EPA-600/4-83-043
September 1983
ANALYTICAL METHOD FOR DETERMINATION
OF ASBESTOS FIBERS IN WATER
by
Eric J. Chatfield and M. Jane Dillon
Electron Optical Laboratory
Department of Applied Physics
Ontario Research Foundation
' Sheridan Park Research Community
Mississauga, Ontario, Canada L5K 1B3
Contract 68-03-2717
Project Officer
J. MacArthur Long
Analytical Chemistry Branch
Environmental Research Laboratory
Athens, Georgia 30613
ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
ATHENS, GEORGIA 30613
This Method has been assigned the EPA method number of 100.1
NTIS Number PB 83 -
-------
-------
si - CONTROL NUMBER:
83 -
86 -
B7 -
88 -
810-
COLLECTION
feAUAGfcMEhT
PROCESS ACTnlti
PRODUCT MAMA6
RECEIPT FYf*E:
817=
PAT. POTENTIAL:
FORM/PRICE:
Af-mOUiiCE:
B7A-RE6ISTRATION FEE: 00000
B9A-LOAW DUE OUT:
BIOA-OUH£/PRIOR/SUPfcR *
8i2A-RETURN QATfe:
UHi
not
82a°
82e-
627-
829-
B33r
PC
STOCK:
PAGES/SHEETS:
PC PKlCfc COOE:
UUMESriC PRICE.
ACTIGM COOES:
HN PH1CE CODE:
DuiiESMC PRICt:.
ACTiUM COOES:
B2^A»STUCI< TYPE COOiSl N
0
000
6000
00276
AU -
0000000 B28- FOREIGN PRICE:
0000000
8J6-
8J8- MF PRINT:
AOl
0000000
MA
- FOREZGW PRICE: 0000006
CO: C
PRINT PC:
PC DUE:
SOURCE URUER:
'GEftEriATfc ROP:
b«2ii-SuPPLIER SRC COS
e40-
B«l-
Ba2-
A
e»
n
n
-------
iiroHMiNO OR6AKS1.4A I ION
4. TITLE AND SUBTITLE
Analytical Method for Determination of Asbestos
Fibers in Water
Eric J. Chatfield and M. Jane Dillon
9. PtHPOBMINO OBCIANIZATION NAM«
Department of Applied Physics
Ontario Research Foundation
Sheridan Park Research^Connumty
Hlssissauga, Ontario, Canada LiK 1B3
12. 3FONKWNC *OKNCY NAME *»JO AOCWM
Environmental -Research Laboratory—Athens
Office of Research and Development
U.S. Environmental Protection Agency
Athens, Georgia 30613
68-03-2717
"
K«Y W0«*l AND DOCUMENT ANAIV3IS
c. COSATI Fidd/Croup
b.JB*NTIWKIW/OPeN 8NOKD TBHMS
OISCIIIPTOKS
19. S6CUHITY CLASS (
UNCLASSIFIED
20. SECURITY CLASS fTM* paft)
UNCLASSIFIED
!"OI5THIBUTION STATEMENT
RELEASE TO PUBLIC
.-—————•
EPA Perm 2220-1 (9*73)
-------
DISCLAIMER
Tht information in this document has been funded wholly or in part
iFthe United States Environmental Protect on Agency un ^Contract
No. 68-03-2717 to Ontario Research Foundation. It has been subject
to the Agency's peer and administrative review, and it has been
^proved ?S?publication as an EPA document. Mention of trade names
or conmercial products does not constitute endorsement or recommen-
dation for use.
it
-------
FOREWORD
Nearly every phase of environmental protection depends en a Capability to
Identify and measure specific pollutants in the environment. Jspart of
this Laboratory's research on the occurrence, wvwt, tr«wfbr«tion.
SJIct, and control of «^«««^\c9rt^!«^JK^
Branch develops and assesses new techniques for identifying and
chemical constituents of water ami soil.
A 3-year study was conducted to develop improvements in the
method for determination of asbestos fibtr concentrations in water
ThTresearch produced an improved sample preparation and analysis method-
ology, a rapid screening technique to reduce analysif e°sSa+lJS SUnd
riflrence analytical method for asbestos In water. The 8na1^al method
for determining asbestos fibers in water is perceived as representing the
current state-of-the-art.
William T. Donaldson
Acting Director
Environmental Research Laboratory
Athens, Georgia
iii
-------
PREFACE
The Preliminary Interim Method for Determining Asbestos in Water was
issued by the U.S. Environmental Protection Agency's Environmental Research
Laboratory in Athens, Georgia. The method was based on filtration of the
water sample through a sub-micrometer pore size membrane filter, followed by
preparation of the filter for direct examination and counting of the fibers
in a transmission electron microscope* Two alternative techniques were
specified? one in which a cellulose ester filter was prepared by dissolution
in a condensation washer; and another known as the carbon-coated NueleporeK
technique which used a polycarbonate filter. In January 1986 the method was
revised (EPA-600/4-80-005) to eliminate the condensation washer approach, and
a suggested statistical treatment of the fiber count data was incorporated.
The analytical'method published here is a further refinement of the
revised interim method. Major additions "include the introduction of
ozone-ultraviolet light oxidation prior to filtration, complete specification
yf techniques to be used for fiber identification and fiber counting rules,
and incorporation of reference standard dispersions. A standardized
reporting format has also been introduced. The major deletion is the low
temperature ashing technique for samples high in organic material content;
ashing is not required for the analysis of drinking water and drinking water
supplies when samples are treated using the ozone-ultraviolet oxidation
technique. The "field-of-view" approach for examination also has been
deleted from the method. If a sample is too heavily loaded for examination
3f entire grid openings, a more reliable result is obtained by preparation of
a new filter using a smaller volume of-water.
iv
-------
ABSTRACT
»••«'' 1 rat •inn for examination 'in 3 transniiaa«w" *.._.. *»£-.-. tf&£f\\ and
repiicazion ror «wi^iai.jw^ ^^^^^^ a><-a ai«ff-tron diffraction (SAtuj ana
Fibers
programs which are integral to the analytical method.
was completed as of September 1981
-------
CONTENTS
OREWORO
REFACE
BSTRACT
IGURES
ABLES
2.
3.
4.
SCOPE AND APPLICATION
3.1
3.2
3.3
4.2
Definitions ...... ..... <> e •
Units ............. . . . •
Abbreviations ....«••••••••
EQUIPMENT AND APPARATUS •••••'* .....
4.1 Specimen Preparation Laboratory ....
Instrumentation Requirements ......
4.2.1 Transmission Electron Microscope
Energy Dispersive X-ray Analyzer
Computer ..,'..-••••••
Vacuum Evaporator .......
Ozone Generator
4.2.2
4.2.3
4.2.4
4.2.5
4.3 Apparatus, Supplies and Reagents
SAMPLE COLLECTION AND PRESERVATION . .'. .
5.1 Sijnple Container •
S.2 Sample Collection .......
Quantity of Sample .......
Sample Preservation and Storage
S.-3
5.4
PROCEDURE
6*1
6.2
6.3
6.4
6.5
Cleanliness and Contamination Control .......
Oxidation of Organics • • •
Filtration
6.3.1 General . . *
6.3.2 Filtration Procedure ....
Preparation of Electron Microscope Grids
6.4.1 Preparation of Jaffe Washer
" Selection of Filter Area for Carbon Coating.
Carbon Coating of the Nuclepore Filter . . .
Transfer of the Filter to Electron
Microscope Grids .......
Examination by Electron Microscopy •;•••••••
6.5.1 Microscope Alignment and Magnification
Calibration ......
6».4.2
6.4.3
6.4.4
iii
iv
v
x
xi
1
1
2
2
• 4
5
5
'5
6
6
8
8
9
9
9
15
15
16
16
16
17
17
17
20
20
22
23
24
24
26
' 27
28
28
vii
-------
c tf 9 Calibration"of EDXA System .....••• |-
6.1:1 Sr d Pnspa?a?ion Amenability ...... f
6 I 4 Procedure for Fiber Counting . ...... f^
6.5.5 Estimation of Mass Concentration . . . • • |g
606 "SI-SB ffit Method;:.::::::::: »
I:!:! ^»S'2Sit5K.Sl«--•"«»'' 36
View . . . • • • • • • •••••• • e • • 36
' 6.6.4 Fibers with Stepped Sides ....••••• |?
111 SI5SgS5?5 Randomly 6r^nted>ibers I ! ! g
6*6.7 FlCsAttadied to Men-Fibrous Debris . . - ||
6.7 Fiber Identification Procedures . - • • • • • • • • 3g
6*7*2 SAE^and bxA'Techniques •••;•••** 2?
1:73 Analysis of Fiber Identification Data v. . 43
s 7 4 Fibtr Classification Categories . . . • • • **3
Si? 5 PrSSdure for Classification of Fibers With
Tubular Morphology, Suspected te be ^ ^g
6.7.6 Procedure1for Classification of Fibers
Without Tubular Morphology,- Suspected to
be AiBphibole « 2j
6.8 Blank and Contrc'l Determinations '
6o8.1 Blank Determinations ;-....- |T
6.8.2 Control Samples .......•••••••• |s
7. ewunn v g^^ yr^DJp-it « rjetriT ] ; ss
7.2 Calculation*ofri:he Mean and Confidence Interval of
the Fiber Concentration . . . i ||
7.3 Estimated Mass Concentration . . • • • • • 3S
7.4 Fiber Length, Width, Mass and Aspect Ratio
Distributions . . • • • • e • e • - • ° *.* 1-* * et
7.4.1 Fiber Length Cumulative Number Distribution. 61
7.4.2 Fiber Width Cumulative Number Distribution . 6Z
7.4.3 Fiber Length Cumulative Mass Distribution . 62
7.4.4 Fiber Aspect Ratio Cumulative Number
Distribution V • • • • • • • • g
7.4.5 Fiber Mass Cumulative Number Distribution . 63
7.5 Index of Fibrosity . w
8. REPORTING ..... ^ ••* ' ' ' g
9. LIMITATIONS OF ACCURACY -••«•;• • • • • S
9.1 Errors and Limitations of Identirication ...... 6|
9.2 Obscuration « - JJ
9..3 Inadequate Dispersion ..........••-•. ||
9.4 Contamination .-.o.. ...... y
9.5 Freezing ™
10. PRECISION AND ACCURACY . . c ••••-. - • *'
10.1 General ....<...••••. • ,e c |'
10.2 Precision • • • • ' • e/
viii
-------
10o20l Intra-Laboratory Comparison Using
Environmental Water Sources .
10.2.2 Inter-Laboratory Comparisen of Filters
Prepared Using Standard Dispersions
and Environmental Water Sources . .
10.3 Accuracy Jfl-r;_«^d'I;t'r:L^oratoryComparison'
of Standard Dispersions of Asbestos
Fibers
SELECTED BIBLIOGRAPHY
67
71
71
74
APPENDIX A - TEST DATA AND COMPUTER LISTINGS
FOR FIBER IDENTIFICATION . . .
77
APPENDIX 8 - TEST DATA AND COMPUTER LISTINGS
FOR DATA PROCESSING AND REPORTING.
176
-------
FIGURES
1. Calibration Markings on TEM Viewing Screen ........... 7
2. Diagram of Ozone-UV Equipment . . IS
3." Ozone-UV Oxidation of Water Samples 1n Glass Bottles i9
4. Huclepore Dissolution Technique « .'. 24
5A. Jaffe Washer Design -...,, 25
SB. Jaffe Washer irs Use 25
So Condensation Washer 1 28
7. Sheet For Recording Water Sample Data ....... « ..... 32
8. Sheet For Recording Fiber Classification and Measurement Data » . 33
9. Counting of Fibers Which Overlap Grid Bars ..-..<,...... 3S
10. Counting of Fibers Which Extand Outside the Field of V1tw .... 36
11. Counting and Measurement of Fiber Bundles •.....'.. » .«<>.. 37
12. Counting of Fiber Aggregates . . 37
13. Counting and Measurement of Fibers Attached to Non-Fibrous
Debris 38
14. Measurement of Zora Axis SAED Patterns . . . 41
15. Classification J-i>r *&r Fiber With Tubular Morphology 47
ISA. TEM Micrograph of Ciirysotlle Fibril, showing Morphology 49
16B. TEM Micrograph of UICC Canadian Chrysotile Fiber after Thermal
Degradation by Electron Beam Irradiation .. 49
17. SAED Pattern of Chrysotile Fiber with Diagnostic Features Labelled.50
18.' Classification Chart for F1b«nr Without Tubular Morphology .... 52
-------
TABLES
Limitation of Analytical Sensitivity by Volume of Water Sample
Filtered ...............•.......•••-•• 21
Silicate Mineral Standards . . . -. &
Classification of Fibers With Tubular Morphology 46
Classification of Fibers Without Tubular Morphology ...... 46
Levels of Analysis for Amphibole . 53
Intra-Laboratory Comparison of Environmental Water Samples ... 68
Inter-Laboratory Comparisons Standard Dispersions . €9
Inter-Laboratory Comparison! Environmental Water Samples ... 70
Inter- and Intra-Laboratory Comparison: Chrysotile . 72
Inter- and Intra-Laboratory Comparison: Crocidolite 73
x1
-------
• ANALYTICAL METHOD FOR DETERMINATION OF ASBESTOS FIBERS IN WATER
1. SCOPE AND APPLICATION
1.1 this method is applicable t
-------
vacuum to the active surface of the. filter. The carbon layer eeats and
retains in position the material which has been collected.on the filter
surface. A small portion of the carbon-coated filter is placed on an
electron microscope grid and the polycarbonate filter material is removed
by dissolution in an organic solvent. The carbon film containing the
original particulate, supported on the electron microscope grid, is then
examined in a transmission electron microscope (TEM) at a magnification
of about 20,000. In the TEM, selected area electron diffraction (SAEO)
is used to examine the crystal structure of a fiber, and its elemental
composition -is determined by energy dispersive X-ray analysis (EOXA).
Fibers are classified according to the techniques which have been used to
identify them. A simple code is used to record for each fiber the degree
to which the identification attempt was successful. The fiber
classification procedure is based on successive inspection of the
morphology, the selected area electron diffraction pattern, and tht
qualitative and quantitative energy dispersive X-ray analyses.
Confirmation of the identification of chrysotile is only, by quantitative
SAEO, and confirmation of amphibole is only by quantitative EDXA and
quantitative zone axis SAEO. ' ' .
Several levels of analysis are specified, three for chrysotile and four
for amphibole, defined by the most specific fiber classification to be
attempted for all fibers. The procedure permits this target
classification to be defined on the basis of previous knowledge, or lack
of it, about, the particular sample. Attempts are then made to raise the
•classification of all fibers to this target classification, and to record
the degree of success in each case. The lengths and widths of all
identified fibers are recorded. The number of fibers found on a known
area of the microscope sample, together with the equivalent volume of
water filtered through this area, are used to calculate the fiber
concentration in MFL. The mass concentration is calculated in a similar
manner by summation of the volume of the identified fibers, assuming
their density to be that of the bulk material.
DEFINITIONS, UNITS AND ABBREVIATIONS "
3.1 Definitions
Acicular - The shape shown by an extremely slender crystal with
small cross-sectional dimensions.
Amphibole - A group of rock-forming ferromagnesian silicate
minerals, closely related in crystal form and composition
and having the general formula: • A2-3B5(Si,Al)g022(OH) ,
where * - Mg, Fe*2, Ca, Na or.K, and B - Mg, Fe*%Fe*3
or Al. Some of these elements may also be substituted by
Mn, Cr, Li, Pb» Ti or Zn. It is characterized by a
cross-linked double chain of Si-0 tetrahedra with a
silicontoxygen ratio of 4:11, by columnar or fibrous
prismatic^ crystals and by good prismatic cleavage in
-------
two directions parallel to '"VJP^^IP "*
. Intersecting at angles of about §6° and 124 .
Anphlbole Asbestos - Amphibole 1n an asbestlform habit*.
a«aivtlcal Sensitivity - The calculated concentration 1n
AnalyMFL equivllent W counting of one fiber.
Aspect Ratio - The ratio of length to «1dth 1n 'a particle.
absence of lens action. . -
ChrvsotHe - A mineral of the serpentine groups M93S^°S(0"if
ChryS!t "I a hljhly fibrous, ^ky vaHtty of ferpentine. an3
eenstltutes the n»st Important type of asbestos.
Cleavage - The breaking of -a mineral along Its crystal lograpMc
planes, thus reflecting crystal structure.
Cleavage Fragment - A fragment of a crystal that Is bounded by
cleavage faces,
d-Spacing - The separation between identical adjacent and
parallel planes of atoms in a crystal.
Diatom -'A microscopic, single-celled plant of the elass
Bacmariophyceae, which -grows In J^th marine and fresh
water. Diatoms secrete walls of silica, called frustuies,
in a great variety of forms.
Electron Scattering Power - The extent to whiah a ^in layer of
a substance scatters electrons from their original path
directions.
e«.«,« ni«n*rslve X-ray Analysis - Measurement of the energies
EnCnJSnS inSns??ieslf X^rajs by use of a solid state detector
and multichannel analyzer system.
Eucentric - The condition when an object is placed with Its
center on a rotation or tilting axis.
Fibril - A single fiber, which cannot be separated into smaller
componln?! without losing its fibrous properties or
appearances.
3
-------
Fiber - A particle which has parallel or steppe<* sides, an
aspect ratio equal to or greater than 3sl9 and is greater
than 0.5 um 1n length. - ":
Fiber Aggregate - An assembly of randomly oriented fibers.
Fiber Bundle - A fiber composed of parallel, smaller diameter
fibers attached along their lengths.
Habit - The characteristic crystal form or«!^!j]" ft/"
of a mineral, including characteristic 1,-regularities.
Miller Index - A "set of three or four integer numbers «sed to
specify the orientation of a crystallographic plane in
relation to the crystal axes.
is made.
Selected Area Electron Diffraction - A technique in electron
microscopy in which the crystal structure of a small area
of a sample may be examined.
Serpentine - A group of common rock-forming minerals having the
formulas (Mg,Fe)3 Si205(OH)4.
Unopened Fiber - Large diameter asbestos fiber which has not
been separated into its constituent fibrils.
' Zone Axis - That line or crystallographic direction through the
center, of a crystal which is parallel to the intersection
edges of the crystal faces'defining the crystal zone.
Units
eV - electron volt
g/em - grams per cubic centimeter
kV - kilovolt
ug/L - micrograms per liter (10"6 grams per liter)
" um - micrometer (10 meter)
•MFL - Million Fibers per Liter
ng/L - nanograms per liter (10*9 grams per liter)
nm - nanometer (10" meter)
-------
NTU - Nephelometrie Turbidity Unit •
ppra - parts per minion
3.3 Abbreviations
AWWA - American Water Works Association
EDXA - Energy Dispersive X-ray Analysis
HEFA - High Efficiency Particle Absolute
SAED - Selected Area Electron Diffraction
SEM - - Scanning Electron Microscope
STEM - Scanning Transmission Electron Microscope
•
TEM - Transmission Electron Microscope ^
UICC - Union Internationale Contrt le Cancer (International
Union Against Cancer)
UV - Ultraviolet
4. EQUIPMENT AND APPARATUS
4.1' Specimen Preparation Laboratory
Asbestos, particularly chrysotile, is present in small Quantities
in practically all laboratory reagents. Many ^"^"«!£1,
also contain significant amounts of asbestos or othjrjinjral
fibers which may-interfere with analysis. It Js ^eref?^
essential that all specimen preparation steps fet PfJ0*"* "rS *
environment where contamination of the simple f.^if^ JJ?
primary requirement of the sample preparation laboratory is that a
blank determination using known fiber-free water must yield a
result which will meet the requirements specified in „ „,„
Section 6.8.1. Preparation of samples should be carried out only
after acceptable blank values have been demonstrates*
The sample preparation areas should be a separate clean room with
no asbestos-containing materials such as £oep12'ef.!j!^ SUw
insulation and heat-resistant products. The work wrtaM should
be stainless steel or plastic-laminate. The room should be
operated under positive pressure and have absolute (HEPA) f Iters,
electrostatic precipitation, or equivalent, in the ajj *"**]?%.
lamlnar^flow hood 1s rece»nmended for sample manipulation* It if
reennebed that a supply of disposable laboratory coats and
dlsDOsable overshoes be obtained to be worn 1n the clean room.
Tnilwil redSce the levels of dust, and particularly asbestos,
which mght be transfemid Inadvertently by the operator into the
-------
4,2
the area near the ozone generator.
Instrumentation Requirements
4 2.1 Transmission Electron Microscope .
A transmission ^ectron microscope
of a minimum of 80 KV, a
*« 100 000 is
'
be obtained by
I Bl*0 •»• IB««^-» •—• — —
relationship?
wheres A
0
M
f
Effective SAED area in ym
Diameter of SAED aperture in urn
Magnification of objective lens
Objective lens spherical aberration
coefficient in mm
i « Maximum Bragg angle in radians
Although almost all Instruments of current
fi-srss- CT.°i»Ja?sr»f.ff;
the Ir^a of anSJsis indefinitely by use of apertures
6
-------
Figure 1. Calibration Markings on TEM Viewing Screen.
-------
in diameter than those
exeunt of the
elective lens.
combined with tilting through, at ^eag ^^
*4i+4«« through at least 4u *° ^ sampu. The work is
,„.,.„ «... <„ the plane or w^J^, eucentric
*.. -^nsertnf ss sssrs sas
^pS-asfflrt!r1a5l- 1. «-».
be obtained.
4.2.2 Energy Dispersive X-ray Analyzer ^
. v ___,. 9«9iv7AT* is reou• re«• iinte
& .44ena*>«iV£ A—rSjr «ii«ij*»> _ _..£•««»•«» $e
An energy eispBr3»»'s ««—K4*«afr4ons of eQuipmenc «s
performance of individual ^^"loSetrical factors,
critically dependent on a number ^JJJ^, of electron
the required Pe7°™a";!iv2er is specified in terras of the
microscope and X-ray analyzer «JJ«1 d1ameter fiber, using
measured X-ray intens"v T^ x-ray detectors are
a known electron beam diameter. * rv ra^10n, and so
generally least «««ltJ^Ji55llS is sllectSd as the
measurement of sodium 1n-2°225;at10f, Gf electron
performance crlttrlw. .i™ ^st yield a background-
microscope and X-ray }nj^l|!f count rate of more than
subtracted Mate PJ^JJfE], fgSnm diameter fiber of
1 count P?r J«ond (cps) from a 50 nm^ ^ ^^n
of the
ealculatioiTof net peak areaSc
4.2«3 Computer
aas
8
I
••*
-------
• SSSSTpScaS:-(*•*«- A and I)
I
4.2.4 Vacuum Evaporator ' i
4.2.5 Ozone Generator
has been found to meet the requirements of this
technique.
4.3 Apparatus, Supplies and Reagents
4.3.1 Gas Supply to Ozone Generator
The ozone generator can be supplied by «^ "g1*"*1
air or oxygen. The input gas must be regulated to the
onsssure specif ied by the generator manufacturer. "Jj
Jelc^Sdedlnat oxygen provided in order to reduce the
possibility of acid formation in the sample.
4.3.2 Gas-Line Drying Tube
The ozone generator operates more ^J
with dry oxygen. An in-line drying tube*
-------
A «.1.1M rt-1 pressure
BvSwWi a w anr*
Slid gel in th« reservoir have been found to be
satisfactory for this purpose.
433 In-Line Sas Filtration Assembly
"
or equivalent with a 0.2 «• pore size gfj^0 equ1vaient
. equ
arssrs-SS; B«s^Sr. ^ «.
entering the sample is particle-free.
4,3.4 Ultraviolet Lamp
"
90-0004-11) and power supply model SCT-4 (Ul tja-vioiet
o^nrtl lie 5100 Walnut Grove Avenue, San Gabriel,
£??¥orMan9i778) or equivalent have been^found to meet
Se reSuirements of this analytical techmque. ^
4.3.S Source of Known Fiber-Free Water
For blank determinations, final washing of analytical
Muioment and dilution of some samples, a source of water
SicHs free of both particles and fibers s required.
Fresh double-distilled water from a glass distillation
to
itself tends to contribute some particles to the filtrate.
4.3.6 Filtration Apparatus
The water sample is filtered through a membrane «1*JJ «f
eUher 47 mmdiameter or 25 m Diameter. The "IJJflyi
assembly should be chosen to suit fVj"^"^^.
use. A glass frit support is required in order to obtain
uniform deposit on the filter. The reservoir must be
a
a
SlS- tolfir (milXoS Coloration, Cat. No. XX10 025 00)
10
-------
or equivalent has been-found to be suitable When using
the larger diameter equipment ft is neetssary to filter
proportionately larger volumes of water0
4.3.7 Filtration Manifold .
When a number of samples art to be -filtered, severa!
filtration units ean be operated «1»lt«!!31fciStlon
single vacuum source by using a multiple P^/JJfJS0"
manifold (M11l1pore Corporation, Cat. No. XX26 047 35) or
equivalent. This manifold should include valves to pernnt
each port to be opened or closed Independently.
4.3.8 Vacuum Pump
A pump 1s required to provide a vacuum of 20 kPa for the
filtration of wateir samples. A water jet pump (Edwards
High Vacuum. Incoe Grand Islands NY 14072, Gate No.
01-C046=01-000-female connection or 01-C039-Ql-000-fflale
connection) or equivalent has been found to provide
sufficient vacuum for a 3-port filtration manifold and also
"incorporates a non-return valve to prevent back-streamingc
4.3.9 Membrane Filters
The diameters of-the membrane filters should be matched to
the diameters of the filtration apparatus in use. For
filtration of water samples, two types of filters are
required:
- polycarbonate capillary-pore membrane filters,
. Oei uro pore size (Nuelepore Corporation, 7035
• Commerce. Circle, Pleasanton, California 94S66)
er equivalent, art used to collect the "suspended
•material from a water sample.
- mixed esters of cellulose membrane filters,
0.4S win pore size Type HA (Millipore
Corporation, Bedford, MA 01730) or equivalent,
are us«d as a support filter placed between the
glass frit of the filtration apparatus and the
polycarbonate filter.
4.3.10 Jaffe Washer
A «3affe Washer is used for dissolution of Nuelepore
filters. Several designs of Jaffe Washer have been used
which are modifications of the original design. Provided
that the polycarbonate filter can be completely dissolved,
and that the materials used in the different designs of
washer are demonstrably free of mineral fiber
contamination, the precise design 1s not considered
11
-------
orofon,. but
because this
necessary to ensure •—"-•"--
to avoid excessive evaporation.
4.3.11 Condensation Washer
A condensation washer
satisfactory.
4.3*12 Electron Microscope Srids
sssrs ?-»? r£B«. - -
gold grids
12
t
-------
4.3.13 Ultrasonic Bath . ,
bath 1s required for dispersing particular
£ -•
" meet th€ requirements..
4.3.14 Carboit Rod Electrodes •
the .requirements*
4.3.15 Carbon Rod Sharpener
minimum of heating of the polycarbonate ••*"»•• The
sharpener, Cat. No. 1.204, Ernest F. F«ll«"' J1*^
Ichenectady, M.Y. 12301, or equivalent, meets the
requirements. ' • . .
4.3.16' Standards
a)
Reference Standard fiber Suspensions* 61as;.*"??lJ?h.r
of stable concentrated chrysotile or amphibole fiber
dlspersionlHllectron Optical Laboratory, Ontario
ReleaS foundation, Sheridan -Park, Mlssissauga,
Ontario, Canada UK 1B3) can be used to establish
quality assurance in analytical programs. The
reference suspensions of known mass and numerical
'
.
Park, Mlssissauga, Ontario, Canada L5K 183).
c) Asbestos Bulk Material. «nrjrww« •«;•"•
; Chrysotile (Rhodesian), Crocidelite, -r--;;-; -;-
(Union Internationale Centre le Cancer) Standards.
Available from Duke Standards Company, 445 Sherman
Avenue, Palo Alto, CA 94306.
13
-------
4o3»17 Carbon Grating Repliea
A carbon grating replica with about 2000 parallel lints
. -
calibration of the magnificat ion. of the ^ TEH.
4.3.18 Chloroform
Speetrograde chloroform, distilled in g^s (prtserved with
S (v/v) ethanol, Burdlck & Jackson Laboratories Inc.,
Muskegon, Michigan 49442) or equivalent, is required for
the dissolution of the polycarbonate filters,
4.3.19 Petri Dishes •
Oisoosablt Plastic pttrl dishes ^^i^^
PB 10 047 00) or equivalent, are useful for
t filters and specimen grids. If char 9^build-up on
dishes is experienced, it has been found that rinsing
witffwelk Silent solution will reduce ^the problem.
4.3.20 Quartz Pipets
Quartz pipets are used to bubble ozone through the liquid
sample. These pipets are formed by gating quartz tubing
and drawing it to a tip of approximately 0,35 mm inside
diameter. The pipet should be sufficiently long to reach
within 1 inch'of the bottom of the sample bottle, to create
good mixing of the liquid during oxidation. .
4.3.21 Mercuric Chloride Solution
A 0.01 molar solution of mercuric chloride may be required
for preservation of water samples. This is Prepared by
dissolving 2.71 g of reagent grade mercuric chloride in .
100 mL of fiber-free water. The solution is then filtered
twice through the same 0.1 um pore size Nuclepore filter,
using the filtration apparatus described in Section 4.3.6
and a conventional filtration flask.
4.3«22 Routine Electron Microscopy Preparation Supplies
Electron microscopy preparation supplies such as scalpels,
disposable scalpel blades (curved cutting edge),
double-sided adhesive tape, sharp pojnt tweezers and
specimen scissors are required. These items are available
from most EM supply houses.
14
-------
4.3.23 Routine Laboratory Supplies
and c^ss^ontaSination between samples.
5. SAMPLE COLLECTION AND PRESERVATION
5.1 Sample Container.
25 ^^r^fSLW-a^a s^S's^ss?^
8^^s^«*^lSff«?
bath for 15 minutes, followed by several rinses with fiber-free
water. , .
£^7mT«^:^^
ea-Hefaetnrv for these determinations. A prt-washed oottie
contllninglpproximately 800 milliliters of ^^er-free water is
orocessed as described for preparation of samples, inciuaing
sssf rt^ffsfiScTsgrs-. aas'3 rSfflzT-d,.**'
?s tested for background level., When using glass bottles, *h«.«^sjc
of Sestos^SSKSion from the bottle is greater and a minimum
«f 4bottles in each 24 are examined for background level.
AdditiSnl Wankf mSy be desirable when sampling waters suspected
of containinV very low levels of.asbestos, or when additional
confidence iri'the bottle blanks is desired.
' IS
-------
Sample Collection
It is beyond the scope of this procedure .
instructions for field sampling; the general prine ip es
rSge in length from 0.1 wm to 20 urn or more.
and these samples shou?d be composited for analysis.
of distribution systems should be avoided
- in dlf water! this rinsing may compromise the results and
should be omitted.
5.3 Quantity of Sample
Two separate samples of approximately 800 ml 11 niters each art
reSuirel! An air space must be left. in the bottle to a low
efficient redispersal of settled material before analysis. The
second bottle is stored for analysis if confirmation of the results
otttflMd from the analysis of the first bottle is required.
S.4 Sample Preservation and Storage
Samples must be transported to the analytical l^JW^^S
oassible after collection. No preservatives should be added during
. ml1n!s theaSdition of acids should be particularly avowed.
T-F tho «amo1e cannot be aiven ozone-UV treatment and filtered
witMn ITSours a?ler arHvIl °at the analyticallaboratory amounts
(1 m niliter per liter of sample) of a pre-fi ^J^g "'S10"
of mercuric chloride sufficient to give a final concentration of
. So onm of mercury may be added, to prevent bacterial growth.
Appropriate clre^uld be taken when handling mercury compounds.
16
-------
3n
dispersions are not known.
which
be
attached to the bottles.
PROCEDURE .
6.1 Cleanliness and Contamination Control .
"rS?
' ' .
6.2 Oxidation of Organics
a) asbestos fibers associated with organic materials tend
• to adhere to the container walls;
b) asbestos fibers tend to aggregate, with organic
materials;
c) fibers embedded in organic material are not transferred
to the TEM specimen.
container using the
(ozont-UV)
* may not be required.
The equipment should be assembled as shown in Figures 2 and 3.
17
-------
V
* I11
Figure 2. Diagram of Ozone-UV Equipment-
18
-------
Figure 3. Ozone-UV Oxidation of
supply line has been
Inmersed 1n the sample and switched on.
19
-------
sufficient to.
splash sample out of the
when, oxidation 1s complet o, but th ts
boan found to be ^?2/
When oxidation is complete.
the bottle and p ace
*
dispersed throughout the sample
'
scribed has
handled.
and quartz plpot.
bath for a period
from the o*1diied
t UR1 "
The water leve! 1. t«-e bottle «-ay^.e fallen
during the oxfdatlw J™"^™-,,1^.;??,,:^/ The sarole should
S Se fa e^i 'ir^ved fro» the ultrasonic
g03 Filtration
6.3d General
The
the
'
qu l.
present.
Table 1 shows the limitation of the analytical, sensitivity
SSuta »9/o«S «1«» •» °»t1mum va1"e of Sb2u5 «ni,-d5 is
5 u9/eS. Where the concentration of suspended solids is
n^aolut the
the best Procedure
-4i2srfiSra.i-"1 •
»
dtaeter equipment.. If smaller .olun.es are
20
-------
TABLE 1. LIMITATION OF
FILTERED
ANALYTICAL SENSITIVITY BY VOLUME OF WATER SAMPLE
• *«• *»••«—• ^^^^— -—••••••am^^^aa^™"'™""""
Vo1utne Filtered'XroL) ; Analytical Sensitivity
l" it 4 nn 25 ma Diameter 1 Usinf 47 mm. Diameter (Fibers/Liter)
US * **3 &^ V* • 1 C4 1 ^aiPiJ 1
Fi1ter2 — — — -4— — — — n
0.1
0.5
0.6
I
2.8
1.0 S-7
2.0
5.0
10
25
. 50
100
11
28
57
142'
285
1.5 x 107
a«6
3.0 x 10°
US x 106
' .0.8 x 106
3.0 x 10S.
1.5 x 10S
4
. 6.0 x 10*
3.0 x-104
.
1 e w ifl^1
, .5 X 10
1
nominal tuu mean »••- \-rr-
2Assunring Active Filter Area of 1.99 cm2
5
3Assuming Active Filter Area of 11.34 cm
21
-------
vigorously before sub-sampling takes place.
'6,3.2 .Filtration Procedure
a) The sample must be filtered immediately a«er the
bath.
Assemble the filtration base and. turn on the
.
Mi llipore filter on the glass frit. If the
filter appears to become. wet by capillary action
on residual water in the glass frit it just be
discarded and replaced by another filter. Place
a 0 1 wm pore size Nuclepore filter, shiny side
i, on "top of the Mi llipore filter. If the
Nuclepore filter becomes folded it must be
discarded and. replaced. The mating surface of
the reservoir component of the filtration
SpaSSTttk funnel) should be dri.ed by shaking
off any surplus water and draining on paper towel
or tissue. The funnel should be positioned on
the filters and firmly clamped, taking care not
to disturb the filters. The vacuum should not be
released until the filtration has been completed.
It is necessary to comment on the use of
filtration equipment which is still wet ff*er
washing, since improper procedures at this point
can verv seriously compromise the results. IT
Se g?2s ?ri? is^rShen the Millipore filter
is applied to it, capillary action will result in
some areas of the Millipore filter structure
being filled by water. When the Nuclepore filter
is applied to the surface of the HWIport filter
22
-------
be obtained*
deposit on the filter.
Disassemble the filtration unit, and transfer the
1
P ,
Dry the filter under an infra-red heat lamp
sJort time before closing the petrj d sh
completely. Discard the Millipore filter.
6 4 Preparation of Electron Microscope Srids
Figure 4.
23
-------
fapv/ti-sw;*
CAMON
pan
Figure 4. Nuelepore Dissolution Technique
6 4.1 Preparation of Jaffa Washer
e
but those specified in Figdre 5A Have been found to be
satisfactory. After the assembly is complete, fill the
letri dish iith chloroform to a level just below that of
the horizontal surface of the stainless steel bridge. It
may be f oSnd that the chloroform contacts ^e underside
surface of the stainless steel mesh; this is not critical.
Cover the petri dish with the lid and the -3affe Washer is
Sidy for use. Each time the Jaffe Washer is used, the
llns tissue and solvent should be discarded and replaced
inh new lens tissue and fresh solvent. Appropriate
precautions should be taken when handling chloroform.
6.4c2 Selection of Filter Area for Carbon Coating
Polycarbonate filters are easily stretched during handling,
.
-------
GLASS.PETRI DISH
* ISm« I
ELECTRON MICROSCOPE MggM
cu »-,r.^t.»eiu
-------
the plastic petri dish.- -Press the scalpel point on the
filter at the beginning of the desired cut, and rock the
blade downwards while maintaining pressure. It will be
found that a clean, cut is obtained without stressing of the
filter The process should be repeated alone an TOW
?8sssi iMTw-?^1«irB&f5?tS: sis
a s^^-rF.tf.ffiv'u - ^•jSj.isJi
to the perimeter of the active filtration area should be
avoided.
6.4.3 Carbon Coating of the Nuelepore Filter-
The ends of the selected filter strips should be attached
to a glass microscope slide using double-sided adhesive
tape. This must be performed carefully to ensure that .the
filter strips lie flat on the slide and are not stretched.
The filter strips can be identified by using .a wax pencil
on the glass slide. After inserting the necked carbon rods
.into the vacuum evaporator, place the glass sl1d>°" tj® .,
sample rotation and tilting device. The separation between
the sample and the tips of the carbon rods should be about
7.5 cm to 10 cm.
" If desired, the amount of carbon to be evaporated can be
monitored instrumental^ so that .a thickness of about; 30 nm
to 50 nm is deposited on the filter strips. Alternatively,
a porcelain fragment will serve as a simple carbon
deposition monitor. Place a small drop of silicone
diffusion pump oil on the surface of a clean fragment of
white glazed porcelain. Locate the porcelain.in the
evaporation chamber with the oil droplet towards the carbon
rods and at a distance from the-carbon rods eaual to that
separating the rods from the filter strips. Carbon will
not deposit on the oil drop whereas it does on the other
areas of the porcelain. With experience, the correct
thickness can be monitored visually by observation of the
contrast between the darkened areas of the porcelain and
the uncoated areas under the oil drop.
Pump, down the evaporation chamber to a vacuum better than
10-* Torr (0.013 Pa). Use of a liquid nitrogen cold trap
above the diffusion pump will minimize the possibility of
contamination of the filter surfaces by oil from the
pumping system. Continuously rotate and tilt the class
slide holding the filter strips, while the carbon is
evaporated in intermittent bursts, allowing the rods to
cool between each evaporation. This procedure is necessary
to avoid overheating of the filter strips. Overheating
tends to cross-link the polycarbonate which then becomes
difficult to dissolve in chloroform.
26
-------
6.4.4
Transfer of the Filter to .Electron Microscope Srld*
fibers containing sodiume
samples.
SM f?li»ftr *• -"!• •f£'EXy
condensation -level 1s above the samples.
polycarbonate.
-------
ADAPTER
CONDENSER
SPECIMEN
COLD FINGER
WATER
DRAIN
4
COLD WATER
SOURCE
THERMOSTATICALLY
CONTROLLED
HEATING MANTLE
Figure 6. Condensation Washer.
6,1 Examination by Electron Microscopy
"6.5.1 Microscope Alignment and Magnification Calibration
Align the electron microscope according to the
specifications of the manufacturer. Initially, and at
regular intervals, carry out a calibration of the two
magnifications used for the analysis (aP?™*if tei{L20'000
and 28000) using a diffraction grating replica. The
calibration should always be repeated after any
instrumental maintenance or change of operating conditions.
The magnification of the screen image is not the same as
that obtained on photographic plates or film. The ratio
between these is usually a constant value for the
instrument. It is most important that before the
magnification calibration is carried out the sample height
is adjusted so that the sample is in the eucentrie position.
28
-------
6.5«;2 Calibration of EDXA System
The purpose of the calibration is ts enable quantitative
composition data, at an accuracy of about 10* «J
elemental cencentration, te be obtained from f
of silicate minerals; involving the elements sodium,
"maanesium, aluminum,, silicon, potassium, calcium, manganese
SI iron. If quantitative determinations are required for
minerals containing other elements, suitable calibration
information may be incorporated in the computer analyse
The well-characterised standards recommended permit
calibration of any TEM-EOXA combination which meets the
instrumental specifications of Section 4;2, se that data
from different instruments can be compared. The standards
used for calibration, and the elements which they
represent, are shown in Table 2.
TABLE 2. SILICATE MINERAL STANDARDS
Elements
Na, Fe, Si
Mgs Si
Al, Si
K, Si
Ca9 Si
Mn, Si
Mineral Standard
Riebuckite
Chrysotile
Halloysite
Phlogepite
Wollastonite
Bustamite
The compositions of these standards have been determined by
microprobe analysis, ind the TEM grids wert prepared from
fragments of the same selected mineral specimens. They
permit the computer program of Appendix A to be used with
any TEM-EDXA system.
Placed the first grid into the microscope, form an image at
the calibrated higher magnification of about 20,000, and
adjust the specimen height to the eucentric point. Tilt
the specimen towards the X-ray detector as required by the
instrument geometry. Select an isolated fiber or particle
less than 0.5-wm in width, and accumulate an EDXA spectrum
using an electron probe of suitable diameter. When a well
defined spectrum has been obtained, perform an appropriate
background subtraction and obtain the net peak are?.s for
each element listed, using energy windows centered on the
29
-------
peiks «d about 130 ev
ana for each
for silicon.
C«Put the ratio
about 20 particles
obv10us forelgn
eendltions
6 S«3
Srld Preparation Acceptability
sas a ssaaa fnS?
• asa
analysis if:
"
'
water sample;
JSwary -to support the larger particles.
30
.-1
\\
-------
6.S.4 Procedure for Fiber Counting
•
greater, precision is required.
At least three grids prepared from the fitter must be used
•
sera 5,-ss sa-r" -«
deposition of fibers should be detected.
Figures-7 and 8 show specimen fiber counting rw-dat*
sheets which represent the minimum standard of data
reporting for this analytical Procedure. FjgrjJ.»fws
naae 1 of the raw data tabulation, which contains an
IpHimen preparation details. Figure 8 is a continuation
Iheet for the fiber classification and measurement data;
' several.of these sheets may be required for analysis of a
sample. * ' . '
Select a typical grid opening from one of the grids. Set
the magnification to the calibrated higher value (about
tttoSSr Adjust the samplt height until the features in
the center of the screen are at the eucentric point. Check
that the qbniometer tilt is set at 2@ro. Reduce the
™£if^lio?S the lower calibrated value of about 2,000.
Measure both dimensions of the grid opening image in
millimeters, using the markings on ^"oracent screen.
In columns 1 and 2 specify the sequential number of the
gHd opening, and its dimensions. These two columns are
w/vt IKM! aaain until fiber counting is commenced in the
' next grid Ipening to be examined. Adjust^the magnification
to thi upper calibrated value, close to 20,0009 and
position the grid opening so that one corner is visible on
the screen. Move the image by adjustment of only one
translation control, carefully examining the sample for
fibers, until the apposite side of the opening is
encountered. • Move the image by one screen width using the
31
-------
ASBESTOS ANA1VSTS - HATER SAMPLE DATA
COUHT
MAGNIFICATIONS: 6Hd
2 Volun* Taken
Aetivt ATM
FILTRATION *1. Wtind W
: (ftr i.c!««n f» cwuw jHW^t; fon»t 1. S Km of 80 «.««.«>
Figure 7. Sheet for Recording Water Sample Data.
• 32
-------
33
-------
'
calculation.
i.S.S Estimation of Mass Concentration
If the primary objective of the analysis is to determine
.
same precision as that of the 4.ninaiess
However, the mass concentration may be actually meaningless
whencalculated from a low number of fibers observed during
a rSu"ne fib" count, if these fibers have a broad
distribution of widths.
If the mass concentration is the primary interest, and the
Precision required is greater than is possible from the
normal fiber count, a different approach to the fiber count
m™ be used. Initially, establish the largest math of
™ler which can be detected on the grid by a cursory
survey; at a reduced magnification, of a large number of
|rid openings (about 50 J. Calculate the volume of this
fiber. Adjust the magnification to Y^XVSfVKi width
width of 1 mm on the screen corresponds to 10* of the width
*f *H« nr0vlous1v selected large fiber. Carry out a
r^utinePfibe? "count fS I minimum of 100 fibers, recording
only fiber images greater than 1 mm in width. Continue
counting until the total volume of f^ers is ^ least 10
times the volume of the originally selected large fioer,
ThSprecisiSn^nd accuracy of this technique has not been
34 •
-------
by tt.
conventional fiber count.
awsswas
shadowing are described 1«. the paper by O.E. Bradley .
included in the Selected Bibliography.
6.6 Fiber Counting Criteria
6.6.1 Fiber Counting Method
be
1 Fiber counting with this analytical method w
.
sample. . .
6.5.2 Fibers Which Touch Grid Bars
A fiber which intersects a grid bar will be "jmt«J °"ly
Figure 9. Counting of Fibers Which Overlap Grid Bars.
35
-------
6.6.3
a?
been made. • .
Fibers Which Extend Outside the Field of View
continues.
Figure 10. Counting of Fibers Which Extend Outside the Field of View.
6.6.4 Fibers with Stepped Sides -
A fiber with stepped sides will be «siqned a "idth
between the minimum and maximum wiatns.
36
-------
6.6.5 Fiber Bundles ' :
bundle composed of many
as 2J. ^ «.
procedure.
6.6.6 Aggregates of Randcmly Oriented Fibers
2;
SI counted. This 1s Illustrated
COUNT AS a «>UNT AS 3
Figure 12. Counting of Fiber Aggregates.
37
-------
6.6.7
case individual fibers «»
count and mass calculations.
Fibers Attached to Non-Fi! -ous Debris
A f,ber -,y be attached to or
particle of non-fibrous debris.
ihieh appear to be the "ds ofa single fioe^ ^ y
•1 sa?
Examples of tht proew . ure
may be more than, one f MWT
debris; eaeh one should *
fibers and particles 1s
shown I ^
..ached to as | H Qf
t?eat in this way,
, but the assembly
calculations.
Figur, 13.
Counting and Mtasuranent of Fibers Attached to Non-Fibrous Debris.
60T Fiber Identification Procedures
6.7 «1 General
38
-------
for ««jvoca^ident1f1cat1?n is^lted ty
S^ .
fibers examined for ujwujjocfj ^EgftSr of the
-stated 1n the analytical ^s"1*; 1"!^ g? crystal lographlc
fibers am then elassifned on the basis f^^ ffbtrs.
y«a
completely, even
important to
6.7.2 SAED and EDXA Techniques o
Although the precise "'tlons 6.7.4
'
.
EDXA methods is given here
order of work is unimportant
39
•<
i
-------
of i suspected mineral.
Imallest SAED aperture will be necessary.
«cuum evaporation or, more ""«"•"*!»•
r^i^r^if rgjas
provide the required calibration information.
isr. a&s
ir »
and the portion of the fiber should be such that
from neighboring particles.
itber imag! indicatet atthe ftter is oriented with
Hts length coinc dent with the tilt axis of the goniometer
and adjust the sample height until the fiber is at the
40
-------
eucentrie position. Tilt the fiber until a pattern appears
which is a symmetrical,, two dimensional array of spots;.
The recognition of zone axis alignment conditions requires
some experience on the part of the operator. Curing
tilting of the fiber to obtain zont axis conditions, the
manner in which the intensities of the spots vary should be
observed. If weak reflections occur at some points on a
matrix of strong reflections, the possibi lity °f multiple
diffraction exists,, and some caution should bt exercised in
selection of diffraction spats for mtasuremente A JUN
discussion of electron diffraction and multiple diffraction
can be found in the references by
-------
The distances of
fSur angles shown
Since the center spot 1s
The required
»»
precision.
The camera
is given bys
constant (XL) required for the computer program
where;
a «
h- k 1
Wavelength of the incident electrons
Effective camera length in mm
Unit cell dimension in Angstroms
Diameter of the (h, k. 1) diffraction
rings in millimeters
Miller indices of the scattering plane
of the crystal.
Using gold, the camera constant is given by:
XL - 2.3548 D (first ring)
XL - 2.0393 0 (second ring)
"
contain silicon.
42
-------
j-'ulon Eltctro-
Microscopy (STEM) mode of operation.
elemental peaks
acquisition times.
6.7.3 Analysis of Fiber Identification Data
Since the fiber identification procedure can be involved
and time^onsuming, a Fortran, computer program has been
- . 5rovided?tSe listing of which is given in Appendix A.
43
-------
of anflthtr '*"«*«"
unHwly
SAED patterns.
The computer rf» classics flgjr,
instructions in Section
t
and goniometer
isss a
index patterns Whic5jr?h! Strictures of the minerals
their consistency with the structures or
already pre-s'elected on^the basis or wj u
the structures of "jn-wphib «»• "J"? rj^ zone wis data
•
then return a second and usua i 1* ^ A second set of zone
«?a ?^^lf& o |« f^-"-
can then be P™c?ssed.ei!h!Lf!uitv In addition, the angle
44
-------
In oractice the full program will. normally be applied-
v2ry few fibers? units! precise identification of all
fibers Is required.
6.7.4 Fiber Classification Categories
It 1s not- always possible to proceed to a definitive
s s tf stf-as » s
' «was
classification has been devised to permit accurate
recording of data. The classifications art shown in Tables
3 and 4, and are directed towards identif eation of
ehrysotile and amphibole respectively. Fibers will be
reported in these categories. »
-The general principle to be followed in this analytical
procedure is first to define the most specific fiber
classification. (targtt classification) which is to be
attempted. Then, for each fiber examined, the classifica-
tioTwhieh is actually achieved is recorded. Depending on
the intended use of the results, criteria for acceptance of
fibers as "identified" can then be established at any time
after completion of the analysis.
- In an unknown sample, chrysotile will be regarded as
confirmed only if a recorded, calibrated SAEO pattern from
one fiber in the CD category 1s obtained. Amphibole will
be regarded as confirmed only by obtaining recorded data
which yields exclusively amphibole solutions for fibers
classified in the AZQ8 AZZ or AZZQ categories.
6.7.5 Procedure for Classification of Fibers With Tubular
Morphology, Suspected to be Chrysotile
Many fibers are encountered which have tubular morphology
similar to that of chrysotile, but which defy further
attempts at characterization by either SAEO or EDXA. They
may be non-crystalline, in which case SAED. techniques are
not useful, or they may be In a position on the grid which
does* not permit an EDXA spectrum to be obtained.
Alternatively, the fiber may be of organic origin, but not
- sufficiently definitive that it ean be disregarded.
Classification attempts will meet with various degrees of
success. Figure 15 shows the classification procedure to
'be used for fibers which jisplay any tubular morphology.
45
-------
TABLE 3. CLASSIFICATION OF FIBERS WITH TUBULAR MORPHOLOGY
TM - Tubular Morphology not sufficiently characteristic
for classification as chrysotne
CM . characteristic Chrysotile Morphology
CO - Chrysotile SAED pattern •
CQ - Chrysotile composition by Quantitative EDXA
Chrysotile Morphology and composition by
em VtM J *»*» «*• e •«•--— - |
Quantitative EDXA
Chrysotne SAED pattern and composition by
Quantitative EDXA
NAM . Non-Asbestos Mineral
TABLE 4. CLASSIFICATION OF FIBERS WITHOUT TUBULAR MORPHOLOGY
UF .. Unidentified Fiber
an - • Amphibole by random orientation SAED (shows,layer
•pattern of 0.53 nm spacing)
AX - Amphibole by qualitative EDXA. Spectrum has elemental
components -consi stent with amphibqle
ADX = Amphibole by random orientation SAED and Qualitative
EDXA '
•
AQ - Amphibole by Quantitative EDXA
AZ - Amphibole by one Zone Axis SAED .
AOQ - Amphibole by random orientation SAED and Quantitative
EDXA
AZQ - Amphibole by one Zone Axis SAED pattern and Quantitative
EDXA '
AZZ - Amphibole by two Zone-Axis SAED patterns with consistent
inter-axial angle
AZZQ - Amphibole by two Zone Axis SAED patterns, consistent
inter-axial angle and Quantitative EDXA
NAM - Non-Asbestos Mineral
46
-------
ExwriM by SAEO
Chrysetile
pattern
Chrysotile
pattern
Pattern not
chrysotile
Pattern not present
or indistinct
Pattern not present
or indistinct
Exarine by quantitative EDXA
by ouantitativ. EDXA
not
that of-enrysotile
dirysotiie
comositien
Oirysotile
coeposition
Cowposition not
that of cbrysotHe
Examine by quantitative EDXA
ChrysotiH
Composition not
««at of chrysotllo
No Spectrum
Figure 15
Classification Chart for Fiber With
Morphology.
-------
chrysotile fiber count.
53tt«B
Tht morphological characteristics required will be:
low for internal structure to be visible, and
SMS -
r, which may .degrade in the electron beam
to the appearance shown in Figure 168.
rffl "
,
micrograph of at least one representative fiber will
Its SAED pattern will also be recorded on
sisas
Sttl W S 8clonesi »lm they « exOT1ned by EDXA.
48
-------
0.0 5 jure
Figure 16A. TEM Micrograph of Chrysotile Fibril, showing Morphology.
168-
49
-------
;:«• $>
-
In the EDXA analysis of chrysotile there are only two
elements which are relevant. For fiber classification, the
EDXA analysis must be quantitative. If the soectrum .
displays prominent peaks from magnesium and silicon, wjjth
their areas 1n. the appropriate ratio, and with only minor
peaks from other elements, the fiber will be classified as
chrysotile by quantitative EDXA, In the categories CQ, CMQ
or CDQt as appropriate.
For chrysotlle analyses there are essentially three
possible levels of analysis:
.1. morpholoqlcal and SAED discrimination only (Target
classification CO);
•
2. 1n addition, EDXA of only those fibers unclassified by
SAED (Target classification CD);
3. EDXA in addition to SAED on eall fibers (Target
classification CDQ).
Procedure for Classification of -Fibers Without Tubular
Morphology, Suspected to be Amphibole
Every particle without tubular morphology and which is not
obviously of biological origin, with an aspect ratio of 3
to 1 or greater and having parallel or stepped sides, will
be considered as a suspected amphibole fiber. Further^
examination of the fiber by SAED and EDXA techniques will
50
-------
meet with a variable degree of success, depending on the
nature of the fiber and on a number of instrumental
limitations. . It will .not be possible to identify every
fiber completely, even if time and cost were of no concern
Moreover, confirmation of the presence of tmphibole can be
achieved only by quantitative interpretation of zone axis
SAED patterns, a very time-consuming procedure.
Accordingly,, for8 routine samples from unknown sources, this
analytical procedure limits the requirement for lone axis
SAEO work tb a minimum of ont fiber representative of- each
compositional class reported. In some samples, It may be
necessary to identify more fibers by the zone axis
technique. When analyzing samples from well-characterized
sources, the cost of identification by zone axis methods
may not be justified.
The 0.53 nm layer spacing of the random orientation SAED
pattern is not by itself diagnostic for amphibole.
However, the presence of e-axis twinning in many fibers
leads to contributions to the layers in the patterns by
several individual parallel crystals of different axial
orientations. This apparently random positioning of the
spots along the layer .lines, if also associated with a high
fiber aspect ratio, is a characteristic of amphibole
asbestos, and thus has some limited diagnostic value. If a
pattern of this type is not obtained, the identity of the
fiber is still ambiguous, since the absence of a
recognizable pattern may be a consequence of. an unsuitable
orientation relative to the electron beam, or the fiber may
be some other mineral species.
Figure 18 shows the fiber classification chart for
suspected amphibole fibers. This chart shows all the
classification paths possible in analysis of a suspected
amphibole fiber9 when examined systematically by SAED and
ED'XA. Initially two routes are possible, depending on
whether an attempt to gbtain an EDXA spectrum or a random
orientation SAED pattern is made first. Thi normal
procedure for analysis of a sample of unknown origin will
be to examine the fiber by random orientation SAED,
qualitative EOXA, quantitative EOXA, and zone axis SAED, in
this sequence. The final fiber classification assigned
will be. defined either by successful analysis at the target
level or by the instrumental limitations. The maximum
classification achieved for each fiber will be recorded on
the counting sheet 1n the appropriate eolumru The various
classification categories can then be combined in any
desired way for calculation of the fiber concentration, and
a complete record of the results from each fiber is
maintained for reassessment of the data if necessary.
51
-------
It IM aw «•<« S«O
MtttfC OMftOM -401
MM:
Figure 18. Classification Chart for Fiber Without Tubular Morphology.
9 Bold Lines indicate the Preferred Paths.
S2
-------
-------
Depending en the particular situation,, four levels of
analysis ean be defined in this analytical -procedure, and
these are shown in Table .So
In the routine unknown sample, a level 3 analysis will be
required if the presence of amphibole is te be confirmed.
For this level of analysis, attempts will be made to raise
the classification of every fiber to the ADQ category. In
addition, at least one fiber from each type of suspected
amphibole found will be examined by zone axis SAEO methods
to confirm the identification.
TABLE 5. . LEVELS OF ANALYSIS FOR AMPHIBOLE
Level of
Analysis
Application
Target
Clissifi cation
for all Fibers
Required Classification
for Confirmation of
Amphibole in a Proportion
of the Fibers
4
Routine monitoring of
known and well-charact-
erized sources for one
mineral fiber type.
Routine monitoring of
known and wel1-charact-
erized sources where
discrimination between
two or more amphibole
fiber types is required
Routine samples from
uncharacterized sources
in which presence or
absence of amphibole
is to be confirmed.
Samples where precise
identification of all
amphibole fibers is
an important issue.
ADX
Not Applicable
ADQ
Not Applicable
AZQ
AZZ, AZQ or AZZQ
Solutions must
include only
amphiboles.
AZZQ - Solutions
must include only
amphiboles.
• 53
-------
6.8
Blank and Control Determinations
o _
6.8.1 Blank Determinations
At le«t one blank
e»ery group of samples
blank determination, a
prepared by ftratlon of- 100
filter 1.111 be
treated
water used for the
same time as the group
t
6.8.2 Control Samples
,.
con«ntrat1ons found in
concentration value should not oe re MB « ^ coinmended
-------
CALCULATION OF RESULTS
a
catoUtlonrire iade .re- described beTow.
7.! Test for Uniformity of Fiber Deposit on Sectron Microscope Grids
A check must be made
u" If
'A! te AI<, then
the total ana examined is
i *
A * / , "i
The fraction of the total area examined which Is represented by the
ass's jsaa »i d« ,-
that grid opening
fi «
tarea Sf if S^f "Se observed number found on
ning is n1v then?
i » k
This value It
55
-------
7 2 Calculation of the Mean.and Confine Interval
of the Fiber Concentrate
the
count, a
* » "
at hih fiber counts. '^rvals naVrower
assumed
SS.STS
»«-
count
ssrsga-dS
confidence intervals.
At 10W- fiber counts,
tstitnate of the ^"J^SJlvlbllan. For 30 fibers and
•asynroetric, but not necessarily Poisson^an. He that the rf
ealc"at1oS of the confidence Intervals.
. For total fiber counts less 'than S the lower 93 i egfldjne.
corresponds to one fiber «; '«SJ» ff1ber count of zero is 3.69
Polsson upper
9S« confidence value
56
-------
For fiber counts W*r than
estimate. For>ounts °^n*?maL of variance is calculated using
In summary, fiber counting data will be reported as fallows;
No fibers detected
the value will be reported as less than 369% of the
concentration equivalent to one fiber .
1 to 4 fibers
(Poisson).
s to 30 fibers
Mean and 95% confidence intervals will be reported on the
basis of the Poisson assumption.
More than 30 fibers
When more than 30 fibers are counted, both the Gaussian 95%
SiSe Tte'rval and the ™™&^^£3ft*
will be calculated. The larger of these 2 intervals wi u
- be selected for data reporting. When the Gaussian 95-
confiSf in?erval is Selected for data reporting, the
Poisson interval will also be noteo.
s s-^aar
less than 4 grid openings.
57
-------
The sample estimate of variance-S2 is first calculated:
i • k
"i
n
Pi
(nr- rip.;)2
i » 1
(k - 1) .
•
. Number of fibers on the i'th grid opening
> Total number of fibers found in k grid openings
» Fraction of the total area examined represented by
the I'th
-------
The fiber concentration 1n MFl which corresponds to counting of one
fiber Is given bys . - ;
A
f
A x v x louu
where:
» Effective filtration area of filter membrane in
mm2 used for filtration of liquid sample
a Total area examined in. mm2
. Original volume of sample filtered
m Dilution ratio of original sample
The mean concentration in MFL is obtained by mult P1^ the mean
• number of fibers per grid opening by kC. To °b.ta1"f * "f^,!?^
"owe? 95% confidence limits for the concentration (in MFL) multiply
the values ny and "L by kC*
7.3 Estimated Mass Concentration
The mass of each amphibole fiber in micrograms is calculated using
the relationship:
o
M * L -x W.2 x 0 x 10"S
where:
M » Mass in mierograms
L * Length in urn
W » Width in ym
0 » Density of fiber in g/cm3
S9
-------
For chrysotile, the mass may be,calculated using the
' for a cylinders .
M * f x L x W2 x B x 10°s -
The estimated mass concentration is thtn given by:
i * n
C x
10s
where:
Mi
n
Mass concentration in yg/L
fiber concentration in MFL, which corresponds to
counting of one fiber
Mass of the i'th fiber, in micrograms
TotaT number of fibers found in k grid openings
* *
The densities to be assumed are as follows:
Chrysotile
Crocidolite
Cummingtonite
Srunerite
Amosite
Anthophyllite
Tremolite
Actinolite
Unknown Amphibole
2.55 g/cm3
3.37 g/cm3
3
3f A _ * «»CIB**
843 g/em
3
3.00 g/cnr
3.00 -g/cm3
3.10 g/on3
3.20
60
-------
7 4 Fiber Length, Width, Mais and Aspect Ratio Distributions
'
all of ^ese requirements. ™e <*hf g^^oSe interval point,
length distribution should inclu de o.s wm as o method, and
since this is the minimum 1 engt h |o be co untea i result1ng Slze
the minimuns aspect Catl°x:s.^hr,^«nrean be seen in the examp-le
elasses for
scale and a Saussian abscissa.
741 Fiber Length Cumulative Number Distribution
"
i « k
C(N)k *
100
.i
wherei
C(N)k
"i
N
Cumulative number percentage of fibers
which have lengths less than .the upper
bound of the k'th class
Number of fibers in the i'th length class
Total number of length classes
61
-------
742 Fiber Width Cumulative Number Distribution
in 7.4.1 for the length distribution.
743 Fiber Langth Cumulative Mass Distribution
length to be- determined.
relationships
computer
•(M)k
-
Z
j - 1
c(M)k
"i
where:
» Cumulative mass percentage of fibers which
have lengths less than the upper bound of
the k'th class
« Number of-fibers in the ieth length class
1. « Length of the j.'th fiber in the i'th
J length class
Wj » Width of the j'th fiber in the i'th length
^ class -
N - Total number of length classes
7.4.4 Fiber Aspect Ratio.Cumulative Number Distribution.
This distribution allows the fraction of the total number of
fibers which have aspect ratios either smaller or larger
than a given aspect ratio to be determined, it is
-------
calculated In a similar way to that used in 7.4.1 for the
length distribution. - •
7.4.5 . Fiber Mass Cumulative Number Distribution ., •
This distribution allows the fractiorwof tht total number
of fibers which have masses either smaller or larger than a
given mass to be determined. It is calculated by placing
the fibers into logarithmically-spaced mass categories,
after which the cumulative frequency distribution is
obtained in a similar way to that used in 7.4.1 for the .
length distribution.
7.5 Index of Fibrosity
It is possible to discriminate between amphibole asbestos fibers
and amphibole cleavage fragments on the basis of the distribution
of their aspect ratios. The concept of fibrosity in a mineral
embodies a high median aspect ratio, together with a large spread
of aspect ratios above the median value. A single number can be
used to describe the fibrosity of a mineral fiber dispersion, and
in many cases the value can be used to state if the material is or
is not asbestos. The fibrosity index can be defined thus;
F.R9
where R is the median of the aspect ratio distribution and g is the
geometric standard deviation of the aspect ratio distribution above
the median. The value of g is obtained from that portion of the
distribution lying between one and two geometric standard
deviations above the median. Meaningful values of the index of
fibrosity can be obtained for most waterborne fiber dispersions if
more than 50 fibers have been measured.
The fibrosity index as defined above has values exceeding 100 for
waterborne dispersions of asbestos. Values below 50 indicate a
distribution characteristic of cleavage fragments, or one from
which the high aspect ratio fibers have been selectively removed.
8. REPORTING • 0
The computer program provided in Appendix 8 satisfies all of the
reporting requirements* for this analytical method, and it is recommended
that tnis format be used. The size classifications used must be the same
as those in Appendix 8.
63
-------
8.1 Before the fiber count data can be processed to give concentration
values, a decision must be made: as to which fiber^classifications
are to be -considered adequate as identification of the fiber
species in question. This.decision will depend on hew much is
known about the particular source from which the sample was
collected.
For a sample from a completely uncharacteriled source, the
following procedure will be used to accumulate the classified
fibers:
a) Confirmed Amphibole: AZZQ + AZQ * AZZ
(solutions must include only
amphiboles)
b) Amphibole Best Estimate*: AZZQ + AZQ + AZZ * AZ *
AOQ + AQ
c) Suspected Amphibole: AOX + AX
d) Confirmed Chrysotile: CDQ + CD
e) Chrysotile Best Estimate*: CDQ
f) Suspected Chrysotile: CM
AD
CD + CMQ + CQ
*NOTE:
Best, estimate can be reported only if some fibers are also
reported in the confirmed category, otherwise all fiber
classifications must be reported as suspected amphi bole or
Chrysotile.
8.2 The concentration in MFL, together with 9S% confidence intervals,
will be reported for the groupings in Section 8«1 (a) to (f).
8.3 Two significant figures will normally be used for concentrations
greater than 1 MFL, and one significant figure for concentrations
less than 1 MFU
8.4 For confirmation of Chrysotile, a micrograph and a calibrated
diffraction pattern will be provided from a typical fiber. The
identification features in Figure 17 must be visible on the
diffraction pattern.
For confirmation of amphibole, either '(1) or (2) or* (3) below must
be provided for a typical fiber of each amphibole variety
reported. The data provided must yield solutions which include
only amphibole.
1) A micrograph* a calibrated zone axis SAEO pattern, and
an EDXA spectrum together with peak area measurements
and EDXA calibration data;
64
-------
2) A micrograph, and two calibrated zone axis $A|D
patterns with a measurement of the angular rotation
between the two patterns;
111*11 peak
8,5 Tabulate the length, width and aspect ratio distributions.
8.6 Report the estimated mass concentration in ug/L for each of the
groupings in Section 8.1 (a) to (f}.
8e7 One significant figure will normally be used for reporting mass
concentration.
8.8 Report the concentration in MFL corresponding to one fiber
detected. . •
8.9 'Report tlft total number of fibers counted in each of the groupings
in Section 8.1 (a) to (f).
" 8.10 Report the X2 value for each of "he groupings in Section 8.1 (a)
to (f). .
8.11 Report the number of fiber aggregates not included in the fiber
count
8.12 Report any special circumstances or observations such as
aaareaation presence of organic materials, amount of debris,
SrlslSeS? other fibers and their probable identity if known.
9. LIMITATIONS OF ACCURACY
9.1 Errors and Limitations of Identification
Cflmnlete identification of every chrysotile fiber is not possible,
dueto both instrumental limitations and the nature of some of the
halloysite, vermiculite scrolls or palygorskite, all of which can
be di scrim nated from chrysotile by the use of EDXA and by
observation of the 0.73 nm (002) reflection of chrysotnle in the
SAED pattern.
As in the case of chrysotile fibers, complete identification of
every amphibole fiber is not possible due to instrumental
65
-------
limitations and the nature of some of the fibers. Moreover,
complete identification of every amphibole fiber is usually not
practical due to limitations of both time and cost. Particles of a
number of other minerals having compositions similar to those of
- some amphiboles could be erroneously classified as amphibole when
the classification criteria do not include zone axis SAED
techniques. However, the requirement for quantitative EDXA
measurements on all fibers as support for the random orientation
SAED technique makes misidentification very unlikely, Particularly
when other similar fibers in the same sample have been identified
as amphibole by zone axis methods. The possibility of
' misidentificatioir is further reduced with increasing aspect ratio,
since many of the minerals with which amphibole may be confused do .
not display its prominent cleavage parallel to the e-axis.
9.2 Obscuration
If large amounts of other materials are present, some asbestos
fibers may not be observed because of physical overlapping. This
will result in lew values for the reported asbestos content.
•
9.3* Inadequate Dispersion
If the initial water sample contains organic material which is
incompletely oxidized in the ozone-UV treatment, it will not be
possible to disperse any fibers associated with the organic
material. This may lead to adhesion of some fibers to the
container walls and aliquots taken during filtration will then not
be representative. It may also lead to a large proportion of fiber
aggregates which are either not transferred during the replication
and filter dissolution step or which cannot be counted during the
sample examination. The result obtained from such an analysis will
be low. The sample'will also be inadequately dispersed if it is
not treated in an ultrasonic bath prior to filtration, and
therefore instructions regarding this treatment must be followed
closely. ,
9.4 Contamination
•
Contamination by introduction of extraneous fibers during the
analysis is an important source of erroneous results, particularly
for chrysotile. The possibility of contamination, therefore,
should always be a consideration.
9.5 Freezing
Tha effect of freezing on asbestos fibers is not known but there is
reason to suspect that fiber breakdown could occur and result in a
higher fiber count than was present in the original sample.
Therefore, the sample should be transported to the laboratory and
stored under conditions that will avoid freezing.
66
-------
10. PRECISION AND ACCURACY
*
10.1 General .
The precision that can be obtained is dependent upon the number of
fibers counted, and on the uniformity of particuTate deposit on-tne
original filter. If 100 fibers are counted and the loading is at
least 3.5 fibers/grid square, computer modeling of the counting
procedure shows that a relative standard deviation of about 10% ean
be expected. As the number of-fibers counted decreasiis, the
precision will also decrease approximately as *TI where N is the
number of fibers counted. In .actual practice, some degradation
from this precision will be observed. This degradation is a
consequence of Sample preparation errors, non-uniformity of the
filtered particulate deposit, and fiber identification variability
between operators and between instruments. The 95% confidence
interval about the mean for a single fiber concentration
measurement using this analytical method should be about ±25% when
about 100 fibers are counted over 20 grid openings. For these
conditions the precision of the computed mass concentration is
genei*ally lower than the precision for the fiber number
concentration. The precision \o be expected for a single
determination of mass concentration is critically dependent on the
fiber width distribution. For a result based on measurement of a
minimum of about 100 fibers, the 95% confidence interval about the
mean computed mass concentration may vary between ±25% and ±60%.
If better precision is required for a mass determination, the
.alternative counting method described in Section 6.5.5 should be
used.
10.2 Precision
- 9
10.2.1 Intra-Laboratory Comparison Using Environmental Water
Sources
" Table 6 shows the results obtained from analysis of 10
replicate samples from each of 8 water sampling locations.
Four of these locations were associated with a source of
chrysotile and four associated with a source of amphibole.
It can be seen that the relative standard deviations of the
number concentrations range between 132 and 22%. The
corresponding relative standard deviations for the mass
concentrations range between 29% and 69%.
10.2.2 Inter-Laboratory Comparison of Filters Prepared Using
Standard Dispersions and Environmental Water Sources
Tables 7 and 8 show the fiber counting results obtained
when sectors of filters prepared in the ORF Laboratory were
distributed to six laboratories considered experienced in
asbestos analysis by the identification and counting
techniques incorporated in this manual. The samples as
e '
.67
-------
Si 2 S 2232
68
-------
S S !£ S •*
• • < i i g
s s s a 55 a
69
-------
70
-------
distributed were identified by number only. In Table 7 It
SSS--B sftsrjiasfasais»i0R«.*.
.
relative standard deviations do not .exceed 29J, which
appears higher than the values obtained for the
Intra-laboratory results. However, when the 6 .
Inter-laboratory results are compared with the 10
intra-laboratory values, there is no statistically
significant difference to indicate that there has been any
degradation of precisiene
.3 Accuracy
l e
W.3.1 Intra- and Inter-Laboratory Comparison of Standard
Dispersions of Asbestos Fibers
Tables 9 and 10 show the results obtained between two
laboratories when stable aqueous fiber dispersions of known
mass concentrations were analyzed. The fiber
concentrations reported displayed no sign! Meant difference
between values from the two laboratories. The relative
standard deviation of the mean fiber concentration was 17%
for chrysotile and 163 for crocidolite. The correspond tng
relative standard deviations for the mass concentration
were 16Z for chrysotile, and 37% for erocidolite. The
hioher variability for crocidolite is a consequence of the
low statistical reliability of the large diameter fiber
counts. The computed mean mass concentration for
chrysotile was about 46% higher than the known mass
concentration. This may be a consequence of the djfficu Ity
of diameter measurement for single chrysotile fibrils or
the assumption of the bulk value for the density. The
computed mean value for mass concentration for the
crocidolite sample was 67.4 wg/L, which is very close to
the known concentration of 50 ug/L:
71
-------
I
s?
5?
UI
72
-------
1
"o
i
IhS
tt.
en
s
en
«e <
S£ u.
is o
2
U4
S
UJ
as,
o
VJ
to
73
i .
-------
SELECTED BIBLIOGRAPHY
c H and J M Long (1980). Interim Mtthod for Determining Asbestos
ta' fcSort Ept600/4"80-OOS. U.S. Envi ronmental Protection Agency,
AthSl! eeSS? AvJllble tt«ugh National Technical Information Service,
Springfield, Virginia 22161. .
Washington, D.C. 20402.
Batts. R.L. and J.A. Jackson (1S80). Slossary of Geology, Second Edition.
American Geological Institute, Falls Church, Virginia 22041.
Beanan, D.R. and D.M.'File (1976). Quantitative Determination of Asbestos
Fiber Concentrations. Anal. Chem. 48(1): 101-110-
Bradlev D E (1965). Replica and Shadowing Techniques. In' Techniques for
!uct%n Microscopy. BUdcwell Scientific Publications, Alden Press, Oxford,
D.H. Kay -(ed.). 96- 152.
A^
Circular SSl! U.S. Bureau of Mines, Avondale Research Center,
4900 LaSalle Road, Avondale, Md 20782,, -
Chatfleld, E.J. (1979). Preparation and Analysis of Particulate Samples by
EUctrS MllroscJpy ilth Special Reference to Asbestos.. Scanning Electron
Mlcroscopy/1979/I, SEM Inc., AMF O'Hare, Chicago, Illinois 60666. 563-578.
ld E J. and M.J. DUlon (1979). A National Survey for Asbestos
s n clnadian Drinking Water Supplies. Health and Welfare Canada Report
79-EHD-34. Information Directorate, Department of National Health and
Welfare, Brooke Claxton Building, Ottawa, Canada K1A OK9.
«&sMtM^^^
Mississauga, Ontario, Canada.
Chatfield, E.J., R.W. Glass and M.J. Dillon (1978). Preparation of Water
e^^inr- fnv flehoctn*; Piher Countina by Electron Microscopy, Report
fffieCW^ll! U.s! lnvirS!!SntalProtect1on Agency, Athens, Georgia
Available through the National Technical Information Service, Springfield,
Virginia 22161.
74.
-------
fol. 6, No. 4S 241-247.
. p.«. , I.B.
cl;:65)
Kay, O.H. (1M). Technics for ^ectron K^croscop,. il.d-.ll
Publications, Alden Press, Oxford.
U-. E.E.
16, 501*520.
of A^Mboles. The Canadian H1nera,o91St.
tee,
^
677-686.
. B«1c Concept,
CMcaco, Illinois.
Canada, M5S 2C6.
Works Assoc., Denver, Colorado,
McCrone H.C. and I.H. Stewart (1974). Asbestos. Amer. Lab. 6(4) 13-18.
75
-------
ffltf. •j*g'
Washington, D.C. 20402
Bureau o. rsandar*
"»««-
Printing Office, Washington
S.udra, A.V.
from Selected Area
385-39Z.
pectron Microscopy,
60616,
a
Science 19, 549-559.
-
11, 1-40.
Steen, 0. (1981).
ft
Switzerland.
Wenk, H.R. (Editor) (1976)
Spnnger-Verlag, New York.
Electron Hicroscbpy in Mineralogy.
76
-------
APPENDIX
TEST DAIA AND COMPUTER
TO* raffi
axis angle was 21°.
SIZE)
77
;
-------
PARTICLE IDENTIFICATION
DATES 23-JUN~82
PARTICLE: UNKNOWN SAMPLE X
WIDTH OF PARTICLES 0.700 microaeters
CALCULATED
ATOMIC RATIOSs
ELEMENT
SI
NA
ELEMENT
SI
HA
PEAR AREA
5325.00
597.00
RATIO
1.000
0.430
ELEMENT
FE
•
9 ELEMENT
FE
PEAK AREA
2157.00
RATIO
0.425
MINERALS WITH COMPOSITIONS CONSISTENT WITH X-RAY SPECTRUM
AEGIRINE
CROSSITE
FE-RICHTERITE
RIEBECKLTE
(FE,AL)2 SIS 022
-------
BATE: 23-JUN-82
PARTICLE IDENTIFICATION-
«
PARTICLES UNKNOWN SAMPLE X
ELECTRON DIFFRACTION PATTERN, FIBER 2 PATTERN 34
CAMERA CONSTANT- 83*030 «m*A
DISTANCES OF DIFFRACTION SPOTS (m)
4.580 15.520 30.700 15.520 4.580
ANGLES BETWEEN SPOTS (degrees)
80.70 89.80 97.50 180.00
COMPLETE ELECTRON DIFFRACTION
ANALYSES MAY BE FOUND IN FILE "XINDEX"
MINERAL
GROSSITE
-20-1 201
FE-RICHIERHE .
201 -2-0-1
RIEBECKITE . _ n .
201 -20-1
RESULTS OF ZONE AXIS ANALYSIS
•»
. e ALPHA BETA GAMMA
So
« -
9e65 17.91 5.32 90.00 103.60 90.00
fe82 17.96 5.27 90.00 104.33 90.00
9,75 18.00 5.30 90.00 103.00 90.00
79
-------
PARTICLE IDENTIFICATION
PARTICLE: UNKNOWN SAMPLE X
ELECTRON DIFFRACTION PATTERN: FIBER 2 PATTERS 41
CAMERA CONSTANT- 81.480 aa*A
DISTANCES OF DIFFRACTION SPOTS (at)
12.120 9.070 15.420 10.520 12.110
ANGLES BETWEEN SPOTS (degrees)
* 57.50 98.50 134.00 179o90
COMPLETE ELECTRON
DIFFRACTION ANALYSES MAY BE FOUND IN FILE "XINDEX"
RESULTS OF ZONE AXIS ANALYSIS
MINERAL
CROSSITE
5-12 -5 -1 -2
fE-RICHTERlTE
5-12 -5 -1 -2
RIEBECKHE
5-12
1 C -1
B
C ALPHA BETA GAMMA
9.65 17.91 5.32 90.00 103.60 90.00
-101 10-1
9.82 17.96 5.27 90.00 104.33 90.00
-1 0. 1 - 1 0 ~l
Sl.75 18.00 5.30 90.00 103.00 90.00
-101 -5 -1 ~2
80
-------
PARTICLE IDENTIFICATION
PARTICLES UNKNOWN SAMPLE X •
SATEs 23-JUN-82
ELECTRON DIFFRACTION PATTERNS!
.#1? FIBER 2 PATTERN 34
#2s FIBER 2 PATTERN 41
MEASURED INTER-ZONE AXIS ANGLE- 21.00
+/- 6
degtees
COMPLETE INTER-ZONE AXIS ANGLE ANALYSIS MAY BE FOUND IN FILE "PHIDAT"
RESULTS OF INTER-ZONE AXIS ANGLE ANALYSIS
* ZONE AXIS OF #1 ZONE AXIS OF #2 ANGLE
CROSSITE
CROSSITE
FE-RICHIERITE
FE-RICHTERITE
RIEBECKITE
RIEBECKITE
2 0 -1
201
201
•2 0 -1
•2 0 -1
-5 -1 -2
5-12
5-12
-5 -1 -2
5-12
-5 -1 -2
21.14
21.14
20.90
20.90
20.99
20.99
81
-------
A
of
TEST DA3* EXAMPLE 2: AMFKBOI*
CHSER 3)
u«s 65°.
tits
o* wo .l««o»
-
yfcl3ig?$~se.f?tjb'&"~-->»"- • •
3.
-------
f ARTICLE IDENTIFICATION
OATEs 23-JUN-82
PARTICLE? UNKNOWN SAMPLE #1
WIDTH OF PARTICLES 0.500
X-IAX SPECTRBMs ELEMENT PEAK
SI §249.00
m
PEAK AREA
2ioo0oo
CALCULATED
ATOMIC RATIOS:
ELEMENT
NA
RATIO
1.000
0.449
ELEMENT
FE
RATIO
0.420
MINERALS WITH
AE6HHNE
CROSSITE
FE-RICHTERXTE
R1EBECKITE
COMPOSITIONS CONSISTENT WITH X-RAY SPECTRUM
CFE,AL)2 8X8 022 (OH)2
FE5 SIS 022 (OH)2
NA2 FE3 FE2 SIS 022 (OH)2
83
-------
PARTICLE IDENTIFICATION
DATES 23-JUN-82
'"'!
PARTICLE: UNKNOWN SAMPLE #1
ELECTRON DIFFRACTION PATTERN: FIBER 3 PATTERN 32
CAMERA CONSTANT- 83.500 nm*A
DISTANCES OF DIFFRACTION SPOTS (n»)
16.170 8.710 19.740 15.790 16.180
ANGLES BETWEEN SPOTS (degrees)
71.80 123.00 148.30 180.00
COMPLETE ELECTRON
DIFFRACTION. ANALYSES MAY BE FOUND IN FILE "XINDET
RESULTS OF ZONT. AXIS ANALYSIS
MINERAL
AEGIR1NE
010
CROSSITE. . '
0-10 -71-6
FE-RICHTERITE
0-10 716
RIEBECKITE
0-10
A B C ALPHA BETA GAMMA .
j
9.65 8.79 5.29 90.00 107.40 90»00
9.65 17.91 5.32 90.00 103.60 90.00
716
9.82 17.96 5.27 90.00 104.33 90.00
-7 1 -6
9.75 18,00 5c30 90.00 103*00 90.<
716 -71-6
84
-------
PARTICLE IDENTIFICATION
DATES 23-JUN-82
PARTICLES UNKNOWN SAMPLE #1
ELECTRON DIFFRACTION PATTERNS FIBER 3 PATTERN 30
CAMERA CONSTANT- 81.520 aa»*A
DISTANCES OF DIFFRACTION SPOTS (am)
20*250 15*040 16.420 10.520 2(
ANGLES BETWEEN SPOTS (degrees)
30.80 69.70, 133.30 180.00
COMPLETE ELECTRON
DIFFRACTION ANALYSES MAY BE FOUND IN FILE "XINDEX"
MINERAL
RESULTS OF ZONE AXIS ANALYSIS'
. * g ALPHA BETA GAMMA
A ' B
9.65 17.91 5.32 90.00 103.60 50.00
4-11 3-16 -3 -1-6
9.82 17.96 5.27 90.00 104.33 90.00
4-11 3-16 -3-1-6
9.75 18.00 5.30 90.00 103.00 90.00
3™! 3-16 9-16 -4-1-1 -3-1 -6 -9 -1 -6
85
-------
•DATES 23-JUN-82
PARTICLE IDENTIFICATION
PARTICLE: UNKNOWN .SAMPLE fl
ELECTRON DIFFRACTION PATTERNS:
fl: FIBER 3 PATTERN 32
#2: FIBER 3 PATTERN 30
MEASURED INTER-ZONE AXIS ANGLE- 65.40 +/
- 8-00
COMPLETE
! INTER-ZONE AXIS ANGLE ANALYSIS MAY BE FOUND IN FILE "PHIDAf"
RESULTS OF INTER-ZOME AXIS ANGLE ANALYSIS
ZONE AXIS.OF fl ZONE AXIS OF #2 ANGLE
CROSSITE
CROSSITE
CROSSITE
CROSSITE
FE-RICHTERITE
FE-RICHTERITE
FE-RICHTERITE
FE-RICHTERITE
RIEBECKITE
RIEBECKITE
RIEBECKITE
RIEBECKITE
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-1" 0
0-10
0-10
0-10
0-10
-4 -1 -1
4 -I 1
3-16
-3 -1 -6
-4 -1 -1
4 -1 1
3 =1 6
-3 -1 -6
4-11
3-16
-4 -1 -1
-3 -i -6
64.59
64.59
64.59
64.59
64o89
64.89
64.41
64.41
64.75
64.69
64.75
64.69
86
-------
If *-«y peak
. CEIi, P80HIB
«hlch
solutions for two patterns
sm
T pTOgrams which print results
procedure
data file
»toeral
' the C°1°I>
03. «* oth.r projra..
NOTES
32K words.
87
-------
•".>...«•"*'••
- Some of the input/output statements;^* specific to the IU-11N
operating system.
The following main programs are run sequentially in order,
' XMAICH, XIDEN, ANGDIF, RESULT
They are most easily run fro. a command file (see command
example)
Data Files Used in
DZFDAT - » P.««"« «U. «.«, cty.t.U.»wphtc
in£or».ti=n on ^1 of the ^nerals being d»d»d for consisten
with the experimental daea
. . ^porar,. file » «».f.r reduced data fr» »ATCH to XIDEH
»d BATPAU - temporary flies to transfer reduced oat. fro.
XIDEN and ANGDIF
- a temporary file to transfer reduced data from ANSl^ f RESUL
XINDEX and PH1DAT - temporary files containing the calculations from the
* electron diffraction analysis and the ihter-sone axis angle
analysis respectively
RESULT - the final output file as shown in the examples
il
-------
XHATCH
eo match X-ray peaks with elements of
le "D1FDAT".
,IDTH or
*.
calibrate the system.
8 char. free format number
enter END to finish
<*
—
-
^ '
at.
Ha. Hg, Al. K, C.. M» and F«.
... BAtA.PBATIO/0.245,0.4,8,l.UO,0.980.0.251.0.785,0.783/
89
-------
!»y«"^i'«* •'
S.. S.ccion 6.7.2 rf M.chodology Ma^-
gxsgg.
with fr»s format
with free
particle
ANGPIF
90
-------
ANALYSIS OF ZONE AXIS ANGULAR DIFFERENCES
MINERAL CROSSITE
PATTERN 1 FIBER 3 PATTERN 32
PATTERN 2 FIBER 3 PATTERN 30
ANGLE"
65.00 ANGULAR TOLERANCE-
ZONE AXIS ANGULAR DIFFERENCES
9*65 17.91
PATTERN 1
U,V,W
C ALPHA BETA
5.32 90.00 103.60
PATTERN 2
Ui.Vl.Wl
0.
0.
0.
0.
-7.
-7.
-7.
-7. '
7.
7.
7.
7«
-1.
-1.
-1.
-1.
1.
1.
1.
' 1.
1.
le
1.
1..
0.
0.
0.
0.
-6.
-6.
-6.
-6.
6.
6.
6.
- 6.
-4«
4.
3.
-3.
-4.
4.
3.
-3.
-4.
4.
3.
-3.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
U
6.
-6.
-1.
1.
6.
-6.
-1.
1.
6.
-6.
8*00
GAMMA
90.00
ANGLE
PHI
64.39
64.59
. 64.59
64.59
44.48
158*95
151.73
48.63
158.95
44.48
48. b 3
151.73
TEMPORARY
FILE "PHIDAT"
91
-------
**
**************************
CAMERA CONSTANT- 83.5000
OE
DIFFRACTED DISTANCES OF SPOTS ARE (MILLIMETERS)
16.17 8.71 19./* «•"
ANGLE TOLERANCE - 2.50 DEGREES
MEASURED ANGLES BETWEEN SPOTS ARE
71.80 123.00 U8.30 180.00 .
^ss*****************************************
REAL CELL CONSTANTS
A B C ALPM BETA GAMMA •
9.650 8.790 5.290 90.000 107.400 90.000
MAXIMUM INDICES ARE 5 5 3
• • •
MAXIMUM DIMENSIONS OF ARRAYS ARE 16 18 16
PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE BEEN OMITTED
TEMPORARY COMPUTED ^TLE "
§2
-------
POINT
1
2
3
4
*» «. i o . .1 < - *«•««« W"*-1 m>NS)
*********************
_• -nnu nTtft?- PATTER
PLANE
(002)
(200)
( 4 0-2)
( 2 0-2)
( 0 0-2)
m .
BSPACS
2.524 •
4.604
2.030
2.559
2.524
USED U
ESTXMATED DSPACE FROM DXFF. PATTERN
2.499
4o639-
2o047.
2.559
2.497
. 80.812
« 83.500)
ANGLE BETWEEN PLANK 1 & 2 -
ANGLE BETWEEN PLANES 1*3-
ANGLE BETWEEN PLANES 1 & 4 -
ANGLE BETWEEN PLANES 1 & 5 -
97
l£80« BiSBHS-
(MEASURED 148.30) DEGREES
(MEASURED 180.00) DEGREES
93
-------
»
CAMERA CONSTANT- 83.5000
DIFFRACTED DISTANCES OF SPOTS ARE
•ANGLE TOLERANCE- 2.50 'DEGREES
OF
(MmiMETERS)
REAL CELL CONSTANTS
A B C ALPHA BETA GAMHA
* 9.647 17.905 3.316 90.000 103.600 90.000
INDICES ARE 5 9 3
MAXIMUM DIMENSIONS OF ARRAYS ARE
36 .21 36
3 SETS OF POS.
IBU ZO«E «ES 1»EX ««• SPECIFIED UMIIS
94
H
1!
-------
SET 1
*******
POINT
1
2
3
4
5
BEST
ZONE AXIS [ 0-1 0]
*********************
PLANE
2 0-2)
200)
202)
002)
-2 0 2)
"( NO SYMMETRICALLY EQUIVALENT
DSPACE ESTIMATED DSPACE FROM DOT-
2.526
4.689
2.069
2.586
2.524
SOL'NS)
4c68S
2* 067
2.583
2.528
CAHEBA CONSTANT USED !K ABOVE «»•»-,£
m 81c680
« 83.500)
0,
SPOTS
BETWEEN PLANES 1
BETWEEN PLANES 1
& 2 - 71.99
*3- 123.03
MGLE BETWEEN PLANES 1*4- 1*8.39
ANGLE BETWEEN PLANES 1 & 5 - 180.00
fMEASURED 71.80) DEGSEES
(MEASURED 123.00) DEGREES
(MEASURED 148.30) DEGREES
(MEASUP.ED 180.00) DEGREES
SET 2
******
POINT
1
2
3
4
5 •
BEST
ZONE AXIS t -7 1 -« ( » SYMMETRICALLY EQUIVALENT SOL^S)
**********************
PLANE
DSPACE ESTIMATED DSPACE FROM DOT- PATTERN
.7 0)
1-1)
-5 -2)
-6 -1)
2.468
.4.865
2.133
2.584
2.468
•1 -7 .0)
CAMEPA CONSTANT USED IN ABOVE
DEVIATION OF MEASURED SPOTS
2.547
4.729
2.087
2.609
2.546
SPACINGS
CONSTANT
82.3S4
83.500)
«smO»S - 0.48,
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 & 3
ANGLE BETWEEN PLANES 1 & 4
ANGLE BETWEEN PLANES 1 & 5
70.10 (MEASURED 71.80) DEGREES
1™.47 (MEASURED 123.00) DEGREES
ilo.04 (MEASURED 148.30) DEGREES
180.00 (MEASURED 180.00) DEGREES
-------
3 ZONE AXIS
POINT
1
2
3
4
5
PLANE
( 1-70)
( 1 -1 -1)
(15-2)
( 0 6-1)
(-170)
716]
( NO SYMMETRICALLY EQUIVALENT SOL'NS)
DSPACE ESTIMATED DSPACE FROM D1PF.
2.468
4o865
2.133
2.584
2.468
2.547
2.087
2.609
2.S46
BEST FIT CAMERA CONSTANT USED IN ABOVE
82.384
83.500)
OP
ANGLE BETWEEN PLANES
ANffl^E BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
-OTS
1 & 2 -
1 & .3
70.10
124o47
.
1 & 4 » 150*04
1
& 5 - 180.00
PosmoHS
.(MEASURED 71.80) —
(MEASURED 123.00) DEGREES
(MEASURED 148c30) DEGREES
(MEASURED 180.00) DEGREES
96
-------
DIFFRACTED DISTASCES OF SPOTS ARE
ANSLE TOLERANCE - 2.50 DEGREES
(MILLIMETERS)
*****************************
SEAL CELL CONSTANTS
B c ALPHA BETA GAMMA
9.W 17.960 5.270 iO.OOO 104.330 90,000
MAXIMOK INDICES ARE 5 9 3
MAXIMUM DIMENSIONS OF ARRAYS ARE
28 25 28
SETS OF
POSSIM ZOKE AXES WEX WITHIS SPECmED UBi
97
-------
SET 1
POINT
1
2
3
. 4
5
ZONE «IS ( 0 -1 01
*********************
PLANE
( 2 0-2)
(200)
( '2 0 2)
( 0 0 -2)
( -2 0 2)
2.525
4»757
2«C48
2.553
2.525
( NO SYMMETRICALLY EQUIVALENT SOLANS)
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
4.694
2.071
2.527
BEST FIT CAMERA CONSTANT USED IN ABOVE
SPACINGS
81.762
83.500)
aEVIAHON 0, MEASURED SPOTS FROM TRUE POSHIOHS - 0.226
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 & 3
ANGLE BETWEEN PLANES 1 & 4
1 ANGLE BETWEEN PLANES 1 & 5
73.38 (MEASURED 71.80) DEGREES
124.40 OBAOTBD 123.00) DEGREES
149.05 (MEASURED 148.30) DEGREES
(MEASURED 180.00) DEGREES
SET 2
******
POINT
1
2
3
4
5
ZONE AXIS [716]
*********************
PLANS
( 'l -7 0)
( 1 -1 -1)
( 1 -5 -2)
( 0 6-1)
(-170)
( NO SYMMETRICALLY EQUIVALENT SOL'NS)
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
2.477
4.861
2.124
2.582
2c477
4.731-
2.087
2.610
2«547
82.409
83.500)
BEST FIT CAMERA CONSTANT USED IN ABOVE
MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.437 MILLIMETRES
ANGLE BETWEEN PLANES 1 & 2 - JO.53
ANGLE BETWEEN PLANES 1 & 3 - 124.5L
ANGLE BETWEEN PLANES 1 & 4
ANGLE BETWEEN PLANES 1 fit 5
149.94
180.00
(MEASURED 71.80) DEGREES
(MEASURED 123.00) DEGREES
(MEASURED 148.30) DEGREES
(MEASURED 180.00) DEGREES
98
-------
SET 3 ZONE AXIS 1-7 1-61 ( SO StMHEIRIC^LLt EQUIV*LE« SOL'NS)
*********************
POINT
1
2
3
4
5
PLANE
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
(
(
(
(
(
1
1
1
0 -6
-1- -7
7 Or
1 -1)
-5 -2)
-1)
0)
2*477
4.861
2.124
2.582
2.477
2.548
4.731
2.087
2.610
2.547
BEST FIT CAMERA CONSTANT USED IN ABOVE
82.409
83.500)
mt, Miutwvr
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE -BETWEEN PLANES
sms FROM w POSITIONS - 0.437
1 & 2
1 & 3
1 & 4
1 & 5
70.55
124.51
149.94
180.00
(MEASURED 71.80) DEGREES
(MEASURED 123.00) DEGREES
(MEASURED 148.30) DEGREES
(MEASURED 180.00) DEGREES
99
-------
FIBER 3 PATTERN 32 .
*************************************************
*************************************************
*************************************************
CAMERA CONSTANT- 83.5000
POSITION TOLERANCE - 0.300 MILLIMETERS (MINIMUM OVER-RISING TOLERANCE OF
+/- 5.0 PERCENT OF DIFFo DISTANCE PREVAILS
DI^CKS or srots ABE ^
ANGLE TOLERANCE « 2.50 DEGREES
MEASURED ANGLES BETWEEN SPOTS ARE
71.80 123.00 148.30 180.00
RIEBECKITE
A********************************'****************
REAL CELL CONSTANTS
A . B C ALPHA BETA GAMMA
9.750 18.000 5.300 90»000 103.000 90.000
MAXIMUM INDICES ARE 593
MAXIMUM DIMENSIONS OF ARRAYS ASK 32 25 32
PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE BEEN OMITTED
2 SETS OF POSSIBLE ZONE AXES INDEX WITHIN SPECIFIED LIMITS.
100
-------
, „ , 01
ZONE AXIS t 0 -1 0]
S*******************
DSPACE
O SYMkETRICALLY EQUIVALENT SOL'W)
W
• PAKE8N
ESTIMATED DSPACE FROM BIFF. PATTERN
1
2
&•
t
5
( 2
C 2
( 2
( o
( -2
0 -2) 2.519
0 0 - *«750
0 2) 2.081
0
0
2) 2.304
2) 2.519
4.707
2.077
BEST « CAHE8A COKST*« USED I» ABOVE
glSS
S'.ffi)
ANGLE BETWEEN PLANES 1*2-
s= PS •
BETWEEN PUSES 1 S 5 -
-Tl-
Ija'.OO) .DEGREES
******
POINT
1
2
3
(SET 2 HAS 2 SYMM. EQUIV. SOLANS)
DSPACE ESTIMATED DSPACE FROH
(1-1-1)
( 1 »-»
C -° 7 "«
m
J.UB.
*•»"
DSED
SPOTS P.M
2.090
2.613
2-!5°
*
1
POSXTXOHS - «.« MXU.XHET.ES
as
as
, . ,
sas :
t *» :
22 (MEASURED 71.80) DEGREES
•
EQOIVAUB
POR SET 2
101
-------
CAMERA CONSTANT- 81.5200
or
ANGLE TOLERANCE - 2.50 DEGREES
or
.20.29 (MILLIMETERS)
REAL CELL CONSTANTS
A B C -ALPHA BETA GAMMA
9.650 8.790 5.290 90.000 107.400 90.000
MAXIMUM INDICES ARE 6 5 3
9
MAXIMUM DIMENSIONS OF ARRAYS ARE 32
-PROHIBITED REFLECTIONS FOR THENCE CENTRED CELL T» C HAVE BEEN OMITTED
NO IDENTIFICATION
*************>»***
.102
-------
Milg51 OF 55
2-50
MEASUSED
30.80
22S2—
MAXIMUM INDICES
ARE 6 10 3
70 20
103
-------
SET 1
******
POINT
1
2
3
4
5
Q
ZONE AXIS [ -4 -1 -1]
*********************
NO"SYMMETRICALLY EQUIVALENT SOL'NS)
PLANE
DSPACE ESTIMATED DSPACE FROM DIFF, PATTERN
( -2
( -1
0
1
8
5
(
(
( 2-8
0)
-1)
2-2)
-3 -1)
0)
2.020
2.706
2.482
3.858
2.020
2.012
2«710
20482
4o<
2.008
BEST FIT CAMERA CONSTANT USED IN ABOVE
•
MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS
SPACINGS
CONSTANT
0.031
81*502
81,520)
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 & 3
ANGLE BETWEEN PLANES 1 5 4
ANGLE BETWEEN PLANES 1 & 5
30.74 (MEASURED 30.80) DEGREES
69. 6 (MEASURED 69.70) DEGREES
133.23 (MEASURED 133.30) DEGREES
180.00 (MEASURED 180.00) DEGREES
SET 2
******
POINT
1
2
3
4
5
ZONE AXIS ['"4 ^1 13
*********************
PLANE
( NO SYMMETRICALLY EQUIVALENT SOLANS)
DSPACE • ESTIMATED DSPACE FROM DIFF. PATTERN
(280) 2=020
'X "I 5 1) 2.706
(022) 2.482
( -1 -3 1) 3.858
( -2 -8 0) 2.020
2.012
2.710
2.482
3.874
2.008
,ESI PIT CAHE** COMSTAHT OSED IH ABOVE
81.502
81.520)
HEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.051 MILLIMETRES
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 & 3
ANGLE BETWEEN PLANES 1 & 4
ANGLE BETWEEN PLANES 1 & 5
30.74 (MEASURED 30.80) DEGREES
69.66 (MEASURED 69.70) DEGREES
133.23 (MEASURED 133.30) DEGREES
180.00 (MEASURED 180.00)-DEGREES
104
-------
SET 3 ZONE AXIS [ 3-1 6]
****** - *********************
POINT
1
2
3
4
PLANE
( NO SYMMETRICALLY EQUIVALENT SOLANS)
DSPACE ESTIMATED DSPACE FROM DIFF, PATTERN
(
(
(
4
3
2
( -I
(-4
0-2)
3 -1)
60)
1)
02)
1.984
2.684
2.517
3,858
1.984
2.003
2.697
2.471
3.856
1.999
SPAC1NGS
CONSTANT
81.134
81.520)
BEST FIT CAMERA CONSTANT USED IN .ABOVE
MEAN DEVIATION OF MEASURED SPOTS .FROM TRUE POSITIONS - 0.229 MILLIMETRES
ANGLE BETWEEN PLANES 1*2- • 29.86
ANGLE BETWEEN PLANES 1*3- 69.06
ANGLE BETWEEN PLANES 1 & 4 - I34-3*
ANGLE BETWEEN PLANES 1 & 5 - 180.00
(MEASURED 30.80) DEGREES
(MEASURED 69.70) DEGREES
(MEASURED 133.30) DEGREES
(MEASURED 180.00) DEGREES
SET 4
******
POINT
1
2
3
4
5
BEST
ZONE AXIS [ -3 -1 -6] ( NO SYMMETRICALLY EQUIVALENT SOLANS)
*********************
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
C
(
(
(
PLANE
4 0 r2)
3 -3 -1)
2-6 0)
3 1)
02)
-1
-4
1.984
2.684
2.517
3.858
1.984
2.003
2.697
2.471
3.856
1.999
CAMERA COHSIAST USED
gjgg
81.134
81.520)
MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.229 MILLIMETRES
ANGLE BETWEEN PLANES 1 & 2 - 29.86
ANGLE BETWEEN PLANES 1 & 3 - 69.06
ANGLE BETWEEN PLANES 1 & 4 - 134.31
ANGLE BETWEEN PLANES 1 & 5 - 180.00
(MEASURED 30.80) DEGREES
(MEASURED 69.70) DEGREES
(MEASURED 133.30) DEGREES
(MEASURED 180.00) DEGREES
105
1
-------
CAMERA CONSTANT- 81.5200
m - 0.300
+/- 5.0 PERCENT OF DIFF. DISTAKCE
DIFFBACTED DISTANCES OF SPOTS ARE
20.25 15.04 • ib.*»A j.u..»*
ANGLE TOLERANCE - 2.50 DEGREES
MEASURED ANGLES BETWEEN SPOTS ARE Q
30.80 - 69.70 133.30 180.00
.(MILLIMETERS)
REAL CELL CONSTANTS
A B C ALPHA BETA GAMMA
9.820 17.960 5.270 90.000 104.330 90.000
MAXIMUM INDICES ARE 6 10 3
' MAXIMUM DIMENSIONS OF ARRAYS ARE 74 ' 26 74
PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE BEEN OMITTED
4 SETS OF POSSIBLE fcONE AXES INDEX WITHIN SPECIFIED LIMITS
106
-------
SET
***4
POINT
2ONE AXIS t -< -1 -II C NO S^ZTRICAm EQUIVALENT SO.'NS)
*********************
PLANE
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
1
3
A
•$
5
( -2 8 0)
(-15 -1)
( 0 .2-2)
( 1 -3 -1)
( 2-8 0)
2*030
2=701
2.456
3.860
2.030
2eOU
2*708
2.480
3.871
2.007
BEST FIT CAMERA CONSTANT USED IN ABOVE
nEvUTION 0,
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 ft 3
ANGLE BETWEEN PLANES 1 ft 4
ANGLE BETWEEN PLANES 1 & 5
31.02 (MEASURED 30.80) DEGR^S
M 58 (MEASURED 69.70) DEGREES
Ist.H (M^URED 133.30) DEGREES
180.00 (MEASURED 180.00) DEGREES
81.448
81.520)
SET 2
******
POINT
ZONE AXIS [ 4-1.11
*********************
PLANE
( NO SYMMETRICALLY EQUIVALENT SOLANS)
DSPACE " ESTIMATED DSPACE FROM DOT. PATTERN
»
3
4
5
(
0 \
(
*
(
(
(
2 8
1 5
0 2
-1 -3
-2. -8
0)
1)
2)
1)
0)
2.030
2e701
2.456
3 i860
2.030
2.011
2.708
2.480
3.871
2.007
BEST FIT CAHERA CONSTANT »SED IN ABOVE
SPACINGS -
CONSTANT -
81.448
81.520)
DE»IATION OF XEASTCED SPOTS. FRO* TRUE POSITIONS - 0-162 MILL^RES
ANGLE BETWEEN PLANES 1*2-
ANGLE BETWEEN PLANES 1 & 3 - JJ-g
•MS BETWEEN PLANES 1 ft 4 - 132.56
ANGLE BETWEEN PLANES 1 & 5 - 180.00
11 02 (MEASURED 30.80) DEGREES
" (MEASURED 69.70) DEGREES
(MEASURED 133.30) DEGREES
(MEASURED 180.00) DEGREES
107
-------
0* 3 ZONE AXIS [ 3-! 61 C» .^imHUU EQUIVALENT SOL'HS/
****** *********************
POINT
1
2 '
3
4
5
PLANE
,. 4 0 -2)
C 3 3-D
(260)
(-131)
(-402)
DSPAGE ESTIMATED DSPACE FROM Mff. PATTERN
2.005
2.721
2.534
3.860
2o005
2.018
2«718
2.489
3.885
2.014
BEST IB CAHEKA «•»« 'USED IN ABOVE «««•£»
81.746
81.520)
OF .SASUKED SPOTS FROM «E "smoHs - ,a»
ANGLE -BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
1 & 2
1 & 3
1 & 4
1 & 5
30..26 (MEASURED 30.80) DEGREES
69 79 (MEASURED 69.70) DEGREES
ill 37 (MEASURED 133.30) DEGREES
)_ (MEASURED 180.00) DEGREES
SET 4
******
POINT
1
2
3
4
. 5
ZONE AXIS [ -3 -1 -61
*********************
PLANE.
"(40 -2)
( 3 -3 -1)
-( 2 -6 0)
( -1 -3 1)
(-402)
( NO SYMMETRICALLY EQUIVALENT SOLANS)
DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
2.005
2.721
2.534
3.860
2.005
2-
2.718
2.489
3.885
2.014
SPACES
81.746
81.520)
BEST FIT CAMERA CONSTANT USED IH ABOVE
MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.178 MILLIMETRES
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 & 3
ANGLE BETWEEN PLANES 1 & 4
ANGLE BETWEEN PLANES 1 & 5
30.26 (MEASURED 30.80) DEGREES
69.79 (MEASURED 69.70) DEGREES
134.37 (MEASURED 133.30) DEGREES
180.00 (MEASURED 180.00) DEGREES
108
-------
FIBER 3 PATTERN 30 ^^
*************************************************
*************************************************
*************************************************
CAMERA CONSTANT- 81.5200
POSITION TOLERANCE - 0.300 MILLIMETERS (MINIMUM OVER-RIDING TOLERANCE OF
+/- 5.0 PERCENT OF DIFF. DISTANCE PREVAILS
DIFFRACTED DISTANCES OF SPOTS ARE /.mTTiraBSl
20.25 15.04 16.42 10.52 20.29 (MILLIMETERS)
ANGLE-TOLERANCE « 2^50 DEGREES
MEASURED ANGLES BETWEEN SPOTS ARE
30.80 . 69.70 133.30 180.00
*************************************************
REAL CELL CONSTANTS
A B G ALPHA BETA GAMMA
9.750 18.000 5.300 90.000 103.000 90.000
MAXIMUM INDICES ARE 6 10 3
MAXIMUM DIMENSIONS OF ARRAYS ARE 74 24 74
PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE BEEN OMITTED
3 SETS OF POSSIBLE ZONE AXES INDEX WITHIN SPECIFIED LIMITS
109
-------
„ i zom AXIS l 4-1 il <« ,1 «•• 2 «"• E"oiv- SOt'l'S)
****** ********************* •-•'.••
POINT PLANE " DSPACE ESTIMATED DSPACE FROM DIFF0 PATTERN
1 C 2 8 0) 2.033
2 ' 5 i 5 £? 1 482 * 2.4SO
3 C 0 2 2) 2.482 3e887
A ( -1 -3 ' 1) 3.858
*» v * _ rt% '
5 ( -2 -8 0)
PH OIIHL CONSTAW OSED IK ABOVE •S^^S-O^D «
S1JMMETRICALLY EQUIVALENT SOLUTIONS FOR SET 1
3
[-4-1-U (-2 8 0)(-1 5-IX 0 2-2X 1 -3 -U C 2" 0)
30 2 ZONE AXIS [ 3-1 61 (SET 2 HAS 2 SU*. ECJUIV. SOL'NS)
****** *********************
POINT PLANE DSPACE ESTIMATED DSPACE FROM DIFF. PATTERN
! (40-2) 1-985 2-°°9
2 (33-1) 2.697 2.704
3 (260) 2.536 |"^7
t ( -i 3 1) 3.858 ' 3c866
5 (5 0 2) Io985 2-005
BEST FIT CAMERA CONSTANT USED IN ABOVE EST^ATES^OF^ SPACINGS - 81.34^
SYMMETRICALLY EQUIVALENT SOLUTION'S FOR SET 2
ZONE AXIS POINT^ POINT 2 POINTS- POINT 4 POINTS
[-3-1-6] ( 4 0-2)( 3 -3 -DC 2-6 0) ( -1 -3 I) (.-4 0 2)
110
-------
SET 3
******
POINT
1
2
3
4
5
ZONE AXIS [
************
PLANE,
( -1 -9 0)
( Q -6 -1)
( 1 -3 -2)
( 1 3-1)
( 1 90)
9 -1 6]
*********
DSPACE
1.957
2*594
2.422
3*858
1.957
(SET -3 HAS 2 SYMM« EQUIV. SOL'NS)
ESTIMATED DSPACE FROM DIFF. PATTERN
Ie967
2,648
2.425
3o786
1.963
79.647
81.520)
BEST FIT CAMERA CONSTANT USED IN ABOVE
V-UNtfUi WtanBiut.
MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.318 MILLIMETRES
ANGLE BETWEEN PLANES 1 & 2 - 29.61 (MEASURED 30.80)
ANGLl BETWEEN PLANES i & 3 - 67.30 (MEASURED 69.70 DEGREES
AN6LF BETWEEN PLANES 1 & 4 - 132.71 (MEASURED 133.30) DEGREES
ANGLE BETWEEN PLANES 1 & 5 - 180.00 (MEASURED 180.00) DEGREES
SYMMETRICALLY EQUIVALENT SOLUTIONS FOR SET 3
ZONE AXIS POINT 1 POINT 2 POINT 3 POINT 4 POINT 5
[ .9 -i -6] ( -1 9 0) ( 0 6 -1) ( 1 3 -2) ( 1 -3 -1) (1-90)
111
-------
" 9 —- J
. PROGRAM j^^ TO M^TCH ^^ pEARg WI±H ELEMENTS OF MATERIALS •
C IN FILE DIFDAT.
C WRITTEN BY W.R. STOTT, DEFT OF APPLIED PHYSICS
C ' ONTARIO RESEARCH FOUNDATION, MISSISSAUGA, ONT., CANADA
C 1982 MAY 5
REAL*8 NAME(4),FORMUL(6) , I ,„«./,«n\ '
INTEGER ELEM(8) ,SYM,ELEMS(8) ,MANEL(8) .""SSi0?)
REAL LOWER(8),UPPER(8),A,B,C,ALPHA9BETA,GAMMA,AREAS(8)
& ,FQUAN(4,7),PRATIO(7),CON(8),PARTIC(20),RATIO(8)
BYTE ANSWER
DATA IELEM/10*0,1,2,3,5*0,4,5,4*0,6,7,74*0/
DATA FQUAN/0.384,0.386,0.422,Oi447,
& 1.319,1.343,1.324,1.373,
& 1.023,1.046,1.113,1.113,
& 0.236,0.236,0.236,0.234,
& 1.085,1.086,1.046,0.998,
a 0.497,0.494,0.468,0.442,
. & Oo470,0.467,0.442,0.388/ -
DATA PRATIO/.11,0.756,0.772,0.255,ia48,0.419,0.421/
C FQUAN ARE QUANTITATIVE,CONSTANTS FROM MEASURED STANDARDS.
C IN ORDER TO OBTAIN QUANTITATIVE RESULTS, THE X-RAY PEAK
C AREA RATIOS. TO SILICON FROM THE STANDARDS (AS LISTED
C IN THE METHODOLOGY MANUAL ,TABLE 2) ARE REQUIRES.
C THE PEAK AREA RATIOS THAT ARE OBTAINED ON YOUR INSTRUMENT
C ARE ENTERED INTO THE DATA. STATEMENT PRATIO FOR THE SEVEN
C ELEMENTS IN ORDER.
C ' NA,MG,AL,K,CA,MN,FE ' .
OPEN(UNIT-1,NAME-'DIFDAT.',TYPE-'OLD'.READONLY)
OPEN(UNIT-2,NAME-'MATMIN.',TYPE-'NEW')
IPTR-5 .
URITEdPTR* 510)
510 • FORMATC ENTER PARTICLE IDENTIFIER (80 CHARACTERS)',//)
READ(5,520) (PARTIC(I),1-1,20)
520 FORMAT(20A4) .
con WRITE C TPT8. J5AO)
540 FORMATC ENTER ELEMENT SYMBOL (2 LETTER),SPACE,X-RAY PEAK AREA",
& ' (IF AVAILABLE)',/,' ENTER END TO FINISH V
& '(8 ELEMENTS MAXIMUM)',//)
SIPK-0.0
NUMPK-0
550 READ(5,560) SYMBOL,ADATA
560 FORMAT(A2,1X,F8.0)
IF(SYMBOL.EQ.'EN') GOTO 570
NUMPK-NUMPK+1
IFLAG-0
ELEMS(NUMPK)-ITOMNR(SYM]JOL,IFLAG)
U(IFLAG.EQil) GOTO 530
AREAS(NUMPK)-ADATA
IF(ELEMS(NUMPK).EQ.14) ISIPK-AREAS(NUMPK)
GOTO 550
570 IF(SIPK.EQ.O.O) GOTO 590
112
-------
580
590
593
595
596
597
C
600
620
630
G
650
or WTW- (MXCKOHETERS,-)
R£AD(IPTR,*)WIDTH
IWIDTH-1
IFCWIDTHcGE.0.25) IWIDTH-2 •
mWIDTH.SE»O.S) IWIDTH-3
IF(WIDTH.GE.UO) IWIDTH-4
IFCNUMPK.EQ.O) GOTO 730
DO 595 I-1,NUMPK
K-IELEM(ELEMS(D)
653
655
GOTO 595
BO 620 I-l.NUMPK
MANELCD-0
NUMMAN-0
SIATOM-100.0
CONTISlRACT MANDATORY ELEMENTS
DO 650 1-1,4 ,
IF(ELEM(I).LT.11)GOTO 650
tTOMMAN-NUMMAN+l
ELEM(NUMMAN)-ELEM(I)
CONTINUE
GET SEW MATERIAL IF NOT MATCHED
DO 660 J-1,NOMMAN
DO 655 I-1,NUMPK
K«I
K1«IELEM(ELEMS(I))
IFCSIPK.EQ.O.O.OR.K1.EQ.O) GOTO 653
CONORATIOU)*SIATOM
IF(ELEM(J).EQ.ELEMS(I)) GOTO 658
CONTINUE
IF(LOWER(J).NE.O.O)GOTO 600
NUMNOT-NUMNOT4-1
IF(NUMNOT.GT.1)GOTO 600
113.
•V 4
-------
GOTO 660
658 IFCSIPK.EQ.O..O.OR.K1.EQ.O) GOT© 659
CONLIM-0.2 '
IF(ELEM(J).EQ.11)CONLIM-0»S •
IF(CONC.LT.
-------
420 FORMAT(1X,6F7.3,I1)
END
FUNCTION HOMNR(SYMBC_,
INTEGER SYMBOL,CS<100),
DIMENSION NUMC17''
DATA CS/' H't'HE
'AL'.'SIV
4'SR^
S'GD'
&'»'
&'B '
&*n '
'FEVCO
' Y','ZR'
•TEV I'
'FT' /AC'
'PA'/ U'
'Nl'
'NB'
'3CE*
'HO'
HG*
S'
'CU*
'MO'
'CS'
'ER'
'TL'
IA0 a — a -
'CL'/AR'/ K
'ZNVGAVGE'
"**"•'**/£.
'BA'/LA'/CE'
'TK'.'Wt'W
•PB'.'BI'.'W
'AMVCMVBK'
'
«',' o','
'CA'
'AS'
'PD'
'PR'
'HF'
'SEVBR'
'AG'/CD'.
'ND' ,'FM'
'TAV W
r.'NA ,
V
KR'
'IN'
'SM'
'RE'
'RA'
'
'CR*
'SN'
'EU'
'OS'
'AC'
'W
. TO 3
CONTINUE
S(|^MBOL!EQ.SS(I)) GO TO 4
2 CONTINUE
FOR
IFLAG-1
RETURN
I-NUM(I)
5 ITOMNR-I
RETURN
END
115
-------
C * A COMPUTER PROGRAM FOR THE INDEXING ^LECTRON DIFFRACTION
C * SPOT PATTERNS BY B.L. RHOADES - DEPARTMENT OF MECHAMICAL-
c ? ^SNEER^ UNIVERSITY OF CANTERBURY. NEW ZEALAND
§ * MODIFIED BY W.R. STOTT TO CHAIN WITH AMPHZBOLE IDENTIFICATION
g pROG8AfYM is raj? M1^ S
C REFLECTIONS
C 0 FOR PRMITIVE CELL TYPE P '
c 1 FOR ALL FACES CENTRED TYPE F
c 2 FOR BODY CENTRED CELL TYPE I
C 3 FOR A FACE CENTRED CELL TYPE A
C 4 FOR B FACE CENTRED CELL TYPE B
C 5 FOR C FACE CENTRED CELL TYPE C
r 6 FOR OBVERSE RHOMB (HEX CELL) TYPE R
C 7 FOR REVERSE RHOMB (HEX CELL) TYPE R
INTEGER READR,PRINTR,H,HMAX,PM'AXtQMAX8
& P.,Q,R,ELEM(8)
DOUBLE PRECISION DSQ2,DSQ48RDR
DOUBLE PRECISION A,B,C9PI180,V,DMAX,DSQ,ASTAR,BSTAR
DOUBLE PRECISION CSTAR.SINA,SI.NB,SING,COSA,COSB4COSG,COSAS
DOUBLE PRECISION COSBS,COSGS,AH,A12,A13,A22,A23,A33,DMIN
DIMENSION 1H(5),IK(5.),IL(5J
VIRTUAL RADIX(5,50).DISTIX(S,50) «.-.»,,,
VIRTUAL RAD(3,801),IND(3J3S801),DISTX(5),DISTN(5) .
REAL LOWER(8) ,UPPER(8) ,PARTIC(20)
REAL*8 NAME,FORMUL(6)
BYTE ANSWER
IRAD-3
JRAD-801
IRADIX-5 .
JRADIX-50
IFLAG-0
AMTOL-OoOS
PAMTOL"AMTOL*100.
ANGTOL-2.5
DPR-57.295780
12 PI180-3.1-41592653S897932/180.
OPEN(UNIT-2 , NAME-' XINDEX' ,TH»E-' NEW )
OPENCUNIT-3 ,NAME-'MATMIN. ' ,TYPE-' OLD' .READONLY)
OPEN(UNIT-4,NAME-'MATPAT.',TYPE-'NEW') *
OPEN(UNIT-1 ,NAME-'MATPAU. ' .TYPE-' NEW' )
PRINTR-2
IFILE-4
IPAT-0
WRITE(5,640) .
116 '
-------
640 FORMAT(1X/ POSSIBLE SOLUTIONS' J,
& 10X/MINERALM8X/CELL CONSTANTS',//)
NUMMAT-0
READ(3,401) (PARTIC(.I),I-1,20),NUMPK
401 FORMAT(1X,20A4,I4)
READ(3,401)
599 READ(3,400,END-610)(NAME(I),I-1,4),(FORMUL(I),I-186)
READ(3S410,END-610) (ELEM(I),LOWER(I),UPPER(1),1-1,8)
•READ(3,420,END-610) A,B8C,ALPHA,BETA,GAMMA8SYM
400 FORMAT(1X,10A8)
410 FORMAT(1X,8(I2,2F5.2))
420 FORMAT(1X,6F7.3,I1)
WRITE(5,430) (NAME(I),1-1,3),A,B,C,ALPHA,BETA,GAMMA
430 FORMAT(1X,3A8,6F7.3)
NUMMAT-NUMMAT+1
GOTO 599 *
610 IF
-------
120 .LE-3
130 LES-LE-1
.
408 SAT?/,' FOUR ANGLES BETWEEN SPOTS. '.$>
NGLES(MM) ,MM-I ,4)
5r.O.O) ANGLES(r)-ANGLES
-------
6 DISTMX-DISTX(I) . -•-
8 ScSlSI«?«.DISTtt»>> GO TO 9
DISTMX-DISTX(N)
9 CONTINUE
DMIN-CAMCO/(2.*DISTMX)
DMIN-DMIN*DMIN
.
****GENERATE RECIPROCAL VECTORS
C* .
PMAX-0
BMAX»0
TMAX-0
LIST3-0
NHMAX-2*HMAX+1
DO 72 NH-1,NHMAX
H-(HMAX<-1)-NH
DO 74 NK-1 ,
DO 75 NL-1,NLMAX
L-CLMAX-^P-NL "^ so.o) GO TO is
CALL'PROHIB (SYMI,H,K,L,INC) •
IF(INC-l) 17,73,73
15 LIST3-1 . . ' • ,M
RDR-DSQRT(DSQ)
D"SNGL(1.0/RDR) ,
RADI-CAMCO/(2.*D)
DO 70 N«l,5,2
IFCRADI-DISTN(N)) 70,19,19
19 IFCRADI-DISTX(N)) 20,20,70
20 IF(S-l) 40,21,22
21 PMAX-PMAXH-l
M-PMAX
GO TO 40
22 IF(N-3) 40,25,26
25 IFCLIST3.EQ.1) GO TO 70
RMAX-RMAX+1
M-RMAX
GO TO 40
26 TMAX-TMAX*!
M-TMAX •
40 NN-(W-l)/2
IND(NN,1,M)-H
119
-------
IND(NN,2,M)-K . . -.
IND(NN,3,M)-L - .
^pECT?800.0R.BMAX.CT.800.C)R.TMAX66f 0800) 60
70 CONTINUE
73 CONTINUE
75 CONTINUE
74 CONTINUE
72 CONTINUE
GO TO 71
2018 WR1TE(5,218)
GO TO 10
C* ****FORMAT STATEMENTS
C*
101 FORMATC20A4)
C 102 FORMAT(F8.4,F6»3,I1)
C 104 FORMAT(3F10.3,3F10.2)
C 105 FORMAT(Il)
C 106 FORMAT(4F8e2)
107 FORMAT(I1,9A8)
108 FORMAT(Al)
TO 2018
C*
71
****FORMAT STATEMENTS - OUTPUT .
201 FORMAT('1',2X,20A4)
WRITE(PRINTR,201) (PHOTO(N),N«1,20)
WRITE (PRINTR,221)
' WRITE (PRINTR,221)
WRITE (PRINTR,221)
WRITE(PRINTR,202) CAMCO
WRITE(PRINTR,203) TOL.PAMTOL
WRITE(PRINTR9204) (DIST(K) ,K-1 ,5)
WRITE(PRINTR,219) ANGTOL
'WRITE(PRINTR,220) (ANGLES(MM) ,MM-1 ,4)
WRITE(PRINTR,205) (NAME(N) ,N-1 ,4)
WRITE(PRINTR,221)
WRITE(PRINTR,206)
WRITECPRINTR.207) A,B,C,ALPHA,BETA,GAMMA
WRITE(PRINTR,532) HMAX,KMAX,LMAX :
WRITE(PRINTR,208)PMAX,RMAX,TKAX
GO TO (38,31,32,33,34,35,36,37) ,SYMI
31 WRITE(PRINTR,5"34)
GO TO 38
32 WRITE(PRINTR,535)
GO TO 38
33 WRITE(PRINTR,536)
GO TO 38
34 WRITE(PRINTR,537) ^
120
-------
GO TO 38
35 WRITE(PRINTR,S38) - -
GO TO 38
36 WRITE(PRINTR,539)
GO TO 38
37 WRITE(PRINTR,540)
38 IF(DIST(4)) 43,43,44
43 IF(PMAX.EQ.O.OR.RMAX.EQ.O) GOTO 1007
44 IF(PMAX.EQ.O.OR.RMAX«EQ.O.OR.TMAX.EQ.O) GOTO 1007
C*
g* ****EORMAT STATEMENTS ——OUTPUT
C*
202 FORMAT(/,' CAMERA CONSTANT-',F8.4)
203 FORMATC// POSITION TOLERANCE -'.F6.3.' MILLIMETERS (MINIMUM ,
&' OVER-RIDING TOLERANCE OF',/,' +/- ',F3.1,
4* PERCENT OF D1PF. DISTANCE PREVAILS')
204 FOBMAK/,' DIFFRACTED DISTANCES OF SPOTS ARE ,/,5F10.2,
& (MILLIMETERS)')
206 FORHAIC/MX,' REAL CELL eoNSTANTS'//7x,'A't8x,'B',8x, c .
• &6X,'ALPHA',5X,'BETA',4X,'GAMMA'/)
207 FORMAT(1X,6F9.3)
208 FORMAT(//,1X,' MAXIMUM DIMENSIONS OF ARRAYS ARE ,516)
219 FORMAT(// ANGLE TOLERANCE - ',F5.2/ DEGREES')
220 FORMAT(/,' MEASURED ANGLES BETWEEN SPOTS ARE',/,4F10.2)
221 FORMAT(' *************************************************')
532 FORMAT(//,2X,19HMAXIMUM INDICES ARE.3I4)
534 FORMAT.(/,1X/ PROHIBITED REFLECTIONS FOR THE FACE CENTRED ,
&' CELL TYPE F HAVE BEEN OMITTED')
535 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE BODY CENTRED',
'&' CELL TYPE I HAVE BEEN OMITTED')
536 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED',
&' CELL TYPE A HAVE BEEN OMITTED')
537 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED s
&' CELL TYPE B HAVE BEEN. OMITTED')
538 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED',
• &' CELL TYPE C HAVE BEEN OMITTED')
539 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE OBVERSE RHOMBO'
S'HEDRON (HEXAGONAL CELL) TYPE R HAVE BEEN OMITTED')
540 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE REVERSE RHOMBO'•
S'HEDRON (HEXAGONAL CELL) TYPE R HAVE BEEN OMITTED')
C
e ******* DETERMINE INDICES OF POIN* '2'
C
DO 1002 I-l.PMAX
DO 1003 K-l.RMAX
2HB-( IND( 1,1, IHIND( 2 ,1 ,K) )/2.
. NHB-ZHB
AZHB-NHB
IF(ZHB-AZHB) 1003,96,1003
96 ZKB-(IND(.l,2,IHIND(282,K))/2.
NKB-ZKB
AZKB-NKB
121
-------
IF(ZKB-AZKB) 1003,97.1003
97 ZLB-(IND*NKD*M2-HfflD*NLD*A134«KD*Nia)*A22-HIKD*
SNLD*A23«JLD*NLD*A33.
D4-SNGL(DSQRI(1./DSQ4))
RADI4-CAMCO/.(2.*D4) .««.,.«'
IF.CRADI4.GE.DISTN(4).AND.RADI4.LE.DISTX<4)) GO TO 158
'GO TO 1001
C*
C* ****SORT PLANES INTO ARRAYS
C* - . . . .
159 L-l *
158 IH(1)-IND(1,1,I)
122
-------
IH(2)-NHB
IH(3)»IND(2,1,K)
IH(4)-NHD
IH(5)-IND<3,1,M)
lkU)-XHD(l,2,Z)
IK(2)-NKB
1K(3)-IND(2,2,K)
IK(4)-NKD
IK(5)-IND(3,2,M)
G*
e*
c*
IL(2)-NLB
IL(3)-IND(2,3,K?
IU4)-NLD
IL(5)-IND(3,3,M)
****CALCULATE ANGLES BETWEEN PLANES
MM-0
. 160 IF(DIST(4)) 161,161,162
- 161 NZ-3
GO TO 163
162 NZ-5
163 DO 170 NN-2,NZ
S-((IH(II)*IH
d((IH(II)*IK(NN)+IK(II)*IH(NN))*ASTAR*BSTAR*COSGS))
T-( (IH(-II)*IH( II)*ASTAR*ASTAR)-K IK( II)*IK( II)*BSTAR*BSTAR)
&t(IL(II)*IL(II)*CSTAR*CSTARH(2.0*IH(II)*IK(H)*ASTAR*BSTAR*COSGS)
frH(2. 0*IL( II)*IH( II)*CSTAR*ASTAR*COSBSH<2. 0*IK( II)*IL( II)*BSTAR*
&CSTAR*COSAS))
U-((IH(NN)*IH(NN)*ASTAR*ASTARH(IK(NN)*IK(NN)*BSTAR*BSTAR)
W-(IL
-------
I
& RADIX,IRADIX,JRADIX,DISTIX,IOUT,NUMPAT)
lOOl CONTINUE
1003 CONTINUE
1002 CONTINUE
999
622
IFCANSWER.EQ*'*') IFILE-1
IF(ANSWER.EQ."Z') GOTO 11
9999 CLOSE(UNIT«1)
CLOSECUNIT-2)
CLOSECUNIT-3)
CLOSECUNIT-4)
CALL EXIT
END
124
-------
gwiTygffwwy*"": •:••.••;•-;'-•.- • ».•*-•-—••
SO^IOHS A. !«» «•»
INTEGER WB£R Tm,,s 5Q 50) ,RAD(18AD,JRAB)°8
DOUBLE PRECISION
KEAL*8 NAME
103(^600,1030
c*
c*
c*
CALCULATE LOWEST ORDER ZONE AXES
DO 1033 1-1.3
IZOd)-IZON(I)
1041 INV-IZO(2)
IZO(2)-IZO(D
1043 ISV-IZO(3)
IZO(3)-IZO(2)
GO TO 1040
as
JDIV(IZ)-
ADIV(IZ)-JDIV(IZ)
1060 SSS5) .EQ.ADIV(1) .AKD.DIVC2) .EQ.ADIV(2) .AND.DI7(3) .EQ.
&ADIV(3))GO TO 1063
1061 CONTINUE
1063 DO 1070 1-1.3 •
65
.-I
'."1
125
-------
1070 -CONTINUE
5 LOAD SOLUTIONS INTO OUTPUT ARRAYS "-
°* GO TO (100,400,600,400) KONST
100 KONST-2 ' '
DO 110 1*1,50
KPCD-0 •
HO CONTINUE
KT-0
200 SOBMMO) GO TO 208
900 KONST-4
GO TO 3SO
208 KT-KT+l
KSETS-KSETS+1
8ADIX(1,KI)-RAD(1,IA)
RADIX(2,KT)-D2
RADIX(3,KI)-RAD(2,KA)
,RADIX(4,K«-D4
RADIXC5 ,S3)-
210
DISTIX(I,KT)-DIST(I)
220 CONTINUE
300 n .
5 C^O.UTE M.M, DmmOH OF SPOtS nOH
c* :
DEV(KS)-0.
DEVSQ(KS)-0.
• RADTOT-0.
DISTOT-O.
-*CAMINC
GAMM(KS)-CA11CO*CAMINC
ANGDEV-0.
55
ANGDE-ANGDEV/LE
ANG(1)*0.-ANGDE
D0'56 N-l.LES
56
SPI180))
126
-------
X2--IL(I)
RETURN
C*
C* CHICK FOR SYMMETRICAL EQUIVALENT SOLUTIONS
C*
400 DO 410 KS-l.KT
IF(RAD 1160,1160,1150
1150 B-DEVSQ(I)
DEVSQCI)-DEVSQ(L)
DEVSQCD-B
CAM-CAKXO(I)
CAMKO(I)»CAMKO(L) * •*
127
-------
CAMKO(L)-CAM
DO 1153 NH-1,3
AR-RADIXCNH.I)
RADIX(NH»I)-RADIXCNM,L)
1ADIX(NH,L)-AR
AB»DISTIX(NH,I>
DISTIXCNM, I)-DISTIX< NH.L)
DZSTZXCKM,L)-AD
DO 1153 KX-U30
1153
1154
1155
1160
1140
1165
C*
C* .
C*
1180
1185
1210
IHPCNM.KK.D-IHPCHM.KK.L)
IHP(HHSKK9L)-IP
XP-IXP(NH,10C,X)
IKP(NM,KKS X)-IKP(NM,XK,L)
IKP(NM,KK,L)«IP
IP»ZLF(MH,XK,Z)
ILP(HH,KK,I)-ILP(NM,KK,L)
ILPCNH,KK,L)-IP
DO 1154 NN«1,3 .
IQ«IZOS(NN,I)
I20S(NN,I)«IZOS(NN,L)
I20S(NN.L)-IQ
DO 1154 KK-1,50
ZP-IZONES(NN,XK,Z)
I20NES(NN,KK, I)-I20NES(mj:,KX»L)
IZONES(NN,KX,L)-IP
DO 1155 KA-1,4
AA-ANGIX(NA.I)'
AKGIXCNA, I)-ANCIX(HA,L)
ANGIX(NA,L)-AA
KZ-KP(I)
KP(I)-KP(L)
KPCD-KZ
I-(I-M)
IF(I-l) 1160,1149,1149
J-J+1
IF(J-K) 1141,1141,1120
IP (KONST.NE.4) GO TO 1180
KT-30
DO 1165 LS-31,30
KP(LS)-0
GO TO 208
SORT ZONEAXES WITHIN BAC3I SET INTO ORDER
IF(KT.LE.30) GO TO 1185 •
KT-30
DO 1300 KS-1,KT .
N-KP(KS)
DO 1210 KK-l.N
HSUH(KK)«IZONESC1 ,XK,KSHlZONES(2,KK,KSHIZONES(3,XKeKS)
H-N « *
128
-------
1220 M-M/2
XF(M? 1230,1240,1230
1230 K-N-M
J-I
1241 X-J
1249 L-I+M
XFCHSUM.LE.IZONES<2,IPZ,KS).A!ID.
AIZONES(2,IPZ,1CS).LE.XZONES(3,XPZ,KS))CO TO 1290
GO TO 1293
1290 DO 1291 NN-1,3
XP-XZONES(NN,XPZ,XS)
XZONESCNN,XPZ,XS)-XZONES(NNe1,KS)
1291 XZONBS(NN,1,1CS)»XP (
DO 1292 NN-1,5
XP»fHP(NN,XPZ,KS)
XHP(NN,IPZ,KS)-IHP(NN,1,KS)
XHP(NN,1.KS)«XP
XP-XKP(NN,XPZ,KS)
XXPCNN,XPZ,KS)»IKP(NN,1,KS)
IXP(NN,1,KS)-IP
• IP»ILP(NN,XPZ,XS)
XLP(NN,IPZ,XS)»XLP(NNV1,KS)
1292 XLP(NN,1,KS)-XP
1293 CONTINUE
1300 CONTINUE
C*
129
-------
C* WRITE OUT RESULTS
C* '
kSETSS-0 - :
ZF(KSETS-l) 1295,J29S,1294
1294 WRITECPRINIR,1001) KSETS
1295 DO 1500 KS-l.KT
.IFCC-1)**KS.LT.O)WRITECPRINTR,2000)
XFCC-l)*«KS.CT.O)WRITECPRINTR,2QOl)
2000 FORMATUH1)
2001 FPRMATC/////) . ,
IFCKPCKSM) 1302, 1302, 1301
1301 WRlTECPR«mU002)R3.CIZONESCNM.l,R3).NN-l,3).KS,KPCKS)
WRITECPRINTR, 1016)
GO TO 1305
1302 WRITECPRINTR,1003)KS.CIZONESCNM,1,KS),NN*1,3)
WUTE(PtZNTR,1016)
1305 WRITE(PRINTllt1004)
00 1308 I-I,LE
DISTIX(I,JCS)-CAMKO(KS)/C2.*DISTtC(I.KS)}
1308 HlITS(P»XllT»,1005)t,mPCl, I ,KS) ,1ICPKS)tANCLES(LES)
IFC IOUT-1 ) 1500, 1395 , 1500
1395 IFCKPOCS)-LE.l) GO TO 1500
WRITECPRINTR, 101 1 )£S
IF(LE-3)1UO. 1396. 1*40
1396 WRITECPRINTR, 1013) •
DO 1400 I-2.KXMAX
1400 WRITECPRINTR, 1015)(I20HESCL,I,KS) ,L«1 ,3) .IHPC I ,I,KS) .
4IKPCi,I,KS).ILPCl.I»KS).IMPC2,I,KS),I»C2,I,KS),
*ILPC2,I.KS),IHPC3,I.lCS).IKFC3.I,KS),ILPC3,i;iCS)
GO TO 1500
1440 WRITECPRINTR, 1012)
DO 1460 I-2.KKMAX
KSETSS«KSETSSfl
ISONESCKSETSS,1)-IZONESC1,I,KS)
ISONESCKSETSS,2)-IZONESC2,I,XS)
ISONESCKSETSS,3)-IZONESC3,I.XS)
1460 WRITECPRINTR,10l4)CI20NESCL,I,KS),>l,3),IHPCl,I,KS),
4IKPCI,I,KS),ILPC1.I,1CS),IHPC2,I,KS).IKPC2,I,KS),
MLPC2,I.KS),IHPC3.I.1CS).I1ICPC3,I,ICS),ILPC3,I.KS),
ftIHPC4.I,KS),IKPC4,I9KS).lLPC4.I.KS),IHPC5,I,lCS),
tIKPC5,I.KS),ILPC5.I,KS)
1500 CONTINUE
130
-------
,,,,«
1015 FORMATC1H .IX.'C' ,313,')' ,2X,'C',3I3,')*,1X,'C'*
KSS>KSETS+KSETSS
WRITECXFILE,4000)CNAMECI).I-l,4),A,BCON,e,ALPHA,8ETA,GAMMA,KSS
4000 FORMATC 1X.4A8.6F8.3, 14) • :
HtITEClFILE,4010)CUZONESCNN,l,KS),NN-l,3),KS-l,KSETS)
IFCKSETSS.CT.O) WRXTECIPXLE,4010) CCISONESCKN,X),X-i,3)8
i KN-l.KSETSS)
4010 FORMATC1X,3X3)
IPTR-5
UKXTE(XPT1,4020) (NAME(I).I-! .4)
W1XTECIPTI,4030) CUZONESCNN,l,KS),Nll-l,3),lCS-i,lCSETS)
XFCKSETSS.GT.O) WUTECIPTR.4030) CCISONESCnf,X),I-l,3),
& W1,XSETSS)
4020 FORMATC 1X.4A8) *.
4030 FORMATC SC IX, T. 313,*!'. IX)) ;
NUMPAT-NUMPATt-1 . '
KS«0 !
KSETS-0 . • . ,
RETORM :
1600 URITE(PRXNTRt1017) . i
1000 RETURN ;
C* FORMAT STATEMENTS—OUTPUT * 1
•C* . ' i
1001 FORMATC/,13/ SETS OF POSSIBLE ZONE AXES INDEX WITHIN " <
6'SPECXFXED LIMITS') * -
1002 FORMATC/IX.'SET '.12.' ZONE AXIS ['. 313,' !'. '
&SX/CSET %I2S* HAS '.12.' SYMM. EQOXV. SOL'NS)'}
1003 FORMAT(/1X,'SBT %X2.' ZONE AXIS t%3138'!%
&SX/C NO SmMETRICALLY EQUIVALENT SOL%NS)9)
1004 F08MAT(/.1X,'POINT'.8X.'PLANE',IOX/OSPACE'.SX,'ESTIMA
*TED ','DSPACE FROM DIFF. PATTERN'/) -
1005 FORMATC1H ,2X.Il.7X,'C ,313.')'.6X,F6.3,15X.F6.3) ;
1006 FORMATC1H ,1X,' ANCLE BETWEEN PLANES 1 6 ',11. J
*' • '.F6.2,' (MEASURED '.F6.2.') DECREES') •
1007 FORMATC1H ) i
1008 FORMAT(/,1X,' BEST PXT CAMERA CONSTANT USED ', 4.
t 'IN ABOVE ESTIMATES OF D SPA6XNC& • %F7.3) 1
1009 FORMATC 1H ,41X, ' C INPUT CAMERA CONSTANT • ' , F7^3 , * ) ' ) *
1010 FORMATC/, IX, 'MEAN DEVIATION OF MEASURED SPOTS ',
.i 'FROM TRUE POSITIONS » ',F5.3,' MILLIMETRES')
1011 FORMATC/, IX, 'SnOfETRICALLT EQUIVALENT SOLUTIONS %
i 'FOR SET %I2)
1012 FORMATC/, 3X/ZONE AXIS' ,3X.' POINT I'.SX.'POXNT 2',
tSX, 'POINT 3',5X,'POINT 4*,5X,'POINT 5',/)
1013 FORMATC/, 3X,' ZONE AXIS* ,5X,' POINT i',5X,'POINT 2'.
*5X8 'POINT 3',/)
1014 FORMATC1H »1XS'C',3I3,'1',2X,'C',3X3,')',1X,'C%
1016 FORMATC IX, ******* ft********************') 1
1017 FORMATC/ » IX, 'NO IDENTIFICATION', /21X,'******************> ::
END ]
i
131
-------
20
400
410
420
SUBROUTINE CELL(NAME,A,B,C,AL!»HA,8ETA,GAMHA,SYM,XGAXN)
REAL*8 KAME(4),A,B,C,FOBMUL(6}
INTEGER ELEM(8),SYM
REAL LOWER(8),UPPER(8),ALPHA,BETA,GAHMA
ICAIN-0
REAOC3,400,EHD-20)(NAMEU}»I«ie4)8
-------
c*
c*
c*
SUBROUTINE PROHIB (S«H,«tK.LfI»C)
TEST INDICES AND ELIMINATE PROHIBITED REFLECTIONS
INTEGER H,SYMX
13
LH-ALH
BLH-U*
61
IS
63
64
66
68
69
70
7S
KH-AKH
BIQi-KH
ZF(AXH.NE.BKH) GO TO 70
IF(StMI8NE62) GO "TO 68
GO T@ 70
GO TO 68
ZFCAXlc.NE.BieL) GO TO 70
SO TO 68
AKHL-(H+K+L)/2«
GO TO 66
AXHL-(KH.-H)/3.
GO TO 66
AKL-CK+U/2
KL-AJCL
KHL-AXHL
BKHL-KHL
ZF(AXHL.NE.BKHL) GO TO 70
ZNC-0
CO TO 75
INOi
RETURN
END
133
-------
c
c
c
c
c
&
«
200
201
700
710
206
210
260
202
204
280
PROGRAM ANCDIP
PROGRAM WRITTEN BY W.R. STOW, DBF* Of APPLIES PHYSICS
ONTARIO RESEARCH FOUNDATION, MISSISSAUCA, ONT., CANADA
PROGRAM CALCULATES INTER-ZONE AXIS ANGLES
IS CHAINED IN SEQUENCE XMATCH XIDEM ANCDIP RESULT
,,,
,BETA,GAMHAePHI.I,J
300
110
REAL*8 KAME<4),HAKE2C4)
BYTE ANSWER • .
OPEN(UNIT»1 8HAME-pMATf AT* ,TYPE-'OLD' .READONLY)
OPENCUNIT-2 .NAME-"MATFAO' ,TYPE«»'OLD' .READONLY)
OPEN(UNir-3,NAME-'MATPHI%TYPE«'NEtf')
OPEN(UNIT-4,NAME-'PHIDAr8TYPE»'NEW*)
•EADU ,200,END-999)(PHOTO(I) ,I»1 ,26)
FORHAT(1X,10F8.3)
READ(2,200,END-999)
-------
HRITE(4,li2) ANCLE, ANCTOL
KSS3?^?181*1 '»F8«2.' ANGULAR TOLERANCE-
100 .
100 FORMATC/Y ZONE AXIS ANGULAR DIFFERENCES',//,
:
* » ,, - Oi.Vi.Hl pill*
DO 5 I-l,KSBTS «*»»*.»* PHX ,/)
DO 5 J-l.KSETT
CALL PHZZON
its
5
»
999 CLOSE(UNIT-l)
CLOSECUNIT-2)
CLOSE(UNIT-3)
CLOSECUNIT-4)
CALL EXIT
END
SUBROUTINE PRIZON
a
C THE INTER-ROW ANCLE FORMULA IS FROM THE BOOK
C INTERNATIONAL TABLES FOR X-RAY
«*
ALPHA1»ALPHA*CON •
BETA1«BETA*CON
GAMMA1-GAMMA*CON
PHICOS-UC I) *Ul( J)*A*A4V( I)*V1 ( J)*B*B4W( I)*W1 f J^*C*C
+CV(I)*Wl(JHWCI)*VIU))*B*C*COS(ALPHAO
•KW(I)*Ul(J)+U(I)*tfl(j»*c*A*COS(BETAl)
•KU
-------
IF(PHICOS.GT.i.O) PHICOS-1,0
PHI"ACOSI(PHICOS)'/CON
RETURN • -.
END .
FUNCTION ACOSI(X)
DOUBLE PRECISION SX,X,ACOSI
SX-DSQRT(UO-X*3C)
IF(SX.NE.O,0) GOTO 10
AC03I«0»0
IF(X.LK.-l.O) ACQSI-3.141592653389793
XETUIN
10 AC03I.3.1415926535«9793/2.0- DATANCX/SX)
RETUUf
END
136
-------
PROGRAM RESULT
C
C OUTPU* ROUTINE FOR AMPHIBOLE IDENTIFICATION
C PROCEDURE, PROGRAMS RUN IN SEQUENCE
C XMATCH XIOEN ANGDIF RESULT
REAL*8 NAMEC4),FORMUL(6)
REAL LOUER(8),UPPBR<8).DISTC5),AHGLCS(4),OAT{3),PARTIC(20),AREAS(8)
REAL PHOTQ<20) ,PHOT02(20) ,RAno<8)
INTEGER ELEM(<<).IZONES(3,1.SO),ELEMSC8),SYM
BYTE SYMI
C
IPTR-2 '
NOSOL-0
CALL OATE(DAT)
OPENCUNIT-l.NAME-'MATMIN'.TYPE-'OLD'.READONLY)
OPEN(UNW-2.NAME-'RESULTSTYPE-'NEW*)
REA3U.130) (PARTICC1).1-1.20).NUMPK,WIDTH,(RATIOCI),1-1.NUMPK)
READ(1,140) (JSLEMS(I),AREAS
-------
20 READ(l,2QO,END-29) (PHOTO(Z)*Z«i,20)
NOSOL-NOSOIH-1 '
BEADU .20l)(AHGLES(I) ,Z«l .4) ,<0ZST(Z> ,1-1 ,5) ,CAMCO
ZFCZFAGE.EQ.1) GOTO 21
. WBITBCZFTI.SOO) oZ-l,3>
WRZTICZPT*,510) (PARTZCU) .1-1 , 17)
,Z-1.10>
W«TI(IPT»,555)
VUT8(ZPTK,560)
IPACE-1
21 READC1.210) B,CvALPHA,BETAtGAHMA,XSETS
1EAB(19220> <(IZOHES.Z.l.3).CAMCO
IF(IPACEcEQcl) GOTO 31
HRZTECIPTR.500) (OAT(Z),Z-i,3)
WKZTECZPT2.540) (PfiOTO(Z),Z-1.10)
WUTECZPTR.535)
VRZTE(ZPT£,560)
31 READ(1.210)
IEADC1.220) ..
Zr(MOSOL.EQ.7)HRZTE(ZPTRt565) (DAT(Z)fZ-l,3)
WRZTE(ZPTtt,570)(HAME(Z) ,1-1 ,4) 8A,B,C,ALFHA,
' •WRITE(ZPTR.585)((Z20MES
-------
IH-tf
iwi-wi
IPUPACE.EQ.nCOTO 41
.W*ITE(IPTR,500)
-------
565
570
585
587
590
600
605
610
620
625
630
«
£
FORMAT(lHlf60X,'DATE* '.3A4.//.22X8*RESULTS OF ZONE. AXIS'.
' ANALYSIS (CONTINUED)',//) .
FORHAT(/,1X,4A8,6F7.2) " i
FORMAT(6(3X,3I3))
FORHAT(///.' COMPLETE ELECTRON DIFFRACTION ANALYSES MAY BE*
,' FOUND IN FILE "XINDEX*")
FORMATC/,SXe'ELECTRON DIFFRACTION PATTERNS? *Jf
' ill ',16A48/piOXt' *2*
-- --• — —--— —— -"»"— ««•»»««
-------
PROGRAM BATGET
e - •
C PROGRAM WHICH PRINTS THE FILE DIPOATc
1EAL*8 NAME<4).NAMEl(4),PORMUL<6)
INTEGER ELEM(8),SYM
BYTE AMswa8)'UPPERC8)>Afl'c§ALPH^>BBrA8eAMHA
OPEN(DNIT"l .RAME-'DIPUAT* ,TTPE-'OLD'}
OPEN(UNIT-2,NAME-'OATA%TYPE-'NEWM
IPTR»2
NUMBER«0
9 WRITECIPTR.99)
IPACE-0
•LOHER<«
,300)
HRITE(IPTR.310)
GOTO 10
60 CLOSE(UNXT-i)
GALL EXIT
99 FORHATUH1)
100 FORHAT(///t«, 'MINERAL NAME? <32>%
200 FORHAT(4A8) *
UO FORMATCU,'FORMULAT (48)',$)
210 FORMATC6A8)
5
300 FORMATCIX.'HAME ,• .
310 FORHATCIX/MAMDATOR?
320
410 FORKAT(lX,8(I2t2F5.2»
420 F08M^T(IX,6F7.3,H)
500 FORMAT(Al)
END
141
-------
PROGRAM DATED!
C " : .
C PROGRAM TO EDIT FILE DIFDAT.NEW
C DIFDAT.NEW SHOULD BE A COPY OF DIFDAT.
C AFTER. EDITING REHAMS OUTSAT. BAK AS DIFDAT.
C
REAL*8 HAME(4),NAMBi(4),F01!MiILC6) .
INTEGER ELEH(8>,SYM
REAL LOWER(S),UP1?EaC8},A,BS)e.ALPHA,BETA,CAHHA
BYTE ANSWER
OFENCtmXT-2,NAME-'DIFDAT.BAK'.TYPE-'NEW')
OPENCUNXT-1 ,NAME»"DXPQAT.IIKW' .TYPE- 'OLD')
5 TYPE *,' ENTER MINERAL NAME?'
READ(S,200,ERR-5) (NAME! (I),!-!, 4)
10 . READU,400,END-60) CNAMEU:).I«1,4),CPORMULCX),X-I*6)
READU,410)CELEM(X),LOWERU).t>PPERCXM-l,8)
' READCi,420)A,B,C,ALPHA,BETA,GAMMA0SYM
XFCNAKECl).Eq.NAMEl(l).AND«NAHEC2).Eq.NAHEiC2))COTO 19
VRXTSC2,400) CNAHE(X) »
VRXTE(2,410)(ELEM(X) »
GOTO 10
19 WRXTECS.300) CNAME(X),X"1,A),(FORMIILCX),X-I,6)
20 TYPE *,' O.K.?'
READCS.SOO) ANSWER
XF(ANSWER.EQe'N') GOTO 25
IF( ANSWER. NE,'N'. AND. ANSWER. NE.'Y') GOTO 20
GOTO 29
25 WRITE(5,100)
READ(5,200,ERR<5) (NAME(i;! .1-1.4)
26 WRITEC3.110) '
READ(5,210,ERR-26) (FORMDLCI), 1-1.6)
29 WRITEC2.400) (NAHE(I) .I-l^t) ,(FO!UULU)rI-le6)
VRXTE(5,310) (ELEM(X) 8LOWEl(I) .UPFER(I) ,X»1,4)
30 TYPE *,' O.K.?'
READ(5,500) ANSWER
IF( ANSWER. EQ.'N') GOTO 35
XF(ANSWER.NE.'N'.AND.ANSUE1UNE.'Y') GOTO 30
GOTO 39
35 VRXTE(S,120)
READ(5,*,ERR-35) (ELEM(X) tLOVER(X),UPPER(X) ,1-1,4)
39 URXTE(5,320) (ELEM(I).LOWElL(I).UPFER(I).I-5,8)
40 TYPE *,' O.K.?'
READ(5,50Q) ANSWER
XF(ANSWER.EQ.'H') GOTO 45
XF(ANSWER.NE.'M'.AND.ANSWEll.NE.'Y') GOTO 40 .
GOTO 49
45 WRXTE(5>13p)
READ(5,*,ERR-45) (ELEM(X) ,LOWER(X) ,UPPER(X) .X'5,8)
49 WRXTEC2.410) (ELEM(I)tLOWE]l(I).UPFER(I) .1-1.8)
WRITEC5.330) A,B,C,ALPHA,BBTA,GAMMA,SYM
50 TYPE *,' O.K.?'
142
-------
S2AD<5,500) ANSWER
IF(ANSUER.EQ.'N') GOTO 55
lF
-------
PROGRAM DIFDAT
C PRCRAM TO GENERATE NEW MINERAL ENTRIES FOR FILE
C DIFDAT. - ;
C DXFDAT.NEW ZS TO BE APPENDED TO DIFDAT,
C ' ' '
REAL'S HAHE(*),FORMULC6)
INTEGER ELEH(8),SYM
REAL LOWER(8),UPPER(8),A;B,C:,ALPHA,BETA,GAMMA
BYTE ANSWER
OPENCiraiT-l.NAME-'DIFDAT.NEW'.TYPI-'NEW')
10 DO 11 1-1,6
11 FORMUL(X)-' '
00 12 1-1,4
12 NAHECX)-' '
DO 13 1-1.8
ELEHCD-0
LOWER(I)-0.
13 UPPER(X)-0.
SW-0
A-0.
ALPHA-CU
BETA-0.
GAHMA-0.
VRITEC5.100)
READ(5,200) NAME(1),NAME(2),NAME(3),NAME(4)
ZF(HAMEC1).EQ.'END ') CU)SB(UNZT-l)
IFCKAMECD.EQ.'ENO ') CALL EXIT
URXTE(5,110)'
READ(S,210) .
READ<5,*,ERR-1003) A,S»C,AL3?HA,BETAtGAMMA,StM
VRXTE(5,300) (NAME(X),X«1,4),CFORMI!L(X),X-1,6)
VR1TSC3.310) (ELEM(X),LOUERa),UFPER(X),X-le4)
VRXTS(5,320) (EL£M(I),LOWE2CI).OPPE2(I)»I-5,8)
VRXTEC5.330) A,BtCvALPHA,BCrA,eAMKAvSYM
20 TYPE *8' O.K.?'
READ(5,SOO) ANSWER
XF(ANSWER.EQ.'N') GOTO 10
IF(ANSWER.NE.'H' .AND. ANSWER, NE.'Y') GOTO 20
WRITEC 1,400) (NAHE(X),X-1,4),(FORMIIL(X>,X-1,6)
WRXTE(1 ,410)
-------
210 F08MATC6A8)
120 FOEMATC1X,'MANDATORY ELEMENTS.LOWER.UPPEt LIMITS? (UP TO 4)')
130 POBMATCIX.'OPTIONAL ELEMENTS,LOWER,UPPER LIMITS? (UP TO 4)*>
uo PORMATCix,'A,B,c,ALPiiA,BETA,GAMMA,SYM?' ,$>
300 POBMATC///,IX,'NAME l',3X,4A8,/iX.'FOBMULA l',5X96A8)
310 FOBMATCIX,'MANDATORY S',5X,4<1X,I2,1X,2FS.2)>
320 FOIMAT( IX,'OPTIONAL S%5X,4(1X,I2,1X,2FS.2)>
330 FOIMAT(lX,'A,B,e,ALPHA,BETA,GAMMA,SYM{' ,SX,6F7.3,3X,X1)
400 FORMAT('?',10A8)
410 . FOBMAT(1X,8(I2,2FS.2))
420 FOIMAT(1X,6F7.3,Z1)
500 FORMAT(Al)
Eiffi
145
-------
•EHABLS QUIET
SET /SLAVE-TI*
RUM XMATCH
BUM XIDEH
HIM ANCDIP '
RUM RESULT
PIP KATMIM./Ptr
PIF HSULT./PU
Fit «SSUI,T.;l.RESULT/tI
£» MATMIM.ji.MATMIM./lE
MP MATPAT./PU
TO MAXfAT.il^!ATFAT./IE
PIP HATFAU.;1.MATPAB./1B
PIP XIMDEX./PU
PIP XIHDEX.;l»
PIP PHIDAT./PU
PIP PHIDAT.;1-PHIBAT./1B
PIP MATPHI./PU .
PIP MATPHI.ji-MATFHI./RK
SET /KOSLAVE-TIi
«STOP
AN OWLE OF A COM**. RU Nt m AHPHtmE
146
-------
"SIFDAT* LIBRARY OF MINERALS
NAME S FE-ACTINOLITB °
FORMULA s CA2 FES SIS 022 (OH)2
MANDATORY s 20 0.67 2.00 14 7.50 8.00 26 2.50 5.00 0 0.00 0.00
OPTIONAL t 12 0.00 2.50 11 0.00 1.17 13 0.00 0.50 19 0.00 0.50
A,B,C,ALPHA,BETA,CAMMA,SYM* 9.850 18.100 5.300 90.000104.833 90.000 5
NAME * ACTINOLITE
FORMULA s CA2
-------
NAME : ANORTHITE
FORMULA : CA AL2 SI2 08;NA AL SI3 08" :
,':» " *:« « 5 a a : s:§s as
t,.YHj 8.180 12.880 14«liO 93.i701IS.850 91.220 0
KAME t ALANCZME
FORMULA « KA AL SI2 06 .H20
l -
MAKE » ANDALUSCTE
FORMULA s AL2 SI OS
'
MAMS : ANHYDRITE
FORMULA : CA (S04)
NAME : ANORTHOCLASE
FORMULA I CHA.K) AL SIS 08
NAME t
FE-AKTHOPHYLLITE
-------
MAME ? . APATITE
FORMULA s (SS,CA)5
-------
< AUSTINITE
' CA ZH *S 0*
2
AXXNITE
* 1AHRINGTOSITE
F08MUU : MG C03 . 2H20
» FE-BARROISITE
2SS«. a
OPTIONAL *
HO-BABMISIIE
* S
OPHOHAL' , 6 0.00
NAME I BBLOVITE
tBRKI,
8E3A12SI60U
» BIOTITE 1M
"
1.00 1.00 33 IsOO 1.00 0 08Q5 O on
n.ftfi « nn a. • ^ ± r:: v v«WW U.QO
0.00 0 0.00 0«00
90.000 90.000 90.000 0
4.00 4.00 0 0.00 0.00
a°:2!:°° ° °-°° °-oo
8.960 88.070 81.600 77.700 0
95.530109.000 0
ll>7 1*34 19 ?e°° 3a°° " Oe6? ie83
0.000 0.000 9
-
l? f '?? J! °-°° 3-°° " »"» li«S
« >j« i. ^o, 0.^0 „. fcg^ -
ISO
-------
NAME * B.T.OTXTE 2H ' ''•
FORMULA s K (MC.FB)3 (AL.FE)SI3 010 2
* - i4 3-°
NAME s BISMUTHIHITI
FORMULA l BI2 S3
NAME « BR£MSTERIT1
CAL 813 08)2 .
BRITHOL1TE
FORMULA s (CA.CE)S (SI04. P0«)3 (OH.F)
NAME s BR1THOLITE (Y)
FORMULA s 5 (SI 04 P04)3 (OH.F)
NAME s BROCHANTZTE
FORMULA S CU4 S04 (OH)6
NAME :
FORMULA
BROCKZ7E
(CA.TH.CE) P04 COS .2H20
0.00
.
.130 0
I.00 0 0.00 0.00 0 0.00
UOO 0 0.00 0.00 0 0.00 0.00
4.560 4.560 99.880 99.880 99.880 0
NAME :
FORMULA
BROOKZTE
TI 02
f
a
I
4
«
41
-a
151
.*
•*
1
-------
NAME t BRUCITE
FORMULA t KG (OH)2
MAjmATORY t 12 1.001.00 0 0.000.00 0 0.00 0.00 0 0.000.00
OPTIONAL I 0 0.00 0.00 -0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAKMA,SYMS 2.400 2.400 2.400 81.220 8U220 81.220
HAKE : BUERGERITE
FORMULA S ' KA FE3 AL6 BE3 030 F
HANDATORY I 26 3.00 3.00 13 6.00 6.00 14 6.00 6.00 0 0.00 0.00
OrciONAL « -U 1.QO 1.00 9 1.00 1.00 4 3.00 3.00 0 0.00 0.00
A,B,C,ALPHA.BETA.GAKHA,SYM* 9.427 9.427 9.427113.830113.830113.830
NAME t BUSTAMITE
FORMULA s (CA.MN) SI2 06
HANDATORY : 20 0.10 1.00 25 0.10 1.00 14 2.00 2.00 0 0.00 0.00
OPTIONAL t 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPKA,BETA,GAHMAeSYMs 15.460 7.180 13.840 89eS70 94.880102.780
HAMS S &UTTCSNBACH1T8 • •
FORMULA : CU19 CL4 (N03)2 (OHJ32 «, 2 H20
J£5SS?F * " 29 19-001S.OO 17 4.00 4.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 SloO
A,B,C,ALPHA,BETA.GAMMA,SYHJ 9.630 9.630 9.630110.490110.490110.490
NAME t CALCITE
FORMULA t CA C03
MANDATORY : 20 1.00 1.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
l.BETA.CAMMA.SYHl 6.360 3.360 3.360 46.000 46.000 46.000
NAME t CARBONATE-APATITE
FORMULA * CAS (P04tC03)3 (OH.F)
!!J2?i;5?Y ' 2S 5*°° 5*°° l5' 3-°° 3e°° ° 0-06 Q.OO 0 0.00 0.00
OPTIONAL I 0 0.00 0.00 0 0.00 0.00 0 O.OS 0.00 0 oIoS So?
A,B,C,ALPHA,BETA.GAHHAtSYH: 5.940 5.940 5.940105.990105.990105.990
,,,
CASSITERITE
SN 02
: 50 K0°
NAME S
FORMULA :
if^i!JJ?F : 50 K0° l'°° ° °-°° °-°° ° o»oo o-oo o 0.00 0.00
OPTIONAL : 0 0.00 O.OO 0 0.00 0.00 0 0.00 0.00 0 olS 0 00
A,B,C,ALPHA.BETA,CAMMA,SYM: 4.738 4.738 3.188 90.000 90.000 90?000
NAME t CELESTITE
FORMULA : «R S04
MANDATORY j 38 1.00 1.00 16 1.00 1.00, 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 olS 0 GO
A.BtC.ALPHA,BETA,CAMMA.SYM: 8.360 5.360 6.840 90.000 90.000 90?SoO
0 '
11)2
-------
CHAMOSITE
: T - • - «•
0
NAME s CHLORAPAIITE
(P04>3 «•
> CHRYSOCOLL*
HZ SU 05 J J-» J-oo o 0.00 0.00 o 0.00 0.00
°« - «
CLINO-PERROSILITE
FORMULA : FE SI03
-
NAME : CLZNO-HEDRITE
FORMULA s CA ZM SI03 (OH)2
3° -
153
-------
HAME.j CLINOZOISITE j
FORMULA t CA2 AL3 SI3 012 OH
'• S&JS &SJS a. .
B*Hl I CLURDKln
«° <«•»
- '
5*204
CONNELLXTE . - f |
3H20 ; I
17 4*a _.„ w-w w-w
e- 1
MAKE I COROIERITE * 1
S5^-i <«G.FE>2 AU SIS 018 ' j
e •' f
5 ' "-?
NAME : CRISTOBALITE I
FORMULA » SI 02 .
H*ME : CROKSTEOTITE *
£SS*JL «.« 8»5 (OH)4
i 2eOO 6,00 0 0*00 0*00 0
CROSSITE
ilI8 022 vunj< r
8.00 • fM • • - —- - — ?
NAME : CUMHINCTONITE -I
52SL1 7 S" W2
-------
NAME s MG-CUMMINCTONITE
<«,PS>7 SIS 022
-------
NAME : DUMORTIERITE
FORMULA : ' AL7 03
-------
NAME : EPIDIDYM1TE
FORMULA s NA BE SI3 07 (OH)
l '
t EPIDOTE
CA2 CFE,AL) AL2 [OH SI
EPISTILBITE
FOMIULA i CA AL2 SU 016
SH20
0 0.00 0.00 0 0.00 0.00
0.00
90.000 0
0.00
0.00
90.000 0
6.00 6.00 0 0.00 0.00
90.000124.330 90.000 5
KAMI s EPSOM1TE
FORMULA s MC (S04) 7H20
ERIOHITE
-------
NAME ; FLUORAPATITB
FORMULA t CAS (P04)3 P
MANDATORY I 20 5.00 5.00 15 3.00 3.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL s 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,CAMMA,SYMs 5.870 5.870 5.870105.700105.700105.700 0
KAKB I FOISTEMTS
FORMULA S KC2 SX04
MANDATORY, s 14 0.75 1.00 12 1.80 2.00 0 0.00 O.@0 0 0.00 0.00
OPTIONAL s . 26 0.00 0.20 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,CAMMA,SYMs 4.756 10.195 5.981 90.000 90.000 90.000 0
HAMS S FE-CEDRITE
FORMULA s (FE,He,AL)7 (SZ,AL)8 022 (OH)2
MANDATORY t 13 1.00 8.00 26 0.00 5.00 14 0.00 7.00 0 0.00 0.00
OPTIONAL s 20 0.00 1.34 11 0.00 1»34 12 0.00 5.00 0 0.00 0.00
A»B,C.ALPHA,BETA,GAMMA,SYM: 18.594 17.890 5.304 90.000 90.000 90.000 0
MAKE S MG-GEDRITE
FORMULA : (MG,FE,AL)7 (SI,AL>8 022 (OH)2
MANDATORY I 13 1.00 8.00 12 OoOO 5.00 14 0.00 7.00 0 0.00 OeOO
OPTIONAL t 20 0.00 1.34 11 0.00 1.34 26 0.00 5.00 0 0.00 0.00
A,B.C,ALPHA,BETA.CAHHA,SYM: IS.S94 17.890 5.304 90.000 90.000 90.000 0
NAME s GLAUCQN1TE
FORMULA t (K,NA)(AL,FS,H6)2 (AL,SI)4 010 (OH)2
MANDATORY I 19 0.10 1.00 14 3.00 4.00 0 0.00 OeOO 0 0.00 0.00
OPTIONAL t 11 0.00 1.00,26 O.-OQ 2.00 12 0.00 2.00 13 0.00 3.00
A,B,C,ALPHA,BETA,GAMMA,SYM$ 5.250 9.090 10.030 90.000100.000 90.000 5
•
NAME s FE-CLAUCOPHANE •
FORMULA t • NA2 (FE,MC;3 AL2 SIS 022 (OK)2
MANDATORY t 11 1.34 2.50 26 OcOO 3.60 13 . 1.40 2.00 14 8.00 8.00
OPTIONAL t 19 0.00 0.50 12 0.00 3.00 0 0.00 0.00 0 0.00 0.00
A»B,C,ALPHA,BETA,GAMMA,SYMs 9.541 17.740 5.295 90.600103.667 90.000 5
NAME t MG-GLAUCGPHANE
FORMULA * NA2 (MC,FE)3 AL2 SIS 022 (OH)2
MANDATORY s 11 1.34 2.50 12 0.00 3.00 13 1.40 2.00 14 8.00 8.00
OPTIONAL : 19 0.00 0.50 26 0.00 3.60 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,€AMMA,SYHs 9.541 17.740 5.295 90.000103.667 90.000 5
NAME : GOETHITE
FORMULA : * K FE 02
MANDATORY t 26 1.00 1.00 0 0.00 0.00 0 0.00 19.00 0 0.00 0.00
OPTIONAL S 0 0.00 0.00 0 0.00 0.00 0 0.00 p.00 0 0.00 O.OQ
A,B,C,ALPHA,BETA,GAMMA,SYM: 4.596 9.957 3.021 9.0.000 90.000 90.000 0
158
-------
m
NAME
GONNARDKE
Bv "^ ** "*••«>« °1012 • 6H20
XSSJ ! ti J*2i'222 l-ool-ooi3 0.005.00 o 0.000.00
SBU-^^Sy-00 °u» &.V AS ?J?SooVs§§ fc&.
NAME s GSEENALITE
010 (OH)8
' ' M 4'°° *-
0.00 o 0.00 0.00
? GRUNERITE
FORMULA : - (FE,«C)7 SIS 022 (OH)2
NAME : CYPSOM
FORMULA 8 CA S04 . 2H20 *
a " ,a SJ »
NAME : HALLO YSITE
FORMULA : AL2 SI2 05 (OH)4 . 2H20
SL
NAME : HALOTRICHITE
FORMULA : FE AL2 (S04)4 . 22H20
NAME »
FE-HASTINGSXTE '
(HC«FB>AL>5 (AL2.SI6) 022 (OH)2
« a, as a gag g.
NAME s MC-HASTINCSITE
(AL2.SI6) 022 (OH)2
s K g?
1S9
-------
NAME : HEDENBERGITE
FORMULA : CA FE SI2 06
MANDATORY : 20 i.OO 1.00 26
OPTIONAL f 0 0*00 0.00 0
A,B,C,ALPHA,BETA,GAMMA,SYMS
1.00 1.00 1*
0.00 0.00 0
9.850 9.020
2.00 2.00
0.00 0o 00
0
0
0.00
0»pO Go 00
5.260 90.000104*330 90.000 5
NAME S HEDYPUAHS
FORMULA s (CA,PB)5 (AS 04)3 CL
MANDATORY t 20 0.00 S.OO 33 OoOO 3.00 17 1.0@ 1.00 0 0.00 0.00
OPTIONAL t 82 0.00 5.00 0 OcGO 0.00 0 0.00 0.00 0 0.00 0.00
A.B.C.ALPHA.BETA,GAMMA,SYHi 6.370 6.370 6.370106.300106.300106.300
NAME s HEM1MORPHITE
FORMULA s 2N4 SI2 07 (OH)2 . H20
MANDATORY t 30 4.00 4.00 14 2.00 2.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BCTA,CAMMA,SYM:
0
0
0.00 0.00
0.00 0.00
0
0
0.00 0.00
0.00 0.00
NAME s HENDRICXSITE
FORMULA » K (ZN,MN)3 (S13 At) 010 (OH)2
MANDATORY t 19 1.00 1.00 30 0.00 3.00 14 2.00 3.00 0 0.00 0.00
OPTIONAL £ 25 0.00 3.00 13 0.00 1.00 0 0.00 0.60 0 0.00 0.00
A,B,C,ALPRA,BETA,GAMMA,SYMs 5.370 9.320 10.300 90.000 99.000 90.000
NAME S FE-HOLMQUISTITE
FORMULA * (NA,CA)(AL,LI,MG.FB)7 SIS 022 (OH,F)2
MANDATORY s 26 1.00 3.00 13. 1.00 2.00 14 7.50 8.00 0 0.00 0.00
OPTIONAL I 20 0.00 1.34 11 0.00 1.34 12 Q.OO 2.00 25 0.00 3.00
A,B,C,ALPHA,BETA,GAMMA,SYM: 18.300 17.690 5.300 90.000 90.000 90.000
NAME t HG-HOLHQUISTITE
FORMULA : (NA,CA)(ALtLI.MC,F15)7 SIS 012 (OH,F)2
MANDATORY* . 12 1.003.0013 1.002.0014 7.50 8c00 0 0.000,00
OPTIONAL x 20 0.00 1.34 11 ' 0.00 1.34 26 0.00 Z°.0© 25 0.00 3.00
A,B,C,ALPHA,BBTA,GAMMA,SYMs• 18.300 17.690 5*300 90.000 90*000 90.000
NAME S F2-HORNBLENDE •
FORMULA J (CA,NA,K)2 (FE,MG,AL)5 (SI8AL)8 022 (OH)2
MANDATORY J 20 0.67 2.00 14 6.25 7*49 26 0.00 4.00 13 0.50 1.75
OPTIONAL » 11 0.00 i.17 19 0.00 OcSO 12 0.00 4.00 22 0.00 0.50
A,B,C,ALPHA,BETA,GAHMA9SYMs 9.880 18.020 5.330 90.000105.500. 90.000
NAME S MG-HORNBLENDE
FORMULA J (CA,NA,K)2
-------
NAME s HOWIBITE
HYALOPHANE
«*••»£•
-------
HC-KAERSUTXTE
«
,
I7e2l° 5'
KAOLINITS
SI2 05 (08)4
2-00 2.00
n ft no
-
OOOi06.000 90«
5.155 8.959 7?407 91?680104?870 89?
940 0
a gg a
H6-KATOFHOR1TS
•SSnn
« «
, «
» KYANITE
FORMULA : AL2 SI 05
MANDATORY j 13 2.00
« LAUMONTITE
CA AL2 SI4 012 . 4H20
NAME : LAWSONITE
8.00
0.00
90.000 5
"
fi5JBSL'.Sa ,
162
-------
NAME t LEPIDOCROCITE
FORMULA : GAMMA — FE 0 « OH
nAMUATOKT 8 26 1.00 1.00 0
. OPTIONAL * 0 0.00 0.00 0
A, B,C, ALPHA, BETA, GAMMA, SYM?
NAME S
FORMULA S
MANDATORY
A,B,C,ALP!
NAME 8
FORMULA 8
npTTnMA?^
OPTIONAL
A,B,C,ALP
NAME 8
FORMULA 8
MANDATORY
LEPIDOLITE A)
K (L1,AL)3 (SI,AL)4
* 19 1.00 1.00 14
t 13 0.00 7.00 0
KA,BETA,GAMMA,SYM8
LEPIDOLITE B)
K CLI,AL)3 (SX,AL}4
s 19 leOO 1.00 14
• 13 0.00 7.00 0
HA,BETA,CAMHA,SYM8
LEPIDOLITE C)
K (LI.AL)3 (SI,AL)4
s 19 1.00 1.00 14
. 0.00 0.00 0 0.00 OcOO 0 0*00 0.00
0.00 0.00 0 0.00 0«00 0 0.00 0.00 •
3.860 12.500 3.060 90.000 90.000 90.000 3
010 (F,OH)2
3.00
5.300
010 <
3.00
0.00
9.200
4.00 (
9.200
F,OH)2
4.00 G
0.00 C
5.300
) 0.00
10.200
0.00
0.00
20.000
0.00 0 0.00
0.00 0 0.00
90.000100.000
•
0.00 0 0.00
0.00 0 0.00
90.000 98.000
0.00
0.00
90.000 5
0.00
90.000 5
010 (F,OH)2
3.00
OPTIONAL 8 13 0.00 7.00 0 6.66
A,B,C,ALPHA,BETA,GAMMA,SYM8 10.460
NAME 8.
FORMULA :
LIZARDITS
MG3 SI2 05 (OH) 4
MANDATORY 8 12 2.00 3.00 14
OPTIONAL 8 0 0.00 0.00 0
A,B,C,ALPHA,BETA,GAMMA,SYM8
NAME t
FORMULA 8
LOELLINGITE
FE AS2
MANDATORY 8 26 1.00 i.OO 33
OPTIONAL 8 0 0.00 0.00 0
A,B,C, ALPHA, BETA,GAMMA,SYM8
NAME 8
FORMULA 8
MANDATORY
A,B,C,ALPH
* NAME 8
FORMULA 8
MAGNESITE
MG C03
8 12 1.00 1.00 0
!A,BETA,GAMMA,SYM8*
MARGARITE
CA AL4 SI2 010 (OH) 2
OPTIONAL s 0 oloO oloO 0
A,B,C,ALPHA,BETA,GAMMA,SYM:
«
•
2.00
0.00
5.310
2.00
0.00
5.250
0.00
5.610
oloo
5.130
163
4.00 Q
0.00 0
10.460
2.00 0
0.00 0
9.200
2.00 0
0.00 0
5.920
0.00 0
0.00 0
5.610
0
£
Q 00
0.00
10.460
0.00
0.00
7.310
0.00
0.00
2.850
0.00
5.610
4.00 14 2.00
0.00 0 0.00
8.900 19.500
»
t
O OO o n f\n
0.00 0 0.00
29.360 29.360
0.00 0 0.00
•0.00 0 0.00
90.000 90.000
0.00 0 0.00
0.00 0 0.00
90.000 90.000*
0.00 0 0.00
0.00 0 0.00
48.170 48.170
2.00 0 0.00
0.00 0 0.00
90.000 95.000
«
•
o nn
0.00
29.360 0
0.00
0.00
90.000 5
0.00
0.00
90.000 0
o •
0.00
0.00
48.170 0
O.CO
0.00
90.000 S
i
1 :5
i •»
|
. t
*,
' I
' A
i*
'.'£
: X
"i:
"f.
j
•s.
'£
B*
fc
V.
.•-
V
"j
_ t
3
<
•>:
'"t
i
3:
I
'f
5
S
-|
'«
|
'5
;2
.i
j
a
j
B
|
1
4[
• 1 1
f'
,
'i
*
I
*
-------
NAME : HARIALITE
FORMULA s HA4 (AL3 SI9 024) CL; CA4 (AL6 SU 024) €03
MANDATORY I 13 3.00 6.00 14 6.00 9.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 11 0.00 4.00 20 0.00 4.00 17 0.00 1.00 0 0.00 0.00
A,BtC,ALPHA,&ETA,GAKMA,SYMt 12.075 12.075 7.516 90.000 90.000 90.000
HAMS S MEZONITE
FORMULA S CM (AL6 SZ6 024)C03; NA4 ALPHA,BETA,GAMHA,SYMs 56.700 6.550 18.480 90.000 90.000 90.000
NAME S MZCROCLINC
FORMULA : K AL SZ3 08
MANDATORY S 19 1.00 1.00 13
OPTIONAL t 0 0.00 0.00 0
A,B,C,ALPHA,BETA,CAMMA,SYMs
1. 00 1.00 14
0.00 0.00 0
8*580 12.970
3.00 3.00 0 0.00 0.00
0.00 0.00 0 0.00 0.00
7.220 90.640115.930 87.680
NAME : MZLLERZTE
FORMULA t NZ S
MANDATORY S 28 1.00 1.00 16 Jl.OO 1.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL s 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA»GAMMA,SYM: 3 ,,640 5.640 5.640116.620116.620116.620
NAME : MZHETZTE
FORMULA : PBS (AS 04)3 CL
MANDATORY s 82 5.00 5.00 33 3.00 3.00 17 1.00 1.00 0 0.00 0.00
OPTIONAL t 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAHMA,SYM: 10,240 20.480 7«450 90*000120.000 90.000
NAME I MZNNESOTAZTE
FORMULA I (FE,MG)3 SZ4 010 (OH)2 .
MANDATORY t 26 2.00 3.00 14 4.00 4.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL s 12 0.00 1.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMHA,SYM: 5=500 9.380 19.300 90.000 99.500 90.000
NAME t MZZZONZTE
FORMULA : CA4 (AL6 SZ6 024) C03; NA4 (AL3 SZ9 024) CL
MANDATORY t 13 3.00 6.00 14 6.00 9.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 20 0.00 4.00 11 0.00 4.00 17 0.00 1.00 0 0.00 0.00
A,BkC(ALPKA,BETA>GAMKA(SYM: 12.169 12.169 7.569 90.000 90.000 90.000
0
12.130 12.130 7.690 90.000 90.000 90.000 0
0
2
164
-------
HAME ! MOttetllTE
, (C*,?A?,1C« f2 s»° os* •• 7*20
g fcg f:°« * '0.0010,00 20 0.00 ,.00 0 0.00 0.00
M
"*» *. MULLITE
SSS±L AMSI2013
l« -- o:!5 1J J-2 2-2 2 J-2 S-°° ° °-»°-w
. --.—.-.,.-.!? 7 |2 0;°?«,n0 ,°:2! £-°° ° O^OOO.OO
7.550 7.690 2.880 90.000 90.000 90*000 0
MUSCOVITE
K AL3 SIS 010 (OH)2
? 19 leOO 1«00 13 3«00 3 QO 1&
-------
NAME : OFFRETITE
FORMULA : U,CA)3 (AL5 SI13) 036 . 14H26
MANDATORY J 19 0«00 3.00 13 • 6.00 S.OO 14 0.0013.00 0 0.00 0.00
OPTIONAL : 20 0.00 3.0*0 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHAtBETA,GAMMA,SYM: 9.170 9.170 9.170 92.690 92*690 92.690 0
NAME t OHPHACXTE
FORMULA : • *(eA,NA)
NAME I PALYGORSKITE
FORMULA * CMC,AL)2 SI4 010 (OH) . 4H20
MANDATORY : 12 0.60 1.70 14 4.00 4.00 13 0.60 1.30 0 0.00 0.00
???£..! . ° °'°° °'°° ° °'°° °«00 ° °-°° Oooo o oloo oloo
A.B.C.ALPHA.BETA.CAMMA.SYMJ 12.70017.900 5^20090.00095.00090.000 5
NAME t PARACELSIAN
FORMULA S BA AL2 SI2 08
MANDATORY « 56 1.00 i.OO 13 2.00 2.00 14 2.00 2.00 0 0.00 0.00
JTS^™' . ° °-°° °*°° ° °-°° 0-°° ° o«o6 0.00 o oloo olcs
A,B,C,ALFKA,BETA,eAMHA,SYM; 8.580 9.583 f.080 90.000 90.000 90.000 0
NAME ; FE-PARGASITE
FORMULA I NA CZA (FE9NA)4 AL (SI,AL)8 022 (OH)2
MANDATORY : 20 0.67 3.00 26 0.00 4.00 13 2.75 3.00 14 6 na ft ?«
OPTIONAL : 11 0.00 1.67 19 0.00 KOO 12 oloo Jloo 22 0'00 o15
A.B,C,ALPHA,BETA,CAMMABSYM:. 9.900 is.ooo 5.300 5S.oooi05.Joo SiJSoo 5
NAME : HC-PARGASITE
FORMULA : NA CA (MG,FE)4 AL (SI.AL)8 022 (OH)2
MANDATORY : ' 20 0.67 3.00 12 0.00 4.00 13 2.75 3.00 14 6.00 6.25 •
OPTIONAL : ii 0.00 1.67 19 0.00 1.00 26 0.00 4.00 22 SloO 0 50 ,
A.B.C,ALPHA.BETA,CAHMA.SYM: 9.900 is.ooo 5.300 9i.6ooi05.50o So??oi s
166
-------
NAME I PECIOLITE
FORMULA s NA CA2 813 08 OH
' '
NAME « PHUJCOP1TE IH
FORMULA : K MG3 AL SI3 010
-------
NAME : PRBHNITE
FORMULA : CA2 AL2 SI3 010 (011)2 ' :
MANDATORY : 20 2.00 2.00 13 2.00 2.00 14 3C00 3.00 0 0.00 8.60
OPTIONAL t 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMl 4.610 5.470 18.480 90.000 90.000 90.000 0
HAKE t PROBERTXTE
FORMULA : NA CA B5 09 . SH20
MANDATORY I 11 1.00 1.00 20 1.00 1.00 0 0.00 0«00 0 6.00 0.00
OPTIONAL I 0 0.00 0.00 0 0.00 0.00 0 0.00 ©»00 0 0.00 0.00
A»B.C,ALPKA,BETA,CAMMA,SYMs 13.430 12.570 6.589*90.000100.250 90.000 0
NAME t PSEUDOBROpKITE
FORMULA S FE2 TI 05
MANDATORY: 26 2.002.0022 1.00 1.00 0 0.000.00 0 0.000.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM: 9.790 9.930 3.725 90.000 90.000 90.000 4
• •
NAME : • PSEUDONITILE
FORMULA J FE2 TI3 09
MANDATORY : 26 2.00 2.00 22 3.00 3.00 «l 0.00 0.00 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,CiALPHA,BETA,eAMHA,SYMs 2.257- 2.257 2.257 79.020 79.020 79.020 0
NAME S PUCHERITE
FORMULA : BI V 04
MANDATORY t 83 1.00 1.00 23 1.00 1.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A»B,C,ALPHA,BETA,GAMMA,SYM: 5.332 5.060 12.000 90.000 90.000 90.000 0
NAME : PUMPBLLYITE
FORMULA : . CA2 MC AL2 (SI 04) {SI 07)(OH)2 . H20
JS255??* * 22 2*°° 2'°° U U0° l-°° l3 2«°0 2.00 14 2.00 2.00
OPTIONAL » 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 9 0.00 £00
A,B,C,ALPHA,BETA,CAMMA.SYM: 8.810 5*940 19.140 90.000 97.600 90.000 3
NAME : PYRITE
FORMULA : FE S2
!!iJ?JJ!?Y ' 2S I*00 l'°° l6 2e°°" 2'°° ° e«°° 0-00 © 0*00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 oloo
A,B,C,ALPHA,BETA,CAMMA.SYM: 5.405 5.405 5.405 90.000 90.000 90.000 0
NAME : PYROAURITE
FORMULA : MG6 FE2 COS (OH)16 „ 4H20
ISS?nS?Y $ 1J S'°° 6'°° 26 2'00 2-°° ° °»°° °«°0 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 olio
A.B,C.ALPHA,BETA.GAMMA,SYMl 15.920 15.920 15.920 22.420 22.420 22.420 7
168
-------
NAME I PYROBELONITB
FORMULA t PB MN V04 OH
OPTIONAL* I 8o o"00 l'°° 25 U°° l"°° 23 U0° l'°° ° °*°° °*°°
A,B,C,ALPHAfBETA,CAMM2;s?M?*00 ° 7?l2 ^SOS* 6?ltt So^OOoVoOO 90?000 0
NAME t PtROMORPHITE
FORMULA I PB5 (P04)3 CL
jSLi«, *' fcSfcS" *&%S*ll S:So:S o §:S§:S
A8B,C,ALPHA,BETAtGAMMA8SYM: 6.270 6.270 <
NAME ? PYROPHYLLITE
FORMULA 8 AL2 I(OH)2 SI4 010 J
NAME £ ALPHA-QUARTZ
FORMULA s SI 02
NAME s RHODONITE
FORMULA s MN SI 03
NAME : ' FE-RICHTERITE
FORMULA s NA CA HA FES 518 022 (OH)2
0 0.00 0.00
0.00
BLLS
NAME $ RICHTERITE
FORMULA : NA CA NA MGS SIS 022 (OH)2
MANDATORY ? 11 0*67 3.00 14 7.50 8.00 12 2.50
" - ^ ssl a
NAME : RIEBECKITE
FORMULA s . NA2 FES FE2 SIS 022 (OH)2
0
, s
169
-------
MC-RIEBECKITE
NA2 MC2 FE2 SIS 022
OPTIONAL ! }{ i'nJ J'?2 " 2'°° 3e°° U 8»°° 8«°° 26 1.00 2.00
S&i^iftK-" • ,5sZffi.-3S°5°°,0?M?«'o°-M. ,
NAME »
ROSCHBRITE
Bi3
COH>3
MAME * IOSCOELITE
* 3 (ALtSI3)0]lO (OH)2
S
: ROSENBUSCHITS
-------
NAME i S1DERITE
FORMULA S
MANDATORY :
OPTIONAL S
A M 4B • * •»«• A M^
FE C03
26
0
1.00
0.00
1.00
0.00
0
0
*
0.00
0.00
0.00
0.00
0
0
0.00
0.00
0.00
o.oo
0
0
Go 00 0.00
O.iO 0.00
A,B,C,ALPHA,BETA,GAMMAtSYMs 5.796 5.796 5.796 47.717 47.717 47*717 7
NAME s . SILLIMANITE
FORMULA I AL2 (0 SI 04)
MANDATORY : 13 2.00 2.00 14 i.OC 1.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL : 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA>GAMMA,SYMs 7.440 7.590 5.750 90.000 90.000 90.000 0
NAME : SPHENE
FORMULA 8 CA TI SI 05
MANDATORY t 20 i»00 1.00 22 1*00 1.00 14 1*00 1.00 0 0«00 0.00
OPTIONAL 8 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,CfALPHA,BETA,CAMMA,SYMs 6.560 8»720 7.440 90.000119.720 90.000 5
NAME : SPODUMBNB *
FORMULA : LI AL SI2 06
MANDATORY J 13 1.00 1.00 14 2.00 2.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL l 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM; 9.520 8.320 5.250 90.000110.470 90.000 5
NAME : STAUROLITE
.FORMULA s FE2 AL9 SI4 022 (OH)2
MANDATORY : 26 2.00 2.00 13 9.00 9.00 14 4.00 4.00 0 0.00 0.00
OPTIONAL s 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A>B,C,ALPHA,BETA,GAMMA,SYMs 7.870 16.620 5.660 90.000 90.000 90.000 S
NAME : STEATITE
FORMULA : MG3 SI4 010 (OH)2
MANDATORY : 12 3.00 3.00 14 4.00 4.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL l 0 0.00 0.00 0. 0.00 £.00 0 0.00 0.00 0 0.00 0.00
AtB,C,ALPHA,BETA.CAMMA,SYM: 5.280 9.150 18.900 90.000100.250 90.000 5
NAME : . STIBNITE
FORMULA s SB2 S3
MANDATORY s 51 2.002.0016 3.003.00 0 0.00 0.00 0 0.000.00
OPTIONAL s 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM: 11.200 11.280 3.830 90.000 90.000 90.000 0
NAME : STILBITE
FORMULA : NA CA2 AL5 Sill 036 . 16H20
MANDATORY : 11 UOO 1,00 20 2.00 2.00 13 5.00 5.00 14 13.0013.00
OPTIONAL s 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C, ALPHA,BETA,GAMMA,SYM: 13.630 18.170 11.310 90.000129.166 90.000 5
171
-------
HAKE I STILPNOMELANE ' :
FORMULA l K (FE,MG,AL)3 SI4 010 (OH)2 . H20
MAKDAIORY I 14 4.004.0026 I.50 3.50 0 0.00 0.00 0 0.000.00
OPTIONAL S 19 0.00 1.00 12 0.00 2.00 13 0.00 2.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMS 21.720 21.720 17.740 90.000 95.860 90.000 0
NAME S SVABITE
FORMULA s CA5 (AS 04)3 (FSCL.OH) .
MANDATORY s 20 5.00 5.00 33 3.00 3.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL I 19 0.00 1.00 17 0.00 1.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYif! ' 6.170 6.170 6.170107.500107.500107.500 0
HAKE t TAENIOLITE
FORMULA : K LI MC2 SI4 010 F2
MANDATORY ( 19 1.00 1.00 12 2.00 2.00 14 4.00 4.00 0 0.00. 0.00
OPTIONAL S 0 0.00 0.00 0 0.00 0.00 0 0.00;0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMt . 5.270 9.130 10.120 90.000100.000 90.000 5
• *
KAHB ! TALC •
FORMULA : MG3 SI4 010 (OH)2
MANDATORY s 12 2.00 3.00 14 4000 4.00 0 0,00 0«00 0 0.00 0.00
OPTIONAL l ' 26 0.00 1.00 0 O.06 OeOO 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMs 5.280 9.150 18.900 90.000100.250 90.000 5
NAME t FE-TARAMXTE
FORMULA t NA2 CA (FE,MG)3 (PE.AL)2 316 AL2 022 (OH>2
MANDATORY s 14 6.00 6.50 13 1.50 2.00 11 0.67 2.67 26 0.00 5.00
OPTIONAL s 20 0.67 1.00 19 0.00 1.00 12 0.00 3.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM: 9.900 18.000 5.300 90.000104.0T3 90.000 5
NAME t HOTARAMITB
FORMULA I NA2 CA (MC,FE)3 (rE,AL)2 SI6 AL2 022 (OH)2
MANDATORY s 14 6.00 6.50 13 1.50 2.00 11 0.67 2.67 12 0.00 3.00
OPTIONAL » 20 .0*67 i.OO 1.9 0.00 1.00 26 0.00 SeOO 0 0.00 0«00
A,BtC>ALPHA,BETAeGAMMA.SYMs* 9.900 18.000 5,300 90.000104.000 90.000 S
NAME : THOHSONITE
FORMULA t NA CA2 [ AL2 (AL.SI)- SI3 010]2 . 6H20
MANDATORY : 11 1.00 1.00 20 2.00 2.00 13 4.00 6.00 14 6.00 8.00
OPTIONAL t 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,CAMMA,SYM: 13.070 13.090 6.630 90.000 90.000 90.000 0
NAME » THORITE
FORMULA S TH SI 04
MANDATORY t 90 1.00 1.00 14 1.00 1.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL s 0 0.00 0.00. 0 0.00 0.00 * 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM: 7.120 7.120 6.320 90.000 90.000 90.000 2
172
-------
SAME i TIRODITE
I.FE)7 SZ8 022 (OH)2
H J'X. ?•!?£ H9!-°°l* §;°§|-
-------
HAKE S VERHICULITS - :
FORMULA t (MC,CA) (MG,FE,AL)6 (AL,SI)8 Q2Q(OH)4 8H20
MANDATORY t 14 5.50 6.00 13 2.00 5.00 12 3*50 6.00 0 0.00 0.00
OPTIONAL t ' 26 0.00 2.50 20 0.00 1.00 0 6.00 0.00 0 0.00 6.00
AtB,C,ALPHA,BETAiaAHHA,SYMs 5.300 9.200 29.000 90.000 97.000 90.000
HAMS S VINOCaADOVm
FORMULA » (NA,CA,K)4 TI4 AL S16 023 . 2H2©
MANDATORY s il 0.00 4.00 22 4.00 4.00 13
OPTIOKAL I 20 0.00 4.00 19 0.00 4.00 0
A,B,C,ALPKA,BETA,GAMMA,SYM: 1.180 1.000
1.00 1.00 14 6.00 6.00
0.00 0.00 0 0.00 0.00
0.760 90.000 91.970 90.000
NAME t VIVIANITE •
FORMULA S FE3 (P04)2 . 8H20
MANDATORY I 26 3.00 3.00 15 2.00 2.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL t 0 0.00 0.00 0 0.00 0.00 0 OcOO 0.00 6 0.00 0.00
A,B,C,ALFaA,BETA,CAMHA,SYMs 10.059 13.415 4.696 90.000104.300 90.000
NAME- I FE-WINCHITE
FORMULA t CA HA (FE,MG)4 (FE»AL) SIS 022 (OH)2
MANDATORY s 14 7.50 8.00 26 3.00 5.00 11 0.67 1.83 10 0.67 1*34
OPTIONAL t 12 2.00 4.00 19 0.00 0.50 13 0.00 1.00 0 0.00 0.00
A.B.C,ALPHA,BETA.CAHHA.SYH: 9.820 17.960 5.270 90.000104.330 90.000
NAME * MC-WINCHITE
FORMULA s CA NA (MC,FE)4 (FE.AL) SIS 022 (OH)2
MANDATORY J 14 7.50 8.00 12 2.00 4.00 11 0.67 1.83 20 0.67 1,34
OPTIONAL t 26 3.00 5.00 19 0.00 0.50 13 0.00 1.00 0 0.00 0.00
A,B,C,ALPHA,BBXA,GAMMA,5YM*
9.820 17.960 5.270 90.000104.330 90.000
NAME s UOLLASTONITE -
FORMULA t ALPHA.- CA SI 03
MANDATORY S 20 1.00 1.00 14
OPTIONAL I 0 0.00 0.00 0
A»B,C,ALPHA,BETA,GAMMA,SYM:
1.00 1.00 0 0.00 0.00 0 0.00 0.00
0.00 0.00 0 0.00 0.00 0 0.00 0.00
7.940 7.320 7.070 90.050 95.283102.467
NAME: XONOTLITE
FORMULA t CAS SIS 08 (OH)2
MANDATORY S 20 3.00 3.00 14 3.00 3.00 0 0.00 0.00 0 0.00 0.00
OPTIONAL s • 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A»B,C,ALPHA,BETA,GAMMA,SYMs 16.950 7.340 7.030 90.000 90.000 90.000
NAME t ZINNWALDITE
FORMULA : K (LI»AL,FE)3 (AL,SI)4 010 (OH,F)2
MANDATORY S '19 1.00 1.00 13 1.00 4.00 14 3.00 3.50 0 0.00 0.00
OPTIONAL t 26 0.00 3.00. 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
A,B,C,ALPHA,BETA,GAHMA,SYM*
5.270 9.090 20.144 90.000100.000 90.000 S
ji
j
<:
••i
I
I
I
174
• .*•!
-------
FORMULA
ZIRCON
ZR SI 04
FORMULA *
ZOISm
CA2 AL3 813 012 OH
• s
« ais a
175
.1
I
-------
APPENDIX B
TEST DATA AMD COMPUTER LISTINGS TOR DATA PROCESSING AND REPORTING
EXAMPLE OP ANALYSIS TO EETERMINE CONCENTRATION 0? CHHXSOTILE
The following P«B«« «l»w « «sw«pl« o£ r«w d«e» w*«l«eion iaeludlag «p«cifflen
br«p«r»tioa d«t«U», Mgni£ic*eion«, and eh« clM«i£ic«eioa «nd MasureaMae
data recorded during TEM •xaainntion of a vatar »«mpl«. Tha IS pages vhieh
follow eha raw data tabulation »how the reaults generated by computer
processing of the«e raw data.
176
-------
AS8CSTSS ANALYSIS • UATCT SAMPIE DATA
SEQs
PREFs lyjk&~ tat* "7 -*f-f| I COUNT: lyX& tat* «- *l - 91 PROCESS: ByAk tat* »t» ^ «g|
[KST
MAGNIFICATIONS: 6H4
DILUTIONS:
FlMl VoltM (at.)
FtML
COHOtTS; (for tnelusion fn eMputtr pr1»t-«utj fbiwt In S tints of €0 dMrtetan)
FIBER CLASSIFICATIONS;
COUNT: NAN IN
PROCESS:
UC AC M tttt *Q
AZQ AZZ
FllHWf
CLASSIFICATION
cog
FIBER TYPE | CLASSIFICATION
.1
f
NOTES: Preparation:
->!• _ ii-L*.
177
-------
E
•»»
S
1
••••
*
_
i
4*
^
k
V
1
1
«
i
i
i
i
ft
to
8
8
M
M
3
u
•*
1
1
£
i
*
E
!
i?
fl
3
5?
£
ST
I
a
y
*
e
g
U
g
5
E
|
IL
K •
l~
C3
5
^
£
e
-
VI
r*
•
mi
•A
T
r
•
(A
N
1
•
Q
%
r
o»
*
5
-8
r
(W
Ifl
•
1
^
%
1*
pj
^
r
«•
»
s
r
a
0
*M
r
p
^
-
f
««*
i
s
(4
HI
to
M
C
0
*«
=**o
r
f<
^
»
\
i
0
6«
q
e
«»•
1
ff"
4
*
r
%
M
i
f
1
f»
(•
1
r
mm
.
1
?
e
IT
.
«i
VI
I
r
-------
179
-------
1
I
180
-------
V)
%
*!
i
-
V
i
4
3
%
%
••
tt
t
S
!
i
u
s
M
i
s
X
8
OD
^
•
S
K
i«
?
°g
1
^»
5
i
: '
»
1
IT
a
ft
sA
S
?
f-
s
i
5
9
.S
§
f
S
S
5
S
5
«•
e
£
^*«
I"1
fi
£
ft)
I
•
r
—
t
r
•
i
«i
^
M
6
•I
E>
»
%
r
|A
1
^
-
•
(4
M
1
r-
5
ti
i;
1 1
•
i
^,
*
T
1
i
I
1
•MB
r
»
•Bk
4
0
it
•^
J;
p
r
>
n
«•
b
0
n
«
rt
i
(4
•f
0
>
-
W
i
r
1
•
f
*
i
r
n
^
rl
1
r
\
T
*
a
(4
0
*
0
n
t
e
£
""
«\
i
»
r
»
0
II
i
?
«•
<
I
V)
i
r
t
ft
\
«
••
X
"r
*
\
.1
N
10
\
P
n
M
.V)
!
!
]
I
181
-------
i
i
£
I
&
1
if
i
I
r
J
182
-------
22058 S8-EX BATES 22-JUN-82
RESULTS OF FIBER COUNT
P * *
SAMPLES River Water U.
The results below are for fibers classified as CHRYSOT1LE
which have aspect ratios equal to or greater than 3:1
and lengths exceeding Q.S micrometers.
Mean fiber Concentration 2?*i MFL
Upper 95Z Confidence Limit 33..I MFL
Lower 95Z Confidence Limit *21.1 MFL
Analytical Sensitivity 0.26 MFL
Estimated Mass Concentration 0.26 micrograms/liter
ANALYST'S COMMENTS ON THIS SAMPLE
This sample was treated by bubbling filtered ozone gas through
the liquid while irradiating the aaaplc with ultraviolet light.
This treatment is used to oxidize organic* in the liquid.
After oxidation, a known volume of the sample was filtered
through a 0.1 micrometer pore size Nuclepore polycarbonate
filter. The deposited material on the surface of the filter was
transferred to an. electron microscope'specimen grid by the direct
carbon coating extraction replication technique.
The saaple also contained aany diatoms and irregular tabular
particles.
* MFL • million fibers per liter
183
-------
22058
DATES 18-JUN»82
SAMPLE: River Water U
DETAILED ANALYTICAL DATA
Active Area of Filter
Final Voluae Filtered
Magnification for Grid Hensureaent
Magnification for Fiber Counting
Mean Dimension of Grid Square
Nuaber of Grid Squares Counted
Nuaber of Specifted Fibers Counted
Aspect Ratio Liait (>)
Density ofCChrysotiie Used in Calculations
Ie99
10.00
2160
21000
87.43
O.SO
2.55
aieroaeters
aieroaeters
g/cc
Type of Fiber Counted
•
•Staple Preparation Technique
CHRYSOTILE
Ozone Treating
FIBER LENGTH DISTRIBUTION
Particle
Size Rango.ua
0.23 -
0.34 -
0.50 -
0.73 -
1.08 -
1.58 -
§1*1 -
5.00 -
7.34 -
10.77 -
15.81 -
23.21 -
34.06 -
50.00 -
73.40 -
107.70 -
158.10 -
232.10 -
5.00
7.34
10.77
t5.SU
23.21
34.06
50.00
73.40
107.70
158.10
232.10
340.60
Number
Counted
0
0
23
26
29
6
0
0
0
0
0
0
0
0
0
0
Cua
Nuaber
0
0
23
49
78
0
A
8*
04
04
04
04
04
04
04
04
.04
Cua No
Percent
0.00
OeOO
22.12
Cua Mass
Percent
98.08
00.00
00.00
00,00
00.00
00.00
00.00
00.00
OOoOO
00.00
00.00
100.00
we
B:
0.00
0.00
6.64
.03
.66
5U18
71.03
87.20
00.00
00.00
00.00
00.00
00.00
OOeOO
00.00
,00.00
,00.00
,00.00
100.00
184
-------
22058
DATES 18-JUN-82
SAMPLES River H«t«r 1<
FIBER WIDTH DISTRIBUTION
Particle
Wideh Range,urn
Number
Counted
00 023 -
0.034 -
0.050 -
0.073 -
0.110 -
0.160 -
0.230 -
0.340 -
Go 500 -
0.730 -
1.080 -
1.580 -
§.320 -
.410 -
5.000 -
7.340 -
10.770 -
15.810 -
23.210 -
0.034
0.050 .
0.073
0.110
0.160
0.230
0.340
0.500
0.730
1.080
1.580
2.320
3.410
5.000 .
7.340
10.770
15.810
23.210
34.060
0
97
0
6
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Cun
Nunber
97
97
03
04
04
04
04
04
04
04
04
.04
104
104
.04
104
104
104
Cun No
Percent
0.00
93.27
93.27
99.04
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
.00.00
100.00
,00.00
100.00
185
-------
22058
DATE: 18-JUN-82
SAMPLE: River Water 1
FIBER ASPECT RATIO DISTRIBUTION
Aspect
Ratio Rang*
3.00
4.40
6.46
9.49
13.92
20.44
30.00
44.00
64.60
94.90
139.20
204.40
300.00
440.00
646.00
949.00
1392.00
2044.00
3000.00
- 4;40
- 6.46
- 9.49
- 13.92
- 20.44
- 30.00
- 44.00
- 64.60
- 94.90
- 139.20
- 204.40
- 300.00
- 440.00
- 646.00
- 949.00
-1392.00
-2044.00
-3000.00
-4403.00
Nimber
Counted
0
0
0
14
37
6
6
0
0
0
0
0
0
0
0
0
dm
Nuaber
Cum No
Percent
0.00
(
i:
.00
.00
.46
49.04
74.04
87.50
93.27
99.04
99.04
00.00
00.00
00.00
00.00
00.00
,00.00
.00.00
100.00
100.00
Median of Aspect Ratio Distribution 20.81
Slope Paraaeter of Distribution 3UI7
Index of Fibrosity of Distribution 732.20
186
-------
22058
DATES 18-JUN-82
SAMPLED River Water t.
FIBER MASS DISTRIBUTION
Particle
Mace Range8pg
Number
Counted
O.OOOS -
0.0010 -
0.0022 -
0.0046 -
0.0100 «
0.0215 -
0.0464 -
0.1000 <-
0.2150 -
0.4640 -
1.0000 -
2.1500 -
4.6400 <*•
10.0000 -
21.5400 -
46.4100 -
100.0000 -
215.4300 -
. 0.0010
0.0022
0.0046
0.0100
0.0215
0.0464
0.1000
0.2150
0.4640
I. 0000
2.1500
4.6400
10.0000
21.5400
46.4100
100.0000
215.4300
464.1400
464.1400 -1000.0000
0
0
49
38
10
4
2
1
0
0
0
0
0
0
0
0
0
0
0
CUB
Number
0
0
49
87
97
01
03
04
04
04
04
04
04
04
04
04
04
104
104
Cum No
Percent
0.00
0.00
47.12
83.65
93.27
97.12
99.04
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
100.00
-------
22058
DATES 24-JUN-82
SAMPLE: River Water I.
is OeS un
Grid Square Size
Length Width Area
86.1
90.3
§6.6
9.4
86.6
88.4
87.0
90.3
85.2
88.4
88.4
89.4
85.2
88.9
86.1
88.9
86*6
87.0
86.6
7614.
7983.
7736.
761
76
76
77
78
74
72
*:
4.
i7.
6.
,4.
,5.
Nuaber of Fibers/Grid Square
Actual Horaalized
it
7.90
i3.r
3
Keen. Count per Average Grid Square 10.40
Standard Deviation 2»80
Total Chi-Square - 6»73
Significance Level of Uniformity
10.04
7.90
50 Z
Upper and lower 95Z confidence level* have been
determined on the ba»i« of Poiaaon atatictics.
188
-------
22058
DATES 18-JUH-82
SAMPLES River Water i.
ASBESTOS FIBER COUNT ANALYSIS
SELECTED RAW DATA
Length Li.lt i. 0.5 _
ngth
1.71
.81
'.43
.10
1.71
).90
J.57
,.52
1.52
).81
1 90
U62
0.52
1.38
0.81
0.90
i.10
0.81
1.38
0.81
0.90
1.29
1.29
0.81
0.52
0.67
1.38
Width
ua
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
• 0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
Aapect
Ratio
15.0
17.0
15.0
72.0
65.0
15.0
19.0
12.0
32.0
32.0
17.0
24.0
42.0
27.0.
19.0
24.0
35.0
13.0
11.0
29.0
17.0
19.0
23.0
17.0
29.0
17.0
19.0
27.0
27.0
17.0
11.0
14.0
29.0
Length
ua
1.19
1.10
1.29
1.29
4.43
1.29
2.43
0.81
0.71
1.14
1.14
2.81
0.57
0.90
1.86
0.62
2.00
1.19
0.67
3.43
0.57
0.81
2.00
5.10
0.62
0.67
0.52
0.57
0.52
2.48
1.00
1.52
0.81
Width
ua
0.048
0.095
0.048
0.048
0.095
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
S.095
.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
Aai
Ral
2!
11
41
2
2
2
.2
I
3
A
!
I
•
i
tect
.to
i.O
,.5
'.0
r.o
i.S
7.0
5.5
7.0
5.0
4.0
4.0
9.0
2.0
9.0
9.0
3.0
2.0
5.0
4.0
2.0
2.0
7.0
>2.0
i:i
4.0
1.0
2.0
1.0
52.0
ZleO
32.0
17.0
Length
ua
2.05
2.48
0.90
1.52
3.43 •
1.81
0.81
1.10
0.90
2.48
0.62
3.48
0.81
2.14
0.67
0.90
0.81
0.90
1.19
1.14
1.81
1.86
0.90
1.10
3.43
2.00
0.71
1.52
1.14
0.90
7.24
0.90
1.10
Width Aai
ua Ra
0.095 2
0.143 1
0.048 1
0.048 3
0.048 7
0.048 3
0.048 1
0.048 • 2
0.048 1
0.048 !
0.048 1
0.048 i
0.048 1
0.048 <
0.048
0.048
0.048
0.048
0.048 :
0.048 :
0.048 I
0.048
0.048
0.048
0.048
0.048
0.048
0.095
0.04*
0.048
0.048 1
0.04C;
0.048
peet
eio
1.5
7.3
9.0
2.0
2.0
8.0
7.0
3.0
9.0
2.0
3.0
3.0
7.0
>5.0
4.0
9.0
7.0
9.0
15.0
!4.0
38.0
39.0
19.0
Z3.0
72.0
42.0
15.0
16.0
24.0
19.0
52.0
19.0
23.0
189
-------
22058 - . DATEJ
SAMPLE: River Water i«
•N
ASBESTOS FIBER COUNT ANALYSIS
SELECTED SAW DATA ' (CONT'D....)
ffifffl&T SP""*— un.«, u*i u 0.3 .
Un5«h Width A.wet Unjth Width Ajpjot Ungth Btdth Ajgct
ua
*^Ub» «•!•••.= ^...j,-— ™-- O»V<«
ua Ratio uai u» Ratio
1.86 0.048 39.0 0.67 0.048 14.0 1.29 0.048 27.0
Ol86 Olo48 18.0 0.57 0.048 12.0
190
-------
220S8
SATE; 18°JUS-82
SAMPLE: River Water 1,
GRID
Length Width
• gjg qffl
86 ell 88.43
90.28 88.43
89.35
.35 85.19
86.57 88.89
88.43 86.11
87.04 88.89
90.28 86.57
ASBESTOS- FIBER COUNT ANALYSIS
SAMPLE RAW DATA
Class Length Width Class
FIBER
Length Width
us ua
Class Length Width
CD
CD
CM
CD
CD
CMQ
CD
CD
CM
CD
CD
CD
CDQ
eir
CD
CQ
CD
CO
CM
CD
CQ
CD
i8
CD
CD
CM
CQ
0.71
0.81
0.57
1.29
1.29
4.43
1.29
0.90
0.57
0.81
0.48
Oo90
2.48
0.62
2.81
0.57
1.29
2.14
1. 10
1.14
1.67
0.62
fc»
3.43
0.81
0.38
1.86
0.048
0.048
0.048
0.048
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CD
CD
CDQ
CD*
CD
CD
CM
CMQ
CM
CD
CD
CD
CD
CD
CD
CD
CD
CDQ
CJT
CQ
CM
CD
CD
U19
lolO
2.48
0.90
1.52
3.43
1.81
2.43
0.48
1.10
1.29
1.52
0.81
1.14
3.48
0.81
0.90
0.90
1.86
0.62
2.00
1.19
0.48
1.38
KB
0.90
0.048
0.095
0.143
0.048
0.048
0.048
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048.
0.048
0.048
0.048
0.048
0.048
0.048
CD
CM
CD
CQ
CD
CD
CD
CD
CO
CD
CD
CD
CM
CD
CM
CM
CO
CQ
CD
CD
CO
CD
2.05
0.48
Oe71
3.43
3.10.
0.71
0.81
0.57
1.52
0.71
1.14
1.14
0.90
2.00
1.10
0.81
0.67
0.90
0.81
0.90
0.67
1.14
1.81
0.81
0.095
0.048
0.048
.0.048
0.048
0.048
0.048 "
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CD
1.10 0.048 CD
2.00 0.048 CO
0.90 0.048
191
-------
220S8
DATES S3-JUN-S2
SAMPLES River Water I.
ASBESTOS FIBER COUNT ANALYSIS
SAMPLE RAW DATA
GRID
Length Width
ua ua
Class Length Width Class
ua ua
85.19 87.04
83.33 86.57
FIBER
Length Width
ua ua
Clasc Length Width
ua ua
S9
Co
CO
CO
CD
CO
CO
CMQ
0.81
1.38
3«43
2.00
0.71
005?
1.29
0.81
0.52
1.00
1.52
1.38
1.10
1.29
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CBQ
ClT
CO
CQ
CO
CM
CD
CO.
CO
CQ
CO
CD
CD
5.10
0.62
0.81
0.90
1*29
0.86
0.52
2.48
7.24
0.90
0.81
Ic86
0.86
C
(
<
<
C
1.095
.048
*048
.048
)*048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CO
CM
CD
CD
CO
CD
CD
CD
CM
CM
CD
cq
1. 10
1.86
0.67
0*52
1.52
1.14
0.90
0.67
0.52
0.48
0.67
0.57
0.048
0.048
0.048
Oo048
0.095
Oe048
0«046
0.048
0.048
0.048
0.048
Oe048
e
*
192
-------
22056
W.SSUS
100*
80*
60*-
6*.
*
2*> . *
*
1+ •
G.2+
* * t to to to to to to to to to Is t«
F.rc.ne... H«b.r of rtbr. Shorfr
193
-------
22058
SATts 18-JUS-82
SAMPLE: River Water 1.
ASBESTOS FIBER LENGTH DISTRIBUTION LOCc PROBABILITY PLOT
. Aspect Ratio Limit £ 3si MiaiauB Length Unites 0»S UB
Fiber Length
HleroMCarc
Fiber* Classified ast CKRYSOmE
Nuaber of Fibers Sized « 104
100*
80+
60*
40*
20*
10*
8*
6*
2+
1+
0.8*
0.6*
0.4*
0.2*
0.1+
I
5
to
*******
20 30 40 SO 60 70 80
0.5 1 2
Percentage Haas of Fibers Shorter Than-Stated Length
• #
194
90 95 98 99
-------
22658 ' BAH*
SAMPUEl River W«e«t I.
10. Of*
4.0+
2.0+
1.0+
0.8+
0.6+
0.4+
0.2+
0.10+
0.08+
0.06+
0.04+
0.02+
0.01+
BSS
* t • J ! to to to to to to to to to ts ta
P«rc*nta(« (hater of Fibers L**s Than Stated Width
•
195
-------
22058
OAfls 18-JITO-82
SAMPLE: River Hater I.
ASBESTOS FIBER ASPECT RATIO DISTRIBUTION LOG. PROBABILITY PLOT
Aspect Ratio Uait >, 3s i Miniatai Length Unit is 0«S w
Fiber Aspect Ratio
2000+
?ib«rs Classified ass
Nuaber of Fibers Si*ed'> 104
1000*
800*
60Of
400+
200+
100+
80+
60+
. 40+
20+
•10+'
8+
6+
4+
2+
f
I
1+
0.5 12 5 10 20 30 40 SO 60 70 80 90 95 98 99
Percentage Nuaber of Fibors Less Than Stated Aspect Ratio
196
-------
22058 " DATE?
SAMPLE* River Hceer U * : .
ASBESTOS FXBEI MASS DISTRIBUTION LOG. PROBABILITY PLOT
Aspect Ratio Liale £ 3:1 Minianai Length Limit is 0.5 ua
fiber Mus ° Fibers Clacntfied ut CHEYSOTXLE
Pieegrau Munber of Fibers Slwd » 10*
10001°
500*
300*
100*
50*
30*
10*
5*
3*
0.5*
0.3*
0.1*
0.05*
0.03*
O.Oi*
.005*
.003*
.001*
*** ** ****.*** ** **
0.5 I 2 5 10 20 30 40 SO 60 70 80 90 - 95 98 99
Percentage Mueber of Fiber* Less Then Stated Mass
197
-------
PROGRAM USER NOTES
FIBER DATA PROGRAMS
&
Th. two ..in progra «« run ..qu.nti.liy for ..eh e.t Of d«t«.
EPAFXB .cc.pt. th. d.t. tn.t.r.ctiv.ly .Od .tOM. lt in . fu<| MUed
F1BANL on th. ..in co.put.r di.k which ,.y b. tr.n.f.rr.d onto . long-
t.» .tot.g. ..diu. (..g. floppy di.k.tt..). .Th. ..eand progra.
EPACAL r.tri.v.. th. d.t. fro. .ith.r th. ..in or long-t.r, .tor.g.
atdl« «nd procc.... th. d.t..
EPAFIB
- progr- which .ecp.t« th. d«t. .nd .tor., it in . co-put.r fil.
EPACAL and 31 subroutine
- progr«M which r.duc. th. d«t. .nd then print r.sul.t.
- th. program. c.n b. run on « co.put.r with 32K word, of ...ory
- .on. of th. Input-output .t.te.«nt« .r. .p.ctfic to th. RSX-llM
op.r.ting .y.tw
- th. progr«i i..built with .n ov.rl«y.d .tructur. .ccording to P.g.
of th. EPACAL listing
198*
-------
r
EPAFIB
Data entry program for classifying -fibers® Information is taken
Iron the counting data sheetse
, P
SEQUENCE N0« - any alphanumeric character up to 8 chars, in length
- a designation that is unique to these counting data
JOB NO. <-> any alphanumeric char, up to 8 chars* in length
- this nay be used for accounting purposes
SAMPLE DESCRIPTION - up to 60 chars, in length
PREPARATION - up to 12 chars« in length
COUNT - up to 12 chars, in length
YOUR INITIALS - up to 4 chars, in length
INSTRUMENT USED - up to 12 chars, in length
MAGNIFICATION - Enter two integer numbers, separated by a comma, up to
5 chars, in length. The first number entered is the
magnification for counting. The grid magnification range
is between 1000 -°3SOO« The count magnification range is
between 18000 - 27000.
NO. OF DILUTIONS - if I or 2 i* entered the following prompt will appear.
1ST DILUTION: WHAT IS THE VOLUME TAKEN AND FINAL VOLUME (ML)
- enter 2 real numbers, separated by a
FINAL VOLUME FILTERED AND ACTIVE FILTER AREA (SQ.CM).
199
-------
- enter 2 real numbersg separated by « coons
- Comment* mmy be entered if desired, that will print on eh* bottom
of the first page of the report* Up to S lines mmy b« entered*
Each line has a maximum length of up to 60 chars.
- There are IS classifications that the program automatically
recognizes. These arc: TM, CM, CO, CQ., CMQ. CDQ,. UF, AS, AX,
ADX, AQ, ADQ, AZQ, AZZ, AZZQ. Any other classifications that are
needed must be entered by the user. Enter the number of extra
• •
classifications when th« question is asked, otherwise enter 0 if
o
there are none.
DIMENSIONS OF GRID - enter 2 integer numbers up to 3 chars, in length
FIBEt CLASSIFICATION - enter any of the 15 classifications, or any extra
classification*
- if them are no more fibers in the grid square,
enter END
-if no fibers wore found in the grid square, eater
END
LENGTH, WIDTH - enter 2 integer numbers up to 4 chars, in length
- the length must be greater than the width
- the width must be greater than 0
ANY MORE DATA SETS? - more than one s«t of data can be entered at a time
- if there are no more data sets to be entered, type
NO
200
-------
• the data £• cCored in a file. n«aed "FIBANL" on the
••in disk. For'long-can storage, tha data may be
atored on aedia aueh aa floppy diak, aagnetie tape,
p i . '
«ec. by aiaply appending tha "FXBANL18 file* together.
- "EPACAL? ic now raady to ba run
EPACAL •
Prograa which processes the data and produces report* for the
elaaaifying of fiber*.
• o
- Filea aay either be retrieved froa the main disk or the floppy.
If "EPAFIB" haa Juat previously been run, it ia auch faater to
retrieve the file* froa the aain diak.
- Records aay be processed by sequence no. (SEQ), job no. (JOB), or
all (ALL) the. records on the file aay be processed.
TYPE OF FIBER - up to 32 characters -in length
CLASSIFICATION INCLUDED - enter only those classifications that are to be
processed for the report, followed by END. If
all classifications are deaired, enter*ALL.
- Here than one report aay be processed for any data aet.
201
-------
C RSX-11M VERSION CONVERTED MAY 20 1981
C
C THIS PROGRAM IS THE NEW DATA ENTRY PROGRAM FOR CLASSIFYING
C FIBERS ...
C
c
c
c •
BYTE DESC(60),SMPCOMC5,60),COM(12)
INTEGER GMAG,CMAC,DIL,6RIDSRECORD,RECNUM,CLEN, !\
* CWIDTH,LENGTH,WIDTH,EmAsLEN
-------
RECORD- 1
99 WRITE (1.399) RECOKO
399 FORMAT ('START 't!2>
i TYPE 100
100 25*?«C& T* IS "" SEQ.DE*CE DUMBER?
200 ?SSAT(2A?)f ltENO""99) SEQNUM
C
2 TYPE 101
101 FORMAT ,' WHAT IS THE JOB NUMBER?
READ (3.200.ERR.2.ENO-9999)
TYPE 102
102 FORMAT (/.' ENTER SAMPLE DESCRimON (UPPER AND LOWER CASE)s >
C ENABLES LOWER CASE
CALL GETADR(PS,BUF(1»
PS(2)-2
BUF(l)-»25
BUF(2)-1
CALLQIO(M2440.5.i,.PS)
DO 91 L-1,60
91 DESC(L)-* '
READ(5;20ltEND-9999> I,(OESC(L),L-1BI)
C
C DISABLES LOWER CASE
C
CALL QIO(M2440.3...tPS)
201 FORMAT (Q.60A1)
300
c Q-2
TYPE 103
203 FORMAT (3A4)
TYPE 105
105 FORMAT
-------
8 PREPTO'OZO " - "
TYPE 109
109 FORMAT (/,' WHAT INSTRUMENT WAS USEB? *.$)
READ(5,203,END-9999) INSTR-
C
10* TYPE 110
no FORMAT COWHAT WAS THE MAGNIFICATION FOR cams & COUNTING? %$)
READ (5,210.ERR«10,END-«999) GMAG,CMAG
210 FORMAT (215)
IF ((GMAG.LT.1000.)»OR.(GMAG.CT.3SOO))
.. * - TYPE *,'WARNING GRID MAGNIFICATION NOT IN NORMAL RANGE'
411 IF C(CHAG.LT.i8000.).OR.(CMAG.GT.27000.))
4 TYPE *,'WARNING COUNT MAGNIFICATION NOT IN NORMAL RANGE'
C .
C
412 TYPE 112,SEQNUM,DESC,JOBNUM,PREP,PREPTC,COUNT,INSTR,
4 ENTRY,GMAG,CKAC
112 FORMAT ('ONo: '.2A4,/,m.'S«apI«: '.60A1./.' Job: %2A4,//,
4 ' Prep- by: ',3A4817X,'Preparation Technique: %A48//.
4 ' Count by: 'B3A4.l6X/In«tsya€nes \3A4,//0' Encry by:
»•» * ~,™ A4.24X,9M«gntfie.feion. Grids ',14.' Count: MS./)
12 TYPE 113
113 FORMAT (' IS THIS INFORMATION CORRECT? ',$)
READ(5,223.END-9999) CORECT
IF (CORECT.EQ.'Y') GOTO 13 '
IF (CORECT.NE.'N') GOTO 12
BACKSPACE 1
BACKSPACE I
TYPE *,'RE-ENTER THE DATA'
GOTO 1
C
13 WRITE (1,310) PREPTC,INSTR(1),GMAG,CMAG
310 FORMAT (2A4,I4,IS)
C
15 RECNUM-2
SMPTYP-'LIQU'
VRITE(1,207) SMPTYP
21 UNITS"' ML '
. UNITSF-UNITS
97 TYPE 197
197 FORMAT ('OHOW MANY DILUTIONS WERE THERE (0,1 OR 2)? %$)
READ(5,*,ERR-97,END-9999) OIL
IF(DIL.GT.2) GOTO 97
WRITE (1,397)OIL
397 FORMAT(Il)
RECNUM-RECNUH+DIL+i
IF(DIL.EQ.O)GOT025
23 TYPE 123,'1ST'
123 FORMAT ('0',A3,' DILUTION: WHAT WAS THE VOLUME',
4 ' TAKEN & FINAL VOLUME (ML)? ',$)
READ(5,*,ERR-23,END-9999) DILIVT.DIL1FV
WRITE (1,323)DIL1VT,DILI>FV
*
204
-------
323 PORMAT(F6.1,F6,1)
IFCDIL.EQ.1) GOTO 25 , ' :
24 TYPE 123, '2ND'
REAJEK5,*.ERR-24.END-9999) DIL2VTSDIL2FV
WRITEC 1,323) DIL2VTBDIL2FV
G
C . • * •
223 pRHAT(Al)
25 CONTINUE
32 TYPE i32,UNITSF
J32 FORMAT ('OWHAT IS THE FINAL VOLUME FILTE*2» C.A4.
6 SAMPLE SUMMARY
C
TYPE 142
142 FORMAT COLIQUID*)
144
144
6 'Dicpcrsal Voluo.
TYPE i46,UNITSF,VOLFIL,FILA
146 FORMAT TOVolu.. Fiit«r«d C.A4,') , %F7.2.
46 TYPE 14lXf'ACttV* FUC*ff **" ^-^ ! '»F5
148 FORMAT (
-------
DO 74 L»i,5
LEN(L)-0 • • •"
DO 74 K-1,60
74 SHPCOHU,*)-' '
IF(DONE.BQ.'N')COTO 177
TYPE */ COMMENT LINES CAN HAVE, A MAXIMUM OP 60 LETTERS'
TYPE *,'THE SHIFT KEY MUST BE USED TO GET UPPER CASE*
C
C ENABLE LOWER CASE
C
BUF(2)-1
CALL QIO(M2440,S,,.,PS)
DO 75 L-l.5
TYPE 175
175 FORMAT (IX.T63,' |60'/"+ %$) «,
READ(5.20lfEND-9999) l.(SMPCOM(LfK),K-lsI)
LENCD-I
75 CONTINUE
BUF<2)-0
C
C DISABLE LOWER CASE
C '
CALL QIO(M24«0,5,.,.PS>
C
76 TYPE 176,«SMPCOM(L,10,1C-1,60),L-1,S)
176 FORHATC//.'OTHE COMMENTS AREs' ,/,S,* *860Al),/'OIS THIS CORRECT?'. $)
READ(5(223,END-9999) DONE
IF(DONE.EQ.'N' )COT073
IF(DONE.NE.'Y') GOTO 76
177 DO 77 L-l.,5
. I-LEN(L)
77 WRITEC1.377) (SMPCOM(L,K),K-l.I)
377 FORMAT (60A1)
C'
C END OF THE iNFT^w.^ION ON THE SAMPLE
C INFORMATION ON 1HE FIBERS PRESENT IN THE SAMPLE
C
C
78- TYPE 178
178- FORMATCOHOV MANY EXTRA CLASSIFICATIONS (0-12) ? * 6$>
READ (S,*,ERR-78,END«9999) EXTRA
IF ((EXTRA.LT.O).OR.(EXTRA.GT.12)) GOTO 78
IF (EXTRA.EQ.O) GOTO 54
DO 79 L- I, EXTRA
TYPE 179 . _
179 tFORMATCOENTER ONE OF THE 3 OR 4 LETTER CLASSES '.$)
79 READ(S,256,END»9999) CLSUS+L)
C -
C
TYPE *,' *
TYPE *,' IF THERE ARE NO MORE FIBERS IN THE GRID SQUARE'
• «
206
-------
TYPE *,' ENTER "END" WHEN IT ASKS FOR CLASSIFICATION"
TYPE *,' '
54 RECNUM-1
TYPE 154, GRID -
154 FORMAT (/,' WHAT ARE THE DIMENSIONS OF GRID f tU,e f (MM) • S)
READ (5,*,ERR-54,END-9999) GLEN.CWIDTH
IF( (GLEN. LE.O). OR. (GLEN. CTo999})GQTO 54
XP((CWIDTH.LE.O).'OR.(GHIDTH.CT.999)) GOTO 54
WRITE (1,354) GLEN.GWIDTH,'*'
354 FORMAT (213. Al)
C -\
56 REOIUM-RECNUM+2 " *
57 TYPE 156
156 FORMAT (37HOWHAT IS THE FIBER'S CLASSIFICATION? ,$)
READ(S,256,END-9999) CUSS
256 FORMAT(A4)
IF ( CLASS «,EQ«' END ') GOTO 50
BO 59 L-1.15+ EXTRA
59 !F(CLS(L).EQ.CLASS) L-98
ZF(L.EQ.99)GOTOS8
TYPE *,' INCORRECT CLASSIFICATION*
_ COT057
C *
58 TYPE 158
158 ^^i5???611^^ ^ "BER'S LENCTH» WIDTH «MM>» A1"1 COMMENTS .$)
356
IF (WIDTH.EO.0> GOTO-* ' ~ "** * "* «° *"**»' \
IF (LENCTH.GT.WIDTH)' GOT0458
TYPE 157
157 FORMAT ('OLENCTH MUST BE GREATER THAN WIDTH')
GOTO 58 M
C
458 WRITE (1,256) CLASS
• GOTO S6
C •
C '
C
C REVIEW DATA FOR LAST CRIB
C
50 DO 82 L-39RECNUM
82 BACKSPACE 1
READ (1.354) GLEN.GWIDTH
C
TYPE ISO.CRID.GLEN.GWIDTH
180 FORMAT ('OCRID',13.19.' x '.13)
81 IF (I.EQ.RECNUM-2) GOT084
READ (1.256) CLASS
207
-------
READ (1,356) LENGTH,Wl»TH,K,(eQM(L),,L-leK)
TYPE 182,CLASS,LENGTH,WIDTH,(COM(L)*L»l,K)
182 FORMAT ('0'.8X,A4,8X,I4,' x ',I4,8X,12A1)
I-I+2
GOTO 81
84 IF (RECNUH .EQ.3) TYPE *,' NO FIBERS'
86 TYPE 186
186 FORMAT C'OIS THIS INFO!RMATXOK?\GORRECT? *9$)
READ(S,223.END-99.99) DONE *
IF (DONE.EQ.'Y') GOTO 53
IF (DONE.NE.'N') GOTO 36
DO 88 I-l.RECNUM-2
BACKSPACE 1
88 CONTINUE
TYPE 188,GRID
188 FORMAT ('ORE-ENTER DATA FOR GRID',13)
GOTO 52
C
C '
53 WRITE (1,256) '///*
GRID-GRID*-!
52 IF (GRID.EQ.l) GOTO 54
TYPE 152
152 FORMAT (//ARE THERE ANY MORE GRIDS! %$)
READ(5,223,END-9999) DONE
IF (DONE.EQ.'Y').GOTO 54
IF (DONE.NE.'N') GOTO 52
C
C
70 BACKSPACE 1
WRITE (1,256) 'END'
Q-0
RECORD-RECORD+1
72 TYPE 172
172 FORMAT (//ANY MORE DATA SETS! %$>
READ(5,223,END-9999) DONE
IF (DONE.EQ.'Y') GOTO 99
IF (DONE.NE.'N')COTO 72
WRITE (1,372)
372 FORMAT ('FINISHED')
CLOSE (UNIT-1)
CALL EXIT
END
a
s
208
-------
c
c
c
c
c
G
C
c
i
LP93.UP95. CONST
REAL RAWLEN.RAWWID.RAWCLS
INTEGER RAWNUM.RAHFIB "
BYTE RAW,GRAPHS.DESC,SMPCOM,COM,FlaTYP
THE MAIN ROOT is -EPACAL
RECION
OVERLAY STRUCTURE:
S
CHANGE COMMAND CHAR
I COM |
CALL INIT
IP (REPEAT.NE.'Y*)
IF (REPEAT.EQ.'Y')
IF(I.EQ.l) GOTO 20
CALL ENTER!
CALL GETSMP
CALL SHPOIS
CALL CLSGET
CALL CLSCAL
CALL GROCAL
CALL ENTER2(REPEAT.ERR)
IF (ERR.EQ.l) GOTO 10
IF (ERR.EQ.2) GOTO 20
GET START UP INFORMATION
J FIND A FILE SPECIFIED DURING j
CO BACK TO START OF LAST FILE
1 STOP IF NO FILES ARE LEFT
GET INFO CONCERNING PRINTOUT OF THIS 8ATA
xusn^vgr *•"** «" "<•*
CLASSIFICATION INFO FROM FILE
—— •»- *Bwv«*A^6« SW
GRID CALCULATIONS
CALL STATS
CALL LENDIS
j QQ LENCTH DISTRIBOTION
209
-------
I
DO SAMPLE:PREPARATION CALCULATIONS
I TYPE PACE.l
! TYPE PAGE 2
I TYPK PACE 3
! TYPE PAGE 4
, * CALL SMPCAL
CALL PAGE1
CALL PAGE2 -
IF(FXBNO.LT.IO) GOTO IS
CALL PACE2A
CALL PAGE2B
CALL PAGE2C
13 CALL PAGE3
IP (RAV.EQ.'Y') CALL PACE*
ZF (BAW.EQ.'Y') CALL PACES
IF
-------
r '
C
C
c
c
c
C
10
100
c
20
110
120
SUBROUTINE INIT
'^^yig^iWh™;?^.-™^.™.™™.
,GTAKEN,KUMMAS(20
•,ASHFA,
>,SD,U9S,L95,
REAL LP958UP958CONST
REAL RAWLEH8RAUVI8,RAWCLS
INTEGER RAUMUM,RAWFI8
mL
REAL
CLSLIM
BYTE RAW,GRAPHS,DESC,SMPCOM,COM,FIBTYP
rjJiS. PS !^K! 22 AWBIOB TO A FLOPPY DISC FILE
BYTE TEMP
CALL IDATE (I.J.K)
CALL ERRSET(64... FALSE..,. FALSE..)
IF (K.EQ.74) STOP 'ENTER DATE' .
FORMAT(Al)
GOTO 10
ALL)'
° YOU HANT
ACCEPTllO.MODE
FORMAT(A4)
IF(MODE.fe.'ALL ') RETURN
IF((MODE.NE.'SEQ ').AND.(MODE.NEe'JOB ')) COT02Q
TYPE120.MODE
211
-------
NUMBRO-0
30 ACCEPTiSO.NUMBRI(NUMBROH) .NUMBR2(NUMBRO+i }
130 FORMAT(2AA)
IF(NUMBR1(NUMBROH).EQVEND')RETURN
NUMBRO-NUMBROH
IF(NUMBRO.NE.li)COT030
TYPE140.HOOB
140 FORMATC LIMIT OF IQ "SA6/NUMBERS REACHED')
NUMBRO-10
RETURN
END
212
-------
SUBROUTINE GET (ERR)
C * . ""..-.
C ' •
COMMON DESC<60) ,SMPCOM(5,60) ,RAW,CRAPHS,CMAC,CMAC,DtL,PREP<3),
INST.SMPTYP, CLS<24) ,SEQNUM<2) ,JOBNUM<2) ,6TA1C£N,KUMMAS<20) ,
DISVOL,DILlVT,DILlFV.DIL2VT.DlL2FV.ASHVFfASHFA,
ASHAT,ASHDIS,VOLFIL,FILA,VOLAIR,VOLWAT.PR£WC,CUHWID<20).
MOOEtBLANK,CRIDNO,FIBNOfCHISQ,SIC,NUMPI8(50)tSD.U95,L95,
CRIDL<50),GRIDW
-------
c
10
20
C
30
40
SUBROUTINE BACK
COMMON DESC(60),SHPCOM(5,60),RAW,CRAPHS,CMACeCMACBDILfPREP(3).
INST,SMPTYP.CLS(24).SEQHUM(2).JOBNUM(2),CTAKEM.KUM«ASC20),
DISVOL,DILlVT,DILlFV»DiL2VT9DIL2FV,ASHVFtASHFA,
ASHAT,ASHDIStVOLFIL,FILA,VeLAIR,VOLtfAT.PREl»TC,CUMWIB(20).
MODE.BLANKtGRIDNOtPIBNOeCHlSQ8SXG,NUMFIBCSO),SD,U9S,L95,
GRIDLC50),GRIDW(5G)8FXBCLS<24)9MORFC24)8AR£A8FIBLEN<500),
«BWIti(SOO),CLASS(500),ASP(500)8COUNTC3),ENTtX,CUMASP(20),
NUMBRiC 10) 8NUMBR2( 10) »H!!HBR08CLSNUMeaiMNlIM(20) ,CU*fi*AS(20) .
FIBTYP(32) ,HEICHI(24) .FRACTtASPLIM.LEHLIM>CLSLIM(24) .CLASNO.
RAWLEM(SOO)SRAWHID(500),RAWCLS<500),RAWHUM<50).RAWFIB,
LP95,UP95,IPFL,CONST
REAL LP95.UP95,CONST
REAL RAULEN,RAWUID,RAUCLS
INTEGER RAWNUM.RAUFIB
REAL PIBLEN,FIBWID,CLASS,ASP,INS*.NUMBRlfNUMBR2.CUMMAS,MORF
REAL CRIDL,GRIDW,CHISQ.SIG,FIBCLS,f!OBE,SEQMUM.J08NUM,CLSLIM
REAL GTAKEN,DISVOL,pILlVT.DIHFV.niL2VTtOIL2FV,SD,U95.L9S.
, «, ASHVF*ASHFA»ASHAT.ASHDIS.VOLFILeFILA,HEIGHTeFRACTeKUMMAS
INTEGER DIL,GMAG,CMAG,NUMBRO,FIBNO,GRIDN08BLANK,NUMFIB,CLSNUM.
CUMNUH,ASPLIMtLENLI*M(CLASNQ
BYTE RAW,GRAPHS,OESC,SMPCOM,COM,FIBTYP
BACKSPACE 1
READ (1,20) STAR
FORMAT (A4)
IF (STAR.EQe*STAR') GOTO 30
BACKSPACE 1
BACKSPACE 1
GOTO 1.0
READ (1,40) SEQNUM.JOBNUH
FORMAT '(4A4)
BACKSPACE 1
RETURN
END
214
-------
.1
i
SUBROUTINE ENTER1 - •
COMMON DESC(60).SMPCOM(5.60).
REAL LP9S6UP9S, CONST
RIAL RAHLEN.RAWWID.RAWCLS
INTEGER RAUNUM.RAWFIB
S S^:-^"«-:SItl>inB"'2-ra^-'!0"
BWE RAWC
— —,._. •••«>yM«Mi*«&ntwi«Aanu
RAW.CRAPHS.DESC.SMPCOM.COM.FIBTYP
C
REAL JOBNUM.SEQNUM.CLSLIM
c •
C
TYPE iO.SEQNUM.JOBNUM
IQ Pma&*««»^ » ^^_
15 . .FORMATO2A1)
e
LENLIM-S
ASPLIM-3
45 FORMAT(Al)
GRAPHS-*Y'
48
r)) GOTO 48
END
215
-------
SUBROUTINE'GETSHP
c
C "f PTO GET THE SAMPLE INFORMATION
C ALL INFORMATION PASSED THROUGH COMMON
COMMON DESC(60),SMPCOM(5i60),RAW»GRAPHS.GMAG.CMAe OIL 99rvfi\
* INST.SMiWB.««/4A/^«^^W*ir!^J^^^P^3>.2o)
* wuG,fiUNK,GRIDNO,FIBNO,CHISQ,SIG,NUMFiB(SO)
• • GRlDL(50)tGRIDW(50),""*'"•• ••""'* * '— - —
I
REAL LP95,UP95,CONST
REAL RAWLEN,RAWID,RAUCLS
INTEGER RAWNUM.RAWFIB
.
c BYTE RAW.CRAPHS.DESC.SMPCOM.COH.FIBTYP
10
20
30
READ (1,40) SHPTYP
*0 FORMAT (A4)
DIL-0
DIL2VT-1
OIL2FV-1
READ(lf80) DIL
80 FORMAT (II)
S rSJi"5'?} READ (1'90) »«-lVT,DXLIPV
90 . %££&?£$ Cli90)
READ (I, UO) VOLFIL.FILA
I 10 FORMAT (F7.2.E5.2)
C
DO 160 L-i.S
DO 170 K-1,60
SMPCOH(L.K).-' '
170 CONTINUE
160 CONTINUE
216
-------
130
140
C
DO 130 L-1,5
READ (1,140) (SMPCOM
-------
SUBROUTINE SMPDIS
C • '•'=..
C ALL INFORMATION Rt..«EVE» THROUGH COMMON
C
COMMON DESC<60),SMPeOM<5,60),RAW,GRAPHS,6MA6,CHAG,BIL,PREPC3)8
INST,SHPTYP,CLS<;24)tSEQNUM(2),JOBNUM(2),GTA1CEN8KUMMAS<20),
DISVOL,DILlVT.0mFV,BIL2VT,BIL2FV.ASHVF,ASHFAt
ASHAT.ASHDISsVOLFIL,FILAsVOLAIR,VOLWAT8PREPTC,CUHtfIDC20)g
. MODE,BLANK,CRIDHOe?IBNGIteHISQ.SI69NUMFIB(SO) SSD809S,L95,
GRIOL(SO).GRXDHC30),FIBCLS<24)tMORF(24).AREA,PIBLEN<500).
FIBHID(SOO) ,CLA8S<500) ,ASP(500) ,COUNT(3> ,ENTR*.CUMASPC20),
NUMERIC 10).NUMBR2UO)vmiMBRO(CLSNUMtCUHNUM(20),CUMMAS(20),
FIBTYP(32),WEIG»T(24),FRACT,ASPLIK,LENLIM(CLSLIM(24)8CLASNO(
RAWLEN(500)(RAUUIO(500),RAUCLS(500),RA¥NUM(50),RAWFIBf
LP95,UP95,IPFL.GONST
REAL LP9S.UP95.CONST
REAL RAULEN,RAWID,RAWCLS
INTEGER RAVNUH.RAUFIB
REAL FIBLEN,FIBWID,CUVS8,ASPtINST,NUMBRl,NUMBR2,CUMMAS,MORF
REAL GRIDL>GRIOUtCHISqtSIC,FIBCLS»MODE,SEQNUMtJOBNUMeCLSLIH
REAL GTAKEN,DlSVOL,DILlVT,DILiFV,8IL2VT,DIL2FV()SD»U958L95t
& ASHVF.ASHFA,ASHAT0ASHDIS,VOLFIL,FILBIAtWEIGHTtFRACT,KUMHAS
INTEGER DIL,GMAGsCMAGtNUMBROBFIBNO,GRIDN08BLANK,NUMFIB»CLSNUM,
& CUMNUM,ASPLIM,LENLIM.CLASNO
BYTE RAUtGRAPHS,OESCtSMPCOMyCOM,FIBTYP
C
C
UNITS-'cu.H'
UNITSF-UNITS
C
T*PE in.SEQNUM.DESC.JOBNUM.PREP^PREPTC.COUNT.INST.
& ENTRY,CMAC.CMViG
112 FORMAT ('ONo: *,2A4./t13X,'S«ipl«: ',60Ali/.' Jobs *»2A4,//8
t ' Pr«p by: \3AAb17X,'Prep«r*cion Techniques ',A4,//t
* ' Count by: °'»3A4,16XS'Instruments *,A4,//,e Entry by* '.
* A4,24X8'M«gni£ic«tlon, Grids %I4B* Counts MS,/)
C ...
TYPE 142
142 FORMAT ('OLIQUID')
• IF(DIL.GTeO)TYPE 144,M»t%DILlVT.DILlFV
IFCDIL.GToUTYPE 144.'2nd* .DIL2VT.DIL2FV
144 FORMAT ('0',A3,' Dilution: VoluM Taken (aL) 8 *,F6.i,8Xe
« 'Final Volume (mL) : '.F6.1)
TYPE 146.UNITSF.VOLFIL.FILA
146 FORMAT ('OVolume Filtered C.A4,') : ',F7.2,
4 SX.'Filtcr Diameter (mn) : ',F5.2>
i TYPE ISO
150 . FORMAT (//OCOHMENTS:')
DO 55,L-1,5
IF CSMPCOMCL.D.EQ.' ')TYPE *.' •
IF (SMPCOM(L.l).NE.' ')TYPE 155,(SMPCOM(L,K)tK-l,60)
155 FORMAT (IX.60A1) *. .
• *
218
-------
S5
CONTINUE
RETURN
END
i 1
219
-------
c
c
c
c
10
c
20
25
C
C
30
C
40
SUBROUTINE CLSGCT
COMMON OESC(60)fSMPCOH(5,60),RAW,CRAPHS,GMAGtCMAC»BIL,PR£P(3),
INST,SMmP,CLS(24),SEQNUM(2)9JOBNUMC2).CTAKEN,KUMHAS<20).
OISVOL,BILlVTtBILlFV,8IL2VT»8IL2FV,ASHVF,ASHFA.
ASHAT.ASHBIS.VOLFIL,?ILA,VOLAiR8VOLHAT,PREPTC8CUMWIO(20),
HOBE8BUNK, , ENTRY, OIMASP( 20).
NUMBRK10) ,NUMBR2( 10) tNUMBROtCLSNtm,CUMNUM(20) ,OTHMAS(20} 8
FZBTYP(32) ,WEICHT(24) ,FRACT,ASPUM8LENUM,CLSLIMC24) SC
RAWLEN(SOO),RAWHID(500),RAWCLS(SOO)tRAUNUM(SO)-RAWFI5,
LP95,UP95,IPFL,CONST
REAL LP9S.UP95,CONST
REAL RAULENVRAUUID,RAUCLS
INTEGER RAWNUM,RAUFIB
REAL FIBLEN,FIBUID,CLASS,ASP,INST,NIJMBR1,!!UMBR2,CUMMASIMORF
REAL GRIOL,GRIDW9CHISQ,SIG9FIBCLSilMOOEeSEQNUM».IOBNUM,CLSLIM
REAL GTAKEN,DISVOL6BILlVTeDILlFV8BIL2VT8OlL2FJf,Sp.U958L95,
ASHVF8ASHFA,ASHAT,ASHBSStVOLFILtFILA6HlIGHTtFRACT,KUMMAS
INTEGER OIL,CMAGtCHAG,miMBRO.FIBN6,GRIDN08BLANK.NUMFIBgCLSNUM(
CUMNUM.ASPLIMfLENLIM*CLASNO
BYTE RAU,GRAPHS,OESC,SMPCOM.COM,FIBTYP .
00 10 L-1.50
RAWNUM(L)«0
NUHFIBCD-0
GRIDNO1
FIBNO-0
REAB (1,310) ILEN.IWIO
GRIBL(GRIBNO)-ILEN
GRIDW'(CRIDNO)«IV?ID
REAB (1,320) CLASSl
IF (CLASSIcEQ.' ENB'.OR.CLASSI.EQ.'ENB ") GOTO 40
IF (CLASSIeNEo* ///'.ANB.CLASSI.NE.'/// ') GOTO 30
GRIDNO-GRIDN04-.1
GOTO 20
NUMFIB(GRIONO)-NUMFIB(GRIBNO)+1
RAWNUM(GRIDNO)-mJMFIB(CRIDNO)
FIBNO-FIBNCH-1
CLASSCFIBNO)-CLASSI
READ (1.330) ILUM.IUIB
FIBLEN(FIBNO)-ILEN
FIBUIO(FIBNO)-IWIO
GOTO 25
CONTINUE
220
-------
D
0
C
310
320
330
TYPE *,*LEAVING GLSGET
TYPE *,' *
RETURN
FORMAT (213)
FORMAT
-------
c
c
c
c
c
c
c
20
&
&
SUBROUTINE CLSCAL
COMMON DESC(60)tSMPeOM<5,60),RAW,GRAPHS,6MAC,CMAGgDXL,PREP(3)8
INST.SMPTYP,CLS(24),SEQNUM<2),JOBNUM<2),GTAKEN,KUMMAS<20),
DISVOL,DIL1VT,DIL1FV»DIL2VT,DIL2FV,ASHVF»ASHFA8
ASHAT,ASHDIS,VOLPXL.FILA,VOLAXR,VOLtfATePR£PTC,CUMtfXDC20)s
MODE,BLANK,GRIDNOtF£BKO,CH£SQ8Sie,NUMFXB(50),SDsU95tL95,
GRXDL(SO) ,GRXDU(SO) ,F£BCLS<24) eMORF(24) . AREA,FXBLEN(SOO) ,
FIBUXD(SOO).CLASS(500),ASP(SOO),COUNT(3).ENTRT,CUMASP(20),
NUMflRK 10) ,NUMBR2( 10) .NUMBRO,CLSNUM,CUM1IUM(20) ,CUMMAS(20) ,
FIBTYP(32)VUEXGHT(24)tFRACT,ASPLXMtLENLXMvCLSLXM(24),CLASNO,
RAULEN(SOO)8RAUWID(500),RAUCLS(500),RAWNUM(50),RAWFIBt
LP95,UP95,IPFL,CONST
REAL LP95.UP95,CONST
REAL RAWLEN(RAWUXD,RAUCLS
INTEGER RAWNUM.RAWFIB
REAL FIBLEN,FIBWIDrCLASS,ASP,INST,NUMBRiaNUMBR2,CUMMAS,MORF
REAL CRXDLvGRIDWtCHXSqBSIG,FIBCLSBMOOE,SEQNUMtJOBNUMtCLSLXM
REAL GTAKEN9DISVOL,OILlVT,DILiFV,DIL2VT,DIL2FV$SDtU95,L9S,
ASHVF,ASHFA,ASHAT(ASHOIStVOLFIL,FILAtWEIGHTtFRACT(KUMMAS
INTEGER OIL,GMAG,CMAG,NimBROvFIBNO,GRXDNO,BLANIC,NUHFIB,CLSNUM,
CUMNUM, ASPLIH, LENLIM9 CLASNO
BYTE RAU,GRAPHS>OESCtSMPCOM>COM,FIBTYP,TYPFIB(32)
REAL KCOUNT.OENSXTCIS),STAND(15),SHAPE(IS),SPECGR(8)
DATA DENSXT/6*2.55,9*3.3:/
DATA STAND/'TM '.'CM VCD ','CQ '/CMQ '/CDQ %'UF '/AD '.
•AX ','ADX '.'AQ VADQ *,'AZQ '/AZZ '/AZZQV
DATA SHAPE/6*0.7854,9*1,7
DATA TYPFIB/'C' /H' ,'R' D'Y' ,'C' ,'R' ,'0' ,'C' ,'C' ,'U' ,'M' ,'M* .
'G* j'R' ,'U* ,'N' ,'A* t'M' ,'OVS' .'A* ,'N' ,'T* ,'H' ,'T' ,'R* .
tme tiff »•» fQt tmff *T*/
DATA SPECGR/2.Ss!3.37,3o28,3,52,3.43.3.00,3.00.3.10/
KCOUNT-1.E3/CMAG
IF (FIBNO.EQ.O) GOTO SO
CLSNUM-0
DO SO L-I.FIBNO
FIBLEN(L)-FIBLEN(L)*KCOUNT
FIBWID( D-FIBWIDC L)*KCOUNT
ASP(L)»FXBLEN(L)/FIBUID(L)
K-0
IF(L.EQ.l) GOTO 40
DO 40 K-l.CLSNUM
IF (CLASS(L).NE.CLS(K)) GOTO 40
FIBCLS(K)-FIBCLS(K)-I-1
222
-------
40
60
62
50
D
B778
CONTINUE
IF (K.EQ.99) GOTO 50
CLSNUM-CLSNWW
WEIGHT(CLSNUM)-0
DO 35 K-l.IS
FIBCLS(CLSNUM)-l
DO 60 1-1,32,4
IFIB-(H.3>/4
GOTO SO
WEIGHTCaSNUM)-SPECGR( IFIB)
CONTINUE
GOTO 62
END
223
-------
c
c
c
c
60
SUBROUTINE GRDCAL
COMMON DESCC60) ,SMPCOMCS,60) ,RAH,GRAPHS,GMAG,CMA6tDIL,PREP(3) ,
INST,SMPTYP,CLS(24) ,SEQNUM(2) ,JOBSUM<2) . CTAJCEN,KUMMAS<20) '
DISVOL,DILlVT,DILlFV,DlL2VTsDXL2FV,ASHVP,ASHPAe
MODE,BLANK,GRXDNO,FZBNO,CHSSQ8S£G,ffiIMFXBC50),SD,U9S,L95,
CRIDL(SO) .GRIDH(SO) cFIBeLS(24) .MORFC24) ,ARBA,F£BIEN(SOO) ,
FXBWXD(SOO) 8CLASS(500) 9 ASP (5 00) tCOUNTC3) ,ENTR¥,€yMASP(20) c
NUHBRIC 10) ,NUMBR2( 10) (NUMBRO,CLSNUMCCUMNUM(20) ,CUMMAS(20) ,
FIBTYPC32) ,WEIGHT(24) ,FRACf,ASPHK,LENLIM,CLSLIM(24),CLASNOf
RAWLEN(SOO) .RAWXD(SOO) ,RAWCLS(500) ,RAWNUH(SO) ,RAWFXB,
LP95,UP95,IPFL, CONST
REAL LP95,UP95, CONST
REAL RAVLEN,RAUUXDVRAWCLS
INTEGER RAWNUH.RAWFIB
REAL FIBLEN>FIBUIOtCLASSyASP>INST8NUHBRl9miMBR2.CUMMAS,MORF
REAL CRIDL,GRIDWtCHISQ, SIC, FIBCLS, MODE, SEQNUM.JOBNUM.CLSLIH
REAL GTAKEN,DXSVOL,DXLlVTBDXLiFV»pIL2VT,OIL2FVsSDeU95,L95,
ASHVF.ASHFA,ASHAT,ASHSIS,VOLFIL,FILAsMEXG«TtFRACT,ICUMMAS
INTEGER DIL,CMAG,CMAG,NUMBROgFIBN01,CRIDNO,BLANK,NUMFIB.CLSNUM,
CUMNUM, ASPLIM, LENLIM, CLASNO
BYTE RAU,GRAFHS,DESC.SMPCOM(COM,FIBTYP
REAL KGRIO
KGRIO-1.E3/GMAG
AREA-0
BLANK-0
DO 60 L-l .CRIDNO
GRIDL(L)-GRIDL(L)*KCRID
GRIDW(L)-GRIDW(L)*KCRID
AREA-AREA-H:RIDU(L)*GRIDL(L)
IF (NUMFIB(L).EQ.O) BLANK-BLANK4-1
CONTINUE
RETURN
END
224
-------
SUBROUTINE BNT£R2< REPEAT. ERR)
C • • . ' . .
c
COMMON DESC(60),SMPCOM(5,60).RAW,CRAPHS,CMAC§CHAC.DIL,PREP(3K
J *NSTtSMmP.CLS<24).SEQNUM(2),JOBNUM<2),CTAICEN,iajMMAS<20),
* DISVOL,DlLiVT,DILiFVfDIL2VTtDIL2FV.ASHVF.ASHFA,
4 ASIUT,ASHDIS,VOLFIL.Fltt,VOUIR,VOLWAT.PREWC,CUMWID<20),
t MOOE,BLA!«.GRIDNO,FIBNOfCHISq,SIC,NUMFIBC50).SD.U95,L95.
* 6*IBU50).CRIDW(50)tFIBCIS(24),MORF<24).AREA,FIBLEN
-------
CLSLlH(I)-'$$$$'
GOTO 100 " :
75 IF(WEZGHTCJ).NE.O) GOTO 100
80 TYPE 7U,CLS(J)
70 FORMATC WHAT IS THE DENSITY FOR ',A4S'IN C/CC?',$)
READ(5,*,ERR-80) WEICHT.CJ)
ZF(UEIGUT(J).LE.O) GOTO 80
90 TYPE *,'HHAT IP THB SHAPE OF THE FIBER CROSS~SECTION? (R/S)'
ACCEPT95,ICHAR
95 FORHAT(Al)
IF((ZCHAR.NE.'R')rJWO.()tCHAR.NE.'S'))GOTO 90
IF(ICHAR.EQ.'R') MORF(J]l-0.7854
IF(ICHAR.EQ.'S') HORF(J)-l
100 CONTINUE
110 TYPE*/ '
TYPE*,'IS THERE GOING TO BE ANOTHER REPORT FROM THIS DATA SET?'
ACCEPT105,REPEAT
105 FORHAT(Al)
IF((REPEAT.NE.'N').AND.(REPEAT.NE.'Y')) GOTO 110
TYPE *,*'IS THE ABOVE INFORMATION CORRECT?'
' ACCEPT!05,TEMP
ERR-0
IF(TEMP.EQ.'Y') RETURN
ERR-l
IF(TEHP.EQ.'ABOR') ERR-2
REPEAT"'Y*
RETURN
END •
226
-------
SUBROUTINE FILTER(ERRA,ERRL,ERRC)
COMMON DESC(60)>SMPVOLPIL,FiLAvVOLAIRtVOLUAT,PREPTCtCUMWIO(20),
4 MOOE,BLANK,GRIDNO,FIBNO,CHISQ,SIG,NUMFIB(50),SD,U9S,L9S;
4 CRIDLC50),CRIDW(50)fFIBCLS<24).MORF(24).AREA.FIBLEM(500),
4 ?!BUID<500)(CLASS(500),ASP(SOO),COUNT(3),ENTRY,CUMASP(20),
4 NUMBRl(10),NUMBR2(10),.NUMBROtCLSNUM,CUMNUM(20).CUMMAS(20),
4 FIBTYP<32) ,WEICHT<24> .FRACT.ASPLIM.LEMLIM,CLSLIM(24) .CLASNO,
4 RAULEN(SOQ),RAWWID(500>,RAUCLS<500).RAWNUM(SO).RAHFIB,
4 • LP95,UP95,IPFL8CONST
REAL LP95iUP9S,CONST
REAL RAULEN,RAUViD,RAHCLS
INTEGER RAUNUM,RAUFIB
REAL FIBLENeFIBWID8CLASS,ASP,INSTtNUMBRl,NUMBR2BCUMMAS,MORF
REAL GRIDL.GRIDW.CHISQ,SIC,FIBCLS,MODE,SEQNUM.JOBNUM.CLSLIM
REAL GTAKEN.DISVOL.DILiVT,DILiFV.DIL2VT,DIL2FV,SD.U95,L95,
4 ASHVF.ASHFA.ASHAT.ASHDIS.VOLFIL.FILA.WEIGHT.FRACT.KUMMAS
INTEGER DIL.CMAG^CMAC.NUMBRO^FIBNO.GRIDNO.BLANK.NUMFIB.CLSNUM,
4 CUMNUM.ASPLIM.LENLIM,CLASNO
BYTE RAW,GRAPHS,DESC,SHPCQM,COM,FIBTYP
INTEGER CNT,CTOTAL,GRID,ERAsERC,ERLeERRA,ERRL,ERRC
CNT-i
GTOTAL-NUMFIB(l)
GRID-I
ERRA-0
ERRL-0
ERROO
RAWFIB-FIBNO .
IF (oNOT.FIBNO) RETURN
C
DO 50 L-l.FIBNO
10 IF (GTOTAL.GE.CNT) GOTO 20
GRID-GRID+1
GTOTALiCTOTAL-HlUMFIB(GRlD)
GOTO 10
G
20 IF ERA-1
. C
C LOWER LIMIT LENGTH RESTRICTION IS SET TO 0.5 MICROMETERS
C
IF (FIBLEN(L).LT.O.S) ERL-l
IF (CLASNO.EQ.O) GOTO 35
DO 30 K-l,CLASNO
30 IF (CLASS(L).EQ.CLSLIM(K)) K-98
IF (K.NE.99) ERC-l
RAWLEN(L)-FIBLEN(L)
227
-------
35
C
C
40
SO
RAWWID(L)-FIBWID(L)
RAWCLS(L)>CLASS(L) " ;
IF (((ERA.OR.ERL).OK.ERC).EQ.l) GOTO 40
FIBIEN(CNT)-FIBLENU)
FIBWID(CNT)-FIBWID(L)
ASP(QtT)«ASP(L)
CLASS(CNT)-CLASSCL)
GOTO 50
ERRA-ERRA+ERA
ERRL-ERRL+ERL
ERRC-ERROERC
CTOTAL-CTOTAL-l
NUMFIB(GRID)-NUMFZB(GRID)-1
ERA-0
ERL-0
ERC-0
CONTINUE
FIBNO-CNT-1
RETURN
END
i I
228
-------
SUBROUTINE STATS " :
C
G
COMMON DESC<60),SMPCOM(5.60),RAtf.<3ttPHS,CHAC,OIAC,DlL.PREP<3).
INST,SMPT¥P.CLS<24) ,SEQNUM<2) ,JOBNUM<2) .GTAKEN.KUMMASC20) .
DXSVOL,DILIVT,DILIFV-,DIL2VT.DIL2FV.ASHVF,ASHFA,
ASHAT,ASHDIS,VOLFIL,FILA,VOUIR,VOLWAT.PREPTC,CUMWID(20).
MOOE,BLANK,CRIDMOtFIBMO.CHISQ.SIC,HUMFIB(50).SD,U95,L95.
CRIDL(SO) .GRIDWC50) .FIBCLSC24) ,HORF<24),AREA FIBLEN<300) .
22R5?0? 'a-*8*500' .ASPC500) .COUNTC3) . ENTRY. Cu£lSP(20) .
HUMBR1( 10) , NUMBK2C 10) ,HUM8RO,CLSNUM,CUMNUM(20) .CUMMAS(20) ,
IS5rJJ2)!HElClir(24) »FRACT.ASPLIM,LENLIM.CLSUM(24) .CLASNO.
RAWU^CSOO) ,^WID(S(JO) .RAWCLSC500) ,RAWNUM(50) .RAWFIB,
LP95 , UP9S . IPFLf CONST
REAL LP95.UP95, CONST
REAL RAUL£N(RAUU£0BRAWCLS
INTEGER RAUNUM.RAWFZB
*^
REAL GTAKEN,DISVOL.OILIVT.DILIFV,DIL2VT.DIL2FV.SO,U95.L95,
T^w».
INTEGER PlL,Q!ACsQlACsNBMBRO.FIBNO.GRIDNO.BlJU«tNUMFIB.
4 CUMNUM,ASPLIM,LENLZM,CLASNO .*
BYTE RAW,GRAPHSrOESC,SMPCOM,COM,FIBTYP
C
C
REAL CHl( 14,26), STUTEE(50),SIGTAB( 14) §POIS(2. 100)
BYTE FREOOM(Si)
• DATA FREDOM/0, 1,2,3.4,5,6,7,8.9, iO.il. 12, 13, 14,
DATA CT1'"'5J*l!4l5»ld'20»5*21»5*22.5*23.5*24,5*25,5*26/
DATA STUTEE/0..12.706.4.303,3.182,2.776.2.571,2.447,2.365.2.306,
I i'iH--J'S'i'aoi'a-l79'2-l*°'2-M5»2-l3»-2-»M.2-»o.2:iat-
I l^flo^ffi
;.'^;/?^Vf5,;/9o^v^^^^ ..
^^
.
»4:3662'9'24»H-»12-83'l5-09»16-75 20.52
,.,. ...
& 2.6,3.,3.82.4.57,5.57,7.58ei0.3,13.7,17l28M9.68!2ll9 24 73 2ft 76
! ^S^^^Vtft!1^
* 37
.l.»79
229
-------
C
C
10
C
20
IF (FIBNO.EQ.O) RETURN
SUM-0
CHISQ-0
AVE-FIBNO/CRIDNO
DO 10 L-1,GRIDNO
TEMP-FIBSO*GRIDL(L)*CRIDW(L)/AREA
CHISQ-CHISQKTEHP-inJHFIB(U)**2/TEMP
SUM<5UMKTEHP-NUMFIB(L))**2
SIG-'<0.1' * ,
IF (GRIDNO.GE.2) SD-(SUM/(C!RIDNO-1))**C5
'
IF(FIBNO.CT.IOO) GOTO 30
230
-------
LP95-POISU,FIBNO> ' ":
Uf95-POIS(2,PIBNO)
RETURN
30 X-FIBNO
. LP95-FIBNO - STUTBE(CRIDMO)*SQRT(X)
UP95-PIBNO * STUTEE(CRIDNO)*SQRT(X)
RETURN
END
231.
-------
SUBROUTINE LENDIS .
C • :
C
COMMON DESCC60),SMPCOM(5,60),RAW,CRAPHS.CMAC.CMA6,DII.tPH£P(3).
*"" cu"~" *""'"" "" ,JOBNim(2)ieTAKENtlajMMAJ(t20)f .
j
F BCLS(24) •
r
CUMNUMC20) ,CUMMAS(20)
,FRACT9ASPLIM,LENLIM,C1SI.IM(24) .CLASNO.
SEAL LP95.UP95, CONST
SEAL BAULEN,RAUUID,BAWCLS
INTEGER RAWNUM.RAMFIB
t
& __
BYTE RAW.CBAPHS.DESC.SMPCOMVcOM.FiBTYP
C
C
REAL LOGSIZC20),
&
6
&
uA.An^K/.ooW6.;OOlr002l5.e00464seOis.02l5..0464..1,.215.
* •4W-l--2;l5,4.64.10..21.54.46.4l,iOOc.21S.43.464.U,1000./
CUMWIDCD-0
CUHNUMCD-0
CUHASP(L)-0
KUMHASCD-0
5 CUMMAS(L)-0
D TYPE *,'FIBNO-',FIBNO
IF (FIBNO.EQ.O) GOTO 20
DO 20 L-2,20
DO 10 K-l.FIBNO
DO 7 J-l.CLSNUM
7 IF(CLASS(K).EQ.CLS(J))
10
-------
DO 40 K-l.FIBNO .
IF«ASP(K).LT.ASPSIZa-n>.OR.(ASP(K).CE.ASPSIZa>>>COTO 40
CUMASP(L)-CUMASP(L)-fi
40 CONTINUE
00 SO K-l.PIBNO
IF( ( FIBH ID(K) .IT.UIDSIZC L-l ) ) .OR. ( FIBWiD( K) .CS.HIDSIZC L) ) )COT© 50
CUMMIDCD-CUMHIDUHl
SO CONTINUE
DO 60 S-i.FIBNO
DO 61 J-i,CLSNUM
6i XF(CLASS(K).EQ.CLS(J)) I-J
FMASS-FIBLEN
-------
c
c
SUBROUTINE SHPCAL
COMMON DESC(60),SMPCOM(SD60),RAU,CnUPHS,GMAG,CHAC,DZL,PREP(3),
. INST,SMPTYP,CLS(24),SEQNUM<2),JOBNUM<2),GTAKEN,KUHMAS<20),
DZSVOL.DILlVT.DlLiPV.DIUVT.DIUFV.ASHVF.ASHPA,,
ASHATfASHDIS,VOUpIL,FILA,VOLAIReVOLWATsPR£?TCeCUMWID(20),
HODE,BLANK,OTZDNO?FIiNOtCTISQ.SIC,NUMFIB<50)tSD,UfS.L9S9
. CRIDL(SO)9GRIOW<30),FIBCLS<24),MORF{24).AREA,FIBLEN(SOO>,
FIBWIDC300),CLASS<500),ASP(500),COUNT(3),ENTRfSCUMASP(20),
NUMBRiC 10) ,NUHBR2(iO) ,NUMBRO,CLSNUM,CUMNUM(20) gCUMHAS(20),,
FIB1YP(32) ,WEIGm:(24) (FRACT,ASPLZMtL£NLXM,CLSlZM(24) .CLASNO.
RAULEN(SOG),RAWW3:D(500),RAHCLS(500),RAWNUM(50),RAUFIB.
LP9S,UP9S,ZPPL.SPAC.CONST
REAL LP95,UP9S»CONST
REAL RAWLEN,RAUVID,RAWCLS!
INTEGER RAWNUM.RAHFIB
REAL FIBLEN,FIBHlb,CLASSrASP,INST,NUHBRl,NUMBR2,CUMHAS,MORF
REAL GRIDL,GRIDU,CHZSQ,§IG,FIBCLS(MOOEvSEQNUNvJOBNUHtCLSLIM
REAL GTAKEN,DISVOLeBZLlVT.DILlFV,DIL2VTtDIL2FV,SO,U9S»Lt5.
ASHVP,ASHFA,ASHATsASHDlSeVOLFIL,FILA,FRACT,WBIGHT,KUMMAS»
INTEGER DILpCMAGfOfAG.NUHBROgFIBNO.GRIONO^LANK^NUMFIB.CLSNUM,
CUMNUH,ASPLIM,LEHILIH,CLASNO
BYTE RAW,6RAPHS»DESC8SMPCOM,COH,FIBTYP -
IF (SMPTYP«EQ.'LIQU*) FRACT-iE-3
IF (DIL.CT.O) FRACT-FRACT*OILIVT/DILIFV
IF (DIL.GT.I) FRACT-FRACT*OIL2VT/DIL2FV
FRACT-FRACT*VOLFIL*AREA*IE-8/FILA
RETURN
END
-------
SUBROUTINE PACE1
C
c
C
COMMON DfSC(60)^PWM(5f60).RAW,CRAPHS,GMAGfCMAC.DIL,PREP(3).
,»»»t
GRIDL<50).CRIDW<50),FIBCLS(24).MORF{24> AREA
REAL LP958UP9S, CONST
RIAL RAHLEK,RAWWIB8RAMCLS
INTEGER RAWNUM,RAWFIB
BWE RAW.GRAPHS.DESC.SMPCOM.COM.FIBTW
C
REAL TEMPI ,TEMP2.TEMP3.LOW,UPP
REAL DAT(3)
C
CALL DATE(OAT)
WRITE(2t105) JOBNUM,SEQNUM,DAT,DESC,
105 FOR^T <6X 2A4 2X.2A4.57X.JDATE: ';
•
WRITE<2 lO) lp "• °r €" ClM« ifi«d « '.32A)
US FORMAT (//,' ')
C
LOW-LP95
UPP-UP95
IPFL-0
CONST-1E-6
IF (FIBNO.NE.O) GOTO I 17
WLL SCI((1/FRACT)*CONST*3.69.53.VAL,STR)
117 IF
-------
IFCVAL.LT.IO.O.OR.VAL.CE.10000.0) WRITEC2,120)VAL,STR
IFCVAL.CE.10.0.AND.VAL.LT«100.0) WRITEC2,121)VAL,STR
IFCVAL.GE.100.0.AND.VAL.Lt.10000.0) WRITSC2,122)VAL,STR
120 FORMATC1IX,'Mean Fiber Concentration 'SF11.2»1X,A4,2X,^MFW?.
121 FORMATCllX,'Mean Fiber Concentration >FlH»}J*^'!5%!i2%/J
122 FORMATCilX/Hean Fiber Concentration *9Fll«0,iX8A4f2X, MFL /)
IT CFIBNO.GT.30) GOTO US
C
125 CALL SCtCCUPP/FRACT)*CONSTeS3.VAL8STR)
IFCVAL.LT.10.0.0R.VAL.GE.10000.0) MRITE(2,130)VAL,Sfa
IF(VAL.CE.10.0.AND.VAL.LT.100.0) URITEC2,131)VAL,STR
IFCVAL.CT. 100.0.AND.VAL.LT.10000«0)' HRITE(2,i32)VAL,STil , • ...
130 . FORMATC1IX,'Upper 95Z Confid«nos Unit ,F9.2,1X,A4,2X, MFL /)
131 FOEMATC11X,'Upper 95Z Confidence Limit ',F9a,lX,A4,2X. MFL /)
132 FORMATC11X,'Upper 95X Confidence Liait ',F9.0,1X,A4,2X, MFL /)
CALL SCXC(LOtf/FRACT)*CONS?,S3,VAL,STR)
IF(VAL.LT.IO.O.OR.VAL.GB.10000.0) HRITEC2.140)VAL,STR
ZFCVAL.GE.10.0.AND.VAL.LT.IOO.O) WRITE(2P141)VA1,,STR
IFCVAL.GE.100.0.AND.VAL.LT.10000.0) WRITE(2,iA25VAL,ST!l
140 FORHATC11X,'Lower 95X Confidence Limit %F9*281X,A4,2X,'MFL /)
141 FOBHATCiIX,'Lower 95X Confidence Limit %F9«i8lX,A482Xi MFL /)
142 FORMATC 1IX,'Lower 95Z Confidence Limit * BF9oOBlX,A4,2X/MFL'/)
GOTO 300
c .
310 CALL SCI((UPP/FRACT)*CONST,53,VAL,STR)
315 IFCVAL.LT.10.0.0R.VAL.GE.10000.0) URITE(2,320)VAL,STR
IF(VAL.GE.10.0.ANO.VAL.LT.100.0) URITE(2,330)VAL,STR
IF(VAL.GE.100.0.AMO.VAL.LT.10000.0) URXTE(2,340)VAL,STR
320 ' FORMATC1IX,'Fiber Concentration i> leea than',Fa.2BlX,A4,2X, MFL /)
330 FORMATC1IX,'Fiber Concentration is leee tnan',F8.1,lX,A4,2X,'MFL'/)
340 FORMATCHX,'Fiber Concentration i» leae than',F3.0,lX,A4,2X,'MFL'/)
GOTO 300
145 TEMPI-UP95-LP95
TEHP2-U95-L95
IFCTEMP2.LT.TEMP1) GOTO 1125
LOW-L95
UPP-U95
IPFL-i
GOTO 125
C
300 CALL SCZCC1/FRACT)*CONST,S3,VALVSTR)
IFCVAL.LT.IO.O.OR.VAL.GE.10000.0) VR1TEC2,1SO)VAL,STR
IFCVAL.GE.10.0.AHD.VAL.LT.100.0) WRITEC2,151)VAL,STR
IFCVAL.GE.100.0.ANO.VAL.LT.10000.0) WRITEC2,152)VAL,STR
150 FORMATC11X,'Analytical Sensitivity ',F11.2,1X,A4,2X,'MFL'/)
151 FORMATC 1IX,'Analytical Sensitivity *,F11.-1,1X,A4,2X,'MFL'/)
152 FORMATC1IX,'Analytical Sensitivity *,F11.0,1X,A4,2X,'MFL'/)
C
IF (FIBNOoEQ.O) GOTO 80
CALL SCtCCUMMASC20)*lE-6/FRACT,53sVAL,STR)
160 FORMAT CHX,'Estimated Mass Concentration * ,F7.2,1X,A4, -
& ' micrograms/liter')
236
-------
WRITE(2,160) VAL.STR
4
c
80 WRITE(2,200)
200 FORMAT(////.21X.33HANALYST'S COMMENTS ON THIS SAMPLE,/)
IF (DiL.GT.orWRITEC2.210)
'IF (PREPTC.EQ.-'OZO') WRITE(2,250)
240 FORMAT(/,9X,'Because of a high concentration of solids, it'.
4 was necessary to',/,9X,'dilute this sample ',
4 'prior to filtration.')
250 FORMAT(/,9X.'This sample was treated by bubbling filtered o*one',
! , f™ th«>«shV,9X,'the liquid while irradiating the saaplc '.
4 ;with ultraviolet light.'./,9X.'This treataent ii used to oxidize ,
4 organic* inthe liquid.'B/.9X,'After oxidation, a known', !
4 volume of the sample was filtered',/,9X.'through a 0.1 '! .1
J ^e*^*"t*f *?** 8lz* Nucl«Poff« polycarbonate',/,9X,'filter. ', I
4 The deposited material on the surface of the filter was', *
,/,9X, transferred to an electron microscope specimen' *
grid by the direct',/,9X,'carbon coating extraction'!
replication technique.',/)
C
C
IF (FIBNO.LT.5) HRITE(2,400)
400 FORMAT ,9X,'Under the conditions of this aeasurement. •'
4 fewer than 5 fibers',/.9X,'were found in this saaple.',
4 A aean concentration value*./.9X,'is not calculated; '.
4 however, the fiber concentration',/9X,'is reported as ',
4 ^less than the upper 95Z confidence',/9X,'liait of the ',
ft concentration. )
DO 280 L-I.5
DO 270 1-60,I,-i
IF (SMPCOM(L,I).EQ.' ')COTO 270
WRITE<2,290)
-------
15 FORMAT(I3)
ITAB-ISPACE
If (Z.GT.O) ITAB-ITAB-l
IF CIABS(I).LT.IO) ITAB-ITAB-i
HRITE<2,20) (' '.K-l,ITAB),EXP
20 FORKAT(3X,99(Ai,t))
STR-'x 10'
RETURN
60 URITE(2,70)
70 FORMAT (' ')
STR"'
VAL-A
RETURN
END -
238
-------
C
C
C
C
SUBROUTINE PACE2
COMMON DESC(60).SMPCOM(5,60)tRAM,CRAPHS.CMAG.CMAG,OIL,
! ^fy^.W>;VT.OILlFV.DIL2VT.DIL2FVsASHVF.ASHFA;
A ACum^B A4WM*b9«e e>^*e ^^« ^^a. _ _.__ * *
&
&
.
REAL LP95.UP95. CONST
REAL RAHLBNeRAWWlD8RAHCLS
INTEGER RAWNUM.RAWFXB
8,
^
BYTE RAW.CRAPHS.DESCiSMPCOM.COM.FIBTYP
REAL SCALE(20),DAT(3).STAND(15)
,05
WRITEC2.105) JOBNUM.DAT.OESC
VRITE(2,U5) PIU.VOLFIL.-.1.
US FORMAT ',A1,'_)'.I24.'U')
239
-------
WRITE<2,557)
557 FORMAT (l2X,'Flb«r Length. E»eMd<,24Xv'O.SO •ieroa«ter«') £
DO 560 L-l.CLASNO
DO 560 K-1,6
560 IF(STANDCK).EQ.CLSLIMCL)) L-98
IFCL.EQ.99) WRIT8<29561) 'Chry.otiU',2.55
561 FORHATU2X,'Density of '.AlO.' Used In CmleuUtions\F6.2.* g/ce')
DO 562 L-l.CLASNO . |
DO 562 K-7.15 't
562 IF(STAND(K).Eq.CLSLIM(L)) L-58 • I
IF(L.EQe99) URITEC2.561) 'Avphibole %3.2 *
C i
DO 567 L»i,CLASNO " . \
IF(CLSLIH(L).EQ.'$$$$') GOTO 567 '•
DO 563 K-1^15 1
563 IF
-------
4
SUBROUTINE PAGE2A |
• : }
COMMON DESC<60).SMPCOH(S.60).RAW,CRAPHS,CMAG.CMAC,DIL,PREP<3). '
4 1NST.SMPTYP,CLS(24),SEQNUM(2),JOBNUM<2),CTAKEN,KUMMAS(20)8 }
4 DISVOL,61LIVT,DIL1FV,DIL2VT,DIL2FV,ASHVF,ASHFA, j
4 ASHATtASHDIS,VOLFlL,FlLA,VOLAIR,VOLWAT,PREPTC,CUMWID(20). !
4 HOOEfBLANK,GRIDNO.FIBNO,CHISQt3I6.NUMFIBC50),SDtU9S,L95. .
4 CRIDLC50),GRIDW(30).FlBCLS<24),MORF(24)fAREA,FIBLEN(500), j
4 P"WID(300),CLASS<500),ASP(500>,COUNTC3),ENTRY,CUMASP(20). \
4 NUMBRl(lJO),NUMBR2(10),NUMBRO,CLSNUM,CUMKUM(20),CUMMAS(20), :]
4 FWTYP(32).WEIG»T<24>.FRACT,ASPLIH,LENLIM,CLSLIM(24),CLASNO, J
4 RAMLEN<500),RAWWID(500),RAWCLS(500),RAWNUM<50),RAUFIB, !
4 LP95,UP95,IPFL,CONST - !
REAL LP95.UP95,CONST i
REAL RAWLEN,RAUWID,RAUCLS !
INTEGER RAWNUN,RAWFIB '
REAL FIBLEN,FIBWID,CLASS,ASP,INST,NUMBR1,NUMBR2,CUMMAS,MORF ]
REAL CRIDL,GRIDW,CHISQ,SIC,FIBCLS,MOOE,SEQNUM,JOBNUM,CLSLIM r
REAL CTAKEN,DISVOL,DILIVT,DIL1FV,DIL2VT,DIL2FV,SD,U95,L95, i
4 ASHVF.ASHFA.ASHAT,ASHDIS,VOLFIL,FILA,WEIGHT,FRACT,iaJMMAS J
INTEGER DIL,6MAC.CMACtNUMBRO,FlBNO,GRIDNO,BLANK,NUMFIB,CLSNUM,
4 CUMNUM.LENLIM.ASPLIM.CLASNO •
BYTE RAW,CRAPHS,DESC,SMPCOM,COM,FIBTYP j
REAL SCALE(20),DAT(3) =
CALL DATE(DAT) ' ]
,.t,....
2.32,3.41,5., 7. 34, 10.77, 15.81, 23.21, 34.06/
If (FIBNO.EQ.O) RETURN
URITE(2,10S) JOBNUM,DAT;OESC
FORMAT (T. 5X,2A4,47X,'OATEl e.3A4,/////,i2X,'SAMPLEs \60A1,////)
DO 10 1-1,20
KUMUID(I)»CUMUIO(I)
CONTINUE
WRITE(2,200)
FORMAT (///,30X,* FIBER WIDTH DISTRIBUTION'///
,
4 i7X/Wldth R«ng«,ua Counted Nuaber
4 'Percent') . "
HRITEC2.205) SCALE(l),SCALE(2).KUMWID(l),KUMtfID(l),
100*FLOAT(CUMWID(1))/FLOAT(CUHWIO(20»
FORMAT(//9X,.F11.3,' -',F8.3.I8,I12,1X,F14.2)
WRITE(2,210)((SCALE(L) ,SCALE(L*i) ,KUMWID(L)-ltUMWID(L-l).KUMWID(L) ,
100*FLOAT(CUMWID(L))/FLOAT(CUMUID<20))),L-2,19)
FORMAT <18(9X,F1U3,' -' ,F8.3,I8,I12,IX.F14.2./))
RETURN
END .
241
-------
c
c
c
c
105
C '
C
10
200
&
t
205
210
SUBROUTINE PAGE2B
COMMON DESC(60),SMPCOM(5e60),RAW,GItAPHS,CMACsCHAC>BJLfPR£P(3)s
INST,SMPTYP.CLS(24) ,SEQNUM(2) ,JOBNUM<2) ,GTAKEN,KUMMAS(20) ,
-DISVOL,DILlVT,DlLlFy8DIL2VT,DIL2FV,ASHVF,ASHFA,
ASHAT,ASHDIS,VOLFXLeFILAtVOLAIil,VeLMAT,PREPTe8CUMWID(20) ,
HODE8BUl«,GRIDNO,FIBNO.CH£Sq,SIG8!IUMFIB(SO)8S88U9S,L9S,
C81DLC50) ,CRIDH(50) ,F1BCLS<24) ,MORF(24) gAREA,FXBLBMCSOO) 8
FIBWID(500) »CLASS<500) ,ASP<500) ,eoUHT(3) ,ENTR¥,CUHASP(20) t
NUMBRK 10) ,NUHBR2( 10) vNUMBRO.CLSHUH.CUMmm(20) ,CUMKAS(20) ,
FZBTYPC32) ,UEICHT(24) ,PRACT,ASPLIM,LeNUM,CLSI.XM(24),CLAS!lO.
RAWLEN(SOO) .RAHWID(SOO) ,RAWCLS<500) ,RAWNUM(50) .RAWFIB,
LP95,UP95.IPFL,CONST •
REAL LP95.UP95, CONST
REAL RAVLEH.RAUVXD.RAVCLS
INTEGER RAWNUH.RAUFIB
REAL FIBLE^,FIBWID, CLASS, AS]>,INST,NUMBR1,NUMBR2SCUMMAS,MORT
REAL GRIOL»GRIOU,CHISq,SIG(FIBCLStMOOE.SEQNUH.JOBNUM,CLSLXM
REAL CTAKENtDISVOL,DlLlVT,pILiFV.DIL2VT6BIL2FV,SD,U95»L95,
ASHVF,ASHFA,ASHAT,ASHDIS,VOLFIL,FILAsWSIGHTsFRACTsiaJMMAS
INTEGER DIL,GMAG,CHAG8NlJMBI«).FIBNO,CRJBNO.BLANKtNOMFIB8CLSNUMe
CUMNUM, LENLIM, ASPLD1, CLASNO
BYTE RAW, GRAPHS, DESC,SMPCOM0COH,FiaTYP
REAL SCAL£(20).DAT(3)
CALL OATE(OAT)
OATASCALE/3.84.486.4689.49fll3.92820.44830.8U.864.6894.98139.2»
204.4,300. ,440. ,646. ,949. „ 1392. ,2044. ,3000. ,4403./
IF (ri3NO.EQ.O) RETURN
URITE(2,105) JOBNUH,DAT,DESC
FORMAT-Cl',5X,2A4,47Xe'DATE: ',3A48/////,12k,'SAMPLEs ',
DO 10 1-1,20
KUMASPCD-CUHASPCI)
CONTINUE
WRITE(2,200)
FORMAT C///.25X,' FIBER ASPECT RATIO DISTRIBUTION' ///
!9X,'A«p«ct ',7X,'Mu»b«r',8X,'Cua'88X,'Cua No',/8
17X,' Ratio Rang« Counted Niwbcr '.
'Percent')
WRITE(2,205) SCALE(1),SCALEC2),KUKASP(1),KUMASP(1)9
lOO*FLOAT(CUMASP(i))/FLOATCCUMASP(20))
FORHAT(//,9X,F12.2,' -',F7.2,I8,I12,IX,F14.2)
WRITE(2,210)((SCALE(L) ,SCALE(L+1) ,KUMASPCL)-KUMASPCL-l) .KUMASPCL)
100*FLOAT(CUMASP(L))/FLOAT(CUMASP(20))),L-2,19)
FORMAT (18(9X,F12.2,' -',F7.2,I8,112,1X,F14.28/))
DO 300 L-1,19
IF(CUMASP(L)/CUMASP(20).LT.0.5) GOTO 300
K-L
242
-------
IF(CUMASP(L-1).EQ.O.O) K-L+1
IF(CUMASP.EQ.CUMASP(K-1»
lF(CUHASP(K-l)/CUHASP(20)))*CSCAI^CK+l)o
& SCALECK))/CCUHASPCK)-CUMASP(K-i))*CUMASPC20)
GOTO 308
305 CONTINUE
308 DO 405 L»i,19
If(CUMASPa)/CUMASP(20).LT.O*9773) GOTO 405
K«L
NINE7-SCALECK)-K0.9773-CCUMASP(K-1)/CUMASP(20)))*(SCALE(K+1)-
£ SCALE(K))/(CUMASP(K)-CUMASP(K-i))*CUHASP(20)
GOTO 408 .
405 CONTINUE
408 FIBlND-Firn**(NINE7/EIGHT4) .
URITEC 2,400)FIFTY,NINE7/EIGHT41FIBIND
400 FORMAT(///m,'Median of Aspect Ratio DUtribution ',F9.2,//»
& 12X/Slop« P«r«n«t«r of Distribution ',F9.2,//»
& 12Xf*Index of Fibro.ity of Distribution *,F9.2)
RETURN
END
«
243
-------
c
c
c
c
105
C
C
10
200
205
210
&
&
6
SUBROUTINE PAGE2C
COMMON DESCC60),SMPCOH(5,60),RAW,GRAPHS,CMA69CMAG,DXL,PREP<3),
XNST, SMmP,CLS<24),SEQNUM(2)9JOBNUM<2),GTAKEJ«,KUMMAS(20),
DXSVOL,DXLlVT,DXUFV,DIL2VT,DXL2FV,ASHVF,ASiiFA9
ASHAT,ASHDXS,VOLnL9PXLA,VOLAXR,VOLWA?,PREFTCcCUMWID(20),
HODE,BLANK8eRXDNOeFI8NOfCHXSQ»SIC.NUMFrB FXBWXO(500)seLASSC500),AS?(SOO)tCOUNT(3),ENTRYvCUHASP(20),
NUHBRK10),NUMBR2(10)tNUMBR08CLSNUM.CUMNUM(20)9CUMMAS(20),
FXBTTPC32)VUEXGKTC24),FRACT.ASPLIMst£NLlM,CLSLIM(24),CLASNO,
RAULEN(SOO),RAUUXD(500),RAWCLS(SOO),RAWNUM(50),BAWFXBt
LP9S,UP95,XPFLVCONST
REAL LP95,UP95,CONST -
REAL RAULEN,RAWXD,RAVCLS
INTEGER RAWNUM.RAWFIB
REAL FIBLEN(FXBUXO,CLASS,ASPtXNST,NUMBRltmmBR2,CUMHASkMORF
REAL CRIDL.CaiDW.CHISQ,SIC,FIBCLS.MODE,SEQNUM,JOBNUH,CLSL1M
REAL GTAKEN,DXSVOL,DXLiVT,DXLlFV,OXL2VT»OIL2FV,SD8Uf5tL95,
ASHVF(ASHFA,ASHAT,ASHDXS(VOLFXL(FXLA,WEXCHT,FRACTtKUMMAS
INTEGER DXL,GMAG,CHAG,NUHBRO,FXBNO.GRXONO,BLANK,NUMFXBtCLSNUM,
CUMNUMtLENLXM,ASl?LXM,CLASNO
BYTE RAW,GRAPHS,DESC,SMPCOH,COMfFIBTYP
REAL SCALE(20).DAT(3)
CALL DATE(DAT)
DATA SCALE/.OOOA6,.001,.00215B.00464,.01,.0215,.0464,.!,.215,
.A64,1.,2.15,4.64,10.,21.54,46,41,IOC.,215.43,464.14,iOOO,/
XF (FIBNO.EQ.O) RETURN
WRITE(2,105) JOBNUH.DAT.DESC
FORMAT ('I'.5X.2A4.47X.'DATE: \3A4./////. 12X/SAMPLEJ *,60A1,////)
DO 10 1-1,20
HASCUM(I)-KUMMAS(I)
CONTINUE
WRITEC2*200)
FORMAT (///,35X,'FIBER H,^SS DISTRIBUTION'///
23X,'P«rticl«',7X/Nuaber%8X.'Cwi%8X,'C»» No'./8
21Xt'Ma«« Range,pg Counted Number 'e
'Percent')
WRITEC2,205) SCALE(1)(SCALE(2),MASCUM(1)(MASCUM(1),
100*FLOATCKUMMASC1))/FLOATCKUMMAS(20))
FORMAT(//,13X,F10.4,' -',F9.4,X8.I12,IX.F14.2)
WRITEC2,210)((SCALE(L),SCALE(L+1),MASCUM(L)-MASCUM(L-l),MASCUM(L),
100*FLOAT(KUMHASCL))/FLOAT(KUMMAS(20))),L-2.19)
FORMAT C18U3X.F10.4,' -'.F9.4.X8,I12.1X8F14.2,/))
RETURN
END
244
-------
c
C
C
C
C
10
105
110
113
G
&
6
&
6
SUBROUTINE PA6E3
COMMON DESC(60) ,SMPCOM(5,60) ,RAtf, GRAPHS, GMAG,CMA6,DIL,PREP(3) .
INST,SMPTYP,CLS<24) ,SEQNUM<2) »JOBHUM<2> ,CTAKEN,KUMMAS<20) f
DISVOL,DILlVT,DILlFV.DIL2VT,DIL2FV,ASHVFfASHFA,
ASHAT,ASHDIStVOLPIL.PILAtVOLAIRtVOLWAT.PREPTC,CUMWID(20) .
MODE,BLANK,CRIDNO,FIBNO,CHISQ,SIC,NUHFIB(SO) .SD.U95 .L95.
SJSS5 JiA?*i?Wi50J •F?c" W> .H°**C24> .AREA, PIBLEN(SOO) ,
PIBUID(SOO) ,CLASS(500) .ASP(SOO) ,COUNT(3) ,E»TRTtCUMASP(20) .
NUMBRK 10) ,NUMBR2(10) ,NUMBRO,CLSNUM.CUMNUM(20) »CUMMAS(20) .
«BPP<32).WEICHT(24) ,PRACT,ASPLIM,LENLIM,CLSLIM<24) .CLASNO.
RAWLEN(SOO) .RAWIDC500) ,RAWCLS(500) .RAMNUH(SO) .RAWPIB,
U?95.UP95BIPPL,CONST
REAL LP9S.UP95, CONST
REAL RAHLEN,RAWWXD,RAWCLS-
INTEGER RAWNUM.RAHPZB
REAL CTAKEN,DISVOL,DIL1VT.DIL1FV,DIL2VT,DIL2FV.SD.U95,L95.
,%^^ASHVF»AS^A»^1^T»ASHDiS.VOLFIL,FILAtWEIGHT.FRACT.iajMMAS
INTEGER DIL,CMAC.CMAG,NUMBRO.FIBNO,GRIDNO,BLANK.NUMFIB,CLSNUM,
& CUMNUM,ASPLIM,LENLIM,CLASNO
BYTE RAW,GRAPHS.DESC.SMPCOM.COM.FIBTYP
REAL DAT(3),AVAREA,GAREA,TEMP1,TEMP2
REAL*4 TEMPO)
IF(FIBNO.EQ.O) RETURN
00 10 1-1,3
TEMP(I)-'
.CALL DATE (DAT)
WRITEC2.105) JOBNUM,DAT,DESC,(TEMP(I)tI.l,3)
FORMAT ('1%5X.2A4.47X. 'DATES '.3A4t////.12X^SAMPLE! %60A1.//S
,60X,3A4,/)
WRITEC2.110) F1BTXP.8,ASPLIM
FORMAT (12X,' INDIVIDUAL GRID SQUARE FIBER COUNTS! %32A1.
/,l2X,'A.p«ct Ratio Limit X.A1.'_M3/«1'.7X.
'Miniaua Ungth Limit i> 0.5 urn*)
WRITEC2.113)
FORMAT //.12X.'Grid Square Siz«%l3X.'Numb«r of Fib«M/Crid Squar.' .
X*n8th "11* A"*'' '
/
A"*'»l3x»'Actu*1 Noraaiised',
J-0
AVAREA-AREA/GRIDNO
DO 20 L-l.CRIDNO
J-J+l
CAREA-GRIDL(L)*GRIDW( L)
IF (J.NE.26) GOTO 20
J-0
245
-------
20
115
C
120
125
150
160
170
171
175
180
190
C
C
10
15
TEHP<1)-'(CON< .-":•-•
TEMP(2)-'T"D.'
TEMPO)-'-.)'
WRITEC2,105) JOBNUM.DAT.DESC.CTEMPCI).1-1.3)
WRITE(2,110) FIBTYP,8,ASPLIM *
HRITE(2,U3)
VRITE(2,115) GRIDL(L) ,CRIDW(L) ,GAREA.NUMPIB(L) .AVAREA/CAREA*NUMFIB(L)
FORMAT <8X.2F8.l.F9.0e14X,I3,9X,F7.2)
WRITE(2,120) PLOAT(FIBNO)/FLOAT(GRIBNO)
FORMAT (/12X."Mean Count per Average Grid Square',F6.2)
IF (GRIDNO.GT.2) WRITE(2,125) SO
FORMAT C/12X,'Standard Deviation',F22.2)
WR1TE(2«150) CHISQ
FORMAT C/.12X,'Total Chi-Square '.F23.2)
WRITEC2.160) SIC
FORMAT (/,12X,'Significance L.w.1 of Unifonity',3X,A4,'Z')
IF (IPFL.EQ.O) GOTO 180.
TEMP1-(LP95/FRACT)*CONST .
TEMP2-(UP95/FRACT)*CONST
WRITE(2,170)
CALL SCICTEMP2.36,VAL.STR)
VRITEC2.171) VAL.STR
FORMAT(///,12X,'Th« 9SZ confidence liaits have been deterained',*//,
6 ,12X,'on the basis of Gaussian statistics. If Poisson',//,12X,
6 .'statistics were applied the upper 9SZ confidence')
FORMAT(12X,'liait would be',F3.2.1X,A4.2Xf'MFL while the lower')
CALL SCKTEMP1.51 .VAL.STR)
URITEC2.17S) VAL.STR
FORMAT(12X,'95Z confidence linit would be',F8.2,U.A4,2X,'MFL')
RETURN
WRITEC2.190)
FORMAT(//,12X,'Upper and lower 95Z confidence levels have been',//,
& ,12X,'determined on the basis of Poisson otatistics.*)
RETURN
END
SUBROUTINE SCI
-------
STR-'x 10'
RETURN
60 WRITE(2,70)
70 FORMATC ')
STR-'
VAL-A,
RETURN
END
147
-------
SUBROUTINE PAGE*
C ' ' : .
C
COMMON DESCC60),SHPCOM(S,60),RAW,GRAPHS,GMAG,CHAG,OIL,PREP<3),
INST,SHPTYP,CLS<24),SEQNUM<2),JOBNUM(2),GTAKEN,KUMMAS(20)„
DISVOL,DILiVT,DILiFV,DlL2vr9DIL2FV,ASHVF,ASHFA,
ASHAT,ASHDIS,VOmL,FXlJteVOlJUR,VOLWAT9PREPfC,CUMWID<20),
MODE, BLANK,GRIDNO,FIBNO,CHISQ,SI(;vNtrftPI8( 50} 9Sfi,U9S8L95f
GRIDLC50),GRIDW<50)8FIBCLS(24),MORF(24)8AREA,FIBLEN(500>,
FIBWID(SOO),CLASS(SOO),ASP(500),COUNTC3)»ENTRY,CUMASP(20),
NUHBRtCiO),NUMBR2(10),NUMBRO,CLSNUMtCUMNUM(20),CUMMAS(20),
FIBT¥P(32),WEIGHT(24),FRACT,ASPLIH,LENLIMtCLSLIM(24),CLASNO»
8AWLENC500) ,RAWXD(5GO) ,RAWCLS(SOO) ,RAWNUM(50) ,SAWFI5f
LP95,UP95rIPFL,CONST
REAL LP95.UP9S,CONST
REAL RAWLEN,8AUW1D«RAWCLS
INTEGER RAWNUM.RAUFIB
REAL FIBLEN,FlBWID,CLASS,ASPeINSTtNUMBRl,NUM3R2,CUMMAS,HORF
REAL GRIOL,GRlDU.CHISq,SIG,FXBCLS.MODE»SEQNUM,JOBNUM,CLSLIM
REAL GTAKEN,DXSVOL,DILIVT*D£LIFV,DIL2VT,DIL2FV,SD,U95,L9S,
& ASHVF,ASHFA,ASHAT,ASHQ£S,VOLFXL,FXLA,UEXGHTeFRACT»KUNMAS
INTEGER DXL,CMAGtCHA6eNUMBRO»FXBNO,GRXQNO(BLANK,NUHFXBeCLSNUMt
4 CUMNUM,ASPLXM,LENLXM,€LASNO
BYTE RAW,GRAPHS,DESC.SHPCOH,COM,FIHT^P
REAL*4 TEHP(3)
C
INTEGER START,FXKI
C
REAL DATC3)
C
IF (FXBNO.EQ.O) RETURN
DO 20, 1-1,3
20 TEMP(I)-'
CALL DATE(OAT)
FXMX«0
START-I
10 FINX-FXNI+99
IF (FIBNO«LToSTART-h99) FINI-FIBHO
C
VRITE(2,10S) JOBNUM,DAT,DESC
105 FORHAT('r,5X,2A4,47X,cDATE: %3A4,//,60X,/,l2X,'SAMPLI5s *,60A1///)
URXTE(2,110> (TEHP(I),I-1,3),FIBTYP,8,ASPLIH
110 FORMAT (17X,'ASBESTOS FIBER COUNT ANALYSIS',//,2SX,
& 'SELECTED RAW DATA',18X,3A4,//llX,,"Fib*r* Classified ass ",
t ,32Al,/,tlX,'Asi»ct RajCio Liait >',A1,» %I3.'§l',7Xe
& 'Minima Langth Liait it 0*5 ua') ~
URITE(2,115) (FIBLEN(L),FIBWID(L),ASPCL),L-STAET,FINX)
115 FORMAT C///,7X,3(' Length Width Aspect'),/,6X,
& 3(' ua urn Ratio'),///,99(6X,3(F8.2.F7.3,F7.l
START-START+99
TEMP(1)"'(CON'
TEMP(2)-'T"D.'
248
-------
TEMPO)-',..)
10
249
-------
SUBROUTINE PAGES
COMMON DESC(60),SMPCOM(5,60).RAW8CRAP11S,CMAG.CMA6,DIL,PREP(3).
INST.SMPTYP.CLSC24),SEQNUM(2)»JOBNUH<2),GTAKEM.KUMMAS(20).
DISVOL,DILlVT,DILlFy,DIL2VT.DIL2PV,ASHVF,ASHFA,
ASHAT,ASHDIStVOLFIL,FILA,VOLAtR,VOLWAT.PR£PTCeCUMWID(20),
MODE%BLANK,GRIDNO.FIBNO.CHISq,SIG.NUMFIB(SO).SDeU95»L9S.
GRIDtJSO),GRIDW(50),FIBCLS<24).MORF(24),AREA,FIBLEN<500).
FIBWIDC500).CLASS(SOO)8ASP(500).COUNTC3),ENTRY,CUMASP(20).
NIIMBR1C10) .NIMBR2C10) .NUMBRO,CLSNUM,CUIfNtfM(20) ,CUMMAS(20) e
FIBTYP(32),WEICHT(24),FRACT,ASPLIM,LENLIM,CLSLIM<24).CLASNO.
RAWLEN(SOO).RAWWID<500).RAWCLS(SOO)8RAWNUM(50).RAWFIB,
LP95.UP95.IPFL.CONST
REAL LP95.UP95,CONST
REAL RAWLEN.RAWWID.RAWCLS
INTEGER RAWNUM,RAWFIB
REAL FIBLEN,FIBWID,CLASS,ASP.XNST.NUMBR1,NUMBR2,CUMMAS,MORF
REAL GRIDL,GRIDW,CHISQ,SIC.FIBCLS,MODE.SEQNUM,JOBNUM,CLSLIM
REAL GTAKEN,DISVOL,DiLlVT,DILiFV.DIL2VT.DIL2FV,SD,U95.L95
REAL ASHVF,ASHFAfASHAT,ASHDIS9VOLFIL8FILA,WEIGHT,FRACT,KUMMAS
_-. " " ~^» • —• »p "«•»*•••»* y A mcvM* AC^wru^n^
INTEGER DIL.GMAG,CHAG,NUMBRO,FIBNO.GRIDNO»BLANKtNUMFIB.CLSNUK i
INTEGER CUMNUM.ASPLIM.LENLIM.CLASNO i
BYTE RAW.GRAPHS.DESC.SMPCOM.COM.FIBTYP
REAL*4 TEMPO) " ' " ""'"
REAL DATC3)
INTEGER START
C
DO 20 1-1,3
20 TEMP(I)-'
CALL DATE(OAT)
NEXT-0
IST-l
ICS-l
IFLAG-0 . I
30 START-0 ' . |
WRITE(2,40) JOBNUMVOAT,OESC ]
40 FORMATC'l',SXf2A4,47X.'DATEi ',3A4,//.60X./12X.'SAMPLEs '.' ]
& 60Al,///>
WRITEC2.50)
-------
70 FORMAT(/,9X,F6.2.1XsF6.2g10X/N 0 F X B E R 8')
START-START+2 . •
IFCSTART.LT.36) GOTO 270
IST-I+l
GOTO 320 .
80 NUM-RAUNUM(X)+NEXT
DO 250 K-XCS,NUM,3
IP(K.GT.RAHFIB)COTO 270
IF(K.EQelCS.AND.IFLAC.EQ.O) GOTO 160
IF((K+1).GT.NUM) GOTO 100
XF((K+2).GT.NUM) GOTO 140
WRITE(2,90)WWfD(K)
START-START*!
GOTO 260
140 WRITEC2.150) (RAWCLS(J),RAWLEN(J),RAWWlD(J).J-KtK+l)
ISO FQRMAT(24X,«2X,A4,IX,F6.28IX,F6.3» '• R»K L>
START-START+l
GOTO 260
160 IFC(R-H).GT.NUM) GOTO 190
IF«K+2).GT.NUM) GOTO 210
WRITE<2,180) GRIDL(I),CRIDW(I)f(RAWCLS(J),RAWLEN(J).RAWWID(J)
* tJ^KjK^)
180 !°?"A?^'9X»F6-2.«.F6.2;2
GOTO 230
GOTO 230
210 WRITE<2,220)
2M
240 START-START*!
XF(START.GE.36) GOTO 310
250 CONTINUE
260 ICS-NUM+t
• NEXT-NUM
270 IFLAC-O
300 CONTINUE
310 IST-I
ICS-K+3
IFLAG-l
NEXT-NUM
TEMP(2)-'T"D.'
TEMP(3)-'...)'
251
-------
13
WRITEC2.57) 27
57 FORMATUX.Al/O
IF(1ST.LE.CRIDNO)GOTO 30
RETURN ' '
END
252
.1
1
-------
C
C
c
C
C
D
SUBROUTINE GRAPHC LIMIT)
COMMON OESC<60).SMPCOM(5.60),RAW.GRAPHS,CMAG.CMAG.DIL.PREP(3)g
4 INST.SM,™ „«„*> *^u,~, "I.CTAKEN.KUMMAiuO),
^ .. ,-.
i
i
*
&
..
»CRIDNO»F"N0*CHISQ.SIC,NUMPIB(50) .SD.U9S.L95
MDW(50) •.«•«•«*>.MQRF<24) .
•CLASS<500) .ASP(SOO) .COUNTC3)
* LP95eUP95,IPFL8CONST
REAL LP9S.UP95.CONST
REAL RAWLEN.RAHSJID.RAWCLS
. INTEGER RAWNUM.RAWF1B
5£S: "!!fNl"S;iI>'CLASS»ASP.INST.NUMBRl.NUMBR2.CUMMAS.MORF
t KSfe!^^^i^j^3S5Sai!S"-
^SS'^A^^^r4{™tFIL-""'"«=«™n!«!»««s
SK^;SS:SsNSo 6 LINES/INCH
XF (FIBNO.GE.LIMIT) GOTO 5
MRITEC2.100) JOBNUM.DAT.OESC,
FORMAT '•••—--•*- ? '
&
&
&
found in the above
5 WRITE(2,106) JOBNUM.DAT.DESC.8
105 FORMAT Cl',5X,2A4,47X.'DATE: '
& ///.9X,'ASBESTOS FIBER
.'SAMPLE: '.60A1.
DISTRIBUTION' 7X
'
253
-------
106 FORHAT ('I',SX,2A4.47X,'DATEi 'B3A40//S12X,'SAMPLE? '.60A1.
ft" . ///,9X,'ASBESTOS FIBER LENGTH DISTRIBUTION'97X,
ft 'LOG. PROBABILITY PLOT',/,1'OX,"Aspect Ratio Lisle >*,A1,
& '_',I3,':l',7X,'Mini«ua Length Liait is O.S ua')
C . ""
URITE<2,120) FIBTYP,FIBNO,27,27
120 . FORHAT (/,' Fiber Length',12X,'Fibers Classified as; "e32Ale/,
i ' MicroBeters',13X,'NuBber of Fibers Siscd • '',13,
& /,1X,AI/?',A1,'- 200* %/)
IF(GRAPH.Eq.2)GOTO IS
C
00 10 L-0,57
K«L
ZF(L.GT.48)K-48
10 CALL PLOT(L, 100.*CUHNUH(17-K/3)/CUMI)UM(20)/*'tWEXT)
URITE(2,130) 27.27
130 FORMAT (/,' + + + + + %7(' +')t
& 6X,'+ + + +*./.9X/ 0.5 ', . . .
fc '1 2 S 10 20 30 40 SO 60 e „
« '70 80 90 95 98 99%A1.'<'§A1,'>')
WRITE(2,136)
136 FORHAT (/,13X,'Perceneage Nuaber of Fibers Shorter',
& ' Than Stated Length')
GRAPH-GRAPKH
GOTO 5
15 DO 20 L-0,57
K-L
IF(L.CT.48)K-48
20 CALL PLOTCLeCUHHASCl7-K/3)/CUMHAS(20)*100,'x%NEXT)
WRITE(2,130) 27,27
URXTE(2,13S)
135 FORHAT C/.13X,'Percentage Mass of Fibers Shorter',
* ' Than Stated Length')
RETURN
END
C
C
SUBROUTINE PLOT(L,PERCNT,CHAR,NEXT)
C
C \ THIS SUB DOES THE PLOTING FOR THE LENGTH DISTRIBUTION GRAPHS
C
REAL PERCNT,TABLE(40),SCALE(16),SC
INTEGER LINE(16),NEXT
BYTE CHAR
DATA TABLE/.46,.53,.63,.79,.9,1.1,1.3,1.5,1.9,2.,2.5,2.9,3.4,3.8,
ft 4.3,5.,5.8,6.7,7.5,8.8,10.,11.,12.,13.2,15.,16.6,18.2,20.1,
« 22.,24.,26.2,28.2,30.5,33.4,35.4.38.3,40.5.43<3,46.5,50./
DATA LINE/1,3,5,8,14,19,21,23,26,32,37,39,41,44,50.55/
DATA SCALE/'100*',' 80*',' 60+'s' 40+V 20*',' 10*','. 8+*9
& ' 6*',' 4+V 2*',' 1V,'0.8+','0.6+'.'0.4+V©.2+VO.I+V
C
C
. 254
-------
SF(L.EQ.O) NEXT-I
e . . -. .
se-'
IF(L.GT.48) PERCNT-0.0 •
IFK
DO 47 K«40,79 -
47 lF(PERCMTeCE.lOO-TABLE(80-K»
WRITEC2.50) SC.C '.K-
50 FORMAT(5X,A4,99(Al.s))
RETURN
END
255
-------
SUBROUTINE GRAF(LIMIT)
C - :
C .
COMMON DESCC60),SHPCOM(5,60).RAW,GRAPHS,GMAG,CMAG,OIL,PREPC3)»
ft INST,SMPTYP,CLS(24),SEQNUM(2),JOBNUM(2),GTAKEN,kUMMASUG),
4 DXSVOL,DILlVT,DILlFV,DlL2VTeDIL2FV7ASHVF,ASHFAB
& ASHAT.ASHDXS,VOLFIL,FILAeVOLAXR,VOLWATsPREPTC,CUMtfID<20),
& HODE,BLANK,GRIDNO,FIBNO,CHISQ,SIG,Nl!MFXBCSO)cSD,U9S,L93t
ft GRXDL(50),GRXDW<50).FIBCLS(24)8MORF(24)BAREAeFIBLEN<500K
ft * FXBHID(SOO),OJlSS<5CIO),ASP(500).eOU!ITC3),ENTRY,CUMASP<20),
ft NUHBRl(lO),NUMBR2(1Q),NUMBRO,CLSNUM,CUMNUMC20),CUMMAS(20),
ft FIB!*?(32),WEICHT(24)(FRACT,ASPLXM,LENLZM(CLSLXM(24)8CLASNO(
ft RAWLEN(SOO),RAWUIO(500),RAUCLS(500),RAWNUM(50),RAUFXB,
ft LP95,UP95,IPFL,CONST
REAL LP95.UP95,CONST
REAL RAVLEN,RAWXD,RAWCLS
INTEGER RAWNUM.RAWFIB
REAL FXBI£N,FXBUXD,CLASS,ASP,XNST,NUMBR1,NUMBR2,CUMMAS,MORF
REAL GRIDL,GRIQW,CHISQBSIG,FIBCLS9HODE,SEQNUM,JOBNUMtCLSLIM
REAL GTAKEN,DXSVOL,OXLlVT,DH.lFV,DXL2VT,DXL2FV,SD,U9§i,L9St
ft ASHVF,ASHFAtASHAT,ASHDXS,VOLFXL,>FXLA»WEXGHT.FRACTtKUMMAS
INTEGER DXL.CHAG.CMAG.NUMBRO^FXBNO^GRIDNOtBLANK^NUHFXB.CLSNUHj
ft CUHNUM,ASPLXM,LENLXM,CLASNO
BYTE RAW,GRAPHS,DESC,SMPCOM,COM,FIBTYP
C
C
REAL PERCNT,DAT(3)
C
C
GRAPH-l
CALL DATE(DAT)
C 27 is cod* of ESCAPE
C ESCAPE sequences alter PRINTER
•C ESC ? 8 LINES/INCH
C ESC - 12 CHARS/INCH
C ESC < 10 CHARS/INCH
C ESC > 6 LINES/INCH
C
IF (FIBNO.GE.LIMIT) GOTO S
WRITE(2,100) JOBNUH,DAT8DESC,FIBTYP,LIMIT
100 FORMAT (T ,5X,2A4,47X,'DATE: ' ,3A4t///912X,'SAMPLE: ',60Al,//r
6 . . 12X,'Fibcrs Identified as ' ,32A,///,9X/It was not possible',
ft ' to plot meaningful graphical sire*,//,9X,'distributions',
ft ' for this aeasureaent since fewer than *,I2/ particles',/,
ft /,9X/were found in the above classification.')
RETURN .
5 URITE(2,106) UOBNUM,OAT,DESC,8,ASPLIM
105 FORMAT ('!',5*,2A4,47X.'PATE; e B3A48//,12X,'SAMPLE: ',60A1,
ft , ///.flX,'ASBESTOS FIBER ASPECT RATIO DISTRIBUTION',7X,
ft 'LOCVPROBABILITY PLOT*,/,10X,'Aspect Ratio Liait >',A1(
ft ' ',13,':!')
106 FORMAT ('T',5^,2A4,47X.'DATEs ',3A4,//»12X,'SAMPLE! '.60A1,
256
-------
:
4 ///»9X/ ASBESTOS FIBER ASPECT RATIO DISTRIBUTION' .7X.
4 'LOG. PROBABILITY PLOT' ,/'»! OX, 'Aspect JUtio Limit >',A1.
_ * V«13»*tr.7X,'Hini«ua Length Limit is 0.5 ««')
C
WRITE(2,i20) FIBTYP,FIBNO,27,27
120 FORMAT ,' Fiber Aspect Rat.ioM2X, 'Fibers Classified ass '.
4 32Ai,/34X, 'Number of Fibers Sized - '.13.
* /.».Alt'*',Al,'« 2000* './)
C
00 10 L-0,57
K-L
ZF(L.GT.45)K-45
10 CALL PLOT2(L,iOO.*CUMASP(l6-K/3)/CUMASP(20),'**.NEXT)
WRITE<2,130) 27,27 '
130 FORMAT ,' * + * + + • ?r +.}
4 6X,'* + + +'S/»9X/ 0.5 %
* ' * 2 S 10 20 30 40 50 60 \
4 '70 80 90 95 98 99' ,Al/<* Al/X)
WRITEC2.136) ' '
136 FORMAT C/.13X,' Percentage Number of Fibers Less*, »
4 ' Than Stated Aspect Ratio')
RETURN
END •
C
C
SUBROUTINE PLOT2(L,PERCNT, CHAR, NEXT)
\o • >
C
REAL PERCNT,TABLE(40),SCALE(16),SC
INTEGER LINE(16).NEXT
BYTE CHAR
DATA TABLE/.46..53,.63..79t.9,l.l.l.3.1.5,l.9.2.,2.5,2.9,3.4t3.8,
'l!-;ll-*12''l3'2»l5-*16-6»l8«2»2o'
-1^*7
DATA
* ^^^^r^rvrvi^-
C
IF(L.EQ.O) NEXT«1
C
SC-'
IF(L.GT.45) PERCNT-0.0
IF(L.NE.LINE(NEXT)+2) GOTO 10
SC-SCALE(NEXT)
NEXT-NEXT+l . *
T.99
IF(SC.NEee ') WRITE(230) SC
20 FORMATC ')
30 . FORMAT(4X,A4,'+')
25.7
-------
RETURN
40 DO'45 K-1,40 - :
45 IF(PERCNT.GE.TABLECK)) I-K
DO 47 K-40.79
47 IPCPERCNT.GE.100-TABLEC80-K)) I-K
IPCSC.EQ.' ')WR1TE<2,50> SC,(' ',K-1.1+2).CHAR
IPCSC.NE.' ')MRITE(2.60) SC,('MC-
50 FORMAT(4X,A4.99(A1.J)>
60 FORMAT(4X,A«.'-«.'.98(A1,O)
RETURN
END
258
-------
SUBROUTINE CRAF2(LIMIT)
COMMON DESC(60),SMPCOM<5.60),1
& TUtffo rrunjin ' ^ r* *> —•-•»•• •«•» y w»*nw §^cviw g tf fcJLt • ftUjJ* L ^ J
! SSr"'""-"""""^-^:"1^"0''
* MODEILA« «TSiJIl;«iiA^LAIR'VOLWAT»PREPTC»cww»(20),
- nuuc»auu'«>»vRIDNO>FIBNO.CHZSO.STC mntvntxn\ r- *-_'•
CRIDL(50) ,GRIDW(SO) .FlBCLSaJiTMSR?^? iSl *[
- . wn*w**v<'v't«'KAUNVJu;>FUCLS(24),MORF(24) AREA
• FTBUTn/^nn\ ^? A«^^S*AA% e^.^M^.^* ^f*»**«*»f
£
REAL LP9S8UP9S, CONST
REAL RAWLEN,8AWWIDfRAWCLS
INTEGER RAWNUM.RAWFIB
,
• :
c BYTE RAH.CRAPHS.DESC.SMPCOM.COM.FIBTYP
C
REAL PERCNT,OAT(3)
C
C
GRAPH- 1
. CALL DATE(DAT)
C
C 27 is code of ESCAPE
C ESCAPE sequences alter PRINTER
C ESC ? 8 LINES/INCH
C ESC - 12 CHARS/IHCH
J ESC < 10 CHARS/INCH
C ESC > 6 LINES/INCH
C
IF (FIBNO.CE. LIMIT) GOTO 5
100 TORS^f'K^fSTl^0680'"8"^1-""
FORMATC I 3X.2A4.47X.'DATE: 't3A4.///.12X.'SAMPLB: '.60A1.//.
• 1ZX, Fibers Identified «s ' 32A /// a* »T* »ww*»*»//t
i _
S MRITE<2,106) JOBNUM.DAT.DESC.8.ASPL1M
105 FORMAT (;i;.3X.2A4.47X.'OAlir^5"/.i2X.4WPLEl • 60A1
& ///.9X.' ASBESTOS FIBER WIDT^ KSTRiB" '
I
259
-------
106
C
120
10
130
136
C
C
C
C
FORMAT <'1',5X,2A4,47X,'DATS: '»3A4,//.12X,'SAMPLES *.60Aifi
* ///,9X,'ASBESTOS FIBER WIDTH DISTRIBUTION',7X,
* ;LOC. PROBABILITY PLOT',/,10X,'Aspect Ratio Liait >*,A1,
* . »13» *1',7X,'Miniaua Length Liaife is 0.5 ua')
WaiTE(2,120). FIBTYP,FIBNO,27,27
FORMAT (/,' Fiber Width',13Xe'Fibers Classified *ȣ \
& 32AI,/,' Mieroaetcrs',13X,'Nuaber of Fibers Sized A %I3.
* /.1X,A1,'?'.A1,'- 20.0* ',/)
DO 10 L-0,57
K«L
IFCL.GT.48) K-48
CALL PLOT3a,100,*CUMWID(17-K/3)/CUMWID(20),'-',NEXT)
FORMAT (/,' ' + + ^ + + . 7(. +.j
« 6X,'* + + +'./,9X.' 0.5 '.
* • l 2 5 10 20 30 40 SO 60 '.
* 70 80 s<> it »v*\
FORMAT C/,13XB'Percentage Nunbar of Fibers Less'
A ' Than Stated Width")
RETURN
END- •
SUBROUTINE PLOT3(L,PERCNT,CHAR.NEXT)
REAL PERCNT,TABLB(40),SCALEC16),SC
INTEGER LINE(16),NEXT
BYTE CHAR
^ DATA TABLE/.46,.53..63,.79..9,l.i,l.3,i.5,l.9,2..2.5,2.9,3.4.3.
C
C
C
10
IS
20
IFCL.EQ.O) NEJY-1
SC"'
IF
-------
30
40
45
47
SO
60
FORMAT(4X,A4/+')
RETURN " :
00 45 K-1,40
IF(PERCNT.GE.TA£LE(K» X-K
DO 47 K-40,79
IF(PERCNT.CE.iOO-TABLE(80-K)) I-K
RETURN
END
-------
SUBROUTINE GRAF3(LIMIT)
C
C ' : .
COMMON nESC(60),SMPCOH(5l,60),RAU,GRAPHS,GMAC,CM*\G,DIL,PREP(3),
INST,SMPTYP.CLS<24) ,SEQNUM<2) ,JOBKUM(2) »CTAK£NSKU>CUS(20) ,
DISVOL,DlLlVT,DILlFV.DIL2VT,DIL2FVeASHVF,ASHFA,
ASHAT,ASHpIS,VOLFILBFILA,VOLAIRtVOl#AT»PREIT^aJMWID(20),
MODB9BLANk>CKlDNOf>?lBNO»CHZSqtSIC,NUMFIBJUH,CLSLm
REAL CTAKEN,DISVOL,DILlVT,OILlFV»DIL2VT,DIL2FVtSD,U95,L9S,
6 ASHVF,ASHFA,ASHAT,ASHDIS.VOLFIL,PILAgWEIG«T,FRACT,KUMMAS
INTEGER DIL.GMAG.CMAG.NUMBRO.FIBNO^GRIOUO^BLANK.NUMFIB.CLSNUH.
& CUHNUM,ASPLZM,LENLIM,CLASNO
BYTE RAU,GRAPHStDESC,SHPCOM,COM,FIBTYP
C .
C
REAL PERCNT,DAT(3)
C
C
GRAPH-l
CALL DATE(DAT)
C 27 is cod* of ESCAPE
C ESCAPE •equenccs «lt*r PRINTER
C ESC 1 '8 LINES/ INCH
C ESC - 12 CHARS/INCH
C ESC < 10 CHARS/INCH
C ESC > 6 LINES/INCH
C •
IF (FIBNO.GE.LIMIT) GOTO I
WRITE(2,,100) JOBNUM,DAT,DESC,FIBTYP,HMIT
100 FORMAT C'r.5X,2A4t«7X,'DArE: ' ,3A«S///B12X,'S«MPLES *,60A1.//,
, 4 l2X.'Fib«r« Identified •* ',32A.///.3X,*It w.« not pos.ibla',
* to plot •caningful graphical «i»«',//,9X.'distribution*'.
* for this •easur«a«nt since if«w«r than '.12,' partiel««%/B
• * /,9X,'w«r« found in the above classification.')
RETURN
5 WR1TE(2,106) J03NUM,DAT,DESC,8,ASPL1M
105 FORMAT ('l'.5X.2A4,47X,'DATEs ',3A4,//9l2X,'SAMPLEs *,60Als
* ///.17X/ASBESTOS FIBER MASS DISTRIBUTION',7X,
ft 'LOG. PROBABILITY PLOT'./,IOX.'Aspect Ratio Limit >'.Alt
106 FORMAT CT'!5X;2A4t47Xi'DATE: '.3A4,//,12X.'SAMPLEJ '.60A1V
262
-------
& 7//,17X.'ASBESTOS FIBER MASS DISTRIBUTION*,7X,
& 'LOG. PROBABILITY PLOT',/,!OX,'Aspect Ratio Limit >',A1,
& ' *,I3,':r,7X,'Miniaua Length Lin it is 0.5 ua'}
C . •""
VIRITE(2,120) FIBTYP,FIBNO,27,27
120 FORMAT (/,' Fiber -Ma*. M2X/Fibers Classified ass %
& 32A1,/,' Pf.cograas',21X,'NuBber of Fibers Sized - %O,
& /,1X.A1.'V,AI.'- './.)
DO 10 L-0,57
10 CALL PLOT4
-------
40 DO 45 K-l.40
45 IF(PERCNT.GE.TABLE(K)) I-K
DO 47 K-40,79
47 IF(PERCOT.GE.IOO-TABLE(80-K)) I-K
IFCSC.EQ.' ')WRITE(2.50) SC,('
IFCSC.NE." '}URZTE(2t60) SC(('
50 FORMAT(4X,A4,99(A1,:))
60 FORMAT(4X,A4,'-l-'t98(Al,s))
RETURN
END
------- |