-------
7
1
o
~
CO
UJ
S
|
i
s
u
41
S
1
.
„ =s sss si 5 s a
3 a *"="-§ °»§ 2 j| K s 2 s
^ »a SSSSS 8 S 5 R
S S ~0=| o«goS t g o ,0 g
s °.~ Is 1 S S
S S "°?3S Stf" S g 15
«» «. "5 <» n. •££ <0 KJ S
S S «~v£ ol-g e m <•
- S 5o_n SiSlS en i- «x
» V ^ on to
o *!~ aS «? « ~
SB =1 sIS s a a
.«* <» ^S m o
0 "!•; •a T » T
£ £ S «I S S g
^ >-o <£NCO S ^ S 5
:| s 'd~| =-s ~ | s s " s
„ -s sais s; | s s
5 S "=~| ""S S 1 s S ° S
, ~s ass s g s s
2 S "0"| d*s s | E ° = °
M
«»in - *> "o 10 oa
^ CMO ^ u> en 3t
ajnwsotMg ic? S^S
<5 UXSJIA to «> ^- CO
^ oo wi CM P* r*» 5 ^ en 3r
S ** • • • o c* » * .
oS SSR «> g K S 2
a S MONO 0*430^ 6 » o oi to
-2 m csS P N PI S. M
0— SSo. n fe S S S
. | ^d~g d~^ 5 | 3 s s a
„ <«s N as3 ~ g s? s s"
2 2 ~°"S "5 °"s 2 P S S g S
1| ^i _
lf_ S II ^ ill frS 5 ^
i ! !;su K § iJi Ii 1 i
°Ji°@9&&P>" >> o *S -^ «-* ••- +>
1 ™ = ,11 1- *~= *^2 * S
i "5 IgSSnf -£ ia'sfSS.TJc!1 lit! 4l2_ « i
! C 31 3(2 tci ££5 2 c
is
COIA
~«i
Sa
S§
ii
mui
ino
•a*.
si
«*•".
si
~i
S2
^o
0»K
S2
«^
SI
OHO
is
«,*:
a'l
»o>
N%
ii
i
"c
u
ii
s!
f «
o *3
Isu
(a) Estimated
(b) Estlltuted
MA No analyst
89
-------
TABLE A-9. OVERALL MASS FLOW BALANCES
RUN NO.
INPUTS, LB/HR
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
RETORT GAS
OVERFIRE AIR
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE, X
1
2487.00
156.80
683.40
15.90
16.40
0.00
10.30
0.00
3369.80
2091.00
368.00
873.10
3332.10
98.88
1A
2662.00
178.50
679.90
15.70
21.10
0.00
10.50
0.00
3567.70
2247.00
420.00
914.20
3581.20
100.38
2
2601.00
179.80
730.30
11.90
19.90
0.00
11.30
0.00
3554. 20
2195.00
377.00
895.20
3467.20
97.55
3
3404.00
138.90
802.00
10.30
14.40
0.00
11.10
0.00
4380.70
2927.00
479.00
913.80
4319.80
98.61
4
3352.00
153.00
702.90
8.30
17.50
0.00
11.80
0.00
4245.50
2927.00
408.00
843.20
4178.20
98.41
5
3395.00
122.50
784.60
11.60
14.90
0.00
11.10
0.00
4339.70
2927.00
464.00
981.90
4372.90
100.77
6
3343.00
127.80
695.60
12.00
14.30
0.00
11.80
0.00
4204.50
2927.00
330.00
827.10
4084.10
97.14
6A
3345.00
135.50
788.30
11.40
14.00
0.00
11.80
0.00
4306.00
2927.00
391.00
938.40
4256.40
98.85
6B
3343.00
128.50
700.70
13.80
14.10
0.00
11.80
0.00
4211.90
2927.00
441.00
853.60
4221.60
100.23
, 6C
3158.00
147.30
676.70
18.00
14.00
0.00
11.80
0.00
4025.80
2718.00
464.00
830.90
4012.90
99.68
60
3062.00
172.40
564.70
15.60
13.70
0.00
11.80
0.00
3840.20
2718.00
385.00
765.00
3868.00
100.72
RUN NO.
6E
6R
7A
7AA
7B
7C
70
10P
INPUTS, LB/HR
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
RETORT GAS
OVERFIRE AIR
PURGES
RAW .SHALE
TOTAL INPUTS
OUTPUTS, LB/HR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE, S
3014.00
148.10
600.90
14.80
13.70
0.00
11.80
0.00
3803.30
2718.00
222.00
843.90
3783.90
99.49
3014.00
148.10
600.90
14.80
12.50
0.00
11.80
0.00
3802.10
2718.00
222.00
782.70
3722.70
97.91
2598.00
137.00
803.30
16.20
26.10
0.00
12.60
0.00
3593.20
2195.00
340.00
988.40
3523.40
98.06
2620.00
139.30
803.30
16.20
24.40
0.00
12.60
0.00
3615.80
2195.00
360.00
1008.60
3563.60
98.56
2620.00
136.30
803.30
16.00
27.60
0.00
12.60
0.00
3615.80
2195.00
360.00
1033.90
3588.90
99.26
2620.00
139.40
679.20
13.70
29.40
0.00
12.60
0.00
3494.30
2195.00
303.00
850.60
3348.60
95.83
2535.00
152.90
795.70
16.20
23.80
0.00
12.60
0.00
3536.20
2195.00
278.00
997.30
3470.30
98.14
2587.00
133.20
879.70
16.00
20.90
0.00
12.60
0.00
3649.40
2247.00
260.00
1077.00
3584.00
98.21
2603.00
135.30
768.80
16.00
20.60
0.00
12.60
0.00
3556.30
2195.00
335.00
980.80
3510.80
98.72
2907.00
154.20
767.20
16.40
18.40
0.00
11.80
0.00
3875.00
2613.00
302.00
997.00
3912.00
100.95
3040.00
143.00
656.60
18.00
17.50
0.00
11.80
0.00
3886.90
2613.00
391.00
844.90
3848.90
99.02
(continued)
90
-------
TABLE A-9 (continued)
RUN NO.
INPUTS, LB/Hli
RETORTED SOLIDS
STEAM
AIR
NAT 'I GAS
RETORT GAS
OVERFIRE AIR
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS. LB/HR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
10
3013.00
117.40
655.50
18.00
17.40
152.90
11.80
0.00
3986.00
2613.00
368.00
942.90
3923.90
98.44
11
2921.00
74.30
695.60
13.40
24.90
217.30
11.80
0.00
3958.30
2509.00
347.00
1078.70
3934.70
99.40
11A
2510.00
169.40
565.10
15.60
18.80
0.00
11.80
0.00
3290.70
2038.00
387.00
870.90
3295.90
100.16
11B
2510.00
161.30
565.10
15.50
18.90
195.40
11.80
0.00
3478.00
2038.00
444.00
917.60
3399.60
97.75
11C
2530.00
92.80
583.30
16.40
17.20
360.00
11.80
0.00
3611.50
2091.00
423.00
1043.10
3557.10
98.49
11D
2511.00
92.10
609.40
16.70
14.50
362.30
11.80
0.00
3617.80
2091.00
399.00
1072.00
3562.00
98.46
12
2867.00
17.00
692.50
17.10
26.10
298.20
11.80
0.00
3929.70
2509.00
381.30
1039.40
3929.70
100.00
12A
2703.00
17.00
704.90
17.20
28.00
300.40
11.80
0.00
3782.30
2300.00
430.70
1051.60
3782.30
100.00
13
2728.00
0.00
711.00
16,40
16.00
318.00
11.80
0.00
3801.20
2300.00
360.00
1042.60
3702.60
97.41
14
3581.00
154.50
563.60
14.10
23.30
0.00
11.70
0.00
4348.20
3188.00
357.00
780.70
4325.70
99.48
15
3311.00
97.40
483.50
6.90
28.60
114.80
11.80
0.00
4054.00
2822.00
335.00
704.50
3861.50
95.25
RUN NO. 16 17A 17B 17C 17D 18 19A 198 19C 20P 20
INPUTS, LB/HR
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
RETORT GAS
OVERFIRE AIR
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS ,
TOTAL OUTPUTS
BALANCE CLOSURE,*
3615.00
134.50
540.10
18.00
20.10
0.00
11.80
0.00
4339.50
3198.00
450.70
690.80
4339.50
100.00
3482.00
162.70
616.60
14.50
0.00
0.00
11.80
133.10
4420.70
3031.00
436.00
820.40
4287.40
96.98
3504.00
162.70
711.00
14.80
0.00
0.00
11.80
133.10
4537.40
3031.00
434.00
945.90
4410.90
97.21
3535.00
157.50
764.90
13.70
0.00
0.00
11.80
133.10
4616.00
3031.00
491.00
996.00
4518.00
97.88
3490.00
168.70
704.90
13.70
0.00
137.30
11.80
133.10
4659.50
3031.00
475.00
1109.60
4615.60
99.06
3525.00
151.70
751.30
13.70
21.90
0.00
12.60
0.00
4476.20
3031.00
461.00
979.60
4471.60
99.90
3454.00
156.50
631.10
11.60
0.00
228.90
11.80
94.70
4588.60
3031.00
389.00
1035.50
4455.50
97.10
3454.00
152.70
583.40
16.70
0.00
228.90
11.30
94.70
4541.70
3031.00
348.00
958.50
4337.50
95.50
3454.00
115.10
583.40
16.70
0.00
228.90
. 11.80
94.70
4504.60
3031.00
389.00
957.50
4377.50
97.18
3400.00
135.40
575.10
16.80
20.00
0.00
11.80
0.00
4159.10
3031.00
399.00
735.10
4165.10
100.14
3400.00
115.50
501.30
17.40
20.00
285.30
11.80
0.00
4351.30
3031.00
318.00
930.40
4279.40
98.35
91
-------
TABLE A-10. TOTAL CARBON BALANCES
RUN NO.
INPUTS, LB/HR TOT C
RETORTED SOLIDS
STEAK
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR TOT C
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
2
33.81
0.00
0.00
7.39
0.00
8.37
0.00
0.00
49,57
18.00
10.33
41.54
69.87
140.94
4
53.63
0.00
0.00
5.15
0.00
7.67
0.00
0.00
66.46
24.00
15.10
40.30
79.40
119.48
6
61.85
0.00
0.00
7.45
0.00
4.80
0.00
0.00
74.09
35.12
12.71
36.31
84.14
113.56
7
30.40
0.00
P. 00
10.06
0.00
12.13
0.00
0.00
52.58
12.07
7.62
47.25
66.93
127.30
8
35.40
0.00
0.00
9.93
0.00
8.07
0.00
0.00
53.40
7.24
3.25
49.73
60.22
112.76
10
44.59
0.00
0.00
11.17
0.00
6.78
0.00
0.00
62.55
9.41
10.60
46.58
66.58
106.45
11
40.31
0.00
0.00
8.32
0.00
11.15
0.00
0.00
59.78
8.78
2.67
63.43
74.88
125.27
11A
51.71
0.00
0.00
9.68
0.00
7.29
0.00
0.00
68.68
11.62
14.55
43.02
69.19
100.74
11B
51.20
0.00
0.00
9.68
0.00
8.04
0.00
0.00
68.93
14.47
14.83
48.72
78.02
113.20
11C
50.09
0.00
0.00
10.18
0.00
7.32
0.00
0.00
67.59
12.96
12.35
51.11
76.43
113.07
RUN N0- HD 12 13 14 17A 17B 17C 18 19C 20
INPUTS, LB/HR TOT C
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
' PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR TOT C
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE, X .
59.26
0.00
0.00
10.37
0.00
5.63
0.00
0.00
75.25
14.22
11.37
52.53
78.12
103.81
61.93
0.00
0.00
10.61
0.00
11.03
0.00
0.00
83.57
18.32
5.49
60.70
84.51
101.12
47.47
0.00
0.00
10.18
0.00
6.76
0.00
0.00
64.41
11.96
3.74
53.38
69.09
107.26
85.94
0.00
0.00
8.75
0.00
6.95
0.00
0.00
101.65
49.10
22.31
37.86
109.27
107.50
74.17
0.00
0.00
9.00
0.00
0.00
0.00
27.53
110.69
32.13
26.60
46.76
105.49
95.30
65.88
0.00
0.00
9.19
0.00
0.00
0.00
27.53
102.59
33.95
17.79
54.67
106.41
103.73
61.51
0.00
0.00
8.50
0.00
0.00
0.00
27.53
97.54
18.79
15.66
60.16
94.61
97.00
51.47
0.00
0.00
8.50
0.00
8.53
0.00
0.00
68.50
13.03
15.95
32.91
61.90
90.36
77.37
O.OO1
0.00;
10.37
0.00
0.00
0.00
19.58
107.32
39.40'
11.24
55.82
106.47'
99.20;
80.92
0.00
0.00
10.80
0.00
7.79
0.00
0.00
99.51
47.28
9.16
44.10
100.54
101.04
92
-------
TABLE A-11. MINERAL CARBON BALANCES
RUN KO.
INPUTS, LB/HR HIN. C
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR HIN. C
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
2
20.29
0.00
0.00
0.00
0.00
1.19
0.00
0.00
21.48
18.00
9.76
0.00
27.76
129.28
4
37.21
0.00
0.00
0.00
0.00
1.11
0.00
0.00
38.32
24.00
15.10
0.00
39.10
102.03
49.
0.
0.
0.
0.
0.
0.
0.
50.
35.
12.
2.
50.
100.
6
48
00
00
00
00
75
00
00
22
12
71
40
23
01
7
15.07
0.00
0.00
0.00
0.00
1.14
0.00
0.00
16.20
7.24
7.55
1.41
16.20
99.99
8
21.34
0.00
0.00
0.00
0.00
0.82
0.00
0.00
22.17
7.24
3.25
11.69
22.18
100.06
10
27.12
. 0.00
0.00
0.00
0.00
0.80
0.00
0.00
' 27.92
9.41
10.01
8.50
27.92
100.00
11
24.24
0.00
0.00
0.00
0.00
1.08
0.00
0.00
25.33
8.78
2.67
13.88
25.33
100.02
11A
27.61
0.00
0.00
0.00
0.00
1.20
0.00
0.00
28.81
11.62
10.29
6.90
28.81
100.01
11B
28.87
0.00
0.00
0.00
0.00
1.25
0.00
0,00
soai
10L19
12.65
7.27
30.11
100.01
11C
29.35
0.00
0.00
0.00
0.00
1.14
0.00
0.00
30.48
6.69
10.36
13.42
•30.47
99.97
RUN NO. 11D 12 13 14 17A 17B 17C 18 19C 20
INPUTS, LB/HR HIN. C
RETORTED SOLIDS
STEAH
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR HIN. C
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
34
0
0
0
0
0
0
0
35
9
10
15
35
99
.90
.00
.00
.00
.00
.92
.00
.00
.83
.83
.33
.66
.82
.99
34.40
0.00
0.00
0.00
0.00
1.17
0.00
0.00
35.58
13.05
4.31
18.42
35.78
100.55
28.92
0.00
0.00
0.00
0.00
0.72
0.00
0.00
29.64
9.43
2.74
17.47
29.64
100.00
56.58
0.00
0.00
0.00
0.00
1.29
0.00
0.00
57.87
42.08
16.85
0.00
58.93
101.84
49.79
0.00
0.00
OiOO
0.00
0.00
0.00
5.79
55.58
29.10
20.27
6.21
55.58
100.00
39.60
0.00
0.00
0.00
0.00
0.00
0.00
5.79
45.39
32.13
14.71
0.00
46.84
103.21
41.36
0.00
0.00
0.00
0.00
0.00
0.00
5.79
47.15
18.79
13.70
14.66
47.15
100.00
32.43
0.00
0.00
0.00
0.00
1.59
0.00
0.00
34.02
13.03
14.29
6.69
34.01
100.00
53.88
01 00
0.00
0.00
0.00
0.00
0.00
4.12
58.00
35;77
10.54
11,69
58.00
100.00
55.42
0.00
0.00
0.00
0.00
1.45
0.00
0.00
56.87
43.95
8.87
4.05
56.87
100.01
93
-------
TABLE A-12. ORGANIC CARBON BALANCES
RUN NO. 2 4 6 7 8 10 II 11A 118 11C
INPUTS,LB/HR ORG. C
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURGES
RAW SHALE
TOTAL INPUTS 28.10 28.14 23.87 36.38 31.23 34.63 34.45 39.88 38.81 37.11
13.53
0.00
0.00
7.39
0.00
7.19
0.00
0.00
16.42
0.00
0.00
5.15
0.00
6.56
0.00
0.00
12.37
0.00
0.00
7.45
0.00
4.05
0.00
0.00
15.33
0.00
0.00
10.06
0.00
10.99
0.00
0.00
14.06
0.00
0.00
9.93
0.00
7.25
0.00
0.00
17.48
0.00
0.00
11.17
0.00
5.99
0.00
0.00
16.07
0.00
0.00
8.32
0.00
10.07
0.00
0.00
24.10
0.00
0.00
9.68
0.00
6.10
0.00
0.00
22.34
0.00
0.00
9.68
0.00
6*79
0.00
0.00
20.75
0.00
0.00
10.18
0.00
6.18
0.00
0.00
OUTPUTS, LB/HR ORG.
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
C
0
0
41
42
149
.00
.57
.54
.10
.85
0.00
0.00
40.30
40.30 •
143.24
0.00
0.00
33.91
33.91
142.08
4.83
0.07
45.84
50.73
139.46
0.00
0.00
38.04
38.04
121.78
0.00
0.59
38.08
38.67
111.65
0.00
0.00
49.55
49.55
143.82
0.00
4.26
36.12
40.38
101.26
4.28
2.18
41.45
47.91
123.43
6.27
1.99
37.69
45.95
123.84
NO. 11D 12 13 14 17A 178 17C 18 19C 20
INPUTS, LB/HR ORG. C
RETORTED SOLIDS
STEAM
AIR
NAT'L SAS
OVERFIRE AIR
RETORT GAS
PURGES
RAVI SHALE
TOTAL INPUTS
OUTPUTS, LB/HR ORG.
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALAKCE CLOSURE,*
24.36
0.00
0.00
10.37
0.00
4.70
0,00
0.00
39.42
C
4.39
1.04
36.87
42.30
107.28
27.52
0.00
0.00
10.61
0.00
9.86
0.00
0.00
48.00
5,27
1.18
42.28
48.73
101.54
18.55
0.00
0.00
10.18
0.00
6.04
0.00
0.00
34.77
2.53
1.01
35.91
39.45
113.45
29.36
0.00
0.00
8.75
0.00
5.67
0.00
0.00
43.78
7.01
5.46
37.86
50.34
114.98
24.37
0.00
0.00
9.00
0.00
0.00
0.00
21.74
55.11
3.03
6.32
40.55
49.91
90.56
26.28
0.00
0.00
9.19
0.00
0.00
0.00
21.74
57.20
1.82
3.08
54.67
59.57
104.15
20.15
0.00
0.00
8.50
0.00
0.00
0.00
21.74
50.39
0.00
1.96
45.50
47.46
94.19
19.03
0.00
0.00
8.50
0.00
6.95
0.00
0.00
34.49
0.00
1.66
26.22
27.88
80.86
23.49
0.00
0.00
10.37
0.00
0.00
0.00
15.46
49.32
3.64
0.70
44.13
48.47
98.27
25.50
0.00
0.00
10.80
0.00
6.34
0.00
0.00
42.64
3.33
0.29
40.05
43.67
102.41
94
-------
TABLE A-13. SULFUR BALANCES
RUN NO.
INPUTS,LB/HR SULFUR
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURSES
RAW SHALE
TOTAL INPUTS
10
11
11A
118
RUN NO.
11D
12
13
14
17A
17B
17C
18
19C
11C
9.88
0.00
0.00
0.00
0.00
0.41
0.00
0.00
20.11
0.00
0.00
0.00
0.00
0.30
0.00
0.00
26.41
0.00
0.00
0.00
0.00
0.15
0.00
0.00
15.33
0.00
0.00
0.00
0.00
1.60
0.00
0.00
13.54
0.00
0.00
0.00
0.00
2.16
0.00
0.00
16.27
• 0.00
0.00
0.00
0.00
0.77
0.00
0.00
15.48
0.00
0.00
0.00
0.00
0.36
0.00
0.00
12,30
0.00
0.00
0.00
0.00
0.93
0.00
0.00
11.04
0.00
0.00
0.00
0.00
0.90
0.00
0.00
12.40
0.00
0.00
0.00
0.00
0.82
0.00
0.00
10.30 20.41 26.56 16.93 15.69 17.04 15.84 13.23 ll.;94 13,21
OUTPUTS, LB/HR SULFUR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE,*
9.66
4.64
0.00
14.30
138.82
16.10
4.61
0.00
20.71
101.46
22.83
3.60
0.00
26.43
99.52
13.17
4.93
0.00
18.10
106.94
11.63
5.76
0.00
17.40
110.84
10.71
5.23
0.00
15.94
93.52
11.04
5.07
0.00
16.11
101.66
8.36
4.91
0.00
13.27
100.34
8.76
5.02
0.00
13.78
115.42
8.57
5.29
0.00
13.86
104.91
20
INPUTS, LB/HR SULFUR
RETORTED SOLIDS
STEAM
AIR
NAT'L GAS
OVERFIRE AIR
RETORT GAS
PURGES
RAW SHALE
TOTAL INPUTS
OUTPUTS, LB/HR SULFUR
HEAT CARRIER
BAGHOUSE ASH
FLUE GAS
TOTAL OUTPUTS
BALANCE CLOSURE, %
12.05
0.00
0.00
0.00
0.00
0.71
0.00
0.00
12.77
8.99
4.91
0.00
13.90
108.86
15.48
0.00
0.00
0.00
0.00
1.16
0.00
0.00
16.64 .
11.04
5.45
0.00
16.49
99.12
13.91
0.00
0.00
0.00
0.00
2.40
0.00
0.00
16.31
10.35
6.52
0.00
16.87
103.39
30.80
0.00
0.00
0.00
0.00
1.07
0.00
0.00
31.87
26.78
3.86
0.00
30.63
96.13
25.42
0.00
0.00
0.00
0.00
0.00
0.00
1.00
26.42
22.73
4.32
0.00
27.05
102.39
23.13
0.00
0.00
0.00
0.00
0.00
0.00
1.00
24.12
20.00
4.90
0.00
24.91
103.25
17.32
0.00
0.00
0.00
0.00
0.00
0.00
1.00
18.32
13.94
5.65
0.00
19.59
106.93
17.63
0.00
0.00
0.00
0.00
0.64
0.00
0.00
18.27
14.25
5.16
0.00
19.41
106.24
17; 96
0.00
0.00
0.00
0.00
0.00
0.00
0.71
17.96
16.37
3i51
0.00
19188
110.70
19.72
0.00
0.00
0.00
0.00
0.59
0.00
0.00
20.31
15.46
3.43
0.00
18.89
93.03
95
-------
CO
0| to
CM CM
P- CM
•een or^k
ojoj^cale
^- CM
f~ CM
5 p-
r- CM
p a
r— CM
-------
TABLE A-15. MERCURY BALANCES AROUND COMBUSTOR
Inputs Test 7
Retorted Sol ids, kg/hr 1178.1
Hg, mg/hr NO
Retort Gas, m3/hr 10.0
Hg, mg/hr ND
Metal Spike, mg/hr
Raw Shale, kg/hr
Hg, mg/hr
Total Hg In, mg/hr
Outputs
Heat Carner, kg/hr 995.6
Hg, mg/hr ND
Baghouse Ash, kg/hr 154.2
Hg, mg/hr 1.40
Flue Gas, n^/hr 410
Hg, mg/hr ND
Total Hg Out, mg/hr 1.40
Recovery, %
.*
Test 12
1300.4
14.30
9.8
1.04
23,166.0
23,181.34
1138.T
76.32
136.1
285.80
387
9566.40
9928.52
42.8
Test 19C
1566.7 '.
: ND
43.1
0.64
^0.64
1374.8
'< ND
157.8
3.00
398 8.76
11.76
1838
ND = Not detected.
97
-------
TABLE A-16. CADMIUM BALANCES AROUND COMBUSTOR
Inputs Test 7
Retorted Solids, kg/hr 1178.1
Cd, mg/hr 1.025
Retort Gas, m3/hr 10.0
Cd, mg/hr 0.002
Metal Spike, mg/hr
Raw Shale, kg/hr
Cd, mjj/hr
Total Cd In, mg/hr 1.027
Outputs
Heat Carn'er, kg/hr 995.6
Cda mg/hr 0.856
Baghouse Ash, kg/hr 154.2
Cds mg/hr 0.108
Flue Gas, m3/hr 410
Cd, mg/hr 0.011
Total Cd Out, mg/hr 0.975
Recovery, % 95
Test 12
1300.4
29.909
9.8
0.003
23.166
23,181.34
1138.1
76.32
136.1
285.80
387
9566.40
34.2652
64.6
Test 19C
1566.7
2.193
43.1
0.030
2.223
1374.8
2.200
157.8
1.436
398 0.006
3.642
164
98
-------
TABLE A-17. ARSENIC BALANCES AROUND COMBUSTOR
Inputs Test 7 Test 12 Test 19C
Retorted Solids,kg/hr 1178.1 1300.4 1566.7
As, g/hr 42.41 48.11 65.80
Retort Gas, m3/hr 10.0 9.8
As, g/hr 1.15 0.86
Raw Shale, kg/hr 43.1
As, g/hr 2.33
Total As In, g/hr 43.56 48.97 68.13
Outputs
Heat Carrier, kg/hr 995.6 1138.1 1374.8
As, g/hr 46.79 35.28 48.12
Baghouse Ash, kg/hr 154.2 136.1 157.8
As, g/hr 13.88 12.52 11.36
Flue Gas, mVhr 410 387 398
As, g/hr 0.003 0.003 0.004
Total As Out, g/hr 60.673 47.803 59.484
Recovery, % 139 97.6 87.3
99
-------
TABLE A-18. LEAD BALANCES AROUND COMBUSTOR
Inputs Test 7 Test 12 Test 19C
Retorted Sol ids,kg/hr 1178.1 1300.4 1566.7
Pb, g/hr 28.27 31.21 42.30
Retort Gas, m3/hr 10.0 9.8
Pb, g/hr 0.03 0.001
Raw Shale, kg/hr . 43.1
Pb, g/hr 1.29
Total Pb In, g/hr 28.30 31.211 43.60
Outputs
Heat Carrier, kg/hr 995.6 1138.1 1374.8
Pb, g/hr 21.90 25.03 35.74
Baghouse Ash, kg/hr 154.2 136.1 157.8
Pb, g/hr 3.08 3.27 3.95
Flue Gas, m3/hr 410 387 398
Pb, g/hr 0.05 0.002 0.05
Total Pb Out, g/hr 25.03 28.302 39.74
Recovery, % 88.4 90.7 91.2
100
-------
TABLE A-19. BERYLLIUM BALANCES AROUND COMBUSTOR
Inputs Test 7 Test 12 Test 19C
Retorted Solids,kg/hr 1178.1 1300.4 1566.7
Be, g/hr 0.566 0.832 1.003
Retort Gas, m3/hr 10.0 9.8
Be, g/hr ND ND
Raw Shale, kg/hr 43.1
Be, g/hr 0.029
Total Be In, g/hr 0.566 0.832 1.032
Outputs
Heat Carrier, kg/hr 995.6 1138.1 1374.8
Be, g/hr 0.677 0.592 0.770
Baghouse Ash, kg/hr 154.2 136.1 157.8
Be, g/hr 0.157 0.147 0.196
Flue Gas, ra3/hr 410
Be, g/hr
Total Be Out, g/hr
Recovery, %
387
0.004
0.838
148
NO
0.739
88.7
398
ND
0.966
93.6
ND = Not detected.
101
-------
TABLE A-20. FLUORIDE BALANCES AROUND COMBUSTOR
Inputs Test 7 Test 12 Test 19C
Retorted Solidsakg/hr 1178.1 1300.4 1566.7
F, g/hr 282.7 429.1 642.3
Retort Gas, m3/hr 10.0 9.8
F, g/hr ND ND
Raw Shale, kg/hr ' 43.1
F, g/hr 31.5
Total F In, g/hr 282.7 429.1 673.8
Outputs
Heat Garner, kg/hr 995.6 1138.1 1374.8
F, g/hr 230.0 330.0 481.2
Baghouse Ash, kg/hr 154.2 136.1 157.8
F, g/hr 107.9 121.1 123.1
Flue Gas, uK/hr
F, g/hr
Total F Out, g/hr
Recovery, %
410 387
ND
337.9
119
ND
451.1
105
398 i
ND i
604.3
89.7
ND = Not detected.
102
-------
APPENDIX B
103
-------
APPENDIX B
LEACHING AND HYDRAULIC PROPERTIES OF
THREE BAGHOUSE ASH SAMPLES
by
Dr. David B. McWhorter
Colorado State University
A. INTRODUCTION
Three samples of baghouse ash were provided to Colorado State
University for the measurement of the leaching and hydraulic properties.
The samples tested were designated by run number and sample number and
are, respectively: 11-54591, 14-54592, and 17B-54593. The operating
conditions of the retort, fluid bed combuster, and retort ^gas under
which these materials were produced are presented elsewhere in this
report. !
One purpose of the tests made at Colorado State University was to
provide information on the potential changes in the leaching
characteristics of retorted oil shale that has undergone the fluid bed
combustion and other treatments as described previously in this report.
This is accomplished by comparing the results from ESM tests (McWhorter
and Durnford, 1986) on the ash samples with results from a similar test
on material produced by the TOSCO-II .retorting process. While the
results are not rigorously comparable because the final products did not
derive from identical feed stock, etc., the comparison remains useful as
an indication of any significant changes that may occur.
The hydraulic properties of the ash samples were measured to
determine if these materials exhibited any extraordinary .characteristics
not observed previously in similar measurements on combusted shales.
Hydraulic properties of porous media are highly variable and sensitive
to many parameters unrelated to the combustion and sulfur adsorption
treatments to which these particular materials were subjected'. It is,
therefore, not possible to attribute quantitative differences between
the properties of the ash samples and the corresponding properties of
TOSCO-II retorted shales solely to the fluid bed combustion and sulfur
adsorption treatments received by the ash samples.
104
-------
B. LEACHING EXPERIMENTS
The Equilibrated Soluble Mass (ESM)(Nazareth, 1984; McWhorter and
Durnford, 1986) test was used in this project as a method for
characterizing the leaching properties of the baghouse ash samples.
This equilibrated pore solution is subsequently displaced by injection
of distilled water. The salient feature of this test is that the
chemical composition of the first effluent from the column is that which
evolved during the equilibration period under conditions of liquid-to-
solid ratio and aeration the are similar to those expected under field
conditions.
^In the ESM column leaching test, the sample is moistened with
distilled water. The moisturizing process is performed by weighing out
a dry sample to a given dry bulk density and sprinkling the sample with
a weighed quantity of deionized water. During the sprinkling'process,
the sample is continually mixed to distribute the water evenly, and both
the water added and the total weight of the solid-liquid mixture is
monitored. After the moisturizing process is complete, the moisturized
sample equilibrates for 72 hours in a closed environment before the
column is packed and the leaching test run.
The columns used in this study were 42-43 cm long with diameters of
about 10 cm. The columns were packed in lifts to minimize separation
and layering. Although each of the ash samples was packed as densely as
possible, achieving densities much higher than 1.0 g/cc proved
difficult. The #11 Baghouse Ash, particularly, was very difficult to
pack because it had very little cohesiveness.
The leaching test is performed by injecting distilled water at a
constant rate into the bottom of the column. Bottom injection minimizes
air entrapment and piping. The bottom and top end-plates of the column
have 2 mm conical disks machined onto the surfaces that promote uniform
flow over the cross section of the column and insure mixing of the
effluent as it enters and exits the column. Perforated rigid disks
support the material and filter disks on the top and bottom prevent
movement of the fines through the end plates. A rubber ring seals the
top plate to the column body.Effluent from the top of the column is
routed through an electrical conductivity probe and pH meter and into a
graduated cylinder. A record of the cumulative volume of outflow, time,
pH, EC, and inflow pressure is maintained. Effluent samples are
collected and saved at intervals for chemical analyses.
Table B-l summarizes the significant parameters for the ESM test
for the three baghouse samples tested in this study. Two values for
initial moisture contents are given in the table. The reason if.or this
is that the samples hydrated during the equilibration period,
particularly #11 and #17. The #11 Baghouse Ash sample was weighed and
moisturized at 17 percent distilled water by weight. After the
moisturizing procedure was completed and the sample container sealed,
the temperature of the sample rose to 43°C after ten minutes and to
maximum of 48°C in twenty minutes. The ambient temperature was 22°C.
During column packing 72 hours later, moisture contents of the
105
-------
TABLE B-l. ESM COLUMN LEACH TEST PARAMETERS
Sample
Baghouse
Ash #11
Baghouse
Ash #14
Baghouse
Ash #17
1. Packed Volume (cm )
3282
3267
3390
2. Initial Moisture Content,
% by weight added to
dry sample*
17.0
17.0
17.0
Initial Moisture Content,
% by weight determined
by oven drying after
equilibration period*
10.6
15.5
13.3
Dry Bulk Density
(kg/m3)**
1025
1185
1010
5. Effective Particle
3
Density (kg/m )
3052
2754
2908
6. Porosity
7 Flowrate (ml/hr)
0.664
120.0
0.570
144.8
0.653
161.8
Total Time after
outflow (hrs)
22.7
23.2
24.1
^Difference between moisture added and moisture found by oven drying is
due to hydration during 72 hour equilibration period.
**Dry Bulk Density is based on moisture content by oven drying given in
3.
106
-------
equilibrated sample were determined'by standard oven drying methods and
found to be 10.6, and 10.7, and 10.4 percent by weight, indicating that
significant hydration had occurred. Similar data were collected for the
#17 sample tested. A temperature change from 22°C to 42°G was noted for
the #17 Baghouse Ash with a consequent drop in moisture content during
the equilibrium period from 17 percent to 13.3 percent by weight. The
#14 Baghouse Ash had a measured moisture content change from 17 to
15.5 percent (the average of three samples) but no change in temperature
was noted. Dry bulk densities shown in Table B-l are based on final
moisture contents.
G. RESULTS OF LEACHING TESTS
Tables B-2, B-3, and B-4 contain the data 'for the chemical
composition of the column effluent for the three samples. Figures B-l,
B-2 and B-3 show the variation of the electrical conductivity as a
function of effluent volume. '
As has been the case for practically all of the retorted and
combusted shales subjected to the ESM test, the initial column effluent
is quite saline. Furthermore, the overall levels of individual
dissolved constituents are not remarkably different from those that have
been observed in effluent from other combusted shale materials. A
second index to the leachability is the volume of effluent required to
achieve a 50 percent relative electrical conductivity in the effluent.
Theoretical considerations (Nazareth, 1984) show that if all of the
leachable solids are dissolved in the initial moisturizing waters, then
the 50 percent relative electrical conductivity should occur at an
effluent volume equal to the volume of moisture used in the initial
equilibration. Occurrence of the 50 percent relative electrical
conductivity at a volume greater than this value indicates the presence
of significant solubility controls and the tendency for leaching to
occur more slowly. All of the baghouse ashes resulted in 50 percent
relative concentrations at effluent volumes near the volume of initial
moisturizing waters. :
The plots of relative electrical conductivity (Figures B-l, B-2,
and B-3) show a tendency toward a constant relative EC of about
20 percent as the effluent volume becomes larger. Again, this is a
characteristic observed in many other such tests.
Table B-5 provides data for a direct comparison of the
concentrations of selected species in effluent from the ash samples and
from TOSCO-II retorted shale. The first portion of the table compares
data from samples of the initial effluent; the second portion compares
data from samples at about the same effluent volumes collected after
leaching was well advanced. Perhaps the only remarkable differences in
the results are the much higher concentrations of potassium in the first
efflixents from the combusted , shales and the much lower magnesium
concentration. The concentration of other constituents, while certainly
not the same, are not so different that the ash samples would be put in
another category with respect to leaching. Significantly, the sulfate
concentrations derived from the ash samples are not greater than from
107
-------
TABLE B-2. ESM TEST RESULTS FOR SAMPLE 11-54591
Parameter
pH
EC , ds/m
TDS,mg/l
Ca,mg/l
Mg,mg/l
Na,mg/l
K,mg/l
S04,mg/l
Cl,mg/l
N03,mg/l
NH4,mg/l
C03,mg/l
OH,mg/l
F,mg/l
Effluent Volume /Pore Volume
0.03
13.0
53.2
35720
647
<1
8850
4820
18380
83
11
92
1080
1810
5.4
0.09
12.8
42.6
26980
679
<1
6360
2990
13120
71
9
22
1040
1480
4.7
0.25
12.1
15.1
6850
1020
<1
817
272
2140
25
4
6
722
620
2.4
0.41
11.8
11.3
5050
1290
<1
162
96
1220
17
3
6
395
633
2.0
0.62
11.7
10.6
' 5140
1300
- <1
146
> 90
1130
17
3
6
925
: 300
1.7
Al,mg/l
Fe,mg/l
Mn,mg/l
Gu,mg/l
Zn,mg/l
Ni,mg/l
Mo,mg/l
Cd,mg/l
Cr,mg/l
Sr,mg/l
B,mg/l
Ba,mg/l
Pb,mg/l
Hg,mg/l
As,mg/1
Se,mg/l
0.10
0.02
0.01
0.18
0.15
<0.01
4.29
<0.01
2.99
38.1
0.55
0.21
<0.05
<0.001
0.006
0.210
0.22
0.02
0.02
0.02
0.02
<0.01
2.47
<0.01
1.66
38.3
1.60
0.20
<0.05
<0 . 001
<0 . 001
0.118
0.16
0.02
0.02
0.04
0.01
<0.01
0.62
<0.01
0.46
38.3
1.07
0.24
<0.05
<0.001
0.003
0.025
0.30
0.12
0.02
0.08
0.03
<0.01
0.27
<0.01
0.28
38.3
1.84
0.31
<0 . 05
<0..001
0.003
0.012
0.25
0.07
. 0.02
0.06
0.03
<0 . 01
, 0.29
<0 . 01
0.27
38.3
: 1.74
0.34
<0.05
<0.001
0.001
0.011
108
-------
TABLE B-3. ESM TEST RESULTS FOR SAMPLE 14-54591
Parameter
PH
EC , ds/m
TDS,mg/l
Ca,mg/l
Mg/mg/1
Na , mg/1
K,mg/l
S04,mg/l
Cl,mg/l
N03,mg/l
NH4,mg/l
C03,mg/l
OH, mg/1
F,mg/l
Effluent Volume/Pore Volume
0.04
12.5
25.7
20570
597
<1
5420
691
10640
414
11
113
1350
198
13.4
0.11
12.6
25.7
20330
571
<1
5320
635
10620
336
11 •
109
1510
83
13.8
0.28
12.5
18.9
13810
397
<1
3380 ,
469
6930
273
9
58
835
278
11.7
0.44
12.2
9.5
6680
689
<1
992
236
2740
142
6
39
519
121
8.8
0.60
12.1
6.4
4660
792
<1
298
132
1670
85
5
33
288
163
6.9
' 0.90
11.9
5.4
' 4310
774
<1
: 196
89
1560
96
: 4
33
! 220
141
6.2
Al,mg/l
Fe,mg/l
Mn,mg/l
Cu,mg/l
Zn,mg/l
Ni,mg/1
Mo,mg/1
Cd,mg/l
Cr,mg/l
Sr,mg/l
B,mg/l
Ba,mg/l
Pb,mg/l
Hg,mg/l
As,mg/1
Se,mg/l
0.56
0.02
0.01
0.21
0.03
<0.01
23.70
<0.01
0.13
19.3
1.16
0.13
<0.05
<0.001
0.039
0.242
0.59
0.03
0.02
0.14
0.04
<0.01
23.60
<0.01
0.13
19.6
1.44
0.13
<0.05
<0.001
<0.044
0.256
0.46
0.02
0.02
0.06
0.01
<0.01
14.90
<0.01
0.08
20.3
1.86
0.13
<0.05
<0.001
<.008
0.140
0.37
0.09
0.02
0.04
0,02
<0.01
6.10
<0.01
0.07
22.6
1.89
0.14
<0.05
<0.001
0.012
0.053
0.39
0.28
0.02
0.03
0.03
<0.01
3.60
<0.01
0.07
24.5
1.93
0.15
<0.05
<0.001
0.010
0.034
0.29
0.06
0.02
0.02
0.02
<0.01
3.30
<0.01
0.05
25.2
1.77
0.16
<0.05
<0.001
0.008
0.032
109
-------
TABLE B-4. ESM TEST RESULTS FOR SAMPLE 17-54591
Parameter
PH
EC , ds/m
TDS.mg/1
Ca,mg/l
Mg/mg/1
Na,mg/l
K.mg/1
S04,mg/l
Cl,mg/l
N03,mg/l
NH4,mg/l
C03,mg/l
OH,mg/l
F,mg/l
Effluent Volume /Pore Volume
0.03
13.3
53.3
17010
150
<1
5810
1870
2840
231
2
132
1440
3430
18.8
0.07
13.2
52.3
16120
167
<1
5470
1730
2460
171
1
93
1310
3570
15.4
0.19
13.0
34.1
9742
154
<1
3070
1040
1030
89
1
31
970
2150
7.7
0.33
12.6
14.1
4370
557
<1
689
284
203
20
<1
22
677
697
3.8
0.66
12.4
10.2
3540
723 !
<1 ;
186
113
59
.• 11
1 '
24
790 '
409
2.8
Al.mg/1
Fe,mg/l
Mn.mg/l
Cu , mg/1
Zn,mg/l
Ni,mg/l
Mo , mg/1
Cd.mg/1
Cr.mg/1
Sr,mg/l
B,mg/l
Ba , mg/1
Pb,mg/l
Hg,mg/l
As , mg/1
Se.mg/1
0.32
0.02
<0.01
0.29
0.33
<0.01
5.30
<0.01
0.05
12.0
1.02
0.25
<0.05
<0.001
0.022
0.043
0.26
0.01
0.01
0.12
0.13
<0.01
4.20
<0.01
0.05
14.9
0.56
0.33
<0.05
<0.001
0.014
0.032
0.17
0.01
0.01
0.02
0.02
<0.01
1.80
<0.01
0.05
26.0
1.70
0.52
<0.05
<0 . 001
0.001
0.016
0.24
0.01
0.01
0.01
0.01
<0.01
0.37
<0.01
0.05
37.3
1.49
1.31
<0 . 05
<0 . 001
<0.001
0.005
0.17
0.01
0.01
0.01
0.02
<0.01
0.14
<0.01
0.05
37.3
1.63
2.34
<0'.05
<0.001
0.001
0.015
110
-------
TABLE B-5. COMPARISON OF EFFLUENTS FROM ASH SAMPLES AND
TOSCO-II RETORTED SHALE
Initial Effluent
Parameter
EC , ds/m
pH
Na , mg/1
Ca,mg/l
Mg,mg/l
K,mg/l
S04>mg/l
Cl,mg/l
F,mg/l
MO, mg/1
Parameter
EC , ds/m
pH
Na,mg/l
Ca,mg/l
Mg,mg/l
K,mg/l
S04,mg;/l
Cl,mg/l
F,mg/l
MO, mg/1
11-54591
53.2
13.0
8850
647
<1
4820
18380
83
5.4
4.3
11-54591
10.6
11.7
146
1300
<1
90
1130
17
1,7
0.29
14-54592
25.7
12.5
5420
597
<1
691
10640
414
13.4
23.7
Final Effluent
14-54592
5.4
11.9
196
774
<1
89
1560
96
6.2
3.3
17-B-54593
53.2
13.3
5810
150
<1
1870
2840
231
18.8
5.3
17-B-54593
10.2
12.4
186
723
<1
113
59
11
2.8
0.14
TOSCO-II
36.5
!9.3
,9910
:368
695
'109
; 28510
:218
!24.9
26.3
TOSCO- II
r
ie.e
'1160
'•62
83
15.4
3132
8.9
122.0
5.4
111
-------
1
1
Ul
V)
O
i
to
evi
r
o>
d
i
oo
•
o
i
r*»
*
o
I
to
v
O
r
m
»
o
I
n
*
o
i
CM
d
I
*
o
CO
csi
>^x
OUJ
3 8
"t
d
*
O
•H
!-i
4-1
U
a)
r-l
(1)
112
-------
o
4J
O
•§
c
o
o
o
•H
4J
O
-------
UJ
s
g
o
3
a
s
UJ
:s
II
«sg
OLIJ
£3
1
2:
O
r--
iH
*
O
4-1
•H
•^
4J
O
c
O
O
o
•r-t
!-l
4-1
O
0)
i-l
0)
4J
CO
I
pa
0)
Ml
fa
AilAULOnaNOO TVOI&LLO313 3ALLV13a
114
-------
the TOSCO-II retorted material. Overall, the data suggest that:
adsorption of chemicals (primarily sulfur) from the flue gas did not
substantially modify the levels or amounts of most constituents that are
leached from the shale by this test. !
D. HYDRAULIC PROPERTIES
Particle Density- The particle densities of all three materials were
measured at 500 ml volumetric flasks. Duplicate samples of the material
were wetted under vacuum to insure removal of entrapped air. Due to the.
high mass of soluble salts in the samples, the calculations of the
particle density were corrected for the sample mass in solution. This
was done by measuring the total dissolved solids (T.D.S.) in the flask
solution, calculating the total dissolved mass and then reducing initial
sample mass by that amount. Without that correction unreasonably high
values of particle density would have been obtained.
Water Characteristics -The water characteristic of a material is a
measure of the material's ability to hold capillary and adsorbed water
at pressures less than atmospheric and water contents less than
saturation. The amount of water held at a given capillary pressure is a.
function of whether the material is drying or wetting. Only the wetting
characteristics were measured. The method used was consistent with ASTM
D2352 except water was circulated beneath the plate to provide a source
to wet the samples. Figure B-4 presents the results of the analysis.
Hydraulic Diffusivity-Using the theory of hydraulic diffusivity the
unsaturated hydraulic conductivity of a porous medium can be; measured
The hydraulic diffusivity is defined as:
where D(0) = hydraulic diffusivity (L2/T) '
K(0) = hydraulic conductivity (L/T)
6 = volumetric water content
h = capillary pressure (L)
The relation dh/dd is the slope of the water holding capacity curve.
With this relationship, Darcy's law for one -dimensional horizontal flow
can be stated as 1
q = - D(0)30/dx (2)
Bruce and Klute (1956) showed that D(0) can be measured in an
unsteady flow cell. A horizontal column is wetted from a constant
pressure source for a relatively short period and then the water content
along the column is determined. The diffusivity is calculated by:
\ fe
9 Sg A dd (3)
x i
115
-------
4
»0r-
no. //
o no. 14
10
6
o
o
,
w
2
"5.
o
/O
O./
0.2 0.3 0.4
Wfafer Confenf Q
0.5
0.6
0.7
Figure B-4. Water characteristics.
116
-------
where 9. = initial water content
A1- x/t1/2
This method has the advantage that data collected at different times is
normalized to yield a single curve.
For materials #11 and #14, columns at initial water contents of
about 10 percent by weight were run. Water contents at various times
were measured by gamma attenuation. The diffusivities for each density-
were then calculated using Eq. (3). Figure B-5 presents the
diffusivities for each material. The values are reasonable for the
material and densities.
Hydraulic Gonductivity-The unsaturated hydraulic conductivity can
be determined using the relation:.
K(0) = D(0) d0/dh , (4)
The term dd/dh is the inverse of the slope of the water-
characteristic. Using this relationship and the measured water-
characteristics and diffusivities, the unsaturated conductivities were
computed. Figure B-6 presents the results. The ranges are reasonable
for the materials and densities. ;
Saturated Hydraulic Conductivity-The saturated hydraulic
conductivity of samples #11 and #14 were determined with a falling head
permeameter. Columns approximately 3.7 cm in diameter, 15 cm long with
a flexible membrane between the sample and column wall were used.
During testing, the region between the membrane and column wall was
slightly pressurized to ensure no seepage along the walls. Maximum
hydraulic gradients used were 6 for sample #14 and 16 for sample #11.
Sample #14 was tested for three days. During that period, the
hydraulic conductivity was constant at 1.7 x 10 cm/s. Sample #11, due
to its cementing characteristics, was tested twice. The first column
was packed immediately after moisturizing. It had a conductivity which
declined over the next 10 days from 4 x "cm/s to 2 x 10 cm/s. The
second column was packed after three days of curing. It had a constant
conductivity of 2.6 x 10" cm/s. ;
117
-------
0.
0.01
o
-------
-4
10
to
o
/o'
o
o
3
s
1
-7
IO
/o
&. no. //
_o no. 14
_L
_L
J_
O./ 0.2 0.3 0.4
Wafer Confenf
0.5
0.6:
a 7
Figure B-6. Hydraulic conductivity.
119
-------
REFERENCES
1. Bruce, R.R. and A. Klute. 1956. The measurement of soil-moisture
diffusivity. Soil Sci. Soc. Am. Proc., Vol. 20, pp. 458-462.
2. McWhorter, D.B. and Durnford, D.S. Leaching and hydraulic
properties of retorted oil shale including effects from codisposal
of wastewater. Final Report on Cooperative Agreement CR-807668
USEPA/AEERL-202, 180 p.
3. Nazareth, V.A. 1984. A Laboratory Column Leach Test for Oil Shale
Solid Wastes. Ph.D. Dissertation, Colorado State University, Fort
Collins, CO.
120
-------
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/7-86-032
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Control of Sulfur Emissions from Oil Shale Retorting
Using Spent Shale Absorption
5. REPORT DATE
October 1986
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
K.D. VanZanten and F. C. Haas
8. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORGANIZATION NAME AND ADDRESS
J and A Associates
18200 W. Highway 72
Golden, Colorado 80401
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-1969
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Air and Energy Engineering Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 10/85-2/86
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTESAEERL project officer is Edward R. Bates, Mail! Drop 62B, 919/
541-2853.
16. ABSTRACT
report describes an investigation of the environmental advantages/dis-
advantages of absorbing SO2 onto combusted retorted oil shale. The objective of this
program was to obtain more information in support of Prevention of Significant De-
terioration (PSD) permitting decisions on sulfur control and to determine if the i
emission of other pollutants such as nitrogen oxides (NOx) and trace elements is sig<-
nificantly increased by the combustion process. The program consists of two phases:
Phase I developed an engineering assessment and costs for application of this sulfur
absorption process to selected leading retorting processes, and Phase II was experi-
mental work in an integrated oil shale pilot plant to define operability, proof of prin-
ciple, and trace element emissions. Based on the pilot plant data obtained in this
study, fluid bed operating conditions are recommended to optimize ;SO2 and NOx con-
trol. In general, conditions that favor low SO2 emissions also favor low CO and trace
hydrocarbon emissions, but do not favor low NOx emissions. The general ranges of
operating conditions which produced reasonable results from both operating and
emissions viewpoints are given in the report. Results of the trace 'element tests in-
dicated some relative trends with regard to emissions but, because of the brevity of
the sampling, no hard conclusions can be reached for extrapolation to the long term.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Pollution
Oil Shale
Combustion
Sulfur
Emission
Absorption
8. DISTRIBUTION STATEMENT
Release to Public
b.lDENTIFIERS/OPEN ENDED TERMS
Pollution Control
Stationary Sources
Retorting
Spent Shale
19. SECURITY CLASS (ThisReport}
Unclassified
20. SECURITY CLASS (Thispage)
Unclassified
EPA Form 2220-1 (9-73)
121
c. COSATI Field/Group
13 B
08G
21B
07B
14G
21. NO. OF PAGES
131
22. PRICE
-------