.04
-0.03
-0.03
-0.01
-0.01
-0.03
SPCON
0.023
0.023
0.024
0.024
0.025
0.025
0.025
0.025
0.026
0.025
0.026
0.026
0.026
0.026
0.02S
0.026
0.027
0.027
0.026
0.026
0.026
0.025
0.026
0.025
0.025
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.025
0.024
0.025
0.026
0.025
0.025
0.025
0.024
0.026
0.025
0.025
0.026
0.025
0.024
0.022
0.023
0.023
0.023
0.024
SPCON
0.023
0.022
0.023
0.023
0.023
0.023
0.024
0.024
0.023
0.023
0.023
0.023
0.023
0.022
0.021
0.020
0.019
0.018
0.016
0.024
0.026
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.026
0.027
0.026
0.027
0.028
0.029
0.030
0.032
0.033
0.033
0.033
0.028
0.028
0.027
0.031
0.030
0.030
0.030
0.030
0.030
0.030
0.028
0.028
0.029
0.028
0.028
0.028
PH
5.96
5.96
5.98
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.95
5.96
5.96
5.94
5.93
5.92
5.92
5.93
5.95
5.96
5.95
5.96
5.96
5.93
5.93
5.93
5.93
5.95
5.94
5.93
5. 95
5.95
5.94
5.96
5.96
5.96
5.96
5.98
5.97
5.96
5.9S
5.95
5.95
5.96
5.97
5.99
5.99
5.98
5.99
6.07
6.08
6.02
6.02
6.02
PH
6.42
6.38
6.50
6.46
6.46
6.41
6.33
6.39
6.43
6.40
6.40
6.51
6.49
6.45
6.43
6.38
6.38
6.41
6.41
6.33
6.24
6.17
6.10
6.05
S.9S
5.87
5.35
5.31
5.32
5.80
5.72
5.73
5.70
5.69
5.69
5.69
5.71
S.70
5.67
5.67
5.60
5.62
S.61
S.64
5.60
5.56
5.56
5.56
5.55
5.56
5.53
5.52
5.52
5.52
5.S2
21
10:03 THURSDAY. HAY 5, 1988
COHHENT














































SINCLAIR UNIT 9B 031187
032487 IN 3 HR INTERVALS


23
conntNT





































SINCLAIR 9D 032487 TO
040787 IN 6 HR INTERVALS















SINCLAIR BROOK

DBS
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

HR
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300

no
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
i

DA
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
15
IS
15
IS
IS
15
IS
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
IB
19
19

YR
87
87
37
87
87
87
87
87
87
37
87
87
87
87
87
87
67
87
37
87
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

TEHP
-0.07
-0<04
-0.07
-0.11
-0.09
-0.04
-0.06
-0.06
-0.04
-0.01
-0.03
-0.04
-0.06
-0.04
-0.04
-0.04
-0.01
0.00
0.00
0.02
-0.01
-0.01
-0.01
-0.03
0.02
0.00
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.05
0.05
0.03
0.00
0.02
0.02
0.00
0.03
0.02
0.03
0.03
0.03
0.03
0.03
0.06
0.03
0.10
0.12
0.06
0.08
0.05
0.06
10:0
SPCON
0.023
0.023
0.023
0.023
0.023
0.023
0.022
0.023
0.026
0.023
0.022
0.023
0.022
0.023
0.023
0.023
0.023
0.023
0.024
0.022
0.023
0.023
0.023
0.023
0.023
0.022
0.023
0.022
0.022
0.023
0.023
0.023
0.022
0.023
0.023
0.023
0.022
0.023
0.023
0.024
0.022
0.022
0.023
0.023
0.023
0.022
0.023
0.022
0.023
0.022
0.022
0.024
0.023
0.023
0.024
SINCLAIR BRUUK
DBS
1266
1267
1268
1269
1270
1271
1272
1273
1274
127S
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1283
1289
1290
1291
1292
1293
1294
129S
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
HR
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
no
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
DA
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31







1
2
2
YR
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
37
87
87
87
87
37
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
37
87
renp
-0.03
-0.03
-0.01
-0.03
-0.03
-0.03
0.00
-0.01
-0.01
0.00
0.02
-0.01
-0.03
-0.01
0.02
0.00
0.02
0.03
O.OS
0.00
0.02
0.02
0.00
0.00
0.07
0.12
0.08
0.02
0.02
0.00
0.02
0.02
0.12
0.21
0.14
0.02
O.OS
0.08
0.07
0.03
0.03
0.12
0.12
0.11
0.12
0.11
0.16
0.14
0.14
0.18
0.20
0.20
0.21
0.16
O.lli
SPCON
0.028
0.028
0.028
0.027
0.027
0.027
0.028
0.023
0.028
0.030
0.032
0.030
0.030
0.030
0.030
0.028
0.027
0.027
0.027
0.026
0.026
0.026
0.027
0.026
0.027
0.025
0.026
0.026
0.02S
0.026
0.025
0.02S
0.026
0.026
0.024
0.024
0.023
0.023
0.022
0.020
0.018
0.019
0.020
0.021
0.022
0.022
0.023
0.025
0.026
0.026
0.027
0.028
0.027
0.028
0.026
22
3 THURSDAY, KAY 5, 1988
PH COnBENT
6.02
6.05
6.05
6.03
6.09
6.10
6.11
6.13
6.13
6.16
6.19
6.18
6.21
6.22
6.26
6.27
6.28
6.29
6.34
6.36
6.34
6.34
6.38
6.35
6. 35
6.37
6.42
6.40
6.41
6.42
6.44
6.46
6.45
6.45
6.50
6.52
6.52
6.53
6. SO
6.52
6.49
6. 55
6.52
6.51
6. SO
6.51
6.52
6.48
6.50
6.51
6.47
6.50
6.43
6.42
6.44
24
PH COmiENT
5.43
5.52
5.49
5.48
5.41
5.44
5.40
5.42
5.40
5.36
S.33
S.31
5.32
5.34
5.35
5.39
5.38
5.41
5.33
5.40
5.41
5.42
S.44
5.43
S.43
5.46
5.43
5.46
5.40
5.41
S.38
S.44
5.46
S.4S
5.38
5.37
S.36
5.36
S.37
5.38
5.38
5.32
5.31
S.29
5.21
5.07
5.02
4.97
4.92
4.86
4.88
4.87
4.87
4.89
4.92

-------
                                                                                294
                      SIKCLMH 8ROOK

Olt
mi
u»
im
im
ins
titt
UJ7
im
uif
1310
1111
Ull
Ill)
UK
111)
11)4
1JJ7
1311
111?
11(0
1141
im
mi
1311
IKS
1K4
IK?
mi
IKt
use
11S1
im
1153
11S<
UJS
11J4
US?
I1SI
USf
lite
1341
till
mi
1341
11*1
im
11*7
llil
Hit
1178
1171
ij?i
1373
lift
U71

HI
409
ICO
1100
Ii«9
1499
1100
. 8
iao
408
tOB
» 00
MOO
1400
1189
8
109
408
t09
1108
1500
1100
1109
8
109
408
f09
1199
1199
1499
1199
8
100
499
fOO
1199
1500
1409
1199
8
198
409
7CO
lies
1199
8
190
498
too
1190
IS 00
1490
1100
0
100
400

no
4
4
4
4
4
4
4
(
t
t
4
4
4
4
4
4
4
4
4
4
4
4
(
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
(
4
4
4
4
4
4
4
4
4
4
4
4
4

0«
1
I
1
1
1
1
1
1
1
1
1
3
1
1
4
(
4
4
4
4
4
4
5
S
i
S
S
5
S
$
4
4
4
4
4
4
4
4
7
1
7
?
1
7
S
4
a
4
a
4
4
>
*
7
t

»R
17
87
47
17
47
17
47
47
4?
47
47
47
97
4?
47
47
47
97
47
47
97
97
47
47
97
87
9?
47
87
47
47
97
97
97
47
4?
47
47
4?
4?
47
97
47
47
47
87
4?
17
47
47
47
47
4?
47
47

UUP
0.14
0.36
0.41
0.74
0.41
0.32
9.22
0.16
0.14
0.41
1.41
1.43
1.19
0.80
0.40
0.40
0.69
1.11
1-11
1.31
1.79
1.04
0.94
0.75
0.40
0.97
1.32
1.54
1.56
1.49
1.45
1.40
1.41
1.S1
1.49
1.79
1.72
1.54
1.19
1.11
1.14
1.18
1.S4
1.41
1.16
1.19
1.04
1.16
1.61
1.76
1.44
1.45
1.11
O.V3
O.fl

SPCON
0.027
0.027
0.028
0.017
0.026
0.024
0.024
0.026
0.016
0.026
0.024
0.026
0.024
0.01S
0.014
0.01S
0.015
0.015
0.025
0.024
0.924
0.024
0.025
0.024
0.024
0.023
0.024
0.023
0.021
0.023
0.024
0.023
0.023
0.024
0.023
0.021
0.023
0.023
0.023
0.023
0.022
0.021
0.027
0.924
0.926
0.026
0.021
0.026
0.026
0.024
0.024
0.027
0.026
0.026
0.026

PH
4.47
4.94
4.98
4.81
4.98
4.88
4.94
5.04
5.08
5.01
4.93
4.97
5.00
5.04
5.04
5.01
5.03
5.04
5.00
4.95
5.00
4.98
4.99
5.01
S.OO
5.01
S.02
5.00
5.04
S.OO
5.05
5.03
5.01
5.01
4.92
4.91
4.93
4.93
4.99
4.94
4.94
4.94
5.20
5.18
5.15
5.19
S.18
5.20
5.21
5.20
5.22
5.24
5.25
5.26
5.26
10103 THURSDAYt NAY 5< 19
COH.1ENT






































SINCLAIR 2035 040787 TO
042187 IN 3 HR INTERVALS


LAV PH VALUE FOR 040787
IS 5.53.






EVENT PH FOR 040887
IS 5.66.



SINCLAIR BROOK

OSS
1376
1377
1375
1379
1380
1391
1382
13S3
1394
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
139S
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1413
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

HR
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300

HO
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

OA
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
15
IS
15
15
15
15
15
IS
16
16

VR
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87

TEHP
1.09
1.53
1.95
2.03
1.71
1.35
1.04
0.77
1.21
2.80
3.81
3.73
3.43
2.94
2.39
2.14
2.60
3.84
4.68
4.65
4.25
3.70
3.16
2.69
2.97
4.20
5.08
5.04
4.57
3.92
3.35
2.73
2.86
3.92
4.36
4.00
3.43
2.79
2.18
1.64
1.92
3.52
4.59
4.30
3.80
3.16
2.60
2.07
2.47
4.15
5.24
4.97
4.55
4.08
3.52

SPCON
0.026
0.026
0.026
0.026
0.027
0.026
0.025
0.025
0.025
0.026
0.025
0.024
0.025
0.025
0.026
0.026
0.026
0.02S
0.025
0.025
0.026
0.026
0*025
0.026
0.025
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.026
0.026
0.025
0.025
0.026
0.027
0.026
0.025
0.025
0.025
0.025
0.025
0.027
0.026
26
10:03 THURSDAY. HAY 5. 1988
PH CQtmeNT
5.27
5.28
5.28
5.28
5.29
5.30
5.31
5.32
5.33
5.32
5.32
5.30 EVENT PH FOR 041087
5.29 IS 5.83.
5.31
5.32
5.33
5.33
5.33
5.27
5.26
5.27
5.28
5.32
5.29
5.31
5.30
5.31
5.31
5.32
5.31
5.34
5.34
5.37
5.34
5.37
5.35
5.38
5.40
5.41
5.42
5.43
5.39
5.41
5.40 EVENT PH FOR 041487
5.41 IS 5.94.
5.43
5.45
5.47
5.46
5.43
5.45
5.46
5.45
5.49
5.50
Hit   1(9   OA   YK
                     SINCLAIR  HOOK

                    TtIP   SPCOH
10>03  THURSDAY, HAY Si 1989
 COHNENT
1411
14JJ
1413
1414
UIS
1414
1417
1414
Kit
1(49
1441
1442
14(1
1(44
14*3
1444
1(47
14*4
144*
HSO
14S1
KS1
4(S1
14S4
14SS
14)*
I4S7
14JI
USf
1449
1441
1441
1441
1(44
144S
1(44
1(4?
S44I
Hit
1(79
1(71
1(71
1471
147*
1(71
1(74
1(7?
1474
l*7f
1449
1(41
1(11
1(11
1*4*
H4S
409
too
1199
1500
1180
7100
9
100
408
199
itoo
1S09
1490
1198
8
100
490
908
1199
1S09
1408
1198
8
109
499
998
1190
1S98
1409
1190
8
109
409
909
1108
1500
1999
1190
8
109
499
too
1409
1109
8
199
499
tOO
1190
IS99
1499
1189
9
308
409












4
4
4
(
(
(
(
4
(
(
(
(
4
(
4
(
(
(
(
4
4
t
4
4
4
(
4
4
(
4
4
(
(
(
4
4
(
(
(
(
(
(
4
14
16
14
14
14
14
17
17
17
17
17
1?
17
17
14
14
14
11
14
14
19
14
If
It
19
It
19
It
It
It
19
10
20
19
20
10
20
29
11
21
11
11
11
11
11
11
It
It
11
11
21
21
11
11
11
17
47
47
9?
47
9?
9?
97
47
4?
4?
17
4?
4?
97
97
47
47
47
9?
47
4?
4?
47
H7
4?
4?
47
4?
47
4?
47
47
4?
17
47
97
17
47
4?
47
17
47
17
47
47
47
4?
47
4?
47
47
4?
47
47
3.25
3.41
S.14
S.71
S.49
5.11
4.94
4.42
(.29
4.11
4.73
S.9?
4.93
4.91
4.90
4.92
4.44
S.14
1.71
6.14
4.13
4.01
5.91
5.79
S.44
4.11
7.53
4.40
I.4S
8.09
7.51
6.94
4.20
4.41
4.62
9. 87
9.63
9.19
9.91
4. 66
9.1?
4.51
11.12
10. 4»
10.10
9.64
4.43
4.23
3.»1
10.04
9.31
4.14
7.44
t.tl
>.«»
0.015
0.016
0.027
0.026
0.927
9.02?
0.026
0.023
0.026
0.026
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.026
0.026
0.027
9.026
0.026
0.029
0.029
0.026
0.027
0.026
0.02?
0.016
0.026
0.026
0.026
0.924
0.028
0.024
0.930
0.031
0.011
0.031
0.011
0.011
0.030
0.030
0.031
0.031
0.031
0.011
0.011
5.51
5.52
5.47
5.44
5.49
5.50
S.S3
5.S4
5.57
S.S7
5.S4
5.56
5.57
5.55
5.57
5.56
5.57
S.S7
5.59
5.57
5.5?
5.55
S.57
5.58
5.58
5.61
5.62
5.61
5.60
5.58
5.53
5.61
5.66
5.71
5.70
S.67
5.67
5.6?
5.68
5.70
5.72
5.77
5.64
5.66
3.64
S.»4
5.61
5.66
5.69
5.68
5.66
5.67
5.65
5.68
S.4S












EVENT PH FOR 041787
IS 6.21.
























SINCLAIR 9E 042187
TO 050587 3 HR INTERVALS
PH VALUE FOR 04218?
IS 6.23.
ALL PH VALUES GIVEN
ARC NON-AERATED PHS.













OSS
1486
1437
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1493
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1138
1539
1540


HR
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1200
1500
1800
2100
0
300


no
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4


DA
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
- 28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30


YR
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
37
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
SINCLAIR

TEHP
5.81
7.39
8.34
8.06
7.22
6.82
6.66
6.54
6.65
6.85
6.92
6.87
6.50
6.00
5.35
4.59
4.78
6.92
8.55
8.03
7.09
6.07
5.18
4.38
4.64
6.96
8.53
7.86
6.75
5.53
4.51
3.68
4.09
6.68
8.21
7.47
6.38
5.44
4.89
4.21
4.36
6.25
6.88
6.38
5.74
5.13
3.28
2.50
2.64
3.22
3.67
3.57
3.43
3.33
3.28
a ROOK

SPCON
0.029
0.031
0.030
0.031
0.032
0.031
0.032
0.032
0.032
0.032
0.031
0.032
0.031
0.031
0.032
0.031
0.032
0.032
0.031
0.033
0.032
0.032
0.034
0.031
0.031
0.031
0.032
0.031
0.032
0.032
0.033
0.032
0.032
0.031
0.031
0.032
0.032
0.033
0.033
0.033
0.033
0.032
0.032
0.031
0.-032
0.032
0.033
0.032
0.031
0.031
0.033
0.033
0.033
0.033
0.033
28
10:03 THURSDAY. HAY 5, 1988
PH COHHENT
5.73
5.72
5.73
5.70
5.67
5.69
5.67
5.68
5.70
5.74
5.73
5.72 EVENT PH FOR 042487
5.68 IS 6.38.
5.69
5.70
5.73
5.73
5.71
5.68
5.67
5.68
5.71
5.70
5.71
5.79
5.71
5.75
5.70
5.71
5.75
5.77
5.79
5.79
5.81
5.77
5.78
5.78
5.80
5.73
5.82
5.85
5.86
5.36
5.83
.31
.82
.86
.87
.79
.78
.68
.62
.56
.56
.52

-------
                                                                                       295
                                SINCLAIR BROOK
 8S

 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 551
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 54 4
 565
 566
 567
 56 8
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
.580
.581
1582
1583
1584
1585
1586
1587
1533
1589
1590
1591
1492
1593
1594
1595
                                                    10:03 THURSDAY, BAY  5,
H8
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1SOO
1800
2100
0
300
600
900
1200
1500
1800
2100
300
600
900
1200
1800
2100
0
300
600
900
1200
1500
1300
2100
0
JOO
4
4
4
4
4
4
5
5
5
5
5
5
S
5
5
5
5
S
5
S
5
S
5
5
5
S
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
S
S
5
5
5
5
S
5
S
5
5
S
5
30
30
30
10
10
30
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
S
5
5
5
6
6
6
6
6
6
6
6
7
7
67
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
37
87
87
87
37
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
3.25
3.51
4.13
5.07
5.07
4.80
4.48
4.06
3.64
3.81
5.18
6.01
5.83
5.32
4.57
1.80
3.08
3.37
4.99
5.61
5.97
5.66
5.52
5.10
4.67
5.09
6.83
7.70
7.61
6.92
6.27
5.79
5.38
5.45
7.10
3.78
8.37
7.47
6.10
5.88
5.99
6.03
5.99
5.82
5.68
5.59
5.58
5.76
6.36
6.72
6.84
6.71
6.45
6.20
0.033
0.032
0.031
0.011
0.031
0.031
0.031
0.032
0.010
0.031
0.031
0.031
0.031
0.031
0.031
0.031
0.011
0.031
0.031
0.032
0.031
0.031
0.032
0.031
0.031
0.031
0.012
0.031
0.032
0.012
0.033
0.032
0.012
0.031
0.011
0.012
0.031
0.032
0.032
0.012
0.032
0.032
0.023
•0.027
0.027
0.027
0.027
0.027
0.026
0.026
0.026
0.026
0.027
0.027
5.S2
5.52
5.50
5.48
5.45
5.43
5.43
5.45
5.46
5.47
5.43
5.45
5.44
5.44
5.49
S.S1
s.ss
5.56
5.52
5.54
5.S4
5.56
5. S3
S.S7
5.61
5.64
5.63
5.64
5.66
5.62
5.66
5.69
5.69
5.75
5.73
5.70
5.70
5.69
5. 72
5.75
5.76
S.79
5.80
6.20
6.13
6.08
6.05
.02
.03
.03
.95
.85
.74
.71
5.68





CVENT
i:s 6.1































EDITE
SINCL
10 05
INTER













                                                                              29
                                                                            1988
SINCLAIR 2035 050587
          IN 1 Hit
                               SINCLAIR BROOK
                                                   10:01  THURSDAY,  NAY  5,  1988
OBS
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1663
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1633
1684
1635
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
HR
300
600
900
1200
1500
1800
2100
0
100
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1300
2100
0
300
600
900
1300
2100
0
300
600
900
1200
1500
1800
2100
0
100
no
S
5
5
5
5
5
5
5
5
S
5
5
5
S
5
S
S
S
S "
5
S
S
5
5
S
S
S
5
S
5
5
S
S
S
5
S
5
5
5
S
5
S
5
S
S
S
S
S
5
S
S
i
5
5
5
14
14
14
14
14
14
14
IS
15
IS
IS
IS
IS
15
15
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
37
87
87
87
87
87
87
87
87
87
87
37
87
17
87
87
37
87
47
7.59
6.93
7.58
10.45
11.99
10.82
9.53
8.79
8.45
8.12
8.54
8.82
8.76
8.76
8.25
7.72
7.11
6.53
6.71
8.72
10.35
10.02
9.11
8.75
8.07
7.37
3.36
11.04
12.56
12.24
11.14
10.20
9. 55
9.04
8.89
11.01
12.01
11.21
10.32
9.28
8.15
7.12
7.82
11.26
10.06
3.75
7.61
6, 53
7.12
10.54
12.55
11.62
10.27
9.16
8.26
0.026
0.027
0.026
0.026
0.025
0.026
0.026
0.027
0.027
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.02S
0.025
0.025
0.025
0.025
0.026
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.026
0.026
0.026
0.026
0.02S
0.025
0.025
0.026
0.026
0.026
0.026
0.026
0.021
0.022
0.021
0.023
0.022
0.022
0.023
0.021
0.022
0.020
0,02}
0.021
5.93
5.96
6.06
6.06
6.04
6.01
5.98
5.97
6.00
5.99
6.07
6.06
6.02
5.93
5.94
5.92
5. -92
S.94
5.93
5.98
5.97
5.93
5.89
S.90
5.91
5.91
6.04
6.03
6.02
5.98
5.92
5.94
S.96
5.96
6.07
6.11
6.14
6.06
6.00
5.99 EDITED ALC 052087
6.05 SINCLAIR 90 OS1987 TO
6.07 060287 IN 3 HR INTERVAL
6.14
6.29
6.21 051937 LAB PH -6,66
6.20
6.21
6.24
6.31
6.21
6.05
6.03
6.20
6.21
6.2!
DBS
1596
1597
1598
1599
1600
1601
1602'
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
164S
1646
1647
1648
1649
16SO


DBS
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
17SO
1751
1752
17S3
1754
1755
1756
1757
1759
1759
1760
HR
600
900
1201)
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0


HR
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900 ,
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
HO
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5


no
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5














DA
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
ID
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14


OA
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
23
23
23
23
21
23
.23
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
27
27
27
27
29
SINCLAIR BROOK
YR T£HP
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
«7
SINCLAIR

YR
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
37
87
87
87
87
97
87
6.08
7.34
8.34
3.68
8.23
7.77
6.95
6.08
6.36
7.81
8.80
8.66
7.90
7.16
6.31
5.55
6.12
8.52
9.92
9.50
8.58
7.99
7.58
7.33
11.13
10.46
12.12
11.68
10.40
9.40
8.43
7. S3
8.01
10.25
11.16
10.58
9.50
a. 40
8.35
8.15
9.00
9.16
9.40
9.94
8.89
8.22
7.47
6.57
7.11
9.62
11.22
10.51
9.32
8.34
BROOK

TEMP
7.47
8.42
11.79
13.65
12.61
11.32
10.83
10.82
10.67
11.35
12.71
14.90
13.89
12.95
12.51
12.18
11.32
10.85
11.81
13.8.9
13.52
11.83
11.06
10.47
9.96
9.66
9.49
9.55
9.39
9.09
8.42
7.75
7.33
8.08
10.08
10.33
10.69
10.05
9.31
8.51
7.84
8.97
12.06
12.64
12.49
11.69
11.05
10,40
9.31
10.46
12.75
14.20
12.75
11. 55
10,98
10:03 THURSDAY, HAY 5, 19
SPCON PH COnflENT
0.027
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.025
0.025
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.025
0.026
0.025
0.026
0.027
0.026
0.026
0.026
0.026
0.025
0.026
0.026
0.026
0.026 .
0.027
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.027
0.026
0.026
0.025
0.026
0.026
0.027

10:0}
5PCON
0.023
0.023
0.021
0.023
0.022
0.023
0.023
0.022
0.022
0.022
0.023
0.022
•0.023
0.024
0.024
0.024
0.024
0.024
0.021
0.022
0.023
0.023
0.024
0.024
0.023
0.021
0.022
0.021
0.022
0.021
0.020
0.023
0.022
0.022
0.021
0.022
0.022
0.022
0.022
0.02,2
0.020
0.022
0.022
0.022
0.023
0.023
0.024
0.023
0.024
0.02}
0.022
0.023
0,02]
0.02J
0,024
5.63
S.6S
5.64
5.64
5.61
5.63
5.65
5.66
5.76
5.76
5.76
5.75
5.75
5.76
5.75
5.82
5*86
5.84
5.87
5.85
5.81
5.82
5.84
5.85
5.94
5.93
5.92
5.89
5.85
5.87
5.90
5.93
6.01
6.01
6.02
5.97
5.93
5.94
5.94
5.98
6.05
5.99
6.00
5.99
S.94
5.94
5.94
5.96
6.03
6.03
6. 00
5.96
5.92
5.92 '
32
THURSDAY, HAY S, 1988
PH COMNENT
6.26
0.23
6.12
6.08
6.07
6.11
6.16
6.10
6.09
6.20
6.05
6.00
6.07
6.10
6.12
6.13
6.14
6.22
6.30
6.11
6.09
6.17
6.14
6.15
6.14
6.21
6.20
6.20
6.11
6.09
6.05
6.01
6.07
6.14
6.14
6.09
5.89
5.96
5.96
6.08
6.08
6.12
5.91
5.96
6.00
6.01
6.02
6.05
6.06
6.17
5.98
6.00
6.12
6.07
6,01

-------
                                   296
SINCLAIR BROCK

Gtt
i74i
i?4i
1741
17*1
174S
17U
1747
1744
1747
1770
1771
1771
177J
1774
1W
1?>4
1777
1771
177f
1710
1711
1711
1711
17(4
1745
1731
m»
17M
1747
1713
17*1
UK
17*1
un
177)
1774
17t7
1771
I7«*
net
UOI
not
H9J
1104
1IOS
u:t
1197
1101
not
U10
lilt
Kit
14U
Mil
U1J

MR no OH
130
433
709
17.03
1)09
1100
7,190
0
133
400
too
1100
mo
IS 3d
11 09
0
100
400
too
17.00
1533
1100
MOO
0
300
400
903
ueo
1100
1100
2100
0
100
409
too
1198
1 100
1100
2100
0
300
400
tea
uco
]1«9
0
109
4«0
913
17.00
wo
1100
1100
0
i>
IS
7.9
24
24
14
21
2?
2?
2?
17
27
27
2?
27
l 10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
t
1
1
1
1
1
' 3
4
4
4
t
4
4
4
4
5
ion 4 i

»R
97
97
47
97
97
97
97
97
97
97
97
97
47
97
97
97
97
47
87
97
97
97
97
17
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
47
97
97
97
97
97
97
97
97
97
97
47
97
97
97

TtHp
10.71
10.55
11.00
12.93
14.44
14.22
11.44
12.92
12.57
11.91
12. 45
15.10
14.99
14.27
14.90
14.01
11.44
11.04
12.40
12.41
12.14
11.99
11.47
11.15
10.99
10.74
11.02
12.42
11.74
11.91
13.75
13.42
11.11
12.74
11. U
14.11
14.47
14.41
14.22
11.81
11.29
12.70
11.11
14.95
13.41
12.09
11.49
11.19
11.21
11.44
11.49
11.27
10.94
10.74
10. IS

SPCON
0.024
0.024
0.021
0.021
0.023
0.023
0.024
0.025
0.025
0.024
0.024
0.021
0.023
0.024
0.025
0.025
0.025
0.024
0.024
0.021
0.021
0.021
0.021
0.023
0.023
0.021
0.023
0.021
0.022
0.021
0.022
0.023
0.023
0.023
0.023
0.021
0.022
0.021
0.021
0.021
0.021
0.021
0.021
0.024
0.025
0.024
0.025
0.025
0.025
0.024
0.024
0.025
0.025
0.024
0.024
31
10:01 THURSDAY, HAY 5, 1998
PH CONHENT
4.09
0.12
4.19
4.11
4.05
4.01
4.02
4.03
4.00
4.09
4.16
4.03
4.07
4.09
4.04
4.05
6.09
4.03
5.94
5. 86
5.69
5.65
5.57
5.54
S.47
5.49
5.47
5. SO
S.45
5.37
5.45
5.52
S.S2
5.49
S.60
5. 55
S.S4
S.S4
5.60 060287 LAB PH. 6. 66
5.67
5.69
5.49
5.74 EDITED ALG 060787.
6.15 SINCLAIR 2015 060287 TO
6.10 061687 IN 3 HR INTERVAL
6.10
6.10
4.15
6.14
4.22
6.23
6.16
6.15
6.13
0.11
                                                               SINCLAIR  BROOK
                                                                                                          34
                                                                                  10:03 THURSDAY. HAY 5, 1988
                                                                               SPCON     PH      COMMENT
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1810
1831
1832
1811
1814
1835
1836
1837
1818
1839
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1843
1864
186S
1866
1867
1368
1869
1870
600
900
1200
1500
1800
2100
0
• 300
600
900
1200
1500
1800
2100
0
300
600
1200
1500
1800
2100
0
300
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
300
600
900
1200
1500
1800
2100
0
6
6
6
6
6
6
6
6
6
6
6 '
6
.6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
37
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
10.45
10.45
10.71
11.13
11.08
10.96
10.93
10.86
10.77
11.11
12.02
12.55
12.32
11.75
10.79
9.89
9.22
11.67
12.67
12.42
11.76
11.29
11.03
10.98
12.29
11.63
11.45
11.19
10.99
10.79
10.64
10.73
10.98
10.96
10.99
10.93
10.84
10.68
10.44
10.52
11.03
11.55
11.55
11.22
10.69
10.13
9.64
10.21
11.54
12.73
12.76
12.47
12.19
0.025
0.025
0.025
0.02S
0.025
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
Ok 024
0.025
0.025
0.024
0. 024
0.024
0.024
0.025
0.024
0.024
0.025
0.024
0.024
0.023
0.023
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.024
0.024
0.023
0.024
0.024
0.024
0.023
0.024
0.023
0.023
0.024
0.024
6.11
6.15
6.17
6.19
6.12
6.08
6.02
5.95
S.92
5.92
5.89
5.84
5.31
5.79
5.77
5.78
5.81
5.88
5.90
5.90
5.83
5.37
5.90
5.90
5.94
5.99
6.04
5.98
5.93
5.95
5.94
5.88
5.86
5.86
5.85
5.80
5.79
5.72
5.73
5.75
5.75
5.77
5.79
5.77
5.75
5.71
5.73
5.76
5.77
5.81
5.88
5.85
5.83
5.80
5.82
10J03 THURSDAY,  HAY  5,  1988
         COHHENT
1171
1971
117)
lift
U7f
1474
1977
U7i
1477
1110
1991
111!
llij
1914
I11S
1414
1U7
1191
1917
ma
1171
197!
147)
117*
ins
1374
1177
1171
1977
1799
1791
1937
1701
1794
17«S
1794
1797
1791
1707
1710
1711
1711
1711
I7U
1711
1714
1717
1714
1717
1719
mi
1711
1711
1714
171}
109
409
709
1100
1500
1400
1190
0
100
409
700
1100
1)09
1900
ilOO
a
309
400
700
1103
1)09
1409
1109
9
199
403
799
1109
1)09
1409
1109
0
109
400
709
MOO
0
400
1100
1409
0
409
1109
1909
0
409
1200
1409
0
409
1100
UCO
0
400
1109
12
U
11
11
12
12
11
11
11
11
11
11
11
11
11
14
U
14
14
14
14
14
14
IS
IS
IS
IS
IS
IS
IS
IS
14
14
14
14
14
IS
IS
IS
IS
14
14
14
14
17
17
17
17
14
11
19
19
19
17
17
17
97
97
97
87
87
87
97
97
97
97
97
97
97
97
97
97
97
97
17
87
97
97
97
97
97
17
17
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
87
97
97
97
97
97
97
11.11
11.61
11.54
12.01
12.01
12.09
11.34
11.76
11.61
11.54
11.21
11.96
14.17
14.01
13.53
11.03
11.95
12.57
12.86
11.54
14.48
14.14
11.41
11.01
12.42
12.46
11.14
IS. 40
16.19
IS. 47
14.41
14.07
11.44
12.41
11.19
21.19
22.85
21.59
11.90
14.12
11.56
11.15
11.71
14.74
11.71
11.14
11.44
14.66
12.09
10.10
11.45
12.61
12.00
11.2.)
11.51
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.025
0.025
0.025
0.024
0.025
0.024
0.025
0.025
0.024
0.025
0.025
0.025
0.025
0.025
0.025
0*026
0.025
0.025
0.026
0.025
0.019
0.023
0.019
0.010
0.010
0.029
0.028
0.029
0.030
0.029
0.02V
O.U28
0.030
0.028
9.Q2O
0.027
O.U28
0.027
0.027
0.020
5.83
5.86
5.72
5.97
5.96
5.93
5.96
5.96
5.92
5.91
6.02
6.01
6.02
5.97
5.91
5.91
5.91
S.98
6.04
6.11
6.10
6.04
6.02
6.02
4.05
6.04
6.10
4.11
6. 10
4.04
6.00
6.01
4.01
6.06
0.14
5.57
5.44
5.29
6.01
6.10
6.11
6.13
6.31
6.28
6.24
6.29
6.19
6.14
6.31
6.34
6.46
6.41
6.16
6.14
6.41
 NEEDS LAB PHS.ALG  0617
 FROH 091487 TO  092987
 IN 6 HR INTERVALS
SINCLAIR BROOK
OIS
1926
1927
1928
1929
1930
1931
1912
1911
1934
1915
1936
1937
1918
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1971
1974
1975
1976
1977
1978
1979
1980
HR
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800.
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1400
2000
200
800
1400
2000
200
800
1400
2000
200
800
1400
2000
200
HO
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
DA
19
20
20
20
20
21
21
21
21
22
22
22
22
21
23
23
23
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
28
28
28
29
29
29
29
29
30
30
30
30
1
1
1
1
2
2
2
2
3
YR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
TEHP
12.04
11.83
11.51
11.40
11.62
12.00
12.12
12.08
12.21
11.95
11.74
11.8!
12.21
12.00
11.70
12.12
12.59
12.16
12.08
12.46
12.42
10.98
9.63
10.26
10.35
9.29
8.15
9.12
9.30
9.42
8.41
9.12
9.59
8.03
6.63
3.15
9.93
9.93
9.46
10.90
12.08
11.91
11.66
11.57
12.38
12.03
12.04
11.95
12.12
11.70
10.77
9.34
11.32
10.69
10.56
SPCON
0.027
0.026
0.026
0.028
0.026
0.027
0.026
0.027
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.027
0.026
0.026
0.026
0.026
0.025
0.023
0.024
0.024
0.022
0.022
0.022
0.022
0.023
0.021
0.022
0.022
0.022
0.020
0.020
0.022
0.022
0.022
0.024
0.026
0.027
0.028
0.02t)
0.027
0.028
0.028
0.029
0.028
0.023
0*027
0.027
0.027
0.026
0.027
PH
6.41
6.32
6*32
6.35
6.26
5.38
4.82
4.74
4.68
4.79
4.85
4.88
4.93
5.02
5. 10
5.21
5.28
5.34
5.45
5.55
5.59
5.61
5.68
5.76
5.78
5.75
5.75
5.90
5.90
5.90
5.93
5.96
5.92
5.93
5.95
4.02
5.96
5.92
5.94
5.93
6.50
5.98
6.00
6.08
6.07
5.82
5.68
5.54
5.57
S.S9
5.65
5.67
5.73
5.82
5.74
16
10:01 THURSDAY, MAY 5, 1988
COHHENT






































SINCLAIR 05259 FROM 092987
TO 101387 IN 6 HR INTERVAL













-------
297
SINCLAIR BROOK

OSS
1981
1932
1983
1934
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2003
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
•202S
2026
2027
2028
2029
2030
2031
2032
2033
2034






































HR
800
UOO
2000
200
800
1400
2000
200
SOff
1400
2000
200
800
1400
2000
200
800
1400
2000
200
aoo
1400
2000
200
800
1400
2000
200
800
1400
2000
200
800
1400
2000
200
800
1400
2000
200
800
1200
1300
0
600
1200
1300
0
600
1200
1800
0
600
UOO

DBS
2091
2092
2093
2094
209S
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132

no OK
10 3
10 3
10 3
10 4
10 4
10 4
10 4
10 5
10 5
10 5
10 5
10 6
10 6
10 6
10 6
10 7
10 7
10 7
10 7
10 8
10 8
10 8
10 S
10 9
10 9
10 9
10 9
10 10
10 10
10 10
10 10
10 11
10 11
10 11
10 11
10 12
10 12
10 12
10 12
10 13
10 13
10 27
10 27
10 28
10 28
10 28
10 IS
10 29
10 29
10 29
10 29
10 30
10 30
10 30

HR
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
•o
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600

VR
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
37
87
87
87
87
87
87
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
S7
87
87
87
87
87
87
87
87
87

HO
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12


TEHP
10
11
11
11
11
12
11
10
9
10
10
9
8
11
10
10
10
11
11
10
11
11
11
10
9
9
9
8
8
9
9
8
7
7
7
6
5
7
6
5
4
S
5
S
5
6
7
a
8
7
7
6
5
S





































.77
.57
.53
.57
.66
.SO
.53
.64
.67
.77
.43
.SO
.62
.19
.64
.48
.39
.95
.IS
.90
.02
.62
.36
.35
.25
.84
.17
.95
.91
.93
.42
.07
• 39
.73
.31
,42
.S3
.35
.50
.28
.35
.46
.03
.20
.58
.80
.77
.15
.03
.90
.52
.25
.36
.62

DA
23
28
28
28
29
29
29
29
30
30
30
30
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
S
5
5
6
6
6
6
7
7
7
7
8
8

SPCOH
0.027
0.028
0.028
0.028
0.028
0.027
0.027
0.026
0.026
0.027
0.027
0.024
0.026
0.027
0.026
0.026
0.027
0.027
0.027
0.027
0.028
0.030
0.030
0.029
0.028
0.023
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.026
0.025
0.026
0.026
0.02S
0.026
0.02S
0.023
0.029
0.029
0.026
0.02S
0.027
0.028
0.030
0.028
0.027
0.027
0.029
0.026

PH
5.79
5.80
5.74
5.31
5.79
5.81
5.74
5.74
5.72
5.69
5.71
5.75
5.79
5.79
5.79
5.80
5.80
5.8S
5.86
S.67
5.31
5.22
5.21
5.26
5.33
5.40
5.43 ;
5.47
5.52
5.5?
5.59
5.66
5.72
5.74
5.75
5.78
5.82
5.81
a. 30
S.34
5.84
5.06 fRi
6.23
6.20
6.23
6.12
5.95
5.59
5.44
5.44
5.45
5.51
5.58
5.. 60
10:03










































on 102787












SINCLAIR BROOK
Yft
87
37
87
- 87
87
37
87
87
8?
87
87
87
87
S7
87
87
37
87
37
37
a?
87
37
87
87
87
87
87
87
87
87
87
87
47
87
37
87
37
87
87
87
37
TEMP
-0.33
-0.38
-0.38
-0.3S
-0.38
-0.33
-0.34
-0.30
-0.25
-0.25
-0.13
0.80
1.56
1.82
3.76
13.90
18.54
19.30
20.40
21.03
20.32
20.49
1.35
1.35
0.97
0.63
1.18
1.27
1.13
0.89
1.06
0.39
0.55
0.42
1.01
1.01
0.93
O.SS
0.80
0.59
0.00
-0.2S
10103
SPCON
0.024
0.026
0.024
0.024
0.024
0.024
0*024
0.024
0.024
0.024
0.022
0.025
0.026
0.025
0.024
0.029
0.023
0.024
0.024
0.025
0.025
0. 025
0.030
0.029
0.030
0.029
0.030
0.029
0.029
0.029
0.029
0.029
0.029
0.028
0.027
0.027
0.027
0.028
0.028
0.029
0.028
0.028
37
THURSDAY, nAV 5. 1988
COMHENT









































TO 111087 IN 6 HR I












39
THURSDAY, HOY S> 1988
PH COnHENT
6.10
6.06
6.03
6.03
6.04
6.03
6.05
6.05
6.06
6.06
5.98
5.42
5.03
4.65
4.73
4.70
4.63
4.64
4.63
4.63
4.64
4.66
5.17
5.21
5.25
5.33
5.33
5.37
5.42
5.47
5.49
5.52
5.54
5.60
5.6S
5.61
S.62
S.67'
5.73
5.71
5.75
5.7?
                              SINCLAIR BROOK
                                                                         38
                                                 10:03 THURSDAY*  HAY  5»  1988
                                                          COMMENT
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2063
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
208S
2086
2087
2088
2089
2090
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1200
1800
0
600
1200
1300
0
600
1200
1800
0
600
1800
0
600
1200
1800
0
600
1200
1800
0
600
1200
1800
10
10
10
10
11
11
11
11
11
11
11
11
11 '
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
31
31
31
31
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
3
8
8
8
9
9
9
9
10
10
24
25
25
25
25
26
26
26
26
27
27
27
27
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
37
87
87
87
87
87
87
37
37
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
87
5.58
S.S3
6.42
6.17
5.49
5.03
5.58
S.24
4.35
3.51
4.22
3.63
2.83
3.13
4.56
4.98
5.20
S.4S
6.42
6.84
6.80
6.50
7.77
7.10
5.53
4.3S
4. 56
3.34
2.03
1.06
1.82
1.31
0.72
O.SI
2.23
2.66
2.83
3.08
4.14
4.31
5.63
3.00
2.53
2.28
1.99
2.79
2.75
1.36
0.38
-0.25
-0.21
-0.38
-0.42
-0.13
-0.30
0.028
0.029
0.027
0.027
0.025
0.029
0.025
0.028
0.026
0.028
0.026
0.028
0.028
0.027
0.027
0.029
0.029
0.029
0.026
0.027
0.027
0.027
0.026
0.026
0.025
0.026
0.026
0.025
0.026
0.027
0.026
0.027
0.027
0.029
0.027
0.027
0.027
0.028
0.027
0.027
0.025
0.027
0.033
0.033
0.034
0.033
0.033
0.032
0.032
0.033
0.033
0.024
0.024
0.024
0*024
5.63
5.72
5.75
5.77
5.81
5.84
S.90
S.S6
S.90
5.95
5.97
5.97
5.98
5.97
5.97
5.91
5.87
5.91
5.93
5.87
5.85
5.88
5.94
5.90
5.99
6.09
6.08
6.06
6.06
6.06
6.08
6.04
6.04
6.06
6.07
6.00
5.97
6.00
5.98
5.96
5.96
5.99
6.12
6.03
6.05
6.13
6.07
6.06
6.10
6.11
6.09
6.09
6.06
6,11
6.0V
                                                  SINCLAIR COMPARISON 112487
                                                  TO  120887 IN 6 Hit INTERVAL

-------
                                     298

                                 APPENDIX F

                            FISH POPULATION DATA
    Part 1:  Raw fish population data, by season, stream, and species;
includes fish number, length in mm TL, wet weight in g, age in years,
condition factor, average scale radius, average radii at annuli 1, 2, and
3, and depletion run during which fish was captured.

    Part 2:  Fish population summary statistics, by stream and species;
includes season captured, age group, total number captured, Zippin
population estimates and associated standard error, average total length in
mm, standard deviation of average length, minimum and maximum length,
average wet weight in g, standard deviation of average weight, minimum and
maximum weight average condition factor, total biomass in g, area fished
during each sample in m , and biomass per m .

-------
299

• Se*SON"FLfl5 STRCAfUKAlFNILC OATC-09/U/8S srCCIES-MOOK TROUT — — SCASON-flBS STAEAN'HALFflXLE
FNUH LEN H6T AGE CQNDF AVGSRAO AVCANN1 AVGANN2 AVGANN3 RUN PNUfl LEN W6T AGF •*«»•»»»
11 56 0 I J 108 12.2
12 52
13 50
14 65
15 60
16 65
17 63
18 59
19 64
20 64
22 52
23 49
24 55
25 45
26 48
27 62
28 62
29 «8
30 64
32 54
33 47
34 46
35 65
36 67
37 67
39 53
40 62
41 57
44 51
51 74 4
55 72 4
56 50
57 58
58 55
60 56
61 63
62 50
63 61
64 52
65 54
66 51
67 58
68 62
69 55
70 51
71 57
72 48
73 58
78 70 3
79 55 1
80 63 2
81 64 2
83 56 1
84 63 2
85 48
86 47
87 35
88 57
. 89 54
90 SO
91 52
92 65
93 62
94 67
95 47
96 49
97 60
98 54
99 55
100 41
101 48
102 74
103 59
104 68
105 58
106 57
107 67
108 60
109 56
110 59
111 60
112 58
111 69
114 66
116 64
117 66
118 54
119 57
120 57
121 57
122 55
123 51
124 47
125 44
126 14
128 67
129 59
130 55
131 67
132 SO
133 58
134 55
135 55
136 51
137 44
138 39
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
401
201
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
200
7 0
5 0
9 0
7 0
5 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




























09 10
13
















93 11
02 11
00 10
11 11
97 10
00 10














































































8

















8
2
0
8
0
2






























































































































































































































































1 6 117 18
7 132 23
> 138 29
9 112 13
10 103 9
21 107
31 100
38 108
42 97
43 96
45 115 14
46 106 12
47 135 27
48 105 11
49 100 10
50 112 13
52 137 27
S3 130 26
54 96 9
74 120 15
75 98 9
77 104 11
115 96
127 116
2 169 60
4 170 58
76 170 47
1 221 122
5 210 111


.2

•a •
.7
.6





.7
.4
.4
.1
.2
.3
.0
, 5
.3
.4
.0
.0


.3
.0
.5
.9
.6
DATC'09/14/65 SMCICS'tAOOK TROUT —
0.97 18
1.
1.
1.
1.
0.
.
.
,
,
,
0.9
1.0
1.1
0.9
1.0
0.9
1.0
1.2
1.0
0.8
0.9
0.9

,
1.2
1.1
0.9
1.1
1.2


2
4 23
3 22
3 21
2
8





7 17
4 20
1 23
6 16
2 16
5 18
S 21
1 24
S 16
9 19
6 17
8 17


S 28
8 30
7 39
4 38
1 42



3 12.8
3 12.5
8 11.3 .
S 11.8 .
. •
," »
, ,


. .
. •
0 10.6 *
S 12. S .
0 12.2 .
2 10.0 •
0 10.2 .
6 12.0 *
S 11.5 .
0 13.9 .
2 11.4 *
3 13.3 •
6 12.4
5 10.0 .

. •
3 11.3 19. S
0 12*5 25.0
S 15.0 29.0
5 11. S 19.8 29
0 12.0 19.3 29



2
2 1 80
2 2 80
2 3 87
2 4 83
2 5 67
2 6 48
2 7 45
2 8 80
2 9 49
2 10 74
2 11 81
2 12 78
2 13 78
3 14 46
3 15 44
3
3
3
3 rmill LED a
3
3 2 94 8
3 3 86 6
3 4 81 5
3 5 62 2
3 6 93 7
3 7 91 6
3 8 72 3
3 10 83 4
3 11 77 4
3 12 80 4
3 1 143 30
3 9 151 35
3
3
3
4
4 1 70 3
4 2 73 3
4 70 3
4 72 3
4 71 3
4 64 2
4 63 2
4 31
4 41
4 10 46
4 11 61
4 12 65
4 13 44
4 14 46
4 15 44
4 6 69
4 7 76
4 8 SO
9 81
0 77
1 52
2 57
3 n
24 84 5
23 83 5
26 37
27 82
28 79
29 46
30 45
31 69
32 63
33 42
34 63
35 45
36 69
7 0.
1 1.
0 0.
0.
1.
1.
1.
1.
1.
1.
2 0.
,
.
,
.



CT ACE COHD

.0 0 0.9
.3 0 0.9
.2 0 0*9
.3 0 0.9
.6 0 0.9
.6 0 0.8
.2 0 0.8
.8 0 0.8
.6 0 1.0
.6 0 0.9
.1 1 1.0
.6 1 1.0

2
0
1
ft
6
6
1
*
o
9
a







f AV6SRI

6 14
9 13
8 16
7 9
4 13
8 IS
6 11
4 16
1 14
0 13
3 26
3 25

»
,
.
,
.
, •
.
.
.
.
,
.
.
,
.



0 AVCANM1 AVGANN2 AVGAN

7 .
. ,



, ,
: , ,
t f .
t 9
• •
3 16.0
5 13.5 .





























S
3 1



UN
1
1
1
1
1
1
1
2
2
2
3
5
5
S
5



13 RUN

1
1
1
1
1
1
1
2
3
3
1
. 2



ST flCE COHD
0 0.
6

5
3 -
2
1
2
7
0
9
4
7
9
7
a
9
0
2
0
2
6
0
2
7











0.
0.
0.
0.
0.
0.
0.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Oi
0.
0.
0*
.
. -
.
.
t
,
.
.
t
t
.
























s
j












, f
". • •
* * i

, m
f -^
, - t
m f
t B
, a

. .
a t
t f
t
f
^
•

. *
. f
, t
. ,
. t
. f
. f
. ,
• • •
» .
, ,
• .
. .
, .
. .
.' ,
.

. 1
. 1
. 1
. 1
. 1
. 1
. l
. 1
. l
. 1
. ;
. i
. i
. i
. :
. ;
, ;
. ;
, ;
. :
. ;
, ;
* :
. ;
. ;
. ;
* :
• :
* - ;
. ;
•
'
•
* :
.
•

-------
                                                           300
                       ftSH rOUJLKTlON D«I«
-  siMoortll it«t«n-l«n»» e««p amc-ot/li/is
                                                            SKI -   - »MOMri.ii STIMH-IHOIIIII MRP D09/i>/is
                 uei  nee eonop «VCS«»D HVSAHHI AVCHNHI «VS«NNJ tax
37
31
3f
40
41
«
43
44
45
46
47
41
4t
30
11
92
33
54
11
It
37
31
It
to
tl
62
63 •
tl
63
46
67
it
69
79
71
71
71
74
71
74
77
71
7t
10
11
II
11
H
• 1
It
17
II
IT
90
91
n
ti
94
tl
tt
tr
ti
tt
100
101
192
101
104
10}
101
107
101
lot
110
111
112
111
lit
113
lit
117
111
lit
120
121
122
121
114
123
121
127
111
lit
130
111
111
111
114
111
lit
117
111
lit
140
141
142
141
144
tl
43
44
tl
71
12
It
10
70
10
47
71
71
tl
31
tl
tl
43
77
ft
tl
45
It
tl
77
72
10
44
tl
47
47
47
71
ts
57
70
11
to
It
44
41
71
74
70
ft
41
71
41
47
71
ts
43
47
71
tl
43
fl
44
IS
f]
70
47
67
tl
tl
43
11 3
43
SI
4t
71
47
1!
41
II
4t
47
41
71.
ts
41
46
74
.70
tl
41
71
tl
tl
fl
60
30
74
67
tl
ts
41
16
71
31
43
41
10
34
11
66
71
tt


































































0











































































































0











































































































87









































145 69
146 62
147 4?
149 68
149 6S
110 42
111 67
152 63
133 60
154 61
155 46
156 68
15? 4S
158 67
139 46
160 47
161 45
162 68
163 63
164 6S
16$ 44
166 73
167 60
16S 65
169 SI
170 64
171 74
172 44
173 40
174 63
17S 40
176 46
177 42
178 65
179 45
1»0 46
181 45
182 44
183 63
184 79
185 68
186 S3
187 69
181 65
189 48
190 68
191 51
192 42

1 77 4
2 126 20
3 63 2
4 106 10
5 87 6
6 73 3
7 71 3
" 8 72 3
9 57 1
10 86 5
11 110 13
12 94 7
13 98 8
14 63 2
IS 58 1
16 76 3
17 62 2
18 67
19 70
20 72
21 91 7
22 81 5
23 117 14
24 88 5
25 12 8
26 135 24
27 113 14
28 105 11
29 128 18
30 122 1>
31 71
32 69
33 62
34 96
35 61
36 83
37 79
38 81
39 99
40 120
41 60
42 78
43 62
44 87
45 74
46 71
47 75

















































3
0
0
8
1
5
5
1
3
6
1
8
4
3
7
7
0



0
0
1
8
1
1
7
1
6
3


































































0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



0
0
0
0
]
0
1
0
0
1


































































94
00
80
91
93
90
93
83
70
as
98
94
89
92
87
84
84



93
94
88
85
04
1i
02
96
89
01

















































































































































































































































































































2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
3
3
3
I
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
4
4
4
4
4

-------
                                                301
         MSN POPULATION DATA
STIEAIKmOIAN CAMP OAte«09/18/85  tPCCICS*U»lTC SUCK! —
   U6T  A6C  CONOf AVCSKAO AVCANH1  AV6ANN2 AVGANN3 RUN
1 102 .
2 111 .
3 IS .
4 45
S SI •
6 SO .
7 40 .
• 33 .
9 44
10 35 .
11 31
12 41
11 39
It 36
IS 89
16 SO
17 Si
18 36

1 42
I S3

FNUH LCM U
1 58 1
2 77 4
3 65 1
4 6S 1
5 SB 1
6 61 1
7 59 1
8 56 1
9 90 5
10 96 7
11 82 3
12 60
13 57
U 45
IS 67
16 SS
17 65
U 65
19 56
20 95 7
21 60
22 S«
23 71
24 S8
1
1 71 2
2 71 3
3 67 3
7 61 2
a 68 3
11 60 Z
12 72 3
13 69 3
14 S3 1
IS 72 3
16 77 4
»7 67 2
18 63 2
19 60 2
20 67 2
21 64 2
22 72
23 63
25 75 4
26 57 1
27 46 1
28 65
29 56
30 61
31 59
32 61
33 64
34 63
3S 77
36 72
37 57
38 59
39 S8
40 9
41 J
42 0
43 7
44 4
45 72
46 75
4? 68
48 65
49 69
50 58






















5
6
9
8
3
a
6
3

0
8








4





9
1
0
3
3
7
6







9
9


7
9
1














(
(
(
(
(
(
(

(




















'

0.
1.
0.
0.
0.
0.
0.
0*
0.
0.
0.
,
•

f
.
,
(
,
0.

,
,
*

1 0
) 0
) 1
) 1
) 1
1
0
0
0
0
1
0
1
1
0
2


1
1
1


1
}
1
)
)
)
)
)
)
)
) •
)































77
01
69
6
7
9
8
4
3
79
69








86





SI 15
IS
16
12
13
14
9
12
14
12
14








IS
11
1






































































2
0





3
0
0








s
i



















































































































.
*
•
•






•






1

























•















































1
t
1
1
1
1
1
1
1
2
2
2
2
2
3
3
4
4

4
4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3
4























i
2
2
2
2
2
2
2
2
2
2









]
3

51 52 . 3
9
!
!
J
!
!
!

i
t
t
I
t
<
t
4



2 66 .
3 66
4 47
S SS
6 69
7 68
8 53
9 56
0 64
1 61
2 82
3 63
4 63
S 68
* 61
7 62
4 114 12
S 98 8
6 131 23
24 1SS 38














6
3
7
8
















0
0
1
1
















81 20
88 21
OS 26
















4 13
0 13
8 16
















2
S
a
04 24 8 15 4
SEASOOFL8S STtEAH-SPIllie OATE'09/03/8S SPECIE3»ai.A
















































































1 66
2 56
3 59
4 52
S 45
6 SO
7 sa
a 73
9 68
10 61
11 52
2 74
3 47
4 48 1
S 45 1
6 56 2
7 63 2
8 60 2
9 49 1
0 64 3
1 57 2
2 44 1
3 63
4 54
S 68
6 63
7 44
!8 49
!9 60
)0 55
11 51
2 50
13 40
4 54
SS 52
S6 72
17 41
)8 68
)9 45
10 56
U 56
12 56
13 66
U 60
IS 66
16 61
17 46
18 65
19 65
0 60
SI 60
S2 43
S3 64
S4 56
SS 64
S6 58
S7 5
S8 7
19 5
0 6
1 S
2 S
3
4 Z
5 4
6 8
7 3
a 5
9 49
0 60
1 57
2 60
3 54
4 56
5 57
6 56
7 52
8 56
9 57
0 46
81 42

















0
2
0
2
4













































































1
1
1



























































97
02
07
28
21
36
97
11
08
IS
35
04
44
45
54
20
16
93
02
14
19
64















































































































































































































































3



















CNOSE DACE -


































































































































































-------
                                       302
FISH fOPUtATIOM BATH
rmm
12
11
14
IS
It
17
gg
It
to
tl
92
tl
tt
tl
tt
t7
tl
tf

101
102
101
104
109
101
107
101
lot
110
111
112
111
114
119
114
117
111
lit
121
122
121
124
129
124
127
128
12t
130
131
132
131
114
111
114
117
111
lit
1(0
141

1(1
1(4
1(9
144
1(7
1(1
149
130
131
132
131
154
IIS
ISt
137
191
199
ito
Itl
112
113
144
143
146
147
111
14f
170
171
172
171
174
173
174
177
171
179
110
111
112
111
lit
113
114
187
111
lit
LIU V
33
(t
47
44
41
38
93
59
91
92
94
tl
42
94
70
94
54
47
43
43
74
71
to
44
54
34
40
99
M
34
9)
91
47
SI
41
72
SI
(2
(0
91
41
60
II
70
11
49
44
39
(1
92
54
99
49
49
44
41
4!
40
91
31
40
94
44
tl
45
49
34
(5
t j
30
(7
(t
43
33
31
34
S3
70
71
33
69
41
4f
71
40
32
30
47
41
34
S3
34
SI
tt
73
(7
31
41
4(
34
70
44
61
62
41
36
34
ET At
























fc


















































































E COM











































































































                    SPCCHS-SLACKMOSK
                                                    —  SCASON-PLS9 STIEAIUSPRIN6  OATC'Ot/OS/A) SfCCICS'CACfK C«UI •

                                                      FKUN    LCN    U6T   ACE   CQMOF  AVMRAO AVCANK1 AVCA««2 AV6M4J
tO 4
70 1
tt t
SB 7
75 4
43 2
113 13
71 t
71 3
10 34 2
11 43 3
12 70 3
11 40 2
14 41 1
13 102 11
14 103 11
17 tt t
11 t7 t
It II 7
20 5t 1
21 94 9
22 74 3
21 It
24 12
25 71
24 70
27 65
21 47
29 74
30 74
31 41
32 4!
11 97
It 14
15 56
34 41
17 77
11 62
19 54
tO 91
41 71
42 63
tl 61
tt 37
45 63
tt 11
47 54
tl 56
t9 64
50 81
31 79
32 61
S3 97
34 65
99 76
96 63
57 69
91 66
9t 87
60 78
61 66
62 56
63 101
4t 105
45 47
46 76
67 60
48 90
49 73
70 67
71 65
72 8t
71 64
7t 70
75 71
76 111
77 65
78 64
79 71
80 66
t
t
5
4
3
4
0
2
0
1
1
9
7
9
t
t
7
5
3
0

1


























































0
0
1
1
1
1

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1


























































• SeASON«FL85 STRCAH'SMINS
1 100 10.8 . 1
2 85 7.3 . 1
3 102 . .
t 113 .
93
99
It
12
02
04
04
08
03
20
13
It
25
2t
07
98
00
Ot
10
t6
03
16

























































































































































































































































































































































































0*1009/03/85 SPECieS-bHITC SUCKII 	
01 . . . 1
19 . . I !
• • • • ]
* * • .4
                                                   —   SEdSOM»FLS5  STftEAK'SPftlNG OAT6-09/03/85 SftClCS-CCHHON
                                                         1      7Z     3.8
                                                         2     107    11.3
                                                         3      90     7.2
                                                         4      74     4.J
                                                         S      94
0.92

U06
                                                   —  StASO.S-Fl.8S STREAH'SPKUG OflTt -09/03/85 Sf»ec I

                                                     FNUfl    LEN    rfGT  AGE  CONDF AVGSRAO AVGA>i*l A

                                                        I     S&    2.3    .   1.31      .

-------
                                                       303
                   FISH POPULATION DATA
SCASONMLSS STRCAK'SINCLAIR OATC-09/11/8S 3PECIiS»ATLAHUC SALMON —
75 4.0 0 0.95 24
63 2.3 0 0.92 19
66 2.7 0 0.94 23
S9 2.1 0 1.02 18
62 2.0 0 0.84 22
68 3.1 01
70 3.0 0 C
1 73 3.5 0 C
.99 25
.87 26
.90 29
28 59 2.1 0 1.02
30 56 1.5 0 0.85
31 70 3.2 0 I
32 58 2.0 0
35 68 2.5 0 1
36 75 3.7 0 I
37 66 2.5 0 (
38 68 2.7 0 (
39 71 .0 0 (
41 78 .601
42 61 .2 0 <
43 66 .5 0 (
45 74 .301
46 59 .801
47 68 .8 0
48 71 .8 0 (
49 71 3.2 0
.93
.03
.80
• 88
.87
.86
.84
.76
.97
.87
.81
.88
}.89
).7S
).89
SO 57 1.7 0 0.92
56 71 3.2 0 0.89
59 64 2.3 0 0.88
63 71 . 0
65 67 . 0
66 65 . 0
67 72 . 0
68 71 . 0
72 72 . 0
73 61 . 0
74 75 . 0
75 68 . 0
76 71 . 0
77 63 . 0
78 69 . 0
79 73 . 0
80 67 . 0
81 67 . 0
82 57 . 0
83 68 . 0
85 63 . 0
86 6» . 0
87 76 . 0
88 71 . 0
89 62 . 0
90 61 . 0
93 56 . 0
98 64 . 0
6 127 16.3 1 (
10 119 13.5 1
11 115 12.6 1
12 107 11.3 1
13 106 11.3 1
IS 110 13.7 1
16 111 9.9 1
17 124 16.1 1
18 98 7.7 1
19 100 8.2 1
20 107 9.7 1
21 95 6.9 1
23 97 8.2 1
24 125 18.2 1
25 120 12.5 1
26 119 14.5 1
27 83 5.7 1
33 111 10.2 1
34 109 10.7 1
40 99 8.7 1
44 99 8.7 1
51 95 7.8 1
S3 114 11.3 1
54 118 12.3 1
55 118 13.0 1
57 96 7.8 1
62 119 . 1
64 105 . 1
69 95 . 1
70 105 . 1
71 98 . 1
84 SO 4.3 1
91 109 . 1
92 92 . 1
94 94 . 1
95 97 . 1
96 93 . 1
97 114 . 1
22 150 33.2 2
60 132 20.7 2
.
.
.
.
.
.
.
.
.
.
.
.
.
4
.
.
.
.
.
,
.
.
.
.
,
.80
.80
.83
.92
.95
.03
.72
.84
.82 7
.82 6
.79 2
.80 1
.90 40
.93 51
.72 47
.86 54
.00 53
.75
.83
.90
.90
.91
.76
.75
.79
.88
.
,
.
,
.
3.84
.

,
.
.
,
5.9H 63
3.90 51
61 154 34.0 2 0.93 70
3
6
0
0
&
0
8
0













































3 27
3 22
5 21
3 22
6 24
8 22
5 22
0 22
0 20
8 19
6 23
8 20
8 21
5 27
5 25
8 28
5 19





















2 31
4 21
5 35


















































5
3
8
0
2
4
3
0







5
5





















0 48
8 36
5 53
























































































0
0
0

1 70 3 0 00
2 64 2
3 66
4 78
5 82
15 5*
u 7;
29 61
30 70 2
31 60 1
36 88
37 70
38 69
39 80
40 71
41 69
42 77
43 60
44 56
48 60
49 82
SO 66
51 70
53 57
7 100 7
i 105 10
9 101 11
10 127 20
11 144 29
IS 141 24
17 106 10
20 124 8
21 122 7
23 126 6
24 131 3
26 121 7
27 151 5
33 135 2
34 lit
35 114
45 119
46 115
47 120
52 95
12 197 78
16 186 65
19 171 42
22 190 63
25 194 81
32 195 76
500
800
200
100
300
700
900
700
800
0
0
0
0
0
0
0
0
0
0
0
0
0
0










2
4
7
8






8
1
0
0
1
0
0
0
0
0
0
0
1
0
1
0






1
1
520
021
021

87 8
95 10
97 12
SI 12
92 16
83 9
88 12
»4
79
83














79 23
87 17
08 14
99 17
98 24
89 22
86 21
98 21
95 24
84 18
03 28
98 26
04 22
93 23






03 30
01 37
85 30
11 29
02 27























IS
10
9
8
13
10
14
1

1
1
1
11
13






5 9
7 15
5 11
t 14
5 13























0
8
0






7
5
3
3
7






0 18
0 28
5 22
5 23
7 24
5 20
SEASON-FL85 ST«En».«OCICr OATC'09/OS/8S SPECIES-AUA
FHUn LEN U6T AGE COHOF AVGSRAO AVCANN1 AVCAN
5 68
6 67
63
62
65
1 67
1 63
1 63
1 56
1 54 1
IS 63 2
17 65 2
18 65 2
19 59 2
21 69
22 62
23 64
25 62 2
26 71
1 115 11
2 132 21
16 132 20
20 148 26
24 111 IS
0
0
0
0
0
0



8
6
5
3
2



6

4
1
3
3
7



1
1
0
0
1



1

0
0
0
0
1
— SEA50H'FL8S STREAM *ROCKV
1 82 5
.3 76 4
6 65
7 63
8 62
9 59
10 6
11 5
12 5
13 5
14 5
15 6
16 6
17 6
IS 72 1
19 73 4
20 77 4
23 57
21 W
901
1 00
0
0
0
0
0
0
0
0
0
0
0
0
200
0 0 1
2 00
0
0








14 20
04 22
91 25
84 24
07 19



09 23

88 4
92 5
88 5
81 6
00 5








0
3
8
0
8



0

6 22
0 21
0 24
2 29
4 20


































































0
3
0
0
0
















































TIC SAUBOH —
2 AVGAMH3 KUN

t
i

*t
t
t
f
f
t
f
t
^
f
t
"

^
"

• I
. 3
. 3
DATE»09/OS/8S SPECIES'tROOX TROUT 	
07 17
93 16
10 8











86 14
03 IS
92 17

0
5
7











2
4
0
0
•



















' .
•
*
"
*
"
*
"
"

*

t
s
t
f
•
, ;
' a

-------
                                                             304
                      rxsN POPULATIO* DATA

    SIMON-PLM STICM-IOCKV MTe-09/03/15  SPCCIES-MOOK TKOUT '
                                                                         —  SEASON-FIBS STREAfl-SAKE* 0*TE*09/1Z/8S SPECXES'ATLAMTXC SALftQH •
                WCT  A 61  CON11
55 15 . 0
26 36 • 0
Z7 63 . 0
21 54 . 0
I» «T . (
10 II . 0
31 45 . 0
32 31 . 0
33 60 . 0
34 43 . 0
15 41 2.4 0
3« 40 2.0 0
It 39 2.1 0
40 39 2.0 0
41 71 4.3 0
43 37 2.0 0
43 32 . 0
46 66 . 0
47 59 . 0
41 47 . 6
4t »» . «
30 70 . 0
21 122 K.I :
34 127 22.4 1
17 122 19.0 1
42 120 17.0 1
44 133 22.6 1
4 194 74.4 i
• llASOH-ri.83 3T«EAK»AC
1 40 1.4
2 71 4.«
3 71 3.2
* 42 .
3 «« .
6 31
7 *» .
> 44 .
t 57 .
10 57 •
11 42 .
12 «0 .
13 40 2.2
14 61 1.9
13 45 2.1
14 37 1.9
17 44 1.0
IS 44 O.I
1* 47 3.2
20 31
21 43 .
22 3» .
23 41 1.3
24 40 2.2
23 4t 3.1
24 41 2.1
27 40 2.2
21 <9 .
2f 40 2.2
30 34 .










1
0
1
0
1
1






0
1
1
0
0
1
CKV
0
0
0









1
0
0
1
1
0
1



1
1
1
0
1

1











04 11
93 11
02 12
97 10
24 12
Oi 15






89 23
10 25
03 22
98 27
94 21
03 26
ATE-09/0
7<
93
29








•
.02
.92
.It
.03
.03
.94
.06

•
•
.18
.02
.14
.93
.02
•
.02
•










3
*
0
2
7
0






5 11
0 11
t 12
2 17
4 12
5 10
/8S SFE




















































8
0
6
2
2
5 18
XES'ILA






























2
1
. 2
.
.
.
.
.
.
.
.
.
.

. i
, 3
. 4
. t
. 4
. 4
. 4
. 4
2
. 3
. 3
. 3
. t
0 . 1
XNOSE DACE 	
. 1
. 1
. 1
. 1
. 1
1
. 1
1
. 1
. 1
1
. 1
. 2
2
. 2
. 2
2
. 2
. 2
. 2
. 2
. 2
. 3
. 3
. 3
. I
. 3
. 4
. 4
. t
     SCASON-PtlS STRCARBKOCKV OAT£*09/OS/8S SPECZES'CREEK CHUi ——
n LCD
100
70
107
83
54
47
7 72
U6T
6.7
3.6
12.6
7.3
1.8
1.3
4.5
AGC corter AVCSRAB AVGAHHI AVGANH2 AVGANMS RUN
. 0.87 . . 1
. 1.03
. 1.03
. 1.19
. 1.02
. 1.25
. 1.21
.
.

.
.
.
. 1
. 2
. 2
. 2
. 3
. t
—  3C«30H»rl83 SI«1AH-«OCK» OArE-09/05/a5 SPECltS'VHlie SUCKER 	

 MUD    LEK    U6T  •«  COHDf AVGSRAD AVGANH1 AVGAHK2 AVGAKK3 8UH
          89
          13
          94
          94
7.1
6.5
1.01
1.06
  S(AtOH-rL83 SIRCAK'IAItC* OATO09/12/B5 SPECIE
fHUR LCN uer ACC CQKOF AVCSRAO AVCANNI AVCAHNZ AVGANHJ RUN
2 1C4 11. 0 1 0.92 40.8 24.0
3 10ft 9.) I 0.40 «2.S 19.
5 12) 14. *
i 111 U.J
t liS 24.9
« 140 23.7
10 101 S.2
11 112 10.2
13 109 10.)
14 13J 19.0
1) lit 11.'
16 119 It***
17 139 22.7
It 104 9.9
0.84 48.3 22.
0.8S 40.
0.02 62.









.7S 41.
.80 37.
.73 41.
.81 47.
.81 SI.
.It; 44.
19.
29*
10.
16.
•
,
•
"
,
.
20. S .
20.0
42.0
20. fl .
.SI 49.8 23*0 *
.da SS.S 2*. 8
.88 36.4 16.4 .














FNUH
20
21
24
25
26
27
28
29
31
32
33
34
35
36
38
39
1
4
12
22
23
30


1
2
3
4
5
7
9
10
11
13
16
17
18
19
6
8
12
IS
- SEASO
1
2
3
4
S
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3
3
3
3
4
4
4

1,
5
6
7
8
9
0
51
52
53
54
LCM
110
127
134
128
110
102
100
141
140
104
106
104
122
110
103
97
175
171
179
163
17S
197


84
79
77
87
80
63
83
59
70
75
85
93
76
77
169
158
185
146
H»FL85
71
68
63
60
79
67
68
66
50
SO
59
72
72
51
55
69
61
49
63
65
70
60
66
67
60
70
65
63
61
67
SO
SB
65
S3
65
70
70
AS
49
62
65
A3
59
60
0
2
4
3
1
3
0
0
fc
t
WCT AGE CONDF
13.4
17.0
20.5
,
,
,
,
21.0

,
.
,
,
,
,
,
1.01
0.83
0.85
,
,
,
t
0.73

m
,
,
.
,
,
.
43.0 2 0.80
43.0 2 0.86
39.3 2 0.6
35. 0 2 0.8
39.0 2 0.7
S9.0 2 0.7


4. 0 0.78
3. 0 0.79
3. 0 0.77
5. 0 0.84
4* 0 0.84
1. 0 0.76
4. 0 0.86
2. 0 1.02
2. 0 0.82
3. 0 0.92
6. 0 0.98
6. 0 0.78
. 0 .
. 0 •
43.3 1 0.90
31.7 1 0.80
58.0 1 0.92
24.0 1 0.77
STREAK-IAKER DATE
3.2 0 89
2.
2.
1,
4,
2,
2.
2*

j.
I.
3B
3,
j.
1,
2,
I,
j.
2.2
.
.
,

f
m
,
,
t
.

,

,
.
,
.
.

,
.
.
t
.
,

f
.
,
,
.
.
.
,
.
0
o
0
0
Q
0
0
0
0
0
0
0
1
0
0
0
1
0



































86
88
83
87
36
83
80
88
96
83
S3
96
13
72
85
79
02
88



































AVCSRA& AV6ANN1
41 6 18.8
54
SO




62








73
70
7
6
6
9
8 23.0
S 23.8

,
,
,
2 28.2

a
,
,
,
,
,
,
4 .4
3 .7
0 .3
3 .3
8 .2
2 .5


16.7 .
U.2 .
15.3
IS. 6 .
16.8
12.2 .
17.3
8.7 .
12.8
12.3 .
IS. 7 .
14.7 .
. .
. ,
27.0 15.0
26.8 14.3
26.0 13. 8
22*4 13.8
26.2 12.4
AVCANM2 AV6ANN3 RUN
^ ,

^ ,
a ,
^ ^
. ,
, .
, .

t i
, .
, ,
t ,
, .
, ,
f m
2.4 .
0.0 •
5.0
7*5 .
6.6
8.0 .
39.8 • 3


B t
f f
. .
, .
, t
. ,
, ,
. ,
, ,
. »
. .
. ,
, ,
. ,
* . 1
* • 1
'• ! 2
•09/12/85 SfECIES>ILACKHOSE DACE —






















































.
,
•
t
,
.
•

.
.
,
.
,
,
.
,
,
,
.
,
,

f
t
t
f
,
f
,
t
t
t
t
t
t
m
t
t
t
t
t
m
t
t
t
t
t
f
t
,
t
f
.

, .
. .
, .
. t
. ,
. *
, .

» ,
, .
, .
. ,
, ,
, .
, 4
, ,
, ,
^ ,
t t
t B
t 9

t
t
t

m t
t m
t f
t t
t t
f
m
t
*
*
*

t
t
*
*
*
*
*
*

t *

f
f m
, m
t t
f t
2

-------
                                                            305
                      run POPULATION OUT*

-  $EASON«FL8S STREAH»IAKER OATE«a9/12/85 SPEC1£S*ILACKNOSC  DACE 	

 FNUH    LEN    UST  ACE  COHOF AVGS8AD OVCAHNl AVMHN2  AVtAHHS Hull
                                                                   SEASOH>SP86 STREAN'HALFNILE  DAFE.06/OS/86 SPECICS»IROOK TROUT •
   55
   56
   57
   58
   59
   60
   41
   62
   65
   66
   67
   68
   69
   70
   71
   72
   73
66
64
61
65
61
67
62
62
59
62
61
61
61
64
61
54
     SEASON*FL85 STREON-SaKEK OATE*09/12/3S  SPECIES'CREEK CHUB
         102
                                                               RUN

                                                                 3
—  SEA$ON*FL85 STREAK'BAKER DATE'09/12/BJ  SPECIES'UHITE SUCKER 	

 FMJH    LEN    UCT  ACE  COHDF AVGSHAO Ai/GANHl  AVGAHN2 AVGANN3 RUM

    1    110     ...        .        .       .       .2
SEASON'S
35 4
1 10
2 11
S 9
6 8
7 10
s a*
9 8!
•86 STREAN-HALFIULe CATE»06/QS/86 SPECIES-BROOK TROUT —
1*0 1.1
10.8
16.9
8*7
5.8
9.3
7.5
6.3
10 124 21. a
11 87 6.4
12 11C
14.1
15 120 19.9
14 104 11.9
IS 86
6.7
16 102 13.2
1.0
1.1
1.0
1.0
0.9
1.2
0.9
1.1
0.9
24.0 14.6
22.3 13.7


18.5 12.3

*
. 28.0 IS. 2
.
1*06 21.8 15.0
1-15 22.4 IS. 2
1.06 . .
1.05
1*24 Zl.S 13.0
























mun
18
19
20
21
22
23
24
25
26
27
28
2»
30
31
32
33
34
36
37
39
40
41
42
43
44
45
46
47
48
49
SO
SI
S3
54
55
56
57
58
59
60
61
62
6}
64
65
66
67
68
69
3
38
52
4
SEASON*
FNUN
1
2
3
4
S
6
7
t
9
10
11
SEASON*
FNUN
LEN
80
87
106
106
114
103
86
81
93
88
77
75
100
96
96
72
116
76
93
71
101
102
88
89
81
67
85
78
77
92
85
72
133
77
95
86
96
104
61
S3
79
67
84
103
100
81
67
81
150
138
134
179
SPS6
LEN
8S
44
78
82
47
81
63
82
89
41
78
SP86
LEN

4.8 1 0.94
8.0 1.21
12.9
13.5
16.3
10.4
6.6
5.4
8.4
6.9
5.0
4.8
<0. 4
8.9
8.9
3.5
17.0
4.7
8.8
3.7
11.2
12.2
7.7
9.2
5.4
3.5
6.0
5.8
4.7
9.1
7.5
4.7
28.
4.
11.
7.
10.
11.
2.
6.5
5.5
4.3
7.7
12.7
10.4
S.S
4.1
5.5
36.2
31.1
29.6
1.08 20.8 14
1.13 .
1.10 23.8 16
0.95 .
1.04 .
1.02 .
1.04 .
1.01 .
.10
.14
.04 .
.01 .
.01 .
• 94
.09 23.7 13
.07 .
.09 .
.03 .
.09 .
.15 .
.13 .
.31 .
.02 .
.16 .
.98 .
• 22 .
.03 .
.17
.22 .
1.26
1.20 27.8 14
0.96 .
1.28 .
1.16
t.21 .
1.06 .
1.23
1.14
1.1?
1.41
1.30 .
1.16 24.0 14
1.04 .
1.0 .
1.3 .
1.0 .
1.0 32.8 18
1.1 28.8 16
1.2 28.6 12
72.3 1.2 35.11 12
,'
2 1

0 .


. •
*
B

"

^

^
7 .

*


f
a
f

"



f
4

8 !

"

^
"

^
*


6 .

n
"

0 -28.0
0 24.4
0 18.6
2 21.0 30





















2
2

2
2
2
•2
2
2
2
2
2
2
2
2
2
3
3

»
*

3

3
3
3
1

2
2 1
STREAN.HALFK1U OATe-06/05/86 SPECJES.8LACICNOSE OACE -
U6T ACE COHOF AVGSRAD AVCAHN1 AVGANN2 AVCANH3 RUN
6.2 . 1.01 ... .
1.0 . 1.17 . . .7
5.4 . 1.14 . . . }
5.5 . 1.00 . . . }
0.9 • 0.87 ... i
5.7 . 1.07 . . J
2.4 * 0.96 . . . i
5.3 . 0.96 ... y
7.2 . l.OJ . . . S
0.6 . 0.87 . . . $
4.4 . 0.93 . . J
STREAN'INOIAN CAMP OATE-06/16/86 SPECIES*BROOK TROUT —
W6T AGE CONOF AVGSftAD AVGAHN1 HVGAHN2 AVCANNJ RUN
2
6
7
8
9
11
1
3
4
S
10
12
13
14
15
FNUN
1
2
3
4
5
6
7
a
9
0
1
2
3
4
5
)(.
56
64
53
62
58
51
125
123
119
99
140
101
120
127
105

65
4
5
7
6
4
4
t,
3
6
0
8
3
11
44
n
1.7
2.7
1.8
3.4
2.5
1.6
22.5
21.9
20.9
12.3
26.5
10.8
14.1
19.6
12.9

2.6
1.3
2.3
4.7
3.4
1.5
1.6
1.5
0.7
0.8

3.1
.
5.7
t
*
0 0.97
1.03
1.21
1.43
1.28
1.21
1.15
1.18
1.24
1.27
0.97
l.OS
0.82
0.96
1.11

0.95
i.ia
1.13
1.03
1.04
1.36
1.45
1.36
0.88
0.82

0.99
f
1.07

t
11.8
12.7

15^2
12.8

27^3
26.3
26.3
20.8
29.2
20.0
22.8
23. S
23.7


f
f
t
'
^
*

f
m

t
^
"
*

\
^
n
f
f
*

18.5
17.0
15.0
12.3
18.4
13.0
12. S
13.8
14.8

"






|
*


*
*
*

•

*
*
1


*
*























*
*
"

•
"
•
*





















-------
                                                          306
                    FISH  rorM.ATXOII
                                          3F(CIIS-IL«CI«OSE t>CC  -


                   >M  COKBf  *VC1»B 4VMHK1 «Vt««NJ HVMM3 IU>
17
11
It
20
11

23
24
IS
14
27
21
J»
30
31
32

34
35
34
37

3y
40
41
42
43
44
43
44
47
41

51
52

54
33
34
57
31
St
40
41
42
43
44
45
44
47
41
11
70
72
71
74
7$
74
77
71
7»
10

11
13
14
IS
• 4
SCASO*
•on
1
2
1
4
3
4
7

t
10
11
13
14
IS
51
4«
47
54
SO
41
43
47
44
47
71
44
41
7$
42
41
4t
71
44
42
42
71
75
73
S3
47
44
4«
74
74
74
41
30
7t
7t
43
44
47
31
45
44
$7
77
43
44
41
41
41
41
41
40
44
71
<2
7$
4t
44
43
44
S»
47
42
4f
43
4t
44
47
43
•sr(4
LCD
43
107
77
SS
73
72
74
t7
41
74
73
7»

• 7
1.4 1 04 . .1
B
l.S
1.4


2.4

,

3.4
2.7
c
4.4

,

3.2

a

4.0
4.2
4.2
,
,
,

4.5

.
t
,
4*8
4.8
2.S
,
,
,
#
^
^
4*7
f
»
,
,
,
„
,
,
^
3.4
S.2
.
,
,
,

2.0
,
,

4
*
4
^
•

0
0


1



1
1

1



0



1
1
1




1




0
0
0






1









1
0





0








St.t.-I.OIAH
UCT ACC CO
2.1
13.1
s.o
2.3 1
4.7
4.7
3.0
10.1
2.3
5.3
4.4
5.1
11.4
7.0
,
91 .
• 7 .
•

04 .
.
.

01 .
03 .
.
07 .

.

•9
•
•

12
00 .
08 .
,
•
•

11 .
,
.
•
.
97 .
97 .
91 .
»
»
»
.
,
.
03 .
.
.
,
»
f
,
,
,
.
01 .
94 *
.
*
«
•

97 .
,
.

,
.
.
,


































































•
AHP DATC-06/16/86 SFECI
Of AVCSRAO AVGANH1 AVGA
12 .*
07 .-
10 . *
38 ••
11 . •
26 . *
14 .*
11 •>
01 . *
25 . *
04 .*
03 . *
21 ••
. 1
. 1
. 1
. 1
• 1
. 1
. 1
• 1
. 1
. 1
• 1
• 1
• 1
• 1
• 1
• 1
. S
. 1
• 1
• 1
• 1
. 1
• 1
. I
. 1
* 1
• 1
. 1
. 1
. 1
. 1
• 1
. 2
. 2
. 2
. 2
. 2
. 2
. 2
* 2
. 2
. 2
. 2
. 2
* 2
. 2
• 2
* 2
. 2
• Z
» 2
* 2
. 3
. 3
* 3
* 3
• 3
• 3
* 3
• 3
• 3
. 3
• 3
• 3
• 3
* 3
• 3
•CRCEK CHUI «
2 AV6ANN3 HUH
. 1
• 1
. 1
• 1
. 1
• 1
. 1
• 1
. 1
. 1
• 2
. 2
. 3
06 •• * *
»>soii>SFi4 sr«t«n.iKoi«»

rnuit    LCN    UCT  AGC c

   1     »1
   2     •><•
   i    103
   4     ?7
   3    137
                               0«tf04/14/S4 SMCIES-MITt SUCKM —
SCASON'SM* STRCAMtMIAN CAM DATt"06/16/*6 SMCIESMINCSCAtC OACt
1
2
3
4
S
4
7
•
9
10
11
12
13
14
IS
16
17
18
FKUH
1
2
3
FNUN
1
2
SEASON.
FNUN




FKUh
6
7
g
9
10
12
14
16
17
18
19
20
21
22
23
24
25
26
27
28
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
47
48
S3
54
55
56
57
58
59
0
1
2
S
4
5
67
SS
54
S3
48
SO
S3
SO
48
54
63
54
56
50
49
59
S3
58

50
62
43
LEN
107
92
2.5
1.6
1.6
1.7
1.0
1.2
1.5
l.S

1.9
2.7
1.4

,
,
,
2.1
2.0


,
*
0.83 • • *1
0.96
1.02
1.14
0.90
0.96
1.01
1.20

l'.21
1.08
0.89

,
»
,
1.41
. . * i
. . .1
. . • t
. . .1
. • • i
. . - i
• i
• i
. . .1
. i
. . .2
. . .2
. . * 2
. .2
. . .2
. . * 2
1.03 • • •>

1
2
. .... 3
UGT ACE CONOF AVGSRftD AVGANN1 AVGANN2 AVGANN3 RUM
.
•
. . ....
. . ....
SP86 STREAM-INDIAN CAMP QATE»06/16/86 SPECIES-GOLDEN SHINER
63
62
70
63
59

S3
52
54
S3
65
53
62
55
58
57
63
S4
50
50
56
60
S3
59
63
57
62
60
59
52
55
47
57
48
56
S3
51
57
54
37
55
45
SO
67
60
SB
57
54
54
J?
46
71
59
60
54
4?

,
.
»


1.3
1.3
1.4
1.2
2.1
.
2.3
1.7
2.2

2.6
.
1.4

1.7
2.0
.
2.4
2.8
•
,
,
,
,
t
1.2
.
,

.
,
.

0.7
.
.
.
.
,
,
,
,
.
0.7
1.0
3.5
.
,

.

. * * *
. • . •
. • • .


0 0.87 . .
0 0.92 11
0 0.89 10
0 0.81
0 0*76 11
0 .
0 0.97 12
0 1*02
0 1.13
0 •
0 1.04 14
0 .
0 1.12
0 .
0 0.97
0 0.93 14
0 .
0 1.17
0 1.12 13
0 .
0
0
0
0 .
0 *
0 1.16
0
0 .
0 .
0 .
0 .
0
0
0 1.3(1
0
0
0 .
0 .
0 .
0
0
0 .
0 .
0 l.ld
0 l.UJ
0 0.99
0 .
0
0 .
1)
2
7

7

Q



8




7


8










-




















• .
. «

«
I I
' I
, .
* .

. t
, *
• .

. .
. *
, ,
, .
, .
• •
I I
. .
, ,
, ,
, ,
, ,
, .
, ,

t f
< t
, ,

, t
t f
m 4
t t
t
t
, ,
m t
t t
t t
, ^
, 4
t t
t
, t

. ;

-------
                                                      307
                 FISH POPULATION  OATH



SCASQM«$P86  STKEAH'SPftlMC OATE'06/18/16 SPCCXES'SRCIOK  TROUT --»
                                                                                   smAn-spftitt« OATC-06/18/i* $Pfexes«cMEK CMUI

66 50 0 2 1 tit 20.8 1.40 1
67 62
65 61
69 64
70 57
71 58
72 58
73 67
74 <6
75 60
76 49
77 47
78 41 0
79 65
80 54
81 60
82 55
83 54
84 49
85 56
<6 52
87 58
88 47
3 ISO 35
4 132 23
5 110 13
45 87 6
46 94 7
49 135 31
SO 129 23
51 119 20
52 104 13




2 S3 1
J 68 3
4 60 I
5 68 2
6 S8 1
7 69 2
8 60 2
9 S3 1
10 S3 1
11 57 1
12 45 0
13 43 0
IS 61
16 56
17 58
18 61
19 56
20 58
21 68 2
22 68
23 4S
24 63
2S SO
26 45
27 63
28 SO
29 45
33 46
34 61
35 61
36 46 0
37 59
38 61
39 50
40 62
41 45 0
42 52
43 63
44 46
45 67
46 56
47 66 2
48 64
49 77 4
SO 63
51 49
52 SO
S3 62
54 57
55 59
56 63
57 56
58 59
59 63
60 47
62 44
0
0
0
0
0
0
0
0
0
0
0
7 0 1
0
0
0
0
0
0
0
0
0
0
411
1 1
1 1
1 1
1 0
1 1
1 1
1 1
6 1 '1












02










05 34
01 23
01 24
02 19
26 29
09 28
19 23
21 22
11 31























5 18
7 IS
6 16
3 11
0 12
3 IS
5 12
3 13
0 11
8 14
4 IS






















3
0
2
3
5
0
2
0
6 23





























6
0 22 0
DaTE«Q6/18/aA


1 01

















7











7




g





4

*









0
1
0
0
0
0
0
1
0
0
0






0











0




0





0

0









99
11
89
92
88
97
87
07
86
88
88 .






86











72




88





83

96




































































































































































































2 95 10.0
3 75 4.1
4 68 3.1
5 65
6 77 5.2
7 85 7.0
8 67 2.S
9 70 3.8
10 92 8.1
11 77 4.0
12 78 5.0
13 75 .
14 95 9.5
15 73 .
16 75 .
17 66 .
18 67 3.0
19 99 10.6
20 64 .
21 82 .
22 92 10.0
23 82 6.2
1.17
0.
0.

l'.
1.
0.
1.
1.0
0.8
1.05

ilu
,


1.00
1.09
.
.
1.28
1.12


































































1
1
I

1
I
t
1
2
2
2
2
i
Z
2
2
2
2
2
2
3
3


— n— SEASON-SM6 STIEAIOSMIM; DATC'06/16/86 SPCCICS'WHITE SUCM* —

**"" LE ' ' I 
-------
                                                                308
— IIASa«*IPB4
                                            SPECIES'ATLAMTIC SALRON —
                                            ;«««! AVCANK2 AVCAHII3 Run
                                                                                         STREAtUROCKV DATE>04/04y86 SPECZES-ATLANTIC  SALRQM
17 101 t
20 II 7
11 73
13 103 7
14 15
IS 97
14 15
17 10
11 13
It t4
39 104
31 104
33 101
34 70
35 13
34 77
37 to
37 100
40 10
41 12
42 tl
43 IB
44 tO
45 82
44 B6
47 t2
4t t3
30 I!
51 B7
t 120 15
It 120 14
11 101 13
32 122 13
31 117 IB
41 119
5
2
B





















7
2
S
0
2



• SCASOM'SPBI STREAIt"


4 35 4
11 45
11 44
13 43
14 49
129 IB
Bt 4
Bl 4
117 10
lOt 1
B7 5
13 114 14
14 100 t
15 t3 B
14 tO 7
17 tl 4
IB tt t
It 83 5
19 40 3
IB 74 8
It tl
so to
31 125 17
32 75
33 94
34 73
35 107
34 IS
37 40
31 lot
39 100
49 BO
41 73 3
42 tO
43 B7
44 Bt
43 100
44 97
47 tO
48 Bt
49 100
39 101
31 lit 14
32 77
54 74
13 43
17 130 21
IB 77 4
St 73
40 77
41 105
41 125 17
1 14B 47
7 147 53
19 142 17
11 175 14
12 144 41
24 148 41
17 134 11
53 131 31
14 117 20
25 204 70




B
9
0
S
4
t
1
1
7
S
8
4
1
0
2
5
S



5
1
3
9

B
7

0 92
1 04
0 IS





















0 91 51
0 94 35
1 07 51
0 13 59
0 89 63
52






















4 2
B 2
2 2
2 2
6 2
4 2


NCLAIR DATE'06/12/B6


0.93 •
.
.
.
.
0.88 24
0.98
1.05
1.00 27
0.88 29
0.90
0.91 26
0.91
l.OB
1.01
0.90
0.99
0.89
1.39 22
0.99
0?90 26
I 24
. 25
0.90 16



oNa 24
0?96 23
0.94
0^92 25
0.99 14
1.16 29
0.89 14
1.02 31
9.97 JO
O.BB 27
1.01 34
1.00 20
0.82 36




a i

a i
2 1
2 1


2 16
2 16
8 16
a 16
0 13



8 IS
2 13
2 16

8 9
11
11
11
7
11






















9 38
8 43
0 49
3 42
8 46
6 42






















0
7
0
a
4
0


PECIES-BROOK T







2

2
3
9


0
7
S
0



0























29
1 98 9.8
2 94 8.3
9B 8.4
99 10.0
94 7.7
97 9.2
103 10.2
97 8.0
88 7.S
19 87 6.2
11 84 6.2
12 88 6.0
13 100 9.8


1.04 65.0 24 0 1
0.94 41.3 20 3 1
0.89 40.0 21 7 l
1.03 . t
0.07
1*01
0.93
0.88
1.10
0*94
0.97
0.88
0.98



~
. j

• 2
. 2
. 2
• 2



— — SEASON>5PS6 STREAft'AOCKV DATE»06/06/86 SPECIES'BROOK TROl
7 48 1.1 0 0.99
13 17 1.6
14 41 O.B
9 0.86
9 1.16


. t


IS 56 1.3 0 0.74 12.5
20 45 1.0 0 1.10
21 47 1.1
13 71 4.2
27 58 .
28 11 .
29 4B .
30 35 .
32 51 .
2 2 131 23.4
2 3 87 6.1
3 4 86 6.1
S 91 9.7
6 98 9.4
UT — 8 SS 5.9
9 88 7.5
3 RUM 10 106 11.2
11 86 6.2
1 12 82 6.3
1 17 110 12.9
1 18 99 9.1
1 19 95 8.5
1 22 94 8.8
1 24 82 6.4
1 2S 111 16.8
1 26 81 6.2
1 31 90 .
1 1.06
1.17

*

*
*
B
"


"
*
*
1.04 25.6 15
0.93
1.02
1.13
1.00
0.96
1*10
t
f

,
.
0*94 27.0 17
0*97
1.14
0.97 18
0.94
0.99
1.06
1.16
1.23 25
1.17

1 1 158 40.4 2 1.02 14
1




1 1 63 2.2
1 2 52 0.9
1 3 SO 0.7
1 4 46 0.9
2 S SO 1.3
2 6 70 2.9 •
2 7 48 1.0
2 8 63 2.1
2 9 12 1.3 .
2 10 62 2.1
2 13 19 2.0 .
1 14 61 1.9 .
2 IS 64 1.9 .
2 16 51 1.2
2 17 54 0.6
2 20 63 1.7 .
2

3 SI««A».
3 1 75 4.2
* 2 81 5.
3 3 99 11.
3 4 67 3.
3 S 62 2.
3 6 68 3. .
3 7 68 3.
3 8 73 4. .
* 9 74 3. .
* 10 56 1.
* 11 81 5.
* 12 84 6.
4


J 1 101 .0.6
J 2 85 7.0
* 3 82 5.4
3 4 92 7.7
* 5 91 7.1
1 6 105 11.1
7 101 9.0
8 7 10.1
9 0 6.8 .
, 10 9 7.0
11 9 10.1 .
I 12 1 7.2
1 U 4 8.1
1 14 7 a. 8
0.88
0.64
0.56
0.92
1.0
0.8
0.9
1.0
0.9
0.8
0.9
0.8
0.72
0.90
0.38
0.68



1.00
1.03
1.15
1.00
0.97
l.U
1.02
1.13
0.96
1.08
1.03
1.06



1.03
1.14
0.98
0.99
0.94
0.46
0.87
1.11
0.93
0.99
1.03
0.96
0.98
0.96

.0 12


(
(
.0 17

'•B IS











2





3

5




*

2 29


























0
"
j
i
t
2
2

'

4
4
*
1
1
•

1
1
1
*
1
*
~
~
~
3
~
1






3 RUN
t
1
1
1
1
1
1
1
1
1
2
2
2
2
2
3


E CREEK CHUB
2
• 3



1
"
"
*
"
*
"
*
1 1

-------
                                                             309

IS 105 10.6
16 87 6.5
J7 9J 7.4
18 100 10.3
19 89 6.5
20 92 7.7
21 102 9.6
22 99 9.9
23 87 7.3
24 104 11.1
25 88 6.7
26 92 S.6
27 95 9.6
28 88 6.6
29 103 11.4
30 85 6.0
31 94 8.8
32 100 8.1
33 86 5.9
34 94 •
0.92
0.99
0.92
1.03
0*92
0.99
0.90
l.OS
1.11
0.99
0.98
1.10
1.12
0.97
1.04
0.98
1.06
0.81
0.93
.
•
.

.
•





1 65 2
2 70 3
3 62 2
* 62 2
5 62 2
6 63 2
7 68 3
8 68 3
9 64 2
10 63 2
11 63 3
12 64 2
14 51 1
15 65 2
16 60 1
17 63
18 66
19 68
20 60
4 21 63
22 63
25 61
27 65
man LEH HOT AGE Conor AVGSRAD AVGANNI AVGANHE AVCOKNJ HUH 28 63
29 &4
1 71 2.8
2 65 2.7
66 2.7
S3 1.6
64 2.3
61 1.9
61 1.9
62 1.8
9 53 1.4
10 58 1.7
11 S3 1.4
12 58 1.7
13 62 2.2
14 61 2.0
IS 51 1.2
16 79 4.4
• 17 55 1.9
18 47 0.8
19 54 1.8
20 60 1.7
21 57 .
0.78
0.98
0.94
1.07
0.88
0.84
0.84
0.76
0.94
0.87
0.94
0.87
0.92
0.88
0.90
0.89
1.14
0.77
1.14
0.79

.
;
,
•
•
B
,
. ,
9
,
,
,
.

»
.
.
,
,





















30 48
31 68 2
32 62
33 66
34 52
35 68
36 60
37 69
38 45
39 66
40 55
41 55
42 68
44 60
2 45 63
2 46 66
2 47 62
2 48 62
2 49 65
3 50 64
3 51 S3
5
0
5
B










2


















0.91
0.87
0.97
0.97
1.22
0*80
0*99
1.11
0.95
0.84
1.28
0.92
0.98
0.91
0.83
*
*
*
.
,
.
"
f

*
0.70
*
*
*

*
*
*
*
*
*
*
*
*
*
*
"
*
*
•










































































































2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

1 137 14.0 . 0.54 .... 1 1 156 41.0 . 1.08 . . . . 1
—  SEASOH-SM6 STUtOB-JAKER DATE.06/10/86 SPECIES-ATLANTIC SALBOH •
mun
S
10
20
23
1
2
3
4
6
7
8
9
11
12
13
14
15
16
17
18
19
21
22
24
25
26
27
28
29
30
IEN
108
107
113
106
138
145
139
140
150
116
144
131
159
147
136
144
143
143
155
142
138
146
132
142
139
145
146
160
142
142
U6T
13.5
10.7
9.0
11.8
21.7
28.6
21.6
24.6
29.
25.
31.
23.
,
28.
21.
25.
24.
23.0
33.0
22.0
22.0
27.0
20.0
24.9
25.0

t
t
f
•

1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2-
2
2

1.07
0.87
0.62
0.99
0.83
0.94 60
0.80
0.90
0.88 66
1.03
1.04 71
1.06
. 80
0.88
0.83
0.84
0.32 69
0.79
0.89 69
0.77 75
0.84
0.87
0.87
0.87
0.93

B
t
t
•


*
*
*


8 22.5 43

'f
8 21.5 48
3 23. S SO

2 25.4 65

,
*
0 19.3 52

0 24^4 52
0 25.3 58
"
*

"

"

"
*

I






5


0
8

2



g

2
0




































2
2
3

6
1
2
4
5
7
8
3

46
ISO
138
141
150
ue
112
213

•
33. S
27. B
28.3

31.3
24.0
110. 0

1
1.00
1.06
1.03

1.11
1.04
1.14


30.6
29.5
29.5
33.6
ea.4
29.0
42.4


19.4
19.3
20.2
21.4
16.8
18. 6
IB. 4 31








8






;
;
1

-------
                                                          310
3K«SON*5IU* »Tt«*H«M*1_F*ILf D*T«-01/0*/3* SPCCieS-IROOK TROUT •
                                                                    —  SCASOH*SH86 STRCAIMINOIfln CHHP OCTC-Of/03/8*  *ffCICS'IRQOK TROUT —
rnm
11
17
It
19
20
10
31
43
46
*7
<>
45
71
73
74





10
11
12
1]
It
IS
21
23
24
25
24
27
2«
29
31
33
34
3S
34
37
38
39
10
tl
42
t3
44
51
SI
S3
St
SS
34
37
SI
s»
40
il
42
43
44
47
4>
49
70
72
7$
74
77
78
79
• 9
2
3
22
49
30
SMIO










71 3.0 0
43 2.3
57 1.1
51 1.4
51 1.3
52 l.S
51 l.i
sa 1.5
59 2.2
45 1.3
41 2.9
SS 1.1
42 2.9
58 2.!
55 2.
110 12.
Ill 12.
112 13.
10« 11.
101 9.
103 11.
103 9.
91 8.
19 S.
78 5.
12 S.
121 21.
117 It.
114 IS.
106 11.
92 7.
88 6.
86 6.
93 7.
108 11.
133 22.
tS 6.
117 IS.
99 8.
12 5.
84 6.
86 .
84 .
115 1 .
112 1 .
102
77 .
75 .
121 16.
87 5.
»3 7.
96 8.
88 4.
116 IS.
97 9.
108 12.
90 4.
112 12.
125 18.
95 7.
91 7.
81 t.
88 4.
lOt 9.
17 6.
115 It.
101 10.
84 4.
148 31.
130 22.
160 IS.
124 20.
ItS 29.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2 1
0 1
6 1
1 1
8 1
9 1
S 1
9 1
t 1
1 1
9 1
7 1
8 1
I 1
1 1
t 1
2 1
9 1
1 1
9 1
2 1
3 1
9 1
2 1
9 1
1 1
2 1
9 1
t 1
9 2
7 2
S 2
2 2
8 2
O.tt
0.92
1.03
1.21
0.98
.07
.21
.97
.07
.18
.10
.08
.05
.13
.26
.97
0.90
0.96
0.93
0.94
l.Ot
0.88
0.89
0.84
1.12
1.02
1.03
0.92
0.98
0.92
0.92
0.90
l.Ot
0.93
0.91
0.97
0.98
0.96
0.88
0.94
1.01
1.04
0.96
0.91
0.99
0.92
1.07
1.28
0.91
0.90
0.96
0.99
1.00
0.97
1.03
0.97
0.9S
0.86
0.97
0.84
0.97
0.92
0.91
0.88
0.93
0.93
1.06
1.04
0.98
1.03
1.11
1.01
0.98
H»SflS6 STReAH-HALrnlLC DATE
81 S.
48 1.
83 5.
86 5
81 5
76 4
73 3
49 3
83 S
0
1
4
0
1
0
7
0
3
0.87
0.99
0.94
0.7
0.8
0.9
0.9
0.9
0.9

1

•
*
«
a
,
m
•
•
»
•
„
»

26.0 14
26.5 16
23.8 13
22.8 19

•
,
22.7 13
22.3 13
18.2 10
•
28.6 17
22. S IS
21.2 U
»
22.2 U
18.3 9
19.7 10
•

26.0 IS

26.2 IS
4>
•
.
•
•
.

•
,
»
22.8 1
•
'
.
•
t
*
.
»

24.7 1
•
^
.
.
•
•
«
,
,
33.8 1
30.0 1
36.8 1
24.2 1
28.7 1
•OB/06/86 S
























































7









S









4 2
a 2
0 2
0 1
2 2



































































t
7
8
2
8
X
1
1
1
1
1
1
1
1
1
2
2
f 3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
1
1
1
2
2
CXES-BLACKNOSE DftCE —









3
4
S
9
10
2
4
7
11
12
SEASQ
FMUH
1
2
3
*





1
1
2
3
t
S
6
7
8
9
20
21
22
23
24
2S
26
27
29
29
30
31
32
33
34
35
36
31
31
3!
to
41
ti
41
4<
t!
t«
4]
4!
45
Se
S
s:
S3
5<
, S!
SI
s;
si
S1
SI
6
61
6
64
6
6<
6]
6
6
7
7
7
7
7
7
7
7
7
7
S
a
9
9
9





7< 5.4 0 1.14 .0 1
72 4.0 0 1.07 .3
86 7.2 0 1.13 .7
93 9.2 0 1.14 .2
108 13.0 0 1.03 .0
19S 98.7 1 1.33 .7 12
128 24.8 1 1.18 .0 13
179 78.4 1 1.37 *8 16
111 23.6 1 1-OS 29.3 13

67 2.9 0.96
74 4.5
8S 6.3
73 3.9
76 4.3
68 3.0
S2 1.4
86 6.S
80 S.2
6S 2.4
47 0.9
67 2.7
45 0.8
47 0.9
67 2.S
85 6.6
48 1.1
70 3.3
44 0.7
4S 0.7
68 3.0
4 0.7
7 1.0
2 2.2
7 4.4
& 2.5
6 2.8
62 2.4
SO S.S
46 0.8
75 3.9
77 4.3
68 3.0
72 3.6
62 2.4
69 3.4
72 3.5
82 S.O
76 4.3
71 3.3
57 1.6
48 1.0
70 3.3
45 2.4
45 0.9
81 .
56 1.6
78 .
71 .
68
74
62 .
78 .
74 .
71 .
66 .
58
78
73 .
80 .
71 .
60
69
70
62
58 1.5
76
84 .
75
68
43 O.tt
61
SS .
46 0.9
61 1.9
77
70 .
50 1.1
63 .
73
79
47
58
77 .
68
76 .
75
59 1.8
52 1.2
90 3] .
1.11
1.03
1.00
0.98
0.95
1.00
1.02
1.02
0.87
0.87
0.90
0.88
0.87
0.83
1.07
0.99
0.96
0.82
0.77
0.95
0.82
0.96
0.92
0.96
0.87
0.97
1.01
1.07
0.82
0.92
0.94
0.9S
0.96
1.01
1.03
0.94
0.91
0.98
0.92
0.86
0.90
0.96
0.87
0.99
f
0.91

,
.
.
.

.
.
.
.
,
.
,
.
,
,
,
.
0.77
.

,
.
0.88
.
,
0.92
0.84
,
,
0.8U
.
,
.
t
t
t
,
,
.
0.88
0.85
.




























































































































































































1
2
2
2
2
I
1
2
I
2
3

1

























































































1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
i
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3

-------
                                                                311
                       FISH  POPULATION  OUT*
 3EASON-5P.B6 ST*EAIt»IN01AN CAMP OATC>09/03/86  SPCC1ES«»LACKNOSE  OACI  •
                                                                                 SEASON-SN86 STMAN-SPIIINC DATE-08/12/86 SftClES-IHOOI IP.OUT
FNUN
91
92
93
94
95
96
97
96

1
I
I
4
5
6
7
8
9
10
11
12
13

65
57
61
45
73
61
45
47

89
58
74
68
91
96
104
106
68
77
64
62
66
14 54
• SEASON'Slt86
FNiln LEM
1 71
2
3
4
5
SEASOA
FNUH
80
75
43

.
1.6
.
.
.
.
.
'

8.2
1.9
4.2
3.1
7.6
9.0
11.4
13.5
3.5
4.4
2.3
2.4
3.0
. 1.4

B
0.86
.
.
. -
.
.
*

1.16 .
0.97 .
1.04 .
0.99 .
1.01 .
1.02 .
1.01 .
1.13 .
1.11 .
0.96 .
0.88 .
1.01 .
1.04 .
0.89 .

. 3
. 3
. 3
. 3
. 3
. 3
. 3 -
. I

, 1
. 1
. I
. 1
* 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
2
. I
UGT AGE CONDF AVGSBAD AVCilNNl AVGANN2 AVGANH3 KUN
3.3 0.92 . 1
5.1
4.7
0.9
1.00
1.11 .
1.13 .
46 1.0 1.03
1
2
3
3
LEN UGT AGE CONDF AVGSRAD AVGANN1 AVGANN2 AVGAhN3 RjN
SEASON'SP.86 STREAM-INDIAN CAIIP DATE>09/03/86 SPECIE508/12/86 SPECIES*BROOK TROUT —
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.90
0.72
1.02
1.72 .
0.90
0.44
O.S2 18.0
0.92 .
0.87 .
0.80 .
0.99 .
0.8S .
0.89 .
0.92 .
0.92 .
1.02 ,
1.00 .
0.8S . ,
1.07 .
O.S9 .
0.73 .
0.98

, t
. t
, t
t t
, f
t t
, f
. t
t • • -
. m
. .

































"
*


*
*

*
*

*

*
*
"
"
"
"

^
*



*


*

B
"
"

t
t
.

44 64
45 65
46 63
47 58
48 52
49 59
50 68
51 57
52 74
53 54
54 67
55 57
60 63
61 57
62 73
63 58
64 64
65 67
66 74
67 67
68 67
69 57
70 54
73 51
75 71
76 66
77 57
7« 58
79 54
80 59
82 63
83 55
1 98 8
33 152 33
34 163 42
35 163 46
36 137 23
37 121 IS
38 1}9 23
39 113 11
56 94 7
57 102 10
58 112 13
59 152 31
71 138 30
72 136 26
74 146 25
14 163 44
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6 1 0
0 10
010
Oil
010
510
010
010
610
6 11
110
510
Oil
0 1 1
010
321
SEASON-SH86 STUEKn-SPHINS
1 67 2 5
2 62 2
72 3
68 2
61 1
79 4
64 2
61 2
58 1
10 52 1
11 42 0
12 66 2
13 70 3
14 63 2
15 62 2
16 S3 1
17 62
18 60
19 65
20 60
21 58
22 42
23 58
24 58
25 65
26 61
27 50 1
28 75 4
29 63
30 7
31 4
32 2
33 B
34 9
35 52
36 68
37 56
38 43
39 54
40 60
41 55
42 56
43 72 3
44 54
45 52
46 4
47 6
41 5
49 7 4
SO 6
51 5J
52 47
33 S3
34 63
0
2
9
9
3
6
1
7
2
7
4
5
1
2
3










2
0














2





0





0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0


,.







0
0














0





0





































91 19
94 25
97 27
06 24
89 21
87 27
96 31
76 22
92 16
00 19
93 21
90 27
14 27
03 29
80 27
02 23
































8 11
2 14
8 16
3 14
0 11
2 12
7 14
7 12
10
9
14
14
13
14
14
o -,
ATE»08/12/86 5ft
83
84
86
92
84
87
99
93
87
85
94
83
02
84
92
87










96
95














86





88




























.






























































g
0
0
S
8
5
5
3
2
7
0
Q
J
0
5
5 13















































8
2
2
I
I
i


































1
2
2
2
2
3
3
4
t
1
IESMI.ACKHOSE DACE —




























































































































































2
2
2
2
2
2

-------
                              312
run POPW.AIIOK ••»
Men LM w(
SS 57
54 61
57 42
SI 34
St 47
to st
41 41
42 54
<> 52
14 43
45 43
44 43
47 14
41 57
It 43
70 11
71 41
72 42
7J 74
74 30
75 42
74 42
77 37
71 II
7t SI
•0 II
• 1 IS
12 IS
» 61
•4 40
• S IS
• 1 10
17 43
II 72
It 34
tO 49
tl 45
t2 S3
93 St
»4 41
tS 61
94 34
97 43
tl 47
tt 50
100 33
101 56
102 41
103 41
104 51
105 It
104 42
107 50
101 77 4
lOt 42
110 72
— 3tASGN'SH84 S
KU» LEN w
1 123 21
I 12 S
J 94 t
4 104 12
S 81 S
1 IS
7 64 2
1 12 2
t 63
10 St
11 102 10
12 SI 2
1} tO 1
14 41
IS 77
14 101 13
17 76
18 tS 10
It tl
20 73
21 16
- IEASOH'Sfl84 IT
T All
1
IREAIt*
.0
.7
.4
.3
.t
.8
.6
.1
.3
.2
.1
.2
REAR'S
COI
0
PAIN
1
1
1
1
1
1
1
1
1
1
1
1
PAING
IF AVCSRI
to
OATE'08
24
03
13
09
11
07
Ot
02
18
12
04
It
OATE'OS/
0 AVSAN*
12/86 S
12/86 SP
1 AVGANI
PECIES'C
ECIES'UH
2 AVMNR
REEK CHU
1TE SUCK


2 13 42 ... . . • *
2
2
2 — SEASON'SH86 STRCAN'SPRINt OATE'08/12/86 SPCCIES'STICKLEIACK S
2
2
2 146... ....
2 238... ....
2 3 49 . . . ....
2
2
2 _ SEA30N-SK86 STREAN'SPRING OATE»08/12/86 SPECIES'IROUN TROI
2
2
2 1 57 . . . ....
2
2 	 SEASOH'SltS6 STREAH'SPRING DATE'08/12/86 SPECIES'SflAllNOUTH 1
2
I
3 1 37 .
3 2 41
3 3 42 . •
3 4 43
3 5 36 . .
3 -- SEASON'5N86 STREAH'SINCLAIA OATE'Ot/0
3 FNUH LEN UGT AGE CONOF AVGSRA
3 1 72 3.9 0 1.04 34.
] 2 71 3.4 0 0.95 35.
3 5 75 4.1 0 0.97 30.
3 15 80 . 0 .
] 17 75 3.5 0 0.83
] 20 66 2.5 0 0.37 .
J 21 73 3.S 0 0.90 .
3 23 81 4.2 0 0.79 .
4 25 74 3.5 0 0.86 .
4 26 69 . 0 . .
4 27 74 . 0 .
4 28 SO 1.7 0 1.36 .
4 29 78 . 0 .
4 30 79 . 0 . .
4 4 99 8.7 1 0.90
4 9 106 11.0 1 0.92
4 11 140 20.2 1 0.74 71.
12 lOt 13.8 1 1.07
14 106 10.2 1 0.86 .
1 	 16 ,05 11.1 1 0.96 *
.8 93 7.5 1 0.93 .
4/86 SPECIES'AU
0 AVtANH. AVGAHt
0 .
0 .
2 .
4 •
4 32.4
22 tt 9.7 1 1.00 . .
1 31 106 • 1 . . .
1 32 96 8.8 1 0.99 40.8 20.3
I 6 132 20.4 2 0.89 48.0 16.8 31
1 8 134 19.8 2 0.82 60.0 -20.4 39
1
1 	 SEASOtl'SHB6 STREAM-SINCLAIR OATE°09/04/86 SPECIES'
1
1
1 2 84 5.5 0 0.93 IB
2 7 77 4.0 0 0.88 18
2 6 73 3.3 0 0.85 IS
2 t 74 3.7 0 0.91
2 10 67 2.9 0 0.96 13
2 ,1 60 l.t 0 0.88 ,3
2 12 51 1.5 0 1.13
2 19 64 2.4 0 0.92
3 20 61 2.6 0 1.15
23 55 1.5 0 0.90
25 58 l.t 0 0.97
ER 	 	 29 65 2.8 0 1.02
30 71 2.3 0 0.64
1 ,0. ,4.3 . 1.20 ..... 36 43 2.3 0 0.2

5, 1 7 0 7 1 43 73 3^4 0 ols7
43 0 1 0 1 44 63 . 0
47 0 » 0 1 45 72 . 0 .
42 1 SO 62 . 0 .
61 1 9 0 1 51 72 . 0
S3 1 2 0 1 S3 59 . 0 .
48 1 1 0 2 55 75 . 0 .
JJ 2 56 81 . 0 . 16
SO t 1 0 da 2 57 66 . 0 .
, ll 0 V 1 21 2 59 77 4.2 0 O.S2
11 S2 1 1 0 73 2 63 61 . 0 .
\l 58 J *5 69 4.2 0 1.28
2 .
0 .
8 .
7 '.
0 .
S .
0 .
I '.
ANTIC S«
2 AVCANH
8
0
IROOK TR

3 RUN
4
PP. —
2
2
2
T — .
3 RUN
2
ASS -
3 IIUN
1
1
2
3
4
LNON
3 RUN
1
1
1
,
1
1
1
1
2
2
2
2
2
2
2
2
2
3
.
.
1
1
,
1
1
1
2
2
3
3
1
1
3UT —
;

-------
                                                            313
                     PZ$H POPULATION DAT*



  SCASOM»Sft8« STREAM-SINCLAIR OATC-09/04/86  SPECIES-BROOK TROUT



FMUII    LCN
SCASON-SRI* STtfAN-ROCKV DATt-03/07/8^  SPCCtCS-SNOOK TIIOUT '
68 84 5.7 0 0.90
70 85 1.2 0 0.85 18
71 68 . 0 .
72 67 . 0 .
71 62 . 0 .
75 63 . 0 .
76 57 2.3 0 1.24
77 52 1.8 0 1.28
78 66
82 63 .
S3 , 78 .
94 70 .
95 69 .
97 65
98 75 .
99 62 .
100 70
1 96 9.2
4 109 11.2
5 111 11.0
6 9] 6.7
15 108 12.7
16 104 9*4
17 108 11.4
18 112 12.6
;
4 117 16.8
27 147 26.3
33 106 9.5
34 134 19.4
35 110 12.8
46 104 9.4
47 103 9.7
49 108 10.6
52 108 10.7
54 102 9.8
58 92 .
60 97 8.0
61 136 19.9
66 115 .
67 110
69 109 .
74 97
79 104 .
80 102 .
81 104 . '
85 117
86 128 19.0
87 133 20.7
88 115
89 118
90 119 .
91 110
9
9
9
2 88 6.6
3 . 97
6 101 .
3 160 43.1
13 133 22.0
14 168 42.5
2
6 184 65.7
28 145 28.9
48 173 47.4
6
6
8



0 .
0 .
0
0 .
0 .
0 •
0 .
1.04 20
0.86
0.80
0.83
1.01
0.84
0.90
0.90
1.05
0.83 24
0.80
0.81 26
0.96
0.84
0.89
0.84
' 0.85
0.92
0.88
0.79 26
0.91 24
0.88 22
0.97 22
'.
.
1.05 31
0.94 25
0.90 38
1.05 32
0.95 26
- 0.92
2 138 23.5 2 0.89 27
4 136 23.3 2 0.93 23
4 145 31.5 2 1.03 27
2


S 11

0 U
3 14
2 18
5 15
8 14
2 14


3 14
8 10
5 16
7 13
4 12
2 10
8 , 11
8 12



•

2
3
2
2
5
7


3 23
0 18
2 29
2 23
0 20
S 1!
0 18
3 20
•
•
••
•

•
*
•
•
•
*

•

5 1
3 .
0 .
2
6
7 .
8 .
5 .
» mun bCH MCT A6
2- 35 SS .
2 36 48 1.1
37 63
38 ' 62
39 61
41 57
42 59 I
4* 68 llo
1 135 28.3
2 112 13,5
* 109 13. 4
17 89 6*3
25 90 7.2
27 142 30.0
28 121 18.7
29 131 24.4
30 110 13.1
33 129 25.0
34 94 8.3
40 109 12.4
43 109 13.8
44 137 24.2
26 143 29.0

0^99 '.
• •
! I
I I
ol9S I
• IS
.96 22.0 14 Z
.03 .
.89 21.7 12 3
.99 24.3 12 7
.05 30. 19 2
.06 30. 17 2
.09 32. IS
.98 25* 13
.16 30. 17
.00 20. 13
0.96 27. 19
1.07 25. 16
0.94 29. 18
0.99 28. 3 19
1
2
2
2
2
2
2
]
1
1
t
1
1
1
1
1
1
1
2
2
I
2
3
8 1

— -- SEASON-SH86 STMAN-ROCKV DATE-OS/07/36 SPEC IES«5LflCKNOSE OACC 	
59
62
63
71
62
59
67 2
41 0
5 0
10 22
11 31
12 50
13 20
14 52
IS 55 1
16 71 3
17 47 0
18 56 1
19 51 1
20 55 1
21 57 1
22 47
23 42
24 47
25 49
26 45
27 48
28 67
29 68
30 68
31 : 67
32 47
33 67
34 61
35 45

\» «»
PNUH LEN UGT A6C CONOF AVGSRAO AVGANN1 AVGANM2 AV6ANN3 HUN 39 70 3







'

in AY
1 105 10.3 1 0.89 45.3 24 0 . .
2 109 9.6 1 0.74
3 110 12.9 1 0.97 . .
4 128 16.0 1 0.76 63.7 25 3 . .
5 104 9.1 1 0.81 . .
6 113 14.1 1 0.98 . . .
' 98 7.6 1 0.81 43.2 24 3 . .
8 115 13.9 1 0.91 61.7 36 7 . .
9 112 13.4 1 0.95 . . .








1
1
1
1
1
1
2
2
2
2
2
31
78 4.4 0 0.93 14.0 . .
64 2.3 0 0.88 .
69 3.4 0 1.03 .
62 2.4 0 1.01 I
74 4.1 0 1.01
76 4.2 0 0.96 .
80 4.8 0 0.94
64 2.8 0 1.07 .
66 2.5 0 0.87
62 2.7 0 1.13 .
60 2.3 0 1.06 .
57 2.2 0 • 1.19 .
62 1. 1 0 11.76
71 3.6 0 1.01
53 1.9 0 1.2S
57 1.3 0 O.V7
67 3.0 0 1.00 .
76 4.0 0 0.91 .
56 1.3 0 1.02 .
57 1.7 0 0.92 .
77 . 0
32 72 . 0 . .
. .
. .
, ,
. .
. ,

s f
• '
• ;
t ^
t f
t t
^ t
a
m
*,
*

41 46
42 65
43 67
44 47
45 43
46 43
47 42
48 69
0
9 *
3
4
1 .
a
7 .
5 .
8 .
i .
8 •
7 .
6 .
7
6 .
4
9 *
3 .
4 .
4 .
8
*
-t

.
*
c
•
*
*

.
•
7 .

*
"
*
"

*
*
*


1 65 2.8
2 70 3.1 .
59 2.0
47 1.1 .
54 1.6 .
70 3.4 .
54 . .
47 1.2


0. 7
0. 0 . .
0. 2 . .
0. 5 . .
0. 8 .
0.88 . .
0.90 . .
0.73 .
0.88
0.97 . .
0.92 . .
0.77
0.81
0.98 . .
0.96 . .
0.95
0.87 . .
0.74
1.06
0.84 . .
0.97 * .
* • .
"

• • •
• • .
• « •
• • »
* . .
• • .

f f
• • .
1.08 I I

• . .
• . .
• . .
• • *

• • .
• • .
• . .
. 1
. 1
. 1
1
1
1
1
1
1
1
. 1
1
• 1
1
1
1
. . 1
1
. 1
. 1
• 1
• 1
" *
. 1
t
. 1
. 1
1
. 2
. 2
2
. 2
• 2
2
I 2
. 2
. 2
2
2
2
. 2
2
. 2
. 2
. 2
• • .3

1.02 . . .
0.90 . . * *
0.97 . * 1 ,
1.06 . » * *
1 «02 . * ^
0.99 . • ' 1
• • .2
1.16 ' '3
'•" ' ' .3

S£^SOM.S1S6 ST*E*« = HOCICY OATE*UV07/d6 SPECIES«UMI Tc SUCKER 	 '..
124
a]
B6
• 72
50




• * 2

1
* 1
• \
1
• 2





-------
                                                            314
                      PISM POPULATIOM DATA



-  »ASO«>SH84 SIIEAH-ROCICV BAIE<08/07/84 JPEC1ES-PMESCALE OACC •



 FM1H    t«»    ««t  AGE  CO»DP  AVCSRAO AVCAIU1 AVEAHN2 AKAHB3 «

1 42 1.8
2 30 1.2
3 49 1.1
4 43 2.8
3 44 2.3
4 59 1.8


0.74 . 1 23 46
0.96 . 1 24 63
0.93 . . 1 23 62 2
1.02 . 2 26 61 2
0.95 . . 2 27 62
0.88 . . 3 28 45 1
29 57 2
30 49 1
JI«1CX"JHS4 STREAK'ROCICV OATI-08/07/86 SPECIES-CHAI* PICKEREL 	 31 38 1
32 (5 0
rn>» LEU U4T ACE

1 93 . •
2 87 . .


FRUII LIK US I AGE
1 46 2.6 0
3 42 2.2 0
4 34 1.9 0
> 39 1.9 0
4 43 2.4 0
7 47 2.6 0
8 47 2.« 0
9 45 2.5 0
25 68 3.0 0
24 55 1.6 0
27 5) 2.2 0
COMDP AVGSAAO AVGANN1 AVGANM2 AVGAHN3 RUN 33 63
34 69
. .... 1 35 67
. . . .1 36 58 2
37 61
38 71 3
rR DATE"QB/l(/86 SPCCIES'ATLAHTIC SAtHON • 39 61


0.90
0.92
1.21
0.93
0.96
0.86
0.95
0.91
0.93
0.96
1.13
21 59 2.0 0 0.97
29 44 2.9 0 1.11
34 66 2.8 0 0.97
34 117 11.0 1 0.69 63
33 104 9.1 1 0.81 ((
10 160 30.0 2 0.73 90
11 142 28.0 2
0.98 71
12 143 23.0 2 0.75 72
13 1(3 24.0 2 0.85 81
14 133 27.5 2
0.77 78
15 154 27.5 2 0.75
14 145 J(.0 2 0.74
17 132 27.0 2 0.77
11 149 30.0 2
19 149 24.0 2
20 145 23.0 J
0.91
0.79
0.82
21 148 24.5 2 0.74
22 149 23.0 2 0.76
23 1(2 22.5 2 0.79
24 135 21.5 2 0.87 64
30 143 24.5 2 0.80
31 1(6 28.0 2 0.86
32 143 22.0 2 0.72
38 1(3 21.5 2 0.7(










Z 37
8 22
7 28
5 18
0 16
a 21
2 18






8 n












a
3 70
5 46
3 41
7 57
3 46






0 48





1 10 4.8 0 0.9( . •
2 40 2.3 0
I 47 3.2
4 74 4.0
5 72 3.5
4 77 (.0
13 41 2.5
16 49 3.1
8 140 36.0
9 1(6 24.0
10 150 27.0
11 153 35.0
15 122 15.0
12 212 107.1 i
1.16 . .
1.06 . .
0.99 . .
0.9( . .
0.88 . .
1.10 . .
0.94 . *
O.B8 29.3 17.0
0.77 33.3 24.0
0.80 26.8 16.7
0.98 35.5 23.7
0.83 27.0 16.7
1.12 40.0 18.3 30
•
t
•
'
•

•
.
•
m
7 •
8 •
5
0
8 .
*
*
•
•
•
I
0 *
•

•















7













1( 235 137.5 2 1.04 (5.5 17.3 34 S
3IASOB 1X86 StRIAH II
49 3.3
(7 0.
48 2.
71 3.
70 3.
49 3.
63 2.
60 1.
70 3.
10 80 5.0
11 75 (.3
12 67 3.0
13 69 3.2
14 49 3.3
13 44 2.4
14 43 2.7
17 64 2.7
18 41 2.0
19 4f 2.8
20 51 1.2
21 44
22 37 1.7

1.00 . •
0.77 - •
0.92 . *
0.93 . •
0.96
0.91 . •
0.96 . >
0.48 . •
0.96 . •
0.98 . •
1.02
1.00
O.V7 . •
1.00 . •
O.fli .
0.98 .
tl.94 .
0.«8 . •
0.93
O.VO

0.«





































40 63
41 84 5
42 50 1
43 71
44 63
45 61
46 67
47 66
48 56 1
49 68
50 59 2
51 67
52 68
53 49 1
54 66
55 67
56 56 1
57 67
58 68
59 66
60 70
61 61
62 S3
63 69
64 67
65 52
66 65 1
67 75 3
68 52
69 66

3
2

1
0
2
8
9



2

1
9
1



8
0

2

5





2
8



0
0

1
1
1
0
0



1

0
1
0



1
0

1

0





0
0



97
97

21
08
02
92
99



13

87
00
88



02
97

02

85





90





























































































1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
3
3
3
3
3
3
3
3
3
3
i




1 141 ... . * . .3


1 95 ... . . . .1



1 215 ... . . • .2
2 253 ... . • . .3




























1
1
1
1
1
1

-------
                                                         315
                   FISH fOPULHTlOlt OAT*
Sf«SO«-FL«6
                            0»TI-0» ,'22/14 SKCICS'MOOK t«OUI •
                                                                    —  5MSOICFL86 IT>C«IWI»0»II C««f  OHTC'10/02/86 SPECIES-HOOK THOOT —-

2 59 2.2
f ft 1.6
16 57 1.'
23 57 2.0
25 76 5.3
26 62 2.3
34 60 2.2
35 62 2.3
39 68 3.2
41 47 1.0
48 59 2.0
49 SO 1.2
11 49 1.2
52 63 2.1
S3 SO 1.4
56 57 1.9
57 65 2.7
59 S3 1.7
70 62 2.2
72 30 1.7
79 63 2.6
80 S3 1.6
1 94 8.0
3 88 5.9
4 89 6.1
6 104 9.2
7 121 14.8
8 105 10.6
9 96 8.0
10 109 10.8
12 124 18.2
13 101 9.1
14 81 4.3
IS 124 19.0
18 80 4.5
19 131 22.8
20 94 6.8
21 115 14.6
22 117 14.8
24 96 8.4
27 93 7.3
28 80 4.S
29 87 6.2
30 113 12.3
31 110 12.7
32 124 16.6
» 113 13.2
36 101 9.6
37 93 7.2
38 90 7.0
40 122 16.3
42 90 6.9
43 92 6.5
44 119 15.4
45 109 12.3
46 124 17.3
SO 124 18.7
54 84 9.7
55 104 10.6
SB 96 17.5
60 104 13.6
61 90 6.6
62 114 11.4
63 93 .4
64 86 .8
S 114 1 .1
6 92 .0
7 107 1 .1
8 104 1 .2
9 89 .6
1 109 11.0
73 102 9.2
74 88 6.3
7S 116 14.2
76 109 12.0
77 101 8.9
78 95 7.8
81 93 8.6
11 147 29.3
17 US 34.1 i
47 15S 3S.2 2

1 44 0.7
2 6! S.5
3 83 5.0
4 55 1.4
5 52 1.1
6 84 4.9

1.07
0.91
1.05
1.08
1.21
0.97
1.02
0.97
1.02
0.96
0.97
0.96
1.02
0.84
1.12
1.03
0.98
1.14
0.92
1.36
1.04
1.07
0.94
0.87 19
0.87 20
0.82
0.84
0.92
0.90
0.83
0.9S
0.88
0.81 IS
1.00
0.88 16
1.01 28
0.82
0.96
0.92
0.9S
0.91
0.88 15
0.94 IS
0.85
0.9S
0.87 21
0.91
0.93
0.90
0.96 19
0.90
0.95
0.83 17
0.91
0.95
0.91
O.98
0.96
0.94
1.98
1.21
0.91
0.77
1.04
0.91
0.88
0.90
0.91
0.91
0.94
0.85
0.87
0.92
0.91
0.93
0.86
0.97
1.07
0.92 27
1.12 35
1.03

0.82
0.96
0.87
0..14
0.7*
0.83






•

















2 11
7 11







3 9

3 10
8 17





7 8
8 10


7 12



8 12


3 10

























i 12
7 16
































3
8







7

0
3





2
7


s



2


0

























7 21
8 26























































































2
0

































































J
2

2

2
2

2

2
2
2
2
2
2
2

3
3
5
3
1
1
1

1
1
1
1
I
3

2 79 4.6
3 81 5.5
4 91 6.8
6 112 11.8
7 95 9.1
9 94 6.8
10 71 3.3
1 139 26.6
S 197 69.6
< 134 23.4

1 46 0.8
2 67 2.8
3 74 4.1
* 77 4.3
S 45 0.8
6 78 4.3
7 47 1.0
8 63 2.3
9 65 2.6
10 « 1.9
11 60 1.8
12 67 2.6
13 66 3.0
14 60 1.9
IS 59 1.8
16 60 2.2
17 78 4.3
18 55 1.4
19 43 0.7
20 55 1.3
21 59 , 1.7
22 44 0.7
23 74 3.9
24 76 4.2
25 76 4.2
26 80 4.9
27 66 2.9
28 69 3.1
29 65 2.6
30 74 4.0
31 67 3.2
32 57 1.5
33 58 1.7
34 74 3.6
35 70 3.4
36 60 1.9
37 55 .
38 72 .
39 62
40 69 .
41 64 ,
42 67 .
43 62 .
44 48 •
45 46 .
46 46 .
47 76 .
48 85 .
49 72 .
50 70
51 51 .
52 82 * .
53 83
54 70
55 47
56 74 .
57 46
58 74
59 65
60 74
61 73 .
62 70 .
63 51
64 76
65 51
66 69 . .
67 57
68 75 .
69 59
70 76
71 66 .
72 66
73 47 . -
74 42
75 61
76 51
77 78
78 69
79 74
80 57

0 0.9
0 1.0
0 0.9
0.8
1.0
0.8
0.9
0.9
0.9
0.9

0.8
0.9
1.0
0.9
0.8
0.9
0.9
0.9
0.9
0.8
0.8
0.8
1.0
0.8
0.8
1.0
0.9
0.8
0*8
0.7
0.8
0.8
0.9
0.9
0.9
0.9
1.0
0.9
0.9
0.9
1.0
o.a
0.8
0.8
0.9S
0.8*

-.
f
f
f
t
t
f

f
^
t
f
t
t
f
t
' t
f
t
f
t
,
,
.

f
f
f

t
m
. m
t
f
f
t
f
t
f
f
t
f
.

3 ,
3
0
4 23
6-17
2 18
2
9 26
1 35
7 29

2
3
1
;
B
1
6
2
S
3
S










,










.
















































m
^
.
• 5
.5
.7

Is 16
.7 17
.0 15


















































































f
^
t
m
9
f
m
.0
.0
.3














































































































































































;
;







I



















































'
*
*
£
*
• *
2
2
*
~
*

2
2
2
2
2














-------
316
HSM FOPULATION BATA
— i(»ioi.ri.84 SOX'H.8> StUtAPWlHDlAH CAIIf BATC-10/02/86 SPtCICS'UHIlI SUtKM — 35 49 2
mun Lin VST »ee Conor AVCSIAD AVGAKH

1 190 23.4 1.07
2 34 0.4 1.02 .
I 81 5.2 0.98 .
4 49 1.1 0.93 .
1 49 1.3 1. 10 .
« Ii8 11.8 1.09 •

I AVCANN2 AVCANN

. .
. .
c *
 ,
. *
f ^


48 ., 57
3 RUN 49 f 64
50 75 3
1 51 62
1 32 59
1 53 " 55
2 54 71
2 53 67
56 70
57 73 3
- snsox-rl.16 st»»n-i«9»H CAKF o»ie.io/02/«« Sftcits.coimoH smKe« — se «6


1 110 12.2 . 0.92 . .
2 103 10.0 . 0.92 . .


5v 57
61 54
. »
. .


1 62 52
1 63 * 68
64 62
65 S3
— — st»SD«*rLi< ST«(iH'Sri(t»e DAii-io/04/s4 iptcicsniooic rnout — — *J *J
mun LCN ucr «» COKOF AVCSIAB AVGAHIII AVGAHNZ »VG«HNJ nun '8 6]

1 47 2.4
2 72 3.0
I 47 2.8
4 74 3.3
7 31 1.4
$ 63 2.4
9 74 4.0
IS 49 2.9
12 84 4.7
14 62 2.1
13 40 2.0
14 41 2.0
18 37 1.7
19 41 2.0
21 43 2.3
24 73 3*0 '
23 39 l.S
27 >7 4.3
28 78 4.3
29 34 1.7
4 143 23.5
3 124 19.3
17 120 15.4
20 123. 17.3
22 142 30.5
23 121 15.3
24 94 8.7
11 143 43.4
0.86 .
0.80
0.93
0.86
1.06
0.95
0.91
0.88
0.79 16
0.88
0.93
0.88
0.92
0.88
1.00
0.77
0.88
0*99 19
0.9S
0.97
0.87 30
0.96 24
0.90 22
0.89 23
1.07 24
0.86
0.98 16
0.97 34

•


•

7 .


7

5 17*
2 13
2 14
8 11
8 12
8 11
5 16


rmin it* ucr AC
45 3.3
73 3.5
55 1.4
47 3.1
43 2.4
52 1.4
42 2.1
81 4.4
72 .3
10 41 .»
11 71 .1
12 32 .2
13 70 .0
14 34 .3
13 72 .2
14 60 *V
11 60 .8
18 62 2.0
19 38 1.7


1.20
0.90
0.84
.03
.04
.00
.88
.87
.94
.79
0.87
0.85
0.87
0.93
0.86
0.88
0.81
O.B4
0.17











* «


,


. *
. .
*
• •
. *

7 '. •
5 . •
3 . •
5 • <
7 > •
4 . •
5 27.2 >




|
j
.

.
.
•



69 66



















70 66
71 60
72 54
73 -, 44
74 56
75 55
74 72
77 49 1
78 60
79 59
80 59
81 50
82 57
83 47 0
84 69
85 66
86 •..• 52
87 54
88 69
89 59
90 60
91 67
92 58
93 46
94 f 53
95 57
96 60
97 54
98 60
VV OJ
100 S6
CE — _ 101 52









102 65
1 103 62
104 66
105 49
106 60
107 45 0
108 54
109 68
110 57
111 47 0
112 74
113 62
114 69
115 74
116 62
117 58
118 58
119 7

121 5
122 4
123 8
125 61
126 74
127 55
3
1
3
4
4
9
9
2
7
5
3
0
9
2
9
3
8
8








9






6

2














0


9












1
7
8









0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0








0






0
















0


0












0
0
0









83
80
84
87
44
92
87
84
87
90
88
84
88
88
88
83
08
87








92






93

00














85


87












93
77
77




















































































































































































































































































2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2










-------
                                                         317
                   PIJH POPULATION OAtA



SCASON-PL8I,  STREAK-SPRING 0«Te-10/06/86 SPtCICS-ilACMIOSE DIM •
                                                                    —  SfASON*PLS« STAERH-SINCIA1R OATE*10/05/86 SPECIES-ATLANTIC SALMON —
128 56 ..
129 64 . .
110 37
131 59 .
132 62
133 64 . .
134 67 ..
135 63 ..
13* 54 • .
137 54 . .
138 51 . .
139 70 . .
140 65 2.6 . 0
141 67 . .
142 67 ..
143 55 . .
144 56 . .
145 70 . .
146 61 ..
147 SI . .'
148 96 .
149 49 ..
190 53 . .
151 54 ..
152 44 . .

1 103 11.9 . 1
2 73 3.7 . 0
3 103 10.2 . 0
4 69 . .
9 70 3.3 .
6 119 18.4 .
7 104 10.4 .
8 77 4.1 .
9 102 9.8
10 74 3.5 .
11 66 2.3 .
12 79 4.1 .
13 SI 4.3 .
14 127 22.1 .
15 44 0.7 .
16 110 11.5 . 0
17 . 63 2.2 * 0.
18 51 1.4 . 1
19 108 12.7 . 1
20 78 4.1 . 0
21 76 4.2 . 0
22 74 4.1 . 1
23 73 3.6 . 0

1 66 .
2 63
3 63 .
4 72 .
S 82 .
6 112 .
7 114 .

1 56 1.7 . 0.
2 62 1.8 . 0.
3 53 1.2 . 0.
S£A50N-fL86 STREAN-SPRINC
1 78 4.1 . 0.
2 64 1.9 . 0.
3 46 0.8 . 0.
4 85 4.6 . 0.
5 69 2*3 • 0.
95
DATE-10
09
95
91
96
09
92
90
92
86
80
83
81
08
82
86
88
06
01
86
96
01
93
• • •
. '. '.
. . . 1
• • • 4
. . .4
• . . <
. . .4
. . .4
. . .4
. . 4
. . .4
. . .4

* '. " I
• • •
• • •
• • .
(/ • • •
• . .
• . " • 4

*
'* :
•

97 . . . . 1
76 . . .2
SI . . . .2
OATE*10/06/tl6 SPECIES-COMMON SHINER —
86 1
72 . 1
82 . 1
75 . 1
SEASON'FL86 StREAn-SPKING 0« TE • 10/06/86 SPEC I£ S- SrtOU.nOUIK MIS -
1 48 ...
2 56 ...
3 55 . .
. • • . 1
. . . 1
2
1 82 4.8 0.87 30 2 19.2
2 101 9.2 0.89
3 102 9.3 0.88
9 110 12.5 0.94 .
16 115 14.0 0.92
17 122 13.7 0.75 53 0 25.5
18 107 11.3 0.92 .
20 100 8.6 0.86 •
21 107 10.8 0.88 .
22 92 7.2 0.92 37 8 15.0
7 129 19.3 2 0.90 47 6 16.6 12
1 137 19.5 2 0.76 48 0 18.0 32
™ ~ SEASON-PLS6 STREAM-SINCLAIR DATE-10/03/86 SPECIES'
7 75 3.9
8 61 2.5
9 «2 1.9
10 75 3.7
11 74 3.7
14 68 2.6
IS 77 5.0
.., 16 it 2.
: 19 66 2.
20 75 3.
21 71 3.
22 57 1.
23 67 2.
25 65 2.
26 56 1.
27 72 3.
33 62 2.2
36 77 4.0
39 71 2.9
0 0.90
0 1.10
0 0.80
0 0.88
0 0.91
0 0.83
0 1.10
0 0.87
0 0.91 17
0 0.94
0 0.81
0 0.84
0 0.81
0 0.90
0 0.84
0 0.91
0 0.63
0 0.92
Q 0.88
0 0.91
0 75 3.2 0 0.76
1 84 4.9 0 0.83 14
S 79 4.8
7 67 2.9
48 69 2.7
49 73 3.1
50 68
51 66
52 70
53 66
54 74
55 65 .
56 64
58 72 .
59 75 .
60 77 .
61 80 4.1
62 64 .
63 92 8.1
1 156 38.8
3 110 13.4
4 136 20.0
S 115 13.5
6 119 13.6
13 94 6.7
17 115 11.8
24 104 8.8
28 154 37.9
30 135 20.4
31 142 30.1
34 126 16.5
37 115 12.6
42 100 10.0
46 111 13.8
57 98 8.1
64 112 11.8
65 114 11.5
2 215 96.7
32 139 25.7 !
33 146 31.0 !
; 44 175 47.8 i
29 176 56.5 1

9 0.97
9 O.V6
9 0.92
9 0.90
9 .
9
1 .
o'.ao
1.04 19
1.02 32
1.01
0.80 22
0.89
0.89
0.81 19
0.78
0.78
1.04 25
0.83 23
1.05 28
0.92 24
0.83
1.00 20
1.01
0.86 20
0.84
0.78
0.97 42
0.96 27
1.00 28
0.89 33
1.04 33
7 .
7 '.
0 .
7 17.7
5 14*3
2 13.8
o n'o
5 14.5
8 16.5
0 14.5
5 13.3
3 12.3
0 16*3 29
5 9.8 19
7 12.7 20
2 12.0 22
S 11.0 18
1
1
1
2
2
2
I
3
3
J
4 2
8 2
ROOK TROtlT 	
7
8
7
5
7 27
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
1
1
1
1
1
1
1
1
2
2
2
2
2
2
3
3
4
4
1
2
2
3
7 2

1 70 3. 0 0.96
2 107 10. 1 0.87 50 0 29.8
3 108 13. 1 1.03 .
» 135 IS. 1 0.74 62 8 23.7
5 105 9. 1 0.80
6 127 16. 1 0.79
7 113 12. 1 0.8H

4 75 4.
5 72 3.
6 69 2.
10 39 6.
11 T> 4.
12 68 2.
13 76 5.
U AI 4.
IS 76 4.
19 76 1.

o i.oy
b 0 0.96
J 0 0.4S
) 0 0.85 JJ
0 1.02
0 0.41
3 0.44
0 0.42 33
0 1.00
0 0.4V




1



0

























1
1
1
2
2
2
2
2
2
i

-------
                                                          318
                       rim POPULATION DMA
      flAio.ri.lt tmc*»>a«r 8ATE-09/29/86  SPECIES-HOOK tiour •

79 4.5
» 4.2
40 2.1
• 1 4.1
72 1.1
69 3.4
7 61 1.9
ie » i.i
12 16 9.1
13 60 1.1
14 43 1.9
19 41 l.f
19 91 1.4
11 72 3.4
11 4! 2.1
24 34 1.4
19 77 3.9
24 69 1*0
17 94 1.4
29 40 2.0
10 10 4.2
11 14 •
14 43 •
11 83 •
• 91 4.7
9 111 24.1
11 111 11.7
It 117 14.4
17 111 16.0
11 1)7 27.8
19 108 14.2
21 141 27.3
26 97 8.1
11 111 15.0
32 111 11.2

0 0.91 19
0.82 13
0.97
0.85
0.66
1.03
0.64
0.90 17
0.86
0.81
0.74
0.64
0.80 It
0.91
0.64
0.89
0 O.J5
0 0.91
0 0.89
0 0.91
0 0.12
0
0 .
19
0.89 IS
1.18 13
1.03 19
0.90
1.11
0.72 29
1.13
0.96
0.89 18
1.10
0.94
- lEASO»ri.8f S MEAN- HOCK* B«TE»09/2
30 1.
40 1.
94 1.
41 0.
67 2.
40 1.
97 1.
45 1.
47 1.
U 62 2.
11 52 1.
12 44 0.
11 59 1.
14 70 1.
13 68 2.
It 57 1.
17 tl 2.7
11 51 1.6
19 71 .
20 34 .
0.88
0.79
0*89
0.88
0.90
0.83
O.S6
0.14
0.96
0.92
0.85
0*82
0.81
0.93
0*92
0*86
1.08
0*82
,
.
7
7





3




7










7
2 12
8 14
2 19


7 16


0 13


























3
2
8


7


0








































































/86 SPECIESOLACKNOSE OACE —















































































:
                 SI«E«n.|QC>;V DATC'09/29/86
    rum
      1


4 f4 7*1 0 0.8) 17*0
9 17 5.5 0 (
< 66 3.1 0
7 94 6.9 0
8 93 8.2 0
10 98 7.7 0 <
11 77 4.4 0
2 171 50.6 1
3 179 43.9 1
9 1*9 JS.J 1
1 200 80.9 2
SEASON'FlSt ST«t«M.I«K(«
.84 .
.22 .
• 83 .
.02 20.2
•82 17. 1
.96 .
.01 31. S 18 1
.81 51.6 19 2
.79 30.0 16 5
.01 32.3 U 7 26 3
OATE-10/10/84 SPEC1ES*8LACKIIOSE DAC( -
mail Ltd UOT A«l CONOP AVCSIAD fXCANKl HV6«»N2 AWAHII1 «U
It?,,
2 71 I.
3 67 2.
4 70 1.
9 17 1.
6 68 2.
7 66 2.
1 71 I.
9 70 3.
10 60 1.
11 75 4.
12 65 2.
13 70 3.
14 «3 2.
15 66 2.
16 52 I.
17 70 I.
18 69 3.
19 67 3.
20 68 3.
21 70 3.
22 71 3.
23 61 2.
24 70 3.
25 62 2.
26 75 4.
27 74 3.
28 48 1.
29 67 2.
30 65 2.
31 56 1.
32 63 2.
33 68 3.
4 70 3.
5 67 2.
6 65 2.
7 84 5.
8 64 2.
9 69 s.
.



.
.
.

.
.
.
.
.


.



.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
0 62 2.3 .
1 67 3.1
t
.92
.96
.93
.81
.89
.94
• 95
.02
.88
.00
.06
.96
.00
.97
.92
.9
• 0
• 0
• 0
.9
.9
.0
.02
).97
1.97
1.96
1.90
1.90
>.94
1.97
>.8D
1.95
).96
1.93
1.02
1.V4
1.07
D.97
11.97
1.03
































































































































































	 5E»10«"fL«6 s»Mn*MKE» OKTE'10/10/86 SPECUS'CHEEK CHUi — -
1 56 1.5 . 0.85 ....
2 92 7.7 . 0.99 ....
—  3tAJC«.fll4  jr««m-i««» DATE'lO/lom SPECIES-ATLANTIC SAU10N -—

0 <9 2.9 0 0.88
1 63 2.2 0 0.88
2 69 2.8 0 0.85
3 80 4.4 0 0.86
4 81 4.4 0 0.63
1 71 3.0 0 0.84
4 77 3.7 0 0.61
1 83 5.1 0 0.89 27
2 79 4.7 0 0.93
3 86 5.4 0 0.85 32
4 69 3.5 0 1.07
5 68 2.7 0 0.86
6 77 4.0 0 0.86
3 127 14.3 1 0.80
140 32.7 2 0.60 63
113 29.1 2 0.78 71
140 30.3 2 0.74 67
162 33.2 2 0.78 75
170 41.1 2 0.84
147 25.5 2 0.60 69
134 29.0 2 0.79 62
144 28.1 2 0.90 67
7 167 37.3 2 0.80
8 133 23.7 2 0.80
9 163 33.9 2 0.63
0 162 31.0 2 0.71








3

7




0 20
5 17
7 18
7 18

0 21
6 22
5 18



















3 44
2 42
5 41
6 45

2 S3
2 43
8 48






















































1
2
2
2

-------
                                319
PISH POPULAMON DATA

43 0.7 0 0.88
53 1.4 0 0.94
65 2.5 0 0.91 9
66 2.S 0 0.87 11
59 1.8 0 0.68
20 56 1.5 0 0.65
31 44 0.7 0 0.82
32 69 2.9 0 O.aa
33 60 1.9 0 0.88
34 55 1.5 0 0.90
35 54 1.5 0 0.95
37 56 1.5 0 0.85
38 57 1.6 0 0.86
39 62 2.4 0 1.01
40 59 1.9 0 0.93
41 S3 1.4 0 0.94
45 65 2.7 0 0.98
50 52 1.3 0 0.92
53 58 1.9 0 0.97
69 49 1.1 0 0.93
70 47 0.9 0 0.87
71 51 1.2 0 0.90
73 40 0.6 0 0*94
74 51 1*2 0 0.90
75 57 1.6 0 0.86
76 SS 2*5 0 l.SO
81 43 .0.7 0 0.88
82 57 1.8 0 0.97
85 53 1.3 0 0.87
7 86 S.S 1 0.86 18
8 90 5.9 1 0.81 14
10 10S 10.0 1 0.86 18
11 119 16.8 1 1.00 21
12 114 13.4 1 0.90 19
13 110 11.3 1 • 0.85 16
14 106 11.6 1 0.97
15 118 16.6 1 1.01 20
16 123 18.8 1 1.01 19
17 104 10.8 1 0.96
18 115 15.1 1 0.99 17
19 82 4.8 1 0.87 IS
21 112 13.0 1 0.93
22 111 12.5 1 0.91
23 82 S.I 1 0.92 13
24 119 19.6 1 1.16
25 94 8.1 1 0.93
26 94 7.4 1 0.89
28 107 13.1 1 1.07
42 105 10.4 1 0.90
43 109 10.6 1 0.82
44 - 94 8.6 1 1.04
46 95 8.4 1 0.98
47 91 7.0 1 0.93
48 83 S.I 1 0.89
52 99 8.6 1 0.89
SS 97 7.8 I 0.85
56 105 10.4 1 0.90
60 88 6.2 1 0.91
61 86 5.8 1 0.91
62 89 7.2 1 1.02
64 84 S.8 1 0.98
65 109 12.5 1 0.97
66 132 19.6 1 0.85 24
72 114 13.7 1 0.92
77 98 8.5 1 0.90
78 78 5.7 1 1.20 17
79 87 6.4 1 0.97
80 97 9.0< 1 0.99
83 114 13.0 1 O.S8
84 87 6.6 1 1.00
86 87 5.2 1 0.79
88 93 7.7 1 0.96
90 128 18.5 1 0.88 21
4 142 29.3 2 1.02 30
5 129 20. 2 0.97 20
27 127 19. 2 0.93 19
29 83 6. 2 3.17
30 91 7. 2 1.05
36 140 26. 2 0.98 • S
49 125 18. 2 0.96 4
51 121 17. 2 1.01 2
54 148 28. 2 0.83 3
57 126 18. 2 0.94 4
58 131 19.2 2 0.85 S
67 146 29.9 2 0.96 9
68 144 27.9 2 0.93 0
87 133 20.5 2 0.87 21
89 143 33.7 2 1.15 28


5
7




















0 11
2 9
8 8
8 10
2 8
3 «

0 11
7 11

8 9
2 >


8 8









7 13
5 10



8 11
2 12
2 8
5 8


0 9
2 12
2 8
2 8
7 a
7 11
3 13
7 14
0 S
3 13
























5
0
0
3
a
2

3
0

3
6


3









3
2



8
3 23
3 13
a 14


8 18
2 19
2 15
0 16
8 17
8 19
7 23
7 23
7 14
2 22




















































7
3


a
2
6
2
2
0
3
7
a
0















































. rmin t.Eif ••( M«K COHBP AVCSRAB AVIANN1 AVCAHN2 AV6ANN3 BUN
75 3.6 O.A5 ....
61 2.3
63 2.1
61 1.9
62 1.9
66 2.4
56 1.8
62 2.2
66 2.0
10 74 3.0
11 S3 2.0
12 78 4.2
13 83 4.7
14 44 0.7
IS 45 0.8
16 62 1.7
1.01 ....
0.84 ....
0.84 ....
0.80 • . • .
0.83 ....
1.02 «...
0.92 ....
0.70 ....
1»34 • • • •
0.89 • • • .
0,82 * • • •
0,82 • • . ,
0,88 • • • •
0.71 . - -


rmm LEU WOT AGE COHBP AVG»AO .AVCAIMS MOMK; ««««NJ «j
1 78 4.7 0 0.99 11. ...
2 120 15.7 1 0.91 20. 12. . .
4 113 15.5 1 1.06 18. 9. . .
6 148 26.8 1 0.83 24. SS. . .
7 123 17.0 1 0.91 22. 14. .
8 126 17.6 1 0.88 27. 16. . .


- 5EASON*SH87 STREAN'INOIAN CAMP OATE*07/13/87 SPECXESMLACKHOSE OACf
rmin LEK ucr act CONDP AVCJRAO «»O«N»I AVCA>m2 •»<;•»») Run

1 54 1.4
2 55 1.6
3 64 2.3
4 54 1.4
S 67 2.9
6 54 1.4
7 69 2.9
8 60 2.0
9 43 0.7
10 71 3.3
11 57 1.5
12 60 1.7
13 72 3.1
14 78 4.4 .
15 68 2.9
16 52 1.4
17 64 2.4
18 66 2.5
19 82 4.6
20 67 3.0
21 66 2.5
22 52 1.5
* 23 49 1.1
* 24 64 2.5
1 25 74 3.2
| 26 51 1.2
f 27 62 1.7
1 28 S3 1.3
I 29 59 1.9
I 30 51 1.4
31 42 0.7
32 47 1.2
33 SO 1.1
*1 AC













35 77 3.6
36 65
37 63 .
38 68 .
39 64 .
40 77 4.4
41 50 1.4
43 64 .
44 59 .
45 77 4*3
* 46 65 .
47 63 .
48 6
49 $ .
50 5
51 4 0.7
53 4 0.7
« t
3 56 61 .
3 57 63
58 84 6.1
59 62 *
60 59
61 40 0.6
62 67 .
63 55
65 74 3.5
66 4O 0.6
7 50 .
8 65
9 68
0 60 .
1 64
255.
1 48 |.l
4 50
5 68
6 54
0.89
0.96
o.aa
0.89
0.96
0.39
0.88
0.93
0.88
0.92
0.81
0.79
0*83
0.93
0.92
1.00
0.92
0.87
0.83
.00
,87
,07
.93
,95
.79
.90
.71
.87
0.93
1.06
0.94
1,16
0.88
0,79
•
*
*
0.96
- 1.12
*
*
0.9*i
*
•
•
*
0.88
0.88
•
*
1.03

m
0.94


0*86
0.94
"
*

*

*
0.9*

"
!








































































































t
m
u
t
^
a
m

f
t



*
*
"
*
*
|
.
•
•
•
•
«
•
•
•
•
«
•
*
•
•
*
*
*
*

*
*
*

*
"
•
"
•
•

*
-*

-------
320
PISH PO-ULAtlO. .At.

.rHUR till NT ACE COMP AVCSRAI A»«««»l AVIAM2 A««A«N3 «U» FNUR LEU UCT ACE CORDF AVCSHAD AVCARM1 AVCANN2 AVGANN3 RUM
77 42
71 79 4
7t 41
10 42
• 1 42 0
It 42 0
• 1 4t
14 34
IS 47
14 41 1
17 40
• 1 31
If 31
tO 30
tl 71 3
ft 17
tl 42
94 43 0
f4 41
t7 11
tl 41
It 41
101 41
101 40
103 10
104 14
101 41 1
101 74 4
107 71 1
101 70
lot 79 4
110 33
111 42
112 4f
114 71
111 77 4
114 77
117 St
111 40
lit 33
120 77
121 45
122 43
121 44
124 34
121 77 4
114 74
127 47
121 77
129 42
110 41
111 41
112 11
111 79 4
114 41
11} 10
114 34
111 41
lit 74
140 14
141 14
141 13
141 41
141 41
144 61
147 40 0
14t 47
110 73
111 64
152 41
111 43
134 56
134 47
137 74
131 42
lit 4t
140 64
141 13
162 70
144 30
145 31


- SIA30N-3RI7 ST>

FKUR LEN v
1 40 2
2 t4 t
1 56 1
4 fl 7
J II 7
4 102 10
7 3S 1
1 117 13
f 5t 2
10 tl 1
11 71 3
12 37 2
11 68 3
14 63 2
15 67 3
16 124 20
17 62 2
16 92 t
It lOt 11
20 102 12
4


f


0



4


7








1
j
j

7




4









3



6















0


1


0



0


' g



^




0
0
0

0




0









0


0
0















fl


21


to



ts


II








ft
tl
tl

ts




94









ft


tl
94

















AR'IHOIAN CARP DATE


I 1 30
4



3
4
1





1
|
0
1
9
1
0
0
0
0
1
03
17




























































































































07/13/87 SPECIE















































































•CREEK








































































HUI







21 74 5.1 . 1.16 .
22 79 S.f . 1.20 .



fNUR LEN UCT ACE CONDF AVGSRJ
76 4.5 . 1.03 <
66 3.3 . 1.05
68 3.6 . 1.14
60 2.2 . 1.02
78 5.2 . 1.10
96 10.1 . 1.14
73 4.6 . 1.18
72 4.2 . 1.13
1 68 3.5 . 1.11
11 70 3.9 . 1.14
12 70 ...
13 61 . . .
14 66 3.5 . -1.22
IS 60 2.2 . 1.02
16 63 2.6 . 1.12
17 63 ...
18 97 11.1 . 1.22
If 58 2.3 . 1.18
20 S3 ...
21 73 . . .
22 St . . .


~ SEASOH"SR67 STREAH'INOIAN CARP OATE*0


1 52 1.6 . 1.14
2 53 1.3 . 0.87
i 48 1.4 . 1.27
4 53 1.4 • 0.94
5 SI 1.1 . 0.83
6 61 2.0 . 0.68
7 SI 1.8 . 0.92
8 59 1.9 . 0.93
t 71 2.7 . 0.75


3
3



I
. . .1
. • • 1
. . .1
' . . .1
. . .1
. . .2
. . .2
• • • 2
. . .2
. . .2
• • • 2
. .2
. .2
• • • 2
• . • 2
• » .2
. . » 3
. . .1
. . .1
. . 1
. . .1

:
F/13/87 SPECIES'FINESCALE OACt •

*0 AVCANNI AVCANN2 AVGAHN3 flUN
. . • 1
. . .1
. . .1
. . .2
... .2
. . .2
. . .2
. . .3
. . .1


SIASON.SR87 STREAK'IHDIAN CARP OATE'07/13/87 SPECIES'STICKLEBACK 3PP.
FNUR LCN WCT ACE CONDF AVOIR
1 47 0.8 . 0.77
2 43 0.9 . 0.99
3 51 1.6 . 1.21
4 54 1.6 . 1.02
5 52 1.1 . 0.78
4 35 1.5 . 0.90
7 46 1.1 . 1.11
8 31 1.3 . 0.98
f 43 1.0 . 1.10
10 47 1.1 . 1.06
11 55 1. . O.fO
12 51 1. . 1.06
13 44 0. . 0.94
14 48 1. . 1.18
15 55 1. . 0.66
16 53 1. . 0.94
17 47 1. . 0.96
18 4t 1. . 0.93
19 S3 1. . 0.87
20 61 2. . 0.97
21 49 ...
22 49 . . •• .
23 46 . . .
24 SO ...
25 SO . . .
26 61 l.S . 0.66
27 46 . . .
28 SO . .
29 51 . . .
30 48 . . .
31 SO ...
32 46 . . .
33 SO
	 34 46 ...
15 48 ...
36 49 . . .
37 S3 ...


10 AVCARN1 AVCAKH2 AVGANH1 (UN
I
•


m
^

*

*

^
*
*


*
,

*
.
•
*

— — SEASON>Sfl87 SHEAH«SP* ING OMO07/16/87 SPEC1ES>1

1 57 1.8 0 0.97
2 71 3.3 0.92 12
3 52 1.2 0.85
4 50 1.1 0.86
5 60 2.1 0.97
6 62 2.2 0.92
7 S3 1.5 t.01
8 48 1.1 0 0.9V
9 49 0.9 0 0.76
10 39 0.5 0 0.114
11 43 0.8 0 1.01
2
3

8
. 1
• 1
1
. 1
. 1
. X
• 1
. s
• 1
. 1
X
. 1
• 1
, J
. 1
, I

, I

. I

• * ~

• 1

* .
f 2
t 2
• 2

• 2
, 2
• 2

• 2
, 2
. 2
• 3
• 3

OOK TROUT -— —

I
I
1
1
I
1
1
1
1
1
1



-------
                                                      321
                  FISH POPULKT10H turn
 SM10H-II117 ITMIUI-IMIM i«tf"07/14/07 SFCCICI'lltOOK t«OUt —
lun    IM    Her  «««  Conor *»»*«> HVCHPINI ncum «vs«Hn3 iim
tuson-iiitr
                        o>Tfo;/it/>7 srcc»i*«.«c»o>t MCI
                                                                                  wet  net  Conor
12 49
1) SO
14 45
11 H
It 33
17 56
11 41
1* IS
20 SI
21 71
22 S3
21 49
2< 70
2S 64
26 63
27 69
21 52
29 S3
30 61
31 S3
32 47
33 63
35 6«
36 60
3» 75
39 5»
40 49
41 S3
42 67
43 62
44 72
1.1 0 0.93
1.1 0 0.11
).l 0 0.11
1.9 0 0.97
I.S 0 1.01
1.7 0 0.97
1.9 0 0.11
.9 0 0.97
.3 0 0.91
.5 0 0.91 14
.4 0 0.94
.1 0 0.93
.5 0 1.02 11
.4 0 0.92
.S 0 1.00
.9 0 1.19
.4 0 1.00
•4 0 0.94
.2 0 0.97
.3 0 0.17
.0 0 0.96
.5 0 ' 1.00
.9 0 0.92
1.2 0 1.02
Ul 0 0.97 13
1.9 0 0.97
1.3 0 1.10
1.3 0 0.17
t.7 0 0.90
t.l 0 0.11
1.5 0 0.94 11
4S 61 2.0 0 O.B8
47 42 0.7 0 0.94
4> 54
49 63
SO 51
SI 60
52 50
S4 70
56 68
57 «3
58 50
19 52
60 S3
61 47
62 S3
63 S3
64 60
65 66
66 62
67 57
68 58
72 56
73 65
74 52
75 69
76 38
77 59
7« 59
79 55
BO SI
81 SO
12 64
13 54
14 53
15 56
16 66
17 62
11 60
19 SS
90 63
91 47
94 65
95 41
96 63
97 63
91 51
100 65
103 64
34 117 1
37 102 1
S3 97
SS 146 3
69 1S4 4
70 1 36 2
71 111 1
1.4 0 0.19
i.l 0 0.14
1.9 0 0.97
i.3 0 1.06
1.2 0 0.96
1.9 0 1.14
J.O 0 0.95
1.3 0 0.92
1.4 0 1.12
1.4 0 1.00
1.3 0 0.17
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
0
. 0 .
. 0 .
. 0 .
1.9 0 1.19
1.5 0 0.91
!.2 0 1.07
. 0 .
. 0
* 0 .
I 0 '.
• 0 «
. 0 .
. 0 .
. 0 .
• 0 .
. 0 .
• 0 .
. 0
.1 0 1.06
. 0 .
.2 0 1.09
. 0 .
. 0 .
. 0
. 0 .
'. o !
1.0 1 1.12 21
.1 1 1.0 16
7.0 1 0.9 17
L.I 1 1.0 23
). 1 1.1 28
r. i i.o 24
I. 1 0.9 22
92 142 32* 1 1.13 22
102 75 S. 1 1.35 14
93 16S 52. 2 1.11 29








2


3











0





7















































0 9
7
0
0 1
1

1
11
9













































































7







0 21






































































..














S






















































































11 74 3
12 68
13 79
14 64
15 61
16 61
17 51
11 52
19 60
20 55
21 70
22 tl
23 57
24 60
25 SO
26 60
27 60
21 63
29 63
30 44
31 43
32 58
33 62
34 59
35 51
36 59
37 54
31 60
39 61
40 73 3
41 61
42 62
44 70 2
45 64
46 62
47 60
• 41 60
49 54
51 60
52 64
53 71 3
54 51
55 43 0
56 69
57 67
58 64
59 64
60 53
61 59
62 64
63 62
65 61
66 71 3
67 49 1
61 61
69 66
70 62
0.91
























7
3


7


8







4

8









2
2



0*83
O.SS
0.99
0.75
0.70
0.72
0.92
0.93
0.90
0.87
0.84
0.92
0.97
0.96
0.88
0.18
o.si
0.80
0.82
0.88
1.08
0.88
1.02
0.87
0.83
0.83
,
•
0.95
*

0.82
•
,
•
.
,
•
*
0.95
,
t.Ol
,
,
,
,
•
,
,
,
,
0.8V
1.02
,
.
,


































































































































_







































— JI«SO».SM«7 ST«E»».SMIHG OHTC-07/16/17 SPCCI(S>»«K CHU


1 57 2.0 . 1.01 .
2 130 21. . 0.99 .
3 14 . . 1.08 .
4 S3 . . 1.07
5 64 . . 1.11 .
6 130 2 . . 1.20 .
7 109 1 . . 1.19 .
• 87 1.15 .
9 71 . . 1.09 .
10 106 1 .9 . 1.25 .
11 59 .2 . 1.07 .
12 14 .6 . 1.11 .


























































— —


1
1
x
I
1
]
i
1
]
3
3
S




1 11 5 3 1.00 . . I
2 102 11 2 . 1.06 . . i
3 117 16 3 . 1.02 . .
4 78 S 4 . 1.14 . . 1
5 11 60 . 1.13 . . J
'

-— SEASOH»S«87 ST«EflH«SPRIHG DA TE«0 7/16/87 SPEC IES«FINCSCALE OMCE ~


1 72
2 63
3 55
4 70
S 64
6 66
7 62
8 62
9 62
10 62

.3
.3
.5
.4
.3
.8
. 1
.4
.2
.0

0.4
0.9
0.
0.
0.
0.
0.
l.u
0.9
0.8

8
2




















































1 59
40
77
60
51
70
57
52
48
59
71
2 60
3 74
4 65
S 51
1.8
1.6
!.6
.8
.2
.3
.2
.0
.0
.7
.9
.7
.5
.3
.1
0.88
0.94
0.57
0.43
0.90
O.e7
0.65
0.71
0.90
0.83
0.81
0.79
0.62
0.84
0.83

-------
                                                         322
                   PM« POPUtATIOK OATA
                                      SPECIES-MIIEICAIE OACE
                                                                    —  MA39H-SIII7 SIREAMSIRCLAI* OATEO7/17/I7 SPECIESoATLANMC IHIHOII —
                                                 IIZ AWANNI HUN
It ii
17 32
18 37
It 37
20 SI
11 63
22 57
21 48
24 32
23 63
It SI
27 49
28 52
I* 33
39 61
11 63
12 39
11 47
14 63
IS 62 1
li 57 1
37 67
11 SI 1
19 39
40 SI
41 56
42 49 0
41 34
44 S3
45 58
44 49 1
47 53
41 57
4T SI
SO SI
SI <6 I
32 46 2
SI 55
14 41
SI 56
36 32
S7 71 2
SI 46
39 37
19 49 1
61 54
42 61
II 6!
14 32
45 61
46 48 1
17 64
41 61
49 tO
79 69
71 49
72 47 1
71 32
74 SI
73 34
76 73 2
77 66
71 32
79 62
19 38
• 1 69
12 61
II 62
14 39
• S 32
•6 19
• 7 33
• 1 45
• 9 42
t9 59
tl 39
tl 59
tl 63
t4 43
tS 63
S
1
3
6
1
8
4
0
2
2
3
9
1
1
t
1

t
2
S
6

4



t



7




1
1




S


0





0





1



6



















0
0
0
0
9
0
9
9
0
0
0
9
9
9
0
0

0
0
9
e

e



0



a




g
9




9


0





0





1



0



















11
78
• 1
14
• I
72
76
90
15
19
92
15
• 5
72
14
19

17
• 9
63
It

72



76



79




73
10




79


15





90





01



47



















































































































































































•
.
.
,
^
,
B
•
•

.
f

^
.
,

^
•
.• •
•

.
,
,
,
•

,
•
•
a
,
,
•

,
B
,
.
,
,
v
.
•
.
,
.

i
•
.
,
•
,
•
•

•


•

•

^
B
t
i
•

•
•

f
•

,
B
•
SKASCK>Sn87 STAEAflisPRINC OATE"07/16/B7 SPECIES-STICKLEBACK SPP.
rmm tEN UBT ACE CONBF AVGSRAB AVCANNI AVCANN2 AVGANNS RU
41 07 0.43 . .
44 07 0.12 . .
44 0 7 0. 2
42 0 3 0. 7 .
42 6 0. 1 . .
47 8 0. 7 . .
S3 0 0. 7 .
34 3 0. 4 .
49 S 0. 8 . .
19 44 7 9.72 . .
It 49 6 0.94 . .
 1EA30H-3RI7 STREAH-3PRIHG DArE>07/l«/87 5PECIE3-IROWN TAOUT

Un    LEN    UCT  ACE  COHOt  AVGSRAB AVGANN1 AVGANN2 AVGAKN3
       36    1.6
       64    2.8
       57    1.1
1.02
0.97
1.13

1 36 1.7 0 0.97
20 53 1.3 0 0.87
21 Si I. I 0 1.02
23 35 1.7 0 1.02
23 34 1.9 0 1.21
26 38 1.9 0 0.97
27 33 1.6 0 1.07
1 107 11.6 1 0.9S 41
2 108 10.3 1 0.82 J9
3 119 13.6 1 0.81 42
9 1U 14.4 1 0.97 41
11 122 15.7 1 0.86 48
12 97 8.3 1 0.91 34
13 95 7.5 1 0.87
14 112 13.0 1 0.93 S3
17 108 10.5 1 0.83
19 113 12.5 1 0.82
22 106 10.7 1 0.90
3 133 21.2 2 0.90 SO
7 1«2 25.9 2 0.90 5<
15 138 2S.6 2 0.97 62
16 148 27.4 2 0.85 60
18 134 21.3 2 0.89 42
24 143 28.1 2 0.92 36
SEASON>SHS7 STAEAH'SINCLAIR DATE-0
mun leu wet ACE COHOF AVSSR
5 68 2.9 0 0.92
8 62 2.4 0 1.01
11 66 2.7 0 0.94
13 69 3.0 0 0.91
17 71 3.0 0 0.84 11
22 56 1.6 0 0.91
23 55 1.7 0 1.02
24 59 1.9 0 0.93
25 57 1.9 0 1.03
26 58 2.0 0 1.03
27 68 2.7 0 0.86
28 59 1.8 0 0.88
29 69 3.0 0 0.91
30 69 3.1 0 0.94
36 43 O.B 0 1.01
37 51 1.2 0 0.90
38 53 1.5 0 1.01
39 50 1.2 0 0.96
40 57 1.8 0 0.97
41 49 1.2 0 1.02
42 47 1.1 0 1.06
43 53 1.4 0 0.94
44 55 1.6 0 0.96
43 66 2.7 0 0.94
46 68 3.2 0 1.02
48 49 1.2 0 1.02
49 34 l.S 0 0.95
50 52 1.6 0 1.14
51 55 . 0
52 45 1.0 0 1.10
S3 S4 1.7 0 1.08
34 68 3.0 0 0.95
57 60 2.1 0 0.97
58 61 2.4 0 1.06
59 56 . 0
60 58 . 0 .
61 73 3.7 0 0.95 10
64 S3 . 0 .
66 54 . 0 .
67 57 . 0 .
68 60 . 0
72 60 . 0 .
74 57 . 0
75 72 3.6 0 0.96 12
76 56 . 0 .
77 69 . 0 .
78 75 3.8 0 0.90 12
79 39 . 0
80 63 . 0 .
84 70 3.4 0 0.99
93 68 . 0 .
95 56 . 0
96 55 . 0 .
97 62 . 0
00 48 1.1 0 0.99
01 53 . 0
02 50 1.2 0 0.96
03 64 . 0
04 52 . 0 .
06 57 . 0
07 55 . 0
08 57 . 0
09 53 . 0
111 2.0.
112 S 0.9 0 0.99
113 0.0.
114 6.0.
113 9 2.0 0 0.97
116 9.0.
117 59 . 0
118 56 . 0 .
119 67 3.0 0 1.00
120 56 . 0 .







i 21
7 2
8 2;
8 2:
7 21
3 18

0 31



2 11
8 11
3 20
7 19
0 21
5 15
3 17
/17/87
B AVCAH




s































3






3


5

































7
2
7
7
0
8

0



6 33
7 3<
0 42
0 38
0 40
8 27
0 35
PECXES"
1 AVMM



























































































6
2
0
3
7
2
5
HOOK r«
2 AVCAU









































































1
j






















ur —
> «u










































































-------
                                 323
rziH roruL»rioN BAT*
- »»0«*M<7
FflUR
124
125
126
127
128
132
133
134
135
136
137
138
137
140
141
142
143
144
14 S
1
2
3
7
12
15
IB
17
20
21
31
32
33
34
47
55
56
62
63
65
70
71
73
81
82
83
88
87
70
71
72
74
78
99
110
121
122
123
129
146
4
6
7
14
16
35
85
86
87
105
130
131




1
2
5
6
7
8
9
10
11
3
4
12
13


fNUPI
2
5
6
7
10
11
12
13
14
IS
18
22

S3
57
46
60
SI
46
58
60
51
52
58
59
61
61
64
56
SO
67
105
118
117
104
118
107
70
78
76
138
83
76
107
76
105
114
109
80
100
92
115
137
111
102
97
93
125
127
108
114
100
102
100
100
121
104
102
91
92
107
143
155
151
141
145
ISO
130
146
144
165
120
158




37
52
51
55
51
60
52
53
56
120
115
122
145


LEN
52
55
58
52
66
70
62
66
60
61
62
64

ST«(«H-S1MCU«1« OATE-07/17/87 SMCIES-MOOK TKOUT -^— 	 SEA
. 0 .
. 0 .
! o *
. 0 .
1.0 0 1.03
. 0 •
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .

4 t
. ,
. ,
2.7 0.70
10. B 0.93
15.1 0.72
15.2 0.70
9.9 0.88
14.2 0.86
11.4 0.93
7.1 0.97
8.6 0.91
8.4 0.75
23.1 0.88
5.8 1.01
7.6 0.86
11.1 0.71
7.7 0.89
9.6 0.83
12.7 0.86
11.4 0.88
5.1 1.00
9.2 0.92
6.4 0.82
13.8 0.91
24.4 0.95
16.4 1.20
9.4 0.89
8.7 0.95
6.9 0.86
17.5 0.90
18.8 0.92
10.3 0.82
11.7 0.79
9.4 0.94
10.7 1.03
8.7 0.87
7.8 0.98
17.6 0.77
9.5 0.84
11.3 1.06
8.8 .17
7.2 .72
13.3 .09
25.7 2 .88
35.5 2 .95
24.4 2 .09
26.1 2 .93
28.6 Z .94
30.9 2 .92
21.6 2 .98
27.9 Z .90
31.9 2 .07
44.8 2 .00
18.7 2 .08
36.9 2 .94




1.7 0 0.92
1.3 0 0.92
1.2 0 0.90
1.6 0 0.96
.4 0 1.06
.9 0 0.88
.3 0 .72
.3 0 .87
.4 0 .80
1 .9 1 .86
1 .8 2 .93
2.4 2 .70



1.3 0 0.92
1.7 0 I. 01
1.8 0.92
1.3 0.92
2. 0.97
3. 0.87
2. 1.09
2. 0.87
2. 1.02
2. 0.97
2. 1.05
2. 0.79


•
I
*
.
,
.
,

,
,
t
B
€
,
.
.
16. S
18.0
18.8
16.0
20.5
18.3
16.2
15.5
14.3
23.2
14.5
15.0
17.8
14.2
17.5
21.8

27.0
.
15.8
18.5
27.2

t
t
t
t
,
f
f
,
.
•
is!?
.
'•
23*8
25.7
24.0
25.5
24.3
26.8
22.0
28.5
26.4
28.7
21.8
27.0




.
.
•
.
•
•
53.0
64.2
63.5



,
•
.

12.8
•
.
•
.
•
•

*

"
*
,
B
t
»

,
t
*

f
.
,
,
10.2
12.7
11.7
9.3
14.0
11.2
10.8
9.3
9.0
12.5
8.7
8.8
10.8
8.0
10.0
13.7

10!?

9*2
11.3
18.7

t
,
f
t
.
n
f
.
.
.
8*3
.
'
11*0 18
12.7 20
10.8 18
8.8 17
11.8 17
11.5 20
10.7 16
13.8 21
12.2 20
11.7 21
9.7 IS
12.0 17




.
.
.
. .
B
•
25*7
26.2
20.8 41
21.3 40


















































2


























































23
25
28
30
31
32
33
34
35
3
4
8
7
16
17
20
24
36
1
17
21
26



FHUH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
17
20




1
2
j
4
5
6
7
8
9

57
65
60
52
57
60
67
70
51
100
130
112
84
76
100
87
120
123
146
142
114
129



LEN
41
55
73
67
66
68
59
69
53
61
61
44
70
71
70
S3
55
64
67
67




44
40
5 1
45
45
42
47
45
48

1.8
2.5
.9
.3
.7
.9
.0
.1
.3
.7
1 .7
12.3
5.2
7.8
9.1
5.7
14.2
22.0
35.2
27.3
12. S
17.0




0.6
1.4
3.2
2.6
2.1
2.2
1.7
3.0
1.3
1.7
1.8
0.7
3.1
3.6
3.0
1.2
2.0
2.1
2.5
2.7




0.7
0.6
1.4
0.8
0.9
0.7
1.0
0.9
1.1

; rutm
' 1
2
TIC SALKOH 5
5
7
I 8
9
• 10
• 11
• 12
•
•
5.1 ,
5.2 j
5
SEASO

.
.
.

.
.
.
.
10
11
1 U
1J
LEN UGT
73
80
77
61
70
54
63
60
70
56
90
61


SO
49
40


101
92
120
99
114
101
1 12
142
98
104
110
96
4.1
5.0
4.9
2.1
3.5
1.
2.
2.
3,
1.
7.
2.


1.1
1.0
0.6


3.5
7.5
IS. I
8. 1
21.7
9. a
M.4
26.7
d.S
9.3
11.0
7.4

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
2
2
2




.
.
,
.
.
.
,
.
.
.
.
.
.
.
.
.
.
.
.
.




.
;
•

AGE
B

.
t
•
'
*
"

. *
•


•
•















0.97 .
0.91 ...
olst 1 * *
0.92 * . .
0.92 . . .
0.88 . • •
0.91 . . .
0.90 ...
0.98 • • •
0.87 18.3 7.8 .
0.70 19.3 12.3 .
0.88 16.2 10.0 .
0.88 15.2 9.5 .
0.88 17.8 13.8 .
0.71 20.7 13.2 .
0.84 17.7 7.8 .
0.82 25.0 15.7
1.18 23.7 14.8 .
1.13 28.7 11.8 21.3
0.75 23.5 10.3 18.8
0.84 18.2 7.2 13.8
0.87 22.7 8.5 17.3

'


0.87 ... 1
0.84 ... 1
0.82 ... 1
0.86 ... 1
0.73 ... 1
0.70 ... 1
0.83 ... 1
0.71 ... 1
0.87 . ... 1
0.84 ... 1
0.7? r . . 1
0.82 ... 1
0.90 ... 1
1.01 . . . 1
0.87 ... 2
0.81 ... 2
1.20 ... 2
0.80 ... 2
0.83 ... 2
0.90 ... 2




1.06 . .
0.9 . .
1.0 . .
0.8 . .
0.9 . .
0.9 . .
0.9 . .
0.9 . .
0.9



1.03 . . .
0.98 . . .
1.07 . . .
0.93 . .
1.02 . . .
0.95 . . .
0.92 . . .
1.02 . . .
0.99 . • .
0.91 . • .
1.06 • . .
1.06 . . . 3


0.88 . . . .1
0.8S . . . . 1
0.94 . . . . 2


O.dl 46.3 25 5
0.94 32.4 1 0
0.87 41. B 2
0.83 46. 2 7
0.9U 71. 6 0
0.95 40* 9 5
O.AO 57. 4 5
0.95 '74. 4 7
0.90 41. 85
0*83 49. 4 7
0.85 42. 22 3
O.B4 55. IS 2 i

-------
                                                           324
-  Sf«IQ*MM7
                       MSN POPULATION DATA



                      IAXeR D«TC>07/08/I7 SPECIfS-ATLANTIC  SALflQN

It 109 7.1
It 113 11.9
It 113 14.0
17 111 17.7
11 130 19.1
19 117 14.0
11 111 11. •
11 142 23.6
1] 114 11.4
14 117 15.1
11 131 10.5
11 111 17.4
17 110 12.7
21 111 13.9
19 111 13.9
19 107 13.0
31 111 13.0
32 112 11.6
11 111 11.7
It 91 1.7
33 107 10.8
31 109 10.6
37 111 14.7
II 111 lt.0
39 117 11.4
40 lit 11.0
41 109 11.1
41 99 8.0
41 lit 19.1
tS 111 11.7
41 93 1.
47 101 13.
49 110 14.
30 94 10.
31 104 9.
31 119 14.
11 91 7.
34 113 13.
33 101 12.
1 170 41.
10 178 53.
44 110 53.4
41 174 30.1
3t 175 51. 1
9.78 41
0.91 50
0.97 41
0.95 55
0.17 14
0.17 41
1.01 58
0.89 67
0.81
0.99 54
0.81 11
0.98
0.95 49
0.91
0.91
1.06
0.91
0.90
0.89 49
0.86
0.88
0.82
0.89
0.88
1.02
0.90
0.93
0.82
0.93
0.93
0.80
1.06
0.86
1.31
0.82
0.84
0.93
0.91
1.02
0.83 73
0.94 83
0.91 96
0.96 80
21
22
16
27
33
21
27
34

1 25
8 29

0 12





0 24




















2 17
7 17
5 17
0 13
2
8
3
8
1
8
2
7

8
0

5





5




















3 48
2 44
7 50
0 40







































5
5 67
3 74
7 61








































8
3
0 2
0.96 3
•" 1CA30MB3IH7 iTMAH*b»*Rn «nic>u««ua/o« arcwi.E9~»Kuuih inuui — —
19 1.8 0.88 ...
37 1.7 0.92 ...
Ill 40.9 0.98 26. IS. 7 .
110 37.4 0.91 17. 14.8 .
119 14.8 0.88 19. 9.2 .
114 14.6 0.99 20. 10.2 .
113 43.3 i 0.97 31. 17.8 . 1
142 27.8 0.97 23. 14.0 . 1
1 131 31.0 0.95 31. 17.8 . 2
11 132 29.3 0.83 24. 16.2 . 2
It 144 17.1 0.91 11.7 13.8 . 2


1 33 1.5
t 70 I.I
1 73 3.4
4 42 0.7
3 41 0.9
1 75 4.2
7 13 l.S
• 11 2.7
9 11 2.9
10 15 2.3
11 19 .7
11 71 .1
11 71 .5
14 73 .6
11 11 .9
11 57 1.3
17 10 1.9
It 73 3.5
19 17 1.7
19 43 0.1
11 10 1.8
11 30 1.1
11 43 0.8
14 43 0.7
13 41 0.9
It 39 1.9
17 13 2.0
21 74 4.1
19 74 3.7
19 74 3.6
11 19 1.0
12 19 3«U
11 11 2.9
14 42 0.7
15 14 l.i
It 70 3.0
1.01
0.93
O.S7
0.94
0.91
1.00
0.91
0.86
0.92
0.84
0.81
0.92
0.90
0.93
0.84
0.81
0.8H
0.90
0.90
0.88
0. S
0. 1
0. 8
0. 8
0. 2
0. 3
0. 0
1.01
0.91
0. 9
0. 1
0. 1
0. 2
0. 4
0. 5
0. 7




































.
,
B
,
t
,
.
,
.
,
,
,
,
.

t
9
t
f
^
t
f
f
t
t
f
t
t
t
.
,
t
f
,
.





































37 7J
IS 67
39 70
40 45
U 69
42 55
4] 67
44 71
45 61
46 45
47 64
49 68
49 96
50 66
51 64
52 72
53 73
54 57
55 62
56 51
57 45
58 41
59 59
60 66
61 44
62 45
6] 67
64 65
65 56
66 72
67 55
68 59
69 68
70 68
71 74
.6
.6
.2
.7
. 1
.5
.0
.7
.0
.9
.4
.1
.7
.6
.3
.3
.4
.6
.2
.8
^7
.6
.9
.5
.7
.8
.8
.6
.7
.3
.2
.6
.3
.7
.5
0.9
0.8
0.9
0.7
0.9
0.9
1.0
0.9
0.88
0*99
0.92
0.99


















.97
.90
.88
.88
.87
.86
.92
.92
.77
.87
.93
.87
.82
.88
.93
.95
.97
.88
0.72
0.71
1.05
0.86
0.86












































































































































— s£ASQ«-5n»7 iHCUI'lKXlK DHIE'07/08/87 SPCCICS'UHITC SUCKfl —
1 74 4.0 0.99
2 69 3.0 0.91
3 64 2.6 0.99
4 68 1.2 1.02
5 64 2.7 1.03
6 65 2.7 0.98
7 61 3.3 1.05 2

-------
                                                         325
                   FISH  POPULATION BATH



SC«ON>FL>? STICAMHALFHILC »»T«»10/01/»7 SPtCXM«»iOOK TtQUT '
                                                                   —  »ASON*FLI? STREAM*IN01** CANP BATE»10/1*/S7 5PfClCS»IROOK TROUT •
fHUA
I
7
11
12
13
14
IS
16
26
27
21
29
30
31
32
33
34
35
39
42
47
48
50
51
54
SS
56
57
58
3
4
A
•
10
18
19
21
22
24
25
36
37
38
43
44
45
46
49
52
59
1
2
9
17
20
23
40
41
S3
60
SEASON
1
2
, 3
4
5
6
7
8
9
10
11
12
13
14
IS
16
Lett
•0
63
63
55
63
63
63
46
59
60
77
51
66
78
79
54
51
67
65
71
63
80
56
SI
64
80
60
61
56
114
108
81
96
93
115
109
112
101
101
127
89
104
106
94
113
92
94
101
106
112
134
144
126
114
130
121
113
147
118
137

7.7 1.50
2.S 1.00
2.3 0.92
1.4 0.84
2. 1.04
2. 0.92
2. 1.04
0. 0 0.92
1. 0 0.93
2. 0 1.02
3. 0 0.77
1. 0 0.98
2. 0 0.90
4. 0 0.89
S. 0 1.16
I.S 0 0.95
1.2
3.1
2.4
3.3
2.5
4.5
1.7
1.3
2.1
.
1.9
'1.9
1.4
14.2
12.8
3.8
7.8
6.9
12.6
11.4
12.9
8.6
9.2
19.4
6.3
10.3
10.6
9.2
12.4
7.8
6.5
11.9
11.5
14.8
0.90
1.03
0.87
0.92
1.00
0.88
0.97
0.98
0.80
.
0.88
0.84
0.80
0.96
1.02
0.72
0.88
0.86
0.83
0.88
0.92
0.85
0.89
0.95
0.89
0.92
0.89
1.11
0.86
1.00
0.78
1.16
0.97
1.05
22.9 2 0.95
27.8 2 0.93
17.3 2 0.79
19.0 2 1.07
13.7 2 0.95
27.9 2 0.88
16.3 2 0.99
23.1 2 0.90
•FL87 STREAn*HALFHXLE DATE>
43
83
78
84
67
64
72
72
51
79
65
71
65
64
71
66
- SEASON*FL87
1
44
SEASON-FLS7
1
2
96
107
0.8 1.01
4.6
4.0
5.3
2.7
2.2
3.2
3.2
1.4
4.5
2.3
3.1
2.4
2.3
3.2
2.5
0.80
0.84
0.89
0.90
0.84
0.86
0.86
1.06
0.91
0.84
0.87
0.87
0.88
0.89
0.87

12.4 . 1
• •
• •
• •
• •

• •
. ,
, ,
, .
• •

, ,
• •

, *
t ,
t f
a •
t »
, ,
13.8
, ,
, .
. 8)
. •
. ,
, |
. •
t •
. a
11.8 7.0
16.0 9.3
18.-0 11.7
17.3 9.8
17.8 10.8
, (
, »
, (
21.2 12.8
17.8 11. J
, (
. .
17. S 10.0
, ,
, ,
• •
. • •
, • ,
, ,
33.7 13.7 25
26.0 11.8 21
24.0 10.0 16
21.7 9.8 17
30.0 14.8 24
22.8 10.8 19
27.4 10.8 20

















































0
0
0
3
2
3
0
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
I
2
2
2
2
2
2
2
3
3
3
3
3
1
1
t
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
1
1
1
1
1
1
2
3
2 3
10/01/87 SPECXES*8LACKNOSE DACE -*
1
m
.
,
,
v
.
.
.
(
.
.
.
,
.
•














1
1
1
1
a
i
i
i
2
2
2
3
3
3
3
STREAn-HALFKILE OATE'10/01/87 SPECIES-CHEEK CHOI 	
0.7 . 0.82
STREAfl*HALfMIt.£ DATE
7.2 . 0.81
11.8 . 0.96
. . . 1
• 10/01/87 SPECUS'WNITE SUCKEA 	
. ... .3
. . 3

i 56 i.s o.ss .
2 6» 2.7 0.82 .
3 77 3.9 0.8S .
4 72 3.4 0.91 .
5 73 3.3 0.85 .
6 H 4.3 O.«l .
» It .7 0.76 IS. 7
10 78 .0 0.84 .
11 90 .0 0.82 15.0
7 111 1 .5 0.77 18.3 13 0
• 130 1 .3 0.79 20. « 14 3
12 125 1 .1 0.98 23.1 16 2
13 110 10.3 0.77 20.3 11 2
S»SON-rL87 STIEAfl-IKOIAH CAKP OKTE-10/14/87 Sf£CUS-«LACJ
-------
                                                       326
                    HIM population •>»
it«io«>pL47 IT*IMMII>I» ear t«
                                                                                          cmtp oMc-io/ii/17 SPECIESXTICIIEIUCI
               Ktr  «««  enter Hiding *vc*ii»l «we«»»j »c«iiiii «u»
tO 41 1.0 . O.tO 2
tl 54 .
tl 47 .
tl 44 .
t4 47 .
tS 41 .
t4 44 .
t7 57 .
tl 54 .
7 . 0.97
9 . 9.t4
p . 1.01
9 . 1.99
9 . 0.95
9 . O.tO
1 . 0.14
7 t 0.97
tt 57 .7 . 9.tl
- «I*IO».rt87 5T«I«B'I«91«>C C»BP 8»tE
mull if* WIT AIC CONOP «*4
-------
                                                           327
                     MSN  POPULATION OATH

 SEASOM-PLI7 STIEAMIPIIHt IATE»10/20/
0. 2
0. 0
1). 1
0. 9
0. 6
. 0. 3
0. 8






































































































































































































































•







•













































99 ,9.0 . 0.93
68 2.8 . 0.
96 9.1 . 1.
55 1. . 0.
66 2. . 0.
77 4. .- 0.
6S 2. . 0.
66 2. . 0.
70 2. . 0.
10 57 1. . O.I
11 47 0. . 0.
12 ' 62 2.0 . O.I
13 33 .3 . O.I
14 ' 50 . 1 .0.
9
13
'0
,0
g
7
7
2
1
17
4
7
A
, 15 45 .7 0.77
16 47 .8 . 0.77
17 41 .7 .1.
IS 43 .7 . 0.
1» 46 . . 0.
20 41 0. . 0.
21 45 0. . 0.
24 87 S. . 0.
25 64 2. . 0.
26 74 3. . 0.
27 65 2.3 . 0.
28 73 3.4 . 0.
29 72 3.1 . 0.
30 63 2.2 . 0.
31 62 2.0 . 0.
32 64 2.2 . 0.
33 61 1.9 ., 0.
34 40 0. . 0.
35 47 0. . 0.
36 43 0. . 0.
37 104 10. '. 0.1
38 88 6. . 0.
39 85 5. . 0.
40 47 0.8 . 0.
41 46 0.7 . 0.-
42 48 0.8 . 0.
43 9 9.1 . o.i
44 7 3.4 . 0.
45 7 3.3 . o.i
46 6 1.9 . 0."
. 47 4 0.7 . 0.
48 5 1.8 . O.t




2
g
2
7
8
8
2
4
4
7
3
8
4
4
4
4
7
5
7
7
0
7
2
2
7
4
8
6
7





















































































































































































~ — SEASOH-FL87 STREAN'SPRING OATE-10/20/87 SPECIES'UHITE SUCKER —
PHUH LEN VGT AGE CONOF AVtSRAD AVGAKN1 AVCANN2 «VSA«H3 lull
1 164 47.1 . 1.07 . . 1
2 100 10.1 . 1.01 . . 1
3 105 10.9 . 0.94 . . 1
4 97 8.7 . 0.95 . . 1
5 85 5.9 . 0.96 . . J



1 61 1.9 0.84 . . 1
2 47 1.0 0.96 . . J
3 57 1.4 0.76 . . 1
4 55 1.0 0.60 . . I
S 50 1.0 . O.SQ • - i
6 48 0.9 O.a
1 . . i
7 42 0.6 0.81 . ' i
S 54 1.3 0.83 . . 1
9 57 1.4 0.7
10 70 2.4 0.7
2 11 56 1.4 O.fl
2 12 58 1.4 0.7
2 13 50 0.8 O.i
6 . ' . 1
0 . • 2
0 . . 2
2 > . 2
4 . . >
2 14 46 0.7 0.72 . . j
2 15 54 1.2 0.76 . . «
2
2


2 '— SEASON'FL87 STREAfl'SPRIHG 0«TE"10/20/S7 SPECIES-STICKLEBACK SPP. -









1 50 0.8 . 0.64 . . . «




1 85 4.8 0.7
2 66 2.2 0.7
3 66 2.2 0.7




8 " 1
7 : .
, J
. « 63 l.a 0.72 t
5 57 1.4 0.76 J
6 55 I.J o.72 |
7 60 1.5 0.69 ,
8 65 2.1 0.76 J

-------
                                                             328
                      PIJN POPULATION BATA

—  3tA3CN*PLI7 3TAEAN-IPNING 8ATC>10/20/*7 3PEC1ES'BROVN TROUT •

 HUH    LIU    WCI  AGE  COPCDF AVG3RA9 AVGANN1 AVGANN2 A«GANN3 RUN
          71    5.J
          71    4.2
          »    2.3
          67    1.0
0.7<
0.89
0.92
t.oo
  3CASOX-PL87 STREAK-SPRING BATE'10/20/87 SPECIE3»3ltALLItOUTH I«SS —

 fMfn    tCN    UCT  ACE  CONDP AVG5AAO AVGANN1 AV6ANN2 AVGANN3 RUN

    1     73    4.4    .   1.92      .       .       .        .     >
     ltllCII.ri.I7 3TREAIOSPR1NG D«TE-10/20/>7 SPEMES-FALLFISH
                I/GT  AM  CONDF AVGSRAB AVGANN1 AVGANN2 AVGAHN3 RUN
1








>
1
2
3
4
5
4
7
1
9
0
1
2
3
4
3
6
7
90
32
32
47
30
30
46
47
39
93
73
90
76
32
47
43
48
33
50
36
33
47
32
31
41
31
51
6.5
1.2
1.2
0.9
1.1
0.9
0.3
0.7
0.5

3.3
6.3
3.5
1.0
0.9
0.7
O.I
1.2
1.0
1.3
.1
.1
.1
.1 '
.8
.9
.0
0.19
0.83
0.83
0.87
0.88
0.72
0.82
0.67
0.84
0.79
0.13
0.86
.80
.71
.87
.77
.72
.72
.80
.74
0.74
0.77
0.78
0.83
0.72
0.68
0.75
SXA30N*rLI7 3TREArl*3ZNCLAXK BATC*10/14/87 SPECXES'ATLANTXC SALMON
fNtm LIN U8T AGE CONOP AVGSRAO AVGANN1 AVGANN2 AVGANH3 RUN
2 82 3.0 0.91 37.2 . 1
3 11 4.7 0.8
9 73 3.2 0.8
11 79 4.2 0.8
12 14 4.9 0.8
14 82 4.8 0.8
. . 1
. . i
. '•
34.0 . 2
r 30.7 • 3
4 111 15.3 0.93 44.2 24.3 1
7 110 12.0 0.90 45.0 27.0 1
1 133 19.0 O.I
13 101 10.3 0.9
1 138 24.7 2 0.9
3 160 24.6 2 0.91
54.3 27.0 1
. . 2
. 1
66.3 19.0 40 5 1
10 139 21.6 2 0.80 60.5 22.2 45 5 2
• 3EASON*FL87 3TREAII>5INCLAIR
DATC'10/14/87 SFECXES'BROOK TROUT —
PNON LEN WGT AGE COKDF AVG5RAD AVGANH1 AVGANN2 AVGANN3 RUN
1 55 1.
45 2.
31 4.
44 2.
49 2.
70 2.
71 3.
43 2.
74 3.
12 39 1.
13 42 2.
14 73 3.
17 31 4.
21 47 2.
22 11 4.
23 47 2.
24 41 2.7
23 77 3.9
24 80 4.1
27 47 2.
21 46 2.
29 48 2.
30 62 4.
36 41 2.
31 63 2.
19 69 2.
40 39 1.
41 63 2.
42 37 4.
43 49 2.
44 46 2.
41 30 1.
0.9
0.8
0.8
0.9
0.8
0.8
0.8
0.8
0.9
0.9
0.8
•0.8
0.8
0.8
0.8
0.8
1.0
0.8
0.8
0.8
0.8
0.8
0.8
0.
0.
0.
0.
0.
0.
0.
0.
0.
49 60 1. 0 0.


13








14
15

14













16




30 70 2. 0 0.13

2








0
1

5













0










































































































52 75 3. 005
53 39 1.
54 60 1.
14 105 11.
15 99 9.
18 83 4.
20 130 19.
32 108 11.
33 120 14.
34 123 13.
37 111 13.
45 90 7.
46 96 8.
51 123 19.
10 151 34.
19 140 24.
35 ISO 31.
47 133 25.


























2
2
2
2 0
8
d
7
9
4 18
9 25
1 19
5 21
7 23
7 21
7 18
6 18
OS 23
00 33
89 2
98 2
98 2

. 3
.
.
.

7 11.
IS.
11.
11.
12.
11.
10.
10.
12.
IS. 25
22! 14
11. 24
11.7 20
. 3
. 3
. 1
. 1
1
. 1
1
. 1
. 2
. 1
. 2
. 2
. 3
. 1
'. 1
'. 1
. 2

2 62 2.7 0 1.13
3 66 2.4
4 68 2.7
> 0.81
) 0.86

.
.
S 63 2. 0 0.92 .
10 63 2.
11 62 2.
12 69 2.
1 135 18.
7 123 14.
13 124 16.3
0. 6
0. 4
0. S
0.74 64
0.80 S3
0.3S 56
•
.
.
8 26 1 .
6 25 8 .
S 29 2 .
8 148 28.2 2 0.87 63 8 21 a 40 S .
"™ SEASON'FLS? ST
FNUn LEN UG
2 34 4.

t 0 0.81 15
7 85 5.6
3 73 1.1
9 75 3.7
10 60 2.0
11 55 1.3
12 57 1.9
16 76 4.0
17 74 1.8
18 70 3.5
22 86 5.4
23 55 1.2
24 53 1.0
25 68 2.8
26 74 3.7
29 70 3.2
1 0.91 17
> 0.85
) 0.88
) 0.91
) 0.78
) 1.01
) 0.91
> 0.94
1 1.02
1 0.85 17
1 0.72
> 0.67
) 0.89
) 0.91
> 0.91
2 .
6








4





32 43 2.3 0 0.92 .
34 68 3.1 0 0.99 .
35 72 3.5
36 61 2.5
38 62 2.0
1 96 7.4
3 112 13.0
4 154 29.7
5 128 19.5
6 101 8.7
15 114 10. S
19 22 IS. 2
20 3 21.6
27 2 20.0
28 0 9.9
30 0 11.5
13 4 26.3
14 2 20.5
21 4 27.8
31 4 27.3
> 0.94
> 1.10
) 0.84
1 0.84 16
1 0.91 22
1 0.81 29
0.91 24
I 0.84 21
0.71
0.84 21
t 0.82 26
0.91 24
0.96 19
t 0.99 20
0.80 31
0.9S 24
0.95 28
' 0.90 12
37 116 21.6 2 0.94 27

1 61 2.
2 59 1.
1 57 1.
4 5 :.
5 72.
6 93.
7 91.
8 32.
9 82.
10 31.
11 2 1.
2 1 1.
1 72.
4 44.
S 72.
6 91.
7 57 1.
8 61 I.


















0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
8
9
0
9
9
9
9
8
a
9

9
9
0
9

9
7



2 12
5 14
6 16
2 S
S 3

8 4
0 4
1 5
1 0
0 2
5 6
0 0
1 1
1 4
1 0




















S
5
6

S

0
5
1
0
2
1 25
0 19
0 21
0 24
0 20
.
,
.
.
.
,
,
.
,
t
t
t
. i

'. 1
. 2
. 3
. 2
. 2
. 3
3
,
,

B
f
^
f
f
f
,
.
t
f
f
a
•

















































;
;
;
3

-------
                                                              329
                      PISH POPULATION BATA

—  SCASON-FL87 STREANMOCKf OATC'10/07/87 SPECIES-CREEK CHUI •

 PNUR    LIN    Wtl  ACC  CONOF AVCSRAO AVCHNN1 AV»N«2 AUCANNJ Hill
                                                                          STREAN-iAKER  oATE>io/i2/87 SPECIES»ILACKNOSE once •
          77
         102
4.1
S.7
0.90
0*82
—  SEASON'FL87 STREAN'ROCKV DATE*10/07/B7 SPECXES'WHITE SUCKER ——

 FNU«    LEN    U6T  AGE  CONDF AVGSRAO AVCflHNl AVGANN2 AVGANN3 RUN
    1     71
    2     70
    i     tO
3.7 .
3.5
I.I
1.01
1.02
1.00
uit LGN
45 71
46 46
47 72
48 52
49 49
50 49
51 48
52 50
S3 70
54 61 ,
55 68 i

.4
).8
.5
.4
.0
.9
.9
.1
.9
.2
.9

0.9
0.8
0.9
1.0
o.a
0.7
0.8
0.8
1.1
0.9
0.9!
















































—  SEA50n*ft87 STREAH»RQCKV DATEMO/07/67 SCCCItS-COMHOH SHINER ——

 FNUfl    LCH    U6T  AGE  CONDF AVCSRAD AVGflNNi AVGANN2 AVSANN3 RUN

    1     98    8.3    .   0.88      .       .       .       .1
   SEASON'FLB? STREAK-ROCKY DAre*10/07/S7 SPECXES'CHAIN PICKEREL '
FNUN
1
2
FNUH
1
2
3
4
5
6
8
9
10
11
12
13
14
LEN
119
100
LEN
151
101
104
116
122
135
113
148
144
124
95
107
125
— SCASON'FLS?
FNUN
1
2
3
4
FNUN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
45
LEN
96
68
165
190
LEN
67
64
75
74
67
74
73
49
S3
51
66
53
51
49
47
69
58
51
78
72
71
69
48
68
53
52
46
40
62
52
70
71
52
61
65
61
50
47
67
67
70
74
63

8.7 . O.S2 . . . . 1
4.3 . 0.43 . . . . 1

27.0 1 0.78 65.3 £8.8 .
8.8 1 0.85 . .
11.0 1 0.98 . . .
13.8 0.88 48.8 21.2 .
17.0 0.94 49.7 24.7 .
19.7 0.80 53.3 21.0 . .
13.5 0.94 . . .
24.6 0.76 S7.7 24.2 •
23. a 0.80 59.5 27.0 .
14.6 0.77 53.0 26.8 .
7.8 0.91 . . .
9.2 0.75 . .
18.5 0.95 54.5 24.2 . i
STREAfl'BAKER OATE"10/12/87 SPECIES'SROOK TROUT — —
IIST ACE COHOF AVGSRAD AVGANN1 AVGANN2 AVGANH3 Run
7.8 0 0.88 19.7 . . . 1
2.5 0 0.80 . . . . 1
40.0 1 0.89 31.3 18.8 . . 2
72.8 2 1.06 34.7 19.7 27.7 . 3
UGT AGE CONDF AVGSRAO AVGAN
2.7 0.90
2.2
4.4
3.8
2.6
4.1
3.6
1.1
1.4
1.2
2.3
1.5
1.2
1.0
0.9
.9
.7
.1
.6
.4
.6
.4
.1

i!s

o'.e
0.5
2.1
1.2
3.1
3.4
1.1
2.0
2.5
2.1
1.
1.
2.
2.
5.
4.
2.
0.84
1.04
0.94
0.36
1.01
0.93
0.93
0.94
0.90
0.80
1.01
0.90
0.8S
0.87
1.19
0.87
0.83
0.97
0.91
1.01
1.03
0.99
1.00
0.87
0.92 .
0.82
0.78
O.Sd
0. 5
O. 0
0. 5
o. a
o. a
0.91
0.93
0.46
0.96
0.91
0.96
1.05
1.06
1.00












































*
"

.
" "

a
B
t
f
t "
^
f
B
B
"

t f
i i
a f

a B
f ' f
i f
i t
t t
• • f
f
B
t
i
t
t
t
t
^
t t
f
t f
t f
f
f
f
•

-------
330
STICS
OK TROUT 	
GT HINUGT HAXUGT AVGCONDF TOTBHASS AREAH2 BMASSPH2
FISH POPULATION SUMMARY SfATI
	 STREAH*HALF«ILE BROOK SPECI£S*0RC
SEASON AGE TOTCAPT POPEST SEPOPEST AVGLEN SOLEN HINLEN flAXLEN AVGUGT SDfc
l
»HOOOOT-*OOO«HOO«-IOO«-I«-«OOO u> o o o o
Wl
CO
UJ

I a
I h- .
1
• . 10
1 w
*•* 1 **
UJ

D O W) O V> O
to in
CC .  o
>-rg - Ki i- r» i t- oo
t\n at o 1 3 - oo K- t>- ae >- (M
%r »•« ru r*. rxjfNj «H z x 2: uz
«•< < ' UJ M 
CO
11
•** • a.  a. =»
e co x
UJ  s*- 1 19 O
1 > 1 > «
1 CC 1 «t
0 (M |1_ ' H-
f - rt j t- IN
•"* 1 0. 10.
1 
-------
                                      331
•x
a
   *
   o
   V
   a
   o
   a:
CM
1C
! BHASSf
•c
Ul
ee
Ul
a
c
00
H-
o
K
u.
o
a <
u
19
H-
X
CC.
sc
K-
3
Z
M
C
U>
0
U)
CO
19
«
Z
z:
z
M
Z
o
z
UJ
_l
o
>
a
»-
CL.
O
O.
UJ
TOTCAPT POPES
Z
o
«x
«
fg^rorocMfgroro
OOOOOvHOO
*> o is. rx. -< ^ CM CM
M^0_
*M in «H
OYH«-4*-4vlv4OO
WSWSSSS5
ro *-« rg rg
rgox^-trur-ox-oo
eooar»in*-ixooooo
M fg


VD*Oinfgfg.« Wtfl H.U.
^eor^w 
=•
a
CM «•< | x
ui z:
0
«-4 ^1 Ul Z
Ul M
O JC
coox-o * ^>
rx-in in o 19
•4- «-i -.r j o
CO U)
II
Ul
o ^o eo o iu t~-
(•*• O O> fl M 19
rg •"• a. > .
Ul 4
r*. N*» ox to o uj
•H *•* « _J
Q- z;
z:
z z
« M
M K
O
— t Ox M Z Z
•-i f-< o x: ca
UJ
o fx. ox o ee z
r>.rgrx»*-i 19
r>. «H »—
o rx. 01
IM O O.
O
&
UJ
Ul
o.
o
0.
Q.
 ui u. u. in
•
rg ^o >o •* ox in
-«o o o oo
'
_
W5 fs- «-« |M fvj CO
rg eo **• ox rg si-
in o ** «* f>« »o
m »o to o ox r«« m
•
ooo o o o a
<
i
u
rx. rj rg »o ro (M u
fa
u
0 0 fx, OxftJ Ox )
fg ro f\j - r- -* -*
•-<
•Oeo ox ro ro in
rg d «-4 «H
ox oo ox oo m ox
in -o -o -o fx» f^
oo oo oo oo co oo
u. */> ui u. ui u.
1
1
1
i
fM ooxinrooxco I fg
c ox *-• *-»«-• ro in f iz
in oooooo 1 ui
ui 1 ui
« t  O P» U.
a ox «^ o ox «-* o> o
a O*H^IO«HO o
u u
C9 U
> ' *
. *H in M K
j 19 ro ox -* o ox in u (9
d 19 oo in m in -^ •* a. 19
^  z o>-*oxo*r-* h- z
19 co r- r* oo eo rx. | w
5 1 S
H- o>r\JOQ»irteo 1 h-
o. •* «-« o o IM »-« a.
o (M a
a. a.
UJ u
a> at
ui i/if-ivH^rg^o ui
Ul Ul
a. la.
o a
a. 5.
H- r*-^*-«*-Kirjo K-
a. «*»HVH«-I a.
- II-
(J 1 (9
o -o vo fx. r*. (/>
a co oo co co oo oo «i
Ul U.U1U1U.U1U. , tft
>o m ro *o eo ox
*•« CM o •-» fM ro
oooooo
- ox «H o -* ^o
CM
fx. CO O CO •* f-
ro fx» o oo eo tn


oo oo r> ro %t **•
ro ru o CM co in
i/\ o ^o eo r>. p»
v4
ro ox ^o •*
in »o *H *H
CM ox o in
fg ro
oo in tn >o rg co
•^ CM fg
CO 00 CO CO 00 OO
U- Ul Ul U. W> U.

-------
                                                                      332
                 O rotNJ tA
                 f>. *H *
                                                                                                                            ac
                                                                                                                            o.
                                                                                                                            in  ,
      z:
      cc
                                o
                                N
(0

en
z
a
      i-    r»K>r>- n
      19     •  •  •  •
      3    rani ru n
      it
      «r
      s:

      I-    O Kt <-> o
            O    eo «4

             •  •  • •
            o    o o
14    13
U    S
OOK
O.
c
cc
u
      M    C
      o
U.    M    UJ
            O-    .4
            a
ST
                                               rxj s*- oo >o oo
                                   U.    .4 «O CNJ O IA f»-
                                   o    o o« os o>o>eo

                                   o    .4 o o o o o
                                   u
                                   iO
                                                                            GO »o «* rvi ro
                                                                            tv OOOv-l
                        o    z                           in    z         1-4*4
                        «    M                                 *4 ,
                        me         .        .        z    c
                        tu                                 o
                        »J    f»   {\J«4f\J«^K)CO       XI    >~   COtArs>NO^
                        i^    tfl   «J/iA»-»»-*»OKI       3C    19   f\Jfs_**IAfO
                        O    3    «..«••       O    3    •••••
                        M    a   oooooo       o    a   r\jr\irv«-/- •   in        .                   n     in
                        in                                 m
                        H                                  UJ
                        OIA»O

                        M    J    ......       E    _1    .  .  .  .  .
                        M     o   r*>o^*r»j**iA       c:    Q   K>o*ONtt4
                        j;    in                           tu    in   »•• ^<       »4
                        <£                                 cc
                        UJ    z   lArs.fs.^or\l       h-    z   cotAintrtru

                        f~    «J   f>>«4J             —J   tAOstA       10.0         r\j
                        10                           I     o
                        10,                           I     o.
                              tu                           I
                                                                                                                   (»•
                                                                                                                    •
                                                                                                                   >o
                                                                                                                                     .

                                                                                                                                  5
                                                                                                                                  IE
                                                                                                                                  z:

                                                                                                                                  f*
                                                                                                                                  to
in
u
M
U
UJ
a.
tn
:=

o
_j
o
o    o
u     tn
in
UJ
                                                                                                                            o.
                                                                                                                            an
                                                                                                                             wi u. tn u,
                                                                 
-------
333
fM
(A
C
m
fti
x:
I « .
1 Ul
! «
1 - 0 0
« ae tn
H> CO
 tl
V) H-
>- UJ C9

z: o- 
1 z
! U
1 >
1 '
1 H-
a.
o
i a.
UJ
in
1 UJ
1 a.
0
a.
0-
: Ki»or*Aj^NOK» « 0000-
W)«Hv4rH*r v-t r-4 «>4 *•* (V CO lrt »-* »*
O
1 *~
t

O
' . 1 u>
1
M ro-» •* .»• >**+ -ru\ r>j r«- ( x
1 c

M
uj c
tn
co «-« in -o ON ON NO in r». ro wi AJ oo co o *- ON AJ i/
ON NO f- ON O •-» NO AJ »-t ON *•« «HOJtO Z UJ CO O C
«-« — t •* AJ ooK)r--K)cooo-*coco»irK>*-ito in is rj ON u-
UJ «
0.
tn
o x
01 ac
« z
0. IH
 K
U
-* AJ NO O »-< wl AJ COON fOfVJ O «-< OS SC . Z «-4 O t/
r» -si- so o *-• oo AJ ON tn oo NO o -* nj ae a oo co e(
10 ON in «o ON M ** (O AJ eooo >— oof^i/
»*• o AI «H o oo fN. r» •* >o NO o **• t/> in AI P"
-N*- o o «-• oo AJ «H NO «H o «-t o IA o_ AJ o c
K) v-t O fM «H V-
O.
UJ
 •"• O O O O O
u»
a
c
I CO
1
NOO*M | rg Q fM r*> NO O «-<
UJ
oe
«
f NO CO N- V) fU CO O^ >* O 00

e
) ON ON OO O «H O *-• ON r-t 00
) O O O O *H »-l *H O *H O
0
s .
«
.
x • •-* rj no P*J rj «-t
s
> o o o co 3 r*j PU (\j o *H o u
x M • • i
u
\ON*-«O ^ »- fN. ON »O CO NO NO
> ON oo NO uj u> (n m co NO K» tn u
4 o o o oc o to vj- in in oo IN »•
o to a
H a
W 1
i (M *-» O M C9 ^*- O CO ON K) fs, t
jtvojrsj ujgNor^ A* j
in >* M Z »»*»'CO<*'OO 3
Q. -J Q
co z a
MM U
E C 1
 r-4 «-t
! &
! "
 NO o •-«
UJ
oe . .
-
a
t-
0 ^ -HOJ ^H 0 ON
U
19
>
 oo in
4 uj co tn o NO r*. co
'. z
9 M
C
: z r\i co IN- tn NO
j u tn -*• ro o a*
!z o tn o f^- eo ro
v9 o eo o oo o *-t
> r-l ~< «H
«x
H- O (A IN- ON
tf) O »-t NO^
!eu o o o o
0
0_
UJ
in
•
h- • • *4 f* (A lA
UJ
Q.
a
Q.
a.
u
'o
a
z
a
in m NO NO NO IN. r*.
a to co oo co oo oo
uj -j a. 2: _j x: _j
in u. tn in u- tn u.

-------
334
rg
C
iS AREAHZ BHASSF
IDF TOTBHA!
a
I u
1 u
1 >
1 1
»-
3
X
-
tO U IB
M «0 3
fr- UJ O
< x tn
*- t»t
* * H
>.  «:
in n
•-> z: z
u. 
u>
z
_l
o
>
-
a.
en
u
>•
o
f*
1 19
1 » x» « i a:
f> K) K) tO »O «
UJ
X
a
*+ r* p* -o r» in
*1«»KM O> «
•-t-« rv-H «:
VH «-i a
^-
1 a
N. oi« o r- i u,
o-o- toco i«. i o
o o o oo I o
1 u
i i
tooeo IA«* | l-
3
' 1
•
GO co CM so so a. *-
o o t-» o o tn 3
z
i£ .-i
u x:

M >
U 4
til
a.
vi rvt CM N o M z
co *o so oo r*> iu
u _j
a »c
a a
ex: x
m
n IM ro o rvj z
z -J
W Z
ae M
a. c
to
so tA €0 >T O 11 Z
 z
so «-t r- co M I -J
IA tA 1A tA IA 1 tP
1 3
eo eo 0 in co | t-
O vO O CM s0 1 W»
K> *-l O IA «-* ' Q.
^H j O
1 °-
: uj
: in
IA-* O -* 1 «
*-H UJ
a.
o
a.
CM W M IA tA f-
**•*-! O"«H , O.
U
K
o
h-
U>
CT
Z
O
so so so PS. r- t/>
eo OQ eo co eo 4
in to u- i/) u. u)
1
•-t (M O *M
O O O 1 X
O OO (A
to
 o r+ rg
r u.
r* rs.^o o
ooo a
u
o
>
ec
oo oeo I t-
O T^O • »
X
tit
1 E
^••oeo h-
o o o ui 3
z z
M »-t
z c
u>
*-« CO t-
ftl ^ Z 0
O O E 0
C (A
O
u
K> fs. O 11 ^>
%O >O CO M O
• • • UJ 3
OOO M 0
u =»
uj a
a.
vt
o*. K> o z
NT tAlA *£ UJ
O -I
O X
K «X
m £
00 O O C9 Z
1-4 -J
Q£ Z
a. M
(A 3C
II
o.p- z z
%o *o a: uj
• • • UJ _J
1- VI
t/>
K> sO O Z
** •* O 1 -J
xT %T IA | C9
>
<£
0- f\I *-
o oo to
r\i o a.
o
a.
tu
1 v>
1
•H V>
UJ
a.
o
a.
*H a.
  *-l *-« XT
oa
t-
o
*~
o r» v\ u.
or^r*. a
•M O O O
u
(9
>

m
it
IA «4- IA V) 1—
« f*. •-! UJ C9
• • • M ':*
«o AJ ru o o
UJ >
o. « •
w
r-rv IA ^ z
O CO OO O UJ
-< O -I
C£ X
oa «x
E
C9
CJ-0 IA Z Z
OC _J
O- Z
to >-*
u z:
x:
OV (A «H CC Z
tA Kl fM UJ UJ
• • • OC .J
«-l >H 1O tO
•**A%0 | Z
r-«-i -^ _j
cor* so i o
>
 »O M K) Kl 1 «
| UJ
0£

f-
0
H-
«-* K> IA •* Ov U.
ro o vo o ao a
•-» »H O *H O ,O
o
u>
>
a
Kl ^ IM 00 f\J H-
ru o*> *-• rvj •* 3
»0 X
 tn t-
ng O< •-«•-« ru « z*
to co z
*-i
x z:
h-
•H o a H-
IA CO O O
O O -JO
-J to
 *-* PJ CM f\J II C9
*M OX ^t (M K) UJ U
ro IH >
o «x
UJ
o.
NO so r*- *o co in z
tA tA IA NQ f* UJ
r-4 id _J
a x
o «
DC z:
CD
NO NO f*- NO JO Z
•H z _a
M Z
OC »-l
a. z:
to
•H CO II Z
tA -o z: tu
C£ tO
K
0 0 0 fV IA trt Z
NOvQ (N- 0 »1 | _*
IA ^ tA tA fw | C9
«H >
cX
1 *-
to
o a.
l a
B a.
g uj
to
U)
UJ
1 a.
0
0-
O.
4
1 0
t-
s
g o

B
B
8
PJ M fXJ f\J
ooo' • z:
OOO 1 to
I 1
t CO
f1* NO •-« | r\j
NO *«• *o | E
»o ro ro i cz
1 UJ
B ot
fM fM-J- | IO
r*. o* ^ i * o
o
o
=*
-
r\j NO _i uj
o o u. a
H «
t/)
UJ
-4- p* O M H>
** O ^* U 13
• • • UJ 3
»H K) NO CL U}
(0 >
 »- UJ
• • • to J
B to
CO O 0 B Z
o* ro IA , • '! _J
K> IA f*- B 19
B >
! «
B *-
! u!
1 o.
o
fi_
UJ
to
(O
Ul
o.
0
o.
a.
4
u
H
a
h-
C9
«
z
o
00 00 00 ^
z: ^ u uj
to u. u_ to
1
IA
«-t
o
V*
fO
K>
to
o>
*r
t*
r*-
o
00
NO
tA
o
sO
00
r-t
sO
f»-
•
«H
IA
OH
o»
IA
o\
•
vl
«-l
sO
tA
»o
sO
«-4
«M
fsl

CO
-1
u.

-------
                                                                 335
      x:   «* ~* CM t
            O«-tOO«HOOOOOOOOOOOOO
                                                                                   O—*'-»O-    rt O 10
                                                                                               o oo    *-t •-( (M xf ^o **•

      -J
 I     u>
 I     >
 I      ru o
                                                                             >-    -O -H « >
            OOCOCOOOOOCOCOOQcOCOCOOOCOCOCOCOCOOO

-------
                                                                 336
            a.
            l/>
            vt
             OCS


            UI
            Q£
            <£


            in     ••••••••••••

            c    t/\o»o«-i    r*> .4 K) «* r\j  K> cj o-to o oo rg
            o     ............
            3    r*K1»O«O»OO.»H*»'«Of\J*»>eO
            Z       »-•               »"•«-»    »•« fU
                                                     O

                                                     C\J
                                                     C
                                                      00 » •» »< I
u
M
*-
UI
 IA O O    K)K>fHOCOO
13    fM »*• in «H    M 
o
z
u

, •* s
                                                                                                                                    o o o o o o
                                                                                                                                    ** W *0 K> K> *<•
                                                                                                                                    oo NO in «o «o o
                                                                                                                                     ••••••
                                                                                                                                    O O O O O *•*
      cd    (\jeoeov4K>io^iiArtj(\j>ooo
      >       «H    ^<   ^   "^ fy    *^ M
a.
u>
                                                           o

                                                           a.
                                                           u>
                                                           to    O^OOO*?«*>6OOO^«-*«OIAO.'4«H
                                                           3     .................
                                                                                                                                    00 O »H «-4 Kl »*
      UJ    IA ^< eo o*
^^ »-t *H «-*«-! 1
C
c

3

v4 *-» *H »-(»-* C
C

3
<
K» *M tA <\J CO NO 1





^
•-« O (V fN-
IA O NO **
o o o r\J




• \OON • »ON*» •





•^ «O ON ftj fVI ^ Kl *^

0*-»o»^rao«-inj





\o >o ^» ^ ^* ^» 1s* P*
coooooeooocoooco


ex c
Q * •* Kl NO ON

£ Z t
t *-< C
c E a
Z 1
LJ Z OQ*O ONNO NOO r-tfVJONCOlAOJK>rg I
ft Q ^ IA ON OO^- ^O^NOlA "sf O* ^ ^ C
tO ^4«H •-»»-« *~t f» •-« «H t*
u


— tn tn fN*r\) cj ir» IA o tr» r*- oo
O. ON »H ^H«-t ^I*H»HO M O pg
0
a.
UJ
to
t*> *O • • * ON • *^> IA * IA fV) •>*• ON • f\J v4 NO
lOlA «H fO «H fM *1 fM OJ*H
UJ
a.
a
a.
0
o
UJ OfMrjo^Hpao^irvio-tOTHrvjo^Pvt
19
a

z
o.
lOU_U.U.
UJ
^ -1
3 X
3 
z
iUJ
_l
(9
cc
to
UJ
a.
0
a.
UJ
(O
K-
IO
UJ
o.
o
0-
a_
a
o
J_
o
h-
UJ
0
4

Z
o
 »H IA M (NJ r«(




Ki rt *!• (\J (NJ »H

• •••••





00 00 CO OO 00 00
_j a. E -J E -J
u. to to u. vo u.

-------
337







Ul
u
l-t
tn
 o r»>. HI oo in
•O IA ** 00 AJ 
«
AJ «-i to*-* eo ai
1 «
—I »-•«-« O •* OS 3
tu z
O -* O^ AJ AJ C9
•^ AJ O O HI 1— Q
»-« Ul
X
3
0 >
UJ «
a,
Ul
A* ON O •-« AJ Z
o ON twin o ic uj
O X
0£ «
co ac
A* -o r*. o r* >• z
U -J
o z
ec 1-4
it ac
ac
O Hi **1 AJ »O UJ UJ
AJ *H »-» in in
•>o *»• oo IA ON _J
A- A- tn <•*• co I o
1 >
1 «
1
-r O* r*. o o i t—
A* *O O Hi O , 1 Ul
••o o H» o o i a.
a
o_
1 u
Ul
O AJ O ON AJ | »-
•-t v* .-4 | V)
UJ
e.
o
a.
r^ AJ coo. AJ t >-
«H i a.
i  u. ui

O A. O O -»-t O
o oo o o o
CO AJ A» 9-t -« ON
CO O O «* O Hi
AJ AJ AJ *^ d-4 HI
A* HI CO *O •* AJ
AJ CO AJ vj- *-»
AJ
H» ON xMA O AJ
O o oo oo o o
*<40O O ^ *-t
IA »* O ** \T\ tA
.
t
L
** 1*- AJ CO 00 <
O "1 -O  ^ •* "1 *4
^o eo in >o »o -* u
»•
t
u
c
ON O fV O^ ON 00
•-»*-» &
C
. c
c
IA AJ 0<-* »* 0
<
C
e
i
ot <*f K) r^ tA <
AJ -^ »•
U
O O 0 OO A*
»00 *A^>
OO -HO
1

CO OO OO OO CO OO
_i a. E -J ac _j
IL. t/> ui u_ in u.
i

Ul

j  Z
UJ
£ _J
3 X
D «
e ac
Q
Z
£ J
J Z
e ac
: uj
j -t
in
1
z
_j
. TOTCAPT POPEST SEPOP
z
o
-i ^O
O r-) O i
i
I
A. *o AJ :
O O O 3
3
c
ON A- 0
ON CO ON I
*H*1 0 >
C
L
e
c
O* W) O
A- *O IA 5
C
C
C
C
A-OV 0 3
<
C
e
:
AJ o in L
• • • e
ii
O CO -O
UN IA ^f
IA O »O
tn IA HI
O H» o
•H COM
AJ
»H>0 HI
AJ
.

DO 00 OO
Q- c ac
in 1/1 in
|
I ~

in
1 «
1 «
1 x:
i s-
i «
i «•
DF TOTBHAS
! o
I u
!' £
1 «
1 X
i «
I ac
i
LJ 3
K Z
•4 M
C X
n
- ts
c o
C ui
D
J
1 H-
n o
J >
u 9
u
n
z
£ UI
3 -1
3 X
£ - ' Z
J J
3 Z
1C M
1 X
c
U UJ
C _J
s
g



O H)
O O O
o co tn
A- Ut ON
•"• r*
(N- A- O


in HI
O O tA
P» —* ON
H> ON 0
o
o
o
• • AJ
— 1 AJ AJ

CO 00 CO
a. ac _i
tn ui u.

-------
                                                        338
'
1

**m 0 M^tO
a. •••••••••••••••
in »4Oo*HOO«-iooo*-*oooo
in
o^*eo*H*\i^o
s «^ *o »o in »o ^ *o f*J .
^
O
u. *of^.O"eooo*nOeOoo*^in'^inoo
z ••»••*•••*•••••
o ooooooooooooooo
u
>
1 « ' .
1 ^
Its ••••*•*••••••••
^ *»o»wioto^»*in*o»*'O'ntorii»o
I X INJIA-4W -4« ^**(NJsftAMin
1 «
1 3C


j z w cy ^ *^ ^ ** *^ *^
X M
S 2

1


a. *••••••••••*••••*
'K>r*<-«O»o(\j>*'(^^o
2 •••••••••••••••**
U
>

H* Kioooooooootnrjso^ootn^roooob
x m ro«-* K)KI in oo •* r- ** r*-
«J ^ ^4
1C
«* ^ ^ irt o *^ in 10 O* J^ ^ •* in o ~
3 tfl


o r- o •*> 10 o
•* r\j t»- ru ** to
0 OO O O O



pj o oo •-» rvj «H

in «o f*» K> co eo

r- K) o rt oo m
"^ ^^ ^ ^^

oo in in ^ O KI
o o o o o o


to in o* *o iv »o


•H K> oo o 
UJ
»H
O
                                                             O    *4 .
                                                             3     •
                                                             ts    ** t
     »-«xJ-^
                                                                                                                           o
                                                                                                                           o
                                                                                                                                          in in oo «H o
                                                              z    -*o    o    -^^o-orj^o
                                                              in    *4f\j    o    oo **• rvi m o
                                                              _j     ••••••••*•
                                                                                                                                       in in r» ^o O O
o
Q_
       __.---
      «^ o o o ^^   •-< *o    oo    ino
                  -H    r\j *-<
                                                                                  rvj o»    F> NO    o r\i    o
                                                                                  *o«-t    o» fo    o\o    o

                                                                                  oo    oo    oo    o
                                                              uj
                                                              a.
                                                              o
                                                              0.
in    mi/'»«**'»-«
S    eoeoeceo«coooGOooooo3ooeoeoco
uj    »j«jQ.a.i:acai_jj_JCEz:_i-J
!n    u.u.intn«nwjtnu.u-u.u>u)tnu.u.
                                                                          ininotO*O'OtO*ovO^O'*«-i<»r*i|i-^-*"
                                                                          0000000000000000000000030000000000
                                                                          _I_IQ.Q.O.S:I:E_I_J_JI:EE_JJJ
                                                                          u.u.tnin
-------
   339






















1




















i

o 5
«-» c


** u
^- b
I c
*- <
tO
fa
>• u
oe *

L «
0

£ Z
3 at
3 -J
X X
a 

1
c
fa
AJ AJ
O O* 1

1
c
c

AJ -O C
o in L

1
c

a
sO c
**• u
• • e

AJ fa

o o
• •
AJ +*
o r*-


"

* •





m 9






•-* AJ






• •




l/> >O
CO CO

Ik U.


AJ
ac
1 0.
u»

' 
t/i
cc

ca

O



o
Z •
o

o
>

U o 03 in in r
o o o o a
• • • • e
0 0 0 O 0
u
1 <

1 D
I
|v -»r o o> 1 c
AJ O CO AJ 1 a
>* v\ •* *»• i <
1 u
1 e
t <
o c> o m i u
• • • • | u
ru ~i *J- -^ 1 <:
^ sf AJ AJ | 3
I e
1 t-
1 c
l.

O 03 sO 0 | U
O* O OO O | C
• • • • 1 a
O •-« O «-t 1 C
1 c
1 t
| 2
t e
1
o o o o i *•

AJ »•« -» -*• 1 2
«H sr AJ 1 >
1 <
t a
1
0 O 0 M3 f-
• • • • at t.
*H vr AJ z ' a
*-l H
z a

O* H
•* Z t
* • • • O 3
o ac c
z: u
o
u
o o o r-. ti i-
0 O 0 O tfl C
• * • • UJ 3
Al ••« ** JO «-l C
<-* -^ AJ u a
UJ C
a.
U)
o *o »^ ** :

rH -•< -H O
a >
0£ C
ca a

o *o • •*• or 2
*H l/^ >O Ul U

• V- C
U> V

O O O ** 1 2
* « • • 1 u
0 ^> — ' P- 1
--* in *•*• >O 1 (.

| <
'-,-!>.
^ l ^
-4- I W
• •» • * U
0 Q
C
Q
U
U
• o • r- i h
1 u
I u
1 o
1 C
1 Q


a
<
<.
t-
c

u
1 (.
1 „ «
1 2
1 C
tn N« «o fv 1 v
co a) co eo 1 " «
j a. »r z: I u
u. i/i i/) in , l i/
1
|
J fM |  11—
9 • j (9
• f- 13
< i x
c i a
I • 1 C
l
• *o t—
9 • _1 UJ
E oe z
4 UJ W

o
•• »H *••
9 O- O
E • 3
3 z a
» w «
«
• x
O U h-
9 K) - ' II 0
I • 1/1 3

te t-t >'
C U ->
: • co z:
ii
: c z
J  1  1 in
J • | UJ
1 a-
> 1 a
1 a.
J 1 UJ
1 «
• 1 1-
> | in
J t UJ
1 ' o_
5 ! °
1 a.
1
~ 1 l-
i o-
c i  1 U
1 1-
9 1 O
! *
J • | UJ

E 1  SO 
-------

-------