January, 1981
CHARACTERIZATION OF TWO CORE HOLES FROM THE NAVAL OIL
SHALE RESERVE NUMBER 1
R. D. Giauque and J. P. Fox
Energy and Environment Division
Lawrence Berkeley Laboratory
Berkeley, CA 94720
and
J. W. Smith
Laramie Energy Technology Center
Laramie, WY 80270
IAG No. 78-D-F0300
Project Officers: '•
\
Edward R. Bates G. F. (Pete) Dana :
Energy Pollution Control Division Division of Resource Characterization
Industrial Environmental Research Lab Laramie Energy Technology Center
Cincinnati, OH 45268 Laramie, WY 80270 •
Industrial Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, OH 45268
Laramie Energy Technology Center
U.S. Department of Energy
Laramie, WY 82071
-------
DISCLAIMER
I
This report has been reviewed by the Industrial Environmental Research
Laboratory-Cincinnati, U.S. Environmental Protection Agency, and the
Laramie Energy Technology Center, U.S. Department of Energy, and approved
for publication. Approval does not signify that the contents•necessarily
reflect the views and policies of the U.S. Environmental Protection
Agency or the U.S. Department of Energy, nor does mention of trade names
of commercial products constitute endorsement of recommendation for
use. !
n
-------
FOREWORD | '
When energy and material resources are extracted, processed, converted,
and used, the related pollutional impacts on our environment 'and even
on our health often require that new and increasingly more efficient
pollution control methods be used. The Industrial Environmental Research
Laboratory-Cincinnati (lERL-Ci) assists in developing and demonstrating
new and improved methodologies that will meet these needs both efficiently
and economically. j
i
In this study raw oil shale from two core holes on the Naval Oil
Shale Reserve was analyzed to determine the strati graphic distribution
of major, minor, and trace elements and to determine their miheral
associations. The results should be useful to government agencies and
private developers involved in assessing the environmental impacts of
oil shale retorting and assist in the design of appropriate control
technology. For further information, contact the Oil Shale and Energy
Mining Branch, Energy Pollution Control Division.
David G_ Stephan
Director
Industrial Environmental Research Laboratory
Cincinnati
-------
ABSTRACT ; •
Raw oil shale from two core holes on the Naval Oil Shale; Reserve
was analyzed to determine the stratigraphic distribution of 46 major,
minor and trace elements and to determine their mineral associations.
Over one half of the elements correlated well with two minerals, Na-feldspar
and K-feldspar. Most of these elements did not vary in concentration
by more than a factor of three or four. The composition of the two
core holes was very similar for corresponding stratigraphic zines even
though Hole 15/16 was from the center of the Piceance Basin w(iile Hole
25 was from the edge of the Basin. Concentrations of As, Cd,jHg, Mo,
Se, B and F, which are of potential environmental interest, showed vertical
variation by an order of magnitude. i
IV
-------
CONTENTS
List of Illustrations ^ vi1
List of Tables !
••*•••••••«:•• X
Acknowledgments ! V4j
**"*•*••**•••'•• All
Introduction • -j
Summary and Conclusions ;> 3
Recommendations ^ 4
Green River Oil Shale—A Literature Survey 6
i
Geologic Setting , g
i
The Naval Oil Shale Reserve . I . 7
Mineralogy and Elemental Composition ! g
Brobst and Tucker (1973) I 10
Poulson et al. (T977) j ]1
Desborough et al. (1976). ] ^
Fruchter et al. (1978, 1979). i 12
Donnell and Shaw (1977) •- f 13
Saether et al. (1980) . 13
Other Studies ! -|4
Experimental ; -jg
Core Stratification and Sectioning ; -|g
Sampling and Sample Preparation . 17
Homogeneity Experiment • ]g
Contamination Experiment. i -j
-------
Neutron Activation Analysis -....!.. 20
X-ray Fluorescence Analysis : t 21
Zeeman Atomic Absorption Spectroscopy |. . '22
Spectrochemical Determination of Boron j. £3
1
Pyrohydrolysis-spectrophotometric Determination j
of Fluoride. \ m 23
i
i
Instrumental Analysis of C, H, and N :. 24
X-ray Diffraction ^ 24
!
Fischer Assay je 25
Data Analysis ,_ 25
Statistical Procedures,
26
Results \f 31
Discussion ;_ 34
Elemental Abundance ;. 34
Mineral and Organic Relationships i. 37
Element, Mineral, and Organic Relationships I 39
|
References. i. 43
Illustrations . . . i. . 47
Tables ! . 86
I
Appendix. . . . I . 135
Table A-l. Oil shale assays by modified Fischer Retort :
Method, core hole 15/16 [ 135
j
Table A-2. X-ray diffraction results, core hole 15/16. . I . 139
Table A-3. Elemental analysis, core hole 15/16 i 143
i
Table A-4. Oil shale assays by modified Fischer Retort i
Method, core hole 25 i 159
Table A-5. X-ray diffraction results, core hole 25 . . . j . 162
Table A-6. Elemental analysis, core hole 25 j 155
i
VI
-------
ILLUSTRATIONS ; '
I
Figure 1. Oil shale deposites in the Green River Formation !
of Colorado, Utah, and Wyoming .......... ; 47
Figure 2. Location of the Naval Oil Shale Reserve No. 1 and i
core holes 15/16 and 25 .............. : . . . 48
Figure 3. South-north diagrammatic cross-section of the i
Green River Formation in Colorado's Piceance
Creek Basin ;
50
Figure 4. Schematic of composite sample splitting technique. ;.
Figure 5. Stratigraphic zones, depth of zones, and composite '
sampling for core hole 15/16 ........... i. 5-]
Figure 6. Stratigraphic zones, depth of zones, and composite i
sampling for core hole 25 ............. '. . . 52
Figure 7. Relative minimum-maximum element concentration i
values for five Stratigraphic zones of core
hole 15/16 .................... : 53
Figure 8. Relative minimum-maximum element concentrations i
values for five Stratigraphic zones of core !
hole 15/16 .................... i ... 54
Figure 9. Relative minimum-maximum mineral and Fischer Assay '•
values for five Stratigraphic zones of core l
hole 15/16 ....... . ............ j 55
Figure 10. Relative minimum-maximum element concentration i
values for four Stratigraphic zones of core
hole 25 ...... ................. j . . 56
Figure 11. Relative minimum-maximum element concentration '
values for four Stratigraphic zones of core '
hole 25 ,
Figure 12. Relative minimum-maximum mineral and Fischer Assay
values for four Stratigraphic zones of core
hole 25. ....
Figure 13. Vertical variation in core hole 15/16
59
VII
-------
Figure 14. Vertical variation in core hole 15/16 I . . 60
Figure 15. Vertical variation in core hole 15/16 '. 61
Figure 16. Vertical variation in core hole 15/16 '. 62
Figure 17. Vertical variation in core hole 15/16 ( 63
Figure 18. Vertical variation in core hole 15/16. [ 64
Figure 19. Vertical variation in core hole 15/16. . 65
Figure'20. Vertical variation in core hole 25 > 66
" * ° DO
Figure 21. Vertical variation in core hole 25 5?
Figure 22. Vertical variation in core hole 25 .' . . 68
Figure 23. Vertical variation in core hole 25 . . : 69
!
Figure 24. Vertical variation in core hole 25 1 . 70
Figure 25. Vertical variation in core hole 25 j '7]
Figure 26. Vertical variation in core hole 25 i 72
i
Figure 27. Statistical significance values for aluminum. The !
first five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25. .' 73
Figure 28. Statistical significance values for aluminum. The I
first five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25. .1 . . 74
Figure 29. Statistical significance values for aluminum. The '
first five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25. ... 75
Figure 30. Statistical significance values for arsenic. The i
first five bars on each graph are for core hole -
15/16 and the last four bars are for core hole 25. ... 76
Figure 31. Statistical significance values for boron. The ;
first five bars on each graph are for core hole !
15/16 and the last four bars are for core hole 25. ... 77
Figure 32. Statistical significance values for calcium. The
first five bars on each graph are for core hole '
15/16 and the last four bars are for core hole 25. ... 78
vm
-------
Figure 33. Statistical significance values for cobalt. The :
first five bars on each graph are for core hole !
15/16 and the last four bars are for core hole 25. i.
Figure 34. Statistical significance values for fluorine. The !
first five bars on each graph are for core hole :
15/16 and the last four bars are for core hole 25. I
i
Figure 35. Statistical significance values for mercury. The '.
first five bars on each graph are for core hole j
15/16 and the last four bars are for core hole 25. ,.
Figure 36. Statistical significance values for magnesium. The|
first five bars on each graph are for core hole j
15/16 and the last four bars are for core hole 25. ;.
Figure 37. Statistical significance values for molybdenum. The
first five bars on each graph are for core hole i
15/16 and the last four bars are for core hole 25. I
Figure 38. Statistical significance values for antimony. The 1
first five bars on each graph are for core hole ;
15/16 and the last four bars are for core hole 25. 1
Figure 39. Statistical significance values for uranium. The !
first five bars on each graph are for core hole ,
15/16 and the last four bars are for core hole 25. .
. 79
. 80
. 81
. 82
. 83
. 84
. 85
-------
TABLES
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
The principal phases with which the various major,
minor, and trace elements are associated
Chemical composition of the mineral and organic
fractions of Green River oil shale
Stratigraphy and mineralogy of the Green River
Formation, Piceance Creek Basin, Colorado. . .
The elemental composition of raw oil shales,
List of elements and analytical techniques applied
for the determinations ......
Minerals determined for composited sample intervals,
Core stratigraphy and compositing plan
Elemental abundances in pulverized oil shale
sample used in the homogeneity experiment. .
Elemental abundances of obsidian used in
contamination experiments.
Neutron irradiation and counting schedules
used by LBL
Range of Fischer Assay and mineral results for
the two core holes ......
Element concentration ranges for the two
core holes ..........
Statistical significance values for 48 elements
paired with 29 elements ......
Statistical significance values for 48 elements
paired with 8 minerals, oil, and water
Statistical significance values for 8 minerals,
oil, and water paired together
86
87
88
89
90
91
92
94
96
97
98
99
123
131
-------
Table 16. Average element content and standard deviation i
for stratigraphic zones in core hole 15/16 ...... 133
Table 17. Average element content and standard deviation '
for stratigraphic zones in core hole 25 :. 134
-------
ACKNOWLEDGEMENTS
The authors wish to thank Barbara Branstetter for carrying out the ground
work and tests for this program, as well as performing the cadmium
determinations. We are grateful to Frank Asaro and Helen Michel for carrying
out all the neutron activation analyses, to Eric Courtney and Lilly Goda for
the x-ray fluorescence measurements, and to Lucy Pacas for carrying out the
mercury determinations. Mr. Courtney also was principally responsible for
assembling all of the analytical results. I
The authors thank Margaret Ogden, Ruth Nottage, Steve Shultz, and Marty
Saoraw of the Laramie Energy Technology Center for performing the Fischer
Assay determinations and Janet Wolf, Angelo Kallas, Jo Ann Disdoll, and Mark
Hutsell for the carbon, hydrogen, and nitrogen determinations. j We are
especially grateful to William Robb and Lowell Spackman for the1 x-ray dif-
fraction analyses. We also thank Glenn Waterbury of the Los Alamos
Scientific Laboratory for directing the boron and fluoride determinations.
This work was supported by the Division of Oil, Gas, and Oijl Shale
Technology and the Division of Environmental Control Technology!of the U. S.
Department of Energy under Contract No. W-7405-ENG-48, the U.S.|Environmental
Protection Agency under Contract No. 1AG78-D-F0300, and the Laririe Energy
Technology Center under Contract No. PL-82675. :
-------
INTRODUCTION ; '
. , !
Green River oil shale is a marlstone that contains about 2,0 percent
organic material. It was deposited from an ancient lake that covered parts
of Colorado, Utah, and Wyoming. This lake was probably permanently
stratified. The upper portion supported life, and the lower layer was
i
probably a sodium carbonate solution with a pH of 11 to 12. 0|il shale was
formed by lithification of sediments accumulated at the bottom of this lake.
|
These materials entered the lake by overland runoff and atmospheric fallout
of dust, pollen, and volcanic ash (Bradley, 1931). ;
Vertical variability in major, minor, and trace elements and mineral
phases in oil shale deposits had been previously noted by Poulson et al.
i
(1977) and by Robb et al. (1978). This variability is significant from an
I
environmental, economic, and processing standpoint. Vertical jmodified
in-situ (VMIS) retorts will span 300 to 700 feet or more of ajvertical
section of oil shale. Large changes in elemental and mineral;concentrations
through these sections may produce oils, gases, and waters of,varying
compositions. These variations may affect treatment of the waters and gases
i
and upgrading of the oil. Significant changes in mineral forms and elemental
composition across a VMIS retort will also affect the process:energy balance
and any catalytic effects due to specific elements. Similarly, in surface
i
retorting, richer deposits are mined and retorted in surface retorts. If
environmentally undesirable elements are concentrated in some, horizons and
-------
not in others, it may be feasible to eliminate or minimize some environmental
problems by preferentially mining the deposits. !
This variability may also be used to identify geochemical trends and to
develop correlations between certain mineral phases or Fischer;Assay yields
and elemental concentrations. Fischer Assays are tedious to perform and if
an easily measured element could be correlated with Fischer Assay yields, it
may be substituted for the assay. j
Interest in mineral and element concentrations in Green River Formation
i
oil shale has been augmented recently by geochemical and environmental con-
I
siderations. Both geochemical and environmental studies require knowledge
of concentrations of the major mineral and elemental components! in oil shale,
although interest in the minor elements varies greatly. Geocheinists tend to
be preoccupied with minor elements such as Sr, Ba, Ti, and U which reveal
i
depositional trends. Environmental concerns center around potentially
hazardous elements such as Hg, Cd, and Se. Each group has accumulated sub-
stantial information (see Desborough et a!., 1976; Dean, 1976; Fox, et a!.,,
1980; and Poulson et al., 1977). However, these studies do not'present a
realistic picture of stratigraphic element and mineral distribution through
a potentially developable oil shale section. !
Both environmentalists and geochemists are interested in the1 magnitude
and significance of stratigraphic variations. To the geochemist, strati-
graphic distribution is a variable answering questions about dep'ositional
!
conditions and the importance of this variation to formation chemistry. To
the environmentalist, stratigraphic distribution provides information on the
size and significance of the overall consequences of developing that oil
-------
shale deposit and controls than might be used to prevent adverse
environmental impacts. !
This report provides some of this basic information. It discusses the
stratigraphic distribution of elements, minerals, and Fisher Assay oil and
water content in two cores from the Colorado Naval Oil Shale Reserve No. 1,
!
the site of much developmental testing and the source of most of the Green
River Formation oil shale samples discussed in U.S. oil shale1 literature.
SUMMARY AND CONCLUSIONS '.
\
The principal phases with which the various major, minor, and trace
elements are associated (based on statistical analyses) are summarized in
Table 1. Specific conclusions follow. I
1. Oil shale from both core holes was comprised principally of dolomite,
quartz, analcime, calcite, Na-feldspar, K-feldspar, and organiic matter.
i
Mg-siderite, illite, pyrite, and aragonite were also detected! in many of the
samples. Illite was detected more frequently in core hole 25! (from the edge
of the depositional basin) while pyrite and aragonite were detected more
frequently in core hole 15/16 (center of the basin). Dawsonite and fluorite
were detected in a few samples. The concentrations of dolomite and quartz
were relatively constant. These two minerals typically accounted for forty
i
weight percent of the matrix. ;
2. Over one-half of the elements determined correlated well with two
minerals, Na-feldspar and K-feldspar (Table 1). Most of these elements did
not vary in concentration by more than a factor of three or fpur.
3. High Fischer Assay oil yields and elevated Na- and K-feldspar con-
centrations were concurrent in the oil-rich Mahogany Bed for both core holes.
This is consistent with other studies (Robb et al. 1978). 1
-------
4. The composition of the two core holes was very similar for corres-
ponding stratigraphic zones even though core holes 15/16 and 25 were from
the center and the edge of the depositional basin, respectively, and ten
kilometers apart. These studies agree with previous investigations that.
revealed that oil shale is remarkably uniform laterally. |
5. Concentrations of major organic elements—organic carbon, hydrogen,
and nitrogen—varied by an order of magnitude. Similar concentration varia-
!
tions were observed for As, Cd, Hg, Mo, Se, B, and F, which are trace ele-
i
ments of potential environmental significance. The first five of these
elements may be partly associated with the organic fraction of the oil shale
matrix. Boron is associated with the mineral phase. No definitive conclu-
sions could be made for F associations based on this work. However, other
work (Saether and Runnells, 1980b) suggests F is associated with micaceous
!
clay minerals, especially illite, in the Mahogany zone. ;
i
6. The trace elements Co, Cu, Ni, Pb, Sb, and Zn showed consistent
associations. These elements are probably present in oil shale as
sulfides. This is consistent with findings in recent studies '(Saether
1 - ;
et a!., 1980a). ;
I
7. Fischer assay water yield was strongly associated with analcime con-
tent in both cores. This parallels observations made in 1975 'by Desborough
and Pitman. However, the water in analcime typically accounted for only
about one-third of the water content determined by Fischer Ass|ay.
RECOMMENDATIONS
1. The mineral residence of some of the environmentally important
elements, such as As, Se, Hg, Cd, Mo, B, and F, should be determined so that
their behavior during and prior to retorting can be explained
and predicted.
-------
No work has been completed on As, Hg, and B, to the knowledge of the authors.
The work on Cd, Mo, Se, and F started by Saether et al. (1980a) and Saether
and Runnells (1980b) should be extended. ]
2. Elemental abundances should be determined in the Fischer-Assay
products-water, oil, spent shale, and gas-so that the composition of These
phases can be related to the composition of the original oil shale.
3. Total sulfur and sulfur forms, including organic, pyritic, and
sulfate sulfur, should be determined in many of these samples so that
chacophile elements in oil shale can be identified. This information is
necessary to clarify the geochemistry of the deposits and to predict the
behavior of many environmentally important trace elements during retorting.
4. Soft x-ray fluorescence analyses should be performed ojn all samples
to obtain precise and accurate measurements of the elements Si, and Mg. These
data would help to clarify the geochemistry of the deposits and to validate
the carbonate, i.e., x-ray diffraction (XRD), results. !
5. Leaching studies should be carried out on many of the icomposite
samples. The resulting data should be correlated with the composition of the
mineral phases present. :
6. Methods should be developed to quantify the major mineral phases
I
present in oil shales and these methods applied to the samples studied in
this report.
-------
GREEN RIVER OIL SHALE - A LITERATURE SURVEY i
GEOLOGIC SETTING j
Green River Formation oil shale is located in western Colorado, eastern
i
Utah, and southwestern Wyoming (Figure 1). The potential oil yield of this
formation has been evaluated extensively by Fischer Assay analyses on
numerous cores drilled throughout the formation (Smith, Beard, jand Trudell,
1979). Oil shale from the Green River Formation is a f ine-grai;ned sedi-
mentary rock which contains appreciable quantities of organic material. The
inorganic material is a dense, tough marlstone that ranges in color from tan
to dark brown to brownish black. It has a typical mineral composition
similar to that shown in Table 2. About one-half of the total mineral con-
i
tent is made up of two carbonaceous minerals, dolomite and calc;ite. Minor
minerals which occur locally include halite (NaCl), nahcolite (|NaHC03),
and disseminated dawsonite (NaAl(OH)9COo). i
£_ «3 i
According to Bradley (1931), the organic fraction originated from
"microscopic algae, and other microorganisms, that grew and accumulated in
the central parts of large, shallow lakes that existed under a jsubtropical
climate" and from "wind-blown, or water-borne, pollens and waxy spores."
i
This organic fraction varies from a few percent in low-grade shales to more
than 40 percent in shales that yield 75 gallons of oil per ton.; The
elemental composition of the organic fraction is shown in Table; 2; it is
reported to consist of three fractions (Bradley, 1931). Kerogen, from the
Greek words for "wax yielding," typically constitutes 80 to 90 |percent of
6
-------
the total organic matter. This material is insoluble in organise solvents and
yields oil, gas, and residual carbon on pyrolysis. The empirical formula of
kerogen has been reported as C215H330012N5S with a minimum formula
weight of 3,200 (Smith, 1961). The structure of kerogen is not completely
understood, even though it has been extensively studied (Robinson, 1976; Yen,
1976; Yen and Young, 1977; Down and Himus, 1941). Yen and Young (1977)
postulated that kerogen is a three-dimensional network of non-straight chain
clusters interconnected by long polymethylene cross-links. The clusters are
i
primarily aliphatic rings. They suggested that organic material, possibly
protokerogen or post-kerogen, is present between the clusters and that long-
chain aliphatic structures are attached at one end only. ;
Bitumen, the second major organic fraction, typically constitutes about
10 percent of the organic material in oil shale. It is a hetefoatomic
polymer which is soluble in many conventional organic solventsi(Sladek, 1974)
and decomposes on pyrolysis. This soluble material is fractionated into
about 1 percent n-alkanes, 3 percent branched alkanes, 21 percent cyclic
alkanes, 2 percent aromatic oils, 63 percent resins, and 10 percent pentane-
irisoluble material. The third fraction, which occurs in very £mall amounts,
is; an inert substance which is insoluble in organic solvents and does not
decompose on pyrolysis. i
THE NAVAL OIL SHALE RESERVE j
The Naval Oil Shale Reserve No. 1 (NOSR No. 1) is located ;in the
southeast corner of Colorado's Piceance Creek Basin and is parlt of the Green
River Formation (Figures 1 and 2). The NOSR No. 1 was established
December 6, 1916, by executive order of President Woodrow Wilson as a long-
range guarantee of oil for the U. S. Navy. The resource of potential oil on
-------
this reserve has been defined from oil-yield assay data on 33 jCores (Smith,
Beard, and Trudell, 1979). Twenty one of the cores were from iwithin the NOSR
No. 1 and twelve were from nearby areas surrounding the northwest, west, and
southwestern part of the reserve. ; •
Our geochemical studies are on two cores, 15/16 and 25, from the NOSR
No. 1 as shown in Figure 2. Core hole 25 is located near the Boundary of
the Green River Formation close to the edge of the depositional basin. Core
hole 15/16 is situated approximately seven miles (10 kilometers) to the
northwest of core hole 25 and is closer to the center of the formation. Very ,
detailed lithologic description of over 750 samples from core|15/16 has
previously been prepared by Trudell (1978). His characterizations were for
i i
samples taken from 122.0 feet (37.2 meters) to 2018.9 feet (6J5.4 meters)
deep into the core. j
MINERALOGY AND ELEMENTAL COMPOSITION j ;
1
I :
Oil shale in the Green River Formation is principally dolpmitic marlstone
having various amounts of organic matter that was derived chiefly from algae,
aquatic organisms, waxy spores, and pollen grains (Bradley, 1931). Marlstone
is a term for rocks that consist mainly of mixtures of calcite and dolomite
and that also contain indefinite mixtures of clay, silt, and sand particles.
The stratigraphy and mineralogy of the Green River Formation are sum-
marized in Figure 3 and Table 3. The formation consists of oil shale inter-
i
bedded with varying amounts of tuff, siltstone, sandstone, claystone, and
locally with halite, trona, or nahcolite. The Green River Formation is
composed primarily of lacustrine beds deposited from two large ancient
i
(Eocene) lakes (Robinson, 1976). One of these lakes was north of the Uinta
Mountains in southwestern Wyoming and northwestern Colorado, iThe other was
8
-------
south of the Uinta Mountains in eastern Utah and western Colorado. These two
lakes are now preserved in seven basins (see Figure 1) -- the Uinta basin in
Utah, the Piceance Creek and Sand Wash basins in Colorado, and the Green
River, Great Divide, Washakie, and Fossil basins of Wyoming. The principal
!
deposits of high-grade shale are found in the Piceance, Uinta, iGreen River,
and Washakie basins. |
i - i
An idealized cross section through the Piceance Creek Basin, which
contains most of the rich oil shale, is shown in Figure 3, and.the strati-
graphy and mineralogy of this basin are summarized in Table 3.' The rich oil
shale deposits occur in the Parachute Creek member where up to|2,000 feet
(610 meters) of oil shale occurs in alternating rich and lean beds. One of
these rich beds, the Mahogany Zone, underlies 2,000 square miles (5180 square
i
kilometers) in Colorado and Utah and is the principal target of most present
development efforts. The oil shale is thickest and richest in |the north-
central part of the Piceance Creek Basin, where nodules, lenses, and beds of
nahcolite, halite, and dawsonite also occur. It is leaner and .thinner at
the basin margins (Culbertson and Pitman, 1973). ;
The stratigraphy and mineralogy of the Green River Formation in the Uinta
Basin is similar to that in the Piceance Creek Basin, except that the oil
shale sequence is thinner and leaner and does not contain significant amounts
of saline minerals. The remaining basins, the Sand Wash, the Green River,
the Fossil, and the Washakie, contain oil shale that is generally leaner.
This oil shale usually occurs in thinner beds. These basins ar;e relatively
unexplored, but the Green River and Washakie are of most currenjt interest.
The elemental composition of a number of oil shale samples from different
locations in the Green River Formation is summarized from the literature in
-------
Table 4. This table presents analytical results for samples from the
Mahogany Zone, the saline zone, and the R-4 Zone in Colorado and Utah. This
table indicates that the major elements (concentrations >0.1 percent) in oil
|
shales are Al, Ca, Fe, K, Mg, Na, F, Ti, S, and Si. Minor elements (concen-
trations of <0.1 percent to 1 ppm) include most of the environmentally
significant elements - Mn, V, Zn, Cr, As, Cu, Mo, Ni, Pb, Co, Th, U, Sb, and
Se - plus Ba, Sr, Rb, Ce, La, Nd, Ga, Y, Sc, and Cs. The trace elements
i
(concentrations <1 ppm) include the three toxic trace elements^ Cd, Hg, and
Te plus Er, Eu, Lu, Ta, Tb, and Yb. This table indicates that;there is
thousand-fold or more variation in the elemental composition of oil shales
from the same zone. This is not consistent with results reported here and
may be due to analytical and/or sampling problems. '•
Some significant investigations of the mineralogy and elemental composi-
tion of Green River oil shale are discussed and reviewed here.,
BROBST AND TUCKER (1973)
The mineralogy of the northern Piceance Creek Basin previously has been
j
reported by Brobst and Tucker (1973). The mineral composition(was found to
consist of various mixtures of dolomite, calcite, quartz, K-feldspar,
Na-feldspar, analcime, illite, and pyrite. Dolomite was the most abundant
mineral. Calcite was found to occur in more samples and in greater abundance
above the Mahogany Ledge of the formation. Quartz content was;reported to
i
have varied within narrow limits. Potassium feldspar was found to be present
in more samples and in slightly greater abundance than Na-feldspar as
measured by x-ray diffraction peak height. Analcime was f oundj to occur in
most samples, but in slightly more abundance in the rich oil shale than in
marlstone. Also, small amounts of illite were common. Pyrite;was determined
10
-------
to be an accessory mineral that was more abundant in rich oil shale than in
marlstone. :
POULSON ET AL. (1977) ;
These investigators presented survey analyses for over 60 elements in two
Green River Formation oil shale zones as a function of depth in the forma-
tion. The zones sampled were the Mahogany Zone' in Colorado and Utah and the
saline zone below the Mahogany Zone in Colorado (see Table 3).' Cores from
I
these zones were sectioned, composited at 10-foot (3.1 meter) intervals,
reduced to minus 100 mesh, blended, and analyzed primarily by spark source
mass spectrometry. Limited use was made of x-ray fluorescence;spectrometry
and neutron activation analysis. These authors noted significant variability
between duplicates analyzed by the same technique and concluded that the data
were good only to a factor of ten (variability, as used here, refers to the
ratio of the maximum value to the minimum value). Because of ;this large
I
variability, they concluded that there was no significant difference in the
i
elemental composition of the stratigraphic zones.
DESBOROU6H ET AL. .(1976) i
!
These investigators reported elemental abundances for 36 elements for ten
simples from drill core of two rich oil shale beds from the Parachute Creek
member of the Green River Formation. Six of the samples were jfrom the
Mahogany Bed in Colorado and Utah and four were from the R-4 Zone (see
Table 3). A range of analytical techniques, including x-ray fluorescence
spectrometry, atomic absorption spectroscopy, and optical emission
spectroscopy were used. j
The variability noted in this study was considerably less than that
observed by Poulson et al. (1977). The Desborough study found a factor of
11 !
-------
two to three variability while the Poulson study (1977) found a factor of
f ten or more. This is probably related to the fact that higher1precision
analytical techniques were employed and to the fact that a smaller set of
[•
samples was analyzed. Analysis of the data in Table 4 suggests that there
is little variation between the Mahogany Bed and the R-4 Zone samples.
These investigators also inferred or established the mineralogical
residence for 22 elements using x-ray diffraction and the electron
microprobe. Some of their results are as follows: ;
• Sulfides: As, Cd, Co, Cu, Fe, Mo, Ni, S, Zn !
i
• Carbonates: Ca, Fe, Li, Mg, Mn ;
• Feldspars: Al, B, K, Si !
• Siderite: Fe, Mg, Mn I
Additionally, F was hypothesized to occur in fluorite and cryolite; P in
apatite; Zr in zircon; Na in dawsonite, albite, analcime, and hahcolite; and
Se in iron selenide. However, subsequent work by Saether et al. (1980a) and
!
Saether and Runnel Is (1980b) suggest that Mo occurs in the clay and mica
minerals, that Mn and Cd have a dual residence in the pyrites and carbonates,
and that F is associated with micaceous clays, especially illite.
i
FRUCHTER ET AL. (1978, 1979) !
These investigators analyzed mine-run samples from the Anvil Points,
Colorado, oil shale mine using neutron activation analysis, x-ray fluores-
cence spectrometry, and other techniques. Their data agree wi£h the
Desborough study and the variation in their data is typically iless than a
factor of two. This is probably related to the fact that all bf their
samples originated in the same mine, and analytical techniques;of known high
precision were used.
12 !
-------
DONNELL AND SHAW (1977) ]
These researchers reported mercury analyses and oil yields; for 183
samples from a core hole southeast of lease tract C-b in the Mahogany Zone.
A 258.5-foot (78.8-meter) interval between the depths of 770.5J feet (234.8
meters) and 1029 feet (314 meters) was composited at 1- to 18-foot (0.3- to
5.,5-meters) intervals, crushed, dissolved in an acid solution,: and analyzed
by atomic absorption spectroscopy. The mercury content was found to average
0..37 ppm and to range from less than 0.10 ppm to 0.97 ppm. No; correlation
between oil yield and mercury content was evident, suggesting that mercury
may not reside in the organic fraction. Variability between samples was
outside of the reported precision of the analytical method (±0,.010 ppm)
suggesting that mercury varies throughout the Mahogany Zone. ;
SAETHER ET AL. (1980a, 1980b) ;
j
These investigators used differential density centrifugatipn and several
analytical techniques to investigate the mineral residence of 26 elements in
Colorado oil shales (Saether et a!., 1980a). They studied 11 samples of raw
shale from the Mahogany Zone from the U.S. Bureau of Mines drill core 01-A
t
from the central part of the Piceance Creek Basin in northwestern Colorado.
They removed organic material from their samples using low-temperature plasma
3 !
ashing, separated their samples into 2.4 to>2.9 g/cm density fractions
by differential centrifugation, and analyzed the various fractions for
mineral phases and 26 elements using x-ray diffraction, x-ray ifluorescence
analysis, and nuclear inelastic scattering. i
This study revealed that trace heavy metals (Zn, As, Ni, Pb, Cu, Se) in
rich oil shale are primarily concentrated in minerals that have densities
greater than about 2.9 g/cm3. The principal minerals found in this
!
13
-------
fraction are pyrite and iron-rich carbonates. These investigators hypothe-
sized that the probable mineralogical residence of the transition metals is
!
in the sulfides, chiefly pyrite. This agrees with the work of|Desborough
et al. (1976). No significant enrichment of any of the trace elements
studied was found in the lighter density fractions except Mo which was
hypothesized to occur in the c.lay and mica minerals. Mn and Cd were believed
to have a dual residence, occurring in both pyrite and carbonate phases. The
F was chiefly concentrated in the light micaceous fraction. Other work on
the same set of samples (Saether and Runnells, 1980b), suggested that a major
portion of the F in the Mahogany Zone is associated with micaceous clay
I
minerals, especially illite. Other fluorine-bearing minerals,;such as
fluorite (CaF2), cryolite (Na3AlFg), and fluorapatite [Ca5(P04)F]
were not detected. It was hypothesized that F substitutes forihydroxyl ions
in the illite lattice or is adsorbed on the surface by ion exchange. These
authors also found a good correlation between F and Fischer Assay oil yield.
OTHER STUDIES ' \
Wildeman and Meglen (1978) analyzed a single sample from the Mahogany
Zone at the Colony mine, Colorado, for 14 elements using x-ray'fluorescence
spectrometry and wet chemical techniques. Similarly, Shendrikar and Faudel
(1978) analyzed three samples of oil shale from the Mahogany Zone at the
Colony mine, Colorado, for 15 trace elements using atomic absorption
spectroscopy and other techniques. The results obtained on thdse samples
from the same location agree with the exception of selenium. ,
Stanfield et al. (1951) determined the form of sulfur and n'itrogen in
nine samples of oil shale from the Mahogany Zone near Rifle, Colorado. Raw
oil shale was found to contain three principal types of sulfur--pyrite,
14 :
-------
organic, and sulfate sulfur. Pyrite sulfur, which constituted ;66 percent of
the total sulfur, occurred as minute grains distributed throughout the entire
i
shale mass or as occasional nodules. About 33 percent of the total sulfur
i
occurred as organic sulfur and less than 1 percent occurred as ;sulfate
sulfur. The nitrogen appeared to occur entirely as organic nitrogen.
15
-------
EXPERIMENTAL . '
Two cores from the Green River Formation on Colorado's Navial Oil Shale
Reserve No. 1 were sectioned and composited into 280 samples a;t 1-, 2-, 5-,
25-, or 50-foot (0.3-, 0.6-, 1.5-, 7.5-, or 15-meter) intervals based on
stratigraphy. Measurements for 57 elements were carried out on the
individual samples using analytical methods summarized in Table 5. Most of
these techniques had been previously validated for use with oifl shale samples
(Fox et a!., 1980). The relative abundance of the 12 minerals! listed in
Table 6 were ascertained by x-ray diffraction (XRD) at Laramiei Energy
Technology Center (LETC). Fischer Assays, a standard procedure for the
determination of oil yield, were also performed at LETC. i
The resulting data were entered into a computerized data blase system and
statistically analyzed to identify trends and relationships. Quality control
was provided by computing and comparing relative minimum-maximum values of
i
eeich variable for the different stratigraphic zones. |
Core stratification and sectioning, sampling and sample preparation,
sample analysis, and data reduction methods are discussed in greater detail
below. j
CORE STRATIFICATION AND SECTIONING !
Two cores from the Department of Energy's Naval Oil Shale Reserve No. 1
in the Piceance Creek Basin were used in this study. Core hole 15/16 was
drilled in the SWNENW of section 34, T5SR95W, and core hole 25i was drilled
in SWSENE of section 34, T5SR94W. Both are located in Garfiel;d County,
16
-------
Colorado. Smith et al. (1979) relate the oil shale resource information
contributed by these two cores to the Naval Oil Shale Reserve No. 1. Core
hole 15/16 is in the northwest corner of the Reserve, significantly nearer
the Mahogany Zone's depositional center (Smith, 1974) than core hole 25,
which is near the basin edge (Figure 2). Material analyzed from core hole
15/16 represented 1163 feet (354 meters) of Green River Formation; material
from core hole 25 represented 660 feet (201 meters). j
Core holes 15/16 and 25 were stratigraphically sectioned and composited
\
into 280 samples by the Laramie Energy Technology Center (LETC) at intervals
of 1, 2, 5, 25, or 50 feet (0.3, 0.6, 1.5, 7.5, or 15 meters),\ as shown in
Table 7. A current oil shale technology potentially applicable to each
section is noted in Table 7. i
Sectioning of the cores was accomplished with a diamond saw. Each
!
section was crushed and ground to 1/8-inch (3.2 millimeter) particle size
using a high-grade steel jaw crusher and a coffee-mill grinder;. This portion
of the sample preparation step was not checked for contamination due to the
lack of a suitable control when the study was made.
SAMPLING AND SAMPLE PREPARATION i.
The laboratory procedures described in this section were adopted to
select, as nearly as possible, a representative sample from each composite,
to reduce the particle size to a range compatible with various; analytical
methods, and to maximize homogeneity and minimize contamination. Homogeneity
and contamination experiments were conducted to validate these; procedures.
The 280 samples came in several sizes, weighing up to 44 pounds
(20 kilograms) each. Thus, development of a representative sampling tech-
nique was required. Of the 280 composite samples received, 19j fifty-foot
17
-------
(15.2-meter) composites weighed approximately 44 pounds (20 kilograms) each,
13(5 five-foot (1.5-meter) composites weighed 5.1 to 11 pounds (2.3 to 5.0
kilograms), 79 two-foot (0.6-meter) composites weighed 2.2 to 6.6 pounds
__. .. . f .
(1.0 to 3.0 kilograms) and 46 one-foot (0.3-meter) composites weighed 0.2 to
1.0 kilogram. :
Each sample was mixed and split into 0.44 pounds (200-gram) sizes and
pulverized to 100 to 200 mesh (150 to 75 microns). A manual splitting
procedure was used to minimize contamination from metal mechanical splitters.
Each composite was placed on a 10 mil (0.025 cm) thick sheet of polyethylene
film in a positive ventilation hood and mixed and split according to the
scheme shown in Figure 4 into 1.8-pound (800-gram) splits. Two 1.8 pound
(800-gram) splits were selected and the balance of the composite returned to
its original container. One of the two samples was stored as a record. The
other was further divided by the same method into a 0.44 pound;(200-gram)
sample for pulverizing. !
The 0.44 pound (200-gram) samples were ground in a laboratpry planetary
ball mill equipped with four high-purity sintered corundum (AlgOg) jars
and balls. Three 1.6 inch (40 millimeter) diameter grinding balls were used
in each jar. Four jars were simultaneously loaded with 0.44 pound (200-gram)
portions of four separate samples and ground for one hour. The grinding
regime produced particles smaller than 100 mesh (150 microns).; The charge
from each jar was transferred to polyethylene bottles which had been acid-
washed with HMO,, rinsed with de-ionized water, and air dried under a
*3
plastic hood.
Two experiments were conducted to evaluate the effect of sampling methods
on homogeneity of the composited oil shale and the possible contamination of
the samples by the sintered corundum grinding jars and balls. ,
18 !
-------
HOMOGENEITY EXPERIMENT I
The purpose of this experiment was to determine how reproducibly 1.8
pound (800-gram) samples could be quartered and subsampled. Ail.8 pound
(800-gram) sample of shale from the 180-foot (54.9-meter) depth, -solution
cavity zone, (SCZ-180) was quartered into four 0.44-pound (200-gram)
portions. Each portion was pulverized using procedures previously described.
i
A total of ten 1.54-grain (100-milligram) samples were taken of the pulver-
i
ized material, four samples from one jar and two from each of the other jars.
All ten were analyzed by neutron activation analysis. The results of these
measurements (Table 8) indicate that a 1.8 pound (800-gram) sample can be
reliably split into four 0.44-pound (200-gram) samples and that representa-
i
tive 1.54 grain (100-milligram) samples can be withdrawn from the pulverized
0.44 pound (200-gram) material. These sampling procedures lead to abundances
which are probably representative of the cores within a standard deviation
of about 1.4 percent.
CONTAMINATION EXPERIMENT
|
The sintered corundum grinding jars of the planetary ball mill were
tested in this experiment for possible contamination of the oil shale. Napa
obsidian, well analyzed for nearly 50 elements by high precision neutron
activation analysis (Bowman et a!., 1973), provided the control for the
experiment. This material was chosen because it is harder than oil shale,
and thus more susceptible to contamination during grinding, and because its
chemical composition is remarkably uniform. As a precaution, the jars were
washed in de-ionized water and soapless cleanser.
Two hundred grams of Napa obsidian were ground for an hour! in one
factory-clean sintered corundum grinding jar and in one jar which had been
19
-------
used previously to grind oil shale; a smaller portion of obsidian was ground
by hand in an agate mortar and pestle. One sample each was prepared from the
i
obsidian ground in these three operations and analyzed by neutron activation
analysis. \
I
The results shown in Table 9 indicate that the obsidian was pulverized
without significant contamination from the sintered corundum grinding jars
and balls. Even though the difference between the Al value for the sample
ground in the used jar and that ground in the new jar is greater than the
standard deviation of the difference, there is only a 1 in 20;probability
i
that this is statistically significant.
NEUTRON ACTIVATION ANALYSIS i
All 280 samples were analyzed by instrumental neutron activation analysis
(NAA) at the Lawrence Berkeley Laboratory. The elements Ag, Al, As, Au, Ba,
Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, In, Ir, K, La, Lu,
Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Th, Ti, U, V, W,
i
Yb, and Zn were determined. A single sample was analyzed, and the reported
error is an estimate of one standard deviation in the accuracy calculated
from the counting statistics of both the samples and the standards and the
uncertainties in the elemental abundances in the standards. •
These procedures have been described elsewhere (Perlman apd Asaro, 1969).
Standard pottery (Perlman and Asaro, 1969), KC1, CaCOj, and A|l foil served
«s calibration standards. Approximately 1.54 grains (100 milligrams) of
I
sample are mixed with 0.77 grains (50 milligrams) of cellulose and compacted
into a 0.4-in. x 47-mil (1-cm x 1.2-mm) pill using a hand-operated hydraulic
press. The sample is wrapped in thin polyethylene and placed in radial array
vn'th four other samples and five standards in a heavy-duty polyethylene
20
-------
irradiation capsule. The sealed capsule is suspended by a wire'in the
I
central thimble of the Berkeley Triga Reactor and rotated during irradiation.
The procedure used to analyze the resulting pills consisted of two irradia-
tions and five decay/counting measurements (Table 10). Three of-these are
made with a 0.4-cubic inch (7-cc) intrinsic Ge detector with a resolution of
1.6 keV at 1 MeV, and two are made with a 0.06-cubic inch (1-cc) Ge(Li)
detector with a resolution of 0.54 keV at 103 keV. For the secpnd irradia-
tion, the samples were rewrapped in high-purity Al foil and placed in radial
i
array in an Al irradiation capsule. ;
I
X-RAY FLUORESCENCE ANALYSIS |
The elements Br, Cu, Ga, Ge, Ni, Pb, Rb, Se, Sr, Y, Zn, and| Zr were
determined by X-ray fluorescence at LBL for all 280 samples. The instru-
[
mental method is described elsewhere (Giauaue et al., 1977). A; single sample
was analyzed, and the reported errors are the larger of the two, standard
deviations from the counting statistics or 4 percent of the reported value.
The system used consists of a prototype energy-dispersive x-ray fluorescence
spectrometer designed and built at LBL. The total system resolution FWHM was
190 eV at 6.4 keV (Fe Ka x-ray) at 5000 counts per second using an 18-micro-
second pulse peaking time. Excitation is provided by a Mo x-ray tube with
\ ! . •
external Mo filters. The x-ray tube is operated at 45 kV and regulated
i
currents varying from 100 to.245 yA. The resulting x-rays are .simultaneously
measured by a guard-ring detector with pulsed-light feedback electronics and
a 512-channel pulse height analyzer. i
i
The sample preparation methods used are described by GiauaUe et al.
(1977). Approximately 31 grains (2 grams) of powder are pressed into a
i
Lucite cylinder and analyzed using the system described above.i The samples
are counted for 20 minutes. i
21 i
-------
ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY !
This technique was used to measure Hg in all 280 samples an;d Cd in all
samples from core hole 25. Three or more replicates of each sample were
analyzed. The instrumental technique has been described elsewKere (Hadeishi
and Mclaughlin, 1975). An electrodeless discharge lamp was used for mercury,
and a magnetically confined lamp (MCL) was used for cadmium (Hadeishi and
Mclaughlin, 1978). Mercury was atomized in a T-shaped combustion tube main-
tained at 1652°F (900°C) and cadmium was atomized in a new furnace, the
Extended Range High Gas Temperature Furnace. The samples were jdirectly
analyzed with no dilution or chemical pretreatment. Concentrations were
determined from standard curves using peak heights (mercury) or peak areas
(cadmium). A standard curve consisting of at least four points was run at
the beginning and end of each session at the instrument and select standards
i
were sandwiched between samples throughout a run to monitor instrument
stability. Aqueous standards were prepared daily in a 1 percent HN03
matrix from 1000 ppm stock solution. Instrument operating parameters were
experimentally determined for each element and sample type by yarying argon
and air flow rates, MCL vacuum, drying-charring-atomization time and temper-
ature, and furnace type. These were set to maximize signal-to-tnoise ratio,
to minimize self reversal of the plasma in the light source, to minimize
analyte loss during drying and charring, to separate smoke and analyte
signals, and to prevent molecular formation. Reference standards, including
National Bureau of Standards (NBS) standard reference materials (coal, coal
fly ash, and orchard leaves), USGS rocks, and reference standards prepared
as part of this work were periodically run throughout each session to check
standards and instrument operation. j
22
-------
SPECTROCHEMICAL DETERMINATION OF BORON ;
A single replicate of each sample was analyzed for boron at; Los Alamos
Scientific Laboratory (LASL) using a de-arc excitation spectrographic method.
A 0.15-grain (lO-milligram) electrode charge (1 part sample and- 3-parts
graphite - 4 percent NaCl buffer) was burned for 15 seconds in ja 15-A dc arc
(short-circuit measurement). A Zeebac, Inc., Atmojet provided .an atmosphere
of 70 percent argon - 30 percent oxygen around the arc. Spectrja were
recorded on Eastman Kodak Spectrum Analysis No. 3 film using a ;4.9-foot
(1.5-meter) ARL spectrograph with a reciprocal linear dispersion of
0.7 micrometers per millimeter. References were prepared in a;mixture of Si,
Al, Ca, Fe, K, Mg, Na, and Ti oxides or carbonates to which B was added at
concentrations of 1000, 300, 100, 30, 10, 3, and 1 ppm (microgfam of element
per gram of matrix). Duplicate exposures of all of the references were made
on a master film, and single exposures of the 30 ppm and 100 ppm references
[
were made as controls on each sample film along with duplicate exposures of
each sample. Results were obtained by comparison of the analytical lines on
the master film with the same lines on the several films for the samples
after making corrections relative to the two controls on each film. The
B 249.6 ym line was used. The detection limit for B was 10 ppm.
PYROHYDROLYSIS-SPECTROPHOTOMETRIC DETERMINATION OF FLUORIDE ;
Fluoride was measured at LASL by a pyrohydrolysis-spectrophotometric
method. Duplicate 1.54 grain (100-milligram) samples of pulverized oil
shale were mixed with depleted uranium oxide to catalyze removal of fluoride
and pyrohydrolyzed in steam at 1832°F (1000°C). The distillates con-
taining the fluoride were collected in volumetric flasks containing boric
acid solution, and a chelate of Ce and alizarin complexone was; added to each
23
-------
to develop a characteristic color. The intensity of the colored complex,
i
measured spectrophotometrically at 620 nanometers, was directly; proportional
to the concentration of fluoride in the sample. Reference samples containing
known quantities of fluoride were analyzed concurrently with thje oil shale
I
samples to calibrate the method. The detection limit for F was| 10 ppm.
INSTRUMENTAL ANALYSIS OF C, H, AND N ]
Total hydrogen and total nitrogen were determined at LETC by an F and M
model 185 CHN Analyzer. Total inorganic and organic carbon were determined
I
on a Coulometrics Carbon Analyzer. A single replicate of all 280 samples was
i
analyzed. !
X-RAY DIFFRACTION :
All 280 samples were analyzed by x-ray diffraction at LETC to identify
j
and, in some cases, quantitate the minerals dolomite, calcite, aragonite,
Mg-siderite, dawsonite, K-feldspar, Na-feldspar, analcime, illijte, quartz,
pyrite, and fluorite. i
Samples for X-ray diffraction analysis were pulverized by ai standard
i
procedure and packed identically to insure comparable diffraction results
i
(Robb and Smith, 1974; Smith and Robb, 1973). X-ray diffraction patterns
were obtained with a diffractometer using CuKa Ni filtered radiation. The
!
patterns were recorded under standardized conditions on 10-inch! (25.4 centi-
meters) 100-unit chart paper at a goniometer scanning speed of 2°26 per
minute and a chart speed of one inch (2.54 centimeters) per minute. The data
control unit was set at 100 counts full scale, multiplier at 1,. and time
i
constant of 5. Peaks off the chart were rerun with a higher multiplier, then
converted to their equivalent in 100 counts full scale. Individual peak
heights were measured above background in chart units for the primary peak
24
-------
of each of the 12 minerals being investigated. Measured mineral peak heights
are reported for mite, fluorite, pyrite, Na-feldspar, K-feldspar, Mg-
siderite, dawsonite, and aragonite. Although these values are |not quantita-
tive without calibration, they do give a reliable relative measure of the
amount of a mineral from sample to sample. Semiquantitative estimates
of weight percent of analcime, calcite, quartz, and dolomite were made from
peak heights using techniques previously described (Robb, Smith, and Trudell,
1978). j
FISCHER ASSAY • :
Standard Fischer Assays were performed at LETC on all 280 Camples and the
weight percent oil, water, spent shale, and gas plus loss, and! water and oil
yields in gallons per ton were calculated. The proposed ASTM ^standard method
(Smith, 1979) was used in these analyses. In this method, a ISOO-grain
(95-gram) sample of 8-mesh (2.4-millimeter) oil shale is heated from ambient
temperature to 932°F (500°C) in a cast aluminum alloy retort. ; The vapors
distilled from the sample are cooled and the condensed fraction is collected.
The oil and water fractions are separated, the water volume, converted to
weight equivalent, is measured and subtracted from the oil plus water weight.
The weight of uncondensable gases (gas plus loss) is then calculated by
difference. This fraction arises from organic material and minerals which
may release hydrogen sulfide and carbon dioxide on heating (Smith, 1979).
DATA ANALYSIS \
The results determined for 57 elements, eight minerals, and oil and water
yield were entered into a computerized data base system. An LBL computer
statistical program package was used to determine the Pearson correlation
coefficients and corresponding statistical significance values for select
25
-------
pairs (Nie et al., 1975). These values were used to identify relationships
between minerals, elements and Fischer Assay products. Samples iwere treated
as individual groups based on each core hole and the individual .stratigraphic
"!
zones. ; •
STATISTICAL PROCEDURES
The statistical procedure used to determine the strength of (the relation-
ship for pairs of variables was least-squares linear regression.; The method
is based on the belief that the best fitting straight line is the one in
which the vertical distances of all the points from the line is .minimized.
The general formula for a straight line is ••
Y = aX + b '•
where b is the intercept and a is the slope of the line. i
The Pearson product-moment correlation coefficient, symbolized by r,
serves as a measure of the fit of the straight line to the points used in the
regression calculations. When there is a perfect fit (no error), r takes on
a value of +1.0 or -.1.0, where the sign is the same as the regression coef-
!
ficient a. A negative r does not mean a bad fit, rather it denotes an
inverse relationship. |
Mathematically, r is defined as the ratio of covariation to'the square
root of the product of the variation in X and the variation in Y, where X and
Y symbolize the two variables. The value of r is expressed as:;
r =
1/2
26
-------
where X- = i observation of variable X,
Y- = i observation of variable Y
N = number of observations
:™ ,X./N = mean of variable X
1=1 r
Y = s._ Y-/N = mean of variable Y |
This formula can be restated by dividing the numerator and denominator
by N - 1 to show that the correlation coefficient can also be defined as the
covariance in X and Y divided by the product of their standard deviations.
The covariance in X and Y is defined as: ; '
i
si = 1(x.j - X)(Y1 - Y) i
N -
The actual formula used by the Statistical Package for the Social Sciences
(SPSS) (Nie et al., 1975) for computing Pearson correlation coefficients is:
r =
Statistical significance values were calculated for each of the Pearson
correlation coefficients. These significance values are derived from the
use of Student's -t with N-2 degrees of freedom for the computed quantity:
27
-------
r N - 2i
Li - A
1/2
Applying the criteria used by Robb et al. (1978), correlations^showing
greater than a 95 percent probability of not being zero were deemed
significant.
The above procedures permitted establishing the significance of the
Pearson correlation coefficients for any pair of variables for;each
stratigraphic zone, independent of the number of samples from a zone.
Only variables for which quantitative values could be determined in all
or a large fraction of the composited samples were included inithe
correlation program. Results for samples composited at greater than 5-feet
(1.5-meter) intervals were not included. This eliminated 19 of 280
samples. Additionally, eight elements (Ag, Au, Br, Cl, Ge, In^ Ir, and Sn)
and four minerals (aragonite, dawsonite, illite, and fluorite)!were
eliminated from the statistical analysis. In the few cases for which any of
the remaining variables could not be quantified for an individual sample
(i.e., such as for an upper limit), the variable value was set;at zero and
excluded from the correlation computations. These criteria left 48
elements, eight minerals, and oil and water content for statistical
analysis. Mineral x-ray diffraction peak height data were used for all
mineral phases, including those with estimated weight percentsj. These give
a more reliable relative measure of the amount of a mineral from sample to
sample than the semi-quantitative weight percents. Robb et al. (1978)
corrected X-ray diffraction results for organic volume content;to compensate
for the diluting effect of the organics on the mineral content. These
corrections were calculated using the following equation: '•
i
28
-------
Organic content, volume percent = v +'i-n 46
where X = oil yield determined by Fischer Assay in gallons per1ton. However,
for the reason listed below, the above correction was not applied to the XRD
results for cores 15/16 and 25 prior to the calculation of the|statistical
significance values. i
i
Calcium, magnesium, and mineral carbon content were calculated from the
estimated weight percent dolomite plus calcite, the major minerals which
contain these constituents. A comparison was made of the calcium, magnesium,
and carbonate values determined experimentally with the same three values
calculated from the XRD dolomite plus calcite estimated weight;percent cor-
rected for organic volume content. It was determined that the organic volume
content corrections applied were far too large for samples which yielded
Fischer Assays above 25 gallons per ton. At 35 gallons per ton or more, the .
corrected results were typically high by a factor of two or more. For these
samples, uncorrected results were in much better agreement with experimental
determinations. Consequently, no corrections of X-ray diffraction results
were made prior to statistical analyses. !
Robb et al. (1978) also made corrections for nahcolite content, a major
i
mineral in saline zone samples. Since nahcolite was not found;to be present
in any of the core 15/16 or 25 samples, this correction was not made here.
Thus, in summary, for this paper, none of the results are adjusted for
organic value content prior to the determination of the correlation coef-
ficients and statistical significance values for different pairs of
variables. The number of samples from the different stratigraphic zones of
29
-------
each core vary considerably. Consequently, statistical significance values
(SSVs) are used for comparison purposes, since the SSVs are independent of
the number of samples from each stratigraphic zone. ;
30
-------
RESULTS
I
The detailed measurements made on the 280 samples from core holes 15/16
and 25 are presented in tables in the appendix. The computerized data system
was used to plot histograms.
For statistical purposes, the results determined for each core hole were
broken down into individual groups. The groups corresponded to the different
stratigraphic zones for which samples were composited at 5-foot (1.5-meter)
intervals or less. The overlying oil shale, the upper Mahogany Zone, the
Mahogany Bed, the lower Mahogany Zone, and the rich oil shale were the five
i
stratigraphic zones of core hole 15/16 for which the above criterion was met.
The corresponding stratigraphic zones of core hole 25 were composited at
intervals similar to those of core hole 15/16, except there was not a rich
oil shale zone.
Relative minimum-maximum values were calculated for each variable on a
group basis for each core hole. Pearson correlation coefficients and cor-
responding statistical significance values were determined for pairs of
variables for each of the above groups. The results are summarized here.
Figures 5 and 6 illustrate the stratigraphic zones, the depth of the
zones, and the composite sampling intervals for the two core holes. The
average and range of the Fischer Assay oil yields (gallons per ton) are
listed for each zone. The pattern coding used on these figures will be used
in subsequent displays to identify various stratigraphic zones.
31
-------
Table 11 lists the range of Fischer Assay and mineral results for both
core holes, and Table 12 summarizes concentration ranges for a,ll the
elements. In nearly all cases, the range of values for each variable is very
similar for the two core holes. This illustrates, in a broad manner, the
degree of horizontal uniformity across the Green River oil shale deposit.
Figures 7 to 12 summarize relative minimum-maximum values determined for
each variable by stratigraphic zone. The graphic textures are! consistent
with those in Figures 5 and 6. The minimum and maximum value for each
stratigraphic zone were divided by the maximum value for that variable in all
the stratigraphic zones composited at intervals of 5 feet (1.5 meters) or
less. The resulting values are plotted in Figures 7 to 12. Tjhe first bar
for each zone represents the ratio of the minimum value in the; overlying oil
shale zone to the maximum value for that variable and the second bar is the
ratio of the maximum value of this same zone to the maximum value for the
i
variable. Values for the other stratigraphic zones are illustrated in core
hole sampling sequence. These ratios normalize the variability by zone to
the maximum observed value for the core through the stratigraphic zones of
interest. \
Figures 13 to 26 are histograms of results for individual;composite
samples from the two core holes. These graphic textures are also consistent
with Figures 5 and 6 to illustrate the various stratigraphic zones. Results
are not presented for four depth intervals (1196 to 1199, 1289 to 1290, 1295
to 1298, and 1426 to 1440 feet) for core hole 15/16 as no samples were
available. '
Pearson correlation coefficients and corresponding statistical signif-
icance values (SSVs) were calculated for each variable pair oh a group basis.
32
-------
Correlations showing greater than a 95 percent probability of'not being zero
i
were deemed significant. This is consistent with criteria used by Robb
et al. (1978). Tests for significance were previously established (Arkin and
Colton, 1950; Smith and Robb, 1973). Approximately 15,000 data sets were
evaluated in our program.
Table 13 lists statistical significance values (SSVs) determined for 48
individual elements paired with 29 of the same elements. Listed SSVs are for
variable pairs which had positive Pearson correlation coefficients. Groups 1
through 5 correspond to the five stratigraphic zones: overlying oil shale
through rich oil shale, respectively. •
i
i
Table 14 lists SSVs calculated for 48 individual•elementsipaired with
eight minerals and Fischer Assay products oil and water. Table 15 lists SSVs
determined for the eight minerals, oil, and water when coupled together.
Variable pairs which had negative Pearson correlation coefficients (inverse
relationships) are shown in parentheses in Table 15. j
Figures 27 to 39 summarize sets of statistical significance values (SSVs)
determined for 11 elements (Al, As, B, Ca, Co, F, Hg, Mg, Mo,;Sb, and U).
Again, textures consistent with Figures 5 and 6 are used for the different
stratigraphic zones. In each case, the values for the five stratigraphic
zone of core hole 15/16 are illustrated before the four similar corresponding
stratigraphic zones of core hole 25. •
33
-------
DISCUSSION , •
The determination of significant relationships between minerals,
elements, and oil and water yield is complicated by the fact that oil shale
was formed by a very slow sedimentation process which annually produced thin
geologic laminations or varves (Bradley, 1931). Thus, an oil shale composite
section one foot (0.30 meter) in thickness can represent hundreds to
thousands of years of deposition (Robb et al., 1978). Such a section would
contain a great many geologic laminations, each representing a;specific set
of deposition conditions. These conditions probably changed during the very
long time intervals represented by a composite sample. Only geochemical
relationships persisting over very long periods of geologic time will produce
detectable effects. This section will identify and discuss relationships
between the various mineral, element, and Fischer Assay producjts.
ELEMENTAL ABUNDANCE |
The most notable result of this study was the demonstration of a
remarkable stratigraphic uniformity in mineral and element composition of
oil shale from both cores. This uniformity is apparent in the histograms
(Figures 13-26) and in the average elemental concentrations summarized by
stratigraphic zone in Tables 16 and 17. The resulting averages and their
associated standard deviations demonstrate the uniformity under discussion.
The standard deviations in Tables 16 and 17 permit probability! estimates for
replication of the means. If the standard deviation is divided by VF and
multiplied by an appropriate value for t based on the number qf samples and
34 ;
-------
the probability desired, an estimate is obtained of the limits' within which
a new mean would occur if the experiments were repeated. For example, in
Table 16, the average Mahogany Bed value for Zr is 26.2 ppm wijth a standard
deviation of 8.5. With t at the 99 percent level for 26 samples.(2.79), the
population mean (average Zr in Mahogany Bed samples) is 99 perjcent probable
to lie within 26.2 ± 4.6 ppm Zr. :
Another estimate illustrating stratigraphic deposit uniformity is
furnished by estimating the percentage of sample results which will be within
specific limits around the mean. These values are obtained as t times the
standard deviation where t is again a probability function. If t again is
i
taken at 2.79 for the 26 analytical results yielding the average for Zr,
99 percent of the results will lie within 24 ppm of the 26.2jmean. In spite
of all the variables associated with long slow carbonate deposition, the
range of Zr analytical values is less than two times the mean ;value. Most
of the element averages in Tables 16 and 17 meet this test. |
A few do not. Fluorine and boron do not because of their :analytical
uncertainties. As, Hg, K, Sb, and Se are other elements with;99 percent
error limits larger than two times their means. They appear to fall into two
i
groups. As, Hg, and Se appear to have been collected by organic matter, an
association to be discussed later. K and Sb are part of a group associated
with incursion of air-borne clastic influx.
Variations in elemental abundances may be caused by nonuniform influxes
of organic matter, calcite precipitates, or volcanic ash falls into the
ancient lake from which oil shale was deposited. Much of the(variation
across the stratigraphic zone averages in Tables 16 and 17 appears associated
35
-------
with dilution by organic matter. Effects of the other diluting; factors are
more limited in thickness. !
Calcite pulses, caused by carbonate precipitation from the .surface of the
lake, cause diluting effects in the elemental abundances. In Figure 13 a
i
strong calcite pulse appears at depths slightly greater than 950 feet (290
meters). This calcite elevation is mirrored as a dent in the plots for
K-feldspar, Na-feldspar, quartz, and dolomite in Figure 13; all, of the
entries in Figure 14; Ti, Fe, and Al in Figure 15; all elements' in Figure 16;
U in Figure 18; and N in Figure 19. A calcite pulse in the Core 25 histogram
(Figure 20) appears at a depth of about 385 feet (117 meters), ;the identical
stratigraphic position. It also created corresponding dents ir? the same set
of plots.
This calcite pulse created a diluting effect as evidenced by the histo-
gram dents. The mechanism that created it covered both core hole locations.
Consequently, a widespread event depositing only calcite is indicated.
Precipitation of calcite from the lake's surface water is indicated.
-In spite of the dilution effects created by ash falls, their most
probable product, analcime, is rather uniform. Only where aslr falls were
completely converted to feldspars are there major discontinuities in analcime
amounts. • Calcite is the other mineral not formed under the geochemical
control of the lake as postulated by Smith (1974). The resulting mineral
products, particularly quartz and dolomite, are rather uniform;.
Many of the elements occur in the oil shale at levels at or below crustal
abundance. Using Mason's 1960 crustal abundance table, only the carbonate
elements Ca, Mg, Ba, and Sr plus U, Mo, As, Se, and perhaps Pb^ and W appear
enriched. The enrichment mechanisms for the carbonate minerals depends on
i
36 '
-------
their ease of precipitation. Barium may be present as barite as well, but
about half the Ba is soluble in dilute HC1. The elements 1) and Mo appear to
be associated with organic matter as will be discussed later.; The As, Se,
and perhaps Pb and W were probably initially collected by the:organic matter
an«d then released to form sulfides. Two more of the elements! in Tables 16
i
i
and 17 appear enriched, F and B. Enrichment of these in a saline lake is to
be expected, but the certainty of their analytical results is1limited.
MINERAL AND ORGANIC RELATIONSHIPS
Strong positive relationships were obtained for aluminum silicate
minerals, Na- and K-feldspar, and oil content for the oil-rich Mahogany Bed
(MB) for both core holes. These relationships are illustratecl in histograms
shown in Figures 13 and 20. ',
Strong direct positive relationships between the volume of organic matter
and the relative amounts of quartz and Na- and K-feldspar have previously
been reported by Robb, Smith, and Trudell (1978) in the saline depositional
center of the Piceance Creek Basin. The silicate minerals wefe also reported
i
to have been directly related to each other. Significant non+correlation
with organic matter or any other minerals was found for calcite and analcime
in the above referenced report.
Dolomite and quartz concentrations were relatively constant throughout
both core holes. Quartz had a positive relationship with dolomite in both
the overlying oil shale (OOS) and the MB zones for both core holes. These
same two minerals also had a positive relationship in the lower Mahogany Zone
i
(LMZ) of core hole 15/16. ;
Analcime had positive relationships with quartz in the OOS of both cores.
Similar relationships existed for the upper Mahogany Zone (UMZ) for core
37
-------
hole 25 and the rich oil shale zone (ROS) of core hole 15/16. : Analcime and
assay water exhibited very strong positive relationships in all mineral zones
of both cores, except the MB of core hole 15/16. This agrees ;with the
relationship observed and exploited by Desborough and Pitman (-1975). These
relationships are shown in Figures 13 and 20. The actual water content of
analcime, 8.7 percent (Johnson et al., 1975), typically represented about
one-third of the Fischer Assay water values. Additionally, analcime had
strong negative relationships with K-feldspar in the DOS of both cores, the
UMZ of core 15/16, and the MB and lower MZ of core 25.
Calcite had a negative relationship with dolomite in the OOS of both
cores, in the LMZ and ROS of core 15/16, and in the MB of core 25. Negative
relationships existed between calcite and quartz in all five stratigraphic
zones of core 15/16 and in the MB and LMZ of core 25.
Magnesium siderite is not illustrated in the histograms.
This mineral
was detected in 80 and 50 percent of core holes 15/16 and 25 composite
samples, respectively. Positive relationships were obtained between
Mg-siderite and K-feldspar in the OOS and LMZ of both cores. I
Pyrite was found to be present in 75 and 20 percent of the composite
samples of core holes 15/16 and 25, respectively. Pyrite concentrations
were a maximum in the oil-rich MB of both core holes. Pyritejhad a positive
relationship with oil content in the OOS and ROS of core 15/1$ and in the MB
of core 25. |
Relationships were not determined for the four minerals ijllite,
aragonite, dawsonite, and fluorite. Illite, difficult to detect by x-ray
diffraction, was found to be present in 25 and 80 percent of the composite
samples of cores 15/16 and 25, respectively. Aragonite was present in
38 !
-------
20 percent of the core 15/16 samples, and was present primarily in the UMZ,
i
MB, and LMZ. Only two samples in core 25, both in the UMZ, we're found to
contain aragonite. Dawsonite was not detected in core hole 25; but was
detectable in 10 percent of the core 15/16 samples from the UMZ,.MB, and LMZ.
Fluorite was detected in only two samples of core 15/16. .
i
Figures 9 and 12 illustrate very similar relative minimum-;maximum values
for dolomite, Na-feldspar, and oil and water content when, the results for
individual stratigraphic zones of both core holes are compared,. The other
minerals were more variable.
These much more comprehensive studies yielded results similar to those
reported by Brobst and Tucker (1973). However, the following |differences
were found in the current studies. Both Na- and K-feldspar were present in
all samples. Analcime was less abundant in the richer oil shale, in sharp
disagreement with Brobst and Tucker (1973). Magnesium siderite was present
in most samples. Aragonite occurred in approximately one-third of the
samples from the MZ of core 15/16, but in only two samples from core 25.
Aragonite has been previously reported (Smith and Robb, 1973);to co-occur
with calcite and dolomite as matrix minerals in the Mahogany Zone of the
!
Gireen River Formation.
ELEMENT, MINERAL, AND ORGANIC RELATIONSHIPS ;
All of the rare earth elements plus Ga and Ta are associated with Al
which is present in the feldspars. The above elements have SSVs of
99.9 percent for nearly all stratigraphic zones in both cores; as illustrated
In Figure 27. These same relationships are shown in the histograms in
Figures 14 and 21. Additionally, Fe, K, Rb, Ti, and K-feldspar have a strong
positive relationship with Al for all zones in both cores. The elements Cr,
i
39
-------
Hf, Sc, Y, and Zn also have a positive relationship with Al in; nearly all of
the stratigraphic zones for both cores. All of the above mentioned
elements, except K and Ti, have very similar relative minimum-maximum
element concentration values for the different stratigraphic zones in each
core hole. This is illustrated in Figures 7, 8, 10, and 11.
Figures 28 and 29 show SSVs for the other variables with respect to Al.
Except for the UMZ in both core holes, Co, Cu, Ni, and V exhibit a strong
i
relationship with Al. Carbonate mineral elements, Ba, mineral carbon, Ca,
Mg, and Sr, plus the carbonate minerals calcite and dolomite do not have a
positive relationship with Al in any of the stratigraphic zones of either
core. i
The relative minimum-maximum values of the elements As, Cs, F, K, Hg,
i
Mo, Na, Se, and Zr vary widely in one or more stratigraphic zones from each
core hole. This is illustrated in Figures 7, 8, 10, and 11. '
Analcime and Na have strong positive relationships in the;OOS and UMZ of
both cores and the MB of core hole 25. Typically, one-half of the Na in the
above stratigraphic zones is from analcime. Sodium feldspar and Na have
strong positive relationships in all but one stratigraphic zone of each core
hole, the UMZ of core 15/16 and the MB of core 25. The histograms shown in
Figures 15 and 22 illustrate the relationship of Na with analcime and
Na-feldspar. Cesium is associated with Na in the OOS and MB of both cores
and in the LMZ of core 15/16. Rubidium is associated with K,;A1, and
K-feldspar in all stratigraphic zones. ;
Arsenic, Se, Hg, Co, Cu, Ni, Pb, Sb, and V all have positive relation-
ships in most of the .stratigraphic zones from both cores. This is illus-
trated in histograms shown in Figures 16, 17, 23, and 24. Figure 33
40 1 -
-------
illustrates that Cu, Ni, Pb, and Sb are associated with Co and have SSVs of
99.9 percent for nearly all stratigraphic zones of both cores.! The elements
Co, Cu, Ni, Pb, and V all have positive relationships with K- and Na-
feldspars in most stratigraphic zones of both core holes. They also have
positive relationships with organic carbon and oil content in the oil-rich
MB where pyrite is enriched and correlate well with organic carbon. Thus,
they may be present as sulfides. Arsenic, Se, and Hg have positive relation-
ships with organic carbon in most stratigraphic zones, as shown in Figures 30
and 35. These three elements most likely are present in several forms, in
!
the inorganic form with Co, Cu, Ni, Pb, and V and in the organic form. These
i
elements reach maximum concentrations in the organic-rich MB, UMZ and MZ.
Figures 35 and 38 show that Hg and Sb have strong positive relationships in
all stratigraphic zones of both core holes. j
The most positive relationships for boron are with K and K;-feldspar.
This is illustrated in Figure 31. '
Calcium has a strong positive relationship with calcite, Inorganic
carbon, Sr, and Ba. This is shown in Figure 32. The concentration of
dolomite is relatively consistent (about 30 percent) in both c;ores as
illustrated in Figures 13 and 20. However, these same figures; show that the
I
concentration of calcite varies over a wide range. Thus, calcite is the
variable which principally controls fluctuations in the Ca concentrations.
Calcium shows a positive relationship with dolomite only in the UMZ of core
hole 25. [
Magnesium is associated primarily with dolomite in both cores as shown
in Figure 36. However, the SSVs for the UMZ of both cores did not reflect
this. The only other significant relationships for Mg were wi;th quartz and
41
-------
mineral carbon in some of the strati graphic zones from each core. Magnesium
siderite and Mg had a positive relationship in the UMZ of core:hole 15/16
only. The concentration of magnesium siderite is small compared to the
relatively constant concentration of dolomite for most samples.
t
Figure 34 illustrates SSVs obtained for fluorine. Fluorine had almost
i
no significant positive relationships except in the Mahogany Bed of core
i
hole 15/16. Some relationship with Na-feldspar is indicated for two
stratigraphic zones of core hole 15/16. >
Molybdenum has a strong positive association with organic carbon
(Figure 37) in all stratigraphic zones of both cores while uranium has a
strong positive relationship with Fischer Assay oil yield in the DOS, UMZ,
and MB of both cores (Figure 39). Molybdenum and uranium accumulation may
be associated with organic matter.
Figures 19 and 26 are histograms of Fischer Assay oil yield along with
H, N, and organic carbon results for both cores. The ratio of,H to
(H + N + C ) is very constant ( 0.12) throughout both cores. This
corresponds to a H to C atomic weight ratio of 1.7. It should^be noted that
I
H is present in both the organic fraction and with the water, jHowever, the
!
bulk of the H is in the organic fraction. The ratio of N to (H + N +Corg)
was more variable in both cores, particularly so in core hole 15/16. The
j
ratio was typically in the range of 0.04 to 0.05. Fischer Assay oil content
ratioed to (H + N +C ) was consistently about 0.65 throughout both cores.
42
-------
REFERENCES
H. Arkin and R. R. CoHon, Tables for Statisticians, Barnes arid Noble,
Inc., New York (1950).
H. R. Bowman, F. Asaro, and I. Perlman, "On the Uniformity of^Composition in
Obsidians and Evidence for Magmatic Mixing," Journal of Geology 81,
312-327 (1973). j
W. H. Bradley, "Origin and Microfossils of the Oil Shale of the Green River
Formation of Colorado and Utah," USGS Professional Paper 168 (1931),
i
D. R. Brobst and J. D. Tucker, "X-ray Mineralogy of the Parachute Creek
Member, Green River Formation, in the Northern Piceance Creek Basin.,
Colorado," USGS Professional Paper 803 (1973). ;
E. W. Cook, "Elemental Abundances in Green River Oil Shale," Ghem. Geolo 11,
321 (1973).
i
W. C. Culbertson and J. K. Pitman, "United States Mineral Resources:
Oil Shale," USGS Professional Paper 820 (1973). ;
W. E. Dean, "Geochemistry of Green River Oil Shale," pg. 48:56, in
Geochemical Survey of the Western Energy Regions, U. S. Geological
Survey, Denver, Colorado, Open File Report 76, 729 (1976)*
G. A. Desborough and J. K. Pitman, Interpretation of Fischer Assay Datajqr
the Evaluation of Analcime-Bearing Oil Shale in the GreenlRiver
Formation, Colorado and Utah, U. S. Geological Survey Open File Report
75-219, p. 26 (1975).
G. A. Desborough, J. K. Pitman, and C. Huffman, Jr., "Concentration and
Mineralogical Residence of Elements in Rich Oil Shales of the Green
River Formation, Piceance Creek Basin, Colorado, and the l!h'nta Basin,
Utah — A Preliminary Report," Chemical Geology, 17, 13-26 (1976).
J. R. Donnell and V. E. Shaw, "Mercury in Oil Shale from the Mahogany
Zone of the Green River Formation, Eastern Utah and Western Colorado,"
Journal Research U. S. Geological Survey, 5_, 2, 221 (1977).
A. L. Down and G. W. Himus, "A Preliminary Study of the Chemical Constitution
of Kerogen," Journal of Institute of Petroleum, 27_, 426 (1941).
D. C. Duncan and V. E. Swanson, "Organic-Rich Shale of the Unjited States and
World Land Areas," U. S. Geological Survey Circular 523 (1965).
43
-------
J. P. Fox, J. C. Evans, T. R. Wildeman, and J. S. Fruchter, "Intercomparison
Study of Elemental Abundances in Raw and Spent Oil Shales," in Oil Shale
Symposium—Sampling, Analysis, and Quality Assurance, EPA-600/9-80-022
(1980).;
J. S. Fruchter, J. C. Laul, M. R. Petersen, P. W. Ryan, and M.;E. Turner,,
"High Precision Trace Element and Organic Constituent Analysis of Oil
Shale and Solvent-Refined Coal Materials," in Analytical Chemistry of
Oil Shale and Tar Sands, Advances in Chemistry Series No. 170 (1978)..
—,—. i
J. S. Fruchter, C. L. Wilkerson, 0. C. Evans, R. W. Sanders, and K. W. Abel,
Source Characterization Studies at the Paraho Semiworks Oijl Shale
Retort, Battelle Pacific Northwest Laboratory Report PNL-29045 (1979).
R. D. Giauque, R. B. Garrett, and L. Y. Goda, "Energy Dispersive X-ray
Fluorescence Spectrometry for Determination of Twenty-six Trace and Two
Major Elements in Geochemical Specimens," in Anal. Chem. 49, 62 (1977).
T. Hadeishi and R. Mclaughlin, Zeeman Atomic Absorption Spectrometry,
Lawrence Berkeley Laboratory Report LBL-8031 (1978). ~\
T. Hadeshi and R. D. Mclaughlin, "Isotope Zeeman Atomic Absorption, a New
Approach to Chemical Analysis," Am. lab. (August 1975). '
D. R. Johnson, Neil B. Young, and William A. Robb, "Thermal Characteristics
of Analcime and Its Effect on Heat Requirements for Oil-Shale Retorting,
Fuel, 54, 249 (1975). ;
B. Mason, Principles of Geochemistry, John Wiley and Sons, Inc. New York,
p. 44 (1960).'
National Academy of Sciences, Report of Panel on Accessory Elements.
Chapter 2, "Oil Shale" (1978T. !
N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrenner, and D. H. Bent,
Statistical Package for the Social Sciences, 2nd ed., McGraw-Hill Book
Co., New York (1975).
I. Perlman and F. Asaro, "Pottery Analysis by Neutron Activatibn,"
Archaeometry, J_l_, 21 (1969).
R. E. Poulson, J. W. Smith, D. B. Young, W. A. Robb, and T. J.| Spedding,
Minor Elements in Oil Shale and Oil-Shale Products, Laramife Energy
Technology Center Report RI/77-1 (1977).
W. A. Robb and J. W. Smith, "Mineral and Organic Relationships:through
Colorado's Green River Formation across Its Saline Deposit|ional Center,"
in 10th Oil Shale Symposium Proceedings, Colorado School of Mines Press,
p. 136 (1977).
44
-------
W. A. Robb and J. W. Smith, Mineral Profile of Oil Shales in Colorado
Corehole No. 1, Piceance Creek Basin, Colorado, in Rocky Mtn. Assoc.
Geol. Guidebook, p. 91-100 (1974). j
W. A. Robb, J. W. Smith, and L. G. Trudell, Mineral and Organic Distributions
and Relationships across the Green River Formation's Saline Depositional
Center, Piceance Creek, Colorado, Laramie Energy Technology Center
Report LETC/RI-78/6 (1978).|
W. E. Robinson, "Origin and Characteristics of Green River OiljShale," in
Oil Shale, edited by T. F. Yen and G. V. Chilingarian, Elsevier
Scientific Publishing, New York (1976). \
0. M. Saether, D. D. Runnells, and R. H. Meglen, "Trace and Minor Elements
in Colorado Oil Shale, Concentrated by Differential Density Centrifuga-
tion," submitted to Envir. Sci. and Tech. (1980a). i
0. M. Saether and D. D. Runnells, "Fluorine: Its Mineralogicajl Residence
in the Mahogany Zone of the Green River Formation, Piceance Creek Basin,
Colorado, U.S.A.," accepted for publication in Chemical Geology (1980b).
A. D. Shendrikar and G. B. Faudel, "Distribution of Trace Metals during Oil
Shale Retorting," Envir. Sci. and Tech., _1_2, No. 3, 332 (1978).
T. A. Sladek, "Recent Trends in Oil Shale — Part 1: History, Nature,
and Reserves," Colo. Sch. of Mines Mineral Industries Bull!., 17, 6
(1974). :
J. W. Smith, Ultimate Composition of Organic Material in Green: River Oil
Shale, U.S. Bureau of Mines RI 5725 (1961).\
J. W. Smith and W. A. Robb, Argonite and the Genesis of Carbonates in
Mahogany Zone Oil Shales of Colorado's Green River Formation. U.S.
Bureau of Mines Report RI 7727 (1973)."~
K. E. Stanfield, I.C. Frost, W. S. McAuley, and H. N. Smith, Properties of
Colorado Oil Shale, U.S. Bureau of Mines RI 4825 (1951).
i
J. W. Smith, T. N. Beard, and L. G. Trudell, Oil Shale Resources of the
Naval Oil Shale Reserve No. 1, Colorado, Laramie Energy Technology
Center Report No. LETC/RI-79/2 (1979). \
J. W. Smith, draft of "Standard Method of Test for Oil From Oijl Shale
(Resource Evaluation by the USMB Fischer Assay Procedure)"1 (June 1979).
r
J. W. Smith, T. N. Beard, and L. G. Trudell, Colorado's Primary Oil-Shale
Resource for Vertical Modified In-Situ Processes. Laramie Energy
Research Center Report LERC/RI-78-2 (1978).'
" i'
J. W. Smith, "Geochemistry of Oil-Shale Genesis in Colorado's piceance
Creek Basin" in Guidebook to the Energy Resources of the Piiceance Creek
Basin, Colorado, D. K. Muray ed. Rocky Mountain Association of
Geologists, Denver, Colorado, pp. 71-74 (1974).
, - 45 ;
-------
K.: E. Stanfield, I. C. Frost, W. S. McAuley, and H. N. Smith, Properties of
Colorado Oil Shale, U.S. Bureau of Mines RI 4825 (1951). ,
L. G. Trudell,, "Lithologic Description of Samples Submitted for Assay,"
Laramie Energy Technology Center (1978). !
T. R. Wildeman and R. H. Meglen, "The Analysis of Oil-Shale Materials for
Element Balance Studies," in Analytical Chemistry of Oil Shales and Tar
Sands, Advances in Chemistry Series No. 170 (1978).
T. F. Yen, "Structural Aspects of Organic Components in Oil Shales," in:
Oil Shale, T. F. Yen and G. V. Chilingarian, eds., Elsevier Scientific
Publishing, New York (1976).
T. F. Yen and D. K. Young, "The Nature of Straight Chain Aliphatic
Structures in Green River Kerogen," Geoch. et. Cosm. Acta,!41, 1411
(1977).
46
-------
GREAT
DIVIDE :
BASIN i
EXPLANATION
Area underlain by the Green River
Formation in which the oil »hol«
is unopproised or low grade
Area underlain by oil shale more
than 10 feet thick,whichjyields
25 gallons or more oil per ton
of shale !
FXBL 789-10883
Figure 1. Oil shale deposites in the Green River Formation
of Colorado, Utah, and Wyoming. j
47
-------
I 100 B • >l •
LJ ; TI -
turicip couiftT d.
F;XBL 808-11490
Figure 2. Location of the Naval Oil Shale Reserve No. 1
and core holes 15/16 and 25.
48
-------
o
o
o
o
o
o
'NOUVA313
§
o
•o
o
o
o
oo
CM
CO
X
U_
O
09 X to > t X iu
_•< _• < i < ««
6Z6°^Z^
CO
s_
Ol
QJ
S-
CD
-r-
l/l
o cc
O O)
U t_J
C1J
O OJ
i- O
O -r-
Q.
O
ro O
f-D
fO
ro s.
S- O
CTli —
ro o
i- C
o o
I •!->
3 S-
O O
49
-------
FXBL 808-11491
Figure 4. Schematic of composite sample splitting
technique.
50
-------
CORE HOLE 15/1.6
Strat i graphy
Depth
(Feet
Composite
I n t e r v a ,
i F e e t .•
Ci .
'&a. . /To
Ov e r i v i n g
Ci: Shaie
856
m
«-vy,->^
wXyv&
W
7-26 ;i^
Upper
Mar.ogany Zone
Manogany Bed
Lower
Mahogany Zone
B Groove
Rich Oil Sha:e
i 2-45
1270
1346
1372
2
26
5
'.-76 ':3
3-27 (\7
XBL 8012-13547
Figure 5. Stratigraphic zones, depth of zones, and composite
sampling for core hole 15/16. ;
51
-------
CCRE HCLE 25
5-. pa-, i graphy Depth
; i- e e t )
QOC
OOO
Cv e r , y i r. g
Ci : Sha. e
] r r> c *"
V.anogar.v Zone
87 V:
Mahogany Bed Q^
Lower /Kb
Mahogany Zone
•j
&£
?&',•':'*"',''•''•''•>'
5yv'V**¥ • • ' '-,
*&*'.'••',' •'••>'s*
m$%
m$&
mm
%$&>
pi
ML-s:--^&£i
\
COH.COS i -. e | C i :
' f • / — j- r
j ~ r- p ^ , '
i
!
,
5 ; 6-2S '. '.4
i \
2 ' 2-34 ::
1 ;
| . ; • 13-63 ,:s:
; XBL 8012-135
Figure 6. Strati graphic zones, depth of zones, and composite
sampling for core hole 25.
52
-------
1 .0 ^,~H
LEGEfC
003
UHZ
LMZ
. , ROS
FXBL 804-9085
Fiaure 7 Relative minimum-maximum element concentration
values for five strati graphic zones of core
hole 15/16. ;
53
-------
1 .0
M
. 0 —ra ESJ a
LEGENC
DOS
UMZ
= ROS
FXBL 804-9086
Figure 8. Relative minimum-maximum element concentrations
values for five stratigraphic zones of core
hole 15/16. :
54
-------
Ana Ic i me ' Quar t z
1.0 i-
Ca I c ite
Dolomite
n
I
0.0
Na Feldspar K Feldspar
1.0
0.0
0.0
LE'JEND
UM?
= M6
FXBL 804-9084
Figure 9. Relative minimum-maximum mineral and Fischer
Assay values for five stratigraphic zones' of
core hole 15/16. |
-------
1.0
A
0.0
LEGEND
OOJ
UK2
LM:
iFXBL 804-9083
Figure 10. Relative minimum-maximum element concentration
values for four strati graphic zones of core
hole 25.
56
-------
LEGEND
00=
UHZ
LM:
o
concentration
of core
hole 25.
57
FXBL 804-9087
-------
•0
0.0
Ana I c i me Quartz
CaIc i te
Do I om i t e
Na FeIdspar K FeIdspar
n
Water
0.0
n
LEGEND
OOS
UM7
MB
LHZ
CD
FXBL 804-9088
Figure 12. Relative minimum-maximum mineral and Fischer Assay
values for four strati graphic zones of core :
hole 25. •
58
-------
K Fe!dspar
Quartz
' ^ • "...i!.,:::,.,!.. :::;::.- -i:;'!:;;.::- ' li
Ana 1c i me
,''""*_ '.••'•
C a ' c i t e
P i i •!! i,; i • i! f! i: HI i.MX. ..:•••• |f ifl''., .• i|Ji i i i 1 • i j ii • • , i til: J{
Water
(Z.
. *_/ c
e.
Oil
850. S50. 1050. 1150. 1250. 1350. 145C
Figure 13. Vertical variation in core hole 15/16.
XBL 6010-7313
59
-------
3. -s
\
e>
ID
M
•i !:•!!!:!
Gr'S
m
XBL 8010-73::
Figure 14. Vertical variation in core hole 15/16.^
60
-------
7 -7
V; /' . W
<
LU
— 63,3
,.' e *ij ~^"" -..•.-•-•...•• -.v^v.•.--•..-.:. ..'.,..
KFe'dspar
/^— o
, oo , -j. -
Kd r e ' d s D a r
CO
u
Ana i- c i !Tii
850,
2;— o
t)^-
1 150. 1250. 1350.
DEDTH (FEET)
XBL 8010-7306
Figure 15. Vertical variation in core hole 15/16.
61
-------
c :r -? i -7 —
•-'O «_«
XBL 8010-7312
Figure 16. Vertical variation in core hole 15/16.1
62
-------
C : o r
f—
o
X,
6
20
0
30
0
25
0
0. -
Q^7 _
1^, V_. t
e. -
50. -
0. -
V
0. L-
1240,
1245,
I2701 127
8010-7309
Figure 17. Vertical variation in core hole 15/16.
63
-------
5.!?-
•7 7
i'
2 _ 7 _^;:
r ; '
e.2
852. S5Z,
XBL 8010-7307
Figure 18. Vertical variation in core hole 15/16.
64
-------
fi /.-:-!•
\t
'\\
e.: - ...
f? -7 _S:
•_ \
22.2-
852
Siiiin,
peri? i 7^<7 • • cry • per?
O O t-B . K.' •»/ It, B ,.O^-Q . — «—' ^-- C
XBL 8010-7310
Figure 19. Vertical variation in core hole 15/16.
65
-------
r e ; dspar
!\a re cspar
Ana i c i ~e
J
k
:••
, ,1
Dtp i H i'.
Figure 20. Vertical variation in core hole 25.
XBL 8010-7327
66
-------
Sir,
Ce
Rb
"' I * ' * • • ' i ! r1 i ! I , *
Al
:sDar
GsC
Figure 21. Vertical variation in core hole 25
XBL 8010-7325
67
-------
0.2-
0.0-
2.0-
0.0-
4.0-
0.0-
35.0-
0.0-
tu
CL 60.0-
e.e-
1.6-
0.0 -
oo
8.0-
0. .0 L-
350.
XBL 8010-7322
Figure 22. Vertical variation in core hole 25.
68
-------
70.0
3.3-
25.0
3.3
3 = 3-
350,
br
i
Figure 23. Vertical variation in core hole 25.
XBL 8010-7326
69
-------
o
670.
675. 680.
DEPTH (FEET)
685.
690.
XBL 8010-7323
Figure 24. Vertical variation in core hole 25.
70
-------
u
5.0-
o
^ 0.0-
30,0-
2.5-
0.0-
15.0-
0.0-
350.
Mc
Oi i
DEPTH (FEET)
75C.
XBL 8010-7321
Figure 25. Vertical variation in core hole 25
71
-------
350.
|:]:j:j;i{
*Vi't'i V
« l'«ViV
M't 'IV'!
•i;:ix::'
;l'i.:i:j:j:i.;::;i •
•':•'. ivi:i; :::i :
"'-'-'-'•'•• •--
H/(H-
i ;•!'.' 1 Ivl'l
j 'i
i: ..
K J
vi-'C
. i I *
>'' I i r •
':l!'i:!;-
rJU M
::cr^
: i i i;i ' i
• i » • i i
J
•\
;
i
:
•j •
.]
i \i
: : : :
i
*
•L- !
;h -
•
•'
i
N/tH-X-Cio-rf. ,
H
N
Ofiiil:;iil^;{!il!li;y;r[!:;;^fnft;;lU
Oi i
2S.2J-
450.
550.
DEPTH (FEE'
Figure 26. Vertical variation in core hole 25.
XBL 8010-7324
72
-------
100.
35.
100.
95.
100.
95.
100.
95.
100.
95.
120.
95.
XBL 8010-7341
Figure 27. Statistical significance values for aluminum.
The first five bars on each graph are for core
hole 15/16 and the last four bars are for core
hole 25. i
73
-------
100.
95.
100.
95.
95.
100.
95.
100.
95.
Co
Cu
M.n
1
PD
SD
I1TT1 ITil
JL.UU
i n
B
Cd
I
Na
no
Na hejdspar Magnes.Sic.
i
Ni
I iTlflF
j Bl SI
N
I! | i
' 1 I Ha I
I U § 1
X
-------
00.
95.
100.
95.
100.
As
I
Ca
00.
u
I
100.
^ a ; c i i e
00.
95.
t er
Ba
C ( m i n ;
C(ore;
J-
H
I
Se
n
w
I
Doiojfiite Pvrite
a
Hg
E
Ana; c ijne Quartz
I: i •*••:
! [%,f^
I *"''
i ! •!
RCS
XBL 8010-7339
Figure 29. Statistical significance values for aluminum.
The first five bars on each graph are for core
hole 15/16 and the last four bars are for core
hole 25.
75
-------
35.
95.
95
95.
C ( o r g
¥
N
Se
Oi j
95.
I
I 1
•y"—^^x
Cd
I
//
SB
ill
I
U
Co
PD
1
Zn
XBL 8010-7337
Figure 30. Statistical significance values for arsenic.i
The first five bars on each graph are for coVe
hole 15/16 and the last four bars are for co're
hole 25. i
76
-------
A)
95.
95.
I
N
95.
95.
100.
95.
I
M ?i g n e s . S i a .
Co
FO
Fe
Pb
Zn
1
Cr
Cu
Ga
RD
ETCHD
Zr
I
ml ;
mm
ill
K re , csji
8010-7231
i
Figure 31. Statistical significance values for boron. jThe
first five bars on each graph are for core Kole
15/16 and the last four bars are for core hole 25.
77
-------
100.
Ba
95.
100.
35.
I
C ( TO i n )
Ca .' c it e
D o i o jn i t e
1
Mr,
SJ
"1
MB
XBL 8010-7329
Figure 32. Statistical significance values for calcium.1 The
first five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25.
78
-------
95.
:XBL 8010-7338
Figure 33. Statistical significance values for cobalt.' The
first five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25.
79
-------
100.
95.
100.
95.
100.
As
C(ore )
Co
Fe
Cs
D
Mo
Na
Ni
I
95.
00.
95.
Pb
1
1
I
Na he j dspar
Sb
LJd
UM2
I
Figure 34. Statistical significance values for fluorine
15/16 In t ? °,n fCh 9raph are for
lb/16 and the last four bars are for
. The
hole .
core hole 25.
XBL 8010-7330
80
-------
00.
95.
00.
35.
00.
QC
O-_f .
F1
'XBL 8010-7333
Figure 35. Statistical significance values for mercury.! The
InHe^d1 °n each 9raph are for core hole
and the last four bars are for core hole 25
81
-------
100,
95,
C ( TO i n )
Quartz
D Q i o
-------
95.
:00.
95.
N a i-eidspar 0\i
I
'XBL 8010-7336
Figure 37. Statistical significance values for molybdenum.
The first five bars on each graph are for tore
hole 15/16 and the last four bars are for bore
hole 25.
83
-------
100.
95.
100.
95.
100.
95.
100.
95.
100.
95.
100.
95.
Ai
HI
I ^ I
m.m- i
Co
Fe
Se
Zn
Cr
I-WT
1^1 I
^11
-1 I
H i
Hg
N
1
C
1
Pb
U
Cd '
t u
I
P.I
I'—!__HJUt —
^§
"Si
I
Sjig B
Na re i cspar K hei dspar Magnes.Sid,
1
MB
;XBL 8010-7335
Figure 38. Statistical significance values for antimony1. The
f^st five bars on each graph are for core hole
15/16 and the last four bars are for core hole 25.
84
-------
As
C ( o r g ;
95.
100.
95.
100.
95.
100.
Na re,a spar Magnes.Sici. Pyrite
1
XBL 8010-7332
Figure 39. Statistical significance values for uranium.1 The
first five bars on each graph are for core Hole
15/16 and the last four bars are for core hole 25.
85
-------
Table 1. The principal phases with which the various major minor
and trace elements are associated. '
K-feldspar, Mg-siderite, Na-feldspar
si.' TBi.CTb.CTh.CTri.C»": YDfy^'zn?'z'ai "' "' ""' ""• NJ' "'"• Sb'
K-feldspar, Mg-siderite ;
K 9 KD
Na-feldspar, Analcime, Water :
j\ja - - - -
i
Analcime, Water
u s
Calcite '
Ba, Cmin, Ca, Sr
Dolomite •
Mg -
As, H, Hg, Mo, N, Se, U
Unknown
Cd, F -
86
-------
Table 2. Chemical composition of the mineral and organic fractions
of Green River oil shale. *
Mineral
Dolomite
Calcite
Quartz
Illite
Na-feldspar
K-feldspar
Pyrite
Analcime
Element
Carbon
Hydrogen
Nitrogen
Sulfur
Oxygen
MINERAL COMPOSITION3
Chemical Formula
CaMg(C03)2
CaCOs
Si02
(silica clay)
NaAlSisOs
KAlSi308 -
FeS2
NaAlSi206.2H20
TOTAL
ORGANIC COMPOSITION13
-
Weight percent of
total minerals
32
1 16
I 15
i 19
10
; e
; 1
' 1
100
Weight percent of
total organics
80.5
i 10.3
; 2.4
: i.o
: 5.8
TOTAL 100.0
a Stanfield et al. (1951)
b -Smith (1961)
87
-------
CO
cfl
fO
01
u
«
01
u
•H
O
(0
l-i
O
01
a>
0)
be
O
to
14
T3
M O
eii-o
•H «
4-1 M
to o
U i-l
U O
tfl U
CO
0)
,H
I
tl -4
u n
b U
*" 5
Z
CO
«-4
b CO
O b
B tl
Z -4
Z
90
b -4
O «
i-l b
Z
B
U O
•H 14
00 u
o a
(-4 14
li
«
B
.3
«•> m
*4 4*
e >
s —
T>
3
CA
U
O B
I*
*J 4.
*P4 14
»-4 >.
•- 0.
14 U
0 14
r* CJ
53
„
N 14
u B
b O
CO —<
p O
6-0
CO
f4
CJ
^
tl
b
00
|
w
,
9
|i
5*-'
2 £
»< E
b O
tl 00
CJ
CO E CO b
*4 b b
w B oo a
E IX
0 £ *
u u o TI
CO — rt E
•a a •
• tl O tl tl
• B fH B
O CO ft O
X 4J 44 £ 4J
i-l B 6 CO «
B u a -4
33 id s
Z B • 0 •
,
B
o
U 0
3s
E -4
£ ,
** o
e
s
1
•g
2
u
tl
3
J=
id
a.
o
b
p.
b
o.
V i* E
4J 0 0
Ujl
0. 4? O
b
• tl
TI E -4 V
<«• • Tl -4
I b K -4
X < « ~
tl
•»< CJ
J> -4
^4 •
< U
tl
4H N
Il5
1
Ofi
•^ tl
O £
w CO
1 -4
tl 14
m °
b tl
g
Is
5(S
.
i"<'**H
0) V w
•f tH -< C
w *o « >
ft. W < Q
b
«
O.
T) ^
I— t 1-4
*» U
tM •— *
t -i
ti
CO
b
00
1
£
oo
£ V
o "a
4J £
fa
a <-4
O 14
-3 0
Tl
t)
II
J09T - ,00
,..1D «a™
ti ^
tl u — «
b -4 Tl -4
X ffl -4 ^4
O. U « i-l
b
tl «
4-t O.
v4 00
tl C tl Tl
*J O JJ — <
14 CO 14 01
-1 J .0 <-
^5*4 4J
•M *4 14
0 S «
u o t-
III
E 1
CO £
00
• — U
«-4 £ -4
b O £
tl *J CO
B
14 t ~4
• « -4
U 0
« fl
E b tl
14 tl -0
• Ob
cn 1 «
ti ti
C B
N v rj
B 1 B
C -H *H
^H "H «* fM
xJ5 i J!
5
lJ3»J»d
gg ^J
i!
b U.
U
51
tM U
V — *
^
03
O.
U 09
41 *-* t3
^-1 O &>
U <-H ^
>• a i
a. u *
V V
•M ,-i
w
M -^
*J E
3 O
o- o
i
"« 2
f 0>
a -o v
§^
(9
X O B
U 1 ^
3 O
>\ O
"H ^ «J
•J C fc-
z! c c*
w
1
£ 8
Cl C*
a i
o_
B O
•O
5
f
a
01 **•
c o
o
-------
Table 4. The elemental composition of raw oil shales.3
Poulson et
al. (1977)
Mahogany Zone Saline
In Colorado zone in
and Utah Colorado
Ag
Al
As
B
Ba
Be
Bi
Br
Ca
Cd
Ce
Cl
Co
Cr
Cs
Cu
Dy
Er
Eu
F
Fe
Ga
Gd
Ge
Hf
Hg
Ho
I
K
La
Li
Lu
Kg
Mn
Mo
Na
Nb
Nd
Nl
P
Pb
Pr
Rb
S
Sb
Sc
Se
Si
Sm
Sn
Sr
Ta
Tb
Te
Th
Ti
Tl
Im
U
V
w
Y
Vb
Zn
Zr
<0.02-1.7
-
L8-86
42-230
610-750
0.26-5.6
<0.]0-3.5
0.29-28
-
0.02-1.4
60-210
60-340
7.0-12
190-1000
0.06-8.5
27-120
1.7 -3.9
0.28-1.4
0.56-2.0
120-3700
4.0-16
0.43-18
0.91-2.9
<1.0 -4.0
0.31-2.1
0.16-0.37
0.13-450
-
17-50
1.9-160
<0. 06-0. 38
160-390
10-37
3.9 -14
19-77
130-760
170-4200
1.0-70
6.6 -20
67-450
0.12Z-0.49Z
0.18-5.2
2.7-69
1.3-5.2
0.93-9.0
1.2-4.6
400-2700
0.38-1.9
0.2-0.87
<0. 31-0. 35
1.2-12
0.12Z-0.41Z
<0. 59-0. 80
<0. 07-0. 19
1.6-7.0
73-280
<0. 03-2.1
11-50
<0.24-2.5
4.3-120
12-60
0.12-0.45
-
2.6 -3.1
12-120
61-750
<0.18-2.2
<0. 52-6.1
6.0-23
-
0.10-0.67
4.0-80
2.8->10,000
0.78-21
43-210
0.43-11
17-78
<0. 27-3.1
<0. 08-0. 28
<0.18-1.8
360-1200
1.1-18
<0. 06-0. 71
0.37-1.9
<0.55-2.5
-
0.05-0.44
0.06-13
-
1.1-37
5.7 -100
0.17-0.50
9.0 -320
8.7-87
1.4 -20
2.4 -29
28-110
510-4200
1.4-70
0.60-16
11-110
480 - >10,000
0.21-11 .
0.12-4.4
0.78-4.7
<0. 50-5.1
0.35-2.2
59-1400
0.43-4.8
<0. 13-1.1
0.11
1.6-13
150-1600
<0.12-1.4
<0. 03-0. 09
0.30-7.8
10-110
<0.32-2.9
1.8-29
<0.49-1.6
12-60
3.0-60
Desborough et cl . (1976)
Mahogany Bed R-4
in Colorado In
and Utah Colorado
_
2.22-3.82
30-75
60-120
300-1200
_
_
3.8Z-10Z
0.7-1.2
_
7-20
20-60
42-114
_
900-1500
1.3Z-2.0Z
5-10
_
_
0.08-2,9
_
_
0.7Z-1.0Z
40-45
37-208
-
.1.7Z-4.8Z
181-268
15-40
0.7Z-1.8Z
_
„
20-40
220-3500
30-52
0.2Z-1.75Z
1.5-6
5-10
1-3
12Z-14Z
_
212-688
_
5.06-10.8
700-2000
_
4.75-6.78
100-200
10
49-111
20-70
3. 82-5. 3%
30-55
30-300
200- 300
_
2.3Z-5.4Z
0.6-1.1
_
7-15
40-70
33-72
_
700-1900
2.0Z-2.7Z
10
_
_
0.09-0.19
_
1.1Z-2.2Z
40-50
35-95
0.60Z-1.6Z
- 196-296
7-40
0.7Z-1.9Z
_
20-40
870-3500
19-32
1.36Z-2.4Z
1.0-2.9
5-10
<0.1-3
13Z-19Z
49-260
7.81-13.7
1000-2000
_
4.21-8.10
100-150
10
81-112
40-70
Frurht t-r ft n] .
(1978.1979)
Mahogany Zone
at
Anvi 1 Points,
Colorado
3.692 - 3.932
43 -108
80 - 111
320 - 570
'0.9
10.1 - 11.2
31 - 30
7.8 -11
21 - 37
5.2-5.5
38 -72
1. 0
0.43-0.69
1. 742-2. 28Z
4.1 - 5
In
. y
0. 71-1 . 9
0.08-0.2
0. 33
1.502-1.702
15.9-20. 3
0.14-0.34
3.462-3.752
290 -330
21 -23
1.62Z -1.77
j5
23 -33
21 -27
3Q
• y
63-75
0.60Z
2.0 - 3.6
4.9 -6.9
<0.6 -6
14.5Z-15.5Z
2.4-3.5
440 . 740
0.53-0.44
0. 26
4.3-6.8
0.17Z-0.20Z
0. 14
3.0-7.0
65-94
0. 87 — 0.8
30-136
Wildeman 6 Shendrikar 6
Meglen (;1978) Faudel (1978)
Mahoga'ny Mahogany
Zone at Zone at
Colony mine, Colonv mine,
Colorado Colorado
64
126
~
-
-
44
1070
~
196
28
~
24
27
60
2.9
~
580
~
_
~
5.4
"
7.7
70
!
I .60-65
i . 61-97.8
: ~
0.75-1.0
'
1 1.25-1.4
'
! 5.2-6.5
; 41.7 -45.5
. 40-47.5
,
915-1162
~
-
•
!
•
'
201-230
: 30.C-37.0
-
' 22.4-23.9
! 27.6-30.3
-
; 10.0-14.6
—
_ .
i —
i
!
, 43.5-57.1
—
; —
62.5-65.0
All concentration values are in ug/g unless otherwise indicated.
89
-------
Table 5. List of elements and analytical techniques applied for the
determinations.
ELEMENTS DETERMINED ANALYTICAL TECHNIQUE
Ag, Al, As, Au, Ba, Ca, Ce, Cl, Co, Instrumental Neutron
Cr, Cs, Dy, Eu, Fe, Hf, In, Ir, K, Activation j
La, Lu, Mg, Mn, Mo, Na, Nd, Sb, Sc, i
Sm, Sn, Ta, Tb, Th, Ti, L), V, W, Yb '
Br, Cu, Ga, 6e, Ni, Pb, Rb, Se, Sr,
Y, Zn, Zr
Cd, Hg
Corg, H, N
Cmin
B
X-ray Fluorescence
Zeeman Atomic Absorption
Combustion
Gravimetric
Optical Emission
Spectrophotometric
90
-------
Table 6. Minerals determined for composited sample intervals.!
Carbonate Minerals
Dolomite
Calcite
Aragonite
Mg-siderite
Dawsonite
CaC03 • (MgFe)C03 !
CaC03 (Hexagonal)
CaC03 (Orthorhombic)
(Mgi_x, Fex)C03 :
NaAl(OH)2C03
Silicate Minerals
K-feldspar
Na--feldspar
Analcime
Illite
Quartz
K20 . A1203 . 6Si02:
Na20 • A1203 • 6SiO?
Na20 • A1203 • 4Si02
KAl2(AlSi3)010(OH)2|
Si02 !
2.5H20
Other Minerals
Pyrite
Fluorite
FeS2
91
-------
Table 7. Core Stratigraphy and Compositing Plan
Depth
in Feet
Core Hole No.
Stratigraphy/
Technology
15/16
Feet
of
Core
Composite
Interval
in Feet
Nuriiber of
Samples for
Analysis
856-1208 Overlying oil shale;
vertical modified in-situ
retorting
1208-1244 Upper Mahogany Zone;
vertical modified in-situ
retorting, mining
1244-1270 Mahogany Bed; mining with
surface retorting
1270-1346 Lower Mahogany Zone;
vertical modified in-situ
retorting, mining
1346-1372 B-groove
1372-1468 Rich oil shale; vertical
modified in-situ retorting
1468-2019 Poor oil shale; commer-
cial development not
anticipated
TOTALS
352
36
26
76
26
96
551
26
5
50
70
26
36
i
17
|
I!
E
I
T79
92
-------
Table 7. Core Stratigraphy and Compositing Plan (continued)
Depth
in Feet
Stratigraphy/
Technology
Feet Composite Number of
of Interval Samples for
Core in Feet Analyst's
Core Hole No. 25
130-388 Solution cavity zone; 258 50
commercial development
not anticipated
388-634 Overlying oil shale; 246 ' 5
vertical modified in-situ
retorting
634-670 Upper Mahogany Zone; 36 2
vertical modified in-situ
retorting, mining
670-690 Mahogany Bed; mining 20 1
with surface retorting
690-705 Lower Mahogany Zone; 15 2
vertical modified in-situ
retorting, mining
705-790 Poor oil shales; 86 42
commercial development
not anticipated
TOTALS -660
4?
18
20
7
93
-------
—_ in vc cr ex. vo ' O C C rx C C1 •£, r- cf rx O C. C- C C — C S. _ o c'
oex.— cocrroc-ococc— ccr"oc^cc'c'c'ec'c."c"-c'c'
; rx ^ OOOflOOOCOC'- C C <--i o O ~- C C C OC CT.'C C — C C
.5 !
O- — !••. CT* •— «w f-«. C^w •— C (N.c\. C2«?fN.Ccv r^^- Cf*^
Oun iT>CCrs.vC — OCOOCXOOVO >--C(V— OCTCO — CT C: CTC
CC^ — CCOf^OOCCOO — OC r—• O O — OCCOC.COO— OC.
^ • CN. in r^ *a- r
o • -c; • •
C — O <™> — •— —
OfX — OCCroCOOOCO — OOroOO— OCOCOOOO —
— I rx> ui
C. I CC • C
rCO— c f*» — «x —
r— cr exec— —
— OCCr^oOCCCOOCCf-iCC— OOCCC C C Crs.CC
LT. cr. m
f-lOO— CCCCOCOCfv.00
O^ OCC^DVCiT'CC*3-vOW^
r^ •— CC ^ iC *~ ^^ in c>w • — Cvi~ic
12 in •mcncxcr'— ^OOOrvCnovO f^OOOOOO*c-iCJO'— OOOOOOOO— OO
cy> *ocr> * • * in co o o O (xi «CXICOOO^PU
»O— • r- •— r^ in * ••— * -v,
§Cft CT»
« — -
1 vD «
r O O •= <
. _eor^-co -*t t
imvDT _• cxi in in »— r
TCXJ ch«-fxiOrsj cxiw- **m
-OCXiOOOOO— OO f-O
ocvi—ooor*iooooooooomoo--oooooooo— oo
n CO *r fcO
locn ej>co^~mcxi\o«'O<>«J(*^'*^u^r*i r«»cxifii«-.cxj«±^i»t'-.in'.c>*o^ ^o CO
^- -fN.cO • • •O^OOr^'tf -cxicyi—^cxi •r^.incxiio«- • ex: vD o — ID
• ejvro •f^cxi'— ^j • *•— • »CO °.r-i *— * —
>Ocxicr'O'£> iDOcxtoooc
OfvJ^OOOCOOOOOOC
3r- OOOOOOOOf
8 en
«— fcfjc»o«-cxin«jOC2^Din(*>«T *— «• co co
- - - — cooocow .cxir^coco<-i • f*.
^ r— t—
— rj* WD «• f»- txi CT>
*s • cxi in co en vo
rOO*— Oc*>*— O —
>3 cnc OTJ-D^ u E
i—jXitzzi-oi/^i/if
94
-------
Table 9. Elemental abundances of obsidian used in contamination experiments.a
After pulverizing to 100 to 200 mesh in:
Obsidian
Composition
(Bowman et al.,
1973)
New Jar
Used Jar
Agate:Mortar
Al%
As
Ba
Ca%
Ce
Co
Cr
Cs •
Dy
Eu
Fe%
Hf
K%
La
Lu
Mg%
Mn
Mo
Na%
Nd
Sb
Sc
Sm
Ta
Tb
Th
Ti%
U
V
W
Yb
6.4
—
432
<2
67.4
—
—
15.3
7.63
0.27
0.92
7.57
4.3
31.3
0.622
—
149
—
3.37
—
1.23
2.86
5.93
.93
.97
17.93
0.05
6.85
—
—
4.79
4 0.2
+
+
+
+
+
+
+
±
+
+
+
+
+
+
+
+
+
+
+
+
+
2
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
—
0
14
.2
.3
.21
.03
.02
.25
.5
.6
.15
.04
.15
.04
.05
.06
.05
.13
.05
.06
.23
6.88 ±
13.0 ±
411.0 ±
< 0.9
67.1 ±
0.17 ±
< 4.0
15.8 ±
7.17 ±
0.267 ±
0.93 ±
7.72 ±
3.90 ±
31.9 ±
0.670 ±
< 1.1
146 ±
1.13 ±
3.30 ±
31.2 ±
1.16 ±
2.89 ±
5.96 ±
0.931 ±
1.04 ±
18.7 ±
0.068 ±
6.97 ±
< 26
3.28 ±
5.04 ±
0.10
2.0
12.0
0.8
0.05
0.3
0.09
0.007
0.02
0.09
0.22
0.8
0.020
3
0.74
0.02
1.1
0.09
0.02
0.02
0.005
0.03
0.08
0.017
0.05
0.76
0.05
7.20 ±
13.0 ±
410.0 ±
< 1.5
66.2 ±
0.19 ±
<5.2
15.6 ±
7.16 ±
0.264 ±
0.91 ±
7 .69 ±
3.73 ±
32.4 ±
0.672 ±
< 1.6
147 ±
2.35 ±
3.35 ±
31.9 ±
1.28 ±
2.86 ±
5.93 ±
0.917 ±
1.04 ±
18.4 ±
0.053 ±
6.82 ±
24 ±
2.19 ±
4.92 ±
0.16
2.0
12.0
0.8
0.05
0.3
0.09
0.007
0.02
0.09
0.22
0.8
0.020
3
0.75
0.02
1.2
0.10
0.02
0.02
0.005
0.03
0.08
0.022
0.05
18
0.78
0.05
6.81
13.4
427.0
< 1.9
65.6
0.19
< 3.8
16.0
6.97
0.272
0.92
7.50
3.74
31.6
0.682
< 1.2
145
1.50
3.30
29.7
1.36
2.83
5.90
0.902
1.03
18.6
0.036
6.75
24
3.73
4.78
±
±
+
'+
±
±
±
i
4-
+
+
+
±
±
+
+
+
+
4
±
±
±
±
±
±
±
±
±
0.17
2.1
12.0
0.8
0.05
0.3
0.06
0.007
0.02
0.09
0.13
0.9
0.020
3
0.74
0.02
1 . T '
0.11
0.02
0.02
0.006
0.04
0.08
0.024
0.05
16
0.95
0.05
All abundances are reported in yg/g unless otherwise indicated.
95
-------
•
1
CQ
_O
-o
OJ
CO
3
CO
O>
3
T3
-C
CO
CD
(r_
j \
^
-^
O
•o
c
re
c
o
[ *
re
T3
•r*
C
O
S-
4-9
3
0>
•
o
O)
JQ
CO
1—
T3
c:
CD
O)
LU
c1
• i- O) '—
4J E C
3 4J i
O
t_5
cn
C 3CVJ
3 i— E
QJ U_ O
"SZ. ^**»
c
c
0
•r-
4^
CO
«. ^
•i- S_ CO -0
\— I/O eC 2:
#> r. «K r<
CD re re 3
s: co _i er
*i »* «> ••>
r— 3 -i- re
C_3 LU 1— CO
„ „ >, ^ ^
>• ^r o 33
I
re re re * o
o ^ CD E s:
I/O
i — c c: «-"o
=C 2: — • rs o
i— 10 O
OJ
CO
4_
r- co
C ^>
•r- LO re
E CM T3
o
co •— T>
i — ro
r— r—
O O
f— ^—
X X
OJ 00
C CO
• r~ l_
E ^*
co oo
"~"
co jr -o
C-5 1 — ^
o u- c
CJ 31 CO
r> *\ r>
C CTV-Q
1^1 car h-
r. r. **
3 O) S-
UJ OO C_3
re s o
h~~ »— * ^~
O OJ -Q
OO O O£
QJ JD •>"
0
O^
»*
0
ir>
CO
>^
re
*C3
O
ro
CO
96
-------
Table 11. Range of Fischer Assay and mineral results for the two
core holes.
Oil
Water
Analcime
Quartz
Calcite
Dolomite
Na-feldspar
K-feldspar
Core Hole 15/16
Cone. Range (%)
1-29
0.3-2.4
0-14
3-16
0-13
15-47
XRD PEAK HT.
8-110
8-62
Core Hole 25
Cone. Range (%)
r
; 1-24
0.8-3.0
i 0-14
!
• 7-15
; 0-18
1 21-47
i
XRD PEAK HT.
: 8-106
: 9-59
97
-------
(D •
0)
0
.C
QJ
i-
O
O
0
4_>
i.
O
I/)
OJ
en
c
>0
i.
0
•n-
4-J
H3
S_
-l->
C
O)
0
0
u
4J
c
LU
.
CM
CM
QJ
0
3:
0)
0
U3
-v,
Ln
r~*
O)
»^
o
^^
<1)
s_
o
c_j
LTl
CM
O)
"o
o>
o
IO
IT)
O>
!E
O)
J_
o
*vO !
co P~- co r^.
* CJ"> CD < — t— /-r> ps^ ws ~^ r*~" r" — ^^ CD
CM i LO
' r~" ^^ ^~ ^" ^J '^J" CM I CO 1 CO r— tA pvl rA i—^ ' * ^^ ' *^ ' *~~ ^" ^^ ' * *™~ ^^
0 — CM^.oocr.^cr.^-cJ.a-o— v COOOCOOCM^^^O^^
CO „ ** CO CO
•COO CM.— cvi .r-^^S1^"^1-000
(~~> • Lf) • , ^^. ^| ^— ' • — ' ^T • • • . CM f— m
cocoL?T*3-T°° °° CMLn .— un£?2OCi3O.C7>co'oT CMLHCO
1 CD CO CD LT1) CM ^~ CO 1 ^1 *~T A ^^^ 1 1 1 1 ^" LO 1 CO 1 CM CO CO ' 1 f— f^
O • «<7>| . . | , — |CM •TLf)LngS°J'~' — C^03 1 'CM^D 1 |
0 ^3- 0 0 CO —CO CO 0 COO — V CM 0 OCO 0— CM ° CMO C^ —
j
^^_
o ^^"* ^.^^ '
J^ >?^ *S '
^' = = sz5l5£55«X,SJ5«55^iEiEH'=,>3^55ii
cr,
•* cr, 0
— *~ o o
"* • co . _, ' — «
•Lr> OO«CM n- o en CTic5 "^ f^o
• O Cn • 1 O • i — CM ' — CM 1 • ^ — L ^ ' ' ' 1 ^£5 *— 1 CO l| f— O 1
*""• • fOOf^O • t t *LOO ir-L.^.^S' — r~~ * ^~ CD *"? * "CO
VCMCOV^J-CMVCMCMLOOCNJ . r^.: . i vo
"^J,000^ <^o ito.— So^-STf^TT0?0?^ '"* ICM!IOLO
o™TdLA5d^7cV£>^o7cors:2^078°7!jri!>o«>r-°y:>
— CMCMv—coLn CM in — o— — o CM — co 'v o do '° °d
[
,
^^vx— X 1
^_^ ^6 ^^
*fcfi ^"^ '^ """•• *— •*. ^ i
^"^ ^ O%^ ^5 VP '
•J'rf tfrftn101" ^°i3 *aT — i tj"
.
•o
c
IT3
5_
O
.u>
.£;
tr
01
u
c
o
o
^—
«:
n
QJ
C
S-
QJ
4-3
0.1
•^
4->
O
C
(1)
c
l_
o
4^
(O
t.
4-)
C
O)
u
e
o
r>
98
-------
CO r
os i
o*
i
V
fe
OS OS
CO ^T*"*
QS m os
CO
OS
«
os vc in co
lO CsJ Os
OS CO ^ ro
§:§;£§;
• • .
£
gj g?
OS OS OS
OS
OS
OS
f""« in
Os CO
CO
CO
c
os & ch' l
os os os !
OS OS os OS
Os Oi Os
OS os os •
OS Os os (
'
OS os O% os O>
OS os OS Os OS
J1 i
QJ <1J
«§ §
*T r»J »«xj
v>
- c ?i
O Os £T
O CD O wi
C -0 X ID —
">*^ S "^* 'o
— I- Cr- U
t. o» o QJ r:
o> n jr » u
^ & «D O •«—
0 33 XT _J Q:
o
a
o
99
-------
O)
o
s
r rsj ^
X >s o>
-
01 Q c 7t u
> Q .0 o •-
0= E -Jo:
TOO
-------
cn cn r\j
cn en co
cn cn cn
0,- terser,
cn cn en cn cn
cn cn cn cn cn
cn f-.
cn cn
en cn
cn cncn_
cn cn cn co
Cn cn cn cn
cn cn CO
cn cn co
cn cn cn co
cn cn cn cn
cn cn cn cn
O CO
cn cn
cn cn
cn
cn
cn
-. -
§ a
cn cn cn
cn w~ cn
ff* o>
~ CNJ ro^- m
3
c>
cn o ^ cn
0,0.0. 0,0,
cr>cn cn en cr>
cn VT \£>
Cn cn cn
0.0.0,0,0,
,585 SSg
Cn en cn cn
0.0.0,0.0,
-----
co-
en cn
cncn
cn cn
cn cn
cn cn
«*
Cn
cn
p-cxi-«^in
>s
O
cn cn cn i£
cr>o>o>o> 0.
cn en cn cn cn
cn o^ tn
cn cn cn cn cn
cn cn cn cn cn
cn cn cn cri
cn cn cn cn
WO, 0,0-0*
cn cn en cn cn
cn cn cn cn cn
cn r«^
cn cn
cr. cn
cn cn
cn cn
cn cn
CO f\J
Cn m
cn cn
CO
cn
-~ ->•«•«
3
LU
cn
cn
cn
cn
Cn
cn
cn
cn
cn
ID r\j
cn *_n
Cn cn
g
co vr>
1C CO
cn cn
^~
\o
cn
PO *f
f^ co
CT> cn
^~ CNJ 1*1 w in
u.
55^:-
cn cncn cncn
cn cn cn cn cn
525"
CT- 0*O.CT>a-
sssss
VO
CO
Cn cn
cn o-"
cn
cn
S
c^ c^
^
in
-CM^VU,
O)
cncr.cn
cn cri cr'.
cn c^cr » er
„,„
o^ oS cc cr
!T> -^CT- 0-0-
s^ssg;
i
o, crio> oio-
sgjg;??
,
1
r
ssi
;
tM
si
J '
S
1
in
i .
-cvjr,^^
«O '
0 1
QJ tt) OJ
^ C C
*D O O
. Overlying oil <
. Uooer Mahogany
, Mahoqany Bed
. Lower Mahogany
. Rich oil shale
- CM m «• in
3
O
101
-------
in
CT'
CT*
CT.
CT*
CT*
CT*
CT-
CT.
CC
CT.
CT>
CTi
CT.
CO
CT*
CT> «T
CT> CO
CT. CTi
CT*
CT)
Cr*
CT* CTi CTi
sag
CT.WWWCJ,
ggggg
^U30^o;
s&ss
0. 0,^XT,
CT* CTi CT* CTi
CT* CTi CT> CT>
-«««„,«
3:
CT. UM.O
CTi CTi CT*
CT> CT* •J. O".
CO «a-
c*c£
0, CT. CT. in
. CT* CTi CTi CT>
CT> CT CT>
CT* CTi CT*
CTi CTi CT*
^ CT.CT.CT.
g gSJg:
CO XO
CTI CT>
CTi CTi
CTi CT,
Ov
CO
fv. O
CT* CO
—
CO
CTi
-CM,-,^
u-
CT*
CO
CTi
'NJ CT> rxi
CO CT' Cl?
CT* CT. CT.
CTi
CT*
CTi
CT*
^
CC
CTi
CTv r-,
CT, CT.
fM —
CTi CT*
in.
CT,
CO CTi
CT* CT*
CT» CTi CT*
CT> CT> CT.
CT* CT.
CTi CT,
Ch CTi
CT,-m
CT, CO "^
C\J CTi
CTI en
CT* tn CM
CTi CO fr"**
CTi CT* CT*
— f*o ro *& in
cr
ai
CT* CTi CT. «3-
CTi CT-. CT, CTi
CT* CT* CT. T. CT-
?.? CT CT§i
CT CT* in CO
CT* CT CT* CT*
CTi CTi CT* CT* CT'
SSgisg;
en
LT*
CT*
CT, CT*
CT* CT*
CO
CT*
cr>
CTi
cr>
CT* CT*
CT> CT*
CT* CTi
CTi ^- CO
oic££
CT*
s
CT>
CTi
CTi
-co«w,n
^
CT* C~. CTi "^
CT* CT CT* CT. CT. CT- f.
CT. CT C". CT- CT
-
sssgi
CT- W CT. 3, ^
SSS1?;?
C-T, CMT.
CT1 CT. CT CT*
CT*. O". CT> CT>
a. » a- o, »
gisgas
CT- CO
CT> CT-
CT* CTi
CT.OV
CTi CT*
CO
Pv.
CTi
0 0
en in
CT. CT,
CT,
CT*
CTi
m
CT*
— fMM«r m
3
CT* O
CTi CT-
C —
cr JT
r = £ ^ _
-
a) a
s. n
o r=> -
102
-------
u-»
CT.
CT*
Cn
cn
CT*
CT-
cn
cc
cn
er*
cn
cn
CO
CTI
CTi «3-
cr* cc
cr. cn
cn
Cn
cn cn cn
0,0,0.0.0,
£££££
r^ietJ.0-,
cn cn cn cr>
o, O.CT.CT.
gi siiiii
— CM <*•> *» tn
3:
CT, ur^r,
sss
0- CT, CT. CT.
en CT. CT- en
cc -=r
CO CT*
CT* CT*
0, 0.0. ^
si sis?'
cncr.cn
cn cn cn
cn CT* cn
CT. CT.CT, CT.
gi sss
Cn cn
cr. cr.
cr* cn
cn cr.
CT,
g
*"•• O
cn CO
cn cn
_
CO
o»
^- PJ ro «9- m
!£
CT>
CO
CTI
"\j en f\i
CO er> CC
cn
cn
en
en
«.
cc
cr.
CT* ^
CT> cn
cn en
CNJ ' —
cr. cn
in
Cn
cn
CO CT*
cn cr>
cn cn
cnc*c*
Cn ^r-^
cn CT* cn
en en
cn cn
cn-in
cn cn cn
CM en
cn en
en in CM
cn co *"•»
^^m^^
cr
r:
cn cr. cn -cr
?£££
CT* CT.CT.CT.cn
en a. cr cn CT.
CT, 0,^=0
CT> CT cn CT.
en cn cn en
CT, CT. CT, CT. CT.
CT* cn cn CTI en
CT*
CT*
cn en
cn cr.
cn cn
CO
cn
0,
cn
cr.
cn cn
en cn
cn cn
CT* ^" CO
cneS CT*
o*
%
ON
S
-ts,^,^
^
^ ^ ty ^
CT> CT CT- 'O
CT. CT. cn er.
CT. en CT. er. CT.
CT> cr CT. cr- CT.
CT CT. CT- er CT
CT* en co a.
CT. 3, CT. CT,
-------
CT* cn
CT. CT-
CT.
CT*
CT*
cn cn
cn CT*
CT* CT>
CO
CO
CT» CT>
CT. CT*
CT.
CTi
CT^
n
ri
r.
r>
r*
r*
CT>
VD
O
f> w m
CT-
CT'
CT.
er-
CT-
cn
r->
CT.
CT>
cn
CT*
CO
cn
CT*
CO
CT*
r.a>
CO O~.
Cn CT.
Cn
CT> CT. en cn
cn CT. CT* CT*
5^55
CT> CTi
CTi CT>
5 SSS
islisis!
•— t\j ro«o- in
0
S £
CT> r-^ CT-
cn cn
CT. CT.
cn «3- CC
cn cc cr.
CO P*--
CO * ID CT* CT*
g>£gjgj
, CTi CT* CTi CT>
CT> CT* CT> CT'
•— CM ro ^ m
z
s
CT- cr<
T cr
cn .T
CT cr
cn cr-
CT> =T
cn cn
cn cr>
cn en
CT>
CT*
cn
O*
en
CT*
CT.
CO
CT.
cn
CT> «3-
CT* CO
CT> CT*
CT*
CT*
CT>
r— csj m ^ in
j
cr cr. cr -^
T> CTi CT' CT>
cr- c>. cr.-1? T.
cr. n* cr T cr.
CT. er. C. T cr.
cr- CT '^
cn" cr- cr-
CT^ cr Cr T- CO
Cr. CT. CT1 CT. CT.
cr- CT cr- CT.
cr' cr* CT cr'.
cn cr CT- cr
CT* =r cr en CT-
cr. cr. cn en cr
cn <-)
cr CT-
cn CT-
cn er*
Cn cn
CT>
CT*
cn
cn
•o
<_ ^_ __ ^ i
T. --* cr- -^ J
CT> T CT 7 , .
cr. ,r T- T IT
cr. u- -T. T.'CT '
cr cr. T. cr.'Cr -
\ \
- -^
cn er cr| n
cn cn cr> T -
CT-. CT- cn
i
CO "•*
CC cn
CT-. Cf>
en en
en cr-
Cn en
j
CT. -
cn j
CO
CT.
CT*
CT* CT> in
cn cn CO
cn CO in
CTi
in
cn
CT* .
•— CM m 5* IT»
i
z '
— c c
rtj o o
, Overlyinq oil s
, UDDer Mahoqany
, Mahoqany Bed
. Lower Mahoqany
. 3ich oil shale
o
3.
O
103
-------
a- T> a- c- e'-
cc
cc
cr.
cricr.cr.cr-.cr>
L. a- o a*
104
-------
105
-------
CT- vC-
CT> CT-
CT. CT. Cn CT
CT< CT CT- CTi
CT' Cn CT- CT.
CT> CT> CT.
CT' CT" cn ,
cn CT. cn
cr. CT. cn CT.
s.g as
CT* CTi O CT>
Cn cn CT. CT>
CT- CT. Cn CT-
cn CT- cn cn
•--.' cc
cn
CT- '
CO
Cn
CO
SS
— esj <*•)«• ir>
^
CT-Ln^r o
CT- CT- CT> CT
Cn CT- CT CT- CT
CT. CT- CT. CT. CT
CT. CT- CT. CT .CT.
Cn o^ cC
CTi CT^ CT»
CT-Cn CT CTCT-
sssss;
cr-cn CT.CT,
CT. CC CT CTi
en en •CT. en en _
Cn G-. CT> CT» CT^
CTt CT CTi CT1 CT»
— CC
en1 ?i
CT.CT-..
CTi CT
cn t^
S fe
0
LTl
n
cn
-cv,^^^
£
CT' CT ^. T
CT. CT* CT. CT'
cn a-- CT- CT.
CT CT. CT. CT. -»
CT T CT T T
CT CT "• CT- CT
CT^ ?- en" CT.
CT. ^cn~
CTi -JD CT Cf
CT* CTi CT- CT.
Cn cn Cn y.
CTi CT1' CT CTi
cn CT. CTi CT>
CT- OCT.Cn ^
CT» en CT- CTI en
^^
Cncn
cn CT*
Cn
cn
Cn cn
Cn cn
«S-Cncn
S Soi
CT*
cn
Cn
cn
_~-^^
C
Cr i
CT.
e-. — *y. [CT CT
CT. CT CT CT. CT
•^ CT
CT- CT
CT- CT s
cc — cr e- cc
S,S5!I5
' Cn CT.
C*- CT*
CT CT.
CT, Cn Cn -T. Cn
^C O CT
CT. CT CT
-r^^
t.
U 0." O O.1 C
o *c o —
o r? ^ _i a1
106
-------
•T- 7- r~
•y T-* -y
£j ?
~ 3- ~- C*
CC ^
^ o-
•— (\j rn ^r LO
— fsj ro ^- tn
QJ C;
1— C
*c o
-
i- a- c c c-
OJ Q ^T '-t l_)
> Q t O ••-
O ZT- T —IT
107
-------
cn cc cn cn
Cn Cn
OH Cn
Cn Ol
S5"S5
CT> CT> CT> Cn CT'
cn o en o
Cn cn Cn Cn
Cn cn Cn CT-
CT> CT> CT> CG
cn a-, en co
Cn CTi CT. O"«
CT* CT> vD
cn cn cc
CT> Cn CTI
Cn CTI O"' Cn
cn cn cr> CT
CTi Cn cn Cn
o^ co cn
Cn O"i CT>
CTi Cn cn
CT> Cn Cn Cn
cr. CTI CTI CTI
CT* cn ^-
Cn Cn CT<
Cn Cn CT>
O^ O"> O^ CO
O". CTt CT> CT:
U-) ^3-
cn o%
CTI cr.
CT* O> O~>
O"> CT> O"i
crtej* CT-^
CTi CTi O". CTi
CT^ CT> C^ C?'
cn»wo>w
CTi O"> CTi O^ CT'
CT^ CT. CT* *3-
^sss
o,^a> o-.cn
en en cy> cr> CTI
en en O"i en o^
r»v
en
en
en cr.
en en
en en
en en
en en
en en
•— tsj f^«- ir>
&
en co >£
o> cc a>
en cr- CN
cr. rx,cr. a.
en 1^5 a1. 3--
CTI en O"> cT'
en -sr ^ CT. cr.
CT' cr. en ^-. a-
cr. c^ en en a~>
cr> en en en
en ^ cr- cr.
en en en en
en en cr. cr. en
cr. cr. cr. cr cr-
a~> en en o" en
CT> CTi O^ r^.
en en en en
o*> en o^ en a*>
Cn cr, en cr- cr
en a-, cr en cr-
U"
cr.
C CO
en cc
cr en
en en c
en en cc
cr, en en
en cr. en co
en en en en
en en cr. CTI
en vc ^c
en en cr.
en en eh en
en en cr. en
en en en o^
en
cr"
en
en en
en en
en en
en en in
en en O~<
CTi CTi CTi
r— C\J fO ^ IT)
s
cr.
en
cr en r-* cr. 3-.
Cr. cr. cr- -3-, a
en a. cr. —
CT< cr' a. •x
CT. a1, en en
CT- er.. CT. vo
CT. en cr CT
en en vo
CT CT' vC
CT' en CT»
en en CT. cc
CT. CT> CT> CT-
, cr- cr- CT CT-
c^ en ^^
CT* en ^
en CT CT-
CTi CT; CT1 CT>
CT> CT* CT> CT.
CT> en CT. en
en en o
en CT> zr
en CT- CT
CTI CTi en co
CT*> CT* cr, o"
cn , en er. cr.
en
er
cn
CT CTi CT
CT* CT* a-
CTi CTI cn
cn CT. IT;
CT*CT'. cc
cn cn CTI
cn if) cn cri cn
gjssgig;
cn
cn
CT.
CT. cr. •—
cn cn «JD
er.cT' cn
cn o cn
cn co cn
*— oo r->*3- in
L.
tj
r^ '•
<& ^
cr. cn ;
en cc CT.
cn cr. CT.
CT' CT. vi;
cr. r-.* u^ .
cn CT. cn
CTi r —
cn CT.
CT> iJ-\ - —
CTI cn cn |
^ cr. !-
CT. cn
CT CT. •
i
CT-. 1/1 :
CT. vo .
en cn ;
en
cn
cr.
en ro vo ,
cr-. t^. .n .
cn cn cn '
cr. ev
CT" cc
Cn CT
i
cn vr;
cn CT"
cn cr 1
cn in cc
enu-.cc
cn CT> CT>
LO I
cn
cn ;-
cn ro m
C* co co
cn cn CT.
PO '
CO
cn
*± r^
co cn '
cn cn ,
\
Ch CT.
cn P%!
cn cn
i
•— esj m «• tr>
i/t i
*-> i
OJ QJ
•— c
TJ O
— i. cr i_
i-
-------
in
CM
£
in
in
£
£
m
£
in
in
CM
£
m
m
ev
v£)
m
in
CSJ
£
*x»
m
CM
to
in
in
CM
10
ID
in
CM
in
CM
to
OJ
£*"
s
CT.f-.r-
CT) CO CO
cn cn cn
cn CTI CTI
cn r^cn CT> f*
S CT.Cn" ££
cn ro cn LTI
sis??
cn cn cn cn cn
g'gg'gg
cn cn cn cn
cn cn cn CT>
01CT.Cn CT.CT.
cncncncss
(XI
cn
t\j O
Cn CO
CT> CTi
CT» en^j
cn cn \o
cn cn cn cc
cn cn CTI CT>
cn mo.
§5 ss
CM cn cn co
co cn cn CT*
cn
cn
cn
en cn
cn cn co
cn cn CO
3
O
cn cxi
CT* CT*
cn cn
CT, COCT, CT.cn
£££cncn
Cn CO CO CO
CT, cnin en
cn CT. cn-
CT* cn cn cn
cn o- —
CT> Cn cn
cn cnCT,cn
CTi CTi CT> CT>
CO f*.
cn cn
cn cn
CT> CTi CT> Cn
g g§ig;
cn OVD
£ Sin
cn Cn cn cc
cn cn cn CT>
cn CM Ln
CT, vc cc
cn cn«Cn
cR Sen
cnCT. ^ CT,
In cncn Si
CTcn CT.cn cn
CTCTlcnScS
cnuiCT.0
Sen cncn
Cn cn cn cn
e£ cnCT>CTJ
cn
cn
cn f^>
cncn
cn co
cn cn
cn cn
>,
CT.cn.,
Inlncn
CT.CT.CT.CT.CT.
cSScnglcn
cn^>cco
cRcnSIS
cn r^cn CT. I-
ggggs
cn t^- cn
cn cn cc
cn CTCT.CT,
g SSS:
cn cncn
en cc en
CT. CT.CT.CT.
CT> CT. CT> CT*
CT> CT* cn Cn
Cn ovo
CT- cn cn
CT* CT* CT> CT
S cncn?
CO CT* U~>
CT^ CT* CT
Cn CT* CT*
CT. CT» CT.
CT- CT- CT>
cn CT. cn^r
CT* CT* CT* CT'
cncncncnCT.
Cn CT* CTi CT CT>
CT* Cn CO ro
cn CT* cn cc
cr* cn CTI cn
cniocncncn
cncncnCT^cn
00
cn
cn
cn «•
cn CT*
cn cn
cn \o in
CT* CT*. VO
cn cn cn
UJ
~
CT"
cn
r--.
CT-
CTi
CT*
CT*
V£)
CT>
CT*
CT>
CT>
CTi
Cn
CT>
CO
CT"
CO
CT*.
Cn
U.
CT*
Cn
Cn-CT>cnCT.
cn cc cn cn cr
CT> cn CTI CT> O".
CT, CTCn^
CT! CT. cn cn
cn0. CT, CT.r-
CT> Cf CT> cn CT
CT' cn c\j
CTv CTi CO
cn_cn CT.cn
CT* CT CTi CT. CT>
CT^ CT Cn cr- cn
cn^cn^
SSSS
cn^cncncn
cnSSSS
cn co CT> cxi
SSScn
CT,M=CT,C,CT.
cn cc- cn CT- cn
CT> CT.
CC cn
Lnr^ cncn
Cn CT- cn CTI
CT> cn cn ro
CTi CT> CT» if.
CT> CT> Cn cn cn
cncn CT CT!CT
CT.CT.cn
cn CT- cn
cn CT. cn cn cn
en en cn cn cn
cn
cn
CT>
cn cn vo
cn cn cn
cn cn
cn cn
cn cn
Oi
u.
co CT. i
CTI CT. l
CT. CTi
cn ^cnCT.CT.
CT' CT* CT. cn CT"
CT CT CT> CT CT.
CT. cn CT. CO
CT. o"i C7. CO
CT. CT. CT. CTi
CT,^CT. CT.O-.
CT- CT. CT. CT CT- '
CT. Cnl.
CT* CT* LT*
CT CT. cr.
o> CTI CT cn
cr" CT* CT • cr"
CT* CT. CT- cr-
cn cntn
CT. CT. CT'.
CT* cn cn cn
CT> CT. CT> CTi
CTI CT> CTI cn
CTI If) t~~~
§i ss
cn cn cn CT*
CT. CT' cn CT.
CTi CTi CTi CT
CC cn o
r-^ cn cc
cn cn CT
cn cn cn
CT-CT.CT.rl
CT* CT*. CT* CC
cncncnCTCT
CT' cn CT^ CT" CT'
CT cn en-—
CT. CT. CT Lr
cn csj cncn CT>
sssps
cn
Cn
cn cn
cn cn 10
S
CD QJ Q.*
— c c
*o o O
, Overlying oil s
, Upper Mahogany
, Mahoqany Bed
. Lower Mahoqany
, Rich oil shale
«— CS) C"> *3" IT-
o
13
O
tD
109
-------
CT.CT.COC,
CT* CT* CT* CT*
e>«rc* CT.CT.
SSISSS
•— CNJ CO
CT* CO CO
CT* 0* CT>^>
S SSS
CT*
CTi
CT* CncNjr-
CT* CT* CT> CTi
CT* CTi
in co
CT* CT*
CT* CT* CT* O
CT> CT* CT* CO
CT* CT* CT* CT*
f\J O
CO CO
CT> CT*
* CT> CT* o m •
s sss
CT*
r-.
CT* CT*
CT* CT*
r->CT.CT.
£££
CT* CT* CTi CT*
^- CT* LD
in CTI vc
CT* CT* CT»
~.oi cr,cr,CT,
CO CO CTi CTi CT)
CT*
cn
o*r^
cn CT.
cn cr.
r««. cn co
en cn CT>
_«««„,„
fe
r-, ^
CTi CT.
C\J r~- m
S £§
f, COCT, CT.
CT* CT* Cn CT*
CT, CT,CT,r-
CT* CT* CT* CT*
CT* CT* cn ID
c££cn cS
mcnvr.
CTi cn cc
CT. CT> CM
S S S
^COCT,«-
SSSg
CT* r-». CT* CNJ CO
CT* cn CT* u"* co
CNJ
CO
CT.
r^
r-.
CT*
r«* CNJ
SCT^
CO CO
CO
cS
p- *•
CO CO
in
s
^J.
cn
e\j o CT*.
cn cn CT*
^ r~
S S
cn cn cr. —
CT* cn CT. CT*
o co -r
g g's
CT* CT* CT* CO
g £££
CO f^
g- g
cn CT* cn CNJ
g ggg
CTI
CT*
CTI cn CTI
Cn en" CT
CT* CT* C CT*
CT^CT^CT^CT.
ss:^?;g:
CT* CT. Cn
cn cn cc
CT* CT* cn
a>o>wa,-
& cr, CT. c^ CT.
CT.
cn
CT.CT.CT.CO
cn cn CT* co
Cn co CT*
cn CT* CT*
^~mw^,
J^
CT, CT.
CT. -3.
CT. cr.
CT,CT,CT. CTCT.
S:?:? §;§'
CT.LnCT.r-
£g;g;g:
CT. ^r. CT. CT. -0
cn a*, cn CT J»
CT. cr.0
g S5
CT. CT.CT CT,
CT* cn cn CT.
CT* CT* CT*
CT' CT> C*
cn CT* cn
CT* cn cr- CT*
cn CT! cn' CTi
CTi CT* LT)
cn cn.CTi
CT* CT* CT*
CT* m CT* cn cc
CT** cn o^ cnS
CT- CC
cc cn '
Cn CT*
CO CT. CT.
co CT* cn
cn cn CT.
CT.CT. CT.C
CTi cn CT. CT
CT* cn cn c-
cn CT. CTI CT* CT*
cn CT- CT* • —
CT! cn £ S*"
cnr^CT*CT*CT*
en CT* CT> CTI cn
VD
CT*
cn
cn co
cn cn
en cn
CT* CO
cn CT.
_~~^
re
_j
t- v o a.' jz
r— esj <-> ^3- in
110
-------
CT> CT>
* *
c*a<
— cncr,
C? Cn Cr.
in 0
g g
• •
gen
CM
S
fsj O
O. CC
CO
CTi
CT.
— vO
££
IT)
£
0=0
en CC
cn
Cn Cncn
g gcJ
cn cn
cn g
cnen
gg
^
cn
VO
5
t- MCI win
£
^
S
cn
S
=n
•
OS
m coos
££§;
03 — CT- CO*
ssiss;
^ en
OS OS
OS OS
m cc os —
$£§:£
CO ID cn
g^g
OenCT-en
££S£
m
g
OS
OS
CJ
OS
CTi
fOCT.
CTi CT>
g g
cn
g
cn
g
— evjm^rm
o
s:
CTi CT-
s s
«a- cn cr
• * *
0- encn
CT- 0,_
S Sc?
en wen vc
OS OS CT* CT>
cn CTI cn
Os os LO
cn OSCT.
cn osco
CT> CT> os
cn cn-
OS CT* CC
CT> OS as
CTi Lf) OS OS
OS OS OS CTi
CTi
ID
CTi
O 0
OS OS
vT>
OS
OS
CT> OS
co m
-
0^
OS
VO CT*
CTs CTi
CT. CT.^>
CTi CTi CO
CT* CT» CT>
^ csj PO v in
z
^ OCT.
CT' CT> cr.
.
£-
CT> OS
cn cn
cnCT.
0 CC
CTs »-^.
CTs CT*
cr, m
SS
CO f^
CO cn
0^ Os
Os CTi
OS Os
m cc
CC CC
cn CT>
cn m
CT> OS
OS
OS
Os
OS
Os
LD <-O
OS O*
Os OS
OS Os
OS O*
in CT*
in o»
Os OS
r*. as
CT» OS
CTi
OS
ro
CO
OS
^cw*r in
x
•o cn *~^,
CT> cn "-.
cn cncr,
cr-^cncncr.
S ? 5 ? ?*
Cn-^ -1 os
cn CT-. cr. cn
CT> cn cn cn
CT* CT* cn-3"
cn cn cn cr
cn CT. CT. CT.
^^. •— CC
f^, OS Os
. os CT* O> VD
cn cn cn o>
cn ^=^
r^ i^ CTi
cn cncr.
cn cncncn
OS OS CTi CT>
«a- ro cn
CTi CTS cn
OS CT* OS O
CT> Os CT Os
CT* OS OS Cn
cn cc cc
Os \& CC
Os CT* CT*
CT> Os CT*
Os Os CTs
Os Os Os
cn cn en rvj
Cn cn CTS CO
cncncnosos
Os OS OS CT* CT*
i°:~~
OS CT* CC CO
CT> f^. CTi CTi CO
OS CT» Os Os OS
Os
Os CTi
SIS
OS CTi
g g
-c^^^Ln
X
1
CT. -^-;
cn cr- CT cci
CT. CT Cr. CT(
cn ^r o-^ ^. '.
CT! a- cr CT :
--. -sCT CT^
Cn O CT' Cn O|
CT. CTCr-cr.cn
cn "o cr. if. ,
cn _r CT* CT- '
cn cn CT. CT- CT*
cn en cn CT. c^>
;
!
CT* cn os r*.
CT. en CT> en .'
cna-cn^cn
as cn o* CTI o>
CTs CT. O~- CT* CT*
CC ',
CT- '
as ,
i
— *o
Oi CT*
cn a*
en as^ |
os CT. cn ^
cn asasas
CTi CT» OS as
cn ^~.|
g ggi
in CTS os f^> CTI
as tn as as as
i
^D
CTs
CT>
CT> as
CTi CT*
a* os
OS OSUD,
OS CTs CO
os as a*;
-~«»«
x
Q. « O •—
«— CM ro *3- in
a
3
o
tD
m
-------
O"i O"i CTi CT>
s;
&> CO
CTi CO
C «0 >- fO —
•r z c ^ •-
112
-------
01
1
CT* CO
en cn
CT> cn
CT* CT.CT* CTtCT.
CT* CT- CT* CTI Cn
CO VDCT* ^
CT* cn CT* cn
cn cn cn CT*
cn CT* CT* "X1
cn cn l^cn
CT* »3-
CT* CO
CTt CTi
in CT* cn cn
s £g*s
cn ^
CT> CTi
CT* CT*
si sgis
CT, vo
sigi
CT. CT.CT.CT.
si ggigi
"•O <-n
t-^ CO
• — CT> CT*
CT* CT* CT*
O CT* CT* ro
CT* CT* cn CT*
CT.CT,CT,O,CT,
gg:g;g;g;
0,0, CT.^
CO CT» CT* vD
CT* CTt CT* CT>
o-,vr> VTXT.CT,
SSSSo!
CT,
s
•— c*j PO ^- in
f-
CO CT*
sis
meo-a. CT.
SgSSg:
CT. -PJ«T
gJsssi
CT. CT. CT,—
CT* CT* CT* CT1
CT, VD
CT> CT*
01 CT.CT.CT,
CT* CT* CT* CTi
CT* CT* CT* cn
CT* CT*
CT* ^D
cn cn
CT* CT> CT* CT.
CT* CT* cn cn
cn PO
CT. f-*
CT, CT.CT.CT,
CT* CT. cn o^
cn o
cn cn
CT* CT* cn
CT* CTi CT*
CT* CT* cn
CT. fSJ^O
cn co cn
CTi CT* CTi
CT* CTt ' — CT* CT>
sssss
CT* CO '*-
CT* CT* CT*
CTt CTt CTt CTt
CTt CTi CT* CTt
CT»
CTi PO
CT* CO
CTi CT*
CT* CT*
CTi CO
CTt CT>
-CM^U,
£
_
cn
cn
cn CT- cr-, cn
CC CT' CT* CTi
cn CT' cn CT
in
CT*
co cn cn
CT* CT- CT*
O
CT*
CT*
cn CT-r-^r
cn cn en cn
CT* CT5 ^^i.
CT> CT> CT-
CT* i^
CT* cr.
CO CT*
cn cn
CT* CT*
^
CO
CT*
cncncn cn
cnSc^ S
CT*
CT*
CT*
PO CO CTi CTi
?;§!?; si
CT* UT>
IO CTi
CT* CT*
CO IT)
m cn
CT* CT*
r— tsj PO <«• in
f
cn
cn
Cr.i-.CT-CT.CT*
CT' cn CT cr. CT.
CT CT. *T ~~~
?:S?S
r^ cc a-; -n cr.
cn ^n cn cn cc>
-cr. cn cr. CT* cn
CT* co cn
cn cc VD
cn CT* cn
c\j cn CT* cc
CT* CT* CT* CT*
CT* in r^
cn cn cn
CT* CT* cn cn cn
CT, VDVD
CT* f^- "^
cn cn cn cn
cn cn CT' cr
CT* cn cn'cr
CTJ cn
cn cn
CT* cn
cn cn
cn cn
CT* cr.
CT* CTt "-T>
cn CT* co
CT* CT* cn
CT,vnCT,CT,CT,
CT* CTi CTt CT* CT*
PO
si
cn a*
CT* CTI
CTi CT*
cn CT*
CTI CT*
••— CVJ PO tS1 If*
^
cr- !.
CT-
CT>
a,^,!
cn cn
m ;
cr.
CT. — cn cn «~^
cc' CT*- cn cr* CT*-
CTI cn cr* cn .cn
0 !
=c •
cn
CT* CT* CT* CT> Cn
CTi O
CT* CT* '
^ ^r cn CT, rv-
CT". cr. cr. cr. x
cn CT CT. cn cn
CT* CT*.
CTi CT*
CT* CT*
cn PO P\J
s;g?,£
CT* CO I
cn CT*
CTI ,
CT*
CTt
—- (si PO «s- in
_, ',
, Overlyinq oil shale
, Uooer Mahogany Zone
, Mahoqany Bed
, Lower Mahogany Zone
. Ricn oil snsle
•— c\j n ^ vr,
o
o
113
-------
(NJ
Cn
Cn
Cn **•. — *--
Cn *o CO Cn
Cn Cn cn Cn
Cn O"> Cn C\j
Cn LT> Cn Cn
cn cn Cn cn
Cn Cn cn f""»
S £££
Cn Cn in
Cn Ol cn.
Cn Cn cn
Cn ^- Cn Cn rv.
a! SJS SSI
CO O"> cn
Cn cn cn
Cn f*. en cn ^O
ggsss;
» o;^
O"i CTi Cn
Cn Cn cn
O"> O Cn Cn O
cn O^CT^ S ol
°o
ai
ch
CO «3-
CO r^'
cr> cn
en ^o u->
CTi CT> CO
a; cno;^
Gh o^> cr> cr>
co «f
eo «— cn o
en en en in
en
en
en
en oen
en en en
en en co
8 g! 9
>
cn
en
cr>
cn
cn
cn
cn
cn
cn
cn
cn
O»
f-. O
cn cn
cn cn
O
CO
cn
— cn
cn cn
cn cn
cc cn
LT> cn
cn cn
tr> n
CO ^O
cn en
•3-
CO
cn
tn
CO
en
us
cn
en
_
in
cn
PO
cn
cn
ro
cn
cn . — o cn cn
cn co cn cr> cn
Cf< fM r-.
CTv CO ^^>
cn cn cn
cn cri ^r>
cn cn «^.
cn cn cr>
CO
cn
cn
cn oo -x>
cn cn cn
CT> cn cn
cn o
cc cn
cri cn
CO CNJ CO
cn cn cn •
in 10
^ \&
cn cn
cn m m
cn co cn
cn cn o
cn cn cn
cn cn cn cn
Sen" en" cn -
cn co co
cn co o^
cn cn cn
ff-cr, c^w
sg sg;
cn cn m cn
en cn cn vo
cn cncncn
cn CM o
en cn vo
cn cn cn
_
§
>-
Cn . —
Cn X) CT cn cn
cn c^ c^ cn T-
Cn O ^O
cn cn cn
cn cr< cr> i/*
cn cn en cn
cn cn cn cn
cn , vo «r -
cn cn cn
cn cn cn
cn cn cn cn
cn cn cn cn
cn cn cn cn
cn — i-x
cn »**. cn
cn cn cn
cn cn cn cn
o~* tn co
cn ko cn
cn en cn
cn cn cn cc
cn cn cn cn
cn ro
cn cn
cn cn
cn cn.cn
cn cn cn
cn cn cn
Cn r\j co
cn cn cn
cncncn cn cn
cnScn c?cn
cn •— cn m
cn cc cn co
m
cn
cn
cn cn
cn ir>
cn cn
cn co
cn cn
cn cn
£t
>~
cr
cr.
cn
Cn \o cn '•&
cr. cn cn cr
cn Cf' cr Cn
cn cn cn
cn Cn cn
Cn cn CT%
cn r*^ cn cn ^
Cf . cn cr. cn cn
cn cn cr^ cn cn
cn ^3- cn co
cn vc cn cn
cn cn cn cn
cn \D o^ cn cn
cn !Nj cn cn
cn cr- cr cn
cn «g- cn cn cn
cn cn Cn cn cV.
a^ o
cn \o
cn cn
cn r^
cn r^
cn en
cn cn cn —
cn cn cn co
cn cn cn cn
cn cn cn <^>
cn cn cn cn
cn cn cn cn
cn cn ^ r-^
cn cn CT* \n
cn m cn cn co
cn
cn
en cn cn
cn cn cn
*r co cn
cn cn cn
c
»*j
T>
•y>
cr.
cn \o cr.
Cr. cn C1
cn. cn cr
Cn *•*
cn cc
cn cn
cn en cn
cn cc
cn cc
Cn cn
Cn cn
cn cn
cn cn
— Cn
CO cn
cn cr-
cn
cn
Cn
Cn cn r-^ cn
cn cn cn cn
cn
cn
cn
cn cn cn cn
cn cn cn cn
cn
cn
cn cn
cn cn
cn cn
cn ID
cn cn
L.
fsJ
114
-------
l/l
C*J
>. c;
— c: c —
— fO -O f T:
O CTl -C
O CO O L"
CPJT i:
115
-------
CO (Nj Cn.
cn tn CO
cr> cn cn
LD o cn co
Cn CQ cn Cn
en cn o~i CT*
cr en r\j
Cn U~> LO
cn en cn
cn vo cn CM
cn cn cn cn
r-»* *a- f\j
\& Cn U^
Cn Cn Cn
r-. fO ur> CO
cn ^ cn cn
Cn Cn Cn Cn
CO Cn Cn
Cn CT^ CO
CT* Cn CT*
*— CNJ PO nr LT>
T)
o
Cn Cn *^»
Cn en Cn
Cn cn Cn
-T- Cn
Cn TI'
CT. CT>
CTxcr-^cn^
CTi CTi O^ CTi Cn
O^ CT> f^l
CT^ CT» CT>
(T> ^v
CTi Cn CT
O^ CT> CTi
(^
CO
CT>
o cn —
un CT* ci^
CT> CT1 CTi
C^ C^ M3
O^ O"* O"i
o^ a^ cn
CT> CT* ^O r^~
CT% CT> CT> CTi
cr. CT. cr^ cr.
cn
CTi
cr^
CT> CTi
CTi CTi
o^ cn
O
cn
cn
to
cn
en
cn
cn
cn
co r^.
cn cn
cn cn
— csj PO «r u^
QJ
t_5
t-^. ^C
cn cr
">o «3r cn cn cn cn a-, cc
CT. r-.
cn cn
T- cn
cn cn cn cr>
cn cn cn cn
^» cn cn cn cr>
cn cn cn cn cn
<^l CO cn «s-
\O cn cn cc
cn cn cn cr
cn r^ cn rv CO
cr. cn cn ai cc
cn cn cn cn cn
cr.cncn,cr.
cn cn cn cn
cn cn cn en
cn cn cn cn cn
cn cn cn cn cn
cn cn cn cn cn
CO vC cn
cn co en
cn cn cn
O cn cn cn
cn cn cn cn
f) f) CC CC
<*D cn cn cn
cn cn cn cn
cn co ro
CT» Cn o*>
0*1 cn cn
cn co cn
cn \o cn
cn cn cn
^- cn cn r—
ut cn cn \£>
> — e\j ro ^- LT>
0
C_)
en CTI
en cr.
cn cn
^
CO
cn
cr, O-. er. cr
Cn cr- cr. er-
cr. cr> cn cr.
er, cr. -
cn cr> •&
cn cn cn
cr T* cn
cn cn cn
cn cn cn
^ CM
cn Ln
cn en
ro •—
CC CO
cn cn
en cn ^>
cn cr -^
cn cn cn
cn cn <^; cn
cn cr. cn cn
cn cr.cr.cn
LO
Cr.
cn
cn
en
cn
LT> «^J
i«^ cn
cn cn
CO
cn
cn
cn
cn
cn
o
CO
cn
— c\j PO ^- tn
t-
t_>
!
^ cr. «^
cr. a~,
. cr. cr.
'. TT cr
•JD CO
; cn cr
. cr. cr.
cn cr.
, er. cn
cr. : 7C cr
Cn . £> •—
cn • crv cr-
cn f^
, cn cc
iCncr
• — • Cn cn
LH cn cc
cr. ; cn cn
en • in
T^ . CC
cn cn
i
Cn m
: cn cn
i - CC
! cri
• cn
cn
• cn
' «3- U1
:" CO cn
cn cn
i
' •— \£>
' co cn
cn cn
tn m
[ k£> f^.
cn cn
, cn \o
! Cn CO
1 cn cn
CO
cn
i
i
— cvj m ^r u->
» •
o
,'
Overlying oi 1 shale
, Upper Mahogany Zone
, Mahogany lied
, Lower Mahogany Zone
. Ricn oi 1 shale
— CM fXjT U-*
Q
O
i_
0
116
-------
^». '
3
,C
4-1
C
O
0
trt
c
01
O)
fe
in
in
cn
cn *~~ en CTI co
cngcn cn£
o
cn
PO cn t-^ ^-
£ S££
cr-CT-wo,
S£S!i£
o, 0,0, 0,0,
sssgg;
o>o,o.-~
cn CTI cn co
CT» cn CTt cn
Cn CT* CT* CTt
cn cn cn i —
cn CT> cn CT*
CT>CT* cn CTiCTt
cn cn cn cn CTt
cn CTt cn cn CT»
in co cn
co *— cn co
cn co cn CT*.
cn cn CT> CT*
cn co cn cn
CTI CT* cn cn
0,0-0001
en CT* cn CT*
co CT* *•"• cn
cn cn co CT*
CTt cn CT* cn
CT* cn CT*
3
O
wo,
cn cn
cn cn
cn cn
cn cn
CT,o,CT,cr,LO
CTt CT* CT* CT* CO
cn CT* CT* CTt CTt
cn PO ^
CTi cn cn
PO cn CT"t
co CTi. cn
cn cn cn
in
CO
cn
CTt CM
cn cn
cn cn
cn i*-. in
CT* CTt CTt
CT* cn cn
CT> cn co cn
cn CT* co CT*
CTt
CTt
CTI in ^~
CTi CT* ^O
CTt CTt CTi
CT*
CTi
CO
CTi
CTi
en
cn
r*. CO
CT. CTt
r- CM PO *t in
£
cn CTI cn
cn cn cc
cn cn
CT* CTt
cn CTI
a>a,cr,c^
SSSS?
0, u^Ln
0^ CC oi
CT> CT- Q,
CTt CTt CT,
si ss
CM
CTi
CTi
o cn co
co cn cn
cn cn cn
cn CT* c^
CTt CTi Ln CTt
CT* CTt CT- CT*
CTi
cn
cn
cn cn in
,_
CTI
en
cn
0%
cn
CT>
CT*
en
CTt CO
CT* cn
cn CTt
«— CMPO ^r m
UJ
cn co •
cn cn
cn cn
cn in
VD CTi
cn a*
cn
cn
cn
CTt
cn
*r>
CT*
cn
PO cn
CT* LT1
CTi CT*
CTi CT*
CTi CT*
CTi
«3
CT*
^- CM PO ^~ in
«=r
cn
cn cn
CT* cn
cn CT.
^3 in
cn •-.*
cn CT* cn CTI
CTI cn cn CT.
O-CMWrn
cn cn cn en
cn cn cn CT*
cn cn CT* cn
CT*
CO
CT*
CM CT* CM
co cn cc
CTt "0 Cn
CTt -^ CT*
CT* CT* CT*
cn O CT* cn cn
CT* CT* CT* CT* CTi
CT*
CT*
CT*
CT*
cn
CTt
u~> yD co
CT* CT* CO
CT* CT* CT*
VD
CTt
CO
cn
CT>
CM CTt
in in
cn cn
«— CM PO ^- m
CD
CT* -V
; cn cn
LO CTi
CC CTt
CT* CT*
o. jo-, a. o>
CT* CT> CT- cr-
CT* CC «-•
cn . CT' «^
cn cn cn
cn cn cn
cn ! cn CT.
CT* • CT* cr>
PO
cn
cn co
cn cn
cn cn
cn en LT
cn ' cn f*-.
CT*: CT* CT-
CT* CT> O CT*
cn; cn cn cn
cn. cn CT- cn
CT*
CTi
CT*
m in
cni CT*
cn; cn
cn
10
CTi
, CT.
CT*
CTt
CO
i CTt
*— CM PO ^- tn
ts
OJ OJ CU
— c c
*o O O
Overlying oil s
Upper Mahogany
Mahogany Bed
Lower Mahogany
Rich oil shale
a
0
117
-------
•o
0)
=1
C
4J
g
0
C
QJ
OJ
cn
OJ
r:
•o
QJ
&.
a
.2
C
QJ
QJ
CO
O
m
OO
J
OJ
"o
31
L.
O
cn cn cn co
cn cn cn en
cn cn m
cn cn co
«• c*
s si
in cn cn
g£S
oo cn
cn in oo
cn, co r*.
PO CO CD
g sgi
CO •""•-
£££
a,^o>a,o->
SSSSS
CO
m
cn
CNJ O '--
Cftr^. in
cncn cn
Sen- S
CP» CO ^ PO
en" cn »n co
cn OD Cf»
-~«»u,
z
CT, CT>«:
& SS
cn
Cn
cn cncn
en en cn
Cn CO
cn cn
Cn cn ro
cn cn f*-.
cn cn cn
cn co r"»-
CO cn cn
cn cn cn
cn
m
cn
Cn en in cn
cn cn CT^ cn
cn
cn
cn
Cn in
cn cn
in
CO
cn
CO
•— P\J PO ^f in
U-
3:
CO
en
cn fO cn ^*-
cn co cn m
cn
cn
cn
CD cn cn
cn en co
cn cn cn
i — O cn
cn cn cn
^0^,0
cn CTI cn cn
cn cn cn cn
Cn v£i en <3- ^
sssss
cn co cn
cn *3" cn
cn cn cn
cn in oj
cn in in
cn cn cn
Ch cn co oo
cn cn cn co
cr> cn cn Cn
CTX^CT, a,
cn cn cn co
cn co cn ^*
cn cn cn r^*.
cn cn cn cn
cn cn in cn
cn cn cn cn
r— CM PO ^ m
cn
cn "y>
Cn cn
00
m
en
cn cn cn en
cScn1 £5
ro ^~
CO cn m
cn cn cn
0% ChO-.
cn cn en
cn
cn
cn
cn
. ^ ^r
cn cc
cn cn oo co
Cn cn en cn
cn cn cn cn
cn
cn
cn
cn
en
cn
cn
cn
O
CO
cn
-~«*«
^
cn cn cn
cn cn'cn
Cn cr>
Cn cn
cr. cn
cn cn cr. cn CT.
cn cr> en cr cr
cn cn <£>
cn cn cr
Cn en cn
cn cr. cr.
Cn en cr-
CO «3"
m cn
Cn cr.
cn —
cn cn
cn cn
cn cn CC
cn cn cn
Cn cn cn
cn cn **-*-*
cn cn.cn cn
Cn cn cn cn
CO
Cn
cn
cn
cn
CT\ cn oj
cn cn m
in
CO
en
in
cn
cn
cn .—
cn m
cn cn
O CO
cn cn
cn cn
r— oo o*> ^ m
to
O O- QJ cnj=
O cC O in
CTJZ J=
t. QJ O QJ JZ
QJ Cl C * O
•— c\j co ^- in
118
-------
~
•o
QJ
3
C
!*j
c
o
—
trt
c
OJ
QJ
QJ
00
jJ
c
OJ
"oi
CO
o
u_
t/1
QJ
3
'«
QJ
(J
C
u
6*-
*§,
"t/1
i—
(J
4->
t/l
*P
lO
u
"oi
.0
m
i—
ID
t—
JO
CU
cn
1C
^
(-0
1
o
s:
•o
O
QJ
to
lrt
m
OJ
J2
in
U")
oo
£
*•«•*
m
*~~
in
00
~
in
in
oo
VD
•— -
*-v.
—
m
00
—
in
m
OJ
ID
m
m
oo
UD
m
m
OJ
¥
in
in
OJ
ID
in
QJ
o
re
u
o
0
co en
cn cn
cn cn
CO
r-.
cn
O
en
cn
OJ
CO
en
f*.
^
en
CO
cn
cn
cn
cn
cn
rv.
Ch
fV,
en
cn
^— oj f"> ^ m
c
3E
cn cn UD LO
cn cn cn cn
me* cncn
en cn Cn en
cn cnen en
cn
in
cn
en
cn
cn
cn cncn
en co cn
en cncn cn
Cn cn cn en
en cnen cn
f — cn ID
en CO en
cn cn cn
cn ^- cn
cn >D cn
cn cn cn
CO CO
en cn
cn cn
r— <=r cr. en
S££e£
^ ^-oo
ID cntn
cn cn cn
•— cn vo
co cn ^»
cn cn cn
cn cn to co ^o
cn en co cn co
cn co O
O^ cn f^.
CTI cn CT"I
cn O cn
Cn in cn
— ojm«-in
o
E
en co VD
cn en cn
0^003,-
Cn r^ o^ cn CO
cn cn
cn cn
cn cn
cn en ro
cn cn cn
cn cn
en cn
cn cn
o~> ^— in
cn co r--
cn o-t cn
cn oj ^-
cn cn cn
CTi f^«* CO
cn r-. cn
cn cn o~»
cn cn
cn cn
en cn
Cn cn cn •—
cn cn cn co
en cn en cn
cn c\j
cn co
cn cn
in in
cn IJD
cn cn
m en
cn cn
cn cn
. Ch UD OJ ^3-
o> ID in co
cn cn o*> cn
vD Oj O1*
rv.cn cn
cn cn cn
^— oj o1} ^- m
z
en
cn
ro
cn
cn
oj cn
in CC1
cn en
en en
cn en
cn en
CO f*}
CO CO
cn r^
Cn cr.
OJ •—
cn cn
. tn
cn
cn
in cn
cn cn
cn cn
cn UD
cn en
cn cr>
CO
cn
cn
tv, cn
CO cn
cn cn
^
cn
Cn
VOU3
in rv.
cn cn
cn o
cn CO
cn cn
^- oj o-j v m
ID
• zr
f
cn cn co
cn en -7.
cn en er.
en co
en en
cn en
en CT> CT* o~- "5>
cn CTI o~< cr cn
en en er. en er>
cn ^cn
cn en cn
cn cncn
en en cr.
cn cn cn
ID
CO
cn
n cn cn
>JD cn co
cn cn cn
m cc
cn cn
cr. en
cn en — cc
cn cn cn en
cn
cn
cn
in co ID
cn cn co
o~i cn cn
10 cn
cn ID
cn cn
CO
CO
cn
cn m
cn p-s.
cn cn
m co
co cn
*"" ^^^ "^
^
cc i
e>-.
'
r^ LnU Cr.-
cr. \o CT. cr. cr
cr.erpr.c-" .
,
er. ^r —
en en ^
en er. o-
cn j-,.rr. er.
cn cr !er- cn
en en ier. er. c;
cn cn er. cr- cc
en cn .cn en en
in CTt ^D
over, cc
cn.cn cr-.
1
cn en oo
cn cn cn
cn - ,en cn
!
cn m'en cc
cn en;cn en
cn cn en cn
cno.cn en en
en cr- cn en er.
cr. en Jen en cn
o^ .cn
cn cn
Cn (cn
in cc.cn —
SS^SS
. — i-^ ro
iD 'CO <-**
cn ^en cn
.
!o •—
ien UD
cn cn
1
m co cn
CO.Cn cn
i
co ,co cn
c^ joi c^
sm en VD
fv, cn co
i
••— esj i co ^- in
I
yz
QJ QJ QJ
«— C C
trt
>. >- QJ
— C C ^~
o cr- a- cr-jr
O CO O trt
. CTJT jz
••- IE C *E "-
>» TO 0
•— i- cr- u
u QJ o
-------
^_^
3
C
C
O
c
1
*OJ
CO
o
in
o>
=»
m
O)
o
c
o
tt-
e
cn
*/»
r—
m
o
4_>
in
4-1
5
u
O)
i
=
.c
^
A
0.
n:
n
I
CJ
s
^
cn
CT* CO CTi CT*
CT* CT* CT* CT*
cvj 01 CO
g ss
00101
gjgig
t-00.
Sic? a!
01-^ OUT!
• • • •
01 OI 01 01
01 01 oioi .T
.gg'gg's
OlOi 01
sss
010,010.
SSgg
in o cn co
sg'ssi
nor^-a-
cn cn CT) cn
a, o>o<
S SS
O en CM
g sis
r^ «•
ot co
— <\jir>«-ir,
O-
C^ 00
S a!
CTS 0,0. a.
ssgis
a. a,
S a5
tr, 01 a.
g s§i
CM cn
cn cn
cn ^
* _J
cn cn r
cn cncr* CT*
en SCT. CT*
CT*
CT*
CT*
cn
cn
cn
cn *y
cn cn
cn cn
in
CO
^- CM PO ^- m
a:
cn
CT*
r~ CO Cn CT*
ggsJg;
««* r^
U5 CO
CM cn
cn CT*
cn r^CT* UD
%%%%
01 CT>ai CTi>=r
g SSSS
OlOiW «)
CT> CT* CT* CTi
01 1001 .s-l-
g Sol So!
CO CO
01 01
Oi Oi
f~ WCT, 0!
co ^o CT> cn
CT* CT* CT* CT*
CT* VO CT* CM
S5SS
cn PO en ^~
cn co cn co
o^ cn CTI cn
cn o^ cn CT*
O^ Ol CT*. CT*
en en m
cn cn CT*
cn cn cn
co O"* cn o> r**
cn SS Sen
*— CM PO *j- in
to
CT* CT* CT*
CT* CT. •£>
— CO O
i*^ en cn
CT* cn cn
CT*CT*cn CT-CM
CT^c^C^ SS
cn cn ^~
CT* CT* CT*
CTI cn CT>
CT* CT* CT*
r-N. cn CM
CT* a* en
cn CT*
cn cn
CT* CT* f-- O"*
CT* CT* CT* CT>
CTI CT* en CT*
CO
cn
cn
CT*
cn
CT*
in cn m
cn cn us
cn CT* cn
cn
cn
CM
cr,
CT*
10 1^
in cn
cn cn
^ CM ro «?• in
u
Ln
CT>
CT* CT> CT*
CO CT* 'D
vO
CO
en
ro Cn f*^ ^~
t*-* cn cn CT*
CT* cn cn
CT* CT* *-D
cn CT' en
cn cn cc CM
cn cn cn cc
en cn cn cn
cn cn CTI CT*
CT* CT* cn co
cnrocn^r
CT* cc cn to
CT* cn cn cn
cn CT» CT* cn
CT* CT* CT* CT*
CT* CT* CT* CT*
— CT* in
CT* CT* Cn
CT>C*u=CO-r,
CT* 0s" CO CTi CC
r--w ro in CO
ssss
cn in cn cn
cn CT> cn cn
cn CT* cn CT>
0.00.0.
g sss
r— CM ro *T vn
CO
c
'
en
cn
cn
cnCT-
en CT-
CT-
en
en
en
CT*
CT*
«3
cn
en
cn
en
CT*
CT*
CT*
cn
CT>
CT*
e
31 Cr. t~)
y> en cr.
7* cn er.
7*
T*
3~-
3*. er. cn
^ CT. CT-
^r ^
cr" cr
cr> cn
cn en
cn CT.
cn en
^
CO
en
cn CM
cn cn
cn cn
CT*.C
CT- en
cn cn
Ovccn
Cn CO C"
CT* CT» CT'
0-
cn
cn
CT*
CT*
CT*
CO
cn
cn
^
Cn
cn
cn
CT*
cn
PO U5
cn cn
cn cn.
PO ^- in
QJ QJ QJ
•— c c
(DO O
JT r**i i^J
I/*
— c c —
o cr QJ CTJT
O ^ O i/*
i5 15:i
t— i_ cn i-
W QJ O QJ £
>• Q «0 O •«-
O =• ^ -JCE:
^" CM PO *5f in
CL
3
&
120
-------
QJ
U
c
o
55
•— . cn
— CM .ro *f in ~-
ro
CO
cn
in
Cn CO
cn cn
CH V£>
S £
o.o-.cr,^
££££
0. CT-LT,
cn cn co
CT, CT,^
cn cn cn
^
UD
cn
cn —•
cn co
•— cn ^3-
Cn cn cn
cn cn cn
0. cr.ncn
cn cn cn cn
O
CO
cn
cn
cn
\£> cn
cn cn
ro
cn
px.
cn
cn
£
CO
\o
cr.
~- CM ro ^- in
t—
m cn
cn cn
cn cn O
£ ££
, cn cn cn cn •—
cn cn cn cn r^.
vO «•
cn cn
cn cn cn
cn cn cn
cn cn cn
i — cn
cn CO
cn cn
cn .co
cn cn
cn cn
cn cn ^- en
Cn cn cn en
LT>
cn
cn
cn co
cn cn
cn cn
O
r-*
cn
ro
CO
cn
cn
cn
cn
r*. co
cn cn
^ CM ro ^ in
.0
I—
Cn cn —
cn -r> f^
cn en cn
Cn cncn
Cn cn cr.
CM cn CO
cc cr.cn
cn cn cn
cn
cn
cn
^ f-
«JO CO
cn cn
CM cn
cn cn
cn cn
cn
cn
cn
cn
cn
CO CM Cn
cn m co
cn cn cn
V£>
CO
cn
^
cn
cn
0. -
r*. in
cn cn
f— CM ro vf in
£
en r^rM.
cr. cc -D
cn cr.-cn
cn
cn
ro cc cn cn
cn en en cr.
en O ro
en co cc
•— en cn
cn cn cn
cc
cn
- ^r
CO CO*
cn en
Cn ^— in
Ch C^ C?
co co ^r cr
g g?is
CM
cn
cn
in •—
cn co
cn cn
»— CM ro ^- in
£
— cc en cn
l_ QJ O QJ .C
Q? Q IT SO
O "• E —) CC
121
-------
n
NJ
r>
n
n
-\j
.n
£
PO
£
\T>
LO
ro
£
If
LO
2
LO
PO
^
LO
LO
PO
tn
PO
vo
PO
«x>
in
5
OJ
S
LO
CTi
•"^ LO en cn ^"
CTI cn cn cri cn
cn cc
CT. en
cn cn'rx.
CTI cn en
en CTI CTI
en cn cr* cn
cn CT. en CTI
ro c;
cn CTI
CO r^. \O CTi
££g §i
CT. f"-- CTi
CT> CTi CT>
CTi CC Oi CTi 3^
£££££
O CT.
r-* CT*
en cn
ro vo en o
g^s§i
^__
CTI cn
i —
in PO
VD CO
cn CT.
O CO
in co
5 S
~ copoo-m
^
r^
LO
CT
«3- CTi
Cn CTi
CTi CTi
CT. PO CT.
g££
CO
cn
CT>
f^
cn
^3- cn
co* m*
CTI cn
u=
WO
o,
^ 0,
ss
^
Cf,
i
un
0,
in
CO
f— oo ro «a- tr>
3
,3.
ra
a,
o, o.
S ?
0,0,0 0,^r
cn 0s* CTI CT" *o
cn cn cn cn cn
PO *a-
co \o
cn cn
LO
CO
cn
O
cn
^_
CO
en
cn .—
cn co
CT. cn
CT* CTi
CTi CTi
en
cn
in
cn
PO ^*
cn in
cn cn
^r^«-m
^
CT.
CT.
0,0,^.
CT* cn vc
cn cn
cn en
O~. CC CT* CT' <~O
CT. cn cn cn cn
0, CVJ-^
cn r**- cn
cc cn cn
cn cn cn
CVJ
cn
en
CTi LO
CT* CTi
cn cn
0, r-,0,
cn en cn
Cr. CT* CTI
cn cn ^3- en
cn CT-. en CTI
cn
cn
cn
5
CT* cn PO
CTi CO vD
CTI CT. CTi
cn
cn
CO CO
cn in
cn cn
PO in
CO cn
cn cn
-r^^Ln
s
0,0.
Cr. CT-
CT. CT.
m
CT
co cr. cn
cn en cn
en cn CT.
CT. co en cn
CT* ^- cn CT.
en cn cn CTI
CT> ^. CTi CT1 CC
CTi LO CTi CT> 'J~>
CTI CTI CT> en cn
PvJ -.ro
CT> en cn
•*o cc CTI cn
cn UD en CT*
cn «-^ cn —
cn cn cn cn
en cr en cn CT.
cn •-- en cn en
CTI cr. cn cn CT_
en
cn
en
cn
en
en
cn cn co
cn CT» CT*
cn co
cncn
cncn
O cnco
PO CO
r*v cn
cn cn
— co PO *O" in
£
cr.
en
cn
~
CT.
cn
0,0,^.0
cc o'.o- o.
o, O'. '&* r;
CT, ^CNJ
ot :o-
o, jo,
ro i —
'O, O,
o, cc o,
oi cc o,
o, cn o,
-.
' CT-
CT,
0, .
0> !
cn
CO
cn
r— PO PO ^- m
rv)
OJ . « 0
— t. cn i_
i. QJ o a? JT
at o c 3 L,'
> O 'C O •«-
o n T: -JOT
•— PO PO ^- m
a
o
i_
CJ
122
-------
§
I
£
V
s
*— tv ro «• ir*
123
-------
I
i. ca t> o —•
; c ^z -JG;
124
-------
cr cc
CT r*
cr. i-. CT- cr
I cr ve cr> CT
§
I
cr. cr CT
C?- Cf"
CC "* *r
CT cr
cr.
cr
3
(_J
cr u= cr cr
CT> cr. cr cr
5^ 5
cr cr cr- O
c" CT
CM
US
CO
cr*
iB
C3
cn i-.' cr cr
CT. cr =r CT,
cr cr C^
cn Cr. cr tf
_ „ ^
C
CT. CT. cr>
LT*
cr.
t\j
\f C
CC cr"
tn a-
3
UJ
cr
cr
cr C
cr cr-
=c
CTi
vD
CC
cr.
u.
CT cr C 5-
CT cr ^
=r CT' C* cr cr
cr cr cr cr. cr
CT*
CT
2 i.
in
cr-
cc
cr.
u.
CT CC 3" CT
CT cr- cr CT
CT- CT^ tf
0- cP C-
er cr cr. CT
cr. cr cr cr
cr
CT-
in cr> c
CT^ cr- CT
l^. CO
(£ 0
3
125
-------
TV Cn Cn
vD Cn Cn
Cn cn Cn
_ r^ 0
CO Cr CC
cn en cn
cn cncn
cn en cr
Cn Cn CT'
cn cn cn cn cn
cn cn cn en cn
O
en
Cn
Cn Cn ^D
Cn cn r-J
Cn Cn O"i
^
• cn
cn
cn
Cn
Cn
CC Cn Cn
Cn Cn CO
Cn CTi CTi
C^
CT%
CP>
— CM PO ^-tn
I
en
en
(^
cr> u->
CO f^
CT> CTi
O
CTt
CT\
CO
cn
CT^
CO ^*- f^-
tTi CT^ O">
CT^ »~-
O^ O^
CT> CTi
CTI cv cr*
CTi CC CT*
CTi
CO
en
en cr> cr>
CO CTi CA
CTi
VD
en
cr. *r ro
cr* en m
O** en en
i— . cr> ro
O^ CO CT>
en en en
\o
en
e^
"* °
en «JD
cri cr*
— oj m «• in
*4-
a:
cc
en
en
en vr>
cc c^
en en
co en
en o-
cn en
en en cc
en r^, <-^
en en en
v£3
en
en
id
en
en
CO
v£>
en
in CO
cn en
en en
,—
en
^r
CO
en
un \£> en
^o en r-^
en en cj>
cv
en
en
cr>
cn
cn
•— PU ro
VC
cn
f*i in
CO f"-»
cn cn
ro
cn
cn
»— CM ro *r in
*?
m
m
cn
O
CO
cn
(^ u->
CO CC
cn cn
"^ CO Cvl
CC ^ CO
cn CT\ cn
cn o cn cr-
cn cn en cr
cn cn en
en cn cn
Cn cn cn
en cn — cn
Cn cn \o cr>
cr-. cn cn cn
^3-
Cn
csj cn
cc cr.
cn cn
(NJ «3- cn
cn cn in
cn cn cn
in
in
cn
m •— ^~
i^! co cn
cn cn cn
r~~ f\j ci ^r in
'
cn I
cn
cn cn —
cn cn cc
cn cn en **i
CT^ cn cn cn
Cn cn cn cr-
vO
CO
cn s
CM cn «r
cn cn co
— CM f) 'tv m
cr
s:
a; m cu
— c c
fO O O
£ r»j »**J
. Overlying oil S
, Upper Mahogany
, Mahoqany Bed
, Lower Mahogany
, Rich 01 1 shale
*- f\j n ^- m
a
o
t.
o
126
-------
2
=-'[
s
127
-------
X CC 0* O-
C —'
>» -o o
128
-------
•o
o>
3
C
4-1
§
L.
QJ
*
"O
c
to
^
o
eft
tJ
1.
QJ
C
'i
CO
.c
•o .
O)
t-
ex
VI
c
a)
1
GJ
CO
«er
fe
**_
i
**
o
%
o
i,
en
•O
O
trt
•*•
IB
^
OJ
1
a
3C
™
O
1
o
o
QJ
O
t_J
fsl
4-*
IB
3
in
£
^
~
KJ
„
—
m
lO
^
m
m
vo
m
IT)
IO
in
in
tvf
^~
*"•«.
in
in
IA
in
01
I
5
-
ID
CT>
O
5;
CT*
CT>
0,
m co
CT> r-^
t
**
m
_ ^.
CT» en
CT> CT-
C^ CTt
en CT*
CT. CT\ CT. CTi CT*
gssss;
CT.
S
"
^ M ro ^ m
L.
CT>
CO
CO
CT*
CT>
CT.
Vf (NJ O
CT* CO CC
0*0^^ 0,
ssss s;
CTl CT^ ID CTl
g; g;5;g;
en cr* m c^ «3-
SSSSS
t-. win
g; ss
a*
o!
CT*
CO
si
o
si
CT> r»«.
C^i . CTi
-c^^
IB
CT. CT.CT,
S SS
CO
§i
CT" CT> CT* fvj
c^S & §!
CT* O
s CT!
10
cr.
f^
s
CO CO
CTi CTt
-c.^^.r,
|—
CO
CT>
(Nl
VJD
CT.
ID
*D
cr,
cr* cc CNJ
CO CC CC
CTI ^^ <"•") CTi
CT> CTi CT* CTi
f>- CO
cr> cr
CO
CTi
CT1
ID
cr*
ro
s
CO CT. «—
S gg
^- CM ro *w tn
c
1—
<-o m
in cc
CT*CT*
^O (Nl
CC ^
CTI CT.
^^CT.O-.j,
S S CT. S S
CT* CT> CT> ro
CTi CT> VD CO
CT* CT- CTi CT*
cr* >^. CT. '-n
i£ CT^C? 0^
CT,
CT*
CT«
in
CTI
cc
(»^.
sJ
•— Cxi r^-i ^ in
*—
-
**-" CT- '^O
CT* CT' CT
: **.
CT.
CT- cr. '•-*"
,™.* Q.' '^
6^ CT^p
CT- CO U~,
CT^ CT CC
CT CT iCTi
CT. ,CT- -T.
cr* |CTI cc
CT. CT, CT.
(NJ
CT>
CO —
CT. CTi
• cr>
I CT*
in LD
cr CT.
,
^ CM PO ^- in
=
QJ QJ QJ
11 1
<•"
— C C —
O CT1 a- CTiT
O 2O O i/i
CT-JZ JZ
C TJ >. «D —
>* % o
^ QJ O QJ £
a> a c * o
> Q (0 0 •*-
o =3 s: -ice
«— co ro *3- in
Q
3
O
129
-------
'.- I
cn co cn cn
CT> cn o —
CTI CTI
en CT
en en
e
CO
CVJ O CT»
co in CTI
O) Q j
> Q '
o =3:
i
(V
5
— fM m «T UD
130
-------
CT» CTi CT> CT<
cn cn ro cn
^ ST
cn cn
en
co m
^c cn
CTI CTI
CT7 crTS"
cn co co
cn cn cn
CTI en co
cn cn in
f- £T
CTi in
cn CT>
CT:~
CO CTi
CTi CT-
o"
cn
^ CNJ
CT> cn
cn p"-. CTI
~
— tsj ro «• m
1
o
c
r*~)
CO
cn
cocrT cn
£5. s
o
cc
ZT
CC
cn
S
sis
CO CT- CTi
c7
CC
cn
cn
cn
cn
CTi CO
i li
CT* -^
cn t^
0- cn*rfo m
££E££
)SI
3
CT. .
^
CTi
cn
O
cr.
cn
cn
Cn
cn
cn
CT-
CT>
CTi *~~> CO
Scne^
cr7
Cn
CTi CV \O ^
ST
CTI
^TCTT
CTi en
cn cn
CO UD
cn cn
CTI m co
cn co m
cn cn cn
OJ
o
5
CT'
"cn"crT
er- er cr
en C"
en cr.
-- -
CT" x" =-*
et> cr er-
CO
cn
in
cr.
cn
cn
~c
ti
S" cF
CO i--,"
er- en
CT" cc"^T
cn cn cn
"c?
CT> er
•— CM t~> *t in
(U
I
O
i-^ rr
^57
a- er
1 — er> -^
•-- - CT in
er. en er
CT
Cn
en o
C-' CT>
cn er.
cc
Cn
en
CT>
a--
T)
QJ
"0
•— c c •—
o cr QJ cr c
O CO O tft
QJ Cl C » U
> a *D o —
oez; s: _i cc
131
-------
CU QJ
•— c
*o o
.sr f-j
t/>
r*j
_=• ?3
•*— i <0 ^~
•f- Z C E —
>> fO O
•— L. Ot S_
U CL1 O Qj .C
oj n. i: i o
> n. TO o —
132
-------
° ° ^ C ~~ ° "~ °* "~ CT TT kT" — C — (T* — —* —* X .--' _" „" " "* "* ^"* *"' ~ ~- "• "• '.
1 <•-) o-, f^, ,
_
~ ^
~ c> o c- o c c o o c
?• c- cc o— ^*^-cc<~'— ^-r-c!^. ^S"^^" "~
==" 5T C IT- (^ o = ^r* >^' f~- —* X _" ^-' „' * * * ""• • • • ". "*. "-.
=£^_o or ^---=r^j£.<
•c c
!- C
-; —
"§ O-^
C fO
(T3 ••-
C O1
!fex
133
-------
aali 17. Average rle-ie'n content and standa^,-! deviation f.|' st'-at icraoiu zoi-.-s in :ai-e
Element
AU
As
B-a
^{iT'in )«
C(o-3.'«
Ca1*
Co
Ce
Co
Cr
Cs
Cu
Dy
^J
FS
-e*
Ga
Hi
Hg
Hf
<.%
La
L j
Mg%
Mn
Ko
NU
NcS),
No
Ni
?:>
So
Sc
Sni
T6
Tn
Ti*
U
V
*'
Y
YO
Zn
Zr
Overlying Ol 1 Snale
Average
Value
3.5J
34 . 2
3'j
519
5.55
6.S5
12.3
0.4;,
33.'
7. "3
3:.o
4 . 7 5
27. 1
2.1!
0.5oJ
0.124
1.95
3.?
l.O?
0.053
' 1 . 7 j
I.7-
li.O
0.150
3.'4
351
14.4
'0.41
1.35
16.4
19.4
ii.3
59.9
1.39 -
5.33
1.39
2.53
753
0.445
0.334
6.11
0.130 -
3.53
31
1.07
10. j
1.19
64.2
48.1
Standard.
Deviation
0.59
ci.9
21
44
.69
1.94
? .2
O.li
5 .5
1.49
7. 4
0.65
6.4
0.30
0.031
0.037
0.35
1.5
0.?D
O.O.'O
0.29
0.66
2.5
0.024
0.52
4»'
5.0
0.14
0.33
2.7
3.1
5.1
12.5
0.33
1.11
0.42
0.35
0.073
0.053
1.12
0.032
0.94
16
0.37
1.3
0.19
10.7
8.4
Uppe'
Numper
of Average
Value Value
49 4.47
49 33.3
49 109
49
49
43
49
49
49
49
49
. 49
49
49
49
49
49
49
' 43
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
503
4.37
S.OO
8.3
0.73
48.3
9.21
40.4
4.35
32.5
2.73
0.713
0.149
2.31
10.5
1.25
0.061
2. 19
2.77
23.9
0.217
3.40
342
• 19.0
0.51
. 1.32
20.0
22.6
21.4
89.9
1.69
6.95
1.4'
3.45
609
0.555
0.430
5.92
0.182
4.09
107
1.13
14.3
1.54
80.3
58.8
r Manogany
Standard
Dev i at ion
1.03
16.5
47
101
o.?,-:
4.41
2.7
0.13
7.7
1.45
8.0
0.65
5.0
0.71
0.121
0.053
0.44
2.5
0.55
0.019
0.3S
1.55
4.5
0.055
0.35
50
11.1
0.09
0.71
3.S
2.6
5.2
28.9
0.33
1.2S
0.47
0.63
160-
0.129
0.11'
1.25
0.050
1.04
19
0.30
4.9
0.36
12.9
15.6
Zone
of
18
13
}'~
13
13
13
IS
13
13
IS
13
13
IS
13
13
18
IS
13
1?
13
15
13
13
13
IS
13
12
13
13
15 '
IS
13
13
. 13
18
18
13
13'
13
18
13
13
13
13
13
18
18
18
Manoqany Bed I •_
Average
Value
3.10
56 .6
59
415
4.32
15.93
10.0
0.79
35.?
- 9.04
30.7
3.53
37.4
1.84
0.5?4
0.123
1.79
7.3
2.24
0.091
1.61
1.31
17.4
0.14
3/31
23?
23.2
0.65
1.53
14. T
22.3
24.2
53 .6
2.23
5.21
2.12
2.47
632
0.375
0.283
4.89
0 . 1 30
3.33
116
1.45
7.0
1.04
68.2
40.1
Standard
Oev iat ion
0.5'
26.3
21
1.41
5.93
3.1
0.'5
5.9
2.45
5.7
0.33
12.5
0.35
0.09'.'
0.06J
0.35
1.1
0.74
0.044
0.25
0.49
' 3.1
? 0.029
0.93
40
9.9
3. ''3
0.27
2.7
4.'
10.0
10.5
0.33
0.?6
O.S1
0.44
212
0.057
0.057
0.35
0.023
0.30
31
0.50
2 . *
o!?o
12.6
11.1
NUT::.."
Of .
20
20
20
19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
?0
20
?0
20
20
20
20
20
20
20
20
20
20
20
20
?0
20
20
' 20
20
20
i
3.3v
39.3 :
51
449 ;
4.91;
1 1 . '-l •'
11.0" !
3T.5 \
3 . ; •]•
31.1 :
4 . 4 '.!
31.7 -
2.05!
0.56E
0.03C-
1 .97,
7 9 '
1.43J
0.07F
1.9?'
I.-5!
'o'i-7
i 'o; :
-j-7 " 1
19.3 -
0.47 •
1.57'
15.= •
21.6 '
19.5 .
59.5 :
1.76:
K51 i
'.65 :
707 i
0.423
0.353
6.11 [
0.113
4.54 :
102 ;
1.4" '
9.7 !
1.17 '
67.0 •
68.6
Owt' MancgaV l~S'-
neviit ior.
'J . ? '-
'4.-
.p
1 ni
3.7':
T'V-
^ .
~';'
0 .'•-<
0.45
0.13/
0 . J ' j
0.44
0.51"
o.or
0.75
0.55
0.0?4
0.74
31
4 _4
0. 1 ^
O.?7
2 .3
4.5
S. 1
0.75
1.10
o!s5
0 ^a
157'"
0.035
0.030
O.'o24
1 .0?.
33
0.70
2 .5
0.25
11.6
67.8
7
7
7 ;
,
^
„
^
-
-,
i
^
7
7
?
,
•7
,
,
7
7
7
T
~
7
7
-
T
'-,
7
7'
7
7
a ATI concentration values are in pg/g unless otherwise Indicated.
134
-------
Table A-l. Oil shale assays by modified Fischer Retort Method, core hole 15/16. ;
OIL SHALE ASSAYS BY MODIFIED FISCHER RETCR1 !nEIHCD
'APPLE ID
CCS- 860
COS- U5
CCS- 870
COS- £75
CCS- 880
CCS- 885
CCS- 890
CCS- 8S5
LOS- 900
LCS- 5C5
CCS- 910
CCS- 513
CCS- 520
CCS- 925
CCS- 530
CCS- 535
CCS- 540
CCS- 545
CtS- 550
CCS- 555
CCS- 560
CCS- 5t5
CCS- 570
CCS- $75
CCS- 980
CCS- 5 £5
CCS- 550
CCS- 555
CCS-1CCO
CCS-1CC5
CCS-IC10
CCS-1C15
CCS-1C20
CCS-IC25
CCS-1C3C
CCS-1C35
CCS-1C40
CCS-1C45
CGS-1C50
CCS-1C55
ccs-icto
CCS-1045
CCS-1C70
CCS-1C75
CCS-1C80
COS-1CS5
CCS-1C90
CCS-1C95
CIL
PfcRC
5. CO
3.35
3.70
3.30
2.£C
5. 10
4. (5
3.50
4.65
5.50
3. 30
5.30
5. 75
5.70
E.30
t.4C
5.55
5.60
5.5C
5.90
5.30
6.30
8.80
5.20
6. CO
5.30
5.5C
4.50
4. 30
3.30
7.55
3.80
£.CC
3.85
7.50
4.50
S.15
3.55
5.40
5. 15
£.75
4.75
6.30
t. 10
5.10
6.20
4.80
5. CO
WATER
PERC
1.65
1.45
1.40
.65
1.30
1.40
1.20
1.10
1.30
1.50
1.70
1.50
1.95
1.55
1.40
1.45
1.45
1. 10
1.40
1.45
1.25
1.70
1.40
1.40
1.10
1.63
1.45
1.50
1.75
1.95
1.45
1.80
1.30
1.60
1.20
1.20
1.45
I. 10
1.75
1.65
1.30
.50
.75
1.15
.30
1.50
1.55
.85
SPENT
SHALE
PERC
91.30
94.10
93.75
95.30
95.30
92.00
92. 80
94.25
92.70
91. 10
94. 1C
91.90
90.95
91.50
91.75
90.35
91.40
91.95
91.35
91.00
91.60
90.25
87.50
86.65
91. 35
91.65
90.65
92.40
92.50
93.55
89.05
92.90
90.90
93.40
89.30
92.40
87.20
94.30
90. 75
91.95
87.40
93.55
91.60
91.35
93.20
90.60
92.00
92.75
GAS *
LOSS
PERC
1.45
1.10
1.15
.75
.80
1.50
1.15
1.15
1.35
1.50
.90
1.30
1.35
1.25
1.55
1.80
1.60
1.35
1.35
1.65
1.85
1.75
2.30
2.75
1. 55
1.45
2.00
1.60
1.45
1.20
1.95
1.50
1.80
1. 15
2.00
1.50
2.20
1.05
2. 1C
1.25
2.55
1.20
1.35
1.40
1.40
1.70
1.65
1.40
OIL
GAL/T
14.30
8 .40
9.40
8.45
6.60
12.90
12.40
8.90
11.95
15.10
8.40
13.55
14.85
14.55
13.45
16.45
14.05
14.35
15.05
15.20
13.75
16.40
22.80
23.85
15.75
13.60
15.25
11.65
11.10
8.55
19.70
9.85
15.40
9. HO
19.35
12.80
23.70
9.00
13.75
13.20
22.65
12.50
16.20
15.65
13.25
16.00
12.20
12.75
MATER
GAL /I
3.95
3.50
3.35
1.55
3.15
3.40
2.90
2.65
J.15
3.60
4.10
3.60
4.70
3.70
3.35
3.50
3.45
2.65
3.35
3.50
3.00
4.05
3.40
3.35
2.60
3.85
3.50
3.60
4.20
4.70
3.50
4.30
3.15
3.80
2.90
2.90
J.50
2.60
4.20
3.95
3.10
1.20
1.80
2.75
.70
3.60
3.70
2.05
SPEt.GRAV
OF UIL AT
60 DEC. F
.-940
.|950
.946
.'939
.944
.947
.1940
.945
.;930
.;934
.949
.'S3 8
J928
.937
.'945
,!933
.942
J939
.;939
.928
.922
.'925
,921
.'921
.916
.925
.S25
.927
.928
.930
.921
J928
.929
.937
.928
.1924
.927
.935
.937
.933
J925
.917
.925
;933
J920
.936
.941
.937
SPENT SHALE
TENDENCY
TC COKE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NONE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
135
-------
Table A-l. oil shale assays by modified Fischer Retort Method, core hole 15/16 (continued).
SAMPLE 10
GCJ-
ccs-
ccs-
ccs-
£CS-
ccs-
oos-
ccs-
ccs-
ccs-
CCJ-
ocs-
cos-
i:cs-
cos-
ccs-
cos-
ccs-
ccs-
ccs-
(.CS-
ccs-
M2-
M2-
M2-
H2-
M2-
M2-
H2-1224
H2-1226
M2-1228
P2-1230
02-1232
M2-1234
*2-1236
H2-1238
H2-1240
H2-1242
M2-1244
HE-1245
HE-1246
PE-1247
NE-1248
*<£-l£49
ME-1250
KE-1251
•1100
•1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
117C
1175
1183
11E5
1190
1156
liC5
12C8
i:iO
1212
1214
1216
1218
1220
CJL
Pfcflt
4.50
5.40
5.63
6.25
5.60
6.33
4.45
5.20
5.15
7.4C
7.80
4.35
5. £5
3.60
7. 10
6.50
7.50
6.50
9.65
6.65
2.90
3.40
6. 15
6.15
11.45
7.43
6.90
11.30
9.60
17.20
12. C5
9.15
6.45
£.6C
4.75
4.30
3. 95
12.10
9.20
11. 9C
15.15
13.25
13.55
15.50
26. CC
28.55
6.2i
22.75
WATER
PERC
1.55
1.33
1.25
1.23
.70
1.40
.70
2.00
1.20
1.15
1.00
1.35
1.45
1.65
1.45
1.55
1.00
1.30
1.43
.95
.63
.70
.70
1.45
1.63
1.55
1.75
1.83
1.53
1.70
1.45
1.40
1.75
1.43
1.15
.85
.85
1.55
1.43
1.03
1.25
1.15
.95
1.33
1.60
1.70
1.45
1.25
SPENT
SHALE
PERC
92.75
91.75
91.40
90.95
92.15
90.85
93.60
91.40
92.15
89.60
89.40
93. 15
91.40
93.55
89.65
90.25
89.70
90.40
86.05
90.35
95.05
94.65
91.60
90.25
83.95
88.45
88.35
83.40
86.20
77.45
84.05
86.65
90.03
87.95
91.85
92.85
93. 80
63.20
86.90
64.25
79.40
82.20
82.60
78.90
66. 30
63.50
66.25
70.80
GAS »
LOSS
PERC
1.20
1.55
1.70
1.60
1.55
1.40
1.25
1.40
1.50
1.85
1.80
1.15
1.30
1.20
1.80
1.70
1.80
1.80
2.70
2.05
.95
1.25
1.55
2. 15
3.00
2.60
3.00
3.50
2.70
3.65
2.45
2. 80
1.80
2.05
2.25
2.00
1.40
3.15
2.50
2.85
4.20
3.40
2.90
4.30
6.10
6.25
6.05
5.20
OIL
...6*JL/T.
11.50
13.80
14.45
16.05
14.45
16.35
11.55
13.40
13.25
19.05
20.15
11.10
15.05
9.25
18.40
16.80
19.45
16.90
25.75
17.35
7.65
9.10
16.30
16.15
30.05
19.35
18.00
29.40
25.15
45.60
32.15
24.10
16.70
22.35
12.35
11.20
10.40
31.55
24.25
31 .35
39.50
34.70
35.75
40.95
68.30
75.65
69.20
59.85
HATER
GAL/I .
3.70
3.15
3.00
2.90
1.65
3.35
1.70
4.80
2.85
2.75
2.40
3.25
3.50
3.95
3.50
3.70
2.40
3.10
3.55
2.30
1.40
1.70
1.70
3.60
3.80
3.70
4.20
4.30
3.60
4.05
3.50
3.35
4.20
- 3.40
2.75
2.05
2.05
3.70
3.40
2.40
3.00
2.75
2.30
3.10
3.80
4.10
3.50
3.00
SPEC.GRAV,
OF OIL AT
60 PIG. _F
.941
1.939
.937
.932
C926
.932
:.<926
'.933
.937
.933
.929
.942
.935
.935
.926
.926
1923
.925
.919
.92C
.9)3
i905
.903
i909
.912
.919
.917
.922
i914
:904
^897
.912
.924
.918
.921
.917
.913
.921
.913
.912
.920
.916
.910
.|908
.913
.905
.'910
.'911
SPEKT SHALE
TENDENCY
TC COKE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NONE
NONE
NCNE
NCNE
NONE
NCNE
NONE
NONE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
HCDER4T E
NCNE
NONE
NCNE
NCNE
NONE
NCNE
NONE
NCNE
NCNE
NONE
SLIGl-T
NONE
NONE
NCNE
KEAVY
hEAVY
hEAVY
MCDERATE
136
-------
Table A-l. Oil shale assays by modified Fischer Retort Method, core hole 15/1,6 (continued).
1ACPLE 10
ME-12J3
ME-1254
MB-1255
ME- 1256
I»E-1257
MS-1258
MS- 1259
ME- 1260
ME-1261
ME- 1262
ME-1263
ME-1244
ME-1265
MB- 1266
ME- 1267
ME-1268
ME-1269
ME-127C
M2-1272
M2-1234
M2-1276
M2-1278
H2-12EO
M2-1282
M2-12E4
H2-12E6
l» 2-1288
M2-1269
P2-12S2
I»2-1295
VI- 1300
M2-13C2
I»2-13C4
M2-13C6
P2-13C8
M2-1310
H2-1212
l» 2-1314
112-1216
M2-1318
M2-1320
M2-1222
M2-1324
M2-1326
H2-1228
M2-1330
M2-1332
M2-1234
OIL
PERC
19.00
16. 15
14. 10
1C. 30
11.70
15. 15
13. 10
11.90
17.80
16.55
S.25
e.6C
8.45
S.90
8. 10
9.40
9.45
£.40
16.55
9.20
8.65
6.S5
12.65
6.60
9.15
15.75
13.35
13. CO
15.93
11.20
6. 10
8.15
6.15
5. CO
T.C-j
5.90
4.2f>
tt.20
5.00
12.60
9.45
4. 45
2.70
7.45
12.95
11.75
6.C5
WATER
PERC
1.20
1.05
1.05
1.20
1.05
1.03
.90
1.15
1. 03
1.05
.73
1.05
1.20
1.23
1.30
1.40
1.40
1.25
1.23
1.25
.85
.95
.90
1.05
1.15
.83
.83
.85
1.00
1.33
.85
.75
.53
1.43
1.00
.95
1.25
1.53
1.33
1.33
1.15
1.20
1.05
.75
1.03
1.05
.93
.83
SPENT
SHALE
PERC
75.60
79.05
81.20
85.75
84.35
80.75
83.35
83.65
76.50
78.45
87.75
88.05
88.05
86.15
88.33
86.70
86.00
87.95
78.60
85.25
80. 15
88. 10
87.55
82. 50
90.20
87.80
79.95
82.90
82.85
79. 70
85.35
91. 10
89. 10
89. 50
92.50
89.60
90.40
91.65
88.33
91.85
82.85
87.00
93. 15
95.75
89.75
82.85
84.50
91. 55
GAS *
LOSS
PtRC
4.20
3.75
3.65
2.75
2.90
3.10
2.65
3.33
4.70
3.95
2.30
2.30
2.30
2.75
2.30
2.55
2.95
2.40
3.65
4.30
3.90
2.30
2.60
3.60
2.05
2.25
3.50
2.90
3. 15
3.40
2.60
2.C5
2.25
2.25
1.50
2.40
2.40
2.60
2.20
1.85
3.40
2.35
1. 15
.80
1.80
3. 15
2.85
1.60
OIL
CAL/T
49.70
42.50
36.85
26.75
30.70
39.73
34.50
30.93
47.13
43.65
24.25
22.50
21.95
25.75
21.10
24.35
25.10
22.10
43.55
24.90
40.35
22.95
23.75
33.55
17.30
24.30
42.10
35.75
33.95
42.15
29.55
15.85
21.25
17.75
13.05
18.55
15.85
11. 1C
21.30
13.15
32. 83
24.75
12.20
6.95
19.45
33.90
31.03
15.85
HATER
GAL/T
2.90
2.50
2.50
2.93
2.50
2.40
2.20
2.75
2.40
2.50
1.70
2.50
2.93
2.90
3.10
3.35
3.35
3.00
2.90
3.00
2.05
2.30
2.20
2.50
2.75
1.90
1.90
2.05
2.40
2.40
2.35
1.80
1.23
3.35
2.40
2.30
3.00
3.60
3.10
3.10
2.75
2.90
2.50
1.80
2.43
2.50
2.15
1.90
SPEO.GR4V
OF OIL AT
60 D'EG. F
.916
.911
.?19
.922
.913
.1916
.911
.1922
..935
.910
.914
.915
.,921
.|92l
.921
.921
.922
.i917
.1912
.1890
.898
.905
.909
.!921
.1914
.!93 3
.;898
.;896
.919
.«04
.:so<;
.'917
J919
.!922
.|917
.'907
.'soo
.'913
.922
.915
.i922
.916
.915
.j919
.1917
.:914
.912
.913
SPENT SHALE
TENDENCY
1C CDKt.
SI IShT
•NCSt
NONE
NCNE
NCNE
NCNE
NCNE
JL IfcHT
NC'iE
NCNE
NCNE
NCNE
NCNE
NCSE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
SL 1GHT
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
137
-------
Table A-l. Oil shale assays by modified Fischer Retort Method, core hole 15/16 (continued).
SAMPLE 10
JU-1336
H2-133B
N2-1340
MJ-1342
MJ-1344
M2-1346
BO-1372
RCJ-1377
RCS-1382
RCS-1387
RCS-12S2
RCS-12S7
f-cs-1402
RCJ-14C7
PCS-1'12
RG S- 1 < 1 7
RCS-1422
RCS-1126
RCJ-1445
PCS-1450
ROS-1455
RCS-146C
RC$-1465
RGJ-1468
pcs-i£ia
PCS-1568
PC S- 1 6 1 o
FCJ-.L668
PC £-.17 18
PGJ-l'/tS
PCS-1618
PCS-1E68
PCS- IS 18
FC5-J568
PCJ-2C19
tIL
P£RC
5.50
3.35
3.60
4.00
4.40
4.60
i.20
1.30
4.45
ii.es
4.20
6.45
8.55
5.S5
7.65
B.20
6.25
4.25
10.20
7.10
5.20
7.20
6.50
2.45
3.45
2. 15
4.25
1.30
1.35
3. 1C
4.C3
3.60
1.10
2.45
2.30
MATER
PERC
.70
.45
.30
.35
.40
.60
.40
.40
.80
1.25
1.30
.70
.85
.90
.60
.55
.60
.35
1.95
1.90
2. 15
2.35
2.15
1.50
2.23
2.30
1.95
1.60
1.65
2.05
1. 75
2.20
2.05
2.50
2.35
SPENT
SHALE
PERC
92.60
95.20
95.00
94. 4C
93.90
93.40
97.95
97.55
92. 6C
83.85
93.00
90.65
88.00
90.30
89.05
88.90
91.50
93.85
85. 15
88.60
90.90
88.55
89.35
94.45
92. 35
94. 10
91.95
96. 4C
96.25
93.85
92.95
92.85
95. 75
94.00
94.50
GAS *
LOSS
PERC
1. 20
1.00
1. 10
1.20
1.30
1.20
.45
.75
2. 15
3.05
1.50
2.20
2.60
2.85
2.50
2.35
1.65
1.50
2.70
2.40
1.75
1.90
2.00
1.60
1.95
1.45
1.85
.70
.75
1.00
1.25
1.35
1. 10
1.05
.85
OIL
GAL/T
14.40
8.80
9.40
10.55
11.50
12.05
3.15
3.35
11.70
31.10
10.85
17.15
22. 8C
15.70
20.50
21.75
16.50
11.15
26.55
18.55
13.55
18.80
17.10
6.40
9.05
5.65
11.20
3.40
3.55
8.15
10.65
9.50
2.85
6.55
6.15
MATER
GAL/T
1.70
1.10
.70
.85
1.00
1.90
1.00
1.00
1.90
3.00
3.10
1.70
2.05
2.15
1.40
1.30
1.40
1.00
4.70
4.60
5.15
5.65
5.15
3.60
5.40
5.55
4.65
3.80
3.95
4.95
4.20
5.25
4.95
6.00
5.65
SPEC.GHiV
OF OIL 4T
60 DEC. F
.914
.921'
.920
.919
.914
.914'
!
.91l'
.914,
.928
.898:
.900:
.909
.914
.902
.907
.918
.919
.913(
.916
.913
.91 1'
.921!
.917
.907!
.914
|
.912'
.909
.90S
|
.902:
.8961
SPEM SHALE
TEKQENCY
TC COKE
NONE
NCNE
NONE
NONE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NONE
SL IGI-T
NCNE
5L1GH
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NUNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NCNE
NONE
NCNE
NCNE
NCNE
NCNE
NCNE
138
-------
«O r»» ir\ ^i ^ f
uu
139
-------
V UJ
0. CL
5:
< .
ac
4
Q.
< a.
o
o
140
-------
rw o CQ
"i <\j —
-I •-
-I X
— o
—^ a
141
-------
>• UJ
o. a
§ :
a.
o
142
-------
-J «r Q:
< X
•^i CL
—. Q.
< cc
< UJ
Z 0-
< cc o
U"» f*l 30 '
a: U.I m *5p->K.^,
"3 Q£ &. •
X Q-
•P1 — rsio^o^msT^fM^r^otj^f*. — ir\oc7- o "•* rgrNrnr^^^tn^n^ «c'*-ri-eoaj(j'Lf
•*^"UOOOt->oOutJOt*LJOOLjtjil>
143
-------
V V V V V V V V V
O CD u
S §35
- ua
f x
< o.
z §: •
"x y
uj a rg
a a. ,
2 - -.
^ Q. -1
2 v v v v
x -2--2!2;222-?5l2?~"'"'°*"S22i22SS;*ss2'v-r-03l"'<'*'"-o'~«oc>o-^
s ^IXninTr7777frr7Tr77777--2^52^35555^5-^!cs
s ssasissssssSSSSsSosisssiii^^^^^^^innin
"«:x-«-x«lS2SSS-»s«i
144
-------
v v vv v vv ' v v* v v' " v' ' v* ' * * v ' v v ' ' ' v
U O U
oc x o:
O O >u
— u a.
o
S S - - 2 2 2 - S S 2 2 S 2 2 f 2 2 2 2
*•
•» m X
uj a.
O Q-
• •
2§~2SS§§gSSSSSSSSSgg*SSSi2SSSSSSS?gSSS???SSggSS?S
~-vi'1f.rv,o>m
«>oS«»S«j3gg33SSg3SSSSgS23Sg3SSSgSSSSgSgSS2gS3SSgSS
vv vvv vv v v v v v v * v v ' ' • ' ' ' ' ' • ' '
•*
s
o « r
< < a.
z o-
145
-------
2 :* o ! rg eo « eo
v vv v
tfV (> -*
D «« X — - *
'< < a. o r» rt
v vvv vvvvvvvvv " "vvvv "vv *vvvv *•
8
— — * * *
VV VVV VVVVV V VV V
'**
^ ;< «
-
DC K a n a. at
-------
o o
« tt >so®fi»''»*otft(o*r,o^)-*Ka)O*S'i-5S*£!$'££
i
SSSno*oiC£iS2»!SS!n2S£I22Si?Sa'o;in -oir^tAso^in^'n
S^^fN^m^m™^m^^Smm^2^^^^^5^*°i^^^^^Sm^^* m * ^'*'SJ'^'O'^*'i'O
147
-------
vvvvvvvv
o tr a
x a.
< I
< a.
Z Q.
£
S'
148
-------
gg|lggggiiiggigSS3338888S88S83888SSSS-S3B88SS883
°° °,° . , .°°°°°0.°°.°.°°,°,°,°.°°':>°^.°°°°°°°°.°° ooooo SSSol
vvvvv v v vvvvvvvvvv *"
vwvvvvvvv
v
vvvv
13 < X
x »j a
— a.
co o ra
x a: o
X 3 UJ i
o a.
V V VVV
3 < X -,
aj < a. o
22 x zxz i t ii
149
-------
iiMiMiiiiiiiiiiiiiii§l§§iiii§i§i§
' ' ' *
y y y v
vv v v v vv v vv v
v v v v v* v v v v
v v v
•JO. -I
SOI
CL
VVVV VVVVVVV V V V
Sl!552=§=i=5PP35jssIsl = S3l=ISl=s3
-liiiJ.iiJ.j.j.j.j.j.j.j.^Tj.TTTTVTTTTTTTTVTVV
150
-------
O eo -- -O •— '
j-O-yo- —•of'i'O—«if>eDa3VP'-cio--o-^'T-*'f*"'*'frirsj'T'oeor^frif^jO;eQrMfnrMai'-'eo ^>ir*ir>
j-^r\j-"iNfM'N|fMfN(fsj«— -^—*-^-^ p\irg^gMfgfsjr»j'*Jf^J^Wpy'N*— '"J^SliN j-"«^"^-^
•« < OC
Z < UJ
r a
,
u ox
t i i i i i i i i i i i i t I I i ' J J, J, I
151
-------
*/> oc CL • • •.•••••••• •»••••••••••••••*••• * ;« *.••»,*».*
trt ^ Q. • • •••••••••••t»"«*««.».«««.« »••••••••«•••••••*»••
•- - |
vi «* o, • ••••• ••••••»*••*••••••*••*•••*.! •••••
o
oc
o
4/1
_ I
z
E
Wl
• . i
CD (i- X • •••»••••••••••••••••• •••••••"••t«»*»««**t>»««.»««
I
I
M u.r ° ^^®^"^^^^^j^^^^^^^^^^^^^^^^°^^°^^"*^°^^^r^^*'^^°0?'^
o O'OJDO*CT'-4>-4v4«4MJ>^«^vJ<-4vd'^>M~l _ri -^ _4 -^ —' _(—*—*•- OJ
r
Z O LLJ • •.••••••.•*••.•*«•....... «•*•***••••*•*••••**)••
So. «_;j-
i
a < x • ••*•••.•••*.*•.•*•••...•.**....•.••..>.••*.•••>..
z a. ' |
i
x
-------
•• « • • • «•
03 U. X
oc oc a.
x a.
oi in >r <
» • *
^ (N* & '
O ^O lf\ I
*j_^rg^r»moutN.r
(M — — rsifstrg—*(N(\j(
Q
z
ir> ^- t
J* ^
O. -J
153
-------
CX
o
<00*«Ji»iA*0'-
-* -• -*
0 < X
z * a.
z a.
en u -*
la o
z o ui .
u o.
3
J
154
-------
°~ * * *
~ "> ° -
^
ft)
3
tn *n Si <_» f* .
VV VV VVVV
VV VV VVVV V
i/» < a.
155
-------
* u. ac
*x a: a.
X O.
u o
< a: *M
< UJ O
I < X «
-------
O —*(?>OQ(SJO~***1^'O~''
"^ •f tO ^ 03 -T O —ifMOO
V V V V V
^
-------
••tt*««i*
\-^fnOf*-f*«MGD
'
*'***
O — ^ (
V V V V V V V
15
158
-------
Table A-4. Oil shale assays by modified Fischer Retort Method, core hole 25.
SAI'PLE ID
SCZ- 180
SCZ -230
SCZ- 280
SCZ- 330
SCZ- 388
CCS- 393
CCS- 399
CCS- 1.33
CCS- 1.08
CCS- Itl3
ccs- iii a
CCS- 1.23
CCS- 1.29
CCS- 1.31
CCS- 1.3°
CCS- «.«3
CCS- fcl.9
CCS- 1.53
CCS- 1.58
CCS- U63
CCS- 1.EJ
DCS- U73
CCS- 1.71
CCS- 1.63
ocs- we 9
CCS" 1.93
CCS- 1.98
CCS- 503
CCS- 509
CCS- 513
CCS- 518
CCS- 523
CCS- 529 •
CCS- 533
CCS- 539
CCS- 5t3
CCS- 51.S
CCS- 553
CCS- 559
CCS- 563
CCS- 569
CCS- 573
CCS- 579
CCS- 553
CCS- 559
CCS- 5=1
CCS- 5=9
CCS- 603
CIL
PFFC
0.85
2.75
2.90
2.bO
3.55
5.65
6. -5
<..20
5.80
5.85
5.50
5.75
5.35
5.60
8.00
9.55
5.15
i*. 25
5.65
i.. 25
2.80
6.00
1..25
1..95
5.,0
I...35
8.60
3.30
1..95
6.15
-.25
9.95
6.00
i. . 5 5
5.85
C.CO
-.60
<«. 85
5.25
<>• £5
6. 85
5.70
3. ec
i.. 80
7.20
6. CO
1..7C
3.35
HATER
PERC
2.55
2.10
1.1.5
0.95
1.15
1.50
1.50
0.90
1.35
1.55
1.15
1.35
1.1.5
1.1.5
1.55
1.60
1.50
1.95
2.10
1.45
1.85
1.95
2.30
2.15
1.95
1.35
1.85
1.25
1.70
2.-.0
1.20
1.75
1.05
0.75
2.15
1.55
1.50
1.1.5
1.65
1.25
1.35
1.-.D
2.35
1.50
1.25
1.70
1.70
1.00
SPENT
SHALE
PEfiC
96.10
91..25
9<-. 70
95. 55
91.. 30
91.65
9C.30
93. 75
91.1.5
91.25
91. 15
91. 65
91. 60
91. 55
66.1.5
86.55
91. 55
92. 50
9C.65
92.55
91.. 30
9C.25
91.95
91.25
90. 95
92. 75
86.95
9u. 35
91.80
87. (.5
93. 25
85.65
91 . 50
93. 05
9C.70
92.25
92. 55
92.25
91. 80
93. 55
9C.15
92. 05 .
92. 80
9i. 35
9C.25
90. 80
9?. 1.5
9fc . =0
GAS »
LOSS
PERC
0.50
C.90
C.95
1.10
1.00
1.20
1.75
1.15
1.1.0
1.35
1.20
1.25
1.60
1.90
2.00
2.30
1.30
1.60
1.35
1.05
1.80
1.50
1.65
1.70
1.55
2.60
1.10
1.55
2.00
1.30
2.65
1.1.5
1.65
1.30
1.20
1.35
1.U5
1.30
1.15
1.65
1.35
1.05
1.35
1.30
1.50
1.15
0.75
OIL
GAL/T
2.2C
6 .85
7.30
6.20
9.10
11.. US
16.50
10.80
lit. 95
15.00
1-..15
11.. ec
13.90
Id. 50
20 .90
2*. 95
13.55
11.15
li.. 70
11 .15
7.30
15.55
1C. 95
12.7?
13.85
11.35
22.35
9.60
12.70
21.10
11.05
25. 6C
15.55
11.75
11.. 95
12.80
11.75
12.1.C
13.50
10.50
17.75
13.35
9.75
12. 3C
18.55
15.1.5
11 .95
8.80
MATER
GAL/T
6.10
5.35
3.<.5
2.30
2.75
3.60
3.60
2.20
3.25
3.70
2.75
3.25
3.50
3.1.5
3.70
3. 80
3.60
1..70
5. 00
fc.>. 5
1...5
1..65
5.50
5.15
fc. 70
3.25
1...5
3.00
-------
shale assays by
SIMPLE ID
CCS- 608
CCS- 613
CCS- 618
CCS- 623
CCS- 628
CCS- 634
M7- 636
HZ- 638
ri;r- 640
MX- 642
HZ- €44
n;r- 646
H;:- 64«
H2- 650
H21- 652
HZ- 654
H2- 656
HZ- 658
H2- 660
HZ- 662
HZ- 664
H-Z- 666
HZ- 66B
HZ- 670
HB- 671
KB- 672
HB- 673
MB- 67.
HB- 675
HE- 676
HB- 677
HB" 678
HB" 679
HE- 680
HB- 681
HB- 682
HB- 687
HE- 664
HB- 685
HB- 686
HB- 687
HE- eea
HB- 683
HE- 690
HZ- 692
HZ- 69*
HZ- 696
HZ- 693
CIL
PEPC
6.55
7.95
4.60
6.85
4. EO
2.45
1.80
0.75
0.85
4.45
4.90
11.20
6.05
6.85
9.45
12.30
8.85
7.05
8.20
6.05
4.45
3.40
4.15
13.10
8.75
8.25
9.45
13.20
13.65
18.70
21.30
23. 85
18.50
18.15
12.25
13. f 5
14. 10
9.40
7. 60
. 12.30
16. 65
12.20
7. 10
12. 75
14. 10
13. 6C
6. SO
8.40
HATER
PFRC
1.55
1.35
1.00
1.25
1.15
1.10
0.65
0.90
1.05
1.65
1.55
2.00
1.65
2.95
2.05
2.n5
1.90
2.00
1.65
1.55
1.65
0.70
0.90
2.15
1.90
1.35
1.10
•1.80
1.80
1.60
2.25
2.30
1.90
1.60
1.20
2.05
1.35
1.20
1. 10
1.10
1.40
1 • -.0
C.95
1.25
1.-.3
1.-.J
1.05
1. -.5
SPEH.T
SHALE
PERC
90. 45
88.85
93.20
90.05
92.80
95.80
96.85
97.70
97.60
92.45
92.25
84.60
90.75
38.55
86.50
82. 70
37.15
89.30
88.20
9C.35
92.65
94. 70
94.00
81.45
87. 20
88.35
86.90
82.30
SC.8S
75.60
71. 50
to. 60
7J.35
76.50
84. 00
74. 85
81. 40
87.10
86. 90
83.90
78. 75
S3. 50
89.85
83. 55
81. 55
PI. 85
9C.95
86. 15
GAS *
LOSS
PERC
1.45
1.85
1.20
1.85
1.45
0.65
0.70
0.65
0.50
1.45
1.30
2.20
1.55
1.65
2.00
2.55
2.10
1.65
1.35
2.05
1.25
1.20
0.95
2.80
2.15
2.05
2.55
2.70
3.70
".10
4.95
5.25
4.25
3.75
2.55
4.25
J.15
2.30
2.20
2.70
3.20
2.90
2.10
2.45
2.95
3.15
1.50
2.00
OIL
GAL/T
17.00
20.70
11 . 95
17.75
11. 8D
6.20
•..65
1.95
2.15
11.65
12.85
29.45
15.80
17.85
24.55
32.25
23.35
18.30
21.35
15.70
11.60
8.8?
10.85
34. 1C
22.95
21.65
24.80
34.60
35.55
49.70
56. 5 C
62.90
49.05
47.6?
32.45
49. »C
36. 5>;
24,30
20.40
32 . ZC
43.35
31.45
19. 5C
33 .70
37.30
35.9?
17.35
22.15
MATER
GAL/T
3.70
3.25
2.40
3.00
2.75
2.60
1.55
2.20
2.50
3.95
3.70
4.80
3.95
7.10
4.90
5. 90
4.60
4. 80
3.95
3. 70
3.95
1. 65
2.20
5.15
4.60
3.25
2.65
4.30
4.35
3.80
5.40
5.50
4.55
3.80
2.85
4. 30
3.25
2.90
2. 65
2. 60
3.40
3.,0
2.30
3.00
3..0
3.35
2.50
3. 50
SPEC.JGRAV.
OF OIL AT
60 DEC. F
.9*2
.921
. 928
. 928
, .932
.933
.913
.909
.9i3
.911
.92' 3
.9? 3
.912
.906
.920
.91|9
. 92 3
.923
.91,5
.914
.920
.911]
.911
.913
.917
.923
.903
.904
.903
.904:
.911
.905
.909
.924
.926
. 917
.914.
.920'
. 928
.921
. 903
.90S[
.907
.891'
.907'
SPEUT SHALE
TENCEKCY
TC COKE
NONE
NCNE
NCI>E
NCdE
NCtE
NONE
NONE
KCNE
NCNE
>.CNE
NCHt '
NONE
WCKE
HCNE
HONE
NCNE
I.'CNT
HCKE
NONE
SCNE
NCNE
NCNE
NCNE
NCNE
NCNE
KCKE
NOE
KCNE
NCNt
10CERATE
NCCERATE
HEAVY
SLIGHT
SLIGHT
SLIGHT
SLIGHT
NCNE
NCNE
NCNE
NCNE
SLIGHT
SCSE
K^E
NONE
NC fE
NCNF
NONE
KCNE
160
-------
Table A-4. Oil shale assays by modified Fischer Retort Method, core hole 25 (continued). \
SAMPLE ID OIL ' WATER SPENT GAS * OIL WATER SPEC.GRAV. SPEKT SMALE
SHALE LOSS • OF OIL' AT TEKOEKCr
PEPC PERC PERC PERC GAL/T GAL/T 60 DEG,. F TC COKE
fZ- 700 5.55 1.35 91.50 1.60 lw.1.0 3.25 .91;9 KCKE
«Z- 702 9.70 1.U5 86.60 Z.25 25.7C 3.»5 .905 NCKE
VI- 705 12.90 1.65 8Z. 65 2.80 3t.35 3.95 .903 KONE
fCS- 750 2.50 1.55 95.10 0.85 6.50 3.70 .9118 KCNE
FCS- 790 0.30 2.00 97, C5 0.65 0.70 <.. 80 ' NC»E
161
-------
UJ •
to- •
*t *
_l k-
-I ^j
-3 D.
i i i i i i i i i i i t i i i i t
i i' t t i i i i *
'
162
-------
s
z
o
u
t-l
z
o: - LJ
a. a.
. •JMfVJK*OirvmK-«K) ec
-------
s.
£
S
5
1
I I I I I
164
-------
K •»*•
LJ < CL
Z 0.
zo. R, «,. N „ „ „ o> o> » •-* .. »• » o> -»»lofvJfoo^^tfoeo^i^oio»*.Kp^»i>f-«s««>^ff1M«CT'^
s ll ^ ^!^;":'::':;^:'':::':1;;:::^;;;;r;;;':TilT::!vj":;;;
z a |
o o. • "^ I
s sf s HS5HssHss£!ssssssss*ss5=s2ssss^^?sss25sJss£
za • •**»B''"'******"**"*""**«J*«Jw"wwvvvviv vv v v
^^ vvv vv vvv vvv vv vvv vvv vvvvvv^v
If, (y *O f> ^- -*
«a « a
V V V
165
-------
K « X
O « «.
U « O.
z a.
^^^^^
:«S5arsssSSS^
:s '5 ^MM^^s^H£S>*5SHH2H:2s^H»-^*22SSH«
v v v . v » « v .;; v- ••;•»•;;•;•; v- ;„•;; y- • v- i ;;;•• v. ;. y.
a mo
£ z u
P o u
£ „..
---
« «I Z
ED «t 0.
z o.
V ^ » OC3OOC3OOOO«
uj a. (v ««ff*ajtuajojajf»w
•£A.a-«.Aji.xi:a.A.
i i i
i*« r^ IN<
a. x. x.
166
-------
o *D \t\ u\ t\j \r*
fc « £ • •••••
L) 4 & **S TO »* C* -1 M
Z O. Pd f) fJ W «O
j « in N. ~*
_j « QC n tf>»-inino
o «w e oooo**
zo. « •••*•
v v v v
« j- ^ ^ K o n
B «t »• o \f> K » f^ «
rj NJ&. • ••«••
MO.
a. x:
•s «3Q. o caoooa
z °- • ;;*•»•
ca
ijj o o o in tr
167
-------
b. X
a D.
x a
•x u. x:
L5 a: a
x a.
u. r
* a
j^
t iiitiiiit
M r*r f^ rsj f«g ut v> vi V» t/> l/>
i i i i i i t i i i i i it i i i i t i t > i i
168
-------
»
.
I
-------
«*• ',
« o.
z a. !
RSKSS
OiO (VJ
C Of
O Ul
00-
v4 v4 (V
u. i. ; uj
a a : •
x a
< 1
< a
z a.
j> «in » •
t
10
I I I I I
170
-------
(J «J *•
t/1 4 &
z a.
o * *-
(/i < a
z &
CD U. •
m u. *
& of a.
ir> ID m •
o «J of i^
4 a a
«i A
.ittiitiiiiitiiiiitiii
i n, ^ ~ i J, J, Jl 10 J, I/. V< V> 1/1 VI U, U> V, VI V\ I" <" J" ^1 U, J., VI I/, V- V> "
OtJ*_»C3tJO«->WUU>U>00*-'l->(-'(-'OW(_>*JOWU>tJ(JtJO*J(JU>CJ(_>OtJWOlJtJO
>O
-------
a a.
xo.
i a
• B.
U.X
IKO. !
x a
_Jv4»Q«4r\;w~4~4*4-4
t
s
-------
£*4 <
.4 1
fO |h. v* in ffj
f*J J- fU tC vfl fSJ
to * fc *4 (sj m » tt *•<
Jfl < D. • .....
z o. ^i ^ ^
a
v>
CD u. r
I* ??a.
H U. I.
tr a Q-
o «t r
Z < Q.
2 CL
o *t a.
x < a
z a.
in ^ ^ in ,
,-, *< «t esj
«z u
« a!
s *•
e •*
o o in a*
173
-------
«•
s
•
K *fc *-
M o; a
x a.
** ^^«^(ru^rf^eriAW^*^«^^^y^^£™*;SSS^SM(\ic^wio^wffies«'P'*yo(reoiDfy*<"4
-i s **-i'.".^:^-.".-.r.222S2322222^2222j^-j •-- •-- '-- '---
^ O. *4^w4*+*4**~4'~*
ir>f-
-------
xa. o m * „, ,v ,0 j, «-»• - ° «>-o .» * K « »> »*-«<'•«"-'- ;
o"Mtfv^oO*-*we3U\«o«ff*M*^NOs*o'-'^*1"OK)^lfll*x*^'a'"*0
^fwWOK«ri(r*(NJ^^<^cwrv< 5* ----- .
4X O tfl — tDO — oo-fyo«c30es«KC3C3C30h- — — *^°. '^LC'^.«C^«#.« ••"•:•••••••••••
O u^«-yrf'*-*'oirifo'OMI*>'*l'%'*J'*"*|IOPsJl^'^rjK;'ncyfvJ"'lf^"*'rtPO
•* «a S SS5in>om~j>K.o-^»*^"^^st;SIC----S--S----i -2;" -2-- = -----
»- Sol ° i~:':i-:':".fiN.".™°'i . . . . - ;
E ss °. •5'?^^°^"i^"~*"*"^*':h;^^<'!i<'llj^3SJ^3j^3:2^1^«^*>o**
^ JJ" .•.,»1i|t..o^*»wiDifliDirv''^^%*OC'*l^l^^'v'^'^^~^'^" >^-J *«
ZQ. UlWTT---^' —
*~ za » • • • .....*•••*•"
• »
5 || 5^,«,3**«.K8.2»*«.«--^-0>2-S-^ --^ -- --
* II "• ^ll^^jj^;^~'^i:^^r:jr:i:^^~'^^^^~'^^
• CE '
„ I « SSSSSSSsIssIIisSSsissls5S555!S5i5tSSSSSSSSSSSi'SSSS
i «I a. i/'v»^v»trt»^^^^^^^^7*^^7*J?C'7'27*^2|3J"tat*!a^txt».a.at*.».*-»-*-*-a:^*-x^*-
^ ^ u. owuou>oa.a.xa.x».i*.»-:c*-*-*-*-*-*-*-
175
-------
in PJ .* in <
176
------- |