Compensation Ratios for Wetland Mitigation
           Guidelines and Tables for Applying the Methodology
                             described in
           "Wetland Mitigation: A Framework for Determining
                         Compensation Ratios"
                         Dennis M. King, Ph.D.
                                 and
                         Curtis C.Bohlen, Ph.D.  '

                        "University of Maryland,
             Center for Environmental and Estuarine Studies,
                    Chesapeake Biological Laboratory
                  P.O. Box 38, Solomons, Maryland 20688
                              April 1, 1994
•University of Maryland, .C'EES Working Paper UMCEES-CBL-94-10, March
 1994. Prepared under Cooperative Agreement Number CR818-227 with the
 U.S. EPA, Office of Policy Analysis with  support from EPA Region IV
 (Atlanta) and Region IX (San Francisco).                •
                        EPA -230-R-94-022

-------
I. BACKGROUND

      A modern industrial society cannot  function without causing some
harm to wetlands. Thus,, despite concerted efforts to conserve remaining wet-
lands, some  development projects that  cannot be designed to completely
avoid wetlands will occur. In such cases, those seeking permits from federal
or state regulatory agencies charged with protecting wetlands will usually be
required to mitigate wetland impacts by undertaking or funding wetland cre-
ation, restoration, or enhancement projects. To the .regulators responsible for
implementing wetland  permitting programs,  determining what constitutes
appropriate mitigation for wetland losses is a central challenge. If compen:
satory mitigation requirements are set too low/they will  fail to achieve the
"no net loss" goal that the nation has established for wetlands.  If compensa-
tion  requirements are set  too high, the associated economic costs and social
disruptions will be excessive and will lead to frequent legal and political chal-
lenges, poor  regulatory compliance, and an undermining of public support
for wetland protection.

      Some regulatory programs, including  those in Maine,  Florida,  and
Maryland, address the problem of determining what constitutes appropriate
mitigation by using standard  compensation ratios . These ratios establish the
number of acres of created or restored wetlands required to offset each acre of
damaged wetland (Want 1993). Typically,  ratios vary by state and according to
the type of wetland harmed and the type of  mitigation proposed. The federal
wetlands program administered under ง404 of the  Clean  Water Act, on the
other hand,  does not use standard  ratios  but instead relies  on guidance
contained in a 1990 U.S. Army Corps of Engineers/U.S. EPA Memorandum of
Agreement (MOA) about what constitutes  appropriate compensation. That
MOA specifically requires that mitigation requirements  should  be based
"solely on the values and functions of the aquatic resources impacted" and
not on economic  or other considerations. Compensation requirements under
the federal program therefore, at least in principle,  should be established on
the basis of a comparison  of the wetland functions and values expected from
the compensation wetland and those lost with the destruction of the original
wetland.

      The relatively simple idea of comparing the wetland functions and
values at the lost and replacement wetlands  has proven to be complex in
practice. Wetlands are  important  as  forms  of natural capital because they
provide essential life support functions  and generate streams  of ecological
and  economic functions, products, and services. However, all  wetlands are
not equally valuable in ecological or economic terms. The value of each
wetland depends on the level and  characteristics of the' many different
biological and geophysical functions  it provides, the its proximity to other

-------
 features  of the  watershed, and its  accessibility,  to  animal  and  human
 populations.                        •                         ,

       Assessing  the  adequacy  of compensatory mitigation, therefore,  in-
. volves comparing streams of wetland functions and values that would accrue
 if the original wetland were not disturbed with streams of functions and val-
 ues expected from the proposed mitigation. This comparison  depends on
 three key factors:                    -            •       . .  •    '  •

 (1)    The sustained levels of wetland function provided by the  original and
       the replacement wetland,  which depends only in part on  their  relative
       size (the compensation ratio);

 (2)    The speed with which the created or restored wetland reaches the sus-
       tained level of function that it is expected to provide; and

 (3)    The risk of mitigation failure, or more generally, uncertainty about the
       level of wetland function that the mitigation project will provide.

 II. FOCUS

       In  a previous paper (King , Bohlen, and Adler 1993), the authors de-
 scribed a method  for estimating compensation ratios'based on these three fac-
 tors.  The method assesses whether trade-offs between  wetland guality and
 wetland area that result from wetland  mitigation result in an overall loss of
 wetland value. The method described, in the previous-report, does not deal
 explicitly with multiple sources of wetland value, and therefore  is most use-
 ful when a single source of wetland value is of overriding management in-
 terest. However, as long as mitigation priorities and regional environmental
 goals have been established (e.g., through watershed planning), it can be ap-
 plied in situations where multiple1 wetland values are of concern.

       This paper  responds to the many requests the authors have received
 for a set of simple instructions and look-up tables that will allow regulators,
 permit seekers, and others to estimate "appropriate"  compensation ratios
 based on estimates or negotiated values of a few key parameters.

 III. THE BASIC FRAMFWDKK

       The conceptual basis for the compensation ratio formula is depicted in
 Figure 1. Destruction of the original wetland (at time labeled T0 in the  figure)
 leads to a loss of 100% of it's value. A replacement'wetland is  created, en--
hanced, or restored to compensate for the loss of wetland functions. The re-
placement value-of the mitigation site climbs gradually over  a  period  of C
years from level A—the value provided by the mitigation site in the absence
 of .the mitigation  project—to some maximum level—level B, Both A and B

-------
are expressed as a percent of the per acre value of the original wetland. While
B, the  maximum level of (per acre) wetland value reached at the mitigation
site, will typically be less'than 100% of the value of the original wetland, that
need not be the case, especially if the original wetland was seriously degraded.

                              Compensation Model
                                    Framework
        100%
      2 -a
      o j=
     < .2
        4-1
      i_ 0
      >
     '•5 0), and often, that full value is not as great as was

-------
found at the lost wetland (B<0). As a practical matter, therefore, the portion of
the original wetland loss that would be offset by mitigation if mitigation is
provided on an,acre-for-acre basis is .depicted by the cross-hatched area and the
white area above the cross-hatched area depicts lost values associated with the
failure of the  mitigation to be fully and immediately successful. The shaded
area below the line at A depicts values already'provided by the mitigation site
that are  not attributable to the mitigation  effort. Thus, the percentage loss of
value with acre-for-acre  mitigation depends on the values of A,  B and C,
which are determined by the characteristics of the mitigation project.


IV. THE COMPENSATION FORMULA

      Since the cross-hatched area depicts the value provided by an acre of
mitigation and the entire  rectangle from T0 to Tmax depicts the values lost with
each acre of the lost wetland,  dividing the  cross-hatched area by the total area
gives the percentage loss  of v'alue with one-for-one mitigation, The inverse of
this percentage gives a crude estimate of the "appropriate" compensation ra-
tio—the  number of acres of mitigation required per acre of  lost wetland to
achieve no net loss in wetland value..

      This simple formula, however, misses a few important considerations.
Regulators, acting in the public interest,  cannot be  indifferent to issues in-
volving  the timing  and  risk  of compensatory mitigation. A  more  thorough
version takes account of three additional factors, including ,

(1)   time  discounting—to account for the fact that wetland functions re-
      placed in future years do not. provide the same in value, measured in
      present value terms, as wetland functions lost today;

(2)   risk—that a wetland creation or restoration project will not perform as
      well as expected; and

(3)   advanced or delayed  compensation—the possibility that a mitigation
      project  may be completed  and begin providing replacement wetland
      value either before  or after the loss of the original wetland.

      These refinements  can be made by  introducing a few new parameters
that characterize  .when the mitigation is provided and the risk that the
mitigation will fail and developing a compensation formula. The formula is
not very complicated, but calculating compensation  ratios  directly from the
formula  can be time consuming. We have, therefore,  developed a set .of look-
up tables, included as Attachment A, which provide the user ,with estimates
of compensation ratios for various combinations  of parameter values that
characterize the proposed mitigation.  To  use the  tables, the user needs to
estimate  or somehow  settle  upon  acceptable values of the  following
parameters:

-------
A:    The level of wetland function provided per acre at the mitigation site
      prior to the mitigation project, expressed as a percentage of the value of
      the original wetland;

B:    The maximum level of wetland function each acre of successful
      mitigation is expected to attain, if it is successful, expressed as a percent
      of the per acre value of the original wetland;

C:    The number of years after construction that the mitigation project is
      expected to achieve maximum function;

D:    The number of years before destruction of the original wetland that the
      mitigation project begins to generate mitigation values (negative
      values represent delayed compensation);

E:    The percent likelihood that  the mitigation project will fail and provide
      none of the anticipated'benefits (with mitigation failure, wetland
      values at the mitigation site return to level A)

r :    The discount rate used for comparing values that accrue at different
      times at their present value  (Tables provide estimates based on
      discount rates of 0%, 5%, and 10%).

Tmax- The time horizon used in the analysis (Using the OMB recommended
      discount rate of r=7% comparisons of value beyond about t=75 years are
      of negligible significance)


V. SOME ILLUSTRATIONS

      Table 1 shows some calculated compensation ratios based on the com-
pensation  formula. The first three cases show the effects on  the resulting
compensation ratio  of delaying or advancing the compensatory mitigation
project. The next three examples illustrate how pre-existing wetland values or
compensation for the loss  of a degraded wetland  affect compensation re-
quirements. The final set of examples illustrate how the assessment of failure
risk can affect estimated compensation ratio.

      The characteristics of the mitigation project itself, as reflected in the
values of A, B, and C are of obvious  importance. The last example shown,
however, illustrates why advanced mitigation should  provide a significant
advantage over  concurrent  mitigation in  terms .of  compensation
requirements. Since  many mitigation failures can (1)  be detected, and (2) be
corrected within a year or so of project construction, advanced compensation
allows a permittee or a mitigation banker to manage many controllable risk
factors and significantly lower the risk of failure.  At the same time, advanced
mitigation provides  replacement  wetland  values sooner than concurrent

-------
mitigation so there is  less discounting  of  replacement values and more
resulting  mitigation credit per acre.  Combined, these factors., result  in  a
substantial advantage for advanced as compared to concurrent mitigation in
terms of the number of  mitigation acres required. Lower compensation ratios
for advanced mitigation mean lower mitigation costs, which in many cases
could more than offset the cost of committing funds for advanced mitigation
or investing in, a mitigation bank.                                .   ,

Table 1. Calculated compensation ratios for a variety of hypothetical compen-
        sation scenarios, based on a time horizon (TmflJ of 100 years.
COMPENSATION
. ' ' ' RATIOS
, Parameters
Discount
.'•"•'••" Rate .

Concurrent Creation
Advanced Creation
Delayed Creation
Concurrent Restoration
Original Wetland Degraded
Concurrent Enhancement
Difficult Creation
Very Difficult Creation
Same, Advanced and Risk
Adjusted
A
0
0
0
.0.1
0
0.5
b ,
0
0 '

B
. 0.7
0.7
0.7
0.7
1.4
0.7
0.7
0.7
0.7

C
10
10
10
•10
10
10
10
10
10

D
0
5
-5
0 '
'0
0 ,
0
" 0' ,
5

E '
0
0
0
0
0
0.2
0.5
0.75
. 0.2

0%
1.5
. 1.4
' ~ 1.6 •
1.8
- -0.8
6.6
3.0
6.0
1.8

5%
1.9
1.5
2.4
2.2 .
0.9 ,
8.1
3.7
7.4
1.8

.. 10%
2.3
, 1.4'
, 3.7
2.7
1.2
10.2
.4.7
',9.3
1.8

20%
3.4
1.4
8.5
4.
1.70
15.0
6.8
13.6
1.7

                                   .6

-------
                                      ATTACHMENT  A


      WETLAND COMPENSATION RATIOS IN FIVE EASY STEPS


    I. The  Approach


    A report entitled Watershed Planning and Wetland Mitigation: A Framework for Determining Wetland
Compensation Ratios by Dennis M. King and Curtis C. Bohlen of the University of Maryland, Center for
Environmental and Estuarine Studies describes what the authors believe is a technically and legally
defensible method for estimating compensation ratios for wetland mitigation (acres of created, restored or
enhanced wetland required to compensate for an acre of lost natural wetland).

    The method requires that users estimate or at least agree to values of five parameters that characterize
the wetland functions and values to be gained and lost over time with acre for acre replacement. The
parameters are then used in a modified present value formula to estimate the compensation ratio that would be •
required to achieve no net loss of wetland value over time. The authors have developed the enclosed look:up
tables that contain estimated compensation ratios for a full range of parameter values.


    II.  The  Key   Parameters
                                                   i   < •                           *
A:        The level of per acre wetland function at the compensation site prior to the compensation project,
          expressed as a proportion of the value of the original wetland;

B:        The maximum a,cre by acre level of wetland function the compensation project will reach,
          expressed as a proportion of the per acre value of the original wetland;

C        The year after construction of the compensation project that -it achieves maximum function;

D:        The number of years before destruction of the original wetland.(at time t=0) that construction of
          the compensation project occurs (negative values represent delayed mitigation, positive values,
          advanced mitigation);

E:        The percent likelihood that the project will fail and wetland values at the mitigation site will
          remain at A

E:        The estimated chance that the mitigation project will fail and provide substantially fewer
          environmental benefits than anticipated

n         The discount rate used to arrive at the present Value of wetland values that accrue in the future.


    HI.  The Five Easy Steps

STEP 1    Estimate or negotiate acceptable values of A, B, C, D, E, and r.

STEP 2    Calculate the expected value of B, the value of B adjusted to account for the risk of project failure,
          using the following equation:

                         B   = B(1-E) + AE
                          adj                 •                      '              ...

STEP 3:   Calculate V,  the expected increase in wetland values at the mitigation site due to the mitigation
          project., where:

                         Increase = B   — A
                                      adj

STEP 4    Go to the Table that corresponds to the selected value of D. In the tables provided D can range
          from +5 (mitigation initiated five years in advance of wetland loss) to -5( mitigation initiated five
       '   years after wetland loss).


STEP 5    Locate the frame that correspond to the calculated value of V and C. and pick the Compensation '
          Ratio that corresponds to the selected discount rate  of 0% (top), 5% (middle) or 10% (bottom)
                    For further information contact Dennis King or Curtis Bohlen at:
                  .:	.-,.. ..r ป,_._.,_...,  ,-...,_.. r_.. T-----:-.nmentai an& -Estuarine
                                                      20688  (410-326-7212)
 University of Maryland , Center for Environmental and Estuarine Studies,,
	P.O. Box 38, Solomons, Man/land 2C

-------
        II
=lylf-

 +


cu
D
a.-
i
Q.
CD
,
0
• "O
(0
3
03
5*
, 3
3
6"
S*
9:
CO
8
S
' (7
CO
o
$e
ui
o

o
- 55





m
CJl
i
CD*
CD'
^>
CU
CD
—
Si
8

CD
O
D
a.
o
5
CD'
01
S
M
Z3
a.
p










' of
c
CD
3
CO
CD
O
3
C7I
."S
-(D
03
CD
a.
3
1
o
0
s,
a.
u
a.
3.
c5'
03
5'
3,





O)
TJ
•^
G)
o
o
3"
 J o g. 
l-H
o'
Z3
J^
Q)
j2i
O
__i
ST
cr
CD
                         Value of V
' 1
-'--
Sen -i.
o o

en ^i —
M m en

Oi IS3 JO
ro en
Vj o en
en cS eo
_*.
•*J to ^J
^J l\3 2
S3 -*
in o co
•o bo qj
ro ^j S
u

co en co
•"4 O -*J

Sen cj
CO CO

ro -*j -u
-ป CD W

en CD A.
eo en en

S' 1*J i.
CO CO

CO CO CO
CO ft. CO
en co co
-J co ro
-J en co
s y is

-k ^ CO
Q? en co
3) CO •&•
5 !S- k
1

-*j oi en
en co co

S g 2

5 fe g

ฃ S 'S

ass
-
g is -2
•b co no
is is a
uiii.ro
CO O '-*J
-vj CJ CD

ง 0) 5
•o os co
2 S S
i

O O M

o en S

f5 K-S

CO -4 • **J

8 fe i

ro m —
CO O M
co ro fo
ฃ 8 5
A. co ro
Vj Ka to
o w co

en en to
— ^ o
o en PO
s a ss
'-'9

8-*J O)
en 'S
' /
CO ^j CO
(S3 CD CD

-*• CO Wj
o 5 -*•

s is a

S 3 "2

2 s S
Srsi -ป
!B* CD
 .-*
— cp- co
' 1

S 2 8

6 S 3

S i S
,
ro co co

gas

8 S S
fO" -k ^-k'
V eo "co
^4 -ป CO
PO ro -ป
S 2.S

S S S
O) CO —
2 i; 3
Vs

is^ s

s s s

Jfc fO -j.
o en A.

S S3 S

CO JO '—

b -g. —
^3 — . -*
'--• CO ?O
CO -* — •
ro -k ->•
co ^j Kj
— k co jj.

S CO CO
en co —'
O CO CD
g
-
3 S —

In i%S
V
fo "-k o
o> co co



g S S

S g g
is a'8
S3 — -*
S — fo

en co in
en fo -1*
2 ij g
j?

S g S

S S SS

S S S

(O O g

g s is

A. -* CD
S& 1
M Ik _k
S "^ 2

g s g
.&. ro —
to
^

is s s

CO CO 'CO

g s g

is is g
-
is s 3

g 0 g
— -* o
2 ^2 is
S S'l

8 S g
^k. ro -k
fo co —
1

o o o
a 2 a

CO CO. -J

CD CO -^J
-g -g 
-------
Value of V
5 P A? P ' 5s ? 5s
_ _ _ - F S
o "o c en en en ico u co fisa -o ?o ^fo -o "o
338.8S3.SSS!S$SS:8S8
-g i as
.i . 1
CO
p

1
...
SJSi353SiSSS'=r = S8g
	 | - : \ \
33Cnw>>.ฃ-%3roco'ivjfji -fo 3s — o en — ui — -c
i f
— 3 9 '(ft Ui U) *U U U -M ro *sa
& vi — ^jtooca'JiiocDcnen
-4 in in A. -g 33 -o so co --g to *•
>O fO "O
ro — b
co tn co
; ' !
— _. — " ' '
M -• O o tn yi [ฃk to coco ro.fsa ro'oro
yiM^MCJ— •'— -4a."— eacncn -o o
*j ป4 tn '(S toU'^O'MCO'MCi 'O tn tn
;_ >,
u — o*7tฃntnA.coco
Ci en y ca S — in ''Q 'xk
uSS^cScaA.Sjji

ik io 'in
— m co




C3 U -ฃ>.;ฃ. — • "VS CO — ^ -O Q Cl [CO '^ O
a ~j> •>4ococoฃJ^^lo^o^^3!en-gco
™ — _ป t
N ฃJ o ^o o en en ik co
i :
\ r
;— yป _ , ,Q ^j eni-v) en co
utoorcncnen1— — en
o j* s, >cb -~j fo ro — &
! [
tn o — co co en *co tn cj
23a:sS53;ggs
, (
งa8!ggg.ซgg
Jk CO <\J
co en co
en co PO
V <5 *-*
s s en
en A. ro
ro ro m
en ^ ifc
~ CO CO
A. en to
co ro  ^ CD

SCO CO
• — o
i ' ''k '•'•
2^s;S'SSa5SlK853 s 8 2_,

is s's

S3 S S

s g s
tn ro —
0 -S $

SCO 0
CO ^J

— yi L.
ro -* '. —
o o to
1 /
A. ro —
SCI CO
S. ro
v, :!••(' v.



SCO b
co S
ro — —
ro tn o
CO Ja. CO
A. fO -*

CO CO fO
ro — o
SA. CO
— en
co ro. —
-* '^ ro co M ^
^J o o 'ro o o

2 s SL
S 5ฃ 3
co ro —
So o
co. So
-
ho
A
-
CO
o
s
ro
o
K
g
                                                                                  1
S
to to to
s a s
SO (O S3
S 31 g
	
i58g
— p o
o to tn

g S S
ซ r P
ui oป S
	
8 S S
S S o
^ Cl (O
fO — M
(•o1 5 —
•^ M fO
CJ O M
iS 3
S = 8
IO
P

j|

tn Wj io fp — u
tn m tn ito -J o

•*4 CO to
o S ea

S M S
tn tn w
ง g ง

ro O) i-*
o ro u
en en tn
Wi co •*
CO S CD

U In u
en -i fo
to -^j tn

=3 K ^

Xk, *ฃk U
CO — tn
g g g

co tn ro
jk to Co
co ro tn

g g s
en Jw co
W u 'A. A. co. en
— o oป f-^ ^ i.
|
— 03 tn i-J tn co
fe S 2'fe 8 '2
O ro o
2 S S3
CO. CD ^.
O -J "
1

^J CO CO

its

01 en tn
ro to ro
g s s

s s s
u M ro
8 S S

3 S S
A. CO fO
g S 3
,,,
o tn co
1

S 8 g

sag

S S 2
ro 1*0 ro
'ro - b
co in co

Co W tn
ro "o ro
Sio o
Ul ^1

O3 U CO
co ro ro
S S as
Xk co ro
a s is
co en ro
ft S S !g S. 2
A
g

en en b>
ro CD- tn

•ji en en
co eo en

2 — *

S-ปJ OJ
O CO

O CO -J
-4 -J i-

ro cp '-*J
A. en co

ig _* ig
ro co ^
CO fO —•
•ซJ
ง

D CO -*

to eo ^.
C3> CO I>0

j^ ^ A.
co en ฃ-

en In 1&.
to co tn

^ cn 'A.
-*J — O

Is s s

ass
ro ro -^
S g S i! S S
co to -*
3 S S3
cn A.' ro
Ul CO ^4
co ro —•
fo co m
tn — -o
tn co —
en tn co
en co en
1

S S S

CO ^ K

co ro ro
o co en

A. co ro
ro .ฃ -^i

tn 1^ ro
tn o co

s ii is

2 2 g
ro — —
•a. co co
co co 55
ro ro — •
CO O ^
tn ro o
tn. co .— •
ro — 01
— ฃ. to
8

2 i 3

SO -*
CO —

q> J>. ro

;\> _ป _•.
-^ CO CO

% 3 s

ฃ ^2. is

2 en en
ro — -ป
-* in ro
en ro —
ro — ' —
CJl CO fo
CO O tn
Xk. PO —
co co tn
3ซ

s g g
O O —
S g 8

S S 8

S S3-S

S 13- S

a 32

S S g
.-
S k 8
N3 — —
ro cn —
co ro ro
Jk PO -*
'P

SCO CO
H O
0.0 0_
23 g g'

CO CO CO
tn CO —
— O O
S g g

s s s

is s's

ik -ป co
CO CO ^J
— _k o
^ a s
fO — ซ• — •
o '-^ c?
^j -si S3
co ro —
5 2 S IS S S
'i'
5?

S 3 S
OOO
3.2 S

-Ni tn 2
ooo
S co tn

S 2 S
r* P P
JO ง 8?

3 S ง

S B 2
s a f
co ro -*
*j S ง

' ".|

O CO O)
ooo
a 'a ;i

S^j -^
CO ^J
ooo
CO CO CO

CO CO -^
-. . o' O
8 ง S

ro o co
cji — r\5
df'y
— —"o
^ - 'a,
co ro S
_1 _. o
lg ro "co
tn & en
CO — —
S 3 S
s'ss

-
PO
Ji
en
CO
o
"
s
!S
tn
O

                                                     O

-------
Value of V
1

882

cn  A.

— * CO A.
cn ฃ5 cn
ro fO ro
CO "a. iw
**1 ฃ* CO

s.is- 2

CD 'cn In
-O -vj Ji.

S g g

3.3 8

ฃ1. A. *j
-* CO O

— ' en' *j
^i en '-g

^J ^J ro
!

S 2 8

a a is

s ss s
"t
322

S'S.'S'

ji. (\j .0
en ^ en

S 8 3



S S IS

S S 5
J
,
g'.s a

s a 2

71 en m

3 S 3

a ^j cn

2 S3 i

-a. O -^
•*J CD Ol

s s g
X
.^ en m
01 m in

s s s
^

— h3 A.
CO. ป 0

M CO i".

a s ฃ

Ji.ji.-ix

cn , 01 S.1
' 'f :
•^j o ^

S 3 S

s-s s

S 8 S

S ฑ.ฃ
Vi
;..-
sas
s ' ' ' •*
o — KJ

s s s

8 88

^ cp ro
. •:>'•
ass

8 % S

ro .-J w
-ป & tj)

S S g

S S 2
•:•••.,:

lo' o o

i s s
, ;
o o —

Ol CO M

cn (3 co

S " k

en co —

s s s

gig

ro os *.
3?

cS 2-S

CO CO CO
^J CO S

s s s

s s "s

s • g fe

18 -!3 8

6 S g

^i co b

0 In -i.

3 g @
0^

ass

328

S S S

is s 2

S .iS S

= 88

!ฐ -*• S

S S S

S S 2

-tv -* -*
•;"i

CD "-J CO

S i! S

ass

^ g g

SCO CO

S S S

8 2-S

ft S S
'-;
S S S

-i. (o'-O
\l

2'S S
-
OJ "-J "-4

2 3J !j

CO '-J '-J

23 S co

S ง ซ

r* P P
X g S

CO O CO

01-03

J8'2 S





fป



00

;



s

o

™

                                                          o |
                                                          p.i
1
^i co.  -*j co

g) ^ CO

S '3 S

oo 2 S

sag

CO CO S

r* P P
fO CD' m

^ 0 CO

01 Fo co

3 8-S

i
p p o
Ol O -ปJ
co en 01

P<=>P
2 S 5J

o o o
a b! g

Is a ii

JO CD ^

g S S

2 ^ S

w ro ™

•^ "~* -S

Cn S' c8 '
Mai

-








ซ4-

^

o

SJ

8|


                                                     a
                                                     o

-------
Value of V
3' 3
2 2
u
2
• 1
! ' 1
CO =0 (0 Ici .3. A. IfO INJ CJ 1 — fO ro
S 3 5 :'t - S & 2 2 !bi g ง
-j CO SO
s s s
Mao
2 a a
C3 tO tO
a s a
t3 CO  ro
3 -s| A
•fr *ฐ r;
i. — ca
— ,fO fO
•si — '^
CD O fU
— ro fo
b ro lu

S 2 g

b ฃ s
f\3 ro ro
P
— —
5 i i

•& en to
to & oj

5j it a

2 g iS

g i i
PO ro M
a 2 s is s 2
eo fo ro
2 co tn
en to co
CO CO PO
S ฃ 2
^ co ro
ro A -si
co co rvj
.^ M P
CO ฃt -*
ro ro ro
'&. rO O
tn -si en
ro ro ro
to en "—
to ro ro
u ro ro
sac
m ft. ro
ro u ui
o>
— u en
^ ^J O

3 0 2

3 =3 S

S S 2

s Is is

So S 3

2 S S
•o ro ;-••
iv 1-t '-j
CJ O O
ro ro —
g 8 2
tn co ro
\3 CD Q
ro — 3
1
O '-* CJ
CO ^J ^1

S 8 g

b S 8'

is s s

^ CO 00

A. Ol ^.

a s es

SCO U1
o -*•
ro -* —
S- S S
.*• P T~
A. O -vj
•vj 3 tO
03
ง
1 S'ฃ

S S !2

to '-* KJ
CO O (N3

b - fo
^J OJ CO

— fva ro
O5 -* ^

PO ro fo
01 -^ en

bi A. Ki
u ro CD
i^ .
S ^J ro
I\j' _* _*
S 2 m
U fO —
CO "-si Ol
CO
?
o o -*
-ปi to b
en -* ^j
O O -1
o (p b
O S ->j
00 —
S3 S S

g S g

So — •
CO -i.

ro co PO

u fo —
O) OJ O1

CD "^.'ฐ —
ro o co

to in fo
0 CT —
co ro —•
CO O S
i
0 0 0'
ง33 CD
rva en
boo
a 2 is
000
a s g'

CO to 
fS 5 8

CO' en en

*J CJ O
— (0 CO
OJ O .JS
o
&2
o' o o
s si's-
0 p 0
a -* en1
O 0 O
•Vl -vl -%l
fO Ol -*J
000
S~v| ~-J
CO ^J
pop,
S 5 to
-op
— to" CD
ro -g —
— _ o
S3.3 2
fO — O
!&• 01 Jo
— • ei -si
ISP

-
10
*k
O
CO
o
s
to
o
10
o

                                                     13!

-------
Value of V
"
t

0 S 0

31 co ro
co o cn

CO CO CO
co ro ro

cn co vj

8 S'S:

Sro ro
CO to
ro — -k
-k cn o
Sro co
CO CD
S S r
S S g
O CO —
CO v| OT
0 -A. —
cn ro -*
CD ro ro
' fO ,

yi M o

gas

CO to —
A CO O3

co. ro co

ro cn ro

S ro ^
o vi cn
m m '.a-
cn ro as
ro co cn
to *. cn
ro vj &.
cn CD cn
— CO CO
ro —
^ co m
to

S g S

8 i! iซ

S 8 S

g S-S

in to in
o S co

-j S cn
vj en co
is s s
co en" co
cn ro vj
— cn ro
o 'ro co
— fO CO
o cn vi
CO CO A
Svj cn
ro ro
i

s a a

— k co in
vi co cn

A. CD cn
vl vj 4O

3=8

ro ro 2

co ฑ"SJ
cn co ro
ro S S!

ii ro co-
ro co .ro
v4ji.ro
cn cn cp
CO CO 0
CO vj CO
v| CO to
tn
P

ฃ>. ro p

cn Ki b
^ cn tn

vi co' b
CO v| vl

S'A. b
CD CD

8 2 S
'
g 3 S
o- co ro
5ฃ S ' o
cn' co ro
-k co ro
vj co ro
cn co- ro
S' CO -k
v5 K 2
:-'i

2 3 S,

ro "— b
vl CO CO

o to1 2
/ •'
ji ro o
fO A. cn

ro co p
cn o ro

2 g ?•
ro -ป —
"- 'in' ^
vi ro o
ro — —
CO CO CO
CO -k —
O CO — ,
co vi ro
cn ro" -k
a to co
ro ro
•|.

o 3. S
„ ' • .
a sis

8 S 2-

|kl — k CO
co co cn

Jl '— to'
o as 35

j> ro co

5 8.8
ro -k —
828
PO -k -k
ass
UK ro- -k
238
i

2 1 I

S S 8

-k CD TO
ro co ro

3> S *J

3 S"8

*fc ' -k CO
tD Xk tD
-k -k' O
GO ro co
ro -* o
01 -* 2
ro — o
co ro vi
*. "ro .—
CO -U -k
ro co co
> i

s a .s

CD CO .vj
CO -N| CD

b 'CD co
v| — O

'-f~ (D O3
vl cfi -*

ro p co
v| O —

g S S
— — o
ro — k co
-k -k 0
CD O vl
ro -i o
8 S ง
*k.-to —
ro ro p



ro

^

01

09

O

tn

s

S

in
o

                                                    o
                                                    o
1

co cn co
_* to —•

200 CO
^j ro

•O lCk '.d
~*l <3> ~*J
---
S3 S S
CO CO 0
W CO S

CD CO CO
co ro o
M--
ro o o
S— i. --.
i. '-ปj 'A,
CO CO —
CO -k —
CO CO —
So -ปJ
CO ฃk
ro co —
— P to
o ro ^j
ii.cn*-

S

a s b

S 2 S

s s s

gen ro
CO CO
co ro cn
52^

S ro o
'
co b tn
co S cn

fo to '-*i
-* C3 -*
ro co wi
-*J CJl •vj
CO -k
o cn m
S % 3

-'s

^ ซ t
A. ro -a.

Oi CO -&•
cnoj.cn

S'-* '.&.
. cn to
•* ..
g JS CO
ro A. co
g g g

g -^ S

s a 3

CD CO 0
— cn co'
= -g s
ro, —
o ,o *k
Co ro tn
tn ro co

*ป•

O co cn
CO O • CO

jv co cn
CD ^J CD
' . „" (
ป — ro
o -k ro

— Ks ro
-j ^j Ik
A. co ro'
S fe 3

s a s

S 8 3

— cn Si
co •& ro
co ro S
cn ^J co
ro ro ^
ro ro -^

I
•'•
m co 'p
cn fo ro

S 3 g

3^0
cn to. co

8 2 S
co ro fo
sis

2 OT 55

3 ง M-

s as'
ro co ro
S3 2 g
fo m fo
PO — V|
— co cn

x

K S S

S S 2

S-'S 2

oo' co 'm
W IN3j —
s s j=

s S g

Sro co
^ CJl

^J CO CO
-ft. -^I O
cn co —
cn fo co
m co cn
o cn >o
^J — CO

"'g

Sm -N.
,m ^i

CD vl ifc
CO O CO

S'S s

co co in
CO ^J -*
s g a

2 S 2

.Ck ro cn
-k CD CO

g 2 S
A. M —
OS — ' 03
CO Xfc —
>J CO ^
ro co O)

•'1

n cn CD

-g ^. ro
A. CO CO

o cn co

g S S
PO -* -*
5 b! g

s s a

งO CO
O CO

cn ro co
-ft, ro -*
v| "Ol ^1
^ fฐ r*
ro co ^j
CO CO fO

; -j

co co cn

en to -
m ro cn

0 So cn

cn • cn -co
*t\3 .* — ••
ro ro co

CD CO O

ro -ij ro
tn co. CO

-k io fo
ro co vi
co ro —
Vj —i. CO
O CO O
OT CO -k
CO — CO

;-..j

a *-*• b
co ro co

S S 2.

a a s

Oi'CJ Q
^J — (S
b co b

S S S

S S =

S S S
CO -k -k
CO to "—
CO vl vl
m co -k
— ' P CO
O CT> vj

i

a'g 2

^ g 2

CO — ' CO
co Co cn

cn — to
ro co ro
ill

3 g g

3 a -2

S S 2
CO — -*
S 3 3
Cn to — k
cn co cn

PO

— CD' CO
-^ vi ro

cn cS cn

ro p co
Vj S VJ

co b co
CO CO CO
_ป — o
i s ง

2 S g

S g S

CO -b. CO
ro i* o
•vi ro co
00 i. CO
cn ro —
CD* cn cn

1
as

D CO vj
ro to CD

O CO OP
vi -k -5

— CO CO
vj ro -ป

g S 2
_ป _* o
'A. b bs
0 tn ro

2.3 8.

2 S g

— * CO CO
CD vt CO
ro _*. o
g 2 S
-^ ro —
s-.g s
*;ป

^

ro

ซ

Cft

CO
0

_,.

to
o

cn

b


                                                     O

-------
Value of V
— fO
P S
r 3 S ^ * ซ, ':
i i r i ?! " i
! !
a. A. co 'to to ro fo ."o ro *ro ro —
BQA.e>02*ฐ?'95;??2ii
	 ; ! . |
5 a 2 m " S
5 jj o ca a 01
	 t
CO u o 'to o tn
;
is A. o :io *•* en
\j — — • t —
— tn o o s en
8BA B* - —
cs — !to co en
•o ta NJ — A. oป
— S — !in o tn
I
CJ r\j _ '— -^>
sn O — ca o tn
ง S il 'to w 2



3 '-J '^
!o i- co

\
3 ^'^
4 ,
3 i 'il 1 I:
• I---'.

jn co '— I'-i. '"01 "b- to — ! ฃo j
. [V
•.";.'/
' l: •••:
- — 01 — 0 01
53 2 S3i3 2 ง!
- - -o'l
.j-.
- - s ,ป _ b c i a la b 2 js s b. ;jg S 2 g 'g S iS S S IS -3 S ;S 2 5 3 S 2 !j
en &' u •& co ro
8 *ป S • S S3 2
en A. to
— en tn
CJ i*. CO
ass
^i en co

a s 2
O C) CO
55 3 S
kfo Cl CO
IS 0*
g 2 2
ฃk CO rO
Ul A ซ
.a. co ro
g S 3
cn co ro
M C> U

fl fO OS

co en ro
q '3 is
p CO CO
j ro ro j

in **j '—
co u ro
Jg 5 S
&. to ro

M 8 S
31 co ro
ซปj A. ro
b s 8
CO Cl'TO
s k s
o ro —
D '*^* •ซ*
O CO O

to — —
.^ co in
0 ^ —

^i5

ii ^ฐ to 'fo efl to !co ro. S
CO IO —
a s.is
co ro —

i i sj
Jl CO -*
-— f\3 r\j
ฃฃฃ'
^ en, ro
ro ro —
a g 2
co ro -*
ง"— en
en c>

a a ง
A. ro —
ii .53 a
en ro -*
Is S 3
CO •ป• ' — •
en bi CD
CO O CO
o — —
s g a
;;,

c^ 'a <%
Cj ro —
CO CO CO
CO A. —
S 8 2
*ฐ tn ^o

31 -CO O

2 S3 S S y 3
O CD JO,
ro — —
ta. co ro

Jl '— !O
CO CO C> 1
_ _*' 0
,.,u
S'A. b co to 10
-. co — — - a-
ro -* '—
5 3 S
g g life 2 I1
SSI
i
— — b t
'.a. b co i
-, S -o i
-'- J.'v'-1-
O) O S ' A —• '-O
co to to Ico -o -to
•:1, •'.'!'
\J^J CltOCO M'CO CO fOlCO O -^
co ro —
IIS
CO CO CJ1
to — —
^3 5 "io
O CO —
i_ r\5 ^
ro — . — •
2 3 8
3 S 8
J
tn ro —
— co ro
0 CO ^1
to — ' b
CT> W. CO
to — p
S . ro ซ
OS CO "-'
io co 01
— — 'o t ฐ
งiis
— iป CO
10
ro ' .- pi01
tn ro — ฐ
^- !^ b
1 -^J O3 ^J
1
ro
___! 1
i *o o lea o en
= a s ;s s s
	 i
n u o
ca — y> ;
9 U O
o a s

ca o> tn
ฃ & &!
(O O> en
rO 03 W

:3 *• g SS N S
235
s s Js
83 =
S S 2
Ss =
ca cn co
o -4 en
o c5 o5
^ M tn
ID ep en
& m en
ฃ co 93
g_l
X to — S •
^J CO CO

g S 8
to ro —
2 iS'fe
A. to -*
y en in

2 r^ 3
ro to '-J
CO

^J Ji -*
CO fO -J

D -Dป -*
-*J O> CO
s s s

S 8 S
ro — —
S 8 S

ass
CO — —
tO (Q K3
-j- co CD
to fo —
rS co o

CO fO S
CO CO —
!2 3! S!
1

OT ro o
-•• co en

S 2 g
g S3 S

S S S'
ro — —
NJ en b

3 S 3
ro — _—
S y w
CO — —
I'fc g 'c

i

Jป — CO
Cf> CO 'CT

tn -* ,cp
CJ tD CO
i S 1

CO -* CO

S S3 1

3 'S'S
i 2 s
to -*'•-*
bag
, ••
S'^'SlS S S
Wl, 10 -
ig g ฑ
OT CO —
i
sซ

s.s s

i.1 <= co
— (5 co
S.--.S
— — P
Sio to
0 0
\
CD "O CO
to o —

SCO CO
ro ro
ro -•• O
"n. !ix to
— *4 tn
ro — O
IS3 S'S

g 2 8
Cft ro -*
'-- CO "-~
CD fO CO

eo
,- -y _,.
- P ฐ
!ฃ ง 2
IO
g S 2 .
— —. O
'.&. b* QD I
to co ro
en
S = 1 .
CO
s" a 2 1
L. - 0 ฐ
Sro co
Nj tn
ro — o *"
is 8 ss .
ro - o1 c
g 2 ง '
to -o'l"
O -ซJ fO l
1 (.
in ->o - ฐ
S 2' Si
PU1 0
ซS S2
                                                         01
                                                         L

-------
Value of V
I

'-J 'A. 01
ro CJ CO

^' 01
0> -*j co
10 -* — ป
S S g
I\J -k -*
ro cn o
— •— to
to ^ ro
ro — -*'
cn 0) 2
M -* —
to cn -••
— -* 01
2 S'_
-j in i.
-*J 0> CO
co ro -*
^ p —
.ti A. — i.
•C". fO -ป
CO 03 -*
-*t m -+i
CO CO -••'
-* cn -flk
8 S g

5

3 3 kง

8 g g

— ro ฃ.
01 ro o
? r^ ฐ*
8tn !&.
•M O)
_t
O3 CO fJ

- 8 S
en to 01
CD (O -si
CD o 01
is s 2
M —
-* iw b
CD (\3'" CD
P Fj "^
31 CO — •
CO O Oi

u

(D A. cn
— -03 i.
)
S S 3

^J CD CD
•*j — O
^J cn co
g g. 2
-
g S S

••j cn -sj
A. ฃ> fO
0 01 CO
yi LL co
CO to CO
M 0) CO
01 S 

O) O> Cn b ^ p to — ฃ b co co 2 S'g "s S S eo — cn S S' CO -' CO- 01 ik u ro K " CO CD 03 — K3 CO --J — (O CO (\3" -U M 03 o> co ro gig -g .&. ro in '-* co -g to 01 CO UI A. *4 ^J CO 3) ^i ro in M 3 '.-, CO Ks' ^ cn jk ^j S S'3 8 ฃ g f rฐ r 3 S Sง 8 2 S w ^ ra ^ ^i m Ul 01 - S S 2 0) W — Gi '^ to — * ifc ^J g:2 S u oi ro 2 S S •-., in 'co cn CO- PO 1\3 b> ,'tb in cn -*j co i i fc CO I\J — U 1* uf •vj Oi 0) ft 53 S S 63 g. \ Jป M — S S 2 i. io cn -* . S g 8 f* .po 7* fO M' CO O CO •* s-a a to co -* S S S •••'•i y s g g g 3 8 6 S N r* .— IS 2 8 ji. cn -*. fO (O O s g ป ซ r* r* -* CO —• CO M — - ca 0) is tk ro ro -ฃfc CD M p co — 1 0) ro co S K S. g S g ro — . o S S S S S 8 822 i si k S S 8 ง i •j ซ —i g S 8 O 5s A. Ij. CO co ro co •n — in S 8 1 r- r' P ^ ^ to 2 s'iss -* CO CO CO CO CO PO -* O 5 In 01 CO -* 0 s ^ s' 3 S 2 01 ro -^ 3 $ is' : i " •• % S J8 CO 0) S cn - co CD -* to — -* O !i in 2 ง 3 S S 8 'S ro — o 6 S S ro — o to tn co S S S 01 ro — is a s ps? ro 4^ cn CD U1 o ro g o


-------

-------