EPA-600/4-83-043
                                                 September 1983
             ANALYTICAL METHOD FOR DETERMINATION
                 OF ASBESTOS FIBERS  IN WATER
                             by
             Eric J. Chatfield and M. Jane Dillon
                 Electron Optical Laboratory
                Department of Applied Physics
                 Ontario Research Foundation
             '  Sheridan Park Research Community
             Mississauga, Ontario, Canada L5K  1B3
                      Contract  68-03-2717
                        Project Officer

                       J.  MacArthur Long
                  Analytical  Chemistry Branch
               Environmental  Research Laboratory
                     Athens,  Georgia 30613
             ENVIRONMENTAL RESEARCH LABORATORY
            OFFICE OF RESEARCH AND DEVELOPMENT
           U.S. ENVIRONMENTAL PROTECTION AGENCY
                   ATHENS, GEORGIA 30613
This Method has been assigned the EPA method number of 100.1

               NTIS Number  PB 83 -

-------

-------
si - CONTROL NUMBER:
83 -
86 -
B7 -
88 -

810-
     COLLECTION
     feAUAGfcMEhT
     PROCESS ACTnlti
     PRODUCT MAMA6
     RECEIPT FYf*E:
817=
     PAT. POTENTIAL:
     FORM/PRICE:
     Af-mOUiiCE:
        B7A-RE6ISTRATION FEE: 00000

        B9A-LOAW DUE OUT:
        BIOA-OUH£/PRIOR/SUPfcR *
        8i2A-RETURN QATfe:
UHi
not
82a°
82e-
627-
829-
B33r
     PC
     STOCK:
     PAGES/SHEETS:
     PC PKlCfc COOE:
     UUMESriC PRICE.
     ACTIGM COOES:
     HN PH1CE CODE:
     DuiiESMC PRICt:.
     ACTiUM COOES:
        B2^A»STUCI< TYPE COOiSl N
0
000
6000
00276
AU -
0000000 B28- FOREIGN PRICE:
                            0000000
8J6-

8J8- MF PRINT:
AOl
0000000
MA
                                  - FOREZGW PRICE:  0000006
                   CO: C
     PRINT PC:
     PC DUE:
     SOURCE URUER:
     'GEftEriATfc ROP:
b«2ii-SuPPLIER SRC COS
e40-
B«l-
Ba2-
A
e»
n
n

-------
                                                              iiroHMiNO OR6AKS1.4A I ION
4. TITLE AND SUBTITLE
  Analytical  Method for Determination of Asbestos
  Fibers in Water
  Eric J. Chatfield and M. Jane Dillon
9. PtHPOBMINO OBCIANIZATION NAM«
  Department of Applied Physics
  Ontario  Research Foundation
  Sheridan Park Research^Connumty
  Hlssissauga, Ontario, Canada LiK 1B3
 12. 3FONKWNC *OKNCY NAME *»JO AOCWM
  Environmental -Research Laboratory—Athens
  Office of Research  and Development
  U.S.  Environmental  Protection  Agency
  Athens,  Georgia  30613
                                                            68-03-2717

                                                                                        "
                                 K«Y W0«*l AND DOCUMENT ANAIV3IS
                                                                           c. COSATI Fidd/Croup
                                                b.JB*NTIWKIW/OPeN 8NOKD TBHMS
                   OISCIIIPTOKS
                                                19. S6CUHITY CLASS (
                                                   UNCLASSIFIED
                                                20. SECURITY CLASS fTM* paft)

                                                   UNCLASSIFIED
    !"OI5THIBUTION STATEMENT


     RELEASE TO PUBLIC

    	.-—————•
  EPA Perm 2220-1 (9*73)

-------
                               DISCLAIMER

Tht information in this document has  been funded wholly or in part
iFthe United States Environmental  Protect on Agency un ^Contract
No. 68-03-2717 to Ontario Research  Foundation.  It has been subject
to the Agency's peer and administrative review, and it has been
^proved ?S?publication as an EPA  document.  Mention of trade names
or conmercial products does not constitute endorsement or recommen-
dation for use.
                                    it

-------
                               FOREWORD

Nearly every phase of environmental protection depends en a Capability to
Identify and measure specific pollutants in the environment.  Jspart of
this Laboratory's research on the occurrence, wvwt, tr«wfbr«tion.
SJIct, and control of «^«««^\c9rt^!«^JK^
Branch develops and assesses new techniques for identifying and
chemical constituents of water  ami soil.
A 3-year study was conducted to  develop  improvements in the
method for determination of asbestos  fibtr concentrations in water
ThTresearch produced an improved  sample preparation and analysis method-
ology, a rapid screening technique to reduce analysif e°sSa+lJS SUnd
riflrence analytical method for  asbestos In water.  The 8na1^al method
for determining asbestos fibers  in water is perceived as representing the
current state-of-the-art.

                                   William T.  Donaldson
                                   Acting Director
                                   Environmental  Research Laboratory
                                   Athens, Georgia
                                  iii

-------
                                   PREFACE

    The Preliminary Interim Method for Determining Asbestos in Water was
issued by the U.S. Environmental Protection Agency's Environmental Research
Laboratory in Athens, Georgia.  The method was based on filtration of the
water sample through a sub-micrometer pore size membrane filter, followed by
preparation of the filter for direct examination and counting of the fibers
in a transmission electron microscope*  Two alternative techniques were
specified?  one in which a cellulose ester filter was prepared by dissolution
in a condensation washer; and another known as the carbon-coated NueleporeK
technique which used a polycarbonate filter.  In January 1986 the method was
revised (EPA-600/4-80-005) to eliminate the condensation washer approach, and
a suggested statistical treatment of the fiber count data was incorporated.

    The analytical'method published here is a further refinement of the
revised interim method.  Major additions "include the introduction of
ozone-ultraviolet light oxidation prior to filtration, complete specification
yf techniques to be used for fiber identification and fiber counting rules,
and incorporation of reference standard dispersions.  A standardized
reporting format has also been introduced.  The major deletion is the low
temperature ashing technique for samples high in organic material content;
ashing is not required for the analysis of drinking water and drinking water
supplies when samples are treated using the ozone-ultraviolet oxidation
technique.  The "field-of-view" approach for examination also has been
deleted from the method.  If a sample is too heavily loaded for examination
3f entire grid openings, a more reliable result is obtained by preparation of
a new filter using a smaller volume of-water.
                                      iv

-------
                                   ABSTRACT






»••«'' 1 rat •inn for examination 'in 3 transniiaa«w" *.._..   *»£-.-.  tf&£f\\  and
repiicazion ror «wi^iai.jw^ ^^^^^^ a><-a ai«ff-tron diffraction  (SAtuj  ana
Fibers
programs which are integral to the analytical method.
 was completed as of September 1981

-------
                                  CONTENTS
OREWORO
REFACE
BSTRACT
IGURES
ABLES
    2.
    3.
4.
         SCOPE AND APPLICATION
         3.1
         3.2
         3.3
         4.2
                   Definitions    ......  .....  <>  e  •
                   Units    .............  .  .  .  •
                   Abbreviations    ....«••••••••
         EQUIPMENT AND APPARATUS    •••••'* .....
             4.1   Specimen Preparation Laboratory   ....
                   Instrumentation  Requirements   ......
                     4.2.1   Transmission  Electron Microscope
                             Energy  Dispersive X-ray Analyzer
                             Computer   ..,'..-••••••
                             Vacuum  Evaporator  .......
                             Ozone Generator
                 4.2.2
                 4.2.3
                 4.2.4
                 4.2.5
         4.3   Apparatus, Supplies and Reagents
     SAMPLE COLLECTION AND PRESERVATION   .  .'. .
         5.1   Sijnple Container	•
         S.2   Sample Collection   .......
               Quantity  of Sample .......
               Sample Preservation and Storage
              S.-3
              5.4
          PROCEDURE
              6*1
              6.2
              6.3
              6.4
              6.5
                Cleanliness  and Contamination  Control    .......
                Oxidation of Organics	• • •
                Filtration  	
                  6.3.1  General  .  .	 *	
                  6.3.2  Filtration  Procedure    .... 	
                Preparation  of Electron Microscope Grids  	
                  6.4.1  Preparation of Jaffe  Washer  	
                       " Selection of Filter Area for Carbon Coating.
                         Carbon Coating of the Nuclepore Filter . . .
                         Transfer of the Filter to Electron
                           Microscope Grids   	 .......
                Examination by Electron Microscopy  •;•••••••
                  6.5.1  Microscope Alignment and Magnification
                           Calibration   	 ......
                      6».4.2
                      6.4.3
                      6.4.4
iii
 iv
  v
  x
 xi

  1
  1
  2
  2
 • 4
  5
  5
  '5
  6
  6
  8
  8
  9
   9
   9
  15
  15
  16
  16
  16
  17
  17
  17
  20
  20
  22
  23
  24
  24
  26

' 27
  28

  28
                                       vii

-------
               c tf 9  Calibration"of EDXA System   .....•••    |-
               6.1:1  Sr d Pnspa?a?ion Amenability   ......    f
               6 I 4  Procedure for Fiber Counting   .  ......    f^
               6.5.5  Estimation of Mass Concentration   . . . • •    |g

        606   "SI-SB ffit Method;:.:::::::::    »

               I:!:!  ^»S'2Sit5K.Sl«--•"«»''    36
                        View  . . . • • • •  • • •••••• • e • •    36
           '    6.6.4  Fibers  with Stepped Sides  ....•••••    |?

               111  SI5SgS5?5 Randomly 6r^nted>ibers I ! !    g
               6*6.7  FlCsAttadied to Men-Fibrous Debris  . . -    ||
        6.7   Fiber Identification Procedures    . - • •  •  • • • • •    3g

               6*7*2  SAE^and bxA'Techniques   •••;•••**    2?
               1:73  Analysis of Fiber  Identification  Data   v. .    43
               s 7 4  Fibtr Classification  Categories  .  .  .  •  • •    **3
               Si? 5  PrSSdure for Classification of Fibers With
                        Tubular Morphology, Suspected te  be      ^   ^g

               6.7.6  Procedure1for Classification of Fibers
                        Without Tubular Morphology,- Suspected to
                        be AiBphibole   	«	   2j
        6.8   Blank  and Contrc'l Determinations	   '
               6o8.1  Blank Determinations   ;-....-	   |T
               6.8.2  Control Samples  .......••••••••   |s

7.   ewunn v g^^ yr^DJp-it « rjetriT  ] ;   ss

        7.2   Calculation*ofri:he Mean and Confidence  Interval  of
                the Fiber Concentration   . .  .  i	   ||
        7.3   Estimated  Mass  Concentration  .  .  • •  • • •	   3S
        7.4   Fiber Length, Width, Mass and Aspect Ratio
                Distributions  .  . • • • • e  •  e •  - • ° *.*  1-* *   et
                7.4.1  Fiber  Length Cumulative Number Distribution.   61
                7.4.2  Fiber  Width Cumulative Number Distribution .   6Z
                7.4.3  Fiber  Length Cumulative Mass  Distribution .   62
                7.4.4 Fiber  Aspect Ratio Cumulative Number
                         Distribution  V	• • • • •  •  • •   g
                7.4.5 Fiber  Mass Cumulative Number  Distribution  .   63
         7.5    Index of Fibrosity  .	   w
 8.   REPORTING  ..... ^ ••*	'  ' '   g
 9.   LIMITATIONS OF ACCURACY   -••«•;• • • • •	   S
         9.1    Errors and Limitations of Identirication  ......   6|
         9.2    Obscuration	«	-   JJ
         9..3    Inadequate Dispersion   ..........••-•.   ||
         9.4    Contamination    	.-.o.. ......   y
         9.5    Freezing	   ™
 10.  PRECISION AND ACCURACY  . . c	••••-.	- •   *'
         10.1  General   ....<...••••.	• ,e c   |'
         10.2  Precision	• • • • ' •   e/

                               viii

-------
                 10o20l  Intra-Laboratory Comparison  Using
                           Environmental  Water Sources    .
                 10.2.2  Inter-Laboratory Comparisen  of  Filters
                           Prepared Using Standard Dispersions
                           and  Environmental Water Sources    . .

         10.3  Accuracy  Jfl-r;_«^d'I;t'r:L^oratoryComparison'
                           of Standard Dispersions of Asbestos
                           Fibers
SELECTED BIBLIOGRAPHY
 67
 71
 71

 74
APPENDIX A -   TEST DATA AND COMPUTER LISTINGS
                FOR FIBER IDENTIFICATION . . .
 77
APPENDIX 8 -   TEST DATA AND COMPUTER LISTINGS
                FOR DATA PROCESSING AND REPORTING.
176

-------
                                  FIGURES
1.    Calibration Markings on TEM Viewing Screen   ...........    7
2.    Diagram of Ozone-UV Equipment	.  .   IS
3."    Ozone-UV Oxidation of Water Samples 1n Glass Bottles	i9
4.    Huclepore Dissolution Technique    	«	  .'.   24
5A.   Jaffe Washer Design  -...,,	25
SB.   Jaffe Washer irs Use		25
So    Condensation Washer	1	   28
7.    Sheet For Recording Water Sample Data   .......  «  .....   32
8.    Sheet For Recording Fiber Classification and Measurement Data  »  .   33
9.    Counting of Fibers Which Overlap Grid Bars   ..-..<,......   3S
10.   Counting of Fibers Which Extand Outside the  Field  of V1tw  ....   36
11.   Counting and Measurement of Fiber  Bundles •.....'..  »  .«<>..   37
12.   Counting of Fiber Aggregates   	  .  .   37
13.   Counting and Measurement of Fibers Attached to Non-Fibrous
      Debris	38
14.   Measurement of Zora Axis SAED Patterns  . .  .	   41
15.   Classification J-i>r *&r Fiber With Tubular Morphology	47
ISA.  TEM Micrograph of Ciirysotlle Fibril, showing Morphology  	   49
16B.  TEM Micrograph of UICC Canadian Chrysotile Fiber after Thermal
      Degradation by Electron Beam Irradiation  ..  	   49
17.   SAED Pattern of Chrysotile Fiber with Diagnostic Features Labelled.50
18.'  Classification Chart for F1b«nr Without Tubular Morphology ....   52

-------
                             TABLES
Limitation of Analytical Sensitivity by Volume of Water Sample
Filtered  ...............•.......•••-••  21
Silicate Mineral Standards  . . . -.	&
Classification of Fibers With Tubular Morphology  	  46
Classification of Fibers Without Tubular Morphology   ......  46
Levels of Analysis for Amphibole  .	53
Intra-Laboratory Comparison of Environmental Water Samples  ...  68
Inter-Laboratory Comparisons  Standard Dispersions  	 .  €9
Inter-Laboratory Comparison!  Environmental Water Samples   ...  70
Inter- and Intra-Laboratory Comparison:  Chrysotile   	 .  72
Inter- and Intra-Laboratory Comparison:  Crocidolite  	  73
                              x1

-------
      • ANALYTICAL METHOD FOR DETERMINATION OF ASBESTOS FIBERS IN WATER

1.  SCOPE AND APPLICATION

    1.1   this method is applicable t
-------
  vacuum to  the  active  surface of  the. filter.  The carbon  layer  eeats  and
  retains  in position the material which has been collected.on the  filter
  surface.   A small portion of the carbon-coated filter  is placed on an
  electron microscope grid and the polycarbonate filter material is removed
  by dissolution in an organic solvent.  The carbon film containing the
 original particulate, supported on the electron microscope grid, is then
 examined in a transmission electron microscope (TEM) at a magnification
 of about 20,000.  In the TEM, selected area electron diffraction (SAEO)
  is used to examine the crystal  structure of a fiber, and its elemental
 composition -is determined by energy dispersive X-ray analysis (EOXA).

 Fibers are classified according to the techniques which have been used to
 identify them.   A simple code is used to record for each fiber the degree
 to which the identification attempt was successful.  The fiber
 classification  procedure is based on successive inspection of the
 morphology, the selected area electron diffraction pattern,  and tht
 qualitative and quantitative energy dispersive X-ray analyses.
 Confirmation of the identification of chrysotile is only, by quantitative
 SAEO,  and confirmation of amphibole is only by quantitative EDXA and
 quantitative zone axis SAEO.    '    '  .

 Several levels  of analysis are  specified,  three for chrysotile  and four
 for amphibole,  defined by the most specific fiber classification to be
 attempted for all fibers.   The  procedure permits this target
 classification  to be defined on the basis  of previous knowledge,  or lack
 of it,  about, the particular sample.  Attempts are then made  to  raise the
•classification  of all  fibers to this target classification,  and to record
 the degree  of success  in  each case. The lengths and widths  of  all
 identified  fibers are  recorded.   The number of  fibers found  on  a known
 area of the microscope sample,  together with  the equivalent  volume of
 water filtered  through this  area,  are  used to calculate the  fiber
 concentration in  MFL.   The mass concentration is calculated  in  a  similar
 manner  by summation of the volume of the identified fibers,  assuming
 their density to  be that of  the bulk material.

 DEFINITIONS, UNITS AND ABBREVIATIONS       "

 3.1  Definitions

          Acicular - The shape shown by an  extremely slender crystal with
              small cross-sectional  dimensions.
         Amphibole - A group of rock-forming ferromagnesian silicate
              minerals, closely related in crystal form and composition
              and having the general formula: • A2-3B5(Si,Al)g022(OH) ,

              where * - Mg, Fe*2, Ca, Na or.K, and B - Mg, Fe*%Fe*3
              or Al.  Some of these elements may also be substituted by
              Mn, Cr, Li, Pb» Ti or Zn.  It is characterized by a
              cross-linked double chain of Si-0 tetrahedra with a
              silicontoxygen ratio of 4:11, by columnar or fibrous
              prismatic^ crystals and by good prismatic cleavage in

-------
     two directions parallel  to '"VJP^^IP  "*
    . Intersecting at angles of about §6°  and  124 .

Anphlbole Asbestos - Amphibole 1n an asbestlform habit*.

a«aivtlcal Sensitivity - The  calculated concentration 1n
AnalyMFL equivllent W counting of one fiber.





Aspect Ratio - The ratio of length to «1dth 1n 'a particle.
     absence of lens action.                       .      -

ChrvsotHe - A mineral of the serpentine groups M93S^°S(0"if
ChryS!t "I a hljhly fibrous, ^ky vaHtty of ferpentine. an3
     eenstltutes the n»st Important type of asbestos.

Cleavage - The breaking of -a mineral along Its crystal lograpMc
     planes, thus reflecting crystal structure.

Cleavage Fragment - A fragment of a crystal that Is bounded by
     cleavage faces,

d-Spacing - The  separation  between identical adjacent and
     parallel planes of atoms in a crystal.

 Diatom -'A microscopic, single-celled plant of the elass
      Bacmariophyceae, which -grows  In  J^th marine and fresh
     water.   Diatoms  secrete walls of silica, called frustuies,
      in a great variety of  forms.
 Electron Scattering Power - The extent to whiah  a ^in  layer of
      a substance scatters electrons from their original path
      directions.

 e«.«,« ni«n*rslve X-ray Analysis - Measurement of the energies
 EnCnJSnS inSns??ieslf X^rajs by use of a  solid state  detector
      and multichannel analyzer system.

 Eucentric - The condition when an object is placed  with Its
      center on a rotation or tilting axis.

 Fibril - A single fiber, which cannot be separated  into smaller
      componln?! without  losing its fibrous  properties  or
      appearances.
                           3

-------
  Fiber - A particle which has parallel or steppe<* sides, an
       aspect ratio equal to or greater than 3sl9 and is greater
       than 0.5 um 1n length. - ":
  Fiber Aggregate - An assembly of randomly oriented fibers.
  Fiber Bundle - A fiber composed of parallel, smaller diameter
       fibers attached along their lengths.
  Habit - The characteristic crystal form or«!^!j]" ft/"
       of a mineral, including characteristic 1,-regularities.
  Miller Index - A "set of three or four integer numbers «sed to
       specify the orientation of a crystallographic plane  in
       relation to the crystal axes.
       is made.
  Selected Area  Electron Diffraction - A  technique  in  electron
       microscopy in which  the  crystal structure  of a  small  area
       of a  sample may be examined.
  Serpentine - A group of common rock-forming minerals having the
       formulas   (Mg,Fe)3 Si205(OH)4.
  Unopened Fiber - Large diameter asbestos fiber  which has not
       been  separated  into  its  constituent fibrils.
 '  Zone Axis  - That line or crystallographic direction  through the
       center, of a crystal  which is parallel to the intersection
       edges of the crystal faces'defining the crystal zone.
Units
   eV      - electron volt
   g/em    - grams per cubic centimeter
   kV      - kilovolt
   ug/L    - micrograms per liter (10"6 grams per liter)
  " um      - micrometer  (10   meter)
  •MFL    - Million Fibers per Liter
   ng/L    - nanograms per  liter (10*9 grams per  liter)
   nm      - nanometer (10" meter)

-------
            NTU     - Nephelometrie Turbidity Unit   •

            ppra     - parts per minion

   3.3   Abbreviations

            AWWA    - American Water Works Association

            EDXA    - Energy Dispersive X-ray Analysis

            HEFA    - High Efficiency Particle Absolute

            SAED    - Selected Area Electron Diffraction

            SEM    - - Scanning Electron Microscope

            STEM    - Scanning Transmission Electron Microscope
                                                                     •
            TEM     - Transmission Electron Microscope             ^

            UICC    - Union Internationale Contrt le Cancer (International
                      Union Against Cancer)

            UV     - Ultraviolet

4.  EQUIPMENT  AND  APPARATUS

    4.1'   Specimen Preparation Laboratory

          Asbestos, particularly chrysotile,  is present  in small Quantities
          in practically all  laboratory reagents.  Many  ^"^"«!£1,
          also contain  significant  amounts of asbestos or othjrjinjral
          fibers which may-interfere with  analysis.   It  Js ^eref?^
          essential that all  specimen  preparation  steps  fet PfJ0*"* "rS *
          environment where contamination  of the simple  f.^if^ JJ?
          primary requirement of the sample preparation  laboratory is that a
          blank determination using known  fiber-free  water must yield a
          result which will meet the requirements  specified in       „  „,„
          Section 6.8.1.  Preparation of samples should  be carried out only
          after acceptable blank values have been  demonstrates*

          The  sample preparation areas should be a separate clean room with
          no asbestos-containing materials such as £oep12'ef.!j!^ SUw
          insulation and heat-resistant products.  The work wrtaM should
          be stainless steel or plastic-laminate.  The room should be
          operated under positive pressure and have  absolute  (HEPA) f Iters,
          electrostatic precipitation, or equivalent, in the  ajj *"**]?%.
          lamlnar^flow hood 1s rece»nmended for sample manipulation*  It if
          reennebed that a  supply of disposable  laboratory  coats and
          dlsDOsable overshoes be obtained to be worn 1n the  clean room.
          Tnilwil  redSce the levels of dust, and particularly asbestos,
          which mght be  transfemid Inadvertently by the  operator into the

-------
4,2
the  area near the ozone generator.
Instrumentation Requirements
4 2.1   Transmission Electron Microscope  .
       A transmission ^ectron microscope
                of a minimum of 80 KV, a
                                                *« 100 000 is
                                                           '
                                                   be obtained by

         I Bl*0 •»• IB««^-» •—• — —
         relationship?


         wheres  A
                0
                M
                           f
                            Effective SAED area in ym
                            Diameter of SAED aperture in urn
                            Magnification of objective lens
                            Objective  lens spherical aberration
                            coefficient in mm
                i   «  Maximum Bragg angle in radians

         Although almost all  Instruments of current
               fi-srss- CT.°i»Ja?sr»f.ff;
               the Ir^a of anSJsis indefinitely by use of apertures
                                 6

-------
Figure 1.  Calibration Markings on TEM Viewing Screen.

-------
             in diameter than those

                                     exeunt of the
     elective lens.





      combined with tilting through, at ^eag ^^
      *4i+4«« through at least 4u  *°  ^  sampu. The work is
             ,„.,.„ «... <„ the plane or w^J^, eucentric
            *.. -^nsertnf ss sssrs sas
           ^pS-asfflrt!r1a5l- 1. «-».
       be obtained.

4.2.2   Energy Dispersive X-ray Analyzer                     ^

                      .   v ___,. 9«9iv7AT* is reou• re«•  iinte
       &	 .44ena*>«iV£ A—rSjr «ii«ij*»>     _   _..£•««»•«» $e
       An energy eispBr3»»'s      ««—K4*«afr4ons of eQuipmenc «s
       performance of individual  ^^"loSetrical factors,
       critically dependent on a number ^JJJ^, of electron

       the required  Pe7°™a";!iv2er is specified  in terras of the
       microscope and X-ray analyzer «JJ«1 d1ameter fiber, using
       measured X-ray intens"v T^    x-ray detectors are
        a known electron beam  diameter.  * rv     ra^10n, and so

        generally  least  «««ltJ^Ji55llS is sllectSd as the
        measurement of sodium  1n-2°225;at10f, Gf electron
        performance crlttrlw. .i™ ^st yield a background-
        microscope and X-ray }nj^l|!f count rate of more than
        subtracted Mate  PJ^JJfE], fgSnm diameter fiber of
        1 count P?r J«ond (cps)  from a 50 nm^ ^      ^^n
        of the
        ealculatioiTof net peak areaSc
  4.2«3   Computer
                                     aas
                           8
                                                                       I
                                                                       ••*

-------
      •       SSSSTpScaS:-(*•*«- A and I)

                                                                                       I
     4.2.4   Vacuum Evaporator                                                   '       i
     4.2.5   Ozone Generator
              has been found  to meet the requirements of this
              technique.

4.3   Apparatus, Supplies and Reagents

      4.3.1   Gas Supply to Ozone Generator

              The ozone generator can be supplied by «^ "g1*"*1
              air or oxygen.   The input gas  must be regulated to the
              onsssure specif ied by the generator manufacturer.  "Jj
              Jelc^Sdedlnat oxygen provided  in order to reduce the
              possibility of acid formation  in the sample.


      4.3.2   Gas-Line Drying Tube
              The ozone generator operates more ^J
              with  dry oxygen.  An in-line drying tube*

-------
       A «.1.1M rt-1  pressure

       BvSwWi    a w anr*
       Slid gel in th«  reservoir have been found  to be
       satisfactory for this purpose.

433   In-Line Sas Filtration Assembly


 "
       or equivalent with a 0.2 «• pore size gfj^0  equ1vaient
                          .                       equ

                arssrs-SS; B«s^Sr. ^ «.
       entering the sample is particle-free.

4,3.4   Ultraviolet Lamp



                                                         "
       90-0004-11)  and power supply model SCT-4 (Ul tja-vioiet
       o^nrtl lie  5100 Walnut Grove Avenue, San Gabriel,
       £??¥orMan9i778) or  equivalent have been^found to meet
       Se reSuirements of this analytical techmque.   ^

4.3.S  Source of Known Fiber-Free Water

       For blank determinations, final washing of analytical
       Muioment  and dilution of some samples, a source of water
       SicHs free of both particles and fibers  s required.
       Fresh double-distilled water from a glass distillation
                                                          to
         itself tends to contribute some particles to the filtrate.


  4.3.6   Filtration Apparatus

         The water sample is filtered through a membrane «1*JJ «f
         eUher 47 mmdiameter or 25 m Diameter. The "IJJflyi

         assembly should be chosen to suit fVj"^"^^.
         use.  A glass frit support is required in order to obtain
         uniform deposit on the filter.  The reservoir must be
                                                           a
                                                           a
         SlS- tolfir (milXoS Coloration, Cat. No. XX10 025 00)


                           10

-------
        or equivalent has been-found to be suitable  When using
        the larger diameter equipment ft is neetssary to filter
        proportionately larger volumes of water0

4.3.7   Filtration Manifold   .

        When a number of samples art to be -filtered, severa!
        filtration units ean be operated «1»lt«!!31fciStlon
        single vacuum source by using a multiple P^/JJfJS0"
        manifold (M11l1pore Corporation, Cat. No. XX26 047 35) or
        equivalent.  This manifold should include valves to pernnt
        each port to be opened or closed Independently.

4.3.8   Vacuum Pump

        A pump 1s required to provide a vacuum of 20 kPa for the
        filtration of wateir samples.  A water jet pump (Edwards
        High Vacuum. Incoe Grand Islands NY 14072, Gate No.
        01-C046=01-000-female connection or 01-C039-Ql-000-fflale
        connection) or equivalent has been found to provide
        sufficient vacuum for a 3-port filtration manifold and also
        "incorporates a non-return valve to prevent back-streamingc

4.3.9   Membrane Filters

        The diameters of-the membrane filters should be matched to
        the diameters of the filtration apparatus in use.  For
        filtration of water samples, two types of filters are
        required:

                 - polycarbonate capillary-pore membrane filters,
                .   Oei uro pore size  (Nuelepore Corporation, 7035
                 • Commerce. Circle,  Pleasanton, California 94S66)
                   er equivalent, art used to collect the "suspended
                   •material from a water sample.

                 - mixed esters of cellulose membrane filters,
                   0.4S win pore size Type  HA (Millipore
                   Corporation, Bedford, MA 01730) or equivalent,
                   are us«d as a support filter placed between the
                   glass frit of the filtration apparatus and the
                   polycarbonate filter.

 4.3.10  Jaffe  Washer

         A «3affe Washer  is  used for dissolution of Nuelepore
         filters.   Several  designs of Jaffe Washer have been used
         which  are modifications of the  original design.  Provided
         that the  polycarbonate filter can  be completely dissolved,
         and that  the  materials used  in  the different designs  of
         washer are demonstrably free of mineral fiber
         contamination,  the precise design  1s not considered

                             11

-------

                                      orofon,. but
      because this
      necessary to ensure •—"-•"--
      to avoid excessive evaporation.
4.3.11  Condensation Washer
      A condensation washer




       satisfactory.
 4.3*12  Electron Microscope Srids
       sssrs ?-»? r£B«. - -

        gold grids
                       12
                                                            t

-------
4.3.13  Ultrasonic Bath           .  ,

                      bath 1s required for dispersing particular

                                £                          -•






     "   meet th€ requirements..

4.3.14  Carboit Rod Electrodes   •






        the .requirements*

4.3.15  Carbon Rod Sharpener





        minimum of heating of the polycarbonate ••*"»••   The
         sharpener,  Cat. No. 1.204, Ernest F.  F«ll«"'  J1*^
         Ichenectady, M.Y. 12301,  or equivalent, meets the

         requirements.        '           •               .  .


 4.3.16' Standards
a)
             Reference Standard fiber Suspensions*  61as;.*"??lJ?h.r
                of stable concentrated chrysotile or amphibole fiber
                dlspersionlHllectron Optical Laboratory, Ontario
                ReleaS foundation, Sheridan -Park, Mlssissauga,
                Ontario, Canada UK 1B3) can be used to establish
                quality assurance in analytical programs.  The
                reference suspensions of known mass and numerical

                                                                '

                        .
                 Park, Mlssissauga,  Ontario,  Canada L5K 183).
          c)  Asbestos Bulk Material.  «nrjrww« •«;•"•
           ;     Chrysotile (Rhodesian), Crocidelite, -r--;;-;  -;-
                 (Union Internationale Centre le Cancer)  Standards.
                 Available from Duke Standards Company, 445 Sherman
                 Avenue, Palo Alto, CA 94306.

                               13

-------
4o3»17  Carbon Grating Repliea

        A carbon grating replica with about 2000 parallel  lints
.                       -
        calibration of the magnificat ion. of the ^ TEH.

4.3.18  Chloroform
        Speetrograde chloroform, distilled in g^s (prtserved with
        S (v/v) ethanol, Burdlck & Jackson Laboratories Inc.,
        Muskegon, Michigan 49442) or equivalent, is required for
        the dissolution of the polycarbonate filters,

4.3.19  Petri Dishes •
        Oisoosablt Plastic pttrl dishes ^^i^^
        PB 10 047 00) or equivalent, are useful for
             t filters and specimen grids.  If char 9^build-up on
              dishes is experienced, it has been found that rinsing
             witffwelk Silent solution will reduce ^the problem.
4.3.20  Quartz Pipets

        Quartz pipets  are used to bubble ozone through the liquid
        sample.  These pipets are formed by gating quartz tubing
        and  drawing  it to a tip of approximately 0,35 mm  inside
        diameter.  The pipet should be  sufficiently long  to reach
        within 1 inch'of the bottom of  the sample bottle, to  create
        good mixing  of the liquid during oxidation.  .

 4.3.21  Mercuric Chloride Solution

        A 0.01 molar solution of mercuric chloride may be required
        for preservation of water samples.  This  is Prepared  by
        dissolving 2.71 g of reagent  grade mercuric chloride  in .
        100 mL  of  fiber-free water.   The solution  is  then filtered
        twice through the same 0.1 um pore size Nuclepore filter,
        using the  filtration apparatus described  in Section 4.3.6
         and a conventional filtration flask.

 4.3«22  Routine Electron  Microscopy Preparation Supplies

         Electron microscopy preparation supplies  such as  scalpels,
         disposable scalpel  blades (curved  cutting edge),
         double-sided adhesive  tape, sharp  pojnt tweezers  and
         specimen scissors are required.  These items  are  available
         from most EM supply houses.

                              14

-------
       4.3.23 Routine Laboratory Supplies













                     and c^ss^ontaSination between samples.
5.  SAMPLE COLLECTION AND PRESERVATION


   5.1   Sample Container.

        25 ^^r^fSLW-a^a s^S's^ss?^

        8^^s^«*^lSff«?
        bath for 15 minutes, followed by several rinses with fiber-free
        water.  ,                          .


        £^7mT«^:^^
        ea-Hefaetnrv for these determinations. A prt-washed oottie
        contllninglpproximately 800 milliliters of ^^er-free water is
        orocessed as described for preparation of samples, inciuaing

        sssf rt^ffsfiScTsgrs-. aas'3 rSfflzT-d,.**'
        ?s tested for background level., When using glass bottles, *h«.«^sjc
        of Sestos^SSKSion from the bottle is greater and a minimum
        «f 4bottles in each 24 are examined for background level.
        AdditiSnl  Wankf mSy be desirable when sampling waters suspected
        of containinV very low levels of.asbestos, or when additional
        confidence iri'the bottle blanks is desired.
                             '  IS

-------
     Sample Collection

     It is beyond the scope of this  procedure           .
     instructions for field sampling;  the general prine ip es




     rSge in length from 0.1 wm to  20 urn or more.










     and these samples shou?d be composited for analysis.
      of  distribution  systems should be avoided
    -  in   dlf water! this  rinsing may compromise the results and
      should be omitted.

5.3   Quantity of Sample

      Two separate samples of approximately  800 ml 11 niters each  art
      reSuirel!  An air space must be left. in the bottle to a  low
      efficient redispersal of settled material before  analysis.  The
      second bottle is stored for analysis if confirmation of  the results
      otttflMd from the analysis of the  first bottle is required.

S.4   Sample Preservation and Storage

      Samples must be transported to the analytical l^JW^^S
      oassible  after collection.  No preservatives should  be  added  during
     . ml1n!s theaSdition of acids should be particularly  avowed.

      T-F tho  «amo1e cannot be  aiven ozone-UV treatment and filtered
      witMn  ITSours a?ler  arHvIl °at the analyticallaboratory  amounts
       (1 m niliter per  liter  of  sample) of a pre-fi ^J^g "'S10"
      of mercuric chloride sufficient to give a final concentration of
     . So onm of mercury may  be added, to prevent bacterial growth.
       Appropriate clre^uld  be  taken when handling mercury compounds.
                                   16

-------
                                                                3n
       dispersions are not known.
                                      which
                                                                   be
       attached to the bottles.
 PROCEDURE  .
 6.1   Cleanliness and Contamination Control                          .



       "rS?

'   ' .
 6.2   Oxidation of Organics
                a)   asbestos fibers associated with organic materials tend
                 •   to  adhere to the container walls;

                b)   asbestos fibers tend to aggregate, with organic
                    materials;

                c)   fibers  embedded in organic material are  not transferred
                    to  the  TEM  specimen.
container using the
                                                        (ozont-UV)
      *  may not be required.

        The equipment should be assembled as shown in Figures 2 and 3.

                                    17

-------
                                    V
                                     * I11
Figure 2.  Diagram of Ozone-UV Equipment-

                   18

-------
Figure 3.  Ozone-UV Oxidation of
           supply line has been
         Inmersed 1n the sample and switched on.






                                      19

-------
sufficient to.
splash sample out of the
when, oxidation 1s complet o, but th ts

boan found to be ^?2/
When oxidation is complete.
       the bottle and p ace
                      *
     dispersed throughout the sample

                          '
                                                      scribed has
                                                        handled.
                                                 and quartz plpot.
                                                   bath  for a period
                                                   from  the o*1diied


                                                   t UR1    "
     The water leve! 1. t«-e bottle «-ay^.e fallen

     during the oxfdatlw J™"^™-,,1^.;??,,:^/ The sarole should
                  S Se fa  e^i 'ir^ved fro» the ultrasonic
g03   Filtration

      6.3d   General
             The
             the
                                   '
                                                      qu      l.
              present.

              Table 1 shows the limitation of the analytical, sensitivity





              SSuta  »9/o«S «1«» •» °»t1mum va1"e of Sb2u5 «ni,-d5 is
              5 u9/eS. Where the concentration of suspended solids is

                                                     n^aolut the
                    the best Procedure
            -4i2srfiSra.i-"1 •
                                                      »

                     dtaeter equipment.. If smaller .olun.es are

                                  20

-------
TABLE 1.  LIMITATION OF
          FILTERED
ANALYTICAL SENSITIVITY BY VOLUME OF WATER SAMPLE
• *«• *»••«—• 	 ^^^^— -—••••••am^^^aa^™"'™"""" 	
	 Vo1utne Filtered'XroL) ; Analytical Sensitivity
l" it 4 nn 25 ma Diameter 1 Usinf 47 mm. Diameter (Fibers/Liter)
US * **3 &^ V* • 1 C4 1 ^aiPiJ 1
Fi1ter2 — — — -4— — — — n
0.1

0.5
0.6
I
2.8

1.0 S-7
2.0
5.0
10

25
. 50
100
11
28
57

142'
285
1.5 x 107
a«6
3.0 x 10°
US x 106

' .0.8 x 106
3.0 x 10S.
1.5 x 10S
4
. 6.0 x 10*
3.0 x-104
.
1 e w ifl^1
, .5 X 10
1
    nominal  tuu mean »••- \-rr-	

   2Assunring Active Filter Area of 1.99 cm2
                                           5
   3Assuming Active Filter Area of 11.34 cm

                                      21

-------

        vigorously before sub-sampling takes place.

'6,3.2   .Filtration Procedure

           a)     The sample must be filtered immediately a«er the
                   bath.

                   Assemble  the filtration base and. turn on the
                                .
                   Mi llipore filter on the glass  frit.   If the
                   filter appears  to become. wet by capillary action
                   on residual water in the glass frit  it just be
                   discarded and replaced by another filter.  Place
                   a 0 1 wm pore size Nuclepore filter, shiny side
                   i, on "top of the Mi llipore filter.   If the
                   Nuclepore filter becomes folded it must be
                   discarded and. replaced.  The mating  surface of
                   the reservoir component of the filtration
                   SpaSSTttk funnel) should  be dri.ed by shaking
                   off any surplus water and draining on paper towel
                   or tissue.  The funnel should  be positioned on
                   the filters and firmly clamped, taking care not
                   to disturb the filters.  The vacuum should not be
                   released until the filtration has been completed.

                   It is necessary to comment on the use of
                   filtration equipment which is still wet ff*er
                   washing, since  improper  procedures  at this point
                   can verv seriously compromise the results.   IT
                   Se g?2s  ?ri?  is^rShen the  Millipore  filter
                    is applied to  it,  capillary action  will  result in
                    some  areas of  the Millipore filter  structure
                    being filled by water.   When  the Nuclepore filter
                    is applied to  the surface of  the HWIport filter
                              22

-------
                      be obtained*
                       deposit on the filter.

                       Disassemble the filtration unit, and transfer the
                                                                    1
                                                P              ,
                        Dry the filter under an infra-red heat lamp
                        sJort time before closing the petrj  d sh
                        completely.  Discard the Millipore filter.
6 4   Preparation of Electron Microscope Srids
       Figure  4.
                                   23

-------
         fapv/ti-sw;*
                                                      CAMON
pan
          Figure 4.  Nuelepore Dissolution Technique
  6 4.1   Preparation of Jaffa Washer
                           e
           but those specified in  Figdre 5A  Have  been  found  to  be
           satisfactory.   After the assembly is complete,  fill  the
           letri dish iith chloroform to a level  just  below  that of
           the horizontal surface  of the stainless steel  bridge.  It
           may be f oSnd that the chloroform contacts ^e  underside
           surface of the stainless steel mesh; this is not  critical.
           Cover the petri dish with the lid and  the -3affe Washer  is
           Sidy for use.  Each time the Jaffe Washer  is  used,  the
           llns tissue and solvent should be discarded and replaced
           inh new lens tissue and fresh solvent.  Appropriate
           precautions should be taken when handling chloroform.

    6.4c2   Selection of  Filter Area for Carbon Coating

           Polycarbonate filters are easily stretched during handling,
                                                                   .

-------
GLASS.PETRI  DISH
         *  ISm« I
ELECTRON  MICROSCOPE               MggM
cu »-,r.^t.»eiu
-------
       the plastic petri dish.-  -Press the scalpel point on the
       filter at the beginning  of the desired cut, and rock the
       blade downwards while maintaining pressure.  It will be
       found that a clean, cut is obtained without stressing of the
       filter   The process should be repeated alone an  TOW

       ?8sssi iMTw-?^1«irB&f5?tS: sis

       a s^^-rF.tf.ffiv'u - ^•jSj.isJi
       to the perimeter of the  active filtration area should be
       avoided.

6.4.3   Carbon Coating of the Nuelepore Filter-

       The ends  of the selected filter strips should be attached
       to a glass microscope slide using double-sided adhesive
       tape.  This must be performed carefully to ensure that .the
       filter strips lie flat on the slide and are not stretched.
       The filter strips can be identified by using .a wax pencil
       on the glass slide. After inserting the necked carbon rods
       .into the vacuum evaporator, place the glass sl1d>°"  tj®  .,
       sample rotation and tilting device.  The separation between
       the sample and the tips  of the carbon rods should be  about
       7.5 cm to 10 cm.

     "  If desired, the amount of carbon to be evaporated can be
       monitored instrumental^ so that .a thickness of about; 30 nm
       to 50 nm is deposited  on the filter strips.  Alternatively,
       a porcelain fragment will serve as a simple carbon
       deposition monitor.  Place a small drop of silicone
       diffusion pump oil on  the surface of a clean fragment of
       white glazed porcelain.  Locate the porcelain.in the
       evaporation chamber with the oil droplet towards the  carbon
       rods and at a distance from the-carbon rods eaual to  that
       separating the rods from the filter strips.  Carbon will
       not deposit on the oil  drop whereas it does on  the other
       areas of the porcelain.  With experience,  the  correct
       thickness can be monitored visually by observation of the
       contrast between the darkened areas of the porcelain  and
       the uncoated  areas under the oil drop.

        Pump, down the evaporation chamber to a vacuum  better than
        10-* Torr (0.013 Pa).  Use of a liquid nitrogen cold trap
        above the diffusion pump will minimize the possibility  of
        contamination of the filter  surfaces by oil  from the
        pumping  system.  Continuously rotate and tilt  the class
        slide holding the  filter strips, while the carbon is
        evaporated in intermittent bursts,  allowing  the rods to
        cool  between each  evaporation.   This procedure is necessary
        to avoid overheating of the filter strips.  Overheating
        tends to cross-link the polycarbonate which  then  becomes
        difficult to dissolve in chloroform.

                           26

-------
6.4.4
Transfer of the Filter to .Electron Microscope Srld*
fibers containing sodiume



















 samples.
  SM f?li»ftr *• -"!• •f£'EXy
  condensation -level  1s above the samples.







  polycarbonate.

-------
                                      ADAPTER
         CONDENSER
         SPECIMEN
                                           COLD FINGER

                                                   WATER
                                                   DRAIN
               4
         COLD WATER
           SOURCE
                                         THERMOSTATICALLY
                                         CONTROLLED
                                         HEATING MANTLE
                   Figure 6.  Condensation Washer.
6,1   Examination  by  Electron Microscopy

     "6.5.1   Microscope Alignment and Magnification Calibration

              Align the electron microscope according to the
              specifications of the manufacturer.  Initially, and at
              regular intervals, carry out a calibration of the two
              magnifications used for the analysis (aP?™*if tei{L20'000
              and 28000) using  a diffraction grating replica.  The
              calibration should always  be repeated after any
              instrumental maintenance or change of operating conditions.
              The magnification of the screen  image is not the same as
              that obtained on  photographic plates or film.  The ratio
              between these is  usually a constant value for the
              instrument.  It is most  important that before the
              magnification calibration  is carried out the sample height
              is  adjusted so that  the  sample  is  in the eucentrie position.
                                   28

-------
6.5«;2   Calibration of EDXA System

        The purpose of the calibration is ts enable quantitative
        composition data, at an accuracy of about 10* «J
        elemental cencentration, te be obtained from f
        of silicate minerals; involving the elements sodium,
      "maanesium, aluminum,, silicon,  potassium, calcium, manganese
        SI iron.  If quantitative determinations are required for
        minerals containing other elements, suitable calibration
        information may be incorporated in the computer analyse
        The well-characterised standards recommended permit
        calibration of any TEM-EOXA combination which meets the
        instrumental specifications of Section 4;2, se that data
        from different instruments can be compared.  The standards
        used for calibration, and the elements which they
        represent, are shown in Table 2.

           TABLE 2.   SILICATE MINERAL  STANDARDS
             Elements
            Na, Fe, Si

            Mgs Si

            Al, Si

            K, Si

            Ca9 Si

            Mn, Si
Mineral Standard
 Riebuckite

 Chrysotile

 Halloysite

 Phlogepite

 Wollastonite

 Bustamite
        The compositions of these standards have been determined by
        microprobe analysis, ind the TEM grids wert prepared from
        fragments of the same selected mineral specimens.  They
        permit the computer program of Appendix A to be used with
        any TEM-EDXA system.

        Placed the first grid into the microscope, form an image at
        the calibrated higher magnification of about 20,000, and
        adjust the specimen height to the eucentric point.  Tilt
        the specimen towards the X-ray detector as required by the
        instrument geometry.  Select an isolated fiber or particle
        less  than 0.5-wm in width, and accumulate an EDXA spectrum
        using an electron probe of suitable diameter.  When a well
        defined spectrum has been obtained, perform an appropriate
        background subtraction and obtain the net peak are?.s for
        each  element listed, using energy windows centered on the
                             29

-------
     peiks «d about 130 ev
     ana for each
     for silicon.
                      C«Put the ratio

                             about 20 particles
                                obv10us forelgn
eendltions
6 S«3
Srld Preparation Acceptability
sas a ssaaa fnS?

                           • asa
 analysis if:







   "


   '
     water sample;





      JSwary -to support the larger particles.
                  30
                                                               .-1
                                                        \\

-------
6.S.4   Procedure for Fiber Counting








  •






        greater, precision is  required.

        At least three grids  prepared from the fitter must be used


     •

        sera 5,-ss sa-r" -«
        deposition of fibers  should be detected.

        Figures-7 and 8 show specimen fiber counting rw-dat*
        sheets which represent the  minimum standard of data
        reporting for this analytical Procedure.   FjgrjJ.»fws
        naae 1 of the raw data tabulation, which  contains an
        IpHimen preparation details.  Figure 8 is a continuation
        Iheet for the fiber classification and measurement data;
        ' several.of  these sheets may be required for analysis of a
        sample.    *            '                .         '

        Select a typical grid opening from one of the  grids.  Set
        the magnification to the calibrated higher value  (about
        tttoSSr  Adjust the samplt height until  the features in
        the center of the screen are at  the eucentric  point.  Check
        that  the qbniometer tilt is set  at 2@ro.  Reduce  the
        ™£if^lio?S the lower calibrated value of about 2,000.
        Measure both dimensions of the grid opening image in
        millimeters, using the markings  on ^"oracent screen.
         In columns 1 and 2 specify the sequential number  of the
         gHd  opening, and its dimensions. These two columns  are
         w/vt IKM! aaain until fiber counting  is commenced  in the
      '   next  grid Ipening to be examined. Adjust^the magnification
         to thi upper calibrated value, close to 20,0009 and
         position the grid opening  so that one corner is visible on
         the screen.  Move the image by adjustment of only one
         translation control, carefully examining  the sample for
         fibers, until the apposite side of the opening is
         encountered. • Move the image by one screen width using  the

                            31

-------
                 ASBESTOS ANA1VSTS - HATER SAMPLE DATA
                   COUHT
              MAGNIFICATIONS:  6Hd
   2  Volun* Taken
                                                 Aetivt ATM
        FILTRATION  *1. Wtind W
:  (ftr i.c!««n f» cwuw jHW^t; fon»t 1. S Km of 80 «.««.«>
        Figure  7.   Sheet for Recording Water Sample Data.
                            •      32

-------
33

-------
                                        '
        calculation.

i.S.S   Estimation of Mass Concentration

        If the primary objective of the analysis  is  to  determine

                .
         same precision as that of the       4.ninaiess
         However, the mass concentration may be actually meaningless
         whencalculated from a low number of fibers observed during
         a rSu"ne  fib" count, if these fibers have a broad
         distribution of widths.

         If the mass concentration is the primary interest, and the
         Precision  required  is greater than is possible from the
         normal fiber  count, a different approach to the fiber count
         m™ be used.   Initially, establish the largest math of
         ™ler which can be  detected on the grid by a cursory
         survey; at a  reduced magnification, of a large number of
         |rid openings (about 50 J.  Calculate  the volume of this
         fiber.  Adjust the magnification  to  Y^XVSfVKi width
         width of 1 mm on the screen  corresponds to 10* of the width
         *f *H« nr0vlous1v selected large  fiber.  Carry out a
         r^utinePfibe? "count fS I minimum of 100 fibers, recording
         only  fiber images greater than 1  mm in width.  Continue
          counting  until the total volume of f^ers  is ^ least  10
          times the volume of the originally selected  large  fioer,
          ThSprecisiSn^nd  accuracy of this technique has  not  been

                              34                                •

-------
                                                     by tt.
            conventional fiber count.
            awsswas






            shadowing are described 1«. the paper by O.E. Bradley  .
            included in the Selected Bibliography.
6.6  Fiber Counting Criteria


     6.6.1  Fiber Counting Method
be
           1 Fiber counting with this analytical  method w



       .
            sample.                                     .      .

      6.5.2  Fibers Which Touch Grid Bars

            A fiber  which intersects a grid bar will be "jmt«J °"ly

        Figure 9.  Counting of Fibers Which Overlap Grid Bars.




                              35

-------
6.6.3
                                       a?
                been made.                •  .
                Fibers Which Extend Outside the Field of View

                continues.
Figure 10.   Counting of Fibers Which Extend Outside the Field of View.
          6.6.4   Fibers with Stepped  Sides  -

                  A fiber with stepped sides will  be  «siqned a "idth
                  between the minimum  and maximum  wiatns.
                                     36

-------
6.6.5   Fiber Bundles           ' :
              bundle composed of many
                                     as 2J. ^ «.
      procedure.
6.6.6   Aggregates of Randcmly Oriented Fibers
       2;
       SI counted.  This 1s Illustrated
           COUNT AS a              «>UNT AS 3
          Figure 12.  Counting of Fiber Aggregates.
                        37

-------
        6.6.7
           case individual fibers «»
           count and mass calculations.

           Fibers Attached to Non-Fi! -ous Debris
           A f,ber -,y be attached to  or
           particle of non-fibrous debris.
           ihieh appear to be the "ds ofa single fioe^ ^ y

           •1                                               sa?
                Examples of tht proew . ure
                may be more than, one  f MWT
                debris; eaeh one should  *
                fibers and particles  1s
                                        shown I                 ^
                                       ..ached to as  |   H   Qf

                                                 t?eat in this way,
                                                   , but the assembly
            calculations.
Figur, 13.
       Counting and Mtasuranent of  Fibers Attached to Non-Fibrous Debris.
60T   Fiber  Identification Procedures

      6.7 «1   General
                                38

-------
                  for ««jvoca^ident1f1cat1?n is^lted ty


                          S^                       .
       fibers examined for ujwujjocfj ^EgftSr of the
      -stated 1n the  analytical ^s"1*;  1"!^  g? crystal lographlc
       fibers am then elassifned on the basis  f^^ ffbtrs.





                        y«a
completely,  even
                                                   important to
6.7.2   SAED  and EDXA Techniques                 o






                  Although the precise         "'tlons 6.7.4

                                                     '
               .
        EDXA methods is given here
         order of work is unimportant

                              39
                                                                                  •<
                                                                                   i

-------
of i suspected mineral.














 Imallest SAED aperture will be necessary.
        «cuum evaporation or, more ""«"•"*!»•
          r^i^r^if rgjas
 provide the required calibration information.
                    isr. a&s
                     ir           »
        and the portion of the fiber should be such that
  from neighboring particles.

     itber imag! indicatet atthe ftter is oriented with
  Hts length coinc dent with the tilt axis of the goniometer
  and adjust the sample height until the fiber is at the

                  40

-------
    eucentrie position.   Tilt the fiber until  a pattern  appears
    which is a symmetrical,, two dimensional  array of spots;.
    The recognition of zone axis alignment conditions requires
    some experience on the  part of the  operator.  Curing
    tilting of the  fiber to obtain zont axis conditions,  the
    manner in which the  intensities of  the spots  vary should be
    observed.  If weak reflections occur at  some points  on a
    matrix of strong reflections,  the possibi lity °f multiple
    diffraction exists,,  and some caution should bt exercised in
    selection of diffraction spats for  mtasuremente   A JUN
    discussion of electron  diffraction  and multiple  diffraction
    can be found in the  references by 
-------
The distances of
fSur angles shown
Since the center spot 1s
                                            The required
                           »»
precision.
The camera
is given bys
            constant  (XL)  required  for  the  computer  program
 where;
                 a «
           h-  k  1
                    Wavelength of the incident electrons

                    Effective camera length in mm

                    Unit cell dimension in Angstroms

                    Diameter of the (h, k. 1) diffraction
                    rings in millimeters
                    Miller indices of the scattering plane
                    of the crystal.
  Using gold,  the camera constant  is given by:
               XL - 2.3548 D  (first ring)
               XL - 2.0393 0  (second  ring)




                                                         "
   contain silicon.
                        42

-------

                                        j-'ulon Eltctro-
       Microscopy (STEM) mode of operation.

       elemental peaks
        acquisition times.

6.7.3   Analysis of Fiber Identification Data

        Since the fiber identification procedure can be involved
        and time^onsuming, a Fortran, computer program has  been
  - .    5rovided?tSe listing of which is given in Appendix A.


















                              43

-------
of anflthtr '*"«*«"
                                      unHwly
                            SAED patterns.
The computer rf» classics flgjr,
 instructions in Section
                                                     t
                                           and goniometer
  isss                         a
  index patterns Whic5jr?h! Strictures of the minerals
  their consistency with the structures or
  already pre-s'elected on^the basis or wj  u
  the structures of "jn-wphib «»• "J"? rj^ zone wis data

                                                      •


   then return a second and usua i 1* ^   A second  set of zone
   «?a ?^^lf& o |«   f^-"-
   can then be P™c?ssed.ei!h!Lf!uitv   In addition, the angle
                       44

-------
        In oractice   the full program will. normally be applied-
        v2ry few fibers? units! precise identification of  all
        fibers Is required.
6.7.4   Fiber Classification Categories
        It 1s not- always possible to proceed to a definitive
                   s s tf stf-as » s
                  '          «was
        classification  has been devised to permit accurate
        recording of data.  The classifications art shown in Tables
        3 and 4,  and are  directed towards identif eation of
        ehrysotile and  amphibole respectively.  Fibers will be
        reported  in these categories.     »

       -The general principle to be followed in this analytical
        procedure is first to define the most specific fiber
        classification. (targtt classification) which is to be
        attempted.  Then, for each fiber examined, the classifica-
        tioTwhieh is actually achieved is recorded.  Depending  on
        the intended use  of the results, criteria for acceptance of
        fibers as "identified" can then be established at any time
        after completion  of the analysis.

      -  In an unknown sample, chrysotile will be regarded as
        confirmed only if a recorded,  calibrated SAEO pattern from
        one fiber in the  CD category 1s obtained.  Amphibole will
        be regarded as confirmed only  by obtaining recorded data
        which yields exclusively amphibole solutions for fibers
        classified in the AZQ8 AZZ or  AZZQ categories.

 6.7.5   Procedure for Classification of Fibers With Tubular
        Morphology, Suspected to be Chrysotile

        Many fibers are encountered which have tubular morphology
         similar  to that of chrysotile, but which defy further
         attempts at characterization by either SAEO or EDXA.  They
        may  be non-crystalline,  in which case SAED. techniques are
         not  useful, or they may be In  a position on the  grid which
         does* not permit  an EDXA spectrum to  be obtained.
         Alternatively, the fiber may be of organic origin,  but not
     -    sufficiently definitive that it ean  be disregarded.

         Classification attempts will  meet with various  degrees of
         success.  Figure 15 shows the classification  procedure to
        'be used  for fibers which jisplay  any tubular  morphology.
                             45

-------
    TABLE 3.  CLASSIFICATION OF FIBERS WITH TUBULAR MORPHOLOGY
TM      -     Tubular Morphology not sufficiently characteristic
              for classification as chrysotne
CM      .     characteristic Chrysotile Morphology
CO      -     Chrysotile SAED pattern   •
CQ      -     Chrysotile composition by Quantitative EDXA
              Chrysotile Morphology and composition by
        em     VtM J *»*» «*• e •«•--— - |	
              Quantitative EDXA
              Chrysotne SAED pattern and composition by
              Quantitative EDXA
NAM     .     Non-Asbestos Mineral
     TABLE 4.   CLASSIFICATION OF FIBERS  WITHOUT TUBULAR MORPHOLOGY
 UF     ..     Unidentified Fiber
 an      - •    Amphibole by random orientation SAED (shows,layer
              •pattern of 0.53 nm spacing)
 AX      -     Amphibole by qualitative EDXA.  Spectrum has elemental
               components -consi stent with amphibqle
 ADX     =     Amphibole by random orientation SAED and Qualitative
               EDXA                  '
         •
 AQ      -     Amphibole by Quantitative EDXA
 AZ      -     Amphibole by one Zone Axis SAED .
 AOQ     -     Amphibole by random orientation SAED and Quantitative
               EDXA
 AZQ     -     Amphibole by one  Zone Axis SAED pattern and Quantitative
               EDXA                                         '
 AZZ     -     Amphibole  by  two  Zone-Axis SAED  patterns with consistent
               inter-axial  angle
  AZZQ    -     Amphibole  by two Zone Axis SAED patterns,  consistent
                inter-axial  angle and  Quantitative EDXA
  NAM     -     Non-Asbestos Mineral
                                    46

-------
         ExwriM by SAEO
                                                 Chrysetile
                                                 pattern
     Chrysotile
     pattern
 Pattern not
 chrysotile
                                                         Pattern not present
                                                            or indistinct
        Pattern not present
          or indistinct
                                                    Exarine by quantitative EDXA
            by ouantitativ. EDXA
                                                                              not
                                                                   that of-enrysotile
                              dirysotiie
                              comositien
Oirysotile
coeposition
Cowposition not
that of cbrysotHe
                              Examine by quantitative EDXA


                                                   ChrysotiH
                         Composition not
                         ««at of chrysotllo
                                       No Spectrum
  Figure  15
Classification  Chart for Fiber With
                                                                       Morphology.

-------
chrysotile fiber count.



53tt«B
Tht morphological characteristics  required will be:
      low for internal structure to be visible, and
                  SMS                  -
            r, which may .degrade  in the electron beam

      to the appearance shown  in Figure 168.
                              rffl               "
                                                    ,
       micrograph of at least one representative fiber will
                 Its SAED pattern will also be recorded on
               sisas
  Sttl W S 8clonesi »lm they « exOT1ned by EDXA.


                    48

-------
                                             0.0 5 jure
Figure 16A.  TEM Micrograph of Chrysotile Fibril, showing Morphology.
         168-
                                 49

-------

             ;:«• $>
                                                     -
In the EDXA analysis of chrysotile there  are  only two
elements which are relevant.  For fiber classification,  the
EDXA analysis must be quantitative.   If the soectrum .
displays prominent peaks from magnesium and silicon, wjjth
their areas 1n. the appropriate  ratio,  and with  only minor
peaks from other elements,  the  fiber will be  classified  as
chrysotile by quantitative  EDXA, In  the categories CQ, CMQ
or CDQt as appropriate.

For chrysotlle analyses there are essentially three
possible levels of analysis:

.1. morpholoqlcal and SAED discrimination  only (Target
   classification CO);
                       •
2. 1n  addition, EDXA of only those fibers unclassified  by
   SAED  (Target classification  CD);

3. EDXA  in  addition to SAED on  eall fibers (Target
   classification CDQ).

Procedure for Classification of -Fibers Without  Tubular
Morphology,  Suspected  to  be Amphibole

Every particle without tubular  morphology and which is not
obviously of biological  origin, with an aspect ratio of 3
 to 1 or greater and  having  parallel  or stepped  sides,  will
 be considered as  a suspected  amphibole fiber.  Further^
 examination of the fiber by SAED and EDXA techniques will
                      50

-------
meet with a variable degree of success, depending on the
nature of the fiber and on a number of instrumental
limitations. . It will .not be possible to identify every
fiber completely, even if time and cost were of no concern
Moreover, confirmation of the presence of tmphibole can be
achieved only by quantitative interpretation of zone axis
SAED patterns, a very time-consuming procedure.
Accordingly,, for8 routine samples from unknown sources, this
analytical procedure limits the requirement for lone axis
SAEO work tb a minimum of ont fiber representative of- each
compositional class reported.  In some samples, It may be
necessary to identify more fibers by the zone axis
technique.  When analyzing samples from well-characterized
sources, the cost of identification by zone axis methods
may not be justified.

The 0.53 nm layer spacing of the random orientation SAED
pattern is not by itself diagnostic for amphibole.
However, the presence of e-axis twinning in many fibers
leads to contributions to the layers in the patterns by
several individual parallel crystals of different axial
orientations.  This apparently random positioning of the
spots along the layer .lines, if also associated with a high
fiber aspect ratio, is a characteristic of amphibole
asbestos, and thus has some limited diagnostic value.  If a
pattern of this type is not obtained, the identity of the
fiber is still ambiguous, since the absence of a
recognizable pattern may be a consequence of. an unsuitable
orientation relative to the electron beam, or the fiber may
be some other mineral species.

Figure 18 shows the fiber classification chart for
suspected amphibole fibers.  This chart shows all the
classification paths possible in analysis of a suspected
amphibole fiber9 when examined systematically by SAED and
ED'XA.  Initially two routes are possible, depending on
whether an attempt to gbtain an EDXA spectrum or a random
orientation SAED pattern is made first.  Thi normal
procedure for analysis of a sample of unknown origin will
be to examine the fiber by random orientation SAED,
qualitative EOXA, quantitative EOXA, and zone axis SAED, in
this sequence.  The final fiber classification assigned
will be. defined either by successful analysis at the target
level or by the instrumental limitations.  The maximum
classification achieved for each fiber will be recorded on
the counting sheet 1n the appropriate eolumru  The various
classification categories can then be combined in any
desired way for calculation of the fiber concentration, and
a complete record of the results from each fiber is
maintained for reassessment of the data if necessary.
                     51

-------
                       It IM aw «•<« S«O
                       MtttfC OMftOM -401
                         MM:
Figure 18.  Classification Chart for Fiber Without Tubular Morphology.
  9         Bold  Lines indicate the Preferred  Paths.


                                  S2

-------

-------
                  Depending  en  the  particular  situation,, four  levels of
                  analysis ean  be defined  in this analytical -procedure, and
                  these  are  shown in Table .So

                  In the routine unknown sample, a level 3 analysis will be
                  required if the presence of amphibole is te be confirmed.
                  For this level of analysis, attempts will be made to raise
                  the classification of every fiber to the ADQ category.  In
                  addition, at  least one fiber from each type of suspected
                  amphibole found will be examined by zone axis SAEO methods
                  to confirm the identification.
                TABLE  5.  . LEVELS  OF ANALYSIS  FOR AMPHIBOLE
Level of
Analysis
      Application
   Target
Clissifi cation
for all Fibers
 Required Classification
   for Confirmation of
Amphibole in a Proportion
      of the Fibers
   4
          Routine monitoring of
          known and well-charact-
          erized sources for one
          mineral fiber type.
          Routine monitoring of
          known and wel1-charact-
          erized sources where
          discrimination between
          two or more amphibole
          fiber types is required
          Routine samples from
          uncharacterized sources
          in which presence or
          absence of amphibole
          is to be confirmed.
Samples where precise
identification of all
amphibole fibers is
an important issue.
                            ADX
                     Not Applicable
                            ADQ
                     Not Applicable
                                      AZQ
                                             AZZ, AZQ or AZZQ
                                             Solutions must
                                             include only
                                             amphiboles.
                     AZZQ - Solutions
                     must include only
                     amphiboles.
                                    • 53

-------
6.8
Blank and Control  Determinations
                     o                                            _
      6.8.1   Blank Determinations
        At le«t one blank
        e»ery group of samples
        blank determination, a
        prepared by ftratlon of- 100
                                                      filter 1.111 be
                                                           treated
         water used for the
                                                   same time  as  the  group
                                      t
        6.8.2   Control Samples

                                                                          ,.
                                                    con«ntrat1ons found in
                 concentration value should not oe re MB «  ^   coinmended

-------
CALCULATION OF RESULTS
                                                          a
catoUtlonrire iade .re- described beTow.
7.!  Test for Uniformity of Fiber Deposit on Sectron Microscope Grids
     A check must be made  		
                                                u" If
                                              'A! te AI<, then
      the total  ana examined is

                           i  *
                      A  *  /  ,   "i
The fraction of the total area examined which Is represented by the
ass's jsaa                        »i     d« ,-
that grid opening
                                                 fi     «
                  tarea Sf if S^f "Se observed number found on
                  ning is n1v then?
                            i » k

        This value It
                                 55

-------
7 2  Calculation  of the Mean.and Confine Interval
     of the Fiber Concentrate
the
                 count, a
                                 * »   "
                  at hih fiber counts.          '^rvals naVrower
             assumed
      SS.STS
                                                             »«-
                                                           count
       ssrsga-dS
       confidence intervals.
       At 10W- fiber counts,
       tstitnate of the  ^"J^SJlvlbllan.  For 30 fibers and
       •asynroetric, but  not necessarily Poisson^an.         He that the rf


        ealc"at1oS of the confidence Intervals.
       . For total fiber counts less 'than S the lower 93 i egfldjne.
        corresponds to one fiber «; '«SJ» ff1ber count of  zero is 3.69
                                                         Polsson upper
         9S« confidence value
                                   56

-------
For fiber counts W*r than






estimate.  For>ounts °^n*?maL of variance is  calculated using





In  summary, fiber counting  data will be reported as fallows;

         No fibers detected

         the value will  be reported as  less than 369% of the
         concentration equivalent  to one fiber .

         1 to 4 fibers
         (Poisson).

         s to 30  fibers

         Mean and 95%  confidence intervals will  be reported on the
         basis of the  Poisson assumption.

         More than 30  fibers

         When more than  30  fibers are counted, both the Gaussian  95%
         SiSe Tte'rval  and the ™™&^^£3ft*
         will be calculated.  The larger of these 2 intervals wi u
        - be selected for data reporting.  When the Gaussian 95-
         confiSf in?erval  is Selected for data reporting,  the
         Poisson interval will  also be noteo.
     s s-^aar
  less than 4 grid  openings.
                              57

-------
The sample estimate of variance-S2 is first calculated:
                       i  • k
        "i
        n
        Pi
                              (nr- rip.;)2
                       i  » 1
                            (k - 1)                         .
              •
             .  Number of fibers on the i'th grid opening
             >  Total number of fibers found in k grid openings
             »  Fraction of the total area examined represented by
                the I'th 
-------
     The fiber concentration 1n MFl which corresponds to counting of one
     fiber Is given bys       .      - ;
                               A
                                f
                             A  x v x louu
     where:
                  »   Effective filtration  area of filter membrane  in
                      mm2  used for filtration of  liquid  sample

                  a   Total  area  examined in. mm2

                  .   Original volume of sample filtered

                  m   Dilution ratio of original  sample
      The mean concentration in MFL is obtained by mult P1^ the mean
 •     number of fibers per grid opening by kC.   To °b.ta1"f * "f^,!?^
      "owe? 95% confidence limits for the concentration (in MFL)  multiply
      the values ny and "L by kC*


7.3   Estimated Mass Concentration


      The mass of each amphibole fiber in micrograms is calculated using
      the relationship:
                                               o

                       M  *  L -x W.2 x 0 x 10"S
      where:
              M    »  Mass in mierograms

              L    *  Length in urn

              W    »  Width  in ym

              0    »  Density of fiber  in g/cm3
                                   S9

-------
   For chrysotile, the mass may be,calculated using the
'   for a cylinders                   .
                   M   * f x L x W2 x B x 10°s   -

   The estimated mass concentration is thtn given by:
                              i  * n
                          C x
                                          10s
    where:
            Mi
            n
Mass concentration in yg/L
fiber concentration in MFL, which corresponds to
counting of one fiber
Mass of the i'th fiber, in micrograms
TotaT number of fibers found  in k grid openings
                           *                *
     The densities to be assumed are as follows:
             Chrysotile
             Crocidolite
             Cummingtonite
             Srunerite
             Amosite
             Anthophyllite
             Tremolite
             Actinolite
             Unknown Amphibole
                  2.55  g/cm3
                  3.37  g/cm3
                             3
                     3f A   _ * «»CIB**
                    843   g/em
                             3
                   3.00   g/cnr
                   3.00  -g/cm3
                   3.10   g/on3
                   3.20
                                  60

-------
7 4   Fiber Length,  Width, Mais and Aspect Ratio Distributions






  '
      all of ^ese requirements.   ™e  <*hf g^^oSe  interval point,
      length distribution should  inclu de o.s wm as  o        method,  and
      since this is the minimum 1 engt h |o be co untea  i     result1ng  Slze
      the minimuns aspect Catl°x:s.^hr,^«nrean be  seen in the examp-le
      elasses for
      scale and a Saussian abscissa.
      741   Fiber Length Cumulative Number Distribution

        "
                               i  «  k
                     C(N)k  *
                                               100
                              .i
                wherei
                       C(N)k
                       "i

                       N
Cumulative number percentage of fibers
which have lengths less than .the upper
bound of the k'th class

Number of fibers in the i'th length class

Total number of length classes
                                     61

-------
742   Fiber Width Cumulative Number Distribution
        in 7.4.1 for the length distribution.

743   Fiber Langth Cumulative Mass Distribution
       length  to be- determined.
       relationships
                                        computer
            •(M)k
                         -
                     Z
                              j - 1
                c(M)k
                "i
       where:
                      »  Cumulative mass percentage of fibers which
                         have lengths  less than the upper bound of
                         the k'th class

                      «  Number  of-fibers in  the  ieth length class

               1.      «  Length  of the j.'th fiber in the i'th
                J         length  class

               Wj      »  Width of the  j'th fiber  in the  i'th  length
                ^         class        -

               N      -  Total number  of length classes

7.4.4   Fiber Aspect Ratio.Cumulative Number  Distribution.

        This distribution allows  the fraction of the total  number of
        fibers which have aspect ratios either smaller or larger
        than a given aspect ratio to be determined,  it is

-------
                  calculated  In  a similar way  to  that  used  in  7.4.1  for  the
                  length  distribution.   -  •

          7.4.5  .  Fiber Mass  Cumulative Number Distribution  .,  •

                  This distribution allows the fractiorwof tht total number
                  of fibers which  have masses  either smaller or larger than  a
                  given mass  to  be determined.  It  is  calculated by  placing
                  the fibers  into  logarithmically-spaced mass categories,
                  after which the  cumulative frequency distribution  is
                  obtained in a  similar way to that used in 7.4.1 for the .
                  length  distribution.

   7.5    Index  of Fibrosity

          It  is  possible  to discriminate between  amphibole  asbestos  fibers
          and amphibole cleavage fragments on  the basis of  the distribution
          of  their aspect ratios.  The concept of fibrosity in a mineral
          embodies a high median aspect ratio, together with a large spread
          of  aspect ratios above the median value.  A  single number  can  be
          used to  describe the fibrosity of a  mineral  fiber dispersion,  and
          in  many  cases the value can be used  to  state if the  material  is or
          is  not asbestos.  The  fibrosity  index can be defined thus;
                                    F.R9
          where R is the median of the aspect ratio distribution and g is the
          geometric standard deviation of the aspect ratio distribution above
          the median.  The value of g is obtained from that portion of the
          distribution lying between one and two geometric standard
          deviations above the median.  Meaningful values of the index of
          fibrosity can be obtained for most waterborne fiber dispersions if
          more than 50 fibers have been measured.

          The fibrosity index as defined above has values exceeding 100 for
          waterborne dispersions of asbestos.  Values below 50 indicate a
          distribution characteristic of cleavage fragments, or one from
          which the high aspect ratio fibers have been selectively removed.

8.  REPORTING            •                         0

    The computer program provided in Appendix 8 satisfies all of the
    reporting requirements* for this analytical method, and it is recommended
    that tnis format be used.  The size classifications used must be the same
    as those in Appendix 8.
                                       63

-------
 8.1   Before  the  fiber count data can be processed to give concentration
      values,  a decision must be made: as to which fiber^classifications
      are to  be -considered adequate as  identification of the fiber
      species  in  question.  This.decision will depend on hew much is
      known about the particular source from which the sample was
      collected.

      For a sample from a completely uncharacteriled source, the
      following procedure will be used to accumulate the classified
      fibers:

               a)  Confirmed Amphibole:  AZZQ + AZQ * AZZ
                                        (solutions must include only
                                       amphiboles)

               b)  Amphibole Best Estimate*:  AZZQ + AZQ + AZZ * AZ *
                                             AOQ + AQ
     c)  Suspected Amphibole:  AOX + AX

     d)  Confirmed Chrysotile:  CDQ + CD

     e)  Chrysotile Best Estimate*:  CDQ

     f)  Suspected Chrysotile:  CM
                                                   AD
                                                    CD + CMQ + CQ
*NOTE:
Best, estimate can be reported only if some fibers are also
reported in the confirmed category, otherwise all fiber
classifications must be reported as suspected amphi bole or
Chrysotile.
8.2   The concentration in MFL, together with 9S% confidence intervals,
      will be reported for the groupings in Section 8«1 (a) to (f).

8.3   Two significant figures will normally be used for concentrations
      greater than 1 MFL, and one significant figure for concentrations
      less than 1 MFU

8.4   For confirmation of Chrysotile, a micrograph and a calibrated
      diffraction pattern will be provided from a typical fiber.  The
      identification features in Figure 17 must be visible on the
      diffraction pattern.

      For confirmation of amphibole, either '(1) or (2) or* (3) below must
      be provided for a typical fiber of each amphibole variety
      reported.  The data provided must yield solutions which include
      only amphibole.

              1)  A micrograph* a calibrated zone axis SAEO pattern, and
                  an EDXA spectrum together with peak area measurements
                  and EDXA calibration data;
                                   64

-------
                 2)   A micrograph,  and  two  calibrated  zone  axis  $A|D
                     patterns with  a measurement of the angular  rotation
                     between the two patterns;



                                                                 111*11 peak
   8,5   Tabulate the length, width and aspect ratio distributions.

   8.6   Report the estimated mass concentration in ug/L for each of the
         groupings in Section 8.1 (a) to (f}.

   8e7   One significant figure will normally be used for reporting mass
         concentration.

   8.8   Report the concentration in MFL corresponding to one fiber
         detected.                  .                                 •

   8.9  'Report tlft total number of fibers counted  in each of the groupings
         in Section 8.1  (a)  to (f).

 "  8.10  Report the X2 value for each  of  "he groupings  in Section 8.1 (a)
         to (f).                                               .

   8.11  Report the  number  of fiber aggregates not  included  in  the  fiber
         count

   8.12  Report  any  special circumstances or observations  such  as
          aaareaation  presence of organic materials, amount of  debris,
          SrlslSeS? other fibers and their probable identity if known.

9.  LIMITATIONS OF ACCURACY

    9.1   Errors and Limitations of Identification

          Cflmnlete identification of every chrysotile fiber is not possible,
          dueto both instrumental limitations and the nature of some of the
           halloysite,  vermiculite  scrolls or palygorskite, all of which can
           be di scrim nated from chrysotile by  the  use of EDXA and by
           observation of the 0.73  nm (002) reflection of chrysotnle in the
           SAED pattern.

           As in the case of chrysotile fibers, complete identification of
           every amphibole fiber is not possible due to  instrumental
                                       65

-------
       limitations and the nature of some  of  the  fibers.   Moreover,
       complete identification  of every amphibole fiber is usually not
       practical  due to limitations  of  both time  and  cost.  Particles of  a
       number of  other minerals having  compositions similar to  those of
   -   some  amphiboles could  be erroneously classified  as  amphibole when
       the classification  criteria do not  include zone  axis SAED
       techniques.   However,  the requirement  for  quantitative EDXA
       measurements  on all  fibers as support  for  the  random orientation
       SAED  technique makes misidentification very unlikely, Particularly
       when  other similar  fibers in  the same  sample have been identified
       as amphibole  by zone axis methods.   The possibility of
    '   misidentificatioir is further  reduced with  increasing aspect ratio,
       since many of the minerals with  which  amphibole  may be confused do .
       not display its prominent cleavage  parallel to the  e-axis.

9.2   Obscuration

       If large amounts of other materials are present, some asbestos
       fibers may not be observed because  of  physical overlapping. This
       will  result in lew  values for the reported asbestos content.
•
9.3*   Inadequate Dispersion

       If the initial water sample contains organic material which is
       incompletely  oxidized  in the  ozone-UV  treatment, it will not be
       possible to disperse any fibers  associated with  the organic
       material.   This may lead to adhesion of some fibers to the
       container  walls and aliquots  taken  during  filtration will then not
       be representative.   It may also  lead to a  large  proportion  of fiber
       aggregates which are either not  transferred during  the replication
       and filter dissolution step or which cannot be counted during the
       sample examination. The result  obtained from  such  an analysis will
       be low. The  sample'will also be inadequately  dispersed  if  it is
       not treated in an ultrasonic  bath prior to filtration, and
       therefore  instructions regarding this  treatment  must be  followed
       closely.                                   ,

9.4   Contamination
                                                 •

       Contamination by introduction of extraneous fibers  during the
       analysis is an important source  of  erroneous results, particularly
       for chrysotile.  The possibility of contamination,  therefore,
       should always be a  consideration.

9.5   Freezing

       Tha effect of freezing on asbestos  fibers  is not known but  there  is
       reason to suspect that fiber  breakdown could occur  and result in  a
       higher fiber  count  than  was present in the original sample.
       Therefore, the sample  should  be  transported to the  laboratory and
       stored under conditions  that  will avoid freezing.


                                   66

-------
10. PRECISION AND ACCURACY
                *
    10.1  General                        .

          The precision that can  be obtained  is  dependent upon the number of
          fibers  counted,  and on  the uniformity  of particuTate deposit on-tne
          original  filter.   If 100  fibers  are counted  and the  loading  is  at
          least 3.5 fibers/grid square, computer modeling of the  counting
          procedure shows  that a  relative  standard deviation of about  10% ean
          be  expected.   As  the number of-fibers  counted  decreasiis,  the
          precision will also decrease approximately as  *TI where N is the
          number of fibers  counted.   In .actual practice, some  degradation
          from this precision will  be observed.  This  degradation is a
          consequence of Sample preparation errors, non-uniformity of  the
          filtered  particulate deposit, and fiber  identification  variability
          between operators and between instruments.   The 95%  confidence
          interval  about the mean for a single fiber concentration
          measurement using this  analytical method should be about ±25% when
          about 100 fibers  are counted over 20 grid openings.   For these
          conditions the precision  of the  computed mass  concentration  is
          genei*ally lower  than the  precision  for the fiber number
          concentration.  The precision \o be expected for a single
          determination of  mass concentration is critically dependent  on  the
          fiber width distribution.   For a result  based  on measurement of a
          minimum of about  100 fibers, the 95% confidence interval  about  the
          mean computed mass concentration may vary between ±25%  and ±60%.
          If  better precision is  required  for a  mass determination, the
         .alternative counting method described  in Section 6.5.5  should be
          used.

    10.2  Precision
                                             - 9
          10.2.1  Intra-Laboratory  Comparison Using Environmental Water
                 Sources

               "  Table 6  shows the results obtained from analysis of  10
                 replicate samples from each of 8 water sampling locations.
                 Four  of  these locations  were associated with a  source of
                 chrysotile and  four associated with  a  source of amphibole.
                 It can be seen  that the  relative standard deviations of the
                 number concentrations range between  132 and  22%.   The
                 corresponding relative standard  deviations for  the mass
                 concentrations  range between 29% and 69%.

          10.2.2  Inter-Laboratory  Comparison of Filters Prepared Using
                 Standard  Dispersions and Environmental  Water Sources

                 Tables 7  and 8  show the  fiber  counting results  obtained
                 when  sectors of filters  prepared in  the ORF  Laboratory  were
                 distributed to  six laboratories  considered experienced  in
                 asbestos  analysis by the identification and  counting
                 techniques incorporated  in  this  manual.   The samples as
    e  '
                                    .67

-------
Si  2  S     2232
   68

-------
S  S   !£  S      •*
 •   •   <    i    i   g
s   s   s  a  55   a
     69

-------
70

-------
           distributed were  identified by number only.   In Table 7 It
           SSS--B sftsrjiasfasais»i0R«.*.
                                                            .
           relative standard deviations do  not .exceed 29J, which
           appears higher than the values obtained for the
           Intra-laboratory results.  However, when the 6 .
           Inter-laboratory results are compared with the 10
           intra-laboratory values, there is  no statistically
           significant difference to indicate that there has been any
           degradation of precisiene

.3  Accuracy
       l                             e
   W.3.1  Intra- and Inter-Laboratory Comparison of Standard
           Dispersions of Asbestos Fibers

           Tables 9 and 10 show  the results obtained between two
           laboratories when  stable aqueous fiber dispersions  of known
           mass concentrations were analyzed. The fiber
           concentrations reported displayed no  sign! Meant difference
           between values from the two laboratories.  The relative
           standard deviation of the mean fiber  concentration  was 17%
           for chrysotile and 163 for crocidolite.  The correspond tng
           relative standard deviations for the  mass concentration
           were 16Z for chrysotile, and 37% for  erocidolite.   The
           hioher variability for crocidolite is a consequence of the
           low statistical reliability of the large diameter fiber
           counts.  The computed mean mass concentration for
           chrysotile was about  46% higher than  the known mass
           concentration.  This  may be a consequence of the djfficu Ity
           of diameter measurement for single chrysotile fibrils or
           the assumption of the bulk value for  the density.   The
           computed mean value for mass concentration for the
           crocidolite sample was 67.4 wg/L, which  is very close to
           the known concentration  of 50 ug/L:
                               71

-------
     I
s?

       5?
  UI
                                           72

-------
1
      "o


      i
      IhS
      tt.
      en
 s

        en
 «e     <

 S£     u.
 is     o
  2
        U4


        S
        UJ
        as,
        o

        VJ

        to
                                             73
                                                                                                                i   .

-------
                           SELECTED BIBLIOGRAPHY
          c H  and J M  Long (1980).   Interim Mtthod for Determining Asbestos
    ta' fcSort Ept600/4"80-OOS.   U.S.  Envi ronmental Protection Agency,
AthSl! eeSS?  AvJllble tt«ugh National Technical Information Service,
Springfield, Virginia 22161. .




Washington, D.C. 20402.
 Batts. R.L. and J.A. Jackson (1S80).   Slossary of Geology, Second Edition.
 American Geological Institute, Falls  Church,  Virginia  22041.

 Beanan, D.R. and D.M.'File (1976).  Quantitative Determination of Asbestos
 Fiber Concentrations.  Anal. Chem. 48(1):  101-110-

 Bradlev  D E   (1965).  Replica and Shadowing  Techniques.   In'  Techniques for
 !uct%n Microscopy.  BUdcwell Scientific Publications, Alden Press, Oxford,
 D.H.  Kay -(ed.). 96- 152.


             A^
            Circular SSl!  U.S. Bureau of Mines, Avondale Research Center,
 4900  LaSalle Road, Avondale, Md 20782,, -

 Chatfleld, E.J.  (1979).  Preparation and Analysis of Particulate Samples  by
 EUctrS MllroscJpy  ilth Special Reference to Asbestos..  Scanning Electron
 Mlcroscopy/1979/I, SEM Inc., AMF O'Hare, Chicago, Illinois 60666.  563-578.
        ld  E J.  and M.J.  DUlon  (1979).  A National Survey for Asbestos
      s  n clnadian Drinking Water Supplies.  Health and Welfare Canada Report
 79-EHD-34.  Information  Directorate, Department of National Health and
 Welfare, Brooke Claxton  Building, Ottawa, Canada K1A OK9.
«&sMtM^^^
 Mississauga, Ontario, Canada.
 Chatfield, E.J., R.W. Glass and M.J.  Dillon  (1978).  Preparation of Water
 e^^inr- fnv flehoctn*; Piher Countina by  Electron Microscopy, Report
 fffieCW^ll!  U.s! lnvirS!!SntalProtect1on Agency, Athens, Georgia
 Available through the National  Technical  Information Service, Springfield,
 Virginia 22161.
                                     74.

-------
fol. 6, No. 4S 241-247.
    . p.«. , I.B.

                                                                cl;:65)
Kay, O.H. (1M).  Technics for ^ectron K^croscop,.  il.d-.ll
Publications, Alden  Press, Oxford.
U-. E.E.
16, 501*520.
                                 of A^Mboles.   The  Canadian H1nera,o91St.
tee,
^

677-686.
                .  B«1c Concept,
                                                   CMcaco,  Illinois.
  Canada, M5S 2C6.
  Works  Assoc., Denver, Colorado,
  McCrone  H.C. and I.H. Stewart (1974).  Asbestos. Amer. Lab.  6(4)  13-18.
                                      75

-------
       ffltf. •j*g'
Washington, D.C. 20402

         Bureau o. rsandar*
                                    "»««-
Printing Office, Washington


 S.udra, A.V.
 from Selected Area
 385-39Z.
                                                      pectron Microscopy,
                                                                   60616,
                                                      a
 Science 19, 549-559.
                                                      -
  11, 1-40.

  Steen, 0.  (1981).
                                                          ft
  Switzerland.

  Wenk, H.R.  (Editor) (1976)
  Spnnger-Verlag, New York.
                              Electron Hicroscbpy in Mineralogy.
                                       76

-------
                              APPENDIX
        TEST DAIA AND COMPUTER
                                        TO* raffi
axis angle was 21°.
                                   SIZE)




                                      77
                                                                                         ;

-------
                      PARTICLE IDENTIFICATION
                                                           DATES  23-JUN~82
PARTICLE: UNKNOWN SAMPLE X


    WIDTH OF PARTICLES     0.700  microaeters
      CALCULATED
    ATOMIC RATIOSs
ELEMENT
SI
NA
ELEMENT
SI
HA
PEAR AREA
5325.00
597.00
RATIO
1.000
0.430
ELEMENT
FE

•
9 ELEMENT
FE

PEAK AREA
2157.00

RATIO
0.425

    MINERALS WITH COMPOSITIONS CONSISTENT WITH X-RAY SPECTRUM
 AEGIRINE
 CROSSITE
 FE-RICHTERITE
 RIEBECKLTE
             (FE,AL)2 SIS 022 
-------
                                                           BATE: 23-JUN-82
                       PARTICLE  IDENTIFICATION-


                         «



 PARTICLES  UNKNOWN SAMPLE X



ELECTRON DIFFRACTION PATTERN, FIBER 2  PATTERN 34



CAMERA CONSTANT-   83*030  «m*A


DISTANCES  OF DIFFRACTION SPOTS  (m)


       4.580   15.520   30.700 15.520   4.580


 ANGLES BETWEEN SPOTS  (degrees)


        80.70   89.80   97.50  180.00
   COMPLETE ELECTRON DIFFRACTION
          ANALYSES MAY  BE FOUND  IN  FILE "XINDEX"
           MINERAL
   GROSSITE
      -20-1      201


   FE-RICHIERHE      .
       201     -2-0-1
   RIEBECKITE   .   _  n  .
       201    -20-1
RESULTS OF ZONE AXIS ANALYSIS
                        •»

                      .      e    ALPHA   BETA  GAMMA
               So
                         «               -


              9e65   17.91  5.32  90.00  103.60  90.00




              fe82   17.96   5.27  90.00  104.33  90.00




               9,75  18.00   5.30  90.00 103.00  90.00
                                        79

-------
                       PARTICLE IDENTIFICATION




 PARTICLE: UNKNOWN SAMPLE X


ELECTRON DIFFRACTION PATTERN: FIBER 2  PATTERS 41


CAMERA CONSTANT-   81.480  aa*A

DISTANCES OF DIFFRACTION SPOTS (at)

      12.120   9.070   15.420   10.520   12.110

ANGLES BETWEEN SPOTS  (degrees)

      * 57.50   98.50   134.00  179o90
   COMPLETE ELECTRON
   DIFFRACTION ANALYSES MAY BE FOUND IN FILE "XINDEX"
                      RESULTS OF ZONE AXIS ANALYSIS
           MINERAL
  CROSSITE
      5-12    -5 -1 -2

  fE-RICHTERlTE
      5-12    -5 -1 -2
  RIEBECKHE
       5-12
1  C -1
                                             B
                                 C    ALPHA   BETA  GAMMA
        9.65  17.91   5.32  90.00 103.60  90.00
-101     10-1

        9.82  17.96   5.27  90.00 104.33  90.00

-1  0. 1    - 1  0 ~l

        Sl.75  18.00   5.30  90.00 103.00  90.00
-101    -5 -1 ~2
                                       80

-------
                      PARTICLE IDENTIFICATION
PARTICLES UNKNOWN SAMPLE X  •
                                                          SATEs 23-JUN-82
ELECTRON DIFFRACTION PATTERNS!

      .#1?  FIBER 2  PATTERN 34
      #2s  FIBER 2  PATTERN 41


MEASURED INTER-ZONE AXIS ANGLE-  21.00
+/-   6
                                                         degtees
COMPLETE INTER-ZONE AXIS ANGLE ANALYSIS MAY BE FOUND IN FILE "PHIDAT"
               RESULTS OF INTER-ZONE AXIS ANGLE ANALYSIS

                        *             ZONE AXIS OF #1  ZONE AXIS OF  #2  ANGLE
CROSSITE
CROSSITE
FE-RICHIERITE
FE-RICHTERITE
RIEBECKITE
RIEBECKITE
2 0 -1
201
201
•2 0 -1

•2 0 -1
-5 -1 -2
5-12
5-12
-5 -1 -2
5-12
-5 -1 -2
21.14
21.14
20.90
20.90
20.99
20.99
                                     81

-------
A
of
                TEST DA3* EXAMPLE 2:   AMFKBOI*



                         CHSER 3)
u«s  65°.
                                                                  tits
                                                                o* wo  .l««o»

                                                                     -
                   yfcl3ig?$~se.f?tjb'&"~-->»"-  • •
                                     3.

-------
                      f ARTICLE IDENTIFICATION
                                                          OATEs 23-JUN-82
PARTICLE? UNKNOWN SAMPLE #1


    WIDTH OF PARTICLES     0.500
    X-IAX SPECTRBMs   ELEMENT    PEAK
                         SI      §249.00
                         m
                                         PEAK AREA

                                         2ioo0oo
      CALCULATED
    ATOMIC RATIOS:
                       ELEMENT
                          NA
                 RATIO

                 1.000
                 0.449
ELEMENT

   FE
RATIO

0.420
     MINERALS WITH
  AE6HHNE
  CROSSITE
  FE-RICHTERXTE
  R1EBECKITE
COMPOSITIONS CONSISTENT WITH X-RAY SPECTRUM
                            CFE,AL)2 8X8 022 (OH)2
                        FE5 SIS 022 (OH)2
               NA2 FE3 FE2 SIS 022 (OH)2
                                      83

-------
                       PARTICLE IDENTIFICATION
                                                           DATES  23-JUN-82
                                                                                          '"'!
 PARTICLE: UNKNOWN SAMPLE #1


ELECTRON DIFFRACTION PATTERN: FIBER 3  PATTERN 32



CAMERA CONSTANT-   83.500  nm*A

DISTANCES OF DIFFRACTION SPOTS (n»)

      16.170   8.710   19.740 15.790   16.180

 ANGLES  BETWEEN SPOTS  (degrees)

        71.80   123.00   148.30  180.00
   COMPLETE ELECTRON
  DIFFRACTION. ANALYSES MAY BE FOUND IN FILE "XINDET
                      RESULTS OF ZONT. AXIS ANALYSIS
           MINERAL
  AEGIR1NE
      010

  CROSSITE.          .    '
      0-10    -71-6

  FE-RICHTERITE
      0-10     716
   RIEBECKITE
       0-10
                   A      B      C    ALPHA   BETA  GAMMA  .

                                                           j


                  9.65   8.79   5.29  90.00 107.40  90»00
                  9.65  17.91   5.32  90.00  103.60  90.00
           716
                   9.82  17.96   5.27   90.00 104.33   90.00
           -7  1 -6
                                      9.75   18,00    5c30   90.00  103*00   90.<
716    -71-6
                                      84

-------
                       PARTICLE IDENTIFICATION
                                                           DATES  23-JUN-82
 PARTICLES UNKNOWN SAMPLE #1




ELECTRON DIFFRACTION PATTERNS FIBER 3  PATTERN 30





CAMERA CONSTANT-   81.520  aa»*A


DISTANCES OF DIFFRACTION SPOTS (am)



      20*250   15*040   16.420  10.520   2(



ANGLES BETWEEN SPOTS  (degrees)


       30.80    69.70,  133.30  180.00
   COMPLETE ELECTRON
             DIFFRACTION ANALYSES MAY BE FOUND IN FILE "XINDEX"
           MINERAL
              RESULTS OF ZONE AXIS ANALYSIS'




                              .      *       g    ALPHA   BETA GAMMA
                             A '     B




                             9.65   17.91    5.32 90.00  103.60 50.00


          4-11     3-16   -3 -1-6


                             9.82   17.96    5.27 90.00  104.33  90.00


          4-11     3-16   -3-1-6


                             9.75   18.00   5.30  90.00 103.00  90.00

3™!     3-16     9-16    -4-1-1    -3-1 -6    -9 -1 -6
                                       85

-------
                                                           •DATES 23-JUN-82
                      PARTICLE IDENTIFICATION
PARTICLE: UNKNOWN .SAMPLE fl
ELECTRON DIFFRACTION PATTERNS:

      fl:  FIBER 3  PATTERN 32
      #2:  FIBER 3  PATTERN 30


MEASURED INTER-ZONE AXIS ANGLE-  65.40  +/
                                              -   8-00
COMPLETE
    ! INTER-ZONE AXIS ANGLE ANALYSIS MAY BE FOUND IN FILE "PHIDAf"
               RESULTS OF INTER-ZOME AXIS ANGLE ANALYSIS

                                      ZONE AXIS.OF fl  ZONE AXIS OF #2 ANGLE
CROSSITE
CROSSITE
CROSSITE
CROSSITE
FE-RICHTERITE
FE-RICHTERITE
FE-RICHTERITE
FE-RICHTERITE
RIEBECKITE
RIEBECKITE
RIEBECKITE
RIEBECKITE
                                       0-10
                                       0-10
                                       0-10
                                       0-10
                                       0-10
                                       0-10
                                       0-10
                                       0-1" 0
                                       0-10
                                       0-10
                                       0-10
                                       0-10
-4 -1 -1
 4 -I  1
 3-16
-3 -1 -6
-4 -1 -1
 4 -1  1
 3 =1  6
-3 -1 -6
 4-11
 3-16
-4 -1 -1
-3 -i -6
64.59
64.59
64.59
64.59
64o89
64.89
64.41
64.41
64.75
64.69
64.75
64.69
                                     86

-------

                 If *-«y peak
       . CEIi,  P80HIB
           «hlch
   solutions  for two patterns
   sm
T pTOgrams which print  results
    procedure
            data file
                                                   »toeral
                                                 ' the C°1°I>

     03. «* oth.r projra..
                                NOTES
                                   32K words.
                                   87

-------
                                                                            •".>...«•"*'••
    -  Some of the input/output statements;^* specific to the IU-11N
       operating system.
    The following main programs are run sequentially in order,
          '    XMAICH, XIDEN, ANGDIF, RESULT
    They  are most easily run fro. a command file (see command
    example)
               Data Files Used in
DZFDAT -  » P.««"« «U. «.«,                      cty.t.U.»wphtc
          in£or».ti=n on ^1 of the ^nerals being d»d»d for consisten
          with the experimental daea
       .  . ^porar,. file » «».f.r reduced data fr» »ATCH to XIDEH
       »d BATPAU - temporary flies to transfer reduced oat. fro.
          XIDEN and ANGDIF
       -  a temporary file to transfer reduced data from ANSl^ f RESUL
 XINDEX and PH1DAT -  temporary files  containing the calculations from the
         * electron diffraction  analysis and the ihter-sone axis angle
           analysis respectively
 RESULT -  the final  output file as shown  in the examples
                                                                                          il

-------
                           XHATCH





           eo match X-ray peaks with elements  of





le "D1FDAT".
,IDTH or
         *.
 calibrate  the system.
                                 8  char.  free format number




                                 enter END to finish




                                                  <*
                                —
                                                  -
                                                            ^     '
at.
                       Ha. Hg, Al. K, C.. M» and F«.




            ...  BAtA.PBATIO/0.245,0.4,8,l.UO,0.980.0.251.0.785,0.783/
                                        89

-------
!»y«"^i'«* •'
           S.. S.ccion 6.7.2 rf M.chodology Ma^-
                                         gxsgg.
                                    with fr»s format
                                                 with free
              particle






                                            ANGPIF
                                                       90

-------
        ANALYSIS OF ZONE AXIS ANGULAR DIFFERENCES
MINERAL   CROSSITE

PATTERN 1   FIBER 3  PATTERN 32

PATTERN 2   FIBER 3  PATTERN 30
 ANGLE"
      65.00  ANGULAR TOLERANCE-


ZONE AXIS ANGULAR DIFFERENCES
   9*65   17.91
    PATTERN 1
     U,V,W
             C    ALPHA   BETA
           5.32   90.00  103.60
               PATTERN 2
                Ui.Vl.Wl
0.
0.
0.
0.
-7.
-7.
-7.
-7. '
7.
7.
7.
7«
-1.
-1.
-1.
-1.
1.
1.
1.
' 1.
1.
le
1.
1..
0.
0.
0.
0.
-6.
-6.
-6.
-6.
6.
6.
6.
- 6.
-4«
4.
3.
-3.
-4.
4.
3.
-3.
-4.
4.
3.
-3.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
U
6.
-6.
-1.
1.
6.
-6.
-1.
1.
6.
-6.
                                             8*00
 GAMMA
 90.00
   ANGLE
    PHI

  64.39
  64.59
.  64.59
  64.59
  44.48
 158*95
 151.73
  48.63
 158.95
  44.48
  48. b 3
 151.73
                       TEMPORARY
                                          FILE "PHIDAT"
                                      91

-------
                       **
**************************
CAMERA CONSTANT- 83.5000
                                                                    OE
DIFFRACTED DISTANCES OF SPOTS ARE                  (MILLIMETERS)
    16.17      8.71     19./*     «•"

ANGLE TOLERANCE -  2.50 DEGREES

MEASURED ANGLES BETWEEN SPOTS ARE
    71.80    123.00    U8.30    180.00             .
 ^ss*****************************************

  REAL CELL CONSTANTS
       A        B        C      ALPM     BETA   GAMMA   •

     9.650    8.790   5.290   90.000  107.400   90.000

  MAXIMUM INDICES  ARE   5   5   3
                                                     •  •    •
  MAXIMUM DIMENSIONS OF ARRAYS ARE      16    18    16
  PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE  BEEN OMITTED
                       TEMPORARY COMPUTED ^TLE "
                                     §2

-------
POINT

  1
  2
  3
  4
        *» «. i  o  .  .1     < - *«•««« W"*-1 m>NS)
        *********************
                                             	_• -nnu nTtft?- PATTER
          PLANE

        (002)
        (200)
        ( 4  0-2)
        ( 2  0-2)
        (  0  0-2)
      m .
 BSPACS

 2.524 •
 4.604
 2.030
 2.559
 2.524

USED U
                                     ESTXMATED DSPACE FROM DXFF. PATTERN
2.499
4o639-
2o047.
2.559
2.497
                                                              . 80.812
                                                              « 83.500)
ANGLE BETWEEN PLANK 1 & 2 -
ANGLE BETWEEN PLANES 1*3-
ANGLE BETWEEN PLANES 1 & 4 -
ANGLE BETWEEN PLANES 1 & 5 -
                                  97
                     l£80« BiSBHS-
            (MEASURED 148.30) DEGREES
            (MEASURED 180.00) DEGREES
                                      93

-------
                    »

CAMERA CONSTANT- 83.5000
 DIFFRACTED DISTANCES  OF  SPOTS ARE



•ANGLE TOLERANCE-  2.50 'DEGREES
                                                                      OF
                                                   (MmiMETERS)
  REAL CELL CONSTANTS

       A        B        C      ALPHA     BETA    GAMHA


   *  9.647    17.905    3.316   90.000  103.600   90.000
           INDICES ARE   5   9   3


   MAXIMUM DIMENSIONS OF ARRAYS ARE
                                         36   .21     36
    3 SETS OF POS.
                 IBU ZO«E «ES 1»EX ««• SPECIFIED UMIIS
                                       94
                                                                                           H
                                                                                           1!

-------
SET  1
*******

POINT

  1
  2
  3
  4
  5

  BEST
        ZONE AXIS [  0-1  0]
        *********************
     PLANE

     2  0-2)
     200)
     202)
     002)
    -2  0   2)
                                  "( NO SYMMETRICALLY EQUIVALENT


                          DSPACE     ESTIMATED DSPACE FROM DOT-

                                               2.526
                                               4.689
                                               2.069
                                               2.586
                                               2.524
                                                                SOL'NS)
                          4c68S
                          2* 067
                          2.583
                          2.528
         CAHEBA CONSTANT USED !K ABOVE «»•»-,£
                                                         m  81c680
                                                         «  83.500)
              0,
                          SPOTS
        BETWEEN PLANES 1
        BETWEEN PLANES 1
                       & 2 -  71.99
                       *3- 123.03
MGLE BETWEEN PLANES 1*4- 1*8.39
ANGLE BETWEEN PLANES 1 & 5 - 180.00
                               fMEASURED  71.80) DEGSEES
                               (MEASURED 123.00) DEGREES
                               (MEASURED 148.30) DEGREES
                               (MEASUP.ED 180.00) DEGREES
SET  2
******

POINT

   1
   2
   3
   4
   5   •

  BEST
          ZONE AXIS t  -7  1 -«      ( » SYMMETRICALLY EQUIVALENT SOL^S)
          **********************
             PLANE
                            DSPACE     ESTIMATED DSPACE FROM DOT- PATTERN
               .7  0)
                1-1)
               -5 -2)
               -6 -1)
                              2.468
                              .4.865
                              2.133
                              2.584
                              2.468
       •1 -7  .0)

     CAMEPA CONSTANT USED IN ABOVE


DEVIATION OF MEASURED SPOTS
                                           2.547
                                           4.729
                                           2.087
                                           2.609
                                           2.546
                                                          SPACINGS
                                                          CONSTANT
                                                                    82.3S4
                                                                    83.500)
                                            «smO»S - 0.48,
  ANGLE BETWEEN PLANES 1 & 2
  ANGLE BETWEEN PLANES 1 & 3
  ANGLE BETWEEN PLANES 1 & 4
  ANGLE BETWEEN PLANES 1 & 5
                                  70.10  (MEASURED  71.80) DEGREES
                                 1™.47  (MEASURED 123.00) DEGREES
                                 ilo.04  (MEASURED 148.30) DEGREES
                                 180.00  (MEASURED 180.00) DEGREES

-------
3    ZONE AXIS
POINT

  1
  2
  3
  4
  5
   PLANE

(  1-70)
(  1 -1 -1)
(15-2)
(  0  6-1)
(-170)
                     716]
                               ( NO SYMMETRICALLY EQUIVALENT SOL'NS)
                           DSPACE     ESTIMATED DSPACE FROM D1PF.
                           2.468
                           4o865
                           2.133
                           2.584
                           2.468
                                                2.547
                                            2.087
                                            2.609
                                            2.S46
BEST FIT CAMERA CONSTANT USED IN ABOVE
                                                              82.384
                                                              83.500)
              OP
ANGLE BETWEEN PLANES
ANffl^E BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
                          -OTS
                       1 & 2 -
                       1 & .3
                           70.10
                          124o47
                           .
                       1 & 4 » 150*04
                       1
                    & 5 - 180.00
                                          PosmoHS
                            .(MEASURED  71.80)	—
                             (MEASURED 123.00) DEGREES
                             (MEASURED 148c30) DEGREES
                             (MEASURED 180.00) DEGREES
                                     96

-------
DIFFRACTED DISTASCES OF SPOTS ARE


ANSLE TOLERANCE -  2.50 DEGREES
                                                 (MILLIMETERS)
                   *****************************


SEAL CELL CONSTANTS
              B        c      ALPHA     BETA    GAMMA

   9.W   17.960    5.270   iO.OOO  104.330    90,000
   MAXIMOK INDICES ARE   5   9   3


   MAXIMUM DIMENSIONS OF ARRAYS ARE
                                       28    25    28
     SETS OF
           POSSIM ZOKE AXES WEX WITHIS SPECmED UBi
                                     97

-------
SET  1


POINT

  1
  2
  3
 . 4
  5
         ZONE «IS (  0 -1  01
         *********************
   PLANE

(  2  0-2)
(200)
( '2  0  2)
(  0  0 -2)
( -2  0  2)
                           2.525
                           4»757
                           2«C48
                           2.553
                           2.525
                                  ( NO SYMMETRICALLY EQUIVALENT SOLANS)


                          DSPACE     ESTIMATED DSPACE FROM DIFF. PATTERN
                                               4.694
                                               2.071
                                               2.527
 BEST FIT CAMERA CONSTANT USED  IN ABOVE
                                                      SPACINGS
                                                                 81.762
                                                                 83.500)
     aEVIAHON 0, MEASURED SPOTS FROM TRUE POSHIOHS - 0.226
 ANGLE BETWEEN PLANES 1 & 2
 ANGLE BETWEEN PLANES 1 & 3
 ANGLE BETWEEN PLANES 1 & 4
1 ANGLE BETWEEN PLANES 1 & 5
                              73.38  (MEASURED  71.80)  DEGREES
                             124.40  OBAOTBD 123.00)  DEGREES
                             149.05  (MEASURED 148.30)  DEGREES
                                     (MEASURED 180.00)  DEGREES
 SET  2
 ******

 POINT

    1
    2
    3
    4
    5
          ZONE AXIS  [716]
          *********************
    PLANS

 (  'l -7  0)
 (  1 -1 -1)
 (  1 -5 -2)
 (  0  6-1)
 (-170)
                                   ( NO SYMMETRICALLY EQUIVALENT SOL'NS)


                           DSPACE     ESTIMATED DSPACE FROM DIFF. PATTERN
                             2.477
                             4.861
                             2.124
                             2.582
                             2c477
                                                 4.731-
                                                 2.087
                                                 2.610
                                                 2«547

                                                                    82.409
                                                                    83.500)
 BEST FIT CAMERA CONSTANT USED IN ABOVE


MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.437 MILLIMETRES
  ANGLE BETWEEN PLANES 1 & 2 -  JO.53
  ANGLE BETWEEN PLANES 1 & 3 - 124.5L
  ANGLE BETWEEN PLANES 1 & 4
  ANGLE BETWEEN PLANES 1 fit 5
                              149.94
                              180.00
                                        (MEASURED  71.80) DEGREES
                                        (MEASURED 123.00) DEGREES
                                        (MEASURED 148.30) DEGREES
                                        (MEASURED 180.00) DEGREES
                                       98

-------
SET  3    ZONE AXIS 1-7  1-61      ( SO StMHEIRIC^LLt EQUIV*LE« SOL'NS)

          *********************
POINT

  1
  2
  3
  4
  5
             PLANE
                            DSPACE     ESTIMATED  DSPACE  FROM DIFF. PATTERN
         (
         (
         (
         (
         (
             1
             1
             1
             0 -6
            -1- -7
 7  Or
 1 -1)
-5 -2)
   -1)
    0)
2*477
4.861
2.124
2.582
2.477
          2.548
          4.731
          2.087
          2.610
          2.547
 BEST FIT CAMERA CONSTANT USED IN ABOVE

                                                                 82.409
                                                                 83.500)
mt, Miutwvr
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE -BETWEEN PLANES
                           sms FROM w POSITIONS - 0.437
                      1 & 2
                      1 & 3
                      1 & 4
                      1 & 5
   70.55
   124.51
   149.94
   180.00
(MEASURED  71.80)  DEGREES
(MEASURED 123.00)  DEGREES
(MEASURED 148.30)  DEGREES
(MEASURED 180.00)  DEGREES
                                       99

-------
 FIBER 3  PATTERN 32                  .
*************************************************
*************************************************
*************************************************

CAMERA CONSTANT- 83.5000

POSITION TOLERANCE - 0.300 MILLIMETERS (MINIMUM OVER-RISING TOLERANCE OF
   +/- 5.0 PERCENT OF DIFFo DISTANCE PREVAILS
           DI^CKS or srots ABE ^


ANGLE TOLERANCE «  2.50 DEGREES

MEASURED ANGLES BETWEEN SPOTS ARE
    71.80    123.00    148.30    180.00
RIEBECKITE
A********************************'****************
 REAL CELL CONSTANTS

      A   .     B        C      ALPHA     BETA    GAMMA

    9.750   18.000    5.300   90»000  103.000   90.000


 MAXIMUM INDICES ARE   593


 MAXIMUM DIMENSIONS OF ARRAYS ASK      32    25    32

 PROHIBITED REFLECTIONS FOR THE FACE CENTRED CELL TYPE C HAVE  BEEN OMITTED

 2  SETS OF POSSIBLE ZONE AXES INDEX WITHIN  SPECIFIED LIMITS.
                                    100

-------
         ,  „  ,  01
ZONE AXIS t  0 -1  0]
S*******************
                  DSPACE
                            O SYMkETRICALLY EQUIVALENT SOL'W)
                            W
                            •                          PAKE8N
                            ESTIMATED DSPACE FROM BIFF. PATTERN
1
2
&•
t
5
( 2
C 2
( 2
( o
( -2
0 -2) 2.519
0 0 - *«750
0 2) 2.081
0
0
2) 2.304
2) 2.519
                                    4.707
                                    2.077
BEST « CAHE8A COKST*« USED I» ABOVE
                                         glSS
                                                      S'.ffi)
ANGLE BETWEEN PLANES  1*2-
      s= PS       •
      BETWEEN PUSES  1 S 5 -
                    -Tl-
                                      Ija'.OO) .DEGREES
******

POINT

  1
  2
  3
                           (SET  2 HAS  2 SYMM. EQUIV.  SOLANS)
                    DSPACE     ESTIMATED DSPACE FROH
  (1-1-1)
  (  1  »-»

  C -°  7 "«
 m
J.UB.
                    *•»"
                   DSED
                    SPOTS P.M
                                       2.090
                                       2.613
                                       2-!5°
                                                                      *
                                                                       1
                                  POSXTXOHS - «.« MXU.XHET.ES
  as
  as
              , . ,
       sas      :
               t *» :
                          22  (MEASURED  71.80) DEGREES
                          •
         EQOIVAUB
                            POR SET  2
                             101

-------



CAMERA CONSTANT- 81.5200
                     or

ANGLE TOLERANCE -   2.50 DEGREES
                                                                      or
                                         .20.29  (MILLIMETERS)
  REAL CELL CONSTANTS
       A        B        C     -ALPHA     BETA    GAMMA

      9.650     8.790     5.290   90.000   107.400    90.000
   MAXIMUM INDICES ARE   6   5   3
                                                9
 MAXIMUM DIMENSIONS OF ARRAYS ARE      32
-PROHIBITED REFLECTIONS FOR THENCE CENTRED CELL T» C HAVE BEEN OMITTED
  NO IDENTIFICATION
                      *************>»***
                                      .102

-------





        Milg51 OF 55
              2-50
MEASUSED
   30.80
 22S2—
MAXIMUM INDICES
               ARE  6  10  3
                                70   20
                              103

-------
SET  1
******

POINT

  1
  2
  3
  4
  5
                        Q
         ZONE AXIS [ -4 -1 -1]
         *********************
                                      NO"SYMMETRICALLY EQUIVALENT SOL'NS)
            PLANE
                           DSPACE     ESTIMATED DSPACE FROM DIFF, PATTERN
( -2
( -1
   0
   1
                8
                5
          (
          (
          (  2-8
                  0)
                 -1)
               2-2)
              -3 -1)
                  0)
2.020
2.706
2.482
3.858
2.020
2.012
2«710
20482
4o<
2.008
 BEST FIT CAMERA CONSTANT USED IN ABOVE

                          •

MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS
                                             SPACINGS
                                             CONSTANT
                                                      0.031
                                                                  81*502
                                                                  81,520)
ANGLE  BETWEEN PLANES  1 &  2
ANGLE  BETWEEN PLANES  1 &  3
ANGLE  BETWEEN PLANES  1 5  4
ANGLE  BETWEEN PLANES  1 &  5
                               30.74  (MEASURED  30.80) DEGREES
                               69. 6  (MEASURED  69.70) DEGREES
                              133.23  (MEASURED  133.30) DEGREES
                              180.00  (MEASURED  180.00) DEGREES
SET  2
******

POINT

  1
  2
  3
  4
  5
           ZONE AXIS ['"4 ^1  13
           *********************
              PLANE
                           ( NO SYMMETRICALLY EQUIVALENT SOLANS)


                   DSPACE   •  ESTIMATED DSPACE FROM DIFF. PATTERN
           (280)       2=020
          'X "I  5  1)       2.706
           (022)       2.482
           ( -1 -3  1)       3.858
           ( -2 -8  0)       2.020
                                        2.012
                                        2.710
                                        2.482
                                        3.874
                                        2.008
  ,ESI PIT CAHE** COMSTAHT OSED IH ABOVE
                                                                    81.502
                                                                    81.520)
 HEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.051 MILLIMETRES
  ANGLE BETWEEN PLANES 1 & 2
  ANGLE BETWEEN PLANES 1 & 3
  ANGLE BETWEEN PLANES 1 & 4
  ANGLE BETWEEN PLANES 1 & 5
                                 30.74  (MEASURED  30.80)  DEGREES
                                 69.66  (MEASURED  69.70)  DEGREES
                                133.23  (MEASURED 133.30)  DEGREES
                                180.00  (MEASURED 180.00)-DEGREES
                                     104

-------
SET  3    ZONE AXIS [  3-1  6]
******  -  *********************
POINT

  1
  2
  3
  4
             PLANE
                        ( NO SYMMETRICALLY EQUIVALENT SOLANS)


                DSPACE     ESTIMATED DSPACE FROM DIFF, PATTERN
(
(
(
             4
             3
             2
          ( -I
          (-4
    0-2)
    3 -1)
    60)
       1)
                02)
                           1.984
                           2.684
                           2.517
                           3,858
                           1.984
                                     2.003
                                     2.697
                                     2.471
                                     3.856
                                     1.999
                                           SPAC1NGS
                                           CONSTANT
                                                                    81.134
                                                                    81.520)
 BEST FIT CAMERA CONSTANT USED IN .ABOVE


MEAN DEVIATION OF MEASURED SPOTS .FROM TRUE POSITIONS - 0.229 MILLIMETRES
  ANGLE BETWEEN PLANES 1*2- • 29.86
  ANGLE BETWEEN PLANES 1*3-  69.06
  ANGLE BETWEEN PLANES 1 & 4 - I34-3*
  ANGLE BETWEEN PLANES 1 & 5 - 180.00
                           (MEASURED  30.80)  DEGREES
                           (MEASURED  69.70)  DEGREES
                           (MEASURED 133.30)  DEGREES
                           (MEASURED 180.00)  DEGREES
SET  4
******

POINT

  1
  2
  3
  4
  5

  BEST
           ZONE AXIS  [ -3 -1 -6]      ( NO SYMMETRICALLY EQUIVALENT SOLANS)
           *********************
                             DSPACE     ESTIMATED DSPACE  FROM DIFF. PATTERN
C

(
(
(
   PLANE

   4   0 r2)
   3  -3 -1)
   2-6  0)
      3  1)
      02)
              -1
              -4
                             1.984
                             2.684
                             2.517
                             3.858
                             1.984
                                         2.003
                                         2.697
                                         2.471
                                         3.856
                                         1.999
CAMERA COHSIAST USED
                                                         gjgg
                                                                     81.134
                                                                     81.520)
  MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.229 MILLIMETRES
    ANGLE BETWEEN  PLANES  1 & 2 -  29.86
    ANGLE BETWEEN  PLANES  1 & 3 -  69.06
    ANGLE BETWEEN  PLANES  1 & 4 -  134.31
    ANGLE BETWEEN  PLANES  1 & 5 -  180.00
                            (MEASURED  30.80) DEGREES
                            (MEASURED  69.70) DEGREES
                            (MEASURED  133.30) DEGREES
                            (MEASURED  180.00) DEGREES
                                       105
                                                                                    	   1

-------
CAMERA CONSTANT- 81.5200
   m             - 0.300
   +/- 5.0 PERCENT OF DIFF. DISTAKCE

DIFFBACTED DISTANCES OF SPOTS ARE
    20.25     15.04 •    ib.*»A     j.u..»*

ANGLE TOLERANCE -  2.50 DEGREES

MEASURED ANGLES BETWEEN SPOTS ARE     Q
    30.80    - 69.70    133.30    180.00
                                                   .(MILLIMETERS)
  REAL CELL CONSTANTS

       A        B        C      ALPHA     BETA    GAMMA

     9.820   17.960    5.270   90.000  104.330   90.000



  MAXIMUM INDICES ARE   6  10   3


  ' MAXIMUM DIMENSIONS OF ARRAYS ARE       74  '  26     74

  PROHIBITED REFLECTIONS FOR THE FACE  CENTRED CELL TYPE C HAVE BEEN OMITTED

  4 SETS OF POSSIBLE fcONE  AXES  INDEX WITHIN SPECIFIED LIMITS
                                      106

-------
SET
***4

POINT
        2ONE AXIS  t -< -1 -II     C NO S^ZTRICAm EQUIVALENT SO.'NS)

        *********************
           PLANE
                          DSPACE     ESTIMATED DSPACE FROM DIFF. PATTERN
1
3
A
•$
5
( -2 8 0)
(-15 -1)
( 0 .2-2)
( 1 -3 -1)
( 2-8 0)
2*030
2=701
2.456
3.860
2.030
                                                2eOU
                                                2*708
                                                2.480
                                                3.871
                                                2.007
BEST FIT CAMERA CONSTANT USED IN ABOVE
    nEvUTION 0,
ANGLE BETWEEN PLANES 1 & 2
ANGLE BETWEEN PLANES 1 ft 3
ANGLE BETWEEN PLANES 1 ft 4
ANGLE BETWEEN PLANES 1 & 5
                                31.02  (MEASURED  30.80) DEGR^S
                                M 58  (MEASURED  69.70) DEGREES
                               Ist.H  (M^URED 133.30) DEGREES
                               180.00  (MEASURED 180.00) DEGREES
                                                                    81.448
                                                                    81.520)
SET  2
******

POINT
            ZONE AXIS [  4-1.11
            *********************
               PLANE
                                    ( NO SYMMETRICALLY EQUIVALENT SOLANS)
                              DSPACE  "   ESTIMATED DSPACE FROM DOT. PATTERN
»

3
4
5
(
0 \
(
*
(
(
(
2 8
1 5
0 2
-1 -3
-2. -8
0)
1)
2)
1)
0)
2.030
2e701
2.456
3 i860
2.030
                                                 2.011
                                                 2.708
                                                 2.480
                                                 3.871
                                                 2.007
  BEST FIT CAHERA CONSTANT »SED IN ABOVE
SPACINGS -
CONSTANT -
                                                                      81.448
                                                                      81.520)
      DE»IATION OF XEASTCED SPOTS. FRO* TRUE POSITIONS - 0-162 MILL^RES
  ANGLE BETWEEN PLANES 1*2-
  ANGLE BETWEEN PLANES 1 & 3 -  JJ-g
  •MS BETWEEN PLANES 1 ft 4 - 132.56
  ANGLE BETWEEN PLANES 1 & 5 - 180.00
                                  11 02  (MEASURED  30.80) DEGREES
                                     "  (MEASURED  69.70) DEGREES
                                         (MEASURED 133.30) DEGREES
                                         (MEASURED 180.00) DEGREES
                                      107

-------
0*  3    ZONE AXIS [  3-!  61     C» .^imHUU EQUIVALENT SOL'HS/

******    *********************
POINT

  1
  2 '
  3
  4
  5
            PLANE

         ,.  4  0 -2)
         C  3  3-D
         (260)
         (-131)
         (-402)
                            DSPAGE     ESTIMATED DSPACE FROM Mff. PATTERN
                           2.005
                           2.721
                           2.534
                           3.860
                           2o005
                                               2.018
                                               2«718
                                               2.489
                                               3.885
                                               2.014
 BEST IB CAHEKA «•»« 'USED IN ABOVE «««•£»
                                                                  81.746
                                                                  81.520)
                OF .SASUKED SPOTS FROM «E "smoHs - ,a»
ANGLE -BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
ANGLE BETWEEN PLANES
                       1 & 2
                       1 & 3
                       1 & 4
                       1 & 5
                              30..26   (MEASURED  30.80)  DEGREES
                              69  79   (MEASURED  69.70)  DEGREES
                             ill  37   (MEASURED 133.30)  DEGREES
                                  )_ (MEASURED 180.00)  DEGREES
SET  4
******

POINT

  1
  2
  3
  4
. 5
           ZONE AXIS  [ -3 -1 -61
           *********************
               PLANE.

           "(40 -2)
            (  3 -3 -1)
           -(  2 -6  0)
            ( -1 -3  1)
            (-402)
                                    (  NO SYMMETRICALLY EQUIVALENT SOLANS)


                            DSPACE     ESTIMATED DSPACE FROM DIFF. PATTERN
                            2.005
                            2.721
                            2.534
                            3.860
                            2.005
                                                 2-
                                                 2.718
                                                 2.489
                                                 3.885
                                                 2.014
                                                         SPACES
                                                                   81.746
                                                                   81.520)
 BEST FIT CAMERA CONSTANT USED IH ABOVE


MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.178 MILLIMETRES
   ANGLE BETWEEN PLANES  1 & 2
   ANGLE BETWEEN PLANES  1 & 3
   ANGLE BETWEEN PLANES  1 & 4
   ANGLE BETWEEN PLANES  1 & 5
                                30.26  (MEASURED  30.80)  DEGREES
                                69.79  (MEASURED  69.70)  DEGREES
                               134.37  (MEASURED 133.30)  DEGREES
                               180.00  (MEASURED 180.00)  DEGREES
                                      108

-------
 FIBER 3  PATTERN 30                        ^^
*************************************************
*************************************************
*************************************************

CAMERA CONSTANT- 81.5200

POSITION TOLERANCE - 0.300 MILLIMETERS (MINIMUM OVER-RIDING TOLERANCE OF
   +/- 5.0 PERCENT OF DIFF. DISTANCE PREVAILS

DIFFRACTED DISTANCES OF SPOTS ARE                  /.mTTiraBSl
    20.25     15.04     16.42     10.52     20.29  (MILLIMETERS)

ANGLE-TOLERANCE «  2^50 DEGREES

MEASURED ANGLES BETWEEN SPOTS ARE
    30.80   .  69.70    133.30    180.00
*************************************************


 REAL CELL CONSTANTS

      A        B        G      ALPHA     BETA    GAMMA

    9.750   18.000    5.300   90.000   103.000    90.000


 MAXIMUM INDICES ARE    6   10   3


 MAXIMUM DIMENSIONS OF  ARRAYS ARE       74    24     74

 PROHIBITED REFLECTIONS FOR THE FACE  CENTRED CELL  TYPE  C HAVE BEEN OMITTED

 3  SETS  OF POSSIBLE ZONE AXES INDEX WITHIN SPECIFIED LIMITS
                                    109

-------
„  i    zom AXIS l  4-1  il     <« ,1 «•• 2 «"• E"oiv- SOt'l'S)
******    *********************          •-•'.••
POINT        PLANE      "    DSPACE     ESTIMATED DSPACE FROM DIFF0 PATTERN
  1       C  2  8  0)       2.033
  2     '  5  i  5  £?       1 482      *          2.4SO
  3       C  0  2  2)       2.482                3e887
  A       ( -1 -3 ' 1)       3.858
  *»       v  *  _  rt%            '
  5       ( -2 -8  0)
      PH OIIHL CONSTAW OSED IK ABOVE •S^^S-O^D «
 S1JMMETRICALLY EQUIVALENT SOLUTIONS FOR SET  1
                                               3
  [-4-1-U  (-2  8  0)(-1  5-IX  0  2-2X  1 -3 -U C  2"  0)
 30  2    ZONE AXIS [  3-1  61     (SET  2 HAS  2 SU*. ECJUIV. SOL'NS)
 ******    *********************
 POINT        PLANE          DSPACE     ESTIMATED DSPACE FROM DIFF. PATTERN
   !       (40-2)       1-985                2-°°9
   2       (33-1)       2.697                2.704
   3       (260)       2.536                |"^7
   t       ( -i  3   1)       3.858        '        3c866
   5       (5  0   2)       Io985                2-005
   BEST  FIT CAMERA CONSTANT USED IN ABOVE EST^ATES^OF^ SPACINGS -  81.34^




  SYMMETRICALLY EQUIVALENT SOLUTION'S FOR SET  2
    ZONE AXIS     POINT^    POINT 2     POINTS-    POINT 4     POINTS
   [-3-1-6]  (  4 0-2)(   3 -3 -DC  2-6  0) ( -1 -3   I)  (.-4  0  2)
                                      110

-------
SET  3
******

POINT

  1
  2
  3
  4
  5
ZONE AXIS [
************
PLANE,
( -1 -9 0)
( Q -6 -1)
( 1 -3 -2)
( 1 3-1)
( 1 90)
9 -1 6]
*********
DSPACE
1.957
2*594
2.422
3*858
1.957
                                    (SET -3 HAS  2 SYMM« EQUIV. SOL'NS)


                                       ESTIMATED DSPACE FROM DIFF. PATTERN
                                                 Ie967
                                                 2,648
                                                 2.425
                                                 3o786
                                                 1.963
                                                                   79.647
                                                                   81.520)
 BEST FIT CAMERA CONSTANT USED IN ABOVE
                                         V-UNtfUi WtanBiut.

MEAN DEVIATION OF MEASURED SPOTS FROM TRUE POSITIONS - 0.318 MILLIMETRES
 ANGLE BETWEEN PLANES 1 & 2 -  29.61  (MEASURED  30.80)
 ANGLl BETWEEN PLANES i & 3 -  67.30  (MEASURED  69.70  DEGREES
 AN6LF BETWEEN PLANES 1 & 4 - 132.71  (MEASURED 133.30) DEGREES
 ANGLE BETWEEN PLANES 1 & 5 - 180.00  (MEASURED 180.00) DEGREES

SYMMETRICALLY EQUIVALENT SOLUTIONS FOR SET  3

  ZONE AXIS     POINT 1     POINT 2     POINT 3     POINT 4     POINT 5

 [ .9 -i -6]  ( -1  9  0) (  0  6 -1) (  1  3 -2) (  1 -3 -1) (1-90)
                                     111

-------
                       "                   9      —-                                           J
 .       PROGRAM j^^ TO M^TCH ^^ pEARg WI±H ELEMENTS OF MATERIALS                      •
C                 IN FILE DIFDAT.
C       WRITTEN BY W.R. STOTT, DEFT OF APPLIED PHYSICS
C        ' ONTARIO RESEARCH FOUNDATION, MISSISSAUGA, ONT., CANADA
C         1982 MAY 5
        REAL*8 NAME(4),FORMUL(6)          , I ,„«./,«n\   '
        INTEGER ELEM(8) ,SYM,ELEMS(8) ,MANEL(8) .""SSi0?)
        REAL LOWER(8),UPPER(8),A,B,C,ALPHA9BETA,GAMMA,AREAS(8)
     &   ,FQUAN(4,7),PRATIO(7),CON(8),PARTIC(20),RATIO(8)
        BYTE ANSWER
        DATA IELEM/10*0,1,2,3,5*0,4,5,4*0,6,7,74*0/
        DATA FQUAN/0.384,0.386,0.422,Oi447,
     &          1.319,1.343,1.324,1.373,
     &          1.023,1.046,1.113,1.113,
     &          0.236,0.236,0.236,0.234,
     &          1.085,1.086,1.046,0.998,
     a          0.497,0.494,0.468,0.442,
    . &          Oo470,0.467,0.442,0.388/           -
        DATA PRATIO/.11,0.756,0.772,0.255,ia48,0.419,0.421/
C       FQUAN ARE QUANTITATIVE,CONSTANTS FROM MEASURED STANDARDS.
C       IN ORDER TO OBTAIN QUANTITATIVE RESULTS, THE X-RAY PEAK
C         AREA RATIOS. TO SILICON FROM THE STANDARDS (AS LISTED
C         IN THE METHODOLOGY MANUAL ,TABLE 2) ARE REQUIRES.
C         THE PEAK AREA RATIOS THAT ARE OBTAINED ON YOUR INSTRUMENT
C         ARE ENTERED INTO THE DATA. STATEMENT PRATIO FOR THE SEVEN
C         ELEMENTS IN ORDER.
C      '   NA,MG,AL,K,CA,MN,FE    '                         .
        OPEN(UNIT-1,NAME-'DIFDAT.',TYPE-'OLD'.READONLY)
        OPEN(UNIT-2,NAME-'MATMIN.',TYPE-'NEW')
        IPTR-5                        .
        URITEdPTR* 510)
 510   • FORMATC ENTER PARTICLE IDENTIFIER (80 CHARACTERS)',//)
        READ(5,520) (PARTIC(I),1-1,20)
 520    FORMAT(20A4)   .
 con    WRITE C TPT8. J5AO)
 540    FORMATC ENTER ELEMENT SYMBOL  (2 LETTER),SPACE,X-RAY PEAK AREA",
     &   '  (IF AVAILABLE)',/,' ENTER    END    TO FINISH   V
     &   '(8 ELEMENTS  MAXIMUM)',//)
         SIPK-0.0
         NUMPK-0
 550        READ(5,560) SYMBOL,ADATA
 560        FORMAT(A2,1X,F8.0)
            IF(SYMBOL.EQ.'EN')  GOTO 570
            NUMPK-NUMPK+1
            IFLAG-0
            ELEMS(NUMPK)-ITOMNR(SYM]JOL,IFLAG)
            U(IFLAG.EQil)  GOTO 530
            AREAS(NUMPK)-ADATA
            IF(ELEMS(NUMPK).EQ.14)  ISIPK-AREAS(NUMPK)
            GOTO 550
  570    IF(SIPK.EQ.O.O)  GOTO 590

                                    112

-------
580
590
 593

 595

 596

 597
C
 600
 620
  630
 G
  650
                         or WTW-  (MXCKOHETERS,-)
    R£AD(IPTR,*)WIDTH
    IWIDTH-1
    IFCWIDTHcGE.0.25) IWIDTH-2                     •
    mWIDTH.SE»O.S) IWIDTH-3
    IF(WIDTH.GE.UO) IWIDTH-4
    IFCNUMPK.EQ.O) GOTO 730
       DO 595 I-1,NUMPK
       K-IELEM(ELEMS(D)
653
655
          GOTO  595

     BO 620 I-l.NUMPK
     MANELCD-0
        NUMMAN-0
        SIATOM-100.0
         CONTISlRACT MANDATORY ELEMENTS
       DO 650 1-1,4            ,
       IF(ELEM(I).LT.11)GOTO 650
       tTOMMAN-NUMMAN+l
       ELEM(NUMMAN)-ELEM(I)
       CONTINUE
                  GET SEW MATERIAL IF NOT MATCHED
            DO 660 J-1,NOMMAN
               DO 655 I-1,NUMPK
               K«I
               K1«IELEM(ELEMS(I))
               IFCSIPK.EQ.O.O.OR.K1.EQ.O) GOTO 653
               CONORATIOU)*SIATOM
               IF(ELEM(J).EQ.ELEMS(I))  GOTO 658
               CONTINUE
             IF(LOWER(J).NE.O.O)GOTO 600
             NUMNOT-NUMNOT4-1
             IF(NUMNOT.GT.1)GOTO 600

                                      113.
                                                                                           •V   4

-------
           GOTO 660
 658       IFCSIPK.EQ.O..O.OR.K1.EQ.O) GOT© 659
           CONLIM-0.2   '
           IF(ELEM(J).EQ.11)CONLIM-0»S               •
           IF(CONC.LT.
-------
420    FORMAT(1X,6F7.3,I1)
       END
     FUNCTION HOMNR(SYMBC_,
     INTEGER SYMBOL,CS<100),
     DIMENSION NUMC17''
     DATA CS/' H't'HE
          'AL'.'SIV
4'SR^

S'GD'
&'»'

&'B  '
&*n  '
      'FEVCO
      ' Y','ZR'
      •TEV I'
      'FT' /AC'
      'PA'/ U'
                    'Nl'
                    'NB'
                    '3CE*
                    'HO'
                      HG*

                       S'
'CU*
'MO'
'CS'
'ER'
'TL'
IA0 a  — a    -
'CL'/AR'/ K
'ZNVGAVGE'

"**"•'**/£.
'BA'/LA'/CE'
'TK'.'Wt'W
•PB'.'BI'.'W
'AMVCMVBK'
              '
«',' o','
'CA'
'AS'
'PD'
'PR'
'HF'
'SEVBR'
'AG'/CD'.
'ND' ,'FM'
'TAV W
                                   r.'NA ,
                                     V
                                    KR'
'IN'
'SM'
'RE'
'RA'
                                                              '
                                                             'CR*
'SN'
'EU'
'OS'
'AC'
                                                                  'W
              .           TO 3
  CONTINUE
  S(|^MBOL!EQ.SS(I)) GO TO 4
2 CONTINUE
                             FOR
  IFLAG-1
  RETURN
   I-NUM(I)
 5  ITOMNR-I
   RETURN
   END
                                   115

-------
C *     A COMPUTER PROGRAM FOR THE INDEXING ^LECTRON DIFFRACTION
C *     SPOT PATTERNS BY B.L. RHOADES - DEPARTMENT OF MECHAMICAL-
c ?     ^SNEER^ UNIVERSITY OF CANTERBURY.  NEW ZEALAND

§ *     MODIFIED BY W.R. STOTT TO CHAIN WITH AMPHZBOLE IDENTIFICATION

g         pROG8AfYM is raj? M1^ S
C                 REFLECTIONS

C               0 FOR PRMITIVE CELL TYPE P   '
c               1 FOR ALL FACES CENTRED TYPE F
c               2 FOR BODY CENTRED CELL TYPE I
C               3 FOR A FACE CENTRED CELL TYPE  A
C               4 FOR B FACE CENTRED CELL TYPE  B
C               5 FOR C FACE CENTRED CELL TYPE  C
r               6 FOR OBVERSE RHOMB (HEX CELL)  TYPE  R
C               7 FOR REVERSE RHOMB (HEX CELL)  TYPE  R
      INTEGER READR,PRINTR,H,HMAX,PM'AXtQMAX8

     & P.,Q,R,ELEM(8)
      DOUBLE PRECISION DSQ2,DSQ48RDR
      DOUBLE PRECISION A,B,C9PI180,V,DMAX,DSQ,ASTAR,BSTAR
      DOUBLE PRECISION CSTAR.SINA,SI.NB,SING,COSA,COSB4COSG,COSAS
      DOUBLE PRECISION COSBS,COSGS,AH,A12,A13,A22,A23,A33,DMIN

        DIMENSION 1H(5),IK(5.),IL(5J
        VIRTUAL RADIX(5,50).DISTIX(S,50)       «.-.»,,,
      VIRTUAL RAD(3,801),IND(3J3S801),DISTX(5),DISTN(5)  .
        REAL LOWER(8) ,UPPER(8) ,PARTIC(20)
        REAL*8 NAME,FORMUL(6)
        BYTE ANSWER
        IRAD-3
        JRAD-801
        IRADIX-5                 .
        JRADIX-50
        IFLAG-0
      AMTOL-OoOS
      PAMTOL"AMTOL*100.
      ANGTOL-2.5
      DPR-57.295780
    12 PI180-3.1-41592653S897932/180.
        OPEN(UNIT-2 , NAME-' XINDEX' ,TH»E-' NEW )
        OPENCUNIT-3 ,NAME-'MATMIN. ' ,TYPE-' OLD' .READONLY)
        OPEN(UNIT-4,NAME-'MATPAT.',TYPE-'NEW')            *
        OPEN(UNIT-1 ,NAME-'MATPAU. ' .TYPE-' NEW' )
         PRINTR-2
         IFILE-4
         IPAT-0
         WRITE(5,640)                                     .

                                    116    '

-------
 640    FORMAT(1X/               POSSIBLE SOLUTIONS' J,
     &   10X/MINERALM8X/CELL CONSTANTS',//)
        NUMMAT-0
        READ(3,401) (PARTIC(.I),I-1,20),NUMPK
 401    FORMAT(1X,20A4,I4)
        READ(3,401)
599     READ(3,400,END-610)(NAME(I),I-1,4),(FORMUL(I),I-186)
        READ(3S410,END-610) (ELEM(I),LOWER(I),UPPER(1),1-1,8)
       •READ(3,420,END-610) A,B8C,ALPHA,BETA,GAMMA8SYM
 400    FORMAT(1X,10A8)
 410    FORMAT(1X,8(I2,2F5.2))
 420    FORMAT(1X,6F7.3,I1)
        WRITE(5,430) (NAME(I),1-1,3),A,B,C,ALPHA,BETA,GAMMA
 430    FORMAT(1X,3A8,6F7.3)
        NUMMAT-NUMMAT+1
        GOTO 599                                             *
 610    IF
-------
  120 .LE-3
  130 LES-LE-1
                                              .

408     SAT?/,' FOUR ANGLES BETWEEN SPOTS. '.$>
                     NGLES(MM) ,MM-I ,4)

                     5r.O.O) ANGLES(r)-ANGLES
-------
   6 DISTMX-DISTX(I) .                  -•-
   8 ScSlSI«?«.DISTtt»>> GO TO 9
     DISTMX-DISTX(N)
   9 CONTINUE
     DMIN-CAMCO/(2.*DISTMX)
     DMIN-DMIN*DMIN


   .
       ****GENERATE RECIPROCAL VECTORS
C*                  .
      PMAX-0
      BMAX»0
      TMAX-0
      LIST3-0
      NHMAX-2*HMAX+1
      DO  72 NH-1,NHMAX
      H-(HMAX<-1)-NH
      DO  74 NK-1 ,
       DO 75 NL-1,NLMAX
       L-CLMAX-^P-NL        "^   so.o) GO TO is
       CALL'PROHIB (SYMI,H,K,L,INC)                           •
         IF(INC-l) 17,73,73
    15 LIST3-1       .                 .  '                 •                                   ,M
         RDR-DSQRT(DSQ)
         D"SNGL(1.0/RDR) ,
       RADI-CAMCO/(2.*D)
       DO  70  N«l,5,2
       IFCRADI-DISTN(N)) 70,19,19
     19 IFCRADI-DISTX(N)) 20,20,70
     20 IF(S-l)  40,21,22
     21 PMAX-PMAXH-l
       M-PMAX
       GO TO 40
     22 IF(N-3) 40,25,26
     25 IFCLIST3.EQ.1) GO TO 70
        RMAX-RMAX+1
        M-RMAX
        GO TO 40
     26 TMAX-TMAX*!
        M-TMAX  •
     40 NN-(W-l)/2
        IND(NN,1,M)-H
                                       119

-------
      IND(NN,2,M)-K                .       . -.
      IND(NN,3,M)-L                      -  .
      ^pECT?800.0R.BMAX.CT.800.C)R.TMAX66f 0800)  60

   70 CONTINUE
   73 CONTINUE
   75 CONTINUE
   74 CONTINUE
   72 CONTINUE
      GO TO 71
 2018 WR1TE(5,218)
      GO TO 10

C*     ****FORMAT STATEMENTS
C*
  101 FORMATC20A4)
C  102 FORMAT(F8.4,F6»3,I1)
C  104 FORMAT(3F10.3,3F10.2)
C  105 FORMAT(Il)
C  106 FORMAT(4F8e2)
  107 FORMAT(I1,9A8)
 108    FORMAT(Al)
                                                    TO 2018
C*
  71
     ****FORMAT STATEMENTS - OUTPUT .

201 FORMAT('1',2X,20A4)



    WRITE(PRINTR,201) (PHOTO(N),N«1,20)
    WRITE (PRINTR,221)
  ' WRITE (PRINTR,221)
    WRITE (PRINTR,221)
    WRITE(PRINTR,202) CAMCO
    WRITE(PRINTR,203) TOL.PAMTOL
    WRITE(PRINTR9204) (DIST(K) ,K-1 ,5)
    WRITE(PRINTR,219) ANGTOL
    'WRITE(PRINTR,220)  (ANGLES(MM) ,MM-1 ,4)
    WRITE(PRINTR,205)  (NAME(N) ,N-1 ,4)
    WRITE(PRINTR,221)
    WRITE(PRINTR,206)
    WRITECPRINTR.207)  A,B,C,ALPHA,BETA,GAMMA
       WRITE(PRINTR,532) HMAX,KMAX,LMAX   :
     WRITE(PRINTR,208)PMAX,RMAX,TKAX
     GO TO (38,31,32,33,34,35,36,37) ,SYMI
  31 WRITE(PRINTR,5"34)
     GO TO 38
  32 WRITE(PRINTR,535)
     GO TO 38
  33 WRITE(PRINTR,536)
     GO TO 38
  34 WRITE(PRINTR,537)  ^

                                   120

-------
      GO TO 38
   35 WRITE(PRINTR,S38)               -  -
      GO TO 38
   36 WRITE(PRINTR,539)
      GO TO 38
   37 WRITE(PRINTR,540)
   38 IF(DIST(4)) 43,43,44
   43 IF(PMAX.EQ.O.OR.RMAX.EQ.O) GOTO 1007
   44 IF(PMAX.EQ.O.OR.RMAX«EQ.O.OR.TMAX.EQ.O) GOTO 1007
C*
g*     ****EORMAT STATEMENTS ——OUTPUT
C*
 202    FORMAT(/,' CAMERA CONSTANT-',F8.4)
  203 FORMATC// POSITION TOLERANCE -'.F6.3.' MILLIMETERS (MINIMUM ,
     &' OVER-RIDING TOLERANCE OF',/,'    +/- ',F3.1,
     4* PERCENT OF D1PF. DISTANCE PREVAILS')
  204 FOBMAK/,' DIFFRACTED DISTANCES OF SPOTS ARE ,/,5F10.2,
     &  (MILLIMETERS)')
 206     FORHAIC/MX,' REAL CELL eoNSTANTS'//7x,'A't8x,'B',8x, c .
  •   &6X,'ALPHA',5X,'BETA',4X,'GAMMA'/)
  207 FORMAT(1X,6F9.3)
  208 FORMAT(//,1X,' MAXIMUM DIMENSIONS OF ARRAYS ARE   ,516)
  219 FORMAT(// ANGLE TOLERANCE - ',F5.2/ DEGREES')
  220 FORMAT(/,' MEASURED ANGLES BETWEEN SPOTS ARE',/,4F10.2)
  221 FORMAT(' *************************************************')
  532 FORMAT(//,2X,19HMAXIMUM INDICES ARE.3I4)
 534     FORMAT.(/,1X/ PROHIBITED REFLECTIONS FOR THE FACE CENTRED ,
     &' CELL TYPE F HAVE BEEN OMITTED')
  535 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE BODY CENTRED',
     '&' CELL TYPE I HAVE BEEN OMITTED')
  536 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED',
     &' CELL TYPE A HAVE BEEN OMITTED')
  537 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED  s
     &' CELL TYPE B HAVE BEEN. OMITTED')
  538 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE FACE CENTRED',
   •  &' CELL TYPE C HAVE BEEN OMITTED')
  539 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE OBVERSE RHOMBO'
     S'HEDRON (HEXAGONAL CELL) TYPE R HAVE BEEN OMITTED')
  540 FORMAT(/,1X,' PROHIBITED REFLECTIONS FOR THE REVERSE RHOMBO'•
     S'HEDRON (HEXAGONAL CELL) TYPE R HAVE BEEN OMITTED')
C
e       ******* DETERMINE INDICES OF POIN* '2'
C
      DO 1002 I-l.PMAX
      DO 1003 K-l.RMAX
      2HB-( IND( 1,1, IHIND( 2 ,1 ,K) )/2.
    .  NHB-ZHB
      AZHB-NHB
       IF(ZHB-AZHB)  1003,96,1003
   96  ZKB-(IND(.l,2,IHIND(282,K))/2.
       NKB-ZKB
       AZKB-NKB

                                    121

-------
      IF(ZKB-AZKB) 1003,97.1003
   97 ZLB-(IND*NKD*M2-HfflD*NLD*A134«KD*Nia)*A22-HIKD*
     SNLD*A23«JLD*NLD*A33.
      D4-SNGL(DSQRI(1./DSQ4))
      RADI4-CAMCO/.(2.*D4)                    .««.,.«'
      IF.CRADI4.GE.DISTN(4).AND.RADI4.LE.DISTX<4)) GO TO 158
      'GO TO 1001
C*
C*     ****SORT PLANES INTO ARRAYS
C*   -                            .                                 .        . .
   159 L-l      *
   158  IH(1)-IND(1,1,I)

                                     122

-------
      IH(2)-NHB
      IH(3)»IND(2,1,K)
      IH(4)-NHD
      IH(5)-IND<3,1,M)
      lkU)-XHD(l,2,Z)
      IK(2)-NKB
      1K(3)-IND(2,2,K)
      IK(4)-NKD
      IK(5)-IND(3,2,M)
G*
e*
c*
IL(2)-NLB
IL(3)-IND(2,3,K?
IU4)-NLD
IL(5)-IND(3,3,M)

 ****CALCULATE ANGLES BETWEEN PLANES

MM-0
 . 160 IF(DIST(4)) 161,161,162
 - 161 NZ-3
      GO TO 163
  162 NZ-5
  163 DO 170 NN-2,NZ
      S-((IH(II)*IH
     d((IH(II)*IK(NN)+IK(II)*IH(NN))*ASTAR*BSTAR*COSGS))
      T-( (IH(-II)*IH( II)*ASTAR*ASTAR)-K IK( II)*IK( II)*BSTAR*BSTAR)
     &t(IL(II)*IL(II)*CSTAR*CSTARH(2.0*IH(II)*IK(H)*ASTAR*BSTAR*COSGS)
     frH(2. 0*IL( II)*IH( II)*CSTAR*ASTAR*COSBSH<2. 0*IK( II)*IL( II)*BSTAR*
     &CSTAR*COSAS))
      U-((IH(NN)*IH(NN)*ASTAR*ASTARH(IK(NN)*IK(NN)*BSTAR*BSTAR)
     W-(IL
-------
                                                                                        I
     &   RADIX,IRADIX,JRADIX,DISTIX,IOUT,NUMPAT)

 lOOl CONTINUE
 1003 CONTINUE
 1002 CONTINUE
999
 622
        IFCANSWER.EQ*'*') IFILE-1
        IF(ANSWER.EQ."Z') GOTO  11
  9999   CLOSE(UNIT«1)
        CLOSECUNIT-2)
        CLOSECUNIT-3)
        CLOSECUNIT-4)
        CALL EXIT
        END
                                       124

-------
                  gwiTygffwwy*"": •:••.••;•-;'-•.- •  ».•*-•-—••
                               SO^IOHS A. !«» «•»
     INTEGER WB£R    Tm,,s 5Q 50) ,RAD(18AD,JRAB)°8
    DOUBLE PRECISION
      KEAL*8 NAME
                 103(^600,1030
c*
c*
c*
     CALCULATE LOWEST ORDER ZONE AXES







     DO 1033 1-1.3
     IZOd)-IZON(I)
1041 INV-IZO(2)
     IZO(2)-IZO(D
1043 ISV-IZO(3)
     IZO(3)-IZO(2)
      GO TO 1040
 as
      JDIV(IZ)-

      ADIV(IZ)-JDIV(IZ)

 1060 SSS5) .EQ.ADIV(1) .AKD.DIVC2) .EQ.ADIV(2) .AND.DI7(3) .EQ.

     &ADIV(3))GO TO 1063

 1061  CONTINUE
 1063  DO 1070 1-1.3             •
    65
                                                                                               .-I

                                                                                               '."1
                                      125

-------
 1070 -CONTINUE

5     LOAD SOLUTIONS INTO OUTPUT ARRAYS "-


°*    GO TO (100,400,600,400) KONST

  100 KONST-2                 '  '
      DO 110 1*1,50
       KPCD-0                  •
 HO    CONTINUE
      KT-0
   200 SOBMMO) GO TO 208
   900 KONST-4
      GO TO 3SO
   208 KT-KT+l
      KSETS-KSETS+1
      8ADIX(1,KI)-RAD(1,IA)
       RADIX(2,KT)-D2
       RADIX(3,KI)-RAD(2,KA)
      ,RADIX(4,K«-D4
       RADIXC5 ,S3)-
   210

        DISTIX(I,KT)-DIST(I)

   220  CONTINUE
 300  n                  .
5     C^O.UTE M.M, DmmOH OF SPOtS nOH


c*                            :
      DEV(KS)-0.
      DEVSQ(KS)-0.
    • RADTOT-0.
      DISTOT-O.




                -*CAMINC
         GAMM(KS)-CA11CO*CAMINC

         ANGDEV-0.
      55
         ANGDE-ANGDEV/LE
         ANG(1)*0.-ANGDE
         D0'56 N-l.LES

       56
         SPI180))

                                        126

-------
      X2--IL(I)
        RETURN
C*
C*     CHICK FOR SYMMETRICAL EQUIVALENT SOLUTIONS
C*
  400 DO 410 KS-l.KT
      IF(RAD 1160,1160,1150
 1150 B-DEVSQ(I)
      DEVSQCI)-DEVSQ(L)
      DEVSQCD-B
      CAM-CAKXO(I)
      CAMKO(I)»CAMKO(L)                      *          •*

                                    127

-------
CAMKO(L)-CAM
DO 1153 NH-1,3
AR-RADIXCNH.I)
RADIX(NH»I)-RADIXCNM,L)
1ADIX(NH,L)-AR
AB»DISTIX(NH,I>
DISTIXCNM, I)-DISTIX< NH.L)
DZSTZXCKM,L)-AD
DO 1153 KX-U30
 1153
 1154
 1155
 1160

 1140


 1165

C*
C*  .
C*
 1180

 1185


 1210
IHPCNM.KK.D-IHPCHM.KK.L)
IHP(HHSKK9L)-IP
XP-IXP(NH,10C,X)
IKP(NM,KKS X)-IKP(NM,XK,L)
IKP(NM,KK,L)«IP
IP»ZLF(MH,XK,Z)
ILP(HH,KK,I)-ILP(NM,KK,L)
ILPCNH,KK,L)-IP
DO 1154 NN«1,3  .
IQ«IZOS(NN,I)
I20S(NN,I)«IZOS(NN,L)
I20S(NN.L)-IQ
DO 1154 KK-1,50
ZP-IZONES(NN,XK,Z)
I20NES(NN,KK, I)-I20NES(mj:,KX»L)
IZONES(NN,KX,L)-IP
DO 1155 KA-1,4
AA-ANGIX(NA.I)'
AKGIXCNA, I)-ANCIX(HA,L)
ANGIX(NA,L)-AA
KZ-KP(I)
KP(I)-KP(L)
KPCD-KZ
I-(I-M)
IF(I-l) 1160,1149,1149
J-J+1
IF(J-K) 1141,1141,1120
IP (KONST.NE.4) GO TO 1180
KT-30
DO 1165 LS-31,30
KP(LS)-0
GO TO  208

  SORT  ZONEAXES WITHIN BAC3I  SET INTO ORDER

IF(KT.LE.30) GO TO 1185               •
KT-30
DO 1300 KS-1,KT  .
N-KP(KS)
DO 1210 KK-l.N
HSUH(KK)«IZONESC1 ,XK,KSHlZONES(2,KK,KSHIZONES(3,XKeKS)
H-N                                   «           *
                              128

-------
  1220 M-M/2
      XF(M?  1230,1240,1230
  1230 K-N-M
      J-I
  1241 X-J
  1249 L-I+M
      XFCHSUM.LE.IZONES<2,IPZ,KS).A!ID.
     AIZONES(2,IPZ,1CS).LE.XZONES(3,XPZ,KS))CO TO 1290
      GO TO  1293
  1290 DO 1291  NN-1,3
      XP-XZONES(NN,XPZ,XS)
      XZONESCNN,XPZ,XS)-XZONES(NNe1,KS)
  1291 XZONBS(NN,1,1CS)»XP          (
      DO 1292  NN-1,5
      XP»fHP(NN,XPZ,KS)
      XHP(NN,IPZ,KS)-IHP(NN,1,KS)
      XHP(NN,1.KS)«XP
      XP-XKP(NN,XPZ,KS)
      XXPCNN,XPZ,KS)»IKP(NN,1,KS)
      IXP(NN,1,KS)-IP
    • IP»ILP(NN,XPZ,XS)
      XLP(NN,IPZ,XS)»XLP(NNV1,KS)
 1292 XLP(NN,1,KS)-XP
 1293 CONTINUE
 1300 CONTINUE
C*
                                    129

-------
C*     WRITE OUT RESULTS
C*  '
        kSETSS-0                    -  :
      ZF(KSETS-l) 1295,J29S,1294
 1294 WRITECPRINIR,1001) KSETS
 1295 DO 1500 KS-l.KT
       .IFCC-1)**KS.LT.O)WRITECPRINTR,2000)
        XFCC-l)*«KS.CT.O)WRITECPRINTR,2QOl)
 2000   FORMATUH1)
 2001   FPRMATC/////)                  .   ,
      IFCKPCKSM) 1302, 1302, 1301
 1301 WRlTECPR«mU002)R3.CIZONESCNM.l,R3).NN-l,3).KS,KPCKS)
      WRITECPRINTR, 1016)
      GO TO 1305
 1302 WRITECPRINTR,1003)KS.CIZONESCNM,1,KS),NN*1,3)
      WUTE(PtZNTR,1016)
 1305 WRITE(PRINTllt1004)
      00 1308 I-I,LE
      DISTIX(I,JCS)-CAMKO(KS)/C2.*DISTtC(I.KS)}
 1308 HlITS(P»XllT»,1005)t,mPCl, I ,KS) ,1ICPKS)tANCLES(LES)
      IFC IOUT-1 ) 1500, 1395 , 1500
 1395 IFCKPOCS)-LE.l) GO TO 1500
      WRITECPRINTR, 101 1 )£S
      IF(LE-3)1UO. 1396. 1*40
 1396 WRITECPRINTR, 1013)                            •
      DO 1400 I-2.KXMAX
 1400 WRITECPRINTR, 1015)(I20HESCL,I,KS) ,L«1 ,3) .IHPC I ,I,KS) .
     4IKPCi,I,KS).ILPCl.I»KS).IMPC2,I,KS),I»C2,I,KS),
     *ILPC2,I.KS),IHPC3,I.lCS).IKFC3.I,KS),ILPC3,i;iCS)
      GO TO 1500
 1440 WRITECPRINTR, 1012)
      DO 1460 I-2.KKMAX
        KSETSS«KSETSSfl
        ISONESCKSETSS,1)-IZONESC1,I,KS)
        ISONESCKSETSS,2)-IZONESC2,I,XS)
        ISONESCKSETSS,3)-IZONESC3,I.XS)
 1460 WRITECPRINTR,10l4)CI20NESCL,I,KS),>l,3),IHPCl,I,KS),
     4IKPCI,I,KS),ILPC1.I,1CS),IHPC2,I,KS).IKPC2,I,KS),
     MLPC2,I.KS),IHPC3.I.1CS).I1ICPC3,I,ICS),ILPC3,I.KS),
     ftIHPC4.I,KS),IKPC4,I9KS).lLPC4.I.KS),IHPC5,I,lCS),
     tIKPC5,I.KS),ILPC5.I,KS)
 1500 CONTINUE


                                    130

-------
                                   ,,,,«
 1015 FORMATC1H .IX.'C' ,313,')' ,2X,'C',3I3,')*,1X,'C'*
        KSS>KSETS+KSETSS
        WRITECXFILE,4000)CNAMECI).I-l,4),A,BCON,e,ALPHA,8ETA,GAMMA,KSS
 4000   FORMATC 1X.4A8.6F8.3, 14)           • :
        HtITEClFILE,4010)CUZONESCNN,l,KS),NN-l,3),KS-l,KSETS)
        IFCKSETSS.CT.O) WRXTECIPXLE,4010) CCISONESCKN,X),X-i,3)8
     i   KN-l.KSETSS)
 4010   FORMATC1X,3X3)
        IPTR-5
        UKXTE(XPT1,4020) (NAME(I).I-! .4)
        W1XTECIPTI,4030) CUZONESCNN,l,KS),Nll-l,3),lCS-i,lCSETS)
        XFCKSETSS.GT.O) WUTECIPTR.4030)  CCISONESCnf,X),I-l,3),
     &   W1,XSETSS)
 4020   FORMATC 1X.4A8)                                                                       *.
 4030   FORMATC SC IX, T. 313,*!'. IX))                                                         ;
        NUMPAT-NUMPATt-1                                   .                                   '
      KS«0                                                                                   !
      KSETS-0                                               .       •      .                   ,
        RETORM                                                                               :
 1600 URITE(PRXNTRt1017)                     .                                                i
 1000 RETURN                                                                                 ;
C*     FORMAT STATEMENTS—OUTPUT        *                                                  1
•C*                            .                                       '                        i
 1001 FORMATC/,13/ SETS OF POSSIBLE  ZONE AXES INDEX WITHIN "                                <
     6'SPECXFXED LIMITS')     *                                         -
 1002 FORMATC/IX.'SET '.12.'    ZONE  AXIS ['. 313,' !'.                                        '
     &SX/CSET %I2S* HAS '.12.' SYMM. EQOXV. SOL'NS)'}
 1003 FORMAT(/1X,'SBT %X2.'    ZONE  AXIS t%3138'!%
     &SX/C NO SmMETRICALLY  EQUIVALENT SOL%NS)9)
 1004 F08MAT(/.1X,'POINT'.8X.'PLANE',IOX/OSPACE'.SX,'ESTIMA
     *TED ','DSPACE FROM DIFF. PATTERN'/)                                                    -
 1005 FORMATC1H ,2X.Il.7X,'C ,313.')'.6X,F6.3,15X.F6.3)                                      ;
 1006 FORMATC1H ,1X,' ANCLE BETWEEN PLANES 1 6 ',11.                                          J
     *' • '.F6.2,'  (MEASURED '.F6.2.') DECREES')                                            •
 1007 FORMATC1H )                                                                            i
 1008 FORMAT(/,1X,' BEST PXT  CAMERA CONSTANT USED ',                                         4.
     t           'IN ABOVE ESTIMATES  OF D SPA6XNC& • %F7.3)                                 1
 1009 FORMATC 1H ,41X, ' C INPUT  CAMERA CONSTANT • ' , F7^3 , * ) ' )                                   *
 1010 FORMATC/, IX, 'MEAN DEVIATION OF  MEASURED SPOTS ',
    .i           'FROM TRUE POSITIONS » ',F5.3,' MILLIMETRES')
 1011 FORMATC/, IX, 'SnOfETRICALLT EQUIVALENT SOLUTIONS %
     i           'FOR SET %I2)
 1012 FORMATC/, 3X/ZONE AXIS' ,3X.' POINT I'.SX.'POXNT 2',
     tSX, 'POINT 3',5X,'POINT  4*,5X,'POINT 5',/)
 1013 FORMATC/, 3X,' ZONE AXIS* ,5X,' POINT i',5X,'POINT 2'.
     *5X8 'POINT 3',/)
 1014 FORMATC1H »1XS'C',3I3,'1',2X,'C',3X3,')',1X,'C%
 1016 FORMATC IX, *******    ft********************')                                           1
 1017 FORMATC/ » IX, 'NO IDENTIFICATION', /21X,'******************>                              ::
      END                                                                                    ]
                                                                                             i
                                     131

-------
20

400
410
420
SUBROUTINE CELL(NAME,A,B,C,AL!»HA,8ETA,GAMHA,SYM,XGAXN)
REAL*8 KAME(4),A,B,C,FOBMUL(6}
INTEGER ELEM(8),SYM
REAL LOWER(8),UPPER(8),ALPHA,BETA,GAHMA
ICAIN-0
REAOC3,400,EHD-20)(NAMEU}»I«ie4)8
-------

c*
c*
c*
    SUBROUTINE PROHIB (S«H,«tK.LfI»C)

     TEST INDICES AND ELIMINATE PROHIBITED REFLECTIONS

    INTEGER H,SYMX
   13
      LH-ALH
      BLH-U*
61




IS

63

64
66
68
69
70
7S
      KH-AKH
      BIQi-KH
      ZF(AXH.NE.BKH) GO TO 70
      IF(StMI8NE62) GO "TO 68
                     GO T@ 70
                    GO TO 68
      ZFCAXlc.NE.BieL) GO TO 70
      SO TO 68
      AKHL-(H+K+L)/2«
      GO TO 66
      AXHL-(KH.-H)/3.
      GO TO 66
      AKL-CK+U/2
      KL-AJCL
     KHL-AXHL
     BKHL-KHL
     ZF(AXHL.NE.BKHL) GO TO 70
     ZNC-0
     CO TO 75
     INOi
     RETURN
     END
                                    133

-------
c
c
c
c
c
&

«
 200
 201
 700

 710


 206
 210


 260
202
204

280
  PROGRAM ANCDIP
   PROGRAM WRITTEN BY W.R.  STOW,  DBF* Of APPLIES PHYSICS
    ONTARIO RESEARCH FOUNDATION, MISSISSAUCA,  ONT.,  CANADA

  PROGRAM CALCULATES INTER-ZONE AXIS ANGLES
   IS CHAINED  IN SEQUENCE  XMATCH  XIDEM  ANCDIP  RESULT
    ,,,
                     ,BETA,GAMHAePHI.I,J
300
110
        REAL*8 KAME<4),HAKE2C4)
        BYTE ANSWER                   •  .
        OPEN(UNIT»1 8HAME-pMATf AT* ,TYPE-'OLD' .READONLY)
        OPENCUNIT-2 .NAME-"MATFAO' ,TYPE«»'OLD' .READONLY)
        OPEN(UNir-3,NAME-'MATPHI%TYPE«'NEtf')
        OPEN(UNIT-4,NAME-'PHIDAr8TYPE»'NEW*)
        •EADU ,200,END-999)(PHOTO(I) ,I»1 ,26)
 FORHAT(1X,10F8.3)
 READ(2,200,END-999)
-------
         HRITE(4,li2) ANCLE, ANCTOL

         KSS3?^?181*1   '»F8«2.'  ANGULAR TOLERANCE-

  100                                               .
  100    FORMATC/Y         ZONE AXIS ANGULAR DIFFERENCES',//,

          :
      *   »        ,,         -      Oi.Vi.Hl             pill*
         DO 5 I-l,KSBTS              «*»»*.»*             PHX ,/)
         DO 5 J-l.KSETT
         CALL PHZZON
  its
  5
 »
 999    CLOSE(UNIT-l)
        CLOSECUNIT-2)
        CLOSE(UNIT-3)
        CLOSECUNIT-4)
        CALL EXIT
        END
        SUBROUTINE PRIZON
a
C       THE INTER-ROW ANCLE FORMULA IS FROM THE BOOK
C          INTERNATIONAL TABLES FOR X-RAY
                                                   «*

        ALPHA1»ALPHA*CON                                   •
        BETA1«BETA*CON

        GAMMA1-GAMMA*CON

        PHICOS-UC I) *Ul( J)*A*A4V( I)*V1 ( J)*B*B4W( I)*W1 f J^*C*C

          +CV(I)*Wl(JHWCI)*VIU))*B*C*COS(ALPHAO
          •KW(I)*Ul(J)+U(I)*tfl(j»*c*A*COS(BETAl)
          •KU
-------
       IF(PHICOS.GT.i.O) PHICOS-1,0
       PHI"ACOSI(PHICOS)'/CON
       RETURN                 •           -.
       END                       .
       FUNCTION ACOSI(X)
       DOUBLE PRECISION SX,X,ACOSI
       SX-DSQRT(UO-X*3C)
       IF(SX.NE.O,0) GOTO 10
       AC03I«0»0
       IF(X.LK.-l.O) ACQSI-3.141592653389793
       XETUIN
10     AC03I.3.1415926535«9793/2.0- DATANCX/SX)
       RETUUf
       END
                                    136

-------
         PROGRAM RESULT
C
C        OUTPU* ROUTINE FOR AMPHIBOLE IDENTIFICATION
C          PROCEDURE,  PROGRAMS RUN IN SEQUENCE
C              XMATCH   XIOEN  ANGDIF  RESULT
         REAL*8 NAMEC4),FORMUL(6)
         REAL LOUER(8),UPPBR<8).DISTC5),AHGLCS(4),OAT{3),PARTIC(20),AREAS(8)
         REAL PHOTQ<20) ,PHOT02(20) ,RAno<8)
         INTEGER ELEM(<<).IZONES(3,1.SO),ELEMSC8),SYM
         BYTE SYMI
C
         IPTR-2         '
         NOSOL-0
         CALL OATE(DAT)
         OPENCUNIT-l.NAME-'MATMIN'.TYPE-'OLD'.READONLY)
         OPEN(UNW-2.NAME-'RESULTSTYPE-'NEW*)

         REA3U.130) (PARTICC1).1-1.20).NUMPK,WIDTH,(RATIOCI),1-1.NUMPK)
         READ(1,140) (JSLEMS(I),AREAS
-------
  20     READ(l,2QO,END-29) (PHOTO(Z)*Z«i,20)
         NOSOL-NOSOIH-1 '
         BEADU .20l)(AHGLES(I) ,Z«l .4) ,<0ZST(Z> ,1-1 ,5) ,CAMCO
         ZFCZFAGE.EQ.1) GOTO 21
     .    WBITBCZFTI.SOO) oZ-l,3>
         WRZTICZPT*,510) (PARTZCU) .1-1 , 17)
                         ,Z-1.10>
         W«TI(IPT»,555)
         VUT8(ZPTK,560)
         IPACE-1
  21      READC1.210)  B,CvALPHA,BETAtGAHMA,XSETS
         1EAB(19220>  <(IZOHES.Z.l.3).CAMCO
         IF(IPACEcEQcl) GOTO 31
         HRZTECIPTR.500) (OAT(Z),Z-i,3)
        WKZTECZPT2.540) (PfiOTO(Z),Z-1.10)
        WUTECZPTR.535)
        VRZTE(ZPT£,560)
 31     READ(1.210)
        IEADC1.220)                          ..
        Zr(MOSOL.EQ.7)HRZTE(ZPTRt565) (DAT(Z)fZ-l,3)
        WRZTE(ZPTtt,570)(HAME(Z) ,1-1 ,4) 8A,B,C,ALFHA,
      ' •WRITE(ZPTR.585)((Z20MES
-------
        IH-tf
        iwi-wi
        IPUPACE.EQ.nCOTO 41
        .W*ITE(IPTR,500) 
-------
565

570
585
587

590

600
605
610

620
625

630
    «
    £
       FORMAT(lHlf60X,'DATE*  '.3A4.//.22X8*RESULTS OF ZONE. AXIS'.
        ' ANALYSIS (CONTINUED)',//)    .
       FORHAT(/,1X,4A8,6F7.2)        "  i
       FORMAT(6(3X,3I3))
       FORHAT(///.'   COMPLETE ELECTRON DIFFRACTION ANALYSES MAY BE*
        ,' FOUND IN FILE "XINDEX*")
       FORMATC/,SXe'ELECTRON DIFFRACTION PATTERNS? *Jf
            ' ill  ',16A48/piOXt' *2*
            -- --•	— —--— —— -"»"— ««•»»«« 
-------
        PROGRAM BATGET
e                                    -  •
C       PROGRAM WHICH PRINTS THE FILE DIPOATc

        1EAL*8 NAME<4).NAMEl(4),PORMUL<6)
        INTEGER ELEM(8),SYM

        BYTE AMswa8)'UPPERC8)>Afl'c§ALPH^>BBrA8eAMHA
        OPEN(DNIT"l .RAME-'DIPUAT* ,TTPE-'OLD'}
        OPEN(UNIT-2,NAME-'OATA%TYPE-'NEWM
        IPTR»2
        NUMBER«0
  9     WRITECIPTR.99)
        IPACE-0
                           •LOHER<«
                  ,300)
        HRITE(IPTR.310)
        GOTO 10
 60     CLOSE(UNXT-i)
       GALL EXIT
 99     FORHATUH1)
 100    FORHAT(///t«, 'MINERAL NAME? <32>%
 200    FORHAT(4A8)                       *
 UO    FORMATCU,'FORMULAT (48)',$)
 210    FORMATC6A8)


 5
 300    FORMATCIX.'HAME ,• .
 310    FORHATCIX/MAMDATOR?
 320
410    FORKAT(lX,8(I2t2F5.2»
420    F08M^T(IX,6F7.3,H)
500    FORMAT(Al)
       END
                                    141

-------
        PROGRAM DATED!
C                                       "  :  .
C       PROGRAM TO EDIT FILE DIFDAT.NEW
C          DIFDAT.NEW SHOULD BE A COPY OF DIFDAT.
C          AFTER. EDITING REHAMS OUTSAT. BAK  AS DIFDAT.
C
        REAL*8 HAME(4),NAMBi(4),F01!MiILC6)   .
        INTEGER ELEH(8>,SYM
        REAL LOWER(S),UP1?EaC8},A,BS)e.ALPHA,BETA,CAHHA
        BYTE ANSWER
        OFENCtmXT-2,NAME-'DIFDAT.BAK'.TYPE-'NEW')
        OPENCUNXT-1 ,NAME»"DXPQAT.IIKW' .TYPE- 'OLD')
 5      TYPE *,' ENTER MINERAL NAME?'
        READ(S,200,ERR-5) (NAME! (I),!-!, 4)
 10  .   READU,400,END-60) CNAMEU:).I«1,4),CPORMULCX),X-I*6)
        READU,410)CELEM(X),LOWERU).t>PPERCXM-l,8)
     '   READCi,420)A,B,C,ALPHA,BETA,GAMMA0SYM
        XFCNAKECl).Eq.NAMEl(l).AND«NAHEC2).Eq.NAHEiC2))COTO 19
        VRXTSC2,400) CNAHE(X) »
        VRXTE(2,410)(ELEM(X) »
        GOTO 10
 19     WRXTECS.300) CNAME(X),X"1,A),(FORMIILCX),X-I,6)
 20     TYPE *,' O.K.?'
        READCS.SOO) ANSWER
        XF(ANSWER.EQe'N') GOTO 25
        IF( ANSWER. NE,'N'. AND. ANSWER. NE.'Y') GOTO 20
        GOTO 29
 25     WRITE(5,100)
        READ(5,200,ERR<5) (NAME(i;! .1-1.4)
26      WRITEC3.110)   '
        READ(5,210,ERR-26) (FORMDLCI), 1-1.6)
 29     WRITEC2.400) (NAHE(I) .I-l^t) ,(FO!UULU)rI-le6)
        VRXTE(5,310) (ELEM(X) 8LOWEl(I) .UPFER(I) ,X»1,4)
 30     TYPE *,' O.K.?'
        READ(5,500) ANSWER
        IF( ANSWER. EQ.'N') GOTO 35
        XF(ANSWER.NE.'N'.AND.ANSUE1UNE.'Y') GOTO 30
        GOTO 39
 35     VRXTE(S,120)
        READ(5,*,ERR-35) (ELEM(X) tLOVER(X),UPPER(X) ,1-1,4)
 39     URXTE(5,320) (ELEM(I).LOWElL(I).UPFER(I).I-5,8)
 40     TYPE *,' O.K.?'
        READ(5,50Q) ANSWER
        XF(ANSWER.EQ.'H') GOTO 45
        XF(ANSWER.NE.'M'.AND.ANSWEll.NE.'Y') GOTO 40   .
        GOTO 49
 45     WRXTE(5>13p)
        READ(5,*,ERR-45) (ELEM(X) ,LOWER(X) ,UPPER(X) .X'5,8)
 49     WRXTEC2.410) (ELEM(I)tLOWE]l(I).UPFER(I) .1-1.8)
        WRITEC5.330) A,B,C,ALPHA,BBTA,GAMMA,SYM
 50     TYPE *,' O.K.?'

                                      142

-------
        S2AD<5,500) ANSWER
        IF(ANSUER.EQ.'N')  GOTO 55

        lF
-------
        PROGRAM DIFDAT
C       PRCRAM TO GENERATE NEW MINERAL ENTRIES FOR FILE
C         DIFDAT.                        -  ;
C       DXFDAT.NEW ZS TO BE APPENDED TO DIFDAT,
C                               '         '        '
        REAL'S HAHE(*),FORMULC6)
        INTEGER ELEH(8),SYM
        REAL LOWER(8),UPPER(8),A;B,C:,ALPHA,BETA,GAMMA
        BYTE ANSWER
        OPENCiraiT-l.NAME-'DIFDAT.NEW'.TYPI-'NEW')
 10     DO 11 1-1,6
 11     FORMUL(X)-' '
        00 12 1-1,4
 12     NAHECX)-' '
        DO 13 1-1.8
        ELEHCD-0
        LOWER(I)-0.
 13     UPPER(X)-0.
        SW-0
        A-0.
        ALPHA-CU
        BETA-0.
        GAHMA-0.
        VRITEC5.100)
        READ(5,200) NAME(1),NAME(2),NAME(3),NAME(4)
        ZF(HAMEC1).EQ.'END     ') CU)SB(UNZT-l)
        IFCKAMECD.EQ.'ENO     ') CALL EXIT
        URXTE(5,110)'
        READ(S,210) .
        READ<5,*,ERR-1003) A,S»C,AL3?HA,BETAtGAMMA,StM
        VRXTE(5,300)  (NAME(X),X«1,4),CFORMI!L(X),X-1,6)
        VR1TSC3.310)  (ELEM(X),LOUERa),UFPER(X),X-le4)
        VRXTS(5,320)  (EL£M(I),LOWE2CI).OPPE2(I)»I-5,8)
        VRXTEC5.330)  A,BtCvALPHA,BCrA,eAMKAvSYM
  20    TYPE *8'  O.K.?'
        READ(5,SOO) ANSWER
        XF(ANSWER.EQ.'N')  GOTO 10
        IF(ANSWER.NE.'H' .AND. ANSWER, NE.'Y') GOTO 20
        WRITEC 1,400)  (NAHE(X),X-1,4),(FORMIIL(X>,X-1,6)
        WRXTE(1 ,410)
-------
210    F08MATC6A8)
120    FOEMATC1X,'MANDATORY ELEMENTS.LOWER.UPPEt LIMITS? (UP TO 4)')
130    POBMATCIX.'OPTIONAL  ELEMENTS,LOWER,UPPER LIMITS? (UP TO 4)*>
uo    PORMATCix,'A,B,c,ALPiiA,BETA,GAMMA,SYM?' ,$>
300    POBMATC///,IX,'NAME l',3X,4A8,/iX.'FOBMULA l',5X96A8)
310    FOBMATCIX,'MANDATORY S',5X,4<1X,I2,1X,2FS.2)>
320    FOIMAT( IX,'OPTIONAL  S%5X,4(1X,I2,1X,2FS.2)>
330    FOIMAT(lX,'A,B,e,ALPHA,BETA,GAMMA,SYM{' ,SX,6F7.3,3X,X1)
400    FORMAT('?',10A8)
410   . FOBMAT(1X,8(I2,2FS.2))
420    FOIMAT(1X,6F7.3,Z1)
500    FORMAT(Al)
       Eiffi
                                    145

-------
 •EHABLS QUIET
 SET /SLAVE-TI*
 RUM XMATCH
 BUM XIDEH
 HIM ANCDIP             '
 RUM RESULT
 PIP KATMIM./Ptr
 PIF HSULT./PU
 Fit «SSUI,T.;l.RESULT/tI
 £» MATMIM.ji.MATMIM./lE
 MP MATPAT./PU
TO MAXfAT.il^!ATFAT./IE
PIP HATFAU.;1.MATPAB./1B
PIP XIMDEX./PU
PIP XIHDEX.;l»
PIP PHIDAT./PU
PIP PHIDAT.;1-PHIBAT./1B
PIP MATPHI./PU    .
PIP MATPHI.ji-MATFHI./RK
SET /KOSLAVE-TIi
«STOP
     AN OWLE OF A COM**. RU Nt m AHPHtmE
                                   146

-------
    "SIFDAT*    LIBRARY OF MINERALS


NAME S     FE-ACTINOLITB                                        °
FORMULA  s     CA2 FES SIS 022 (OH)2
MANDATORY s      20  0.67 2.00 14  7.50 8.00 26  2.50 5.00  0  0.00 0.00
OPTIONAL t      12  0.00 2.50 11  0.00 1.17 13  0.00 0.50 19  0.00 0.50
A,B,C,ALPHA,BETA,CAMMA,SYM*       9.850 18.100  5.300 90.000104.833 90.000   5

NAME *     ACTINOLITE
FORMULA  s     CA2 
-------
 NAME :     ANORTHITE
 FORMULA :     CA AL2 SI2 08;NA AL SI3 08"  :

                          ,':» "  *:« «  5  a a  :  s:§s as
            t,.YHj        8.180 12.880 14«liO 93.i701IS.850 91.220   0
 KAME t     ALANCZME
 FORMULA «     KA AL SI2 06 .H20
                  l    -
 MAKE »     ANDALUSCTE
 FORMULA s     AL2 SI OS
                            '
 MAMS :      ANHYDRITE
 FORMULA :      CA (S04)
 NAME :     ANORTHOCLASE
 FORMULA I     CHA.K) AL SIS 08
NAME t
           FE-AKTHOPHYLLITE
              
-------
MAME ?  .   APATITE
FORMULA s     (SS,CA)5 
-------
       <     AUSTINITE
          '     CA ZH *S 0*
                  2
            AXXNITE
      *     1AHRINGTOSITE
 F08MUU :     MG C03 . 2H20
      »     FE-BARROISITE
 2SS«.   a
 OPTIONAL  *
          HO-BABMISIIE
             * S
OPHOHAL'  ,       6  0.00
NAME I     BBLOVITE
          tBRKI,
             8E3A12SI60U
    »     BIOTITE 1M
            "
                                   1.00  1.00 33  IsOO 1.00  0  08Q5 O on
                                   n.ftfi  « nn  a.  • ^ ± r::  v  v«WW U.QO
                                                     0.00  0  0.00 0«00
                                                     90.000 90.000 90.000   0
                                               4.00 4.00  0  0.00 0.00
                                              a°:2!:°°  °  °-°° °-oo
                                              8.960 88.070 81.600 77.700   0
                                                          95.530109.000   0
                                  ll>7 1*34 19  ?e°° 3a°° "  Oe6? ie83
                                                          0.000  0.000   9

                                      -
                                   l? f '?? J!  °-°° 3-°° "  »"» li«S
                                   « >j«  i. ^o, 0.^0  „. fcg^  -
                                  ISO

-------
 NAME *     B.T.OTXTE 2H                    '  ''•
 FORMULA s     K (MC.FB)3 (AL.FE)SI3 010 2
                       *    -   i4  3-°
 NAME s     BISMUTHIHITI
 FORMULA l     BI2 S3
 NAME «     BR£MSTERIT1
                          CAL 813 08)2 .
            BRITHOL1TE
 FORMULA s      (CA.CE)S (SI04.  P0«)3 (OH.F)
NAME s      BR1THOLITE (Y)
FORMULA s      5 (SI 04  P04)3  (OH.F)
NAME  s     BROCHANTZTE
FORMULA  S     CU4 S04 (OH)6
NAME :
FORMULA
           BROCKZ7E
              (CA.TH.CE) P04 COS .2H20


                                                                      0.00
                                                                              .
                                                                       .130   0
                                        I.00  0  0.00 0.00  0  0.00
                                        UOO  0  0.00 0.00  0  0.00 0.00
                                         4.560  4.560 99.880 99.880 99.880   0
NAME :
FORMULA
           BROOKZTE
              TI 02
                                                                                            f
                                                                                              a

                                                                                             I
                                                                                             4
                                                                                             «
                                                                                             41
                                                                                             -a
                                    151
                                                                                             .*
                                                                                             •*
                                                                                             1

-------
 NAME t      BRUCITE
 FORMULA t      KG (OH)2
 MAjmATORY  t      12 1.001.00  0  0.000.00  0  0.00 0.00  0  0.000.00
 OPTIONAL  I       0 0.00 0.00 -0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAKMA,SYMS       2.400  2.400  2.400 81.220 8U220 81.220

 HAKE :      BUERGERITE
 FORMULA S   '  KA FE3 AL6  BE3 030 F
 HANDATORY  I      26 3.00 3.00 13  6.00 6.00 14  6.00 6.00  0  0.00 0.00
 OrciONAL  «     -U 1.QO 1.00  9  1.00 1.00  4  3.00 3.00  0  0.00 0.00
 A,B,C,ALPHA.BETA.GAKHA,SYM*       9.427  9.427  9.427113.830113.830113.830

 NAME t      BUSTAMITE
 FORMULA s      (CA.MN)  SI2 06
 HANDATORY  :      20 0.10 1.00 25  0.10 1.00 14  2.00 2.00  0  0.00 0.00
 OPTIONAL  t       0 0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPKA,BETA,GAHMAeSYMs       15.460  7.180 13.840 89eS70 94.880102.780

 HAMS S      &UTTCSNBACH1T8              •   •
 FORMULA :      CU19 CL4 (N03)2  (OHJ32 «, 2 H20
 J£5SS?F  *    "   29 19-001S.OO 17  4.00 4.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  :        0 0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 SloO
 A,B,C,ALPHA,BETA.GAMMA,SYHJ       9.630  9.630  9.630110.490110.490110.490

 NAME t      CALCITE
 FORMULA t      CA  C03
 MANDATORY  :       20 1.00  1.00  0 0.00 0.00  0  0.00 0.00  0  0.00 0.00
                   0 0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
           l.BETA.CAMMA.SYHl       6.360  3.360  3.360 46.000 46.000 46.000

 NAME t     CARBONATE-APATITE
 FORMULA *     CAS  (P04tC03)3 (OH.F)
!!J2?i;5?Y  '      2S  5*°° 5*°° l5' 3-°° 3e°°  °  0-06 Q.OO  0  0.00 0.00
OPTIONAL   I       0  0.00 0.00  0  0.00 0.00  0  O.OS 0.00  0  oIoS So?
A,B,C,ALPHA,BETA.GAHHAtSYH:       5.940  5.940  5.940105.990105.990105.990
  ,,,
           CASSITERITE
              SN 02
          :      50  K0°
NAME S
FORMULA :

if^i!JJ?F :      50  K0° l'°°  °  °-°° °-°°  °  o»oo o-oo  o  0.00 0.00
OPTIONAL  :       0  0.00 O.OO  0  0.00 0.00  0  0.00 0.00  0  olS 0 00
A,B,C,ALPHA.BETA,CAMMA,SYM:       4.738  4.738  3.188 90.000 90.000 90?000

NAME t     CELESTITE
FORMULA :     «R S04
MANDATORY j      38  1.00 1.00 16  1.00 1.00,  0  0.00 0.00  0  0.00 0.00
OPTIONAL  :       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  olS 0 GO
A.BtC.ALPHA,BETA,CAMMA.SYM:       8.360  5.360  6.840 90.000 90.000 90?SoO
                                                                            0  '
                                    11)2

-------
            CHAMOSITE

            :   T                                -  •  - «•
                                             0

  NAME  s     CHLORAPAIITE
                   (P04>3 «•
      >     CHRYSOCOLL*

                  HZ SU 05 J  J-» J-oo  o  0.00 0.00  o  0.00 0.00
                                    °« -     «
           CLINO-PERROSILITE
FORMULA :     FE SI03
                                   -
NAME :      CLZNO-HEDRITE
FORMULA s     CA ZM SI03 (OH)2

                              3°   -
                                  153

-------
  HAME.j    CLINOZOISITE                                                            j

  FORMULA t     CA2 AL3 SI3 012 OH
                             '• S&JS &SJS a.  .
 B*Hl I    CLURDKln
                         «° <«•»
                                 -    '
                               5*204
           CONNELLXTE             .          -                                      f |

                                 3H20                                             ; I
                             17  4*a         _.„	w-w w-w



                                                                     e-           1
 MAKE I     COROIERITE                                  *                           1

 S5^-i    <«G.FE>2 AU SIS 018                                              '    j
                                                                     e           •' f
                                                                     5           ' "-?

 NAME :     CRISTOBALITE                                                            I

 FORMULA »    SI 02         .








 H*ME :     CROKSTEOTITE                                                            *

 £SS*JL    «.« 8»5 (OH)4

                             i  2eOO 6,00  0  0*00 0*00  0
          CROSSITE

                                ilI8 022 vunj<                                      r

                                           8.00 • fM  • • - —- - —                  ?
NAME :     CUMHINCTONITE                                                            -I

52SL1    7 S" W2 
-------
  NAME s      MG-CUMMINCTONITE
                <«,PS>7  SIS  022  
-------
NAME :      DUMORTIERITE
FORMULA :   '  AL7 03  
-------
 NAME :     EPIDIDYM1TE
 FORMULA s     NA BE SI3 07 (OH)

                 l    '
      t     EPIDOTE
              CA2 CFE,AL) AL2 [OH SI
          EPISTILBITE
FOMIULA  i     CA AL2 SU 016
                             SH20
                                            0 0.00 0.00 0  0.00 0.00
                                                                0.00
                                                                90.000   0
                                                                0.00
                                                                0.00
                                                                90.000   0
                                              6.00 6.00  0  0.00 0.00

                                                  90.000124.330 90.000   5
 KAMI s     EPSOM1TE
 FORMULA s     MC (S04) 7H20
           ERIOHITE
              
-------
NAME ;     FLUORAPATITB
FORMULA t     CAS (P04)3 P
MANDATORY I      20  5.00 5.00 15  3.00 3.00  0  0.00 0.00  0  0.00 0.00
OPTIONAL  s       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,CAMMA,SYMs       5.870  5.870  5.870105.700105.700105.700   0

KAKB I     FOISTEMTS
FORMULA S     KC2 SX04
MANDATORY, s      14  0.75 1.00 12  1.80 2.00  0  0.00 O.@0  0  0.00 0.00
OPTIONAL  s     . 26  0.00 0.20  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,CAMMA,SYMs       4.756 10.195  5.981 90.000 90.000 90.000   0

HAMS S     FE-CEDRITE
FORMULA s     (FE,He,AL)7 (SZ,AL)8 022 (OH)2
MANDATORY t      13  1.00 8.00 26  0.00 5.00 14  0.00 7.00  0  0.00 0.00
OPTIONAL  s      20  0.00 1.34 11  0.00 1»34 12  0.00 5.00  0  0.00 0.00
A»B,C.ALPHA,BETA,GAMMA,SYM:      18.594 17.890  5.304 90.000 90.000 90.000   0

MAKE S     MG-GEDRITE
FORMULA :     (MG,FE,AL)7 (SI,AL>8 022 (OH)2
MANDATORY I      13  1.00 8.00 12  OoOO 5.00 14  0.00 7.00  0  0.00 OeOO
OPTIONAL  t      20  0.00 1.34 11  0.00 1.34 26  0.00 5.00  0  0.00 0.00
A,B.C,ALPHA,BETA.CAHHA,SYM:      IS.S94 17.890  5.304 90.000 90.000 90.000   0

NAME s     GLAUCQN1TE
FORMULA t     (K,NA)(AL,FS,H6)2 (AL,SI)4 010 (OH)2
MANDATORY I      19  0.10 1.00 14  3.00 4.00  0  0.00 OeOO  0  0.00 0.00
OPTIONAL  t      11  0.00 1.00,26  O.-OQ 2.00 12  0.00 2.00 13  0.00 3.00
A,B,C,ALPHA,BETA,GAMMA,SYM$       5.250  9.090 10.030 90.000100.000 90.000   5
                                                              •

NAME s     FE-CLAUCOPHANE  •
FORMULA t   •  NA2 (FE,MC;3 AL2 SIS 022 (OK)2
MANDATORY t      11  1.34 2.50 26  OcOO 3.60 13 . 1.40 2.00 14  8.00 8.00
OPTIONAL  t      19  0.00 0.50 12  0.00 3.00  0  0.00 0.00  0  0.00 0.00
A»B,C,ALPHA,BETA,GAMMA,SYMs       9.541 17.740  5.295 90.600103.667 90.000   5

NAME t     MG-GLAUCGPHANE
FORMULA *     NA2 (MC,FE)3 AL2 SIS 022 (OH)2
MANDATORY s      11  1.34 2.50 12  0.00 3.00 13  1.40 2.00 14  8.00 8.00
OPTIONAL  :      19  0.00 0.50 26  0.00 3.60  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,€AMMA,SYHs       9.541 17.740  5.295 90.000103.667 90.000   5

NAME :     GOETHITE
FORMULA :  *  K FE 02
MANDATORY t      26  1.00 1.00  0  0.00 0.00  0  0.00 19.00  0  0.00 0.00
OPTIONAL  S       0  0.00 0.00  0  0.00 0.00  0  0.00 p.00  0  0.00 O.OQ
A,B,C,ALPHA,BETA,GAMMA,SYM:       4.596  9.957  3.021 9.0.000 90.000 90.000   0
                                     158

-------
                                                                  m
 NAME
         GONNARDKE
      Bv    "^ ** "*••«>« °1012 • 6H20
  XSSJ !    ti J*2i'222  l-ool-ooi3  0.005.00  o 0.000.00
   SBU-^^Sy-00 °u» &.V AS ?J?SooVs§§ fc&.
 NAME s    GSEENALITE
                    010 (OH)8
                 '   '  M 4'°° *-
                                        0.00  o  0.00 0.00
     ?    GRUNERITE
 FORMULA : -   (FE,«C)7 SIS 022 (OH)2
 NAME :    CYPSOM
 FORMULA 8    CA S04 . 2H20             *

                    a " ,a SJ »
NAME :   HALLO YSITE
FORMULA :    AL2 SI2 05 (OH)4 . 2H20


                                                  SL
NAME :    HALOTRICHITE
FORMULA :    FE AL2 (S04)4 . 22H20
NAME »
        FE-HASTINGSXTE                         '
                (HC«FB>AL>5 (AL2.SI6) 022 (OH)2
                       «  a, as a gag g.
NAME s    MC-HASTINCSITE
                        (AL2.SI6) 022 (OH)2
                       s K g?

                           1S9

-------
NAME  :     HEDENBERGITE
FORMULA :     CA FE SI2 06
MANDATORY  :      20   i.OO 1.00 26
OPTIONAL  f       0   0*00 0.00  0
A,B,C,ALPHA,BETA,GAMMA,SYMS
 1.00 1.00 1*
 0.00 0.00  0
9.850  9.020
2.00 2.00
0.00 0o 00
0
0
                    0.00
               0»pO Go 00
5.260 90.000104*330 90.000   5
NAME  S     HEDYPUAHS
FORMULA s     (CA,PB)5 (AS 04)3 CL
MANDATORY  t      20  0.00 S.OO 33  OoOO 3.00 17  1.0@ 1.00  0  0.00 0.00
OPTIONAL  t      82  0.00 5.00  0  OcGO 0.00  0  0.00 0.00  0  0.00 0.00
A.B.C.ALPHA.BETA,GAMMA,SYHi       6.370  6.370  6.370106.300106.300106.300
NAME  s     HEM1MORPHITE
FORMULA s     2N4 SI2 07 (OH)2 . H20
MANDATORY  t      30  4.00 4.00 14  2.00 2.00
OPTIONAL  :       0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BCTA,CAMMA,SYM:
            0
            0
 0.00 0.00
 0.00 0.00
0
0
              0.00 0.00
              0.00 0.00
NAME  s     HENDRICXSITE
FORMULA  »     K (ZN,MN)3 (S13 At) 010 (OH)2
MANDATORY  t       19  1.00 1.00 30  0.00 3.00 14  2.00 3.00  0  0.00 0.00
OPTIONAL  £       25  0.00 3.00 13  0.00 1.00  0  0.00 0.60  0  0.00 0.00
A,B,C,ALPRA,BETA,GAMMA,SYMs       5.370  9.320 10.300 90.000 99.000 90.000

NAME  S     FE-HOLMQUISTITE
FORMULA  *     (NA,CA)(AL,LI,MG.FB)7 SIS 022 (OH,F)2
MANDATORY  s       26  1.00 3.00 13. 1.00 2.00 14  7.50 8.00  0  0.00 0.00
OPTIONAL  I       20  0.00 1.34 11  0.00 1.34 12  Q.OO 2.00 25  0.00 3.00
A,B,C,ALPHA,BETA,GAMMA,SYM:      18.300 17.690  5.300 90.000 90.000 90.000

NAME  t     HG-HOLHQUISTITE
FORMULA  :     (NA,CA)(ALtLI.MC,F15)7 SIS 012 (OH,F)2
MANDATORY*  .    12  1.003.0013  1.002.0014  7.50 8c00  0  0.000,00
OPTIONAL  x       20  0.00 1.34 11 ' 0.00 1.34 26  0.00 Z°.0© 25  0.00 3.00
A,B,C,ALPHA,BBTA,GAMMA,SYMs•     18.300 17.690  5*300 90.000 90*000 90.000

NAME  S     F2-HORNBLENDE           •
FORMULA  J     (CA,NA,K)2 (FE,MG,AL)5 (SI8AL)8 022 (OH)2
MANDATORY  J       20  0.67 2.00 14  6.25 7*49 26  0.00 4.00 13  0.50 1.75
OPTIONAL  »       11  0.00 i.17 19  0.00 OcSO 12  0.00 4.00 22  0.00 0.50
A,B,C,ALPHA,BETA,GAHMA9SYMs       9.880 18.020  5.330 90.000105.500. 90.000

NAME  S     MG-HORNBLENDE
FORMULA  J     (CA,NA,K)2 
-------
  NAME  s     HOWIBITE
            HYALOPHANE
  «*••»£•     
-------
           HC-KAERSUTXTE
                                   «
                                     ,
                               I7e2l° 5'
          KAOLINITS
               SI2 05 (08)4
                  2-00 2.00
                    n ft no
                      -
                                             OOOi06.000 90«
                           5.155 8.959  7?407 91?680104?870 89?
                                                      940   0
                            a gg a
          H6-KATOFHOR1TS

•SSnn
                               « «
                          , «
     »    KYANITE
 FORMULA :    AL2 SI 05
 MANDATORY j    13 2.00
    «    LAUMONTITE
           CA AL2 SI4 012 . 4H20
NAME :    LAWSONITE
                                                   8.00
                                                   0.00
                                                   90.000  5
                       "
                             fi5JBSL'.Sa  ,
                           162

-------
NAME t     LEPIDOCROCITE
FORMULA :     GAMMA — FE 0 « OH
nAMUATOKT 8 26 1.00 1.00 0
. OPTIONAL * 0 0.00 0.00 0
A, B,C, ALPHA, BETA, GAMMA, SYM?
NAME S
FORMULA S
MANDATORY
A,B,C,ALP!
NAME 8
FORMULA 8
npTTnMA?^
OPTIONAL
A,B,C,ALP
NAME 8
FORMULA 8
MANDATORY
LEPIDOLITE A)
K (L1,AL)3 (SI,AL)4
* 19 1.00 1.00 14
t 13 0.00 7.00 0
KA,BETA,GAMMA,SYM8
LEPIDOLITE B)
K CLI,AL)3 (SX,AL}4
s 19 leOO 1.00 14
• 13 0.00 7.00 0
HA,BETA,CAMHA,SYM8
LEPIDOLITE C)
K (LI.AL)3 (SI,AL)4
s 19 1.00 1.00 14
. 0.00 0.00 0 0.00 OcOO 0 0*00 0.00
0.00 0.00 0 0.00 0«00 0 0.00 0.00 •
3.860 12.500 3.060 90.000 90.000 90.000 3





010 (F,OH)2
3.00
5.300

010 <
3.00
0.00
9.200

4.00 (
9.200

F,OH)2
4.00 G
0.00 C
5.300

) 0.00
10.200


0.00
0.00
20.000

0.00 0 0.00
0.00 0 0.00
90.000100.000
•

0.00 0 0.00
0.00 0 0.00
90.000 98.000

0.00
0.00
90.000 5


0.00

90.000 5

010 (F,OH)2
3.00
OPTIONAL 8 13 0.00 7.00 0 6.66
A,B,C,ALPHA,BETA,GAMMA,SYM8 10.460

NAME 8.
FORMULA :

LIZARDITS
MG3 SI2 05 (OH) 4
MANDATORY 8 12 2.00 3.00 14
OPTIONAL 8 0 0.00 0.00 0
A,B,C,ALPHA,BETA,GAMMA,SYM8

NAME t
FORMULA 8

LOELLINGITE
FE AS2
MANDATORY 8 26 1.00 i.OO 33
OPTIONAL 8 0 0.00 0.00 0
A,B,C, ALPHA, BETA,GAMMA,SYM8
NAME 8
FORMULA 8
MANDATORY
A,B,C,ALPH
* NAME 8
FORMULA 8
MAGNESITE
MG C03
8 12 1.00 1.00 0
!A,BETA,GAMMA,SYM8*
MARGARITE
CA AL4 SI2 010 (OH) 2
OPTIONAL s 0 oloO oloO 0
A,B,C,ALPHA,BETA,GAMMA,SYM:






«


•





2.00
0.00
5.310



2.00
0.00
5.250


0.00
5.610


oloo
5.130

163




4.00 Q
0.00 0
10.460



2.00 0
0.00 0
9.200



2.00 0
0.00 0
5.920


0.00 0
0.00 0
5.610
0
£
Q 00
0.00
10.460



0.00
0.00
7.310



0.00
0.00
2.850


0.00
5.610


4.00 14 2.00
0.00 0 0.00
8.900 19.500
»

t









O OO o n f\n
0.00 0 0.00
29.360 29.360



0.00 0 0.00
•0.00 0 0.00
90.000 90.000



0.00 0 0.00
0.00 0 0.00
90.000 90.000*


0.00 0 0.00
0.00 0 0.00
48.170 48.170


2.00 0 0.00
0.00 0 0.00
90.000 95.000
«


•


o nn
0.00
29.360 0



0.00
0.00
90.000 5



0.00
0.00
90.000 0
o •

0.00
0.00
48.170 0


O.CO
0.00
90.000 S

i




1 :5
i •»
|
. t
*,
' I
' A
i*
'.'£
: X
"i:
"f.
j

•s.
'£
B*
fc
V.
.•-
V
"j
_ t
3
<
•>:
'"t
i
3:
I
'f
5
S
-|
'«
|
'5
;2
.i
j
a
j
B
|
1
4[
• 1 1
f'
,
'i
*
I
*

-------
NAME :     HARIALITE
FORMULA s     HA4 (AL3 SI9 024) CL; CA4 (AL6 SU 024) €03
MANDATORY I      13  3.00 6.00 14  6.00 9.00  0  0.00 0.00  0  0.00 0.00
OPTIONAL  :      11  0.00 4.00 20  0.00 4.00 17  0.00 1.00  0  0.00 0.00
A,BtC,ALPHA,&ETA,GAKMA,SYMt      12.075 12.075  7.516 90.000 90.000 90.000
HAMS S     MEZONITE
FORMULA S     CM (AL6 SZ6 024)C03; NA4 ALPHA,BETA,GAMHA,SYMs      56.700  6.550 18.480 90.000 90.000 90.000
NAME  S     MZCROCLINC
FORMULA  :     K AL SZ3 08
MANDATORY  S      19  1.00 1.00 13
OPTIONAL  t       0  0.00 0.00  0
A,B,C,ALPHA,BETA,CAMMA,SYMs
                                   1. 00 1.00 14
                                   0.00 0.00  0
                                  8*580 12.970
                                                 3.00 3.00  0  0.00 0.00
                                                 0.00 0.00  0  0.00 0.00
                                                7.220 90.640115.930 87.680
 NAME :     MZLLERZTE
 FORMULA t     NZ S
 MANDATORY  S       28   1.00 1.00  16   Jl.OO  1.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  s       0   0.00 0.00  0   0.00  0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA»GAMMA,SYM:        3 ,,640  5.640  5.640116.620116.620116.620

 NAME :     MZHETZTE
 FORMULA :     PBS (AS 04)3 CL
 MANDATORY  s       82   5.00 5.00  33   3.00  3.00  17  1.00 1.00  0  0.00 0.00
 OPTIONAL  t       0   0.00 0.00  0   0.00  0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAHMA,SYM:      10,240  20.480  7«450 90*000120.000 90.000

 NAME I     MZNNESOTAZTE
 FORMULA I      (FE,MG)3 SZ4 010  (OH)2  .
 MANDATORY  t       26   2.00 3.00  14   4.00  4.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  s       12   0.00 1.00  0   0.00  0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAMHA,SYM:        5=500  9.380 19.300 90.000 99.500 90.000
 NAME t     MZZZONZTE
 FORMULA :     CA4 (AL6 SZ6 024) C03;  NA4 (AL3 SZ9 024)  CL
 MANDATORY t      13  3.00 6.00 14  6.00 9.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  :      20  0.00 4.00 11  0.00 4.00 17  0.00 1.00  0  0.00 0.00
 A,BkC(ALPKA,BETA>GAMKA(SYM:      12.169 12.169  7.569 90.000 90.000 90.000
                                                                             0
                                 12.130 12.130  7.690 90.000 90.000 90.000   0
                                                                             0
                                                                             2
                                      164

-------
  HAME !     MOttetllTE

            ,   (C*,?A?,1C« f2 s»° os* •• 7*20
                   g  fcg f:°«  * '0.0010,00 20  0.00 ,.00  0  0.00 0.00
                            M
  "*» *.    MULLITE
  SSS±L     AMSI2013

                   l«  -- o:!5  1J  J-2 2-2  2  J-2 S-°°  °  °-»°-w
             .   --.—.-.,.-.!?       7 |2 0;°?«,n0 ,°:2! £-°°  °  O^OOO.OO
                                   7.550  7.690  2.880 90.000 90.000 90*000   0
             MUSCOVITE
                K AL3 SIS 010 (OH)2
            ?       19   leOO 1«00 13  3«00 3 QO 1&  
-------
 NAME :     OFFRETITE
 FORMULA :     U,CA)3 (AL5 SI13)  036 .  14H26
 MANDATORY J      19  0«00 3.00 13 • 6.00 S.OO 14   0.0013.00  0  0.00 0.00
 OPTIONAL  :      20  0.00 3.0*0 0  0.00 0.00  0   0.00 0.00  0  0.00 0.00
 A,B,C,ALPHAtBETA,GAMMA,SYM:      9.170  9.170 9.170 92.690 92*690 92.690   0

 NAME t     OHPHACXTE
 FORMULA :  • *(eA,NA)

 NAME I      PALYGORSKITE
 FORMULA *     CMC,AL)2 SI4 010 (OH)  . 4H20
 MANDATORY :       12  0.60 1.70 14 4.00 4.00 13  0.60 1.30  0  0.00 0.00
 ???£..! .      °  °'°° °'°° ° °'°° °«00  °  °-°° Oooo  o  oloo oloo
 A.B.C.ALPHA.BETA.CAMMA.SYMJ       12.70017.900  5^20090.00095.00090.000   5

 NAME t      PARACELSIAN
 FORMULA S      BA AL2  SI2 08
 MANDATORY «      56  1.00  i.OO  13  2.00 2.00 14  2.00 2.00  0  0.00 0.00
 JTS^™' .     °  °-°° °*°°  °  °-°° 0-°°  °  o«o6 0.00  o  oloo olcs
 A,B,C,ALFKA,BETA,eAMHA,SYM;       8.580  9.583  f.080 90.000 90.000 90.000   0

 NAME ;      FE-PARGASITE
 FORMULA I     NA CZA (FE9NA)4 AL (SI,AL)8 022 (OH)2
 MANDATORY :      20  0.67 3.00 26  0.00 4.00 13  2.75 3.00 14   6  na ft  ?«
 OPTIONAL  :      11  0.00 1.67 19  0.00 KOO 12  oloo Jloo 22   0'00 o15
 A.B,C,ALPHA,BETA,CAMMABSYM:.       9.900 is.ooo  5.300 5S.oooi05.Joo SiJSoo   5

 NAME :     HC-PARGASITE
 FORMULA  :     NA CA (MG,FE)4 AL (SI.AL)8 022 (OH)2
MANDATORY  :    ' 20  0.67 3.00 12   0.00 4.00 13  2.75 3.00 14   6.00 6.25 •
OPTIONAL   :      ii  0.00 1.67 19   0.00 1.00 26  0.00 4.00 22   SloO 0  50 ,
A.B.C,ALPHA.BETA,CAHMA.SYM:       9.900 is.ooo  5.300 9i.6ooi05.50o So??oi   s
                                     166

-------
 NAME I     PECIOLITE
 FORMULA s     NA CA2 813 08 OH

                       '    '
 NAME «     PHUJCOP1TE IH
 FORMULA :     K MG3 AL SI3 010 
-------
 NAME :     PRBHNITE
 FORMULA :     CA2 AL2 SI3 010 (011)2  ' :
 MANDATORY :      20  2.00 2.00 13  2.00 2.00 14  3C00 3.00  0  0.00 8.60
 OPTIONAL  t       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAMMA,SYMl       4.610  5.470 18.480 90.000 90.000 90.000   0

 HAKE t     PROBERTXTE
 FORMULA :     NA CA B5 09 . SH20
 MANDATORY I      11  1.00 1.00 20  1.00 1.00  0  0.00 0«00  0  6.00 0.00
 OPTIONAL  I       0  0.00 0.00  0  0.00 0.00  0  0.00 ©»00  0  0.00 0.00
 A»B.C,ALPKA,BETA,CAMMA,SYMs      13.430 12.570  6.589*90.000100.250 90.000   0

 NAME t     PSEUDOBROpKITE
 FORMULA S     FE2 TI 05
 MANDATORY:      26  2.002.0022  1.00 1.00  0  0.000.00  0  0.000.00
 OPTIONAL  :       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAMMA,SYM:       9.790  9.930  3.725 90.000 90.000 90.000   4
                                                   • •
 NAME :   •  PSEUDONITILE
 FORMULA J     FE2 TI3 09
 MANDATORY :      26  2.00 2.00 22  3.00 3.00  «l  0.00 0.00  0  0.00 0.00
 OPTIONAL  :       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,CiALPHA,BETA,eAMHA,SYMs       2.257-  2.257  2.257 79.020 79.020 79.020   0

 NAME S      PUCHERITE
 FORMULA :      BI V 04
 MANDATORY t       83  1.00 1.00 23  1.00 1.00  0  0.00 0.00 0  0.00 0.00
 OPTIONAL  :        0  0.00 0.00  0  0.00 0.00  0  0.00 0.00 0  0.00 0.00
 A»B,C,ALPHA,BETA,GAMMA,SYM:       5.332  5.060 12.000 90.000 90.000 90.000   0

 NAME :      PUMPBLLYITE
 FORMULA :  .    CA2 MC AL2 (SI 04)  {SI 07)(OH)2  . H20
 JS255??* *       22  2*°° 2'°° U  U0° l-°° l3  2«°0 2.00 14  2.00 2.00
 OPTIONAL  »        0  0.00 0.00 0  0.00 0.00  0  0.00 0.00  9  0.00 £00
 A,B,C,ALPHA,BETA,CAMMA.SYM:        8.810  5*940 19.140 90.000 97.600 90.000   3

 NAME :     PYRITE
 FORMULA :      FE S2

 !!iJ?JJ!?Y  '       2S  I*00 l'°° l6   2e°°" 2'°°  °  e«°° 0-00  ©  0*00 0.00
 OPTIONAL   :       0  0.00 0.00 0   0.00 0.00  0  0.00 0.00  0  0.00 oloo
A,B,C,ALPHA,BETA,CAMMA.SYM:       5.405  5.405  5.405 90.000 90.000 90.000   0

NAME :     PYROAURITE
FORMULA :     MG6 FE2 COS  (OH)16 „ 4H20

ISS?nS?Y  $       1J   S'°° 6'°° 26  2'00 2-°°  °  °»°° °«°0  0  0.00 0.00
OPTIONAL   :       0   0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 olio
A.B,C.ALPHA,BETA.GAMMA,SYMl      15.920 15.920 15.920 22.420 22.420 22.420   7
                                     168

-------
 NAME I     PYROBELONITB
 FORMULA t    PB MN V04 OH

 OPTIONAL* I     8o o"00 l'°° 25  U°° l"°° 23 U0° l'°°  ° °*°° °*°°
 A,B,C,ALPHAfBETA,CAMM2;s?M?*00  ° 7?l2 ^SOS* 6?ltt So^OOoVoOO 90?000  0

 NAME t     PtROMORPHITE
 FORMULA I    PB5 (P04)3 CL

 jSLi«,  *' fcSfcS" *&%S*ll S:So:S  o §:S§:S
 A8B,C,ALPHA,BETAtGAMMA8SYM:       6.270 6.270 <
NAME ?     PYROPHYLLITE
FORMULA 8    AL2 I(OH)2 SI4 010 J
NAME £     ALPHA-QUARTZ
FORMULA s    SI 02
NAME s    RHODONITE
FORMULA s     MN SI 03
NAME : '   FE-RICHTERITE
FORMULA s     NA CA HA FES 518 022 (OH)2
                                                   0  0.00 0.00
                                                          0.00
                                              BLLS
NAME $    RICHTERITE
FORMULA :    NA CA NA MGS SIS 022 (OH)2
MANDATORY ?      11  0*67 3.00 14  7.50 8.00 12  2.50
                        " - ^ ssl  a

NAME :    RIEBECKITE
FORMULA s .   NA2 FES FE2 SIS 022 (OH)2
                                                                  0
                                                              ,  s
                               169

-------
          MC-RIEBECKITE
            NA2 MC2 FE2 SIS 022 	

 OPTIONAL  !    }{ i'nJ J'?2 "  2'°° 3e°° U 8»°° 8«°° 26  1.00 2.00

 S&i^iftK-"  • ,5sZffi.-3S°5°°,0?M?«'o°-M. ,
 NAME »
          ROSCHBRITE
                    Bi3
                             COH>3
 MAME *    IOSCOELITE

            * 3 (ALtSI3)0]lO (OH)2
                                                           S
     :    ROSENBUSCHITS

            
-------
NAME i S1DERITE
FORMULA S
MANDATORY :
OPTIONAL S
A M 4B • * •»«• A M^
FE C03
26
0

1.00
0.00

1.00
0.00

0
0
*
0.00
0.00

0.00
0.00

0
0

0.00
0.00

0.00
o.oo

0
0

Go 00 0.00
O.iO 0.00
 A,B,C,ALPHA,BETA,GAMMAtSYMs        5.796  5.796  5.796 47.717 47.717 47*717   7

 NAME s  .   SILLIMANITE
 FORMULA I      AL2 (0 SI 04)
 MANDATORY  :      13  2.00 2.00 14  i.OC 1.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  :       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA>GAMMA,SYMs        7.440  7.590  5.750 90.000 90.000 90.000   0

 NAME :      SPHENE
 FORMULA 8      CA TI SI 05
 MANDATORY  t      20  i»00 1.00 22  1*00 1.00 14  1*00 1.00  0  0«00 0.00
 OPTIONAL  8       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,CfALPHA,BETA,CAMMA,SYMs        6.560  8»720  7.440 90.000119.720 90.000   5

 NAME :      SPODUMBNB           *
 FORMULA :      LI AL SI2 06
 MANDATORY  J      13  1.00 1.00 14  2.00 2.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  l       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAMMA,SYM;        9.520  8.320  5.250 90.000110.470 90.000   5

 NAME :      STAUROLITE
.FORMULA s      FE2 AL9 SI4 022  (OH)2
 MANDATORY  :      26  2.00 2.00 13  9.00 9.00 14  4.00 4.00  0  0.00 0.00
 OPTIONAL  s       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A>B,C,ALPHA,BETA,GAMMA,SYMs        7.870 16.620  5.660 90.000 90.000 90.000   S

 NAME :      STEATITE
 FORMULA :      MG3 SI4 010 (OH)2
 MANDATORY  :      12  3.00 3.00 14  4.00 4.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  l       0  0.00 0.00  0.  0.00 £.00  0  0.00 0.00  0  0.00 0.00
 AtB,C,ALPHA,BETA.CAMMA,SYM:        5.280  9.150 18.900 90.000100.250 90.000   5

 NAME : .    STIBNITE
 FORMULA s      SB2 S3
 MANDATORY  s      51  2.002.0016  3.003.00  0  0.00 0.00  0  0.000.00
 OPTIONAL   s       0  0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,GAMMA,SYM:       11.200 11.280  3.830 90.000 90.000 90.000   0

 NAME :      STILBITE
 FORMULA :      NA CA2 AL5  Sill 036 . 16H20
 MANDATORY  :      11  UOO 1,00  20  2.00 2.00 13   5.00 5.00 14 13.0013.00
 OPTIONAL   s       0  0.00 0.00   0  0.00 0.00  0  0.00 0.00  0   0.00 0.00
 A,B,C, ALPHA,BETA,GAMMA,SYM:       13.630 18.170 11.310 90.000129.166 90.000   5
                                     171

-------
HAKE I     STILPNOMELANE            ' :
FORMULA l     K (FE,MG,AL)3 SI4 010 (OH)2 . H20
MAKDAIORY I      14  4.004.0026  I.50 3.50  0  0.00 0.00  0  0.000.00
OPTIONAL  S      19  0.00 1.00 12  0.00 2.00 13  0.00 2.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMS      21.720 21.720 17.740 90.000 95.860 90.000   0

NAME S     SVABITE
FORMULA s     CA5 (AS 04)3 (FSCL.OH)           .
MANDATORY s      20  5.00 5.00 33  3.00 3.00  0  0.00 0.00  0  0.00 0.00
OPTIONAL  I      19  0.00 1.00 17  0.00 1.00  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYif!   '    6.170  6.170  6.170107.500107.500107.500   0

HAKE  t     TAENIOLITE
FORMULA  :     K LI MC2 SI4 010 F2
MANDATORY (      19  1.00 1.00 12  2.00 2.00 14  4.00 4.00  0  0.00. 0.00
OPTIONAL S       0  0.00 0.00  0  0.00 0.00  0  0.00;0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMt      . 5.270  9.130 10.120 90.000100.000 90.000   5
                      •           *
KAHB  !     TALC    •
FORMULA  :     MG3 SI4 010 (OH)2
MANDATORY s      12  2.00 3.00 14  4000 4.00  0  0,00 0«00  0  0.00 0.00
OPTIONAL l  '    26  0.00 1.00  0  O.06 OeOO  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYMs       5.280  9.150 18.900 90.000100.250 90.000   5

NAME  t     FE-TARAMXTE
FORMULA  t     NA2 CA (FE,MG)3 (PE.AL)2 316 AL2 022  (OH>2
MANDATORY  s       14  6.00 6.50 13   1.50 2.00 11  0.67 2.67  26  0.00 5.00
OPTIONAL  s      20  0.67  1.00 19   0.00 1.00 12  0.00 3.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAMMA,SYM:       9.900 18.000  5.300 90.000104.0T3 90.000   5

NAME t    HOTARAMITB
 FORMULA I      NA2 CA (MC,FE)3 (rE,AL)2 SI6 AL2 022  (OH)2
MANDATORY s       14  6.00  6.50 13   1.50 2.00 11  0.67 2.67  12  0.00 3.00
OPTIONAL  »       20  .0*67  i.OO  1.9   0.00 1.00 26  0.00 SeOO  0  0.00 0«00
A,BtC>ALPHA,BETAeGAMMA.SYMs*      9.900 18.000  5,300 90.000104.000 90.000   S

 NAME :     THOHSONITE
 FORMULA t      NA CA2 [  AL2 (AL.SI)- SI3  010]2  . 6H20
 MANDATORY :       11   1.00 1.00 20  2.00 2.00  13  4.00 6.00  14  6.00 8.00
 OPTIONAL  t        0  0.00 0.00  0  0.00 0.00   0  0.00 0.00  0  0.00 0.00
 A,B,C,ALPHA,BETA,CAMMA,SYM:      13.070 13.090  6.630 90.000 90.000 90.000   0

 NAME »     THORITE
 FORMULA S     TH SI 04
 MANDATORY t      90  1.00 1.00 14  1.00 1.00  0  0.00 0.00  0   0.00 0.00
 OPTIONAL  s       0  0.00 0.00.  0  0.00 0.00 * 0  0.00 0.00  0   0.00 0.00
 A,B,C,ALPHA,BETA,GAMMA,SYM:       7.120  7.120  6.320 90.000 90.000 90.000   2
                                      172

-------
 SAME i   TIRODITE
           I.FE)7 SZ8 022 (OH)2

          H J'X. ?•!?£ H9!-°°l* §;°§|-
-------
HAKE S     VERHICULITS                    -  :
FORMULA t     (MC,CA) (MG,FE,AL)6 (AL,SI)8 Q2Q(OH)4 8H20
MANDATORY t      14  5.50 6.00 13  2.00 5.00 12  3*50 6.00  0  0.00 0.00
OPTIONAL  t '     26  0.00 2.50 20  0.00 1.00  0  6.00 0.00  0  0.00 6.00
AtB,C,ALPHA,BETAiaAHHA,SYMs       5.300  9.200 29.000 90.000 97.000 90.000
HAMS S     VINOCaADOVm
FORMULA »     (NA,CA,K)4 TI4 AL S16 023 . 2H2©
MANDATORY s      il  0.00 4.00 22  4.00 4.00 13
OPTIOKAL  I      20  0.00 4.00 19  0.00 4.00  0
A,B,C,ALPKA,BETA,GAMMA,SYM:       1.180  1.000
               1.00 1.00 14  6.00 6.00
               0.00 0.00  0  0.00 0.00
              0.760 90.000 91.970 90.000
NAME  t     VIVIANITE                               •
FORMULA  S     FE3 (P04)2 . 8H20
MANDATORY  I      26  3.00 3.00 15  2.00 2.00  0  0.00 0.00  0  0.00 0.00
OPTIONAL  t       0  0.00 0.00  0  0.00 0.00  0  OcOO 0.00  6  0.00 0.00
A,B,C,ALFaA,BETA,CAMHA,SYMs      10.059 13.415  4.696 90.000104.300 90.000

NAME- I     FE-WINCHITE
FORMULA  t     CA HA (FE,MG)4 (FE»AL) SIS 022 (OH)2
MANDATORY  s      14  7.50 8.00 26  3.00 5.00 11  0.67 1.83 10  0.67 1*34
OPTIONAL  t      12  2.00 4.00 19  0.00 0.50 13  0.00 1.00  0  0.00 0.00
A.B.C,ALPHA,BETA.CAHHA.SYH:       9.820 17.960  5.270 90.000104.330 90.000

NAME  *     MC-WINCHITE
FORMULA  s     CA NA (MC,FE)4 (FE.AL) SIS 022 (OH)2
MANDATORY  J      14  7.50 8.00 12  2.00 4.00 11  0.67 1.83 20  0.67 1,34
OPTIONAL  t      26  3.00 5.00 19  0.00 0.50 13  0.00 1.00  0  0.00 0.00
A,B,C,ALPHA,BBXA,GAMMA,5YM*
9.820 17.960  5.270 90.000104.330 90.000
 NAME s     UOLLASTONITE  -
 FORMULA t     ALPHA.- CA  SI 03
 MANDATORY  S      20  1.00 1.00  14
 OPTIONAL  I        0  0.00 0.00  0
 A»B,C,ALPHA,BETA,GAMMA,SYM:
 1.00 1.00  0  0.00 0.00  0  0.00 0.00
 0.00 0.00  0  0.00 0.00  0  0.00 0.00
7.940  7.320  7.070 90.050 95.283102.467
 NAME:     XONOTLITE
 FORMULA t     CAS  SIS 08  (OH)2
 MANDATORY  S      20 3.00 3.00  14  3.00 3.00  0  0.00 0.00  0  0.00 0.00
 OPTIONAL  s   •     0 0.00 0.00  0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
 A»B,C,ALPHA,BETA,GAMMA,SYMs      16.950  7.340  7.030 90.000 90.000 90.000

 NAME t     ZINNWALDITE
 FORMULA :     K (LI»AL,FE)3  (AL,SI)4 010 (OH,F)2
 MANDATORY  S      '19 1.00 1.00  13  1.00 4.00  14  3.00 3.50  0  0.00 0.00
 OPTIONAL  t      26 0.00 3.00. 0  0.00 0.00  0  0.00 0.00  0  0.00 0.00
A,B,C,ALPHA,BETA,GAHMA,SYM*
5.270  9.090 20.144 90.000100.000 90.000   S
                                                          ji
                                                          j
                                                          <:

                                                          ••i
I
I
                                                                                            I
                                      174
                                                                                            • .*•!

-------
FORMULA
       ZIRCON
         ZR SI 04
FORMULA *
       ZOISm
         CA2 AL3 813 012 OH
                    • s

                               « ais a
                      175
                                                         .1
                                                         I

-------
                                APPENDIX B

     TEST DATA AMD COMPUTER LISTINGS TOR DATA PROCESSING AND REPORTING
        EXAMPLE OP ANALYSIS TO EETERMINE CONCENTRATION 0? CHHXSOTILE
The following P«B«« «l»w « «sw«pl« o£ r«w d«e»  w*«l«eion iaeludlag «p«cifflen
br«p«r»tioa d«t«U», Mgni£ic*eion«, and eh« clM«i£ic«eioa «nd MasureaMae
data recorded during TEM •xaainntion of a vatar  »«mpl«.  Tha  IS pages vhieh
follow eha raw data tabulation »how the reaults  generated by  computer
processing of the«e raw data.
                                     176

-------
                          AS8CSTSS ANALYSIS • UATCT SAMPIE DATA
SEQs
PREFs lyjk&~ tat* "7 -*f-f| I COUNT: lyX& tat* «- *l - 91  PROCESS:  ByAk tat* »t» ^ «g|
 [KST
MAGNIFICATIONS:  6H4
DILUTIONS:
                                                      FlMl VoltM (at.)
FtML
COHOtTS;  (for tnelusion fn eMputtr pr1»t-«utj fbiwt In S tints of €0 dMrtetan)
FIBER CLASSIFICATIONS;
    COUNT:   NAN  IN
    PROCESS:
                                                UC  AC   M  tttt   *Q
                                                      AZQ   AZZ
                   FllHWf
                                    CLASSIFICATION
              cog
                                  FIBER TYPE      | CLASSIFICATION
                                                                        .1
                                                                        f
 NOTES:  Preparation:


                                       ->!•  _ ii-L*.

                                           177

-------
E
•»»
S


1
••••







*




_
i
4*
^
k
V


1
1


«
i
i
i
i
ft

to





8
8
M
M
3
u
•*




1
1
£


i
*
E
!
i?

fl
3
5?
£
ST
I
a
y
*
e
g
U
g
5
E
|
IL
K •
l~
C3
5






^















£
e
-






VI
r*










•











mi

•A
T
























r




















•



(A
N




















1
•


Q












%











r
o»












*








5
-8
r


(W
Ifl







•
1















^











%












1*
pj











^












r
«•











»









s
r
a
0
*M
r


p










^









-



f
««*











i



s

(4



HI
to
M
C
0
*«
=**o
r


f<
^










»













\











i









0
6«
q
e
«»•
1


ff"









4














*
r











%












M











i












f











1












f»
(•











1












r
mm


.








1



?
e
IT


.



«i
VI











I












r

-------

179

-------
                                       1
                                       I
180

-------
V)
%
*!
i












-
V
i
4
3
%
%
••
tt


t
S
!
i
u
s
M
i






s
X
8
OD
^
•
S
K
i«




?
°g
1
^»
5

i
: '
»
1
IT
a
ft
sA
S
?
f-
s
i
5
9
.S
§
f
S
S
5
S
5
«•
e
£
^*«
I"1
fi
£




ft)













I






•


r
—











t










r
•











i







«i
^
M
6
•I
E>
»
%


r
|A










1







^
-
•

(4
M











1



r-
5
ti
i;
1 1
•
i
^,



*
T


















1
i
I
1
•MB



r












»






•Bk
4
0
it
•^
J;
p


r











>








n
«•
b
0
n
«
rt
i
(4

•f
0









>


-










W












i










r












1



•






f











*
i










r
n












^









rl












1










r












\










T






*





a







(4
0
*
0
n
t
e
£

""
«\











i








»
r
»
0
II
i
?


«•











<
























I










V)












i










r












t










ft












\



«
••
X
"r




*













\







.1

N
10












\










P
n












M






.V)
!
!
]
I






















181

-------
        i
        i
        £
        I
&
1
if
   i
      I
                                r
                                                      J
                               182

-------
22058     S8-EX                                        BATES 22-JUN-82



                   RESULTS  OF  FIBER  COUNT


                             P                                   *  *

      SAMPLES River Water U.


   The results below are for fibers classified as CHRYSOT1LE

   which have aspect ratios equal to or greater than  3:1

   and lengths exceeding Q.S micrometers.




     Mean fiber Concentration            2?*i       MFL


     Upper 95Z Confidence Limit          33..I       MFL


     Lower 95Z Confidence Limit         *21.1       MFL


     Analytical Sensitivity             0.26       MFL


     Estimated Mass  Concentration       0.26       micrograms/liter




               ANALYST'S COMMENTS ON THIS  SAMPLE


    This sample was treated by bubbling filtered ozone gas through
    the liquid while irradiating the aaaplc with ultraviolet light.
    This treatment is used to oxidize organic*  in  the  liquid.
    After oxidation, a known volume of the  sample  was  filtered
    through a 0.1  micrometer pore size Nuclepore polycarbonate
    filter.   The deposited material on the  surface of  the filter was
    transferred to an. electron microscope'specimen grid by the direct
    carbon coating extraction replication technique.

    The saaple also contained aany diatoms and irregular tabular
    particles.


 *  MFL • million fibers per liter
                                 183

-------
22058
                                                       DATES 18-JUN»82
      SAMPLE: River Water U
                    DETAILED ANALYTICAL DATA
      Active Area of Filter
      Final Voluae Filtered
      Magnification for Grid Hensureaent
      Magnification for Fiber Counting
      Mean Dimension of Grid Square
      Nuaber of Grid Squares Counted
      Nuaber of Specifted Fibers  Counted
      Aspect Ratio Liait  (>)

      Density  ofCChrysotiie Used  in Calculations
                                        Ie99
                                       10.00
                                        2160
                                       21000
                                       87.43
                                        O.SO
                                        2.55
                                 aieroaeters
                                 aieroaeters
                                 g/cc
       Type of Fiber Counted
           •
       •Staple Preparation Technique
                                CHRYSOTILE

                                Ozone Treating
                    FIBER LENGTH DISTRIBUTION
     Particle
   Size Rango.ua
   0.23 -
   0.34 -
   0.50 -
   0.73 -
   1.08 -
   1.58 -

   §1*1 -
   5.00 -
   7.34 -
   10.77 -
   15.81 -
   23.21 -
   34.06 -
   50.00 -
   73.40 -
  107.70 -
  158.10 -
  232.10 -
  5.00
  7.34
 10.77
 t5.SU
 23.21
 34.06
 50.00
 73.40
107.70
158.10
232.10
340.60
         Number
        Counted
            0
            0
            23
            26
            29
6

0
0
0
0
0
0
0
0
0
0
           Cua
         Nuaber
 0
 0
23
49
78
 0

A

8*
04
04
04
04
04
04
04
04
.04
          Cua No
         Percent
                        0.00
                        OeOO
                       22.12
          Cua Mass
          Percent
98.08
00.00
00.00
00,00
00.00
00.00
00.00
00.00
OOoOO
00.00
00.00
100.00
                                    we

                                   B:
 0.00
 0.00
 6.64
   .03
   .66
5U18
71.03
87.20
00.00
00.00
00.00
00.00
00.00
OOeOO
00.00
,00.00
,00.00
,00.00
100.00
                                 184

-------
22058
                                                       DATES  18-JUN-82
      SAMPLES River H«t«r 1<
                         FIBER WIDTH DISTRIBUTION
              Particle
            Wideh Range,urn
 Number
Counted
00 023 -
0.034 -
0.050 -
0.073 -
0.110 -
0.160 -
0.230 -
0.340 -
Go 500 -
0.730 -
1.080 -
1.580 -
§.320 -
.410 -
5.000 -
7.340 -
10.770 -
15.810 -
23.210 -
0.034
0.050 .
0.073
0.110
0.160
0.230
0.340
0.500
0.730
1.080
1.580
2.320
3.410
5.000 .
7.340
10.770
15.810
23.210
34.060
0
97
0
6
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
  Cun
Nunber
                                           97
                                           97
                                           03
                                           04
                                           04
                                           04
                                           04
                                           04
                                           04
                                           04
                                           04
                                           .04
                                           104
                                           104
                                           .04
                                           104
                                           104
                                           104
 Cun No
Percent
                            0.00
                           93.27
                           93.27
                           99.04
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           00.00
                           .00.00
                           100.00
                           ,00.00
                           100.00
                                  185

-------
22058
                                                       DATE: 18-JUN-82
      SAMPLE: River Water 1
                   FIBER ASPECT RATIO DISTRIBUTION
              Aspect
            Ratio Rang*
            3.00
            4.40
            6.46
            9.49
           13.92
           20.44
           30.00
           44.00
           64.60
           94.90
          139.20
          204.40
          300.00
          440.00
          646.00
          949.00
         1392.00
         2044.00
         3000.00
-   4;40
-   6.46
-   9.49
-  13.92
-  20.44
-  30.00
-  44.00
-  64.60
-  94.90
- 139.20
- 204.40
- 300.00
- 440.00
- 646.00
- 949.00
-1392.00
-2044.00
-3000.00
-4403.00
 Nimber
Counted
    0
    0
    0
   14
   37
    6
    6
    0

    0
    0
    0
    0
    0
    0
    0
    0
  dm
Nuaber
 Cum No
Percent
                                                        0.00
               (

              i:
    .00
    .00
    .46
              49.04
              74.04
              87.50
              93.27
              99.04
              99.04
              00.00
              00.00
              00.00
              00.00
              00.00
              ,00.00
              .00.00
              100.00
              100.00
       Median of Aspect Ratio Distribution      20.81

       Slope Paraaeter of Distribution           3UI7

       Index of Fibrosity of Distribution      732.20
                                 186

-------
22058
                                                       DATES 18-JUN-82
      SAMPLED River Water t.
                              FIBER MASS  DISTRIBUTION
                  Particle
                Mace Range8pg
 Number
Counted
O.OOOS -
0.0010 -
0.0022 -
0.0046 -
0.0100 «
0.0215 -
0.0464 -
0.1000 <-
0.2150 -
0.4640 -
1.0000 -
2.1500 -
4.6400 <*•
10.0000 -
21.5400 -
46.4100 -
100.0000 -
215.4300 -
. 0.0010
0.0022
0.0046
0.0100
0.0215
0.0464
0.1000
0.2150
0.4640
I. 0000
2.1500
4.6400
10.0000
21.5400
46.4100
100.0000
215.4300
464.1400
464.1400 -1000.0000
0
0
49
38
10
4
2
1
0
0
0
0
0
0
0
0
0
0
0
CUB
Number
0
0
49
87
97












01
03
04
04
04
04
04
04
04
04
04
04
104
104
 Cum No
Percent
                                                            0.00
                                                            0.00
                                                           47.12
                                                           83.65
                                                           93.27
                                                           97.12
                                                           99.04
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           00.00
                                                           100.00

-------
22058
                                                       DATES 24-JUN-82
      SAMPLE: River Water I.
                                                           is OeS un
       Grid Square  Size

      Length   Width  Area
86.1
90.3
§6.6
9.4
86.6
88.4
87.0
90.3
85.2
88.4
88.4
89.4
85.2
88.9
86.1
88.9
86*6
87.0
86.6
7614.
7983.
7736.
761
76
76
77
78
74
72
*:
4.
i7.
6.
,4.
,5.
                            Nuaber of Fibers/Grid Square
                                Actual     Horaalized
                                           it
                                                         7.90
                                                        i3.r
                                    3
Keen. Count per Average Grid Square 10.40
Standard Deviation                  2»80
Total Chi-Square           -        6»73
Significance Level of Uniformity
                                                        10.04
                                                         7.90
                                          50  Z
        Upper and lower 95Z confidence  level* have been
        determined on the ba»i« of Poiaaon atatictics.
                                 188

-------
22058
                                                       DATES 18-JUH-82
      SAMPLES River Water i.

           ASBESTOS  FIBER  COUNT  ANALYSIS
                   SELECTED RAW DATA
                                             Length Li.lt  i. 0.5 _
ngth
1.71
.81
'.43
.10
1.71
).90
J.57
,.52
1.52
).81
1 90
U62
0.52
1.38
0.81
0.90
i.10
0.81
1.38
0.81
0.90
1.29
1.29
0.81
0.52
0.67
1.38
Width
ua
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
• 0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
Aapect
Ratio
15.0
17.0
15.0
72.0
65.0
15.0
19.0
12.0
32.0
32.0
17.0
24.0
42.0
27.0.
19.0
24.0
35.0
13.0
11.0
29.0
17.0
19.0
23.0
17.0
29.0
17.0
19.0
27.0
27.0
17.0
11.0
14.0
29.0
Length
ua
1.19
1.10
1.29
1.29
4.43
1.29
2.43
0.81
0.71
1.14
1.14
2.81
0.57
0.90
1.86
0.62
2.00
1.19
0.67
3.43
0.57
0.81
2.00
5.10
0.62
0.67
0.52
0.57
0.52
2.48
1.00
1.52
0.81
Width
ua
0.048
0.095
0.048
0.048
0.095
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
S.095
.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
Aai
Ral
2!
11
41
2
2
2
.2
I
3
A
!
I
•
i
tect
.to
i.O
,.5
'.0
r.o
i.S
7.0
5.5
7.0
5.0
4.0
4.0
9.0
2.0
9.0
9.0
3.0
2.0
5.0
4.0
2.0
2.0
7.0
>2.0
i:i
4.0
1.0
2.0
1.0
52.0
ZleO
32.0
17.0
Length
ua
2.05
2.48
0.90
1.52
3.43 •
1.81
0.81
1.10
0.90
2.48
0.62
3.48
0.81
2.14
0.67
0.90
0.81
0.90
1.19
1.14
1.81
1.86
0.90
1.10
3.43
2.00
0.71
1.52
1.14
0.90
7.24
0.90
1.10
Width Aai
ua Ra
0.095 2
0.143 1
0.048 1
0.048 3
0.048 7
0.048 3
0.048 1
0.048 • 2
0.048 1
0.048 !
0.048 1
0.048 i
0.048 1
0.048 <
0.048
0.048
0.048
0.048
0.048 :
0.048 :
0.048 I
0.048
0.048
0.048
0.048
0.048
0.048
0.095
0.04*
0.048
0.048 1
0.04C;
0.048
peet
eio
1.5
7.3
9.0
2.0
2.0
8.0
7.0
3.0
9.0
2.0
3.0
3.0
7.0
>5.0
4.0
9.0
7.0
9.0
15.0
!4.0
38.0
39.0
19.0
Z3.0
72.0
42.0
15.0
16.0
24.0
19.0
52.0
19.0
23.0
                                 189

-------
22058                       -        .                   DATEJ


      SAMPLE: River Water i«

                                                       •N


           ASBESTOS  FIBER  COUNT ANALYSIS

                   SELECTED SAW DATA                 '  (CONT'D....)


             ffifffl&T  SP""*— un.«, u*i u 0.3 .



    Un5«h  Width A.wet  Unjth  Width Ajpjot  Ungth  Btdth Ajgct
      ua
*^Ub» «•!•••.=  ^...j,-—  ™--	O»V<«
 ua   Ratio     uai     u»   Ratio
     1.86  0.048   39.0    0.67  0.048   14.0    1.29  0.048   27.0
     Ol86  Olo48   18.0    0.57  0.048   12.0
                                  190

-------
220S8
                                   SATE;  18°JUS-82
      SAMPLE: River Water 1,
     GRID
Length Width
 • gjg     qffl

86 ell  88.43


90.28  88.43

       89.35
       .35   85.19
     86.57  88.89
     88.43  86.11
     87.04  88.89
     90.28  86.57
                     ASBESTOS- FIBER COUNT ANALYSIS
                           SAMPLE RAW DATA
                   Class  Length Width  Class
                           FIBER
                           Length Width
                             us     ua
                                 Class  Length Width
CD
CD
CM
CD
CD
CMQ
CD
CD
CM
CD
CD
CD
CDQ
eir
CD
CQ
CD
CO
CM
CD
CQ
CD
i8
CD
CD
CM
CQ
0.71
0.81
0.57
1.29
1.29
4.43
1.29
0.90
0.57
0.81
0.48
Oo90
2.48
0.62
2.81
0.57
1.29
2.14
1. 10
1.14
1.67
0.62
fc»
3.43
0.81
0.38
1.86
0.048
0.048
0.048
0.048
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CD
CD
CDQ
CD*


CD
CD
CM
CMQ
CM
CD
CD
CD
CD
CD
CD
CD


CD
CDQ
CJT
CQ
CM
CD
CD

U19
lolO
2.48
0.90
1.52
3.43
1.81
2.43
0.48
1.10
1.29
1.52
0.81
1.14
3.48
0.81
0.90
0.90
1.86
0.62
2.00
1.19
0.48
1.38
KB
0.90

0.048
0.095
0.143
0.048
0.048
0.048
0.048
0.095
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048.
0.048
0.048
0.048
0.048
0.048
0.048

CD
CM
CD
CQ
CD
CD

CD
CD
CO
CD
CD
CD
CM
CD

CM
CM
CO
CQ
CD
CD
CO
CD


2.05
0.48
Oe71
3.43
3.10.
0.71

0.81
0.57
1.52
0.71
1.14
1.14
0.90
2.00

1.10
0.81
0.67
0.90
0.81
0.90
0.67
1.14
1.81
0.81

0.095
0.048
0.048
.0.048
0.048
0.048

0.048 "
0.048
0.048
0.048
0.048
0.048
0.048
0.048

0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048

CD
1.10  0.048  CD
                                            2.00  0.048  CO
0.90  0.048
                                        191

-------
220S8
                                    DATES S3-JUN-S2
      SAMPLES River Water I.
                     ASBESTOS FIBER COUNT ANALYSIS

                           SAMPLE RAW DATA
         GRID

    Length Width
      ua     ua
Class  Length Width  Class
         ua     ua
    85.19  87.04
    83.33  86.57
FIBER

Length Width
  ua     ua
Clasc  Length Width
         ua     ua
S9
Co
CO


CO
CD




CO
CO
CMQ
0.81
1.38
3«43
2.00
0.71
005?
1.29
0.81
0.52
1.00
1.52
1.38
1.10
1.29
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
CBQ
ClT
CO
CQ
CO
CM
CD
CO.

CO
CQ
CO
CD
CD
5.10
0.62
0.81
0.90
1*29
0.86
0.52
2.48

7.24
0.90
0.81
Ic86
0.86
C
(
<
<
C
1.095
.048
*048
.048
)*048
0.048
0.048
0.048


0.048
0.048
0.048
0.048
0.048
CO
CM
CD
CD

CO
CD
CD

CD
CM
CM
CD
cq
1. 10
1.86
0.67
0*52

1.52
1.14
0.90

0.67
0.52
0.48
0.67
0.57
0.048
0.048
0.048
Oo048

0.095
Oe048
0«046

0.048
0.048
0.048
0.048
Oe048
                            e


                            *
                                       192

-------
   22056
     W.SSUS
  100*
  80*
  60*-
  6*.
                                                      *
  2*>                                 .             *
                                             *
  1+         •
G.2+
        *   *    t   to    to to to  to to to  to     to   Is    t«
      F.rc.ne... H«b.r of rtbr. Shorfr
                              193

-------
  22058
                                 SATts  18-JUS-82
        SAMPLE: River Water 1.
     ASBESTOS FIBER LENGTH DISTRIBUTION       LOCc  PROBABILITY PLOT
    .  Aspect Ratio Limit £  3si       MiaiauB Length  Unites 0»S UB
Fiber Length
HleroMCarc
Fiber* Classified ast CKRYSOmE
Nuaber of Fibers Sized « 104
 100*
  80+
  60*
  40*
  20*


  10*
   8*
   6*
    2+
    1+
  0.8*
  0.6*
  0.4*
  0.2*
  0.1+
                         I
                       5
   to
*******
20  30  40  SO  60  70  80
0.5  1    2
   Percentage Haas of Fibers Shorter Than-Stated Length
                  •            #
                                 194
90   95    98  99

-------
   22658                              '                  BAH*
        SAMPUEl River W«e«t I.
 10. Of*
  4.0+


  2.0+

  1.0+
  0.8+
  0.6+
  0.4+


  0.2+

0.10+
0.08+
0.06+
0.04+


0.02+

0.01+
                        BSS
       *  t   • J     !    to    to  to  to  to to  to  to     to   ts   ta
        P«rc*nta(« (hater of Fibers L**s Than Stated Width
        •

                                    195

-------
  22058
                                                         OAfls  18-JITO-82
        SAMPLE: River Hater I.
     ASBESTOS FIBER ASPECT RATIO DISTRIBUTION       LOG.  PROBABILITY PLOT
      Aspect Ratio Uait >,  3s i       Miniatai Length Unit  is  0«S w
Fiber Aspect Ratio
2000+
?ib«rs Classified ass
Nuaber of Fibers Si*ed'> 104
1000*
 800*
 60Of

 400+
 200+


 100+
  80+
  60+

 . 40+


  20+


 •10+'
   8+
   6+

   4+


   2+
                                                  f

                                                  I
   1+
      0.5  12     5    10     20  30 40  SO  60  70  80     90   95    98  99
         Percentage Nuaber of Fibors Less Than Stated Aspect Ratio
                                       196

-------
  22058            "                                      DATE?

        SAMPLE* River Hceer U        * :   .


             ASBESTOS FXBEI MASS DISTRIBUTION       LOG.  PROBABILITY PLOT
      Aspect Ratio Liale £  3:1       Minianai Length Limit is 0.5 ua

fiber Mus         °           Fibers Clacntfied ut  CHEYSOTXLE
Pieegrau                     Munber of Fibers Slwd » 10*
10001°


 500*

 300*



 100*


  50*

  30*



  10*


    5*

    3*
  0.5*

  0.3*



  0.1*


 0.05*

 0.03*



 O.Oi*


 .005*

 .003*
 .001*
        ***     **      ****.***     **    **
       0.5  I    2     5    10     20  30  40  SO  60  70  80    90 - 95    98   99

          Percentage Mueber of Fiber* Less Then Stated Mass




                                        197

-------
                          PROGRAM USER NOTES

                          FIBER DATA PROGRAMS

                                                                     &
      Th. two ..in progra «« run ..qu.nti.liy for ..eh  e.t Of  d«t«.
 EPAFXB .cc.pt. th. d.t. tn.t.r.ctiv.ly .Od .tOM. lt in .  fu<|  MUed
 F1BANL on th. ..in co.put.r di.k which ,.y b. tr.n.f.rr.d onto . long-
 t.» .tot.g. ..diu. (..g.  floppy di.k.tt..).  .Th. ..eand progra.
 EPACAL r.tri.v..  th. d.t.  fro. .ith.r  th. ..in or long-t.r, .tor.g.
 atdl« «nd  procc.... th. d.t..

 EPAFIB

     - progr- which .ecp.t« th. d«t. .nd .tor., it in . co-put.r fil.

EPACAL and 31 subroutine
     - progr«M which r.duc. th. d«t. .nd then print r.sul.t.
     - th. program. c.n b.  run on « co.put.r with 32K word, of ...ory
     - .on. of th. Input-output  .t.te.«nt«  .r. .p.ctfic to th. RSX-llM
        op.r.ting  .y.tw
     - th.  progr«i i..built with .n ov.rl«y.d .tructur. .ccording to P.g.
        of  th. EPACAL listing
                                    198*

-------
                                                                                           r
                              EPAFIB

     Data entry program for classifying -fibers®  Information is taken
Iron the counting data sheetse
      ,                      P
SEQUENCE N0« - any alphanumeric character up to 8 chars, in length

             - a designation that is unique to these counting data

JOB NO. <-> any alphanumeric  char, up to 8 chars* in length

        - this nay be used  for accounting purposes

SAMPLE DESCRIPTION - up to  60 chars, in length

PREPARATION - up to 12 chars« in length

COUNT - up to 12 chars, in  length

YOUR INITIALS - up to 4 chars, in length

INSTRUMENT USED - up to 12  chars, in length

MAGNIFICATION - Enter two integer numbers, separated by a comma, up to

                5 chars, in length.  The first number entered is the

                magnification for counting.  The grid magnification range

                is between  1000 -°3SOO«  The count magnification range is
                between 18000 - 27000.

NO. OF DILUTIONS - if I or  2 i* entered the following prompt will appear.

      1ST DILUTION:  WHAT IS THE VOLUME TAKEN AND FINAL VOLUME (ML)

                   - enter  2 real numbers, separated by a

FINAL VOLUME FILTERED AND ACTIVE FILTER AREA (SQ.CM).

                                     199

-------
    - enter 2 real numbersg separated by « coons


    - Comment* mmy be entered if desired, that will print on eh* bottom

      of the first page of the report*  Up to S lines mmy b« entered*

      Each line has a maximum length of up to 60  chars.


    - There are  IS  classifications that the  program automatically

      recognizes. These  arc:  TM, CM, CO, CQ., CMQ. CDQ,. UF, AS, AX,

      ADX, AQ, ADQ, AZQ,  AZZ, AZZQ. Any  other  classifications that are

      needed must be entered by  the user. Enter  the  number of extra
         • •
       classifications  when th« question  is asked, otherwise enter  0 if
                  o
       there are  none.


DIMENSIONS OF GRID - enter 2 integer numbers  up  to 3  chars,  in length


FIBEt CLASSIFICATION - enter any of the 15 classifications,  or any  extra

                       classification*

                     - if them are no more fibers in the grid square,

                       enter END

                     -if no fibers wore found in the grid square,  eater

                       END


LENGTH, WIDTH - enter 2 integer numbers up to 4 chars, in length

              - the length must be greater than the width

              - the width must be  greater than 0


ANY MORE DATA SETS? - more than one s«t of data can be entered at  a time

                    -  if  there are no more data sets  to  be  entered, type

                       NO


                                      200

-------
                     • the data £• cCored in a file. n«aed "FIBANL" on the


                       ••in disk.  For'long-can storage, tha data may be



                       atored on aedia aueh aa floppy diak, aagnetie tape,
p                                                   i      .                  '

                       «ec. by aiaply appending tha "FXBANL18 file* together.


                     - "EPACAL? ic now raady to ba run






                               EPACAL     •




      Prograa which processes the data and produces report* for the


 elaaaifying of fiber*.


                                              • o


      - Filea aay either be retrieved froa the main disk or the floppy.


        If "EPAFIB" haa Juat previously been run, it ia auch faater to


        retrieve the file* froa the aain diak.



      - Records aay be processed by sequence no. (SEQ), job no. (JOB), or


        all (ALL) the. records on the file aay be processed.




 TYPE OF FIBER - up to 32 characters -in length




 CLASSIFICATION INCLUDED - enter only those  classifications that are to be



                           processed for the report, followed by END.   If


                           all classifications are deaired, enter*ALL.




      - Here than one report aay be processed for any data  aet.
                                      201

-------
 C               RSX-11M VERSION  CONVERTED MAY  20   1981
 C
 C       THIS PROGRAM IS THE NEW DATA ENTRY PROGRAM  FOR CLASSIFYING
 C       FIBERS                       ...
 C
 c
 c
 c                                         •
         BYTE DESC(60),SMPCOMC5,60),COM(12)
         INTEGER GMAG,CMAC,DIL,6RIDSRECORD,RECNUM,CLEN,                         !\
      *          CWIDTH,LENGTH,WIDTH,EmAsLEN
-------
          RECORD- 1
  99      WRITE (1.399)  RECOKO
  399     FORMAT ('START 't!2>
  i        TYPE 100
  100     25*?«C& T* IS "" SEQ.DE*CE DUMBER?
  200     ?SSAT(2A?)f    ltENO""99)  SEQNUM
  C
  2        TYPE 101
  101      FORMAT 
 C   ENABLES LOWER CASE
         CALL GETADR(PS,BUF(1»
         PS(2)-2
         BUF(l)-»25
         BUF(2)-1
         CALLQIO(M2440.5.i,.PS)
         DO 91 L-1,60
  91     DESC(L)-*  '
         READ(5;20ltEND-9999> I,(OESC(L),L-1BI)
 C
 C   DISABLES LOWER CASE
 C
         CALL QIO(M2440.3...tPS)
 201     FORMAT  (Q.60A1)
300
c       Q-2
        TYPE 103
203     FORMAT (3A4)
        TYPE 105
105     FORMAT 
-------
8       PREPTO'OZO "               -           "
        TYPE  109
109     FORMAT (/,' WHAT INSTRUMENT WAS USEB? *.$)
        READ(5,203,END-9999)  INSTR-
C
10*     TYPE  110
no     FORMAT COWHAT WAS THE MAGNIFICATION FOR cams & COUNTING? %$)
        READ  (5,210.ERR«10,END-«999) GMAG,CMAG
210     FORMAT (215)
        IF ((GMAG.LT.1000.)»OR.(GMAG.CT.3SOO))
..   *     -     TYPE *,'WARNING GRID MAGNIFICATION NOT IN NORMAL RANGE'
411     IF C(CHAG.LT.i8000.).OR.(CMAG.GT.27000.))
     4          TYPE *,'WARNING COUNT MAGNIFICATION NOT IN NORMAL RANGE'
C                          .
C
412     TYPE  112,SEQNUM,DESC,JOBNUM,PREP,PREPTC,COUNT,INSTR,
     4            ENTRY,GMAG,CKAC
112     FORMAT ('ONo: '.2A4,/,m.'S«apI«: '.60A1./.' Job: %2A4,//,
     4          ' Prep- by: ',3A4817X,'Preparation Technique: %A48//.
     4          ' Count by: 'B3A4.l6X/In«tsya€nes \3A4,//0' Encry by:
»•»   *  ~,™    A4.24X,9M«gntfie.feion. Grids ',14.'  Count: MS./)
12      TYPE  113
113     FORMAT (' IS THIS INFORMATION CORRECT? ',$)
        READ(5,223.END-9999) CORECT
        IF (CORECT.EQ.'Y') GOTO 13                          '
        IF (CORECT.NE.'N') GOTO 12
        BACKSPACE 1
        BACKSPACE I
        TYPE *,'RE-ENTER THE DATA'
        GOTO  1
C
13      WRITE (1,310) PREPTC,INSTR(1),GMAG,CMAG
310     FORMAT (2A4,I4,IS)
C
15      RECNUM-2
        SMPTYP-'LIQU'
        VRITE(1,207) SMPTYP
21      UNITS"' ML '
      . UNITSF-UNITS
97      TYPE 197
197     FORMAT ('OHOW MANY DILUTIONS WERE THERE (0,1 OR 2)? %$)
        READ(5,*,ERR-97,END-9999) OIL
        IF(DIL.GT.2) GOTO 97
        WRITE (1,397)OIL
397     FORMAT(Il)
        RECNUM-RECNUH+DIL+i
        IF(DIL.EQ.O)GOT025
23      TYPE 123,'1ST'
123     FORMAT ('0',A3,'  DILUTION: WHAT WAS THE VOLUME',
     4          ' TAKEN & FINAL VOLUME (ML)? ',$)
        READ(5,*,ERR-23,END-9999) DILIVT.DIL1FV
        WRITE (1,323)DIL1VT,DILI>FV
              *

                                    204

-------
  323      PORMAT(F6.1,F6,1)
          IFCDIL.EQ.1)  GOTO  25 ,      ' :
  24       TYPE  123, '2ND'
          REAJEK5,*.ERR-24.END-9999)  DIL2VTSDIL2FV
          WRITEC 1,323)  DIL2VTBDIL2FV
  G
  C      .       •                                     *    •
  223     pRHAT(Al)

  25       CONTINUE
  32       TYPE  i32,UNITSF
  J32      FORMAT ('OWHAT IS THE FINAL VOLUME FILTE*2» C.A4.
 6       SAMPLE SUMMARY
 C
         TYPE 142
 142     FORMAT COLIQUID*)
 144
 144
      6         'Dicpcrsal  Voluo.
         TYPE i46,UNITSF,VOLFIL,FILA
 146     FORMAT TOVolu.. Fiit«r«d  C.A4,')  ,  %F7.2.
 46      TYPE 14lXf'ACttV*  FUC*ff **" ^-^  ! '»F5
 148     FORMAT (
-------
        DO 74 L»i,5
        LEN(L)-0                    •   •  •"
        DO 74 K-1,60
74      SHPCOHU,*)-' '
        IF(DONE.BQ.'N')COTO 177
        TYPE */ COMMENT LINES CAN HAVE, A MAXIMUM OP 60 LETTERS'
        TYPE *,'THE SHIFT KEY MUST BE USED TO GET UPPER CASE*
C
C   ENABLE LOWER CASE
C
        BUF(2)-1
        CALL QIO(M2440,S,,.,PS)
        DO 75 L-l.5
        TYPE 175
175     FORMAT  (IX.T63,' |60'/"+  %$)      «,
        READ(5.20lfEND-9999)  l.(SMPCOM(LfK),K-lsI)
        LENCD-I
75      CONTINUE
        BUF<2)-0
C
C   DISABLE LOWER CASE
C                  '
        CALL QIO(M24«0,5,.,.PS>
C
76      TYPE  176,«SMPCOM(L,10,1C-1,60),L-1,S)
176    FORHATC//.'OTHE COMMENTS AREs' ,/,S
         READ (S,*,ERR-78,END«9999) EXTRA
         IF ((EXTRA.LT.O).OR.(EXTRA.GT.12)) GOTO 78
         IF (EXTRA.EQ.O) GOTO 54
         DO 79 L- I, EXTRA
         TYPE 179    .                      _
 179     tFORMATCOENTER ONE OF THE 3 OR 4 LETTER CLASSES  '.$)
 79      READ(S,256,END»9999) CLSUS+L)
 C                   -
 C
         TYPE *,'  *
         TYPE *,'  IF THERE ARE NO MORE FIBERS  IN THE GRID SQUARE'
         •           «

                                      206

-------
         TYPE *,'  ENTER "END" WHEN IT ASKS FOR CLASSIFICATION"
         TYPE *,'  '
 54      RECNUM-1
         TYPE 154, GRID                  -
 154     FORMAT (/,'  WHAT ARE THE DIMENSIONS OF GRID f tU,e f (MM) • S)
         READ (5,*,ERR-54,END-9999) GLEN.CWIDTH
         IF( (GLEN. LE.O). OR. (GLEN. CTo999})GQTO 54
         XP((CWIDTH.LE.O).'OR.(GHIDTH.CT.999)) GOTO 54
         WRITE (1,354) GLEN.GWIDTH,'*'
 354     FORMAT (213. Al)
 C                                                     -\
 56      REOIUM-RECNUM+2     "                          *
 57      TYPE 156
 156     FORMAT (37HOWHAT IS THE FIBER'S CLASSIFICATION?  ,$)
         READ(S,256,END-9999) CUSS
 256     FORMAT(A4)
         IF ( CLASS «,EQ«' END ') GOTO 50
         BO 59 L-1.15+ EXTRA
 59      !F(CLS(L).EQ.CLASS) L-98
         ZF(L.EQ.99)GOTOS8
        TYPE *,' INCORRECT CLASSIFICATION*
      _   COT057
 C    *
 58      TYPE 158

 158     ^^i5???611^^ ^ "BER'S LENCTH»  WIDTH «MM>» A1"1 COMMENTS  .$)
 356
         IF  (WIDTH.EO.0> GOTO-*       '  ~  "** *  "* «° *"**»'                      \
         IF (LENCTH.GT.WIDTH)' GOT0458
         TYPE 157
 157      FORMAT ('OLENCTH MUST BE GREATER THAN WIDTH')
         GOTO 58                                                                          M
 C
 458      WRITE (1,256) CLASS
       • GOTO S6
C                                     •
C                             '
C
C       REVIEW DATA FOR LAST CRIB
C
50      DO 82 L-39RECNUM
82      BACKSPACE 1
        READ (1.354) GLEN.GWIDTH
C
        TYPE ISO.CRID.GLEN.GWIDTH
180     FORMAT ('OCRID',13.19.' x '.13)

81      IF (I.EQ.RECNUM-2) GOT084
        READ (1.256) CLASS
                                    207

-------
        READ (1,356) LENGTH,Wl»TH,K,(eQM(L),,L-leK)
        TYPE 182,CLASS,LENGTH,WIDTH,(COM(L)*L»l,K)
182     FORMAT ('0'.8X,A4,8X,I4,' x ',I4,8X,12A1)
        I-I+2
        GOTO 81
84      IF (RECNUH .EQ.3) TYPE *,'        NO FIBERS'
86      TYPE 186
186     FORMAT C'OIS THIS INFO!RMATXOK?\GORRECT? *9$)
        READ(S,223.END-99.99) DONE  *
        IF (DONE.EQ.'Y') GOTO 53
        IF (DONE.NE.'N') GOTO 36
        DO 88 I-l.RECNUM-2
        BACKSPACE 1
88      CONTINUE
        TYPE 188,GRID
188     FORMAT ('ORE-ENTER DATA FOR GRID',13)
        GOTO 52
C
C    '
53      WRITE (1,256) '///*
        GRID-GRID*-!
52      IF (GRID.EQ.l) GOTO 54
        TYPE 152
152     FORMAT (//ARE THERE ANY MORE GRIDS! %$)
        READ(5,223,END-9999) DONE
        IF (DONE.EQ.'Y').GOTO 54
        IF (DONE.NE.'N') GOTO 52
C
C
70      BACKSPACE 1
        WRITE (1,256) 'END'
        Q-0
        RECORD-RECORD+1
72      TYPE 172
172     FORMAT (//ANY MORE DATA SETS! %$>
        READ(5,223,END-9999) DONE
        IF (DONE.EQ.'Y') GOTO 99
        IF (DONE.NE.'N')COTO 72
        WRITE (1,372)
372     FORMAT ('FINISHED')
        CLOSE (UNIT-1)
        CALL EXIT
        END
                                                                              a

                                                                              s
                                     208

-------
c
c
c
c
c
G
C
c

i

       LP93.UP95. CONST

   REAL RAWLEN.RAWWID.RAWCLS
   INTEGER RAWNUM.RAHFIB  "










   BYTE RAW,GRAPHS.DESC,SMPCOM,COM,FlaTYP
                   THE MAIN ROOT is -EPACAL
                                 RECION
  OVERLAY STRUCTURE:
  S
 CHANGE COMMAND CHAR
 I COM |

 CALL INIT

 IP (REPEAT.NE.'Y*)
 IF (REPEAT.EQ.'Y')
 IF(I.EQ.l) GOTO 20
 CALL ENTER!
 CALL GETSMP
 CALL SHPOIS

 CALL CLSGET
 CALL CLSCAL
CALL GROCAL

CALL ENTER2(REPEAT.ERR)
IF (ERR.EQ.l) GOTO 10
IF (ERR.EQ.2) GOTO 20
                                 GET START UP INFORMATION
                               J FIND A FILE SPECIFIED DURING j
                                 CO BACK TO START OF LAST FILE
                         	   1 STOP IF NO FILES ARE LEFT
                         GET INFO CONCERNING PRINTOUT OF THIS 8ATA

                         xusn^vgr *•"** «" "<•*
                              CLASSIFICATION INFO FROM FILE
                            	—— •»- *Bwv«*A^6« SW

                            GRID CALCULATIONS
 CALL STATS
 CALL LENDIS
                       j  QQ LENCTH DISTRIBOTION


                          209

-------
I
  DO SAMPLE:PREPARATION CALCULATIONS
I  TYPE PACE.l
!  TYPE PAGE 2
I TYPK PACE 3
        !  TYPE PAGE 4
 ,  *     CALL SMPCAL
        CALL PAGE1
        CALL PAGE2 -
        IF(FXBNO.LT.IO) GOTO IS
        CALL PACE2A
        CALL PAGE2B
        CALL PAGE2C
13      CALL PAGE3
        IP (RAV.EQ.'Y') CALL PACE*
        ZF (BAW.EQ.'Y') CALL PACES
        IF
-------
                                                                                          r '
 C
 C
 c
 c
c

C





10
100
c

20
110
120
         SUBROUTINE INIT



         '^^yig^iWh™;?^.-™^.™.™™.
                                                       ,GTAKEN,KUMMAS(20
                                                       •,ASHFA,


                                                           >,SD,U9S,L95,
         REAL LP958UP958CONST
         REAL RAWLEH8RAUVI8,RAWCLS
         INTEGER RAUMUM,RAWFI8

         mL
         REAL
                                                       CLSLIM
        BYTE RAW,GRAPHS,DESC,SMPCOM,COM,FIBTYP



      rjJiS. PS !^K! 22 AWBIOB TO A FLOPPY DISC FILE
        BYTE TEMP


        CALL IDATE (I.J.K)

        CALL ERRSET(64... FALSE..,. FALSE..)
        IF (K.EQ.74) STOP  'ENTER DATE'  .
        FORMAT(Al)
                                            GOTO  10





                                                ALL)'
                             ° YOU HANT

        ACCEPTllO.MODE
        FORMAT(A4)

        IF(MODE.fe.'ALL ') RETURN

        IF((MODE.NE.'SEQ ').AND.(MODE.NEe'JOB  ')) COT02Q

        TYPE120.MODE
                                   211

-------
        NUMBRO-0
30      ACCEPTiSO.NUMBRI(NUMBROH) .NUMBR2(NUMBRO+i }
130     FORMAT(2AA)
        IF(NUMBR1(NUMBROH).EQVEND')RETURN
        NUMBRO-NUMBROH
        IF(NUMBRO.NE.li)COT030
        TYPE140.HOOB
140     FORMATC LIMIT OF IQ "SA6/NUMBERS REACHED')
        NUMBRO-10
        RETURN
        END
                                   212

-------
         SUBROUTINE GET (ERR)
 C      *         .              ""..-.
 C                                     '   •
         COMMON DESC<60) ,SMPCOM(5,60) ,RAW,CRAPHS,CMAC,CMAC,DtL,PREP<3),
                 INST.SMPTYP, CLS<24) ,SEQNUM<2) ,JOBNUM<2) ,6TA1C£N,KUMMAS<20) ,
                 DISVOL,DILlVT,DILlFV.DIL2VT.DlL2FV.ASHVFfASHFA,
                 ASHAT,ASHDIS,VOLFIL,FILA,VOLAIR,VOLWAT.PR£WC,CUHWID<20).
                 MOOEtBLANK,CRIDNO,FIBNOfCHISQ,SIC,NUMPI8(50)tSD.U95,L95,
                 CRIDL<50),GRIDW
-------
c
10
20
C
30
40
SUBROUTINE  BACK

COMMON DESC(60),SHPCOM(5,60),RAW,CRAPHS,CMACeCMACBDILfPREP(3).
         INST,SMPTYP.CLS(24).SEQHUM(2).JOBNUM(2),CTAKEM.KUM«ASC20),
         DISVOL,DILlVT,DILlFV»DiL2VT9DIL2FV,ASHVFtASHFA,
         ASHAT,ASHDIStVOLFIL,FILA,VeLAIR,VOLtfAT.PREl»TC,CUMWIB(20).
         MODE.BLANKtGRIDNOtPIBNOeCHlSQ8SXG,NUMFIBCSO),SD,U9S,L95,
         GRIDLC50),GRIDW(5G)8FXBCLS<24)9MORFC24)8AR£A8FIBLEN<500),
         «BWIti(SOO),CLASS(500),ASP(500)8COUNTC3),ENTtX,CUMASP(20),
         NUMBRiC 10) 8NUMBR2( 10) »H!!HBR08CLSNUMeaiMNlIM(20) ,CU*fi*AS(20) .
         FIBTYP(32) ,HEICHI(24) .FRACTtASPLIM.LEHLIM>CLSLIM(24) .CLASNO.
         RAWLEM(SOO)SRAWHID(500),RAWCLS<500),RAWHUM<50).RAWFIB,
         LP95,UP95,IPFL,CONST
REAL LP95.UP95,CONST
REAL RAULEN,RAWUID,RAUCLS
INTEGER  RAWNUM.RAUFIB
REAL PIBLEN,FIBWID,CLASS,ASP,INS*.NUMBRlfNUMBR2.CUMMAS,MORF
REAL CRIDL,GRIDW,CHISQ.SIG,FIBCLS,f!OBE,SEQMUM.J08NUM,CLSLIM
REAL GTAKEN,DISVOL,pILlVT.DIHFV.niL2VTtOIL2FV,SD,U95.L9S.
, «,  ASHVF*ASHFA»ASHAT.ASHDIS.VOLFILeFILA,HEIGHTeFRACTeKUMMAS
INTEGER  DIL,GMAG,CMAG,NUMBRO,FIBNO,GRIDN08BLANK,NUMFIB,CLSNUM.
         CUMNUH,ASPLIMtLENLI*M(CLASNQ
BYTE RAW,GRAPHS,OESC,SMPCOM,COM,FIBTYP

BACKSPACE 1

READ (1,20) STAR
FORMAT (A4)
IF (STAR.EQe*STAR') GOTO 30
BACKSPACE 1
BACKSPACE 1
GOTO 1.0

READ (1,40) SEQNUM.JOBNUH
FORMAT '(4A4)
BACKSPACE 1
RETURN
END
                                    214

-------
     .1
      i
         SUBROUTINE ENTER1         - •



         COMMON DESC(60).SMPCOM(5.60).

        REAL LP9S6UP9S, CONST
        RIAL RAHLEN.RAWWID.RAWCLS
        INTEGER RAUNUM.RAWFIB
        S S^:-^"«-:SItl>inB"'2-ra^-'!0"

        BWE RAWC
               — —,._. •••«>yM«Mi*«&ntwi«Aanu
           RAW.CRAPHS.DESC.SMPCOM.COM.FIBTYP
C

       REAL JOBNUM.SEQNUM.CLSLIM
c     •
C

       TYPE iO.SEQNUM.JOBNUM
IQ     Pma&*««»^ »  ^^_ 	
15  . .FORMATO2A1)
e
       LENLIM-S
       ASPLIM-3
45     FORMAT(Al)
       GRAPHS-*Y'
48
                                 r)) GOTO 48

       END
                               215

-------
          SUBROUTINE'GETSHP
  c
  C       "f PTO GET THE SAMPLE INFORMATION
  C       ALL  INFORMATION PASSED THROUGH COMMON
          COMMON DESC(60),SMPCOM(5i60),RAW»GRAPHS.GMAG.CMAe OIL 99rvfi\
       *          INST.SMiWB.««/4A/^«^^W*ir!^J^^^P^3>.2o)
      *          wuG,fiUNK,GRIDNO,FIBNO,CHISQ,SIG,NUMFiB(SO)
      •     •     GRlDL(50)tGRIDW(50),""*'"•• ••""'* *	'—  - —
      I
         REAL LP95,UP95,CONST
         REAL RAWLEN,RAWID,RAUCLS
         INTEGER RAWNUM.RAWFIB

      .
 c       BYTE RAW.CRAPHS.DESC.SMPCOM.COH.FIBTYP
 10

 20

 30
        READ (1,40) SHPTYP
 *0     FORMAT (A4)
        DIL-0
        DIL2VT-1
        OIL2FV-1
        READ(lf80) DIL
 80     FORMAT (II)

        S rSJi"5'?}  READ (1'90) »«-lVT,DXLIPV
 90 .    %££&?£$ Cli90)
        READ (I, UO) VOLFIL.FILA
 I 10     FORMAT (F7.2.E5.2)
C
        DO 160  L-i.S
        DO 170  K-1,60
        SMPCOH(L.K).-'  '
170     CONTINUE
160     CONTINUE
                                   216

-------
130
140
C
DO 130 L-1,5
READ (1,140) (SMPCOM
-------
        SUBROUTINE SMPDIS
C •                             '•'=..
C       ALL INFORMATION Rt..«EVE» THROUGH COMMON
C
        COMMON DESC<60),SMPeOM<5,60),RAW,GRAPHS,6MA6,CHAG,BIL,PREPC3)8
                INST,SHPTYP,CLS<;24)tSEQNUM(2),JOBNUM(2),GTA1CEN8KUMMAS<20),
                DISVOL,DILlVT.0mFV,BIL2VT,BIL2FV.ASHVF,ASHFAt
                ASHAT.ASHDISsVOLFIL,FILAsVOLAIR,VOLWAT8PREPTC,CUHtfIDC20)g
             .   MODE,BLANK,CRIDHOe?IBNGIteHISQ.SI69NUMFIB(SO) SSD809S,L95,
                GRIOL(SO).GRXDHC30),FIBCLS<24)tMORF(24).AREA,PIBLEN<500).
                FIBHID(SOO) ,CLA8S<500) ,ASP(500) ,COUNT(3> ,ENTR*.CUMASPC20),
                NUMERIC 10).NUMBR2UO)vmiMBRO(CLSNUMtCUHNUM(20),CUMMAS(20),
                FIBTYP(32),WEIG»T(24),FRACT,ASPLIK,LENLIM(CLSLIM(24)8CLASNO(
                RAWLEN(500)(RAUUIO(500),RAUCLS(500),RA¥NUM(50),RAWFIBf
                LP95,UP95,IPFL.GONST
        REAL LP9S.UP95.CONST
        REAL RAULEN,RAWID,RAWCLS
        INTEGER RAVNUH.RAUFIB
        REAL FIBLEN,FIBWID,CUVS8,ASPtINST,NUMBRl,NUMBR2,CUMMAS,MORF
        REAL GRIDL>GRIOUtCHISqtSIC,FIBCLS»MODE,SEQNUMtJOBNUMeCLSLIH
        REAL GTAKEN,DlSVOL,DILlVT,DILiFV,8IL2VT,DIL2FV()SD»U958L95t
     &        ASHVF.ASHFA,ASHAT0ASHDIS,VOLFIL,FILBIAtWEIGHTtFRACT,KUMHAS
        INTEGER DIL,GMAGsCMAGtNUMBROBFIBNO,GRIDN08BLANK,NUMFIB»CLSNUM,
     &          CUMNUM,ASPLIM,LENLIM.CLASNO
        BYTE RAUtGRAPHS,OESCtSMPCOMyCOM,FIBTYP
C
C
        UNITS-'cu.H'
        UNITSF-UNITS
C
        T*PE in.SEQNUM.DESC.JOBNUM.PREP^PREPTC.COUNT.INST.
     &            ENTRY,CMAC.CMViG
112     FORMAT ('ONo: *,2A4./t13X,'S«ipl«: ',60Ali/.' Jobs *»2A4,//8
     t          ' Pr«p by: \3AAb17X,'Prep«r*cion Techniques ',A4,//t
     *          ' Count by: °'»3A4,16XS'Instruments *,A4,//,e Entry by* '.
     *          A4,24X8'M«gni£ic«tlon, Grids %I4B*  Counts MS,/)
C                              ...
        TYPE 142
142     FORMAT ('OLIQUID')
      •  IF(DIL.GTeO)TYPE 144,M»t%DILlVT.DILlFV
        IFCDIL.GToUTYPE 144.'2nd* .DIL2VT.DIL2FV
144     FORMAT ('0',A3,' Dilution: VoluM Taken (aL) 8 *,F6.i,8Xe
     «          'Final Volume (mL) : '.F6.1)
        TYPE 146.UNITSF.VOLFIL.FILA
146     FORMAT ('OVolume Filtered C.A4,') : ',F7.2,
     4         SX.'Filtcr Diameter (mn) : ',F5.2>
 i      TYPE ISO
150   .  FORMAT (//OCOHMENTS:')
        DO 55,L-1,5
        IF CSMPCOMCL.D.EQ.'     ')TYPE *.' •
        IF (SMPCOM(L.l).NE.'     ')TYPE 155,(SMPCOM(L,K)tK-l,60)
155     FORMAT (IX.60A1)                                   *. .
 •           *
                                    218

-------
S5
CONTINUE
RETURN
END
                                                                                        i 1
                                  219

-------
c
c
 c
 c
 10
 c
 20


 25
 C
 C
 30
  C
  40
SUBROUTINE CLSGCT


COMMON OESC(60)fSMPCOH(5,60),RAW,CRAPHS,GMAGtCMAC»BIL,PR£P(3),
        INST,SMmP,CLS(24),SEQNUM(2)9JOBNUMC2).CTAKEN,KUMHAS<20).
        OISVOL,BILlVTtBILlFV,8IL2VT»8IL2FV,ASHVF,ASHFA.
        ASHAT.ASHBIS.VOLFIL,?ILA,VOLAiR8VOLHAT,PREPTC8CUMWIO(20),
        HOBE8BUNK, , ENTRY, OIMASP( 20).
        NUMBRK10) ,NUMBR2( 10) tNUMBROtCLSNtm,CUMNUM(20) ,OTHMAS(20} 8
        FZBTYP(32) ,WEICHT(24) ,FRACT,ASPUM8LENUM,CLSLIMC24) SC
        RAWLEN(SOO),RAWHID(500),RAWCLS(SOO)tRAUNUM(SO)-RAWFI5,
        LP95,UP95,IPFL,CONST
REAL LP9S.UP95,CONST
REAL RAULENVRAUUID,RAUCLS
INTEGER RAWNUM,RAUFIB
REAL FIBLEN,FIBUID,CLASS,ASP,INST,NIJMBR1,!!UMBR2,CUMMASIMORF
REAL GRIOL,GRIDW9CHISQ,SIG9FIBCLSilMOOEeSEQNUM».IOBNUM,CLSLIM
REAL GTAKEN,DISVOL6BILlVTeDILlFV8BIL2VT8OlL2FJf,Sp.U958L95,
       ASHVF8ASHFA,ASHAT,ASHBSStVOLFILtFILA6HlIGHTtFRACT,KUMMAS
INTEGER OIL,CMAGtCHAG,miMBRO.FIBN6,GRIDN08BLANK.NUMFIBgCLSNUM(
        CUMNUM.ASPLIMfLENLIM*CLASNO
BYTE RAU,GRAPHS,OESC,SMPCOM.COM,FIBTYP  .
 00 10 L-1.50
 RAWNUM(L)«0
 NUHFIBCD-0

 GRIDNO1
 FIBNO-0
 REAB (1,310) ILEN.IWIO
 GRIBL(GRIBNO)-ILEN
 GRIDW'(CRIDNO)«IV?ID
 REAB (1,320) CLASSl
 IF (CLASSIcEQ.' ENB'.OR.CLASSI.EQ.'ENB ") GOTO 40
 IF (CLASSIeNEo* ///'.ANB.CLASSI.NE.'/// ') GOTO 30
 GRIDNO-GRIDN04-.1
 GOTO 20
 NUMFIB(GRIONO)-NUMFIB(GRIBNO)+1
 RAWNUM(GRIDNO)-mJMFIB(CRIDNO)
 FIBNO-FIBNCH-1
 CLASSCFIBNO)-CLASSI
 READ (1.330)  ILUM.IUIB
 FIBLEN(FIBNO)-ILEN
 FIBUIO(FIBNO)-IWIO
 GOTO 25

 CONTINUE
                                      220

-------
D
0

C
310
320
330
TYPE *,*LEAVING GLSGET
TYPE *,' *
RETURN

FORMAT (213)
FORMAT 
-------
c
c
c
 c
 c
 c
 c
 20
      &
      &
        SUBROUTINE CLSCAL
COMMON DESC(60)tSMPeOM<5,60),RAW,GRAPHS,6MAC,CMAGgDXL,PREP(3)8
        INST.SMPTYP,CLS(24),SEQNUM<2),JOBNUM<2),GTAKEN,KUMMAS<20),
        DISVOL,DIL1VT,DIL1FV»DIL2VT,DIL2FV,ASHVF»ASHFA8
        ASHAT,ASHDIS,VOLPXL.FILA,VOLAXR,VOLtfATePR£PTC,CUMtfXDC20)s
        MODE,BLANK,GRIDNOtF£BKO,CH£SQ8Sie,NUMFXB(50),SDsU95tL95,
        GRXDL(SO) ,GRXDU(SO) ,F£BCLS<24) eMORF(24) . AREA,FXBLEN(SOO) ,
        FIBUXD(SOO).CLASS(500),ASP(SOO),COUNT(3).ENTRT,CUMASP(20),
        NUMflRK 10) ,NUMBR2( 10) .NUMBRO,CLSNUM,CUM1IUM(20) ,CUMMAS(20) ,
        FIBTYP(32)VUEXGHT(24)tFRACT,ASPLXMtLENLXMvCLSLXM(24),CLASNO,
        RAULEN(SOO)8RAUWID(500),RAUCLS(500),RAWNUM(50),RAWFIBt
        LP95,UP95,IPFL,CONST
REAL LP95.UP95,CONST
REAL RAWLEN(RAWUXD,RAUCLS
INTEGER RAWNUM.RAWFIB
REAL FIBLEN,FIBWIDrCLASS,ASP,INST,NUMBRiaNUMBR2,CUMMAS,MORF
REAL CRXDLvGRIDWtCHXSqBSIG,FIBCLSBMOOE,SEQNUMtJOBNUMtCLSLXM
REAL GTAKEN9DISVOL,OILlVT,DILiFV,DIL2VT,DIL2FV$SDtU95,L9S,
      ASHVF,ASHFA,ASHAT(ASHOIStVOLFIL,FILAtWEIGHTtFRACT(KUMMAS
INTEGER OIL,GMAG,CMAG,NimBROvFIBNO,GRXDNO,BLANIC,NUHFIB,CLSNUM,
        CUMNUM, ASPLIH, LENLIM9 CLASNO
BYTE RAU,GRAPHS>OESCtSMPCOM>COM,FIBTYP,TYPFIB(32)


REAL KCOUNT.OENSXTCIS),STAND(15),SHAPE(IS),SPECGR(8)
DATA DENSXT/6*2.55,9*3.3:/
DATA STAND/'TM  '.'CM  VCD   ','CQ   '/CMQ  '/CDQ %'UF  '/AD '.
         •AX  ','ADX  '.'AQ  VADQ *,'AZQ '/AZZ '/AZZQV
DATA SHAPE/6*0.7854,9*1,7
DATA TYPFIB/'C' /H' ,'R' D'Y' ,'C' ,'R' ,'0' ,'C' ,'C' ,'U' ,'M' ,'M* .
     'G* j'R' ,'U* ,'N' ,'A* t'M' ,'OVS' .'A* ,'N' ,'T* ,'H' ,'T' ,'R* .
     tme  tiff  »•» fQt tmff  *T*/
DATA SPECGR/2.Ss!3.37,3o28,3,52,3.43.3.00,3.00.3.10/

KCOUNT-1.E3/CMAG
 IF (FIBNO.EQ.O) GOTO SO
 CLSNUM-0

 DO SO L-I.FIBNO
 FIBLEN(L)-FIBLEN(L)*KCOUNT
 FIBWID( D-FIBWIDC L)*KCOUNT
 ASP(L)»FXBLEN(L)/FIBUID(L)
 K-0
 IF(L.EQ.l) GOTO 40
 DO 40 K-l.CLSNUM
 IF (CLASS(L).NE.CLS(K)) GOTO 40
 FIBCLS(K)-FIBCLS(K)-I-1
                                      222

-------
40
60

62
50
D
B778
         CONTINUE
         IF (K.EQ.99)  GOTO 50
         CLSNUM-CLSNWW
         WEIGHT(CLSNUM)-0
         DO 35 K-l.IS
        FIBCLS(CLSNUM)-l
        DO 60 1-1,32,4
        IFIB-(H.3>/4
        GOTO SO
        WEIGHTCaSNUM)-SPECGR( IFIB)
        CONTINUE
                                                                    GOTO 62
       END
                                  223

-------
c
c
c
c
60
        SUBROUTINE GRDCAL
        COMMON DESCC60) ,SMPCOMCS,60) ,RAH,GRAPHS,GMAG,CMA6tDIL,PREP(3) ,
                INST,SMPTYP,CLS(24) ,SEQNUM(2) ,JOBSUM<2) . CTAJCEN,KUMMAS<20) '
                DISVOL,DILlVT,DILlFV,DlL2VTsDXL2FV,ASHVP,ASHPAe
        MODE,BLANK,GRXDNO,FZBNO,CHSSQ8S£G,ffiIMFXBC50),SD,U9S,L95,
        CRIDL(SO) .GRIDH(SO) cFIBeLS(24) .MORFC24) ,ARBA,F£BIEN(SOO) ,
        FXBWXD(SOO) 8CLASS(500) 9 ASP (5 00) tCOUNTC3) ,ENTR¥,€yMASP(20) c
        NUHBRIC 10) ,NUMBR2( 10) (NUMBRO,CLSNUMCCUMNUM(20) ,CUMMAS(20) ,
        FIBTYPC32) ,WEIGHT(24) ,FRACf,ASPHK,LENLIM,CLSLIM(24),CLASNOf
        RAWLEN(SOO) .RAWXD(SOO) ,RAWCLS(500) ,RAWNUH(SO) ,RAWFXB,
        LP95,UP95,IPFL, CONST
REAL LP95,UP95, CONST
REAL RAVLEN,RAUUXDVRAWCLS
INTEGER RAWNUH.RAWFIB
REAL FIBLEN>FIBUIOtCLASSyASP>INST8NUHBRl9miMBR2.CUMMAS,MORF
REAL CRIDL,GRIDWtCHISQ, SIC, FIBCLS, MODE, SEQNUM.JOBNUM.CLSLIH
REAL GTAKEN,DXSVOL,DXLlVTBDXLiFV»pIL2VT,OIL2FVsSDeU95,L95,
      ASHVF.ASHFA,ASHAT,ASHSIS,VOLFIL,FILAsMEXG«TtFRACT,ICUMMAS
INTEGER DIL,CMAG,CMAG,NUMBROgFIBN01,CRIDNO,BLANK,NUMFIB.CLSNUM,
        CUMNUM, ASPLIM, LENLIM, CLASNO
BYTE RAU,GRAFHS,DESC.SMPCOM(COM,FIBTYP

REAL KGRIO

KGRIO-1.E3/GMAG
AREA-0
BLANK-0
DO 60 L-l .CRIDNO
GRIDL(L)-GRIDL(L)*KCRID
GRIDW(L)-GRIDW(L)*KCRID
AREA-AREA-H:RIDU(L)*GRIDL(L)
IF (NUMFIB(L).EQ.O) BLANK-BLANK4-1
CONTINUE
RETURN
END
                                    224

-------
        SUBROUTINE BNT£R2< REPEAT. ERR)
C            •                         •  .  '                            .   .
c
        COMMON DESC(60),SMPCOM(5,60).RAW,CRAPHS,CMAC§CHAC.DIL,PREP(3K
     J          *NSTtSMmP.CLS<24).SEQNUM(2),JOBNUM<2),CTAICEN,iajMMAS<20),
     *          DISVOL,DlLiVT,DILiFVfDIL2VTtDIL2FV.ASHVF.ASHFA,
     4          ASIUT,ASHDIS,VOLFIL.Fltt,VOUIR,VOLWAT.PREWC,CUMWID<20),
     t          MOOE,BLA!«.GRIDNO,FIBNOfCHISq,SIC,NUMFIBC50).SD.U95,L95.
     *          6*IBU50).CRIDW(50)tFIBCIS(24),MORF<24).AREA,FIBLEN
-------
       CLSLlH(I)-'$$$$'
       GOTO 100                    "  :
75     IF(WEZGHTCJ).NE.O) GOTO 100
80     TYPE 7U,CLS(J)
70     FORMATC WHAT IS THE DENSITY FOR ',A4S'IN C/CC?',$)
       READ(5,*,ERR-80) WEICHT.CJ)
       ZF(UEIGUT(J).LE.O) GOTO 80
90     TYPE *,'HHAT IP THB SHAPE OF THE FIBER CROSS~SECTION? (R/S)'
       ACCEPT95,ICHAR
95     FORHAT(Al)
       IF((ZCHAR.NE.'R')rJWO.()tCHAR.NE.'S'))GOTO 90
       IF(ICHAR.EQ.'R') MORF(J]l-0.7854
       IF(ICHAR.EQ.'S') HORF(J)-l
100    CONTINUE
110    TYPE*/ '
       TYPE*,'IS THERE GOING TO BE ANOTHER REPORT FROM  THIS DATA SET?'
       ACCEPT105,REPEAT
105    FORHAT(Al)
       IF((REPEAT.NE.'N').AND.(REPEAT.NE.'Y')) GOTO  110
       TYPE *,*'IS THE ABOVE INFORMATION CORRECT?'
    '   ACCEPT!05,TEMP
       ERR-0
       IF(TEMP.EQ.'Y') RETURN
       ERR-l
       IF(TEHP.EQ.'ABOR') ERR-2
       REPEAT"'Y*
       RETURN
       END                                           •
                                    226

-------
         SUBROUTINE FILTER(ERRA,ERRL,ERRC)

         COMMON DESC(60)>SMPVOLPIL,FiLAvVOLAIRtVOLUAT,PREPTCtCUMWIO(20),
      4          MOOE,BLANK,GRIDNO,FIBNO,CHISQ,SIG,NUMFIB(50),SD,U9S,L9S;
      4          CRIDLC50),CRIDW(50)fFIBCLS<24).MORF(24).AREA.FIBLEM(500),
      4          ?!BUID<500)(CLASS(500),ASP(SOO),COUNT(3),ENTRY,CUMASP(20),
      4          NUMBRl(10),NUMBR2(10),.NUMBROtCLSNUM,CUMNUM(20).CUMMAS(20),
      4          FIBTYP<32) ,WEICHT<24> .FRACT.ASPLIM.LEMLIM,CLSLIM(24) .CLASNO,
      4          RAULEN(SOQ),RAWWID(500>,RAUCLS<500).RAWNUM(SO).RAHFIB,
      4       •  LP95,UP95,IPFL8CONST
         REAL LP95iUP9S,CONST
         REAL RAULEN,RAUViD,RAHCLS
         INTEGER RAUNUM,RAUFIB
         REAL FIBLENeFIBWID8CLASS,ASP,INSTtNUMBRl,NUMBR2BCUMMAS,MORF
         REAL GRIDL.GRIDW.CHISQ,SIC,FIBCLS,MODE,SEQNUM.JOBNUM.CLSLIM
         REAL GTAKEN.DISVOL.DILiVT,DILiFV.DIL2VT,DIL2FV,SD.U95,L95,
      4        ASHVF.ASHFA.ASHAT.ASHDIS.VOLFIL.FILA.WEIGHT.FRACT.KUMMAS
         INTEGER DIL.CMAG^CMAC.NUMBRO^FIBNO.GRIDNO.BLANK.NUMFIB.CLSNUM,
      4          CUMNUM.ASPLIM.LENLIM,CLASNO
         BYTE RAW,GRAPHS,DESC,SHPCQM,COM,FIBTYP


         INTEGER CNT,CTOTAL,GRID,ERAsERC,ERLeERRA,ERRL,ERRC

         CNT-i
         GTOTAL-NUMFIB(l)
         GRID-I
         ERRA-0
         ERRL-0
         ERROO
         RAWFIB-FIBNO               .
         IF (oNOT.FIBNO) RETURN
 C
         DO 50 L-l.FIBNO
 10      IF (GTOTAL.GE.CNT) GOTO 20
         GRID-GRID+1
         GTOTALiCTOTAL-HlUMFIB(GRlD)
         GOTO 10
 G
 20      IF  ERA-1
. C
 C   LOWER LIMIT LENGTH RESTRICTION IS SET TO 0.5  MICROMETERS
 C
         IF (FIBLEN(L).LT.O.S) ERL-l
         IF (CLASNO.EQ.O) GOTO 35
         DO 30 K-l,CLASNO
 30      IF (CLASS(L).EQ.CLSLIM(K)) K-98
         IF (K.NE.99) ERC-l
         RAWLEN(L)-FIBLEN(L)

                                     227

-------
35
C
C
40
SO
RAWWID(L)-FIBWID(L)
RAWCLS(L)>CLASS(L)              " ;
IF (((ERA.OR.ERL).OK.ERC).EQ.l) GOTO 40
        FIBIEN(CNT)-FIBLENU)
        FIBWID(CNT)-FIBWID(L)
        ASP(QtT)«ASP(L)
        CLASS(CNT)-CLASSCL)
GOTO 50

ERRA-ERRA+ERA
ERRL-ERRL+ERL
ERRC-ERROERC
CTOTAL-CTOTAL-l
NUMFIB(GRID)-NUMFZB(GRID)-1
ERA-0
ERL-0
ERC-0
CONTINUE
FIBNO-CNT-1
RETURN
END
                                                                                          i I
                                    228

-------
        SUBROUTINE STATS               " :
C
G

        COMMON DESC<60),SMPCOM(5.60),RAtf.<3ttPHS,CHAC,OIAC,DlL.PREP<3).
                INST,SMPT¥P.CLS<24) ,SEQNUM<2) ,JOBNUM<2) .GTAKEN.KUMMASC20) .
                DXSVOL,DILIVT,DILIFV-,DIL2VT.DIL2FV.ASHVF,ASHFA,
                ASHAT,ASHDIS,VOLFIL,FILA,VOUIR,VOLWAT.PREPTC,CUMWID(20).
                MOOE,BLANK,CRIDMOtFIBMO.CHISQ.SIC,HUMFIB(50).SD,U95,L95.
                CRIDL(SO) .GRIDWC50) .FIBCLSC24) ,HORF<24),AREA FIBLEN<300) .
                22R5?0? 'a-*8*500' .ASPC500) .COUNTC3) . ENTRY. Cu£lSP(20) .
                HUMBR1( 10) , NUMBK2C 10) ,HUM8RO,CLSNUM,CUMNUM(20) .CUMMAS(20) ,
                IS5rJJ2)!HElClir(24) »FRACT.ASPLIM,LENLIM.CLSUM(24) .CLASNO.
                RAWU^CSOO) ,^WID(S(JO) .RAWCLSC500) ,RAWNUM(50) .RAWFIB,
                LP95 , UP9S . IPFLf CONST
        REAL LP95.UP95, CONST
        REAL RAUL£N(RAUU£0BRAWCLS
        INTEGER RAUNUM.RAWFZB
                                            *^
        REAL GTAKEN,DISVOL.OILIVT.DILIFV,DIL2VT.DIL2FV.SO,U95.L95,
        T^w».
        INTEGER PlL,Q!ACsQlACsNBMBRO.FIBNO.GRIDNO.BlJU«tNUMFIB.
     4         CUMNUM,ASPLIM,LENLZM,CLASNO                  .*
        BYTE RAW,GRAPHSrOESC,SMPCOM,COM,FIBTYP
C
C
        REAL CHl( 14,26), STUTEE(50),SIGTAB( 14) §POIS(2. 100)
        BYTE FREOOM(Si)
     •   DATA FREDOM/0, 1,2,3.4,5,6,7,8.9, iO.il. 12, 13, 14,
        DATA CT1'"'5J*l!4l5»ld'20»5*21»5*22.5*23.5*24,5*25,5*26/
        DATA STUTEE/0..12.706.4.303,3.182,2.776.2.571,2.447,2.365.2.306,
     I      i'iH--J'S'i'aoi'a-l79'2-l*°'2-M5»2-l3»-2-»M.2-»o.2:iat-
     I      l^flo^ffi
                        ;.'^;/?^Vf5,;/9o^v^^^^        ..

                        ^^
                                                                         .
                                »4:3662'9'24»H-»12-83'l5-09»16-75 20.52
                                       ,.,.     ...
    & 2.6,3.,3.82.4.57,5.57,7.58ei0.3,13.7,17l28M9.68!2ll9 24 73 2ft 76
    ! ^S^^^Vtft!1^
    * 37
                                        .l.»79

                                     229

-------
C
C
 10
 C
20
 IF (FIBNO.EQ.O)  RETURN
 SUM-0
 CHISQ-0
 AVE-FIBNO/CRIDNO
 DO  10 L-1,GRIDNO
 TEMP-FIBSO*GRIDL(L)*CRIDW(L)/AREA
 CHISQ-CHISQKTEHP-inJHFIB(U)**2/TEMP
 SUM<5UMKTEHP-NUMFIB(L))**2

SIG-'<0.1'        *                                          ,
 IF (GRIDNO.GE.2) SD-(SUM/(C!RIDNO-1))**C5

            '
        IF(FIBNO.CT.IOO) GOTO 30
                                      230

-------
        LP95-POISU,FIBNO>           '  ":
        Uf95-POIS(2,PIBNO)
        RETURN
30      X-FIBNO

       . LP95-FIBNO - STUTBE(CRIDMO)*SQRT(X)
        UP95-PIBNO * STUTEE(CRIDNO)*SQRT(X)
        RETURN
        END
                                    231.

-------
         SUBROUTINE LENDIS                 .
 C                                        • :
 C
         COMMON DESCC60),SMPCOM(5,60),RAW,CRAPHS.CMAC.CMA6,DII.tPH£P(3).
                 *"" cu"~" *""'"" ""	,JOBNim(2)ieTAKENtlajMMAJ(t20)f                  .

                                                                                            j
                                     F BCLS(24) •
                                                                          r
                                                     CUMNUMC20) ,CUMMAS(20)
                                      ,FRACT9ASPLIM,LENLIM,C1SI.IM(24) .CLASNO.
         SEAL LP95.UP95, CONST
         SEAL BAULEN,RAUUID,BAWCLS
         INTEGER RAWNUM.RAMFIB
      t

      &                           __  	
         BYTE RAW.CBAPHS.DESC.SMPCOMVcOM.FiBTYP
 C
 C
         REAL LOGSIZC20),

      &

      6

      &

         uA.An^K/.ooW6.;OOlr002l5.e00464seOis.02l5..0464..1,.215.
      *   •4W-l--2;l5,4.64.10..21.54.46.4l,iOOc.21S.43.464.U,1000./
        CUMWIDCD-0
        CUHNUMCD-0
        CUHASP(L)-0
        KUMHASCD-0
5       CUMMAS(L)-0
D       TYPE *,'FIBNO-',FIBNO
        IF (FIBNO.EQ.O) GOTO 20
        DO 20 L-2,20
          DO 10 K-l.FIBNO
              DO 7 J-l.CLSNUM
7             IF(CLASS(K).EQ.CLS(J))

10

-------
        DO 40 K-l.FIBNO               .
        IF«ASP(K).LT.ASPSIZa-n>.OR.(ASP(K).CE.ASPSIZa>>>COTO 40
        CUMASP(L)-CUMASP(L)-fi
 40     CONTINUE
        00 SO K-l.PIBNO
        IF( ( FIBH ID(K) .IT.UIDSIZC L-l ) ) .OR. ( FIBWiD( K) .CS.HIDSIZC L) ) )COT© 50
        CUMMIDCD-CUMHIDUHl
 SO     CONTINUE
        DO 60 S-i.FIBNO
          DO 61 J-i,CLSNUM
 6i       XF(CLASS(K).EQ.CLS(J)) I-J
        FMASS-FIBLEN
-------
c
c
        SUBROUTINE SHPCAL
        COMMON DESC(60),SMPCOM(SD60),RAU,CnUPHS,GMAG,CHAC,DZL,PREP(3),
             .   INST,SMPTYP,CLS(24),SEQNUM<2),JOBNUM<2),GTAKEN,KUHMAS<20),
                DZSVOL.DILlVT.DlLiPV.DIUVT.DIUFV.ASHVF.ASHPA,,
                ASHATfASHDIS,VOUpIL,FILA,VOLAIReVOLWATsPR£?TCeCUMWID(20),
                HODE,BLANK,OTZDNO?FIiNOtCTISQ.SIC,NUMFIB<50)tSD,UfS.L9S9
             .   CRIDL(SO)9GRIOW<30),FIBCLS<24),MORF{24).AREA,FIBLEN(SOO>,
                FIBWIDC300),CLASS<500),ASP(500),COUNT(3),ENTRfSCUMASP(20),
                NUMBRiC 10) ,NUHBR2(iO) ,NUMBRO,CLSNUM,CUMNUM(20) gCUMHAS(20),,
                FIB1YP(32) ,WEIGm:(24) (FRACT,ASPLZMtL£NLXM,CLSlZM(24) .CLASNO.
                RAULEN(SOG),RAWW3:D(500),RAHCLS(500),RAWNUM(50),RAUFIB.
                LP9S,UP9S,ZPPL.SPAC.CONST
        REAL LP95,UP9S»CONST
        REAL RAWLEN,RAUVID,RAWCLS!
        INTEGER RAWNUM.RAHFIB
        REAL FIBLEN,FIBHlb,CLASSrASP,INST,NUHBRl,NUMBR2,CUMHAS,MORF
        REAL GRIDL,GRIDU,CHZSQ,§IG,FIBCLS(MOOEvSEQNUNvJOBNUHtCLSLIM
        REAL GTAKEN,DISVOLeBZLlVT.DILlFV,DIL2VTtDIL2FV,SO,U9S»Lt5.
              ASHVP,ASHFA,ASHATsASHDlSeVOLFIL,FILA,FRACT,WBIGHT,KUMMAS»
        INTEGER DILpCMAGfOfAG.NUHBROgFIBNO.GRIONO^LANK^NUMFIB.CLSNUM,
                CUMNUH,ASPLIM,LEHILIH,CLASNO
        BYTE RAW,6RAPHS»DESC8SMPCOM,COH,FIBTYP                 -
        IF (SMPTYP«EQ.'LIQU*) FRACT-iE-3
        IF (DIL.CT.O) FRACT-FRACT*OILIVT/DILIFV
        IF (DIL.GT.I) FRACT-FRACT*OIL2VT/DIL2FV
        FRACT-FRACT*VOLFIL*AREA*IE-8/FILA
        RETURN
        END

-------
          SUBROUTINE PACE1
  C
  c
  C
          COMMON DfSC(60)^PWM(5f60).RAW,CRAPHS,GMAGfCMAC.DIL,PREP(3).

                      ,»»»t
                 GRIDL<50).CRIDW<50),FIBCLS(24).MORF{24> AREA
         REAL LP958UP9S, CONST
         RIAL RAHLEK,RAWWIB8RAMCLS
         INTEGER RAWNUM,RAWFIB
         BWE RAW.GRAPHS.DESC.SMPCOM.COM.FIBTW
 C

         REAL TEMPI ,TEMP2.TEMP3.LOW,UPP
         REAL DAT(3)
 C

         CALL DATE(OAT)

         WRITE(2t105) JOBNUM,SEQNUM,DAT,DESC,
 105     FOR^T <6X 2A4 2X.2A4.57X.JDATE:  ';

                                           •
         WRITE<2  lO)   lp                  "•  °r    €"  ClM« ifi«d  «  '.32A)
 US     FORMAT  (//,'  ')
 C
        LOW-LP95
        UPP-UP95
        IPFL-0
        CONST-1E-6
        IF (FIBNO.NE.O) GOTO I 17

        WLL SCI((1/FRACT)*CONST*3.69.53.VAL,STR)

117     IF 
-------
        IFCVAL.LT.IO.O.OR.VAL.CE.10000.0) WRITEC2,120)VAL,STR
        IFCVAL.CE.10.0.AND.VAL.LT«100.0) WRITEC2,121)VAL,STR
        IFCVAL.GE.100.0.AND.VAL.Lt.10000.0) WRITSC2,122)VAL,STR
120     FORMATC1IX,'Mean Fiber Concentration     'SF11.2»1X,A4,2X,^MFW?.
121     FORMATCllX,'Mean Fiber Concentration     >FlH»}J*^'!5%!i2%/J
122     FORMATCilX/Hean Fiber Concentration     *9Fll«0,iX8A4f2X, MFL /)
        IT CFIBNO.GT.30) GOTO US
C
125     CALL SCtCCUPP/FRACT)*CONSTeS3.VAL8STR)
        IFCVAL.LT.10.0.0R.VAL.GE.10000.0) MRITE(2,130)VAL,Sfa
        IF(VAL.CE.10.0.AND.VAL.LT.100.0) URITEC2,131)VAL,STR
        IFCVAL.CT. 100.0.AND.VAL.LT.10000«0)' HRITE(2,i32)VAL,STil    , •  ...
130   .  FORMATC1IX,'Upper 95Z Confid«nos Unit      ,F9.2,1X,A4,2X, MFL /)
131     FOEMATC11X,'Upper 95Z Confidence Limit     ',F9a,lX,A4,2X. MFL /)
132     FORMATC11X,'Upper 95X Confidence Liait     ',F9.0,1X,A4,2X, MFL /)
        CALL SCXC(LOtf/FRACT)*CONS?,S3,VAL,STR)
        IF(VAL.LT.IO.O.OR.VAL.GB.10000.0) HRITEC2.140)VAL,STR
        ZFCVAL.GE.10.0.AND.VAL.LT.IOO.O) WRITE(2P141)VA1,,STR
        IFCVAL.GE.100.0.AND.VAL.LT.10000.0) WRITE(2,iA25VAL,ST!l
140     FORHATC11X,'Lower 95X Confidence Limit     %F9*281X,A4,2X,'MFL /)
141     FOBHATCiIX,'Lower 95X Confidence Limit     %F9«i8lX,A482Xi MFL /)
142     FORMATC 1IX,'Lower 95Z Confidence Limit     * BF9oOBlX,A4,2X/MFL'/)
        GOTO 300
c                                            .
310     CALL SCI((UPP/FRACT)*CONST,53,VAL,STR)
315     IFCVAL.LT.10.0.0R.VAL.GE.10000.0)  URITE(2,320)VAL,STR
        IF(VAL.GE.10.0.ANO.VAL.LT.100.0) URITE(2,330)VAL,STR
        IF(VAL.GE.100.0.AMO.VAL.LT.10000.0) URXTE(2,340)VAL,STR
320  '   FORMATC1IX,'Fiber  Concentration i> leea than',Fa.2BlX,A4,2X, MFL /)
330     FORMATC1IX,'Fiber  Concentration is leee tnan',F8.1,lX,A4,2X,'MFL'/)
340     FORMATCHX,'Fiber  Concentration i» leae than',F3.0,lX,A4,2X,'MFL'/)
        GOTO 300
 145     TEMPI-UP95-LP95
        TEHP2-U95-L95
         IFCTEMP2.LT.TEMP1) GOTO 1125
         LOW-L95
         UPP-U95
         IPFL-i
         GOTO 125
 C
 300     CALL SCZCC1/FRACT)*CONST,S3,VALVSTR)
         IFCVAL.LT.IO.O.OR.VAL.GE.10000.0) VR1TEC2,1SO)VAL,STR
         IFCVAL.GE.10.0.AHD.VAL.LT.100.0) WRITEC2,151)VAL,STR
         IFCVAL.GE.100.0.ANO.VAL.LT.10000.0) WRITEC2,152)VAL,STR
 150     FORMATC11X,'Analytical  Sensitivity       ',F11.2,1X,A4,2X,'MFL'/)
 151     FORMATC 1IX,'Analytical  Sensitivity       *,F11.-1,1X,A4,2X,'MFL'/)
 152     FORMATC1IX,'Analytical  Sensitivity       *,F11.0,1X,A4,2X,'MFL'/)
 C
         IF (FIBNOoEQ.O) GOTO 80
         CALL SCtCCUMMASC20)*lE-6/FRACT,53sVAL,STR)
  160    FORMAT CHX,'Estimated  Mass  Concentration      * ,F7.2,1X,A4, -
      &          '  micrograms/liter')

                                       236

-------
   WRITE(2,160) VAL.STR
4
 c
 80      WRITE(2,200)
 200     FORMAT(////.21X.33HANALYST'S COMMENTS ON THIS SAMPLE,/)

         IF (DiL.GT.orWRITEC2.210)
        'IF (PREPTC.EQ.-'OZO')  WRITE(2,250)
 240     FORMAT(/,9X,'Because  of a high concentration of solids, it'.
      4    was necessary to',/,9X,'dilute this sample ',
      4  'prior to filtration.')
 250     FORMAT(/,9X.'This sample was treated by bubbling filtered o*one',
      !  ,  f™ th«>«shV,9X,'the liquid while irradiating the saaplc '.
      4  ;with ultraviolet light.'./,9X.'This treataent ii used to oxidize  ,
      4    organic* inthe liquid.'B/.9X,'After oxidation, a known',                          !
      4    volume  of the sample  was  filtered',/,9X.'through a 0.1  '!                          .1
      J  ^e*^*"t*f *?** 8lz* Nucl«Poff« polycarbonate',/,9X,'filter.  ',                     I
      4  The  deposited material on  the surface of the filter was',                           *
         ,/,9X, transferred to an electron microscope specimen'                               *
           grid by the  direct',/,9X,'carbon  coating extraction'!
           replication  technique.',/)
 C
 C
         IF (FIBNO.LT.5)  HRITE(2,400)
 400     FORMAT 
-------
15      FORMAT(I3)
        ITAB-ISPACE
        If (Z.GT.O) ITAB-ITAB-l
        IF CIABS(I).LT.IO) ITAB-ITAB-i
        HRITE<2,20) (' '.K-l,ITAB),EXP
20      FORKAT(3X,99(Ai,t))
        STR-'x 10'
        RETURN
60      URITE(2,70)
70      FORMAT (' ')
        STR"'
        VAL-A
        RETURN
        END                          -
                                     238

-------
 C
 C
C
C
        SUBROUTINE PACE2


        COMMON DESC(60).SMPCOM(5,60)tRAM,CRAPHS.CMAG.CMAG,OIL,

     !          ^fy^.W>;VT.OILlFV.DIL2VT.DIL2FVsASHVF.ASHFA;
     A          ACum^B  A4WM*b9«e e>^*e ^^«  ^^a. _ _.__		         *     *
     &
     &
                                                            .
         REAL LP95.UP95. CONST
         REAL RAHLBNeRAWWlD8RAHCLS
         INTEGER RAWNUM.RAWFXB
                                                        8,
                                    ^
         BYTE RAW.CRAPHS.DESCiSMPCOM.COM.FIBTYP
         REAL SCALE(20),DAT(3).STAND(15)
 ,05
        WRITEC2.105) JOBNUM.DAT.OESC
        VRITE(2,U5) PIU.VOLFIL.-.1.
 US     FORMAT ',A1,'_)'.I24.'U')

                                   239

-------
        WRITE<2,557)
557     FORMAT (l2X,'Flb«r  Length.  E»eMd<,24Xv'O.SO  •ieroa«ter«')                          £


        DO 560 L-l.CLASNO
        DO 560 K-1,6
560     IF(STANDCK).EQ.CLSLIMCL)) L-98
        IFCL.EQ.99) WRIT8<29561) 'Chry.otiU',2.55
561     FORHATU2X,'Density of  '.AlO.' Used  In CmleuUtions\F6.2.*  g/ce')

        DO 562 L-l.CLASNO                     .                                               |
        DO 562 K-7.15                                                                        't
562     IF(STAND(K).Eq.CLSLIM(L)) L-58                    •                                   I
        IF(L.EQe99) URITEC2.561) 'Avphibole  %3.2                                            *
C                                                                                            i
        DO 567 L»i,CLASNO               "  .                                                  \
        IF(CLSLIH(L).EQ.'$$$$') GOTO 567                                                     '•
        DO 563 K-1^15                                                                        1
563     IF
-------
4
   SUBROUTINE  PAGE2A                                                                    |
                                    •  :                                                  }
   COMMON DESC<60).SMPCOH(S.60).RAW,CRAPHS,CMAG.CMAC,DIL,PREP<3).                        '
4           1NST.SMPTYP,CLS(24),SEQNUM(2),JOBNUM<2),CTAKEN,KUMMAS(20)8                    }
4           DISVOL,61LIVT,DIL1FV,DIL2VT,DIL2FV,ASHVF,ASHFA,                               j
4           ASHATtASHDIS,VOLFlL,FlLA,VOLAIR,VOLWAT,PREPTC,CUMWID(20).                     !
4           HOOEfBLANK,GRIDNO.FIBNO,CHISQt3I6.NUMFIBC50),SDtU9S,L95.                      .
4           CRIDLC50),GRIDW(30).FlBCLS<24),MORF(24)fAREA,FIBLEN(500),                     j
4           P"WID(300),CLASS<500),ASP(500>,COUNTC3),ENTRY,CUMASP(20).                    \
4           NUMBRl(lJO),NUMBR2(10),NUMBRO,CLSNUM,CUMKUM(20),CUMMAS(20),                    :]
4           FWTYP(32).WEIG»T<24>.FRACT,ASPLIH,LENLIM,CLSLIM(24),CLASNO,                  J
4           RAMLEN<500),RAWWID(500),RAWCLS(500),RAWNUM<50),RAUFIB,                        !
4           LP95,UP95,IPFL,CONST                                          -                !
   REAL LP95.UP95,CONST                                                                  i
   REAL RAWLEN,RAUWID,RAUCLS                                                             !
   INTEGER  RAWNUN,RAWFIB                                                                 '
   REAL FIBLEN,FIBWID,CLASS,ASP,INST,NUMBR1,NUMBR2,CUMMAS,MORF                           ]
   REAL CRIDL,GRIDW,CHISQ,SIC,FIBCLS,MOOE,SEQNUM,JOBNUM,CLSLIM                           r
   REAL CTAKEN,DISVOL,DILIVT,DIL1FV,DIL2VT,DIL2FV,SD,U95,L95,                            i
4        ASHVF.ASHFA.ASHAT,ASHDIS,VOLFIL,FILA,WEIGHT,FRACT,iaJMMAS                        J
   INTEGER  DIL,6MAC.CMACtNUMBRO,FlBNO,GRIDNO,BLANK,NUMFIB,CLSNUM,
4           CUMNUM.LENLIM.ASPLIM.CLASNO                                                   •
   BYTE RAW,CRAPHS,DESC,SMPCOM,COM,FIBTYP                                                j


   REAL SCALE(20),DAT(3)                                                                 =
   CALL DATE(DAT)                  '                                                      ]
       ,.t,....
     2.32,3.41,5., 7. 34, 10.77, 15.81, 23.21, 34.06/
   If (FIBNO.EQ.O) RETURN
   URITE(2,10S) JOBNUM,DAT;OESC
   FORMAT (T. 5X,2A4,47X,'OATEl e.3A4,/////,i2X,'SAMPLEs \60A1,////)


   DO 10 1-1,20
   KUMUID(I)»CUMUIO(I)
   CONTINUE
   WRITE(2,200)
   FORMAT (///,30X,* FIBER WIDTH DISTRIBUTION'///
                                                 ,
4          i7X/Wldth R«ng«,ua  Counted      Nuaber
4     'Percent')        .                                  "
   HRITEC2.205) SCALE(l),SCALE(2).KUMWID(l),KUMtfID(l),
     100*FLOAT(CUMWID(1))/FLOAT(CUHWIO(20»
   FORMAT(//9X,.F11.3,' -',F8.3.I8,I12,1X,F14.2)
   WRITE(2,210)((SCALE(L) ,SCALE(L*i) ,KUMWID(L)-ltUMWID(L-l).KUMWID(L) ,
           100*FLOAT(CUMWID(L))/FLOAT(CUMUID<20))),L-2,19)
   FORMAT <18(9X,F1U3,' -' ,F8.3,I8,I12,IX.F14.2./))
   RETURN
   END   .
                                241

-------
c
c
c
c
105
C  '
C
10

200
     &
     t
205


210
         SUBROUTINE PAGE2B
COMMON  DESC(60),SMPCOM(5e60),RAW,GItAPHS,CMACsCHAC>BJLfPR£P(3)s
         INST,SMPTYP.CLS(24) ,SEQNUM(2) ,JOBNUM<2) ,GTAKEN,KUMMAS(20) ,
        -DISVOL,DILlVT,DlLlFy8DIL2VT,DIL2FV,ASHVF,ASHFA,
         ASHAT,ASHDIS,VOLFXLeFILAtVOLAIil,VeLMAT,PREPTe8CUMWID(20) ,
         HODE8BUl«,GRIDNO,FIBNO.CH£Sq,SIG8!IUMFIB(SO)8S88U9S,L9S,
         C81DLC50) ,CRIDH(50) ,F1BCLS<24) ,MORF(24) gAREA,FXBLBMCSOO) 8
         FIBWID(500) »CLASS<500) ,ASP<500) ,eoUHT(3) ,ENTR¥,CUHASP(20) t
         NUMBRK 10) ,NUHBR2( 10) vNUMBRO.CLSHUH.CUMmm(20) ,CUMKAS(20) ,
         FZBTYPC32) ,UEICHT(24) ,PRACT,ASPLIM,LeNUM,CLSI.XM(24),CLAS!lO.
         RAWLEN(SOO) .RAHWID(SOO) ,RAWCLS<500) ,RAWNUM(50) .RAWFIB,
         LP95,UP95.IPFL,CONST                     •
REAL LP95.UP95, CONST
REAL RAVLEH.RAUVXD.RAVCLS
INTEGER RAWNUH.RAUFIB
REAL FIBLE^,FIBWID, CLASS, AS]>,INST,NUMBR1,NUMBR2SCUMMAS,MORT
REAL GRIOL»GRIOU,CHISq,SIG(FIBCLStMOOE.SEQNUH.JOBNUM,CLSLXM
REAL CTAKENtDISVOL,DlLlVT,pILiFV.DIL2VT6BIL2FV,SD,U95»L95,
      ASHVF,ASHFA,ASHAT,ASHDIS,VOLFIL,FILAsWSIGHTsFRACTsiaJMMAS
INTEGER DIL,GMAG,CHAG8NlJMBI«).FIBNO,CRJBNO.BLANKtNOMFIB8CLSNUMe
         CUMNUM, LENLIM, ASPLD1, CLASNO
BYTE RAW, GRAPHS, DESC,SMPCOM0COH,FiaTYP


REAL SCAL£(20).DAT(3)
CALL OATE(OAT)
OATASCALE/3.84.486.4689.49fll3.92820.44830.8U.864.6894.98139.2»
  204.4,300. ,440. ,646. ,949. „ 1392. ,2044. ,3000. ,4403./
IF (ri3NO.EQ.O) RETURN
URITE(2,105) JOBNUH,DAT,DESC
FORMAT-Cl',5X,2A4,47Xe'DATE: ',3A48/////,12k,'SAMPLEs ',
DO 10 1-1,20
KUMASPCD-CUHASPCI)
CONTINUE
WRITE(2,200)
FORMAT C///.25X,' FIBER ASPECT RATIO DISTRIBUTION' ///
        !9X,'A«p«ct  ',7X,'Mu»b«r',8X,'Cua'88X,'Cua No',/8
        17X,' Ratio Rang«     Counted      Niwbcr      '.
   'Percent')
WRITE(2,205) SCALE(1),SCALEC2),KUKASP(1),KUMASP(1)9
  lOO*FLOAT(CUMASP(i))/FLOATCCUMASP(20))
FORHAT(//,9X,F12.2,' -',F7.2,I8,I12,IX,F14.2)
WRITE(2,210)((SCALE(L) ,SCALE(L+1) ,KUMASPCL)-KUMASPCL-l) .KUMASPCL)
        100*FLOAT(CUMASP(L))/FLOAT(CUMASP(20))),L-2,19)
FORMAT (18(9X,F12.2,' -',F7.2,I8,112,1X,F14.28/))
DO 300 L-1,19
   IF(CUMASP(L)/CUMASP(20).LT.0.5) GOTO 300
   K-L
                                     242

-------
          IF(CUMASP(L-1).EQ.O.O) K-L+1
       IF(CUMASP.EQ.CUMASP(K-1»
       lF(CUHASP(K-l)/CUHASP(20)))*CSCAI^CK+l)o
    &    SCALECK))/CCUHASPCK)-CUMASP(K-i))*CUMASPC20)
       GOTO 308
305    CONTINUE
308    DO 405 L»i,19
          If(CUMASPa)/CUMASP(20).LT.O*9773) GOTO 405
          K«L
       NINE7-SCALECK)-K0.9773-CCUMASP(K-1)/CUMASP(20)))*(SCALE(K+1)-
    £    SCALE(K))/(CUMASP(K)-CUMASP(K-i))*CUHASP(20)
       GOTO 408                                                  .
405    CONTINUE
408    FIBlND-Firn**(NINE7/EIGHT4)                    .
       URITEC 2,400)FIFTY,NINE7/EIGHT41FIBIND
400    FORMAT(///m,'Median of Aspect Ratio DUtribution  ',F9.2,//»
    &    12X/Slop« P«r«n«t«r of Distribution       ',F9.2,//»
    &    12Xf*Index of Fibro.ity of Distribution    *,F9.2)
       RETURN
       END
                                        «

                                     243

-------
c
c
c
c
105
C
C
10

200
205


210
     &
     &
     6
        SUBROUTINE PAGE2C
COMMON DESCC60),SMPCOH(5,60),RAW,GRAPHS,CMA69CMAG,DXL,PREP<3),
        XNST, SMmP,CLS<24),SEQNUM(2)9JOBNUM<2),GTAKEJ«,KUMMAS(20),
        DXSVOL,DXLlVT,DXUFV,DIL2VT,DXL2FV,ASHVF,ASiiFA9
        ASHAT,ASHDXS,VOLnL9PXLA,VOLAXR,VOLWA?,PREFTCcCUMWID(20),
        HODE,BLANK8eRXDNOeFI8NOfCHXSQ»SIC.NUMFrB     FXBWXO(500)seLASSC500),AS?(SOO)tCOUNT(3),ENTRYvCUHASP(20),
        NUHBRK10),NUMBR2(10)tNUMBR08CLSNUM.CUMNUM(20)9CUMMAS(20),
        FXBTTPC32)VUEXGKTC24),FRACT.ASPLIMst£NLlM,CLSLIM(24),CLASNO,
        RAULEN(SOO),RAUUXD(500),RAWCLS(SOO),RAWNUM(50),BAWFXBt
        LP9S,UP95,XPFLVCONST
REAL LP95,UP95,CONST -
REAL RAULEN,RAWXD,RAVCLS
INTEGER RAWNUM.RAWFIB
REAL FIBLEN(FXBUXO,CLASS,ASPtXNST,NUMBRltmmBR2,CUMHASkMORF
REAL CRIDL.CaiDW.CHISQ,SIC,FIBCLS.MODE,SEQNUM,JOBNUH,CLSL1M
REAL GTAKEN,DXSVOL,DXLiVT,DXLlFV,OXL2VT»OIL2FV,SD8Uf5tL95,
      ASHVF(ASHFA,ASHAT,ASHDXS(VOLFXL(FXLA,WEXCHT,FRACTtKUMMAS
INTEGER DXL,GMAG,CHAG,NUHBRO,FXBNO.GRXONO,BLANK,NUMFXBtCLSNUM,
        CUMNUMtLENLXM,ASl?LXM,CLASNO
BYTE RAW,GRAPHS,DESC,SMPCOH,COMfFIBTYP


REAL SCALE(20).DAT(3)
CALL DATE(DAT)
DATA SCALE/.OOOA6,.001,.00215B.00464,.01,.0215,.0464,.!,.215,
 .A64,1.,2.15,4.64,10.,21.54,46,41,IOC.,215.43,464.14,iOOO,/
XF (FIBNO.EQ.O) RETURN
WRITE(2,105) JOBNUH.DAT.DESC
FORMAT ('I'.5X.2A4.47X.'DATE: \3A4./////. 12X/SAMPLEJ *,60A1,////)


DO 10 1-1,20
HASCUM(I)-KUMMAS(I)
CONTINUE
WRITEC2*200)
FORMAT (///,35X,'FIBER H,^SS DISTRIBUTION'///
        23X,'P«rticl«',7X/Nuaber%8X.'Cwi%8X,'C»» No'./8
        21Xt'Ma«« Range,pg   Counted      Number      'e
   'Percent')
WRITEC2,205) SCALE(1)(SCALE(2),MASCUM(1)(MASCUM(1),
  100*FLOATCKUMMASC1))/FLOATCKUMMAS(20))
FORMAT(//,13X,F10.4,' -',F9.4,X8.I12,IX.F14.2)
WRITEC2,210)((SCALE(L),SCALE(L+1),MASCUM(L)-MASCUM(L-l),MASCUM(L),
        100*FLOAT(KUMHASCL))/FLOAT(KUMMAS(20))),L-2.19)
FORMAT C18U3X.F10.4,' -'.F9.4.X8,I12.1X8F14.2,/))
RETURN
END
                                     244

-------

 c
 C
C
C
C


10


105


110



113


G
&
6
&
6
         SUBROUTINE PA6E3
         COMMON DESC(60) ,SMPCOM(5,60) ,RAtf, GRAPHS, GMAG,CMA6,DIL,PREP(3) .
                 INST,SMPTYP,CLS<24) ,SEQNUM<2) »JOBHUM<2> ,CTAKEN,KUMMAS<20) f
                 DISVOL,DILlVT,DILlFV.DIL2VT,DIL2FV,ASHVFfASHFA,
                 ASHAT,ASHDIStVOLPIL.PILAtVOLAIRtVOLWAT.PREPTC,CUMWID(20) .
                 MODE,BLANK,CRIDNO,FIBNO,CHISQ,SIC,NUHFIB(SO) .SD.U95 .L95.
                 SJSS5 JiA?*i?Wi50J •F?c" W> .H°**C24> .AREA, PIBLEN(SOO) ,
                 PIBUID(SOO) ,CLASS(500) .ASP(SOO) ,COUNT(3) ,E»TRTtCUMASP(20) .
                 NUMBRK 10) ,NUMBR2(10) ,NUMBRO,CLSNUM.CUMNUM(20) »CUMMAS(20) .
                 «BPP<32).WEICHT(24) ,PRACT,ASPLIM,LENLIM,CLSLIM<24) .CLASNO.
                 RAWLEN(SOO) .RAWIDC500) ,RAWCLS(500) .RAMNUH(SO) .RAWPIB,
                 U?95.UP95BIPPL,CONST
         REAL LP9S.UP95, CONST
         REAL RAHLEN,RAWWXD,RAWCLS-
         INTEGER RAWNUM.RAHPZB
        REAL CTAKEN,DISVOL,DIL1VT.DIL1FV,DIL2VT,DIL2FV.SD.U95,L95.
        ,%^^ASHVF»AS^A»^1^T»ASHDiS.VOLFIL,FILAtWEIGHT.FRACT.iajMMAS
        INTEGER DIL,CMAC.CMAG,NUMBRO.FIBNO,GRIDNO,BLANK.NUMFIB,CLSNUM,
     &          CUMNUM,ASPLIM,LENLIM,CLASNO
        BYTE RAW,GRAPHS.DESC.SMPCOM.COM.FIBTYP
 REAL DAT(3),AVAREA,GAREA,TEMP1,TEMP2
 REAL*4 TEMPO)

 IF(FIBNO.EQ.O) RETURN
 00 10 1-1,3
 TEMP(I)-'
.CALL DATE (DAT)
 WRITEC2.105)  JOBNUM,DAT,DESC,(TEMP(I)tI.l,3)
 FORMAT ('1%5X.2A4.47X. 'DATES  '.3A4t////.12X^SAMPLE!  %60A1.//S
         ,60X,3A4,/)
 WRITEC2.110)  F1BTXP.8,ASPLIM
 FORMAT (12X,' INDIVIDUAL GRID SQUARE  FIBER COUNTS!  %32A1.
         /,l2X,'A.p«ct Ratio  Limit X.A1.'_M3/«1'.7X.
         'Miniaua Ungth Limit  i> 0.5 urn*)
 WRITEC2.113)
 FORMAT 
-------
20
115
C

120

125

150

160
170


171


175

180
190
C
C
10
15
   TEHP<1)-'(CON<               .-":•-•
   TEMP(2)-'T"D.'
   TEMPO)-'-.)'
   WRITEC2,105) JOBNUM.DAT.DESC.CTEMPCI).1-1.3)
   WRITE(2,110) FIBTYP,8,ASPLIM                                   *
   HRITE(2,U3)
   VRITE(2,115) GRIDL(L) ,CRIDW(L) ,GAREA.NUMPIB(L) .AVAREA/CAREA*NUMFIB(L)
   FORMAT <8X.2F8.l.F9.0e14X,I3,9X,F7.2)

   WRITE(2,120) PLOAT(FIBNO)/FLOAT(GRIBNO)
   FORMAT (/12X."Mean Count per Average Grid Square',F6.2)
   IF (GRIDNO.GT.2) WRITE(2,125) SO
   FORMAT C/12X,'Standard Deviation',F22.2)
   WR1TE(2«150) CHISQ
   FORMAT C/.12X,'Total Chi-Square '.F23.2)
   WRITEC2.160) SIC
   FORMAT (/,12X,'Significance L.w.1 of Unifonity',3X,A4,'Z')
   IF (IPFL.EQ.O) GOTO 180.
   TEMP1-(LP95/FRACT)*CONST                                .
   TEMP2-(UP95/FRACT)*CONST
   WRITE(2,170)
   CALL SCICTEMP2.36,VAL.STR)
   VRITEC2.171) VAL.STR
   FORMAT(///,12X,'Th« 9SZ confidence liaits have been deterained',*//,
6  ,12X,'on the basis of Gaussian statistics.  If Poisson',//,12X,
6  .'statistics were applied the upper 9SZ confidence')
   FORMAT(12X,'liait would be',F3.2.1X,A4.2Xf'MFL while the lower')
   CALL SCKTEMP1.51 .VAL.STR)
   URITEC2.17S) VAL.STR
   FORMAT(12X,'95Z confidence linit would be',F8.2,U.A4,2X,'MFL')
   RETURN
   WRITEC2.190)
   FORMAT(//,12X,'Upper and lower 95Z confidence levels have been',//,
&  ,12X,'determined on the basis of Poisson otatistics.*)
   RETURN
   END

   SUBROUTINE SCI
-------
        STR-'x 10'
        RETURN
60      WRITE(2,70)
70      FORMATC  ')
        STR-'
        VAL-A,
        RETURN
        END
                                     147

-------
        SUBROUTINE PAGE*
C        '                             ' :  .
C
        COMMON DESCC60),SHPCOM(S,60),RAW,GRAPHS,GMAG,CHAG,OIL,PREP<3),
                INST,SHPTYP,CLS<24),SEQNUM<2),JOBNUM(2),GTAKEN,KUMMAS(20)„
                DISVOL,DILiVT,DILiFV,DlL2vr9DIL2FV,ASHVF,ASHFA,
                ASHAT,ASHDIS,VOmL,FXlJteVOlJUR,VOLWAT9PREPfC,CUMWID<20),
                MODE, BLANK,GRIDNO,FIBNO,CHISQ,SI(;vNtrftPI8( 50} 9Sfi,U9S8L95f
                GRIDLC50),GRIDW<50)8FIBCLS(24),MORF(24)8AREA,FIBLEN(500>,
                FIBWID(SOO),CLASS(SOO),ASP(500),COUNTC3)»ENTRY,CUMASP(20),
                NUHBRtCiO),NUMBR2(10),NUMBRO,CLSNUMtCUMNUM(20),CUMMAS(20),
                FIBT¥P(32),WEIGHT(24),FRACT,ASPLIH,LENLIMtCLSLIM(24),CLASNO»
                8AWLENC500) ,RAWXD(5GO) ,RAWCLS(SOO) ,RAWNUM(50) ,SAWFI5f
                LP95,UP95rIPFL,CONST
        REAL LP95.UP9S,CONST
        REAL RAWLEN,8AUW1D«RAWCLS
        INTEGER RAWNUM.RAUFIB
        REAL FIBLEN,FlBWID,CLASS,ASPeINSTtNUMBRl,NUM3R2,CUMMAS,HORF
        REAL GRIOL,GRlDU.CHISq,SIG,FXBCLS.MODE»SEQNUM,JOBNUM,CLSLIM
        REAL GTAKEN,DXSVOL,DILIVT*D£LIFV,DIL2VT,DIL2FV,SD,U95,L9S,
     &        ASHVF,ASHFA,ASHAT,ASHQ£S,VOLFXL,FXLA,UEXGHTeFRACT»KUNMAS
        INTEGER DXL,CMAGtCHA6eNUMBRO»FXBNO,GRXQNO(BLANK,NUHFXBeCLSNUMt
     4          CUMNUM,ASPLXM,LENLXM,€LASNO
        BYTE RAW,GRAPHS,DESC.SHPCOH,COM,FIHT^P
        REAL*4 TEHP(3)
C
        INTEGER START,FXKI
C
        REAL DATC3)
C
        IF  (FXBNO.EQ.O) RETURN
        DO  20, 1-1,3
20      TEMP(I)-'
        CALL DATE(OAT)
        FXMX«0
        START-I
10      FINX-FXNI+99
        IF  (FIBNO«LToSTART-h99) FINI-FIBHO
C
        VRITE(2,10S) JOBNUM,DAT,DESC
105     FORHAT('r,5X,2A4,47X,cDATE:  %3A4,//,60X,/,l2X,'SAMPLI5s  *,60A1///)
        URXTE(2,110> (TEHP(I),I-1,3),FIBTYP,8,ASPLIH
110     FORMAT (17X,'ASBESTOS  FIBER  COUNT  ANALYSIS',//,2SX,
     &          'SELECTED RAW DATA',18X,3A4,//llX,,"Fib*r*  Classified ass  ",
     t          ,32Al,/,tlX,'Asi»ct RajCio Liait >',A1,» %I3.'§l',7Xe
     &          'Minima  Langth Liait it 0*5 ua')       ~
        URITE(2,115) (FIBLEN(L),FIBWID(L),ASPCL),L-STAET,FINX)
115     FORMAT C///,7X,3('  Length  Width Aspect'),/,6X,
     &          3('     ua     urn   Ratio'),///,99(6X,3(F8.2.F7.3,F7.l
        START-START+99
        TEMP(1)"'(CON'
        TEMP(2)-'T"D.'


                                      248

-------
TEMPO)-',..)
                        10
                         249

-------
         SUBROUTINE PAGES


         COMMON DESC(60),SMPCOM(5,60).RAW8CRAP11S,CMAG.CMA6,DIL,PREP(3).
                INST.SMPTYP.CLSC24),SEQNUM(2)»JOBNUH<2),GTAKEM.KUMMAS(20).
                DISVOL,DILlVT,DILlFy,DIL2VT.DIL2PV,ASHVF,ASHFA,
                ASHAT,ASHDIStVOLFIL,FILA,VOLAtR,VOLWAT.PR£PTCeCUMWID(20),
                MODE%BLANK,GRIDNO.FIBNO.CHISq,SIG.NUMFIB(SO).SDeU95»L9S.
                GRIDtJSO),GRIDW(50),FIBCLS<24).MORF(24),AREA,FIBLEN<500).
                FIBWIDC500).CLASS(SOO)8ASP(500).COUNTC3),ENTRY,CUMASP(20).
                NIIMBR1C10) .NIMBR2C10) .NUMBRO,CLSNUM,CUIfNtfM(20) ,CUMMAS(20) e
                FIBTYP(32),WEICHT(24),FRACT,ASPLIM,LENLIM,CLSLIM<24).CLASNO.
                RAWLEN(SOO).RAWWID<500).RAWCLS(SOO)8RAWNUM(50).RAWFIB,
                LP95.UP95.IPFL.CONST
         REAL LP95.UP95,CONST
         REAL RAWLEN.RAWWID.RAWCLS
         INTEGER RAWNUM,RAWFIB
         REAL FIBLEN,FIBWID,CLASS,ASP.XNST.NUMBR1,NUMBR2,CUMMAS,MORF
         REAL GRIDL,GRIDW,CHISQ,SIC.FIBCLS,MODE.SEQNUM,JOBNUM,CLSLIM
         REAL GTAKEN,DISVOL,DiLlVT,DILiFV.DIL2VT.DIL2FV,SD,U95.L95
         REAL ASHVF,ASHFAfASHAT,ASHDIS9VOLFIL8FILA,WEIGHT,FRACT,KUMMAS
         	  _-.             "	"     ~^» • —• »p "«•»*•••»* y A mcvM* AC^wru^n^
         INTEGER  DIL.GMAG,CHAG,NUMBRO,FIBNO.GRIDNO»BLANKtNUMFIB.CLSNUK                        i
         INTEGER  CUMNUM.ASPLIM.LENLIM.CLASNO                                                  i
         BYTE  RAW.GRAPHS.DESC.SMPCOM.COM.FIBTYP
        REAL*4 TEMPO)  "     '       "  ""'"
        REAL DATC3)
        INTEGER START
C
        DO 20 1-1,3
20      TEMP(I)-'
        CALL DATE(OAT)
        NEXT-0
        IST-l
        ICS-l
        IFLAG-0                                           .                                    I
30      START-0       '               .                                                         |
        WRITE(2,40) JOBNUMVOAT,OESC                                                           ]
40      FORMATC'l',SXf2A4,47X.'DATEi ',3A4,//.60X./12X.'SAMPLEs  '.'                           ]
     &  60Al,///>
        WRITEC2.50) 
-------
 70      FORMAT(/,9X,F6.2.1XsF6.2g10X/N 0   F X B E R 8')
         START-START+2                   .       •
         IFCSTART.LT.36) GOTO 270
         IST-I+l
         GOTO 320        .
 80      NUM-RAUNUM(X)+NEXT
         DO 250 K-XCS,NUM,3
         IP(K.GT.RAHFIB)COTO 270
         IF(K.EQelCS.AND.IFLAC.EQ.O)  GOTO 160
         IF((K+1).GT.NUM) GOTO 100
         XF((K+2).GT.NUM) GOTO 140
         WRITE(2,90)WWfD(K)
         START-START*!
         GOTO  260
 140      WRITEC2.150) (RAWCLS(J),RAWLEN(J),RAWWlD(J).J-KtK+l)
 ISO      FQRMAT(24X,«2X,A4,IX,F6.28IX,F6.3»       '•  R»K  L>
         START-START+l
         GOTO  260
 160      IFC(R-H).GT.NUM) GOTO  190
         IF«K+2).GT.NUM) GOTO  210
         WRITE<2,180) GRIDL(I),CRIDW(I)f(RAWCLS(J),RAWLEN(J).RAWWID(J)
     *   tJ^KjK^)
 180      !°?"A?^'9X»F6-2.«.F6.2;2
         GOTO  230
        GOTO 230
210     WRITE<2,220)
2M
240     START-START*!
        XF(START.GE.36) GOTO 310
250     CONTINUE
260     ICS-NUM+t
       • NEXT-NUM
270     IFLAC-O
300     CONTINUE
310     IST-I
        ICS-K+3
        IFLAG-l
                                                           NEXT-NUM
        TEMP(2)-'T"D.'
        TEMP(3)-'...)'
                                    251

-------
                                                                                          13
       WRITEC2.57) 27
57     FORMATUX.Al/O
       IF(1ST.LE.CRIDNO)GOTO 30
       RETURN   '  '
       END
                                  252
                                                                                            .1
                                                                                            1

-------
 C
 C
 c

 C
 C
 D
        SUBROUTINE GRAPHC LIMIT)
        COMMON OESC<60).SMPCOM(5.60),RAW.GRAPHS,CMAG.CMAG.DIL.PREP(3)g
      4          INST.SM,™ „«„*> *^u,~,	"I.CTAKEN.KUMMAiuO),
      ^               ..                   	,-.

      i
      i
      *
      &
                                                 ..
                        »CRIDNO»F"N0*CHISQ.SIC,NUMPIB(50) .SD.U9S.L95
                         MDW(50) •.«•«•«*>.MQRF<24) .
                         •CLASS<500) .ASP(SOO) .COUNTC3)
     *         LP95eUP95,IPFL8CONST
        REAL LP9S.UP95.CONST
        REAL RAWLEN.RAHSJID.RAWCLS
     .   INTEGER RAWNUM.RAWF1B
        5£S: "!!fNl"S;iI>'CLASS»ASP.INST.NUMBRl.NUMBR2.CUMMAS.MORF
     t  KSfe!^^^i^j^3S5Sai!S"-
            ^SS'^A^^^r4{™tFIL-""'"«=«™n!«!»««s
               SK^;SS:SsNSo   6 LINES/INCH

    XF (FIBNO.GE.LIMIT) GOTO 5
    MRITEC2.100) JOBNUM.DAT.OESC,
    FORMAT '•••—--•*-  ?   '
&
&
    &
                        found in the above
5      WRITE(2,106) JOBNUM.DAT.DESC.8
105    FORMAT Cl',5X,2A4,47X.'DATE: '
    &         ///.9X,'ASBESTOS FIBER
                                            .'SAMPLE: '.60A1.
                                        DISTRIBUTION' 7X
                                                    '
                                253

-------
106     FORHAT ('I',SX,2A4.47X,'DATEi 'B3A40//S12X,'SAMPLE? '.60A1.
     ft"     .    ///,9X,'ASBESTOS FIBER LENGTH DISTRIBUTION'97X,
     ft          'LOG. PROBABILITY PLOT',/,1'OX,"Aspect Ratio Lisle >*,A1,
     &          '_',I3,':l',7X,'Mini«ua Length Liait is O.S ua')
C              .  ""
        URITE<2,120) FIBTYP,FIBNO,27,27
120   . FORHAT (/,'    Fiber Length',12X,'Fibers Classified as; "e32Ale/,
     i          '    MicroBeters',13X,'NuBber of Fibers Siscd • '',13,
     &          /,1X,AI/?',A1,'-    200* %/)
        IF(GRAPH.Eq.2)GOTO IS
C
        00 10 L-0,57
        K«L
        ZF(L.GT.48)K-48
10      CALL PLOT(L, 100.*CUHNUH(17-K/3)/CUMI)UM(20)/*'tWEXT)
        URITE(2,130) 27.27
130     FORMAT (/,'           +   +    +     +    +   %7('   +')t
     &          6X,'+    +     +   +*./.9X/ 0.5 ',            .  .  .
     fc          '1    2     S    10     20  30  40  SO  60  e „
     «          '70  80     90   95    98  99%A1.'<'§A1,'>')
        WRITE(2,136)
136     FORHAT (/,13X,'Perceneage Nuaber of Fibers Shorter',
     &          ' Than Stated Length')
        GRAPH-GRAPKH
        GOTO 5
15      DO 20 L-0,57
        K-L
        IF(L.CT.48)K-48
20      CALL PLOTCLeCUHHASCl7-K/3)/CUMHAS(20)*100,'x%NEXT)
        WRITE(2,130) 27,27
        URXTE(2,13S)
135     FORHAT C/.13X,'Percentage Mass of Fibers Shorter',
     *          ' Than Stated Length')
        RETURN
        END
C
C
        SUBROUTINE PLOT(L,PERCNT,CHAR,NEXT)
C
C    \ THIS SUB DOES THE PLOTING FOR THE LENGTH DISTRIBUTION GRAPHS
C
        REAL PERCNT,TABLE(40),SCALE(16),SC
        INTEGER LINE(16),NEXT
        BYTE CHAR
        DATA TABLE/.46,.53,.63,.79,.9,1.1,1.3,1.5,1.9,2.,2.5,2.9,3.4,3.8,
     ft          4.3,5.,5.8,6.7,7.5,8.8,10.,11.,12.,13.2,15.,16.6,18.2,20.1,
     «          22.,24.,26.2,28.2,30.5,33.4,35.4.38.3,40.5.43<3,46.5,50./
        DATA LINE/1,3,5,8,14,19,21,23,26,32,37,39,41,44,50.55/
        DATA SCALE/'100*',' 80*',' 60+'s' 40+V 20*','  10*','. 8+*9
     &  '  6*','  4+V  2*','  1V,'0.8+','0.6+'.'0.4+V©.2+VO.I+V
C
C


                                 .    254

-------
        SF(L.EQ.O) NEXT-I
e                        .            .  -.       .
        se-'
        IF(L.GT.48) PERCNT-0.0      •
        IFK
        DO 47 K«40,79                      -
47      lF(PERCMTeCE.lOO-TABLE(80-K»
        WRITEC2.50) SC.C '.K-
50      FORMAT(5X,A4,99(Al.s))
        RETURN
        END
                                    255

-------
        SUBROUTINE GRAF(LIMIT)
C                                       - :
C                                         .
        COMMON DESCC60),SHPCOM(5,60).RAW,GRAPHS,GMAG,CMAG,OIL,PREPC3)»
     ft          INST,SMPTYP,CLS(24),SEQNUM(2),JOBNUM(2),GTAKEN,kUMMASUG),
     4          DXSVOL,DILlVT,DILlFV,DlL2VTeDIL2FV7ASHVF,ASHFAB
     &          ASHAT.ASHDXS,VOLFIL,FILAeVOLAXR,VOLWATsPREPTC,CUMtfID<20),
     &          HODE,BLANK,GRIDNO,FIBNO,CHISQ,SIG,Nl!MFXBCSO)cSD,U9S,L93t
     ft          GRXDL(50),GRXDW<50).FIBCLS(24)8MORF(24)BAREAeFIBLEN<500K
     ft  *        FXBHID(SOO),OJlSS<5CIO),ASP(500).eOU!ITC3),ENTRY,CUMASP<20),
     ft          NUHBRl(lO),NUMBR2(1Q),NUMBRO,CLSNUM,CUMNUMC20),CUMMAS(20),
     ft          FIB!*?(32),WEICHT(24)(FRACT,ASPLXM,LENLZM(CLSLXM(24)8CLASNO(
     ft          RAWLEN(SOO),RAWUIO(500),RAUCLS(500),RAWNUM(50),RAUFXB,
     ft          LP95,UP95,IPFL,CONST
        REAL LP95.UP95,CONST
        REAL RAVLEN,RAWXD,RAWCLS
        INTEGER RAWNUM.RAWFIB
        REAL FXBI£N,FXBUXD,CLASS,ASP,XNST,NUMBR1,NUMBR2,CUMMAS,MORF
        REAL GRIDL,GRIQW,CHISQBSIG,FIBCLS9HODE,SEQNUM,JOBNUMtCLSLIM
        REAL GTAKEN,DXSVOL,OXLlVT,DH.lFV,DXL2VT,DXL2FV,SD,U9§i,L9St
     ft        ASHVF,ASHFAtASHAT,ASHDXS,VOLFXL,>FXLA»WEXGHT.FRACTtKUMMAS
        INTEGER DXL.CHAG.CMAG.NUMBRO^FXBNO^GRIDNOtBLANK^NUHFXB.CLSNUHj
     ft          CUHNUM,ASPLXM,LENLXM,CLASNO
        BYTE RAW,GRAPHS,DESC,SMPCOM,COM,FIBTYP
C
C
        REAL PERCNT,DAT(3)
C
C
        GRAPH-l
        CALL DATE(DAT)
C    27  is  cod* of ESCAPE
C    ESCAPE sequences  alter PRINTER
•C       ESC ?   8 LINES/INCH
C       ESC -   12  CHARS/INCH
C       ESC <   10  CHARS/INCH
C       ESC >   6 LINES/INCH
C
        IF (FIBNO.GE.LIMIT) GOTO S
        WRITE(2,100)  JOBNUH,DAT8DESC,FIBTYP,LIMIT
100    FORMAT  (T ,5X,2A4,47X,'DATE:  ' ,3A4t///912X,'SAMPLE:  ',60Al,//r
     6     .  .   12X,'Fibcrs Identified as  ' ,32A,///,9X/It  was  not possible',
     ft          ' to  plot  meaningful graphical sire*,//,9X,'distributions',
     ft          ' for this aeasureaent since  fewer than *,I2/  particles',/,
     ft          /,9X/were found in  the above  classification.')
        RETURN        .
5       URITE(2,106)  UOBNUM,OAT,DESC,8,ASPLIM
105    FORMAT  ('!',5*,2A4,47X.'PATE;  e B3A48//,12X,'SAMPLE: ',60A1,
     ft  ,        ///.flX,'ASBESTOS FIBER ASPECT RATIO DISTRIBUTION',7X,
     ft           'LOCVPROBABILITY PLOT*,/,10X,'Aspect Ratio Liait  >',A1(
     ft           '  ',13,':!')
106    FORMAT  ('T',5^,2A4,47X.'DATEs  ',3A4,//»12X,'SAMPLE! '.60A1,

                                     256

-------
                                              :
     4         ///»9X/ ASBESTOS FIBER ASPECT RATIO DISTRIBUTION' .7X.
     4         'LOG. PROBABILITY PLOT' ,/'»! OX, 'Aspect JUtio Limit >',A1.
 _   *         V«13»*tr.7X,'Hini«ua Length Limit is 0.5 ««')
 C

        WRITE(2,i20) FIBTYP,FIBNO,27,27
 120     FORMAT 
 C

        REAL PERCNT,TABLE(40),SCALE(16),SC
        INTEGER  LINE(16).NEXT
        BYTE CHAR

        DATA TABLE/.46..53,.63..79t.9,l.l.l.3.1.5,l.9.2.,2.5,2.9,3.4t3.8,

                                  'l!-;ll-*12''l3'2»l5-*16-6»l8«2»2o'

                                                      -1^*7
       DATA

     *  ^^^^r^rvrvi^-
C

       IF(L.EQ.O) NEXT«1
C
       SC-'
       IF(L.GT.45) PERCNT-0.0
       IF(L.NE.LINE(NEXT)+2) GOTO 10
       SC-SCALE(NEXT)
       NEXT-NEXT+l   .   *

                                                     T.99
       IF(SC.NEee    ') WRITE(230) SC
20     FORMATC ')
30  .   FORMAT(4X,A4,'+')
                                25.7

-------
        RETURN
40      DO'45 K-1,40                     - :
45      IF(PERCNT.GE.TABLECK)) I-K
        DO 47 K-40.79
47      IPCPERCNT.GE.100-TABLEC80-K)) I-K
        IPCSC.EQ.'    ')WR1TE<2,50> SC,(' ',K-1.1+2).CHAR
        IPCSC.NE.'    ')MRITE(2.60) SC,('MC-
50      FORMAT(4X,A4.99(A1.J)>
 60     FORMAT(4X,A«.'-«.'.98(A1,O)
        RETURN
        END
                                    258

-------
          SUBROUTINE CRAF2(LIMIT)


          COMMON DESC(60),SMPCOM<5.60),1
       &          TUtffo rrunjin    '     ^ r*	*> —•-•»•• •«•» y w»*nw §^cviw g tf fcJLt • ftUjJ* L ^ J


       !         SSr"'""-"""""^-^:"1^"0''
       *         MODEILA« «TSiJIl;«iiA^LAIR'VOLWAT»PREPTC»cww»(20),
       -         nuuc»auu'«>»vRIDNO>FIBNO.CHZSO.STC mntvntxn\ r-	*-_'•
                 CRIDL(50) ,GRIDW(SO) .FlBCLSaJiTMSR?^? iSl *[
-   .      wn*w**v<'v't«'KAUNVJu;>FUCLS(24),MORF(24) AREA
•         FTBUTn/^nn\ ^? A«^^S*AA%  e^.^M^.^*	    ^f*»**«*»f
£
          REAL LP9S8UP9S, CONST
          REAL RAWLEN,8AWWIDfRAWCLS
          INTEGER RAWNUM.RAWFIB


      ,


•      :
  c      BYTE RAH.CRAPHS.DESC.SMPCOM.COM.FIBTYP
  C
         REAL PERCNT,OAT(3)
  C
  C
         GRAPH- 1
       . CALL DATE(DAT)
  C
  C  27 is code of ESCAPE
  C  ESCAPE sequences alter PRINTER
  C      ESC ?    8 LINES/INCH
  C      ESC -    12 CHARS/IHCH
  J      ESC <    10 CHARS/INCH
  C      ESC >    6 LINES/INCH
  C
         IF (FIBNO.CE. LIMIT) GOTO 5

  100     TORS^f'K^fSTl^0680'"8"^1-""
         FORMATC  I  3X.2A4.47X.'DATE: 't3A4.///.12X.'SAMPLB: '.60A1.//.
     •          1ZX, Fibers Identified «s '  32A /// a* »T*    »ww*»*»//t


     i  _

 S      MRITE<2,106) JOBNUM.DAT.DESC.8.ASPL1M
 105     FORMAT (;i;.3X.2A4.47X.'OAlir^5"/.i2X.4WPLEl • 60A1
     &         ///.9X.' ASBESTOS FIBER WIDT^ KSTRiB"        '
                                               I
                                   259

-------
 106



 C

 120
 10

 130
 136
 C
 C

 C
 C
    FORMAT <'1',5X,2A4,47X,'DATS:  '»3A4,//.12X,'SAMPLES  *.60Aifi
*          ///,9X,'ASBESTOS  FIBER WIDTH DISTRIBUTION',7X,
*          ;LOC. PROBABILITY PLOT',/,10X,'Aspect  Ratio  Liait  >*,A1,
*           . »13» *1',7X,'Miniaua Length Liaife is  0.5  ua')

   WaiTE(2,120). FIBTYP,FIBNO,27,27
    FORMAT (/,'    Fiber Width',13Xe'Fibers Classified *ȣ  \
&   32AI,/,'    Mieroaetcrs',13X,'Nuaber of Fibers Sized A  %I3.
*          /.1X,A1,'?'.A1,'-  20.0*  ',/)

    DO 10  L-0,57
   K«L
    IFCL.GT.48) K-48
   CALL PLOT3a,100,*CUMWID(17-K/3)/CUMWID(20),'-',NEXT)

   FORMAT (/,'    '      +   +    ^     +    +    . 7(.   +.j
«          6X,'*    +     +   +'./,9X.' 0.5 '.
*         •   l    2     5    10     20  30  40  SO  60  '.
*           70  80     s<>  it »v*\
   FORMAT C/,13XB'Percentage Nunbar of Fibers Less'
A          ' Than Stated Width")
   RETURN
   END-                                 •
   SUBROUTINE PLOT3(L,PERCNT,CHAR.NEXT)
         REAL PERCNT,TABLB(40),SCALEC16),SC
         INTEGER LINE(16),NEXT
         BYTE CHAR
      ^   DATA TABLE/.46,.53..63,.79..9,l.i,l.3,i.5,l.9,2..2.5,2.9,3.4.3.
C
C
C
10
 IS

20
        IFCL.EQ.O) NEJY-1

        SC"'
        IF
-------
30

40
45

47
SO
 60
FORMAT(4X,A4/+')
RETURN                      " :
00 45 K-1,40
IF(PERCNT.GE.TA£LE(K» X-K
DO 47 K-40,79
IF(PERCNT.CE.iOO-TABLE(80-K)) I-K
        RETURN
        END

-------
        SUBROUTINE GRAF3(LIMIT)
C
C                                     ' :   .
        COMMON nESC(60),SMPCOH(5l,60),RAU,GRAPHS,GMAC,CM*\G,DIL,PREP(3),
                INST,SMPTYP.CLS<24) ,SEQNUM<2) ,JOBKUM(2) »CTAK£NSKU>CUS(20) ,
                DISVOL,DlLlVT,DILlFV.DIL2VT,DIL2FVeASHVF,ASHFA,
                ASHAT,ASHpIS,VOLFILBFILA,VOLAIRtVOl#AT»PREIT^aJMWID(20),
                MODB9BLANk>CKlDNOf>?lBNO»CHZSqtSIC,NUMFIBJUH,CLSLm
        REAL CTAKEN,DISVOL,DILlVT,OILlFV»DIL2VT,DIL2FVtSD,U95,L9S,
     6        ASHVF,ASHFA,ASHAT,ASHDIS.VOLFIL,PILAgWEIG«T,FRACT,KUMMAS
        INTEGER DIL.GMAG.CMAG.NUMBRO.FIBNO^GRIOUO^BLANK.NUMFIB.CLSNUH.
     &          CUHNUM,ASPLZM,LENLIM,CLASNO
        BYTE RAU,GRAPHStDESC,SHPCOM,COM,FIBTYP
C                                                                            .
C
        REAL PERCNT,DAT(3)
C
C
        GRAPH-l
        CALL DATE(DAT)
C   27 is cod* of ESCAPE
C   ESCAPE •equenccs «lt*r PRINTER
C       ESC 1   '8 LINES/ INCH
C       ESC -   12 CHARS/INCH
C       ESC <   10 CHARS/INCH
C       ESC >   6 LINES/INCH
C                                                                           •
        IF (FIBNO.GE.LIMIT) GOTO I
        WRITE(2,,100) JOBNUM,DAT,DESC,FIBTYP,HMIT
100     FORMAT C'r.5X,2A4t«7X,'DArE: ' ,3A«S///B12X,'S«MPLES *,60A1.//,
 ,    4          l2X.'Fib«r« Identified •* ',32A.///.3X,*It w.« not pos.ibla',
     *            to plot •caningful graphical «i»«',//,9X.'distribution*'.
     *            for this •easur«a«nt since if«w«r than '.12,' partiel««%/B
   • *          /,9X,'w«r« found in the above classification.')
        RETURN
5       WR1TE(2,106) J03NUM,DAT,DESC,8,ASPL1M
105     FORMAT ('l'.5X.2A4,47X,'DATEs ',3A4,//9l2X,'SAMPLEs *,60Als
     *          ///.17X/ASBESTOS FIBER MASS DISTRIBUTION',7X,
     ft          'LOG. PROBABILITY PLOT'./,IOX.'Aspect Ratio Limit >'.Alt

106     FORMAT CT'!5X;2A4t47Xi'DATE: '.3A4,//,12X.'SAMPLEJ '.60A1V

                                     262

-------
     &          7//,17X.'ASBESTOS FIBER MASS DISTRIBUTION*,7X,
     &          'LOG. PROBABILITY PLOT',/,!OX,'Aspect Ratio Limit >',A1,
     &          ' *,I3,':r,7X,'Miniaua Length Lin it is 0.5 ua'}
C         .      •""
        VIRITE(2,120) FIBTYP,FIBNO,27,27
120     FORMAT (/,'    Fiber -Ma*.        M2X/Fibers Classified ass %
     &  32A1,/,'    Pf.cograas',21X,'NuBber of Fibers Sized - %O,
     &          /,1X.A1.'V,AI.'-         './.)

        DO 10 L-0,57
10      CALL PLOT4
-------
40      DO 45 K-l.40
45      IF(PERCNT.GE.TABLE(K)) I-K
        DO 47 K-40,79
47      IF(PERCOT.GE.IOO-TABLE(80-K)) I-K
        IFCSC.EQ.'    ')WRITE(2.50) SC,('
        IFCSC.NE."    '}URZTE(2t60) SC(('
50      FORMAT(4X,A4,99(A1,:))
 60     FORMAT(4X,A4,'-l-'t98(Al,s))
        RETURN
        END

-------