-------
Default Values
Certain parameters are needed to run OZIPM-4. The default values are
the values of these parameters that will be used unless other values are
entered in the Input data. For example, the default value for the highest
NMOC used in the construction of an Isopleth diagram is 2.0 ppmC. If no
number is entered 1n the input data for this parameter, OZIPM-4 will use
2.0 by default.
Diagram Point
Any point on an ozone Isopleth diagram 1s associated with three con-
centrations: initial NMOC and NOX precursor concentrations, and a maximum
one-hour average ozone concentration corresponding to the initial NMOC and
NOX levels. A set of these three parameters is termed a diagram point.
The ozone concentrations at some diagram points are determined from actual
computer simulations, while the ozone concentrations at intermediate
diagram points are interpolated from the concentrations at the simulated
diagram points.
Spline Interpolation
Spline Interpolation is used to determine the ozone concentrations
between diagram points for which ozone concentrations have been calculated
by computer simulations. A spline function 1s similar to a wire con-
strained to touch certain points. If the wire is pulled taut, it will
bend at each point, but will be straight between points. If the tension
is reduced, the wire will provide a smooth curve that touches the
points. The hyperbolic spline functions used to interpolate between cal-
culated diagram points in OZIPM-4 have an adjustable tension factor analo-
gous to the tension on a wire. Interpolations are performed internally by
the OZIPM-4, and usually there is no need for the user to be directly
concerned with the spline functions.
SUMMARY OF INPUT DATA
Input parameters that can be specified by the user when performing an
OZIPM-4 calculation include:
A new chemical kinetic mechanism;
-------
The zenith-angle-dependence of the photolysis rates in the chemical
mechanism;
Latitude;
Longitude;
Time zone;
Date;
Morning and afternoon mixing heights (also called mixing depths) or
hourly mixing depths;
Hourly temperature variation;
The simulation start and stop times;
Concentrations of NMOC, NOX, CO, ozone, and up to 10 other species in
the air above the mixed layer due to transport aloft (note that these
cannot be varied in time);
Concentrations of NMOC, NOX, CO, ozone, and any other chemical spe-
cies transported in the surface layer;
Background concentrations of NMOC, NOX, and ozone. The background
represents the minimum levels in both the surface layer and aloft
that could be achieved if all urban emissions were reduced to zero
(i.e., continental background);
VOC, NOX, and CO emissions at each hour;
Organic reactivity. Four reactivities can be specified: background,
initial, aloft, and emitted. However, each type of reactivity is
fixed in time for each diagram point and at every point on the dia-
gram;
NOX reactivity (initial fraction of NOX that is N02);
Surface deposition as a function of time for up to 10 species.
OUTPUT OPTIONS
The major function of OZIPM-4 is to estimate the NMOC reductions
needed to achieve the ozone air quality standard. The output depends on
the option selected by the user. Three types of output can be requested:
8
-------
(1) Perform a single calculation for a specified set of initial
concentrations.
(2) Compute VOC emission reduction needed to achieve the 03 standard
of 0.12 ppm without generating an 03 isopleth.
(3) Generate an 03 Isopleth.
In addition, the user may generate isopleths for species other than ozone
and perform off-line (CALCOMP) plotting.
-------
10
-------
SECTION 2
TECHNICAL DISCUSSION
The OZIPM-4 is a trajectory-type model designed to simulate ozone
formation 1n urban atmospheres. The model consists of two distinct compo-
nents: The first 1s a trajectory-based kinetic simulation model that
mathematically simulates the physical and chemical processes taking place
in the atmosphere; the second uses the simulation results to calculate a
control strategy for a specific test case or to construct an ozone
Isopleth diagram. This section describes the conceptual basis of the
kinetics model and the mathematical techniques used to perform a simu-
lation.
CONCEPTUAL BASIS FOR THE OZIPM-4 KINETIC MECHANISM
In the OZIPM-4 kinetics model, a column of air containing ozone and
precursors is transported along an assumed trajectory. As the column
moves, it encounters fresh precursor emissions that are uniformly mixed
within the column, which 1s assumed to extend from the earth's surface
through the mixed layer. The assumed horizontal dimensions of this column
are such that the concentration gradients are small enough to make the
horizontal exchange of air between the column and its surroundings
insignificant. The air within the column is assumed to be uniformly mixed
at all times.
At the beginning of a simulation, the column is assumed to contain
some specified initial concentrations of NMOC and NOX. As it moves along
the assumed trajectory, the height of the column can change because of
temporal and spatial variations in mixing height; it is assumed to change
with time during a user-selected period, and to be constant before and
after that period. As the height of the column increases, its volume
increases, and air above from the inversion layer is mixed in. Pollutants
above the mixed layer are described as "transported above the surface
layer" or "transported aloft." Any ozone or ozone precursors above the
mixed layer that are mixed into the column as it expands are assumed to be
rapidly mixed throughout the column.
11
-------
The kinetics model in OZIPM-4 also considers emissions of VOC, NOX,
and CO into the column as it moves along its trajectory. The concentra-
tions of these species within the column are physically decreased by dilu-
tion due to the inversion rise, and physically increased both by entrain-
ment of pollutants transported aloft and by fresh emissions. All species
react chemically according to the kinetic mechanism selected. Certain
photolysis rates within that mechanism are functions of the intensity and
spectral distribution of sunlight, and they vary diurnally according to
time of year and location.
The following assumptions and specifications describe the OZIPM-4
trajectory model:
The air mass of interest is an imaginary air parcel (column) of fixed
horizontal area at a diurnally varying uniform temperature, within
which pollutants are well mixed.
The region of the atmosphere containing the imaginary column is suf-
ficiently homogeneous that horizontal diffusion does not affect pol-
lutant concentrations within the column.
The height of the column varies with time as specified by the user.
The column contains specified initial concentrations of NMOC, NOX,
and CO at the simulation starting time.
Pollutants transported within the surface layer from outside the area
of interest may be present in the column at the beginning of each
simulation. The pollutant concentrations due to transport in the
surface layer are normally assumed to be zero, but the user can
specify other values for the NMOC, NOX, CO, and ozone concentrations
transported within this layer.
Changes in pollutant concentrations within the column are calculated
by computer simulation for a user-specified period.
Entrainment of pollutants transported aloft is possible during the
rise of the mixed layer. OZIPM-4 permits entrainment of NMOC, NOX,
ozone, and a limited number of other species, but the concentrations
in the layer aloft cannot be varied in time.
Pollutants emitted into the column after the starting time can be
represented by specifying additions of VOC, NOX, and CO, and other
species during each hour.
Zero cloud cover is assumed.
12
-------
Other assumptions relating to the use of EKMA to predict control
requirements or changes in urban ozone concentrations as a result of
changes in precursor emissions are discussed in EPA (1981).
COMPUTATIONAL PROCEDURES
This section presents a detailed description of the mathematical pro-
cedures used in OZIPM-4 to calculate the maximum one-hour average ozone
concentration that results from given initial concentrations of NMOC and
NOX. These procedures are based on the physical and chemical processes
described in the last section. Before the beginning of a simulation,
data-preparation steps are.performed by the program. A simulation is con-
ducted by first determining concentrations at the starting time and then
numerically integrating the equations that form the basis of the model.
The numerical solution continuously yields species concentrations as a
function of time throughout the simulation period. The following discus-
sion describes the data-preparation steps, the calculation of initial con-
centrations, the model formulation, and the numerical integration tech-
nique used.
Data-Preparation Steps
Because all simulations performed by OZIPM-4 in generating an ozone
Isopleth diagram have identical conditions except for the initial NMOC and
NO,, concentrations, a data-preparation step 1s performed by the program
before the first simulation begins. The purpose of this step is to elimi-
nate abrupt changes in photolytic rate constants and emission rates.
Elimination of these abrupt changes (i.e., discontinuities) is desirable
for three reasons:
(1) The integration scheme requires less computer time (discontinui-
ties require the use of small time steps).
(2) The results are more accurate numerically (stepping past discon-
tinuities without preparation can lead to errors).
(3) The atmosphere does not normally have discontinuities. (The
simulation of intermittent cloud cover or sudden changes in
emissions is outside the scope of OZIPM.)
The solar zenith angle is evaluated every hour using an algorithm
developed by Schere and Demerjian (1977). The algorithm uses latitude,
13
-------
longitude, time zone, and date as Input data to calculate photolytlc con-
stants. A set of third-order polynomial spline functions 1s then genera-
ted so that the photolysis rate of N02 (based on the calculations of Jef-
fries, Sexton, and Arnold, 1987) can be calculated from a smooth curve for
any time of the day. At a given zenith angle, all other photolysis con-
stants used in OZIPM-4 are assumed to be either proportional to the N02
photolysis rate or a function of the zenith angle when specified
explicitly by the user.
Emission rates are expressed either as fractions of the initial pre-
cursors or as emission densities for each hour. The emission rates are
converted to continuous functions for use in solving the differential
equations through a histogram-fitting algorithm described by Jeffries,
Sexton, and Salm-1 (1981). The histogram-fitting algorithm replaced the
spline-fitting algorithm described in the original OZIPP manual because
the latter yielded widely oscillating functions.
Determination of Initial Concentrations
Before a simulation can begin, the concentrations of all pollutant
species at the starting time must be determined by the program. These
concentrations are derived from the initial concentrations of NMOC and NOX
that are specified by the user. The concentrations of transported pollu-
tants are assumed to be zero unless otherwise specified by the INITIAL,
ALOFT. TRANSPORT or BACKGROUND options (see Section 3).
The concentrations of the nonzero species are determined by the pro-
gram in the following manner:
(1) N02 is set to the initial NOX concentration multiplied by the
N02/NOX fraction (N02/NOX fraction default is 0.25).
(2) NO is set to the initial NOX concentration multiplied by the
quantity one minus the N02/NOX fraction.
(3) 03 is set to the concentration transported in the surface layer
or to the background value, whichever is larger (default is
zero).
(4) The concentrations of the organic species are determined from
the assumed initial NMOC concentration and the assumed reac-
tivity fraction. Mathematically,
[organic^ = [NMOC] (Ri)/Cj (2-1)
14
-------
where
[organic], * the concentration of the i-th organic species in ppm
[NMOC] = the concentration of the initial NMOC concentration, ppmC
R.J = carbon fraction of initial NMOC that is species i
C. = number of carbon atoms in species 1
(5) Two species (t^O and carbon monoxide) are set at nonzero concen-
trations if they are not explicitly entered by the user. H20 is
set to a concentration of 20,000 ppm and carbon monoxide is set
to 1.2 ppm initially, and 0.5 ppm aloft (Baugues, 1987).
Mathematical Formulation of Concentration Change Processes
The kinetics model in OZIPM-4 mathematically simulates physical and
chemical processes taking place in the atmosphere. This simulation is
accomplished by numerically integrating a system of ordinary differential
equations that describe the effects of these processes on pollutant con-
centrations. The result gives the concentration of pollutants as a func-
tion of time. The mathematical formulation of the system of differential
equations is described next.
In OZIPM-4, five processes are assumed to affect pollutant concentra-
tions:
(1) Chemical reactions
(2) Dilution
(3) Entrainment of pollutants transported aloft
(4) Emissions
(5) Surface deposition
Differential equations are used to describe the time rate of change
of pollutant concentrations due to each process. The total time rate of
change of each pollutant concentration is then simply equal to the sum of
all these effects. Thus, the system of equations consists of one dif-
ferential equation for each species in the kinetic mechanism. The five
processes are described next.
15
-------
Chemical Reaction Effects
The change in pollutant concentration due to chemical reaction is a
function of the rates of the chemical reactions. The rate of each reac-
tion is the product of a rate constant and a concentration of each react-
ing species. The photolytic rate constants are calculated by procedures
that will be described later. The concentration term for unimolecular or
pseudo-first-order reactions (such as photolytic reactions) is simply the
concentration of the reactant. Bimolecular reaction rates are calculated
similarly, except that the concentration term 1s the product of the two
reactant concentrations. For example, the reaction rate (RT) for the
reaction,
NO + 03 - N02 + 02, (2-2)
would be expressed as
(RT)2 = k2 CNQ C^
where
(RT)2 = rate of reaction 2, ppm min
k2 = rate constant for reaction 2, ppm" m1n
CNQ = concentration of NO, ppm
CQ = concentration of Oj, ppm
If the rate constant varies as a function of temperature, then k2 would be
represented by the rate constant at 298 K, along with an activation energy
term (E/R), in degrees K, such that
k2 (at temperature T) = k2gg x exp [E/R (-^ - -|-)] .
The time rate of change of a species due to chemical reaction is
simply equal to the sum of all rates for those reactions in which the
species is a product minus the sum of the rates for those reactions in
which the species is a reactant. Thus,
(*T)pROD - I (RT)REAC (2-3)
' = chemical reaction contribution to the time
/ rate of change of species i
16
-------
i(RT)pROD = the sum of all reaction rates in which
species i appears as a product
z(RT)Rr«c = the sum of all reaction rates in which
species i appears as a reactant
Dilution Effects
The mathematical representation for simple dilution due to changes in
the mixing depth is a first-order decay process. The rate of change due
to this effect can be represented as follows:
dC,
-DC, (2-4)
where
dilution effect contribution to the time
rate of change of pollutant species 1,
ppm rnin"
D » dilution factor, min (function of time)
C » concentration of species 1, ppm
The dilution factor is calculated in one of two ways depending on the
option chosen: The first method of dilution assumes that the mixing height
varies from a minimum (or morning) mixing height to a maximum (afternoon)
mixing height in accordance with a "characteristic curve" derived empir-
ically from data taken during the St. Louis RAPS study (Schere and Demer-
jian, 1977). The "characteristic curve" represents the fractional growth
in mixing height as a function of the fraction of daylight. The fraction
of daylight is calculated as follows:
c*=,^*,-«^ «* *i*.,-M,,i.4. Time (current) - (time of sunrise
Fraction of daylight = (time Of sunset) I (time of sunrise
17
-------
The mixing height at any given time is
Mixing height = HQ + FQ x AH
where
HQ » mixing height at time of sunrise
(calculated from the minimum mixing height)
AH = maximum mixing height - HQ
FQ » fraction of growth in mixing height.
The "characteristic curve" is depicted graphically in Figure 2. Note
that before and after the inversion rise period, the dilution factor is
zero since there are no dilution effects for those periods.
Two modifications were made to the characteristic curve concept to
facilitate its use. First, a smooth curve through the points shown in
Figure 2 was used to avoid discontinuities. Second, the mixing height at
the start of the simulation (usually 0800 hours) was used instead of HQ as
noted above since most simulations start after sunrise.
The second method of dilution 1s the specification of hourly mixing
heights. When hourly mixing depths are specified, the dilution factor at
each time step 1s calculated 1n the following manner:
Dt = H/Ht
where
Dt = dilution factor at time t, mln"1
H
the rate of change in mixing depth
with time at time t, length min~*
mixing depth at time t, length.
Entrainment Effects--
Pollutants above the mixed layer are subject to entrainment. In
OZIPM-4, these are limited to NMOC, N02, 03, CO, and up to 10 other
chemical species. The mathematical treatment of entrainment assumes that
18
-------
Characteristic Curve
i.o,-
~ 0.9
o>
* 0.8
o>
2 0.7
* 0.6
I 0.5
to
0.4
0.3
+j
u
£ 0.2
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sunrise Sunset
Fraction of Daylight Hours
Figure 2- Graphical depiction of mixing height "characteristic curve."
19
-------
the concentrations aloft do not change with time and that they extend uni-
formly to at least the height of the afternoon mixed layer. The pollu-
tants entrained are assumed to mix rapidly within the enlarged surface
layer. The mathematical expressions for the rates of change of the pollu-
tants are shown by the following equations:
"i'AL
HC
(2-5)
(2-6)
where
'dC
i
rdC
HC.
dt /AL, \ dt /AL
the contribution of entrain-
ment to the time rates of change
of species i or hydrocarbon
species j, respectively, ppm min~]
dilution factor (i.e., the rate
constant at time t for the mixing
height rise), min"1
m,j
1 AL
(CNMOC)AL
= carbon fraction of the Cup
= concentration of ozone, N02, and
up to 10 other species trapped
aloft, ppm
= concentration of total nonmethane
organic compounds trapped aloft,
ppmC
= number of carbon atoms in species
j
It should be noted that the effect of the change in mixing height is the
sum of the dilution and the entrainment effects.
20
-------
Emission Effects-
Emissions are the fourth factor affecting the rate of change of pol-
lutant concentrations. The rates of change due to emissions are equal to
the additional concentrations produced by the emissions. Because equal
moles of emissions Into different volumes will produce different concen-
trations, 1t 1s necessary to adjust the relative emissions to reflect the
change 1n the column volumes due to the Inversion rise. This 1s done
Internally 1n OZIPM-4 by first calculating the ratio of the starting
Inversion height to the current Inversion height. (This 1s equivalent to
the ratio of Initial volume to the current volume.) Before the Inversion
rise begins, this ratio 1s one. After the Inversion rise has ceased, the
ratio 1s the Initial mixing height divided by the final mixing height. In
general, the ratio (ft) 1s the ratio of the Initial mixing height to the
mixing height at time t.
The rates of change due to the emissions are calculated from the
values of the emission rates (calculated using the Interpolating functions
described earlier), the ft ratio just described, and the reactivity
Inputs. The equations for the rates of change due to emissions for each
of the affected species are shown below:
where
fIJ - emission contribution to the rates
of change of species 1, ppm mln'1
(E.) " value of emission rate of species 1,
ppm min
For these formulations, a conversion from ppmC to ppm is performed
for hydrocarbon species, and the reactivity of the hydrocarbons is taken
Into account.
The normal emissions Input to OZIPM-4 1s 1n fractions of Initial NMOC
and NOX concentration, which gives ppm or ppmC emission rates. Other
emissions options 1n OZIPM-4 allow the user to Input mass or molar emis-
sions rates. Molar emissions input to OZIPM-4 must be converted to nor-
malized ppm units for the amount to be added each hour. The different
emissions options available will automatically convert the emission
21
-------
9 I
density from moles m~£hr~A to the required units; these options are dis-
cussed 1n Section 3. To convert emissions of moles m"2hr"1 to ppm/hr, one
multiplies by 24450 moles"1 for each hour and divides by the Initial
mixing height m to normalize the values.
Carbon monoxide emissions can be treated explicitly using a new
option (CREDIT) discussed 1n Section 3.
Surface Deposition Effects
The deposition rate 1s a function of surface type and the Individual
species' reslstence to surface uptake. In general, NO, W^, and 03 have
high deposition rates, whereas organic compounds have very low deposition
rates. Species surface deposition can be treated 1n a manner similar to
that for dilution. In OZIPM-4 the rate of surface deposition is equal to
the deposition velocity (1n units of cm/s) times the pollutant concentra-
tion divided by the height of the mixed layer. Thus, the rate of change
of the pollutants can be expressed as:
r«,\
-, - - V. x C, * H x 0.6
/Deposition
where Vd 1s the deposition velocity in units of cm/s, and H 1s the height
of the mixed layer (m), and 0.6 1s the conversion from cm/s to m/m1n.
Description of Numerical Integration
The kinetics model 1n OZIPM-4 employs a Gear-type integration scheme
to numerically solve the set of differential equations described in the
previous section. A detailed description 1s not given here because the
method 1s not unique to OZIPM-4, and the procedure has been described
elsewhere (Gear, 1971; Spellman and Hlndmarsh, 1975; Sherman, 1975). The
Integration scheme initially uses a time step of 1 x 1Q minutes (I.e.,
pollutant concentrations are to be calculated 1 x 10 minutes after the
start time). Subsequent time step sizes are then computed by the Gear
type integration scheme according to the estimated error at each step.
The pollutant concentrations are calculated at each time step throughout
the simulation period. (Once the final hour 1s reached, there 1s no
restriction on precisely matching the final time step, since the concen-
trations can be Interpolated back to exactly the last hour.) A typical
simulation period takes from 150 to 200 time steps; about one-half of
these time steps are used in simulating the first minute.
22
-------
The total rate of change of any species is the sum of the rates of
change due to dilution, entrainment, emissions, surface deposition, and
chemical reaction just described. At each time step, the concentrations
of all species are calculated along with the current rates of change for
each species to predict the species concentration at the end of the time
step using a Taylor-series type polynomial. The order of the polynomial
1s varied internally for optimum efficiency and is based on the values at
the beginning of the time step. A corrective scheme then "corrects" the
new concentration values, updates the Taylor polynomials, and estimates
the average error. The corrector is a set of linear equations based on a
Jacobian matrix whose elements are the set of partial derivatives of rate
of change of concentrations of each species with respect to each of the
other species. OZIPM-4 utilizes a linear system solving package for
sparse matrices (i.e., those matrices in which most elements are equal to
zero).
The integration method used in OZIPM-4 has been modified somewhat
from the version published by Spellman and Hindmarsh (1975). For example,
the error estimation is performed relative to the current concentration of
a species rather than relative to its maximum concentration. The method
utilizes the error estimate to determine the optimum step size and order,
so that the allowable error specified by the user is met with the minimum
number of integration steps.
The final task performed during the integration of the differential
equations is determination of the maximum one-hour-average ozone concen-
tration. Ozone concentrations are calculated for every minute of the
simulation. This calculation is performed by interpolation between the
actual time steps used in the integration. Running one-hour average con-
centrations are calculated using Simpson's rule and are updated every
minute. The largest one-hour average concentration is then selected as
the maximum.
GENERATION OF ISOPLETH DIAGRAMS
It is not necessary to use isopleth diagrams to perform EKMA calcula-
tions with the EKMA option in OZIPM-4. However, though use of the EKMA
option will provide the target VOC control requirements, in some cases, an
isopleth diagram can provide additional diagnostic information. These
circumstances include:
The occurrence of a maximum (or maxima) along the line of constant
NMOC/NOX ratio leading to two or more design ozone points (or a maxi-
mum lower than the design ozone).
23
-------
A design ozone that does not fall on the line of constant NMOC/NOx
ratio.
The program cannot find the 0.12 ppm (NAAQS) ozone level.
The program cannot find the design ozone concentration within 8 trys.
The use of an isopleth diagram to develop a better understanding of
the characteristics of the Isopleth curves.
For situations that require an isopleth diagram, the user specifies
the maximum NMOC and NO concentrations, respectively, for the abscissa
and ordlnate. The OZIPM-4 performs a series of 121 simulations to
generate predicted ozone concentrations on an 11 x 11 (NMOC x NOX) rec-
tangular grid with points evenly spaced within the specified maxima. From
these 121 simulations, the pollutant isolines are estimated based on con-
touring procedures described by Sutcliffe (1978). The contouring proce-
dures are based on a tracing algorithm that searches the rectangular grid
of data points and finds the diagram point with a value just greater than
the isoline of interest. An Interpolation is then performed at the inter-
val of interest using a hyperbolic spline interpolation scheme developed
by Cline (1974).
The algorithm proceeds through the rectangular grid tracing the iso-
line from one edge of the diagram to another edge (Figure 3). The four
outer edges of the rectangular grid beginning on the bottom edge and mov-
ing counterclockwise are scanned until an interval containing the desired
Isoline 1s found. In the example shown 1n Figure 3, the isoline begins on
the left edge (edge 2). The first point 1s the point with a value just
greater than the Isoline value (point 1). At point 1, a clockwise sweep
of the surrounding eight points (5 points, when the center point is an
edge point) determines (1) which interval the isoline intersects (hori-
zontal or vertical), the center point, and the neighboring point and (2)
where the center point will be for successive scans. The tracing proce-
dure is continued until an edge is again reached.
The intersection of the isoline at some point on the interval between
the center point and the neighboring point (points 1 and I1 on Figure 3)
1s determined by a spline interpolation scheme that uses all the data
points along the vertical or horizontal line. Thus, in Figure 3, all data
points along the left edge are used to determine the intersection of the
isoline with some point on the interval from point 1 to 1'. The interpo-
lation scheme is repeated for each successive center point. In Figure 3,
at point 13, all data points along the horizontal line containing points
13 and 13' are used to determine the intersection of the isoline with some
24
-------
FIGURE 3. Illustration of the tracing procedures used
to construct an isopleth diagram.
25
-------
point on the interval between points 13 and 13'. The use of spline inter-
polation is an improvement over the use of strict linear interpolation
within the interval of interest. The tracing procedure is repeated for
each isoline value specified by the user or by the default set stored
within the OZIPM-4 program.
26
-------
SECTION 3
DESCRIPTION OF OZIPM-4 OPTIONS
This section contains detailed description of the different options
and inputs available for use with the OZIPM-4 computer code. Currently,
there are 26 options. The first four letters of each option have been
underlined to denote the required input code. Briefly, these options are:
Optional Mechanism Input:
MECHANISM - input a different chemical kinetic mechanism
ZENITH - input zenith angle dependence of the photolytic rate con-
stants for optional mechanism or revise zenith angle dependence for
the default mechanism
City-Specific Inputs:
PLACE - location of the site
DILUTION - input minimum and maximum inversion heights
MIXING - input hourly inversion heights
TEMPERATURE - input hourly temperature values
DEPOSITION - input hourly surface deposition rates for specified
species
TRANSPORT - input surface layer and aloft conditions of NMOC, N0x»
and 03
INITIAL - input conditions of species transported in the surface
layer other than NMOC, NOX, and 03
ALOFT - input aloft conditions of species other than NMOC, NO , and
0,
27
-------
BACKGROUND - input background conditions of NMOC, NOX, and 03
EMISSIONS - input hourly emission fractions of VOC and NOX
MASSEMISS - input hourly mass emission densities of VOC and NOX
MOLEMISS - input hourly molar emission densities of up to 5 species
REACTIVITY - Input reactivity of the initial NMOC mix and VOC emis-
sions and the initial N02/NOX ratio
CREDIT - input hourly emission fraction (or emission densities) of
carbon monoxide (CO) and allow for change in CO in the future year
Additional Simulation Options;
TITLE - input simulation title
TIME - input starting and ending times for computer simulations
RATE - change chemical reaction rate constants (for testing purposes)
SPECIES - input the species of interest for isopleths
ACCURACY - change the accuracy of the simulation (error tolerance)
and the tolerance for spline interpolation
ALREADY - time saving option utilizing simulations from a previous
run
PLOT - perform off-line plotting (CALCOMP)
Program Output Options;
EKMA - calculate VOC reductions needed to achieve the Oj standard of
0.12 ppm
CALCULATION - conduct a single simulation for a specified pair of
initial NMOC and NOX concentrations
ISOPLETH - construct an isopleth plot
The following dicussion describes the use of these options. Also, recall
that Section 5 describes the specific format requirements for each option
discussed here.
28
-------
CHEMICAL KINETIC MECHANISM
As noted earlier, the CBM-IV is internally stored in the OZIPM-4
program. However, the program has the capability to accept a chemical
mechanism other than the default CBM-IV. This optional kinetic mechanism
cannot contain more than 135 reactions and/or 60 species. To input a
different kinetic mechanisms, the user must specify certain parameters:
The total number of photolysis reactions (maximum of 20) and the
reaction numbers that identify the photolysis reactions in the mech-
anism.
The total number of organic species included in the initial NMOC mix
(maximum of 20), the names that identify these species, and the num-
ber of carbon atoms in each.
The fraction of total carbon that each organic species represents.
The following subsection discusses how mechanisms are coded into OZIPM-4.
Input of an Optiona1 Mechanism
An optional mechanism is processed with the MECHANISM option code.
After MECHANISM is entered the following parameters are specified: the
reaction identification number of the last reaction to be read, the total
number of photolysis reactions, the total number of organic species in the
initial mix, the mechanism input format, and the temperature. The program
will then read the following line(s) in the following order:
The list of photolysis reactions (up to seven on a line, twenty reac-
tions maximum).
The list of names for the organic species that are included in the
initial NMOC mix (up to seven to a line, 20 species maximum).
The list of carbon numbers for the organic species in the same order
as above.
After the list of carbon numbers for the species is read, the mechan-
ism itself is input. Each reaction is input on a separate line. Note
that the species names used in the kinetic mechanism must be consistent
(e.g., HO and OH will represent different species).
There are currently two input formats for chemical reactions. The
first format is similar to the formatting used in the CHEMK chemical kin-
etics program developed for the EPA (Whitten and Hogo, 1980). This format
29
-------
is provided for users who have chemical mechanisms already set up for the
CHEMK program. The CHEMK format allows for up to 3 reactants and 4 pro-
ducts per input line. Stoichiometric coefficients of one are assumed. As
an example, the reaction 2NO + 02 * 2N02 must be written in the following
form: NO + NO + 02 * N02 + N02.
CHEMK Reaction Input
Each CHEMK-type reaction line allows input of the reaction identifi-
cation number, up to three reactants, up to four products, the rate con-
stant at 298 K, and the activation energy in degrees Kelvin. Since the
Stoichiometric coefficients for all reactants and products in each reac-
tion are ignored in the CHEMK format, the user will need to rewrite cer-
tain reactions when using this format. The following reaction provides an
example:
RCHO + hv * 0.5 R02 + 1.5 H02 k3 = 0.0025 min"1 (3-3)
This reaction must be written so that all Stoichiometric coefficients are
equal to one. This can be done by separating the reaction into several
reactions such that the sum of the new reactions will be equal to the
original reaction (3-3) at the same overall rate for all species.
In general we start with the form
A + B + C * XjD + X2E + X3F k4 (3-4)
where the Xs are fixed such that
0 < Xj < X2 < X3 < 1.0 .
For the example case [Reaction (3-3)]
RCHO + hv * 0.5 R02 + 0.5 H02 + 1.0 H02 (3-3)
the general Reaction (3-4) can be rewritten as four reactions:
A+B+C*D+E+F k5 (3-5)
A+B+C*E+F kg (3-6)
A + B + C * F k? (3-7)
A + B + C * kg (3-8)
30
-------
where k4 = kc + kg + k7 + kg and the rate constants for Reactions (3-5)
through (3-8) are defined as follows:
k6
(X3 -
Using this scheme for the example Reaction (3-3), the four reactions are
RCHO + hv * R02 + H02 + H02 kg (3-9)
RCHO + hv * H02 + H02 k1Q (3-10)
RCHO + hv + H02 kn (3-11)
RCHO + hv * k12 (3-12)
Rate constants for these reactions are
kg « 0.5k3
k1Q * (0.5 - 0.5)k3 = 0
ku = (1.0 - 0.5)k3 = 0.5k3
k12 = (1.0 - 1.0)k3 = 0
Therefore, only Reactions (3-9) and (3-11) are needed to represent Reac-
tion (3-3), both reacting with k = 0.00125 min'1. Note that the sum of
Reactions (3-9) and (3-11) is
RCHO + hv * R02 + H02 + H02 (3-9)
RCHO + hv * H0 (3-11)
2RCHO + 2hv * R02
which is the same as Reaction (3-3). The general scheme outlined here
applies to all reactions that can be transformed into the form of Reaction
(3-4).
31
-------
EPASIM Reaction Input
The second format for the chemical reactions allows the user to input
nonunity stoichiometric coefficients for the products of the reaction.
This format is an extension of the chemical mechanism input format for the
EPASIM chemical kinetics computer program (Overton, 1976). This format
also allows the user to input up to nine products. For example the reac-
tion
EL + NO * 3 N02 - 2 NO + 0.5 H02 + 0.5(CHO)2 + 0.5 CH3C03
+ 0.5 CH3COCHO + 0.5 CO
can be input as follows:
(1) EL + NO - 3 N02 - 2 NO + 0.5 H02
(2) * 0.5 CH02 + 0.5 ET03 + 0.5 ALLE + 0.5 CO
where the numbers on the left side represent the line input sequence.
Note that four character symbols are used in place of the actual species
symbols. Each chemical reaction line contains up to three reactants, the
reaction Identification number, up to three products (with the associated
stoichiometric coefficient), the rate constant at 298 K, and the activa-
tion energy in degrees Kelvin. If the reaction contains more than three
products, the extra products are input in a continuation line following
the first line, provided that a flag was placed in the first line to
denote the continuation sequence.
The required format for this and the CHEMK reaction input lines is
explained in Section 5. For both formats the last reaction must have a
reaction number corresponding to the number given on the MECHANISM line,
though it need not be the highest reaction number in the mechanism. Rate
constants must be in min"1 for unimolecylar reaction, in ppm'^in"1 for
bimolecular reactions, and in ppnT^min for termolecular reactions. The
units of the activation energy (if used) must be in degrees Kelvin (K).
Photolysis reactions can be treated in one of two ways when inputting
an optional mechanism into OZIPM-4:
(1) The rate of photolysis for a particular species can be assumed
to vary with zenith angle in a fashion similar to N02- The rate
constant for photolysis in such a case would then be expressed
as some constant multiple of the rate constant for photolysis of
32
-------
N02« The user would designate the specific reaction as a
photolysis reaction (using the MECH option) and input this
multiple in the rate constant slot for that reaction. For
example, if it is assumed that the photolysis of HNO,2 proceeds
at a rate equal to 0.1975 times the rate of photolysis of NC^,
the user would include the HN02 photolysis reaction number as a
photolysis reaction and input a value of 0.1975 in the rate con-
stant field of the reaction line for HN02 photolysis.
(2) The rate of photolysis for a particular species can be varied
with zenith angle in a fashion that is not similar to fN^. In
this case, the user should input a value of 1.0 in the location
on the reaction line where the rate constant is placed. The
user would then use the ZENITH option to input (as a function of
zenith angle) the photolysis ratios relative to N02 for the
species of interest. That is, one does not input the absolute
rates; but rather, a relative rate that, when multiplied by the
N02 photolysis rate for that zenith angle, will yield the
desired absolute rate. The ZENITH option is discussed in detail
later in this subsection. Again, the reaction of interest must
be identified as a photolysis reaction with the MECHANISM
option.
Photolytic rate constants for N02 as a function of zenith angle
are stored internally in OZIPM-4. Normally, when inputting a
mechanism, the user would place a value of 1.0 in the rate con-
stant field of the reaction line for N02 photolysis. The user,
however, has the option to change the photolysis rate for this
species. For example, to perform simulations with a 10 percent
increase in the overall rate of N02 photolysis for all zenith
angles, the user would input a value of 1.10 in the rate con-
stant field of the N02 photolysis line. In addition, the user
can use the ZENITH option to include a set of new values at dif-
ferent zenith angles (see below).
Modification of Rate Constants
Changes to any rate constant in the kinetic mechanism are made with
the RATE option. On this line, the number of reactions with rate constant
changes is placed in columns 11-20. If a nonzero number is entered in
columns 21-30, a special option is activated in which all rate constants
are set to zero except the photolysis rate constants. This allows the
user to test the emissions, photolysis constants, and dilution rates. The
photolysis rate constants can be set to zero with a PLACE option using a
location above the arctic circle, near the winter solstice.
33
-------
If only certain rate constants are to be changed, the first line
after the RATE line contains the numbers of the reactions with rate con-
stant changes (each located in separate 10-column fields; up to seven
reaction numbers may be placed on a line). The next line(s) contains the
new rate constants placed in the same location as that of the correspond-
ing reaction numbers in the previous line(s).
ZENITH Option
Immediately following the MECHANISM option, the ZENITH option is used
to revise or input photolysis rates as a function of zenith angles. In
addition to those for N02, photolysis values for the following reactions
are stored in OZIPM-4 as default values for the CBM-IV:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
03 + hv
FORM + hv
FORM + hv
ALD2 -i- hv
H202 + hv
OPEN + hv
MGLY + hv
*0( D)
* 2 H02 + CO
* CO
* X02 + 2H02 + CO + FORM
* 20H
* C203 + H02 + CO
* C203 + H02 + CO
Photolysis rates for these reactions are stored internally because these
rates are known to vary with zenith angle in a fashion that is different
from that of N02. Consequently, it would not be accurate to treat the
photolysis of these species by coding a constant multiple of the N02 pho-
tolysis rate on the reaction lines as is done for the other photolysis
reactions. For the first four reactions, separate zenith angle dependent
values, are stored in the OZIPM-4 and rate constants of 1.0 are used in
the mechanism. However, the inputs for the last three reactions are
implemented differently because these functions depend on the functions
for the second and third (formaldehyde) reactions. For H202 we use the
zenith angle function of formaldehyde to stable products (reaction 3) and
a rate constant ratio of 0.189. The OPEN and MGLY photolysis reactions
use the zenith angle function of formaldehyde to radicals (reaction 2) and
rate constant ratios of 8.40 and 8.96, respectively. The multiplication
factors (0.189, 8.40, and 8.96) are entered in the rate constant field of
the reaction line (see Gery, Whitten, and Killus, 1988, for a discussion
of these rates).
34
-------
When using the CBM-IV mechanism, the ZENITH option can be used to
modify the default functions that are stored internally for the above
species. It can also be used to consider the zenith angle dependency for
other species that are presently assumed to photolyze in a manner similar
to that of N02. The user would input his choice of the ratio to N02 pho-
tolysis for these reactions at zenith angles of 0, 10, 20, 30, 40, 50, 60,
70, 78, and 86 degrees. For example, if the user wishes to increase the
N02 photolysis rate by 10 percent at a zenith angle of 0 degrees only, the
user would input a value of 1.1 in Columns 11-20 of ZENITH option line
2. A value of 1.0 would be entered in the subsequent fields of the option
lines. (The use of a ratio to N02 photolysis was chosen because many of
the photolytic rate constants are reported as a ratio to N02 photolysis in
the literature.) In addition, the rate constant of a photolysis reaction
(input with the MECHANISM option) can be used as an overall correction
factor to any zenith-angle-dependent function. Section 5 shows the format
for the ZENITH option.
When the MECHANISM option is invoked, all photolysis reactions are
assumed to vary as a function of zenith angle in a fashion similar to N02
photolysis. Thus, the ZENITH option must be used when an optional mechan-
ism 1s Input Into OZIPM-4 if the photolysis reactions for species such as
03, FORM, and ALD2 vary with zenith angle in a fashion that is different
from the N02 photolysis.
When an optional chemical mechanism is used, the user must follow the
procedures outlined here to ensure proper use of the photolysis reactions:
The N02 photolysis reaction must be defined as the first reaction in
the reaction list.
All photolysis reactions will have an associated multiplication fac-
tor, which is input as the rate constant on the individual reaction
line (1n the MECHANISM option). This factor is an overall multiplier
of the photolysis rate of interest.
For those photolysis reactions that do not vary with zenith angle in
a fashion similar to N02, the user must invoke the ZENITH option
immediately after the MECHANISM option.
Only those reactions that do not vary with zenith angle similar to
N02 need be entered with the ZENITH option.
SITE-SPECIFIC INFORMATION
Up to 15 options can be used to describe the initial and meteorologi-
cal conditions for the computer simulations. These options are PLACE.
35
-------
MIXING, DILUTION, TEMPERATURE, TRANSPORT, INITIAL, BACKGROUND, ALOFT,
DEPOSITION, and TIME. Two different options, EMISSIONS (or MASSMOLE or
MOLEMISS) and/or CREDIT can be used to describe emissions entering the air
parcel during the simulation. The option REACTIVITY 1s used to specify
site-specific Information on the reactivity of the initial NMOC and NOX
ambient mix and the VOC and NOX emissions.
Place and Date
In all OZIPM-4 runs, the rate constants of the photolysis reactions
1n the kinetic mechanism are varied in accordance with the diurnal change
1n sunlight intensity (or solar zenith angles) during the specified simu-
lation period. This diurnal variation is calculated using a computer code
written by Schere and Demerjian (1977) that 1s Incorporated in OZIPM-4.
The user can adjust the photolysis rate constants to the area of interest
by changing the date or location, or both, from the default values of 21
June at Los Angeles, California. The option is activated by the code word
PLACE. The first three numeric fields of the PLACE line (columns 11
through 40) contain the latitude (decimal degrees north), longitude (deci-
mal degrees west), and time zone (hours from Greenwich Mean Time). The
next three fields are used to specify the year, month, and day in columns
41-50, 51-60, and 61-70, respectively. An additional line may be required
after the PLACE line 1f a nonzero value for the latitude or the longitude
is entered. On this line, the name of the city of Interest is entered
between columns 1 and 24. Therefore, even 1f the default values of 34.058
and 118.250 specifically are entered, a second line is required. Users
Interested 1n the default location need not specify the latitude and long-
itude.
The numerical time zones for the continental United States is as fol-
lows:
Numerical Time
Zone Common Name
4.0 Eastern Daylight Time
5.0 Central Daylight Time
6.0 Mountain Daylight Time
7.0 Pacific Daylight Time
To produce standard time simulations, even though the output will show
daylight time units, a false time zone can be created by incrementing the
36
-------
numerical time zone by one unit (hour). Thus, Pacific Standard Time pho-
tolysis constants would be generated if a 8.0 were entered instead of the
7.0 (daylight) time zone. The output should then show that solar noon
occurs near 1200 hours when the printing of solar noon is activated.
Dilution Rate
Dilution in OZIPM-4 occurs as a result of the rise in the early morn-
Ing inversion. Under default conditions, the inversion is assumed to rise
from 510 meters to 630 meters over a 7-hour period starting at 0800 LOT
using the characteristic curve.
City-specific values for determining the characteristic-curve dilu-
tion rate are entered using the word DILUTION. The values of the morning
mixing height, afternoon mixing height, inversion rise starting time, and
inversion rise stopping time are entered in the first four numeric fields
of the DILUTION line (i.e., columns 11-20, 21-30, 31-40, and 40-50,
respectively). The starting and stopping time should be in 24-hour time
format, local daylight time. For both default and specific conditions,
dilution is assumed not to occur outside the starting and stopping times.
Input of Hourly Mixing Heights
The second form of treating dilution in OZIPM-4 allows the user to
input hourly inversion heights if such data are available or if the user
does not want to use the characteristic curve to calculate the mixing
height profile. The user declares this option (MIXING) and gives the num-
ber of hours dilution is to occur. The inversion heights are then entered
for the initial height and for the end of each hour. Therefore, if there
are n hours of dilution, n+1 inversion heights are entered. Dilution will
always start at the beginning of a simulation (i.e., zero time). To have
a zero dilution rate for a certain number of hours, the same inversion
height should be given for those hours. Note that zero cannot be used as
an inversion height. Up to 24 hours of dilution may occur (corresponding
to 25 inversion heights). Any measure of length may be used to specify
the mixing heights, but the unit of measure must be consistent for all
values entered. The format for the MIXING option is given in Section 5.
Temperature
Another option found in OZIPM-4 is the variation in temperature dur-
ing a simulation period. The chemical kinetic mechanism can be dependent
on the variation of temperature. As the temperature rises, the kinetic
mechanism generally reacts more rapidly, leading to earlier formation of
37
-------
ozone during the simulation period and possibly higher amounts of ozone.
Temperature values are input in a manner similar to that in the MIXING
option (described earlier and in Section 5). All temperature values must
be 1n units of degrees Kelvin. If the TEMPERATURE option is not used, the
default value is 303 K. Another constant temperature value may be set
using the MECHANISM option card (see Table 8).
Surface Deposition
OZIPM-4 has the capability of treating dry deposition of gaseous
species such as ozone, nitrogen dioxide, and sulfur dioxide. Hourly depo-
sition velocities (1n units of cm/s) are input for each species of inter-
est. The format, for surface deposition option (DEPOSITION) is the number
of species with nonzero deposition rates followed by a series of lines
that contain the species name and the first six hours of surface deposi-
tion rates. Additional hourly deposition rates are placed on lines fol-
lowing the first six hours of deposition rates. The user 1s referred to
Section 5 for the format of the DEPOSITION option.
Initial Conditions of Transported Species
The TRANSPORT option is used to input initial concentrations of 03,
NMOC, and N0£ transported 1n the surface layer and entrained from aloft.
If the default mechanism is used, the concentrations of the transported
species are entered on the first Input line. If the user selects a dif-
ferent mechanism or wants to change the makeup of transported NMOC from
the default value, the format for the NMOC inputs is different. Instead
of entering the concentration for NMOC transported in the surface layer, a
negative number is entered in that field on the TRANSPORT line. Simi-
larly, a negative number is entered if there are organics entrained from
aloft. These numbers must have absolute values equal to the number of
organic species in the initial mix. Immediately following the TRANSPORT
line, the concentration of NMOC transported in the surface layer and the
fraction of the total organic for each organic species are input. Simi-
larly, the concentration of NMOC aloft and the fraction of the total NMOC
for each organic species are input on the third line of the transport
option (or immediately following the TRANSPORT line if there is no surface
transport of NMOC). Note that the fractions for the organic species in
these two cases can differ. As is the case with all uses of the organic
species, the fractions must be placed in the same order as the original
list of names for the organic species input under the mechanism option.
Ozone (surface and aloft) and N02 (surface and aloft) are input in the
same manner regardless of the mechanism used.
38
-------
To input species transported in the surface (or mixed) layer other
than NMOC, 03, and N02, an INITIAL option can be used. The number of
transported species is placed on this line. The next 1ine(s) contains a
list of names of the species that are to have nonzero initial concentra-
tions. (Up to 60 species may have nonzero initial concentrations.) The
next line(s) contains the initial concentrations (ppm) of the species
listed on the previous line(s). This INITIAL option is useful for con-
tinuing a calculation beyond the 24-hour limit of the model.
To consider entrainment of species other than NMOC, 03, and N02. an
ALOFT option can be used. The number of species with nonzero concentra-
tions is placed on this line. The next line(s) contains a list of names
of the species that are to have nonzero concentrations. (Up to 10 species
may have nonzero initial concentrations.) The next line(s) contains con-
centrations (ppm) of the species listed on the previous line(s). These
species will be entrained from aloft in a manner similar to that employed
for ozone, NMOC, and N02, as previously described.
A set of background concentrations consisting of ozone, NMOC, and N02
can also be input by the user. The background concentrations represent
the lowest limits that can be set for the transport concentrations in the
surface and aloft layers. Therefore, if the user specifies values for 03,
NMOC, or N02 on the TRANSPORT line lower than the background values, the
background values will be used. The format for the BACKGROUND option is
similar to that for the TRANSPORT option except that only one set of val-
ues for 03, NMOC, and NOX is entered (see Section 5).
In general, the concentrations of species transported in the surface
layer and aloft remain constant for any simulation on an isopleth diagram.
The EKMA and the CREDIT options are the only options which allow the user
to modify transported surface and aloft conditions for future year calcu-
lations.
Simulation Starting and Ending Times
Optional starting and ending times can be entered with the TIME
option. The starting and ending times (local daylight time, based on the
24-hour clock) are placed in the second (Columns 11-20) and third (columns
21-30) ten-column fields, respectively. Times may be entered to the near-
est minute, but the time difference (stop minus start) must not exceed 24
hours. Both the starting and ending times are set back to default values
when a zero value is entered for the ending time.
Starting and ending times can also extend beyond midnight into the
next day; the user need only specify the times. Note that the maximum of
39
-------
24 hours for a simulation 1s not confined to a 24-hour period from mid-
night (0000 hr) to 2400 hours.
Emissions
There are three ways in which emissions can be input to OZIPM-4:
the EMISSIONS, MASSEMISS, and MOLEMISS options. The MASSEMISS option
allows the user to input VOC and NOX emissions in units of kg/km (Gipson,
1984). The hourly emission densities are converted to fractions of
initial concentrations within the program based on the 0600 to 0900 mea-
sured NMOC and NOX concentrations, and the Initial mixing height (in
meters). This procedure is described in the 1981 city-specific EKMA
guidelines (EPA, 1981). The MOLEMISS option allows the user to input
emissions of VOC, NOX, and up to three other species (e.g., S02). Note
that the user must input VOC and NOX. The units of the hourly emissions
values are in either ppm (ppmC for VOC) or moles (moles as carbon for
VOC)/unit area. If moles/hr are input, the user must also input the
initial mixing height and the horizontal area. The measured 0600 to 0900
NMOC and NOX concentrations are required to convert VOC and NOX molar
emissions into emission fractions. The VOC and NOX emissions will vary
according to the initial NMOC and NOX concentrations, whereas the emis-
sions for the other species remain fixed and do not change with the 0600
to 0900 NMOC and NOX concentrations.
As mentioned, up to five species may be input with the MOLEMISS
option. The input species must be in the chemical kinetic mechanism
(except for NOX and VOC); otherwise, an error message will be printed.
The nitrogen oxides emissions are input with the symbol NOX. The computer
automatically splits NOX into NO and N02, with a fixed NO/NOX ratio of
0.95. Similarly, VOC emissions are input with the symbol VOC. The compu-
ter code will split the VOC emissions on the basis of the fractions input
on the REACTIVITY line. The format for the MOLEMISS option requires the
number of hours in which there are emissions (coded as a negative number),
followed by the number of emission species. If units of moles are used,
then the initial mixing height, followed by the horizontal area, is also
added to the option line. Since post-0800 emissions are related to 0600-
0900 measured ambient concentrations, 0600-0900 concentrations of VOC and
NOX, respectively, must be input in columns 51-60 and 61-70. The next
line contains the 0600-0900 ambient concentrations of species other than
VOC and NOX with post-0800 emissions. The next line(s) will be the name
vector for the emission species, followed by the emission values (6 on the
first line; 7 on the second line; etc.) (See Section 5 for a more detailed
description).
40
-------
Reactivity of Initial Mix and VOC Emissions
Organic reactivity and the Initial N0o/N0x ratio for both the 0600-
0900 ambient mix and the VOC and NOX emissions are input with the REAC-
TIVITY line. This option must be used if the MECHANISM option 1s activa-
ted. The following entries must be made on the REACTIVITY line:
The number of organic species
The N02/NOX ratio
If the number of organic species is nonzero, the next line(s) contains the
vector describing the fractions of the total organic (per carbon basis)
that each organic species represents. The order must be the same as that
for the name and carbon number vectors entered earlier. The sum of the
organic fractions should normally be equal to one. The default values for
the organic fractions are set to the values recommended in Section 4, and
apply only to the default CBM-IV mechanism.
OUTPUT OPTIONS
Output options are of two types:
(1) Perform a single simulation
(2) Estimate VOC control requirements
A single simulation is performed using the CALCULATE option. Two methods
are available in OZIPM-4 for estimating VOC control requirements in com-
pliance with the EPA guidelines (1981). The first method (ISOPLETH)
requires the generation of at least one isopleth diagram in which all cal-
culations are performed on the diagram. The second method (EKMA) is an
automated version of the EPA guidelines that estimates the VOC control
requirement based on inputs of base-case ozone and NMOC/NOX ratio into
OZIPM. The first method has been described in detail by Whitten and Hogo
(1978a) and Gipson (1984). The second method (originally implemented in
OZIPM-2) is described by Gipson (1984). The EKMA option has been enhanced
to handle the Appendix B guidelines (EPA, 1981) procedures regarding post-
control levels of transported pollutants (Hogo and Whitten, 1985).
All three options are discussed in detail in the following section.
Performing a Single Simulation (CALC)
Individual simulations can be performed at specified initial NMOC and
NOX concentrations using the CALCULATE option. The first two numeric
fields on the CALCULATE line (columns 11-20 and 21-30) specify the desired
0600-0900 ambient NMOC and NOX concentrations. The initial conditions and
41
-------
hourly ozone concentrations will be printed to show the change of ozone
with time during the simulation. Any number entered in the third numeric
field (columns 31-40) will activate an information option that will print
The rate constants used in the kinetic mechanism,
The concentrations of all species in the kinetic mechanism,
The net rate of change of all species,
The reaction rates for each reaction, and
The photolysis constants for all photolysis reactions.
If the information option is activated, the user can then specify the
simulation time (in minutes) for which concentrations of all species, cur-
rent reaction rates, etc., will be printed. The number of minutes after
the simulation starting time at which the initial printing is made
(default value = 60 minutes after start) is entered in columns 41-50. The
integral time step for which subsequent printings are made (default value
= 60 minutes) is entered in columns 51-60. Under default values, hourly
concentrations of species, net rates of change, etc., are printed. After
the simulation has ended, a concentration versus time profile is printed
for ozone. An example of output from this option is given in Section 6.
Calculating VOC Control Requirements
for a Specific Case (EKMA)
A feature available in the OZIPM-4 program is the ability to perform
a VOC emission reduction calculation without generating an ozone isopleth
diagram. When the EKMA option is used, the user must supply information
on the base-case ozone level to be reduced, the NMOC/NOX ratio to be used
in the calculation, and the percent change in NOX emissions. The calcula-
tions are performed in accordance with the procedures used to calculate
control estimates from an ozone isopleth diagram (EPA, 1981) Through an
iterative search procedure, the base-case point is first located by find-
ing the initial NMOC and NOX concentrations (with the specified ratio)
that produce the desired ozone concentration (within 0.005 ppm). A post-
control point is then found by first adjusting the base-case NOX point to
reflect the change in NOX emissions input by the user, and then finding
the initial NMOC concentration that, along with the adjusted NOX concen-
tration, will produce an ozone value of 0.12 ppm (again, within 0.005
ppm). The VOC reduction estimate is then calculated as the percent change
in NMOC concentration from the base-case point to the post-control
point. The CREDIT option allows the user to specify changes in carbon
monoxide emissions which may have an affect on VOC control requirements.
The CREDIT option is used in conjunction with the EKMA option and is dis-
cussed in the following subsection.
42
-------
Following Glpson (1984), the EKMA option 1s activated by an Input
record with the code word EKMA located 1n columns 1-4. The base-case
ozone value 1s then placed 1n the first numeric field of the EKMA Input
record. The second numeric field of this record contains the NMOC/NOX
ratio. The percent change 1n NOX emissions that 1s expected between the
base case and the post-control time periods 1s coded 1n the third numeric
field. This value should be entered as the percent change. Thus, a posi-
tive entry corresponds to an Increase and a negative «ntry to a
decrease. (For example, a 5 percent Increase would be coded as 5.0, and a
5 percent decrease as -5.0.) The fourth numeric field 1s used to specify
precursor transport conditions. If the concentration of transported NMOC,
03, and NOX 1s assumed to be zero for the post-control case, this entry
may be left blank. Otherwise, a numeric entry (e.g., 1.0) denotes that
non-zero transport conditions are used for the post-control case and these
values are coded 1n the next Input record.
The first two fields of this next Input record contain the future
surface and aloft ozone concentrations (1n ppm), respectively. If a nega-
tive value 1s Input, then future-year ozone transport 1s estimated using
the curves described 1n EPA (1987) and shown 1n Figure 4. The third field
contains the concentration of NMOC transported 1n the surface layer for
the post-control situation. A negative value represents the median NMOC
contribution factor as described 1n Appendix B of the 1981 guidelines
(EPA, 1981). The fourth field represents the concentration of NMOC trans-
ported aloft for post-control conditions. A negative value represents a
40 percent reduction 1n present-day NMOC aloft. The next two fields (five
and six) contain the future NOX surface and aloft transport levels (1n
ppm). The user should note that the structure of this Input record 1s
similar to that of the TRANSPORT Input record 1n that 1f any entry 1s left
blank, then the transport level for that species will be set to zero for
the post-control case. Also, no provisions are Included for making any
changes 1n the composition of NMOC used 1n the simulations (I.e., the same
NMOC transport composition will be used for both base case and post-con-
trol point).
The last line of the EKMA option contains the measured 0600-0900 NMOC
and NOX values, which are used Internally by OZIPM-4, 1f necessary, to
determine the location of the base-year ozone should 1t occur more than
once along the NMOC/NOX line (I.e., the occurrence of a maximum along the
NMOC/NOX line). This line 1s also used to Input the base-year NMOC and
NOX concentrations (1n units of ppmC and ppm) 1n columns 21-30 and 31-40
1f the user already has this Information from single CALC runs or from
previous simulations. If a negative NMOC/NOX ratio has been entered on
line 1 of the EKMA option, OZIPM-4 will read the base-year NMOC and NOX
values and skip to the future-year control estimates. This capability
43
-------
0.15
0.10
s
s
e
«
| 0.05
0.05 0.10 0.15
Present Ozone Transport, ppm
FIGURE 4. Future ozone transport as a function
of present transport.
44
-------
saves computer time and costs. The last field (five) of this record
allows the user to calculate peak Oj for a given percent reduction In
NMOC.
As just described, the EKMA option causes the program to compute the
VOC reduction (1n percent) needed to lower the base ozone to 0.12 ppm.
Another option available to the user 1s the ability to generate supple-
mental information. An entry of 1.0 in the fifth numeric field of the
EKMA line generates a tabular report showing the change in ozone as a
function of percent change 1n VOC. Predicted ozone corresponding to VOC
reductions of 10 percent, 20 percent, 30 percent, .... and 100 percent,
respectively, are printed. If a value of 2.0 is coded instead, the pre-
dicted ozone concentrations will also be written to a user-defined file,
which might be used for subsequent analysis or graphical display. One
output record 1s written to the file for each EKMA option that is activa-
ted. The output format consists of 11 fields, each 5 columns wide. The
first field (columns 1-5) contains the base-case ozone value. The remain-
ing 10 fields contain the ozone predictions corresponding to the VOC
reductions of 10 percent, 20 percent, 30 percent, ... 100 percent, in that
order. The user can perform a single specified VOC reduction if a nonzero
value 1s declared in the sixth numeric field.
Carbon Monoxide (CO) Emission Credits
As part of the development of the CBM-IV mechanism it was discovered
that elevated concentration levels of carbon monoxide (CO) may have an
affect on the resultant VOC control requirement. Levels of CO typically
around 1.2 ppm in the surface layer are observed 1n many parts of the
U.S. This level of CO may have significant contributions to the ozone
formation process. Based on historic trends in CO emissions and ambient
concentrations of CO (Baugues, 1987), it was determined that reductions in
CO emissions can account for part of the reductions in ambient ozone lev-
els. Based on these analyses, the U.S. EPA is allowing credits for CO
emission reductions in determining VOC control requirements. This
"credit" allowance is handled within the OZIPM-4 computer program through
the use of the CREDIT option.
The CREDIT option is currently used for CO emissions only. The first
line containing the CREDIT option contains the number of hours of post-
0800 CO emissions fractions (columns 21-30). A negative value is used
when mass emissions of CO (in units of kg/km ) are input. The initial
mixing height is entered in columns 31-40. The next line contains the
measured 0600-0900 CO concentration, present and future year CO concentra-
tions transported aloft, and the percent change in CO emissions. If the
user inputs a 0600-0900 present-day CO concentration in columns 11-20,
that value will be reduced in the future-year calculations by the percent
45
-------
change in CO emissions that is entered in columns 41-50. The following
line contains either the hourly emission fractions or mass emissions of
CO. The input formats for the CREDIT option is described in Section 5.
If the CREDIT option is not invoked, CO concentrations are defaulted
to 1.2 ppm for the 0600 to 0900 concentration and 0.5 ppm aloft with no
change in future year levels.
Generating an Isopleth Diagram (ISOP)
Up to six options can be used when generating an isopleth diagram:
ISOPLETH, TITLE, PLOT, SPECIES. ACCURACY, and ALREADY. These options are
described next.
ISOPLETH Option
In all OZIPM-4 isopleth diagrams, the origin represents 0.0 initial
0600-0900 NMOC concentrations (ppmC) and 0.0 NOX concentrations. The
maximum NMOC and NOX values represented on the abscissa and the ordinate
can be changed from their respective default values of 2.0 ppmC NMOC and
0.14 ppm NOX by inputting the desired maxima into the first two numeric
fields of the ISOPLETH line. The desired maximum NMOC concentration
should be placed in the field of columns 11 through 20. The desired maxi-
mum N0y concentration should be placed in the field of columns 21 through
30.
Any number can be used for the desired maximum NMOC and NOX concen-
trations; however, because the scales on the abscissa and the ordinate are
divided into ten and seven divisions, respectively, only certain values of
the maxima will produce even markers. Thus, to produce an easy-to-use
diagram, the NOX maxima should be evenly divisible by seven (e.g., 0.14,
0.21, 0.28, 0.35, etc.). Similar consideration should be given to selec-
ting an NMOC maximum.
The desired number of isopleths in the diagram should be inserted
(followed by a decimal point) in the field of columns 31 through 40 of the
ISOPLETH line. Up to 20 isopleths can be drawn (the default value is
11). OZIPM-4 then reads the proper number of fields from the succeeding
line or lines to provide the ozone concentrations (in units of ppm) for
which isopleths are to be drawn. For example, inserting 10.0 in columns
31-34 of ISOPLETH causes OZIPM-4 to read the seven 10-space numeric fields
on the next line and three on the succeeding line. (As noted earlier,
OZIPM-4 does not read past column 70 on any line except the program title
line.)
46
-------
OZIPM-4 can provide isopleth diagrams for up to five species when the
SPECIES option is specified. The user must enter the number of species to
be plotted in columns 61 to 70. The program will read the appropriate
sets of isolines to be plotted based on the value in columns 61 to 70 (one
set per species). The number of isolines for each set is determined from
the value entered in columns 31 to 40. The user enters the values for
each set of isoline after the ISOPLETH line.
TITLE Option
The title can be changed by inserting a line with the word TITLE fol-
lowed by a line with the desired title. Everything in columns 1 through
72 of this title line will be printed on the output and isopleth diagrams
in place of the default title, "Standard Ozone Isopleth Conditions." As
with all options, these lines must precede the ISOPLETH or CALCULATE
options.
PLOT Option
Any plotting package that can be called using the standard CALCOMP
subroutines can be used. Calls to these routines are activated by a line
with the code word PLOT. This line must precede the ISOPLETH option. The
actual CALCOMP routines called are PLOTS, PLOT, NUMBER, SYMBOL, and NEWPEN
(if necessary). The use of the CALCOMP routines is discussed in Section
5.
The user also has the option to specify the actual size of the plot
by defining the lengths (in inches) of the sides of the diagram. Columns
31-40 are used for the abscissa of the diagram. Columns 41-50 are used
for the ordinate of the diagram. The size of title characters and axes
numbers and the size of the Isopleth labels can also be set by the user in
columns 51-60 and 61-70, respectively. The default values are given in
Section 5. If the user wishes to reset any of these values, it is recom-
mended that all values change proportionally.
Another option on the CALCOMP plots is the overlay of gridded lines
on the isopleth diagram. This is done by declaring any nonzero positive
values in columns 21-30. If this option is exercised, a grid of different
colors will be overlaid onto the diagram. If the user does not have
access to the choice of different pen colors, use of this option is not
recommended. If there is access to a matrix plotter (such as the VERSATEC
plotter) and the choice of lines consists of thickness and pattern (i.e.,
dot-dash on solid patterns) the user can then enter a negative nonzero
47
-------
value 1n columns 21-30. The absolute value of the number entered repre-
sents the user's choice of pattern and thickness. This number varies with
different computer systems.
SPECIES Option
The OZIPM-4 package also has the capability of plotting an isopleth
for any species in the kinetic mechanism. For instance, a user may be
interested in plotting N0£ or PAN (peroxyacetylnitrate) isopleths. To
activate this option, the user inputs a line with the word SPECIES in the
first 10-column field and the number of species to be plotted. On the
next line, the species names (or alphanumeric symbols), as used in the
kinetic mechanism, are placed in the first four columns of each 10-column
field (i.e., 1-4, 11-14, 21-24). The program will calculate maximum one-
hour values for the species of interest. Isopleth diagrams will be gener-
ated for all species of interest when the ISOPLETH option is used, as
noted earlier. If the SPECIES option is not used, the program will be set
to the default species 03 (ozone). The SPECIES option can also be used
with the CALCULATE option to generate concentration-time plots for the
species of interest.
ALREADY Option
When constructing isopleth diagrams, results from previous simula-
tions can be utilized with the ALREADY option. To incorporate results
from a previous run, the following conditions must be identical in both
runs: the NMOC and NOX scales and the city-specific options. Such a
situation could occur when
An initial run 1s terminated because of a time restriction;
The user wishes to repeat the run with the PLOT option to obtain a
CALCOMP-generated plot;
The user wishes to alter the tension factors used in the interpola-
tion schemes; or,
The user wishes to plot an isopleth for a species using a different
set of isolines.
To input the results of previous runs, the number of completed simu-
lations is entered in the first numeric field (columns 11-20) of the
ALREADY line. The results of those simulations must be entered on the
48
-------
following lines in the same order in which they are calculated. Each line
contains the results of one simulation. Field 1 (columns 1-10) contains
the initial NMOC concentration, field 2 (columns 11-20) contains the ini-
tial NOX concentration, and field 3 (columns 21-30) contains the resulting
maximum one-hour average Oj (or other species) concentration. If a nega-
tive number of completed simulations is entered, then OZIPM-4 will read
the completed simulation results from an external file automatically
generated by the OZIPM-4 from the previous run.
ACCURACY Option
The ACCURACY option controls the precision of numerical schemes used
1n generating an isopleth diagram. The OZIPM-4 performs 121 simula-
tions. The spline tension factors used for the spline interpolation rou-
tines are specified in columns 41-50 and 51-60. Since the ISOPLETH option
requires greater amounts of execution time, the user is advised to perform
several single calculations near the maximum NMOC and NOX concentrations
to assure that the base-case ozone isoline occurs near the upper right
portion of the diagram. Poor choices for the maximum NMOC and NOX concen-
trations can lead to isolines occurring off the diagram or may be compres-
sed into a small part of the diagram.
A considerable amount of computer time is wasted when the maximum
one-hour average 03 concentration in a simulation occurs early but the
simulation 1s continued for the full simulation period. The default con-
dition 1n OZIPM forces this continuation because two ozone peaks could
occur in simulations, and the second may be the larger. Nevertheless, a
sizable reduction in computer costs is possible for simulations with
single ozone peaks 1f the simulations are stopped after their peaks are
reached. This can be done in OZIPM-4 by placing any number in the sixth
numeric field (columns 61-70) of the ACCURACY line. However, the reasons
for the occurrence of two ozone peaks are not well underdstood, so the
full simulation period must be used to generate isopleth diagrams intended
for control strategy use.
Testing the Accuracy of the Isopleth Diagram
Options have been incorporated into OZIPM-4 that allow users to test
the accuracy of the diagram. In this manual, the term "accuracy" is
always used in reference to the numerical solution of an implied initial
value problem in ordinary differential equations. Thus, accuracy does not
refer to the degree of correspondence between an isopleth diagram and
atmospheric data.
49
-------
Although the experience gained 1n the development of OZIPM-4 suggests
that the default number of simulations, tension factor, and so on, will
generate sufficiently accurate isopleth diagrams, this experience does not
guarantee sufficient accuracy. Recommended procedures for checking many
of the factors that affect accuracy are all similar. They merely answer
the following question: Do somewhat higher or somewhat lower values of a
particular factor significantly affect the resulting isopleth diagram?
OZIPM-4 has been designed to respond properly to these factors. The pro-
cedures used in OZIPM-4 to check accuracy and to generate additional
information are discussed next.
(1) Accuracy of Simulations. The numerical integration scheme
employed in OZIPM-4 estimates the degree of error at every step of the
integration. The size of the time step taken by the computer is adjusted
to keep the estimated error in the specified range. The error is con-
veniently controlled by a single parameter with a default value of
0.003. Smaller values of this parameter increase both the accuracy and
computer time. Larger values do the opposite. By entering numbers smal-
ler than 0.003 in the third numeric field of the ACCURACY option line
(columns 31-40), one can estimate the accuracy of the simulations. For
example, if several CALCULATE and ACCURACY lines are used, several simula-
tions can be performed using the same NMOC and NOX concentration, but
using different time steps in the numerical integration. This procedure
can be used to demonstrate how the simulation results vary with increased
error tolerance.
(2) Spline Interpolation Accuracy. Unfortunately, the spline func-
tions used to interpolate between simulation results do not have a para-
meter as relevant to accuracy as does the numerical integration scheme
used for the simulations. The spline functions can be controlled to a
limited extent by a simple factor that is analogous to tension. The low-
est values for this factor (e.g., 0.001) cause the hyperbolic spline func-
tion to resemble cubic splines, whereas the high values (e.g., 50.0)
result in virtually straight lines between points (or simply linear inter-
polation). Interpolation occurs in two different stages of OZIPM-4 and
two factors are available to control tension. The first factor controls
the first stage, namely interpolation between diagram points along a line
of constant NMOC/NOX when the EKMA option is invoked. This interpolation
stage estimates the coordinates of ozone concentrations when a maximum
occurs along the line of constant NMOC/NOX.
The second factor controls the interpolation between diagram points
calculated in the ISOPLETH option to generate the coordinates of the iso-
pleths themselves. Default values for both are 1.0, and the user can
change these factors by entering the desired number in the fourth and/or
50
-------
fifth numeric field of the ACCURACY option line (columns 41-50 and 51-
60). Thus, a value of 50.0 in the fourth numeric field of the ACCURACY
line would cause nearly linear interpolation to be used to locate the
points on the line of constant NMOC/NOX that correspond to the ozone con-
centrations to perform the EKMA option. A value of 50.0 in the fifth
field would result in nearly straight lines between diagram points calcu-
lated.
51
-------
52
-------
SECTION 4
USING THE CBM-IV IN OZIPM-4
This section presents a description of the CBM-IV and guidance for
its use in OZIPM-4. The Carbon-Bond concept (Whitten, Killus, and Hogo,
1980) was developed mainly to simplify chemical kinetics mechanism use in
atmospheric applications. Therefore, the simple procedures developed for
earlier versions of the Carbon-Bond Mechanism used in EKMA and published
in several documents can, for the most part, be applied to the use of the
CBM-IV. The most recent documentation for using Carbon-Bond chemistry in
EKMA can be found in Hogo and Whitten (1985), Killus and Whitten (1984),
and Gipson (1984). The detailed development of the CBM-IV is documented
in Gery, Whitten, and Killus (1988). This mechanism is actually a hybrid
of explicit chemistry, surrogate approximations, and lumped/generalized
chemistry designed to simulate the broad features of urban smog chemis-
try. Explicit chemistry 1s used to treat the inorganic and carbonyl
species plus the chemistries of ethene, toluene, and xylene. The carbon-
bond lumping method is used primarily for paraffins and olefins.
Each part of the CBM-IV chemistry, such as the inorganic subset or
the ethene chemistry, conforms to current literature review studies and
has been extensively tested against smog chamber data on organics/NOx sys-
tems, including complex mixtures intended as surrogates for urban air
samples. In addition, the entire CBM-IV was used to simulate a series of
auto exhaust and synthetic auto exhaust experiments involving a variety of
conditions. Most of the smog chamber experiments used for CBM-IV testing
were performed in the outdoor dual-chamber facility of the University of
North Carolina, which is a well-characterized chamber with extensive
analytical capabilities. The CBM-IV has also been tested with
experimental data from chambers at the University of California at
Riverside and Battelle Columbus Laboratories.
DEFAULT CBM-IV MECHANISM
The default chemical mechanism implemented in OZIPM-4 is the CBM-IV
mechanism presented in Appendix A. The CBM-IV mechanism consists of 34
53
-------
chemical species and 82 chemical reactions. The CBM-IV contains 9 primary
organic species (see Table 1).
TABLE 1. Carbon Numbers of Carbon-Bond Groups
for Primary Species
Carbon Number
Carbon-Bond Group (carbon atoms per molecule)
PAR 1
ETH 2
OLE 2
TOL 7
XYL 8
FORM 1
ALD2 2
I SOP 5
NR 1
The species NR represents the nonreactive part of different molecular
species such as benzene, ethane, and acetylene. The concentrations of
several species whose concentrations do not vary (such as Q£ and N2) are
lumped in with the rate constant. Unless a different value is entered by
the user, the concentration of h^O used in the CBM-IV corresponds to
50 percent relative humidity (20,000 ppm) at approximately 303 K. It
is not recommended that this value be changed by the user. However, if
desired, a different H20 concentration can be entered using the INIT
option.
The CBM-IV mechanism shown in Appendix A is that discussed by Gery,
Killus, and Whitten (1988) except that one reaction has been added. That
reaction is:
NR * NR k = 1 min"1 ,
which 1s added to account for the nonreactive species.
DEFAULT PHOTOLYSIS RATE CONSTANTS
The CBM-IV chemical mechanism contains 11 photolysis reactions that
vary with solar zenith angle (see Table 2). The photolytic rate constants
for N0£ are stored in OZIPM-4 as a function of zenith angle. These rates,
which were derived by Jeffries and Sexton (1987) and Gery, et al. (1988),
54
-------
TABLE 2. CBM-IV Photolysis Reactions.
Reaction
Number
1
8
9
14
23
34
38
39
45
69
74
NO, +
2
V
V
NO H
HN02 H
H202 H
FORM H
FORM H
ALD2 H
OPEN H
MGLY H
hv *
K hv *
i- hv »
K hv *
K hv *
» hv *
i- hv +
i- hv *
H hv *
I- hv *
\- hv *
Multiplication
Reaction
NO -H 0
0(3P)
0 . 3
0.89 NO + 0.89 0( P) + 0.11 NO
NO + OH
20H
2H02 -H CO
CO
X02 -K 2H02 + CO + FORM
C203 -H H02 H- CO
C203 + H02 + CO
Photolysis Rate
See Table 3
0.053 x k^
See Table 4
33.9 x 1^*
0.1975 x kj*
0.189 x k39*
See Table 4
See Table 4
See Table 4
8.40 x k38*
8.96 x k38*
* Photolysis rate factors for ratioing to the recommended N02 (Table 3)
HCHO (Table 4) rates must be recalculated 1f N02 and HCHO rates other
than the recommended values (Jeffries and Sexton; 1987) are used.
That is, new ratios may have to be calculated for these species if
the reference rate is changed.
55
-------
are the recommended j-values and are given 1n Table 3. The default values
represent the reaction rate constants at approximately 640 m above sea
level (which are more representative of the entire mixed layer).
Three of the photolysis reactions shown in Table 2 (Reactions 8, 14,
and 23) vary with zenith angle in a manner similar to that of NO^ photoly-
sis. The photolytic rate constants for these reactions can be described
by applying a single multiplication factor to the N02 photolytic con-
stants. (For example, the multiplication factor for Reaction 9 is
0.053.) The multiplication factor is Input into the rate constant slot of
the reaction line as described in the MECHANISM option in Section 5.
Seven of the reactions in Table 2 have photolysis rates that vary
with zenith angle independent of N02 photolysis. The default ratios to
N02 potolysis for four of these reactions (Reactions 9, 38, 39, and 45)
are stored in OZIPM-4 and are shown in Table 4. As described in Section
5, a multiplication factor of 1.0 is entered into the rate constant slot
of the reaction line for these reactions.
Two of the species shown in Table 2 (OPEN and MGLY) are expected to
photolyze with a zenith-angle dependence similar to that of formaldehyde
photolysis to radicals (Reaction 38); ^2 has a zenith-angle dependency
that is similar to the photolysis of formaldehyde to stable products
(Reaction 39). We therefore use the zenith-angle-dependent ratios given
in Table 4 as default values for these reactions and multiply the result-
ing rates by the factors given in Table 2. If new rates other than those
recommended in Table 4 are used, the factors given in Table 2 may have to
be recalculated to maintain the same absolute rate constant.
DEFAULT VOC AND NMOC REACTIVITIES
Table 5 lists the default carbon fractions associated with NMOC
transported in the surface layer and entrained from aloft. These values
were determined by Jeffries, Sexton, and Arnold (1987) through analysis of
data from aircraft samples collected above the morning inversion layer
over four urban areas. Jeffries, Sexton, and Arnold (1987) also analyzed
data from more than 800 ground-level samples collected between 0800-0900
in a large number of urban areas to derive default reactivities for the
initial NMOC and VOC emissions. These default carbon fractions are given
in Table 6.
The reactivity resulting from global background concentrations of
methane is represented by Reaction 51 in the CBM-IV, where an average
background level of 1.85 ppm is assumed for methane. The effect of carbon
monoxide on urban 03 formation is represented by Reaction 36 in the CBM-
IV. CO concentration levels are defaulted to 1.2 ppm CO for the 0600 to
56
-------
TABLE 3. N02 Photolysis Rate
Constants Stored in OZIPM-4.
(Source: Jeffries and Sexton,
1987)
Zenith
Angle
0
10
20
30
40
50
60
70
78
86
Rate
Constant*
0.5893
0.5851
0.5713
0.5470
0.5093
0.4537
0.3740
0.2578
0.1341
0.0242
* Units are min"^.
57
-------
TABLE 4. Photolysis Reaction Rate Ratios Stored 1n the OZIPM-4.* (Source: Jeffries and Sexton, 1987)
Ul
00
Zenith
Angle
0
10
20
30
40
50
60
70
78
86
ALD2 + hv -> X02 + 2H02 + CO + FORM
5.89E-4
5.78E-4
5.50E-4
5.03E-4
4.36E-4
3.55E-4
2.57E-4
1.59E-4
8.95E-5
8.26E-5
FORM + hv * CO*
5.75E-3
5.73E-3
5.67E-3
5.54E-3
5.35E-3
5.08E-3
4.63E-3
4.01E-3
3.48E-3
5.25E-3
FORM + hv * 2H02 + C0§
3.70E-3
3.66E-3
3.56E-3
3.40E-3
3.14E-3
2.80E-3
2.33E-3
1.74E-3
1.28E-3
1.78E-3
03 + hv - O^D)
4.61E-3
4.48E-3
4.13E-3
3.59E-3
2.87E-3
2.08E-3
1.24E-3
5.43E-4
2.24E-4
1.24E-4
Ratios are relative to N02 photolysis. Rate constants are determined by multiplying the ratio by
These ratios, multiplied by the factor 1n Table 2, are also used for H202.
These 'ratios, multiplied by the factors 1n Table 2, are also used for MGLY and OPEN.
-------
TABLE 5. Carbon Fractions for
Transported NMOC (Source:
Jeffries, Sexton, and Arnold,
1987).
Species Fraction*
ETH
OLE
ALD2
FORM
TOL
XYL
PAR
ISOP
NR
0.034
0.020
0.037
0.070
0.042
0.026
0.498
0.00
0.273
* Applies to NMOC transported
in the surface layer and
entrained from aloft.
59
-------
TABLE 6. Reactivity of Initial
Mixture and VOC Emissions.
(Source: Jeffries, Sexton, and
Arnold, 1987)
Bond Type
ETH
OLE
ALD2
FORM
TOL
XYL
PAR
ISOP
NR
Default
Value
0.037
0.035
0.052*
0.021*
0.089
0.117
0.564
0.00
0.085
* Estimated.
60
-------
0900 concentration and 0.5 ppm CO entrained from aloft unless the user
explicitly specifies other concentration levels using either the INITIAL
or CREDIT options.
SELECTING A USER-SPECIFIED ORGANIC REACTIVITY
Ambient organic measurements are not routinely collected due to the
Intensive efforts required to collect the data. However, if 0600-0900
ambient organic measurements are available, they should be used to calcu-
late organic reactivity rather than using the default carbon fractions
that are stored in OZIPM-4. Table 7 shows how to determine the CBM-IV
fractions from 0600-0900 ambient data reported in moles/a.
The following paragraphs describe step-by-step how the organic reac-
tivity is defined based on the ambient measurements shown in Table 7.
Before we discuss these procedures, we note that in general ambient mea-
surements are reported in the following units:
ppm (parts per million)
pphm (parts per hundred million)
ppb (parts per billion)
vg/m (micrograms per cubic meter)
In some cases the organic compounds may be expressed in the above units
either as a molecular total or as a carbon total (I.e., the actual molecu-
lar weight or the molecular weight of carbon is used). In general, chemi-
cal mechanisms are based on molecular reactions or the number of molecules
involved. The first three units presented above are in the units neces-
sary for most chemical mechanisms. The fourth unit is a mass unit and
must be converted to molecular units. The following equation is used to
convert mass units to molecular units:
C - 0.0244 c 3
Lppm MW ug/nr f
where MW is the molecular weight in units of g/moles of the organic com-
pound. Molecular weights for many compounds are given in Table B-l. The
conversion factor, 0.0244, is based on the perfect gas law at 25°C and
standard pressure. To obtain molecular units as carbon, one needs to
multiply by the number of carbons found in the organic compound.
Table 7 shows ambient organic compound measurements in the Los
Angeles area (Calvert, 1976). The measurements are reported in molar
units (ppm in this case); to obtain the carbon-bond reactivity, one must
61
-------
TABLE 7. Carbon-bond splits for Los Angeles ambient measurements.*
(a) Carbon-Bond Group Concentrations
Compound
CH4
C2H6
C2H4
C2H2
C3H8
C3H6
1so-C4Hlo
n-C4H10
l-C4Hb
1so-C4Ha
1so-C5Hl2
n-CbH12
Cyclo-C5H10
1-C5H10
2 -Methyl but ene
2 ,3-D1 menthy 1 butane**
2-Methylpentane
3-Methylpentane
1-Hexene
n-Hexane
Cyclohexane***
2 ,2 ,3-Trimethyl butane
C6H6
2-Methylhexane
3-Methylhexane
[RH], ppm
Molar
Basis NR
2.01
0.049 0.078
0.043
0.038 0.038
0.037 0.056
0.0087
0.012
0.037
0.0015
0.003U
0.0443
0.0162
0.0026
0.004
0.0008
0.0008
0.0110
0.0100
0.0017
0.0100
0.0107
0.0077
0.0082 0.041
0.0069
0.0063
Number of Each Bond Group x Concentration
OLE ETH PAR FORM .AL02 TOL . XYL
0.020
0.043
0.038
0.056
0.0087 0.0087
0.048
'0.148
0.0015 0.0030
0.009 0.003
0.2215
0.0810
0.013
0.004 0.012
0.0024 0.0008
0.0048
0.0660
0.0600
0.0017 0.0068
0.0600
0.0642
0.0539
0.0082
0.0483
0.0441
Continued
* Source of hydrocarbon data: Calvert (1976).
** Incorrectly reported as 2,2 dimethyl but ene by Calvert (1976).
*** Incorrectly reported as cyclohexenc by Calvert (1976).
62
-------
TABLE 7. Concluded.
CRH], ppm
Compound
1-Heptene
n-C7H16
Methyl cycl ohexane
2,2,3- and 2,3,3-
Trimethylpentane
2,2,4-Trlmethylpentane
Toluene
1-Methy 1 cycl ohexene
2 ,2 ,5-Trimethyl hexane
n-C8H18
EtC6H5
p,m-Xylenes
o-Xylene
n-CgHgg
n-PrC6H5
sec-BuC6H5
n-C10H22
n-CuH24
n-C12H26
CO
Total
Molar
Basis
0.0044
0.0043
0.0037
0.0019
0.0025
0.020
0.0047
0.0010
0.0021
0.0041
0.0140
0.0060
0.0013
0.0010
0.0050
0.0011
0.0010
0.0003
1.91
Compound
NR
ETH
PAR
FORM
OLE
AL02
TOL
XYL
Total
Number of Each Bond Group x Concentration
NR OLE ETH PAR FORM AL02 TOL
0.0044 0.0220
0.0301
0.0259
0.0152
0.0200
0.020
0.0047 0.0235
0.0090
0.0168
0.0041 0.0041
0.0117
0.0020 0.0010
0.0150 0.0050
0.0110
0.0110
0.0036
0.213 0.025 0.043 1.2978 0.003 0.0008 0.0301
(b) Carbon-Bond Splits
NMHC Carbon Fraction Adjusted
(ppm) ppmC of NMHC* Carbon Fraction*
0.213 0.213 0.099 0.099
0.043 0.086 0.040 0.040
1.298 1.298 0.603 0.603
0.025 0.025 0.012 0.032
0.025 0.050 0.023 0.023
0.0008 0.0016 0.001 0.036
0.030 0.210 0.098 0.098
0.020 0.160 0.074 0.074
2.044 0.950 1.000
XYL
0.0140
0.0060
0.0200
* Carbon fractions adjusted to account for an estimated 5 percent fraction of unmeasured aldehydes.
63
-------
assign the individual carbon atoms of each organic compound to the appro-
priate carbon-bond group according to Table B-2 in Appendix B. Table B-2
shows the breakdown of each carbon atom from the molecular compound to the
carbon-bond groups. For example, the organic compound 03^ (propylene)
shown in Table 7 comprises one OLE and one PAR. Thus, of the three carbon
atoms of propylene, two are assigned to OLE (because each OLE group con-
tains two carbons), and one is assigned to PAR. To calculate the concen-
trations of OLE and PAR from propylene, we multiply the number of each
bond group by the concentration of propylene. Thus, the propylene concen-
tration of 0.0087 ppm produces 0.0087 ppm of OLE and 0.0087 ppm of PAR.
As another example, Appendix B shows that benzene (CgHg) consists of five
NR and one PAR. Applying the above procedures, we obtain 0.041 ppm of NR
and 0.0082 ppm PAR.
This procedure is followed for all the organic compounds identified
in Table 7. The carbon-bond concentrations are summed as shown in Table
7(b). The OZIPM-4 requires all organic fractions to be on a "per-carbon"
basis. Thus, the concentrations for each carbon-bond group are multiplied
by the appropriate number of carbons reported in Table 1 and normalized to
obtain the carbon fractions, as shown in the fourth column of Table 7(b).
In the example presented in this section, only surrogate carbonyls
could be included in the speciations because carbonyl compounds per se
(aldehydes and ketones) could not be detected by the instrumentation
used. Carbonyl compounds were undeniably present, however, and they are
significant contributors to smog chemistry. Therefore, some estimates of
carbonyl emissions must be made. Investigations by Killus and Whitten
(1984) show that an estimated 5 percent of the total organics can be car-
bonyls. Of the 5 percent, 60 percent is assumed to be ALD2, and 40 per-
cent is assumed to be FORM. Thus, for those cases in which there are no
measured carbonyls, we must add 5 percent carbonyls (3 percent ALD2 and 2
percent FORM) to the total organics. The carbon fractions adjusted for
the carbonyls are shown in the fifth column of Table 7(b). The numbers
shown in this column would be entered into the OZIPM-4 program.
An alternative method for comparing calculated carbon fractions is to
estimate an average KOH value. KQH values are rate constants that provide
the per-carbon measure of the reactivity of a class of compounds with OH
radicals. The weighted sum of the KQH value for each individual NMOC
species can provide an estimate of the overall reactivity of the NMOC.
Using the CBM-IV species rate constants with OH radicals (see Appendix A),
we can describe an average KQH as
KOH = PAR x 1203 -i- ETH x 5824 + OLE x 20422 + ALD2 x 11833 + TOL x 1284 +
XYL x 4497 + FORM x 15000.
64
-------
where the numbers represent the per-carbon reaction rate with OH for each
CBM-IV at 303 K.
Average KQH values should fall between 2700 and 3600 min'1 (Baugues,
1987). Thus, on the basis of the calculation presented in Table 7 and the
foregoing equation, the calculated KQH is about 2835 min , which is
within the recommended range.
65
-------
66
-------
SECTION 5
USER'S GUIDE
This chapter describes the format of the input data, the types of
errors and warning messages that can occur, and some special problems to
be considered in the installation of the program on a specific facility.
FORMAT OF INPUT DATA
The 26 options in OZIPM-4, which were discussed in Section 3, are
listed in Table 8.* For each option, the locations of the different
parameters on the appropriate lines are shown. The order of the OZIPM-4
options in the input file is not important except for the ISOPLETH, EJKMA,
and CALCULATE options. Any options to be activated for simulations must
precede these three options. Consequently, the order shown in Table 8 is
recommended. This ordering has the MECHANISM and ZENITH options listed
first, followed by the options used to input city-specific information
(PLACE, DILUTION, EMISSIONS, REACTIVITY, TRANSPORT, CREDIT, etc.). The
next group of options affects some of the operational aspects of OZIPM
(ACCURACY, ALREADY, PLOT, SPECIES, and TIME). The options that actually
initiate simulations follow (CALCULATE EKMA, and .ISOPLETH). The last line
of any input set must be a blank line.
As shown in Table 8, all four-letter code words (e.g., TITL, PLAC,
etc.) that activate an option must begin in column 1. Each data line
containing such a code word has up to six numeric fields, each ten spaces
wide, beginning in column 11. An entry can be made anywhere in a field,
but a decimal point must always be used, even with integral values.
Additional data lines are associated with some options. These lines must
follow the option line in the order specified in Table 8. For example,
the line containing the title must immediately follow the line with the
code word TITL. Data lines that do not begin with code words can contain
up to seven 10-column fields beginning in column 1. Similar to the
For convenience, Table 8 appears at the end of this section.
67
-------
numeric fields on lines with code words, entries may be made anywhere in
the field provided a decimal is used.
As previously described, most parameters have associated default
values. These are indicated by OF in Table 8. If no entry is made in a
numeric field, the default value will be assumed. For example, if the
only entry made on the PLACE option line is in the first numeric field,
the default value of 118.25 will be assumed for the second numeric field,
8.0 for the third, etc.
PROGRAM-GENERATED ERROR MESSAGES
This section discusses potential output error messages produced by
OZIPM. Two types of error messages can be generated:
(1) Fatal error messagesmessages caused by problems that immedi-
ately halt any further computation.
(2) Nonfatal error messagesmessages caused by problems that do not
cause an immediate halt in computation.
These types of messages are discussed next.
Fatal Error Messages
Seven fatal error messages can occur during OZIPM-4 runs. Five of
these occur because the integration scheme cannot proceed further. The
following error messages all stem from problems encountered in the
integration scheme routines:
PROBLEM APPEARS UNSOLVABLE WITH GIVEN INPUT
INTEGRATION HALTED BY DRIVER AT T - , EPS TOO SMALL TO BE
ATTAINED FOR THE MACHINE PRECISION
KFLAG = -2 FROM INTEGRATOR AT T - , H = THE REQUESTED
ERROR IS SMALLER THAN CAN BE HANDLED
KFLAG = -3 FROM INTEGRATOR AT T = CORRECTOR CONVERGENCE COULD
NOT BE ACHIEVED
ILLEGAL INPUT..EPS.LE.O
If any of these messages occur, the user should try the following proce-
dures:
68
-------
Check input to be sure all data are correct (e.g., check NMOC and NOX
values on a CALCULATE option, check for negative error tolerance, and
so on).
Raise the value of the error tolerance (ACCURACY option), if
necessary.
As a last resort, alter the simulation conditions slightly (e.g.,
change emissions, dilution, etc.).
Nonfatal Error Messages
One nonfatal error message can occur in OZIPM-4 runs. The user may
wish to redefine the situation (i.e., the limits of the diagram) or to'
check the input data.
THE OPTIONS INSTRUCTION CANNOT BE PROCESSED
If this message occurs, the user should check for an error in the
input data.
COMPUTER CONSIDERATIONS
The OZIPM program consists of one main program and 55 subprograms.
It requires about 30,000 16-BIT words of core in a PRIME 750 computer sys-
tem. Run times on the system average 30 minutes for an isopleth plot and
around 3 minutes for an EKMA calculation. A complete listings of the
OZIPM-4 code is shown in Volume 2. Also included are five calls to
CALCOMP subroutines. The following paragraphs discuss special language
considerations, use of CALCOMP routines, and computer control language.
Language Considerations
Although OZIPM-4 has been written to conform with ANSI standard
FORTRAN language, certain aspects of usage in OZIPM-4 are not compatible
on all computer systems. The variable UROUND in BLOCK DATA should be set
to the round-off error associated with each computer system. Currently,
UROUND is set to the round-off error of 2.4 x 10"7 associated with a PRIME
750 computer system. To reset UROUND, the line in the BLOCK DATA routine
should be changed as follows:
DATA UROUND/user's round-off error/
69
-------
UROUND 1s calculated form the number of significant digits (N) used for
the mantissa of a floating point constant:
UROUND » 2~N.
For the PRIME 750 computer, each word contains 32 BITS, of which 22 are
used for the mantissa. Thus, 2~zz 1s equal to approximately 2.4 x 10".
This 1s the value currently set in OZIPM-4.
Another variable in OZIPM-4 that is machine-dependent is EXPMAX,
which is found in subroutines CURV1 and KURV1. This variable represents
the maximum possible value for the exponent of e. For the PRIME computer,
the range of the real constants is from 10"38 to 10 . Hence, the maximum
value for the exponent of e is
eEXPMAX . 1038f
i.e., EXPMAX 1s 87.4 for the PRIME computer, the value currently set in
OZIPM-3. To reset EXPMAX, the user must change the line located in BLOCK
DATA accordingly:
DATA EXPMAX/user's maximum exponent/
The OZIPM-4 prints the input file on the output file so that users can
easily see any problems with the input file. To do this, the input file
(FORTRAN unit 5) must be rewound. Some computer systems do not allow a
rewind option on the input file. If this is the case, lines A125-A136 in
the MAIN routine should be taken out. Some computer systems do not allow
arguments to be in a mixed mode (I.e., a REAL variable declared as INTEGER
in separate subroutines). If this 1s the case, line AG13 in subroutine
NSSFAC must be modified to REAL instead of INTEGER. The OZIPM-4 source
code can be computed with either ANSI FORTRAN-66 or ANSI FORTRAN-77 pro-
vided the following steps are taken:
For ANSI-FORTRAN-66 compilations:
The SAVE statement found in every subprogram must be either com-
pletely deleted from the source file or commented out by placing a "C" in
column 1.
For ANSI-FORTRAN-77 compilations:
Some sections of the OZIPM-4 program require a 1-trip DO loop option.
Current ANSI FORTRAN-77 performs a zero-trip DO loop if the second argu-
ment is less than the first argument. Most compilers allow a 1-trip DO
loop by setting a compiler switch. This should be done in ANSI FORTRAN-77
compilations if the switch is available.
70
-------
Use of CALCOMP Routines
The CALCOMP routines required by OZIPM-4 are
Subroutine PLOT (XX.YY.IX)
PLOTS (XX,UU,IX)
SYMBOL (XX,YY,HT,ITX,ANG,NCH)
NUMBER (XX,YY,HT,FPN,ANG,NDEC)
NEWPEN (IPEN)
For users without access to these CALCOMP routines, dummy routines may be
needed to run OZIPM-4. To generate the dummy routines, the user must have
the following cards for each of these CALCOMP routines:
SUBROUTINE (argument list)
RETURN
END
For users with access to standard CALCOMP routines, no modifications to
OZIPM-4 are required. The user should check to ensure that the five rou-
tines in their system have the same names as those given above.
Control Language
Since the job control language necessary to run OZIPM-4 is different
for each computer system, only the files required by the program are dis-
cussed in this section. Table 9 lists the files and the FORTRAN file unit
numbers used by OZIPM-4.
71
-------
MECH MECH
TABLE 8. Input Format for OZIPM-4 Options.
Option Line No. Column Contents
MECHANISM A kinetic mechanism may be input with this option
1 1-4 MECH
5-10 Not read
11-20 The identification number on the last
reaction line to be read in (MAX = 135)
If a negative number is entered, then the
default mechanism will be printed
21-30 The number of photolysis reactions found
in the mechanism (MAX is 20; DF = 10)
31-40 Number of organic species in the 0600-0900
ambient mix (MAX = 20; DF * 9)
41-50 Chemical reaction format (nonzero for
CHEMK format; DF = nonunity stoichio-
metric coefficient format)
51-60 The temperature (in degrees K) used for
the simulations (DF = 303)
61-80 Not read
2 1-10 The list of reaction numbers identify-
11-20 ing the photolysis reactions in the
kinetic mechanism (up to seven on a
line). Continue on next line (if
necessary)
61-70
71-80 Not read
3 1-4 The list of names (or alphanumeric symbol)
for the set of organic species
Continue on next line (if necessary)
61-64
65-68 Not read
72
-------
MECH
MECH
TABLE 8 (continued)
Option
Line No.
Column
Contents
MECHANISM
1-10
*
61-70
71-80
The list of the number of carbons assoc-
iated with each of the organic species.
Must be in the same order as the organic
species name vector on the previous
line(s). Continue on next line (if
necessary)
Not read
The mechanism is entered next.
There are two formats:
1-3
5+(CHEMK
format)
5+(nonunity
stoichiometric
coefficient
format)
6-9
11-14
16-19
21-24
26-29
31-34
36-39
41-50
51-60
1-4
7-10
13-16
17-19
20-24
25-28
29
The identification number of the reaction
(right-justified integer); number may be
between 1 and 135
The names of the reactants (up to three
allowed); left-justified
The names of the products (up to
four allowed); left-justified
The rate constant at 298 K or the
multiplicative factor for photolysis
reactions (right-justified if E-format)
The activation energy (in degrees K) if
there is one (right-justified if E-format)
The names of the reactants (up to 3
allowed); left-justified
The identification number for the reaction
(right-justified integer); MAX = 135
Coefficient for 1st product (OF = 1.)
Name of 1st product; left-justified
An '*' in this column means that there will
be additional (up to 6 more) products on the
next line
73
-------
MECH MECH
TABLE 8 (continued)
Option Line No.
MECHANISM
Column
31-35
37-40
43-47
49-52
55-64
Contents
Coefficient for 2nd product (DF = 1.)
Name of 2nd product; left- justified
Coefficient for 3rd product (DF = 1.)
Name of 3rd product; left- justified
The rate constant at 298 K or the photolys
multiplicative factor
66-72 The activation energy (in degrees K)
The next card is used when more than 3 products are in the reaction.
1-5 Coefficient for 4th product (DF = 1.)
7-10 Name of 4th product; left-justified
13-17 Coefficient for 5th product (DF = 1.)
19-22 Name of 5th product; left-justified
25-29 Coefficient for 6th product (DF = 1.)
31-34 Name of 6th product; left-justified
37-41 Coefficient for 7th product (DF = 1.)
43-46 Name of 7th product; left-justified
49-53 Coefficient for 8th product (DF = 1.)
55-58 Name of 8th product; left-justified
61-65 Coefficient for 9th product (DF = 1.)
67-70 Name of 9th product; left-justified
74
-------
ZENI ZENI
TABLE 8 (continued)
Option Line No. Column Contents
ZENITH* Revise or input photolysis rates as a function of solar zenith
angle. This option is required when an optional mechanism is used.
This option can also be used with the default mechanism (1) to vary
the photolysis rates in a fashion independent from N02 photolysis for
those reactions that are presently assumed to photolyze like N02 or
(2) to modify.the default values for the zenith angle dependence of
N02, 03 * 0 (1V), FORM, ALD2, H202, OPEN, and MGLY. Note that
photolytic reactions that vary with zenith angle in a fashion similar
to N02 need not be entered.
1 1-4 ZENI
5-10 Not read
11-20 Number of photolysis reactions with zenith
angle dependence.
The next two lines are repeated for each photolysis reaction. The order
of the photolysis rates represents values for the following zenith
angles: 0., 10., 20., 30., 40., 50., 60., 70., 78., 86.
2 1-10 Photolysis reaction number
11-20
21-30
31-40 Photolytic ratios relative to N02 for the
41-50 first six zenith angles.
51-60
61-70
3 1-10
11-20 Photolytic ratios relative to N02 for the
21-30 last four zenith angles.
31-40
* Default values for the photolysis species in the CBM-IV are given in Tables 2-4
(Section 4).
75
-------
TITL TITL
TABLE 8 (continued)
Option
TITLE
Line No.
Input a new
the default
1
2
Column Contents
title. If this option is not activated,
title is "Standard Ozone Isopleth Conditions."
1-4 TITL
1-72 The title can be placed anywhere in line
between columns 1-72
76
-------
PLAC PLAC
TABLE 8 (continued)
Option Line No. Column Contents
PLACE Input city-specific information on light intensity.
Default values correspond to Los Angeles on 21 June 1986.
1 1-4 PLAC
11-20 Latitude, in decimal degrees north of the
equator (DF = 34.058)
21-30 Longitude, in decimal degrees west of
Greenwich meridian (DF = 118.250)
31-40 The time zone, in hours from Greenwich mean
time (DF = 7.0)
41-50 The year (DF = 1986)
51-60 The month of year (DF » 6)
61-70 The numerical day of month
(DF = 21)
2 1-24 The name of the place can be entered
(optional) anywhere in columns 1-24. Include this
line only if a new value is entered for the
latitude or longitude on the previous line
77
-------
MIXI
MIXI
TABLE 8 (continued)
Option
Line No.
Column
Contents
MIXING
Option for use when data on hourly mixing heights are available. Mixing
heights are read for the initial height and the height at the end of each
hour. If dilution occurs for n hours, there should be n+1 mixing
heights.
1
2+
(optional)
1-4 MIXI
11-20 Number of hours (n) of dilution (MAX = 24)
21-30 Mixing height at time t = 0
31-40 Mixing height at time t = 1 hr
41-50 Mixing height at time t = 2 hr
51-60 Mixing height at time t = 3 hr
61-70 Mixing height at time t = 4 hr
71-80 Not read
If more than 4 hours of dilution, continue
on next line
1-10 Continuation of mixing heights
61-70
71-80
Not read
78
-------
DILI) DILU
TABLE 8 (continued)
Option Line No. Column Contents
DILUTION Read site-specific information on initial and final mixing heights.
Dilution is calculated using the characteristic curve.
1 1-4 DILU
11-20 Initial mixing height, Zl, in any units
(DF = 510 m)
21-30 Final mixing height, Z2, in same units as
initial mixing height (DF = 630 m)
31-40 Starting time of mixing height change
(2400 hour) (DF = 800)
41-50 Ending time of mixing height change (2400
hour) (DF = 1500)
51-60 Dilution rate in percent per hour before
and after the mixing height change
(DF = 0)
61-80 Not read
79
-------
TEMP TEMP
TABLE 8 (continued)
Option Line No. Column Contents
TEMPERATURE A varying temperature profile may be used during the simulation with
this option. Temperature values should be in units of degrees K.
Values are read for the initial time and at the end of each hour. If
there are n hours, there should be n+1 temperature values.
1 1-4 TEMP (DF = 303 K)*
11-20 Number of hours (n) of varying temperature
(MAX = 24)
21-30 Temperature at time t = 0
31-40 Temperature at time t = 1 hr
41-50 Temperature at time t = 2 hr
51-60 Temperature at time t = 3 hr
61-70 Temperature at time t = 4 hr
71-80 Not read
If more than 4 hours of values, continue
on next line
2+ 1-10 Continuation of temperature
(optional) . values
*
61-70
71-80 Not read
* If the user desires a new constant temperature value, this can be
implemented using the MECH option.
80
-------
TRAN
IRAN
TABLE 8 (continued)
Option
Line No.
Column
Contents
TRANSPORT Option for site-specific information on 03, N02, and NMOC transported in
the surface layer and 1n the air aloft that is entrained as the
inversion rises. (If TRAN option is not used, concentration of
transported species is 0.)
1
(optional)
1-4 TRAN
11-20 Transported ozone concentration in the
surface layer
21-30 Ozone entrained from aloft
31-40 If nonzero and positive:* Transported
NMOC 1n the surface layer. If nonzero and
negative: Number of NMOC species in the
0600-0900 mix
41-50 If nonzero and positive:* Total NMOC
entrained from aloft. If nonzero and
negative: Number of NMOC species in the
0600-0900 mix
51-60 Transported N02 in the surface layer
61-70 N02 entrained from aloft
71-80 Not read
1-10 If a nonzero negative value is entered
in columns 31-40 of the TRAN line, the
total NMOC transported in the surface
layer is entered here (ppmC).
11-20 The fraction of the total NMOC for each of
the organic species transported in the
surface layer (should be in the same order
as listed in the MECH option).*
61-70 Continue on next line (if necessary)
71-80 Not read
* Can only be used with the CBM-IV. The default carbon fractions for NMOC transport
. in the surface layer and for NMOC aloft are given in Table 5, Section 4.
* The default order of the NMOC species in CBM-IV is: ETH, OLE, ALD2, FORM, TOL, XYL,
PAR, ISOP, and NR.
81
-------
TRAN IRAN
TABLE 8 (continued)
Option
TRANSPORT
Line No.
3
(optional)
Column Contents
1-10 If a nonzero negative value is entered in
columns 41-50 of the TRAN line, the total
NMOC entrained from aloft is entered here
(ppmC)
11-20 The fraction of the total NMOC entrained
for each of the organic species
entrained from aloft (should be in the
same order as listed in the MECH option).
61-70 Continue on next line (if necessary)
71-80 Not read
82
-------
INIT INIT
TABLE 8 (continued)
Option Line No. Column Contents
INITIAL Molecular concentrations of species other than 03, NC^, and NMOC that
are transported in the surface layer can be entered with this option.
1 1-4 INIT
11-20 Number of transported species with nonzero
concentrations (DF = 0; MAX =60)
21-80 Not read
2 1-4 The list of names of the transported species
11-14 with nonzero concentrations (continue
21-24 on next line if necessary)
31-34
41-44
51-54
61-64
65-80 Not read
3 1-10 The molecular concentrations for the
11-20 species listed on the previous line(s)
(ppm)
61-70
71-80 Not read
83
-------
ALOF ALOF
TABLE 8 (continued)
Option Line No. Column Contents
ALOFT Molecular concentrations of species other than NMOC, NOX, and 03 in the
aloft layer can be entered with this option.
1 1-4 ALOF
11-20 Number of species with nonzero aloft
concentrations (OF = 0; MAX = 10)
21-80 Not read
2 1-4 The list of names of the species with
11-14 nonzero aloft concentrations (continue
21-24 on next line if necessary)
31-34
41-44
51-54
61-64
65-80 Not read
3 1-10 The aloft molecular concentrations
11-20 for the species listed on the previous
line (ppm)
61-70
71-80 Not read
84
-------
BACK
BACK
TABLE 8 (continued)
Option
Line No.
Column
Contents
BACKGROUND Background concentrations* of NMOC, N02 and O-j can be set with this
option. (If background option is not used, the minimum background
levels are zero.)
1
(optional)
1-4 BACK
11-20 Background concentration of 03 (ppm)
21-30 If nonzero and positive: The background
concentration of NMOC (ppmC) for the
CBM-IV chemistry
If nonzero and negative: The number of
organic species in the optional mechanism
31-40 Background concentration of N02 (ppm)
1-10 Background concentration of NMOC (ppmC)
11-20 If a nonzero negative number is entered
21-30 in columns 21-30 of line 1, the fraction
31-40 of the total background NMOC for each
41-50 of the organic species (should be in the
51-60 same order as listed in the MECH option).
61-70 Continue on next line (if necessary)
* Minimum levels for transport concentrations in the surface and aloft layers.
85
-------
EMIS
EMIS
TABLE 8 (continued)
Option
Line No.
Column
Contents
EMISSIONS Input city-specific information on post-0800 emissions.
1 1-4 EMIS
11-20 The number of hours for which emission
fractions are to be input, from 1.0 to
24.0 (DF = 0). This number should be
coded as positive if the same fractions
for NMOC and NOX are to be used. It
should be coded as negative if different
fractions are to be used
21-30 NMOC or NMOC and NO emission fraction for
hour 1 (DF =0). If all NMOC fractions
are to be set to zero, enter any negative
number and skip to record 3
31-40 NMOC or NMOC and N0y emission fraction for
hour 2 (DF=0)
61-70 NMOC or NMOC and N0y emission fraction
hour 5 (DF =0)
The following line is included and repeated if more than five hours of
emissions are specified.
(optional)
1-10 NMOC or NMOC and NOX emission fraction for
hour 6
11-20 NMOC or NMOC and NOX emission fraction for
hour 7
61-70 NMOC or NMOC and N0y emission fraction for
hour 12
The next line is included when separate NMOC and NOX fractions are
specified. This line is repeated when the number of hours of emissions
is greater than 7.
(optional)
1-10 NOX emission fraction for hour 1. If all
NOX fractions are set to zero, then any
negative number should be entered, and no
further entries are required
86
-------
EMIS
EMIS
TABLE 8 (continued)
Option
Line No.
Column
Contents
EMISSIONS
11-20
NOX emission fraction for hour 2
(optional)
61-70 NOX emission fraction for hour 7
1-10 NOX emission fraction for hour 8
11-20 NOX emission fraction for hour 9
61-70 NOX emission fraction for hour 14
87
-------
MASS
MASS
TABLE 8 (continued)
Option
Line No.
Column
Contents
MASSEMISS Used to supply mass emission densities through which post-0800 emission
fractions are computed
1-4
11-20
21-30
31-40
41-50
MASS
Number of hours of emissions (max
(expressed as a negative number)
24.)
Measured 0600-0900 NMOC concentration used
to compute NMOC emission fractions, ppmC
Measured 0600-0900 NOX concentration used
to compute NOX emission fractions, ppm
Mixing height at start of simulation, in
meters
The next line is repeated if more than 7 hours of emissions are
specified. The number of entries must equal the number of hours
specified on line 1.
2 1-10 VOC emission density for hour 1, kg/km2
11-20 VOC emission density for hour 2, kg/km2
61-70 VOC emission density for hour 7, kg/km2
The next line is repeated if more than 7 hours of emissions are
specified. The number of entries must equal the number of hours
specified on line 1.
3 1-10 NOX emission density for hour 1, kg/km2
11-20 NOX emission density for hour 2, kg/km2
61-70 NOX emission density for hour 7, kg/km'
88
-------
MOLE MOLE
TABLE 8 (continued)
Option Line No. Column Contents
MOLEMISS Incorporate site-specific information on emissions of up to 5 species
including VOC and NC- . Note VOC and NOX emissions are required with
this option and should be the first and second species listed.
1 1-4 MOLE
11-20 Number of hours during which emissions
occur; from 1 to 24 (DF = 0); the negative
value should be entered
21-30 Number of species that have emission rates
(MAX « 5)
31-40 If nonzero: The initial mixing height
used for conversion of moles to ppm units
(units should be consistent with the
mixing height units entered in the DILU or
MIXI options)
41-50 If nonzero, the horizontal area used to
convert emissions in moles to ppm units
(units for the area should be consistent
with the mixing height units)
51-60 The measured 0600-0900 NMOC concentration
used to compute NMOC emission fractions,
ppmC
61-70 The measured 0600-0900 NO,, concentration
used to compute NOX emission fractions,
ppm
If there are emissions of species other
than VOC or NOX, then line 2 contains the
0600-0900 concentration of each species.
2 1-10 Measured 0600-0900 concentration of the
third species, ppm
11-20
21-30
89
-------
MOLE MOLE
TABLE 8 (continued)
Option Line No. Column Contents
The next set of lines is repeated for each species with emissions.
3+ 1-4 Species name (use VOC for VOC emissions,
NOX for nitrogen oxides emissions)
11-20 Emission rates in units of ppm/hr
21-30 or moles/hr (ppmC or moles C for VOC
emissions)
61-70 If more than 5 hours of continuous
emissions are to be entered, continue on
next line.
90
-------
DEPO
DEPO
TABLE 8 (continued)
Option
Line No.
Column
Contents
DEPOSITION Incorporate Information on species deposition.
1 1-4 DEPO
11-20 Number of hours during which deposition
occurs; from 1 to 24; DF = 0
21-30 Number of species that have deposition
rates; MAX = 5
The next set of lines is repeated for each species with deposition
rates.
2 1-4 Species name (use NMOC for NMOC
deposition) (NO and N02 deposition are
treated separately)
11-20 Deposition velocity for hour 1, cm/s
21-30 Deposition velocity for hour 2, cm/s
61-70
Deposition velocity for hour 6, cm/s
If more than 6 hours of deposition are to be entered, continue on
next line.
91
-------
REAC REAC
TABLE 8 (continued)
Option Line No. Column Contents
REACTIVITY* Contains site-specific information on organic reactivity and N02/NOX
ratio for the initial 6-9 AM mix and the VOC and NOX emissions.
1
1-4
5-10
11-20
21-30
1-10
REAC
Not read
The number
0900 mix
The N02/N0
The react i
of organic species in
x fraction
vity for each of the 01
the 0600
-ganic
species (up to 7 on a line) repre-
sented as the fractions of total NMOC.
Continue on next line (if necessary)
61-70
71-80 Not read
* If the REACTIVITY option is not used, the default fractions are those shown in
Table 6, Section 4.
92
-------
TIME TIME
TABLE 8 (continued)
OptionLine No.ColumnContents
TIME Reset starting and ending times for simulations with
this line.
1 1-4 TIME
5-10 Not read
11-20 Starting time for simulations based on 24-
hour clock (DF = 800)
21-30 Ending time for simulations (DF = 1800).
Note: Maximum difference is 24 hours
31-80 Not read
93
-------
RATE
RATE
TABLE 8 (continued)
Option
Line No.
Column
Contents
RATE
Rate constant changes are implemented with this option.
(optional)
(optional)
1-4
5-10
11-20
21-30
1-10
*
61-70
71-80
1-10
*
*
61-70
71-80
RATE
Not read
Number of rate constants to be changed
Special option for testing emissions,
photolysis, dilution, etc. A nonzero
number sets all reaction rate constants to
zero except photolysis reactions
Identification numbers for the reactions
with rate constants to be changed (each
reaction number in each 10-column field)
Not read
List of the new rate constants (must be
in the same order as entered on line 2).
Each rate constant in each 10-column
field (right-justified if E format)
Not read
94
-------
SPEC SPEC
TABLE 8 (continued)
Option Line No. Column Contents
SPECIES This option allows the user to plot isopleths for any species found in
the kinetic mechanism or to plot concentration-time profiles for species
besides 03 if the CALCULATE option is used.
1 1-4 SPEC
11-20 Number of species to be plotted ( MAX = 5;
DF = 1)
21-80 Not read
1-4 The alphanumeric symbol of the species of
11-14 interest; left-justified (DF = 03 [ozone])
21-24
31-34
41-44
45-80 Not read
95
-------
ACCU ACCU
TABLE 8 (continued)
Option Line No. Column Contents
ACCURACY Increase or reduce the mathematical accuracy of the isopleth diagram by
increasing or decreasing the accuracy of the numerical integration
scheme, more or less accurate interpolation, etc.
1 1-4 ACCU
11-30 Not read
31-40 Error tolerance in the numerical
integration routine, from 0.1 to 0.00001;
(DF = 0.003)
41-50 Tension factor for hyperbolic spline
functions used in first stage of
interpolation from 0.001 to 50.; (DF = 1)
51-60 Tension factor for hyperbolic spline
functions used in plotting isopleth lines
(high tensions lead to straight lines
drawn between the points obtained from the
first stage), from 0.001 to 50.; (DF = 1)
61-70 If any nonzero value is entered in this
field, simulations will terminate after
any ozone maximum; no entry produces
results over the total simulation period
96
-------
ALRE ALRE
TABLE 8 (continued)
Option Line No. Column Contents
ALREADY* Include results from a previous run.
1 1-4 ALRE
11-20 Number of previous simulations to be input
If the number is positive, then read the
following lines. If the number is
negative, then read previous simulation
results from an external file
2 1-10 NMOC concentration
11-20 NOX concentration
21-30 Maximum one-hour average ozone
concentration, ppm
31-40 Maximum one-hour average species con-
41-50 centrations (ppm) of any other species
51-60 for which isopleths are to be plotted.
61-70 These values are optional depending on
the number of species declared on the
SPECIES line. (Must be in the same
order as listed on the SPECIES line.)
* Can be used only with the ISOPLETH option.
97
-------
PLOT
PLOT
TABLE 8 (continued)
Option
Line No.
Column
Contents
PLOT
Activates the drawing of the isopleth diagram on an off-line plotter.
1 1-4 PLOT
11-20 Scaling factor for the location of labels
for each ozone isopleth. The value should
be between 0.1 and O.8.; (DF = 0.6)
21-30 If nonzero, a grid is overlaid onto the
diagram. If the value is positive and
nonzero, a grid is overlaid on the diagram
using a different color pen (if available)
If the value is negative, a grid with line
of different patterns (e.g., dot-dash) is
overlaid on the plot. The absolute value
of this number corresponds to different
patterns and textures
31-40 Length (in inches) of the abscissa (NMOC
scale) of the isopleth diagram; (OF = 8.5)
41-50 Length (in inches) of the ordinate (NOX
scale) of the isopleth diagram; (DF =
5.95)
51-60 Size (in inches) of the numbers to be
printed on the axes and of the characters
in the title; (DF = 0.10)
61-70 The size (in inches) of the labels on the
ozone isopleths and the division marks on
the axis; (DF = 0.07)
98
-------
CRED
CRED
TABLE 8 (continued)
Option
Line No.
Column
Contents
CREDIT
Allow for post-0800 CO emissions 1n EKMA calculations. If the CRED
option 1s not used, defaults are no post-0800 CO emissions, 1.2 ppm CO
for the 0600 to 0900 concentration, and 0.5 ppm CO aloft with no change
1n future year levels.
1
1-4
11-20
21-30
31-40
CRED
Enter a negative number to defeat option
1n multiple runs (DF=0)
Number of emission hours. Must be equal to
number of hours set 1n EMIS, MASS, or MOLE
options. If the value 1s positive then
the CO emissions are entered as fractions
of the 0600-0900 CO concentration. If the
value 1s negative, the CO emissions are 1n
mass units of kg/km .
Initial mixing height.
mass units are Input
Used only when
1-10 Species name. CO 1s the only name
allowed.
11-20 0600-0900 present-day CO concentration
(DF»0)
21-30 Not read
31-40 Present-day CO transported aloft
(DF - 0.0)
41-50* Percent change 1n CO emissions and 0600-
0900 CO concentrations for the future year
51-60 Not read
61-70* Future-year CO transported aloft
3+
1-10 Present-day hourly emissions of CO
11-20... (continue on next line if necessary)
61-70
* Not used with CALC and ISOP options.
99
-------
CALC CALC
TABLE 8 (continued)
Option Line No. Column Contents
CALCULATE Perform a single simulation with the initial NMOC and NOX concentrations
specified on this line.
1 1-4 CALC
11-20 0600-0900 NMOC concentration
21-30 0600-0900 NOX concentration
31-40 Information option; entry of any nonzero
value will result in printing of the
computed concentrations of all species,
the rate of change of all species,
reaction rates, etc. Photolysis constants
are also printed
41-50 Time (in minutes) from the beginning of
the simulation at which computed
concentrations of all species in the
kinetic mechanism are to be printed; (DF =
60)
51-60 Time step (in minutes) for subsequent
printing of concentrations; (DF = 60)
100
-------
EKMA EKMA
TABLE 8 (continued)
Option Line No. Column Contents
EKMA Used to perform a VOC emission requirement calculation
1 1-4 EKMA
11-20 Base-case ozone concentration, ppm
21-30 NMOC/NOX ratio (If the value is negative,
the base-year NMOC and NOX levels have
been determined in a previous simulation
and are entered on line 3. Future-year
calculations are performed based on the
base-year NMOC and NOX levels.)
31-40 Percent change in NOX emissions; positive
number for increase, negative number for
decrease (DF = 0)
41-50 Future transport indicator; if nonzero,
input record 2 is required
(DF = 0)
51-60 Option to generate report of change in
ozone as a function of change in VOC
emissions; if 1., generate tabular report;
if 2., generate tabular report and write
results to file. (DF = 0., i.e., no
report or file generated)
61-70 Flag to do a calculation at a specified
NMOC level. The NMOC level is expressed
as a percent change from the base-year
level. The value is placed on line 3,
columns 41-50.
The next line is included only if a nonzero entry is specified for the
future transport indicator (41-50).
2 1-10 Concentration of ozone transported in
(optional) surface layer for post-control conditions,
ppm; (DF =0). A negative value activates
the use of the future ozone transport
estimate curves shown in Figure 4. (A
value less than -100 activates the use of
the dotted line shown in Figure 4.)
11-20 Concentration of ozone transported aloft
for post-control conditions, ppm;
(DF =0). A negative value activates the
use of the future ozone transport estimate
curves shown in Figure 4. (A value less
than -100 activates the use of the dotted
line shown in Figure 4.)
-------
EKMA EKMA
TABLE 8 (continued)
Option Line No. Column ' Contents
EKMA 2 21-30 Concentration of NMOC transported in the
surface layer for post-control conditions,
ppmC; (DF = 0).
The absolute value of the negative number
entered represents the median contribution
factor as described in Appendix B of EPA
(1981).
31-40 Concentration of NMOC transported aloft
for post-control conditions, ppmC;
(DF = 0).
The absolute value of the negative number
entered represents a 40% reduction in
present-day NMOC aloft
41-50 Concentration of NOX transported in
surface layer for post-control conditions,
ppm; (DF =0).
51-60 Concentration of NOX transported aloft for
post-control conditions, ppm;
(DF = 0).
The following line must be included even if the default values of 0 are used for all
parameters.
3 1-10* Measured 0600-0900 NMOC (Value used in
emission density calculations) (DF = 0.)
11-20* Measured 0600-0900 NOX (Value used in
emission density calculations) (DF = 0.)
21-30 Calculated NMOC that yields base-case
Q3. Declared if a negative NMOC/NOX ratio
is entered on line 1. (DF = 0.)
31-40 Calculated NOX that yields base-case 03.
Declared if a negative NMOC/NOX ratio is
entered on line 1. (DF = 0.)
41-50 Change in NMOC level (percent) for
specific calculation after the base-year
ozone is estimated (used only if column
61-70 of line 1 is nonzero).
* Must be specified so that OZIPM-4 can determine the location of the base-year
ozone should two or more base-year ozone values occur along a NMOC/NOX line.
Values must agree with those specified in MASS or MOLE option.
-------
ISOP 'SOP
TABLE 8 (continued)
Option Line No. Column Contents
ISQPLETH Construct isopleth diagram(s) for 03 and other species according to the
input parameters. Default isopleths for CU are 0.08, 0.12, 0.16, 0.20,
0.24, 0.28, 0.30, 0,32, 0.34, 0.36 and 0.40 ppm.
1 1-4 ISOP
11-20 Maximum NMOC concentration on abscissa of
isopleth diagram; (DF = 2.0 ppmC)
21-30 Maximum NOX concentration on ordinate of
isopleth diagram; (DF = 0.28 ppm)
31-40 Number of ozone isopleths to be drawn,
from 1. to 20.; (DF = 11)
41-50 Any nonzero value will activate the
printing of solar noon and the time of the
center of the maximum one-hour average
ozone concentration for each simulation
51-60 Not read
61-70 Number of species to plot. This number
corresponds to the number of species
entered on the SPECIES option
2 1-10 Ozone concentration of 1st isopleth, ppm
(optional)
11-20 Ozone concentration of 2nd isopleth, ppm
21-30 Ozone concentration of 3rd isopleth, ppm
31-40 Ozone concentration of 4th isopleth, ppm
41-50 Ozone concentration of 5th isopleth, ppm
51-60 Ozone concentration of 6th isopleth, ppm
61-70 Ozone concentration of 7th isopleth, ppm
103
-------
ISOP
ISOP
TABLE 8 (continued)
Option
Line No.
Column
Contents
ISOPLETH 3
(optional)
(optional)
5+
1-10 Ozone concentration of 8th isopleth, ppm
*
61-70 Ozone concentration of 14th isopleth, ppm
1-10 Ozone concentration of 15th isopleth, ppm
51-60 Ozone concentration of 20th isopleth, ppm
Lines 2-4 are repeated for each additional
species to be plotted (must be in some
order as listed on the SPECIES option).
104
-------
bbbb bbbb
TABLE 8 (concluded)
Option Line No. Column Contents
bbbb A blank line must follow all input options to terminate
the program.
1-4 Blanks
105
-------
TABLE 9. Files Used by OZIPM-4.
File
Input file
Output file
ALREADY file
FORTRAN
Unit*
5
6
9
Read(R)/
Write(W)
R
W
W
Comment
The card input deck
The output of the OZIPM-4 results
The results of each simulation
on
ALREADY file
PLOT file (optional)
8
EKMA file (optional) 11
diagram point are written to this
file for later use
R File of results from a previous run
used to continue an isopleth
simulation or redo the isopleth
W The file to which CALCOMP or
offline plots are written. The
file unit is dependent on the
computer system
W The file to which EKMA calculations
are written when the option flag in
columns 51-60 on the EKMA line is
set to 2.
* Each of the unit numbers can be changed in the OZIPM-4 program by
modifying the following statement in the BLOCK DATA routine:
DATA IN/5/, IOUT/6/, IALN/9/, IALL/8/, IOZC/11/.
106
-------
EXAMPLES OF OZIPM RUNS
Five examples of how to use OZIPM-4 with the CBM-IV and optional
mechanisms are presented in this section. Exhibits 1 through 10* show
the input and output files for each example. Each example is discussed
1n detail.
Example 1
Example 1 illustrates the use of the default CBM-IV mechanism with a
set of city-specific information described by PLACE. DILUTION. EMISSIONS.
and TRANSPORT options. Exhibit 1 shows the input file for this example.
(The first three lines in this exhibit are used to orient the user by pro-
viding column numbers.) A single simulation is performed using the CALCU-
LATE option at a NMOC value of 1.0 ppmC and a NOX vaTue of 0.10 ppm. Also
note that there is a nonzero value in columns 31-40 of the CALCULATE
option, which will result 1n a detailed printout of the simulation. The
SPECIES option is used in this simulation so that plots of maximum hourly-
averaged concentrations of N0£ and PAR can be obtained along with the plot
of the maximum hourly-averaged Oj concentration.
The output from this simulation is shown in Exhibit 2. The first
page of the output describes the version of OZIPM-4 being used. The sec-
ond page is a printout of the input stream. This feature is provided so
that users may readily review the input information associated with the
simulation output. The default mechanism and the photolysis rates are
printed next because a value of -1 was placed on the MECHANISM option.
The next two pages are header pages that describe the inputs used in this
simulation. The following pages contain the detailed simulation results
for each hour of the simulation. At the end of the simulation is a sum-
mary of the maximum Oj, N02» and PAR concentrations found in the simula-
tion. Three plots (one each for 0^, N02« and PAR) in the output show the
temporal behavior for each species of interest.
* For the convenience of the user, Exhibits 1 through 10 are presented
at the end of this section.
107
-------
Example 2
Example 2 illustrates the use of the CALCULATE option for a chemical
mechanism. In this example, the default CBM-IV mechanism is input with
one additional reaction to treat methanol (Reaction 83; see Exhibit 3).
Exhibit 3 shows the input deck for this simulation. The inputs for this
example are comparable to those for example 1, with the additional options
TEMPERATURE, MOLE. DEPOSITION, INITIAL. ALOFT. AND REACTIVITY invoked.
The chemical mechanism is implemented through the use of the MECHANISM
option. Following the MECHANISM line is (1) the list of photolysis reac-
tions, (2) the list of the organic species, and (3) the carbon number of
each organic species. The chemical reactions are input next.
The ZENITH option follows the MECHANISM option. The zenith angle
dependence for each photolysis reaction is entered beginning at O(zero)
degrees. Only seven photolysis reactions are input even though there are
a total of eleven photolysis reactions. Reactions 8, 14, and 23 have zen-
ith-angle dependences similar to those of N02 photolysis. Since the pho-
tolysis rate constants for these reactions are constant ratios to N02
photolysis, their zenith-angle dependence does not need to be input with
the ZENITH option.
Following the ZENITH option are the city-specific options described
1n Example 1. This example illustrates the use of the MOLE option when
post-0800 emissions are in units of moles m'W" . In this example, sur-
face depositions of NO, N02, and 03 are treated explicitly. The DEPOSI-
TION option shown in EXHIBIT 3 is used for illustrative purposes only. In
realistic simulations, the deposition rate will vary with different sur-
face types. The INITIAL option is used to input H20 and CO concentrations
other than the default values stored within the program. The ALOFT option
is used to input PAN and CO transported aloft. The value entered for CO
overrides the default value of 0.5 ppm stored within the program. The
output 1s shown 1n Exhibit 4. Note that for this example CO concentra-
tions can be entered using the CREDIT option, but the user would have to
enter post-0800 emissions of CO. This example assumes zero post-0800 CO
emissions. The output formats are similar to those given in Example 1.
Example 3
Example 3 illustrates the use of the EKMA option to predict the
actual reduction in VOC emissions needed to reach the NAAQS of 0.12 ppm.
Exhibit 5 shows the input file for this example. This example also illus-
trates the use of the MASS and CREDIT options. The MASS option allows the
user to input mass emission densities in units of kg/km . The first line
108
-------
in the MASS option contains the negative number of hours of emissions,
followed by the measured 0600-0900 NMOC and NOX concentrations, and the
initial mixing height. Note that the mixing height must be in meters.
The next lines contain the mass emissions of VOC and NOX. The CO CREDIT
option 1s used to specify post-0800 CO emissions. The CREDIT line (line
15 1n Exhibit 5) contains the negative number of hours of emissions, fol-
lowed by the Initial mixing height. A negative value is used to indicate
that mass emission densities are used in the following lines. The next
line contains the name of the species (CO is the only name allowed) fol-
lowed by the measured 0600-0900 concentration, the present-year concentra-
tions of CO transported aloft, the percent change in CO emissions in the
future year, and the future year CO concentrations transported aloft. The
next lines contain the hourly CO emissions followed by the EKMA option.
The base-case ozone is 0.17 ppm, the NMOC/NOX ratio is 10, and the NOX
emissions are reduced by 10.0 percent for the future year. The nonzero
flag in columns 41-50 of the EKMA option is used to specify non-zero
transport concentrations in the future year. The range option on the EKMA
line is invoked on columns 51-60 to give ozone levels at varying VOC
reductions. The nonzero value in columns 61-70 tells OZIPM-4 to do a
calculation for the future year at a specific NMOC level. The next line
after the EKMA line determines the change in transport for the future
year. The first two fields, columns 1-10 and 11-20, specify the future-
year ozone transported in the surface layer and aloft. A negative value
is entered to tell OZIPM-4 to use the standard ozone curves described in
EPA (1981) and-shown in Figure 4.
The future year NMOC transported in the surface layer and aloft is
input in columns 21-40 and 31-40, followed by the future year NOX trans-
ported in the surface layer and aloft (columns 41-50 and 51-60). The
third line contains the measured 0600-0900 NMOC and NOX concentrations.
The 0600-0900 NMOC and NOX concentrations are used within the EKMA option
to determine the location of the base-year ozone closest to the measured
concentrations should a maximum or minimum occur along the NMOC/NOX
line. The last field (columns 41-50) contains the specific NMOC level at
which the future calculation will be performed. The output for this
example is shown in Exhibit 6. The output formats are similar to the out-
put from the previous examples except that the simulations required to
make the VOC requirement estimate are printed. Note that OZIPM-4 will
search for the NMOC and NOX level along the NMOC/NOX ratio until it finds
the base-case ozone of 0.17 ppm. Then it performs the future year esti-
mate to obtain the VOC control requirement.
Note that in this example NOX emissions were reduced by 10 percent
for the future year. Suppose that we are now interested in determining
how much control estimates would change if we were to assume that NOX
109
-------
emissions were reduced by 20 percent 1n the future year. We can save com-
puter time by using EKMA line 3 to specify the NMOC and NOX concentrations
that yielded the base-case ozone value of 0.17 ppm. These values have
already been determined and are shown in Exhibit 6. Thus, to run a new
simulation, which Involves a change only 1n future-year conditions, we
would Input the values of 0.46065 and 0.04607 determined for the base-year
NMOC and NOX concentrations 1n Columns 21-30 and 31-40, respectively, on
EKMA line 3.
Example 4
Example 4 1s similar to Example 3 except that the NMOC transported 1n
the surface layer must be reduced due to upwind contributions. The proce-
dure outlined 1n this example 1s that described 1n Appendix B of the 1981
EPA guidelines. Exhibit 7 shows the Input file for this example. The
card following the EKMA card contains the upwind NMOC median contribution
factor of 0.32. The contribution factor 1s entered as a negative number
to distinguish 1t from an absolute concentration. This example Illus-
trates the effects of "overwhelming" transport conditions for which a 100
percent VOC control requirement 1s not enough to reach the 0.12 ppm stan-
dard. In this example the program will stop execution should a 100 per-
cent VOC control requirement be calculated (I.e., the 0600-0900 NMOC
location 1s zero). In cases where transport conditions dominate, the user
should generate an Isopleth diagram to further examine the model Input
assumptions. The output for this example 1s shown 1n Exhibit 8.
Example 5
Example 5 demonstrates the use of the ISOP option 1n OZIPM-4. Exhi-
bit 9 shows the Input file for this example. The output for this example
1s shown 1n Exhibit 10. The output contains the results of the simulations
performed for the ISOPLETH option. The ozone Isopleth diagram 1s shown at
the end of the output file. Note that the SPECIES option asked for two
species (03 and N02). Thus, the simulations under the ISOPLETH option
provide the maximum one-hour values for both species. Isopleth diagrams
are generated for both species (Exhibit 10) based on the 1sol1nes defined
by the user (lines 23 to 26 1n Exhibit 9). Note that the user must
declare the number of species to be plotted 1n columns 61-70 on the
ISOPLETH line (line 22 1n Exhibit 9).
110
-------
EXHIBIT 1
1) 1234567
2) 123456789012345678901234567890123456789012345678901234567890123456789012
3)
4) MECH -1.
5) TITL
6) EXAMPLE 1 - SINGLE CALCULATION
7) TRANS .000 .080 0. .050 0. 0.009
8) PLAC 38.629 90.206 5.0 1986. 6.0 21.
9) TEST CITY
10) DILU 250. 1700.
11) EMIS -11. .106 .086 .084 .058 .036
12) .025 .024 .020 .019 .024 .013
13) .343 .262 .239 .174 .117 .080 .081
14) .068 .060 .075 .038
15) SPEC 3.
16) 03 N02 PAR
17) CALC 1. .1 1.
18) BLANK
19)
20) 1234567
21) 123456789012345678901234567890123456789012345678901234567890123456789012
111
-------
* *
* OZONE ISOPLETH PLOTTING PACKAGE *
* WITH OPTIONAL MECHANISMS *
* *
* 0 2 I P M *
* *
* VERSION 4.00 *
* *
* DECEMBER, 1987 *
* *
EXHIBIT 2
-------
THE INPUTS FOR THIS RUN ARE
MECH -1-
T1TL
EXAMPLE
TRANS
PLAC
.058 .036
.086 .08.
: j
III :oto :»"
sop3EC »« T
CALC 1. -1
-------
THE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
REACTIONS
N02
0
03 +
0 *
0 +
0 +
N02 +
03
03
010
010 +
03 +
03 +
N03
N03 +
N03 +
N03 +
N205' +
N205
NO +
NO + .
NO +
HN02
OH +
HN02 +
NO
N02
N02
NO
03
H20
OH
H02
NO
N02
N02
H20
NO
N02 +
OH
HN02
HN02
NO
03
N02
NO
N03
N02
N03
0
010
0
2 OH
H02
OH
0.89 N02
2 N02
NO
N205
2 HN03
= N03
2 N02
H20 « 2 HN02
HN02
NO
N02
NO
0.89 0
0.11 NO
N02
N02
RATE CONSTANT
l.OOOE+00
4.323E+06
2.664E+01
1.375E+04
2.309E+03
2.438E+03
4.731E-02
5.300E-02
l.OOOE+00
4.246E+05
3.260E+00
l.OOOE+02
3.000E+00
3.390E+01
OH
N02
5.901E-01
1.853E+03
1.900E-06
2.776E+00
1.539E-04
1.600E-11
9.799E+03
1.975E-01
9.770E+03
1.500E-05
ACT. ENERGY(K)
O.OOOE+00
-1.175E+03
1.370E+03
O.OOOE+00
-6.870E-»-02
-6.020E+02
2.450E+03
O.OOOE+00
O.OOOE-t-00
-3.900E*02
O.OOOE+00
9.400E+02
5.800E+02
O.OOOE+00
-2.500E+02
1.230E+03
-2.560E+02
O.OOOE+00
1.090E+04
-5.300E+02
O.OOOE+00
-8.060E+02
O.OOOE+00
O.OOOE+00
O.OOOE+00
-------
THE REACTIONS
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
N02 4-
OH 4-
H02 4-
H02 4-
PNA
OH +
H02 +
H02 4-
H202
OH 4-
OH 4-
FORH *
FORH
FORH
FORH *
FORH 4-
ALD2 +
ALD2 -4-
AL02 4-
ALD2
C203 4-
C203 4-
PAN
C203 4-
C203 *
OH
HN03
NO
N02
PNA
H02
H02 4-
H202
CO
OH
0
N03
0
OH
N03
NO
N02
C203
H02
HN03
N03
OH
PNA
H02
N02
H202
H20 = H202
2 OH
H02
H02
H02
2 H02
CO
OH
HN03
C203
C203
C203
FORH
FORH
PAN
C203
2 FORH
0.79 FORH
4- N02
+ N02
4- CO
4- CO
4- H02 + CO
4- H02 * CO
+ OH
4- HN03
4- 2 H02 4- CO + X02
4- N02 + H02 + X02
+ N02
* 2 X02 4 2 H02
4 0.79 X02 4 0.79 H02 4 0.79 OH
RATE CONSTANT
1.682E+04
2.179E+02
1.227E+04
2.025E+03
5.115E+00
6.833E+03
4.144E+03
2.181E-01
1.890E-01
2.520E+03
3.220E+02
1.500E+04
l.OOOE+00
l.OOOE+00
2.370E+02
9.300E-01
6.360E+02
2.400E+04
3.700E+00
l.OOOE-^00
1.831E+04
1.223E+04
2.220E-02
3.700E+03
9.600E+03
ACT. ENERGY(K)
-7.130E+02
-l.OOOE+03
-2.400E-»-02
-7.490E+02
1.012E+04
-3.800E+02
-1.150E+03
-5.800E+03
O.OOOE^-00
1.870E+02
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
1.550E+03
O.OOOE+00
9.860E+02
-2.500E+02
O.OOOE+00
O.OOOE-t-00
-2.500E+02
-5.500E+03
1.400E+04
O.OOOE+00
O.OOOE+00
-------
RATE CONSTANT ACT. ENERGY(K)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
OH
PAR
ROR
ROR
ROR
0
OH
03
N03
0
OH
03
TOL
T02
T02
OH
CRES
CRO
OPEN
OPEN
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
f
4-
4-
4- '
4-
OH
N02
OLE
OLE
OLE
OLE
ETH
ETH
ETH
OH
NO
CRES
N03
N02
OH
8
0.87
- 0.11
0.96
4- 0.04
S
=
0.63
+ 0.2
S
0.5
4- 0.33
0.91
4- 0.3
=
=
0.44
0.9
=
0.4
=
=
=
s
4-
FORM
X02
PAR
X02
X02N
H02
ALD2
FORM
FORM
H02
ALD2
CO
X02
N02
FORM
OH
X02
FORM
H02
N02
CRES
CRO
CRO
C203
X02
FORM
f
4- 0.13
4- 0.76
4- 1.1
4- 0.02
+ 0.38
+ 0.02
+
+ 0.74
+ 0.44
t
* 1.7
* 1.56
f 0.42
+ 0.08
+ 0.9
*
+ 0.6
+
+
+ 2
X02
X02N
ROR
ALD2
ROR
H02
X02N
ALD2
FORM
H02
FORM
PAR
H02
FORM
CO
X02
H02
H02
X02
HN03
H02
CO
+ H02
+ 0.11 H02
+ 0.94 H02
* 0.28 X02
+ 0.22 PAR
PAR
+ 0.22 X02
PAR
+ 0«.09 X02N
4^ CO
+ 0.22 ALD2
+ 0.12 H02
+ 0.36 CRES
+ 0.9 OPEN
+ 0.6 H02
4- CO
+ 2 H02
+ 0.11 ALD2
- 2.1 PAR
* 0.3 CO
+ 0.2 OH
+ X02
* 0.1 OH
+ ALD2
4- 0.7 X02
+ H02
+ 0.56 T02
+ 0.3 OPEN
4- C203
2.100E+01
1.203E+03
1.371E+05
9.545E*04
2.200E+04
5.920E+03
4.200E4-04
1.800E-02
1.135E4-01
1.080E4-03
1.192E+04
2.702E-03
9.150E+03
1.200E4-04
2.500E4-02
6.100E+04
3.250E4-04
2.000E+04
8.400E+00
4.400E4-04
1.710E4-03
O.OOOE+00
8.000E4-03
O.OOOE+00
O.OOOE+00
3.240E4-02
-5.040E4-02
2.105E+03
O.OOOE-t-00
7.920E+02
-4.110E^02
2.633E4-03
-3.220E4-02
O.OOOE4-00
O.OOOE-t-00
O.OOOE4-00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE-t-00
-------
THE REACTIONS
RATE CONSTANT ACT. EMERGY(K)
71
72
73
74
75
76
77
78
79
80
81
82
OPEN 4
OH 4
OH 4
MGLY
0 4
OH 4
03 4
N03 4
X02 4
X02N 4
X02 4
NR
03
XYL
MGLY
ISOP
ISOP
ISOP
ISOP
NO
NO
X02
0.03
0.69
0.7
1.1
0.6
0.5
0.1
ALD2
CO
H02
PAR
X02
C203
H02
CO
X02
ETH
FORM
PAR
X02N
N02
NR
4 0.62
4 0.08
+ 0.5
4 0.3
4-
4
4 0.8
4 0.45
+
4 0.4
4 0.4
4-0.06
C203
OH
X02
T02
C203
H02
AL02
ETH
FORM
MGLY
ALD2
CO
4 0.7
4 0.76
+ 0.2
4-
+ 0.55
4 0.9
4 0.67
4 0.2
4 0.55
4 0.44
FORM
H02
CRES
CO
OLE
PAR
H02
C203
ETH
H02
4 0.03
4 0.2
4 0.8
4 0.5
4 0.13
4 0.2
4 0.2
4 0.1
X02
MGLY
MGLY
X02
X02N
ALD2
MGLY
OH
1
3
2
8
2
1
1
4
1
1
2
1
.500E-02
.620E4Q4
.600E404
.960E4QO
.700E404
.420E405
.800E-02
.700E402
.200E404
.OOOE403
.OOOE403
.OOOE400
5
-1
0
0
0
0
0
0
0
0
-1
0
.OOOE402
.160E402
.OOOE400
.OOOE400
.OOOE400
.OOOE400
.OOOE400
.OOOE400
.OOOE4QO
.OOOE400
.300E403
.OOOE400
-------
THE FOLLOWING PHOTOLYSIS RATE CONSTANTS ARE USED
REACTION SPECIES ZENITH ANGLE (DEG)
NO. 0 10 20 30 40 50 60 70 78 86
1 N02 5.89E-01 5.85E-01 5.71E-01 5.47E-01 5.09E-01 4.54E-01 3.74E-01 2.58E-01 1.34E-01 2.42E-02
8 03 3.12E-02 3.10E-02 3.03E-02 2.90E-02 2.70E-02 2.40E-02 1.98E-02 1.37E-02 7.11E-03 1.28E-03
9 03 2.72E-03 2.62E-03 2.36E-03 1.96E-03 1.46E-03 9.44E-04 4.62E-04 1.39E-04 2.95E-05 3.15E-06
14 N03 2.00E+01 1.98E+01 1.94E+01 1.85E+01 1.73E+01 1.54E+01 1.27E+01 8.74E+00 4.55E+00 8.20E-01
23 HN02 1.16E-01 1.16E-01 1.13E-01 1.08E-01 1.01E-01 8.96E-02 7.39E-02 5.09E-02 2.65E-02 4.78E-03
34 H202 6.40E-04 6.34E-04 6.12E-04 5.73E-04 5.15E-04 4.36E-04 3.27E-04 1.95E-04 8.79E-05 2.40E-05
38 FORM 2.18E-03 2.14E-03 2.03E-03 1.86E-03 1.60E-03 1.27E-03 8.73E-04 4.48E-04 1.72E-04 4.28E-05
i
oo 39 FORM 3.39E-03 3.35E-03 3.24E-03 3.03E-03 2.72E-03 2.30E-03 1.73E-03 1.03E-03 4.65E-04 1.27E-04
45 ALD2 3.47E-04 3.38E-04 3.14E-04 2.75E-04 2.22E-04 1.61E-04 9.61E-05 4.07E-05 1.22E-05 2.27E-06
69 OPEN 1.83E-02 1.80E-02 1.71E-02 1.56E-02 1.34E-02 1.07E-02 7.33E-03 3.76E-03 1.44E-03 3.60E-04
74 MGLY 1.95E-02 1.92E-02 1.82E-02 1.67E-02 1.43E-02 1.14E-02 7.82E-03 4.01E-03 1.54E-03 3.84E-04
-------
EXAMPLE 1 - SINGLE CALCULATION
PHOTOLYTIC RATE CONSTANTS CALCULATED FOR
TEST CITY
LATITUDE
LONGITUDE
TIME ZONE
DATE
TIME
38.629
90.206
5.0
6 21
800 TO
1986
1800
LOCAL DAYLIGHT TIME
DILUTION DETERMINED FROM THE FOLLOWING
INVERSION HEIGHTS INITIAL 250. FINAL 1700.
TIMING START 800. STOP 1500.
MIXING HEIGHTS (AT THE BEGINNING OF EACH HOUR)
TIME 800 900 1000 1100 1200 1300 1400 1500
HEIGHT 250.0 503.1 821.2 1119.5 1340.2 1496.2 1610.8 1700.0
REACTIVITY
EMISSIONS ETH FRACTION .037 OLE FRACTION .035 ALD2 FRACTION .052
EMISSIONS FORM FRACTION .021 TOL FRACTION .089 XYL FRACTION .117
EMISSIONS PAR FRACTION .564 ISOP FRACTION .000 NR FRACTION .085
ALOFT ETH FRACTION .034 OLE FRACTION .020 ALD2 FRACTION .037
ALOFT FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
ALOFT PAR FRACTION .498 ISOP FRACTION .000 NR FRACTION .273
N02/NOX .250
-------
TRANSPORTED CONCENTRATIONS
ALOFT OZONE .080 HYDROCARBON .050 NOX .009 PPM
CONTINUOUS EMISSIONS (EXPRESSED AS FRACTION OF THE INITIAL PRECURSORS)
SPECIES HOUR 123456789 10
11
VOC FRACTION .106 .086 .084 .058 .036 .025 .024 .020 .019 .024
.013
NOX FRACTION .343 .262 .239 .174 .117 .080 .081 .068 .060 .075
.038
ro
o
-------
EXAMPLE 1 - SINGLE CALCULATION
THE ERROR TOLERANCE IS 3.000E-03
THE TEMPERATURE USED IS 3.030E-I-02
THE MIXING HEIGHT IS 2.50E+02
THE RATE CONSTANTS USED WERE
3.248E-01 4.051E+06 2.874E+01 1.375E+04 2.223E+03 2.358E+03 5.418E-02 1.722E-02 2.835E-04 4.155E+05
3.260E-»-00 1.053E+02 3.098E+00 1.101E+01 4.355E+04 6.317E-01 1.827E + 03 1.900E-06 5.076E + 00 1.494E-04
1.600E-11 9.371E+03 6.416E-02 9.770E*03 1.500E-05 1.617E+04 2.062E + 02 1.211E+04 1.943E-I-03 8.959E+00
6.691E+03 3.888E+03 1.582E-01 2.708E-04 2.546E+03 3.220E+02 1.500E+04 6.762E-04 1.433E-03 2.582E+02
9.300E-01 6.717E + 02 2.367E-»-04 3.700E+00 6.830E-05 1.806E + 04 9.019E + 03 4.820E-02 3.700E + 03 9.600E+03
2.309E+01 1.203E+03 2.135E+05 9.545E+04 2.200E+04 6.027E+03 4.084E+04 2.023E-02 1.135E*01 1.128E+03
1.165E+04 3.126E-03 8.988E*03 1.200E+04 2.500E+02 6.100E+04 3.250E+04 2.000E*04 5.680E-03
THE PHOTOLYSIS REACTIONS ARE
14
23
34
38
39
45
69
74
THE PHOTOLYTIC RATE CONSTANTS ARE
3.248E-01 1.722E-02 2.835E-04
5.680E-03 6.059E-03
4.400E+04
1.542E-02 3.597E+04 2.600E+04 6.059E-03 2.700E+04 1.420E + 05 1.800E-02 4.700E+02 1.200E-»-04 l.OOOE + 03
1.861E+03 l.OOOE+00
1.101E+01 6.416E-02 2.708E-04 6.762E-04 1.433E-03
6.830E-05
-------
TIME NHOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
800.
1.00000
10.00000
.10000
.25000
.00000
.02500
.56400
TIME
INTERVAL
8.000E+02 2
l.OOOE-10 0
5
0
NET RATES -8
0
-5
0
N02
HN03
PAR
MGLY
.500E-02 7
.OOOE+00 0
.640E-01 0
.OOOE+00 1
.296E-03 7
.OOOE+00 1
.922E-03 0
.OOOE+00 -1
NO
HN02
X02N
XYL
.500E-02 0.
.OOOE+00 0.
.OOOE+00 0.
.462E-02 0.
.700E-03 8.
.200E-09 0.
.OOOE+00 0.
.598E-04 0.
0
PNA
ROR
ISOP
OOOE+00
OOOE+00
OOOE+00
OOOE+00
121E-03
OOOE+00
OOOE+00
OOOE+00
03
H202
OLE
NR
0. OOOE+00
0. OOOE+00
1.750E-02
8.500E-02
1.-027E-03
0. OOOE+00
-1.873E-04
-7.655E-04
N03
CO
ETH
0. OOOE+00
1.200E+00
1.850E-02
0. OOOE+00
-8.937E-03
-1.938E-04
010
FORM
TOL
0. OOOE+00
2.100E-02
1.271E-02
0. OOOE+00
-2.300E-04
-1.369E-04
H20
ALD2
CRES
2.000E+04
2.600E-02
0. OOOE+00
-6.000E-10
-2.776E-04
0. OOOE+00
OH
C203
T02
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
H02
X02
OPEN
0. OOOE+00
0. OOOE+00
0. OOOE+00
3.195E-05
1.776E-06
0. OOOE+00
N205
PAN
CRO
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
THE REACTION RATES ARE
8.12E-03
O.OOE+00
6.00E-10
O.OOE+00
£ O.OOE+00
Ri O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
8.50E-02
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
0.
0.
0.
0.
0.
0.
0.
0.
OOE+00 0
OOE+00 0
OOE+00 0
OOE+00 0
OOE+00 1
OOE+00 0
OOE+00 0
OOE+00 0
.OOE+00 0.
.OOE+00 0.
.OOE+00 0.
.OOE+00 0.
.78E-06 0.
.OOE+00 0.
.OOE+00 0.
.OOE+00 0.
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
0
0
0
0
0
0
0
0
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.42E-05
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
3.01E-05
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
8.41E-07
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
THE PHOTOLYTIC RATE CONSTANTS ARE
3.248E-01 1.722E-02 2.835E-04 1.101E+01 6.416E-02 2.708E-04 6.762E-04 1.433E-03 6.830E-05
5.680E-03 6.059E-03
THE CURRENT MIXING HEIGHT IS
250.00
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
64.75
-------
TIME NHOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
900.
.56332
8.13658
.06923
.62694
.02527
.04341
.31967
TIME
INTERVAL
9.
9.
NET
THE
3
J
OOOE+02 4.
182E+00 1.
3.
4.
RATES -8.
3.
-2.
3.
N02
HN03
PAR
MGLY
341E-02
414E-03
197E-01
737E-04
855E-06
133E-05
544E-03
135E-06
2
1
1
7
-3
-1
9
-7
NO 0 03 N03
HN02 PNA H202 CO
X02N ROR OLE ETH
XYL ISOP NR
.583E-02 4.773E-09 2.527E-02 5.211E-08
.815E-04 5.183E-06 4.183E-08 8.496E-01
.439E-07 6.105E-11 8.676E-03 1.023E-02
.347E-03 O.OOOE+00 5.356E-02
.994E-04 -3.147E-07 4.570E-04 -5.316E-08
.936E-06 8.093E-08 1.712E-09 -3.421E-03
.509E-10 5.308E-09 -9.467E-05 -8.702E-05
.665E-05 O.OOOE+00 -3.292E-04
01D
FORM
TOL
4.119E
1.360E
6.960E
2.852E
-7.529E
-11
-02
-03
-09
-05
_
.
-6.008E-05
H20
ALD2
CRES
2.000E+04
1.559E-02
2.954E-04
2.717E-06
1.072E-04
3.489E-06
OH
C203
T02
6.386E-08
5.003E-08
1.304E-08
2.727E-08
-4.765E-09
-6.389E-10
H02
X02
OPEN
5.523E-07
3.320E-07
1.517E-04
-3.341E-08
-2.163E-08
5.230E-07
N205
PAN
CRO
8.016E-07
2.426E-04
1.107E-09
2.562E-08
5.479E-06
-1.120E-10
REACTION RATES ARE
1.87E-02
2.69E-06
3.59E-10
2.21E-09
6.59E-10
1.47E-06
7.61E-06
5.91E-08
2.05E-10
1.93E
1.70E
1.55E
1.19E
5.00E
2.46E
8.08E
1.69E
5.36E
-02
-07
-05
-09
-08
-05
-07
-05
-02
1.88E-02 2.85E-06 4.60E-07 2
4.32E-08 7.63E-07 5.86E-05 1
1.55E-05 1.13E-07 4.94E-13 4
9.65E-10 1.69E-11 6.80E-12 1
2.36E-05 3.01E-09 2.19E-06 2
1.30E-05 5.83E-06 5.83E-08 2
4.00E-06 4.04E-06 3.26E-06 1
7.87E-07 4.89E-06 O.OOE+00 0
.91E-07
.43E-09
.48E-05
.75E-05
.33E-05
.50E-07
.15E-06
.OOE+00
5.
4.
1.
1.
1.
2.
5.
0.
94E-05
13E-06
86E-08
30E-05
96E-05
26E-05
OOE-07
OOE+00
5.78E-04
3.05E-08
1.73E-04
1.57E-05
1.17E-05
4.43E-06
9.61E-07
O.OOE+00
1.98E-05
4.07E-06
4.66E-05
2.91E-05
9.26E-12
5.13E-09
1.47E-06
1.03E-04
1.71E-05
9.97E-08
4.64E-05
1.68E-08
2.65E-10
5.51E-08
4.26E-07
3.72E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
4.318E-01 2.288E-02
9.670E-03 1.031E-02
7.838E-04
1.464E+01
8.527E-02
4.039E-04
1.151E-03
2.137E-03
1.406E-04
THE CURRENT MIXING HEIGHT IS
503.11
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
53.12
-------
TIME
(LOT )
1000.
NMOC
TOTAL
.37836
NMOC/
NOX
7.51671
NOX
TOTAL
.05034
N02 03 N02 PAR
FRACTION (INSTANT) (INSTANT) (INSTANT)
.74531
.05041
.03752
.21701
TIME
INTERVAL
l.OOOE+03
1.569E+01
NET RATES
N02
HN03
PAR
MGLY
3.752E-02
3.566E-03
2.170E-01
5.370E-04
-1.119E-04
4.174E-05
-1.081E-03
-2.526E-08
NO
HN02
X02N
XYL
1.282E-02
1.193E-04
3.174E-07
4.177E-03
-1.162E-04
-3.519E-07
3.271E-09
-3.544E-05
0
PNA
ROR
ISOP
5.001E-09
1.013E-05
6.696E-11
O.OOOE+00
-2.008E-07
7.744E-08
-1.936E-10
O.OOOE+00
03
H202
OLE
NR
5.041E-02
3.118E-07
4.714E-03
4.031E-02
3.558E-04
8.688E-09
-4.482E-05
-1.377E-04
N03
CO
ETH
1.745E-07
7.166E-01
6.658E-03
-1.007E-08
-1.364E-03
-3.910E-05
01D
FORM
TOL
1.454E-10
1.064E-02
4.516E-03
8.613E-10
-2.861E-05
-2.628E-05
H20
AL02
CRES
2.000E-I-04
1.131E-02
4.253E-04
-9.577E-06
-4.400E-05
1.064E-06
OH
C203
T02
1.031E-07
1.211E-07
1.731E-08
2.377E-08
4.625E-10
-1.069E-10
H02
X02
OPEN
1.247E-06
7.198E-07
1.432E-04
1.563E-09
-2.475E-10
-3.695E-07
N205
PAN
CRO
2.332E-06
6.190E-04
4.640E-09
1.955E-08
7.082E-06
4.272E-10
THE REACTION RATES ARE
ro
1.89E-02
9.48E-06
1.54E-10
6.99E-09
1.73E-09
2.38E-06
8.00E-06
1.11E-07
9.64E-10
2.03E-02
5.47E-07
1.24E-05
6.05E-09
3.80E-08
2.69E-05
1.05E-06
1.55E-05
4.03E-02
1.86E-02
1.95E-07
1.18E-05
4.92E-09
2.76E-05
1.43E-05
4.19E-06
1.44E-06
2.58E-06
2.97E-06
1.20E-07
1.58E-10
7.30E-09
6.39E-06
2.66E-06
7.49E-06
4.17E-07
9.74E-05
2.13E-13
8.19E-11
2.41E-06
5.53E-08
4.33E-06
O.OOE+00
1.51E-07
4.14E-09
6.25E-05
2.38E-05
2.80E-05
1.42E-07
2.67E-06
O.OOE+00
1.02E-04
1.20E-05
7.58E-08
1.65E-05
4.10E-05
1.99E-05
2.41E-06
O.OOE-i-00
1..34E-03
8.86E-08
1.94E-04
1.66E-05
2.98E-05
4.81E-06
3.48E-06
O.OOE+00
6.99E-05
1.18E-05
9.09E-05
2.85E-05
5.42E-11
9.34E-09
1.87E-06
1.11E-04
6.04E-05
2.46E-08
9.07E-05
1.37E-08
1.45E-09
3.76E-08
6.49E-07
4.07E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.025E-01 2.663E-02 1.387E-03 1.704E+01 9.925E-02 5.053E-04 1.556E-03 2.673E-03 2.133E-04
1.307E-02 1.394E-02
THE CURRENT MIXING HEIGHT IS 821.23
THE CURRENT TEMPERATURE IS 303.00
THE CURRENT ZENITH ANGLE IS
41.43
-------
TIME
(LOT )
1100.
NMOC
TOTAL
.29574
NHOC/
NOX
7.49239
NOX
TOTAL
.03947
N02 03
FRACTION (INSTANT)
.79029
.06994
(INSTANT)
.03119
.17254
TIME N02 NO 0 03
INTERVAL HN03 HN02 PNA H202
PAR X02N ROR OLE
MGLY XYL ISOP NR
1.100E+03 3.119E-02 8.278E-03 4.740E-09 6.994E
1.569E+01 6.576E-03 1.107E-04 1.551E-05 1.371E
1.725E-01 6.093E-07 8.312E-11 2.704E
5.122E-04 2.585E-03 O.OOOE+00 3.479E
-02
-06
-03
-02
NET RATES -9.876E-05 -5.526E-05 9.341E-07 3.114E-04
5.996E-05 -7.024E-08 1.542E-07 3.054E
-5.069E-04 7.621E-09 -2.843E-09 -2.570E
-6.622E-07 -2.058E-05 O.OOOE+00 -6.012E
THE REACTION RATES ARE
1.71E-02 1.92E-02 1.66E-02 2.03E-06
1.86E-05 1.19E-06 4.98E-07 5.59E-06
8.26E-11 1.25E-05 1.19E-05 1.74E-07
1.67E-08 2.05E-08 1.67E-08 7.85E-10
> 2.70E-09 3.03E-08 3.63E-05 1.06E-08
' 3.71E-06 3.34E-05 1.77E-05 7.93E-06
9.28E-06 1.08E-06 4.91E-06 2.06E-06
1.33E-07 1.50E-05 2.14E-06 8.53E-06
3.17E-09 3.48E-02
-08
-05
-05
3
1
1
5
2
5
5
0
3
6
4
-8
-5
-2
.29E
.09E
.84E
.62E
.61E
.70E
.18E
N03
CO
ETH
.014E
.617E
.948E
.667E
.760E
.151E
-07
-04
-13
-10
-06
-08
-06
.OOE+00
-07
-01
-03
-09
-04
-05
9
5
8
3
3
7
4
0
010
FORM
TOL
2.851E-10
9.620E-03
3.394E-03
-1.371E-08
-9.165E-06
-1.363E-05
.25E-08
.94E-09
.12E-05
.43E-05
.59E-05
.73E-08
.33E-06
.OOE+00
_
_
_
1.
1.
2.
2.
6.
1.
4.
0.
H20
AL02
CRES
2.000E+04
9.522E-03
4.407E-04
1.873E-05
2.060E-05
4.171E-07
18E-04
72E-05
18E-07
32E-05
75E-05
78E-05
32E-06
OOE+00
OH
C203
T02
1.609E-07
2.401E-07
2.072E-08
-2.388E-08
7.946E-09
1.992E-10
2.03E-03
1.27E-07
2.30E-04
1.79E-05
5.36E-05
3.83E-06
6.05E-06
O.OOE+00
2
1
1
-9
3
-2
1
1
1
2
2
9
1
1
H02
X02
OPEN
.297E-06
.306E-06
.234E-04
.861E-09
.075E-08
.631E-07
.37E-04
.70E-05
.39E-04
.91E-05
.13E-10
.25E-09
.93E-06
.30E-04
N205
PAN
CRO
3.352E-06
1.112E-03
9.692E-09
2.375E-08
9.622E-06
4.475E-10
1.18E-04
1.02E-08
1.39E-04
1.18E-08
5.29E-09
2.65E-08
8.74E-07
5.04E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.467E-01 2.898E-02 1.959E-03 1.853E+01 1.080E-01 5.723E-04 1.858E-03 3.028E-03 2.741E-04
1.560E-02 1.664E-02
THE CURRENT MIXING HEIGHT IS 1119.47
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
30.10
-------
TIME NMOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1200.
.25023
8.10484
.03087
.82299
.08911
.02541
.14952
TIME
INTERVAL
1.
1.
NET
THE
3
1
200E+03 2
892E+01 1
1
4
RATES -1
7
-3
-1
N02
HN03
PAR
MGLY
.541E-02
.072E-02
.495E-01
.509E-04
.005E-04
.757E-05
.021E-04
.393E-06
5.
1.
1.
1.
-3.
-1.
1.
-1.
NO 0 03 N03
HN02 PNA H202 CO
X02N ROR OLE ETH
XYL ISOP NR
465E-03 4.293E-09 8.911E-02 4.569E-07
042E-04 2.252E-05 4.924E-06 6.380E-01
169E-06 1.054E-10 1.466E-03 3.863E-03
562E-03 O.OOOE+00 3.224E-02
912E-05 6.024E-08 3.378E-04 1.295E-08
716E-07 1.456E-07 1.008E-07 -2.668E-04
493E-08 -8.868E-10 -1.651E-05 -1.597E-05
435E-05 O.OOOE+00 -3.055E-05
010
FORM
TOL
4.363E-10
9.268E-03
2.727E-03
-3.365E-10
-4.484E-06
-9.530E-06
H20
AL02
CRES
2.000E+04
8.480E-03
3.795E-04
-2.865E-05
-1.637E-05
-1.529E-06
OH
C203
T02
2.354E-07
4.489E-07
2.281E-08
-5.768E-08
1.297E-08
-3.179E-10
4
2
1
8
4
-3
H02
X02
OPEN
.091E-06
.292E-06
.065E-04
.339E-08
.600E-08
.298E-07
N205
PAN
CRO
4.143E-06
1.784E-03
1.538E-08
1.347E-08
1.282E-05
3.656E-10
REACTION RATES ARE
1.45E-02
2.84E-05
4.44E-11
3.55E-08
3.94E-09
5.43E-06
1.06E-05
1.46E-07
9.78E-09
1.74E
2.21E
1.21E
6.51E
2.45E
-02
-06
-05
-08
-08
4.23E-05
1.08E
1.32E
3.22E
-06
-05
-02
1.40E-02 1.50E-06 2.42E-07 5
1.13E-06 8.84E-06 1.09E-041 7
1.17E-05 2.40E-07 1.63E-13 9
5.29E-08 3.01E-09 2.95E-09 4
4.72E-05 1.43E-08 2.66E-06 4
2.25E-05 1.01E-05 5.89E-08 3
5.77E-06 1.50E-06 5.70E-06 5
2.76E-06 8.21E-06 O.OOE+00 0
.53E-08
.33E-09
.67E-05
.84E-05
.43E-05
.79E-08
.45E-06
.OOE+00
1
2
5
3
1
1
5
0
.23E-04
.12E-05
.20E-07
.27E-05
.03E-04
.41E-05
.63E-06
.OOE+00
2.70E-03
1.57E-07
2.71E-04
1.88E-05
8.60E-05
2.64E-06
7.81E-06
O.OOE+00
2
2
2
3
7
7
1
1
.10E-04
.10E-05
.02E-04
.OOE-05
.46E-10
.60E-09
.82E-06
.50E-04
1.81E-04
4.46E-09
2.02E-04
1.03E-08
1.76E-08
1.87E-08
1.10E-06
6.39E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.710E-01 3.026E-02 2.353E-03 1.936E+01 1.128E-01 6.117E-04 2.031E-03 3.236E-03 3.136E-04
1.706E-02 1.820E-02
THE CURRENT MIXING HEIGHT IS 1340.22
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
20.18
-------
TIME NHOC NHOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1300.
.21774
9.67447
.02251
.85293
.11076
.01920
.13376
TIME
INTERVAL
1.300E+03 1
2.000E+01 1
1
3
NET RATES -1
8
-2
-1
N02
HN03
PAR
MGLY
.920E-02
.569E-02
.338E-01
.476E-04
.079E-04
.616E-05
.322E-04
.976E-06
3
8
2
8
-3
-3
4
-9
NO 0 03
HN02 PNA H202
X02N ROR OLE
XYL ISOP NR
.310E-03 3.646E-09 1.108E-01
.974E-05 3.227E-05 1.733E-05
.445E-06 1.341E-10 6.842E-04
.364E-04 O.OOOE+00 3.081E-02
.052E-05 -1.137E-08 3.874E-04
.119E-07 2.139E-09 3.732E-07
.966E-08 1.446E-09 -9.713E-06
.833E-06 O.OOOE+00 -1.805E-05
N03
CO
ETH
6.728E-07
6.261E-01
2.965E-03
1.239E-08
-1.453E-04
-1.415E-05
01D
FORM
TOL
5.773E-10
8.938E-03
2.197E-03
-3.947E-09
-7.212E-06
-8.325E-06
H20
AL02
CRES
2.000E+04
7.434E-03
2.744E-04
-3.801E-05
-1.862E-05
-1.812E-06
OH
C203
T02
3.346E-07
8.537E-07
2.319E-08
-4.971E-07
1.353E-07
1.115E-09
7
4
8
7
2
-4
H02
X02
OPEN
.756E-06
.272E-06
.305E-05
.078E-07
.643E-07
.382E-07
N205
PAN
CRO
4.613E-06
2.652E-03
2.146E-08
3.050E-09
1.610E-05
1.907E-09
THE REACTION RATES ARE
1.11E-02
3.76E-05
2.03E-11
7.23E-08
o 5.59E-09
J 7.72E-06
1.16E-05
1.42E-07
3.40E-08
1.48E
3.90E
1.04E
2.34E
1.82E
5.38E
1.03E
-02
-06
-05
-07
-08
-05
-06
1.01E-05
3.08E
-02
1.05E-02 9.63E-07 1
2.66E-06 1.32E-05 9
1.03E-05 2.93E-07 1
1.90E-07 1.08E-08 1
5.89E-05 1.85E-08 2
2.86E-05 1.28E-05 5
6.61E-06 9.21E-07 5
3.02E-06 6.52E-06 0
.56E-07 2
.70E-05 8
.21E-13 1
.48E-08 6
.44E-06 5
.66E-08 1
.80E-06 5
.OOE+00 0
.85E-08
.16E-09
.04E-04
.75E-05
.10E-05
.50E-08
.60E-06
.OOE+00
1
2
1
4
1
9
6
0
.15E-04
.36E-05
.08E-06
.49E-05
.48E-04
.35E-06
.OOE-06
.OOE+00
3.40E-03
1.75E-07
3.11E-04
1.87E-05
1.28E-04
1.53E-06
8.24E-06
O.OOE+00
2
2
2
2
2
5
1
1
.78E-04
.34E-05
.89E-04
.95E-05
.70E-09
.23E-09
.46E-06
.70E-04
2.40E-04
1.64E-09
2.89E-04
8.42E-09
6.36E-08
1.22E-08
1.22E-06
8.09E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.793E-01 3.070E-02 2.506E-03
1.759E-02 1.876E-02
1.964E+01
1.144E-01
6.247E-04
2.094E-03
3.305E-03
3.278E-04
THE CURRENT MIXING HEIGHT IS 1496.21
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
15.19
-------
TIME NMOC NMOC/ NOX N02 03 N02 PAR
(LDT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1400.
.19088
13.26779
.01439
.88188
.13559
.01269
.12036
TIME
INTERVAL
1.400E+03 1
2.000E+01 2
1
2
NET RATES -1
7
-2
-2
N02
HN03
PAR
MGLY
.269E-02 1
.071E-02 6
.204E-01 5
.240E-04 3
.130E-04 -1
.831E-05 -4
.127E-04 9
.010E-06 -5
NO 0 03
HN02 PNA H202
X02N ROR OLE
XYL ISOP NR
.699E-03 2.880E-09 1.356E-01
.641E-05 4.647E-05 7.121E-05
.966E-06 1.686E-10 2.652E-04
.729E-04 O.OOOE+00 2.991E-02
.398E-05 8.887E-08 4.441E-04
.334E-07 1.216E-06 1.823E-06
.587E-08 3.185E-08 -4.446E-06
.562E-06 O.OOOE+00 -1.144E-05
N03
CO
ETH
9.588E-07
6.189E-01
2.148E-03
3.259E-08
-1.035E-04
-1.279E-05
010
FORM
TOL
6.702E
-10
8.337E-03
1.708E
3.929E
-1.267E
-7.830E
-03
-10
-05
-06
H20
AL02
CRES
2.000E+04
6.249E-03
1.759E-04
-4.477E-05
-1.997E-05
-1.405E-06
OH
C203
T02
4.675E-07
1.776E-06
2.174E-08
1.833E-07
-4.211E-07
2.321E-08
1
9
5
-1
1
-4
H02
X02
OPEN
.695E-05
.224E-06
.669E-05
.165E-06
.041E-07
.114E-07
N205
PAN
CRO
4.344E-06
3.723E-03
2.956E-08
6.534E-09
1.995E-05
-1.381E-08
THE REACTION RATES ARE
7.26E-03
4.37E-05
6.90E-12
1.45E-07
7.43E-09
1 1.08E-05
1.17E-05
1.19E-07
1.58E-07
1.17E-02
6.68E-06
7.44E-06
1.12E-06
1.21E-08
6.77E-05
9.11E-07
6.27E-06
2.99E-02
6.62E-03 5.02E-07 8
7.12E-06 1.86E-05 7
7.51E-06 3.03E-07 6
9.09E-07 4.37E-08 8
6.92E-05 2.22E-08 1
3.60E-05 1.61E-05 4
7.18E-06 4.43E-07 5
2.72E-06 4.10E-06 0
.12E-08 1
.10E-05 7
.62E-14 9
.48E-08 9
.97E-06 5
.71E-08 4
.43E-06 5
.OOE+00 0
.15E-08
.68E-09
.59E-05
.32E-05
.45E-05
.60E-09
.02E-06
.OOE+00
9
2
2
5
2
5
5
0
.32E-05
.22E-05
.OOE-06
.85E-05
.03E-04
.06E-06
.48E-06
.OOE+00
4.11E-03
1.65E-07
3.49E-04
1.70E-05
1.79E-04
7.27E-07
7.50E-06
O.OOE+00
3
2
4
2
1
2
9
1
.22E-04
.20E-05
.18E-04
.71E-05
.17E-08
.89E-09
.72E-07
.88E-04
2.78E-04
4.32E-10
4.16E-04
6.20E-09
2.89E-07
6.98E-09
1.17E-06
1.01E-05
THE PHOTOLYTIC RATE CONSTANTS ARE
5.722E-01 3.033E-02 2.376E-03
1.714E-02 1.828E-02
1.940E+01
1.130E-01
6.137E-04
2.041E-03
3.247E-03
3.158E-04
THE CURRENT MIXING HEIGHT IS 1610.77
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
19.50
-------
TIME NMOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1500.
.16816
21.30511
.00789
.90871
.16166
.00717
.10792
TIME N02 NO 0 03
INTERVAL HN03 HN02 PNA H202
PAR X02N ROR OLE
1.
2.
NET
THE
U
j
3
MGLY XYL ISOP NR
500E+03 7.173E-03 7.206E-04 2.209E-09 1.617E-01
201E+00 2.462E-02 3.791E-05 5.962E-05 3.558E-04
1.079E-01 1.533E-05 1.858E-10 1.018E-04
1.187E-04 1.478E-04 O.OOOE+00 2.935E-02
RATES -7.582E-05 -1.154E-05 -6.874E-10 4.117E-04
4.890E-05 -4.794E-07 6.464E-08 9.368E-06
-2.004E-04 2.191E-07 2.712E-12 -1.469E-06
-1.402E-06 -2.255E-06 O.OOOE+00 -7.793E-06
REACTION RATES ARE
3.94E-03 8.95E-03 3.35E-03 2.18E-07 3
4.39E-05 9.78E-06 1.92E-05 2.28E-05 3
1.65E-12 3.88E-06 4.11E-06 2.13E-07 2
2.29E-07 5.72E-06 4.65E-06 2.05E-07 5
8.49E-09 7.61E-09 6.97E-05 2.33E-08 1
1.33E-05 7.45E-05 3.97E-05 1.77E-05 2
8.87E-08 3.05E-06 1.77E-06 2.00E-06 0
8.79E-07 2.94E-02
N03
CO
ETH
1.226E
6.130E
1.456E
2.955E
-9.503E
-9.962E
.52E-08
.85E-05
.16E-14
.20E-07
.43E-06
.93E-08
.OOE+00
-06
-01
-03
-09
-05
-06
3
5
6
1
5
1
0
010
FORM
TOL
6.726E
-10
7.453E-03
1.269E
-2.547E
-1.558E
-6.625E
.75E-09
.55E-09
.66E-05
.13E-04
.18E-05
.36E-09
.OOE+00
-03
-11
-05
-06
6
1
2
6
2
2
0
H20
AL02
CRES
2.000E+04
5.130E-03
1.092E-04
-4.863E-05
-1.654E-05
-8.658E-07
.28E-05
.61E-05
.91E-06
.42E-05
.58E-04
.39E-06
.OOE+00
OH
C203
T02
5.740E-07
3.982E-06
1.771E-08
1.281E-09
5.250E-08
-8.566E-11
4.71E-03
1.20E-07
3.35E-04
1.40E-05
2.36E-04
3.33E-07
O.OOE+00
3
2
3
4
2
-2
3
1
5
2
5
1
1
H02
X02
OPEN
.835E-05
.173E-05
.556E-05
.397E-07
.831E-07
.905E-07
.23E-04
.60E-05
.34E-04
.27E-05
.87E-08
.42E-09
.88E-04
N205
PAN
CRO
3.146E-06
4.897E-03
4.099E-08
-2.632E-08
1.770E-05
1.951E-10
2.79E-04
7.76E-11
5.34E-04
4.25E-09
1.47E-06
3.63E-09
1.10E-05
THE PHOTOLYTIC RATE CONSTANTS ARE
5.494E-01 2.912E-02 2.000E-03 1.862E+01 1.085E-01 5.766E-04 1.877E-03 3.051E-03 2.783E-04
1.577E-02 1.682E-02
THE CURRENT MIXING HEIGHT IS 1700.00
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
29.20
-------
TIME NHOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1600.
.15517
36.42352
.00426
.92945
.18534
.00396
.10035
TIME N02 NO 0 03 N03 01D H20
INTERVAL HN03 HN02 PNA H202 CO FORM AL02
PAR X02N ROR OLE ETH TOL CRES
MGLY XYL ISOP NR
1.600E+03 3.960E-03 3.005E-04 1.787E-09 1.853E-01 1.304E-06 5.540E-10 2.000E+04
1.370E+01 2.749E-02 1.525E-05 5.084E-05 1.362E-03 6.121E-01 6.800E-03 4.472E-03
1.003E-01 2.894E-05 1.460E-10 4.761E-05 1.006E-03 9.767E-04 6.954E-05
6.022E-05 7.065E-05 O.OOOE+00 2.956E-02
NET RATES -2.988E-05 -3.640E-06 -2.414E-08 3.067E-04 1.737E-09 1.644E-09 -4.727E-05
3.142E-05 -2.339E-07 -2.732E-07 2.233E-05 -1.349E-05 -7.410E-06 -8.0B6E-06
-1.033E-04 1.599E-07 1.500E-10 -2.874E-07 -5.387E-06 -3.651E-06 -5.103E-07
-6.159E-07 -5.343E-07 O.OOOE+00 4.059E-06
THE REACTION RATES ARE
2.01E-03 7.24E-03 1.60E-03 9.73E-08 1.57E-08 1.27E-09 3.98E-05
3.61E-05 9.47E-06 3.40E-05 2.24E-05 1.71E-05 3.26E-09 9.43E-06
3.81E-13 1.37E-06 1.53E-06 7.23E-08 3.49E-15 3.10E-05 2.75E-06
1.65E-07 1.36E-05 1.11E-05 6.97E-07 1.68E-06 9.56E-05 4.95E-05
8.25E-09 5.37E-09 5.13E-05 2.16E-08 9.79E-07 4.30E-05 2.83E-04
1.12E-05 5.85E-05 3.12E-05 1.39E-05 1.27E-08 5.13E-10 9.43E-07
5.68E-06 5.83E-07 4.26E-06 3.92E-08 2.72E-06 2.06E-06 2.95E-06
6.33E-08 1.23E-06 7.59E-07 8.55E-07 O.OOE+00 O.OOE+00 O.OOE+00
2.97E-06 2.96E-02
OH
C203
T02
4.850E-07
7.925E-06
1.086E-08
3.188E-08
6.225E-09
-7.532E-11
4.98E-03
7.02E-08
2.15E-04
1.08E-05
2.77E-04
1.78E-07
3.77E-06
O.OOE+00
H02
X02
OPEN
5.919E-05
3.994E-05
2.214E-05
1.031E-07
1.907E-07
-1.780E-07
2.66E-04
9.38E-06
4.55E-04
1.84E-05
2.32E-07
7.05E-10
2.95E-07
1.44E-04
N205
PAN
CRO
1.848E-06
5.751E-03
4.761E-08
-1.404E-08
5.791E-06
-3.106E-10
2.30E-04
1.35E-11
4.55E-04
3.14E-09
4.50E-06
2.03E-09
4.72E-07
8.70E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.071E-01 2.688E-02 1.437E-03 1.719E-t-01 1.002E-01 5.118E-04 1.585E-03 2.708E-03 2.188E-04
1.331E-02 1.420E-02
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
40.48
-------
TIME NMOC NMOC/ MOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1700.
.14790
45.61844
.00324
.94186
.19954
.00305
.09550
TIME
INTERVAL
1.
1.
NET
THE
700E+03 3
370E+01 2
9
3
RATES -2
1
-5
-1
N02
HN03
PAR
MGLY
.054E-03
.884E-02
.550E-02
.833E-05
.944E-06
.678E-05
.645E-05
.784E-07
1
7
3
5
-3
-6
-8
6
NO 0 03
HN02 PNA H202
X02N ROR OLE
XYL ISOP NR
.885E-04 1.516E-09 1.995E-01
.317E-06 3.720E-05 2.671E-03
.139E-05 9.619E-11 4.313E-05
.754E-05 O.OOOE+00 2.980E-02
.845E-07 2.776E-07 1.794E-04
.501E-08 -1.469E-07 1.885E-05
.100E-08 1.298E-10 1.486E-07
.991E-08 O.OOOE+00 4.446E-06
N03
CO
ETH
1.423E-06
6.114E-01
7.738E-04
3.246E-08
-9.055E-06
-2.544E-06
010
FORM
TOL
3.457E-10
6.556E-03
8.156E-04
-2.041E-09
-1.336E-06
-1.797E-06
H20
ALD2
CRES
2.000E+04
4.120E-03
4.435E-05
-3.258E-05
-3.838E-06
-3.612E-07
OH
C203
T02
3.358E-07
9.795E-06
6.291E-09
-1.033E-08
-2.732E-07
-2.298E-11
H02
X02
OPEN
5.616E-05
4.344E-05
1.396E-05
-1.632E-07
-1.184E-07
-1.034E-07
N205
PAN
CRO
1.553E-06
5.704E-03
3.956E-08
-2.269E-09
-5.181E-06
-1.844E-09
REACTION RATES ARE
1.34E-03
2.25E-05
1.84E-13
8.36E-08
8.68E-09
7.75E-06
3.03E-06
4.30E-08
3.51E-06
6.14E
7.06E
5.93E
1.23E
4.20E
3.86E
4.83E
6.95E
2.98E
-03
-06
-07
-05
-09
-05
-07
-07
-02
1.08E-03 6.37E-08 1.
3.47E-05 2.12E-05 1.
6.34E-07 2.40E-08 8.
9.98E-06 1.11E-06 2.
3.27E-05 2.17E-08 6.
2.05E-05 9.18E-06 6.
2.46E-06 1.42E-08 1.
3.35E-07 4.08E-07 0.
03E-08
17E-05
03E-16
28E-06
06E-07
46E-09
57E-06
OOE+00
6.74E-10
2.74E-09
1.66E-05
6.61E-05
3.34E-05
3.94E-10
9.08E-07
O.OOE+00
3
7
2
3
2
5
2
0
.30E-05
.94E-06
.OOE-06
.30E-05
.70E-04
.91E-07
.05E-06
.OOE+00
4.64E-03
5.90E-08
1.28E-04
7.79E-06
2.75E-04
1.74E-07
2.42E-06
O.OOE+00
1.66E-04
7.88E-06
3.33E-04
1.44E-05
3.55E-07
6.96E-10
1.39E-07
9.83E-05
1.44E-04
5.31E-12
3.33E-04
2.57E-09
5.28E-06
1.32E-09
2.06E-07
5.92E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
4.388E-01 2.326E-02 8.329E-04 1.488E+01 8.667E-02 4.140E-04 1.189E-03 2.191E-03 1.470E-04
9.986E-03 1.065E-02
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
52.16
-------
TIME NMOC NMOC/ NOX N02 03 N02 PAR
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1800.
.14529
41.37748
.00351
.95428
.20800
.00335
.09338
TIME
INTERVAL
1.800E+03
1.092E+01
NET RATES
N02
HN03
PAR
MGLY
3.351E-03
2.968E-02
9.338E-02
3.463E-05
5.787E-06
1.124E-05
-2.403E-05
1.184E-08
NO
HN02
X02N
XYL
1.605E-04
4.861E-06
2.193E-05
7.155E-05
-4.786E-07
-3.483E-08
-1.707E-07
1.531E-07
0
PNA
ROR
ISOP
1.210E-09
2.910E-05
5.522E-11
O.OOOE+00
-1.335E-06
-7.712E-08
-7.656E-11
O.OOOE+00
03
H202
OLE
NR
2.080E-01
3.489E-03
5.802E-05
3.010E-02
1.086E-04
8.571E-06
7.725E-08
3.839E-06
N03
CO
ETH
2.027E-06
6.110E-01
6.753E-04
5.779E-08
-3.761E-06
-1.156E-06
010
FORM
TOL
1.365E-10
6.577E-03
7.473E-04
6.372E-08
2.001E-06
-7.499E-07
H20
ALD2
CRES
2.000E+04
3.982E-03
2.337E-05
-1.407E-05
-1.393E-06
-3.554E-07
OH
C203
T02
1.971E-07
8.155E-06
3.547E-09
5.472E-08
-1.042E-07
8.829E-11
H02
X02
OPEN
4.005E-05
3.185E-05
8.899E-06
-4.458E-07
-2.279E-07
-6.883E-08
N205
PAN
CRO
2.422E-06
5.279E-03
2.470E-08
2.281E-08
-8.008E-06
-3.482E-09
THE REACTION RATES ARE
co
1.12E-03
8.90E-06
1.72E-13
3.84E-08
1.24E-08
4.55E-06
1.55E-06
2.85E-08
1.89E-06
4.90E-03
4.32E-06
2.97E-07
6.24E-06
3.24E-09
2.21E-05
4.39E-07
5.07E-07
3.01E-02
9.60E-04
2.58E-05
3.22E-07
5.07E-06
1.86E-05
1.18E-05
1.32E-06
1.77E-07
5.57E-08
2.30E-05
9.36E-09
9.87E-07
2.99E-08
5.27E-06
6.83E-09
2.22E-07
9.01E-09
1.42E-05
3.54E-16
1.75E-06
2.93E-07
4.07E-09
8.87E-07
O.OOE+00
4.58E-10
4.29E-09
1.07E-05
3.88E-05
2.36E-05
4.23E-10
2.81E-07
O.OOE+00
3.78E-05
1.24E-05
1.21E-06
1.94E-05
2.46E-04
4.67E-07
1.54E-06
O.OOE+00
3.70E-03
9.20E-08
7.78E-05
4.71E-06
2.54E-04
2.44E-07
1.66E-06
O.OOE+00
6.57E-05
1.23E-05
2.61E-04
9.84E-06
2.46E-07
1.33E-09
5.35E-08
6.14E-05
5.67E-05
3.85E-12
2.61E-04
2.05E-09
3.13E-06
9.22E-10
7.72E-08
3.52E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
3.355E-01 1.778E-02
6.017E-03 6.418E-03
3.158E-04
1.137E+01
6.625E-02
2.828E-04
7.163E-04
1.496E-03
7.366E-05
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
63.80
-------
MAXIMUM 03 NOT REACHED, THE LAST ONE HOUR AVERAGE WAS .20412 PPM.
MAXIMUM ONE HOUR AVE N02 = .04243 CENTERED AT 904. LDT
MAXIMUM ONE HOUR AVE PAR = .42444 CENTERED AT 830. LDT
CO
co
-------
co
C
0
N
C
E
N
T
R
A
T
I
0
N
P
P
M
.300+-
.270
.240
,210
.180
,150
,120
.090
.060
000
0 00
0
0 0
0 0
000
.030+
00
00
.000+-
10 0
00
0 0
800.
900. 1000. 1100. 1200. 1300. 1400.
TIME (LOT)
1500.
1600.
1700.
1800.
EXAMPLE 1 - SINGLE CALCULATION
03 CONCENTRATION AS A FUNCTION OF TIME
-------
.050* + + -
.045
040 0
.035 +
.030 +
0
0 00
0 00
.025 +
.020
.015 +
.010 +
.005 +
.000 + + + + + + +
800. 900. 1000. 1100. 1200. 1300. HOO.
TIME (LOT)
00
00
00
000
0 000 0 00 0
1500.
1600.
1700.
1800.
EXAMPLE 1 - SINGLE CALCULATION
N02 CONCENTRATION AS A FUNCTION OF TIME
-------
c
0
N
C
E
N
T
R
A
T
I
0
N
P
P
M
.500+-
.450+
.400+
,350+
.300 +
.250 +
.200+
.150+
100 +
.050+
0 0
0 0
000
0 0
0 0000
00 0000 000
0 00 0
.000 + + + + + + + + + +
800. 900. 1000. 1100. 1200. 1300. 1400. 1500. 1600. 1700.
TIME (LOT)
1800.
EXAMPLE 1 - SINGLE CALCULATION
PAR CONCENTRATION AS A FUNCTION OF TIME
-------
EXHIBIT 3
1) 1234567
2) 123456789012345678901234567890123456789012345678901234567890123456789012
3)
4) MECH 82. 11. 10.
5) 1. 8. 9. 14. 23. 34. 38.
6) 39. 45. 69. 74.
7) ETH OLE ALD2 FORM TOL XYL PAR
8) ISOP MEOH NR
9) 2. 2. 2. 1. 7. 8. 1.
10) 4. 1. 1.
11) N02 1 NO 0 1.
12) 0 2 03 4.323E+6 -1175.
13) 03 NO 3 N02 26.64 1370.
14) 0 N02 4 NO 13750.
15) 0 N02 5 N03 2309. -687.
16) 0 NO 6 N02 2438. -602.
17) N02 03 7 N03 0.04731 2450.
18) 03 80 0.053
19) 03 9 010 1.0
20) 01D 10 0 4.246E+5 -390.
21) 01D H20 112.00 OH 3.26
22) 03 OH 12 H02 100. 940.
23) 03 H02 13 OH 3.0 580.
24) N03 140.89 N02 0.89 0 0.11 NO 33.9
25) N03 NO 15 2. N02 ' 44160. -250.
26) N03 N02 16 NO N02 0.5901 1230.
27) N03 N02 17 N205 1853. -256.
28) N205 H20 18 2. HN03 1.9E-6
29) N205 19 N03 N02 2.776 10897.
30) NO NO 20 2. N02 1.539E-4 -530.
31) NO N02 H20 21 2. HN02 1.6E-11
32) NO OH 22 HN02 9799. -806.
33) HN02 23 NO OH 0.1975
34) OH HN02 24 N02 9770.
35) HN02 HN02 25 NO N02 1.5E-5
36) N02 OH 26 HN03 16820. -713.
37) OH HN03 27 N03 217.9 -1000.
38) H02 NO 28 OH N02 12270. -240.
39) H02 N02 29 PNA 2025. -749.
40) PNA 30 H02 N02 5.115 10121.
41) OH PNA 31 N02 6833. -380.
42) H02 H02 32 H202 4144. -1150.
43) H02 H02 H20 33 H202 0.2181 -5800.
44) H202 34 2. OH 0.189
45) OH H202 35 H02 2520. 187.
46) OH CO 36 H02 322.
47) FORM OH 37 H02 CO 15000.
48) FORM 38 2. H02 CO 1.00
49) FORM 39 CO 1.00
50) FORM 0 40 OH H02 CO 237. 1550.
137
-------
EXHIBIT 3. Continued.
( 51)
( 52)
( 53)
( 54)
( 55)
( 56)
( 57)
( 58)
( 59)
( 60)
( 61)
( 62)
( 63)
( 64)
( 65)
( 66)
( 67)
( 68)
( 69)
( 70)
( 71)
( 72)
( 73)
( 74)
( 75)
( 76)
( 77)
( 78)
( 79)
( 80)
( 81)
( 82)
( 83)
( 84)
( 85)
( 86)
( 87)
( 88)
( 89)
( 90)
( 91)
( 92)
( 93)
( 94)
( 95)
( 96)
( 97)
( 98)
( 99)
( 100)
FORM
ALD2
ALD2
ALD2
ALD2
C203
C203
PAN
C203
C203
0.79
OH
PAR
0.11
ROR
-2.1
ROR
ROR
0
0.30
OH
03
0.10
N03
1.0
0
0.7
OH
03
TOL
0.56
T02
T02
OH
0.30
CRES
CRO
OPEN
OPEN
OPEN
0.03
OH
0.8
OH
MGLY
N03
0
OH
N03
X02
NO
X02
N02
C203
H02
OH
OH
ALD2
PAR
N02
OLE
CO
OLE
X02
OLE
OH
OLE
ALD2
ETH
X02
ETH
H02
ETH
OH
T02
NO
CRES
OPEN
N03
N02
OH
C203
03
X02
XYL
MGLY
MGLY
41
42
43
44
45
46
47
48
492.
500.79
51
520.87
-0.11 PAR
530.96
0.04 X02N
54
55
560.63
0.20 FORM
57
H02
580.5
0.330 CO
590.91
1.0 N02
60
0.3 OH
61
62
630.44
640.90
65
660.40
67
68
69
70
FORM
710.03
0.69 CO
720.70
1.1 PAR
73
74
HN03
C203
C203
C203
FORM*
FORM*
PAN
C203
FORM
FORM*
FORM
X02 *
0.76
X02 *
0.02
H02
ALD2*
0.02
FORM*
ALD2*
0.44
X02 *
-1.0
FORM*
X02 *
FORM
H02 *
N02
CRES
CRO *
CRO
C203
X02 *
ALD2*
0.08
H02 *
0.30
X02
C203
2.0
2.0
0.79
0.130
ROR
1.1
ROR
0.38
X02N
0.740
H02
1.0
PAR
1.7
1.56
0.42
0.08
0.90
0.60
2.
0.62
OH
0.50
T02
H02
OH
HN03
H02
N02
N02
X02
X02
X02
X02N
ALD2
H02
0.22
ALD2
FORM
-1.0
FORM
H02
FORM
CO
X02
H02
H02
X02
HN03
H02
CO
C203
0.76
X02
C203
H02
2.0
0.79
0.11
0.94
0.28
PAR
-1.0
0.220
PAR
0.09
0.22
0.12
0.36
0.90
0.60
2.
0.70
H02
0.20
CO
CO
H02
H02
H02
H02
H02
H02
X02
0.2
PAR
X02
X02N
CO
ALD2
H02
CRES
OPEN
H02
CO
H02.
FORM
0.20
CRES
CO
0.93
636.
24000.
3.7
1.0
18315.
12230.
0.0222
3700.
9600.
21.
1203.0
137100.
95445.
22000.
5920.
OH
42000.
0.0180
11.35
1080.
11920.
0.002702
9150.
12000.
250.
61000.
32500.
20000.
8.40
44000.
0.015
MGLY
36200.
26000.
8.96
986.
-250.
-250.
-5500.
14000.
1710.
8000.
324.
-504.
2105.
792.
-411.
2633.
-322.
500.
-116.
138
-------
EXHIBIT 3. Continued.
101) 0 ISOP
102) 0.5 X02
103) OH ISOP
104) 0.13 X02N
105) 03 ISOP
106) 0.20 MGLY
107) N03 ISOP
108) X02 NO
109) X02N NO
110) X02 X02
111) MEOH OH
112) NR
113) ZENITH
114) 9.
115) 0.00124
116) 34.
117) 0.00463
118) 38.
119) 0.00234
120) 39.
121) 0.00463
122) 45.
123) 0.000257
124) 69.
125) 0.00234
126) 74.
127) 0.00234
128) TITL
129) EXAMPLE 2
130) PLAC
131) TEST CITY
132) DILU
133) TEMP
134) 303.
135) MOLE
136) VOC
137) 0.0001362
138) NOX
139) 0.0000415
140) TRANS
141) 0.05
142) .497
143) REAC
144) .0333
145) 0.
146) DEPO
147) NO
148) .1
149) N02
150) 2.5
0.5
0.1
CO
76
ETH
77
PAR
78
79
80
81
83
82
7.
0.00461
0.00054
0.00575
0.00401
0.00370
0.00174
0.00575
0.00401
0.000589
0.000158
0.00370
0.00174
0.00370
0.00174
750.60 H02 *
0.450
X02 *
0.4
FORM*
0.060
X02N
N02
FORM
NR
0.00448
0.00022
0.00573
0.00347
0.00366
0.00128
0.00573
0.00347
0.000578
0.000091
0.00366
0.00128
0.00366
0.00128
250.
11.
304.
-11.
0.0005887
0.0001093
0.0001763
0.0000347
.000
.034
0.
10.
.0315
.1
10.
.1
.1
2.5
2.5
0.8
ETH
MGLY
0.4
CO
ALD2 0.55 OLE
0.9 PAR
FORM 0.67 H02
0.2 C203 0.2
ALD2 0.55 ETH
0.44 H02 0.1
H02
27000.
142000.
ALD2
0.018
OH
470.
12000.
1000.
2000.
1600.
1.
0.00340
0.00287
0.00535
0.00314
0.00554 0.00535
0.00413 0.00359
0.00013
0.00567 0.00554
0.00525
0.00356
0.00177
0.00567
0.00525
0.000550 0.000502 0.000435
0.000094
0.00356 0.00340 0.00314
0.00177
0.00356 0.00340 0.00314
0.00177
- CB4 WITH METHANOL
38.629 90.206
REACTION ADDED
5.0 1986.
6.0
-1300,
0.00208
0.00508
0.00280
0.00508
0.000355
0.00280
0.00280
21.
1700.
293.
306.
2.
0.00048
0.0001075
0.0001343
0.0000308
.080
.020
.01
.25
.0468
.0756
3.
.1
.1
2.5
2.5
295. 297. 299. 301.
306. 305. 304. 302.
250. .6 0.05
0.0004712 0.0003256 0.0002018 0.00014
0.0001312 0.00007
0.0001228 0.0000893 0.00006 0.0000413
0.0000386 0.0000195
0. -10. 0. 0.009
.037 .070 .042 .026
.273
.0189
.1
.1
2.5
2.5
.0801
.1
2.5
.1053
.1
2.5
.5076
.1
2.5
139
-------
EXHIBIT 3. Concluded.
( 151) 03 1.886 1.886 1.886 1.886 1.886 1.886
( 152) 1.886 1.886 1.886 1.886
( 153) INIT 2.
( 154) H20 CO
( 155) 15000. .9
( 156) ALOFT 2.
( 157) PAN CO
( 158) .0005 .2
( 159) SPEC 3.
( 160) 03 N02 MEOH
( 161) CALC 1. .1 1.
( 162) BLANK
( 163)
( 164) 1234567
( 165) 123456789012345678901234567890123456789012345678901234567890123456789012
140
-------
* OZONE ISOPLETH PLOTTING PACKAGE *
* WITH OPTIONAL MECHANISMS *
* *
* 0 2 I P M *
* *
* VERSION 4.00 *
* *
* DECEMBER, 1987 *
* *
EXHIBIT 4
-------
THE INPUTS FOR THIS RUN ARE
MECH
1.
39.
ETH
ISOP
2.
4.
N02
0
03
0
0
0
N02
03
03
DID
010
03
03
N03
N03
N03
N03
N205
N205
NO
NO
NO
HN02
OH
HN02
N02
OH
H02
H02
PNA
OH
H02
H02
H202
OH
OH
FORM
FORM
FORM
FORM
FORM
ALD2
82.
8.
45.
OLE
MEOH
2.
1.
NO
N02
N02
NO
03
H20
OH
H02
NO
N02
N02
H20
NO
N02 H20
OH
HN02
HN02
OH
HN03
NO
N02
PNA
H02
H02 H20
H202
CO
OH
0
N03
0
1
2
3
4
5
6
7
8
9
10
112
12
13
140
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
11.
9.
69.
ALD2
NR
2.
1.
.00
.89
2.
2.
2.
2.
2.
2.
NO
03
N02
NO
N03
N02
N03
0
01D
0
OH
H02
OH
N02
N02
NO
N205
HN03
N03
N02
HN02
HN02
NO
N02
NO
HN03
N03
OH
PNA
H02
N02
H202
H202
OH
H02
H02
H02
H02
CO
OH
HN03
C203
10.
14.
74.
FORM
1.
23.
TOL
7.
O.B9 0
N02
N02
OH
N02
N02
N02
0.11 NO
CO
CO
H02
H02
OH
CO
CO
34.
XYL
8.
38.
PAR
1.
1.
4.323E+6
26.64
13750.
2309.
2438.
0.04731
0.053
1.0
4.246E+5
3.26
100.
3.0
33.9
44160.
0.5901
1853.
1.9E-6
2.776
1.539E-4
1.6E-11
9799.
0.1975
9770.
1.5E-5
16820.
217.9
12270.
2025.
5.115
6833.
4144.
0.2181
0.189
2520.
322.
15000.
1.00
1.00
237.
0.93
636.
-1175
1370
-687
-602
2450
-390
940
580
-250
1230
-256
10897
-530
-806
-713
-1000
-240
-749
10121
-380
-1150
-5800
187
1550
986
-------
THE INPUTS FOR THIS RUN ARE
-F*
GJ
ALD2
AL02
ALD2
C203
C203
PAN
C203
C203
0.79
OH
PAR
0.11
ROR
-2.1
ROR
ROR
0
0.30
OH
03
0.10
N03
1.0
0
0.7
OH
03
TOL
0.56
T02
T02
OH
0.30
CRES
CRO
OPEN
OPEN
OPEN
0.03
OH
0.8
OH
MGLY
0
0.5
OH
N03
X02
NO
X02
N02
C203
H02
OH
OH
AL02
PAR
N02
OLE
CO
OLE
X02
OLE
OH
OLE
AL02
ETH
X02
ETH
H02
ETH
OH
T02
NO
CRES
OPEN
N03
N02
OH
C203
03
X02
XYL
MGLY
MGLY
ISOP
X02
43
44
45
46
47
48
492.
500.79
51
520.87
-0.11 PAR
530.96
0.04 X02N
54
55
560.63
0.20 FORM
57
H02
580.5
0.330 CO
590.91
1.0 N02
60
0.3 OH
61
62
630.44
640.90
65
660.40
67
68
69
70
FORM
710.03
0.69 CO
720.70
1.1 PAR
73
74
750.60
0.5 CO
C203
C203
FORM*
FORM*
PAN
C203
FORM
FORM*
FORM
X02 *
0.76
X02 *
0.02
H02
ALD2*
0.02
FORM*
ALD2*
0.44
X02 *
-1.0
FORM*
X02 *
FORM
H02 *
N02
CRES
CRO *
CRO
C203
X02 *
AL02*
0.08
H02 *
0.30
X02
C203
H02 *
0.450
2.0
2.0
0.79
0.130
ROR
1.1
ROR
0.38
X02N
0.740
H02
1.0
PAR
1.7
1.56
0.42
0.08
0.90
0.60
2.
0.62
OH
0.50
T02
0.8
ETH
HN03
H02
N02
N02
X02
X02
X02
X02N
ALD2
H02
0.22
ALD2
FORM
-1.0
FORM
H02
FORM
CO
X02
H02
H02
X02
HN03
H02
CO
C203
0.76
X02
C203
H02
AL02
0.9
2.0
0.79
0.11
0.94
0.28
PAR
-1.0
0.220
PAR
0.09
0.22
0.12
0.36
0.90
0.60
2.
0.70
H02
0.20
0.55
PAR
CO
H02
H02
H02
H02
H02
H02
X02
0.2
PAR
X02
X02N
CO
AL02
H02
CRES
OPEN
H02
CO
H02
FORM
0.20
CRES
CO
OLE
24000.
3.7
1.0
18315.
12230.
0.0222
3700.
9600.
21.
1203.0
137100.
95445.
22000.
5920.
OH
42000.
0.0180
11.35
1080.
11920.
0.002702
9150.
12000.
250.
61000.
32500.
20000.
8.40
44000.
0.015
MGLY
36200.
26000.
8.96
27000.
-250
-250
-5500
14000
1710
8000
324
-504
2105
792
-411
2633
-322
500
-116
-------
THE INPUTS FOR THIS RUN ARE
OH ISOP
0.13 X02N
03 ISOP
0.20 MGLV
N03 ISOP
X02 NO
X02N NO
X02 X02
HEOH OH
NR
ZENITH
9.
0.00124
34.
0.00463
38.
0.00234
39.
0.00463
45.
0.000257
69.
0.00234
74.
0.00234
T1TL
EXAMPLE 2
PLAC
TEST CITY
DILU
TEMP
303.
MOLE
voc
0.0001362
NOX
0.0000415
TRANS
0.05
.497
REAC
.0333
0.
DEPO
NO
.1
N02
2.5
03
1.886
76 X02 *
ETH 0.4
77 FORM*
0.1 PAR 0.060
78
79
80
81
83
82
7.
0.00461
0.00054
0.00575
0.00401
0.00370
0.00174
0.00575
0.00401
0.000589
0.000158
0.00370
0.00174
0.00370
0.00174
- CB4 WITH
38.629
250.
11.
304.
-11.
0.0005887
0.0001093
0.0001763
0.0000347
.000
.034
0.
10.
.0315
.1
10.
.1
.1
2.5
2.5
1.886
1.886
X02N
N02
FORM
NR
0.00448
0.00022
0.00573
0.00347
0.00366
0.00128
0.00573
0.00347
0.000578
0.000091
0.00366
0.00128
0.00366
0.00128
METHANOL
90.206
1700.
293.
306.
2.
0.00048
0.0001075
0.0001343
0.0000308
.080
.020
.01
.25
.0468
.0756
3.
.1
.1
2.5
2.5
1.886
1.886
FORM 0.67 H02 142000.
MGLY 0.2 C203 0.2 AL02
0.4 ALD2 0.55 ETH 0.018
CO 0.44 H02 0,
H02
0.00413
0.00013
0.00567
0.00525
0.00356
0.00177
0.00567
0.00525
0.000550
0.000094
0.00356
0.00177
0.00356
0.00177
REACTION
5.0
295.
306.
250.
0.0004712
0.0001312
0.0001228
0.0000386
0.
.037
.273
.0189
.1
.1
2.5
2.5
1.886
1.886
0.00359
0.00554
0.00340
0.00554
0.000502
0.00340
0.00340
ADDED
1986.
297.
305.
0.0003256
0.00007
0.0000893
0.0000195
-10.
.070
.0801
.1
2.5
1.886
. 1 OH
470.
12000
1000.
2000.
1600.
1.
0.00287
0.00535
0.00314
0.00535
0.000435
0.00314
0.00314
6.0
299.
304.
.6
0.0002018
0.00006
0.
.042
.1053
.1
2.5
1.886
t
-1300
0.00208
0.00508
0.00280
0.00508
0.000355
0.00280
0.00280
21.
301.
302.
0.05
0.00014
0.0000413
0.009
.026
.5076
.1
2.5
1.886
-------
THE INPUTS FOR THIS RUN ARE
1NIT 2.
H20 CO
15000. .9
ALOFT 2.
PAN CO
.0005 .2
SPEC 3.
03 N02 MEOH
CALC 1. .1
BLANK
in
-------
THE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
REACTIONS
N02
0
03 +
0 +
0 +
0 +
N02 +
03
03
01D
010 +
03 +
03 +
N03
N03 +
N03 +
N03 +
N205 +
N205
NO +
NO +
NO +
HN02
OH +
HN02 +
NO
N02
N02
NO
03
H20
OH
H02
NO
N02
N02
H20
NO
N02 +
OH
HN02
HN02
NO
03
N02
NO
N03
N02
N03
0
01D
0
2 OH
H02
OH
0.89 N02
2 N02
NO
N205
2 HN03
N03
2 N02
H20 = 2 HN02
HN02
NO
N02
NO
+ 0.89 0
0.11 NO
N02
N02
OH
N02
RATE CONSTANT
l.OOOE+00
4.323E+06
2.664E+01
1.375E+04
2.309E-t-03
2.438E-I-03
4.731E-02
5.300E-02
l.OOOE-i-00
4.246E+05
3.260E-I-00
l.OOOE+02
3.000E+00
3.390E+01
4.416E+04
5.901E-01
1.853E+03
1.900E-06
2.776E+00
1.539E-04
1.600E-11
9.799E+03
1.975E-01
9.770E+03
1.500E-05
ACT. ENERGY(K)
O.OOOE-t-00
-1.175E+03
1.370E-»-03
O.OOOE-t-00
-6.870E-»-02
-6.020E+02
2.450E+03
O.OOOE+00
O.OOOE+00
-3.900E+02
O.OOOE+00
9.400E+02
5.800E-»-02
O.OOOE+00
-2.500E-»-02
1.230E+03
-2.560E+02
O.OOOE+00
1.090E+04
-5.300E+02
O.OOOE+00
-8.060E+02
O.OOOE+00
O.OOOE+00
O.OOOE+00
-------
'HE REACTIONS
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
N02 +
OH +
H02 +
H02 +
PNA
OH +
H02 +
H02 +
H202
OH +
OH +
FORM *
FORM
FORM
FORM +
FORM +
ALD2 +
ALD2 +
ALD2 +
ALD2
C203 +
C203 +
PAN
C203 +
C203 +
OH
HN03
NO
N02
PNA
H02
H02 +
H202
CO
OH
0
N03
0
OH
N03
NO
N02
C203
H02
HN03
N03
OH
PNA
H02
N02
H202
H20 = H202
2 OH
H02
H02
H02
2 H02
CO
OH
HN03
C203
C203
C203
FORM
FORM
PAN
C203
2 FORM
0.79 FORM
+ N02
+ N02
+ CO
+ CO
* H02 + CO
+ H02 + CO
+ OH
+ HN03
+ 2 H02 + CO + X02
+ N02 + H02 + X02
+ N02
+ 2 X02 + 2 H02
* 0.79 X02 + 0.79 H02 -f 0.79 OH
RATE CONSTANT ACT. ENERGY(K)
1.682E+04
2.179E+02
1.227E+04
2.025E+03
5.115E+00
6.833E+03
4.144E+03
2.181E-01
1.890E-01
2.520E+03
3.220E+02
1.500E+04
l.OOOE+00
l.OOOE+00
2.370E+02
9.300E-01
6.360E+02
2.400E+04
3.700E+00
1. OOOE-t-00
1.831E+04
1.223E+04
2.220E-02
3.700E+03
9.600E+03
-7.130E+02
-l.OOOE+03
-2.400E+02
-7.490E+02
1.012E+04
-3.800E+02
-1.150E+03
-5.800E^03
O.OOOE+00
1.870E+02
0. OOOE+OO
O.OOOE+00
0. OOOE-t-00
0. OOOE+OO
1.550E+03
0. OOOE+OO
9.860E+02
-2.500E+02
0. OOOE+OO
0. OOOE+OO
-2.500E+02
-5.500E+03
1.400E+04
0. OOOE+OO
0. OOOE+OO
-------
RATE CONSTANT ACT. ENERGY(K)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
OH
PAR +
ROR
ROR
ROR +
0 +
OH +
03 +
N03 +
0 +
OH +
03 +
TOL +
T02 +
T02
OH +
CRES +
CRO +
OPEN
OPEN +
OH
N02
OLE
OLE
OLE
OLE
ETH
ETH
ETH
OH
NO
CRES
N03
N02
OH
FORM
0.87 X02
- 0.11 PAR
0.96 X02
+ 0.04 X02N
H02
8
0.63 ALD2
+ 0.2 FORM
FORM
+ H02
0.5 AL02
+ 0.33 CO
0.91 X02
+ N02
FORM
+ 0.3 OH
X02
FORM
0.44 H02
0.9 N02
CRES
0.4 CRO
CRO
=
C203
X02
+ FORM
+ X02
+ 0.13 X02N
+ 0.76 ROR
+ 1.1 ALD2
+ 0.02 ROR
+ 0.38 H02
+ 0.02 X02N
+ ALD2
+ 0.74 FORM
+ 0.44 H02
+ FORM
PAR
+ 1.7 H02
+1.56 FORM
+ 0.42 CO
+ 0.08 X02
+ 0.9 H02
+ H02
+ 0.6 X02
+ HN03
+ H02
+ 2 CO
+ H02
+ 0.11 H02
+ 0.94 H02
+ 0.28 X02
+ 0.22 PAR
PAR
+ 0.22 X02
PAR
+ 0.09 X02N
+ CO
+ 0.22 AL02
+ 0.12 H02
+ 0.36 CRES
+ 0.9 OPEN
+ 0.6 H02
+ CO
+ 2 H02
+ 0.11 ALD2
- 2.1 PAR
+ 0.3 CO
+ 0.2 OH
+ X02
+ 0.1 OH
+ ALD2
+ 0.7 X02
+ H02
+ 0.56 T02
+ 0.3 OPEN
+ C203
2.100E+01
1.203E+03
1.371E+05
9.545E+04
2.200E+04
5.920E+03
4.200E+04
1.800E-02
1.135E+01
1.080E+03
1.192E+04
2.702E-03
9.150E+03
1.200E+04
2.500E+02
6.100E+04
3.250E+04
2.000E+04
8.400E+00
4.400E+04
1.710E+03
O.OOOE+00
8.000E+03
O.OOOE+00
O.OOOE+00
3.240E+02
-5.040E+02
2.105E+03
O.OOOE+00
7.920E+02
-4.110E+02
2.633E+03
-3.220E+02
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
-------
THE REACTIONS
RATE CONSTANT ACT. ENERGY(K)
71
72
73
74
75
76
77
78
79
- 80
^ 81
83
82
OPEN 4-
OH 4-
OH 4-
MGLY
0 *
OH 4-
03 *
N03 4-
X02 4-
X02N 4-
X02 4-
MEOH 4-
NR
03
XYL
MGLY
ISOP
ISOP
ISOP
ISOP
NO
NO
X02
OH
4-
4-
4-
4-
4-
0.03
0.69
0.7
1.1
0.6
0.5
0.1
ALD2
CO
H02
PAR
X02
C203
H02
CO
X02
ETH
FORM
PAR
X02N
N02
FORM
NR
4-
4-
4-
f
f
+
4
4-
4-
4-
4-
4-
4-
0.62
0.08
0.5
0.3
0.8
0.45
0.4
0.4
0.06
C203
OH
X02
T02
C203
H02
ALD2
ETH
FORM
MGLY
AL02
CO
H02
* 0.7
4 0.76
4- 0.2
4-
+ 0.55
+ 0.9
+ 0.67
+ 0.2
4 0.55
+ 0.44
FORM
H02
CRES
CO
OLE
PAR
H02
C203
ETH
H02
+ 0.03
+ 0.2
* 0.8
H- 0.5
+ 0.13
+ 0.2
+ 0.2
-t- 0.1
X02
MGLY
MGLY
X02
X02N
ALD2
MGLY
OH
1.500E-02
3.620E+04
2.600E+04
8.960E+00
2.700E+04
1.420E+05
1.800E-02
4.700E+02
1.200E+04
l.OOOE+03
2.000E*03
1.600E+03
l.OOOE+00
5.000E+02
-1.160E+02
O.OOOE+00
O.OOOE+00
O.OOOE^OO
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
-1.300E+03
O.OOOE+00
O.OOOE+00
-------
THE FOLLOWING PHOTOLYSIS RATE CONSTANTS ARE USED
REACTION SPECIES ZENITH ANGLE (OEG)
NO. 0 10 20 30 40 50 60 70 78 86
1 N02 5.89E-01 5.85E-01 5.71E-01 5.47E-01 5.09E-01 4.54E-01 3.74E-01 2.58E-01 1.34E-01 2.42E-02
8 03 3.12E-02 3.10E-02 3.03E-02 2.90E-02 2.70E-02 2.40E-02 1.98E-02 1.37E-02 7.11E-03 1.28E-03
9 03 2.72E-03 2.62E-03 2.36E-03 1.96E-03 1.46E-03 9.44E-04 4.64E-04 1.39E-04 2.95E-05 3.15E-06
14 N03 2.00E+01 1.98E+01 1.94E+01 1.85E+01 1.73E+01 1.54E+01 1.27E+01 8.74E+00 4.55E+00 8.20E-01
23 HN02 1.16E-01 1.16E-01 1.13E-01 1.08E-01 1.01E-01 8.96E-02 7.39E-02 5.09E-02 2.65E-02 4.78E-03
34 H202 6.40E-04 6.34E-04 6.12E-04 5.73E-.04 5.15E-04 4.36E-04 3.27E-04 1.95E-04 8.79E-05 2.40E-05
38 FORM 2.18E-03 2.14E-03 2.03E-03 1.86E-03 1.60E-03 1.27E-03 8.75E-04 4.49E-04 1.72E-04 4.28E-05
39 FORM 3.39E-03 3.35E-03 3.24E-03 3.03E-03 2.72E-03 2.30E-03 1.73E-03 1.03E-03 4.65E-04 1.27E-04
45 ALD2 3.47E-04 3.38E-04 3.14E-04 2.75E-04 2.22E-04 1.61E-04 9.61E-05 4.07E-05 1.22E-05 2.27E-06
69 OPEN 1.83E-02 1.80E-02 1.71E-02 1.56E-02 1.34E-02 1.07E-02 7.35E-03 3.77E-03 1.44E-03 3.60E-04
74 MGLK 1.95E-02 1.92E-02 1.82E-02 1.67E-02 1.43E-02 1.14E-02 7.84E-03 4.02E-03 1.54E-03 3.84E-04
-------
EXAMPLE 2 - CB4 WITH METHANOL REACTION ADDED
PHOTOLYTIC RATE CONSTANTS CALCULATED FOR
TEST CITY
LATITUDE
LONGITUDE
TIME ZONE
DATE
TIME
38.629
90.206
5.0
6 21
800 TO
1986
1800
LOCAL DAYLIGHT TIME
DILUTION DETERMINED FROM THE FOLLOWING
INVERSION HEIGHTS INITIAL 250. FINAL 1700.
TIMING START 800. STOP 1500.
MIXING HEIGHTS (AT THE BEGINNING OF EACH HOUR)
TIME 800 900 1000 1100 1200 1300 1400 1500
HEIGHT 250.0 503.1 821.2 1119.5 1340.2 1496.2 1610.8 1700.0
TEMPERATURE (AT THE BEGINNING OF EACH HOUR)
HOUR 0123456789
10 11
TEMP 293.0 295.0 297.0 299.0 301.0 303.0 304.0 306.0 306.0 305.0
304.0 302.0
REACTIVITY
EMISSIONS ETH FRACTION .033 OLE FRACTION .032 ALD2 FRACTION .047
EMISSIONS FORM FRACTION .019 TOL FRACTION .080 XYL FRACTION .105
EMISSIONS PAR FRACTION .508 ISOP FRACTION .000 MEOH FRACTION .100
-------
EMISSIONS NR FRACTION ,076
ALOFT ETH FRACTION .034 OLE FRACTION .020 ALDZ FRACTION .037
ALOFT FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
ALOFT PAR FRACTION .497 ISOP FRACTION .000 MEOH FRACTION .010
ALOFT NR FRACTION .273
N02/NOX .250
en
ro
-------
TRANSPORTED CONCENTRATIONS
SURFACE LAYER H20 15000.000 CO .900
ALOFT OZONE .080 HYDROCARBON .050 NOX .009 PPM
ALOFT PAN .001 CO .200
CONTINUOUS EMISSIONS (EXPRESSED AS FRACTION OF THE INITIAL PRECURSORS)
SPECIES HOUR 123456789 10
11
VOC FRACTION .096 .078 .077 .053 .033 .023 .022 .018 .018 .021
.011
NOX FRACTION .345 .263 .240 .175 .117 .081 .081 .068 .060 .076
.038
.- SURFACE DEPOSITION RATES (CM/SEC)
01
GO
SPECIES HOUR 123456789 10
NO RATE .100 .100 .100 .100 .100 .100 .100 .100 .100 .100
N02 RATE 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
03 RATE 1.886 1.886 1.886 1.886 1.886 1.886 1.886 1.886 1.886 1.886
-------
EXAMPLE 2 - CB4 WITH METHANOL REACTION ADDED
INITIAL CONCENTRATIONS
H20 CO
1.500E+04 9.000E-01
THE ERROR TOLERANCE IS 3.000E-03
THE TEMPERATURE USED IS 2.930E+02
THE MIXING HEIGHT IS 2.50E+02
THE RATE CONSTANTS USED WERE
3.248E-01 4.624E+06 2.463E+01 1.375E+04 2.402E+03 2.524E+03 4.112E-02 1.722E-02 2.845E-04 4.342E+05
3.260E+00 9.476E+01 2.902E+00 1.101E+01 4.480E+04 5.500E-01 1.880E+03 U900E-06 1.487E+00 1.586E-04
in
1.600E-11 1.026E+04 6.416E-02 9.770E+03 1.500E-05 1.752E+04 2.307E+02 1.244E+04 2.114E+03 2.865E+00
6.983E+03 4.426E+03 3.040E-01 2.708E-04 2.493E+03 3.220E+02 1.500E+04 6.778E-04 1.433E-03
THE PHOTOLYSIS REACTIONS ARE
14
23
34
38
39
45
69
74
THE PHOTOLYTIC RATE CONSTANTS ARE
3.248E-01 1.722E-02 2.845E-04 1.101E+01 6.416E-02 2.708E-04 6.778E-04 1.433E-03
5.694E-03 6.074E-03
2.169E+02
9.300E-01 6.011E+02 2.435E+04 3.700E+00 6.830E-05 1.858E + 04 1.676E-t-04 9.958E-03 3.700E+03 9.600E-I-03
1.904E+01 1.203E+03 8.671E+04 9.545E+04 2.200E+04 5.811E+03 4.323E+04 1.596E-02 1.135E+01 1.032E+03
1.220E+04 2.324E-03 9.320E+03 1.200E^04 2.500E+02 6.100E+04 3.250E + 04 2.000E-I-04 5.694E-03 4.400E*04
1.458E-02 3.644E+04 2.600E+04 6.074E-03 2.700E+04 1.420E+05 1.800E-02 4.700E+02 1.200E+04 l.OOOE+03
2.155E+03 l.OOOE+00 1.600E+03
6.830E-05
-------
TIME
(LOT )
800.
NMOC
TOTAL
.99910
NMOC/
NOX
9.99100
NOX
TOTAL
.10000
N02
FRACTION
.25000
03
(INSTANT)
.00000
N02
(INSTANT)
.02500
(INSTANT)
.10000
TIME
INTERVAL
8.000E+02
l.OOOE-10
NET RATES
N02
HN03
PAR
MGLY
2.500E-02
O.OOOE+00
5.076E-01
O.OOOE+00
-8.446E-03
O.OOOE+00
-5.384E-03
O.OOOE+00
NO
HN02
X02N
XYL
7.500E-02
O.OOOE+00
O.OOOE+00
1.316E-02
7.685E-03
9.000E-10
O.OOOE+00
-1.458E-04
0
PNA
ROR
ISOP
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
8.121E-03
O.OOOE+00
O.OOOE+00
O.OOOE+00
03
H202
OLE
NR
O.OOOE+00
O.OOOE+00
1.575E-02
7.560E-02
1.027E-03
O.OOOE+00
-1.705E-04
-6.741E-04
N03
CO
ETH
MEOH
O.OOOE+00
9.000E-01
1.665E-02
l.OOOE-01
O.OOOE+00
-8.942E-03
-1.761E-04
-1.117E-03
010
FORM
TOL
O.OOOE+00
1.890E-02
1.144E-02
O.OOOE+00
-2.057E-04
-1.247E-04
H20
ALD2
CRES
1.500E+04
2.340E-02
O.OOOE+00
-4.500E-10
-2.526E-04
O.OOOE+00
OH
C203
T02
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
H02
X02
OPEN
O.OOOE+00
O.OOOE+00
O.OOOE+00
2.882E-05
1.598E-06
O.OOOE+00
N205
PAN
CRO
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
6.417E-06
O.OOOE+00
THE REACTION RATES ARE
in
in
8.12E-03
O.OOE+00
4.50E-10
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
7.56E-02
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.60E-06
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.28E-05
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
2.71E-05
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
8.92E-07
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
THE PHOTOLYTIC RATE CONSTANTS ARE
3.248E-01 1.722E-02 2.845E-04 1.101E+01 6.416E-02 2.708E-04 6.778E-04 1.433E-03 6.830E-05
5.694E-03 6.074E-03
THE CURRENT MIXING HEIGHT IS
250.00
THE CURRENT TEMPERATURE IS
293.00
THE CURRENT ZENITH ANGLE IS
64.75
-------
TIME NHOC NHOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
900.
.56002
8.81899
.06350
.56931
.02260
.03615
.05446
TIME
INTERVAL
9.000E+02
9.637E+00
NET RATES
N02
HN03
PAR
MGLY
3.615E-02
1.124E-03
2.869E-01
3.743E-04
-5.312E-04
2.486E-05
-2.280E-03
2.809E-06
NO
HN02
X02N
XYL
2.735E-02
1.806E-04
1.041E-07
6.642E-03
6.916E-05
-1.451E-06
-5.172E-08
-6.856E-05
0
PNA
ROR
ISOP
3.587E-09
8.531E-06
7.458E-11
O.OOOE+00
-4.453E-04
7.085E-06
1.293E-06
O.OOOE+00
03
H202
OLE
NR
2.260E-02
2.861E-08
7.870E-03
4.802E-02
1.305E-03
1.239E-09
-8.410E-05
-2.870E-04
N03
CO
ETH
MEOH
2.889E-08
5.494E-01
9.204E-03
5.446E-02
-2.610E-06
-3.420E-03
-7.788E-05
-4.690E-04
010
FORM
TOL
3.701E-11
1.221E-02
6.239E-03
-1.438E-07
-6.775E-05
-5.405E-05
H20
ALD2
CRES
1.500E+04
1.374E-02
2.359E-04
-1.839E-06
-9.993E-05
3.094E-06
OH
C203
T02
5.645E-08
3.094E-08
1.023E-08
-5.107E-07
-4.272E-06
2.460E-08
H02
X02
OPEN
4.137E-07
2.362E-07
1.217E-04
-8.730E-06
-9.556E-07
5.359E-07
N205
PAN
CRO
9.866E-07
5.381E-04
7.559E-10
4.583E-07
1.301E-05
-3.263E-11
THE REACTION RATES ARE
iin
1.56E-02
1.81E-06
2.37E-10
3.36E-09
3.28E-10
1.07E-06
6.34E-06
4.01E-08
1.20E-10
1.66E-02
1.21E-07
1.58E-05
7.58E-10
2.96E-08
1.95E-05
4.83E-07
1.37E-05
4.80E-02
1.52E-02
2.71E-08
1.54E-05
7.81E-10
1.89E-05
6.47E-06
3.28E-06
5.49E-07
4.92E-06
1.78E-06
4.23E-07
9.96E-08
1.16E-11
1.47E-09
7.12E-06
3.36E-06
3.86E-06
3.11E-07
3.54E-05
4.89E-13
4.03E-12
1.93E-06
5.93E-08
2.56E-06
O.OOE+00
2.48E-07
5.74E-10
3.58E-05
9.99E-06
1.57E-05
1.64E-07
8.12E-07
O.OOE+00
3.36E-05
1.96E-06
1.46E-08
1.03E-05
1.87E-05
1.92E-05
2.21E-07
O.OOE+00
5.17E-04
2.81E-08
1.41E-04
1.41E-05
5.36E-06
2.84E-06
5.47E-07
O.OOE+00
1.77E-05
1.47E-06
3.16E-05
2.61E-05
3.54E-12
2.58E-09
1.18E-06
7.75E-05
1.61E-05
1.19E-07
2.44E-05
9.50E-09
1.23E-10
3.41E-08
3.02E-07
2.85E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
4.318E-01 2.288E-02
9.677E-03 1.032E-02
7.845E-04
1.464E+01
8.527E-02
4.039E-04
1.152E-03
2.137E-03
1.406E-04
THE CURRENT MIXING HEIGHT IS
503.11
THE CURRENT TEMPERATURE IS
293.00
THE CURRENT ZENITH ANGLE IS
53.12
-------
TIME NHOC NMOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1000.
.37612
8.59213
.04378
.69311
.04279
.03034
.03568
TIME
INTERVAL
1.
1.
NET
THE
1
I
OOOE+03 3
336E+01 2
1
4
RATES -1
3
-9
2
N02
HN03
PAR
MGLY
.034E-02
.750E-03
.951E-01
.402E-04
.010E-04
.101E-05
.644E-04
.067E-07
1
1
2
3
-1
-3
3
-3
NO
HN02
X02N
XYL
.343E-02
.192E-04
.389E-07
.815E-03
.222E-04
.834E-07
.052E-09
.155E-05
0 03
PNA H202
ROR OLE
ISOP NR
3.753E-09 4.279E-02
1.283E-05 1.995E-07
7.567E-11 4.367E-03
O.OOOE+00 3.649E-02
3.713E-07 2.822E-04
5.933E-08 5.451E-09
-2.263E-10 -3.961E-05
O.OOOE+00 -1.197E-04
N03
CO
ETH
MEOH
9.609E-08
4.164E
6.022E
-01
-03
1.
9.
4.
DID
FORM
TOL
249E-10
544E-03
049E-03
H20
AL02
CRES
1.500E+04
9.829E-03
3.727E-04
3.568E-02
-5.252E
-1.362E
-3.468E
-1.961E
-10
-03
-05
-04
-1.
-2.
-2.
906E-09
558E-05
348E-05
-6.170E-06
-3.999E-05
1.614E-06
REACTION RATES ARE
1.52E-02
6.11E-06
9.78E-11
8.18E-09
8.53E-10
1.91E-06
6.70E-06
7.64E-08
5.75E-10
1.64E
3.93E
1.23E
3.77E
2.32E
2.18E
6.76E
1.28E
3.65E
-02
-07
-05
-09
-08
-05
-07
-05
-02
1.51E
1.21E
1.18E
-02 1.57E-06 2.
-07 1.64E-06 5.
-05 1.08E-07 2.
3.14E-09 1.01E-10 4.
2.20E
9.48E
3.45E
1.06E
5.30E
-05 3.49E-09 2.
-06 7.22E-06 5.
-06 2.27E-06 3.
-06 6.14E-06 0.
-06
65E-07
72E-05
13E-13
66E-11
10E-06
05E-08
52E-06
OOE+00
1
1
4
1
1
9
2
0
.24E
.70E
.78E
.24E
.96E
.67E
.11E
-07
-09
-05
-05
-05
-08
-06
.OOE+00
5
5
5
1
3
1
1
0
.97E-05
.42E-06
.63E-08
.33E-05
.14E-05
.71E-05
.16E-06
.OOE+00
OH
C203
T02
H02
X02
OPEN
9.284E-08 9.474E-07
7.948E-08 5.321E-07
1.407E-08 1.198E-04
-2.484E-09 7.230E-09
1.892E-10 7.968E-09
6.457E-11 -2.402E-07
1.14E-03
6.19E-08
1.57E-04
1.49E-05
1.97E-05
3.28E-06
2.01E-06
O.OOE+00
5.94E-05
5.33E-06
5.87E-05
2.55E-05
2.34E-11
4.76E-09
1.57E-06
8.58E-05
N205
PAN
CRO
2.172E-06
1.040E-03
3.310E-09
1.133E-08
8.147E-06
-2.478E-11
5.32E-05
2.79E-08
5.86E-05
8.34E-09
7.23E-10
2.42E-08
4.89E-07
3.21E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.025E-01 2.663E-02 1.387E-03 1.704E+01 9.925E-02 5.053E-04 1.556E-03 2.673E-03 2.133E-04
1.307E-02 1.394E-02
THE CURRENT MIXING HEIGHT IS 821.23
THE CURRENT TEMPERATURE IS 297.00
THE CURRENT ZENITH ANGLE IS
41.43
-------
TIME
(LOT )
NMOC
TOTAL
NMOC/
NOX
NOX N02 03 N02 MEOH
TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1100.
.29472
8.76848
.03361
.74528
.05791
.02505
.02771
TIME
INTERVAL
1.100E+03
1.858E+01
NET RATES
N02
HN03
PAR
MGLY
2.505E-02
4.994E-03
1.555E-01
4.344E-04
-6.341E-05
4.510E-05
-4.500E-04
-2.859E-07
NO
HN02
X02N
XYL
8.562E-03
1.094E-04
4.825E-07
2.396E-03
-7.564E-05
-4.833E-08
1.695E-09
-1.842E-05
0
PNA
ROR
ISOP
3.628E-09
1.595E-05
8.687E-11
O.OOOE+00
-7.705E-07
-1.390E-08
7.510E-09
O.OOOE+00
03
H202
OLE
NR
5.791E-02
8.674E-07
2.579E-03
3.170E-02
2.235E-04
1.948E-08
-2.315E-05
-5.220E-05
N03
CO
ETH
MEOH
1.731E-07
3.617E-01
4.509E-03
2.771E-02
-7.018E-08
-5.699E-04
-1.896E-05
-8.858E-05
01D
FORM
TOL
2.406E-10
8.700E-03
3.049E-03
4.347E-09
-5.347E-06
-1.210E-05
H20
AL02
CRES
1.500E+04
8.226E-03
4.328E-04
-1.185E-05
-1.780E-05
3.951E-07
OH
C203
T02
1.485E-07
1.809E-07
1.750E-08
1.735E-07
-1.462E-08
1.173E-10
H02
X02
OPEN
1.819E-06
1.037E-06
1.082E-04
-6.528E-08
-6.072E-08
-1.164E-07
N205
PAN
CRO
2.529E-06
1.531E-03
7.987E-09
-4.760E-09
8.341E-06
1.338E-09
THE REACTION RATES ARE
tn
oo
1.37E-02
1.18E-05
5.15E-11
1.61E-08
1.40E-09
3.18E-06
7.95E-06
9.45E-08
2.12E-09
1.55E-02
8.69E-07
1.23E-05
1.35E-08
1.92E-08
2.78E-05
7.27E-07
1.29E-05
3.17E-02
1.34E-02
3.18E-07
1.18E-05
1.01E-08
2.92E-05
1.30E-05
4.13E-06
1.68E-06
6.58E-06
1.25E-06
3.21E-06
1.59E-07
4.96E-10
5.27E-09
8.29E-06
1.80E-06
7.23E-06
2.08E-07
6.53E-05
1.80E-13
3.25E-10
2.26E-06
4.79E-08
4.37E-06
O.OOE+00
7.52E-08
2.59E-09
6.21E-05
1.73E-05
2.83E-05
5.56E-08
3.92E-06
O.OOE+00
7.05E-05
8.01E-06
1.60E-07
1.94E-05
5.21E-05
1.60E-05
2.43E-06
O.OOE+00
1.68E-03
7.21E-08
1.91E-04
1.62E-05
3.98E-05
2.75E-06
4.00E-06
O.OOE+00
1.13E-04
7.93E-06
9.15E-05
2.63E-05
1.21E-10
5.07E-09
1.69E-06
1.07E-04
1.02E-04
1.12E-08
9.14E-05
7.61E-09
3.16E-09
1.78E-08
7.07E-07
4.13E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.467E-01 2.898E-02 1.959E-03 1.853E+01 1.080E-01 5.723E-04 1.858E-03 3.028E-03 2.741E-04
1.560E-02 1.664E-02
THE CURRENT MIXING HEIGHT IS 1119.47
THE CURRENT TEMPERATURE IS
299.00
THE CURRENT ZENITH ANGLE IS
30.10
-------
TIME NMOC NMOC/ NOX N02 03 N02 HEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1200.
.25067
9.63161
.02603
.78662
.07281
.02047
.02380
TIME N02 NO 0 03
INTERVAL HN03 HN02 PNA H202
PAR X02N ROR OLE
MGLY XYL ISOP NR
1.
1.
NET
THE
t__i
en
200E+03 2.047E-02 5.553E-03 3.381E-09 7.281E
858E+01 8.179E-03 1.037E-04 1.959E-05 3.242E
1.350E-01 9.928E-07 1.031E-10 1.440E
3.993E-04 1.467E-03 O.OOOE+00 2.948E
RATES -7.909E-05 -4.227E-05 -1.911E-06 2.731E
6.100E-05 -1.521E-07 2.625E-07 6.992E
-2.687E-04 1.323E-08 1.971E-08 -1.565E
-9.169E-07 -1.328E-05 O.OOOE+00 -2.648E
REACTION RATES ARE
1.17E-02 1.41E-02 1.13E-02 9.52E-07
1.79E-05 1.70E-06 7.76E-07 5.40E-06
2.73E-11 1.20E-05 1.17E-05 2.30E-07
3.00E-08 4.85E-08 3.27E-08 1.98E-09
2.25E-09 1.64E-08 3.98E-05 7.61E-09
5.04E-06 3.68E-05 1.85E-05 9.84E-06
9.46E-06 7.62E-07 5.04E-06 1.35E-06
1.12E-07 1.20E-05 2.35E-06 7.27E-06
7.77E-09 2.95E-02 8.64E-06
-02
-06
-03
-02
-04
-08
-05
-05
1
6
1
1
2
4
5
0
2
3
3
2
-3
-2
-1
-4
.56E
.79E
.61E
.86E
.31E
.64E
.07E
N03
CO
ETH
MEOH
.791E
.385E
.549E
.380E
.456E
.525E
.426E
.908E
-07
-05
-13
-09
-06
-08
-06
.OOE+00
-07
-01
-03
-02
-08
-04
-05
-05
4
3
7
2
4
2
5
0
01D
FORM
TOL
3.662E-10
8.687E-03
2.457E-03
-8.880E-09
3.426E-06
-8.502E-06
.49E-08
.51E-09
.62E-05
.47E-05
.06E-05
.91E-08
.70E-06
.OOE+00
7
1
3
2
8
1
3
0
H20
AL02
CRES
1.500E+04
7.369E-03
4.120E-04
-1.801E-05
-1.287E-05
-1.095E-06
.65E-05
.05E-05
.91E-07
.95E-05
.38E-05
.35E-05
.74E-06
.OOE+00
OH
C203
T02
2.268E-07
4.022E-07
2.029E-08
-5.559E-08
-1.760E-07
6.307E-10
2.20E-03
7.42E-08
2.36E-04
1.76E-05
7.20E-05
2.02E-06
6.02E-06
O.OOE+00
H02
X02
OPEN
3.486E-06
2.015E-06
1.012E-04
-1.383E-07
2.546E-08
-1.534E-07
1.71E-04
1.04E-05
1.41E-04
2.81E-05
5.98E-10
4.56E-09
1.73E-06
1.34E-04
N205
PAN
CRO
2.603E-06
2.030E-03
1.469E-08
1.349E-08
8.310E-06
6.112E-10
1.53E-04
4.66E-09
1.41E-04
7.33E-09
1.35E-08
1.33E-08
1.01E-06
5.51E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.710E-01 3.026E-02 2.353E-03
1.706E-02 1.820E-02
1.936E+01
1.128E-01
6.117E-04
2.031E-03
3.236E-03
3.136E-04
THE CURRENT MIXING HEIGHT IS 1340.22
THE CURRENT TEMPERATURE IS
301.00
THE CURRENT ZENITH ANGLE IS
20.18
-------
TIME MMOC NMOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1300.
.21948
11.64461
.01885
.82757
.09108
.01560
.02135
TIME
INTERVAL
1.300E+03
1.858E+01
NET RATES
N02
HN03
PAR
UGLY
1.560E-02
1.221E-02
1.209E-01
3.215E-04
-8.528E-05
7.182E-05
-2.124E-04
-1.668E-06
NO
HN02
X02N
XYL
3.250E-03
8.972E-05
2.287E-06
7.821E-04
-3.161E-05
-3.332E-07
4.960E-08
-9.474E-06
0
PNA
ROR
ISOP
2.972E-09
2.492E-05
1.234E-10
O.OOOE+00
2.663E-06
-4.353E-07
-3.917E-08
O.OOOE+00
03
H202
OLE
NR
9.108E-02
1.276E-05
6.777E-04
2.824E-02
3.392E-04
3.012E-07
-9.739E-06
-1.562E-05
N03
CO
ETH
MEOH
4.541E-07
3.280E-01
2.733E-03
2.135E-02
5.440E-08
-1.162E-04
-1.311E-05
-3.455E-05
010
FORM
TOL
4.914E-10
8.968E-03
1.978E-03
1.491E-08
4.491E-06
-7.634E-06
H20
ALD2
CRES
1.500E+04
6.556E-03
3.124E-04
-2.423E-05
-1.458E-05
-2.048E-06
OH
C203
T02
3.402E-07
9.228E-07
2.165E-08
-3.946E-07
4.142E-07
1.417E-09
H02
X02
OPEN
7.357E-06
4.257E-06
8.635E-05
1.067E-06
2.795E-07
-3.549E-07
N205
PAN
CRO
2.539E-06
2.488E-03
2.309E-08
-2.451E-08
7.006E-06
9.B82E-10
THE REACTION RATES ARE
en
o
9.04E-03
2.40E-05
1.22E-11
5.67E-08
3.79E-09
7.85E-06
1.08E-05
1.21E-07
3.37E-08
1.20E-02
3.26E-06
1.04E-05
2.10E-07
1.31E-08
4.95E-05
7.78E-07
9.57E-06
2.82E-02
8.51E-03
2.08E-06
1.03E-05
1.28E-07
5.28E-05
2.63E-05
6.05E-06
2.84E-06
1.16E-05
6.38E-07
8.92E-06
2.98E-07
7.97E-09
1.10E-08
1.18E-05
8.44E-07
6.03E-06
1.03E-07
6.43E-05
1.21E-13
1.11E-08
2.15E-06
4.23E-08
5.41E-06
O.OOE+00
2.28E-08
4.47E-09
8.58E-05
3.59E-05
5.42E-05
1.21E-08
6.48E-06
O.OOE+00
7.70E-05
1.29E-05
8.56E-07
4.58E-05
1.30E-04
9.42E-06
4.61E-06
O.OOE+00
2.80E-03
7.24E-08
2.90E-04
1.88E-05
1.20E-04
1.25E-06
7.20E-06
O.OOE+00
2.28E-04
1.29E-05
2.23E-04
2.96E-05
3.15E-09
3.49E-09
1.52E-06
1.66E-04
2.04E-04
1.58E-09
2.23E-04
6.88E-09
6.52E-08
9.17E-09
1.29E-06
7.43E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.793E-01 3.070E-02 2.506E-03 1.964E-I-01 1.144E-01 6.247E-04 2.094E-03 3.305E-03 3.278E-04
1.759E-02 1.876E-02
THE CURRENT MIXING HEIGHT IS 1496.21
THE CURRENT TEMPERATURE IS
303.00
THE CURRENT ZENITH ANGLE IS
15.19
-------
TIME NMOC NMOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1400.
.19359
16.07089
.01205
.86496
.11301
.01042
.01945
TIME N02 NO 0 03
INTERVAL HN03 HN02 PNA H202
PAR X02N ROR OLE
MGLY XYL ISOP NR
1.
1.
NET
400E+03 1.042E-02 1.627E-03 2.413E-09 1.130E-01
491E+01 1.642E-02 6.490E-05 3.351E-05 5.806E
1.086E-01 5.793E-06 1.467E-10 2.573E
2.084E-04 3.391E-04 O.OOOE+00 2.747E
RATES -8.964E-05 -1.722E-05 -7.253E-06 3.980E
-05
-04
-02
-04
6.626E-05 -4.468E-07 2.211E-06 1.547E-06
THE
I
I
t
-1.977E-04 9.438E-08 1.626E-07 -4.461E
-1.927E-06 -5.269E-06 O.OOOE-i-00 -9.904E
REACTION RATES ARE
5.96E-03 9.65E-03 5.36E-03 3.46E-07
2.84E-05 5.78E-06 5.92E-06 1.35E-05
4.07E-12 7.26E-06 7.33E-06 3.05E-07
1.07E-07 1.08E-06 6.29E-07 3.56E-08
5.82E-09 9.18E-09 6.35E-05 1.45E-08
1.13E-05 6.28E-05 3.42E-05 1.40E-05
1.10E-05 7.18E-07 6.59E-06 3.94E-07
1.07E-07 5.85E-06 2.60E-06 3.81E-06
1.69E-07 2.75E-02 1.49E-05
-06
-06
5
4
6
7
1
3
5
0
N03
CO
ETH
MEOH
6.972E
3.230E
1.976E
1.945E
-1.720E
-5.529E
-1.193E
-07
-01
-03
-02
-07
-05
-05
010
FORM
TOL
5.805E-10
8.981E-03
1.531E-03
-5.857E-08
-3.535E-06
-7.194E-06
_
.
_
H20
ALD2
CRES
1.500E+04
5.604E-03
1.944E-04
2.908E-05
1.657E-05
1.709E-06
OH
C203
T02
4.804E-07
2.055E-06
2.020E-08
-1.519E-07
-1.802E-06
-3.428E-10
1
9
6
-1
4
-4
H02
X02
OPEN
.680E-05
.606E-06
.100E-05
.916E-06
.591E-08
.416E-07
N205
PAN
CRO
2.291E-06
2.999E-03
3.207E-08
7.627E-08
1.102E-05
-5.525E-10
-2.874E-05
.55E-08
.93E-05
.32E-14
.12E-08
.77E-06
.36E-08
.05E-06'
.OOE+00
9.
4.
8.
5.
6.
3.
5.
0.
19E-09
65E-09
03E-05
OOE-05
02E-05
76E-09
70E-06
OOE+00
6.
1.
1.
6.
1.
5.
4.
0.
55E-05
32E-05
61E-06
47E-05
82E-04
02E-06
40E-06
OOE+00
3.43E-03
6.53E-08
3.30E-04
1.83E-05
1.68E-04
6.02E-07
6.68E-06
0. OOE+00
2
1
3
2
1
2
1
1
.69E-04
.31E-05
.37E-04
.92E-05
.56E-08
.04E-09
.05E-06
.88E-04
2.40E-04
3.93E-10
3.35E-04
5.69E-09
3.31E-07
5.43E-09
1.29E-06
9.42E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.722E-01 3.033E-02 2.376E-03 1.940E+01 1.130E-01 6.137E-04 2.041E-03 3.247E-03 3.158E-04
1.714E-02 1.828E-02
THE CURRENT MIXING HEIGHT IS 1610.77
THE CURRENT TEMPERATURE IS
304.00
THE CURRENT ZENITH ANGLE IS
19.50
-------
TIME NMOC NHOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1500.
.17121
24.95541
.00686
.90174
.13718
.00619
.01781
TIME
INTERVAL
1.
1.
NET
THE
*
500E+03 6.
037E+01 1.
9.
1.
RATES -5.
4.
-1.
-1.
N02
HN03
PAR
MGLY
187E-03 6
989E-02 3
665E-02 1
069E-04 1
668E-05 -1
613E-05 -4
976E-04 2
371E-06 -2
NO 0 03
HN02 PNA H202
X02N ROR OLE
XYL ISOP NR
.741E-04 1.963E-09 1.372E-01
.700E-05 3.949E-05 3.256E-04
.596E-05 1.490E-10 9.149E-05
.249E-04 O.OOOE+00 2.699E-02
.026E-05 -2.762E-10 3.936E-04
.614E-07 -4.922E-09 9.050E-06
.263E-07 -2.734E-12 -1.458E-06
.097E-06 O.OOOE+00 -6.814E-06
N03
CO
ETH
MEOH
1.016E
3.206E
1.319E
1.781E
4.827E
-2.873E
-9.554E
-2.636E
-06
-01
-03
-02
-09
-05
-06
-05
01D
FORM
TOL
5.975E-10
8.724E-03
1.120E-03
2.910E-11
-5.400E-06
-6.250E-06
H20
ALD2
CRES
1.500E+04
4.688E-03
1.115E-04
-3.271E-05
-1.349E-05
-1.056E-06
OH
C203
T02
6.184E-07
5.540E-06
1.659E-08
1.033E-09
8.143E-08
-1.034E-10
H02
X02
OPEN
4.186E-05
2.517E-05
3.741E-05
5.093E-07
3.462E-07
-3.349E-07
N205
PAN
CRO
1.572E-06
3.362E-03
4.335E-08
-1.261E-08
1.558E-06
1.505E-10
REACTION RATES ARE
3.40E-03
2.92E-05
l.OOE-12
1.61E-07
8.24E-09
1.51E-05
9.38E-06
8.04E-08
1.13E-06
7.65E-03
9.21E-06
3.81E-06
6.56E-06
6.38E-09
7.19E-05
6.16E-07
2.77E-06
2.70E-02
2.78E-03 1.67E-07 2
1.81E-05 1.89E-05 2
4.01E-06 2.24E-07 2
3.45E-06 1.88E-07 5
6.81E-05 1.76E-08 1
4.12E-05 1.42E-05 2
6.16E-06 1.34E-07 4
1.72E-06 1.80E-06 0
1.76E-05
.64E-08
.96E-05
.05E-14
.16E-07
.30E-06
.03E-08
.15E-06
.OOE+00
3.
4.
6.
6.
6.
1.
4.
0.
06E-09
13E-09
04E-05
38E-05
69E-05
09E-09
21E-06
OOE+00
4
1
2
8
2
2
3
0
.98E-05
.14E-05
.45E-06
.09E-05
.59E-04
.27E-06
.68E-06
.OOE+00
3.99E-03
4.48E-08
3.39E-04
1.64E-05
2.55E-04
2.72E-07
5.36E-06
O.OOE+00
2.74E-04
1.14E-05
4.91E-04
2.66E-05
1.14E-07
1.05E-09
5.90E-07
2.04E-04
2.45E-04
6.68E-11
4.91E-04
4.65E-09
2.23E-06
3.00E-09
1.02E-06
1.08E-05
THE PHOTOLYT1C RATE CONSTANTS ARE
5.494E-01 2.912E-02 2.000E-03 1.B62E+01 1.085E-01 5.766E-04 1.877E-03 3.051E-03 2.783E-04
1.577E-02 1.682E-02
THE CURRENT MIXING HEIGHT IS 1700.00
THE CURRENT TEMPERATURE IS
306.00
THE CURRENT ZENITH ANGLE IS
29.20
-------
TIME NHOC NMOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1600.
.15809
38.78848
.00408
.92322
.15774
.00376
.01708
TIME
INTERVAL
1.600E+03
1.352E-I-01
NET RATES
N02
HN03
PAR
MGLY
3.763E-03
2.257E-02
8.893E-02
5.060E-05
-2.311E-05
3.067E-05
-1.046E-04
-5.692E-07
NO
HN02
X02N
XYL
3.129E-04
1.592E-05
2.653E-05
5.533E-05
-3.503E-06
-2.113E-07
7.616E-08
-4.456E-07
0
PNA
ROR
ISOP
1.633E-09
3.409E-05
1.136E-10
O.OOOE+00
-2.251E-07
3.064E-08
5.047E-09
O.OOOE+00
03
H202
OLE
NR
1.577E-01
1.204E-03
3.901E-05
2.716E-02
2.396E-04
1.796E-05
-2.551E-07
3.271E-06
N03
CO
ETH
MEOH
1.128E-06
3.243E-01
8.922E-04
1.708E-02
-3.934E-09
5.020E-05
-5.013E-06
-9.665E-06
010
FORM
TOL
4.935E-10
8.389E-03
8.473E-04
3.436E-09
-7.807E-06
-3.364E-06
H20
ALD2
CRES
1.500E+04
4.144E-03
6.684E-05
-3.110E-05
-7.135E-06
-5.160E-07
OH
C203
T02
5.120E-
8.872E-
9.716E-
1.147E-
-1.961E-
1.073E-
07
06
09
07
07
10
H02
X02
OPEN
5.940E-05
3.973E-05
2.218E-05
-2.268E-07
1.928E-08
-1.906E-07
N205
PAN
CRO
1.061E-06
3.365E-03
4.365E-08
-2.896E-09
-3.130E-06
-2.622E-10
THE REACTION RATES ARE
oo
1.91E-03
2.41E-05
2.83E-13
1.15E-07
8.80E-09
1.25E-05
5.25E-06
5.48E-08
2.82E-06
6.37E-03
8.77E-06
1.46E-06
1.32E-05
4.69E-09
5.48E-05
4.79E-07
1.02E-06
2.72E-02
1.48E-03
2.96E-05
1.59E-06
6.94E-06
4.98E-05
3. HE-OS
3.86E-06
6.74E-07
1.40E-05
8.45E-08
1.94E-05
7.96E-08
6.16E-07
1.73E-08
1.08E-05
3.65E-08
7.19E-07
1.34E-08
1.52E-05
3.80E-15
1.58E-06
9.07E-07
9.40E-09
2.43E-06
O.OOE+00
1.18E-09
2.79E-09
3.04E-05
5.35E-05
4.97E-05
3.88E-10
2.09E-06
O.OOE+00
3.48E-05
7.69E-06
2.31E-06
6.44E-05
2.52E-04
8.03E-07
2.45E-06
O.OOE+00
4.24E-03
3.02E-08
2.23E-04
1.33E-05
2.55E-04
1.33E-07
3.28E-06
O.OOE+00
2.27E-04
7.66E-06
4.24E-04
2.27E-05
2.91E-07
4.99E-10
2.95E-07
1.49E-04
2.03E-04
1.44E-11
4.24E-04
3.72E-09
5.06E-06
1.69E-09
5.00E-07
8.30E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
5.071E-01 2.688E-02 1.437E-03 1.719E+01 1.002E-01 5.118E-04 1.585E-03 2.708E-03 2.188E-04
1.331E-02 1.420E-02
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS
306.00
THE CURRENT ZENITH ANGLE IS
40.48
-------
TIME NMOC NMOC/ NOX N02 03 N02 MEOH
(LOT ) TOTAL NOX TOTAL FRACTION (INSTANT) (INSTANT) (INSTANT)
1700.
.15034
47.56795
.00316
.93352
.16698
.00295
.01665
TIME N02 NO 0 03
INTERVAL HN03 HN02 PNA H202
PAR X02N ROR OLE
MGLY XYL ISOP NR
1.
1.
NET
THE
i"
4^
700E+03 2.950E-03 2.101E-04 1.347E-09 1.670E-01
352E+01 2.391E-02 8.230E-06 2.639E-05 2.186E-03
8.410E-02 2.584E-05 7.720E-11 3.562E-05
3.107E-05 4.528E-05 O.OOOE+00 2.736E-02
RATES -6.298E-06 -1.909E-07 -1.111E-06 8.450E-05
1.632E-05 -7.152E-08 3.632E-07 1.324E-05
-5.596E-05 -9.422E-08 2.658E-08 1.221E-07
-1.537E-07 6.189E-08 O.OOOE+00 3.584E-06
REACTION RATES ARE
1.29E-03 5.32E-03 1.04E-03 5.46E-08 8
1.48E-05 6.21E-06 2.74E-05 1.74E-05 1
1.49E-13 6.70E-07 7.13E-07 2.78E-08 1
6.06E-08 1.04E-05 5.72E-06 9.05E-07 1
8.62E-09 3.53E-09 3.11E-05 1.65E-08 5
8.29E-06 3.50E-05 1.96E-05 7.37E-06 5
2.72E-06 3.76E-07 2.16E-06 1.38E-08 1
3.61E-08 5.62E-07 2.79E-07 3.31E-07 0
2.50E-06 2.74E-02 9.22E-06
N03
CO
ETH
MEOH
1.172E-06
3.267E-01
6.796E
1.665E
2.037E
3.302E
-2.303E
-4.475E
.70E-09
.07E-05
.02E-15
.93E-06
.61E-07
.01E-09
.37E-06
.OOE+00
-04
-02
-09
-05
-06
-06
6
2
1
3
3
2
9
0
010
FORM
TOL
3.019E
7.904E
7.008E
-1.714E
-10
-03
-04
-08
_
-7.671E-06 -
-1.622E
.59E-10
.24E-09
.63E-05
.64E-05
.18E-05
.91E-10
.16E-07
.OOE+00
-06
_
2.
6.
1.
4.
1.
4.
1.
0.
H20
AL02
CRES
1.500E+04
3.814E-03
4.339E-05
2.051E-05
3.976E-06
3.103E-07
81E-05
28E-06
67E-06
10E-05
99E-04
98E-07
65E-06
OOE+00
OH
C203
T02
3.460E-07
8.427E-06
5.467E-09
-1.160E-07
-7.930E-07
1.980E-10
3.88E-03
2.77E-08
1.32E-04
9.40E-06
2.03E-04
1.26E-07
2.02E-06
0. OOE+00
5.
3.
1.
-6.
-1.
-9.
1.
6.
2.
1.
2.
4.
1.
9.
H02
X02
OPEN
227E-05
717E-05
388E-05
256E-07
942E-07
891E-08
39E-04
24E-06
95E-04
73E-05
63E-07
74E-10
39E-07
37E-05
N205
PAN
CRO
9.717E-07
3.107E-03
3.424E-08
1.141E-08
-3.693E-06
-1.072E-09
1.24E-04
6.52E-12
2.94E-04
2.84E-09
4.23E-06
1.05E-09
2.11E-07
5.43E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
4.388E-01 2.326E-02 8.334E-04 1.488E+01 8.667E-02 4.140E-04 1.189E-03 2.191E-03 1.470E-04
9.991E-03 1.066E-02
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS
305.00
THE CURRENT ZENITH ANGLE IS
52.16
-------
TIME
(LOT )
1800.
NMOC
TOTAL
.14717
NMOC/
NOX
45.41303
NOX
TOTAL
.00324
N02 03
FRACTION (INSTANT)
.94491
.16912
N02
(INSTANT)
.00306
MEOH
(INSTANT)
.01653
TIME
INTERVAL
1.
1.
NET
THE
m*
T*
Jl
BOOE+03 3
537E+01 2
8
2
RATES 5
1
-2
6
N02
HN03
PAR
MGLY
.062E-03 1.
.469E-02 5.
.198E-02 1.
.782E-05 5.
.753E-06 -1.
.002E-05 -4.
.361E-05 -1.
.021E-09 1.
NO 0 03 N03
HN02 PNA H202 CO
X02N ROR OLE ETH
XYL ISOP NR MEOH
785E-04 1.024E-09 1.691E-01 1.488E-06
378E-06 2.074E-05 2.737E-03 3.283E-01
734E-05 4.555E-11 4.845E-05 5.916E-04
707E-05 O.OOOE+00 2.760E-02 1.653E-02
169E-06 4.924E-07 1.040E-04 4.803E-08
073E-08 -6.128E-07 5.308E-06 1.907E-05
526E-07 -1.754E-08 7.221E-08 -1.005E-06
233E-07 O.OOOE+00 3.023E-06 -1.198E-06
DID
FORM
TOL
1.159E
7.547E
6.392E
4.512E
-4.093E
-6.677E
-10
-03
-04
-09
-06
-07
H20
ALD2
CRES
1.500E+04
3.658E-03
2.578E-05
-8.444E-06
-1.754E-06
-3.253E-07
OH
C203
T02
1.965E-07
5.955E-06
2.977E-09
-4.899E-09
7.172E-07
2.424E-10
3
2
9
1
-2
-6
H02
X02
OPEN
.505E-05
.491E-05
.246E-06
.854E-07
.341E-07
.151E-08
N205
PAN
CRO
1.447E-06
2.845E-03
2.237E-08
-6.970E-09
-4.673E-06
-3.104E-10
REACTION RATES ARE
1.03E-03
5.67E-06
1.31E-13
2.72E-08
1.04E-08
4.62E-06
1.35E-06
2.42E-08
1.14E-06
4.10E-03
3.54E-06
3.26E-07
4.72E-06
2.54E-09
1.94E-05
3.22E-07
4.03E-07
2.76E-02
8.81E-04 4.31E-08 6.92E-09 4.
1.85E-05 1.69E-05 1.15E-05 2.
3.56E-07 1.03E-08 4.34E-16 9.
2.74E-06 7.74E-07 1.37E-06 2.
1.70E-05 2.01E-08 2.69E-07 1.
1.06E-05 4.35E-06 3.07E-09 3.
1.13E-06 6.38E-09 7.44E-07 3.
1.42E-07 1.79E-07 O.OOE+00 0.
5.20E-06
28E-10
92E-09
65E-06
08E-05
92E-05
OOE-10
09E-07
OOE+00
2
8
9
2
1
3
1
0
.88E-05
.30E-06
.89E-07
.22E-05
.55E-04
.87E-07
.25E-06
.OOE-t-00
3.01E-03
4.12E-08
7.56E-05
5.42E-06
1.60E-04
1.70E-07
1.37E-06
O.OOE+00
5
8
2
1
1
8
5
5
.36E-05
.26E-06
.07E-04
.13E-05
.31E-07
.18E-10
.58E-08
.34E-05
4.79E-05
4.74E-12
2.07E-04
2.03E-09
2.00E-06
6.90E-10
7.99E-08
3.10E-06
THE PHOTOLYTIC RATE CONSTANTS ARE
3.355E-01 1.778E-02 3.170E-04 1.137E+01 6.625E-02 2.828E-04 7.181E-04 1.496E-03 7.366E-05
6.032E-03 6.434E-03
THE CURRENT MIXING HEIGHT IS 1701.34
THE CURRENT TEMPERATURE IS 304.00
THE CURRENT ZENITH ANGLE IS
63.80
-------
MAXIMUM 03 NOT REACHED, THE LAST ONE HOUR AVERAGE WAS .16788 PPM.
MAXIMUM ONE HOUR AVE N02 = .03540 CENTERED AT 859. LDT
MAXIMUM ONE HOUR AVE MEOH = .07392 CENTERED AT 830. LDT
en
-------
C
0
N
C
E
N
T
R
A
T
1
0
N
P
P
H
,200+-
I
.180+
.160+
,140+
,120 +
,100+
.080
.060+
.040+
.020+
10
.000+--
800.
0 0
00000
00
0 0
00
00
900*ioOO~ 1100. 1200. 1300. 1400. 1500.
TIME (LOT)
1600. 1700. 1800.
EXAMPLE 2 - CB4 WITH METHANOL REACTION ADDED
03 CONCENTRATION AS A FUNCTION OF TIME
-------
00
c
0
N
C
E
N
T
R
A
T
I
0
N
P
P
M
.040+-
.036+
.032 +
.028+
0
.024
.020 +
.016
.012
.008+
.004 +
I
.000+--
800.
00 0
0 0
0 0
00
0 0
00
0000 00 00
. - + « + -f + --
900. 1000. 1100. 1200. 1300. 1400.
TIME (LOT)
1500.
1600.
.--+.-
1700.
»
1800.
EXAMPLE 2 - CB4 WITH METHANOL REACTION ADDED
N02 CONCENTRATION AS A FUNCTION OF TIME
-------
-------
EXHIBIT 5
1) 1234567
2) 123456789012345678901234567890123456789012345678901234567890123456789012
3)
4) TITL
5) EXAMPLE 3 - EKMA OPTION USING MASS AND CREDIT OPTIONS
6) TRANS .060 .080 0. .050 0. 0.009
7) PLAC 38.629 90.206 5.0 1986. 6.0 21.
8) TEST CITY
9) DILU 250. 1700.
10) MASS -11. .6 0.05 250.
11) 9.42 7.68 7.54 5.21 3.23 2.24 2.18
12) 1.75 1.72 2.10 1.12
13) 8.11 6.18 5.65 4.11 2.76 1.90 1.91
14) 1.60 1.42 1.78 0.90
15) CRED -11. 250.
16) CO 1. .5 -35. .5
17) 12.9 19.4 14.2 11.6 11.6 11.6 11.6
18) 12.9 14.2 15.5 20.7
19) EKMA .17 10. -10. 1. 2. 1.
20) -1. -1. 0. 0.04 0. 0.009
21) .6 .05 -50.
22) BLANK
23)
24) 1234567
25) 123456789012345678901234567890123456789012345678901234567890123456789012
170
-------
* *
* OZONE ISOPLETH PLOTTING PACKAGE *
* WITH OPTIONAL MECHANISMS *
* *
* 0 Z I P M *
* *
* VERSION 4.00 *
* *
* DECEMBER, 1987 *
* *
***************************************
EXHIBIT 6
-------
THE INPUTS FOR THIS RUN ARE
TITL
EXAMPLE 3
TRANS
PLAC
TEST CITY
DILU
MASS
9.42
1.75
8.11
1.60
CRED
CO
12.9
12.9
EKMA
-1.
.6
BLANK
- EKMA
.060
38.629
250.
-11.
7.68
1.72
6.18
1.42
1.
19.4
14.2
.17
-1.
.05
OPTION USING
.080
90.206
1700.
.6
7.54
2.10
5.65
1.78
-11.
14.2
15.5
10.
0.
MASS AND
0.
5.0
0.05
5.21
1.12
4.11
0.90
250.
.5
11.6
20.7
-10.
0.04
CREDIT
.050
1986.
250.
3.23
2.76
-35.
11.6
1.
0.
-50.
OPTIONS
0.
6.0
2.24
1.90
11.6
2.
0.009
0.009
21.
2.18
1.91
.5
11.6
1.
ro
-------
EXAMPLE 3 - EKMA OPTION USING MASS AND CREDIT OPTIONS
PHOTOLYTIC RATE CONSTANTS CALCULATED FOR
TEST CITY
LATITUDE
LONGITUDE
TIME ZONE
DATE
TIME
38.629
90.206
5.0
6 21
800 TO
1986
1800
LOCAL DAYLIGHT TIME
DILUTION DETERMINED FROM THE FOLLOWING
INVERSION HEIGHTS INITIAL 250. FINAL 1700.
TIMING START 800. STOP 1500.
OJ
MIXING HEIGHTS (AT THE BEGINNING OF EACH HOUR)
TIME 800 900 1000 1100 1200 1300 1400 1500
HEIGHT 250.0 503.1 821.2 1119.5 1340.2 1496.2 1610.8 1700.0
REACTIVITY
EMISSIONS ETH FRACTION .037 OLE FRACTION .035 ALD2 FRACTION .052
EMISSIONS FORM FRACTION .021 TOL FRACTION .089 XYL FRACTION .117
EMISSIONS PAR FRACTION .564 ISOP FRACTION .000 NR FRACTION .085
ALOFT ETH FRACTION .034 OLE FRACTION .020 AL02 FRACTION .037
ALOFT FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
ALOFT PAR FRACTION .498 ISOP FRACTION .000 NR FRACTION .273
N02/NOX .250
-------
TRANSPORTED CONCENTRATIONS
SURFACE LAYER OZONE .060 HYDROCARBON .000 NOX .000 PPM
ALOFT OZONE .080 HYDROCARBON .050 NOX .009 PPM
CONTINUOUS EMISSIONS (EXPRESSED AS FRACTION OF THE INITIAL PRECURSORS)
SPECIES HOUR 123456789 10
11
VOC FRACTION .106 .086 .084 .058 .036 .025 .024 .020 .019 .024
.013
NOX FRACTION .343 .262 .239 .174 .117 .080 .081 .068 .060 .075
.038
CO FRACTION .045 .068 .050 .041 .041 .041 .041 .045 .050 .054
.072
-------
EKMA CALCULATIONS ARE PERFORMED TO ESTIMATE
SITE-SPECIFIC VOC CONTROL REQUIREMENTS
BASE YEAR OZONE .170 PPM
BASE YEAR NMOC/NOX 10.000
ANTICIPATED CHANGE IN NOX -10.000 PERCENT
FUTURE OZONE TRANSPORTED ALOFT .068 PPM
FUTURE NMOC TRANSPORTED ALOFT .040 PPMC
FUTURE NOX TRANSPORTED ALOFT .009 PPM
EMISSION CREDITS WILL BE ALLOWED FOR CO
ANTICIPATED CHANGE IN CO -35.000 PERCENT
FUTURE CO TRANSPORTED ALOFT .500 PPM
FUTURE OZONE IN THE SURFACE LAYER .054 PPM
FUTURE NMOC IN THE SURFACE LAYER .000 PPMC
FUTURE NOX IN THE SURFACE LAYER .000 PPM
-------
THE FOLLOWING SIMULATIONS WERE DONE.
NMOC
1.00000
.80967
.38139
.46065
.23033
.20591
.13567
.14872
NOX
.10000
.08097
.03814
.04607
.04146
.04146
.04146
.04146
RATIO
10.00000
10.00000
10.00000
10.00000
5.55556
4.96660
3.27243
3.58727
03
.20996
.19767
.16372
.17082
.13423
.13056
.11759
.12032
TIME
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
VOC CONTROL REQUIREMENT IS 67.7 PERCENT
-------
THE FOLLOWING SIMULATION WAS DONE WITH A
50.00 PERCENT CHANGE IN NHOC.
NMOC NOX RATIO 03 TIME
.23033 .04146 5.55556 .13423 NOT MAX
-------
EKMA PREDICTED CHANGES IN OZONE
HC NOX 03 X-CHG HC X-CHG NOX X-CHG 03
.461 .041 .1591 .0 -10.0 -6.4
.415 .041 .1551 -10.0 -10.0 -8.8
.369 .041 .1508 -20.0 -10.0 -11.3
.322 .041 .1459 -30.0 -10.0 -14.2
.276 .041 .1405 -40.0 -10.0 -17.3
.230 .041 .1342 -50.0 -10.0 -21.0
.184 .041 .1270 -60.0 -10.0 -25.3
.138 .041 .1181 -70.0 -10.0 -30.5
.092 .041 .1073 -80.0 -10.0 -36.9
.046 .041 .0954 -90.0 -10.0 -43.9
.000 .041 .0846 -100.0 -10.0 -50.2
oo
-------
EXHIBIT 7
1) 1234567
2) 123456789012345678901234567890123456789012345678901234567890123456789012
3)
4) TITL
5) EXAMPLE 4 - EKMA OPTION - 1981 APPENDIX B PROCEDURES
6) TRANS .060 .100 0.08 .09 0. 0.009
7) PLAC 38.629 90.206 5.0 1986. 6.0 21.
8) TEST CITY
9) DILU 250. 1700.
10) MASS -11. .6 0.05 250.
11) 9.42 7.68 7.54 5.21 3.23 2.24 2.18
12) 1.75 1.72 2.10 1.12
13) 8.11 6.18 5.65 4.11 2.76 1.90 1.91
14) 1.60 1.42 1.78 0.90
15) CRED -11. 250.
16) CO 1. .5 -35. .5
17) 12.9 19.4 14.2 11.6 11.6 11.6 11.6
18) 12.9 14.2 15.5 20.7
19) EKMA .17 10. -10. 1.
20) -1. -1. -.32 0.05 0. 0.009
21) .6 .05
22) BLANK
23)
24) 1234567
25) 123456789012345678901234567890123456789012345678901234567890123456789012
179
-------
* OZONE ISOPLETH PLOTTING PACKAGE
* WITH OPTIONAL MECHANISMS
*
* 0 Z I P M
*
* VERSION 4.00
*
* DECEMBER, 1987
*
00
o
EXHIBIT 8
-------
THE INPUTS FOR THIS RUN ARE
TITL
EXAMPLE 4 - EKMA OPTION - 1981 APPENDIX B PROCEDURES
TRANS .060 .100 0.08 .09 0. 0.009
PLAC 38.629 90.206 5.0 1986. 6.0 21.
TEST CITY
DILU 250. 1700.
MASS -11. .6 0.05 250.
9.42 7.68 7.54 5.21 3.23 2.24 2.18
1.75 1.72 2.10 1.12
8.11 6.18 5.65 4.11 2.76 1.90 1.91
1.60 1.42 1.78 0.90
CREO -11. 250.
CO 1. .5 -35. .5
12.9 19.4 14.2 11.6 11.6 11.6 11.6
12.9 14.2 15.5 20.7
EKMA .17 10. -10. 1.
-1. -1. -.32 0.05 0. 0.009
.6 .05
BLANK
h->
00
-------
EXAMPLE 4 - EKMA OPTION - 1981 APPENDIX B PROCEDURES
PHOTOLYT1C RATE CONSTANTS CALCULATED FOR
TEST CITY
LATITUDE
LONGITUDE
TIME ZONE
DATE
TIME
38.629
90.206
5.0
6 21
800 TO
1986
1800
LOCAL DAYLIGHT TIME
oo
ro
DILUTION DETERMINED FROM THE FOLLOWING
INVERSION HEIGHTS INITIAL 250. FINAL 1700.
TIMING START 800. STOP 1500.
MIXING HEIGHTS (AT THE BEGINNING OF EACH HOUR)
TIME 800 900 1000 1100 1200 1300 1400 1500
HEIGHT
250.0 503.1 821.2 1119.5 1340.2 1496.2 1610.8 1700.0
REACTIVITY
EMISSIONS ETH FRACTION .037 OLE FRACTION .035 AL02 FRACTION .052
EMISSIONS FORM FRACTION .021 TOL FRACTION .089 XYL FRACTION .117
EMISSIONS PAR FRACTION .564 ISOP FRACTION .000 NR FRACTION .085
SURFACE LAYER ETH FRACTION .034 OLE FRACTION .020 ALD2 FRACTION .037
SURFACE LAYER FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
SURFACE LAYER PAR FRACTION .498 ISOP FRACTION .000 NR FRACTION .273
ALOFT
ETH FRACTION .034 OLE FRACTION .020 ALD2 FRACTION .037
-------
ALOFT FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
ALOFT PAR FRACTION .498 ISOP FRACTION .000 NR FRACTION .273
N02/NOX .250
oo
CO
-------
TRANSPORTED CONCENTRATIONS
SURFACE LAYER OZONE .060 HYDROCARBON .080 NOX .000 PPM
ALOFT OZONE .100 HYDROCARBON .090 NOX .009 PPM
CONTINUOUS EMISSIONS (EXPRESSED AS FRACTION OF THE INITIAL PRECURSORS)
SPECIES HOUR 123456789 10
11
VOC FRACTION .106 .086 .084 .058 .036 .025 .024 .020 .019 .024
.013
NOX FRACTION .343 .262 .239 .174 .117 .080 .081 .068 .060 .075
.038
CO FRACTION .045 .068 .050 .041 .041 .041 .041 .045 .050 .054
.072
oo
-------
oo
tn
EKMA CALCULATIONS ARE PERFORMED TO ESTIMATE
SITE-SPECIFIC VOC CONTROL REQUIREMENTS
BASE YEAR OZONE .170 PPM
BASE YEAR NMOC/NOX 10.000
ANTICIPATED CHANGE IN NOX -10.000 PERCENT
FUTURE OZONE TRANSPORTED ALOFT .082 PPM
FUTURE NMOC TRANSPORTED ALOFT .050 PPMC
FUTURE NOX TRANSPORTED ALOFT .009 PPM
EMISSION CREDITS WILL BE ALLOWED FOR CO
ANTICIPATED CHANGE IN CO -35.000 PERCENT
FUTURE CO TRANSPORTED ALOFT .500 PPM
MEDIAN CONTRIBUTION FACTOR FOR NMOC .320
MEDIAN CONTRIBUTION FACTOR FOR NOX .000
ADJUSTED NMOC/NOX 6.800
FUTURE OZONE IN THE SURFACE LAYER .054 PPM
FUTURE NMOC IN THE SURFACE LAYER .048 PPMC
FUTURE NOX IN THE SURFACE LAYER .000 PPM
-------
THE FOLLOWING SIMULATIONS WERE DONE.
oo
NHOC
1.00000
.73833
.16532
.28699
.26890
.18265
.18430
.19322
.09661
.08310
.00000
NOX
.10000
.07383
.01653
.02870
.02689
.02689
.02710
.02841
.02557
.02557
.02557
RATIO
10.00000
10.00000
10.00000
10.00000
10.00000
6.80000
6.80000 .
6.80000
3.77778
3.24958
.00000
03
.23025
.21136
.15885
.17195
.17006
.16866
.16885
.16995
.13951
.13816
.12903
TIME
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
NOT MAX
COULD HOT FIND
.1200 OZONE IN 3 TRYS
CHECK INPUT CONDITIONS OR GENERATE
AN ISOPLETH DIAGRAM.
-------
EXHIBIT 9
( 1)
( 2) 123456789
( 3)
( 4) PLOT
( 5) TITL
( 6) EXAMPLE 5
( 7) TRANS
( 8) PLAC
( 9) TEST CITY
( 10) DILU
( 11) MASS
( 12) 9.42
( 13) 1.75
( 14) 8.11
( 15) 1.60
( 16) CRED
( 17) CO
( 18) 12.9
( 19) 12.9
( 20) SPEC
( 21) 03
( 22) ISOP
( 23) .06
( 24) .20
( 25) .02
( 26) .09
1
01234567J
2
5901234567J
- ISOPLETH OPTION
.000
38.629
250.
-11.
7.68
1.72
6.18
1.42
1.
19.4
14.2
2.
N02
.08
.22
.03
.10
.080
90.206
1700.
.6
7.54
2.10
5.65
1.78
-11.
14.2
15.5
.10
.24
.04
.12
3
J9012345678S
8.
USING MASS
0.
5.0
0.05
5.21
1.12
4.11
0.90
250.
.5
11.6
20.7
11.
.12
.26
.05
.14
4 5
)012345678901234567!
5.6
AND CREDIT OPTIONS
.05 0.
1986. 6.0
250.
3.23 2.24
2.76 1.90
11.6 11.6
1.
.14 .16
.06 .07
( 27) BLANK
( 28)
( 29)
( 30) 123456789
1
'01234567!
2
B901234567I
3
B9012345678(
4 5
9012345678901234567
0.009
21.
2.18
1.91
11.6
2.
.18
.08
187
-------
* *
* OZONE ISOPLETH PLOTTING PACKAGE *
* WITH OPTIONAL MECHANISMS *
* *
* 0 Z I P M *
* *
* VERSION 4.00 *
* *
* DECEMBER, 1987 *
* *
oo
00
EXHIBIT 10
-------
THE INPUTS FOR THIS RUN ARE
PLOT
TITL
EXAMPLE 5
TRANS
PLAC
TEST CITY
DILU
MASS
9.42
1.75
8.11
1.60
CRED
CO
12.9
12.9
SPEC
03
1SOP
.06
.20
.02
.09
- ISOPLETH
.000
38.629
250.
-11.
7.68
1.72
6.18
1.42
1.
19.4
14.2
2.
N02
.08
.22
.03
.10
OPTION
.080
90.206
1700.
.6
7.54
2.10
5.65
1.78
-11.
14.2
15.5
.10
.24
.04
.12
8.
USING MASS
0.
5.0
0.05
5.21
1.12
4.11
0.90
250.
.5
11.6
20.7
11.
.12
.26
.05
.14
5.6
AND CREDIT
.05
1986.
250.
3.23
2.76
11.6
1.
.14
.06
OPTIONS
0.
6.0
2.24
1.90
11.6
.16
.07
0.009
21.
2.18
1.91
11.6
2.
.18
oo
"* .02 .03 .04 .05 .06 .07 .08
BLANK
-------
EXAMPLE 5 - ISOPLETH OPTION USING MASS AND CREDIT OPTIONS
PHOTOLYTIC RATE CONSTANTS CALCULATED FOR
TEST CITY
LATITUDE
LONGITUDE
TIME ZONE
DATE
TIME
38.629
90.206
5.0
6 21
800 TO
1986
1800
SOLAR NOON 1259
SUNRISE
542
SUNSET
LOCAL DAYLIGHT TIME
2024
vo
o
DILUTION DETERMINED FROM THE FOLLOWING
INVERSION HEIGHTS INITIAL 250. FINAL 1700.
TIMING START 800. STOP 1500.
MIXING HEIGHTS (AT THE BEGINNING OF EACH HOUR)
TIME 800 900 1000 1100 1200 1300 1400 1500
HEIGHT
REACTIVITY
EMISSIONS
EMISSIONS
EMISSIONS
ALOFT
ALOFT
250.0 503.1 821.2 1119.5 1340.2 1496.2 1610.8 1700.0
ETH FRACTION .037 OLE FRACTION .035 ALD2 FRACTION .052
FORM FRACTION .021 TOL FRACTION .089 XYL FRACTION .117
PAR FRACTION .564 ISOP FRACTION .000 NR FRACTION .085
ETH FRACTION .034 OLE FRACTION .020 ALD2 FRACTION .037
FORM FRACTION .070 TOL FRACTION .042 XYL FRACTION .026
-------
ALOFT PAR FRACTION .498 ISOP FRACTION .000 NR FRACTION .273
N02/NOX .250
-------
TRANSPORTED CONCENTRATIONS
ALOFT OZONE .080 HYDROCARBON .050 NOX .009 PPM
CONTINUOUS EMISSIONS (EXPRESSED AS FRACTION OF THE INITIAL PRECURSORS)
SPECIES HOUR 1 2 3 4 5 6 7 8 9 10
11
VOC FRACTION .106 .086 .084 ,058 .036 .025 .024 .020 .019 .024
.013
NOX FRACTION .343 .262 .239 .174 .117 .080 .081 .068 .060 .075
.038
CO FRACTION .045 .068 .050 .041 .041 .041 .041 .045 .050 .054
.072
-------
THE FOLLOWING SIMULATIONS WERE DONE.
NHOC
u>
CO
NOX
.00000 .00000
.00000 .01400
.00000 .02800
.00000 .04200
.00000 .05600
.00000 .07000
.00000 .08400
.00000 .09800
.00000 .11200
.00000 .12600
.00000 .14000
.20000 .00000
RATIO
03
TIME
N02
.00000 1.2739E-01 1800. 3.4320E-03
.20000 .01400 14.28571 1.3801E-01 1800. 9.5467E-03
.20000 .02800 7.14286 1.4145E-01 1800. 1.5541E-02
TIME
.00000 1.1630E-01 1800. 3.9657E-03 958.
.00000 1.2064E-01 1800. 9.6312E-03 913.
.00000 1.1701E-01 1800. 1.5481E-02 904.
.00000 9.5272E-02 1800. 2.0875E-02 903.
.00000 7.6894E-02 1800. 2.5778E-02 904.
.00000 6.6215E-02 1719. 3.0255E-02 906.
.00000 5.9402E-02 1631. 3.4350E-02 908.
.00000 5.4433E-02 1529. 3.8114E-02 909.
.00000 5.0773E-02 1512. 4.1603E-02 911.
.00000 4.7495E-02 1500. 4.4841E-02 912.
.00000 4.4663E-02 1452. 4.7654E-02 913.
940.
906.
901
,20000 .04200 4.76190 1.3761E-01 1800. 2.1001E-02 902.
.20000 .05600 3.57143 1.1740E-01 1800. 2.5950E-02 903.
.20000 .07000 2.85714 9.3990E-02 1800. 3.0459E-02 905.
.20000 .08400 2.38095 7.9587E-02 1800. 3.4594E-02 907.
.20000 .09800 2.04082 6.9433E-02 1728. 3.8383E-02
909.
-------
.20000
.20000
.20000
.40000
.40000
.40000
.40000
.40000
.40000
.40000
.40000
.40000
.40000
.40000
.60000
.60000
.60000
.60000
.60000
.60000
.60000
.60000
.11200
.12600
.14000
.00000
.01400
.02800
.04200
.05600
.07000
.08400
.09800
.11200
.12600
.14000
.00000
.01400
.02800
.04200
.05600
.07000
.08400
.09800
1
1
1
28
14
9
7
5
4
4
3
3
2
42
21
14
10
8
7
6
.78571
.58730
.42857
.00000
.57143
.28571
.52381
.14286
.71429
.76190
.06163
.57143
.17460
.85714
.00000
.85714
.42857
.28571
.71429
.57143
.14286
.12245
6
5
5
1
1
1
1
1
1
1
9
8
7
6
1
1
1
1
1
1
1
1
.1949E-02
.6151E-02
.1517E-02
.3095E-01
.4881E-01
.5713E-01
.5999E-01
.5631E-01
.3839E-01
.1248E-01
.4651E-02
.1927E-02
.1993E-02
.4171E-02
.3045E-01
.5427E-01
.6721E-01
.7435E-01
.7691E-01
.7362E-01
.5806E-01
.3151E-01
1654.
1623.
1541.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1704.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
4.
4.
4.
3.
9.
1.
2.
2.
3.
3.
3.
4.
4.
4.
2.
9.
1.
2.
2.
3.
3.
3.
1892E-02
5130E-02
8180E-02
1176E-03
4831E-03
5714E-02
1307E-02
6351E-02
0936E-02
5110E-02
8947E-02
2486E-02
5761E-02
8834E-02
9161E-03
4234E-03
5922E-02
1695E-02
6890E-02
1582E-02
5860E-02
9763E-02
910.
912.
912.
930.
858.
858.
859.
902.
904.
906.
908.
910.
911.
912.
924.
852.
854.
857.
900.
902.
905.
907.
-------
.60000
.60000
.60000
.80000
.80000
.80000
.80000
.80000
.80000
.80000
J£ .80000
.80000
.80000
.80000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
.11200
.12600
.14000
.00000
.01400
.02800
.04200
.05600
.07000
.08400
.09800
.11200
.12600
.14000
.00000
.01400
.02800
.04200
.05600
.07000
.08400
.09800
5
4
4
57
28
19
14
11
9
8
7
6
5
71
35
23
17
14
11
10
.35714
.76190
.28571
.00000
.14286
.57143
.04762
.28571
.42857
.52381
.16326
.14286
.34921
.71429
.00000
.42857
.71428
.80952
.85714
.28571
.90476
.20408
l
9
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
.iuy«t-ui
.5755E-02
.4007E-02
.2830E-01
.5603E-01
.7306E-01
.8392E-01
.9019E-01
.9266E-01
.8994E-01
. 7656E-01
.5063E-01
.2799E-01
.1077E-01
.2594E-01
.5559E-01
.7585E-01
.8980E-01
.9928E-01
.0528E-01
.0760E-01
.0534E-01
IOUU .
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
1800.
*
4.
4.
2.
9.
1.
2.
2.
3.
3.
4.
4.
4.
5.
2.
9.
1.
2.
2.
3.
3.
4.
"*»""
6679E-02
9767E-02
7716E-03
3522E-03
6104E-02
2116E-02
7494E-02
2348E-02
6732E-02
0745E-02
4438E-02
7829E-02
0972E-02
6679E-03
2745E-03
6251E-02
2496E-02
8096E-02
3133E-02
7698E-02
1849E-02
»"»
911
912
921
848
851
854
857
900
903
906
908
910
912
918
844
848
851
855
858
901
904
-------
1.00000 .11200 8.92857 1.9370E-01 1800. 4.5648E-02 907.
1.00000 .12600 7.93651 1.6938E-01 1800. 4.9136E-02 909.
1.00000 .14000 7.14286 1.4549E-01 1800. 5.2365E-02 911.
1.20000 .00000 .00000 1.2380E-01 1800. 2.5882E-03 916.
1.20000 .01400 85.71429 1.5412E-01 1800. 9.1899E-03 841.
1.20000 .02800 42.85714 1.7654E-01 1800. 1.6363E-02 845.
1.20000 .04200 28.57143 1.9310E-01 1800. 2.2832E-02
1.20000 .08400 14.28571 2.1934E-01 1800. 3.8653E-02
1.20000 .14000 8.57143 1.8766E-01 1800. 5.3870E-02
1.40000 .04200 33.33333 1.9452E-01 1800. 2.3113E-02
849.
1.20000 .05600 21.42857 2.0526E-01 1800. 2.8646E-02 853.
1.20000 .07000 17.14286 2.1389E-01 1800. 3.3891E-02 856.
859.
H- 1.20000 .09800 12.24490 2.2175E-01 1800. 4.2966E-02 902.
10
a*
1.20000 .11200 10.71429 2.1991E-01 1800. 4.6916E-02 905.
1.20000 .12600 9.52381 2.0993E-01 1800. 5.0540E-02 908.
910.
1.40000 .00000 .00000 1.2203E-01 1800. 2.5320E-03 915.
1.40000 .01400 100.00000 1.5229E-01 1800. 9.1048E-03 839.
1.40000 .02800 50.00000 1.7593E-01 1800. 1.6428E-02 843.
847,
1.40000 .05600 25.00000 2.0878E-01 1800. 2.9152E-02 851,
1.40000 .07000 20.00000 2.1963E-01 1800. 3.4620E-02 854,
1.40000 .08400 16.66667 2.2763E-01 1800. 3.9583E-02 857.
1.40000 .09800 14.28571 2.3269E-01 1800. 4.4087E-02 900.
-------
1.4UUUU
1.40000
1.40000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
illlUU 1£.9UUUU C.JJJJI.~U1 10UU. -l.UU/L-Vt 3UJ.
.12600 11.11111 2.3399E-01 1800. 5.1978E-02
.14000 10.00000 2.2524E-01
.00000 .00000 1.2029E-01
1800. 5.5437E-02
1800. 2.4690E-03
.01400 114.28570 1.5031E-01 1800. 9.0194E-03
.02800 57.14286 1.7465E-01 1800. 1.6468E-02
.04200 38.09523 1.9461E-01 1800. 2.3340E-02
.05600 28.57143 2.1068E-01 1800. 2.9597E-02
.07000 22.85714 2.2335E-01 1800. 3.5275E-02
.08400 19.04762 2.3327E-01 1800. 4.0448E-02
.09800 16.32653 2.4084E-01 1800. 4.5152E-02
11200 14.28571 2.4568E-01 1800. 4.9453E-02
,12600 12.69841 2.4838E-01 1800. 5.3395E-02
14000 11.42857 2.4748E-01 1800. 5.7022E-02
.00000
.00000 1.1898E-01 1800. 2.4324E-03
.01400 128.57140 1.4861E-01 1800. 8.9267E-03
.02800 64.28571 1.7305E-01 1800. 1.6477E-02
.04200 42.85714 1.9379E-01 1800. 2.3520E-02
.05600 32.14286 2.1114E-01 1800. 2.9969E-02
.07000 25.71429 2.2548E-01 1800. 3.5871E-02
.08400 21.42857 2.3693E-01 1800. 4.1242E-02
,09800 18.36735 2.4617E-01 1800. 4.6148E-02
906.
908.
914.
838.
841.
845.
849.
852.
855.
858.
901.
904.
907.
913.
836.
840.
843.
847.
850.
853.
856.
-------
1.80000
1.80000
1.80000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
_ 2.00000
2.00000
VD
00
.11200 16.07143 2.5331E-01
.12600 14.28571 2.5839E-01
.14000 12.85714 2.6095E-01
.00000 .00000 1.1777E-01
.01400 142.85710 1.4678E-01
.02800 71.42857 1.7131E-01
1800. 5.0648E-02
1800. 5.4776E-02
1800. 5.8556E-02
1800. 2.3900E-03
1800. 8.8423E-03
1800. 1.6469E-02
.04200 47.61905 1.9260E-01 1800. 2.3663E-02
.05600 35.71428 2.1091E-01 1800. 3.0293E-02
.07000 28.57143 2.2641E-01
.08400 23.80952 2.3920E-01
1800. 3.6382E-02
1800. 4.1953E-02
.09800 20.40816 2.5002E-01 1800. 4.7079E-02
,11200 17.85714 2.5870E-01 1800. 5.1789E-02
900.
902.
905.
912.
835.
839.
842.
845.
849.
852.
855.
858.
2.00000 .12600 15.87301 2.6553E-01 1800. 5.6089E-02 901,
2.00000 .14000 14.28571 2.7039E-01 1800. 6.0068E-02 903,
-------
I 1 1
I 4 2
.140+ ++ ++ ++ ++ ++ ++ ++ ++ ++
I 4-4- 4-4- 4-4- 4-4- 4-+ ++ 4- 4- 4- +
I ++ 4-+ ++ ++ +4- + +4- 4-4- 4-
4- 4-4- 4-4- ++ ++ ++ ++ ++ ++ 4-
I 4- 4-4- ++ ++ ++ ++ ++ + 4-
I +4- 4-+ +4- 4-4- ++ 4-4- 4-4- 4-4- 4
.120+ ++ ++ ++ ++ ++ ++ ++ ++ + +
1 ++ 4-4- ++ + 4- ++ ++ ++ ++ + +
I ++ + ++ ++ ++ ++ 4-+ ++ +
+ ++ ++ 4-+ + + + ++ +4- +4-+ ++ +
I + ++ ++ ++ ++ + + + ++ ++ +
I + 4-4- 4-4- ++ ++ +4- ++ 4-4- 4-
.100+ ++ + ++ ++ ++ ++ ++ + +
14-4- + +4- 4-+ ++ 4-4- +4- 4-4- 4-
I + 4- +4- 4-4- + + + +4- +4- + 4-
4- 4- 4-4- 4-4- 4-4- 4-4- 4-4- 4-4- 4-4- 4-
N I +4-4-4- 4-4- 4-4- 4-4- 4-4- 4- 4-4-
01 +44-+ +4- +4-4- +4-4- 4- 4- + +
X .080+ ++ ++ ++ ++ + ++ + + + + +
I 4-4- 4-4- 4-4- ++ + + + + + +
P I +4-4-4- 4-4- 4-4- 4-+ +4- 4- +
,_, P 4- 4- 4-4-4- 4-4- 4- 4-4- 4- 4-4-
VO H I + ++ ++ + ++ + + + +
*° 1 4- 4-4- 4-4- 4-4- 4-4- + + + +
.060+ + ++ ++ ++ + ++ + 4-4-4-4-4-
I +4- + + 4-4- +4- 4-4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4-
I 4-+ ++ 4-4- + + 4-4-4- + 4-4-
4- 4-4- ++ ++ + + +
I +4- ++ 4- 4- 4- + +
I ++ + +4- + 4-4-4-4-
.040+ ++ + + 4- + + + + + + + + +
I +4- + + 4-4- ++++++++++++++++++
I + ++ 4- + +
+ + + + + + + +
I 4- 4-4- 4- + + + 4- + + + + +++++++
] 4- + 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4-4- +
.020+ + ++
I 4-4-4-4-4- + + + + +
I +++++++++++++++++++++++++++++++++++++++++++++++++
+
I +
I
000+---------+ + - + _-----«_. + - 4- ..-.4----. 4-
.000 .20 .40 .60 .80 1.00 1.20 1.40
NHOC (PPHC)
I
I
4- 4-4-4-
+ + I
+ ++ 1
4- 4-4-4-
+ I
+ I
4- +
+ I
4-4- I
4-4- +
+ + + I
4-4-4- I
4- + + + 4-4- I
4-4-4-4-j
f
I
j
+
+ + 4*4- ]
4- 4- + 4- + 4- + + 4- 4- 4- 4- 4- 4- j
4- +4- 4- 4-4- 4-
1
I
4-
I
4-4-4- + 4- + + 4- + 4-4-4-4-4-4- + + + + + + + +I
4-
I
]
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-
4- + + + 4- I
1
4-
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + + + + + + + +I
I
4-
4-4-4-4-4-4-4-4-4-4-4- + 4-4-4- + + + + + + + +1
I
4-
+ + 4- + + + + + + + + + +1
I
4. _____4-__-_-__--4-
1.60 1.80 2.00
EXAMPLE 5 - ISOPLETH OPTION USING MASS AND CREDIT OPTIONS
THE 03 LINES ARE
.06000 .08000 .10000 .12000 .14000 .16000 .18000 .20000 .22000 .24000
.26000
-------
ro
o
o
N
0
X
P
P
M
1
I 2
.140+ ++++++
I +++++++
I ++++++
4- ++++++
I 4- 4- 4- 4- 4-4-4-
1 +++++++
.120+ + + + !
I
I +++++++++
4- +++++++++++++++
I ++++++++++
I ++++++++++
.100+ ++++++++++
I +++++++++++
1 ++++++++++++
+ + + + + + + + + -I
I
I
.080+
I +++++++++++++++
I +++++++++++++++++++
+ +++++++++++++++++
I ++++++++++++++++++++++
I + + + + + + + + + + (
.060+
I
I
+
1 +++++++++++++++++++++++++++++
I ++++++++++++++++++++++++++++++++++++++++++++++++++++4
.040+
I
I
+
I
I
.020+
I
I
+
I
I
000+---- +- + - - + --- --+ + + + +
.000 .20 .40 .60 .80 1.00 1.20 1.40 1.60
NMOC (PPMC)
I
I
+
I
I
+
I
1
h+++++ +
++++++++I
1
+
I
I
+
I
I
H++++++ +
++++++++I
I
+
I
I
+
I
I- + + + + + + + + + + + + +I
+
1
I
+
I
h+++++++++++++J
+
I
I
+
I
I
+
I
I
+
I
1
+ +
1.80 2.00
EXAMPLE 5 - ISOPLETH OPTION USING MASS AND CREDIT OPTIONS
THE N02 LINES ARE
.02000 .03000 .04000 .05000 .06000
-------
REFERENCES
Baugues, K. 1987. Private communications with U.S. Environmental
Protection Agency.
Calvert, J. G. (1976), "Hydrocarbon Involvement in Photochemical Smog
Formation in Los Angeles Atmosphere," Environ. Sci. Technol.. Vol.
10, No. 3, p. 257.
Cline, A. K. (1974), "Sealer and Planar - Valued Curve Fitting Using
Splines Under Tension," Communication of the Association for
Computing Machinery. 17(4), pp. 218-220.
Dodge, M. C. (1977), "Effect of Selected Parameters on Predictions of a
Photochemical Model," EPA-600/3-77-048, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina.
EPA (1977), "Uses, Limitations and Technical Basis of Procedures for
Quantifying Relationships between Photochemical Oxidants and
Precursors," EPA-450/2-77-021a, U.S. Environmental Protection Agency,
Research Triangle Park, North Carolina.
EPA (1981), "Guideline for Use of City-Specific EKMA in Preparing 02one
SIPs," EPA-450/4-80-027, U.S. Environmental Protection Agency,
Research Triangle Park, North Carolina.
EPA (1984), "Guidelines for Using the Carbon-Bond Mechanism in City-
Specific EKMA," EPA-450/4-84-005, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina.
EPA (1987), "Guideline for Use of City-Specific EKMA in Preparing Post-
1987 Ozone SIP's," U.S. Environmental Protection Agency, Research
Triangle Park, North Carolina.
Gear, C. W. (1971), "The Automatic Integration of Ordinary Differential
Equations," in Communication of the Association for Computing
Machinery. Vol. 14, No. 3, pp. 176-179.
201
-------
Gery, M. W.t 6. Z. Whitten, and J. P. Killus. 1988. "Development and
Testing of the Carbon-Bond IV Mechanism for Urban and Regional
Modeling." U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina.
Gipson, G. L. (1984), "User's Manual for OZIPM-2: Ozone Isopleth Plotting
with Optional Mechanisms/Version 2," EPA-450/4-84-024, U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina.
Hogo, H, and G. Z. Whitten (1985), "Guidelines for Using OZIPM-3 with CBM-
X or Optional Mechanisms, Volume 1: Description of the Ozone
Isopleth Plotting Package, Version 3," Contract No. 68-02-3735, U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina.
Jeffries, H. E., and K. G. Sexton. 1987. "Technical Discussion Related
to the Choice of Photolytic Rates for Carbon Bond Mechanisms in
OZIPM4/EKMA." U.S. Environmental Protection Agency, Research
Triangle Park, North Carolina (EPA-450/4-87-003).
Jeffries, H. E., K. G. Sexton, and J. R. Arnold. 1987. "Analysis of
Hydrocarbon Composition from Ground-Level and Aloft Measurements for
the Carbon Bond and Carter, Atkinson, and Lurmann Photochemical
Mechanisms." University of North Carolina, Chapel Hill, North
Carolina (Cooperative Agreement CR-813107).
Jeffries, H. E., K. G. Sexton, and C. N. Salmi (1981), "The Effects of
Chemistry and Meteorology on Ozone Control Calculations Using Simple
Trajectory Models and the EKMA Procedure," EPA-450/4-81-034, U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina.
Killus, J. P., and G. Z. Whitten (1984), "Technical Discussions Relative
to the Use of Carbon-Bond Mechanism in OZIPM/EKMA," EPA-450/4-84-009,
Systems Applications, Inc., San Rafael, California.
Overton, J. H. (1976), "Users Guide to EPASIMA Chemical Kinetics
Simulation Program," TN-262-1643, Northrop Services, Incorporated,
Huntsville, Alabama.
Schere, K. L., and K. L. Demerjian (1977), "Calculation of Selected
Photolytic Rate Constants over a Diurnal Range," EPA-600/4-77-015,
U.S. Environmental Protection Agency, Research Triangle Park, North
Carolina.
202
-------
Sherman, A. H. (1975), "Yale Sparse Matrix Package User's Guide," UCID-
30114, University of California, Livermore, California.
Spellman, J. W., and A. C. Hindmarsh (1975), "GEARS: Solution of Ordinary
Differential Equations Having a Sparse Jacobian Matrix," UCID-30116,
University of California, Livermore, California.
Sutcliffe, D. C. 1978. "Contouring over Rectangular and Skewed
Rectangular Grids-An Introduction." Proceedings Mathematicl
Methods in Computer Graphics and Design. University of Leicester,
28 September, 1978.
Whitten, G. Z., and H. Hogo, (1978a), "User's Manual for Kinetics Model
and Ozone Isopleth Plotting Package," EPA-600/8-78-014a, Systems
Applications, Inc., San Rafael, California.
Whitten, G. Z., and H. Hogo (1978b), "User's Manual for Ozone Isopleth
Plotting with Optional Mechanism (OZIPM)," SAI No. EF78-30, Systems
Applications, Inc., San Rafael, California.
Whitten, G. Z., and H. Hogo (1980), "Volume II. CHEMK: A Computer
Modeling Scheme for Chemical Kinetics," EPA-600/3-80-028b, Systems
Applications, Inc., San Rafael, California.
Whitten, G. Z., J. P. Killus, and H. Hogo (1980), "Modeling of Simulated
Photochemical Smog with Kinetic Mechanisms: Volume I. Final
Report," EPA-600/3-80-028a, Systems Applications, Inc., San Rafael,
California.
Whitten, G. Z., J. P. Killus, and R. G. Johnson (1985), "Modeling of Auto
Exhaust Smog Chamber Data for EKMA Development," EPA/600/3-85-025,
Systems Applications, Inc., San Rafael, California.
203
-------
-------
Appendix A
THE CARBON-BOND MECHANISM (CBM-IV)
-------
-------
TABLE A-l. The Carbon Bond Mechanism-IV.
Reaction Rate Data
Number
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
50)
51)
Reaction
03
0
0
0
03
03
03
N03
N03
N03
NO
NO
OH
OH
HONO
OH
OH
H02
H02
OH
H02
H02
OH
OH
FORM
FORM
FORM
ALD2
ALD2
ALD2
C203
C203
C203
C203
N02
0
NO
N02
N02
NO
N02
03
03
010
010
OH
H02
N03
NO
N02
N02
N205
N205
NO
N02
NO
HONO
HONO
HONO
N02
HN03
NO
N02
PNA
PNA
H02
H02
H202
H202
CO
OH
FORM
FORM
0
N03
0
OH
N03
ALD2
NO
N02
PAN
C203
H02
OH
-hv>
>
>
>
>
>
>
-hv>
+ H20 >
>
>
-->
>
>
>
>
>
>
-__>
-hv>
+ H20
+ H20
H20
>
>
>
>
>
_>
-hv>
_>
>
>
-hv>
>
>
>
>
-->
>
NO + 0
N02
NO
N03
N02
0
010
0
2.OOOH
H02
OH
0.89N02 + 0.890 + 0.11NO
2.00N02
NO +- N02
2.C
2.00N02
HONO
OH -t- NO
N02
NO -t- N02
HN03
N03
OH + N02
PNA
H02
N02
+ N02
H202
2.OOOH
H02
H02
H02 +
CO +
CO
CO
2.00H02
H02
OH
CO
CO
C203
C203
C203 +- HN03
FORM + X02 -t- CO
N02 + X02 + FORM
PAN
C203 -t- N02
2.00FORM + 2.00X02
0.79FORM + 0.79X02
0.790H
X02 -t- FORM + H02
+ 2.00H02
+ H02
-i- 2.00H02
-t- 0.79H02 +
Pre-factor Temp. Factor Rate Constant $ 298K
) exp((-E/R)/T) k298
*EXP( 1175/T)
*EXP(- 1370/T)
*EXP( 687/T)
*EXP( 602/T)
*EXP(- 2450/T)
8.383 E+04
2.643 E+03
1.375 E-t-04
2.303 E+02
3.233 E+02
1.760 E+02
5.300 E-02
1.147 E+05
3.260
2.344 E-t-03
2.100 E+01
3.390 E+01
1.909 E+04
3.660 E+01
7.849 E-KJ2
1.900 E-06
2.110 E-i-16
2.600 E-05
1.600 E-ll
6.554 E-»-02
1.975 E-01
9.770 E-t-03
1.500 E-05
1.537 E-t-03
7.600
5.482 E+03
1.640 E-t-02
2.876 E-t-15
1.909 E-t-03
8.739 E-t-01
7.690 E-10
1.890 E-01
4.720 E-t-03
3.220 E+02
1.500 E-t-04
4.302 E-t-04
9.300 E-01
1.739 E+04
1.037 E+04
3.700
*EXP( 390/T)
*EXP(- 940/T)
*EXP(- 580/T)
*EXP( 250/T)
*EXP(- 1230/T)
*EXP( 256/T)
*EXP(-10897/T)
*EXP( 530/T)
*EXP( 806/T)
*EXP( 713/T)
*EXP( 1000/T)
*EXP( 240/T)
*EXP( 749/T)
*EXP(-10121/T)
*EXP( 380/T)
*EXP( 1150/T)
*EXP( 5800/T)
*EXP(- 187/T)
*EXP(- 1550/T)
*EXP(- 986/T)
*EXP( 250/T)
7.915 E-t-03 *EXP( 250/T)
1.180 E-04 *EXP( 5500/T)
5.616 E+18 *EXP(-14000/T)
3.700 E-t-03
9.600 E-t-03
6.521 E+03
*EXP(- 1710/T)
see notes
4.323 E+06
2.664 E+01
1.375 E+04
2.309 £+03
2.438 £+03
4.731 E-02
5.300 E-02xk1
see notes
4.246 £+05
3.260
1.000 E+02
2.999
3.390 E+01xk1
4.416 £+04
5.901 E-01
1.853 E+03
1.900 E-06
2.776
1.539 E-04
1.600 E-ll
9.799 £+03
1.975 E-Olxk,
9.770 E+03
1.500 E-05
1.682 £+04
2.179 £+02
1.227 £+04
2.025 E+03
5.115
6.833 E+03
4.144 E+03
2.181 E-01
1.890 E-01xk39
2.520 E+03
3.220 E+02
1.500 £+04
see notes
see notes
2.370 E+02
9.300 E-01
6.360 E+02
2.400 £+04
3.700
see notes
1.831 E+04
1.223 E+04
2.220 £-02
3.700 E+03
9.600 £+03
2.100 £+01
(Continued)
-------
TABLE A-l. (Continued)
Reaction Rate Data
Number
Reaction1
Pre-factor
Temp. Factor Rate Constant @ 298K
exp((-E/R)/T) kog, '-n-*--1*
cp\
°'J
c^
3j;
54\
an;
cc\
OOj
Cg\
3O)
57\
-" J
CQ\
3°)
CQ\
3»j
60\
£1 \
01)
62^
QC.)
63\
DJ;
f.A\
01;
fi5\
oa;
££\
67\
o/ ;
CQ\
69)
jr\\
/\j)
71\
' AJ
72^
1 *)
73\
1 ^1
74)
75\
73;
7g\
10)
n\
i ' >
7O\
/o)
70 \
'I
QQ\
Q1 \
ai)
a2\
a*l
PAR
pop
n
OH
03
unq
0
DH
03
OH
TO?
nw
CRES
rpn
OPEN
OPEN
OH
OH
n
HH
n-i
un->
YQ2
VQ2
YO?N
+ OH
pnp
ROR
+ NO?
+ OLE
+ OLE
+ 01 F
+ OIF
+ FTH
-t- FTH
+ ETH
+ TOL
+ NO
TO?
+ (-RFC
+ N03
+ NO?
OPEN
-I- OH
+ 03
+ XYL
+ MGLY
MGLY
+ ISOP
4. i^np
+ TSOP
+ TSOP
4- NO
+ yo?
+ wn
up
--___>
-hv >
-hv >
0 87X02
0.11ALD2
i ifiALD?
0.04X02N
HO?
0 61ALD2
0.30CO
0.22PAR
FORM
H02
Ocnfll D?
0.44H02
- PAR
0 Q1X02
0.09X02N
FORM
1.70H02
X02
0.22ALD2
FORM
0 08X02
0.56T02
OQflNfi?
rpcc
OdOfRO
0.300PEN
CRO
C203
xo?
C203
0 O^ALD?
0.03X02
0.76H02
0 70H02
0.80MGLY
X02
C203
0 fif>H02
0.50X02
0.90PAR
vn?
0.40MGLY
0.20AL02
FORM
0.20MGLY
0.44H02
Yfl?N
NO?
NR
+ 0 13X02N
+ 0.76ROR
+ 0 96X0?
+ 0.02ROR
+ 0 38H02
+ 0.20FORM
+ 0.200H
+ ALD2
- PAR
+ 0 74FORM
+ 0.22X02
+ FORM
+ N02
+ 0 70X02
+ 0.300H
+ 1 56FORM
+ 0 42CO
+ 0 36CRES
+ 0 90H02
+ H02
+ 0 60X0?
+ HN03
+ H02
+ ? ooco
+ FORM
+ 0 62C203
+ 0.69CO
+ 0.20MGLY
+ 0 50X02
+ 1.10PAR
+ C203
+ H02
+ 0 SOALD2
+ 0.50CO
+ FORM
+ 0.20C203
+ 0.13X02N
+ 0 40AI D?
+ 0.10PAR
+ 0.100H
+ 0 11H02 +
- 0.11PAR
+ n QdHn? +
- 2.10PAR
+ 0 28X02 +
+ 0.02X02N +
+ X02 +
+ o T?ro +
+ 0.100H
+ ALD2 +
- PAR
+ CO +
-* Hfl? 4-
+ 0 12H02
+ 0 44H02 +
+ 0 900PEN
+ 0 60H02 +
+ CO
+ 2 OOH02 +
+ 0 70FORM +
+ 0.080H +
+ 0 20CRES +
+ 0.30T02
+ CO
+ 0 S50LE +
+ 0.45ETH +
+ 0 67HO? +
+ l.OOETH +
+ 0 "WTH +
+ 0.06CO +
1.203 E+03
6.250 E+16
9 545 E+04
? 200 F+04
1.756 E+04
7.740 E+03
2.104 E+01
1.135 E+01
1.540 E+04
3.000 E+03
1 856 E+01
3.106 E+03
1 200 E+04
2 500 E+0?
6.100 E+04
3 250 E+04
? 000 F+04
8.400
4.400 E+04
8.030 E-02
2.453 E+04
2 600 E+04
8.960
2.700 E+04
1.420 E+05
1.800 E-02
4 700 F+0?
1 200 E+04
2 550 E+Q1
1 000 E+03
1 000
*EXP(-
*EXP(-
*EXP(
*EXP(-
*EXP(-
*EXP(
*cvp/_
*EXP(
*EXP(-
*EXP(
*FXP/
8000/T)
324/T)
504/T)
2105/T)
792/T)
411/T)
2633/T^
322/T)
500/T)
116/T)
1 3QQ/T\
1.203
1.371
9 545
9 POO
5.920
4.200
1.800
1.135
1.080
1.192
2 700
9.150
1 ?00
? 500
6.100
3 250
? 000
8.400
4.400
1.500
3.620
2 600
8.960
2.700
1.420
1.800
47fm
1 ?00
? 000
1 000
1 000
E+03
E+05
F+04
F+Od
E+03
E+04
E-02
E+01
E+03
E+04
E-03
E+03
F+fld
F+fl?
E+04
E+04
F-t/ld
xk38
E+04
E-02
E+04
E+04
*k38
E+04
E+05
E-02
F-4-TIP
E+04
E+fH
F+O-J
(Continued)
-------
TABLE A-l (continued).
Notes:
1. Pressure dependent values for M, 02 and CH4 are Included 1n the rate
constant data (see text).
(M) = 1 x 106 ppm, [02] = 2.095 x 105 ppm, and
[CH4] = 1.85 ppm.
The symbols hv 1n the reaction listing indicate photolysis reactions
with rates dependent on zenith angle and solar irradiation. The
basis for these rates is discussed in Section 4.
2. Chemical species in the CBM-IV are:
Species Name Representation
Nitric Oxide NO
Nitrogen Dioxide N02
Nitrogen Trioxide (nitrate radical) N03
Dinitrogen Pentoxide N205
Nitrous Acid HONO
Nitric Acid HN03
Peroxynitric acid (H02N02) PNA
Oxygen Atom (singlet) 01D
Oxygen Atom (triplet) 0
Hydroxyl Radical OH
Water H20
Ozone 03
Hydroperoxy Radical H02
Hydrogen Peroxide H202
Carbon Monoxide CO
Formaldehyde (CH2=0) FORM
High Molecular Weight Aldehydes (RCHO, R>H) ALD2
Peroxyacyl Radical (CH3C(0)00*) C203
Peroxyacyl Nitrate (CH3C(0)OON02) PAN
Paraffin Carbon Bond (C-C) PAR
Secondary Organic Oxy Radical ROR
Olefinic Carbon Bond (C=C) OLE
Ethene (CH2=CH2) ETH
Toluene (C6H5-CH3) TOL
Cresol and higher molecular weight Phenols CRES
-------
TALBE A-l (concluded).
Species Name Representation
Toluene-Hydroxyl Radical Adduct T02
Methylphenoxy Radical CRO
High Molecular Weight Aromatic Oxidation
Ring Fragment OPEN
Xylene (C6H4-(CH3)2) XYL
Methylglyoxal (CH3C(0)C(0)H) MGLY
Isoprene ISOP
NO-to-N02 operation X02
NO-to-Nitrate Operation X02N
Nonreactive Carbon NR
TOTAL = 34
-------
Appendix B
CBM-IV CARBON BOND GROUPS FOR ORGANIC SPECIES
-------
-------
TABLE B-l. Molecular weights of molecules
(in alphabetical order).
SAROAD
Code
43814
43820
43813
99013
45225
45208
99016
45207
43218
46201
98104
43268
98111
98113
98005
43245
98037
43267
43224
43312
43269
43296
43276
98033
43299
43291
43280
43279
43234
98001
43274
98054
98055
43277
43271
43278
98110
43308
98108
98051
43311
Chemical Name
1,1,1-TRICHLOROETHANE
1,1,2-TRICHLOROETHANE
1.1-DICHLOROETHANE
1,1-DICHLOROETHENE
1,2,3-TRIMETHYLBENZENE
1,2,4-TRIMETHYLBENZENE
1.2-DICHLOROPROPANE
1,3,5-TRIMETHYLBEMZENE
1,3-BUTADIENE
1,4-DIOXANE
1-CHLOROBUTANE
1-DECENE
l-ETHOXY-2-PROPANOL
1-HEPTANOL
1-HEPTENE
1-HEXENE
1-METHYLCYCLOHEXANE
1-NONENE
1-PENTENE
1-T-2-C-4-TM-CYCLOPENTANE
1-UNDECENE
2,2,3-TRIMETHYLPENTANE
2,2,4-TRIMETHYLPENTANE
2,2,5-TRIMETHYLHEXANE
2,2,5-TRIMETHYLPENTANE
2,2-DIMETHYLBUTANE
2,3,3-TRIMETHYLPENTANE
2,3,4-TRIMETHYLPENTANE
2,3-DIMETHYL-l-BUTENE
2,3-DIMETHYLBUTANE
2,3-DIMETHYLPENTANE
2,4,4-TRIMETHYL-l-PENTENE
2,4,4-TRIMETHYL-2-PENTENE
2,4-DIMETHYLHEXANE
2,4-OIMETHYLPENTANE
2,5-OIMETHYLHEXANE
2-(2-BUTOXYETHOXY)-ETHANOL
2-BUTYLETHANOL
2-BUTYLTETRAHYDROFURAN
2-CHLOROTOLUENE
2-ETHOXYETHANOL
Molecular
Weight
133.42
131.66
98.97
96.95
120.19
120.19
112.99
120.19
54.09
88.12
92.57
140.27
104.15
116.21
98.18
84.16
96.17
127.05
70.13
112.23
154.30
114.23
114.22
128.26
114.23
86.17
114.22
114.22
84.16
86.17
100.20
112.22
112.22
114.22
100.20
114.22
162.18
118.17
128.19
126.59
90.12
-------
TABLE B-l. (Continued)
SAROAD
Code
43452
98002
98112
43310
43229
43225
98040
43228
98004
98076
43275
98032
98105
99021
98041
43230
43223
43211
43270
43298
43295
43293
43297
98042
45221
98025
98097
43503
43404
43551
43702
43206
43505
43704
98078
98085
99001
98015
98020
98026
45201
Chemical Name
2-ETHOXYETHYL ACETATE
2-ETHYL-l-BUTENE
2-ETHYL-l-HEXANOL
2-METHOXYETHANOL
2-METHYL PENTANE
2-METHYL-l-BUTENE
2-METHYL-l-PENTENE
2-METHYL-2-BUTENE
2-METHYL-2-PENTENE
2-METHYL-3-HEXANONE
2-METHYLHEXANE
3,5,5-TRIMETHYLHEXANE
3- (CHLOROMETHYL) -HEPTANE
3-CARENE
3-HEPTENE
3-METHYL PENTANE
3-METHYL-l-BUTENE
3-METHYL-l-PENTENE
3-METHYL-T-2-PENTENE
3-METHYLHEPTANE
3-METHYLHEXANE
4-METHYL-T-2-PENTENE
4-METHYLHEPTANE
4-NONENE
A-METHYLSTYRENE
A-PINENE
A-TERPINEOL
ACETALEHYDE
ACETIC ACID
ACETONE
ACETONITRILE
ACETYLENE
ACROLEIN (ACRYLIC ALDHYDE)
ACRYLONITRILE
ALKENE KETONE
ALKYL SUSTITUTED CYCLOHEXANE
ALLYL CHLORIDE
ANTHRACENE
B-METHYLSTYRENE
B-PINENE
BENZENE
Molecular
Weight
132.00
84.16
130.23
76.09
86.17
70.13
84.16
70.13
84.16
114.19
100.20
128.26
148.68
136.23
98.19
86.17
70.13
84.16
84.16
114.23
100.20
84.16
114.23
127.05
118.15
136.24
154.24
44.05
60.05
58.08
41.05
26.04
56.06
53.06
72.10
132.21
76.53
178.22
118.15
136.24
78.11
-------
TABLE B-l. (Continued)
SAROAD
Code
45402
98024
99017
99019
98080
43213
98074
43510
98035
43266
98003
43115
43116
43117
98050
98039
98086
98084
98064
43511
98068
98065
98069
98066
98070
98073
43512
98067
98075
98071
98095
43289
98072
98093
43294
43513
43290
98049
98038
98096
Chemical Name
BENZOIC ACID
BENZYL CHLORIDE
BROMODICHLOROMETHANE
BROMOFORM
BUTANDIOL
BUTENE
BUTYL CELLOSOLVE
BUTYRALDEHYDE
C-2-HEXENE
C-2-OCTENE
C-3-HEXENE
C-7 CYCLOPARAFFINS
C-8 CYCLOPARAFFINS
C-9 CYCLOPARAFFINS
CIO AROMATICS
CIO OLEFINS
C2 ALKYL DECALIN
C2 ALKYL INDAN
C2 CYCLOHEXANE
C3 ALDEHYDE
C3 ALKYL CYCLOHEXANE
C3 CYCLOHEXANE
C4 ALKYL CYCLOHEXANE
C4 CYCLOHEXANE
C4 SUBSTITUTED CYCLOHEXANE
C4 SUBSTITUTED CYCLOHEXANONE
C5 ALDEHYDE
C5 CYCLOHEXANE
C5 ESTER
C5 SUBSTITUTED CYCLOHEXANE
C6 ALDEHYDE
C6 OLEFINS
C6 SUBSTITUTED CYCLOHEXANE
C7 ESTER
C7-OLEFINS
C8 ALDEHYDE
C8 OLEFINS
C9 AROMATICS
C9 OLEFINS
CARBITOL
Molecular
Weight
122.13
126.56
163.82
252.77
90.12
56.10
118.17
72.12
84.16
112.22
84.16
98.19
112.23
126.26
134.22
140.27
166.27
146.23
112.22
58.08
126.24
126.24
140.27
140.27
142.28
154.26
86.14
154.30
130.19
154.30
100.17
84.16
170.32
158.24
98.18
128.21
112.23
120.20
127.05
134.17
-------
TABLE B-l. (Continued)
SAROAD
Code
98030
43807
43804
98031
98087
98088
43443
99020
43825
43830
43803
43827
99003
43826
43217
43227
98019
. 43248
43264
43273
43242
43292
43207
98027
43320
99015
98107
43823
43802
43828
98062
98018
43450
98059
45103
98091
98012
98017
43287
43285
99006
Chemical Name
CARBON SULFIOE
CARBON TETRABROMIDE
CARBON TETRACHLORIDE
CARBONYL SULFIDE
CARVOMENTHOL
CARVONE
CELLOSOLVE ACETATE
CHLORODIBROMOMETHANE
CHLORODIFLUOROMETHANE (F-22)
CHLOROFLUOROHYDROCARBONS
CHLOROFORM
CHLOROPENTAFLUOROETHANE(F-llS)
CHLOROPRENE
CHLOROTRIFLUOROMETHANE (F-13)
CIS-2-BUTENE
CIS-2-PENTENE
CRYOFLOURANE (F 114)
CYCLOHEXANE
CYCLOHEXANONE
CYCLOHEXENE
CYCLOPENTANE
CYCLOPENTENE
CYCLOPROPANE
D-LIMONENE
DIACETONE ALCOHOL
DIBENZOFURAN
DIBUTYL ETHER
DICHLORODIFLOUROMETHANE (F-12)
DICHLOROMETHANE
DICHLOROTETRAFLUOROETHANE/114
OIETHYLCYCLOHEXANE
DIMETHYL ETHER
DIMETHYL FORMAMIDE
DIMETHYLCYCLOHEXANE
DIMETHYLETHYLBENZENE
DIMETHYLHEPTANE
DIMETHYLNAPHTHALENE
DM-2,3,DH-1H-INDENE
DOCOSANE
EICOSANE
EPICHLOROHYDRIN
Molecular
Weight
76.14
331.67
153.84
60.08
156.27
150.22
132.00
208.27
86.47
118.00
119.39
154.47
88.54
104.46
56.10
70.13
170.93
84.16
98.15
82.14
70.14
68.11
42.08
136.24
116.16
168.18
130.23
120.91
84.94
170.92
140.27
46.07
73.09
112.12
134.21
128.26
156.22
146.23
. 310.59
282.54
92.53
-------
TABLE B-l. (Continued)
SAROAD
Code
43202
43433
43438
43302
43812
43351
98106
43219
43721
45203
43288
98061
98057
43203
99014
43815
43370
43601
98082
98011
43502
43368
43367
43286
43282
43232
98077
99007
43281
43231
43371
98044
98048
98115
43214
43446
43306
43451
98047
43215
98036
Chemical Name
ETHANE
ETHYL ACETATE
ETHYL ACRYLATE
ETHYL ALCOHOL
ETHYL CHLORIDE
ETHYL ETHER
ETHYL ISOPROPYL ETHER
ETHYLACETYLENE
ETHYLAMINE
ETHYLBENZENE
ETHYLCYCLOHEXANE
ETHYLCYCLOHEXANE
ETHYLCYCLOPENTANE
ETHYLENE
ETHYLENE DIBROMIDE
ETHYLENE DICHLORIDE
ETHYLENE GLYCOL
ETHYLENE OXIDE
ETHYLHEPTENE
ETHYLNAPHTHALENE
FORMALDEHYDE
GLYCOL
GLYCOL ETHER
HENEICOSANE
HEPTADECANE
HEPTANE
HEPTANONE
HEXACHLOROCYCLOPENTADIENE
HEXADECANE
HEXANE
HEXYLENE GLYCOL
INDAN
INDENE
ISOAMYL ISOBUTYRATE
ISOBUTANE
ISOBUTYL ACETATE
ISOBUTYL ALCOHOL
ISOBUTYL ISOBUTYRATE
ISOBUTYLBENZENE
ISOBUTYLENE
ISOBUTYRALDEHYDE
Molecular
Weight
30.07
88.10
100.11
46.07
64.52
74.12
88.15
54.09
45.09
106.16
112.23
112.22
98.19
28.05
187.88
99.00
62.07
44.05
127.05
156.22
30.03
62.07
62.07
296.57
240.46
100.20
114.18
272.77
226.44
86.17
118.18
118.18
116.16
158.24
58.12
116.16
74.12
144.21
134.22
56.10
72.11
-------
TABLE B-l. (Continued)
SAROAD
Code
43120
45105
43109
45106
43112
45104
43106
43105
43108
43107
43114
43122
43121
43113
43111
43110
45102
43243
43444
43304
98043
98089
98056
43119
98022
98045
45212
45205
99008
43201
43432
43301
43445
43561
43819
43801
43552
98090
43560
98114
43559
Chemical Name
ISOMERS OF BUTENE
ISOMERS OF BUTYLBENZENE
ISOMERS OF DECANE
ISOMERS OF DIETHYLBENZENE
ISOMERS OF DODECANE
ISOMERS OF ETHYLTOLUENE
ISOMERS OF HEPTANE
ISOMERS OF HEXANE
ISOMERS OF NONANE
ISOMERS OF OCTANE
ISOMERS OF PENTADECANE
ISOMERS OF PENTANE
ISOMERS OF PENTENE
ISOMERS OF TETRADECANE
ISOMERS OF TRIDECANE
ISOMERS OF UNDECANE
ISOMERS OF XYLENE
ISOPRENE
ISOPROPYL ACETATE
ISOPROPYL ALCOHOL
ISOPROPYLBENZENE (CUMENE)
ISOPULEGONE
ISOVALERALDEHYDE
LACTOL SPIRITS
M-CRESOL (3-M-BENZENOL)
M-DIETHYLBENZENE
M-ETHYLTOLUENE
M-XYLENE
MALEIC ANHYDRIDE
METHANE
METHYL ACETATE
METHYL ALCOHOL
METHYL AMYL ACETATE
METHYL AMYL KETONE
METHYL BROMIDE
METHYL CHLORIDE
METHYL ETHYL KETONE
METHYL HEPTENE
METHYL ISOBUTYL KETONE
METHYL ISOBUTYRATE
METHYL N-BUTYL KETONE
Molecular
Weight
56.10
134.21
142.28
134.21
170.33
120.19
100.20
86.17
128.25
114.23
212.41
72.15
70.13
198.38
184.36
156.30
106.16
68.13
104.00
60.09
120.20
154.26
86.14
114.23
110.16
134.22
120.19
106.16
98.06
16.04
74.08
32.04
140.00
114.19
94.95
50.49
72.10
112.22
100.16
102.13
100.16
-------
TABLE B-l. (Continued)
SAROAD
Code
43209
98016
43261
43262
43272
43805
98010
45234
43118
45801
43212
43435
43305
43238
43255
43260
43220
98063
43303
45209
43259
43258
45101
98046
99009
99010
43284
43235
98021
45211
45204
43283
43233
43265
98023
45807
45206
98094
43817
45300
43850
Chemical Name
METHYLACETYLENE
METHYLANTHRACENE
METHYLCYCLOHEXANE
METHYLCYCLOPENTANE
METHYLCYCLOPENTENE
METHYLENE BROMIDE
METHYLNAPHTHALENE
METHYLPROPYLBENZENE
MINERAL SPIRITS
MONOCHLOROBENZENE
N-BUTANE
N-BUTYL ACETATE
N-BUTYL ALCOHOL
N-DECANE
N-DODECANE
N-PENTADECANE
N-PENTANE
N-PENTYLCYCLOHEXANE
N-PROPYL ALCOHOL
N-PROPYLBENZENE
N-TETRADECANE
N-TRIDECANE
NAPHTHA
NAPHTHALENE
NITROBENZENE
NITROSOMORPHOLINE
NONADECANE
NONANE
0-CRESOL (2-M-BENZENOL)
0-ETHYLTOLUENE
0-XYLENE
OCTADECANE
OCTANE
OCTENE
P-CRESOL (4-M-BENZENOL)
P-DICHLOROBENZENE
P-XYLENE
PENTYL ALCOHOL
PERCHLOROETHYLENE
PHENOLS
PHOSGENE (CCL20)
Molecular
Weight
40.06
192.25
85.16
84.16
82.14
173.85
142.19
134.21
114.23
112.56
58.12
116.16
74.12
142.28
170.33
212.41
72.15
154.30
60.09
120.19
198.38
184.36
114.23
128.19
123.11
116.11
268.51
128.25
110.16
120.19
106.16
254.49
114.23
112.21
110.16
147.01
106.16
88.15
165.85
94.11
98.92
-------
TABLE B-l. (Concluded)
SAROAD
Code
98028
43208
43204
43504
43434
45108
98109
43205
43369
43602
98013
45216
45220
98116
98117
98034
98052
43123
98079
43309
45215
43390
45232
45202
99018
43216
43226
45233
43824
43811
43821
43740
45107
98060
98058
98083
43822
98014
43241
43860
45401
Chemical Name
PHTHALIC ANAHYDRIDE
PROPADIENE
PROPANE
PROPRIONALDEHYDE
PROPYL ACETATE
PROPYLBENZENE
PROPYLCYCLOHEXANONE
PROPYLENE
PROPYLENE GLYCOL
PROPYLENE OXIDE
PROPYLNAPHTHALENE
SEC-BUTYLBENZENE
STYRENE
SUBSTITUTED C7 ESTER (C12)
SUBSTITUTED C9 ESTER (C12)
T-2-HEXENE
T-BUTYLBENZENE
TERPENES
TERPINENE
TERT-BUTYL ALCOHOL
TERT-BUTYLBENZENE
TETRAHYDROFURAN
TETRAMETHYLBENZENE
TOLUENE
TRANS-1.2-DICHLOROETHENE
TRANS-2-BUTENE
TRANS-2-PENTENE
TRI/TETRAALKYL BENZENE
TRICHLOROETHYLENE
TRICHLOROFLOUROMETHANE
TRICHLOROTRIFLOUROETHANE
TRIMETHYL AMINE
TRIMETHYLBENZENE
TRIMETHYLCYCLOHEXANE
TRIMETHYLCYCLOPENTANE
TRIMETHYLDECENE
TRIMETHYLFLUOROSILANE
TRIMETHYLNAPHTHALENE
UNDECANE
VINYL CHLORIDE
XYLENE BASE ACIDS
Molecular
Weight
148.00
40.06
44.09
58.08
102.13
120.19
140.23
42.08
76.09
58.08
170.25
134.21
104.14
211.19
218.24
84.16
134.22
136.24
136.23
74.12
134.21
72.10
134.21
92.13
96.95
56.10
70.13
148.23
131.40
137.38
187.38
59.11
120.19
129.27
112.16
182.35
92.00
170.25
156.30
62.50
230.00
-------
TABLE B-2. Species profiles by bond groups for CBM-IV.
SAROAO
Code
43814
43820
43813
99013
45225
45208
99016
45207
43218
46201
98104
43268
98111
98113
98005
43245
98037
43267
43224
43312
43269
Chemical Name
1,1,1-TRICHLOROETHANE
1,1,2-TRICHLOROETHANE
1,1-DICHLOROETHANE
1,1-DICHLOROETHENE
1,2,3-TRIMETHYLBENZENE
1,2,4-TRIMETHYLBENZENE
1,2-DICHLOROPROPANE
1,3,5-TRIMETHYLBENZENE
1,3-BUTADIENE
1,4-DIOXANE
1-CHLOROBUTANE
1-DECENE
l-ETHOXY-2-PROPANOL
1-HEPTANOL
1-HEPTENE
1-HEXENE
1-METHYLCYCLOHEXANE
1-NONENE
1-PENTENE
1-T-2-C-4-TM-CYCLOPENTANE
1-UNDECENE
OLE
2
1
1
1
1
1
1
1
PAR TOL XYL FORM ALD2 ETH
1
1 1
1 1
2
1 1
_ _1
4.
4
8
3 __ __ l
7
5
4
7
7
3
8
g
I SOP NR
2
2
2
1
-------
TABLE B-2. (Continued)
SAROAD
Code
43296
43276
98033
43299
43291
43280
43279
43234
98001
43274
98054
98055
43277
43271
43278
98110
43308
98108
98051
43311
43452
98002
Chemical Name
2,2,3-TRIMETHYLPENTANE
2,2,4-TRIMETHYLPENTANE
2,2,5-TRIMETHYLHEXANE
2,2,5-TRIMETHYLPENTANE
2,2-DIMETHYLBUTANE
2,3,3-TRIMETHYLPENTANE
2,3,4-TRIMETHYLPENTANE
2,3-DIMETHYL-l-BUTENE
2,3-DIMETHYLBUTANE
2,3-DIMETHYLPENTANE
2,4,4-TRIMETHYL-l-PENTENE
2.4.4-TRIMETHYL-2-PENTENE
2,4-DIMETHYLHEXANE
2,4-DIMETHYLPENTANE
2,5-DIMETHYLHEXANE
2- (2-BUTOXYETHOXY) -ETHANOL
2-BUTYLETHANOL
2-BUTYLTETRAHYDROFURAN
2-CHLOROTOLUENE
2-ETHOXYETHANOL
2-ETHOXYETHYL ACETATE
2-ETHYL-l-BUTENE
OLE PAR TOL
8
8
9
8
6
8
8
1 4
6
7
1 6
4
8
7
8
6
6
6
1
2
4
5
XYL FORM ALD2 ETH
.
__
__
2
1
__
1
__
i
1
1
1
ISOP NR
__
__
-------
TABLE B-2. (Continued)
SAROAD
Code
98112
43310
43229
43225
98040
43228
98004
98076
43275
98032
98105
99021
98041
43230
43223
43211
43270
43298
43295
43293
43297
98042
Chemical Name
2-ETHYL-l-HEXANOL
2-METHOXYETHANOL
2-METHYL PENTANE
2-METHYL-l-BUTENE
2-METHYL-l-PENTENE
2-METHYL-2-BUTENE
2-METHYL-2-PENTENE
2-METHYL-3-HEXANONE
2-METHYLHEXANE
3,5,5-TRIMETHYLHEXANE
3- (CHLOROMETHYL) -HEPTANE
3-CARENE
3-HEPTENE
3-METHYL PENTANE
3-METHYL-l-BUTENE
3-METHYL-l-PENTENE
3-METHYL-T-2-PENTENE
3-METHYLHEPTANE
3-METHYLHEXANE
4-METHYL-T-2-PENTENE
4-METHYLHEPTANE
4-NONENE
OLE
1
_-
2
--
1
1
PAR TOL XYL
8
1
6
3
5
3
4
7
7
9
8
6
3
6
3
4
4
8
7
2
8
5
FORM ALD2 ETH
1
__
__
1
1
1
2
1
__
2
2
ISOP NR
__
-------
TABLE B-2. (Continued)
SAROAO
Code
45221
98025
98097
43503
43404
43551
43702
43206
43505
43704
98078
98085
99001
98015
98020
98026
45201
45402
98024
99017
99019
98080
Chemical Name
A-METHYLSTYRENE
A-PINENE
A-TERPINEOL
ACETALEHYDE
ACETIC ACID
ACETONE
ACETONITRILE
ACETYLENE
ACROLEIN (ACRYLIC ALDHYDE)
ACRYLONITRILE
ALKENE KETONE
ALKYL SUSTITUTED CYCLOHEXANE
ALLYL CHLORIDE
ANTHRACENE
B-METHYLSTYRENE
B-PINENE
BENZENE
BENZOIC ACID
BENZYL CHLORIDE
BROMODICHLOROMETHANE
BROMOFORM
BUTANDIOL
OLE
0.5
1
__
--
1
1
1
1
1
PAR
1
6
6
1
3
1
1
1
2
9.5
1
6
--
8
1
--
--
--
--
4
TOL
1
1
1
1
XYL FORM ALD2 ETH
1
1.5
1
1
__
__
1
__
__
1
1
__
_-
__
ISOP NR
1
1
1
__
5
__
__
1
1
-------
TABLE B-2. (Continued)
SAROAD
Code
43213
98074
43510
98035
43266
98003
43115
43116
43117
98050
98039
98086
98084
98064
435il
98068
98065
98069
98066 .
98070
98073
43512
Chemical Name
BUTENE
BUTYL CELLOSOLVE
BUTYRALDEHYDE
C-2-HEXENE
C-2-OCTENE
C-3-HEXENE
C-7 CYCLOPARAFFINS
C-8 CYCLOPARAFFINS
C-9 CYCLOPARAFFINS
CIO AROMATICS
CIO OLEFINS
C2 ALKYL DECALIN
C2 ALKYL INDAN
C2 CYCLOHEXANE
C3 ALDEHYDE
C3 ALKYL CYCLOHEXANE
C3 CYCLOHEXANE
C4 ALKYL CYCLOHEXANE
C4 CYCLOHEXANE
C4 SUBSTITUTED CYCLOHEXANE
C4 SUBSTITUTED CYCLOHEXANONE
C5 ALDEHYDE
OLE PAR TOL
1 2
4
2
2
4
1 4
7
8
g
3 1
1 8
12
4 1
8
1
9
9
10
10
10
10
3
XYL FORM ALD2 ETH
1
1
2
2
__
__
__
__
__
1
__
__
i
X
I SOP NR
__
-------
TABLE B-2. (Continued)
SAROAD
Code
98067
98075
98071
98095
43289
98072
98093
43294
43513
43290
98049
98038
98096
98030
43807
43804
98031
98087
98088
43443
99020
43825
Chemical Name
C5 CYCLOHEXANE
C5 ESTER
C5 SUBSTITUTED CYCLOHEXANE
C6 ALDEHYDE
C6 OLEFINS
C6 SUBSTITUTED CYCLOHEXANE
C7 ESTER
C7-OLEFINS
C8 ALDEHYDE
C8 OLEFINS
C9 AROMATICS
C9 OLEFINS
CARBITOL
CARBON SULFIDE
CARBON TETRABROMIDE
CARBON TETRACHLORIDE
CARBONYL SULFIDE
CARVOMENTHOL
CARVONE
CELLOSOLVE ACETATE
CHLORODIBROMOMETHANE
CHLORODIFLUOROMETHANE (F-22)
OLE
--
1
-_
1
1
--
1
2
2
PAR TOL
11
7
11
4
4
12
9
5
6
6
2 1
7
2
1
__
6
6
3
__
XYL FORM ALD2 ETH
__ __
__
1
__
1
__
__
-_
2
__
__
__
__
1
__
ISOP NR
__
I
1
1
1
1
1
-------
TABLE B-2. (Continued)
SAROAO
Code
43830
43803
43827
99003
43826
43217
43227
98019
43248
43264
43273
43242
43292
43207
98027
43320
99015
98107
43823
43802
43828
98062
Chemical Name
CHLOROFLUOROHYDROCARBONS
CHLOROFORM
CHLOROPENTAFLUOROETHANE(F-115)
CHLOROPRENE
CHLOROTRIFLUOROMETHANE (F-13)
CIS-2-BUTENE
CIS-2-PENTENE
CRYOFLOURANE (F 114)
CYCLOHEXANE
CYCLOHEXANONE
CYCLOHEXENE
CYCLOPENTANE
CYCLOPENTENE
CYCLOPROPANE
D-LIMONENE
DIACETONE ALCOHOL
DIBENZOFURAN
DIBUTYL ETHER
DICHLORODIFLOUROMETHANE (F-12)
DICHLOROMETHANE
DICHLOROTETRAFLUOROETHANE/114
DIETHYLCYCLOHEXANE
OLE
2
__
__
1
1
1
_ _
PAR TOL
--
1
__
6
6
4
5
3
3
4
4
2 2
6
10
XYL FORM ALD2 ETH
9
"" " t,
)
L.
__
__
2
1 __
__
1
__
__
ISOP NR
1
1
2
1
2
1
1
2
-------
TABLE B-2. (Continued)
SAROAD
Code
98018
43450
98059
45103
98091
98012
98017
43287
43285
99006
43202
43433
43438
43302
43812
43351
98106
43219
43721
45203
43288
98061
Chemical Name
DIMETHYL ETHER
DIMETHYL FORMAMIDE
DIMETHYLCYCLOHEXANE
DIMETHYLETHYLBENZENE
DIMETHYLHEPTANE
DIMETHYLNAPHTHALENE
DM-2.3.DH-1H-INDENE
DOCOSANE
EICOSANE
EPICHLOROHYDRIN
ETHANE
ETHYL ACETATE
ETHYL ACRYLATE
ETHYL ALCOHOL
ETHYL CHLORIDE
ETHYL ETHER
ETHYL ISOPROPYL ETHER
ETHYLACETYLENE
ETHYLAMINE
ETHYLBENZENE
ETHYLCYCLOHEXANE
ETHYLCYCLOHEXANE
OLE PAR TOL XYL FORM ALD2 ETH
2
__ __
8
2 1
Q
7 ~ « » w « w«
4 1
-3 1
22
20
3
0.4
3
1 _. __ 2
2
2 ~ -- ~ 1
3 __ __ __ l
4
1
1 1
8
8
I SOP NR
3
__
1.6
1
2
1
-------
TABLE B-2. (Continued)
SAROAD
Code
98057
43203
99014
43815
43370
43601
98082
98011
43502
43368
43367
43286
43282
43232
98077
99007
43281
43231
43371
98044
98048
98115
Chemical Name
ETHYLCYCLOPENTANE
ETHYLENE
ETHYLENE DIBROMIOE
ETHYLENE DICHLORIDE
ETHYLENE GLYCOL
ETHYLENE OXIDE
ETHYLHEPTENE
ETHYLNAPHTHALENE
FORMALDEHYDE
GLYCOL
GLYCOL ETHER
HENEICOSANE
HEPTADECANE
HEPTANE
HEPTANONE
HEXACHLOROCYCLOPENTADIENE
HEXADECANE
HEXANE
HEXYLENE GLYCOL
INDAN
INDENE
1SOAMYL ISOBUTYRATE
OLE
--
1
1
1
PAR TOL XYL FORM ALD2 ETH
7
1
2
1
2
1
1
5 l __
1
2
2
21
17
7
7
3
16
6
6
2 1
1
g
ISOP NR
__
1
__
-------
TABLE B-2. (Continued)
SAROAD
Code
43214
43446
43306
43451
98047
43215
98036
43120
45105
43109
45106
43112
45104
43106
43105
43108
43107
43114
43122
43121
43113
43111
Chemical Name
ISOBUTANE
ISOBUTYL ACETATE
ISOBUTYL ALCOHOL
ISOBUTYL ISOBUTYRATE
ISOBUTYLBENZENE
ISOBUTYLENE
ISOBUTYRALDEHYDE
ISOMERS OF BUTENE
ISOMERS OF BUTYLBENZENE
ISOMERS OF DECANE
ISOMERS OF DIETHYLBENZENE
ISOMERS OF DODECANE
ISOMERS OF ETHYLTOLUENE
ISOMERS OF HEPTANE
ISOMERS OF HEXANE
ISOMERS OF NONANE
ISOMERS OF OCTANE
ISOMERS OF PENTADECANE
ISOMERS OF PENTANE
ISOMERS OF PENTENE
ISOMERS OF TETRADECANE
ISOMERS OF TRIDECANE
OLE PAR TOL
4
6
4
6
3 1
1
2
__
3 1
10
2
12
1
7
6
9
8
15
5
1
14
13
XYL FORM ALD2 ETH
_.
__ __ -_ --
1
__
1 1
2
2
__
1
1
__
__
2
ISOP NR
__
.
-_
-------
TABLE B-2. (Continued)
SAROAD
Code
43110
45102
43243
43444
43304
98043
98089
98056
43119
98022
98045
45212
45205
99008
43201
43432
43301
43445
43561
43819
43801
43552
Chemical Name
ISOMERS OF UNDECANE
ISOMERS OF XYLENE
ISOPRENE
ISOPROPYL ACETATE
ISOPROPYL ALCOHOL
ISOPROPYLBENZENE (CUMENE)
ISOPULEGONE
ISOVALERALDEHYDE
LACTOL SPIRITS
M-CRESOL (3-M-BENZENOL)
M-DIETHYLBENZENE
M-ETHYLTOLUENE
M-XYLENE
MALE 1C ANHYDRIDE
METHANE
METHYL ACETATE
METHYL ALCOHOL
METHYL AMYL ACETATE
METHYL AMYL KETONE
METHYL BROMIDE
METHYL CHLORIDE
METHYL ETHYL KETONE
OLE PAR
11
__
2 1
5
3
2
1 8
3
8
__
2
1
1 2
1
8
7
__ __
__ __
4
TOL XYL FORM ALD2 ETH
1
_-
__ __ --
1
--
1
__
1
1
1
1
-- --
__ _-
ISOP NR
__ __
__
__ __
__ __
3
1
1
__
-------
TABLE B-2. (Continued)
SAROAD
Code
r
98090
43560
98114
43559
43209
98016
43261
43262
43272
43805
98010
45234
43118
45801
43212
43435
43305
43238
43255
43260
43220
98063
Chemical Name
METHYL HEPTENE
METHYL ISOBUTYL KETONE
METHYL ISOBUTYRATE
METHYL N-BUTYL KETONE
METHYLACETYLENE
METHYLANTHRACENE
METHYLCYCLOHEXANE
METHYLCYCLOPENTANE
METHYLCYCLOPENTENE
METHYLENE BROMIDE
METHYLNAPHTHALENE
METHYLPROPYLBENZENE
MINERAL SPIRITS
MONOCHLOROBENZENE
N-BUTANE
N-BUTYL ACETATE
N-BUTYL ALCOHOL
N-DECANE
N-DODECANE
N-PENTADECANE
N-PENTANE
N-PENTYLCYCLOHEXANE
OLE PAR TOL XYL FORM ALD2 ETH
1 6 --
6
5
6 -
1.5
-.9 1
7
6
1 4 -
3 1
~ 2 1
6 - - 1
5
4
5
2 - - -- 1
10
12
15
5
11
ISOP NR
1.5
1
__
1
1
-------
TABLE B-2. (Continued)
SAROAD
Code
43303
45209
43259
43258
45101
98046
99009
99010
43284
43235
98021
45211
45204
43283
43233,
43265
98023
45807
45206
98094
43817
45300
Chemical Name
N-PROPYL ALCOHOL
N-PROPYLBENZENE
N-TETRADECANE
N-TRIDECANE
NAPHTHA
NAPHTHALENE
NITROBENZENE
NITROSOMORPHOLINE
NONAOECANE
NONANE
0-CRESOL (2-M-BENZENOL)
0-ETHYLTOLUENE
0-XYLENE
OCTADECANE
OCTANE
OCTENE
P-CRESOL (4-M-BENZENOL)
P-DICHLOROBENZENE
P-XYLENE
PENTYL ALCOHOL
PERCHLOROETHYLENE
PHENOLS
OLE PAR
3
2
14
13
8
2
1
2
19
9
1
18
8
1 6
5
5
TOL XYL FORM ALD2 ETH
1
__
__
1
__
1
I
1
1
--
1
1
1
ISOP NR
5
.
1
2
4
-------
TABLE B-2. (Continued)
SAROAD
Code
43850
98028
43208
43204
43504
43434
45108
98109
43205
43369
43602
98013
45216
45220
98116
98117
98034
98052
43123
98079
43309
45215
Chemical Name
PHOSGENE (CCL20)
PHTHALIC ANAHYDRIDE
PROPADIENE
PROPANE
PROPRIONALDEHYDE
PROPYL ACETATE
PROPYLBENZENE
PROPYLCYCLOHEXANONE
PROPYLENE
PROPYLENE GLYCOL
PROPYLENE OXIDE
PROPYLNAPHTHALENE
SEC-BUTYLBENZENE
STYRENE
SUBSTITUTED C7 ESTER (C12)
SUBSTITUTED C9 ESTER (C12)
T-2-HEXENE
T-BUTYLBENZENE
TERPENES
TERPINENE
TERT-BUTYL ALCOHOL
TERT-BUTYLBENZENE
OLE
1.5
1
1
2
PAR
--
--
1.5
1
4
2
9
1
3
2
6
3
--
10
10
2
3
8
6
1
TOL XYL FORM ALD2 ETH
i
X
1
__ _ _ __ _ _
-_
1
__
1
__
__
i
J. ~
1
1 1
2
1
__
j
ISOP NR
2
__ __
1.5
1
1
2
2
__
4
" j
-------
TABLE B-2. (Concluded)
SAROAD
Code
43390
45232
45202
99018
43216
43226
45233
43824
43811
43821
43740
45107
98060
98058
98083
43822
98014
43241
43860
45401
Chemical Name
TETRAHYOROFURAN
TETRAMETHYLBENZENE
TOLUENE
TRANS-1.2-DICHLOROETHENE
TRANS-2-BUTENE
TRANS-2-PENTENE
TRI/TETRAALKYL BENZENE
TRICHLOROETHYLENE
TRICHLOROFLOUROMETHANE
TRICHLOROTRIFLOUROETHANE
TRIMETHYL AMINE
TRIMETHYLBENZENE
TRIMETHYLCYCLOHEXANE
TRIMETHYLCYCLOPENTANE
TRIMETHYLDECENE
TRIMETHYLFLUOROSILANE
TRIMETHYLNAPHTHALENE
UNDECANE
VINYL CHLORIDE
XYLENE BASE ACIDS
OLE PAR TOL
2
2
1
_- __
1
3
__ __
3
1
9
8
1 11
5
11
XYL FORM ALD2 ETH
1
1
__ ._
1
2
2
1
1
__
__
1
__
__
1
__
1
1
ISOP NR
--
1
2
3
-------
-------
-------
-------