FINE PORE D1FFUSER FOULING:
THE LOS ANGELES STUDIES
by
Michael KStenstrom and Gail Masutani
University of California, Los Angeles
Los Angeles, California 90024-1600
Cooperative Agreement No. CR812167
Project Officer
Richard C. Brenner
Water and Hazardous Waste Treatment Research Division
Risk Reduction Engineering Laboratory
Cincinnati, Ohio 45268
RISK REDUCTION ENGINEERING LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
f ±& inf0rmation * ** reP°* has been funded in part by the U.S.
Protection Agency under Cooperative Agreement No. CR812167 by me
American Society of Civil Engineers. The report has been subjected to Agency Se
admnuslrative review and approved for publication as an EPA d^fnt SoTod
names or commercial products does not constitute endorsement or reconLenStion ?or?se
11
-------
FOREWORD
eric,?? raplH * devdop.^ ** <**&* technologies and industrial products and
u 4 ^UCf y ^ Wth *cm *" ^^^ gyration of materials that, if
U with, can threaten both public health and the environment The U.S En
Protect™ Agency (EPA) is charged by Congress with protecting the Nation's
water resources. Under a mandate of national environmental laws, the Agency staVeo
an?S ab^7 T? **** kadh* tO * C°mpatible balance between\uma?lctiv ties
and the ability of nata*! systems to support and nurture life. These laws direct EPA to
to e&ie OUT envkonmental Probl— > —sure the impacts, and seaih for
The Risk Reduction Engineering Laboratory is responsible for planning impl
between the researcher and the user
American
As JP^t of these activities, an EPA cooperative agreement was awarded to
Society of Civil Engineers (ASCE) in 1985 to evaluate the existing da^ basconorc
dse aeration systems in both clean and process waters, conduct field s^dies afa number
frerent,faCiMeS empl0^ ** pore a^on, and ptepi a
tion s °n t S?JeCt ™* manUa1' entit1^ "^^ Manual - Fine
' ComPleted *" September 1989 and is available through EPA's
61Snh,-Inf0rmati0n' ^^^ Ohi° 45268 ^PA
The field studies, earned out as contracts under the ASCE
agreement, were designed to produce reliable information on the perfo
requirements of fine pore devices under process conditions. Th^
separate contractor reports and provided critical input to the design manual
summarizes the results of one of the 16 field studies
E. Timothy Oppelt, Director
Risk Reduction Engineering Laboratory
111
-------
PREFACE
In 1985, the U.S. Environmental Protection Agency funded Cooperative Research
Agreement CR812167 with the American Society of Civil Engineers to evaluate the existing
data base on fine pore diffused aeration systems in both clean and process waters, conduct
field studies at a number of municipal wastewater treatment facilities employing fine pore
diffused aeration, and prepare a comprehensive design manual on the subject, j This manual,
entitled "Design Manual - Fine Pore Aeration Systems," was published in September 1989
(EPA Report No. EPA/725/1-89/023) and is available from the EPA Center for Environmental
Research Information, Cincinnati, OH 45268. !
As part of this project, contracts were awarded under the cooperative research agreement
to conduct 16 field studies to provide technical input to the Design Manual. Each of these
field studies resulted in a contractor report. In addition to quality assurance/quality control
(QA/QC) data that may be included in these reports, comprehensive QA/QC information is
contained in the Design Manual. A listing of these reports is presented below. All of the
reports are available from the National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161 (Telephone: 703-487-4650). •
1. "Fine Pore Diffuser System Evaluation for the Green Bay Metropolitan Sewerage
District" (EPA/600/R-94/093) by J.J. Marx . ; .
2. "Oxygen Transfer Efficiency Surveys at the Jones Island Treatment Plants, 1985-1988"
(EPA/600/R-94/094) by R. Warriner '
3. "Fine Pore Diffuser Fouling: The Los Angeles Studies" (EPA/600/R-94/095) by M.K.
Stenstrom and G. Masutani ! '
4. "Oxygen Transfer Studies at the Madison Metropolitan Sewerage District Facilities"
(EPA/600/R-94/096) by W.C. Boyle, A. Craven, W. Danley, and M. Rieth
' • • ' . i
5. "Long Term Performance Characteristics of Fine Pore Ceramic Diffusers at Monroe,
Wisconsin" (EPA/600/R-94/097) by D.T. Redmon, L. Ewing, H. Melcer, and G.V.
Ellefson
6. "Case History of Fine Pore Diffuser Retrofit at Ridgewood, New Jersey"
(EPA/600/R-94/098) by J.A. Mueller and P.D. Saurer
7. "Oxygen Transfer Efficiency Surveys at the South Shore Wastewater Treatment Plant,
1985-1987" (EPA/600/R-94/099) by R. Warriner ;
..-•.. iv j
-------
8. "Fine Pore Diffuser Case History for Frankenmuth, Michigan" (EPA/600/R-94/100) by
T.A. AUbaugh and SJ. Kang
9. "Off-gas Analysis Results and Fine Pore Retrofit Information for Glastonbury,
Connecticut" (EPA/600/R-94/101) by R.G. Gilbert and R.C. Sullivan
10. "Off-Gas Analysis Results and Fine Pore Retrofit Case History for Hartford,
Connecticut" (EPA/600/R-94/105) by R.G. Gilbert and R.C. Sullivan
11. "The Measurement and Control of Fouling in Fine Pore Diffuser Systems"
(EPA/600/R-94/102) by E.L. Barnhart and M. Collins
12. "Fouling of Fine Pore Diffused Aerators: An Literplant Comparison"
(EPA/600/R-94/103) by C.R. Baillod and K. Hopkins !
13. "Case History Report on Milwaukee Ceramic Plate Aeration Facilities" i
(EPA/600/R-94/106) by L.A. Finest
14. "Survey and Evaluation of Porous Polyethylene Media Fine Bubble Tube and Disk
Aerators" (EPA/600/R-94/104) by D.H. Houck
15. "Investigations into Biofouling Phenomena in Fine Pore Aeration Devices"
(EPA/600/R-94/107) by W. Jansen, J.W. Costerton, and H. Melcer
16. "Characterization of Clean and Fouled Perforated Membrane Diffusers"
(EPA/600/R-94/108) by Ewing Engineering Co. ,
-------
ABSTRACT
f ,P°re *ffiucr evaluations conducted at three different
treatment plants located in the greater Los Angeles area. The overall goal of the
extended penods of time at selected treatment plants.
m. ^ ^"T1 ^ °f ?? StUdy W3S conducted at Ae Wetter Narrows Water Reclamation
Plant, which is operated by the Los Angeles County Sanitation Districts. This study
evaluated fine pore ceramic disk and dome aeration systems using Hcl acid gas cleaning and
a dome aeration systems without acid gas cleaning over a 25-month period. A second study
smaller HI .scope and effort, was conducted at the Valencia Water Reclamation Plant (also
operated by the Districts). Tins study evaluated fine pore plastic disk diffusers over a 13-
month period. A third study, also smaller in scope and effort than the Whittier Narrows
study was conducted at the Terminal Island Wastewater Treatment Plant, operated by the
'
,
*• "•*— °f "» ~*~ -be diffuss
inH'If' ^J00™**™ ** Performance of six different aeration systems. The principal
inchcator of performance was oxygen transfer efficiency, as measured through off-gas
analysis. For the Whittier Narrows study, changes in diffuser characteristics are also reported.
rh,n^e fme P0re/erami° disk aeration system *« was acid gas cleaned performed better
than the ceramic dome systems that were acid gas cleaned as well as the control dome
aeration system that received no cleaning. Part of the differences in performance between the
disk system and the two dome systems is attributable to mechanical problems with tiiTdLes
The cleaned and uncleaned dome systems had comparable transfer efficiencies during the
study^ Results for plastic disk system showed relatively consistent performance over the 13-
Te ^n°f ' * ^ S?StemS Sh°Wed Wgh Variabmty due to operational differences, and
finn! ^ *^ *&«*** fouUnS over a relatively brief period. An import^
finding of this report is the variability of aeration systems performance during day-to-day
changes in plant input and operating modes. ; y
This report was submitted in partial fulfillment of Cooperative Agreement No
by the American Society of Civil Engineers under subcontract to the Diversity of o
Los Angeles under the partial sponsorship of the U.S. Environmental Protection AgencJ
work reported herein was conducted over the period of 1986-1988 AgenCy'
VI
-------
TABLE OF CONTENTS
! Page
Foreword ........................................... ''•
Preface ......... . .................. ZZZZZZZZZZZZZZZZZ".'ZZZ" ............. .................. -11
Abstract ............................ ...................... ..................
-. [[[ vi
Figures .............................
Acknowledgments [[[
Introduction [[[ .
Plant Descriptions [[[ i ................. ,
Whittier Narrows .................................. . ....... < .................
Valencia
Terminal Island
Process Data
Experimental Procedures [[[ 2n
Off-Gas Testing Procedure [[[ 94
Gas Cleaning Procedure [[[ i ............ 25
Liquid Acid Cleaning [[[ ; ................. 2o
Clean Water Data ........................................... ............................ Z!!Z""' ........ ' ...... .......... 31
Whittier Narrows ................................................ , ..................... " ................. -21
Valencia [[[ ........ ~~
Terminal Island - AERMAX ............................ ................... !.!...'..."". ......... ' ................. 33
Experimental Results [[[ 35
Whittier Narrows [[[ ; ................. ^^
Whittier Narrows Diffuser Analysis Results ........................................ : .......... 35
Off-Gas Testing Results .. .............................................. .....!!!!!"."!!!!.""!!!!!!! ']".".'. ........... 41
Stationary Testing . [[[ " .......... ................. 55
Off-Gas Testing During HCI Acid Gas Cleaning ....................................... ^"."^ ......... 57
Dome Replacement .................................................. . .................. " " ......... ' ................ 61
-------
TABLE OF CONTENTS (continued)
Conclusions ; g^
References ; og
Appendix I Sample Data Sheet 9g
Appendix n Whittier Narrows Diffuser Data 100
Appendix in Plant Process Data ^Q4
Terminal Island , JQS
Valencia , j 111
Whittier Narrows U9
Appendix IV Off-Gas Data L...ZZZ 135
Appendix V Selected Diffuser Drawings ....L..Z! 142
Vlll
-------
LIST OF FIGURES
Page
Figure 1 Plant Locations
c \X7PP Drns>oco d~.,.
i 8
• 13
Figure 2 Whittier Narrows WRP Process Flow
! «•«•••••••*
Figure 3 Whittier Narrows WRP Tank Schematic „
Figure 4 Valencia WRP Tank Schematic
Figure; 5 Terminal Island Tank Schematic j
Figure: 6 Whittier Narrows Off-gas Hood Locations (4 of 12 shown) 21
Figure: 7 Valencia Off-gas Hood Locations i 22
Figures Terminal Island Off-gas Hood Locations ; 23
Figure 9 HC1 Gas Cleaning Control Panel 27
Figure 10 In-Tank DWP Monitoring Apparatus ! 2g
Figure 11 DWP and BRV versus Months in Service ; 44
Figure 12 Fouling Substances and BRV/DWP versus Months in Service I 45
Figure 13 ccSOTE versus Time for Tanks 1 and 3 at Whittier Narrows i 47
Figure 14 a Factor versus Time for Tanks 1 and 3 at Whittier Narrows....!....1.. _ 43
Figure 15 ccSOTE versus Time for Tanks 2 and 3 at Whittier Narrows j 49
Figure 16 a Factor versus Time for Tanks 2 and 3 at Whittier Narrows ',....-. 50
Figure 17 Air Flux versus Time at Whittier Narrows ' 51
Figure 18 Air Flux versus Distance at Whittier Narrows [ 52
Figure 19 ccSOTE versus Distance at Whittier Narrows 53
Figure 20 a Factor versus Distance at Whittier Narrows 54
Figure 21 a Factor and ocSOTE versus Time of Day..... 56
IX
-------
Figure 22 aSOTE during HC1 Gas Cleaning i
*"**" * • •! Jo
Figure 23 aSOTE for Grid 1 Before and After Cleaning i 59
Figure 24 Ratio of aSOTE Before and After Cleaning;..... ^
Figure 25 Decrease in DWP versus Time During HC1 Acid Gas Cleaning ; 62
Figure 26 Air Flow Rate versus Time During HC1 Acid Gas Cleaning 1 63
Figure 27 Dome Failures for Tank 3 at Whittier Narrows 54
Figure 28 Normalized Ratio of oSOTEs Before and After Cleaning \ 6g
Figure 29 Hood Flux Versus Process Air Flux at Whittier Narrows and Valencia 69
Figure 30 oSOTE, Air Flux and a Factor at Valencia .". „_..!. ?1
Figure: 31 ctSOTE and a Factor versus Distance at Valencia 72
Figure 32 Air Flux versus Distance at Valencia i
Figure 33 oSOTE, Air Flux and DO for Parkson-Wyss at Terminal Island 1 74
Figure 34 oSOTE and Air Flux versus Distance for Parkson-Wyss at Terminal Island 76
Figure 35 oSOTE, Air Flux and DO for AERMAX at Terminal Island : 77
Figure 36 ccSOTE and Air Flux versus Distance for AERMAX at Terminal Island. 78
\
Figure 37 oSOTE and a Factor versus Months in Service for AERMAX - Terminal Island 80
Figure 38 a Factor versus F/M for Tanks 1 and 2 at Whittier Narrows........,:..;;;...!........ 85
Figure 39 aSOTE and a Factor versus MLVSS Concentration for Hood Position 1,
Tank 1 at Whittier Narrows
• : o7
Figure 40 a Factor versus MLVSS Concentration at Valencia i cs
* • • oo
Figure 41 a Factor versus Air Flux at Whittier Narrows for Hood Position 1
Tank 1, and a Test Column
....oy
Figure 42 aSOTE versus Time for Tank 1 at Whittier Narrows 91
Figure 43 a Factor versus Time for Tank 1 at Whittier Narrows ; 92
-------
LIST OF TABLES
Page
Table 1 Whittier Narrows Plant Description ............................................... o
Table 2 Whittier Narrows Diffuser Information [[[ 10
TableS Valencia Treatment Plant Description.... .......................................... j*
Table 4 Valencia Diffuser Layout .................................... i ...... 12
TableS Terminal Island Plant Description [[[ 15
Table 6 Terminal Island Parkson-Wyss Tank ....................... ........ 16
Table? Terminal Island AERMAX Tank ............... . ....... . ................. j ........... 16
TableS Whittier Narrows Clean Water Data ......................................... '' 32
Table 9 Sanitaire's SOTE Estimates for Whittier Narrows .................................... ; 32
Table 10 Nokia Clean Water Oxygen Transfer Efficiency ......... . ........................... , i _ ..... 34
Table 1 1 AERMAX Clean Water Efficiency for a Spiral Roll Configuration ........ . ............. "'""34
Table 12 Whittier Narrows Project Chronology ......................................... ! \6
Table 13 Summary of Whittier Narrows Operation ................................................ .! ..... 33
Table 14 Dififuser Analysis Summary.... [[[ : \g
Table 15 Results of the Analysis of Variance of Diffuser Characteristics ............... . .................. .40
Table 16 Mean Values of Diffuser Data ................................................ ' 42
-------
ACKNOWLEDGMENTS
The authors are grateful for the support of the US Environmental Protection Asencv the
American Society of Civil Engineers, and the University of California, I^geles for provfd-
ttg the support for this project. The authors are also grateful for the cooperation of the Los
Angeles County Sanitation Districts and the City of Los Angeles, Bureau of Salutation Thdr
cooperation made this project possible. There are many individuals who helped
mons, and^e
The active participation of the Steering Subcommittee of the ASCE Committee on Oxv-
^lT^ " "ft J\9^W».' Jr- was especiaUy important. Professor HDavM
Stensel of the University of Washington served as ASCE's project monitor Kfr Richard C
8 ^ ""^ ^^ ^^ in CWn^ 2S as
Jerrv Wn S?"^^5 Cited in.t?,is repOrt donated ^^ time ** effort to helping us. Mr
Jerry Wren of Sanitaire was especially helpful by providing the acid gas cleaning expertise and
operating the acid control panel during cleaning. «cdnm§ expertise, and
A J-F1!1|lly,the auth°rs ** most Sreatf^ ^d indebted to Ms. Debby Haines who processed
and edued final manuscript and provided other support and assistance throughout the pro^t
xu
-------
INTRODUCTION
^^^^L^^^5^^ Ac la
-------
.
-------
The next chapter describes each plant Following chapters describe the experimental
IPTowrrimTd^the1tSUultS' ^ effeCtS °f ?r°CeSS OP^- °n ox^^fCT ^ndk
for Whittier Narrows. Appendix m contains the process data for Jach plant, avSaKfdfbvmS
and averaged over the entire period of observation. Appendix IV contains me avenge Valuw of
dff* m £aS P ApPendiX V C°ntainS SChemadc ^S1^ Df several of the
-------
PLANT DESCRIPTIONS
This section provides plant-specific information for each study. Plant operating data for
each facility are summarized in Appendix ffl. Note that several parameters changed during the
study due to plant upgrades or operational difficulties. In general every attempt was made to
maintain constant plant operation. Figure 1 shows the approximate plant locations.
WHITTIER NARROWS
The Whirtier Narrows WRP is a full secondary treatment facility with primary
c anfication, aeration, secondary clarification, filtration, chlorination and dechlorination The
plant is located 38 km inland from the Pacific Ocean. It is operated by the Los Angeles County
banitaiaon Districts which operates ten other plants in Los Angeles County.
The topology of the Los Angeles Tank is such that long trunk sewers can be operated
without pump stations from the inland areas to the JWPCP in Carson. Wastewater flows by
gravity from the Whittier Narrows area over 32 km to JWPCP. As growth has occurred the Dis-
tricts have added treatment capacity at its up-stream plants such as Whittier Narrows This for-
tuitous situation allows growth without increasing the size of the trunk sewers, which currently
S£5S;ata£ear caPacitv' and aUows Ae Distri« to concentrate its solids processing facilities at
JWPCP. The upstream plants also help to meet the water reclamation needs of the various com-
munities. The Whittier Narrows, San Jose Creek, Long Beach, Los Coyotes, and Pomona water
reclamation plants all operate in this fashion.
t
In addition to solids handling facility design, the unique sewer arrangement provides
additional operation freedom to these upstream plants. For example, the flow rate at the Whittier
Narrows WRP is set relatively constant and the plant is less disturbed by the diurnal fluctuations
in wastewater flow rate. Furthermore, tank maintenance at the Districts' various WRPs can be
performed much more easily since a temporary shortfall in capacity at one plant can be treated
by another plant.
The Whittier Narrows WRP provides reclaimed water water for various purposes, includ-
ing groundwater recharge, which requires the plant to produce better than average secondary
effluent. Health Department regulations require the plant to meet a turbidity limit 12 NTU or less
and a total coliform limit of 2.2 MPN or less.
Both the Districts' and the City's storm and sanitary sewers are separated. The impacts
of stormwater flow on the Whittier Narrows WRP are small. compared to plants with combined
f w.ej?:. There 1S additional flow during the rainy season (Winter) and for this reason operational
flexibility is more limited during these periods.
m Na5ows Plant was Ae location of an early study comparing ceramic disk
diffusei-s fine bubble tube diffusers, and jet aerators. The disk system used in this study (tank 1)
was installed in December 1980, and was the same as used previously. The disks installed at this
plant are 2.5 cm thick and are different than the current Sanitaire disk, which is only 1 9 cm
thick. Hie manufacturer reports that the new disks are otherwise identical to the disks used at
Whittier Narrows. Both the tube and jet system were replaced with ceramic dome diffusers at
the conclusion of the previous study (Yunt and Stenstrom, 1990). Tanks 2 and 3 were placed in
-------
\E •'/ .'/ -V^^fiLPra
Figure 1 Plant Locations
-------
"d *— M • *T Permeability ra«,g of 8.2 «, 8.8
VALENCIA
^
-------
ONINOIJ.WN003Ud
W3XIW HSVTJ
I
60
E
-------
-------
Table 1. Whittier Narrows Plant Description
"
Primary Clarifiers
Aeration Tanks
Secondary Clarifiers
Normal Operation
Air Filtration
Blowers
Diffuser Grids Per Tank
Design Flow Rate
| Number
-j
2
3
6
3
5
2
1
2
.. 1
3
4 _ . Nominal Size <
_
3.7 sidewater depth (swd) x 6.1 w x 91.41 meters
(12 swd x 20 w x 300 1 feet)
4.6 swd x 9.1 wx 91. 41 meters
(15 swd x 30 w x 300 1 feet) i
3.0 swd x 6. 1 w x 45.7 1 meters
(10 swd x 20 w x 150 1 feet) '
(1 clarifier normally used for backwash recovery)
aeration tanks in parallel, conventional activated
with tapered aerations. Provisions for step feed and
operation of all 3 tanks
secondary clarifiers
primary clarifiers i
two stage, replaceable paper cartridge filters
(not functional 4/86 - 9/87)4- ;
20,400 m3/hr centrifugal
(12,000 SCFM) ;
9,300 m3/hr centrifugal ;
(5,500 SCFM)
— • i —— »_
sludge
series
Flow control for each grid and each tanks, automatic DO
control. 1 probe located at the end of eacli tank
57 mVdav ( 1 5 MfJFrt
The air filters had been out of service for an unknown period perhaos as
much as 2 years, prior to the beginning of this study. ^ P
-------
Table 2. Whittier Narrows Diffuser Information
Tank
1
Sanitaire disks)
2&3
Norton domes)
1,2,3
Grid
1
2
3
1
2
3
All
7<
2.
71
2.
4<5
i:
Pr
3.<
afi
96
3 '
57
2.1
aft
3.1
Description
792 disks (0.23 m or 9 in. diameter)
2.8 disk/m2 (0.264 disk/ft2) j
774 disks [
2.8 disk/m2 (0.258 disk/ft2) \
disks !
1.7 disk/m2 (0.153 disk/ft2) 900 domes tank 2, 985 tank 3
prior to 8/21/87,990 domes 0.18 m (7 in) domes
3.6 domes/m2 (0.33 dome/ft2) (0.18 m or 7 in. diameter)
after 8/21/87, 836 domes, 3.00 dome/m2, (0.28 dome/ft2)
968 domes !
.5 disk/m2 (0.32 dome/ft2) !
574 domes '
2.1 disk/m2 (0.19 dome/ft2)
after 8/21/87,728 domes, 2.61 domes/m2 (0.24 dome/ft2)
3.75 m (12.3 ft) diffuser submergence
10
-------
Table 3. Valencia Treatment Plant Description
Primary Clarifiers
Aeration Tanks
Normal Operation
Secondary Clarifiers
Air Filtration
Blowers
Diffuser GridsAank
Number
5
5
3
2
6
2
2
3.5 swd x 6.1 w x 19.81 meters
(11.4 swd x 20 w x 651 feet)
4.6 swd x 8.1 w x 41.4 1 meters, 3.96 m diffuser submer-
gence
(15 swd x 26.5 w x 135 1 feet, 13 feet diffuser submer-
gence)
serpentine flow operating as a single contact stabilization
process
baffled in three compartments, operating in parallel in con-
tact stabilization model
3.0 swd x 4.9 wx 41.11 meters :
(10 swd x 16 wx 1351 feet) :
two-stage replaceable paper cartridge filters
15,500 m3/hr Roots centrifugal !
(9,150 SCFM) ;
I
6,100 m3/hr Sutor-bilt Positive Displacement'
(3,600 SCFM) .'
SCFMm3/hr Sut0r'built Positive Displacement (1000
flow control for each grid and each tank
11
-------
Table 4. Valencia Diffuser Layout
1A
IB
2A
2B
2
3
343 disk
4. ldisk/m2 (0.38 disk/ft2)
288 disks
3.4 disk/m2 (0.32 disk/ft2)
262 disks
3. ldisk/m2 (0.29 disk/ft2)
205 disks
2.5 disk/m2 (0.23 disk/ft2)
reaeration - 257 disks ,
(257 from grid 1A)
contact 466 disks ;
(86 from grid 1A, 288 from grid IB, 92 from 2A)
375 disks ;
(170 from grid 2A, 205 from grid 2B)
* Only Tank 4 tested
+ One downcomer serves half-grids 1A & IB, and a second downcomer sen
2B.
serves half-grids 2A &
12
-------
o
•c
o
CO
CO
•g
13
-------
TERMINAL ISLAND
aim inslauSon m f fi^" Changed ^ design of Ae ^^ V»"» fr°m » Dimple swing
Si™ S ^1 ^J^/T C°VTge "!stallation- Two headers were attached to the bottom of
i m o
dSfoser rdeSinl Jf "K6065^ tO SP*""* for *« «^sed head loss through Ac
14
-------
Table5. Terminal Island Plant Description
Primary Clarifiers
Aeration Tanks
Normal Operation
Secondary Clarifiers
Air Filtration
Blowers
Grids per tank
Design flow rate
-t
Number
- -
6
9
3
2
,1
3
18
3
3
N/A
"- ' '..—
Nominal Size
3.66 swd x 6.1 w x 76.21 meters
(12 swd x 20 w x 2501 feet)
4.6 swd x 9.1 w x 91.41 meters
(15 swd x 30 w x 3001 feet) !
serpentine operation of 3 each in step feed mode
parallel, conventional operation <
i
aerobic digester |
out of service j
!,
3.66 swd x 6.1 w x 45.71 meters ;
(12 swd x 20 w x 1501 feet) '
coarse screens only I
!
66,300 m3/hr Roots centrifugal '
(39,000 SCFM) j
Diffusers attached to swing arms, 17 per tank
114,000 m3/day (30 MOD)
15
-------
Table 6. Terminal Island - Parkson-Wyss Tank*
1
2
3
Total
Description
6 downcomers+, 0.25 m spacing (10") 530 diffusers
6 downcomers, 0.30 m spacing (12") 300 diffusers
5 downcomers, 0.46 m spacing (18") 170 diffusers
17 downcomers. 1000 diffusers
* TITank4
+ Downcomer refers to the vertical part of the old swing
arms. Each downcomer is equipped with a plug valve
Approximately 3.6 m (12 ft) diffuser submergence.
Table?. Terminal Island AERMAX Tank*
Zone
1
2
3
Total
Description
9 downcomers*, 0.15 m spacing (6") 270 0 61
270 0.9 1m diffusers
5 downcomers, 0.30 m spacing (12") 82 0 61m
0.9 1m diffusers
3 downcomers, 0.46 m spacing (18") 32 0.61
32 0.91 m diffusers •
17 downcomers, 770 diffusers
m diffusers,
diffusers, 82
m diffusers,
* TlTank6.
+ Downcomer refers to the vertical part of the old swing
arms. Each downcomer is equipped with a plug valve
Approximately 4.1 m diffuser submergence.
16
-------
I
if
a CC
iui
|
I
C/3
H^
•—M
C3
I
U)
$1
17
-------
arm.
. «
18
-------
-—on
-------
EXPERIMENTAL PROCEDURES
ftv TI The PVC and F?C1Sa^ £ipe constructed hoods were 3m long by 0.61 m wide flO ft x 2
ft). They were equipped with 0.2 m diameter (8 inch) outrigger pontoons for fSn The end.
inches). They were also constructed with angled ends to allow a tight seal wS M walls
o? nSS/S P g • • ^' a SmaU gaP m the hood Position above the swingarm mieht create
20 to 30% overesnmation in oxygen transfer efficiency § ' S
20
-------
E
1—
O)
o
srt
o
at
9
21
-------
V)
«
3
8
3)
22
-------
G>
JC 2>
as 3
> S
_ Q
-i
2 a
Q.U
OT <
to
+*
I
"o co
CC JjJ
— 2
«w
m
m
tt
0)
1 =
25
t
I
I
£ 3
•2 3
£"£•
O ID
£2.£i
E E
T-; (O
01 f-..'
E o
cu o
„>» O)
c '*-
op
CO O
If
CO <0
o =5*
Q-OT
T3 «
O "O
CO f1
® «
CO Q.
m CD
-------
Essentially the same off-gas testing methodology was used at Whittier Narrows and Ter-
minal Island Testing was begun between 7:00 and 7:30 AM. The hoods were first moved to
first tank position. The remaining equipment was then set up. The off-gas analyzer was located
between two tanks being tested. At Whittier Narrows, this was always between tanks 2 and 3
Three: hoses were used so that all three tanks could be tested from the same analyzer location, '
Teams of three people were always used for testing for efficiency and safety reasons
Two ipeople moved hoods, recorded plant data, and collected tank DO and temperatureI measure-
ments;. The other person operated the off-gas analyzer. After the first position in one of the
tanks was tested, the analyzer was connected to the hose from another tank. This tank was tested
whJe the team moved the hood at the first tank. In this way there was minimum delay between
testing similar positions in each tank. y ^lwccu
The testing program was designed this way to minimize experimental errors in testing
different tanks because cleaning techniques were being evaluated. For example, tanks 1 and 2 at
Whitner were being gas Hd acid gas cleaned and compared with tank 3 which served as a con-
trol, rnerefore any change in plant operation or load between testing tanks 1 and 3 mieht be
incorrectly attributed to a difference in cleaning technique. This procedure: minimized this
difference, since the typical elapsed time between testing positions in each tank was only 10 to
20 minutes. I 3
This procedure had the additional advantage in that total testing time was reduced This
occurred because the hood and lines were being flushed when the other tanks were being iested
The gas retention time in the hoods and lines is significant, and in some cases might be as long
as 20 minutes. The hood positions opposite the swing arms in the spiral roll tanks were the most
problematic in this regard. This hood position typically had 1.7 m3/hr (1 SCFM) or less air flow
rate. ITie approximate volume of the hood and hose was 0.5 m3 (17 ft3). The gas retention time
under these circurnstances was 17 minutes. After moving a hood to this location, it was neces*
sary to wait until the hood and hose were flushed with fresh off-gas, as indicated by a stable oxy-
0n m SS' Measurements werc Corded after the off-gas oxygen mole fraction
OFF-GAS TESTING PROCEDURE I
The general off-gas testing procedure is summarized in the following steps:
1. Unchain the hoods from their storage positions, attach hoses and manometer tubing and
move them to the first position.
2. Leak check the off-gas analyzer and perform all the set-up procedures as indicated in the
instruction manual. Set the Teledyne to read 1.000 using reference gas at the anticipated
hood off-gas flow rate. (The Teledyne meter indication was never used- the digital
voltmeter was always used). ^B"«"
3. Attach the hose and barometer line to the instrument and begin to balance flux.
4. Continue balancing flux using the hood pressure manometer as an indicator After the
hood pressure is approximately balanced (within ± 5 rotameter units) record the reference
gas oxygen content and all other instrument readings. ;
24
-------
5. After insuring that the reference reading is approximately constant (± 0.002 volts) switch
to the sample cell to off-gas by depressing the 4-way valve.
i
6. Wait several minutes for the oxygen analyzer to come to a new constant value. During
this time collect a sample from the off-gas stream and analyze it for CO2 mole fraction
using the Orsat meter. Also during this time the hood flux was readjusted, if necessary
These adjustments were usually quite small, and did not change cell pressure.
7. After the oxygen analyzer stabilized (±0.002 volts), record the measurement and return
the instrument to reference gas using the 4-way valve.
8' ^f^Tf6^ "T6* f°r ** °xygen aM*faser to restaWlize with reference gas (± 0.002
Tore th/n +1Snm^ " ** <"?**?* *** *« P™<>™ ****** gas reading (generally
more tiian ± 0.005) repeat the entire procedure. If the two reference measurements arc
consisten^ record the measurement. Record all other analyzer measurements. If the hood
.
9. Curing the time that off-gas measurements are being made, measure the mixed-liquor
DO and temperature. In the case of Whittier Narrows, record the plant ail flow rate
Appendix I shows a sample data sheet. In the case of Valencia only one tank was tested
It was necessary to wait a longer time for the off-gas oxygen measurement to stabSte^Scr
, A/. T«™»nal Island and Whittier Narrows, the hoods were left in the tanks between tests
Xtednng d aV°id P°tential hood damage «* needless
n
removing the hoods and storing them. At Valencia the hood was removed at the end of testing
and was returned to the laboratory at UCLA. \ g
Off-gas measurements were analyzed and corrected to standard conditions (20°C 1 atm
barometric pressure 0 == 1.0, DO = 0) with the exception of alpha factors. She results were
reported as oSOTE (a Standard Oxygen Transfer Efficiency), a factors were ca culSor S
tank test point (except for the Parkson-Wyss tank) using the clean water data, which are ,iis
cussed later in this report. Overall ccSOTEs and a factors were also calculated. T?esTwtre
2S£ ^°W-Weight *v™^' therefore, the positions with the highest air flux had the greatest
contribution on the overall average. In all cases a p factor of 0.99 was used. *««»««
GAS CLEANING PROCEDURE
i
. i A •Th>HC1 g,as fleaninS at Whittier Narrows was performed periodically, the experimen-
tal design for tanks 1 and 2 called for cleaning of grid 1 every 3 Months. Grid 2 iSdSSl
every 6 months and gnd 3 was cleaned every 9 months. Gas cleaning was alway
±eT£ ^Tne! W,h° Came£ ^^ NaiTOWS for Ais P^se .UCLA and
sonnel assisted with cleaning. Districts' personnel always changed air flow rates
25
-------
f gas j^ngs werc "fccted somewhat arbitrarily. initially it was
loss- " indicated
row nvHo
S« YE y S f R^on' 1983), or a loss in aSOTE as measured by off-gas analysis
e on O?^ f°r 'S* gf ClCaning- ™e ^y-^y fluctuations in plant ojeration^d
their effects on OTE, as well as the poor precision of DWP measurements, made this impossible
±L Tg *£ rP,lanmng, Phase °f ^ project Sanitaire recon^ended a d^SSSSSdS
phiosophy HC1 gas cleaning was no longer envisioned as a method of restoring foukd
diffusers, but as a method of preventing diffuser fouling. resronng rouied
Sanitaire provided an HQ control panel which consisted of a rotameter gas reeulator
^gross weight VUU kg or 2000 Ib). The HC1 gas lines were always flushed with nitrogen gas after
9nnn 11 5" ^— l tw°5udies a sinSle 270 Kg (600 Ib) cylinder was used (gross weight 90 kg or
2000 Ib). This size cylinder was most convenient for gas cleaning but watery inconvenient to
lease load and unload at the plant site, since there was no truck loading pktfom After the
econd cleaning a larger manifold was assembled so that four 27 Kg (60 Ib) HC1 c^nderfwSe
used, fhe smaller cylinders were easier to lease and transport to the site. pyunders w^e
This disadvantage of the smaller cylinders was the reduced gas evaporation rate HC1
liquid at ambient temperature (20°C) has a vapor pressure of 4000 KPlscal (OoSS As vaoor
is removed from the cylinders additional HC1 is evaporated. The Sent heat oTevaporation
* HC1 vapor „!
mately 34 rS ^ 'l^ "»" produce a flow rate of approxi-
The HC1 gas was introduced into the downcomer feeding each diffuser grid One end at
ri'T STf; HgUf! 10 Sh°WS ^ "-^ DWP ^onitoring app^atus an^L HCl^fec
tion point. The foUowing description describes the cleaning procedure J
1. TheHCl cylinders were delivered to Whittier Narrows on the day prior to testing.
o
i' P ' g CS' resPirator were Bought to the cleaning area. The shield
i-f fh WCre USf by ^ Sanitaire °perator- ^ resP^ ^s providS by
the Districts in the event of an emergency, but was never used.
leak ctactodi "" """^ " downromcr
26
-------
0)
O
k.
o
(0
ll
Q
I
1
I
«
o
0
on
eS
O
I
00
E
27
-------
To Reference
Air Source
From HCI
Control
Panel
^-S\
Itf
~~i"
SS Downcomer
Acid Injection
Connection
1
N
* 4
\
B9BB
V
0
o
j
o
o
O
o
o
o
o
^•^r
DWP Measuring Manometers
1
Air Bubbler Pipe (for
pressure reference)
OWP Tap (one dlffuser
per grid)
Header Air Pressure Tap i
Diffuser Manifold
(typical)
"^ 1
Air distribution pipes J
Tank Bottom
Figure 10 In-Tank DWP Monitoring Apparatus
28
-------
4. The DWP monitoring equipment was connected to the grid being cleaned and initial
measurements were recorded. :
5' SjnJS-m0*!™* lfING
^ ° ^ ?™* ^dy in April 1986' dl ^^ ^^er tanks
were
efficiency that would result if no diffuser maintenance were practiced. After A! sio^d off ™
a ^ - P-ed^re^n^
Immediately after dewatering diffusers can be collected for analysis and"'
After diffusers are collected the grid system and associated piping are
hoses from the tank top. This hosing cleans the bulk of the slLefrom
29
-------
aP?,more convenllcm for maintenance personnel. After hosing, a solution of 16%
acid (conventional muratic acid diluted 1 to 1) acid is sprayed onto the surface of
8 «»** for ^id service can be used for this purpo* Thf add
for at Ieast 30
Protectiveequipment (rain gear, face shield, gloves, and HC1 gas mask) is worn
this procedure. There is a danger of HC1 or H2S inhalation during this procedure JdTrea
equipment ,s required. H2S may be liberated by the acid if the t4 has sludgeTc^mulaTed on
±l±°mr TankhS S MUl,d ^ emered by mainten^e personnel if there Ts ^ *™
Ss ^ te "*" ^ ^ mUratiC add to av°id
30
-------
CLEAN WATER DATA
rows,
**
for
Whittier Narrows
with the manufacturer's and Districts' exultation* T.WU a I f reasonably consistent
The tests were extrapolated backTs 75 m^epS m 3 fflL ,T ^ rCSUlt? °f "^ tests'
were ,dl perforated at the diffuser spacing™ S! whl^sTs^^^^^
' **** ** #*
than wod es6 2
different spacingsmesrirrS e^OTE &d2 d Sar
tional data available. Their predictions arfshown^n Table!
** d°mes at
made addi'
Since
closely fit the Districts' 'data it was ui fnr
to " - sr
San taire data
where
SOTE = 34.92 -1.81 3 QPD
QPD = gas flow rate per diffuser (m3/hr)
SOTE = 28.5 -1.416 QPD
(1)
(2)
1 cated
31
-------
Table 8. '
Water Dam for Grid
Raiser SuB^^ ^ Iffe^—
(m3/hr)
1.31
2.14*
2.12
2.12
2.14
2.16
4.20
(m)
3.93
3.92
3.97
3.97
3.97
3.97
3.97
— — — • .
\70)
: .
32.8
26.8
30.6
31.5
30.9
31.0
27.5
—
depth
(m)
1.79
1.82
1.59
1.97
1.95
1.83
1.55
SOTE at 3.75 m
submergence
31.8
26.1
29.4
30.3
29.6
29.8
26.4
* this test was performed first
+ Yum and Hancuff( 1986)
Table 9. Sanitaire's SOTE Estimates for Whittier Narrows
Gas Flow/Diffuser
(m3/hr)
SOTE at 3.75 m
submergence
32
-------
Valencia
SOTE = 31.3-1.875QPD
Terminal Island - AERMAX
Parkson-Wyss system ° SubmerSence- No <*** water data were available for the
33
-------
Table 10. Nokia Clean Water Oxygen Transfer Efficiency*
Air How Rate
Per Diffuser
(m3/hr)
0.66
1.32
1.31
1.32
2.61
*""
SOTE
(%)
30.4
29.0
28.8
28.4
26.6
Submergence = 3.96m (13 ft)
Spacing = 3.66 diffuser/m2 (0.34/f A
' — ~?r — :
i(mg/L)
10.9
: 10.9
10.6
: 10.6
i
107
* From Yum and Hancuff (1986).
Table 11. Aermax Clean Water Efficiency for a Spiral Roll Configuration*
Air Flow/Diffuser
(m3/hr)
1.7
3.4
8.5
11.9
SOTE
(%)
28
22
18
16
From Anderson (1987) (AERTEC Representative)
34
-------
EXPERIMENTAL RESULTS
"" «P«<— •"' ~to a, each
ngwspfi T
WH1TTIER NARROWS
«"-««
each ph
composition, and - dilution proffle, IKsteSS
basis .and both total and noc T-v^fadk "^2, ^-Tf • / f ' """ aKa Of diffbser
Whittier Narrows Diffuser Analysis Results !
analysi^TSSf Ta^T 'Hvf t8 ?" T™ ""* "" """^ for biofilm
35
-------
Table 12. Whittier Narrows Project Chronology
_E>ate
4/28/86
5/12/86
5/13-6/19-86
6/20/116
7/02/86
7/22/86
8/01/86
8/86
8/21/86
8/26-8/27/86
9/04/86
9/17/86
10/17/86
10/31/86
11/17/86
12/9/86
1/16/87
1/30/87
2/13/87
2/27/87
3/13/87
3/26-3/27/87
4/03/87
4/17/87
5/22/87
6/05/87
6/15-6/16/87
6/19/87
7/10/87
7/31/87
8/31/87
9/9/87
9/30/87
9/30/87
10/9/87
11/13/87
12/04/87
12/24/87
Event
off-gas testing
off-gas testing
liquid acid cleaning of all
three tanks
off-gas testing
off-gas testing
off-gas testing
off-gas testing.
process operation changed
off-gas testing
first HC1 gas cleaning
off-gas testing
off-gas testing
off-gas testing
off-gas testing
off-gas testing
HC1 gas cleaning
off-gas testing
off-gas testing
off-gas testing
off-gas testing
off-gas testing
HC1 gas cleaning
off-gas testing
off-gas testing
off-gas testing
off-gas testing
HQ gas cleaning
off-gas testing
off-gas testing
off-gas testing
off-gas testing
domes replaced in tank 3
domes replaced in tank 2
HC1 gas cleaning
off-gas testing
off-gas testing
off-gas testing
off-gas testing
background testing performed to determine dirty diffuser
efficiency
background testing
Diffusers collected for analysis, dome gasket leakage
noted
hoods were not moved in order to determine diurnal
fluctuations in oSOTE ;
MLSS temporarily reduced in all three tanks
grids 1,2 and 3 cleaned in tanks 1 & 2
grid 1 of tanks 1 & 2 cleaned
grids 1, 2 and 3 of tanks 1 & 2 cleaned. Simultaneous
off-gas testing performed. Witnessed by W.C. Boyle
grid 1 of tanks 1 and 2 cleaned
gasket leakage noted
gasket leakage noted
grid 1 and 2 of tank 1 cleaned
36
-------
Table 12. Whittier Narrows Project Chronology (Continued)
Date
Event
Comments
1/15/88 off-gas testing
1/26/88 HC1 gas cleaning
1/29/88 off-gas testing
2/19/88 off-gas testing
3/11/88 off-gas testing
5>88 tanks 2 & 3 manually cleaned
using low pressure hosing
6/16/88 off-gas testing
7/88 tank 1 manually cleaned using
tank-top hosing
8/12/88 off-gas testing
grid 1 of tank 2 cleaned, grids 1, 2,' 3 of tank 1
cleaned :
gasket leakage noted, broken bolts noted
no significant gasket leakage or mechanical
problems noted.
37
-------
Table 13. Summary of Whittier Narrows Operation
Period
4/86-6/86
6/86-9/87
10/87-5/88
6/86-6/88
7/88
Description >
3 tanks operating without cleaning for the previous 18
months
2 tanks operating with old domes after liquid
1 HC1 gas cleaned
2 tanks operating with new domes, 1 HC1 gas
1 tank operating with old disks after liquid
HC1 gas cleaned
acid cleaning,
cleaned
acid cleaning,
disks manually cleaned by tank top hosing
38
-------
60
_c
c
V
CQ
1
CO
S2
w
>2
i5
•o
u
S
"o
&0
£
CO
(S
60
'P >»
i!
D en
0 >
II
•o S3
!5 '5
TJ 1
«3 O
•s 5
J "o
2
J2
•o
cs
*« ^
o *""
•c
S
r7
- 1
Sr"
»
S.S
C
s
J
CN i
"so
5 1"
^,
C"
^
^* CO
•^ r^
"O
I
Treatment
a
g
§j
a
ot
1
Q
^
0!
1
Q
>
w
Q
>
gQ
Q
OS
CQ
a.
a
&
1
>
0
>
a
cu
Q
1>o V) oo r>.
*** ^ \£ \Q
o ci o o
CO ^^ r*i
JO 2 f* wS , ,
£ T ~ co ' '
r** ^f r*« \o
t^ r*» i™* &} i i
0 0 0 CJ 0
f> 'O »^ rv.
oo co H \x _•:
CO 00 fN CO 2 '
CO ^' "^
S « ^ ~ - CN
gj ^ 2 ci 22
jo •<*• en
O O C3 ' '
V) \f) , «•'
*T> CO fsj '
**^ .
00 —. .q.
S f^ ' gj ' '
£ 8 , P: • 8
<=5 ci o —•
2 5; ' S £
oo \o •«< ^"
£ E ' ^ J= £
•o
1 S 3 -
3 to i-l ^ «
« c^ -o •« i
U 'S '5 «» '3 bo &
§ s 51 J| a |
S 3 IS 33 1 j
i
i
i .S
f^ '
i S
2 8
a§
SI :
e|
-^
=32 i
£ n
^^ !
W O
€ ^
Jp g
E ^ |
co c ;
JQ •s* i
B ° i
O •• '
11 •
53 *~* ;
.| "S ;
l| '
*cj g i
tiL ^*
6*^
9
f"*» ^5
cs -S :
*"** i*
« 23
if
^^ oo
O jf !
s "J?
Iltll
39
-------
Table 15. Diffuser Analysis Summaiy
Period in Service
(months)*
0
7
7
15.5
15.5
18
18
18
18
25
25
Number of
Observations
2
6
6
6
6
6
6
8
2
6
6
Condition
prior to
service
.„
new disk
& dome*
new domes
new domes
old domes,
liquid acid
cleaned
old domes,
liquid acid
cleaned
old domes,
liquid acid
cleaned
old disks,
liquid acid
cleaned
old domes &
disks, liquid acid
cleaned
old domes &,
disks, liquid acid
cleaned
old disks,
liquid acid
cleaned
old disks,
liquid acid
cleaned
Condition
prior to
. testing
new disk
no cleaning
acid gas
cleaning
no cleaning
acid gas
cleaning
no cleaning
no cleaning
lab cleaned
in-situ
liquid acid
cleaned
*
acid gas
^ •—
cleaned
acid gas
cleaned, lab
cleaned
Tank Number
•-• ' -
3
2
i
3
i
2
2
1
i
; l&2
!
2
i 1
i
£
purchased ta""OIigtaal j
40
-------
raw data are shown in Appendix H
3 7i /_i*j» xr\ -r-»MTi **W*AHJW*» * vjur QCDdiQcot V3n3,olcs wcrs ftx9Tnim*H- T^AI/D * i ^*7
m /Jli/ulir yU*/O ox*«JrV^^/fliffuscr^ !BR^^ t'Ti<* i*afn/\ **f T'^YX/'Q i *\** 3M * A»^/
Off-Gas Testing Results
41
-------
Table 16. Results of the Analysis of Variance Difiuser Characteristics
Dependent Variable
BRV
DWP
DWP/BRV
Total Fouling Material
Length of
Service
(months)
+ (4 x 10"4)
(0.0149)
Treatments
Cleaning
Technique
(3xl(r4)
(0.0285)
00-4)
+ (0.005)
•••
nts !
Grid
Number
- (0.47)
-(0.83)
•• ' - .,-...
+ (10-*)
••• . i ...
- (0.40)
Tank
Number
+(1.4 x 10~3)
-(0.32)
+ djr<>
1
- (0^25)
R2
—
0.72
_
0.49
0.98
0.48
42
-------
Table 17. Values of Diffuser Data
Means by Grids (all tanks)
Parameter
— ..
BRV (cm)
DWP (cm at 1.25 m3/hr-diffuser)
BRV/DWP
Total Fouling Material (mg/cm2)
Grid!
• ' .I— i
58.9
27.3
0.57
10.0
—
Grid 2
— __
59.7
26.2
0.59
6.7
— •• -i i..—
—
GridS
•
72.5
24.6
0.59
4.7
I. .,
•• i.
fjfew
-•• ^— — .
12.4
11.8
6.95
0
Means by Cleaning Technique (all grids)
BRV (cm)
DWP (cm at 1.25 m3/hr-diffuser)
BRV/DWP
Total Fouling Material (mg/cm2)
46.3
24.0
0.59
6.6
96.3
30.1
0.44
8.2
43
-------
70
O
^ 60
E
.0,
S 50
3
CO
0)
2 An
Jf" 40 •
Q.
fl)
^ 30 -
O
E
(0
C on
E? *U -
Q :
10 <
(
400 ^
350 -
'E :
-H. 300 .
E ;
§ 250 -
o :
> 200 -
o
(0 i
0 150 -
0
CC
o 100 -
JZ
5 50 -
CO
j*
0™
0
'
• ;
'
•
•
g
B . !
" n 8 A
1 M^
ri ^V
H ° s :•
:
'••••'•••••'''' I ''»' 1 i • i i 1 i i i i 'T
3 5 10 15 20 25 30
i
;
f
O Disks, No Cleaning
H Domes, No Cleaning
A Disks, Gas Cleaning
H D Domes, Gas Cleaning
O
o
. * A i
i B ® s
n B s
o
5 10 15 20 25 30
Months in Service
Figure 11 DWP and BRV versus Months in Service
44
-------
20 -,
E
o
cr 15 -
?
(0
8 10.
a
w
3
W 5-
0
c
"5
o
u_
a
a o
•
11
•
•
•
6
5
d LJ /m
• ^
R w
• I_J
•
11 ® 1 II 1 1 1 1 1 L .........
0 5 10 15
1.1 -,
1.0 •
(
0.9 -
0.8 .
0.7 -
DC 0.6 -
CD
CC 0.5 .
Q 0.4 -
0.3 -
0.2 .
0.1 . J
0.0 .
) ft
a »
a
0 fl
• • Q
g
8
B
"
0 5 10 15
i
1
A
A
^
|
20 25 30
O Disks, No Cleaning
• Domes, No Cleaning
A Disks, Gas Cleaning
D Domes, Gas Cleaning
A
:
A
A
A
;
1 » « « « J i i » i '|
20 25 30
Months in Service
Figure 12 Fouling Substances and BRV/DWP versus Months in Service
45
-------
from 18 to 64 cm, which is uncommonly large, increases total pressure drop through a diffuser
sysiem such as those at Whittier Nanows by approximately 3%, which tnSs to facrcuri
blower energy cost of less than 9%. However, a decrease of 40% in oSOTC due t
o 60*%
over 60%. The most
o 60%
over 60%. The most significant effect of increased DWP is potential overloading of blower
motors, or an increase in total system pressure to beyond a centrifugal blower's surge fpotu!
ta t S8"*? 13"16 S?°W ** °VeraU off'gas efficiency for ctSOTE and a factors for all three
tani^ There is a very large degree of variability in the day-to-day results, and sTveS obvSut
mcreases and decreases due to upset conditions or diffuser modifications. Figure 17 showT Ae
? hl^n ^^diffi.ser versus time for all three tanks, with interpolatiSsmo^S
to better illustrate the data. The interpolations have no statistical significance The^
' was "octocto « fac
tors and oSOTE. Plant load was relatively constant Figure 18 shows the air fluxes as
'
. .. -, . - •• ~—' -*" standard deviations of «« U1& wu.
mat position. ends 1 and 2 were operated at approximately the same gas flow
tion «£5y. ^ Slgnificantly less ^ « grids 1 and 2, and is a result of th(
Figures 19 and 20 show the oSOTE and a factor as a function of tank distance
the error bars represent standard deviations of all data collected. The a factor and
. acor an
lowest in gnd 1 at hood position 1 and increased to a plateau in grid 3 It £ ime
that a and oSOTE increased faster in the disk system t£n in me tw^ dome sysSm
aSOTEi8nth VaklS °f I?gUreS 13'16 represent ^fouled a factors and
OSOTE after 18 months of operation without cleaning which was prior to this study Hie disk
system before cleaning was operating at approximately 8.5 to 9.0% oSOTE while tiifdonS
were operating at 65 to 7.5% oSOTE. The difference was surprising view
<* 8
. . ne was surpsn vew o ir
monZ^fn^ ^^ V**00*:"* ** aS* <* *e diskTystem8 wMc^fiSJSS
monihs before the dome system was installed. An unknown portion of the difference in
efficiency was probably due to gasket leakages at the base of the domes. ^erence in
rCSUltS in much larger bubble ***> which aPPears in the data as reduced
ina "/a?OT ^d °TE at m°nth 2ero resulted b^1156 of Ae liquid acid clean-
-d 3 feu to 9-3
46
-------
C g
§ I
o o
o
0) o
5 Q
i i
T- n
H
b
•n
09
c«->
TJ
H
.s
p
ce
CM
31OS
47
-------
o, o.
c c
o o
« o
I!
c c
H
§
I
(3
CO
•a
I
§
I
8
JOJOBJ X)
48
-------
o
p
V)
§
I
49
-------
o .«
°
o
o
» CO
1 I
a i
CM «
I
cs
en
T3
I
I
I
o
t2
s
§
SB
E
JO^OBJ X)
50
-------
12 -
-•I"10 •:
II
8 H
STl
Tank 1 (Disks,
Gas Cleaned)
12 -1
12 -
??10 ~
p-= 8 -
a Grid 1 (flow per diffuser)
•*• Tank Average (flow per diffuser)
» Grid 1 (flux)
Tank Average (flux)
Tank 2 (Domes,
Gas Cleaned)
Tank 3 (Domes,
not Cleaned)
5 10 IS 20
Months since Liquid Acid Cleaning
Figure 17 Air Flux versus Time at Whittier Narrows
25
51
-------
9-
ft "
IH
0-6-
f s-
< 1-1
0
9 -
? 8 "
E 7-
S" 6-
£ s:
^. 4 -
1-
0
Tank 1 - Disks, Gas
Cleaning
GricM
(792disks)
Grid 2
(774 disks)
Grids
(460 disks) I
Tank 2 - Domes, leas
Cleaning
GrkM
(990 domes)
Grid 2
(968 domes)
Grid3
(574 domes)
0
10
20
30
50
60
70
80
90
E
cr 6-
v>
E
I4-"
§ 3:
U. 2 -
L.
< 1 ~
0
Grid 1
(985 domes)
Tank 3 • Domes, No
Cleaning
Grid 2
(968 domes)
I Grid3
I (574 domes)
0 10 20 30 40 50 60 '~70 *~
Tank Distance (m)
Figure 18 Air Flux versus Distance at Whittier Narrows
80
—i
90
52
-------
14 -
12 -
10 -
lh™ ® ~
mes>
0 10 20 30 40 So' 60 70 80 ! ' 90
14 -,
12 -
•
10 -
HI
CO 6 -
8
4 -
2 -
0 -
Tank 3 - Domes, No
Cleaning
j j
yT~" i
IT i X
I
1
;
.
,, — i-— 4
i i
• •
i
1
Grid1 I Grid2 | Grids
(985 domes) , (968 domes) (574dom«.i
I " I i H — -i -i 1 , 1^ J y
10
20 30
40
50 60
70
80
90
Basin Distance (m)
Figure 19 oSOTE versus Distance at Whittier Narrows
53
-------
0.5 -,
0.4 -
o.3^
0.1 -
0.0
0
0.5 -
0.4 -
0.4 -
|o.3J
.«
0.1 -
o.o
Tank 1 - Disks, Gas
Cleaning
•
r
1
Gridl |
(792 disks)
I ]
1 I
Grid 2
(774 disfc
I Grid3
(460 disks)
Tank 2 - Domes, Gas
Cleaning
90
Tank 3 - Domes, No
Cleaning
Grid!
(985 domes)
Grid 2
(968 domes)
Grid3
(574 domes)
Basin Distance (m)
Figure 20 a Factor versus Distance at Whittier Narrows
54
-------
slucke ££ri£ ri P operation was changed. The mixed liquor solids concentration and
700 ™T A ^ ™ U°™ fr°m ^ range of 82° to 1 16° on *« P^ous test dates to
700 mg/L on August 21. The F/M ratio, based upon primary effluent COD increased from
approximately 1.4 to 2.1 day"1 on August 21. The SRT decreased from slightly SerSan^
days to 17 days. The lowest aSOTE occurred on October 17 1986 when Z MLVSS ! for ,n
COD ™ 2-2 -' -
n t0 843 mg/L' ^ a corresponding COD F/M of 2.1
for tank 1 increased from a low of 6 1 to 8 6% (tank 2
6.7%) from October 17 to October 31. On December i
/M ^ SRT Of L0 y ^d 2-0 ^ys, respe y The
increased to »-««. 'lW«.|5w /e p^t
.ff t !f ^ "nfort;naJP *Jl changes in Plant operation affected the study in this way since the
effects of diffuser fouling for the period of July to December 1986 are masked byTe effects of
changmg plant operation; however, the impact of plant operation, pamSy
associated with high rate operation (e.g. high F/M, low SKT/low MLVSS or M
October 1986' changes ta
Jhe disk tank was essentially undisturbed until December 1987 when the
°PCrati0n- ^ aS01E Md « &Ct 8
Stationary Testing
Imposed on Figure 21 are the primary effluent COD's measured in a previous stody ^ey show
SISrSXSSSSiJJ '° ab°M 2 ^ (^ WWch is Wical of most
waters, l he highest plant loading corresponds with lowest alpha factors.
The experimental design for this study anticipated this chancing plant load and ta i
or .aeration efficiency As indicated previously thestudy goals we^toe^alua^ HC
cla
suy goas wetoealua
cleaning. Testing ; each position in the experimental tanks (1 and 2) within juT
the control tank (3) minimized time of day dependent variability in result Also
^^tS^^S^^^ ^o^e-weekUbility wh^
minutes
55
-------
0.5 -, '
0.4 -
C)
£
0.2 .
0.1 -
0.0
Tank 1 - Grid 1 (near influent)
Tank 2-Grid 2 (middle)
Tank 3 - Grid 3 (near effluent)
COD
600 700 800 900 1000
1100 1200 1300
, — ._,
1400
14 -,
12 -
*•* 10 -
LLI
5
CO 8.
e
6-
600
r500
-400
-300 g
O
-200
T-—« h 100
700 800 900 1000 1100 1200 1300 1400
Time of Day (hours)
Figure 21 a Factor and oSOTE versus Time of Day
56
-------
Off-Gas Testing During HCI Acid Gas Cleaning
There seems to be almost no effect of HCI acid gas cleaning in Figures 13-16
e tecl
teclque is designed to avoid
MM *
^^
n
3
the 0cSOTE in S"01 1 of tanks 1 to 3 on March 26 and 27 The
15 ! "^ 2' at 12'2 and 18-3 ^e^ The
on March 27 irrespective of cleaning. This result most probably o
» day-to-day plant operation were greater than the immediate dfeS
Figure 24 shows the ratios of oSOTE at each station in tank 1 and 2 to eo
%JT' r ^ Sh°WS ^ ^ ratio of ** HC1 cleaned tank (tank 1) to
(tank 3) was shghtly less after cleaning at hood position 1. and much grea er at
57
-------
T- T- T- CM CM CM
III
• if
T- CM «
S 2 "°
O O O
,2,2,2
• i •
r- CM n
wo
x-c t
OOO
00
'£
V
0
c3
O
g
bO
I
•o .
(N
cs
%)31OS»
58
-------
12 -
10 -
I.H
co n
8
6 -
4
LU
o
CO
s
10
12 -
10 -
8 -
6 -
UJ
10
12 -
10 -
8 -
10
Tank 1, Grid 1 (disks)
o— 3/26/87 (before cleaning)
3/27/87 (after cleaning)
12
14
16
18
20
Tank 2, Grid 1 (domes)
3/26/87 (before cleaning)
• 3/27/87 (before cleaning)
12
14
16
18
20
Tank 3, Grid 1 (domes)
3/26/87
3/27/87
12 14 16 18
Tank Distance (m)
20
Figure 23 oSOTE for Grid 1 Before and After Cleaning
59
-------
«M
» ' I ' 1 ' I ' I ' H I ' I ' I ' I ' I ' I
0)
o
I
CO
.s
03
<
•o
I
4>
ffl
I
CO
o
i
I
323^ 553525533
9S/e 01 iz/Z uo S31QS » 10
60
-------
For tank 2 the ratio to the control is almost the same at position 1 and slightly greater at position
I' i n£SCl,US1°? ±at Can * made fmm **» <*** is *at ^re cleaning, tank 1 had23 6%
^"f^ v f C0ntt01 ?"*• WhUe ^ cleaninS il had 30'5% Wsher oSOTE Oan ' Ac
27*i S^h £ K ^ n0t Cleafed Pri°r t0 °ff'gas testinS' but was similarly »***• on March
«QrJ?£ * u Whe? "^P*"*1 to Ae ^trol tank. On March 26 it wi 7.6% lower in
oSOTE than the ^control and on March 27 it was 0.5% higher than the control. oVe^uT<£
March 27 the oSOTE was lower for all three tanks than on M^rch 26.
_ The effects of HC1 acid gas cleaning on DWP have been discussed previously however
"interesting to note the changes in DWP during gas cleaning. The DWP is usuaUy ekvatS
before cleaning and usually decreases very shortly after the application of HC1 gaT The
decrease in DWP causes the air flow rate to increase. S
25 -Sh°WT?™ ,dCCTeaSe fa DWP "** »RPHa«ton of HQ gas during the March
™ r ^g' ^ data TO Shown f^ grids 2 and 3 of tank 1 and grids 1 lid 3 of Snk
2. DWP lines for the other grids were not functioning. Figure 26 shows the air^flow rate to each
gnd dunng this same period. The increase in air flow rate is dramatic For end 2 tank 2 the
flow rate increased from approximately 4,050 m3/hr to almost 4,500 m3/hr, oV 10% There is
some speculation that this increase in flow rate is wholely or partially instrument '
flow measuring devices (venturi flow tubes in the case of Whim'er Narrows) aici
^ir ^combination of air ^d HQ gas; however, this is not true because ite
deViCC'
It is difficult to identify statistically significant conclusions from off-gas analysis durine
or immediately foUowing HC1 acid gas cleanings. This is not surprising in ^ofa clS
philosophy of preventing fouling, as opposed to restoring a fouled tank In a later sectio^mf
foulrng rates for all systems are regressed as a function of time, and the effects of HC1 Ss clean-
ing on maintaining high oSOTE and a factors are discussed. g
Dome Replacement
rant, -> m°nthS ^u th^.initial U(luid ^d cleani*g of all three tanks the performance of
tanks 2 and 3 was so poor that Districts' personnel felt that they had to manually clean the domes
m boA tanks. Dunng September and October 1987 tanks 2 and 3 were dewatered for cleanmg
£e JSS1 P^CCH ^g SU? C CaningS t0 dewater ±Q ^ to Just a few centimeters above
the diff users so that die diffuser's air release pattern can be observed. In this way gasket leaks
and uneven air distnbution can be observed. • y 8
r
When tank 3 was dewatered the domes were observed and the number of malfunctioning
domes were counted. The first half (toward influent side) of each grid were counted Mrtfal
tions were classified into plugged diffusers (no air flow, no gasket leakage), te^arowTte
dome bottom gasket, bolt breakages, and non-uniform air distribution ("hot spot?)
Figure 27 shows the results of the survey. Normally functioning diffusers are indicated
by an open circle; plugged diffusers are denoted by a closed circle. The stars indicated "hot
spots and the crosses indicate gasket leaks. The closed squares denote diffusers with boA
gasket leaks and hot spots. No bolt breakages were observed. "^users wim ootn
61
-------
Tank 1, Grid 2 \ rt. .
Tank 1, Grid 3 / dfsks
Tank 2, Grid 1 \
Tank 2, Grid 3 '
1' ' " i'' ' ' 1' ' ' I i 11 I III I I 11-]
10 15 20 25 30 35
Elapsed Time (min.)
40
Figure 25 Decrease in DWP versus Time During HC1 Acid Gas Cleaning
62
-------
4500 _
V4400 -
3 4300
4000
Tank 1, Grid 1 % ... .
Tankl,Grid2'dlsks
Tank 2, Grid 1 » .
Tank 2, Grid 2 / °°mes
5 10 15 20 25 30
35
40
2500
Tank 1, Grid 3 (disks)
Tank 2, Grid 3 (domes)
10
15 20 25 30
Elapsed Time (min.)
35
Figure 26 Air Flow Rate versus Time During Hd Acid Gas Cleaning
40
63
-------
XBXXX**OOB*
O*X**«*«« «
a*x**x***x*
«OB**B*« *o
XBB**X* *«*
O*xO***x*«*
O*O**x B***
0**BB *X*x*
OO*B*X*XB*O
O*Ox xx*O*O
*** BX**x*«
**OOxx***xO
x* *BOO»*x*
# O*Ox****x
XB*OX*X**x
O*x*OO**x*x
BX**O*XX*XO
**XB*«XX**
O*«BBBXXXXO
##B*OXXXXX*
B*X*O«XXXXO
*OB*O«»X xx*
***O*x xxxO
*»*OO**»Oxx
**BOBOBO«xO
**OX BB«*O*
***OxOOO*»*
**OBB»X»OOO
O***xOB**O*
*OOOBOx«*x*
OOOO**OaxO*
O**BX*OOBOO
**#X*OB*OO
O**O**B*O o
o****o**ooo
O**O*B*O OO
*B*OBOOB**O
***xOxOOxxO
*B*OOx x*x*
OBO*O *BXX*
**«* BBXXXO
***OO*Ox*xO
*** O*Oxx*o
*#*o*ooo»*
»*OO*OOOB
** B o*oao
*OB*X *OBO
*«X**«x*«*
**x**««*« x
****O**» xx
xx«*x«* ««o
O*»* * *x«*
x**xO **BXO
#*#x» *BBXX
X*O# **BXX*
* * B *B**BX«
** »*XX*XB*
# *O**#*xx«
**O#xxxx«*
O*#OO«*xxx
***xx«xxx x
*Oxxx#x xx*
«X**X* XX««
#*O**xxxxxO
**X*B **XXO
x*Ox *xoxxx
K*B O*X*XXX
*« XB*OXX*«
* *OO*xxxOx
***O***xxx
XBO****x XX
*O*OxO*xx x
*xOOxO*x *o
*x**xo* *x
x**x*O xxx*
***x* *xxx«
*X*X****XX*
Ox*x *«*x»«
*x* «**O*x*
XX XX**«XX*
x xxxx*x*x*
xxxxx*xxx*
BXB*X***«x«
XBXXO**** «
XOB*X*X* OX
XXXOX*X X«X
XBX*X* X**X
XXXB* X***X
*XX*XX**X*O
XXXO X«*X»*
xxx x*x*o*O
*X XX***XX*
* XX X*XXO»O
x***«xxx«O
x*x* *QOx
XX x
xx»O* *OO*
x Ox*
xx* * o*»
K * XX *
xxx* * xx
*o**o «
xxx *x*o
O*x OO
XXO XXX
OO*x »o
xxx *xxx
xx XB*
B*X XB*
• x* »o*
x x OXB*
• X *B*O
X O O*B O
xx x *xx
xxx** o
xxx **x*
*xx xO
xx «»x
xO** xO
x x ****
xxOx 0x0
X B*»
. xxxx oxx
X* XBX*
xxO *0xx
* xxx x
Oxx xxx
xxxO x
Oxx XBXX
Ox» xx
XXB «XB
xxxx BX
XX B**X
••X XBX
*X X*B
BBXX XXB
X X*BX
x*x x xx*x
X XXB X
xxa* XXB
*XXB X
XBX BBXX
§
I
« i
I °
S B
a C
S s
u
0 2
x *
To
1
§ &
- sa
O o
M
It
1
55
00
E
64
-------
Table 18. Diffiiser Malfunctions for Tank 3 (Domes, uncleaned)
Grid
—
1
2
3
Total*
— — — — ~_ _
Normal
26.1
9.2
12.8
16.6
-•
Clogged
— ^— — — — -
3.3
4.8
0.7
3.3
— •
Gasket
Leaks
— — i. . ..—
41.0
42.9
22.6
37.5
Non-Uniform
Air Distribution
19.2
39.4
53.5
34.7
Leaks &
Non-Uniform Air
Distribution
10.4
3.8
10.4
i
7.9
* Columns must be weighted by the number of difFusers per grid to obtain the
total
65
-------
Table 18 summarizes the failure statistics. For grid 1 only 26% of the diffusers were oer
fomung properly. For grids 2 and 3 the number of propYrly functioning diffi^HSToS^S
13%, respectively Gnd 3 had the fewest clogged diffusefs while having the mo^on unL™
air distributions. There appears to be few trends in the data shown in Table 18; however the foU
owing speculation is offered, based upon the premise that the fouling rate of gnTdotesfto Ae
£551* ***%?• ?C StauS?a? ^y™ Shown Prcviously Bested t£ the e^y^n*
fouled more rapidly only on the basis of ratio of BRV to DWP.
As the dome ages gas flow becomes uneven due to clogging at the dome surface
As a greater .area of the dome surface is clogged the DWP increases. At some
point during this period of increasing DWP, the gasket begins to leak, because of
elevated pressure. The gasket leakage further reduces air flow rate through the
dome causing even more non-uniform air distribution. Eventually no igas flow
occurs through the dome and only gasket leakage occurs.
Si
ihe PVC dome holders were warped and lha, this connTu^io
problem. The air flow rate lo the tank was also increased and decreased while
WheNw w 'I9*'78? ?d ^ fa St°rage » *«« f°?the San Jose Oeek and
Whimer Narrows WRP. Therefore, the domes tested and cleaned after October 1987 were new
?™l™J? ^^^ ai!?Proxima'ely ^e same time as the original domes butere
is no way of knowing if they were from the same batch as the original domes. ;
^askets and domes removed from tanks 2 and 3 were analyzed at this time. The under-
of do ' n " outwar °^ the m
of the dome. This stain was caused by the air striking the dome undersurface as it flowed in a
narrow stream from the onfice hole in the dome mounting bolt. Almost all gaskets showed £i
nla i° n* which probabiy ^ *
under ^ * pressure and were no
fir^m ,h "^^ previously the gaskets and bolts used at Whittier Narrows were different
from Ae current Nonon dome installation. The bolts were fiber-reinforced ABS and were pur-
chased for future compatibility with the HC1 gas cleaning process. The gaskets;were a spongy
material, as opposed to hard rubber and were standard issue at the time of purchase. When tS
domes were rep aced in tank 2 several were replaced using hard rubber gaskets, fa May
^ AU ** fibCr ^^^ ABS ^ used wi* *e har
66
-------
kaldne^riL1-9!? '.If* l- ^ d,fwTatered for "»»"» leaning on inspection, there were five
eaking o-nngs in the entire tank. In some cases there was non-uniform air distribution^*
86 * * *** ***"* Mwver' *** *Sappeared when Ae * *^ ~
Ratios of Transfer Rates
A
H,«. m 0A-J "^ P?*50*"* ^ used to evaluate the improved transfer efficiencies that might be
due to acid gas cleaning. The ratio of transfer efficiency just after cleaning to just before 2L?
ing was calculated for each tank. Next, the ratio for cadi f gas cleaned tank, (ffi f2
drndcd by the same ratio for the uncleaned, control tank (tank 3). Equation, 4 shows A
aSOTE3o-/aSOTE3J_1 (4)
when?
" i
i = tank number (1 or 2)
j = date of off-gas testing immediately following gas cleaning
J-l - date of off-gas testing immediately before gas cleaning
testing S3S£y ^ daPSed time betWCen °ff"gaS teSting WaS 2 Weeks' Table 12 shows the
^
r'
four
In order to estimate a factors for Valencia, it was necessary to use the hood gas flow rate
to caunatc the air flow rate per diffuser. At some plants this caribe quite pi5SS£to££k
wAfficuU to obtain a close balance between measured air flow rate and hoodffl™ *T At
Whitner Narrows the air flow measurements were quite reliable and were used to caTcSate the
air flow rate per diffuser in order to estimate SOTE and a factors ' calculate the
67
-------
Numbers above bars indicate grids gas
cleaned. DR indicates dome replacement.
Tankl to Tank 3
(average = 1.00)
Tank 2 to Tank 3
(average =1.04)
1,2,3
" « 0.90 J
u, o
2.5 6 9.4 12 15.6 19.3
Elapsed Time since Liquid Acid Cieanirig
Figure 28 Normalized Ratio of ccSOTEs Before and After Cleaning
68
-------
o
_o
I?
m c
« «=
if
22 _.
20 :
is :
16 J
14 J
12 -
10 J
8 :
6:
4 J
2 J
0 J
Whittier Narrows
Slope « 0.99
8 10 12 14 16
—i—•—r
18 20
22
22
^ 20 :
I is :
Q? 16 -
g E 14 :
|g- 12 :
2.1 10 :
s :
e :
4 :
2 :
o :
X
OZ
Valencia
Slope = 1.04
6 8 10 12 14 16 18 20 22
Air Flux (Plant Instrumentation,
cu. rn/sq. m-hr)
Figure 29 Hood Flux Versus Process Air Flux at Whittier Narrows and Valencia
69
-------
endogenous activated sludge (Stenstrom and Gilbert, 1981). ' °r n°n"
TERMINAL ISLAND - PARKSON-WYSS \
70
-------
10
8 -I
LU
&
CO
8
2 -j
0
• aSOTE
• a Factor
;0.45
;0.35
^0.30 v.
-0.25 §
hO.20 «£
0.10
0.05
0.00
12.0
4 6 8 10 12
Months since Initial Testing
14
Figure 30 oSOTE, Air Flux and a Factor at Valencia
71
-------
.g 0.30 -
£ 0.25 -
14
12
3*10-1
«^
LU 8 -
CO 6-
4-
2-
0
GridIA
Stabilization
Zone I
Grid 28
Contact
Zone
Effluent
| Zone
10
15 20 25 30
Tank Distance (m)
35
40
Figure 31 exSOTE and a Factor versus Distance at Valencia
72
-------
12 _
JEio .
E 9:
d- 8 J
w H
E 7 -
3 6 J
£• 5 -J
X
^3 4 _|
u. 3
< 2:
1 j
0 -
0
Air Flux (cu. m/sq. m.-hr)
Afr Flow/diff (cu. m/diff-hr)
10 20 30
Tank Distance (m)
-4.0
-3.5
*C"
-,o|
•
-2.0 £
- 0.5
0.0
40
Figure 32 Ak Flux versus Distance at Valencia
73
-------
12
10 -
8 .
LU
6
4 .
2 -
0
46 8 10
Months in Service
rso
ctSOTE
Air Flux (cu. m/sq. m-hr)
0 10 20 30 40 50 60 70 80 ! 90
Tank Distance (m)
Figure 33 oSOTE, Air Flux and DO for Parkson-Wyss at Terminal Islahd
74
-------
failed, allowing the manifold £ri^S35y faS^.-^T P°mt °T? ** dghth SwinS
were far away from off-gas hoodtaffi^'^SX!? T ™? Fortunately bo* failures
These two malfunctions were^S f ^ °SO1;E
m the tank top. The X was
longer * ^ <^ser ^M^ were no
Six diffusers showed excessive air flow wWch waT?^^?^ Shnapk ^ were tout-
Sevend diffusers were sampled and «^li3Ste^d^±,to ^^^ ™ptaKS-
Ae -*• had — ^KS^^
manufacturer's guidelines
eea
increased. m other tanks' whch allowed the air pressure to be
mW-te ov , oT ™g a MUne *» 16; m-hr u> 10
bumble to fte decrease in aSow raed^ 8 ^ 'ength' which' is mostl>'
ao *"
TERMINAL ISLAND - AERMAX
The S^^^^^ Jjf ew*S JMAX W° 3t Teminal Island-
anywhere in this study. The oSoS^Kd fa ?^J chtwasthe highest oSOTE measured
months of operation. CTOW1JS declined in a nearly linear fashion to 8,5% after four
75
-------
25
'£20 :
Air Flux (cu. m/sq. m-hr)
Air Ftow /Diffuser (cu. m/hr)
10 20
30 40 50 60
Tank Distance (m)
Figure 34 exSOTE and Air Flux versus Distance for Parkson-Wyss at Terminal Island
76
-------
0
20
15 -
LU
O
CO
5
Manual Cleaning
(liquid HCI and Hosing)
4 6 8 10
Months in Operation
-O-
Zone 1
(60 tubes per
swing,0.15m
spacing)
K
tubes per
swing,0.30m
spacing)
rO.eo
L0.55
:0.50
-0.45
:0.40
- 0.35
0.30
0.25
T r-
£
0.20
12
|Zone 3
. (20 tubes per
1 swirig.0.46 m
J spacing)
10
20 30 40 50 60
Tank Distance (m)
Figure 35 ctSOTE, Air Flux and DO for AERMAX at Terminal Island
77
-------
8 -,
~ •»- - Air Flow/diff. (cu. m/diff-hr)
10 20 30 40 50 60 70 80
90
1.6 .
1.4 _
1.2 .
? 1.0 -
c*
E:
*' 0.8 .
O'
Qi
0.6 -
0.4 .
0.2 .
0.0 -
ZOHG 1 1 -« '
1 7onP P 7rtno *5
y/jrt 4 i(-vf*t *«wi iw fc ^>W1 1" O
swinn 01^ I ^^ tubes per (20 tubps
. ' » swinQjO.30 m swinQt0.4
* spscing)
spacing)
_. ',
t
&
^
I
*
^A
r^^
i
I
i
i
\
>
* i
^~-~^
i
•
.-,-,. i . , , , , , ,*_ , , ,
0 10 20 30 40 50 60 70 80 90
Tank Distance (m)
Figure 36 oSOTE and Air Flux versus Distance for AERMAX at Terminal Island
78
-------
• *? i^nd Swing ann was ro^1 for inspection. When it was lifted
i ^^^ 3 hM m°uVed and Werc overlapping thVdiffusers on swing am?
h- • *ffam WCre bent ^ onc of Ae b0^ on the swing arm failed To
dewater
The
*
25
WSS
this period.
anempts
was
^^
reasons
removed from
the Parkson-Wyss system
the conclusion of
79
testing for the
-------
Period 1 (months 0 to 4)
Slopes -0.036
R*« 0.92
Period 2 (months 7 to 11)
Slope= -0.02
R2- 0.97
Period 1 (months 0 to 4)
Slope=-1.93
Ri 0.99
Period 2 (months 7 to 11)
Slope=-1.02
F&0.91
0.0 0.5
1.0 1.5 2.0 2.5 3.0 3.5 !.• 4.0
Elapsed Time in Months since Cleaning
Figure 37 oSOTE and a Factor versus Months in Service for AERMAX - Terminal Island
80
-------
TERMINAL ISLAND . SPIRAL ROLL
.
ing was performed twice, but wiA ^ Ae Study' ^'^ test'
81
-------
EFFECT OF PROCESS OPERATION ON AERATION EFFICIENCY
operating variables drama^ St * actuated sludge process
EFFECT OF SRT, F/M,MLVSS AND AIR FLUX
age a factor obtained anywhere of 0 1 7 ««, ATzL t? r*11655?01*15 to *e lowest tank aver-
for SR7, MCR, and f^TA^^T^
te a fonction of SRT- Current mathematical
strates are partialh 'comprised ofs^c^ , ^^ ES a fimctio11 of SRT' Since sub-
implies; to^^iS^^^d^S^ «»S««»ti°n. or higher SRT,
oSOTE and a factors have beS ? dkfnSrin tt fa^f- . Neverthelef, regressions of SRT,
significance. Upon «S^. to ^"SS?£. SS±?JSJ ^ ^e, ^^
steady-state nature of SRT calculation BySSt^ite SRTn ^ ^° °. ? relate tO
ism growth rate, as follows (Lawrence andMc^Wo t
°c : (5)
where !
0C = SRT ;
H = organism growth rate ,.
KD = decay coefficient (T"1)
exist the
82
-------
where
X = MLVSS concentration (mg/L)
V = aeration tank volume (/)
Xw = waste volatile solids concentration (mg/L)
Qw = waste solids flow rate (/3/T)
Equation 6 provides a "working definition" for SRT which is the foundation of its use
Jroughout activated sludge plants in the United States; however, the success of SRT as a opera
fconal strategy exists because of its relationship to microbial growth rate, as shown in F~<^~-
imons do not exist both Eauations 5 an* f. 3«» ««* ,,oi.-,i —j r
* ——- — gy* ** »» W4. AtALW) UO OiiVvV
do not exist both Equations 5 and 6 are not valid,
1JV '
xr
e7~^~ D~xdT (7)
wher<5
dx . J .
— = time derivatives of X (mg/L-T) , ;
AWiough satisfactory effluent was produced throughout the study period, the SRT at
ch »l STZTE?"1 ^ l'} -I0 °Ver 4 ^ durinS ^ study ^ ^metimes Singed as
K w 2 ^.k*™*11 ^ ^y observations. Therefore, the SRT calculated by Equation
"
C°mpiirati02.in succesluUy determining a relationship between SRT and a or
P ! freS iess - 2 ^ a d^ --^
late it AT£m TPhiCati°n " mT Urfng S-RT " Ae aCCUracy of Ae Parameters used to calcu-
ISSf r^68 f°r/xP/nmental erron MLVSS measurement, waste sludge
measurement, and waste sludge flow rate. It is extremely difficult to accurately and pre-
easure slud w-M,unueiyanapre
.
cisely measure sludge flow rates and concentrations.
~
s s? ?~-zz
the SRT equation. Equation 8 shows the same model arranged to calculate F/M.
83
-------
Q(S0-S) _ ^
XV ~ Y (8)
where
S0,S = influent and effluent substrate concentration (mg/L)
i = biological yield (mass cells/mass substrate)
rewritten for the nonsteady-state case, as follows:
^ __
XV Y Xdt (9)
The ^gnitude of the tenn jjL „ much smaller relative ^ ^ p/M ^ ^ ^ ^^
^rj-^"^r*"'b~™-' •
84
-------
0.40
0.35
O
t> 0.30
£
S 0.25 J
O
O)
n 0.20 -
< 0.15 -
0.40
o °-35 -3
13
m 0.30 -
iS 0.25 -
-------
? V n V1* &V*?g* a ™d aSOTE as a function of MLVSS concentration at
f H^ ^ **?* at ^^ Nam)WS- *"» "'relation (R2) is approxirn^ely
o« f0000? * C0rrdate much •*""• *« Ae «"* average ^P0551016 explanation for this phenomena is biibble coUisioT
ble^ co 1 ^sioSa fiS11^ S ^ mbCed UqUOr; " ^^^ ^ flux WU1 result in ««« bS
lation ^ t0 mcreasmS surface a** or particle concentration for floccu-
C°Iumn results' ^hich exhibit ** s^6 ^"d butwiih greater a
Cater be?USB ^ «***»««» vvere conducted usinf a new
H- grcattr becauae ** column was on]y °-5 m in^diamlter. The
rruch eater ' $P ""^ ^'^ during AiS Study' but ^ ^^r density was
i
It has been suggested that this relation between a and air flux is a function of plant load
smce increased plant load usually requires increased air flux. There is eSnce °o srTw Sfat
SSm ?±f J^f T?UCe, tt i3^- ""^ TO ^ reas°ns W^ ^ ^lationship between a and
Sed bv F^f /mn^ ^^ Imea5 regTs!OIlof a fact°r with both air flux Ld load, as indi-
cated by F/M (COD basis), was made and air flux was more significant than F/M ratio The
at consiam load
TIME SERIES REGRESSIONS
°f ^ ^haptCT lfiscuMed *e eff£cts of process variables on a and
f , mformanon 1S interesting and potentially more important than diffuser foul-
/ i^ re 1S t£> aSCCrtain f°Uling rates Over time in «*** The lonly previous
1 f , -
S£,S? g f / i^ re 1S t£> aSCCrtain f°Uling rates Over time in «*** The lonly previous
discussion of fouling over time was the result for the an AERMAX system at Terminal Island
This section describes fouling over time. This discussion primarily relates to Whittier Narrow^
«nv~H T° dete5mine (°.ul,inf. over ^e the effects of F/M, air flux and time in service were
were S US1°g m P Cession with SAS (1982). Models of the following form
where
F/M = food-to-mass ratio, COD basis (days'1)
AF = air flux (m3/m2-min)
86
-------
0.25 _
•T-
o •£ 0.20
8 9>
£
o =
3- (0
~ ^
k. 0>
•S- ra3
«! o
015 J
0.15 J
0.10
0.05 :
o.oo :
400
800
1000
1200
Slope = 0.000142
B
m
R = 0.509
600 800 1000
MLVSS (mg/L)
1200
Figure 39 cxSOTE a^d a Factor versus MLVSS Concentration for Hood Position 1
Tank 1 at Whittier Narrows
87
-------
f
o
u
3.
8
0.40 -
0.35 -
0.30 -
0.25 -
,
0.20 -
.
0.15 -
0.10 -
0.05 -
0.00 4
Slope = 0.000045 Q ° _^----Q~ '
^ ;
a ^--^— *""""*^"""^ !
. ^*~*" — P""'°
•***~^
2
n R = 0.45 ;
1000 Z000 3000 4000 5000
MLVSS (mg/L)
Figure 40 a Factor versus MLVSS Concentration at Valencia
-------
u.
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
Slopes-1.42
Slope=-0.66
* Twt Column (Hwang & Stenstrom, 1985)
R »0.887
a Hood Position 1, Tank 1
R2= 0.249
10 15
Air Flux (cu. m/sq. m-hr)
20
ex
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
Test Column (Hwang & Stelnstrom, 1985)
R2= 0.887 !
Hood PosHionl, Tank 1 ;
1-5 2.0 2.5 3.0
Air Flow (cu. m/diff-hr)
3.5
4.0
Figure 41 a Factor versus Air Flux at Whittier Narrows for Hood Position' 1
Tank 1, and a Test Column
89
-------
T? j = rime in servicc or since cleaning (months)
a,b,c,d = regression parameters
of step feed operation mbSmta 1987 ^ ™ ^ "**"*** Until Ae °nset
oSOTE= 15.37 -2.0375 F/M -38.977 AF (11)
F/M and AF flux are significant at 2.7% and 5 7% resnecriwiv T?m- • • •
, indicating cha, changes in process ,,Jta iSSSSi " 5 "*
ctSOTE= 16.5- 0.218 TS -58.4 AF i
(12)
43 are WS " ^"^ fOT ^ ^ re^°ns ** the top and bottom of Figure
a = 0.477 -0.0673 F/M -0.8 14 AF
90
-------
14
12 j
8J
6:
4 1
2 1
co
14 .
12 _
10 .
6.
4 -
2 1
Time series regression for all data up to
step feed operation
Measured
-• Predicted
r—>—i
-2 0 2 .4 6 8 10. 12 14 16 18 20
Time series regression for the stable
period of operation between months 5 and 16
Measured
-• Predicted
"2 0 2 4 6 8 10 12 14 16 18| 20
Months since Initial Liquid Acid Cleaning
Figure 42 oSOTE versus Time for Tank 1 at Whittier Narrows
91
-------
0.50 _
0.45 J
0.40 J
0.35 J
fc 0.30 J
o 0.25 J
co ;
•J; 0.20 2
0.15 J
0.10 J
0.05 J
0.00 J
Time series regression for all data up to
step feed operation
246
8 10 12 14 16 18 20
0.50 1
0.45 J
0.40 j
0.35 J
| 0.30 1
£ 0.25 J
8 0.20 J
0.15 J
0.10 J
0.05 j
0.00 J
-2
Time series regression for the stable
period of operation between months 5 and 16
0 2 4 6 8 10 12 14 16 18
Months since Initial Liquid Acid Cleaning
Figure 43 a Factor versus Time for Tank 1 at Whittier Narrows
92
-------
a = 0.520 -0.00726 TS -0.524 AF ;
': . (14)
Th^gnificance levels and correlation coefficients are nearly idennca. «, the regression for
F/M ^ ™,
-------
CONCLUSIONS
reduced level r»f pffnrt \v*ra ^^~j,,~+~j _^. ^i_- ir_, . . •"""*«*•. **«w*j»t aiucuci wiui
HT
by
noaf^^^
t • !!?• y ^f1"011 ^ circumstances, with the one exception of one test COT-
ducted immediately after dome replacement IT* magnitude of the difference in SoTC
was 2 percentage points <- 9% aSOTE for disks versus 7% for domes) For Ae period of
stable operation where nearly identical side-by-side test results were oSed the
difference was 2.8 percentage points (9.8 versus 7.0). ODtained, the
The difference in performance of the two systems is probably not attributable to HC1 acid
° Et "
SLriorTfh °H Et ^ ^ entirely attributable to cleaning' since ** d s m wa
ISTSrlL ^T, 'I' tCm Pn°r l° "" CleankS ^ shortly after ^me 'iqdiwS
well Dome gasket leakage was a major factor in the performance of the domHystem
and its overall impact on the conclusions of this study arVunknown. ' *
:and
esat
contributed to
_._ r „„,. x^vw wuui *
-------
significant findings with respect to fouling. The dome systems at Whittier
folTwi^" °f OTl °f ™ '°,12% When nCW'OT jUSt ^ U^uid acid Seano 7
to 8% within several weeks. The decline was too rapid to correlate to process operation
or time in service, and may have been partially due to gasket leakagVproblern7 The
8. It seems reasonable to use a tank average a factor of 0.25 for plarits designed and
Plant with similar aeration systems.
9. The effects of process operation, F/M, MLVSS and air flux, have a much
decrease with increasing F/M and air flux.
more
10. 1IUS cvamanon or HI :, *»* ,.„_-„„ ^—. pn)bably ^ ^ ^ demonstrate ±&
result* P.mh^rm^ ' A. ,' g.asket leakage Problem may have obscured
results. Furthermore, a more frequent cleaning frequency may be beneficial.
95
-------
9.
IL
REFERENCES
F
Communication' Gerlick-MitcheU Co., El Segundo, CA, July 30,
11; ?T" "Biol°g;c3I FoulinS of Fine Bubble Diffusers: State-of-
of Environmental Engineering Division, 109, 991, 1983.
4. Brenner R.C and Boule, W.C., "Status of Fine Pore Aeration in the United States - A
'™e Perf™ of
6. Doyle M.L. and Boyle, W.C., "Translation of Clean to Dirty Water Oxygen Transfer
Rates, in Aeration Systems: Design, Testing, Operation and Control, W C BovS ed
Noes P y ' '
,
Noyes Publications, Park Ridge, NJ, 1986.
?'
?",??' iHi ^d Stenstrom' M-K- "Evaluation of Fine-Bubble Alpha Factors in Near
Full-Scale Equipment," JWPCF, 57, pp. 1 142-1 151, 1985.
SJ; ''C°mPrehf "sive Studies ^ Oxygen Transfer under Nonideal Conditions,"
n nea onons,
D. Dissertadon, Cml Engineenng Dept., University of California, Los Angeles, CA,
is^cir^
10. Mueller. J A "Cornganson of Dual: Nonsteady Sta,= and Steady State testing of Fine
12. Rieth, M.G et al., "EflFects of Selected Design Parameters on the Fouling of Ceramic
SoT^SSK -0--— «*»vl*3K
13. SA5 Oyer'j Guide, SAS Institute, Inc., Gary, NC, 1982. |
i
14. Standard Methods for the Examination of Water and Wastewater, 15th Edition Ameri-
can Public Health Association, Washington, DC, 1980. «i"ion, Amen
96
-------
15.
16.
°f
18.
Yum, F. Personal Communication, November 8 1982
20.
97
-------
APPENDIX I SAMPLE DATA SHEET
98
-------
<*
3
.£
:£
c
o
99
-------
APPENDIX n WHITTIER NARROWS DIFFUSER DATA
KEY:
MO
DAY
YR
SERVICE
CLEAN
COND
TANK:
GRID
NO
DWP5, DWP75
DWP10.DWP20
DWPAVG
BRVAVG
VFOUL
NVFOUL
ACENTER, AMIDDLE
AOUTER
TFOUL
PVOLAT
BRVDWP
DATE
month of year
day of month |
year (e.g. 86 = 1986) ;
months in service
N means no HC1 gas cleaning, G means HC1 gas cleaning
condinon of the diffuser during testing; dirty = as is, from tank-
hose = after hosing in the laboratory; MM = liquid acid in the
laboratory; in-situ = cleaned in tank
N3 means Norton domes, tank 3; N2 means Norton domes, tank 2-
S means Sanitaire disks, tank 1
grid number
sample number, 1 or 2 i
DWP in cm w.c. at 0.5,0.75,1.0, and 2.0 SCFM, respectively
average of above .
BRV in cm w.c.
mg/crn^ of volatile fouling material i
mg/cm of nonvolatile fouling material ;
air flux (SCFM/ft2) in the center midway and louter pans of the
diffuser, respectively
total fouling substances (mg/cm2)
fouling substance percent volatile I
ratio of BRV to DWP at 0.75 SCFM \
date, years, months, days !
missing data point (no data collected) i
100
-------
•f (vi ^y o o o ^ o^o ftj co ^f co (M >o
.
a- o% vo a- a- a- .3- « «v <;«^*oc9»-'ioirt«n«o ' '-'
o
o
ui
O
00
ir\vo
8 ~
(O
tt
O
(MCMCJ(MCM(VI(M
101
-------
*
§ S«S3S8K5S8883SaScSggsfft«s
O •3-eJ<\JCVJ«-'oo*C>«-;oJ.»
-------
o
<*
Ov
*~ ooooooooo
> C3ce eo eo eo eo eo eo eo eo eo
<*>.»in>oi--eoo»o«-
OcO(/) m m in in in m in
-------
APPENDIX HI PLANT PROCESS DATA
This appendix contains a summary of the process data for Terminal Island, Valencia and
Whittier Narrows for the period of testing and some period, up to one year, prior to testing. The
average of all process data are presented, followed by monthly averages. !
r
KEY: •
QAVG
QRAVG
QWAVG
QAIR
PEFFSS
SEFFSS
PECOD
SECOD
PEBOD
FEBO]D
DO
DOIMIN, DOIMAX
MCRT1
MCRT'A
SRT
MLSS
MLVSS
XRAVG
FM
SVIorSVIl
TEMP
average influent flow rate (MGD)
average recycle flow rate (MGD)
average waste sludge flow rate (MGD) l
air flow rate (1000 sft /day)
primary effluent TSS (mg/L) ;
secondary efiHuent TSS (mg/L) i
primary effluent COD (mg/L) !
secondary effluent COD (mg/L) !
primary effluent BOD5 (mg/L) ;
secondary effluent BOD5 (mg/L) ;
aeration tank DO (mg/L) (Terminal Island only) i
aeration tank maximum and minimum DO's (mg/L). Valencia and
Whittier Narrows only ;
mean cell retention time (days) ,
average mean cell retention time (days) (Valencia and Whittier
Narrows only) i
solids retention time (days) neglects secondary! clarifier solids
(Valencia and Whittier Narrows only)
mixed liquor suspended solids (mg/L)
mixed liquor volatile suspended solids (mg/L) :
recycle suspended solids (mg/L) ' -
food-to-mass ratio (days'1) (COD and MLVSS tanks)
sludge volume index (ml/G)
mixed liquor temperature (°F)
104
-------
Terminal Island
105
-------
>
o
OZ CMvoeoeovovoiA j-CKr~r-cj
" Is »•> <3 co o \o j o « r- «-• in r- a- cvj In « 5
«ir» lAin \o eo ^t^3'fOr5prr^*^»--a--=r_rfj^
<
on
COM
cocooooo
106
-------
CM
0
> Ul
ac o
< z
3 <
o
«•» 3
CO
•-
OOOOOOOCOOO
ooooooomoo
oooooooooo
ooooo>ooor-oo
>-eoo9
COOJ
OOOOOOOCJOO
OOOOOOONOO
M O f- O >* O ftj d- O\ \O
CWeor--
h-t\jm
(VJOt
OOOOOOOtriOO
OOOOOOOlfVOO
OOOOOOO«OO
OOOOCMcoCDtOOO
oo
CC —
— \OrOOlAC\JC\J in
ojor— •— »-r— o*-v
•— o»-r— c\)f-ooeooj
ODlAO r-
O CO O
occooo coi- o a.
> —oco>a: o —
OOOOOOOOJOO
OOOOOOOCJOO
OOOOOOOCMOO
lf>
II OOOOOOONOOO
2: SSSSPeiT^OPp
CD
II
a:
<
r- o o OIA\o
O'O'-
«•> O W O «0 OS O O f 00
-
O\f-
OOOOOOOONOO
OOOOOOO--OO
oooooooooo
oooooooa-oo
OOOOOOOOONOO
"
lAin (D \OCVvO mm
"
oooooooooo
oooooooooo
O OOOOOOOtfNOO
" OOOOOOOCJOO
oooooooooo
oooooooooo
'-if\eoc\i •-
0000"-
CJPJ
oooooooooo
O CO O
oorococot- o Q.
> —OCO>O£ O —
oz ooooooovooo
< OOOOOOOCJOO
l|J OOOOOOOO\OO
> ooooooomoo
OOOOOOOCJOO
ooooooomoo
t>OOOOo\
•
toeoa-
PJCvJ
comrotnrocvjcomrom
Q CO
OKOCOCOH-
ocjoor-o
*~ O CMlfv CO Ift O O NO »-
«oor-'»- i-
'OOOO'OeOfOtOO'O
«•» O O O NO ,CVI m r^ O ro
O>- «o ^ o «
«0 O O O NO CJ O\NO O CO
oooot-cor^cooco
COONOOlA'-'-coCJPJ
CMW;
ooooosooooo
CO.CO cOcocoCNJrOfOroco
O CO i Q
OKOCOCOt- O Q-
> —OCO>£C O —
107
-------
>
a
CO
Ox
K.
Z
I
O
(M
o
I
o
CM
r-
a-
CM
in
a
o
CO
o
CM
CM
in
CM
CO
a
VO
CM
CM
x
z t-
o
o
o
o
0
o
f-
m
o
Ok
CO
3
in
0
o
o
0
o
o
0
o
in
o
»~
o
0
o
o
0
o
CM
a-
CM
r-
00
Ok
o
Ov
m
co
0
o
o
0
o
o
o
o
o
o
o
o
o
o
00
in
CM
m
CO
Ov
in
CO
0
o
o
o
o
o
o
o
0
CM
CO
II
CC O
< O
UJ O
— _! > O
O
O
=> UJ
oo
CO
o m
I— CM
CO CM
eo *o
in o
CM r-•-CVI CM CM CM
«-eo*-oacoa
monooOkCOcor-CMvo
r-m*-oeoi-ooooin
mvoocM
cooo
m
a-
CM 00
OOOOOOOCMOO
oooooooinoo
oooooooeooo
OCMOOOOO«-OO
ocooomo»-OkOO
a«oomcocMooo
cMcovooa-avocooo>o
voa«-ma-in «-
«-«-inCM COCM
r-cor-
vo in a co o co a o CM CM
i~-acom»-Okr~ino'-
CMOcocONOkVOin«—CM
coacocO'-inoineoOk
inoovoooeO'-'-co'-
CMaa-NCMcoooooco
oomcocoooocoo
eo
CO
O
O
O
O
O
o
o
o
CO
II
I
t-
o
f-
03
II
CH
U
OOOOOOOCMOO
OOOOOOOVOOO
ooooooocooo
OOOOOOOOOOO
OJ-OOOOrocoOO
CMCOOOOO>Oro\OOO
IANNOO9NvOtfOv
«•" r* v- ^- fy *- T-
ot-coavoooaa-os
aO3-CM*-CMcoN-oo
OOOOOOCMVOOO
COrOOOCOOJvOvOOO
OOCMOiTvOOOCMO
-
CM
CM
CM
O
a
c-
co
r-
CM
CO
O
CM
CM
CO
O
0
CM
CO
in
CM
CM
CM
'-O'-OOOOOO«-
PO CO co
OOOOOOOCMOO
ooooooo^ooo
oooooooeooo
OCMOOOOOvOOO
oooooo«-eooo
Ok
II
f-
oo
II
5
OOOOOOOlTlOO
OOOOOOOOXOO
ooooooo>-oo
OOOOOOOOVOO
OOOOOOvOcoOO
"
«- CM r-\r- CM r- CVI f-
ift OO
CMOt-
CM«-
incMvococojro'-inoo
--
ooinot
CO CM
CM
O. f--CO O CM CM CM it CO O
CM CM
corococococoeococoio
O C/5
OKOCOCOI-
> — ow>c
_ _
crcro.zz
r r > uj
L.u-wi-
in CM CO
COCM
oooooooinoo
oooooooeooo
OOOOOOOfOOO
oooooooinoo
ooooooo*-oo
oooooo'oaoo
CM--
'- o o CM a- in co
voj-a-mvocy-
vcycocoincor*^
3-CMOOOCM»-OOOin
CO CO
eococoococooincof^
rorocoOco«oO'-co\o
COCOCOOCOCOJfCOfOXO
f>JjTOOO\h-mo3«o-ow>cr O-
oooooooinoo
OOOOOOcOOOO
COOOOJ-'-'-cooO
CM a* T
CM CVI
f«- eo
CM.VO OOOVOOCO>-OOt-
-
omeor-CMOO»-oo
OC
CM
«oeOco^-OcoCMeocoo\
- - ^- co eo f-
*- in a- r- a; r- CM a- m r~
CM o o\\o osmo o oo CM
CMincMa-eor- ooo
a-«-\o •-
co CM
cococorococococococo
Q W Q
OcfOcOCOf- O Q-
>-ow>a: o —
108
-------
00
Ov
1
CM
UJ
u
5
z
CO
flC
oz
eoov<—
m
*-»-»- CM »~ «- 01
ooc-oo«-ooo*-eo
ocom
03
cw
OOOOOOOOHOO
ooooooor-oo
OOOOOOONOO
oooooooeooo
ooooooovooo
OU.
h-O
to
f-O«-
Oa-
CMCvl
osovovcocMvomeovoi-
>o in •— in ^ in 3- m m o
ITl o ooo
OOOOOOOO«-OO
XXMOOOOOOOi-OO
OvfOOf-.3-.3-COPJ.3-t-
CMCOr-ovrorOf-CM'-flO
OO'-COOOOOWO
CO
CO
O mvouMflt-fOOOifMO O
z: CMincpcpOvm oco z
00
II
a:
CNJ a J- »- JJ- CM (MOO
cvi
CVI CVI
is I 1
OOOOOOcomOO
II
)-
o
00
CO
II
cc.
UJ
oooooooooo
oooooooooo
oooooooooo
0000000.3-00
OOOOOOOCVIOO
OOOOOOVOVOOO
--
orso
•Oh-OO
CM
ooooooo«—oo
OOOOOOOCMOO
OOOOOOOOvOO
OOOOOOOVOOO
ooooif\oo\r~oo
OCMOQ»-CMOva-OO
CM«-
-•->6
•-CMOvvoa-vOCOeororo
s
tf\OvvOCM,CMr--'-eO'— CM
^-cof^voi-O'-«-OMri
w a- vo o >Ti« o o o m
CMlfimCMVOCM
§2
1-UI
too
UJ
I
^J 00 it r- r-
rjo\o
cvi»-
»- o a- w
.
3- a- wurs j- ir\ o o as o\
\or^i
- — uco>a: o —
__
craa.EEZu.ii.OTH-
CJONVO
VO lf\ O\ CM I*) to OO lfl.3- CM
o>r-cvicoovineor-\oov
o> ir» en «o ir> CM cvi UM~- h-
«-VOi-OvCM«OCM«Ovff»
OvflOt7vOf-fO.3-eOCM»-
CVI CM
o »- eo ov a- \o o> to a- a-
r~- ir» JT o ^ ov CM ift r^ r-
COCOOv
ftl'-
o w
00:0 toco i-
>-oco>o:
O
o a.
ooooooo«-oo
ooooooo<-oo
OOOOOOOCMOO
oooooor~ir\oo
OvOOOOco»-pooo
OOOOpOlAlfvOO
CMCOOO*-
CM
II
CO
00
II
DC
OOOOpOOCMOO
OOOOOOCOOvOO
CMOV3
CVI»-
ocooiria-03-ooa-CM
--
T-CMVOVOOCMOOOCM
>OCMCO CM
ina- o ro eo a- o vo «o o
to if» o eo n»vo Ov » eo ov
ovrooa-coocMvsa-CM
--
fOVOCM
CMCM
O CO Q
Oarococot- o a.
> —OW>OS O —Z
«U_J_IOZZ>U
or or Q. z z Z u. u. in H-
OCOflOlTlO\O\OOCM'-
CM toa-vrvpo r-r-
CMCMOv t-
OeOCOOOvCM'- rococo
f— *-O'-««'ojor-«— N.
CMCMf—«-CM»-OOV3'-
lAtOO •-
CM CM
COOVCMCMVOa-'-VOOlA
•3-eOr-f-OCMlTM-«-lT»
a-vo«— »-CMr-ineowvo
fOOUMf\r-r-r-VOOvO\
OOlAlTlCMfOCMinr-CO
MVOCM
CMCM
OvOvOvOvOvCTvOvOvOvOV
CMCvlCMCMCMCMfVICMCMCVI
O CO
Ocrococoi- o o.
> —oco>a: o —z
«uj.-
Of Or a.:
109
-------
lf\
o
\o
> LJ
ce u
< z
3 <
Oil.
>-0
CO
t-«-t- cy CM •-«-
*-CM«-
(M
ooooooor^oo
oooooooooo
ooooooo«-oo
OOOOOOOONOO
oooomootooo
r-o-ioo^voof-oo
r->ocMinn 10 CM
mmovo«-CMC7>r\jtoin
\OlA
Z oooooooooo
3LJ OOOOOOOOOO
Z3 OOOOOOOOOO
— _i to ooooooomoo
X< II OOOOOOOCMOO
<> a: oooooo»->-oo
t> ON « in co fo ff> o r-
vor~- o
c\j to o\ o * r~->o o o w
'
.
o»-«oo\ovor-o»«oo
.
CVJ a- «Tl O< O r- r-t
to o o
O (A O
ocrocotoi- o o.
> —ow>oe o —
oooooooooo
oooooooooo
oooooooooo
oooooooooo
oooooor-
"— OOOrtO
«-<\JCM
ooooooo<-oo
oooooooinoo
oooooooinoo
OOOOOOOOOOO \C
00000003^00 it
OOOOOOTOOO X
*-incoor->ooo<\«-
ooooooomoo
ooooooo>ooo
OtOOOOOOONOO
»-\om
toci
o«-meo'cooooa-o
a- \o, m
o to ^ >o in \o ov N o to
a-invovovows-r-tooto
m«-ep»-inevicvnn'— r»
'
M a- co oo eo »- *-r«-
«o«-eo •-
cg«-
oooooooooo
rococotorotocototoro
o co o
CKEO05WX- O
> — O«O>
OOOOOOOCMOO
OOOOOOlTiO\OO
-
«~ to o\ eg m«-
OO<—
•-a-'-
COtOCVI
^- to & i—
^•T- CO
tOfOtOtOtOfOfOfOfOeO
Q CO O
OKOMCOK- O O.
> — ow>o: o —
_
CTC70. Z
u. u. W I-
»-cy CM CM
>
oooooooooo
O O O O'O O O O O O
o o o o.o o o o o o
o o o o'o o o m o o
o o o o;o o mvo o o oe
-
f~ «o \o m:o <*> o o vo vo
"-tor^o'eo
CMVO.tO
ovoma-lcviopjintor-
f-- cj \o •- ;
OONOC CO'—OCNJCM'—CJ
»- o o •- «- r~ CM \o r~ «o
CMr-
«-oooooooo»-
totototototo«oto«to
a co a
o ceo to MI- o o.
> —owxr o —z
<UJ
OrarcLZZZu.u.cOt-
110
-------
Valencia
111
-------
*- IA
ll
g"
O O O O i- O r- O ST O O O O O r- »- ^. {vj d CJ « d
en
2SSSgS5SSSSSi§iS§§SSSS
oo
112
-------
>
u
to
0\
> Ul
OC O
< z
=3 <
-
n-o«?, ^ o\ o a-eft «o
****••••••••'
vo vo ov c^'^o~
*~ *~ O JT t— «- i— r-
OSJAJA
^ON*-evio*oinr-egj>-oco
cp co«- CM a- zt r-. r- eo vo vo S
f*.ror-eOa-vOroO\»-?-roS-
S'i!S!r!^£fr~oofv'0®°
OOlf»CO
00
CC —
coo
o\i-co
«
eg
\f\
OOOiJ'COfOPJOOOtOCJ
«trvi
1ACJ «n
OOOOOCOVOCOCOVOOO
CMinoor-t—o\o\eoo\oo
<*> •» eo *• in « T- o o «- if* «
ift co CO«--r-:
J3-VOVO«-
cor-
co «o cvi co co cvj ro CM egcoro
> —
8
OOOOOO O OOt-\OOO
">oooojeoeoeovovooo
CO-CO OO^~
«O«-VOCM m
CM CO \0 O CO CM ^ X r? CVJ ? CO
---
^- vor> O ^ CO C\l CO
••••
eg eg CM CM CM CM eg CM CMCMCM
o co < Q
oteowwKi- o o.
> —ow>a:cei- o —
1^1 0 O O O ro f. i- o\ JJ- O O
- - £ 5 o o
NCON
(VI(M
k <- oo CM m m irt m r- eo o
in NO irx eg \o \o IA o.
>f\ tf) «o o to a- OMO in o\ eu o
v ~ -
moo
eoi>»
co to to to fO er> to in tororo
113
-------
03
VO
r"
t s
1 I
< <
"* >
CM
CM
co
CM
V)
ce
oz
ce<
ceui
UIS
Oli-
i-o
CO
m.* co »o»- r- •=*• IA ov eo .^ o
r- to o O\ vo CM o r- f- vo
CM (^ CM CO CM O <- O CO CM in «~
«— i- CM CM CM «- CO CM CO t—
.tf.a-1—.d-VOtOVOOCO'— VOCM
f—r-cocoo\»-voirir~-cooo
OOOvvOCOCVIOcoOOOv*-
ovcoco co
VO COVO *""
0\O
ovo
oooooood-coi^oo
OOOOOVOCMVOOXVOOO
OOOOOlf>CMVO.*'-OO
c»)\OOOCMC»>OOCMO\'-OO
O\ CM VO *O O 0 1AVO »
lT\COCMOs>OCO»— CO
»- 1- CO »- to T- CM «~
O r~ O
roi-COCMCMCMVO'-«-.3''-CO
a'roirio«-m
woo\ocMvo
ir\\ocoj-vocM
»— COOO*—CM
ooooooor^^-moo
OOOOOOOIACOCOOO
'-CMCMr^CMVOlTvCMCM
i— CO CM O\ CO co ift O fO ON *~ O\
O<— O^tlfNCMOmOMAlf\CM
CMcoifNcor-ovor~voeo^l-'-
CMcoi— <— COCOIT»\OCMOCMCM
OOlAOcOVO"
COVOCO»-
IfMTxcO
CMlAcO
COOOco»-
com
OOOOOOOON>— »-oo
OOOOOOO^fOOOO
OOOOOOcOVOr-^OO
COOOOVOlACMOJ-OvOO
OcoOOCVJCOiA'-d'OOO
OM--CO
'- cocoo\
r- COCO
VOCM
m i- a- ov o in t- CM o «- 1~ r~
000"— lAVO'— ^•CM'-rflTlCM
r- -d-OvOVOcOCOCMVOO
'
x<
0
ooooo«-to-*cvivooo
OOOOOCOO"— VOCMOO
V)
<
CO
OOONONCMOOOOOOO
VOCO r~
OOOOOOOVO'-^-OO
OOOOOOOCMtfMAOO
OOOOOVOCOOCOVOOO
OOOOOOv—CMlACOOO
CJ»OOOCOC\IOvOvOO\OO
r-coooocMO«-eovooo
VOCOONCOCMCOCOI^-'"'— OvO
OVOCOCM r- d-CO
\f\r-i- CO
coOCMCMrovOOf--Oir*covO
OOOOVOOO'-OOOOO
r-
«o i
«-\Of~
lf\CM
Of-
OOOOOOOCOCOCMOO
OOOOO>-OOVOCMOO
OOOOOONfOt— iTMTlOO
ooooeococor—tr\r- OQ
mcooovocoooiAvooooo
CO CO CO O t- IT\ CO .4" CM CM VO Jt
o «•> oo «o CM *- d~ o\ cojfr-
CMCMC3\t~-lTl»- r- CM CO
ONCM CO VOCM
OCO !
CMCMOS'— «-coOOOt--r~-COco
O\\OCOOVOt— O\cocOlTiO\.=l'
JS'OCMVOOMfVOCMONOsCO'-
-
'^O\\O'— CM
oooooood-oooo
oooooooirxcoooo
ooooovomcomooo
OOOOOcO\Of-O\OOO
00
ce —
-o\cooo
OOOOOOO>~t~-«OOO
OOOOOOOOCMVOOO
ooooo'-oor^ocooo
~
OOOOCOVOCOVOI--OOO
r- CM ITvO\
COOvif
CMCO«-
CM'-lflOvvOCM'—r—Of*-cocO
CO IA ITl CO f- CO O VO 0\ CM CO CO
J-^fh-F—•3''— »— ^'d'COJ'—
CvlOCMOCOVOCMcOO\Of~co
CvvOOCM«— r*-O\lACOcOd"'—
''— OvCMO
O\COCOVOCMOIT>CO'—
CMt-
CM
co»-irv
COCM
t— r- ON*— »—CO
CO CO CM co co CVI CO CM CMCOCO
SCO < O
COCOI— r- O <
-'- — O CO > K £C r- _ O — I
orcra. z s 2: Z co u-u. to I-
114
O\CO
CM I
OOOOOOOf— «-ITlOO
ooooooococomoo
OOOOOOOCMcocOOO
ooooo>— t^cor—r— oo
OOOOOOMrtOlf\CMOO
'-fOOOOOlfl'-r-CMlAOO
•ooooo
VOTT
eooo
CMlTlCVI
OOOOCOCMOO»-OOO\O
-------
o\
to
>
ce
UJ
o
3 5
..<•<£
"> §
Q
2
O
CO
CM
to
CM
cc
oz
CCUJ
UJS
QU.
r-O
W
3LJ
OfOCMVOC-'-vOr'-CMf-OV-*
CMH Ov o m in t-
jft-r.-ojT-OOCO.3-.S-.3-O
r-ir\.Ovco.=»-c\i.3-covoc\icoeo
voco.*o.=r«-— o\ to inin co
voeOJ'eoco>O^o\codT--iri
r-osovorTocMcocoirvj-co
O O tovO O\CO CM CO «- O 1AO
«-CO
V3CM
OOOOOOOCOCMCOOO
OOOOOOOOVOIAOO
ooooooo\ooo\oo
T- CM CM VO <-VO CO d-CM
"— tO(3\O\OO
<-cocMinvo;
o\f-vo
CO
r-
OOOOOOOCOCMCMOOj
OOOOOcoCMlT\«-r-oO
OOOOOIT\O\OVOOOOO
tOOOOtOOCOOO^-COOO;
\o\ovojriACMvococor-mvo
o UMT> to co o r- ir\ COCMO\
CMCMVOCO*— CM>— •— CM CO,
O\r-lT> VOCM
000
COOOOVOC3\JJ-CM«-OOOO
co OMft r~ 03 co co co o •- .* *-
tOlTkOOCVJ CM ITtCO
-3-aovo CM
ooooooo»-iritooo
OOOOOOO\OCM
\ •- r- 00 t~ CM
'-'OOiOVO
-«-coeoo\co
ITV to V3 CM ITVV5 CO O\ CVI CM CO CM
oooi— tnw-cvjooeo*-
coir»«o CM
CMcO(O\OO«O«OOCMOO\CM
•-o»-<-r-ooc>j'-CMt-o'-
r~ eo r- « o \o ir> m o o CM a.
evicno oof~
CO ro CM CO CO CM « CM CM CO to
Q W < Q
Oceowwi-l- o a.
> — ow>eeo:i- o —
OOOOO4VOCMOJ-CMOO
oooooooovd-ooo:
oooooovcotnvovooo,
ooooocor-r-mvooo,
vOr-ONCOt-CMcoCMOOOO
COVOVO VOCO
CV1COOV •-
i— CMVOVO
v- IfMAtOVOCM'-CVlOr-'-ON
»— o\o\cocop\o
CM in o co CM oo to r- vo o »- r-
\r-«— f-inCMVOCMcoco.3-
COOT-
i— r— cocoifttof— P-<— itOCM
r-COCMCOOlTitfld-O'-vOO
lA*~ (*- OvCO
CO O\ r- - r-
co to
CO CO CO CO CO CO CO CO CO CO CO
Q V) < O
oo:oto<»h-l- o a.
> —OWXTCCr- O —
cye3ra.SZSSWU-u.Wr-
vOVOCMOVOcOiTCMOOCMCO;
coif\cOoOOvOr~Ovovo—OW>0£OCr- O — S
«uj_i_iuua:ss>uj
crcra. s s S S w u. u. w r-
115
-------
>
o
1
1
o
CM
CM
eo
CM
cc
o
OL UJ
UIZ
ou-
l-O
w
ZJ LJ
z=>
x<
<>
tPicor-eoeocMa-a-incoa-CM
- eo r- eo eo eo f—
CMvooco«-cocMOcoeocMO
lTvvOa'
COVO*-
ineor—
\OOVO
CMcoeo
fOCM
CO CM
OOOOOOOOCMOOO
o o o o o eo co o\ r— in o o
OOOOOCMeoini-OXOO
CMr-oooiAoocM-oo
CM I-- «— O\r— O r- eO
CM CM I— JT O i- «-
•-OCO
iTlCM
^ CM voo\o
O O 0\ Sf Sf O O O O C5 \0 O
OCO
OOOOOOOVOOONOO
ooooooor~cMt«-oo
OOOOOOOlAOOCOOO
eor>-eocoir\\of>eoo\r— irico
r-CMCMCMOja-CMCMCM
a-\or-coovotrivo«-eoir\vo
oo»-o\r~oooooeocM
»-o\m CM
CO 1— CO O
CMeor- *-
eoo
CMCM
oooooooa'CMinoo
ooooooo»-r>-a-oo
oooooeor~coeoooo
ooooo'-a-ooooo
CMa-ooc-mcocMr-eooo
eoooor-'-in'-a-inoo
CMCMincOVO
o\ooo
vom
ITlCM
co co. r-- T- co co iri a- o eo irv eo
t/J
<
w
O
a:
<
OOOOOCO\Of-U-vO\OO
\oeoooocMi-vo!— aoo
CMjrooajr-ajvoeovooo
O\OOOOCOVOVOOCMCO«-
iTlCO
CM
QO
a: —
I-UJ
coo
<
LU
ooooooocMr>.=roo
OOOOOOOCMOOOOO
OOOOOOO>-COf-OO
oooooineoeocjNOOo
O\coooPjeoeoeoir»o\oo
f-f-ooco»-ir»ocoinoo
x
t~
O
r-
co
II
UJ
OCMlTiVOr-OOOOeOcoOCM
meor--
ma-
\OcOCOOOvCOeoeoco*OCM
eOir\CMOOOCMCMC?\CMf--irir--
COCM'-f»-cocovO'— OeOCVUO
a-CMvocoeor-a-ocMcoc\jo\
t— o»— eoa'vomor-CM to o
>— coirieovoir\eor— major—
eo eo eo co CO CM co co eo eo eo
OOeoeocoOOOOOiftO
o\eo
OOOOOOOCTv-O\OO
OOOOOOOI>-t>-VOOO
ooooooocoa-ooo
ooooovoi-a-eoa-oo
eoi^oococovocrioooo
r-o\Dr-oif\aro«— COCOON
r- COCO Of—
a-a-vo CM
COCM
OOOOOOOVOeO»-OO
OOOOOOOeoa-lftOO
ooooooocoa'cooo
oooooeoa-ooeooo
OOOOO'-lACMeoeOOO
T- f*. VO fO CO
oooooooeoeoi^oo
OOOOOI~a-«-e03-OO
ooooom»-«- ma- o o
OinoOlfta-AOeoeoroOO
COr-OOlfveoc-CVif-eoOO
»- t^ «- ITv eo CM CM O
CM CM «— CO eo t- r- T-
«lf»O
OCM
eoeowr-r— o>
««-
CM
^»
II
f-
eo
II
o:
OOOOOOOVOO\PJOO
OOOOOOO\OlTvO\OC>
OOOOOOOf>or--eo»-.ocDr--co
a'f— ocoeooeoeocMa'Oin
OOCOVOUSOOOOOCM'-
a'com eo
ma-
ocoocoocoeoa-a-'— or-
OeOOeoOa-CMCM'-OOVO
ocooeooineoor— eoovo
vOf— ONCOCTvCOCOCMO'— t-
•— ON CO
COCMVO
CM>-
ooooocoooaooo
CO rO CO CO f5 ^U PO f) fO CO PO
Q
O Q-
> —owxroii- o — 2:
CM O O O lft.3- eo t>- ro\O O O
toar-CMeo'-ooovo
CM eo m i- \o
CMOCMf-eoO*-V>.3-VOCMeol
CMeoooOeoeoeooeocviiTi
*- co oo f- CM to m a- r- a- «- a- 1
CvieocM
eo eo\O
eocvl
,
ro eo ro eo eo CM eo eo eo eo co
116
-------
vo
ov
oo
o\
> UJ
o
z
3 <
< CC
ce.
<
OJ
CM
CO
OJ
2:
=>
CO
ce
if
OU.
HO
CO
inina-or-ineooacoocvj
coocMor-r-voincMincoco
vor-a-cocvjvocvjr— >— •- o»-
«— CMCVICVJ^-cOf-coco
co •-r-CM vo in co co a-ova-in
r-ova-in'— CM cvi m CM o\ CM CM
CM'-cvia-cMr-'-'-CMinvoov
cooxowococor-vooova-co
•-a-cooovococooo'-ox
oocvjoxr—*-o«-oor—o
OXOXCM CM
OXVOCO VO
t-Oa- O
ma- «-
ooooooocor-o\oo
OOOOOCMOvincMcoOO
ooooovovoovor-oo
CM \OOOCO cot— a-vocoo O
CMcocOincOCMOX*-»-Oa-co
•- oxvocor— aa-»- cocMin
CM CM eo f— in r- »- <— vo*-
Oxa->- OCM
1-ox I-
OVOcoa-in»-O'— i
eo'-cooxr-a-inin'-toino
o .»- o \o f- w- w o o in t-
oooooootor-a-oo
ooooooocoomoo
ooooooocvcvitooo
t~- VO O 00 »-
r- »— cocococvjincoa-in
ocvir-coeor-covococoinvo
<— COOMTltOJS'VOCVOCVJCOin
CAVOOJ
co
in
OOOOOOOTOCOOO
OOOOOCOCOCOCOVOOO
o o o o o in in in cv a- o o
mo\inof— oinovcvicocor—
o\in ^* c\j co .a- co o co co in
*~ w c\j t- r— i- •- «— \oo
OOO\>OO»O«-C5NCO'-VOC\J
o \oina-inc\j omcyc- co'—
'~ C\JCOVOCO<— "-
o o o o o o o 3- eo n o o
CO
<
(O
O
CO
CO
II
EC
OOOCJVOVOCOVOVOO'— «— '-
<— MOOVO t— r~
in
«— «— coincoeocoo\c\ico
o«-a-ineococ\jcoooo\»-
OOVOVOOOOOOOVOO
CO
OOOOOOOr—CMCVIOO
OOOOOOOCMXOVOOO
CM O OOOOOXvo«-vOr—OO
r—c\i oo«
r~ocoincvjor~coocM»-c\i
—- d-r
r-
coa-inr—r—»-3-c\i»-»-coco
a-a->o w w w in 3-vo r-a-1»-
'-cvicvi'-'-co
w co
r- r- r- a- o\ vo ovin co a- m ON
a- vo »- «- ov eo o\ o a- a- c\j vo
>— co»-incor— coo»-ino\
o o vo o owo o r- o o •- o
r-cocor— sf a-
co O »" CO Cvl vo !
coavo •- co
r-vo
com
ooooooocvimcooo
ooooooinr-<-cvioa
ooooo^-incoa-vooo
incooomeoovvococvjoo
CMcooocoincja-coinoo
coeocor-tNcoa-vor-r-cvjin
oovamovwr-o cvjoco
c\j cvi a-a-o CM »-co r—w
or—ov r—cj
t-t\JOv
in o\ co o\ o\ o «- r— «- ina f—
r— a-inif\cor— T-coa-pjcvico
CM vo co co «- a- cw a- vo »- r- o
coocoa-coa-cor— coocoo
cM\ocooo\oinvocoincvir>
cvjr— a-r-cooino\inincoin
in r— T- t- r— co in in'o vo co r?-
co
It
ooor— r-coovooooo
t-voco i- ,
oooooooa-o\o\oo
oooooooeomr-oo
OOOOOOOVOCV-OO
ooooooa-cvjvovooo
OOOOOOcOCMOvWOO
i-vooocoeoo\r-voc\joo
cor-ooo'-O'-r-cooo
s
ao
ec —
r-UI
COO
Z
LU
2:
Ld
_l
m
OOOOOOOVO ifvOO O
OOOOOOONOlAOOO
oooo oo oo\<— cooo
OOOO O OCOVOCMVOOO
oooo ocovomi— coo o
oooo-socor-totnoo
i— oomr-
in vo
cO(oeoinincoco—
>— OlA
r~o>
co CM
CO CO CO CO CO C\J CO CO CO CO CO
Q CO < O
CJOJOCOCOr-r- O Q.
> —OCOXED:)- o —s:
aero. 2:2: s r co u. u. w H
ooooo\o»— c-
OOOOOco\OO\OJCT>OO
c\io\ooina-»-voc\nnoo
VOcOT-CMcot— OOOO\
in.s-.3-
C\JCO»-
cocoincooa-r— j-o\'-'— in
cor— inininvoo\coo\.3-»-co
\o\of-eoa-cor-r-CMcor-vo
-
or-oincoij-coincor-cocM
CM Ocoeoo\>or-vor— eocvin
cocMncMococMO'-a-cor-
OOa-CO\O'-'-CMOOCOO
coin\o o~»
oco r-
coo\\or— cot—r— ir>r— coma-
invoocMi— r-coinocoin^r
r— oc\jcoj-O'-vo'-c\jvoco
CMOj\oj-c\jr— "-T- tviooNO
co\oeoj-r— r— cooicovoco"-
--
\ocor— r- \oma-cooT-ii-o
i— T- *f cor—
COC\J\O CO
COCVJ
CM CM CM CM Cg CM CM CM CM C\J CJ
a w < Q
OCCOC/>C/>r-»- O 0.
> —oco>rro;i- 0 — 2:
o\
ma o «— <™
vom
OOOOOOOOVCVJCOOO
OOOOOOOcoOv«-OO
ooooooocvir—ONOO
ooooomcjina-vooo
ooooo<-»-voinooo
ooooa-vooxcvjocooo
coovoocviocococoaoo
voeocvjvor-coa-t-oom'—
co in co
CMr-co
cor—cvar—eo»-r-»-a-VDr-
ovo'-ooa-'-mco o^a- CMI
coa-inovcocovor—cjinovco
ovov-irvr-cvjvocvjr-cocMin
OO<— lAvOCVJOvOM— r— O(M
>-cvjcvj(vjinoina-*-cvjinco
cjvcoo\cviinovocj'-ina-r—
cvja-inovaacococvjcocoov
a-ovococoocoo\coa-oov
r— «-o>-c
r— inovocococ\ir-coo\>-vo
-
r— vo«- m o"- vp m a- ox a- p
vooxcot-cooxinooococvi
a-»- o T- a-i
co »— co CVJ
aco
CO CO CO CO CO CM CO CVJ CJCOCO'
a to < o
OKOCOWt-r- O O.
> —OWXECr- O —
117
-------
ov
00
o\
VO
> UJ
cc o
< z
.
<.
Q
i
CM
CM
eft
CM
CO
o:
o
UJZ
QU.
H-O
CO
cocMr-CM.mw'-co'-voeoco •
j-in co in Is-co co o oo ov m vo
m vo oo r- •- ov o\ ON CM to j- vo
r- c\l J1 CMcocOOCOO\
VO«-OMftrOvOOMACMrOO\CVI
O'-'-iJ-OOmOcOOOOOCM
0<3lftrOCMOOOOOlftO
m o w r- vo w- c- wv to m i-j
r-CMCMCM'-CVI'-COr-
mrOCMVOONCVJ'— O>— •d'COOv
vo «- in o vo vo ON ON a- f- r~ ON
f-VOd-OOCOCMCMVOVOr-^-VO
O'-CMOCMVOCOcoOO'-to
iftt-ON
•-com
cvi<-
Ovvo
vo
OV
OOOOOOOVOVOCOOO
oooood-a-cvjcovooo
d'OOOOOOh-'-COOOO
CMa-OO«-CMONr-vOVOOO
ONONCO
.3-cocococooocooinvor1-'-
omvoocMinvovoeocovovo
j-voovomvotncovoincO'-
t—oovoovocotovocoj-r— T-
>— a- co t— ON ov ON o o r— it co
co r— vo r— <— ovocoovoiftt"-
CO
<
CO
II
n:
i—
o
co
co
ce
<
— _i >-
OOOOOOOVOd-CMOO
o o o o o o o o r- mo o
o o o o o o o r- tr\ & o o
oooooo\r~o\t-(fiOO
OOOOOCO'-'-vOCOOO II
OOCOOCOCM'-CMOOinr-
oovocooooooomo
r- JT
ooooooovom^j-oo
ooooooomr-CMOo
CMOO^-CMONOVOVOvOCMinCM
OinincMCD'-.d-'-to.st-r-co
vocvjmr-oovinocMvooco
CMCMt--«-ONooocof-cocMco
coi—cotnr-ovvooooinvoco
0.4-ininO.a-OOOOVOin
oo.a-oovcM'-.a-oovocM
OVO.* .*
cvir->o CM :
in
t— co
OOOOOOOCVIVOCMOO
ooooof-voroovcvioo,
oooood-incvir-ovoo
mOVOO.d-OCMO.a-.3-OO
OVOVOOtOCOCOOVOOVOO
i-coc\ior-«-ONincMcocMa-
o to ovoiftCM.il-CM cMa-co
CM CM \f\r- CM t-t-t- OCM
f~«VO VOCM
C\1001T\O\OOI>-VOO\OrOO\VO
O\ O O CM CM «- h- O ro
ift-3-cMT- t- \or-
cvr
rsuj
Q<
I— UJ
coo
<
UJ
oooooooa-vovooo
OOOOOOOOXOvOOO
ooooooomcotrtoo
OOOOOCMCOVOO'-OO
ooooooomincTvvooo
i-03OOOCMJtCOOO\OO
i-
o
s.
co
co
II
a:
<
ooooomcocof-inoo
ooooo^-comcoooo
OOOOOCMOOVOOVOVOO
cooooooomvo* m,o o
«— co co f- r— o »- co m
o«-vo
d-CMOv CM
CMOJl-
COCM
«-m
oo j* co co vo o co in cjv o i— .=»•
f~ JT T- co't- Ov if JT O in O» CM
r— VOcoOVCOCOOvOOVOitvO
r— cocoeocooooinvoom
CMVOO\
co vo o o vo t- vo j-r- r«- o vo
tovOOO\OVOVOOh-CT>OvO
COVOOOVO.3-VOVOCMCOOVO
ON\OOO"-COW\O'-COOVO
r-cooot- —otoxKcei- o — z:
cy or Q. z s s: z: co u. u. w i-
OOOOOOOVOVOI«-00
OOOOOOO'-OOOO
ooooooor-cvicooo
ooooocviovvomooo
ooooor>-ocoovovoo
VOOOOOOr-cOtOOOvOO
— covocMCvjcor~-toa-CMOM
0 1- O\CM O\CO r- « O O CM CM
\ — oco>cecei- o —
crcro.
: s: co u. u. w H-
CM CM CM r-
-ON«O
IftJt
ooooooo»-r~vooo
OOOOOOOOv^J-COOO.
ooooooo^t-cM'-oo;
OOOOOOXlftOv-a-OO1
OOOOOVOtOVOOOOOO;
jj-oooooovoooinoo;
CMOXCM
CM CM
OCM<
oo a- o \o m co CM CM eo to «•> ov
OOr~O\00'-«-CMOOCM'-'
jj-tom i»-
com
VOtOVOOVOf— VOJ-'-
OvOVOOCMCMOvcoifNOJt'-!
or-1
CM
co CO CM <*>*OCM *O CM CM CO CO.
O CO < O '
OQ£OWMr-r- O O.
^-P»>>KgH_Orr
118
-------
Whittier Narrows
119
-------
>
o
I— CM «O I— T- CO
f N « 4f «J «J «> VO <0 C\ <0 0\ 31 r- ooM— cocviocooxf— .a-'— o\co— O<-VOCMCOOOP>«O
CM cor-
vo«-o
COOJO
oo
CM
s:
CO
.*OOfOOOOOOOOOOOOOVOIAO«— OOO
CO(J\C7»C\OOOOOOOV<— [-"— CO O O\ CO CO VO •—
ov o cvi ir\ o .* in o\ a- o\ t- o cvi eo r- o\ f- >o t- cvi o vo T- in \o eo
JJ'O'-O\VOO\ COt-co ro cOroeor-»-««» «-CMC\J
r-t-t-r-itT- tOOO OO\
i— CM C\1O\O CVI
. .
oz eo o *- o if\ir\ a- irv co fo o vo »— f- « ir\ r- r- 1~- o o\ o o\cot--r»-ir».d-vocj coos.;!'.* ir»eoOcoeOeOVOf~O\OOO'- OMT\ CO 0\.cOCM«-OOOOOOOOOOOOCMCOCvcoOvOCO*-OO
S 'tOCOOpOOOOOOil''— CM«— COr-Ot^O\COOO'— VOOO
•-OOOOOO'-'-
CM
QO ocomd-coo\tr>vo>— vo vo co co o co ^- j-ova-o\voir««oovo»o
:— iff«ii-r-j-vo'-'-a-iP>vor-o\iJ-o\co'-ov'-iriir\ovovoi>'-'-
HUJ
coo
co t~- a- ON eo r- CM iri ir\ « in «— «—
i— O\ CM >- O ONC- •* IT\ CO O VO CO VO CM »— vo C\ CO *- O CMTS f^ •* O
-
CM VOVO CO CM O O\f*-*O rovo O f^- co CO rO fO OAO VO CM O ro CO^T Ov
\OOcor~r-CM OMMVOI~-t~-lTlcovOlAr~rOr- C
-
r- »-O\ torOO
CM r- •
Of-CO
T- Ift
eOCOCOCOVOiJ-OrOOOil'fOtOCOOOr~-CO CO CJv VO ONVO «^ «
r- i— «-»- o T- t— t- o\ ON to to J- JS- CM CM O «— vo I— vo O CO vo eo •-
CMCMCMCMCMCMCMCM'-t-r-r-T-r-i-i-CMCVJ'-'-'-CM'-'-'-CM
LJ
_J
CO
COOT XZXZXZ
OO «OOTQQQQ< —< — <— •<
crcrcrcro. co o. eo a. u. Q o Q a Q Q z
120
-------
CO
o\
> UJ
(£. O
< -z
= <
< o;
O
(A
CM
CM
cc
o
QU.
I— O
(O
O bJ
i \oa»CMrtoCMOOOOOr~O
ONCMCM •-
j-cooo o
to h- to
OOOOJ-OOvotMd-OO
OOOOJ-tOr-T-cotoOO
cviooeOiteocoovd-oo
tOCMVOCJvO
r~voo\
CMr-
tooto
OvCM
to CM d- ON vo i- CM CM f- r- in to
-
II
CJCMOVOO'-O'-OOO'-
OOJTCMf^OOOOOOO
ooototoooinco'-oo
OOOtotoOOvOOVOOO
ooocotoooor-moo
ooototoooinooovoo
OOOtOtor-vO^fvovOOO
CM'-CMCM'-'-
OMftvOOVOlftlftCMCMOXCMCM
J-.OO vflCMtO'-lftCMCMVO'-tO
OOVOCOCMOOOOOVO'-
\O vo CO •-'
tototo vo
co to
O O O VO CM O O O\r- CM O O
OOOVOCMlfteO»-CMlftOO
vOCMOvOCMCOtOd-COt^OO
ootoiftvoo«-r-cocMeoiftoo
tOtoCMt^to
r-t-CM
to CM
r-lftr-OCOlftflOOtOOvvOO
CMifvoinr-ocovoeovocooo
vot^w-coifcoovcocoeof^-
CMlfttoO"—OlTlOSIACMlftOv
r~VOOtOO\O\OvCMVOe>OO
1ft
eo
II
t-r-r-voeo
toCMOO
ift h-
to
OOOVO"— OOVOtof-OO
O O O VO i- O O O\ Jf VO O O
OOOVO'-TOOeOVOOO
1ft
II
X
t-
o
1ft
CO
II
•5
LJ
OOOtOt^OOO\COCMOO
OOOtOT-OOlftlACMOO
OOOtOi— OO^tCOt— OO
O r- tftlft 00 ^f^O T- t- O> d- to
4- tMO'ooi o\* o\vo o\«o co
<\JPOOOOOlAO(AJ .*«><«>
»-eo.*«-coov.3-coo\iftiftp
eo .* ift «- o w> oiftoo
OPOtocoOP>O*-COPO
O O O ro to t- CO OMTvcr O O
ooototoco.a-'— »-vooo
ift o o to r- ov j- ov «— ift o o
ift CMP -C\J'-O«\JCMCOOVOO
OOtOtOOOOOOOt^-O
NCM
OP
H-UI
coo
<
UJ
CD
<
a:
Ovf— OVOil'CMiJ'OCMtOOO
lAVOVOOiJ-COCMeMOONCvU-
CM>-eo
r— topr— ifttor~o\voo\toto
votoovootovomcoiritoto
VOtOOVOOvtovOtoCMf-tOtO
VOtoOVOOiftOf-toCMtOfO
OOMftOOl— CMCMCMPi-O.*
r- IftOvO f»t~
CMOvf- CM
co to CO CVI CM to to CM CMtotO
o —OWXCCCH 0 — 2:
«LLJ_J_IOOQ:S:S>LU
OOOcot-lftCM«-O\COOO
T-OOeOlfteOi-i-VOa-OO
«— OOtotOlfttoCMVOlftOO
COCMOCM'— totocOO'—
r-r-OJ-VO
CMCJCO CM
OOOcocoOOOvCOOOO
OOOCOCOOOOOVOOO
OOOtOCOOOOtoOOO
OOOtOcoOOVOtOtOOO
OOOtotO-S-lftOOi-COOO
VO
II
Ift
00
II
ce
bJ
ooovowooocvimoo
OOOVOCMOO'-'-eOOO
o o o f> eg \o in a- in it 0.0
V3CVIO>OCMO«0«-CSJtOOO
r- «o OMA to JT o t- d- o
-^-«-t<> r-CO
CJ
OOvOtOCOOOvCM'-CMOO
CMVOCMlftW-CMCOOvl^cOCO
coa-r-coor-ovovoiftcoeo
OVOCOCOlfttOCOlftVOf-COCO
to ^o ift co T- ox r- ift r«- o\ ift «—
r— CO'— d-'-ifttoift'-«— eo^—
p p o\ >- eo p o o o p .a- «-
i-OMft CM
COlftCMCM'-lftCMPtOOt^Cvl
vo j» a CM j* d- * r~ \o «- ov .3-
o\ vo r*- CM r- vo r- o o\ n- o r~
oor-cvjoor-r-'-or— r-
CO 1ft OV CM r- 1ft .* t- O CM CO Ov
CMOcor-lftlMCMCMO«-OVO
»— i- coma'
CVIOI-
CO CO CO fO PO PO PO C
O CO <
OCCPCOCOI-V-
> — oe/»a-a:i- o —
OOO<0\OOO\OO«OO
OOOmvOOOlTlCMCOOO
OOOtOVOOOOO«-OOO
O O O «O TO T O\ f~ fO CO O O
SOO«VOCMO«000'-OO
C
OO'-eOO»»-«\J'-OO«Mvb
wis
lf\ CM »O «O CO OO « ^- t~- r- O\ CM
O\f-CTiCOcOVO«o r^ o to eo r- to to
\OtOCOVOCVI«— »- 00«—
C C3 «- OS %0 O O O C3 O «- i-
OOCJ — ocOttcet- o — s
§IIJ
or o. 5: z 2: s: to u. u. to H:
121
-------
cocviovocvio»o\oicooocvi
o\
CO
cv
LJ
O
I
o
CVI
CVI
a:
oz
au.
r-O
w
cocvunevivocvicoovf^oocvif-
f- o co vo o\ oo o ov ^t ov vo f-
cocoincootncvii— omocvi
to O it l>- Ovin CM.* O O VO \O
O'-inOvOOOOOOCV'-
COVOVO vo
oootocvioot-r-ovoo
OOOcoCVIOOinmcOOO
ooococvif-fMOvvocvioo
oopcocvicvir-^-oooo
.
o\ « o> t»- to t- to m
«o inOOOOOO»OO
OOOtOVOOOCOO«~OO
CD UJ OO O CO inO O r"" VO CVI O O
zs ooocomppcor—ovoo
<> 3: j-ppcocopcvpincvioo
\ocMo\jj-d-inoocovoo\o\'-
r- i- «- CM t- CVI «- «- T-
O\VO»-'-OOMf>OCOfO>Olf\
'~ OiA
r-co
to
O
OOOVO\OOO-*tOtOOO
r-- o «- o o o\ oo r-
\ocoo
CV1CM
lP\VO<-COOOCMt-T-OCOlf»
OOr-O\OOr-CJO«-\OC\IO
ii
Z C£
aw <
sro uj
— _i >
1*
oo
0<
o e\l«-t_
Z r-r-f-covo
cvior-
in «-
co - .
ooooooor»-tor~-oo
OOOOOOO«Or-O\OO
OOOOOOOCJO»OOO
OOOOOOOO\COiTOO
eo
II
o
in
CO
II
a:
<
UJ
i— cur-"f~tor-o'— oor-cvi
OOtOcOVOOOOOOlf\O
ooooooo«.a-ooo
OOOOOOOOJlTHAOO
ooooooo«-r-»-oo
vocvivocod'covpineoOiOCvi
<3C3OCOO'-O'-OOC3\O
vo vo in vo i
JTO'- O ,
T-CO «~
cvi ;
OOOr~C3\OOOVCOCOOO
OOOVOeOOOf-^COOO
OOOVOCOVO'-COJl-'-OO
ooovoeomvococoovoo
-
cor-ovocvieoomjfinoo
coo\<— cococoj-vocoo'— in
jj- ov T- o r- eo eo r-
vocovo
CV)i-
mcvi
cMvo«-cviocoinvot-ovi>-o
r-comjroo\cocvicocooo\
a- \o o r- vo r~ vo vo in vo vo JT
-
ooooooO'-o«or~oo
t-00\OO\
CVICVIOO
UTVCO
CM
ooo\o;*oo"— •
voincjt-cu
ift« it O eo CVI Ox to <7\ O» if «-
» «- r- o tvi o to ir\ ir\
1T> O m O\ if f~ JJ- vf) O «M to CM
O<— ITlOOVOOOOOOOO"—
«— r-co to
r-r- T-VOC4
to —o w > a: oc i-_ o — s:
CT OTQ. z z zz » u. u. w h-
OOOVOJtOCMUM^CVJOO
co\oo^o^3*or^coocKOO
CVI CO O VO O 00 CVI d- VO O» O O
VO'CO CVI ^ it CVJ O >~ ro ITMT» i—
coif\d-cvi^ff- —CJCOXECCr- O
«uj_j_ioocezz>uJ
aroa.zzzzcou.Li.coH
-------
•3-f-omvomr-o\'-in»-o
CO (MA (V SO O CO C7\ CO vo CO r-
'
0\
00
o\
> LJ
£C O
< Z
=5 <
< (K
O
CM
cvi
a:
oz
CCUJ
UJZ
QU.
I—O
CO
i- r- CO r- CM CO CM *•-
eOi-lf\CMlT\O\'-CMCMOcoO
'— co
o c o\ vo «- o o o o r~ o
a-oo\ os
COCOif I—
OOOVOVOOOOCM'-OO
ooovovooor~CMino\oo
O OOVOVO 0\r- CM CO CM O O
OcoOf^-vOinOil-CMcovOVO
CMO\O\VOCOOOOV comto
CO CM LT> O\ r~ »- »- LfN^J-
VOVOO\ 1ACM
CM»-
VO.3-.*!-OONO\VO'-O\OeO
•- r*- o r- vo ir\ o CM m zt o m
co c co cv r c o c> vo c>
CMt-
OOOCOCMOO^TO\O\OO
OOOCOCMOOCV1COVOOO
O OOOcOCMOOCOCO-a-OO
•- ooococMcoeot~-r-vooo
r- ^ CM r- CM r- " >~
'— ONCOOO'—
irNOrocMO
\OCMcOCOVOOM3CMcOO\fOO
vor-omocMd-in
'— cor-CMOO'-'O
CM
\f\CO
ooor-o\oo.3'ior-oo
ooovooooo'-ozroo
OOO>OCOVOfOO\CMCOOO
O CO O iT J* \O CM CO r- 00 lf\ CO
i— co vo CM o\ r- eo vo CMCO^-
'l«~J*f*- CO CM
VO«O\O COCM
CM«-
CO O O CM 1ft \O d- CM * r- CO VO
'-CMCOCM'—
OOCMJ-OOOOOOOCOO
CM«-
oooi^vooor-ocvjoo
»— ooovoinoo«-.ycooo
VO O\ r- Ok Ok O> O\ CO in CO »- »
T- «- f-co^-CM
covo.3-o\t--ococoinvot-'-CMOo
f-inocOcof~O\t»-cOOvOp
*-«— r— r-
eoovo
t~- CM
CO CM CM «- CM
VO CO CO t«- 1- Jl" CM ITl O If* .* 1T>
-
—OCO>Q:Q:I- o —z
«UI_J_JOOQ:ZZ>UJ
crcra.zzzzcou-LL.coi-
CMOcOr— |*-^J-t—
vo * 'O\ JT ov •- CM o if» r- o r~
if'— VOcoiTiO'— OCO
<3Ot-lT\JtOOOOOCOCM
-
f-COCOCOCOfOr-COVO'-'OCO
co d- co o\ o\ vo r- zt it »- co o\
OOMAOlfSCMCMCMO"—
"
CMO\VO
OOOVOVOO>OVO«OVOOO
<0 CO CO CM CM CM CO CM CM CO CO
O CO < O
C3 CC. O CO CO r- r- O »- Q.
> — oco>tt:cer- Or-r
t-inoincMeooo
*t-^CV|r-OOCOO
•- \o a\ jj- JT vo
r- CM .* JT J- 01 CM o irv o co in
oo«ovoooooooeoo
CM CO NO M ;
CO O\ « .* J" 00 lf\ *- CO CO r- CM
to CM to Jf .3" lA CM r- J" O il" CM
OCOCO'-COCMCMCMO'—
cgcovo
i— r-OOO»— r-
«o to co co en eo co to CMcoco
Q CO < O
o a: o en to i— 1- o*-a-
> —ou»oia:r- o —z
«UJ_I_IOOO:Z:Z:>LJ
cr or a. z z z: z: co u. u. w rr
123
-------
in
o\
00
VO
>
= <
< a:
Q
O
o
m
CM
CM
Q li-
no
CO
CMOvCM'-'-fMCMCMco»-«-vO
r-'— OOOOO<—
t-VOC\ICM«-CMcO
o\r— -inovooocMcovoo
-
coor— oo'-c
CO CO *- CO CM d" »— CMVOin.31'-"
ror- cor— incocovo'-cocovo
ocMcor— r— "-CMCOOOCOCO
OOOCOCOOOOCOCMOO
ooocor^oo^^inoo
ooocof-meoineoinoo
'
.a-cviocoineocMCMCMvooo
mtooeovor— T-tovOcooO
o o
•— to co oo ir\ cocoin
I-CM
vor— o\ mcM
CM«-
CM oo i- o r- «o co * vo i- o »-
r- .3- CO P- CM t— «— CM CM »- into
cOcococOOinm:3T— moco
O f- O\ VO VO d" t— I— tO in f- \f\
r-coin«-ovr— CMOcomvoin
ocooinineoineococor-ov
xSJ'TT
OOitcomOOOOOOO
CMT- T-
ooot—r-oocvi*-vooo
OOO>O»OOOOint—OO
OOOVOVOOO'— .3-OOO
.r- r~ t- in ^- r- ir> cvi r-
CMCMCOtOOfOCVIWitfOOOOv
-
Oroco
ZfOOT-
tnr-
lf\
VO
oootoooocvir-'ooo
OOOCOOOOOOUMTlOO
OOOtOOr-OviJ-O'-OO
OOOCOOOOOvCTv^-lTlOO
ootoocovooo"— inooooo
t— O »~ 00 to VO VO 1A CO O O
voo
-=J-c\i
co a- d- o\ M in r~ r- m co ovir>
r-cooininovoco«-o\cor-
oocoint^ tnvocovoococsjcvj
t-OfOCMCMOOO'-OOOrO
OOOtOCOOO
ocvim o
in
ooor-ovoor-or~oo >
ooovocooO'-a-'-oo i
ooovoeoovoseooooo
OOOVOOOvOOViTCMCMOO
oo in o «O O O
VO
eo
II
o;
CV1COOV
CO f»-
CM
ooor— cxioor— movoo
--
00
I—UJ
coo
CQ
<
cc.
c\ir-
o\ \o OVOVOinOO\CMco
~*
C3 O CM in Jt O O O O O in r-
CMCVIOO CM
i— T-cvir— int-r^.a-o<»cMr— ov
t— r-vocM>— c
'-oO'— in
C~CO»-OCMinOO\CMCVJf--fO
i— r-i-COVO
CM OJ CVJ CVJ CVI CM CVJ CVJ • CMCV1CM
o co < a
OQiOCOCOHr- OTX
> — owxrosr- o —z
<UJ
craro.szzzMu-u.cot-
CM «~ coco>O»— *—*— O O i— Ov
r-i-COVOin »-VO:
•-r-in *-
cor--.=rocvjr~f-ovointncM
'
<— CMCOCM"— CVH— T-
oooovoooooocM"-;
CVI«-O\ CM I
r— eo o ON vo «— o\ m \o a- oo vo ,
eOVOOOOOvCMCMOOVP-d-OI
coovoeocMvor-cMOvinmco
cooocovocovor-oincoin
^t r- o co ovo o r- o vo o\ CM s
mcoococvicoooooor~«-cvi
-
ocoin*— in*— »~coincMr**O;
r" r— T- \o O*
coor-
CO CO CO CO CO CM CO CVI CVJCOCO'
Q CO < Q !
OCCOCOCOt-r- O'-fe
—ooo>ceo:r-_o —z,
arcro. zzzztou.u-cor-r
124
-------
•3-Of>OvOO»>Osvor-CO»-
CO O\ d- CO VO O\ •- 1> Ov VO »- CM
oooocooooooin»-
VOOO
CO Cvl
CO O r- OV O CM "— *- CO .3- CO O
cOO\«OOVO'-vOvOO»-lf\«O
OO\covo«-Oir»lf\CVICMCvl'-
'— co
Ot-OO\OOOOOO\CM
OOCM^OOOOOOJtO
ooor-«ooocvicoovoo
OOOVOr-OOCvlOM—OO
ooovot-ooa-mj-oo
ooovor^cu Jtov- t»-oo
ooovor— cuooovor-oo
o«-ovoo«or-d-r~T-oo
VOCMlfX—
T-T- r- CM'~CM«-'-«-
cocvJ«ovoOcoincocOf-eo»-
comtOf— J-cOiJ'cOf— VOONCO
ONOcoOOOeOcocOOCMOvCM
eovoco
r-VOCO
OOOcot-oOCOlfl^-OO
OOOco^-OOcocomOO
OOOcOr-J-jJ-CMOvOVOO
OT
<
CO
VO
co
II
ce
<
oo
r-UJ
coo
<
u
_1
m
VOCOO\I~-«-CVJC\JCMO«-O\OO
T- t-if\o»- cot—
Cvl n Os Cvl
O O O O f-O O CO UMTl O O
OOOOVOOOJtCOf—OO
OOOOVOOOCMOOOOO
OOOOVOOOCMCOT-OO
oooovod'Ooincooo
OvCVJOOCMir\JMf>OOsOO
o\cviooinvocoir\j-ooo
f-!-VOCvleO«-«-T-O«-OCM
•-•-OvpCp CMt-
u
i
i—
z
o
co
II
r~ CM co VO O CO CO JJ- CMI-O
cocoCMOvco &zt
I— COCO IT\CM
f—movooovor—«—t—coco
CJ\OOO»VOOOcoiAOvOVOvjfJj-
OOa-lACMVOVOI-dTOOirM—
mCMcor-COCMcOlTM— C- JT-
vocotr\coovoir>^-o\voa-d-
cOd-OOcOJtvOCMVOVOCMO
vocot— a-vocv|vot— ztcoONOv
cocMd-mcot-o'-ooo'-
OOCMCOVOOOOOO^-O
oooi— »-
OOOVO>-OOCO«-OOO
O O O VO i- O O O Ovd" O O
OOOVO*-CMOM— COlTvOO
ooovo»-oor- cvi«-o\oo
ir\ii-ovoi— ovor-voooo
& CO f- O\ O ft CM i- O\ r- tft CM
0\ \fl (^ VO 3 tf\ O if CO VQ *~ !0\
vo O Ov en ov ^f CM O» eo vo O' «—
Cvl Jt Jt CO O\ CM to UMA CVJ in i-
r-r- T- to r- CM C\J i- r- i
OOOCVII—COCO.3T-VOVOVOCO
lTVt-ir\OcOOcOvOCMCO'—
covooveocovo*—cocococor—
vo'-o\o\of-'-cooooco
CMCMOV>-«-oOOOO'-O
CMO\CM Iftj
t—t—VO VO i
ooocor— oor— cocooo
OOOCOVOOOJJ-VOT-OO
OOOcOvotTVOv— .3-COOO
OOOcovOcocOl— OCMOO
OvOOCOOOOt-OOVOO
cOcOCvJOvir\OvOOvr-co«OcO
oo »— r— o\ jf co r- it couMrv
COCOOO.:1-O r— co
VOCOITV JTCVI
VOCO<— (OCvlOV— cor— r-»-O
O\VOOOCOOMTVVOCVJ CVJ^CVir-
CVI CM O r-ij-i— o<— «T OOO'—
r— co co in in eo f- .a- a- «— CM ^*-
jf «o m j- co co o vo ov .* vo CM
I-|TIO\COCOCO»-COCV|VOCV|«-
OOOvcoOxf— ifMACOf- Ovco
--
VO (— CO Cvl O\ VO CO »- a- CM CO t—
''— cvir— CM»-CVIT-«—
OOlftOlAOOOOOVO«-
•-OVIA CM
r— oof— «-t—f— vocooococo
vo O O if> co vo vo O\ eo .;}• co co
vOOOCOCMvovoOvOf—coco
vooocvio\eoir\r-coi—coco
vooo-a-vocoiftor-iricoco
O\*~O»"f—COCOt—CO^COCO
UMTlOCvlOVCvlCvir-OvOcocO
VOCMO\COCO»-T-cOlACM»-f—
cOCMcoCMVOCvlCVJ«-Ot-r-iA
«-»-C\IOvO\ VOf-
cvior- <-
OOOCOVOOOCOco\OOO
co co co Cvl Cvl co co CM CMcoco
Q CO <
oceococor-K
> — oco>teo:r-
Q
O»
o
COVOCvll— OVJj'COd-O'-
T-r-vocoOv CMCO
CMCMCO CM
O O O I- ON O O »- CO O O O
ooovocooomiricooo
OOOvOCOOOcocoiAOO
OOOVOOOOOO\JJ-CMOO
ooovocoeot-coovcooo
ooovocor-ooor-cMoo
OiTOVOCMOr-CMVOOOO
VOf-OVOCvlvOCMCOlTi'-OO
CSvcOCMOOf-CVU-Or-OvvO
or-m cor—
CvlC-VO t-
VO
II
VO
CO
II
LiJ
ooo'eoa-co-sfvoeovooo
T- f— iTlt-ON
cvc-r-
lf»CO
cvi '
VOVOO\>—COCOVOVOcoONJ—co
I— VO CM .3- CM CO :* vo .=)• *- r— 1T>
.^-.a-t— oooocoo»— vo«— mo
CMOCvlOOCMOvf-covomcOVO
o co j* o mvo co r— o.«— r~ o
CMr-cOt-OvOOOOOCM'-
i-CMVO CM
COf— CMcOCOlfMTlOOOr— CO
'— IfMACMlTlVOOVO
CMCOvOCVICMO\O\t-r-cot-CM
coa-OVO'-vocOOvO\CMCO<-
oirvcoovr— coi— r— ^-oocovo
CMOCOCOCMCVICMCMO'-VOI-
i- T— cotrvoo r— r—
CMOI- t-
t-i— •—cor— i— i— cocMr—»-«—
CO CO CO ^ ^~ CO CO T~ t"~ CO CO
Q ' CO <
OCCOWtOH-l-
> — OOTXKCCI-
O
O«-
o —
__
crora. s: 2: 2:
Q-
s
uj
w u. u. co l-
OOOOr
oooo<
oooo»
oooo«
oooo>
oooo>
•OOOOOvOO
•OOvOVOOvOO
•OOVOVOCOOO
•I— CM— CM»-OO
• r—ov co CM ov o o
• r-CO r-(—CO O O
• f— Ov CO lf\ T— o O
T- T- 1- O «- 00 VO
OOCMfOlAO"—
CO O .»- VO 00 r- f— O O UMfMO
v— «o
i-i-t-tnt— oooooiricb
r-CJVO OJ '
r- OP-CO CM fOCOVOOVCM coco
voovoco"— cocooeOON^co
VOOVOCOCMCOCOCOCOOM— CO
O>OVOcor-VOvOI~-OOCO-QJ
> — oco>ce
-------
>
6
> Ul
a: o
< z
3 <
< oe
o
o
o
CM
Cvl
s:
(O
a:
o
us:
QU.
i-o
a>
s:
O bj
x<
U)
<
w
00
^
Q<
I-U1
C/)O
I
I
MD
CO
II
Csl f— O eo CO ^3" 1— CO O CO *— T—
covOVO«-CMCMCO-3-r-coir\O
coo\<-CMC-O'-cof-'-oo
.a-COco\OO.3-cocoOCOOCO
..
r-coCM.=i-OO\.=J-eO'-.=l-0'-
CM\O«-CMOO
CO.=l'OCOCO.3'irir- COr- OO
o\ r- it- d- o m co o co co o\ -cooo irvr— o o
OOOOOrfcOOOCMOO
CMlfV\OOVOO\CMOeOCMtOCO
«-r— m
co vo >r\*o o o o o o o o\ co
OOCOil-»-OOOOO«O
'— OO
«— OO
C\JVOO*O»-»-CM«OeO'OOO
\OIACO
CM«-
OO'OOfOCVIiTeOOCOil'CO
r—cocococoi^-cotrieoi'-eo*-
CM \OOOCVJ CMVOCOr^OOO
CM CM CO
f-CO
CM
O O O O !•- O O O CO O\ O O
OOOOVOOOOlf\O\OO
oooo*oooinr-moo
OOOOVOVO^"COOJCMOO
oooovo»-eot-Mrooo
\OOOOOtOCOCMVOlT\OO
-
CO
II
VO
CO
Ul
'— OVOOO'OOOOCVIO
OOCMVO"— OOOOOVOO
ooooooococor^oo
ooooooom«-rooo
OOOOOOO'— >OCMOO
t- (fv CO CM VO 00 O d"'
'T-Nf \o\ooo
ocococovor-mcocMvovooi
om
OOOOcoOOCMJld-OOi
OOOOCOOOCM«-COOO[
OOOOcoCVJt^-iTCMVOOO'
cocoOOO\OlACOCJO\OO;
COCOOOCOIA«— COITMTVOO;
CO CO 00 f*~ CO
VOCMVO
CO CO
VOCM
o o o o o o\ •& o o\ d- o o
VOCMOOOMTnOCM'-il-OO
lT\fOT-coO\CMCVICMOCMCMO
r-T-^i-m o\co
c\ior~ CM
OOOO«*>OOCOO\OOO
ooootooocy-vooo
OOOOtOOOCMCOOOO
OOOOCOOO«OCM»-OO
OOOO«t— COCOONCAOO
Ov
II
CO
II
a:
t-CMr-ir\eoooooococM!
ooweocoooooor^o
oooor-oovooooo:
OOOOVOOOVOOOOO
OOOONOOOr-voCVlOO'
oooovooomc-vooo
ooooor-mcoa-cooo
t— t-\o\oo\
CMC^VO
oeoi
CO '
ooor-r-oocoii-cMOOi
OOOVOVOOOO\VOO'-o\coir\oi>-o\O'— t
CM i— CO^±OtO OAr-OCM"— «
OOWONVOOOOOOrOO
i— OCO <">
ro i— co CO CO O\ O O\ Jt iA O Jl"
CMCOOOO«OOVOIT\T-OCO
r-CMVOO»
CV1OSVO CM
PO CO PO fO CO CO CO CO CO CO CO
O CO <
> — o co>cea:h-
«uj_i_iooa:t.i-^>-LLj
crcro. s z s 2: w u. u. w> i-
g^c.
o —z:
CMOOOr-VOCOUMTHOOO
o\ i- o o r- co ON jj- m co o o
sf mr- eo CM d- co r- o\vo ON co
--
o o T- CM NO o o o o o it o
r-CMVO CO
vo m co co eo eo O\ co if\ d10 O\
t-coCMCM^-VOcO^-eor-OSCM
ir>o\cococoo\co«-">cocvl'—
CO CO CO CO CO CO CO CO COCOtO
§co <
W WH-H-
T- eD»-fOOO.
O\coO\Ot-\OOscOlT\tOOO
«- OCMCO
COr- t-rVJOxON'— t- Of~CMO'
COCOCMO'-COOVO'-'OVO'-,
«- o Is-
CO\OCOO'-CO\OOCO'-OCO
co\OcOO«— c
jr— COOCOVOCOCM.IJ'COOCO;
'-'-cOi— OlftOco
CMOVOO\\OCMCM«-O«-CMOO'
>-r-
CM '
oooooooomooo,
CO CO CO CO CO CO fO CO COCOCO
O CO < Q -
OOSOWWI-I- O«-Q-.
> —ow>o:a:r- o — Z;
«ui_i_iouo:s:s:>ui
or or a. s. s: s: z v> u. u. to H
126
-------
CO
OV
CO
o\
VO
> UJ
OL O
< z
=> <
o
o
o
m
CM
CM
ce<
QU.
I-O
V)
I3UJ
co CO Ovo Jf d1 CM O «- vo VO «
S Oin «6 d10 in vO »- K o» 0\
OO\O\OOOO«-VOCOVOOVO
CMr-VOCvlCMCMf-vOCOONCMO
i-i- CM CM .3-T-r~ «-«-.*
in "5 O> O Ov if it VO «~ O CO O
cocvisor—iti-o.*ooino
r~voit m
cvimo i-
VOCO f
COt— «—
ooot--cooocot-itoo
OOOVOr-OOVOOcoOO
oovovor-voovr-eoinoo
OOvO vor~-OOCOf-CMOO
ovoovoitovcMf-cMcooo
CM O O O VO in Ov T « O Ovin
Ov-mitmeor— eo incovo
cojtcoeoco r-co
r-voov r-CM
CM«-
f-r-coCOVOifOitOOM— <-
COt— co«-ovO>-eOcoCMvoin
«— o\T-m»^incM*-f— voo>vo
cor-r~inot-«-CMvoovocj»
t— cMin.=i'CM»-f-voininvoov
COCM
o*- tncococMvocoj'coovo
CMI— COCOCOOCMOVCOCOVO'-
CM«-CVICOCOOOOOOO\O
r-
CO
OOOOOOO'-.=1-T>-OO
ooooooor-voo\oo
VOOOO-OVOf~-»-
OVOJfOOCMCDOOfOeoi-COOV
VOCM
-3-CM
"— o
r-r— 00«— COOOVOJ'CMirvr-VO
CMVOCMVOlT\O\OO'-'-VOO
VO OV h- CO VO -t- m CO O IftVQ CM
r-coCVICMO\»-r-OCOtft.3-CO
CJVCMcococor— COVO«-CO>-CM
w
x<
o
VO
03
II
£ ce
=>UI <
53. £
OOOtOCOOOlfnAlfvOO
OOOMOOOOlftOCMOO
OOCvlr-coOOOOOlAO
ooococoooinvoooo
ooocor-oomvocooo
ooocor-ooo^-vooo
S 0\Ol>d-OWN if\ CONN
CvimiTl
-'-mr-.
CM'-CM ;
OvvOVOincOf^vOOUMnCMCM
O'-OVOOOOOOOCOO
mo«- T-
t— O>l~- CO i
0\O r- !
• oooocooocomcooo
oooor-oocovoa-oo
oooof-cvicMCM^rr-oo
r^ o o o in d- o vo o r-- o O
4J- r- O p inCM 0\VO CM O\<3 O
co a\ r— o r- co co vo
ifcocoOCv CVICM
1—lAlA IT»CM
coCM i
h- «- co T- CM vo o\o\ vo cvi in a-
r--coma-CMvovovo'— »— o\o\
cvii>~irvf»-cocococoo\o\cMO
ocMOcooeO'—
ITl d-vo c\ir-
CMCOOv CM
OOOCOOOOCJ-VQCOOO
QO
ce —
Q<
I— UJ
coo
<
UJ
UJ
CO
c-eoeoeocM'-'-*-O'-<
eoin«- cor—
voeocjveOT-vO'-O>'-O\OOO\
eo r- cvi oo o» r- st zt owo CM vo
«— vo «-
VOil-O
OV co r- lf> J- « r- CVI vo OO VO CM
VO CM O CO JT l^ in VO VO VO CM Cvi
•T-VO
m r--
CM
COVOCM
CVICOVO
CO CO CO CO CO CO CO CO . CO PO CO
a co <
O ce o to to l- h-
> — OCOXECCr-
a
Of
O
__
o. z z z: s to u. u. co H-
OOOCOOOOCOCO'-OO
OOOCOOOOCOVOCOOO
OOOcoOCOCOcocojtOO
OOOcOOCOlAOO»-OO
II
VO
CO
II
.
UJ
T-CMCMcoinOOOOOlTl'-
cseiwiAeoooooovob
OOOOOOOCVIOVCMOO
OOOOOOOCMCMCMOO
ooooooor-vocooo
ooooo'-r-mooj-oo
OOOOOO>COCV|COCOOO
ovoocoovovocomovoo
o o\ ON o m r- CM »- o o m co
CMOVVO «-
in oo CM it co CM d-in vo o r-in
r- vo CM d- o ovm co o\ ^t r- CM
Ov CM I- CM Ov CO O CO CM O\ lf> O
»-«-col--CMOOOOOOVO
i-O\p- CM
r-coooi— OCOCOO\CMOO
VOcOOOVOOcocof—CMOO
VOCOOOVOOCOCVICMCOOO
COfOOOVOCMCvIt— OVCOOO
OCOOOOOv-lAOVOOO
o .* * •- co CM cvi o !•* m it
•— r-covOCM
CVH-CO •
OOOOOOOOlAOOO
co co co co co co co co rococo
OOiOCO«r-r- O •- flL
> —oc/»cea:r- o —s
« uj _i _i o o cc z s: > ui
O" or a. z: 2: Z Z co u. u.
CMCOVO -r- '.
d- CM tf\ CM m CM o co .=r o m jf
cOCMOVCMPOOV'-OvcOil'OVr-
«— r--ooo»-eocom
VOCVIfMOvOVOOVCMCMOOJ-
r->-mo»CM'— mcovo'— ovo
Jt in CM VO Ov .3- CO O CO t- O CO
l--CMVOOJ-coCMcot-CMcoO\
O'-CM'-COOOOOOVOO
CO
vo r-- eo in ov \o in m o oo ^r co
<-VOcOJ3-OOCM»-col--r-CO
moveovoincocMOvovoi— a-
i- a- o\ CM o invo o vo co r- r-
d-i-l— OvCOCMCMCMOt-COi-
t- T- coCMco VOh-
Cvlr-CO «-
co co co co co co co eo cococo
tO
> — owxrccr- o — z:
«UI_J_IOOQ:ZS>UJ
127
-------
ov
oo
ov
VO
> uj
a: o
< 2
3 <
a
o
o
m
CM
CM
(A
ceut
UJZ
ou_
HO
CO
Z=>
ooot-t-oo\t-?o\.*ooov &
inuuin- d- o vo ON
o CM a- o -O IftOd-
r- CTV r- in r- m t- o eo oo om
o o CM .* o m in CVJCM vo cvi o>
>-cvio\cviin«cvio\CMO\ooeo
OOtooO'-CMOOOCVI'— CVi«-O\
oocor-
t^m
ooo\
o o o i^ o> o o in o r~ o o
OOOVOOOOOCMO\»-OQ
ooovococvio\r-vovooo
m CM o «- o\ m i~- vo CM f^ i^ ^
^ into oo oo oo oo cod-to
d- d- to r~ CM t- T- 1ACV1
r~oov tocvi
CMCMUMnCMOCMOOOCvlinOQ
t— •S'OO'-CVJVOf-CMrOVO.d-VO
CMinovoop-oomvoarooo
«-«-vommooooo«ocM
'-c
I
ooor~«-ood-cviovoo
OOOOOf^CMOCVI'-OO
covooooi— omj-cvoo
o o o vo eo o r- o\ o m o o
OOOVOOO«-OOOVOVOOO
CTvOOVOcoOr-flOiTcoOO
o _. _
r- OOcOfOCvIO'-'— «-
00
II
Z DC
=3UJ <
E3 £
OOOrOd-OOOMTlOVOO
O
I-
co
II
t— in ^J- co co o r- vo CM
OOOI— JfOOOOCMOO
ooovoji'oooot— r--oo
OOOVOil-OOOCMOvOO
-
CO
II
oo
II
!
ooovo«-oomovooo
OOOVO«~ CVIVOcovovOOO
O O O VO i- OWO OV Cvl Jf O Q
comovor^-jrojfcor-oo
o\ o o vo r>- sf o\ in vo r- o o
OO
HUJ
coa
UJ
s:
ui
_l
CO
i- omr-
O1O\VO
ovo
CvlO'-vO'— •— t
T- f— UT\ O\ tO O\ t— r- a- if\ r-
r- CM i- vo mvo JT CM co r~ o o
O«-JS-lf\00'0OOOOO\O
CMOXVO r^
rO CO CO CO CO CO CO PO CO fO CO
a m
OIEOCOCO
> —oco>
«UJ_J_J
C7OQ.ZZ
.
iocezz>5
:Z(/>U.U_COH
O\t— CMO\t— CMCMCMOOinO
r- CM t~- oo o r-
mvOVOCMcoCMVOOOaOCMCMO\
mo\t— cMor-ovoovo^CJi'
CMinr-ininoocoot— movo
CM oo d- d- m oo ovin m CM \o CM
os r»- m it- o r- o o\ m o o «-
CO CM in O d- iT CM co O t- VO VO
T-r-cOOOOOOOOt-O
t-,3-00 t-
t- vo Ov •* in VO O .=!• Ov CO .* P-
i—oocMCMOvflooinooot-in
CMt-t~-ocomeot— cor— oojj-
a-CMinooj'oor— CMCMvocMt-
inr~-coeoo\ovintor— ovc7»r~
j-coomcMcococMO'-ino
i-r-d-oin c\ir-
CMCOOV t—
ooooooooooooooooincooooo
CM CM CM CM CM CM CM CM CM CM CM
O CO < O
OOSOCOCOHH Ot-Q.
> —OCO>CCO:H o—z
crcro.zzzzcou-u.coH
r-«-mcvioo
CMVO«-
oooor-oomooooo
OOOOVOOOOCOVOOO
oooovoooinovt-oo
oooovoooovmovoo
OOOOVOfOrfCMcOCOOO,
ooo ovo vomd-vo oooo,
r- o o o vo c-vo oo r- a- o o
OxOOOOCMVOCftOcOflOOO
CMCMO\O\inCvlCMCVlOOOOv
T- i- T- 00 CM O VO'
oo «- «- m a- a- in T- ON *- eo r-'
VOCMOOJ-r-coeOCMCMOCMO1
m vo «- cvj in •- cvi mvo « CM f-,
'— r--ovocviooov
VO 00 .=r 00 00 d" CM co <
*OI^
— oco>o:o:i- o —
CO u. u. CO H-(
128
-------
o
6
o\
CO
ov
vo
>
a:
o
o
cvi
CM
UJ
o
CO
a:
oz
CC LU
us:
on.
H-O
m CM ov «o o\ t- r- evi it\ j- r- eo
1A J Jt XO o O CM«-W h-O CO
*— co t-^*— t^
'— COcovo
'— OCVJCO
t-VOCOr-MCOCOCVICVIVOOin
r- .* r- «- m IA it a- <- co ir\ PJ
O Ovvo CO VO CM O «- O O VO VO
CVJOco^-r-OOOOOCvl«-
CO
cvir-
ooocovooovoeovooo
OOOcovOCOOVOif\O\OO
OOOcOVOlftcOCOCVJinOO
VJCvlOcoiACOCO'OCOCOOO
'- OCJ\«OOO
cvievjt-irveoooeo
COCVI
coinvo
COCVI
cocvi
cvicocor-vovocoovT-inovo
lAcod-COO\r~OvOCvllf\CvlCVJ
i-lTlfOOO\»-CVJCVI'-COCOCVJ
voi~-voo\voO\covOirvcovoco
Cvlt-VOifOOOOOOd-CVI
OO«-OVOOOOOOCVIO
CVJr-
ooor-ovooeocot—oo
OOOVOOOOOCOCOCVJOO
OOOVOCDOOC-OXVOOO
_ _ OOOVOCOCVIvOr-CMCOOO
:< II OOO\OCOCM.3-CvI.3-r-OO
:> X r-lAOVOVOf-cocOIAJCOO
iTMrvoeoovcvicococo
\T— 3* CVJ CVJ
cot-co CM
CJNOvVOlTVCJVCvlVOCVJJfcOinOV
ooeot-OT-ooooevjo
O
OOOOOvOOOvOVOOO
ooooeoood-cvicooo
OOOOCOVOOvCOVOil-OO
o o o o eo co vo vo \o o\ o o
r-a-ooeoooovoi^oo
r-r-ooinr-ovovr-vooo
r-»-CO'-CO'-cOr-CO»-COCO
1T\ r- CO t- i- O Ov CO J-OvOv
.3-.3-i-CM.3-r- f-cO
COW
oo i»- CM & *
o Jf- ovirv.3-
COOCOOMTlVOr- 00»~OVCOCJV
CVICOCOOVCOCMCOCTVCOCMVOCM
•3-irvr-eo.3-iDr-irivococvi.3-
i— r-r-inCvlr-O'-OOO'-
ooot— r-oO'-'-vooo
ooovosooocvjeoi-oo
OOOVOVOOOOOlTlOO
co in r- .3- .3- ov eo .3- o\ o co o
I- r-r-mr- .tf •-CVJ CvJ
•3'»-ir\CM.3'Oco.3-vococo<—
voo.3-ovr-t-TT-o.3-vo.3T-
00 «— to f-- VO O VO O\ .3- to .3- Ov
r- vo o o r- co oo r- CM ov eo t<- cvi in m o «i
« o oo o> t- cow oo vo in a- irv
ootooeviooooovoo
oooocooo'-evicvioo:
OvCVJOVOOOr-CVICVJVOCMOO
CMCOOVOr-f-covoOOOvOO
vo
II
KMf»Ov«OO\ifcOCOO«-I^OO
oo
II
: ,DC oooocooor-eocvjoo
>UI < OOOOcOOOfOVOOOOO
_;= tij oooocoooocoirtoo
— _J > OOOOCOVO.3-COCJVCVJOO
oooocot-r-j)-ocvjoo
r-
co
II
a:
<
UJ
>
r- r- Ov O
r-
CO
II
o:
oo
oe —
Q<
(-UJ
coo
<
LJ
OT-eoor-cvicvicviooi^co
t-r-cvjvoco
cvior-
COr— CVIt^r-COt-ITlCVJOviAOO
O\OVOCVIOvcoOlf\O»-lAvO
.n-.a-coo'vvoeoi^cocvjoovc-
*O\»-CVJOMf»CvlcOt-r-lfvCVI
«-oo\cvjr-oooooco>-
f-OO «~
cocoor-cvivoor-r-j-coo
cocoor-cvjvoocor-iricoo
COCOOI*-CVICVJOCO*-VOCOO
'— cviif\cocoo
r-ovor-vomoocor-coo
CVJCVIOV
OOOOOOOOlTlOOO
Q CO < Q
OirOCOCOt-r- Or-Q.
> — ocoxrcei- o —z
cr era! z s: s s w u. u. co H
CVICOO
ooor-ooor-r-vooo
OOOVOOOO«-'-lf\OO
OOOVOOOOCOOVOOO
OOOVOOOOONCMCOOO
OOOvOOeOr-lT>CM.3-OO
OOOVOOCVICMOONCOOO
covoovoor— voeot— vooo
ooo\eovo«-c\i«-oojrvo
1-T-OCOVO CMP-
cvieovo •-
cvio.3-r-vof-r-ovcoeo.3-ir\
O\cOVOr-cocO»—VO1AO»—vo
CM r- o\ ov r- vo \o r-1~ o o zt
OJJ-OVOd-O\CJd-lA3-COCO
-3-r-o\.3-p-irv.cooo«-irtcof-
O\eo.3-OvOO\.3-'— Ovir\co»-
«- J- r- «- eo CM oo .3- ov in CM r-
.3- u\ r- .3- .3- »- .3- vo co o\ co eo
VO»-OvOCMOOvCv|co.3-Cvl-3-
vocor~ov«-cocMa-«od-»-ir>
r—CVICOOCMCMOvOvOcovOco
r-t— COVOIA
cvj«-co
fO rO (O rO rO PO fO CO fO fO f
O CO <
OCCOC/JCOr-H
> —OCOXKCKI-
O,
O r-
O
Ororo. Z Z 21 Z W u. u. to h-
ONOOOCOCOCMVOOJCOOO
OlfNOOd'O'-CMOiriOOl
\OOOOOf-C\JO\ — oco>cca:r- o —z
«LJ_1_IOOCCSS>UJ
or cr Q. s s. z s: co u. u. co H
129
-------
Ov
03
0\
> UJ
cc. o
< -z
O
in
CM
CM
.
V)
CChJ
UJS
ou.
i-o
OT
ir\ «o vo cvi if in vo r- to vo oo oo
.S'OMnrocvivoof'-r-tocoo
i—T-COCOCOr-T-CVI
voo\inooovmcvim'-vocMCM
vo vo o\ vo to r- ov i— ON t— vo ov
Or-.d-Ot-CM'-'-OO'-O
VOCOCO O
i-\OCM I--
ooor-coooovotooo
OOOVOtOOOOv-ONOO
ooovocoococMt-inoo
o o o vo co CM o r- vo CM o o
-3-i-ovoooof-cor-cMoo
inCMOvoOvtoCMitflOCMOO
.* Ov <— co f— co co t—
Jt to O oo CO «-!—«—
r-CMco
COCM
.* lft t-.3-\O VO «> i-t-i-CO O
cof—CM.ii-cocMineoflO'—OVON
\oovcvim«-'-Qi--eo.*coo
tooinoot—ocof-r—ovr--«—
VO Ov CO C\J CO t— in VO VOCOCO .3"
covotovocMCMr-in.3-.=reoo
r-CVIOOVVO00.3'.=f.3'coOCM
»-CMtOt-CMCMCMCMOO.*<-
oocvimi*-ooooor-o
CM«-
oootoooomoj-oo
OOOtOOOOOOf-OO
ooocoooocM'-moo
. _| t-- OOOtOOOvOCMCMOOOO
:< ll ooocooinco'-int-oo
* i— >—mocoo>«-cocovoeooo
o r~ oo CM jj- «o r~ r- r~ d- o r~
r- d- w ro vo w d- o eo O »- W
o co OMT\ \o o« o r^ r~ in co o\
r-VOC\llf\OOC\JlTlO\O\\OCvliJ-
\O O d- Jt \O ^- in it if if\ VO ON
ooo\evvo'-coovcvjoo»-in
OcoOCVJ^fOOOOOcoO
COVO(M O
voi-m o
oin «-
oooocooomoovooo
oooocooo^-t-eooo
o-=toocococoinvocvioo
\OVOOOcocoCTvO\OOOSOO
o\ \o vo o d- vo oo o to eo to T-
m o\m o in oo co r- ^rt-o
^ co CM t- r- Ji-in
vor~-o\ vocvi
COCMiJ-OeOO'-PJi-VOO
OcovOr-cor-OOOOVO'—
o o *:« co o o o o o m o
OOOeOfOOOOCO'— OO
o\ o» d- T- o\ vo co m c\i Jt CM r-
McOOvtvlr-d-OxNJOOitO
ONCOOOf~COOvr-vOf--OO03
cocoininmo\O'-inint«-o
catotoooaooooomo
oveom o
voo
ooor-ooowincvjoo
ocMOvooincomincooo
o o\o vo movocvj r- r- o o
o r- o vo r- m •- m o m o o
ovcvimcvioo'-ois-c\ioocoov
vo »- vo r~ in co oo r-
vomco
CVlt-
vocvi
'— t-cotovoininr~«o
o\ co t^ oo m CM m o m oo CM o
vo r- o\ oo co o m j* «o w «—
<- d- m m oo o>m o vo vo co r-
eo
ii
ooococooo.*eocooo
oovo«o— <\j in r~-
CJOI--
coroco coco*oeo —OW>OC£Cr- O
ooovovocomocvji— oo
r-voovovoovocvjeor-oo
r- I— VOinP-
\oinoovcvicvjincvji--ovom
eovoino\ooor-«—
ov ij- 1— co ^j- co in ov JT co o r-
oj vo «- o\ ^r o>m eo in vo JT in
coovocot-tococovocvjr-co
oco<— coovooovcococor»-o\
«— ov vo to vo r~ oo o r- r~ o r-
OCO
CM
fO CO CO CO CO CO CO CO CO CO CO
a co < a
OCCOCOCOh-r- O r- cu
> —oco>cea:r- 0 — 2:
«UI_I_IOOOCZS>UJ
orcro. s: s z s w u. u. co i-
OOOOOVOtOtOJtflOOO
OOtOCM'
'-CMOOOVOO
- -3-00
^- co vo o eo m r- m in co »- to
CM^rvoiT'-voinvocMinor-
OV JT CO in 4t f~- VO CO CO VO CO CO
eoO'-'-vovotoocoocor-
«— «— CM ff in co o> vo J- sf o\ m
r- o\m in t»- m CM m »- to CM \o
•«-OVCMOOOOO»-O
COCMO d- i
vo o co in »- vovo r- owo to o
VOOcomd-VOVOCMCOVOtOO
vo JT co m CM «- CM mo CM to o
vovotoinr-coor— coovcoo
vocvicomvoint^f-ointoo
CMintoOCMOVOODvOCMcOO
CMtoCOCVJtoCMtMCvlO'-'-T
i— i— ovom coco
CMOOVO CM '
ooooovooomo\oc
co CO CO CO CM CO to to Cvlcocp
tO
oco>o:ccr-
O
Q
o«-o.
o — s:
130
-------
eo
o\
C
LU
o
I
CM
CM
QU.
HO
U)
to eo .* h- in o o «- oo o t~- •- r~
eo -a- in o\ .* in co cvi w «- w «o
o c> d- K «o o o o o o vo o
COW
_ ooof-r-ooin-a-f-oo
£=> o ooovox>ooova-cvioo
— _J r- OOOVOVO'-'-vOeO>-OO
x< it •" "• —
o x
CM «o co CM J-r-in m ^r
'-'-r-totoobirooc
r- r- CM i- to CM r- i-
\o m & V3 1- CM o o> o\ r~- m o
>— VOiniACM'-OCMtOCOr-oO
OOfOCOtO»—
OO«—
omvo
'— OO
-r~oo
OOOVO«JCM>OtOO'-OO
-
CMt— OVOO\r~CM\OI>-OOO
00 ITl O VO in CM O "~ CO O\ O O
Ovotoovotoovvotoi-Ovoo
COCOCMOWOO\00
t— i— IT\T-
ON CO CM CM in VO VO VO r- O »
r- cr» .3- -
1A \O 1T» I>- O\ »- O lf> VO (M CM in
OcO«co\OCM'-CMOOOCM
ooco.3-eoooooor-o
ooooooor~r--cMoo
ooooooomooooo
oooooooo\r^-»-oo
OOOOOOOOVOJ'COOO
OOOOO»-CMOOCOXOOO
il-Jj-OOCMOOOOMDOOO
S t-t-eoeoin<- i-
cviin>-
00
II
< OOOvovOOOd-COcoOO
> OOOVOVOOOVOOVCMOO
oo
ce —
a<
• HUJ
coo
m
<
a:
OfOO\OOO'-VO»-eOC\IOO
OCM^-VOCOCMCMCMOOOCO
r- st.0&
«-OOlf\
oo oo in oo w tt * eo r- ir\ \o O
VOCMJl'CMir\>O'-t^r-r-jJ-\O
Ov O eo co oi^ eo »»• wo ir\ oo
CvJOlA
CM«-
f- 03 O 03 CM IT> O\ »O O O r- CM
r- *o o o vo>o co oo «- CM vo to
\OO\O"-.=COCOC\1COCM'-O
d- ovo
cOOSOCMOOa'ONtDlfvCMtJOT—
a-OCVieOOiJ-coeoO'-eOO
«-»-— ovoineoocovo
VOOCOOOr-OVOVOitOVCOVO
'
OONCOOOCOCMOCM^rvOtovO
-
CM«-00
ooooooooinooo
CO CO CO CO CO CO CO CO CO CO CO
o (o < a
OCCOtOWr-l- O«-Q-
> — o«/)>ceo:i- o —s:
ooocotood-omcooo
OOOcocoCVJ«—IAOO*OO
»-O\OcOO\t—
cOOr~OOOOCMCM'— O«-OO
T-f— 1ACOO
UMTlitOCMlA'— "-\OmOOO
cot— r-d-r->— foirvf-CAOiri
t~- »— CM >— ^ o in oo co »- co f»f
OOCMCVJ'— iTV'-
«-i— com
C3\'-r
co i
i— ocoeoor-in^fCMcoovo
\O «— CJ CO O\ O\ .3" Jt I*- O O CM
CMOOO
CO CO PO CO CO to PO CO CO CO CO
Q CO <
oeocoHt-
oto>a:c«:(- o —
>
__
or era. S Z
co u. u. co H
131
-------
o
o.
CO
o\
VO
II
1
•- ro CM «o CM *-»-
> UJ
s g
=> <
O
O
lA
CM
CM
ce
oz
UIZ
OU.
I-O
(O
.
IAO\CMlA«OlAOC0.3-'-<«->O
-
'OCMCMCOCVI'-O'-OOrO'—
o\
1OCO
.
CO fO •— o »- t- r-
2 S 2 " !2 2 2 "* * « o o
3- a- tO*t>r-r-T-
OO«OlTlOOOOOo«jrjrcor~r—<->i-> H
i
I~'-«O»-OOOOOO>-CM-
•~iAin IA
X »-
5
V9
3 U) <
£=} Uj
— _J >
QO
ec —
OOOV3tOOOiAO»-OO ~.
g2e^«22or-pop w
KU)
COO
<
U
S
I
"^>- co to o •- eo o
CM CM Ok
fo to *o to i*> eo P
OOOOX3OOOO\COOO
OOOO —owxccct— o —z
CfvCMOCJOCMCy-OOlACM
T- fO i— CM »-|»-
CMOCO r-
•=rOC\JO\t-0.3-OCMO\\00\
CMCMO\
132
-------
- >
o
>
o
o
c
CM
r
w
ce
oz
OU.
I-O
V)
r>uj
Z =
CO
OT
m
1
<*>\O'-r-«-»»Oe
«-oj'-.^OOOCO tovocg
^ if ^ IT> CM f- t-
OOOOOOOOiCOCVJOO
OOOOOOOlAf~->~OO
r-,-(\1 •-r-
OOOmf^OOMeoeoOO
« to «f>- ift r- »- r-
OONWCOOOOOO'-O
~
OOOOOaOOlA--.3-OO
ooovoooocvicyooo
OOOVOOOO'-VOJOO
OOOVOOC003O\C\JCOOO
O O O VO « VO 1A1O PJ ^ O O
o*-iAoe\jooooocvir-
{V|lf\ T- \O 0\ N lA»
«-•-•- CAJ«-«\I »-«-
PJON
mvo
0X0
ooooooocor— onoo
0000000^*0000
OOOOlAr-ittvJroOvOO
f- «- oo r- PJ cw ff> o <\j mr~ o
vovOJ-oeoa'fom mo\oo
« co eg 03 «'-'-'- f— co
r— i- j cnOO
-
3
CO
oo
II
(T
<
** r*-\O CO O «~ -^ O
'-'-COX3'- ooeo
(MEMO --
cvif-eo
to ro ro PO to **o co w
O tfi < O
OKOCOWI-l- Ot-0.
> — oco>
-------
«- >
co
CN
> UJ
1 g
!?
O
OJ
CM
ce
oz
o: uj
ou.
i-o
V)
E
3UJ
SO
«- «1A VO {VI CO f) O\\O CU 03 m
a-o
OOOO<»»OOtr>tr)\ooo
CD If*
pj
OO«'-eooOOOOCOC>
CJ r-
OOOrOFOOONlA'-OO
in
v>
I ^^
co
eo
II
OL
UJ
CJCJO
OOOOOOOOlTl^OO
oo
cc —
Q<
<
UJ
Ul
_l
CQ
O\OOOir\OMTvOOOOO
o\c\j *—
MOCO
Q in < a
OKOWWJI-I- o«-o-
> —OCO>O;Q:I- o —z
< < tj _i _i o o ce z S > ui
134
-------
APPENDIX IV OFF-GASDATA
This appendix contains a statistical summary for the off-gas data collected for Terminal
Island, Valencia and Whittier Narrows for the entire period of testing. Note thatjaverages in the
text were calculated for selected periods of operation, and may not match the averages presented
here. 1
Key
ASOTE1 - ASOTE6
ASOTET
ALPHA1 - ALPHA6
ALPHAT
FLUM1 - FLUM6
FLUMT
DO1 - DO6
DOT
oSOTE for hood locations 1 to 6 !
flow weighted average oSOTE for the entire basin:
a for hood locations 1 to 6 >
flow weighted a for the entire basin ;
hood flux (m3/m2-min) for hood positions 1 to 6
average hood flux for the entire basin
DO (mg/L) at hood positions 1 to 6
average basin DO !
135
-------
_J LJ O^r-*'O\Oiri>O»--f*-»-
< — ^•cof^-xoir\xocvo»~
to
V)
oo
ce —
,
m c\jfoo\\o«ioc\jr^-f^~ _~ — r-« >»--i **»
0<
IE
to a
CM CVJ •- CM «- CV •-
ffi
cc
•- j>- ir\ \o i— r- cj to ^ in \o t—
W OT OT OT
-------
>
(j
LJ
o
<
IT
o cj a a- m sr r~
r-r-— O
co eo >o oo<
*- c\j w cvj w w w
ce
oz
UJZ
ou.
i-o
(O
X<
oo
<
til
a:
UJ
(-•
r"
3:
. •*.
CV.I
z:
Sslll^i!illll£iilI?i£illF5S'
cor-inoovot <« »M/M —,/».
UMOOJOO
O r- CJ CJ r- CJ t-
— r-T-0
._ - - - — — >coo\cvicvjooo\ovor—OXT-
vo'-inr~o\inco--i-cvjcvjcvjpocvj«-»-O'-oooco
>»-(VJr- t-^
UJ
§
ce
*- cvj co a- m \o c-«- cu co a- in vo i-
UJUJUJUJUJUJUI<«««-(vjc03-invOK
•-'-'-•-•-•-• -
137
-------
C/5
CO
oo
01 —
r-UI
to o
Ul
1
Of
§
CJlflOPOOOrOOChfOONroroeOinflOedroro^vu,-^,.,
C« S £ S 2 *£ -2 S «y £ •? ^ <° o^t-««^
O •— CJ CJ >- CJ «-
ocj eo f> \om
138
-------
ui
o
=>
W
OL-
i-o
CO
CO
oo
KUJ
(DO
UI
r- CM t\i w vo o co CMA m \o co in o
139
-------
'-'OvOcor-cooOOOCSOO'-O'-'-O
O O
z inr-csjcofocofoo\o«io»— r-- o o o o^o o
— *o>ooj c\j h* r-r—,3-ovo\ \nt-fitrMrtXvXvA
« o a- d- ir% o o in
-------
o
z
w^3>o""OOft"0'*"wvo«otrn\jor->oSJ^oS
J O ^J t» ^^ ^^ ^^ ^N *» K _ «K _,
sssssssssssssssSssiSSSsS
to
<
10
QO
a: —
:(_ UJ
-------
APPENDIX V SELECTED DIFFUSER DRAWINGS
142
-------
CO
UI
LU
S
V
T"
D ^
3 c
|*
cri ^
Q
i
ia£B
) lO o
3 ^ Q
c jd jd
!P 10 10
! 04 CM Cv
*-»-*-
-S £ c
CO CO
1 1 1
? Y9TGM9 AERMAX Diffuser (Drawing courtesy of AERTEQ)
143
ENGINEERED PRODUCTS BY
I AERATJON TECHNOLOGIES, INC.
RG. 200.10.87
-------
CERAMIC DOME
OIFFUSER
ORIFICE BOUT.
WASHER
TO PIPE SUPPORTS EXTENSION
IF REQUIRED
ORIFICE BOLT.
WASHER
NEOPRENE SEALING WASHER
4.125"
4"PVC PIPE
POROUS CERAMIC DOME1
NEOPRENE.RUBBER
DOME JOINT
.8I2"CONTROL ORIFICE
COURTESY OF NORTON COMPANY
Norton Dome Diffuser (Drawing courtesy of LACSD)
144
-------
DIFFUSER
RETAINER RING.
10.
4.75
•8.68"-
CERAMIC DISK OlFFUSER
CONTOURED SURFACE-, /
-RUBBER 0-RING
TWO .141 CONTROL
ORIFICES :
STAINLESS STEEL
PIPE SUPPORT
4'PVC PIPE
PIPE SUPPORT
EXTENSION IF
REQUIRED
Sanitaire Disk Diffuser (Drawing courtesy of LACSD)
145
------- |