EPA/600/R-93/16"
EVALUATION OF SOLIDIFICATION/STABILIZATION TREATMENT
PROCESSES FOR MUNICIPAL WASTE COMBUSTION RESIDUES
David S. Kosson
Rutgers, The State University of New Jersey
Department of Chemical and Biochemical Engineering
Piscataway, New Jersey 08855
Teresa T. Kosson
U.S. Army Corps of Engineers
Waterways Experiment Station
Vicksburg, Mississippi 39180
Hans van der Sloot
Netherlands Energy Research Foundation (ECN)
Petten, The Netherlands 17 55 ZG
Cooperative Agreement No: CR 818178-01-0
Project Officer:
Carlton C. Wiles I
Waste Minimization, Destruction and Disposal Research Division
Risk Reduction Engineering Laboratory
Cincinnati, Ohio 45268
RISK REDUCTION ENGINEERING LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
The information in this document has been funded Wholly or in part by the United States
Environmental Protection Agency under Cooperative Agreement No: CR 818178 - 01 - 0 to
Rutgers, The State University of New Jersey. It has been subjected to the Agency's peerand
administrative review, and it has been approved for publication as an EPA document. Mention of
trade names or commercial products does not constitute endorsement or recommendation for use.
-------
FOREWORD
Today's rapidly developing and changing technologies and industrial products and practices
frequently carry with them the increased generation of solid and hazardous wastes. These
materials, if improperly dealt with, can threaten both public health and the environment.
Abandoned waste sites and accidental releases of toxic and hazardous substances to the
environment also have important environmental and public health implications. The Risk Reduction
Engineering Laboratory assists in providing an authoritative and defensible engineering basis for
assessing and solving these problems. Its products support (i) policies, programs, and
regulations of the U.S. Environmental Protection Agency, (ii) the permitting and other
responsibilities of the State and focal governments, and (iii) the needs of both large and small
businesses in handling their wastes responsibly and economically.
This document provides results of evaluations conducted to determine the effectiveness of
several solidification/stabilization (S/S) processes to treat air pollution control (ARC) residues,
contained ash and bottom ash from the combustion of municipal solid waste. Five different S/S
technologies were evaluated. The untreated and treated residues, sampled from a modern state-
of-art waste-to-energy plant, were subjected to a series of physical durability and chemical leaching
tests. Results were used to provide a side-by-side comparison of the treatment processes and
of the treated residue with untreated residues. The S/S processes as formulated and tested,
generally did not physically decrease the potential for release of contaminants. One process,
however, did significantly reduce the potential for Pb release as a result of chemical treatment.
This report provides information useful in designing and evaluating S/S processes for treating
municipal waste combustion (MWC) residue.
This document is intended for use by organizations and individuals concerned with the
treatment and management of MWC residues.
-------
ABSTRACT
The investigations described in this report, were carried out to provide a side-by-side comparison
and evaluation of the effectiveness of solidification/stabilization (S/S) processes as treatment
technologies for residues from municipal waste combustion (MWC). The experimental design of
this program was a full factorial design for the evaluation of five S/S processes. The two
experimental factors were the residue type to be treated and the S/S process. The
experimental levels within the residue type factor were (i) bottom ash, (ii) air pollution control
residue, and (Hi) combined ash. The six experimental levels within the S/S process factors were
(i) the untreated residue, (ii) a portland cement only control S/S process, and (iii - vi) four selected
i
vendor S/S processes. Thus, two experimental factors at three and six experimental levels
respectively, resulted in the evaluation of eighteen experimental cases.
Evaluation of each experimental case included analysis of chemical composition, physical
properties, durability, and leaching characteristics. The testing included: moisture content, loss on
ignition, bulk density, modified Proctor density, particle size density, permeability, specific surface
area, porosity, cone penetrometer, unconfined compressive strength, pozzolanic activity,
unconfined compressive strength after immersion, wet/dry, freeze/thaw, TCLP, availability leach
test, distilled water leach test, acid neutralization capacity, and the monolithic leach test.
i
This report was submitted in partial fulfillment of CR 818 178-01-0 by Rutgers, The State University of
New Jersey (Dr. David S. Kosson, Principal Investigator), CR 813 198-01-0 by the New Jersey
Institute of Technology (Dr. John Liskowitz, Principal Investigator) and an interagency agreement
between the USEPA and the U.S. Army Corps of Engineers, Waterways Experiment Station.under
the sponsorship of the U.S. Environmental Protection Agency. This report covers a period from
January, 1990 to January, 1993. '
IV
-------
TABLE OF CONTENTS
1
1.1
1.2
1.3
1,4
1.5
2
2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
Cover Page
Disclaimer
Foreword
Abstract
Table of Contents
List of Tables
List of Figures
List of Acronyms and Definitions
Acknowledgements
Peer Reviewers
Introduction
Background on Ash Management .
Program Goals
Program Experimental Design
Vendor and Process Selection
Program Organization
Selection of Testing Methods and Protocols
Chemical Composition of Untreated Residues
Sample Analysis by Digestion and Extraction Techniques
Neutron Activation Analysis (NAA)
Physical Properties Analysis
Moisture Content
Loss on Ignition (LOI)
Bulk Density
Modified Proctor Density
Particle Size Distribution
Permeability
Specific Surface Area and Porosity
Cone Penetrometer
Unconfined Compressive Strength (DCS)
page
I
II
III
IV
V
X
XIII
XVI
XVII
XVIII
1
1
1
3
5
6
10
10
10
10
11
12
13
13
13
14
14
14\
15
15
-------
TABLE OF CONTENTS (continued)
2.2.10 Pozzolanic Activity . 15
2.2.11 Unconfined Compressive Strength After Immersion 16
2.2.12 Freeze/Thaw Weathering j 16
2.2.13 Wet/Dry Weathering I 17
2.3 Leaching Tests Selected : 18
25.1 Toxicity Characteristic Leaching Procedure (TCLP) 18
2.3.2 Availability Leach Test (ALT) | 18
2.3.3 Distilled Water Leach Test (DWLT) ; 18
25.4 Acid Neutralization Capacity (ANC) 19
2.3.5 Monolith Leach Test : 19
2.4 Data Presentation | 2°
2.5 Sample Preparation for Physical. Chemical and Leaching Analysis 20
3 Residue Sampling and preparation 35
3.1 Residue Sampling and Preparation : 35
3.2 Untreated Residue Homogeneity 37
4 Process Descriptions and Economics : 45
4.1 Process Descriptions i 45
42. Process Economics for Solidification/Stabilization of MWC residues 46
5 Physical Properties of Untreated and Treated Residues 55
5.1 Moisture Content ; 55
52. Loss on Ignition ; 56
53 Bulk Density i &
5.4 Modified Proctor Density 53
55 Particle Size Distribution | 53
5.6 Permeability : ®
5.7 Pore Diameter and Surface Area ; 60
5B Cone Penetrometer i 6°
53 Unconfined Compressive Strength \ 60
5.10 Pozzolanic Activity '. 61
5.11 UCS After Immersion | , 62
5.12 Freeze/Thaw Weathering and Wet/Dry Weathering 62
VI
-------
TABLE OF CONTENTS (continued)
6 Results of Chemical Analysis of Untreated and Treated Residues 88
6.1 Composition of Untreated Residues 88
6.11 Elements, Anions and Indicator Parameters 88
6.12 PCDDs and PCDFs 89
G2 Composition of Treated Residues and Vendor Additives 90
6.2.1 Composition of Vendor Additives 90
6.2.2 Composition of Treated Residues 90
6.2.3 Comparison of SW-846 and Neutron Activation Analyses 91
6.2.4 Analysis of Corrections for Process Dilution Effects 91
7 Leaching of Untreated and Treated Residues - Release Potential 117
7.1 Data Reduction, Analysis and Presentation 117
72 TCLP 119
7'.2.1 TCLP Extract pHs and Cadmium, Copper, Lead and Zinc 119
Concentrations
7'.2.2 Species Release for TCLP 122
7.3 Distilled Water Leach Test 125
7.4 Availability Leach Test 129
75 Acid Neutralization Capacity Leach Test 133
7.6 Comparison of Magnitude and Consistency of Results from Tests for 136
Leaching Potential
7'.6.1 Treated APC Residue 136
7.6.2 Treated Bottom Ash 137
7'.6.3 Treated Combined Ash 137
7.6.4 Release Potential Compared to Total Concentrations 138
7.6.5 Summary of Leaching Potential Results by Treatment Process 139
8 Experimental Results and Modeled Leaching of Untreated and 196
Treated Residues - Release Rate
3.1 Data evaluation 196
8.1.1 Mechanisms and intrinsic properties from monolith leach test 196
8.1.2 Definition of Leaching Parameters 197
8.1.3 Transport models for parameter estimation 200
8.1.4 Determination of leaching mechanism from the cumulative release data. 202
VII
-------
TABLE OF CONTENTS (continued)
8.1.5 Diffusion Modelling Limitations
82. Leaching Results and Discussion
8.2.1 Data handling
8.2.2 Monolith leach test release data
8.2.3 Tortuosity
8.2.4 Chemical Retention
8.2.5 Effective Diffusion Coefficients
83 Three dimensional diffusion model for
Field Application
9 Summary and Conclusions
9.1 Overall Conclusions
92 Treatment Process Effectiveness
92.1 Physical Properties
9.2.2 Leaching Potential
92.3 Leaching Release Rate
!
|
i
Estimation of Release during
i
I
|
1
j
9.3 Physical Properties and Durability Test Methods
9.4 Leaching Tests
95 Chemical Analysis
11 Appendices
Table of Contents
Explanation of Appendices
'
j
\
1
i
f
l
A Results of Chemical Analysis of Untreated MWC Residues
A-1 Results of chemical analysis of untreated APC residue
A-2 Results of chemical analysis of untreated bottom ash
A-3 Results of chemical analysis of untreated combined ash
B Summary Results of TCLP. DWLT arid ALT for untreated and
treated APC residues
B-1 Summary results of TCLP, DWLT and
APC residues.
ALT for untreated and treated
; 205
205
205
206
206
I 209
210
212
262
264
266
267
268
271
273
: 273
274
, 275
278
278
i 279
280 .
232
290
302
314
315
VIII
-------
B-2 Summary results of TCLP, DWLT and ALT for untreated and treated 341
bottom ash.
B-3 Summary results of TCLP, DWLT and ALT for untreated and treated 368
combined ash
C Summary of Monolith Leach Test Extract Concentrations and 394
Data Analysis for Untreated and Treated MWC Residues
C-1 Summary of monolith leach test extract concentrations and data analysis 397
for untreated bottom ash and combined ash.
C-2 Summary of monolith leach test extract concentrations and data analysis 418
for ARC residue, bottom ash and combined ash treated by Process 1.
G-3 Summary of monolith leach test extract concentrations and data analysis 448
for APC residue, bottom ash and combined ash treated by Process 2.
C-4 Summary of monolith leach test extract concentrations and data analysis 478
for APC residue, bottom ash and combined ash treated by Process 3
C-5 Summary of monolith leach test extract concentrations and data analysis 508
for APC residue, bottom ash and combined ash treated by Process 4.
C-6 Summary of monolith leach test extract concentrations and data 529
analysis for APC residue, bottom ash and combined ash treated by
WES Control Process.
-------
LIST OF TABLES
1.1
2.1
22
23
2.4
25
2.6
4.1
42
43 '
4.4
45
5.1
52
53
5.4
55
5.6
5.7
5.8
6.1
62
63
6.4
65
6.6
6.7
7.1
72
73
7.4
75
I
i
Technical Advisory Panel Members
Analysis of residues and additives i
Elements analyzed by NAA and analysis detection limits
Comparison of NAA values with NIST Certified Standard Reference Material
Physical testing of untreated and treated MWC residues
Analysis of extracts from leaching tests
Particle size reductions required for chemical analysis and leaching tests
Quantities of process additives and water added per 100 Ibs ash
Process dilution factors for each treatment process
Capital Improvement Costs for CREF Treatment Facility
Annual Operating Cost Details for CREF Treatment Facility
Annual Operating Cost Summary for CREF Treatment Facility
Comparison of physical properties, cure rate and durability
Comparison of physical properties, cure rate and durability
Comparison of physical properties, cure rate and durability
Moisture content and liquid added during the treatment process
Relative increases in residue specific volume resulting from treatment
Swelling and shrinkage % of untreated and treated residues
Percent finer material from sieve analysis
Relative weight loss of freeze/thaw and wet/dry test specimens
Comparison of chloride, sulfate and TDS results for untreated MWC residues
PCDD/PCDF assay results for untreated APb residue
PCDD/PCDF assay results for untreated bottom ash
PCDD/PCDF assay results for combined asri
Relative quantities of MWC residues and process additives in treated residues
Principal components in calcium-based process additives
Significant contributions from process additives to total treated residue composition
Leaching Test Liquid to Solid Ratios and Treatment Process Dilution Factors
Comparison of Selected Metal Concentration in Extraction Fluids 1 and 2
Relative categories of treatment effects '
Summary of conclusions on treatment effects on contaminant release TCLP
Summary of conclusions on treatment effects on contaminant release by DWLT
i
j
x ;
i
i
i
i
i
i
i —
page
8
23
25
28
27
28
30
49
50
51
52
53
65
67
63
71
72
72
73
74
93
94
95
96
97
98
99
141
142
142
143
144
-------
LIST OF TABLES (Continued)
7.6 Summary of conclusions on treatment effects on contaminant release by DWLT 145
7.7 Comparison of total dissolved solids released for the distilled water leach test 146
7.8 Summary of conclusions on treatment effects on contaminant release 147
73 Comparison of leaching test results for treated APC residue 148
7.10 Comparison of leaching test results for treated bottom ash 149
7.11 Comparison of leaching test results for treated combined ash 150
7-12 Fraction of total element present in treated residues released during availability leach
test : 151
8.1 Effective diffusion coefficients based on individual extract cycling time-intervals 213
8.2 Cumulative elemental and species release after 64 days leaching 214
8.3 Cumulative elemental and species release after 64 days leaching 215
8.4 Cumulative elemental and species release after 64 days leaching 216
85 Effective diffusion coefficients for several salts used to estimate tortuosity . 217
8.6 Physical retardation (tortuosities) in products produced from waste materials 218
8.7 Estimated chemical retention values for untreated and treated MWC residues 219
8£ Estimated chemical retention values for untreated and treated MWC residues 220
8.9 Estimated chemical retention values for untreated and treated MWC residues 221
8.10 Estimated effective diffusion coefficients for untreated and treated residues 222
8.11 Estimated effective diffusion coefficients for untreated and treated residues 223
8.12 Estimated effective diffusion coefficients for untreated and treated residues 224
-------
LIST OF FIGURES
: page
1.1 organization of USEPA Program for Utilization Of Municipal Waste Combustor g
Residues •
2.1 Configuration of monolith extraction test for compacted granular materials 31
22. Sample preparation for leaching tests and analysis ;32
2J5 Effects of particle size reduction for analysis on total concentrations 33
2.4 Effects of particle size reduction for analysis on total concentrations 34
3.1 Typical mass bum municipal waste combustion facility schematic 38
35 Bottom ash collection and preparation ' ^
3.3 combined ash collection and preparation | ^
3.4 APC residue collection and preparation ; 41
3.5 Box plot neutron activation analysis results for homogenized, untreated APC residue 42
3.6 Box plot of neutron activation analysis results for homogenized, untreated bottom ash 43
3.7 Box plot of neutron activation analysis results for homogenized, untreated combined' 44
4.1 Schematic process flow diagram for the Commerce Refuse to Energy MWC Facility 54
5.1 Modified proctor density compaction curves ! ^
5.2a Particle size distribution of bottom ash prior to residue drying and crushing 76
5.2b Particle size distribution of bottom ash after preparation 77
5.3a Particle size distribution of combined ash prior to residue drying and crushing 78
5.3b Particle size distribution of combined ash after preparation 79
5.4a Particle size distribution of untreated APC residue 80
5.4b Particle size distribution of APC residue treated by Process 4 81
5.5 BET cumulative pore surface area plot for untreated APC residue 82
5.6 BET cumulative pore surface area plot for untreated bottom ash 83
5.7 BET cumulative pore surface area plot for untreated combined ash 84
5.8 Unconfined compressive strength (UCS) as a function of cure time 85
5.9 UCS and UCS after immersion ^
5.10 Cumulative weight loss (percent eroded) j 87
6.1 Comparison of box plots of neutron activation analysis results ''00
6.2 Comparison of box plots of neutron activation analysis results '101
6.3 Untreated total composition by SW-846 ' 102
6.4 Untreated total composition (page 2) by SW-846 103
6.5 Total Aluminum concentrations between NAA and SW-846 analysis methods 104
XI
-------
LIST OF FIGURES (Continued)
6.6 Total Cadmium concentrations between NAA and SW-846 analysis methods 105
6.7 Total Chromium concentrations between NAA and SW-846 analysis methods 106
6.8 Total Copper concentrations between NAA and SW-846 analysis methods . 107
6.9 Total Chloride concentrations between NAA and SW-846 analysis methods 108
6.10 Total Zinc concentrations between NAA and SW-846 analysis methods 109
6.11 Calcium Total analysis by NAA 110
6.12 Potassium and Sodium Total analysis by Neutron Activation Analysis 111
6.13 Lead Total analysis by SW-846 112
6.14 A comparison of SW-846 and NAA results for Al and Cd 113
6.15 A comparison of SW-846 and NAA results for Cl and Cr 114
6.16 A comparison of SW-846 and NAA results for Cu and Zn 115
6.17 NAA corrected for process dilution (Chloride & Zinc) 116
7.1 TCLP extract pHs 152
7.2 Cadmium and copper concentrations in TCLP extracts 153
7.3 Lead and zinc concentrations in TCLP extracts 154
7.4 Aluminum and calcium release during TCLP extraction, corrected for process dilution 155
7.5 Cadmium and copper release during TCLP extraction, corrected for process dilution 156
7.6 Potassium and sodium release during TCLP extraction 157
7.7 Lead and zinc release during TCLP extraction, corrected of process dilution 158
7.8 Chloride and sulfate release during TCLP extraction, corrected for process dilution 159
7.9 Distilled water leach test extract pHs 160
7.10 Aluminum release during distilled water leach test, corrected for process dilution 161
7.11 Cadmium release during distilled water leach test, corrected for process dilution 162
7.12 Calcium release during distilled water leach test, corrected for process dilution 163
7.13 Copper release during distilled water leach test, corrected for process dilution 164
7.14 Lead release during distilled water leach test, corrected for process dilution 165
7.15 Potassium release during distilled water leach test, corrected for process dilution 166
7.16 Sodium release during distilled water leach test, corrected for process dilution 167
7.17 Zinc release during distilled water leach test, corrected for process dilution 168
7.18 Chloride release during distilled water leach test, corrected for process dilution 169
7.19 Sulfate release during the distilled water leach test, corrected for process dilution 170
7.20 Total dissolved solids release during the distilled water leach test 171
XIII
-------
LIST OF FIGURES (Continued)
721 Total organic carbon release during the distilled water leach test 172
722. Aluminum and Calcium release during availability;teach test 173
723 Cadmium and copper release during availability leach test 174
72.4 Potassium and sodium release during availability leach test 175
725 Lead and zinc release during availability leach test 176
72$ Chtoride and sulfate release during availability leach test 177
727 Untreated and treated ARC residue pH titratfon curves from the acid neutralization 178
728 Untreated and treated bottom ash pH titration curves 179
729 Untreated and treated combined ash pH titration curves 180
7.30 Cadmium concentrations in acid neutralization capacity extracts as a function of pH 181
7.31 Cadmium (Cd) concentrations in acid neutralization capacity extracts 182
7.32 Cadmium (Cd) concentrations in acid neutralization capacity extracts 183
7.33 Chromium concentrations in acid neutralization capacity extracts as a function of pH 184
7.34 Chromium (Cr) concentrations in acid neutralization capacity extracts 185
7.35 Chromium (Cr) concentrations in acid neutralization capacity extracts 186
7.36 Copper (Cu) concentrations in acid neutralization capacity extracts 187
7.37 Copper (Cu) concentrations in acid neutralization capacity extracts 188
7.38 Copper (Cu) concentrations in acid neutralization capacity extracts 189
7.39 Lead (Pb) concentrations in acid neutralization capacity extracts as a function of pH 190
7.40 Lead (Pb) concentrations in acid neutralization capacity extracts as a function of pH 191
7.41 Lead (Pb) concentrations in acid neutralization capacity extracts as a function of pH 192
7.42 Zinc (Zn) concentrations in acid neutralization capacity extracts as a function of pH 193
7.43 Zinc (Zn) concentration in acid neutralization capacity extracts as a function of pH 194
7.44 Zinc (Zn) concentration in acid neutralization capacity extracts as a function f pH 195
8.1 A schematic example of monolith species release data illustrating diffusion 225
•82 The effects of porewater pH on release of magnesium - APC/Process 1 226
83 Contaminant release during the monolith leach test - APC/Process 2 227
8.4 Contaminant release during the monolith leach test - APC/Process 3 228
8.5 Contaminant release during the monolith leach test - APC/WES Control 229
8.6 Contaminant release during the monolith leach test 230
8.7 Contaminant release during the monolith leach test 231
8.8 Contaminant release during the monolith leach test 232
i
XIV
-------
LIST OF FIGURES (Continued)
8.9 Contaminant release during the monolith leach test 233
8.10 Contaminant release during the monolith leach test 234
8.11 Contaminant release during the monolith leach test 235
8.12 Contaminant release during the monolith leach test 236
8.13 Contaminant release during the monolith leach test 237
••* OOQ
8.14 Contaminant release during the monolith leach test 238
8.15 Contaminant release during the monolith leach test 239
8.16 Contaminant release during the monolith leach test 240
8.17 Contaminant release during the monolith leach test 241
8.18 Contaminant release during the monolith leach test 242
8.19 Contaminant release during the monolith leach test 243
8.20 Comparison of tortuosities estimated from the monolith leaching test 244
8.21 Mechanisms of sodium release from bottom ash treated by Process 2 245
8.22 Standard deviation as a function of pDe for all estimated pDe 246
8.23 Relative contributions of free diffusion, tortuosity, and chemical retardation 247
8.24 Relative contributions of free diffusion, tortuosity, and chemical retardation 248
8.25 Relative contributions of free diffusion, tortuosity, and chemical retardation 249
8.26 Relative contributions of free diffusion, tortuosity, and chemical retardation 250
8.27 Relative contributions of free diffusion, tortuosity, and chemical retardation 251
8.28 Relative contributions of free diffusion, tortuosity, and chemical retardation 252
8.29 Relative contributions of free diffusion, tortuosity, and chemical retardation 253
8.30 Relative contributions of free diffusion, tortuosity, and chemical retardation 254
8.31 Relative contributions of free diffusion, tortuosity, and chemical retardation 255
8.32 Relative contributions of free diffusion, tortuosity, and chemical retardation 256
8.33 Relative contributions of free diffusion, tortuosity, and chemical retardation 257
8.34 Relative contributions of free diffusion, tortuosity, and chemical retardation 258
8.35 Relative contributions of free diffusion, tortuosity, and chemical retardation 259
8.36 Relative contributions of free diffusion, tortuosity, and chemical retardation 260
8.37 Cumulative contaminant release as a function of time and pDe for typical construction 261
XV
-------
ACRONYMS AND | DEFINITIONS
[
I
ALT Availability Leach Test, also AVLT i
ANS American Nuclear Society i
APC Residue Air Pollution Control Residue j
i
ASTM American Society of Testings Materials
BET Brunauer Emmett-Teller
BJH Barrett, Joyner and Halenda
COD Chemical Oxygen Demand
CREF Commerce Refuse to Energy Facility
Dl Defonized Water ]
ds dry solid
DWLT Distilled Water Leach Test
ECN Netherlands Energy Research Center
GFAA Graphite Furnace Atomic Adsorption
ICP Inductively Coupled Plasma i
IHTWM Institute for Hazardous and Toxic Waste Management
LOI Loss on Ignition
MLT Monolithic Leach Test !
NAA • Neutron Activation Analysis :
NIST National Institute of Standards (Bureau of Standards)
ORD Office of Research and Development
PCDD Polychlorinated dibeno-dioxin ;
PCDF Polychlorinated dibenzo-furan ;
PSR Particle Size Reduction ;
RO Reverse Osmosis j
RREL Research and Development, Risk Reduction Engineering Lab
S/S Solidification/Stabilization
TCLP Toxtoity Characteristic Leaching Procedure
TDS Total Dissolved Solids or Total Dissolvable Solids
i
TOC Total Organic Carbon |
UCS Unconfined Compressive Strength
USEPA United States Environmental Protection Agency
WES Waterways Experiment Station !
XVI
-------
ACKNOWLEDGEMENTS
The completion of this study was accomplished through the efforts of many individuals who
deserve acknowledgement for their contributions. Mark Bricka (U.S. Army Corps of Engineers,
Waterways Experiment Station) and Dr. Taylor Eighmy (University of New Hampshire) contributed
extensively to the preliminary experimental design. Christopher Allard, Frederick Ragan Jr.,
Debbie Fowler, Mike Channel, Tim Golden, Mark Bricka and Julie Greenman (U.S. Army Corps of
Engineers, Waterways Experiment Station) assisted in ash sampling and preparation, vendor
demonstrations, physical testing, leaching test extractions and data management.
Dr. Haia Roffman (AWD Technologies, Pittsburgh, PA), Gregg Zimmerman (NUS Corp.,
Pittsburgh, PA) and Janet Jaufman (Versar, Inc., Springfield, VA) were responsible for
coordination of analytical laboratory services. Dr. Sheldon Landsberger (University of Illinois at
Champaign-Urbana) was responsible for neutron activation and BET analysis. Ben Stuart
(Rutgers University) carried out metals and anion analyses for the acid neutralization capacity
extracts.
Dr. William Strawderman (Rutgers University) assisted with statistical data review and data
presentation methods. Louis Turner and Paul Taylor (Rutgers University) assisted with data
management and graphics. Gerard De Groot and Dirk Hoede assisted with mathematical
modeling, data management and presentation of monolith leach test results.
Ursula Wolf (Rutgers University) slaved away for many long hours carrying out data
management and report preparation. Wendy White and Dr. John Liskowttz (New Jersey Institute
of Technology) facilitated the formation and meetings of the Technical Advisory Board. Special
thanks go to Trish Erickson (US EPA) for her comprehensive review of the entire report.
NOTE
This report is organized by chapter with the text of each chapter presented first, followed
by the tables and finally the figures for the particular chapter. This format was used to improve
clarity of presentation.
XVII
-------
EVALUATION OF SOLIDIFICATION/STABILIZATION TREATMENT PROCESSES FOR
MUNICIPAL WASTE COMBUSTION RESIDUES
, i
Peer Reviewers:
Kenneth Afferton
Assistant Commissioner of Design and
Right of Way
Richard Denlson
Senior Scientist
Toxic Chemicals and Toxic Waste
Patricia Erlckson
Physical Scientist
Taytor EJghmy, Ph.D.
Research Associate and Director of
Environmental Research Group
Keith Forrester
Engineering Manager
Raymond Hultrlc
Research and Monitoring Section Head
Judy Korn
Civil Engineer
Parker Mathusa
Program Director
Clay Ormsby
Supv. Research Chemist
Research Development and Technology
Hala K. Roffman, Ph.D.
Director of Chemistry, Toxicology, and Risk
Assessment
BUI Strawclerman, Ph.D.
Statistician, Professor
David Sussman
Vice President of Environmental Affairs
NJ Department of Transportation
Trenton, N.J.
Environmental Defense Fund
Washington, DC
Risk Reduction Engineering Laboratory
U.S. Environmental Protection Agency
University of New Hampshire
Durham, NH
Wheelabrator Environmental Systems, Inc.
Hampton, NH
Solid Waste Management Department
County Sanitation Districts of Los Angeles County
Solid Waste Management Department
County Sanitation Districts of Los Angeles County
NYSERDA
Albany, N.Y.
i
Federal Highway Administration
U.S. Department of Transportation
McLean, VA
i
AWD Technology Inc.
Pittsburgh, PA
Department of Statistics
Rutgers University
Piscataway, N.J.
Ogden Martin Systems, Inc.
Arlington, VA
The EPA's Science Advisory Board (SAB) Committee conducted a review of the program design,
"Review of the ORD Municipal Waste Combustion Ash Solidification/Stabilcation Research
Program",Report of the Municipal Waste Combustion Ash Subcommittee, EPA-SAB-EEC-90-010,
March 1990. I
XVIII
-------
1. INTRODUCTION
1.1 BACKGROUND ON ASH MANAGEMENT
The proper management of Municipal Waste Combustion (MWC) residues is necessary to
ensure that the use of combustion as a solid waste management method is protective of human
health and the environment. The U.S. Environmental Protection Agency (USEPA) has developed an
extensive array of regulations dealing with air emissions from MWC's. Although recent Federal
regulations for Municipal Solid Waste landfills (Oct. 9,1991) address the disposal of MWC residues,
regulations specific to ash disposal generally remain the responsibility of individual states. Recently,
the U.S. Congress has considered legislation that would require the USEPA to develop
comprehensive national ash disposal, treatment, and utilization standards. In order to have the
scientific data available to support possible future regulatory choices, the USEPA has;initiated a
number of studies on MWC ash, ash disposal facilities, and ash management practices. This study
will add to that data base.
Municipal waste combustors generate two principal types of residues: (i) bottom ash,
including ash or slag retained on the combustion grates and grate sittings collected from the primary
combustion chamber, and (ii) air pollution control (APC) residues, including fly ash and acid gas
scrubber residue, collected from air pollution control devices. Relatively small quantities of residues
produced by the periodic cleaning of boiler and economizer tubes may be mixed either with the
APC residues or the bottom ash depending on specific facility design. Bottom ash and APC
residues typically are generated at nominal mass ratios of 9:1, respectively. APC residues typically
contain higher concentrations of soluble salts and specific metals, such as cadmium, lead, mercury
and zinc, than bottom ash. In addition, the physical properties of bottom ash and APC residues are
significantly different. Currently, most MWC facilities in the United States mix bottom ash with APC
residues for collection and disposal. This mixed residue stream is referred to as "combined ash."
Separate management of bottom ash and APC residues is under consideration in many jurisdictions.
This is most frequently considered to examine the potential for utilization or reduced disposal
requirements for bottom ash which constitutes the majority of the residue stream but contains
substantially lower concentrations of regulated metals and soluble salts. Separate management of
bottom ash may result in the requirement of revising or developing new management strategies for
the APC residues.
1.2 PROGRAM GOALS
The overall goal of this program is to provide credible data that can be used to plan and
implement MWC residue management strategies. Because of various options available for the
1
-------
management of MWC residues. USEPA Office of Research and Development (ORD) is investigating
the treatment and utilization of the residues in several phases. The investigation described in this report
was carried out to provide a side-by-side comparison and evaluation of the effectiveness of S/S
technologies as treatment processes for bottom ash. ARC residues and combined ash. The program
was designed to emphasize evaluation of treatment technologies, rather than determine how ash
characteristics are affected by municipal waste combustor designs, operating conditions, and waste
input. Therefore, the residues included in this study were obtained from only one source. Furthermore.
residue processing focused primarily on treatment for disposal, potentially with reduced disposal facility
design constraints, with a secondary emphasis on treatment for utilization.
i
In addition to S/S, evaluation of vitrification is being carried out in follow up studies. Results of
these evaluations will be presented in subsequent,reports. The specific objectives of this investigation
were: |
1. To define residue sampling, preparation and characterization protocols to permit bench and
pilot-scale demonstrations of S/S treatment processes with representative residues;
2. To carry out MWC residue S/S treatment process demonstrations under carefully controlled
and monitored conditions; ;
3. To compare the effects of S/S treatment processes on fundamental physical and chemical
properties of MWC residues; |
4. To compare the effects of S/S treatment processes on leaching properties of MWC
residues through laboratory procedures which include both Toxicity Characteristics Leaching
Procedure (TCLP) [US EPA, 1986] and tests that permit estimation of contaminant releases
from these materials over a prolongeci period of time under diverse environmental
conditions; and, :
S. To evaluate the physical durability of S/S treated MWC products during aggressive
environmental cycling. '
Supplemental issues which were investigated during this investigation included:
1. What are the limitations of analytical procedures described in "USEPA Test Methods for
Evaluating Solid Waste, SW-846, Srdjeditton" when applied to untreated and treated MWC
residues? i
2. What are effects of size reduction and subsample size on the chemical compositiori of MWC
residues?
-------
Dependent upon available resources, future studies will investigate additional treatment options
and will emphasize the environmental effects of utilization alternatives such as road construction material,
building blocks, marine construction applications, and other commercial products. The resulting
information will assist USEPA in providing technical guidance on the application of treatment and
utilization technologies for MWC residue management, including as alternatives to landfilling and if
residue treatment is prudent prior to landfilling or utilization.
1.3 PROGRAM EXPERIMENTAL DESIGN
The experimental design of this program was a full factorial design for the evaluation of five
solidification/stabilization processes for MWC residues. The two experimental factors were the residue
type to be treated and the S/S process. The experimental levels within the residue type factor were (i)
bottom ash, (ii) APC residue, and (iii) combined ash. The six experimental levels within the S/S process
factors were (i) the untreated residue, (ii) the WES Control S/S process, and (iii - vi) the four selected
vendor S/S processes. Thus, two experimental factors at three and six experimental levels
respectively, resulted in the evaluation of eighteen experimental cases. Each experimental case was
evaluated in triplicate.
The three residue types used in this study were obtained during a single composite sampling
event from a typical state-of-the-art mass bum municipal waste combustor incorporating a lime slurry
spray drier (wet-dry) acid gas scrubber and a fabric fitter paniculate removal system. Each bulk residue
sample was dried, size reduced, screened and homogenized prior to use in this program. Thus all
process demonstrations, testing and evaluations were carried out on pre-processed residues to facilitate
laboratory scale testing and direct treatment effect comparisons.
Five S/S processes were evaluated. Four of five of the processes were proprietary vendor
applications of four different generic S/S process categories. The generic S/S process categories
represented by the selected vendors were:
• S/S wfth Portland cement and polymeric additives or other proprietary additives (Process 1);
• S/S with Portland cement. soluble silicates and dry carbonaceous material (Process 2);
• S/S with cement kiln dust and proprietary additives (Process 3),
• S/S through addition of soluble phosphates (Process 4).
-------
I
The fifth process used Type 1 Portland cement only |(WES Contro. Process) The Type 1 Portland cements
only (WES Control Process) was selected to provide a baseline comparison of the treatment effects of
Portland cement without vendor additives.
Each experiment was evaluated in triplicate.; Each experimental case was analyzed for chemical
composition and tested for physical properties and durability, and leaching characteristics using a series
of testing procedures (e.g., bulk density, wet/dry, freeze/thaw, TCLP. availability leach test, monotthc
leach test, etc.). Details of the testing procedures are provided in the Section 2.2 of this report.
Prior to the process demonstration, each yendor received approximately 50 Ib samples of each
residue type to facilitate preliminary process testing and formula optimization. The vendors were
provided a list of test and program objectives that were to be used to evaluate their process. The
vendors were not provided specific performance criteria to which they should treat the residues. This was
left to their discretion. Vendor process optimization may have focused on minimizing contam.nants
release based on TCLP, concurrently with minimization of cost, and not on maximizing the phys,cal
properties of the treated residue. This was probably because the primary focus of the demonstrates
was treatment for disposal with secondary focus on residue utilization.
Treatment of each residue type using S/s| processes were carried out by each selected vendor
at the Army Corp of Engineers, Waterways Experiment Station (WES) Vicksburg. MS. Mixing of
residues with process additives was accomplished using a paddle mixer (Hobart Model K 455S). Each
process demonstration replicate consisted of the vendor carrying out the specified process to produce
approximately 100 Ib of treated residue while EPA representatives and US Army Corp of Eng,neer
personnel observed. Test specimens of the resuming treated residue for subsequent testing were
prepare WES personnel.
Additional components of the experimental design of this program included:
1 Parallel analysis of untreated and treated residues for elemental composition using procedures
currently recommended under USEPA protocols (Test Methods for Evaluation Solid Waste,
SW-846,3rd Ed.) and neutron activation analysis (NAA) to investigate the limitations of the
recommended protocols when applied to MWC residues;
2 Chemical analysis of the bottom ash and combined ash during size reduction and screenmg to
indicate potential bias in the evaluations resulting from the residue preparation and
homogenization procedures;
3. Multiple chemical ana.ysis of all three residue types to test for residue homogeneity fol.ow.ng
residue preparation and homogenization procedures;
-------
4. Analysis of all three types of untreated residues in triplicate for poiychtorinated dibenzo-dioxins
and furans (PCDDs and PCDFs) subsequent to residue preparation and homogenization
procedures; and,
5. Testing of untreated residues for pozzolanic activity using standardized test methods.
1.4 VENDOR AND PROCESS SELECTION
A general "Invitation for Participation" in this program was issued during Spring 1989. This
solicitation included a description of the program, including the program objectives and the testing
methods to be employed during process evaluations. The solicitation also detailed information to be
included in vendor responses. Twenty one responses which were categorized as S/S. vitrification and
other technologies were received. The technical advisory panel met during July 1989 to evaluate the
responses. Responses were ranked on the following basis:
1. Vendor experience - 25%;
2. Technical details of the proposed process - 25%;
3. Potential for process commercialization - 25%;
4. Process innovativeness-10%;
5. Projected process economics -10%; and,
6. The residue quantity required for process demonstration - 5%
The initial focus of the program was decided to be on S/S because of deficiencies in the
proposals based on other technologies. Subsequently, vendors with vitrification technologies have
responded to the TAP comments and are participating in the program. Within the general S/S category,
responses included the following technologies:
1. S/S with portland cement and polymeric or other proprietary additives;
2. S/S with portland cement, soluble silicates and dry carbonaceous material;
3. S/S with cement kiln dust and proprietary additives; and,
4. S/S through addition of soluble phosphates.
The top ranked vendor within each of the above S/S categories was selected for participation in
the program. Vendors not selected through this selection procedure were provided the option of
participating if they were willing to pay all evaluation costs.
At the completion of the project, the selected commercial vendors reviewed the draft report.
After reviewing the report, the commercial vendors were given the option of identifying their company
-------
name or remaining anonymous. Those selecting to identify their company name and the associated
process evaluated in this study are listed below. |
Enreco Process 1 j
Chemfix Process 2 j
Wheelabrator Process 4
i
The remaining commercial vendor elected to remain anonymous.
1.5. PROGRAM ORGANIZATION j
This project was carried out as part of the USEPA Municipal Waste Innovative Technology
Evaluation (MITE) Program. The basis of vendor participation as part of the MITE program, is that the
process development costs and the costs associated with demonstration of a process are paid for by
the vendor. Costs associated with evaluation of the technology are paid for by USEPA. In this
program, process demonstration costs were paid for by each vendors carrying out its process while
costs associated with MWC residue sampling and preparation and evaluation of treated residues was
paid for by USEPA. :
The activities in this program were carried out through the cooperation of numerous individuals
and organizations (Figure 1.1). The USEPA project officer was Mr. Cartton Wiles, Chief, Municipal
Waste Technology Section, Office of Research and Development, Risk Reduction Engineering
Laboratory, Cincinnati, Ohfo (USEPA-RREL). USEPA-RREL developed the initial program design and
objectives and was responsible for overall program oversight. An important component of the program
was the Technical Advisory Panel (TAP) formed as a peer review body to provide technical input and
evaluation of the program design and results. The TAP was comprised of a wide spectrum of
representatives having a direct interest in MWC management in orderto have as broad input and
consensus as practical (Table 1.1). TAP members included representatives from (i) state and federal
regulatory agencies, (ii) Environmental Defense Fund, (iii) MWC facility designers and operators, (.v)
highway and construction development authorities, (v) academic faculty with expertise in residue
management, and (vi) foreign research and development/regulatory agencies with experience m MWC
residue management. The TAP was coordinated by Dr. John Liskowitz, Professor and Director of the
institute for Hazardous and Toxic Waste Management (IHTWM) at New Jersey Institute of Technology
(NJIT). This program also was reviewed during the design phase by the USEPA Science Advisory
Board [US EPA-SAB-EEC-90-010,1990]. j
Program Technical coordinator was Dr. David S. Kosson, Associate Professor, Depeitment of
Chemical and Biochemical Engineering at Rutgers, The State University of New Jersey. Technical
coordination included responsibility for detailed project management such as protocol development,
vendor coordination, analytical laboratory coordinatton, data management, etc. The Project Engineer was
-------
Ms. Teresa T. Kosson, Civil Engineer. U.S. Army Corps of Engineers, Waterways Experiment Station
(WE-S), Vicksburg, MS. WES was the site for residue preparation, vendor demonstrations (except
vitrification demonstrations), physical testing of untreated and treated residues, leaching test extractions
and protocol development.
Mathematical modelling and estimation of diffusion parameters during leaching of untreated and
treated residues was carried out under the direction of Dr. Hans van der Sloot at the Netherlands
Energy Research Foundation, Petten, The Netherlands. Neutron activation analysis and BET surface
area and pore structure analysis were carried out under the direction of Dr. Sheldon Landsberger,
Associate Professor, Department of Nuclear Engineering, University of Illinois at Champaign-Urbana.
Chemical analysis of untreated and treated residues, and leaching test extracts (except acid
neutralization capacity extracts) was carried out by NUS Corporation (under the direction of Dr. Haia
Hoffman and Mr. Greg Zimmerman) and Versar Laboratories (under the direction of Ms. Janet
Jaufman). Chemical analysis of acid neutralization capacity extracts was carried out at Rutgers University,
Department of Chemical and Biochemical Engineering, by Mr. Ben Stuart.
-------
Table 1.1. Technical Advisory Panel Members
Name
Mr. Ken Afterton
Mr. John Cullinane
Mr. Jesse Connor
Dr. Richard A. Denison
Dr. T. Taylor Eighmy
Mr. Keith Forrester, P.E.
Ms. Judy L. Kom, P.E.
Dr. John W. Uskowttz
Dr. Parker D. Mathusa
Ms. Jocelyn Mullen
Dr. W. Clayton Ormsby
Dr. Haia K. Roffman
Mr. Steve Sawell
Mr. David B. Sussman
Dr. Hans van der Stoot
Mr. Michael Winka
Title
Assistant Commissioner of
Design and Right of Way
Engineer j
Senior Research Scientist
Stabilization
Senior Scientist
Research Assistant
Professor and
Director, Environmental
Research Group
WES-PHix Engineering
Manager
Civil Engineer
Distinguished Professor
and Executive Director
Program Director
Consultant
Supv. Research Chemist
Research Development
and Technology
Director of Risk
Assessment and
Toxicology
Consultant
Vice President, ,
Environmental Affairs '
Research Engineer ;
Environmental Specialist
Affiliation
NJ Department of Transportation
U.S. Army Corp of Engineers
Waterways Experiment Station
Chemical Waste Management, Inc.
Environmental Defense Fund
University of New Hampshire
Wheelabrator Environmental Systems Inc.
Los Angeles County
Solid Waste Management Department
NJIT, Institute for Hazardous and Toxic Waste
Management
New York State Energy Research and
Development Authority
Denver, Colorado
Federal Highway Administration
(U.S. Department of Transportation)
AWD Technologies. Inc.
Compass Environmental Inc., Canada
Ogden Martin Systems, Inc.
Netherlands Energy Research Foundation
State of New Jersey Department of
Environmental Protection, Division of Solid
Waste Management
8
-------
ORGANIZATION OF USEPA PROGRAM
FOR UTILIZATION OF MUNICIPAL WASTE COMBUSTOR RESIDUES
USEPA - RREL
Carlton Wiles
Program Technical Coordinator
David S. Kosson
Rutgers University
• Technical Management
• Ash Sampling
• Coordination of Vendors
and Process Demonstrations
• Laboratory Coordination
• Data Review and Verification
• Report Preparation
Project Engineer
Teresa Kosson
U.S. Army - WES
Ash Preparation
Site of Vendor Demonstrations
Physical Testing of Untreated
and Treated Ash
Laboratory Extractions for
Leaching Tests
Report Preparation
Contaminant Release Modelling
Hans van der Sloot
Netherlands Energy Research Center
(ECN)
Technical Advisory Panel
John Liskowitz, Coordinator
NJIT-IHTWM
(See Table 1.1 for Membership)
Utilization Task Force
John Liskowitz, Coordinator
NJIT-IHTWM
(See Appendix B for Membership)
Analytical Laboratories
(Commercial Laboratories)
• Chemical Analysis of Untreated/
Treated Ash and Laboratory Extracts
Sheldon Landsberger
U. ofI115nois@Champaign-Urbana:
• Neutron Activation Analysis of
Untreated/Treated Ash
• Surface Area Analysis
key to abbreviations:
NJTT: NewJeneylnainnaofTechnoloty
IHTWM: Institute of Hmrtoui 4 To*icWMteM«nigemett
US.Anny-WES: ttS.Anny.Witerwtyi&peinieniStiuon
(Viekjburj,MS)
USEPA-RREL: U.S. Environmental Pnxectioa Agency.
Ride Reduction Engineinni laboratory
-------
2. SELECTION OF TESTING METHODS AND PROTOCOLS
i
2.1 CHEMICAL COMPOSITION OF UNTREATED RESIDUES
Process Additives and Treated Residues |
All untreated residues, process additives and treated residues were analyzed for metals, anions
and other parameters using traditional extraction/digestion techniques followed by either inductively
coupled plasma (ICP), graphite furnace atomic absorption (GFAA) or ton chromatography analytical
techniques, as appropriate. Wet chemical analyses were employed as appropriate. Metals and halogen
analyses were also carried out using neutron activation analysis (NAA). NAA techniques were used where
possible because of suspected limitations of the digestion/extraction techniques. Redundant analyses
using both approaches were carried out for a limited number of species (e.g., Al, Cd. Cu, Cr. Zn, Cl. Br)
to discern the suspected limitations. Each analysis was carried out once on each of three replicate
samples from all untreated and treated residues. Additional analyses of untreated residues were carried
out to determine the effects of particle size reduction on experimental results (see Chapter 3.3). S.ngle
analyses also were carried out on process additives. Analyses of process additives were limited
because of assumed homogeneity of commercially prepared additives.
ft.1,1 fiample Analysis bv Digestion ancf f ^fraction Techniques
Untreated residues, process additives and treated residues were analyzed for chemical
composition using methods recommended by USEPA testing protocols (Test Methods for Evaluating
Solid Wastes,' SW-846,3rd Ed., and "Methods for Chemical Analysis of Water and Wastes," EPA-600-
79-020) and Standard Methods forthe Examination of Water and Wastewater. Table 2.1 provides a
summary of the analyses carried out and the analytical protocol employed.
i
3,1 ,ft Neutron Arih/ation Analysis (NAA) \
NAA was carried out on samples to assay for metals and halogens. NAA is a non-destructive
analytical technique which permits direct analysis of true total concentrations. Table 2.2 presents the
elements analyzed and the respective detection limits. Samples were prepared in triplicate and
packaged in 1.5 ml polyethylene vials which were filled to the top to keep the same geometry cons,stent
for counting procedures. All samples were analyzed using the 1.5 MW RE.GA reactor aUhe University
of Illinois. For short-lived NAA, a 10 second irradiation at a neutron flux of 4 x 12 n cm sec (500
KW) followed by ten minute decay and aten minute counting time was used to determine aluminum,
cateium, chtorine, manganese, sodium and titanium. Silicon and indium were determined using short-hved
10
-------
ep-rthermalNAAWrthafluxof 2.1 X1011 ncm-2sec-1 at 500 KW for neutrons between 0.5 eV and 0.5
MeV and a flux of 4.5 x 1011 n cm"2 sec'1 at 500 KW for neutrons greater than 2.8 MeV. An irrad.at.on
time of 30 seconds followed by a decay time of eight minutes and a counting time of fifteen minutes was
used Cadmium, gold and molybdenum were determined employing medium-lived epithermal NAA and
Compton suppression techniques. An irradiation of one hour at 1.5MW followed by a decay time of 6 - 8
days and a counting time of 3 hours was used. For antimony, arsenic, bromine, lanthanum, and samanum.
mennalNAAwasemployedwithanirradiationtimeoflhouratafluxofS.SxIO ncm sec atl.5
MW a decay time of 5 -10 days and a counting time of one hour. The increased decay time was
necessary to reduce the high activity levels from 82Br and 24 Na radioisotopes. A further 3 - 4 week
delay was used to determine cerium, cesium, chromium, cobalt, iron, mercury, rubidium, setenum,
scandium, silver, tantalum, thorium and zinc.
An ORTEC high purity germanium detector was used for counting the gamma-ray spectra of the
samples and standards. The detector, which has a 18% relative efficiency with an energy resolution of 1.9
kev for ^Co photopeak at 1332 keV, is connected to an ORTEC ADCAM multichannel analyzer system.
Th« Compton suppression system is comprised of a large Nal(T.) detector surrounding the mam
germanium detector. The usual comparative method was used in the data evaluatton employing ,n-house
PC-based program codes. All deadtime «30%) and pile-up corrections were done using a pulser.
Calibration and Quality Control was accomplished as follows:
Short-lived thermal and epithermal NAA calibration of the germanium detector was done using NIST
I632a trace elements in coal. Medium-lived and long-lived NAA calibration was performed us.ng atom.c
absorption standard soluttons. Quality control was assured by analyzing N.ST 1633 fly ash. Results
(Table 2.3) were in good agreement with the published N.ST values or compilation values. All vanattons
in flux were closely monitored wrth solid sulphur for short-lived NAA and NIST cobalt wire for medium and
long-lived NAA.
2.2 PHYSICAL PROPERTIES ANALYSIS
Physical properties of the untreated and treated residues were analyzed to determine basic
physical properties of the materials, curing rates and strength development, and the durability of the
materials under simulated weathering conditions. The specific objectives of these analyses were to:
1. Obtain information to aid in the interpretation of chemical and leaching assays;
2. Estimate properties which affect waste disposal characteristics; or,
11
-------
3. Provide preliminary information on treated residue stability during environmental
exposure scenarios which may be Rencountered during disposal or utilization.
Performance criteria for evaluation of treated residues have not been established. The intent of gathering
physical properties data was for comparison between untreated residues and the treatment processes.
Specific performance goals were not provided to the Vendors for optimization of processes for
demonstration. Table 2.4 summarizes the physical tests carried out, the objective of each test, and
designates the physical forms of the treated residue for which the test was used. For classification
purposes, untreated and treated residues were designated either as granular (e.g., "soil-like" or readily
friable) or "monolithic- (e.g., formed a consolidated^ stable mass). A material was classified as monolithic
if after either vibratory or modified proctor compaction in unconfined compressive strength molds (2x2x2
in cubes) and subsequent curing, the material achieved a cone penetrometer index of greater than 100
psi. Samples which did not remain consolidated after curing or did not attain a cone penetrometer index
of 100 psi were classified as granular. All untreated residues and one of the treated residues (Vendor 4,
APC residue) were unconsolidated and classified as soil-like, while all other treated residues were
monolithic. The subsequent paragraphs briefly describe the objective and method for each physical
property analysis carried out.
Content i
Moisture content of untreated and treated residues were carried out to determine initial and
remaining free water in MWC residues before and after treatment and curing. All moisture reported
moisture determinations were carried out on residue samples prepared specifically for use in this study
and therefore are not representative of the "as disposed' characteristic of the residues. Moisture
contents of residues as sampled from the MWC facility can best be estimated by the weight losses
observed during the drying stage of residue preparation (see Section 3.1). Moisture content analyses
were carried out at both 60°C and 105°C to differentiate loosely bound pore water within samples. The
moisture content at 105°C of analytical samples was used to correct results of chemical analyses and
leaching tests to a dry weight basis of the initial sample tested. Thus, moisture content was assayed on
samples of each particle size (<9.5mm, <2mrn anfl <300mm) employed for testing in this study. Moisture
reported for bulk material is based on a particle size of less than 2 mm. Analyses were carried out
according to the American Society of Testing and iMaterials (ASTM) Standard Method of Water (Moisture)
Content of Soil, Rock, and Soil-Aggregate Mixtures (D 2261-80) [ASTM D2216, 1980)]. This method was
conducted by drying ten grams of material at 60°C in a convection oven to constant weight. The same
12
-------
sample is then dried to constant weight at 1 QS°C. The moisture content of the sample was then
calculated as the initial sample weight minus the dried sample weight divided by the initial sample weight.
fl ft p I oss on Ignition fLOH
LOI at 550°C of untreated and treated residues was carried out as an indicator of remaining
uncombusted components within the residues and water of hydration. Although this is a standard analysis
lor MWC residues, data interpretation must be approached with caution. The change in mass of the
sample may be the result of a combination of combustion of previously uncombusted components wrthm
the residues, loss of water of hydration or calcining (toss of carbonates). In general, the principal
component of LOI on untreated bottom ash and combined ash is uncombusted components withm the
ash The principal components of LOI in the untreated APC residue are uncombusted materials and to a
lesser degree carbonates. A significant component of the LOI for treated residues may be either water
of Ihydratton or losses attributed to process additives. LO. analyses were carried out using a modif.cat.on
of APHA 16th Edition of Standard Methods, Method 209 D [Standard Methods. 1985]. This method was
conducted on samples size reduced to less than 300 mm. Thirty grams were dried at 105°C to constant
weight The residue then was ignited at 550°C in a muffle furnace for 2 hours and the we,ght toss
determined Heating at 550°C was repeated until the weight toss was less than 4% of the previous
weight toss. LO. is reported as the difference between the dry weight at 105°C and the residue weight
after ignition at 550°C divided by the dry weight at 105°G.
£.2.3 Bulk Density
Bulk density was measured for monolithic treated residues to facilitate determination of volume
changes resulting from treatment. Information on volume changes is useful for disposal or utilizafon
calculations. Measurements for treated MWC residues were conducted by weighing a specimen of
known voiume. Two inch cubic test specimens were prepared and cured for 28 days in an environmental
chamber at 98 percent relative humidKy and 23°C. After 28 days of curing, the dimensions of the cube
were measured and the weights of the test specimens obtained. Bulk density was calculated as the
sample mass divided by the sample volume. Gross bu.k density measurements of the untreated MWC
residues were made to facilitate shipping estimates. Gross bulk density was determined by weighing
the 55-ga.ton storage drums of the MWC residues, measuring the volume of the material in each drum and
calculating the density by dividing the drum weight by the volume of the drum contents.
p«>4 Mnriifiefl pp^tnr Density
Modified Proctor Density was conducted to determine the density of granular untreated and
treated residues after applying standard compaction conditions. This test also is useful for determin.ng
the option moisture content for maximum sample compaction and a resulting ^O^^
utotton calculations. Modiffcd Proctor Density tests were carried out in accordance wth ASTM Standard
13
-------
Test Methods lor Moisture-Density Relations of Soijs and Soil-Aggregate Mixtures Using 10-lb Rammer
and 18-in Drop (D 1557) [ASTM D155,1978]. A series of at least six test specimens are prepared by
adding water to yield moisture contents that vary by'approximately 5-15 percent. The samples are
compacted in a cylindrical mokd (h = 4 in, d « 4 in) using a ten pound rammer with a vertical drop of 18
inches. Five equal layers are compacted with 25 blows per layer. Density determinations and moisture
content determinations were made for each test specimen. The moisture content with the maximum
density is the optimum moisture content. |
g.g.5 Particle Size Distribution j
Particle size distributions were determined on untreated residues after drying and screening to
less than 2 inches and drying but prior to further particle size reduction. Particle size distributions also
were determined on untreated residues after particle size reduction (less than 0.5 in) and homogenization,
and on treated granular residues. Analyses were carried out using a modified version of ASTM Standard
Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination for Soil
Constants Dry Preparation (D 421) [ASTM D421,1985]. Washing of samples during preparation was
omitted because the residue had significant quantities of soluble salts which would have dissolved if
washed as directed. A quantitative determination of the distribution of particle sizes larger than 75
micrometers was carried out by sieving samples and weighing the fractions retained on each sieve.
g.2.6 Permeability i
i
Permeability was evaluated on treated residues to determine the relative contributions of
convective contaminant transport, via percolation of water through the treated MWC residue, and diffusive
transport of contaminants through the sample pore structure. Permeability was assayed using the "Falling
Head Permeability Test' described in the U.S. Army Corp of Engineers Laboratory Soils Testing Manual
EM 1110-1-1906.IU.S. Army Corp of Engineers, Engineer Manual, 1970]. A four inch cylindrical test
specimen surrounded by a thin flexible rubber membrane was placed in a triaxial cell. Water flow at a
pressure of 230 kPa was forced through the test specimen. The amount of water flowing through the test
specimen was recorded periodically and hydraulic conductivity was calculated. Permeability then was
calculated from the hydraulic conductivity. I
•> 97 SnecHic airfare* Area and Porosity j
Specific surface areas and pore-size distributions were estimated based on nitrogen gas
adsorption isotherms. These properties were analyzed to aid in the interpretation of leaching release
rate data through knowledge of untreated and treated residue pore structures. Nitrogen gas adsorption
isotherms were determined for ail materials with a volumetric vacuum apparatus (ASAP 2400,
Micrometrics, Norcross, GA). All measurements were performed at the boiling point of liquid nitrogen
(-77K) and utilized a molecular cross-sectional area of 0.162nm2. The saturated equilibrium vapor
114
-------
pressure of nitrogen
-------
properties of combined ash [US EPA Draft, 1989]. Results of this testing were intended as an aid in
interpretation of the treatment effects. These results may differ significantly from field observations of "as
disposed" residues because of residue aging during shipping and preparation and the residue
preparation and homogenization procedures. •
Pozzolanic activity indices were determined using portland cement and lime. Pozzolanic Activity
was determined using ASTM Pozzblanic Activity Index Determination (C 311) [ASTM C 311,1980]. The
pozzolanic activity index with portland cement procedure required preparation of a control mix of 26
percent type I portland cement and 73 percent sand. A test mix was prepared using 17 percent cement,
9 percent untreated MWC residue, and 73 percent sand. Water addition to the mixes varied as specified
in the test method. Two inch cubic test specimens were prepared and cured for 1 day in a moist room at
23°C. The test specimens then were cured in a sealed mold at 55°C for six days. After curing, test
specimens were cooled to room temperature and UCS was measured. The average UCS is reported
as pozzolanic strength. The cubes were cured an additional 27 days in an air tight container. UCS
determinations were made at the conclusion of the cure period. The pozzolanic activity index with
Portland cement was calculated by dividing the average compressive strength of the test mix cubes by
the average compressive strength of the control mix cubes.
The pozzolanic activity index with lime procedure required preparation of a mix of approximately
75 percent sand, 8 percent lime, and 16 percent residue. Water addition was as specified in the test
method.
9.2.11 Unconfined Compressive Strength After Immersion
The UCS after immersion assesses the effects of exposure to constant total immersion on the
strength of a monolith. UCS after immersion measurements were carried out in accordance with a
combination of ASTM Compressive Strength for Hydraulic Cement Mortars procedure (C109) [ASTM
C109,1980] and ASTM Standard Specification for Moisture Cabinets and Moist Rooms and Storage
Cabinets of Testing Hydraulic Cements (C511) [ASTM C511,1978]. Two inch cubic molds were prepared
and cured for 28 days at 98 percent relative humidity and 23°C in an environmental chamber. Two test
specimens were completely submerged in a dilute ilime solution (0.1 Og lime /L distilled water) designed
to mimic the natural pore water of wetted cement. After 24 hours of immersion, one test specimen was
removed and the UCS was measured. The remaining test specimen was removed following 28 days of
immersion and tested for UCS. j
9.2.12 Freeze/Thaw Weathering I
The Freeze/Thaw weathering test was selected to evaluate the effect of thermal cycling on the
physical integrity and erosion of monolithic treated residues. The freeze/thaw weathering test was carried
out in accordance with the draft ASTM C-666 and A$TM D560 [ASTM C666,1980, ASTM D560,1989]].
-------
Resistance to rapid freeze/thaw. Cylindrical test specimens 4.5 cm diameter by 7.4 cm were subjected to
twelve successive cycles of being submerged in water for 24 hours and then frozen at -20°C for 24 hours.
Specimens serving as test controls were subjected to 24 hour cycles of being submerged in water
followed by placement in an environmental chamber maintained at 20°C and 98 percent relative humidity.
Common specimens served as test controls for both the freeze/thaw weathering test and the wet/dry
weathering test. Results are reported as the cumulative percent weight loss, or percent eroded, of each
test specimen.
2.2.13 Wet/Drv Weathering
The Wet/Dry weathering test was selected to evaluate the effect of varying moisture conditions on
the physical integrity and erosion of monolithic treated residues. The Wet/Dry weathering test was carried
out in accordance with the draft ASTM Wet/Dry Weathering Test [ASTM D559,1989]. Cylindrical test
specimens 4.5 cm diameter by 7.4 cm were subjected to twelve successive cycles of being submerged in
water for twenty-four hours followed by drying in a nitrogen-purged oven for twenty-four hours at 60°C.
Results are reported as the cumulative percent weight loss, or percent eroded, of each test specimen.
2.3 LEACHING TESTS SELECTED
The leaching properties tests were selected to provide a broad understanding of contaminant
release under a variety of potential environmental conditions. Leaching tests were selected primarily to
evaluate fundamental leaching properties rather than simulate specific environmental exposure scenarios.
This approach permits the application of the leaching data obtained to the estimation of contaminant
release over a wide variety of environmental conditions instead of only the particular exposure scenario
tested. TCLP also was carried out on prepared untreated and treated residues for comparison purposes.
Table 2.5 indicates the chemical analyses carried out on extracts obtained from each leaph test. The
leaching tests selected and the basis for selection of each test are discussed briefly in the following
paragraphs.
Testing of untreated residues was carried out on samples after completion of the residue
preparation and homogenization procedures (see Section 3.1) to permit comparison with the
results obtained from treated residues. Therefore, results from testing of the untreated residues
may not be indicative of the behavior of "as disposed" residues, which have not been
mechanically processed. For example, removal of the non-crushable residue fractions greater
than 9.5 mm may have resulted in increased concentrations of specific elements (e.g., lead and
cadmium) in the processed residues used in this study.
Each vendor carried out its specific process one time on each of three aliquots of each type of
preprocessed residue. All leach tests were carried out one time on prepared samples from each
17
-------
process demonstration. Extracts were analyzed for the same list of metals and anions presented in
Table 2 2 in addition, distilled-water leach test (DWLT) extracts were analyzed fortotal dissolved solids
(TDS) total organic carbon (TOG) and chemical oxygen demand (COD). Contaminant release results
from all leach tests were back-calculated to mass released per mass of ash initially treated on a dry we,ght
basis (e g mg/kg ash dry solid (ds)). This calculation corrects for variations in moisture content and
dilution during processing and treatment. In addition!, results of testing are presented in tabular form on
the following bases: i
1. Brtract concentrations (mg/l or ug/l); ;
2. Release per unit mass of treated residue (mg/kg): and.
3. Release from treated residue per unit mass of untreated residue (mg/kg ash. ds).
The TCLP was selected to be carried out to altow a comparison with a broad database of results
obtained from testing of other materials. The TCLP was carried out in accordance with the method
outlined in the 7 Nov 1986 Federal Register. Volume 40. Part 261 [US EPA. 1986]. This test is carried out
on a sample crushed to less than 9.5 mm. Extracttoh is carried out at a 20:1 liquid to sold ratio using
dilute acetic acid. The extraction solution is either buffered or unbuffered depending on the alkal.mty of
the material to be tested. Only a fixed quantity of acid is added for the extraction, and therefore the f.nal
PH of the extract is widely variable. Thus, metals concentrations observed in the extract often reflect the
pH dependent solubility constraints of the specific element. The contaminant concentrations in the test
leachate are compared with a published list of limits.
p,fl ? Availability 1 oaf* Test 'Am \
The Availability Leach Test was selected to assess the maximum amount of specific elements or
species which could be released under an assumed "worst case" environmental scenario. This test was
originally developed by the Netherlands Energy Research Center (ECN) [van der Stoot. HA. « a.
1984] The test is carried out on a sample crushedland size reduced to less than 300 um. Two senal
extractions are carried out. each at a 100:1 lk,uid to solid ratio, using distilled water. The PH is control
to PH 7 during the first extraction and to pH 4 during the second extraction, using an automate pH
controller which delivers dilute nitric acid. Thus, the final extraction pH is controlled not the amour* of aad
used The first and second extracts are combinedlor analysis. The very large liquid to solid ratio insures
that the contaminant release is not constrained by its solubility at the final pH and the amount of
contaminant extracted is the maximum amount which would be available at that pH. This test general*
18
-------
extracts all species which are not tightly bound in a mineral or glassy matrix. The test does not provfcfe
information on the rate of contaminant release.
p a 3 Distilled Water 1 each Test (DWLT) . ,
The Distilled Water Leach test (DWLT) was selected to assess the amount of specific elements or
species which could be released under continued exposure to precipitation or nominally clean water
percolation. Synthetic acid rain solutions were not selected as the extractant because the limited acidity
of these extractants would have minimal impact on the extraction of untreated or treated MWC residues ;
because of the residues' very high natural alkalinity. The DWLT was carried out in accordance with the
sequential batch leaching test in the U.S. Army Corps of Engineers EL-87-9, US. [Environmental
Laboratory, 1987]. The test is carried out on a sample crushed to less than 2.0 mm. ;Four serial
extractions of the residue sample are carried out. each at a 10:1 liquid to solid ratio using distilled water as
the extractant. No acid is added and no pH control is used. Thus, the natural buffering capacity of the
material controls the final extract pH which was typically between pH 10 and 12 for the materials tested.
The first and second extracts were combined for analysis, as were the third and fourth extracts. This test
estimates the amount of contaminant released over prolonged exposure and provides limited information
on the rate of contaminant release.
9S.A Acid Neutralisation Capacity fANCl
The Acid Neutralization Capacity (ANC) test was selected to assess the solubility of specific
metals over a broad pH range [Test Methods for Solidified Waste Characterization. 1986]. The test was
carried out on a sample crushed and size reduced to less than 300 urn Eleven separate extractions are
earned out using separate size reduced subsamples at a liquid to solid ratio of 5:1. The low liquid to
solid ratio results in the extraction being solubility constrained for some analytes. Each extraction
receives a different amount of dilute nitric acid, varying from 0 to 12 meq/g dry untreated or treated
residue, resulting in a broad range of final pHs. A titratton curve also is obtained for each material tested.
2.3.5 Monplith Leach Test
The Monolith Leach Test was selected to assess the release rate of specific elements and
species from untreated and treated MWC residues under diffusion controlled conditions. This would be
thes case under field conditions where the flow of infiltration or contacting water is predominantly around
monolithic structures (e.g.. blocks, other forms or low permeability compacted fill). The Monolith Leach
Test was carried out based on a modification of the American Nuclear Society (ANS) American National
Standard Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term
Test Procedure.(ANSI-16.1-1986). The test was carried out using a 4 cm diameter by 4 cm cylindrical,
monolithic sample instead of the specified size test specimen. Treated residues were either vibrated or
compacted using modified proctor compactive effort into PVC plastic molds immediately after being
19
-------
treated Samples were cured at 98% revive humrty and 20»C lor. 28 days prtor to testing. MonoBhc
wTextracted by contacting with 8.47 iiters dolled water tor up to 64 days. Contact wafcr
ld w«h fresh d,s,i,,ed water a, ,. 2, 4. 8. 16.32 «d 64 days and an^ed tor metais «d other
A new test method was developed formation o. compacted granular materials. Release rate
obtained tor untreated bottom ash and combined ash by compacting each ash mum
was replaced with fresh distilled water at 6 hours and 1,2. 4, 8, 16 and 32 days.
Leiing o, ,he release data in coniunction:w»h the resu»s o, the availably leach tes, was used
,o determine JL. «*» coe«i=ien,s. ,ortuos«, and chem'.a, retention .actors ,or estimate Ion,
term species release rates (see Chapter 8).
2.4 DATA PRESENTATION '.
The complex senes o. chemical and leaching analyses carried out in this study resulted inthe
developTn, o, I extremely .arge data set. The »nplex»y o, data se, was tuaher increase because
o, the L* variably associated «h the MWC| rescues (e.g., .yplca, standard de-na^ o,
.fl*---^^-'*"^-'"^-"*"1'1"'",^
extent possible through the use of graphical representations. Standard data
employe^ihcu-de x-y data and «ne plots, bar graphs ar* box pfcts. The use o, box
observation o, da^ vaHab»Ky and skewedhes, Eaeh box plot typically reflects ,-
an observed variable. The centra, line w»h,n each shaded -box- represents me med,an
ihed ,or the partcular element. The bo«om ar, top o, the shaded box represe. he
ot the .ower and upper fourths of the data set Thus, the box encloses one quarter o. the data
o Led be,w L media* and one Barter o, the data poin* ob,,ned above the
and upper -whiskers" on each box represent the entire range of the data. exdud,ng
convenience
prior to the first use of this data presentation format in Chapter 3.2.
20
-------
2.5 SAMPLE PREPARATION FOR PHYSICAL, CHEMICAL AND LEACHING ANALYSIS
Particle size reduction (PSR) of test specimens was necessary for the leaching tests, several of
the physical property tests, and chemical analysis of the solids. The particle size reductions required
were tess than 9.8 mm. toss than 2mm. and less than 50 mesh (300mm). Table 2.6 briefly summarizes
the required particle size for solids subjected to the leaching test and chemical analysis and the method
of PSR. A summary of the PSR procedure is provided in Figure 2.2. First, a mortar and pestle was
utilized to reduce the entire sample to <9.5mm. The mortar and pestle then were used to reduce the
particle size to <2mm. The subsequent step employed a parallel plate, mechanical grinder (Bico Model
UA £13) to reduce the material to pass through a 50 mesh (300 um) screen.
A standardized criteria for particle size reduction was necessary to assure uniform sample
preparation because many samples were not size reducible in entirety. The PSR criteria was as follows:
85% of the initial sample mass (- 3kg) had to be reduced to less than 2mm. The 15% of initial sample
mass that was non-reducible consisted of mainly ferrous particles and glass. Greater than 65% of the
initial sample mass had to be reduced to less than 50 mesh. The materials rejected from the mechanical
grimier were primarily unbumt paper material and ferrous particles.
During the PSR procedure, only ceramic surfaces (alumina) were allowed to contact the residue.
To prevent cross-contamination between samples, the surfaces were cleaned and acid washed between
uses according to the following sequence:
(0 scrub with soap and water to remove all apparent residue;
(fi) rinse with reverse osmosis (RO) water;
(fii) Soak in 2N HMOs for 4 hours;
(iv) rinse twice with RO water; and,
(v) rinse with distilled deionized water (Dl).
r
A trial PSR procedure was carried out and the final rinse waters generated during cleaning were collected
to verify that the cleaning procedure was adequate. The rinse waters were analyzed for lead. zinc, arsenic
and cadmium. In all cases, the contaminant levels were below detection limits. ;
Bias resulting from the PSR protocol was evaluated by analyzing the greater than 2mm reject.
less than 2 mm size reduced material and the less than 300 urn size reduced material from untreated
bottom ash and combined ash. Metals were analyzed using SW-846 methods, Triplicate initial grab
samples of each homogenized residue was size reduced according to the described protocol and the
resulting fractions analyzed. Results for aluminum, cadmium, chromium copper, lead and zinc are
presented in Rgures 2.3 and 2.4. Slight enrichment of cadmium and zinc occurred in the analytical samples
21
-------
as a result Of rejection of the greaterthan 2 mm fraction, recognizing this fraction represented less than 15
percent of the initial residue sample. For example, the mean value for cadmium in the bottom ash less
than 300 urn was 35 mg/kg while the estimate for the total mean, including correction for the reject ftacbon,
was 30 mg/kg or a difference of 17% which was within the range of sampling and analysis variability.
Similarly the mean value for zinc in the bottom ash less than 300 nm fraction was 4730 mg/kg wh,le the
estimate for the total mean, including correction for the reject fraction, was 4120 mg/kg or a difference of
15%. Slight enrichment of copper (bottom ash only)jand zinc also occurred in the analytical samples as a
result of the size reduction to less than 300 um. j
22
-------
Table 2.1. Analysis of residues and additives.
Detection Limits
Parameter Extraction Method Analytical Method Source (mg/Kg)
Arsenic
Cadmium
Mercury
Lead
Selenium
Silver
Aluminum
Boron
Barium
Beryllium
Chromium
Copper
Lithium
Nickel
Tfll
Zinc
PH
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
3050
—
7060
7131
7471
7421
7740
6010
6010
6010
6010
6010
6010
6010
6010
6010
6010
6010
9045
(D
(D
(1)
(D
(1)
(D
(D
(1)
(D
0)
(D
(D
(1)
(1)
(1)
(1)
(1)
1.0
0.1
0.1
0.5
0.5
0.3
2.1
0.6
0.3
0.1
0.9
0.9
1.3
1.8
5.5
0.5
~~
Anions by Ion
Chroimatography —
_ _ 1.0
Chloride —
_ _ 0.5
Fluoride —
_ 0.05
Nitrate —
_ 0.05
Nitrite —
_ — 0.05
Qrthophosphate —
__ _ 1.0
Suteite —
Not Applicable
23
-------
Table 2.1.
(continued)
Parameter
Ammonia
COD
Extraction Method Analytical Method
Source
Detection Limits
(mg/kg)
EPA 350.3
41 0.1 or 41 0.2
(2)
(3)
0.15
50 or 500
TOO
Total Dissolved
Solids
Dtoxins/Furans
415.1
EPA CE-81-1 using
combustion boat
j
160.1
High resblution
GG
High resolution
MS
(1)
(2)
100
1.000
Not Applicable
Source:
1. Test Methods for Evaluating Solid Wastes." SW846.
2. -Methods for Chemical Analysis of Water and Wastes." EPA-600-4-79-020.
3. -Standard Methods for the Examination of Water and Wastewater."
24
-------
Table 2.2. Elements analyzed by NAA and analysis detection limits.
plement
Aluminum
Antimony
Arsenic
Barium
Bromine
Cadmium
Calcium
Cesium
Chlorine
Chromium
Coba|t
Dysprosium
Gallium
Hafnium
Indium
. Iodine
Iron
Potassium
Magnesium
Manganese
Molybdenum
Rubidium
Scandium
Selenium
Sodium
Silicon
Silver
Strontium
Thorium
Titanium
Uranium
Vanadium
Zinc
Note: all rare earths = less than 1 ppm
Detection
05
02
OS
20
1
03
300
05
5
1
02
02
5
02
0.1
2
, 150
GOO
0-1
1
2
2
0.1
02
20
1-3
2
50
02
300
1
5
5
Limit fma/koJ
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppm
ppm
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
-------
Table 2.3.
Comparison of NAA values with N1ST Certified Standard Reference Material 16Ki Coal
Fly Ash. All concentrations are in mg^kg unless specified otherw.se, followed by the
standard deviation. j
Element
"Ag
Ai
AS
Au
Ba
Br
Ca
Cd
Ce
Cl
Co
Cr
Cs
Fe
Hg
In
La
Mn
Mo
Na
Ni
Rb
Sb
Sc
Se
Si
Sm
Sr
Ta
Th
Ti
V
2n
NAA Value
NIST Value
*
0.44 ±0.17
12.5 ±2.0%
57.2 ±0.7
6.4 ±0.4 ng/g
2110±170
6.30 ±0.35
4.28 ±0.27%
1.34 ±0.20
138 ±2
<200
37.3 ±0.5
137 ±2
8.09 + 0.15
5.70 ±0.08
<480ng/g
123 ± 13 ng/g
76±;1
471 ±8
20.6 ±0.3
3100±110
99 ±3
106±2
558 ±0.08
24.0 ±0.3
9.8 ±0.5
25.0|±1.0
14.0±0.2
1230±100
1.62(±0.04
21.9!±0.3
7100 ±500
219 ±6
234±4
(0.30 ±0.050)
(12.6 ±0.6%)
61±4
(5.2 ±2.6 ng/g)
(2665 ±160)
(8.4 ±2.2)
(4.65 ±0.34%)
(1.47 ±0.1 5)
(149 ±10)
(38 ±13)
(38)
131 ±2
(8.6 ±0.6)
(6.1 6 ±0.27%)
140 ±10 ng/g)
(220 ± 80 ng/g)
(79 ±5)
493 ±7
(28 ±5)
(3130 ±200)
98±3
(112)
(6.8 ±0.7)
(26 ±3)
(9.4 ±0.5)
(22.0 ±1.0)
(12.9 ±1.5)
(1380 ±100)
(1.90 ±0.14)
(24)
(71 00 ±500)
214 ±8
210 ±20
Parentheses denote consensus values from Gladney et ai. [National Bureau of Standards Report
260-111 U.S. Department of Commerce,
26
-------
Table 2.4. Physical testing of untreated and treated MWC residues.
Analysis
Baste Properties
Moisture Content
Loss on Ignition
[3ulk Density
Particle Size
Distribution
Permeability
Porosity and
Surface Area
Modified Proctor
Density
Objective
Free water and correction
of chemical analyses to dry
weight basis
Residual organic matter,
carbonate and water of
hydration
Volume changes and
transportation estimates
Gradation and classfication
of granular material
Water percolation rates
through treated residues
Internal pore structure
and surface area for use
with contaminant diffusion
estimates
Optimum moisture content
for compaction and
compacted density
Product
TVD» Tested
Monolithic
or
granular
Monolithic
or
granular
Monolithic
or
granular
granular
only
Monolithic
or
granular
Monolithic
or
granular
Reference
ASTM
D2261-80
Standard
Methods
209D
See description
in text
granular
only
ASTM
D421
U.S. Army
Engineering
Manual GM
1110-21906
BET Isotherm
ASTM
D1557-78
Curing Rate and
Strength Development
Cone Penetrometer
Unconfined Compresive
Strength (UCS)
Pozzolanic Activity
Durability and
Weathering Effects
UCS after Immersion
Freeze/Thaw
Weathering
Wet/Dry Weathering
Initial, short term strength Monolithic U.S. Army
development during curing or Manual TMS-
granular 530/NAVFAC
NO-330/AFM
Cure rate and long term Monolithic ASTM
strength development only C-109
Self-cementing properties Granular ASTM
of untreated residues only C-311-80
Effect of weathering under Monolithic ASTM
saturated conditions on only C-511-78
strength ASTM C-109
Product erosion during Monolithic ASTM
thermal cycling only C-666-80
Product erosion during Monolithic ASTM
immersion cycling only D559-89
See Section 2.6 for Complete References
27
-------
Table 2.5. Analysis of extracts from leaching tests.
Detection Limits
Parameter Analytical Method Source 0*9*9)
Arsenic 706°
Cadmium 7131
Mercury 747°
Lead 7421
Selenium ^^
Silver a)10
Aluminum a)lO
Boron 6010
Barium a>lO
Beryllium a)10
cnnn
Calcium 601°
Cobalt a)10
Chromium aMO
Copper a>10
Iron a)lO
Potassium ' ®)10
Lithium 601°
Magnesium a)lO
Manganese a)10
Molybdenum a)10
errtfi
Sodium euiu
_-....
Nickel sno
Antimony a)10
-------
Table 2.5.
(continued)
Parameter
Analytical Method
Source
Detection Limits
(jig/kg)
Titanium
Vanadium
Zinc
PH
COD*
TSS"
TDS*
TOC*
Anions by Ion
Chromatography
Chloride
Fluoride
Nitrate
Nitrite
Orthophosphate
Sulfate
6010
6010
6010
EPA 150.1
Low -EPA 41 0.2
Medium -EPA 41 0.1
EPA 160.2
EPA 160.1
415.1
EPA 9060 using
combustion boat
EPA 300.1
—
—
—
—
—
—
0)
(1)
(1)
(2)
(2)
(2)
(2)
(1)
(2)
—
— -
—
—
, —
^^^
12
4
; 5
; ~
5mg/L
50 mg/L
10rng/L
ilO mg/L
100
; —
0.2 mg/L
0.1 mg/L
0.01 mg/L
0;01 mg/L
Oi01 mg/L
0.2 mg/L
Source:
1. Test Methods for Evaluating Solid Wastes," SW846,3rd Edition.
2. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020.
• Distilled Water Leach Test Only.
" Monolith Leach Test Only
29
-------
Table 2
.6. Particle size reductions required for chemical analysis and leaching tests.
Analysis j
e>~|j:j gnmpl0 Analysis (untreated and |
treated residues)!
Metals
SW-846 |
Neutron Activation
COD, TOO
pH.TDS.NHs.Anions,
Dioxins, Furans
TeStS
$ize Requited
TCLP ;
Distilled Water Leach Test !
Availability Leach Test ,
Acid Neutralization Capacity Leach Test
<300 u,m
<300 nm
<2mm
<2mm
<9.8 mm
<9.8 mm
>2mm
<300 u.m
<300 u.m
30
-------
Figure 2.1. Configuration of monolith extraction test for compacted granular materials.
Extraction
Fluid
3 gallon polyethylene
pail with lid
2.2 cm layer glass beads
10.1 cm sample in
mold
31
-------
Figure 2.2. Sample preparation for leaching tests 2nd analysis.
<9.8mm
TCLP
Moisture
Screening
(2.0 mm mesh) •
Distilled
Water Leach
Test
Moisture
Screening
(50 mesh)
'UNTREATED OR TREATED
ASH
(Approx. 3 kg)
final reject (> 2.0 mm)
<15% of initial mass
>65% of
Initial mass
final reject (> 50 mesh)
Moisture
32
-------
Figure 2.3. Effects of particle size reduction for analysis on total concentrations.
Figure a. Bottom Ash, Cu
4.000-
3.000-
2,000
1 000
>2mm
\
Max. Value:
160000
kxxxx^l
< 2mm < SOOum
Figure b. Combined Ash, Cu
3.UUU-
4,000-
o, 3-000
E 2.000
1.000
>2mm
(
'
SS^
< 2mm < 300|jm
Figure d. Combined Ash, Pb
5.000-
4.000-
3,000
2,000
1.000
oJ
4.000-
3.000-
2.000-
1.000-
0
*s.\\\\x
^sSSSS
> 2mm < 2mm < SOOjom
Figure e. Bottom Ash, Zn
s.oou-
4.000-
o. S-000
E 2.000
1.000
5,000-
4,000-
» 3.000-
E 2.000
1,000
n
>2mm <2mm <300|im
Figure f. Combined Ash, Zn
f,,\ S. S.,\.J
I I
*3OOum >2mm • <2mm <3Otvun
33
-------
Figure 2.4. Effects of particle size reduction for analysis on total concentrations.
Figures. Bottom Ash, Al I Figure b. Combined Ash^
50.000
40.000-
o, 30.000-
20,000
10.000
50-
40-
30
20
10
500
400-
300-
200
100
<2mm <300um
Figure c. Bottom Ash, Cd
>2mm
Figure e. Bottom Ash, Cr
—
\
Max. Value:
1100
50,000-
40.000-
0,30.000
E 20.000
10.000
0
50-
40
20
10
0
500
400-
300
200
100
0
Figure d. Combined Ash, Ccl _
<2mm
Figure f. Combined Ash, Cr
"
> 2mm
< 2mm
>2mm
34
-------
3. RESIDUE SAMPLING AND PREPARATION
i
3.1 RESIDUE SAMPLING AND PREPARATION
MWC residue used in this study was collected from a modem mass bum facility with a nominal
capacity rating of 2,100 tons/day. The service area of the facility was primarily household waste with
some commercial and non-hazardous industrial contributions. The MWC facility has the following process
sequence: (i) primary combustor with movable grates, (ii) boiler and economizer, (Hi) wet/dry scrubber
(spray drier) with lime, and (iv) paniculate recovery using baghouses (fabric filters). A generic flow
diagram for this type of facility is presented in Figure 3.1. Residues from all of the boiler surfaces are
included with the bottom ash stream, which is quenched after exiting from the primary combustor. This
may have resulted in slightly elevated concentrations of cadmium and other volatile heavy metals in the
bottom ash compared to MWC facilities where all of the boiler ash is included with the APC residue.
AF'C residue generated is the mixed residuals from the acid gas scrubber and the baghouses. The
facility includes three separate combustors and APC trains. APC residue from each process train is
mixed with the bottom ash from that process train prior to combining the residues from all three process
trains. Subsequent to combining the APC residue With the bottom ash from each process stream,
residues from all three process trains are mixed, passed through a grizzly to remove materials larger
than ten inches and trammelled to pass a 1.5 inch screen in conjunction with iron recovery. Combined
ash passing the trommel then is accumulated in a bunker prior to disposal.
Bottom ash, APC residue, and combined ash were sampled in bulk (2-10 tons of each residue
type) during two days of typical facility operation on September 14-16,1989. Bottom ash and
combined ash required processing prior to treatment demonstrations in order to facilitate laboratory
scale testing. Figures 3.2 through 3.4 summarize MWC residue sampling and preparation. Bottom ash
was sampled after quenching from the vibratory conveyor. Full stream cuts were taken at random
intervals over approximately a six hour interval. Bottom ash was screened to pass a two inch square
miesh during collection. Ash components that would not pass through the two inch mesh were weighed
and discarded. The discarded materials were primarily large chunks of slug and metal, glass and wire
tangles. A total of approximately 9,000 Ibs (15,55-galton drums) of screened bottom ash was collected.
APC residue was sampled through ports installed on the underside of the screw conveyor
transporting the residue from each APC process train to the point of mixing with the bottom ash. The
entire APC residue stream was collected from the facility's three APC trains at random intervals of
several hours each during daytime operation over two days. The APC residue was screened during
35
-------
collection to pass a 0.5 inch square mesh. Negligible amounts of material were collected on the screen
and discarded. Approximately 4000 Ibs (fifteen 55-gallon drums) of ARC residue were collected.
Combined ash was collected from the storage bunker of material passing through the trommel.
Bulk samples were randomly obtained from the storage pile using a front end loader. All combined ash
sampled had been produced within two hours of sampling. Water appeared to be freely draining from
the combined ash during sampling. Combined ash was screened to pass a two inch square mesh
during collection. This was necessary because, although the combined ash nominally had passed
through the 1.5 inch trommel, some particles had clumped together into larger aggregates. Reject
material was weighed and discarded. Approximately 8,000 Ibs (15.55-gallon drums) of combined ash
was sampled. ;
All MWC residues collected were placed in polyethylene lined 55-gallon drums, sealed and
shipped to WES lor further processing. After receipt at WES, bottom ash and combined ash had
moisture contents ranging from 12-18 and 12-37 percent, respectively. Both bottom ash and oombmed
ash were air dried at WES to a target of less than 1 Q% moisture to facilitate subsequent part,cle s.ze
reduction, homogenization and storage for this experimental program. The MWC residue was spread
into open air drying troughs (8 ft X 4 ft X 2 ft) to a depth of 18 inches. The residue in each trough was
thoroughly mixed daily using heavy duty garden rakes and shovels to enhance air drying. At n,ght and
during inclement weather, the drying troughs were covered with portable roofs. During daylight tours.
the troughs were left open to the atmosphere. The final moisture content of the bottom ash and
combined ash was 1U/- 3 wt% and 10+/-2 wt%, respectively. Further reduction in residue moisture
content-was not possible because of the high humidity climate at WES (Mississippi). The ARC res,due
collected had a moisture content of less than 5 perpent and did not require drying.
Particle size reduction of bottom ash and combined ash to less than 0.5 inch was necessary to
carry out the laboratory-scale process demonstrations. The residue was removed from the drying
troughs and passed through one-half inch mesh screens. The material that passed the screen was
collected in storage drums. The material retained on the screen was separated and classified as ether
crushable of non-crushable. The non-crushable materials were primarily metallic objects and were not
used in this study. A commercial compaction hammer was used to reduce the particle s.ze of the
material classified as crushable. The material was spread into a one-half inch layer on a concrete surface
and five passes with the compaction hammer were made over the surface of the residue. The matena.
was re-sieved through the one-haH inch screen. The material passing the screen was collected in storage
drums and the material retained on the screen was recycled through the particle size reduction step.
Residue not passing the one-half inch mesh screen after three cycles was classified non-crushable and
not used in this study.
36
-------
Homogenization of each residue type after particle size reduction was achieved using a 1.000
gallon baffled tank as a mixing drum. Each residue was placed in the tank and mixed at a speed of 4 - 6
rotations per minute for five hours. The residue then was removed from the homogenization tank and
placed in 55-galton storage drums until testing.
3.2 UNTREATED RESIDUE HOMOGENEITY
Each untreated residue drum was sampled to assess the homogeneity of the resulting materials
after residue size reduction to less than 0.5 in. A total of eleven grab samples of approximately 3 kg
each were obtained for each residue type. Bottom ash and combined ash samples were further size
reduced to less than 300 urn using the particle size reduction protocol described in Chapter 2.4. APC
residue samples did not require further particle size reduction. Neutron activation analysis was carried
out on random subsamples of the less than 300 urn size reduced samples to assay for metals and
halogens. . .
Figures 3.5 through 3.7 present box plots of the results obtained from the neutron act.vat.on
analyses The use of box plots permits observation of data variability and skewedness. Each box plot
presentation reflects all eleven replicates wtthin a residue type. The centra, line within each shaded "box-
represents the median of the data obtained for the particular element. The bottom and top of the
shaded box represent the limits of the lower and upper fourths of the data set. Thus, the box
encloses one quarter of the data points obtained below the median and one quarter of the data po.nts
obtained above the median. The lower and upper "whiskers" on each box represent the entire range of
the data, excluding outliers. Data outliers are indicated by open circles. Outliers are defined as those
data which are greater than or less than 1.5 times the distance between the tower arid upper fourths from
the median. Elements are ordered within figures according to increasing means and grouped by
corwentratton orders of magnitude.
Manganese, copper, titanium, iron, aluminum and silicon in APC residue exhibited greater
variability than other elements of similar concentration.' These elements are present in APC residue
primarily from physical entrapment of particles from the combustion zone in the combustion gases. Four
of the eleven replicates for copper in APC residue were considered outliers. All halogen concentrat-ons
in APC residue had very limited variability. Iodine, cobalt, copper, chloride, iron and silicon in bottom ash
had greater variability than other elements within the material of similar concentration. Those elements .n
combined ash which have signHicant concentration in APC residue exhibited greater variability in the
combined ash. These elements include iodine, cadmium, bromine, zinc and calcium. Iron and z,nc also
exhibited greater variability in combined ash than other elements of similar concentration. This probably
was the result of elemental metal being present in the municipal solid waste that was combusted.
37
-------
I
1
CO
o
£1
S
I
I
38 i
-------
Figure 3.2. Bottom ash preparation.
Bottom Ash
(as collected)
14,500 Ibs
Screening
(2 In. mesh)
reject (> 2 In.) 3,000 Ibs
Air Drying
(to < 10%
moisture)
Dry Weight 8,400 Ibs
3 times !
Screening
(0.5 in. mesh)
final reject (> 0.5 In.)
1,900 Ibs
Mixing
(1500 gal.
baffled drum)
Prepared.
Bottom Ash
6,400 Ibs
55 gallon drums - For Vendor Demonstrations
39
-------
Figure 3.3. Combined ash preparation.
Screening
(2 In. mesh)
Air Drying
(to < 10%
moisture)
Screening
(0.5 in. mesh)
Mixing
(1500 gal.
baffled drum)
Combined Ash 12,500 ibs
(as collected)
reject (> 2 In.)
Wet Weight 10,500 Ibs
Dry Weight 8,000 Ibs
3 times
Crushing
final reject (> 0.5 In.)
2,400 Ibs
1
4
—
2
<
3
i
4
1
1
1 0
Prepared
Combined Ash
5,500 Ibs
55 gallon drums - For Vendor Demonstrations
[40
-------
Figure 3.4. APC residue preparation.
Screenina
(0.5 In. mesh)
Mixing
(1500 gal.
baffled drum)
Fly Ash with Scrubber Residue 4,000 ibs
e (as collected)
reject (>0.5 in.)
<1.0 Ibs
1
1
1
2
t
i
3
4
r4 ' •
4
• « • |
|
1 0
Prepared
Fly Ash
4,000 Ibs
55 gallon drums - For Vendor Demonstrations
41
-------
Box plot of neutron activation analysis results for homogenized, untreated ARC residue
(SS^
T T -t
02gEgpa
J*
Sm In Ta Th Sc Cs
Figure c.
8
f-V^W
&Mtt I
0
I Ag ' Cd Cr Mn Cu
25-
> 9O
0
E 10
s
I
! 0'
t
8000
i
' '1 4.000
i
2.000
i C
1
f$w3
§g§
T $$^
T 1 $\NXV
T^S^i
^^^ '
U Se Hg Ce Co V
Figure d.
_
"^"N™^™^ t- J'- C — ^ ^
^v\\x -1
_^T
Sb Br Ti Fe
Figure e.
Figure f.
30.000-
24.000
Q 18.000
E 12.000
6.000
0
T
^!T^^^^
'////
3.
^ F=r=!
K Zn to Al
300.000-
250,000
200.000
1i 150.000
E
100.000
50.000
0
=====
-• -
o
„
r"'"'"' "
Si Cl Ca
42
-------
Fiaure 3 6 Box plol o1 neutron activation analysis results for homogenized, untreated bottom ash
" (<300u.m, ground; 11 replicates).
2.0
1.5
1.0
0.5
0.0
Figure 1s.
In
Cs
Sm Hg
Figure 1b.
12.0,
10.0
8.0
•f e.o
£
4.0
2.0
n n
0.0
,
' "T
; T
•
%%/%
%P
mb
'tftft
yW//
0
T __ r \
t
Ta ' Se ' So , Th I U
120
100^
80
! 6°
40
20
0
Figure 1e.
Figure 1d.
222
Ag ' Ce ' Cd V Co
2000,
1600
1200-
800
; T
772ZZ3j
^222:2
j_
S>>^
: — 1
ESS - ;
SO ' & ' Cr ' Mn cu
Figure 1e.
Figure 1f.
30,000,
OE nno
<; 10,000
H 5.000
110.000
5,000
0 ^
>W<
1
' '-//A 1
_ ^ •>
^^^^^
^^ J_
1 — T! ' .2n ' K Na u
160.000,
120.000
80.000
40.000
0
0
' T T
T t^^1 '///,
\ '
,
,
' — Al ' l-e ;' ca ' s>i
43
-------
Fraure 3 7 Box plot of neutron activation analysis results for homogenized, untreated combined ash
'* (<300um. ground; 11 replicates).
Figure, _n n **"•*• ,
3.0
o
I2"0
1.0
50,
40.
30
D
E 20
10
0
20.000
16.000
a 12-000
E 8.000
4.00C
(
T
M
//y/,
I
e
J.
In Cs Sm Ta
Figure c.
$', -''• T
• E /f^ 1
Ce Cd V Co
Figure e.
T
^^r/^^j
fflffi,
L
|s^ >^7^
1
' Cu Mn Zn Ti K
16.0.
12.0
o>
E 8.0
4.0
I
0.0
\
I ^ 000-T
800
e» 60°
400
200
0
250000
200,000
0 150'000
E 100.000
! 50,000
r
T
" i ' ^^
y _ /^ k*p
IWW^Wj ' ' — / / ' j^
JL
Hg Th Sc Se U I
Figure d.
T
^\SS
T ^^
\ jfe.,.::V. '• !'•'•'•»• ' [| SV^^^
^T^w,™ | I
^^PlS
i
Sb Cr Br
Figure (.
T
T ^§^
r/JJ7s X^^-,
T $/s/ ^w^
I rSssS. \
\ - i
/v>
Na Cl Al Fe Ca Si
44
-------
4. PROCESS DESCRIPTIONS AND ECONOMICS
4.1 PROCESS DESCRIPTIONS ''
Five S/S treatment processes were selected for inclusion in this study. Treatment processes
were selected to be representative of general classes of S/S process chemistries. Tfie specific process
carried out for demonstration was developed by the vendors selected to participate in this study. Only
the vendors who requested to be identified are indicated in this report (see Section t.4). The processes
evaluated are summarized as follows:
Process 1 - This process used Portland cement (type I) and polymeric absorbents to carry out S/S.
Vendor supplied information indicated that this process would produce a soil-like product and that
approximately 1.7 tons of product would be produced per ton of ash treated. The vendor supplied
information also indicated that MWC residue treatment costs would be approximately $30-40 per ton of
residue treated.
Process 2 - This process used a combination of proprietary additives to carry our S/S. The process
employed is of a general class of S/S processes which employ portland cement, dry carbonaceous
material and additional soluble silicate reagents to immobilize inorganic contaminants. Vendor supplied
information indicated that the treated materials would be soil-like and that a 20-30% volume increase would
occur as a result of treatment.
Process 3. This process used a waste pozzolan to carry out S/S. A wastewater (municipal landfill
leacnate from a landfill with no record of industrial waste disposal) was used in the process instead of
potable water. This process had previously been carried out at full-scale with MWC residues from a
different MWC facility than the one used in this study. Projected treatment cost information was
i
proprietary. :
process 4 - This process patented by Wheelabrator Environmental Systems as WES-PHix used
proprietary additives to react soluble phosphates with the MWC residues. This process did not include
the addition of a traditional pozzolan or Portland cement. Vendor supplied information indicated that this
process would produce a soil-like product and that minimal increases in residue volume or weight would
occur. Modifications of this process have been implemented at full-scale at various MWC facilities.
WF=S control - This process was used as a positive experimental control. The process employed
Portland Cement, Type I only as a process additive to produce a monolith. The process was developed
45
-------
based on varying cement and water additions until a nominal cone penetrometer greater than 100 psi and
minimal leaching based on TCLP results was achieved.
The relative amounts of process additives and water additions were varied by vendor according
to residue type. Vendors were supplied with test quantities of each residue type prior to process
demonstrations. However, process vendors indicated that their processes were optimized around only
one or a few of the evaluation tests to be carried out. Therefore, it is unlikely that any of the above
processes were truly optimized for performance based on all of the evaluation parameters.
A summary of the relative quantities of MWC residue, process additives and water add.t,ons are
provided for each process and residue type in Table 4.1. AH process additives are lumped together for
reporting purposes to preserve proprietary process information. The resulting process dilution factors.
or the relative increase in MWC residue weight resulting from treatment, is presented in Table 4.2.
4.2. PROCESS ECONOMICS FOR SOLIDIFICATION/STABILIZATION OF MWC RESIDUES
A cost estimate for implementation of MWC residue treatment must include many factors, severa. of which
will be based on unique local condittons at individual; MWC facilities. The following is a summary and bnef
discussion of factors which ultimately would influence^ treatment costs:
a Treatment Spedflcatbns - Treatment performance typically will be based on regulatory requirements
or desired treated residue characteristics in the final disposal or utilization scenario. Such
considerations will govern treatment process,selection and operation. For example, at the
Commerce Refuse to Energy Facility (CREF) located in Commerce. CA. treatment process select-on
was based on meeting leaching test requirements under the California Waste Extraction Test (WET)
and also on potential for utilization of the treated residue as a landfill road construction material [ANS
161 1986]. Thus, treatment decisions at CREF were based on both leaching test performance under
a local leaching test and structural properties of the treated material. Currently, there are no Federal
USEPA guidelines for MWC residue treatment; or treatment process performance, but several state
and local jurisdictions have implemented MWC|residue guidelines which are highly variable from
jurisdiction to jurisdiction. Where treatment is required, these state and local guidelines will determine
the degree of treatment which is necessary.
b Treatment Process Additfces - Non-proprietary and proprietary process additives may contobute
' significantly to treatment costs depending on the nature, local availability and process loadings of
specific treatment additives. Process additives also may substantially impact treatment costs by
increasing the volume or weight of the residue's requiring transportation and disposal.
46
-------
c. Treatment Process Design - Different S/S processes may require varied preparation, feed rates,
!
curing and other processing conditions.
d. Process Licensing Agreements - Use of proprietary treatment processes may include process
licensing fees. ,
e. MWC Facility Improvements - Capital improvements will likely be necessary at any MWC facility
implementing a residue treatment process. Capital improvements will mainly involve materials
handling equipment, such as conveyors, screens, reagent storage tanks, particle size control, drying.
storage silos, mixing equipment, casting forms, piping, etc. ;
f. Transportation to Disposal or Utilization Location - Where treatment process results in significantly
increased quantities, an increase in overall treatment costs will occur if long distance transportation of
the treated residues is required and/or disposal costs are high. This increase may heavily influence
the selection of a treatment process.
g. Process Operation and Maintenance - Personnel, utilities and maintenance will be required to support
a residue management process. The net amount expended for residue management may increase
or decrease depending on the specific requirements of the treatment process relative to untreated
residue management.
The very site specific nature of treatment process implementation and the proprietary nature of
some of the treatment processes included in this study prevented the incorporation of comparative cost
estimates in this study. However, as an example only of costs associated with S/S treatment of MWC
residues, a summary of cost estimates for a treatment process implemented at the CREF is presented
here [County Sanitation Districts of LA. County, 1991, Kom, J.L. and Huitric, R.L.. 1992]. It should be
noted that actual costs associated with other processes could be significantly lower or higher and should
be determined on a case by case basis.
The CREF is a mass bum MWC facility incorporating ammonia injection for NOx control, a lime
slurry spray drier for acid gas scrubbing and fabric filter baghouses for paniculate control. A schematic
flow diagram of the CREF is provided in Figure 4.1. CREF operation results in the generation of
approximately 35,000 tons per year of combined ash. A pilot study was carried out at CREF to evaluate
S/S treatment options for the facility. The process selected for implementation includes the following
process steps:
1. Separate collection of APC residue from bottom ash; ,
2. Separate silo storage of APC residue and Portland cement;
3. Screening of bottom ash to less than 1 inch nominal particle size;
4. Separation of ferrous materials from oversized (>1 inch) bottom ash fraction;
47
-------
5. Mixing of APC residue, bottom ash, Portland cement and water batchwise in a standard
rotating drum concrete mixing truck;
6. Forming of S/S residue blocks in modified 20 cubic yard roll-off containers at the MWC facility;
7. Setting of S/S residue blocks at ambient conditions for one to two days; and,
8. Transporting of treated residues to a toc*l landfill (approximately 10 miles from the MWC
facility) where the residues may be used; as a landfill road construction material.
A self-cleaning vibratory finger screen was Delected for bottom ash screening. Portland type II
cement is added at between 8 and 12% by weight bf the residue treated and moisture content of the mix
is targeted at 25%. The ratto of APC residue to screened wet bottom ash incorporated in the treatment
mixture is 15:70. Approximately 15% of the total residue stream is greater than 1 inch size and is not
included in the treatment process. Ferrous scrap is ^covered from the material greater than 1 inch in size
and the remainder of it is landfilled directly. !
Summaries of capital costs and annual operating costs along with additional specific assumptions
are provided in Tables 4.3 through 4.5. Including an additional landfill tipping fee for disposal of the
additional treated residue weight and annual debt service, the total treatment costs can be summarized as
follows: I
Annual operating cost/ton ash $16.16
Landfill tipping fee/ton treated ash $14.30
Debt service /ton ash
Total ash management costAon ash
Current ash management cost/ton 121221
Additional cost of treatment/ton ash $1725
Note that this process does not include any substantial transportation costs or process technology
licensing fees. . I
-------
Table 4.1.
APC Residue
Process 1
Process 2
Process 3
Process 4
WES Control
Ash
Process 1
Process 2
Process 3
Process 4
WES Control
Qorphined Ash
Process 1
Process 2
Pro(«ss 3
Process 4
WES Control
Quantities of process additives and water added per 100 Ibs ash for each treatment
process. .
Additives [Ibs]
••••••••••••^••i^"
11
25
50
12
30
11
25
50
6
10
11
25
50
7
10
90
100
85
25
90
10
32
28*
11
10
20
32
30
12
20
Waste water added.
49
-------
Table 4.2. Process dilution factors for each treatment process.
Process
Process
1
2
Process 3
Process 4
WES Control
riUCcSs UIIUUUH raui
Bottom Asn
\2
1.6
1.8
1.2
1.2
A.PC Residue
2.0
22
2.4 .
1.4*
2.2*
C?rnbined Ash
1.3
1.6
1.8
12
1.3*
Based on Table 4.1.
50
-------
Table 4.3. Capital Improvement Costs for CREF Ash Treatmemt Facility.
Item
Pre-Construction
Cost Estimate
Capital Cost of Construction Equipment Costs
Aggregate Belt Conveyor (25 LF)
Ash Cranes (2 required) - .
Fly Ash & Cement Silos, Screw Conveyor, Weigh Bin & Supports
Pneumatic Fly Ash Conveyor System
Dust Collection System
Total Equipment Procurement & Delivery
2. Construction Costs
Pavement Removal, Excavations & Backfill
Ash Pits
Load Out Deflector Plate
Aggregate Weigh Bin
Crane Monorail Girders
Building Columns
Building Foundations
Fly Ash Silo Foundations
Cement Silo Foundations
Vibrating Screen Foundations
Building Roofing, Siding Beams & Girts
Roll-up Doors
Building Floor Slab & Drive-Thru Slab
Tufoe Residue Downcomer Modifies & Screw Conveyors
Building Lighting
Ash Pipe Supports
Utility Relocations
Electrical Construction Including MCC
Paved Area for Storage of Rolf-off Container (15.000 SF)
Roll-off Bins for Concrete (18 required)
Equipment Installation
SUBTOTAL CONSTRUCTION
Equipment Procurement
Engineering Design
Construction Management and Permitting
Contingency @10%
TOTAL
20,000
200,000
200,000
! 15,000.
i 10.000
$445.000
75,000
1125,000
; 2,000
20,000
: 10,000
i 20,000
: 26,000
18,000
, 18,000
6,000
; 100,000
! 8,000
i 20,000
i 35,000
15,000
1 8,000
30,000
145,000-
70,000
72,000
150.000
$968,000
445,000
1152,000
' 50,000
| 180.000
$1,795,000
Note: Actual cost was $2,600,000.
51
-------
Table 4.4.
Annual Operating Cost Details for CREF Treatment Facility.
ltem_
••MMMBMMH
Cement, Tons
R.MixTrk/Drvr
Plant Operator
Additional Maintenance
Sub-Total
Hauling Concrete
Overs Disposal
Sub-Total (Operating Costs)
Debt Service on Capital Cost
SUBTOTAL
Landfill Fee (if needed)
GRAND TOTAL
Annual Cost
Note
$180,960
104.000
54000
25JOOO
363,960
198;120
i
! °
562,080
304,000
866,080
497,640
1,363,720
$58/Ton
$50/hr
Cost of transportation = revenue
$15.95/Ton
Note: All Capital and operating costs are presented in 1992 dollars.
52
-------
Table 4.5. Annual Operating Cost Summary for CREF Treatment Facility.
Item
M^M^BM'
Existing System
Proposed System
- Oper. Cost w/o Tipping Fee
- L..F. Tipping Fee (if needed)
Annual Cost
$685.107
Cost Per Ton of Of Ash1
Refuse
$6.23
$2135
$562,080
$497,6402
$5.11
$3.79
$16.16
$116.16
$1431
1 Based on 34,777 tons of ash generated in 1990.
2Based on generating 31,200 tons of concrete in the proposed treatment system and a tipping fee of
$15.95 per ton at the landfill.
!
Note- The above annual operating costs do not include debt service on the capita, cost of implementing
the proposed system. At a capital cost of $2,600,000 and a 10% interest rate for a 20 year
payment period the annual debt service is estimated to be $304.000. :
Annual debt service
Cost /Ton of Refuse
Cost /Ton of Ash
= $304.000
= $2.76 (110.000 tons of refuse)
= $8.74 (34,777 tons of ash)
53
-------
*
o
en
LU
LJJ
O
LJJ
CO
ID
LL
LU
CC
LU
O
cc
LU
O
O
.i
13
s.
o
in
en
u
I.
S
re
£
en
CO
I
us
£
"cs
•?
£
Q.
5
O)
JS
-------
5. PHYSICAL PROPERTIES OF UNTREATED AND TREATED RESIDUES
Physical testing was carried oul orWhe untreated and treated residue to determine basic physical
properties, curing rate and strength development, and durability under simulated weathering conditions.
Table 1 (Chapter 2.2) outlines the physical testing carried out on the residues. Side-by-side comparisons
of the physical properties for the untreated residue and each of the treated residues were made.
Tables 5.1,5.2 and 5.3 present the mean physical properties of the untreated and treated
residues. Complete physical testing data is presented in Volume 2 of this report. The following sections
discuss the results from each of the physical tests separately, including: moisture content, toss on
ignition, bulk density, modified proctor density, particle size distribution, permeability, porosity and
surface area, unconfined compressive strength, pozzolanic activity. UCS after immersion, freeze/thaw
weathering and wet/dry weathering.
5.1 MOISTURE CONTENT
Moisture content was determined on untreated and treated residue with a maximum particle size
of 9.8 mm. The untreated residue was collected from the storage barrels containing the material used
during the process demonstrations. The test specimens were treated residue that had cured for 28 days
and were sized reduced using a mortar and pestle only. Moisture content ranged from 0.3 to 33.3
percent at 60°C and from 0.9 to 35.2 percent at 105°C.
The liquid added during the treatment processes as a percentage of anhydrous material was
calculated and compared to the moisture content measured on the treated material. The moisture content
as a percent of anhydrous material was calculated as follows:
0/ . . ra [Mass (wet) - Mass (dryL 100
%mo.sture = [ Mass (dry) ZJx10° (Equation 5.1)
The moisture content by weight of the treated anhydrous and hydrous material at 105°C. was
compared to the liquid added during treatment (as percent anhydrous material).For a well hydrated
cement the amount of water retained 105OC at is approximately 20 percent by weight of the anhydrous
material, and for a completely hydrated cement about 25 percent [Lea. F.M.. 1971]. This definition was
expanded and the treated residues were classified using this classification category: (1) completely
hydrated (>25%). (2) well hydrated (16 - 25%), (3) poorly hydrated (8-16%). and (4) very poorly hydrated
(<8%). in addition, the moisture content (anhydrous at 1050Q had to be equal to or greater than the
percent liquid added during treatment (as percent anhydrous) to be classified as well to completely
hydrated. The poorty to very poorly hydrated residues were required to have a moisture content less
55
-------
than the percent liquid added during treatment. Table 5.4 presents the anhydrous moisture content, the
liquid added during the treatment process as percent of anhydrous material, and the degree of hydration
for the treated and untreated residues. !
According to the above criteria, Process 2 and Process 4 bottom ash and combined ash were well
to completely hydrated. Moisture contents resulting from these processes exceeded the percent liquid
added during treatment. This excess moisture indicated that there was adequate moisture to complete
the setting reaction. Process 1 and the WES Contrbl treated bottom ash and combined ash were poorly
to very poorly hydrated. All three residues treated jay Process 3 were poorly to very poorly hydrated
and the percent liquid added during treatment was significantly larger than the moisture content of the
materials. The deficit in moisture indicated that available water was depleted during the setting reaction
and was chemically bound in the matrix. The APC rpsidue treated by Processes 1,2,4 and the WES
Control exceeded complete hydration; for all Processes but the WES Control, the moisture content
exceeded the percent liquid added during treatment. The excess moisture was acquired during curing
and illustrates the hydroscopfc nature of the APC residue.
i
5.2 LOSS ON IGNITION ;
Loss on Ignition (LOI) for the untreated bottom ash was 4.6 percent and ranged from 4.2 to 6.5
percent for the treated bottom ash. LOI for the untreated APC residue was 12 percent and ranged from
3.2 to 9.6 percent for the treated APC residues. LOI for the untreated combined ash was 6.3 percent
and ranged from 2.9 to 7.4 percent for the treated combined ash. All of the treatment processes
decreased LOIs in the APC residue. The bottom ash Process 4 treatment and combined ash Process 1
and Process 3 treatment decreased LOI from that 6f the untreated residue. Decreases in LOI can be
attributed primarily to dilution effects. j
f
5.3 BULK DENSITY (
For the untreated material, gross bulk densities and compacted bulk densities were measured.
Gross bulk densities were measured using dry, granular residue stored in 55-gallon storage drums.
Untreated, compacted bulk density test specimens were prepared by mixing the residue with water to
the optimum moisture content and compacted intoimolds using Modified Proctor energy. The untreated,
gross bulk densities were compared to the untreated compacted bulk densities. The increase in density
of the untreated ash was 28 percent for the bottom, 67 percent for the APC residue, and 32 percent for
the combined.
Compacted bulk density measurements vyere made on the treated residues. If the treated
residue was a ftowable liquid, it was poured into the molds and vibrated to remove the air voids.
Processes 2,3, and 4 generated ftowable products and were vibrated into the molds. If the treated
56
-------
residue was viscous and not a f towable liquid, it was compacted into the molds to remove air voids using
Modified Proctor energy. The Process 1 and WES Control test specimens were compacted into the
molds. The test specimens were cured at 98% relative humidity and 20°C for 28 days prior to testing.
Compacted bulk densities of the untreated residue were compared to the treated residue bulk
densities. The untreated residue bulk densities were greater than the treated residue bulk densities for
each ash type with the exception of Process 4. The addition of the binder resulted in a decrease in bulk
density if the binder was less dense than the residue. Conversely, as in the case of Process 4, when the
additive was denser than the residue, bulk density increase with addition of the binder.
Changes in the volume of the residue varied by process and ash type. Increases in the volume
of the residue after treatment will increase disposal costs if a landfill disposal option is selected. Volume
change factors were calculated to quantify the volume changes as follows:
Vu Pt (Equation 5.2)
where:
Vt " specif to volume of untreated residue in the treated product [m3/kg ash]
^ • '
VU = Specific volume of untreated residue [m3/kg ash] \
pu = Bulk density of untreated ash
pt - Bulk density of treated ash
... .. . ,. r / Kg treated residue \
DF ^ Process cHubon factor (KgBuntreated residue;
Table 5.5 presents the volume change factors resulting from application of the treatment
processes. The residue volume increased by approximately two to three times for all residue types
treated by Process 2 and 3. Process 1 and the WES Control process had the same volume change
factors for the bottom ash and combined ash (1.2 and 1.5, respectively). Process 4 had the smallest
effect on the specific volume.
The width and height dimensions of the test specimens were measured after 28 days' curing to
estimate shrinkage or swelling. Volume instability, especially shrinkage, is a major weakness of mortars
and concretes. The volume changes produce undesirable stresses in the mass that may cause cracking
57
-------
I
1
[Popovics, S., 1979]. The volumes of the cured test specimens were compared to the nominal
dimensions of the 2 inch cubic molds as follows: ,
1 (Equation 5.3)
S » Shrinkage (<0) or swelling (>0) ;
Vf» Final volume of test specimen ;
Vj= Volume of 2 inch cubic mold ;
Table 5.6 presents the shrinking and swelling of the!test specimens during the 28 day cure time. Positive
values indicate swelling and negative values shrinkage. The untreated, Process 4, and Process 1 APC
residue test specimens had no shrinkage or swelling during curing. For the remaining treatment process,
shrinkage or swelling varied by process and residue type. It is most likely that swelling was not
observed during curing for the untreated residues because of aging of the residues during untreated
residue preparation. However, it has been noted that untreated residues swell in field settings.
5.4 MODIFIED PROCTOR DENSITY |
Modified Proctor density determinations wete made only on granular materials which included the
untreated residues and Process 4 APC residue. Tr^e moisture-density relationship curves are presented
' in Figure 5.1, wherein the dry density values of the granular materials are plotted as ordinates with
corresponding moisture contents as abscissas. Trie moisture corresponding to the peak of the curve is
the optimum moisture and the dry density of the sample at optimum moisture content is the maximum dry
density. The optimum moistures were approximately 17 percent. 24 percent and 12 percent for the
bottom ash, APC residue and combined ash, respectively, and 30 percent for the Process 4 APC
residue. The maximum dry densities were 2100 kg/rrr3,1400 kg/rr.3, and 2200 kg/m3 for the bottom ash,
APC residue and combined ash, respectively, and|l400 kg/mS forthe Process 4 APC residue.
5.5 PARTICLE SIZE DISTRIBUTION |
Particle size distribution analyses were performed only on granular materials. Particle sjze
distribution analyses were carried out on the untreated bottom ash and the untreated combined ash
before and after sample preparation (drying and particle size reduction to < 0.5 inches). Particle s,ze
distribution analyses were also carried out on the untreated APC residue and the Process 4 APC res,due.
Table 5.7 presents the particle size gradation as the percent finer material from sieve analysis.
53
-------
The residues were classified into categories to assist in the evaluation of significant properties for
engineering use according to ASTM Standard Method for Soil Classification (D2487). Prior to sample
preparation, the bottom ash and combined were classified as a poorly graded gravel (GP). Following
preparation, the bottom ash was classified as a well-graded sand with sitt or as a gravely sand (SW-SM)
and the combined ash was classified as a well graded gravels with silt (GW-GM). The untreated ARC
residues was classified as a silt (ML) and the Process 4 APC residue was classified as a poorly graded
sand (SP).
Figure 5.2a presents the particle size distribution gradation curve for the bottom ash prior to
sample preparation. Figure 5.2b presents the particle size distribution gradation curve for the bottom
ash following sample preparation. Priorto sample preparation, approximately 50 percent of the bottom
ash was less than 12.5 mm. After sample preparation, approximately 50 percent of the bottom ash was
less than 2 mm.
Figure 5.3a presents the particle size distribution gradation curve for the combined ash prior to
sample preparation. Figure 5.3b presents the particle size distribution gradation curve for the combined
ash following sample preparation. Prior to sample preparation, approximately 50 percent of the
combined ash was less than 25 mm. After sample preparation, approximately 50 percent of the
combined ash was less than 3.35 mm. During combined ash processing, the bottom ash was quenched
by complete water immersion, mixed wrth the APC residue, and then the combined ashes were
trammeled. The available moisture and the trammeling resulted in particle cohesion. A comparison of the
gradation curve of the untreated bottom ash and the combined ash show that between the range of 0.85
mm and 19.1 mm, 20 - 30 percent of the combined ash was larger than the bottom ash. This is
i
attributable to particle cohesion.
Figures 5.4 a and 5.4 b present the particle size distribution gradation curve for the untreated
APC residue and the Process 4 APC residue. The APC residue was stored until use in the study,
squiring no pre-processing. The untreated APC residue exhibited very little gradation with over 98
percent of the material finer than 0.425 mm, and 77 percent finer than 0.075 (200 mesh). The Process 4
treatment increased particle size substantially. Only 42 percent of the treated APp residue passed the
0.3 mm opening, while 96 percent of the untreated APC residue remained finer.
5.6 PERMEABILITY
Tables 5.1,5.2, and 5.3 present the average permeability data for each of the treated and
untreated ash types. Monolithic test specimens were prepared by mixing the granular, untreated
residue with water to optimum moisture content. To remove air voids, the mixtures were then vibrated
59
-------
into the molds for 30 seconds or compacted into molds using modified proctor energy. Process 1 and
WES Control were compacted into the molds and Processes 2,3, and 4 produced flowable by-products
that were vibrated into the molds. In general, permeabilities ranged from 6.8 E- 04 to 1.6 E-06 and
permeabilities of the test specimens of treatment processes were only one order of magnitude less than
the untreated test specimens. The Process 2 bottom ash and combined ash test specimens formed
large fissures while curing and broke into four to six large pieces. A permeability reading was obtained
on one (of three) Process 2 bottom ash test specimen which remained intact. No permeability readings
were made for the combined ash treated by Process 2. There were no correlations in the permeab.lrt.es
of test specimens that were compacted versus vibrated into the molds. There was no trend in the
permeability data by process or by ash type. j
5.7 PORE DIAMETER AND SURFACE AREA |
The BET pore diameter and surface area data are listed in Tables 5.1,5.2 and 5.3. Comparison
of the untreated bottom ash with the treated bottorn ash indicated a significant decrease in pore diameter
and a slgnlflcant increase in surface area as a result of treatment. The APC residue generally exhibrted
the same changes when treated. A notable exception was APC residue treated by Process 4. 1 h,s
process resulted in only a minimal increase in surfabe area. A comparison of the untreated combined ash
wtth the treated residue indicated varying changes in the pore diameter as a result of treatment.
Treatment consistently increased the surface area tor the combined ash. Figures 5.5,5.6, and 5.7 show
the cumulative adsorption pore area plot for each of the untreated residues.
5.8 CONE PENETROMETER j
Five cone index readings were obtained the first day followed by two single daily readings. The
highest cone index readings for the untreated bottom and untreated combined ash were reached within
the first six hours of curing, but then diminished to less than 10 psig by the end of the first day. The
untreated APC residue acquired a final cone index reading of 285 psig. The treated bottom ash and
treated combined ash test specimens reached the maximum obtainable cone index reading (750 ps,g)
by the second day of curing. The APC residue for Processes 1,2,4 and WES Control had increasing
cone index readings as curing progressed. The Process 3 APC residue reached the maximum cone
index reading obtainable within 3 hours of curing.
5.9 UNCONFINED COMPRESSIVE STRENGTH
Figure 5 8 a compares UCS as a function of time for the untreated and treated bottom ash. The
untreated bottom ash test specimens acquired negligible strength «10 psi) at the onset and showed no
eo
-------
increase as cure time progressed. Bottom ash treated with the WES Control process exhibited the
highest strength formation. Bottom ash treated using Process 1 acquired slightly less strength than the
WES Control. The remaining process test specimens acquired only twenty percent of the highest
strength of the WES Control test specimens. All treated bottom ash samples asymptotically
approached maximum strength with time, indicating little potential for further strength development.
Figure 5.8 b compares UCS as a function of cure time for the untreated and treated APC
residue. Process 4 was not tested because the treated residue was granular. The untreated APC
residue test specimens initially acquired low strength (<10 psi) that decreased as cure time progressed.
The APC residue treated with the WES Control process exhibited the highest strength formation. The
UCS of APC residue treated using Processes 1,2, and 3 were not significantly different from each other
and were approximately one-third the UCS of the WES control test specimens. The UCS for Processes
1,2,3, and the untreated test specimens asymptotically approached a maximum strength with time
indicating little potential for further strength development. Conversely, the UCS-cure time curve for the
WES Control did not asymptotically approach a maximum strength by the 28th day. indicating a potential
for further strength development. j
The UCS of the untreated and treated combined ash is presented in Figure 5.8 c. The untreated
combined ash initially acquired tow strength and showed no strength increase with cure time. The WES
Control resulted in the highest strength formation, but the strength decreased by approximately 250 psig
as cure time progressed. Process 1,2, and 3 acquired a 28Klay UCS of approximately fifty percent of
that acquired by the WES Control process and Process 4 test specimens acquired only about fifteen
percent of the strength of the WES Control process. The Process 1,2,3.4 and untreated test
specimens UCS asymptotically approached a maximum strength with cure time, indicating little potential
for further strength development. The UCS of combined ash treated using the WES Control Process
only decreased with time indicating that strength toss would continue. This decrease may be attributed to
increased dryness of the treated material as available water was depleted during th setting reaction.
The addition of larger proportions of water in the S/S process should be investigated to provide
improved strength formation.
5.10. POZZOLANIC ACTIVITY |
The untreated ashes were tested for pozzolanic activity using cement and lime. Following one
day of curing, the sample mixtures had not acquired sufficient strength to be extruded from the molds
as specified by the test protocol. The test specimens were maintained in the molds for the entire curing
period (7 days). At the end of the curing period, the bottom ash and combined ash test specimens had
a thick and adhesive consistency and did not set. The APC residue test specimens.set. but crumbled
upon demolding, hence, no UCS information was obtainable. The MWC residues exhibited no inherent
61
-------
pozzolanic activity with cement or lime. This result may have been a consequence of residue aging
during the residue preparation process. :
5.11 UCS AFTER IMMERSION j
Figure 5.9 compares UCS and UCS after Immersion for the treated residues only. All the
untreated residue test specimens acquired minimal OCS after curing 28 days (<10 psi) and deteriorated
from a free standing monolith to a granular or amorphous form after 24 hours of immersion. The Process 2
APC residue and Process 3 test specimens for all tf^ree ash types deteriorated from a free standing
monolith to a granular form after 28 days of immersiojn. Concrete materials that are cured and then
immersed for 24 hours typically exhibit a 20-40 percent decrease in UCS (Lea. F.M., 1971). Excluding
Process 1 APC residue, after 24 hours of immersion a decrease in UCS was observed for every
treatment process of all ash types. With the exception of Process 1 bottom ash, UCS increased with
increasing immersion time for the treatment processes that Withstood 28 days of immersion. The UCS
after 28 days of immersion was similar to the 28 day! UCS reading with no immersion for products which
maintained physical integrity, and even exceeded trie non-immersion UCS in several processes.
Evaluation of UCS after longer immersion periods should be investigated to see if immersion continues
to enhance or reduce the UCS.
5.12 FREEZE/THAW WEATHERING AND WET/DRY WEATHERING
Figure 5.10 presents the wet/dry and freeze/thaw weathering test results as the cumulative weight
percent eroded at the conclusion of twelve successive weathering cycles. The cumulative weight i^ercent
eroded was obtained by drying and weighing the residual material which washed off the test specimen at
the conclusion of a cycle. The same test control was used for both weathering tests and these results
also are presented. The test control was subjected, only to successive 24 hour wetting cycles and storage
in moist conditions (98 percent relative humidity and 20°C), with no drying or freezing cycle. Comparison
of the control data with the wet/dry data indicated tne impact from the drying cycle and comparison of the
control with the freeze/thaw data indicated the impact from the freezing cycle. Comparison of the control
data and the test data was based on relative weight tosses. Relative weight tosses were calculated for
wet/dry and f reeze/thaw test specimens by subtracting the cumulative weight loss of the control test
specimens from the cumulative weight toss of the test specimens:
j
Relative Weight Loss (%) = [cumulative weight toss of test specimen (%)] -
{cumulative weight toss of the control test specimen (%)].
-------
Small relative weight loss, compared to the cumulative weight toss, indicated that the material erosion was
primarily the result of the wetting cycle with little impact from the freezing or drying cycle (i.e., similar
performance by control test specimen and; test specimen). Relative weight loss similar to the cumulative
weight toss indicated that the material eroston was primarily the result of the freezing or drying cycle (i.e.,
the test control maintained high degree of integrity and was not affected by the wetting cycle). Negative
relaitive weight toss indicated that the test control was less durable than the test specimen. In such cases,
freezing or drying actually enhanced the durability of the sample. The mechanism which caused this result
is unclear. Table 5.8 presents the relative weight loss eroded and the number of cycles the test
specimens survived cycling. Test failure was declared when test specimens had diminished to particle
sizos that could not be removed With the laboratory tongs. ,
Bottom Ash: Weathering test results for the treated bottom ash are presented in Figure 5.10. The
Process 3 test control test specimen failed after five cycles, but the remaining treatment process test
control specimens survived all twelve cycles and had less than 10 percent cumulative erosion, for the
freeze/thaw test specimens, the relative weight loss was similar to the cumulative weight loss indicating
that the material erosion primarily resulted from the wetting cycle. Process 3 freeze/thaw test specimens
failed after five cycles and the Process 4 freeze/thaw test specimen and an 80 percent cumulative weight.
Process 1,2, and the WES Control had cumulative weight tosses of 16,43, and 24 percent respectively.
Process 1 and the WES control produced the most durable test specimens to f reeze/thaw cycles.
Process 2 wet/dry test specimens failed after 7 cycles and had a 100 percent cumulative weight
toss. Process 4 wet/dry test specimens had a 90 percent relative weight loss and tower relative weight
toss indicating the process formulations are quite stable to wet/dry cycling. The negative relative weight
tosts of the WES control test specimen indicates that the wet/dry cycling actually enhanced the durability of
the test specimens. The negative relative weight tosses for the Process 3 weUdry test specimens
indicated the drying cycles enhance the durability of the test specimens but the large cumulative weight
tosjs (80 percent) indicate that the test specimens are not very durable in wet/dry cycling.
APC Residue: Weathering test results for the treated APC residue are presented in Figure 5.10. The
Process 2 and Process 3 test control test specimen had less than 38 percent cumulative erosion.
Process 2 and Process 3 freezeAhaw test specimens failed after five cycles as did the test control
test specimens and Process 1 failed by test completion. The WES control test specimens performed
better than the other treatment processes with a 53 percent cumulative weight toss. The large difference
between relative weight loss and cumulative weight toss indicated that the material erosion for this
piocess test specimen primarily resulted from the freezing cycle.
63
-------
The wet/dry test specimens had cumulative weight losses ranging from 17-73 percent. The
negative relative weight losses for Processes 1,2, and 3 (- 5. -27, and - 46 percent respectively) indicate
that the wet/dry cycling actually enhanced the durability of the test specimens. The relative weight toss of
the WES Control was only 0.8 percent indicating that the drying cycle had little effect on the durability of
the test specimens. The cumulative weight losses are large meaning durability of the test specimens to
wet/dry cycling are questionable.
Ash: Weathering test results for the treated combined ash are presented in Figure 5.10. The
Process 4 test control specimens failed after two cyples, but the remaining test control specimens had
less than 8 percent cumulative erosion. Process 4 freeze/thaw also failed after two cycles. Process 2 and
Process 3 freeze/thaw test specimens performed pborly with cumulative weight losses of 80 percent and
75 percent, respectively. The Process 1 and WES Control freeze/thaw test specimens had less than 20
percent cumulative weight toss. The cumulative weight toss for the Processes 1,2,3, and the WES
Control freezeAhaw test specimens was small when compared with the relative weight toss. These
results indicated that the material degradation resulted form the freezing cycle. The Process 1 test
completed specimens performed well and are durable to freeze/thaw cycling.
Process 4 wet/dry test specimens failed after 2 cycles, but the remaining test specimens
completed 12 cycles with between 3 and 42 percent cumulative weight toss. The differences in cumulative
weight losses for the Process 1,2,, and WES Control wet/dry specimens and the relative weight tosses
were small. These results indicated that the material erosion was primarily from the wetting cycle. The
WES Control and Process 1 test specimens performed well and are durable in wet/dry cycling.
64
-------
TABLE 5.1. Comparison of physical properties, cure rate and durability.
Bottom Ash
Process Untreated 1 ° 3
"Physical Properties
BET Isotherm
Average Pore
Diameter (A°) 3421
Ulclllisiei \r\ i - •-
Surface Area (m2/g) 3-2
147
29
Bulk Density (kg/m3) 1950 1900
(1400)2
247
23
1200
Modified Proctor
Optimum Moisture (%) 16.6
Maximum Dry
Density (kg/m3)
Loss on Ignition
(550°C, wt%)
Moisture
(60°C, wt%)
(105°C,wt%)
nac
2111
4.6
8.9
9.4
na
4.8
5.6
6.4
na
na
6.5
21
22
218
16
1600
na
na
5.1
3.2
3.5
336
2100;
na
na
4.2
15
16
WES
176
23
1900
na
na
6.2
9.4
10
6.85E-04 6.49E-05 1.29E-04 2.62E-04 1.04E-05 1.61E-5
Cure Rate (psig)
Cone Penetrometer
1 hour cure
2 hour cure
3 hour cure
6 hour cure
1 day cure
2 day cure
3 day cure
50
43
39
35
10
10
10
205
302
523
740
750
750
750
148
449
608
621
750
750
750
750
750
750
750
750
750
750
348
425
406
282
M4
M
M
239
419
406
739
750
750
750
1 - Reading obtained on one repute «.«,
2 - Bulk density for granular, non-compacted matenal
3 - Not applicable j
51 ?SS5^^dSSLfl«ted from monolith to unconsolidated form during test.
65
-------
TABLE 5.1. (continued) Comparison of
Bottom Ash
physical properties, cure rate and durability.
Untreated
1
2
3
4
WES
Durability
UCS (psig)
7 day cure
14 day cure
21 day cure
28 day cure
UCS After Immersion
24 hour immersion
28 day immersion
05
08
04
06
1051 !
965 !
1069
1081
189
158
69
119
D5
D
824
432
Weathering Tests
(cum. erosion, wt%)
Freeze/Thaw •
Wet/Dry
Test Control
na
na
na
\
i
15 i
2.3
1.6 |
115
149
43
100
8
120
178
225
275
138
D
100
80
100
68
56
57
M
68
197
80
100
2
653
640
1128
1152
686
1075
28
1
1
1 - Reading obtained on one replicate only
2 - Bulk density for granular, non-compacted material
3 - Not applicable
4 - Reading not obtained ,_,-*»
5 - Test specimens disintegrated from monolith to granular form during test.
66
-------
TABLE 5.2. Comparison of physical
APC Residue
Process
Physical Properties
BET Isotherm
Average Pore
Diameter (A°)
Surface Area (m2/g)
Bulk Density (kg/m3)
Modified Proctor
Optimum Moisture (%)
Maximum Dry
Density (kg/m3)
Loss on Ignition
(550°C. wt%)
Moisture
- (60°C, wt%)
(105°C,wt%)
Permeability (cm2/s)
Process
Cure Rate (psig)
Cone Penetrometer
1 hour cure
2 hour cure
3 hour cure
6 hour cure
1 day cure
2 day cure
3 day cure
Untreated
449
5.5
1550
(540) 1
23.6
1406
12
0.3
0.9
properties.
1
348
14
1400
na
na
6.5
35
49
5.93 E-5 2.92E-05
Untreated
74
158
158
233
269
275
285
1
24
32
44
78
197
218
240
cure rate
2
232
17
1200'
na
na
4.4
34
35
7.67E-06
2
06
19
36
48
96
138
150
and durability.
3
254
13
1400
na
na
3.2
5.5
7.3
4.07E-05
3
204
597
750
750
750
750
750
4
334
6.3
na2 |
30.5 i
14301
9.6
28
31 ;
na
4
na
na
na
na
na
na
na
WES
210
33
1300
na
na
4.0
33
35
1.60E-06
WES
35
45
53
75
447
425
739
1 - Bulk density for granular, non-compacted material
3 - Te°s\?pPedmens disintegrated from monolith to unconsolidated form during test.
67
-------
TABLE 5.2. (continued) Comparison of physic
APC Residue
Process Untreated '1
Durability
UCS (psig)
7 day cure 11 151
14 day cure 04 127
21 day cure 04 1 03
28 day cure 05 136
UCS After Immersion
24 hour immersion D4 1 57
28 day immersion D 224
Weathering Tests
(cum. erosion, wt%)
Freeze/Thaw na 100
Wet/Dry na 21
Test Control na 27
1 - Bulk density for granular, non-compacted r
2 - Not applicable
3 - Reading not obtained
4 - Test specimens disintegrated from monoli
•
;al properties, cure rate and durability.
234 WES
X3 170 na 162
127 141 na 384
172 163 na 502
175 154 na 555
14 55 na 255
D D na 434
100 100 na 53
72 54 na 15
100 100 na 15
naterial
th to granular form during test.
68
-------
TABLE 5.3. Comparison of physical properties, cure rate and durability.
Combined Ash
Untreated 1 2
WES
Physical Properties
BET Isotherm
Average Pore
Diameter (A°)
Surface Area (m2/g)
Bulk Density (kg/m3)
Modified Proctor
Ontimum Moisture (%)
185
10
1920
4
(1300)1
12.2
151 259 194 327
24 20 15 12
1700 1300 1500 2000
na2 na na * na
258
12
1500
na
Maximum Dry
Density (kg/m3)
Loss on Ignition
(550°C, wt%)
2161
6.3
na
5.8
na
7.4
na
2.9
na.
na
6.6
iviuiaiuic
(60°C, wt%)
(105°C,wt%)
Permeability (cm2/s)
Process
Cure Rate (psig)
Cone Penetrometer
1 hour cure
2 hour cure
3 hour cure
6 hour cure
1 day cure
2 day cure
3 day cure
8.2
8.9
2.19E-4
Untreated
105
118
133
130
10
10
10
7.6
8.9
3.67E-5
1
21
37
46
115
717
750
750
18
19
M3
2
109
465
750
750
750
750
750
2.6
2.9
4.41 E-04
3
361
750
750
750
750
750
750
15,
18
!
2.39 E-4
4
530
602 i
609
750
750
750
750 ;
9.1
10
1.22E-04
WES
59
169
239
277
722
750
750
2 - Not applicable
3 - Test specimens cracked during curing .
4 - Test specimens disintegrated from monolith to granular form during test.
69
-------
TABLE 5.3. (continued) Comparison of physical properties, cure rate and durability.
Combined Ash
Durability
UCS (psig)
7 day cure
14 day cure
21 day cure
28 day cure
UCS After Immersion
24 hour immersion
28 day immersion
D4
D
189
291
Weathering Tests
(cum. erosion. wt%)
Freeze/Thaw
Wet/Dry
Test Control
na
na
na
4f\
.2
2.3
2.0
1 - Bulk density for granular.
2- Not applicable
119
152
; 83
[ 40
I 5.9
I
material
138
D
76
49
5.2
56
176
100
100
100
409
51
18
3.4
1.7
•» -consoled form during ,es,
70
-------
Table 5.4
Moisture content and liquid added during the treatment process as percent of anhydrous
material (%) and degree of hydration.
MOISTURE '
Residue
Tvoe
APC
Residue
Bottom
Combined
(D
(2)
(3)
(1)
(2)
(3)
(1)
(2)
(3)
Untreated
1
na
na
10
na
na
11
na
na
Process 1
54
45
C
8
8
VP
10
15
P
Process 2
53
46
C
27
24
C
23
22
W
' Process 3
11
36
P
4
16
VP
4
16
VP
Process 4
39
27
C
20
12
W
28
12
G
WES
Control
40
41
C
12
8
P
11 •
15
P
«^— — — ^— •"
(1) = Moisture content at 105°C as percent anhydrous material
(2) = Liquid added during treatment processes as percent anhydrous material
(3) = Degree of hydration
na = Mot applicable
C = Completely hydrated (>25%)
W « Well hydrated (16 - <25%)
P = Poorly hydrated (8 -16%)
VP = Very poorly hydrated (<8%)
71
-------
Table 5.5. Relative increases in residue specific volume [resulting from treatment (volume change factors).
2 3 ! 4. WES
APC
Residue
Bottom
Combined
2.2
1.2 .
1.5
2.8 '
2.6
2.4
I
2.3
2.2 |
2.3
na
1.1
1.2
2.6
1.2
1.5
na = not applicable
Table 5.6. Swelling and shrinkage % of untreated and treated residues during the 28 day curing period.
Process 4 WES
Ash Type I
APC
Residue
Bottom
Combined
Intreated
0
0
0
process i
0
+6.2
+1.5
-1.1 +2.9
+13J +11
+9.2: +9-7
I
0
0
na
+6.4
+4.9
+5.2
na = not applicable
72
-------
t/5
"53
.>•
CO
CO
CD
CO
'55
E
o
_
•—
CO
CO
CO
=
CO
CD
0.
|s^
in
m
ta
•o < o
~"2 < o-
c C 0)
=1 £
o> —
111
— "5 «
5E«
= o eo
O
0>
W> •••
^y ^
2
io cn
< .=
— CL
i £ «
— » o m
13 OD w
-•
£
o>
c
c
0
o"
o o
o o
O CO
O ^p
o o
o o
o o
o o
o o
o o
o -f-.
oo cnto mm COCM CJCM T-»- co'"
ooo coco rr COCM
^^ f™^ ^^ f^ f^ ^^ »•• CO f^«« O) ^rt 5\J ^» ^1 gp ^*
oo oo 001 cnoo r>-to
i
j
|
oo CD cn o CM com oin ~- to to co ^-eo
oo cni*- r»co n-eo coca evico *- ^-. i-
i
:
t^in •^•c'5 CMCM ca-»- CJT- ^~
|
oo oo oo oo oo mo CM o com
oo oin mm ooo mo cvio.-^-m o r-~
t-rn inco coco o -r- coco ^ eo caW ^o
cncj enco •vco cvjT- oo oo oo oo
^— i—
;
73
-------
Table 5.8. Relative weight loss of freeze/thaw and wet/dry test specimens.
T Cumu-
I lative
1 Weight
1 Loss(%)
. :
APC Residue
Process 1 100
Process 2 100
Process 3 100
Process 4 na
WES Control S3
Bottom Ash
Process 1 16
Process 2 43
Process 3 100
Process 4 80
WES Control 29
T
Combined Ash
Process 1 4
Process 2 • 80
Process 3 76
Process 4 100
WPS Control 18
Freeze/Thaw
Relative
Weight
Loss (%)
100
100
100
na
37
15
35
100
78
24
_— — — — — —
2
"TT
77
70
100
16
i
Number; Cumu-
of lative
Cycles ' Weight
Tested I Loss (%]
i
12 i 22
I §
% ;, !_
12 2
12 i 100
5 £
12 92
— —
12 40
12 I 42
2 100
12-1 4
Wet/Dr
™^™
Relative
Weight
Loss(%)
-5
-27
Control
M umber
of
Cycles
Tested
12
12
12
na
12
HI . !'•' •"
12
7
12
12
12
«,^«™i™«— •"
12
12
12
2
12
Number
of
Cycles
Tested
12
5
5
na
12
—
12
12
5
12
12
—•i •
12
12
12
2
12
na« not applicable
74
-------
Figure 5.1. Modified proctor density compaction curves.
2,500
2,400
E
£:
t2,200
2,100
2,000
Untreated
Bottom Ash
10 12 14 16 18 20 22
% Moisture
1,500
1,400
11,300
I
£1,200
w
o>
Q
1,100
1,000
15
Untreated
APC Residue
20 25
% Moisture
30
2,500
2,400
rf-
E
012,300
'0
12,200
Q
2,100
2,000
Untreated
Combined Ash
10
% Moisture
15
1,500
1,450
1,400
1-1,350
1'300
1,250
1,200
Vendor 4
APC Residue
24 26 28 30 !32 34
% Moisture '
75
-------
IHOQM JkS
S? S
co
o
1
•o
a>
°E5
h»
O
n
•g
J
T3
=5
a>
0
1
Q.
TO
CJ
in
a
09
s
AS
3
8
BLES
go
09
g s s
1K013M AB M3NU
/ELEV
I
1/1
OR ACCURATE
GRADATION
u.
76
-------
S 3 55
1HS13M AS 4GNU i>GO«3d
77
-------
in
c
°
T3
(A
cn
TO
CD
in
O
•o
CD
•g
TO
T3
8
o
J
CD
•8
I
CO
eo
in
S § S
S 8 5 8
1K013M AS H3NU lN33H3d
S
§ S
8
o- S
z d
S3 ^-
OY CRAVa (CP). CRAY
FFKEKT SAMPLE FOR ACCURATE
SNSUF
78
-------
I
0}
•o
S
I
re
Q.
o.
hw
O)
•o
Q)
I
O
u
tn
•o
o
M
CO
o>
CO
Q.
S ' S
US.
10
ots
-J
iKOQM AB H3NU
S
-
-
-
-
e—
-
_
-* —
r
^
/
'
^
<
X
/
J
~/-
f
/
\
/
'
—
§_
s
a
SS
<_>
§ Q
I i
a- 8
I §
S
H
S-
S
EC
S|
K
*
8
BUS
in
79
-------
CO
£
o
a.
<
•o
Q]
75
01
I
re
*T
in
+ ^
o o o o o Q ® S ®25 —
0 2 S ?5 5 5s is r- B CT> —o
§
10! OH 001 U OS Ot « OZ Bl 01 B 9 »
somi joswrawis's-n
|-C
=f-
-
-
S
X
—
•i —
7
S
S
S
[
t
=
8 S
JHOI3M AH S3NU
^
IN:
l
— r
.
j
3
S 1 O.S 0.1
OWN SIZE W MJIIMEIERS
o
IR
1
1
b
5
5
«
tl
w
ti
g _
§
3
U
1 ^ ' ^ ' o ' ^55
i
U
£
K.
}
C
8
a!
d
O C;
z. o
LJ
& LJ
0
fci
g
i 1
o k
J:
OAssnonoN
SANDY at (ML). IICHI
d
i/i
i
CO
/
£
e
d
0
c
t
o
80
-------
81
-------
Figure 5.5. BET cumulative pore surface area plot for untreated APC residue.
CUMULPTIVE P.D=d?.P7ION PORE AREA PLOT
c
t
tr
42-
<
O
D.
|
'•'1
5.5-1
S.O -
A . ® , -
3.5 -
*? l?l *•
5.5 -
£.0 -
l.S •
1 . 0 •
0.5
rt !7l
li-
i
1
1
1
1
1
1
I
1
1
1
^
\
4
\
-i
1
1
I
-j
i
*t
A-
X
\
\
\
•%.
\
"X
1
1
I
1
\
\
*•..
Xs
x.^
x..
^^^^^^
• 1 — ; — i i i i n n —
i
i
i
i
i
i
i
1
I
i
i
i i i
PORE :E-IAMETER ,
82
-------
Figure 5.6. BET cumulative pore surface area plot for untreated bottom ash (prepared for treatment
process demonstrations).
CUMULATIVE ftDSDRPTIDN PORE fiREA PLOT
c. s -j"
e. 7 -
0.S -
5>
^ d. 5 -
cr
42.
af *'* "
DC
uj 0. 3 —
(£
2
0.2 -
O. 1 -
0. 0 -
1
1
1
©
T
*.. ' 1
*\
^K^ •" - 1
*N
. \ !'
^N
;
\
^x
1 ^"^^ !
i i 1 i i i 1 I 1 1 i 1 1 1 1 I I 1 f
100 1000
-
1
1
1
1
1
1
PORE DIAMETER , (A >
83
-------
Figure 5.7. BET cumulative pore surface area plot for untreated combined ash (prepared for treatment
process demonstrations).
CUMULATIVE ADSORPTION PORE AREA PLOT
14 -
13 -
IS -
11 -
"Si 1'3 ~
»
{T
5
tr
2 £ -
cc
2 !~
^^ *•
i -
o •
:
| i
ft- : !
' A : • !
i \ i
1 X '
! \ i
V •
i
i* i ^^~-L
i i *"**«^_
i ' ^~~" — ^- - -m
PORE DIAMETER , (A* >
84
-------
Figure 5.8. Unconfined compressive strength (UCS) as a function of cure time.
(a) Bottom ash, (b) ARC residue, (c) Combined ash.
Process 1
Process 2
Process 3
Process 4
WES Control
Untreated
Cure Time (days)
1200
WES Control
Untreated
• Process 1
•*• Process 2
0 Process 3
Cure Time (days)
Process 4
WES Control
Untreated
• Process 1
- Process 2
• Process 3
14 Cure Time (davsl 21
85
-------
Figure 5.9. UCS and UCS after immersion. (A) Bottom ash, (b) APC residue, (c) Combined ash.
1200 —
1100 -_
1000 -p
900 -i
800 -'
•H 700 -'
a eoo-
u 500 -
400 -
300 -
200 ->
100 ->
i rc= ucs ;;'
r-1, — i ' r— i tins Aft°r lrPmpr51Qn •
.".''.-
. '
•" •: x-3 i
•.. : .' -f "S " — '
. . . . >n i to .'.'.'.
.....* .0 •' • • •
:>>£-:.Sa s * >:;::
:{x v X-ii ' FT1 1 » N:T
* * * *• • *7* ••*• ' * * * ^H C *•"•>* * * ' *
• • /. • . ;7; S f"h ™1 ''^F'^ ' " ^ a "? FT ' ' '
• -x •'.•. . • | g -xfvjr^v: i "3 vif-:-: :• • -x si 3 n-^mcr^^ > v •'
•x p
x;_|
•j-'-pi'l
•• *§
U ' 7 4 21 28 1 28 7 14 21 28 1 28 7 J14 21 28 1 28 7 14 21 28 1 28 7 )W2B?z*
Process 1 _ Process 2 ! Process 3 Process 4 WES Control
1200 -
1100 •
1000 •
_ 900 •
•i1 800
» 700
§ 600
500
400
300
200
100
0
1200 -
1100 -
1000 -
•s 90° "
"§_ 800 -
w 700 -
§ 600 -
500 -
400 -
300 -
200-
100 -
"
i a UCS
ES UCS After Immersion
1
; i .! r
a [ ;
Ills The treated APC ResidueX- •
«» "s « was an unconsolidated 1- •
F^ ^ , i. .1 o rn , ' . o> material and durability rrjv.
_v>r-._rrra:g «F "•'••'•' •§ -XCv-XXl •§ tests were not .--1;.;.
v.f-.-^Jv^j.^ gt-'-'X-X o |v.|.-.".-..-.-|^iu conducted. N-T--
'vl
.'. .'.' — ,":
7142128128 7142128128 7142128128 7142128128
Process! Process 2 - Process 3 Process 4 WES Control
a ucs
O UCS After Immersion
t
n ' r-i 1 ':":':
s[-p pflfl-n ffpfni R-r-JI ;:ii:;:
•X X
7142128128 7142128128 '7142128128 7142128128 7142128128
Process 1 Process 2 Process 3 Process 4 WES Control
Cure Time (days)
86
-------
Figure 5.10. Cumulative weight loss (percent eroded) at the conclusion of wet/dry and freeze/thaw
testing, (a) Bottom ash. (b) ARC residue, (c) Combined ash.
•o
(D
100
90 -
80 -
70 -
1i 60-
UJ
*:
« 40 -
-------
6. RESULTS OF CHEMICAL ANALYSIS OF UNTREATED AND TREATED RESIDUES
6.1 COMPOSITION OF UNTREATED RESIDUES
Untreated residues were analyzed for specific elements of interest (e.g.. principal components,
trace metals of potential concern, or to expand the current MWC residue data base), anions and indicator
parameters such as total organic carbon and total dissolvable solids. Several elements were analyzed
both by USEPA recommended methods and by neutron activation analysis. This redundancy in analysis
was carried out to examine the effectiveness of currently recommended methods on the complex MWC
residue matrix. A complete list of chemical analyses and methods is presented in Chapter 2.1.
fi,1 1 F1ftfPants- Ani°nff anri lnriicator Parameters
NAA results tor untreated residues, subsequent to residue preparation for this study, are initially
presented in Figures 3.5 through 3.7 for discussion jof residue homogeneity resulting from residue
preparation procedures. Mean concentrations and coefficients of variation for these results are provided
in Appendix A.1 through A.3. Elements analyzed are presented in order of increasing means and are
grouped by relative concentrations for each residub type. A discussion of the box plot presentation
format is provided in Chapter 2.4. These results indicate that the major elements, i.e., at concentrates
greater than 1 wt %. present in the residues include potassium, zinc, sodium, aluminum, silicon, chlonde
and calcium for APC residue; potassium, chloride, aluminum, iron, calcium and silicon for bottom ash; and,
potassium, sodium, chloride, aluminum, iron, calcium and silicon for combined ash.
Selected elements from the results preserved in Figures 3.5 through 3.7 are regrouped to
facilitate direct comparison of the composition of the different residue types and presented in Figures 6.1
and 6.2. These results are augmented in Figures 6.3 and 6.4 with the presentation of results from SW-
846 analyses for selected elements and parameters not assayed for by NAA. Bromine, chloride,
cadmium, potassium, zinc, arsenic, and tin were present in greater concentrations in the APC residue than
either the bottom ash or combined ash. Aluminum^ chromium, copper, iron, silicon, and nickel were
present in lesser concentrations in APC residue than either the bottom ash or combined ash. These
results are consistent with the metallic species exhibiting the greatest volatility during the combustion
process being enriched in the APC residue. Sulfate. chloride, calcium and total dissolvable solids (IDS)
were present in greater concentration in the APC residue than in the bottom or combined residue, wrth
the exception of one outlier assay for sulfate in the bottom ash. These results are consistent with the
functioning of the APC devices which recover acidjgases from the combustion gases through neutralization
with lime (calcium oxide) to form cataium sulfate and calcium chloride salts. No explanation is apparent for
-------
TOC and COD to be the greatest in the combined ash. Significantly, the effect of APC residue on the
chemical composition of combined ash is masked by the intrinsic heterogeneity of the residues and
dilution effects. Thus, the mean values formost elements were not statistically differentiated between the
bottom ash and combined ash used in this study. However, for most elements the variability associated
with the combined ash composition was greater than that associated with either the bottom ash or APC
residue. The APC residue had the greatest degree of homogeneity for most elements. This most likely
results from the APC residue having the most uniform and finest particle size distribution (see Chapter
5.5). Combined ash most likely has the greatest degree of variability because of imperfect mixing
during the blending of bottom ash with APC residue by the MWC facility.
Analysis of the total concentration of chloride, sutfate and total dissolvable solids (TDS) in the
solid matrices of the untreated and treated residues was extremely difficult. Table 6.1 presents the
origiinally assumed total assay (see Chapter 2.1), neutron activation, distilled water leach test and
availability leach test results for the untreated residues. Chloride concentration was underestimated by
the assumed total assay. The highest concentration results were obtained by the availability leach test for
bottom ash and combined ash. and by the distilled water leach test for the APC residue. The APC
residue results were most likely a reflection of the greater degree of solubility of the total matrix and the
need for multiple extractions for complete release to the solution phase. The bottom ash and combined
ash results are a consequence of the more aggressive nature of the availability leach test extractant (dilute
nitric acid) and the more stable solid matrix of these residues.
Sulfate results varied by greater than one order of magnitude. The total assay and distilled water
leach test results reflected the limited solubility of sutfate in alkaline aqueous solution at low liquid to solid
ratios This was because both the total assay and the distilled water leach test employed distilled water
as the extractant for the alkaline residues. The liquid to solid ratio was 10 to 1 for the total assay and four
serial extractions at 10 to leach, for the distilled water leach test. ',
The TDS results also were variable. It would be expected that the distilled water leach test
rente would be greater than or equal to the total assay. This was the case for the bottom ash and
combined ash. The results for the APC residue were not statistically significantly different (.80 level)
because of the high degree of variability associated with the distilled water leach test results.
ft 1 •> PCDDs and PCDFs ;
APC residue, bottom ash and combined ash were assayed for PCDDs and PCDFs after residue
preparation. These assays were carried out to address concerns over the potential for MWC residues to
' contain concentrations of these organic species which would be great enough to cause human health or
environmental impacts. Each residue type was assayed in triplicate. Results of these assays and
calculation of 2,3,7,8-TCDD toxicity equivalents (ug/g) are presented in Table 6.2 through 6.4. 2,3,7.8-
-------
TCDD toxicity equivalents were calculated by the USEPA method [US EPA. 1987]. 2.3,7.8-TCDD
equivalents ranged between 0.54 and 0.62, 0.01 and p.06, and, 0.06 and 0.07 ng/g for ARC residue.
bottom ash and combined ash, respectively. These Jesuits were all below the currently recommended
action limits for dfoxins in resident soils. Nessel a|so has reported that PCDDs bind extremely
tenaciously to incinerator APC residues making them;not btoavailable (Nessel. 1992).
6.2 COMPOSITION OF TREATED RESIDUES AND VENDOR ADDITIVES
fift.f Composition of Vendor Additives ;
Processes evaluated during this study included the blending of proprietary and non-proprietary
S/S additives wrth the MWC residues. Each process additive was sampled and analyzed for primary
constituents and trace species of concern. These analyses were carried out to determine whether
compositional changes and negative treatment effects (e.g., increased leaching) when observed were a
consequence of process additives. Detailed analysis of vendor additives is not presented here ,n order
to preserve the proprietary nature of the processes. A summary of the relative proportions of process
additives for each process type and residue application is presented in Table 6.5. All processes,
except Process 4 applied to APC residue and combined ash, included an additive which contained
calcium as a principal constituent. These additives are Hsted as "Additive 1 .- Principal elements.
components of each of these calcium based additives is presented in Tabie 6.6. In additton to the mapr
elements which contribute to pozzolan formation (aluminum, calcium and Moon), iron, potassium, sod.um
and sulfate are present in some of these additives in significant proportions. The quantities added were
considered great enough to potentially effect the gr0ss composition and release characteristics of the
treated products. This was considered the case when greater than 10% of the element in the treated
residue resulted from addition of a process additive. The contribution of each of these elements to the
total composition of the treated residue is summarized in Table 6.7. All processes except Process 4
applied to APC residue resulted in substantial additions of calcium relative to calcium content of the
untreated residue. Greater than 50% of the sodiurjr, in all residue types treated by Process 2 resulted
from addition of the process additives. Between 38 and 50% of the potassium in all residue types
treated by Process 3 resulted from process additivbs. Furthermore, 12 and 13% of the suKate in the
treated bottom ash and combined ash (Process 3), respectively, resulted from the process additives.
These contributions from process additives were reflected in the results from the teaching tests carried
out on treated residues (refer to Chapter 7). |
inn of Treated Residues i
Results of NAA and SW-846 analyses of treated residues for aluminum, cadmium, chromium,
copper, chloride and zinc are presented in Figures 6.5 through 6.10. Results from both analytical
90
-------
methods as well as for untreated residues are presented side by side for comparison (Refer to Chapter
2 for an explanation of the analytical methods employed). Results of NAA for calcium, potassium and
sodium are presented in Figures 6.1 1 and 6.12 (SW-846 methods were not carried out on solid samples
for these elements). Results of SW-846 analysis for lead are presented in Figure 6.13 (NAA can not be
used for lead analysis). Results for aluminum, cadmium, chromium and copper indicate few discernable
concentration differences between the untreated and treated residues. This is because of either the
relatively similar elemental content of the process additives relative to the residues (aluminum), the
relaltively tow total concentration of the element in both untreated and treated residues (cadmium.
chromium, copper) and, or, the high degree of variability associated with the residue composition
(bottom ash and combined ash: copper, chromium.). The specific exception to this was for aluminum in
the ARC residue treated by the WES Control (NAA), which indicated an unreasonably low concentration.
The reason for this is unclear.
Chloride and zinc results most clearly reflected the dilution effects of the treatment processes on
elements principally contained in the residues because of their relatively high concentrations and tow
variability in the residues (refer to Chapter 3.2). Calcium and potassium results clearly indicate the
substantial quantity of these elements contributed by additives for Process 3 applied to bottom ash and
combined ash (see Table 6.7). Sodium results for all three residue types show the substantial
corrtributton of this element by Process 2 additives to the total composition. ;
ft ? 3 nnmosip^" of SW-EHP anri Neutron Activation Analyses
/fhe ratio of SW-846 divided by NAA results multiplied by 100 are presented for each analysis of
untreated and treated residue (aluminum, cadmium, chloride, chromium, copper and zinc) in Figures 6.14
through 6.16. SW-846 analyses generally underestimated the total elemental composition relative to NAA
for aluminum, chromium and zinc. These results reflect the extent to which the listed elements are
sequestered in the silicate matrix of the residue which is recalcitrant to nitric acid digestion. This effect ,s
most severe for chromium where less than 40% recovery was achieved during the SW-846 digestion. Th,s
effect also most likely is occurring for lead because of its potential for incorporation in silicate matrices but
could not be verified by NAA. Cadmium results reflect that it was not incorporated in a matrix recatortrant
to the nitric acid digestion. Chloride results reflect the difficulties associated with the total assay discussed
in Chapter 6.2.1 . Copper results most likely reflect both the high degree of copper content variably
(Chapter 3.2) and incorporation into the silicate matrix.
•ft 9 4 Analvsjff nf Correction? tnr Process Dilution Effects
Chloride and zinc concentrations from analysis of treated residues by NAA were used to estimate
the accuracy of using calculated process dilution factors for correction of treated residue results (total and
91
-------
leaching potential; typicaliy tmg/kg ash]). This was apcomplished by multiplying the measured
concentration in the treated residue by the process dilution factor (Chapter 4) for the specific treatment
process employed. Chloride and zinc were selected for this estimation because of their relatively low
variably and significant concentration in untreated residues (see Chapter 3.2) and insignrficant
concentrations in the process additives. Results of.the calcu.ated concentrations for treated residues are
presented in Figure 6.17. Untreated residue concentrations are presented for comparison. Ideal results
would indicate that there was no difference between; the corrected treated residue concentrations and the
measured untreated residue concentrations. This was true for bottom ash and combined ash. ARC
residue treated by Process 1.2,3 and WES Control indicated that application of process dilution factors
for these cases may result in overcompensation by Approximately 30%. This effect was a consequence
of the hydroscopic nature and high free moisture content of these treated residues.
92
-------
Table 6 1 Comparison of chloride, sulfate and TDS results for untreated MWC residues
based on total analysis, neutron activation analysis, distilled water leach test,
and availability leach test. :
APC Residue
Chloride
Siulfate
TDS
"Total"1
184,000
6,340
349,000
NAA2
168,000
NA5
NA
DWLT3
217,000
41,0.00
289,000
ALT'
146,000
88,000
NA
Bottom Ash
Chloride
Sulfate
TDS
C o ni bined Ash
Chloride
Sulfate
TDS
20,400
2,500
34,700
14,100
1,430
48,300
24,300
NA
NA
28,900
NA
NA
26,900
1,160
63,300 ;
!
j
30,400 |
2,300
63,900
32,600
29,300
NA
35,100
37,200
NA
1 Total - USEPA method, see Chapter 2.1
2NAA - Neutron activation analysis
3DWLT - Distilled water leach test, extracts (1+2) +
4AL,T - Availability leach test
5NA - Not analyzed
(3+4)
93
-------
CO
o>
ss.
"33
?:
Jo
1
* 8
S
o O
s O.
•g
CD
ra
to
O
CL
7
CO
u.
O
O
Q_
§
O
a.
CJ
CD
0
Io
isSi
O.E-
iS ||
oo oo
g^? ^3 ^?
o o o
^^ CO ^^ ^*
OO OCD
o<
101
ss ^s ssss
e>c> oo oooo
S
O ^ O O CO C7> t
-)(*> r^cocn tg j
~> o o 25 o t—; ^^^ *^
o o e> c>c> cioci ooooo
000
5888!
) COf1* Cl <
0000
• cor*'
r"2£J
>lrf O
inui r--.
oo o
88 S8S
en p^ l^ cp C\
e\Jc3 8>Soi jy^cicii-. *3^^
cvir-: o'o»- ooooo ooo
OJO.
oo
« ST?^ Cnotrt;
N 111
OOO OOOOO
ooo
O g)
g 5
1 s
C9 O
il ill ill
00
IB llli II is 99 lis isiis 55* *
!§ S§
-------
.
I
CO
CO
I
1
o
•E
CO
CO
CO
11.
a
o
a.
a
a
o
a.
<6
-I
£.iu
**
it-
_>.
f-i
ir
o
oS
=: «u 5
PS
^1"
IU
>•*- COCM i
>co cjr^ i
oo
PP
o'o
o od o'eio' ooooo
s
i
o o o o oooo 00° *- o T- ooo ooooo o'o'o o
sss:
t-eor
o'o o'o oo'o'o oo o o'o ooo ooooo ooo o o
is -i Ss--
525 p55 2Sop<
o'o o'o oooo oo
IS 88 8 88 S8J
"• Sfc
CN(_
S?3
_ 5p ppppp pop p
o'o o'o'o ooooo ooo o
f- '-^T't^^ S2:r!
o'o oo oo'o'o o'es s o'o o'o'o ooooo'
oo S5 o'§o'5 22 S 5o ooo ooooo ooo o
So
Wo
SS S 2 S3S2
OO Op PP
oooo o'o
5 §8 ^^-S ppppp SSL.
a o'o ooo ooooo ooo
_
§
oaa
QQQ
OOO
U.U.U.U.
OOOO
U.U.
QQ
XIXX
U.U.
OO
OO
OOO)
<0O
.
cbcbO
M.H-
r- •-
-_- CL
w «««•* tl
^-•O -r-'^-'-r-'O
e\i£ o
f-O O
eoeo w "-
. .CD O
CM
-------
-I
03
"ra
Q.
CD
«••
b
CQ
*<
CO
0.5.
a
X
o
i
03
I
co
u
b.
^
eg
1
CD
en
en
CO
U.
a
o
a.
0.5.
to
CD
!J3>
o
.c _
0)0
«
tu
_
i
o
u.
o
u
Q.
) CO-
•r~ c
5R
r^cpc5<
•=>•=:<
So 5<
oo oo oooo oo
ss sss sssss sss s
do odd ddddd ooo o
e*^ f^ 25 <|^> 25 25 25 25 --S c5 •••^ *^ <^
r*-* 35 o o ro CM CT> CP o^ is? 55 •••••••^ *
i^i ^5 •g-'-'-'-'i >-^B •^••i ••^5 t-^ {^ f" !•(•»•» {^ •^^ f
dd do dddd do d do odd ddddd odd d
do dd dddd dd o dd odd ddddd odd d d
••-o c-jin ffirrEs-jo °S8
Oi- O-«- pppi-; •r-.O.
do .do ddoo od
ll I
;: sio S
-r-" odd ddddd odd d
JCOC
>O t>» COl
JCTS t!
II II gs i si sag ssg
do dd dddd old d do ddo ooooo ooo
88 SS 88
id dd oooo oo
dd odd ddddd ddo d
op
•»-o
»
ddoo oo
T-S -r^T-S ppppS OOP 8.
do odd ddddd ddo o
a
o
ooa
aoo
OOO
xxx
III
ebo>
'
Q
U.U.
LLU.U.U.
OQOO
OOOO
U.U.
ao
CO
XX
eben
tot-To
r-Tw co •- eotoco >~ eo
co"5 eJ^ cJcJe-i^
oTO 'WO WWWO W<
O
Q
o
Q >•?'>••'. eoebwebt
gfe
AS
t-OCO w. U- t~
. . o O -s
C0£ CMCO£ (MCMeMCM£ CNCMf Q S
e\TO WevTO WWWW5 WWO- O |2
. , w «««••«• >.
..CD ....CD
96
-------
Table 6.5. Relative quantities of MWQ; residues and process additives in treated residues
(% of treated residue as prepared).
Process
APC
Residue
1
2
3
4
WES
Bottom Ash
1
2
3
4
WES
Combined
Ash
1
2
3
4
WES
Ash 1
49.8 5<1)
44.4 6.6(1)
42.6 21.(4)
75.8 9(2)
45.4 13.6
76 8(1)
63.6 9.3<1)
56.2 28<4)
85.1 4(2)
83 8.3
76 8(1)
63.6 9.3(1)
55.5 28(4)
85.1 4(2)
77.8 7.8
Additive
2
o.s(1)
2.3(2)
36(2'3)
-
-
0.8(2)
3.4(2)
16(2-3)
l(2.V
-
0.8(2)
3.4(2)
1 7(2,3)
!(1)
-
3 H20
:
44.7
2.2(2.3) 44 4
i _
; 16.4
40.9
|
15.2
3.2(2.3) 20.5
:
9.6
8;3
i
15.2
3.2(2.3) 20.5
».
9.6
15.5
("^Portland Cement, Type 1
(^Proprietary Additive
(3>Liquid Additive
(4)y/aste Pozzolan
97
-------
Table 6.6 Principal components in calcium-based process additives (wt% ds).
MMH^^HMMMMH
Al
Ca
Fe
K
S
Na
SO*
, KD
2.4
47.8
1.8
0.3
7.0
0.8
2(2)
3.0
49.8
2.1
0.4
7.0
0.1
-
Process
| 3(2)
2.0
33.1
1.2
i 2.0
I
4.4
1 0.4
I
; 1.0
4(2) WES('<
2.4
56 48.9
1.8
0.4
6.8
0.8
(l)Portland cement, type 1
(2) Proprietary additive
96
-------
TahiP 6 7
Table 6.7.
contributions from process additives to total treated residue
" ds Qf elementTn treated residue contributed by process additives).
Contributions greater than 10% of the total treated residue composition are
indicated.
% of Product from Additives
3 Process 4
WES
process i
APC
Residue
Al 15
Ca 14
Fe 25
K
S 14
Na
SC>4
Bottom Ash
Al
Ca 30
Fe
K
a
Na
SO*
Combined
AsJb
Al
Ca 28
Fe
K
S
Na
22
20
33
-
20
55
1 1
40
-
.
56
.
12
38
-
_ •
54
42
36
i
25 - ;
38 -
35
—
24 -
59 20 ;
50
16 -
0 j
13 !
26
57
43 - !
14 -
~
34
34
47
33
.
32
-
•
n
28
-
-
SO4
12
99
-------
Fiaure 6 1 Comparison of box plots of neutron! activation analysis results for homogenized,
" " untreated ash (<300 um, ground; 11 replicates, mg/kg ds).
100.000
80,000
t 60.000
il
: 40.000
20.000
Figure a.
Al(Bot) Al(Comb) AI(APC)
5.000
I
4.000
3,000
2.000
1.000
Figure b.
Br(Bo() Br(Comb) Br(APC)
200-
160
120
80
40
Figure c.
Figure d.
Cd(B«) Cd(Comb) Cd(APC)
300,000
250.000
200,000
•f 150,000
E
100,000
50.000
0
M I 1 L S3
^
~^-L T~ »"
~~ •*•
Ca(Bot) Ca(Comb) Ca(APC)
1^00-
1^00
900
600
300
Figure e.
Figure f.
Cr(Bot) Cr(Comb) Cr(APC)
|
200,000'
160,000
120,000
80,000
40.000
0
*****
__^_____ IIIIMIIIIIIIJ'"^
- I
a(Brt) Cl (Comb) CI(APC)
100
-------
figure 6.2. Comparison of box plots of neutron activation analysis results fpr homogenized,
untreated ash (<300 um, ground; 11 replicates). ;
!>,5oo
;>.ooo
1.500
1,000
500
Figure g.
1
Cu(Bot) Cu(Comb) Cu(APC)
150.000
120.000
t 00.000
b
: 60,000
30,000
Figure h.
Fe(Bot) ' Fe(Comb) Fe(APC)
Figure 1.
Figure J.
16.000
12,000
8,000
4.000
_ T _
E*"**^****^. . ^,:
tll^sL'-^rs;
^. j_
K(Bot) ' K(Corrib) K(AFC)
30,000-
40,000
30,000
20.000
10,000
,
!
i
•^"T^ j-
BffiSfflflffiffiffiffiffiffi Ti^rfnii
Na(Bot) Na(Cdmb) Na(APC)
Figure k.
Figure 1.
2X),WO-
200.000-
tt1!»,000
E 100,000
!50,000
T
BBWWWJWffltifflj "- "• f "•_ ^
^^^^ i
Si(Bol) ' Si (Comb)
o
-r1
Si(APC)
16,000
1ZOOO
8.000
4,000
Zn(Bot) Zn(Comb) Zn(APC)
101
-------
Figure 6.3. Untreated total composition by SW-846.
100
80
* 60
CD
40
20
Figure ».
As (Bot) As (Comb) As (APC)
1.000
800
600
403
200
Ni (Bot) Ni (Comb) Ni (APC)
1,000
800
600
400
200
Figure b.
1.000
800
600
200
Ba(Bot) Ba(Comb) Ba(APC)
Figure d.
Sn (Bot) Sn (Comb) Sn (APC)
-------
Figure 6.4. Untreated total composition (page 2) by SW-846.
50.000
40,000
•01 30,000
1
E: 20,000
10.000
0
500.000
400.000
•8 300,000
?
E 200,000
100.000
0
Figure a.
SO4 (Bot) SO4 (Comb) SO4 (ARC)
Figure e.
TOC (Bot) TOC(Comb) TOO (APC)
500.000
400,000
•0300.000
I
E 200.000
100.000
0
50.000
40.000
•8 30,000
20.000
10,000
0
Figure b.
TDS(Bot) TDS(Comb) TDS(APC)
Figure d.
COD (Bot) COD (Comb) COD (APC)
103
-------
i.5. A comparison of total aluminum concentrations
analysis methods. ,
i
1
NAA ' 1
Figure «. APC Residue, NAA, Al m ^ _
50,000 —
40.000
30.000 |
20.000
10.000
04-
100.000
80.000
3 60,000
|
= 40.000
20.000
0
100.000
80,000
3 60.000
i>
E 40,000
20,000
(
__.»_• f J**~^^
loMJCTa _^^^^^ "^""•^^™ »1-
JUIJAU CilSj K^V-y-3
*T" J
V1 ' V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, NAA, Al
w*
V1 ' V2 ' V3 V4 WES Unt
Figure e. Combined Ash, NAA, Al
._^_ •• • - ^W>
s ^A*
5 V1 V2 ' V3 V4 WES Unt
I 40,000
•8 30.000
= 20.000 i
I
10,000
I
i rt .
i inn nrto »
80,000
I ,
| -8 60.000
= 40,000
I
20,000
I
1 KYI oon
80.000
I
•8 60,000
1 f
! ^ 40.000
20.000
c
between NAA and SW-846
Figure b. APC Residue, SW, Al
— /J j-sa^^223
L\\J
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, SW, Al
(
— ^_— ^m
V1 ' V2 V3 V4 WES Unt
Figure f. Combined Ash, SW, Al
{'' <• \ f, v- ^.i
-< ! V1 V2 V3 V4 wes uni
1104
I
i
i
-------
Figure 6.6. A comparison of total cadmium concentrations between NAA and SW-846
analysis methods.
500
400
NAA
Figure a. APC Residue, NAA, Cd
* 300
S
200
100
500
400
300
200
100
SW-846
i
Figure b. APC Residue, SW, Cd
V\ ' V2 V3 V4 WES Unt
Fiaure c. Bottom Ash, NAA, Cd
V1 ' V2 V3 V4 WES Unt
Figure d- Bottom Ash, SW, Cd
500
400
« 300
1s>
'= 200
100
0
•
i
'//t
BSa
if* ' tf«i \m \IA U/CC 1 ln»
500
400
•8 300
O)
E 200
100
0
|
'
— . 1 —
V1 V2 ' V3 V4 WES Unt
500
400
* 300
200
100
VI V2 V3 V4 WES Unt
Fiaure e. Combined Ash, NAA, Cd
If
ES3
V1 V2 V3 V4
500
400
•S 300
I
E 200
100
Fig"« »• Combined Ash, SW, Cd
Unt
V1 ' V2 ' V3 V4 WES Unt
105
-------
I
Figure 6.7. A comparison of total chromium concentrations between NAA and SW-846
analysis methods. j
i.ooo
800
•S eoo
en
E 400
200
NAA
Figure a. ARC Residue. NAA, Cr
2.000
V1 ' V2 ' V3 V4 WES Unt
Figure e. Bottom Ash, NAA. Cr
•S3
1.500
1.000
500
1.000
800
•8 600
en
400
200
0
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash, NAA, Cr
V1 ' V2 ' V3 V4 WES Unt
1.000
800
I 600
en
E 400
200
$ W - 8 4 6
Figure b. ARC Residue. SW, Cr
2.000
1,500
1,000
500
V1 ' V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, SW, Cr
1,000
800
600
400
200
0
VI ' V2 ' V3 V4 WES Unt
Figure f. Combined Ash, SW, Cr
V2 ' V3 ' V4 WES Unt
106
-------
Figure 6.8. A comparison
methods.
of total copper concentrations between NAA and SW-846 analysis
NAA
S W - 8 4 6
Figure b. APC Residue. SW, Cu
5,000
4.000
•8 3.000
1
e 2.000
1.000
0
5.000
4,000
•8 3.000
*
I
e 2.000
0
5,000
4,000
•8 3.000
£
E 2,000
1,000
c
Figure a. AKV; nesiuue, «««, \*u
- y/^ -8-
V1 V2 V3 V4 WES Unt
Rgure e. Bottom Ash, NAA, Cu
"V\.' T S S\
\N/ }{t"n LvTk'i
p^^J 0
V1 ' V2 V3 V4 WES Unt
Rgure e. Combined Ash, NAA, Cu
•
ISffiS dZ] —, ^fe
K^22a 1
MOM [x.v.'j
cnoo »-
4.000
•8 3.000
E aooo
1.000
e /W) .
4,000
•8 3.000
t
2,000
1.000
Q
5000
4.000
•8 3.000
6 aooo
3
1.000
{
I
i
L-J = - *-
V1 V2 ' V3 V4 WES Unt
Rgure d. Bottom Ash, SW, Cu
j
!
'ffiffi K^Sl
• ¥^M
<
K=B :
V1 ' V2 V3 V4 WES Unt
Rgure J. Combined Ash, SW, Cu
I
^
W/,
W — :
1 V1 ' V2 ' V3 V4 WES Unt
107
-------
Figure 6.9. A comparison of total chloride concentrations between NAA and SW-846
__**Uf«»iet mothr*Hc !
analysis methods.
NAA |
Rgure m. APC Residue, NAA, Cl orvi nnn —
200.000 —
160.000
•^120.000 E
e 80,000
40.000
oi
50.000
40.000
•8 30.000
e 20.000
10.000
0
250.000
200.000
•8 150.000
01
e 100.00C
50.00C
^=
= E38
•
~V1 ' V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, NAA, Cl
..— »
V1 ' V2 V3 V4 WES Unt
Fiaure e. Combined Ash, NAA, Cl
' * 1 1 1
___ KVy?
'< 160.000
•8 120.000
1
e 80.000
i 40.000
i
0 •
50000 T
40.000
•8 30.000
E 20.000
10.000
' 0
j
250000
200.000
•8 150.000
Cl
en
E 100.000
j
50.00C
t
5 W - 8 4 6
Figure b. APC Residue, SW, Cl
^77\
'<$%,
• _.. ' r*^r"
^
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, SW, Cl
_-_-•
V1 V2 V3 V4 WES Unt
Fiaure f. Combined Ash, SW, Ct
,,
0+-rr—' V2 V3 V4 WES Unt V1 v<:
^
106
i
-------
Figure 6.10. A comparison of total zinc concentrations between NAA and SW-846 analysis
methods. !
SW-846
(50.000 •
40.000
^ 30.000
cp
E 20.000
10,000
0
10,000
8.000
«
•o 6,000
I"
s 4.000
2.000
0
10.000
8.000
•8 6.000
e 4.000
2.000
0
it/nr-i
Figure a. APC Residue, NAA, Zn
plE^^^ESa*2323
jj
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, NAA, Zn
JxJ-iCSJ
%%£ ^$$&
'f/ffr I
CSS /// T'/*™ •"•
Liassj [.,:.v;;S:3 \v
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash, NAA, Zn
T
^\jsX\
^^
fww? ~jf /> _ ^ ^ -_^» SS\*^^
^^ ^1^ E&wj j
ts
%i
-------
Figure 6.11. Calcium Total analysis by NAA.
Figure a. ARC Residue, Ca
400.000
300.000
-8
* 200.000
100.000
400.000
300.000
I
1200.000
100.000
V1 V2 V3 V4 WES Unt
Figure b. Bottom Ash, Ca
° V1 ' V2r V3 V4 WES Unt
400.000
Figure e. Combined Ash, Ca
300,000
•8
200.000
100.000
V1
V2 V3 V4 WES Unt
110
-------
Figure 6.12. Potassium and sodium total analysis by neutron activation analysis.
30.000
Figure a. APC Residue, K
20.000
10,000
30.000
20,000
10,000
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, K
30.000
20.000
10,000
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash, K
80.000
Figure b. APC Residue, Na
60.000
40,000
20,000
80,000
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Na
60.000
40.000-
20.000
80.000
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Na
60.000
40.000-
20,000
V1 V2 V3 V4 WES Unt
V1 V2 V3 V4 WES Unt
111
-------
Figure 6.13. Lead total analysis by SW-846.
5.000
4.000
•8 3,000
1
E 2.000
1.000
0
Figure a. APC Residue. Pb
EZ2
G53
5.000
4.000
•8 3.000
I
E 2,000
1.000
V1 ' V2 V3 ' V4 WbS Unt
I
Figure b. Bottom Ash. Pb
5.000
V1 ' V2 ' V3 ' V4 WES Unt
Figure e. Combined Ash. Pb
4.000
•8 3.000
'E 2.000
1.000
V1 V2
V3 V4 WES Unt
112
-------
Figure 6.14. A comparison of SW-846 and NAA results for Al and Cd.
100-
80
eo
40
2B
0
Figur* «. APC RMidu*. Al
V1 ' V2 V3 V4 WES Unt
330
150
100
50
Figure b. APC RMkbM, Cd
V1 V2 V3 V* WES U«
Flgur* e. Bottom A*h, Al
f
2l
3»
1
BO
eo
40
20
mtmm __
85*SS2 rWfa
t=4a±=l ^%
_^
VI V2 V3 V4 WES Unl
200
ISO.
100
50
Flgura d. Bottom Ash, Cd
VI ' V2 V3 V4 WES Urt
to
100-
80.
80
40
20
0
Figure •. Comblmd Art. Al
V1 ' V2 V3 V4 WES Unt
300-
250-
200
so
Flgura I. CombiMd A*h. Cd
VI ' V2
V4 ; WES Unt
113
-------
Figure 6.15. A comparison of SW-846 and NAA results for Cl and Cr.
Flgun «. APC R»«ldu«. d
200
180
1a
K
• 40
Flour* b. APC RwldtM. Cr
-
160
130
i
i
Lfc.£.
V2 ' V3 V4
Flgtm e. Bottom A»h, d
g 100
i
Flgurad. Bottom Mh. Cr
100.
80
60
40
20
•vi • « «J"'
200
193
E
< 133
I "
40
Bgura •- CemblMd Aoh, a
m
-7T
Hgw. f. ComWnrt A»h, Cr
-
100
80
I -
40
20
0
'Vl ' VZ ' VJ
~V4 ' Vl££
114
-------
Figure 6.16. A comparison of SW-846 and NAA results for Cu and Zn.
120-
100.
E 80
1 "
•E 40
20
0
Rflur. «. APC RMldu*. Cu
Hgm b. APC RMkkM. Zn
_^^_^___ SA
VI ' V2 ' V3 V4 ' WES Un»
200-
i
VI V2
••«•"*"
200.
180-
120
80
40
0
120
100
E 80
| 80
i *•
20
V1 ' V2 V3 V4 WES Urt
VI ' ' VJ ' VJ ' M ' ^fcb ' U^
120
100
E 80
20
180
120
202
ES
vi V2 V3 , V4
um
115
-------
Figure 6.17. NAA corrected for process dilution (Chloride and Zinc).
400.000
300.000
•3
« 200.000
100.000
FIn,,rft
B..IH,,.. C.
50.000
VI ' V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, CI
40.000
30.000
20.000
10.000
0
50,000
V1 ' V2 ' V3 V4 WES Unt
Figure e. Combined Ash, CI
40,000
•8 30.000
6 20.000
10.000
0
ESI
T
V1 ' V2 ' V3 V4 WES Unt
50.000
Figure b. APC Residue, Zn
V1 ' V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, Zn •
16,000
•8 12,000
E 8.000
• 4.000
0
E5!
V1 ' V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, Zn
16,000
•8 12.000
I
E 8,000
4.000
0
EZ3
V1 V2 ' V3 V4 WES Unt
116
-------
7. LEACHING OF UNTREATED AND TREATED RESIDUES - RELEASE POTENTIAL
7.1 DATA REDUCTION, ANALYSIS AND PRESENTATION I
i
Chemical analysis of extracts from laboratory leach tests generally results directly in the
determination of an aqueous phase contaminant concentration. However, transformation of concentration
data into element or species release, e.g., the mass of a particular element or species emitted from the
solid matrix into the extract per unit mass of solid extracted, permits normalization and comparison of
data obtained from several different teach tests. Comparison of treated residues to untreated residues
is based on test results for the preprocessed untreated residues (refer to Chapter 3.1). The TCLP.
distilled water leach test and the availability leach test are all intended to assess the potential for (or the
maximum extent of) species release under different extremes of leaching conditions. However, each
test employs different liquid to solid ratios and extraction conditions. Only the TCLP has a defined
concentration basis for interpretation of resulting extract concentrations. Thus, data interpretation on an
extract concentration basis is of limned usefulness. Use of additives for each treatment process and
varying treated residue moisture contents also may result in dilution effects, further confounding direct
comparison of extract concentration data. In order to provide more uniform data interpretation from these
leaching tests, extract concentration data has been transformed to a basis of release per mass of MWC
residue extracted. This has been accomplished through application of the following calculations:
Rproduct - l(Cextract)(L:S ratk»]/(l-Mproduct)
-------
Tabulated results from leaching tests are provided in Appendix B.1 - B.3. Mean values of replicate data
are presented on (i) an extract concentration basis, (ii) product (treated residue) release basis, and (iii)
untreated residue release basis (corrected for process dilution), coefficients of variation for each analysis
also are presented with each data set. Complete data sets including reporting of each replicate value,
are provided in Volume 2 of this report. j
The TCLP, DWLT and the ALT leaching data are interpreted on a release basis because these
test results most frequently are viewed as the potential for release under the extreme conditions
represented by the testing procedures. The ANC leach test and results are interpreted on concentration
basis. The ANC data is presented on a concentration basis because the objective of the test was to
determine the solubility of a variety of elements as a function of pH. The TCLP data for cadmium,
copper, lead, and zinc also are presented on a concentration basis to allow a direct comparison between
the untreated and treated ash, between the treatment processes, and where applicable, compare to the
USEPA regulatory limits.
The acid neutralization capacity leach test is the principal exception to leaching data interpretation
on a release basis. The ANC test was carried out at a tow liquid to solid ratio (5:1) to facilitate
determination of pH trtratton curves and saturated solution concentrations of a variety of elements as a
function of pH. Therefore, it is most useful to present ANC data on a concentration basis. In addition,
extract data also has been presented on a concentration basis for cadmium, copper, lead and zinc from
TCLP extractions. |
Detailed analysis of leaching data has been restricted to approximately 15 key elements and
species considered to be indicative of the leaching behavior of the various groups of elements and
species present. The following elements and speCies have been the focus of leaching data analysis:
Aluminum, calcium r"taggi"m anH sodium!- principal cattonic components of ash;
Chloride and sulfate - principal entente components of ash;
lead, zinc, potentially toxic metals present in significant teachable
concentrations;
I
l dissolved sol'ds - indicative of overall leaching of salts; and,
To.tal organic; ff*rhon CTOC) • indicative of organic species leaching.
!
The most meaningful way to present and interpret the leaching data on a comparative basis is
through graphical presentation. For TCLP, DWLT and the Availability leach test(ALT), this was
accomplished through generation of box plots. Wftthin each box plot, all three replicate data points for
the untreated and each treated residue are presented. The extremes (bottom and top) of each "box-
represent the minimum and maximum of the three; replicate analyses. The intermediate horizontal line
118
-------
represents the third replicate. Thus, both the relative release between untreated and treated residues
as well as the variability within the data is presented. Release data for untreated and treated APC
residue, bottom ash and combined ash were grouped on the same page for each element to permit
comparison of release between MWC residue types. Whenever practical, the ranges for the y-axis were
maintained constant within element groups to further facilitate comparison. i
The liquid-to-solid ratios and process dilution factors are presented in Table 7.1 . Summary tables
are used to highlight differences between the untreated and treated residues. Residue treatment effects
are grouped according to the categories described in Table 7.2. These categories were chosen to
indicate important effects of the treatment processes in the presence of highly variable testing results are
terms for release relative to the untreated residue and the treated residues. The 0.80 confidence interval
was selected to accentuate treatment effects with a limited number of replicates. Thus, statistically,
significant treatment effects at the 0.80 level represent effects that may warrant further investigation with
more replication. Furthermore, results were grouped based on (i) increased or decreased release
greater than a factor of 2 compared to the untreated residue and (ii) release compared to other treatment
processes. The relative categories of treatment effects are defined as follows: "Decreased" release
indicates a treatment effect significant at the 0.80 confidence level compared to the untreated residue.
"Increased" release indicates a treatment effect significant at the 0.80 confidence level compared to the
untreated residue. "Greatly decreased" release indicates release less than one half that of the untreated
residue. "Greatly increased" release indicates release of more than twice that of the untreated residue.
"Decreased release compared to other processes" indicates decreased release compared to other
processes in addition to less than one-half of the untreated residue. "Increased release compared to
other processes" indicates increased release compared to other processes in addition to greater than
twice that of the untreated residue. When relative release is discussed in the text, the terminology will be
italized.
Results of the ANC leaching test are presented graphically as titration curves (pH as a function of
acid addition) and concentration as a function of pH curves. All replicate data is presented in each figure.
Curves drawn on data plots are simple data interpolations provided to indicate general trends and are
not regressed models. Figures are generally grouped by MWC residue type and frtration curve or
element to facilitate comparison of treatment effects.
i
7.2! TCLP
7.2.1 TCLP FYtrant pHs anrl Cadmium, ftnnngr Lead and Zinc Concentrations
The TCLP protocol requires that a pretest be performed to select the appropriate extraction
fluid (Extraction Fluid 1 or Extraction Fluid 2) for the sample to be tested. This selection is based on the
119
-------
acid neutralization capacity of the material to be tested. A iixed quantity of acetic acid is used in
preparation of both extraction fluids. Extraction Fluid 1 is buffered with NaOH while Extraction fluid 2 ,s
not buffered. Even following the extraction fluid selection procedure, the final extract pHs were widely
variable from process to process and between MWC residue types, ranging between 5 and 12.
Extraction Fluid 2 was required for all cases except, (i) untreated bottom ash, (ii) Process 1
bottom ash, and (Hi) Process 1 combined ash. TCLP extractions were carried out on the untreated MWC
residues using both extraction fluids for comparison purposes. TCLP extractions on the treated residues
employed only the required extraction fluid. Table;7.2 compares untreated residue extraction results for
TCLP Extraction Fluid 1 and Extraction Fluid 2. Extract concentrations for chromium, cadmium, copper,
lead, zinc, and the corresponding extract pH for each case.
The APC residue exhibited a large buffering capacity. The final pHs for Extraction Fluid 1 and
Extraction Fluid 2 were 11.91 and 11.88. respectively. According to the ANC data (See Section 7.5), the
APC residue metals addressed, except lead, are rpt mobile at pH greater than 8. Hence, the TCLP
metal extract concentrations for both extraction fluids are several orders of magnitude tower than the total
quantity detected in the APC residue. The endpoiht pHs were similar for both Extraction Fluid 1 and
Extraction Fluid 2 and consequently the metal concentrations were very similar.
For the bottom ash, the final extract pH for Extraction Fluid 1 and Extraction Fluid 2 were 7.79 and
5 24 respectively. According to the ANC data (See Section 7.5). cadmium, lead, copper and zinc
become very mobile at a PH of 6 or .ess, and chromium at a pH of 7 or less. Extraction Fluid 2 results in
a PH environment where the metals are very mobile, hence concentrations are much higher ,n the
Extraction Fluid 2 extracts than in Extraction Fluid i extracts. Extractton Flukl 1 was the required extractton
f lukl according to the pretest criteria, indicating the metals were not very mobile.
The combined ash TCLP final extract pHs^were 6.3 for Extraction Fluid 1 and 5.2 for Extraction
Fluid 2. According to the ANC data for the combined ash (See Section 7.5). cadmium and zinc become
very mobile at a pH of 6 or less: chromium and lead become very mobile at a pH of 5 or less. The
mobility of copper is unclear from the ANC data. Extraction Flukl 2 results in a PH environment in wh^h
the metals were very mobile, hence concentrations were much higher in the Extraction Fluid 2 extracts than
In Extraction Fluid 1 extracts.
From this data, it is apparent that the metal concentrations in the TCLP extracts strongly are
function of the final extract pH. When comparing the effectiveness of treatment based on TCLP, the
metal concentrations of the untreated material arfe compared to the treated material. However, these
comparisons can be misleading because of the Variable final extract pH.
! 120
-------
TCLP extract pHs and extract cadmium and copper, and lead and zinc concentrations are
presented in Figures 7.1,7.2 and 7.3, respectively. The selected metal concentrations were generated
during TCLP extraction using the required extratton fluid. Note that TCLP results for untreated residues
are for residues prior to processing and may not necessarily reflect the results which IwoukJ be obtained
on residues as sampled from the MWC facility (see Chapter 3.1). These results are for comparison with
treated residue results. All untreated and treated bottom ash and combined ash samples passed all of
the TCLP extract concentration criteria. The untreated APC residue failed the TCLP criteria for lead and
mercury, but the treated APC residues passed TCLP criteria. Mercury most likely was tost from the APC
residues either during treatment or sample preparation. Special sampling and preservation protocols for
mercury containing samples were not followed.
Cadmium (Figure 7.2): Cadmium concentration results indicated that the untreated and all treated APC
residues, except Process 4, were two orders of magnitude below the regulatory limit of 1000 ug/l. The
retain** high cadmium concentration for Process 4 appears to be primarily a consequence of the
equilibrium PH of the TCLP extract being approximately 7. At this pH, cadmium was appreciably
soluble for residues treated by Process 4 (see ANC results. Chapter 7.5). Cadmium concentration
results for bottom ash and combined ash were similar, indicating one to three orders of magnrtude
reduction for Processes 1 and 2. Process 3 resulted in a substantial decrease in cadmium concentrate for
both bottom ash and combined ash, but was much greater in the bottom ash. The WES Control process
did not indicate any significant change in teachable cadmium concentration for either the treated bottom
ash or combined ash.
Copper (Figure 7.2): Copper concentrations were similar for APC residues treated with Processes 2. 3.4
and the WES Control and somewhat lower than the untreated residue. Process 1 applied to the APC
residue resulted in tower copper concentrations than the other processes. Processes 2,3 and 4 applied.
to the bottom ash and combined ash resulted in tower copper concentrations than the untreated resdue
as well as decreased data variability. Process 1 resulted in lower copper concentrations than the other
processes for bottom ash but similar concentrations for the combined ash. The WES Control process
resulted in copper concentrations somewhat tower than the untreated residue for the bottom ash, but not
for the combined ash.
Load (Figure 7.3): The lead concentration for the untreated APC residue was greater than six times the
regulatory limit. Lead concentrations were similar for APC residues treated by Processes 1.2 and the
WES Control and less than five percent of the untreated APC residue concentration- Process 3 displayed
a high degree of variability when applied to the APC residue. Process 4 resulted in the lowest lead
concentrations as compared to the untreated APC residues and the other process results. Lead
121
-------
concentrations for bottom ash and combined ash treated by Processes 1,2,3 and 4 were sim,lar and
were much tower than greatly decreased compared to the untreated residues. These bottom ash and
combined ash lead concentrations also were much tower than the treated APC residue concentrations for
Processes 1,2 and 3. The WES Control process resulted in increased lead concentrations for the bottom
ash as compared to the untreated residue, but not for the combined ash.
Zinc (Figure 7.3): Zinc concentrations were similar for APC residues treated by Processes 1,2.3 and the
WES Control and less than half of the untreated APC residue. APC residue treated by Process 4
resulted in a increased zinc concentration. Bottom ash and combined ash treated by Processes 1 and 2
resulted in decreased zinc concentrations by over tWo orders of magnitude as compared to the untreated
residues Processes 3 and 4 also resulted in greatly decreased zinc concentrations for bottom ash and
combined ash, but not to the same extent as Processes 1 and 2. The WES Contro. did not result in a
significant change for either bottom ash or combined ash compared to the untreated residues.
7 .ftp Specie^ pp'pase for TCLP
Figures 7.4 through 7.8 present release daia on an untreated ash basis (corrected for process
dilution) for aluminum and calcium, cadmium and copper, potassium and sodium, lead and zinc, and
chloride and sulfate. Discussion is provided for each element in the following paragraphs.
Aluminum (Rgure 7.4): Aluminum release was increased for APC residue and bottom ash by Processes
1 2 and the WES Control as compared to the respective untreated residues. Processes 3 and 4 resulted
in greatly decreased aluminum release for combined ash compared to the untreated residue. Aluminum
release was similar within each process for both bottom and combined ash. Increasing aluminum release
from APC residue to bottom ash to combined ash! for untreated residues appears to be predom,nantly a
response to extract pH. as pH decreases from almost 12 to 8 to 6.5. respectively.
Calcium (Figure 7.4): All processes appear to haye increased calcium release for treated APC residue
as compared to the untreated residue, although Processes 3 and 4 were not statistics.* different because
of the high degree of data variability. The WES Control process resulted in over twice the calcium
release as compared to the untreated APC residue. Also note that the release potential varied from
100 000 to over 300.000 mg/kg, representing up to the equivalent of 30 wt % of the untreated residue.
Calcium release from bottom ash was decreased* Process 1, increased by Process 4. and greatly
increased* Process 3. Calcium release from combined ash was changed only by Process 3. where rt
was greatly increased.
122
-------
Cadmium (Figure 7.5): Cadmium release from untreated and all treated ARC residues, except Process
4, was very tow and approaching detection limits. APC residue treated by Process 4 resulted in release
of more than 25 mg/kg ash treated, which was two orders of magnitude greater than the untreated
residue. Processes 4 and the WES Control resulted in greatly increased cadmium release from bottom
ash compared to the untreated residue. Processes 3 and 4 resulted in decreased, and Processes 1 and 2
greatly decreased, cadmium release compared to the untreated combined ash.
Copper (Figure 7.5): Copper release was approximately 2 mg/kg from both the untreated APC residue
and the bottom ash, but approximately 70 mg/kg from the untreated combined ash. Process 1 applied
to APC residue decreased release. The WES Control process applied to bottom ash increased release
and exhibited a high degree of data variability. All other processes applied to APC residue and
bottom ash did not have a significant treatment effect. Processes 1,2,3 and 4 all decreased release from
combined ash compared to the untreated residue. The WES Control process applied to combined ash
exhibited a high degree of data variability and a mean only slightly lower than that of the untreated
material.
Potassium (Figure 7.6): Potassium release was increased^ Processes 1 and 3 for APC residue
compared to the untreated residue. All other treated APC residues were not significantly different from
the untreated APC residue. Potassium release for the untreated residue was approximately 15,000
mg/kg, representing greater than 1 wt % of the untreated material. Potassium release was different for
the treated bottom ash and combined ash, compared to the untreated residues, only for Process 3 where
its release was greatly increased. Increased potassium release by Process 3, for all three residue types.
was a reflection of the potassium content of one of the process additives. Potassium release was very
similar for both bottom ash and combined ash. which was approximately one third the release from the
APC residue, except for Process 3 and APC residue treated by Process 1.
Sodium (Figure 7.6): Sodium release from APC residue was increased by Process 1 and the WES
Corrtrol,compared to the untreated residue. Processes 3,4 and the WES Control had similar sodium
release to the bottom ash. as did the untreated residue. Release from the untreated bottom ash, and
bottom and combined ash treated by Process 1 must be corrected for the presence of sodium in the
TCLP Extraction Fluid 1, which would result in an equivalent release of 30,000 mg/kg and 38,000 mg/kg for
untreated and Process 1. respectively. Process 2 greatly increased release from the APC residue.
bottom ash and the combined ash, as compared to the untreated residues. High sodium release reflects
the presence of sodium in process additives for Process 2. Processes 1 and 2 resulted in greatly
increased release from the combined ash.
123
-------
Lead (Figure 7.7): Lead release from APC residue was greatly decreased by all treatment processes.
Process 4 resulted in substantially decreased lead release from APC residue in comparison to the other
treatment processes as well. Lead release from untreated and treated bottom ash was very tow, except
for the WES Control process, which resulted in increased lead release. Lead release from all of the
treatment processes applied to combined ash was greatly decreased compared to the untreated
residue except for the WES Control, which resulted in no change from the untreated material. Lead
release'also was much greater from the untreated combined residue compared to the untreated bottom
ash. which may be a result of either extract PH effects, the requirement of Extraction Fluid 1 for the
untreated bottom ash, or the presence of APC residue in the combined ash.
Zinc (Figure 7.7): Zinc release from the APC residue was greatly decreased by all of the treatment
processes except Process 4, which resulted in greyly increased*™ release. Zinc release from the
bottom ash was very tow for the untreated residue and residue treated using Processes 1,2 and 3.
Process 4 and the WES Control both resulted in greatly increased release from the bottom ash.
Processes 3 and 4 resulted in decreased release of zinc from the combined ash, while Processes 1 and 2
resulted in greatly decreased release. The WES Control resulted in no change from the untreated
combined ash.
Chloride (Figure 7.8): Chloride release from APC residue was increased* Processes 1 and 2. Note
that chloride release ranged from 100,000 to over 2^0,000 mg/kg ash treated, which represented up to 25
wt % of the initial APC residue. Chloride release from the bottom ash and the combined ash was not
changed significantly by any of the treatment processes. Chloride re.ease for untreated and treated
bottom ash and combined ash ranged from 0.6 to 2.8 wt % of the initia. residues. Chloride re.ease was
not determined for the WES Control process. [
Sulfate (Figure 7.8): Sulfate re.ease from the APC| residue was increased* Process 1 and greatly
increased* Processes 3 and 4. Sulfate release from bottom ash was increased* Process 2 and
greatly increased* Process 3. Sulfate re.ease from bottom ash also was greatly decreased* Process
1 Sulfate release from combined ash was decreased* Process 1 and greatly increased* Process 3.
Sulfate release for a., three untreated residues ranged between 15,000 and 20,000 mg/kg or up to 2 wt %.
Conclustons from the TCLP release results are summarized in Table 7.4. Comparisons of results
for treated residues to untreated residues are based on the TCLP extraction fluid indicated by the TCLP
screening Test. Most treated residues required Extraction Fluid 2 while the bottom ash, Process 1 and 2
and the combined ash Process 1 required Extraction Fluid 1..n summary, the treatment processes apphed
to APC residue resulted in decreased or greatly decreased release of only .ead and zinc, except for
124
-------
Process 4. which resulted in greatly decreased release of lead but increased release of cadmium and zinc.
Treatment processes applied to APC residue also resulted in increased or greatly increased release of
salts including calcium, potassium, sodium, chloride and. or, sulfate. Treatment processes applied to
bottom ash did not result in a significant decrease in the release potential of any of the heavy metals.
However, release of heavy metals from untreated bottom ash was very limited. Processes 4 and the
WES Control resulted in greatly increased release of cadmium and zinc when applied to bottom ash. The
WES control process also resulted in increased release of copper and lead. Release of sodium was
greatly decreased by Processes 3,4 and the WES Control. Release of sulfate from bottom ash was
greatly decreased by Process 1, increased by Process 2, and greatly increased by Process 3. Treatment
of combined ash resulted in decreased or greatly decreased release of cadmium, copper, lead and zinc
for all of the treatment processes except the WES Control. The WES Control did not have a significant
effect on any of the species release when applied to combined ash. Processes 1 and 2 resulted in
greatly increased release of sodium, while Process 3 resulted in greatly increased release of calcium,
potassium and zinc. Please note these comparisons were made using untreated data generated from the
required extraction fluid.
7.3 DISTILLED WATER LEACH TEST
Figures 7.9 through 7.21 present pH and release data from DWLT extracts 1 and 2, and extracts
3 and 4 on an untreated ash basis (corrected for process dilution) for aluminum, cadmium, calcium, copper,
lead, potassium, sodium, lead, zinc, chloride, sulfate, TDS and TOC. Discussion is provided for each
parameter or element in the following paragraphs:
pH (Figure 7.9): Extract pHs for all extracts from untreated and treated APC residue were alkaline with
pH between 11.8 and 12.2, except for Process 4, which had a mean pH of approximately 11.5 for the
first two extracts and 11.2 for the second two extracts. Extract pHs for untreated and treated bottom ash
and combined ash were between 10.5 and 12.2. In general, the pH decreased slightly for the second
two extracts within treatment processes for bottom and combined ashes, but not for APC residue. This
was primarily a result of the much greater alkalinity of the APC residue.
Aluminum (Figure 7.10): Aluminum release from APC residue was increased by all treatment processes
although it was at a very tow level of less than 5 mg/kg ash treated. Release also increased from the
second two extracts for Processes 2 and 4, although the level was still small. Aluminum release from
bottom ash and combined ash followed similar trends within each process type. Release from untreated
bottom ash and combined ash was approximately 800 and 1,400 mg/kg, respectively, which was several
orders of magnitude greater than for the APC residue. Release was increased compared to untreated
125
-------
residue for Process 2 applied to bottom ash but not for combined ash even though both release levels
were similar. Release was greatly decreased by Processes 1,3 and the WES Control. Release by
Process 3 also was substantially less than by bottom lash and combined ash treated with the other
processes Generally, within treatment processes, aluminum release was at similar levels for both sets
of extracts, except for Process 2, which resulted in decreased release during the second set of extracts
as compared to the first set. Release levels observed from the DWLT for bottom ash and comb.ned
ash frequently were substantially higher than those observed from the TCLP.
Cadmium (Rgure 7.11): Cadmium release for all untreated and treated residues for residue types and
processes was near or below detection limits at 0.01 mg/kg ash treated. This is a direct result of the
extract PHs being alkaline (pH>10) where cadmium is relatively insoluble (see ANC results. Chapter 7.5).
Calcium (Figure 7.12): Calcium release generally was substantially less during the second set of
extractions as compared to the first set. Release from untreated and treated APC residue ranged
between 40,000 and 150,000 mg/kg ash treated, or Up to 15 wt % of the untreated material. Process 1
applied to APC residue resulted in an increase in release compared to the untreated residue, white.
Process 4 and the WES Control resulted in decreased release. Release from untreated and treated
bottom ash and combined ash was similar, within each treatment process. Release from untreated
bottom ash and combined ash was less than 10% of the amount released from untreated APC res,due.
Process 3 resulted in increased release during the fi^st set of extracts whi.e Process 2 resulted in a greatly
decreased release during the first set of extracts, .h general, the releases observed for calcium from the
DWLT were less than that observed from the TCLP.
Copper (Rgure 7.13): Copper release from all residue types and treatment processes was very tow at
.ess than 5 mg/kg ash treated, except for Process 2 applied to bottom ash and combined ash, where rt
was approximately 10 and 60 mg/kg ash treated, respective*. Processes 2,3 and the WES Control
decreased release, and Processes 1 and 4 greatly decreased release from APC rescue. Process 2
greatly increased release from the bottom ash and|the combined ash, compared to the untreated
residues, for the first set of extracts, .n genera,, copper release observed from the DWLT was less than
or equal to release observed from the TCLP. |
Lead (Figure 7.14): Lead retease was approximately 700 mo/Kg .or the untreated APC residue.but less
tham n^gfortheuntreatedrxmomashandcombinedash. Treatment processes 1.2 and WES
Contro! applied to the APC residue gre^y *»f* >ead reiease compared to me untreated rescue.
Process 4 subs.an.iaUy decreased reiease compared ».hese processes. Release from untreated and
waled APC residues were somewhat less during.he second set o. extracts, compared «o the firs, set.
126
-------
Processes 2 and WES Control, applied to bottom ash, increased lead release. Process 3 greatly
increased lead release compared to the untreated residue. Processes 1 and WES Control, applied to
the .combined ash, increased lead release, and Processes 2 and 3 greatly increased release as compared
to the untreated residue. Releases observed from the DWLT were frequently substantially greater than
releases observed by the TCLP. This is most likely the result of the more alkaline extract pH and
increased lead solubility from the amphoteric nature of lead (refer to Section 7.5).
Potassium (Figure 7.15): Potassium release was substantially greater from the first set of extracts
compared to the second set (note the change in scales in Figure 7.15 b, d, f). Release from APC
residue was increased by Process 2 and the WES Control and greatly increased by Processes 1 and 3.
compared to the untreated residue. Release from APC residue was decreased by Process 4. Release
from bottom ash and combined ash was similar and changed only by Process 3. by which it was greatly
increased. The greatly increased release by Process 3 was likely the result of potassium in one of the
process additives. Potassium releases from the DWLT were similar to those observed from the TCLP.
Sodium (Figure 7.16): Sodium release was much greater in the first set of extracts compared to the
se<»nd set for all residue types and processes (note the change in scales in Figure 7-16). Release from
untreated and treated APC residues ranged from approximately 10,000 to 55,000 mg/kg ash treated, or
up to 5.5 wt % of the untreated residue. Sodium release from APC residue was decreasedby Process 4
and greatly increased by Process 2. compared to the untreated residue. Sodium releases were similar
for untreated and treated bottom ash and combined ash, except for Process 2. Release from bottom
ash and combined ash was greatly increasedby Process 2 in both sets of extracts, compared to the
untreated residues, and ranged up to 8 wt % of the untreated residue. This was most likely the result of
the sodium content of one of the process additives. Sodium release observed from the DWLT was
similar to that observed from the TCLP except for those cases where TCLP extraction fluid 1 was
required, which contains sodium hydroxide as a component of the extraction fluid.
Zinc (Figure 7.17): Zinc release from untreated APC residue, bottom ash and combined ash, was
approximately 80,1 and 1 mg/kg, respectively. Zinc release from the APC residue was greatly
decreasedby Processes 1,2,4 and the WES Control, compared to the untreated residue. Zinc release
from bottom ash, treated by Process 2, was increased during the first set of extracts and exhibited a high
degree of variability compared to the untreated residue. Zinc release also was by Process 2, applied to
combined ash, during the first set of extracts. Zinc release observed from the DWLT was similar to
release observed from the TCLP.
127
-------
Chtoride (Figure 7.18): Chloride release was much greater during the first set of extracts than the second
set for all untreated and treated residues, except Process 1 applied to combined ash. Chloride release
from untreated and treated APC residue ranged from; 100.000 to 300.000 mg/kg ash treated, or up to 30
wt % of the untreated residue. Process 4 greatly debased the chloride release, and the WES Control
process increased release as compared to the untreated residue. Significant chloride release occurred
during the second set of extractions for the APC residue. This was primarily a reflection of the extremely
high initial chloride contents. Chloride release was similar for the bottom ash and combined ash wrth,n
processes Processes 1 and 4 decreased chloride release from bottom ash. and only Process 4
decreased chloride release from the combined ash. | Chtoride releases observed from the DWLT were
similar to releases observed from the TCLP.
Sulfate (Figure 7.19): Sulfate release from treated APC residue was somewhat less during the second
set of extracts as compared with the first set. Release from untreated APC residue was similar, at
approximately 20.000 mg/kg, lor both extract sets. Process 4 decreased sulfate release, and Processes
1 2 and the WES Control greatly decreased release from APC residue during both sets of extractor*
Process 3 increased sulfate release in the first set of extracts, but decreased release in the second set of
extracts compared with the untreated APC residue; Release from untreated bottom ash and combmed
ash was similar, ranging between approximate* 700 to 1.500 mg/kg. with release increasing somewhat
from the first to the second set of extracts. Processes 1.4 and the WES Control greatly decreased
sulfate release in the first set of extracts. Process 2 greatly increased release in the first set of extracts.
compared to the untreated residues, and Process 3 substantially increased sulfate release beyond that of
Process 2. Sulfate release was decreased greatly in the second set of extracts by Processes 4 and
WES Control, applied to bottom ash. Sulfate release was decreased either significantly or greatly ,n the
second set of extracts by all processes applied tolcombined ash. except Process 3. In general.
releases observed from the DWLT were less than releases observed from the TCLP.
TDS (Figure 7.20): TDS release was very high forlal. residue types and treatment processes and reflects
total soluble salt release. Release from treated APC residue ranged up to almost 700.000 m^kg ash
treated, or up to the equivalent of 70 wt % of the untreated residue. Processes 1.2.3 and WES Control
increased^ release from.APC rescue in the first set of extracts compared to the untreated rescue.
TDS release from untreated and treated APC rescues also was substantial during the second set of
extracts, ranging up to 140.000 mg/kg treated residue. Release from untreated bottom ash and
combined ash was approximately 50.000 mg/kg. or the equivalent of 5 wt % of the untreated rescue.
Processes 2 and 3 applied to bottom ash and combined ash both greatly increased release, rang.ng up
to 190 000 and 120.000 mg/kg treated residue. respecth,e.y. Process 4 resulted in decreased release
128
-------
from bottom ash, compared to the untreated residue. TDS releases from DWLT cannot be compared to
releases from TCLP because of extractant matrix interference with TCLP.
TOC (Figure 7.21): TOC release was greatest from the combined ash at approximately 500 mg/kg ash
and was approximately 200 and 20 mg/kg ash from the bottom ash and ARC residue, respectively. No
identification of the nature of the TOC release was carried out. Processes 1,2.3. and WES Control
increased JOC release compared to the untreated residue. Process 2 increasedTOC release from
bottom ash in the first set of extracts, and Process 3 greatly increased release in the second set of
extracts. Results from Process 4 applied to bottom ash were very scattered but suggested increased
TOC release. Process 2 greatly increasedTOC release from the combined ash. compared to the
untreated residue. TOC releases were substantially less in the second set of extracts for bottom ash
and combined ash but were still at significant levels.
Collusions from the DWLT results are summarized in Tables 7.5 and 7.6. Processes 1,2,4 and the WES
Control decreased or greatly decreased, copper, lead and zinc release from APC residue. Much greater
lead releases were observed from the APC residue than from either the bottom ash or the combined
ash. Lead release from bottom ash was increased or greatly increased^ Processes 2.3 and the WES
Control compared to the untreated residue. Lead release from combined ash was increased or greatly
increasedby Processes 1,2,3 and the WES Control. Lead release observed from the DWLT was much
greater than release observed from TCLP results. The DWLT indicated increased release for many cases
which TCLP indicated decreased release compared to the untreated residues. Very high levels of TDS
were released from all untreated and treated residues. A direct comparison of mean TDS releases from
ail of the untreated and treated residues is provided in Table 7.7. Between 15 and 32 % by weight of the
untreated and treated APC residue was released as TDS. Between 4 and 13% by weight of the
untreated and treated bottom ash and combined ash was released as TDS. Treatment processes
applied to all three residue types, except Process 4 applied to APC residue, either did not change or
increased TDS release as compared to the untreated residues. Process 4, applied-to APC residue,
resulted in decreased TDS release. l
7.4 AVAILABILITY LEACH TEST
Figure 7.22 through 7.26 present the release from the availability leach test on an untreated
residue basis (corrected for process dilution) for aluminum and calcium, cadmium and copper, potassium
and sodium, lead and zinc, and chloride and sulfate. Discussion is provided for each parameter or
element in the following paragraphs. ,
129
-------
Aluminum (Figure 7.22): Aluminum release from all three residue types was similar wHhin treatment
« om a« three untreated residues1 was approximately 5.000 mg*g ash. Release
reue was
to the untreated rescue. Release trom the bottom ash was aHected on, by Process 4
. Release from combined ash was orearr/oeo^by Process 4 and «»a»:Ca,c,um release was much greater trom the APCresMue than tromthe bottom ash
or coined ash. Releases .rom untreated AFC resUue. bonom ash and combined a,h were
approximately 200.000, 75.000 and 75.000 mo*8 ash. respec^y. Reiease Mr .treated *PC **.
Zed up to a.mos, 8M.OOO n^Kg untreated ash or the equlvaiem o, 80 wt% o. the untreated ,e .*._
1 3 4 and the WES Control inched refease from APC rescue, eompareu to the untreated
,
a, and a an MMWf release trom combined ash. compared to nreated residue. Re ease
fcm,^«
untreated and treated APC residues, and approximately an order ot magnnude greater tor the
altrT^ bottom ash and combined ash. Cafcium release dunm, ft. avaiiabiiHy tes, *,**
was approximately two-thirds of the total calcium content ol each residue.
(Figure 7^3): Cadmium release was approximately four times greater for the untreated APC
ar ed to both the untreated bottom ash and combined ash. Release from untreated APC
approximately ,40 rr^, wh»e releasi from untreated bonom ash and -«^£^
content of each res*e and was mu* greater than release observed from e.her the TCLP or DWtT.
ooooer (Figure 7 23)- Copper release was highly! variable and was similar for al, three rescues types.
. ash compared to the untreated rescue. A» other treatment effects were no,
130
-------
significant (.80 level). Copper release from the availability leach test was approximately ten times
greater than release observed from the TCLP and 100 times greater than release observed from the
DWL.T. Copper release from the availability leach test represented less than 35% of;the total content in
ARC residue, and less than 25% of the total content in bottom ash and combined ash;.
Potassium (Figure 7.24): Potassium release was approximately 14,000,4.000 and 6.000 mo/kg ash from
untreated APC residue, bottom ash and combined ash, respectively. Potassium release from APC
residue was increased by Process 1 and the WES Control, compared to untreated residue. Release was
greatly increased by Process 3 for all residue types, compared to the respective untreated residues,
most likely because of the high potassium content of one of the process additives. No other treatment
effects were significant. Potassium release from the availability leach test was similar to that observed by
the DWLT and slightly greater than that observed from the TCLP. Potassium release from the availability
leach test was almost the entire potassium content of the APC residue, but less than half of the total
i
content of the bottom ash and combined ash. \
Sodium (Figure 7.24): Sodium release was approximately 18,000,5,000 and 7.000 mg/kg from untreated
APC residue, bottom ash and combined ash, respectively. Sodium release from APC residue was
increased by Process 1, compared to the untreated residue. Process 2 increased sodium release from
the APC residue and greatly increased release from the bottom ash and combined ash, most likely
because of high sodium content in one of the process additives. Sodium release from residues treated
by Process 2 also was highly variable, with release from each residue type ranging by greater than 20.000
mg/kg ash treated. No other treatment effects were significant (.80 level) for all three residue types.
Sodium release from the availability leach test was similar to that observed from thei DWLT and TCLP.
Sodium release from the availability test was approximately 70 % of the total content of the APC residue,
but only between 25 and 30% of the total content for the bottom ash and the combined ash.
Lead (Figure 7.25): Lead release was approximately 1.000.500 and 500 mg/kg ash for untreated APC
residue, bottom ash and combined ash. respectively. Lead release from APC residue was increasedby
Processes 2 and 3 and greatly increased by the WES Control process, compared to the untreated
residue. Lead release may have been increased by these processes because of the highly alkaline
nature of the S/S matrix. Lead release from APC residue was greatly decreased (by several orders of
magnitude) by Process 4. Lead release from bottom ash was not changed by any ;of the treatment
processes. High variability in release from the untreated bottom ash most likely masked any treatment
effects Release from the combined ash was oreafiy decreased by Process 4. compared to the
untreated residue. All other treatment effects were not significant (.80 level). Lead release observed by
the availability leach test was substantially greater than release observed by both TCLP and DWLT.
131 i
-------
Lead release from the availability leach test was up to 35% of the total content for ARC residue and
approximately 50% of the total content for bottom ash and combined ash.
Zinc (Figure 7 25): Zinc release was approximately 8,000.3,000 and 3.000 mg/kg ash for untreated APC
residue bottom ash and combined ash. respectively. Release from APC residue was increased by
Process 3 and the WES Control. Release from bottom ash was decreased by Process 1. and release
from combined ash was not changed signiffcantly (.80 level) by any of the treatments. Zinc release from
the availability leach test was several orders of magnitude greater than release observed by both the
TCLP and DWLT. Zinc release by the availability leach test was less than 50% of the total content for all
three residue types.
Chloride (Rgure 7.26): Chtoride release was approximately 150.000.32.000 and 32.000 mg/kg ash from
APC residue, bottom ash and combined ash. respectively. Re.ease from APC residue was increased*
the WES Control process compared to the untreated residue. Release from bottom ash was decreased
by Processes 1 and 4. Re.ease from the combined residue was not changed significantly (.80 level) by
any of the treatment processes. Process 4 applied to combined ash, however, resu.ted in a high degree
of scatter in the chloride release data, where two of the data replicated closely, and suggests decreased
release. The third data point may be an outlier. Chtoride releases from the availability leach test was
similar to releases observed from the TCLP and substantially lower than releases observed from the
DWLT Releases observed by the availability leach test were approximately the total chloride content as
determined by NAA, further substantiating analytical difficulties with the extraction method of total
I
analysts.
SuKate (Rgure 7.26): Sulfate release was approximately 100.000 ma/kg ash irom the APC residue and
30 000 n^kg ash .rom both the bottom ash and the combined ash. Reiease trom the APC rescue was
gnUr tncwoed by Process 3 and the WES Controt process compared to the untreated rescue.
Release also was greatly /ncreasedby Process 3. applied to bottom ash and combined ash. Tte was
probabV the resu« of the significant sulfate content In one of the process additives. Release from
bottom ash also was decreased by Process 1. Releases observed by the ava«abi,«y leach tes, were
approximately one order o, magnitude greater than tha, observed from the DWLT and substantially
greater than observed by the TCLP. Sulfate release from the availab«y leach tes, was much greater
L the content measured by totai analysis. MM* substanBa, M*» of the total analysis used.
Conclusions from me availably leach test are summanzed ,n Tabie 7.8. Only Process 4 rested in
decreased re,ease from APC residue, which resumed in orea^cma^ release o, aU,m,num and e£
Lcesses 1 and 3 resulted .n increased cadrrtum release from APC reside. Processes 1 and 3 resulted
132
-------
in increased lead release, and the WES Control resulted in greatly increased lead release from the ARC
residue. All processes applied to ARC residue resulted in increased or greatly increased release of
salts. Process 1, applied to bottom ash, resulted in decreased release of cadmium, zinc, copper,
chloride and sulfate. Process 4. applied to bottom ash, resulted in decreased release of aluminum and
chloride. Processes 2 and 3, applied to bottom ash, resulted in increased and greatly increased,
respectively, release of salts. Process 4, applied to combined ash, resulted in greatly decreased
release of aluminum and lead. Processes 1.2 and 3 all resulted in increasedor greatly increased release
of salts from combined ash. The WES Control process had no effect on release from either bottom ash
or combined ash. These results suggest that under constant pH conditions, only Process 4, applied to
ARC residue and combined ash, and Process 1, applied to bottom ash. had positive treatment effects.
The remaining process applications had either no effect or a negative treatment effect.
7.5 ACID NEUTRALIZATION CAPACITY LEACH TEST !
Figures 7.27 through 7.44 present pH Mration curves and cadmium, chromium, copper. lead and zinc
extract concentration as a function of pH for untreated and treated MWC residues. Extract concentrations
are indicative of solubility for metals as a function of pH except when extract concentrations increase to
and maintain a constant concentration at acidic pH. This phenomena is indicative of complete
solubilizatton of the available fraction of the metal. Horizontal lines on each of the figures are used to
indicate detection limits. Discussion is provided for the titratton curves and each of the metals
concentrations curves are provided in the following paragraphs.
pH titratfon curves (Figures 7.27 - 7.29): A principal change between the untreated and treated residues
which effects leaching properties is the matrix alkalinity and acid buffering capacity. Untreated APC
residue required approximately 7 meq/g of acid to titrate to pH 7 while bottom ash and combined ash
each required approximately 2 meo/g. This is in contrast to the addition of 1.98 meq/g of acetic acid
added for the TCLP. Thus, the very high buffering capacity of the MWC residues clearly overwhelm the
acid addition for many leach tests where the amount of acid, not the extraction pH. is the controlled
variable. The greater amount of acid required to titrate the APC residue is a direct consequence of lime
utilization during the acid gas scrubbing of combustion gases. Furthermore, the buffering capacity of
APC residue and combined ash can be substantially influenced by the acid gas scrubber operation on
the municipal waste combustor. Metals solubility, and hence release, is strongly affected by aqueous
solution pH and therefore by residue buffering capacity.
Treatment of APC residue by Processes 1 and the WES Control did not significantly alter the buffering
capacity of the residue. Processes 2 and 3 slightly increased the buffering capacity to 7.5 meq/g treated
133 i
-------
residue Process 4 decreased the buffering capacity of APC residue to 3 meq/g. All treatment
processes increased the buffering capacity of bottom ash and combined ash. Titration curves for bottom
ash and combined ash were similar within processes. Processes 1,2,3.4 and WES Control increased
buffering capacity (to PH 7) to 3,9, 6. 2.5. and 4 meo/g treated residue. respective.y. These changes ,n
buffering capacity are directly responsible for the extract pHs observed from the TCLP and DWLT.
Cadmium (Figures 7.30 - 7.32): Cadmium extract concentration was a strong function of pH for all
untreated and treated residues. Extract concentration from all untreated rescues was below detects
limits at PH greater than 10. As PH decreased froln 10 to 6 for untreated APC residue. cadm,um
concentration increased from 0.03 mgrt to 30 mg/.. Extract concentratton from untreated combined ash
increased from 0.03 mg/l to approximately 4 mg/. as pH decreased from 9 to 6. Similarly, extract
concentration from bottom ash increased from 0.03 mg/1 to approximately 5 mg/. as pH decreased from 8
to 6 The dHf erence in pH below which the extract concentrations began to increase for APC rescue.
combined ash and bottom ash was principally a result of chloride concentration in the extracts. H,gh
chloride concentrations tend to increase cadmiumlso.ubi.ity through complexation. APC residue had the
greatest chtoride concentration while bottom ash had the towest. Treatment of APC residue resulted ,n a
Lnge in the pH - concentratton curve on,y for Processes 1.4 and the WES ^/^^
WES Contro, shitted to pH 9 ft. PH be.ow which extract concentrations increased Process 4 sh-tted the
PH at which the maximum cadmium concentration was attained from pH 6 to 4 but did not shrft the PH
below which the concentratton begins to increase!
Chromium (Rgure 7.33 - 7.35): Chromium extract concentration as a function of pH followed severa.
characterise patterns for untreated and treated residues. The differences in extracts behavor most
likely can be attributed to different speciatton of the chromium in the different untreated and treated
resLs. The first characterise pattern was that indicated by the untreated and treated APC rescue.
except for treatment by Process 4. .n this characteristic pattern, chromium concentratton was less than the
detection Ml at pH 12. At PH ,ess than 12 and greater than 10. chromium concentratton gradually
^easedfromO, n*/,to0.4n^. The extract toncentratton remained fairiy constant at approximately
4 mg/l at pH between 4 and 10. At PH less than 4. the extract concentration increased to a max-mum of
4n^atapProximate.yPH 2. This characteristic pattern a,so was observed for bottom ash treaedby
P™Ta.dWEScontro,.an,combinedashtreatedby Processesl. 3 and the WES c*ntro,. The
second characterise pattern was typ«ied by APC residue treated by Process 4. ,n this pattern
chrorniumconcentration increased toamaximum of approximately 5 mg/l with decreas.ng pH. The
s.oPeoftheconcentrationCurvedecreasedsubstantia..yatpH.essthan4. This pattern also was
observed for bottom ash treated by Process 1, The third pattern observed is typified by untreated
134
-------
bottom ash. In this case, the extract concentration remained below the detection limit until the pH was
less than a certain value. At pH less than that value, the extract concentration increased rapidly with
decreasing pH. This pH was 6 for untreated bottom ash. This pattern also was observed for Bottom
ash treated by Process 4 (at pH 6-8). untreated combined ash (at pH 4) and for combined ash treated by
Process 4 (at pH 6-8). Process 2 applied to both bottom ash and combined ash resulted in considerable
data scatter and may reflect a somewhat amphoteric behavior at pH greater than 11. In summary.
treatment of APC residue resulted in a slight reduction in chromium solubility only for Process 4.
Treatment of bottom ash and combined ash resulted in increased chromium solubility at neutral to slightly
acidic pH for all treatment processes.
Copper (Figures 7.36 - 7.38): Copper extract concentrations for untreated and treated APC residue
indicated concentrations increasing from below the detection limit (0.1 mg/l) to between 10 and 100 mg/l
wrth decreasing pH. The characteristic pH below which this concentration increase was observed was 6
lor untreated APC residue. 5 for Processes 1 and 2, and. 7 for Process 4 and the WES control.
Untreated and treated bottom ash resulted in low extract concentrations at pH greater than 6-8 and highly
scattered concentrations at pH less than 8. Generally the highest extract concentrations (up to 4 mg/l) at
neutral to slightly acidic pH were observed for untreated and treated combined ash. Maximum extract
concentrations were approximately 100 mg/l. No significant reductions in copper solubility were
observed as a result of treatment of bottom ash or combined ash. ;
Lead (Figures 7.39 - 7.41): Lead extract concentrations for untreated APC residue exhibited a classic
amphoteric behavior and were at a minimum of approximately 1 mg/l between pH 6 and 10. At pH
decreasing betow or increasing above this range, the extract concentration increased rapidly to up to 100
mg/l All treatment processes decreased the extract concentration to at or below the detection limit (0.5
mg/l) between pH 5.5 and 10. Processes 2.4 and the WES Control were most effective within this pH
range and may have extended this reduction to slightly more acidic pHs. Process 4 also decreased the
amphoteric behavior by reducing the extract solution pH to less than 12 when no acid was added.
Untreated and treated bottom ash and combined ash did not exhibit amphoteric behavior because the
most alkali pH observed was less than 11.5. All untreated and treated bottom ash;and combined ash
extracts attained a maximum concentration of approximately 200 mg/l at a pH of 2. The prinapal
difference among responses was the pH betow which lead concentration increased rapidly wrth
decreasing PH. This PH typically was pH 6 for untreated APC residue and bottom ash and pH 5 for
untreated ar>d combined ash and treated residues. All extract concentrations for bottom ash and
combined ash were at or betow the detection limit at pHs greater than 6.
135
-------
Zinc (Figures 7 42 - 7.44): Zinc extract concentrations exhibited similar behavior for all untreated and
treated residues. At pH greater than 8 the extract concentrates were wide.y scattered between 0.1
mo/l and 10 mg/l for APC residue and between the detection limit (0.02 mg/l) and 0.1 mg/l for bottom
ash and combined ash. This scatter extended to 1.0 mg/l for bottom ash and combined ash treated by
Process 2 At pH less than 8, all extract concentrations increased rapidly with decreasing pH unt.l a
maximum concentrate of approximately 1000 mg/j was attained at PH between 4 and 6, depending on
treatment process. The only effects resulting from treatment were a decrease in the pH below whK*
the extract concentrates increased and a change in the slope of the concentration curve. Thes* effects
were indicated only for Process 4 applied to APC residues.
76 COMPARISON OF MAGNITUDE AND CONSISTENCY OF RESULTS FROM TESTS FOR
LEACHING POTENTIAL
Tables 7 9 through 7.1 1 provide summary comparisons of the results form the TCLP, DWLT and
ALT Most of the resu.ts from the dKferent tests indicated similar trends in the treatment effects, however
several important excepttons existed. In these cases, one or more .eaching test indicated a decrease or
increase in a particular species release while the remaining leaching tests indicated contrary results.
Contrary results from the different leaching tests are discussed by residue type and element or spec.es
in the sections that follow.
7ft-! Treated APC Residue
AJuminum: For Process 4, me ALT indicated **» ——* —» "» •" dtetilted water "* ""
Wfcated to^o-release m TCLP indeed no signitican, change. This result is a reflect™ of the the
increased solubilHy a,uminum species a. tower pHs. Process 4 resulted in an end poM pH beMeen 11
and 1 1 .8 .or the DWLT, while the untreated residue and ail other treated reskiues resutted „ DWLT end
point pHs o. approximate* 12 or greater. Thus, by comparison with the untreated APC res,due, DWLT
release increased. Result o. the ALT indicated a substantial reduction in release most likely because o.
.he formation ot insoluble aluminum-phosphate mineral phases. DiBerences In end point pH were not a
factor because the ALT was carried out at constant pH.
Catoium: For Process 4, the DWLT indicated a o^o in caicium release wl* the ALT
tereas9 in cawum release. The explain ,or mis resu.is undea, The WES control process
release .or me DWLTwMe indicating gr^to™** release tor the TCLP and .n
me ALT. Decreased re,ase ,or me DWLT most *e,y relteas Sreater sta^Hy o, the
r^rt^nd cement matnx .han in .he untreated material a, aKaline pH. increased release a, tower
136
-------
pHs (ALT and TCLP) reflects the increase amount of calcium present in the treated matrix and the
dissolution of the portland cement in acidic conditions.
Copper: For the WES control process, decreased release was indicated by the DVVLT while greatly
increased release was indicated by the ALT. This result most likely reflect increasing copper solubility
with decreasing pH.
Lead: Processes 2. 3 and the WES Control indicated either greatly decreased release for the TCLP while
indicating increasedor greatly increased release for the ALT. These results generally reflect the
amphoteric nature of lead (Figure 7.39). Lead solubility greatly decreased at pHs less than 12 until
greatly increasing again at pHs less than 5. Treatment by Processes 2, 3 and the WES Control resulted in
TCLP end point pHs less than 11 .8 while untreated residue had a TCLP end point pH of approximately
12. Processes 2 and WES Control also indicated greatly decreased release forthe;DWLT. This is most
likely indicative of respeciation of the lead within the treated matrix. Respeciation also may be indicated
by the increased release at pH 4 by the ALT.
Zinc: ProcessSindicatedgreaWydecreasedreleaseiorTCLPwhile/ncreasedreleaseforALT. The
decreased release for TCLP is a result of decreased*™ solubility at high pH. For this case, the TCLP
end point pH was greater than 11.
Sulf ate: Process 1 indicated increased release for the TCLP and greatly decreased release for the
DWLT. Process4irxJicatedflreaf/y/ncreasedreleaseforTCLPanddecreasedreleaseforDWLT. The
WES Control indicated greatly decreased release for DWLT and greatly increased release for ALT. The
reasons lor these conflicting results are not clear.
i
7,6.2 Treated Bottom Ash , j
/auminum- Process 1 and WES Control indicated greatly decreased release for DWLT and greatly
Creased release for TCLP. Decreased release for the DWLT most likely is indicative of respeciation of
the aluminum and incorporation into the cement matrix. Increased release for the TCLP most likely
reflects increasing solubility with decreasing PH. The TCLP end-point PH for the untreated and treated
l»ttom ash was approximately 8 and 5.5, respectively.
yfiS Treated r°mhined Asn
ralcium- For Process 2 the DWLT indicated greatly decreased calcium release while the ALT indicated an
increase in calcium release. Decreased release forthe DWLT most likely reflects decreased matrix
137
-------
solubility at greater pHs. The endpoint DWLT pH for the residue treated by Process 2 and the
untreated residue were approximately 12 and 10.8, Respectively.
Copper- Process 2 indicated decreased release for TCLP and greatly increased release for DWLT.
ProTss 2 showed slightly amphoteric behavior for copper (Fig. 7.38) and had a greater end point PH
(ca. 12) than for the untreated residue (ca. 10.8).
Lead- Processes 1,2,and 3 Indicated great* decreased release for the TCLP while indicating gnat*
/ncreas*/release forthe DWLT. These results generally reflect the amphoteric nature of lead as
described above for APC residue.
ntential ComDS
Table 7 12 presents lor several elements a comparison of me fraction of that element present, n
the untreated residue that was released Mowing treatment during the AVT. This comparison is
presented to provide an indication of the extent of tong term Immobilization of these elements as a
-""
*. o, the treatment processes evaluated. T»e AVT was selected for this
onstant f,nal PH)
provwes for the most uniform extraction conditionsiof me leach tests earned out (e.g., constant
and represents the most aggressive potential exposure scenario or -worst case." ChemKa
tan****, varied considerably by specif* eiernent. process applied and residue type treated^
Resutts to, APO residue indicate that cadmium, calcium, chloride, sodium and potass,um were not
irreverswy chemicaliy bound to an appreciable exient. This also was the case for copper lead and z,nc
TAPC rldue treated by Processes 2, 3 and me WHS CM* A^minum. copper, lea and „, were
chemical.ybc.nd.osfcnr.amextentbyProcesseslarKU. Furthers. almost complete chen,ca,
immobifeatton of lead occurred for APC residue treated by Process 4.
Resu«s for bottom ash MM. that calcium and chloride were not irreversibly chermcally bound it.
an appreciable extent. This also was me case for sodfcm ar* zinc fcr bo«om ash treated by Process 2
« Tpotass^m treated by Process 3. Greater than approximately 80% o, me aluminum. «pper «d lead
waslm^y immobii^ed by al, o, the processes in me treated bottom ash. Results for cad™n,
^,ass.um arx, zinc varied by process type between 49 and 91% retention for those processes w»h
a
appreciable extent. This also was the case for sodfcm in combined ash treated by Process 2 and
Tm treated by Processes 1 . 2 and 3. Greater man 70% chemtea, immobilize o, alunvnum and
achieved by an processes appHed to combined ash. ResuKs for iead varied cons,derab,
138
-------
by process between no appreciable chemical retention ( Process 3) to 96% retention (Process 4).
Limited to no appreciable chemical retention of cadmium was achieved except by Process 1.
7 ft * s,,mmary of teaching Potential Results hv Treatment Process >
Table 7.8 through 7.10 provide a comparison of release results by Process type and element for
each residue type.
APC residue:
• Process 1 resulted in no change to greatly increased release for aluminum, calcium,
cadmium,potassium, sodium and chloride. No change to greatly decreased release was indicated for
copper, lead and zinc.
• Process 2 resulted in no change to greatly increased release for aluminum, calcium, potassium,
sodium and chloride. No change to greatly decreased release was indicated for copper, zinc and sulfate.
• Process 3 resulted in no change to greatly increased release for aluminum, calcium, cadmium,
potassium and sulfate. No change to greatly decreased release was observed for copper only. Lead
arid zinc results were confounded by changes in end point extract pHs.
• Process 4 resulted in no change to greatly increased release for cadmium. No change to
greatly decreased release was indicated for potassium, copper, sodium, and chloride. Substantial
reductions in lead release was observed compared to all other processes tested. Aluminum, calcium,
zinc and suffate results were confounded. ;
• The WES Control resulted in no change to greatly increased release for aluminum, calcium.
potassium, sodium and chloride. Copper, lead, zinc and sulfate results were confounded.
* Bottom Ash:
• Process 1 resulted in no change to decreased release for calcium, cadmium, copper, chloride
and zinc. Release was decreased^ greatly decreased for sulfate. Aluminum had confounded results.
There was no change in the release of potassium, sodium and lead.
- Process 2 resulted in no change to greatly increased release of aluminum, copper, lead, zinc
and sulfate. Sodium release was greatly increased which was attributed to a process additive.
- Process3resunedinnochangetogreaf/y/ncreasedreleaseforcalcium,potassium,copper
and lead. Potassium and suffate release were greatly increased which was attributed to a process
additive. No change in release was observed for aluminum, cadmium, sodium, chloride and zinc. No
decreases in release were observed.
. Process 4 resutted in r» change to preafV/^^^ No
change in release was observed for potassium, copper, sodium and lead. No change to greatly
decreased release was observed for aluminum, chloride and sulfate.
139
-------
. The WES Control resulted in no change ti or**,// ha*** release .or cadmium, copper, lead
zinc No change In release was observed tor ca,cium, potassium, sodium and chtonde. No change to
-lease was observed to, suHate;. Oontounded results were observed tor alum™,,
inm^ed,aeKe lor calcium. No charge to
aluminum.cadmlum.copper.zinc.andsul.ate. Nochange,n
. Process 2 resulted in no change to increased, etease forcadmium and sulrate.
tereas«- release was observed to, sodium m was anrtbuted to a process additive. No change was
Trved tor aluminum, po.ass.um, and chtor,d, Contounded results were observed tor copper, lead
was observed tor potassium and sultate which we,e aMntuted ,0 a process
in release was observed tor sodium aHd ch«. No change to
—
* pfOGSss *T rtjsuiw*** ii 11 ^* *** *fc*1 *o ** * - ,
copper, iead. chloride, zinc and suifate. No increases in release were observed. No change „
was observed for potassium and sodium. ••„«.«
.The WES^onm,! resulted in no change to increased re/ease tor lead. No change ,n release
was observed lo, cadmium, potassium, copper, sodium, chlonde and zinc. No change to —-
decreased release was observed for aluminum, calcium and sultate.
-------
Table 7.1. Leaching Test Liquid to Solid Ratios and Treatment Process Dilution Factors.
Leach Test Liquid to Solid Ratio (ml extractant/g extracted)
TCLP 20.1
DWLT ' 4 serial extractions at 10:1 each
Availability leach test 200:1
ANC 5:1 ,
Process Dilution Factors (kg treated residue/kg untreated residue)
••-
Process 1
Process 2
Process 3
Process 4
WES Control
Bottom Ash
1.2
1.6
1.8
1-2
1.2
APC Residue
2.0
2.2
2.4
1.3
2.2
i
Combined Ash
1.3
; 1.6
I 1-8
! 1.2
1.2
141
-------
Table 7.2. Comparison of selected metal concentrations in Extraction Fluid 1 and Extraction Fluid 2.
mg/l
Cr
Cd
Cu
Pb
Zn
pH (S.U.)
APC Residue
E.F.1 * E.F.2"
27
5
74
37033
3987
11.91
21
5
74
32633
4330
11.88
Bottom Ash
E.F.1 E.F.2
5
7
95
41
527
7.79
79
161
6437
1995
61300
5.24
Combined Ash
E.F.1 E.F.2
5
1 0
373
41
270
6.3
67
508
2850
2127
39133
5.2
* E.F.1 = Extraction Fluid 1
" E.F.2 « Extraction Fluid 2
Table 7.3.
Symbol
Relative categories of treatment jeffects.
(-3)
(+3)
Category
Decreased release compared to other processes in addition to
less than 1/2 that of the untreated residue;
Greatly decreased release (release of less than 1/2 that of the
untreated residue);
Decreased release (significant at the 0.80 confidence
level as compared to the untreated residue);
Increased release (significant at the 0.80 confidence
level as compared to the untreated residue);
j
Greatly increased release (release of greater than twice that
of the untreated residue); and.
Increased release compared to other processes in addition to
twice that of the untreated residue.
142
-------
Table 7 4 Summary of conclusions on treatment effects on contaminant release by TCLP
(refer to table 7.3 for key). I
APC Residue Bottom Ash
Process 1
•*
Process 2
. **
Process 3
~
Process 4
~
WES Control
1
Pb, Zn
Cu
Al, Ca. Cl, K, Na, S04
Pb.Zn
Al, Cl
Ca, Na
Pb, Zn
K
S04
Pb (-3)*
Cd, Zn, S04
Pb.Zn
Na
Al, Ca
S04
Ca
Al
S04
Al, Na
Ca, K, S04
Ca
Cd, Zn
Cu, Pb
Al, Cd, Zn
Combined Ash
Cd, Pb, Zn
Cu, S04
i
Cd, Pb, Zn
Cu !
Na
Pb
Cd, Cu, Zn
Ca, K, S04
Pb ;
Cd, Cu, Zn
i
!
'<
143
-------
Table 7 5 Summary of conclusions on treatment effects on contaminant release by DWLT
Extracts 1 and 2 (refer to Table 7.3 for key).
APC Residue Bottom Ash
Process 1
.
+
++
Process 2
.
+
+*
Process 3
„
+
•M-
Process 4
•
~
WES Control
• *
.
~
Cu, Pb, Zn, SO4
Al, Ca, Na, TDS, TOC
K
Pb, Zn, SO4
Cu
Al, K, TDS, TOC
Na
Cu
Al, SO4, TDS, TOC
K,
Cu, Pb(-3r, Zn, Cl
Ca, K, Na, SO4
Al
Pb. Zn, SO4
Ca, Cu
Al, K, Cl, TDS. TOC
Al. SO4
Cl
Ca
Al. Pb, Zn, TOC
Cu, Na, S04(+3), TDS
Ca,TDS
K, Pb, SO4
SO4
C«, TDS
Al. S04
Pb
Combined Ash
Al, SO4
Cu
Pb
Ca
Zn
Cu, Na, SO4(+3)*, Pb,
Cu
Ca
K. Pb(+3)*. SO4, TDS
SO4
Ca, Cl
Al, SO4
Ca
Pb
144
-------
Table 7.6. Summary of conclusions on treatment effects on contaminant release by DWLT
Extracts 3 and 4 (refer to Table 7.3 for key).
APC Residue Bottom Ash ' Combined Ash
Process 1
•
+
•M-
Process 2
.
+
**
Process 3
•
+
•M-
Process 4
-
•*•+
NES Control
• •
•M-
Pb, Zn, SO4
Cu
Cl, TOC
Pb, Zn, SO4
Na
Al, TOC
Cl, SO4
TOC
Pb
Ca, Cu, Zn, Cl, SO4
Al
Pb , Zn, SO4
Al, Cl, TOC
Al
Cu
Ca
Al
Ca, K
Na
Ca, K, Pb
TOC
S04
Ca
Al
SO4
Ca
Al, SO4
cu ;
Ca
Cl
Al, SO4
Cu
K
Na
" i
Cu
K
SO4
Al !
i
Al, SO4
.
145
-------
Table 7.7.
Comparison of total dissolved solids released for the distilled water leach test (g
released/kg ash, dry solid), and iri parenthesis, the weight % of the material
released.
Untreated
Process 1
Process 2
Process 3
Process 4
WES Control
Bottom
Ash
58 (6%)
S3 (4%)
187 (12%)
126 (7%)
47 (4%)
59 (5%)
APC
Residue
289 (29%)
640 (32%)
*, ,
565 (26%)
!
578 (24%)
194 (15%)
671 (30%)
Combined
Ash
60 (6%)
54 (4%)
208 (13%)
144 (8%)
56 (5%)
79 (6%)
146
-------
Table 7 8 Summary of conclusions on treatment effects on contaminant release by availability
teach test (refer to Table 7.3 for key).
APC R<"?Wi"» Bottom Ash Combined Ash
Process 1
•M-
Process 2
++
Process 3
1+
Process 4
•M-
WES Control
++
Ca. Cd. K. Na
•
Na, Pb
Al, Ca, Cd, Pb, Zn,
K, SC-4
Al, Pb
Ca
Ca, K,Zn
Al, Cl, Cu, Pb, SC-4
Cd, Cu. Cl, SC-4, Zn
Na
Ca, Cu
K, SC-4
Al, Cl
Ca
•
Ca
Na
i
Al, Ca
K, 564
Al, Pb
i
i
147
-------
0)
V)
o
10
8
o
s
-i D.
>»
CD
t- CO
o o>
eq
r*.
•S
"3
CD
CL
O.
+
+
£
co
S
CL
-------
1
0)
in
a
u
S
o.
01
3
u
2
a
^ 3
O 0,
x. a,
i_ a
^ 8
" £
S g
2. «
S i
1
H
S
f
*
J
^
* +
^.
+
^.
*
^
+
t
.
•
•
•
+
^
.
•
i
a
+
<^>
+
.
+
•
« o g
(0
a
E
S
5 CQj
75. "
£
1 i
-------
s
£
Dt
P3
0)
tr
0)
0!
0!
«
0)
0)
(O
(0
•g
I
o
u
I
73
2
5
O
CO
CO
-------
Table 7.12. Fraction of total element present in treated residues released during the
availability leach test.
APC Residue
Aluminum
cadmium
pateium
Chloride
popper
Lead
{Sodium
Potassium
IB ot torn Ash
[Aluminum
(Cadmium
pateium
(Chloride
popper
Lead
(Sodium
Potassium
Combined As!
Aluminum
Cadmium
Calcium
Chloride
popper
Lead
Sodium
Potassium
(Zinc
Total *
(mg/kg
ash)
25,586
137
290,725
90,325
515
2,969
20,467
15,598
17.453
51,749
35
113,087
24,301
1,477
1,563
19,777
9,510
6,793
I
56,083
32
123,357
28,922
1,734
1,054
21,678
13,245
6,172
Process
1
16
2:1 OOt
2:1 OOt
2:1 OOt
30
40
>100f
38
5
23
53
61
5
9
17
21
10
1 1
2:1 OOt
2:1 001"
55
14
24
32
52
27
Process
2
31
95
stioot
55
72
2»100t
62
10
29
2:1 OOt
2:1 OOt
18
10
48
3:100t
27
63
2:1 OOt
2:1 OOt
23
47
2:100f
57
41
Process Pr
3
33
2t1 OO'f
2:1 00^
2:1 OO'f
76
76
2:1 OOf
>100f
69
1 1
46
2:1 OOt
13
20
38
24
21
63
2:1 OOt
22
34
32
ocess
4
I /w /
1
87
85
25
0.1
94
>100t
38
1
49
78
71
15
3
17
24
27
1
81
8c
5
14
4
24
36
35
WES
Control
o
9
i 2:1 OOf
2:1 OOt
2:100t
>100t
>100t
2:1 OOt
90
51
92
S»100t
10
21
23
i 47
31
i 7!
i nnl
1 9
32
< 24
i 43
• 34
* All total element concentrations are based on NAA results except lead, which is based on
SW-846 results.
t Values nominally greater than 100% were calculated because of either ^contributions from
process additives or correction for process dilution.
151
-------
Figure 7.1. TCLP extract pHs.
Figure a. APC Residua
11-
lo-
g-
s'
7-
6-
. • ' •-'
E3
pq
u=
12
11
10
9
8-
7-
6-
5
V1 V2 V3 V4 WES Unt
Figure b. Bottom Ash
12
VI V2 V3 V4 WES Unt
Figure e. Combined Ash
ID-
S'
8
7-
6-
5
>4.94
V1 V2 V3 V4 WES Unt
152
-------
Figure 7 2. Cadmium and copper concentrations in TCLP extracts. Regulatory limit for cadmium
concentration in TCLP extracts is 1000 u.g/1. i
1,000-
800-
600
400
200
0
1.000-
800
. 600
b
400
200
Figure a. ARC Residue, Cd
<6.6
J_L
<64
V1 V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, Cd
1.000-
800-
600
400
200
0
V1 ' V2 ' V3 V4 WES Unt
Rgure e. Combined Ash, Cd
LJ
V1 ' V2 V3 V4 WES Unt
1
100-
80
60
40-
20
Figure b. APC Residue, Cu
5.000-
4.000-
3,000
2,000
1.000
VI V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, Cu
<53.0
V1 ' V2 ' V3 V4 WES ' Unt
Figure f. Combined Ash, Cu
5.000
4,000
3,000
2.000
1.000
0
/
Max. Value:
6100
-_ IT"'./ J\
~ —^ \jf_ f -*
s s
NxV
X X *
f S
XxV
i
X X *
.*_•;. ••.*•*
JVV^i
^ft
V1 V2 ' V3 V* WES Unt
TCLP extraction fluid 2 was the required fluid for all cases ej^ untreated bottom ash and
Process 1 applied to bottom ash and combined ash for which TCLP extraction fluid 1 was
required. •
153
-------
Figure 7.3. Lead and zinc concentrations in TCLP extracts. Regulatory limit for lead
concentration in TCLP extracts is 5000 u.g/1.
40.000
Figure a. APC Residue, Pb
30.000
H20.000
10.000
0
TCLP Limit
400
300
H 200
100
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, Pb
<3.0
I I i
VI V2 V3 V4 WES Unt
4.000-
3,000
2.000
1.000
Figure e.
<31.0
' \
° V1 ' V2 '
Combined Ash, Pb
.?
Max. Value:
4460
<79.6
I
•N "^ •
>x
>%'V
'*/*>'
"j"".."""1'
$&•
'.*"•*.*"•*<
*V*Vr-V
II
:•:•:•:•:
V3 V4 WES Unt
Figure b. APC Residue, Zn
10.000*
! 8.000
i
6.000
O)
i
4.000
2.000
•
%
..
' R T/ "U
•VI ' V2 ' V3 V4 WES Unt
100.000
Figure d. Bottom Ash, Zn
1
80.000-
60.000
I
40.000
20.000
0
*3
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Zn
100.000
80.000
60,000
^"
3.
40,000
20.000
,
<257 <100
I I
I I [s^]E3
'&&'
%Z?
m
^g
vi V2 ' V3 V4 WES Unt Note:
VI VZ Vo V* WCB uni -
TCLP extraction fluid 2 was the required fluid for all cases except untreated bottom ash, and
Process 1 applied to bottom ash and combined ash for which TCLP extraction fluid 1 was
required.
154
-------
Figure 7.4. Aluminum and calcium release during TCLP extraction, corrected for process dilution.
Figure «. APC Residue, Al
Figure b. APC Residue, Ca
50:
40-
73
11 30
f
(» nn
£ *
10
mg/kg ash treated mg/kg ash treated
S ft 8 S 8 £ $ ?
« 8 8 8 08 ?,?.,..?
X X
X X
^ s
V,
r*>".»
V1 V2 V3 V4 WES Unt
Rgure c. Bottom Ash, Al
. . <3.8 <7.4 <6.
i 1 *
V1 V2 V3 V4 WES Unt
Rgure e. Combined Ash, Al
Max.: 3883 &£
Mid.: 2265 ••££
1
^N N y ••.- .,*
v^ S
L™^ «?is <7.7 'X'N '•''•'••'•-'•
LJ-.^...
•400,000-
•g 300.000-
ra
g 200,000
01
E 100.000
1CA nno.»
120,000
1 90,000
1
4? 60,000
en
30,000
icnnoo
120,000
1
£ 90,000
1
^ 60,000
Ol
30,000
C
^ s
<-'.-
a^ra
[.•.y/.yv
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Ca
I
^ /
wm^t^ \ x ^
__^__ ' x
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Ca
.
= ,
SS* v'vX\
X^T^
i/- \t~> v/0 V/4 1A/CC I Int
Note:
Extraction Fluid 2 was the required extraction fluid for all cases £xjcfipl untreated Bottom Ash. and
^rn"«" Aohln^rnmhinfid Ash for which TCLP Extraction Fluid 1 was required.
Process 1 Bottom Ash and Combined Ash for which TCLP
155
-------
Rgure 7.5
. Cadmium and copper release during TGLP extraction, corrected for process dilution.
30
25-
"g
g 20:
1 1*
f 10
5
Figure «. APC Residue, Cd
<.03
1
I
en
30
20-
10
VI V2 V3 V4 WES Unt
Figure c. Bottom Ash, Cd
T 'T t
<0.3
30
20-
10
V1 V2 V3 V4 WES Unt
Rgure •. Combined Ash, Cd
1 1
"1 V2 V3 V4 WES Unt
as
£
Figure b. APC Residue, Cu
4
VV A
40
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Cu
=>=,
1
rfjt
X X >
S f
X X *
f f
X X >
J S
XX*
X X >
X X *
x'x''
XX*
M^^BM*
V1 V2 V3 V4 WES Unt
Rgure f. Combined Ash, Cu
I
1
t
200-
150-
100
50
0
y s
\
XX*
*•*???'
yjg
V1 V2 V3 V4 WES Unt
156
-------
Figure 7.6. Potassium and sodium release during TCLP extraction, corrected for process dilution.
Figure a. APC Residue, K r ,...„ Figure b. APC Residue, Na
40,000
T? 30.000
1
1 20.000
I
e 10.000
0
_
X V
1
is
.^^r, ,,mi
«
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, K
20.000:
16,000-
!•
jl 12.000
j=
s
'.? 8.000
I"
4,000
0
NX
t\N
^.v
l^Vv
=*= _S —
V1 ' V2 ' V3 V4 WES Unt
20,000
Figure «. Combined Ash, K
16.000-
12,000
' 8.000
I
4.000
0
V1 V2 V3 V4 WES Unt
Notes:
1. 1i
and
80,000-
60,000-
40.000
20,000
80,000
60,000
40,000
20,000
V1 V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, Na
80.000-
•g 60.000
B
I 40,000
t
20,000
V1 V2 V3 V4 WES Unt
Figure t. Combined Ash, Na
V1 ' V2 V3 V4 WES Unt
. all cases except untreated Bottom Ash,
Extraction Fluid 1 was required.
157
-------
Figure 7.7. Lead and zinc release during TCLP extraction, corrected for process dilution.
Figure *. APC Residue, Pb
Figure b. APC Residue, Zn
BOO-
•§ 600-
mg/kg ash trea
Afj-
r>.
• "•
sSX
f\.\N
k\\
<1 95
T ^^^mm»
££
•9JJ-
250-
1 ^
8 20°
1 150-
|" 100
50
O
%
I I N!^.'
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, Pb
Figure d. Bottom Ash, Zn
120-
•g 90-
73
£
1 60-
Jc
1"
SO-
ft.
<0.9
<1.6 <0.8 -.QO I
Mi -I
2.UOO-
1 ^s00
is
f 1,000.
en
^
f
0
<4.6 <4.3 <7.7
I i I sa
\\l
%'s ^
\ \ ^
\ \ >
V'
s^\ >
«• 1RR
^ IO*V
V1 ' V2 V3 ' V4 WES Unt
V1 V2 V3 V4 WES Unt
Figure •. Combined Ash, Pb
Rgure f. Combined Ash, Zn
120-
1 *
g
1 so-
o
"if
E 30-
ft.
<2.0 <12 <1-8 <2-3
I i I 1
\ \
\ \
;^
ft
ii
-"Vv'Vv1
*• •.*• *.*
/}.;.-}.;.
2,000
! 1 w"0
1 1.000
*s
E 500
<'
r.s
<4.0
I
\fr<
yjfr
Y/sk
^fy^y
m
^^^
•»VVM>1
V1 V2 V3 V4 WES Unt
Note:
TCLP Extraction Fluid 2 was the required extraction fluid for all cases fiscspl untreated Bottom Ash, and
Process 1 Bottom Ash and Combined Ash for which TCLP Extraction Fluid 1 was required.
158
-------
Figure 7.8. Chloride and sulfate release during TCLP extraction, corrected for process dilution.
Figure a. ARC Residue, Cl
Figure b. APC Residue, SO4
300,000 T
250000
<§
« 200,000
.to
"| 150.000
f 100,000
50,000
0
,
fiitfffi6&&
\M
\]V
ES
\« •
///
Ul
Unt
60,000 T
1
« 40,000
1
en
|" 20,000
,
\sS\
V^x\.
n^'T'^y^
KtMM
VI V2 V* V4 Unt
30,000
24,000
18,000
12.000
6,000
30,000
24.000
1
I 18.000
I
^ 12.000
Figure c. Bottom Ash, Cl
V1 V2 V3 V4 Unt
Figure e. Combined Ash, Cl
en
6,000
V1
V2 V3 V4 Unt
60.000
Ta 40,000
£
20,000
60.000
45.000
30.000
15.000
Figure d. Bottom Ash, SC*4
V1 V2
V4 Unt
Figure f. Combined Ash, SO4
V1 V2
V4 Unt
Note:
^^^^^^^^&^^B^Ash'and
^
159
-------
Figure 7.9. Distilled water leach test extract pHs.
u.
13.
12-
11
Extracts 1 & 2
Figure a. APC Residue
10
13
V1 V2 V3 V4 WES Unt
Figure e. Bottom Ash
12
11
10
13
VI V2 V3 V4 WES Unt
Figure e. Combined Ash
12
11
10
V1 V2 V3 V4 WES Unt
13
Extracts 3 & 4
Figure b. APC Residue
12
11
10
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash
12
11
10
13
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash
12
11
10
xx if1-:-.•.*•]
S \ 1 I I I I
V1 V2 V3 V4 WES Unt
160
-------
Figure 7.10. Aluminum release during distilled water leach test, corrected for process dilution.
Extracts 1 & 2 Extracts 3 & 4
16
1 12
£
3
f.
4
0
2,500-
2,000
T)
|i
II 1.500
!j|
^P 1,000
en
500
2.500-
13
il 1,500
1 -
!? 1,000
i
500
0
Figure a. APC Residue, Al
<0.4
~y~y I
caCDtssS-" I
V1 ' V2 ' V3 ' V4 WES ' Unt
Figure c. Bottom Ash, Al
P"*?**"?^l
.3.8 E^ ES3
B==1 |
V1 V2 V3 ' V4 WES Unt
Figure e. Combined Ash, Al
'// fci^
<4.5
^ I
20-
•g 15
* m
*
* s
4
9 CrtA*
2,000
^3
1 1.500
• |? 1,000.
500
0
9 «W1.
2000-
£ 1,500-
\
f 1,000
500
0
Figure b. APC Residue, Al
I
r-i i
^
/V,
ss< :«•
k X S
V1 ' V2 V3 ' V4 WES ' Unt
Figure d. Bottom Ash, Al
•
777 Illl
//.
^^^^
< 2S.O
VI ' V2 ' V3 V4 WES Unt
Figure \. Combined Ash, Al
=
c=a
•~^ | 1 <44.8 :
|
V1 V2 V3 V4 WES Unt
161
-------
Figure 7.11. Cadmium release during distilled water leach test, corrected for process dilution.
1.00
Extracts 1 & 2
Figure n. APC Residue, Cd
I
1
0.80
0.60-
0.40
0.20
0.00
"l T T T11
1.00
0.80-
0.60
0.40-
0.20
V1 V2 V3 V4 WES Unt
Rgure c. Bottom Ash, Cd
0.00
I 7 T T *L1
VI V2 V3 V4 WES Unt
Rgure e. Combined Ash, Cd
1.0U-
0.80-
0.60
0.40
0^0
T T T T T T
VI ' V2 ' V3 V4 WES Unt
1.00
Extracts 3 & 4
Figure b. APC Residue, Cd
0.80
JS 0.60
1
§ 0.40
0.20
0.00
. <- <. <.Q1 <.Q1
II _L_
1.00
0.80
1
I ' 0.60-1
1
|? 0.40.
E
0.20
0.00
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Cd
T 77TTt
1
1.00
0.80
0.60
0.40
020
0.00
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Cd
T T T T T T
V1 V2 V3 V4 WES Unt
162
-------
Figure 7.12. Calcium release during distilled water leach test, corrected for process dilution.
Extracts 3 & 4
200,000,
•g 150,000-
I
"1 100.000
E 50.000
0
CAiificia i ex i.
Figure ». APC Residue, Ca
r__]
« —
[ZZJ^23
. ... ' »wk ' t« \M \AJCC 1 hit
200.000,
•o 150.000
£
•§100.000
E 50.000
0
Figure b. APC Residue, Ca
I
— = Ea_E3 —
V1 V2 ' V3 V4 WES Unt
20,000
is 15,000-
-------
Figure 7.13. Copper release during distilled water leach test, corrected for process dilution.
Extracts 1 & 2
Extracts 3 & 4
I
f
S3
%
I
3
Jn
I
f
T5
2
1
Figure a. APC Residue, Cu Figure b. APC Residue, Cu
10-
8-
6
4-
2
<0.2 <0-1 f. ••.-'. t
1 W
8
I 6
•«
a
t 4
f
2
i n
<0.2 <01
I I
° V1 ' V2 ' V3 ' V4 'WES Unt V1 V2 V3 V4 WES Unt
Fiaure e. Bottom Ash, Cu Figure d. Bottom Ash, Cu
100-
80
60
40
20-
<0.8 <14 <1Q <2£
I c=3 i *i i i
8
75
1 6
f
2'
n
*|
° V1 ' V2 ' V3 ' V4 WES ' Unt VI V2 V3 V4 WbS Unt
Fiaure «. Combined Ash, Cu Flg"» «• Combined Ash, Cu
100
80
60
40
20
0
p*^^
8
•5
• 6
43 0
1
I *
2
n
i.' • . -*^
^___^ i' .' '.'i
' „. ' tm ' »« ' »M 'w/cc ' lint * V1 V2 V3 V4 WES Unt
V1 V2 V3
164
-------
Figure 7.14. Lead release during distilled water leach test, corrected for process dilution.
Extracts 1 & 2
Extracts 3 & 4
Figure a. APC Residue, Pb Figure b. APC Residue, Pb
800-
13
15
£ 600-
1
,!? 400.
O>
200-
c
0>
E &1
•
^-.'...-.'...i
f^R
j — -i <22.6
c= J
V1 ! V2 V3 V4 WES Unt
Rgure c. Bottom Ash, Pb
ESS
E
i/ y* "v* trrm
V1 V2 V3 V4 WES Unt
800
I
5
& 600-
1
5" 400.
O)
E
200
15-,
i 10
1
o
1 5
E
kS\l f""^*l
1 ^-^
<2.0
MMMM \
V1 ' V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, Pb
•
' <0.2
VI ' V2 ' V3 V4 WES Unt
Figure •. Combined Ash, Pb Figure f. Combined Ash, Pb
1
'
1 1 <0.2 «=0.2
1 J j
kg ash treated
o i
E 5
0
i
-------
Figure 7.15. Potassium release during distilled water leach test, corrected for process dilution.
Extracts 3 & 4
30.000-
25.000-
"8
|i 20.000-
t3
"I 15.000-
10.000
5.000
0
30.000-
25.000-
•g
g 20,000-
| 15.000
g 10.000
5.000
0
30.000
25.000
TS 20.000
3,
1 15.000
|> 10.000
5.000
C
ti J^. fc 1 t» V» **J • *^"- •"
Figure n. APC Residue, K
fxVI
""•"q
1 1 Pf=^
LJ ^
,_^^.
^c^
V1 ' V2 V3 V4 WES Unt
Figure c. Bottom Ash, K
rS
t== =t=
V1 ' V2 ' V3 V4 WES Unt
Figure e. Combined Ash, K
^s\
\N.
C=3 ^=3-—^
>« ' i»o ' \n ' MA WPS Unt
5.000-r-
4,000
1
I 3,000
is
f 2,000
1.000
0
Figure b. APC Residue, K
VI ' V2 V3 V4 WES Unt
5.000-
4.000-
1
I 3.000
1
^ 2.000
E
1.000
o
5.000
4.000
1
£ 3.000
jC
s
f 2.000
1,000
o
Figure d. Bottom Ash, K
SS .
V1 ' V2 ' V3 ' V4 WES Unt
Figure f. Combined Ash, K
V1 V2 V3 V4 WES Unt
166
-------
Figure 7.16. Sodium release during distilled water leach test, corrected for process dilution.
Extracts 1 & 2
Extracts 3 & 4
100,000-
80,000-
•g
g 60,000-
1
|? 40,000
r
20,000
100,000-
80,000
IS
11 60.000
11
20.000
0
100,000
80,000
§
CO
£ 60,000
, -5
n
^ 40,000
E
. 20.000
c
Figure a. APC Residue, Na
pig
i •. •, i — —
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, Na
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash, Na
5.000-
4.000
s
£ 3,000
1
^> 2.000
1.000
0
5,000-j
4.000
s
1 3.000
1
•1 2l00°
1,000
5,000
4,000
S
IS
£ 3,000
eo
^ 2,000
1.000
C
Figure b. APC Residue, Na
— C==:3 = — — —
V1 ' V2 V3 V4 WES Unt
Figure d. Bottom Ash, Na
<57.4 <51.1
V1 ' V2 V3 V4 WES Unt
Figure !. Combined Ash, Na
<56.4 < 78.7 < 81.1
II
V1
167
-------
Figure 7.17. Zinc release during distilled water lejjch test, corrected for process dilution.
200
FY^racts 1 & 2
Figure m. Combined Ash, Zn
I
150-
IS
50
V1 V2 V3 V4 WES Unt
Figure c. Bottom Ash, Zn
15
10
5
0
V1
Max.
Value - 62.8
r^__ „
V2 V3 V4 WES Unt
20
Figure f. Combined Ash, Zn
V1 ' V2 ' V3 V4 WES Unt
/kg
200
Extracts 3 & 4
Figure b. Combined Ash, Zn
ash treated
8 8
n
§
168
8
20
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Zn
15
20
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Zn
1S
10
V1 V2 V3 V4 WES Unt
-------
Figure 7.18. Chloride release during distilled water leach test, corrected (or process dilution.
Extracts 1 & 2
Figure a. APC Residue, Cl
Extracts 3 & 4
Figure b. APC Residue, Cl
400.000,
•p 300.000-
to
£
g 200,000
t
E 100,000
0
Kvvl
~~ — I [ I
1 RTTuT1
v^r
X\"
—
zu.uuu-
•g 15,000
to
*>
a 10.000
E 5,000
0
t\ •» ^
; p^
H'
B=B
V1 V2 V3 V4 WES Dot
Figure d. Bottom Ash, Cl
40,000,
•ci 30.000-
$
I
«{j 20.OOO '
IP
en
10,000.
0
dl
L I
g=q
. . .j
'//t
f*s*
\ \
ss,
JL/CC
£&
4O.CXXJ-,
•g 30,000
1
"a 20.000
^
E 10000
o
i
<^_g— , , , „ „
ui \» V3 V4 WES Unt
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash, Cl
40.000,
ID 30,000-
1
| 20.000
•i1
E
10,000
0
—
KS
—
\-;-
X N
\'N'
>S?;
40.00U-
•p 30.000
I
f 20.000
E 10.000
0
m
t*^ ' tin t/<* \/>4 \A/CC 1 Int
V1 V2 V3 V4 WES Unt
168
-------
Figure 7.19. Suliate release during distilled water leach test, corrected for process dilution.
50.000-
40.000-
"&
1 30.000.
1
|? 20.000.
t
10.000
0
50.000-
^.COO-
'S
•a
£ 30.000-
1
f 20.000-
E
10.000
0
50.000
40,000
Jj
2 30.000
3
j? 20.000
10.000
0
Figure a. APC Residue, SO4
rc-^3
e=a
Vj/A
«m^MM
V1 ' V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, SO4
<152 =3= < 1,67 <9£4 663
I I I
VI V2 V3 V4 WES Unt
Figure e. Combined Ash, SO4
<210 <233<191 1108
I sss I I I
\« ' tfn ' \n MA U/P.Q lint
25,000 -j-
20.000-
I
£ 15,000-
1
|f 10,000
E
5,000
o
2.500-
2.000
: I
1 1.500
1
f 1.000
I
500
0
2.500
2.000
"8
1
£ 1.500
"1000
E
500
0
Figure b. APC Residue, SO4
E2Z3
xy.
i « t i //.
&^~2aJ
' L.. , _
VI V2 V3 V4 WES Unt
Figure d. Bottom Ash, SO<
^ .
F^-1
!-;.^.;.;V
':•!>:•;>']
1 «V *•*.•
*• **»****•
^— — i
r~
r. * ,__
VI ' V2 ' V3 V4 WES Unt
Rgure f. Combined Ash, SO4
rv \N r-T^T
= = =-==
V1 V2 ' V3 V4 WES Unt
VI V2 V3 V4 WES Unt
170
-------
Figure 7.20. Total dissolved solids release during the distilled water" leach test, corrected for
process dilution.
600,000
EJXtrac*s 1 & 2
Figure m. APC Residue
500,000-
"8
a 400,000
8300,000
|> 200,000
100,000
0
200.000
V1 V2 V3 V4 WES Unt
Figure e. Bottom Ash
•D 150,000-
S
to
|j 100,000
E: 50,000
200.000
ID 150,000-
&
se
s
•| 100.000
50.000
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash
150,000
ra 100,000
£
50.000
Extracts 3 & 4
Figure b. APC Residue
200.000
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash
•o 150,000
1
•§100,000
E 50.000
200.000
150.000
•§100.000
I
E 50.000
V1 V2 V3 V4 WES Unt
Figure f. Combined Ash
V1 V2 V3 V4 WES Unt
V1 V2 V3 V4 WES Unt
171
-------
Figure 7.21. Total organic carbon release during the distilled water leach test, corrected for
process dilution. I
Extfacts 3 & 4
p^iracia i at e. """'"
«n APCB..WU. ,m Figure b. APC Residue
400 -r-
*§
i
^
1 200-
en
100.
f"
_M»«J HB^^BUM ^^—^^^«
l^^^^^l ^^^^^^1
V1 ' V2 V3 V4
Figure c. Bottom
mgrt > 1
'WES' Unt VI V2 V3 V4 Wts uni
1
Ash • Figure d. Bottom Ash
— •
WES Unt
mg/kg ash treated
8 § §
0
s^
1
— E3 — — —
V1 V2 V3 V4 WES Unt
Ffn n-mwn«l A,h Figure f. Combined Ash
2.000
•o 1.500
£
a 1.000
%
E 500
(
a
> — ' s
r/Tv^ p^-rr-
? ^^
a
£
a 200
100
c
ESS E-s-s ,rfrmC2S:i
^ ^^
\ii ' v/o ui W4 WPS Unt
V1 V2 V3 V4 WES Unt
172
-------
Figure 7.22. Aluminum and calcium release during availability leach test, corrected for
process dilution. ' '
25,000
20.000
1
S 15,000-
Ji1 10,000-
5.000
Figure a. APC Residue, Al
<225
V1 V2 V3 V4 WES Unt
800,000
,,600,000
£
a
I
•5 400,000-
(0
en
200,000-
Figure b. APC Residue, Ca
V
X \
VI V2 V3 V4 WES Unt
25,000
Figure c. Bottom Ash, Al
20.000
£ 15,000
I
S? 10,000.
5.000.
VI V2 ' V3 ' V4 'WES' Unt
'
,, 225.000-
i
•§ 150,000-
a
|
75,000-
0-
•**•:*•
1
^ \ \
^ X \
V1 V2 V3 V4 WES Unt
Figure e. Combined Ash, Al
Figure f. Combined Ash, Ca
la.uuu-
20,000-
CD
S 15,000-
S
I1 10,000-
e; ftArt
0
r~ '
\ss
c* '«'"'' i |.'..-.y.i
^225,000-
•§ 150 COO-
S'
&
E 75.000-
0-
'':'.'*:;..
«li
••::,;.•:•;
_^_
\\
//, V X
ffS •'*'*
c=a
V1 V2 V3 V4 WES Unt
V1 V2 V3 V4 WES Unt
Note: !
Bottom Ash, Process 3, replicate C data was not included because of apparent analysis error.
173
-------
Figure 7.23. Cadmium and copper release during availability leach test, corrected for
process dilution.
250
Figure a. APC Residue, Cd
200-
n
150
1
51 100
50
V1 V2 V3 V4 WES Unt
"8
600
500
400
I 300
f
o 8 8
Figure b. APC Residue, Cu
VI ' V2 ' V3 ' V4 WES Unt
8
8
1
£
| 40-
§
8
Figure c. Bottom Ash, Cd
V1 V2 V3 V4 WES Unt
600
500
1
a 400
S
I 300
e>
200
100
g/k
Figure d. Bottom Ash, Cu
V1 V2 V3 V4 WES Unt
80.
8
g ash
8
Figure e. Combined Ash, Cd
V2
WES Unt
Figure f. Combined Ash, Cu
V1 V2 V3 V4 WES Unt
Note:
Bottom Ash, Process 3, replicate C data was not included because of apparent ana.ysis error.
174
-------
Figure 7.24. Potassium and sodium release during availability leach test, corrected for
process dilution.
Figure a. ARC Residue, K
Figure b. APC Residue, Na
50.000:
40,000-
1
30,000-
1
^ 20,000-
E
10,000
0
r
XV
',\\,
£44 ' '
CZ3
•^ fin nno
0
"1 40,000
J?
H,
0
s
;
— — ^ JS
V1 V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, K
Figure d. Bottom Ash, Na
50,000:
40,000-
1
£ 30,000-
1
^' 20.000.
10,000
0
^•M^^BI
\\N
^
_
C3=saea=a
80,000 -,
•o 60.000
<3
1
"1 40,000
CD
E
20.000
o
•
_ E3_===3
ui \n vs. \J& WES Unt
50.000
40,000-
1
Ji 30,000
II
J? 20.000
10.000
0
Figure a. Combined Ash, K
m
V1 ' V2 ' V3 V4 WES Unt
80,000
Figure f. Combined Ash, Na
60.000
f 40.000
20.000
VI V2 V3 V4 Wbb Unt
Note;:
Bottom
Ash, Process 3, replicate C data was not included because of apparent analysis error.
175
-------
Fiqure 7.25. Lead and zinc release during availability leach test, corrected for
process dilution.
4.000
Figure a. APC Residue, Pb
•g 3.000.
"1 2.000
1,000.
<4.6
4.000
3.000.
2,000
1.000
V1 ' V2 V3 " V4 WES
Figure c. Bottom Ash, Pb
WES Unt
4,0001
•g 3.000-
a 2.000
en
£ 1,000
V3
F1fjtlrw ff --- WM- Aah Pb
1
V1 V2 V3 V4 WES Unt
Note:
20.000-,
16,000-
|
I 12.000
1
J" 8,000
4.000
0
Figure b. APC Residue, Zn
V1 V2 V3 V4 WES Unt
Figure d. Bottom Ash, Zn
20.000-
16.000-
1 12,000
Si
^ 8,000
4,000
0
VI '
V2
fvvjpj?
• V3 V4 'WES Unt
«. Combined Ash, Zn
5,000-
4,000
1 3.000
1
g 2.000
E
1,000
ES
VI V2 ' V3 V4 WES Unt
Bottom Ash, Process 3, replicate C data was not included because of apparent analysis error.
176
-------
Figure 7.26. Chloride and suKate release during availability leach test, corrected tor
process dilution.
Figure b. APC Residue,
400,000 -r-
320000-
S '
-&,24Q,OOO
1
SM60.000.
80,000
80,000-
64,000-
eg
f, 48,000
1
i? 32,000
131
16,000
0
80,000
64,000
13
Ji 48,000
1
§32,000
1600C
C
r—
'XX
Sy'V
H3 ^
I I ' /f/ ['•''•'•'.'•'j
%
/&
M\ V2 ' V3 V4 WES Unt
Figure c. Bottom Ash, Cl
= ED =B
V1 V2 V3 V4 WES Unt
Figure «. Combined Ash, Cl
I
, . fyVS //j r*^"1 F525
i — — i rvxi '/s ess
X£
r-rr-i
... ' tm ' \ra ' WA U/PR Lint
250,000-
200,000
I
BJ
£ 150,000
1
JMoo.ooo
E
50,000
o
icn OOO-.
120.000
1
1 90.000
1
^ 60,000
E
30.000
0
icnnoo
120,000
1
I 90.000
50.0OO
E
c
rvq
X*\ , S N >
xs: «*
C=2 /%
1 **/y [.•'vyvyj
^
V1 V2 ' V3 V4 WES Unt
Figure d. Bottom Ash, SO,
C=S3
i
V1 V2 ' V3 V4 WES Unt
Figure i. Combined Ash, SO,
^
/./.
B %-g
VI ' V2 V3 V4 WES Unt
Note:
Bottom Ash, Process 3, replicate C data was not included because of apparent analysis error.
177
-------
Figure 7 27. Untreated and treated ARC residue pH titration curves from the acid neutralization leach
test.
Figure a. Untreated
Figure b. Vendor 1
2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 6 8 10 12 14
Acid Added (meq/g)
Figure c. Vendor 2
Figure d. Vendor 3
0 2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 6 8 10 12 14
Acid Added (meq/g)
14
12
10
8
6
4
2
Figure e. Vendor 4
Figure f. WES Control
2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 .6 8 10 12 14
Acid Added (meq/g)
.178
-------
Piaure 7 28 Untreated and treated bottom ash pH titration curves tram the acid neutralization leach
1 test.
Figure a. Untreated
Figure b. Vendor 1
2 4 6 8 10 12 14
Acid Added (meo/g)
2 4 6 8 10 12 14
Acid Added (meq/g)
Figure e. Vendor 2
2 4 6 8 10 12 14
Acid Added (meq/g)
14
Figure d. Vendor 3
2 4 6 8 10 12 14
Acid Added (meq/g)
Figure e. Vendor 4
Figure f. WES Control
2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 6 8 10 12 14
Acid Added (meo/g)
179
-------
Rqure 7 29 Untreated and treated combined ash pH titration curves from the acid neutralization leach
test.
14
12
10
8
6
4
2
0
Figure a. Untreated
Figure b. Vendor 1
2 4 6 8 10 12 14
Acid Added (meq/g)
24 6 8 10 12 14
Acid Added (meq/g)
Figure c. Vendor 2
Figure d. Vendor 3
2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 6 8 10 12 14
Acid Added (meq/g)
Figure e. Vendor 4
Figure f. WES Control
2 4 6 8 10 12 14
Acid Added (meq/g)
2 4 6 8 10 12 14
Acid Added (meq/g)
180
-------
Rgure 7.30. Cadmium concentrations in acid neutralization capacity extracts as a function of pH for
untreated and treated APC residues.
100
Figure a. Untreated
10 -
0.1 •
0.01
o
o
Cd
0 24 6 8 10 12 14
PH
100
Figure b. Vendor 1
10-
0.1
0.01
o «6
Cd
0 24 6 8 10 12 14
pH
100
Figure c. Vendor 2
10 •
1 •
0.1 -
0.01
Cd
0 24 6 8 10 12 14
pH
100
Figure d. Vendor 3
10-
0.1
0.01
0%
Cd
"
0 2 4 6 8 10 12 14
pH
100
Figure e. Vendor 4
10 •
I 1-
S
0.1 A
Cd
0 24 6 8 10 12 14
PH
100
Figure i. WES Control
10 -
1 -
0.1
0.01
eo
Cd
0 24 6 8 10 12 14
pH
181
-------
Fioure 7 31 Cadmium (Cd) concentrations in acid neutralization capacity extracts as a lunction of pH
r-igure /.<». ^ untreated and treated bottom ash.
Figure a. Untreated
Figure b. Vendor 1
1 00-
10-
1
0.1 •
[o Cd j
**>°2 %
Oo
O
0 _
O
Cd o • a'
24 6 8 10 12 14
pH
1
10 -
1 •
0.1 •
[o Cd ]
0 ^QO
o
o
Cd tu mcnno--
0 24 6 8 10 12 14
PH
««- Vendor 3
00 .[ • — 1
10-
1 •
0.1
).01
[o Cd ]
p O &
8 o o-
1
S
. .
100 -T
10-
1 •
0.1 •
I 0.01 -
[cTcd]
24 6 8 10 12 1-
24 6 8 10 12 14
pH
PH
Figure e. Vendor 4
Figure f. WES Control
100 -T
10-
1-
0.1
[o Cd ]
o
3
o
o
.
24 6 8 10 12 14
pH
00 -T
10 -
1 -
0.1 -i
[o Cd J
°°tb0
Cb
-------
Figure 7 32. Cadmium (Cd) concentrations in acid neutralization capacity extracts as a function of pH
for untreated and treated combined ash.
Figure a. Untreated
0 24 6 8 10 12
pH
Figure b. Vendor 1
100 -r
10 •
1 •
0.1 •
[o Cd j
°g> 0»
0 O
Cd
0 2 4 6 8 10 12 14
pH
100
Figure!. WES Control
10-
0.1 -
0.01
Cd
0 24 6 8 10 12 14
pH
183
-------
Route 7 33 Chromium concentrations in acid .neutralization capacity extracts as a function of pH for
' ' untreated and treated ARC residues.
10
Figure a. Untreated
1 •
0.1
°8
°-01 2~~4 6 8^ 10 12 14
pH
Figure c. Vendor 2
10 -T
1
1 •
im
[o Cr J
o
CD
O
*- •'„
a-01 2 4 6 810 12 14
pH
10
Figure e. Vendor 4
00
«0
1 •
0.1
o
o
Cr
0.01" 2~~4 6 8~10 12 14
P"
10
Figure b. Vendor 1
1-
0.1
°-01
o
o
"cm
Cr
4 6
12 14
pH
10
Figure d. Vendor 3
5
0.1
Or
°-01 - 2 4 6 8~~10 12 14
pH
10
Figure f. WES Control
1 -
JE.
O
0.1
Cr
0-01 2 4 6 '8 10 12 14
. P"
184
-------
figure 7.34. Chromium (Cr) concentrations in acid neutralization capacity extracts as a function of pH
1or untreated and treated bottom ash.
Figure a. Untreated
O>
T
1 •
0.1 •
n^n
«8
e
Cr <%n-, 0 n
0 24 6 8 10 12
pH
10
Figure b. Vendor 1
1 •
0.01
a
00
o
n
0 24 6 8 10 12 14
pH
10
Figure c. Vendor 2
1 •
•a
0.1
0.01
O 0
00
0 24 6 8 10 12 14
pH
Figure d. Vendor 3
10 -r
1 •
0.1 •
fo Cf ]
« '.
0 2 4 6 , 8 10 12 14
10
Figure e. Vendor 4
1 •
"
0.1
o
a
°-01 2~~4 6 8~~10 12 14
pH
10
Figure f. WES Control
1 -
D)
0.1
0.01
0990
24 6 8 10 12 14
185
-------
7 35 Chromium (Cr) concentrations in acid neutralization capacrty extracts as a function of pH
. . ^^ untreated and treated combined ash.
Figure b. Vendor 1
o
10 -p
1 •
0.1 •
U.01
10-
1 •
0.1
0.01
[o Cr ]
°*
o
24 6 8 10 12 1
pH
Figure c. Vendor 2
[o Cr j
o
° 0 „ '
o o ° o
° 0 ** "8 %0°
10 f
1 -
!
S 01-
001 •
* i °
10 -
1 •
1
* 0.1
001
+ A
[o Cr j
0
\^ w-
24 6 8 10 12 14
pH
Figure d. Vendor 3
[o Cr J
Cr 0°° r,™, —
0 24 6 8 10 12 1
10
2 4 6 8 10 12 14
pH
Figure e. Vendor 4
1 •
0.1
°-01 " 2 4 6 8~« 12 14
pH
10
pH
Figure f. WES Control
1 •
0.1
°-01 2 4 6 8 10 12 14
PH
186
-------
FrauK» 736 Copper (Cu) concentrations in acid neutralization capacity extracts as a function of pH for
untreated and treated ARC residues.
Figure m. Untreated
Figure b. Vendor 1
1,000 -r-
100-
,=• 10 •
E.
3 1-
0.1 •
0.01 •
0
1,000,
100-
— 10-
E,'
3 1 •
0 '
0.1 n
0.01 •
1,000-
100-
€: 10
en
:> 1
O '
0.1
0.01
[o Cu ]
O
Tfa Q ^D
24 6 8 10 12 1'
pH
Figure c. Vendor 2.
[o Cu ]
o
o
$X>ff> *
Cu 0 r ^
100-
e- 10-
E
3 1'
0.1 -
0.01 -
I 0
1,000 -,
100-
- 10-
E.
5 1'
n rn _
ris .
0 [
(P 0
cu efl e iriff^
'>
24 6 8 10 12 14
pH-
Figure d. Vendor 3
[o Cu)
Cu ^-fl m n B
24 6 8 10 12 14 ""'O 24 6 8 10 12 14
pH PH
Figure e. Vendor 4
[o Cu ]
o
00*
Cu tn PIT o
n 0^ K R 1O 12
r 1.000-
100-
3 1
0.1
0.01
A
Figure f. WES Control
['o Cu j
8°
o ff
oo 0
Cu
0 24 6 8 10 12 V
oH
187
-------
Fiaure 7 37 Copper (Cu) concentrations in acid neutralization capacity extracts as a function of pH for
figure /.j/. and treated bottom ash.
Figure «. Untreated
Figure b. Vendor 1
3
1.000-
100-
10-
1 •
0.1 •
o o f° Cu I
003 0 ' '
o
o
0 ° 0
°0
0 0
Qj O*
Cu „ r & p
0-01 n A c n m 12 1.
pH
3
o
1.000 -,
100 -
10 •
1 •
0.1
0.01
[o Cu ]
o
o
0
o
Cu &£ ^ V«*e
n 1 c O m 19 1.
pH
Figure d. Vendor 3
i-iguro c. »DHU-I *• ., j^^j
,000-r-
100-
10-
1-
0.1 •
o 0 [o Cu J
0
O 0
£
Cu
*
100-
§ 10
,6,
= 1 •
0
01 .
. 1
rim .
[o Cu J
O Oo O o
»«ii o *tfe«9on c>5
«"»' 2 4 6 8 10 12 14 —0 2 « • « '» « ".
pH ^
Figure a. Vendor 4 1 ^^
1.000-|
100-
10-
1
0.1
0.01
[o Cu I
Go » '
0
cf
0 Oo
o
B O Oo O
° O
o J c B 1O 12
100-
— ID-
S'
3 1
0 1
001
Figure f. WES Control
To Cu 1
§Q
OO *+f*
Cu ^^^^1^^
4 0 24 6 B 10 iz i*
pH
188
-------
Figure 7.38. Copper (Cu) concentrations in acid.neutralization capacity extracts as a function of pH for
untreated and treated combined ash.
Figure ». Untreated
Figure b. Vendor 1
1.000 y
100-
S? 10-
i
3 1>
0.1 •
0.01
1,000-,
100-
-. 10 •
E
3 1-1
O
0.1 -
0.01
f o Cu I
o
o 6^&o
°° Ss ° °°
I,UUU -
100 -
s=- 10-
E
3 1'
0.1 -
r»m -
[o Cu j
o :
o o
o
o
8 * ° :**
Cu ^ ° °°oo
2 4 6 8 10 12 14 "" 0 2 4 6 8 10 12 14
pH pH
Figure c. Vendor 2 1 ^ Figured. Vendors
[o Cu ]
o
0
0 s&
o & ^d75,,
Cu
*
100-
s 1°-
1.
3 1 •
01 ,
. I
n m .
iCHD .
.
-OVJB-.
oo
Cu
1 2 4 6 8 10 12 14 0 2 4 b B HU W U
pH PH .
Figure.. Vendor 4 Figure f. WES Control
1,000
100
— 10
1
= 1
o
0.1
0.01
fo Cu I
OJ o * '
o
o
o
00o0o°0o0o
o ° o8 o
00
CU r*-.®
100
=- 10
1°
3 1
O 1
> w. 1
nm
; [o Cu ]
"%
o
o
0 0
O O O OQ ®^Ofln.
Cu
; o— 3 A fl 10 12' 14 "-0 2 4 6 8 10 12 1-
PH
189
-------
39 Lead (Pb) concentrations in acid neutralization capacity extracts as a function oi pH for
-». untreated' and treated APC residues.
Figure b. Vendor 1
.000-
100-
10 •
1 •
f~|UUl O • • won*"™*""™
f ' h
[o Pb J
A
o o
°° o e
0 0 00
-------
Fiaure 7 40 lead (Pb) concentrations in acid neutralization capacity extracts as a function of pH for
^ " untreated and treated bottom ash.
1.000
Figure «. Untreated
100-
10 •
XI
a.
0.1
Pb
0 24 6 8 10 12 14
pH
1,000
Figure b. Vendor 1
100-
0,
0 0
Pb
o
0
0 O
0 00
0 2 4 6 8 10 12
PH
1.000
Figure e. Vendor 2
100-
1 10
o
&,
e
Pb
°-1 2 4 6 8 10 12 14
pH
1.0
Figure d. Vendor 3
£
ouo-
100-
10-
1
0.1
[o Pb J
2 4 6 8 i 10 12 1«
1,000
Figure «. Vendor 4
100-
e.
£
0.1
Pb
oocs—o-
24 6 8 10 12 14
pH
1.000
Figure I. WES Control
100 -
10 -
£
0.1
o
0
Pb
2 4 6 8 10 12 14
pH ;
191
-------
Figure 7.41. Lead (Pb) concentrations in acid neutralization capacity extracts as a function of pH for
untreated and treated combined ash.
Figure «. Untreated
Figure b. Vendor 1
1.000 -T-
100-
10 •
1 •
Mo
1.000 -,
100-
10-
1-
0.1 j
1.000-
100
! 10
1
ft 1
[o Pb ]
•
o
«65
pb *$&
24 6 8 10 12 V
pH
Figure c. Vendor 2
[o Pb j
o
o
o
Pb ^rrv.
) 24 6 8 10 12 1
Figure e. Vendor 4
[o Pb ]
o
00
o
0°
o
Pb » _ n m
1,000-
100-
I ,o.
£
1 •
i °'1 I
1.000 -.
100-
^ ,n
£ 10-
Q-
1 •
0.1-
4 «
1.000-
100
1 10
£
i
0.1
[o Pb J
o
0 0
0 0
o
Pb Sb-n-^ Trrnr n
24 6 8 10 12 14
pH
Figure d. Vendor 3
[o Pb j
•
pw p Q JQ
) 24 6 8 10 12 14
pH
Figure f. WES Control
[o Pb j
\
o
o
Pb ....qyp^nnn nr.nMrt.nn
t\ n A e a m 19 1<
0 24 6 8 10 12 14
pH
PH
192
-------
fiaure 7 42 Zinc (Zn) concentrations in acid neutralization capacity extracts as a function of pH for
" " untreated and treated ARC residues.
Figure b. Vendor 1
0.000 •-
1.000-
100 •
10 •
1 •
0.1 •
0.01 1
10,000 -
1.000-
100-
" 10 •
*
0.1
0.01
- -w -
«o
o o
0*
0
eP 0 0
o
Zn
10.000 -
1,000-
100-
1 1°-
15 1-
0.1 -
^ L nm -^
2 4 6 8 10 12 14 0
pH
Figure c. Vendor 2
o
o
° o &b
6
24 6 8 10 12 1
10.000 -T
1.000-
100-
t*^.
10 •
s 1-
0.1
o oo Of, [° Zn J .
cP
0
I
0 o
o* ojft
0 ^o'cr
e
Zn
24 6 8 10 12 14
pH :
Figure d. Vendor 3
[o Zn J .
o ;
Q
O (
°o:g * '
0 » O
0
Zn
t UAM 2 4 6 8 10 12 14
pH r" ;
10.000
1,000
100
I 10
N 1
0.1
0.01
Figure e. Vendor 4
«»^ (TaT)
^o
^p
•^
OQ
" o R
QO
Zn 0
T 10,000
1,000
100
s-
| 1°
N 1
0.1
I . 0.01
IJt
Figure f. WES Cpntrol
( \
0
o
I
.
o
o o aA
°'V
2 4 6 8 10 12 1
24 6 8 10 12 14
PH
193
-------
Figure 7 43. Zinc (Zn) concentrations in acid neutralization capacity extracts as a function of pH for
untreated and treated bottom ash.
Figure b. Vendor 1
figure «. «•...»=.»- innnn —
10.000 - -
1.000- (
100-
«<.
L
? 10 •
;.
5 1-
0.1 •
0.01 1
10.000 •
1.000-
100-
^>
I1 10-
°J^
lvl 1 •
0.1
0.01
10.000
1.000
100
1 10
c
r*j *
0.1
O.O1
[o Zn ]
00
0
Zn ° 0
|W,VW
1.000-
100-
10 •
c
1'
0.1 •
: : : ~ o.m —
2 4 6 8 10 12 14 °
PH
Figure c. Vendor 2
^^^^"^"^^^
[o Zn J
off a 0
8 o
o
o
2" t°a °o
24 6 8 10 12 1
pH
Figure e. Vendor 4
f i
[o Zn J
T3
•
s
o
o
o
O O Q
2" °n«
10.000 -T
1.000-
100-
^" 10 •
N .
1
0.1
[o Zn J .
\
o
.
o
o«f.
24 6 8 10 12 14
pH
Figure d. Vendor 3
t *
[ o Zn J
0
3?
.
e
,
\ °-01 6 24 6 8 10 12 v»
pH.
... 10.000
1.000
100
I "
C
'
0.1
0.01
Figure f. WES Control
, ^
[o Zn J
.
•
CO
o
o ft
Zn ®r«n«Si
24 6 8 10 12 1-
0 2 4 6 8 10 12 14
pH
pH
194
-------
Fkjure 7 44 Zinc (Zn) concentrations in acid neutralization capacity extracts as a function of pH for
' untreated and treated combined ash. !
Figure «. Untreated
Figure b. Vendor 1
10,000 -r
^
£,!
c
M
1.000-
100
10
1 •
0.1
To Zn I
°***r,
o
°0
O
So
°o'^»
2n 0
°'01 24 6 -8 10 12 1
pH
Figure c. Vendor 2
10,000
1.000-
100 •
1 10 -l
0.1
0.01
o
o
oo
7n
24 6 8 10 12 14
PH
Figure e. Vendor 4
10,000 -r
1
<^-*
Ci
1,000-
100-
10 •
1 •
0.1
fo Zn ]
o o i I
0
Oo
o
0
o
0
o
a 8 o
Zn 8
°-01 24 6 8 10 12 14
PH
10,000 -r
^
1
^
1.000-
100-
10 -
1 .
0.1 -
To Zn ]
°»cfi
O '
O
*0
O i
'of0 *
Zn . i£_e
°-01 24 6 8 TO 12 1
PH '.
Figure d. Vendor 3
10.000 j
wr
r5
1.000-
100 •
10 •
1 •
0.1
,[o Zn 1
^
O :
o
o ,
0
\
d»<» Oco
Z" ° 'oo °
°-01 24 6 8 10 12 1-
pH
Figure f. WES Control
10,000 -r
O
0
o
0 00
o
ff
Zn -.ooo^»oB
°-01 2 4 6 8 10 12 1
pH ;
195
-------
8 EXPERIMENTAL RESULTS AND MODELED LEACHING OF UNTREATED AND TREATED
RESIDUES - RELEASE RATE
8.1 DATA EVALUATION
fi.1,1 Mprhanisms and intrinsic properties from monolith leach test
The leaching behavior and release rates of species incorporated in monolithic stabilized MSW
residues can be described by the following treatment effects:
• Availability, or the fraction of each element not tied up in silicate and poorly soluble mineral
phases. The fraction which is bound in silicate and poorly soluble mineral phase is assumed to
be environmentally not teachable. Availability defined in this report is the quantity of an
element extracted during the availability leach test. This quantity often was substantially less
'than the total concentration of the element in the untreated or treated residue, but often
substantially higher for treated than untreated residues.(see Chapters 2.3.5 and 7.4);
• Physical retention (tortuosity), which is derived from measuring the release rate of an inert
component (one which does not chemically interact with the product matrix) from the product
matrix. Physical retention is equivalent to tortuosity for cases where the monolith remains
physically intact (e.g., no significant cracking or disintegration). In these cases, tortuosity is an
approximation of the ratio of the actual mean path length a species travels from within the
monolith to the monolith surface for release to the mean direct geometric path length. For
cases where the monolith did not maintain physical integrity, the physical retention factor is a
relative reference index for the degree of species retention within the S/S matrix by physical
encapsulation at the micro-scale. Sodium was used as the non-interactive component for
estimation of physical retention in this study; and,
• Chemical retention, which is a function of each element's chemical interaction with the product
matrix. This was derived from the measured release rate of a given component, its free
mobility in water and the tortuosity as obtained from the inert component release rate.
Both physical retention and chemical retention were calculated from data obtained during the
monolith leach test [van der Stoot, 1991, van der Stoot, et al., 1991, van der Stoot. et al.. 1988]. The
availability leach test provided quantification of the fraction of an element present in the material that was
not bound up in low solubility mineral phases and that can potentially be released to the environment.
Leaching mechanisms can be identified by plotting the release as a function of contact time. The following
leaching mechanisms can be distinguished: dissolution, surface wash-off, matrix diffusion and depletion.
An example of dissolution, matrix diffusion and depletion is presented in Figure 8.1. The following
paragraphs discuss the observed response from each of these mechanisms.
196
-------
Dissolution: The solubility of the product matrix or a large fraction of the matrix can be such that
dissolution of material from the surface proceeds faster than diffusion through the pores of the matrix.
This phenomenon has been observed in products containing very high gypsum loadings [van der Sloot,
1991J. In the case of high gypsum content, calcium sulfate solubility is relatively high, which results in an
initial theoretical stope of +1 in the release-time plot (log-tog). At longer time intervals, the slope
decreases as the extract solution becomes saturated with respect to calcium sulfate.
Surface Wash-off: A material can be covered with a relatively soluble surface coating as a result of
process conditions or condensation processes. This layer can dissolve rapidly during the initial phase of
the monolith leaching experiment and is indicated by an initial slope of less than 0.35. In many cases, the
subsequent release is diffusion controlled. This type of release is most common for slag type materials.
.: Leaching from most cement-based materials is controlled by diffusion through the solid matrix.
Intrinsic leach parameters, including tortuosity, chemical retention and effective diffusion coefficients, can
be derived allowing predictions about release at time scales considerably longer than the duration of the
experiment.
Depletion: Depletion may occur in the later stages of leaching when the concentration of the species of
interest within the center of the test specimen is reduced significantly by the cumulative effect of leaching.
When this occurs, the initial boundary conditions and experimental assumptions are not met. Depletion
may occur when the properties of the material being tested are not known in advance. As indicated
above, a slope less than 0.35 in the early stages of leaching indicates surface wash-off, while a stope less
than 0.35 after release in accordance with a stope 0.5 is an indication of depletion. This is verified easily
by comparing the cumulative release data with the maximum release quantity obtained from the
availability leach test. When more than 50% of the available mass present in the test specimen is
leached, significant depletion can be expected to have occurred.
H 1 2 Definition of Leachinn Parameters '
The ton flux through the geometrical surface area of the product is described by Pick's second law
under diffusion controlled conditions:
81 6x2 i (Equation 8.1)
with DL the overall leach constant with dimensions of a diffusion coefficient and C is the species
«
concentration.
197 I
-------
In case of one-dimensional diffusion, the property DL can be obtained from:
DL " RT (Equation 8.2)
wrth DL the overall leach constant in rrfrs; f. the availability factor, is defined as the teachable
concentration divided by the total concentration for; each element in the material (-); D0 is the free mobility
of the component in water (m2/s); R is the chemical retention factor (-); and. T is the physical retention or
tortuosity factor (-).
The chemical retention reflects the retention of the release of a component relative to release of
an inert species by chemical interactions of the diffusing ton with the product matrix. The porewater
composition and the porewater pH are important factors in this respect. In other work, relations between
porewater pH and retention values have been established. In a number of cases, these relations are
strictly based on the solubility as a function of pH of the specific species. Figure 8.2 illustrates the effect
of porewater pH on the release of magnesium [van der Sloot, et al.,1988]. The element Mg is an
example where the solubility of magnesium decreases proportionally wrth an increasing pH. Thus, the
retention value increases proportionally with the increasing pH. Reactive surface sites also may affect the
diffusr/rty of components in the pore solution. Chemical retention factors may range from 1 to more than
1,000,000, where a value of 1 reflects no chemical retention during the leaching process. The wide range
of chemical retention factors reflects that substantial reductions in release rates can be obtained by
chemical modificattons. Measures taken to modify the chemical retention of specific components can result
in the increased mobilization of other matrix components. Multiparameter screening is necessary to
insure that no adverse effects have been introduced.
The physical retention or tortuosity reflects the extended path length of a diffusing ion in the pore
structure of a product. Values may range from 1 to 10 for stabilized materials and up to 1000 and higher
for very dense concrete and bitumfous mixes with water repellant properties. A tortuosity value of 1
reflects no physical retention during the leaching process.
The significance of the availability test for the judgement of the maximum teachability of a given
component from waste materials is best illustrated by release data obtained for one of the products in
this study, where depletion of a very soluble component occurs, and the maximum teachable quantity, as.
determined by the availability leach test, is approached (Figure 8.3). The data obtained during the
monolith leach test are expressed as (mg element leached per m2 surface area) as a function of time.
The availability leach test results are recalculated to the same units by taking the size and shape of the
specimens into account. These figures indicate that the release of sodium, chloride, potassium and
bromide asymtotically approached the release limit dictated by the availability teach test. Similar
-------
observations also have been made in column leaching experiments, indicating the practical significance of
this test method as a screening tool for ultimate release at the very long term. A mofe complete
discussion of release data from the monolith leach test for sodium, chloride, potassium and bromide is
provided in Chapter 8.2. " ! .
DL equals the effective diffusion coefficient for f = 1 because the 'driving force for drffusran is
determined by the teachable (available fraction) and not the total amount of each elernent in the material.
By transforming these parameters to log-values by means of pD = - log D. a new relation is obtained
indicating the individual contributions, free mobility, chemical retention and tortuosity, to the release of
components:
pD, = p3Q + 2pf - pR -ip ; (Equation 8.3)
After correction for the teachable fraction, or availability factor, (f) an effective Diffusion coefficient
(De) is obtained.The available concentration of a particular species is used for estimation of PDe .nstead
of the total concentration and an availability factor used for estimation of pDL. The effective diffusion
co€rfffcient, De, will be used in subsequent descriptions of release from waste forms:
pD « pOQ - pR - V (Equation 8.4)
The general equation for the effective diffusion coefficient as a function of the physical retention
(tortuosity) and chemical interaction is:
(Equation 8.5)
where: . 2/
De is the effective diffusion coefficient of component x in the product, in m /s;
DO ,x "S the diffusion coefficient of component x in water, in m2/s;
R is the chemical retention factor of component x in the product (-); and,
t is the physical retention in the product (-)
Fortne calculation of the tortuosity, an ton should be chosen, which does not interact with the
matrix (R equals 1). In many cases, sodium is an appropriate choice. The tortuosity of the product can be
calculated with the formula: ;
199
-------
(Equation 8.6)
where:
t is the tortuosity of the product;
DNa «s the diffusion coefficient of Na in vyater (pDNa - 8.88 at 22 °C) in m2/s; and.
D , Na is tne effective diffusion coefficient of Na in the product in m2/s
The chemical retention factor (R) for the component of interest then is calculated from:
(Equation 8.7)
where:
R is the chemical retention factor (-);
Dx is the diffusion coefficient for component x in water, in
De, x is the effective diffusion coefficient for component x in the product, in m /s; and,
t is the tortuosity of the product (-).
.The larger the pDe, the slower the release from the material. Measures to improve the
environmental quality of products containing secondary materials can be targeted at any of the three
release rate factors f, R and t. Changes in processing parameters generally can lead to a denser
product and, consequently, influence the physical retention factor. However, within one category of
materials, the range in tortuosity is relatively small. This implies that changes in chemical properties, wh,ch
influence both R and f, have a greater effect on ultimate release rates.
p 1 a Transport mnriete for parflTnfttftr p«timation
A. Semi-infinite linear diffusion model
A one dimensional diffusion model can be applied for parameter estimation based on data
obtained from both monolithic specimens and compacted granular material as long as the boundary
conditions for the use of the one-dimensional model are fulfilled. The main conditions are:
• no depletion during the duration of the test; and
. extractant replacement cycles are frequent enough to ensure that the concentration gradient
between the solid being leached and the extractant is maximized (e.g., the species
concentration in the extract is dilute).
200
-------
. Monolithic samples maintain physical integrity (e.g., no cracking or disintegration) during
testing. For cases where the physical integrity of the monolith was not maintained, estimated
values of physical retention and chemical retention should be regarded as relative indexes
and not be used for extrapolation and estimation of releases over longer time intervals or
different physical geometries. Cases where sample physical integrity was not maintained,
represent a failure of the S/S matrix to retain its initial physical properties.
The diffusion model used for the interpretation of the monolith leach test results can be derived
from the equation presented by Crank for the diffusion from a product with semi-infinite dimensions, in
whish the initial concentration is uniformly distributed in the product and the concentration on the surface
between the product and the leachate is constant in time [Crank, J., 1975]: ;
(Equation 8.8)
where:
C = C(x,t) and is the concentration as a function of location within the solid test specimen and
time; i
C-i is a constant concentration at x=0 (test specimen surface);
C0 is the initial concentration (at t=0) in the product which must be uniformly distributed;
De is the effective diffusion coefficient(m2/s);
t is time(s); and,
x is the distance from the surface (m, positive values).
In the monolith leach test, the surface concentration only will be constant as long as no depletion
occurs and the mean concentration in the solution does not deviate significantly from zero. These
requirements are met by using a product for which the smallest dimension is greater than 5 cm,
preventing depletion within the time frame of the experiment, 64 days in most cases, and by refreshing
the leachate at regular time intervals. Laboratory experiments coupled with model iestimations have
indicated that use of the boundary condition d -0 for t>0 is appropriate for this study. The diffusion
equation derived from Equation (8.8) for this boundary condition is: .
D
KB.
i_
4t2 (Equation 8.9)
201
-------
where:
De is the effective diffusion coefficient for component x in the product, in m2/s;
Bt is the cumulative release of the component in mg/m2;
t is the contact time in seconds;
Umax is the maximum teachable quantity in mg/kg; and,
d is the bulk density of the product, in kg/m3
B Granular compacted material
The model as described above for a monolithic specimen can be applied to release from
compacted Qranular material contained in a mold and covered with glass beads. The glass bead layer
proles a uniform surface area to which the release is r»rma,*ed (See Chapter 2.3.5). The glass beads
cause a slight time-lag, in the release because of the diffusion path through the beads before actual
release to the overlying solution occurs. A comparison between the release with and without a glass
bead cover was carried out using **Na solution mixed w«h sand. The re,ease o, *Na was measured as
afunction o. time applying the same liquid renewal intervals as des«ibed in Chapter 2.3.5. ThejesuKs o,
these measurements for the two conditions are provded in Table 8.1. The variabBy in the Na* release
data forthe case without glass beads was fcrger than the case with glass beads. This MM. better
experimental control over sampHng the overlying solution * the case with a bufler layer.orrned by me
gteVs beads. In the release data from the experiment with glass beads, oniy the tot extractor, cycle
Lteates a lag time. A» the subsequent date are on a slope o, 0.5, indicating diHusion con,ro»ed release
Treasured effective d«,us*n coenteients (pDe) .or .he experiments w»h and without beads were 9.22
+/- 011 and 9.23 + /- 0.22, respectively. Similar values .or sodium mobility in sand have been measured
using drriusion tube experiments (van der Sfcot, e, al.,1989.. van der Sloot. e,.al.. 1991. van der Sloot,
etal 1988 deGroot,et.al.,1990]. In a diffusion tube, the tracer is allowed to diffuse from a labeled
segment into an unlabeled segment. **g of the tube contents after a given time I-".*"
quantification of me effective dflusion coefficient. The diHusion tube method also resulted ,n effete
drriusion coefficient .or sodium (9.20 */- 0.10) similar to those obtained .rom the compacted granular
material method.
R *f ,4 peterrninatiorL
Forthe determination of the teaching mechanism, the logarithm of the cumulative release has
been plotted versus the logarithm of time. Rearranging Equation 8.9 yields:
(Equatton8.10)
202
-------
and after transformation to logarithm:
(Equation 8.11)
The release of each component per time interval can be calculated from the
results with the formula:
monolith leach test
R
"" (Equation 8.1 2)
where :
_ | :
Bj is the release during period i, expressed in mg/m2;
c, is the extract concentration of the component in the Ith period, expressed in mg/l;
I
Vj is the volume of the contact solution, in liters; and,
A is the geometrical surface area of the specimen in m2.
The measured release from previous periods is summed to obtain the measured cumulative
release. This implies that deviations in a given period accumulate in the subsequent periods, which may
hamper interpretation. The cumulative release until the itn period can be calculated only from the release
in the ith period, assuming diffusion control in the ith and previous time periods. These values can be
us
-------
Interval 0 (total range)
Interval 1 (initial teach range)
Interval 2 (intermediate range)
Interval 3 (last range)
leaching extracts 1 to 8;
leaching extracts 1 to 3;
leaching extracts 3 to 6; and,
leaching extracts 5 to 8.
The mechanism of teaching during each Men,* can be derived from the sfcpe of the daB -cm
Lve intervai. Components diving from the surface (siope >->.«. -«. — .----
acosned component <«a, stagesfcpe<,0.4, anddiKusioncontrol reiease (siope.0*
can be distinguished. The meaningofthe chance inthe siopes a, differenttime-intervais .ssummanied
below:
Lftrlflhl"" lrrterval
Initial
Intermediate
Last
Surface wash-off
Depletion
Depletion
Lag time/dissolution
Dissolution
Dissolution
,
el^ coe.nc.en, W «.He conponen, o, interest then is cafcuiated trom each penod us,ng
oniy those da« points .or whfch the stope is 0.5 *-0., with a deviation o, less man m. by:
Je,i,x'
(Equation 8.14)
where:
De,i,x li the Active diffusion coefficient of component» caicuiated from the reiease in period
i, in rr^/s;
B j is the release in period i in nrg/m2'
d is the bulk density of the product, in kg/m3'-
Umax is the maximum teachable quantity in mg/kg;
t-, is the contact time until period i in s; and,
tj.-! is the contact time until period i-1 in s.
204
-------
After expressing the effective diffusion coefficient in the negative logarithm^ pDe,i,x = - tog
(De,i,x). the mean effective diffusion coefficient and standard deviation for component x can be
calculated.
a 1 S Diffusion MOflft'l1^ ' imitations \
Data analysis of monolith leach test results based on diffusion modelling has limitations in several
cases for this study. One data analysis limitation was for the cases where the physical integrity of the
monolithic sample was not maintained. Loss of physical integrity manifested itself iri several ways. Some
samples developed a network of fractures through the samples. Other samples flaked and eroded at
the surface. Diffusion model parameters (e.g., tortuosity, chemical retention and effective diffusion
coefficients) for these cases were determined to provide a first order of magnitude estimate of relative
contaminant retention by the treatment processes. Often for these cases, contaminant release may have
been controlled by the rate of dissolution of the matrix, not pore diffusion processes. Low values for
tortuosity (e.g. less than 5) also are indicative of poor physical performance of the monolith samples. In
these cases, resulting parameter estimates should be used only for comparative purposes and not for
extrapolation of contaminant release rates.
The second data analysis limitation resulted from extremely stow contaminant release rates.
These cases typically are indicated by effective diffusion coefficients greater than pDe of 14. In these
cases, the slow rate of release may be controlled by limited solubility of mineral phases in the pore
water'solution. Results may be further confounded by analytical method errors at or near method
detection limits. For these cases, extrapolation of contaminant release rates based on estimated
parameters should be considered conservative because the extrapolation would result in over estimation
of anticipated actual release.
!
8.2 LEACHING RESULTS AND DISCUSSION i
p.2.1 Data handling
The data for estimation of leaching parameters from the monolith leach test were transferred to
EON for data processing. A number of inconsistencies were noted during the evaluation, which will
ajjpear only in a comparison of interrelated information as carried out in this study. There are some
obvious relations between total concentration, availability and actual release that need to be fulfilled.
Expressed in the same units, the sequence of the concentrations in increasing order should be actual
release, availability and total. This condition was not fulfilled due to analytical problems in some cases. In
particular a number of discrepancies between total and available concentrations exists for the antons
(chloride bromide, sulfate and nitrate). Whenever the total was less than the availability, the availability
205
-------
was used in the calculations. In a few cases, only availability data were available (e.g., IDS). In those
situations, the total has been assumed to be at least equal to the availability.
• The relationship between the individual data points of the monolith leach test also is fixed within
certain limits. The choice of the time intervals dictates the concentrations measured in the leachate in case
of diffusion controlled leaching. Deviations may occur because of measurements close to the detection
limit (large standard deviations), contamination, or because of day to day variation in the analytical
methods. The latter should be minimal, but in practice should not be overlooked.
In the series of analyses, one very obvious error was noted in all day 8 data for Process 2. The
data in several elements were at least a factor of 10 out of range as compared to all other intervals
measured. The reason for the discrepancy is not clear, but viewing all the other data points, a consistent
pattern is indicated. The day 8 data have been omitted from the calculation and an estimated value was
used to obtain meaningful results.
ft 92 Monolith Ipach test release data
Knowledge of the physical integrity of the monolith test specimens during leaching is crucial to
proper interpretation of leaching data and use of estimated physical retention, chemical retention and
effective diffusion coefficient values. The following cases did not maintain physical integrity (e.g.,
exhibited substantial fracturing or erosion of the monolith test specimen) during monolith leach testing:
Bottom ash - Processes 2,3
APC residue - Processes 1,2 and 3
Combined ash - Process 2 and 3
Summary data and parameter estimation for all test cases is presented in Appendix C. Figures
8.3 through 8.18 present the mean cumulative release data for sodium, chloride, cadmium, copper, lead
and zinc as obtained from the monolith leach test applied to untreated and treated residues. Data is not
presented for untreated APC residue and APC residue treated by Process 4 because the method for
testing compacted granular material was developed specifically for this study and it was decided to verify
the test method on untreated bottom ash and combined ash prior to testing the applicable APC residue
cases. Comparable testing of untreated APC residue and APC residue treated by Process 4 currently is
in progress and will be presented in a subsequent report. Results from the monolith leach test on a
release basis are presented in the units of release per unit surface area leached (e.g., mg/m2). This is
because the sample surface area contacting the leaching fluid, not the total sample mass, is the variable
which controls the quantity of a species released when diffusing from a solidified monolith. The total
concentration and the available concentration (from the availability leach test) were transformed to a
release per unit area basis and are presented in each figure. The quantity indicated as the total
206
-------
concentration is based on the acid digestion (SW-846) results. The predicted cumulative release based
on the estimated effective diffusion coefficient and a one dimensional model also is presented.
In general, the data from the monolith leach test are consistent with the data from the total
analysis and the availability leach test. Total concentration was the greatest value, availability was
somewhat less than the total concentration, and the cumulative monolith release did not exceed either the
total concentration or the available concentration. Several notable exceptions exist. Sodium release
from the treated ARC residues observed by the monolith leach test exceeded the available
concentration but approached the total concentration for Process 2. Sodium release exceeded both the
total and available concentrations for Process 3, and slightly exceeded both total and available
i
concentrations for the WES Control process. This is most likely attributable to analytical errors associated
i
with the measurement of sodium in extracts containing very high concentrations of total salts. Sodium
release also significantly exceeded the available concentration for combined ash treated by Process 3.
Soclium release was reasonable predicted by the diffusion model except after depletion started to
occur (e.g., see sodium release from APC residue treated by Process 3 where depletion occurred after
day 16 (Figure 8.5)). <
Chloride release exceeded both the total and available concentrations for the treated APC
residues. In addition, the available concentration was greater than the total concentration for most cases
(all residue types). This indicates severe shortcomings of the total analysis method. Releases which
exceeded the available concentrations were most likely the result of analytical errors associated with
quantifying high chloride concentrations in extracts. Release data from most cases indicated chloride
depletion. Some cases indicated very rapid chloride depletion (e.g., see chloride release from APC
residue treated by Process 2 where depletion occurred after day 4 (Figure 8.4)). Chloride release was
reasonably predicted by the diffusion model except where rapid depletion occurred.
Cadmium release was a small fraction of the available concentration for all cases and depletion
was not observed. Effective diffusion coefficients were very high (e.g., pDe greater than 14) for all
cases. Several cases existed where cadmium concentrations in the monolith leach test extract were
below detection limits (bottom ash: untreated, Process 4; combined ash: untreated, Process 3, Process
4) indicating effective diffusion coefficients greater than pDe equal to 16. Cadmium release was
reasonable predicted by the diffusion model when extract concentrations were above detection limits.
Copper, lead and zinc release was typical of diffusion controlled release for most cases. A
few cases suggested initial surface wash off followed by negligible release (bottom ash treated by the
WIES Control process (copper, lead and zinc), combined ash treated by Process t (zinc), Process 3
(lead and zinc) and the WES Control process (lead and zinc). Very high effective diffusion coefficients
with pDe greater than 16 was indicated for these cases. The diffusion model reasonable predicted
release for all other cases. i
207
-------
Tables 8.2 through 8.4 present the cumulative release observed from the monolith leach test
samples after 64 days of leaching. Values for the untreated bottom ash and combined ash are estimated
release after 64 days based on releases observed after 32 days. All results indicate that the principal
species released were soluble salts including calcium, potassium, sodium, bromine, chloride and sulfate.
Lead and cadmium release was much greater from the APC residue than from the bottom ash or
combined ash.
p.2.3 Tortuosity
The physical retention (tortuosity) in the s/s matrix can be derived as indicated in Chapter 8.1
from the mobility of sodium in the various stabilized products. This is valid under the condition that the
release is diffusion controlled. Sodium and several other salts are virtually non-reactive in a stabilized
matrix [van derSloot.et al. 1985]. Table 8.5 provides a comparison of mobility data for sodium,
potassium, lithium, chloride, bromide and nitrate. Figure 8.19 presents typical release curves for these
species from treated APC residue. The tower limit for mobility is 8.88. which is the free mobility for
sodium in water [Li, et al.,1974]. Several general trends among the treated residues are apparent. The
nitrate data were poor because of analytical detection limits, which limits the conclusions that can be drawn
for this component. Apparently, lithium was not a very good indicator for tortuosity, since the lithium
mobilities in bottom ash and combined ash are significantly tower (pDe higher) than the other alkali earth
elements and the halogens. No free mobility value was available for TDS because it is a lumped
parameter. When the sodium value for free mobility was used to approximate the TDS free mobility, the
agreement between TDS and the alkali elements release generally was good. The physical retention
(tortuosity) data are presented graphically in Figure 8.20 for the three residues types. The standard
deviations are provided as error bars (approximately .80 confidence intervals) to aid in the interpretation
of the data. The tortuosity values for cement stabilized products ranged between 1 and 15. Strikingly.
the tortuosity was higher in the untreated material and the material from the phosphate addition process
(Process 4). This observation is consistent with the behavior other satis. Since the release of the salts is
mostly diffusion controlled in cement-based products, it appears that the porosity in the stabilized
matrices was higher than the untreated material or phosphoric acid treated material. This result was
directly correlated with the compacted dry density of the materials, for which the untreated and Process 4
treated residues was the greatest. In general, the physical retention achieved by the treatment
processes was relatively poor.
A comparison of tortuosities in a variety of matrices is provided in Table 8.6 [Versluijs, et al.. 1990
and van der Stoot, et al, 1985]. A comparison with data from the Mammoet project [Versluijs. et al..
1990] and older data on stabilized MSW bottom ash [van der Sloot, et al.,1985] can be made. The high
203
-------
tortuosity values for asphalt concrete (T = 2000 - 50000} are caused by the hydrophobic nature of
bituminous mixtures, which results in only a partial wetting of the material. Small pores may not be
wetted at all. in contrast, the stabilized coal ash has a relatively tow tortuosity (t=5^20). Within one
category of materials, the tortuosity factor te often correlated with density and strength of the product.
This implies that improvement of technical product quality is associated with an improvement in
environmental quality.
In some cases, the mobility values approached or were essentially the same as the tower limit
theoretical value of 8.88. This was the case for the treated APC residue and Process 3 applied tb all
throe residue types. Substantial depletion of the constituents occurred over the testing period for these
materials. In addition, these products showed significant physical deterioration during the leaching test.
These materials might have been acceptable based on a short term test (24 hours).' while the long term
testing indicated stability problems. The following mechanism of release was observed from the
processed APC residues: Diffusion was the predominant mechanism in the initial phase (24-48 hr). The
porosity of the product increased substantially as more soluble salt was leached (~ 30% of the total mass
was soluble), which resulted in a reduction in tortuosity to no physical retention (T = i), and consequently
to an increase in the release rate. This was reflected by an increase in the stope of the release-time plot.
This process continued until the leachable constituent was depleted, which was indicated by a subsequent
decrease in the slope of the release-time plot until a negative stope was reached. In Figure 8.21 this
mechanism is indicated in the sodium data for bottom ash treated by Process 2. The release data were
based on the individual time intervals, assuming diffusion controlled release during the preceding period,
The tortuosity decreased dramatically after 48 hours of contact with water. A material sensitive to these
types of changes cannot be considered durable and therefore should be tested as a granular waste.
Clearly, the salts were not retained at all.
p g.4 Chemical Retention ;
The chemical retention values are derived from the effective diffusion coefficients as indicated in
Chapter 8.1. It is important to reiterate that the chemical retention values reflect the chemical interactions
ot the fraction of a particular species which is available for leaching. Tables 8.7 through 8.9 present the
retention values for the different elements in the untreated and treated residues. >At tow mob,Irt,es (pDe
values greater than 13) the errors in the retention values, expressed as percentage error or as absolute
values can be substantial. However, a deviation by a factor of 2 at a retention value of 1.000.000 st.ll
indicates quite considerable retention. At high mobilities (low PDe). much smallerideviattons were
observed (approximately 10 -15 %). to Figure 8.22 the standard deviation in the;mobility is presented
209
-------
as a function of the pDe value. Several data were outside the range of acceptable deviations. Etther
detection limit problems or depletion of constituents occurred in these situations.
Chemical retention values indicate that the elements with the greatest extent of chemical
interaction were aluminum, cadmium, magnesium, silicon and zinc for untreated and treated ARC residue;
cadmium, calcium, copper, iron , lead, magnesium, su If ate and zinc for untreated and treated bottom ash
and combined ash. Cadmium chemical retention was several orders of magnitude greater in treated ARC
residue than in untreated or treated bottom ash and combined ash. Lead chemical retention was much
greater in untreated and treated bottom ash and combined ash than treated ARC residue. As stated
previously, these results reflect the pH dependent solubility of the metals and the pH of the monolith
pore water. Chemical retention was limited or negligible for most other species.
p p 5 Effective n-rffnsion Coefficients
The effective diffusion coefficients and standard deviations derived from the semi-infinite diffusion
model are listed in Tables 8.10 through 8.12. Figures 8.23 through 8.30 provide a comparison, within each
untreated or treated residue, of the effective diffusion coefficients of the most important elements
analyzed. Each figure indicates the relative contribution of free mobility, physical retention and chemical
retention to the effective diffusion coefficient. The effect of species availability on the effective
diffusion coefficient also is indicated by presentation of the estimated effective diffusion coefficient
based on the total concentration of the species. The effective diffusion coefficient would have been
substantially underestimated (pDe would be too high) if it was based on total concentration for many
species (e.g., aluminum, barium, chromium, copper, nickel, lead and zinc). This may lead to
underestimation of the actual rate of release. These figures also indicate that the effective diffusion
coefficient is very similarto the free mobility of the particular species unless substantial chemical retent.on
occurs.
Figures 8.31 through 8.36 provide a side.by side comparison of the effective diffusion coefficients
for aluminum, catoium, cadmium, copper, potassium, sodium, lead, zinc, chloride and sulfate. Again, each
figure indicates the relative contribution of free mobility, physical retention and chemical retent-on to the
effective diffusion coefficient. Significant differences amongst processes and other specific observations
are discussed, organized by residue type and element, in the paragraphs that follow.
ft Rnttnmash - In a comparison of the behavior of the different elements in the untreated
versus the processed materials the following differences are observed:
Al • Process 2 and 4 exhibited high mobility compared to the other processes. In Process 4, this
appears to have been caused by a significant decrease in availability due to the formation of
210
-------
alumino phosphates. Verification of this hypothesis is needed. In Process 2. this may have
been caused by the high concentration of silicates added. In comparison with the untreated.
aluminum mobilities for all processes are higher.
Ba : The mobility of barium was reduced (BaSO4 solubility control) due to the high mobility of sulfate
in Process 2. '< '
Ca : The Ca was affected similarly to Ba by the high mobility of sulfate in Process 2. In comparison
with the untreated material, there is either no appreciable change in Ca or a slight decrease in
Ba.
Cd : With the exception of Process 4. the mobility of Cd is significantly reduced in all processes.
Cl: In comparison with the untreated material, Cl mobility was increased in Process 2 and 3. The
same applies for Na and K.
Cu :: The mobility of Cu in Process 2 was significantly increased in comparison with the untreated
residue and the other processes.
Pb : The mobility of Pb for Process 2 and 3 was approximately one to two orders greater in the
treated residues compared to the untreated residues.
Sr: High sulfate affected the mobility of Sr similarly to Ba and Ca in Process 2.
S04-- The mobility of sulfate in Process 2 was significantly increased by the addition of soluble silicates.
The mechanism is unclear at present. Since ettringtte is an important cemerititious phase in these
type of stabilized materials, it is conceivable that the formation of ettringite! is suppressed by the
silicate addition. This needs to be verified, Sulfate was strongly retained in the untreated
material.
Zn : In Processes 4 and 5 the mobility of Zn was decreased by about one order of magnitude.
• i
p mmhinedash - The same comments for bottom ash apply for Al, Ba; Ca, Sr and sulfate.
Mg mobility was reduced in the different processes, mainly due to the higher PH irtthe products. The
Cd mobility in Process 3 Combined Ash was increased. The change in Cu mobility in Process 2 was less
pronounced than in the bottom ash. In Process 4 Combined Ash, the Pb mobility w^s slightly increased,
bull the availability was substantially reduced. The net emission was therefore considerably reduced.
r. APC residue - Since data on untreated residues are not available for the APC residue,
conclusions about positive or negative treatment effects can not be drawn. In general, the differences
between the processes were small. In comparison With the bottom and combined; ash, the mobility for a
number of components (Ba, Ca, Li, Sr) was significantly higher. The mobility of Pb in the APC products
was several orders of magnitude greater than in the bottom ash and combined ash products. The Cu
mobility for APC residue in Process 1 is significantly higher, as compared to the other processes.
211
-------
83 THREE DIMENSIONAL DIFFUSION MODEL FOR ESTIMATION OF RELEASE DURING FIELD
APPLICATION
An important advantage of the monolith leach test is the option to use the intrinsic leach
properties derived from the test data for prediction of release under conditions other than those studied
in the laboratory. Many factors effect the translation of laboratory results to prediction of field behavor.
Field environmental conditions that are important include residue aging, contact with infiltration and
precipitation frequency, temperature cycles, direct abrasion or erosion and the specific application
scenario. Thus, estimates of field releases must be carefully derived. Residue preparation effects, the
limtted number of residues investigated and the idealized treatment scenarios investigated also must be
considered when using the data developed in this study to predict field behavior. However, almphHed
models can be used to indicate relative releases and provide order of magnitude or l,mrt case
assessments.
The leach parameters obtained from the monolith leach test can be used to predict the release of
contaminants during a given time period for a variety of application geometries. A simple one-
dimensional diffusion model, assuming a constant source, can be used for a first approximate. Th,s
approach is valid as long as the concentration in the material has not decreased substantially. avorf.ng
species depletion. However, long-term predicts have to take into account the limited source strength
(fraction available for leaching). The simple dimensional model can be extended to correct for the
available fraction on the long term leaching. Nevertheless, a 3-dimensiona. drtf usion model enables one
to take actual dimensions into account, so deferences in leaching from a product with a cubic versus a flat
rectangular shape can be described. With the 3-D model, release from only one side of the matenal also
can be modeled.
A 3 -dimensional model is based on the analytical solution of the linear diffusion from a
parallelepiped, which initially is at a constant concentration, to an infinite region outsfle with an init,al
concentration of zero. [Cartslow and Jaeger, (1980)]. The diffusion profile is calculated in all three
dimensions according to the equation:
c (,y.,,, ic
(Equation 8.1 5)
(Carslow and Jaeger, 1980. Chapter II. paragraph 2.2. eq.1 0)
where:
c(x,y,z,t) *= concentration at location x at time t;
C •= initial concentration in parallelepiped;
212
-------
a, b, c = parallelepiped dimensions; ,
x, y, 2 = location coordinates;
D = effective diffusion coefficient;
t = time; and, ;
erf ( ) = standard error function.
After integration of the profiles, the amount leached out as a function of time can be calculated.
In all cases, a good definition of the boundary conditions is needed to make a proper judgement.
The cumulative release, expressed as fraction of the total leachable quantity (Rmax). P30 be calculated
using the 3-D model for different product configurations and bulk applications based pn the effective
diffusion coefficient measured under well-defined boundary conditions. The relative release from standard
sizes with dimensions of 10x10x10 cm and 15x15x45 cm were calculated as a function of time for different
effeistive diffusion coefficients ranging from pDe=9 to pDe=15 (pDe = -tog De, De in m2/s). The release-
time! curves are provided in Figure 8.37. Between blocks of increasing size, the difference is largely a
shift of the release-time curves for a given pDe to a longer time-scale. It takes longer to reach the
maximum leachable quantity, but the leachable quantity may ultimately be reached unless the chemistry or
other release controlling factors change. A significant shift in the release-time curve is apparent for the
roacibase simulation. For a base of 15 cm thickness, 50% of the highly mobile components (pDe=9) will
i
be leached from the slab in less than about one year, assuming permanent contact wjth water, a 45 cm
thick slab will reach the same level of relative release in about 6 years. Translation of lab data to field
conditions further involves corrections for the ambient temperature and degree of contact with water.
Table 8.1. Effective diffusion coefficients based on individual extract cycling tirrje-intervals.
Time (hr) Without Glass Beads With Glass Beads
24
48
96
192
384
864
mean:
standard deviation: .
9.26
8.85
9.34
9.37
9.08
9.45
9.23
0.22
11.20 '
\
9.30 ,
9.21
9.13
9.10 ,
9.35 ',
9.22* ;
0.11* ;
24 hr data omitted
213
-------
Ta.es.,
^^
ProceS 4 TsraSSar product). All release values are in units of [mg/m*].
Ash type: APC RESIDUE
Release
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Untreated
Process 1
300
WWW
2.500
71.000
0.40
1,400.000
3.500,000
/ W
190
1 w w
1200
230
120
11
1 I
con
WWW
400,000
1,300
380,000
3,900
28,000
170
Process 2
420
4,800
170,000
1.5
2,400,000
7,100,000
9.9
69
1,600
660
73
9.6
830
850,000
1,200
1,900.000
16,000
49.000
350
Process 3
1,200
1,900
180,000
5/5
.2
3,600,000
8,400.000
22
150
6,800
630
270
11
730
1,400,000
1100
940,000
10,000
420',000
1,000
Process 4
WES
170
6,300
160,000
0.50
2,900,000
7,200,000
8.8
51
340
570
150
9.4
920
960,000
950
900,000
11,000
24,000
110
Standard Deviation
Alurrunum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Znc
NA « Not Analyzed.
31
W 1
140
4,300
o
83,000
200.000
88
150
260
16
1 W
58
1 9
250
100.000
93
18.000
190
610
85
150
38
16,000
,0.52
180,000
160,000
3.6
11
470
45
38
NA
120
40,000
83
580,000
1,500
15,000
61
700
91
2,300
1.9
88,000
170,000
5.5
~9C
75
210
45
110
1.2
36
35,000
240
30,000
330
8,900
110
19
110
9,100
0.10
110,000
390,000
1.4
20
39
35
78
0.14
160
59,000
76
180,000
550
3,600
34
214
-------
Table 8.3. Cumulative elemental and species release after 64 days leaching using the monohth
leach test Values reported for untreated residues are 32 day release values
transformed to provide estimates of release after 64 days for comparison purposes.
All release values are in units of [rng/m2]. ;
Ash type: BOTTOM Ash :
Heleas* untreated Process 1 Process 2 Process 3 Process 4 WES..
Aluminum
EJarium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
(rnn
2,400
500 '
14,000
ND
190,000
960,000
62
64
390
Lead 25
Lithium 49
Magnesium 1,000
Nickel ND
Nitrate 270
Potassium 190,000
Silicon 4,100
Sodium 240,000
Strontium 1,600
Sulfate 3,300
Zinc 150
Standard Deviation
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Znc
560
49
1,400
12,000
27.000
1.4
1.6
110
11
NA
320
NA
87
8,900
26
5,900
68
NA
25
3.900
110
8,600
0.40
60,000
440.000
7.6
8.6
310
6.7
28
300
10
590
120.000
3.500
170,000
510
12,000
23
220
5.5
,1.400
0
9,900
67,000
0.64
0.21
120 ,
4.6
7.4
85
0.99
88
23,000
150
31,000
110
4.200
.0
79,000
12
14,000
0.60
6,800
1.000,000
92
2,200
200
29
140
120 •
15
530
250,000
9,800
2.200,000
83
960.000
99
6,700
1.0
860
0.20
760
87.000
11
, 130
30
6.7
19
39
1
78
7.300
1.400
34,000
8.5
120,000
4A
3,700
270
20,000
0.70
97.000
1.400,000
8.9
53
81
43
360
120
13
180
1.000,000
4,800
340,000
1,200
210,000
27
56
3,100
0.42
34,000
250,000
2.0
29
41
20
27
35
1.7
26
84,000
260
11,000
290
23,000
29
9.UUU
300 '
6.300
NA:
82,000
290,000
9.0;
20;
80
6.6
25,
130
NA
210;
61, 000 ;
1,100,
77,000;
460:
7.300,
32
2,900
64
580,
NA:
9,500
25.000
2.7
3-5
17
2.8
4.6
10
NA
37
14,000
53
17.000
64
2,900
0
370
14,000
0.83 .
110,000
780.000
NA
23
270
10
66
260
10
500
260.000
3,100
260,000
1,300
11,000
85
94
60
820
0.058
6,400
30,000
NA
3.0
150
22
0.71
23
1.1
38
3,900
130
5,700
21
1,200
97
NA = Not Analyzed.
215
-------
Table a 4. Cumulative elemental and species release after 64
-------
Table 8.5. Effective diffusion coefficients for several salts used to estimate tortuosity.
ARC Residue
pD
-•
Bromine
Chloride
Lithium
Nitrate
Potassium
Sodium
TDS
Untreated
NA
NA
NA
NA
NA
NA
NA
Process 1
10.14
9.64 •
9.76
9.78
9.46
9.56
10.25
Process 2
9.12
9.03
8.90
9.67
9.01
9.15
9.41
Process 3
9.31
8.95
8.96
9.69
8.81
8.77
9.41
Process 4
NA
NA
NA
NA
NA
NA
NA
^ —— • "••
WES
. I8.62
9.29
8.89
9.37
;8.65
^8.70
;9.59
.— --^^^— ^^— —
i
Bottom ash ;
pDe
Bromine
Chloride
Lithium
Nitrate
Potassium
Sodium
TDS
Combined
pDp
.; v
Bromine
Chloride
Lithium
Nitrate
Potassium
Sodium
TDS5
Untreated
10.05
10.50
11 .93
11.37
•1012
10.24
NA
ash
Untreated
9 91
10.52
1 1 69
10 36
1018
10.26
NA
Process 1
10.06
10.40
12.00
9.35
9.71
9.96
10.17
Process 1
9.92
10.50
12.07
7.68
9.75
9.87
9.95
Process 2
9.50
9.64
10.64
10.76
9.28
9.73
9.63
Process 2
9.36
9.91
10.67
9.57
9.94
9.71
10.02
Process 3
8.69
8.93
9.61
8.81
9.07
9.27
9.53
Process 3
9.01
9.44
10.22
8.75
9.26
9.43
9.58
Process 4
10.39
10.70
11.42
11.61
10.19
10.39
10.30
Process 4
11.22
10.79
11.64
11.07
10.73
11.08
10.52
WES
'• 9.59
10.45
11.14
10.23
, 9.79
'•• 9.84
i 9.72
^»,^— »— -^•"^—
;
WES
; 9.28
10.35
'10.71
i 9.22
9.56
I 9.40
; 9.71
NA - Not Analyzed.
217
-------
Table 8.6. Physical retardation (tortuosities) in products produced from waste materials.
Material
Unconsolidated granular waste
Stabilized coal fly ash
Stabilized incinerator bottom ash
Calcium silicate block
Ught weight concrete
Concrete
Fly ash concrete
Bituminous concrete
Physical retardation factor
1 0 -
70 -
400 -
2,000 -
2.5
30
40
100
220
340
900
10.000
218
-------
Table 8 7 Estimated chemical retention values for untreated and treated MWC residues based
laoie B./. «ldj{{usion modeiiing of the monolith leach test results. All values are in
dimensionless units.
Ash type: APC RESIDUE
Retention Untreated
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
F'otassium
Silicon
Sodium
Strontium
Sulfate
Znc
Standard Deviation
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Magnesium
Nickel
Nitrate
Potassium
Sodium
Sulfate
Zinc
Process 1
49,000
2Q
.8
e f\
6.0
34,000,000
O A
8.4
1f\
.9
3300
220
230
1c
.6
3,000,000
1100
i f
2.1
I**
.3
24,000
Irt
.0
4 A
1.2
6,800
980,000
1b,000
ft iff i
0.73
0.52
8,400,000
f\ A*)
U.4Z
0.30
4600
150
140
1.400,000
1600
1 5
0.097
f\
2.800
730,000
Process 2
530,000
1 Q
i ,3
1 9
21,000,000
14
~ it
1 2
2.700,000
39,000
400
0 6
9,000,000
3,000
51
. i
1 3
120,000
1 n
1 .U
1 5
12,000
1,200,000
480,000
t t
l.O
1.9
20,000,000
61
. i
0.44
3,200,000
67,000
1,300
8,800,000
NA
27
**• /
0.77
o
4,400
320,000
Process 3 Procej
15,000,000
30
ww
11
13,000,000
22
25
160,000
2,600
300
1.6
22,000,000
1,200
17
1.8
480,000
1.0
60
w*v/
560
240,000
25,000,000
g
9.8
6,500,000 .
9.4
1.2
120,000
4,000
330
17,000,000
11.00
17
0.24
0
510
110,000
5S 4 Wfeb
' 8.5
.4
; 270,000,000
210
6.2
: 11,000,000
; 11,000,000
180,000
1.6
; 120,000,000
33,000
; 7.4
1.5
19,000,000
1.0
2.8
200,000
; 110,000,000
i
" 61,000,000
6.3
0.77
270,000,000
42
2.4
: 7,700,000
6,500,000
130,000
: 170,000.000
i 33.000
4.2
0.69
0
240,000
65,000,000
NA = Not Analyzed.
219
-------
Table 8 8 Estimated chemical retention values for untreated and treated MWC residues based
Table 8.8. ««maiean ^^ 0, {he monolitn |eacn test results. All values are in
dimensionless units.
Ash type: BOTTOM Ash
Retention
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicone
Sodium
Strontium
Sulfate
Zinc
Untreated Process 1 Process 2
4,500
95
1.0
NA
200
2.9
140
32,000
6,300
3,100,000
49
29,000
NA
30
12.
10,000
1.0
11
150,000
400,000
210
220
2.0
170,000
1.900
A ~J
4./
240
46,000
20,000
1,000,000
•HA
IlO
70,000
33,000
OMH
.36
0.91
450
1f\
.0
16
4,600
270,000
Standard Deviation
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Magnesium
Nickel
Nitrate
Potassium
Sodium
Sulfate
Zinc
5£00
70
056
NA
120
0.80
240
32,000
5,700
5,000,000
34,000
NA
23
054
0
NA
560,000
300
160
0.38
160,000
850
2.5
190
53,000
31.000
1.100.000
12.000
45.000
0.088
0.16
3,000
280.000
2.9
40,000
, 4 A
200,000
60,000
1 A
i .*»
9.1
18
5,600
21,000
8 1
460,000
1,500
oo
££.
OCA
.60
280
1 0
19,000
2.2
3,400,000
^••^••n^"— ^— •""
2.6
16.000
1.1
280,000
9,300
0.78
2.6
20
4,400
20.000
700.000
1,300
22
0.23
1.1
5,600,000
Pror-ess 3 Process 4
6,800
290
0 55
350,000
17.000
1 1
5,900
75,000
520.000
93.000
22
20,000,000
1,600
0 54
v»*^*
1 1
2,800
1 o
160
5,700
2,300,000
" 9,900
300
0.26
410,000
24,000
1.3
3,600
85.000
700,000
99.000
18,000.000
1,700
0.24
0.59
o
5,100
1,900,000
u.o/
70
1.6
NA
470
3.5
N A
42,000
8,200
320,000
10.7
1.500,000
NA
27
1.0
4,000
1.0
23
6,700
2,300,000
0&*Q
.DO
28
0.67
NA
130
1.7
NA
16,000
4,700
280,000
340,000
NA
15
0.22
0
2,900
700,000
WES
1 ^UU
510
0.90
130,000
27,00
6.4
1,000
73,000
15,000
2,800,000
20
440,000
820
6.9
1.5
14,000
1.0
39
55,000
33,000.000
"""730"
/ ww
320
0.31
85,000
2,100
1.9
640
57,000
12,000
1,700,000
320,000
410
. 5.8
0.30
0
11,000
1,6000,000
NA « Not Analyzed.
220
-------
Table 8.9.
Estimated chemical retention values for untreated and treated MWC residues based
on diffusion modelling of the monolith leach test results. All values arp in
dimensioniess units.
Ash type: COMBINED Ash
Process i4
WES
Retention
"Aluminum
EJarium
EJromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
. Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Untreated
870
52
.74
NA
190
3.0
.74
16,000
170,000
1,200,000
25
2,000
25
32
1-3
930
1.0
12
120,000
380,000
process i
710
440
1.8
93,000
4,200
6.6
240
8,800
1,800
2,900.000
160
150,000
300
.024
1.4
6,000
1.0
30
1,300
11,000,000
rrobeaa f.
82
290,000
"7A
.70
1,400,000
9,000
o c
3.6
8.6
2,300
350,000
1.600.000
Q 1
2,700,000
730
4 O
1.2
f\ O
2.8
1,800
< n
1.U
87,000
5.4
3,800,000
"Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Magnesium
Nickel
Nitrate
Potassium
Sodium
Sulfate
Znc
160""
43
.30
NA
75
13
.73
12,000
250,000
940.000
65,000
NA
4.0
.06
0
87,000
140,000
260
210
.73
NA
2100
1.1
A
400
5,300
2,300
3,600,000
170,000
290
f\n &
.036
ffrt
.69
570
850,000
70
230,000
1 1
1,400.000
53,000
AH
*T.U
4.9
2100
580,000
1,000,000
1200,000
99
7fi
./O
Q9
«?&
3.7
6,300,000
2,700
360
GA
.OH
NA
2,300
1 6
14,000
5.300
3,900,000
620,000,000
63
5,500,000
680
C4
•*^T
^ ^
13,000
1 0
1 »W
510
2,800
20,000,0000
1,100
250
35
»ww
NA
1.800
48
5,000
3,500
2,700,000
1,100,000,000
1,100,000
670
.44
.36
o
3,200
310,000,000
.017
16
12
NA
73
16
NA
960
11,000
97,000
3.6
280,000
NA
2.0
87
2^00
1.0
4.5
980
1,400,000
^ "^^ " n^*a
-U1O
13
20
NA
49
13
NA
1.300
7.700
150,000
160,000
NA
2.1
;.ss
0
1200
2,000,000
i
1,400
250
1.2
950.000
2,800
14
1,000
26,000
61,000
40,000,000
20
1,900,000
6,300
1.7
2.4
160,000
1.0
69
48,000
110,000,000
190
150
27
1,400,000
190
1.8
690
12,000
46,000
27,000,000
1,100,000
7,600
2.0
.66
0
32,000
42,000,000
NA = Not Analyzed.
221
-------
[- log (m2/s)].
Ash type: APC RESIDUE
pDe Untreated
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Other
Assays
TDS
-TOC
standard Deviation
duminum
Barium
Bromine
Cadmium
Calcium
Chloride
Copper
Iron
Lead
Lithium
Magnesium
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Other Assays
TDS
TOC
i Processl
T4~66
10.16
10.14
>17.35
10.71
9.64
>12.27
12.10
11.97
9.76
• 1627
12.39
9.78
9.46
14.19
9.56
9.80
13.42
15.67
1025
13.63
.24
.16
10
.37
.09
.09
NA
27
.09
.10
55
.37
09
.17
08
".07
11
!io
.48
.15
Process 2
15.07
9.53
9.12
16.58
10.48
9.03
>15.35
12.81
12.76
8.90
16.23
13.48
9.67
9.01
14.49
9.15
9.47
13.27
15.42
9.41
13.59
.34
.08
51
.42
.45
.58
NA
.44
.54
.48
.86
J31
39
28
.44
.54
.66
35
.62
131
Process 3
14.85
10.24
9.31
16.11
10.30
8.95
>14.09
11.93
1120
8.96
1629
12.00
9.69
8.81
14.70
8.77
9.70
11.45
14.31
9.41
12.42
.67
.34
.49
1.15
.40
.63
.55
.71
.49
.49
1.02
.48
.49
.46
.35
.38
.14
.39
1.36
.68
Process 4
WES
16.89 '
9:68
8.62
11.24
9.29
>15.80
15.96
13.96
8.89
16.70
3.51
9.37
8.65
16.23
8.70
9.30
13.40
16.87
9.59
13.11
.10
.12
.51
.19
.11
NA
.50
.27
.07
.74
.21
.13
.17
.07
.08
.10
.53
122
37
NA * Not Analyzed.
222
-------
Table 8 11 Estimated effective diffusion coefficients for untreated and treated residues based
on diffusion modelling of the monolith leach test results. All values are in units of
[-log (m2/s)].
Ash type: BOTTOM Ash
pDa
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Other
Assays
TDS
TOC
Standard
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel .
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Untreated
14.06
12.30
10.05
NA
12.68
10.50
11.73
>14.76
14.20
16.17
11.93
14.66
NA
11.37
10.12
14.49
10.24
11.50
15.62
15.71
10.50
NA
Deviation
.09
.08
.17
NA
. .06
.16
NA
.19
.09
NA
.72
NA
36
.07
.12
.08
.07
NA
.18
Other Assays
TDS -16
1 ^XW
TOC
NA
Process 1
12.00
12.38
10.06
13.44
10.40
12.55
14.39
14.00
15.21
12.00
15.07
14.26
9.35
9.71
12.86
9.96
11.35
13.61
15.39
10.17
13.96
.16
.09
.15
.10
.16
.13
.43
.36
.15
.85
NA
.60
NA
.14
.16
.10
.09
.10
.16
.16
.33
.22
10.50
14.47
9.50
>14.79
14.72
9.64
10.99
10.85
13.65
13.78
10.64
15.20
12.81
10.76
9.28
12.42
9.73
14.21
10.06
15.40
9.63
11.85
~!so
32.
2S
.93
2.6
.16
2.4
.34
.25
27
.48
1.10
.43
.15
.28
.37
.40
.62
.17
27
.50
.75
Process 3
11.96
11.70
8.69
>14.80
13.29
8.93
13.27
14.10
13.93
12.87
9.61
16.73
12.57
8.81
9.07
12.97
9.27
11.66
12.75
15.48
9.53
13.29
!24~~
37
77
NA
.94
.45
NA
22
.49
.29
1.09
.33
.40
.56
.12
.58
.46
.17
.38
.68
.65
Process 4
10.30
12.38
10.39
NA
13.28
10.70
NA
15.18
14.53
15.34
11.42
16.83
NA
11.61
10.19
14.24
10.39
11.96
14.23
16.93
10.30
13.36
.09
.16
.14
NA
.11
.15
NA
.22
.19
25
27
.70
.65
.26
.12
.17
.13
.14
.19
.29
.30
.38
WES
i 13.27
'12.65
: 9.59
'13.41
10.45
13.09
14.70
13.81
16.34
'< 11.14
; 15.64
13.06
10.23
9.79
14.24
9.84
; 11.63
14.62
17.50
9.72
12.43
!20
, .14
.14
.61
• .11
.13
.58
.99
.25
;' 1.16
.19
.61
NA
; .16
.10
.15
.23
; .08
.12
.32
.44
.67
NA - Not Analyzed.
223
-------
T w« Q 19 p^timated effective diffusion coefficients for untreated and treated residues based
Table 8.12. JfJ^^SJJJ of tne monolith leach test results. All values are in units of
[- log (m2/s)].
Ash type: COMBINED Ash
p Dd
Untreated
Aluminum . 13.63
Barium 12.04
Bromine 9-91
Cadmium NA
Calcium 12.75
Chloride 10.52
Chromium 10.35
Copper 14.57
Iron 15.22
Lead 16.31
Lithium 11-69
Magnesium 15.01
Nickel 1 1 -02
Nitrate 10.36
Potassium 10.18
Silicon 13.48
Sodium 10.26
Strontium 1 1 .45
SuHate 15.27
Zinc 16.01
Other Assays
TDS 10.50
TOC 12.89
Process 1
13;13
12.63
9.92
13^67
10.50
11.88
13.93
12.84
16.13
12.07
15.08
12.32
7.68
9.75
13.65
9.87
11.57
13.02
17.09
9.95
13.32
Process 2
11.71
15.10
9.36
>15.94
14.77
9.91
10.88
13.07
14.23
15.93
10.67
16.40
13.13
9.57
9.94
12.96
9.71
14.75
10.42
15.54
10.02
12.29
Process 3
13.28
12.05
9.01
NA
12.93
9.44
13.88
13.30
16.21
16.08
10.22
16.44
12.38
8.75
9.26
13.55
9.43
12.24
12.74
17.12
9.58
12.12
Process 4
9.66
12.24
11.22
NA
13.05
10.79
NA
13.93
15.22
15.28
11.64
16.73
NA
11.07
10.73
14.52
11.08
11.83
13.87
17.01
10.52
13.43
WES
12.97
11.90
' 9.28
>is!o7
10.35
12.67
13.98
14.28
17.05
10.71
15.89
13.24
9.22
9.56
14.61
9.40
11.34
14.03
17.60
9.71
12.45
standard Deviation
Aluminum
Barium
Bromine
Cadmium
Calcium
Chloride
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Nitrate
Potassium
Silicon
Sodium
Strontium
Sulfate
Zinc
Other Assays
TDS
TOC
.19
.08
.12
NA
.09
.21
NA
.17
.21
.37
NA
1.06
NA
.60
.08
.06
.09
.09
.17
.35
0.25
NA
.10
.08
.13
.21
.07
.13
.71
.31
.28
.33
.24
.56
NA
.52
.08
.16
.10
.14
.20
.41
24
.15
.23
.32
NA
.32
.26
.22
.35
.41
.66
.31
1.15
75
.18
.25
.42
.24
.59
.30
.34
.69
.46
is
.48
.30
NA
.58
.29
NA
.18
.46
.13
13
.76
NA
.29
.32
.08
.27
.62
.07
.33
.43
.66
.12
.17
NA
.07
.15
NA
.09
.54
.51
NA
.39
NA
.22
.10
.15
.12
.06
.12
.17
.43
.16
.09
.19
.15
NA
.11
.12
NA
.16
.15
NA
NA
.70
NA
.20
.20
.15
.15
.15
NA
.13
.82
.50
NA-Not Analyzed.
224
-------
O)
U
co
03
.2
15
•o
CO
.2
O
tfl
C/l
T3
O)
2
'co
re
I
03
CO
re
en
,a>
o
o
"o
O)
re
X
c
o
~ i
Oi
I "a.
| 0) !
^-
in
•
CO
•
Q)
W
(0
^
o
o:
in
o
OJ o
CM
in
in
•
(D
in
in
(3iu/6uj) eseeiea
< IE
eo
?
225
-------
Figure 8.2. The effects of porewater pH on release of magnesium from a solidified/stabilized matrix.
b
u
(0
o
1
"0
cc
pH
226
-------
Figure 8.3. Contaminant release during the monolith leach test compared to the total and available
contaminant content. '
APC Residue
PROCESS 1
1O* r
«4
?
"— 1O*.
UI
CO
i
ff
1
10"
10'
10*
101
10°
10"
10»
10-
103
10s'
Na ^•••4
A- '
pO«-9.S6
1O'
10V
10 1OO 1
Cd
a A ... .A ..-*••"*
1 10 1
Pb
....••«•••*""*' *
pO*-11.87
1 10 1
10"
10J
10*
1O'
10«
00
10*
10s
10'
10°
00
- i ' * ' *
A . • I
.-•'
i
10 100
Cu
A .*-•••*'
,A - * *
..-•*'"
1 1O, • 10
Zn
,
. - -A' ' " A V *
a ;
A pO»- 16.67
1 10 10
TIME (DAYS)
end: A A Monolith leach test data
Availability (transformed from availability leach test)
Total (transformed from total chemical analysis)
227
-------
Figure 8.4. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
APC Residue
PROCESS 2
M
I10'
1
Ul
t
10*
._ i
1O*
103
10*
10'
10°
10"
10*
10*
103
10*
10'
A . . *
..A"
.*•'"
..-•' pO«-9.16
10 10
Cd
t> .
. ....*•
1O'
10*
10*
0 0.
10*
103
10*
1O'
10°
, 10 100
Pb
A ^....A.-A--4-
pO«-12.76
1 10 1
10»
10*
10*
10*
1O1
10°
00
A ••*'
A .•
A
Cl
A. •'
.•'" A
1 10 100
Cu
...>...-•'-*•-"""
pO«-> 1(5.4
1 10 10
Zn
_ . .
A.--'4'"
pD«- 16^12
1 10 10
TIME (DAYS)
2nd: A A Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
-------
Figure 8.5.
Contaminant release during the monolith leach test compared to the total and available
contaminant content.
PROCESS 3
APC Residue
ui
CO
•3
10'
Na
A ••
pD«-8.77
10
in-
to*
10'
10°
10"
to-*
Cd
- A
A A
A A A
PO.-1S.11
,10 «
1O"
10s
Pb
A *.--'
10
100
10'
--ci
104
10'
pO«-8.96
10'
10*
10'
10°
1C"
cu ;
i
. *v * *
A A*..-*"'*
'— r1"
, 10 1C
10*
10J
10s
10'
Zn
pO«- 14.51
10
100
TIME (DAYS)
Legend: A A
Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability leach test)
Total (transformed from total chemical analysis)
229
-------
Figure 8.6. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
APC Residue
10'
E
o 1O*
K
2J 10'
10"
Na
pO*-8.70
10'
10«
Cl
o.i
WES
to
100
10s
10*
10'
10°
10"
*n~*
Cd
A ..A..-
.A »••••* pO«-»17.2
IO"
10*
10*
10*
10'
10°
^r>-'
Cu
.A.--*'"6"-'
,..>-'4- P0.->1B^
100
10
100
1O'
1O"
103
10*
101
10°
^0-«
Pb
A A
•**•"••*
Legend:
10
100
10-
1O3
10a
10'
Zn
pO«-16.87
10 100
TIME (DAYS)
Monolith leach test data
Diffusion based teaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
230
-------
Figure 8.7. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
BOTTOM Ash
UNTREATED
_. to*
Ol
E
"o
Ul
0)
Uj 10-
UJ
(C
1/-1*
0.
10*
10'
10'
10'
10°
c
4/*^*
1O-
103
10s
1O'
1/10
Na
.A" '
. -A
. -A'
. • A' *
A pO*-10.24
1 1 10 10
Cd
PO.-^
).1 1 10 1
•
Pb
..«•"*'"* *
. • • a' '
1O'
10*
1O
0 0.
1O*
1O-
103
10*
10'
00 0
4
,0-
10-
10J
10a
10'
!
i
Cl
. -4
.A'
.•''*" '
A pO«- 10.50
1 1 10 IOC
i
Cu
..?..--A- •"' H>14J!
.1 1 1O 10
i
Zn
i
1
. j • • *
..-•••""* pO«- 16.71
i
0.1
10
100
0.1
100
TIME (DAYJS)
Legend:
A A Monolith leach test data
Diffusion based leaching model
__ __ Availability (transformed from availability teach test)
______ Total (transformed from total chemical analysis)
231
-------
Figure 8.8. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
BOTTOM Ash
PROCESS 1
Legend:
1O*
o
_ 1O*
111
TO
UI 1O*
•JO3
1
10»
10*
• 10'
10°
1O"
10**
10*
103
10»
10'
10e<
Na
.*•••'*" r
. •••" '
. .••*"
pO«-9.t«
10*
10*
.*•
C! .A- '"s
.•i6.a
IU
10*
103
10f
10'
10°
Cu
A .. A •••*"'*'"
....A...-*'-" pO,->14^
1 10 ' 100 1 10 10
Pb ~ ~
A .A....A-"
...A..--4---^""
10*
10*
103
10s
10'
2n
-*--"4""*pO«-16.99
•"A
1 10 100 1 -10 100
TIME (DAYS)
d: A A Monolith leach test data
_ __ _ Availability (transformed from availability leach test)
222
-------
Figure 8.9. Contaminant release during the monolith leach test compared to the total and available
contaminant content. ;
BOTTOM Ash
PROCESS 2
CD
•& 10*
-g
III
CO
<
UJ
UJ ,
a.
•to*
1
1O3
10*
10'
10°
10"
10-*
.-A
A
Na A ..-••"
A. • '
. ' A
pO*-9.73
10 10
•
Cd
A A A A ...A.-
A pO«->14J
10*
10*
10
o o.
i 10*
1O*
103
10*
1O'
10°
I
x-' *
.-*
Cl
..-''A
.-'A :
. •
• * i
pO«-«.64
[
1 < 10 IOC
;
i
Cu ..--A- •A""i'"
A
,
pO«*10.85
10
iu-
10-
103
10*
101
10°
^O"
Pb
...^-•••A---A""A" A
pO«-13.78
10
Legend:
1O»
104
10*
10*
10'
100
1
i
Zn
i
A " ' A A
.. "A *
pD*« 16.40
'
A A
to
TIME (DAYS)
Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability leach test)
Total (transformed from total chemical analysis)
233
-------
Figure 8.10. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
BOTTOM Ash
PROCESS 3
10*
~
.E
Q
•610-
Ul
CO
§
UJ
a:
i
10
1OJ
10'
1O'
10°
10"
10-*
+ r\t
TO
10*
103
10*
10'
10°
4.'' *
"~Na 7"'
A.- '
. •" *
A
pO*-9.27
10 to
Cd
A A * * '...A-
P0«-»14^
1 10 1
Pb
... *-*,D~,«7
10*
10»
0 0.
10*
10s
10»
1O'
10°
00
10*
10*
10s
10s
10'
ci ..*••
pt>«"8.9a
1 10 100
A
Oil
VrfU
• -4- ' ' "A" '
A""*
P0.-K.10
1 10 10
Zn
• * * *
. .*. . • -A ' * ' * " ' * pO*-16.43
i tO 1O
10
TIME (DAYS)
Legend:
Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
234
-------
Figure 8.11. Contaminant release during the monolith leach test compared to the total and available
contaminant content. ;
BOTTOM Ash
PROCESS 4
104
J to*
Ul
CO
Ul 1O*
ui
C
..— '
10»
10'
10'
10°
10*
10s
10'
1O'
10°'
10-'
Na
. • •*" "
pO*-10.39
10 10
Cd
PO.-«L
10s
0 0.
10*
10»
10-
10s
10«
10'
10°
}.1 1 10 100
Pb
4 * *..
4 pb*-15.34
10"
10'
10a
10'
1 10 100
i
«•'*
CI
.A"
f-" '
pO»- 10.70
1 1 tO 100
i
Cu
>
..a---*---*"'a':'"a'
* pD«-16.18
1 1O 1C
Zn
•
A •-•«•••*'"
...-4--"4"" p°*"i6-"
1 10 101
TIME (DAYS)
nd: A A Monolith leach test data
............ Diffusion based leaching model
_____ Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
235
-------
Figure 8.12. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
BOTTOM Ash
WES
104
Ul 1O4
09
UJ
10*
Na
.^•-_
.•A
10*
10*
1O4
Cl
A. •
A . • '
pD*- 1 0.4.5
10
10
1O3
10*
10'
10°
10"
in-i
Cd
pO»"»16.2
100
10-*
10*
no'
10*
1O1
•»/•>«
Cu
A A A A
A * r ...-••
. •• ••j)D«-14.7O
A • •' '
10
100
Legend:
10»
10*
10a
10*
1O'
10°
1O"
Pb
» A A A A A
pO*-16.34
10*
10*
10'
1O1
10'
Zn
A A ..A. .•*•••*"
^,«
I 10 100 1 10 10
TIME (DAYS)
A A Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
236
-------
Figure 8.13. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
COMBINED Ash
UNTREATED
1
0
J 10'
RELEASE
fc -A
> O
u »
1W
0.
10*
10'
10'
10'
10°
(
10»
10-
10»
10»
10°
Na
A. •"
. • • "A
11 10 10
Cd
PC,-1"!
1.1 1 10 1
Pb
...* "*''^"
10'
10*
0 O.
1O*
1O*
10s
10s
10'
00 G
in«
10*
1O*
10s
101
ci 4.
a '
• A°
. . -A ' !
''" * rJ1« '
1 1 10 ' 10
, , 1
Cu
A A A . * ' ' '
4 ....-••'' pO«- 14.57
.1.1 10 1
Zn
•
_.. A. •••"*" pO«-16.01
0
00
o.i
10
100
0.1
100
TIME (DAYS)
Legend:
Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
237
-------
Fiaure 8 14. Contaminant release during the
hig contaminant content.
COMBINED Ash
monolith leach test compared to the total and available
I 10'
ti
10'
1OS
Na
i,
10*
10s
10s
10'
10°
10
Pb
10
100
10s
1O'
10"
10"
io-J
Cd
..*•••*"
4 .......-- ^.,,..0
10 1<
PROCESS 1
10*
10
10
too
Cl
10
10»
10s
10-
10*
10*
10s
10'
1O
Zn
100
TIME (DAYS)
Legend: A A Monotthleach test data
Diffusion based teaching model
°Sflity (transformed from availability teach test)
Total (transformed from total chemical analyse)
238
-------
Figure 8.15. Contaminant release during the monolith leach test compared to the total and available
contaminant content. '
COMBINED Ash
PROCESS 2
|10«
1
Ul
CO 10"
10*
. 10'
10'
10°
1O"
10*
10s
10s
10'
'10°
10"
Na ....-•"*""*
.••'''*
A
pO*-9.71
10 10
Cd
--^VM
1 10 1
Pb
pO«- 15.93
10 1(
1O'
10*
10»
10*
0 0.
10*
1O*
10s
10*
10'
10°
00
10*
10"
10J
10V
10°
M 1
CL
; .-a
. a
• ••' * ptX-9.91
\ 1 10 100
<
Cu
• ' ' "A
" ' A
pO«-13.07
i
1 10 ; 10
i
Zn i
• -A ' " ' "* " "a ;
i
10 1
-------
Figure 8.16. Contaminant release during the monolith leach test compared to the total and available
contaminant content.
COMBINED Ash
10*
CM
10'
Ul
CO
I
10-
Na
pO«-9.43
10
100
1O3
10*
10'
10°
10"
+ n-i
Cd
pO—wl
PROCESS 3
10*
10
10*
C!
. • ' £
0.1
pDo-9.4.4
10 100
10J
10*
10'
108
<(•>-'
Cu
.--*-*"'*'
A
pO«-13.30
10
100
10'tSSS^SSSS
1 fl-
103
IC'
10°
1O"
Pb
PCX- 16.08
10
too
10"
10»
10*
10'
10°
1O"
Zn
. A •••*•"•*
*...>••••*
pt)«-17.12
10 100
TIME (DAYS)
Legend: A A Monolith leach test data
Diffusion based leaching model
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
240
-------
Figure 8.17. Contaminant release during the monolith leach test compared to the total and available
contaminant content. ;
COMBINED Ash
PROCESS 4
« 1°* K,
E Na
IU A • ••* ' °
$ 10* A ...*••••
Ju
52 "' po«-ii.o8
ff
10*
1 0^
Cl 4..A *
A . • :
A •• i
i
..-•• ;
p£>«-10.79
,,
10J ^ ^ -ot
10-
10'
10*
10'
10°
Cd
,«.
1W
10
1O
1O
t
a
t
101
»/->e
I
Cu
po«-ia.«a
10 a., i 10 wo i 10 |
10-
10'
10s
10'
10"
==================
Pb
A .A •••*"
A * p0^16^8
10
•
10-
*r\3
1O
ioa
10'
*/*\o
Zn
A A A--A-
A * pb«- 17.01
10" ' — 00^1 10 ; "0
end: A A MonoWh leach test data
Diffusion based leaching model
TIME (DAYS)
[
•
Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
241
-------
Figure 8
.18. Contaminant release during the monolith leach test compared to the total and available
WES
contaminant content.
COMBINED Ash
U] 1O*
GO
s
£
10*
Na
Legend:
pD«-9.40
100
1OJ
10*
10'
1O°
10"
1O'1
Cd
pO«">16.1
, 10 «
10*
10*
103
10"
10'
10°
1O"
Pb
A A ..A-"*""*
A _ . .
pO«- 17.06
, 10 «
10«
10
10*
Cl
pO*" 10.36
0.1
10"
103
10'
10'
10°
1 10 i«»
Cu
*•••*'"*"
. . -A • • ' '*
P0.-13.
.„ 1C
10*
10*
103
10s
10'
1O°
Zn
. A . • • -A' ' " A
A ...*•'•
•"'* p0«-17.«0
, 10 «
TIME (DAYS)
A A Monolith teach test data
........... Diffusion based teaching model
___ Availability (transformed from availability teach test)
Total (transformed from total chemical analysis)
242
-------
Figure 8.19. Contaminant release during the monolith teach test compared to the total and 'available
contaminant content.
ARC Residue
10'
Ill
03
I
oc
1O"
Na _.
pO«-9.5S
10
100
10'
K
PROCESS 1
10'
Cl
A • '
A - ' '
10'
10"
Br
A-'
pO»-9.64
pO«-10.14
103
101
Li
.A'
103
10
100
10s
NO,
pO«-fl.78
10 ! 100
TIME (DAYS)
Legend: A A Monolith leach test data
........... Diffusion based leaching model
_____ Availability (transformed from availability leach test)
Total (transformed from total chemical analysis)
243
-------
Figure 8
.20. Comparison of tortuosities estimated from the monolith leaching test. Error bars indicate
.80 confidence intervals
40
35
30
= 25
I 20
I 15
10
5
0
BOTTOM ASH
Untreated P1 P2 P3
WES
160
40
35
30
= -2S
I 20
I 15
10
5
COMBINED ASH
m.
Untreated P1 P2 P3
P4 WES
*
o
3
O
40
35
30
25
20
15
10
5
A
APC RESIDUE
•
,
• i
i
,
Y/
P pg
Untreated P1 P2
244
-------
Tortuosity
CO
CO
CM
e
"a.
in
n
/ o
CM
8
e
I
2
00
en
CO
I
p
to
en
CO
Is
E
o
ca
i
co X
£ ir
fl) Q
QC H
O •
in
OJ
o
CM
in
in
to
in
•
in
in
(zui/6tu)
CM
eb
245
-------
o
€0
O
CO
O
O
UOIJBjAep
246
-------
s
Figure 8.23. Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comparison of elements). '
. ARC Residue
PROCESS 1
18
16
5 14
C
uZ
u.
IU
8 12
UJ
ft
U»
CO
5
*C O
S 8
• II
"n
fe. L_
*
""•"
i
A 1
+
1
r1*—
ji_
Z
«_
*
1
^_
™
i
^^ _
+
W
^*> ^*_
4-
I
^^.
N
IV
*
1
•*h
1
k J_
+
~~m
n
4.
77
i
rv»
*
—
1
^:
e
r*i
i
<^\
/*
1
e-
i
i
!
i
,
i
I
i
*
i
^«
Na Al Ba Br Ca Cd CI Cr Cu K Li Mg Ni Pt> .Si SO4 Sr iZn
WES Control
16
12
10
8
i
I
I
r>la Al Ba Br Ca Cd CI Cr Cu K Li Mg Ni Pb SiSO4S«\Zn
Legend: 4- pDe '* the total concentration was available (pD |}
| Chemical Retention Y/A Tortuosity j _ | Free Diffusioln
247
-------
Figure 8.24. Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comparison of elements).
UJ
O
E
UI
O
UJ
u.
m
§
O
c
ARC Residue
PROCESS 2
16
Hi 14
12
10
8
Ma Al Ba Br Ca Cd CI Cr Cu K Li Mg Ni Pb Si SO4 Sr Zn
PROCESS 3
18 r
16
12
1O
8
^
i
Na Al Ba Br Ca Cd CI Cr Cu K Li Mg Ni Pb Si SO4 Sf Zn
Legend: + pDeathetotalconcentratJonwasavailable(pDO
Chemical Retention ^ Tortuosity |_J Free Diffusion
243
-------
Figure 8.25. Relative contributions of free diffusion, tortuosity, and chemical retardation
diffusion coefficient and the effect of availability (comparison of elements).
to the effective
BOTTOM Ash
UNTREATED
18
16
t-
1 14
C
fc
u
O 15>
O '2
cc
tu
CO
5 10
_J
< 8
s B
tu
o
g
§ 18
i=
i
5 16
O
14
12
1O
o
•
_
-
-
-
•
-
•
^
I
Na
+
1
+
*™**
1
Al
+
rr
I
+
-T7
1
Ba
+
I
P
Br
1
*
1
Ca
-r
1
I
Cd
*
—
1
i
Cl
r*i
1
*
^_^
1
Cr
+
1
*
^^
I
Cu
+
1
.
P
K
•
.
1
Li
+
_
1
1
£
1
^0
Pt
£]
1
*
1
Ni
30<
*
i
*
1
9^
3E
—
1
*
—
1
Si.
ES
i
A
i
3O
S
r+-
I
4
1
+7
I
Sr
1
+
i
Zn
T"^
1
Na Al Ba Br Ca Cd Cl Cr Cu K l_i Mg Ni Pb Si SO4 Sr, Zn
Legend: + pOe if the total concentration was available (pD i)
| Chemical Retention Y/A Tortuosity | | Free Diffusion
249
-------
8 26 Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
a.<». ™uskjn goeflicignt and ^ e{iect of availability (companson of elements).
BOTTOM Ash
PROCESS 2
18
16
UJ 14
UJ
o
IU
O
u
(C
111
u.
CO
z
o
p
o
m
I
O
o
1O
. +
Na Al Ba Br Ca
Cd O Cr Cu K Li MO Ni Pb Si SO4 Sr Zn
PROCESS 3
is
16
14
12
1O
8
Na Al
Ba Br Ca Cd CI Cr Cu K Li MQ Ni Pb SiSO4Sr 2n
Legend: + pDe a the total concentration was available (pD i
^Chemical Retention ^Tortuosity
Free Diffusion
250
-------
Figure 8.27. Relative contributions of free diffusion, tortuosity, and chemical retardation toithe effective
diffusion coefficient and the effect of availability (comparison of elements).
BOTTOM Ash
PROQESS 4
18
16
SE
ffi 14
O
U.
tu
O 12
o '^
u
O (
r-
dSNVUJLTU
* r«h + £l
+
* •+
^ .-LJL-.
I
I
I
1
I
4,
+
1
s
1
i
4.
+
I
I
1
+
I
i
\
I
A
i
j:
] .
1
!
uj Na Al Ba Br Ca Cd Cl Cr Cu K Li MQ Ni Pb Si SO4 Sr Zn
O
P.
1 18
S
1
14
12
1O
o
•
-
•
-
-
WES Control +
+ ^
+ +
* * r*i
+
*
I
1
i
A
*
i
^^.
si
i
^r
1
1
i
N
1
:§:
i
+
rr
1
i
1*1
S
1
*
\
1
Na Al Ba Br Ca Cd Cl Cr Cu K Li Ma Ni Pb Si SO4 Sr Zn
j
Legend: + pDe» the total concentration was avaaabte{pDO :
cherrtca! Retention ^| Tortuosity | j Free Diffusion
251 I
-------
Figure 8 28 Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
' diffusion coefficient and the effect of availability (comparison of elements).
COMBINED Ash
UNTREATED
IB
16
z
H 14
o
u.
g 12
o '*
cc
u
u.
CO
< 1O
_J
'
*T
"1
:.::
.;!
1".
1
+
—^—
1
1
««.
.'.*.
1
\
i
1
-
:'•:'•:
I
.
™
^
i
1
±-
I
*
1
*
1
J
T/T1
^ ^
i_
.^
ii
|
i
w NaAIBaBrCaCdCICrCuKLiMgNiPb SiSO4Sr Zn
0
g PROCESS 1
1 1S
i
o
o
12
1O
o
r + *
+ + *
• +
"I
X-
1
—
1
§
+
?:
I
m
1
1
—
\
—
1
B
1
1*1
:S:
1
F7
I
__
;:;:.
i
*'
__
1
b.
|1
:-;:
1
Na Al Ba Br Ca Cd Cl Cf Cu K Li Mg Ni Pb Si SO4 Sr Zn
Legend: + pDeS the total concentration was available (pD i)
[ Tortuosity | | Free Diffusion
»i Chemical Retention
252
-------
Figure 8.29. Relative contributions of free diffusion, tortuosity, and chemical retardation tp the effective
diffusion coefficient and the effect of availability (comparison of elements). ;
COMBINED Ash
PROCESS 2
18
16
2 14
O
U.
U.
Ill
O 12
O l4i
GC
Ul
ll
ON TO OVERALL TRAN8I
03 (DO
OB
j£ 16'
o
14
12
1O
o
i
+
*
I
—
l
i
*
i
—
1
Na Al Ba Br Ca Cd
•
-
•
-
1
i
-
i
+ +
i
n
i
1
:
*
I
1
*
1
i
i
i
*
1
1
T-
1
i
A
i
1
Ci Cr Cu K U Mg Ni Pb SiSO4Sr 2n
PROCESS 3
rh *
JL
N
^
1
+
i
ft
i
:&
i
*
i
lx
i
+
i
A
i
£
i
r
ii
Na Al Ba Br Ca Cd CI Cr Cu K Li Mg Ni Pb Si SO4 Sr
Legend: + pDe S the total concentration was available (pD
Chemical Retention
Tortuosity
D
Free Diffusion
253
-------
Fiaure 8 30
F«ure 8.3U.
ive contributions of tree diffusion, tortuosity, and chemical retardation ,0 ,he eHective
and the effect of availability (comparison of elements).
COMBINED Ash
PRO0ESS 4
18
16
»-
u
iZ
u.
1U
LLTRAN8FERCO
j -*
O ro
2 8
2
*
* +
"7"
A "**'•
T
|_
Ml
+ ;. ;
m
Na Al Ba Br Ca Cd Cl Cr Cu K
O
| 18
t-
a
« 16
2
O
O
12
1O
O
*
A •"•'•
+ |j:
:;•:
i
n & iSi
ifeii
* +
T7
. •:>: ;•;!;
iHF
*
i\
'\ 4- :; ::
+ >
llll P
%%i% *
%> % % i $
% 6. <&•%.'_
+
' F*! '^
•'' ifc •"•'
||
Li MO Ni Pb SiSO4Sf Zn
WES Control +
_._
?n "•:'••
:•".-: * •'••
>X '•*'
'••'•<_ :•:•
]%%% %
1
* n
:•; fl I:-.:
IN & I
1 1 1 i
Na Al Ba Br Ca Cd Cl Cr Cu K Li
Pb Si SO4 Sr Zn
Legend: + pDe if the total concentration was available (pD 0
m Chemical Retention
Tortuosity
254
\ \ Free Diffusion
-------
Fijjure 8.31
31 . Relative contributions of free diffusion, tortuosity, and chemical retardation to the e
diffusion coefficient and the effect of availability (comparison of treatment prbcesse
(0- untreated; 5 - WES)).
1*
e
™ 14
e
-i
_j
o
£
1 w
1
BOTTOM Asn
' *
* *
i 1
^
»
'&
^2
i— — i
•~
2 0 i t »
U
C
g 1.
c
UJ 14
It.
z •
1C '*
d
0 .
COM3if€D Asn
* •
I
'%
_^_
I
1
ui • i t a
*•
0
t~ i*
2
0 i.
1 M
O_-
c
M
•
APC R«cidu>
» * *
___
M
::'.
22
r—\
22
*
••••••
4
*
I
4
Al
«
%
u
(4
If
ie
BOTTOM Asn Ca
*
*
*
i
'm
1
* » . *
'^
%
• e i t * 4
Al
:|:| ;
i
u
«4
u
IS
'I
I
-OfvBif^GD Asn Ca
*
'
*
i
k
j
\
1
1
• • 1 t » 4 «
Al
*
^^™
~
IS
14
It
10
1
APC B*SJOU« > Ca
^~^^ r™""i
^
?&
—
f//y/
^
e it • 4 •
i s * 4 *
PROCESS
Legend: + pDe V the total concentration was available (pD |}
| Chemical Retention [/yj Tortuosity
n
Free Diffusion
255
-------
Figure 8.32.
Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comparison of treatment processes
(0- untreated-. 5 - WES)).
J
^3
4
£
cc
IU
£
I
o
m
Legend :
BOTTOM Asn
CS
01234$
»
;C»veiMED Asn
Cd
01234
It
18
14
12
10
•
APC R*aoj» Cd
»
•
:•:•:;
SS
i
*
:':§!:
y?/
»
•^«B
;ig
::>:•:
i
•x";
:':::::
i
0 1 2 S 4 5
BOTTOM Asn
*
e i 3 a 4 *
COMBINED Asn
12
cu
1
0 1 2 » 4 S
APC R»»OJ»
012349
PROCESS
pDe a the total concentrat'ion was available (pD 0
Chemical Retention ^ Tortuosity [_J Free Diffusion
256
-------
Figure 8.33.
Relative contributions of tree diffusion, tortuosity, and chemical retardation
diffusion coefficient and the effect of availability (comparison of treatment c
(0- untreated; 5 - WES)).
3OTTOM Asn
a
o
i
2
^
01 234$
16
m
tc,
o
£
i
£
c
APC Residua
o 1 z
16
BOTTOM Asn
12
10
to the effective
processes
0 1 2 J «
1*
18
0 1 2 3 * s
APC
0 1 2 3 \* *
PROCESS
Legend:
pDe I the total concentration was available (pD Q
| Tortuosity I I Free Diffusion
257
\-'-\Chemical Retention
-------
Figure 8.34.
£
£
i
m
s
u.
i
o
cr
iu
cc
pc
UJ
o
m
i
o
Legend:
Relative contributkins of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comparison of treatment processes
(0- untreated; 5 - WES)).
12
BOTTOM Asn
80 P
12
Asn
APC Ftesidua
Pb
012»« *
BOTTOM Asn
0 1 2
2OM3BveD Asn
Zn
*
w
12
APC RM1CU0
Zn
012345
PROCESS
pDeff the total concentrattoh was avaBabte (pDi)
| Chemical Retertion ^j Tortuosity [ j Free Diffusion
258
-------
Figure 8.35.
o
.£
8
I
o
ff
IU
1
ffi
§
09
ffl
C
Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comoarison of treatment processes
(0- untreated-. 5 - WES)). . ',
12
BOTTOM Asn
Cl
COMBINED Asn
O
I
0 1 2 3 4 t
APC
0 12 3 * S
BOTTOM Asn
SO.
I
0 1 2 3 « , S
18 K
: so.
APC
so.
0 1 2 3 45
PROCESS
Leg end : •+• pDe if the total concentration was available (pD
I Chemical Retention " j/Xi Tortuosity
259
| |
Free Diffusion
-------
Figure 8.36. Relative contributions of free diffusion, tortuosity, and chemical retardation to the effective
diffusion coefficient and the effect of availability (comparison of treatment processes
(0- untreated: 5 - WES)).
J
o
o
T
4
UJ
u.
ee
I
oc
I
1
O
Legend:
BOTTOM Asn
TDS
m
0 1 2 3 4 S
Asn
TOS
0 1 2
* S
-
APC
TOS
BOTTOM Asn
TOC
1
0 1 2 3
APC Ftenou*
0 1 Z 3 « *
pDe if the total concentration was available (pD 0
W\ Chemical Retention
| Tortuosity
260
1 23 *
PROCESS
Free Diffusion
-------
Figure 8.37. Cumulative contaminant release as a function of time and pDe lor typical construction
applications. (Note 104 days = 27 yrs.). . !
Block lOxlOxlO cm
Block 15x15x45 cm
1.OO
O.SO
i
V
I
1
10" 1O' 1O* 1O* 1O" 1O* 1O»
O.OO
1.OO
OBO
O.6O
O.4O
020
OJOO
1O* 1O' 10* 1O3 1O* 1O* 1O*
Roadbase 15 cm
4)
"5
1.OO
O.BO
0.60
O.-4O
• 12
Roadbase 45 cm
1.00
°-BO
|
s
V
0.4O
03O
1O" 1O' 1O* 1O' 10* 1O6 10*
T«r» [«»ays]
CXOO
1O" 1O1 1O« 1OJ 10' 1O*
Time [days]
261
-------
9. SUMMARY AND CONCLUSIONS
The objective of this study was to provide credible data on the effectiveness of the selected S/S
processes for treatment of MWC bottom ash. APC residue, and combined ash. The study was
conducted to provide a side-by-side comparison and evaluation of the effectiveness of MWC S/S
technologies for treating bottom ash, APC residues and combined ash. The study emphasized
evaluation of the S/S treatment technologies, rather than how ash characteristics are affected by municipal
waste combustor designs, operating conditions, and waste input. Therefore, the number of different
residues included in the study was limited to bottom ash, APC residue, and combined ash from a single
mass bum MWC facility.
The specific objectives of this study were to:
1. Define residue sampling, preparation and characterization protocols to permit bench and pilot-
scale demonstrations of S/S treatment processes with representative residues.
2. Carry out MWC residue S/S treatment process demonstrations under carefully controlled and
monitored conditions;
3. Compare the effects of the S/S treatment processes on the fundamental physical and chemical
properties of MWC residues;
4. Compare the effects of the S/S processes on leaching properties of MWC residues through
laboratory procedures which included the TCLP and other tests that permit estimation of
contaminant release potential and release rate over a prolonged period of time and under
diverse environmental conditions; and,
5. Evaluate the physical durability of the treated MWC residues during aggressive environmental
cycling tests.
The experimental design of this program was a full factorial design for the evaluation of five
solidification/stabilization processes for MWC residues. The two experimental factors were the residue
type to be treated and the S/S process. The experimental levels within the residue type factor were (i)
bottom ash, (ii) APC residue, and (iii) combined ash. The six experimental levels within the S/S process
factors were (i) the untreated residue, (ii) the WES Control S/S process, and (iii - vi) the four selected
»
262
-------
vendor S/S processes. Thus, two experimental factors at three and six experimental levels
respectively, resulted in the evaluation of eighteen experimental cases. Each experimental case was
evaluated in triplicate. \
The three residue types used in this study were obtained during a single composite sampling
event from a typical state-of-the-art mass bum municipal waste combustor incorporating a lime slurry
spray drier (wet-dry) acid gas scrubber and a fabric filter paniculate removal system; Each bulk residue
sample was dried, size reduced, screened and homogenized prior to use in this program. Thus all
process demonstrations, testing and evaluations were carried out on pre-processed residues to facilitate
latoratory-scale testing and direct treatment effect comparisons. ;
Five S/S processes were evaluated. Four of five of the processes were proprietary vendor
applications of four different generic S/S process categories. The generic S/S process categories
i
represented by the selected vendors were: ;
• S/S with Portland cement and proprietary polymeric additives (Process 1); :
• S/S with Portland cement, soluble silicates and dry carbonaceous material (Process 2);
- S/S with cement kiln dust and proprietary additives (Process 3),
i
i
• S/S through addition of soluble phosphates (Process 4). ;
The fifth process used Type 1 Portland cement only (WES Control Process). The WES Control
Process was selected to provide a baseline comparison of the treatment effects of j Portland cement
without vendor additives. Each experiment was evaluated in triplicate. Each experimental case was
analyzed for chemical composition and tested for physical properties and durability! and leaching
characteristics using a series of testing procedures (e.g.. bulk density, wet/dry, freeze/thaw, TCLP,
availability leach test, monolithic leach test, etc.). Details of the testing procedure^ are provided in
Section 2.2 of this report. . |
Prior to the process demonstration, each vendor received approximately 50 Ib samples of each
residue type to facilitate preliminary process testing and formula optimization. Th? vendors were
provided a list of test and program objectives that were to be used to evaluate their process. The
vendors were not provided specific performance criteria to which they should treat 'the residues. This was
loft to their discretion. Vendor process optimization may have focused on minimizing contaminants
release based on TCLP. concurrently With minimization of cost, and not on maximizing the physical
properties of the treated residue. This was probably because the primary focus of the demonstrations
263 :
-------
was treatment for disposal with secondary focus on residue utilization. Each process demonstration
replicate consisted of the vendor carrying out the specified process to produce approximately 100 Ib of
treated residue while EPA representatives and US Army Corp of Engineer personnel observed.
Conclusions are summarized and discussed in the following sections. Overall conclusions present
the general inferences deduced from the study. The treatment process effectiveness of each residue
type is discussed and conclusions are made based on the results of the physical properties, durability
testing and the leaching potential and the leaching release rate. Conclusions are made on the physical
and durability test methods, the leaching test methods, and the methods used for chemical analysis.
9.1 OVERALL CONCLUSIONS
The overall conclusions are based on all aspects of the study and are as follows:
• Based on comparison of untreated residues with treated residues, the S/S processes evaluated
generally did not decrease the potential for release of target contaminants. The phosphate
process, however did reduce the potential for Pb to be released.
• Whether the MWC residues were treated or not, release potential for metals (lead, cadmium,
zinc, etc.) typically was significantly less than the total concentration present in the residues.
• Release rates of the elements were very low for compacted granular untreated bottom ash and
combined ash. Release rates also were very low from bottom ash and combined ash treated by
processes that produced physically durable specimens.
• The S/S processes evaluated did not successfully treat the residues to reduce the potential for
release of TDS and soluble salts. Whether the MWC residues were treated or not, the release
potential and release rates were high for TDS and the salts of calcium, sodium, potassium,
chloride, and sulfate. The total amounts of these constituents released typically approached the
total concentration in the MWC residues. In the case of the APC residues, the treatment
processes increased the release potential of the salts.
• The high concentration and ultimate fate of soluble salts in MWC residues should be carefully
considered in the design of treatment processes, utilization and disposal of the residues.
- Based on results from the program, APC residues have the least potential for utilization in
applications requiring structurally durable products. The physical retention values for the treated
APC residues indicated limited or no physical retention. The major contaminant release from the
264
-------
ARC residue were salts (Na, K, Ca, Cl, 804). In excess of 30 percent of the total mass
dissolved due to the release of salts, :
i
The use of proprietary additives in the S/S processes evaluated did not enhance the strength of
the treated residues. The WES Control process produced test specimens with unconfined
compressive strengths greater than or equal to those processes with proprietary additives.
i
Evaluation of S/S process design, performance, and treatment efficiency should be based on a
matrix of several testing protocols. No single test, such as TCLP, can provide; all the information
required to evaluate contaminant release potential, contaminant release rate, and physical
durability. An appropriate test matrix to evaluate S/S processes should include tests which will
* !
address these factors. ,
i
TCLP was not a good indicator of release from untreated and treated residues for several
reasons. Variable end-point pH for the extraction resulted in wide variation in, estimated metals
release because of pH dependent solubility constraints. The low liquid to solid ratio for the
TCLP (20:1) also may have resulted in solubility limitations for many elements of concern. Finally,
TCLP does not provide for determination of the total release of soluble salts and anions.
Most processes evaluated in this study most likely were developed based on a limited number
of testing procedures. Variations in Portland cement based and other S/S technologies will
influence the degree of durability and chemical leaching potential. Therefore, substantial
improvements in S/S process optimization may be obtainable by optimizing process design
based on results of multiple test criteria.
i
The Portland cement based processes can be formulated to produce S/S test specimens of
MWC bottom and combined residues with high structural integrity and increased resistance to
weathering. These type processes, if properly designed, are likely to be successful in producing
monolithic products with physical properties acceptable for various utilization options. This does
not mean, however, that the chemical characteristics also would be acceptable.; Physical durability
or possessing a monolithic structure does not ensure acceptable performance with respect to
contaminant release. •
The release rate of most potentially toxic metals will be very slow to negligible for S/S treated
MWC residues.
I
The unconsolidated, granular nature of the ash material required that a useful method for
estimating diffusion controlled release from compacted granular materials be developed. Such a
265 i
-------
method was developed for this evaluation. The application of a modified monolith leach test to
determine intrinsic leaching properties for granular materials has been proven to be very
consistent, and data are comparable with results from other types of diffusion measurements.
The tortuosity data obtained in the experimental setup are consistent with diffusion
measurements using radfotracers. I
• The most durable test specimens to the cyclic weathering tests and the immersion tests were
those with the highest UCS. Thus DCS may be used as a preliminary indicator of durability.
• The monolithic leach test (MLT) for construction materials and stabilized products provides intrinsic
information on tong term leaching effects and usefulness in relation to product quality. The MLT
also provides useful information for product quality improvement. By focusing on the controlling
parameter requiring adjustment, initial estimates of release rates and fluxes for varied application
scenarios can be obtained. The release mechanisms (dissolution, wash-off and diffusion) can be
distinguished. The distinction between physical retention and chemical retention can be made for
cases where diffusion is the controlling release mechanism. Existing regulatory tests do not
provide such useful information.
• Physical retention was directly correlated with the compacted dry densities of the material for the
bottom and combined ashes. The test specimens with the greater densities had more physical
retention.
• The USEPA recommended methods of chemical analysis (SW-846) were not comparable in many
cases to the neutron activation chemical analysis for total elemental concentrations. The USEPA
method results indicated significantly lower elemental concentrations than the NAA methods
suggesting that only partial analytical recoveries occurred. This discrepancy warrants further
investigation into the chemical analysis methods to investigate and develop more applicable
methods for similar type solid matrices.
9.2 TREATMENT PROCESS EFFECTIVENESS
The treatment process effectiveness was evaluated based on the physical properties, the
leaching potential and the leaching release rate data. The data generated when testing the treated
residues were compared to each other and to the data generated when the untreated residue was
tested.
266
-------
Q 2 1 PTwsV-al Properties i
The physical properties were evaluated using a range of testing protocols that resulted in
empirical values for strength parameters and information on the durability of the test 'specimens when
subjected to a range of cyclic environmental conditions. !
i ;
• S/S with Portland cement, polymeric additives, and other proprietary additives (Process 1 and the
WES Control) produced the treated residue with the highest UCS and the t?est performance on
the UCS after 28 days of immersion in water, wet/dry weathering, and freeze/thaw weathering.
The treatment processes required compaction during molding of the test specimens using a
Proctor compaction energy. This indicates that the treated residues can be prepared in such a
manner that increases strength and durability. j
« The treated APC residues exhibited poor performance in all of the durability tests including UCS
after immersion, wet/dry weathering, and freeze/thaw weathering. In several cases, the monolith
samples degraded to an unconsolidated form. The APC residues contained high levels of
sulfates and the formulations included large percentages of liquid additives. Thus, APC residues
treated with the processes tested have the least potential for utilization in application requiring
structural durability. Process 1 and WES Control combined ash test specimens developed less
than one-half the UCS developed by the bottom ash test specimens and only slightly more
UCS than the APC residue test specimens. Hence, it appears that the presence of APC
residue in the combined ash may adversely affect the strength of the treatejJ residues.
- The Process 4 vendor claimed the treatment process was formulated to produce an
unconsolidated product with little structural integrity and this was reflected injthe performance of
the test specimens during the strength and durability testing. Process 3 bottom ash and
combined ash test specimens performed poorly on the strength and durability testing as
compared to the performance of the Process 1 and WES Control test specimens. These test
specimens exhibited almost twice the amount of swelling of Process 1 and the WES Control
bottom ash and combined ash test specimens. This behavior could be attributed to the
additives used in the formulation that resulted in the swelling and weakening of the structural
• integrity of the treated residues.
• Process 3 included no Portland cement. The formulation and the test specimens for all three
residue types performed poorly. All of the APC residue treatment processes (excluding
Process 4 which was unconsolidated and not tested) and the bottom and combined ash treatment
Processes 2 and 4, performed poorly during the durability tests. Process 1 and the WES Control
bottom and combined ash test specimens performed better on the durability testing and
267
-------
acquired higher UCS's than any of the other treatment process test specimens. These test
specimens were compacted into the molds during sample preparation and were poorly, to very
poorly hydrated after 28 days of curing. The correlation between these parameters and strength
formation and durability warrant further investigation.
ft,?,? I ffrlChin? Potential
The TCLP, AVLT, and the DWLT are all intended to assess the maximum extent of species
release, or the leaching potential, under varying environmental conditions.
. Process additives contributed substantially to the release of calcium, sodium, potassium, and
sulfate in several of the test specimens for the TCLP. DWLT. and/or the AVLT. For example.
Process 3 additives had high concentrations of potassium and sulfate. Potassium and sulfate
release potentials in the TCLP, DWLT, and the AVLT were one to two orders of magnitude
higher than the release potentials measured in the untreated residues for all three residues
treated using Process 3 additives.' A similar increase in release is noted for aluminum ,n the WES
Control test specimens which used Portland cement with high concentrations of aluminum.
. The calculated process dilution factors provided accurate correction for the dilution effects of
process additives used to treat bottom ash and combined ash. The calculated process dilution
factors for the APC residue may result in the over estimation of release potential by up to 30
percent. The APC residue'was very hydroscopic during curing and this absorbed water could not
be accurately accounted for in the dilution factor calculations.
- in designing a S/S treatment process for MWC residues, leaching of total salts and dissolutton of
the untreated and treated residue must be considered. In this study, up to 32 weight percent. 12
weight percent, and 13 weight percent for the treated APC reskJue. bottom ash, and combined
ash respectively, dissolved in distilled water during serial extractions. The DWLT leachate TDS
release potential was two to three times higher in the treated residues than the untreated
leachates. This indicated that treatment of the residues increased the release potential of the
total sans.
. Leaching tests which define a fixed quantity of acid to be added instead of the extract PH are
subject to wide variations in test results which primarily reflect the alkalinity of the
solidified/stabilized matrix being tested.
The increased and decreased leaching potential according to the TCLP. DWLT. and AVLT were
used to determine the treatment process efficiency .rorn a leaching potential perspeaiv* The
concentrations o, afcminum, cadmium, copper, lead. zinc, calcium, potassium. sod«,m. chbnde. and sultate
268
-------
in the leachates generated from the untreated residues were compared to that of the treated residues.
The results varied widely from ash type to ash type and by leaching test and are presented in the
following sections by ash type. , i
Residue
Process 1 - For aluminum, calcium, cadmium, potassium, sodium and chloride, the leaching
potential changes ranged from no change to an increase of two orders of magnitude due to
treatment. For copper, lead and zinc, leaching potential changes ranged from no change to a
decrease by one to two orders of magnitude. For sulfate. the leaching potential changes varied
according to leaching test and ranged from no change to increase or decrease.
Process 2 - For aluminum, calcium, potassium, sodium and chloride, the leaching potential changes
ranged from no change to an increase of two orders of magnitude due to treatment. For copper,
zinc, and sulfate, the leaching potential changes ranged from no change to a decrease of two
orders of magnitude. For lead, the leaching potential changes varied according to leaching test
and ranged from an increase to a decrease. For cadmium, there was no change in the leaching
potential due to treatment.
Process 3 - For aluminum, calcium, cadmium, potassium and sulfate, the leaching potential changes
ranged from no change to an increase of one order of magnitude due to treatment. For copper
only, the leaching potential changes ranged from no change to an increase of two orders of
magnitude due to treatment. For lead and zinc, the leaching potential changes varied according to
leaching test and ranged from an increase to a decrease. For sodium and chloride, there was no
change in the leaching potential due to treatment. ;
Process 4 - For cadmium, the leaching potential changes ranged from no change to an increase of
two orders of magnitude due to treatment. For potassium, copper, sodiurn, and chloride, the
leaching potential changes ranged from no change to a decrease of two orders of magnitude due
to treatment. For aluminum, calcium, zinc, and sulfate, the leaching potential changes varied
according to leaching test and ranged from an increase to a decrease. The leaching potential for
lead was reduced by two to three orders of magnitude which is a substantial reduction when
compared to the other treatment processes.
Portland cement only (WES Control) - For aluminum, cadmium, potassium, sodium and chloride
the leaching potential changes ranged from no change to an increase of two orders of magnitude
269
-------
due to treatment. For calcium, copper, lead, zinc and sulfate . the leaching potential changes
varied according to leaching test and ranged from an increase to a decrease.
pqttom Ash
. Process 1 - For calcium, cadmium, copper, chloride and zinc, the leaching potential changes
ranged from no change to a decrease by one order of magnitude. For sulfate, the leaching
potential changes decreased by one to two orders of magnitude. For aluminum, the leaching
potential changes varied according to leaching test and ranged from no change to increase or
decrease. There was no change in the leaching potential for potassium, sodium and lead.
. Process 2 - For aluminum, copper, lead, zinc, sodium, and sulfate, the leaching potential changes
ranged from no change to an increase of two orders of magnitude due to treatment. The
increased sodium release is likely attributable to additives. For calcium, the leaching potential
changes varied according to leaching test and ranged from no change to a decrease. For
cadmium, potassium, and chloride, there was no change in the leaching potential due to
treatment.
. Process 3 - For calcium, copper, lead, potassium and sulfate, the leaching potential changes
ranged irom no change to an increase of two orders of magnitude due to treatment. The
increased potassium and sulfate release is likely attributable to additives. For aluminum,
cadmium, sodium, chloride and zinc, there was no change in the leaching potential due to
treatment. There were no decreases in leaching potential observed for this process.
. Process 4 - For calcium, cadmium and zinc, the leaching potential changes ranged from no change
to an increase of two orders of magnitude due to treatment. For aluminum, chloride, and sulfate,
the leaching potential changes decreased by one to two orders of magnitude. There were no
changes in leaching potential observed for potassium, copper, sodium and lead.
. WES Control - For cadmium, copper, lead and zinc, the leaching potential changes ranged from
no change to an increase of two orders of magnitude due to treatment. For sulfate, the leaching
potential changes varied from no change to a reduction of two orders of magnitude. For
aluminum, the leaching potential changes varied according to leaching test and ranged from an
increase to a decrease. For calcium potassium, sodium, and chloride, there was no change in the
leaching potential due to treatment.
270
-------
Combined Ash ;
Process 1 - For aluminum, cadmium, copper, sutfate and zinc, the leaching potential changes
|.
ranged from no change to a decrease by one order of magnitude. For calcium, the leaching
potential changes varied according to leaching test and ranged from no change to an increase of
an order of magnitude. For lead, the leaching potential changes varied according to leaching test
and ranged from no change to increase or decrease. There was no change in potential for
potassium, sodium and chloride. |
Process 2 - For sodium and sulfate, the leaching potential changes ranged from no change to an
increase of two orders of magnitude due to treatment. The increased sodium release is likely
i
attributable to additives. For cadmium, the leaching potential changes varied according to
leaching test and ranged from no change to a decrease of two orders of magnitude. For calcium,
copper, lead, and zinc, the leaching potential changes varied according to leaching test and
ranged from no change to increase or decrease. For aluminum, potassium, and chloride, there
was no change in the leaching potential due to treatment. |
• Process 3 - For aluminum, calcium, potassium and sulfate, the leaching potential changes ranged
from no change to an increase of two orders of magnitude due to treatment. The increased
potassium and sulfate release is likely attributable to additives. For cadmium, copper and zinc,
the leaching potential changes ranged from no change to a decrease in leaphing potential by one
order of magnitude. For lead, the leaching potential changes varied according to leaching test
and ranged from an increase to a decrease. For sodium and chloride, there was no change in the
leaching potential due to treatment.
Process 4 - For aluminum, calcium, cadmium, copper, tead, chloride, zinc and sulfate, the leaching
potential changes ranged from no change to a decrease in leaching potential by two orders of
magnitude. For potassium and chloride, there was no change in the leaching potential due to
treatment. ,
• WES Control - For aluminum, calcium, and sulfate, the leaching potential changes ranged from no
change to a decrease in leaching potential by two orders of magnitude. For lead, the leaching
potential changes range from no change to an increase of one order of magnitude. For cadmium,
potassium, copper, sodium, chloride and zinc there was no change in the leeching potential due
to treatment. i
271
-------
9.2.3 | flafrhinfl Release Rate
The release rate is a function of availability, physical retention, and chemical retention. The
following conclusions on the leaching release rate have been made on based on these parameters.
. The physical retention in the solidified/stabilized APC residues for all of the vendor processes
and for Process 3. all ash types, was limited or nonexistent. The physical retention values for
these materials approached or were essentially the same as the theoretical tower limit of 1. or no
physical retention. Only minor physical retention was observed for the solidified/stabilized
bottom ash and combined ashes. The physical retention of the untreated bottom and the
untreated combined ash was greater than for the treated ashes. Process 4 indicated a higher
physical retention than any of the other treatment processes. Physical retention obtained by the
treatment processes tested was poor in comparison to physical retention values achieved by
construction materials, S/S coal ash and S/S incineration bottom ash reported in other stud,es.
. The chemical retention in the untreated bottom and combined ash often was greater than in the
treated material. The retention values for individual elements in the products from the different
processes are consistent. This indicates systematic trends dictated by the major element
chemistry in the product matrices, which does not appear to be greatly different between the
different vendor processes, except Process 4. A few typical differences were observed. In
Process 2, the addition of process additives resulted in increased mobilKy of the aluminum and
suHate The mobilities of barium, calcium and strontium were significantly decreased as a
consequence of the higher sulfate mobility. It appears that in Process 3 the highest pH levels
are occurring in the porewater. based on the sensitivity of magnesium mobility to pH. The h.gher
Mg retention in Process 4 also may be attributed to the formation of new mineral phases. In
Process 4. an increase in the aluminum release was noted, when may indicate the mobilizatton and
subsequent precipitation of alumna phosphates.
. The S/S bottom ash and combined ash resulted in less physical retention than the compacted
untreated residues except for Process 4. Physical retention was directly correlated with the
compacted dry densities of the materials, with greater densities resulting in greater phys^l
retention.
. The major contaminants released from APC residue were salts, .n view of the high salt content in
APC residue of up to 30 percent of the total mass, the release of salts will proceed rather raprfly
and leave large voids. This will increase matrix porosity and reduce physical retention. The
release of salts ultimately will lead to the deterioration of the material. The stabihzed APC
272
-------
residue after leaching was highly porous. The release pattern initially reflects (24 - 28 hr.) diffusion
control, then the voids open up due to loss of mass by dissolution, and ultimately the release
levels off through depletion of teachable salt. Clearly, the stabilized APC residues can not be
regarded as truly stabilized matrices. All APC products showed either breakdown of product
matrix or substantial wear during the testing period of 2 months. In view of |the high salt leaching,
attention should be focused on the release of these apparently constituents.
I — :
• The release rate of most potentially toxic metals will be very stow to negligible for S/S treated
MWC residues which maintain physical durability. However, the release of elements such as
sodium, potassium and chloride will be very rapid even when physical durability is maintained.
9.3 PHYSICAL PROPERTIES AND DURABILITY TEST METHODS i
The conclusions based on the methods used to determine the physical properties and the
durability of the treated and untreated residues are the following:
• The UCS after immersion test with a 28 day immersion period is useful for lassessment of
structural durability in exposed utilization applications. Processes for which products
disintegrated or resulted in decreasing strength may not satisfy structural requirements in these
applications. Processes resulting in stable or increasing strengths should be evaluated further.
• The freeze/thaw weathering test was the most aggressive of the durability, tests applied in this
study.
• Permeability could not be correlated to the strength or durability of the test specimens.
i
- The correlation between degree of hydration. strength formation, and durability warrant further
investigation •
i
- Physical retention was directly correlated with the compacted dry densities of the materials, for the
bottom and combined ashes. The test specimens with the greater densities had more physical
retention. The APC residues had little or no physical retention due to the release of salts. The
large salt release resulted in increased porosity and led to the deterioration of the samples.
9.4 LEACHING TESTS
The conclusions based on the leaching test methods used to determine the leaching potential and
the leaching release rate of the treated and untreated residues are:
• Results obtained from any single leaching test do not clearly define either the potential for
contaminant release or the rate of release.
273
-------
• Leaching tests which define a fixed quantity of acid to be added instead of defining the
extract pH are subject to wide variations in test results which primarily reflect the alkalinity of
the S/S matrix being tested.
• Effective diffusion coefficients estimated based on total species concentration in the solid
phase instead of available species concentration may result in underestimation of the
diffusion coefficient by up to two orders of magnitude. This may lead to underestimating the
actual rate of release.
9.5 CHEMICAL ANALYSIS
• PCDDs and PCDFs were present in extremely low concentrations in all untreated residues
tested and therefore should not be a health risk concern in the treated residues evaluated in
this study.
• Analysis of total chloride, sulfate and dissolvable solids in solid untreated and treated
residues using the SW-846 methods was not consistent. Improved analytical methods are
needed for these matrices.
• Analysis of total elemental composition of the untreated and treated residues for metals
resulted in underestimation of the concentration of several elements because of incomplete
acid digestion techniques. The SW-846 acid digestion was not sufficient for the dissolution of
elemental species from a silicate matrix. SW-846 digestion methods need to be improved
as applied to these matrices to obtain true total estimates. This is particularly important in
the determination of elemental mass balances. This effect was most pronounced for
chromium, aluminum and zinc. Similar effects may be present for lead, but were not verified.
274
-------
10. REFERENCES i
American Nuclear Society Standard Committee Working Group ANS 1 6.1 . American National
Standard Measurements of the teachability Of Solidified Low-Levels Radioactive Wastes by a
Short-Term Procedure, American Nuclear Society La Grange Park, IL (1986). ,
American Society for Testing and Material. Standard Method for Laboratory Determination of Water
(Moisture) Content of Soil, Rock, and Soil Aggregate Mixtures. D 2216-80. Philadelphia. PA
(1980). . |
American Society for Testing and Material. Standard Method for Moisture-D|nsity Relatfons of Soils
and a Soil-Aggregate Mixtures Using 10 Ib Rammer and 18-m. Drop. D 1557-78;. Philadelphia.
PA (1978). ;
Anwican Society for Testing and Material. Standard Practice for Dry Preparation of Soil Samples for
Particle-Size Analysis and Determination of Soil Constants. D421-85. Philadelphia, PA (1985).
American Society for Testing and Material. Standard Specification for Moisture c,aa^nets and Moist
Rooms and Storage Cabinets of Testing Hydraulic Cements. C 511-78, Philadelphia. PA
(1978).
American Society for Testing and Material. Standard Test Method for Compressivd Strength of
Hydraulic Cement Mortars. C 109-80, Philadelphia, PA (1980).
American Society for Testing and Material. Standard Test Method Sampling and Testing Flyash on
NaturalPozzolan for Use as a Mineral Admixture in Portland Cement and Concrete. C 31 1 -80,
Philadelphia, PA (1980). ;
American Society for Testing and Material. Test for Resistance of Concrete to Rapid Freezing and
Thawing. C 666-80, Philadelphia, PA (1980).
American Society for Testing and Material Test Method for Freezing anc I Thawing Tests for
Compacted Soil-Cement Mixtures. D 560-89, Philadelphia, PA (1989). ;
American Society for Testing and Material. Test Method for Wetting and Drying Tests for
Compacted Soil-Cement Mixtures. D 559-89, Philadelphia. PA (1989).
Barrett, E.P.. Joyner, L.S., and Halenda, P.P., AmPifcan Chemical Society. Volume 73, p.p. 373-
380(1951). !
Brunauer, S. Emmett, P.H. and Teller, E. J. AmPriran Chemical Society. Volume 60, p. 309 (1 938).
Carstow, H.S. and Jaeger, J.C. 1980. r-nnrinrtionof Heat in Solids. Second Edition. Oxford University
Press, New York., Chapter II, paragraph 2.2. eq.10. ;
County Sanitation Districts of Los Angeles County, -Report of Commerce Refuse-to-Energy Ash
Treatment Pilot Study,' File No. 31 R-208.10, February 28. 1 991 .
Crank, J. 1975. The Mathematirs of Diffusion. Second Edition. Oxford University Press, New
York.
d,e Groot G J and van der Sloot,H.A. 1990 . "Determination of leaching characteristics of waste
environmental product certification" Prop fry Int. ^P.
nf Hazqr*""* R««oae«vft anrl Mixed wastes. Williamsburg, Virginia. May
29-June 1,1990. |
ironmental Laboratory (1 987). "Disposal Alternatives for PCB-Contaminated jSediments form
^S^Ha^S^Voni' Miscellaneous Paper EL-87-9, US Army Engineer Waterways
Experiment Station, Vicksburg, MS. ;
275
-------
Gladney, E.P., O'Malley, B.T., Roelandts, I. and Gills. T.E. Compilation nf F!ftmpntal Concentration
rtr\\r\ for the National Bureau of Standards Clinical. Biological, and Enyir^nmftPtal Standard
Reference Materials. National Bureau of Standards Special Report 260-1 1 1 U.S. Department
of Commerce. 1987.
Hallsey. G. J. Chemical Phvsics. Volume 16, p.p. 931- 937 (1948).
Hardins, W.D. and Jurra, G. J. Ch^"1'1"-31 Phvsics. Volume 1 1 , p 431 (1943).
Kom, J.L and Huitric, R.L. (1992). County Sanitation Districts of Los Angeles County. Personal
Communication.
Lea, P.M. (1971). The Chemistry of Cements and Concrete., Chemical Publishing Company, Inc.,
New York, N.Y., 4th edition, p. 271.
Li, Y.H. and Gregory, S. (1974). "Diffusion of ions in seawater and deep sea sediment". Geochim.
Cosmochim. Acta. 38, 703-714.
Popovfcs, S. (1979). Concrete-Making Materials, Hemisphere Publishing Corporation. New York,
N.Y., p. 56.
Standard Methods for the Examination of Water and Wastewater 1 6th ed. American Public Health
Association Publication Office, Fixed and Volatile Solids Ignited at 550oC. Method 209 - D,
Washington, D.C. (1985).
Test Methods for Solidified Waste Characterization, Acid Neutralization Capacity, Method #7,
Environment Canada and Alberta Environmental Center, (1986).
US Army Corp of Engineers. Engineer Manual. November 1970. "Engineering and Design
Laboratory Soils Testing" EM 1 1 10-2-1906, Office of the Chief of Engineers, Washington, D.C.
US Army Corp of Engineers. Technical Manual. March 1989. "Materials Jesting" TM 5-
530/NAVFAC MO-330/AFM, Office of the Chief of Engineers, Washington, D.C.
US Environmental Protection Agency. December 1989. "Municipal Waste Combustion Ash and
Leachate Characterization, Monofill-Second Year Study." Draft. Prepared by NUS
Corporation, Prttsburg, Pennsylvania, for Office of Solid Waste and Emergency Response,
Washington, D.C.
US Environmental Protection Agency. March 1987. "Interim Procedures for Estimating Risks
Associated with Exposures to Mixtures of Chlorinated Dibenzo-p -Dtoxins and -Dibenzofurans
(CDDs and CDFs)" EPA/625/3-87/012, Risk Assessment Forum, Washington, DC.
US Environmental Protection Agency. March 1990. "Report on the Municipal Waste Combustion
Ash Subcommittee. Review of the ORD municipal Waste Combustion Ash
Solidification/Stabilization Research Program." EPA-SAB-EEC-90-010, A Science Advisory
Board Report, Washington, DC.
US Environmental Protection Agency. November 1986. Hazardous Waste Management System;
Land Disposal Restrictions; Final Rule," Federal Register. Part II, Vol 40 CFR Part 261 et seq.,
Washington, DC.
van der Stoot, H.A. , Wijdstra, J. , van Stigt, C. A. and Hoede, D. 1985. Leaching of Trace
Elements From CoalAsh and Coal Ash Products. Chapter 19. Wastes, m the. Ocean. Vol 4.
eds Duedall, I.W., Kester, D.R. and Park, K.H. J. Wiley and Sons, New York.
van der Stoot, H.A. Wijkstra, J. and de Groot, G. J. 1988 "Contaminant Diffusion in Sediments,
Soil and Waste Materials. Contaminated Soil- eds. K. Wolf, WJ, van den Bnnk and F. J.
Colon. Kluwer Academic Publishers, Dordrecht.
276
-------
van der S\ooX, H.A., de Groot, G.J., Hoede, d. and Wijkstra, J. 1991. 'Mobility of Trace
Elements Derived from Combustion Residues and Products Containing These Residues in Soil
and Groundwater". Final Report. Netherlands Energy Research Foundation, Petten.
van der Stoot, H.A., Hjelmar, O. and de Groot. G.J. 1989. Waste/soil Interaction studies - The
Leaching of Molybdenum form Pulverized Coal Ash. Flue Gas and Flv Ash, eds. Sens, P.F.
and Wildinson, J. K., Commission of the European Communities, Elsevier Applied Science,
London. :
van der Sloot, H.A., Piepers, O. and Kok, A. "A Standard Leaching Test for Combustion
Residues". Technical Report Bureau of Energy Research Projects BEIP-31. The Netherlands
(1984). ;
van der Sloot, H.A.1991. ECN. Personal communication. |
Veirsluijs, C.W., Anthonissen. I.H., Valentijn, E.A. 1990. "Integrate Evaluatie van de
Deelonderzoeken Mommoet 85". Rapport 738514008. RIVM, Bilthoven.
277
-------
11. APPENDICES
Table of Contents
Eaaa
APPENDIX A RESULTS OF CHEMICAL ANALYSIS OF UNTREATED MWC RESIDUES. 280
APPENDIX A.1 Results of Chemical analysis of untreated APC residue. 282
APPENDIX A.2 Results of chemical analysis of untreated bottom ash. 290
APPENDIX A.3 Results of chemical analysis of untreated combined ash. 302
APPENDIX B SUMMARY RESULTS OF TCLP, DWLT AND AVLT FOR UNTREATED
AND TREATED MWC RESIDUES
314
Summary results of TCLP. DWLT and AVLT for untreated 315
and treated APC residues.
Summary results of TCLP, DWLT and AVLT for untreated 341
and treated bottom ash.
Summary results of TCLP, DWLT and AVLT for untreated . 368
and treated combined ash.
APPENDIX C SUMMARY OF MONOLITH LEACH TEST EXTRACT CONCENTRATIONS 394
AND DATA ANALYSIS FOR UNTREATED AND TREATED MWC
RESIDUES.
APPENDIX B.1
APPENDIX B.2
APPENDIX B.3
APPENDIX C.1
APPENDIX C.2
APPENDIX C.3
APPENDIX C.4
APPENDIX C.5
APPENDIX C.6
Summary of monolith leach test extract concentrations and 397
data analysis for untreated bottom ash and combined ash.
Summary of monolith leach test extract concentrations and 418
data analysis for APC residue, bottom ash and combined
ash treated by Process 1.
Summary of monolith leach test extract concentrations and 448
data analysis for APC residue, bottom ash and combined
ash treated by Process 2.
Summary of monolith leach test extract concentrations and 478
data analysis for APC residue, bottom ash and combined
ash treated by Process 3.
Summary of monolith leach test extract concentrations and 508
data analysis for APC residue, bottom ash and combined
ash treated by Process 4.
Summary of monolith leach test extract concentrations and 529
data analysis for APC residue, bottom ash and combined
ash treated by WES Control Process.
278
-------
EXPLANATION OF APPENDICES I
.4- •' . ;
1. The "ds" notation indicates that results have been corrected to a dry weight basis.
I
2. The coefficient of variation (CV) for replicated data are tabulated.
3. The footnote notation and the meaning of each are listed as follows:
u - Undetected. The detection limits are indicated in the table
I
A U(1 of 3) Indicates that 1 of the 3 replicates analyzed resulted in an
undetected value. The Detection limit value was used for calculation of
the mean value. |
B - U(2 of 3) Indicates that 2 of the 3 replicates analyzed resulted in an
undetected value. The detection limit value was used for calculation of
the mean value.
NA- Not Analyzed !
4. Results from leaching tests are tabulated on three separate bases:
(1) Concentration in extract from leaching test, which is reported with units of
either ug/l or mg/l. j
(2) Release basis which reports the mass of particular species reported released
from the mass of sample extracted, either untreated or treated residue. These
are reported with units of mg/kg ds and have been corrected toiadry wieght
basis. i
(3) Release based on untreated residue. The release is corrected for process
dilution during treatment. These are reported in units of mag/kg j ash or mag/kg
ash treated. i
279
-------
Appendix A - Results of chemical analysis of untreated MWC residues.
List of Tables:
Table
Number Description
APC Residue (Appendix A.1)
A.1-1 Solids by SW-846, <300um fraction, Set 1 [mg/kg] (see Note 1)
A.1-2 Solids by SW-846, <300um fraction, Set 1, corrected to dry solid basis [mg/kg d.s.]
(see Note 1)
A.1-3 Solids by SW-846, <300um fraction, Set 2 [mg/kg] (see Note 1)
A.1-4 Solids by SW-846, <300um fraction, Set 2, corrected to dry solid basis [mg/kg d.s.]
see Note 1)
A.1-5 NAA, <300mm fraction [mg/kg d.s.] (see Note 1)
A.1-6 NAA Summary, <300ujn fraction, [mg/kg] and corrected to dry solid basis [mg/kg d.s.]
(see Note 2)
Bottom Ash (Appendix A.2)
A.2-1 Reject fraction (>2mm) from particle size reduction, Set 1 (see Note 3)
A.2-2 <2mm fraction from particle size reduction, Set 1 (see Note 3)
A.2-3 <300um fraction from particle size reduction, Set 1 (see Note 3)
A.2-4 <300um fraction from particle size reduction corrected to dry solid basis, Set 1 (see
Note 3)
A.2-5 Reject fraction (72 mm) from particle size reduction, Set 2 (see Note 3)
A.2-6 <2mm fraction from particle size reduction, Set 2 (see Note 3)
A.2-7 <300um fraction from particle size reduction (see Note 3)
A.2-8 <300um fraction from particle size reduction, corrected to dry solid basis, Set 2 (see
Note 3)
A.2-9 NAA, <300um fraction [mg/kg] (see Note 2)
A.2-10 NAA summary, <300jam fraction [mg/kg d.s.] (see Note 2)
280
-------
Table
Number Description
Combined Ash (Appendix A.3) \
A.3-1 Reject fraction (>2mm) from particle size reduction, Set 1 (see Note 3) i
j
A.3-2 <2mm fraction from particle size reduction, Set 1 (see Note 3)
A.3-3 <300|im fraction from particle size reduction, Set 1 (see Note 3) |
A.3-4 <300um fraction from particle size reduction corrected to dry solid basis, Set 1
(see Note 3) i
A.3-5 Reject fraction (72 mm) from particle size reduction, Set 2 (see Note 3) \
A.3-6 <2mm fraction from particle size reduction, Set 2 (see Note 3) :
A.3-7 <300u.m fraction from particle size reduction (see Note 3) I
A.3-8 <300u.m fraction from particle size reduction, corrected to dry solid basis, Set 2
(see Note 3) !
A.3-9 NAA, <300|im fraction [mg/kg] (see Note 2) |
A.3-10 NAA summary, <300u.m fraction [mg/kg d.s.] (see Note 2) i
Notes:
1. All of the untreated APC residue passed through a 300u.m mesh with minimal effort. Analysis was
carried out on 3 grab samples from randomly selected 55 gallon drums of the APC residue after
homogenization (See Chapter 3.1) for Set 1. An additional 3 grab samples from randomly
selected drums was analyzed for Set 2. !
i
2. NAA was carried out on one grab sample from each of the 55 gallon drums indicated by the
sample identifier. All samples were size reduced to <300u.m prior to NAA.
• i
3. These analyses were carried out on the residue particle size fractions resulting from the particle
size reduction procedure described in Chapter 2.5. Analysis was carried out on bottom ash and
combined ash grab samples from randomly selected 55 gal drums after residue preparation (see
Chapter 3.1) for Set 1 and an additional 3 grab samples from different drums for Set 2.
281
-------
Appendix A. 1.
Results of chemical
analysis of untreated
APC residue
PROCESS: Untreated, Set 1
ASH TYPE: APC Residue. <300 um
ASSAY: Solids by SW-846
A. 1-1
Mettle (mg/kg;
Aluminum
Antimony
Arsanic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Coppar
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potaaiium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc . •
Anlonc (mg/kg
Bromide
Fluoride
Chloride
Sulfate
A
13500.0
NA
29.8
353.0
U
179.0
192.0
NA
38.3
NA
354.0
NA
2880.0
12.5
NA
NA
41.G
NA
26.0
NA
3.3
NA
42.3
NA
NA
580.0
NA
NA
2820.0
4880.0
18.8
177000.0
6660.0 .
Nitrogen Speciec:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aeeaye
PH(S.U.)
TDS(Extract)
cm
TCC
TSr»)
0.10
26.2
2.4
2100.0
mg/kg)
319000.0
24600.0
4260.0
99.00
B
13200.0
NA
59.6
348.0
U
180.0
184.0
NA
38.3
NA
337.0
NA
2770.0
12.0
NA
NA
47.9
NA
25.0
NA
ND
NA
40.6
NA
NA
561.0
NA
NA
2680.0
5090.0
18.7
170000.0
6310.0
0.10
28.6
2.1
2200.0
332000.0
31200.0
4320.0
99.40
C
12100.0
NA
34.4
342.0
U
176.0
189.0
NA
39.3
NA
347.0
NA
2830.0
11.6
NA
NA
41.4
NA
24.0
NA
3.0
NA
42.0
NA
NA
582.0
NA
NA
3100.0
5130.0
18.9
180000.0
5120.0
0.11
29.6
2.0
1160.0
347000.0
25400.0
2950.0
99.00
X
12933.3
NA
41.3
347.7
U
178.3
188.3
NA
38.3
NA
346.0
NA
2826.7
12.0
NA
NA
43.6
NA
25.0
NA
3.2
NA
41.3
NA
NA
574.3
NA
NA
2866.7
5033.3
18.3
17S666.7
6030.0
0.10
28.1
2.2
1680.0
332666.7
27066.7
3843.3
99.13
C.V.
0.06
0.39
0.02
0.01
0.02
0.01
0.02
0.02
0.04
0.08
0.04
0.07
0.02
0.02
0.07
0.03
0.01
0.03
0.13
0.06
0.06
0.10
0.34
0.04
0.13
0.20
0.00
Film- HnlFtv Sal.*3OOunVSat1 U»undetacted.A«U(1of3),B»U(2ol3),NA«nat analyzed
282
-------
-. Unueated. Set 1
ASH TYPE: APC Residue. <300 um
ASSAY: Solids by SW-846
A. 1-2
A
Mtuls (mg/kg d«) .
Aluminum
Antimony
Arsenic
Sarium
Beryllium
3oron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
.ithium
Magnesium
Manganese
•Urcury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
in
i Ionium
Vanadium
Zinc
14180.7
NA
31.3
370.8
0.0
188.0
201.7
NA
40.2
NA
371.8
NA
302S.2
13.1
NA
NA
43.7
NA
27.3
NA
3.5
NA
44.4
NA
NA
609.2
NA
NA
2962.2
Anlona (mg/kg da)
romide
Fluoride
Chloride
Sulfate
5126.1
19.7
185924.4
6995.8
Nitrogen Species:
Nitrite
Nitrate
Ammonia
'hosphorous
Other Aeeaye (n
pH(&U.)
TDS(Extract)
CCO
TOO
TSP*)
0.11
27.5
2.5
2205.9
ng/kg de)
335084.0
25840.3
4474.8
99.00
fito: UntFly Sol.<300um/Sat1
B
13924.1
NA
62.9
367.1
U u
189.9
194.1
NA
40.4
NA
355.5
NA
2921.9
12.7
NA
NA
50.5
NA
26.4
NA
3.0 U
NA
42.8
NA
NA
591.8
NA
NA
2827.0
5369.2
19.7
179324.9
6656.1
0.11
30.2
2.2
2320.7
350211.0
32911.4
4557.0
99.40
C
12656.9
NA
36.0
357.7
U
197.7
NA
41.1
NA
363.0
NA
2960.3
12.1
NA
NA
43.3
NA
25.1
NA
3.1
NA
43.9
NA
NA
608.8
NA
NA
3242.7
5366.1
19.8
1 88284.5
5355.6
0.12
31.0
2.1
1213.4
362970.7
26569.0
3085.8
99.30
X
13587.2
NA
43.4
365.2
187.3
197.8
NA
40.6
NA
; 363.4
; NA
2969.1
12.6
NA
NA
, 45.8
NA
26.3
NA
0.06
0.39
0.02
U
0.02
0.02
0.01
0.02
0.02
0.04
0.09
0.04
3.2 A 0.07
NA
43.7
NA
NA
603.3
. NA
NA
3010.6
5287.1
19.7
184511.3
6335.9
0.11
29.6
2.3
1767.0
349421.9
28440.3
4039.2
99.23
U»und«t.ct»d,A.U(1of3),B«U(2of3),NA»not
0.02
0.02
0.07
0.03
0.00
0.03
0.14
0.05
0.06
0.10
0.34
0.04
0.14
0.20
0.00
analyzed
283
-------
PROCESS: Untreated. Set 2
ASH TYPE: APC Residue, <300 um
ASSAY: Solids by SW-846
A. 1-3
Uetels (mg/kg
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
ron
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
>otassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlonc (mg/kg
Bromide
:luoride
Chloride
Sulfate
A
18000.0
0.0
76.0
430.0
1.6
NA
220.0
NA
44.0
NA
380.0
NA
2100.0
12.0
NA
NA
74.0
NA
32.0
NA
5.0 U
NA
16.0
NA
NA
740.0
NA
NA
13000.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
'hosphoraus
Other Assays
pH(S.U.)
TOS(Extract)
COD
TCC
TSfW
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
B
•
16000.0
0.0
86.0
40.0
1.5
NA
220.0
NA
38.0
NA
370.0
NA
3400.0
• 12.0
NA
NA
60.0
NA
28.0
NA
5.0 U
NA
15.0
NA
NA
710.0
NA
NA
13000.0
•
NA
KA
NA
NA
NA
NA
NA
NA
NA
KA
NA
NA
C
18000.0
0.0
90.0
440.0
1.8 U
NA
220.0
NA
48.0
NA
470.0
NA
3400.0
14.0
NA
NA
76.0
NA
38.0
NA
5.0
NA
14.0
NA
NA
750.0
NA
NA
13000.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA <
X
17333.3
NA
84.0
303.3
U
NA
220.0
NA
43.3
NA
406.7
NA
2966.7
12.7
NA
NA
70.0
NA
32.7
NA
5.0
NA
15.0
NA
NA
733.3
NA
NA
13000.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C.V.
0.07
0.09
0.75
0.00
0.12
0.14
0.25
0.09
0.12
0.15
0.00
0.07
0.03
0.00
C7/.. fh.tr/,,
«n«lvz»d
284
-------
PHOCESS: Untreated, Set 2
AJiH TYPE: ARC Residue. <300 urn
ASSAY: Solids by SW-846
A. 1-4
A
Metals (mg/kg ds)
Aluminum
Antimony
Arsenic ;
iarium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
.ithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
1 8907.6
NA
79.8
451.7
1.7 U
NA
231.1
NA
46.2
NA
3S9.2
NA
2205.9
12.6
NA
NA
77.7
NA
33.6
NA
5.3
NA
16.8
NA
NA
777.3
NA
NA
13655.5
Anions (mg/kg ds)
Bromide
Fluoride
Chloride
Sulfate
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Assay* <
pH(S.U.)
TDS(Eztract)
CCO
TOO
NA
NA
NA
NA
ng/kg ds)
NA
NA
NA
B
16877.6
NA
90.7
42.2
U
NA
232.1
NA
40.1
NA
390.3
NA
3586.5
12.7
NA
NA
63.3
NA
29.5
NA
3.0 U
NA
15.8
NA
NA
748.9
NA
NA
13713.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C
18828.5
NA
94.1
460.3
U
NA
230.1
NA
50.2
NA
491.6
NA
3556.5
14.6
NA
NA
79.5
NA
39.7
NA
5.2
NA
14.6
NA
NA
784.5
NA
NA
13598.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
X
i
18204.6
i NA
' 88.2
; 318.0
; u
'. NA
231.1
NA
' 45.5
' NA
j 427.0
i NA
3116.3
, 13.3
: NA
I NA
73.5
NA
: 34.3
1 NA
'. 4.5 A
NA
1 -15.8
i NA
i NA
, 770.3 .
i NA
! NA
13655.6
; "*
• NA
NA
: NA
'
: NA
i NA
NA
, NA
i
NA
NA
i NA
C.V.
0.06
0.08
0.75
0.00
0.11
0.13
0.25
0.09
0.12
0.15
0.29
0.07
0.02
0.00
Fib: UnLFly Sol.<300um/Sft2/r U»undetected,A«U(1of3),B=U(2ot3),NA.not analyzed
285 \
-------
PROCESS: Untreated
ASH TYPE: APC Residue
ASSAY: Solids by Neutron Activation
Units: mg/kg
Drum *
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maganete
Mercury
Potassium
Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zinc
1
28300
1120
3130
139
212000
14.7
2.19
163000
18.
14.3
500 U
1.27
47.1
5940
6.18
436
10.1
15500
0.565
2.82
7.36 U
71000
50.1
21000
1.27O
3.06
6100
17.4
16(00
2
25(20
1040
3610
135
271000
17.4
2.72
160000
165
14.1
520
1.20
45.7
•140
5.93
377
•.43
14100
0.553
2.31
7.07 U
33000
50.3
20000
1.65
2.71
5200
20.5
16200
<300
4
24300
1110
3860
144
288000
11.7
3.47
169000
186
13.7
600 U
1.18
41.1
•450
5.21
42(
(.81
1611)0
0.418
2.38
8.41
37000
55.6
20200
1.31 U
1.33
5300
15.4 U
16100
u m, ground
5
23600
1060
3720
144
287000
13.2
3.78
174000
168
14.3
500 U
1.06
37.2
6260
5.02
453
•.46
15400
0.411
2.41
7.72 U
41000
55.9
21600
1.46U
2.28
5300
11.0
18300
6
22100
1060
3740
140
216000
16.5
3.49
167000
205
16.3
400 U
1.14
40.5
6610
5.16
438
6.24
15400
0.517
2.31
7.98 U
30000 U
55.6
18200
1.37 U
2.07
6400
11.SU
18000
7
28700
10SO
3610
105
277000
16,3
3.74
, 160000
194
15.3
440
1.32
507
6330
6.11
414
10.S.
15300
0.544
2.70
7.78 U
31000
53.1
19900
1.23
2.32
6400
194
17fOO
A. 1-5
286
-------
PROCESS: Untreated
ASH TYPE: ARC Residue
ASSAY: Solids by Neutron Activation
Units: mg/kg
Drum *
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
MaganeM
Mercury
Pota*(iiim
Samarium
Scandium
Selenium
Silicon
Silve
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zin
8
28600
1040
3830
126
291000
16.2
3.1*
1(7000
207
11.6
510
1.23
40.2
6630
5.65
436
8.51
15300
O.S26
2.52
1.53 U
46000
54.3
20400
2.00
2.45
4*00
24.1
17*00
<300
9
22(00
10*0
37SO
144
2(5000
13.5
2.«*
161000
180
17.2
530
1.07
34.6
62*0
5.03
3*0
•.40
14*00
0.402
2.1*
(.68
35000
52.4
18300
1.54
2.03
3700
22.6
17300
11
10
26600
1070
3780
145
2(8000
8.23
2.(*
164000
1*8
11.0
510
1.0*
41.3
5700
5.2*
44*
(.86
15(00
0.447
2.28
7.63
51000
47.7
20400
1.31
2.30
6000
21.*
15*00
m, ground
12
22300
1100
3870
128
288000
12.1
2.76
167000
173
15.2
500 U
1.20
37.6
5500
4.8*
411
7.86
14600
0.444
1.86
U 6.15 U
30000 U
48.8
20400
1.84
2.1*
6200
1*.8
16300
15
25400
1110
3850
134
2*9000
16.4
2.60
167000
186
14.0
500
1.24
38.1
6480
5.15
3*1
8.2*
1(700
0.488
2.43
12.4
44000
54.3
20200
1.44
2.24
5800
18.1
17400
A. 1-5
287
-------
PROCESS: Untreated
ASH TYPE: APC Residue
ASSAY: Solids by Neutron Active
Units: mg/kg
<300 m .ground
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maganete
Mereur
Potassium
Samarium
Scandium
Selenium
Silieo
Silve
Sodiu
Tantalu
Thoriu
Titaniu
Vanadiu
Zi
X
25202
10SO
3773
135
21536*
14.29
3.13
186000
m.«4
14.91
507.27
1.11
41.44
•211
5.49
418.1t
•.23
1536
0.4*
2.3*
1.22
40S1
i
201 i
1.
2.
55
It.
171
t.a«v/i
0.08
0.03
0.03
0.09
0.02
O.It
0.14
0.02
0.05
0.13
0.11
0.07
0.12
0.06
0.0*
O.O6
0.01
0.05
0.13
0.09
0.1 1
0.30
0.05
0.03
0.1*
'0.17
0.15
0.23
0.05
A. 1-5
288
-------
PBOC1ESS: Untreated
ASH TYPE: Fly Ash
ASSAY: Solids by Neutron Activation
A. 1-6
Mauls
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel '
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlons (mg/l)
Jromide
Fluoride
Chloride
Sulfate
X
(mg/kg)
25202.0
1080.0
NA
NA
NA
NA
135.0
2S6364.0
192.6
14.9
507.3
6211.0
NA
NA
NA
419.2
9.2
NA
NA
15364.0
8.2
40818.0
53.0
20160.0
NA
NA .
5573.0
18.4
17191.0
3773.0
NA
166000.0
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
twsphorous
Other Assays i
pH(S.U.)
TDS
COD
TOC
NA
NA
NA
NA
mg/l)
NA
NA
NA
NA
X
(mg/ko as)
25585.6
1096.4
NA
NA
NA
NA
137.1
290724.9
195.6
15.1
515.0
6305.6
NA
NA
NA
425.6
9.4
NA
NA
15598.0
8.3
41439.6
53.8
20467.0
NA
NA
5657.9
18.7
17452.8
3830.5
NA
168527.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
C.V.
0.09
0.03
0.09
0.02
O.OS
0.13
0.11
0.06
0.06
0.08
O.OS
0.18
0.30
0.05
0.03
0.15
0.23
0.05
0.03
0.02
Fil«:UnLFIy/NAAJSummary
289
____^^^^^_ |
(^undetected. A=U(1 ef 3). B=U(2 of 3), NA= not analyzed
-------
Appendix A.2.
Results of chemical
analysis of untreated
bottom ash.
PROCESS: Untreated. Set 1
ASH TYPE: Bottom Ash, >2mm
ASSAY: Solids by SW-846
A. 2-1
MUUI* (mg/Xfl)
Aluminum
Antimony
Arsenic
Banum
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Load
.Ithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Znc
Anion* (mg/kg
Bromide
Fluoride
Chloride
Sullate
A
25400.0
NA
12.2
609.0
NO
142.0
33.7
NA
107.0
NA
1470.0
NA
1080.0
8.8
NA
NA
5.0
NA
250.0
NA
1.0
NA
11.5
NA
NA
135.0
NA
NA
3350.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aisaya
pH(S.U.)
TDS
CCO
TOC
TS(%)
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.80
B
24400.0
NA
21.2
473.0
fO
138.0
42.4
NA
149.0
NA
1450.0
NA
1490.0
9.4
NA i>
NA
6.4
NA
228.0
NA
1.0
NA
13.2
NA
NA
' 199.0
NA
NA
4530.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.90
C X
18900.0 22900.0
NA
9.1 14.2
261.0 447.7
rd
126.0 136.0
27.7 34.6
NA
91.5 115.8
NA
1130.0 1350.0
NA
839.0 1136.3
8.1 8.8 .
NA
NA
5.5 5.6
NA
159.0 212.3
NA
NO 1.0
NA
8.5 11.1
NA
NA
108.0 147.3
NA
NA
4350.0 4076.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.90 99.90
C.V.
0.15
0.44
0.39
0.05
0.21
0.26
0.14
0.29
0.07
0.13
0.22
0.01
0.22
0.32
0.16
0.00
Fiti: UnLBct.Sol.>2mm/Sel1
U*und«t«ud.A«U(10l3),B.U<2of3),NA.nat «n«lyz«
-------
PROCESS: Untreated, Set 1
ASH TYPE: Bottom Ash. <2mm
ASSAY: Solids by SW-846
A. 2-2
Metale (mg/kg
Aluminum
Antimony
Arcanie
Barium
iaryllium
Baron
Cadmium
Calcium
Chromium
Cobalt
Copper
ron
Load
Lithium
Magnesium
Manganaca
vtarcury
Molybdenum
Nickal
'otasiium
Salanium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Aniona (mg/kg
Bromide
Fluoride
Chloride
Sulfata
A
24500.0
MA
8.9
3SO.O
ND
1ES.O
33.8
NA
110.0
NA
, 901.0
NA
1430.0
8.9
NA
NA
4.6
NA
211.0
MA
M3
NA
7.7
NA
NA
172.0
NA
NA
3910.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aaaaya
pH(S.U.)
TDS
CCD
TOC
TS(%)
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.20
B
23600.0
NA
11.8
424.0
NJ
144.0
41.9
NA
150.0
NA
1420.0
1330.0
9.6
NA
NA
6.4
245.0
NA
rO
NA
10.1
NA
NA
167.0
NA
NA
4540.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
i
C X
;
14300.0 20800.0
NA
15.3 12.0
240.0 :
M> ;
111.0 140.0
27.5 34.4
NA '
86.5 115.5
NA
1720.0 1347.0
1530.0 1430.0
5.9 8.1
NA :
NA
4.0 5.0
674.0 376.7
NA ;
ND !
NA
6.2 . 8.0
NA
NA
88.7 145.9
NA
NA
2850.0 3766.7
NA I
NA
NA I
NA ;
NA
NA ;
NA ;
NA 1
j
1
NA ;
NA ;
NA
NA
99.10 i
C.V.
0.27
0.27
0.19
0.21
0.28
0.31
0.07
0.24
0.25
0.69
0.25
0.28
0.23
File: UntBolSol.<2mmSot1 Usun*«uew
-------
PROCESS: Untreated. Set 1
ASH TYPE: Bottom Ash. <300um
ASSAY: Solids by SW-846
A. 2-3
Metals (me/kg
Aluminum
Antimony
Arsenic
larium
•ryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Laid
Lithium
Magnatium
Manganese
Mercury
Molybdanum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anton* (mg/kg
Jromide
:luoride
Chlorida
Sullate
A
24300.0
NA
8.2
•498.0
U
127.0
30.5
NA
104.0
NA
1000.0
NA
901.0
8.8
NA
NA
5.1
NA
197.0
NA
U
NA
8.5
NA
NA
143.0
NA
NA
3660.0
401.00
0.50 U
23200.00
60.50
Nitrogen Special:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aeaay*
pH(S.U.)
IDS
CO)
TOO
TSfW
4.15
5.28
6.67
3900.00
rno./*g)
10.54
42700.00
40000.00
14500.00
86.70
a
24900.0
NA
15.5
456.0
U
165.0
24.8
NA
159.0
NA
1770.0
NA
1440.0
8.7
NA
NA
3.8
NA
308.0
NA
U
NA
7.9
NA
NA
152.0
NA
NA
2950.0
285.00
0.50 U
18600.00
49.10
1.87
2.27
9.66
2320.00
10.53
35100.00
3900.00
11700.00
87.20
C
27500.0
NA
17.9
314.0
U
26.6
26.6
NA
17.3
NA
1290.0
NA
1030.0
8.4
NA
NA
3.8
NA
3S6.0
NA
U
NA
6.2
NA
NA
152.0
NA
NA
4070.0
180.00
O.SOU
18233.00
145.00
1.07
1.41
9.11
2470.00
10.32
24400.00
41900.00
10500.00
87.90
X
25566.7
*
NA
13.9
422.7
U
106.2'
27.3
NA
93.4
NA
1353.3
NA
1123.7
9.0
NA
NA
4.2
NA
287.0
NA
U
NA
7.5
NA
NA
149.0
NA
NA
3560.0
288.67
0.50 U
20011.00
84.87
2.38
2.99
8.48
2395.00
10.43
34066.67
28600.00
12233.33
87.27
C.V.
0.07
0.36
0.23
0.67
0.11
0.76
0.29
0.25
.0.07
0.18
0.28
0.16
0.03
0.16
0.38
0.00
0.14
0.62
0.68
0.68
0.19
0.36
0.01
0.27
0.75
0.17
0.01
File: Unt Bat SoL<300umSfH U.undetected,A»U(1o«3),B«U(2ot3),NA.not analyzed
292
-------
PROCI2SS: Untreated, Set 1
ASH TYPE: Bottom Ash. <300um
ASSAY: Solids by SW-846
A. 2-4
'
A
Metal* (mg/kg di)
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Coppar
Iron
Uad
Lithium
Uagnasium
Manganou
Uarcury
Molybdenum
Nickal
3olastium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
24670.1
NA
8.3
505.6
0.0 U
128.9
31.0
NA
105.6
NA
1015.2
NA
814.7
8.8
NA
NA
5.2
NA
200.0
NA
0.0 U
NA
8.6
NA
NA
145.2
NA
NA
3715.7
Anlona (mg/kg da)
Iromide
:luorida
Chloride
Sulfate
407.1
0.51 U
23553.3
61.4
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Assays ,
pH(S.U.)
IDS
OCD
TOC
TSflM
4.3
5.4
6.8
3959.4
ng/kg da)
10.54
43350.3
40609.1
14720.8
86.7
B
25279.2
NA
15.7
462.9
0.0 U
167.5
25.2
NA
161.4
NA
1797.0
NA .
1461.9
9.8
NA
NA
3.9
NA
312.7
NA
0.0 U
NA
8.0
NA
NA
154.3
NA
NA
2994.9
289.3
0.51 U
18883.2
49.8
1.9
2.3
9.8
2355.3
10.53
35634.5
3959.4
11878.2
87.2
C
28205.1
NA
18.4
322.1
0.0 U
27.3
27.3
NA
17.7
NA
1323.1
NA
1056.4
8.6
NA
NA
3.9
NA
. 365.1
NA
0.0 U
NA
6.4
NA
NA
155.9
NA
NA '
4174.4
184.6
0.51 U
18700.5
148.7
1.1
1.4
9.3
2533.3
10.32 ,
25025.6
42974.4
10769.2
87.9
• X
'
, 26051.5
i NA
14.1
i 430.2
0.0 U
107.9
; 27.8
I N*
, 94.9
NA
1378.4
: NA
' 1144.4
9.1
NA
NA
: 4.3
i NA
292.6
NA
! 0.0 U
! NA
i
7.7
• NA
i "*
; 151.8
NA
NA
3628.3
1
|
293.7
; o.si u
20379.0
; 86.7
; 2.4
| 3.0
: 8.6
2444.3
10.43
34670.1
29181.0
,12456.1
i 87.3
C.V.
0.07
0.37
0.22
0.67
0.11
0.76
0.29
0.25
0.07
0.17
0.29
0.15
0.04
0.16
0.38
0.01
0.13
0.62
0.68
0.68
0.19
0.36
0.01
0.27
0.75
0.16
0.01
: UnL Bat. Sd.<300unvSel1 U»undetected,A*U(1a(3),B»U(2ol3),NA»not analyzed
293
-------
PROCESS: Untreated Ash, Set 2
ASH TYPE: Bottom Ash. >2mm
ASSAY: Solids by SW-846
FIELD SAM>V£.
A.H127951, B.HI 27952
C-H127953
A. 2-5
Metele (mg/kg
Aluminum
Antimony
Arsenic
3arium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlone (mg/kg
Bromide
Fluoride
Chloride
Sullate
A
5100.6
NA
43.0
140.0
45.0
NA
7.1
NA
15.0
NA
160000.0
NA
260.0
4.0
NA
NA
0.5
NA
57.0
NA
5.0 U
NA
3.5
NA
NA
580.0
NA
NA
530.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aeeaya
PH(S.U.)
TDS
CO)
TOC
TSflM
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.20
a
30000.0
NA
26.0
380.0
29.0
NA
1.4
NA
1100.0
NA
900.0
NA
1100.0
27.0
NA
NA
0.4
NA •
660.0
NA
5.0 U
NA
2.8
NA
NA
33.0
NA
NA
760.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
C X C.V.
16000.0 17033.3 0.73
NA
33.0 34.0 0.25
490.0 336.7 0.53
1.6 25.2 0.87
NA
3.9 4.1 0.69
NA
70.0 395.0 1.55
NA
700.0 53866.7 1.71
NA
130.0 496.7 1.06
6.0 12.3 1.03
NA
NA
0.5 0.5 0.12
NA
120.0 279.0 1.19
NA
5.0 U 5.0 U 0.00 U
NA
3.3 3.2 0.11
NA
NA
30.0 214.3 1.48
NA
NA
630.0 640.0 0.18
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
Fil»: UnLBaLSclidSJ-2mmr2 U«und«tected, A»U(1 of 3), B-U(2 of 3), NA» not analyzed
294
-------
PROCESS: Untreated. Set 2
ASH TYPE: Bottom Ash. <2mm mesh
ASSAY: Solids by SW-846
FII-U)SAMPl£:
A.H127995. B-H127996
C-H127997
A. 2-6
Uetala (mg/kg
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Aniona (mg/kg
Bromide
Fluoride
Chloride
Sulfate
A
21000.0 i
NA
18.0
380.0
40.0
NA
19.0
NA
190.0
NA
900.0
NA
460.0
8.0
NA
NA
3.0
NA
350.0 ,
NA
5.0 U
NA
4.9
NA
NA
160.0
NA
NA
2700.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Assays
pH (S.U.)
IDS
cm
ICC
TS(%)
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.20
B
26000.0
NA
22.0
400.0
46.0
NA
29.0
NA
180.0
NA
1100.0
NA
800.0
8.0
NA
NA
7.2
NA
360.0
NA
5.0 U
NA
S.7
NA
NA
180.0
NA
NA
4200.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
l
C X C.V.
I
33000.0 26666.7 0.23
NA
16.0 {18.7 0.16
610.0 463.3 0.27
55.0 47.0 0.16
NA :
34.0 27.3 0.28
NA
240.0 203.3 0.16
NA
I
1500.0 1166.7 0.26
NA :
1300.0 453.3 0.50
10.0 i 8.7 0.13
NA !
NA
7.0 5.7 0.41
NA '
460.0 390.0 0.16
NA i
5.0 U 5.0 U 0.00 U
NA ;
5.1 i 5.2 0.08
NA •
NA ' '
280.0 206.7 0.31
NA '
NA
4200.0 3700.0 0.23
•
NA '
NA :
NA
NA '
I
NA
NA |
NA i
NA
NA
NA !
NA |
NA
99.10 99.10 0.00
Fill: UnlBoLSolids
-------
PROCESS: Untreated. Set 2
ASH TYPE: Bottom Ash. < 300 (tm
ASSAY: Solids by SW-846
FIELD SAMPUE
A-H127986. B-H127987
C.H127888
A. 2-7
Metals (mg/kg
Aluminum
Antimony
Arsenic
Barium
Beryllium
3aron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
-ithium
Magnesium
Manganese
Marcury
Molybdenum
Nickal
'otassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlona (mg/kg
Iromida
Fluoride
Chloride
Sulfate
A
31000.0
NA
20.0
560.0
21.0
NA
41.0
NA
180.0
NA
1800.0
NA
1600.0
10.0
NA
NA
6.7
NA
•500.0
NA
5.0 U
NA
2.2
NA
NA
250.0
NA
NA
4800.0
320.00
NA
16000.00
2900.00
Nitrogen Species:
Nitrite
Nitrate
TKN
'hosphorous
Other Aesaya
pH(S.U.)
IDS
COD
TO
TSWM
NA
39.00
200.00
0.50 U
mg/kg)
9.94
NA
NA
NA
99.50
B
32000.0
NA
7.5
540.0
27.0
NA
29.0
NA
210.0
NA
2300.0
NA
1100.0
8.0
NA
NA
4.8
NA
430.0
NA
5.0
NA
1.6
NA
NA
210.0
NA
NA
4800.0
200.00
NA
13000.00
2200.00
NA
15.00
210.00
0.50
10.26
NA
NA
NA
99.50
C
30000.0
NA
19.0
530.0
24.0
NA
35.0
NA
190.0
NA
2100.0
NA
1900.0
8.0
NA
NA
6.3
NA
340.0
NA
U 5.0 U
NA
8.0
NA
NA
260.0
NA
NA
4600.0
260.00
NA
21000.00
39000.00
NA
31.00
260.00
U 0.50 U
9.77
NA
NA
NA
99.50
X
31000.0
NA
15.5
543.3
24.0
NA
35.0
NA
193.3
NA
2066.7
NA
1533.3
8.7
NA
NA
5.9
NA
423.3
NA
5.0 U
NA
3.9
NA
NA
240.0
NA
NA
4733.3
260.00
NA
16666.67
14700.00
NA
28.33
223.33
0.50 U
10.02
NA
NA
NA
99.50
C.V.
0.03
0.45
0.03
0.13
0.17
0.08
0.12
0.26
0.13
0.17
0.19
0.00 U
0.90
0.11
0.02
0.23
0.24
1.43
0.43
0.14
0.00 U
0.02
0.00
Fil*:UnLBaLSolids<300um/Z U»undctected, A-U(1 of 3), B.U(2 of 3). NA. not analyzed
296
-------
PROCESS: Untreated. Set 2
ASH TYPE: Bottom Ash, <300um
ASJ5AY: Solids by SW-846
FIELD SAMPLE
A.H127986. B-H127987
C-H127988
A. 2-8
A
Metal* (mg/kg ds)
Aluminum
Antimony
Arsenic
B«rium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Coppar
Iron
Load
Lithium
Magnasium
Manganese
Marcury
Molybdenum
Niekal
Potassium
Selenium
Silicon
Silvar
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
31472.1
"*S
20.3
56S.5
21.3
MA
41.E
MA
182.7
NA
1827.4
NA
1624.4
10.2
NA
NA
6.8
NA
507.6
NA
5.1 U
NA
22
NA
NA
253.8
NA
NA
4873.1
Anlona (mg/kg ds)
Bromide
Fluoride
Chloride
Sulfate
324.9
NA
16243.7
2944.2
Nitrogen Species:
Nitrite
Nitrate
TKN
Phosphorous
Other Assays (
pH(S.U.)
TDS
CCD
TO
TSP4)
NA
39.6
203.0
0.5 U
ng/kg da)
8.94
NA
NA
NA
99.5
B
32487.3
NA
7.6
548.2
27.4
NA
29.4
NA
213.2
NA
2335.0
NA
1116.8
8.1
NA
NA
4.9
NA
436.5
NA
5.1 U
NA
1.6
NA
NA
213.2
NA
NA
4873.1
.
203.0
NA
13198.0
2233.5
NA
15.2
213.2
0.5 U
10.26
NA
NA
NA
99.5
C
30769.2
NA
19.5
543.6
24.6
NA
35.9
NA
194.9
NA
2153.8
NA
1948.7
8.2
NA
NA
6.5
NA
348.7,
NA
5.1 U
NA
8.2
NA
NA
266.7
NA
NA
4717.9
266.7
NA
21538.5
40000.0
NA
31.8
266.7
0.5 U
9.77 .
NA
NA
NA
99.5
i
X
;
31576.2
1 NA
; 15.8
553.4
24.4
NA
35.7 .
: NA
: 196.9
: NA
2105.4
i NA
1563.3
8.8
! NA
NA
I 6.0
\ NA
431.0
; "*
! 5.1 U
NA
• ; 4.0
, NA
: NA
: 244.6
: NA
; NA
, 4821.4
[
264.9
: NA
16993.4
15059.2
1
1
NA
; 28.9
! 227.6
I 0.5 U
10.02
NA
NA
i NA
' 99.5
C.V.
0.03
0.45
0.02
0.17
0.08
0.12
0.27
0.13
0.17
0.18
0.90
0.11
0.02
0.23
0.25
1.43
0.43
0.15
0.01
0.02
0.00
Fil*:Unt.Bot.Solidt<300um/2 U»undet«cUd,A«U(1ol3).B«U(2of3)tNA.not analyzed
297
-------
PROCESS: Untreated
ASH TYPE: Bottom Ash
ASSAY: Solids by Neutron Activation
Unit*: me/kg
DRUM*
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maganese
Mercury
Potassium
Samarium
Scandium
Selenium
Silico
Silve
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zin
1
49*00
340
(58
31.4
123000
25.1
O.IOt
21000
(4(
(2.7
1030
0.245
9.1«
51300
(.4(
926
1.(2
7490
1.02
3.(2
4.19
91000
11.6
1(200
3.11
3.11
(400
3S.(
1
2
52700
274
$24
29.9
107000
21.2
1.90
22(00
77(
(0.0
1370
0.311
4.97
7(900
10.3
1020
1.0(
9200.
1.0«
3.9(
3.((
120000
17.5
19(00
2.((
4.03
(000
43.2
2
<300
3
49400
340
411
25.5
99400
31.0
0.9S(
19200
10(0
(3.3
15(0
0.235
5.00
9(500
•.(1
1040
1.12
(700
1.17
3.«3
3.4(
131000
14.2
25400
3.23
4.0(
eooo
43.6
5(40
3
li m, ground
4
53000
2(9
525
33.(
112000
27. »
0.913
22400
(SO
74.7
1490
0.239
4.(1
(4700
10.1
1100
1.42
9(00
1.04
4.1S
3.14 U
120000
1(.(
19900
2.54
4.22
(500
45.3
(5(0
4
5
50600
299
S4»
32.9
113000
303
0.731 U
24200
715
92.7
1570
0.341
(.21
75(00
10.S
1090
1.43
10300
1.10
4.02
4.88
113000
19.1
17700
3.47
3.(0
((00
43.9
(790
5
6
51100
230
377
25.3
91900
29.0
1.27
17300
1000
102
1740
0.232
2.M U
111000
9.((
1240
1.17
(000
1.00
3.(9
4.02
154000
11.5
25400
3.23
4.02
(200
41.7
4900
6
A. 2-9
298
-------
PROCESS: Untreated
ASH TYPE: Bottom Ash
ASSAY: Solids by Neutron Activation
Units: mg/kg
DRUM*
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maganese
Mercury
Potassium
Samarium
Scandium
Selenium
Silico
Silve
Sodiu
Tantalu
Thoriu
Titaniu
Vanadiu
Zin
8
51100
285
587
35.6
113000
28.3
1.30
24700
734
70.7
1470
0.375
6.63
71000
9.71
1050
1.SO
9200
1.02
4.11
2.97
117000
18.4
If 900
3.19
4.03
8700
39.0
10
SI 300
335
853
39.2
120000
25.7
1.33
27500
810
74.3
1570
0.391
9.80
58800
10.7
958
1.85
9190
0.988
3.85
3.87 U
112000
21.0
18SOO
3.13
3.97
8800
41.8
<300 n
11
51800
372
K>
to
114000
24.1
1.07
24700
8(5
88.4
1530
0.474
4.83
70100
K>
1150
1.50
9060
to
3.83
3.48 U
108000
24.4
18200
2.51
3.88
7500
38.8
8540
m, ground
12
51300
389
852
42.0
110000
26.2
1.13
24500
612
87.1
1490
0.330
8.67
66700
10.2
1000
1.45
10700
1.76
3.93
4.22
98000
17.7
17300
3.68
3.11
6600
43.4
7210
15
49000
384
716
4S.8
115000
24.4
1.40
28000
70S
65.3
1160
0.400
9.77
56100
10.0
951
1.54
10600
1.56
3.67
4.57
97000
16.8
17300
3.46
4.03
6400
45.4
7770
A. 2-9
10
12
15
299
-------
PROCESS:' Untreated
ASH TYPE: Bottom Ash
ASSAY: Solids by Neutron Activation
Units: mg/kg '•
<300 m, g
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maponese
Mercury
Potassium
Samerium
Scandium
Selenium
Silicon
Silve
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zinc
X
50973
311.55
563.20
34.84
111391
27.35
1.17
23938
785.111
76.29
1455
0.32
f.40
74627
«.ts
1041
1.41
•367
1.18
3.81
3.85
114636
17.6
19480
3.11
3.96
6500
42.81
6891
round
C.V
0.02
0.17
0.20
0.19
0.07
0.08
0.28
0.14
0.20
0.16
0.14
0,25
0.36
0.24
0.06
0.09
0.14
0.10
0.23
0.04
0.14
0.1S
0.19
0.17
0.12
0.04
0.03
o.oa
0.13
A. 2-9
300
-------
PROCESS-. Untreated
ASH TYPE: Bottom
ASSAY: Solids by Neutron Activation
•A. 2-10
MMalS
Aluminum
Antimony
Arsenic
iarium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cob*lt
Copper
ron
Lead
Lithium
•Ugnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlons (mg/1)
Sromide
Fluoride
Chloride
Sulfate
X
(mg/kg)
50973.0
311.6
NA
NA
NA
NA
34.6
111391.0
765.9
76.3
1455.0
74627.0
NA
NA
NA
1048.0
1.4
NA
NA
8367.0
3.9
114636.0
17.8
19480.0
NA
NA
6500.0
42.6
6691.0
563.2
NA
23936.0
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Assays
PH(S-U)
IDS
COD
TOC
NA
NA
NA
NA
mg/1)
NA
NA
NA
NA
X
(mg/kg ds)
51749.2
316.3
NA
NA
NA
NA
35.2
113087.3
777.6
77.5
1477.2
75763.5
NA
NA
NA
1064.0
1.4
NA
NA
9509.6
3.9
116381.7
18.1
19776.6
NA
NA
6599.0
43.3
6792.9
571. 8
NA
24300.5
NA
NA
NA
NA
NA
NA
NA
NA
NA
C.V.
0.02
0.17
0.19
0.07
0.20
0.16
0.14
0.24
0.09
0.14
0.10
0.14
0.15
0.19
0.17
0.06
0.08
0.13
0.20
0.14
File:ilnL Bot/NAA/Summtry
301
Ifeundetaclad, A=U<1 ol 3), B=U(2 61 3), NA= not analyzed
-------
Appendix A.3.
Results of chemical
analysis of untrea-
ted combined ash.
PROCESS: Untreated. Set 1
ASH TYPE: Combined Ash. >2mm
ASSAY: Solids by SW-846
A. 3-1
Metal* (mg/kg
Aluminum
Antimony
Arsonie
Jarium
Beryllium
3oron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
.ithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlone (mg/kg
Bromide
Fluoride
Chloride
Sullate
A
28500.0
NA
7.7
701.0
ND
133.0
31.5
NA
69.7
NA
1360.0
NA
1080.0
11.0
NA
NA
10.3
NA
60.5
NA
1.2
NA
17.9
NA
NA
151.0
NA
NA
3610.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aeaay*
pH(S.U.)
IDS
CO)
TOC
TSflW
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.80
B
f
28000.0
: NA
• 18.3
904.0 .
to
154.0
39.1
NA
73.5
NA
1030.0
NA
1580.0
11.7
NA
NA
12.9
NA
87.3
NA
ND
NA
9.7
NA
NA
192.0
NA
NA
4320.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.60
C
17100.0
NA
15.9
543.0
ND
165.0
20.5
NA
101.0
NA
3620.0
NA
1230.0
7.4
NA
NA
10.3
NA
251.0
NA
ND
NA
3.9
NA
NA
293.0
NA
NA
24EO.O
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.80
X
24533.3
14.0
716.0
167.3
30.4
81.4
2003.3
1296.7
10.0
11.2
132.9
1.2
10.5
212.0
3463.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C.V.
0.26
0.40
0.25
0.09
0.31
0.21
0.70
0.20
0.23
0.13
0.78
0.67
0.34
0.27
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
»: UnLCotnb.SoL>Zmm/Son
302
anatyzM.ND.not
-------
PROCESS: Untreated. Set 1
ASH TYPE: Combined, <2mm
ASSAY: Solids by SW-846
A. 3-2
Matals {mg/kg!
uminuni
Antimony
Arignic
arium
•ryllium
oron
Cadmium
Calcium
Chromium
Cobalt
Coppar
Iron
Laad
.ithium
Magnesium
Manganese
Mercury
Molybdanum
Nickal
Potassium
Selenium
Silicon
Silver
Strontium
Tin
Titanium
Vanadium
Zinc
Aniona (mg/kg
iromide
Muorida
Chloride
Sulfata
A
25200.0
NA
16.7
675.0
M>
206.0
25.3
NA
68.5
NA
1640.0
NA
1190.0
10.2
NA
NA
10.9
NA
78.0
NA
to
NA
8.0
NA
NA
148.0
NA
NA
3850.0
NA
NA
NA
NA
Nitrogan Species:
Nitrita
Nitrata
Ammonia
3hosphorous
Othar Aaaaya
pH(S.U.)
TOG
cm
ICC
Tsnu
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
B
27080.0
NA
11.5
899.0
to
166.0
28.9
NA
95.8
NA
1500.0
NA
1360.0
11.2
NA
NA
12.5
NA
109.0
NA
to
NA
6.4
NA
NA
151.0
NA
NA
4100.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C X
18900.0 23726.7
NA
10.4 12.9
541.0 :
to
128.0 166.7
23.6 25.9
NA
57.1 73.8
NA
915.0 1351.7
NA
876.0 1142.0
9.0 10.1
NA
NA :
7.2 10.2
NA
49.0 7,8.7
NA
to
NA
11.0 8.5
NA '
NA i
109.0 136.0
NA
NA
2900.0 3616.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA :
NA :
NA :
C.V.
0.18
0.26
0.23
0.10
0.27
0.28
0.22
0.11
0.27
0.38
0.28
0.17
0.18
Fife: UntComo.So/.<2mm/Sen u«un«»Mei«M»U
-------
PROCESS: Untreated. Set 1
ASH TYPE: Combined. <300 urn
ASSAY: Solids by SW-846
A. 3-3
Metals (mg/kg!
Aluminum
Antimony
Arsenic
Barium
Igryllium
Cadmium
Calcium
Chromium
Cobalt
Copper
Lead
Lithium
agnesium
Manganese
Mercury
Nickel
Potassium
Selenium
Silicon
Silver
trontium ;
Tin
itanium
Vanadium
Zinc
Anlons (mg/kg
Iromide
Fluoride
Chloride
Sulfate
A
22700.0
NA
15.4
718.0
U
122.0
26.3
NA
64.6
NA
751.0
NA
956.0
11.3
NA
NA
9.1
NA
13.5
NA
U
NA
5.8
NA
NA
134.0
NA
NA
3150.0
306.00
0.60 U
29600.00
360.00
Nitrogen Species:
Nitriti
Nitrate
Ammonii
Phosphorous
Other Aaaaya
pH(S.U.)
TDS(Extract)
CCD
TOG '
TSDM
0.44 •
0.66
12.20
2060.00
mg/kg)
10.40
55900.00
68200.00
22400.00
90.60
B
25700.0
NA
13.4
889.0
U
157.0
37.5
NA
72.8
NA
1030.0
NA
1660.0
11.1
NA
NA
14.4
NA
93.3
NA
1.2
NA
7.1
NA
NA
170.0
NA
NA
4410.0
345.00
0.60 U
29600.00
386.00
0.48
0.50
13.50
2140.00
10.39
52400.00
62300.00
22600.00
89.10
C
31000.0
NA
13.8
608.0
U
173.0
25.2
NA
68.9
NA
810.0
NA
905.0
9.9
NA
NA
11.6
NA
158.0
NA
U.
NA
4.5
NA
NA
109.0
NA
NA
2650.0
186.00
0.60 U
15300.00
748.00
0.48
0.37
15.70
2930.00
10.32 '
34100.00
63900.00
25600.00
93.60
X
26466.7
NA
14.2
738.3
U
150,7
29.7
NA
68.8
NA
863.7
NA
1173.7
10.8
NA
NA
11.7
NA
88.3
NA
1.2 U
NA
5.8
NA
NA
137.7
NA
NA
3403.3
279.00
0.60 U
24833.33
498.00
0.47
0.51
13.80
2535.00
10.36
47466.67
64800.00
23533.33
91.35
C.V.
0.16
0.07
0.19
0.17
0.23
0.06
0.17
0.36
0.07
0.23
0.82
0.22
0.22
0.27
0.30
0.33
0.44
0.05
0.28
0.13
0.19
0.00
0.25
0.05
o.oa
0.03
File: UnLComb.SaL<300JSen U«undetee»ed,A«U(1o(3),B«U(2ol3).NA«not analyzed
304
-------
t Unseated, Set 1
ASH TYPE: Combined. <300 urn
ASSAY: Solids by SW-846
A. 3-4
A
Metsls (mg/kg d«)
Aluminum
Antimony
Arsenic
tarium
leryllium
Baron
Cadmium
Calcium
Chromium
Cobalt
Coppar
ron f
Lead
.ithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
23139.7
' •• NAj.
15.7
731.9
0.0 U
124.4
26.8
NA
65.9
NA -
765.5
NA
974.5
11.5
NA
NA
9.3
NA
13.8
NA
0.0 U
NA
5.9
NA
NA
136.6
NA
NA
3211.0
Anlona (mg/kg da)
Bromide
Fluoride
Chloride
Sulfate
311.93
0.61 U
30173.29
366.97
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Assay* <
pH(S.U.)
TDS(Extract)
CO)
IDC
TSfW
0.45
0.67
12.44
2099.90
ng/kg da)
10.40
56982.67
75275.94
24724.06
90.60
B
26171.1
NA
13.6
905.3
0.0 U
159.9
38.2
NA
74.1
NA
1048.9
NA
1690.4
11.3
NA
NA
14.7
NA
95.0
NA
1.2
NA
7.2
NA
NA
173.1
NA
NA
4490.8
351.32
0.61 U
30142.57
393.08
0.49
0.51
13.75
2179.23
10.39
53360.49
69921.44
25364.76
89.10
C
31440.2
NA
14.0
616.6
0.0 U
175.5
25.6
NA
69.9
NA
821.5
NA
917.8
10.0
NA
NA
11.8
NA
160.2
NA
0.0 U
NA
4.6
NA
NA
110.5
NA
NA
2687.6
188.64
0.61 U
15517.24
758.62
0.49
0.38
15.92
2971.60
10.32
34584.18
68269.23
27350.43
93.60
x ; •
,
26917.0
!
1 NA
14.4
751.3
0.0 U
153.2
30.2
:HA
70.0
i NA
878.6
NA
1194.3
11.0
: NA
'. NA
11.9
: NA
89.7
NA
0.4 B
NA
5.9
NA
NA
140.1
i NA
NA
3463.2
i
283.96
0.61 U
25277.70
506.22
0.47
0.52
14.04
2575.41
i
10.36
48309.11
.71155.54
25813.08
91.35
C.V.
0.16
0.08
0.19
0.17
0.23
0.06
0.17
0.36
0.07
0.23
0.82
0.23
0.22
0.27
0.30
0.33
0.43
0.05
0.29
0.13
0.19
0.00
0.25
0.05
0.05
0.03
Fit: UnlComb.SoI.<30US»t1
305
U.undetecl«d,A»U(1ol3),B-U(2ol3).NA.nol analyzed
-------
PROCESS: Untreated Ash. Set 2
ASH TYPE: Bottom Ash. >2mm
ASSAY: Solids by SW-846
A-H1 27951. B-H1 27952
C-H1 27953
A. 3-5
M«taU (mg/kg;
Aluminum
Antimony
Arsanic
>arium
•ryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Coppar
Iron
Lead
Lithium
Magnacium
.Unganau
Morcury
Molybdenum
Nickol
Potaisium
Selanium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlone (mg/kg
3romida
:luorida
Chloride
Sulfate
A
5100.0
NA
43.0
140.0
45.0
NA
7.1
NA
1S.O
NA
160000.0
NA
260.0
4.0
NA
NA
0.5
NA
57.0
NA
5.0 U
NA
3.5
NA
NA
580.0
NA
NA
530.0
NA
NA
NA
NA
"titrogan Spacias:
Nitrite
Nitrat*
Ammonia
Phosphorous
O1h«r Aaaaya
pH(S.U.)
IDS
cm
IOC
TSfM
NA
NA
NA
NA
mg/kg)
NA
NA
NA
NA
99.20
B
30000.0
NA
26.0
380.0
29.0
NA
1.4
NA
1100.0
NA
900.0
NA .
1100.0
27.0
NA
NA
0.4
NA
660.0
NA
5.0 U
NA
2.8
NA
NA
33.0
NA
NA
760.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
C X C.V.
1EOOO.O 17033.3 0.73
NA
33.0 34.0 0.25
490.0 336.7 0.53
1.6 2S.2 0.87
NA
3.9 4.1 0.69
NA
70.0 395.0 1.55
NA
700.0 53866.7 1.71
NA
130.0 496.7 1.06
6.0 12.3 1.03
NA
NA
0.5 0.5 0.12
NA
120.0 279.0 1.19
NA
5.0 U 5.0 U 0.00 U
NA
3.3 3.2 0.11
NA
NA
30.0 214.3 1.48
NA
NA
630.0 640.0 0.18
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
99.10
FBa: UnLBeLSolids»Zama Uaiindetactad, A»U{1 of 3), B»U(2 of 3). NA. not analywid
306
-------
PROCESS-. UrvtteaWKl - Set 2
ASH TYPE: Combined. <2mm
ASSAY: Solids by SW-846
FIELD SAMPLE
A-H127991. B-H127992
C-H127993
A. 3-6
Metal* (mg/kg
Aluminum
Antimony
Arcenic
Barium
Boryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Capper
Iron
Laad
.ithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silvar
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Aniona (mg/kg
Bromide
Fluoride
Chloride
Sulfate
A
26000.0
NA
21.0
1100.0
20.0 '
NA
26.0
NA
97.0
NA
1200.0
NA
1900.0
8.0
NA
NA
6.6
Nft
9.4
NA
5.0 U
NA
3.5
NA
NA
140.0
NA
NA
2700.0
NA
NA
NA
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
'hosphorous
Other Aaaaya
pHundetected, A»U(1 of 3), B»U(2 of 3), NA. not analyzed
307
-------
PROCESS: Untreated - Set 2
ASH TYPE: Combined. <300 um
ASSAY: Solids by SW-846
F1EU) SAMPLE,
A.H12S037. B-H127989
C.H1279SO
A. 3-7
Metal* (mg/kg
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
ron
Lead
Lithium
Magnesium
Manganese
Marcury
Molybdenum
Nickel
'olsssium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anton* (mg/kg
Iromide
:luoride
Chloride
Sulfate
A
27000.0
NA
16.0
920.0
21.0
NA
31.0
NA
S7.0
NA
1500.0
NA
810.0
8.0
NA
NA
11.0
NA
110.0
NA
5.0
NA
6.8
NA
NA
200.0
NA
NA
3700.0
220.00
NA
21000.00
510.00
Nitrogen Species:
Nitrite
Nitrate
TKN
Phosphorous
Other Aaaay*
pH(S.U.)
70S
OCD
TOC
TSf%1
NA
9.60
270.00
0.05
mg/kg)
10.49
NA
54000.00
12000.00
90.60
B
27000.0
NA
22.0
520.0
15.0
NA
24.0
NA
64.0
NA
2100.0
NA
1200.0
9.0
NA
NA
11.0
NA
99.0
NA
U S.O
NA
4.7
NA
NA
220.0
NA
NA
3400.0
180.00
NA
1600.00
1500.00
NA
10.00
52.00
U 0.05
10.10
NA
44000.00
NA
89.10
C
30000.0
HA
11.0
760.0
22.0
NA
26.0
NA
100.0
NA
1500.0
NA
1100.0
. 9.0
NA
NA
7.2
NA
140.0
NA
U 5.0
NA
6.0
NA
NA
170.0
NA
NA
3500.0
240.00
NA
19000.00
2200.00
NA
4.60
430.00
U 0.05
10.17
NA
57000.00
8500.00
93.60
X
28000.0
NA
16.3
733.3
19.3
NA
27.0
NA
73.7
NA
1700.0
NA
1036.7
8.7
NA
NA
9.7
NA
116.3
NA
U 5.0
NA
5.8
NA
NA
196.7
NA
NA
3533.3
213.33
NA
13866.67
1403.33
NA
8.07
250.67
U 0.05
10.14
NA
51666.67
10250.00
91.35
C.V.
0.06
0.34
0.27
0.20
0.13
0.31
0.20
0.20
0.07
0.23
0.13
0.00
0.13
0.13
0.04
0.14
0.77
0.61
0.37
0.76
0.00
0.02
0.13
0.2«
0.03
Fat:Unt.Comti.Solias<30(US»t2 U«undetected, A»U{1 ol 3). B»U(2 of 3), NA* not analyzed
308
-------
PROCESS: Untreated, Set 2
ASH TYPE: Combined. <300 urn
AiaSAY: Solids by SW-846
FIELD SAMPLE
A-H128037. B-H127989
C-H127990
A. 3-8
A
Metal* (mg/kg d»)
Aluminum
Antimony
Arcanie
iarium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Load
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Potassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
27522.9
NA
: ill
837.8
21.4
NA
31.6
NA
58.1
NA
1529.1
NA
825.7
8.2
NA
NA
11.2
NA
112.1
NA
5.1 U
NA
6.0
NA
NA
203.9
NA
NA
3771.7
Anlon* (mg/kg de)
Bromide
:luoride
Chloride
Sulfate
224.26
NA
21406.73
519.88
Nitrogen Species:
Nitrite
Nitrate
Ammonia
Phosphorous
Other Aeeaye
pH(SU.)
TOS(Ex tract)
COD
TOO
HIE
NA
9.79
275.23
0.05 U
ng'kg da)
10.49
NA
59602.65
13245.03
90.60
B
27494.9
NA
22.4
529.5
15.3
NA
24.4
NA
65.2
NA
2138.5
NA
1222.0
9.2
NA
NA
11.2
NA
100.8
NA
5.1 U
NA
4.8
NA
NA
224.0 ,
NA
NA
3462.3
183.30
NA
1629.33
1527.49
NA
10.18
52.95
0.05 U
10.10
NA
49382.72
NA
89.10
C
30426.0
NA
11.2
770.8
22.3
NA
26.4
NA
101.4
NA
1521.3
NA
1115.6
9.1
NA
NA
7.3
NA
142.0
NA
5.1 U
NA
6.1
NA
NA
172.4
NA
NA
3549.7
243.41
NA
19269.78
2231.24
NA
4.67
436.11
0.05 U
10.17
NA
60897.44
9081.20
93.60
X
28481.3
NA
, 16.6
746.0
NA
| 27.5
NA
; 74.9
MA
1729.6
! NA
1054.4
8.8
NA
; NA
9.9
! NA
'. 118.3
i NA
5.1
NA
5.9
: NA
NA
200.1
NA
NA
3594.6
216.99
, NA
14101.94
1426.20
NA
• 8.21
254.76
0.05
10.14
NA
56627.60
11163.11
I 91.35
\
C.V.
0.06
0.34
0.28
0.13
0.31
0.20
0.19
0.06
0.23
0.18
0.18
0.13
0.04
0.14
0.77
0.60
0.37
0.76
0.00
0.02
0.11
0.26
0.03
Fa9:UnLComb.Soiids<30(X$*t2 U«und«tect«d,A»U(1ot3),B-U(2oi3),NA»not analyzed
309
-------
PROCESS: Untreated
ASH TYPE: Combined Ash
ASSAY: Solids by Neutron Activation
Units: mg/kg
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cetiurn
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Uaganeee
Mercury
PoUitium
Samarium
Scandium
Selenium
Silico
Silve
Sodium
Tantalum
Tnoriu
Titaniu
Vanadiu
Zin
1
55300
132
267
18.0
91700
30.7
1.17
14400
509
• 40.0
1960
0.214
3.79
119000
9.84
1540
1.12
11500
2.07
3.99
2.09 U
178000
7.22
32100
2.61
3.96
5600
33.8
4200
2
60000
294
733
45.1
137000
25.9
1.50
37400
363
37.5
1820
0.589
14.0
50100
9.62
1740
3.21
14600
2.08
3.93
3.20
108000
12.9
19100
3.41
4.07
6600
32.5
7140
2
<300
3
51500
245
597
35.4
116000
25.3
0.936
28300
382
31.0
1520
0.422
10.3
64200
9.16
2390
2.64
13400
1.76
3.80
4.64
125000
9.95
21200
3.81
3.91
7000
24.7
6420
3
u m. ground
4
55900
301
769
45.0
13SOOO
24.8
0.962
35900
384
33.3
1540
0.64S
14.0
50100
9.44
2730
5.57
14000
1.93
3.79
2.79 U
109000
10.3
17200
2.47
3.93
7100
31.8
7570
4
5
55600
177
401
16.9
121000
25.7
1.18
2S500
450
35.2
2060
0.504
10.5
73300
15.2
2360
2.88
12900
1.94
3.98
2.60
156000
12.6
22900
2.93
4.25
6600
42.7
6350
5
A. 3-9
310
-------
PROCESS: Untreated
ASH TYPE: Combined Ash
ASSAY: Solids by Neutron Activation
Units: mg/kg
Drum *
Aluminum
Antimony
Bromine
Cadmium
Calcium
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Indium
Iodine
Iron
Lanthanum
Maganese
Mercury
Potassium
Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zinc
6
55800
355
850
45.0
146000
24.3
1.01 U
37300
291
34.3
1160
0.506
15.3
35900
9.28
1730
3.75
15600
1.93
3.47
6.03 U
102000
14.5
16180
3.46
3.05
6600
28.8
6620
<300
7
48800
327
732
32.0
131000
23.4
0.909 U
33200
307
35.1
1340
0.499
12.8
41300
8.54
2600
3.67
12100
1.58
3.29
6.15
89000
13.2
15800
2.05
2.69
5900
31.0
6550
n
9
56400
175
372
17.3
99800
26.0
1.08
21200
416
34.8
1770
0.301
5.27
83400
9.43
2030
2.04
11600
1.82
3.59
4.18
154000
10.6
25200
2.39
3.29
5500
35.2
4920
m, ground
13
59400
351
840
41.6
143000
25.5
1.12
37100
'363
37.7
1790
0.598
12.5
47700
9.68
2680
4.74
14100
2.01
3.79
6.11 U
119000
12.6
18100
1.69
3.47
7600
29.6
7340
15 ;
52600
130
235 ;
16.7
91100 :
29.5
1.17 :
11000 '
i
467
31.9
2090 :
0.147
i
' 3.33 U
107000 [
11.4
1460 ;
1.13
10400
2.04
3.73
3.09 U i
186000 !
9.37
36100 :
3.15
3.39
5400
38.1
3560 i
A. 3-9
UtlCamb. HAMeapgl
6 7
13
IS
311
-------
PROCESS: Untreated
ASH TYPE: Combined Ash
ASSAY: Solids by Neutron Activation
Unit*: mg/kg
<300 m, ground
X
Aluminum
Antrmon
Bromin
Cadmium
Calcium
Cerium
Cesium
Chlorin
Chromium
Cobal
Copper
Indium
todina
Iron
Lanthanum
Uaaanem
Mercury
Polauium
Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Tantalum
Thorium
Titanium
Vanadium
Zinc
5513
248.
579.
31.
12126
26.1
1.1
2843
393.2
35.08
1705
0.44
10.18
67200
10.16
2126
3.08
13020
1.82
3.74
4.08
132600
11200
21309
2.80
3.60
6390
32.82
6067
at d*v/jr
0.06
0.36
0.41
0.41
0.17
0.09
0.16
0.34
0.17
0.08
0.18
0.38
0.44
0.42
0.18
0.23
0.47
0.12
0.08
0.06
0.38
0.25
0.00
0.32
0.24
0.14
0.12
0.15
0.23
A. 3-9
UnLComb.NAA/300/pg.3
312
-------
PROCESS: Untreated
ASH TYPE: Combined Ash
ASSAY: Solids by Neutron Activation
A. 3-10
Metals
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Load
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Nickel
'otassium
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Anlons (mg/l)
Iromide
:!uoride
Chloride
Sulfate
X
(mo/kg)
i-
55130.0
248.7
NA
NA
NA
NA
31.3
121260.0
393.2
35.1
1705.0
£7200.0
NA
NA
2126.0
NA
3.1
NA
NA
13020.0
4.1
132600.0
NA
21309.0
NA
NA
NA
32.8
6067.0
57S.6
NA
28430.0
NA
Nitrogen Species:
Nitrite
Nitrate
Ammonia
twsphorous
Other Assay* |
pH(s.u.)
TDS
cm
TOC
NA
NA
NA
NA
mg/l)
NA
NA
NA
NA
X
(mg/kfl dsl
56083.4
253.0
NA
NA
NA
NA
31.8
123357.1
400.0
35.7
1734.5
68362.2
NA
NA
2162.8
NA
3.1
NA
NA
13245.2
4.2
134893.2
NA
21677.5
NA
NA
NA
33.4
6171.9
589.6
NA
28921.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
C.V.
0.06
0.3S
0.41
0.17
0.17
0.08
0.18
0.42
0.23
0.47
0.12
0.38
0.25
0.32
0.12
0.15
0.23
0.41
0.34
UnLCombJNAA/Summtry
313
-------
Appendix B. Summary results of TCLP, DWLT and AVLT for untreated and treated MWC
residues.
Table Number:
APC Residue (Appendix B.1)
Extract Concentration 1
Release 2
Release 3
C.V.4
Bottom Ash (Appendix B.2^
Extract Concentration 1
Release 2
Release 3
C.V.4
Combined Ash (Appendix B.3^
Extract Concentration 1
Release 2
Release 3
C.V.4
TCLP
B.1-1
B.1-2
B.1-3
B.1-4
B.2-1
B.2-2
B.2-3
B.2-4
B.3-1
B.3-2
B.3-3
B.3-4
DWLT
(Ext. 1+2)
-
B.1-5
B.1-6
B.1-7
I
B.2-5
B.2-6
B.2-7
-
B.3-5
B.3-6
B.3-7
DWLT
(Ext. 3+4
-
B.1-8
B.1-9
B.1-10
-
B.2-8
B.2-9
B.2-1 0
-
B.3-8
B.3-9
B.3-1 0
AVLT
-
B.1-11
B.1-1 2
B.1-13
-
B.2-1 1
B.2-1 2
B.2-1 3
-
B.3-1 1
B.3-1 2
B.3-1 3
1 Extract concentrations - mean values of 3 replicates [ug/l or mg/l]
2Release on a treated residue basis - mean values of 3 replicates [mg/kgg d.s.]
3Release on an untreated residue basis (corrected for process dilution) - mean values
of 3 replicates[mg/kg ash]
4C.V. - coefficients of variation for replicate assays
314
-------
0)
ra
CD
13
0.
O
CO
o
o
u
en
CD
c
"E
a
Q
- <
£
1™*
S
"*
a.
o
fe
X
Ul
_1
c
0
•c
Untr»il<
0
o
u
»- n ~ •«
c
333 3
«- O O CO CM <
01 •» «• J 2
3 3
— »
5 - S 2
a
* 1 r E
— — ° "i" 6 =
S < < < S CD m
0 0
•• «
0 3
" a • ^ s
3
I " " =
«
*
< 3 < < m
* s ~ ~
N
M
3 03 <
o
m
3
" | ^ ^ g S
o
o
«
3 3 ffl
« e o n «> N
n
E a
fill i.
« e f o o o
O O O O O i
§ S
to
ii. " N w
S S g « S 5
O — •- N N
at
- - g 5 « •
CO
•
3
e 2 5 "* * e
« „
m
m 3
s S 5 " s "
6 i f
• illM
2 5 s I s i
O O
O O
^ 10
"1 " s 1
3 3
— o o m c> o
^ o eu o <
g «• |
o i
r« «-
CM
CD 3-3
S 0 "° 0 " '
§» n
— N c
M ^
< 3 < = <
o> *C O « 3
^ £ £ Si 21
£ 0 0 = s 0
'
s : 5
3 3 3
j» ^ ! ^* w f*«
^ i °
i
3' 3 <
n in CM co n
g "i *" 5
• ;
I
m | 3 <
*~ ' •»•
i
1
3 ' 3 <
»*• « , « 0 0
w w . *- o»
5 0
« » , ^- (NJ
V ! ^
|
3^33
g O ;CM « N
19 ; *
1
I i J 1 1
•5
2.
c
e
g
n
Z
n
0
§
It
n"
0
1
n
S
u
1
„
I
e
o
1 f
«4
•D S
I e
1 I
1 S
CO
0)
ex
CO
• T3 'O
< C-H
co ea co
4J T3 4)
r-l C T) ^i
3 CO J
c/3 H iw *J
CO
315
-------
o
CD
1
CO
n
'«
o
o
^o
ra 5-
s §
si
O
CO
CO
CD
•S
tn
CO
CC
|
£
X
<
§
en
UJ
X
u
Ul
a
9
C
T>
•
3
•5
„
U
„
Jl
E
CM
?C
UJ
j:
M
UJ
C>d
u
M
UJ
f^
I d
£ Si
CJ _
J
O
g iS
S
•**
CM __ _
•> CM
«
1
a
BI
O U
V
*
•
M
c
.
U K
0 U
n. ~
N^-r^o o o z " Z Z
» o ^
n
0
SS5S S^2"
K. CM
n
o z o n Z f Z
»- O *f ^
^
»
-------
CO
a>
.1
CO
£
o
CO
01
•g
CO
T3
0)
O
en
a>
CO
a>
CD
en
ca
CO "O
" »
.52
o ~-
ffl
1
CD
cr
o
i
z
en
"*
Q.
<£
..
1
2™
o
"*
"5 <
^ <
,2 z
(D
« OB
O -1
^- *
^
a
C
« 2
jy c
o
*
*»
*
o
a
n
«
1
£
CM
M
*
Ck
*•
•> *
a
£
CD CD < < < <
co a> Z 2 Z Z
en o
in —
CM
3
»^ «C « in «
CO Z •« CO ^
in n CD
n 2.
< CO 3 3
«- O o CM o r^
n o o>
3 3
o — o J — . g
< < < 3 *
40
333 3
O ^ O s> p <
3 3
* ~ ° -v d Z
33 3
•v 0 0 N p *-.
CM Q ^
V
J£
J. | >. |
s 1 1 i ! i s
• 3 c E S 5 5
r> in
CM
co < -^ < n <
<» Z * Z « 2
3 3
o •*- o o •*- •-
n
^
^
o o «- o *• in
s
w
< 3 < < m
*" T^
^*
3 CD 3 <
o
n CD
m 3 3
«- O» o ^* O O
CO f» 0
•V P3
*"
< 3 < 3 <
CM CM 0
ffi CM f1*
n h-
333
P* CM O»
CO ^
cu . h>
^
< 3 3
CM 0
(D O
333
0 S *" 3 ° 2
CM CO
_ 1 1 = . E
CO « C O £ 3
Z £ CO CO CO CO
< < CD 0> 0
: Z S " 5
1 in r«.
Z 0 z Z ~
• CD O
r>
333
» : o o o f
3 3 <
CM CM O O n
CO , ^
ffl 3 <
5; ° ° ° S
, 3 3 <
O «-
' 3 3 <
5
1333
en o o o CM
I I|
I=1|S
CO K H- > N
n!
K
^
•o
2.
I
fl
ff
0
CM
S
II
m
c?
^
|
< e
3
^r «!
Urundolocttd
Fila-.TCLPtFly.
«s
CO
317
-------
W
O)
1
c/i
CD
O
TJ
0)
"5
0}
CO
T)
03
2
c
g
en
If
^ e
CD ,0,
CO ^
w ^
o to
^2 —
(5 £
tf
o 3-
o
CD
1
cc
o
O-
S
>•
X
V:
<
Q.
c
^-
c
c
I
a ^
o <
£ s
ID
£ S
* g
"
*
•e
^
•
^
^
^
en £
5« ^
S c
O
^
4
O
f
a
r>
<
i
c
CM
;
<
a
'
i
OcncD TMP) ^ CD
CM CM CO
0 CM
gz^s g§i^
o ^ ^ w
^- r> o> CM
0
s!2s iiis
o> «r CM
CM in co
^—
«<•»« S2S:;
trt z ® *^ 2. * 2. «
o o> m . £;
S! 2 2
' ' 8
t " £ « s s «
CB & — ig C 3
J. ™ = = 1 §
"fills. < f.
_o E o £ :: 2 o
< m E o co 2 °-
2 i I I
•r- CD CD
O CM i-
^ o o'
CM •» CO
•«f V 0
O> CD ^T
^ CM
CO
a> < < <
«B
S i S 2 Z
«-
^ i I I
5 I 2 2
-
S g § §
OJ 10
?
•
n
•i
ihit
^w
-u
if
1
c
i
n
Z
if
El
n
m
e>
"5
^
*
£
,»pun=n
CM
1
I
318
-------
en
0)
TD
'tn
03
h_
o
OJ
«
0)
CO
•o
05
o
en
"5
(0
o>
03
en .
» If
•55 s
>- «0
.„ 0)
S 4*
5. «
ns '55
o. *-
E ra
CD
3
1
O
oc
g
.K
£
X
tn
<
a.
P—
fe
i-
3
11
,
7 <
0 J
_
CO ID < < < <
11
s -
r* < n tf> o re
co z *•
b a
333 3
; 5 1
>
3 3
i
33 3
f
f E >. E
illiiii
• = c E S » 5
*•» in co in « w
n CM o> — — o
o»
S 2 ^ S S z
3 3
o *• o o *• *•
o
3
CD
O
CO
**
< 3 < < 0
*" «
n
0
3 ffi 3 <
«
0
3
o
3 3 O
M
E i
1 1 1 1 1 i
00000.=
I i 2 s - i
|S3323
3
CO (O ^ O ^ *O
S "
ffi
< < <
n o
n
o
3
- o -
CD
m 3
1 1 >.!
1 1 1 5 1
iiiiii
< to a o v r-
2 m » in »
10 *- O
*• V CM
to < n < » <
CM 2 Z •» Z
3 3 <
O 1- O ID O «
n T
« o •« = = e
Z 0. CO CO CO CO
i
!
! m r*-
i
[
i
< « < < ^
? i
i
333
^ o o o f*
r^. eo
1
i
3 3 <
!
| •
' m 3 <
i
3 3 <
S
i
1s = <
U) I
!
'
333
E 6S
I -L 1 1 j
CO t- t- > IM
I
•r-r
•
CQ
319
-------
tn
a>
1
CO
o>
O
T3
S
ra
TD
CO
T3
CD
««^
CO
c
c
O
n
O)
Ic S"
o CD
S J
i_ "c
o o
«— CJ
r- 03 co
*r CM
in
*-
$22
CO < •*
co 2 ^r
, 10 in
w w
CO
o < in
r- 2 J
^ M
CO
£ i S
in en
03 n
in
CM
—. r~ < r-
•i •— 2 f
•o ^ en
,. «p m
S "
a
t
"""* O ft ®
g 2 2 2
1 I 1 i
§ I I i I
o z Z Z n
in
r*
CO
« S £ $ S
2 Z 5- Z Z
CO O
-------
05
in
03
O)
2
o
CD
o
CD
"5
I
. 0)
s-
o .
•.= co
05 0)
'
__ OJ
o •-
= '°
§1
•§"8
I!
o c
o =
o
o
o>
1
S
i-
X
en
i
o
1—
CO
u
111
_l
0 <
"• 4
,2 z
•—•
u>
5 S
O 3!
*
• -%
"e
-
p p p *- o c
o o o b bo*
< 3 < 3 <
en n in r*- tn •• in
o co o n o n
< 3 3
en CM CM Pfc CM M
o — o m [ o o
o o o o b b
333
jr ?3 jr 2 j; s?
o o o CM o o
b b b b b b
• 1 i i s i
° 1 1 I 1 1
z a. eo co eo to
i
z ' z - « o
; O O O
1
1
i
Z 'o S z 0
p b
i
|3 3 3
(^
Al
«i
u
*
1
to
^
C
1!
.
2
3*
it
a
pT
«—
o
§ 1
* b
U=und«lecl«d,
File.CV/TCLPfl
CQ
321
-------
o
03
D)
U
re
.£}
I
o
(0
CO
1
to
*o TO"
CD CD
Q. 3
O
! w
IS CD
JS 3
§1
^ Q)
§ i
o S
c to
W t3
~ CD
S «
Efi
o c
o =>
i
cp
•g
CO
o
en
o
a.
ui
>-
x
«S
a.
Tt
P
f_
a
Ul
t-
c
u
~m <
° |
_ 10
Z co
^*
**
c
£
1
« 1
5£ C
S o
U
v
9
c
a
n
•
c
a
CM
J
i
C
£
•^
<
i
i
e
CO — ® — C3^^5°
i 1 1 1 it • rt
•£2223= ^
< CD U. U W Z 0-
< < < <
^ ««• o
0 •-. CM
b b b
o I I i
o
S I 1 g
0
0 Z Z Z
b
CM < < <
0 Z Z Z
e
S £ 5 I
®
S g I I
0
ibis
M
ti
X
<
1
i
1
01
z
0
§r
£
-i
n
•5
^
j{
10
I
I
1
«
I
322
-------
05
21
CB
O
OB
0}
CO
•o
0}
ffl
a>
o
£.
D5
H
u
cc>
a-'
o,
.
ctl
5!
ai
O> j=
»
o ^
1 1
« £
g: 01
o E
O —
o
2
o
CC
O
O-
lii
a.
l-
x
S
CM
4-
*"
fl
^
U
i
)•
ii
3
L
• ^
»- £
ta
^ S
£ s
^J
JJ
«
£
1
» 1
S e
C
*
c
*
n
i
1
£
•*
1
I
1
C
1
I
in o
M
»•* < o in n
« Z » w ^
• (A « ' 5
n : ™
- ""
333 3
O O O w p K>
* o co
3 3
^ O Z
33 3
»- o O «•> p <
- 0 z
O 3 3
- - ° 8 5 S
ffi 3 3 <
0 o Z
m 3 3 3
o o o « P w
*> o c
5
JC
f I ! ! 1 1 •
• 2 "c 2 « * o
n eg tr> ~ ~ o
»- f*. •*» in n
0 «
CM
ss ;s ss
33 3
0 o ° ° N °
o»
o
^
3 ^ " 3
in
• "
01 33
CD
m
n
3 33
o *» o o o o
•*
3 < 3 3 0
s
3 3 3 3 <
o o o o o m
CD
in
j | f s ,
a a f o Z>
< < < » r«- <
2 r z ~ 5 z
S 2 I z S S
° in
CM ^
< 3 3
o •» o o o o
*• b
O 3 O
O
3 3
b
3
« « - o 5 -c
N 6
3
< 3 3
^ Ml CM e 0 O
2 •
1
fao e o ^ f*
o> v in e
in •» »
in — o
S 5 " 5 ? 5
3 3 < 3
0 <0 — - 0 g
«- tn
V ~
333
N a)
0> CO
333
** c
3 3,3
o r* o « o ^
'
3 3, 3
m c
333
0 | . . 0 |
2 —
E 6
» 1 1 i s 1
« 1 -1 I 1 1
z a. eo co co co
< < a o> D
z z *** *• *°
l CO *r
in ^
i
< & 0
! "
i
i
'333
« o o o *•
0 CD
,
1 3 3
^
;
1 3 3 3
n o o o
«•»
1
i
i | i
Islll
at <- i- > IM
I £
1 I
3 I
323
-------
tO
03
2
CD
O
5
T3
03
CO
CD
*"
•a
c
ca
T3
CD
"co
CD
l»
C
^
o
B
tn
2
D)
c
0
ca
.£
a*
CD
(O
CO
"S
l_
'o
OJ
•5
c
o
CO
c5
a.
o
O
T?
0)
"c
o
o
TD
"o
•o
*^ij
03
C/l
CO
"5
O)
CD
"S5
EC
O
o.
<
lii
a.
31
•a
CM
_Cj
"c
U
1-
s
O
(
1
•J
_ —
o 5
S
£ CD
*" tn
•g
•
£
c
3
s *
5 c
c
«
M
•
C
I
c
CO
1
4
<
c
CM
I
1-
1
0 <
S z
CO
P*» O
eo CM
CM
in
en «
in CD
CM
in
CO <
co z
eo
CM
s i
CO
tn z
»-
2 i
in
CM
CM <
in
CM
•8
ra
ca
*"" e o
s = i
1 I 1
CO
CM
in
CO
CD
*•
in
CD
CD
CO
^
CM
CO
CM
O
eo
CD
in
en
en
CO
^
o
in
o
117991
1
z z z z z
to o o w ^**
eo co co
CO t»
CO T
m a
en *- co < o
CM » Z
en
CM
•
s i s i 5
in
CO
CM
^ < CM < CM
O Z CM Z CM
J;
t>. < n < co
eo z «- Z CM
CM
3
•^ < in < vo
CM Z r» Z »•
CM
eo
S
" S s. z a „
CL — fl C 3
w - S 2 S
* g z z 1 1
If * f
z z
e>
CM
O)
v
CO
en »-
»^ CM
^ CO
o
CO
CM
O CO
0 0
CM O~
«- r-
o
CO
CM
co en
s S
CO
o
CM
^ CO
*". 'M
CM m*
U CO
o
e» •»
o r^
CM CM
*" S
CD
CM
5 ; g
a «-' »"
S *" S
c S
•E- S
>.
•1 J(B^
ill
2
CO
CM
b
^f
eo
CM
CO
CO
CM
CD
O
eo
CO
o
in
o
r-
o
CO
CB
b
CM
CO
en
in
o
e
o
in
§
Z
CD
^
O>
CO
o
CO
CD
^
F.
F,
CM
O
Cl
0
u
CM
a
CO
i
<
i
•
5.
c
1
n
Z
r>
o
1
ca
_,_••
n
I
|
s
1
i!
3
324
-------
en
o
•
u
'5
•a
c
CO
•D
03
03
£
c
c
o
en
01
CO .
03 •-
"5 .c
oj en
o. to
C O3
I I
ro a?
E O)
o E
o -=•
i
s
oc
1
ui
a
£
in
CM
S
u
(0
•-
UJ
^
fe
f—
x
0
.J
I i
H 5
(O
•* a
° fl
•o
41
•
9
« 2
S ^
U
„
u
s
5
£
***
«
1
(L
—
£
S 1 * * * ^
tfl •-
CM
£ < n in p n
n .p..
333 3
® O W
3 3
| b |
33 3
01 0 O *- 0 <
" 0 Z
m => =
" ~ " 5 5 S
033 <
cy w •- r: *t £
•> o &
033 3
^•b ^ ^_ ^ t^ »— m
•5 ^ o «>
«•
a
• 2 ^ 2 . 1
l I 1 1 i 1
S 3 S S 2 Z
< « tt O ^ 1^.
2 S 5 « S
10-0
*- ^ CM
•D < « < ^ ^
<« z 2 •» 2
3 3 < 3
2 ° S
« CD
333
» " S
N 2
333
O *f ^ O O W
«- « w
333
0 CVJ
333
S 3
*- m
333
o £ »- n o £
M ^
in tn
M CM
llllli
z a. » en to to
;
|
'< < s en n
> to *" ^
in r^
1
gsiii
' o
I
L 0 0 0 -
;o co
i
3 3
« » - 0 0
; 333
m o o o N
in —
:
1
! 3 3
~ *
i
{
3 3
W «-
T
'
333
J ^ - 1- > IM
3 -
c 5
I I
CQ
325
-------
CO
CD
T3
U)
03
•o
2
«
O>
1
ca
TJ
QJ
CO
C
o
o
S TJ
O CD
CO 3
o> "
co --X
co -a
— v
03 CO
J=
o
o -1
H g
«..
TJ
£
s
n
3
w £
W c
5 c
U
,
•
1
c
a
CO
a
c
c
a
CM
•1
•1
1
1
<
C
t
1
<
c
0 <
co Z
eo
eo
f» O
eo CM
CM
in
en «
in co
CM
in
§ ^
in
to <
o z
eo
2 z1
Sf
eo <
eo z
in
in
T? 2 ^
a>
Aniona (mg/l
Bromide
Fluoride
CO
CM
in
CD
CD
*-
*•
»-
in
eo
*~
eo
ID
*•
CM
en
r^
r~
eo
r^
CM
en
in
in
eo
...
CO
CM
CO
CO
O
CO
CM
CO
en
in
I
CD
n
CO
en
CM
en
^
CM
CM
CM
5
CO
«
;
o
CM
0
'
CO
•D
Z
3
i £ i £
O O CM f-
CO ID
h*
0 3
^ n < o
^ Z
3
< u> < en
S o I en
i
< v < r-
Z in 2 CM
3
< CO < CM
Z m Z M
< 0> <: CO
2 CM Z W
3
< (fi < 0
2 jr Z eo
n
•i
g_ o
g
CM
0>
-
CM
en
o
CM
45 »
en ^}
•
h
6 ?.
I
en
^
CM
en
n
^
CM
CO
O
eo
CM
o
CO
CM
in
-.
CO
to
in
in
I
eo
"
CM
O
CD
CD
en
to
*
CO
eo
CM
CO
in
i
I
ID
CM
O
«»
CD
CM
to
CM
CD
en
en
ID
o
o
g
<
o
CM
O
^•
n
g
en
CO
en
0002.88
§
g
CO
en
CO
o
CD
"
3
cv
ID
S
Oi
r^
4D
C
a
o
*•
g
ft
.
i
aig
z
c?
•5
£1
Tl
m
ff
|
<
•0
UsundtUeli
326
-------
tf)
ti5
05
O)
O
CO
"55
to
03
ffl
CL
cn
o
•s 05
eo ffl :
'i'i
> "55
5? «
E g
o c
o =>
o
Ji
in
E
o
o"
CO
w
a.
i—
4CC
CM
*~
^j
^
X
UJ
V-
i
R
i=
5
u
1 I
MM
£ a
3 5
en
T)
"3
o
^
5
_
§ 1
§ C
0
9
•1
B
c
C
B,
n
a
J
c
a
n
i
<
«
<
G
*•
4
8
i
£
CM r. < < < <
° "~ 2 Z Z Z
b b
rt < « CM rf *
9 2 •» ° 2 S
o o o
33 <
O O O CM O CO
o o e o o a
3 3
ID <^ *• at co <
N 0 O 0 — 2
ffl m
«- O O ID O <
M. O O <*- O Z
b b b b b
S3- 3
ft g g g g £
b b b b b
m m
n 0 « tt
CM O O CM 1^ f
b b b b b e
E >. E
€ i i 1 ! ! s
• i c s s s ;
£ 5 8 S 2 CM
o o o o o a
t i g i 2 i
b b b
< 3 ffl m
t* o o o o u>
O 0 O O O 0
3 BO
o «-*•«- o co
3 3
g g g g g ft
000000
3 3 .3
g g 5 g S g
b b b b b b
-, 3
*- ~- CM r* » CM
o o m o CM e>
b «• b b b o
ffl 3 ffl
S S S S S 5
b b b b o o
5 S 6 tS o J=
<<<«•»<
Z 2 Z ° "- 2
b b
a s -$-s fc s
00 0
< B 3
S CM !*• CO CM O
O 0 O O O 0
3 ffl
*- O « O CO O
o o o o o o
3
S^ *- b 0 o>
o v o o n
b b b b b b
3- 3
Sn o o o r>
0 CO 0 0 »
b b b b b b
3
«- « CM 1^ « •
CO CM CO O *- •-
b b b b b o
0 3
f^ *•» O C& < < < o <
**• 2 2 Z CA z
b b
CD 3 0
o o o o o *-
3 3 3
O M 0 «- O CM
3 3
O CM O O O CM
O -- O -^ O *-
b b b b b b
333-
§« O CO O CM
o o r* o »-
b b b b b b
3 . 3
5 ~ 2 S S S
b b b b o o
B 3 3
S g S 2 g g
b b b b b o
1 1 1 1 s 1
.2 o o ss as <
Z 0- CO CO CO CO
2 2 g g =
bob
5.-- < < CM
r 2 2 o
'e o
'
3 ffl
O O «- O CO
3 3
O O O *- *-
3 3
S g g g 2
b b b b b
3 3
S :g g S S
b b b b b
3 3
« P«. l*«. ^ CM
« o o •» o
b b b b «-*
m a 0
Sr* «-*••—
CM f^ CM n
b : b b b b
1 1 1
i « 1 1 a
<0 i f- t- > ISI
•o
s
i
—
c
II
Z
~£
»
f
ffl
n"
•s
w •*
?l ~
* 1
T) Ht
- 3!
U=und«le<
Fite.-CV/OV
CM
•
CO
354
-------
tn
03
in
03
O
I
CO
CO
•o
CO
cd
CD
c.
o
en
In
Ic ^
O 03
CO =3
o o
— o
CD """'
en *-z.
CO t3
CD 0)
CD «
«- Q)
en is
.92 jr
ej en
g.™
en J3>
c
o co
en CD
O
x:
07
C
a
a
m
ui
a.
V.
CM
c
t
f
U
h
;
C
i
i
i_
i
u
•• ^
5 <
H £
^^
• CD
O >
>• >
^
^
•
^
s
_
S t
c
I
1
1
C
n
i
i
i
c
~
i
,_
CM
in
o>
CM
^
0
*r
0
CM
0
CM
en
•o CM
c
a
i
""* e»
c -
1 i
VO
1
CM
i
,_
m
CO
i
<
^
i
i
o
TD
0
5 < ^ i I 2
o
CM
a> t- CM n a> •»
r» co »
0 CM
CM
•
ca CM cj <» < *-
co in »- Z
in n
in
CM
•r- CD < O < tn
O 00 Z CO Z CM
r»
*•
o v <: oj < T
~ •» Z CM Z CM
in ^>
CO
CD
<0 CO < 1^ < ••»
a co Z co Z o
CO O ~
in
CM
5? § I 5 § 5
^ CO
in in
CM CM
3
in o < K < ®
CM 0 Z f» Z N
5 - CM
S
ID = a = o
JC 3 sr j:
I ^
CO ^
o o
"" 5
CO
CM n
W CM
*-
W7
*. «
«-' CB
«• ^
*
*: °<
*- CO
o
CO
° -
CM' CM
in
o
« o>
W d
«• o
^
<0
^
•o » cvj
» *"• ^-
.^r ^ r*.
I' s
*- •«•
i
to
o>
d
CO
en
CM
to
a>
r.
m
«-
^
o
a
t
O
a>
2
o
to'
in
CM
*r
e>
to
r*
en
•X
a
c
in
o>
CO
a
f
in
CM
u
<
*
i
c
c
M
^
5.
i
i
n
Z
f?
CM,
5
a
_
co"
•s
1
„-
i
•
^
I
1
Q
I
CQ
353
-------
T3
"(O
03
O
•a
03
CD
co
as
o>
• 2
o
CO
CD
CD
CO .
If
w 2
0) Si
03 — •
°0 ^
Q) CO
Q. CO
0 ^
C <»
ii
CO (U
a. «-
E O)
.e
in
E
o
3
m
tii
OL
X
S
CM
«
|
U
1-
i
ii.
^
»-
X
c
u
• <
2 I
u>
s «
** «
TO
fl
•
c
3
_
UJ *
s£ §
u
^
•
1
c
n
•
i
£
cv
•
t
c
£
•1
4
4
(
<
£
« „ < « <
•*• n
in
CD <
® « 0 0
p
3 3
e> «- o *-•*•<
M> in e* z
00 0
5 w S |
cu S
0 >
0
33 3
« (M O » *t i
o m
in o *
"
33 O
•5 J n b 2
.g
JUnl,
I I 1 5 1 s 1
« r. « ^ r^ n
o ^ ^ f^
m •*• w
^
g s s i s i
< 3 CD O
O 0 o O M O
131
3 mm
o » e o
•
3 3
0 ID 0 0 — 0
*r
«D
3 33
0 «J 0 O — O
*r
£
3 3
CM
O 30
e « o o •- »•
«
CO
lillii
5 S S S - S
*•
S • 3 3 2 2
< O 3
0 — — 0 0 o
o
3 0
— *- 0 0 O 0
0
3
o — o o — m
S
o
o
b
3 3
0 W - 0 0 0
- b CM
3
0 3
>- CM » O O M
, a
lilil!
< O » CM CD f»
at o o>
*•
5 3 " 3 * 3
033
o n o o o o
^ ^ o>
ID 0
n in
33 3
^. » O 0> 0 «M
cd n o
in >-
N CM
3 3
O 66 O " O «
^ ^ O)
CM n
333
- 8 e S ° S
e r*
o to
3 3
o in CM
^ ^
a 3 3
0 S ° n ° o
0 r-
i s
mill
z a. co co co co
<| < o* n n
2 2 « ^ »
tn rs.
i to to
i CJ «>
, ^
i
i •
i
tD 0 -^ 0 —
in
•
!
i
(
• 3 3
^! «- ' o o *-
4D
1
I
1
: 3 3
a o
• O O O CM
1
1 i i
I /III
« p p > f3
11
» ^~
11
ii 5
3 U.
vC
CM
CD
352
-------
tO
CO
CD
a
CO
05
CO
T3
03
CO
CD
O
(fi
'tn
0)
O)
II
u. .E
8 .
CO .
o
to
o 53
J2 —
o
en
i?
S
CD
ui
0.
I
to
CM
O
R
yt
UI
lf^
r~
._
a.
u
t-
i
u
"" «5
I I
to
to
^J
A
—
C
» s
H; c
3» o
0
^
•
•
c
£
o
Q
u
c
£
CM
I
C
£
*-
•n
•
4
f
o
£
CM
r»
in
CM
^.
CM
. »
t» CO "T
S - 5
CM
CO CM CM < «-
CM r> Z CM Z CM
CO
*•
•W CM < CO < O
M CM Z "- Z CM
^
m
CM ~- ^ •*- «t at
en CM 2 «M Z »
o o
•w in
•- " < o < co
§co z co Z N
CO
in m
3
00 < •» < CM
fx> O> Z ^* Z CM
CM CO
CM CM
• •
O
s s s s „
z i s § I
5 «, § z 5 § f
1 I £ < I
g 5 i £
z z
CO *
6 o'
03
CO
CM n
v- CM
~- CM
CM
in
» in
CO
to
CO
*"• £"
^ CO
CO
CO
CM
O CO
n co
CM in
*-
CO
o
o
Z
^
O
CO
in
CM
^
CA
03
O
cx
CA
o
CO
CM
C
^
w-
c.
o
CO
u
u
g
V
w^
c
^
o
c
n
Z
r?
0
US'
n
o
c?
0
1
^
U=und«UcUd,
Q
I
351
-------
in
03
•a
CD
13
CD
T5
CO
08
CD
§
CO
1
a>
1
tc
CD
CO
CIS
-.
CO Tl
• r
CD T>
O Ti
i S
is
1
E
0
o
CD
lli
1-
X
CO
"*
CM
~-
01
I
UJ
[~
£
CO
X
Ul
_J
1 <
T <
£ 5-
«
1 s
m
|
*
3
« "5
•
jji c
O
«t
u
O
CL
n
i
£
N
•I
|
1
-
M
1
. £ < < < <
m
pfc 2 *. m ^ 2
tf> in J
33 <
r» o o « ~» m
£ ~ 0 0
=1 3
5 *" ° 5 I i
c
m CD
o o o o o <
5 « b 2
33 3
- ^ o " o <
*" o ^
to CD
n ev — — o <
S » 2
33 m
.- o o o> e> p
^» ^"
?
JC
E E >* E
I ! 1 1 1 1 i
S 5 < 5 m o ffl
in »*. « h. p* cj
CT o i*. ^ SJ S
2 *~ J5
**
S 5 £ S S S
. < 3 ffl ffl
o » e o CM o
o
A
3 ffl ffi
O £ O 0 »- O
o -
3 3
5
3 = =>
O • O O *- O
9
3 3
o 5 » o r. -
tn
O 3 O
0 » 0 0 »• *-
«
s 1 1 1 i
n *e f o Ir o
O O O O O J=
i s i 1 5 z
*~
2 * S S S $
2 •
< CO 3
0 »- •- O — 0
o
b
s m
0 0 - »
O
« n o e o ^
b
3
N n o o r- «
o «•
0 3
*• CM «- O *- CM
b
lllill
1 5 S i I I
< O *r CM ffl *»
Z ** ^
— o e =: = o
Z GL tO CO CO CO
Z Z o> " a
'< *D to
1
<•«<<..
^
'3 m
S |° ~ ° ""
p =
*• '»- e o *-
3 3
•^ o o o ^
CM j
i
;
3 3
s 1- ° '° -
1
i
3 3
|
*• CM O O f>
1
ffl ffl ffl
« 0 0 0 ~
!
1
.
i i n
1 , 1 i j
« 1- (- > M
|
C
i
N
Z
— .
"
S"
ffl
,
n
•$
•^ ^
!i
•s =
U=undilict
File:DWLT.I
in
i
CM
350
-------
05
173
O)
S
o
ro
o
0}
co
ca
a>
co
^3 ^i.
O -Q
03 0>
Q. a
:CO C
. to
s i
8 S
o-o
C CO
CO ~O
•C CD
S «
o. a,
E i=
o c
O =>
o
M
ffi
ui
CL
H
X
CO
i
Cfl
UI
H-
x
u
^
til
~m <
S 1
5
i *
|
c
CO I
S» c
u
^
*t
s
0
ct
n
«
•
u
o
£
CM
o .
b b o' b b b pi
»- < IT) tD << < CD C5 ^ i 4 N
OZ — " ZZZT
boo o
S 2 S K £ S S 5
o o o o o
..
o
~ g e » a
"11 | 1
§ 1 1 1 1 1 2<*f
"E S 2 j£ s = j=
< m u. O to 2 CL
2^22
s. i i i
o
Hi
o Z 2 2
b
O Z Z Z
b
S i z I
b
«<«<•<
o z Z Z
b
5 § S 2
b
*» ^^
S CO
o I 1 § 8
•s
1
—
c
H
Z
.
n"
•5
^
n
B
•5
2)
n
<
.
"g
i
1
3
I
§
1
o
I
CN
CO
349
-------
(A
«
OB
O)
o
CO
£
en
"o
8.
en
ca
"C
CO
^ -o
®I
8 |
"o-o
o ro
-= "S
I
o c
O 3
6
^
F
0
o
CO
UI
a.
s-
I
O.
£
iir
UI
^
u
3
? <
r <
H 5
CO
e 2
° i
^ S
^j
•
c
3
i i
o
•V
5
8
£
«
•1
O
£
M
S
U
£
*•
•
£
CM I- < < < <
o — Z Z Z Z
0 0
eo < m CM < <
o § •• o 2 2
0 00
< 3
SCO O r* CM CM
in o CM o *-
a 3
b ^ b b b
a 3
5 = S S g 8
b b b b b b
3 3
f» O ^ ~- «- <
5 S o o o S
3 3
~ CM CM Cft *• <
eo «- — CM o
m
0 0 O O 0 O
3
CM in CO ^ CM K
333
CM «O CM ^ CM M
•-•- — »•-«
o o o o o o
a 3 3
S CM CO S 0 0
o o o o e o
- 1 1 g . 6
£11851
— o • = s o
Z a. en co eo to
2 £ S S 2
o o o
z i S i S
b b
3 < 3
S S 2 g 5
3' < <
3 3 a
5 g g 2 R
3 3
S»- *- ^ in
O O «- CO
00000
3 <
eo S S n 5
00000
3 e a
S 0 0 S S
o o «- o o
1 II
1 = 1 1 1
to (-- t- > Ki
f
ij
CM
•
03
348
-------
O
1
c
o
S.
If
tf
o i
§ 1
^3 J!
S s
•S S
H i
S
"S *
3 i
n
1
2
* S
1
•*
•
i
1
8
£
J
I
5 S S S 5 S
Ul
a < «> n * <
5 5 - S ~ 2
n
3 m
§ - ° 5
m 3
- ° s
3 3
3 3
in o Z
g 0 o « o. «
?
S. e >• E
5 1 J i | 1 i
1 I 1 5 S I 1
ui r» •> r*> f» n
CT o r* f* r* «o
o ** - «*
s s s s s z
ffi B
^ ~ *^
05-00
M
3
in
ID
CD
«}
< 3
S
3 3
2
i 1 1 1 1 g
3 3 5 3 5 1
2 $ 2 1 5 S
•- *"
S • 2 § S S
U. B
3
10 b
B
« °
3
B
t 5 ""
1
CD <
O
a 3 3
o
,>lli!
S 2 " S S S
01 « »
^
3
« 2 " S ' S
3 3
^ ft o m t* o
n
3 3
3 3
s ™ a
< 3
S N
333
o «- «
w —
a 3.3
2 S
n
iiliii
§< a « o
2 S * S
0 SO
«s«*i
3 B e
09 S 3 S ~
o o o
3 < <
3 3 a
3 3
3 <
-
3 a B
leiift
CQ
347
-------
1
O)
I
1
CO
•a
QJ
75
o
S.
2
a> ._
if
•m
5
§• o,
o E
O —
• 3
*• £
_ §
s. I
m
f
1
o
• 1
&
I
I
I
S 2 S 2 2 2
**• Z *• *" • S
in in 5
n
3 CO
°. - 9 •»
O O M
CD 3
8 • e 2 2 S
e 3
3. 3
*~ o *
. 3 3
33 CO
f 5 e ° 2 2 2
f i 1 1 1 i i
i 1 i 1 s & S
in F*. e rt r-* c>)
rt « r- N. ^ 0
n ~ a*
to < P* < » <
« 2 « 2 o 2
m a
n ° °
n
3
a
n
o
< 3
p
3 3
m
CM
Hiiii
2 2 2 | - 2
g a S S 9 S
g 22.2
3
• e
a
«,
3
ffl
S °
a <
a 3 3
O
3 S 2 2 1 3
< o ^ f*
2, 5 S - S
a v A
3
« 2 " 2 » 2
3 3
£ o b 5
n
3 3
r s ° ? ° i
^ w
3 3
s 8 i
< 3
2 - 5
333
n o
10
a 3 3
0 ^
,Jjl,J
<< < a n m
5 5 S ' S
SM < < *-
* z z <*
CM «
3 a e
o o o
3 < <
10 £
: 3 3 e
3 3
in
3 <
•"
3 a a
» 0 0 0 •»
i E i
1 ^ H 8
5 £ != 5 R
cs
CQ
346
-------
W
CO
3
S
en
s
o
T3
03
CO
CD
1
05
03
CO
S
"c
O
en
01
Si
o
CD O
C/3 *^^*
CO .
-2=0
O3 =
*- O
w «
QJ ^>k
~-o
O
03
O
03
C to
o ra
J2 S
O
-C
m
E
o
m
ui
o.
&«
r^
<
a.
t
f-
u
t-
X
c
U
^r 5
o |
0
• s
£ S
*r
o> r- co T
CM CO «»
0 CM
CM
0tM^r^ *-r* en < 05 < <
— Z " °> Z *• Z Z
s s s
3
,- < r- to ^ 5 4 •>
•» S •» « ZZZCti
^ ^
< => •
22SS SSSS
in co o t»
r» CM 0
IT
Tj ij
~ •£
I H!|l
i!!l!fzlji
ZZZZ
n « 0 r>
» »- o> o
b b b 0
v- r-» 0 in
•v m CM
CO CM »-
2^11
s i i i
in
«> Z Z Z
« < < <
tei
" S S "
-------
Ifi
03
tn
03
o
CO
s
T3
CO
TD
2
CO
0}
O
M
0)
O)
o
CO
2 o 2
N
in en CM ^r n 4D
— o » r-
e ^ ^
CO
SB
M
3
H>
m
ffl
o » o o « o
o
in
< 3
o • *r e «r «
S
^
o **•• o o ^* w
CM
CM
e £
i 1 i l s =
00000.=
z z 2 § : z
«»<<«<
S * 5 9 S
""
<
5 ~ 5 £ g '
J3 " °
ffl
*" O
3
•D o
m
a n M « o
n
ffl 3 3
S "> g
»• CM
i E
^ S 1 S £ 1
•g s s £ > ^i
— o • = = o
Z a. en en en en
z iz S " E
M
•s
S.
1
1
«
z
.
*
^
§
II
ffi
ff
"5
§
n .
U=und«Ucltd,
File:TCLP/bot.
CM
CM
o
ffi
344
-------
•o
05
"S
Q>
T)
(0
•o
Q>
CO
c
Q.
O
(A
11
O ~
II
If
0) E.
§i
CO CO
•£= 03
CO w
-0
O
p
2
K
1
i
o
h-
g
IH
z
o
§
M
j» -1
•c
1
c
a
"8
1
V.
»
•
i
"
K
UJ
^
M
UJ
J
UJ
X
a SB
n
•
u
••
.?
Z S
£
CM
«
•N
__
*~
_
8 S
0 IL
£ -
f-
•
^w
U »
0 II
Ot -"
in *- « Is* o w o
^ 01 o ta
in in
ffl
in — ••-••- o n < ,o
^- MM CJ Z
in
SZS5 Z° 3r i£ ' Z°
^r o> cj
is
*" S S
< . 3
w w
"
— . S
1 * i 1 1 1
«5-i-§sizSi-=
•g o § 2 3 — Jc
< m C o w z a.
s i i z
in
Kit"!
•"
s z I i
**
| s i i
5 z z z
g£
•
^ z z i
S! S I z
£- IA
^
M
M
< ~-
I 1 i § g
1
c
1
n
Z
J£
n
0
1
n
j.
n
0
|
I
5
s
c
i
z
|
1
.£
.
5
•
c
I
I
I
I
CM
•
CO
343
-------
T3
a
•o
CO
•a
OJ
w
o
a.
o
en
o
ffi
u
O
«
* i
£ J
CM
^J
tx S
C
2
S £
«
UJ
1 s
3 .,
en u
I S
I «
§ £
o.
« **
A •
i S
£ -
« *•
V)
i i
£ -
•) *"
U X
Q m
o o
o o
m o
o
< 3
O CM , « O *- «
0 tn m n
0 0 *•
n *~
3 ffl
» o n 0 CM n
SI £ S S
ffl 3
n r* Q n n ^
s s - s 2
m 3
£ M " CM *" S
CM v «o «r
^
3 3
*f n o o CM ^
03 0 »• B Z
CM CM
= =
S S 2 2 « 5
33 a •
O M-
in
%
•2- E *. E
lllllll
• 5 = E « 5 o
SE < < < ffl ffl ffl
O s O
2 * °
0 O O* *• P* O>
00 *. ^ c\
o «o •—
0 CM
2
ffl a
CM f^ in f»- u> *-
0
n
0
o r*. ft t«. o Q
a> e «- 0 r^ o
^f 0 »- IN. CM
0 CM
0
• ., '
S S " S 5 5
S
CM
O
n
n
CM
< 3
O C9 m CM
O f- ^- »•
o
s
= 3
g » 2
m
•i 1 s 1 I =
3 5 S 3 3 s
2 °
O CM
tn
m 0 ^ t«. ,• CM
o>000 M
CM —
3
^- 0 K. r-. o t*
*r •* 0 0 5
CM n n
S
ffl
t*. « O t* o P>
« 0 o 0 w e
CM o o n
o
n o • o »
*- n o *r
^ CM
3 a
*" CM ^ "°
. *
0 <
— « 0 ° 0
>- CO
I H
1 = I 1 S
CO »— ^> > N
^
J.
i
41
Z
n"
o
I1
n
ffl
X
0
§•
n
*
£
jo
—
1
c I
O £
™ O
u &
^J K
I I
U±und*t*c
rap/sum
CM
•
CO
342
-------
Appendix B.2 Summary results of TCLP, DWLT and AVLT for untreated and treated
bottom ash.
Table Number;
uai vii tauico*
APC Residue (Appendix B.1)
Extract Concentration 1
Release 2
Release 3
C.V.4
poHom Ash (Appendix B.2)
Extract Concentration 1
Release 2
Release 3
C.V4
Combined Ash (Appendix B.3^
Extract Concentration 1
Release 2
Release 3
C.V.4
TCLP
B.1-1
B.1-2
B.1-3
B.1-4
I
B.2-1
B.2-2
B.2-3
B.2-4
i
B.3-1
B.3-2
B.3-3
B.3-4
I
DWLT
(Ext. 1+2)
•
B.1-5
B.1-6
B.1-7
•
B.2-5
B.2-6
B.2-7
m
B.3-5
B.3-6
B.3-7
DWLT
(Ext. 344
-
B.l-8
B.1-9
B.1-10
-
B.2-8
B.2-9
B.2-1 0
'
B.3-8
B.3-9
B.3-1 0
AVLT
-
B.1-1 1
B.1-12
B.1-13
-
B.2-1 1
B.2-1 2
B.2-1 3
-
B.3-1 1
B.3-1 2
B.3-13
1 Extract concentrations - mean values of 3 replicates [ug/l or mg/l]
2Release on a treated residue basis - mean values of 3 replicates [mg/kgg d.s.]
SReiease on an untreated residue basis (corrected for process dilution) - mean values
of 3 replicates[mg/kg ash]
4C.V. - coefficients of variation for replicate assays
341
-------
B
.
3
ra
7s
i
O
s
^
7 ^
g 1
o « •» meo«
o o o — oo»n
b b b b b b b b
•» < 10 o ^ < ^ '-
^2-oi 1 2 2 ts.
O 0 0 —
3 CD
»•<»»•
-------
tn
«
o
CD
O
n
J2
I
a>
en
a>
•o
Q>
Q.
CO
I «•
ss §
31
o
s "o
~ CO
§1
o-o
§ B
tn -O
•c: Q)
2 v
o
o
i
1
CO
(•» «~ *O *
O CM « O p Z
d 6 o o e
8 = S S § S
d d d d 6
m
•> «- o CM « <
S n •«• CM <- z
o* dodo
< =
_ i- r- en o .
M — n CM o ^
o - - d d
d d d d d
E >• E
. I i -1 E i
| | | i .1 1
o o o »• *- o
OOOOOO
o 2 5 z S S
d d o
O>
o « m » r* »^
•*- o ^ CM — r
o" 6 6 o d ^
I
S — CM » M 0
« o *^ p ^;
d 6 6 o o o
2 S § S S S
666600
s s a s s 's
666660
O 0 O 0 0
m
O O « CM O
66 6 6 o
1 3 1 3 1
Z z z p <= z
O 0
o o Z i § §
do" o
in m to «D co ;
.£ 3 *e = —
2 Q. co co en c
2 2 *: *M °.
* CM < < P"»
I S I 2 q
D CD m
m o OD o in
o o to CM o
d d o* d d
CD
o in ^- S p
o* d d o o
D o m
S o S S 2
D m m
2 O « O *"
d d o* d o
ffi 03
d d ^ *• o
^ o o « «
d d d d o
I II
1 = 11
(0 P 1- > N
1
0
It
C?
O
cv
CD
d. A=U(i ol 3).
UFLY/SUM.
U=und»HcH
R/a:CW/tVX
339
-------
CO
a>
c.
c:
c>
0
o>
.c: -a
o m
CO 3
_a> c
v. C
o o
.
C1J T3
« S
« CO
•-- Q)
.
o to
•
C) T3
>
c:
o
09
o co
09 03
o>
•o
In
o
OC
0
Q.
lii
Q,
X
U)
>.
EE
TO
(Q
<
Ul
!••
U
S
• <
o |
(D
5 *"
,2 S
•o
C
M
C
"o
(A te
&j *j
> O
u
^
M
U
o
£
n
S
o
a
CM
i
£
,_
i
£
en < in
o «
9 0
en
en < in
en z «M
•* o
en
CM < 01
•- Z
0 ^
" I
•5- s; I s
T9 »• CO
1 " i
-' e a e
2222
1 I 1 1
o
n
CO
o
«
CO
in
in
o
CO
CO
CM
CO
CM
CO
CO
*~
en
CM
CO
0
CO
CM
en
en
en
CM
CM
CO
CO
CM
o
CO
in
< < < CM
Z Z Z en
in
<
Z Z Z «
CM
I I § o
CM
< < < 0
Z Z Z «>
en
»»
S 2 S S
O
in
CT
i i i i
CM
i $ 2 S
a
CM
S"
S. £ 5 5 §
m r g § §
e = — E 2
f •* 1 1
z £
z I i
s i i i
9 § S S
§ I I I
^
O < < <
S S I z
§ i i i
*
* § z £ S
CH
•
-------
in
QJ
O
TJ
Q>
CO
O>
CO
I
ca
QJ
§
ra
to
vt .
g =0
•3 s
CM « ^ ^ Z
CM
b
CD
< 3
o e» •» « r- <
CM « CM ^ n Z
O» •- CM
f-.
f 5 K • 5 S S
f5
Ol
is *. „ i
1 1 1 1 1 il
f^ M o m in «
n CM o> ^ »- o
*• r* •«- 10 o
g
CM
5*5*3*
m
n CM on
w- CM **
CD
en
in n CM ^
•- m eo
=
2 ^" *** CM CM
^
0 0 0 0 M 0
4P O CM « f*
— CM CM CM
CM
ffl
O O i
3338*3
S 2 5 2 S 5
CM **
*~ ^
K ^ g g « n
co to
« 0 *- —
^ *•
^ 0
m
si
CM ^
f* CM O h. « ^>
*- ^* O *- W *"
CM W
I
ot ^- e r*. — • *-
•^ CM
^ *>
llllll
2 J S Z 3 Z
< CO 3
CM «ft W *O
•D CM 4D
CM V CM
=) O
D — r*.
m e v-
« r^. 01
3 ffl
o » «e
V ^ CM
3 3
n ^ CM o n
*- ^»- eo
3 3
-- £ CM J; CO «
CM 0 V
S a ^
CM
§ E
^ s i i s I
1 1 1 i 1 I
Z CL 0) CO « 0)
< < CD o> n
Z Z « - «
m r*
< « < < »-
5 g = * 5
C3
D m ffi
r*.
ffl
eo ^r o *• 03
IO CM P*
3 3 ffi
flO CO ^ ^ O»
a> n
3 ffl ffi
CM
ffl ffl
•> *» a in
« —
CM «
4D
! U
S = 5 g =
« >- 1- > M
a 5!
< 1
tH
•
CQ
337
-------
D
'175
h»
•o
03
«3
>
8'
CO
C W
O *8
S2 .2
"« s
o .
o
1
"to
o
DC
o
CL
1
^™
x
en
>>
£
a
"5
H
|
U
J
e <
5 I
< « *-
a> z CM o
o n n
O> CO
0> < » •—
en 2 CM o
o n n
v on
e> s>
CM < e» in
»- 2 co in
r. too
in in co
^T QD
» < in »•
en z CM o
o « n
^- on
« CO
" ^ 8 I
S on
O CO
a> < « »-
0) Z CM 0
S on
a a
o < «n i-
0 Z CM 0
o n n
v on
O CO
en < in —
a> z CM o
5 o n
»~ O> CO
•o
^
E
^ 3 % £ £
§ s 5 5 S
"c S 2 2 s
§ £ £
ill
i i z
i i i
i i §
I £1
i i i
i i i
s
g e a o
a. — a c
• i I I
1 *
CM
in
CM
CO
CM
CM
e>
in
*•
CM
a> -
in
^
^
CM
e>
in
*
CM
d
*-
CM
en
in
«
i
!
a.
§ I z i
•w"
o < < <
5 I I i
s i i i
^
5 i ^ i
| i ^ i
8. I f 2
5 § 2 I 2
I"
E.
>.
S ___
ihss
i
i
i
i
cf
3
tl
CD
^
•3
•
v
1
3
336
-------
to
o
1
CD
•p
75
a>
i:
1
•O
CD
1
12
V)
o
CO
1
>
ft
h-
X
u
u.
1 1
— *
1 I
•o
S
D
—
§£
g
U
c
£
aj 01 z Z 2 Z
in o
in "
CM
r» < n in n
S ^
™ *~
<
g Z - « o 2
CM
S « * S ^ S
r^
3
^ N
' '*" z
to
S " ~ 0 2
n
< 3
f £ : S 3 §
CO
o °
CM
£
JC
"*"" =1 e o _ =
1 i i 1 1 f i
U 5 ^ 2 5 « o
en CM en *>• •>- o
o o
en
CM
o 2 T Z O Z
*- CO
03
n- CM en n
m
01
O* CM W
m
CM
3
v « •*•» CM A K)
n
ea
m
Ok
S 1 * * % I
S
CD
*" o
*"
i E I _ .
1 i 1 2 | g
e •*-
3 3
« m o o «- —
f* » i*.
CM in •»
3 CD
O CO CM
h- «D O
„ 3 e = «
S S S2
f* 40 f*
3 3
fl 1 I S s i
^ - - = 1 |
z £ co 5 m «
4£ ^ o 01 n
Z z 10 - «
CM O ** ^
«r o
in
3 ffl CD
s
m oa
3 3
rt
Ui t- t- > r-J
•J
N
•
i
n
Z
J?
'o
1
S
O
" E
* 3
• ^s
• i1
5 b
!!
3 £
335
-------
tn
O)
£
u
CD
E
o
CO
CO
cn
.2 S1
o o
03 3
Q. ?
CO ~
Is
11
5 S
o o
co 5
c S
o —
ol
CO
o-o 5
CO 03 >
II
II
0 C
o
o
£
M
o
o f
O •" O O ^* W
b b b b b b
a 3
*- *t o> 10 < o
*". ° T "? z °.
b b b b b
3
o PJ Z' « Z o
b b b b
o m
o n u> •*•
b b b b
S § 8 S
b b b b
o in n o
o CM in v^
b b b b
— r. o t-
o o cp o
b b b b
^
«
o o o »-
b b b o
" ^_^
* 3
S ~ w o o
6 i. P 8 R
5.
1
^
g
j
Z
^*
n
"
tL
n
m
^
o
f
*
- u
•S
c
o
i
i
I
o
334
-------
CO
Q)
O
CO
o
CO
CD
1
CO
•§
CD
8-
ra CD
_ 0)
o *~
s
§
^ "s ^
^ a> ^
O
m
1
O
e
o
a.
<
ill
a.
J-
CT
H
CO
C
t
r
^
LJ
H
i
&
UJ
H"
3
u
*• <
II
IB
^r
£ e
*" £
•D
•
^
^
a
e
M! ^
u
^
I
«
1
£
n
i
<
i
£
!
c
-
o o z Z Z Z
b b
3
§< d> CM ^ CM
2 n o 2 o
b ob o
m 3 m 3
r«. o o co o ^
— 0 CM 0 0 0
b b b o* b o
3 3
b o o o o
33 3
g § § CM 0 2
b b o b b
333~ 3
CM CM CM O CM <
o o o — o z
b o o o o
3 3
CM to co r» o <
l» 0 0 — «r Z
b b b e o
33 3
t 5 S g 5 5
b b b b 0 0
E >. E
§ = o _ 3
• = ° •= E =
5 E 1 • -2 £•
5 i 1 1 S S .
o o o *- *- o
o o o o o o
g i 5 5 g g
o o e
3 3
ak o o o co in
— o o o o v
b o o b b b
3 , 3
b a o e o e
3 3
CM o co o e «
CM *• *- o o r^
b boob b
3 3 <
CM ^ CM W O> CM
0 •• 0 «- — 0
b b o' o o o
3 3
co f*. « CM o n
0 — 0 0 — —
b b b b o o
m 333m
ai «• «• ^ «• o
— o o o o »
— b b o o —
g
Z Z Z 0 o z
0 0
s s. s-s s s
o o o
3
S — «- O — CM
— n o — o
CD 30
b b b b o o
3 3
; s ; § i s
— b b b b b
m CD
S R S § 2 S
b b b b b o
CD 3
o n — co r*. a
CM . 1
Ills'
1 I 1 f I s
S 3 s s s s
2 o — «"J O O
O 0 0 0 0
•» < f" < CM <
020292
O 0 O
333
gin o « o •»
o o in e io
333
b b b b b b
033
«-> O O CO O Cft
— — o n o G
b b b b b b
333
SCO CM CA CM «
n o o o o
b b b b b b
333
O O O CB •> O
O CM O « O C
b b b b o o
3 0) 3
O 0 S 2 O "
b b b o o o
E g
_ 1 2 c _ C
S S i 8 ; |
£ 0 = = = t
z a. eo to co co
.
z z - « o
000
< CM < < P*
2 o z 2 o
o o
3 3
ID o in o —
o o o o o
3 3
O 0 0 0 0
3 3
m o n o ^
o o o o —
b b b b — '
333
^ CM CM CM in
— o o o —
b b b b b
a 3
to « « in in
*- n o CM —
b b b b b
333
S — — — CM
O 0 0 0
b b b b b
i E i
I 5 1 1 1
O) fr_ t- > N
3 1
-
s 5
1 «
I I
CO
333
-------
CO
CD
TD
"to
0}
o
T3
CD
CO
CD
TJ
CO
"8
CO
£
C
O
CO
to
2
o>
15 S"
O 0)
co a
CD .CZ
—• f 5
i_ C
£ 8
CD ""'
CO ^C
CO T3
.£ S
OJ CO
v- (a
CO •*=
.2 .C
o co
a. m
o
CD
o co
co _co
5 05
CO u.
Q- —
E ?
VJ
0)
QC
§
lii
Q,
t
A
2
*
to
1
UJ
1
1
1-
C
U
•» **
a <
'o *
3
"• a
3 5
•0
'e
•
c
g
UJ **
5 o
o
*
•
I
n
•
S
£
CM
C
a
T-
1
I
o < co < ^ S < S
n2CM2 222Z
03 *n
n co
- o i- n 0«>
3
^ _.
« S CM
eft ^
o
o CM « n
2 o> eo •»
C5
p m
in
in * n o
^ ^ f» in
ni <"> ">
i.
n CM
o t *•
I
CC
332
-------
s
en
0>
b.
o
2
TJ
Q>
TO
T3
0)
I
o
CO
_£
0>
£ |
.2 r
r- O)
11
CO CD
Q. w
II
1
&
K
O
a.
ui
a.
JZ
2;
<
+
C3
i
UJ
^
a
i
o
111
m <
H £
^^
5 e
*"* CO
•g
J
K.
1
—
§£
1
o
«
a
a
o
1
1
n
•
c
£
-
•
g
£
g
in o
in —
CJ
•o z 5 g e i^
n S
B 3 B 3
"•ON
3 3
" ~ - 5 2 S
33 3
0 O O W> O £
b Z
• 3 3 3 3
- N - 0 - <
•» O 2.
3 3
«> N — « N S
K> 0 Z
33 3
5 *" *" f- e> ri
*
•
tl^.,1
1 1 1 1 1 f 1
r- tn v m in
ca
s $ ; S s s
»- CO
3 3
° •
a
N
3 3
0
n
3 3
0 | - ° ° -
3 3 <
o <•> o o ^- o
m
0
3 3
0 g - 0
01
B 3 3 3 B
0 £ 0 0 0 -
n
! 1 i ? s ,
5 5 1 S 1 2
i I i S "> S
•*
S 2 S i * S
w ^
3
f» •
n
B 3 B
*> d
3 3
O
a B
e — — e o. N
« °
B 3
0. ^
3
in — «. o o s o ^ »*-
2 o» •» in «o
in -«r «»
tf> ^ O
^ T CM
w S « S * Si
M Z Z •» S
333
CJ l*»
333
B 3 3
N CO
3 ' 3 3
"s° s - s
333
3 B 3
0 S ° N ° K
n «n
E _
^ c
| I 1 1 5 1
5 £ « w 55 a
rf < a> o» «
Z 2 in «- IA
o> -»
in PN-
I S S S =
« o
n
3 3
- f
n -
«M
3 3
*-
333
^ C9 ^ O f*1
^ o
B 3
n •»•
333
0 ^ 0 0 «
'1 E 1
i.ili
at t- t- > R
=
B
S
o ^
i
CQ
331
-------
CO
3
"55
»
C CO
8 &
CO v.
o -
O
C9
"35
CD
OC
O
O.
ui
Q.
I
^f
•»
eo
o
c
a
UJ
H
5
1
g
_,
C
U
• ^
3 I
*•» ^
• O
^? •
£
•o
a
S
c
eft ^
UJ g
^S c
0
^
•
c,
1
n
«
Vt
4
|
fl
C4
I
1
(
(
C
i
(
1
C
0 < 00
co z CM
eo in
n CD
ID
r- 0 »-
CO CM «-
CM «
in »
eo
0> 0 r-
10
co z en
^ »-
•» < 0
in Z a>
CM
— < r-
in z «
in
ea < •»
2 S 2
N § 3
•^ ^
«
^
•^ooo
« *O ^ T>
1111
z i z z i
« O O CM >-
CO P"
to *-
ffl 3
co p m < o
o
en
-
•3
in < w < co
in Z — Z CM
in
g I « § CM
CO
CO
-,
« < •» < CM
a Z «- Z CM
5
a
CM S S S S
en
3
CO I CM I S
3
8
d i | § §
§ — — e o
- » z J •§.
a f < S-
3 = £
< ,
^
CM
en
eo
o ^«
CM*
in
in co
~- a>
CM e^
^- CO
CO
^f
CO »-
CM
CM
CO CM
p «•;
CM a"
in
0
» n
fj CO
CM 6
v in
o
o
* » r~
^ ^ CO
o» jf n
E S
^*
M
* 3
I a- g
z
CO
CM
O
«y
CO
CM
CM
b
n
to
in
S
CM
to
to
CO
'
in
o>
ci
in
0
^
s
o>
0
CM
g
z
eo
en
o
p
o>
co"
CM
CO
oc
CM
en
in"
CM
e»
CO
0
£
g
1
i
1
n
Z
^
n
u
O
.
c7
0
5
II
<
.
UsundtUcUc
£
00
cc
330
-------
S
OJ
O
5
CO
•a
03
a>
o
i5
ra
»
_ ,
2S
m-o
<" di
§ 1
" g
CO •
IT
w
4-
CO
in
|
UJ
I
tr.
£
3
U
7 <
K 5
(0
£ 0
*" «
v
•
s
i
« S
£ 1
u
»
M
U
G
£
«
M
•
t
e
£
n
•
i
t
£
M
•
<
C
Q
S S 2 § S 2
in «*•
r*. < n m n
8 2 * S &
n i:
ffl 3 O 3
o o o •» p CM
*"
_
33 3
0 0 0 » 0
0
$
333 3
0 - ° S S 2
3 3
" - ° 5 5 5
33 3
— o o g p «
o *•
?
JC
F 1 >. |
i § I I •= £• I
5 1 5 i £ S S
n
N ^>
3
» 0 — O g N
W »•
m 3m
« ° ° w *"
0
3 3
O
m o
•• o
m 3
o
3
s - - » s -
0
in 5 ^
s 5 " s ; i
333
o * *- en o »
^ «r
333
- 5 ° 2 ° 2
^ *~
CD 3 3
333
"~
333
ex n
3 m 3
0 « 0 0 0 g
CJ C
ililii
Z S. w tn t/> v
rf < O O> C")
Z Z IA *• in
N
i
1 *
3 (b
j I
co
cc
329
-------
0)
O
CD
E
o
«0
_Q)
Is
§1
"S O
c
03
CO T-
o s:
o —
ol
O T3
Ui Q}
II
II
O ,
CD
1
CD
- rg
O O 10 CM
b b b b
to en v-
'S
1
B
-;
CO
^
•g-
<
1
U
U=undtt<
i
328
-------
0)
C3)
O
CO
o
£
u
0}
.« 3
|1
> g
°0
il
il
§ca
o <
v o o CM o z
O 0 0 O O
O 3 3
CM CM CM 0 ^ <
m o o o N 2
b b b b b
m 3 3 <
" 0 § 5 ft 5
m 3 3 3
«5 p p p p o
E *. E
ill-Ills
S = c 2 S S 5
S < < < m m in
eft CM in en — o
o o o — -- o
b b b b b b
p S S S S 2
000
33 3
0000 — 0
O O 0 O O O
3 3
^ p* n •- fte o
•: °. ". ". ". *>.
m 33
at e ^ o o o
0-0000
3 33
CM ^ « CM 0 CM
00 — 000
b b b b b b
3 < 3 3 m
O CO O O O CM
3 3 3 3 <
p p p p p n
fill |' =
• • .= o <
o o 2 2 o 2
o o o
< 3 3
o o r*> o ^ o
ffi 3 ffl
p p q q *t q
" 3 3
« ^ (M O O «
CM O O O O O
00000
3
^ M o CM n r^
o o o o in o
b b b b b b
3
*- »- m o o *-
< 3 3
« S g 5 S 5
,jlllj
< (A CO O (A n
2 p *- co q O
d o* d d o*
S S o 5 g g
0 O O
3 3 < 3
o o o r* o o
333
o « o w o o
0 O 0 O O O
333
§»*•. O CM O CO
~- o r»» o «-
333
g S S 5 3 g
b b b b b b
333
o —• o — o o
333
— n » in — n
o o r*. o o o
. I i . .
mill
z a. co to ca co
< < « n in
Z z — CM o
boo
SCM < < f-
o 2 z o
b b
333
•" O O O <0
o o o o o
o o o o o
3 3
§O O l*» O»
q q CM o
333
W O O O f-
*• o o o o
o o o o *•
3 ,3
SCM CM e a>
O O *- CM
o* o* o* d d
3 3
*» o o «- *-
O 0 0 0 0
333
n ^ ^ *- en
o o o o o
i.il'l
to t- t- > M
1
T-)
327
-------
O)
O)
o
CO
o
0)
to
CO
1
to
CD ^
'O T3
sS.
u
c —'
-2 «
.2 3
k- -^
5"«
°0
S «
8 s
c eo
w "2
•— 03
o c
O =
J=
in
E
0
i
lii
o.
X
s
CM
0
i
c
>
UJ
1-
o
f-
to
u
t-
X
u
e <
0 <
^^
ID
• s
° s
in
" TJ
•j
•
|
^
ffi i
S c
u
^
•
<
i
£
n
4
1
|
<
C
CM
•
4
1
i
i-
i
'
i
o
CM
b
n
CM
b
ID
b
CM
b
Si
b
o
b
CM
b
r»
b
" i
"E s
z
^
2
CD
Si
b
I
I
<
i
§
Fluoride
V <
•- Z
O
in n
CM T
b »-'
CM N.
b b
CM CO
CM 0
b b
CM CM
b b
n n
o *-
b o
in CD
CM ^
b b
S 8
b b
Chloride
Sullate
< < < <
z z z z
3
< n in —
2 * -. °
O O 0
,S Si i SJ
b b b
^
z S g 5
b b
< CO < O
2 in g o
b b
CD
< n < in
Z «J Z °.
b »•
i t i s
0 O
3
i fe i s.
«- o
in
O CM ~ O
b b b o
« ^^
1 il S 8
•o
s
^*
c
^
g
n
Z
n"
N
S"
m
if
^
5^
T|
*
]
I
CM
CO
355
-------
c? ^o
m-0
— 03 Q
«£
o E
o •=•
J=
<
g
*J
CD
0.
X
tn
<
^.
*
S
2
"1
b
Q
UJ
H
X
U
111
_ J
r <
f> z
H i
en
-o
;
'c
tn ^
it o
O
*
•i
0
S
a
n
n
m
i
£
CM
V*
VI
S
o
a
m
s
u
o
£
r- «
in
e <; «D o ^ <
u> tn JX
••
m 3 3
•n - o in g £
CM 0 O
*"
= a
•» — o « — <
<"> *™ b 2
a a a
S ^ Q *••
= = a
CM «- 0 — O <
~ «- b 2
S *" ° * 2 S
CM D
a a m
CM —00
•1
•o
^
} 1 I 1 1 I i
• = e 2 « 5 5
E < < < ID CD CD
" 0 S ^* 5 £
o *- m
*•
S § S I S g
CM
a a a
o »j e o — —
o
CM
a ' < <
O — 0 O O O
CM
a a a
M
n
am <
0 — 0 O 0 0
w
a m
o N e o o e
o
n
m a a
CM
E i
•1 1 1 1 | e
R B f O O O
O O O O O .2
I Z I | r 2
••
« n < < « .<
« 2 1 q 1
>n ^j
3 ffi
o o • ^» o o •»
1 °.
3 33
e o o o S n
i °
o
a a
o
6
a a
~> «- O O O CO
o
< a a
o «- o e j e
b
ffl a
0 0 0 0 g «
.ilhi
S 3 = = z i
< o , CJ B r*
2 — CD — r~
in n ^
Cl W Ol
"-
a
- < « J -r <
,
a a a
O ~ O O o «5
o> •- m
a a a
O » O *• O CM
, CM ,
a a a
n ,
a a a
O O o «D o »
— 03 O
a a a
" a ° c ° |
m a a
0 S ° g ° o
1 e
« S 1 1 s i
S 1 f i £ 1
Z EL CO CO CO CO
•< <. O> PS P3
2 z o. , o;
N
TJ
M
*B
1
<
n"
•o
II
m
«*
"o
5* 6
* 1
T3~ 'S
Usundetecl
File:DWLT.i
CO
CM
•
CQ
356
-------
CD
TO
'•>
-»i -s
c
o
«
CO u-
ft
o 3.
o
1
£
0
£J
ffl
ul
o.
t-
X
(/>
<
^J
+
CT
o
t
R
U
1-
|
O
h-
cn
r
X
I
u
~ rf
£ <
H £
S
• S
£.5
•o
£
«
C
w I
ft c
S e
«8*
•
t
C
a
n
•
(
(
a
CM
4
C
1
»-
«
<
C
S z S I ^zll
in o
CM
3
^r ,_ O r- CMCTO>»
en r^ CD "
CM W ^
0 CM
CM
3
incMCDtn OCD - o CM Z
«r CD
*•
3
Sz|S z2i~
CMZ*-" Z^ZCM
* *"
3
o < — o> znZCM
r* CD
sj i = : z s I s
» < 0 — S0^"
CMZOCM Z^ZCM
O CM
•O "
CM
—
^ CM
•^ O>
•• 0
^
« a>
~ CM
•- in
^
^
V CM
*" °.
— " <£>
r»
*"
5 r g
!"!
•
a
«
* S"
•S x S
oo
CN
z
03
en
d
CO
o>
CM
in
n
01
ID
«
d
o
ci
CO
p>
in
d
*~
CM
-
§
<
o
M
1
^
C
n
Z
2
3
CD
cf
«
1
I
U
«
7
^
c
3
3
Q
I
357
-------
en
o>
o
O
2 S
T3
03
Q>
C
§
cn
03
f
1
O
ffi
It
II
JJ —
8-g
Q. «
w 0>
II
ra "5
I" ra
O ^
cn
n
.C
VI
E
s
m
til
Q.
Z
tn
•*
•*•
{»
i/
Ji
•;
U
L.
C
u
C
<
u
• ^
o 5
t" C
te
« s
£ i
cn
•o
^i
;
=
_
CO £
s i
,
«
4
£
n
•
i
c
£
i
i
i
c
„
!
c
en to < < < <
•»
in
o < o « ^ <
tf> "" in Jg
"
m 3 3
in *- o w o r^
CM O O
3 3
_ .. o 0 — <
0 - 0 2
3
o o o - q <
0 °
33 3
N N ° S 5 §
= =
in CM o o — . S
in o Z
^
33 0
'=? €> O O ** 0 12
"° N *" °
£
E E >. E
ilHHs
1 i 1 1 I S 1
tn f* 9 h* f*> rj
n CD r-. r-. r»- o o o o
a
e
illi.ii
$ % $ i~ *
~
S s S § 5 2
3 m
0 0 — 0 0 •»
e
3 33
— 0 0 0 0 »
o
3 3
o o — o q «
0
3 3
< 3 3
O M O O O —
O
m 3
» o » o o, «
o
J 5 s z s 1
< O -^ o* CO r*.
in <"j ^*
OJ O O»
"
3
n Z " § "* Z
333
o *• o o o ®
e» — en
333
^ r* o « o •*•
in n in
333
o <•> o o o «
333
m ^ •^>
333
*" O ^ C"
CM
m 3 3
o » o m o *•
t» n M
| g
_ H 5 e _ E
9 tt c o « r
£ a a u ; sg
Ji o 'e = = P
Z a. to co co to
< < a* rj n
2 * S * S
M
0
C
".
e
n
S
n"
^
N
3
n
a
•s
5 $
< 1
w
•W o
I b
Is
3 £
•
03
358
-------
«
03
"E
O
W
Q)
,2 T3
O 0)
ca 3
Si .£
«_ c
o o
to ,-c
CO "D
Q3 CD
CO .J=
.2 JT
O CO
§• CO
CO O)
CD
CO
CO
QJ
-
E
0
o
J.
in
E
o
o
m
lii
Q.
2;
io
^
^
+
CO
a
u
CD
X
LU
5
o
£
LEACH TE!
1 1
ID
5 S
o i
H f
a>
•o
•
2
"c
3
—
O
ffi c
5^ o
u
'ft
•M
•1
€>
S
GL
n
JJ
s
I
«•*
•i
i
£
Process 1
CM < »- < <<<<
S Z ° 1 2 I 2 2
^
3
•«r < o ^. < n o> «
o> 2 i- 03 2 *»
CM P> •»
CM ~
3
incMOOinooo3 o 2CM2CM
1;
«• W
S
o
CM
2 3
••' n"
«- o>
in
,,
•S •«• i-
a ~ *
™ ^ p>
7s. •• in
g in
•§• ~
«
e
ill
$
6
00
en
CM
0
in
CO
s
03
^
03*
e
o>
in
in
03
^
CM
CM
in
CM
CO
e>
•*
in
CO
3
in
e>
CO
CD
03
in
CM
O
o>
ID*
in
o
in
g
^
J.
e
^s
c
n
""••
r>
^
01
¥
m
ff
"o
•0
1
II
Q
CN
359
-------
o
(0
E
o
01
1/1
ra
M
_gj
u
8-
m
I
m
lii
1
^
o
in
2
,_
X
u
u
o |
3 1
•p
3
t
•
S
n
•
a.
«
(
i
i
0 £( Z Z Z Z
o o
S 5 S g S S
d o o
m 3 3
IV • E
= = o _ =
fllllll
o> *•> o 0 «r ^
— ,0 CM — •- CM
s S s 5 a §
000
3 33
09 CM CM CM CO CO
0> •- O O O O
0 O O O 0 —
3 < <
o *- o o o o
gn o o in «
O O O O R
d o" d d o o
3 ffl <
§ « s t s ;
3 ffi
2 S S S r- £
d d d d o o
m 33
2,= g g S K
d d d d d o
lei...
1 1 I 1 a =
a m £i o o o
O O O O O i
< << g s <
o o
R 2 5 2 t g
do d
3 ffl
in IA «r w r* ift
f» CM »• O O CM
o o o o o o
Y O CM O O O
So n o o o
CM n o o r:
o* 6 d d o* d
a- =>
o p% m o o •»-
CM *» «D O O O
CM « n o o *
d o* d d d o
CD =>
M •> m •> CM CM
^ ^ o S •
» 1 5 = I 1
Z CL CO CO CO (0
< < to n n
Z 5 9 o -
S = S I g
o o
O> CM CD CM O>
O O — O tO
O O 0 O 0
a S en
CD < D
§ S 2 o -
o' o* o* d d
3 3
«o o o « M
< ^
ta
•o t:
- S
u S
I i
CM
•
CO
360
-------
w
w
O)
u
03
O
CD
CO
CO
"S
CO
.3? -i
"o "O
CD CD
Q. 3
« .C
* *^
o §
u
.1 CO
*••* flj
Cw ^
s 1
> o
°0
CO >
S co
8s
3 T3
C CO
CO T3
IS
E£
o c
o =>
.c
E
o
<3
CD
tii
Q.
£:
z
en
<
^f
+
CO
tn
I
><
Ul
_1
a
g
z
o
UJ
a <
.5 I
J-fc,
c> »» ; z *•
o o b b b b b
o^^r**. a> < o < o
. Z »-. o Z 0 Z o.
o o o »•' b
O < •» O < CM < f-
nz^^ Z°BZO
b b b b b
bob b b
•)
O
i 5 f 1's
tn i: 2 o g
® ® °AC99M O
Sl?2£»22|^
1 1 § 1 3 I I
< CD C o in z £
z i z z
s i i i
o
•
W 4D O r» cu
o n o CM
b b b b
•+ to to to
O CM O O
b b b b
•
iligg
?
•s
|
i
I
n
Z
.
•s
d
it
a
if
•5
§•
n
1
S
•o
3
o
CN
03
i
i V>
361
-------
en
CD
CO
01
O
OJ
I
i
(0
•a
CO
m
e
3
§
I
C?
1
CO
I if
s
•
52
o ~-
J.
<
e
o
S
CD
Q.
H-
1
>•
«
X
R
1
S
IS
S
u
— fc
• «<
S <
H S
ID
"~ *W
0 «
,2 s
— s
a
•
"c
ll
CJ
fll
«
V
C
£
n
;
c
a
M
•
I
m
«
£
5 2 2J Z 2 2
in
. g ; „ , g
VI Irt Jy
CJ
ffi <
; S 2 $ 5 5
IO
< <
j5 : ™ s 2 S
CJ
< 3
5 ° - § 2 S
Cl
< a
« «3 O «> •* <
S *" » d 2
O
•
m < 3
r>
3 m
o
CM
•5
I | >. Q |
•S 3 ^ £ 1 S e
10 f» ID f* r* o
" S t: - 5 S
*- f*-
S i S £ S 5
CM
•a o n e o t»
~ S - S 5
n CM
*"*
m »- *•
3
*" f» «- «
<
CM ^ O
O
^
<
o »- «
o
r- CM
5
e E I
f = 6 = S
« 1 1 1 1 S
z z z tn ^
CM O *- O *-
^ a» CM o
1
I
< m
CM f* ^ Q
CO
V O CO O *•
O v- X
eo
3
r* o ^ o CM
«
CD
|£ ^ o
=
*" ^ °
, , §
iHili
3
Z — » " *•
10 0 f*
en « oi
^» «•
s 5 • S * ^
»
3 3
^ « *" o n
0 •» «
w P* n f*
•- n IM
3 3
^ * *
3 3
N *" w
< 3 3
0 « «
«• CJ OJ
§ E
_ "n => C . £
^ « ^ 0 £ §
-£ £ * .2 > >£
fi o e = = c
Z CL « tO (A CO
2 2 S ' £
5 5 g < -
CN O
*
CD CD CD
N -w o ^r —
IO »• O* (D
CM
3 < 3
. 3 3 ffl
S
3 3
*o w <•> ** o
OJ O»
3 3
3mm
i E I
1 c 11 |
IO P >- > M
II
in
362
-------
co
03
to
03
O
•o
03
75
2
T3
C
CD
•o
03
CO
03
ST
3
O
CO
8
*-*
O)
o
03
03
O *
0} O
CO • — •
03 .
If
•- O
co w
>»
co ?
0=0 i
O TO
.22 ^J
CO v.
ef
o 3-
o
in
c
o
ffl
lii
•>
X
to
<
>>
2
(1
71
*
fl
f-
l—
• X
u
"5 <
2 I
_ |
en
v
^
S
3
. "3
ffl -
g c
C
,
*
4
£
CO
•
s
o
£
CM
1
1
•
4
1
C
CM
r*.
in
in
o>
to
0
in
CM
CO
r*
CO
CM
CO
in
ID
V
in
*•
CO
in
*•
z
o
in
0
in
CO
CO
o>
CM
CM
ID
o>
CM
CO
0
eo •
CO
*f
CM
f*.
CO
CO
CM
O
CO
in
s
Z Z Z
,
< en CD
2 ~ CM
lii
i i i
i i i
< < <
z i i
i z i
s
goon
a ? • S
°» - i 2
r11
z
-
CD
0
CM
3
in
CM
o
0
CM
in
eo
CM
3
O
o
CM
ffi
O
o>
CM
Phosphorous
z z z z
CM < < <
0 Z Z Z
0
° z z z
S z I I
5 z I I
§< < <
. z z z
^
o < < <
o 2 z z
*"" o < < <
' 0 Z Z Z
JC
0
,§
e
•i
Iii§g
i
c
o
c
H
2
0
3
n
n
.
ff
°
||
U=und«t«cUc
o
CD
CN
363
-------
in
CD
i
i
•a
a>
15
03
to
I
to
S
3
§
5
a>
I
fe
ffl
Si
—
i?
"
r- O>
li
co "5
f
g
ca
w
1
<
>.
ft
"K
<
£
.EACHTE
"5 <
1 I
• s
£ 3
•o
3
» 1
C
M
*
I
GL
n
•
V
t
O
a
a
4
o
c
£
M
1
1
I
c
3 2 z z § 5
f* W
lA
£ 5 S S '• 5
« « 3
W
m <
_ o> o - r- <
» CM — J o Z
in
< <
| = * 5 3 5
< 3
s S - B 2 3
< CD
a o> o Z
•>
m < 3
g g " 3 S S
in
5 ° ~ » o 3
1 | >• |
« = S E E 5 i
in p. (D ^- r* «o
o «D r* r. r*
n cu
r-
CD *- *•
n
o
3
^v M n
<
n
S
£ g 2 " S S
e M 10
JJ
^
• | * " t g
m
fill ll
3'3 3 5 ' 3
| »z z 5S
»i' 1 5 5 =
< ffl
S 5 Z <=> '
m
S 2 o -
n
3
CJ W PI w
a
o o n « <• e
m «- to •> Q in
M
3 3
OJ
iIHH
5 3 S S S S
3
< o ^ CM » r.
2 E 8 - S:
O>
n r*- «n
3 ,3
552
3 3
CM O CM
CM o n
* !
3 3
01 K ™ S 5
o •» r».
Ol
o K « «- « n
" 1 I i
< 3 3
oi n n
a E
- « 3 £ „. E
e « c o « :
•g « = i ° =9
.£ O CD = 2= C
Z a. co en co co
s s 1 " i
f 5 £ S S
3
CD CD OH
o* ^ o ^ ••
CD *- O> 9
3 < 3
^ N
33m
2 S
3 3
*r «o
3 3
*- CO "» <» CO
CD •- «
in o
i>«
3 CD m
E _ H
= = 1
I = 1 ! s
tn P P > N
!l
c 5
3 Cb
d5 £
CM
CQ
364
-------
en
03
TO
'CO
03
o
TJ
03
CO
03
•a
03
s
CD
03
C
O
}
CO
O)
£ ^
O 03
CO =>
_03 C
O O
~- o
03 """
10 ^-i
« T3
_03 03
o> 13
«- ffl
CO ~
.£ .c
o en
g_ CO
CO O)
O 03
CO 03
»
5 E,
O
£
(/)
E
o
o
m
lii
a.
H
X
^*
>.
•E
(0
"5
<
,»•
CO
X
u
<
ID
_J
a <
0 <
£ Z
ID
S «
o -i
H »
Tl
—
•
c
3
0
UJ ^
? o
u
™
^
U
o
£
«
M
S
g
«M
•1
on
o
u
s
. a.
^
M
0
|
£
CM <
in
in <
to Z
CM
3
CO <
co z
CO
3
f** ^C
a z
CO
o <
CO Z
CM
CM <
n Z
S •
3
O <
o Z
CM
n
3
_
I
o o
111
c 2 =
< m u.
0
C3
CM
CO
eft
en
0
CO
in
CM
m
in
u>
•r
n
in
CO
m
CM
n
CM
*r
Chloride
en
in
o
in
n
n
a>
CM
^
tf>
CO
m
^
CM
CO
M
CO
01
n
CO
e>
CM
o
Sullalo 1
3
2 CM CM "
CM
ffl
i I I s
CM
3
< < < CO
Z Z Z in
CM
< < < CO
Z Z Z
-------
pi
"o
n
o
O3
a-
V-
O
CO <0
5 S
> to
UJ TJ
•C (U
2 «
O
l~
s.
1
li
Q.
i
<
>•
s
j:
i
"i
1
I™
i
i
> <
tf
3 ^
"
|
1
« I
i
i
i
n
I
'
S t S z S §
o d
n < in cu < <
o z T °. Z Z
d o o
m <
S S 5 m n §
d ~' d o o
«<• N e 0 o <
»- CO 04 — . *r Z
d d d d o
0 0 0 0 0 <
o CO *- ^ o z
d d d o e
< m
g S S S 2 $
o" d d d d
m < 3
A *• o Z
o o d o o
3 ID
Scj w e w <
o ^ eo w 2
O O o O O
E >• E
^1 II it
5 i 1 e 1 s
- o w — ^ ev
d d d d d d
c 3-s £ s £
d o o
w M) e (D O CM
n »- w in ^ m
d d d d d «-
CM S 0 CM S «
d o o o o o
» S § 3 2 :
d d d d d d
<
d d d o o o
r> r> » » «D —
•> co n m e co
d d -d d d o
« S n »- o. -
d d d o o o
_ E
I E S _ g
z S z S = 5
0 0
K 5 z 5 t S
o o • o
.J
CM v O V «- CB
(s o » » CM r-
d d e d d o
< O
(M ^ *D 33 ^ **
n N in CM o v
o d o o o o
m
Ob CM ^ M O ^
S S> 0 N r. CM
d e d e o e
=
d e d d d o
m
_ o •• e» « CM
d d d d d o
=
O « -^ CO CM «
o q N — o «
d d d d o o
§ 1
lilil
< 0 ^ » C. ^
o o o o o
d d
3 3
co in ^ o *- «
c *-( q «o o cv
d d d d d d
3 3
5 2 S ~ S K
d d o o o o
3 3
S»- in m o ^
»- B 0 0 0
d d d d d o
3 3
3 3
0 «O O v- O CD
d d d e d o
«C 3 3
SCft CM O CM *-
0 0 f 0 CM
d d d d o o
a I
•5 5 -S 5 S
1 1 -5 = I =
Z CL O) (ft OT I
< < § § 5
o o o
d d
CD CD CQ
eo f* o> at to
co n «> o •«
d d —' ^ 6
3 < 3
*- o » o m
d d d d d
3 3 o
s s § s ts
d d d d d
3 3
3 3
^ o o f« en
* O o eo «
d d d d —
3 m o
s s s s s
d d d o" o
6 E 6
lalh
1
i
^
P4
3
ii
m
cf
ii
o
* 1
• 0
S 1
« ^
? V
II
CO
CO
366
-------
en
w
Q)
u
CO
o
QJ
(A
CO
^
CD
CO
.2 ^,
03 CD
Q. 3
u- >-»
o o
o
C — '
.2 to
«
o
y -a
s:
-------
TJ
CD
CO
•D
QJ
ra
ffi
0.
O
g
o
O
U
_
I
= =
si
S 2
i-0
1
3
E
S
uj
Q.
W
^
o.
£
1
X
c
u
M
O —
CM
•«
5
M
UJ
1 *
M
CO UJ
g -
I "
u ."
s ^
£
o ^
S -
S -
£
tx ^
M
U •
O U
a ~
T* ^
• ••
U M
O U
0 0
0 0
in o
o
< < 3
en CM *- *- "*
0> O US
0
3 3
CD e co «o ~ f«-
10 0 0 CD
n «r o
3 m
•D •» — 0 2
CM m
_ _
CM f* n a> •- >-
at a a> n
V* ^ C
3 3
" 2 - S z
3 3
0 ^ w- «3 Z
CM
03 0
| " S °
IE- 6
TJ =» "c 2 5 • <
o o
o o
o o
«* in
in n «-
g
CM
O
CM CM tO Ot to
to mo
CM n
~
o> n e n n
* ^ PJ
*- CO
*"
3 3
CM o «> n
to O rj
« « at
3 3
to co o o ^ n
»- •• ^ o
o «> o»
« «- o>
3 3
SM O
O Y
^ v
n
< 3 3
o o c
o c
^ -c,
ffi 3 3
« CO «
g
_ | 3 = w E
S S i 2 • S
"5 S S — » -a
.H o • = = o
Z 0. <0 0> 0) CO
3 3
in — •» en
CM O>
3 3
0 1- CM 0 0
r» *" *" CM
3 <
s i
j
333
[» 0 CM 0 g
CM r~
3 3
3 <
CM
*•"
3 3
i 6 E
1 P 1 1 1
V
a*
1
€t
*.
C
II
<
Z
c?
0
CM
f
»
t?
"5
f
I
8
1
M
^
C
£
U
~-
1
I
U±unde!
c
^j
u
CO
CO
368
-------
1
™
b-
c
CO
"CD
«
2
"c
z>
§ 1
i i
c| . 5
k. O.
£ £
co i
c 2
.2
Is-
c S
si
C r-
8£
"o -
If
a> ,£.
7? «>
0 CO
si «•
.to en o
cc *- "H
£ 2> {3
O ^* H*
° 0
2
«
o> r
£
•o
1
e
c
c
e
O
at
v
J
c
a
n
1
a
«
*
J
_l
r« eo 2
(0 to *-
CM«-in ^'"^*"
" * in
~^5§ 2S22
';
3
3 S
O> < O> O < OJ < »-
CM 2 o> CM 2 o> 2
« CM »
s
?««< .! ill J
< CD C 0 CO 2 £
2 i i i
in
3 I i I
«B
•* 2 2 2
g «£ < <
(B
•o < < <
• 2 Z 2
in
2 5 s s
w < < <
O 2 z 2
—. 10
01
0 -
M
1 1 i § g
I
;
i
.
!
i
i
V •'
1 '
?
c
< ;
1
? ;
O 1
CM ;
I i
??
3 i
S :
I !
U '
TO i
Jg
| '
I 1
£ $J
*• 1
1 |
• I/*
^ Xj
c Q.
i e
r-t
1
CO
P3
369
-------
0]
1
U)
£
o
2
"g
1
i
•o
o
CB
0)
O
1
f
0>
(/>
ra
— < *• «o <
« ^
< •< 3
*- «- O O O O
CM "
n m
S *" *" °
3 3
*• o
n
3 3
o •£
3 3
«o o ••
CO 3 ffi
€"J **" O C*
"S?
•0
? E >. e
iliiiii
5E < < < m tp c
o m o ca n to
N
E i
•1 1 2 1 8: =
a 0 ^: o o o
o o o o o .a
2 2 W 2 T 2
5 • $ S S 5
O CB
5 "" S § o °
0 N o
< m
g ~s!!°
CB
• •»• 6
<
£ O
_.
0
3 3
6
E , !
2 S S S £
•• P> CM
5 S " S " 5
3 3
— CD O m O 0
*- Ul N 0)
u> !<» r>*>
CM CM
3 3
** K ° «D ° S
^r «0 O
*- CM
3 3
o> n n
o «- n
< 3 3
M
m 3 3
E g
I 1 1 1 S §
"11 = 51
2 O. O) W CO CO
2 Z Z CO £
«D
< o < < in
2 g 2 s s
n
o o *- o no
e in
a>
3 <
CO .- ,- 0 «fl
in r*.
tt
333
3 3
3 <
3 3
{ | | o
CO P P > N
a b
:3 I
cn
•
OQ
370
-------
0>
u
;g
"w
O
T3
S3
08
0}
T3
03
re
o
(A
0)
O)
f
c
0} o
V) ~-~
CO .
if
•c eg
o re
s
re ^-
o
•o
c
_
c
:
i
n
«
c
•
i
i
<
c
4
4
<
1
£
OZCMZ ZZZZ
in
CM »• •» ' CM
oeomo vco
o o co * Z CM
CO t» •>• f»
iliz ^SzS
en < m co 3 5 !S "»
coZ^co 2 Z 2 CM
CM «0 f^
0 PS
.* < CO •* <»<<
«zoo Zr^ZZ
~ g S S
CM
2gSS !z!S
PS PS .
3 a
S2S£ SSScM
s ; s
^T
1 1
fi • s s .
S- S 2 § i
7T-g-g«5i52|5
i|5l5s * I
c S = 2 3 = ^
< ffl u. U CO Z Q-
....
V < O »-
»• Z «D »-
e> is^ n
g 2
CO •-
in ••
10 Z Z Z
CM z Z §
5 i i I
S £ Z i
in
CM i i i
in
« 8 S $ I
» «>
f
«
* 3
ill § 8
7
CO
371
-------
I
03
0)
1
03
c
§
en
a>
_o
CD
|S
"5 §
1.1
•g
1
o
o
£
I
If
a.
{:
i
t-
1
i
• <
° 2
» a
H 5
CT
T
7
™
•s
o
*
1
n
(
CM
n n S S £ £
HI
— < r. . E
r i 1 1 1 1
1 1 1 1 1 £
1 IO O CO P> *
n ^ h. rj
CM "" S
a s £ s g 2
*" S * £
3
«D »•
O
.,. <
" S
o
s
tt
0 Z h-
•^ CM » •
2. S CM
« < to < e <
3 3
«- eo o *> o w
- m CM m
m r* P*
CM CM
3 3
^ n " o>
t " Si
3 3
a * a
3 3
(M CU
< 3 3
^ !
ffl 3 3
0 « " » ° 3
CM
1 6
o S 1 o S
« 1 1 = I '
Z O- (O « W 1
< < < « w
2220^
«D
< o < < u>
Z O 2 2 O»
W «
n
D 3
o e «- o «
v> ^
3 <
CJ *- <- 0 0
«
333
« o o o o
8
3 3
3 <
3 3
n o o o r«-
1 M
i . I 1 •
0) H- t- > IM
•o
M
c
I
n
Z
f
f"
S
\l
CO
if
f
•0
U=undit6£i
3 fi
en
en
•
en
372
-------
CO
05
•TO
CO
£
o
•o
&
CO
0>
•o
CO
CO
o
CO
to
O5
S S"
O CD
CO 3
»_ c
o o
•*• o
03 *~*
CO ^-C.
CO T3
_gj O)
« to
s
co —
.2 r-
o to
O CO
CO 0>
c
O CO
co o>
if
o
1
•o
CD
C
1
o
0
iii
o.
I
«S
Q_
o
fr"*
i
0 <
t- £
u
I
CM
V)
^
O
Process 1
O z CM 2 z z z z
in o>
CM
!•» < CM < » O < O rf <
oz^« Z r- Z Z
•» CM n «
« r> en
3
n
• 2 r- n S£ZZO
n CM v
CM CM
3 3
.— . o < » en ^ *• < °>
• nzcnin zmzCM
V CO CO CM ^
•g ' * 2
i s
S -5
o 5. * S £ §
•2^22 ®Zz E"a.
J||||f CO
— CM 10
«O »-
-------
u>
a>
en
u
'o
ai
len
•§ a
5 2
> en
— (U
11
o
en TJ
ft -
31 S
i
I
•o
S
I
ASH TYPE:
0,
c
fc
U
H*
g
u
7 <
71 ^
•2 1
0
• 2
£ s
~— TB
|
7;
— <•> e • <
i- o CM —f «-. z
d d o o o
d d d d o o
3 3
•o «r o r- o ^
eg CM o *; o z
e o o o o
O f5 W O* £• J
CM O O *• *> Z
o e d o o
CD 3 CD
& S 5 S 5! S
d d d o o o
c IT — E —
1 I 1 I I CD OD N
•» — «- o ^ ^
o o o o o o
n < -^ < o <
— 2 « z « z
odd
K t S K-?5 S
d d d d d d
CT O> ^ ^ O O
ci CJ in c\i o r^
d d d d *- d
, 2 . .
< <
in o «r ^ o ^
— doooo
2 S 2 o ^ 5
d o" o o o o
^ ^
S g 5 5 Z S
000000
1 6 1 . .
S 3 6 s 5
•1 "•» 2 2 & E
5 3 S 3 S 1
z § § S 5 g
0 O
1
2 "S 5 5 S 5
do d
t~ m o t*t •* ~
o" d d d d d
o *» t* o> • o
p- w •- o e o
o' 6 o' d o —
eo
<
~ d d d e d
»• »* <» c» ^ P*
CO O P* CJ W O
d d d d d d
3 ;
OJ 2 - 0 0 0
d d d o o o
= 1 >. 1
, ! S I i 1
a .c 01 c K .£
1 i I i i i
< e\j m in < CM
odd d
3
S z S S 2 I
e o
3 3
OJ O CM r- (NT P3
CO CM O ^ O ^
d d d d o o
3 3
CM « o ^r o o
o* d o o o o
, « 5 . 5 e
3 3
d d d o o e
< 3 3
£ 2 g 2 g S
d d d o o o
ffi 3 3
«. 0) «-«-«- M
1^. N 0 — 0 0
d d e o* o o
— H = e _ E
^ » e o * 3
1 s ± s •? i
iJ O W 5= — *
Z o. (o » eo to
< < s s a
odd
S 5 I S S
O O
3 3
r- N •«•
CJ O CD O T-
d d d d d
3 <
fM »- Cl ^ tt>
p o «q *^ *o
d d d d d
333
3 3
d d d d ~
3 <
csi m fti r* to
O O CO M CM
d d d do
3 3
tA *- W ^ ffl
»• o to o *-
d d d d o*
I «= ! ! *
S5 H- *- > M
s. \
l\
I §
I (
en
374
-------
w
0)
Ol
o
as
E
o
en
ca
"55
en
.£ ^
'o "o
CD CD
Q. 3
en c
O
-^
en
2 :
§1
o
s «
S S
C CO
~
«
o c
O =
o
.c
•o
a
2
E
o
O
tii
a.
£
^»
en
i
£
K
jS
i
I i
^«i
it
"e 2
3 5
(O
•h«
T
«
«.
£
c
en 2
S 1
o
«r
•t
•9
u
o
Q.
n
2J
5
£
CM
•1
•1
O
0
a
*•
m
J*
a
» z S 2
0 0
* < lv 0
*•; z f- o
CM z *• o
b b b
8 S 5 S
b b b
a> < o o>
CM 2 — 0
b b b
3
° S o £ s g
? ° = 2 3 —
< m C o eo z
§ § § §
< r~ • < < <
° Z Z 2
b
5 I I I
O
s i i I
o
5 < < g
, b
s i i i
o
5 ;E z §
b
^ s
Ifl§g
|
t
^
o
c
H
cV
0
£1
3
a
f?
"5
5
n
•0
i
I
I
I
O
I
CO
oa
375
-------
s
13
0
•p
ra
T3
o
I
o
en
to
S —1.
S S
8 8
W CD
"o §
g S
J2 §
CO W
Q. •-
B g)
btnad Ash
g
u
a
en
CJ
^
(i
01
3
Q
C
Z
f
t
"5 <<
o |
—
e i
•
3
M
.
«
n
<
•
I
i
o
1
s.
s> m Z Z Z Z
O M
to
tn
S S £ 5 S
CM
33 3
« o o CM o «r
n " d d
3 3
o> n o Z
33 3
33 <
*• o z
ffi
| - ° - 2 S
33 3
_ 0 0 0 0 .
« « 0 0
*o
Illlll
1 1 1 S 0 5 B
« in o n n *D
§ * - i
a 5 E 5 s 3
< en 3 ea
0 jg O 0 — «-
F~
3 O
.
m
3 CD 3 3
3 O
o • n o "• —
PI CO
CO
3 33
o » o o •» o
CM
6 i
1 1 1 1 1
2 Z <0 2 ". Z
o o>
m 3 3
o •- — o o o
o
d
3 3
d
3 <
o
3 ID
o
m 3
333
0 — 0 0 g 0
d
3 5 S Z S 3
< in •« m < o
z •» o> 3 r»
•"• CM . .
eo ^ —
— n CM
2 S " 5 • S
m 3 3
0 | 0 . 0 |
333
1 " 1
ID 3 3
S £
N M
033
o» »
e N
3 3
s N 1
3 3
o n o . o r*
E ~ S
CM n
1 1 1 S I i
z o. to tn tn 01
< < < n M
T)
7!
I
a:
fT
«
no
e?
*5 *v
If
!i
376
-------
CO
03
;g
'tn
o
QJ
• _
/% _^
.
I -
c
CM
e>
CO
CM
CD
in
CD
CM
in
o
O CM 2 IO
«• * CM
^ ^"
^ Cft v> in ' CM 2
*™ o>
en
CM
3
o> in < » < •—
» ^- 2 ^ 1 CM
o *-
n CD < o < o
05 «3 Z 0 2 CM
in *"
3
•w in < a < o
»• «O Z » Z CM
CM O>
CD CM
CD O < CM < CM
m r»
W n
CD
e>
CM CD
n
CD
to
n
o n
si i
o
"" "!
W in
^
Z
* * *
•o ^ S,
a «• o>
5 •• CM
» £
E n
*^
>.
? ^^
3
• °> ..
3 Ii
<
^
(D
1^
CM
ID
m
in
03
O>
CM
CM
CO
0
fi
0
CM
n
2
*
0
CM
i
e>
in
ri
S
CO
o
b
to
en
§
<
^_
^
CO
(D
^
^~
CM
in
to
in
in
o
Z
0
in
S
^r
in
o>
^*
g
i>^
CM
|
,
g.
|
i
n
2
_.
J
•3
CD
??
^
ii
•
|
£
I
Q
£
CQ
377
-------
1
CO
o
CO
CO
CO
•g
1
tn
"in
o>
CO
CO
CD —
CD tn
a. ca
w en
II
g.fi
E o)
o E
1
S
a
|
<
CM
-
n
UJ
r-
g
.EACH TEST: C
7 <
•; »
I
C
7
C
•
«
£
n
«
<
£
•
«
•
u
i
£
«o
m
; 2 - I 5 5
d
« o a °
33 3
¥ g e ° S § 2
|
E 6 >. 6
~* 5 = o _ 2
5 J i 5 ~s •"
CM r> o « Z n Z
< m 3 ca
0 «> O 0 ~ ^
0
3 m
0 M ° ° *• "
«
IO
3 33
Ok
n
3 CD 3 3
3 0
IO
3 33
o g o o » o
i ! 1 1 i «
53631!
g 2 S 2 " S
CM
i «Z2 53
m 3 3
o *• ^ o ° o
o
3 <
r*.
e
3 ffi
*• o
O 3
333
r- N O 0 0. 0
O
1 I i
S i I I 1 i
< vn •» o < ID
g 52
2 g « I • g
ffi 3 3
0 JD o « 0 «
10 0
333
n 5
O 3 3
CM P!
n P)
m 3 3
S «
3 3
S " 5
3 3
o o o *• o JJ
^ PJ fl
IO 0
n PJ
ilini
Z a. co co co co
< < < PI CM
Z Z Z P) J;
IO
< 0 < < 10
s S z 2 S
3 3
«> 0 <- 0 •-
3 3
3 3
3 3
0
3 3
333
« o o o »-
i E i
l.ili
CO K 1- > N
1
"3
a
C
II
Z
n"
£1
n
ffi
i!
< *?
Usundilteti
fite.'DWLr.c
10
CO
•
PC
378
-------
co
05
T3
~CO
03
O
TJ
03
«
o>
•o
en
•o
O)
*••
CO
c
S
o
O
lii
0.
e
1
CM
in
1
UJ
£]
o
i
X
<
• ^
IB
• S
<£
•o
c
c
75
u
«
8
CL
n
•1
I
^
w
•t
•1
u
o
a
^
s
i
O < CM < <<<<
SZCM! Z I Z I
CO
CM
r*> ^ CM co < co m o
«- Z o CM Z in
CM •- » CM
3
i- CM *r en »-W o> m CM z
CM •• en
en
CM
v § CD r> zenzcM
« 55 -
CM
CD < CO CO <«<•«
S2e»2 Z - Z «
**
3
n < "
^Zcoco Zcoz^r
in r»
«szmcB Z^ZCM
•o eg SCM «-
•1 '^
- s
S 0
t S. £ 5 f S
£ "-sis
ceo«_c = s:ce»
«"Ot3^2cez^ 5-^
1 1 1 i I f * !
< m u. O co Z a.
I
, ^
o'
CO V
6 b
CM
in
~ o
«- o
CO
en
in
CM- »
m
0 t
*• CO
M
"
? CO
W c!
CO
^r
•o •» —
_ «- 0
5 ~ «
5. »• eo
» en
£• °
••
M
«
ill
f
o
CM
CO
ID
in
in
CO
en
CM
CM
•r
CM
CO
s
in
in
en
en
eo
r»
o>
CO
CO
CO
0
CO*
*r
CM
§
I
^
CO
ID
»~
CM
in
en
co°
CO
»
CO
en
r-
CO
to
in
eo
r*.
m
CO
in
in
in
|
\
1
1
i
Z
^
n
•5
.^
»•
a
•s
§
i
1
II
en
•
QQ
379
-------
tn
U
•g
CM CM O r~
oj o « o •- w>
»-° b b b b ~
3 m
o o n »- cvi *-
000000
3 33
0 0 O O <- — r- la p p
b b b b b b
3 3
•V '^> O O O O
000000
3 <
CM v- €B O Y O
O O O O O O
3 ffi
•
o o o o o o
033
p CM p CM p CM
d d d d o* d
3 3
O «- CM « O CM
d d d d d d
3 3
n CM o o o CM
i E
I 1 1 i • |
— o ^ ' S — o
z n. co w to co
^ < CM ifl <*i
d d o
5 = i I s
o o
3 3
O CM « CM in
-; p p p ^
d d d do
3 3
*• O O CM CM
o o o o o
3 3
«• O — 0 —
o o o o o
3 3
^ 0 0 ^ e§
o d d o* d
3 3
O v *- CM CM
« o o *- o
d d e e* o*
333
o o o o n
6 E e
1 . 1 1 •
tn »- i- > Sj
o >J
II
CO
•
CO
380
-------
03
O)
U
CO
E
o
0}
CO
(0
"S
en
O T3
0> CD
o §
o
.1 In
o
11
03 -a
'§ T3
s: QJ
S «
8 s
o-o
c to
en T3
'C O
SS «3
E £
c *-«
o c
O =
.e
in
"«B
c
.0
E
o
O
lii
0.
t-
s
CM
•f
,_
CO
o
CO
>c
111
tf
O
£
u
T*
2
— ^
B <
3 1
i I
£ BE
CO
"~ "S
—
1.
e
_
co 2
S 1
u
»
in
u
o
£
n
e
u
0
w
21
u
O
tt
*-
•i
u
o
£
^ 2 ^
b b
•» < r-
— Z >-
o o
=
V CM f»
*~. °. *~.
b b b
o < o
". Z w
O 0
S 5 S
b b
CO <
CM 2 -.
o o
CM 2 «
b b
•i tj -o 2
§ 1 5 S
c S = 2
< m u. o
<
2 Z ^£ Z Z
3
o < r» Z o
b bo"
_,
r^ *C eo •< «-
O z CM z O
b b b
o < o> < —
CM 2 CM S 0
b b b
3
S I S I 5
o o o
s
a. — S *c S
03 = i | S
co g Z z E 5
CO Z £
<
Z
o
b
o
o
b
0
b
0
b
o
o
b
o
b
s
b
a — ^
* 3
• CO*
1 i
2
-
b
CM
b
o
b
CM
o.
b
in
o
b
£
b
i
2
.
b
o
b
CM
b
m
o
b
<
CM
CO
b
m
o
b
o
b
2
'o
IT
n
a
c?
0
3
II
I
2
•
1
CM
I
i
O
I
CO
c
CO
381
-------
in
o>
I
tu
O
2
P
1
(0
TJ
0}
CO
S
'c
o
J2
I
.S
g?
m
to
•o f
E i?
o c
o *-
<
a
1
c
u
a.
X
•£
"
n
t
*
V
i-
!
|
]
jj ^
3 1
"• m
m
:
s
*c
5; C
u
1
1
c
n
!
i
i
i
*•
„«<-:<<
S
= S t 5 S
CM
m = =
» — o e» o <*-.
CM 00
—
3 3
" - ° £ ~ 3
03 CM o 3:
= 3 3
n o o o o
S *" °
«» «• O V) *" '
O o *
CT
33 m
2 ° ° S o
T3
£ 1 ? o E I
• = 2 1; E =
Him
CM r- o «> -r CM
<•> v> o .
O O O O CM O
a
CM
3 3
0 g 0 0 *~ «-
e»
CM
=) CO » CD
o m o o *- o
n
3 =>
o n o o v i»
M
CM
3 33
o ,- o o *•
n
1 i i 1 1
" 5 5 S S
< g s 2 s i
S • S S 5 S
o a
3 O
O O CM O — —
d
ffi 3 ffl
0 0 0 0 - -
d
3 3
0 0 0 0 g -
d
3 3
O
< 30
o-oo-o
d
3 =
d
lilll
i •? ^ o» z f-
CT "r eu
**
S g " g c S
333
oooooo
33 =
0 S ° S ° 5
3 = 3
333
CM
«
333
e» W (9 O O *
to •> <
CM '
D 3 3
1 I ! ! 1
<* ^ • H 5
Z CL CO CD CO
< < < 0 CVJ
2 Z 2 r> r*
< O < < tfl
z g z z S
«
3 3
00 — 00
3 =
CM — o O —
< =
333
3 3
CM CM O O —
n
3 3
'
1 | 1
i . i ! «
CO 1- P > N
•o
1
1
II
z
j
o
1
s
O
1
•(
•D
U=und«l«cl«
c 9.
oo
CO
•
02
382
-------
eo
o
73
"cfl
05
O
•o
OJ
CO
•o
CO
"8
OB
0}
tn
to
O)
._ .E
° o
03 .
If
«- O
in V>
11
o o
— Z o CM z >o
CM »- •« CM
—
r> s
CO CM CO O O » < ~
CM r- £ -r. 2
*• C3
3
e»r» ^"^^
CMZ^» ZCMZCM
CO «-
CO < t CO CM
3
« <» CO < CM < CM
01 o n *~
^ n
n J
|° co S 2 § |
7-g-S-§«iz5i|.
I § | £ S f **§"
< CD E O CO Z O.
I ^
— Z
O
o o
«• CM"
^ CO
CO
CM
CO 0
o" e>
»• CM
(A
o
•^ CM
»- CM
CM
o
^
~ »
^ CO
«• CO
CM
v a>
v- CO
CO
CM
• v in
•O »- co
* * i
i s
>.
z _
iii
oo
i
<
o
1C
|sj
CM
CO
CO
in
CO
in
in
CJ
n
i^
n
in
o
CO
•*
CB
CM
o>
V-
O
CM
CO
(D
|V
**
CO
e>
p*.
o
in
-------
i
CD
•a
o>
CO
03
T>
ffi
I
CB
tn
CO
03
.S
•g
<
1
o
o
UJ
a.
^
P
«8
*
"
I
,5
!••?
tj
if
§
I
_i
3 I
«h
c
S •
en
X
C
3
0
5 a
O
**
S
i
£
n
s
u
a
M
s
o
a
,-
M
i
CL
e rj Z *
«n
»- < r*
(O ^ f*
333
o ra «
333
333
w ° ft ° e
^ ^> *•
333
- s ° £ ° ;
333
0 « o n 0 o
o n ^
1 E
lllSli
Z a. co co co co
5 g S S R
S § 5 2 S
OJ in
3 3
0 0 •- 0 0
3 3
-
< 3
333
» CM 0 0 -
3 p
S N - ° -
3 3
n ~ o o —
Lili
a> t- t- > N
^
S
*5
«
0
ti
w"
2*
ffi
fc. ^
0 t.
1 1
< g
f^
- I
1 I
1 1
CO
CQ
384
-------
05
;o
'
ea =5
.2 .£•
v_ C
O O
»- o
OJ
en ,-i
nj -a
05 0>
to i=
-2 .E
o vs
CD co
to ^J
"o -o
o to
w ja>
1 1
if
o
Cfl
•o
C
3
E
o
O
f m
Ul
o.
w
**
4.
co
CO
I
X
LU
|-T
1
ft
U
U
u
_ —
O ^
° 5
'S 5
•5 ?
s
(O
e
^J
•
**
C
S £
e
U
„
*"
£
ft
CO
:
j
£
«
a
a
.-
•
•
i
O<'CM< <<<<
0» 2 CM 2 2222
in en
CO
CM
3
r- < CM to < co in o
»- 2 o CM 2 m
CM «- ^ CM
3 3
COCMCBO O " < *•
CM r» ^ ^-2
*• CO
*" *"
3
in < n co < *-
^
cn« S^S"
CM Z 0> CM Z — Z •»
o in
^
=
fcM^S; ISIS
£ *"
•l
a «
a •§
f«2l|c%|l|l
•^|So=g = S|S
g£Qit6t0g 2<&
< 20-
I
s
o
en
6
9
O
CO
«o
^
e>
CM
^
^
^
? ;
I*
• 5
S. e
'1 l
o
s
I
q
CM
CO
CO
CM
CD
CM
in
CO
CO
CO
o
o
CO
CM
CO
i
CM
CM
CM
O
en
a>
o
CM
CM
d
CD
CD
CM
1
I
s
CM
to
£
CO
in
in
CO
CM
0
CO
CO*
CM
CM
-**
o>
CM
i
e
CO
eo
CM
CO
1
§
,
^
CO
~
o
al
•*•
3
co"
o>
^
•—
CO
K
CQ
385
-------
cu
I
o
tn
ca
S
o
8-
o
•s in
.2 §
to 2
li
-a
— tu
o «
S S
£3
.
E 2
o c
O 3
•5
•o
c
3
Ul
n
X
+
n
S
O
Ul
^"l
Q
S
5
_j
5 I
- I
o >
h* S
3
—
fe C
> o
o
*
n
ft
i
a
v
o
a.
N
flt
S
£
M
n
O
£
° «. 2 2 2 2
< ^ w < <
o 2 « cv Z 2
0 0 O
03 3
000000
3 3
*- eg eg » r^ <
~ p p ^ p 2
33 3
S 5 5 o 5 5
00000
33 3
CM o o eg p z
3 3
0 0 0 0 O
33 m
eg p p « eg w>
o o o o o o
1 c? 0 1
I ! 1 1 1 1 1
• 2 c 2 «• « o
Z < < < m m m
C*) < *- < O <
«- 2 « 2 N 2
odd
3 m 3 <
00000 —
3 3
CM O O « » •*
o *^ « p *-; n
3 3
o> o o o o « v- ^ « O
o o o O O ~
e o' d d o* o*
Hlih
o o o o o i
2 r 2 « r r
0 0
CO » * < « ^
"02155
o' b 6
3 a
00 — 000
o 3 a
^ eg *-
o o, p q p eg
333
o eg o M o o
o o o o o o
333
o n o v o eg
333
333
o eg o »- o «-
o' d d d d d
| E
— "i 3 = ._ e
• n c o Q =
*£=£?«
— O 0 = = O
2 a. co « to to
o o o
<«<<•«*
2 -. Z Z o
o o
3 3
O O O O O
3 3
I*- « CY N ^ o ~
o *- o o o
333
i- O O O P)
3 3
3 3
o to o o «-
d d o" d o*
1 - i 1 s
W 1- >- > 1M
"5 t
«
(b
I
S
CO
•
ca
386
-------
o
(C
O
09
CO
CO
"3
C/5
0}
3
c
o
c — '
.2 M
•S Q5
2 3
<
0
.
~ 03
S «
O
O C
o =>
o
JC
in
•o
to
S.
£>
E
3
ill
a.
t-
X
W
<
*
+
CO
B
CO
^<
111
^>
1
K
23
U
2
"•
s <
ie
• s
12 i
-0
—
£
c
_
« 1
3 e
O
»
•1
£
n
n
S
o
a
CM
S
U
O
£
"
*
1
5 <
b
5 I
o
3
s g
b o
o> <
P Z
0
s i
b
* i
b
o <
CO 2
o
0 <
o z
0
CO o
»l T3 T3
§ . I 5
c S 2
< CD U.
«. Z Z Z Z Z
o
r» o < t^ e o
N; CO Z CO ^ O
b b b b b
» o CM in < o>
CM ^ o ; co z co
b b b b b
3
to eo < K < CM
q « z r* z o
b b b b
SCO <
•5
§•
*
a
U
-------
Ul
p
t/J
0>
T3
03
0)
o
1
(9
S
75
w
c
I
I
.2
B
» B
ft
"5 rj>
ga>
AJ
1.2
if
o —
1
CD
5
S
1
*
2
"5
<
CHTEST:
u
"m <
1 I
Z «
*" e>
5
e
« I
•
U
S
D.
n
•i
£
n
m
•
t
n.
c
CL
§ s § i i g
e
in
10 < o n <
el z *- *» 2
»n M
n
3
| - - 5 ° 2
0
S * " 2 o- S
w •- °
< < =
i *" * ° z
m 3
3 - r s s s
ra i ^
0
CD
CD *• Ol o Z
SO w
t>
? 1 ^ 1
•s f 1 S a f. |
* .= C S «• * 0
n *n o n n «o
« ^r P* ra
CM O>
•a < r» < CM <
n Z o» Z o Z
CM
n n «o
r*
CM CM «-
n
o
~ s s s
*" s "" ~ 2
o
2 £ 2 " 5 B
« CM n
M CM
O
E 1
i 1 1 1 i s
00000.=
$ z 3 z " z
N «
S • S 1 S S
CD a
«o r* » o
<
CM f» n o
CO CM o
<
r* CM n A
^
< <
o « o» *r
n f- CM _:
«M
CD <
~ 5 *" °
I ! I
lUUi
3 3 S S Z S
2 ^ 0» Z ^
CM « W
«- CS CM
5 z »-$ - 5
CD ffl
ao « r*.
in «r in
= =
r- CM •*
o *- n
3 3
3 3
I-. CM O
•*r « «M
•^ «
3 3
CM » *r
M in n
1 €
— "S> 2 c w 6
Ic •> T£ o * §
•g £ « » > =c
Js o e = s cs
Z Q. (0 CO CO V>
Z Z Z « ^
(D
<•*<<«
CM CD
s - g
CM
333
3 <
o — o *» o
CM *- —
3 CD <
«r *- *n
3 3 CD
*- CM
1 M
I , I 1 1
a> t- t- > N
II
« Q
H
II
en
388
-------
CD
to
a>
O
TJ
03
CO
03
•a
ea
03
0)
=>
o
1
O)
u
co
8
W
CO
«- o
co «
2 >.
^ «
"5 ^ 5
S 5
o
CO
^
.Q
E
o
u
lii
a.
>
tn
>.
5
to
"te
£
Ul
H-
X
U
§
"5 <
3 1
in
CD
CM
3
CO
CO
3
CD
in
CO
CO
o
CO
0
1?
•o
a
JAnlont (
(Bromide
2
3
i
i
i
I
*
a
2
5
s
u.
CM
e>
CM
CO
CM
in
CM
o
CO
in
CM
o
CM
<0
n
CO
n
CO
CM
0
o
e>
o
CD
e>
CO
CM
CM
Chloride
g
CO
0
in
3
o
CM
CM
CD
O
CM
»
CM
CM
CO
c
I-
CD
CD
CO
«
O
n
o
CD
CO
0
5
"3
co
Z Z I 2
o •— » in
in
CM
CD
I I i s
CM
3
zi I 5
liz S
CO
< < < o>
CO
CO
< < < o
5 1 5 o
CO
< < < o
CM
..
o
S e o a _
cl 1 1 | §
1 z * I I
S f
Z BU
< < < <
CO »- V CO
«•> •- in o
o ei in n
"• 8 S 5
co ^- in
^ r» CM
° I Z Z
§. I s I
v Z Z Z
§ I ^ i
^f
§ i i i
-8525
f *
?
^^
•
79
£
|
i
n
^
Z
if
•s
n
CD
*f
|
<
m
|
i
• u
i •«;
CQ
389
-------
s
to
Q>
I
CO
ffi
CO
c
o
CO
0)
en
c
£
o
OJ
O)
CD
if
•5 s
c "
11
m Q)
ca. •-
II
•5
<
to
2?
1
i
i
3r
CS
CO
<
iu
t-
g
s
^J ^
ID
rj *r
5 »
S
T5
2
*
i
f I
* S
o
«r
M
s
o
£
;
u
O
£
ft
m
m
g
£
*
g
Cb
|SZ552-
in
= 2 t S S
^ h-
a
g 2 o 2
"*
m
5 - 2 0-2
S " 2 « z
CM
e>
< < 3
^
m 3
m — ». to _• 2
c» tt °
^
m
•S S - 2 ° 2
jf CO
•
n
E E >. €
I 1 i 1 1 I g
5 < 5 < CD m m
CM ^ O 0 ^ CM
C3 tiO O PJ C3 tt
o *r r«* n
n ^ a;
•*-<»< o <
CM 2 r- Z « Z
n n «>
2
01 co n A
s
o*
=>
CM NO
M
O
a» ^
0
CM » ••- e» os
CM no
*•
in
""
o c3 o c5 o ^
S 5 S S " S
CM
•» o> < < cn <
S 2 2 « 2
m o
S S £ *
^
< •
S S 8 o- -
•» S 5 S
$
0°
. e * »
2 - R S - -
< <
s 2 M s 5 "
o <
Ol CM CM w
IO
6 i
I 1 I I 1 i
< m -«•
Z " o» Z r*
CM as «
CO ™ .
5 3 "• 3 • S
m ca
eo 0 I-
10 ^ to
= 3
S CM *" 5 ~ CO
£ S K
3 3
*~ " S 2
3 3
CM •» CM 0 n 0
a» r* r*
3 3
CM C ** CM ** §
10 — N
M IO
3 3
0 O O
- 1 1 c . 6
nun
z a. co co co co
$ $ $ 2 £
Z Z Z n rs>
»- ** °* O
CM
333
CM
n = * K -
*- CM «Q »«• S
3 ffi <
W ffl (^ CJ f».
OD ^ n »-
o CM in
CM
3 3 m
I * I 1 s
co p p > K;
10
I
0
c
II
5?
15
CM
II
CD
2
U
•a
•n E
U:undil*et«i
Fil0:Avail.Co
390
-------
CO
CD
32
CO
CD
o
T5
03
CB
CD
CO
03
03
CD
O
co
to
0)
j= 73
O CD
CO =1
CD
CO ^.
CO "O
^ CD
CD CO
w CD
CO «=
"o •«
O CO
CO J3>
C3 TJ
§ i
CO ^
'co £
CM
T-)
•
CO
1
1
s
E
o
O
iii
Q.
(^
X
CO
5"
=
CO
^JJ
to
<
g
1
o
u <
• 1
^•k,
CO
« op
H 5
CO
•
•
e
£
s
^
y c
S o
o
_l
«1
o
o
o.
n
s
8
et
«
M
•
g
£
,_
«
«
i
et
o
en
in
^
CM
=
<£>
CO
OB
3
0
CO
^'
03
CM
=)
OB
in
CO
3
0
O
CO
3
1 *
s
? *
•=• E
S 2
o
i
^s
^
0
^
<
2
I
^
I
I Fluoride
CM
en
co
CM
CM
O
5
O
co
in
CM
co
•»
»
o
r-
n
CM
0
n
eo
in
n
•»
o
m
ca
CM
o
Cft
in
Chloride
JP
09
CM
^
n
CO
CB
CM
in
in
in
CO
CO
CO
CO
^
in
o
CM
in
CD
00
qf
m
*«•
in
1
<5 to
1 |
2
^^ ^T ^?
< o in
2 in
CM
i § i
§ I I
< < <
£ g g
I I i
I 2 2
o e 09
i 1 §
z 5 I
3?
o
CD
O
CM
3
co
in
CM
0
CO
cu
CD
in
in
CD
o
CM
CO
CD
09
CO
Phosphorous
^3 S ^
* s a *•
^ y CD ^
o i*; c
CO »-
CO ^
in T-,
°. S S $
o < < <
O 2 2 Z
^r ^~ ^™
••
o < < <
° 2 2 2
**
i 2 S <
^f
* | S S 2
I '
•
S 3- 8 8 8
5 « - » P
1 "
6
•g
S.
B
C
1
n
z
co"
*$
ffl
0
!
U=und*t«ct*d,
I
391
-------
«
£
S
1
_aj
I
a>
en
ca
jlj
S
en
*
0}
8-
*s tn
en
QJ
11
I-D
~ CO
11
ll
S ro
eg
<<
o 2 « «M z z
b b b
•v o n en m <
CM O Ol CM O Z
o o o o o
2 I t S S S
d d d d o'
E B S £ 5 2
o" — " ~ d d
< < 3
£f S S 5 o z
o" d — o o
m 3
S 5 § S § S
d d — d d
m
^ •-«>«»«><
Z CM 0 — CM Z
d d d o o
1 1 «> E §
3 1 i 1 i i.
I Jills*
o o o o o o
«o < *• < o <
~ 2 « 2 w 2
o o o
»- o eo r> CM *-
O CM 2 S CM ft
b b o o o o
o e» -P- «y « e
(D CM 0 CM 'T «
b b b o o o
b d d d o o
d e d o o «-
•o ^ o ^ *o r»
•> n CM CM « «
d d d o o o
e I
^ "3 o "S fr
S 5 S 3 S -
2 2 2 « •» z
o o
2 § I g S S
O 0 0
CD m
CM O ^ lf> O CD
CO O CM CO Ift »-
O « h- ~- .*- »
CM CM ^ CM CM i-t
d d d d d d
*• « o e» *- r*
CO «» CM *- «T CM
b b b b -^ b
O o o o o o
< <
e o e b W o
0 <
W B ^ ^» O «
1- M IB « 0 CM
o' d d o — o
if i rj
•si & i1 a 1
I § i 11 I
Z — PJ M z n
o o o o
2 i g z 2 I
d o
O ffl
•- (B «- 1^ A O
m o •- CM CM —
3 3
n CM o CM o CM
606600
« O Irt CM *- O
CM 0 0 CM 0 0
d e d o o o
d d e o" o o
3 3
0° O 0 O 0 O
3 3
CM ^ O CM O tf
666600
.lie _ .
I S 1 s s €
Z CL » (0 « M
Z I ~ " «
000
< 0 < < ^
Z -. Z Z 9
0 0
« O O O f~
O O O O CM
Irt »-»-•- O>
CM O O O *-
d d d d d
^ o • o o in
d d d d d
3 <
d 6 odd
3 0 <
0 0 <~ »- 0
33m
n o o CM in
d d d d d
I H
g — « c 2
- £ = m ^
en >- H- > rsj
CO
CO
392
-------
)
03
O)
o
(0
.2
o
CO
"55
03 ^
"G *D
CD CD
CL Z3
to c
°I
C
O
03
0
.« T3
8 £
C CO
•1 "S
« «
Efi
o
en
TH
.c
in
<
•o
O>
c
8
a.
t-
1
£
.O
—
IS
i
UJ
z
••J
"5 ?
3 I
_ *
1 1
•—
•o
B
5
_
§ c
u
„
*}
i
a
n
2
i
"•
CM
•t
«J
O
£
•
0
a
» <
b
' z
o
3
" - S
10 2
b
3
5 I
o
CD <
b
3
O 2
b
3
S I
O
& §
O
o o
§•0 -D
E o
ill
^ < < < 4f ^
"2 Z Z I Z
O
^ o < i--
a
§ o $ § g 8
b b b
CD
55 I I I 5
o o ~
o eft < < < ^
r oi 2 2 M o.
o o o.
If)
• iS 5 * a
« = S 2 1
o> e ^ ? *•" o
2 S § z z E •=
s 5 ? * §•
f a =: f
U CO Z 0.
I Z Z ^
s i - s
o bo
o < < <
o Z Z Z
o
§ i i i
o
§ I § §
0
S z z z
o
Z z z z
o
S z z I
O
«
<^^
v^
O Q. P O P
V
1
0
i
z
m
•5
M
f
tl
n
•5
J{
%
1
i
|
I
O
I
v>
*
CO
393
-------
Appendix C. Summary of monolith leach test extract concentrations and data analysis for untreated
and treated MWC residues.
List of Tables:
Product Code
Appendix C.1.
Untreated Bottom Ash
gn
-------
Aooendix C.3
Process 2
C.3-11
C.3-2
C.3-3
C.3-4
C.3-5
C.3-6
C.3-7
C.3-8
C.3-9
C.3-10
Appendix C.4
Process 3
C.4-1
C.4-2:
C.4-3
C.4-4
C.4-5
C.4-€i
C.4-7
C.4-8
C.4-9
C.4-1 0
V2XL
V2FA
V2FB
V2FC
V2BA
V2BB
V2BC
V2CA
V2CB
V2CC
V3XL
V3FA
V3FB
V3FC
V3BA
V3BB
V3BC
V3CA
V3CB
V3CC
Process 2, blank
Process 2, APC Residue, Replicate A
Process 2, APC Residue, Replicate B
Process 2, APC Residue, Replicate C
Process 2, Bottom Ash, Replicate A
Process 2, Bottom Ash, Replicate B
Process 2, Bottom Ash, Replicate C
Process 2, Combined Ash, Replicate A
Process 2, Combined Ash, Replicate B
Process 2, Combined Ash, Replicate C
Process 3, blank i
Process 3, APC Residue, Replicate A
Process 3, APC Residue, Replicate B
Process 3, APC Residue, Replicate C
Process 3, Bottom Ash, Repjicate A
Process 3, Bottom Ash, Replicate B
Process 3, Bottom Ash, Replicate C
Process 3, Combined Ash, Replicate A
Process 3, Combined Ash, Replicate B
Process 3, Combined Ash, Replicate C
395
-------
Appendix
Process 4
C.5-1
C.5-2
C.5-3
C.5-4
C.5-5
C.5-6
C.5-7
V4XL
V4BA
V4FB
V4BC
V4CA
V4CB
V4CC
Process 4, blank
Process 4, Bottom Ash, Replicate A
Process 4, Bottom Ash, Replicate B
Process 4, Bottom Ash, Replicate C
Process 4, Combined Ash, Replicate A
Process 4, Combined Ash, Replicate B
Process 4, Combined Ash, Replicate C
Appendix C.6
WFS Control Process
C.6-1
C.6-2
C.6-3
C.6-4
C.6-5
C.6-6
C.6-7
C.6-8
C.6-9
C.6-10
V9XL
V9FA
V9FB
V9FC
V9BA
V9BB
V9BC
V9CA
V9CB
V9CC
WES, Wank
WES, APC Residue, Replicate A
WES, APC Residue, Replicate B
WES, APC Residue, Replicate C
WES, Bottom Ash, Replicate A
WES, Bottom Ash, Replicate B
WES, Bottom Ash, Replicate C
WES, Combined Ash, Replicate A
WES, Combined Ash, Replicate B
WES, Combined Ash, Replicate C
396
-------
en
en
e
o
o
0
•H
CO
>>
's
;=
IX)
(0 «
^2 o en
(3 o ^
in
(5
•rt .. ..
4J Q
•< 3
4J •£
c >. 2
CO CO CO *— 00
f»O Is- IO
oorvio •«*
^
n
?
-in to CM
CM »- CM TT CD •- CO
1 •
•
i i i i r--
+
C"
1 1 t 1 1
1
11
1 1 1 •— CO 1
• CM
"" J '
•f
tilt
lilt
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 CM? |
*-*^ 1
a
1 1 1 I
•». Ol
« a
• • •• «• •• •• 0) Xk
a o>
—. H- m
r— t C -«H
« o a no
CM *»*• O «~
E a c •-> -MM
TO > o e-^
090. *- 0.0)
f->-D O O E
i a f»~
^••D *J • •> »-
(.0) > •<»•
O T3 O *• O
•D eo a i
CT3 O. --rt j:
• a a o-o > tn
O *> 01 r» *• e a
aw 3 oo co as
O O O 1 O
O O CM
0 "~- ^«
O 1 1 1 1
o
o
O 1 1 1 1
o
o
O 00 1 O
o o o
o • — -•
O 1 1 1 1
o
^^^^ ^^
0 00 1 O
O • *"^ ^—
• ^.1^
O 1 1 1 1
0
o
O 1 1 1 1
o
o •
0 OO 1 O
O O CM
o •— •**
O O O 1 O
O OCM
o^-~ ~-
-» ^.
Ol *• •• *CM
JS-^^ E
V. TOX _l>v
— a • **
• E o e
*>^- c >
a a o e
C. Q.J3 0)
*• a a
c >> > o
O *•*• t-»J
o — <-< o a>
o -^-< o •
o ^i ^j o e
a a ••- 3
*• a B « x
o > > a a
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i t i
i i i
i i i
«~.A
CM X
^.*~_I
TO h-
E -O
— TJ
CM a
• n >
•D O
CM -XI
n u «H-
• o c
Emm
see
O-JE
II ill
!
ii i r t
• '
ii iii
1
ii til
i
!
!
11 ill)
i
,
'
It l III
!
1
II "III
a ;
0 ' I
a
L
II O III
i
;
ii | | ' |
]
*• i
ii *> iii
0) i
o
(.
1"
!
•o -o^ .. .. ..
CM COM ce c x
n co E •* «
^ C E E
Q O TO Oil
— co E -« e o
~ *< TO TO
• • C C C
o o e a to
•->>-> *•£.£.
a co e cc cc
oo ce
e e . f-> i
in E '
e a a i
t- l- .C
EE ° i
'33
U U
397
-------
•o
6
2?
— 4
C
o
u
o
S-i
o en
8^.
— to
1
5
«i
o
•w4 C
CM! ^3
J£ (.
iii
CM a
m*
5*"
8
m
i*
*•*
«- a
t»-H
£U
Product code: VOXI
c
N
c.
CO
^
CO
Q.
Z
3E
£
3
O
6
u
e
o
n
e
Concentration
*T CO »- ID
en r» eo •- co
tfj CO ^— P*» O) CO tO
co o o •- T r*- oo
•- co in ^ 10 »- co
V *"• V V V V V
en
o co in co en o o
co eo r«» CM us — to
• CO CO •- CM • •
in to eo
CD CMf»
OO 00 OCM 0
(O CM ^T ID Cn CM Cn
r-in r^io CM in
CMOS en v en »-
CO O (D ID O (O (O
v*^ v v "^ v v
t— CO
O O CM O CM O O
CO v *~ CO *CM
—* • U
** *
^~ O)
n B
9-1
BO
**> *- *>
^^ C ^^
• O • CO O
CM ••*•+• O »•»
m « c ^^N
I—J ^4 *«4 0 I E
O> > O 9*v.
oca. t- a. o>
pJ "D O O E
1 £ ^^
"* t. e > -H-
OJ-n O *• O
-D co a i
c-o o. ••*£
vm a o-o > «
O 4^ 6) p>* 4^ 9 w
a.co=>cncoas
O O O 1 O
o o ^r
O •— ' ^
O 1 1 1 1
o
0
0 1 1 1 1
o
o
O O O 1 O
O O--
O O O 1 O
O OCM
o^-«^ ^
01 1 II
o
o
•
0 1 1 1 1
o
.
o oin i o
0 0 M ^
§OO I'o
O V-
0 ^~* **
O O O 1 O
o oao
o • — *~
O O O 1 O
§00)
•*~* **
a -»- 0>
"^ Q5
• E O 9
B 9 O O
t. O.J3 «
•4-> o «
C^,_>. 9
O •* -H O 9
§^^"0 ^
O «D «fi ® E
.-.2 .2-3
0-1 -1 C •
« a a a x
O > > O ffl
r-< w
Cum. release calc.
Cum. release calc.
Chemical Reten
|jran
•Van
398
-------
X
I
All
Productcode:
£•»
a
1
^J
1
e
Concentration
o o o • • • •
coin oo a 9 « a
O> (C Ul • • • •
cc.cc
o o on o co o
m to to eo eo — co
fs.Of» in
oooo oo o
o co n n co co o
o o
«t V V V V V 0
^^
79
— in co CM
«•- cN*t oo «- n
-
1 1 1 1 (^ O OO 1 O III
000-
(w O • *•» «—
1 """""'
t 1 1 CN? 1 O OO 1 O III
•— O O CM
I i i i c- o oo i o 111
o o o •
c- °^3 *"*
c*-
^^ (J) ^^ ^^ ^^ ^**
•) (0 U> •• •• *<^ CS K
« —1 .* *- •— « E £•"
m t> o>ji>-'K o> o> t—
^. «- *n>
C44^4^ O *~> 0 OOO ^ O
E a C r^ •4C4 C. CL^ 0> CM • J3
.5.*.* •)•£ *• ^ a a mom
O)>O « ^ C» 9 (.
OCDO. if-Q.OI O^'^'C.F^ ®8£-
.S-a OOE o-i— o» (ia.0
t 9 r*£ C^^-4-C. (B 1 *•
•^^4^ •«i^. O'^t^^U* 9O>O
<.a > ••«- o J3 J3 a e ^> c «
ffl-0 0 •+• O 9 9V- -S 9-^tt-
•0 9091 ****** 0 «-.C
C-OQ-'-^J: s-^-^Sj =SS
•a o o "o > « *j o o>>8>« 3 • •
acoscocoos I-«ES o-JS
II III
1 1 .0 III
II ** 1 1 1
•rt
I
L.
,2
(NCNCN K C X
coco^ c-|
O O at oil
^ CO E -« 9 O
— -MOO
Cum. release calc.
Cum. release calc.
Chemical Reten
[Van
"ran
399
-------
en
en
e
o
§
&
r».en J>
2^. i
(M (O
-i e
B O
J£ L.
mw
NE5
in •*
O «-
2
««- en
3 e
w*:
1
o co CM CM in oo
Sx —. *r in f^ CD
o o oo co o o o
in "5 ••» o> o> in
m o o> CM 01 o
_ .- CM co •>» (D
CM CM C4 CM O O O
CM CM CM CM O O) 00
ID r~ co
VV V V
o o o o o o o
CM 10 CM CM CM .- CM
53 ^« p^ f1*, ^ it ^^ in ^ o) ^r oo O) ^ to
CM •- coo o> • • CM CP «- — • i
. . I . . + o coco- UD co
CM _J (D CM O) CM
*- TT + «— tncMco rr
CO CM
CM
I I I
u
+
II
eo
o
o
o
«O —I
co •<
^-t^in-o CM
CO CM «-
in
°>
«*
CO
in
v* CO O) O O f**
r- CO I »- CO CO O
0)
CO CM CO CM O O O
P; co CD — T CM in
o o o o o o o
o co o r** r^ r*» co
to O o) o ^- r^ co
*"~ CM CM CM
o o o o o o o
r— o o o o o o
eo o »- CM ^r i»- 1—
«• in CD o Is* r» «o
CM CM CMCTST
80 o o o o o
O (O O O O O
r-» CM CM en CD CM in
•q en r» "» o en 10
,- »- CM CM CO
en
I I I
88788;'
en
3573.8.;
01
0>.m.g<05 S^"- S§
xf*- o> rococo IJOCM
CMCMO — — »- •• 2
CO CO O
1 1
SS ..
en cs *
ig
coo ^
D)
§5,
*H a
•S2u> «>CM
E CM«-CM'«l-eO«-CO
fit N
£
fa
i
+j
*^j
*&
•a
o
u
*^
u
•a
o
£.
O.
c 6
e ••<
OH
g
U
i
&=-
B"^. _
H-CXD) O*'-*'t.»-'
°33. 22^*2
. ftt-" O ~t~* O '•
> • *• o xi J3 ra E
o ** o
-------
1
•o
03
3
C
4 .
C
O
0
ne
n
JC.J
r» inn
n '
E Jf
to *t
ID CM
O •
O — '
eg
«
'.x
•*- en
c. — <
<:
C3
CO
>
to
x -o
0 O
< 0
•»
Bottom
Product
c
tvl
W
x*
CO
J3
a
z
£
£
o
6
"O
o
a
o
1
e
c
o
^H
*J
a
£
**
•
1
o o o o o o o
en o o o to in
— CM CM CM — —
o to o *f — - o co co o in
o CM to — en CM o
^" *" to P*
CO F*.
OP* O O O O O
— co oo co CM to in
CM coco in co in
in co in co co en
o m in o in in o
if tO ID
. v V • V V • •
r*» en en
CO CO CO tO CO (O O
CO
oooo oo o
o o o o o o o
*f Cn — — CO O O
CO tjl tD ^ — ^ —
•^
V)
Sf
Q
•n
itO (0 CN
CM — -tnto co "~ in in
^ ^f ^ ^~ ^^ ^* ^ ^ '
— CM
CM
mcoco^cMiii ^OOOCM COCMCO coco r^cno
BD ^™ to CD CM • ^T ^ oi CM o • ^ ^~ co ^~ en
..|..| COO-COO -CO CO OCOO
— — + CD CO CN COCO —
Ilii cor-ococo ill II ill
•OO — in
iv .. in
O — ^ CO
in ^- — —
inco(vrvcM+u o CDUJ i t eocMt r^ oo to^rin
• ^ co^ c«* o-^ m o • ^ intn r^-inin
co • i - • 1 oen-Jino — cno incnen :
— -C0< CO — CO CM CO ;
— u to > o v
A CMS in V
to *t r* CM ^ + CM r^ooom o co o *— < en CM
<» CM r~ co co CM • en rv — in •— rf rv in in r-
• .|'..|. coo-toco co cNin in^^f
n in *»• f» P«> — CM — «t
»- in n ^- fv co CM
^
•
« o rs. i t*~ • r*QVD*ta> r~m^» co oo o CN rv
• to en CM -in en co TT o -J CD CM en in —
«.| C~ ffl OO t^ • CNO •(- •* — O 00
— _i —com a> v a v . cMt>»a>
— c»^ ^»CM eo v«- V CN co
A
fvir»i — . t+.Qv>mtD co en— . co— ^-11
. en • t ^» — co ^ • — J CM in «- ;
""— »^— CM— •** V
A :
I i i i CM en ID CM CD ill i 1 I i i
to T o in o) ;
— CM CO *~ CO
^ to r» I
— in r- re «» n u — ^t co co — — CN in into — CM o ;
5 o 5 o • en — to— m co-— coco comi^
..|.-4- coen-CMOco — otrv
— — o«l— CN — — CM r-.
_.^ ^ ^.(omco^ inm
^ «• — — o>
"n o? ^ «M^ CM""*? CM CMN ce e x «
BJ ^ •— •— E E^' COCOE "22 2
•i •> enj£*»'H- en cn^ QOcn oil o
*m a ecoQ^EOS CMS •* ccc ^
<1C< »> D.— - 4"—<.> *co> oo a o a •-*
£,2i5t "wT^E •*• °"S S COO'S oo ee S «^
en > o B *v C>»>»B t. >»
OBQL ^O.O) & +* +* 1~ ** CPoC. OB r~ ^-4>*
•-3-D OOE O-<^ coa) o Kr->
>-.-D-S •««»- O-rt-^0 • B0>0 O^ffl -g t-g
SJT3 B**"o «C9»-3 S-<<»- B8 C8 Offl
•D oo^i 'S^ie0. h-gc ^ ^ 6 i
«i"S o-o"> » -M"««OJX egg || Q05
O ^« 0) ^J ^* O 0 O 2* > O *D 3 w w w 3 ^
OL CO 13 CO O) O S H*^^SE£ O — ' E OO ^^
«N
u
401
-------
1
c
11
*< T
'11
F
^
u
r
-i
1
c
Concentration :
JZo> coco -co •
«- c c
o o o o o o o
Koenoooo
co o »- CN rr f» *-
*» to CO O r-» i^ CD
CN cv CN co ^*
o o o o o o o
to ^* r> «— CD t ID
OOOCOCMt O CO
0
3 ID CO CN
CN T- CM t CO — CO
1 '
I i i com e- r*
^°. 1 r»
1
O co rv O « n n
co o to
1 i i ID in | vj
^^ ,J
"*"
'A 0
0-1
*• •• •• •• *• 0) """x.
^ «*- n
« o coo
CN^^^I O •—
JE^^ I£"!CE
3-S °" *O O^E
«•§ •*' 0
•D co a i
c.-a o. -~ «
o *• «!->*• co o
O.CO3 COCO OS
O O O 1 O
0 OO
o •*- — •
o f-eo t»-f«
00 O ^ CO O)
•H-^ -CNP*
en f^ CO In
»~ eo in
O OO 1 O
ooo _j
* ^^ ^^
^"SS-j^
E^^O^
"^ i5 o »"*
*«<5 L. >
a 000
c. a. .a •>
.u eg a
c > > •
e *>*• c->->
o-«-^ _o •
o ^<-< o •
O J3 J2 ffl 6
e -<-< c •
*- a e a x
i i i
en inr-
g> >o
»- CNCO
OJ »-
ID
1 I 1
1° -Q
Cum. release 32d.
Leaching-perc. 32i
Mean factor above
CD CN CO
in co
in *-
CO O
r» co
— o
1 ' Z
s
3
C.
O
H
CN CNN
n co E
SS|
Cum. release calc.
Cum. release calc.
i i i
O CO CN
. CO •
iii
o: c x
-4 0)
C E E
5 U
*• O) O)
c c c
o a a
*< c. c.
o tc.sc.
ec
a
0
~4
a
O
CN
1—I
U
402
-------
a>
ai
L.
ai
ji
o
o
o
w
n
JB
en
JC-I
0) en
u> t
C") •
CM 1C
O
'** >
-* e
IB O
c •*
ID *•
"S
It C.
** *>
•s x
10 UJ
CM O)
IE.*
— CO
10 CM
0 •
IH **
a
L
".S
>i» n
t. -<
s a
•ft*
S
§
>
„.
,C T
£8
ll
*• T
'SI
0
ffi
o
<
2
w)
n
i
o
c.
j
*
*
O)
e
e
o
*>
a
**
c
•
u
I
- O OO OO CD
— en — r- o 1 o
to t co t o
co CM n ID co
O CO CO O O CD O
ic en t f**
• V V • - V •
^ en CD en
V— V*
r*. o m (O CD to to
i-. in t r- in eo to
• — W CM CO t
o
O O O O O O O
t CO CM — — — —
V V V V
O O O O OO O
o o o o o o o
en en t in o o o
r*» co *~ CD f** en co
t ID ID t —in ID
OO OO OO O
co co CM in t o CM
03 en co to in CM t
— CM CM
o o o o oo o
r^oooooo
coin t co «~ o CM
rv co CM to co CM t
CM •-«- CM CO t
o o o o O O O
COO 00 OOO
•r- o in en o— co
ID en o CM o r- ID
^. *- *- CM CM CO
f*
»
>>
•o
^•in 10 CM
CM •»- CM t CO — • CO
i
v<
f) rv f^ CD (O II ^ CM*™COU)*~ CO^CN COU3 CJ5COID
coo to o> .coentNCM eo-m — ID co n t
•- —> t r^ in CD CM
— t + *~ moo»- •-
1 1 1 1 | O l 1 1 1 III II III
o
1 0
e*'
eoioiDcomii— > r-ointor^ r^to coio CMinoo
f^o to 01 CDCOCMOID r~.oi cot cMincn
. . i . - n o to-tcn 10 cnco in t in
CM JCMCMIOIO»- »- CO + — - CO CM —
till t en— CN r~~ ill ll ill
co co • en en
CM CM en CM eo
CM eno in
CM CO CO
*~ S
fococoene*-c^.*- cocooinic cococn tic — oin t
. . i . (v- • ... — ,- 1 — coco tcoin en
2 N i^ SS8 n w
(O
in — . ID in la o -O«Dn t -co CD CM -co •
*.i ••• tco«*-m eof**f^- icen ••^•« —
en entincMt— tio<^
n + — CM CM rv r^jn a
O *" ^ Is* Z
enenM^-tn 1 n r- «- 'in — t oenco coo *• cocoo
U)0 tO CDtDCOtt — -CM >2P«- •••
«.| *.H COO* — CCCC OCM W^t»CM
en entco CM co— tr*. o
^* * ^m^*— 25
|
1™
"« a "5 0>J?«'H- 0> 0> 1- OOO) Oil
~ iS E* OE E -0 -«OE J »» Jg
"• 0 ccoo "^toc" "S « • •" "c c c ^
P^I^i &**'» ^9~'cO« •« O ->•-> *• I. t. rJ
e a c «^ *WM L &JQ v> CM*^ aa occcc -WH
.Z.-.-4-3 ««£•*' aacooaoo CL s
"* ^ ® " >S* ^ t_ ^ A ffi C_ ffi 0 ^* ^
,3 •§ °" "o o" !" o^<-< o c nao •>« a i
«L--o5 •'r*^ o-<- -J *• o a Crfrf5s OJE oo *i
c
5
106.3
AI
O
O
.0
—
2
P*
,-»
»J
^4
)O
.3
o
A03
-------
•o
c
c
o
u
en en
eo •
CM (0
TB §
0
0
E-*
CO CM
c
« *>
«. o
? a
«*
Bo
O O O O O CM O
en CM T CM ro — r-
O o en oo in o
o eo o eo ** (O in
;o in co — co — o
. — . «- •- CM CO
CO —
CO
en — to *f eo to o
o co *r o eo u> r-
• «- CM en u> r«.
_ . CM . . . •
o PI r~ o u>
CO M CN ID ID
o o o o o o o
r< CN eo co
IM CO CM t ^- U> PJ
• CN
O o in in in in o
tdro en
O ID T eo r^
to ifi en CM o in to
*- »» CMCM to
ra
§5,
oouiico CM — en oo^r
o -3 eo r- -r» r» ^f
o co — c- I o> r^oooto •^•CMOO
CM o co eo —- * co in CM CM o •
in ' .CM Zm o
II
•* «0
win
OCM
(O •- IO CO CD
-co— cn
to • • co
co eo eo CM
co
8
in
in
'
^- CD >
a CM«
cou>to*r 1 a
m
ID O • O U>
*r _«_ _ *.
co -• •*
CM -co
10 — eo
en •
CM
ca to
10 o
*» o
CO
>n.i
A
cn i r-
f« unit ID — t*-
c*- co •cncor*
o- cocM'O
SSto §
+ — eo
•"• CM in to — • o
en
*** CM *"^ tO
vv "•
•S-P..O O>O
•nt eor>eoio
... r^
cn f^ o co
SN — »--~ ous
T • -i «n ^
52?
~- co
o co cn
CO r- (O
TTSJ9
S25S
oeocn
UJCMIO
oil
ss*
ss
53
£ Si ^
I" i
m
U
404
-------
oo oo -o
o to eo eo at
o o> 1010 -10
*- c
o o o o o o o
r- o o o oo o
0 10 •«»• CO — O £«
r* «o c>4
-------
en
en
c_
a
O
o
in en
«o«r
CM (O
•> o
c-^
D *•
i-
3 X
0312
o o o o o o T-
OO en CO CO CO »• O
_I,- co in m ID
— •«r CM T in r»
oo O oo O o oo oo
v'.v^.vv
.- 00 (O
—i I o O CM in »- eo eo
< I cotn.-r^<- ipuD
us co r~ •«»• co n -~
1 I I I e»
t — O
un — CM
CM
CM
I I I I
O OB CM
to • in
eo —
I I I
CM in
co o
CO t
CM
< -~ a> «
.__ CMCM CO
I I t
f« oio
OD
r> o co
o oo n
O
C.
m
o o o o o o o
UJ CO CM CM CM CM CM
ggggggg
v- oo in in o o o
p* o ••- co o co o
ID oo in in CM *t ID
o o o o o o o
oo eo CM en o oo oo
ii o en CM co en ill 11
' o u» en o os
~i r» • eo r~
i pus —
o
ID
„ ^ ^ ID CM I •* cn en o CM .- 2 °? ">. 22
O ID OO CM
. T- (D t U3
I »r co coo
u>
01
CM o r~ eo CD 1 n
u
n
oo CM r- co co
co co ID r-03
in CM -CM*
— t~ • en
00 CM»-
cn ~-
(O
(O
co en i to r--o
«O «D
cn o
— in
CO CM ^-
S
«< I in in u> in in in o
. i co
vv vv vv •
co i r-
^ I
~. — o*t «~ —
• o> CM «- en -J •
m . . . H- ~
QO
'5 V
co
.
*- CJ-
§ S
CD ID t III
V "~
in t-»
ID CM
2gg
OOI
Ol
. 0
CM in oo i~- CD o in
oo ^r co en ^r CM eo
CM «-^-
^f CO CM
in • en
(O ID
en «-
CM CM
CM co
coo "
00 00 *"J
IOCM «
O on
. 09 •
go o o o o o
o o o o o o
_0) O — ID OD in
01
r^ CM* co CM
to ao o co in
COCM • CM
en coin «-
co *
ID
ior--i--
oo -CM
«DI£
— co
*> o CM CM
*'-
O
5
§1
i-« e
« o
*« e»
•> e
o-i
•• V) "Vi
B «)
H- «
-^
e coo
.
+• *• O —
•SI
o»
OO
.
o o *• o
oo « i
^ O. • -«£
o o-o > «
n «->+• o«
m •• •• «c*4 f*' ^c
^"oiS?-!^. >.~';J
CB^—I- 01 » K
E^>- O E E -O
^ m • ^^ *™* ^O
• E O O CM O
*>-^ t. > • CO >
0 ffl O C T3 O
i &-SS co dm
g^^c.5 ofec
g^3££ S?-£
o—>*-> o • o o) o
O ji^i e E ^JCffl
"'33-3 2S"
3:3-3 Sx ESS
.S^^ll 351
CM CMJM
co co 6
00 g -
•• CO E ••«
C E
x
a
e E
;;
c
c ? «
*• C. i.
m
o
E
a
N N
e
E
.8
« -
E E
3 3
OO
00
era
o >
QL<
o
406
-------
•o
e
3
e
c
o
o
o o o o o o o
Ui l*> O> — -— *•» f^ co
W
IO «t
CM SO
i f
»*
-< e
« o
C ^4
O *•
0,0
' U" ~ fM
. *— *— ^» CM CM
10 '
in
us o> n
• i • •
— en -O
«•
OCO
— 10
10
IO
in r« r» tf> o> «o u>
CO IO O CO U5 U> (**
PJ 10 •«» CO (O CM d
o o — — 00-
i- O>
' v - •
. — to
O • I • • II
»-f»f~or-l«
10
O«-UJICO ID ID O «NtO
O . 3 ^ »- • CO CO W
O in—i t —f "U3
•CM< TT - — <0
C« Ci V V
— CM 01 too>
— •— £; T:
o) oo
CM — r-
)__ «o Is- 10
(oifl-rooi
CM
vv- v
CD O (O O CD O O
CM ~ '~ ""
CM
r>« TT 10 in «t
• 10 10 «— CM
CD • • o
t .-1^ CM
eo 10 «- •-
ill
ii
eo
u>
m CM
en en
N^
U) r-
U) CM
o •
o «-
a
S
•.s
X- O)
IU —
o o o o o o to
(O *— CO CO IO CO
V
_ eo co u> CM r-
«* »- CO CM ^t *-
atit) ou> u> o O
«• CO d
:s s
CD £
CD
O IO IO IO CO(O IO
*°. vvvvvv
O O O O O O O
moooooo
o cs >- us CD m
u> t>. o ^ «o •«» in
vw ^ «» •* CM CO
O I
A *~
I 1 I
8358
OCMCM^CO
cnoo«r «o —
IO CM — 10
CO CO O)
3 S|
II
ill
CM (O IO
o O rx
in in CM
o o 10
en o o>
co r» r^
ta 10 —
ill
5
II
O
O
••
Bot
e
o >
11
OH
K C X ; «
-< a »
C E E E
Oil i O
~< e o 00
*• 01 O) JJ O
C C C .0
c a a »->
o a
407
-------
o o o o oo
TT r- «- «u "» w
.-o r-u>
o o o o o o o
i-Q oo o
oo
CN ID GO P* tO O W
oo *r co o> ••r «>; 2
o o o o o o o
OO 00 00 0
o o o o o o o
;_;_ ;i.-CM cs CT
i i
1 1
co ^* f» CMCM »••»••
«••- W--
(0 CO *••
i i i
«o
•g
*• c •
e £
^5 5^^'^E ''E^ rieoe
•* «J •* ^^ _ . f f I '***,
"IS If of I* S8|
SSS. jll!5 -S5 66
l~ i.Hi 5i« 5l
e 0 (- 00
« ao n «
a i *• 00
0 010 00
** c 9 "i-i
c •»< **• 00
c ^ ^
E 0 0 E E
531 33
R
n
x
E E
U
en tn
c c
0 0
c. c.
CL.(£.
em
U
408
-------
1
— U
en
en
c.
o
.
*4l
It-i
r- r»
in in in in in r- co
V V V V
OO OOOO O
coin co — — — —
V V V V
§000000
0 OO 00 0
••t to — — O O O
o en en to ID r- in
in r- in CD co r- co
— — — •
O O OO O O O
tO CO CM t O CM 00
in co to en r- co —
o o o o o o o
o o o o oo o
co in in co r» CM eo
— t o en co in co
— tN •- — CM CO ^
O O O O O O O
o o o o o o o
CM — T CM r- — CM
co to CM — en o co
— CM w CM CM ^t >»
19
1"
•StO CO CM
CM — CN *f CD *- CO
1 '
1 1 r- —
f- o m
. . 1
V- t
1 1 t 1
CM — r> oo
o.-:,"
n
— eo
r- co r- i
t *"• i
A ""
IN CM CO F
CO CM U
W -
10 CMP* '
O>
CM
oo cot^r
CO — *
0>
CM
1 1 1
co or-
IO — 1
• • i
O)
CO
— en r-
":
^
*** c
0 O
CM *•<*•
£5-5
*oi > o
oca
X«5
** c. 0
•o
co a e
0.0)2
co n —
O Oi
. + CD
* *"^
<>.
^-
1
to n ~*
O en
• II 0
_i
+ ^»
01
+ 0
e-~-
J — C- 11
>CM
• • e«-
tt 1 B
r o
-in | n
to
• • n
+
t
Sto B n
no o-
* » O
+
Bin 1 n
to
• • B
e _i
>t- «
• too
O~*'~
t->-WM
0 1 E
«- CXOl
O O^E
' MH-
Uo
eo 0 i
Of • ^^ «£
O-D >•)
^> *• e 0
wcoaS
oo co to en CM
• CM ^ m
w r— co CM
en — — co
O 1 1 t 1
o
o
co CM in CM CM
CM co co in in
in CM • to CM
r» eo — CN
CM — —
ID
en CM CM r» in
en r- CM to in
— oo in —
in co t fv
r- CM
O) O) O O CD
f-» f*» O — CO
... CD
en e» o —
f» — CO — —
o en en in —
to • co co
— inco co
CM CO CO 00
i- in
to
co coo ^ en
• • o en
^ *» • o
CM CM O CM
CM IN O t
in to to ---co
^* O O — i •
. • 'Kin
eo to o co
in ^»t^
v
* v v
en r- CM o CD
o en en r- ID
CO O - — CO
— in co to
CM IN IO
en
CM or^ in in
o co • en
co in o t
- " §
^•ssJ?
firs!
"^ E o e
"0** e o e
«- 0..0 «
•f 00
c » e
e *•*• t- r*
MZJS-SE
0 — — 0 •
O Jt J> 0 E
0 0 *• 3
^5Sc°-
*• 0 0 0 X
o > > e 0
409
CO CO O
_ . to
*~
1 t 1
en cot
— -CM
00
t eo—»
— O -1
CM • t-
•* £
v **
O CM —
in • •
— CO CM
v V
5 —CM
CM —
r- coin
CO • •
r» O CM
CD CM
1 1 1
to en co
CO • —
in r- co
CO CM IO
o -co
eo*"
-JB^
f^.o
""CM e
• CO >
•o o
CM • J3
CO 0 0
e e c.
« a. o
0 i •+•
• no
** C. 0
ex*-
t-f.
• o c
E 0 0
3 e o
O-JE
— in
co in
t CD
CM
1 1
co co
CM CO
O CO
CM CM
O t
in o
CO CM
CM
*v
00 O
CM CO
*j in
*""
618265
966230
CO
in r»
— in
•
CO
l l
toco
to o
— CM
in en
10 o
en to
in co
en P»
in co
CD to
•o -o
CM CM:
CO CO
00
•- CO
u u
0 0
U 0
e o
« 0
0 0
e 0
e 0
*; *:
ou
CO
i
range:
in
i
tuoalty
c.
o
t-
4
>x.
I
O CM O
O O) ^*
1 1 1
en eo CM
o co en
o r- CM
•» OCM
co co r-
r- eo co
t m co
*- oo in
^^ ' ~
• • w- en
en CM en
CM CMCO
CO COCO ^
en r» •
. •— en
i i i
O eon
^*2^
/u
*• •• ••
ec c x
» e
C E E
O 1 I
•* e e e
*• C9 O> X
c c c
0 0 0 r*
•n L. (. i-"
ecctr -
ec 3
o o
1 e
JC »
o
c
**
N
-
— •
0
AJ
•1
C
e
J2
X
4^
. j:
> g
"Z
L<
• u
-------
•o
o
o
V)
S-i
m ID ri in
O 10 O •- co f» o
XT C>
r-. o
o CM r» in *t
CO UJ CTt »- CM *t
v v • v j v
i—Lincoln CM to en to CM n — in in o>
— I o> *~ in
(C
• — 10 o
o • i • • n
in — f-» ID co -f n
co
10
O-3 CD C^-
to --C,
-- g
vv
~i e
n Q
IS
O U
3
C3
"sS
B
L.
*- tn
II
o o o> »- o o t
SID — CM •via CM
oo oo ooo
U3 ^ CO 1^ CO O> U)
in cor~ o o> o
^- co co CM — co
GO U5 CO —
CM »- ^- CM
o o o o o o o
in O CD O O O O
co r»- "T co co 10
^ »- ^- CM CO
II
t.
•si
f>«4
COCM
. r- — IO
?i COCM f^ CM
2 S
onto r>£-
SS
-co
".53 :s
: :a S5«*s :«s »*
I I
— to co 10 —
- PN fv CM
CM - • 10
_ CO
eccce -;a<
* S>
•
pD0 for
AvSiUb
U
410
-------
s
§
Combined Ash
Prnrliirtcode!
8
8
a
|
_i
1
«4
§
Concentrati
o o o o o o o
r^ co o to eo to ID
10 oo co in oo co »-
OO OOOOO
o o oo o o o
CO IA IA CO P*> CM CO
S- -Jr o en co « co
,- CM .- — CM CO ^T
oo oooo o
o o o o o o o
0 O 00 OOO
O co in CM in CM ~
CO 9 O (O CO O ID
>
T3
VIA CD CM
CM «- CM •«»• CO — CO
r
i-
*
J"^ *v
\
o .-^?£ | u ""IIDOO i 10 «n i
A "1 1
o o T** O 'o^ £-^°
7§ «2^. JJ2>" "^n*
"iSI ^rt - &ls sjl
51 J -slf Hlil !f|
i-o5 .«^ Jssgg "c§
»
ID ID
V*"
V
to ID in
ID O
^ CM
to en
IDO
•" r^
X
a
o
3
L.
•0 -D~
CM CVCM
co co E
u O
Cum. release ca
Cum. release ca
»-••- «t
oo r» CM
*»• CO ID
O CD CO
1 1 1
at c. x
— < o
C 6 f
O 1 1
-4 01 O
-WOO)
c c c
e w «J
*> C. L.
Chemical Re
• . F
f
411
-------
en
en
u
o
co
«_
tn en
in >«T
o •
CM to
i.
M en
E .*
en co
to CM
*- tn
o o o o o T o
uj r- 10 CM — — T
o> CM —• ** o
»- it eo ^r en
O 00 CO 00 CO O CO
o r:
o O CM to to in on
»- CO — O CM CM (O
* *™ CM eo ^ co
§000000
o oo oo r-.
in in in in in in in
V V V V V V
O O O O O O O
CO ,- »-CM — •— «-
V V V V V
§000000
o o o o o o
CM in oo CM o o o
to *r o en co ID ID
co r-« i-» oo CM r- o
§000000
in in o T r» u>
in co r- o to en CM
V — — *~
CM CM r-» ^i in I*-* in (D CD co CM *? in en
CM-- mo en • r-» TI CM m in -co
• •i ..4-0 o • • co ^j CM
«- _j CM r- oo r»
— CM •+• •— men— —
o i i
o
o
(OfM
TCO
-^ inuscooco
01 cnioeoto^
r- co eo
CM «-
en
to
to
coco
O-CN CMCM
«oco
o
w
o • i
A *~
O OO
•- *- o
oo oo o
OO O O O
o
O
tomtocncoi'^ cnr-oioo
r-o ^o & cMCO-cMf—
• -i • *ua minocoic
O> —i «- CMO o
CM +^ COO g
in
r-. o - • <—
USCMCM
CMt-
en
Tf CM I CM
-.°.^«
en ^r •«• o t
So e
en co
in
III
CM «- oo CM co o in
co en >H
of »
o en o
co en 3
^- r» *•
o
>< a
t4J *B
if~-ir> to CM
u cM«-CM<*flO'r-eo
*• e •
elt
OH
si s^-«;
•• li-sl
Q O O)
«- CO E
O U
a
o
i
a o
J3 O
J3
wi
(X
op
ab
pDm
Ava
412
-------
i
o
o
tfi
in o>
in t
s«
« O
e -*
o o o o o o o
CO f*» CO O O ^ fM
00 •- O — CO «N O>
eo in u> O — 10 «
"~ eo
03
»- O f" «<> W <"
pi r~ in t »-
CM O)
V V V V V V
en o in in o I u
CM cc in co
i
u>
CO
sw.s
. vv
°s
3 X
GO tU
CM B>
o> O O O in
in w — P» " w
or>-OOOOO
^ (D «D O l"»
— co n
CM t ex
»- .- »- CM
in o in ic to v> «O
pjcoinotl" Of>l'1~"5; 21*5. S ° —
I.. I to*j«^-^ W CMtD
jo' ' CMCOCMCNCM COO
- « + « s
w
en CM
d *~«CM Jo VV^
' ' '
8
O • •
o o> o>
•- «o
VVS vv
§1 r-s §|
-1 s »v
!§!
- a
0 o o o o o o
mo oo o o o
o co r- ID o> o o
O) O .
^4 a
8?
in ^ r*.
CM CO O>
r» co U3
^ CO ID
31 '
il
l
s
filN
•>
a
i o
o u
ja e
• A
or R«1 -wi
ability(X
pD.
Ava
U
413
-------
m
jf\ ..
(i «
<. "O
*s
c •*
c u
•M Z
£ T
•E C
O t
eja
g
t—
a
i«
i
•*t
c
o
*H
*»
0
b
*>
e
c
u
e
8
00 00 OO 0
u> a> CM CM co o co
TT co in ^t co CM **
o o o o oo o
0000000
CM T- co CM co o in
CM •- CM in O ID f
«— CM *— ^- CO CO V
o o o o o o o
o o o o o o o
o o o o o o o
to r~ CM *r CM •» eo
to in in co in co *r
^ »- *- CM. CO CO
*•
s-
Zia to CM '
CM ,- CN • o •»- -*
"• S* "5 «M~ CM X
JJ
rv* !w£ o"^»-* • «OC ^ O
eU^ iS-*«M «- o-° « £!,;•£
£^-< aiE •^^^•S wg*
»>°. _. S"Si a ££(.3 cat.
2-5 ^ o E S-I-ioe » o-o,
• «L*n«^ -^*^- O^^O* C9O
r_fi > •«- O.fl^>QE |M>C«
e-S c-wo «o«-3 "2*"
o-isliii Hili ill
a
1 1
ID— r*
en o
O) CM
10 *r
^,
Tortuosit;
•D-D —
CM CMTH
CO CO E
S8|
ci u
^«^
a a
u u
a o
n a
a a
« c
e e
t. t.
ii
00
1 1 1
O (O CO
1 1 1
ention R:
ange-minj
ange-max:
** C. L.
on: a:
rr
•->
0
v<
o
o
U
414
-------
O)
Cl
C-
e
o
O
S-i
CN: O>
in, .
CM 10
I) O
c -<
!1
*» *•
S X
03 UJ
oo o o oo v
in *^ in — o eo
t CO (O O) (O
i in tn 1 M cor>0)iocM r«-r-cN ooo
co— f o .-r-coo f^-rs. cneo
r^ CM in
f. — —
(O
CM
o> o m
3 CD in ID \a ~- r* r^
V V V V *""" *~
O O O O O O O
eo co eo^ «- — »-
V V V V
ooooo o o
o o o o o o o
CO CM CO GO O O O
CM en 10 ^r (0 o CM
CO CO CM *f ^ GO O
o o o o o o o
o r» o CM r- m GO
in o 10 to co en co
;; — — CM
v v
in CM r* in ^r | -~
O) co T *• o>
CM —I
— CM + ~-
O I I I
O
O
ID ~-
. TJ- CD co co n
i — m — • ^
-' O • O O3 GO
o in COIO-O'T
+ a CMCOCOCOIO
CM o> '(0 oo
s
o
— encMio
r^f>.io
OCM —
A -
^co ID—
O
- CM
ID cr> r-
i cor*'
^»CMr*r*o o*O ^co --1
cMin -coo cnencM ^— io>» —
en r» ^ m o> CM co
— co O) O) — «o r»
^ CM oo r* en
00 CO
tO • • •
— —CO C
— -*t e
,
wen
p
AI|A1
.
5
u
415
-------
•o
0
3
C
O
u
CO
a
CM en
••* T
LO •
CN tO
O
•* e
n o
££
22
CM Ok
t^U>
in CM
o •
o «-
"
a
c.
(9 **
tl
3 O
cnfc
Combined Ash
Productcode: VOCC
,5
(0
CO
£
•*<
*
£.
a
u
fc
**
3
«•«.
a
a
c
«4
Concentration
o o r» o o o o
5J CO ID CM tO CM
to *r CM «? t
"~ *~
O CO O lO T CO CD
— r- 00 9 — ID ID
.- — • — • CM CM CO
00
r« en eo T o r« o
CM — en 10 co — f»
co to v CM o co CM
CM *~
0— O O OO O
O in co r» to ID
_ v — _-,-n
OCO CD O O O O
— co r- r- tr to CD
• CM CM -i o in eo eo to en — in *t CD
. ""I l . "^ 1 in CM • to eo • — en
US eo co ~- *- r^
*- CM •*- en —
mr^r—en^nii OCMUJI— r»ioeo CMCM
• o TO o- o -3 t*- m • m oco
o • i • • u oeo—i en IOT into
;: • 10 < *r — — oo
A " " C£ 2 W
^S"!?^1^ ggSSS SIS S^
. . i . leg to to • cs tn o COT
CN -> CM to T to ID r- en
i- CM +•— CO 10 T
w- CM
cNenf^cn«~itT toToenco T«~CO Tr^
UCM co- co - -otor-. -o • -co
• •i ••nco —cn• o rv
CN • • CM
T 00 O IO
— CM CM
M.s^g§ ' i o^i's s~§ ss
«•!••( oon-i «» 1- co or;
^_ .r» to
A tow CM V V
>w.
— to rs T e- 1 " OCMCOCMCO IOCMIX r» —
Sco n c«- OTCMTID co •— 10 to
. . 1 • 1 CMio-ioeo co eo
10 i r> " N *-o
— to •*• to T
oioroi I «•» »-ior»eo»- en o m St
OCM 0) CM .tOCOCM CO— • OCO
. . 1 II • IOCD-CM— -CN — 10
« _j — too n
— — ^ ^- TCO o
— eo r-. i r»«-> «* to o CM 10 to — ••» co —
• O O) «OO • lO'vJ CDT
a.l (w 0 — • - f*» C0H* T
— * OTT S vo v,.
^ t-Zi s m v«" v
A
(III r^OOCNOO III II
. . . — CM
to oo r» co
CM CM O
(O IO
coior* — con a oto — «CM — O co — 10
s.s. i10.0. .*• S^^SS S-2 S5
Aj ^w»IO«*COO — COCO
"to B CM oo to -en co r-o
— •
"B ? "a>~ •• - • cn > u u
«J^ **+» O--* « €>O« T) O f-»«-»
£•1 -ST-E i ft«S SJ-S S3
£?,«§. ^-CXW g£*f-" « « fc. ««
°-§ ooe S--«o* 50-0 ««
T« jCI c»*iJ*'t ffll*' esca
^.Tii .»*• o-«-« o • eomo ««
c. o >•*• oxi^oE f->c« o"5
J'slS^-s 511s? S|s ||
^ioSScool £3111 5^1 c5c3
00 —
— r» CM
o to in
en co en
r» t co
eo CM in
1 I 1
I 1 I
on to to
r» en to
— •<»• co
r* CM CM
IO — 00
CM — T
1 1 1
CM — CO
r- o co
en to in
ID en
CD ID CO
CD *•" T
IO O T
If CM O
to — to
IO CO CO
— — IO
to co co
— CM
CO CNT
<— v» —
1 1 1
S co to
a *c'x
•^ a
C E E
0 1 1
-H « eo
*< o en
, Chemical Reten
2ran
Rran
-
Al AJ
II
9
o
f> O
XI O
pDa for R«1 will
AvIilability(X) b
2 U
416
-------
1
ti
IS
e t
.0 -i
'11
g
1
1
-1
1
C
0*4
e
o
0M
«M
•M
C
i
o o o o o o o
co in co o co in CM
«r co CDO o CM in
.-»- *- CMCM «-
oooo oo o
o o o o o o o
t .- (O CM eo o in
in 9 CM o o •- !•» m f»
«— ^ CM CO CO
^*
tt
3K
cfl
T3
«-»u> to CM
•M
••• ^
~~> Cn
CM o> ^ co ^ I n <*iw- ~- o i rx
• CM •*- t* ^JO 00 O CO
CM • \ *-* • n 0) O 0
_ «t O O
A ^- CM
V
cocnr^rvin 1 o en in en com
too to c^ ocoiooo
. . | . . a CMO -CM»-
en — so eo in
CO B CM CM •*
CO
111 *Q O) 1 ^t C? O O 1 CO
• C3 %/ C) C? C3 •
* ^~!
*— . Ol -^* "^
00 0» «
« — i *.***-* e
»• ** •• •• •- •) ^S. ^fc C*X «J "^
^^ ^ A «*» S P U 0
*x. ^4 •) Q.^*" * ** *™' ^ ^
^^ "** *J ^J _*AJ L &^3 •)
C.^-5 « I E •" « •
CT > 0 «^ C » 0
000. »-Q.O> •22e>'«
B -n e *> o 00<»-3
•o 00 0 i •i-'i "
c-o a. --~jc 5"3"a§x
O**sl"J*'fflal °rfrfss
CO IO 1
en •
in
CM
— O) CO
o -en
to in co
eo —
CM
i i i
en t-
CN 0
• CO >
T3 O
CM -ft
CO O 0
001.
tl 0.0
0 t •"
0 CBO
•-> e 0
e -<»-
u j:
• o c
E 0 0
300
0-I3E
cn in
eo co
— O
v
V
-co (0
f CM
cn o
t>. ^r
O CO
CMO)
1 1 **
o
c.
- ,2
CM C«M
co co e
DO en
.-« E
. .
0 0
0 0
o o
n n
0 0
0 0
L. t.
E E
OO
CM cn CM
wtr^
CM v- in
O CMCM
. oo •
l i i
*58
§ ff
«4 O O
4^ O) Ol
c c c
000
•w C. C.
0 CC O~
ce
rJ
0
0 -
0
o
o
417
-------
Jj
o
U-l
CO
«H
CO
^
CO
_g^
»r) QJ
C O
CO O
CO £
c
•H ,Q
8*8
4J 4-)
s§
O w
o
o u
cd
^ t-
»J *•
3 X
O UJ
(M O)
E.X
CM
CO
O
*
e "
a
j| 4J
B j*
H- CO
II
^
>
u
roductcode:
e
•
i
c
OO O 0 — 0 0
»- CM TT in CD CM
CM ~- CM CM U> «-
»•" *~
o o o in o T o
r*» ^T to GO CM
tv.^ ~ f-J CO
_ to _ — .-'CM «-
V ti V V V V
oo oo oo o
c» co «-»-••-••- CM ,
V V V V
co co co eo co co co
V V V V V V V
o o o m co to' co
CO V CM CM — CD UJ
. . CO - o
II
1 i 1 I O O O 1 O
11 OOCM
O * ""^ ^^
• "^
1 1 1 1 0 1 1 1 1
Q
till 0 1 1 1 1
°."
1 1 1 (OCO I 000 1 0
• in o o CM •
*"' +
, , , , ^. |§|'3
• ~^
^
*• J "S^..^. .
*~ *• * £"o» .3
^ o • coo ^-325^
^33 IT^ | ^1|
"".^? fll^I
eo"S o"2"> « "S > > § in
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
CM^g
01 H-
£,-°
4r a
^ o
IO 6 9
0 e c.
m a o
a i •*>
e en u
pJ C 0
«!-<•*.
L. £.
• O C
E a a
300
o-J£
ii iii
ii iii
ii iii
ii iii
ii iii
ii i iii
ii -lit
e
Ol
c
a
c.
1 1 O III
II III
i
**
•>,
ii *- iii
§
a
^^TM te K x
ao'tn oil
— CO E -rt 0 0
»^ +* o> en
. . c c c
o o e a a
pj w ** C C-
B a c (Etc
0 0 IK
e o •*
m ai a
a a u
o e rj
^> »J E
0 e c
t- £_ X
ii "
00
CN
U
418
-------
I
1
•o
0
3
C
l .
C
0
u
•
-
or-
o •
—• CD
§
xl
•*t e
is o
e "H
IB
*i
CD >2
w«5
CM
CO
o
s
L
*£
*^ Cft
L. -H
a 0
co X
X
^-
0
•«
Att
Produotcoi
c
**
in
CM
CM O) O CM Ul CT O
""is! "" 0 • *""
en to
oo — — o o o
toco »-r- •*
CM
•
o o o ^ m o o
<**ru> r4 O CO CO
V V V V "• V V
CO
CM O CM CM CM CM CM
V ' V V V V V
(0 CO O O O> O O
CO •- O «- "* O) fM
CO CM CO ID CM^
ID CM ^ V
a
1
3 (D CM t
»- CM •«• 0> «- CO (0
i
•H
>-
1 1 1 1 1 OOO 1 O III II
. 0 O 1
+ '"
1 1 1 1 •*• O 1 1 1 1 III It
i 8
*
o*
I1lfMU>| OII1I 111 II
~- i § .
-^^ •
*
1 1 1 1 1 OOO 1 O III II
o o •- •
1 1 1 1 OOO 1 O III II
OOCM
O •<-' — »
II 1 — 0 1 O 1 1 1 1 III II
-ji 8
*" +
I 1 1 1 I 0 1 1 1 1 III I I
o
•»•• o
+
~.~ —
i i i i o otn i o ill ii
OOCM
o •«- —
till OOO 1 O III II
o o «—
, , , , gOO 10 III II
O ' *"* *"*
• ^^
*«^ _r^
1111 * 8§g '^ ' ' ' ' '
1 o • *^ •
*
1.3 I^^j^ 'JB^ IS^i
I «1 t|ssl |^s sst
£!« £SS- 31 2 5" ^S5 dJ~
cV*ii o — • 0 o 0 ^ ^o ^^
£J!5 "inT^E i °"« * «o o « oo
Si* til igssl If! 11
~ll >«5 5S2SE 3|8 53
•g'oS.? ^"5^3 2S^ £S
0-rsi2ii iiiii in ii
a.05 3 to en os i-«zs o-JS t>«
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
K "c*X
-< a
e E E
O 1 1
•»< 0 O
•f O> O)
c c c
0 a a
*• t. t.
0 tr.cz
K
•->
a
o
u
O
419
-------
X
>
f""
Productcode:
g
5
tf
Concentration in ug/L
0 0 0— 000
cc c01 ccn
oo oco eoto oo
CO T CM CM — 00 10
. .COID f»U>
CM ~ ^
enr*.
to oo o o o
o o o o co co
°§22vv
co CM •>» »- i»
1
T3
C. (O CM «t
.- CM ^T CO *- to (0
§
ft
H
1 1 1 I OOO IO III
° °° J.
1 ' lJ^S ' SSS '°. ' ' '
*w . | O " *••* *"*
' ' « ' *" §§§ *°. ' ' '
^
^5 5^^ "**£ **e*
•• •• •• •• •• n ^^ ^ w>? J ^* ^> ^
C t) O»J£*-'h- B» » r-
~e -a 5^ .°5 -S,-0
"»« S2° JS"> -S>
rMVZ2J' o-~0 co«-o o
£^5 -STE i °"SS So-S
Ji& tit isss5 s&fe
I'i II isaf: :w
t.fl > • «*- O 0>
c c c
O O 000
(->•-> «< L. C
0 0 ncc.sc.
oo ce
OB -•
6) 0> 0 ,
00 0
e o «H .
•->«-> E
e o ID
ii '
uo
CN
O
420
-------
en
en
J3
O
u
o
r>
eo co tfl o O O O
••* t-~ «e in o» ** ^
»o en in CM .- ri o> ^r T m
o en •— o> CD co o
i-» co co r> i- ** co
10 O CD — U> r» «N
o> f-. ^ r^ eo co r-.
. •_ »- PJ rx »-
(O
ID
0000000
Of- OO O O O
o> co t oo o *»
en
l-* N«« — — -Otfl O
o> -r»»reNr^ o> • •- —
-t- o r»--
0000000
co o* o> oi u> *- co
(O CM ^ «" C-4 CO (O
OO 00 00
o o o o o o
o o o o o o
OO OO O O
CM co «- to CM o
r- •* (0 CM — v
PI »- *- CM CM •-
*- r«> *
o — ~- o ^>
I - --o v
co o
o>
OO OO O O
00 OO OO
u>r^ r^o •- eo ^ ^ to
I^OCNOIN yom
21 -
a> >
-en n «o m«
*r n 10
O>'*I>
^o o «•> »-«<• en CM to in co
*~ eo *t
in r»
OO OOOO O
ooooooo
o o o o o o o
o m co m CM ^ o
to 40 O f*1 ^* *•" <"^
CO .- CM CM CM *- "
0000000
o o o o o o o
0000 0010
o> co f» m O •" O
o < eo t» —
8838
"
""S 5
S
K
1
O
u.
>
o> <
§
-< a
*- e
e i
«•*
«D fN 1
l!
«
.55
1,1
iw
_
i ill
11
fl Al
« « o -J
*•(.«. FJ,—
• cccc ->x
ee $,-
! ^*
•."^
cc:»*
oo
o >
(S
r»
U
421
-------
ontlnued]
u
f%
•*••' \
tn r- 1
j
CM —
CO •
O »—
e
**•
<•- t»
3 e
m a
jjj
*•
• e
a t>
A&3-R«Bld
Produetco
c
CO
(0
JQ
a.
s
4
3
u
c.
v
O
f
i
a.
c
c;
§
«H
*>
*
I.
*•
C
e
u
i
O O O O CM O O
io T U>T otn co
CM o CM T r» en
•a- T co co T co
o o o o o o o
M r^ oo tn co CD CM
co co f» r- co !>• o
N — -• CM CM — CN
en r- 1 o co o o
eo co r^ <*- o CD ^
TT in CM in co o CN
v ^ n „ TJ- en in
r». CD eo r«- in •- CD
n rt «r rv CD eo eo
mo inin OID in
*? CM
V • V V - V V
to co
en— o o to o o
^J ^t CD f^ CO ^ CO
CM *" • • ^* • •
coco in co
cot f-»co
CM O O O CD CO O
r^ CM T CD t CD co
CO CM • • •— *- •
f-lO O
CM CO CO
^ ,}. ^> ^T O ^t ^t
CM
CM
OO CM CM CM CM CM
O O OO OO O
8O O O O O O
o o o o o o
in •- CM o cn in —
o co *- m o co co
o> to r-» o en CD to
1
T3
** «- CM •*» CO •- CO CO
•*<
co co in T co 1 — -
cn o TO en
• . i • • i a
«» j
— CM + «—
co o T en (O 1 u
• — in o
O> • 1 • • 1
A — +
— CM r-» CD — 1 • II
t". CO T r-
• • 1 • • -f
n
•- •- n
CD ID T T CO 1 — >
to o tn o cn
• • i • • I a
~ CM + ~
• o en
•- • i c*- e
— _i
A *" °"^
• o> >-<- cn
in • i • • n •
— i —
A "
co enr- eo o 1 eo
«— T in co
. . i . . + o
^ n 1 CM
O 1 Is- 1 -^
.— _ ci
A
1 1 1 1
O> ^ f1^ I f*- 0
* m
to * i t^
*" •- *
A
w^r^^roi I •
v»«- (DO ,
. . I . . |
S .- +
0 •
M ^1
•• •• •• •• *• n ^*
• wt
^^ *t* •*
^^ c ^*^
« o e> coo
•X.-»l « O.~' »
CM *• *< O •»
E e C r->>MM
u^d •) 1 E
CB > 0 ••>«.
o o o. H-Q.O
,-JTI 0 0_E
^Tte > *-t
e -D e ••-• o
•D 0O 0 1
CTO a • •* jc
e« o o~o > B
o *» n »•* ** o a
aco=) wwos
.- CM C7) ID CO
— CO O — O
^ CN • CO f""»
*- co cn *• co
— CN —
O T UJ I co
0-3 cn
o — -J «-
• T < m
^•*4£
in — o co in
eo m T in —
CN O • CM in
T in *- tn
T »- CD
in • T- co co
r^ ID • CD t
CM CO t «t
CO CM CN
co co r-, CM co
UJ.°.U>. e^
S^S S
o?ui i co
O -3 co
Ot-J CM
• T< CO
«»> to
*"^
o co tn co in
r. CM co CN •
in • • T
f-UJ CD
CN cn
^ cn T en t
CM • • CO
f^ CO — CM
TOO)
• • • O)
cn rxr* to
CO — CM
. . o CD in
co eo 'in —
ID »- f- T
"-CD
o inr- co cn
oin co OCM
o T -coco
rx in — CM CM
COT CO T
CM «- eo
10
^T. ^^C _J ^S.
t5* _^f ^^ !„ m
c ^r. 5 ^
^^ gj » ^^
•3 ° •
U"' 0 0 0
t- O.JD M
*- a a
C >X •
e *< ** c- <->
o — «^ o a
£••-'•"'•*'£•
O «4-rt U •
o jo J2 a E
e a *• a
*ei^ c •
+• a a a x
o > > o a
ii:.*
5 .5
CO O C
c c c.
« Q. O
m i •f
c cn O
.-> c a
a «•••*.
C. jC
• 0 C
E a c
3 0 S
in ul
0 3
CN «j
< 6394
HVALUE!
00 UJ
«
cn ui
eo 3
«
in UJ
CM3
Vl
cn u
v$
•»•
O) UJ
1
cn uj
3
«£
i I
m_
!*• 3
'<
v «
eo •-
! 241812
: 8VALUE
(O CO E
-v
O O cn
"co E
c e
u u
e e
a •
e o
• o
C. 8-
i§
OO
in — co
CO T CO
CN r» in
CD P» CO
— •- CO
CD in r^
i I i
i i i
CM r»co
cn TT
co eo T
T coo
— en T
o coco
CM CM O
in r- cn
o cn co
CM CO CO
T «-CO
^_
in r~ CN
00 CM ID
CM
CM 1 1
ID
1 1 1
in
in CD »™
ID CM CM
CO — O
in co cn
eo co eo
n o CM
• • w
tO CD
•• •* ••
SC. C X.
— a
e E e
O 1 1
** « e
4* (71 O>
C C C
c « a
•V t. C,
c tcte
K
o
•**
E
0
Al A!
*>
C
E
C
O 0
.a c
Iz
O e
o- «•»
e<
o >
a<
cs
U
422
-------
Jj
>
APC-Residue
PrnHuctcoda!
g
a
it,
-i
1
<•<
e
«4
*rf
Concantra
oooooop
eo in — oo o O f»
•4-00(0 CMOO
go o o o o o
10 00 10 CM«» O
eo — CM CM CM — —
o o o o o o o
0000000
o o o o o o o
o o o o o o o
in i-~ r- r- CM eo o in
^ CM CM *t eo eo CM
"t>
I
— CM ^ 00 — CO (0
i
~*
CM — I- to co + n
• CM • —
eo • l •«- • 1
A
Sr» *r in in 1 n
o* ^ o
«" '~°- '£
A - n«
a
"0 0
0 — P
SB ''""'*!
00 0 eo o
••^•••l 0 O.-' •
(M *j+J O —
E a c t->-«M
1^1— < -H 0 1 E
TO > O 0^
3-g°- OOE
J, 5 ."0^
"*'2'0 > •*•
«-D 0*" O
•a 00 a i
c-o a •-< jc
0O 0 OtJ > 0
Q 4-> 0 i-* *> 0 0
acn=> wen 05
o — — t CM
00 00 O O
oo • oo
eo coo co
o en
V
en CMCO o eo
(O CM— U>
*"" *
CM eoo i eo
eo eo o (O
CM CM • ^
eo eoo t
CM (N o eo
CMCM- g
V
O> — C. >
0 0 O 0
L O.^ 0
4- 00
I^^t5
0-l-« 0 0
§ii"o •
001-3
«-<-H c •
*- a 0 o x
(0
CM
t-« (O en
CM 00 (O
a
eo
eo — o
in -en
CM CM —
en i^ o
O —
(O
^^ «^
^-.
I,'6
5 0
•(0 >
•o o
« -a
IB 0 0
Cum. release
Leachlng-per
Mean factor
(O 00
v en
en CM
eo (D
v V
_o —
r*. in
O Is-
•»»• en
in CM
!»•**
X
to o **
en — **
en— 0
CM O O
in in 3
r- oo *
(0(0 (•
O
V V H
-0-0-.
(.(.
00:0:
K
Chemical
423
-------
1
1
*•• I
en 1
2 1
1
o 1
"o I
CM 1
CO
•1
S-t \
ciV
— CO
ty :
volume:
11
e 4->
^ (•
r* •*•<
22
& \ r«* co
I f** ^T ID f O "~ "
1 •— OJ CN CN
to 1 o^rOOOOO
I to co r~ co CM co oo
1 r» — oo co en in
1 CD •* CO ^T UJ CO
.-> 1 » co •» *» ID to CM
< 1 CM — in u> o> 10 ID
* 1 ooooooo
O 1 ooooooo
tfi \ 5 eo CM 00 in o in
" SOCM-UJCMCO
18 28§88Bf
3s 1 u> CM CM — co en i*»
1 1 *""
1 _J 1 OOOOOOO
« ggggggs
I OOOOOOO
1 1 moo coco o o —
1 1 in UJ r» *» 00 CO CM
1 CO — — CM— — —
U ggggggg
1 I CO — CM — CD O O
I 1 co en CM r. en in £»
I IUJCMCOCOCOCOCO
1
1 ** 1 co O co r. CD CM r^
1 3 CM UJ 00 CM CO UJ CO
II—. — — — CM
1 i «
1 1 to
o to co en I «•»
CM to o en
.1 * • + (0
CM •*• ^*
1 1 — UJ 1
•**
"
v O U> in in I it
O — co o
• i- +
uj TT UJ in co I u
en o *t o c-
M
n co r«. co co + CM
en **
— — *» r^uj 1 u
* — n
— to f co CM I u
— n
So««g» •
- '- 1
tOCMCOCors ^rco —
• r« en CM (^ to • o
^t . . o in co v
in — r- co CM co —
1- co —
Oil
o
O
•
r* — in co r» o**uj
CM t UJ CO 00 — • —
co en • co o co
o <*• en co
CM r^
co in o — o o1^^;
«*ocococn CM -co
v- — • T O — —
uj cor- co co
*t n CM CM
CO CD
M--OCMCO oeno
COCOOCM • en CM to
• . • CM O ^
CM CM O ^ ^
CM CMO 00
inentocnu) 2W2
CO — CO O CO CM -CM
Sen .00 ">!*«
2§5?'g %
-•* S S .
cooenf»cM in r» uj
CM in — ion 5W
BO co r^* to o^ ^^
O CM IO
OCOCOCMOO 5g^
1*^* O CM —
^ to co co
— ^ CM
to co
en o
r» to
CM CM
i 1
in n
to en
co in
CM ID
en in
co co
co in
00 —
en in
CO f*»
O ID
5§
CD en
en ID
IO CO
CM CO
-2
eo co
CO —
CM CM
en co in
CM — «»
i i i
in oo r-
— co en
to m —
ooco
in t ID
CM CO O
O CM CO
o cno
co o co r^ CM
*f *1 co co
l in CM o
- --CM 1
.. CO CO —
e ...
en ID t OJ
c
9
— 1 1 1
*t CM
CM CM
CO •
O «-
s.
^ CO ^~ UJ CO O CM
— CM CM — ^*»-
ooooooo
go o o o o o
o o o o o o
i co co co— I n
10 "t— .
, . i • • I
CO ID
O .CO UJ CO
UJ S t — co co "
- 5S- S5 -5
CO »•» Z
O *
§«
>
•^ 0
e
a
•a
•*
»
B
EC
4
B
•o
0
U
**
o
3
|
0.
i.'
ll
I
O9CM t
CM «* 00 »- CO US
n CD co en oo I a
-22 SHS
« Is
•-> c
•> o
oa e o-o
cT*" »»**•
•-. CB ^» ~*
« c o> «"
...85i <»S-.^
"8 f^Sf
•2s. Jl2 5
§• ^ c e o «
•STe i^t-i
».g."Si S^^^5
OOE O^t-H^*
. "ijr o ^—< o •
>.«. O J3 -O " E
m^ O .« •*• 3
n «~i « I iJ «-»•-• O
0! -< -< C *
*- a a a x
o > > o -
NE^
"» «M
IO IO E
o-o > «
01 t- «Si
^^° -WJ
,-sg 55
^f • ^j fl) 49
SOB u u
a e e. • «
« a o •> "
a i *> c 0
B e»o «_•
C -Ht- • •
L e o
*• o» en jo
c c a •->
"• e os •* x
C£
8
.
0
424
-------
£
o o o o o r-* o
CM CO r** t CO *- ^
oo en »- en co •-
* to to to r^ to
o o o o oo o
r* co in O f^ o CM
o in cr> eo t to oo
ro — ^ CM CM.- —
oo co CM — to o O
in en co r» CD ^r to
co co 9 in co in o
in O O
CM CM in CM to in —
en r*. co o r- co •«
tn in in in in o u>
V V V V V V
O r~ o o O — m
CM co in CM in oo co
vn r-. in en c- I
in
CM 00 T CM r» I
• o in o
en • i • • I
A — «
en r
co o in
. o n *"
CO tO • CO T
^ co •- — eo
^ CO PI
— en to
eo o co
r«. en r~
uv^ m
_ 00 00
to in CN
oo CM r^
•. •- CM
o ~- uj i ^ — co en
o • 3 ~- CM • en
o en —J to o — o
. •<» < in ^ r» —
? 5=5.8!
_i o> in eo o
•" c< — o
wuxino I — ^oentNoo
_ _ CM O Cft ^ • p^ f^- CO
. . i ™ . I «j o CN • in ID rr to r»
v— _l CO P* CD ^ »~
_ CM + ~ U>«- CM
.— CM »O CM CM CM CM ^
ov o — « • • ';
lg .•. Cn O> CO
i 8^2 a w
•^ en
00 CO
O CM
r~ in
v y
in •«?
oo n
to r-
»- CM
IT O
<0 CM
o to
CO «*•
to o
*" V
^r to co
in ^r in
mo o o oo o
^- co oo in •«» en co
*" in to »- «- co co
in »- *- CM co *-
ir*j o «• UJ I ^ co co ^ coco
.in .-.-CM o-3 I1 cnoin or*
i^).i* to VV
A •»»«-.
cor-toioc-lg gSSiS" ?I'^eo §to
• • i • n • co • * ^f CN
_ to CD in CD «•
— u> I co — «n
O O CM CM CM CM CN
co co
' V V V V V
ooo o oo o
o o o o o o o
00 O O OOO
o o co in en r^ o
CM O P- CD tf CO CO
CM to i^-en co co to
I i l i
I I I i
CM tO >- CM f I I I
• in
to •
eo
o o
en co-- w
co eo CM
« o to CMO
u>
• . t^
•o ^
03CMCO- CD ^t—
. •*- — ^
— CM • ineo
cooco n
I I
CD IO
CO •
'" V V
•— o>
it •)
c_J
B^.
a CO
CO
in
en
CM
*- it 00
.- or-
o —CM
in o to
o r~o
o «- r>-
«t —co
o co to
CO CM TT
CO CO ^
to tot
CO •fl- CD
Of-0
in v —
r-*j-co
•-> c
no
en > o
o to o-
-
•*• g-
O O
•D eo a i
e t> a. • •* •£
• a o OTJ > 5
o *- n •-> ** to td
O.C03 co en OS
OD oo en
CM en
en co »-
oo r^
M A)
•• •* ••
ec e x ! «
•^ a i e
C E E E
Oil O
-H to o a o
*- o> en ^ s
C C C .0
B m o •""
*• i. L. .^ -~
cectr -
CL<
425
-------
CO
u.
APC-Realdue
Productcode:
e
£
V
_J
n
3.
c
Ml
Concentration :
o o o o o o o
tD4n CM to en o »-
co r-. CD co «- o to
^ »— ^ CM CM
§OOOOOO
O OO OO O
O O O O O O
.- ^r co in o ID T
.- co •- co en o CM
*r »- CM CM »-»-«-
§000000
o o o o o o
o o o o o o
0000000
UJ *J- o »- «D CO »-
in ^r »- CM co r» ID
in CM co ^ co CM CM
a
3 t**ta>o a a
CM~ 1 -^ U
^ u
A
O coco co — 1 n
* 'J. ' '1
r- co r-.cn co I ^
• in o o . en
en • i • - I in
A - BCD
n
^ en
« «
a -J
•• •• •• •• •* n """NI
a «
^^ <^ •>
"« § • coo
•v»— 4 •> Q.— •
(M +* +t O •"-
£55 "STe
'oi > o ••**
o o o. H* Q. en
"""Slo > •<*-
«J-0 0-f 0
•D eo e i
CT3 O. --^£
ee • ejj > g
o.
*"• E O ®
a DOC
*• °"2 £
*j a a
£_>._>. ^
O^^l 0 «
Cf>f-> *• t-
O-H~4 U •
O XI £ ffl 6
"a i-< c •
*< « a o! x
CM"* 1
CM
p«eo co
o -co
on
CO
in -p»
r- coin
en io«r
eo «-
CM «-
ID
c^5j
n __•
^^ ^3
•ID >
•o o
u> o a
e e c.
« a. o
e i +•
« o> o
^ c c
o -«t-
• u c
e o «
3 e o
0-JSE
(D CO
CM O
CM
ID on -H
^(D 0
co n o
o in a
o— *|
o
vv t-
•o •w —
(D «D E
So I"
Cum. release calc.
Cum. release calc.
in co r-
ID CO CO
r- ID t
^™
• CO •
CO CO 00
oe "e'x
e T= I
•2 i o
<- en DI
cue.
« O OJ
*•(.£.
0CCOC
ee
o '
c
JE
en
^.
U
426
-------
en
cn
Q
o
o
o
~< e
81 O
a X
CD UJ
NE S
it in
CM «—
CO •
o —
as r» no oo o
•^. to o o o o cn
O CO in »- Cn Cn "»
.- •- •- CM
o cn CM o o o (o
^r CM co r-
o o O o o o o
o o o o o o o
o o o o oo o
o o o o o o o
ID co r*f* o O n
t** *t *t oo r- «- «-
CO •-*-»-«-»-•-
oo o o oo o
o o o o o o o
CM in en ^ co o o
^r r>. — *- o — w
in CM P> ^ t co m
rv o o "f o en «»•
CM co co o oo en co
to«- oo
in rv cn
o o o o o o o
o o o o o o o
o o o o o co o
r~- TT en in in in r»
CD (O CD T r~ CD —
CO — — CM — —
oooo oo o
oo o o o o o
00000*10
o CM iv r» co T CM
„ to oo — t in o
CM en to CM CM co »—
Tf (£> —
o i i i i
o
o
I —.' cn co in (O CM — •
no •— cn • co ^" CM
_J cn — O co
+ — .- .- to
in en •«»• t^ -co
'S eo«ocM enco
co co •«»• co
1 H r»-pu»-«tco in to t rnco --^CMCO
* ^
cn ^ ^ oo co +
• O to ,
eo . i . . |
A «- "
§
— — c.
CMOco^m ^ r* co r*. CM »-
CM — CM »-
V V
V V
~- 5
V CM • — V
O —CO O
»- — o o
«- ^
«» cot
coco
CO
CO
moo
100
p-cn
o
•H
BC
e o)
o >
•»4 a
*> ^
O^- (D CM T
t — CMf CO >-CO(0
~*l
o
o
o
«
il
• - «*-o
•5*o«i tt-
,= FT*"
o t-.e
.
ill
i-
6
.
CS
O
427
-------
3
C
g
O
ip i"»
en t
co •
— to
•^ c
n o
X
CD UJ
o o o o o o o
oo co r^ in o oo ^i
•^ C3 ^t co r> CM
^ ^r in co T ID
OO 00 O O O
CD O O f"* CD 00 ^
oo ^ r* us CM eo r^
CM — — CM CM — —
CO CO U> US CD U> CO
in us co us ID us aj
co co ^ us o oi o>
co !•» r~ CD to r» r~
oo o •- U) ^r O co
us us V) oo oo ^ "J
ous us us us o us
"• V V V *~ "• V
Tt O CM O CO O O
co co co CM r~ »- v
en rs T CM us I ~
to o us o 01
. . I • • I O
_ ID TJ- — IO I n
• o uso
en • i • • I
A — «
* 00 00 US O CM •
. - . * r^ rs •- r^ • i
O O • U) tM CM
— co r^ — en
— CM o
O — ui I en rv r- en
o • 3 co us • en
o co —i co us n en
-• ^ *» co co
O> ^ US O f- I <~
*t o us o oi
. . i . • ii a
us r* en
eo — us CM ob co >CM
co in -CM — —
^ co — to
Sg^SS '» S^.SSS Sr.S
. . I . . I ffl CO P) -US U> — US 10
_ _i CM us en en —
— FM + —> US— —
Tf CM
O o
CM CO
o o
o us
us
CM CO
o «-
CM CO
oo
US
l^» O O US — ^ CO ^ «
oi o enr<_J • — •-i
la • • •»- oo
_i ocoen oco
*"" "*VvT
*t 10
CN »-
O •
«.£|
*• »
§in o o o CM o
enr^ t>- co oo
• V • • "CO •
CM coeoco «sr
CM »•• *™ oo r*
V V V V us V V
coor-cMO I n
• co t —
us • i • • I
UJ CMt CMC>- I
US CM O
. • I -f
o co ui i «r
O • 3 US
O CM -J O
. en < —
US > CO
CO « —
— a> to to ta
A
till
.-» — enio us co
O> • f» CO CO •*
C «M . • 10
_J 0—1- CM
o> en r» CM o>
r^^rr-.
e • • CO
O) COCO CM
CO ^*
co •«-
— ID
V V
I I
o> «f -too
-0-J
• t
V O
in CM
— CM
in o
CO «»
— •*
»t IP
»«• CO
OS *t
CO CM
V
I I
CM US
en •
i
e e
0 2>
•H O
oi^coeo—
o en i >- co
OCO"-CO
cousococo o rxr«.
IO U> (O CO P^ CO
(M — US (O
us —
S V V
o en
co us
to o
en r»
en us
CM co
r- us en
CM t n
o us us
en o o
O r** us
us »T us
I I I
I I I
us (_
us co co
*r to o
CM CO (O
_ oo «-
CM P» *r
•- CO US
— IO O>
o us co
us r^ en
co <-1 "5»? -i >» ^ J
^S 1^5 i E -S
»< O 01 • "* ~"^ _
£2°. *:££5 .25
o<~ e « o e -D o
£55 ^TE i a«S SJS
c?SSL -1^ g^«.5 s|fe
•f^- °33 S3552 S f5
w>Tif •««- o—<- o> oi .A e
c c c A
<- t. t. -J —
e KCC -i «
S
E
«
• a
O >
a<
CN
O
428
-------
:
£
0) «
3 -O
•o o
•H 0
M -- •
•»,
AFC-Rei
Product
z
§
•J
1
e
4
C
Q
^^
icon t rat:
•»» D a
eo 1 I —"^ I
A
en CM^ to t | *
".-. , n.°. i
CD
— II
l>tior^ — o £
en • i • • I «-
A «- « CM
CD
II
•• ••
» e
•• •• •• •• •• c) v>
0 91
r~* C ••«
DO * COO
V.-X « Q.^ •
CM *•*• O ~+
E • c ^>-**M
i^i-< « 1 E
0» 0 * V,
o e o. *• o. at
rt ~O O O E
i. a > • *-
•5"° •o'S i
c'w o. «-M j:
• « 9 O"O > «
Q *• •) ^J *• « 8
acosuxoos
•- CM»- 1 CO
to too r-
^- ij-O CD
O IO
§oo
-v. 0 E
v 0) . ~
J525
« CO*
C. Q.J3 •)
*• « e
c^>xt c
0^^ O •
C f-> •-> •*< L.
O-H-< 0 •
O A A m E
« « •»- 3
-2"«"o § x
0 > > 0 0
O «-
CM
CO «DO
10 -en
ID QIC
n
f» -CM
10 en 10
n to en
10 en
IO
c^5_i
en t-
E -O
-'TJ
T •
^D O
10 0 «
« e c
•) Q. O
« i •*<
e tn o
i-> C «
e -<*-
• o c
E a a
3 o e
0-JE
eo eo
CD CM
IO CM
V V
CM 5
CM CM
r-«»
o eo
I-. CD
»- CM
»- CM
1010
V V
*»•«
-------
en
o>
c.
o
J3
O
CD
i
in r»
CD T
CM CO
o o o o to
r- to to co t
co co
in co
o o o o o o o>
TT f» co in co CM ID
CM ••• *~ CO (D CO
*r *r in co en
3 CD O O O O O
.- to in ID r- o CM
_ CD m cs t u> —
*- CM CM CM CO
SOOOOOO
co in CM u> o CM
to CM t CM in co ID
> co CM co co in O)
O O O O O O O
m tn r** O *T +• —•» ^^TOOO OJCOtfi
en- So o. -i- co o -in
. . i • • ii a '- • • en »- in
^ CM + •— in co
CO CO
O UJ
. — . t.
S*> I 03
IUI
to
CM CD
eo
e
I i t co ii
• O
— • ii
en o f* en o I —-
co co t *- 01
r« ^ r* eo i-»
ie ~-
„
o i i i
o
o
(O in o r» co
~- CO CO — CO
_ o • t CO
co CM ID in
eo ••
t (O •-
O eo .f">
«» CM in
I I I
t en o
in r- o
in CM —
«— O CO CO CO COIDCO
encM -inco en- —
- co (D co co co
«•• in CD co «-
<» 09 CM «-
eo eo
in eo
p^ — eo co us
f- m in o> co
T* CM CM — eo
in CM in *~
it «. r. .- co o (0 co
,_ *-*- CMCN in
o o o o o o o
riin — co o o en
in co o co — o >—
CM •- CM co t CM en
eoco<- —o '- — eM
en en — CM o eo
mo!---g tio
r> o
(DCM I in ID O
co co '..:'"
t »- CMr»in
*-
o o o o o o o
o o o o o o o
CM «a- CM r> o r>- o
co uj co r* to — «n
in CM co in ID r^ *r
CD
'S
en
e n
o >
-H 19
JJ'O
I?
s?
— co ID
ift co r^ in r*. n ~*
n.~
01
in
•- • i
co coo co en
. - o co
o o • CM
co coo r*
— — o
in in o en en
t CM «— CD O 9
o — en in co
en r- co c
— — o o r-
en co
to
t CO CM
CM CO
CMtoiScM
- V V
^•eni*. — co + a O
NO mo
OCM —
B *r r;
CO CM 00
CM
o
CM
coo*-
co co in co •-
in ^ co eoco ..
(O CM inCM •->
in in— «
1 I I
O--CM
. eo •
§^r
.-
01
^r r- co in u
oocMtCM eoint COCM
oeneo — CM co in ID en CM
eoco- CM I-* — — -rP
• —CM r> en
CM t
CM r*
o
N N
*• en o>
c c c
5 22
ffl
o
o
o
*•
u
430
-------
•o
e
3
c
c
o
u
5-.
in f-
co n
CM 03
CO
"S O
a x
CD U
N6r
«a- o
CM CO
w •
o —
*. O)
(,. ~t
SlS
s
c
o o o o o o o
— 33 05 to t~~ <•* *O
03 O co ^
oo oot
CM CM — CM
v V • • • • V
to co o O co o co
^ OD OO
V V • -V -V
IO CO IO
CM CM O O CN CM CM
- • CO CO • • •
V V
V V V
o o o o o o o
o o oo oo o
CM (O COOJ O CM •-
•*- to r» CD r* •- co
CN •- CM CM CM CO IO
3
t.
0.
««- -
t, — CM «T CD •-CO ID
cl
00 — CO COO
. i • • 1 co co r* • CM in
—1 co r~ CM ic
•-CM + — *» _ CM
r~+«~ o CN uj i — ^»-
«-ino o>
•tfl< co -co — r» »- • • «-
I + IO CM • «- CM 00
I I I
en cMf^ cvn
• coo
. r* CM co
. _ . . . .. _ O OO UJ I — (DCO^t CO-«
• co coo x- o*ZD »- ^«co in»-
r . i . . I _. Send CM CM — CM^
" ^ ^ v v
A
.
1 ;_
u
W in co cn — I in
e> CM oo co
~ •; • •;«
o o> o> o> CM
O CO • CM CM
rx co co
CN CM »•
in ^ o o—
io.in coh-
*t m CMCO
tnco^- -co
*^ CMor^oeo
o> CMCocMcor^ • • -
01^t<*COOOh*
n VQ
V ***•
VV
ID CM(0
r^ co
CM
I I I
oo in o
*J- tO CM'
CO t CO
O (O OO
CM «- in
ID TT (O
CM CO CO
at • • CO CD
'5 85, v
0->- CM
o co CD •«>• • -o-i o> •
• * • 00 • f** * **
5 vv£ vv
osor-ocn
5rco *ro
o in in in co
cocoon £ CM
o-io an at
CDfx.lOCN TfCN< O—
ie«en o co »- coco
.-CO CM CO 10 100)
SS2
SSS™
O10 —
•- CM
u
431
-------
i
Bottom Ash
Productcode:
g
5
CO
o o o o o o o
en co co t^ in o en
— CM 9 CO CO O O
CM— — CM CM- CM
o o oo oo o
0000 000
— co CM co en o o
CO — IO — O 00 T
(D CO T r» CO O CD
o o o o o o o
§000000
000000
to o -in o u> o
«r CM r- r^ 10 in co
co — — co ^r in o
e>
0 0
0 0
" JA
— i e "~ ~*
00 0 coo
•Xs-< 0 O.-' -
CM *•*> O •—
£.2.5 0 i E
0» 0 0^.
O 0 O. «•- Q. O>
»^T3*< • » H-
(.0 > •*•
0V 0 *• O
•o 00 0 i
CT3 D. • •»«X
00 O O1J > 0
Q *• 0 «J ** 0 0
0.033 CO CO QS
IDOO
r* -o
O CO —
*"o
1 CO
^-
en
IO
to
O CM^ CMh»
v r* co rv to
— — • 10
to CM eo o
CM CM
to in o
CO (O •
m CD o
— — o
c ^
I 0
o
in
CO
o
V
A
Total Concentrat.d
Availability (mg,
Availability perc.
Mean factor above 1
Max. Cum. release (i
CO (O 1
CD •
CO
CO
eoo-
co coin
in -co
IO CM
in
r. eon
o • —
co coin
en —
•
"oi H
•IO >
•o o
IO O 0
0 0 C.
0 O. O
0 1 •+•
c o> o
.-> c e
0>H co eo
CM — CO
K C X
-4 0
§ f f
~4 0 0
*• at o>
c c c
000
*• L. C.
aa.cc.
tc.
0
O
e
O
in
tN
O
432
-------
J
1
en D
en
c
o
o
O
5j
to t
o •
CM 00
j
•M e
19 O
£ o
JE: (.
«E »
«» O
CM rx
n •
o —
«
IH O)
L-*
9 0
m
CD
*$
'•) o
< 0
*»
§0
3
*" T3
.•*• O
*5 «-
DO.
B
CO
s
i
i
d
>
C
m
j
*
*
_j
e>
e
e
o
«4
*•
0
k
4J
e
o
8
OO OO OO CM
CD CM CM f~ CO tO —
r-» O O O co to
— r> *r to co co
o o o o i- CM to
co eo T co o o in
r»- en o rv
en oo •« 10
OO OO OO O
CM O CM 1 CM CO CM
— o f» in to to co
— CM — CM CM CM CM
O O O O O O O
o o T co »r o en
i>. CM CM r-» co o co
10 O CM CM CM T UJ
— CO
o o o o o o o
CM in en CM en r> to
o o o o o o o
o o o o o o o
o o o o o o o
O O 9 — 00 O 09
r~ CM o r- o ^ oo
o o oo o o o
CM O — r^ en co
o o o o o o o
OO 0 0 00 0
r. — »» i>- ^t CM o
CM CM co -t^ — co — -to inn «»coln i
— " ' " " _j en v i> CM "~ — CM — — —
«- CM •*• —• in TT
I i i no 1 o i i i i ill il ill i
• — O ;
— . II O
>^ . •
1
i
U)n^ ncM^
— co 1 co en en — ;
— CO j
N i
^min^r^+n r^r«.onco inen— —n eniocM no
coo mo c- en en o • r* ton CMUJ cMCMn •!•
eo CM CM o in *~ oo
CO •«• O — • f-
— co in o co n u o o — en n — CMO o CM i cncoio :
n o in *— ^* to to 10 CM m en • CM CM r^ ... :
..i . • H oo oo • — r~ COOOTT noncon^-
at r~ CM co i CM in o ID :
n M —» o o J • CM • • —CM
— «!••+ -.'KOI O> CM
«• C*« «• CO ^^ CM '
A v v v
.*T|.^a in »— « — f*» ^tenr*« CMCM •• ^ « *• i
en toco— UDaaaDCM^cM^*
CO * CM — 10 T jnj ^ 1 ,
>> i
ie«».incoBit oenuxoco enien — — *• o CMU> COCM
IMCM CM— c»- o co en — f» encMt — o -H-enm • -, •
..|..+ r»u>. n to—— r^en g ..— en, in
o co — cs n t CMIOO ."»
01 ,, 1 « oo o or^ 3 :
^ ^ '
o '
0 fl O> •• •• * • ^ *•*' ^ "^ **O»O»^C
^5-i S*3» <«^ *^ c > -CD> oo a>flja»-»
MJ^^^ o — . a coo TJ o ~* ~* *» t. t *J —••
E"*^ 5-*tM £ 5.^ « ^---o «« «o:o: •£*
^55 « • E -*- ffl««DO« 00 K 5,^
II- -oil ISssf gfl 1! g 52
*"7^B ^»«^ OJO^flE ^*C® ^*»«* E CX
"g-oS.0.*^ si-c0. ^og 55 5 **S
vO ® O ^3 >* w •** ??SS 3fl)O 33 ^ J
acoswcooB i-«s= o-i= oo o-<
VO
U
433
-------
O O ID O O
.1 So co - in r-
CO • —
CJ> U) • CO CO
CO CO (O CO
tO *- CO
O t m in r»
CM - «- OO O)
ID «- ^t CO
oo oo) 2 «- o
"".".gSSS
«- en to
in en o>
^ o o Is- en o
to en t to Is-
"SCM-"0
.-in oo o o o
co «sr in oa 10 -- en
to r-* co in ^ o
»-CM CM CM CM
eo —en co CM in en oo — O
goo"".0^ °-°-~ ««
1A
o o o o o »- o
CM co co -r «n co
en co i**" i c*- u
o in in in o in in
«• o o CM o> en in
10.". , OCM^ K CM -
I • * I . irt **• to
«•
CM o CM r*. in co in
.- en «*
in co co
en r- «-
S*r in
in ic
O «N 00 O O
m ^- »- Is- «— «•> O>
u> coo CM en 010^7
ooneooow
-01 -v
*- CMCOOO ooo
o> oo in 10 T •
(NO OCNCMCM CM
• CO
V V V V V
5 - o m co co in
CM W CM PI CJ CM CO
13 t> O
CTJ O. -^
C« CD OT3 >
i CO |J *• *
O.W3 tO«7) OS
so
CN
a
434
-------
1
i
e
0 C
< t
§1
il
^
B
Concentration in ng/l
O 0 O O 00 O
co en o> t «o o f
v n CM co CM o f^
CM CM — CM CM «- »-
O O O O O O O
O O O O OO O
«3- o 10 r*. r*. in o
CO O — O f~ O O>
to co t r* r*-o> n
OO 0 0 OOO
o o o o o o o
o o o o o o o
O rx to to O) to co
en to r- CM at «t to
CM 10 n n f i->
i
w to CM ^r
•- CM t co «- n co
•M
CM 0 t IOCO 1 U
n^ i «4^ 1
«— n
A
O — u> into n n
10 .- f i- €>•
. . i • • n
co u
(O — r- O — n n
o> " i ^ " + *"
A - 1
*•» Ol
« 0
Q-J
•• •• •• •• •• 9) *"•*.
0 0
-^ •*•
O T3 O *• O
13 0O 0 1
CT3 Q. •-<£
• 0 0 ots > 50
O *rf 0) t-* ** O 0
Q. W 3 CO CO OS
1 1 O i IO
10 10 • r^
TOO) O O
0 0
*- 10
V
gtooi corv
r«.oi o<*
IO ~ • ~T*
co n «- co
CM — to
01 cno i o>
it to en
O) O> • CM
co to o tn
^ *- O CD
^ CO
V
• • ••
d «• •• **M
•— o> • «-»
• E O 0
"0"" 0 0 0
c. O..Q n
~ 00
S2^<2 *
o-«-« o •
O^Xl 0 E
^25^c5
0 -4-4 C •
•»• 0 0 0 X
0 > > « 0
to
n
n -o
«» tnrv
CO CO CM
cot to
0> •!-.
o con
10 —
.
Cum. release 64d. (mg/m )
Leaching-perc. 64d. (X)
Mean factor above OTL
oco
^- CM
t CO
to o
Vv .
OO *
CM CM
£E
t IO «H
CM IO 0
to to o
CM CM 3
^ ^ C
V V £
CO CD E
Q O O)
0 O
0 0
U 0
0 e
0 0
0 0
0 O
C 0
c, c.
E E
3 3
OO
CM COf
to o'co
CM f*. IO
Oi*-n
o to co
• CM •
Chemical Retention R:
JVange-min;
"range-max1
U
435
-------
01
en
o
o
o
en — in en en *»
CN CM PJ to «o o>
o o o o o in •*
CN I CN <» CN 10
^ m F** ^ ^f n —•*- CD O c*> f** f*- r*. in co w ^f
"S.T10.0. « 1" en".01. CM Sco"0 =£
_ _J CM t CO •-
». CM + — «O CN
to & f**
O CO CM
CM CO
e
e o
co to j-
cjj to to *r eo
o o o o o o
I-. T CO CN t- U>
.- »- Ol CN IB in P»
CM »- — CN CN CM IN
CM O O O O O O
;.: en r-co co o CD
r- o en r»- TT «- u>
CM T CO CM P5 00 CD
O
T to n
• o
O I I I
O
o
II It
BJE-'ES ' " CM^gSS S^g
*" i . i Tt^r- »- oencM
oi CM en o t co
^ + co — —
eo
g ^"VcMO
o en r*. j»- co — o
. . i • • I
«o
to en in CD in
eo eo co <* co
co t • CM to
. ^ r* *- O
o CM en en
id •— to ^
,r jo
CM
into
MO
in CN
r- CN
tO «- CM
.- »- CN
O) (O O
O) »- CO
r^ in CM
> oo o
cocoo »» • • •
ID o
• • I . * n
otococso N
•°-g
s
s
CD CM *- ID CM CM o-Cn
CMS • ^'°-'f>- ««
pen O
•woo ^
CDCM-*
—COIO
M N
te. c x
•* CO
e E E
Oil V
^ i 01 CO
*• O O) -Q *
C C C JO
e a a -
*• u t. •- -
0ecce --x
K I-
, _ o -<-< O
~t« > ••*• "-2-Si
5-O CB*»O « « "•-
jliBii In i
O.OT3COCOOS
0
O
e
• o c
E O O
3 C O
0-IE
E E
3 3
00
*5
C. .
o
e
a
U
436
-------
•o
e
o
"
to
o o o o o o o
r) O ^ —
NO no
CM r>.
in •«
o •
CM to
I" O <
o ^ L - - - —
,- . *- CM ro to co
CO
CO O O O O O O
oo tn r^ p> ^- — in
n 01 o> co to
"•! o
:s x
03 UJ
\5
o «-
£
I
cocooi
»- -eowcM ^--
- ss 'a «
OO O — «-*- •-
— CM
in in u> in o in in
v v v v • v v
CO
O — in — c-- I n
co o m
c-0
ooooco'j — CM —
tn m •- ic n r<--o)
— CO • 0) tD in
CO-^ 0 CO
CM i>«
V V
oito
co ci
ID CM
10
to CM r»
CO CO O O O O CO
— a> CJ»n u> m to
*~ co — co eo
r. CM — —
CM «— co
vvWV^«o'V
it- 0)
a o
110 C
Bo
ooooooo
OOOOOOO
en «- o fM to co oo
co CM « rj «u> 10
O CO CM '
CO
»- V V
'
o> o
V V
-I li 1
CO in
v v
co in.
10
O O to —
I CM CM CM
I
CM
A
I I I l
I I I
— CO I I I
Ol - - t— "
10— QO
,MvV~-
CO 'tCM O*
II
CO
— CMCO O
CO —
CPU>
COCMW
SSS
i!i
p|
II
WCOD
e «
0 X
a «
*- •>
• COO
> *CO> OO C0CB^
S§ 5 •% "*"« ^flCK T«X
cacooa oo tc. 5 ^
t5 •»». «» -^ *-*;
OO CBO.O «CB>-'>J E t -0
^ § c-5*- «e « o
O " £• «• c. J=
c • • o e • • O
o o o x i«5 II
U
437
-------
1
•C-C
11 0
< u
4-f
E U
_6|
tSa
§
e
1
1
e
c
o
«H
*»
Concentre
o o o o o o o
«r O xr — to o —
10 « o n to o —
CM _ _ CM CM CM CM
OOOOOO O
o o o o o o o
CD CM O r* — O O
XT co en to co n r^
eontor.cn--
§000000
oooooo
oooooo
ton en o o o o
— co T en to o —
T CM n n T — —
— • ^
•JJ
!
— CMTT co — n«o
i
•n
n- — •«t in o 1 a
n~ i -^ 1
A *~
la r-to O** a a
no in o
• . 1 • • a
*f eo r. o to * a
• — to o
en • i • • a
A — + •
*•> e
•• •• •• ** " ~ ^
_y *?
^^ *»™ ^B
"c o • no
IkH^ "«T^
"tn > o 0^-
O 0 CX •*" O. O)
^J-0 0 0£
*''E'0 > •*-
0T) 0 *• O
•D OQ_B 1
00 O O*O > «
?t CO 5 CO WOS
o o o i n
— • o co
CO O— 10
— — ^- m
— CO O
— to
o tor. oen
en co eo — en
co CM • — n
n nn —
r* eoo i CM
co too —
»— — • CD
en en o en
— — o en
v- en
y
en 1 1-»
o ••«•• o 0
O -H-« O •
O Ji Ji 0 E
«-H-4 C •
*- 0 0 0 X
H-«SZ
en to i
to •
CO
n
— o —
n — r»
to n
o
CM
CM O (O
<* — *t
eo en
to —
o
x« _j
en 1—
-_-
•o o
to o 0
urn. release
eaching-per
ean factor
0-13=
CD CM en to en
10 CM tOft
— CM tn^ n
to o en r>-CM
vv
— co n o IDCM
— T .CO •
en— — • —
cot
co to
r*. n *^ f^ p. n
co r^ -H co in •
en to O
to co a
o co **
*" V 0
V H
5rKM K C X
«,COE c-«
Q Q D> Oil
— n E -H 0 0
~ *• e» o>
O O O 0 0
_> _« *• t. L.
ss &**
11 «
00 O .
22 1
00 0
it s
3 3
00
r-
«s
U
438
-------
1
IJ
01 R
01
C..
C1
X!
0
4*-'
o
O
%^
in
M -1
& r*
us *r
*" CO
.
xl
•M
•H e
Lk Dens
tractio
9 X
ID UJ
PI o
E.*
CM CM
CO •
O —
r
•M 01
L. -<
a 0
cn*
- JE "
0 0
nbined .
aductco
15 t.
So.
5
B
£
1
i
S
O
3
e
K
x,
(A
a
e
ntration
u
|
OSD O O *» (D in
— CO CO IO CM f- CM
*; in CN
o in fx
— o O O to — n
if CM CO CM o co cn co
«» CM ^ rx o o co
— CM —
o o o o o o o
o o o o o o o
en in — to o o o
co o co co co co in
^ CO to CO O CO ID
«•• ^ —
T3
«_• CD CM Tt
— CM Tt CO — CO CO
H
eoixrxeocon-x cocoocorx rxmeo CMCO "a-eoo
fx 0 100 01 •JlxlON— Oi -O O- -COin
. -l-.«a V • • O »-CD— CMCO CM — CM
— _j — o in eo
— CM •»• •** CD
1 i i ncn | o i l l l ill i | i l I
• O o
*— • n O
**• •
H ;
CD t in CN ix l n co in co ix o — rx eo coco COCM —
ft) •- V O CD CD O — CO — -CM CMfx CM — CO
. . l • • 1 in in • cn CM COCMCM cn ^t -«nin
CN CM v *t — ^ men
»• ^™ + CO *~ Fx
fx^tfxcM^ii'W co-eo — co OWCM eocM "2-
COCM t— CM CMCO'OO CO-CO OCO IXCMin ;
. . i . . B — • — in CM CD mco coco o to co
CN ^ co o • — co in o — —
.- co 1 ^j-CMin in CN CM ^r
1 rr O — I ix — CO CM CO— OOO ;
to • i • • + a. COCO-K. tcM CM ... :
W O • -OOCM CO V
A - +~ V2*" V
V
V co
— coixcMOn^ -CM-«»O £coeo CM in I - o to
CBCM in— O CDCOOCO^* O*^* **TCO ...
..i..+ 0 cDco-cMn otrcp — in CM in co co
en _i coco— CM —CD «»C3
CM +^^^CMfxrxCO COCO
— CD ID IO CD
£cM^52"-S, °.°.§^rx SS01 SP: . ".S01. -£
..i..+ 0 coco- in CM— co— cn — • — cow
en _j rx ix o co co eo co c cn
co + ~» — — o • ;
III) + ixllll III IIMIII
in
CM '
+ *"
co in r» in cn n -x eo ix.cn CD cn «» — co coco °P't !
N.':,u;0.*«' cMS0'.^? 8-8 Joe! » -^>-
« „ +d «^2 S 5 " §55 0
*" *" *"""«* !
in — co com | — mo— coco cocoix coco *• <» — cn
S-.T8?0..? SS^S g.rS SS "S ---
eo -J mco— to 10 — 10 O
CM +«" IXICCD eoco^ :
*• *" *"*" f.
o
K
7 "j "ii cn *t • & 00 0ceee -t!**
£55 01 E i 00 to 0 0 00 K ix-
51 J -s|| Sfllf Ifo II S 43
J^ TJ ^ • e *. o -4 -4 o • 0cno 00 T) . T?
•*.I«VS33'3 ?l" ?? 1 S3
.g-SoM-S-5 iss-x E|| EE ° J.-3
•clSscowSi f^^ = i S54 wo o-<
439 ;
ac
CN
U
-------
•o
0
s
o
cno o o o o <
_ co in CM in eo •
CM Ol Ol O> CO
^ in
C. TT •«• tO CO — *t O
to in cn *r — 01 cn co
— — CM co r^ —
.-.- o o o o o
r»» en ex T •- co 5
o
co r- r~. r- C-- I o »- o O co *r
tftto o *"•• *t • CM co ui
. . I . I • in uj • co co
ffl CM O CO CO CM O)
«. IO I »i r^ CM CM
o> r-
ID-*
— CO
e
o
CM CM I U
CO •
e
o
en ** in r». in + ~»
. — ID O Ol
o • i • • + 0
O CMIU
O
O
Ul
00
CM
CO CM CO
(D • —
*± CD CO
(O • o
r-x ic CM
Ol CO
vv
! ID(£> _ -
) CM — O
sj ^« -M -* w I CM
QG OO Q*-
»- *r CM
o o to in o in in
CD«- ___ r- .. ..
to o n o ^ I
co r^ — tn
co CD r*. i
CD
co«-
CO
c- •
in CD ID r- o O co — CM CM
co ^ in o — t -10 Jg J2
r-,— .CMC) O— «o«
— »t CM
CO -CD IO O) »- • *~ •"
o u> • »• »-
_ IO Ol IO
«» 01
(O CD
V V
in
m co <0
— CO
MO oo or~- fj;
in CM co co u> CD 10
(D CM • • CM r* co
c*> ^~
co t~-
to co co o — o in
co 01 CM co r> co co
u> —*«—«— CO * CM
CM
CO
o o o in t ~- o
CD CO CO CM O V> CM
ID
CM
CO
ocor«.eo-
.«) CM CM
•a- . I - -
) — UJ I CO
-
CM<
O r- O
•<• -in
10 co
Ol
(O O
CO CO
in co
V V
'S. SSSS5S
oi co f co
I en o en
^ co co
f. CM CM
in
co
O O COCO O O CO
ID in i*. — «» I w ir
O) in CM «- »- o
'5
O> r^ CM O)
CD • *~ CD
eo CD
to v
o>
co CO
-------
s
Combined Ash
Productcode:
a
e
_j
1
e
«H
O
*4
«<
Concent ra
i
O O OO O O O
CM »- ^ ^* CO O tO
r*. to at *t a> o
n 0
e-i
•• •• •• •• •• 0) "*••*
~. t- 0
"in o e coo
•»»«H 0 CL~' •
CM *<*• O •—
E 0 C i^ -MM
•_.-»<—< 0 a E
O > O 0*>.
oca H- o. o>
^••o *< • m t-
(.0 > •*•
0 TJ 0 *• O
•c 00 0 i
et) o. ••- jc
00 0 o-o > «
o *• « «-> ** o 0
aw 3 wen OS
to r-«- i en
^- — o r*
coco • 10
*""".- 10
V
co r- o> to O)
IMCO -»-O
^" *J CO CO
CO — 10
u> to o i en
CM CM • 00
IO IOO CM
CM CM O t
^- O)
v-
S~~'^*£
!!£&!
-to."
*•»—£.>
0 000
t. O.JO e)
*• 00
C > > 0
°Z>3-£ 2
o ---< o •
O JO JO 0 E
0 -H-« C •
*• a 0 o x
o > > 0 o
£«£!£
O CM 1
CO •
CO
0^0
IO »-CO
— CO
CO
O) O f**
co CM in
O «-(0
t o
CO C*i
•i5,
1^
rr 0
• to >
•o o
^ .jo
10 O 0
Cum. release
Leaching-per
Mean factor
2S
OO
CM O
*- CN
V V
(0 en CN
CO O
CM O
o> n
eoo -H
co«- 0
r- 10 O
co eo 3
O eo *
*~ V 0
V H
•o -o-*
S8|
o 6
0 0
O O
Cum. release
Cum. release
O CO CO
U) CN O
CM tO »-
CM — CO
00^1-
• r** •
^ to en
ec c x
of?
-HOC
*• o> o>
c c c
000
"0 CCtC
ec
Chemical
OO
O
441
-------
a
en
en
en
c.
o
.0
O
<**
8
§0 o o om o
co en 10 — ^ 2
en ID CM r» m
«^ co r» f* eo
O O O O CM CM rr
— in co m CM r~ co
*" eo in —
co
en eo r^ t~ »n «D
in CM CM o eo o
r- .- CM CM CM CO CO
OO OO OO O
O O CO JO O O O
CD co — en t o co
— r» en to — jo JM
C>| —CM CM
Cn n CM
ID -On
CM T
r-» r-
— CM
- o
•^ - II
in (0 CO O I
r% in eo to CM » u
in in • en
to OCM n
00 — -
o
o
o
o — CM eo in in — en CM n
to en — — CM — • — eo t
co in • — in ••JOHN us in
o in eo — o t **p*
— evn 03
OCM n
n en n
— rv I rt
r- en r- vn CM
. r» COCM
10 • i • •
A -
•
•gg
o o o o o o o
10 o to o f* o o>
OO OO 00 O
o co en t co o CM
eo CM co en co en t
^- ,_ CM CM co co r>-
•*• g^gggg
• V • • • •
) in coco in
' CM —
oo o
en
o eo CM
ton
t .in
n o u>
_ to r- to
CM co en en
— en m
CM CM
« •
o —
9
+• O)
eocoo
CM n
oo —
co ex
n ID
CM CM
CO —
— (O
r^ en
o o
CM —
CM n
in ID
u>m
S8
|s.(0
co in
i i i
co en in
^ r~ CM
en ID n
en co r»
«o en in
en to eo
o OCM
o o o
CM t^ e^ o e
^4 *^ O* " *™^
g.2°. J52§
g- ~. e e o o
•STe i a-SS
* " - c ». «
•**** fct!
o-- o g
i *.«
O.U53 W W OS
• o
•o
t «
•8
• J3
o e
O (.
a o
i *•
?8
00
o c
: a a
oe
a o
u u
o o
« a
a a
e
Al Al
1
.8
C C
5 S 2 ^
oece: -^
s.
— ON
..
U
442
-------
i
e
o
u
N
(0
o o o o o o o
«j to fi v to in
CD ^
^ •
»- 00
£
en
i!
"a U
Diu
Ne2
TCM
CM CM
CO •
O «-
a
5s
CM r-
_ . — CM CM in r-
co
co
o^-ooooo
'
10 -
1C
»- U)
CN
ustooentx
•^ojgsT'j
0> 0 • 0 10
to
c«
otco nr;
no "«
fM * «-
O) IO CO
I I I
o> 0-3
u a ooi—t
CO' (O CD O
CM ^
in o "- m co
"" V V
o o o, o o «- o
fi in r^ ^. ini to
m »- ^ ^ ^r co
v
»-OOCMOC~|ll
jNori
. . i . 1
+ to
I
CMCNCMCOtO
Tf r- to
o> CM to f» co ^ CM
en ' co
ooooooo
en to *- CM CM CM ^
ni to W — m to O
CM .•- CM co co to CM
O O O CO O O CO
«t v- 00 CM 00
. . . V • -V
00 (O CO f* O
CO • CM CO O
(O tO • CM O)
_ CM CO CO
I CM O CM
lip!
vv
Is
R
sis
i • i
' '
vv v
in to CM r-CM ill
to ^r us < to
. . • CM CO
O O) O) «-
CM^-CO
CM
OO 000 0 0
10 co eo CM CD r~ O)
« CM CO P» CM < 10
s
e
e^
*••«
I ,-CO IO
Hili
ll
si
'
443
-------
oo oo po o
^ CO *~ 00 (0 O CD
0iTO O
"^ ^". —^ •
o
en co oo O U) co to
co CN to t»- en eo co
ooooooo
cocoeocoggo
v v v v en o o
• CM
CM . I
I B
co eor>
en • l
A *-
o —— i o ion
" —o 04 r-. •
O O • O) CO «—
co no o> (0
,- .-o 3
_ en cot
^w Scn-
eM con
g§°- °
SSo -
S;
in in !••
o inin
Is- O .
o in «o
,-10
oj oo
O 05
CMC0
V V
o o>
o t
CM u>
in ID
en in
_ — ** M *t «0
o> »- •* os in •
oeM • • •«-
,-«0 O
en eo a
o en *
vv *
•si
O B
•75? "» *^ «£*
..8 si ^«5^-^ fn
£* 1^SI I^S
&ss. jlzs -s|
o -~ ti e o e 2 2
«- °"§s s«^
Si(3
a i *•
2?.S
£2"
• o c
E ffl «
300
0->£
•O T3 --
10 1C E
K C X
•X 01
C E E
O O en Oil
" co E •" o •
^- jj o> Cfl
C C C
o o o a ffl
,3 ^ *» c_ c.
a a o ecee
oo a:
H- o. en
O O E
^ •" *^ »
9 *• •** C. ^
o -<-• o •
_ — C <-»iJ *• *•
. ^«t- O---< O •
feS 5J-S °^-85l
•S tflOtft *J *** r^ W
JM3« Illli
e o
01 e>
a a
9 a
II
00
at
o
E
6
U
-------
,_
in
in
c.'
e
.0
o
•h*
U
o
w
e
O rx
•r- CO
" 8
§
p^
o
X >
C -H
£ t3
gj
^£ f
j ^rf
3 X
m ui
CM CO
CO •
o —
• •+*
•* en
t, •*
3 0
to*
U
>
£ ••
•> t>
*•§
"Si
c u
•H 3
£1-0
..go
Joe
00-
«
ea
O
^
^£
o
55
i
^i
u
u
03
^
^J
a
-
^J
a
e
o
*<
«•
t.
•M
§
I
OO OP7 OV CN
to CM co to — en in
. • - — — CM
— r— in
f CM in
o o to o o co en
to en r* f — f f
in f to en
en f rx, CD
O O O o o o O
to »— — o f m —
f f CM — oo en CM
CM — CM CM CM CM CO
O O O O O O O
o co o r~ co o o
f o co •>— en o co
en en o to en CM en
CM — CM —
o o o o o o o
to f f m f o —
— en 10
o o o o o o o
OO 00 OO 0
o o o o o o o
en in rv co in o CM
ft co ft o> to ft t*~
— — — CM in in
o o oo o o o
in in in o ^ o CM
to — — • rx en o in
— — CM CM CO O CO
in f Of oin O
— — CO f
V . V .
in oo —
in
§o o o o o o
o o o o o o
u> in o f CM o o
«r f — o to en r»
co CM in r» en co eo
o o o o oo o
o o oo o o o
o en r» eo en o o
— fN. f to in 10 O
f CM in to en f to
*— ^-
1
B
••• (OCM f
— CM f CO — CO IO
I
r> •- in o co H -» (0 in co out ntvto nw i
CJcomfc*-!!! cooinfr^ *— toco mo f^or^
fO f »-CMCMiotO en-CM COCM IOCM— i
••!• 1 CD CO • CO CO fCMCM — CO r»f^CO
cs CMfcoff moo i
— f + co — r»
CM en f- en r^ u m 10 CM co r^ CM co en — in in r-~ en CM '
M— f*- co •cO'Fxf oO'to rvr^. ocno
••i-'iif CMMJ> — en CMCO fco OCM— :
tM to f rv co to co OCM CM — co i •
•- f I — — f — CM CMCO
CM f»
CD m f in f. •*• u o o o ~ in — r^to toco r^fo "
• *- f^ r^r^o«JO ODCOCM fCM oo»-
r» . i . . + in in • i- • f o — ... i
• -o oco CM y
A —» O ^ CM V
y — ;
y
y CM
o n r* ft t^ it —* en f f co CD ocor- fco i r>coo i
co — mo o rx — 10 — 03 co • in coco ..—
• •i • • + en rx co co to coo— m co •* • • •
• •I • • U m CMCO* f CO— CM IOf O CM — CM i
Co _i in co en co f en to o
co •*• — • to f to r» co 3 !
^ **• ^ — 4* ;
tj '
.i .y
"me? e» CM CMX f5cM eccx •»
e_i ^^-» E E~ totoE -- a f
•• •• •• •• •• (fl ^x x^. cA)C ^J x** x^ ^j x^ C e c ' c
a « a Jt: ^ t— en o> I— OOcn oil o
^ H-n E^QE E-O-COE-ttoeotlio
nc »< ^ o) • x- ^T3 ^ *- oi en ^3 to
• o c co a • i o e> fc •• ccc ija
•<^ « S." - *.~t.> -to> oo e oa ^
cj^^^« o ^^ fl 4)OO ^ O *-J*^ •*'£.t.i->^»
E ffl C --> -MM L. 0..0 « f • J3 CO « eCCK •* K
u^*4 ««E •" ojo to o a o o ec s —
Ol > O • *x« CXXO maie An ^ iX
«^T}^< .«!•». O — " — < O • «CBO » €> — < -<
(.0 >••»- O J3 J3 O E >->C« •->•-> E t- ^1
o -o o *• o aao-3 e-Mx-.co « oa
•5 «o^si •Jiie°. '-.'gc *"• *• 6 "^i
«a to o -o "> «n •woiaax e o o EE <&a
o£ tiZ-Z e « o > >
O
CN
O
445
-------
oo o o o o r~
Jo CD eo in cn co —
•o
o
3
c
o
o
cn
CO CO CO CM
co in
cn to
ri eo in r~ CM co en
to cn CM co MO m
o — O O O O O
S" CM in CM to
. V • • '
—.- CM »-
CO O) O
cneo
co i*- — in 1 in —in«Dt^a> en in in eo «-
3 (OP* «-> m-inoiio — o — »
"
r>
co co cn eo oo
to - r** cn eo
to cn«— r** *"
r» coin eot I •-*
O> — CMO g>
. . I .-la
co 10 to — r*
r- — ro CD ID <_>
~.cp .CMO S
o 7- O
O • OD
in •»
. in en i- I £ «> « £ g £ g".1
;.-.,-.-.+ s 5B.;-8i - '
S CO I N —
TT in f
eo ^ r^ —
co co in
< en co
co «- co
— < o
^- CO
I I I
I I I
CM CO ^
CM CO 10
in in in in in o m
v v v v v v
on co oo oeo co
to CM co ID eo
to o o o •* m 3
in SJ in *t cn CM o
oo o> co
o CM o
»- CM •»
O (Ota
r-..-i0 CM o> I a
in -CMr-d m
en co • CM
"Sen ID
ggssass
CO CO CO CO CO O •«»•
V V VV
CM O CM CM CM CM CM
en on co — P» •
io-a-r-.cn- coinco
co CM co CM co m r<-
o e c.
5
*• «»*•*'•«
D.t/53 (A
-------
8
ombined Ash
roductcode:
u a.
1
a
t
1
c
Concentration J
i
o o o o oo o
CM co u> — to o eo
o CM in to co o CD
•*» CM CO ^ CO CO CO
oo o o oo o
o o o o o o o
ID in o t CM o o
TJ- T — o ID en r-
co CM in r- co co oo
So o o oo o
o o o o o o
0 0 OO 00 0
co co — in CD o o
— in co CM co — CM
CM CM co ^ in — —
1
TS
*~ «OCM *»
— CM^CO — CO (O
co ID t r-cn | n
'• — -O
CM • 1 — • 1
*~ — *" •«•
r^ CO in (D O II '-•»
*r CM r- CM o n —
• CO
CD • i • • n ^0
A — +~-
*» at
n 0
e-J
o «
^^ c -<
« o s nc
cC""*^ o "^*»
£55 -sr-E
0» 0 «^>
o 9 a «- CL oi
^ -o O O E
"T"* ^Jj'S
•S^ 00*0 1
c ti o. • — « j:
90 0 0-0 > 9
O *• *> •-" *• * •
r* o o i co
CM -o en
CM CM— (O
•- in o
CM in
in o t coo
p» Tim o o
OCM • --O
CO CO •- —
CM — CO
00 O O 1 CM
— — o in
CM CM • r-»
n co o co
CMCMO CO
— O)
V
O) •• •• " > o a
— CO 1
o -•
U)*"
en oeo
CM COO
ID — —
o co
r*
O —CM
v — in
CD — O
in CD
o *~
E -0
Cum. release 64d. (
Leach ing-pere. 64d
Mean factor above
i
i
i
i
i
CO CO ID — —
r- ID co io co '
co en CM CM io
O •* . to • i
CO ^ » — -CM
CM— o :
O CO 3 '
00) -^
vv 3
i
^ "O ^^ •• •• •• i
«» •^JCM ee _c x ;
u"°^ c "E I i
ODD) Oil
— CO E ^* 0 0 ;
— •** eft cn.
• • c c c
o o 000 !
00 9C£K
0 0 BC
90^
« «i a ,
00 o •
.2.2 1=
00 0
c. t. j= :
3 3
o o :
O
1
O
447
-------
Jj
o
f-1
>H
CO
1
rrt
«rt tn
^J Wj
to {£
c
3*
4J JJ
U JJ
C -U
*M
•*J CO
ll
X -H
"•§
J-> O
CO U
4J 'C
r. §
^j
s-g
r-l CO
£ §
•H JJ
— J tj
8 J3
^j
OJ
.H
|8
co
en
L.
0
JD
+/
U
0
CM
Til
w
JK-J
o r*.
0**
o •
•- CO
"i
_l
>,!
<•«*
•n C
M O
C-*
O*1
^ t-
f*i +*
22
tv w
•<» —
CM
o
« **
^
«*•
«- Ol
3 O
co£
X
CM
C
•u
c
u
+t
u
:
Xgj
0
CO
03
^
^f
1
CO
i
m
^
B
*
*
?!
•
j
*.
c
<*•
e
i
J
M
1
0 — — gr- — —
*". V V • V V
"~ —
^ ^T O O CM T »-
O> OO *T IO
V V • •— V
—000—^—
~- r~ in (O «- — —
V oo — in v V
o o o o o o o
o o o o o o o
in in in in co in in
in
oo o o o o o
^- ^- « — ID ID t- f~
oc> !••»•— m^r 10
*~ c"'~
>H
a
•n
C. (O CMt
^«,.^««
I'M
;H
I
i
I 1 1 1 C- O O O 1 O
O O CM
' ' °. _1"~ "
c~
1 1 1 1 1 0 1 1 1 1
o
+ o
c-
1 1 1 1 C- 0 1 1 1 1
fcj
1 o
II
1111 ggg *°.
0 ^.'C. ~*
I I I 1 | 0 1 1 1 1
•4- 0
c-
1111 §§§ ' 5
! , , 1 g , . . .
till. 0 1 1 1 1
o
1 1 1 CMCO I °°g ' °
l"t | 0 ^«* —
^^*k^
t i | Co 1 O O O 1 O
.CM °°.S «^
*"* • I O ^
*^ +
~* Ol ~> *-
•II) CB •• •• '^
e -J ^ •» ••» E
•>•>. ^. WX-J-^j
^ <£ S ^•^"'o^
7§ ««S jjwg"
rT'iJS §'~'-~ 7i~'«o«
£ 5 5 *« T^e •« ^ « g
Q m ft »*- & Ol ® ** ** ^" *^
••iv O O E t) *** "^ O V
^"^^gj > »(^ C>^-A0£
•g^SotB? •iii'^".
cicojH ||||g
'0.053 co to OS »-«zs
448
III II III
III II III
III II III
III II III
III II III
1
III II 1 1 1 1
III II --III
O)
c
a
c.
Ill 1 1 O 1 1 1
III II lit
^
0
£
^
III 1 1 *J 1 1 1
e
o
9
o
&••
CM^J? 5 'KN" K e x
"cJ K Q e'en Oil
| & °c,E - ..
^ o . . c c c
• uo o>coa
•n o *•» ^ ** t. L.
5 • J3 a a OOCK
to o a u u a:
oat. e a •-'
tt 0.0 o o « •£
^> C ffl rJ .-» E
e _<*. a a o
'j'g e ^ *• O
E a a E E
390) 33
0-JE U U
i
en
U
1
-------
1
1
•o
c
3
C
*•»
C.
o
o
CO
Ol
.*_!
o n
o •
«- 00
•1
§*"*
•H e
1) O
e -<
jc c.
.-• *<
CN <»
C ^*
CM "~
CO
O
a
e
«t^ Dl
C •><
a e
•*
11
roductcode: V2XL
< ta-
rsi
L.
CO
—4
a.
z
*
£
is
6
S
c
_J
^.
O)
e
Concentration J
30 rurw we* O
- . V V V V
oo oo m
O CM CM O O O CM
O ^T ~* O
. V V • • -V
CM CD O ^
*— *»
o t t en eo o o
*r CM — .- T «- o
. »- CO »- CO -CM
J) O «-
O O O O O O O
CM CM CM ~- XT »- »-
CM O> •-
o ^ to to o o to
*r to in ^j
. ^ V V • -V
oo to u>
CO CO CO CO CO O CO
V V V V V* V
CN o en
CM (O CM
i
TJ
Ci «OCM f
^- CM ^ 00 »- CO (O
1
iiii r>- oooto 111
O O 1
Cv. o • *-• ^
+ '"
IIII 1 0 1 1 1 1 III
o
1 0
•
c-
i i i enC + o i i i i 111
•** i 2
^ . | O
~'-f
IIII OOOIO III
00 —
o -^ —
"~
^^ ^^ ^^
IIII OOOIO III
OOCM
o -^ ^
1 1 1 UJ 05 1 Ollll III
• CO O
1 • 1 O
'
IIII •* Ollll III
+ 3
+
gls'S • "
^^^^ *.^ *
IIII OOOIO III
o o »-
, , , I §§l'§ ' ' '
1 • ijii ' sis *°. ' ' '
1 • 1 Q .** ~>
•^r-^f • ^^
7S w « -J "v >«. -J
2S i^Se f^S
51. i"s- ^Is?^ ^ss
CM *•*> O ^ « OOCT) O
e ffi e »-* *o O"^. C>i>* 9 ^
0»Q. 1-0.01 «*-*»t-rJ 2 2 fe
-?10. °5J g^252 S f5
•«- O J3 ^1 O E rJC«
ffl-O 0*>0 ffl«»-3 ?-±^
•o oo«i -iii _° '"S c
e^Oi"-w«£ a^*^4C • «oc
o«ooT3>*> * « « « x |SS
O«oa iS^^ss 55s
I a en ^
II. Ill ;
1
II III !
* ;
|
1
i i iii '
i
i
tl ill '
1
il ill
:
1
II III :
•
II ill
II III:
1
i
II III
|
II ill
J
p
ii. iii !
55T «Vx
«,«,£ e-|;
oo en oil
«- CO E "^ O O '
«>^ +f CA O)
• • c c c ;
co a> o aj
»J ^ *• t. £.
a a o cc cc
U U IT
O O •-> i
tn n a
a a u • :
O O -H
O O 0)
fc. fc. 5 !
E E '
S 3 :
oo :
en
U
449
-------
X
CM
o> r-» 5
o *• « ^ •*• ° ffl
D.C3Z> Oil
•- eo E ^ • *
_ -f Ol Ol
. . c c c
u o e o ffl
i-» «j *• t- *-
am o nsee
U U K
a
o
e
U
450
-------
c.
0
.XI
o
O> O O O O O Ci
S. 3 o o co o> o
^5 — r- 0 10 ic >n
— _ co eo *T CO
o o o o eo p —
oo co o> r- m
*^ »»» ^*) CD m
) eo co
mo
. i . . n
CM +
i
ssus
Sm11*
O
O li> O
en r«. in - «o
,0— •— CO
CM
r-
o o o o o o o
o o o o o o o
U) CO O> O (O CO CO
CM in
it u> o co o «-
.- •»• 10 CM
ooooooo
oooooo
O O 0) o> co o>r-r- o *-
.-OD to
CMOOIOOOCM
ooooooo
ooooooo
ooooooo
CM •fl' O> U» O O CO
CO CO — CO CM CO O
r^ •- CM co ^ ~- f*
ggsssss
ooooooo
o> U5 O f*» O5 O fO
m o> en « en i>. in
CM (O r» «o ^ ^ «o
CM
i
«m a
^S
sl
5l-
(O CM ^t
— CM •* 00 *- CO 10
COCOCO
tMinin
CM
0
to
U)
tf)
0£
«o en
CD
o
« , °°. |
• ' '
o oo o en co
5S i
ss s
A -
% S^S o
CO
CM
-en •
Al Al
11
18
C JD
o a
ea
^^
451
-------
f>
c
•4»*
C,
o
o
^
n
S-j
CO r^
CO •
•- CO
pj
O
-* e
(1 0
J+t
0
0
i-> *•
3 »;
m uJ
E J*
^J" P^
CM CO
CO •
o»-
t
to*
•*
APC-Resldue
Dnnrlitfttcadit; V2FA
£
CO
•»4
e
^•4
«
tS
5
c.
u
s
5
_1
•».
D
e
•p
§
••M
i
4-
•
> c
c:
i
i
O — T O in — 03
CM CM T in co ID in
— CM CM CM CM CM CM
o o o o o o o
S3cM§g8S
^ — in o o en co
in co oo en o> r- o
co in co CM in — CM
en in co co in co co
*
to o o o o CM in
co r-. in o in •— co
^ in en in CM cn to
o o — •* — o o
ous .">. ,•?-. , ^S^-gS 5 •= i§S SSS
^ CM in — CM in 5 ? en
- - * CM « O0^™
cMtor^ocolii OOUJIP^ co — co ^r r» 111
. r< CM CM c>- o • 3 P> — CM in — —
en • I • • 1 °o^ « £-£ gS
A- + "$3*~
V V
r^r^intoeo+ii r- o — o — en""" rrg 111
en co CM— c~ co o CM i^ o to -co en in
..i-.| o^-coen CM tor;
n inr^encM- — CM
— — I — •« —
CO
„ toinc-!^, oogoo -og go ££g
^ . i . I oo-ooin — to — tom Gor»to
(Ml to 1- r«. in CM — —CM — t
^ to ^ cn co oo co
I • I l o or~ ~co III II III
11 o IOCM-J •
. . . t- to
rv in r% o co
^j.r.. + .. go|ig tn".S S5 §25
uJ". i | QOJ g - - £g2
*"*" * "o§ m V coen^t
A "~ CM« ™ CO CM
A JT* CM in
in
S§5^8-*ri gSSS50- S-^ 5SS |S|
. . i . . 1 en-'Cn oo — co — oo
*. r^GO «o
•^ ^ «
N. "- ' » 0.0.c5SS "."3 *•- n11
m I ^O"
«.*". , °.-: I*" §§°.SCM S«S S§ toco
" — -L 2m2*rin to r^ (o cn
' S O U> CMCM
^- CM
11 KsJi'i5-, 3*i ell
: H tfot I^S S8J 5k«
^S. 22s. *:^25 -S5 oo S SS
^55 |> ! Mi lol Is I"
«J °!f *Mzi IB ii s.
i-o^ -e»- o — — o • «?S •• "g
i-.i^l "JrJ. 11; V, i
3I1II HI Ii
i
A) M
•)
e
o
o o
n e
pO- for R-1 will
Availability(%) b
U
A52
-------
Is
i «
< 8 z
M
i
M
o o o o o o o
o — o o o in o
i? in ^ o o — 10
«. .- «- CM CM CO CO
oo o o o o o
ggggggg
CM ^ en in o o co
CO 00 ^- CO CM CO O
rs, — «M co ^ — r>
*"" ^
00 OO OO O
O O O CO O O O
goo v ooo
co en o in r- i-*t
~- CM
(O •-
Ifi CM
^
CM en
r* O
00 Is-
<>• Is-
V V
II
»»
o
en m
CM in
to •—
CO «-
*""""
V V
CD in ID
CO CO 00
o o —
^ CM
«- OCOCO
• CO •
— .CM
>
O *"
o
H
0 «
B-l
•
-H eg
*<^o
£** — CM o
oca
fe-S
Ol -- -- - - -
^^x-.-^
».. g^ss
^ ~- o> • —
• coo • E O •
n>^ - *• — t- >
o *- * e o e
4 L. O.J «
e */ e >•- OTJ-S g .;
> .«. u A ^ a E
c-jjo ^,2,2^ =
CL * <*4 £ • ^M ^* C •
mav>*> ** C OS * X
S3?IS o53««
* •
ac/)=> cow
o a
OS
NE^
01 t- ODE
E .0 »-PJ £
i-o _«•
• to > oo
5 -J «•
to u a o u
e o t- o a
a a o « «
01*' aai
e 01 o a «
»* c « ^"i
e -<»- • »
L.JZ (- C
E a « E' E
see 33
0->£ OU
ce c x ;
Oil
-H « o
** 01 o»
c c c
o a Q
*• t. (.<
OCCK :
eg
o
e
U
04
I
m
6
453
-------
cn
en
.a
o
o
o
en o o o o o o
to r~- ID in in r- i
r». co eo r» CN CM eo
,- .- CM *r ^r co
o o o o in o o
CO CO T CM CM CO I*.
toco o CM
CD r-
in •
— CO
O
to
co
o en to ^r en CM o
CM co •- co CM eo co
— •- co CM --
(O
co
o o o o o o o
o O o to o o o
CM to o r» o to «-
to cn cn to Is- in to
;:_.-..- CM CN .-
o o o o o o o
cn — cn — cn in to
CM eo co T to in i-
o o o o o o o
o o o o p o o
§000000
o o o o o o
r~ r» CM co p co o
O CM co eo Is* r^ co
to *r *» CM in TT co
£:: "> S § ' "5. °.°.§SS
c, • ' ' ' " 2 S S « S
CM + >- CM — «»
in CN en •« CD
to o in in o
co «- (o to m
^r CM ID <
eo co
co o
CM
' '
CM
' 5
+—
OOP
00
^r in
CM CM
CO •
O «-
6 OP P
O O O
in p p co p P co
CM CM CO O P CO P
f»P P co *r P eo
*- CT
L. -H
3 e
OTK
o
CM
— r^ r^ o in eo
CM r» r- p cn *» in
•r- CM CO CM «» U> ^
p p p p P P P
o P P P P P P
O P P O P P P
if P P P P P CM
in to P •— P co *—
r. co «* eo to CM co
§p p p o o o
p p p p P P
p P P P o o p
Cn to CM in in co CM
_ o in CM *r «— en
to in in co tn in co
g
e
§5,
in tj- CN in c- I n
co CM
O) in co t in I n
*~ +
+—
r-.— to CD CM | n
ID — o p co i
in r~- CM CM CN
in CM cn in 10 P
to r*. to co
TT r-~ ID
K -S
in to cn cn co -•
in — P — co o
CM — CM CM cn o
— to en c
cn o in 0
— co — c.
i*.- O
en eo
CO CM
— CMCM toin o »- eo
in CN in toto • co •
CM CM tn pco •• »• • co
to o eo to ^
CM i to cn a
CM o at Z
CM co -~
CMC».r». •» o -«-inoo
ocncM r« o •* en co •
co CM — pen S3 «.co
in •— co to o
CM cn rv a
CO PCM +•
co eo
in
co CM
co W
•si
85=
I
0 *>
no • coo
>»»< • ct~- -
CM ** +* O __^
.£.2.5 "S"iME
a>> o «*>.
OOQ. t g-g
_i -n O O E
I « "£~
'"f.'e > -^
0 *Q O ** O
T3 CO 0 I
c ^ o. • ^* £
•0 » °2 > S
?. «5 tow OS
-s«
IO IO E
ce c
•n ^ ^-* ......
— c X
-i o
^ _. , _ E E
en H OOcj oil
5^0 -«£ r §,§,
^ • • • S S i
*m> OO Q)0Q
•DO •-'r' *• t t.
^ -^ fl'O CO CC CC
CO O 0 00 CC.
c
cot. e o **
m D.O to « o
0 i *< 00 o
e CD o o o -H
*J C. 0 •-> ^ E
A ^1 <«- fl) 6} O
L. J= C. C. J=
• O C • • O
= O 0 E E
3 3
co to
in
AI Al
O
O O
*- *•
u -H
I--0
O0
3 e o
O-IE
en
en
U
454
-------
C
o
o
N
(0
£
w_
co r-
in •
•H e
I) O
C -H
NE5
CM CM
CO •
O «-
a *|
&•
CD
Re
3 c*> co f*» c^ Oi ifi
«- O r> to CD rt
O O O O O O O
en i o o o co
en T t in •- eo
^ r-. en ^ •- o ID
o ID m CM •— r»
— m co f- o o —
p» in ID P» in in in
CD O) O) O O — —
CD 0 *t CO — CO
CM in 10 «- co o> V
in in in in in in o
v v v v v v •
CD
o o »- in *- o «-
o o o o o o o
o) oo n co n CM ««
CO CO L
•- co *- in CM r» »-
V • v v v -v
in en
CM CN CM O O O CM
• • • co i co •
V v V
»- V
o o o o o o o
o o o o o o o
o o o o o o o
CM in o o o o CM
co o> in r-» r- CM - ID en
•f-o
t, »-CM ^ CO — to CD
cl
8i=
M co ID f- r* I -» O O CM o — en CM r-
Dt I ii
in •v w
CD-I--!
•^•^ OO I
i CM ID CM
• I • •
o o uj i en co in en
o • O in r» in CM
o o —i CM co ~- en
• < en i co
OT
on
rj(fl
en in
CM P»
i o
co en
o co co
r- «o • ^r o —
CM P»
co
a> •* i- in co 1 — oor^oo o o ro
•-(O •-<•) ^J OCMtDCM^ 00-W
• i • • | o. m »- • •- CM CM co us
*~ O »-»-^t^-« •-
-» oouiiin
o> O -3 ex
J3 °.§^ §
-
TOCO
CD t in in 05 1 ii
CM 1C T P)
o on r»«-
•» COCM •- •
r> • • co
III
TO
»-OJ
CD CD
— ooincMT ID o •— o m
CROCMO • • • j ••
n v vS v V
mo
men
w
.^» ootorvo tnen wen
VV
_i en co co in v y
O O O ID CO I I I
O CM O
. . . o>
co — ^r in
-» OOUJOT eswin — r-
o» •oin»-io -o- ••
VV
en
i
'
eo cs 01
co in in
T *•-. co
o co CM
OJCMT
o en en
— i
CM
£i£2
co en en
CO CM P-
(D O CO
o o in
""
in 10 —
«»
eo in w
incocs
encor^
oeom
CO CO —
CO •- ID
M-aol
oof
0 m .J * O ffl
Q.OT3OTCOOS
10 • w •- co in r>- men
CM CM in CD CM to en co
CM »- eo CM CM n
T CM
,„ • •• *• •• •• •• *•
^. ** ~~~. -o T)--
I-o'B
**«» B
. (O >
•o o
9 • J2
CD U O
« Q.O
a i •*<
OO)O
3 « «
n »
CO
^-«
ee
00
a
o
E
o
M /U
- *
»-
o o
»• £
-.«
O>
rn
**5
U
455
-------
O O O O O O O
co •»»• in O o CM o
«— »- »•» O O ^* ID
_.__.- CM CM CO
f. o eg i
CM CO •
CO ^5 ^~
C
o o o o o o o
- -oo o o o
o o o o p
0001
O O O L
V O O O O O CM
U) (0 O — O CO —
r* co "i co ID CM co
o o o o o o o
o o o to o o o
8§§v|8S
CD CM »•• O n*1 CO
ui o 10 r^cn ID
o GO to
r^_C0CDCMl 0
I «
I
— CM CM
in CM to _ _
iai s^g coS
Rfi* § CM ^ SS
*- CM CO
ID cn
TT Tt
n u>
v V
(OK) O O
CO CO O
S
«-CO
CO •
• CO
O O O 8 CO 0>OO ^tCS
8d2 Si 5-8 «85
tf>0"" S « CM com
r. ^ CM U)U9
S t0 CM —10
PI
~* 0
4i'
1-
8
— COCO
«- -10
V V I-
•O •D'*
10 <0 E
C X
. C E E
oo oi oil
_ CO E -» » *
^- «< o o>
. . c c c
u o o 0 a
_J ,J *> t. C.
0 0 accoc
u o ce
o e
•) 01
a a
c e
f-> .->
t> e
L. t.
§§
uu
0
o
m
O
456
-------
1
CD I
cn H
IL
O
O
0
CM
M,
g
o>
13) r-.
O
t! e
0 O
c •*
3 X
O HI
ft Bl
E Jt
1 IO
CM CO
eo •
0 —
Vi *"
9
e +•
«U CD
C. -c
0
IL
CN
>
0 0
3 TI
^ O
-! 0
«*•
2§
PO
Jret Z
D
I.
*•
g
O
i
in o o o o o o
co co — CM to en to
r» rr CM CN — o in
O O <0 O 10 f O
r- ^r 't is. co to CM
1*1 CO CM "~ —
co in 10 f
CD CM rs. rs. o O **•> '
co — co CM ^ CM en
CM
CO
oo o o o o o
O O O CM O O O
io en CM CM o T o
— en — ^ o — o
— — CM CM CO CO CO
o o o o oo o
O> CD f"** CO (O O O)
CM 10 •«» *T fs. to «»
o o o o o o o
So o o o o o
o o o o o o
o o o o o o o
10 to en oo o — rs
co 10 — to u> r- rs
— t to CM to ^ CM
o o o o o o o
o o o o o o o
is. o o CM o — fs.
— to — »f o en oo
V O CM (0 CM CO (0
CO — IO — CO FS —
CM O — CO (0 — IO
— co ^CN ^r 10 co
§o o o o o o
o o o o o o
o o o o o o o
•«r o o — o o eo
to rs> co to cn co co
rs ^r ID vt ^r it*
O O O O OO O
o o o o o o o
OO 0 0 0 0 0
n cn ID ID •» O co
O IO ^t ^ CM CO O
CO IO (0 CO IO IO CO
•»
f)
>>
«
"O
•^ <0 CM t
— CM ^ oo — eo to
1
?
I
D^usotl-^ oofs-oico 000 cnfs CM^*O (0r^
too iflO o • o (D <- n ' n rx m — o OJCB- ••
• •I-'IO O'* 00 CO •— tO f^ CO . . *— COC*7
CM + ^-- CO. (0 CM (
1
1 i i coen | o i i i i ill il ill :
.— o
~- • 1 o
'•^ •
+
i
o CM ^ CM o o eo ^r co to ••- in rx —too ,
. . I - . I ocM'toco co com oointo
^ 10 co — co cncMco
^» *- U — CNCO O^IO^
— to CM en
i0«tocMO|u o o cn o o (ooen — CM o in o :
o •v 10 CM oo -vo eo • >» ^r rs to is. co
. . 1 . . I r^oootoo IS.CN rso co co o
M ^f "f ^f ^3 ^f ^ CO ^ IO ^
^«— + OO^IO4*}' IOCO — *V
— CM
CM
^cntD^cMiH oooioo cncocM ^^» 50^.*- co *—
cs t t CM ooo— • in 10 10 *t ~- • •— i •
. . i . . 1 ...iocn— cMio eo— ooeo
co in in o CN «- m
— 4- — — 0 tf>
cntoeoeoeoln o o o oo co CM CN cn ^t— t eoen^r
coco toco ooto^eo o o co ento •*"_:
,.i **| oco*coco eocMrs rs^-o*-»cn |
— ^+ co co cn co CN to— ;
to *~ *~ 10 j
eo fs ^- co ;
;
<0^tcNO^O^eo^
— + CM CM co o n •< eo en « ;
S IN to s* :
>>
rs,(otocon | B oo — CN o o> oo is. *t t *j eNOoo ;
ifi 10 ^o CN \j C3 co C3 o *™ en — ^3 *N ^j ^* *D ^*
co* *' tNOOtoen — 1000
^ + — — eo CM eo '22 i
<^ CD ^ ^ ** '
~- & I
7« ^ t~ OOcn O II >o
-^ 5 n E ^s 06 E-5 »-eoE — oo oo
"C « m Q ^1*130^* **5o • •*" ^CCi5
^s ^^ " O.s^ • ^ s^ JjQ— ^O ^*^ *^tC*^ *"*
^1 ** ** O _ _^^ *• 5 S S ^? -O 0 IB O Q£ CC ^^ %$
^ i ^ *it "T^E •** B««OO«OO EC S-^
11^ oil l$ZS% SZ.S SS « TS
^^ ^ *^ ** "*" o ^ -O es ^ iS c S '^ »^ E t-^
• -0 0*^0 BBH-30-;*- 00 0 0«
l-oS.0.-^ «i-c°. t.oc *: ^ 6 -
OB!! cj-o^r 2 a a a x eaa EE ^oa
Q.C03WOTQSr-«t<*. L
"^i
CO
u
457
-------
•a
e
3
c
i
o
-H e
• o
S*>
8
^ I.
CD co at CM rv to co
«
o o o o o o o
^ IV O O O rv O
rv CM CO O CD ID «J
TT o — o o o) in
rv TT in CM 10 o o
^* o fv in *ff o rv
^t
to in to ^f in I »
to m in o co I »
in co «o .
CD-I • • I
A — +
• (D T "» «
rv co tn co
CO CD CO rv CO | II
»- r» co co . C*
.- »- +
I I
o o oo o rv
o o CM o co
CO O • O 1C
rv xr •- CM U3
in CD
O O ui I rv
O • ^ CD
5)
CM CM CO
O • CO
CO
rj- CO
co a>
co in
O CM •*»
O CM —
CM CO CM
at in, co
«- CD rv
co in en
— CM
•it co co en •-
CM rv o co rv
^ v rr 00 O
to * S °»
>- O O) O CO
«ij o in *r co
o oo • co co
o ID n co
in •- oo
CM
O i -
O • ID T ID
to O ' O> —
»- *r CM en
en co n
en i 01
v • CM
*r CM
CO CM
01 CM
— CO
ooo
O OCM
in in
CM ~-
o
CM
co in co CM co
to •*» to *r
co co rv co CD
*- *- CM
I I I
O) IV O)
O CM (O
CM IV CO
— — O—— CM
in corv i
• co
in • i
in tn co * "*
to o co co «-
'§* |£ v ' -N
• P tf — V y V V
.— O OUJ I IV
en O • 3 «O
e oo-J 10
CM CO
to •
•< TT ^ «* ^ O «.
•»- a
•*4
• COO
WE£
—. «
10 2
o *< n »»*• 90
a to scow OS
t .s
_ —*^
n *> *t B
«• > •"> S
c o • -o o
fc_ &^ •> **• " •"
+1 tf 01 CO U 0
o *> *< t.^j csfflt
S3352 S?-£
0^^ o • «> 0>0
o JJ xi e E ^»c«
o e»- 3
• o c
§a a
o co
U-JE
T3 -D —
«» W.
CO CO E
oo"g
^- CO E
CD in o
in in co
in mm
en'* CM
^ • o
co»-
M
« e 5 2
-^4 a •>
C E E E
Oil O
,H g) o CO
^» cn o .0 •
C C C XI
c a e ^ ^
"J) ceo: --jx
a ^•ri c •
*• 0 a oj x
«
o
o
o
i -«
ee ^
t. J3
o a
O
458
-------
1
o
u.
CN
0 e
a -o
APC-Resld
Productco
a
i
.
_J
1
e
ntration
5
•e
5
o o o o
en CN co o
o o co o
oo oo
o o o o
o o o o
SJ- 0 0 —
in r>> co in
r»n toco
oo o o
o o o co
ooo
oo o V
o en in
CN in r>»
1
•a
- „,.
•H
1
ooo
o in CN
O fs. IO
CN CN CO
ooo
§o o
o o
O O CO
en co co
•»«- to
ooo
000
ooo
ooo
O IO IO
*» o *»
o co in
COCN •*
> — CO ID
CN i-- ^ in co u «
• CO -CO
CO • 1 ~ • tt
A *~
9 co (o *t-«N
£.*.H « B E
en > o o ^*
000. t- a o>
•-> -o o o E
"""SIS > • £
0-O O*' O
•o 00 a i
c-o a. • •*£.
00 B O TJ > «
OJJ tD^J*. 0 0
0.0)3 CO U)O£
§O O 1 O
•0 0
co o »- m
IO O-* CN
m to
IO CN
OOI^OO
— o • co o
en «r CN o
CN CN CO O
o
—...» -«
o oo i r^
§. o IO
o«-
0 000
(. Q.J3 •)
«< 00
c » 0
O *• *< C. iJ
5cdi"o ^
J3 JD 0 E
« -rt-rt C •
^ 0 0 0 X
en co i
CO »•
eo
CO CNIO
r» o
CO ^
CN
CN
— ID-
en to cn
CO »- •-
en CN
en o
o CN
'J5.
i .5
^SS
5 -5
(O O 0
001.
a a. o
0 i +*
5?8
0 -»*-
t. JC
• u c
E 0 0
3 O 0
0-1 SE
r
i
i
i
i
*} O CO CN (O
*r r» co r>. co
^ in UJ O «— '
co in 10 o co
TT CNO
V V —
CO CN O O IOCO
— en «CN • ;
in r- w • co
»t CO
co en
•- o> :
CO ;
tt >
oo ^ ** en h« r»
o in »M • co •
CN co 0 «- • en
r«. co o
(O CO 9 i
co in *>
-» fe
V V H
^t «N~ ee e x :
IO IO E -< « 1
^ c E E
ODD) Oil i
"CO E -* 0 0 i
^ */ o> O) ;
c c c !
o o o 0 o
fj ~> •+• t. t.
00 00:0: :
0 0 CC
00 t->
« n 0
00 U i
55 r -
00 O
C. (. £
EE «
3 3
U U ;
rr
cA
U
459
-------
en
en
c.
c
ja
o
^*
u
o
€0
CM t»-
in •«•
o
CM 00
-< C
•) O
OO O O 00 O
Tf CM ^X — 03 f~; °J
r* in o> in co co
o o o in r»
ooooooo
o o> o o o o o
•q-in o co — «o m
_ r- r-« CM to f» *r
CM co in OD ID
— in eo in C" I *-
°.-. ,°D. I a
I I
f- eo
•O
O O CM ~- CD o r^
ooooooo
SI c^ r*» ""t ID «™ o* P*
"^
a
O CM CM O .
• •I ••1
o
O 00
n <
i I
O CM
in r»
«o «-
r» O
en cnco co in
CM • co co r»
in co — en o
tor-*- •«»• r«.
S SS
CN in tN
(N O) CO
en o ex
in CD OD
vo r> r~
o> CM
CM TT co en eo
ao en
CM
go oo ooo
000000
ooooooo
neoeotoooio
eo w o> es o j- co o
-s ggSSS
B o r» • •-.«
CD r^ r- CM in i co in co
S CM -r- r^ oo • en •
to .-CM mco »-«- •*-
co - w4
D O
< o
I
*•
s
co in o u> <--;_-
m co in o «- co r>-
o o o o co o en
r» in •"! en CM to ^
cs o eo co
co CM r^^r
00000
o o o o o
- r> o o o o
OD o co en eo in eo
10 CM o> m (D co ^-
igggg
> o o o o
m to o en r** f** CD
S CO CM ID CM CN CM
~ OOO<0«- (DCMU3
01 --o en en- —
i e o o • u> oo en
_j CM CMO u> t oo
h«« eo coo —• •-
o> r^
CD co
in CM
en in
.- *r i^t
® ... . •
en CM •- co eo «j
c *o
-^ OOOCMO
en co >~-
v -CM
ID -- CM
10 en
i i i
enin o co w
JO O • CO •
en co •• •* • CM
in ID ^^
co eo «
— co Z
CM °- . •*
en en
eo en
OD
C «5
O >
E
->. enx -i>»
oiJt^i; J?
~ E"^ °5
_< «^ cn • ~*
Q . E O «
*< ^ t, >
0 DOC
L. Q.^3 «
p jj a 10
c »> «J
Q *" *f (-•-'
o — — ^ o
•"*'*• ,1 ? T! ^ P
> . H- O J2 J3 ™ E
g *, o « * *• =
cl^g.0-"^ «SSe°.
«ilq?.>l -s?5Sg
j-«SS
ID o
£.
22
00
-s-i
o o
o o
S S
35
5 ii »
+• tnen J
o a a ^
S
••
460
-------
•o
c
c.
o
u
IM
^
W
£
in f
CM co
-« e
« p
IS O)
t en
CM to
n •
o —
•is
».. o>
(,. -H
=i e
u
o o o o oo o
to m to co t »» co
en — en en — — CM
en t to CM t CM —
o o o o o o o
en in 10 eo co f- r^
01 en in
CM CM r»
o ID o
o o o o o o o
CO CO CO O CD CD —
— CM — o — oo en
CO CM tO CM O5 t CO
O (O O O O O O
to CM — r^n oo o
*- m at CN oo PI •*
co CM o cs .° i
— CM
oooot o coin
co o co in t in • o
(-.O -tf CM — CM
to en co co co
en to
— m f"»
in o oo
co o O
co co CM
*-* O O O OS CO — f —
to — o ooeo*"in
tin
f» CM
co in
o to
t in
co co
o»-
uieo
oo CM in
— to oo
inr».
wo ^o e» o-^-coio
. . i . . n « CMO- eo
O -J «- r^'t eo
coin
m-o 010
CMinco CMCM
CMCM m*t
— o «-
xr CM co
o o CM
^.—
en
— co I u 'OOIDCMUJ cocMin coin
en *»• t^ CM
in CM
orvJ2
oico""
.~~. opotpto co CM CM coin
Ot
W
vv
w
2gnS
-------
O OO I CO
„">., ,-*. + 5 gg2 - CMU,
CM r-0~ g g-
A
§o o o o o o
oooog
— co i-«o o o
COOOinOU>«-
CM— CM JO f>- CO
t u>u>
in ^ oo
— co
O T CO
(O CO CO
I »^ o o^ «•>•*
— o> o o O co en
• i ••1C
_J CMCOI0
~- «• CM (O
o o
eo en co en eo in co
(0 CM en m CO CD —
o o o o o o
O O ~
O OCO
o o o o o
o o o v o o o
UJCOCM — CMCM
O CM CM CMO in
CM*- CM U>U> CO
en
O
462
-------
m
m
ij
o
s
CO
> >
4-1
«4 e
S3
E JC
CN (D
CO •
O —
a
S£
o o o o o o o
* ID O — O5 CO CM
o o o o — f-» to
CO CO CM r» (O «O CM
. , . . — co in
in ^j- — en
o> co oo ID
O O O O O O O
3 O 0 0 0 0 O
C5 O «D O •- f~ ^
OD CD O O CD — •-
in
OO 00 000
o o o o o o o
O O O O OO O
O> (O (O CN O O (N
M(C 00 00 9 IO (O
_ ._ n in o> O ifl
o o o o o o o
o> oo (0 co o> in o
-• — — — CM
. — •»* or» I *^ o a o i in
• in oin »J • o IN to
I. I - • I O. O - '— IO
O m O n
— + «^ co r~ —
O I I I I
o
o
• co <0 in eo
v v
ll
CM co in
?3 f- tn
^ ooinor«. CM «o •-
. i . . I « OCM--O
_J r^CNOO CM
_ 4. ^< oo
r^ioto
0>
o o o o o o o
o o o o o o o
OO 0 OOO O
(O — O> O ^
o o o o o o o
00 W f~ O O O «N
f. CO CD U3 ID O «
•^ CS 03 d CD O
0.0
CO
•a? in f^ co
coco eo t
o o o o o o o
l§§§§§8
10 01 oo
O O O O O O O
o o o o oo o
t^ooaaoo
o> CM CM in n coo
oo to ^ oo o to o
— •- CM — «-
§s
a^s sa ^
co en co coo «
CD — CO f"» Z
«. CM CM — «-»
5§R.*£ S-S
— s B
15 s
V2BB
§5-
•rt C
^•D
I?
C-H
O^-
<0CN*f
— CO »D
•
AJ Al
c. c
a ai
• c
43
en
U
463
-------
N
o o r- CM o o n
CD in cs — co in —
• • •
en 5
o —
in —
;2^S^-'cM §§-££
tJ
c
3
C
O
u
o o o o o o o
o> co r~ O r^ CM rv
— en co to n CM
co in en co CM —
eo ' ' " _, 2.
«- to •*• **
O O in r~ eo I «
co • I • • I
co r^ co
O • CM
. . in — to
o — —
i to
tO
en
co o in
o> . CM
in
co co m
co o to
£1 o O OO T o O
I 5 to CM in •- co to
tor*.
8".
CM CD
coin CM to
CM CM *t
mocooo —o
CO CO CM'-CM
to en eo r~
to c- I o
CM o m ,co
• • i • I •
O o m CM CM
. ^ in
O • • CM
if CM CM
co o co en co
i^ss'»
z •' • •' ° -
CM +«-• —
A
QOO—*
co in r^
• co
O OIU I O
in e
r--
-5
in>
u-. v V
CM
V V
—in
o to
V V
I I I
— r» eo
CO CO CM
r» f- co
co o en
in *» to
CD o in
rv en
r>. en
tn CM r^
en to ^
CO
O v-
a I CM to o o o O to
O SS —ointo-fl-
coineococoinr^
OCMOOCMOO
U) CM CO — f» — CM
CO "f
CM m
— eo o
to en r^'Cn co I
— O
inn
• coco -- coin
01
o oco co CM
• Of CM in
O • • co
tO tO CO CM
to m
U
V V V V V
o o o o oo o
to r^ en o en eo ^r
co in to to CM •-«-
S u,
to
* *
CO
A
_i r- en o
. — co —
CO
u>
o to o tn en
1*. . — o . CM CM
SCO ID O> CO
.— — to
O> •"-
CM (O
CO
•«* «D CO
— in en
T- ID CO
CM ^ CM
in eo to
• co •
— .10
o o m •«!• CM
O CO CM •"»
. r» . •
n • co en
CM CO
vv£
— in
coco I a
o o o o •*
o 001 on —
en o • in n eo
en in to — en r-»
-o
CM
vv
en co
CM CO
en in
to r>
— CM
in in r-
io o CM
— r~ en
r- CM CO
tn to CM
in CM to
— oo o>
en n CM
I
§
•si
§?
— CO tO
•o
o
a
v~ o
•b eo ffi
ctj o. ---i
oa e OT3 >
O.COD oo oo o 5
S S>
U
464
-------
CM
o o o o o o o
o o o o o o o
— ^ oomio
CM 10 in cp co
go o o o o o
000000
o o o o o o o
cn --
ooo
<^ coin coin co
r^in CM co «o *f oo
ooo ooo
5»^o vooo
ID ID CO O)CO 5-
oo oo CM en in o
co «
-------
en
en
C.
O
O
O
2S828810
r~ co o co co
«tf o O O in en r*.
in co co r~ co in o
_ . • • ^- c> in
CO CD CO
co r-> to
I •—- o O ^ co co co co r** to co
•
en T o
ID o co
to co en
CM CO CD
o
CM CO
-« e
19 O
IS
a
03
O O O O O i
w o o 5 o o o
co co co in in CM CM
in w 10 co in CM o
_ .- co «r f- I-, m
o o o o o o o
o o O o o o T
o o o o o o •-
?*» CM en en o CM r^
co co co CM o CM
co •— co in o> co
o o o o o o o
^- co en CM r». •- T
»-co eo *t »*
V
§o o o o o o
o
o o
o o o o
o o o o
o o to o
CD co r*- CM r*- co »-
co»- ««" co co to
o o o o o o o
encMt^o o«r o
v en in to o co »-
in CM in »- en en CM
o o oo o«» O
co 10 in co co CM in
o
i*. o •- CM CM
CM CM ID •*»• r*
in
en
i to en
• o
o
o
o
_ . ID CO
in co co co
CM «- f»
o Tt en
en ^r r>
§ CM
^> CN CO
totoo
o
CM —
to to
^ ro
co 10
tO CM
^- CO
co en
CM o
CM r»
»- o
co CM
in CN
10 en
co in co
co r> r^
CM ^t
CM f^
n 10
en CM
r» co CM co to i en
> o o o
co £ •* CM - ^ CM
CO ^ CO CO «— P* O
_J
PI
£
e
o
i.
Q.
(O CM ^t
— CM ^t CD «- CO (O
I —. O OO CMCO
0> O O O
466
-------
1
1)
J)
c:
••4
Si
o
+mif
W|g
'» fv
ID T
O •
IN GO
|
>>
•* e
« o
e -<
9 **
Jj i
3 X
CD U
(M a
E J£
T O
CM r-
co •
O —
0)
89 +•
«t- O)
s a
w*
o
CD
CM
,.
«
.c -a
M O
< 0
+*
§§
*< T3
*> O
| u o o O) O ^f O *•" O '•t P^
inin COT OOCMOT — -co to —
,.|..| COCO-OT *- CMT
— — + "~ to en
• CM o i-» o • 3 co GO -CM T en
CO-I- 1 Q. O O _1 O> CMCO
A w +*" 2.^ S
gr^io — Tl"- cootooio — co 10 toco
.-. , *.•; i ? Sg^.SS SCMN K|
^ CM + ~- — en — CMCO
— CO
to T in in en I ^ OOcnoo CMTr^ *~2
rs — coo et> • • CM i^ CM co •— to en
. . i • • 1 cs o o • — en
co _i co r» co oo
«- CM + -^ I*- — CM
r«. rv to CM c- + —. o o co T o T co 10 en —
to CM — O> • O CO • — • • —CO
. . | . +0) O'. CM — —
C! to ' c-i — — — co V
TCMt^i 4-T ooiuico — -co r-.en
.!•» — O'3 CM lO'-OO CMO
io>i i-oo-ien— — CM
*~*~— +00 'T>CM VV
A H CM« —
v> to t*~ — r*- \ m o ota on to o in oor^
mm — — en O-TCMT CM-CM CMO
. . I ..i. So • CM in CMCM — CM
m i 10 ao CM —
*• 10 u r» T CM —
cocMcocool'— ootoo^ cMenen enco
osm TCM o> . •— T en T-f» 2^
. . i . . 1 « o o • — to OCOCM oo —
Q _J CM CO T T CM *- CMT
— CM +~" OONCO —
SJM^SS'w 8SSW^ S^2 SS
s "J. " '15 s1^ s "s
10 — 10 IOCO
° co ^ "o> o T to 10 *"• ... en •
2 • ' s «-« g W*- •*:
^^ ^ Cx — -t *O . V V
A
^ O) CO W ^« 1 ^ O O CD O ^ O* ^ ^ c*5
*"* ^^ ^^ 1 *\ ^? ^~ ^K gk ^^ ^ (V ^
* * t • 1 f* G* O ^" ^* S? «^ ^> QJ
2cM *~'52IDCM NC°
" *~ IO
*J 5? "o> >CO> OO
CM *<*- O f* 9 9 O 9 "V O •->•-'
£55 STE -i a^S SJ^ S'S
^* ^ ® 2 ^i m .w* ^* L ^ O 0 ^ ® C
"11 ^o «««5S -S54! «•
•5 0 O 0 1 ^i^c0' *^"OC ^^
C^&** *^000X £00 E E
•ilSScflioSs ,233s! 5*1 c53
T CO O
^r — co
in tD in
T CO CO
*- CO CM
CM rv
i i I
I i I
m co r*
O T CO
en COT
CO CM IO
IO T —
to T en
CM ~- T
— CM tO
en T 10
to CMT
CD T ^^
IO CM IO
CM T
— IO
to
r*min
to to to
T COO
O TIO
— CM
— en r«.
T — CO
co to IN
to co "~
o 10 o
o en 10
fv CM P*.
r» — co
— CO 10
to CM —
T CO IO
10 co to
CO CM IO
r^ T co
IO tO GO
01 C X
•* a
C E E
O 1 1
^4 CD O
+* en en
c c c
a a a
•n I. i.
o ceo:
ec
*j
a
o
0)
u
i
i
!
,
:
i
'
'•
i
i
!
i
:
Al Al
•n
e
o
9 (J
A e
, A
t-i
S|
^. «rf
H x
^4
1C. ^
o eg
•»- -1
oo
'O >
a<
i
O
467
-------
1
s
|Q ^
4-
IS
*< -n
p*1 °
ma
e
z
tf
>v
e>
a
e
§
•H
*»
a
L.
*
C
g
s
oo oo
o o o o
co r* ^ o
TT CM CM CM
oo o o
o o oo
o o o o
9000
CM en •- »-
p. co CM co
oo oo
O O CO CO
§G V V
CO
00
CM»-
•B
*• CM "J fl
•H
§0 O
0 —
O CM CO
CM«-'«-
•*•
O TJ O *• O
-0 DO B 1
C ^ O- ••**•£
co a> OTJ > 5
O *• ««-'•*' • «
O.W3 WWOS
O O O 1 O)
O*O u>
a>0— CM
r* o— en
CD O
C 2
o o en f* CM
o oto 10 ~-
rs. o -o o
en CM ^ — en
*t mto r*
10
O OO 1 CM
0 -0 U>
in o »- co
— O— ' CM
5 co
~ ~
S *** **• E
OI^^-H. n
C ^k. ^i ^
£ ra . -S
j toe
« c o c
C. Q.JJ t)
^ BE
c > > e
o •**-< o «
C i-» i^ *• t.
O-l^O •
o jsxi a E
O -<-H C •
*- a o 0 x
U) CO 1
en •
^ '
eor-r*
O CM (O
co"~ eo
CO CO
CM
m*t co
to «- co
CM »-CM
en
** o> en
c c c
c a a
*• c. t.
tr
i-»
a
u
•^
E
O
O
U
468
-------
1
*™ 1
a!
i.
ji
^0
i)
0
CM
13)
.•*_!
tin rv
tn n
tn •
*— oo
j
0) O
e -H
II'
BLU
CM en
CM tO
CO •
0 —
.. ..
•.2
»- CJ)
3 «
s
CM
X ••
0 0
<-o
Combined ,
Productco
0
CD
O
<
1
i
O
m
-
1
-i
O!
a
e
e
o
•H
*
1j
t
1
q O O^ O ~ O
t£ hf) O) 00
. - "V -
*t n co «-
o o o o oo CM CM
CM iv *- n en en fv
. • • • CM CM CO
to en n »-
o> (^ en to
o o o o o o o
.- n O O O O O
m OD co o in to CM
co n CM in co CM CD
• w- f- CM CM •-
o o o o o o o
o o o o o o o
CO CM O 00 O O CM
oo CM co o O tv n
CM CO CO tO CO CM —
•- CM CO CO
oo oo o o o
n oo co n in o CD
«- »- CO CM OD CO •-
oo o ooo o
o o o o o o o
CO O O O O O O
«- oo tn en o CM oo
in o en en CD co in
~- •- to n n oo
oo oo oo o
CM CO CD O O O O
«— o n to o oo en
*- CM co co o rv v-
oo oo oo to
10 «- to CM in in oo
oirv — o in to
.- — in rv o> CD
So oo oo o
o o o o o o
o o o o o o o
o co CD o m co CM
CM o CM CM oo in in
CM CM n IO fv tv tO
§C3 O O O O C3
o o o o o o
O> (O <7> O O O <0
*t co *- to CN co *-
CN CN in CD o o oo
^- ^
***
«
sT
•o
"* »- CM n 00 — CO 10
i
•rt
1-
s IT ro 0) » I i?
tn
1 1 (O CN 1
*•*• • 4-
^^
+
(D CN tD ^J1 CO | -^
°.~ , "?-. i s?
CM -J
,- CM + v
CD CD IO CO — 1 —
CM *- 1C — O)
< • I • • 11 0)
0 -1
^ CM + ~-
in CM in — en
. . i . • u a
0) — '
CM -f -~
^ CD r~- ^ r- 11 -~
us co in — en
en ' -J
CM +-*
^ cMf« in en I •—
" 'CM ' '15
n coin n o 1 «->
w.°. ,'.°. i ?
0 ->
J. CO + ~-
« o to to CM | «•>
IT • '•*"•' I
CM + —
to CM in ^ n 1 *•-
CM + •**
« a
M ^L
00
^^ *^ •*
*• o » wiS
w ** *^ o *"*
E a c ~> -«M
l_rf<«4 ^4 V) fl E
o> > o c-^
O C Q. *• O. W
^ ^ *» . CO **•
t. ffl > •*•
• a 13 « *• o
•a «o « i
c-o o. -- «
O*- »**+• 9 ffl
CLC03 CO OT O $
o o o on
• • in oo —
o o • o>
CM a r» co
CO CMCD •-
0 1 1 1 1
o
o
*
o o en o n
o o CM CM en
o to • en n
n n n CM in
.-.- O CM
oooor*.
o o in r> to
O 0 -CM ID
oo r» r«. «-
CMCO n
CO CO
^~
o o o n co
o o o CM en
W Wo ^
CM CM O
0 0 — TCM
o to i»> r* n
o co • — to
oo r*. f* CM
en >-<- to
CD
o ooncM
. . o co
o o • en
CM CM O O
CM CM O «-
O O O COO)
ooo
... to
ooo en
*- «- o n
o otor*-n
O OIO tD CM
en o • o '-
.- CM .- — O
10 co to en
to
ooo or*
o o o 10 10
o o • n
in 10 o oo
^^^ " E
cnj£«~£- en
^^, g^ • ^^
• E U «
*• '^ C. >
e 000
L. O.^ B)
*• a a
c » «
<»*••*'£-•->
o -<— o o
c^-* *• t.
0^-1 0 •
O J3 JJ ffl E
ffl « ««- 3
ffl -J-- C •
*. a a a x
o > > o a
469
tO f CO
en o •
in
t I i
en to oo
CM • en
»- CO CM
to —
CM
en en to
en • co
CM CM CO
h» CM
O
CO
«- to en
— -co
r» en
in
to to r-
to -o
o in CD
CO 00
CO
cocnn
in «- ^
O *-
CO
o «- o
T- 'CM
•- CM
CM
in n r^
to -m
co on
co to r~
IO ^
en
CM oo en
in • to
to en«-
co n
CM
^E
^? ^j
0) t-
^^ ^3
n «
• to >
TJ 0
n -^
to o a
L.
o e t
m a o
0) 1 «•
Cum.rele
Leaching
Mean fac
CO CM
«- CM
1 1
m n
to n
n r>
n n
co in
500948
662290
en o
en CD
en en
00 CD
n CM
— to
CO CM
eo co
rv i»-
O) **t
00 CO
no
rv co
*- CM
.- tn
t-. in
•^ en
"§
CM CM
O O
00 CD
00 CO
— to
1- 00
n nr
to to
eg
o o
ffl 0
O 0
a e
n n
a o
e o
t-> -»
0 a
L. L
§§
00
o eo rt
in en o
r~ to co
n — co
I I I
in co in
o tor*
^ |v CO
n CM to
co to to
. to .
*- -CM
00
I CM en OD
CO •- -CM
.. en CM in
e in CM •
o> • • —
c
a)
10 1 1 I
O co to
. 10 •
^t
*- — CO IO
n CM --co
o
*<
u
o
H
M ee c x
£ -H «
*v C E E
en oil
E x O O
•<_> *- tn en
c c c
0 a o
*• c. &.
0 KCC
•cc
a)
u
^4
0
u
i
i
1
1
i
1
I
I
'
m n
en iv
00
;
i
cio
:CO
j
«*'
IU
1
1
i
nn
en CD
i
A| At
! a
o
; E
o
0 U
J) 0
J3
,->
*-> --*•
•5
15
1 «
, ~*
;0<0
0 >
a<
-
CO
U
-------
— 03 CO 00
eo — TI- in
o o o o o o o
co in co in cn to *r
to (O f*
— in us
m co CM
eo CM —
n_
5-,
m i>.
in «r
cn •
-co
X§
+*
-4 C
n O
C -H
^1
^i
^
NE5
CM (O
CO •
o«-
e
fe.£
t5
^£
o o o o o o o
at o co o T CD r*
ID eo T a to — CM
—• co co cn CD in co
.- O O O O co o
CM ^ in CM in »- l"»
. . • • •
o in en «- •*
i- — CM
in in in o o in in
^ CO
CM CM in o co I u
CM CO T CM
• • I • • II
in
«• CM II
co — co in c- | <-*
• — CM en
co • i • la
O O T O O
O CM CD — O
to to . co in
CO — CD O
— CO
O O U) I CD
o • 3 in
o o -i co
• io< CM
•<* > CM
CM co r- T en
(CO— O U5
en co en CM co
CD . — to co
ID t (O
«t co en
r» en CM
CM — in
V V
< —in —eo|—. eoor-ao — o to o CM o — CM -10 2J3
CM ' ' ''j 5cMoi-co o""" --jo
— CM + ~ —CM— CO — CM CO
— o
O O O O) O O O
(0 co t«. — en
co us f
CD 10 —
O O O "* *» CD Tl-
co en co CM ->— CM CM CM
CM enr» «OT I in
• o -co co
u, . I • • + •
— cn co CMID I
en co co in
• • i • • n
in
v
a
v~-
.<
£ SSS
5 - '
O o r» O co ~ co r»
oocooto in o CM
OU3 • ID CT) CM •
— UJ CM
«•> nno ^
o t>» ^t
co CM in
»- »- O
o> o> r^
CM
1
CM CM CM O OO CM
. . • CO (O CD •
V V V ' ' * V
o o o o o o o
U) CD «D O — CM CO
in — in en r»- f« o
^ tO CM ^ ^ CM —
§ CM in co ^ I «•*
— in — . D>
»- CM +^
ooKcno
o to en •
»-. en CM
co — in
r-
en
u —
O)
CMIOO
r» en en
•O •
rv m
CM •»
V V
co t
CD CO
en en
co o
— CO
co in
co co
CM CO
— o
10 t
»- CM
•c m
en •
v V
•- onf^O I a
10 (O tO
o o cn o co r» '
o o CM co in h*
o o * ^ co en
to cn CM cx«o
CM in in
CM — —
O 1 in
— CM
r>- ID en
CM o —
co — o
— «- eo
— «o in
""CD*"
in P».CO
co — t
o to in
r- co co
co ID ^
CM — co
en to in
co — m
^ co co
r^ ^r o
in — co
CM
N tu
«
ee c x
—< a
C E E E
Oil O
^ o a e o
*• o> o> ^ o
c c c .o
e a a •->
*• c. c. ^> —>
e cccc -^ x
S>
a
o
^H
E
a
o
i —i
t, J3
O 0
ea
"cU
oo
U
470
-------
oo o o oo o
09 en co O O — —
CD r- co o o t o
nco nea COOOID
o o o o o o o
o o o o o o o
o o o o o o o
OO 03 O IO CO CM
CM O CM CM 00 1O tO
CM CM * «O f"» !»• «O
00 00 O O O
O O O CO O O O
o o o o o o
-o vooo
~- *- CM ^ CD
CO CO^J- CM
_ CMCMCM
(O CM ^
— co u>
Si- «
S 8 "
(D f»
CO O>
•«* 0>
00 O>
•- cs
V V
n oiotecM i ~
o> o
^ CM — -^ O
in coto O)
ID
. — 10 CO(O
— 10
i-in.
_ — en
CD (0 S> CO O
10 — r- eo
on CM CM
in O coto
u~ oooi—
o> o • o en
i «o So— to
15 Si- s
s § a
O>
CM ic o
in
*• r- o> f»
-rt • — co
on e> CM •
CN^T o
or- 3
eg to **
-« fe
V V H
O) > O
O (9
^,-B^ • DO-
i-g SJ
tj eo •
CTJ n. ••*
• a to OTJ > 2
O*. »^-w OS
O.C03 COW O S
CO
I
rn
u
471
-------
en
o
c.
e
o
o
oa
CQ
(O
o
>> >
4^
~ O
&•
o o o in — o o
in CN en o> —
CM in CD "- <0
r^ co eo 01 ^r m CD
. • . • — ^ *j
— •«• — o
r— in to co
o o o o o o o
r~. o o o o o o
to CM «— o — r*» co
m eo — m co ^r if
*- v co CM r» T
O P O O O O O
80 o o o o o
000000
«- co CM co o in «-
to r» ^ o> o en in
,- CM C> ID «- O> ID
p* ^ CO — f" + -"^ O O CJ) CO —
CM o n o> • • CM co oo
. . I • |a o CM • to
qf —I CM PI •- ID
— CM •»• «•» US — CM
O I
o
o
PS »- r^ CM us ii — oomoco
^. »t co— en o o CM v en
.-I ••!« OCM-OCM
^. _1 (O O O) CM U9
_ CM +«- CM — PJ —
en co CD •» — I •— oor-ouo
to «- in— en o o CD in o
. . i . . n B o o • co co _
a» _i — in CD — in ID—
CM + «-• CM CO CD f» f^
^* t*» O
in
CM
I I
co — — m co
CM • —
co CM —
CM — co
(O
to p^ in
i IB t
in in «er
o> oo r>
in CM en
co eo co
co in
CO O
O O O O O O O
r. PJ r~ «- o o "»
CM t CD ex ^r in o>
o o
gg
O
o o o o o
ggggg
N ID
CO •
<4- 0>
U to
O inus r^cn I —
S— »ro o>
• i • • » a
GO 10 IO O r^
CM ^
O O O O CM
OOOCM—
... o «
000 «- •—
CM CM O
O3IOCM
CD CM
CM (O
CD «-
IO CD
GO U)
CM 00
r- m
ro en
CM
00 CO CD
co in in
— n
to co in
a> (O
— CM O
I ~* O O O CO (D
01 • -O CD
II 0 O O • O
r»- — co
o • co
eo o CD
o> co
en
oo
en t en
co n—
CM CM
CM O
CM in o
00 t~
CM CM
CO O
co o
CM co
rs. o
CM — CM CO —
I CM CO CO
oo in
— co —
oo in •
«r oo
oo o
_
»* — — o
«>
CM in O
CO O)
I I
,
CM
O O O O IO — I
--""— OCOCM
CD — CO
<«T OD ~"
— CD T
CM CM
— CM
CM eo
o T
*» rv
CM co
coo
CO CM
CO «-
O coco
• in •
o
o
CO CM «t
— eo co
CM con m m
in — r- eo oo -"
o co — CM co r-- n
CM o n co O
S " o oio 3
— CM CO — *•
« co oin
o>> o
o c o.
"
C. B > •*•
eg TO O *• O
-o eo B i
CtJ D- "*f
«B e 0*0 > 2
Q*> •)•-»*• « B
D.COZ) CO tOOS
«g-«9CM K C X
"'"'^ CEE
O a ra oil
i- eo e -HOW
•^ +i 01 en
. . c c c
O U o CQ Q)
a a _
00 K
/u M
e o
J3 O
J3
••»
O CO
en n
a a
c o
-^ a as e x
o > > « «
• o c
E a a
300
U-IE
O O
(, (.
E E
D 3
OO
B
O
••4
0>
6
o a
s- ^J
^4
«a
CO
O
472
-------
•3
C
C
O
O
o o o o
»- »- to r**- Oft f"-
»— CO • • • •
— in •«* —
CM co ^r "f
o o o m o o o
en en in — ^ • i •
n
c~
(D co r» u> «O I
co r~ co CM
es
O CM
a
t>-
»
:s x
03 uj
CM O>
EX
«»*
tx ID
«!0 •
o —
m
«
i«- en
L. ft
a e
no*
»-O »-o O
(MTT 10 10 t^
• U) V • V • •
in r» »- co
Ot* O O O ID ID
CO «» — CD ID ^ CO
• CM CM • • — —
CO IDCM
o o ID en — o co
CD en r*- o n — r*»
do
CM en
o to — o o o en
to <» CN o co f» o
2 5
CM tM OCN O O «N
. . n • toio •
V V ' V " ' V
OO O O O O O
o •- »- o o Is- o
«0
OOfM oeo
O •lO'W
too -CM —
en en u> ID o
CM • CM CO CM
CM — «- CM
« CO ID O tO U —
in CO CM T
C9NCO .-
O O (O T CO
O COCO •
en
co
CO CO O
to * n
n co
CM ID
CM CM
.*, •* —
en »-!•» t
•«
+ ^ o oin ten
(R O CM CO CO '
* • s
to
CO
o
Si
e «
o >
«< a,
tO CM t
— CM ^T CO —CO tO
8?
to co i
to Nto
— r^ en
r*- *— co
r^ co r-
O to O
— en co
r» co —
CM co —
CD to co
CM CO O
— CO CM
to CD in
CM r^
eo > ••*-
a v B *• o
•5 «0
C-D a •.
• a c o-o > »
o *» » «^ *• • •
G.WS COW OS
O J3 JD
10 — — — ^-
VS w
to t^.
in co
in r-
(O (O E
a a
o u
CD a
co co
a s
CD a
(. C.
E E
co
O — O
co o in
to en <
CO CM CM
CO CM CM
— CO
CM O
CM
CO —CO
ID O —
CO — —
— — CO
CO CM ^
co (D«r
en in o
m
— coo
— -co
!•» CM«»
CO IO —
O P) r>-
§ — CD
10 —
— CM
CM »-ID
m co o
CO CO ID
CO CO —
v- CM
C
o
C X
-4 a
E E
I I
« O
*< O Ol
C C C
e a co
*• t- (.
O KCC
CC
CO'
o
**
a>
U
; e
E
, o
CO U
J3 O
0 -«
CC ->
ll
I *^
Offl
0\
rA
U
473
-------
o
§
mblnatlon
oductcode:
o t.
u o.
B
e
1
B)
a.
e
^4
Concentration
So o o o o o
TJ m o o o o
O CM CD O O T O
in CD m in in en 10
••-CMCM.-
§000000
o o o o o o
o o o o o o
CM ID O O O O O
ID in CM o o co ID
CM in in CM en o —
T- «— »- CM «—
O O O O O O O
O O O CO O O O
OOO OOO
ooo v oo o
§CM 1 ID T 00
« 00 O CM CD
.- «- CM ID ID CO
*K
a
S1
T3
•W CO CM ^f
|-N"'-""
• 10 -CM en
— • 1 — -HO
— — — -i
to in ID — T 1 —
u> CM n •- . oi
. . i --IB
CO -1
CM + "^
o in rx i | *~
-IO . O>
en • i IB
A — + —
^- O)
t) B
•* •• •• •• •• V) ^v
B •)
^^ H» B
In o ccoo
^»~< n OL.-~ •
CM *•*> O •»
e _B _c ^ -J«M
"en > o o^»
oca. *• o,o>
,-> t) O O E
1 B i-1""
«L.-O*' • «H-
c. ffl > •*-
• T3 CO *• O
•D BO B 1
CT3 O. '»IJE
VB 0) O 13 > •>
f\ ^f 0) ^j ^^ Q B
a. to 3 tow Q£
OOO 1 05
C3 • CO f*«
mo— r^
in^ CM
^ CM
O O O OIO
O OlD O«-
mo • co co
in CMTT •<-
CM
«B^«H» **-
OOO 1 •"
0*0 o
U) O ^~ O)
0) o— • r»
co in —
en u)
IO CO
o..^.«T
1*58 F^
^ oi • ^
• HOC
*• •** L. >
B • 0 C
t. a^3 «
*• B fl
e_>_>. t<»
*"*3£?
O -<— 1 O •
o J3 ja « e
B B ^ —
r» to «*»-«*>
in o »-
CM ^1
V V
CM CO O O *• O> O)
• • c c c
O O O B B
-> -> -!-•£.£.
a B o ccce
u u ff.
a e ^»
n
-------
1
i 1
t.
M
'o
o
o
CM
•^
CO ^f
en •
^~ 00
• • ••
1
p->
o
»
*J
•^ e
Ci O
e -<
*a
.* t.
^j ^j
^ X
HJ UJ
CM O)
E .X
n CM
CM (O
CO •
O —
0 "
0 *•
»• CO
t. ••*
8
CM
C 0
O TJ
Comblnati
Productco
0
CD
03
S
1
i
U
ffi
•H
1
*
1
e
c
ntratlo
i
O o o co o o —
en co n 10 n eo
«» «» W (D T fi
o o CM o en in r-
in eo eo n — f- in
— . — • *r n 10
CO —
p*. IO
O 0 O 0 0 0 0'
o o o o o o o
co i*. en co en r» to
(O «ct CD (O CO n n
— — co n (O 10 co
o o o o o o o
o o o o o o o
o o o o o o o
in in en in o CM CN
eo (O co CM co co CM
— — n r» r» co n
o o o o o o o
CO CO O — O CO CO
n co co co t f eo
o o o o o o o
o o o o o o o
o o o o o o o
«
o o oo o o o
000000 0
o o o o o o o
r^ r*. o o o o r*.
o — co o r» co co
co 10 co to r*. n oo
OO OO 00 O
o o o o o o o
CO — O O O O CO
O m r» co CM CM —
r». n — en n CM r*.
0
«tj
•^ ID CM T
— CM n CO —CO IO
1
H
?•» — eo eo C-- 1 — •
N — CM 01
eo _i
— CM + *—
1 I I (0(0 1
• •-
*.^ • +
^^
*
CM CNf- (O CO 1 -^
— to n — o>
2 '- ' 'U
en — co o co I »-
10 eo to — a>
« " ' ''5
CM •+• ~»
(0 IO (O (O CO 1 —
co —J
CM + ^
— CO CO ^ CO I —
— CM *» — e»
0> ' ' J
CM + —
en in co to r~- | —
^^ n ^(f CM CR
• • 1 • • | 0
03 -I
CM + -»
— o 10 en— 1 — »
en CM 10 — o>
en -J
CM + *•»
n coco t co I *~
— CO 10 — . °>-
n eo 10 co o
oi " ' '• J
CM * »»
— > O
•> 0
fi A
^^ *^ W
^^ c ^**
no 0 no
CM ** ** O *^
E 0 C «-"-*«
C.-4-1 « I E
CQ > O 0 ***••
000. »- 0. 01
!-> *g o o E
i 0 •*•* ^^
w** ••>••-
(.0 > ••*-
BT> 0 *• O
•D 0O 0 1
CTJ o. • -«.e
00 a> OT3 > ;
O *• en «-»** 0 0
Q.OT3 «(/) O 5
O O O CD 0
• ON -O
O * * —
r>
10 (O —
O 1 1 1 1
O
O
•
O 0 CO OO
O O CO 1 O
O CM .(DO
n co co o
CM — IO
"~
O O O (O O
o o r- cr> o
O (O • CM O
eo co oo o
CM CNCN CO
*~ —
8O O CO O
0 0 — •
. . . o
CO 00 O O
— — O CO
o or*, co o
o to o 10 o
o r- • — o
in in in co
— — o co
^ r^
O O O IO O
• • o o
O O • m
IO IO O CM
CM CN O —
O O O CMO
o oo
... o
CM (OO O
— to eo
§0 co coo
o r^ co o
— o • co o
CM o co — o
m ^r r- o
o
CM
O O CO CO O
o oca 10 o
CO CO • O
co 10 en o
(O en
CM
"5 ^ ^r %
»* ^^ ^^
""• E O 0
0 0 O 0
•n 00
C » 0
C *•*• i. r*
0-*-* 0 0
C f»f> *• t.
0-~~* 0 •
°-§i£l
111,:".
~ 0 0 0 X
CO CM CM
(0 . .
r*
1 1 1
r^^ta
O n co
en CM n
en o en
O (0
CO
00
CM WO
n co co
co —
n co o
co o en .
in — co
CO
10 n —
CO IO CM
CM —
en
n • CM
— eo
^j
co or-
— oco
ro co
co eo
CM
r« — -n
to • r*.
n en CM
O (O
o
CM
«£5
O> H*
p « ^5
^^ «
Tt 0
• (O >
•o o
(000
001.
en a o
0 i *•
Cum.rele
Leaching
Mean fee
JN P5
1 1
CO —
to n
CN —
i-. en
o en
to 10
co r»
CO —
CM CM
n o
co en
CM CO
CM
co rv
in to
rr —
co r^
n T
— • r^
— CO
eo 10
CM CM
(O CM
CM —
to n
— CN
— o
O CM
1- IO
CO f.
o eo
00 CO
CM —
O CO
CO —
CO —
— CO
CO (0
CO CM
•o -o
(O (O
oo
cj (J
0 0
0 0
0 e
0 a
0 a
0 0
(. L.
E E
UC
1
range:
CM
"0
tuoalty
e
M
E
en
E
CM eo r-
CM coin
TO in —
en CN CD
CM CM CO
1 1 1
CO — CM
eo —
in CN —
CM — IO
10 — n
TJ- CO CO
n eo co
— • CM
co in en
CO CM •
i i i
oneo
— -CM
•«» — CM
CM — IO
c "E E
O 1 1
-< o> m
-•J en en
c c c
O 0 0
•f C. C.
o tree
K
e
o •
0
u
I
I
1
r
1
O CO
co en
I
1
on
CO O
i
i ,
j
'
i
1
i
!
i
i
'AJ A!
1
: 91
0
1 E
• c
0 U
JO O
; J)
!*?
C. J
O e
0*1
, a<
O
U
475
-------
o
o
. ... o o o
o o CM en co co •-
o o o CM o o o
o) m to ~- rs cv »-
CM TT tn « •— «—
§o o o o o o
CD o m o — co
01 r» u> «o o eo «-
«- »- «N UJ ^
o o co r- en
O CO «T —
oorvoo
O (O IO CO O
t. vl
o o o o o in o
co r^ in^r co oo
Of-— •* 0
w co c«i
in 10 to o to in in
V v V " V V V
CO
o o «— o o *- «—
B).'B.ve<'-*vv
on CD GO
to— m CM
10 en
-- co «» co CM co CM
*•» IT -CM CM • •
en CM —
co oo in
CM o *» o ID CD —
CO T *T CM CM CD •-
«* • CM • CO CM ^
en CM
co CD
O O O CO O CD O
x- IO O) CO CO O »
|—» cnoenoo TTCMO
oi tMOior^o o -10
| a en •«» • N o — m co
+ — en
i>-io
t CM
CO CO
V °~
coco
oocn
— co
COCO
CM ^
~- o on co o
O) O ID tO
c • • • o
_i co coco co
x 5» —CM tO
ou>— .
vS
oo
o JOCMO,
§ v '
•wo
CM-»
V V
o jo
CO CMC*
»- — CM
2
tn
co co to
~
CJ »- IO
co
CD
co
CO
CM CM CM CM OO CM
• • • • CO fl *
v v v v " ' v
o o o o o o o
i>» »- en o co o t
*r r>. co t^ CD « —
CO »* !*• CO CO «— »-
*- into — o I
en^ IOCM
^ •- +
en o
coco
00.000
oo • o
r-
co^r
5575- ;• 888 sss
01 '' '
A - *
go
^r 10
ss
vv
gco|
co ~ o
w
rr:«
e>
I1-"
Is'
— «<0
o
o
HI
c x
C C C
v a a
<-• C- L.
0) KCC
oc
Al M
•)
0)
E
O
e o
J3 O
o a
oo
O >
a<
U
476
-------
1
o
o
5
•»
Combination
Productcode:
g
a
V:
_!
0>
a
e
•H
e
Concentratio
1
OO OOOO 0
fvCD O O O O O
co — 01 o o ^r m
in CO — — CO — CO
^ ^ ^* CM v
OOOO 00 0
o o o o o o o
o o o o o o o
r» r» o o o o P»
CO IO CO CD l*» — 1 —
. T • CO O>
_ . 1 — . 1 «
A *~ **
«*COCO*r CD 1 ~
*-CO 10— 0
. . 1 . . 1 0
01 +i
• 10 O)
en • i 1 ^j
A — +"
^ ti
• fl
0 *
•— i C ' "*
« o e coo
(^^4^ 0"^^
JE5-S "ST^E
en > o * 's**
o « a »• ag
T'« «5|
"&1 j-:?
T3 CO 0 1
C TD O. • »< £
C0 » 0-0 > «
Q *> « fJ *• B 0
O.U13 in > OS
OOO 1 O
o -a o
CM O— O
r«. o-' o
CM CD
'"* 2
O O CO COO
O O t* CO O
»- o -too
CM OCO — O
IO "»!-• O
o
CM
in O— O
wo— u>
r- in CM
CM CD
r-. co
5^^: •%
t^^O E
•- o> • »-
• E 0 C
«'«»'£.>
0 C O C
t. O.J2 f)
«< 00
C » C
0 *<••* t-I->
o «*•< o •
o--— o •
OXI J3 « 6
0 0 *^ 3
0 •*** C •
•v » 0 0 X
CN in i
CM •
CM CD
CO
CM
— OCO
co "" en
CO CO
CM
CM CD IO
r» CMOS
CM «- —
f^ CO
CO CO
in
T
^i^ ^*
NE£
•c _J
?^s
^5«
• CD >
Cum. release 64d
Leaching-perc.
Mean factor abo
i
;
r-. r~ — oo i»
o in «- o en
O IO CO »- CO
in— ;
V V
— o CM o t co :
OCM '* •
r^ in ^ • CM
Sr»
CO
GO GO i
CM —
^ CO *•««—•
10 CO ^4 CO CM • !
CO CO •) • • CO
CO CM O
1^ CD 9 ;
cnco ** ;
«» CO t,
o
V V H- ,
^ ^ ^ •. •• •• ',
•Z TUN 0£ C X
CD CO E •£ 0 '
^ c E E
OO en oil :
5- co E — o «
^^ ** 01 en
c c c
o o CD 0 a i
^ i-> X C. C.
00 e ecee ;
a o ae :
c a ^
n «i 0 :
00 O
c c -<
.-> ^ E
DC C
ii 6
U U :
O
I
0
477
-------
W
•H
CO
87
CO
CO (0
eg O
*O O
p4
"Jr
8-a
•*5 JLJ
•^i *~
"a 3
«t jj
is jj
c
O "w
B co
o
O
CO ^O
V4 g
X O
o.'S
CO CO
*» x
42 ca
4J
I— I "
g§
o po
"w
U4
m uj
NE5
E Jf
m
O
I"
*- a
3 "S
W K
X
CT
*l
Alt
Productcoda:
CN
—
*-IO US O O O CO
_ (O O) ID
v v ... v
co ID r-
00— ——0—
oi— v v v W v
r»— CN
o o o o o o o
.0 o o o o o o
o in in in in in in
o
0 V V V V V V
to
in
) OO O O O O O
: v v v v v
J
J
L.
B
v< oocococonco
J v*"-VVVVV
10
e oocN^r-or-
d v'0'* v
to to
^ ID O t O O O O
O)• O 1 1 1 1
1 ' o
c- o
1
I 1 1 I O O O 1 O
000^
1 1 1 1 t^ 0 1 1 1 1
{»• 0
«-
III) O O O 1 O
1111 o OCN
0 ^-— '-
1 1 1 I 0 1 1 1 1
o
till g 1 1 1 1
o
1 1 1 1 1 gg| .^
D
1111 *• sis '^
«> °^~* **
*
•« •* •• ••
*~ ** "^ -j-*« t- °--g J
'S'5'o "0^ ^^^tJS
J,-n5 .*« •«- o ja J3 a E
a-S 0*0 ««*-,:?
•000^51 "JiCJc0.
Ad ffi O T3 > V) *^ 81 C9 C6 X
0*5 S350S o>>o«
awn «« os t-«sz
iii ii il'
iii i 'i ii'
iii ii iii
iii ii iii
iii 11 iii
i
tit i i i i i i
,11 i i » i i i
o>
CO
III 1 1 0 1 1 1
III II III
I
III 1 1 * « 1 1
B
O
t.
cT 5 5 5>T ec. "e"x
£-_, tou>^ eel
1 .S SSf 5 00
i^5 -«^ ** O> O>
9 O . . C C C
• CO> UO 00CO
•no !->•-> ^ t- t.
5 -^ aa OKI:
to o a o o tc
0 O (. 00 •->
« Q.O » « a
a i *< a a o
0 O) O O0 Tj
tj c a •-> •* • E
a ~< >». o o o
'••oe *•-*•• 6
§00 E E
o a 33
O-IE 00
478
-------
c
o
u
JC.-I
gs
°.»
N
<*
to
o o oo r* m o>
•«t V «- —
ei in o>
O o •- — *- o «-
cj in
in o O in in in in
to co
V • • V V V V
UJT
o O — O O O O
•* e
« o
I|
j< t.
3 X
ff! HI
~K2
O
n
ID
*.
Prod
.
AU
I I I I C^-
ll\C-
1 1 1 1
, ,
O O O I O III
O O"*
II
111
O I I I I III II
o
o
o
o
o
I I
III
_ ^ CM in CM *r
o o in in in tr> o
v v v v v v
nnnnnoft
v v v v v • v
v v v v v
o — oo oo in
(M _ V <"> »
eo 0
c-i
•> ^
I II I*
c^ x ^r*< K c JS
e EC «ow e -g |
i ^. ^^ j "*s» c c e
!m ^ H oog o i i
',5 5-ri0 *""£ * ||
I -S I o o Soffl
5S 5 -5 •• S««
00 (00« U O K
r > .
e -o c
•S «1 D
c -o S. •
-
s 5«s?
0 »«
0.0) 3 OT CO OS
Leachlng-pe
Mean factor
Cum. release
Cum. release
ca
Ch
u
479
-------
l
CO
Productcode:
*~
2»
g
_j
1
c
Concentration
c c e c e
o o CMf» f» o r*
**" . ID"-
0 V <9 V
(O o V V V V-t
— •«r tO
1
«•> (O CM«*
»- CM ^T CO i- CO ID
I
1 1 1 1 + O O O 1 O III
000 ^
. «— —
f»-
1 1 1 1 I 000 10 III
O O d '
* O_j«^ »*
a
| | | I r- O O O 1 O III
OOO
°" °^C """
1) e o> ** CM >f
o— I ^! — — E E —
« •>» •>». o>x -J "~. ^ J
B « c»j£ — t- 01 ra j-
~* *- « E^"- Q3 S-o
^I« S.SS. jlg|~ ^S>
CM *<*» O<-> • OOO T3 O
JL.2.5 'wT'E i °"S « So«
^>o o-^ c >>> o t.
?*: «II I55lz !fl
,i--n.2 - e*- oS-< o • (DOio
t B >•*- O XI J3 « E i->C«l
a-5 C-MO ffl«B«-3 «•?*•
•a o o oj i >->f-><-> P ^x
en's oTJ'5'5 "'S'Sfflx Ego
o*>*>-'*'s|a| °5355 ,^i5
o.w=>(0«QS (-«aEZ o-is
11 iii
11 0 t 1 1
II -Mill
«
o
5
JJT £Vj
*" — » *• o> o>
• • c c c
o o o CD a
t-> »> *-£-<_
u o e
CO -->
m 0 a
a CD o •
J5.2 -g
o o o
C. t. -C
E E °
u o
•4
0'
480
-------
0)
en
c
°
u
o
CM
«
"i>
JC -I
in rx
•• ••
£>
•* e
•9 O
C 14
X (.
"a "x
CD W
CM O>
I:.*
CM —
n •
o —
i! "
«
». en
1. -H
:: c
03*
^
CO
..
•o
o
u
.C-M
B 0
«C 3
•o
. > °
/>-" t-
IWQ.
CD
O
<
I
eo
i.
iJ
U
CD
2
e
16
x»
c
e
e
^j
c
e
J
g
5
A _ -«» ct ^ O O
— ro en co — co co
in CD ID CD o en CM
— CM
o to o o — o o
n — ic CM CM co en
o m in CD
x oo in co
f eo — — to fx o
_ 5 *~ "~ en — in
V V CM
O O O O O O O
o o o o o o o
eo o o o o o i
tx co o o o — r^
oo — CM rx m o en
CN — CM Tf-V
o o o o o o o
CN eo in v in •« CM
oo oo o o o
o o o o o o o
o o o o o o o
o o o o o o o
eo — o o o eo rx
CO CM CM T CO CM —
CM in — rx cc in co
o o o o o o o
o o o o o o o
lx O O O O ID O
— in o o o o in
u> — o ^r CN en ic
fx fx fx CO CD 1C CO
— — rx m CM in to
CM ^ IN \"t ^4 ^ ^
O O O O OO O
o o o o o o o
o o o o o o o
— CO O UI CO 00 CN
eo OD o o co CD en
^ m in ID ID 1 eo
o o oo o o o
o o o o o o o
o o o o o o o
ID o o o — — m
»T tD CO CD tD t fx
rx o fx co 01 ID t
^^
£
•— C0CN n
— CM n co «~ eo ID
1
K
s.-.T^8. 'i "
en
eo *
1 1 00 1
JN. 1
x^
+•
in fx fx i * a
£""" '^
2'- . +
CO ID •
• 'I ' 't
in in in co o 1 a
C3CM —CM
* CO +
fx — in — eo 1 *
"-.i".0. ,
CD
CO +
to o m fx CD 1 •
eo'
C*J -T
. . 1 *^ . 1
" « . ..*
^- t*
« «
fi fl)
*^ _ ^t
A O •> CO O
eM *»*» o *x
£55 •16
w > o S. o
^> TJ ° °3
^•0-M • «»-
M *-* f\
•S CO « 1
5 ^2 i^^5 ^ ^B
_** * * 5 ^ C 93
Q.CO W (W WJ LJ *
o . . o
C*3 OJ f" O-l
^0 l»3 ^"
O 1 1 1 1
o
o
•
eo CN co eo CM
en « §
•i i i c "
.^ 0 a 0 x
o > > * 0
.
CD -
5 .5
(DUO
C « C.
« Q.O
0 1 **
eg en U
A ^4 ^»
• O C
E a o
— CD
C1* *•
O CM
CO ^
o> t
o en
o rx
co in
in co
CM CO
CO (C
CM CM
en in
00 CM
300176
61059
— o
CO CM
CD CM
en fx
in in
in j*J
-
CD —
in in
in —
rx —
en CM
— fx
CM
•a -o
•»>• •flr
(C (O
OO
• .
"0*0
U U
•) O
0 «
c a
O a
i. >.
§£
;
o
range:
o
*•*
^F
—
rtuoaity
o
•4
o>
*.^
co rr
CM
:
''
i
|
j
i
!
AI'/W
i r
c
•1 o
A •
.0
i«
*'lx
— 4J
9 -
(J 1
O 1
(DC
O >
a<
tN
•^^
U
481
-------
1
•o
0
3
C
**4
U
e»
JC-J
tor.
n •
^™ ^B
•H c
e o
c ••«
£J£
3 X
03 1U
M Ol
*f n
CO •
o —
•
L.
*.*£
*• e»
3 O
we
Ajh
uctcode: V3FA
r3l
uja.
fi
vt
^ - - y
V
toof^minnn nnio^ro COIOCM mo
OID mm r- tococMcon eo-n iof»
. . i . . 1 eo ID • CM i-~ CM cnin
^ r- | n tncMconen u> o>f* en en
ion ^-o c~ cn.n^co'co.*"* on
. . I ..icMn-r^en 011000 oco
O i cM^rcMintocMnrooi
1001^ i c^"— enoiO'^io OCM-~ n .-
• gi _ o> roino*^* «—«.j «— CM
Z'1 '"j riWWoS V 0 VV
_ e-^, n .-«•'»- V —
A Vy v
*••»»• *^
(Dmr^^v-lv o IDUJ i w «-*» CO *- CM«
+ 'Sf 5 vv
A W« CM
«-eor-. i 1 » O'no'Tt^ ocMOi CM n
^S- c- tooncM- r«."r- CMCO
. . | + O'-O—O •-•-
— ^ CO ^ •« «M
»- ^ * CM CO
"lo^' *"* ^".g^S 2*.-- nS
2J' ^ SScD 5 VV" VV
A *~
Illl CMo 0< e». 0 «.. „_
n mo. <- O. C» « *< *J C. iJ 00(. O C
.S-o OOE 0-<-<00 WOlO B«
IB ^»5 CfJfJ^t- « 1 *> •«
A_.^ . •*- o-^-^o * 0 en o 00
IS 5J-S °i^£l -.55 -."S
1*&5.5J: "Siic^ '•••gc ':'••
co c oT>>2 *;5?gx §22 ||
O*'«t-'*'0«l °5555 /?9i5 »^»^
o.OT=>inina£ i-«ss o-iE oo
r>i en Oi
— «T CM
O r~ O
r*. — o •
< to m
.- n
i i I
i i i
r*-
r- CM
in o oo
CO CO T
p^ r*
CO
in — o
in co n
n «r «t
O into
co in o
r* CM
ID rv r»
in — co
CM 00
n
r» in CM
T »»• r»
O OO
n «- r»
^ »- m
*" Z
i i I
«*
n in IT
r- in co
n *r CM
«» CM O
ID ^ P»
in CM i«-
m CM
CM in m
*" eri*~
.. .. ••
CC C X
0 1 1
•H e «
*> en o
Chemical Reten
Sran
Rran
.
9)
0
Q
0 O
J3 0
J3
^
»J **
*s
V* **
45
C. £
0 «
<«- 1->
<*4
0Q
O >
a<
U
482
-------
<
u.
>
. o • o o o o
«o soor-^r
. o • o or>- so
c« c «- «- *- ^
o o o o o g o
o o o o o o o
S: CT O 10 «0 0> O O CJU5W
*r (O in to «o ^ «•>
0000000
o o o o o o o
o o o o o o o
f*. O O O> W
B — «- d— I 09
O) O OO 09
•v 13 o> o • n
_l 10 100 10
e*- ^* o O
»- cu
at 10
to r»
v V
tnmog
«N«<-
t^ wio
I •
n * «- —
o 10 as i~- o
„ ^ »- r> «O
10 *t r-> CD o I
.10 CXW
O9 • I • • I
A - +
ooo i «•>
CMCMO r»
«• ^ - o
(O IO O O)
(O (O O O
v- »- *- O
to
TMOO
•** a> o
O) CM OS 10 TT
^ O *T *O
10 o
Ol ^t
10 «-<0
"" V V
O
O
•«
c
•o
o
« «
a: c x
il
• •
fjf.
W«£
*•* »5Jsg| |.g eg| o
«r ^I§ ««" 1 si
Us 5 -5 -S- |"
o « u> o e o o cc
g ^^ t" ••«- «• -i
S2222 S" «S 5
i-ji ."5^ o--o • «»o •« •-
1« S-o ^SS'I 2S* £? I
o-lilili lllli ill is
0> > O
oca
-~ e
IE *•
483
-------
en
0)
(.
ja
o
•+*
u
O
5-1
•-r*.
CO •
•- CO
1
O — O co to u> 9 co co
O O O O O O O
o o o o o o o
ID CM O O O CM O
CN v- CO CD CO CM in
CM to in i m in co
I 00) I
O>
o> U3 o r>
r» — O to CM
• — o CM eo
n • • o
O — O n
n o> PI
o i i i
o
o
tf — ^ *» CM
eo CN •- CN o
TT CM co
in • —
co O O
•- ic —
CD —
— CM
CM U> O I "
m to 01 c< r-
ID CO CD 1^ O
oen
10 co en
eneo
to in o r«
. • •
O> O> O
.•- •- O
ggge
O O O CD
gg
CO O
O O O O CD 00
«f _ OCM CNOXO
OB •-
O co — m •- o co
en f^. (O
co cor-.
CO w- CO
co
o co o>
in o
en TT —
u> co r-
r- en en
co — in
*f in «o
n CM —
— on*
to o co
co • ID
CD r-
rs.— r^ u>
O CO
«- in
• o CM CN ID r>-
^ CO PI CM PJ 1 t
o o o o o o o
o o o o o o o
o o o o o o o
in 'g- r* o «» to in
^ in «» •*
!£
to
u.
co
o o o o o
o o o
o o o o
o o o o o o o
r. r~ co r* to to ^
.—in o co m f^ •-
10 en en t^ to to 10
coco I 11
I
I a
— coco or» I »
O> (O e«r*
• • I • • I
*• —«NOf-
O CO ^
co o m
«- ID co
10
CN
CM -en
ineo»-
i o>
CNCO»-
ro >- en CMCN
<^- tO CD • *~ "^ ^"
... O tjO CN —
IO (C CN CN
— «» CM
CN c> •• o co m
— CO O CM -CD
— CO CO <9
no c
CD r- a
CM — t
O en
r» ••
(D CM
or»coo>eo co^^r join
o coco co CM ••
«o to 2 to «j
CM »- o> en o
en to CM z
O co co
• CM •
-CNin
co co ID co
_ us en
CN
— «t to
cocoo)
— CM co
eo •-
— •* +* O — CO
CO O ^< • CO »-
O tO *> CN •
^ CO O
CO 09 3
1
/3
u.
Productcodi
a
e
eC- tocN^
2 _CM^CD —COlO
^1
NE^
^ e
et o
CB > o
oca
"a • o> •• _^ "M
...S^i ^"S»«.j^. -j. -j
• • oiji^'*- t» tj {-
"5 £"c» .°5 5-cJ0
1"°. J525 -S§
o -~ a coc v o
•S-TE -l^^i s««
•sit safe's slo
02£. c^i->-*'(- « i *•
.««. O"-^ O • COO
% .»- o .a .a a E i->cc
«-.I^? ^55**c3 £S"
.i'S&tJtl I--§ j §g|
°^^S«S£ .2^^!= 32£
, _, es c x
"••^ CE!
eg? 5;:
^ ** tn w
c c e
U O • 0 fl)
"• *• 9 CCCC
u o ee
« C
Bl «
a e
c «
E E
•3 3
00
a
o
•*4
|
6
a o
j3 g)
I -rt
t. J3
o a
ea
O >
a<
U
484
-------
!
•a
(continue
Ol
.S-J
« n
p» •
»•• CD
|
x>
-< e
19 O
M t*
'•s x
03 Ui
CN Ol
IE*
«» o
CN —
CO •
o «-
L.
0 *•
, ^»
<»- en
c. -*
3 0
CD
U.
PJ
T
flv A«n
Productco
M
V)
-
A
a
z
*
3
^
S
u
J
e
3.
e
0
•H
*l
2
*«
c
Conce
CT) CO 0 0 r- 0 >0
ft \e> •- oo cn •- in
^ in in T t in ^
O O O o O O O
CD CM cn in PJ P> co
01 CM CN ^ cn CD to
ex in in T m »
^ •». •
^% e ^<
0O 0PJO
CM A'*' O *»
E * C *->-WM
u«4 »< 0 I E
OJ > O 0 ^
O 0 0. t- 0.01
r* "O O O^
^^•n 4^ • 01-
t. 0 > •*•
0-O 0*1 O
•o 00 0 i
CT3 O. • — < JC
00 0 O-O > 0
O *- 0 ^>*> 0 0
o. to 3 cow OS
•— ^ C5 ^9 tO
in in — CN CM
PJ co - cn —
CD in o CN co
r- cn
O rx ui i PJ
o • 3 r^ .-
O PJ -1 CM
• 0< 0
2> c
^™ CO 00 ^J *^
T T tO —PJ
PJ CM • ^ CD
(0 00 CM CO
PJ CM r-
— COt CD f-.
(O CNfv CN U3
O — • — —
CM — «T — CO
in PJ
cocntocMco
CO CMPJ
... (M
PJ (0(0 —
CM CM CM
.-.-. ~*
o cMui i o
^3 . ^5 PJ
O CM _J V
rv> to
^** *^
O — CM — CM
(0 — — cn oo
— « • o
CO — — PJ
O)
CMOO OOJ
• • v cn a
— 0 • 0
f^CD(0 (C
CM —(0
to era r~ T to
cn to co •
... pj
r-. aa CN cn
PJ Oi CM
o en co o CN
— . • pj to
•^ eo in CM
^ r*» in
o cMr^ — r»
o in • CM 01
CM o PJ co cn
in ^*^O E
— _- m • ^^
• E 0 0
*•<-(,>
0 000
C. B.J* 0
"c ». 0
0 *•*< Ut-"
o-^-^ o 0
oi^'o •
OJ5XI 0 E
a — -- c •
*- 0 0 0 X
cn in
5 -5
10 o 0
0 0 (.
a a o
0 eno
t-> C 0
• o e
E 0 0
300
0-JZ
PJ cn
m rr
— CM
to co
to in
p> cn
*~ V
v
10 —
CM O
— CM
CN en
f 00
T (0
V V
f» PJ
O IX
V V
PJ CN
in t
— CM
CM •*
in eo
l 1
CM W
PJ eo
en —
CO (0
cn CM
eo en
PJ PJ
.. ..
5 5cN~~
to IO E
•x^
»• PJ E
O O
0 0
U 0
0 0
0 0
0 0
0 0
0 0
E e
u o
*— tO CD
— «» PJ
cn CN f~
*j — cn
in p> in
n — cn
l i i
i i i
oo in o
rx PJ —
CM CD —
to — —
P) PJ t
(O
(Ot (0
rx in PJ
to PJ CM
00 O O
CM — CD
cn cn rx
p> in
in (o in
— PJ IO
CM in cn
rx to rx
(0 CM CO
in co o
en CM PJ
in T in
en eo rx
i t i
<0
en — —
co (O cn
-------
CO
u.
n
**
o
T
C
< :
u. a
*
1
1
e
ntration
s
g
s
1
• o -o o o o
00 0 o 0*3- n
• o -o o tr co
CCM C — •—«-•-
§0 0 0 OO O
o o o o o o
o o o o o o o
10 n r-. o •«• CD 10
CO CM (O Cn CO O) CM
PJ co in n in «*• ^
o o o o oo o
o o o o o o o
o o o o o o o
o o o o o o o
r^ CM co o o o en
vn to en — co r- co
n en en co o o f*»
m
0
3 tocM^r
•»- CM *T CO »- CO CO
1
K
CM inn i n •—
• CO O
»- • 1 +0
*~ «- C-«-
A
*- nnor- 1 «
en co CM r-
• • 1 • • 1
U) ^3 f"* CD GO 1 M
• CO CM— C-
00-1 • • 1
A — *
a 0
"BO 0 wo
•N.^ « a.—* •
(M +S4J 0 »-
£55 "iTE
*S > o 0-v.
oca. *• a. ra
^•o °5£
.^•O -w • « •*•
e -c 0 *• o
•0 0001
CTJ a. --> «
O*i arj*> 0 «
B.co=> cocoas
n o o i to
en -o 10
^- n •— n
*~ O) ^-* O
o r^ co en co
••CD • CMIO
n co CD n
«- 10 en
CM
IO ICO 1 O
n no n
10 IO • CM
n no o
^ — .- CO
in
V
"S
E**l~'o>E
^ E o e
1s*^ « o e
i a-8S
g^^i.5
O ••« -^ O 0
C |J i-1 ^^ t
cSSS 0 e
0-rt— t C •
*- 0 0 0 X
H^IsS
||'
n n n
o no
n to
CM — •
0)
CM CM CO
*r CM CM
CO »-
co en
en CM
to
£. '^
"~ v 0
•CO >
•a o
CD O 0
00(.
« a. o
0 1 +•
0*1
en CD
•tf CM
0 O
10 CO
V V
CO IO O
O CM
•9 n
en o
CO CM
eo CM +>
10 - (M
O co cn
• CM •
«- ••»
en t
-------
!
^
cn
en
i.
f^
o
a
o
CM
WE
e» .
je. -i
O I-.
^: *^
•«• QD
i
>1
7s o
c •*
' w +*
o u
c
»* *<
:•} x
03 W
CM t»
IE Je
CM CM
CO •
O —
iis "
IB
IL
IB *•
•c- O
II
c
u_
£••
••
4
•o
c
o
'So
«J
,,2!
U. o.
a
03
£
^^
1
5
i
o
o
^
^J
c
e
Q
«4
+t
m
Z
4^
g
o
g
0
0» — r«o o O O
in ID — en CM ?•* o
^ cn co en — o co
— — CM
o 10 o o o — o
co — co (O en ^ to
eo CM *t co
UD en co T
O to O O o eo o
*r co o cn CM —
— CM CM co * «s
o o o o o o o
o o o o o o o
o o o o o o o
*r o •* to r»cM —
^r en o o COCM v
CO IO IDIO IO ^ CO
oo o o o o o
§000000
o o o o o o
to o m co — i in
^- to o ^ co co — •
10 o co cn co 10 ^
"•
e
TJ
i lOCMIt
— CM < CO — CO UJ
5
4;
H
Sotomr^nii, to — roococecnco ^o ococo
in T CN • . — CD CM in- — • o CN rj rx • ic
• • I • • 1 in • • to1' o in — — — 10
Jt IO— •rt*CMCMr^^-CMCM
*• + CM rs CM
;
IIIOCM) Ollll III II III '
• CM O
" J 1 0 '
+ • 1
CM T r~ co 05 u — CM to cn — — r»-^CM CMr». ^r»-io
CM co 100 o> CM to o — — io-o> o in mot
• CMIO-IO— ID • co coo co co o
• . l • • I o CM ID O eo co o co T tocn co CM ^r :
O -i to to 10 cn 10 — to co ;
— CO •*• — COIO CO CM —CO
— CM ^ r* o
CO — !
en CM in r> en 1 « rvr»or>.— f^ — — uf
*.| ..|Q. IO— -O«~ — CMCO fx«-OCM*CO <
eo 010 — 10— cnocn^io
— +^ coo— rx co — 10
— — r» to *r rx ;
CO CD ^- CO '
^(NrjCCro I » corxOCOlO IOCOO 9— •• — CM O '.
O r>« o ie f-toiocnco o -en rx 10 e — • 10 ,
. . i . . i r»to- <» — en— — — o CM
0) — — *j CM >» f co vn r~- c ;
— 4. 10 r^ fx rx 10 e i
CM — — CM— i.
^•^COOt 1 B —!•-•»}• CM CO CM — O COCO O 1 1 1
CO CO CO *• ^~ IO O * O ^ **" 09 ^f i
• •i*.| •'••cniDCM^cocM
CD — — — ID O 1
— 4- — ID CM :
1
r«. *r in — cn | • oen — too — to co CD CM or^rx i
— CM — o lococMcn^orxco o— «io-
. . I . . | (D CO • CM CM »JCMIO IB* •• i" •— ;
eo CM co o CM co 10 co— *»
co + ^ r* co — — CM co • ;
co cn ^ co z
>, . i
u> — «tcoin i « OOCMOIO en CN to o CD •" mr-.cn
— in co rr OOIOIOCM co co cn cnco-x-^- ;
. . 1 . . 1 CO O • — O — CM CD CO ID oil o
-^ ^* E ^ O E E -O ^ CO E «4O« e o
^, c ^ Cr os . ^ ^-o ^ *- » os ^ ®
• O BflQ • E O C ^t * *• CCC ;^
^-S e O.^ * ^^ t- > * OO 0«OI^
rM ^» *« o — .. e fioc TS o »^ »-* ** t t »-» —
E«c ^-«M u Q.JQ « «r*.o «e ^^^ -^^
bHi «M ^4 * I E ** 0B « « . • ;-<
*""* ^ ** • O *^ O ^* ^S2c5^?2w5 P C *Q
B TI e •** o « « •»- 3 e -< »- ev e Oia
•5 e Q « i ^> r> *J o ex t- t. x *• ^
c-o a --Si • — — e • -oc •• o -«
ca 0 OT9 >« *• « o e x Ecsa EE ea
0*5 « 3 2 c a o > > s « = « • = = Oi5
aw 3 w was t-«ZS o-iz ocj -n.;<
U
487
-------
1
^
I c
~* 1
*> 1
f \
0 \
o I
~ \
1
1
1
.
CM — CMUJO^tm
4 — CM ID — in co CM
L OOOOOOO
n \ inroincncocno
COOCDCOU>CMCO
1 CN U? "^ ^" (C ^^ ^^
_< 1 — 10 eo to r>- o o .
\n \ en — *» — — en •»
I to to CM ^ en »~ ID
I ^"
J3 1 OOOOOOO
3. 1 CM *r co o eo CM en
I r*. CM — — ^* co CM
1 C*M 10 ^ *3 *^ eo CM
CD ^ ID CM CM 1 11
IO m co CM c-
— — M>
- _ ^ _. 1 II
• IO ^ CM
CM en r» f~ — » *
^* • i • • 1
^
• *~ I
to to *r co en 1 B
to 10 en ^ ^
CO CO — n CO
eo eo • i r-
r-- co
o T UJ i in
o • 3 co
OT -i —
• *r < en
co r>- eo «o en
— to ^* P) co
in V V co -CM
I CMC! —
I enen m
3 I o o inin o in o
o — CD en T
w . . v V • V •
I o CM — f*
«~ CMr»CMCM— O' — *»
o> CM too • — 'rf
5 ?:«s s v^e -v
.eor-io- I a orvujico r- - co go
. CM . CM -» _ C- 0,^3 ^ S- -CO
V V
O I
ID
CO
CM
10
«>< en
u» ^
ic» CM
I | • o —co —co — -co 10 co
fw tO — COCOIO ^"CM CO^7
i i £ • • r N S N"
8S5«^I. -jogg «*« SS
«'i-: H^S • vv
— •« CO
^r en eo
to ^ ^^
to — en
o ouj
r^ *" co
— CM
en en —
co cof»
CM ^
O IDIO
"
so
to
SI o o CMO eocM o
I »T IO "CO • P*
CMIO V
V<0
P~°llll
CO O O O O O O
CO CO O»- CO CM —
o — co CM tp — co
o o
s
0
u.
5
-w
^
o
*l"
• 0
< 3
I"O
>i °
•-M <-
U,|Q,
C
e^
5i*
• ^i
* *-eM^r o*
•si
9 "**
OK-
0
c^
tO CM «»
— CO IO
I I I
to — r- o O 1 «
n 10 CM 10 c*
o —
-«*M t D.* •
£5^ " J,4 * », •
o e e. »: Q.» giS oTp
O O
c. e
.
O O
„ - e*» o
•S eo • i
CT3 O. • — g
O.W3 '
^ •
^-< o •
ixi e E
e e»- a
»j t)
Z • •
o > >
•IO >
^ O -
n •« « •
to o « u o
e e t. • e
« Q.O •> «
c i ** « *
e no e e
^ c e *>•*
e -4«- e •
(.x t «•
• o c • •
E « • E E
Ice aa
O.JS 00
CO GO 1
CM • en
10
III -o
+• t»ot A e
C C C J3
• a e
«(.!..
• ceec -i x
* *xl
a
o
0
O
-
i
L.J>
o a
• «
o >
a<
488
-------
o
• . oo o o o
a a o o o co o
. . o o o co o
c e CM «-•-«- —
oo oo o o o
00000013
o o o o o o o
*r o t co coo
"3 2£d
ewC o
•*
in — in to co
5f CM 1C f» CO
CM «» o f en
*t to CM co
V V
CM en o> en •- — «f-
o ^ • m •
co co«o ID
en o o co
CN — CMCJ
CMCMO <"> r: £
(O <£ O (O *0 ^
*" *" ^ tO CM
*•
v
I-. CM *• CP 10 CO
O o — —OCD
in •«? • - r<>
10 —
10 10
V V
o
a
§n
>
s-l
fi"
'IIs
o I • **
8 I St-
4^
O
3
T3
IO CM ^t
«. CM ^ CO «- CO «O
*r"
t» > o
oca
-
• e c
"• • "S <^
c _J j: «~*» E
,. .. 5^ >«. t»x-i^
m «s gj£ — t g
*. « E^ O E
~* "" '*'-'''
• COO ' E p C
o.^^ » ** ^^ t. >
o ^ « co»
^_«N t. a^ > x •
«. 5.o> «*•*• t^
°3S g25°£
. «*• O-^-H O •
> . Z CJ JD JJ « E
e*- o *5*"o
S . -^ j: c ^« ^< c •
OT3 > « *«oes«x
225. o^>»-
NE^
—"V
vo~*
•<» 1CM
(O ID E
.b S8t
CC C X
o
u> o m
« c c.
» 0.0
•SI-*'
e oo
-» c •
m f
o o
c c
•> •)
a 0
« •
E E
I I
. t> e
*• o> o>
e c c
e e «
t. c.
«
o
^4
C
8
o
53
489
-------
en
en
L.
JO
o
o
o
O
jc-i
co *r
CO •
— CO
i
o
X >
«* e
n o
Si
IS
M 0)
CM tn
o —
*» •»
m *•
• f.
•- a
c. «•«
^
co
,,
_, c
^C T3
n o
< 0
+t
IS
*>TJ
»*• °
'Si
5
CO
s
i
i
o
c.
m
•H
5
*
1
c
§
•H
+*
C.
*J
e
c
u
g
o o o to — eo o
r- co in CM CM CM co
. . .-co — •
CM o
to en — o o — in
CM co to co r*. en co
— —
o o CM co o en « > — r» eo — •» COIDOCM-
— . •«• — — — eo^^inio
— r». co co r»
CMnf»eoin|B CMCMOCMCO rxr>-o eo— •• j* "* *^ "? *
. *^ i . . i oo- S coco — in en --t com
eg CMCMO to eo coin c —
— + — — o — — • ••
IB co to (O — 1 •— CM — eo CM r~ co CM CM in r- — 1 1 1
— — *?— o> ocMcn > i o am O — r>
i«» CM ^CM » «»iocoeno> encMen co en -to •
. . I . . I •« — r» • — eo 10 — O CMO •• «- • —
B CM + — — co 10 co o 10 •
CM CO 10 CM Z
r«.CMmcor«l-" ocMcoincM en — eo fco +• COCM<«»
MO wn t» o
B j — COCM co en — 10 f» O
r- + »— — — CM CM V T — 3
— to en to to *•
•2
7? "» »tO> OO DflJC^J
CM! O JB ^j. C ^K ^K - * fflfflL OO _L ' *- ^
OCtt 'oo? O ^4 <»4 O €> S5 O. O W(0 CD 1^
^i ^^ M _^ _~. j~ ^« ^^ ,2 r fl 1 ^^ 00 O OC ^
*''2'« >j*^ "??•£! "i^-2 'C'IB 1 oi
"sZs°^? "iii^0. '•.He *: *: 6 *" -
§E O fl
3 ^i •
'o.«5tnw6s H<:<:EE o-is oo o.<
5 U
490
-------
n o «
— cn
•D
C
O
U
r> <»
00 •
— OB
in
£
— en en en
en — — CM
en — — as o — O
O O> CM f~- 00 r» r^
CM ^ in u>
to r*» to u>
in
— in m in n 1 —
.^ ^ — o>
CM — CM CD
in in
omujim
o -3 CD
OCM.J in
in in CD — t
f -in to
V V
S
r^wl*~ oen«t«o»- noocn
— 10 — w UJ U> U>
ta r*
V • • V V V V
O XI
V (C O O O O O
en o «- o> «
0 0 10 O O 0 O
U) O) »- — 1 CM oinuio intotn
• o on — o -3 eo M — es tatous
10 ^ CN en w • -eor^eN ^ •
. . i . . | . eo«- • 10
en _i CM •» to to
«•> CM + -» in — CM
n «N
Din
VV
—oo
•- •-
w
o o o o o o o
o o o o o i m
oo O) en eo ex in r»
CD r- o f> tD
in « to
oo ^r
men
mooi^-
I I I I
+ ^ en in t CM co oor>u) -c
d 5S"1* S w
mmtoecn 111
11
co 10 en
gss
to en O
r> en as
oo to ^
en — r»
in en en
in men
co o oo
to mi*'
en oo en
O en CM
en en en
n in
mo-*
en en in
co en 10
CM CM f^
10 o en
10 «- m
in r» en
O (O (O
CM en eo
en — eo
en ai en
tM — CM
(0 — 00
10 r-
n to o
CM IO CM
en CM o>
— «• CM
i t
oS
en
r*>
* e
e
II
C. — CM T CD
1.1
»- « «0
n N
• «
0 U
.0 e
.a
!l
• -<
C.S
9.
O >
u-.
O
491
-------
O3
P5
o o o o o o o
O O O Q O~ O
o O G o o CM *r
CM ID 1 CD r» (O C5
§o
o
o
CO CM CM CM CD ^t >»
to — to ^ to cn ^
_ .-CO CM .- —
wexioenol— •
-
CM
e
-J
— — o i co en in
CM CMO co o •
CM CM • co cn —
m n o !•• en
•r- »-O —
io *»• r-
en CM en
co io— en •» ic
_ pj tO «0
CM CO
CM CO
P) O
~- CM
V V
oen
co en
CMO
to io
O 10
tO CM
en r*. to
CM — r-.
o co co
en — *«•
COCM ^t
^CM^TCO —PJU5
en r^ f** CM us I •
. r- n CM
CD-I • • I
A — *
-~ e»
« «
D-I
• «>«
• «
comoixr r^cM^f ^S —"£!"'.
tDtDO tO tOt«»*- ^TO "2 "r^
cneno CM o eo en— O
cocoo g en to j;g2
- S °- o
V V V H
»*~^£
weS
• O
• no
-«~, — £».«•» •
M ** ** O '^
6 « e ^ -MM
ji-<^ « i E
e» > o • ^»
o e Q. «»- g.g
^•O O p E
« *• o
•o ~ co « i
.g'g&tJ^i
O ** « ^J •*• « «
O.C03 W W OS
V «CM
IO 1C E
K 55
C E E
O O O) Oil
S« E - « «
*••• *• en 01
. . c c c
o o e « «
—I ,-> *< L. C.
e « cccir
oo tc.
t> e
« n
« e
« •
c 0
U f.
li
oo
A
o
O
TT
u
492
-------
s
O «o O O O> — OJ
CD CM CD >O 03 — O
CJ>
o>
JD
o
u
o
«
s
M
1
Pi
O O O ID O PI O
UO — ID ID tO CO 1
CD
09
tO CN-CN
CO CO P>
1C
O CN CN O O O O
to to 0) to 10 c> co
eo co u> co t CN CN
— CN CO ^
o o o o o o o
o o o o o o o
O O O O O CO O
ID r^ o o to o> f*»
o f^ u> (N r» m o
»- «- «N «- —
O O O O O O O
•- in — ^ *»
CD o Is- co r-* 1 i'l CM •«» o — o>
*". '". i "^ "~. + "~
t i i
I O fN
K CO OJ —
CO ^ CN CO
CN r*. co
eor>
<« o> n -~
r»O ^
• ••fa
n O
— CN + —
o 1 I i i
O
0
^ — o t CD
COCMOCNIO
ill
^ o>
--co
II
f* vn cs «- m
encNco u>e»
r* • «e -. «- o
C0»--- CNCM
en nio
to — O
til
-'9'c>-|ii
S Z co e>
. . I . i
CM
i- «o +
cocar- — ol
• in UJCN
A -
tnp*o>a>*- ococo
r» 01 • — CM oo • u>
CM a M r* CN — ID CN
CO — O) CD ^
r»— co co
CN in CM
CO
«?er> to torn
O in rococo
o> (O CN co co
'VCD
coco
ooo—*r CN — oo co 10
— — O —) (N IOCO COCO
•O QU> *~ V
'"" V
CN
*°
>H e
e o
IO U
«N
CM •
O —
•
« *>
*:•§,
C ^4
«*
^
O O O O O O O
OOOOOOO
ooooooo
r^ u) o o o co o
p> to o n t~* t in
v- tO U) CD CO U> CO
OOOOOOO
00 — OOOO"»
COO O O O«l^
PJ r«. o CN — r^ co
CM — —
rv r-. to to in
o"pjrvp»
"Z — —CNCNCN
OOOOOOO
OOOOOOO
COOOOOOO
r» — S — CM in 10
CO GO CO ^- 00 ^ *-
^ --r
— OOO«N co «- r»
(O O) O O CO 1O «-
CO O> O> U) UJ ^ fO
menr-cNcola OCOOCNCO conjo
CN P> —
- n S
«» — co o) 10 (O co o co o * *
O 1O lOf^^
(N — n CN u> P> *
— p> CO— X
— to 10 CM— i it
oo»f>cotn in T o co en »[
SS- £ §NS SS S
V3BB
Bot
COCN<*
— n«o
"5
Al N
: «
^L Sff 1
| -5 it .8
493
-------
•o
e
c
••«
+j
g
u
CMf*
S2
II
^l
Jf C.
m w
O O O CM O O O
CD o o 10 to r-
eo a n •- «r r*
CM CM — —
in in co co o o 10
in ^ en r* o co GO
^ en r* u> m O co
r* o o o o o o
m CM «^ — — co in
CD CM ID o co (O CM
^. »» CO CO ^ ~
o o o o o o o
CO ^ CO CO CO 10 CO
US Cn O r* 05 04 n
^ (0 *T ••" CO CO
10 o CM into in to
CD CM
V • V V V V
(O O> O O O O O
eo en m ID to co «r
CM O) CO (O O I
co ^ eo oo
O CM 1C ID CO I
• in «r CM
— • I • • I
o in a> r-- ID
in co CM ID in
^r co • v r*
cs o
in co
r* CM
co in o — —
CM —i en r* CD co in
^ CM + •*- CD 00
CO
CM <0
CO •
O «-
t-
i!
•- CO
o o oo o o o
uj ^ o CM ^r r> co
i^I eo co — • CM en
CO CO CD CO
1O IN V —
^ u> in
03 — —
o — u) I r- o u>o
0-3 10 -010
o r* _j en ^ •
.*t< in
r-> co
cow •-
rs cor* en en » in
^ *• . o
10 in«».
»-co co
cor* eo
— CM
£
3
e
55,
o co o co co o t
in ^T en
•V • VV •
^ IB CO
O O CM CM CM CM CM
CM VV V V V
o o oo o o o
oo oo o o o
in o •» ~- co r* m
co en co co co o co
eo co co CM en in co
o r* in in 10
_ o -U- r*en
i . o> it • co ui
— iMr* co
I CM eo n —
o co in
in •
co co
•- r*
So
eo in
or*
to CD
in a>
V V
V V
O O>
co *r
inv co
eo — r-
eo CM r*
co r» co
CD — O
co n (o
r* en«o
r* CM o
CM
to o to
r. •- ID
en CM co
to !•» CM
o O r*
— — in
co —
in cor- 01 •«!
O CD o CM
«
p-
CO f-03 — I1--
- • in en «o
o> CM • o
o coir en
co in to in co
in oco
ID en t
— co •»
CO IT Ul
^ CO
en r-co
o r» u>
— CM in
.r* CM CD
— CM
So
3
*• 1O
(, — CM«t CO — CO ID
II
OH
* «*•
SJ-S
•D SO « I
e-o CL •-<
OB O OT> > -
mm
cu
.a e
o a
eo
O >
a<
vc
rr
U
494
-------
CD
CD
PJ
O O O O O O O
o o o o o eo n
o o oo o ID«s
S m 10
§§§8888
n no i en o t
en eno
co n in
— (0
I>H (0 — 1-^f vOlOUl
0>
n en
ID o
CO 00 P> •- 00 < •-
€N M CM «— »• —
OO OO OOO
0000000
00 00 OOO
I- O O O O O O
in n
n «-
eo to cs — cor^ O
O) pi co o> r- * o
"" •" "
»- tor* eo CM I
r» —CM
en • i • • I
A — *
to io o if* MOO «0f* JJ P1?> —
g g . in to .-f- oen «J CM •
NtMoenr^iocMno
~2 2 § " S§ 2
CM n cow fc
V V V I-
« fi
«
.e-o
•" e
o
6 «
.
O > O
o » o.
1«°. *:£g5
o —. 0 • o •
.S-WM S. CL-0 «
e I E *• • *
J-v. c >«> 0
•.C.OI 0iM4'C»a^
««I S3322
0 E
!,£ s
TJ T3-»
10 (0 E
Oo'n
i^i .-Si: O--«Q
t 0 > "t O-O-O
• «0 >
TJ O
v ..e
(000
esc.
o o. o
0 i •*"
coo
t-» e 0
• •
o o
r> •*
0 0
O O
0 e
« e
a 0
0 0
tt.5.
C E E
O I I
e c c
• • •
** *-J-
eceec
cc
u
"E
o
495
-------
en
en
o
o
0
S-j
CD
— CD
^ C
0 6
S
CM B»
E JC
S£
O ID *T O lO f^ O
— CM en
co o —
_ — • CM CM •
o>
O O Of O— O
en — co r-» eo ^t co
CD
co CM CM
CO •<* O O O O O
(^- (O O T P> CM O)
n w o ^ M c** *?
~- CM CO V PJ
000000
o o o o o o
r>o o o o r» o
r» to O o P> o *»
ED ^ O) *• CO CO O
o o o o o o o
f»U> T CD PJ tO *S
§o o o o o o
o o o o o o
O C3 O O O O
(0 O O O O O) (O
r^ — o o oo m
CMO
o o o o o o o
to O O O O O ID
in tn o o o n co
CO O T Mrt O CO
— CM— — —
CM in — — o co r-»
— co ic co «c in en
— — — — CM co CM
o o oo o o o
o o o o o o o
CO O O O O O O
*g- — — O CO — CO
r-*» CM o «D o co
— CM CO CH CM —
§000000
o o o o o o
o o o o o o
in r* co PJ CD r* co
co o> •» "» co r-. (o
CM <> r- eo 1 «— — eo eo in eo COCOCM ocn in £» en
CMCO in— o* cocn— O inu>o o at — o CM
..)..+ « r~... — OCOCM coo ...
CD _Jf».CM — •V *T —
cs + — — CM
— co
• •
O)
IDO co
. . I
M
— to
— col—
co *r— . o>
l-x . | • . | «
_ o^^cn cnco L —
— en « — co CM -CM coco ^ o
r-» coco r>« co en 10 CM CM o 10 co to
CM —CM in en r^ to toiar*
rs. 10 co o en in
CM ^r CM —
eo
A -
+~
o oo—en
o o o -il
co co • t— •
• -o Ota
o --co
v- v
V
—CM— coco
r;"
PI
V
— —
••
co r-
•O
• o
S
-0
t in c
co a
L
CO— "TCM
— *r o
'^ SSS8S
.. . in. eo ?• • — o en — co
— O eocoo CM oi u» *r« *»
- *" - *
— | — ocor^coin CM o o — — *j •» CMO
2-§ 5
— u>
— c.
o
CO CM *t
— CM t CD — CO (O
UK-
* ^
0
325
- o
ez e x *
iff I
•* G * 9 O
•v o> o> .o e
c c e jo
e • c -J
2-5 ooe o-<--o« «n.o • •-3
IB W^JS C-J.-J-WC- "^ |g 5 Ki
ESS de
351 33
1*
u
496
-------
c
o
o
r>
CO
(0
£
c: -H
o "o
CM
KX
•*r ID
c-i in
«•> •
o —
od
JT
U
o o o «t o o o
_ 03 T — — <£> >
— «» co co f» — r»
T> 10 ID ~~ m r^ co
*5 ID r°- m en *? CM
.000000
CM — co en CM CD in
co CM r~ r~ f^ CM us
— — CM CO Tf CO
O en to CM to r* co o>
O coin ij
co
in o o m in in o
co ic en
v . . v v v •
f» CO (O
o o o — o o o
CM en in co en 10
en en ic co en
in — co co
O O 0 O O O O
en — co CM CM en ^
r* o r^ T CM en m
f» r» — CM — — CM
oo oo oo o
co en to co ^ en —
en en CD *r <* co i
CM in o «>
rNcniOf'-inl-^ COCOCMIO— eninco oo
u> o -9 o w — — r» r» o in • — in CM
. • i ..BO ou>- eo r*«3- CMr>
— _i CD — — CM ^r ID en
— CM + ^, CO I"*
O — co co in 1 B
• ID coon
A —
en co 10 ~* co
• »- *- -j r*
co — ' O«o
r^ v •-'in
v v
intocn
co-«—
10
inenrxi c- — CM co co i — f «o in
• o en o f» "t . — • •
CM • i r--« ••• ft — —
— — —i — r«. en in v
— + ^, en — — co v
A
I • O
I co
CM in
en in
V V
ino
CMT
VV
— mrvcoeoncN O'tf
too mo ^ ooo
-
in
in 10
co CM
CMCO
O
«- in
m ^f ^
I co o
. _ I CO — —<••* CO —
)— ID — • J •-
""' — V O V
i. K~- V~* V
>-» «OO
• • • -_l CO (O
^ « - § vve vv
A
gcocoogls.OincMcoco 2 «>. £ !? S
CM _
»i — eo CM— o
r- o in en co
— ... CD
o us
in en
CMCO
CM O CM
en n co
CM
CMOom
ococo
— in 10
— co co
en to co
in co
O 10 • -encors. o> •— t co t S 2
• . i • • l ts in ^••r^ ^ *^CM cnoco
CM _i CM to r- r- o ID en
o i
ID
en
CO
en
co
ID
a O €> C
tB > 0^3X1 «JE -* C e ~»~>
e-D O-fO -3 «-l»- CO
•§*0«l ^»^^^0 C. f • «•«.
c TS n. • -< j: «-M-^C- -oc ••
• a e o-o > «5 *- e « a x e o o EE
€Sis£i£-
C CC '
5 £2 ^~
S
OS
-.-'
-H
»«
U
497
-------
CO
D O O O O O O
oS oooo ex
00000-lg
CM co en o p — •*
§o o o o o o
o o o o o o
o> o o o o o o
« — •- o eo »- CD
r-. *r ex o to o co
— ex eo ex ex —
o o o o oo o
o o o o o o o
o o o o o o o
CXOOOOOO
oo r» ex «T us
ex co ex ex ——
esro I *-*
-to . f»
i — • I e
i 10 en 10 i
o o o
CM CNO
CO CD • ^
v» ^ O CO ^
^- -r-O IO -"
i- 10
-
ss|
o o>
Sen-
Sex
V V
ex ~-
eo ex
to r»
«» 01
^> O *••{;_
ii ••«••« c • ^2£
O-D > «5 *- B a o x ESS
9-9>S 0>^e« =•«
•o-o-~
«• «ex
ID to E
ce e x
E E
O O ra Oil
Seo E — •£
O O
^
« I
« «
u u
c «
ss
• ~
22
E E
OO
*• o» ra
c e e
• a a
*> t, c.
e ccoc
ee
o
w4
«
O
498
-------
en
en
ft
o
o
o
JL.J
CM f-
CM w
E*
,x ,0
CM co
co •
O —
*
*• o
L. «H
O CO
— CO O O
to r^ co CM
CM" CNV
o o o •
O O CM
i (0 ^ LO
— CM—
t0
1 1 1 n co
to ^ p> v o o en
— — CM in r~ ID
§
OOOOOO
O 00 00 0
O f» O O O O O
«- co — eo r- o ^
tx r> co CM ^ •- «
o o o o o o o
^r •«*• w r» eo rj ic
o o o o o o o
o o o o o o o
o o o o o o o
^- P) O O O 00 O>
p» Ul ^ T O «- f»
»- »» eo
O O OO OO 0
r«^- O O O O O
U) *• (D O O GO O)
— «>• (D O 'T O O
CM o O 10 eo co co
o ao v> o r^ CM IA
— . . — — CM CM
00 OO OO O
o o o o o o o
CM O O O O O O
«J- CO CM CO O — O
*y — O 1C T co CM co ifi — o 03 CD
CM T o 10 03 r- 10
jt C3 (C •"
O I I I
o
o
inin
oio
II
IOCM 100
. . ! . .
CM
— ocMCMaocn co r^ co
ot IA ^T en ^f en o * P^
• m inr- • — — IOCMCO
_J Id U3 (O — — -ci • — •«
. . ! . . 4. a cniacorxr"
w _) o —
r^co— r^co
m —CM
o o
CM — CD co n I •—
• CM ^— o
isiDtncMCM)'-
(DO ^OO>
. ". i . . | «
ooo-»r^ eocMto
cono-JO — O
eneo—
y°~n
V
V
CD o CO CO
men
if) f)
enco i
P^-CM
r»oo
cnio
«O ^
— CO
CM
—coio
CJCM CO—
. . i . .
ce1
CM
«
' _j
+ ^
ujioocoeo
--O CM
coco- o — CM
10 u>
"-r- eo-
«rcMr»oiol— '
— — irooi
• <« •« o
— — O
toeor^CMeo
cnf.cn .
CM
1
>
£ ••
<-S
' J
c u
X T3
E O
_j
a
e
§1
•4 fl
A ^
L «—
•si
OH
1
C t. 1
O a 1
«D CM Tf
CM «r co — co (0
IOCM n—
in «5 r^ o 1 -~
— n— o>
™
O — «» <0o
rft^iocno
Vreo.«o
CD CM u> o —
iocor>
toiar*
«o en
ic «r
eou> ••
f» en «^
^t — «
o or-
• to *
g
coi^oeo
o- — 0
— eM
r»enuj
CMCOP*
10 O *> IO — —
f» CM »< ...
CM — () — — CM
co en o
co — s
CM ^ **
At N
a-
00
U
499
-------
o
u
V)
ID •
.-co
OCM o o
~- tO CM CO IO
CO IO f~- 10
CO CO
P» — ,}• ,- r-. 10 to
eo co co — Oi co 10
CM r~ to t co — —
o o o o o o o
to CM en T — P~ co
o to to to — f^ t
— — — CM Tf CO —
o o o o «-o o
CMIO CM CD 1 «-
. . . . V • •
to co en o CM to
in in o in o in in
en to
V V -V • V V
to to
eo —
o o o o toio *r
OD ^ •*•» to r>- CM «-
.... ^" *• ^
— t>.co«-
m co — —
O ID O CO T O
CM IO ID »- O>
. V • —
CM (O CD f-
to CM r- en c~ I u
* **• i "• I *""
i « ' I
CO O O O CO
O CM O — 1
O CM - tO CM
CM — O —
to to
r» 10
«N o
O CM
IO CD
CO CM CO
en r~ t
CM o —
m to —
en co —
in o r>
V — 10
U5 — T
IO «N —
I «
•» tO
CM 0
CO •
Or-
*- 01
(.••4
Mi
— t r* en t
• O OCM
CM • i • • I
. i
«N
i »r* en e- +
i CM o i
*- to
o en uj
o • o
o >* -J
- co < *r
co> —
co
to
o
co en en en o
en • CD co T
(O Tf — IO O
o—
CM n to
PH • O
CO t CM — —
O
CO
^r r»o r^ co
en o o o o
r- ic • 10 co
.- •*- ^ — m
CD (O
o O O O CD ui co
r~ ID o
in o
coco coco o n o
CD CM
V V V V • V •
c*.*^ r*. r^~- CM 10
o> »» o CM
en or*
• en
2 * ' ' J o.«-
_ f__ CO CM
A
. -co
CMO-
O f». CM
CM
O) (O
O CO
O CM
CO 10
CM IO
(o en
in — r- CD o +
• en to co
10 • i • • +
»f (orvtoc* I a
« O co r>-
s '» ' +
O CD UJ I — O — IO
o • 3 en co • CM
°'S$ I " *" vv
CO CM ^
fs. CO CO
O O CO
— mo
to eo co
10 CD CO
to «r —
eo O co
— — co
en co to
co — o
r- CO CO
— co eo
CD co en
to IO CD
co CD en
to to to
10 T
O O) O O>(0
O • «o 10 r-»
to co -no
en 10 to
io co —
r* co o f- f-
co * — — CM
CO — CM
— CO CMUS
O O t»- CMC" I «
• CO •
CO • I •- C-
oo to to •* ce
^ — CM CO
en co — o co
to CD
«o
v vS v V
So o o o o o
o o o o to r-
CM CM 10 r> eo ID .-
^CM r-O O — •*
cor* co CM —
1
c
•«-!
II
•w
A
I I
MO CO CMCO I
co r* O —
. . I . • I
CM —*-
^r co to —to
• • « «^
en CD CM
co
r» *- CM
o r» ^ to r- to «f«
oeo -OCM IO»-CM
en CM «» CM *- to •-
CD o to CM
w. •- CO
IO CO O
IO CO O
10 O —
co co if
en CM co
o 010
CO CM tO
en 10 to
— tot
— co o
co CM 10
IO CD CO
^ CO
I I I
— CM •* CO »- CO IO
^ C
ta o
•~ w
€)_J
' «• ^ ^V
• •
«- •
•^
C COO
llrT
t. «J > -«^
e v to *• o
•o co a i
e-o o. .-ti
• c « OTS > «i
O *• es •-»•*' c B
O.C03 COCO OS
oo
•4
u
500
-------
o o o o o o o
o o o o o o •-
o o o o o •- o
cs 10 r- o o rx I--
o o oo o o o
o o o o o o o
e* o O o O O O
^j « (N m o — o
« »- O tf) •* f «D ID *• • '
• en
en o o i o
- r> « o • en
~- 0
cs
o
n
<*>
10
03 O
O
3
V V
• c w J£ — *~ E
S-x ^ OSX-J
c « cajir^K-
^. «- e E >» o
^^ c ~< "*^ o> •
«o «mo • E o c
•J^^M A^^> ^*^->t.>
C «J O _
t O..D 5
E *"
- e »> -
9 *^ *-» L. >->
O -^ -< O 9
^-oJ -*^ §££"£'
t. « >•«- ujaxie
e -n o-fO ea*-
•o «o«i t!^c!^
c-o c. • -< -c ""iTlS
ee o OTJ >« * a « « a
»^«£S
.. .
4 *J +* ' O ^*
E « C •- •
!_i-< ~< e i
w > o
o • o.
«
c.
•J
o
i X
> a
;s
i8.
i^s
^ •
• (O >
•o o
it • Xt
o o e
L.
« « C.
fi a o
e i *•
000
i-> C 6
e_»-
L. £
• O C
§o a
e o
OJZ
•D -0 —
^J- «T<
ID e
« f
0 0
_> •->
• 9
C. (-
• •
E E
3 3
00
K
e
o
•**
4-*
C
0
««
•
K
•r*
«
O
•V4
a
£
O
C X
~t «
E E
1 t
e c
o> o>
c c
• a
c. c.
K(C
CO
501
-------
en
en
t,
c
O
O
l
f*l
o
•Si
q -
x c
o o> in c1* CT» — o
in en n CN (N \fi -^
£•"""". S
O O O CO O O T
n ^ 'j T — T CO C*J ID O CO
O O O O O O O
^r CN n in eo CN
o o o o o o o
o o o o o o o
o o o o o o o
CO T O O Q CO ID
CD 1C CO CO C} *? P^
.- -s in to r» o u> o o o T en
o? in *— o o o m
*— ^r in to *~ o> co
o o o o o o in
•tr m o> co <0 co m r* in
CM c* CD CD o
—- r) co eo cn I
en to r-~ CD CM — co
+ « o o • ^r CN
+ — CN CO O
CO
cn —
— T
r» to
CD O CO 00 CO
0) • O — CO
eo r» » •— o 01 ci cn
« o CN
CN "» co f to f- m
CM CD r~ — en n
CN CN in o
. . i • • n
CD r- en to
A —
eo to rx r^ en 1 t*
« in o to —
CM r- o CN
to — eo
r- • CN
f-. in <
CD r~ i
in o r>
T O) O
co v in
O m o>
cs
co —
CM
O O O •— en o CM CN
. -o ^
to to • cn
«~ •- O "J
•r- f O
o> o CD
eo to
— CD
CD
r-.
O
cococo
e> n *-
OCM
CM
10 in
DO
— CN
o to
P) —
to— i p>mto
^f tO • CO •
o to
coen
CN ^
r. co ID CM —- «» — en
-:0.01. j cW"
O r%
co
• •- CD co
CN o f«
co o «o
CM CN
I a
o T CN co in
Cl
CM co eo
, r- , CM CO O
CMP1 • «- O — r-CN
«tf»- en CN *r *-
— .-J-. CO CO
^ eo
f-. in CN i
oco O *t Pi
en TT • co •
O en •• «- -CM
(O CO *^
r^ co «
CM-" Z
CM — *> in in tM
to en »i r~ CN •
?. v * • «CM
i>» - P
tc
m
o
U> CN f
- CM < eo •- eo to
ri C
« o
•*,•»< tl
CN *• *•
E • c
•— ts »-•
« a o> •• ••
c —i .* '-••~
» •»•-* »v r»K — - -
e e> t»i:~'H » 51
n- « E^ CsE E-
^ ~- OS • «* —^
BCOO -EOC •»»
CX«^ • • CO >
o~« eoeTi o
Jj -MN C O.JO « f •£
_ * I E *• • « <0 O «
gjg. ^&"ci l^^c^ .|fe
-?-0., °35 g^2°£ S^°
J,Tl" •«•- 0-H- O • * »0
t« >•*- OJI^«E -JCB
^.o^? -'"^ 2S;
o-SllsIs 1111s ii:
S.«35)OTQ* K«S£ 0-JE
•o-o —
«»• -9CN
«O IO E
p! oo»
O -DE
O CN
en CM
cn
Al ft
o: c x
O
c o
o u
e e
u u
« c
» a
e «
c «
,-> ^
e c
L. t.
E E
33
E e
il
O c
9 D»
C C
B o
i ee ee -<;
a
o
V
L A
O 0
eo
o >
U
502
-------
1
•o
•
c
0
o
E
ei
.* -i
« r-
ID •
... O3
j
«*rf
-H C
ID O
i: •<
<§8
JJ *•
*3 X
CD 01
CM W
•u oo
IN CO
IIO •
o —
fl
*
• **
* £
'»• O>
3 «
tn it
ID
u
«•>
£ ••
* 0
<-g
Combined
Productei
^>l
L.
en
35
£
z
£
a
c.
o
^
u
3
^
e
a
e
c
•H
4-<
i.
*i
g
L
C
£
o o o m o o ui
C) OD 03 op r>-
^~ *^
in r*. r*. r*» *t ^ if*
r*. .- «— ro •- ffl CO f*- "*? O
01 ^ f>- r^ »- o co
»- *- CN *J ^ CN
o o o o — o o
^r ro CD -- tc co
— CO «-
o o o in in o in
to co co CM
. . . v V -V
O< to m ,
O — — O o o co
tO CM — CM CO CM 03
0 W r^ •-
CO OD O)
o o o o o o o
«i 5? m co T eo ~-
m to to *" P} to tn
r~. co CM f~ «- CM
O — O O r- O in
m f» O
— T (O
tn in in U5 in in in .
o o o o o o o
o o o o o to to
co to co in — to r»
r-. r~ -^ r~ 10 •- CM
co r» co »- «-
1
^j
^- r< ^ CD *- to ta
i
••K
H
Ci^-inco— l« COO» — C) CNO roio
«.|-<| CNO-in*-
IO CM — tO «T
* " .IT '-'
totmTrinlu or^uiiin coi^r CNT
• CO O*~ C*- O*O T CJ'tO tOCM
— •(••I o ffi _i o inin>- 01 *T
- i -in< - ^
CO + CM > — V
A -'S ~- V
O — to in to 1 »~ CM to in — co r~om ^rto
»-— tro o> fvCMr--coco *t • *- f"»
. .) ••tic cMtO'inco to*-»— tof^
to _jr^oco — »» 100
•-tN 4-^-r~»---in —
^-•^CNOc^+a coco — coco en — O 'JO
^ en r-*. • • — r^- 10 — •— r^ CM
. . | . | fKfv.coO —
« CM en r^ CM to
•- — 1 eo to ^ —
esinr^i r-a CDO^-I^ totof^ oof
*»cn c> toto • •— •• CM^"
• •1 1 «».CM CM*-
(S PJTfCM - V
— — + rf — co to V
co — rv 01 CD + a o T UJ I O eoKm inio
• en f^cN o*^ *" coor^ r^«—
2 •:••;. °i$ i - ' vv
A ^* ** *™
. CM I — OCMCOCNV r-^^r- coin
CMOS OCM en o«tco"»<* too 1001
«.|..K* coin.inio •
IB 03 eo co r- no
«- — 1 — *t 10
^"
eBootCf^Ol'— o O CM — CM f«»r^— cod
fs— 10— o> • • CM — ^ in -CM en —
• . i • • + e 10 CM • — T —— — co
M -J CM CM CM O)
— CM + •" ^ CMIO '
r^ir^i ~* 03 03 — to co •~r^jt^t¥^
« i ? "J^l CM en — t- co to
- ^ d S£g S wS vv
A
till f» CD » — CO III II
. ^ "^ CM
O CM — CM
CM — IS 10
8£p>Si21 • g^SSS S5-.5 SS
..1 . • 1 O CM • — CM O »— CO Of~-
CM «- cMtocNCMencn»-iocn
— — + ooio — rr «o 5;
CM — m — CM
T
•^ j? ^ -J" fJ^JJ 5 SN~^
C J ' * ** ** E E ~- «O t» E
^ «£ S E^"^O E E^0 *"n^
51 « J12S. ^^g§ ''25 oo
£33 IT; i m i«i 11
II- ^!t §5s&5 :i& as
l« .2*5 C^e-*-^C. « 1 *» **
(.« > •*• OJO^SE ^»c« '±r±
^^.s«? -js^-a f|; ss
e-!:I:l8 Illll ill ii
CLOO^OO(/)O> H"^^ .e fc w — * fc *~* ***
O OD
to f
in — to
co o in
f- CO —
CM — Tf
— 1 1
00
f*v
fv
1 1 1
— OCM
«J 03 —
on — en
K. C It.
-< e
C E E
O 1 1
-• « e
*• e» r*
e c c
« a e
*<(.(.
c BE ee
BC
t-»
O
•»<
C
u
i
,
1
,
i
J
;
I
j
,
1
i
i
{
•
1
i
1
i
H Al
B
: §
« 0
J3 C
A
^> "
*£
. >«
— > ^^
• -<
CC rJ
^4
L. J3
o a
»r .-»
1 ^«4
eo
o >
0-<
O
503
-------
CD
O
>
Combined Ash
Productcode !
'
I
1
*
O
o o o o o o o
O O O O O O U5
o o o o o — to
tM to to •- m r^ r^
o o o o o o o
o o o o o o o
CD O t"» O O O O
co r*. »- O en en en
ir o en T en CM o
Ji »- ^-tM CM
o o o o o o o
o o o o o o o
o o o o o o o
S- o o o o o o
en en «J O f to en
in v M i r- £ to
\
c
e"»
o x
•rt C
"SB tOtM**
t. »-eN<*oo»-to(o
?!
85=
c
c3
to *- ^ n en I *•*
• to • *? o»
A "" ~"
to r^t~- n 10 t a
»- ^ in —
. . l . • •
.- IMP- CM CO 1 »
• ID *t «-
en • i • • 1
A - +
— 0>
• «
C-l
»» *- »i
•— > c — <
no 0 co o
>^^ e o.^- -
*!hSI ^TE
o> > o e--.
o e a *• a g
»p* ^ O O E
id -J— •
_TJ*- • •> *•
L. « > •*•
«-D • *• O
•O CO B 1
CT3 D. • —< X
CO C O T3 > «
a.cor> co en o 3:
t^ 03 CM 1
to oo o
n co o
O
*-
to
^*
V
O n CD r--. n
^j CM ^j in f^
in r~ • »- to
^ ^X CM O
»- to o
CM
tM (0 O
r- r^ o
in m •
ic in o
w •• ••
Total Concentrat . (mg/
Availability (mg/kj
Availability perc. C
i en
in
cs
00
en
V
'%
Mean factor above DTI
Max. Cum. release (mg.
te> •
CD CM
10 co en
CM n r*.
03 «- CO
r- •«»•
<£>
O — O
en — en
en en
co v
CM
i5.
Cum. release 64d. (mg,
L»aching-perc. 64d .
Moan factor above DTI
r- n
r- CM
in CM
1C «?
»- CM
V V
O n
en T
o en
to to
h- cc
CM .-
o n
CM-*
CO CM
CM •-
f- V
en co
CM —
V V
XI TJ
«» <«C
(O ID
Cum. release calc. ID
Cum. release calo. 3D
CM
X
tuoait
L.
o
H-
f^
E
•s*
o>
n ID n
o —
• n •
<*- -CM
(O O CM
(O CM •
• • tM
CC C X
~<4 4
C E E
Chemical Retentio
jjrange-
Rpnnaa-
o\
504
-------
en
en
o
o
r>
c«
o> t>.
o <
!>.. •
*~ eo
+•>
~1 C
IB O
C •*
tt •"
a o
CD LU
Ws5
«N V
«•> •
o —
<»- OS
3 J>
8
O O fN O <£> O O
*j O <">« n n a> to ffi —
O O O O O O O
0000000
o o o o o o o
JN O) o O o en rv
CM to r^ T O f «j O co O> cs r»
«O O »-•*•-•- O)
^ ^ ^- CN CN —
o o o o o o o
o o o o o o o
o o o o o o o-
QD fx CO IA O CO CO
en O5 »- 10 in "* co
CN ^r rr <• r^ to •«•
s
§5,
-H e
s2
tr
J
iiitotnl
in in <
O i i i I
O
O
• i ••+« in — • TT en --O ID CO'?—
I O CDBJ- •- ntN
_I«->-OU>CN
n o CM
* O. • "• • O •- *
CO — coo en en n eo in f 10 n so o CN • r-. •
. . i • • 1 c to r* • r- o> ic — en OT •• •- • •-
eo -JV^-— ioco«in>-^
*v *- " 8 • fi 5S 5
cnw *< »-CNC)
CN r- o
cncoa
co — n f 10
»- — CD cn
-------
•a
c
c
c
o
o
en ic co
cs cs
CO «J en CS O O CO
cn e> en co r- in to
cs ^ co co cs — —
-i I CO O O O O O O
(/) I — U3 CD *7 CO T CO
1 en <• 01 r- T r- co
_ — CM T n —
in o in o
co o co o cn 1 ii
o in o
en xt — n c-
eo CN
^
o
o r*- uj
O • 3
o o -J
• 10 <
cs >
i 0)
cs
en co o
TJ • in
in i •-
in *J
CO CN
cs O
*- cs
V V
01 eft
O r~
co cs
I i t
r-, cs CD co
cs »»
2
a> u>
V • VV V •
(0 W
CD O O O O O f*^
t^ ri co o cs co
^r rs o en en
. . o f"> ^
cs o> • co <
o> r* •§ «o
10 n u> —
CO O •— CD ^^
CO • «- CS f
*~ — — CO 03
*f — CO CO
• t^
CS • I
p- —• cn in en <* O
O) CO - • \ • • • • O
o
>s>
-< e
n o
60
^i
&£
in CO ID -
a> CM ^ n (O
o in en o o o
— T_ ID en
10 ID en
o o o o en — »-
CS ^T
to in in 10 10 in o
V V V V V •
cs ff> t~
.
in •-
oinoomen
o m n TT
r- co r^ co f
10 o
en cs
*- co
O f"> CO
co in <
cs — r~
cs en cs
O co n
co co
cs
o en en
co in f-
^ cs ao
*- r-
cs eo in
en m tf
«o co —
co r-. o
oo r- r^
co tc co
* 8
CD in o
eo
c- ~- to cs cn to T
cs tc co co •
i r- c ... to
_j cs cs CD co
IO CO ^~* ^~
CO (O CO
«- ts
cs in in
en n a>
en in cs
co cs n —
»- 10 r~
to — t
co cs co
*- cs
L. -<
ooooooo
^-1
u> co co cn (D •- co
to r* co •—
§«
^&
t --CN
-------
8
CO
« a
<•§
ombined
'nnHlintci
V a
,
c
S
V.
3.
e
entration
2
5
>
o o o o o o o
O O O O O O CO
O O O O O eo to
eo r- eo — en ^ to
o o o o o o o
o o o o o o o
eo o o o o o o
m ^ o co en ft co
«00 - V - r- 0>
^- — ^- CM CN *-
O O O O O O O
o o o o o o o
o o o o o o o
en o o o o o o
r> CM to o "o to o
JD — CO ^f O O) !"•
1
S
1
H
A *~ *"'
« «* in (o eo 1 *•*
e. -. i ™. °. i S1
to -i
CM * •—•
en o f» CM '• I B
so"*, l "*• '•- 1
A — *
S-J
0 e
^•K <^- ^B
51 e |S°-
'ill IrJ
o c o. <*- Q. en
.S-5 o o E
i 5 .*e^
** €."« > •*•
•5 T> « *• O
•o «o e i
C TO B. • •»< £
eo e o -o > «
O *• e •-» *• ° *
co ^j- CM i in
80 CO O —
C1} C5 • U5
wo o
o en
^* ^*
V
O Ol CO CO CM
en ro co in ^
>» oo i CD
CM n o (0
1C (D O
e e o e
c a- -2 2
4* e c
c >x «
• «'«'(.•->
O _i -< O «
C •-• f-* -*^ t-
O — i — ' O •
O ^ -O « E
e «i- a
^t ,j^i o
•;• -f -x C •
*- s « e x
^^^11
i
CO ID 1
O •
CM 0>
CO
in co co
to — en
r>-
CM
en co o
— 1C O
in — en
>3- CO
CO <
<£>
CM
•5s,
^^ *o
< «
. (O >
•D 0
•^ -£
to u «
B « (.
•> a o
8 1 +*
« o> o
.-> c e
« -< *•
fc-€e
E a a
3 C «
U-IE
en en *t eo to -.
r^^s oo 10 en
TJ in CM co
O 0 •«-
CM CO i
v v
;
CM CO »- O CM ^1
gCM • f«. • •
^ ^ .-
CO — !
— O
V CM ,
1
in — *» eo CM o
o o •»< en co •
eo rJ •+• I. t i
BE «eco: i
o o ee
CO •->
•) W) fl
DC '»
C C -g
« • 0 ;
f. i. £
is " j-
0
1
rr
U
507
-------
Jj
o
U-»
CO
•r-l
CO
CO
C
CO
CO j;
CO *"
CO
*O CU
C O
CO O
co CM
o >\
Tj "°
*T< jyrt
S ID
JJ *J
§§
C J-*
CJ iTT^
CO
jj co
0
JJ C
X -H
tt) ,0
CO O
0)
4J 13
xl
S-g
r-* CO
_C £
is S
f~t ^**
8.8
C «v
0)
UJ 3
o TJ
>> CO
I? CO
S M
C/3
a>
C»
c
o
JD
O
O
O
CM
pi
E
jc — 1
|5
•- 03
.. ..
5
1
**
•** e
e 0
9 **
O O
?
*J +*
OQUJ
CM Ol
E ^
CO
O
«* •«
ff
£.
".S
«- o
t. "H
^ 5
w F
_I
X
• *
e
•§
o
+*
u
3
^o
'iL1-
D
CD
^j
<
^
bra
i
5T
u
CD
^
~"
e
z
it
1
5
e
0
•H
*
(.
4^
C
(
c
c5
— — o o — — —
v v ^ ^ v v v
CD CO CD CO O CO O
CO CM
V V V V -V •
O3 CO
CO
_ 0 . -OO
*_ (0 — ^- •- r^ CD
V CO V V V CO CM
CM »r co
o o o o o o o
CM CO CM CO ID U> »-
V
0 0 0 0 0 OCM
o> o> co co r^ co en
rf CO V V CO V*"
00 (P CO
a
>*
•
*"*,-CMTt CD «- CO tD
1
••<
H-
1 1 1 1 C*- O O O 1 O
O O O C*^. C>v>» C
O0Q. **-D.O c*J*'t-'^
^j ^ OOE O-*^"^*OC
•S^co^^ "id^c"
9ffi 9 O "D >
III 1 1 *• 1 1 1
•^
B
o
o
H"
*-.'-- tj 13 *•»
CM x -5- -WN ec c x
"r5 I- O O o> oil
E -O >-nE -i C «
^'«jc •• ccc
• ic > o o c e e
•73 O t-> «-" *» t t.
< • js e o e ccc
woe o o cc
e o t- 99 -"
e D. o « « «
e i *- a a o
COO €> C -<
•-» C CB rJ »J E
c — i *- c e v
L. C. i- i- -d
• 0 C • • CJ
E o a E E
3 « 0 33
O -IE U U
1/1
O
508
-------
ft
T)
I)
i:
(3
IJ
V>
O
•* C
e o
~
ffi I
I1
o o f> o
CD 03*?'-^"
V CS C5 U5*" «M
m o> o o in o o
»t r^ SN ^j it>
V • - V • •
1O ^
O •-'
V -I
£ e c
t_j ~* -*4
o» o
o c o.
•?'«
J,-oZ
t. *
01 «
<«S->-£
?£~0i
v Ul • *•*
• E o e
*<-5 L >
• c o e
t O.J3 •
E ** * •
_ -5. c >>> •
»&1 \222l
.e«T o -< —i o •
> . »- o £> -O * E
S' *. O «I « *• =
« 1 iJ «J *-> O
e-00.--Si «-<-<£•
?i o O-D > « *• « « j> 5
»^-®« o>>««
"ES
! O O
t) O -> -J
. ^ e e
(O
u e
L.
eat.
« o. o
i
O O
e E
il
« e
a 01
c c
•«
eccc
• «
e e
_ . « «s
e o o • *
.3 c « ^^
S2" £2
E°.§ EE
5^1 33
e
o
c
IT)
u
509
-------
:epoo}onpojc
B. o o o o • •
• to m o o e «
-CO--1010 • •
CCN — C C
O O O O O O CN
en en co co i-* co o
^r co V v 03 v
05(0 n
oo o ooo o
O CO CT CO O « <">
•^
t*
C
0
o
i • • ' «- gii1^ • • •
1 0 ^^ —
+ *"
[III 4- OOOIO III
O O CM
«*• °. ^^ '"'
1,1, 000 10 • 1 1
000
°.^C "
11 feSi5,
5S f^^Sf ?,-B
M5|- F? 5*»^ ^SI
111 «u i.r-i sjt
SI8- •£&? S^^fe| |fo
~tl >'-^ Sssls 3?8
ti-n £«^o e « •>- 3 e -H *-
1'lS.3l ^Se0. ^c
•g«l2^1 -SfSSS SSS
°,S55««ol i2|^il 55Z
ii iii
II 0 1 1 1
, , £ , , ,
a
o
4J
C.
Cum. release ealc. 10 64d
Cum.releaoe ealc. 3D 64d
(mg/m )
Chemical Retention R:
"range-minj-
"range-ma* :
u
510
-------
I
^
en
en
c
X!
C'
Ci
Oi
Ol
m
•:
4:
i?_.
en r-*
ft CD
"1
>> >
-t C
IB O
j£ c.
if' ^
:3 x
CD UJ
C* 03
E Jf
•e? r--
(b ^
• £
II- OS
s-s
m £
2
5
XI -o
•»
Bottom Aa
Productco
B
CO
CD
<
9.
r>
i
d
(.
CD
-
"^
i
act
1
e
e
o
A/
*•
c
1
CO O O CO O **! CM
co 01 n ^? — * ^
*- . . •- CM (N --
— co
«J CO
o o o en o o o
en r» i — in — —
CM co ID O Is- CM
co *- co *c
o o o o o o o
CM o CM ro o o O
co CM o CM CM r- r-
CM — CO tO O -- O
O O O O O O O
in co f~ cc *r o o
O co co co o CM —
«- CM ^ r- co —
O O O o O O O
r^ o O co Oi co o
o o o o o o o
o o o o o o o
O Ol O O O O O
CM us d GO *y o m
»— iy CM T^- CM m co
CM .- — CM CM —
O O O O O O O
co en in •«• CM CD o
Tf CM CM CO <» 1 1
o O in CM o o O
v CM v- to m *-
eo in r- CM o
»- n CM
o o o o o o o
o o o o o o o
^ P-* (O ID ^? f*- CD
co ID to ID Is* ^ 01
in «- ro in f» r» co
o o o o o o o
§000000
tO in CN CO CM O
f~- CM CM
us — eo •» in in CM
^
1
«- 01 f co t- « — > • it
n
0 0) IO ^f* ^ 1 ^^*
^* O ^T *™ CR
• • 1 • • + 0
01 ci
** * ^
•- CM f~- O CM | *—
fO CM tO •- O>
• • i • • + m
n -i
^tf C*) ^ **"*
W O ^ tfi CN I rs
-.".,-:-: ,«
*" °
O T in to f 1 »
«- CM 1C r- -
O
ce co in r-~ CM l •
1C CM CO —
*~ *
• CM O)
O • 1 + *
" _J
A ,
IO eo m ^ en I »
IS .- to o
• • i • • •
O)
tn n in CM co 1 n
-^
« ~o * *• o
•D co a i
C -D CL • -l JC
9 0 €) O T3 > *
a > a> «
t- «EE
511
— en co
CM in —
l 1 l
eo in o
to • en
eo O tn
w- in
"
CM ^ <—
co • •-
0 *~
r~ r~- CM
CM • —
CM —
CM
co to o
>- • tn
CM CO CO
O CO
CM
CO
«- en co
en •
00 O
to 10
en eo CM
CM • •
to co
CM
CM rx o
en en r^
co in ^
en
to — in
o • m
*- eo
in to
r-
"7B
f^o
• S >
IO 0 «
i.
« O l~
m o- o
e i +•
C Oi O
i-> c e
• o e
D » f
0-JE
T en
o f^
i l
CM f^.
•- m
to r»
""
eo co
•- Ol
— eo
^— 4^
CO CO
^ CM
»- CM
tn o
O T
CO CD
CO ^T
r}- to
in CM
in co
en 01
CO CO
CM CO
V V
1 20909
124408
r*. to
r- tn
O en
co m
o en
*"* .
•D-D
•»r ^sr
IO IO
o o
»- n
0 O
s a
0 O
c e
n a
a «
« o
« e
t. c.
e E
o c
Ol
i
c
01
c
c
L.
1C
I
t)
o
.
0
M
O>
CO — CO
en to •«
i i i
to ^ ^
xr co in
~- o in
en en to
en co to
CO CM ID
CM — in
•Cf CM 00
•r- It CM
«j CM r».
co tn CM
*- • CM
1 1 1
O to in
. ,0 •
ci co co
en r~- •
K C X
C *E E
O 1 1
— ( t5 «
+• Ol D!
C C C
c o a
*-•£-(_
v crce
ec
•g
1
O CM
»~
in w
en tn
in in
en m
co
tn Tt
en, m
.01
. n
, «
o
c o
.0 e
55
T ~<
CC f->
pDe-fop
Aval lab i
u
-------
I O O O O O
) CM U3 <£> T f-_
,,_. ID m O en jo
j o in on r* •-
". 2 S n 2
tM CM CM O O O O
r~ o — o
v v *- *- —
o o o o o o o
n T CD in vn en in
. *- + o
CH ID CJJ CD t0
1^ f^ CD CD CT
•- in • r- O
co — en ? C7>
CO O
CM o r-
IO co
I -£
•f e
_i
o •"
n of- o in
CM o f- >c —
m CM •«- e
un co CM i
CO
co
CM f»
CM CT>
ID CO
V V
CD ift
O CO
CD co r-»
co r- in
f- co f-
co co in
r- en in
.- r- en
CM vn
in cs
•- in
CM CO
m n u> 10 c>
10 —
^- in •«•
I i
i^ cs n
^ . .
»- Tt (O
CO CO t
,co — •fl-
ic — f-
co in —
co "» ID
in CM —
o to i"" CD
i I i
§? ,j .- CM K o o co
^H co *^ en
o o o o o o o
to »J o <»
^- 01 r~- in —
• f- O —
(O • I • •
to
a> o o •-
CX CM —
t ~ O OW
-> 0-3.
+ O. O O -J
O • 1 <
+ ~ n^
n en f- O m s a
o
O
in ic o
o» • —
o> o
r- co
m o
o tc
in o o < o o o
K 10 — V O 03
V0>oi • *•* «=
CM •- ~-
in en co
ID — ID
CD CO CO
en co co
00 TC O
«* CM *-
«- en
O CM (D
in CD in
r~- en o
f» v CM
^ in co
r- oo —
«o cs en
111)
I I I
CO COO I O
^ ^3 1^.
p> to -—
to ««• o> c-< —
oo o o o o o
o o o o o o o
« cs o co co m co
CM-c CM ID m " o
co »- to < ID eo r>-
CM
«x — r~ so
OO^ OCM
o o < CM in
03 o • in co
in to o — *-
CMf»<0 >0
i i
SN.5 5S
O CMT CO .-
O CM CO CM
I i i
•-(DO
J^ CM CM
•u- < in
fi fi
<~ en
• c
•» I o >.
> I •»« *
CO
*£ o «P>0
^•Sfl g-"-."
^E-Sc °^
£5- « IE
O) > O
o e o.
f°«
wT3 *»
L e
BTI
1-0
eo c
O •v 91
B.OT3
*- ex 01
O O E
•->—'
. C 1-
C *< O
eo e i
n. • -H JZ.
0-D > «
^> */ o en o 3s
CM X
E—•
T> TJ —
*T«*N.
«> ID e
K _C X g
!,i 8«J in ,}
55! I! |« IB
I! s S3
v° I is
fc. ^ 6 -
11 «?5
oo «•<
1C O «
« o c.
«l O. O
• I *•
3?S
£2"
• o c
§e e
c o
0_l£
CS
O
512
-------
>
£ T
« 0
< *
*» •?
*< C
(0
e
_i
1
c.
ntration
|
a
o o o o o o o
en en 10 co CM ro •-
»- CM CM CM CM «- "-
O O O O O O O
o o o o o o o
*? r» to so •<»• f- so
CD o u-5 *J3 f"* ^ en
to r- n 10 r-. r- eo
o o o o oo o
o o o o o o o
o o o o o o o
CM •«? CO CO U3 f- «-
IO O) Cn CD «3" O eO
eo »- CM co 13- 10 ««•
S (O CM **
•- CM >* CD »- eo (O
H
r-0-*f^5 1 »
cJ^. i «^" 1 .
A *"
§CDB> i-en 1 a
— (DO
• • | - • It
,- 8
(D o ^ ^ eo i a
- eo eo o .
e» • i • • 1
A «- + .
*- CB
9) 3
e -^
• o
^ 1-0
•^ c •^
g) O • CO £j
•£-2 a a— -
CM *• *• O **
^55 "cT^E
o e a *• g-g
•-> •Q O O E
•i-D*- • «1<(-
*• * > •*-
m TJ e-*' O
•c 00 e i
c-o o. •••« j:
C0 K O 15 > «
o *» si »-» *• a a
B.COZ) « W OS
eo oo I eo
IO CO — «-
to «** *^^ v
to o
10 «0
O O CM IS PI
t-. CD CM en «
CO CM O f"»
eM -- 10
r- r-o i to
en en o eo
ssg i
^- CD
V
Ui •• •« «ot
f^ wj— OS
r^o^
*i— • i. >
e e o e
"c^.^. ^v
0^t< 0 8
O -rf «-l O •
O .0 .0 e £
^.55^0
a -rf— i c •
*• e a ffl x
o > > 9 es
(O CM I
(D •
IO r-
eo
O "-
en en f—
eo *"
*^ CO f**
t^ -if)
CO —
c e
E e §
3 © 0
O -IE
i
i
!
!
!
en »•
CM tM
f«. v. */ 1O CM CO
o "- «^ to eo • !
to en e • •*-
O CM O
(O CM 3
vv | |
!
5^r iVx
«,»£ c-g| ;.
O O O Oil :
^n E -rt o o
^^ *» CR Cft
. . C C C
o o e a o
t-J >-> <-• t- L.
e a c CK :
o o EC ;
eo © -J • !
n e> a
B e t>
33 E
e e 0 '
H 5 !
<3o
i
IT1,
u
513
-------
at
at
t_
o
o
o
CM ra
•* C
« o
§2
00
X (.
as
PI
o
tn o co co CM in f*-
in •«; to CN in jo o
*" en
co
O CO O O O O O
in i-» u> co en to
.v
r«. o CM in o CM
1- ,- — CM co •
ooooooo
in co co co en to o
r-. o o co in tn 5
— — CM co in en o
ooooooo
o in o eo U3 en o
n r-. in co en ID to
.-^j co Is- to
ooooooo
o en r~- co Is- — CD
ggggggg
3 U> CO O O O D
in en en CM in ^ CM
m m co m m o
CM _
o o o o o o o
en •— to i •— o £»
eo CM en CM »- •- jr
*— *— CO CO ^T CO
in in in to o o o
to m *-
*-
i
o o o o o o o
ooooooo
en r- co in *- •«
m (O ^ O CO *"•
U>«- CM •WtO CO CO
BO O O OOO
000000
CO CO t Is* «— ** «O
in in CM T co CN o
5l — CM CO TJ- 1* CM
C «
.-CM-ll-CO — CO«O
eo •- in o — I co
°.^ I °.". I *. .-. CM
,_ | CM CM CM O «-
I tO CM CM O
o o co en co
O COO CO ID
in to • Is-
cn CM co
CM
OI
_ - O E
v o> - ""*
. E o e
*''—£-> _
Q COO Tl
E ixj«« S
•git 8SSfe| S
r, — •> Jj-i c#J^J**£- ™
J,T}5 .ei- O-H-•*• «-g-g*l •£.
5'cS.? ^'"t5 2
J-sg-^t-s J««|g i
fe".|«05 ,£^^1^ 5.
in
U
514
-------
I
o
o
o o o o o o o
So in en m to to «
«
» in o to « « ooujioi intom in co
. CN too o «» 3 — co • o m r^
_.,..+ P, _.' 3- 2 wen*- nu>
*~ _ • n 'S5 — VV
A —«
,_
M— cDOfMOOO) Otor- (O»-
01 totor^inr^ oo -CM -ceo
-t-a o — • <- te o n .-
o •- o o o o o
to ^- 10 in en us
10 r^
01 <•
c- »^ »- r~
I II CO CM O •- CM O)
I
(,- O)
«D • • Is-
O) CO «- *"
CM CO >-
ill
OD CM CO
V CO ID
I I I
4'
14 C
(0 O
K ««
IP -^
f
-V t,
*3^
to tu
CM OS
IM r-
b *-
^S
»- w
L. «-l
s e
u.
O O O O O-r- •-
. . " • • f CM
»- to
.- »- CO
oooooo*-
A
V4BB
h
d
S
in »- eo •- f»
I I i I
OOOOOOO
ooooooo
nco o i to ii
- en «- o
O) •>" «o
< co — — co i
(D CM p*» r^ •
i I
in co co
i i i
5"
in tM •* o
n •- CM <• n
ro
ir.
515
-------
g
5
*
c
< t
§1
*•) 1
«2J
e
1
1
e
c
*
a
»
c
) 0
> c
> t c
ir
\\
o o o o o o o
*— co co 10 co co r**.
o «- CM CM ID r» en
CM CM CM CM •- •-
O O O O OO O
oo
O O O O O t J
o o o o o ~ o
CO CO O *f ID S£ O
CM en en to en to r»
CO «— CM CM CO ^T CO
*»*
1
^
Ci IPCM «*
«- CM it CO *~ CO tf)
i
•v<
H
—^^^
en m ^j to w 1 B
• CO 'CO
CM - 1 ~^ I
A *~
*- ^ o 5^;
o e a. *•§•='
~'"2'S > •*•
f-Q e •* o
•a ea e t
CT> a --i j:
CO O O "0 > «1
O.W3 W W OS
co too
CD 00 O
CD •• ••
•E^
j J 0
"• ^ e
c > >
0^1 •*
o -^ •*<
O -a -o
e a
0 ^t <^4
*- ffl «
H^l
in •
o
0
to
CO
V
n co
o to
i^
i en
(0
O)
en
v
L*5
K O>
0 E
tor above
ralaaaa 1
gd
t- 3
O
is
Is
en en i
to •
CO
CO
TT • en
in CM to
to ID ~-
CM ^J O
0 ^
(O
i5-.
to 1-
•£•0°
~*J «
• u> >
•o o
to o a
e e t-
« D. O
v en o
^> e e
0 -rt •»-
t. x:
• O C
§e a
® ®
O-JS
^. eo
CM CO
r- r-
(O o
vv
(O CO C9
to en
O CO
en o
o r-* *•"
CO CO "^
(O eo I!
(O CO O
r^ •" 3
L.
V V .O
H
•o -c«-»
(O IO E
£8 i
0 O
o a
o o
o ®
0 0
a a
« e
e e
L. i.
e E
00
CO O •«?
en T •"»
en •* CM
CM
^^^
(^ CO •
c£ c :
C E !
O 1
«ri ffi <
•«•> O
C. C
c «
^ i-
e ecec
1C
^»
•
o
<«-t
1
o .
516
-------
en
en
•
.a
o
"o
o
WE
5 -J
55 •*»
— CD
m
« O
3 X
ffl Ul
CM O)
E Jf
CM (C
«•> •
O «-
O
CD
t5
o o o <£> IT) r-. en
o •*? CN r-~ in CM to
. . — CM *? en
eo o o o o o o
^ CO CO IO •— CM
O O ~- O en en
CM — — CM (N CM
CO O O O O O O
*f — ^r in o CM r-
CM co co ID — co en
— CM ^ (O «o
O O O O O O O
(C CM
V V V • • • •
0 CN!^. CM
•- •- CM n
o o o o o o o
o o o o o o o
CM in *tf •— co t*> co
o> *f o o> *~" m s
•- CO f O
01 n »•- CM en ID r~
»- .- CM CO CO D •-
— ino
• IB
• O
ID CO
en —
o ID —
in o e»
. . + a
* o • eo en O
o co en to f
CM en
o • O IT C3
en
— to CM
co eo o 10 •* eo — i
. • o en co •
co co • co — en
*r f o CM ic •*?
CM CM o «-
eoir>
eo 'j
— ID
t^ <« ®
COCM en — — — en —
co en c en
toenco
CM • • CM •>?
COCM
Oeojooeol'- ooen«(O to — 3 J» r-.
en,- ioo o> intoioen^ CM -o < eo
-
o o n
.
_j wtMO o o^j^ CM w -j
+ -^ CM «- v «o eocn e
;/u w
O
ED
Bot
s:
'a 3 to CM <*
u »-tM' -(O >
0 COST) O
t. O.A 8) < -JO
^. 0 ® (O O 0
CXCa O->'*4-'t.'^ O€)L
OE o -i^-i o «J to a o
2^- c^^*' t- * i •*;
5.3!
«0«O
a: c x
e e
o c
e e
en o
a 0
e e
f-< •->
§
33
t» ra
c c
a e
t_ c.
0
o
U
517
-------
isj I at n ana co fnto
• in o "J co in in
' .- CM CM — — CM
•o
o
c
o
o
OT
tfl
J&
o.
o o f- CM en co «ef
in CM — CM CM co r«-
. . »- CM co in in
to oo
r^ en r^ in •
10 ° "
to
~ in
• in h* en co n
. ^ in o
S £
3 S
co —
o o iu
otoq
o • —i
. en <
en >
co
CO
•i
a
CM CM r- •» en o o
CM CM co o en oo co
co in en o f
V V -"-
O O in O O O CD
to co r- in en
co ^t in T in
co —
eo
I*- eo o o CM r-
o> — ••» 10 eo i
+ o o to • — rj
_J if CO CO •*
ts.— O 00
— en i~»
o • w
in en »-
in to en
eo -CM
r- f*
en *?
en •
— eo
•s
>.>
•f
-t e
e o
e-H
«8
Ji C-
-1 *•
X
Ul
£
3
NES'
«*«
CM CO
eo •
O--
O
O
^- o o o o o to
eo CN»- cncs eo
w • . • • CO
to co to «t
w- *— CO
O O O O O O £•
CO CO *— CM CD CO CM
ID in o o
,- CM CM CM •-
ino o «- CMO o
in oo-- »-CM^
v
< to r» to O 1 n
-.*>., °.~.!*•
i i i i
I «
in
CD
in
• CD m co ill
• CM CO
r* • • co
< CD f* CM
CM *- en
CM rv
CS CO
CO CD
•f O
in co
V V
— in
in in
rr co
•- CM
CM co
I I
to
o ow i r»
o • 3 CM
o o -J oo
• io< en
en> •*
CM » «-
to CD en
CM o ifl
to o
2 i-o
£ lo
«.S
ts
S£
5
ooooooo
ooooooo
ID it) en •— *~ CD cj)
ID eo o eo en en to
^ «- CO •«! T ID CO
o
CO
f. -a
*s o
§
•vl
e*o
• • i
^- eM
I c
in it
_ eo eo
— ••*
r» .^ 10
o o •—
GO to en o f
CM 000 ID
I I
i I
I I
CM in f
o r*- en
en o o
CM co in
CM in CM
o T f-
co cs co
CO CM tO CO ID B •—
»* ^°.
. ^ eo com *-
i^- en
CD f»
eo <
eo eM O'-
00 O tO
*-. o>
« e
9->
^ CM rr eo «- co to
8P
•-i C
« o
»>o
O B O.
«co a
- .
O O E
t «
• •0
•D
c-0
us e
«8Q
O. -
o-a
-
> e>
S S.
OS
o
jt
"I
«_J-^ -
•^^fc ?
""» ° E ~ T5
i^r ^s§
coo ~o o
ftiS S6i
^fc5 ««c
^4 -rt O ©
«-» p-9 ** i-
-»• -< o •
ja £ a E
« e *- a
r*r* O
^t »M C •
a o a x
> > c a
<*
o CM —
CD co r-
co to t
CM »- CO
I I
CO (O E
oe"?
ft- CS Q S>
.0 -«£
I I
in cn CD
< in in
eo CM •«•
—I O
C E E
C C C
(ft O- O
e i *•
c » o
^> c a
«•»<•>•
'-.-Sc
E a o
0 °E
0-J!
gg
a eg
C 8)
II
-
518
-------
1
8
5
Bottom Ash
Productcoda:
I
£
E
1
c
»r
o
•H
*>
e
t,
*«
@
c
i
oo o o o o o
m ua *- t^ n *s *$
CM CM CO CM O «- t
O O O O OO O
o o o o o o o
CN t£> *J *— CO CO OD
CO ^ CO CO —• SO SO
,- »- CM 0 IO «> ts
O O O O OO O
o o o o o o o
OOO 0 OOO
o c* cs 1s- f"- CD co
^- ^fr *?? SO CO O O
CM »- P> N CO ID TO
•e
** •*• t* *s eo *- co «o
i
^=1
r»coifo5ta| n ^m>-io
•IO •*? CN(SO O3
"" ••- ^+ "^o >«r
A -CM
V
ototoora l-^ oocntoiD
O) «- mo o> uxatoes^-
. . | . . D Q «^- f^-
es _j ID cso o
CM + ^, CN »- <•
°?5'^««- totno 'J
• • • • •' §§d s
A — + *"^"2 W
V
^^ o> — *•»
0 e ra «
W*v *«. J»»«-l^^
« « enj<:~H- »
^^ *- (0 £ \ O E
^B« f ' « o • E o o
^». a o.-- - *•—£;>_
CM O ©**^ C>H>» 9
O O C, H-O.O) ffi*'*'t.^>
^S •c o o E o -»^ -^ o ®
^•n-S -«)H^ o ~H — < o •
fe-g IJ-S °i-g^§
l-o^^J: SSSe*?
«C3 © O 13 > ® «*J S 6 ® X
o 5 5^55s o>>®,|
atoscocoos H-«ES
O) if 1
in T-
CJ ^-«*
«N -O
to to »-
S ""
00 CO ^
CN CN «ff
r< ID o
1C *~
Dl H
•^- e
• to >
•D 0
,y .j
to O «
c.
c e c.
c f
9 — < «-
L. f
• 0 C
E O ffi
3 O ffl
0-IS
•^ in
en in
O CO
to en
V V
CO rv. o
^f CO *™
r» o
CN ID
CD O
PJ CO *>
en co -<
r» to o
— ID 3
coco •**
. V V 0
^ SSTNi
CO (O E
COo
»- n E
0 0
^-> i->
ffl 0!
U U
Cum. release
Cum. release
CM — IO
r* m a>
*t «- CO
O in o
w ^r co
CO CM •
a: 'c"x
— i O
C E E
Oil
-•* ® ffl
*< en o>
c c c
cos
** t- t-
e ec K
K
Chemical
519
-------
CD
CO O CM CO f"* CO O
en (O en us r~ en o
m . .- CM co i *»
in
co
O O O O »*» O O
to co co co co tr JD
•- co
10 ^ o ^~ »— en »— i __
n • • oo in oo co • «r
i • CM o • co ID n
— 10 co o en
t£> 00 — CM
10**
UJ O
CM CM (O O
CO-- •» CM
f- O
•C T
OOOOOOO
co 01 en <- o o g
to < 05 CM (O ID m
to — co to oio —
o o o o o o o
r>. to »- CN o o o
o co in o en »- r~
* o •<» co in
co CM r~ in o O CM
UJ ,- CM CM CO CO CM
OOOOOOO
_ TT O CO 00 CM CO
JO CO O f- f O CO
r-. *- •v co T in <
o in in o o o o
CM CM CO CM ^T
. v v • • • •
in co coin oo
— .-CO CM
OOOOOOO
OOOOOOO
I I CO CM I
sj". I
i
0 1 1
O
0
to^
CM ID
cnto
_
+ — co in co ~-
io en
CM
1 CM
0 CM
-2
— 2
" Z
| o
II
u -
CMC o>
52 S
"^ »- •«» CM
ID CD CM U5 f~ CO CO
10 »- *r in i^ u> w
OOOOOOO
OOOOOOO
o oo in *— r^ co co
v CM r<- — •« «- «o
r>. CM ir «> r~ in ^
^ CM t CO *- CO
-------
B
13
IB
is
^k>
1C
o
It}
"i
.X J
in -
BU
IN W
^f en
CM IO
to •
a
C
L
* s
&. *H
Si
^
Combined Ash
Productcodet V4CA
N
V>
m
a.
z
t
•z
5
i.
o
^
CJ
t
.J
1
e
•rt
Concentration
o o o o o o o
^r to co cn ID m 10
O cn f** <£> co *- co
CD O co — O cn ««•
*- CM CM in CO CO CM
to • CM co in r-~ r-»
CO
cn
r-» CM r^ cn to to o
co CM o to o r- co
to v in to f- r»
V
10 O O O O O O
en co iy r-» *- r»
«- CO CO v- CM f*
o CM o in o o cn
CO «- CO CM TT CO O
o 10 —to
* ~~ ^ to
o o o o o o o
IO i- IO CO- CM (0 CO
CM Cf5 tO CO tO en
CO CM CM CM
oo o o o o o
to CM »- eo so cn (O
m •«* co r^ «-• m co ,
f. »- co sr to co r<«
o o o o o o o
o o o o o o o
to co m cn to o o
CM to — *= en to eo
eo •- ^ to eo CM o
^"*"
•__" '
«a
X
§
•- CM ^ 65 »- tO tO
i
•rt
P3 CM r~ in CN -t- to O (O tn co to CM CM cn CM to
— co • to in cn mw>cof*-co coo CMCO
..|..|. *-EJS-^.-
r«. co co cv co — *t
~- in + cn in
• w
: -^_. ' ^
— o to — ^ 1 « ocoujiin Tf — CM cnco
• »- too O-3 r~ co-Tf CMCO
_ . l - • + OO-J CM cofCM cnco
""to I "£f § £ *" v *"
A — * . V
CMr^toeninj- — • cncocQf*-— ^-COCM oco
»- »- CM O O! CO CO CM in O O -CM CMCO
. . l . - i: a oo — • CM o cn CNO>
« _l CO U5 O tZ) •- —
*• CO •*• — ' 10 tB
~- CM
ocotoor-+o ^eococo«- to co UD cam
OOCO COCMCMCM -in-' ••
. . | . | . ^-.. »- -COCO CM-W
w ^ ^n r^ to
»- to a »-
1 l l l cnor-*CMr*- ill 11
TO to •-
rf en o O
totor^ocn-s-n ooiui— CMIO»- too
-co r-o 0-3 r- -oto eon
tC . 1 . . + O CD _J 00 »- • —
2 ^ i '2f 2 vv
A ^«t C4
«**- ^--
copxrx^io«frn otv*f**^-^" ^r^>tf> r^r««
©CD ^ w t** O"*~u3io io» *^r*.
• • I • • I CO C5 * ^~ CD
n o 10 ^
*- »- + o> •-
l0m(omtM|n f^motoco CM^— ^S
coo ^*o O'Omto o-»- ^*co
».!.•• ^3-CM" CD *-»- ^-»-
(M »- «-tD U3
«•» CO 1 ^
I I 1 1 tD~O 1 O III II
• • v CM
(O .^; gg^SS SCM| ||
- „ . S2S"S ft " SS
*~ "" to
i3 9-^.cT ^S IK
a •"». **» 8»i* — 1 "^ ^* rf Q O "rn
^ "e E^"o E £ -0 "«5
51. £SS. jig?" ^55 do"
«M *3 ^ o — s e o e TJ o ^••f
£55 lTE i tt-S§ Sdi SS
c?li *-8.» g^c.5 ••». ••
•?•£« °3£ g^25f Sf5 £§
-L.Ti.5 .e«»- o-*-^o- Srno eo
1- li^ "3S'3 si" ?£
.l^l^t| Ulli ill §§
^S5SS^fi £££!! c551 c33
to to in
CD — CM
Tt cn O
r>. co in
tn co —
to ^ ^*
co — r^
i i i
i t i
in co co
CM to cn
CO CM CO
1 1 1
o co o
.- CO CO
in CM CM
o co in
5 — en
CM to to
en CM r^
to CM to
»- CM
10 in to
00 f"* —
»- »- CM
1 1 1
1 1 1
cn CM r-.
.OO —
ec. c K
-i a
c E E
O I t
•9* O flj
*< O Cft
e c c
c ts ®
•** i. t-
e ce K
K
• e
o
1
o
!
i
;
;
;
i
i
1
!
1
,
l
,
i
i
i
|
1
,
,
l
i
AJ Al
B)
C
i c
e o
A e
1
; (.H
o e
£5 u
521
-------
1
g
5
_C| ..
• e
*• 11
Combined _t
Prndueteoi
,
1 d
B
Z
«
1
C
*<
O
•H
**
£
*•
c
0
u
c
5
o o o o o o o
CM co ••— r- o to o
o CM if> in us «o
1
•H
H
r^co< < 0 I a
A "
r«. oiio to co I co
2 "CM " 'IS
eo r~. r~ r> ID 1 en
o;^..^0-!^
•t
A — » J
n
^. 01
e a)
a «i
i— » C ***
n o « co o
^1 2^r
*£'>'o *e-^
o e a. *- CL o>
*" * *" * "o
•S"° o Q « i
C "O O. • •** JZ
©e » o t3 > w
0.^3 a 3:
O) O) O .1 CM
to to o to
_ ,- • o
•»» t o a>
^- f- O CO
«~ '*•
V
o en jo »— ^t ^~
r* r> to o
CM CM CD
CO
O O C i W
to tc cr co
i-» r-. > o
*r
•j a o e
«- CLJO «
•& 0 a
c » e
0 ** *^ £. .-»
O -H -^ O ©
Ct-J-J *• U
O — < "< O •
O .0 J3 a E
a o •»- 3
r-> •-> r-> U
ffl — 1-^1 C •
*< a s a x
£3311
co eo i
O •
en "~
>
^•00
•>T CO CM
(O CO (O
it •!-*
^-00
CM (OO
O CM
1s,
o> t-
E -0
«---o
^j- e
• (O >
•u o
^r -jo
to a s
c.
e o c.
o a o
0 i -^
Cum.rele
Leaching
Mean fac
r- co
CM I--
•^- CM
y V
en to en
CO CM CM
•a- in
CM rv
X
CO -^ *•
CM 0 -H
O CM «
O CM O
O CM 9
CM CO *•
*~ *~ 8
V V t-
V ««N
CD ID E
O D Oi
" w£
O O
•-> •-»
e e
o o
e e
n a
0 0
e e
,-> pj
e e
i. t-
3 3
O O
in to CM
en T to
»- »- CM
O to 10
CM r» »»
CM O (D
o: c x
— < a
c e e
O 1 1
-< K O
^ cn o
c c c
e a a
** C. L.
e cc cc
K
. 0
O
B
O
U
522
-------
er>
en
ID
J3
O
J.*
O
O
r-. r-.
CD f
cn •
•- 00
xl
*«
-ri C
« o
c -H
« *•
^ S.
*J *•
CM tO
co •
o —
ID CM O so to r^ in
^ ••— O 00 O CO 00
,J ,- CM CM CO CO CM
O O O O O O co
co *? 10 to OJ m co
V co «* — co o
.-,-»- CM CM co
o o o o o o o
,- en m m o o o
— o •«* CM .- 0>
CM in CO CM O CO
~- CM —
0000000
O CO m tD O O O
cn eo co in *? -- ^
CM — >«• r- — eo (O
o o o o o o o
00 CO CO 1 "* CO •-
o o o o o o o
o o o o o o o
O CM O O O O O
(O «- * «-
co v- ^ «—»-•—
o o o o o o o
CM O >-0 O >- CM
^- — co us to oo <
1C «- CM CM CM CM CM
o to o o o o o
T- ID IO 1O CO W
• v
eo cn in «* o co
~
go o o o o o
O 00 00«>
to en m r~ ID •=? oo
^ 1A CC »- £D 'J— O5
o> —
o o o o o o o
OO OO OO IB
o CM in en co f) •=-
r*v CD ifl o r^ eo ro
o »- tM eo
en
I ro
oo o
-
O»— (O O en
. . I . - + a
en -»
C5 + *-
o «o eo
en — —
O I I I I
o
o
to en cs ^ in
r~ • o 10 rj
mo- >n
to r>.»- co
CM CM «-
O) co co o —
CM • eo O *»
m co CM ID co
I I
in CD o — (•»
CN co co cn co
r~ ~- en rr cn
eo — CM
.- CM —
cn o —
CM CM f
f O W f> "~
^- tc o
CO
cn en in — CM
01
c
• O
en en o
. . . eo
ID tOO T
O CO
IA co
eo —
cn o
ir> CM
CM co
«OCM
O
r-
«D O •— CO O
^r CM to eo o
I ^ ic co • •- o
u> co co ^ to
I co «- — en 10
10
I Is-
O O O (O O
. . o in
r, r^. • co
CM CM O
8 co r-- f* O
CM r- •-~
coeniooco 1— i-eoo^-
.^ co CM en «oco4n-J
• ' • '*
^- CM
9) ffi
0 -J
- 13 »».
« e
»- «i
O <£> (£>
~~ CO
in to m
CM -CM
O «* CO
r~ •*
en
CM
r-- coin
in •
cn in
*s co
<- CM
cn r-
cn eo
r- co
en *-
~- co
CM en
cn CM
CO CM T?
000
f* r» eo
co O co
co co •«•
«* eo co
Tf CM (O
cn f»
cn Is-
10
in »- • CM
(Dill
CO CM
_ -M -. - r-- co
. ^ u> "•»-»- cncoo w"
JNCOO W gCO- 5g
coiom »- « *J
^
O in «-
. en •
z
^^
*> >*«- t- O Q C?
E -o — n E
«-i C
« o
•s.-^ ei
CM *• *»
E e c
co O
t «
«-o
•o
c ~o
OO ffl
o *•
i 6 -
e
o
c
o
o
e
O.
»
o e
.Q «
fi Q
i •*-> o ©
«O
o. •
O T3
.0.0
S) *; ffl «
ffl E
t- s
o
C •
s x
•o
(C
e
a
5
c
o
V U
o
•D
«» e
ID >
O r* *•
.ft C 09
o a o o
st- e e
D. o «> a
i ** fi is
mo e e
co •->••«
-i-i- e e
.c i- «-
o c • •
as a E E
0 e oa
_JS 00
Al
ec "c'x ;
—i O
C E E
Oil1
—1 COC
*> Ol O> i J2
C C C
0 ffl ffl ^
*- i. L. r>
eccce ; -^
$
o
o
(. A
o a
ea
O >
CL<
U
523
-------
828S82S
•o
o
c
c
o
o
fi
05 O — tO
__ in to (O CN to Cn
P, . _ CMCOT to
in
09
r». cv h- o «- O o
.- CM i-- oj — co to
eo cMin to en cn
— CM in — o eor~-n
oo cn I ••-»
co *~ in CM o* —- - - - - fc,
. ~ I ••+« w in • i- CM CM
n _i i- co CM • r- *-
" eo B — m r»
— TT en
in — —
co o> co
.- in <
^ CD •?
"
in in r- to en I to
to — to— eo
. . i • • I
m . CM
*- in I
cn — cn to O
*~ to
CM (D CD
• CO JO
CM in CM
eo CN en
i i i
in •
CM •
I I I
•CIO
O r~ cs
CM co in
o en T
1^ 00 CO
ex •- to
CO
to
-< C
0 O
o o o o o o
co co CM co ••
cn in
oo *
<• CM
CM IO
CO •
•- Ui
C. -H
3 JS
wic
co o
(£ «<- *— CO (D CO
es D O O O O •-
(O (O tO *~ SO CO PJ
*~ eo o i*» o> r>.
u> CN in •-
o o o o o o o
CM to ^t co ^i u> ro
8S-S8J8
«- CO
O 010
«O
CM
-o
O
c
o
IB in CM CM to O •_
o • r^ c to o
. S v • — m
,~ eno <
• CM CM »-
(O f in
^- r--1
^f CO CM
to •— •-
eo cn eo
CO CM
o f- en
en CN o
— to to
in co eo
— to
eo oeo
«- o in
in o •—
CM CM to
1111
i i i
I CN ttl
8-
CM to o m oo cn m
om I --.
O coon to O
»-.*— *into f^eoo
CM in to •-«•» »- co
co r^- m in *-
*" co
I I
I I
CO CO
CM r»
»- CM
en CM
co CM
? _i-v
cs I^Sf
«n° jlgf"
g"^ « «°g
.j^fM L. O.^ «
"t-^ =»!S
o&i 8523f
>«$ Is^l^
S^ *» o **•*•/?
ffl 7 ,J rJ^> t)
*--=-s *-S-3ix
O > > O C5
H«£S
CN »«
i~t
£-rj°
• SI
"° -5
S o a
vet.
a a o
e i +<
•9 cn O
-J c es
e-*»-
*:-§e
£ CD <0
see
O-JE
•O TJ-N
•* e
oo^
«•{*)£
^3
a e
o o
c c
n e>
a a
0 e
t- c.
e E
3 3
O O
ec c x
-\ a
C E E
5 U
4^ Cft Oi
C C C
e a) o
.2 t. t,
«tec:
a
o
*M
0
Af Al
n
o
o
e o
°5
es
vc
10
U
524
-------
I
s
89 e
<•§
V U
m +•
c u
•n 3
£ ~C
e o
oei
g
«
tr,
Conc«ntraUon in >«g/L
o o o o o o o'
^f in a> 10 PI r-- •«•
rx. CM «- o CM o «N
1O CM Ui Ui < T Pi
o o o o o o o
o o o o o o a)
Ui Ol tO rx *pi CM CM
oo o o o o o
0 O OO OO O
o o o o o o o
^f CM ID Pi <£> — »-
O e> M
A —
" C
•> o
"e^^
"»'>'o
O O D.
T""0 *
^"SIS
• •o
TJ
c-o
2.WO
'"• 1
3< 1
"°'i
B SO
11
^ »
« a
.. .. m ^
a a
<•- e
o —
i-> -ON
•) B ,£
t- O. Cl
O O_E
. B •*•
0 ** O
a o a i
o. • -« f.
f> •& o is
to w a s
*- <~ o i o
o> ® o 10
CD CO O C)
— .-0 0
T- CO
V
O CMf^ •- ID
r^uj .^.^-
(M Pi O (O
« •- tv
O) O) O 1 O
G) tO O ID
r^ r^ o oi
CM CS O IO
— p]
V
tal Concentrat. (mg/kg) :
ailabllity (mg/kg):
ailability perc. (%) :
an factor above OTL i
x. Cum. release (mg/m )
,2^^1I
10 O 1
«» -fx
Oi Pi O
eo PI •-
m
O CS Pi
Oi •*?
o o«»
Pi tO CM
05 —
ID
m. release 64d. (mg/m2)
aching-perc. 64d. (%)
an factor above DTL
a e e
O-JS
rx CD
Pi SO
Pi —
V V
Pi CM 10
1^. PJ «-
Pi ^
«- tN
CD O
X
CM »» •**
Oi OI -H
^ 10 O
(O CM 9
rxo, -
v v o
H-
10 ID E
O O
a eg
o u
o e
m a
a a
-------
O)
6)
c.
O
XI
O
co «^ to cn co in co
f-. O U> CD I" ^ tl
— CM CM CO •« CO
O CO OO O O O
(O 03 1 — — CO
.-I CM in *r o «*
._ — — CM ^r co
HOOD—CD'CT'-^r
tn *- to f^- CM o co
o o o o o o o
CMO O 1- «0 O O
(O o o ID o> co r;
CN CM CO in CO O B>
• • | • • *r ffl
rt 4- ^^
<0 CO CO . O
• - 1 • I *
S CD 1 tO
r*» to ^t cs o 1
IO cnin in *j 1 —
tf\ Q tf) *— O
. . | . . + B
*** _. . ^,
r^^?co*jcM coin*- coco *"..
. • CM «i — eo -CM vn r~
^-eo- eo ini^co r- — CM — ^
TT in eo r^ —
eo — —
O 1 1 1 I
o
o
o CM — to en
o • — o en
o eo • — eo
in CM CM to
CM in CM
to t in CM CM
• a> • rr o
CO — • CM —
< « in CM
•C CM rf CO
in CM
to too
eo eo o eo
o —
^*
o co en *3- en
CO CO • — IO
CM <* in in
_ _,- in
• • o o
— — • CM
(O tO O CO
CM CMO —
—
en o to co en
to to —
o f** o eo
^~ r*> co
I i i
en in CM
(O * *f
en o en
CM — in
0 • —
—
^t O CO
•*r •
r^
eo en eo
o eo
o
CO
en in in
co to
«r eo
CO CD US
CO • •
co eo
il ii"
m< ^^S
r- tO O O O
CM en . - •
CM —
CM CM
— — CM r^ —
en o ""'r;
(O CD — — CM
v— CM
r^r-. ^en<
<• to
-------
•D
a
c
o
o
CO f-
O 5t
o •
CM 03
«•« C
«; O
fli **
O O
•*"
13
<• tn
CM 1C
P>
C) »-
II
2!
'!£
t5
:i e
je
ID e
S
O CO O O O — O
CN «— CM f-* CN — CD
eo O CM •
co r~- co IN — to CD
CO • »- CM CO T CO
in
CM t£> CO t^ Cft O O
CM O CM O5 CM f^ ID
CM co in r - -
V
o o o o o o o
eo to »- P> o> •- ID
U5 if) P5 PJ »- tS JN
o o o to o o —
in «- en «- to « »-
10 co
w— »- CO CO
LO O O O O O O
O f» W »- O) U3 O O O O
«* »- co o> co r t>» P* w to ~' *~ VV
i r^ to tn cvi
cn to • »- eo eo
co co
•- o co — r» »-
O
CM •- on CM ic
in
CO (D CM CO EO III II
... cn
— CM *t *t
CO ^ — (O
— tn o
• i • • n
m
•-CM •*•
CO f- CM O
in
i i i i
CMenr^rxtD4-<^
n r» 0 ^
eo *- ur> tn CD » o
* 10 to t cn I
^ »- in o
. . | . . B
«
»- CM B
i i i i
till
*- w- 10 «-
CM — »-
en to •- co
• ••** «M
ncor^coen
eo
»*
(DO> co
— • 10
iO'- 1
coo
CM
o —- UJ i in toincM cocn
CO * ~^ CM f^* O ^ MJ CO
°eo< S ' V V
O *- cn to —
_ . _eooeoto co- me)
. . I . . | . COO-OCM
10 r-x en —•»-»- to
co en — o 01
*o • co o so o •«- »-f~
o f» 10 eo — — eo »~ o to
en co co
CM
CM •_ _
O tn ID
in — cn
*> SSJ
ee Si--
O
527
-------
o
c
o o o o o o o
§000000
0 0> CO *T -"- »
TT ID CD O O - '"*
.!«- CM CO CO
o o o o
to to CM CM TT r- *-
r». CM eo to co co co
. ,-ir
f*.COi*f-CM I
*.-.
.en o o
o — o
p> PSO
»- »- o
CO
(O
v
P> O)
to oo
O O U5
o o • to CM
U) O CD G*
"-M g
I CM
o
1 CO
en - -
I |-v CM CM
1 CO 000
I CM co n o
V- tO
f» CM I
01 •
r- ID o
10 • f»
CM CM •-
CM CO CM
rx .to
m to co
10 «* CM
o •-
1^ O
(O O
<» CM
10 (O
^- CM
V V
o> en is
co co «-
to *r »•
IO CD
CO CM
CD O) CO
ij- ts r»
O **'
-Is-
PS O)
n to
o«o
O CM
*i O) CO CM
.* O OCT
e ...
o
V V
C. «
O >i
•H a
O)
£
n
<
•o
t>
c
«
• .
c
•o
o
u
*>
u
9
•D
O
C.
O.
IOCM-*
t. »- CM •*» CO «- CO U3
** e
c i
UK-
5§|5
-
e -•»
e n
^ «
^rt
c coo
.
E O C
« C
o o
c ». «
O 4J -4J £. •->
O -»H -^ O ©
t a
at)
^
c-o
eo a
o. --^
o ^3 >
QS
f -- -
O -I -) O •
O ^IJO ffl E
a a H- =
rJ i-> <-> <->
IS ^4 *^< C '
*i a Q e x
o > > ® o
£<<££
^r c . .
• ID > GO
•00 ~> '*
** . c a a
U3 O 0 O O
c.
d a> L. o e
«
mi*' «8 «
or
o
«»•!
C
C X
•gg
o> Ol
c c
0 C9
t. £ t- I-
• o c • •
E Q 01 E e
3 0 O 33
0-JE 00
• 0
o
*•<
c
o
in
U
526
-------
CO
to
4.J
C „
8c5
03
8 -g
i \ f—
O -H
CO ,O
S-( Es
^-* >5
S •
O <1)
8 ^3
C .,_]
IW
•ss
ffl<
c5
5 'O
co w-i
VO
cj
X
•H
"8-
<
I
si
O5
C.
e
^
i. i
o I
0 I
(N 1
•
O I--
O tt
°CD
*• ••
1
rj
^4 C
•> o
(§ ts
«
5 *<
3 X
O IAJ
E -K
C4
co
O
g
'.2
•»- Ol
C. -rt
51
1
1
JJ
^
o
u
*J
0
•«
^'l O
<)O-
B
a
<
2C
9
i
d
a
12
0
*
•^
en
g
e
c
*j
o
t
e
e
t
t
u
O O CD O O — O
0> O^ ^ 0^ CD
CO — T CO —
< O O O t O O
f» (D CO OD •-
CO ^ d ^f CM
»- CO
O O ^f OJ O O O
in r--. CM co rs in to
a> ifl 05 CM en
»- es — CN co
o o o o o o o
^ *- ^- *~ ^- IA co
V V V V
iisiiil
CO CO CO O O CO CO
«D CM
UJCO
go o o o o o
*- a so •- o r~
os in eo en ffl ^* x>
CM cM.~rN.-rn
V
9
"B
Ci «ocj f
»- CM *t SO »- CO tO
e
04
H
1 1 1 1 1 0 S'O 1 0
O O CN
II O • ^- —
• *w^
II
III + 0 1 1 1 1
1 0
1
1 1 1 CSU3 1! O 1 1 1 1
•CM O
— • 1 ' O
+
I I 1 1 O O O 1 O
000
o • — —
. *»* *_*
1 1 1 1 + 0 1 1 1 1
c- o
c**
o • — *-*
1 1 1 1 0 1 1 1 1
™J
1111 0- 0 1 t 1 !
+ o
c-
^^ ^*> ^**
1 • • ?i ' ggs ' °
~"^ "•*
^^ | O ^~' ^>
"^ + "^
*- O> f*- *"•
A _J >£ <^> -^"^ E
ii e ci^-'H- 01
„ £« E-^ 05
^-i C *** *^ ff .1 _
«5 O COO *BWW
O ® O- *• D. O* '®*'*'ftfffl
i « ^ ^ g ^? yr1 -a-* t-
•S"D«o"Si 'Jiic^
®<8OOT3>W *JCJ0fflX
III 11 I
1
111 ii :
i
III 11 '
i
III II
!
[
i
iii i i
!
1 .
Ill III
1
III II"
o
Ol
c
a
*-
111 110
'
1
III II
1
>
III 1 1 **
"S
o
s
t.
£
r"
~*~* -o -o —
CM »< • U U :
T3 O f-3 ^
^ .J3 0 ffl
c. e s
m a. o et in ;
o i -4-> e o
c 01 o e e ,
^> c « »J i->
e — < e>
c. x «- t- '•
• O C • • '
E 0 « E E '
see 33
o -is o o i
i
i i i
i i i
i i i
i i i
i i i
i i i
i i r
i i i
i i i
i i i
K C X
•~i ffi
O 1 1
•v-i DO
C C C
see
•tJ S. i.
sec a:
K.
a
o
"E
U
529
-------
•o
t>
r>
c
o
a
CM_
o CM a o CM o 10
^""-vto.
O CO CO
O O O O O O CM
CM CM <0 0> I
I O O"* O} CM
*— — CO
— to CM CM T I"" CM
•- in CM (O o — 10
^.p> — — —— CM
O O O I O III II
O O 1
o • — —
I I I I I
I
u
I CM — •*•
""* -}•
o i i i
o
o
II II
-i minioininoio
9* I o)
*• ' vvvvv-v
O O O O O O O
cs o r^ ID ^ oa *-
^- r*. ^- W CD C3 O
C-4 CD CO CO
oo
U) ID "C ^ O5 Ol
• V C-l
1^ CO — —
E
CM
co
o
o
«- 01
W •*"*•- - jo
v v v veo V
o co « o o o
,3. CO — (O
V • V V • • •
10 10 —CO
l i i
I I I
I i i tor- I
J, . |
+
I I I I
. . .
I I I I
till
O I I I I III II
o
O O O I O III I
00 —
O "— -^
O O O I O
o o ex
o •— -*
O I I I I II
o
o
II
o
o
o
I I
o -~- ~
X
en
I (DO I
-10 .
I • I
ooo
O OO)
O •-'
1 I I
I I I
.....
O O O I O III I'
00 —
o •-• ^
00010 III I' ''
o oco
*- CM «»• eo — co to
g
*
.
* •** O ^^
•
C-D
>
o
so
a
.— tn ^ *^
« c ^^^" e
S'i ^"SS-j^
c e caj^-'t ?
^ o E^ o e
— — Ol • "-"
. E o e
*>^ t. >
e e o e
c a-g 2
+• o o
e-^ c », «
a 01 •*•*•«-'•;
o g 0-1-1 o e
rJ <5 C <-" !-• ** *-
a <«. O -H ••« U '
.«, O J3-D O E
*• o e e <- a
OS I rJ f-1 *•* V
45i « -^-M C •
> « *. a a s x
o > > o s
££.£=•£
^s
M
^5e
• to >
•o o
<• .^1
ic u a
e o c.
m a o
&«
i-> c e
C -H»-
fc.-gc
£ SB ffl
3 « e
OJS
•o t»-~
•«J" .j *•
o o
o o
e o
e> m
a a
8 a
e o
i_ c
E E
33
I I I
o: c x
—< a
c E E
O I I
-< 03 O
4-f D) O»
C C C
e o a
t- c.
.««
D
a
•*•<
c
u
NO
o
530
-------
o o
U> O »- •
oo o o ooo
CO O O O CO €O M
V§°-°t VV V
•- (M CO
O O O i O III
o o o
o • — —•
I III
I I I JoS 1 OOO I O III I I O I I I
.« O O CM
I • I O •-' •"
I I I
O O O I O III
g°.£ ~
£ ,,
•rt
I
•o
o
U
c «
o >•••
•rt IS
•si
F
« a
_
«! -V.
c «
•^^» to a~-
«4 +* •** O ^**
E « C -*-*N
i^,— i « I E
w > o *•;•
O 9 CS. *-
o
«^ T3 a^ • • *4-
t « > •*•
•J'B e *• o
•o «o e i
c TJ a • "^ -c
eo ® O-D > «
Q *j ra »j *» « a
O.OT3 OTW OS
at
o o o «
L. C.J3 *>
*• ma
c >> »
0 -*^ -*^ C. •-*
m ^H -^ o ©
c ^ ••* ** ^
O -»H *^ O •
o .n -Q B E
B 8 •»- 3
^,S^> o
83 — i — < C •
*• B S S X
£ZZZ&
^* *~*
w X
E~" .
^ _J
o 1-
E -0
—-^
«j e
•1C >
T3 0
<• • ^
(0 O «
L.
e « t-
B D. O
a t *•
« OlO
r-> c a
O -!•)-
L. £
• O C
E a e
351
TJ -O —
^ ^SfM
(D (£) £
^*
Sn i*
U 0
w^ e*
O U
e e
«n e>
e a
e e
c e
i. L.
i i
33
tc c x
01 en
c c
CC.K
u
^•1
o
O
531
-------
o
co
en
en
t.
c
XI
o
oo
lo o>
o to
o oo o
CD «» "^ «
en *r f 10
in CD in co
cn ' +
I I I CN «N I
rxcoocoin o CN to
• • o ••» — to o r~
cn r^ • CN to — •«?
*r to 03 to to to
CO — T
i i i
CO ID < O CN O O
cn o f— cn O cn p>
to p^ cn
CN CO O «-
te
.- in
i
O I I I I
O
o
to CM r~ ID •«»•
CD CO ID ID Is" CD O
t-. 03 • m O *- •
to r^ to -— O
- « a
CO CO
t£l O
cn o
*r in
I !
- r-
- CD
in o CN
—. .- CM
^
O)
f»f- I £>
in-* I O
•* • I *
w— CO
r in r- I "
»- co
CO O CM — CO
(O O •— *** *£>
_ .- • en
r- r- o CN
cn co
in in o
cn • to
10 o
r- •-
in o>
r» co
to CM
in o
CN co
O) CO CO
CD ^- *—
CO .- CN
00 O CO
CO 00 «-
^ in co
co f in
co •— r~-
»- •» o
^i in in
co *-m
»'
•3S
O **
i-
U
CD
ggcoSoSo
CO «- Is- CD CN CN O
^t CO CO »- »- C" O
»N CNin <- CO I
^.-. ,n.°. I
"
CO
CO CO O
in en tf> o t
in r-- o •- ^
en cn
f" "-
CN CN
1- CM
in
in en cn co ID
to • in ^^fOCOCN
• ' J5 £"o K
+ C o «
•u co co eo en •• O <
5 cn co cn o e O '
}SN^ S^ V? ^
2 com «
.CN CM CO >O CO
NeS'
«
« eo«»
O) O O O CO CO
e mr- • — I •»«.«
*-* o>
0 O
"J §
I
i*
e
c
3£
S ^-CM < co »-« co
•si
«r*
gH
ccoo
g.-' -
3^T
O BE
r-J «
*• O ffl
0> CN
v ^.—. E
^ OlK-l-i
ClJi-'H- »
e ~** o E
«_* CO • ^^
. E p e
«'*»'£->
o coo
«- °--g 2
4^ ^>^> o
IB -^ s
-D "O **
*t •OCN
1C (D E
K C X
—< a
, c E E
ssi ° kk
<^< ** cn w
c c c
oo • «g
e o CCK
O U K
e o
c4 m
a e
e o
.j i-»
££
ii
o o
.a
u
*4
C
6
N N
«
D
O
e> o
x> o
X)
n
O: rJ
(- XI
o a!
D.<
ts
vq
O
532
-------
1
•o
ntinue
o
o
_-
E
Ol
JH-I
in ^s-
»- CO
„
-1 C
01 O
c: •*
O o
#!
1) X
a) w
CM 6)
"**
*
(0
c.
— i
z
I1
fi
o
fc
&
e
c
Concantratio
CM O O O O O CO
^ . . . CM ,-
CO O in t
v in •- *?
o o o o o o o
M co o ••- O r~ ID
in en T ID ** CM o
— it in r> co to K
*? »- CM r-* to CM CD
CM CM ID «- ID O) CM
co in v co CM to r*-
OD in to >* CM in •-
CM f en ID t to
o in m 10 m in m
• V V V V V V
ID
O O O O *- CO ^
n ». W. S V - CM
CO CM f-
o o o o o o o
^ m — — f» i? in
O5 O ••— O) M5 IO
co CM 'J eo co
CM CM CM CM O O Oi
. . . • en co •
V V V V V
o o o o o o o
o o o o o o o
o o o o o o o
«O O O O O O O
«- — CO 1C "
UD • 1 t f
A
in in r*. «* c- I a
S3 „ _ c~
S 'i ' 1
^ 0)
•) C
C '
.. .. .. .. .. «S v^.
0 0
^_^ ^™ tt
« o • co o
(M -S-. -t-/ O *^
E fij C v-* *^M
^,^55 « I E
o > o • ^^»
o « a *- aoi
r-> T! O O E
«i.T> -M - •) n-
t C > •*-
e TI • •** o
•o eo e i
CT3 O- • -« J:
«t3 © O T3 > *
O *» B «•• ** O S
o.cn=> co oo oS
in r^. CM co f^
CO CM • U3 CO
co r^- *- to en
CD ID
CM
^^ ». J—
O ID UJ 1 —
O • D —
o o -i en
••«?< 00
CM > —
tO CM O CO CD
CD ID in CM I~-
Tf T • en r*.
^ OD ^J CO
^ ^" ^f CD
ID
CD TT r~ -cr CM
in co in co CM
en r> • r» CM
*- *- eo •- ^i
CD ID
r». co in co **
f~- t tO
o co co en
CO — f *I
O m uj i CM
O •=> CM
o CM _j r~-
* in < en
in > r-
r** at CM
o — co — co
CO CO ID CO O)
CO CM « CM m
r*. ~- ID »- in
f»- CO CM ID ID
. • co CM CM
f». _ . »-CO
o in f en
CO CM ED
10 o CM eo »-
en m co CM •
— tocn —
a c o e
C. O.£ OJ
*. e e
c x > •
e Sv t-~>
o -^ -^ o e
§i-rt"o •
O .a .a « £
« »4-ri C •
*/ s « a x
o > > e s
£«££
CM in ci
*y O fo
in ID en
^- CO C7>
O — CM
CM CO
ID *- in
en • CM
en
r> ID -
»- l»> O
00 —
CM • •-
o — tn
in •
i i t
i i i
ID CO ID
• O •
v v
co CM en
CM -CM
v O eo
•r- CO CM
co co
o
CO
rTg
"v. — J
t^o
""^ e
•ID >
Cum. release 64d
Leaching-perc.
Moan factor abo
•- CM
— CO ,
•«? CM
r~ co
to r^
~- CO
V
ID CO
TJ in
ID O
in en
t^ o
CO IS
— CM
V V
r- 0
CO O
— CO
V V
S^
1 1
t 1
CO CM
V V
«• ID
: 198255
: 289830
•o •o —
1C ID E
•v.
£n J
o u
Cum. release cal
Cum. release cal
CO CO O
CD U3 ID
co — o
co m CM
»- *J CM
CM CD CM
in co
1 1 1
1 1 1
en CM o
r-» en co
— CO ID
10 ID en
— o co
co — en
CD 1 1
o
ID
0)
»* CO Tf
r^
Chemical Ret
or
Rr
nR- for R«1 wil
AJ
a
E
c
u
o
J3
Availability(%)
«N
U
533
-------
0 o o o o o o
tDintat ot*- •-
in eo r- u> o in «D
CM •-«-•- CM M CO
o o o o o o o
OOOOOOO
ooooooo
CD o *- 1" o o in
rx C3 CD «- O O> O
»- to to r*» *r w to
ggggggg
O>
u
d
"53
S »- CM ^r eo
^-T
w to
n
sa
2«r
10
CD CO O I CM
TJ- M- O CM *»
CO CO • CM «O
v- »- O SO «D
— ^* 4O
CO CM
-
-s
ts
IS
«n i
II
{
155s! ill
ill
tn P OOo> oil
|0 ^n£ -«.
^ e • • c c c
.5 > oo e ffl «
•o o »•; •;!
*f • & ma
to o e o o
11
U
il
534
-------
en
en
o
O
ffl
«
j:
us
O
:x >
4>l
«•< C
* O
C -I
*«
•'Si
ID UJ
CM Ol
• O O O O O O
CD IT) CJ) O CO O O
3 ^ co in ?"*• ID o
CM CO < CM ^f in
O O O CM O O O
CM u> co in t£> co co
as o co o
r» co 01 T? — —
.U3TT03 CNOO
< — CM -— •
^- co — tn
tr> o f
*r v co
o o cn o o o CN
CD CN <— ^T O C— O
O O O O O O O
go p^ CD o O O Co
O CD f» ID tD tO CN
to cn oo o f- CM so
~ CM T-
o o o o o o o
r* r* to m o *—
cs co « w — «e 10
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
r^ to CM *!? r*^ r-» co
to 10 r^ co co ot CM
.- CO CO 10 10 ^ CO
0 O OO 00 0
o o o o o o o
P*« ^ O O Ci O5 CM
CO •*
CMO
II
^ 10 r^ — o I n tocNiooo cninr^ CMID
coco coco p- ^s-iomro^ ^ro oio
«O
CO f —0)
III
CM cn
o co o
O r-CM
o o o *- • f^ — •*
• . • CD r~ «—
cn cn o cn
»- *- o
co
(O
_ -CN (CCOO 03O ICDinCM
i^-"co^" 01 r^f^-^cocn tocoo r^-^- ^^^
! . • I e (ooocoio
O cn co ^ in P^ co
10 co co r^ CM 10 to
• f- CM CO f CO CO
CO
o o o o o o o
o o oo o o o
o o oo o o o
a> in eo f-. o *~ IB
^f CO IO to — CM co in O5
O r*« *it to r^. Oi O
CM m to eo w co co
COD
toinooen
CM
JO
*- 10
«- ^ C
010 ffl
•»-COOCM«!!- CMr~r~ cncn O I I I
en ifflf^ cn
ic *-
— CNO ocor-- OO O"*CM
s
e a
o >
«rf (3
+>•&
G**
U '
•M ^
»•»(
UH
S> »- CO KB
U
535
-------
cn in to ro to
O IO CO CO CO
o
r- r- CM co en
cn
CM
C-CO CM CO
.- CM T CO
co t in to CM I
• o .
., . . I «
in co r~. cn co it »
m in 1 cn co T vn
^ fM ,-CD
to CM to
O «*
co to co
CM CO
en co —
CM (O
«- »- CM
in co in ro U3
ID in oo iw ui
•»- O
O) (O
in to «r in en I ~*
w- r- CM O O)
. . i . . I e
o CM in o o CM —
• o) m f*- c*1 CM .
.J- CM CM CM CM V
in
CO
oo oo --o en
^- in in
i- CN • ID CD
r- in cn co
(0 CM
CM 2
iJ e .-> •*' » a
O.COZ) WCOOS
cn
vc
U
536
-------
o o o o o o o
OO mT OO 10
CM CO CM SO O CO CO
._,_,-.- CM tS CM
gg§S§§8
O O O O OO O
in in to r- o •- tf co
O O OO O O O
o o o o co o o
00 OO O O
00 00 VO O
CM1? CMO — «*>
cncn o o «o co
PO 4D OD O MO
»- CO ** «O tO I
CO * I *- • •
e> o o
CO -O
CM CO •-
CD OS *-*
CM
CO
to
O
O
CO
to <-
CO •
CM »-
o» «r
in
O CM -^ CM O _ - -
oior^r^*"- o to tn
•— v- • CM •*}" «-COO
O CO O O> *- O
^» CO O> O CM
«M «-
O •* CM
i eo •
jo r*
• to
CO • I
A «-
co cno i io
o oo CM
10 en co
o> »- CM
«o r~
i>- o
eo CM
00
r^. *-
^t CM
CM O)
o en
O CM
CM
— >
O O> *J CO CM fO
CO O «H • • CM
o co a io »-
CM CO O
CM CM 3
10 1^ +>
-10 I
V V I-
en
\o
o
-------
s
en
en
fe CO
.0
° \
U I
o 1
CM
i
1
E
f^
J?-»
SS c
C^J • «
«- CO
•• • •
i [
»1
*•
-ri C
ca o
I*
5g
JC C-
IS
•«r CM
CM «-
CO •
o «-
• • ••
•s
B
«•- C»
t — «
o
li_
tn
A?C-Res|clue
Productcode:
ooooooo
incn<;2 rrSg
to to co ^r «** rv- i_j
*- CM co co co • in
o o o o o o •*
in in to co — to in
eno co cn-- «— O O> CO
3 SSSSoSS
i- «- CM CO 10 CO CO
Q OOOOOOO
co in *c o o co ^r
eo o *™ o o *— **
CM *f IO IO U5 "t CO
^ ooooooo
ooocoooo
O O O CD O O O
eo co •- »- en o •-
CM co en O CM CD rv
co in in co rv co CM
_l
1
e
•»<
**h
5-t
M ^^ CO OJ ^3"
|p
rvcoco — f*-!'^ rvcoenoirv <
NO co en • • CM rr v CMCMOOOtO
COCM ^-O CD tOCOOCM*
i.i..|tQ ... m
eo — i rv rv o in
CM +— CMCMO en
Oeoinrvrv|*-» ^-OCMCO^T
co«— coo crt ^to^coc1)
. . I . . 1 « incM-tom
(JQ _J CM CO CO «- 00
CM + v^ en to r» jr
*" in
encn^^co I ^ cncnooo
B)O ^f^~ CB ^v«OCOm
..I .•id inm-in
^ CM +~ """"§ S
*-
^ O 4OO C) CDC4O
BD" "" _j r> CD o 05
M +^ — <0 «
c^ r*» co ^t1 c- 1 ^^ O cs w o ro
C4D W O) U>*-OW>'S*
2 " ' '5 Se^f?
CM +v^— ^-corv
gcM^-O ' » g"o«S
. . i . . 1 B encO'«-eo
BB j »- co co rv.
« +-' <- — - ^
•• •• •• •*
*v ca —• •"
•no en CM
CO _) ^ *-.** E
ev^ v^ t»« -J-;..
^g t^^OE
51. nss. lilgf^
rv *Ii O «~ B € O <9
e^l: 3-«M c. . ajo «
.«d^« tflE ** OC8
^^o B-N c x> «
nna. »-l3.Cn tc*'*'t-i->
5-S OOE 0-<—OS
T B ^-5 e-'-J*' t-
v_-TJ*i • BH- 0 -H-H 0 •
LB > •*• O -° •*> • E
a-n e -^ o « to «- 3
•S C60 8 1 •^'J-' «
C-00---«J= ^^^Sv
0»«§32iS of HI
o. w £>tntflO5 r-«ss
jien-* coco in — o
t O CM CM-— • • •
*r.-tn rveo CMCMCO
a co CM in
ill
in
*f to en rv <^ co co rv
rv o O rv to co co
*~ co r- co
^ ^ to
co co rv
o co to
aoto^ oto rvcocN
|£). CM COCO tO— O
«- co en o o rv
CM to co in co t
S co in i co —
— CM
tnrvco coco toinco
en tf en en in co CD
at —
0
eo
cocnrv o3-r- i cocorv
tn — rv eo in ...
oo — co sjeo oiO'jrv
en rv CD rv
*t ' rv co
rv. — in
IP —in
tn^-co inm -•—«> —
rvcoco toco ccnrv*
COCM^* co^ en ..^
en CD CM c
^? rv to ®
— CM C.
inrvto intnO til
to en o co co
K — — en CM
CM CD rv into OCOCM
< m in 01 rv • CD •
cs — r- o«* .«•-•»•
w co rv to <••
tn «— co rv ts
>
O CD CO CD «- *• CO •>* 00
cncom iofv^=t ...
s^* ss § N-m
g S5 S
,2
CNj K ^t -«N OC C X
v=-j ""Z CEE
1 .& eg i ^ .;
i,," ^ *- en co
«• m . . c C C
. to > o o e co o
5 .1 "SB fKK
tc o eg u o ee
L
e e c- c e •£
tl fi 0 « n B
« i *> a a o
te e» o » o TJ
»j e B •->•-» E
c _i v- e cs c
C, J= t. t- g
E a i e E
SCO 33
0-JS 00
1
-^J
CO
-------
^^^
"O
•
g;
**
j;
O
V
ft
-^
to *>t
— • CO
I
o
J^1
^4 C
« O
C -H
O O
„ c.
^5 ^w
3 X
CS OS
•«3- rsi
n •
o *-
• ^J
#•
*• o>
f- ^
3 O
CO &
£
5
II C
A(lrV.RMl»l
Productco
e
sj
t.
(0
_,
en
^
a.
25
f
•£
3
0
C,
ej
s
cS
•s.
a
e
4
r"
intratioi
5
i
o O o in in o o
^ CM cn co co »~ f**
-^— — ;
~» V
V '•
tocof^cM^-Hco coeoTin^ CD — CM tor-- 111 ;
ic— co— • o o — CM in CD • CM o o
«.|..|oitoin-cococo ^TCO :
1C co in eo to o
•-^T+CMCM — r^^f |
CO '
^aotococ-l^- cn in — in cn om^ — en cococn ;
O«- o 01 — cocncocn o*co CMCO cn^co
. . i . n a tnto-cocM co — en rococo
n j — — o — co — OCOCD i
^•cM-f>- — in toeor- ;
coir^i -* ocococoo eo-sj-^'co-* cnii '••
CftcococM • ••_) •• cn :
eo i B • • • c*i cn CM ^ ^? f*^ o
»- _j o — f» w o in
^ ^co — neovv^-VV in :
A
^.— .-. ^r CD
OfP~l +n oioujir^ r--eM— oo — co t i
• en c- o •=> co in o co in co «* in CM :
r».| I oeo_JCM • coeocn
— • co < co vvmtoco
— •* tn>o> CNCocn '
A CD» CM O CO —
^ «^ — to f-
eo co CM
O
^Of^r^c*--*-cn O't'Oin^ cM»-in ^jcn ^mio
coin to — cO'Coeoco eo«. CMCO cnco— !
*.|. {.^m'toco co toco^?
la — t>« to to cn — CM r- o i
f to a to CM CMCor^i
m co co
r~ CM CM
I
CMII^-I — enotocor^ eoo-» — r» CM.II :
Ol .-CO — CM • — _J— «- —
|A 1 jfi CO CM * ^* O ^^ 4 K^ (13
— _i oeow co o VV cn :
.= -< eo CM f>- v v «-• eo
A ^_ S !
lilt CO < < ic V <-* VV CD r~ r-. ;
A CM tO O .
^ r-cno ;
— in 10
^ in eo i
iccntscoe^lB OCMCOO— eoMO cot~- eoto —
S i- o o cn — to CM en -co coin tooin >
. . i . | o^r-coen cntoto o>*t »- «- CM ,
O to — cntococMCMOoen
». to 4- cncotoirmcocDcn
— eo — — cn CM co
" " » N to
^+. j* *••« ^^ **> ^^. ^3 ^O ^™* "• •" ** ,
«e ta CM CMX ••TIEN eccx o)
e _i ji-»-~ E E ~- to to E -g eg eg
m -N, «^ cos? _i~^»»._I *^ CEE E
e 91 CBJi — K0> 01 H OOO) 01! P
•"* • H"e E>v oe E-O """^ 2o>§i5e
"ico eeoo^Eoe •» f • • £££_.-'0
^^.-48} CL'*^* «'«-'£.> -tD> UU CC6Q*-*
CM *•*• O — « «O® t> O f» t-» *»t,£.r->»-«
"Eec ,J-«SM t. o.xi « *f •*> e e « EC tr -^ «
•5^Ci « B E -^ cetooe oo ec s •-•
o>>o •>» • c » • t- >>
oco. H- n. c» es *' •••J i- ^ esc. eo e •-» — *•
JS-n OOE U*^->^OO 91Q.O 010} 6 R-*4
i • ^^ e^^*-!. egi** eg« ej eer->
»^TI jj •«>»- o ~i •»< o • to cs o e o — i -x
{>« >-t- OJ3J30E ^ccg ^«^ E t-*i
c -S e -w o ^ o «-J= i. t. . x *- rj
• i's §'-o"> ffl *-"ae5C3X E > « e ace = = o >
a«3Wtooe t-«ss o-is ot> Q-|
-------
g
O)
§
•o
o
SS
V V
oo oo ooo
oo in • o o ro ir
eo o »- o o «- •-
CM ^t ID 10 ID •* P5
OOOOOOO
ujeo eor>. i£ »
tO •- f" W (N C<
cjin u> OD so «o
A -
-««
VV
II
»- 0
c a
e-*
o
u
ll& •sfs
Al«.i
•M W O>
I!!
"• KOC
oc
o
PIUS 551
540
-------
a
m
en
en
JD
O
u
o
o o
co o
IT)
O
o CM in •
CN CD o CN
,— •- CN CO
O>
0> •
— oo
>§
*J
•-i e
n o
o o O o m in o
eo o> co r-- oo CN
r-! o to w
f~ 03 ID fO
o o o o o o o
rv CD l£ CD CN CO -—
in co •— m *- CN en
,— ,— rf CN eo co co
o o o o o o o
(D
in CN eo — r^ O —
»_ CN < CO 1- U5 f~-
o o o o o o o
c>j r*- O) CD o m o
oo cs in o to tr o
r* in o eo eo
I I I CO O> 11
r~ o co
»- O .
I . • I
»- to r~- r*. in H
«- O 'JO
r,.i..i
«.
IB oo Is- —
oo o n
1 H
(O CN en in co
. • o n 01
to ro • —
in (N 10 to
•
«
o eoo r-en totoo CN CN
toco • — CN o • •"- to r-
-10 eo co en •* co en
en *— o eo en f*- *—
eo eo o en • —
o m
co «-
^~ ^- o in en ^- co o co —-
inino • Tf eo co COCN
. . . to in CN ^r CN
^ «• O cs
o CN
eo ooo o to
-tor^^-o en •«— -—to
en o -cun <«• in co in co
eori« »- enin enr-.
eo co Is- r*. co
en — co
r- co *-
in co o
co to r~~
. . i . . I e
CN O
Tf CO
CN IO
CO •
*- O)
C. -rt
s e
so &
r» o o o o o o
»- »- «o r«. eo •- ts
«D CO O) O •«!• «D CM
£ «
O >>
eo
co o •
-^ *- «— en
o »- in
in —
co
^ in
*3- in
•«j o
n en
'
in ir CN eo o
to • »- 10 en
vv
.. en r~. f
ea co in •
0> • • «-
c
e
i i
en —
o
C9 •« r» in to I
o o-
o<-^f
— eo
CO 00
CN SO
O n'sf
J- (O CN O
4'
AJ Al
E a c
.
o» o
o o c,
*• i" "S -, ^V ?»»< -J^
Z% f<"S?
^ ^- e» • —'
ecoo • E o e
Q.-^ . •* -^ t. >
o *- e DCS
- --• L ajo o
*J « Q
_ _ C » «5
^0,t» « *'*' fc'J
, « °3£ M3322
2^11 £ •B'S- O —< —« O •
L.O > •+- OJ3J3«E
I'.I-S? -25^5
•s'lsls Illli
S.S53«tOQS 1-«SS
NEs
•^
o>
.Q .- I
(C
«
L.
o
10 >
O
..o
u a
a o
i *•
en u
c o
•»< **-
e
a a
ee
-JE
u o
•-» -1
a eg
u o
fl> 0>
n n
as CD
o o
E E
33
00
—i a '
c e E :
Oil
.•4 ® Q CD
** en w ! .o
c c c J3
• e> o ; r3
"So tea: •*<:
K. i-
o
•~i
£
o e
t- —
•*H
ea
in
vo
O
541
-------
•o
t>
e
o
o
O) »«•
en
^- co
-< e
« o
en — o o o o o
UJ O O *J CM • •-
CM r- o
(O pi — in —
o CO O CO CO in O
en CM
oooo -*-*^t
-.".".'".vvv
CM CO U5 «-
** I <*>
O O r- o co r*. •
O ID ID co co cn
CO CO • ^ CD »—
CO CM (D — CO
co »J
CM CO
co in
,- co r- oo CM 11
O O UJ I
o • o
O •* _J
_i • in <
+ — •->
cn
a
co tr co en »*
f^ . *j n> "
CM I O
CO
e
o
ts!
09 O LA O CD I K
*.-. l".0.1
eo cor- i
"5". i I
£~- .
*t — co co ••- «o
n » — co •»
.-co • *r to cn
o> o> to o CM
en CM
co eo
|^ a> to
^ ID • CM CO
^ CO CO ^t
CO CM CO «-
CM CO tv
*- o
CM
A
O> • "» O CM »- • -J
_J CM ID CN ^ VVO
«^ CM CM »~ '~*
CO CM
o en
o t
•«* (O
(O
— o
co in
m eo r~ co CM +
-t^ CMCM
ID • I • • I
to »? r- co «-
o co *f »- o o> 5
o< «n in en
^- co ID CM o en
en • •- o *- •
D CM • • en
o
CO
CM en CM »- so
| * CM~
O O cn co «- co o CM
• ' *~.{^
""^ g Vv
00 CO ID
ID tD O>
,- cn —
co in ^r
cn r~ ID
CO CO CO
•
•*< a
•
o o r- u> o m • »-
COCM *co«^ *"*^rC
cn so OB f *- w co
CO ID'S CO •-
*~ CO
in o
CM «!f
V V
in CM
co r~
CD »•
00
* -8
CD
Tj CD ID
co en —
o r-in
t^»-r-.
CM
(D 09 CO
CM f~ in
O f- co
£ »- CM t CO •- tO •*•
e-c e -^ o
•S^ eo « i
CT3 O. --^-g
CO O OT3 > g
CJ *. 0 .J *• O «
O.COD 00(0 OS
N Al
01
i
O
o o
JO o
•gx
*>
tc^
«H
t. J>
o a)
H- r-»
«^4
«s)
O >
Q-<
O
542
-------
Ol
a
•£•§
< c
4^
** C
m a
Io
a
i
ncentration in MS/L
r
I
o o o o o o o
^ in o to o co CD
tO f~ CO CO O O> ID
«- CM O CM CO CM CM
o o o o o o o
°.°,§8§§8
in os to r-» CM ~- \d
(£ f»» m O ID U3 CO
o o o o oo o
o o o o o o o
o o o o.o o o
» O f O O) «?
»~ ^~ *™
T3
.i. "p5to
H
CD Is- •* O CO 1 — .
• oo -r* , w
,- • t «- • 1 J8
*~ «- + — "
A
eg ** r~- in to 1 n
CM 101^. Ol«0 1 -—
• ^f ^3" «~ Ol
O • 1 • • \ ti
A — + —
*• e
« -i
e *~-
« a
» •»- e
t— c -;J
no e co o
•<^-rt B O.^-' •
p fi C ^* *^?M
^^4; « D E
01 > o j"^.
O0O. *• D. W
^'"S.'ti > ^^
9 ti3 © O "D > W
moo i if)
00 • O O)
CO ID »— CM
CO CO ^-^ O
CO f-
2 3
O O CO »-- CO
o *? *— »-
S W CM
CM
CM CM O 1 CM
00 CO O
^™ **
V
Ol
E >- O E
•««• Ol • —
• £ 0 «
*
a e o e
(. O.JD a
4-> e CD
c >> >. e
O •*•• *» £. r^
o — < ~< o e
C ^JrJ <-• C-
O-H-rf 0 •
O JO J3 ffl E
e a •*- 3
^> ^-J O
e — i — i c •
*« o s e x
O > > 8) S
H«ES
CO 0 1
os *r
(O
0 «-«»
to — in
01 <*
CM
«» 01<
•0 0
•^ • JO
(D o e
L.
not.
tn o. o
« i *•
C Ol O
f-> C «
«— !»-
(. JC
• o c
§s e
e, e
O-JS
<• os
o en
to in
V V
in CM n
en •«•
co vr
to f-
CO O3
CM »-
>
CO t- «H
3S 1
CM r-. S
in o *"
*~ *~ o
V V »-
tJTJ —
^ 1KM
(O (£> E
00~ra
r- CO E
(J 0
^> I->
e o
o o
e a
«n a
a a
..
« c
i. t.
a
O CM 03
^ co o
CM r»
O co >*
co 01 m
in *- •
iemical Retention R:
"range-min;
Rrange-max:
w
in
U
543
-------
en
en
JO
o
ffi
it-)
~-1~-
en ^t
2eo'
3>*
~< c
•> o
NE5
CM CO
« •
O —
n
»- n
c. —<
c^£
V9BB
As
Bo
I t~ CM CM CO
I O CM — ID
I — — CM CM
o r^ o o o o o
a> CD tx CD CD o in
en co CD
CM in CD
o o o o o o o
in o o CM *r en in
co r-» 10 eo o CN r^
C* CO Ifl O O
TT •- 'J (£> in UD to
o o o o o o o
i- t^ ft r~ ID o o
*_ •- CN rj ^r -T
80 o o o o o
o o o o o o
o o o o o o o
cs r> ts en o o w
ID ^ IO O) O) U5 O>
^cx n ^r u> 10
o o o o o o o
TT co «- r^ o o o
o> 03 m o on «r
_,.
»- in
o 01 CD o to ~coco
< r- -oio o> •—
-cncocorf to
no
CMTT
moo
rf to
i^in
en cs n
CD U5 LO
owo
•ccoo
intnr-oicolii
+ ^ —
CO CM FJ «-
CM in
co *-
r-- r~ o en •* — eo co
CM CM O «- • f- 'CM
... m •«» eo
eno i-- «t
en
*- v> -t o
53--
CDW
Tin
Of°
_:_
wen
CD en ID (D rr I
mocoo
corx
cotoco
CO
I
o>
o> o> co
CMO
en
CD
O
in
coin
O
co
o o o o o o ^
^- to cr>»— r** c> f**
co CM o> in CM CD
•- co co eo *t
o o oo o o o
o o o o o o o
en o o o o o
o o> tn eo •«}• ID —
u> r» Tt n ID *- o
oo oo ooo
o o o o o o o
t'-'C OO O O O
CD en en CM eo o w
^•^-»- CN »-
J coo eo in
+<- --o —
o>'~
i^-in
ina>
«- en
OCO
en o
coco c
^coo
I i i r»co a r-
* w— r***
v*i o
'
^ | I I I III | I N I I I
1^
*> -a
o
e.
a.
II
*»-o
IT'
c 6
gH
o
U
/U AI
L. J3
o e
vO
SO
U
54A
-------
^•^
13
IB
]J
^•4
•*-*
C
o
o
n
f
J?-J
«— fN.
<7> ^
i_ t
<— CD
§
*x
^ >
.*.»
••H C
C 0
c ^
o "o
.X 1.
'a x
ffi UJ
c< os
E .X
1 <
CN ID
CO •
O »-
«
L.
•^ o>
&. — 1
a e
CO £
i
9
X *C
58
ll
*< -o
** o
'££
N
t.
W
«»«
(/}
£
*«4
g»
£
£
3
(.
o
^
o
3
•»>.
a
^fc
C
•H
I
4rf
a
t.
*l
C
g
i
O O O O *f O CN CO
•- CN m in ic — CN
»— ^-
o o o o o o o
»— CD U5 CN CO O O
o *— ^ o co co to
— »- ,- — — CN CN
0 O 1^ 0 — — O
eo — co co
. V V •
CN *~
CN ID *- O O ••— ^f
*~ CN C7) O CD ^- CO
CO
10
O O CO O O O O
r^ r^ co ID f^ co co
o O «- en co r»
*t m in co in eo
10 •* O O V O »*
CO ID *T
V • • V • V
CO CO ID
«D «-
eo o co co co o ^ ^) ^ to ^ ;
ji O irt cs ^y *— r*^ u^ n CN o • *~ 10 ^ tD '
(0 iflr^--CTitD co^r^!
•«— (O + CNin ^-ocoi
»- r> a>
ift ^ if) .
^ ^j ^y
— CM r^ »- u -^ oi£Luio> rsj^co oao i i i ;
• v— ^ ^— ^ Q . "^ ^ ^ . ^j ^) ^) '
*->i-*|e OO— J *- cNinco fNr^
— -J . t£)< 03 —•»•- — —
A ^ * ~ 3» ^ v V '
30 r^ f** CO i,D 1 it ^^ ^ CO •*" IO ^ O O5 ID d III
in ~- CN o »-CNcotNiocD-r~(DCD :
• •( ..| ID^'CO*— »— *— ^^
»- m + ^r CN ;
^- CO
iD co r*» t c** n c^ ID ^^ ID ^^ ^* ^ ID ^~ co ID to o
• •I 1 eoin-CN*? co~-co
ifl»- *-o^O *~ CD r^> '
^~ *~ *~ CN «- :
. co :
lilt ncncncocn ill ll 111
• en co !
eo • • ID
U3 .-CO O !
eo — ID i
i
*fcor^cnf^4-n OIDUJICO *— co ID *— o como '
.|D»-»- C>- O-3 O CO-CN 1OCO f»-CN
^ ' °-eo< o *~ oSS
A *~ —a — «- ^r ,
^^
I
l^tDr^f^coiJM Of^f^coco ^*-CN esr*. cocnco
^o 100 e^- 0*^-0*- ^«»- r^»- ior^co ;
• *i**| cnr*>*cNiA v^~ ^~ eNv— CD [
eo o o o CN o> to
— 10 + CNCN — CN^CN,
^
i
«£»« OJ CN'OOO^ CN'- CN^" CNCnCO
• . I leeo-sf-eo co eocooi
^_ _l -.(flO) CO VV 2*^0
^" *" "^ *" _ CO ;
*~ 1
r~«Df*-l +*~ eomco>-f^ eoO'^ CNIO COCNID
c^.| r^e ID • • "~ 10 IDCNK oo tocoto
*" ^- c».i cN*0011 eo vvS v - ^
A
coor^l e^^? r^eocoiD^ encNio CNCO ^UOID :
^^ • i s CN • • • co CN ^~ ^ 10 ^*> en
21 _ . ID ^ ^- tO V V IDCNCO '
^ P-SCN^VIO VV CNCNIO
A N £J •
i
tBc»r-totoa« o^fcoeoo OCOCUCNIO eoSDj
.,1 «*^l CNID*''?® OCOCN IDr^ OID*«f i
(M eNOt~- — - CN •— CN ,
*~ *° .- ic ^ •-
^.ra^, <^^^^ T3T3-~
„ s o, > OE E*O ^COE » -ID> OO S>CO<8»r>
NE^c 3^T S £iS 5 .5 «« JK'-K'- £5
£^^ •!£ *• «« IDO« OO K *>.
^J ^H O O C " **^ W S •* •*• *J ** W «U i» ^^
1 •! • ^^ f" ^j pj ^j ^ g^ | ** ffi ffi w E^ *^
"""csl'ci'? "SS*3 "t^ ** 1 -2*
« ~S rt "pi ^ o5 *> ffl@c5X EfflflJ E£ 'CO
Cj ^ m ,S 2 ffl O O>>OC8 3C8« 33 ^jj
O.OT3WCOOS h-<
-------
1
roductcode:
0.
LS OOOOOOO
— in r^ co o o en o
CM CM 0 CO CO CM CM
tl OOOOOOO
£ oooooog
en to o o o o o
o en en oo it o *-
UJ f>. ^f CO ID »- O
*" ^ ,- f CM CM
{/) OOOOOOO
e §!§§§§§
o in »— CD en ^r *—
*I ID O CO O) CM CM
-i
1
c
•••c
II
^oS «OCM ^*
£ «-CM-?.
A - *- VV
V
^s^sg'-s s§ssg sss sg w ^z*
«-;--:3 issl r5 gg
og^^to i « g°g'g SSIS S^ SSS°i
«".•*• -i S83 S ?T£ »« | ' '"
. j. — «t m^-Wr1*™*
A " + *^g a> 10 men *•
C " " " V £
— v I- •
"85 5-^'^E ^e^_j SW^E *||
S"» 'oS'S^'o g t ggf 5 o i
^». *- B E ^^ O fc «n **^ ** dm
7§ cno jS?S~ ^S> oo c S§
^51 |^ ! Mi i.i si I-
S; =!i llsi? -IB I! 'l
^1 >~ ISssj 5ifj || I
•g'ooffl? ^5^c°. '••oc — 6
•s*s*|! Illls ill §§
•g.S5««ol K^^SS OJE 00
(
SO
U
546
-------
c.
e
o
o
o o *? tn o — i
CM r- CD o f IN to
1C CD
O O
O O o r^
OD in a) in
to in r- 03 f ii
en o i o i
tnto
ir>—
«NT
0 •
CM CO
•H e
•i o
O
CO •
O —
s
CO tO ID 03 CM
V 1C ^f in o>
O O O O O O O
00 O *t *— Ci •— O>
CM T O O OO f f
»- CN ^f CO Oi CO CO
O O O O O O O
ts oo O «o n •<»
00 O 0 0 0 0
o o o o o o o
o o o o o o o
O CO tt> (^ O O O
»- in • on cs •- •-
^- CM ^r n in (D (C
O 0 O 0 00 0
o »- •- «D o o o
•*? en o r- o »? —
CM ^f Is- r» •- •- PJ
o o o o o o o
OD ^ &
CD CD «— I
»- P3
o o o o o o o
o o o o o o o
co in o o o o o
«• oo in co m O o
»- — »- CM «M
o o o o o o o
0000000
«o en o o o o o
•tt r- o •- in cs o>
in oo o c^ co 01 r—
CM — •-»-•-
• co eo CN 10
in • • vo
en oo r** ry
Tf OO »-
O I I I I
o
o
cs CM r» ** to I » CMOrvcMtN ri->cto inr-
gncs »-o c*- to *— to t£> r- to*io O
® CM . — «N
-— iniD
cor-
cnto-oo r-cs
P- incM-u>fO
CO »?
in •-
en in m o en to
CD u »- »- o h»
§
§|
?2
t, ^- CM ^ OS
"e i
8i"
£
-5
*"
il si
u
547
-------
N
•D
e
J W
e
o 1
0 I
" a
£
"I
§5.i«
CM CD 1
sl*
xll
5 c I
0 O 1
C-H 1
Sll
|3
I
CM t» I
"U
CM r> I O
n. •
" •
0 — I
s^ss^ss
O ID CM O T
[M — — *~ *~"
coco us en — o o
CO CM CM — CO CO CM
;.: CM co in to o CM
CO O O O O O O
eo — o co in in ID
CD O3 *3" 03 f— O CO
,Z *1 ^- — CM CM
o o o — — o
O) ^ CO O*
°i . . v v •
in CM — CM
to (B m m in 10 in
V V V V V V
O CO CO r» O — —
D ID t r~ CO CM 00
*~ *~ CM
**
CM CO O O O O •*
Q O ^J1 — °3 (D —
^ ** « oo in CM *~
s-353»*:
U5to ,0
coco coco ooco
V V V V • • V
Co co r*» CM co + n
en o to o c~
.". , 'I*"
in —
N. ' ^ ' o
CM 1 0
COSt CM
^3 • CM *"" ^"
*J U5 • CM W
2s ^
UJ <£) O f^* m
2<*:*5
CM t^ 03 en
^"
CO CO (O CM CO
10 F-* ^J OO
— CO
— Tf CD CM O
DO — CM
fv co GO r^ CM
co • co — en
CM r» co CM os
V V
en m co co —
„ .r. r^ffl
CO CM •
-
I
— en COCTCM
eo«N '°-CM
S Vv
_ n B
i^— co— ,
. • I • • I
— e»
c c
__ «-
*S §
^.«4 0
CM ** **
eec
OCOCM-IO CO -O
en Jo • ^r* CM f co
OOCMCMCO «o CM
co cMcn to o
^- — CO ^~
«o
co to
c4^
W
en CM
CM ID
o>
< CO O
in en CM
CM co co
on co r-
« n
*-.s
«^<
ecoo
.
•5-S e *• o
•g^ «D a i
e ^ o* • -^ -C
ee ® Ota > g
Q •*> ft <-* *" • 5
0.103 WOT OS
"5 <£
1C ~~*— E
«^ ca« -J^-
OiX^-}- 5>
E^>- o e
*^ Oi • ^^
. E O ffl
+t *^ t. >
a ooe
*• °-s s
^i a is
c >» >v c
0 .M *» t. •->
t> «^i -*^ O O
C ^ ^ -aV L.
o — * <••* o •
o -Q -a « £
« a v- 3
^* ^52 o
•3 vt -»-i C -
*i c a c x
^^^11
cTx
6^ .
1^
5 •
. «j >
T> 0
,j . J3
to o e
L.
C O C.
si a. o
«' i *•
« D) O
t-> C «
e -^H-
L. X
• O C
e e e
3 e «
O -IS
•O "D —
rr TSN
CO (O E
00*0
*• CO E
«j o
•s-s
0 0
e a
a «
B 0
•3
? f
i. C.
II
0 0
ee c x
~4 a
C E E
O I I
ft ID O
??
e a
C 4.
9 K.K.
CC
C
0
o
~£
o
N M
•)
•
O
1°
fi
~*-se.
*>l
i^
*«4
t. xi
o a
SO
51 U
ee
o >
a<
548
-------
CJ
CD
£t.
*.
Bottom As
Productco
a
en
e
1
c
ntration J
c
u
i
o o o o o o o
in en •- f~ o «- «-
co in in en o en eo
CM CM en CM co CM »-
o o o o o o o
o o o o o o o
u) in o o o o o
en *- p- T to «- »-
*f co in co ID o o
•- •- ^-CM CM
O O O O O O O
o o o o o o o
o o o o o o o
CM O O *— 00 O O
co CM oo eo r-» i*> O
CM in o P» en «- CM
^~ ^* ^
1
«^ «£) CN V*
^- C* ^ CO ^- W
""• 10 in CM
en • i • •
A —
"wo e>
>^..< « o.
CM •& ** O
53! "
0 0 0. »-
t-» -D O
^"Ele >
e -a e
•o e o
ct> o. •
do! e o -D
O *• » f> *•
aco n w w
! i
!|
"o>
1 ^
-^ o>
« e
e -i
as a
K- 0!
"°.
-WM
1 E
O. O!
°5
- <*-
*^ 0
a i
"> 01
OS
CM CO CM
CO CO O
CM CM •
CO CO O
O
'•
o o t •
en "- CM •
CM m
CM CM
»- CM O
in to o
10 in •
«— •>» o
CM CMO
o> •• ••
enji —
*~- Cl •
• E 0
*• -^ L.
« «
L. O.
4-*
C >>>
O 4-1 4-*
O — ( ^<
c ^* ^*
O -H *^
O .a .Q
e s
03 •»< -*
*• 85 >
H«
1 »-
(O
0
r-
*-
V
ILVUl
fetrl
I f~
«
a as
e
L. i->
0 0
^« L.
SE
>•- D
O
e x
II
CM O) 1
r- •
in co
ID
CM ^ U3
•o o
rj- • £l
10 u a
e ® «-
n a o
e i *->
C OS O
•-» e e
e - r^
• e
u o
e e
a et
O (E
e e
.-» ^
e e
Ji
CM .- O
CM 1C —
CO f^
O co eo
»- • CM
CM en r-.
• "^ CM
C C X
-< a
c E E
O 1 1
•*« o c
** Ol Ot
c c c
e e e
e a: ce
a:
^>
a
u
^4
e
o
U
549
-------
CD
CJ
J3
O
U
O
CN if — to in r- r-
S88SSSS
_I CO •- •- CO O O
^ ^j <£> in ^r t~ co
«o in ^r CN cn co «r
o f» •- o T •»
co CM •« co in ic
ooooooo
ID < O Is- O O O
o m r- to 10 CN
«f in t-~ r- o I ii
CM — CM —
. . i • • •»•
Z in ii
I i i co C
in co CM — -c CM ^ CD
. • 01 -G — — • O)
CMTt- CO COCO*?
in "» U3 ID «-
CD *^ ^~
O O r» co r» it 11
in *- in — c-
5 'in ' ' +
tO O> f~ OJ ID
O I I I I
O
O
CO CN —• <• (O
O r-v CD r-*. in
in co • co t
a> «t •«? «o
CN - O
r- O> •- O co £•
. O • CN co co
to o •"• co in ^
o> CM r» «- o
,- CO CM «- «-
ID in
i i i
in CN
£0
COCO
i i
*- o
co oo
o
. . i .-IB
O CO — «- CO "*
^.°. « r~ ino »- i i l
o> •— COCM
5 v;
CM CM
O CM O
«> o —
o *- ®
<• <
to
CM
ID co
co o
or- ••
en en «-j
^ < a
^ CM Z
o m o
oooooo
ii co ir 10 — CD 10
« «-
CN CN
o
tncn^ »- «2 *'--'lx>c
g°S Sg I «^u,
g 55 §
CT «« f
e>
c «
CO CD E
£ ^ CM •* CD ^ CO ID
o
U
«5 i^'% NB^
!• ll-fel t£ S8j
^i^r ^i5 co
l^j ! 'MS loi ss
§%Si IB II
o • c co o « c
.«» -33'J 1fe «.
w« -.llli jil ii
Al Al
C X «
-HO e
E E E
U 08
C C C
•««
*- t- t.
a"
•
1
03
VC
U
550
-------
•o
e
3
c
r>
5-4
in
CO
CO
£
-j e
V) O
e -<
C *>
NB5
*3' CO I
CM in
cri •
O —
»• 0>
t. —I
g
o>
ii
O O O O CM O O
(J> CN -- "3 r»
. . • V • •
IO «- GO fO O O
CM ^- in CN *— *-
co in •*? o *-- O O
co co m *- m in ^
r-. ^r CN 01 r- o
^ •- CM
CD O O O C-J O O
TT *r — r- r^ o
o 10 T O) - •
o **? co r>* co
co *f co co O^
p> PJ rj o PJ o «o
10 (C
V V V -V -V
-
O CM CM CM CM CM CM
CO '.
CM V V V V V V
o o o o o o o
o o o o o o o
If) O CM O — O O
«o f *r •«? CM -*t co
in o 10 o Is- ^f w
e «
.Si?
"SS (C CM*
C. ^.fM^CO--COW
^1
8P
g
u
3 — r~ — c*-'*-CD cDcncD — CN r^ino --co
3CN o i^ eoTincN^ no— ~— *-
O-3
or^-J
oi-^r
oitoin
cv—
en O co O
in
v v
aicNCnmio r*cor^ ^rin
Id — o c-
•f
IB
^ If)
CMOoooio
r-
CM
.-TfLO.-
tor-^
U)U5
»-tN
eor>io 001
t • • I a o co.
V '•*•'*
^ CM «-
CMCM o 10
W I CD CO .-
•
CM- i
.— co •»- r- «- to
_J CD O CO *?
— CM CM r- en
en
10
• . t
co u> -s- u
r~ ^- c>-
• • B
o CM en tn ts eo ^ •
IOCOCM
— 10
en
sDen-«oeo
r» CD CO CM CD
eo CM o> oo
a ex
' *!"••« J~<- E
CM X
i
CM tO
O CN
CM CO
V V
CMIO
CM^OOCM enoto cocx
o • o CM 10 — •— — cj>
CM 0 • — CO ^— •^-'-
c- — » of-ioi^^ coro — coin
01 JDCOUJ • ---J •—
i«...(OE
o en in
CM — • —
tn JN in
-o
in to in
— CN ID
o
S
.-COSD
•VCNI^
eniotc
CMCOCO
— inr~-
to — «
inioin
us — CD
CM
O)
•*
*r ID CM
o> CD o
icr-co
CM »- CO
K
O
AliAl
a
E
I
1 ii i"0
I** 1|
oo
o
551
-------
I
Combined Aah
Productcode:
So o o o o o o
TOCMO ooo>
LH. f^|O«— v-OtOO
10 r^. co o en in CMiocn 0 o o
If) C3 *** ^^ CO ^"^ ^^
UJ CD O CO »- ^T tf>
1
§|
*''§ «•
2*"'.-CM*J-CO''-COlO
C ••<
r
1 »_ tMTf
1 • • i • • 1 0
eo -J
1 «M + —
1 en eo r» CM co 1 a
[CD-I • • 1
A «- +
1 ^ U)
I n 0
c-J
1 S"n
1 " c _ _S
I e O c co O
1 -v.^1 « D.^- •
|(M *. *i O —
JEO_C •£-{we
1 O €> O. H- O. Ot
1 ^J "O O O £
^TtJ > "-^
«'.S-S?
1 c T3 £t • -^ -C
I « «
I O ** S> rJ *• « &
I a.t/)3 tow OS:
^00 1 CO
r, -o m
CD ^~ *™ CO
en r- —* co
o CM
en **
o ^f o CM cs
r~ «o •- eo CM
rx ij . »- o
*- ID ID CD
CM CM 10
^3 C^ O 1 *""*
C? • K3 ^~
o o>- •-
CO 0— U3
CM O CO
CO O
CM «-
'S^^ -- oi
e %-» o E
^?6§^
*• -^ i. >
« e o e
*• °--s s
., 00
Total Concen
Availability
Availability
Mean factor
Max.Cum.rele
en to i
to
O CMO
•o o
*t • J3
03 0 0
Cum. release
Leaching-per
Mean factor
(0 en co in *~
10 to to to •*
en to CM co *—
2 CO *~
V V
(O CO ^* O O CO
CO O ' f- •
or-- »- ••-
c^ en
T CM
fs. to *•* to r*» to
m ID -i to CM •
en •<* g • •«-
T to o
o in a
oo *•
CM *- K-
O
V V H
jf 4*M CC C X
. . "^ C C C
oo • £ 2
0 0 0 KIK
00 K
c o ••-;
an 0
00 0
0 e -g
22 1
E E
3 3
O O
op
VC
U
552
-------
n
O)
Cn
o
J3
O
O
o
CM
"S
E
O!
JC -1
in r^
CD •
»— CD
ty :
volume :
11
je (.
3 X
ffi U
CN W
Tt CM
CM in
o«-
•!
S>
»'• 01
111
m
o
en
Jl ••
10 e
< -o
0
15 O
ID •*•*
C 0
J3 "O
IE o
/'5 t-
wo.
a
ED
<
5
co
i
0
ffl
•ri
_J
«
7i
i a
1
1 -5
c
o
ft
+1
9
C.
*j
C
S
c
o
o
o — o o P) en o
;3
o o o o o o o
— ^ — in *£> *"* in
r-. f^ in PI CM 01 ^
MJ- ps in CM in r-. co
o o o o o o o
t£> _ CM <— in in CD
co CM en co *^ **? ^f
— p> CM 'j- tr in to
o O o o o o o
en — pi CM o o o
Co to cn «J CM — CM
— PS r»- in co CM f*
*~ "~
o o o o o o o
r- in co — CM o P)
— CM CM CM CM
o o o o o o o
0000000
o o o o o o o
*y «^ — O) O O CO
o o us o in CM o
PS Tf rs in us to r*
o o o o o o o
O o CM r^ o in o
v r^- »- o o o en
PS in r^ co CD o —
*"
O O O O O O PS
co en in co r*. — o
BO CM O PS «£> «
CM CM CM *r in (O
o o o o o o o
o o o o o o o
to o o o o o o
in o PS CM ^? PS r^
|-» — PS US f- f» <-
o o o o o o o
o o o o o o o
o o o o o o o
o m r* o co o co
— in PS o r- •- f
— — — CM — CM CM
•«
•&
•** CMO OCOCM (om
USO CM inino CO OCM— or^ -^f- • r
*.l. 1 ... .Plf *- ~- • CM CD CO
03 - --0 0 OS
— -f 0 1-^
O^ff^iD^lii ^-cncoincM.T^tP) cnin I inr^tD ;
r* CM CMO CM r- o co in en • — -co — • CM
*.|..i o^f*CMO cncno mc*so CD
Oi *jooP3m«fli) CMCMOP)^ — O «•• in CM — .CM COCM
to TT < o to 1 in (o c co
^f + — — o «- *"t ,
— (O^ior^iiii Tt — — — -tM.oiOJO ito»-iii !
O "• 1 • • B • • • t— CM ^ —
— CMTTPSOOtV
CM + ^* PS ^^ CM V ^
%/
A V
V V :
••> ID ^* ps CM 1 •••* oinr^.^jcM (O^r»- OPS Ocn*^
?«. — CMO O> PS — — f PS CMPSPS OO • (D • ;
(0 ' ' _JUS"?f-*~CMO*J'«DC')»- i
CM + »^ CM — Of- (DOSS
CM CM TT — 2
fNCMinooln ousmr»CM oinus into *>PSICO
*C j S *••*•• '™B "^E -» -S> cJJ e aa 2*
c>2" o — seoe -c o ** ••> *; t- «- -j r;
£55 -STe i a«S So-g S3 ^^^ t2
^° ^ S M- S.^i ffi &? +? L.*-* Cffit. OG r^ ^"f
O 8* » *" ~ ff 71 . ^ fi & 3) & O B O fl " f*1^
*»* "^ « ^ ^ C»J^J*i't JLJ n ^^ « ffl ^ »j « ^.4 ^, O O C O ' fl
•o eoei "^l^^cH ^"oc ^^ 6' *" *
^s S ^ ^/ nffi O ^ ^ 6) (5 3®O 33 O ^
ftM^*^£AWOS K"
-------
&
(continued)
Ph Si Sr
Bulk Density 1845 kg/m
Extraction volum* 8.47 L
_ .< ut
«*• CM
CM in
co •
O —
*
»
fc-M
^•6
i. »t
cJ5£
cSnbined A«h
Productcode: V9CB
00 O O O O O O.
*l .- ID co r» r> i
o — v ID o co
co CM in o o o o
in co *? O o "-
CM ~- f>
CM CO
c co o o cn co t** o
" ;_ CO CM CM CM CM CM
CM • -Tt CM •
to co en
•* co •*
3 OOOOO»-O
•J CMCMCOCOinOCM
co ID r-« en o in
to co ID en co
t, ococooooco
w "^ V V • • • V
T3 OCMCMCMCMCMCM
c5 8888888
cv 10 **? C3 1*1* c^ ^^
io 01 ^y ^o *^ "^ ®
^lf^ QQ (D f*4 O^ ^3 09
_i
>«.
vl
^«^
c «
£ ** .- CM -V CO •r-COtf)
U
1
o
mcsir^cDC-lf^ CO-ITCMCM.- 0110— in«* cotNO)
0 ,- r=- — — o in in -9 coo— —CM en ID o
.... i-cof^'CDO • o»-m
10 m CM — co co T — co
„ to i— mi~- CMOCO
CD »- CD
r~ *t CM
en r» —
incot^r-'^riiii oooiio CMCMIO CM-* 111
• o coo o-D r- •» • £; r:^
o • 1 • • " oco_i r~ r~o< r-.cMTrl» eNrMO^m cnomO-CO ^-C°5
- » + ° g
&S^<^*" S°^i?SS§ cog1" °!"- §SS
,i. 1* ^CO-CM*— *• CM^ inco*^
ca co — in eo CM en 2SI?
™(0+ CM— »- °"}2
en -5 in
(D tD f***
«mr-i M~- i^ — tr co en •«*«*« en— r;9S
2;: $ =SS § ^r v" S5|
A *" — -«-
§?«.:• §|1 Tfi §s in
A *" 3* 3 *" w
§5£-E5^'^ 8"-21SS £°^ SS |K^
§•:' Is Ss'^ w" is|
wtiDf^toln ooencMcntD cooio ten 2r"*~
«-.,N.°.+ ^co80^^ --- ^S ^S
« """^SJ CM — CM
" ^ ' r>-c.C Tj ^?MCI ^O •• CCC
*°» S.20 *-&"> -S> ow * s ?
"^1 IT; 1 -11 I »1 18 1"
Si* *!i i«i! il* ii s
li.i^ slPa If! II 1
.il&^'ti -"illg i«| 1§
'clo^ooSa'S ^^^1= 531 S3
i
AI Al
pD. for R«1 will be
Avsilability(%) becomas
C
554
-------
r
i
i
BQ
9
T>
O
0
Product
a
z
i
1
e
o
w4
+•-
B
4-f
e
o
1
o o o o oo o
— f- 03 O O O r~
o> en — o o •- CM
ID r-. co a> •*- CM in
o o o o o o o
o o o o o o o
(O O O O O O O
(0 O CO CM "*? CO f^
f- *— co in r^ p** •-
o o o o o o o
o o o o o o o
o o o o o o o
— to co in o o o
r- CM o in co r* co
^j- co CD co o CM in
^- ^— v»
e
1*
W
»> ID CM «*
~- CM •* CO -r- CO (0
1
H
i
i
i
. rj- - TI- >-7-oocM- into (oifra !
r-.|-^--n f-f». CM h-in —O) r»cMco
— «- in in o oo ^f OO CM
_ I o CO ~- CM CO :
A T- CM
V V
V
»™ to ^f co CM I •*••• o in f^ ^f CM co ^ *~ o PO *•• o os ^
f^ ^— CM ^3 OS CO *•" T~ ^ CO CM PO CO O O • 4O •
CN + — CM »- O f"- «OO>
CM CM t -r-
X
o — !•>• co<* i » cotooito s^jg 52^±'*l2rv
.^ ^J^- T^O 03 om^ o>.*— 't- en 01 H O O o> oil
— »-s> E-^-OE e-o.*-PJE~ -10 > 00 900
CM*,*-. o — a soe -o o •* ~* *• t. c. :
c « c •-» -WM t a.o«n T.^I «« »a:o:
,Z.^J i « « E •" eetoue oo K
o>>o a^ i£>£'t_.2 9ec ee ^ :
r\~° 9 °3-S- c2^j-2t oi*- ao o
*« >.i^ O^^OE p^co r-**-* E
BJ TD e-<-'O e a *- 3 e~iH- 99 o ;
•0 9001 ,J^-> 0 t-£ t L. g
G-oa*""*-*- d-^-^c- -oc •• o
etc o o-o > <» ->-• o a e x E ffl o EE (
O ^ S^-i-90 0>>00 390 33
o.«wos: i-«ss o-is oo
<£>
6
555
-------
J
in
en
t_
J3
O
£
CM
C
c»
CM v
eo •
— 03
"I
*>
-r< e
n o
JS
COUJ
N O)
^r o
CM tO
CO •
•
• • ••
1
6 +?
' f.
*- o
3"S
ens:
-_
>
f. "
v c
«: -o
fy
Conibinad .
Produotco
m
CD
S
i
1
0
CQ
^,
_J
5
*
^
a
c
***
§
•H
+>
e
c.
*»
e
S
CO ID — ID CM ID CO
>i ^ o m ^? en o
:M in •— ID in in •<}•
O O O O O O •C
r- r- as CM co co CM
f*» «c o *t r^ co
eo co in XT •* o
o o o o o o o
r» eo •- co eo T? —
CM r- CM o co r>. *j
— CM co v ^ m in
o o o o o o o
co eo r--co o o O
eo i «- O tf ID f
CM eo ID in ID CM r->
*"" "~
O O OO O O O
r- co CM CD eo co co
CM •— — CM CM
o o o o o o o
§o o o o o o
o o o o o o
ID *f O CO O *— O
in ID xj- *? *J »™ to
CM eo eo *r u> to in
o o o o o o o
O «* O CO O •r- O
CD co co o O co in
eo ID - in
en in CM o ID CM CD
^- ^-»- ^ CM »-
^^
^> ID CM <•
»- CM < eo •- eo to
i
»<
-iniDTrr-li' -- (M COCD^T OOfO ^JCNin
w— «— CT CO 01 •—
- in 1 .
I i i in o + o i i i i ill ii ill
• •- o
*-* • 1 O
•f
ifi jjj ^^ en c^* t **^ ^ ^D o in ID *^ CM 03 tD co ^ ^* ^
co ^3 co oi o CM co ^r o •*• • ^ CM ^ *— Tf en
..i . |ca or^'Of^ ococo mo iD^tr^
ex j.ciS'^iSS'^ ^^i "~ " "~
*™ ^^ *" CM
ID.— tDO Ol COO-OO r^-»- OO COCO*-
. . i . . I « -oeocoo o r-.ro inocM
n _ir~o)inoco COCM a> t~~ en
--•a 4.^^r^coin^-i- «-CM rvino
O CD i-
in —
ootocool^ o o O — CM — .- r- oo cMtrm
. S S- •- W CMCMO-Ir-. ^-CM^ TfID CM.-CO
A ^ +d *"*"§SS V
V »-
V
V «-
«-, co in to co I ^~ cocMin-*«D oeno or~ i m«?to
« ^ i ••la OCO*^COCM mcMO com o
en _i eo •* to — —in — r>
"^ *" CM in 00 »- CM
O^-iomf*.!— * ^f^ococo ^
n A & *^ Q. O ® "^ *^ t, ^-* v CD *-• » W *•* *^ ^^
«l--n5 ."in*^ o-H-^tj • «fr'o> o •« -g -r
r «c ^ • ^> CJ -Q ^> m E »^ C ™ ^^ *™^ IS *•• •*
fe-g c*-o w«s*§ f-2*- e® « . o«
•S €>Q « i -i^i..0 '•'gc ^^ 6 i
«ui in H ' «
o
1
(0
6
556
-------
*~-
c
3
C
C.
O
o
CO
E
9
Jt -i
— r-.
CM rf
CO •
— EO
i
'«.»
o
X >
— i e
s> o
c —<
o o
0
J* C.
S X
CD U
CM Ol
E JC
** O
CN in
CO •
0 —
e
c
*1 **
•^_ pj
L •«
3 ffi
we
8
5
X ••
« e
o
^ o
c *•
e o
*-t 3
Ji -o
>i£
OQ.
c
N
L.
to
•04
to
,0
&
^
2j
i1
e
u.
c3
c.
o
s
w
u
-J
O
e
*•
g
•rt
*< •
e «
t.
*J
§
§;
I
•«? O O O CM O O
CM *? CO ID DO**
in in ^
O O *» O to — O
— CM (£> f** O m
. • V • «- •
eo CN co ^
— CO «O «O
CO CO CO CO CO CO O
V V V V V V •
o
O CN CN CM O! CM CN
— V V V V V V
0 0 O 0 OO 0
o o o o o o o
eo •«!• CN o O o O
co i® *" o) ^ co en
Tf CO IO CD (D O ^» T^corMO'— r^ r^r*-O)
"iD-t- r~cn o — CM
CM CN O)
in CM co
»- r* r~ o en 1 B o — ujicn mcoeo oo 111
• »- co— o-o ^f en-o tooi
^-^•l •-« O ^ — i *$ ^rm^f coo
"~m •<• ' CM > ~ "" "" "~ M
A •—•& v V
OCOP^COC**|?I cnr^c)cMO ^TIDO (Din i i i
COCN O C^- COCOCMIDD CO* ID r^.(D
• •!• 1 TfCM-^rtD »}• mm
— (D * — CM
en
OO C" ••o*»— (DO- •— coin^f
• • 1 1 O) CO * CO O) • • C5 f*« (D O O
^3 LO m | tD ifl »— O O ^~ O l^ ^
• r** ^D CM D) v O * ^"* CO tD • Ol C*5 »"~ CT) *~ 0J
ID • | - • | ffl or^j CN ^- »-cs Of^ —
— -J-O «c *- — ui if)
^~
(0 ^o f**- ^ ^* I n C3 Oi Oi r*1* w CD cs cs w w cw 01 f*3
coo ^r . o - — coin o •— m co o co —
• •i- | in ID • — to — *- cN(DO
CO -CO CO CO CO CO CO
^•CD + C)— r^tDr^
io«- CNO O) en-wf--— en-— ^co CNCM^
• • 1 • • ^ 6! CO CO • ^ O1) ^" CN **— O ^
F3 «J »— ^r TT m ocnin
«- •*• + ^ co CM — v CN m
coir^l — » CMcncocneo inen^ com co i I
o • in r- • • • — > •— co
CM i « eo • • co r> CM t- en , eo
»- _i — in rr m o V —
A" ^"~ CNVV^V
^ (D p**« i r»>. ^*—owoi co oo tv f^to r^cDw— o»
• (^ o) ^f ^f o o * * o • d • 01 o to *
to • i es ...^-^f -cs •*- in CN oo en
*"*"»- a'SSoCR V vV»-u5n
A - .0 o.
••
Wcnr^^^HH OCOCDPOID cMOr*. *~CD oo^-^?
< CM^ CM™"*? ^ •«KN tc. c x
e_l .*.-.— £ E — . IDUlE _•£«
» e v» -x. o>H _i~^>^— 1 ^. CEE
e « 01.* ^t— 01 o> 1— O O o oil
'tec ecoo • E o « ^e •• c c c
•vl-M ei o.-~-- -^ — t- > • ID > oo e B o ^->
N .*. *, o -~ e c^ j * T| j> ^ ^ -^ ^i-^t. .-» -
^,St£t *e "T^E *- e a to o a o o tc s -
en > o c •-». c ^.^. ^^e g^t. ee ^> ^,
3 t) O O E O — i — 1 O ffi C1D.O •>« « 1 -
i a »J ^^ C>*t«H3^JC filA' S6j O CCv
J^-o •<-' ••;«- o — i -H o • coo » c -^
ano o^^o flej*»-3 e*^*^- CG c o
•o « o _e i ^iic0. 'l "5 c '"•^ 6 *"-
• i1o'o'>« *>ffiaex E«a EE c
O*je>'-'*'Oco o>>oo 3j^ So Q.<
>t
i)
i
E
3
3
•••i
^
^
3
H
3
a
_>
^<
a
O
557
-------
o
0J
>
JC ••
e o
o
t) 0
c"o
— 1 3
JB-D
§2
oo.
P
5
e
ra
3.
e
*
C 1
o :
••K
•*»T
9 *•
t.
*>
C
0-
1
oo oo o o o
a
en to CD 03 o o CM
CM *- TO IO O CM ^J-
CO CO CM O) O CO T
*•• **~
§§§§8S§
— o o o o o o
in o o> 10 r~- en co
CD — CM V CO CD CD
§o o o o o o
O O^f O O O
o o o •- o o o
•- CM O) CO O O O
CM rf CO V) CM T
10 co r- «- CM «~
««
a
3
•* (O CM ^J
»- CM *f CO «- CO CO
B
1
•«
-
• r^ • 10 ^r **y Q to 0} • cs ^3 ^~ to o
JI ^- TC •* O CO" CO COCO *~ 5
— -t- 0 CM ^ »- CM
A <- CM
V V
V
RS^2S|o ?^2S ES^ || - ^5^
CO -J(Der»Cr>O)*-^l'*-tD
CO •»• •*-* (N — ID IO (O W3
v** C*4 C*3 *~
10 rj- r>- r- co I n coooir^. cococo o en *" — in to
• ID coio c^ oo-o co «-co - CD CD £ -»IO
e >^ -v. csi< -J-^'v.—l >«. c e B
e te o>^^t-cn a> t- Q O en oil
^ C -S ••Hra''^ '^•'C *"^ 4^O)O>
00 e co o -EOO «•« •• c c c
•^ -* a o.~- - •v~~ t. > • 10 > oo oao
ESC -J -MM c a JD ? • J3 «j o c o: K
i_,^<-rt e o E -j-- eacoodoo a:
os>o »*>. c>x e t
oea. <>-Q.DI c -»j *• £- r-> o o c. BO •->
I->*D OOE o -< -i o o B c. o no a
i e -J— Cr->r->->-'(- ai-c as o
—'•&•*' • e t- o — i •-< o • coo «> o -4
C- ffl > • *- O -Q -D « E r->CO ^>rJ E
c ~o c -^ o uai-3 o -H •&- co o
t> caai ^^>^> o c- -c t.c. £
CtJO.'-<£ « -H •>! C • -OC •• O
eo o o TI ><» -!-• 01 ffl a x Ema E E
O 4-'6)f->*-'Q0 O>>OQ3 3®O^ 33
ttW ZD CO CO O S H~^C^ES O-J«£ OO
0
------- |