EPA-600/2-80-116
August 1980
QUANTITY-QUALITY SIMULATION (QQS)
A DETAILED CONTINUOUS PLANNING MODEL
FOR URBAN RUNOFF CONTROL
Volume II
User's Manual
by
Wolfgang F. Geiger
Helmut R. Dorsch
DORSCH CONSULT LTD.
Toronto, Ontario, Canada M5H 1Z2
Grant No. R 805100
Project Officer
Richard Field
Storm and Combined Sewer Section
Wastewater Research Division
Municipal Environmental Research Laboratory (Cincinnati)
Edison, New Jersey 08817
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed and approved for publication by the Mu-
nicipal Environmental Research Laboratory, U.S. Environmental Protection
Agency,- Cincinnati, Ohio. Approval does not signify that the contents nec-
essarily reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
-------
FOREWORD
The Environmental Protection Agency was created because of increasing
public and government concern about the dangers of pollution to the health
and welfare of the American people. Noxious air, foul water, and spoiled
land are tragic testimony to the deterioration of our natural environment.
The complexity of that environment and the interplay between its components
require a concentrated and integrated attack on the problem.
Research and development comprise that necessary first step in problem
solution and involve defining the problem, measuring its impact, and search-
ing for solutions. The Municipal Environmental Research Laboratory develops
new and improved technology and systems for the prevention, treatment, and
management of wastewater and solid and hazardous waste pollutant discharges
from municipal and community sources, for the preservation and treatment of
public drinking water supplies and for the minimization of adverse economic,
social, health, and aesthetic effects of pollution. This publication is one
of the products of such research; a most vital communications link between
the researcher and the user community.
This study describes the principles and use of the Quantity-Quality
Simulation (QQS) model. The QQS model defines the impact of urban runoff on
receiving waters and aids in the initial and detailed planning of abatement
alternatives for pollution from storm sewer discharges and combined sewer
overflows in urbanized areas.
Francis T. Mayo
Director
Municipal Environmental
Research Laboratory
111
-------
PREFACE
Control of urban runoff pollution has become a focus of environmental pro-
tection activities. Satisfactory analysis of urban runoff abatement measures
requires the investigation of numerous alternatives and planning variables
to arrive at economical and efficient solutions. This has resulted in an in-
creasing interest in the modeling of urban runoff.
Urban runoff models have been developed to serve one or more of the ba-
sic functions of planning, system analysis or design, and operations. A num-
ber of models was developed with only one of these functions in mind. Selec-
tion of a suitable model becomes a difficult task when two or more engineer-
ing functions are involved simultaneously. This situation is further compli-
cated by the large variety of problems encountered in practice. A model
serving multiple functions ideally should not produce more information than
needed, yet should not yield such over-simplified results that its reliabi-
lity is in question.
The simulation model detailed in this report was developed to serve
multiple functions. It allows assessment of impacts of existing urban drain-
age systems on receiving waters as well as the evaluation of expected ef-
fects of structural and nonstructural mitigative alternatives. The model has
been applied in the detailed planning and initial design of main system com-
ponents and is considered to be applicable for the analysis of a wide vari-
ety of operations problems.
The theoretical background of this model and its data processing mode
were developed during the period from 1973 to 1975. The programming was par-
tially financed by the Federal Minister of Research and Technology of the
Federal Republic of Germany (Grant No. 0825027).
Because this simulation model may well suit certain American needs
within the framework of Section 201 and Section 208 studies, a research
grant was provided by the U.S. Environmental Protection Agency to make this
planning tool available to the American user. The model had already been
used in an American city.
This report is in two volumes. Volume I describes the theoretical back-
ground, testing, and application of the model. Volume II is the user's
manual for the model program.
IV
-------
ABSTRACT
A comprehensive mathematical model, the Quantity-Quality Simulation
(QQS) model, for calculation of urban stormwater and combined sewer overflow
pollution and the means for its control is presented. The model operates in
a continuous mode and accounts for the unsteady runoff and overflow behavior
of total drainage systems. Lumping techniques, that calculate the runoff
from drainage areas, are combined with detailed flow routing through main
and interceptor sewers as well as other structures such as branches, over-
flows , basins, pump stations, control gates, and treatment facilities. The
computer program calculates the runoff in the storm or combined sewer system
and in the receiving waters. The program package, written in Standard For-
tran IV, comprises approximately 30,000 statements and can be used on any
BATCH processing system having Fortran IV compilers.
While the QQS model is designed to operate in the continuous mode,
single events may be used to calibrate and verify the model. A statistical
analysis routine yields total monthly or annual runoff and overflow figures
and related information such as the frequency and duration of receiving wa-
ter loadings. Continuous simulations may be employed to assess a stormwater
runoff, storm sewer outfall, or combined sewer overflow pollution problem
and to estimate improvements that would be achieved by structural and non-
structural control and corrective measures.
Applicability of the QQS model is demonstrated in a number of compari-
sons with measurements of runoff quantity and several water quality parame-
ters made in several catchments. Short descriptions of QQS model applica-
tions are given for overflow abatement studies made for: Rochester, N.Y.;
Vancouver, B.C., Canada; Toronto, Ont., Canada', Augsburg, Germany; and
Munich, Germany.
This is Volume II, subtitled "User's Manual" of the report, titled
"Quantity-Quality Simulation (QQS), A Detailed Continuous Planning Model for
Urban Runoff Control" submitted by DORSCH CONSULT LTD., Toronto, Canada, in
fulfillment of research Grant No. R 805100 under the sponsorship of the
U.S. Environmental Protection Agency. Volume I is subtitled "Model Descrip-
tion, Testing, and Applications". Work was completed as of July 1979.
-------
Section
Runoff simulation for receiving water systems 48
Programs required for runoff simulations in
receiving water systems 48
Program DTCHCK for receiving water simulations 49
Programs RCVRIN and MRBNTC for receiving water simulations 50
Program MRBNSP for receiving water simulations 51
Program STATCS for receiving water simulations 52
Precipitation statistics 52
Program RAINSC 52
4. TEST EXAMPLES 55
General 55
Problem description 55
Data preparation 57
Verification :.' 58
Abatement alternatives 58
Problem assessment and violation of guidelines
and standards 59
References and bibliography 60
APPENDIX 1: Data Cards for QQSEGL 61
APPENDIX 2: Data Cards for DTCHCK 85
APPENDIX 3: Error (F) and Informative Messages and Output
Headings of DTCHCK 177
APPENDIX 4: Data Cards for STATCS 201
APPENDIX 5: Properties for Statistical Analysis 218
APPENDIX 6: Test Example for QQSEGL 229
APPENDIX 7: Test Example for DTCHCK 231
APPENDIX 8: Test Example for DWTFLC 279
APPENDIX 9: Test Example for RCVRIN and MNTWKC 284
APPENDIX 10: Test Example for MNTWSP '. 292
APPENDIX 11: Test Example for STATCS 310
APPENDIX 12: Test Example for RAINSC 339
APPENDIX 13: Conversion Factors 344
viii
-------
FIGURES
Number Page
1 Runstream of the individual QQS programs 2
2 Overall flow chart 3
3 Program QQSEGL, simulation results of runoff quantity 11
4 Program QQSEGL, simulation results of runoff quantity
and quality 12
5 Program MNTWSP or MRBNSP, single event simulation
results of segment 13
6 Program MNTWSP, single event simulation results of basin 15
7 Program MNTWSP, single event simulation results of over-
flow structure 16
8 Program MNTWKC, total runoff of flows and pollutant loads 17
9 Program STATCS, one-dimensional statistics of continuous
simulation results, tabularized 18
10 Program STATCS, one-dimensional statistics of continuous
simulation results, graphical 20
11 Program STATCS, two-dimensional statistics of continuous
simulation results, tabularized 21
12 Program STATCS, two-dimensional statistics of continuous
simulation results, graphical 22
13 Program STATCS, monthly and annual totals 23
14 Program RAINSC, precipitation statistics 25
15 Test catchment 56
ix
-------
TABLES
Number Page
1 Data Processing Capabilities of the Program System 5
2 Coordination of Logical Unit Numbers and File Names 27
3 Logical Unit Numbers for Sequential Files and their Sizes 28
4 Direct Access Files and their Sizes 29
5 Programs with Block Data Subprograms 29
6 Overlay Structure of the Program DTCHCK 30
7 Overlay Structure of the Program DWTFLC 32
8 Overlay Structure of the Program MNTWKC 33
9 Overlay Structure of the Program MRBNTC 35
10 Overlay Structure of the Program STATCS 36
-------
LIST OF ABBREVIATIONS
ABBREVIATIONS
BOD 5
°C
cfs
cts
cts/5 min
cts/1
COD
DWF
EPA
OF
FC
ft
g
ha
hrs
HVM
in
kg
kg/5 min
km
1
Ib
1/s.ha
m
m2
m3
m3/s
mg
mg/1
min
flfrlli
mm/5 min
N
P
Pb
ppm
QQS
R & D
s
SS
biochemical oxygen demand (5-day)
temperature degs C
cubic feet per second
counts
counts per 5 minutes
counts per liter
chemical oxygen demand
dry-weather flow
Environmental Protection Agency
temperature degs F
fecal coliform
feet
gram
hectare
hours
Hydrograph Volume Method
inch
kilogram
kilograms per 5 minutes
kilometer
liter
pound
liter per second and hectare
meter
square meter
cubic meter
cubic meters per second
milligram
milligrams per liter
minutes
millimeter
millimeters per 5 minutes
frequency
phosphorus
lead
parts per million
Quantity-Quality Simulation
Research and Development
second
suspended solids
xi
-------
STP sewage treatment plant
TSS total suspended solids
UWRR Urban Water Resources Research
WSE water surface elevation
yrs years
29.8.75 day.month.year, e. g. Aug. 29, 1975
NOTE: Abbreviations and symbols used in Appendices 1 to 4 only co-
ordinate the descriptions on each page and are not contained
in this list.
xii
-------
ACKNOWLEDGEMENTS
The valuable suggestions for program improvements of the municipalities
and agencies involved in applications of the QQS program are gratefully ack-
nowledged .
Especially acknowledged is the valuable guidance and assistance of the
Project Officer of this demonstration study, Richard Field, Chief of the
Storm and Combined Sewer Section (Edison, New Jersey) of the U.S. EPA Muni-
cipal Environmental Research Laboratory, Cincinnati, Ohio. The valuable com-
ments provided by H.C. Torno of the U.S. EPA Office of R & D (Washington,
D.C.) and by D. Ammon of the Storm and Combined Sewer Section (Edison, New
Jersey) of the U.S. EPA Municipal Environmental Research Laboratory, Cincin-
nati, Ohio, were gratefully accepted. M.B. McPherson, Director of the ASCE
UWRR Program who reviewed and assisted in editing the final report is thank-
fully acknowledged.
Appreciation is extended to personel of Dorsch Consult: Simo Mrdja who
did the systems analysis and debugging for most of the programs and who
drafted Section 2 of this volume; Donatus Reich who prepared the test examp-
les; and Mrs. Uta Gysser who performed with dedication the extensive typing
job. The principal author, Wolfgang F. Geiger is now associated with the
Technical University of Munich, Department of Civil Engineering, Munich,
Germany.
xiii
-------
-------
SECTION 1
OVERALL QQS PROGRAM DESCRIPTION
PROGRAM SYSTEM COMPENDIUM
The Quantity-Quality Simulation (QQS) model is a comprehensive mathe-
matical model for the calculation of urban storrawater runoff and combined
sewer overflows (1). A detailed description of the individual components of
the QQS method is given in Section 2 of Volume I, Model Description, Testing,
and Applications.
The program package of the QQS model comprises of a number of indivi-
dual programs: a data edit program, a sequence of three programs necessary
to perform the actual runoff simulations, a program to print the runoff
hydrographs and pollutographs in the case of single events, and a statistics
program to evaluate continuous simulation results. In addition, there are
two optional programs included in the package. The one simulates rainfall-
runoff from individual catchments (not including major sewer routing), the
other analyses precipitation data statistically. Figure 1 shows the se-
quence in which the individual programs are applied. An overall flow chart
is provided in Figure 2.
The following explanations of the functions of individual programs are
intended to provide an overview of the total program package. Further infor-
mation about input preparation, necessary control cards and error messages
is given in Section 3 of this report, Program Handling.
The program DTCHCK checks the network, quantity and quality data for
format and plausibility. In case of errorless data (according to input spe-
cifications) the internal input files for the simulation part of the pack-
age are created.
The program DWTFLC simulates one full day under dry-weather flow con-
ditions and establishes internal files (IF13 and IF21), containing a daily
cycle of dry-weather flows at all network nodes.
TXTFCE provides the output headings TXTFCG provides for metric units.
RCVRIN and MNTWKC perform the actual simulations of quantities and qua-
lities of runoff from the catchments and their transport throughout the sew-
er network.
MNTWSP prints single event simulation results which were written by
MNTWKC on an internal file (IF23).
-------
[Create Files
o
II
II
£3
O T3
§ §
* E
(catchment runoff
simulation, optional)
(statistics of pre-
cipitation data,
optional)
(print of single
event results)
1 OOSEGL h-5
/
1 RAINSC Y
DTCHCK
DWTFLC
(datacheck)
(dry-weather flow
calculation)
ITXTFCE/G 1 (textfiles)
MNTWKC
RCVRIN
(storm runoff
simulation)
iSave Results 1
1 WTWSP 1
STATCS 1 (statistics)
I Save Results
Delete Files
o o>
i -5
=1 U
cs o
(print of single
event results)
[Create Files I
I Save Results |
I HRBNSPl"
(data check)
(receiving water
simulation)
ISTATCSl (statistics)
I Save Results]
Delete Files
Figure 1. Runstream of the individual QQS programs.
-------
DATA CHECK AND EDIT (OTCHCK )
/ Preclp
tatlon
|
Input E«
Mjloo a
Organ! za
J
Rainfall
Statist!
RUNOFF SIMULATION
TXTFCf , HNTHKC/HR
RCVRIN. NNTUSP/ni
1
I- /Air /Dry-Heather /Receiving
Temperatures 1 Flow Water Flow
^ 4/ 4/
^^
ami- /PreclptX input Exmlnitlc
nd M tattcin 1 for the Main Pr«
tion 1 Intcnsl-/
xtj.,^
(Frequencies, 1
_J Cumulative
cs M Frequencies
(Duration*
S (WTFlCi
iNfc Definition of
IHSP Precipitation
^f
Pollutant Accumulation and Decay
In Drainage Areas
1
Pollutant Routing In the _
Sewer System '
\
^ l*^
Flow and Pollutant Routing In the
Receiving Hater System
(In Case of Single Event Simulations)
* " .
IPollutant loaoj (Finn and Depth) pollutant load]
Mydrographs 1 llydrographs 1 llydrographs 1
(^External j^ralnaoe Area /Sewer
1 loadings 1 Character- 1 Network
1 Istlcs 1 Geometry
/Receiving
Hater System
| Geometry
4r * * *
n and Preparation
igram
Note: For acronyms
see figure 1.
i r
the Effective
t
Runoff from Drainage Areas
1 r
Flow Routing and Calculation of
Velocities In the Sewer System
- ^
^X\ STATISTICS (STATCS)
^ Statistical Analysis of
Continuous Simulation Results
I 1
(In Case of Continuous Simulations)
Frequency. Annual and Sea-
Cumulative Fre- sonal Totals of
quency and Our- Flows and Pol-
atlon Curves lutant toads
(In Case of Single Event)
Simulations)
Iflow and Depth]
bydrogrtpns 1
L.^^1
Figure 2. Overall flow chart.
-------
For practical application of the QQS program package it has been found
beneficial to treat the sewer network and the receiving water as separate
systems, even though runoff and pollutant transport calculations in both
systems employ the same principles. This separation permits the performance
of data checks and simulations for verification or'related purposes indivi-
dually for the sewer system or the receiving water system without handling
the other system component simultaneously. Therefore, for the sewer system
and receiving water system, individual program versions have been estab-
lished which differ mainly in their capacity. These individual program ver-
sions also contribute to more economical computer use.
The pertinent program names for receiving water system routing are
RCVRIN, MRBNTC and MRBNSP. Receiving water network routing can be started
only after a corresponding sewer network simulation has been completed.
The results of continuous long-term simulations are stormwater dis-
charges, combined sewer overflows, their pollution quantities, and receiv-
ing water loadings at specified nodes. These data are organized and statis-
tically evaluated in STATCS. One-dimensional and two-dimensional statistical
analyses are performed for those properties and nodal points designated in
the initial input instructions.
QQSEGL is a program which facilitates calibration and verification of
drainage area calculations. This program simulates quantity and quality of
runoff from individual drainage areas and is an excerpt of the pertinent
subroutines of MNTWKC. This program is included in the package, but its use
is optional.
The program RAINSC provides a statistical analysis of precipitation da-
ta and serves to select a suitable time span from longer rainfall observa-
tions for continuous rainfall-runoff simulations. This program is included
in the package, but its use is optional.
The use of additional programs may prove beneficial, e. g., the HEC1
program for derivation of unit hydrographs (3) , depending on individual pro-
ject needs.
PROGRAM SYSTEM CAPACITY
The capacity of the QQS program system as described in this report is
sufficient for normal applications of total service areas up to approximate-
ly 6,000 ha (15,000 acres) in size. At this approximate upper limit, with
100 drainage areas their average size would be 60 ha (150 acres). Consider-
able departures from these figures may be encountered in applications to
diverse service areas. Regardless of the size of the total service area,
three different rainfall records may be handled simultaneously in the simu-
lations. Each of these records is ascribed to a fixed area by input. To a
certain degree this will provide some consideration for nonuniformity in the
distribution of precipitation. From one to four pollutants can be considered
simultaneously in one simulation run. If necessary, additional pollutants
may be handled in subsequent runs.
-------
Single event simulations can be made for a period of up to 24 hours.
The time step is fixed at five minutes. Although it is desirable for the
scope of urban runoff simulation to derive the pertinent input from records
allowing for similar fine interpretation, it is still possible to interpo-
late the input data required in five-minute detail from less refined rec-
ords. Single event simulations required for more than one day of data may be
performed by splitting the event and adjusting the initial conditions of
successive runs.
Continuous simulations of up to 20 years, the time step being fixed at
five minutes, are possible, but to save computing costs the selection of a
4- to 8-year period based on statistical analysis of precipitation criteria
has been found to suffice without sacrificing reliability.
Either metric or English units can be used, except for programs QQSEGL
and RAINSC which allow for metric input only. The major data processing cap-
abilities are summarized in Table 1. It should be noted that the program di-
mensions given are not rigid but may be adjusted by the programmer to accom-
modate larger areas and individual needs.
TABLE 1. DATA PROCESSING CAPABILITIES OF THE PROGRAM SYSTEM
Maxima
Length of data for a single event simulation
Length of data for a continuous simulation
Statistical variables, total cases
Precipitation stations
Conservative pollutants
Area types (considering pervious and impervious separately)
Receiving waters arbitrarily connected
Sewer network
Drainage areas
Special .structures
External loadings
Receiving waters
system elements
nodes
overflows
basins and pumps
operational controls
constant
variable (only for single event simulation)
system elements
nodes
Specified nodes for statistical analyses - special structures
- arbitrary nodes
24 hrs
20 yrs
118
3
4
4(8)
2
400
370
100
35
15
20
18
10
150
130
50
5
-------
INPUT DATA OVERVIEW
Input Data for the Runoff Simulation Programs
Input data for the runoff simulation programs (MNTWKC/MRBNTC and
RCVRIN) are divided into four groups: precipitation, network and drainage
area, quantity, and quality. All input may be provided in metric or English
units. Format requirements for all input data are provided in Section 3,
Program Handling. In order to facilitate application and to avoid wasting
computing time, these input data are checked by an extensive data edit pro-
gram (DTCHCK) for errors and for plausibility. Such a data edit is critical
for efficient and economical application of a comprehensive simulation
model. Some of the drainage area, quantity and quality data are also re-
quired as inputs for the program QQSEGL for simulating the runoff from in-
dividual drainage areas. The precipitation data as prepared for runoff sim-
ulations also serve as inputs for the rainfall statistics program (RAINSC).
However, input to the programs QQSEGL and RAINSC only can be provided in
metric units.
Precipitation Data
As discussed in Section 1 of Volume I (Model Description, Testing,
and Applications) continuous runoff simulations are sought in order to de-
fine storm sewer discharge and combined sewer overflow behavior. To perform
such a continuous simulation, an equally continuous record of precipitation
data must be prepared as an input.
Precipitation intensities have to be supplied at 5-minute time inter-
vals and dry spells between individual events must be specified. Gaps in a
precipitation record should be filled with estimated values. The checking of
continuous precipitation records against daily totalizer registrations is
advisable.
The 5-minute rainfall intensity values required may be derived from
original continuous recordings of cumulative depth. In order to include a
broad spectrum of events it is necessary to refer to a record of 15 to 20
years duration. According to experience, however, it is not imperative that
runoff simulations be performed for such a complete record. It is sufficient
for runoff simulation purposes to select a grouping of four to six represen-
tative years from a long rainfall record. Selection may be aided by statis-
tical analysis of the rainfall data by employing the program RAINSC to in-
vestigate major properties, e.g.:
Rainfall duration (min)
Dry spell (min)
Time elapsed from start of rainfall to the 5-minute
interval with maximum rainfall intensity (min)
Volume of rainfall (mm)
Average rainfall intensity (mm /5 min)
Ratio of average to maximum rainfall intensity
Individual rainfall intensities of the 5-minute
intervals (mm/min)
-------
In the case of continuous runoff simulations, the precipitation data
enter the program DTCHCK on a separate precipitation file. In the case of
single event simulations, the precipitation data are supplied for input to-
gether with the network and drainage area data.
Network and Drainage Area Data
The network and drainage area data consist mainly of geometrical data
defining the sewer network, receiving water system and drainage areas. For
single event, simulations the precipitation data are entered with the network
data.
For practical application of the QQS program package, it has proven
beneficial to treat the sewer network and receiving waters as separate sys-
tems, even though runoff and pollutant transport calculations are performed
for both systems according to the same principles. This separation makes it
possible to perform data checks and simulations for verification or abate-
ment purposes, individually for the sewer network or the receiving water
system, without the need for handling both system components simultaneously.
Therefore, individual program versions were established for the sewer and
receiving water systems, differing mainly in their capacity. The connection
of the sewer system and receiving water system takes place at storm sewer
outfall and combined sewer overflow locations.
The major network input data define the individual segment shapes, di-
mensions, roughness and invert elevations, and the logical connections of
segments. For structures within the network, additional data such as weir
heights and lengths, overflow coefficients, pumping characteristics, and
control gate settings have to be provided. Control gates may be operated as
a function of time or of the water surface elevation at any node within the
sewer network. Defined are also segments and nodes: for which single event
simulation hydrograph printouts are desired; for which continuous simulation
results have to be statistically analyzed - these are called nodes of inter-
est (storm sewer outfalls, combined sewer overflows, and basins) and special
nodes of interest (any ordinary network node with one inflow and one out-
flow) ; and where constant or variable external loadings enter the calcula-
tion area at boundary nodes. In order to allow for statistical analysis of
storm sewer discharge data, storm sewer discharges must be handled as if
they occurred at overflow structures.
The major drainage area characteristics are drainage area types, sizes,
ratios of impervious to pervious areas, population densities and industrial
wastewater inflows. Individual drainage areas are indexed to one of the
three precipitation station records and to a sewer system node.
Most of the network and drainage area data may be derived from sewer
network plans and aerial photographs. In modeling a sewer network or receiv-
ing water system, one should not attempt to achieve an exact geometrical
portrayal of the prototype but should establish a computational description
of the hydraulic features determining the runoff, outfall, and overflow pro-
cesses .
-------
Network and drainage area data enter the program DTCHCK. For runoff
simulations from individual drainage areas the drainage area characteris-
tics are entered only into the program QQSEGL.
Quantity Data
The quantity data are mainly those data necessary to determine the run-
off quantity from drainage areas and dry-weather flows. Initial or starting
losses and soil infiltration capacities are needed to evaluate effective
precipitation. Evaporation rates, temperature data, and soil infiltration
capacities are required to determine the depression capacities available at
the start of a rainfall event. Temperature data and evaporation rates usual-
ly are taken from official registrations. Initial or starting losses and
soil infiltration capacities are defined according to values given in the
literature and from local experience.
Unit hydrographs for determining runoff from drainage areas may be
established synthetically or may be derived from precipitation-runoff rec-
ordings. Final determination of unit hydrographs may be aided by comparing
the runoff from individual drainage areas calculated by the program QQSEGL
with recorded runoff, or by comparisons with runoff data calculated by oth-
er, possibly more detailed methods.
Diurnal variations of dry-weather flow, boundary flow conditions, and
receiving water flows are also specified in this data group. These data are
obtained from meteorological surveys, waterworks records, etc.
All of these data also enter the program DTCHCK. Initial or starting
losses, soil infiltration capacities, and unit hydrographs are also required
as input for the program QQSEGL.
Quality Data--
The quality data consist mainly of information necessary to determine
runoff and dry-weather flow quality. For pollutant balance calculations,
maximum and initial pollutant values and pollutant build-up times and func-
tions, are specified for the different drainage-area types. Also p'rovided
are data describing the frequency and efficiency of street cleaning.
Unit pollutographs, the influences of rainfall duration and diurnal and
seasonal variations, all of which determine the pollutant wash-off from
drainage areas, should be derived from rainfall-runoff quality measurements.
The final definition of these functions is facilitated by the program QQSEGL
by comparing in a number of sequential runs the calculated pollutant load
runoff from individual drainage areas with measured data. Because areas with
similar characteristics have similar unit hydrographs and unit polluto-
graphs, the user may gain experience by analyzing some of the many rainfall-
runoff measurements reported in Section 4 of Volume I, Model Description,
Testing, and Applications.
Also specified in the quality data group are diurnal variation of dry-
weather flow quality, water quality boundary conditions, receiving water
background pollution, and the removal effects of detention basins and treat-
-------
meat facilities. Most of these data may be obtained from waterworks records,
local surveys, and the literature.
All of these data are entered into the program DTCHCK. Pollutant load
variations and the factors modifying their influence that account for the
time of day and rainfall duration are required as input for the program
QQSEGL as well.
Input Data for the Statistical Programs
Runoff Statistics
Two levels of input enter the statistics program STATCS, namely, con-
tinuous simulation results and data specifying the type and extent of sta-
tistical analysis. For a sewer network simulation, continuous runoff results
are provided at nodes of interest and at special nodes of interest specified
by input to the program DTCHCK as part of the network and drainage area da-
ta. At storm sewer outfalls and combined sewer overflows, which were defined
as nodes of interest, the discharge and overflow rates and pollutant loads
enter the program STATCS by way of internal files. The same is true for the
ingoing and outgoing flows at basins during a time of surcharge conditions.
This also applies to the ordinary network nodes with one inflow and one out-
flow which were defined as special nodes of interest.
For a receiving water system, continuous runoff quantity and quality
results at the nodes of interest of that system enter the program STATCS by
way of internal files. Any junction in a receiving water system, where one
branch of the junction is a sewer segment loading to receiving waters, may
there be defined as node of interest.
The second type of input to the program STATCS determines the proper-
ties investigated and their scales: whether one- or two-dimensional; if
monthly or annual statistics are to be performed; and whether tabular or
graphical output is desired.
Precipitation Statistics
Similarly, the program RAINSC calls for two levels of input in order to
perform a statistical analysis of the precipitation data. Precipitation rec-
ords must be supplied on file in the same format required for the program
DTCHCK. The second type of input is a designation of the choice of years and
months to be considered and whether monthly or annual statistics must be
performed.
OUTPUT DATA
Runoff Simulation Results
Runoff from Individual Drainage Areas
Single event simulations of runoff from individual drainage areas as
performed by the program QQSEGL are used mainly for verification purposes
and may be made for a maximum of 99 intervals of 5-minute duration each.
-------
The output of the program QQSEGL contains the input data and the cal-
culated runoff hydrographs. Figure 3 shows an example of output for a case
where only runoff quantity was calculated. T indicates the number of 5-min-
ute time intervals after the start of rainfall. RFDPT represents the rain-
fall intensity (1/1,000 mm per 5 min); THRLP represents the initial or
starting losses for impervious areas (1/1,000 mm); EFRBA is the effective
precipitation for impervious areas (1/1,000 mm per 5 min); THRLG is the
starting losses for pervious areas (1/1,000 mm); SEEPG is the infiltration
rate (1/1,000 mm per 5 min), and EFRGA is the effective precipitation as ap-
plied to pervious areas. The calculated flow hydrographs from impervious
areas are marked by WQBA (m3/s), the flow from pervious areas by WQGA (m3/s)
and the total runoff by WQTOT (m3/s). MSWQ (m3/s) is a listing of the meas-
ured runoff as supplied by input and DWQ (m3/s) gives the difference between
the calculated and measured runoff.
Figure 4 provides a listing of the output for a case where runoff quan-
tity and quality are calculated. As a departure from and in addition to the
above explained headings, INT indicates the number of 5-minute time inter-
vals after the start of rainfall; DLPHB and DLPHG the pollutant load runoff
per hectare in kg per interval from impervious and pervious areas, respec-
tively; and ADLTOT the total runoff of pollutant loads in kg per interval
from the drainage area in question. MSDQ indicates the measured data and
DDQ is the difference between calculated and measured values, both in kg per
interval. The concentration of the pollutant in the runoff from the total
drainage area is provided by CNTRN (3.33 mg/1). The pollution related output
is given for two pollutants, which is the most that may be considered by the
program QQSEGL.
Runoff in the sewer and receiving water system
By sequencing the programs DTCHCK, DWTFLC, TXTFCE, RCVRIN, MNTWKC and
MNTWSP, single event simulations of the runoff in storm and combined sewer
networks can be performed for a maximum of 288 5-minute intervals. Similar
simulations may be made for receiving water systems using the programs
DTCHCK, RCVRIN, MRBNTC and MRBNSP.
Single event simulations are used principally to calibrate input data,
to verify the program package and to check, on the basis of synthetic or
real storms the comparative effectiveness of different storm sewer discharge
and combined sewer overflow abatement alternatives.
The programs MNTWSP and MRBNTC provide the output of single event run-
off simulations of the sewer system and receiving water system respectively.
Flow, depth or pressure, and pollutant load hydrographs may be obtained for
any element in the sewer and receiving water systems.
For the sewer or receiving water system sections, Figure 5, the flow
and depth or pressure values are given at the upstream (QU, HU) and down-
stream (QD, HD) ends of an element. The pollutant load values (PI, P2, P3,
P4) refer to the downstream end of the segment. Metric units are shown in
Figure 5. If the output is provided in English units, instead, in addition
the corresponding concentrations are given.
10
-------
HFnpT
F.b ! it 7*
IHHLH EF'I'H
St F."li Ef«li«
uoo»
UOGA
UOIOT
HSUO
DUO
P«bF
1
7
1
»
5
*.
7
f>
9
1C
1 1
t?
11
in
IS
1*
17
1 »
17
?o
/I
??
71
21
25
?<.
?7
?«
?3
Id
31
3?
31
11
15
3*
17
1C
19
l|"
1 1
II?
HI
ait
?'
P:J1
iir n
ISiJ
2».-
?\JV)
700
170
1 ?n
111
inn
9-)
fii
8U
»(
*1
PC
7!|
to
7')
?r
!>0
10
5(1
11(1
V)
JT
10
3i1
1 )
»>i
n
o
i
f;
!)
T
T
rl
1
1
.'t
0
99 Ii
*(
97'J
9iP
740
9£t>
H90
IP'S
0
0
rt
n
c>
0
n
o
0
r>
n
0
_>
p
P
n
,1
P
n
n
II
ri
n
n
1!
ti
i
i«
0
i)
T
n
ii
0
"
,'
Ij
o
,,
)
t
>i
1
0
}
Ij
"J
0
n
Ci
IMO
llO
140
?MU
2.10
?in
171
1 HI
HO
111.
vo
PO
no
HI
*i
en
70
SI
70
70
4"
10
30
10
30
n>
no
in
in
no
VI
(i
n
n
0
'i
j'i
n
.1
it
i
n
1 5 in >
IM'i: i
IS 111
t^oun
IS'i'l'l
I50CO
IS'111
1K'IUU
IS!)!'}
ISriJO
isno i
15001
15110
isotn
ISIIM
15000
lii'n
l". ;.'.. a
1510 )
151300
1 iDU'.l
1?(llii|
1 30J J
1 50UO
isn.iii
isniu'i
l^nn
15HCO
15T11
isnm
1 SoJ1)
I5ni!0
t50H'l
ISOC-n
15'l.) >
isii';n .
isaiio
I'jUl, '
I50.)!l
15ro"
|5r, n
151111'
IS I'M
iSiiiin
JS'i'l 1
f. JC«
1 5 1 1 ">
15ii.-;-.i
1ST J-')
. I^O':''
11
I'l
n
!'
?>
?n
10
570
SO.)
mi 0
IS')
2»1
?0il
2 no
171
170
mo
110
91
60
HI
t>:l
90
til)
n
4')
70
7"
61
70
30
10
3'i
30
41
30
10
no
1 )
u
)
«l
T
,1
rt
r
1
^
.1
i>
U
C
0
C
0
C
0
r
0
r
0
0
r%
n
ii
r
0
c
n
r
n
r
n
c
a
' (5
a
.0
f)
0
o
C
0
r
0
r
0
r
o
r
n
c
ii
r
0
c
0
r
r>
r
,'JOO'l
.0000
,0')00
.0000
. aooa
.oouo
.010"!
.0101
.JO 11
.007S
.U2U»
.0'34
.0*27
.0*119
.0*311
.0408
.0382
.0*60
.01J»
.0108
.0275
.024*
.U21S
.0194
.0181
.01 70
.0158
.0147
.0118
.0131
.UI27
.Ot20
.010?
.0097
.0184
.0078
.0175
.0049
.U047
.0144
.OJ58
.0047
.OOIS
.C")2«
.0117
.yi2
.0409
.OUU4
.00') 4
.IIC01
.OOrtft
.OCOO
.010T
.UUCO
.0100
.OCOO
.0000
.OCOO
.O')on
.or GO
.oouo
.OCOO
.UOOft
.OCOO
.oaoa
.ocon
.0100
.OCOO
.aiao
.OCOO
.0000
.OCOO
.bom
.OCQP
.oooft
.OCOO
.ooon
.ccoo
.0000
.ocno
.llOOft
.OCOO
.0000
.ocoo
.00(10
.ocoo
.0100
.ccoo
.000"
.CCGO
.0011
.aeon
.000"
.ocoo
.0310
.1COO
.000"
.ocon
.ODOT
.OCOO
.aoou
.0000
.ftJJU
.nnoci
.0:300
.noon
.0101
.onon
.0018
.0176
.0704
. " J 3 i
.0427
.0449
.0414
.moe
.0182
.0140
.0134
,
-------
INT
WQBA
HOGA HOTOT
MSMO
DIjPHB
DIBT TYPE 1
DLPHG ADI>TOT HSDO,
DDO CNTRN
DLPHB
DIRT TYPE 2
DLPHG ADI/TOT HSDO
DDQ CNTRN
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
n
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
o.oono
o.nooo
o.oooo
0.0500
0.1465
0.1616
0.1059
0.0763
0.0654
0.0456
0.0317
0.0253
0.02J2
O.n2l0
0.0154
0.0104
0.0058
0.0029
0.00|6
0.0009
0.0004
0.0002
0.0001
O.nooo
o.nooo
0.0000
o.nooo
O.nooo
o.nooo
o.oooo
O.nOOO
O.flOOO
0.0000
o.oooo
o.oooo
O.nOOO
o.nooo
O.flOOO
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000
o.ooon
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
0.0000
0.0000
0.0000
0.0000
O.ooon
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.ooon
0.0000
0.0500
0.1465
0.1616
0.1059
0.076)
0.0654
0.0456
0.0317
0.0253
0.0232
0.0210
0.0154
0.0104
0.0058
0.0029
0.0016
0.0009
0.0004
0.0002
0.0001
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.onoo
o.ooon
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.ooon
0.0000
0.0000
o.noao
0.0450
0.1400
0.1650
0.1100
0.0800
0.0630
0.0480
0.0360
0.0280
0.0240
0.0200
0.0160
0.0110
0.0070
0.0040
0.0020
0.0010
o.oooo
0.0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oono
o.oono
o.oono
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.000
0.000
0.000
1.977
3.023
2.443
1.484
1.166
0.847
0.513
0.306
0.190
0.150
0.109
0.070
0.04J
0.021
0.011
0.005
0.00)
0.001
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0,000
0.000
0,000
0,000
o.ooo
0,000
0,000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
4,109
7.870
6.358
3.864
3.034
2.206
1.335
0.796
0,496
0.390
0.285
0.183
0.107
0.055
0.028
0.014
0.006
0.002
0.000
0.000
0.000
o.ooo
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
.000
.000
.700
.000
.500
.600
.600
1.800
1.200
0.800
0.600
0.400
0.300
0.200
0.100
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
-1,000
-0.595
0.130
-0.142
0.264
0.434
0.406
0.135
0.004
-0.104
-0.010
0.019
0.017
0.007
0.055
0.02R
0,014
0,006
0.002
0.000
0.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.00
0.00
0.00
82.13
53.73
39.39
36.47
39.79
33.71
29.25
25.11
19.56
16.82
13,56
11.86
10.31
.97
.68
.63
,49
.22
1.71
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 ,
0,00
0.00
0.00
0.00
0.000
0.000
0.000
1.961
4.460
4.091
2.631
2.217
1.847
1.279
0.930
0.689
0.535
0.377
0.237
0.153
0.087
0.049
0.029
0.016
0.009
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0,000
0.000
0.000
0.000
o.ooo
o.ooo
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
o.ooo
0.000
0.000
0.000
0,000
0,000
0.000
5.104
11.610
10.545
6.850
5.771
4.808
3.330
2.420
1.783
1.391
0.982
0.616
0,399
0,226
0.127
0.076
0.043
0,022
0.010
0,003
0,001
0,000
0,000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0,000
0.000
0.000
0.000
0.000
1.000
9.900
12,000
11,000
7.600
9,800
4.600
3,500
2,600
1.900
1.400
1.000
0,500
0,400
0,200
0.100
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
-1.000
-0.796
-0.390
-0.459
-0.750
0.029
0.208
-0.170
-0.180
-0.117
-0.009
-0.018
0.116
-0.001
0.026
0.027
0.076
0.043
0.022
0.010
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.00
0.00
0,00
102.13
79,27
69,27
64.65
79.67
73.50
72.96
76,30
70,36
59,97
«6,77
39.87
38,39
39,16
43.18
46,24
49,55
52,74
55,77
94,72
96,80
0,00
0,00
0,00
0.00
0,00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
Figure 4. Program QQSEGL, simulation results of runoff quantity and quality.
-------
PIPt NISUIIS
FIPl MUHULR
UPPCN NUUL
COJ1
LOHtM NOUE C03b
INTtKVAL
uu
u /sit I
HII
(Ml
Ull
II/btt I
1
2
3
S
b
6
7
8
V
III
1 1
17
13
11
IS
16
1 /
IN
19
2ll
21
42
23
21
2b
26
if 7
28
29
3U
Jl
32
33
31
Jb
36
37
3I>
39
10
11
12
13
11
Ib
3*.
3V.
13.
2/3.
7VS.
1 121.
1 101.
981.
Kll.
750.
650.
5b3.
517.
52S.
193.
Ibl.
3V/ .
3JH.
281 .
231.
IV6.
1 77.
157.
Ibl .
116.
US.
113.
113.
117.
HI .
HI .
110.
110.
13V.
1 IH.
1 It..
130.
123.
1 13.
IU1 .
Vb.
8*.
Ul .
7*.
70.
. fl()
.uu
.00
.00
.110
.00
.uu
.00
.Oil
.00
.00
.uo
.uu
.uu
.uu
.00
. UL
.uu
.ou
.1)0
.uu
.uu
.ou
.ou
.uo
.00
.ou
.0(1
.uu
.uu
.uu
.00
.on
tu
.00
.uu
.uu
.uu
. ou
.ou
.uu
.Ull
.on
.uu
.uu
35
19
17
731
6V5
lum
IOV1
IOU3
ev7
776
672
59H
556
5JO
SUO
160
1UH
350
291
215
2U1
1 /«
ll.O
153
11;
1 16
111
113
112
H2
111
111
no
13?
139
1 36
Ul
125
1 IS<
IU6
V7
VO
HI
77
71
b
1
01
01
02
09
27
11
13
39
35
3O
76
23
22
21
70
18
16
| 1
1 1
09
08
01
06
06
06
06
06
06
06
06
O6
06
Ob
Ob
Ob
Ob
05
Ob
Ob
01
01
01
OJ
03
03
PI
IKG/INII
.92
1 .25
1 .US
1.31
1 .95
8.90
29.60
S2.03
52.36
Ib. Jl
31. Ol
23.25
18.50
16.13
IS.SS
IS. 31
11.93
11.15
11.26
11.31
11.12
11.19
13.90
12.11
10.18
7.58
.32
.61
.06
.20
.97
.63
. 1 3
.91
.13
.93
1 1
,U7
3.78
3.38
3.U9
3.01
3.01
3.27
3.72
P2
IKO/IU1I
1 -U3
1.10
1.18
1 .17
2.19
10.80
10.88
86. 18
1 17.28
121.50
IDS. 52
83.79
73. 12
6ft. Ol
66. 11
61. V8
61 .90
S6.12
19.17
12.38
35. IS
30.71
26.82
22.11
17. VI
13.58
1 1.58
12.19
IS.8S
18.68
19.01
17.27
11.91
12.511
10.91
11.10
1 2 . b 7
13. Jl
12.92
1 1 .68 -
10.21
9.1 1
8.01
7.J1
7.05
P3
lilbl/INI 1
73.83
IUU. 13
81.30
101.95
I5S.07
210.00
367. IS
535.07
585.31
550-21
181.23
107.98
158.23
112.21
275.1 1
260.89
251.07
219. 16
215.03
216.85
211.08
211.98
213.17
229.52
2U7.9U
185.73
180.12
186. 59
212.02
233.17
232.31
217.23
199.81
101.63
176.69
182.72
199.57
21 1.90
220.38
223. S9
221.98
231.11
210-11
261.08
297.89
PI
(Kb/INI 1
1.33
1 .80
1.52
1.89
2.81
31.61
126.57
212.89
221.29
199.78
115.59
90.95
61.86
52.00
17.35
15.67
12.27
39.01
38.85
11.31
13.70
16.62
17.51
12.96
31.13
21.07
18.76
19.59
21.50
28.36
27.55
22.81
17.55
1 3.29
10. Ib
.Ib
.51
.02
.69
.17
.1 1
.65
51
.75
5.37
Figure 5. Program MNTWSP or MRBNSP, single event simulation results of segment.
-------
For basins and pumping stations, the flow and pollutant load variations
(Figure 6) are provided for the inflow (QIN, PIN1, PIN2, PIN3, PIN4), out-
flow (QOT, POT1, POT2, POT3, POT4) and overflow (QOV, POV1, POV2, POV3,
POV4). For basins the volumes filled (VOL) and the water depth or pressure
head (H) are also provided. For overflows, the inflow (QIN, SZU1, SZU2,
SZU3, SZU4, where SZU = PIN), outflow (QOT, SAB1, SAB2, POT3, POT4, where
SAB = POT) and overflow figures (QOV, POV1, POV2, POV3, POV4) are listed
(Figure 7). In addition, the totals overflowing are summarized at the bottom
of the hydrograph tables (QOV, POV1, POV2, POV3 and POV4) in Figure 7.
Note: All flow figures printed are taken from the downstream oriented
calculation of the iterative solution method, and the flow depth or pressure
head figures printed are taken from the upstream oriented calculation. If an
interruption of the iteration process occurs, flow and depth figures may be
produced that do not seem to corrrespond conclusively. This situation may
often be avoided by subdividing long or voluminous sewer segments, which
helps to eliminate a forced termination of the iteration procedure.
Further , the output of the simulation .program MNTWKC contains a calcu-
lation record that is of no intermediate interest to the user. However, the
total runoff of flows and pollutant loads from all the calculation area
which is part of this record, may be useful (Figure 8).
As explained in Section 1 of Volume I (Model Description, Testing,
and Applications) continuous simulations are necessary to define the sepa-
rate sewer discharge and combined sewer overflow behavior. The amount of
data obtained from such a continuous simulation can be evaluated only by
means of statistical analyses. The runoff, discharge, and overflow data ob-
tained by the program MNTWKC and MRBNTC are stored for statistical analysis
on internal files.
Statistical Results
Sewer and Receiving Water System Statistics
For statistical analysis, the program STATCS is employed which orga-
nizes and analyzes the storm sewer discharge, combined sewer overflow, and
sewer or receiving water runoff data. The output of the program STATCS prim-
arily consists of tables and graphs describing frequency distributions, cum-
ulative frequencies, and frequency duration curves resulting from one- or
two-dimensional statistical analyses.
Tabulated frequency distributions and cumulative frequency curves for a
one-dimensional statistical analysis are shown in Figure 9. The table head-
ing first specifies the name of the discharge or overflow or the segment in
the sewer or receiving water system, and indicates whether the analysis was
done on a monthly basis (e.g. EVALUATION FOR JULY) or on an annual basis
(EVALUATION FOR YEAR). The heading EVALUATION FOR YEAR always is given if
all months simulated per year enter the statistical analysis. This type of
heading also applies when a part of the year, e.g. May through September, is
simulated. The name of the variable (e.g. DURATION OF OVERFLOW) and the num-
ber of the variable (e.g. PROPERTY 1) given in the heading refer to the
table of properties for statistical analysis provided in Appendix 5. The
14
-------
IIASIN KISULIi
BASIN NUHBFH
NUbL
B018
01
I l<1
I
2
3
1
b
6
a
v
10
11
12
I 3
II
IS
16
I 7
18
19
20
21
22
i3
,1
25
2/,
27
2B
2>
30
31
32
J3
JS
35
36
3/
3B
JV
1U
II
12
1J
11
1b
VOL UIN bOI
CUB.M L/Sl.l l/Sl.t L/SfC
bu
Oil
ou
OJ
OJ
Oa
| 3
III
2j
21
32
36
3V
13
16
19
52
Sb
S«
6U
62
6 J
63
(. J
63
62
61
60
U
U
0
u
1 7
10
61
89
1 11
137
IbV
1 'B
1*7
21 3
231
216
261
276
286
29H
JOo
3lb
31 /
31 '
311
3IU
305
301
. bll
.S/
.bb
.52
.51
.bU
. IB
.16
.11
.11
. 31
. JJ
.27
29U.
2Bb.
2BU.
273.
261..
267.
2bo.
2bu.
211 .
231 .
21V.
205.
IBV.
151 .
I 3 J.
JJ.
311.
3V.
121.
212.
2)1.
211.
210.
211
211 .
23/.
232.
22V.
226.
221.
222.
219.
216.
213.
209.
2CS.
202.
I 60.
152.
119.
116.
lib.
I 'I M .
113.
i in.
I 3B.
I 32.
I2U.
I 20.
I I I
IU3.
VS.
mi
HI
33.
30.
3V.
121.
156.
IS'.
15*.
ISV.
160.
161 .
162.
162.
163.
161.
1*1.
165.
166.
166.
I 66.
16'.
167.
167.
I6/.
I6/.
167.
I/.6.
I 66.
166.
166.
16'.,.
I6b.
16'...
161.
161.
161.
163.
162.
IM .
160.
160.
II V
src
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
(1.
0.
u.
u.
0.
0.
0.
u.
0.
0.
u.
0.
0.
0.
0.
u.
0.
0.
II.
PI HI
U I, I
1 .9
1 .?
1 . 1
.9
3. 1
1.1
3.2
3.8
9.3
'.V
B.2
12.3
13.1
II.'
9.2
7.8
7.1
7.9
9.0
10.3
11.6
13.0
13.9
13.6
13. H
13.6
1 2. a
1 1 .0
a. 6
6.9
6.b
7.5
H.H
9. 1
6.2
6.H
b.S
1.1
1. 1
1. 1
1.2
I.Ci
3.6
3. 3
3. 1
HIN2
IKGI
2- 1
1 . 1
1 .2
1 .0
6.9
12.2
9.6
9.6
16.7
1 3*9
17.1
2V. 9
36. S
36.6
32.7
10.1
30.1
13.6
36.0
12.6
IS.*
16.1
12.8
lb.8
31.3
2'. 3
23.'
IV. 5
Ib.l
12.1
12.2
|1.6
17.6
IB. 9
IH-0
16.0
13.7
11.1
11.2
12. 1
13.2
13.2
12.2
iu.a
v. 7
PIH3
K.IOCI
153.5
92.9
87.1
'!!
61.8
52.0
19.1
'7.8
i ia.o
87.8
89.6
110. S
161 . II
161.1
151.6
116.9
111 .S
111.1
156.2
177.1
202.0
226.6
211. |
236.2
211 . 7
210.2
231.9
218.6
197.9
166.7
188.6
20*. 7
229.6
217.6
22a.2
212.6
197. a
110.9
166. H
199.2
211.11
223. 1
227.2
22H.V
236. 1
PIN1
(KGI
2.8
1 .7
1.6
1 .1
11.0
20. S
11.*
u. a
37.1
ii. a
ii.i
SI .S
56. 1
16.9
36.1
27. S
21.7
21. 1
26.6
29.2
31 .6
35.3
39.7
11.2
11.1
IS. 6
11. H
17.1
28.0
20.9
19.1
22.6
26.9
27.9
21.8
19. a
IS. 2
1 1 .1
10.0
9.6
9.1
a. i
6.8
S.6
S.O
POII
IK6I
1.9
1 .2
1 . 1
.9
1 .S
1 .8
.6
.1
.9
.2
.1
.1
.a
.0
.2
.9
.S
.9
7. 1
6. 1
S.I
S. 1
s.s
6. 1
6.V
7. a
8.7
9.7
10.6
1 1.2
1 1 .8
12.1
1 1 .8
10.1
8.0
6.S
6.6
'.a
6.6
M.S
7.2
S.6
1.6
1.6
S.O
POI2
1*1,1
2. 1
1 .1
1 .2
1 .0
1.1
1.7
.5.
.7
.1
.1
.6
.7
.7
.2
11.2
15.3
ia.6
18. a
16.3
17.1
16.1
16.6
18.3
20. S
22.9
2S.1
27. 1
27.1
2S.1
22.7
20.7
ib.a
16.9
11.1
11.1
9.1
9.B
12.2
11.2
11. S
11.1
U.I
9. 7
10.1
12.2
HOI.
It lo<
153.!
92.1
a'.'
71 .
10.
18.
11.
12.
11.
SI.
69.
76.
41 .1
61.
7».(
102.1
1 19..
121.!
I2U.
117.
1 U.
112.
1 16.
121.
116.
IS2.
171.
191.
211.
227.
211 .
219.
250. C
216. J
211. J
201.1
212. t
210.1
262.1
263.:
21B.1
211. t
221. «
218.4
28'. 1
t KOtl
i mill
> 2. a
1 .7
1 .6
.1
. i
.V
11.7
9.2
7.9
e.o
16.9
21 .6
1 19.1
20. S
1 25. S
1 32.9
! 16.1
> 11.2
28.9
21.6
18.6
16* 7
17.1
18.1
20.2
22. U
21.8
26.1
30*0
13.1
17.1
10.1
1 10.1
35.5
26. 1
19.7
19. S
1 21.7
1 27.0
2S.0
21.1
IS.S
11.8
II.I
11.2
PUVI
IH6I
.U
.0
.0
.0
.0
.0
.U
.U
.U
.0
.O
.U
.O
.0
.0
.U
.0
.0
.u
.0
.0
.0
.0
.u
.0
.u
.u
.0
.0
.0
.0
.0
.u
.0
.u
.0
.u
.0
.0
.0
.u
.u
.0
.0
.u
PUV2
IKbl
.0
.U
.0
.0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.1)
.0
>u
.0
.0
.u
.0
.0
.0
.0
.u
.u
.0
.u
POV3
It IOC 1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
o
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
POW1
""'
.0
.u
.0
.0
.0
.0
.u
.u
.0
.0
.0
.0
.u
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.u
.u
.u
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1)
.0
.0
.u
Figure 6. Program MNTWSP, single event simulation results of basin.
-------
UVEBfLU* HESULIS
OVEMFLO* NUMBER
Nour
HU2V
UlllkVAL
b|N gut gov
IL/SllI11/SLCIIL/Str|
CT\
1
2
J
1
b
4
7
H
V
10
1 1
12
13
11
Ib
14
17
18
IV
<('
71
21
23
'ft
25
Ik
iJ
78
29
JO
31
3?
33
31
35
36
31
3B
3V
ID
11
12
13
11
15
4*
6.
4.
612.
IVC-1.
2U35.
Ib7l .
1 190.
835.
>M.
176.
296.
2t>7.
272.
205.
153.
75.
11.
19.
12.
7.
6.
4.
4.
4.
b .
4.
6.
4.
6.
4.
6 .
6.
4.
4.
4.
6.
4.
6.
6 .
6.
4.
6.
6.
4.
4.
4.
4.
3*2.
yi«.
241 .
215.
211.
715.
213.
211.
237.
737.
236.
705.
153.
75.
11.
19.
12.
7.
6.
4.
6.
6.
6.
6.
4.
4.
4.
A.
4.
6.
4.
4.
6.
4.
4.
4.
6.
6.
6.
6.
6.
4.
n
O
U
7«.0
1456
1 771
1326
VIA
5VC
}Q«
186
61
50
36
0
0
0
0
0
0
ll
U
0
0
U
0
0
D
0
tl
0
0
c
b
0
D
0
0
I'
0
(,
c
r
c
b
S7UI
IKbl
.1
.1
.1
59.2
111.1
92. b
55.1
12.2
30.5
in. 8
1 -5
.1
.2
.8
.3
2.2
1 .3
.9
.7
.b
.b
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
. 1
.1
.1
.1
. 1
.1
.1
.1
.1
.1
.1
52U2
Kht
.5
.b
.b
114. S
310.2
311.1
201.3
171.2
111.7
97.8
71.1
62. 1
11.1
30. b
19.7
12.8
7.S
l.b
2.9
1.9
1.2
. «
.4
.b
.b
.b
.5
.S
.b
.5
.f,
.5
.5
.b
.5
.5
.5
.S
.5
.b
.b
.b
.b
.5
.S
5ZU3
1C IOC 1
31.8
31.8
31.8
165.0
188.7
605.7
181.1
351.1
270.1
197. S
117.7
1 Ib.A
98.7
85. 3
A7.7
55.7
17.2
11.8
38. S
3A.9
34.1
35.5
3S.I
31.9
31.8
31.8
31.8
31.8
31.8
31.8
31. «
31. H
31.8
31.8
31.8
31.8
31.8
31.
31.
31.
31.
31.
31.8
31.8
31.8
S2U1 SA8I
IKGI IK6I
.4 .
A .
A .
291. S 35.
570.3 11.
138. S II.
723. b 8.
123.1 8.
71.3 8.
11.1 8.
17.3 A.
1.1 b>
.8 S.
.A 1.
.6 3>
.4 2.
*A 1 .
.4 .
A .
.A .
.A .
.4 .
.4 .
A .
A .
.A .
A
.A
.A .
.A .
A .
.4 .
A .
4 .
.4 .
A .
.A .
.4 .
.4 .
.6
.6 ' .
.4 .
.4 .
.4 .
.4 .
S»B2
IKbl
1 .5
.b
.S
87.1
11.3
1U.1
31.9
35.1
11.4
13.1
10.1
11 .8
31.2
26.1
IV. 7
12.8
7.S
l.b
2.9
1.9
1.2
.8
.4
.b
.b
.b
.S
.b
.b
.6
.b
.b
.4
.b
.b
.b
.b
.b
.b
.5
.b
.b
.b
.b
.b
POM
IE IOCI
31.8
31.8
31.8
98. I
A3. A
77.7
7b.2
72. A
79.3
87.0
83.1
92.1
81. &
71.Q
A7.7
Sb.7
17.2
11.8
38. &
3A.9
36.|
35.5
35.1
31.9
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
P011
IKbl
.6
.4
.4
I7S.I
71.2
SA.3
31.9
25.2
21.8
18.1
9.8
3.3
.7
.S
.4
.4
.4
.4
.4
.4
.4
.4
.6
.4
.4
.4
.A
.A
.A
.A
.A
.A
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.6
.6
POVI
IK6I
.0
.U
.0
21.0
99. b
80.4
14.7
33. S
21. b
10. S
b.O
l.b
I.I
.A
.O
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
POV2
IKbl
.0
.0
.0
5V.
2V5.
273.
172.
134.
100.
SI.
30.
10.
7.
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.U
.0
POV3
IE IOCI
.U
.0
.0
44.9
125. 1
527.1
104. 2
281.8
190.8
110.1
41.3
23. b
17.2
11.3
.0
.U
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.U
.0
.U
.U
.U
POVI
IKbl
.0
.0
.0
1 19. b
194. 1
382.1
188. A
97.9
52.5
23.0
7.5
.8
1
.1
.O
O
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
OVEM LU» 101*1-,
uuv
-------
I I i lull SIIH.Lf LVLMI MISII11S UUI
UAUNA |H» I
I Mil
1 1) II N I
I
|
11.0
UA1MUA III* UAH
if till
240
HI
Hi T1PL |
Ulhl 1YKI t
1)1
hi Ttl'l. .1
UIKI It PI 1
--
«
it t C 0 V >.
HNIUKt
u b u
QUO
I DIAL
IO1 AL
IIIIAL
11)1 AL
ASM-IK r » .M»9»
ASII-UI 1 .283S
kASM-(ll 1 .63*0
LNO-OF-tCAH
1U1AL Oil
84-U3 CATCMMLNI-
08«01 CAICIIHtNI-
8S*(I1 CAItHIILMI-
ARLA
AREA
ARIA
ASII-UM .]4174S»UH C ATCIIHE.N1 -ARE A
N{ ClIVI HI
ALARMS
U
0
0/P
C
0
Ml II CALLED
FOILOHS
n ii o
0 U 0
U 0 U
000
0
0
0
0
ir kASH-orrs
NASH-OffS »
ASH-OFFb
ASH-OFF S
ASH-OFFS
U
0
0
O
.t27»20.02
.I*4«IS«U)
.&028U4>03
.2I3V4U«U3
.I83/2I«U1
.J«SU21«02
.I?44OB«U2
fhlNIS
Figure 8. Program MNTWKC, total runoff of flows and pollutant loads.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SEHER SYSTEM*
NODE! C01T
oo
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION OF OVERFLOW
PACE 107
EVALUATION FOR TEAR
(PROPERTY t)
SCALES
FREQUENCIES
SUM
Q-INFLON RATE
SCALES
FREQUENCIES
SUN
90.1
0.00 3
25.90 29
100,
.00
.50
150.
11.50
22.90
200.
1.90
11.00
INTERVAL VALUES
.100E+00
329. SO 97
1106.90 7(1
.129
.00
.00
.160
64.90
724.00
.200
99.90
699.90
Q» INFLOW TOTAL
SCALES
FREQUENCIES
SUN
Q-INFLON RATE
SCALES
FREQUENCIES
BUH
Q-INFLO* RATE
SCALES
FREQUENCIES
SUM
PI -INFLOW RATE
SCALES
FREQUENCIES
SUM
.150E»04
(.00 6
29.90 17
AVERAGE
.400E-01
0.00 0
25.90 29
MAXIMUM
.150
1.00 1
25.50 24
290. 300.
2.00 0.00
9.50 7.90
(PROPERTT
.290 .319
112.90 111.50
00.00 417.50
(PROPERTT
390.
2.00
7.90
3)
.400
116.90
349.00
4)
400,
2.50
8,50
.500
101,50
232.50
490.
1.90
3,00
' '
,630
61.50
124.00
500.
0.00
1.90
.800
22.90
62.90
550.
1.00
1.90
1.00
14.50
40.00
0.50
0.50
29.50
29.50
.300E*04.450E*04.601E«04.7S|E*04.*99E*04,10SE+OS,120l>OS.13SE+05.ISOE*OS.|65Et09
.50 2.90 S.OO 1.00 1.90 0.00 0.50 0,00 0,00 0,00 0.50
.90 11.00 S.50 3.90 2.90 1.00 1,00 O.SO 0,90 0.50 0.90
.IOIR
.00
.50
.300
.50
.50
-01.120
2.00
29.90
.450
4.00
21.00
.160
3.00
23.90
.601
6.90
19.00
INTERVAL VALUES
f PROPERTY
.200 .240
3.00 1.00
20.50 17.90
(PROPERTY
.791 .199
4.00 3.00
12.90 1.90
(PROPERTY
.100E-01.200E-01.300E-01.400E*Ot.500e-01.600E
2)3.50 468.00 129.00 73.00 51.50 38.00
1106.50 173.00 405.00 276.00 203.00 151.50
Pl-INFLO** TOTAL
SCALES
FREQUENCIES
SUM
O.I
0.00 3
25.50 25
160.
.50
.50
740.
4,50
22.00
320.
6.50
17.90
(PROPERTY
400. 410.
3.50 2.00
11.00 7.90
9)
.210
2.90
9.50
6)
1.09
0.00
5.90
11)
,320
2.00
7,00
1.20
2.50
9,»0
-01. 7001-01, 100E
29.00 27.00
113.50 (4.50
12)
560.
2.50
5.50
640.
1.00
3,00
.360
3,00
S.OO
1,15
O.SO
3.00
.400
1.00
2.00
1.90
1.80
2.90
.440
0,90
1,00
1.69
0,50
1.00
-01.900E-OI.JOOE+OO.HO
16.50 11.50 A. SO
97,90 41.00 29,50
720.
1.00
2.00
00,
0.50
1.00
80.
n.oo
A. SO
0.50
0.50
0.50
0.90
23.00
23.00
0.50
0.90
NIN
M3/S
H3
N3/S
Ml/S
KG/8
KG
Figure 9. Program STATCS, one-dimensional statistics of continuous simulation results, tabularized.
-------
first line, SCALES, gives the division into classes for the variable inves-
tigated. The dimension of the values always is indicated on the right side.
The center line shows the frequency distribution for all months or years in-
vestigated. The last value of this line indicates the number of events ex-
ceeding the last scale value given. In Figure 9, overflow durations of 50 to
100 minutes were encountered three times per year and an overflow duration
of 550 minutes was exceeded once in two years. The lower line, named SUM,
represents the corresponding cumulative frequency curve. It is obtained by
summarizing the individual frequencies of the frequency distribution from
the right side. Figure 10 demonstrates the corresponding graphical output of
the frequency distribution (***) and the cumulative frequency curve (XX).
From the cumulative frequency curve it can be read that for the time span
investigated an overflow duration of 350 minutes was exceeded five times
during a year on the average.
Two-dimensional frequency distributions are given as tabulated and
graphical outputs (Figures 11 and 12) as well. The two variables or proper-
ties represented in the example are duration of overflow and average inflow
rate. The column headings of Figure 11 include the node, discharge or over-
flow name in the sewer or receiving water system, type of statistics (month-
ly or annual), names and numbers of the properties investigated, and the di-
mensions of the vertical and horizontal scales. The first column of figures
on the left hand provides the scale of the property listed vertically and
the top line gives the scale of the property listed horizontally. The values
given in the center of the tabulation represent the number of events occur-
ring within the ranges indicated by the scales.
Figure 11 shows, for instance, that three events occurred for which the
duration of overflow was between 100 and 150 minutes when the average inflow
rate was about 0.18 m3/s.
As for one-dimensional results frequency distributions and cumulative
frequency curves of the two properties investigated for two-dimensional sta-
tistics, can be provided. The columns on the right hand side of Figure 11
refer to the first property and the two lines at the bottom refer to the
second property. For both of these external sets the inner columns or lines
are the frequency distributions and the outer are the cumulative frequency
curves.
Figure 12 attempts to show graphically the isolines for certain fre-
quencies. The heading again is similar to that for the tabulated output of
Figure 11. The scales of the two properties investigated are provided on the
left and at the bottom of the graph. The three different frequency ranges
for which different characteristics are plotted were specified in the input.
The grid system, however, is usually too coarse to provide a picture suffi-
ciently dense to connect the isolines for given frequencies.
In addition to the statistical analysis for each location point inves-
tigated, monthly and annual totals also are listed by STATCS (Figure 13).
Similarly, as for single event simulations, for continuous simulations the
program MNTWKC gives the calculation record of the total flow and pollutant
19
-------
RECEIVING HATCH LOADINGS RESULTING FROM COMBINED AND SEPARATE SEVER (YSTCHS PACE 110
ONE DIMENSIONAL FREQUENCY DISTRIBUTION M0OC| COlT EVALUATION FOR (EAR
DURATION OF OVERFLOW
( KIN )
550. X*
I*
I.
I.
550. tX»»
I
I
I
500. ** X
*
*
*
450. X
I
I
I
400. + » X
I
I *
I
ISO. « *** X
I
I
N> I
° JOO. »»* X
250. * X
I *
I
I
200. » X
I
I
I
ISO. * «««««»)(
I
I
I
100. * §««» X
I
I
I
50,1 *** X
t-----.---t------>-.«-.->--->-+-.--~--..+.........*......--.+..-......+....-.... .*...... ...+.........*
0 10 20 10 40 SO 60 70 10 90 100 ( 0/0 )
FREQUENCY CURVE X-X CUMULATIVE FREQUENCY CURV N 25.SO EVENTS
Figure 10. Program STATCS, one-dimensional statistics of continuous simulation results, graphical.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SEVER SYSTEMS
NODEI C011
THO DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION OF OVERFLOW
Q.1NFLOX RATE AVERAGE
(PROPERTY 1)
(PROPERTY S)
(MIN )
(HI/I )
PAGE 101
EVALUATION FOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS
SO. OS
too. to
ISO. IS
200.20
250.29
299.75
149.10
199.15
449.90
499.95
550.00
.4001-
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
25.50
OI.IOIE-OI.I20
0.00 0.00
0.00 2.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 2.00
25.50 25.50
,l«0
0.00
1. 00
2.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1. 00
21.50
.200
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
20.50
.240
0.00
0.00
5.50
0.00
0.00
0.00
0.00
l.iO
o.so
0.00
0.00
0.50
1.00
17.50
.210
0.00
0.00
o.so
0.00
0.50
0.00
0.50
0.00
0.50
0.00
o.so
0.00
2.90
9.50
.120 ,1«0
0,00 0,00
0,00 . 0.00
0,50 0.00
0,00 ..1,90
0,50 0,00
0,00 0,00
1.00 O.SO
0,00 O.SO
0.00 0.00
0.00 0.00
0,00 0.50
0.00 0.00
2.00 1.00
7.00 S.OO
.400
0.00
0,00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
2.00
.440
0.00
0,00
0,00
0.00
0,00
0,00
0.00
o.so
A. 00
0.00
0.00
0,00
0,50
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.so
0.00
0.00
0.00
0.50
o.so
0.00 25.50
1.00 25.50
11.50 22.50
1.50 11.00
2,00 V.50
0.00 7.50
2.00 7.50
2.50 5.50
1.50 1.00
0,00 1.50
1.00 1.50
0.50 0.50
Figure 11. Program STATCS, two-dimensional statistics of continuous simulation results, tabularized.
-------
RECEIVING MATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS
NODE! COIT
TWO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE 104
EVALUATION FOR TEAR
IATION OF OVERFLOW (PROPERTY 1) (NIN ) VERTICAL SCALE
NFLOK RATE AVERAGE (PROPERTY 3) CMJ/S ) HORIZONTAL SCALE
I
330.00 +» X
I
1
330.00 + « j «
I
499.95 *»«
I
I
449.90 f j X~«
I
399,|5 + j .
I
I
349.10 + * xi
I
I
299.73 **
I
I
230.23 **»(](
I
I
200.20 +
I
I
130.15 * ..XX
I
100.10 « X
I
I
80, OS +«
I
***"T*M**W W*T**MOT B**T ***M Mw ^^"'^^^^^^v^
.400E-OI.I01E-01.120 .160 .200 .240 .210 .320
X
» . X
X X
X
X
X
.340 .400 .440 .440
1 ISOLINES FOR FREQUENCY OF 0.25
XXX 1 ISOLINES FOR FREQUENCY OF 1.00
... 1 ISOLINCS FOR FREQUENCY OF 3.00
Figure 12. Program STATCS, two-dimensional statistics of continuous simulation results, graphical.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SENER BTSTCNS
PACE
ODEI HOIS
1.MONTH 2,MONTH 1.MONTH
,1924C*04 .II65E+04 ,I66«E»04
.1I17E+OJ .SimtO) .mmoj
.4417E+01 .|290E»04 .1727E+0)
.1I94E«04 .8617E»04 ,20JlEi04
.7175E+01 .2993E+04 .9J67E+03
t. TEAR
TOTAL TOR WHOLE TEAR
.1246E+OS
.*667E*0)
,2I06E»04
.1262E«OS
,42S9Et04
NJ
LO
t.MONTH 2,MONTH J,MONTH
I .2I02E+04 ,2741Et04 .|«J7E»04
2 .16J1E+OJ ,HHE»OJ ,15I2E»OJ
1 .4S01E+01 ,S017E»OJ .1022C401
4 .21J3E+04 ,217IE»04 ,2556Et04
S ,669IE«01 .TlOOEtOl ,6496E«OJ
a. TEAR
TOTAL FOR WHOLE TEAM
1 ,7J79Et04
2 .504IE+OJ
} ,12S4E*04
4 .7061E+04
S ,2049E«04
TOTAL FOR ALL YEARS
t .mmos
2 ,!47IEt04
1 .1J60E+04
4 ,I9«8E*OS
S ,«10IEt04
AVERAGE (EARLT VALUE
,9917E*04
.7J57E+OJ
,16IOE»04
.»I41E»04
Figure 13. Program STATCS, monthly and annual totals.
-------
runoff from the whole calculation area over the time span simulated (Figure
8).
Precipitation Statistics
In principal, the output of the precipitation statistics program RAINSC
is similar to the sewer and receiving water system statistics output of the
program STATCS. However, RAINSC allows only for one-dimensional statistics
of the properties indicated in Appendix 5 (part: Properties for Statistical
Analysis of Precipitation Data). Here the scales are always linear and are
automatically chosen by the program based on the maximum value detected. The
scales are automatically subdivided into ten ranges. In addition, a stati-
stical analysis is carried out where scales are automatically chosen so that
50 percent of the values are contained in the nine lower scale ranges. Thus
it is possible to detail the frequency distribution for the usually more
frequently occurring lower values.
Figure 14 shows an output example. The headings specify the property
under consideration and the scale dimension and indicate whether the analy-
sis is based on monthly or annual data. Each property specification is fol-
lowed by two tables for the two scale divisions chosen in each case. The
first line of each grouping gives the scale divisions, and the first value
in this line belongs to the range from 0 to the first scale value given. The
second line in each group gives the frequencies for the individual ranges.
The third line provides the cumulative frequency curve and the last line
gives the percentage of values occurring within the individual ranges. In
this instance, a rainfall duration between 462 and 528 minutes was en-
countered once in two years.
24
-------
ONI DlKlNSIONAt FHtQUCNC* OISI|BUI|OM
N)
tl»SS STATISTICS fOH THC T£*«S
54 tO
RAINFALL OUHAIION I M|H I
StALl
r*iv.
TOTALS
TOT. PC.
or. SCAL
FRC8.
TOTALS
TOT* PC'
GNfSPtLL
SOLI
FRES.
TOTALS
10T. PC*
01. SCAt
meo.
TOTALS
101. PC*
44
27
12. S
IOU
4.4
0
12.5
100
I KIN i
2000
I*-S
12.5
100
100
a.s
12. S
100
1)2
S
IS.S
34.17
II. 2
2
17.5
100
1000
4.5
21
Si.1I
BOO
I.S
11
0
!»
1
10. S
21.71
IT.*
4
10. S
?S.2«
4000
I.S
17. S
11.1*
1200
J.s
12. S
7*. 17
241
1
7.S
IT.4S
it.i
4.S
J1.S
!.!
000
I.S
1)
lo.sv
1400
]
2»
4«.21
130
1
3.S
21
33
3.S
2«
4S>*«
10000
2
.S
20
2000
1
2S
S».»2
3V4
I.S
2.S
&*
3V. *
2.S
21. b
S7.4S
12000
I.S
4.S
IS. 2V
2100
2
21
S4.17
142
0
I
2.3S
It . 2
2.5
22
S|.74
llOOO
.S
S
II, »4
2iCO
.5
22
S|.74
S2«
.S
1
2.3S
52. «
0
IV. S
1S.»«
14000
2
1.5
10. SV
3 ZOO
2
21. 5
so.sv
SVi
0
s
III*
SV. t)
2.5
IV. S
1S.»*
1*000
1
*.s
&.*
3400
I.S
l«.5
1S.*»
440
.5
5
l>l*
44
1.5
17
10
10000
I.S
1.5
3. S3
1000
.5
1*
12.36
Tl/IAL RAjNDCPlH PER IV[NT I MH 1
SCALt
(Rio.
TOTALS
IOT. PC.
DT. SCAt
»KEO.
TOTALS
?or. PC.
AVlRAtF
SCALt
FN[U.
TOTALS
101. PC.
01. SCAL
(Rig.
TOTALS
101. PC.
3.3
11
12. S
100
4A
0
12. S
too
INIf KSITf
2/0
V.b
12. S
IliO
bl
0
12. S
ICO
4.4
It
2«.S
47.0*
1.32
2
12. S
100
».?
4
12. S
2V.1I
1.98
1.S
10. s
VS. 2V
PtH RAINF ALL
510
IS
1)
77.46
IOC
1
1?.S
IOC
610
10
ID
12. JS
142
1
i|.s
V7.4S
13.2
3
4.S
IS. 2V
2.41
4
14
1.71
EVINT
10*0
I.S
IP.B2
214
2.S
17. S
88.71
14. S
2
3.S
.21
3.3
3.S
32
7S.2V
1 "M /
I3SO
.S
3.S
fl.21
270
2
34
82. 3S
iv. a
.s
I.S
3. S3
3.V4
2.b
28. S
47.04
1000 /
1470
1
3
7.04
321
b.S
33
77. 4S
23.1
.5
1
2. IS
1.42
1.5
24
4|.l«
INT i
I«VO
.5
2
l.'l
J'B
2
27.5
41.71
24.1
0
.S
I.I*
S.2«'
3.5
21. S
60.5V
2140
.S
I.S
3.51
132
3
25.5
40
2V. 7
0
5
!!
i.V^
2.5
1*
12.35
2130
5
I
2.35
1*4
2
22.5
52. Vi
13
.5
.5
I.I*
4.4
3
IS.S
14.17
2700
.S
.5
I.I*
510
2.S
20.5
11.21
Figure 14. Program RAINSC, precipitation statistics.
-------
SECTION 2
INITIAL JOB SET-UP
COMPUTER SYSTEM REQUIREMENTS
The QQS program package can be run on machines with core storage cap-
acities of at least 122 K words using overlay. The program also requests
peripheral storage devices which may consist of direct accessable disk or
drum units. All programs of the QQS package were executed on three machine
types, i.e., UNIVAC series 1100 with EXEC 8 operating systems, DEC series 20
with TOPS 20 operating systems and AMDAHL 470/V7 with IBM OS/VS1 operating
systems.
SYSTEM DEPENDENT ROUTINES
Except for program DTCHCK all programs of the QQS package are written
in ANSI X3.9 FORTRAN. The complete package consist of approximately 30,000
statements. The program DTCHCK does not correspond to ANSI FORTRAN on three
occasions:
- literal phrases enclosed in apostrophes are used in FORMAT state-
ments
- READ statements are used with ERR jump
- READ statements are used with END jump
For direct access I/O and for character set handling, machine dependent
routines, written in assembler language, are employed. The direct access I/O
is made from the subroutine DIRECT:
CALL DIRECT (IFILE, IOSW, MEM, NWORDS, IREC)
The arguments are:
IFILE Integer variable or constant which defines a file name
(up to four characters)
IOSW I/O switch 8 for write on file
16 for read from file
MEM Integer or real variable or array element corresponding
to the beginning address after which it is read from
memory or written on to memory
NWORDS Number of words to be transferred
IREC Starting record consisting at 28 words on the file from
which it is read or on to which it is written.
26
-------
For the character string handling two routines are used: Integer func-
tion IGET and subroutine PUT. They are called as follows:
CALL PUT (ISTRNG, NTH, ICHAR)
i.e. , put the character ICHAR into ISTRNG at the position NTH.
ICHAR = IGET (ISTRNG, NTH)
i.e. , get the NTH character from string ISTRNG.
JOB CONTROL LANGUAGE
The job control cards are provided for all programs of the package ac-
cording to the requirements of the UNIVAC series 1100 machines in Section 3,
Program Handling of this report. The logical unit number for the card reader
is 5 and for the line printer is 6.
DATA SETS
The data sets or files used by the QQS program package can be classi-
fied into two groups: the sequential data sets and the direct access files.
The sequential data sets are read or written formated or unformated from
FORTRAN subroutines. They are accessed via logical unit numbers. The direct
access files are read or written from the machine dependent routine DIRECT,
and accessed, e.g. at UNIVAC by a file name which can consist of a maximum
of four characters. The names of main programs, subroutines or block data
subprograms in which the logical unit numbers and file names for the direct
access files are defined in Table 2.
TABLE 2. COORDINATION OF LOGICAL UNIT NUMBERS AND FILE NAMES
Names of main program, subroutines or
Main program block data subprograms, where logic
unit numbers and file names are defined
DTCHCK INCNDC
DWTFLC DWTFLC
MNTWKC CNINIT
MNTWSP INCMNP
MRBNSP INCMBP
MRBNTC CNINVN
QQSEGL QQSEGL
RAINSC INCNRS
RCVRIN RCVRIN
STATCS INISYS
TEXTFC TEXTFC
TXTFCE TXTFCE
TXTFCG TXTFCG
27
-------
In Table 3 the logical unit numbers for all sequential files used by the QQS
program package are provided and an estimate for their size in tracks is
given. 1 track corresponds to 1,792 words.
TABLE 3. LOGICAL UNIT NUMBERS FOR SEQUENTIAL FILES AND THEIR SIZES
File
Logical unit number
Size in tracks
IF01
IF02
IF03
IF05
IF06
IF07
IF08
IF09
IF10
IF11
IF12
IF14
IF17
IF27
IF28M
NET j\
QUANTA
QUALT J
RAIN ,,
n i
MRBNET^
n i
MRBQNT^
MRBQLT J
11
12
13
15
16
17
18
19
20
21
22
24
27 >
7S
A 1
8a}
5
3
2b\ llc'
5
3
4
10
20
100
10
10
10
10
10
10
10
10
10
50
20
20
50
50
50
50
50
50
50
a) Used only by program STATCS
b) Used only by program DTCHCK for sewer network calculation
c) Used only by program RAINSC
d) Used only by program DTCHCK for receiving water calculation
Table 4 contains the direct access files used by the QQS program pack-
age and their sizes in tracks. The sizes are estimated for a continuous sim-
ulation of approximately ten years of precipitation input with high inten-
sities and frequent rainfalls.
LOADING PROCEDURES
In order to run the program on a computer with a maximum core size cor-
responding to the minimum core requirements given, some programs have to be
segmented. Programs requiring block data subprograms are listed in Table 5.
28
-------
TABLE 4. DIRECT ACCESS FILES AND THEIR SIZES
File
Size in tracks
IF04
IF13
IF15
IF16
IF18
IF19
IF20
IF21
IF22
IF23
IF24
IF25
IF26
DRAI
11
9
TFRS
FIRS
FRRS
a)
b)
c)
d)
e)
f)
8)
h)
i)
10
1200
100
a)c)d)
a)b)
a)
10
io
20
2°
50
50
6000
10
1200.
2400
8000
300
10
10
300
10
1000
b)
c)d)
ib>
b>
,b)d)
|b)d)
c)d)
c)d)
lb>
|b)c)d)
c)
10
10
e)
e)
8
20h
5001
500°
for sewer network and single event calculation
for sewer network and continuous simulation
for receiving water network and single event calculation
for receiving water network and continuous simulation
for sewer network calculated only
scratch file used by program DTCHCK only
scratch file used by program STATCS only
text file used by program RAINSC only
scratch file used by program RAINSC only
TABLE 5. PROGRAMS WITH BLOCK DATA SUBPROGRAMS
Program
Block data subprograms
DTCHCK
MNTWKC
MNTWSP
MRBNSP
MRBNTC
RAINSC
INCNDC
CNINIT
INCMNP
INCMBP
CNINVN
INCNRS
29
-------
The following tables 6 to 10 describe the overlay structures of the
programs DTCHCK, DWTFLC, ttNTWKC, MRBNTC and STATCS. The beginning of a seg-
ment is marked by the name SEG. The following lines include all programs,
subroutines and block data subprograms belonging to this particular segment.
'At the end all common blocks of this segment are included, shifted two
blanks to the right in the tables.
TABLE 6. OVERLAY STRUCTURE OF THE PROGRAM DTCHCK
SEG IS01
MAIN SEG ROOT
SEG IS02
SEG IS03
SEG IS04
SEG IS05
SEG IS06
SEG ISO?
SEG IS08
SEG IS09
SEG IS 10
SEG IS11. i SEG DSOO
SEG IS12
SEG IS13
SEG DS01
SEG DS02
SEG DS03
SEG DS04
SEG DS05
SEG DS06
SEG DS07
SEG DS08
SEG DS09
SEG DS10
SEG DS11
(continued)
30
-------
TABLE 6 (continued)
SEG ROOT
IN DTCHCK
IN INC.'JDC
BLAHKJCOMMON
IN CONVER
IN riLESN
IN GEBANZ
IN HULRTH
IN INTANZ
IN KNOANZ
IN RHBAMZ
IN RflRANZ
IN RUEANZ
IN 3KMANZ
IN SMMUZV
IN STEANZ
IN STEUER
SEG ISOU, (ROOT)
IN INPUTA
IN HINPUT
SEO I302», (ROOT)
IN INPUTR
SEO IS03», (ROOT)
IN INPUTC
SEO IS04», (ROOT)
IN INPtJTD
SEG I305», (ROOT)
IN IMPUTE
SEO IS06», (ROOT)
IN INPIJTF
SEG I307«, (ROOT)
IN QUANT!
IN MOIMNT
SEC IS08«, (ROOT)
IN QUARTZ
SEC I309», (ROOT)
IN QUA-IT3
SEC IS10*, (ROOT)
IN QUAHT4
SEG IS11», (ROOT)
IN DIRECT
IN REGEN
IN RCGFll,
SEC I312»i (ROOT)
IN QUALI1
IN MQUALT
SEG IS13», (ROOT)
IN QUAI.t2
SEG DSOO*, (IS01,1S02,
IN GE8IET
IN INTKNO
IN KNOOAT
IN PHBDAT
IN RORDAT
IN RUEDAT
IN SHMIIZA
IN STEUEU
IN TWACHN
IN HAS3VB
SEC D801», (OSOO)
IN CDCK01
IN CDCK06
SEC D602», (DSOO)
IN CDCK02
SEG DSC3*, (DSOO)
IN CDCK03
SEG DS04»i (DSOO)
IN CDCK04
SEG D605», (DSOO)
IN CDCKOS
SEG DS06»» (DSOO)
IN CUCK07
IN CDCK09
SEG DS07», (DSOO)
IN CDCK08
IN CDCK11
SEO DS08», (DSOO)
IN CDCKlO
SEG DS09*r (DSOO)
IN CDCK12
SEG DS10», (DSOO)
IN CDCK13
SEG DS11»» (DSOO)
IN CDCKU
IN CDCKlS
IN CDCK16
IN RECADC
END
1303,1304,1805,1806,1307,1308,1309,1810,1511,1312,1813)
31
-------
TABLE 7. OVERLAY STRUCTURE OF THE PROGRAM DWTFLC
SEG ROOT
IN DHTFLC
IK ALLGCD
IN AHZI.HM
IN BLANK9COHMON
IN CNSCHN
IN EXKRHN
IN EXVBHN
IN FADONT
IN FII.ENR
IN riUERc
IN ITB'VRT
IN IWNAHN
IN KNOTHN
IN QZQUDV
IN RIIBKHN
IN RHBNHN
IN RHNVHN
IN RHRKHN
IN RHRNHN
IN RHRVHN
IN ROHRHN
IN RUEFHN
IN 3IKKHN
IN STBT.HN
IN STEVHN
IN SYSDHN
IN T'lADTN
IN TWDRHN
IN ZCTIOL
SEC DTE*
IN DTEMTW
IN INDATW
IN IVZlHN
SEG TW*» , DTE
IN DIRECT
IN ECVZHM
IN ENXHBT
IN IHSEHN
IN PMXHBT
IN 3B1IHN
IN 584IHH
IN SHARHH
IN SINKBF
IN SINKBW
IN SRFAHM
IN SRHAHN
IN SRKRHN
IN SRNKHN
IN SRRRH,V
IN SRRGHN
IN SRRIHM
IN SRVZHN
IN THARHM
IN TWKTHN
IN HNUBHN
IN CEHAHN
IN ITERTN
IN 3IKVHN
IN STVAHN
IN STWHN
MAIN SEG ROOT
SEG DTE
SEC INW* (TWA)
IN I91IHN
IN IB4IHM
IN INWTH.H
IN IWRBHM
IN IKRIHN
IN IWRUHN
IN IWVZHN
SEO VRR» , INM
IN ECSFHN
IN EHOAHN
IN EHARHN
IN EHASHN
IN ENHAHM
IN ENHBHN
IN EQAAHN
IN EQARHN
IN EQHAHN
IN EQHBHN
IN EQHRHN
IN EQRAHN
IN ERHAHH
IN ERQEHH
IN EVUaHN
IN KNtRAD
IN LQARHH
IN LQNAHM
IN LQNRHN
IN OPBLQS
IN QNBFTW
IN RB1IHN
IN RB4IHH
IN RRFAHM
IN RRNKHN
IN RRRBHM
IN RRRGNN
IN RRRIHN
IN RRRUHN
IN RRVZHN
IN RUKRHK
IN TWKBHM
IN VB4IHM
IN VORRHN
IN VRARHS
IN VRA3HH
IN VRNKHH
IN VRRHHN
IN VRRCHM
IN VRRIHM
IN VRVZHH
IN CEQEHN
IN CIIOAHN
IN CQARHN
IN CQD2HN
IN QZQUDA
END
SEG INW
SEG TWA
SEG VRR
32
-------
TABLE 8. OVERLAY STRUCTURE OF THE PROGRAM MNTWKC
(continued)
SEC MAIN
IN MNTWKC
IN CNINIT
IN BENTOP
IN CLOSED
IN CLOSES
IN DATENA
IN DATMNS
IN DIRECT
IN HES5BH
IN H3ENBN
IN SBNTOP
IN SCHBEL
IN SSTUP3
IN 33TUP4
IN SSTUP6
IN STUP03
IN STUPD4
IN STUPD5
IN S7UPD6
IN SWABN
IN TMBfRD
IN ALARMS
IN ALLGCD
IN ANZLNN
IN AU8DRK
IN BUNK*COHMON
IN CON3CM
IN FILENR
IN FILERC
IN ITBWRT
IN MAIHCM
IN OFBBEb
IN SIKKHN
IN SMAI,LG
IN SMCONB
IN 53TTS1
IN 5STTS2
IN STATSI
IN STATS2
IN SYSDHN
IN TWDRHN
IN ZEITDL
SEG HAUPT«,(MAIN)
IN BASPA1
IN BASPB1
IN BASPB2
IN BASPC1
IN BASPC2
IN BASPI1
IN BASPI2
IN BASPL1
IN BASPL2
IN BSTKHH
IN BUFGET
IN BUFREL
IN CONSOt,
IN CURTHP
IN DATMNA
IN DATHNI
IN DATMNL
IN DIRTHQ
IN DIRTT
IN DTENHN
IN DTSET
IN ECVZHM
IN EEINIT
IN CESRHB
IN EESRUB
IN EESTOH
IN EFNGER
IN EHOAHf4
IN EHARHN
IN EHASHK
IN ENHAHN
IN ENHOHN
IN ENTFHH
IN EQAAHH
IN EQARHN
IN EQHAHN
IN EQHBHK
IN EQHRHM
IN EQRAHM
IN ERHAHN
IN ERQEHN
IN EVLBHM
IN FADBHN
IN FEOHIS
IN FEGOIN
IN HHCNIN
IN HYDRHM
IN INOAHM
IN INITHN
IN INITMK
IN INITTS
IN INSEHM
IN IPIOBL
IN IVZIHN
IN JAHRES
IN JAHRKO
IN KBNTHA
IN KBRMNC
IN KUTRAD
IN LQARHN
IN LQNAHN
IN LQNRHN
IN HRKCHN
IN OFB
IN OPBIiOS
IN PIPEPA
IN PIPEPn
IN PIPEPC
IN PIPEPI
IN PIPKPU
IN PQliYSO
IN ONBFHN
IN RAIMTR
IN RBilHrt
IN RB4IHN
IN RBINIT
IN RBUPD1
IN RBUP02
IN RDRN8T
IN ROVEBK
IN RECOVS
IN REPOSR
IN RHBHQ
IN RHLOOP
33
-------
TABLE 8 (continued)
IN RRFAHN
IN RRNKHN
IN RRRBHN
IN RRRGHN
IN RRRtHM
IN RRR'JHN
IN RRVZHH
IN RSET
IN RUKHHN
IN SCI
IN SHMCGL
IN SMNIVB
IN SMR3ET
IN SMUUIN
IN SSTTR3
IN SST11P2
IN STATRS
IN STS1HN
IN 5TS2HN
IN STSKHK
IN STUP01
III 3TUP02
IN SHMGER
IN TWAINT
IN VBIIHM
IN VB4IHK
IN VORRHN
IN VORLIPD
IN VRARHN
IN VRMHN
IN VRNKHN
IN VP.RBHM
IN VRRCHN
IN VRRIHN
IN VRRUHM
IN VRVZHM
IN HMU8HM
IN CEHAHN
IN CEOKHN
IN CHOAHN
IN C1SCHN
IN CQARHN
IN CQD2HN
IN CVZVHN
IN EXKHHN
IN CXVHHN
IN ITERTH
IN IWSVHN
IN LOGIC
IN OZQIIDV
IN RHRKHN
IN SMOVHH
IN STEVHN
IN STVVHN
IN VR3VHN
IN FAOrjUT
IN IWHAHN
IN IWSAHN
IN KHOTHN
IN KUVKXB
IN NDSOTH
IN OZQUDA
IN RMBKHH
IN RHBriHN
IN RHBVHN
IN RHRNHN
IN RHRVHN
IN RQHPHN
IN RUEFHN
IN SIKVHN
IN SHOAHN
IN SMRflHR
IN 3H5BWD
IN STELHN
IN STVAHN
IN TWAPHN
IN VRSAHN
IN WHERND
8EG RESTRT*,(MAIN)
IN RECOVA
IN RECOVC
IN RECOVR
IN RECOVW
IN RECVRY
SEC 3TATOr»»(HAIN)
IN STATHO
IN 33TTHD
END
MAIN SEG MAIN
SEG STATOP
SEG RESTRT
SEG HAUPT
34
-------
TABLE 9. OVERLAY STRUCTURE OF THE PROGRAM MRBNTC
SEG MAIN
IN MRBNTC
IN CNINVH
IN DIRECT
IN EEJNVN
IN MSGEYN
IN NSGGVN
IN STUtVN
IN STU3VM
IN STU4VH
IN STU3VN
IN STU6VN
IN STU7VH
IN SWRNVN
IN TMBFVN
IN BLAtiK$COMMON
IN ALRMVN
IN AjjCOVN
IN ANZI.VN
IN AUDKVN
IN riiNRVN
IN FLRCVN
IN LOGCVN
IN MNCMVN
IN QZQUVN
IN 5MALVN
IN SMCOVN
IN STT1VN
IN STT2VN
IN 3Y30VN
IN FORFNY
IM ZETDVN
SEG VORF« » (MAIN)
IN BUFGVN
IN BUFRVN
IN CONSOb
IN DATVNA
IN DATVNI
IN DATVNU
IN DAT'/NS
IN DIRfTV
IN DTENVN
IN DTHSY'I
IN DTNAYH
IN ECSFVN
IN ECVZVM
IN EESTOV
IN EHARVN
IN ENHAVN
IN ENHBVN
IN EQARVN
IN EQHAVM
IN EQHBVN
IN EQHRVN
IN ERKAVN
IN ERQEYN
IN FADBVN
IN FEDVIS
IN HDYRYN
IN HTlMVN
IN INDAVN
IN INMKYN
IN INTSYN
IN INVTVH
IN IPVOCD
IN IPVOOA
IN IVZIYN
IN IWNKVN
IN IWVZVN
IN JNVOVN
IN KNBOVN
IN KTADVN
IN I/QAHVN
IN LQNAVV
IN I.QNRVN
IN HRKCVN
IN PIPAVN
IN PIPBVN
IN PIPCVH
IN PIPtVM
IN PIPLVN
IN OHBFVN
IN RDKVVN
IN RECOVT
IN RRFAVN
IN RRNKVM
IN RRYZVN
IN RUKRVM
IN SHARVN
IN SMUUVM
IN SRFAVN
TN SRHJVVN
IN S.RKRVN
IN SRKRVN
IN 3RNKVM
IN SRVZVN
IN STTSVfj
IN VNCMVN
IN VORCON
IN VORRVM
IN VORSlN
IN VRARVN
IN VRNKVN
IN VRVZVH
IN HNUBVN
IN ZRlPVfl
IN CEHAYN
IN CEOEVN
IN CNSCVN
IN CONCVN
IV COARVH
IN CVZWN
IN EXKBVN
IN EXV4VN
IN INSHM*
IN ITBWVN
IN ITRTVN
IN KMOTVH
IN RHRKVN
IN RHRNVN
IN RHRVVN
IN ROHRVN
IN SMRI1VN
IN VOREGD
IN VRSMVN
SEG RESTRT» ,
IN RCBt.VN
IN RECOVR
IN RCVCVN
IN RCVRVM
IN RCVWVN
IN RCYYVN
SEC STATOP» i
IN STTHVN
IN STFRVN
IN 3TT3VN
END
(MAIN)
(MAIN)
MAIN SEG MAIN
SEG STATOP
RESTRT
SEG VORF
35
-------
TABLE 10. OVERLAY STRUCTURE OF THE PROGRAM STATCS
SEG MAIN
XN STATCS
IN ABORT
IN BLANK
IN CPYCOL
IN DIRECT
IN ERRORS
IN HEADER
IN LOOKER
IN PAGECT
IN OCLCAR
IN SKAUTi
IN UEB5R
IN BLAHK*COMMON
IN ANZAHL
IN CNTRLS
IN DAUERN
IN ERROR
IN HAFENZ
IN IMPT
IN INTKNQ
IN IUUNTS
IN HGTRIS
IN NAMEN
IN REGG
IN SKALA
IN VRTEIL
SEG INPUT»(HAIN)
IN CVDIGT
IN CYFUTG
IN CVlMTf!
IN DMPCOM
IN INISY8
IN INICHS
IN INIEDM
IN INIFAK
IN INIKNO
IN INIMON
IN ININOT
IN INISKA
IN INISMU
IN INIREG
IN INIWAt,
IN IHIZDH
IN INGRAF
IN INSPRA
IN JQIMA4
IN PPUEF
IN PUTQET
IN RDCARD
IN SKALT2
IN SKBtiNK
IN STHEPS
IN CDBUFR
IN CHRSET
IK SAVRUM
IN SYSPRN
SEG TEXTE»(INPUT)
IN IKTXT2
SEG TEXTG*(INPUT)
IN INTEXT
SEG SQRT»(HAIH)
IN INITIA
IN PRTSUM
IN RDKHOT
IN SORT!
IN SORT2
IN SORTS
IN SORT*
IN STOIRT
IN SnRTFD
IN SFAKTR
SE6 KNOAKAXHAIN)
IN CHECK
IN DRUCK1
IN DRUCK2
IN EINZEL
IN GRAPHt
IN INIOIM
IN INREGO
IN KNOANA
IN LOKREG
IN PAGOEF
IN RDDECK
IN RDBCMN
IN RDREGN
IN RDVORF
IN STOOIM
IN STOREG
IN T8TNOT
IN VERGL
IN ARRY
IN HAFS
IN JMPT
IN RBGO
IN TEXT
END
MAIN SEG MAIN
SEG KNOANA
SEG SORT
SEG TEXTG
SEG INPUT
SEG TEXTE
36
-------
SECTION 3
PROGRAM HANDLING
GENERAL
The following handling descriptions are intended to enable users to ap-
ply the QQS program package on their own. However, successful application of
complex mathematical models for urban runoff control generally requires some
background in mathematical modeling and computer applications and thorough
experience in urban drainage planning.
The control cards given should not be changed because in some cases
they instruct sets of internal control cards. The version described is valid
for all UNIVAC machines of the 1100 series with EXEC 8 control systems. The
programs and their individual sets of internal control cards are contained
in a file designated "qqs" in the following description. The user can estab-
lish this "qqs" file under an arbitrary name. Note: On all control cards
given the symbolic file name "qqs" must be replaced by the entire real file
name including its qualifier (e.g., I0073-9858PR*QQS).
Data files are always established using the same name, whereby the use
of different qualifiers enables the working of several file versions simul-
taneously. The qualifier-card must directly succeed the RUN-card. If the
qualifier-card is not used, the data files obtain as qualifier the project-
ID from the RUN-card.
The QQS program package enables:
the runoff simulation of single rainfall events for individual drain-
age areas, whereby the maximum duration of an event is 99 intervals of
5-minute duration each;
the runoff simulation of single rainfall events for entire sewer and
receiving water systems, whereby the maximum duration of an event is
288 intervals of 5-minute duration each;
continuous runoff simulation at 5-minute intervals for continuous pre-
cipitation records for periods up to 20 years, including subsequent
statistical analysis of the continuous simulation results; and
precipitation statistics.
Both single event and continuous simulations can be made for sewer sys-
tems and for receiving water systems. In general, any pollutant may be con-
37
-------
sidered except for pollution parameter 3 (P3), which is reserved for fecal
coliforms (FC) because special units are used for their measurement.
CPU time estimates provided later are for UNIVAC 1108 and are based on
experience with the Augsburg, Rochester and Vancouver projects. For a UNIVAC
1106, the times given must be doubled and for a UNIVAC 1110 the times given
can be divided by 2. It must be understood that, particularly because of the
simulation programs MNTWKC/MRBNTC, the CPU time is dependent on the size and
geometrical lay-out of the sewer and receiving water systems.
RUNOFF SIMULATION FOR INDIVIDUAL DRAINAGE AREAS
Program QQSEGL
Description of QQSEGL
The program QQSEGL computes the runoff from an individual drainage area
and its pollution load. The computation method employed is in accordance
with the runoff simulation method for drainage areas of the program MNTWKC.
The major application of the program QQSEGL is for verification purposes of
the unit hydrographs and unit pollutographs (unit pollutant load hydro-
graphs) whereby calculated and measured runoff data are compared.
The maximum duration of precipitation that can be accepted by QQSEGL is
495 minutes, which equals 99 time intervals of 5-minute duration. The maxi-
mum number of pollutants which may be considered is two.
Control and Data Card Requirements for QQSEGL--
a) "RUN (approximately 1 CPU second)
b) "ASG,A qqs.
c) "XQT qqs. QQSEGL
Data cards
d) "FIN
The input data requirements are listed in Appendix 1, Data Cards for
QQSEGL. An example is given in Appendix 6, Test Example for QQSEGL.
Error Messages of QQSEGL
There are no program related error messages.
Output of QQSEGL--
The major output of the program QQSEGL are hydrographs and polluto-
graphs (pollutant load hydrographs), calculated and measured (as given by
input), as well as the differences between calculated and measured values.
Output examples are provided in Section 1 of this volume, Figures 3 and 4.
38
-------
»(for continuous simulations only)
RUNOFF SIMULATION FOR STORM AND COMBINED SEWER SYSTEMS
Programs Required for Runoff Simulations in Sewer Systems
For runoff simulations in sewer systems the following sequence of pro-
grams must be used:
DTCHCK
DWTFLC
TXTFCE and TXTFCG
RCVRIN and MNTWKC
MNTWSP (for single event simulations)
STATCS (for continuous simulations)
In case data files do not exist or were deleted, the files must be pro-
vided with the following control cards prior to running DTCHCK:
a) "RUN (approx. 2 CPU second)
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.CATALOG/IFXXDFSE (for single event simulations only)
e) "ADD qqs.CATALOG/IFXXDFMNTWMY ~|
f) "DATA,IN *IF27.
g) "ADD,D qqs.TEXT/INTXT2
h) "END
i) "DATA,IN *IF28.
j) "ADD,D qqs.TEXT/INTEXT
k) "END
1) "FIN
For single event calculations the programs above may be operated in-
dividually or as one run, except for STATCS which must be executed indivi-
dually. Operating the programs as one run, the sequence is interrupted if an
error is found by any one of the programs.
Program DTCHCK
Description of DTCHCK
The program DTCHCK checks the precipitation, network, quantity and
quality data for format and plausibility. Once the input data are found to
be without error, internal input files for the simulation part of the pack-
age are created.
DTCHCK input may be provided in metric or English units. The pollution
parameter Fecal coliform must be entered as the third pollutant. In case of
frequent checks or changes of only one of the input files, the network file,
for instance, it is advisable to store the unchanged files permanently. For
final calculations, program results should be secured for multiple outputs.
The running time of the program DTCHCK is about 60 CPU seconds. The core re-
quirement of DTCHCK is 55 K UNIVAC words.
39
-------
Control and Data Card Requirements for DTCHCK
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "ADD qqs.ASGX/DF
f) "DATA,IL *NET.
Network Data
g) "END
h) "DATA,II *QUANT.
Quantity Data
i) "END
j) "DATA,II *QUALT.
Quality Data
k) "END
1) "DATA,II *RAIN. \ (f .. . . . _ .
- Precipitation Data J (for continuous simulations only)
m) "END
n) "ADD qqs.USE/DF
o) "XQT qqs. DTCHCK
p) "ADD *NET.
q) "FIN
In case of errors, the run must be repeated but only the erroneous da-
ta files must be replaced, e.g., if the file NET was errorless, the cards f)
to g) are omitted. If all input data were correct, the internal files IF01
to IF03, IF05 and IF07 to IF11 are established.
Because input requirements for precipitation, network, quantity and
quality data are quite extensive, the data card specifications are listed
separately in Appendix 2, Data Cards for DTCHCK.
Error Messages of DTCHCK
The Program DTCHCK yields an extensive number of program related error
messages (F). In addition, informative messages are provided to encourage
the user to check any data questioned as to validity. Only the errors (F)
must be corrected in order to perform simulations. Due to the program struc-
ture, all of these error and informative messages are in German, the corres-
ponding English translations are listed separately in Appendix 3, Error Mes-
sages and Output Headings of DTCHCK.
Output of DTCHCK--
The program DTCHCK provides listings and summaries of all input data.
Internal input files enter the runoff simulation programs RCVRIN and MNTWKC.
These internal input files are written in metric units even when English
units are used originally, because the runoff calculations always use metric
units. An output example is contained in Appendix 7, Test Example for
DTCHCK.
40
-------
Program DWTFLC
Description of DWTFLC
The program DWTFLC simulates the runoff of one full day under dry-
weather flow conditions and establishes the internal files IF13 and IF21.
Note: Dry-weather flow usually has little influence on the storm runoff be-
havior. Therefore the diurnal variation of dry-weather flow normally may be
neglected.
Under dry-weather flow conditions, no overflows at the boundaries of
the calculation area are allowed. For basins, the water depths must be less
than their heights, i.e., the basins cannot be surcharged under dry-weather
flow conditions. If this condition is violated, warnings are printed out.
Note: A value of 120 iterations must not be exceeded. If this value is
reached or exceeded, the calculations are not convergent and the input has
to be rechecked, in which case the dry-weather flow results of the last five
iterations are output. Possible sources for nonconvergence are:
a) Unallowed backwater (unallowed under dry-weather flow conditions
only) indicated by large values for HA and HE;
b) branching points, if the values for H and Q differ between the
iterations;
c) overflows at the network boundary are occurring or basins are
pressurized;
d) overflows and basins, if similar conditions to b); or one itera-
tion overflowing, next iteration no overflow, etc.;
e) pumps, if maximum capacity too low to pump dry-weather flow;
f) gates, if closed or closing under dry-weather flow conditions.
The major corrective measures to be taken are: to increase weir heights
and eliminate backwater by changing pipe element dimensions or roughness co-
efficients.
In the case of a variable dry-weather flow the triggering water level
for gate closure must not be reached. This possibility is checked by the
program and warnings are printed out. Also, whenever input data are changed,
the dry-weather flow calculation must be repeated prior to the actual runoff
simulation with RCVRIN and MNTWKC. The running time is approximately 40 CPU
seconds and the core requirements of DWTFLC is 50 K UNIVAC words.
Control and Data Card Requirements for DWTFLC
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG.A qqs.
d) "ADD qqs. ASGXUSE/IFXX
e) "XQT qqs. DWTFLC
f) "FIN
No data cards are required for the program DWTFLC.
41
-------
Error Messages of DWTFLC
An error message is given if the maximum number of iterations (121) is
reached. In this case the network has to be rechecked as described above.
Warnings are given if gates are closing, overflows are occurring or
basins are pressurized under dry-weather flow conditions.
Output of DWTFLC
For a successful run, the maximum and average number of iterations and
maximum water depth for basins under dry-weather flow conditions are printed
out. When calculation nonconvergencies occur, the dry-weather flow results
for the last five iterations are output. An example is provided in Appendix
8, Test Example for DWTFLC.
Programs TXTFCE and TXTFCG
Description of TXTFCE and TXTFCG
The program TXTFCE provides the output headings. One output file named
IF25 is necessary. The program TXTFCE has to be executed only once for each
qualifier used. The running times are minor (UNIVAC 1108: 0.2 CPU seconds).
The program TXTFCG provides for output in metric units. One output file
named IF26 is necessary. Program TXTFCG also has to be executed only once
for each qualifier used. The running times also are minor.
Control and Data Card Requirements for TXTFCE and TXTFCG
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ASG,A *IF25.
e) "XQT qqs. TXTFCE
f) "ADD qqs.TEXT/TXTFCE
1 data card containing in columns 1-52 (center positioned)
an arbitrary heading, e.g. , CITY OF ROCHESTER
g) "FIN
For program TXTFCG control cards e) and f) are replaced by:
e) "XQT qqs. TXTFCG
f) "ADD qqs.TEXT/TXTFCG
Error Messages of TXTFCE and TXTFCG
TXTFCE and TXTFCG yield no program related error messages.
Output of TXTFCE and TXTFCG
The programs have no output.
42
-------
Programs RCVRIN and MNTWKC
Description of RCVRIN and MNTWKC--
The program RCVRIN initializes all recovery files needed by the program
MNTWKC. The latter program performs the actual simulations of quantity and
quality of runoff from the drainage areas and its transport through the sew-
er system.
RESTART may be used in case of a system breakdown or a maximum time in-
terruption. If the space provided for output is not sufficient, a message is
given and the calculation will be interrupted, but this situation is unlike-
ly to occur. Continuous simulation results are written on the files IF04,
IF18, IF19 and IF22. In case of a RESTART, further results continue to be
written on these files. In case of an interrupt and RESTART, the runoff of
the last rainfall event calculated is lost. The runoff of more rainfall
events may be lost if their runoffs are less apart than the duration of the
maximum flowtime.
It is suggested that continuous simulations be calculated year by year,
and that the results be saved on the files IF14 to IF24, each time prior to
a RESTART. After completion of a continuous simulation, the files IF01 to
IF26 must be copied and secured on tape including their qualifiers.
For single event simulations all initialization values must correspond
to 00.00 (hr.min) of the day of rainfall. Using all program capabilities for
single event simulations, running times in the magnitude of 10 to 20 CPU
minutes may be expected. However, the exact running time depends on the sew-
er system layout.
For continuous simulations the total computing time may be estimated on
the experience gathered with single event simulations of a specific system
by: Total computing time = time per interval * (number of precipitation in-
tervals + number of events * max. flow time of the system in intervals).
The core requirement of MNTWKC is 120 K UNIVAC words.
Control and Data Card Requirements for RCVRIN and MNTWKC--
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "XQT qqs. RCVRIN
f) "XQT qqs.MNTWKC
One data card for single event simulations:
Column 3 : 1
Columns 4 - 6: Estimate of the maximum flow time in the net-
work in 5-mioute intervals (Format 13), for
example Augsburg 56, Vancouver 40.
43
-------
Columns 10 - 11: Maximum number of iterations (Format 12, de-
fault value 15). Increasing this limit under
normal conditions will not yield better re-
sults but will only increase the calculation
time.
Data cards for continuous simulations:
Data card 1 (FORTRAN format 313, 112)
Column 3 : 1
Columns 4 - 6: Maximum flow time in intervals (same as for
single event simulations).
Columns 7 - 9: Total number of nodes of interest and special
nodes of interest for which subsequent statis-
tical analysis will be done.
Columns 10 - 11: Maximum number of iterations (default value
15). Increasing this limit under normal con-
ditions will not yield better results but will
only increase the calculation time.
Data card 2 and those following (FORTRAN format 8F10.0) contain
the critical basin depths in meters, at which the end of the storm
runoff is considered. The sequence of the basins must be identical
with the sequence on the output from program DWTFLC. For an esti-
mate of dry-weather flow depths see output of program DWTFLC.
g) "FIN
Note: The card e) has to be read only once for a continuous simula-
tion. In case of a RESTART and calculation of additional years, this
card must be removed.
Error Messages for RCVRIN and MNTWKC
An error message is given if the pollutant initialization is not com-
pleted. Large basins in particular, have to be checked, if pollutants can
travel through these basins within the maximum flow time provided.
Output of RCVRIN and MNTWKC
There is no output for the program RCVRIN. The output of MNTWKC mainly
indicates how many iterations are used in each time step and if control
gates are operating. Furthermore, the total pollutant wash-off from catch-
ment areas is provided for the time of calculation, specified by area types
(see Section 1 of this volume, Figure 8). These outputs from MNTWKC may be
considered as internal and are not discussed further here. However, an exam-
ple is provided in Appendix 9, Test Example for RCVRIN and MNTWKC.
For single event simulations the hydrographs and pollutographs are
stored on file IF23, which may be printed by the program MNTWSP. For con-
tinuous simulations, the results are stored in files for further evaluation
by the statistics program STATCS.
44
-------
Program MNTWSP
Description of MNTWSP--
The program MNTWSP prints single event simulation results, which were
written by the program MNTWKC on file IF23. For final calculations, the re-
sults should be secured for multiple outputs. The running time of the pro-
gram MNTWSP, of course, depends on the number of printout segments and in-
tervals, but is usually around 1 CPU minute on a UNIVAC 1108.
Control and Data Card Requirements for MNTWSP
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "XQT qqs. MNTWSP
One data card
Column 1 - 3:
f) "FIN
The number of time intervals to be printed out
is specified (FORTRAN format 13). The value
given may be smaller but not larger than the
number of time steps simulated in MNTWKC.
Error Messages of MNTWSP
There are no program related error messages in MNTWSP.
Output of MNTWSP--
For the segments and nodes specified by input to program DTCHCK flow
and depths hydrographs and pollutographs are provided. The output is des-
cribed in detail in Section 1 of this volume (Figures 5, 6 and 7). Further
examples are contained in Appendix 10, Text Example for MNTWSP.
Single Event Simulations as One Run
The control and data card requirements for single event simulations in
one run are:
Provision of files
Assignment of files
Provision of text file
Provision for metric units
a) "RUN
b) "QUAL qualifier
c) "ASG,A qqs.
d) "ADD qqs.CATALOG/IFXXDFSE
e) "ADD qqs.ASGXUSE/IFXX
f) "XQT qqs.TXTFCE
Data card
g) "XQT qqs.TXTFCG
Data card
h) "DATA,IL *RAIN
Precipitation data
i) "END
j) "DATA,IL *NET.
Network data
k) "END
45
-------
1)
m)
n)
"DATA,II *QUANT.
Quantity data
"END
"DATA.IL *QUALT.
Quality data
o)
p)
q)
r)
s)
t)
u)
v)
-
w)
-
x)
"END
"ADD
"XQT
"ADD
"ERS
"XQT
"XQT
"XQT
Data
"XQT
Data
"FIN
qqs.USE/DF
qqs.DTCHCK
*NET.
*IF13.
qqs.DWTFLC
qqs.RCVRIN
qqs.MNTWKC
card
qqs.MNTWSP
card
Data check
DWF Calculation
Recovery file initialization
Actual simulation
Printout
For explanations see the previous descriptions. For an estimate of the
total running time the estimates for the individual programs given may be
added.
Program STATCS
Description of STATCS
The basic continuous simulation results are quantities and pollution
loads entering or leaving the special nodes of interest and overflowing or
surcharging at the nodes of interest. The special nodes of interest and the
nodes of interest were specified by input to the program DTCHCK. The data at
these specified nodes are organized and one- or two-dimensional statistical
analyses are made for different statistical properties. A list of the prop-
erties which may be considered is contained in Appendix 5, Properties for
Statistical Analysis. Monthly and annual total overflow figures are also
evaluated. To evaluate average and maximum values and totals per event prior
to statistical analysis the data for entering and leaving amounts are con-
sidered from the start to the end of a runoff. The per event data for over-
flow and surcharge conditions are considered accordingly.
The pollutant values normally are dimensioned as kg (Ib), kg/s (Ib/s)
and mg/1 (ppm), respectively. For statistical analysis of fecal coliforms,
however, the user must substitute in the output the dimensions 1010 counts,
1010 counts/s and 1010 counts/1, respectively.
Note that some of the statistical properties are on an event basis,
while others represent interval values. In the latter case the values are
arranged only by their magnitude, and thus the relation to the individual
overflow event is lost. In this case it is possible to derive duration
curves from the cumulative frequency curve.
A direct combination or comparison between two one-dimensional frequen-
cy distributions or cumulative frequency curves is not possible. A cross
46
-------
correlation between two statistical properties can be obtained only by two-
dimensional statistical analysis.
Because the statistics scales are not chosen automatically by this pro-
gram, the maximum values have to be estimated for the properties investi-
gated. A good estimate is obtained on the basis of the runoff and overflow
results of a synthetic storm with a one-year recurrence, adding for maximum
scale values approximately 20 to 50 percent. The final scale should be ad-
justed in a way that the data are grouped approximately in a normal distri-
bution.
To find the optimum scales quickly, as a first trial it is suggested
that all properties at all nodes be analyzed with one (large) common esti-
mate for the maximum scale value of each property. Then in further runs for
individual nodes or small groups of nodes, the scales can be finalized. For
the final results the maximum scale value should not be exceeded by data for
a less-than-two-year frequency. Usually the best distributions can be ob-
tained by using individually adjusted scales. For basins or pumps, one com-
mon statistics run is sufficient, because continuous simulation results for
these facilities are obtained only under surcharge conditions.
It is advisable to use the graphical output option only for final runs
and annual statistics.
For control of statistical of results, the following checks are sug-
gested:
a) The total number of events, which is the sum of the individual
frequencies; on an event basis, they must be equal for all proper-
ties.
b) Total numbers of events or total numbers of intervals or annual
totals; if, after a change in scales, different total numbers are
obtained, the data are overwritten, i.e., if the internal files 9
or 11 were too small.
c) General plausibility of comparison of total surface runoff and
total volume of discharge and overflows.
Development of overflow abatement alternatives and the referencing of
single event simulation results to statistical results can be done in con-
junction with statistical analyses (2).
The running time on a UNIVAC 1108 for monthly and annual statistics is
approximately 5 CPU seconds per statistical property per node.
Control and Data Card Requirements for STATCS
a) "RUN
b) "QUAL qualifier same as for IF18 and IF19
c) "ASG,A qqs.
d) "ADD qqs.ASGX/STTF
47
-------
e) "XQT qqs.STATCS
Data cards
f) "FIN
Because data card requirements are extensive, they have been listed in
Appendix 4, Data Cards for STATCS. A test example for STATCS is given in Ap-
pendix 11.
Error Messages of STATCS
Program related error messages are given if input data or files are not
prepared according to specifications.
Output of STATCS
The major output of the statistics program STATCS consists of:
Monthly and annual totals of entering and leaving, discharging and
overflowing volumes and pollutant loads.
Frequencies and cumulative frequencies for one-dimensional statis-
tics as tabulated and graphical outputs.
Frequencies and cumulative frequencies of two-dimensional statis-
tics as tabulated and graphical outputs.
For a discussion of output interpretation see Section 1 of this volume
(Figures 9 to 13).
RUNOFF SIMULATION FOR RECEIVING WATER SYSTEMS
Programs Required for Runoff Simulations in Receiving Water Systems
Simulation of a receiving water system can be started only subsequent
to the simulation of the corresponding sewer system. For runoff simulations
in receiving water systems the following sequence of programs must be used:
DTCHCK
RCVRIN and MRBNTC
MRBNSP (for single event simulations)
STATCS (for continuous simulations)
In case data files do not exist or were deleted, the files must be pro-
vided by the following control cards prior to running DTCHCK:
a) "RUN (approximately 2 CPU seconds)
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.CATALOG/MRBDF
(for single event and continuous simulations)
48
-------
Also before starting DTCHCK for the receiving water system, all IF-
Files from the sewer system calculation must be saved on tape, as they will
be overwritten by the results from a receiving water system calculation.
The files IF07, IF15, and IF16 of the sewer system calculation are used
in the receiving water calculation. If a receiving water system run fails,
these three files must be loaded again from the tape.
Program DTCHCK for Receiving Water Simulations
Description of DTCHCK for Receiving Water Simulations
Program DTCHCK checks the receiving water network data (file MRBNET),
quantity data for the receiving water system (file MRBQNT), and quality data
for the receiving water system (file MRBQLT) for format and plausbility.
When the data contain no errors internal input files for the actual simula-
tion part of the package are created.
When erroneous data occur, the file IF07 from the sewer system calcula-
tion must be provided again prior to the start of a new DTCHCK run. The run-
ning times of the program DTCHCK for receiving water systems are in the mag-
nitude of 40 CPU seconds.
Control and Data Card Requirements for DTCHCK for Receiving Water Simula-
tions
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "ADD qqs.ASGX/MRBDF
f) "DATA.IL *MRBNET.
Network data
g) "END
h) "DATA,IL *MRBQNT.
Quantity data
i) "END
j) "DATA.IL *MRBQLT.
Quality data
k) "END
1) "ADD qqs.USE/MRBDF
m) "XQT qqs. DTCHCK
n) "ADD *MRBNET.
o) "FIN
In case of errors, the data check run must be repeated but only the er-
roneous data files must be replaced, e.g., if the file MRBQLT is errorless,
the control cards j) - k) are omitted. If all input data are correct, the
internal files IF06, IF07 and IF12 are established. Because the input re-
quirements for the network, quantity and quality data are quite extensive,
the data card specifications are contained separately in Appendix 2, Data
Cards for DTCHCK.
49
-------
Error Messages of DTCHCK for Receiving Water Simulations
There is an extensive number of program-related error messages (F) that
refer to erroneous input data. In addition, informative messages are pro-
vided to encourage the user to check the flagged data for their validity.
Only the errors (F) must be corrected in order to perform simulations. Be-
cause of the program structure, all of these error-and-information messages
are in German and Appendix 3 lists the corresponding English equivalents.
Output of DTCHCK for Receiving Water Simulations-
Listings and summaries of all input data are provided by the program
DTCHCK. Again internal input files enter the runoff simulation programs
RCVRIN and MRBNTC. All values in the internal files are in metric units even
if English units were used originally, because the runoff calculations are
always performed in metric units.
Programs RCVRIN and MRBNTC for Receiving Water Simulations
Description of RCVRIN and MRBNTC for Receiving Water Simulations
The program RCVRIN initiates all recovery files required by the program
MRBNTC. The program MRBNTC performs the simulations of quantities and quali-
ties of runoff throughout the receiving water system.
In performing continuous simulations, RESTART may be used in case of a
system breakdown or a maximum time interruption. If the space provided for
output is not sufficient, a message is given and the calculation will be in-
terrupted, but this situation is unlikely to occur. In case of an interrupt
and RESTART, certain results are lost, to wit; the runoff results of the
last discharge or overflow event routed through the receiving water system;
also the runoff results for more than one event if the runoff of the last
event is connected by maximum flowtime with the runoff of the preceeding
event.
It is suggested that continuous simulations be performed year by year
and that the results be saved on the files IF01 to IF26 (except IF04 and
IF22) each time prior to a RESTART. After completion of a continuous simula-
tion, the files IF01 to IF26 (except for IF04 and IF22) should be copied and
secured on tapes. The qualifiers, accordingly, should be used without fail.
Using all program capabilities for single event simulations, running
times of 5 to 8 CPU minutes may be expected. It should be understood that
the running time is dependent on the system layout.
For continuous simulations, the total computing time may be estimated
on the basis of experience gained with single event simulations of a speci-
fic system by: Total computing time = time per interval * (number of all
outfall or overflow intervals + number of events * maximum flow time of the
system in intervals). The core requirement of MRBNTC is 52 K UNIVAC words.
50
-------
Column
Columns
3
4 -
Columns 7 - 9:
Columns 10 - 11:
Control and Data Cards for RCVRIN and MRBNTC for Receiving Water Simula-
tions
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG,A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "XQT qqs. RCVRIN
f) "XQT qqs. MRBNTC
One data card (FORTRAN format 313, 112)
1
Maximum flow time in intervals (same as for
single event simulation).
Total number of nodes for which subsequent
statistical analysis is to be done. For single
event runs columns 7-9 must be blank.
Maximum number of iterations (default value
15). Increasing this limit usually will not
yield better results but only increases the
calculation time.
g) "FIN
Note: The card e) has to be read in only once for a continuous simula-
tion. In case of a RESTART and the calculation of additional years,
this card must be removed.
Error Messages for RCVRIN and MRBNTC for Receiving Water Simulations
An error message is given when the pollutant initialization is not com-
pleted prior to routing of each discharge and overflow event through the re-
ceiving water system.
Output of RCVRIN and MRBNTC for Receiving Water Simulations-
There is no output for the program RCVRIN. The output of MRBNTC mainly
indicates how many iterations were used in each time step. This output may
be considered as internal and is not discussed further.
For single event simulations, the hydrographs and pollutographs are
printed by the program MRBNSP. For continuous simulations, the results are
stored on files for further evaluation by the statistics program STATCS.
Program MRBNSP for Receiving Water Simulations
Description of MRBNSP for Receiving Water Simulations
The program MRBNSP prints single event simulation results produced by
the program MRBNTC. For final calculations the results should be secured for
multiple outputs. The running time of the program MRBNSP, which depends on
the number of printout segments and intervals, usually is less than 1 CPU
minute on UNIVAC 1108.
51
-------
Control and Data Card Requirements for MRBNSP for Receiving Water Simula-
tions
a) "RUN
b) "QUAL arbitrary qualifier
c) "ASG.A qqs.
d) "ADD qqs.ASGXUSE/IFXX
e) "XQT qqs. MRBNSP
One data card
Column 1-3: The number of time intervals to be printed out
(FORTRAN format 13). The value given may not be
larger than the number of time steps simulated in
MRBNTC.
f) "FIN
Error Messages of MRBNSP for Receiving Water Simulations
There are no program related error messages in MRBNSP.
Output of MRBNSP for Receiving Water Simulations
Flow and depth hydrographs and pollutographs are provided for the
segments and nodes specified by input to the program DTCHCK.
Program STATCS for Receiving Water Simulations
The basic continuous simulation results are hydrographs and polluto-
graphs at the nodes of interest specified by input to the program DTCHCK in
connection with receiving water system simulations. For receiving water sta-
tistics these data are also sorted and analyzed by the program STATCS. One-
and two-dimensional analyses may be performed for the statistical properties
specified by input to the program STATCS. Appendix 5 contains a list of
properties for statistical analysis.
It should be noted that for evaluation of average values and totals the
time basis taken for an event is the duration of runoff (duration of sewer
system overflows and the maximum flow time in the receiving water system as
defined in the input to the program RCVRIN and MRBNTC). For further remarks,
control and data card requirements, error messages and output see the pre-
vious description of program STATCS (pages 46^48).
PRECIPITATION STATISTICS
Program RAINSC
Description of RAINSC
This program statistically analyses precipitation records covering a
maximum of 20 years. Analysis can be made of 11 different properties on an
annual and monthly basis. Analysis of complete records is possible as well
as selective analysis of individual years or months as specified by input.
For each property the analysis is presented for two scales: A linear scale
based on the maximum value detected; and a scale chosen to contain autoraati-
52
-------
cally at least 50 percent of all values occurring. RAINSC allows for metric
units only.
The precipitation data of each record must be on a separate file in the
format specified in Appendix 2, Data Cards for DTCHCK, Precipitation Data,
Omitting cards 3 and 7 will allow for one precipitation series only.
The annual statistics are based only on the months specified on data
card 4 of program RAINSC. The maximum dry spell specified on data card 2
(RAINSC) ensures that for statistics this dry spell is the maximum value.
This value is not an artificial dry spell resulting from an interrupted rec-
ord (as for instance September to May, if precipitation data for May to
September were provided).
After each calculation the file PRINT, which contains the rainfall sta-
tistics, must be saved. The running time of the program RAINSC is approxi-
mately 2.5 CPU minutes for a record of 20 years, with each year containing
5 months of data.
The statistical properties analyzed by program RAINSC are given in Ap-
pendix 5, Properties for Statistical Analysis.
Control and Data Card Requirements for RAINSC
Prior to running the program RAINSC the text file *TFRS must be created
by:
"ASG,AX qqs.
"DELETE,C *TFRS.
"ASG.UP *TFRS.,F14///10
"XQT qqs.TEXTFC
"ADD qqs.TEXT/RAINSC
"FIN
The control and data cards for the program RAINSC are:
a) "RUN
b) "QUAL qualifier, under which the precipitation data are on file
c) "ASG.AX qqs.
d) "ASG,AX qualifier of program *TFRS.
e) ASG,AX *file name of precipitation data
f) "USE 11, *file name of precipitation data
g) "DELETE,C *FIRS.
h) "ASG,T *FIRS., F14///500
i) "DELETE,C *FRRS.
j) "ASG.T *FRRS., F14///500
k) "XQT qqs. RAINSC
Data cards
Data card 1 : Language card
Columns 1 - 4: *LAN
Column 8 : E for English or G for German
53
-------
Data card 2
Columns 1
Columns 6
Data card 3
Columns 1
Columns 7
1)
Data card 4
Columns 1
Columns 7
Data card 5
Columns 1
Data card 6
Columns 1
"FIN
: Maximum dry spell
- 4: *MDS
- 72: Approximation of real maximum dry spell in 5-
minute intervals (integer number). Longer dry
spells, theoretically provided by input for
interrupted records, must not be considered.
: Choice of years
- 4: *YAR
- 65: Years (FORTRAN format 13, e.g., 67 68 69), on
which statistical analysis should be based (20
at a maximum). If all years provided on the
precipitation data file should be considered,
this card is omitted.
: Choice of months
- 4: *MNT
- 42: Months per year (FORTRAN format 13, e.g. 7 8
9 10) on which statistical analysis should be
based. If all months provided on file should
be considered, this card is omitted.
: End card
-2: **
For additional statistical analysis of the
precipitation record in question, data cards
1 through 5 follow again.
: End of data cards
- 3: ***
Error Messages of RAINSC
Program related error messages are given, if direct input data or data
contained in the precipitation files supplied are erroneous.
Output of RAINSC--
Frequencies, cumulative frequencies, and cumulative frequencies in per-
cent are provided of the properties analyzed for linear scales based on the
maximum value occurring; the same is given for a detailed linear scale,
which is chosen so that at least 50 percent of all values are contained in
the nine lower scale ranges of the detailed scale. Section 1 of this volume
contains a discussion of the output (see also Figure 14). A test example for
RAINSC is contained in Appendix 12.
54
-------
SECTION 4
TEST EXAMPLES
GENERAL
In order to illustrate the program handling characteristics of the QQS
program package a test example is provided. Even though the example as a
whole is hypothetical, the input data to the individual programs mainly were
taken from actual projects in order to provide realistic figures, especially
for the functions which are specific for the QQS method.
Input and output are illustrated for the program QQSEGL, which simu-
lates the runoff from individual drainage areas, for the program sequence
DTCHCK, DWTFLC, TXTFCE, (TXTFCG,) RCVRIN, MNTWKC, MNTWSP and STATCS, which
are used to perform runoff simulations in sewer systems, as well as for the
program RAINSC, the precipitation statistics program. A comprehensive test
example is used to demonstrate the association of the individual programs.
It must be understood that only a few facets of the many application possi-
bilities offered by the programs can be demonstrated by this example.
All input is prepared according to the requirements of Section 2, Pro-
gram Handling. The output interpretation of the individual programs is ex-
plained in Section 1, Program System.
This test example, together with the multitude of verification runs
provided in Volume I (Model Description, Testing, and Applications,
Section 4, Verification and Testing), are intended to enable a new user to
develop a familiarity with input data preparation for the QQS program pack-
age.
PROBLEM DESCRIPTION
The demonstration area chosen is drained by both separate and combined
sewers. The urbanized catchments are located on both sides of a river (Fig-
ure 15). The combined sewer system overflows and the treatment plant efflu-
ent enter this receiving water.
The receiving water system may be heavily overloaded because of the
many industrial inflows, sewer system outfall discharges and overflows, and
nonpoint sources. Therefore, an appropriate scope for a study would be to
assess the effect of the present system on the receiving water and to de-
velop structural and nonstructural pollution abatement alternatives on the
basis of BODS, TSS, fecal coliform, and COD information. Abatement alterna-
tives should utilize the existing sewer system to a maximum. Alternatives
55
-------
C039
combined main sewer system
seperate sewer system
receiving water system
Ui combined sewer overflow
L_J basin
(B)
vf_/ pumping station
W sewage treatment plant
[ij control gate regulated by WSE at
Figure 15. Test catchment.
56
-------
studied may include different levels of surface ponding, inline storage, or
operational control as opposed to increasing the treatment plant capacity.
Once the decision has been made to employ a mathematical model for as-
sessment of the pollution problem and the development of abatement alterna-
tives, the study may be subdivided for mathematical model applications into
the following phases:
Data preparation and calibration for present conditions
Verification of the program package
Problem assessment
Data preparation for future conditions
Development of abatement alternatives for present conditions
and/or different stages of future conditions
Proof that the selected alternatives meet guidelines and re-
ceiving water standards.
Even though in the following demonstration the individual programs are
applied only once, it should.be understood that for an actual project a rep-
etitive application of some programs must be made.
DATA PREPARATION
The catchment under investigation has a total area of 393 ha (971
acres). For simulation purposes this area is subdivided into drainage areas
averaging 35 ha (86 acres) in size; The areas are shown in Figure 15. The
boundaries of individual drainage areas are defined for ten combined sewer
drainage areas and one area drained by a separate sewer system. The outflows
of the individual drainage areas are connected to a system of main and trunk
sewers (for runoff calculations the individual drainage areas are handled by
the QQS model as lumped system). For preparing the network data note, espe-
cially in view of continuous simulations, that the computer time is mainly
dependent on the number of elements and precipitation intervals considered.
Comparisons with field data showed that sewer lengths of approximately 500 m
in connection with the 5-minute time step for calculations are practical and
yield acceptable computer times.
For demonstration purposes a possible alternative for overflow abate-
ment was chosen to consist of one basin, three combined sewer system over-
flows, and one control gate. The dry-weather or combined sewer flows are di-
rected by this system to a sewage treatment plant, the effluent of which is
pumped to the receiving water. The sewers and the basin of the system pro-
vide substantial inline storage. The runoff from the area AC28 entering the
main and trunk sewer system is throttled by a control gate, the operation of
which is dependent on the water depth at the node C034. Assuming that AC28
is a projected new development area that later on might require its own new
treatment plant, the area shall not, in the meantime, be allowed to overload
the old system.
Preparation of the network, quantity and quality files of the input
data may be aided by applying the program DTCHCK, the error meassages of
57
-------
which speed debugging of the input data prepared. The input data as prepared
for DTCHCK for this demonstration are provided in Appendix 7.
The derivation and calibration of input data such as unit hydrographs
and pollutographs may be made especially for present conditions, using the
program QQSEGL, which simulates runoff quantities and qualities from indivi-
dual drainage areas. For drainage area AC01, it was assumed that runoff
measurements were available. An input and output example of the program
QQSEGL is included in Appendix 6 for a case where calculated flows, BOD,.,
and TSS loads were compared with measured data.
For final definition of the unit hydrographs and pollutographs the pro-
gram QQSEGL is applied repetitively until satisfactory runoff calculations
are obtained for the measured events available. .Careful checking of the
measured data and of the boundary conditions for the individual events in-
vestigated helps to avoid calibration of input data against wrong measure-
ments or under false assumptions.
The calibration of input data may be extended to the main and trunk
sewer system if measured runoff data from this system are available. There-
fore, single event simulations are performed using the sequence of programs
DTCHCK, DWTFLC, TXFCE, RCVRIN, MNTWKC, and MNTSWP. Because the example cho-
sen represents an abatement alternative, single event simulations of the
runoff in the sewer system is further discussed below. Repetitive applica-
tion of the program sequence, comparison of the calculated runoff with meas-
urements and adjustment of input data lead to a final input data set.
For the final calibration it should be understood that the intention of
the model is not to picture the system geometry exactly but to represent the
approximate runoff and overflow behavior of the system. Therefore, the sewer
network may be abstracted and roughness coefficients of individual sewer
segments, overflow weir heights and even profile dimensions may be adapted
to achieve this goal.
VERIFICATION
Verification of the program package is usually accomplished by compar-
ing the calculated runoff of the individual drainage areas and of the system
as a whole with measured dry-weather flows and rainfall-runoff data. Because
verification of runoff behavior of the total system to a similar extent for
all different magnitudes of precipitation events may prove difficult, empha-
sis should be given to those precipitation events that would usually cause
overflows or overloading, conditions that are supposed to be abated or av-
oided by the alternatives in mind.
ABATEMENT ALTERNATIVES
Abatement alternatives usually are developed starting from present con-
ditions. To save computing time, the effectiveness of different abatement
schemes may be tested by relative comparisons of the calculated runoff and
58
-------
overflow behavior. This approach usually is on the basis of synthetic storms
or real storms considered critical for the loading of the system. Also, in
this context continuous and single event simulation results may be combined
(2). As an example of single event runoff simulations of the overall system,
a set of input and output data is contained in Appendices 8, 9 and 10. Final
choice of an abatement alternative is based on technical evaluation and cost
figures associated with the different schemes.
PROBLEM ASSESSMENT AND VIOLATION OF GUIDELINES AND STANDARDS
A problem can conclusively be assessed and violation of guidelines and
standards can be demonstrated only by a continuous investigation of the pre-
cipitation-runoff-overflow behavior of the entire system as explained in
Volume I (Model Description, Testing, and Applications; Section 1, In-
troduction). Therefore, the above-named sequence of programs is used for
sewer system runoff simulations with continuous rainfall records. How-
ever, instead of the program MNTWSP, which provided the output of runoff
hydrographs for single event simulations, the multitude of output data prod-
uced by a continuous simulation is statistically analyzed by the program
STATCS. For continuous simulations, aside from the precipitation data and
data card 2 of the program DTCHCK: Network data, the input is similar to the
input necessary for single event simulations. The additional input data re-
quired for the statistics program STATCS and output samples of this program
are provided in Appendix 11. As far as monthly or annual totals are con-
cerned, the ratios of total runoff to overflow figures, comparing for in-
stance present and future (abated) conditions, are more informative than
the absolute values are.
For assessment of runoff and overflow behavior, simulation of contin-
uous records of as long as 20 years duration was not found to be necessary.
Selection of 4 to 6 representative years from a long continuous precipita-
tion record has proved beneficial for runoff simulation purposes. This se-
lection is aided by statistical analysis of the precipitation data. If for
statistical key properties the statistical analysis of the complete rainfall
record yields similar results as the statistical analysis of the years se-
lected does the shorter precipitation record may be used as the continuous
runoff simulation input. Statistical analysis of precipitation data is done
by the program RAINSC. See Appendix 12 for input and output examples. How-
ever, the years used in the examples were selected arbitrarily and are not
necessarily the best choice.
59
-------
REFERENCES
1. Geiger, W. F. Urban Runoff Pollution Derived from Long-Time Simula-
tion. In: Proceedings of the National Symposium on Urban Hyrodolgy
and Sediment Control, Lexington, Kentucky, 1975. pp. 259-270.
2. Geiger, W. F., S. A. la Bella and G. C. Me Donald. Overflow Abatement
Alternatives Selected by Combining Continuous and Single Event Simula-
tions. In: Proceedings of the National Symposium on Urban Hydrology,
Hydraulics and Sediment Control, Lexington, Kentucky, 1976. pp. 71-79.
3. HEC1. Flood Hydrograph Package. Users Manual. The Hydrologic Engineer-
ing Center, Davis, California, 1973. 25 pp.
60
-------
APPENDIX1
DATA CABDS FOR QQSEGL
PROGRAM QQSEGL:
Input data
DATA CARD
SUMMARY OF DATA CARDS:
Extent of simulations
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARD(S)
DATA CARD(S)
DATA CARD
2a
2b
3
4a
4b
4c
5
6
7 :
8 :
9a:
9b:
9c:
9d:
lOa:
lOb:
lla:
lib:
12a:
12b:
13 :
PART 1: QUANTITY
Number of precipitation intervals
Precipitation intensities
Losses
Number of unit hydrograph ordinates
Unit hydrograph impervious areas
Unit hydrograph pervious areas
Drainage area characteristics
Measured runoff
PART 2: QUALITY
Number of pollutants
Starting interval
Number of unit pollutant load hydrograph ordinates
Conversion and area factors
Unit pollutant load hydrograph for pollutant 1
Unit pollutant load"hydrograph for pollutant 2
Diurnal variation influence for pollutant 1
Diurnal variation influence for pollutant 2
Influence of rainfall duration on pollutant 1
Influence of rainfall duration on pollutant 2
Measured load of pollutant 1
Measured load of pollutant 2
Amount of pollution at start of rainfall
NOTE: PROGRAM QQSEGL only allows for metric input. Special provision for
input of bacteria counts is not made.
61
-------
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown. All blanks within a field shown
in the format box are interpreted as zeros.
Symbols used in the format boxes coordinate the explanations giv-
en on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of Volume 1 (Model Description,
Testing, and Applications).
62
-------
PROGRAM QQSEGL
DATA CARD 1: Extend of simulations
EXPLANATIONS:
0 Runoff quantity only is computed. DATA CARDS 1 to 6 must be supplied
1 Runoff quantity and quality are computed. DATA CARDS 1 to 13 must be
supplied
-------
PROGRAM QQSEGL
DATA CARD 2a: Number of precipitation intervals
a^p^l/ g[9|lO IIJI2 I3|M I5H4 17 II 19 Kplpp Mp 2O27 iSQV MJ3I[3
EXPLANATIONS:
N
Number of precipitation intervals (^ 99)
One interval has a duration of 5 minutes
-------
PROGRAM QQSEGL
DATA CARD(S) 2b: Precipitation intensities
IN
1 2
3
4
5
IN
1'
a
V
10
IN
n
12
1314
IS
IN
16
i;L
i»
20
IN
21
22
2^4|2S
IN
j^ja^pa
29J3C
IN
1ID3
33
H"
IN
up;
M
1M40
IN
4IJ42
43^
a
IN
44
17
II
It
X
IN
5152(53
4,
IN
56
57J5U
snsc
IN
ii
nL
M
u
IN
"H68
40
^i
IN
444*
IN
»444o
EXPLANATIONS:
IN
Precipitation intensities in
(Continue up to 7 cards)
nun
1,000 5 min
(J\
-------
PROGRAM QQSEGL
DATA CARD 3: Losses
EXPLANATIONS:
cr.
DI
DP
IDP
IR
Maximum initial losses for impervious areas in nnn mm
J. 9 \IUU
1
Maximum initial losses for pervious areas in
1,000
Initial losses at start of calculation for pervious areas in
1,000
mm
Final constant rate of infiltration in
mm
1,000 5 min
NOTE: The initial losses include initial evaporation, wetting losses, depression capaci-
ties on the oversurfaces and initial losses within the drainage system of the
catchments. For pervious areas in addition the initial rate of infiltration cap-
acity above the final constant rate is included in the initial losses.
Dependent on surface roughness and land use the initial losses for impervious
areas vary from 0.5 to 3.0 mm. The infiltration for pervious areas may be as
much as 12.0 mm. Some reference values are given on DATA CARD 5 of PROGRAM
DTCHCK: Quantity data in Appendix 2.
The initial losses at the start of a calculation must .be smaller than the maximum
initial losses provided. The value must be valid for the start of rainfall.
The final constant rate of infiltration may vary substantially and is mainly de-
pendent on the perviousness of the top soil layer. For some reference values see
DATA CARD 6 of PROGRAM DTCHCK: Quantity data in Appendix 2.
-------
PROGRAM QQSEGL
DATA CARD 4a: Number of unit hydrograph ordinates
EXPLANATIONS:
Number of unit hydrograph ordinates for impervious areas (^ 30)
Number of unit hydrograph ordinates for pervious areas (^ 30)
-------
PROGRAM QQSEGL
DATA CARD(S) 4b: Unit hydrograph impervious areas
Al
n
,
9
/
10
u
12
I2|l3|l4
IS
14
A3
*
17 18 19 ZOplpTp^
A4
*
VMOV 28 29 30 1102
A5
*
333 -MS
14
17
u
»
to
A6
*
oUjLaLXJ^A
7
«
A7
*
A8
Sfl
+
61
i2
S3
M
Ag
UUp
ta
HT
72
A10
73 7-fyi 76 r> 7BJ79 JO
EXPLANATIONS:
A.
Dimensionless ordinates of the unit hydrograph for impervious areas
(5-minute intervals). A maximum of 30 values may be given.
oo
NOTE: The sum of all ordinates of one unit hydrograph must be 1.0.
The unit hydrographs may be derived from rainfall-runoff measurements or syn-
thetic unit hydrographs may be used. The values as contained in Appendix 6,
Test Example for PROGRAM QQSEGL, are not generally transferable on other areas,
as the shape of the unit hydrographs is dependent on catchment size, shape,
slope, land use and other characteristics.
-------
PROGRAM QQSEGL
DATA CARD(S) 4c: Unit hydrograph pervious areas
61
FF
4
S
6
7
B
B2
9 10 ll|l2JI3|u|l5|l6
17
IS
B3
IVpOBlp
23
24
2)
B4
2
-------
PROGRAM QQSEGL
DATA CARD 5: Drainage area characteristics
EXPLANATIONS:
A Size of drainage area in ha
GAMMA Ratio of imperviousness in percent of total area
o
-------
PROGRAM QQSEGL
DATA CARD(S) 6: Measured runoff
II 12 13 14 ll
IJ5J S3J3
-------
PROGRAM QQSEGL
DATA CARD 7: Number of pollutants
19 Mpip J3fM «B4 17JM lVfq^\ 42
EXPLANATIONS:
Total number of pollutants (1 or 2)
NOTE: One or two pollutants may be investigated in one run with PROGRAM QQSEGL.
-------
PROGRAM QQSEGL
DATA CARD 8: Starting interval
EXPLANATIONS:
D
5-minute interval of day, where precipitation starts, e.g. 150 for
12.30 (hr.min)
-------
PROGRAM QQSEGL
DATA CARD 9a: Number of unit pollutant
load hydrograph ordinates
EXPLANATIONS:
H
Number of unit pollutant load hydrograph ordinates for pollutant I
Number of unit pollutant load hydrograph ordinates for pollutant 2
NOTE:
The number of pollutant load unit hydrograph ordinates must be equal or smaller
than the smaller number of unit hydrograph ordinates given on DATA CARD(S) 4b or
4c of PROGRAM QQSEGL.
-------
PROGRAM QQSEGL
DATA CARD 9b: Conversion and area factors
EXPLANATIONS:
AF,
Dimensionless area factor for pollutant 1 (usually 1.0)
Dimensionless area factor for pollutant 2 (usually 1.0)
NOTE:
Ul
The area factors multiply with the ordinates of the unit pollutant load hydro-
graphs as given on DATA CARDS 9c and 9d of PROGRAM QQSEGL. This feature is pro-
vided to allow for quick variation of the unit pollutant load hydrographs dur-
ing the calibration process.
-------
PROGRAM QQSEGL
DATA CARD(S) 9c: Unit pollutant load hydrograph
for pollutant 1
pll
1 2
3
4
I-
7
B
P12
*
fl"
12
13
I4|l5|l6
P13
*
17 lt|l» 20J2I 22 23p4
P14
*
2524ppe
zsjsojjip
P15
3£
UO7
H3T°
P16
4IJ42 43J44|42
I7J4B
P17
"H42
53
H4*
P18
^H'kh
n
',.
4r
.
5»J7t
n|72
Pln
HH4f
78
79110
EXPLANATIONS:
Ordinates of the unit pollutant load hydrograph for pollutant 1
NOTE:
The number of pollutant load unit hydrograph ordinates must be equal or smaller
than the smaller number of unit hydrograph ordinates given on DATA CARD(S) 4b or
4c of PROGRAM QQSEGL.
cr>
-------
-vl
VJ
PROGRAM QQSEGL
DATA CARD(S) 9d: Unit pollutant load hydrograph
for pollutant 2
21
22
23
24
25
26
27
r28
2n
I 23 436 78
n"M4
10 II 12 13 14 I3h« I7UI IV 20 21 22 23 !4
15 16 17 W 3« 40 41
(sjscfcip n S4 ssu >7papi|at{A) 6i[a^ u M ww we nb:
EXPLANATIONS:
Ordinates of the unit pollutant load hydrograph for pollutant 2
NOTE:
The number of pollutant load unit hydrograph ordinates must be equal or smaller
than the smaller number of unit hydrograph ordinates given on DATA CARD(S) 4b or
4c of PROGRAM QQSEGL.
-------
PROGRAM QQSEGL
DATA CARDS lOa: Diurnal variation influence
for pollutant 1
DV
11
DV
12
DV
13
0V
14
DV
15
DV
16
0V
17
DV
18
DV
1..
DV
In
o[n
1718
19 20 21 22 23EM 25
M J7J2
10 41 421
>2 S3 S4lSS(56
l 72
|74 75 ram*n ^
EXPLANATIONS:
DV
li
Dimensionless influence factor for the time of day on pollutant 1
(0.0 5 Du g 1.0)
00
NOTE:
48 subsequent values starting at midnight are necessary, each representing
half an hour.
The change in land use conditions during the day (e.g. traffic conditions)
may be accounted by the diurnal variation influence factor. For BODS, COD
and TSS for instance DV usually is 1.0 during rush hours and decreases
to 0.8 for night time traffic.
-------
PROGRAM QQSEGL
DATA CARDS lOb: Diurnal variation influence
for pollutant 2
DV
21
DV
22
DV
23
Mx 21(22)23 24 2d2« 2? »
DV,
24
DV
25
DV
26
13J34J3J ji|37p 3»J40
Ut
DV
27
DV
28
DV
Z..
OTa S*C 41 ijCt ij M 67 UJM WJ7IJ72 wJ/i 74 77J78 7!
DV
2n
12)45 67 I
» 10 II
iaffl
1516
- U OUt! (
EXPLANATIONS:
NOTE:
DV2i
Dimensionless influence factor of the time of day on pollutant 2
(0.0
DV2i
1.0)
48 subsequent values starting at midnight are necessary, each representing
half an hour.
The change in land use conditions during the day (e.g. traffic conditions)
may be accounted by the diurnal variation influence factor. For BODs, COD
and TSS for instance DV^. usually is 1.0 during rush hours and decreases
to 0.8 for night time traffic.
-------
PROGRAM QQSEGL
DATA CARDS lla: Influence of rainfall duration
on pollutant 1
Rn
i^T
4
5
4
T
R12
9 10 II I2|I3||4
ISIA
R13
I7JIB I9p
3 21 22p3J24
R14
25 24 27J2B
TPr
33
R15
4434
17
H3T°
R16
*
4>|»
4rrT8
R17
*
*9J5CJ5I(52[53J5X
4,
R18
s^fJ^J^t
":
u|u|»|u|tf
4>h
Rln
73 74pi|76p 70
79 BC
EXPLANATIONS:
Dimensionless influence factor of rainfall duration on pollutant 1
(0.0 £ R £ 1.0)
'JO
o
NOTE:
20 values are necessary (5-minute intervals).
The ability of a rainfall intensity to wash off pollutants is decreasing with
increasing rainfall duration. At the beginning of a rainfall R-. = 1.0. After
90 minutes RI. usually decreases to 0.2 to 0.4. The figures provided in Ap-
pendix 7, Test Example for PROGRAM DTCHCK, may be used as reference values.
-------
PROGRAM QQSEGL
DATA CARDS lib: Influence of rainfall duration
on pollutant 2
R21
*
1 2 3 415
6
1
g
R22
*
9|lo|ll|l2 I3|U
IS
16
R23
17 ie ic
MB'
22
23
U
R24
232J27
28(29
4,
)2
R25
33
34
U
36
37
ia
39
40
R26
4W
44
41
H'T"
"27
*
*H4>MHM»
"28
S7|S1S9
4,
4+
"?..
»5JM U M|6<
7d7<
72
R2n
73 74|73)w|77J7ll 79J8C
EXPLANATIONS:
R
2i
Dimensionless influence of rainfall duration on pollutant 2
(0.0 ^ R
2i
1.0)
NOTE:
20 values are necessary (5-minute intervals).
The ability of a rainfall intensity to wash off pollutants is decreasing with
increasing rainfall duration. At the beginning of a rainfall R~- = *-0- After
90 minutes R usually decreases to 0.2 to 0.4. The figures provided in Ap-
pendix 7, Test Example for PROGRAM DTCHCK, may be used as reference values.
-------
PROGRAM QQSEGL
DATA CARD(S) 12a: Measured load of pollutant 1
MP
13
HP
14
"
15
"
16
MP
1?
MP
18
*
!..
MP
ln
34
47
11[13 13 U Ii[l6 17 mi?
2 23 24 2511
112
I? « «9Bc|si s:
>l 62 4:
2 n 74
m 74 M70 7'
990
EXPLANATIONS:
NOTE:
00
CO
MP1. Measured runoff load of pollutant 1 not including dry-weather flow
in kg/5 min
The number of values supplied must be equal to the number of precipitation
intervals provided on DATA CARD(S) 2b of PROGRAM QQSEGL + the larger number
of unit pollutant load hydrograph ordinates given on DATA CARD(S) 9c or 9d
of PROGRAM QQSEGL +1.
-------
PROGRAM QQSEGL
DATA CARD(S) 12b: Measured load of pollutant 2
' MP
21
MP
22
MP
23
HP
24
MP,
25
MP
26
MP
27
"28
MP.
2..
MP
2n
1234 5 6 7 \»
20J2
!l 22 23 24 2:
tip 27|2
EXPLANATIONS:
MP2.
Measured runoff load of pollutant 2 not including dry-weather flow
in kg/5 min
00
U)
NOTE:
The number of values supplied must be equal to the number of precipitation
intervals provided on DATA CARD(S) 2b of PROGRAM QQSEGL + the larger number
of unit pollutant load hydrograph ordinates given on DATA CARD(S) 9c or 9d
of PROGRAM QQSEGL +1.
-------
PROGRAM QQSEGL
DATA CARD 13: Amount of pollution at start of rainfall
EXPLANATIONS:
Initial amount of pollution for pollutant 1 in kg/ha
Initial amount of pollution for pollutant 2 in kg/ha
NOTE:
The initial amount of pollution is the pollution available for wash-off at
the start of rainfall.
00
-------
APPENDIX 2
DATA CARDS FOR DTCHCK
PROGRAM DTCHCK:
Precipitation data
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CARD
CARD
CARD
CARDS
CARDS
CARD
CARD
1
2
3
4
5
6
7
Title card
Year card
Month card
Type-of-event cards
Precipitation cards
End card
End card
NOTE: Precipitation data according to these specifications are supplied
only for continuous simulations. For single event simulations the
precipitation data enter PROGRAM DTCHCK on DATA CARDS 4 of the
network data.
R and S at the upper right of each data card description specifies
if the data card(s) must be included for separate and combined
sewer system (S) and/or for receiving water system (R) simula-
tions .
If the format box on top of each data card description is subdi-
vided, the upper part describes the input in english, the lower
part in metric units.
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown.
Symbols used in the format boxes coordinate the explanations given
on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of Volume I (Model Description,
Testing, and Applications).
85
-------
PROGRAM DTCHCK: Precipitation data
DATA CARD 1: Title card
34 S A
I3|U UJI6 I7JI8 I»20hl|
a 19
3 44 tS *
?j /6 17 7
EXPLANATIONS:
Any text with up to 80 alphanumeric characters may be inserted.
NOTE:
This card must be identical with the title cards of the network, quantity and
quality data.
00
o\
-------
PROGRAM DTCHCK: Precipitation data DATA CARD 2: Year card
1 A'2 A'3 '4 UU'SUU'G A 7 ftT8
EXPLANATIONS:
i
DT
Year, e.g. 78 for 1978 in increasing sequence
Duration of a time interval in minutes, 5.0 must be entered
00
-J
-------
PROGRAM DTCHCK: Precipitation data DATA CARD 3: Month card
EXPLANATIONS:
M.
Month, in increasing sequence starting in the first space,
e.g. 9 for September
00
oo
-------
PROGRAM DTCHCK:
Precipitation data
DATA CARDS 4: Type-of-event-cards
EXPLANATIONS:
CD
vD
Year
Month
Day
Hour
Minute
INT
DURATION
Type of event
0 dry spell
1 rainfall event (cards containing the rele-
vant precipitation intensities roust follow)
Starting time of the individual event using a 24 hour clock
Number of interval of day at which the event starts, one in-
terval being of 5 minutes duration
Duration of event in intervals
NOTE:
At the end of an individual year or of a calculation period in a year a dry
spell card must be provided covering the whole time span until the start of
the first precipitation to be simulated in the next year or calculation pe-
riod in a year, not accounting, however, for total years missing.
A complete precipitation series, however, ends with a rainfall event.
The calculation periods in the different years must match, e.g. always May
through September.
-------
PROGRAM DTCHCK: Precipitation data DATA CARDS 5: Precipitation cards
R9
MO
Ml
M2
13
. n
MIO
II U I3||4111 I
EXPLANATIONS:
Amount of rainfall within the (5-minute) time interval DT
in 1/1,000 mm
NOTE:
There is no limit to the number of values supplied using sequential cards.
Precipitation cards only follow subsequently to a type-of-event card in-
dicating E = 1 (DATA CARDS 4 of PROGRAM DTCHCK: Precipitation data).
>D
o
-------
PROGRAM DTCHCK: Precipitation data
DATA CARD 6: End card
EXPLANATIONS:
The end of a precipitation series comprising of several years or of several
calculation periods in different years is marked by this card. For a second
and third precipitation series DATA CARDS 4 to 6 of PROGRAM DTCHCK are repeated:
Precipitation data may follow.
-------
PROGRAM DTCHCK: Precipitation data
DATA CARD 7: End card
EXPLANATIONS:
The very last precipitation series supplied is marked in addition by this sec-
ond end card.
VO
-------
PROGRAM DTCHCK:
Netwbrk (and drainage area) data
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
DATA CARD
DATA CARDS
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
1
2
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
4
5a
5b
6a
6b
6c
6d
7a
7b
7c
8a
8b
Title card
Constant card
Printout segments
End of printout segments
Printout nodes, overflow structures (OS)
End of printout nodes, overflow structures (OS)
Printout nodes, basins (RS)
End of printout nodes, basins (RS)
Special nodes of interest
Nodes of interest
Boundary nodes (constant loading)
Boundary nodes (variable loading)
Precipitation intensities
Segment cards
End card
Special structure type 1, overflow structure (OS)
Special structure type 2, flooded detention basin (RS)
Special structure type 3, pump drained basin (RS)
End card
Control gate type 1
Control gate type 2
End card
Drainage areas
End card
NOTE: This data set containing network and drainage area data, constant
cards and regulating information also is briefly called "Network
data".
R and S at the upper right of each data card description specifies
if the data card(s) must be included for separate and combined
sewer system (S) and/or for receiving water system (R) simula-
tions .
93
-------
If the format box on top of each data card description is subdi-
vided, the upper part describes the input in english, the lower
part in metric units.
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown.
Symbols used in the format boxes coordinate the explanations given
on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of Volume I (Model Description,
Testing, and Applications).
94
-------
VO
Ul
PROGRAM DTCHCK: Network data
DATA CARD 1: Title card
R
S
I I J 4 iUl'UUIlolll II 111* lilJl/U I
EXPLANATIONS:
Any text with up to 80 alphanumeric characters may be inserted.
NOTE:
This card must be identical with the title cards of the precipitation,
quantity and quality data.
-------
PROGRAM DTCHCK:
Network data
DATA CARD 2: Constant card
R
S
DATE
I J 3
N
1114
WCF
15 16 17 IB 19 20 II 2
IWF
PF
JiMm
PF
O
Tl J«bS 3b 17
PF
1U19MI
5C5I5V5:
START
INT
'1/6
EXPLANATIONS:
ON
DATE Up to 10 characters, e.g. 10/25/1974 or OCT.25,74;
if blank, the current machine date will be used.
PS Number of precipitation series considered in the project,
e.g. 1, 2 or 3
N General value for Manning's n , dimensionless (0.007 S N £ 0.1)
It holds good for all sewer segments that are not provided with an
individual value on DATA CARD(S) 5a of PROGRAM DTCHCK: Network data
WCF Prognosis factor for water consumption, dimensionless
(0.1 S WCF S 10.0). The value provided here serves as default value
for WCF on DATA CARD(S) 8a of PROGRAM DTCHCK: Network data. WCF is
used to multiply DWF on DATA CARDS lOa of PROGRAM DTCHCK: Quantity
data. For normal applications 1.0 is suggested.
IWF Prognosis factor for industrial wastewater, dimensionsless
(0.1 ^ IWF ^ 10.0). The value provided here serves as default value
for IWF on DATA CARD(S) 8a of PROGRAM DTCHCK: Network data. IWF is
used to multiply IW on DATA CARD(S) 8a of PROGRAM DTCHCK: Network
data. For normal applications 1.0 is suggested.
PF. Prognosis factor for the amount of pollutant i contained in dry
weather flow, dimensionless (0.1 ^ PF. S 10.0). PF. is used to
multiply AP. on DATA CARDS lla of PROGRAM DTCHCK: Quality data.
For normal applications 1.0 is suggested.
-------
PROGRAM DTCHCK:
Network data
DATA CARD 2: Constant card continued
EXPLANATIONS:
VO
C Condition 1 single event simulation; precipitation intensi-
ties are read in by way of DATA CARDS 4 of
PROGRAM DTCHCK: Network data
3 continues simulation; precipitation intensities
are read in as a separate data set (PROGRAM DTCHCK:
Precipitation data)
START Starting date and time of event(s) simulated, e.g. Day = 1,
Months = 5, Year = 76, Hour = 13 and Minute = 25
END Ending date and time of event(s) simulated, only supplied for
C = 3, e.g. 31, 10, 77, 23 and 55
INT Number of intervals of single event to be simulated, only for
C = 1. A maximum number of 288 intervals is allowed
DT Duration of time step, 5 minutes must be used, i.e. 5
TEST blank no test printout
T test printout
RW blank or 0 in the run anticipated a sewer network is calculated
1 in the run anticipated one receiving water system is
calculated
2 in the run anticipated two independent receiving
water systems are calculated
PRUEF blank or 0 the project only comprises a sewer network
1 the project comprises both, sewer network and re-
ceiving water system(s)
A value for PRUEF only is provided, if RW = blank or 0
LAN 1 english language is used for output
MET blank or 0 metric units are used for input and desired for output
1 english units are used for input and desired for output
-------
ROGRAM DTCHCK:
X
1 2
Nl
3
4 I*
6
NO
i
»
10
)
n
(
12
Network data
Nl
i'j
u
IS
\t>
NO
4.
19
20
)
21
(
2i
Nl
4.
2Sp
NO
M28
2«
3d
X
4,
DATA CARD(S) 3a:
Nl
4.
33
36
NO
iwap
,0
41
42
Nl
43 4-1
43
46
Printout
NO
ITUUU?
M
X
5152
Nl
"HH*
segments
NO
SfliU
SlL
x
4?
Nl
4
isL
i?
NO
Ml
iVpfl
x
4,
Nl
4<
+
NO
444°
R
S
EXPLANATIONS:
Nl, NO Inflow and outflow nodes of segments for which hydrograph printouts
are desired.
NOTE:
VO
00
For single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network
data) only.
Up to 100 segments may be specified in arbitrary sequence for a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK: Network data). Up to 50 seg-
ments may be entered for a receiving water network (RW = 1 or 2 on DATA CARD 2
of PROGRAM DTCHCK: Network data).
In case of a continuous simulation (C = 3 on DATA CARD 2 of PROGRAM DTCHCK:
Network data) 3a-type cards are ignored.
-------
PROGRAM DTCHCK: Network data
DATA CARD 3b: End of printout segements
R
S
EXPLANATIONS:
This card is mandatory and must contain XX in columns 1 and 2.
VO
vD
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 3c:
Printout nodes,
overflow structures
ND
1 2 3 <
ND
i
6
7
8
ND
V lOllI
I]
ND
IJM4
15
14
ND
i/ it
I90C
ND
44+
ND
»
uppa
ND
»
4-h
ND
3334
13
16
ND
-h
4"
ND
4I43H3
44
ND
Hid
«H
ND
i»«|si
i}
ND
ND
H4f
ND
4>|4J
ND
>5|4^
ND
«
mpi
72
ND
4<|4*
ND
'; /ul/v ao
EXPLANATIONS:
ND
Names of overflow structures for which hydrograph printouts are
desired, for single event simulations, only (C = 1 on DATA CARD 2
of PROGRAM DTCHCK: Network data).
Up to 35 nodes (= maximum number of overflow structures in a sewer
network) may be entered in arbitrary sequence.
O
o
NOTE:
In case of a continuous simulation (C = 3 on DATA CARD 2 of PROGRAM DTCHCK:
Network data) 3c-type cards are ignored. For a calculation of a receiving
water network (RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data)
omit these cards.
-------
PROGRAM DTCHCK:
Network data
DATA CARD 3d:
End of printout nodes,
overflow structures
EXPLANATIONS:
This card is mandatory in case of the calculation of a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK: Network data) and
must contain XXXX in columns 1 through 4.
NOTE:
This card is omitted in case of a receiving water system simulation
(RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data).
-------
PROGRAM DTCHCK: Network data
DATA CARD 3e: Printout nodes, basins
ND
NO
ND
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
lAUHMI
IIUIMlU* lS4t «/U
EXPLANATIONS:
ND
Names of basins for which hydrograph printouts are desired for
single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK:
Network data).
Up to 15 nodes (= maximum number of detention structures in a sewer
network) may be entered in arbitrary sequence.
o NOTE:
NJ
For continuous simulations (C = 3 on DATA CARD 2 of PROGRAM DTCHCK: Network
data) 3e-type cards are ignored. For a calculation of a receiving water net-
work (RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data) omit these
cards.
-------
PROGRAM DTCHCK:
Network data
DATA CARD 3f: End of printout nodes,
basins
EXPLANATIONS:
This card is mandatory, in case of the calculation of a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK: Network data) and
must contain XXXX in columns 1 through 4.
o
U)
NOTE:
This card is omitted in case of a receiving water system simulation
(RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data).
-------
PROGRAM DTCHCK: Network data
DATA CARD 3g: Special nodes of interest
II 12 I3IIXII5 16 17 It 19 20 21122 23 24 25
EXPLANATIONS:
SNI Special nodes of interest. At nodes with one inflow and one
outflow, specified on this card, continuous simulation re-
sults may be statistically analyzed. Up to 5 node names may
enter.
NOTE:
In case of single event simulations the content of the 3g-card is ignored
(C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network data).
-------
PROGRAM DTCHCK:
Network data
DATA CARDS 3h: Nodes of interest
R
S
ND
ND
ND
ND
ND
5
ND
ND
ND
ND
ND
ND
/4T°444
ND
ND
ND
ND
ND
ND
ND
M74W
ND
234
It 19 2U
EXPLANATIONS:
SN
ND
Sequential number of 3h-type cards
Nodes of interest. Special structures only may be defined as nodes
of interest (see DATA CARD(S) 6 of PROGRAM DTCHCK: Network data).
The names may enter in arbitrary sequence.
NOTE:
o
In
3 cards must be given with at least one and a maximum of 50 ND-entries for a
sewer network simulation (RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK:
Network data) and a maximum of 30 ND-entries for a receiving water network
(RW = 1 or 2).
In case of a continuous simulation the results at these nodes are statistically
analyzed (C = 3 on DATA CARD 2 of PROGRAM DTCHCK: Network data).
In case of a single event simulation the contents of the 3h-type cards is ig-
nored (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network data).
-------
ROGRAM DTCHCK:
>
1 J|l
i
<
JN7
i
ND
»|.o|..|»
11
Network data
ND
M|U|U
ND
44»
X
ND
»p2p]|}4
ND
4
-------
PROGRAM DTCHCK:
Network data
DATA CARD 3j: Boundary nodes (variable loading)
R
S
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
I J 4 1 6 1 » »||OII IJ||J||4
It: I) III
33 JJ Idlib/ II )VU
-------
PROGRAM DTCHCK:
Network data
DATA CARDS 4: Precipitation intensities
R
O
CO
EXPLANATIONS:
NOTE:
Time in minutes (integer values only), counting from the start of
rainfall, e.g. 5 on the first card, 10 on the second, 15 on the
third, etc.
Intensities in in/hr or
(for 5 min. intervals), for
precipitation series 1, 2 and 3 (see PS on DATA CARD 2 of PROGRAM
DTCHCK: Network data).
The first and the last card of this data group must contain the word "RAIN" in
columns 1 through 4 for english units or "REGEN" in columns 1 through 5 for
metric units.
Precipitation intensities on type-4 cards are allowed and necessary only for
single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network
data). For continuous simulations (C = 3) these cards must be removed.
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 5a: Segment cards
R
S
EXPLANATIONS:
NI
Name of inflow node
NT1
NO Name of outflow node NT2 *
NT1, NT2, NT3 Names of tributary nodes NT3
NO
NI
CSC
H
W
L
YU, YD
SU, SD
N
Cross-section code (alpha-
numeric, but not XX. This
code is used to assign the
appropriate shape, specified on DATA CARD(S) 2a of PROGRAM DTCHCK:
Quantity data, to the segment
Cross-section height in inches or meters
Cross-section width in inches or meters
Segment length in feet or meters
Upstream and downstream invert elevations in feet or meters,
referenced to a base level, e.g. sea level
Upstream and downstream surface elevations, in feet or meters,
referenced to a base level, e.g. sea level
Individual Manning's n, dimensionless (0.007 S N ^ 0.1). A value
should be punched only, if it differs from the general N-value
given on DATA CARD 2 of PROGRAM DTCHCK: Network data
-------
PROGRAM DTCHCK: Network data DATA CARD(S) 5a: Segement cards continued
EXPLANATIONS: R Only in case of receiving water system simulation
(RW = 1 or 2 on DATA CARD 2, PROGRAM DTCHCK: Network data)
1 if segment is part of receiving water 1
2 if segment is part of receiving water 2
NOTE: The full flow capacity of any segment should be > 0.1 m3/s.
The cross-section area of any segment should be > 0.001 m2.
The length in m of any segment should be < full flow velocity in m/s * 300 s.
The maximum numbers of segment cards are 400 for a sewer network and 150 for
a receiving water system.
-------
PROGRAM DTCHCK: Network data
DATA CARD 5b: End card
R
S
EXPLANATIONS:
This final card for segments must contain END in columns 3 through 5 for
english units or "ENDE" in columns 2 through 5 for metric units.
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 6a: Special structure type 1
EXPLANATIONS:
Special structure type 1 = Overflow structure (OS)
ND Nodal name of structure
N01
HOS
LOS
YOS
COS
Name of outflow node at outflow
segment
Height of weir crest above struc-
ture invert elevation in feet or
meters
N01
N02 (Overflow)
Length of weir crest in feet or meters
Invert elevation of structure in feet or meters. This invert eleva-
tion must be above the lowest invert provided for sewer segments
(see DATA CARD (S) 5a, PROGRAM DTCHCK: Network data)
Overflow discharge coefficient in Poleni formula (dimensionless),
default value =0.65
« !
H
1.5
= 2.95
H
1.5
NOTE:
The maximum number of overflow structures is 35. The input sequence of spe-
cial structure type 1 cards is arbitrary.
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 6b: Special structure type 2
ND
YRS
BRS
HMAX
ifel
I 234} « 71
Jfl 2ID2 2:
41 42 43 4414444U7 II
EXPLANATIONS:
Special structure type 2 = Flooded detention basin (RS)
ND Nodal name of structure
YRS Invert elevation of structure in
feet or meters
BRS Bottom area size in square feet
or square meters
HMAX Height of structure in feet or meters, if there is a ceiling
DTI Detention time index
0 no cleaning effect
1 detention basin with cleaning effect (see DATA CARDS lOa
of PROGRAM DTCHCK: Quality data)
2 treatment basin (see DATA CARDS lOb, PROGRAM DTCHCK:
Quality data)
NOTE: Under dry-weather flow the basin must be empty or the inflow must be equal
to the outflow.
The input sequence of special structure type 2 cards is arbitrary.
For both, special structure types 2 and 3 (see DATA CARD(S) 6c, PROGRAM DTCHCK:
Network data) a maximum of 15 structures may be entered.
-------
PROGRAM DTCHCK: Network data
DATA CARD 6d: End card
EXPLANATIONS:
This final card for special structures must contain "END" in columns
3 through 5 for english units or "ENDE" in columns 2 through 5 for metric
units.
NOTE:
This card is mandatory, even though the network does not contain any special
structures.
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 6c: Special structure type 3
ND
YRS
BRS
HMAX
jL 15 MJ»JM M Nttl n|?JJ7<|/: M WS «E
I 1149 471
14 W 14 1
4142
*yyi 4M4X4M4« k
SI S3 W S- W SU
EXPLANATIONS:
(Jl
Special structure type 3 = Pump drained detention basin (RS)
For ND, YRS, BRS, HMAX and DTI see type 2 structures (DATA CARD(S) 6b of PROGRAM
DTCHCK: Network data)
Po>Pl
Pumping line coefficient
to be used in:
Q (H) = P
. H
For derivation of the pumping
line coefficients, Q must enter
in m3/s and H in m; maximum pump rate = P ; maximum pumping height
= - P /P1 resulting in a negative number tor P... Enter P.. without the
Htf * O X A J.
-"fiion
'sign.
NOTE: The pumping line should be defined in a way that the range of the real pump-
ing curve, within which the pumps operates, is approximated by the line.
The input sequence of special structure type 3 cards is arbitrary.
For both special structure types 2 (see DATA CARD 6b, PROGRAM DTCHCK: Network
data) and 3 a maximum of 15 structures may be entered.
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 7a: Control gate type 1
EXPLANATIONS:
NOTE:
CONTROL GATE TYPE 1:
opening and closing linearily within a given time
KNG
HMAX
HMIN
TS
TO
KNE
KNEE
QVPR
Name of node, whose water surface elevation triggers opening and
closing of gate
Water surface elevation at KNG, at which the gate starts closing
(HMAX > HMIN), in feet or meters
Water surface elevation at KNG, at which the gate starts opening,
in feet or meters
KNE
Control gate
Closing time in minutes
Opening time in minutes
Upstream node of segment, in which
the control gate is located
Downstream node of segment, in which
the control gate is located
Flow through control gate in "closed" position
in % of full flow capacity of the segment KNE-KNEE, e.g. 5.00
KNEE
The maximum number of control gates of type 1 and 2 together is 20. All water
surface elevations on this card are above invert. A control gate must be located
in a downstream segment of a branching point
1-* «,
of an overflow
KMC
aase. or in the throttle
tare
KHEE
The water surface elevation for triggering opening and closure is taken at the
upper end of the downstream segment of KNG ( **%*** c
or
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 7b: Control gate type 2
EXPLANATIONS:
CONTROL GATE TYPE 2: opening and closing directly dependent on water surface
elevation at KNG
HMAX Water surface elevation at KNG, beyond which the gate is closed,
in feet or meters (and below which the gate opens) (HMAX > HMIN)
HMIN Water surface elevation at KNG, up to which the gate is open, in
feet or meters (and at which the gate starts closing)
For KNG, KNE, KNEE and QVPR see DATA CARD 7a of PROGRAM DTCHCK: Network data.
NOTE:
The maximum number of control gates of type 1 and 2 together is 20. All water
surface elevations on this card are above invert. A control gate must be located
in a downstream segment of a branching point
of an overflow *"~~^ -* * *~ °
Kt/££ or in the throttle
~"^^- ~~
The water surface elevation for triggering opening and closure is taken at the
upper end of the downstream segment of KNG ( " nf n nr """* L
or
-------
PROGRAM DTCHCK:
Network data
DATA CARD 7c: End card
EXPLANATIONS:
This card must contain "END" in columns 3 through 5 for english units or "ENDE"
in columns 2 through 5 for metric units.
NOTE:
This card must be contained even if there are no control gates.
00
-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 8a: Drainage areas
* 3 4 II
u ur it
\i9\xtt\ n MJMpa up tab« MpiJH u
|»JM wjw n rata 74 ttpappapgJBc
EXPLANATIONS:
CA Name of drainage area
ND Name of node the drainage area belongs to. Up to three drainage
areas may be connected to one node
NP Number of the precipitation series the area belongs to (1, 2 or 3)
TYPE Type number of area (1, 2, 3 or 4, see DATA CARD 4 of PROGRAM
DTCHCK: Quantity data)
A Size of area in acres or hectares
GAMMA Ratio of impervious area to total area (0.0 S GAMMA S 1.0)
PD Population density in capita per acre or in capita per hectare
WCF Dimensionless water consumption factor for the drainage area;
default value = value provided for WCF on DATA CARD 2 of PROGRAM
DTCHCK: Network data
IW Industrial wastewater inflow from drainage area in cfs or 1/s
IWF Dimensionless industrial water consumption factor; default value =
value provided for IWF on DATA CARD 2 of PROGRAM DTCHCK: Network
data
NOTE:
Up to 100 drainage areas may be entered.
-------
PROGRAM DTCHCK:
Network data
DATA CARD 8b: End card
EXPLANATIONS: This card must contain "END" in columns 3 through 5 for english units or
"ENDE" in columns 2 through 5 for metric units.
This is the final card of the drainage area data and of the whole network
data set.
K)
O
-------
PROGRAM DTCHCK:
Quantity data
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CARD
CARD(S)
CARD
CARD
CARD
CARD
CARD(S)
CARD
CARDS
CARD
CARD(S)
CARD(S)
CARDS
CARDS
CARDS
CARD
CARD
CARD(S)
CARD
CARDS
CARD
CARD
CARDS
CARD
1
2a
2b
3
4
5a
5b
6
7
8a
8b
8c
9
lOa
lOb
lla
lib
12a
12b
12c
12d
13a
13b
13c
Title card
Cross-section cards
Cross-section end card
End card
Area type designations
Maximum initial losses
Initial losses at start of calculation
Infiltration rates
Evaporation rates
Title card of monthly temperatures
Minimum temperatures
Maximum temperatures
Unit hydrographs
Dry weather flow (diurnal pattern)
Industrial wastewater (diurnal pattern)
Special nodes of interest
End card of special nodes of interest
Constant external loadings
End of constant external loadings
Variable external loadings (hydrographs)
End of variable external loadings
Receiving water title card
Receiving water flows
End of receiving water flows
NOTE: R and S at the upper right of each data card description specifies
if the data card(s) must be included for separate and combined
sewer system (S) and/or for receiving water system (R) simula-
tions .
If the format box on top of each data card description is subdi-
vided, the upper part describes the input in english, the lower
part in metric units.
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
121
-------
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown.
Symbols used in the format boxes coordinate the explanations given
on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of Volume 1 (Model Description,
Testing, and Applications).
122
-------
K)
U)
PROGRAM DTCHCK: Quantity data
DATA CARD 1: Title card
R
S
l|5[6|7|»|9[lo|ll[tt[l3[M|ISI6p|l
7|« 19
18
W l
I U i
EXPLANATIONS:
Any text with up to 80 alphanumeric characters may be inserted.
NOTE:
This card must be identical with the title cards of the precipitation, network
and quality data.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD(S) 2a: Cross-section cards
R
S
Kl
K2
K3
CROSS-SECTION
DESIGNATION
10 ii
M
EXPLANATIONS:
CSC
Kl
K2
K3
Cross-section code (alphanumeric). The code name may be arbitra-
rily chosen, however, XX may not be used.
2
A/H = ratio of cross-sectional area to square of height
R/H = ratio of hydraulic radius to height
W/H = ratio of width to height
CROSS-SECTION Any arbitrary name with up to 15 alphanumeric characters may
DESIGNATION
be inserted, e.g. CIRCULAR
NOTE:
The ratio R/H must be derived using metric units.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 2b: Cross-section end card
R
S
XX
EXPLANATIONS:
This card marks the end of the cross-section card(s) and must contain XX in
columns 1 and 2.
NJ
I/I
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 3: End card
R
S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 4: Area type designations
R
S
DESIGNATION
DESIGNATION
DESIGNATION
DESIGNATION
X 21 2i
EXPLANATIONS:
DESIGNATION Area type specifiation, e.g. RESIDENTIAL, COMMERCIAL,
INDUSTRIAL, PARKS, etc.
NOTE:
If there are less than four different area types, the unused fields must
remain empty.
N)
-------
>ROGRAM DTCHCK: Quantity data
DEPRESSION DEPTHS
X
MULDEN KAPAZITAETEN
II
X
IV
1C
01 1
'HM5
Dpi
4t§
4.
Dl
ii np
DATA CARD 5a: Maximum initial losses
2
4>
DP2
M ITpp
40
41
DI3
*
<3H3H«J
DP3
(4J4J <»[49J5(
DI4
4>
H
+
DP4
"M4f
*^.
.
4,
---,
^--
4.
^-^
^-^
U|Mp
>
4f
<
ti
^^
^^
^H4^H44«
R
s
EXPLANATIONS:
N)
00
This card must contain "DEPRESSION DEPTHS" in columns 1 through 17 for english
units or "MULDENKAPAZITAETEN" in columns 1 through 18 for metric units.
DI
DP.
Initial losses in inches or mm of rainfall on impervious areas for
area types 1 through 4 (see DATA CARD 4 of PROGRAM DTCHCK: Quantity
data)
Initial losses in inches or mm of rainfall on pervious areas for
area types 1 through 4 (see DATA CARD 4 of PROGRAM DTCHCK: Quantity
data)
NOTE:
The initial losses include initial evaporation, wetting losses, depression
capacities on the oversurfaces and initial losses within the drainage system
of the catchments. For pervious areas in addition the initial rate of infil-
tration capacity above the final constant rate is included in the initial
losses.
Dependent on surface roughness and land use the initial losses for impervi-
ous areas vary from 0.5 to 3.0 mm. The part of infiltration additionally in-
cluded for pervious areas may amount up to 12.0 mm. The following tables con-
tain some reference values:
-------
PROGRAM DTCHCK: Quantity data DATA CARD 5a: Maximum initial losses continued
REFERENCE VALUES FOR INITIAL OR STARTING LOSSES ON
IMPERVIOUS AREAS
Land Use Initial or Starting Loss (nun)
Commercial 0.5 to 2.0
Residential 0.7 to 2.5
Industrial 1.0 to 3.0
EXAMPLES OF REFERENCE VALUES FOR INITIAL OR STARTING
LOSSES FOR PERVIOUS SURFACES
Land use Initial or
Soil surface characteristics starting loss
(Typical examples) (mm)
Open space ' 10
Cultivated soil (corn, root crops,
viniculture, hop culture, etc.) 8
Landscaped strip, playground 2
Protected green areas and slopes 5
Garden or meadow 5
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD(S) 5b:
Initial losses at start
of calculation
R
S
INITIAL DEPR. L.
MULDENINITIALWERTE
I Dl.
IDP,
IDL
IDP0
IDI
IDP3
I DP,
17 II l« X)
tip n MM ap l
»Jt 31
HJM H U 14 I
EXPLANATIONS:
LO
O
This card must contain "INITIAL DEPR. L." in columns 1 through 17 for english
units or "MULDENINITIALWERTE" in columns 1 through 18 for metric units.
IDI.
J
IDP.
Number of precipitation series
Initial depression losses, in inches or mm on impervious areas for
area type j- (see DATA CARD 4 of PROGRAM DTCHCK: Quantity data)
Initial depression losses, in inches or mm on pervious areas for
area type j (see DATA CARD 4 of PROGRAM DTCHCK: Quantity data)
NOTE:
For each precipitation series one card must be furnished.
The initial losses at the start of a calculation must be smaller than the
maximum initial losses provided on DATA CARD 5a of PROGRAM DTCHCK: Quantity
data. The values must be valid for 00:00 hours at the day of rainfall ac-
counting for the evaporation (see DATA CARD 7 of PROGRAM DTCHCK: Quantity
data) from 00:00 hours to the start of rainfall.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 6: Infiltration rates
R
S
INFILTRATION RATES
VERSICKERUNGSRATEN
INF
11
INF
12
INF
13
INF
14
INF
21
INF
22
INF
23
INF
24
INF
31
INF
32
INF
33
INF
34
I* 30 }|
t 13 i
HfflS M[»{M 4*0 Mppj*^
EXPLANATIONS:
This card must contain "INFILTRATION RATES" in columns 1 through 18 for eng-
lish units or "VERSICKERUNGSRATEN" in columns 1 through 18 for metric units.
INF
ij
Infiltration rates in in./hr. or 1/s/ha for precipitation series
i and area- type j
NOTE:
The infiltration rates requested here are the final constant rates of in-
filtration capacity. The initial rate of infiltration capacity is included
in the maximum initial loss given on DATA CARD 5a of PROGRAM DTCHCK: Quantity
data. The values for the final constant rates of infiltration may vary sub-
stantially and are mainly dependent on the perviousness of the top soil layer.
Some examples of reference values for soil infiltration losses (infiltration
rates) are given in the following table:
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 6: Infiltration rates continued
EXAMPLES OF REFERENCE VALUES FOR SOIL INFILTRATION LOSSES FOR
PERVIOUS AREAS
Land use
Soil surface characteristics
(Typical examples)
u>
Open space
Cultivated soil (corn, root crops,
viniculture, hop culture, etc.)
Landscaped strip, playground
Protected green areas and slopes
Garden or meadow
Soil infiltration (1/s ha)
Clay Clayey Sand,
sand loess,
gravel
20
10
5
20
20
30
20
10
30
30
40
30
10
50
40
-------
PROGRAM DTCHCK:
Quantity data
DATA CARDS 7: Evaporation rates
R
S
EVAPORATION RATES
VERDUNSTUNGSRATEN
EVA
EVA
EVA
EVA
EVA
EVA
EVA
EVA
EVA
EVA
EXPLANATIONS:
EVA Evaporation rates in in /day or mm/day, as dependent on temperature.
The sequence is increasing in steps of 2 °F, starting with 34 °F or
in steps of 1 °C, starting with 1 °C. Therefore
u>
the 1st card will contain the evaporation rates
temperatures from 34 to 52 °F or 1
the 2nd card will contain the evaporation rates
temperatures from 54 to 72 °F or 10
the 3rd card will contain the evaporation rates
temperatures from 74 to 92 °F or 20
the 4th card will contain the evaporation rates
temperatures from 94 to 112 °F or 30
the 5th card will contain the evaporation rates
temperatures from 114 to 132 °F or 40
for the
to 10 °C,
for the
to 20 °C,
fpr the
to 30 °C,
for the
to 40 °C,
for the
to 50 °C.
NOTE:
Five cards are necessary, the first of which must contain "EVAPORATION RATES"
in columns 1 through 17 for english units or "VERDUNSTUNGSRATEN" in columns
1 through 17 for metric units.
The evaporation rates usually vary from 0.0 to 23.0 mm/day, hut should he
taken from local records.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 8a: Title card of monthly temperatures
EXPLANATIONS:
This card must contain "TEMPERATURES" in columns 1 through 12 for english
units or "TEMPERATUREN" in columns 1 through 12 for metric units.
YEAR Number of years for which temperature cards follow (^ 20)
Tl Time of day at which minimum temperatures occur on an
average, e.g. 3.40 (hr.min)
T2 Time of day at which maximum temperatures occur on an
average, e.g. 14.00 (hr.min)
-------
PROGRAM DTCHCK: Quantity data
DATA CARD(S) 8b: Minimum temperatures
R
S
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
n \n hi 14 u ulimt i» to 11
EXPLANATIONS:
YEAR
MINT
Calendar year minus 1900, e.g. 75
Average monthly minimum temperatures from January through December
in °F or °C (MINT £ 32.1 °F or MINT £ 0.1 °C)
LO
Ln
NOTE:
This card must be submitted for each year simulated; the sequence is
arbitrary.
The average monthly minimum temperatures should be derived from local
records.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD(S) Be: Maximum temperatures
R
S
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
3u s t ; »u>
14 IJ It, 17 It 19 K >l
ac i
41 I2M3 44 U <
re
'9 lit
EXPLANATIONS:
YEAR Calendar year minus 1900, e.g. 75
MAXT Average monthly maximum temperatures from January through december
in °F or °C (MAXT S MINT + .2 °F or MAXT £ MINT + .1 °C)
NOTE:
u>
This card must be submitted for each year simulated, the sequence is
arbitrary.
The average monthly maximum temperatures should be derived from local
records.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARDS 9: Unit hydrographs
R
S
UNIT HYDROGRAPHS
X
EINHEITS GANGLINIEN
Qp
Qj,
QP
QP3
Ql.
QP
*
1 lofl
4 MJMJMJM i>|4i[<2[4-ii; 4ii4>N*1H
a X Mp4"H
'jr
EXPLANATIONS:
Time in minutes, e.g. 5.0, 10.0, 15.0, etc.
Dimensionless ordinates of unit hydrographs at time T for im-
pervious areas for area type j (see DATA CARD 4 of PROGRAM
DTCHCK: Quantity data)
Dimensionless ordinates of unit hydrographs at time T for pervious
areas for area type j (see DATA CARD 4 of PROGRAM DTCHCK: Quantity
data)
U)
NOTE:
Up to 30 cards may be submitted (max. T = 150.0 minutes). The sum of all
ordinates of one unit hydrograph must be 1.0.
The first and the last card must contain the words "UNIT HYDROGRAPHS" in
columns 1 through 16 for english units or "EINHEITSGANGLINIEN" in columns 1
through 18 for metric units, the-center cards do not.
The unit hydrographs may be derived from rainfall-runoff measurements or
synthetic unit hydrographs may be used. The values as contained in Ap-
pendix 7, Test Example for PROGRAM DTCHCK are not generally transferable
on other areas, as the shape of thfe unit hydrographs is dependent on
catchment size, shape, slope, land use and other characteristics.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARDS lOa: Dry-weather flow (diurnal pattern)
R
S
DRY-WEATHER FLOW
TW - ABFLUESSE
M.I.M.M.H-H
X
IJJH
DWF
DWF
DWF
DWF
DWF
DWF
21 l
vr,
13 14 )
l« X SI
K rwrmi /Jw
U)
CD
EXPLANATIONS:
NOTE:
, DWF
Time in hr.min, e.g. 12.00
The values for T on the first card must be:
0.00 4.00 8.00 12.00 16.00 20.00
With each subsequent card these values are increased by half
an hour, e.g.:
0.30 4.30 8.30 12.30 16.30 20.30
Dry-weather flow in cfs per 1,000 inhabitants or 1/s per
1,000 inhabitants
Eight cards are required, the first of which should contain the words
"DRY-WEATHER FLOW" in columns 1 through 16 for english units or "TW-ABFLUESSE"
in columns 1 through 12 for metric units.
The dry-weather flow values may be assumed to be similar to the water consump-
tion in the area under consideration. Frequently constant dry-weather flow
values may suffice.
-------
PROGRAM DTCHCK: Quantity data
DATA CARDS lOb: Industrial wastewater
(diurnal pattern)
IW-ABFLUESSE
IWW
IWW
IWW
IWW
IWW
IWW
IWW
IWW
IWW
IWW
IWW
IWW
12
342
6|7|8l9
ft
3M4 15 J|7 18M9 20 tip K Up
Ml
950
II 52J53 5-1 55 56157 SDpfcc
7475
7|7eJ79
75 777e79 HO
EXPLANATIONS:
IWW Relative values for the industrial waste water provided in half-
hour timesteps (dimensionless).
NOTE: Four cards are necessary, the first of which should contain the word
"IW-ABFLUESSE" in columns 1 through 12 for english and metric units .
The average of all 48 values must be 1.0.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARDS lla: Special nodes of interest
SNI
DWFR
SNI
DWFR
SNI
DWFR
SNI
DWFR
SNI
DWFR
78
9 1011
13 14
829301,
IIMIM:
19 40 « 4lUa 44 li 46 (TUSH? K SI
I7|4a|n
ippp 55J56p SO 59JJC 61JS2 S3 J4[4s|M 67J4a 69 «jyi|72p3 7MS 7
-------
PROGRAM DTCHCK: Quantity data
DATA CARD lib: End card of special
nodes of interest
EXPLANATIONS:
This card is mandatory. The card marks the end of the special nodes of
interest and must contain XXXX in columns 1 through 4.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD(S) 12a: Constant external loadings
R
S
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
1214
lUma » 10 ii ui
B
>i\\t i7Jn[i» K itpjffl* iajaippaptpc aipapy^ i^MpTpptyo
EXPLANATIONS:
ND Name of boundary node with constant external loading
QEX External loading in cfs or 1/s
NOTE:
Any number of cards may be read in, but only loadings at nodes, specified on
DATA CARD 3i of PROGRAM DTCHCK: Network data, are considered.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 12b: End of constant external loadings R
S
XXXX
BWffH^^
EXPLANATIONS: This card is mandatory and must contain XXXX in columns I through 4
P-
OJ
-------
'ROGRAM DTCHCK: Quantity data
ND
X
0
.|4a|u
QEX
o
.
^"t
JO
T1
"H44
QEX,
4^
DATA CARDS 12c: Variable external loadings
(hydrographs)
X)
T2
4*1+
QEX2
4+7H4°
T3
«t|«J4:)[K
QEX3
*
4*14.14
T4
IllsJiJs
QEX4
SASAKI S
flsftu
T5
»||4>|M
QEX5
M|4>H4c
T
7l|73|n{/4
QEX.
4.
n
?»
TV
10
R
S
EXPLANATIONS:
ND
T.
J
QEXi
Name of boundary node with variable external loading (hydrograph)
Time in minutes; the values must increase in 5-minute steps, the
first value (T ) must be zero, e.g. 0, 5, 10, etc.
External loading in cfs or 1/s at time T.
NOTE:
The end of hydrograph is marked by a negative time value (e.g. -1). One
hydrograph may contain up to 289 time values (T plus 288 intervals).
Any number of hydrographs may be read in but only the hydrographs at
nodes specified on DATA CARD 3j of PROGRAM DTCHCK: Network data are
considered for single event simulations.
-------
PROGRAM DTCHCK: Quantity data
DATA CARD 12d: End of variable
external loadings
R
S
EXPLANATIONS: This card is mandatory and must contain XXXX in columns 1 through A.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 13a: Receiving water title card
EXPLANATIONS:
RW Number of receiving water (1 or 2)
NAME Any name of receiving water with up to 68 alphanumeric characters
may be inserted
QMIN Lower flow limit in cfs or m3/s
QMAX Upper flow limit in cfs or m3/s
NOTE: Flow values exceeding the limits QMIN or QMAX cause an informative message
only by the PROGRAM DTCHCK.
-------
PROGRAM DTCHCK: Quantity data
DATA CARDS 13b: Receiving water flows
R
Q-,
Q
10
Q
11
Q
12
EXPLANATIONS:
RW Number of receiving water according to DATA CARD 12a of PROGRAM
DTCHCK: Quantity data
YEAR Calendar year minus 1900, e.g. 75
DAY Number of day from 1 to 31
Q. Daily receiving water flow for the months January through December
in cfs or m3/s
NOTE:
31 cards are required for one year.
Up to 20 years may be read in, which is a maximum of 20 times 31 cards.
-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 13c: End of receiving water flows
R
S
m iiJMppe »9pcpi n upy up iytyo 4i[47|43|»<[
-------
PROGRAM DTCHCK:
Quality data
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
DATA CARDS
DATA CARD
DATA CARDS
DATA CARDS
DATA CARD(S)
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARDS
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
1
2
3a
3b
3c
3d
4
5
6
7
8
9
lOa
lOb:
lla:
lib:
lie:
lid:
12a:
12b:
12c:
12d:
13a:
13b:
13c:
Title card
Names of pollutants
Maximum pollution
Initial pollution
Pollutant build-up times
Build-up function coefficients
Street cleaning
Unit pollutant load hydrographs
Area factors
Influence of rainfall duration
Diurnal variation influence
Seasonal variation influence
Cleaning effect of detention facilities
within the sewer network
Cleaning effect of storm or combined
sewage treatment basins
Dry-weather flow pollution (diurnal pattern)
Industrial wastewater pollution
Special industrial wastewater pollution
Dry-weather flow pollution end card
Constant external loading pollution
End of constant external loading pollution
Variable external loading pollution (pollutograph)
End of variable external loading pollution
Receiving water title card
Receiving water pollution
End of receiving water pollution
NOTE: R and S at the upper right of each data card description specifies
if the data card(s) must be included for separate and combined
sewer system (S) and/or for receiving water system (R) simula-
tions .
If the format box on top of each data card description is subdi-
vided, the upper part describes the input in english, the lower
part in metric units.
149
-------
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown.
Symbols used in the format boxes coordinate the explanations given
on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of Volume I (Model Description,
Testing, and Applications).
150
-------
PROGRAM DTCHCK: Quality data
DATA CARD 1: Title card
I 1 3
^^
EXPLANATIONS:
Any text with up to 80 alphanumeric characters may he inserted.
NOTE:
This card must be identical with the title cards of the precipitation, net-
work and quantity data.
-------
>ROGRAM DTCHCK
1
i
X
2 3
:
Quality data
NAME
4 i «|7|l|»|lOJII
12
13
ulis
,444,^
2
21
I
+
DATA CARD 2: Names
NAME
unxu
^.
4<|»|»
4W'HH«
3
41
X
4JJ43
of pollutants
NAME
44|4! U\ljpt tSJStJil
52
4,
4r
TT
4
di
X
4"
NAME
Kisls,
1U49
wt
^jiTa/^w
jt
77J7apy|ec
R
S
EXPLANATIONS:
NAME
Exponent of the multiplication factor 10 by which the input fig-
ures of pollutant 3 are multiplied to account for bacteria counts
per acre or per ha, e.g. X ~ 10 should be entered for fecal coli-
forms.
Name of pollutant
NOTE:
The third pollutant is reserved for fecal coliforms. If there are less than
four pollutants simulated the remaining columns remain empty.
In case of bacteria counts per liter on DATA CARDS lla, lib, lie, 12a and 13b
of PROGRAM DTCHCK: Quality data the multiplication factor is 10 where Y = X - 3.
-------
PROGRAM DTCHCK:
Quality data
DATA CARD 3a: Maximum pollution
R
S
PM
11
PM
12
PM
13
PM
14
PM
21
PM
22
PM
23
PM
24
PM
31
PM
32
PM
33
PM
34
PM
41
PM
42
PM
43
PM
44
« 7 i »hoi
ffl
HIS
w »I
EXPLANATIONS:
PM..
Maximum amount of pollution for pollutant i in Ibs./acre or»kg/ha,
or number of bacteria x 10 /acre or number of bacteria x 10 /ha in
an area of type j (X and pollutant i are specified on DATA CARD 2
of PROGRAM DTCHCK: Quality data, the area of type j is defined on
DATA CARD 4 of PROGRAM DTCHCK: Quantity data).
NOTE:
Ul
u>
The maximum pollution is the amount of pollution which may accumulate in a
catchment (including in the lateral sewers) after a dry spell of indefinite
duration. Some reference values are given in the following table:
-------
PROGRAM DTCHCK: Quality data DATA CARD 3a: Maximum pollution continued
REFERENCE VALUES FOR MAXIMUM POLLUTION BUILD-UP
Pollution parameter P ,-
r up,100
BOD5 15 to 40 kg/ha
KMn04 100 to 200 kg/ha
COD 100 to 200 kg/ha
Settleable solids 60 to 125 kg/ha
TSS 60 to 125 kg/ha
Lead up to approx. 0.03 kg/ha
Total phosphorus up to approx. 0.2 kg/ha
Fecal coliforms 500 x 1010 to 5,000 x 1010/na
-------
PROGRAM DTCHCK:
Quality data
DATA CARD 3b: Initial pollution
R
S
Pi
11
PI
12
PI
13
PI
14
PI
21
PI
22
PI
23
PI
24
PI
31
PI
32
PI
33
PI
34
PI
4)
PI
42
PI
43
PI
44
EH
MJi7|u[i» ac nfra aJMJM M HpiJMpo iipapyy Mp a M|4t
41 42 4:
EXPLANATIONS:
PI.. Initial amount of pollution for pollutant i in Ibs./acre or kg/ha,
1J or number of bacteria x 10 /acre of pollutant i or number of bacteria
x l(r/ha in an area of type j (PI.. g PM±. of DATA CARD 3a of PROGRAM
DTCHCK: Quality data) 1J 1J
in
tn
NOTE: The initial pollution is the amount of pollution available for washoff at
the start of a.calculation (midnight of the day with the first rainfall).
-------
PROGRAM DTCHCK: Quality data
DATA CARD 3c: Pollutant build-up times
R
S
BUILD - UP TIMES
AUFBAUZEITEN
'11
'12
'13
'14
'21
'22
'23
24
'31
'32
'33
34
'41
42
'43
'44
I 2 3 4 J « 7 < V
I) U I3||4 ITllS IV M 111
35 2d 27UI
sy< aft sTJiapjM upfyjfn ^[M^T^M MJTC up
EXPLANATIONS:
This card must contain "BUILD-UP-TIMES" in columns 1 through 14 for english
units or "AUFBAUZEITEN" in columns 1 through 12 for metric units.
Tij Time in hours, necessary for build-up of the maximum amount of pol-
lutant i in an area of type j (only integer values), e.g. 240
Ui
NOTE:
The pollutant build-up times are the times after which the maximum pollu-
tion as specified on DATA CARD 3a of PROGRAM DTCHCK: Quality data is
reached, e.g. for BOD5 and COD 240 hours, for TSS 720 hours and for fecal
coliforms 24 hours may be used as reference values.
-------
'ROGRAM DTCHCK:
Kll
K12
Quality data DATA CARDS 3d: Build-up function coefficients
K13
"M44
it
K14
lAJITJII 19 1C
K21
"hH"
K22
4Hf
K23
iipnxuH
K24
41
K .
4'
1
K32
"MH"
K33
K34
1 J 1
"rr T
K
6l|*}
41
uj4>
M
K42
4f
w
K43
^ipjpj/^l/j
K44
HHH40
R
S
EXPLANATIONS:
K..
Dimensionless coefficients A, B, C of the build-up function of pollu-
tant i in an area of type j, the values given are multiplied by 10
NOTE:
Three cards are necessary; the first of which contains the A-coefficients,
the second the B-coefficients and the third the C-coefficients of the follow-
ing build-up function:
Y = 1 -
Ax + 1
, whereby x are 5-minute intervals
Bx + Cx + 1
The following reference values may be used:
Coefficient
B
BOD5 and COD -34.2 1.89 465.2
TSS -34.7 0.21 86.34
Fecal coliforms 13.34 1133. 3825.
With increasing time between rainfalls the pollution build-up rate is dimi-
nishing. This effect is considered by the build-up functions defined.
-------
ROGRAM DTCHCK: Quality data DATA CARD 4: Street cleaning
STREET CLEANING
X
STRASSENREINIGUNG
'M1
T
T
9|.0
n|n|l3
M
U
M
17
X
ii
i»
K
IS
2lpj23
\
/
Mp
/
\
it
kl
2*21
N
Y
A
pn
13
J433
P12
14
iTpa
P13
44'
P14
4^
P21
(S44U7
P22
4tU»
X
P23
sipp
P24
'H*
P31
H4*
P32
4f
P33
»3|4s
P34
M
4.
P41
iiVOJ/'
R
S
P42
7J
73
74
P43
4*1"
P44
44°
EXPLANATIONS:
Ln
00
This card must contain "STREET CLEANING" in columns 1 through 15 for english
units or "STRASSENREINIGUNG" in columns 1 through 17 for metric units.
IS Interval of street cleaning in hours
ET Time elapsed in hours from last street cleaning until start of
simulation (0:00 hours of day with first rainfall)
Pij Percentage of pollutant i removed by street cleaning in an area
of type j, e.g. 10
NOTE:
The efficiency of street cleaning is mainly a function of the procedure and
equipment used and must be taken from local records.
The following figures may be considered as maximum reference values:
BOD5 and COD
TSS
Fecal coliforms
Pij = 35
Pij = 40
Pij = 30
-------
PROGRAM DTCHCK:
Quality data
DATA CARDS 5: Unit pollutant load hydrographs
R
S
UNIT POLLUTOGRAPHS
X
EINHEITS GANGLINIEN SCHMUTZSTOFF
papa ppiptpop
11 X )< lyajl? MJMJ40 ^ifr
I* v 51 s:
EXPLANATIONS:
0
j
Number of pollutant (1, 2, 3 or 4) in column 30 for english units
or in column 33 for metric units
Time in min., e.g. 5.0, 10.0, 15.0, etc.
Ordinate of unit pollutant load hydrograph I in an area of type j
NOTE:
Ui
For each pollutant up to 30 cards may be furnished. The first and the last
card must contain "UNIT POLLUTOGRAPHS" in columns 1 through 18 for english
units or "EINHEITSGANGLINIEN SCHMUTZSTOFF" in columns 1 through 31 for
metric units.
The unit pollutant load hydrographs should be derived from rainfall-pol-
lutant load runoff measurements taken or representative catchments. To de-
fine the unit pollutant load hydrographs usually for each catchment con-
sidered five to ten complete events monitored are necessary as data base.
The values given in Appendix 7, Test Example for PROGRAM DTCHCK are not
generally transferable on other areas, but will provide approximate shapes
and magnitudes for combined systems. For separate systems the values are
usually somewhat lower.
The sum of pollutant load hydrograph ordinates may not be equal to 1.0.
-------
JROGRAM
DTCHCK
: Qual
AREA FACTORS
XI
GEBIETSFAKTOREN
₯ff
, , 44-
12
IllNm
l«
Fll
l/|..|lV
ity d
10
F12
tmmi
ata
14
F13
ijpppi
29
F14
xnip2
F21
3313433
D^
u
VTA CARD
F22
17
4f
F23
4l[o|«
6: Area factors
i<
F24
i^M^a
F31
*
^"h
F32
$3
5<
S)|M
F33
»
HT
F34
*
4f
43W
F41
iS^T^M
F42
i»
^ol/i
.2
F43
*
n
744.
F44
44f
R
S
EXPLANATIONS:
This card must contain "AREA FACTORS" in columns 1 through 12 for english
units or "GEBIETSFAKTOREN" in columns 1 through 15 for metric units.
Fij Dimensionless area factor for pollutant i in area of type j (usually
all 1.0)
NOTE:
The area factors multiply with the ordinates of the unit pollutant load
hydrographs as given on DATA CARDS 5, PROGRAM DTCHCK: Quality data. This
feature is provided to allow for quick variation the unit pollutant load
hydrographs (unit pollutographs) during the calibration process.
-------
PROGRAM DTCHCK: Quality data
DATA CARDS 7: Influence of rainfall duration
R
S
RAINFALL
X
REGENDAUER
13
R21
"22
23
33
34
-42
43
44
I'M'M'I'M'H
IT*
l» M imxn M 2:
*( IS
iffi
EXPLANATIONS:
T Time after start of rainfall in min., e.g. 5.0, 10.0, 15.0, etc.
R. . Dimensionless influence factor of rainfall duration at time T on
1%' pollutant i in an area of type j (0.0 ^ R. . S 1.0)
NOTE:
H
CT>
20 cards are necessary; the first card must contain "RAINFALL" in columns
1 through 8 for english units or "REGENDAUER" in columns 1 through 10 for
metric units.
The ability of a rainfall intensity to wash off pollutants is decreasing
with increasing rainfall duration. At the beginning of a rainfall R.. =
1.0 (at T = 5.0). At T = 90.0 R.. usually decreases to 0.2 to 0.4. 1J
The figures provided in Appendix-37, Test Example for PROGRAM DTCHCK, may
be used as reference values.
-------
PROGRAM DTCHCK:
Quality data
DATA CARDS 8: Diurnal variation influence
R
S
DIURNAL VARIATION
TAGESZEITEINFLUSS
DV,
DV.,
DV.,
DV,
DV,
DV,
DV,
17 II I
p 3BJ39
10 41 42 I
13 Mta J<
EXPLANATIONS:
DVi
Time of day in hrs.min, e.g. 10.30
Dimensionless influence factor of time T of day on pollutant i
(0.0 g DV.
1.0)
NOTE:
a*
24 cards are necessary; the first must contain "DIURNAL VARIATION" in
columns 1 through 17 for english units or "TAGESZEITEINFLUSS" in columns
1 through 17 for metric units.
The values for T in the first card must be 00.00 and 12.00. With each sub-
sequent card these values are increased by half an hour, i.e., 00.30 and
12.30, 01.30 and 13.00, etc.
The change in land use conditions during the day (e.g. traffic conditions)
may be accounted by the diurnal variation influence factor. For BOD5, COD
and TSS for instance DV. usually is 1.0 during rush hours and decreases
to 0.8 for night time traffic. For fecal coliforms the influence of solar
radiation may be accounted for by DV. = 1.0 during darkness and DV.^ = 0.55
around noon.
-------
PROGRAM DTCHCK:
Quality data
DATA CARD(S) 9: Seasonal variation influence
R
S
SEASONAL VAR.
JAHRESZEITEINFLUSS
SV,
SV,
SV,
SVC
SV.
SV,
SVn
SV,
SV
10
SV
11
SV
12
111 19 10 21
ipfo^fo appapvpc iipapyfo Mp>JM[:»J40
4114} «3 44 II
( Sl
WW3WK
>6 rfyt ?»|ac
EXPLANATIONS:
SV.
J
Number of pollutant (1, 2, 3 or 4) in column 17 for englisb units
or in column 20 for metric units
Dimensionless influence of month j (January through December) on
pollutant i
NOTE:
ON
CO
One card is necessary for each pollutant.
The first card must contain "SEASONAL VAR." in columns 1 through 12 for eng-
lish units or "JAHRESZEITEINFLUSS" in columns 1 through 18 for metric units.
The maximum pollution accumulating in the drainage areas (see DATA CARD 3a
of PROGRAM DTCHCK: Quality data) is dependent on the seasons of the year.
For BODS, COD and TSS SV. varies between 0.75 and 1.0. For fecal coliforms
SV. equals 1.0 during summer month and decreases to 0.4 in winter for
northern climates.
-------
PROGRAM DTCHCK: Quality data
DATA CARDS lOa: Cleaning effect of detention
facilities within the network
R
S
CLEANING EFFECT
BECKENKLAERWIRKUNG
JiolnUiJul
is u i;
13 MH
ISI1
EXPLANATIONS:
P.
Detention time in min., e.g. 5, 10, 15, etc.
Percentage to which pollutant i is reduced at time T, e.g. 70
NOTE:
o\
20 cards are necessary; the first should contain "CLEANING EFFECT" in
columns 1 through 15 for english units or "BECKENKLAERWIRKUNG" in columns
1 through 18 for metric units.
The values for T on the first card must be 5, 105 and 205 minutes. With each
subsequent card these values are increased by 5 minutes, i.e. 10, 110 and 210
minutes.
With increasing detention time the cleaning effect of a basin increases. For
BOD5, COD, TSS and fecal coliforms Appendix 7, Test Example for PROGRAM
DTCHCK, provides some reference values which may be adapted to local con-
ditions.
-------
PROGRAM DTCHCK: Quality data
DATA CARDS lOb: 'Cleaning effect of storm or com- R
bined sewage treatment basins S
CLEANING EFFECT
BECKENKLAERWIRKUNG
X
w«d/4p;
« M» '
ae»'
32pll 14 Uui
a sab' v
EXPLANATIONS:
T
P.
Detention time in hrs., e.g. 8.5
Percentage to which pollutant i is reduced at time T, e.g. 55
Ul
NOTE:
16 cards are necessary; the first should contain "CLEANING EFFECT" in
columns 1 through 15 for english units or "BECKENKLAERWIRKUNG" in columns
1 through 18 for metric units.
The values for T on the first card must be 0.5, 8.5 and 16.5 hours. With
each subsequent card these values are increased by 0.5 hours, i.e. 1.0,
8.0 and 17.0 hours.
For reference values see Appendix 7, Test Example for PROGRAM DTCHCK.
-------
PROGRAM DTCHCK:
Quality data
DATA CARDS lla:
Dry-weather flow pollution
(diurnal pattern)
R
S
TW-SCHMUTZMENGEN
m
-------
PROGRAM DTCHCK:
Quality data
DATA CARD lib: Industrial wastewater pollution
IW-KONZENTRATION
IWC
IWC.
l|i[ii|7|g|y|lo|ll|l2l3n[li[
16 17 18 IP 20 21 2:
M w|28 » sopip iap-ipppTpa jfUJi
J 43 44 43 4.
79 BC
EXPLANATIONS:
This card is mandatory and must contain "IW-KONZENTRATION" in columns
1 through 16 for english and metric units.
IWC.
Concentration of pollution i of the industrial wastewater in mg/1
(ppm) or number of bacteria x 10 /I (Y is given on DATA CARD 2 of
PROGRAM DTCHCK: Quality data)
NOTE:
The industrial wastewater pollution given on this card applies to all in-
dustrial wastewater inflows IW as specified on DATA CARD(S) 8a of PROGRAM
DTCHCK: Network data except for those catchments for which on DATA CARD(S) lie,
PROGRAM DTCHCK: Quality data, special industrial wastewater pollution values
are provided.
This card must not be contained for receiving water calculations.
-------
PROGRAM DTCHCK:
Quality data
DATA CARD(S) lie:
Special industrial waste-
water pollution
IW-SPEZ-KONZ
CA
IWC
I5|3<
IWC3
T
I3jj« 46U7I8
n 5cjsi[sa n H|M{M a MM u\&\\n\>
2345 478
9 IOMI 12
13 14 13 16 17 18 l» 20 21 22 23R4 25
i
!728
31 32 33 34 35134
4IU24
3 M »
p 74)77
70 79 BO
EXPLANATIONS:
00
NOTE:
This card must contain IW-SPEZ-KONZ" in columns 1 through 12 for english and
metric units.
CA Name of drainage area
IWC. Concentration of pollution of special industrial wastewater for
1 drainage areas in mg/1 (ppm) or number of bacteria x 10 /I (Y is
given on DATA CARD 2 of PROGRAM DTCHCK: Quality data).
See also DATA CARD lib, PROGRAM DTCHCK: Quality data.
The special industrial wastewater pollution again applies to the industrial
wastewater inflows IW as specified for the corresponding catchments on DATA
CARD(S) 8a of PROGRAM DTCHCK: Network data and is included only, if this in-
dustrial wastewater pollution differs from the value IWC. provided on DATA
CARD lib of PROGRAM DTCHCK: Quality data. X
A maximum of 20 cards is allowed.
These cards must not be contained for receiving water calculations.
-------
PROGRAM DTCHCK: Quality data
DATA CARD lid: Dry-weather flow pollution end card
R
S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4.
CT«
VO
-------
PROGRAM DTCHCK:
Quality data
DATA CARD(S) 12a: Constant external loading
pollution
R
S
EXPLANATIONS:
ND
PEX.
Name of boundary node with constant external loading
Concentration of pollution of external loading in rog/1 (ppm) or
number of bacteria x 10 /I for pollutant i (Y is given on DATA
CARD 2 of PROGRAM DTCHCK: Quality data)
NOTE:
Any number of cards may be read in, but only loadings at nodes specified on
DATA CARD 3i of PROGRAM DTCHCK: Network data are considered.
-------
PROGRAM DTCHCK: Quality data
DATA CARD 12b: End of constant external
loading pollution
R
S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4
-------
PROGRAM DTCHCK:
Quality data
DATA CARDS 12c:
Variable external loading
pollution (pollutographs)
R
S
ND
PEX
PEX2
PEX
PEX
PEX
PEX
PEX3
I t\3\4
J»
> I
9110 IIII3 I) 14)13
fet
Ml »
I4pj KpTpa MJ40 4l[o[43J4~£ -rwf
x 10 /I at time T. for pollutant j (Y is given
on DATA CARD 2 of PROGRAM DTCHCK: Quality data)
NOTE:
The end of a pollutograph is marked by a negative time value (e.g. -1). One
pollutograph may contain up to 289 time values (T plus 288 intervals).
Any number of pollutographs may be read in,, but only the hydrographs at
nodes, specified on DATA CARD 3j of PROGRAM DTCHCK: Network data, are con-
sidered for single event simulations.
-------
PROGRAM DTCHCK: Quality data
DATA CARD 12d: End of variable external
loading pollution
R
S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4.
vl
U)
-------
PROGRAM DTCHCK:
Quality data
DATA CARD 13a: Receiving water title card
R
NAME
""H"!" HHr >T*H]fT>'raF »yp*
i n
t n
EXPLANATIONS:
RW Number of receiving water (1 or 2)
NAME The name must match the name supplied for the corresponding
receiving water on DATA CARD 13a of PROGRAM DTCHCK: Quantity
data
-------
PROGRAM DTCHCK:
Quality data
DATA CARDS 13b: Receiving water pollution
R
RQL
RQU
RAP,
RAP,,
RAP.,
RAP,
RAP,
RAP,
RAP0
RAP,,
RAP
10
RAP
11
RAP
12
EXPLANATIONS:
Ln
RW
RQL
RQU
RAP.
Number of receiving water according to DATA CARD 13a, PROGRAM
DTCHCK: Quality data
Lower limit of receiving water discharge range in cfs or m3/s
(RQL < RQU)
Upper limit of receiving water discharge range in cfs or m3/s
(RQU > RQL)
Number of pollutant
Concentration of receiving watervbackground pollution in mg/1
(ppm) or number of bacteria x 10 /I which applies for the dis-
charge range RQL to RQU dependent on the months of the year
(January, i = 1, through December, i = 12) (Y is given on DATA
CARD 2, PROGRAM DTCHCK: Quality data)
NOTE:
2 to 20 ranges given on subsequent card groups, which contain one card for
each pollutant, are permitted. The range limits on the sequential card groups
must be increasing, e.g.:
Receiving water 1, range 1,
Receiving water 1, range 1,
Receiving water 1, range 2,
Receiving water 1, range 2,
Receiving water 2, range 1,
pollutant 1
pollutant 2
pollutant 1
pollutant 2
pollutant 1, etc.
The number of ranges must be the same for both receiving waters.
-------
PROGRAM DTCHCK: Quality data
DATA CARD 13c: End of receiving water
pollution
R
S
p ijppspp itppopi rcJMpyi upTp ]9poJ4i[<7 4
EXPLANATIONS:
The end of the pollution figures of a receiving water is marked by this card,
containing -1.0 in columns 5 through 8
o\
NOTE:
Subsequently follows DATA CARD 13a for the second receiving water, if exist-
ing, as well as the sequence of cards specified on DATA CARDS 13b. Again the
end is marked by DATA CARD 13c.
This is the last card of the Quality data set.
-------
APPENDIX 3
ERROR (F) AND INFORMATIVE MESSAGES OF THE PROGRAM DTCHCK
GERMAN
ENGLISH
(F) ABSCHLUSS DER DATEN FEHLT,
ES SIND NOCH WEITERE DATEN VOR-
HANDEN
(F) ANFANGSZEITPUNKT = ...
UHR MINUTEN
(F) ANZAHL DER JAHRE = ... 1ST
NICHT ZULAESSIG
(F) ANZAHL DER REGENINTERVALLE
GROESSER ALS MAXRND, KARTE
NUMMER ...
(F) ANZAHL DER REGENMESSREI-
HEN = ...
(F) ANZAHL INTERESSANTER KNO-
TEN ..., MAX. ZULAESSIG
(F) AUFBAUZEITENKARTEN FALSCH
GEKENNZEICHNET
(F) AUSGABEKNOTEN (RHB)
DER ... UND DER KNOTEN SIND
GLEICH
(F) AUSGABEKNOTEN (RUE)
DER ... UND DER KNOTEN
SIND GLEICH
(F) AUSGABEROHRE DAS ...
UND DAS ROHR SIND GLEICH
The end card of data check is
missing, additional cards are
existing.
The start of rainfall at ...
hours .... minutes does not
match with the duration of the
event provided.
A number of
admitted.
years is not
The number of precipitation in-
tervals is larger than MAXRND,
card number ....
The number of precipitation
records is specified as ... and
does not match with the preci-
pitation data supplied.
The total number of nodes of
interest is ..., only ... are
allowed.
The card containing the built-
up times is identified false.
The printout nodes (basins) ...
and .... are provided twice.
The printout nodes (overflow
structures) ... and .... are
provided twice.
The printout segments ..
.... are provided twice.
and
177
-------
(F) BEIDE VORFLUTER HABEN DIE
NUMMER VORFL = ...
(F) BEREICHSLUECKE ODER UEBER-
SCHREITUNG VON DER ... BIS
KARTE
(F) BEZEICHNUNG OHNE GEBIETSART
GEGEBEN
(F) DAS AUSGABEROHR KA = ...
KE = 1ST NIGHT IM NETZ ENT-
HALTEN
(F) DAS JAHR MESSREIHE ...
BEREITS VORHANDEN ODER ZWISCHEN
ZWEI MESSREIHEN FEHLT
(F) DAS NETZ ENTHAELT BECKEN,
... SIND NUR ZULAESSIG
(F) DAS NETZ ENTHAELT KEINE SON-
DERBAUWERKE
(F) DAS NETZ ENTHAELT KEINE SON-
DERBAUWERKE.
SONDERBAUWERKSKARTEN USW. FEH-
LEN
(F) DAS NETZ ENTHAELT KNO-
TEN, ... SIND NUR ZULAESSIG
(F) DAS NETZ ENTHAELT UEBER-
LAEUFE, ... SIND NUR ZULAESSIG
(F) DAS ROHR KNA ... KNE
EXISTIERT NICHT ODER DARF KEIN
GESTEUERTES ROHR SEIN
(F) DAS ROHR KNA = ... KNE =
SOLL IN ZWEI ROHRE GETEILT WER-
DEN
Both receiving waters are in-
dicated by the number ....
There is a gap or overlap in
the ... to .... card.
The identification is given
without coordination to drain-
age area type.
The printout segment with the
upper node ... and the lower
node .... is not contained in
the network.
The year .... for precipitation
record ... is already existing
or the year in-between two pre-
cipitation records is missing.
The network contains .... ba-
sins, ... only are allowed.
The network does not contain
special structures.
The network contains no spe-
cial structures.
Input cards for special struc-
tures are missing.
The network contains a number
of .... nodes, ... only are al-
lowed.
The network contains .... over-
flows, ... only are allowed.
The sewer segment with the up-
per node ... and the lower node
.... is not existing or may not
be a segment containing a con-
trol gate.
The sewer segment with the up-
per node ... and the lower node
.... should be subdivided into
two segments.
178
-------
(F) DATENKARTEN FALSCH GEKENN-
ZEICHNET
(F) DATENKARTEN FEHLEN
(F) DEN ZUFLUSSKNOTEN .
ROHRES KA = ..., KE = .
(LFN ..) GIBT ES NIGHT
. DBS
(F) DER AUSGABEKNOTEN (RHB)
1ST NICHT IM NETZ ENTHALTEN
(F) DER AUSGABEKNOTEN (RUE)
1ST NICHT IM NETZ ENTHALTEN
(F) DER AUSGABEKNOTEN (RUE) ...
1ST KEIN REGENUEBERLAUF
(F) DER AUSGABEKNOTEN (RHB) ...
1ST KEIN SONDERBAUWERK MIT BECKEN
(F) DER GRENZKNOTEN ... 1ST NIGHT
IM VORFLUTERNETZ ENTHALTEN
(F) DER INTERESSANTE KNOTEN ...
DARF NUR EINEN ABFLUSS HABEN
(F) DER INTERESSANTE KNOTEN
HAT ... ZUFLUESSE, ER MUSS ZWEI
HABEN
(F) DER INTERESSANTE KNOTEN ...
1ST KEIN BECKENBAUWERK
(F) DER INTERESSANTE KNOTEN ...
LIEGT NICHT IM VORFLUTER
(F) DER INTERESSANTE KNOTEN ...
MUSS EIN AUSLASSROHR UND EIN
VORFLUTERELEMENT ALS ZUFLUESSE
HABEN
(F) DER KNOTEN ..
STEUERORGAN SEIN
DARF KEIN
The data cards are specified
wrong.
Data cards are missing.
The in-going node ... of the
sewer segment with the upper
node ... and the lower node
.... is not existing (sequen-
tial number ..).
The printout node (basin) ...
is not contained in the net-
work.
The printout node (overflow
structure) is not contained in
the network.
The printout node (overflow
structure) ... is no overflow.
The printout node ... (basin)
is no basin.
The node at the calculation
area boundary ... is not con-
tained in the receiving water
system.
The interesting node .
have only one outflow.
may
The interesting node .... has
... inflows, exactly two must
be specified.
The interesting node
basin.
is no
The interesting node ... is not
located in the receiving water
system.
The interesting node ... must
have one sewer segment and one
receiving water system element
as inflows.
The node .
trol gate.
may not be a con-
179
-------
(F) DER KNOTEN ... DARF KEIN
UEBERNAHMEKNOTEN SEIN (SONDER-
BAUWERK ODER VERZWEIGUNG)
(F) DER KNOTEN HAT ZWEI AB-
FLUESSE (BAUWERKSTYP ...)
(F) DER KNOTEN ... 1ST EINE
VERZWEIGUNG ODER EIN SONDER-
BAUWERK
(F) DER KNOTEN ... 1ST IN DEM
NETZDATENFILE NICHT AUFGEFUEHRT
(F) DER KNOTEN ... 1ST KEIN
ABFLUSSKNOTEN DES KNOTEN ...
(LFN ..)
(F) DER KNOTEN ..
FACH AUFGEFUEHRT
1ST MEHR-
(F) DER KNOTEN ... MIT KONSTAN-
TER UEBERNAHME 1ST NICHT IM
NETZ ENTHALTEN
(F) DER KNOTEN ... MIT VARIAB-
LER UEBERNAHME 1ST NICHT IM
NETZ ENTHALTEN
(F) DER KNOTEN ... TAUCHT DREI-
MAL ALS ANFANGSKNOTEN AUF
(F) DER KNOTEN ... TAUCHT VIER-
MAL ALS ENDKNOTEN AUF
(F) DER MITTELWERT VON KOORDI-
NATEN MUSS = 1 SEIN
(F) DER REGEN JAHR ... MO-
NAT ... TAG ... INT ... DAUER
... GEHT UEBER DIE REIHENUNTER-
BRECHUNG REIHE NUMMER ...
(F) DER SPEZIELLE INTERESSANTE
KNOTEN ... FEHLT
(F) DER SPEZIELLE INTERESSANTE
KNOTEN ... 1ST NICHT IM NETZ
ENTHALTEN
The node ... may not be loaded
by an external loading (special
structure or branching point).
The node . has two outflows
(structure type ...).
The node ... is a branching
point or a special structure.
The node ... is not mentioned
in the file network data.
The node ... is not an outflow
node of the node ... (sequen-
tial number ..).
The node ..
eral times.
is mentioned sev-
The node ... with a constant
external loading is not con-
tained in the network.
The node ... with a variable
external loading is not con-
tained in the network.
The node is used three
times as beginning node.
The node ... is used four
times as lower node of a sewer
segment.
The average value of the coor-
dinates must be equal to one.
The precipitation event, year
..., month ..., day ..., inter-
val ..., duration ..., overlaps
with the interruption of the
precipitation record number
The node of special interest
... is missing.
The node of special interest
... is not contained in the
network.
180
-------
(F) DER UEBERNAHMEKNOTEN
FEHLT
(F) DER UEBERNAHMEKNOTEN
1ST ZWEIMAL VORHANDEN
(F) DER ZUFLUSS .
KA = ..., KE =
ANGEGEBEN
ES GIBT EIN KA =
DES ROHRES
1ST NIGHT
* JvE . . i
(F) DIE ABSCHLUSSKARTE FEHLT
ODER DATEN VORHANDEN OBWOHL KEINE
KNOTEN IN NETZDATEN AUFGEFUEHRT
(F) DIE ANZAHL DER BEREICHE IN
DEN BEIDEN VORFLUTERN 1ST NIGHT
GLEICH
(F) DIE EINHEITSGANGLINIEN UM-
FASSEN KARTEN, ... SIND NUR
ZULAESSIG
(F) DIE EINSKARTE FEHLT ODER AN-
ZAHL DER REGENKARTE 1ST FALSCH,
KARTE NUMMER ...
(F) DIE ERSTE KARTE FALSCH GE-
KENNZEICHNET
(F) DIE FOLGENDEN KNOTEN BILDEN
EINE NETZSCHLEIFE
(F) DIE KARTE ... ENTHAELT DEN
NAMEN DES TEILEINZUGSGEBIETES,
DAS NIGHT VORHANDEN 1ST
(F) DIE KARTE ... ENTHAELT KEI-
NE BLANKS IN DEN ERSTEN ZWANZIG
SPALTEN ODER ZU VIELE KARTEN
VORHANDEN
(F) DIE ... KARTE ENTHAELT KEI-
NE KNOTENANGABE
(F) DIE KARTE FALSCH GEKENN-
ZEICHNET
The boundary node with the ex-
ternal loading ... is missing.
The boundary node with the ex-
ternal loading ... is existing
twice.
The inflow ... of the sewer
segment with the upper node
... and the lower node .... is
not specified. There is a sewer
segment with the upper node ...
and the lower node
The end card is missing or data
are existing eventhough the
nodes are not mentioned in the
network data.
The number of ranges are not
equal for the two receiving
waters.
The unit hydrographs contain
.... cards, ... only are admit-
ted.
The "one" card is missing or
the number of precipitation
cards is wrong, card number
The first card is identified
wrong.
The following nodes form a net-
work loop.
The card ... contains the name
of a drainage area, which is
not existing.
The card ... does not contain
blanks in the first twenty
columns or too many cards are
existing.
The ... card contains no node
name.
The card is identified wrong.
181
-------
(F) DIE NULLKARTE FEHLT
KARTE NUMMER ...
(F) DIE NUMMER DER GEBIETSBE-
ZEICHNUNGEN STIMMEN NICHT
(F) DIE NUMMER DBS VORFLUTERS
MUSS ... SEIN
(F) DIE NUMMERN DER SCHMUTZSTOFF-
BEZEICHNUNGEN STIMMEN NICHT
(F) DIE SOHLE DER DROSSEL LIEGT
TIEFER ALS DIE SOHLE DBS BECKENS
ODER HOEHER ALS DIE SCHWELLE
(F) DIE SOHLE DER DROSSEL LIEGT
UEBER DER SOHLE DBS REGENUEBER-
LAUFES
(F) DIE SOHLE DBS AUSLAUFROHRES
LIEGT TIEFER ALS DIE SOHLE DBS
BECKENS
(F) DIE TEMPERATURKARTEN ENTHAL-
TEN MEHR ALS ... VERSCHIEDENE
JAHRESANGABEN
(F) DIE ... UND DIE PROFIL-
KARTE HABEN DIE GLEICHE PROFIL-
KENNZAHL
(F) DRITTE KARTE MIT DER JAH-
RESZAHL ... (LFN ..)
The "zero"
card number
card is missing,
(F) ENDZEITPUNKT =
MINUTEN
.. UHR
(F) EIN TAG (= 1440 MINUTEN)
1ST KEIN GANZZAHLIGES VIELFA-
CHES VON DT = ... MINUTEN
(F) EINZELEREIGNISRECHNUNG BE-
GINNT AM ...
(F) ERSTE KARTE FALSCH GEKENN-
ZEICHNET
The numbers of the drainage
area types do not match.
The number of the receiving
water must be ....
The numbers of the pollutants
disagree.
The invert of the throttle sew-
er is lower than the invert of
the basin or above the weir
crest.
The invert of the throttle sew-
er is above the invert of the
overflow structure.
The invert of the outgoing seg-
ment is lower than the basin
invert.
The temperatures cards contain
more than ... different years.
The ... and the .... cross sec-
tion cards have the same iden-
tifier.
There is a third card with the
year ... (sequential number ..).
The concluding time of the
event ... hours .... minutes
does not match with the start
of event and the number of pre-
cipitation data provided.
One day is not a even numbered
multiple of DT = ... minutes.
The single event simulation
begins at ....
The first card is identified
wrong.
182
-------
(F) ERSTE KARTE FALSCH GEKENN-
ZEICHNET ODER ZU VIELE KARTEN
FUER TW-ABFLUESSE VORHANDEN
(F) ES FEHLEN DATEN FUER ...
JAHRE
(F) ES SIND SPEZIELLE INTER-
ESSANTE KNOTEN AUFGEFUEHRT (...
SIND ZULAESSIG). ES MUSS MINDE-
STENS EIN INTERESSANTER KNOTEN
ANGEGEBEN SEIN
(F) ES SIND ZWEI NULLKARTEN HIN-
TEREINANDER VORHANDEN KARTE NUM-
MER ...
(F) ES WERDEN
LEN VERLANGT,
LAESSIG
. PROFILKENNZAH-
SIND NUR ZU-
(F) ES WURDEN ... REGENINTENSI-
TAETSKARTEN EINGELESEN, 288 SIND
NUR ZULAESSIG
(F) FEHLER IN DEM NETZDATENFILE
DIE DATEN WERDEN UEBERLESEN
(F) FILE IF07 LEER (SYSTEMDATEN
KANALNETZ)
(F) FORMATFEHLER AUFBAUZEITEN
(F) FORMATFEHLER AUFGETRETEN,
EVENTUELL FEHLT ENDE-KARTE DER
ROHRELEMENTKARTEN
(F) FORMATFEHLER IN DEN DATEN-
KARTEN
(F) FORMATFEHLER IN DER GEBIETS-
FAKTORENKARTE
(F) FORMATFEHLER IN DER ...
KARTE
(F) FORMATFEHLER IN DER .
KARTE (GEBIET = , KN
The first card is identified
wrong or too many cards for
dry-weather flows are existing.
Data cards are missing for ...
years.
.... nodes of special interest
are given (only ... are al-
lowed) . At least one node of
special interest must be pro-
vided.
Two "zero"
quence,
cards are in se-
card number ....
.... cross section identifiers
are requested, ... are permis-
sible.
... precipitation intensities
were supplied, 288 only are
permitted.
There is an error in the file
network data, the data are ig-
nored.
File IF07 is empty (system da-
ta of the sewer network).
There is a format error in the
built-up times.
A format error was encountered,
possibly the end card of the
sewer segment cards is missing.
There is a format error in the
data cards.
There is a format error in the
drainage area coefficient card.
There is a format error in the
... card.
There is a format error in the
... card (drainage area ....,
node ...).
183
-------
(F) FORMATFEHLER IN DER ...
KARTE (KNOTEN )
(F) FORMATFEHLER IN DER ...
KARTE (KNOTEN , DROSSELKARTE)
(F) FORMATFEHLER IN DER ...
KARTE ODER ZU WENIGE KARTEN
VORHANDEN
(F) FORMATFEHLER IN DER KON-
STANTENKARTE
(F) FORMATFEHLER IN DER ...
PROFILKARTE
(F) FORMATFEHLER IN DER TITEL-
KARTE
(F) FORMATFEHLER IN DER UEBER-
NAHMEGANGLINIE DES KNOTENS ...
(F) FORMATFEHLER INITIALISIE-
RUNGSKARTE
(F) FORMATFEHLER INITIALISIE-
RUNGSWERTE
(F) FORMATFEHLER JAHRESZEITEN-
EINFLUSSKARTE
(F) FORMATFEHLER ... KARTE
(F) FORMATFEHLER ... KARTE
(KLAERWIRKUNG)
(F) FORMATFEHLER KOEFFIZIEN-
TENKARTE
(F) FORMATFEHLER MAXIMALE
SCHUTZWERTE
(F) FORMATFEHLER STRASSEN-
REINIGUNGSKARTE
(F) FUER DAS JAHR ..
DIE TEMPERATURDATEN
FEHLEN
There is a format error in the
... card (node ....).
There is a format error in the
... card (node . ..., throttle
sewer card).
There is a format error in the
... card or not enough cards
are existing.
Format error in the constant
card.
There is a format error in the
... cross section card.
There is a format error in the
title card.
There is a format error in the
external loading hydrograph of
the node ....
There is a format error in the
initialisation card.
There is a format error in the
initialisation values.
There is a format error in the
seasonal variation influence
card.
There is a format error in the
... card.
There is a format error in the
... card (retention efficiency).
There is a format error in the
coefficient card.
There is a format error for the
maximum pollutant load avail-
able on drainage areas.
There is a format error in the
card defining street cleaning.
For the year ... the tempera-
ture data are missing.
184
-------
(F) FUER DAS JAHR FEHLEN
VORFLUTERABFLUESSE
EINZELEREIGNISRECHNUNG BEGINNT
AM UHR ... MINUTEN
(F) FUER DAS JAHR ... 1ST NUR
EINE TEMPERATURKARTE VORHANDEN
(F) FUER DAS JAHR ... SIND NICHT
ALLE MINIMALTEMPERATUREN NICHT
KLEINER ALS DIE MAXIMALTEMPERA-
TUREN
(F) FUER DEN KNOTEN ... 1ST EINE
VIERTE TEILEINZUGSGEBIETSKARTE
VORHANDEN (LFN ..)
(F) FUER DEN LETZTEN KNOTEN
1ST NUR ... DROSSELKARTE VOR-
HANDEN
(F) FUER DEN UEBERNAHMEKNOTEN
... SIND ZWEI GANGLINIEN VOR-
HANDEN
(F) FUER LASTFALL = ... DARF
KEIN ENDZEITPUNKT GEGEBEN SEIN
(F) GEBIETSART = ... BEZEICHNUNG
FEHLT
(F) GEBIET = ... DER KNOTEN KN =
1ST NICHT IM NETZ ENTHALTEN
(LFN ..)
(F) GEBIETSFAKTORENKARTE FALSCH
GEKENNZEICHNET
(F) HMIN GROESSER ALS HMAX
(F) IM JAHR ... MONAT SIND
MIN UNO MAX TEMPERATUREN = NULL
(F) INITIALSISIERUNGSKARTE
FALSCH GEKENNZEICHNET
For the year .... the receiving
water runoff data are missing.
The single event simulation be-
gins at hour ... min-
utes.
For the year ... only one tem-
perature card is existing.
For the year ... not all min-
imum temperatures specified are
smaller than the maximum tem-
peratures given.
For the node ... a fourth
drainage area card is existing
(sequential number ..).
For the last node .... only ...
throttle sewer card is exist-
ing.
For the boundary node with an
external loading ... two load-
ing hydrographs are existing.
For the condition C = ... pro-
vided on data card 2 of the
file network data no conclud-
ing date and time may be given.
For the drainage area type ...
the identification is missing.
Drainage area ..., the node
is not contained in the network
(sequential number ..).
The drainage area coefficient
card is identified wrong.
HMIN is larger than HMAX.
In the year ... month .... the
minimum and maximum tempera-
tures are zero.
The initialisation card is id-
entified wrong.
185
-------
(F) INTERESSANTE KNOTEN
DER ... UND DER KNOTEN SIND
GLEICH
(F) INTERESSANTER KNOTEN ...
1ST NICHT IM NETZ
(F) JAHR 19.. ABFLUESSE FUER
DIE MONATE ... BIS VORHANDEN
(F) JAHRESKARTE: JAHR ... FAELLT
NICHT IN DEN ANGEGEBENEN ZEIT-
RAUM DER RECHNUNG
(F) JAHR IN DER MESSREIHE
... FEHLT
(F) ... KARTE DEN KNOTEN
... GIBT ES NICHT
(F) ... KARTE ELEMENTTYP NICHT
PROGRAMMIERT
(F) ... KARTE HMAX = 0 ODER
NEGATIV
(F) KARTE SCHMUTZSTOFFNUMMER
FALSCH ODER KARTE NICHT RICHTIG
EINGEORDNET
(F) KARTE VQU = ... VQO = ...
ENTSPRICHT NICHT DER VORHERGE-
HENDEN KARTE
(F) KEINE DATEN FUER MESSREIHE
... VORHANDEN
(F) KEINE GEBIETSARTEN VORGE-
GEBEN
(F) KEINE KARTEN VORHANDEN
(F) KEINE SCHMUTZSTOFFE VORGE-
GEBEN
(F) KNOTEN = ... BEIDE DROSSELN
HABEN DIE GLEICHE BEZEICHNUNG
E = ...
The nodes of interest ... and
.... are similar.
The interesting node ... is not
contained in the network.
Year 19.. The runoff data for
the month ... to .... are exist-
ing.
The year provided ... is not
contained in the timespan to be
simulated.
The year .... is missing in the
precipitation record ....
... card, the node .... is not
existing.
... card, this type of element
cannot be handled by the pro-
gram.
... card, HMAX = 0 or negativ.
The card containing the pol-
lutant numbers is wrong or in
the wrong order.
The card VQU = ... VQO = ...
does not match with the pre-
ceeding card.
No data for rainfall record ..
existing.
There are no drainage area
types specified.
No cards are existing.
No pollutants are provided.
Node ..., both throttle sewers
have the same name E = ....
186
-------
(F) KNOTEN ...
KEINEN ABFLUSS
DAS BAUWERK HAT
(F) KNOTEN = ... DIE BECKENSOH-
LE LIEGT HOEHER ALS DIE SCHWELLE
DBS REGENUEBERLAUFS (LFN ..)
(F) KNOTEN = ... DIE ... DROS-
SELKARTE GEHOERT NICHT ZUM KNO-
TEN (KN = ...) (LFN ..)
(F) KNOTEN = ... DIE DROSSEL 2
LIEGT HOEHER ALS DIE BECKENSOHLE
(F) KNOTEN ... DIE SCHWELLE DES
UEBERLAUFS LIEGT HOEHER ALS DIE
DECKE DES BECKENS
(F) KNOTEN = ... DIE SOHLE DER
DROSSEL LIEGT NICHT TIEFER ALS
DIE DECKE DES BECKENS
(F) KNOTEN = ... DIE SOHLE DER
DROSSEL LIEGT TIEFER ALS DIE
SOHLE DES BECKENS ODER HOEHER
ALS DIE SCHWELLE
(F) KNOTEN = ... DIE SOHLE DER
DROSSEL LIEGT TIEFER ALS DIE
SOHLE DES UEBERLAUFS ODER HOEHER
ALS DIE SCHWELLE
(F) KNOTEN = ... DIE SOHLE DES
AUSLAUFROHRES LIEGT TIEFER ALS
DIE SOHLE DES BECKENS
(F) KNOTEN = ... DIE SOHLE DES
UEBERLAUFROHRES LIEGT HOEHER
ALS DIE SCHWELLE
(F) KNOTEN = ... DROSSELBE-
ZEICHNUNG FALSCH E = ...
(LFN ..)
(F) KNOTEN = ... DROSSELKARTE,
KEIN POSITIVES GEFAELLE
(LFN ..)
Node ... the structure has no
outflow.
Node ..., the basin invert is
above the weir crest of the
overflow (sequential number ..).
Node ., the ... throttle
sewer card does not belong to
the node (...) (sequential
number ..).
Node ..., the throttle sewer 2
is higher than the basin invert.
Node ..., the weir crest of the
overflow is above the basin
ceiling.
Node = ..., the invert of the
throttle sewer is not lower
than the basin ceiling.
Node ..., the invert of the
throttle sewer is lower than
the invert of the basin or
higher than the overflow.
Node ..., the invert of the
throttle sewer is lower than
the invert of the overflow
structure or higher than the
weir crest.
Node ..., the invert of the
outgoing segment is lower than
the invert of the basin.
Node ..., the invert of the
segment behind the overflow is
higher than the weir crest.
Node ... throttle definition is
wrong E = ... (sequential num-
ber ..).
Node ..., check throttle sewer
card, inverse slope (sequential
number ..).
187
-------
(F) KNOTEN = DROSSELKARTE,
KS = ... LIEGT NIGHT INNERHALB
DER VORGEGEBENEN GRENZEN (...
UND ... BZW. ... UND ...)
(LFN ..)
(F) KNOTEN = DROSSELKARTE,
LAENGE = ... (LFN ..)
Node ...., throttle sewer card.
The friction factor ... is not
between the limits given ...
and .... or ... and ... respec-
tively (sequential number ..).
Node ...., check throttle sewer
length = ... (sequential number
(F) KNOTEN = ..
PROFILBREITE =
DROSSELKARTE,
.. (LFN ..)
(F) KNOTEN = DROSSELKARTE
PROFILKENNZAHL FEHLT (LFN ...)
(F) KNOTEN ... PARAMETER FUER
DIE VERWEILDAUER FALSCH
(F) KNOTEN
FEHLT FUER DIE
PKZ = ..
PROFILKARTE
DROSSEL
(F) KNOTEN = ... UNZULAESSIGER
BAUWERKSTYP (LFN ..)
Node .... check throttle sewer
profile width = (sequen-
tial number ..) .
Node ..., throttle sewer card
cross section code is missing
(sequential number ..).
Node
the switch for the
retention time is wrong.
Node . . . . , the cross section
card for the throttle sewer
. . . (cross section code = . . )
is missing.
Node . . . , unallowed type of
structure (sequential number
(F) KNOTEN = ...
VORHANDEN (LFN ..)
ZWEI KARTEN
(F) KONSTANTENKARTE KS-WERT ...
LIEGT NICHT INNERHALB DER VOR-
GEGEBENEN GRENZEN ... UND ...
BEZ. ... UND ...
(F) LASTFALL =
ZAHL =
INTERVALLAN-
Node . . . , two cards are exist-
ing (sequential number . . ) .
The friction factor .... given
on the constant card is not
within the limits allowed of
. . . and . . . or . . . and . . . re-
spectively.
For the condition C = . . . pro-
vided on data card 2 of the
file network data the simula-
tion period of .... intervals
is not allowed.
(F) LASTFALL =
ZULAESSIG
1ST NICHT
(F) MAXIMALE ANZAHL DER STEUER-
ORGANE UEBERSCHRITTEN
The condition C = ... provided
on data card 2 of the file net-
work data does not agree with
the other data supplied.
The number of control gates al-
lowed is exceeded.
188
-------
(F) MAXIMALE ANZAHL VON KONSTAN-
TEN UEBERNAHMEN ... UEBERSCHRIT-
TEN, DARUEBERHINAUS GEHENDE KON-
STANTE UEBERNAHMEN WERDEN IGNO-
RIERT
(F) MAXIMALE ANZAHL VON TEILEIN-
ZUGSGEBIETEN (...) UEBERSCHRIT-
TEN
TEILEINZUGSGEBIETE WERDEN IGNO-
RIERT
(F) MAXIMALE ANZAHL VON VARIAB-
LEN UEBERNAHMEN ... UEBERSCHRIT-
TEN, DARUEBERHINAUSGEHENDE VA-
RIABLE UEBERNAHMEN WERDEN IGNO-
RIERT
(F) MEHR ALS FUENFZIG KNOTEN AN
DER GRENZE DES HAUPTNETZES UNZU-
LAESSIG
(F) MEHR ALS ... KLAERWERKS-
BECKEN
(F) MEHR ALS ... ZUGELASSENE
SPEZIELLE IW-KONZENTRATIONEN
ANGEGEBEN
(F) MEHR ALS ZWANZIG JAHRE EIN-
GEGEBEN
(F) ... MONAT FEHLT IN .. MESS-
REIHE
(F) MONAT ... IM JAHR MESS-
REIHE .. BEREITS VORHANDEN
(F) MONAT ..., TAG .. Q = ..
KLEINER ALS QMIN ODER GROESSER
ALS QMAX
(F) MONATE SIND NICHT IN AUF-
STEIGENDER REIHENFOLGE, JAHR
, MESSREIHE ... KARTE NUM-
MER ..
(F) MONATSKARTE: MONATE SIND
NICHT IN HOCHSTEIGENDER REIHEN-
FOLGE ANGEGEBEN
The number of boundary nodes
with constant external loadings
of
allowed at a maximum,
are exceeded, the surplus of
constant loadings is ignored.
The maximum number of drainage
areas (...) is exceeded.
The drainage areas in excess
are ignored.
The number of variable external
loadings of ... is exceeded,
the surplus of variable extern-
al loadings is ignored.
More than fifty nodes at the
boundary of the calculation
area are not permitted.
More than ..
are defined.
treatment basins
There are more than ... special
industrial wastewater concen-
trations specified.
More than twenty years are pro-
vided.
... month is missing in preci-
pitation record .. .
The month ... in the year ....
of the precipitation record ..
is already existing.
Month ..., day .., Q = .... is
smaller than QMIN or larger
than QMAX.
The months are not in an in-
creasing sequence for the year
.... precipitation record ...
card number .. .
Month card: the months are not
given in increasing numbers.
189
-------
(F) MONATSKARTE: UNZULAESSIGE
MONATSNUMMER GROESSER ALS ZWOELF
(F) PROGNOSEFAKTOR INDUSTRIE-
WASSER = ...
(F) PROGNOSEFAKTOR SCHMUTZ-
STOFF .. = ...
(F) PROGNOSEFAKTOR WASSERVER-
BRAUCH = ...
(F) QMIN ODER QMAX 1ST FALSCH
(F) RECHENBEGINN IM JAHR ...,
FUER DIESES JAHR SIND KEINE
WERTE VORHANDEN
(F) RECHENENDE IM JAHR ...,
FUER DIESES JAHR SIND KEINE
WERTE VORHANDEN
(F) REGENDAUEREINFLUSS FORMAT-
FEHLER IN DER ... KARTE
(F) REGENINTERVALL = ... MINU-
TEN ENTSPRICHT NIGHT DEM RE-
CHENINTERVALL = .. MINUTEN
(F) ROHRELEMENT-KARTEN FEHLEN
(F) ROHRELEMENT-KARTEN WUR-
DEN EINGELESEN, ... SIND NUR
ZULAESSIG
(F) ROHR KA = .. KE =
(F) ROHR KA = ... KE =
2 ELEMENTKARTEN VORHANDEN
Month card: the number is not
permitted, the number is larger
than 12.
Prognosis factor for industrial
water consumption of ... is out
of range.
Prognosis factor for DWF pollu-
tion (pollutant number ..) =
... and is out of range.
Prognosis factor for water con-
sumption of ... is out of range.
QMIN or QMAX is wrong.
The calculation starts in the
year ..., for this year no val-
ues are supplied.
The simulation ends in the year
..., for this year no data are
supplied.
There is a format error in the
card defining the rainfall du-
ration influence.
The rainfall interval of ...
minutes does not correspond
with the calculation interval
of .. minutes.
Sewer segment cards are missing.
A number of .... sewer segment
cards were provided, only ...
are possible.
The sewer segment with the up-
per node .... and the lower
node .... must be checked.
For the sewer segment with the
upper node ... and the lower
node .... 2 element cards are
provided.
190
-------
(F) ROHR KA = ... KE =
FORMATFEHLER IN DER ELEMENTKAR-
TE (LFN ..)
(F) ROHR KA = ... KE = ... HAT
KEIN POSITIVES GEFAELLE
(F) ROHR KA = ... KE =
PKZ = ... PROFILKARTE FEHLT
(F) ROHR KA = ... KE = .
PROFILBREITE = ...
(F) ROHR KA = ... KE = .
PROFILKENNZAHL FEHLT
(F) ROHR KA = ... KE = .
VORFLUTERKENNUNG = ...
(F) ROHR KA = ... KE = ..
ZU = ..
ES GIBT KEIN ROHR MIT KA
UND KE =
(F) ROHR KA = ... KE = ..
ZU1 = ... ZU2 = ... ZU3 .
In the element card with the
sequential number .... concern-
ing the sewer segment with the
upper node ... and the lower
node .... an format error is en-
countered.
The sewer segment with the up-
per node ... and the lower node
.... has an inverse slope.
For the sewer segment with the
upper node ... and the lower
node .... and the cross section
code ... the cross section card
is missing.
The width of the profile of ...
for the sewer segment with the
upper node ... and the lower
node .... is wrong.
The cross section code for the
sewer segment with the upper
node ... and the lower node
is missing.
The sewer segment with the up-
per node ... and the lower node
.... belongs to the receiving
water system ...
There is no sewer segment with
the upper node ... and the low-
er node ...., which has an in-
going segment from .. (ZU).
Check the ingoing segments ZU1
= ..., ZU2 = ..., ZU3 = ... for
the sewer segment with the up-
per node ... and the lower node
(F) SCHMUTZSTOFF =
NUNG FEHLT
BEZEICH-
(F) SCHMUTZSTOFF .. DIE EIN-
HEITSGANGLINIEN UMFASSEN
KARTEN, ... SIND NUR ZULAESSIG
(F) SCHMUTZSTOFF ... ERSTE KAR-
TE FALSCH GEKENNZEICHNET
Pollutant ..., name is missing.
Pollutant .., the unit polluto-
graphs contain .... cards, ...
only are allowed.
Pollutant ..., the first card
is identified wrong.
191
-------
(F) SCHMUTZSTOFF .. FORMATFEH-
LER IN DER ... KARTE
(F) SONDERBAUWERKSKARTEN USW.
FEHLEN
(F) STRASSENREINIGUNGSKARTE
FALSCH GEKENNZEICHNET
(F) TAGE SIND NICHT IN AUFSTEI-
GENDER REIHENFOLGE; MONAT ...,
JAHR PRECIPITATION SERIE
.. KARTE NUMMER ...
(F) TAGESZEITEINFLUSS
FORMATFEHLER IN DER ... KARTE
(F) TEILEINZUGSGEBIET ... GE-
BIETSART .. 1ST NICHT AUF DEM
QUANTITAETSFILE ANGEGEBEN
(F) TEMPERATURKARTEN FEHLEN
FUER DAS JAHR ...
(F) TITELKARTEN STIMMEN NICHT
UEBEREIN
(F) UEBERNAHMEKNOTEN (KONSTANT)
DER UND DER ... KNOTEN SIND
GLEICH
(F) UEBERNAHMEKNOTEN (VARIABEL)
DER UND DER ... SIND GLEICH
(F) VORFL = .. IN DER ... KAR-
TE ENTSPRICHT NICHT DER TITEL-
KARTE
(F) VORFLUTERABFLUSSDATEN FEH-
LEN
(F) VORFLUTERTITELKARTE VORFL =
... 1ST NICHT ZULAESSIG
(F) WERT NICHT AUFSTEIGEND
Pollutant .., there is a form-
at error in the ... card.
Cards for special structures
are missing.
The card containing street
cleaning values is identified
wrong.
Days are not in an increasing
sequence, month ..., year ....,
precipitation record .. card
number .. .
Diurnal variation influence
there is a format error in the
... card.
The drainage area ... area type
.., is not specified in the
quantity file.
For the year ... the tempera-
ture cards are missing.
The title cards do not match.
The boundary nodes with con-
stant external loadings ....
and ... are similar
The boundary nodes with vari-
able external loadings .... and
... are similar.
Receiving water .. in the ...
card does not match with the
title card.
Flow data of the receiving
waters are missing.
The receiving water title card
of receiving water number ...
is not permissible.
The value is not in an increas-
ing sequence.
192
-------
OUTPUT HEADINGS OF THE PROGRAM DTCHCK
(in sequence as appearing in the listing)
GERMAN
ENGLISH
MULDENKAPAZITAETEN
MULTENINITIALWERTE
VERSICKERUNGSRATEN
VERDUNSTUNGSRATEN
TEMPERATUREN
EINHEITSGANGLINIEN
TW-ABFLUESSE
AUFBAUZEITEN
STRASSENREINIGUNG
SCHMUTZSTOFF
GEBIETSFAKTOREN
REGENDAUER
TAGESZEITEINFLUSS
JAHRESZEITEINFLUSS
BECKENKLAERWIRKUNG
TW-SCHMUTZMENGEN
IW-KONZENTRATION
DATENPRUEFUNG
DIE MIT (F) GEKENNZEICHNETEN
MITTEILUNGEN VERHINDERN DIE
AUSFUEHRUNG DBS BERECHNUNGSTEILS
ALLE ANDEREN SIND NUR INFOR-
MATIV
FILE NETZDATEN
Depression losses
Initialization values for de-
pression losses
Infiltration rates
Evaporation rates
Temperatures
Unit hydrographs
Dry-weather flows (DWF)
Build-up times
Street cleaning
Pollutant
Drainage area factors
Rainfall duration
Diurnal variation influence
Annual variation influence
Retention efficiency
Dry-weather flow pollution
Industrial wastewater concen-
tration
Data check
All messages starting with (F)
refer to an error and prevent
a runoff simulation. The errors
must be corrected.
All other messages are inform-
ative or serve as headings.
Network data file
193
-------
GERMAN
ENGLISH
DIE EINGABE ERFOLGT IN METRI-
SCHEN EINHEITEN
EINGABE DER KANALNETZDATEN
VORLAUFKARTEN
PROGNOSEFAKTOREN
ANFANGSZEITPUNKT
ENDZEITPUNKT
UHR
MINUTEN
LASTFALL
EINZELEREIGNIS
REGENINTENSITAETEN WERDEN EIN-
GELESEN
AUSGABEROHRE
AUSGABEKNOTEN
RUE
RHB
INTERESSANTE KNOTEN
KNQTEN MIT KONSTANTER UEBERNAHME
KNOTEN MIT VARIABLER UEBERNAHME
RECHENDAUER
REGENDAUER
REGENINTENSITAETEN
RE I HE
ROHRELEMENTKARTEN
ROHR
PROFILHOEHE
ANZAHL DER ROHRELEMENTE
ANZAHL DER KNOTEN
ROHRELEMENTKARTEN
KNOTENLOGIK
BEARBEITUNGSREIHENFOLGE
The input is in metric units.
Input of network data
First cards
Prognosis factors
Starting time
End time
Hour
Minutes
Condition (single event or
continuous simulation)
Single event simulation
Precipitation intensities are
read in
Printout segments
Printout nodes
Overflow structure
(Retention) basin
Nodes of interest
Node with contant external
loading
Node with variable external
loading
Simulation period
Rainfall duration
Precipitation intensities
Reinfall record
Sewer segment cards
Segment
Profile height
Number of sewer segments
Number of nodes
Sewer segment cards
Logic of the nodal system
Sequence of computation
194
-------
GERMAN
ENGLISH
NACH UMSPEICHERUNG
SONDERBAUWERKE
FASSUNGSVERMOEGEN DER RHB
STEUERBARE ELEMENTE
ELEMENTANZAHLEN
ROHRE
KNOTEN
UEBERLAEUFE
BECKEN
ROHRVERZWEIGUNGEN
TEILEINZUGSGEBIETSKARTEN
GEBIET
GEBIETSART
FLAECHENANZAHL
FLAECHE
BEFESTIGT
BEFESTIGUNGSGRAD
EINOHNER
KNOTENUEBERSICHT
FILE QUANTITAET
PROFILKARTEN
GESAMTLAENGE DER KANAELE
FASSUNGSVERMOEGEN DER KANAELE
ROHRUEBERSICHT
TEILFUELLUNGSKURVEN FUER BECKEN
GEBIETSBEZEICHNUNGEN
GEBIETSARTEN
MULDENKAPAZITAETEN
VERSICKERUNGSRATEN
VERDUNSTUNGSRATEN
MONATSTEMPERATUREN
After ordering
Special structures
Volume of basins
Control gates
Number of elements
Segments
Nodes
Overflow structures
Basins
Branching points
Drainage area data
Drainage area
Drainage area type
Number of areas
Area
Impervious
Ratio of imperviousness
Inhabitants
Summary of nodes
Quantity file
Cross section cards
Total length of sewer segments
Volume of sewer segments
Summary of segments
Partial filling curves for
basins (this message should
be ignored)
Area type designations
Drainage area types
Depression losses
Infiltration rates
Evaporation rates
Monthly temperatures
195
-------
GERMAN
ENGLISH
TEMPERATUREN FUER DIE
EINZELEREIGNISRECHNUNG
MESSZEITPUNKTE
TAGESINTERVALL
MONATSMITTELTEMPERATUREN
EINHEITSGANGLINIE
TW-ABFLUESSE
ORIGINAL
MIT WVBF = ...
KONSTANTE UEBERNAHMEN
VARIABLE UEBERNAHMEN
FILE QUALITAET
SCHMUTZSTOFFBEZEICHNUNGEN
SCHMUTZSTOFFE
SCHMUTZSTOFFAKTOREN
SCHMUTZMENGEN
AUFBAUZEIT
TURNUS DER STRASSENREINIGUNG
LETZTE STRASSENREINIGUNG VOR
... STUNDEN
EINFLUSSFAKTOREN
GEBIETSFAKTOREN
REGENDAUEREINFLUSS
TAGESZEITEINFLUSS
JAHRESZEITELNFLUSS
BECKENKLAERWIRKUNG
BECKEN IM NETZ
KLAERWERKSBECKEN
TW-SCHMUTZMENGEN
TW-SCHMUTZ
Temperatures for the single
event simulation
Time of day where the minimum
and maximum temperatures are
applied
Interval in the day
Average monthly temperatures
Unit hydrographs
Dry-weather flows (DWF)
Original
Including the water consumption
factor of ...
Constant external loadings
Variable external loadings
Quality file
Name of pollutants
Pollutants
Pollutant factors
Pollutant loads
Pollutant built-up time
Interval of street cleaning
Last street cleaning ... hours
ago
Coefficients
Area coefficients
Rainfall duration influence
Diurnal variation influence
Seasonal variation influence
Retention efficiency of basins
Retention basins
Treatment basins
Dry-weather flow pollution
Dry-weather flow pollution
196
-------
OUTPUT HEADINGS OF THE PROGRAM DTCHCK
(in alphabetical sequence)
GERMAN
ENGLISH
ALLE ANDEREN SINK NUR
INFORMATIV
ANFANGSZEITPUNKT
ANZAHL DER KNOTEN
ANZAHL DER ROHRELEMENTE
AUFBAUZEIT
AUSGABEKNOTEN
AUSGABEROHRE
BEARBEITUNGSREIHENFOLGE
BECKEN
BECKEN IM NETZ
BECKENKLAERWIRKUNG
BEFESTIGT
BEFESTIGUNGSGRAD
DATENPRUEFUNG
DIE EINGABE ERFOLGT IN
METRISCHEN EINHEITEN
DIE MIT (F) GEKENNZEICHNETEN
MITTEILUNGEN VERHINDERN DIE
AUSFUEHRUNG DES BERECHNUNGS-
TEILS
EINFLUSSFAKTOREN
EINGABE DER KANALNETZDATEN
EINHEITSGANGLINIE
EINWOHNER
EINZELEREIGNIS
ELEMENTANZAHLEN
All other messages are informa-
tive or serve as headings
Starting time
Number of nodes
Number of segments
Pollutant built-up time
Printout node
Printout segments
Sequence of computation
Basins
Retention basins
Retention efficiency of basins
Impervious
Ratio of imperviousness
Data check
The input is in metric units
All messages starting with (F)
refer to an error and prevent
a runoff simulation. The er-
rors must be corrected
Coefficients
Input of network data
Unit hydrographs
Inhabitants
Single event simulation
Number of elements
197
-------
GERMAN
ENGLISH
ENDZEITPUNKT
FASSUNGSVERMOEGEN DER KANAELE
FASSUNGSVERMOEGEN DER RHB
FILE NETZDATEN
FILE QUALITAET
FILE QUANTITAET
FLAECHE
FLAECHENANZAHL
GEBIET
GEBIETSART
GEBIETSARTEN
GEBIETSBEZEICHNUNGEN
GEBIETSFAKTOREN
GESAMTLAENGE DER KANAELE
INTERESSANTE KNOTEN
IW-KONZENTRATION
JAHRESZEITENEINFLUSS
KARTE
KLAERWERKSBECKEN
KNOTEN
KNOTENLOGIK
KNOTEN MIT KONSTANTER
UEBERNAHME
KNOTEN MIT VARIABLER
UEBERNAHME
KNOTENUEBERSICHT
KONSTANTE UEBERNAHMEN
LASTFALL
LETZTE STRASSENREINIGUNG
VOR ... STUNDEN
MESSZEITPUNKTE
End time
Volume of sewer segments
Volume of basins
Network data file
Quality file
Quantity file
Area
Number of areas
Drainage area
Drainage area type
Drainage area types
Area type designations
Area coefficients
Total length of sewer segments
Nodes of interest
Industrial wastewater concen-
tration
Seasonal variation influence
Card
Treatment basins
Nodes
Logic of the nodal system
Node with constant external
loading
Node with variable external
loading
Summary of nodes
Constant external loadings
Condition (single event or
continuous simulation)
Last street cleaning ... hours
ago
Time of day where the minimum
and maximum temperatures are
applied
198
-------
GERMAN
ENGLISH
MINUTEN
MIT WVBF = ...
MONATSMITTELTEMPERATUREN
MONATSTEMPERATUREN
MULDENINITIALWERTE
MULDENKAPAZITAETEN
NACH UMSPEICHERUNG
ORIGINAL
PROFILHOEHE
PROFILKARTEN
PROGNOSEFAKTOREN
RECHENDAUER
REGENDAUER
REGENDAUEREINFLUSS
REGENINTENSITAETEN
REGENINTENSITAETEN WERDEN
EINGELESEN
RE I HE
RHB
ROHRE
ROHRELEMENTKARTEN
ROHRUEBERSICHT
ROHRVERZWEIGUNGEN
RUE
SCHMUTZMENGEN
SCHMUTZSTOFFE
SCHMUTZSTOFFBEZEICHNUNGEN
SCHMUTZSTOFFAKTOREN
SONDERBAUWERKE
STEUERBARE ELEMENTE
STRASSENREINIGUNG
TAGESINTERVALL
Minutes
Including the water consumption
factor of ...
Average monthly temperatures
Monthly temperatures
Initialisation values for
depression losses
Depression losses
After ordering
Original
Profile height
Cross section cards
Prognosis factors
Simulation period
Rainfall duration
Rainfall duration influence
Precipitation intensities
Precipitation intensities are
read in
Rainfall record
(Retention) basin
Segments
Sewer segment cards
Summary of segments
Branching points
Overflow structure
Pollutant loads
Pollutants
Name of pollutants
Pollutant factors
Special structures
Control gates
Street cleaning
Interval in the day
199
-------
GERMAN
ENGLISH
TAGESZEITEINFLUSS
TEILEINZUGSGEBIETSKARTEN
TEILFUELLUNGSKURVEN FUER
BECKEN
TEMPERATUREN
TEMPERATUREN FUER DIE
EINZELEREIGNISRECHNUNG
TURNUS DER STRASSENREINIGUNG
TW-ABFLUESSE
TW-SCHMUTZ
TW-SCHMUTZMENGEN
UEBERLAEUFE
UHR
VARIABLE UEBERNAHMEN
VERDUNSTUNGSRATEN
VERSICKERUNGSRATEN
VORLATJFKARTEN
Diurnal variation influence
Drainage area data
Partial filling curves for
basins (this message should be
ignored)
Temperatures
Temperatures for the single
event simulation
Interval of street cleaning
Dry-weather flows (DWF)
Dry-weather flow pollution
Dry-weather flow pollution
Overflow structures
Hour
Variable external loadings
Evaporation rates
Infiltration rates
First cards
200
-------
APPENDIX 4
DATA CARDS FOR STATCS
PROGRAM STATCS:
Input data
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
1
2
3
4
5
6
7
8
9
10
11
12a
12b
13
14
15
Language
Listing of input data
Units
Special nodes of interest
Overflow totals
Listing of simulation results as arranged for
statistical analysis
Months
Annual statistics
Pollutants
Nodes of interest and special nodes of interest analyzed
Graphical output
Standard scales
Individual scales
One-dimensional analysis
Two-dimensional analysis
End card
NOTE: PROGRAM STATCS allows for statistical analysis of continuous sim-
ulation results (not of precipitation data).
R and S at the upper right of each data card description specifies
if the data card(s) must be included for separate and combined
sewer system (S) and/or for receiving water system (R) simula-
tions.
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number into the space available. However, all real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers) is requested, if no decimal point is shown
in the space under consideration. All integer numbers must be
right adjusted within the space provided.
Symbols contained in the format box, but not individually ex-
plained, must be punched as shown.
201
-------
PROGRAM STATCS
DATA CARD 1: Language
R
S
EXPLANATIONS:
This card determines the language of the output headings
T 1 for german headings
2 for english headings
ho
o
NOTE:
The following data cards may be in arbitrary order except $END always con-
cludes the data card set. Do not replace data cards not required by empty
cards.
-------
PROGRAM STATCS
DATA CARD 2: Listing of input data
R
S
EXPLANATIONS:
If this card is included, the following input cards are listed in front of
the statistics output.
o
u>
-------
PROGRAM STATCS
DATA CARD 3: Units
R
S
I5M6 iy|ie[l9pC 21 22p3p4 25 26 Pp8p> MEM 1213 1433 36 1
EXPLANATIONS:
If this card is included the statistics output is provided in english units.
NOTE:
If included also the scales must enter in english units. If this card is not
provided, then the scales must be given in metric units.
N3
O
-------
PROGRAM STATCS
DATA CARD 4: Special nodes of interest
EXPLANATIONS:
This card calls for the statistical analysis of continuous simulation results
at the special nodes of interest specified on DATA CARD 3g of PROGRAM DTCHCK:
Network data in Appendix 2
K>
o
NOTE:
This card is not allowed in case of statistical analysis of continuous sim-
ulation results at the nodes of interest given on DATA CARD 3h of PROGRAM
DTCHCK: Network data in Appendix 2.
-------
PROGRAM STATCS
DATA CARD 5: Overflow totals
EXPLANATIONS:
Inserting this card the monthly and annual amount of overflow for each over-
flow structure analyzed is printed out.
-------
PROGRAM STATCS
DATA CARD 6: Listing of simulation results as
arranged for statistical analysis
R
S
»3 M 45 M WJM M 7O7I 72 73*4 72 7,
EXPLANATIONS:
NOTE:
If this card is included a complete listing of the simulation data as
arranged for statistical analysis is provided.
Do not include this card normally. Extensive output.
to
o
-------
PROGRAM STATCS
DATA CARD 7: Months
R
S
2MON
NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME
tt
ll 19
I 43 5
EXPLANATIONS:
O
oo
NOTE:
This card defines the names of the months considered.
NAME The individual names of the months simulated only may be given
(maximum of 12). The sequence must correspond to the sequence
of simulation. Between each name given there must be at least
one blank.
Default names: JANUARY FEBRUARY MARCH ...
For german language (T = 1 on DATA CARD 1 of PROGRAM STATCS), the german
words for the months must be used.
Default names: JANUAR FEBRUAR MAERZ
-------
PROGRAM STATCS
DATA CARD 8: Annual statistics
R
S
IS 16 17 I«l90l 23 24 MM 28
EXPLANATIONS:
If this card is included, only annual statistics are printed.
NOTE:
If this card is not provided in addition to annual statistics the monthly
statistics are printed.
-------
PROGRAM STATCS
DATA CARD(S) 9: Pollutants
R
S
EXPLANATIONS;
N>
M
O
NOTE:
This card coordinates the pollutant results with the correct names for the
output headings.
Z Number of pollutant such as 1 or 2 or 3 or 4
NAME Name of pollutant corresponding to Z, e.g. BODS, TSS SS or
FECAL COLI
For each pollutant an individual card must be provided. There is a maximum
of 4 pollutants, e.g. 4 data cards in sequential order.
$SMU only must be contained on the first card.
Names and numbers must be identical to the information given on DATA CARD 2
of PROGRAM DTCHCK: Quality data in Appendix 2.
-------
PROGRAM STATCS
DATA CARD(S) 10:
Nodes of interest or special
nodes of interest analysed
R
S
% W A H L
NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME
1 2141
3[l4[l5|l6p[
ial9
24 Uj«p 28 29 30131 32J33 J4D3 14
6 1
1 11 7X
EXPLANATIONS:
Defines the nodes of interest (overflows, basins or receiving water system
nodes) or the special nodes of interest respectively at which statistical
analysis of continuous simulation results is performed.
NAME Names of the nodes of interest or special nodes of interest
respectively. At a maximum 50 nodes can be given, minimum
one. See also DATA CARDS 3g and 3h of PROGRAM DTCHCK: Net-
work data in Appendix 2
NOTE:
The nodes specified should be of the same type for one run. The different
types are:
Statistics type 2:
Statistics type 3:
Statistics type 4:
basins
overflow structures
receiving water system nodes
or special nodes of interest
If this card is missing statistical analysis is done for all nodes, to which
on DATA CARDS 13 and 14 of PROGRAM STATCS statistical properties are coor-
dinated. If statistical analysis is requested for more than 15 nodes the se-
quence cards do not contain $WAHL.
-------
PROGRAM STATCS
DATA CARD(S) 11: Graphical output
R
S
2GRAF
NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME
4/89
20 21 22
68 6S
EXPLANATIONS:
For the nodes specified the statistical results are plotted on the line
printer.
NAME Names of interesting nodes or special nodes of interest. As a
maximum 50 nodes may be given.
ro
NOTE:
In case of more than 15 nodes the sequence cards do not contain $GRAF. In
one statistics run only nodes of the same should be given (similar to DATA
CARD(S) 10 of PROGRAM STATCS).
-------
PROGRAM STATCS
DATA CARD(S) 12a: Standard scales
R
S
EXPLANATIONS:
to
M
CO
This card defines the scales for the statistical properties.
ZZZ
MVALUE
K
Number of statistical property. A list of statistical properties
available is contained in Appendix 5, Properties for Statistical
Analysis .
Maximum value of scale
1
2
3
4
linear scale (one scale range is 1/11 of MVALUE)
geometrical scale (scales are in % of MVALUE:
10.0/12.5/16.0/20.0/25.0/31.5/40.0/50.0/63.0/80.0/100.0)
logarithmic scale (scales are in % of MVALUE:
10.0/17.6/27.7/30.1/60.2/69.9/77.8/84.5/90.3/95.4/100.0)
free choice of scale (the individual figures must be
given on the subsequent DATA CARD 12b of PROGRAM STATCS)
NOTE:
For each statistical property to be analysed this card must be provided.
Sequence cards do not contain $SKAL. Scales must be defined for all NNN
and/or NN1 and NN2 given on DATA CARD(S) 13 and/or 14 of PROGRAM STATCS.
As the maximum scale value is not chosen automatically it is suggested
to estimate MVALUE according to single event simulation results for a
one year recurrence storm and add 20 %. Sometimes it is advisable to
perform individual statistics runs with different scales for each node.
For final statistics runs the scales should be chosen that the maximum
value is exceeded less than once a year.
-------
PROGRAM STATCS
DATA CARD 12b: Individual scales
R
S
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
i34>47i
14
>|lo|ll[n[l3|
14 13 14 I,
/[i«|i9 4ip444
41 4
II IV
KJJI «|n iJpfyt ITJ^fep'PJMp i^TJMJatfrcfrl)/
4fl4fl4c
EXPLANATIONS:
If K = 4 on DATA CARD 12a of PROGRAM STATCS, on this card the individual
scale values are provided.
VALUE Individual scale values. The decimal point must be provided with
each value. VALUE < MVALUE on DATA CARD(S) 12a of PROGRAM STATCS
isj
M
JS
NOTE:
This card only is contained in case of K = 4 on DATA CARD(S) 12a of PROGRAM
STATCS.
-------
PROGRAM STATCS
DATA CARD(S) 13: One-dimensional analysis
R
S
?EDM
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
MUM
nnn
NNN
NNN
NNN
NNN
NNN
iiIn i
14(1; it
i nhms
ft
Mp[4(l 4\\4
lj«»JM Sip »3pJM SAJW MM U
MJW
66 W NO N re
ffl
EXPLANATIONS:
KJ
M
Oi
NOTE:
Here the statistical properties subject to one-dimensional statistical
analysis are defined.
A Statistics type 2, 3 or 4 (see DATA CARD(S) 10 of PROGRAM STATCS)
NNN Numbers of statistical properties. A list of statistical proper-
ties is given in Appendix 5, Properties for Statistical Analysis
Continuation cards do not contain $EDMA. If different node types are to be
analysed in one run also different $EDM cards with different A's each in-
cluding the necessary sequence cards must be provided.
-------
PROGRAM STATCS
DATA CARD(S) 14: Two-dimensional analysis
R
S
P=
NN1
NN2
1HX
nil] 13 M
I7IB
MBS «nui «M
19 H 51
EXPLANATIONS:
NOTE:
Here the statistical properties subject to two-dimensional statistical
analysis are defined.
NN1, NN2
B
Statistical type 2, 3 or 4 (see DATA CARD(S) 10 of PROGRAM
STATCS)
Pair of statistical properties. A list of statistical proper-
ties is given in Appendix 5. For each pair of statistical
properties one card has to be specified
Three ranges (+) for C which are considered
to represent a isofrequency curve, e.g.
B = 0.2 0.5 2.0
NN1
Three frequencies, which are plotted on re-
quest of DATA CARD(S) 9 of PROGRAM STATCS,
e.g. C = .5 2.0 10.0
NN2
Per statistics type, 8 pairs of statistical properties can be given at a
maximum.
Continuation cards do not contain $ZDMA. If different node types are to be
analysed in one run also different $ZDM cards with different A's each in-
cluding the necessary sequence cards must be provided.
-------
PROGRAM STATCS
DATA CARD 15: End card
R
S
EXPLANATIONS:
This card yields the end of the statistics data card set.
-------
APPENDIX 5
PROPERTIES FOR STATISTICAL ANALYSIS
PROPERTIES FOR STATISTICAL ANALYSIS OF PRECIPITATION DATA
No.
Property
interval with the maximum rainfall intensity of
the same event
8 Ratio of time elapsed to the interval with the
' maximum intensity to total rainfall duration of
this event
9 Rainfall depth accumulated from the start of
an event till the interval with maximum rain-
fall intensity of the same event
10 Ratio of rainfall depth accumulated until the
interval with maximum intensity to total rain-
fall depth of this event
11 Individual rainfall intensities of five minute
intervals
Dimensions
Metric Units
1
2
3
4
5
6
7
Rainfall duration per event
Dry spell between rainfall events
Total rainfall depth per event
Average rainfall intensity per event
Maximum rainfall intensity per event
Ratio of average to maximum intensity per event
Time elapsed from the start of an event to the
min
min
mro
i
1,000
1
1,000
-
mm
5 min
fftilty
5 min
min
nun
mm
1,000 5 min
218
-------
PROPERTIES FOR STATISTICAL ANALYSIS OF BASIN RESULTS
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
43
44
(Statistics Type 2)
Property
Duration of surcharge
Duration between surcharge conditions
Q- inflow rate interval values
Q- inflow total
Q-inflow rate average
Q- inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2- inflow rate average
P2- inflow rate maximum
PS-inflow rate interval values
PS-inflow total
PS-inflow rate average
PS- inflow rate maximum
P4-inflow rate interval values
P4-inflow total
P4-inflow rate average
P4- inflow rate maximum
Pi-outflow total
Pi-retention average
219
Dimensions
Metric English
Units Units
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg
%
min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
%
-------
No.
Property
Dimensions
Metric English
Units Units
45
47
48
49
51
52
53
55
56
57
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Pi-retention maximum
P2-outflow total
P2- retention average
P2- retention maximum
PS-outflow total
PS-retention average
P3- retention maximum
P4-outflow total
P4- retention average
P4- retention maximum
Pi-inflow concentration average
Pi-inflow concentration maximum
P2-inflow concentration average
P2-inflow concentration maximum
PS-inflow concentration average
PS-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Pi-outflow rate interval values
PI -outflow rate average
Pi-outflow rate maximum
P2-outflow rate interval values
P2-outflow rate average
P2-outflow rate maximum
PS-outflow rate interval values
PS-outflow rate average
PS-outflow rate maximum
P4-outflow rate interval values
P4-outflow rate average
P4-outflow rate maximum
Pi-outflow concentration average
%
kg
%
%
kg
%
%
kg
%
%
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
mg/1
%
Ibs
%
%
Ibs/s
%
%
Ibs
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
ppm
220
-------
Dimensions
No. Property Metric English
Units Units
88 Pi-outflow concentration maximum mg/1 ppm
89 P2-outflow concentration average mg/1 ppm
90 P2-outflow concentration maximum mg/1 ppm
91 PS-outflow concentration average mg/1 ppm
92 PS-outflow concentration maximum mg/1 ppm
93 P4-outflow concentration average mg/1 ppm
94 P4-outflow concentration maximum mg/1 ppm
221
-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
OUTFALL AND OVERFLOW STRUCTURE RESULTS
No.
1
2
3
4
5
6
7
8
9
10
12
13
14
16
17
18
20
21
22
24
25
26
27
(Statistics Type 3)
Dimensions
Property Metric English
Units Units
Duration of overflow
Duration between overflow events
Q-inflow rate interval values
Q-inflow total
Q-inflow rate average
Q-inflow rate maximum
Q-overflow rate interval values
Q-overflow total
Q-overflow rate average
0-overflow rate maximum
Pi-inflow total
Pi-inflow rate average
PI -inflow rate maximum
P2-inflow total
P2-inflow rate average
P2-inflow rate maximum
P3- inflow total
P3- inflow rate average
P3-inflow rate maximum
P4-inflow total
P4-inflow rate average
P4-inflow rate maximum
PI -overflow rate interval value
222
min
min
m3/s
m3
m3/s
m3/s
m3/s
m3
m3/s
m3/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg/s
min
min
cfs
cu.ft.
cfs
cfs
cfs
cu.ft.
cfs
cfs
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
-------
No.
Property
Dimensions
Metric English
Units Units
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
59
60
61
62
63
64
65
66
Pi-overflow total
Pi-overflow rate average
Pi-overflow rate maximum
P2-overflow rate interval value
P2-overflow total
P2-overflow rate average
P2-overflow rate maximum
PS-overflow rate interval values
PS-overflow total
PS-overflow rate average
PS-overflow rate maximum
P4-overflow rate interval values
P4-overflow total
P4-overflow rate average
P4-overflow rate maximum
PI -overflow concentration average
Pi-overflow concentration maximum
P2-overflow concentration average
P2-overflow concentration maximum
PS-overflow concentration average
PS-overflow concentration maximum
P4-overflow concentration average
P4-overflow concentration maximum
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
223
-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
SPECIAL NODES OF INTEREST
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
67
(Statistics Type 4)
Dimensions
Property Metric English
Units Units
Duration of inflow
Duration between inflow events
Q-inflow rate interval values
Q-inflow total
Q-inflow rate average
Q-inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2-inflow rate average
P2- inflow rate maximum
PS- inflow rate interval values
PS-inflow total
PS-inflow rate average
PS-inflow rate maximum
P4-inflow rate interval values
P4-inflow total
P4-inflow rate average
P4- inflow rate maximum
Pi-inflow concentration average
224
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1
min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm
-------
No.
Property
Dimensions
Metric English
Units Units
68
69
70
71
72
73
74
95
96
97
98
Pi-inflow concentration maximum
P2-inflow concentration average
P2- inflow concentration maximum
PS-inflow concentration average
PS-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Q-inflow rate interval values above
specified DWF ratio
Q-inflow total above specified
DWF ratio
Q-inflow rate average above spe-
cified DWF ratio
Q-inflow rate maximum above spe-
cified DWF ratio
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
m3/s
m3
m3/s
m3/s
ppm
ppm
ppm
ppm
ppm
ppm
ppm
cfs
cu.ft.
cfs
cfs
225
-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
RECEIVING WATER SYSTEM NODES
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
(Statistics Type
Property
Duration of runoff
Duration between runoff events
Q-inflow rate interval values
Q- inflow total
Q-inflow rate average
Q-inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2- inflow rate average
P2- inflow rate maximum
PS-inflow rate interval values
PS-inflow total
PS-inflow rate average
P3- inflow rate maximum
P4-inflow rate interval values
P4- inflow total
P4-inflow rate average
P4- inflow rate maximum
4)
Dimensions
Metric English
Units Units
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
226
-------
No.
Property
Dimensions
Metric English
Units Units
46
50
54
58
67
68
69
70
71
72
73
74
95
96
97
98
99
100
101
102
103
Pi-background concentration re-
ceiving waters maximum
P2-background concentration receiv-
ing waters maximum
PS-background concentration receiv-
ing waters maximum
P4-background concentration re-
ceiving waters maximum
Pi-inflow concentration average
PI -inflow concentration maximum
P2-inflow concentration average
P2-inflow concentration maximum
PS-inflow concentration average
P3-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Q-background flow rate receiving
waters interval value
Q-background flow receiving wa-
ters total
Q-background flow rate receiving
waters average
Q-background flow rate receiving
waters maximum
Pi-background flow rate receiving
waters interval value
Pi-background flow receiving
waters total
Pi-background flow rate receiv-
ing waters average
Pi-background flow rate receiv-
ing waters maximum
P2-background flow rate receiv-
ing waters interval values
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
ppm
Ppm
ppm
ppm
Ppm
Ppm
ppm
ppm
ppm
ppm
ppm
ppm
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
227
-------
No.
Property
Dimensions
Metric English
Units Units
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
P2 -background flow receiving
waters total
P2-background flow rate receiv-
ing waters average
P2-background flow rate receiv-
ing waters maximum
PS-background flow rate receiv-
ing waters interval values
P3-background flow receiving
waters total
PS-background flow rate receiv-
ing waters average
PS-background flow rate receiv-
ing waters average
P4-background flow rate receiv-
ing waters interval values
P4-background flow receiving
waters total
P4-background flow rate receiv-
ing waters average
P4-background flow rate receiv-
ing waters maximum _.
Pi-background flow concentration
receiving waters average
P2-background flow concentration
receiving waters average
PS-background flow concentration
receiving waters average
P4-background flow concentration
receiving waters average
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1
mg/1
mg/1
mg/1
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm
ppm
ppm
ppm
228
-------
APPENDIX 6
TEST EXAMPLE FOR QQSEGL
INPUT DATA CARDS
I 2 1 4 S 7 I
1214567(901214967(*OI214967l*OI214967l*OI214967«*OI2}4967l*012149m*OI214967l*0
NJ
NJ
vO
10
IS
0 0 (00 1200 2100
lOOIOOOotOOOO 9)1
1022
0.11000 0.17000 0.21000 0.
0.06400 0.11000 0.12000 0.
0.01)00 0.02600 0.02000 0.
0.00200 0.00100
26.01000 0.10000
0.00000 0.00000 0.00100 0.
0.01600 0.02(00 0.02400 0.
0.00000 0.00000 0.00000 0.
0.00000 0.00000 0.00000 0.
2
SOO 400 100 200 200 200 100 100 100 100
10000
11 100
01600
04800
02000
00000
00000
0.06000
0.10*00
0.01100
0.14000
0.01600
o.ooooo
0.00000
0.01900
0.0*700
0.00*00
0.16900
0.01100
o.ooooo
o.ooooo
.02000
.0*20*
.00700
.11000
.00700
.00000
.00000
.01000
.06700
.00500
.01000
.00400
.00000
.00000
.00900
.09100
.00400
.06100
.00200
.00000
0.00200
0.04100
0.00100
0.04(00
0,00100
0.00000
(10
9000.00 1.00 1.00
1.0( 1.21 1.90 0.11 0.49 0.2( 0.14 0.0}
1.0 9.16 2.61 1.94 1.01 0.61 0.49 0.26 0.19 0.07
0.80000 O.iOOOO O.OOOOO
O.(6000 0.19000 0.12000
0.97000 0.9(000
0.97000 0.9(000
0.94000 p. 92000
0.80000 O.DOOOO
o.ttooo o.*90oo
0.97000 0.9(000
0.97000 0.4*000
0.94000 fl. 92000
1.00000 1.00000
0.27000 0.29000
1.00000 1.00000
0.19000 0.15000
.99000
.99000
.90000
.(0000
.92000
.99000
.9000
.90000
.96000
.21000
.99000
.12000
.0000
.9000
.00000
.00000
.1(000
,(0000
.99000
.00000
.00000
.1(000
.(7000
,22000
.9(000
,11000
.(0000
.00000
.00000
.00000
.((0(0
.(0000
.00000
.00000
.00000
.(6000
.70000
.21000
.99000
.11000
.10000
.00000
.00000
.00000
.(4000
.10000
.00000
,00000
.00000
.(4000
.99000
.20000
.(000
.10000
.0000
.00000
.00000
.00000
.2000
.0000
.00000
.00000
.00000
.2000
.49000
.20000
.7*000
.10000
.10000
.00000
.00000
.00000
.0000
.(0(00
.00000
.00000
.00000
.0000
.1(000
.30000
.66000
.10000
.(2000 0.14000
.000 0.9(000
,»*000
.000
.2000
,»*000
.99000
,*(000
.11000
.20000
.99000
.10000
.1000
.000
.14000
.000
.000
.6000
.2*000
.20000
.49000
.10000
.00 0.00 1.00 .70 (.00 6.90 1.60 2.60 .10 .20
.00 0.60 0.40 .10 0.20 0.10 0.00 .00 .00 .00
.00 0.00 0.00 .00 0.00 0.00 0.00 .00 .00 .00
.00 0,00 0.00 .00 0,00 0.00 0.00 .00
.00 0.00 1.00 .90 12.00 11.00 7.60 .(0 .60 .90
.60 1,90 1.40 1,00 0.90 0.40 0.20 .10 .00 .00
.00 0.00 0.00 0.00 0.00 0.00 0.00 .00 .00 .00
,00 0.00 0,00 0.00 0.00 0.00 0.00 .00
19.00 (0.00
-------
OUTPUT
IsJ
u>
o
INT
won*
HOG* HOTOT
HSHO
DIPM»
OUT Ttrr i
OtPHO ftDLTOt MD«
CDO
DIM WB 1
DLPHO tDLTOT N600
ODQ CMTRN
I o.oono
2 o.nooo
$
4
s
t
7
«
to
II
12
II
l«
|S
1*
n
ii
i«
10
21
21
21
11
»
26
27
2*
2*
10
11
12
11
11
15
It
IT
11
.0000
.(191)0
.14*5
.!«!»
.1099
.l>7tl
.0*54
,04«»
.0117
.0291
.0212
.»2|0
.0194
.0(04
.DOS!
.002«
.OOlt
.000*
.AOQ4
.0002
.flOOl
.0000
.0000
.0000
.0000
.11000
.nooo
.0000
.nOOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0900
.14*5
.1*1*
.105*
.0761
.0*54
.om
.Ollt
.019}
.0311
.0210
.0154
.0104
.0051
.002*
,0016
.000*
.0004
.0001
.0001
.0000
,0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0*6*
.0450
.1400
.1650
.1100
.0100
.0*10
.04(0
.0160
.0110
.0140
.0200
.0160
.0110
.0070
.0040
.0020
.0010
.0000
.0000
.0000
.0004
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 0.0000
.0000 0.0000
.000
.000
.000
.971
.Oil
.441
.414
.166
.147
.511
.106
.no
.190
.10*
.070
.041
.011
.Oil
.005
.001
.«0|
.009
.000
.000
.000
.000
.090
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
,«0«
.000
.000
.000
.000
,000
,000
,000
.000
.000
,000
.000
.000
.000
.000
.000
,000
,000
,000
,00*
.00*
,00«
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0*000
.000
.000
.000
.10$
.170
.}>
.4
.014
.204
.119
.7*1
.4*6
.1*0
.111
.1*1
.107
.095
.OK
.014
.006
.001
.00*
.000
.000
.009
,000
.000
.000
.000
.000
.00
.00*
.000
.000
,000
.0*0
.000
.000
.do* Moo o.o«
.000 6.000 0.00
.000 *l.*00 0.00
.7*0 »0.5*S 11.11
.6* »*«I10 91.71
.800 -0.141 If.lS
.40* 0,144 16.47
,604 0.414 1*,7*
.100 0.40* 11.71
.20* OtIH I*. 19
.60* -6.004 15.lt
,60* -0*104 |*.9*
,400
.100
too
.1*0
.000
,000
.000
«000
.000
.000
.000
.000
.006
.000
,000
.000
.000
4000
.000
.000
.000
.000
.000
.000
.010 16.61
.015 11,94
.017 11.06
.0*7 t««l|
.055
.01*
.014
tOO*
.001
.000
.000
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.000
.600 0.000
.97
.61
.61
.4*
.11
.11
.«
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.000
.000
.000
.II
.460
.091
.611
.117
.147
.17*
.»10
.669
.619
.177
.lit
.191
.067
.04*
.01*
.Oil
.00*
.004
.001
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.000
.000 0.000
.000 0.000
.000 5,104
.000 11.610 1
.000 10.549 1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.004
.000
.000
.000
.000
.000
.000
.000
.000
.000
.690
.7T|
.101
.110
.410
.7*1
.1*1
.**!
.414
.1**
.12*
.117
,676
.041
.01}
.010
.00}
.00|
.000
.000
.000
.000
.000
.000
.000
.000
.0*0
.000
.000
.000
.000
.000
.000
.000
.000
.900
.000
,0*0
,600
.00
.600
.900
.600
.»00
.40*
.000
.900
.400 -
.100
.100
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.00
.000 0.00
.000 0,00
.7*6 101.11
.$*» 79.17
.199 »9.27
.790 M.45
.01* 75,67
.20* 71.90
.170 71. »l
.1(0 71,10
.117 70.1*
.00* S*.*7
.01* »*,77
.11* }».I7
.001 1*,19
.01* It, I*
.027 41.1*
.07* 46.24
.041 4*. 95
.022 51.74
.010 55.77
.001 54.71
.001 si. *o
.000
.000
.00*
.0*0
.000
.000
.000
.000
.000
.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000
.00
.0*
.**
.00
.00
.00
.00
.0*
.00
.00
.00
.00
.00
.00
-------
APPENDIX
TEST EXAMPLE FOR DTCHCK
NOTE: This example is similar to the example
contained on the computer tape.
231
-------
Input data and output for single event simulation
N)
Co
»>Ab(,,AX
MASO.A*
UlAib.AK !?[)(..
WASb.AX >lfU7.
MAS(,, AX IFUB.
MASli.AX «IFUV.
KA5(,,AH tlFIO.
UAbl, , A» If | | .
k.ASG,A» If I ).
iri'i.
UA^b.AA «IIIS.
WASt,,AX « If 16.
WAbb,A« « IF | 7.
WAS II IH.
UASI..AA -IF?!:.
-------
M» >(,,*» .1121.
NJ
CO
OAS'j.Ai IF 2M.
UASb.A*
« IFOI
uusi I i, iroj.
WCPit Ib.'IIUfc.
WUit.
UUSI I V, IF UV.
WI'SL 2J, > M I J.
wllbL 2b.« IF IS.
UHSL //, , II 16.
-------
tollSL 27i«IFI7.
VASb.Ak «KAIN.
W»b(,,AX .UUANI,
UUAl| .
MIlLLL II ,1 «OHA|.
I UHPUK 2/HJ-l/UHA t.13 SL7JHI OS/16/79 2U:t7!HII
UKAI IS 1401 IA1 ALOblltD OK ASS I MUD
» At SIAIIIb: HbOQIOOOOOOO
UASI,,I
. ,t I M///30U
UUAI A i
OAIA I
I .
2.
3.
1.
S.
A >
7.
H.
V*
III.
I I
U
I J-
I t.
Ib.
!.«..
I /
1C.
IV.
IS-
JA.
II-
!»
2'!'
JU.
Jl
32.
33.
31.
.IS.
36.
IL .Nil.
/ KL70-S US/IA-20:i7:tV
ugS-LHA-EXAMI-LC
I.OOIUI.O I
IUUK.002 CU02CDU3
lUOVtOlO COIOCOII
C021C02S
0 I. II 1.0 1.0
COU31001 CUOHCQOS
C11IUU3I CUI3CUI1
CU2SC026 CU2AC027
IIIOAS6I7SO
COUSBU06 BOO6COU7
COI1KOIS ROISCOIA
COJ7CU32
HS Si
C007COUB CUU8COO*
COI66U06
r02VCII30 IU30C03I C03K032 C032C033 C033C031 C031C03S CU3SC036
<.II36(037 (037HOJH H0360038 OU38CUJ?
UOU6H03H
XAXK
1 hOI SK02HHU38
2
3
1
b
NLuLM
kH.Hi
1C LO K.UU2
UU02XOH K.UIII
i
10
1'..
2(1
2S
30
3'>
'IU
IS
SO
S5
AO
AS
70
7S
0
O
160
AMO
s/.o
IIJCI
110
I6U
HO
ID
10
10
AO
2C
fO
III .'III .MU2AO
1,1 .'III . 'IUIII1
60.111
SV.Aft
-------
1-0
OJ
Ln
J7.
3d.
3V.
111.
41
t2.
43.
14 .
S7.
IB.
IV.
bIJ.
bl .
S2.
b3.
bl.
bb.
t>t..
b/.
Ml.
(3.
61.
6b.
66.
hi .
OB.
69.
/U.
n .
/2.
73.
7S.
77.
/«.
79.
HO.
HI .
02.
HJ.
HI .
US.
H6.
II / .
1)11.
119.
VU.
V I .
i no UAI A.
icuu Jiunttou?
1C UOICUIIblOU.I
ic un'jiionti-iin'i
IBUU6CUU7LUObCUI6
ICOU7CUUHKOU6
KOObC009l007
ICU09CUIOCIIOB
ICOIUlbl KOOV
ICU| ICU.1ICOIO
ICUI ICUI'I
l(.UrittUlb(.IH3
IkOlM UI6UII 1
IbUI JSOI 1
IbUI'ISUIbSOl 3
ISblblUI A-..OI4
ICU 1 61)0061(0 ISSO 15
ICCI03CU241UU2
1 t'OZ4(O75lUUJ
KU2SCCI26I 024
llU2«CU2/tfl2b
IC02/Cl)J?l026
IK02BCU29
KU2VlU3UKa2tt
KU3btU3IC029
K03IC03210I IC030
KU3^C033L03IC027
KU33C034(.032
ICU31C03SC033
ICU3bCO36lO34
ICUJ6CUJ7103S
ICUJ7ROJIH 036
IKO3PIKJ 1UUI37
IUU3BCU.19K038
I hut
2ROIblCOIb0.20 S.
2MU2BICU7'»0.hUIU.
2KU3«i|UU3H0.5U2U.
2UO062
2U03H3
I-NUK
KUJ1 0.16 0. 15
3AIQICOUI 12 26* O3
3AIU410U4I2 Il.6b
3ACUSCUC5I2 IU.&2
3AClj^HUO6|2 30. IB
JAt |3rj|3l2 SU. Itl
3Abl3SOI 312 SO. 10
3AC26C0^6|4 2(1.40
3Al2eKU2BI3 7V. b2
3AL3ICUJI 1 1 1 7.HJ
JA(.3.'CU.12|2 21. 9U
3Atj3t(ll3l2 11. bl
3A137CUJ7I3 SU.S2
tuot
01 . 1 (I
01 . bl)
Ul 1 .00
Ol .31)
ni .-to
Ul -Ml
Ul .Ml
III .50
01 >5O
tl 1 1 . DO
01 1.00
III .20
01 .'10
Ul .40
Ol .40
(II .60
III >1U
01 .40
Ul .10
Ol .60
01 .611
ni .so
Ol .6U
01 .60
ui .an
II 1 . BU
U 1 .0(1
u i .00
01 .OU
Ul .00
III .20
III .50
Ul 1.20
00 '.3.92
OU 26. Sb
Oi; 111.43
SI. J9
v . mi
4U2VD.
.SO?'lO.
1 .011145.
. 30lbb.
. i02'_.n.
«S02<5.
.501114.
.501 72.
.bO 92.
1 .OOI^U.
I.OO 92.
.20130.
.40120.
.40 92.
.401 JO.
60IB2.
.40220.
.402OO.
.4OIHO.
.6O2I2.
60IV8.
.50232.
.61)1 bl.
.60167.
.80137.
.OH2/2.
.01)152.
.00167.
.OOIB7.
.00214.
.201 38.
.bOIUO.
1 .20100.
HOO.0.6b5
'jOO. 0.655
59.68
57.50
55.10
51 .39
11.97
36.29
33.57
30.87
26.71
!>< 74
51.40
53.92
51.76
51.10
51.12
53.33
59.68
52.31
11.89
37.17
29.59
26.55
2b.7b
2S.33
21.02
22.65
18.47
16.07
I4.3O
12.77
1 1 .66
in. 41
21 .20
.001
.001
57.70
55.60
53.50
11.97
36.29
33.57
30.87
26.71
21*98
51.1O
54.12
53.53
54.10
51.12
53.73
52.61
53.00
11*89
38. OU
30*05
23. S3
25.75
25.33
21.91
22.65
18.67
14. U7
14-30
12.77
1 1 .66
II .23
10.27
21.10
2
10 3UKU2IU079 0.0
10 »2
.JS 9O
.14 S7
.23 Jl
. I'l
it'
.0? 75
.1(1 IB
. 50 2H
2V J2
IS IH
.lit '\
0.40 0.02U
r A , II .IJUANI .
I* I/ RL70-b lib/ IA
I . bUb-CI'A-l
2. (jl I I I
j. » >
XAHPlt
. /US V'l,/
.;<.PUU:IU i.CIIUOOJOKRCispRor it
-------
ro
u>
1.
S.
7.
8.
9.
10.
I I
12.
13.
II.
Ib.
19.
21
22.
21.
ib.
2A.
77.
28.
29.
3d.
II.
32.
33.
11 .
35.
39.
IU.
II .
12.
13.
11.
16.
1'
If).
19.
SU.
bl .
b2.
b3.
51.
bS.
S6<
57.
b8.
tNU I>AIA.
xxxx
ILUMHCKC IAI
MULOKNKATA;
HOLllLHIHI 1 I
VlKSICHf Rill
VEKOUNS(UN
1 .
.2
.1
.4
oo
30
00
10
01)
10
Ob
10
It. 9 9.6
19.7 IS. 6
19.2 16.5
.061 .200
.110 .410
.120 .222
. 1 ta .190
.109 .050
.097 .010
.082 .010
.067 .DOS
.051
.043
.03)
.026
.020
.016
.01 1
.009
.007
.005
OO4
.003
.002
.001
0512.00
.0512.10
.0513.00
.0511.10
.OSI1.OO
.0514.30
.0515.00
.0515.30
1. 1. I*
1. 1. 1.
1. 1. 1.
1 . 1 . 1 .
1.7 O.I
9.7 5.2
9. | 6.4
.064
.1 10
.120
.118
.109
.097
.082
.(167
.051
.043
.0)3
.026
.020
.016
.01 1
.00V
.007
.005
.UO1
.00)
.U02
.001
.OSI6.OO
.OSI6.10
0517.00
.0517.10
.0518.00
usia.io
.0519.00
.USI9.10
1. 1
1. 1
1. 1
1. 1
0-1
1*0
6*0
.055
.ISO
.210
.200
. 1 JO
.090
.060
.010
.030
.020
.010
.005
.00)
.001
.064
.l|0
.120
.118
.109
.097
.082
.067
. Ub3'
.043
.1)13
.026
.020
.016
.01 1
.009
.U07
.005
.UOH
.001
.002
.001
.0520. OU .
.0520.10 .
.OS2I
.0521
*OO .
1O .
.0522. UU .
.0522
.30 .
.0523.OO .
.0523.30 1.
. 1 .
. 1 .
1 .
. 1 .
I .
1.
1.
| .
SS
70
80
00
5
05
OS
OS
OS
OS
OS
05
OS
KXAX
»X»X
WUAI A , IL
«t|UAL T .
-b Ob/l*-2U:i7:b1
QHb-f 1'A-t.XAMPU
I II.O.II. / l.'i.S. 3I7FCCAL COI.IFURM 1 COD
IIJ.U IS. II ?O.O I',. (I /'..It nil. Ul Ml. (I no. (IHln. ClIOU. 0100. tlldO.O bU.U fcll.ll 7U.U AU.lt
-------
1.
S.
6.
7.
H.
9.
IU.
I I .
12.
I 3.
I 1.
It,.
16.
17.
in.
21 .
22.
23.
21.
2S.
26.
27.
2H.
2V.
JO.
Jl .
32.
33.
31.
3b.
Jfc.
17.
3H.
3V.
IU.
II .
1?.
13.
11.
1b.
16.
'17.
IN.
IV.
SO.
bl .
b2.
5J.
bh.
bV.
6(1.
61 .
A?.
63.
nl.
IU.O Ib.O 20.0 IS.O >5.f) 80. DUO
AUHlAUnilLN 2'IQ 210 210 210
-31.2-31.2-31.2-31.2-31.7-31.7-31
I.HV I.R7 1.89 I.H9 -It .21
Slk»bStHRL INIMINC,
O 80.0100.0100.OIOO.0100.0 50.0 60*0 70.0 60.O
720 720 72O 720 21 21 21 21 210 210 21O 210
.6-31.713.3113.3113.3113.31-31.2-31.2-31.2-31.2
11 .21 I 133.1133.I 133.1133. 1.87 1.89 1.87 1.89
.686. 313825.3825.3825.3825.165.2165.216S.2165. 2
5 35 35 5 10 1O 10 10 8 30 30 8 5 3b 35 S
t INHt.
11 NIK
1 IHIIl
1 INFIl
1 ISbANCiLINILN
1 )S(.AN«L Illicit
1 TbliANbLINItH
ITSbAIJl.LIHIlN
C INHt 1 l'j<,AI!r,L INIIH
E INHt
11 Milt
F 1 hill
tiEtllt
1 TShANbL INIIM
1 1S(.»IIC,L INIf N
1 T .,(,»>! (,L INItN
1 'il AH.IIIKI.N 1 .
sciimiizsToi r
srtMiuT/siorr
scHiiui7STorr
SCIIMIIT7S10FF
bcmiuubiorr
SCHHUI/SIOI 1
S'CIIHUI ZSTUt r
sriltllil 7SIOF (
U 1 . 0 1.0 1 U
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
I
1
1
1
KEur. HIiAOtR b.OI .11(11 .OUI .UOI .001
10.01 .
1 b II
20.0 .
2b-U .
30.0 .
JS.O
1 fl . II
uui .001 .on i .001
7K '/(, .V6 >VR
90 .«/ .H7 .70
76 .70 73 -77
/.'I .bb .bn .67
b S '''S .IV .59
III . JH .'I? V,
S.O
10.0
IS.O
20.0
25.0
3O.O
35.0
10.11
IS.O
SO.O
SS.O
60. O
5.0
10.0
IS.O
20.0
25.0
30.0
3S.O
10.0
15.0
SO.O
SS.O
60.0
S.O
10.0
IS.O
20. CI
25.0
30. O
35.0
10.0
15.0
SO.O
SS.O
60.0
S.O
10.0
IS.O
2O. 0
25. 0
3(1. 0
35. U
10*0
Hb.O
SO.O
SS.O
60.0
.0 1 .U 1
.UOI .UOI
.UOI .OOI
.79 .77
7R .78
.77 .7S
.'3 .06
. II / .79
. / II . A ft
1.10
1*28
2.0O
1 .03
0.65
0*37
0. 17
0-01
O.OU
o.oo
0*00
0.00
5.10
7.IS
3. SI
2. OS
1*35
0.70
0.60
0.35
0*20
0.09
0*02
0.00
15*00
39. SO
30. OO
19-00
10.00
5.50
3>Sb
2-00
1 .50
1.00
0.50
0.00
15.10
16.05
7. SO
3.85
2.15
1 .10
O.70
0.15
O.OU
O.OO
0.00
O.OU
.0 1.0 1
.001 .Out
.UOI .OO
.791 .00
.98 .97
.96 .98
.90 .75
.H3 .70
. > 7 . li 1
3.08
3.21
I.SO
0*77
0.17
0.28
0. 11
0.03
O.OO
0.00
0
O
3
S
2
I
1
0
0
0
0
0
U
0
IS
37
30
17
.00
.00
.83
.36
.63
.51
01
.68
.15
.26
.15
.07
.02
.00
.00
.50
.00
.00
10. OO
5
3
2
1
1
O
O
IS
16
7
3
2
|
0
0
0
0
O
0
.0 1 .
. (Ill 1 .
.71 .
.88 .
.80 .
.73 .
.67 .
.60 <
. b 1 .
.50
.50
.00
.50
.00
.SO
.00
.1
.05
.SO
.85
.15
.10
.70
. IS
.00
.00
.00
.00
O 1 .U 1
(101 .001
VI .71
83 .83
7b .75
66 .67
i>8 .60
bl ,b3
11 .16
3.
3.
1.
0.
U.
0.
0.
0.
0.
0.
0.
U.
7.
10.
5.
3.
2.
1.
O.
0.
U.
0.
0.
0.
7.
17.
IS.
7.
5.
2.
| .
I .
0.
0.
0.
0.
IS.
1*.
7.
3.
2.
1 .
0.
U.
U.
U.
U.
0.
.(I 1
.UUI
.VII
.ue
.BO
.73
.67
.60
.51
08
21
SU
77
19
28
11
03
00
OO
00
00
65
73
27
08
03
35
VO
53
30
11
03
00
SU
7S
OU
50
00
7b
75
OU
75
SO
25
OO
1
05
SU
8b
IS
10
7U
IS
00
00
OU
OU
0 1
.UOI
.UOI
.98
.70
.76
.61
.55
.18
1. 10
1.28
2.00
1 .03
0.65
U.37
O. 17
0.01
0.00
O.OU
0.00
0.00
5.10
7.15
3. SI
2.05
1.35
U.70
U.6O
0.35
0.211
0.09
O.U2
U.OO
15.00
39. SO
30.00
I9.0O
10.00
5.50
3.50
2.0U
1.50
1 .00
II. SO
O.OU
IS. 10
16.05
7.5U
3.85
2.15
1 .10
O. 7U
O.lb
U.OU
U.OO
U.OU
U.OU
.U 1 .U 1
.UOI .Oil 1
.UUI .UOI
.96 .V6
.87 .87
.70 .73
.55 .b«
.1b .19
.JH .12
.U
.00
.00
.78
.VU
.77
.67
.5V
.Sb
-------
LO
.00
67.
AH.
69.
70.
71.
72.
73.
71.
75.
76
77.
7H.
7V.
HO.
81 .
82.
03.
81.
HS.
BA .
87.
Bll.
89.
911.
91 .
92.
93.
91.
95.
96.
9B.
99.
IOO.
101.
102.
106.
107.
lort.
109.
10.
I I *
17.
I 3*
15.
16.
17.
IB.
I'7.
I 2O.
171 .
127.
173.
121.
IZ5.
126.
127.
178.
12V.
TAfaCSZL 1
JAHKF.SZF
.JAHHtSZE
15.0 .
50.0 .
55.0 .
60.0 .
6S.O .
70.0 .
75.0 .
BO.O .
85. U .
VO.O .
VS.O .
IOU.O .
IF. INFLUSS
1 II INFLUSS
1 IL INtLIISS
JAHMt57.ll It INILOSS
JAHHtSZF
1 II. IMILUSS
13
3H
35
33
32
31
30
30
3D
30
30
3U
1
2
3
1
.JJ .
.29 .
.27 .
.75 .
73 .
.77 .
.21 .
.20
.70
. 7,0
.20 .
.20 .
O.OO
H.3U
1 *00
1 ..10
2.00
2.30
1.00
1.3U
1.00
1.30
5.00
5.30
6.00
6* 3D
7. (10
7.30
(1. 00
B.3O
9.00
9.30
10-00
10.30
1 1 .00
1 1 .30
.80
.99
.10
.BO
HtlKt NKl ALHWIHKOHC,
37
33
Jl
29
2B
77
26
25
25
75
75
25
0.
n.
o.
u.
o.
0.
0.
0.
o.
u.
0.
u.
u.
0.
i .
i .
I.
i .
0.
u.
u.
u.
11.
1 .
.
1 .
.
.
5
10
IS
20
25
30
35
10
15
SI .69
.18 .59
.16 .53
.11 .18
.13 .11
.12 .17
.11 .11
.10 .10
.IU .10
.10 .'10
.10 .10
.10 .10
ao o.ao
au O.BO
HO O.BO
HO O.BO
RO o.ao
80 0.80
au o.ao
HO 0.80
82 0.82
HI 0.81
R6 0.86
89 0.8V
92 O.V2
V5 O.VS
OU I.OO
UU I.UO
.55
.IS
.39
.35
.37
.31
.31
.JO
.JO
.30
.30
.30
.00
.OO
.00
.UO
.00
.00
.00
.0(1
.au
.00
.00
.UO
.00
.UO
.00
.UO
oo i.no o.vs
OU 1 .00 O.VO
11 o.vv o.as
98 0.98 0.80
97 0.97 U.7S
98 0.98 0.7U
99 0.99 0.65
OU 1.00 0.60
75 .BO
00 .91
12 .16
7'i .80
.VO
.81
.60
.90
B6 AB VV 86
HI 15 VV 81
7H 12 9H 78
76 IU Va 7A
7S 3V V7 75
71 38 V7 71
73 37 97 73
73 JA 9f. 73
72 36 96 77
50 77 35 96 77
55
60
65
70
77 35 95 72
71 31 95 71
71 31 95 71
71 3J 95 71
75 70 JJ VI 70
no
7U JJ 91 70
US 70 JJ 91 7O
90
69 37 91 6V
V5 AV 32 VI 6V
MJO
IIL<.MHM.AIK*INMIN<,
0
1
1
.5
n
.',
6V J2 93 6V
B6 (.11 98 86
7B in 97 7»
/I '( / V !
>t
.61 .76
52 .66
.16 .59
.12 .SI
.39 .IV
.37 .17
.36 .16
.35 .10
. JS .10
.35 .10
.JS .10
.15 .10
O.BO
O.BO
0.80
0.80
0.80
0.80
0.80
0.80
0.82
0.81
0.86
0.8V
0.92
O.VS
1.00
1 .OO
1.00
1.00
O.VV
O.V8
O.V7
0.9H
O.VV
1.00
.87 .
.80 .
.82
.87 .
IOS
1 10
IIS
120
I2S
130
I3S
no
IIS
ISO
155
160
165
170
I7S
IBIJ
I8S
190
195
200
(1.5
9.0
9.5
.18 .37
.11 .31
.3V .28
.36 .23
.33 .22
.32 .21
.31 .20
.30 .20
.30 .20
.JO .20
.JU .20
.30 .20
12. OU 1
12. JO 1
13.00 1
13.30 1
11.00 0
11. JU 0
IS* 00 0
IS. 30 0
16.00 0
16.30 1
17.00 1
17. JO 1
IS. 00 1
18.30 1
IV. 00 0
IV. 30 0
7O.OO 0
20. JO 0
2 I.OU 0
71.30 U
22.00 0
22. JO 0
.11
.36
J2
.28
26
25
21
.23
.23
.23
23
.23
.UO
.UO
.00
.UO
.VV
V8
.VJ
98
.VV
.OO
.UO
.00
.UO
.UQ
.98
.96
.VI
V2
VO
88
.86
81
23.00 0.82
23.30 0
80 -75
80 .80
VI .VV 1
80 -75
6V 32 93
68 31 93
68 31 93
68 31 92
68 31 92
67 31 92
67 31 92
67 31 92
67 31 97
67 31 VI
66 31 VI
66 31 VI
66 31 VI
66 31 VI
A6 31 VI
65 30 VI
65 3U VO
65 3O 90
65 30 90
65 30 VU
S8 30 83
58 3(1 112
5(1 .IU HI
.80
75
.ao
.00
.'5
6V
68
68
68
68
67
67
67
67
67
66
66
66
66
66
65
65
65
65
6S
58
5H
5B
.18 .13 .33 .37
.11 .38 .2V .JJ
.3V .JS .27 .31
.36 .33 .25 .2V
.33 .32 .23 .28
.32 .31 .22 .27
.Jl .30 .21 .26
.JU .JO .20 .25
.30 .JO .20 .25
.30 .30 .20 .25
.30 .30 .20 .25
.30 .JO .20 .75
I.UU U.60 I.OO
I.OU U.S7 I.UU
1 .00 O.SS I.UU
I.OO O.SS I.OU
O.VV O.SS O.VV
o.vs o.6o o.va
0.97 0.6S 0.97
o.va o.7o o.va
0.99 0.80 O.VV
.00 O.VU I.UU
.00 .UO I.UU
.OU .00 I.UO
.00 .UO I.UO
.00 .OO I.UO
D.VS .on o.va
0.96 .UO O.V6
a. vi .uo o.vi
O.V2 .00 O.V2
U.VU .00 O.VU
11.88 .UO 0.88
0.86 .UO 0.86
0.81 .OU O.81
0.82 .00 O.82
O.BO .UO 0.8O
.82 .93 I.UU
.BO .80 .81
.96 .77 .55
.82 .93 |,UU
2U5 65 JU VU
2IU 65 30 VU
7IS 65 30 VU
220 65 JU VO
22S 65 JU HV
730 65 JO 8V
235 65 30 8V
210 65 30 8V
215 65 JO 8V
250 65 30 8V
255 65 JU 89
260 65 JU «9
265 65 3U HV
27U 65 30 88
275 65 JO 88
280 65 JU 88
285 65 JU 88
790 65 JU at.
7VS 65 30 88
JUO 65 30 88
16.5 Sa 3D 73
1 7.U 58 30 73
17.5 58 30 It.
SI
.18
.16
.11
.13
.12
.11
.IU
.10
.10
.10
.10
.98
.92
.13
.va
65
65
65
65
65
6S
65
65
65
65
65
65
65
65
65
65
65
65
65
65
58
58
58
-------
to
W
V0
I JU.
Ill
I (2.
I 33.
I 11.
US.
I 36.
I3/-
IJt).
139.
I'lU.
I'll .
112.
113.
111.
Mb.
I 'I*.
I1/.
lie.
119.
ISO.
151 .
152.
CSJ.
151.
155.
I',6.
IS7.
IS«.
159.
I6O.
Ill .
162.
I «.3.
161.
I (.5.
166.
I (,7.
K,H.
16V.
I /U.
171.
1/2.
I 73.
171.
I /b-
I 76.
I IT.
I7H.
I II.
I lib.
181 .
III?.
183.
I 81.
I lib.
IH6.
IH7.
1(18.
IHV.
190.
I VI .
192.
TK-'jCHMIHZMI MGEN I
l«i-5(IIMU
2.0 68 3 II 9S 6B 10.
2.S 66 35 93 66 10.
3.0 61 33 92 61 II.
3. S 62 32 91 62 II.
1.0 61 31 90 61 12.
.1.5 60 31 89 60 12.
5.0 !i9 30 BB b9 13.
b.S f>B 3U 87 SB 13.
6.0 bB 30 86 SB 11.
6.b bfl 30 BS SB 11.
7.0 58 30 81 58 IS.
7.5 bB 3O 81 SB IS.
0
S
0
S
0
S
0
S
0
S
0
S
8.0 58 30 83 SB 16.0
O.OU250. 0250. 0250. 0250.0
0.
1.
1.
2.
7.
3.
3.
JU 250. 0250.0250. 0250.0
OO20O.U250.O25O.O750.0
30250.0250.0750.0250.0
00 75(1. 0750- O 750. U25Q.O
30250'. 0750. O 250. O25Q.O
OU2bU.U2SO. 0250 .0250-0
30250.0250.0250.O750.0
1.00250.0250.0250.0250.0
1.
5.
6.
6.
7.
7.
8.
8.
1.
9.
10.
10.
1 1 .
1 1.
0.
0.
| .
1 .
2.
2.
.».
J.
1.
1.
!. .
5 .
*
6.
7.
7.
II.
II.
V.
<* ,
10.
HI.
I"
1 1 .
0.
0.
30 2511. 025O.U25O. 0250.0
302bl).075U.O2S0.0250.0
OH 250. O2 50. 02 50. 0250.0
3D 2SO. 0750. 0750. 0750.0
no 7 b0.025O. 0250. 0250.0
30 2 50.0250. 0250. O2 50.0
00250.0250.025O.0750.0
30 250. 0250.1) 250. O250.O
OO7b0.02SO.O2SO.O7SO.O
HI 2'j [>. O 250.0 250 -O 250. U
nil 2 SO. 025O. 0250. 0750.0
3U2SU.O250.O250. 0250.0
UU 250. (12 5O. 0250. O2 50.0
10 2S0.025O.O250.O 250.0
00 2110. 0780. 02 80. 0280.0
JO 2 80. 0280.0280. 0280.0
OO2«O.078O.O2RO.n28O.O
3O280. 0280. 0280. O78O.O
UO 280.0280.0280.0280.0
J02H0.07U0.02HO.02BO.O
OO28O.O78O.0280.O280.0
3(1280.0280.0280.0280.0
00 2II0.07UU.U7BO. 0280.0
jn2H0.02BO.U280.O28O.O
(IO/(I(».(I7B(I.02HO.O7«O.O
JO280.02UO.02BO.O7BO.O
nO2(III.O78O.02(in.[l7BO.O
JO2«n.O2B0.07e0.0780.O
00 2 MO. 0280. 0? 80. 0780.0
I07KO* 0260. 0280. O280.0
11(1280.0280.0780.0780.0
JO2UO .02811. 0280. 0280.0
OU2«0.02«U.O?»in.U7»O.O
10 200. 0280. 0280. 0780.0
OP 780.0280.0280.0280.0
1U 2110. 0780. 0780. O280.0
OH 2HO* 0780. 0780* 0280.0
JO 7811. 0?80.Ii780. 0780.0
UO 7(1.0 2(1. V 20.0 20. 0
10 7U-U 70.0 20. n 20. 0
SB 30 BO SB 16.0
SB 30 79 bB IB.S
SB 30 79 SB 19.0
SB 30 70 SB 19. b
SB 30 76 58 20. O
SB 30 77 SB 20. b
SB 30 77 SB 21.0
SB 3O 76 58 21. b
SB 30 75 SB 22.0
SB 30 75 bB 22. S
SB 30 75 SB 23.0
SB 30 71 SB 23. S
SB 30 71 58 71.0
1 2. 00 250. 0250. O 750
I2.302SO.O2S0.02SO
IJ.OO25U.02bU.O250
I3.302SO.02S0.02SO
I1.002SO.O2SO.O2SO
I 1.30250.0250.0250
IS.002SO.0250.O2bO
IS* J02SO.02bO.02SO
16.00250.0250.0250
16.30250.0250'. 025U
I 7alIn?QI> flPtitl fl?hfl
I / *UU«3UB(f
-------
NJ
*-
O
193.
IV1.
I «<»
IV6.
177.
I VHt
119.
200.
201
202.
203.
201.
205-
2(16.
2U7.
200.
2OV.
210.
211.
212.
213.
211.
2|h.
21*.
217.
2IM.
217.
22U'
221
222.
223.
221.
?2b.
226.
227.
22H.
229.
230.
231.
232.
233.
231.
23S.
2J6.
237.
23H.
23V.
210.
211 «
212.
2'I 3*
»0 DAIA.
Hf-SlllHUI /Mt N61N
IN-KOII2UI1HM ION
XXX*
XXXK
X»*k
-I .0
i.ou
1.. 10
,(.uu
2.30
3. on
3.30
H.OO
1.30
5.00
b.30
6. on
6.30
7. DO
7. 311
a. oo
8.30
9.00
7.30
111.00
10.30
1 1 .no
1 1 .30
11-00
O.JO
1 .00
1 .30
2.00
2.30
3.00
3.30
I.Od
1.30
5.00
5.30
6.00
6.3U
7.00
7.. 10
B.OO
8.30
9.00
9.30
10.00
10.30
1 1 .00
1 1.31)
27U.
20.O
20.0
2D.U
;o.o
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
340.
160.
3*0.
360.
360.
360*
360.
3*0.
360.
360.
360.
360*
36O.
360.
36O>
360.
360.
360.
360<
360*
36U.
360*
36O.
36O.
250.
70.0
20. 0
20.0
20.0
20.0
20. 0
20. O
20.0
20. 0
20.0
20.0
20.0
20.0
20.0
211. 0
2U.O
20.0
2O. 0
20.0
20.0
2U.O
20.0
360.
36O.
360.
360.
360.
3«U.
361).
360.
360.
360.
36O.
360.
36C.
3*0.
36U.
3*U.
360.
JfcU.
360.
360.
360.
360.
360.
36U.
20.
20. n
20. U
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20. 0
20. O
20.0
20.0
20.0
20.0
20.0
20. n
360.
160.
360.
360.
360.
160.
160.
360.
360.
160.
360.
36U.
36U.
360.
360.
36O.
360.
36O.
16U.
360.
160.
360.
360.
360.
360.
20.0
20.0
20.0
20. O
20. 0
20.0
20.0
20.0
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
160*
16O.
360-
360.
160'
360*
360.
360.
360'
360.
360*
360.
360*
360-
360.
360-
160.
160.
360-
360.
360.
360.
360.
360*
13.00 20.0 20.0 20*0 20.0
13.30 20.0 20.0 20.0 20.U
M.UO 20.0 2U.O 20.0 20.U
IN.JO 20.0 20.0 20.0 20.U
IS.00 20.0 20.0 20.0 20.U
14.30 20.0 20.0 20.0 2O.O
16.00 20.0 2U.O 20.0 20.0
16.30 20.0 20.U 20.0 2O.O
17.OO 2O.0 20.0 20.0 20.U
17.30 20.0 20.0 20.0 20.U
18.00 2O.Q 20.0 20.U Zll.U
18.10 20.0 20.0 20.0 20.0
19.00 20.0 20.0 20.0 10.U
If.30 20*0 20.0 20.0 20.O
20.00 20.0 20.0 2U.O 20.U
20.30 20.0 20.0 20.0 20.O
21.OO 20.0 2O.0 20.0 20.U
21.30 20.Q 2U.O 20.U 20.U
22.OO 20.0 2U.O 20.0 20.U
22.10 20.0 20.0 20.0 20.U
23.OO 20.0 20.0 20.0 2O.O
23.30 20.0 20.0 20.0 20.0
12.OO 360. 360. 160. 36O.
12.30 160. 360. 360. 160.
13.OO 160. 160. 160. 160.
I'l.lO 36U. 16O. 16O. 160.
14.00 160. 160. 160. 360.
11.10 160. 360. 360. 36U.
15.00 360. 160. 16O. 36O.
IS.30 16U. 360. 160. 36U.
16.00 16U. 160. J6O. 160.
16.10 16U. 160. 160. 360.
17.00 160. 160. 360. 360.
17.10 16U. 1611. 360. 160.
18.OU 360. 360. 160. 160.
10.10 360. J6O. 36O. 160.
If.OO 360. 360. 360. 36O.
17.30 160. 360. 360. 160.
20.00 360. 16O. 160. 16U.
20.30 36O. 160. 160. 360.
21.00 160. 36U. 360. 160.
21.10 160. 160. 160. 1611.
22.00 16U. 160. 160. 1611.
22.10 160. 160. 360. 16U.
23.00 360. 360. 160. 360.
21.10 160. 360. 160. 16U.
UOiL I, KAMI.
3,»qOAM1.
MISt 1 i 'UOAI. 1 .
U»U1 Ut-S.liKtK
-------
Q S
DIE NIT IF) 6EKENNZEICIINE|tN MItIIILUNGEN
VFNHINDERN DIE AUSFUEHRUNG OES BEMECHNUNbSTt|LS
ALIE ANDEREN SI NO HUM INFONMAtIV
Al Mil NE120A1LN
UIE EINfaABt ERIOLC.I IN HE TRISCIIIH EINMtlILN
EINCiABF OER KAtlAINt liDAlEN
I I VUNLAUFfcANIEN
HNl>C,NGSLF AMOHtN 1-00
I .00
.00
I .00
1.00
1.00
AMI AIIGSZt I 1PUNK T II.
I1PUNKI * 0.
J..IVS6 17 UMR SO HINUICN
U. If n 0 UHN 0 HINUICN
LASIIALL I (IN2ELIKEI6HIS REGENIN11 MS I 1AE1 EM (EROEN EINGELESlN
}J AUSGAHEHUIIRt.
CUOI COU2 CU02 COO1 (001 C001
CUIO CUM COM 10)1 C0|] COI1
CU2« IO7J IU2? (.011 Hill* iQ2f
CUT. CU36 IOJ6 CUJ7 C0}7 K038
3 AtSC.Att'NOILN (KOtl
Kiiis ni> jo went)
1 AUSbAbEKMUIlM (HMD)
IIIIO6 B038
U INIEKISbANIE KNOIEN
(I KNOIEN Mil KUNSTANliK UFPEHNAIIHE.
U KNOIEN Mil VARIABLE* UEHEKNAIIIIE
KECHENUAUtK 'IS INIEKVALLE
NLbLHUAULN Ib IMEK'VAILt
KEGENINUtlSl I AEIEtl HEIHE
COOH COOS
roii i-ois
(U21 C030
K038 BO]S
S
IU
IS
2U
2S
JU
0
0
IhO
1,10
bfcO
100
BU
COOS BOOt
ROIS COI6
C010 C01I
8018 COlf
8006 C007
COIt BOO*
C01I C012
SOI) SOI1
COO/ COU8
C001 COZ1
C012 C011
cooe coo*
C02S C02S
C011 C011
COU» COIU
C02S C026
C011 C01S
-------
40 160
IS 1U
SO 40
SS 10
60 10
6S 6U
70 20
75 20
21 hOHHLLEHLNIKAHUN
KOIIR KA . HOIS Kl COI6 I*KUI ILHOEUt >20 ILfN Ml
ANZAHL UIH HOHRLLt HF.N1 E JO
ANIAIIL ULH KNOItN IS
P-
S3
-------
KOHKELtMENIKARIEH
UN
AB2 PK2
SA
SI
OE
KS
K)
4S
CO
1
2
3
1
5
«
7
a
1
10
1 1
12
11
11
16
16
i ;
IB
IV
20
21
l2
23
21
2b
26
27
26
2V
3U
31
32
J3
31
3S
CHOI
CUU2
CUU3
CUU'I
CCIU&
BUOfc
CIIU7
CUUH
CHUT
CIIIU
CUI |
CUI J
CUI1
KOI!.
SOU
SOI1
suit.
CUI6
CIIU3
CO21
CL2b
cii2*
C(I2/
NO2U
CU2V
CU3U
CU3I
CU32
CU33
CU31
CUJS
CU3(>
CU37
Ktljd
BU3H
Cum
CU03
CU01
CUUb
BOO*
CU07
coo«
cuov
CUIO
CUI 1
CC3I
CUI '1
KUIS
COIfc
SUM
SUIS
COI6
UUOfc
C021
III2S
CU26
CU27
COJ2
CO29
CO30
CU3I
CU.12
C033
CU31
CU3S
C036
C037
RO3B
H03B
CUJ9
tool
COO?
CUU3
CU01
CUUS
unut
COU7
CUUB
cuov
COID
CIH3
COIN
SOI3
suit
HOIS
C002
COU 3
C021
CU2S
CU26
K02«
f 029
COI 1
C03I
C032
C033
CU31
C035
C03&
Cb37
RU3H
COIt
SOIS
C03Q
CO27
COU3
C001
f UOS
B006
COO/
coue
COCI»
CUIO
COI 1
CU3I
C032
ROIS
CUI6
8006
SOIS
COIA
0006
C007
-------
XNOTENL06
I
1
3
1
S
t
1
8
V
10
I I
12
13
IN
15
It
I 7
IS
IN
COOI
1002
COU.I
(.001
COUb
UOU6
CUU7
CGUB
cnov
COIU
LOI I
<03I
COI 3
toil
HOIS
101*
SOU
SUM
ZUI
0
I
2
3
4
5
6
9
10
II
0
13
II
IS
0
I 7
/uz
0
0
0
0
0
16
0
0
0
0
0
27
0
0
0
\1
0
0
7U3
0
D
0
0
I)
0
0
0
u
0
0
0
0
p
0
D
0
U
S1U
0
1
1
1
1
I
1
1
1
1
1
2
0
|
|
I
0
1
Bl
2
3
1
5
A
7
6
V
10
II
12
21
11
IS
16
6
ie
IV
AB2
0
0
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SAB
LFN
KN ZUI
HI 2 ZU3 SZ" ABI
AB2 SAB
If
20
21
22
23
21
25
26
27
28
29
10
31
12
33
31
3S
SOI5
C021
CU2S
C026
C027
C032
II 1)28
C02V
C030
CCU3
C031
CCJJS
C036
COJ7
N038
B038
C03V
18
3
20
21
Z2
23
0
26
26
21
28
2V
30
31
32
13
31
0
0
0
0
0
12
U
0
U
0
0
O
0
0
0
0
0
O
0
0
0
0
0
u
b
O
O
0
0
0
0
0
0
u
16
21
22
23
21
28
26
27
12
2V
30
31
12
11
11
IS
0
0
0
U
0
0
U
0
0
0
0
0
0
0
0
0
0
O
N)
-------
OtARIIEttUNGSREIHENFOLGE
(ORIGINAL)
LFM KH RtlME IFN KN REIHE IFN KN REIHE LFN KN REIME LFN KN REIHE LFH KN REIHE
I CUOI II 7 C007 17 I) COI3 7 19 SOIS 6 2S RU28 I 31 C036 31
2 C002 12 8 COOK IB II COM 8 20 1021 23 It CU29 2 32 CU37 32
3 COOJ 13 V 1009 II IS ROIS ? 21 C02S 21 27 CO30 3 33 RU3S 33
1 CUOI II 10 COIO 20 ' I* COI6 10 22 C024 2S 26 CU33 2B 31 BU38 31
& CUDS IS II COII 2| 17 SOI3 1 23 C027 24 Z9 C031 29 3S C039 JS
6 BOO*. 16 12 C03I 22 18 SOU S 21 1032 27 30 C03S 30 34 0000 0
1-0
*-
Ul
-------
p E A R n
E 1 1
INACH UHSPEICHERUN6I
LFN
2S.
2k
27
17
10
l»
KN
HO2«
CU29
CLIO
SOI 3
SOU
SUIS
RtlME
1
2
3
1
*
6
LFN
13
11
IS
It
I
2
UN
cm 3
COM
RUIS
COIA
COOI
cou?
HE HIE
7
a
9
10
1 1
12
LFN
3
1
5
6
7
KN
COO)
COOI
COOS
BOU6
C007
cooa
REIHE
11
11
IS
It
i;
!
LFN
9
10
1 1
12
20
21
KN
COO*
COIO
COII
con
C021
C02S
NCI HE
If
20
21
22
23
21
LFN
22
23
21
28
2?
30
KN
C026
C027
C032
CU33
C011
C03S
MCI HE
2S
26
27
28
29
30
LFN
31
32
3)
31
3S
U
KN
CU34
CU37
R03«
B038
C039
aaea
REIHE
31
32
31
31
IS
16
3) SUNDlKBAUftERfcC
N)
KNOTEN HOIb IIRUE .70 ILFN II
KN01CN » ROia BRUE 20.UO UFN II
UNOItM » H006 HHA« . S.OO ILFN II
KNOttM 8038 HHAH » S.OO ILFN SI
f ASSUHGSVERMUF.OLN OER RUB tSOO.O CRN
II SUUEHUARE ELEHENIE
LFN ITP KNAB KNGB HMAX HMIN WVPRT CFRG 042 DOA
III 29 .I&O .ISO .OOOO .OOOO .SOOO .1667
ELEHENIANZAHLEN
RUHRE 3S
KNOIEN 3S
ULBERLAEUFE 3
BtCKEN 2
RUHRVERZOGGN. I
SI II ILt II
(LRI11 > ACOI
it;
-------
> AC01
bEBILT ' ACOS
btUIEI > AC26
OtUItl AC3I
bEHILI AC.IZ
Ill * II.*S ILFH 71
FEZ 10.Si IIFN 31
FEZ * 2U.18 (LF H 71
III * I 7.83 (LF N 91
FEZ 21.90 III N 101
btHIEt AOJ rt2 II.SO ILFII III
GIBIM5 FLAIUIEN FLACCHC
ADI AN2AHL IHAI
BEFESMbl
IHAI
BCFESTI6UNGS ElMftOHNER
SHAD
SJ
1
2
3
11
1
1
2
1
17. a
2IS.O
130.0
20. S
S.3
*».»
JS.3
.1
.30
.11
.27
.02
1»V.
AV8J.
I6J).
SI2.
sunncN
3§3.3
71.0
,19
-------
KNOTENUEUtRS
C H T
03
01EN KHTYI
cool
C002
CII03
CODM
COO1.
8004
C007
COOS
CU09
COIO
CUI 1
COJI
CUI3
HUH
ROIS
COI4
SHI 3
sun
SOIS
C0?t
C02S
CU24
C027
C032
RUJB
CU2?
CP30
C033
cost
1015
C03A
C037
R038
8030
C039 (
' SZU SAI
0
1
1
1
1
2
1
1
1
|
1
2
0
1
1
2
0
1
1
1
1
1
I
2
0
|
I
1
|
1
1
1
1 1
1 1
> 1 (
) IE6
ACOI
!
ACOI
ACOS
ACOt
AC3I
AC 13
ASI3
ACZ*
AC32
AC2*
AC33
AC37
1
ZN TtP
1 2
1 2
1 2
1 2
1 1
1 2
1 2
1 1
1 2
1 3
1 2
1 3
FEZ
24.03
11.45
10.52
30.18
17.83
SO. 10
SO. 10
20.18
21.90
79. 52
11. SO
SO. 52
FEZU
2.40
2.91
1.89
».91
S.3S
7.01
.00
.11
*.3S
31.81
2.17
3. SI
EH
2131.
1018.
600.
734.
199.
O.
1303.
SI2.
701.
1131.
2*1.
202.
vsr
I.OO
I.OO
1 .00
I.OO
I.OO
I.OO
1 .00
I.OO
1 .00
I.OO
I.OO
i.oo
l« I*F
.0 I.OO
0 I.OO
.0 I.OO
.0 i.oo
.0 i.oo
.0 I.OO
.0 I.OO
.0 i.oo
.0 I.OO
.0 1 .00
.0 I.OO
.0 i.oo
bi f lit SUANI i MCI
I I PKUF ILKAHItN
DIH KANAEIE 6.1 KM
FASiUN(.SV(.HMOE<>tN UEH KANAEll 20B0.3 CBH
-------
ROHROEBERSICHI
ivr
1(13
KKI
*82
5*
SE
VO
CC.GI
C002
C003
CD01
COOS
BCIOt
CtU7
CUOfl
(on 9
CulO
CUI 1
(.(113
CUIH
RCI5
bOI3
SUM
5UI5
CI»I6
CUU3
C021
C02b
C026
CU27
RC.28
CC29
CU30
CU3I
C032
C033
(.031
CU3b
CO3A
CB37
RO3B
bOJS
CUU2
COU3
CllOl
CI1US
BUU6
CUU7
COU8
COU9
COIU
CUI 1
CUM
COM
RUIb
COI6
SUI1
SUIS
COI6
BDU6
C021
C025
C02«
C027
C032
CU2V
CtJU
((131
CO32
(033
C031
C03b
C036
C037
KO3H
PUJ8
CU3V
tool
CUU2
COD 3
COUH
COOS (014
8OOA
CUCI7
tOOrt
CbO?
COIO
COI3
CUM
SOI 3
SUM
HOIb SOIS
COOi
CU03
CU21
CU2b
CU2&
R028
C02?
COII (030
CU27 (.031
CO32
CU33
COJM
CU35
C(J36
(037
KO38
C003
COOt CO2H
COOS
BOOt
COOI
cooa
C009
COIU
COI 1
C03I
1032
HOIS
COIt
BOOt
SO IE,
cni6
oont
(007
C02b
cozt
C027
C032
C033
C030
C03I
(032
C033
C031
COJb
C03A
C037
N036
P03H
C03«
.10
10
.10
SO
1.00
.30
.10
.60
SO
.SO
SO
1.00
1.00
.20
.10
.10
.10
.to
.10
.10
.10
.60
.60
. bO
.60
.60
.80
.80
, .00
.00
.00
.00
.20
so
1.70
.31
.31
.31
.19
.7?
.21
.11
.19
.1*
.19
.19
.79
.79
. 16
.11
.11
.11
.17
.11
.11
.11
.17
.17
.19
.17
.17
.61
.61
.79
.79
.79
.79
.91
.19
.91
.126
.126
.126
.196
.78b
.071
.126
.196
.196
.196
.196
.78&
.7BS
.011
.126
.126
.126
.281
.126
.126
.126
.281
.281
. 196
.281
.281
.SOJ
.SOI
.786
.78S
.785
.78b
1. 131
. 196
1 .111
.210
.219
. 181
.1S6
2.83S
.191
.IIS
.110
.185
.621
.SSI
I.1S2
1.342
.019
.121
.122
.121
.106
.188
.129
.116
1.212
I.I 13
.211
.107
.323
1.178
1.668
3.210
2.S19
2.218
1.780
2.221
.ISV
l.2bS
26U.OO
IOO.OO
29U.OO
210.00
Mb.UO
I8S.OO
2SO.OO
22&.00
181. UO
172.00
92. OO
120. UO
92. UO
130.00
120.00
92.00
110.00
182.00
22U.OO
20O.OO
I8U.OU
2I2.UO
I9B.UO
212.00
181. OO
167.00
IJ7.UO
272.00
IS^.OO
I67.UO
IU7.UO
211.00
118.00
IOU.OO
IUO.OO
61.870
6O.81U
S9.680
S7.bOO
SS.100
SI .190
11.9/0
16.290
11.S70
10.870
26.710
SI. 760
S1.1OO
S3. 920
61.760
SI. 100
SI. 120
S3. 310
S9.680
S2.3IO
11.890
37.170
29.690
26.SSO
2S.7SO
26.330
21.020
22.6SO
18.670
I6.O7U
I1.3OO
12.770
1 1.660
10.130
21.200
60.810
59.680
S7.7OO
55.600
53*500
11.970
36*290
33.67O
30.870
26.710
21.980
61.100
61.120
S1.S3O
61.100
SI. 120
63.730
62.610
63.000
11.890
38.000
3O.U5U
23.630
25.760
26.110
21.910
22.6SO
18.670
16.070
11.300
12.770
1 (.660
1 1.210
10.270
21.100
UOIO
.OOIO
.0010
.0010
. UUIO
.UOIO
.0010
.OOIO
.0010
.0010
.0010
.0010
.0010
.0010
.0010
.0010
.UOIO
.UOIO
.0010
.0010
.0010
.0010
.0010
.OOIO
.OOIO
.OOIO
.0010
.0010
.0010
.UUIO
.0010
.0010
.OOIO
.0010
.OOIO
21
CHIN Rf(KLN
41 (iLUIt liHlft UHNUHUH
I (OMHlHfI*l
2 H( 5IDI Ml | At
3 INDUS!hit
-------
II MIILDENKAPA/I IAE IEN
MULUENKAPAM IAETEN IMM|
MBI
.60
.60
HIM
10-00
10.00
MB2
.00
.0
NU2
10*00
10.00
HBJ
1.00
1.00
HUJ
12.00
12.00
MBI
.80
.0
MU1
10.00
IU.OO
SI »EKMCKEHUf(faSRAlEN
VfKSItKERUNG IL/SEC/HA)
REGtNMESSRElHE I
27.7 27.7 18.6
27.7
MEGENNESSREIHE 2
27.7 27.7 16.6
REGENMESSRCIHE J
.0 .0 .0
NJ
(Jl
O
VERDUNSlUNfaSRAItN
CHAD C NM/fAG GKAD C MM/TAG GRAO C HN/TAG GOAD C HM/IAti GRAD C MM/IA6
1
2
3
1
S
6
7
II
V
ID
.40
. 7O
.77
l.lb
I.JS
1 -5S
1 .'&
2. IIS
2.30
2.SS
1 1
12
11
11
IS
16
17
18
19
20
2.80
3.20
3. 60
1.00
1.10
1.80
S.25
£.70
6.20
6.70
21
22
21
21
2S
26
27
28
2V
30
7.20
7.70
B.20
8.70
» .20
».75
IU.2S
10.80
1 1.10
1 1 .80
11
12
1]
11
IS
16
17
18
If
10
12. IS
12. 10
13.10
11. TO
11.10
11.90
IS. IS
16.00
16. SO
17. DO
11
12
11
11
IS
16
17
18
IV
bO
18. OU
IB. SO
IT. 00
IT. SO
20.00
20.SU
21. 00
2I.SU
22.00
22. SO
71 MOH» IStlMPtHA TllKUl
II MPlHAIUfclH MJLk bIL I INMLl Kt I&MI bRlCHNUNo 10.T
Mf.lS/t I IHUNMI 37. UNI) |b7. 1 AGES INIER V AIL
19-3
10.T
10*T
19.J
10.T
IT.3
-------
HONAISHI MELIENPlRMUHeM
1954
1940
1945
2.0
1
. 1
4.0
.1
1.0
.1
1 .'
3
I.S
7.1
.1
11.1
.1
2.1
1
I. I
a.4
I. 6
I2.7
I.S
8.3
s
7.0
11. 1
5.7
IS. 9
7. 1
IS.I
4
10. V
19.3
10.7
19.2
II. 1
IB.I
11
22
12
18
11
22
7
.2
.7
.2
.1
.0
.1
8
11.9
If. 7
1 l.f
19.2
12.7
22.1
9
9.S
IS. 4
11.7
14.5
7.8
IS.I
10
1.7
9.7
3. B
9.1
S.9
9.S
S
2
4
2
7
II
.2
.a
.1
.9
.1
12
.1
3.0
1.2
4.0
.1
1.0
81 I
L IHHE I 1S(.»NGL INIf H
III I
ro
Ui
9UI
«B2
«U2
OB3
OU1
5-0
10. 0
IS.O
20.0
25. 0
30.0
3b.O
10.0
IS.O
50.0
SS.O
40. 0
AS.O
70.0
;s.o
80.0
85.0
90.0
95.0
100.0
105. 0
1 1 n . o
.200000
.110000
.22200b
. 190000
.OSOOOO
.030000
.010000
.005,000
.000000
.000000
.000000
.000000
. nuoouo
.ooooou
.oooonu
.ouooou
. ouunou
.ouoouo
.000000
.000000
. OOOtlOO
. OOtltltlU
.041000
.1 10000
. 120000
. i laooo
. 1(17000
.097000
.082000
.U47000
.053000
.U13000
.033000
.026000
.020000
.01*000
.01 1000
.009000
.007000
.005000
.001000
.1)03000
.002000
.001000
. 1 80000
.370000
.230000
. 100000
.040000
.035000
.020000
.010000
.oosooo
.002000
.OOOOOO
.000000
.uoooro
.OOOOOO
.000000
.000000
.000000
.000000
.000000
.000000
.OOOOOO
.000000
.041000
. 1 10000
. I200UO
.1 18000
. 109000
.097000
.0820110
.047000
. 053UUO
.013000
.033000
.024000
. O200UO
.OI400O
.UI IOUO
.4109000
.00/000
.UObOOO
.ooiuoo
.003000
.U020UO
.OOIOOU
.200000
.1IOUOO
.222000
. I9UOOO
. 05000U
.030000
.OIOOOO
.ODSUOO
.OOOOOO
.OOOOUO
.OOOOOU
.ooooou
.000000
.OOOOOU
.ooooou
.ooooou
.OOOOUO
.oouooo
.OOOOOO
.oouooo
.OOOOOO
.OOOOOO
.041000
.110000
. I2OOOO
. i lauoo
. 109000
.097000
.082000
.047000
.US3UUO
.O13000
.033UOU
.024000
.U20UUU
.OI40UO
.UI IOUO
.U090UO
.00 7 000
.005000
.OOIUOO
.UO30UO
.U02UUU
.UOIOOU
.OS50UO
. ISUUOU
.210000
. 20OOUU
. I3OOOO
.090UUO
04UOOU
.01OOOO
.U3000O
.U2UOOU
. OIOOOU
.oosoou
.UU30UU
.OUIOOO
.ouoouo
.ooooou
.ouooou
.ouuoou
.ooouou
. uuouou
. oooouu
.ouuoou
.041000
. i loonu
. 1 2UOUO
.1 lauuo
. I09UUO
.O970UO
08200U
.04/000
.OS3UUO
.013000
.U33OUO
.D24UOO
.020000
OI40OO
.01 IUUU
.O090UU
.007000
.oosooo
.OOIOOU
.0030UO
.002000
.OUIOOO
VI T«-ABFLUES!>L
-------
t«-ABFLUtSSE (L/IUOOt/51
»vfl
21 II
7EM
VB
ZEIT
VB
ZEIf
VB
ZtIT
U1
N>
.00
.05
. 10
. IS
.211
.2*.
.30
.35
.10
.IS
.SO
.55
.00
.OS
. 10
.IS
.20
.25
.30
.3*
.10
.IS
.so
.55
2.00
2.05
2. ID
2. IS
2.20
2.2*
2.30
2.3S
2.10
2.15
2.60
2.5S
3. CIO
3. Ob
3. 10
3. 15
3.20
3.25
3.30
3.35
3.1U
3. IS
3. 60
3.5".
(.050 .00
I.OSO .US
.050 .10
.050 .15
.050 .20
.050 .25
.050 .10
.050 .35
.050 .10
05O .IS
.050 .50
.050 .55
.050 6.00
.050 6. OS
.050 S.IO
.050 S.IS
.050 5.20
.050 S.2S
.050 5.30
.OSO S.3S
.050 5. MO
.050 S.IS
.050 5.50
.050 S.SS
.050 6.00
.050 6. OS
.050 6.10
.050 .IS
.050 .20
.(ISO .25
.050 .30
.050 .35
.050 .40
.050 .15
.050 .50
.050 .55
.OSO 7.00
.050 7.05
.050 7.10
.050 I. 15
.050 7.20
.OSO 7.25
.050 7.30
.050 7.35
.050 7.10
.050 7. IS
1.050 7. SO
1.050 7.55
.060
.050
.060
.050
.OSO
.OSO
.OSO
.050
.060
.050
.050
.050
.060
.050
.050
.060
.060
.060
.060
.060
.050
.060
.060
.050
.050 1C
.050 II
.050 II
.050 II
.060 11
.050 1C
.050 1C
.050 II
.060 II
.050 1C
.060 1C
.050 II
.050 1
.060 1
.050 1
.050 1
.050 1
.050 1
.060 1
.050 II
.060 1
.050 1
.050 11
.050 1
00
.05
.10
.IS
.20
.25
.30
.36
.10
.15
.SO
.S5
.00
OS
.10
IS
.20
.25
.30
.36
1O
.15
.SO
.SS
).oo
I. OS
).IO
).IS
I.2U
).2S
).30
).3S
1.10
>.15
J.SO
>.SS
.00
OS
.10
IS
.20
.25
.30
35
10
IS
so
.55 '
.050 12.00
.OSO 12.05
.060 12.10
.050 12.16
.050 12.20
.050 12.25
.O6Q 12.30
.1)60 12.36
.050 12.10
.060 12.16
.060 12.50
.050 I2.5S
.050 I3.UO
.060 I3.0S
.060 I3.IU
.050 I). IS
.060 I3.2O
.060 13.26
.050 13.30
050 I3.3S
.050 13.10
.050 13.15
. O50 I3.SO
.060 I3.6S
.060 11. 00
.060 11.06
.060 11.10
.060 11. IS
.060 11.20
.OSO 11.25
.060 11.30
.060 11. JS
.060 11.10
.050 11. IS
060 11.60
.OSO 11.65
.050 Ib.UO
.060 15.06
.050 16.10
.060 16.15
.050 IS. 20
.060 IS.2S
.060 15.30
.050 15.35
.O&O 15.10
.050 It.. IS
.060 15.50
050 15. 55
.OSO 16.00
DSO 16.06
.OSO 16.10
.OSO It. IS
.060 16.20
.OSO 16.26
.050 16.30
.060 16.36
.ObO 16. ID
.060 16.15
.OSO 16.50
.060 16.65
.050 17.00
.060 17.05
.OSO 17. IU
.060 17.15
OSO 17.20
.060 17.26
.060 17.30
.060 17.36
.060 17. 1O
.OSO 17.16
.OSO ' 1 l.SO
.050 17.55
.050 1 11.00
.060 18.05
OSO IK. 10
.060 18.16
.060 18.20
.050 16. 2S
060 18.30
060 18.36
.OSO 18.10
.060 18.16
.061) 18.60
.060 18.56
.060 19. UO
.050 If. OS
.060 19. IO
.060 IV. IS
USD If. 20
.050 If. 25
.050 If. 30
.050 If. 35
.060 If. 10
.050 If. 15
.050 lf.5O
.050 If. 55
.050 20.OO
.0611 20.06
.OSO 20.10
.OSO ZO. IS
.050 20.20
.OSO 2U.25
.OSO 20. 3O
.060 20.35
.050 20.10
.060 20.15
.060 20. SO
.060 20. SS
.OSO 21. UO
.050 21.06
.060 21.10
.060 21.16
.060 21.20
.OSO 21.25
.060 21.30
.060 21.35
.060 21. 10
.OSO 21.15
.0*0 2 l.SO
.050 21. SS
.060 22.00
.060 22. US
.060 22.10
.060 22.15
.060 72.20
.OSO 22.25
.060 22.30
.1)60 22. JS
.060 22.10
.USD 22. IS
.060 22.60
.060 22. SS
.050 23.00
.060 23.06
.050 23.10
.060 23.16
060 23.20
.060' 23.2S
.060 23.30
.060 23. 35
.050 23.10
.050 23.15
.USU 23.60
.060 23.56
.OSO
.060
.060
.050
.060
.050
.060
.060
.050
.050
.OSO
.050
.OSO
.060
.050
.060
.060
.OSO
.050
.051)
.060
.OSO
.060
.060
.060
.OSO
.060
.050
.060
O&U
.050
.050
.|)SU
.060
.050
.060
.060
.050
.060
.060
.060
.060
.050
.060
.060
.050
.050
.060
-------
I»-»flfLOtSS£ (L/IOOOC/SI
IMIt *VBF - 1.00)
Itll
/III
WO
ZEII
/111
*VH
ZEII
N)
Ln
OJ
.00 M.OSO .00
OS M.OSO .OS
.10 M.OSO .10
.15 M.OSO *IS
.20 1.0^0 .20
.25 1.0SO .25
.30 M.05U .10
.35 M.U50 .IS
.10 M.OSO .10
.MS 'I.OSO .IS
.SU M.OSO .'JO
.SS I.OSO M.S5
.00 'i.oso s. on
.OS M.OSO S.OS
.10 M.OSO s.io
.IS I.OSO S.IS
.211 I.OSO S.20
.2S I.OSO S.2S
.JO I.OSO S.JO
.35 1.050 S.3S
MO i.oso S.MO
.Mb I.OSO S.IS
.SO M.OSO S.SO
.SS I.OSO S.SS
2.00 M.OSO 6.00
2. OS M.OSO 6. OS
2.10 M.OSO 6.10
2. IS M.OSO 6. IS
2.20 M.OSO 6.20
2.2S M.OSO 6.25
2.3O 'I.OSO 6. JO
2.3!. M.OSO 6. IS
2. MO M.OSO A. MO
2. MS M.OSO 6. MS
2. SO M.OSO 6. SO
2.SS M.OSO 6.SS
3.00 M.OSO 7.00
3. US 1.050 7. OS
3.10 M.OSO 7.10
1. IS 'I.OSO 7. IS
3. 2U M.OSO 7.20
3.2S M.OSO 7.2S
3.30 I.OSO 7.30
3.3S M.OSO 7.3S
3.10 M.OSO 7. MO
I.MS M.OSO 7. MS
3. SO M.OSO 7.50
3.SS I.OSO 7.SS
.oso e.oo
.oso e.os
.oso e.io
.oso a. is
.OSO 8.20
.OSO 6.25
.OSO 8.30
.OSO 8.36
.oso 8.10
.oso B.MS
.OSO S.SO
.OSO 8. 65
.oso v.oo
.OSO 9. OS
.OSO 9.IO
.oso ?.ls
.OSO 9.20
.OSO 9.25
.050 9.30
.OSO 9.3S
.050 9. MO
.OSO 9. MS
.OSO 9. SO
.OSO 9.SS
.OSO 10. OO
.050 10. OS
.OSO 10. 10
.OSO 10.16
.050 10.20
.OSO 10. 2S
.OSO 10.30
.OSO 10. 3S
.050 10. 1O
.OSO 10. MS
.OSO 10. SO
.OSO 10. SS
.OSO 11.00
.OSO II. OS
.oso il. lo
.OSO II. IS
.OSO 11.20
.OSO II. 2S
.OSO 11.30
.OSO 11.35
.OSO II. MO
.USD II. MS
.OSO II. SO
.OSO II. SS
.OSO 12.00
.OSD 12. OS
.OSO 12.10
.050 12. IS
USD 12.20
OSO 12. 25
.OSO 12.30
.OSO 12. IS
.OSO 12. MO
DSD 12. MS
.OSO 12. SO
.OSO 12. SS
.OSO 13.00
.OSO 13. OS
.050 13.10
.OSU 13.15
.OSO 13.20
.OSO 13.25
OSO 13. JO
.050 13.35
.OSO 13. MO
.OSO 13. MS
.OSO 13. SO
.OSO 13. SS
.OSO IM.OO
.OSO IM.OS
.OSO IM.IO
.OSO IM.1S
.OSO 11.20
.OSO IM.2S
.050 IM.30
.USD 11.35
.OSO 11. MO
.OSO 11. MS
.OSO 11. SO
.OSU M.SS
.050 IS. 00
.OSO IS. OS
.OSO IS. 10
.OSU IS. IS
.OSO IS. 20
.OSO IS. 25
.nso is. Jo
.OSO IS. 35
.OSO IS. MO
.OSO IS. MS
.OSO IS. SO
OSO IS.SS
.OSO 16.00
.OSO 16. US
.OSO 16.10
.OSO 16. IS
.OSU 16.20
.OSO 16.25
.OSO 16.30
.OSO 16. IS
.OSO 16.10
.OSO 16.15
.OSU I6.SU
.050 16.55
.OSO I7.0O
.OSU 17.05
.OSU 17.10
.050 17. IS
.OSU 17.20
.050 17.25
.050 17. JO
.OSO 17. JS
.OSO 17.10
.OSU 17. MS
.050 17.50
.060 17.65
.osu ia.no
.050 18. US
.050 18.10
.OSU 18. IS
.060 18.20
.OSO 18.25
.050 18,30
.OSU 18.36
.050 18.10
.060 18.15
.050 18.50
.OSU 18.55
.060 19.00
.OSU 19. US
.OSU 19. IU
.OSU 19.16
.USU 19.20
.OSU 19.26
.OSU IV, JO
.050 19. JS
.OSO 19.10
.OSU I9.1S
.050 19.60
.OSU 19. SS
.USU 20. OO
.OSU 20. OS
.050 20. IU
.050 2U.I5
.050 20.20
.050 20.25
. OSO 20.30
.050 2O. JS
.OSU 2U.MO
.OSU 20.16
.050 20.60
.OSU 2U.56
.OSO 21. UU
.050 21.05
.050 21. IU
.USU 21.15
.050 21.20
.050 21. ZS
.050 21. JO
.050 21.35
.USU 21.10
.OSU 21.16
.OSU 21.50
.OSO 21.55
.060 22.00
.OSU 22. OS
.USD 22. IU
.060 22.15
.050 22.20
.050 22.25
.USU 22.30
.USU 22.35
.050 22. IU
.060 22.15
.OSO 22.60
OSU 22.55
.OSO 2J.UO
.OSO 2J.U5
.(ISO 23.10
.050 2J.I6
.OSU 23.20
.050 2J.25
.OSU 23.30
.OSU 2J.J5
.OSU 2J.MU
.OSO 2J.15
.050 2J.5U
.OSU 2J.S5
.050
OSO
.OSO
.050
.USU
.USU
.USU
.USO
.USD
.USU
.050
.050
.nso
.oso
.050
;uso
.USD
oso
.050
.050
.050
.USD
.OSU
.USO
.USO
.USD
.050
.050
.050
.050
.USU
.oso
.OSU
.OSO
.050
.050
.OSU
.OSO
.OSU
.USO
.050
.USO
.USU
USD
.050
.OSU
.USO
.050
iui
K-ADI tuesst
IUI SHlZILLlt IMF.HISAN1F KNOIFN
-------
III KUNSIANTC UEBtkNAHHl N
121 VAKIAULt UEIIF.RNAHMI N
Cl FILL WUALIIAEI
II SCIIHUtiSrOI f Ht JL ICHNUNOEH
N>
01
SIMHU1Z1.IOFFI
I 0 ll.O.D.
2 O I.5.S.
3 12 FEtAL COLIFOttH
1 U COD
SOIHIH IS1UFF AMOHIN IU»« .1*01 «I»OI .I»I3 .I«OI
SC.HHU17&IUM AKTORt N ln»T .1*01 .MOI 1*10 .I«OI
21 SCHMUI /Htlll.EN
ilHHUI?*.
iCHMOTZSIOFF 3
bdlHUIZSIUFF 3
SCHMUIZSIOFF 3
AUFUAU/E|IEN ISTDI
SCHMUT/SlllF F I OG/MAI
lo.u is.u 20.0 is.o
in.u is.o 70.o is.o
AUFBAII/LIT *
AUFBAUZLII '
AIIFUAUZLI1 '
AUFHAU7LII *
hCHItlSAHl 2
(.FHIEI&AKI 3
(.EBlrlSANI 4
St HHIIIZSIOFF I
2HI 240 210 210
111 1-NUS ULH SlKAS-,LNRL INIdlMK, = I(,M STUNUCN
SIMMUTZSIUFF 2 IKO/MAI SCHMUIZS(OFF 3 IANZ/LI SCHNUIZSTOFF 1 I KG/HA I
7S.O BO.tl 110.0 80.0 IOO.O IOO.U 100.0 IOO.O bO.O 60.0 70.0 60.0
7S.O 6O.O IIU.O AO.U IOO.O IOO.U IOO.O IOO.O SO.O 60.0 71).U 60.0
21 STUHOEN
21 StUriOtN
21 STUNDEN
21 SFOMOEN
SIHMUIZ5IOFI 2 SCHMUIZSIOFF 3 SCHHUTZSIOFF 1
770 720 720 720 21 21 21 21 210 21O 210 210
-------
LETHE SIHASSCNHEIMIGUMG VOH 81 STUNOEN
SIHASSENHtINIGUNG SCHMUIZSTOFF I
5. 35. 3b. S.
10.
scHHutzsiorr 2
10. 10. 10.
SCHHUTZSTOFF 3
Jt>. Jo. 8.
SCHHUIZSTOFF i
IS. 35. S.
31 E I Milt I ISGANbLINIEM
IIHHtIISGANGtINIEN
zr 11
scuMuiiSTorr i
SCHHUIZStOFF 2
EIUHE1TSGANGLINItN
N>
01
s.o
1(1.0
IS.O
20.0
25.0
30.0
3S.O
1U.O
IS.O
5U.O
ss.o
ZEI 1
S.O
10. 0
IS-0
20.0
2!>.0
30.0
3S.O
10.0
15.0
SO.O
ss.o
1. 100000
4.200OOU
2.000OUO
1.030000
. 6SOOOO
370OOO
. IVOOUO
.0100OO
. OUDOOU
. OOOOUO
.ouoooo
3.UBOOOO
J.2IOUOO
i .saoooo
. / 70000
.190000
.780000
. 110000
.U30000
.000000
.000000
.000000
3.000000
3.JIOOOD
I.SOOOOO
. 77000O
.170000
.260000
. 110000
.03000O
.000000
.000000
.OUOOOO
1
1
2
1
. 100000
.2*0000
.000000
.030000
.650000
.370000
I900OO
.O1OOOO
.OOOOUO
OOOOUO
.OOOOOO
S.
7.
3.
2.
1.
.
IOUOUO
ISUOOU
SIUUUO
osuaoo
3SUOUO
90UOUO
6ouuuu
3SUUUU
20UUOU
O9UOUU
02OOOU
SCHHUIZSTOFF 3
IS.UUOOOU
39.5UOOOO
30.0000011
ly.ooooou
10.000000
S.bOOOOU
3.SUOOOO
2. OUOOOO
I.SOOOOO
1 .OUOOOO
.suooou
IS.OOOUOO
39.500000
30.UOOOOO
I9.UOOOOO
10.000000
5.SOCIOOO
3. SOOOOO
2.000000
1 .SOOOOO
I .000000
.SOOOOO
7. SOOOOO
IV.7SOOOO
IS. 000000
9. SOOOOO
S. 000000
2.7SOOOO
I .7501)00
1.000000
.750000
.SOOOOO
.2SOOOO
IS
39
JO
19
10
S
3
2
1
1
.OOOOOO
.500000
.000000
.OOOOUO
.ooouuu
.SOOOOO
.50001)0
uooouo
.500000
.uououo
.SOOOOO
IS.
It.
7.
3.
2.
1.
.
.
.
.
.
10000O
osuoou
soouou
asuooo
1SUOOO
10000U
7UUUOU
ISOOOU
OOOOOO
oouoou
uouuou
3.83OOUO
S.36UOUO
2.630000
1.510000
1 .OIOOOO
.6ROOUO
.150000
.240000
. ISUUUO
.U7UOUO
.0200011
7
10
S
3
2
1
. 65UOOU
.71000O
.2700011
.oaooou
.O3UOOO
.3SOUOO
.voooou
.S30000
. 30OOOO
.I10OOO
. OJOOOU
S. IUOOUO
7. ISOOOU
3.SIUOUU
2.0SUOUU
I.3SOOUU
.900000
.6UOUOU
. 35UOOO
.2000OU
.09UOUO
.O2OOOO
SCHMUTZSTOFF 1
IS. 100000
I6.0SOOUO
7.SOUUUO
3.850000
2.1SOOUO
1 .100000
. 700UOO
. ISUOUO
. uooooo
.000000
.uooooo
IS
16
7
3
2
1
.100000
.osooou
.suoooo
.BSOUUO
. 1SUUOO
.100000
.700000
. ISUOUU
.000000
.OUOOOO
.OOOOUO
IS. IUOOUO
I6.0SOUOU
7.SOUUUO
3.B5UOOO
2. ISUOUU
I.10OUUU
.7000UU
. ISOOUO
.OOOOUO
.000000
.OOOOOO
Ml I INFLUiSF AMCIRtM
(.11)11 ISf AKTORt N
1 .00 1
KtC.lNOAUmt INF LUS5 Ztlt
5.U
10.0
IS.O
2U.O
2S.O
3U.O
35.0
10.0
'IS.O
SO.O
SS.O
SCI
.00
IMOUSIOFF 1
1 .UU
1 .00 1
SCHMIII /SIOI 1
1 . Oil
1 .00
.VII
to
7A
.61
55
.18
.13
. .ID
. .IS
1 .UU
1 .00
.96
»r
.70
ss
.15
38
33
'21
. 77
1 .00 1 .
1 .00 1 .
.96
.87
. 73 .
.58
.19 .
.12
.37
.33
.31
.00 1.00
1
no i.oo
uo i.uo
9* .99
90 .98
77 .97
67 .93
S9 .87
SS .78
51 .69
IB .59
1* .S3
SCHHUIZSIUFt I
1.0(1 1
.OU
1.00
SCHMUUSlOFf 2
I.OO I.OU
1.00 I.UU
.99 ,V9
.98 .98
.9S . Vt
.88 .9U
.79 . BJ
.66 .72
.SS .61
.IS .b2
.3V .16
1 .OU
1 .UU
I.UU
.V9
.90
.9S
.9U
.81
.76
.66
.59
1 .OU
.91
.88
.6U
./3
.67
.60
51
.18
.11
.3V
SCHMUIZSTOFF 3
1 .UU
1 .UU
SCHHUTZSIOFF
1 .UU
.91
.83
./S
66
.<«
.SI
.1-3
.37
.31
.2H
I.UU 1.
.VI
.83
7S
.67
60 .
.S3 .
.16 .
.11
36
.3
-------
lA&tS/LI ItINFLUSS
Ul
JMIKISZH It INI LOSS
60.0 -33 .25 .29 .11 .IB
6S.O .32 .23 .78 .13 .11
70.0 .31 .22 .27 .12 .12
75.0 .30 .21 .24 .11 .11
80. 0 .30 .20 >2S .10 .10
85.0 .30 .20 .25 .10 .10
90.0 .30 .20 .25 .10 .10
95. U .30 .20 .26 .10 .10
100.0 .30 .20 .25 .10 .10
41 IT 1 2
. UO .80 .80
.30 .80 .80
1.00 .80 .80
1.30 .00 .80
2.00 .80 .80
2.30 .UO .80
3.0U .80 .80
3.30 .80 .80
1.00 .82 .82
1.30 ' .81 .81
5.00 .86 .86
6.30 .89 .89
6*00 .92 .92
6.3U .9S .95
7.0O I.UO 1.00
7. 3D t.OO 1.00
11.00 1.00 1.00
8. 3D 1.00 1.00
7.00 .99 .99
9.30 .98 .98
10.01) .97 .97
10*30 .98 .98
11.00 .99 .99
II. 3U I.UO 1.00
1211
.40 '& .80 .90
.V» I.OU .91 .81
. MO .42 .1* "40
.80 . 7S .80 .90
.35 .12 .SI .36 .23
.32 .39 .19 .33 .22
.31 .37 .17 .32 .21
.31 .36 .1* .31 .20
.30 .35 .10 .30 «2U
.30 .35 .10 .30 -21)
.30 .35 .10 .311 .2U
.30 .35 .10 .30 .20
.30 .35 .10 .30 .20
3 1 ZEII
.00 eo 12.00
.00. .80 12.30
.00 .80 13. UO
.00 .80 13.30
.00 .80 |1. UO
OU .80 11.30
.00 .80 15. UO
.00 .80 15.30
.00 .82 I6.UO
.00 .81 14.30
.00 .86 17. UO
.00 .89 |/. 30
.00 .92 18.00
.00 .95 18.30
.00 I.OO I9.UU
.00 1.00 19.30
.95 I.OU 20. UO
.90 I.OO 20.30
.85 .99 21. UO
.80 .98 21.30
.75 .97 22. UO
.70 .98 22.30
.65 .99 23.00
.60 I.OO 23.30
S 6 7 8
.07 .80 .75 .'5
.80 .80 .BO .BO
.82 .91 .99 I.UO
.*7 .80 .75 .75
.28 .36 .33 .25 .29 .11
.26 .33 .32 .21 .28 .13
.25 .32 .31 .22 .27 .12
.21 .31 .30 .21 .26 .11
.23 .30 .30 .20 .25 .10
.23 >3U .30 .20 .25 .1U
.23 .30 .30 .20 .25 .10
.23 .30 .30 .20- .25 .10
.23 .30 .30 .20 .25 .10
1 2 3 1
I.UO I.OO .60 I.OO
I.UO I.UU .57 I.UO
I.OO I.OO .55 I.UO
I.OU I.UO .55 I.UO
.99 .99 .55 .99
.98 .98 .60 .98
.97 .97 .65 .97
.98 .98 .70 .98
.99 .99 .80 .99
.UO I.OO .90 .UO
.00 I.OO .00 .UO
.00 I.OO .UO .UO
.00 I.OU .00 .00
.00 I.DO .OO ,OO
.98 .98 .00 .98
.96 .96 .00 .96
.91 .91 .UO .91
.92 .92 .OO .92
.90 .90 .UO ,9U
.88 .88 .00 .88
.86 .86 .00 .86
.81 .81 .OO .81
.82 .82 .00 .82
.80 .80 .00 .80
9 10 II 12
.H2 .93 I.OO .98
.80 .80 .81 .92
.96 .77 .55 .13
.82 .93 I.OO .98
-------
I IN I'HUZIHI I
Ln
BICKfll 1
2111
S.
10.
IS.
20.
2b.
30.
36.
in.
15.
^ 50.
bb.
An*
AS.
70.
76.
80.
BS.
VI).
vs.
iun.
IDS.
1 10.
IIS.
1 20.
126.
130.
1 J!>.
110.
IIS.
ISO.
Ib'j.
IAO.
166.
170.
176.
HID.
IBS.
ivn.
IVb.
200.
206*
210.
'2 \ b .
2211.
226.
2J(1.
2JS.
2-10.
2'lb.
260.
2bb.
2AO.
2li'i
1 /(I.
27S.
2110.
286.
2911.
2V6.
.MILL
1
DA.
81.
78.
74.
75.
/I.
7J.
73.
72.
72.
72.
71.
71
71 .
70.
70.
70.
AV.
AV.
6V.
6V.
68.
68.
68.
68.
67.
67.
67.
67.
A7.
AA.
AA.
AA.
AA.
AA.
AS.
Ab-
A6.
66.
AS.
A6.
AS.
Ab.
AS.
AS.
AS.
AS.
Ab.
Af>.
AS.
Ab.
AS.
Ar<.
AS.
Ab.
Ab.
Ab.
AS.
AS.
AS.
?
6H.
16*
12.
10.
JV.
38.
37.
3A.
36.
36.
JS.
31.
31.
33.
33.
33.
33.
32.
32.
32.
32.
31.
31.
31.
31.
31.
31.
31.
Jl.
31.
31*
31.
31 .
31.
31
30.
JG.
JO.
JO-
JO.
JO-
JO*
30.
30.
JO.
in.
JU-
JU-
JU-
111.
JO.
JO.
JO.
JU.
JU-
JO.
30.
30.
.10.
JU.
1 NET!
3
VV.
VV.
98.
V8.
V7.
V7.
97.
V6.
96.
V6.
VS.
VS.
VS.
vs.
VI.
VI.
VI.
VI.
VI.
VJ.
V3.
V3.
V3.
92.
92.
92.
V2.
92.
V2.
VI .
VI.
VI .
VI .
91 .
VI .
VI.
VO.
VO.
VO.
VO.
VO.
VO.
VO.
VO.
HV.
RV.
89.
89.
117.
RV.
BV.
RV.
nv.
«8.
All.
H8.
HB.
Hll-
ll II.
II H.
KlAERHtRKSBtCKEN
1
86.
81.
78.
76.
75.
71.
73.
73.
72.
72.
72.
71.
71.
7).
70.
70.
70.
6V.
6V.
6V.
6V.
68.
68.
AB.
68.
67.
67.
67.
A7.
67.
6A.
AA.
66.
AA.
AA.
AS.
AS*
Ab.
AS.
65.
AS.
AS.
AS.
AS.
AS.
Ab.
AS.
Ab.
A'i.
Ab.
AS.
Ab.
Ab.
66.
AS.
Ab.
AS.
AS.
AS.
AS.
7EII
.5
.0
.5
.0
.5
0
.5
.0
.5
.0
.5
.0
.5
.0
.5
.0
.5
v.o
V.5
10.0
10. S
II. 0
1 1.5
12.0
12.5
13. U
13.5
10.0
11.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18. S
IV. 0
IV. 5
20.0
20.5
21.0
21 .5
22.0
22.5
23.0
23.5
21.0
1
86.
78.
71.
68.
66.
61.
62.
61.
60.
5V.
58.
58.
58.
58.
58.
58.
SB.
58.
58.
58.
58.
SB.
58.
50.
58.
58.
58.
58.
58.
SB.
58.
58.
sn.
58.
58.
58.
58.
58.
58.
58.
SB.
58.
58.
58.
58.
SB.
sa.
58.
2
68.
18.
12.
J8.
35.
33.
32.
31.
31 .
30.
3O.
30.
30.
30.
JU.
30.
ID.
30.
30.
30.
30.
3O.
30.
30.
30.
30.
30.
30.
30.
30.
30.
3D.
JU.
JU.
30.
30.
30.
10.
30.
JO.
3O.
JU.
30.
30.
3O.
JO.
JU.
JU.
3
VS.
97.
VS.
VS.
93.
92.
VI.
VO.
8V.
88.
87.
86.
85.
81.
81.
83.
83.
82.
81.
80.
7V.
7V.
78.
78.
77.
77.
76.
75.
75.
75.
71.
71.
73.
73.
72.
72.
71.
71.
70.
7O.
70.
70.
7O.
70.
70.
70.
70.
70.
86
78
71
68
66
61
62
Al
60
SV
58
58
Sb
58
S8
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
sa
58
58
58
58
58
SB
58
58
58
-------
51 Ift-SCMHUI JMt"«iEH
NJ
Ul
CO
TN-SCHMU1 7. 2111
MI, iiium ri i
\ .on
\ .30
\ 1 .00
\ ..3U
K \ '-00
\\\ Z.JO
\ NA 3.00
\ ^ J.JO
\ 1.00
\ 1.3U
X s.oo
J S.JO
0 [? 6.00
vJ,>S 6.30
h-1 I-1 7.UO
PJ 7.30
H.JO
T3 CT1 S.l/0
*Cl *^ 9. 3O
0 tu.ou
10.30
1 1 .00
1 1 .30
12.00
IZ.30
1 J.OO
13. JO
11. PO
11.30
15.1)0
15. JO
11, .OO
16.30
1 7.GU
1 7.3U
IN. 00
IB. 30
1 V . UU
19.30
20. UO
20.30
21 .UO
2 1 . JO
22. (0
2.2. JU
23. PO
23.30
SCHHUIZStOFF 1
ZSO.OO
ZbO.OO
ZbO.OU
ZbO.OO
ZbO.OU
250.00
250.00
ZSU.OO
2SO.OU
ZbU.OO
ZSU.OO
ZSU.OU
Zbu.no
ZbO.OU
ZSU.OI)
ZbO.OU
ZbO.OO
250.00
ZSU.OO
250.00
250. OU
ZbO.OU
ZbO.OO
250.00
250.00
250.00
25(1.00
250.00
ZSO.OO
2SO.OU
250.00
ZbU.OO
250.00
ZbO.OO
250.00
zbo.no
ZbU.OO
250.00
ZbO.OU
ZbO.OU
ZbO.OU
ZbO.OU
750.00
250.00
250. (JO
250. OU
ZbO.OU
7bU.no
750.00
ZSU.OU
250.00
250.00
250.00
zsu.un
zso.no
ZSO.OO
250.00
ZSU.OO
ZSO.OO
250.00
ZSO.OO
250.00
ZSO.UO
ZSO.OO
ZSU.OU
ZSO.OO
250.00
ZSO.OO
250.00
ZSO.OO
250.00
250.00
250.00
25O.OU
ZSU.OO
250.00
250.00
ZbU.OO
250.00
2 SI). DO
2SO.OO
ZSb.OO
250.00
250.00
2so.au
2SO.OO
ZSO.OO
ZbO.OO
ZSO.UO
ZSO.OO
ZSU.OO
250.00
250.00
250.00
25(1.00
250.00
.
ZSO.UO
2so.au
250.00
250.0(1
250. OO
ZbO.OO
zso.on
ZSO.UO
250. OO
ZbO.OO
ZSU.OU
ZSO.OO
ZSO.OO
ZSO.OO
ZSU.OU
ZSO.OO
ZSO.OO
ZSO.OO
ZSO.OO
ZSO.UO
ZSO.OO
250.00
750.00
ZSU.OO
ZbU.OO
ISb.UU
7SO.I1U
250.00
ZbO.OO
ZSO.OO
ZSU.OO
25II.UQ
ZSO.OO
75(1. OU
ZSO.UO
ZbO.OO
zsu.un
75(1.00
ZbO.OO
75U.OU
7511.00
ZbO.UO
750. OO
250. on
7SO.OO
Zbd.no
zso.on
750. on
ZSO.OO
ZSO.OO
ZSO.OO
zsu.uu
zsu.no
ZSO.UO
ZSO.UO
zsn.un
ZSO.UO
ZSO.OO
ZSO.UO
ZSO.UO
zso.au
ZSO.OO
ZSO.OO
ZSO.OO
250.00
ZSO.OO
ZSO.OO
ZSO.OO
250. OO
ZSO.OO
ZSO.OO
ZSO.UO
750.00
250.00
ZSO.OO
ZSO.OO
zso.uu
ZSO.UO
ZSO.UO
ZSO.UO
ZSO.OO
ZbO.OO
250. Ob
ZSO.OO
ZSO.UC
ZSO.UO
ZbO.OO
250.0(1
ZSO.UO
250. OO
2SO.UO
250.00
ZSO.OO
260.00
ZSO.OO
250. OO
280.00
ZBU.OU
280.00
Z8U.OO
ZBU.UO
zeu.no
2BO.OO
zeo.oo
ZAu.oa
ZBO.OO
zeu.no
ZBU.UO
ZBU.OU
280. UO
28U.OO
zeo.no
280. no
ZBU.UO
zeu.uu
ZBO.OO
zau.ua
280.00
ZBO.UO
ZBU.OO
280.00
zeo.uo
ZBU.UO
zau.no
Z80.no
ZBU.OU
ZBU.OU
2ttO.no
280.00
Z8u.ro
280.00
ZBU.UO
ZBU.OO
ZBO.OO
zeo.oo
zeu.no
ZBU.UU
ZBU.UO
ZBU.OO
ZBO.OO
2PO.OO
ZBO.UO
ZBU.liO
ZBU.UO
SCHMUI7STOFF 2
280.00
280. OO
280. OO
2HO.OO
2BO.OO
280.00
2BU.OO
280.00
280.0U
ZBO.OO
280. UO
ZBO.UO
2BO.OU
280. UU
280. UU
280. OO
280.00
28u.au
280.00
280.00
280. OO
280.00
ZBO.UU
ZBU.UU
7no.no
ZBO.OO
ZBO.OO
280.00
ZBO.OO
ZBU.OO
7BO.OO
ZBO.UO
ZBO.OO
Z8U.OC
ZBU.UO
zao.ua
780. OU
zeo.oo
ZBO.OO
280.00
zeo.oo
zeo.oo
ZBU.UO
ZBO.OO
ZBO.UO
Z8u.no
ZBO.OU
ZHO.OO
280.00
280.00
2BO.UO
280.00
280.UO
280.UO
280.00
280.00
280.ua
280.00
2BO.OU
280.00
280.UO
2ea.au
280. OO
280.00
280.00
2BO.UO
280.00
280.00
ZBo.ua
ZBO.UO
ZBO.OO
ZBU.UO
ZBO.OO
ZSU.OO
Z8n.au
ZBU.UO
280.00
ZBO.UO
280.00
ZBO.OO
280.00
280.00
280.00
2BO.UU
ZBO.UO
280.00
280.00
280.00
280.00
280.00
2AO.UO
280.00
280.00
ZBO.OO
280.00
280.00
ZBO.OU
ZBO.OU
ZBO.UU
2110. OU
280. OU
280. UO
280.0U
2BO.UU
280. UU
280* OU
280. UU
280.0U
ZBU.UU
280.0U
280. OU
280. UU
Z8o.au
ZBO.UO
280.00
zeu.au
ZBO.UU
zao.au
ZBO.OO
ZBO.UU
ZBO.UU
ZBO.OU
zeo.ua
280.00
ZBO.OU
ZBO.UO
zao.au
ZBU.UU
ZbO.OO
ZBO.UU
ZBO.UO
ZSO.UO
280.00
ZBO.OU
ZBO.UU
ZBU.OU
280.00
ZBO.OU
zeo.ua
ZBO.UU
ZSU.OU
zso.uu
ZBU.UO
28O.OU
20.00
2o.uo
20.00
2o.uo
20.00
zu.oo
20.00
20.00
20.00
20.00
2u.ua
ZU.OO
zu.oo
ZU.OO
ZO.UO
20. OO
zu.oo
ZU.UU
zu.oo
zu.oo
za.ua
2u.oa
za.uu
20. on
20.00
2o.ua
2a.uo
zu.uo
ZU.OO
ZU.UO
zu.uo
ZU.UU
ZU.UU
zu.uo
ZU.UU
zu.oo
Zu.UO
zo.ua
zu.uo
ZU.OU
20.00
zu.ua
zo.ou
20.00
2u.ou
2u.ua
zu.ou
zu.uo
scHHUTzsrorr 3
zu.ou
2u.ua
20. on
2U.UU
zu.ou
zo.oo
zu.au
20. UO
2U.OO
20.00
2u.au
zu.oo
20. OU
zu.oo
2U.OU
zu.ou
zu.oo
20.00
zo.uu
20.00
zu.au
2U.OO
20.00
zo.ou
zu.no
zu.ou
20.00
zu.uo
20. no
2u.ua
20.0U
20.00
2U.OO
20.00
20. OU
2u.ou
2u.ou
2u.uo
zu.oo
zo.ou
zo.ou
zu.oo
20.00
20. nil
zu.ou
zu.oo
zu.uo
zu.nu
zu.uo
20. UU
zo.ou
zo.uu
zu.ou
20.ua
2o.uo
20. UU
20.00
20.ua
zo.ou
2U.on
20.ua
20.ua
20.au
2o.ua
20.00
2u.oa
20.ua
20.ua
20.00
20. UU
2U.UO
2u.ou
zo.oo
zu.ou
zu.oo
20. OU
20.00
2u.uo
ZU.UU
zu.oo
zn.uo
zo.ao
zo.uo
zu.uo
zu.oo
zo.uo
zo.uo
zo.oo
zo.uo
zu.un
zu.uo
zo.uo
zu.un
zo.ou
ZU.UU
zu.uo
zu.oo
zo.oo
ZU.UU
2U.UU
2U.OU
211. UU
2o.uo
2U.UU
2u.ua
zo.uu
zo.ou
20.00
20. uo
zo.oo
zu.oo
zo.oo
zu.uo
20.00
ZU.UU
2U.UU
ZU.UU
zo.oo
ZU.UU
zu.oo
za.uu
ZU.UU
20.00
zo.uo
zo.uu
ZU.UU
zu.ou
zo.ou
20.1)0
2U. UU
20. uu
2U.UU
zo.uu
zu.ou
ZU.UU
ZU.UU
ZU.UU
zu.uo
zu.uo
ZU.UU
ZU.UU
ZU.UU
zu.uo
zu.nu
360.UU
36o.ua
360. OO
360.UO
36U.UO
36U.UO
36U.UU
360. UO
360.00
360. OO
36U.UU
36U.au
36U.UO
360.00
360.0U
360.UO
360. UO
36U.UO
36U.uo
360.ua
360.00
360.00
360.00
360.0U
360.UO
360. UO
360.OU
360. OO
36u.uu
360. OO
360. UO
36U.OO
360. UU
36U.OO
36U.OO
36U.UU
36U.UO
36U.OU
360.0U
36U.OO
360. OO
36u.uu
360.00
36U.UU
360.00
36II.UO
360.0U
36U.UO
SCHHUIZSTOFF 1
36U.UO
360.UO
360. UO
36U.UU
360.UO
360. UU
360.UO
36U.OU
360. 00
360. OO
360.00
360.00
J60.UU
360.00
360.0U
36O.UU
36U.UO
36U.OU
360.00
360.00
360.au
360.UU
36U.UO
36U.UU
360.00
360.UO
36U.UU
36U.UU
36U.OO
360. UO
360.00
360.ua
36U.UU
36U.UU
360.00
360.00
360. UO
36U.UU
360.0U
360. UU
360. OO
36U.UU
360.UO
36U.UO
360.0O
36U.UU
36U.UU
36U.UU
36U.OU
360.00
36U.UO
36U.UU
36U.OU
36U.UU
360.UO
360.00
360.00
360.00
360.00
360.00
36U.UU
36U.UO
36U.OU
360.00
36U.OO
360.00
360.UU
36U.OU
360,00
360.00
36U.OU
36U.UO
360. UU
36U.uo
36O.OO
36U.OO
36U.UO
360. OO
360. UO
36u.ua
360.00
36U.UU
360. UO
36U.UU
36U.UO
360.UU
36U.OO
36U.OO
36U.OO
36U.UO
360. UO
360. OU
360.UO
36U.UO
36U.OU
36U.UU
360.UO
360. UU
360.00
360.0U
36U.UU
360.0U
36U.UU
360.0U
360.0U
360.0U
360.0O
360.au
36U.OU
360.00
360.00
360.00
360.00
360. OO
36U.UU
36U.nO
36O.OU
36O.UU
360. OU
360. UU
360. OU
36U.UU
360.00
360.00
36O.OO
360. UU
36U.UO
36U.OO
360. OO
360.00
36U.OU
36U.UU
36U.OU
360.0U
36U.UU
36O.OU
360. UU
360. UU
36U.OU
36O.OU
36U.OO
360.ua
360. UU
36U.UU
-------
NJ
Ln
IN-SCHHUIl lt.ll SCIIHIMZSIOFI 1 SCHMUT25TOH * SCHMU1ZS10FF 1 SCHNUlZSTUFF 1
Ib/IUUUF/bl I5MFI 1.001 ISHF2 - 1.001 ISMF1 » I.OU) ISHF1 I.UUI
.00
.JO
1 .00
1 .30
J.OO
2.SU
1.00
3. JU
M.UO
H..IO
b.UO
b.3U
fc.bU
6.30
;.uo
/.JO
u. on
B.30
v.oo
V.JO
1U.OO
10. JU
1 1 .CIO
1 1 .30
I/. 00
12.30
13.00
13.10
IH.OO
It. 30
lb.00
lb.30
I6.0U
16. 3O
i ; . oo
I/. 30
Ife.OU
ID. 30
IV. Oil
IV. 30
20.00
?0. 30
21 .00
21 .30
22.00
;-2.3O
23.00
2J.3CI
.01
.01
.01
.01
.01
.01
.01
.01
.Ol
.01
.01
.01
.01
.01
.01
.01
.Ol
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
01
.01
01
.01
.01
01
.01
.01
.01
.ni
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
01
.01
.01
.01
.01
.01
.01
.01
.01
.01
01
.01
.01
.01
.01
01
.01
.01
.01
.01
.01
01
.01
.01
.01
.01
.01
Ol
.01
Ul
.01
01
.01
01
.01
Ul
01
01
01
.Ul
01
01
01
01
.01
.01
01
ni
.01
01
.01
.01
01
.01
.01
01
.01
.Ul
01
01
.01
.01
.01
.01
.01
.01
01
.01
III
.Ul
.01
.01
.01
.Ul
.Ul
.01
.01
.01
.01
.01
.01
01
.01
.01
.01
.01
.01
.01
.01
.Ul
.01
.01
.Ul
.01
.01
.01
.Ul
.01
.01
.01
.01
.Ul
.01
.Ul
.01
.01
.01
.Ul
.01
.01
.Ul
.01
.01
.01
.Ul
.Ul
.01
.11
.1)
.13
. 11
.11
. 11
. 11
. 1 1
. 1 1
.11
.11
.11
. 11
.11
.11
. 11
.11
.11
. 11
. 1 1
.11
.11
.11
.11
. 11
. 1 1
.11
.11
.11
.11
. 1 1
.11
.11
. 1 1
. 11
.11
.11
. 1 1
.11
.13
.11
.11
. 11
.11
. 11
.11
.13
. 11
.11
.11
.11
.11
.11
1 1
.11
. 11
.11
. 11
.13
. 11
. 11
13
11
.11
11
.11
11
.11
.11
.11
.11
.11
11
11
11
.13
13
13
.11
.11
. 11
.11
.11
.11
.13
. 1 1
. 11
. 11
. 11
.13
. 11
. 13
.11
. 13
. 13
11
.11
.13
.13
.13
11
.11
.13
.11
.11
. 13
.13
. 13
.13
.11
.13
.11
.11
11
.11
.11
.13
.13
.13
.11
.13
.13
.13
.13
. 11
.11
.13
.13
.13
.11
.13
.11
.11
.11
.13
.13
.13
.13
.11
.11
.11
.11
11
.11
.13 1.00 81.00 BI.OO BI.UO
.13 81. UO 81.00 11.00 81.00
.13 M.OO 81. OU 81.00 81.00
.13 8I.UU 81.00 81.00 8 I.OU
.11 81. OU 81. OU 81. UO 81. UU
.11 81.00 81.00 81. UO 81. UO
.13 81.00 81. OO 81. UO 81. UO
13 81. OO 81. OU 81.00 81.00
.13 81.00 81.00 81. UO 81. UU
13 81.00 81.00 81. OO 81. UO
.13 81. OU 81. 00 81.00 81. UU
13 81. UO 81. OO 81.00 81.00
13 81. 00 81. OO 81. UO 81. OO
.13 SI.OO 81.01) 81.00 81.00
.11 81. OU 81. UU 81.00 81.00
.13 81. OO 81. OO 81.00 81. UU
.13 81.00 8I.OO 81. UO BI.UO
13 81. UU 81. OO 81. UO 81. UO
.13 81.00 81. OU 81. OO 81. UO
.11 81.00 81.00 81. UO 81.00
.13 81.00 81.00 81.00 81. OO
13 BI.OO 81.00 81.00 81.00
13 81.00 81. 00 81.00 BI.OO
.13 81. OO 81.00 81. UO 81. OO
.13 81. UO 81. OU 81. UO 81. UO
.13 81.00 81. OU 81.00 81. UU
.13 81.00 BI.OO 81. UU 81. OU
13 BI.OO 81. OO BI.UO BI.UO
.13 81.00 81.00 81.00 8I.UO
.13 81.00 81. UU BI.UO BI.UO
.13 81.00 81. OO BI.UO 81. UU
.13 BI.OO 81. OU 81.00 BI.OO
.13 BI.UO 81.00 81.00 BI.OO
.13 BI.OO BI.OO BI.UU BI.UO
.13 81. OU 81. OU 81. UU. BI.UO
.13 81.00 81. OU BI.UO BI.UO
.13 BI.OO 8 I.OU II I.OU 81.00
|j BI.OU BI.UU BI.UU BI.OO
.13 ei.uo a i.ou BI.OO BI.UO
.13 81.00 8 I.OU BI.UU BI.UU
.13 BI.UU 81. OO 81.00 81.00
U 01.00 81.00 81. UO 81.00
.13 81. UO 81.00 BI.UU BI.UU
13 81.00 BI.OO BI.OO BI.UU
.13 BI.UO 81.00 81.00 8 I.OU
.13 BI.UU BI.OO 81. UO 81. UU
.13 111.00 81. OU 81. UU 81. UO
.13 8I.UU 8 I.OU BI.UO BI.UU
.It
.1*
.1*
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
61 I»-KUN2ENl«»lIUHLN
INKZI '27U.OOUO IDKZ2 -ZbO.UOUO IHK/3 ' 2U.03OU I»KZ1 « 60.OOOU
-------
81 KONSTANTE UEHC.RNAHHCM
91 VAKIABLf UIBLHMAHMCN
I.BKKPT CHIHtl
N>
O>
O
-------
Input data for continuous simulation
QQS-EPA-EXAHPLC
56 60
671
0 96 1 1 0 0 t
1 96 09 10 19 99 192
400 2900 200 100
0 56 09 10 16 15 196
1 96 OS 10 16 29 198
200 ||00 BOO BOO 0
0 96 09 10 IT 45 214
1 56 05 11 16 50 20J
900 600 200
0 96 05 11 IT 5 206
1 56 05 17 2 15 28
1400 100 100
0 56 05 17 2 10 11
1 96 09 17 4 35 56
300 1800 200 100 400
0 56 OS 17 5 10 67
1 96 05 23 10 5 122
1100 200
0 96 05 23 10 15 124
1 56 OS 24 17 35 212
3800 1000 800 100 0
0 56 05 24 18 5 218
1 56 05 29 22 10 . 271
700 1900 500 100 100
0 56 05 2* 22 55 276
1 56 05 30 18 55 228
600 5900 500 500 100
0 56 05 30 19 25 234
1 96 06 05 18 55 228
1800 2600 3600 1200
0 56 06 OJ 19 15 232
1 56 06 07 19 30 235
100 0 700 6400
0 96 06 07 19 50 239
1 56 06 07 23 15 260
700 400 100 0 100
200 100 100 200 400
20 30 30 20 20
20 30 20 20 20
30 20 30 20 30
0 56 06 08 5 30 67
1 96 06 11 18 0 217
800 3200 2800 500 400
0 56 06 11 19 5 230
1 56 06 22 9 30 115
900 200 0 100 0
0 56 06 22 10 0 (21
1 56 06 27 12 0 145
100 200 500 800 600
0 56 06 27 12 59 196
1 96 06 27 16 40 201
600 1400 200 0 100
0 96 06 27 17 29 210
1 56 06 28 1 40 21
700 400 400 200 300
0 96 06 28 2 20 29
1 56 06 29 II 50 |41
600 400 100 100
0 56 06 29 12 10 147
1 56 07 01 17 55 216
100 0 100 ion 100
17141
4
2
16
200 200 100 200
277
1
1550
1
25
II
100 200 100 200
1783
2
376
6
100
1493
5
240
6
100
1722
4
579
4
41
75
0 100 0 100
200 200 200 600
20 30 20 30
20 10 20 30
20 100 0 100
1014
11
800 200 200 200
3053
6
too
1464
11
200 200 400 500
45
9
0 100 500 100
99
8
100 300 100
402
4
645
51
100 0 100 100
5.00
100 200 200 200 100 400 100
100 100
0 100 0 0 100 0 300
900 100 100 20 10 20 10
20 20 20 20 10 20 10
20 10 20 20 20 20 20
0 100
200 100 100 100
100 300
300 800 1000 300 200 |OO 300
Precipitation data
-------
CO
200 400 100 400 400
200 400 200 300 300
TO 0 100
0 56 07 0| 22 10 267
t 96 07 0] 17 SO 219
900 200 600 2200 2100
20 20 30 30 600
0 96 07 0] 20 10 243
1 96 07 10 22 30 271
200 3600 S200 4400 2600
300 600 300 100 200
900 90Q 600 600 600
0 96 07 1| 2 19 21
1 96 07 11 11 29 I3S
100 100 100 100 100
210 210 210 210 210
100 100 100 100 100
20 20 20 20 20
0 100
0 96 07 l| 16 99 204
1 96 07 14 12 0 149
2300 1400 900 100 100
0 96 07 14 12 29 190
1 96 07 16 13 29 162
4000 BOO 0 100 0
0 96 07 IA 14 0 169
1 96 07 16 16 29 191
1800 400 0 200 100
0 96 07 l« 17 39 212
1 96 07 19 17 29 210
4100 I40Q 800 700 400
300 300 300 200 200
0 96 07 19 20 9 242
1 96 07 21 19 30 239
700 900 300 100 100
0 96 07 2| 20 0 241
1 96 07 27 2 20 29
1100 700 200
0 96 07 27 2 39 32
1 96 07 21 3 29 42
7000 1300 100 100
0 96 07 27 3 49 46
1 96 07 28 17 0 209
900 1600 900 400 300
0 96 07 28 17 40 213
1 96 07 29 19 49 |90
900 3000 200 0 100
0 96 07 29 16 20 197
1 96 07 29 20 10 243
400 400 300 200 100
0 100 0 100 100
200 100 200 100 100
0 96 07 30 0 9 2
1 96 07 30 2 99 36
1900 600 400
0 96 07 30 3 10 39
1 96 08 02 |9 19 184
2200 100 0 400 300
0 96 08 0} 19 40 189
1 96 08 03 9 19 112
300 80Q 300
0 96 08 03 9 30 119
1 96 08 10 1 20 17
100 20o 200 100 2100
300
300
236
28
2600
100
2332
49
2700
100
400
110
66
too
210
100
300
809
9
988
7
300
29
14
100
862
32
300
200
969
6
100
1916
3
10
4
447
8
200
269
7
0
46
47
too
100
0
34
3
1009
5
211
3
1918
17
160(1
300
too
900
100
1900
too
300
100
210
100
200
300
1200
300
100
100
100
0
too
100
600
200
300
900
200
600
100
200
70
200
too
200
1200
300
too
100
200
too
0
son
400
100
200
400
400
400
200
70
too
100
too
2300
300
100
200
100
100
son
700
0
400
200
300
too
too
70
too
0
100
1100
900
200
too
200
0
400
400
70
900
200
300
400
0
70
100
0
200
1100
100
200
300
200
0
400
900
70
40
100
200
300
0
70
too
100
too
1000
too
100
200
too
100
200
BOO
70
40
BOO
400
100
70
100
0
200
800
300
100
100
300
100
500
BOO
70
40
400
400
too
too
too
100
too
300
0
200
200
too
400
200
70
40
600
300
too
100
0
0
300
0
too
0
too
300
300
70
40
00
300
200
too
too
0
300
too
100
200
400
-------
100
0 36 01 10 2 49 14 1137
I 56 01 14 ! 10 219 II
500 |0n 700 1400 tOO 200 200 0 300 100 100
o\
U)
0 56 0* 14 19 5 210
1 96 09 17 22 25 270
2100 100 0 100
0 96 01 17 22 45 274
I 56 01 21 10 55 112
1100 500 200 400 200
0 56 01 21 II 55 144
1 56 01 25 11 15 160
100 200 100 600 100
0 56 01 25 14 0 169
I 56 01 24 11 IS 220
100 0 100 500 100
100 10« 100 200 200
200 200 100 100 100
0 0 0 100
0 56 01 29 22 15 272
1 56 09 09 16 20 197
400 2500
0 56 09 09 1* 10 199
1 56 09 10 19 5 210
100 100 100 100 100
200 200 200 100 0
0 56 09 10 21 15 260
1 56 09 12 12 40 |53
1100 2000 100
0 56 09 12 12 55 156
1 56 09 1] 17 25 210
100 0 0 0 100
200 200 100 100 200
0 100 0 40 40
0 56 09 11 21 20 257
1 96 09 27 16 5 |94
100 0 100 100 100
200 60 60 60 60
200 200 100 100 200
20 20 20 10 10
0 56 9 27 20 10 247
1 60 05 0| 11 10 221
500 700
0 60 05 01 11 40 225
1 60 05 IJ 18 55 22t
500 BOO 100 90 50
0 60 05 11 19 20 211
1 60 05 U 14 40 177
40 40 40 40 40
150 100 400 SO 50
0 60 05 14 16 SO 201
1 60 05 16 20 40 249
too too too 100 too
100 500 600 200 100
100 10(1 100
0 60 05 16 21 15 284
1 60 05 22 9 10 115
10 10 10 10 50
100 100 200 100 100
100 100 100 100 SO
(0 80 90 10 80
200 200 100 100 100
100 |00 100 0 200
100 200 200 100 700
904
4
1010
12
100 100
1168
9
1100 1400
1201
52
500
)00
200
109J
2
119
10
100
200
469
1
142
47
0
too
40
1969
51
100
60
100
62184
2
1459
5
212
26
50
100
622
15
too
SO
1559
128
50
400
50
90
too
150
700
100
100
200
100
0
too
100
40
too
60
too
150
too
100
SO
50
500
SO
100
too
ISO
800
0
400
100
300
400
too
too
too
too
40
too
60
too
200
100
100
too
SO
300
SO
200
too
too
son
too
100
J0«
100
200
too
0
0
too
40
too
60
too
100
200
too
100
50
100
50
too
200
100
400
100
400
100
300
200
200
too
200
40
too
200
too
300
50
200
100
50
too
90
0
200
100
200
too
00
300
200
200
200
0
200
40
200
too
200
400
too
too
too
200
50
too
too
too
200
too
900
200
100
200
200
0
200
40
200
0
0
JOO
200
100
too
200
SO
400
too
200
200
100
400
too
400
200
100
100
40
too
200
too
200
100
too
200
ISO
50
100
too
300
10
400
200
too
100
200
400
1200
40
too
40Q
0
100
100
400
200
150
90
900
too
900
30
loo
too
0
100
200
aoo
100
too
400
0
200
200
400
too
ISO
50
200
too
200
JO
100
too
too
400
200
too
0
100
20
ISO
200
300
200
ISO
50
400
too
200
20
-------
20 20
0 60 OS 22
1 60 OS 24
1100 29o
100 ton
150 900
100 SO
ISO SO
0 60 OS 24
1 60 OS 29
7900 ||00
30 30
0 60 OS 29
1 60 06 09
100 1SOQ
0 60 06 09
1 60 06 10
1100 1900
0 60 06 10
1 60
06
500
0 60
1 60
06
06
4900
0 60
t 60
100
400
200
0 60
1 «0
200
400
200
60
0 60
1 60
200
400
0 60
1 60
200
0 60
t 60
400
0 60
1 60
3600
0 60
1 60
100
100
too
0 60
1 60
1100
0 60
1 60
90
200
0 60
1 60
SOO
0 60
06
06
06
06
06
06
06
06
10
SOO
10
13
too
13
13
100
400
200
13
25
400
600
ISO
70
25
26
300
100
26
26
1200
06
07
07
07
07
07
07
07
07
07
07
07
2k
06
300
06
14
600
14
14
0
100
30
15
IS
300
IS
U
too
300
IS
23
1100
07
23
20
20 10
17 IS
250
SO
700
SO
22 45
16 20
400
30
17 55
4 10
600
4 49
19 9
300
16 0
20 5
300
21 0
IS 30
IS 40
17 0
90
400
50
20 35
IB 35
200
600
ISO
0
23 30
0 5
SOO
150
1 45
6 39
3000
7 9
0 45
600
1 20
21 0
90
21 20
23 15
100
100
30
2 15
14 40
1700
15 2S
17 45
too
300
19 55
IS 30
1600
16 35
10 10
243
206
200 100
SO 100
400 200
40 40
274
197
300 200
216
91
100 100
58
112
300 0
193
242
400 1500
293
117
1»9
209
190 0
300 300
50 20
24t
224
300 300
500 500
200 100
90 100
283
2
300 100
SO
22
10
400 100
16
10
200 200
17
293
SO
297
280
ISO 250
100 100
30
28
177
900 500
186
214
ISO 100
300 300
240
187
900 1300
200
30
941
66
100
100
300
40
1363
19
200
3003
7
200
412
II
too
. 49
II
100
796
2
16
43
200
400
20
3432
59
300
700
100
200
7
20
30
56
6
100
2604
7
200
2940
4
23
36
500
70
149
9
400
28
26
200
200
2291
13
1800
2369
30
60
100
200
40
200
too
9QO
100
100
400
20
200
900
90
ISO
30
100
400
70
300
200
100
600
30
70
50
190
40
too
100
too
200
600
20
200
400
SO
ISO
30
SOO
70
200
200
30
600
10
70
50
150
50
100
too
too
400
1100
20
400
400
100
300
50
400
100
100
200
30
ISO
30
30
100
100
SO
SO
SO
100
SOO
900
too
900
300
300
ISO
290
300
100
300
30
90
30
30
too
too
200
90
SO
100
SOO
900
too
SOO
300
100
so
300
100
too
200
200
30 30 30 10 10
30 100 100 200 100
too too too too so
50 SO 50 SO 100
100 100 10 30 10
50 SO 30 30 30
SOO SOO SOO 400 400
300 600 SOO 700 700
400 500 600 600 400
300 200 200 ISO 190
200 200 60 «0 10
BOO 100 300 1600 1400
300 200 100 100 100
200 190 |90 mo 100
300 100 300 200 200
100 200
-------
(SI
1
60
07 1|
too too
2700 1500
22 0
100
2tOO
265
10
10
600 2000
14
10
1100
0
1100
300
600
600
600
1000
400
too
200
SO SO
0
1
60
60
100
01 01
oa 01
too
30 lo
0
1
0
1
0
1
0
1
0
t
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
t
60
60
10
200
100
60
60
1100
60
60
1100
60
60
SOO
60
60
3200
60
60
1SOO
60
60
100
200
100
60
60
100
60
60
1200
60
60
S200
60
60
1100
200
100
too
100
90
60
60
SOO
60
60
01 01
01 0|
10
too
100
01 0|
Ot 02
300
Ot 02
01 01
100
Ot 0}
Ot OS
SOO
01 OS
Ot 06
ISO
01 06
Ot 07
1000
ot OT
Ot Ot
too
300
too
01 og
Ot 09
1700
01 09
Ot 15
100
ot is
Ot 16
1200
01 16
ot to
600
30
100
100
100
90
Ot 19
Ot 23
1200
Ot 24
09 Oft
900 JOO
0
1
0
1
60
60
100
60
60
100
09 06
09 06
700
09 06
09 19
200
1400 6200
0 60
09 19
0 SO
IS S
100
20
16 SS
It 20
10
200
100
21 SO
IS 45
100
16 0
12 IS
SO
12 SO
It 20
100
It SO
n 25
ISO
It 0
16 S
200
16 20
7 45
ISO
100
200
II IS
12 0
100
12 15
19 10
100
19 45
12 20
100
12 45
21 IS
100
10
too
50
90
90
5 20
21 45
600
0 0
14 10
100
15 0
15 IS
100
IS 40
16 10
SO
100
I* 25
11
112
2700
20
204
221
70
200
100
261
190
191
152
ISS
221
400
227
210
50
217
194
197
94
ISO
too
200
116
14S
141
21S
231
SOO
20
70
600
20
SOO
SO
200
too
200
149
200
154
260
200
20
100
50
90
90
SO
200
20
too
to
90
100
65
286
1
175
100
III
184
SO
119
199
50
150
SO
50
50
SO
222
171
22
100
20
17
42
70
600
20
215
1
247
1
642
6
200
271
7
SO
26S
1
115
42
100
200
loo
297
1
HIS
1
199
S
6t2
91
200
10
too
10
90
100
1171
1
191t
6
SO
1
5
1754
23
SO
50
3
400
too
SOO
20
SO
600
SO
too
SO
10
too
to
90
100
200
SO
100
too
400
20
900
SO
too
50
10
100
10
90
100
100
loo
too
400
20
too
100
SO
SO
200
50
to
90
200
200
SO
too
ISO
to
100
loo
so
ISO
200
SO
to
90
200
too
SO
290
ISO
too
ISO
200
100
so
to
90
100
100
600 100 200 100 100
200 100 tOO SO 90
10 10 10 30 10
ISO 100 100 tOO 200
100 100 tOO ISO 150
100 100 tOO 100 200
ISO 200 200 100 100
200 200 200 100 200
200 200 SO SO tOO
90 50 90 100 100
to too too 100 100
90 90 90 90 90
50 SO
100 100 100 400 100
-------
t 60 09 19 II 35 224 21
700 100 100 100 400 500 SOO 900 SOO 900 100 100 200 200 100 200
200 200 100 90 90
0 60 9 19 20 20 249 66T69
I 62 09 09 II 9 211 1
200 400 SOO 600 900 400 200
0 62 09 09 II 40 229 220
I 62 09 lo II 0 197 1
700 40Q 100
0 62 09 10 11 19 160 2099
I 62 09 17 16 10 199 96
90 90 90 90 90 90 90 SO 10 10 10 10 10 10 20 20
10 10 10 100 90 90 200 200 100 100 200 200 200 200 200 200
200 100 100 100 100 100 100 100 100 200 100 100 200 200 100 100
100 300 100 200 200 200 100 100 100 100 200 200 200 200 100 100
90 90 200 190 190 2SO 290 300 100 100 100 100 100 400 400 400
900 400 900 600 400 100 100 300 100 100 200 40 40 40 40 40
0 62 09 t| 0 10 7 '469
I 62 09 19 19 19 114 41
100 |0o 100 0 100 200 200 100 100 100 200 100 100 100 100 100
100 100 200 200 100 190 190 100 100 100 90 90 60 60 60 100
100 100 400 100 100 90 90 90 90 90 90 90 90 100 200 100
0 62 09 19 19 19 212 1160
I 62 09 24 12 19 |92 47
100 100 100 100 200 100 200 200 200 200 100 100 200 200 100 100
100 100 200 200 200 100 100 100 100 200 190 190 100 10 30 10
100 100 190 190 200 100 200 100 100 100 100 100 100 0 100
0 62 09 24 16 10 199 2012
£ I 62 09 It 17 90 219 41
£ 100 100 100 200 200 100 200 100 200 100 100 200 100 200 290 290
100 100 100 200 400 400 300 100 290 290 200 200 100 |90 ISO 100
100 190 190 100 100 90 90 90 90
0 62 09 1| 21 19 296 21
I 62 09 1| 21 10 279 14
90 190 200 190 190 200 200 200 100 100 200 100 900 290 290 200
200 200 200 100 200 100 200 200 200 200 100 600 900 190 |80 200
100 10 10 10 100 100 90 90 100 100 100 100 90 90 200 200
200 100 100 100 100 100 10 10 10 10 10 10 40 40 40 40
40 40 40 40 40 40 40 40 20 20 20 20 20 20 20 20
20 10 10 10
0 62 06 0| 6 10 79 111
I 62 06 0| 16 0 191 10
290 290 100 200 200 200 100 100 100 100 100 200 200 200 900 100
200 200 100 190 190 190 200 190 90 90 100 90 90 90
0 62 06 0| II 30 221 2110
1 62 06 It 14 20 171 10
1000 2900 2900 I2i>0 100 400 100 400 200 100
0 62 06 II 19 10 111 1219
I 62 06 IS 22 29 270 9
700 50n 100 0 100
0 62 06 19 22 90 279 12
I 62 06 16 I 30 19 I
1900 100 900 100 100 900 100 90
0 62 06 16 2 10 27 191
1 62 06 16 14 49 171 4
900 1000 100 90
0 62 06 16 19 9 |I2 4931
I 62 07 0] II 19 224 II
90 290 100 600 1200 1000 600 700 200 400 100 200 200 10 10 10
10 90
0 62 07 01 20 9 242 HOI
t 62 07 10 2 49 34 9
100 100 2000 400 90
0 62 07 10 1 10 19 2164
-------
1 62 07 17
700 1000
0 62 07 17
1 62 07 17
1100 1700
0 62 07 17
1 62 01 02
2000 7200
0 62 0* 0}
1 62 01 05
1500 600
0 62 0» 05
1 62 01 05
50 150
0 62 01 OS
1 62 0« Ofi
1100 500
0 62 01 06
1
0
1
0
1
0
1
0
1
0
1
0
t
0
1
0
1
0
1
0
1
0
1
0
1
0
1
62
1100
62
62
ISO
62
62
JOO
62
62
400
62
62
200
0
62
62
6100
6]
62
150
100
100
200
too
62
62
BOO
62
62
soo
62
62
400
400
62
62
too
62
65
2600
65
65
200
65
63
01
01
OS
01
01
01
01
01
01
01
09
09
09
09
09
09
09
09
09
09
09
9
05
06
700
06
15
ISO
IS
21
200
21
21
700
21
24
lOn
too
24
04
800
04
07
ISO
ISO
200
JOO
40
07
07
600
07
07
600
07
16
200
100
16
18
100
10
0)
1100
OS
05
05
05
01
04
200
04
05
IS JO 117
SOO
15 45 190
17 0 205
700 400 100
17 25 210
22 40 271
4000 900 (00
21 SS 218
19 IS 220
100
16 10 221
21 0 277
200 900 1400
21 10 281
2 10 11
100 100
2 SO 15
4 IS
100
4 SO
14 10
1400
14 40
9 50
500
10 SO
IS 40
400
16 20
1 45
SOO
0
5 10
17 10
50
17 45
5 SO
0
too
ISO
200
40
12 15
19 35
19 45
20 10
20 20
12 55
100
100
14 10
16 50
600
16 10
16 20
too
17 10
16 0
1200
16 45
16 15
52
100
S9
171
400
177
119
1000
111
1(9
600
197
46
500
SO
67
211
214
71
100
100
ISO
100
SO
700
200
SOO
SO
600
too
too
1600 1500
40
148
216
216
241
245
156
SOO
175
201
100
219
197
100
211
191
400
202
196
40
900
too
600
100
1
IS
s
4671
IS
900
796
1
54
6
SO
16
4
17
7
SOO
2704
6
SO
1670
12
400
56
6
200
711
21
too
1112
1
721
77
500
SO
ISO
1000
40
86
2
S
2
2501
19
1200
604
l«
200
65154
14
too
270
9
200
282
4
400
100
100
100
too
100
too
ISO
400
40
100
1500
SO
0
400 200 100 100 ISO SO SO SO
100 200 100 100 100
100
300 200 100 100 200 300 400 100 100
100 100 ISO 100 SO SO SO SO SO
100 100 ISO ISO 100 100 100 100 100
250 2SO 200 100 100 100 200 280 250
100 100 100 200 100 0 100 100 100
40 40 40 40 40 40
300 300 SO 50 200 200 100 300 100
600 100 0 200 400 100 100 100 100
100 200 100 0 0 100 100
o too
-------
400 1000 0 100
0 6S 09 OS 16 IS 300 11
I 69 09 09 IT 40 21) )
1400 600 100
0 69 09 OS IT 99 216 4
I 69 09 OS tl 19 220 S
1600 100 400 100 90
0 69 09 OS II 40 229 112)
I 69 09 09 16 19 196 9
400 300 1100 SOO TOO 600 900 tOO 100
0 65 09 09 IT 0 209 254
I 69 09 10 14 10 1T1 )
1400 40Q 90
0 69 09 lo 14 29 174 199
I 69 09 I] 14 0 169 2
2900 900
0 69 09 I] 14 10 171 9
I 69 09 |] 14 19 176 2
2200 20Q
0 65 09 I) 14 49 IT! 101
I 69 09 16 9 )0 119 2
2000 300
0 69 09 te 9 40 117 129
I 69 OS 19 6 45 13 47
1)00 200 100 200 100 200 100 200 200 200 900 100 200 200 200 100
400 300 300 400 100 200 100 100 100 200 100 100 100 100 100 200
100 400 400 400 100 200 100 200 100 200 100 100 0 0 100
0 65 09 19 10 40 129 JJ5»
N> I 69 09 27 19 10 III 6
^ 100 900 900 500 100 100
00 0 65 05 27 15 40 119 141
1 65 05 2« 20 40 249 216
240
60
60
0
200
200
0
200
200
500
100
too
0
10
0 65 09
1 65 05
240
60
60
300
0
0
0
100
200
400
100
0
0
In
29
10
240
60
60
200
100
200
100
0
too
400
100
100
100
10
14 40
15 15
240 240
60 60
60 60
200 100
100 0
0 100
0 200
100 200
100 100
100 200
100 0
0 100
0 100
20 20
177
111
240
0
60
too
0
100
100
100
200
100
100
0
100
10
399
7
340
60
60
300
100
100
100
100
too
300
100
100
0
30
340
60
60
|00
0
0
100
100
900
600
too
too
100
20
60
60
60
0
100
300
100
100
700
500
0
0
0
60
60
60
100
200
200
200
100
200
500
100
too
0
60
60
60
0
200
200
200
100
too
300
too
0
100
60
60
60
too
300
100
100
300
too
200
100
too
200
60
60
60
0
100
200
100
0
200
100
100
0
0
60
60
60
0
200
too
100
100
0
100
too
too
too
60
60
no
too
200
too
200
too
mo
too
0
0
0
60
60
60
0
0
too
200
too
900
0
too
too
0
100 100 500 1000 600 900 200
0 65 05 lo 16 10 195 14
1 65 05 In 19 0 229 69
100 100 400 900 1700 400 100 100 100 200 100 200 100 200 400 100
100 200 100 300 200 200 400 100 200 100 200 100 200 100 11>0 200
100 200 100 100 100 200 100 100 100 100 100 100 100 100 tno 100
0 |0o 100 tOO 200 200 100 200 100 100 100 100 200 100 100 0
too too 200 o too
0 65 OS >t 0 45 10 1092
1 69 06 0] 19 49 211 21
100 90Q 1100 2900 900 1500 200 200 400 900 200 200 100 100 400 1000
500 200 100 100 100
0 69 06 0] 21 10 259 1117
I 65 06 0| IT 5 206 200
100 10o 100 0 900 600 100 )00 200 500 100 400 200 200 0 100
200 0 100 100 100 100 0 200 0 100 100 100 0 100 0 100
-------
Is)
O\
VO
0 100 0 tOO tOO
0 0 100 0 100
o ton o too o
too too 200 too 200
100 200 tOO 100 100
100 200 200 200 200
JOO )0ft 100 300 200
400 200 100 300 100
100 400 400 200 100
0 100 200 200 100
0 100 100 20 20
0 65 06 09 9 45 111
1 65 06 10 1 10 10]
JOO 200 200 100 200
500 tOO 900 2700 100
0 65 06 to 10 45 110
I 61 06 10 11 15 160
too too 100 400 200
too
0 65 06 10 14 40 177
1 65 06 to 14 55 HO
100 too 200 700 400
1100 2600 1900 1100 100
0 65 06 10 16 40 201
I 65 06 10 19 5 210
200 100 200 200 100
0 65 06 to 19 50 219
1 65 06 10 20 5 242
10 lo 10 0 200
500 600 200 400 100
0 65 06 10 22 10 271
1 65 06 10 21 10 2(1
100 0 100 200 100
o too
0 65 06 1| 1 0 11
1 65 06 11 1 5 11
700 400 100 200 100
200
0 65 06 11 4 10 55
t 65 06 14 10 tO 121
1100
0 65 06 14 10 15 124
1 65 06 14 11 10 161
1900 4400 5200 100
0 65 06 14 11 SO 167
1 65 06 14 16 15 196
2000 1400 200 1500 900
0 65 06 14 17 0 205
1 65 06 16 0 45 10
100 100 200 400 200
0 |0o 100 100 0
0 65 06 16 2 45 14
1 65 06 IT 11 15 224
1100 500 700 400 400
0 65 06 17 19 5 210
1 65 06 2| B 50 107
100 2800 1000 900 SOO
0 65 06 2| 9 20 11]
1 65 06 21 16 45 202
200 400 900 400 4000
0 65 06 2| 17 40 213
1 65 06 26 16 40 201
2700 170n 100
0 65 06 26 16 55 204
200
0
too
too
too
200
200
200
100
200
20
271
27
300
400
10
17
900
1
21
300
29
9
2400
1
29
100
500
12
19
1100
601
17
200
156
1
19
4
29
9
700
181
24
500
0
478
6
too
1029
6
200
89
II
2(00
1428
1
1221
200
0
100
200
100
200
100
100
200
too
20
200
600
(00
200
1400
200
600
700
200
400
600
too
1700
400
100
too
too
200
100
200
400
400
100
20
100
700
200
1800
700
0
300
400
200
600
500
too
MOO
500
0
0
too
100
200
too
100
400
100
100
0
,
700
2600
too
200
100
400
200
too
500
1200
300
100
too
200
200
300
100
100
100
ioo
200
0
1100
2100
*
400
500
(00
too
600
200
200
0
too
100
100
200
200
400
500
too
SOO
too
SOO
900
400
700
400
100
100
100
200
too
0
too
200
100
200
400
700
100
SOO
1(00
00
1000
700
100
too
100
too
0
too
200
200
too
aoo
100
400
100
600
400
0
400
400
SOO
400
100
too
too
0
too
too
200
400
40p
100
too
0
400
100
700
too
400
200
0
0
100
too
200
too
100
SOO
100
100
100
too
00
600
100
too
too
too
0
0
200
200
100
200
400
200
too
600
0
900
SOO
too
0
100
-------
I 69 it 30
100 TOO
0 «5 06 10
1 65 07 07
100 ItOO
0 65 07 01
1 69 07 01
100 0
100 200
200 100
200 200
100 100
0 69 07 OB
1 69 07 0|
100 400
0 69 07 08
t 69 07 09
400 1600
0 69 07 0)
1 69 07 17
100 300
100 300
200 100
0 69 07 IB
1 69 07 20
100 900
400 tOO
0 69 07 20
1 69 07 22
too o
300 600
200 0
70 70
30 30
0 69 07 2)
1 69 07 21
2100 2200
0 69 07 23
1 69 07 29
2200 600
0 69 07 29
1 69 07 2«
«00 1600
0 69 07 2«
1 69 07 2«
600 1400
0 69 07 26
1 69 07 26
1300 300
0 69 07 26
1 69 07 27
200 300
0 69 07 27
t 69 08 0]
200 0
0 69 01 03
1 69 08 07
1300 2900
0 69 09 01
t 69 OB 07
1400 600
0 69 08 07
t 69 08 31
300 300
22 90
1000
23 49
23 20
too
0 20
4 29
too
400
200
too
9 99
18 90
too
19 29
1 10
700
2 10
21 40
900
200
0
0 40
19 9
279
300 200
286
261
tOO 200
9
94
too too
1600 400
200 200
200 200
120
227
tooo too
214
19
700 100
27
261
600 600
200 100
too
9
210
1900 2900 2000
200
21 9
16 10
100
900
too
60
10
0 10
2 99
1200
3 29
19 19
too
19 30
0 19
900
8 39
12 9
600
12 30
14 99
too
19 40
16 19
(00
16 90
10 20
1200
10 90
22 40
2400
23 0
21 29
1100
21 90
IS 99
900
tOO 200
294
219
0 100
600 100
too too
60 60
10 20
7
16
800 600
42
184
187
too
too
104
146
200 100
191
180
300 100
189
196
700 400
201
129
200 100
131
271
900
277
282
400 100
287
192
400 900
II
100
2011
12
200
49
66
too
600
200
100
107
7
0
71
6
200
2938
16
700
too
797
24
200
too
941
76
800
200
200
too
200
300
200
200
600
900
too
200
0
700
too 1000
too
60
20
29
6
200
718
1
201
4
42
9
29
9
0
299
7
200
1938
6
too
1294
4
5
9
6917
19
400
too
60
20
too
too
0
200
100
too
too
100
200
too
600
200
too
too
soo
900
0
60
20
0
0
900 100 100
200 100 100 100
o too too o too
loo too too too too
400 100 100 100 no
200 100 100 100 200
600 200 100 900 400
400 200 400 200 100
100 0 100 tOO 200
100 600 (00 400 600
400 400 200 100 tOO
70 70 70 70 70
60 (0 60 60 10
20 20 20 20
too
200 100 100 200 0
too too o
200 100 200
200 200 100
200 200 «
400 100 200
400 400 100
100 100 200
700 SOO 100
too o too
70 70 70
10 10 10
o too
-------
0 65 01 1| 17 10 207
1 65 09 09 16 55 204
200 tOO 100 1100 400
0 65 09 09 11 15 212
1 65 09 10 0 20 5
too too 100 200 loo
too
0 65 09 10 1 45 22
1 65 09 10 1 0 17
too too 200 too too
200 200 100 100 100
o ion
0 65 09 10 5 SO 71
t 45 09 10 IS |04
100 0 100 0 0
400 400 700 100 100
0 65 09 10 10 40 129
t 65 09 10 11 55 144
too o too too too
100 200 100 200 200
too too too too too
100 100 200 200 100
100 200 100 400 200
too
0 65 09 10 11 40 225
t 65 09 12 17 10 207
100 500 600 400 200
0 65 09 12 17 15 212
1 65 09 I* 20 15 244
100 600 100 200 200
too 200 200 200 too
200 too 100 200 100
too
0 65 09 19 0 20 5
t 65 09 2« 9 10 111
100 0 0 100 0
100 100 200 200 100
too too too o too
200 ion too o too
2519
too
It
17
200
15
34
too
200
13
2S
too
200
IS
It
100
200
too
100
200
551
S
1760
49
200
loo
too
2691
56
too
too
200
0
too
200
200
200
100
0
0
100
too
200
200
200
200
200
too
200
200
too
too
400
200
200
0
0
too
too
too
100
100
100
loo
200
0
200
200
100
1600
200
300
100
too
too
0
200
too
too
200
200
200
too
too
100
2100
too
200
0
0
too
too
too
too
400
0
500
too
too
100
400
200
0
too
0
too
BOO
100
0
200
too
too
too
300
too
700
too
too
too
too
200
100
200
too
100
0
0
too
too
too
soo
too
too
300
300
too
0
too
0
300
0
too
too
too
300
700
200
100
300
200
too
200
too
too
300
too
300
too
0
300
300
300
0
400
300
300
too
300
0
too
0
too
too
too
300
0
too
100
500
too
too
too
0
0
100
too
too
too
too
300
-------
to
QOS-EPA-EXAMPLC
1.00101.0 i.o i.o i.o t.o
xx
xxxx
xxxx
0 C037
t ROtSRa2flR03a
2
3
4
5
IC001C002
1C002C003C001
IC003C004C002
ICOOICOOScOOj
ICOOSB006C004
IB006C007C005C016
1C007COOIR006
IC008C009C007
IC009COIOC006
ICOIOCOHC009
ICOI1C03IC010
IC013COI4
ICOMROUcOll
1R015C014C014
1SOI3S014
ISOHSOISjOll
1SOI5COI6S014
1C016B006POI5S015
IC003C024C002
1C024C025C003
1C025C026C024
IC026C027C02S
IC027C032C026
IR028C029
1C029C030R02I
IC030C03IC029
IC031C032COIIC030
ICQ)2CO)3c03tC027
IC033C034C032
IC034C035C033
IC035C036c034
1C036C037C035
1C037R036C036
IR038B038C037
IB03BC039R036
CNDE
2R015IC0160.20 5.00 53.92
2R028IC0290.SOIO.OO 26.55
2R0381B0180.5020.00 10.43
2B0062
2B0383
EMDE
1C034 0.16 0,15
ENDE
3AC01C001|2 26.03 .10
3AC04C00412 11.65 .25
3AC05C005I2 10.52 .18
3AC06B00612 30.16 .23
3ACI3C013I2 50.10 ,14
3ASI3S01312 50.10
3AC26C026(4 20.48 .02
3AC28R028I3 79.52 .40
1AC31C03IU 17.81 .10
301055600003112602159
91
Network data
01 .40
01 .40
01 .40
01 .50
on. oo
01 .JO
01 .40
01 .50
01 .50
01 .90
01 .50
011.00
011.00
01 .JO
01 .40
01 .40
01 .40
01 .60
01 .40
01 .40
01 .40
01 .60
01 .60
01 .50
01 .60
01 .60
01 .10
ot .to
011.00
011.00
011.00
011.00
011.20
01 .50
011.20
53.92
26.55
10.4)
51.39
9.00
.40260.
.40100.
.40290.
.50240.
1.00145.
.10115.
.40250.
.50225.
.50184,
.50172,
.50 92.
1.00120.
1.00 92.
.20130.
.40120.
.40 92.
.40130.
.60182.
.40220.
,40200.
,40t«0.
.60212.
.60191.
.50232.
.60184.
.60167.
.80137.
,80272.
.OOJ52.
.00167,
.00187.
.00214.
.201J8.
.50100.
1.20100.
100.0.655
500.0.655
61.17
60. 84
59.68
57.50
55.40
51.39
44.97
36.29
33.57
30.87
26.74
54.76
54.40
93. »2
54.76
54.40
54.12
53.33
59.68
52.31
44.89
37.47
29.59
26.55
25.75
25.33
24.02
22.65
18.67
16.07
14.30
12.77
11.66
10.43
21.20
.001
.001
60.84
59.68
57.70
55.60
53.50
44.97
36.29
33.57
30.87
26.74
24.98
54.40
54.12
S3. 53
54.40
54.12
53.73
52.61
53.00
44.89
11.00
30.05
23.53
25.75
25.33
24.91
22.65
18.67
16.07
14,30
12.77
11.66
11.23
10.27
21,10
2
10 30R028C029 0.0
82
90
57
31
26
25
18
28
0.40 0.020
-------
JAC32C032I2 21.90 .29 32
3AC33C03312 14.SO .19 It
3AC37C037I3 90.52 .07 4
ENDG
to
-J
CO
-------
.2500000 1.0000000KREI3PROFIL
S3
OQS-EPA«EXAMPI,E
01 lit .78539(2
XX
xxxx
ICOMMERCIAL 2RE3IDENTIAL 3INDUSTRIE 4PARKS
HULDENKAPAZITAETEN .6010.0 .8010.0 1.0 12.0 ,«010.0
.6010.0 .BOIO.O 1.0 12.0
Quantity data
MULDENIHITUUIERTG 1
VERSICKERUNGSRATEN
VERDUNSTUNGSRATEN
,8010.0
27.7 27.7 27.7 41, 27.7 27.7 27,7 48,6
,60 .70 .97 1.15 1.15 1.55 1.75 2.05 2.10 2.55
2.60 1.20 1,60 4.00 4.40 4,«0 5.25 8,70 4.40 6.70
7.20 7.70 1,20 1.70 9.20 9.7510.2510.1011*1011.10
12,3SI2.9011,4011.9014.4014.9015,4516.0016,SOI 7.00
11.0 11.5 19. 19,5 20. 20.5 21. 21.5 22. 22.5
TEMPERkTUREN 3
56 0.1 0
60 O.I 0,
65 O.I 0
56 2.4 4,
60 1.4 4
65 2.0 1,
EINHEITSGANGLINIEN
EINHEITSGANGLINIEN
TW-ABFUIE33E
TH-ABFLUEsaE
TN-ABFLUESSE
TH-ABFLUESSE
TH-ABFLUESSe
TWABFLUE3SE
TH-ABFLUESSe
TH-ABFLUESSE
1H-ABFLUES8E
C017 1.30
XXXX
XXXX
XXXX
3.0013.00
1151 7.0
1011 5.7
1011 7.1
9248 15,1
5. .200 .064
10. .410 .110
IS, .222 .120
20. .190 .118
25. .050 .109
10. .030 .097
35. .010 .0(2
40. .005 .067
45. .053
50. .043
55. .013
60. .026
65. .020
70. .016
75. .011
80. .009
OS. .007
90. .005
95. .004
100, .003
105. .002
110. .001
0.00 .05 4.00
0.30 .05 4.30
1.00 .05 5.00
1.30 .05 5.30
2.00 .05 6.00
2.30 .05 6.30
3.00 .05 7.00
3.30 4.05 7.30
1. 1. 1. I
1. 1. 1. 1
1. 1. 1. 1
1. 1. 1. 1
10.9 |4.2 11.9 9.5
10.7 12.2 11.9 11.7
11.1 14.0 12.7 7.6
18.1 22.1 22.4 15.1
.160 ,064 ,200
.170 .110 .410
.210 .120 .222
.100 .116 .190
.060 .109 .050
.015 .097 .010
.020 .082 ,010
.010 .067 .005
.005 .051
.002 .041
.011
.026
.020
.016
.011
.009
,007
.005
.004
.001
.002
.001
.05 (.00 4.0512.00
.05 (.10 .0512.30
,05 9,00 .0511.00
.05 9.10 .0511.10
.0510.00 .0514,00
.0510.30 .0514.30
.0511,00 4.0515.00
.0511,30 4.0515.10
1. 1. 1. 1.
1. 1. t. 1.
. 1. I. 1. 1.
. t. 1. 1. 1.
7 0 1
62 2
9 2 1
1 6 0
57 0
,064 ,055 .064
.110 .ISO .110
.120 .240 .120
.116 .200 .116
.109 .130 .109
.097 .090 .097
.0(2 .060 .0(2
.067 .040 .067
,053 .030 .053
.043 .020 .043
.031 .010 ,011
.026 .005 .026
.020 .001 .020
.016 ,001 .016
.011 .011
.009 ,009
.007 .007
.005 .005
.004 .004
.001 .001
.002 .002
,001 .001
.0516.00 4.0520.00 4.05
.0516.10 4.0520.10 .05
.0517.00 4.0521.00 .05
.0517.10 .0521,10 ,05
,0518,00 ,0522.00 ,05
.0518.30 .0522.30 .05
.0519.00 .0521.00 .05
.0519.10 .0521.10 .05
1. 1. 1. 1.
1. 1. It 1.
1. 1. 1. 1.
1. 1. 1. 1.
-I
-------
OOS-EPA-EXAHPLE
i B.O.D. 2 i.s.s.
10.0 15.0 20.0 1S.O 79.0 10.QUO
10.0 15,0 20.0 15.0 75.0 10.0110
AlirBAUZElTEN 240 240 240 240
34.2-34.2-14.2-14.2-34,7-34.7-34
1,89 1.19 1.69 1.19 .21 .21
465,2465.2465.24«5.216.141*.14111
8TRAS3ENREINIGUNG 161 14
EINHEITSGlNGLINIEN SCHMUTZSTOFT
)l2rECAL COLirORN 4 COD
.0 10.0100.0100.0100.0100.0 50,0 60.0 70.0 60.0
,0 10.0100.0100.0100.0100,0 50,0 60.0 70.0 60,0
720 720 720 720 24 24 24 24 240 240 240 240
.6-14.71),1413.1413,3411.14-14,2-34.2-14.2-14.2
44 .211111.1111.1111.1113. 1.19 1,(9 l,*9 1.19
.616.343125.3I2S.3125,3125.465,2465.2465.2465.2
5 35 35 5 10 40 40 10 I 10 30 I S IS 35 5
EINHEITSGANGMNIEN SCHHUTZSTOfT
EINHCIT8GANGLINIEN SCHMUTtSTOfr
NJ
^J
Ln
EINHEIT3GANGLINIEN SCHHUTZSTOfT
EINHEITSGftNGLINIEN SCHMUTZSTOrF
CINHEITSGANGLINIEN SCHMUTZSTOrT
EINHEITSGANGLINIEN SCHHUTZSTOrr
EINHElTSGftNGlINIEN SCHMUTZSTOFF 4
GCBIETSfAKTOREN 1.0 1.0 1.0 1.0 I
REGENDAUER 5.01.001.001.001.001
10.01.001.001.001.001
15.0 ,9t .96 .96 ,9«
20.0 .90 .(7 .17 .90
25.0 .76 .70 .71 .77
30.0 .64 .55 .58 .67
5.0 4.10 3.01 3.01 4,10
10.0 4.21 1.21 .1.21 4.21
15.0 2.00 1.50 1.50 2,00
20.0 1.03 0.77 0.77 1,01
25.0 0.65 0.49 0.49 0,65
30.0 0.17 0.21 0.21 0.17
35.0 0.19 0.14 0.14 0,19
40.0 0.04 0.01 0.01 0.04
45.0 0.00 0.00 0.00 0.00
50.0 0.00 0,00 0.00 0.00
55.0 0.00 0.00 0.00 0.00
60.0 0.00 0.00 0.00 0,00
5.0 5.10 1.11 7.65 5.10
10.0 7.15 5.16 10.71 7.15
15.0 1.51 2.61 5.27 3.51
20.0 2.05 1.54 1.01 2.05
25.0 1.15 1.01 2.01 1.35
30.0 0.90 0.61 .1.35 0.90
35.0 0.60 0.45 0.90 0.60
40.0 0.35 0.26 0,53 0.35
45.0 0.20 O.IS 0.10 0.20
50.0 0.09 0.07 0.14 0.09
55.0 0.02 0.02 0.01 0.02
60.0 0.00 0.00 0.00 0.00
5.0 15.00 15.00 7.50 15.00
10,0 19.50 19.50 19.75 19.50
15.0 10.00 10.00 15.00 10.00
20.0 19.00 19.00 9.50 19.00
25,0 10.00 10.00 5,00 10,00
30.0 5.50 5.50 2.75 5.50
35.0 1.50 1.50 1.75 1.50
40.0 2.00 2.00 1.00 2.00
45.0 1.50 1.50 0.75 1.50
50.0 1.00 1.00 0.50 I.00
55.0 0.50 0.50 0.25 0.50
60.0 0.00 0.00 0.00 0,00
5.0 15,40 15.4 15.4 15.40
10.0 16.05 16.05 16.05 16.05
15.0 7.50 7.50 7.50 7.50
20.0 l.tS 1.85 1.85 1.85
25.0 2.45 2.45 2.45 2.45
10.0 1.40 1.40 1.40 1.40
35.0 0.70 0.70 0.70 0.70
40.0 0.15 0.15 0.15 0.15
45.0 0.00 0,00 0.00 0,00
50.0 0.00 0.00 0.00 0.00
55.0 0.00 0.00 0.00 ",00
60.0 0,00 0,00 0.00 0.00
.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
.001.001.001.001.001.001.001.001.001.001.001.00
.001.001.001.00 ,94 .91 .91 ,941,001.001,001.00
.99 .99 .991.00 .86 .83 .83 .68 .96 .96 .96 .98
.98 .98 .98 .99 .80 .75 .75 .60 .90 .67 .67 .90
.97 .95 .96 .98 .73 .66 .67 .73 .76 .70 .73 .77
.93 .88 .90 .95 .67 .58 .60 .67 .64 .55 .58 .67
Quality data
-------
to
35.0 .
40.0 .
45. 0 .
50.0 .
ss. o .
«0.0 .
69.0 .
70.0 .
75.0 .
0.0 .
5.0 .
»0.0 .
95.0 .
100.0 .
TAGESZEITEINFLUSS
JAHRESZEITEINFMJSS
JAHRESZElTEINrUISS
JAHRESieiTEINFUUSS
JAHRESZElTEINFLUSS
BECKENKLARRWIRKUNG
BECKCNKLARRMIRKUNG
55
48
41
36
33
3)
32
31
30
30
30
30
30
30
I
3
3
4
.45
.38
.33
.29
.27
.25
.23
.22
.21
.20
.20
.20
.20
.20
0.00
0.30
I. 00
1.30
2,00
2.30
3.00
J.30
4.00
4.30
5.00
5.30
6.00
6.30
7.00
7.30
e.oo
B.30
9.00
9.30
10.00
10.30
11.00
11.30
.BO
.99
.40
.00
.49 .59 .17
.42 .55 .78
.37 .51 .69
.33 .4» .59
.31 .46 .53
.29 .44 .48
.28 .43 .44
.27 .42 .42
.« .41 .41
.25 .40 .40
.25 .40 .40
.25 .40 .40
.25 .40 .40
.25 .40 .40
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.82 0.82
0.84 0.84
0.86 0.86
0.89 0.89
0.92 0.92
0.95 0.95
1.00 1.00
1.00 I. 00
1,00 1.00 I
1.00 1.00 (
0.99 0.99 (
0.98 0.98 (
0.97 0.97 (
0.98 0.98 (
0.99 0.99 C
1.00 1.00 (
.75 .80
1.00 .94
.42 .46
.75 .80
5 86 68 95
10 81 45 91
IS 78 42 91
20 76 40 91
25 TS 39 91
30 74 38 91
35 73 37 91
40 73 36 9(
45 72 36 96
50 72 35 9e
55 72 35 99
60 71 34 99
65 71 34 99
70 71 33 99
15 70 33 94
80 70 33 94
85 TO 33 94
90 69 32 94
95 69 32 94
100 69 32 93
0,5 86 68 98
1.0 78 48 91
.79
.66
.55
.45
.39
.35
.32
.11
.11
.30
.30
.30
.30
.30
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.95
1.90
(.85
.80
(.75
.70
.65
1.60
.90
.84
.60
.90
86
81
78
76
75
74
73
73
72
72
72
71
71
71
70
70
70
69
69
69
86
7S
t
t
»
f
0
0
0
0
0
0
0
0
0
0
0
0
0
1
83 .90
72 .84
«1 .76
S3 .66
46 .59
42 .54
39 .49
37 .47
36 .46
35 .40
33 .40
33 .40
33 .40
33 .40
.80
.80
.80
.80
.10
.80
.80
.80
.82
.84
.86
.89
.92
.93
.00
.00
.00
.00
.99
.98
.97
.98
.99
.00
.87 .
.80 .1
.82 .1
.87 .
103
no
us
120
125
130
135
140
145
ISO
155
160
165
170
173
180
I8S
190
195
200
8,5
9.0
.60 .31
.34 .43
.48 .37
.44 .31
.39 .28
.36 .23
.33 .22
.32 .21
.31 .20
.30 .20
.30 .20
.30 .20
.30 .20
.30 .20
12.00
12.30
13.00
13.30
14.00
14.30
13.00
13.30
16.00
16.30
17.00
17.30
18.00
18.30
19.00
19.30
20.00
20.30
21.00
21.30 (
22.00 I
22.30 (
23.00 (
23.30 I
10 .79
10 .80
14 .99 1
10 .75
69 32 93
68 31 9!
68 31 9]
68 31 99
68 31 99
67 31 99
67 31 99
67 31 99
67 31 99
67 31 91
66 31 91
66 31 91
66 31 91
66 31 91
66 31 91
63 30 91
65 30 9C
65 30 9(
65 30 9C
65 30 90
58 30 81
58 30 83
.91
.46
.41
.!«
.12
.28
.26
.«
.24
.23
.23
.23
.23
.«
.00
.00
.00
.00
.99
.98
.97
.98
.99
.00
.00
.00
.00
.00
.98
.96
.94
.92
.90
1.88
>.86
1.84
(.82
).80
.73
.80
.00
.75
1 69
1 68
1 68
[ 68
68
67
67
67
67
67
66
66
66
66
66
65
65
1 65
> 65
63
58
58
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
60 .53 .43 .49
34 .48 .38 .42
48 .43 .33 .37
44 .18 .29 .31
19 .35 .21 .11
36 .33 .23 .29
33 .32 .21 .28
32 .31 .22 .27
31 .30 .21 .26
30 .30 .20 .33
30 .30 .20 .39
30 .30 .30 .33
30 .30 .30 .25
10 .10 .20 .23
.00 0,60 1,00
.00 0.37 1.00
.00 0.35 i.OO
.00 0.33 1.00
.99 0.55 0.99
.98 0.60 0.96
.97 0.69 0.97
.98 0.70 0.98
.99 0.80 0.99
.00 0,90 1.00
.00 .00 i.OO
.00 .00 I. 00
.00 .00 1.00
.00 .00 1.00
.98 .00 0.98
.96 .00 0.96
.94 ,00 0.94
.92 .00 0,92
.90 .00 0.90
.68 .00 0.88
.86 .00 0.86
.84 .00 0.84
,82 .00 0.82
.80 .00 0.60
.82 ,93 1.00
.80 .80 .84
.96 .77 ,53
.83 ,91 1,00
305 65 30 90
210 65 30 90
215 65 30 90
220 65 30 90
325 65 30 89
230 65 30 89
335 65 30 69
340 65 10 89
345 65 30 69
330 63 30 69
335 63 30 69
360 65 30 69
265 63 30 89
270 63 30 88
273 63 30 86
380 63 30 86
383 65 30 86
390 63 30 88
393 63 30 88
300 65 30 88
16.5 58 30 73
17.0 56 30 73
.59
,55
.31
.48
.46
.44
.43
.43
.41
.40
.40
.40
.40
.40
.96
.93
.43
.98
65
65
65
63
65
63
63
63
63
65
65
65
65
65
63
65
65
65
65
63
36
36
-------
TM-8CHMUTZMCNGEN 1
NJ
TH-SCHHUTZHENCEN 2
TH-SCHHUTZMCNGEN 3
1.5 74 42 95 74 9.S
2.0 68 38 95 6( 10.0
2.5 66 39 93 66 10.5
3.0 64 33 92 64 11.0
3.S 62 32 91 62 11.5
4.0 61 31 90 61 12.0
4.5 60 31 89 60 12.5
5.0 59 30 81 59 13.0
5.5 5* 30 87 51 13.5
6.0 58 30 86 58 14.0
6.5 58 30 8S 58 14.5
7.0 58 30 84 58 15.0
7.5 58 30 84 58 15.5
8.0 58 30 83 58 16.0
0.00250.0250,0250.0250.0
0.30250.0250.0250.0250.0
1.00250.0250.0250.0250.0
1.30250.0250.0250.0250.0
2.00250.0250.0250.0250.0
2.30250.0250.0250.0250.0
3.00250.0250.0250.0250.0
3.30250.0250.0250.0250.0
4.00250.0250.0250.0250.0
4.30250.0250.0250.0250.0
5.00250.0250,0250.0250.0
5.30250.0250.0250,0250.0
6,00250.0250.0250.0250.0
6.30250.0250.0250.0250.0
7.00250.0250.0250.0250.0
7.30250.0250.0250.0250.0
8.00250.0250.0250.0250.0
8.30250.0250.0250.0250.0
9.00250.0250.0250.0250.0
9.30250.0250.0250.0250.0
10.00250.0250.0250.0250.0
10.30250.0250.0250.0250.0
11.00250.0250.0250.0250.0
11.30250.0250.0250.0250.0
0.00280.0280.0210.0280.0
0.30280.0280.0210.0280.0
1.00280.0260.0210.0280.0
1.30280.0280.0210.0280.0
2.00280.0260.0210.0280.0
2.30280.0280.0210.0280.0
3.00280.0260.0280.0260.0
3.30260.0280.0280.0280.0
4.00260.0260.0280.0260.0
4.30280.0280.0280.0260.0
5.00260.0280.0280.0260.0
5.30280.0280.0280*0280.0
6.00280.0280.0280.0260,0
6.30280.0280.0280.0260.0
7.00280.0280.0280.0260.0
7.30280.0260.0260.0280.0
8.00260.0260.0260.0260.0
8.30260.0260.0280.0280.0
9,00280.0280.0280.0280.0
9.30260.0280.0260.0260.0
10.00280.0260.0280.0260.0
10.30280.0260.0280.0260.0
11.00260.0260.0280.0260.0
11.30280.0280.0280.0260.0
0.00 20.0 20.0 20.0 20,0
0.30 20.0 20,0 70,0 ZO.O
56 30 61 56
56 30 60 56
56 30 79 SI
58 30 79 58
56 30 76 56
58 30 76
17.5 56 30 72 58
II.0 56 30 72 58
16.5 58 30 71 56
19.0 56 30 71 58
56 30 70 56
58 30 70 58
56 30 70 56
56 30 70 58
58 30 70 56
56 30 70 58
56 30 70 56
20.0
20.5
21.0
21.5
22.0
22.5
23.0 56 30 70 58
23.5 56 30 70 SI
24.0 51 30 70 51
58
56 30 77 56
58 30 77 56
58 30 76 56
56 30 75 56
58 30 75 58
58 30 75 58
56 30 74 58
56 30 74 56
12.00250.0250.0250.0250.0
12.30250.0250.0250.0250.0
13.00250.0250.0250.0250.0
13.30250.0250.0250.0250.0
14.00250.0250.0250.0250.
14.30250.0250.0250.0250.
15.00250,0250.0250.0250.
15.10250.0250.0250.0250.
16.00250,0250.0250.0250,
16.30250.0250.0250.0250.
17,00250.0250.0250.0250.
17.30250.0250.0250.0250.
18.00250,0250.0250.0250.
16.30250.0250.0250.0250.
19.00250.0250.0250.0250.
19.30250.0250.0250.0250.
20.00250.0250.0250.0250.
20.30250.0250.0250.0250.
21.00250,0250.0250.0250.
21.30250.0250.0250.0250.
22.00250.0250.0250.0250.
22.30250.0250.0250.0250.
23.00250,0250.0250.0250.
23.30250.0250.0250.0250,
12.00280.0280.0280.0260.
12.30260.0260.0280.0280.
13.00260.0280.0260.0280.
13.30280.0280.0260.0260.0
14.00260.0260.0260.0280.0
14.30260.0260.0280.0260.0
IS.00260.0260,0280.0280.0
15,30280,0280,0260.0280.0
16.00280.0280.0280.0260.0
16.30260.0260.0280.0280.0
17.00260.0260.0260.0280.0
17.30280.0260.0260.0280,0
18.00260,0280,0280.0260.0
16.30260.0280.0260.0280,
19.00280.0280.0260.0280.
19.30280.0280.0260.0260.
20.00260.0280.0260.0260.
20.30260.0260.0260.0260,
21.00260.0280.0260.0280,
21.30260,0260.0260,0280.
22.00260.0260,0280.0280.
22.30280.0260,0260.0260.
23.00280.0280.0280.0260.
23.30280.0280.0280.0280.
12.00 20.0 20.0 20.0 20,0
12.10 20.0 20.0 20.0 20.0
-------
TW-SCHHUTZMENGEN 4
-4
00
IH-KOHZENTBATION
XXXX
XXXX
XXXX
1.0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20,0 20.0
.00 20.0 20.0 20.0 JO.O
.10 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20,0 20.0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20,0 20,0
,00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20.0 20.0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
0,00 20.0 20.0 20.0 20.0
0.30 20.0 20.0 20.0 20.0
1.00 20.0 20.0 20.0 20,0
1.30 20.0 20.0 20.0 20,0
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360, 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
0.00 360. 360. 360. 360.
0.30 360. 360. 360. 360.
I. 00 360, 360. 360. 360.
1,30 360. 360. 360. 360.
270. 2SO, 20. 360.
13.00 20.0 20.0 20. 20,0
13.30 20.0 20.0 20. 20.0
14.00 20.0 20.0 20. 20.0
14.30 20.0 20.0 20. 20.0
15.00 20.0 20.0 20. 20.0
15.30 20.0 20.0 20. 20.0
16.00 20.0 20.0 20. 20.0
16.30 20.0 20.0 20. 20.0
IT. 00 20.0 20.0 20. 20.0
17.30 20.0 20.0 20. 20.0
11.00 20,0 20.0 20. 20.0
18.30 20.0 20.0 20. 20, 0
19,00 20.0 20.0 20.0 20.0
19.30 20.0 20.0 20.0 20.0
20.00 20.0 20.0 20.0 20.0
20.30 20.0 20.0 20.0 20.0
21.00 20.0 20.0 20.0 20.0
21.30 20,0 20.0 20.0 20.0
22.00 20.0 20.0 20.0 20.0
22.30 20.0 20,0 20.0 20.0
23.00 20.0 20,0 20.0 20.0
23.30 20.0 20.0 20.0 20.0
12.00 360. 360. 360. 360.
12.30 360. 360. 360. 360.
13.00 360. 360. 360, 360.
13.30 360. 360. 360. 160,
14.00 160. 360. 360. 360.
14.30 360. 360. 360. 360.
15.00 360. 360. 360. 360.
15,30 160. 160, 360, 360.
16.00 360. 360. 360. 360.
16.30 360. 360. 360. 160.
17.00 360. 360. 360. 360.
17.30 360. 360. 360. 360.
U.OO 360. 360. 360. 360.
18.30 360. 360. 360. 360.
19.00 360. 360. 360. 360.
19.30 160, 360. 360. 360.
20.00 360. 360. 360. 360.
20.30 360. 360. 360. 160.
21.00 360. 360. 360. 360.
21.30 360. 360. 360. 160.
22.00 160. 360. 360. 360.
22.30 160, 360. 360. 160.
23.00 360. 360. 360. 360.
23.30 160. 160. 360. 160,
-------
APPENDIX 8
TEST EXAMPLE FOR DWTFLC
NOTE: This example is similar to the example
contained on the computer tape.
-------
Output
WA&G.AI «U«5.
8ASG.AX IF03.
UAS6.AX IF01.
UASb.AA .IFOb.
0AS(>|AX . IfOi.
WAi(,,A» .1107.
UASb.AX
OO
O 61»b(, ,AX .If 10.
WAS(., AX . IF I I .
*AS(i.AX IF 17.
UAbb.AA «IFI3.
hiASl, , AX .IF 11.
WASt,,Ak .\F1b.
WASfa.AX «IF 14.
WASGiAX IF I 7.
IrASb.AX .11 I h.
WAS<., AX If I 9.
WASb.AX .|t?0.
-------
UAbG.A* «IF2I.
WASG.A* If 22.
WASG.A* «IF2N.
>\f2b.
WUSi. 11,'IFOI.
UUbL I3.-ITU3.
WUSL IS,
N3
oo
UUbl 1 1), IFO»>
IVi«IF09.
MU'jf ill,. IF 10.
UUbL 21 t* IF I I .
BUbL 22,«l> 12.
UUSt 2.1,'HIJ.
UUSL 2S>« IF Ib.
HUSt i»t« IF I /.
-------
10
oo
ITAb
IHM
1
2
J
1
5
b
;
H
V
10
1 1
12
1 J
M
Ib
16
17
III
19
20
21
22
2J
21
2i.
26
^7
2 a
2V
JO
Jl
32
33
Jl
3!>
1
». MA
CUUI
CU02
CU03
CU01
CUOb
BUOt
CU07
coue
coo9
ClllO
CUI 1
till 3
CUM
NUId
SUI3
SUI1
SUIS
101 A
CU03
CU21
CII25
CU76
CU27
KU2H
CU29
CU30
CO 31
CU.12
CU33
CIJ31
CU35
CU3A
CU37
R03B
U(J3n
IUH1H 12
KNE
CO02
CU03
tUOl
COOS
8006
CU07
(.008
1009
COIO
CUI 1
CQ3I
COI'I
HOIS
CUI A
SOIH
SOIS
(III*
11006
CU2N
C02&
C026
C027
C032
CO2V
CU3CI
C03I
C032
CU33
C031
C03S
CU36
CO37
N03H
H03H
Cb3V
HA
.UM3HA&
.0|N1b31
.OUAO&13
.009866*
.OO3332b
.U20>.*l<>2
.OI16H9I
.0/IOH3I
.01 -70V 10
.01312/1
.QI67IIV
.OOOOUOO
.OOOOOOO
.01100000
.01 ;16
.0076660
.r>OJlJ2?
.U286HS3
.0210120
.0210128
.UIV07IS
.01671 1)
.01671 19
.OOOOOOO
.OOOOUOO
.OGOUOOO
.Ol 71120
.01 71117
.Ul 71120
.OU78065
.OU60S16
.0051757
.Ollb.lVOS
.U0393IT
.O0120S1
.012.1812
.01 1 31 IS
.0107717
.01 7HO?4
.01 78036
.OI1V722
.011977V
.0211380
.0211392
.0210113
. I227S22
.U372B69
UA
.0086127
.0086127
.00277)1
.O070I 75
.0091175
.OI8SI55
.0185155
.UIUSI55
.0105155
.0185155
.0185155
.OOUOOOO
.OOOOOOO
.OOOOOOO
.00527>|
.0052771
.0052771
.0052771
.OO5B696
.00511696
.OOb86'/6
.0079132
.0079132
.0057955
.OUS7955
.OU5795S
.0263320
.0371 112
.0381712
.0381712
.0381712
.0381712
.0389893
.03119893
.0389893
QE
.0086127
.0086127
.0027731
.0070175
.OO91175
.0185155
.0185155
.0185155
.0185155
.0165155
.0165155
.OOOOOOO
. .OOOOOOO
.OOOOOOO
.0052771
.OOS277I
.0052771
.0052771
.0058696
.0058696
.0058696
.OD79132
.0079132
.0057955
.0057955
.0057955
.O26J32O
.0371 112
.0381712
.0381712
.0381712
.0381712
.U389893
.0389893
.O389893
CVZSH
.UDOOOOO
OOOOOUU
.0000000
OOOOUOO
.OOOOOOO
oooooou
uoouooo
.0000000
.OOOOOOO
. uoonuoo
uouuooa
.OOOOOOO
.OOUOOOO
.OOOOUOO
OOUOOOO
oououoo
oououou
.OOOOOOO
.OOOOOOO
.uoouuoo
uououou
.OOOOUOO
.OOOOUOO
.oououoo
oououoo
uouoooo
.uououou
.OOOOUOO
.0000000
.oououoo
OOOOOOO
OOOOUOO
uoouuoo
uoooooo
.OOOOOOO
NUI5
N028
NU3H
OURUEf
.ooooouoon
uiiuoouoiin
.uauoodnnn
HOU6
UUJ8
. U176.tO
.0000(10
.OI8SIS
.03H9tV
ClEUI
.UI85I5
.038989
OER2
.OUOUOO
.UUOUOU
VOLB
38.103610
.IIOOUOU
Sit
I SI A
Mu2U o
UVI-*
.niiunn
I AC1
. uiinou
-------
... IftHHH ... | |2
«» roAHiui i 12
IXAHHII ... M«X HUMIIEH OF lltRAIIONS 12 AVtHAGC 12*000
WBKKPT TKINll
00
OJ
-------
APPENDIX
TEST EXAMPLE FOR RCVRIN AND MNTWKC
NOTE: This example is similar to the example
contained on the computer tape.
-------
Exerpt of Output
00
WASG.AX .1(05.
UA !><<,«(
9ASb,AX IFCI2.
X .IFU6.
UASG.AX « II 07.
UASO.AA «lfUB.
UA'jfc,A« >IFOV>
MAS(,,A« «IF | | .
UASfi,A« IF I 2.
bASb.AX IF | 3.
UASG,A» IF I 1.
WAbd.AX -IF IS.
UAbG , A* « IF |/,.
UAS(, ,AX .IF | 7.
UASd.AX IF1B.
UASb.AX If I V.
UASb.AX > II 2U.
-------
UASO.A* .IF22-
MASI..AA «IF2J.
U«Sli,AX
, AX If 2S-
uuse 1 1 f it ui .
UUbt I3.'iro3.
f^j WUSi
oo
WUSC l6.«lfU6.
UUSt I7..IFCJ/.
WUSt 17, If UV.
UUSL 21 .»lf I I
UUSL
-------
UUbE 2/,»IF17.
«WUS.RCVR|N
IIUC HI II MA*IMUt1 FLU*IIMF (UHIC1ED 10 21 HMEStEPS
RORHSI DUKAIION or Nl X I RAINFALL IS SFARI UAfE
--- RSiT --- IEESIN I im 2|t LOBBR 0 JHP I
KtCOVS UAIA SAVE At PAIE III I LI 1
I I 215
0
NJ
oo
"^
DA1HNL
OAIENA
RbuPUl ---
IFNGER
EFFNGUI l,|l
EFFNbUI 1,1)
OLD DATE
NE* DA IE
IRN
IDttHI
JHPI
JKtt
IENDS
1 1
1 1
211
1
1 JRP2
1
U
1
O
IRAINS 1
0. tFFMGUI2.il
U. IFF II
GUI ?, 1 1
1 1
1 2IS JIBPI 3
1 1215
1 JRBI 1 JRB2 1
O41OOU O 0 U
0 O O 0 0
0 U 0 0 0
U U 0 0 0
O. EFFNbBll.ll
U. EFFMGUCJ.II
0000
0 0 0 O
U 0 0 0
0000
0. EFFNGBIH.II
0. trrNSUMtll
HUTRHN DRV «IATHLR FLO* INI I ILALI SAT I ON FINISHED
-------
INTAb 215 I1CHTM
HOHK HN» K.Nt
N)
00
oo
1
2
3
1
5
6
7
a
7
IU
1 1
12
13
11
IS
16
17
IB
1*
20
21
22
23
21
26
26
27
28
2V
3U
31
32
3J
31
3b
KUL
,
2
3
CUOI
CUO2
CUO3
C001
CUO5
UU06
C007
COOB
CU07
COIO
CUI 1
CD 13
CUI 1
NUIS
Mil 3
sun
5UI5
CUI6
COQ3
CU21
CLI25
CU26
CII27
RU2B
CO27
CU3U
(U3I
C032
C033
C031
CU35
CD36
C037
NU3R
11038
C002
C003
CUOI
C005
UU06
C007
coon
coov
COIO
COI 1
C03I
con
HOIS
COI6
son
SOIb
cm 6
B006
C021
LO25
C026
C027
C032
C02»
C03U
1.031
C032
CU33
C031
CU35
CU36
CU37
Hd3B
U(J3B
C03V
MIIIMKII
HOI1..
K028
hi) 3 8
1 0
MA
.UH386S
.0111531
.0060513
.0098666
.00333/5
.0286152
.01 16891
02IO13I
.0170918
.0131271
.01671 19
.OOOOOOO
.1)000000
.ooonuoo
.Ol 71120
.01 72016
.01 71170
.0078(166
.0060529
.0051BIH
.0053878
.OU3V315
.001/006
.0123812
.0113116
.010771 7
.0128357
.01 78032
.008631 1
.Ul 19761
. U 1 2 7 7 1 1
.02PI3V?
.0210113
. 1227522
. 037711 1.V
OfinOOdtJUCI
uuuudunud
uooooouuo
III
.0111531
.0111531
.0060516
.0098660
.0033329
.02861S3
.0210120
.0210128
.0190915
.0167113
.0167119
.OOOOOOO
.0000000
.OOOOOOO
.01 71120
.01 7111 7
.0171120
.0078065
.0060516
.OU517S7
.OIJ53705
.0039317
.0012051
.0123812
.01 131 15
.010771 7
.0178026
.01 78036
.0117722
.0117779
.0211380
.O2I1392
021011 3
. 1227522
.U372B67
«A
.0086127
.0086127
.002773)
.00701 75
.0091175
.0185155
.0165155
.0185155
.OI8SIS5
.OIBSI55
.0185155
.OOOOOOO
.OOOOOOO
.OOOOOOO
.0052771
.0062771
.006277)
.006277)
.0068696
.0068696
.0051676
.0077132
.00791.12
.0067756
.0067756
.0057955
.0263320
.0371 112
.0381712
.0381712
.0381 712
.03817)2
.(1387873
.11387873
.0387873
Qt
.0086127
.0066127
.0027731
.00701 76
.0091175
.OI86I55
.0186166
OI86IS6
.0186166
.11186166
.0186155
. (IOOOOOO
.OOOOOOO
.01)00000
.0062771
.0062771
.0062771
.0052771
.0058*96
OOS8676
.0068676
.0077132
.0077132
.0057756
.0057755
.0057755
.0263320
.0371 112
.0381712
.0381712
.0381712
.0381712
.0387(73
.0387873
.0387873
CVZSH
.0037261
.OOI5136
.0018387
.1)030776
.UOI265I
.O01I62I
.0016772
.0061777
.00157(3
0033570
.0020126
. UOOOOOO
.OOOOOOO
.UOOOOOO
.0021718
.OOI669O
.OO23715
0022318
OOI3717
.0011175
.0010158
.0013098
.0013072
.OO37600
.0032673
.U028257
.0013756
UIOI122
,U016963
.0065181
.0083716
UI20I 13
.0071222
.UI6U6B2
.01 I7I1U
MlNMKII
UUU6
UUJH
.oooouo
OEBI
. OlOSI'j
U3A9BV
.018515
.03B7B?
.uoouou
.ouoooo
VOLB
38.101610
.UOOOOU
ISIA
I) V ! A
I -IHIII'III
I AC1
I .llll.'IIHJ
-------
NJ
oo
vO
--- S1SF.HH ---
I i cu3i
--- HUVHHN --- KORAK
n? n .IOUOOOOD«OI .10000000*01
1FR 7 IRAINS I NZSNRE 0 IEMTFL
IBNORH I
01 King -
1 1 1 / 1 1 1 1 1 / / /
illinium
1 1 1 1 1 1 1 1 / 1 / 1
////////////
,MRKCHN»»
SMNIVH -
UISEI --
It'jfUH
DA1CNA -
UATMIIA
ttn&lK -
Ef FNbUI 1,11
tl f N6UI 1,11
SISIMN -
1 1 tUJH
IIUYRMH -
UIKTHU -
blltllVI) -
OTill --
lib I OH
UAltNA -
DAI UNA
IfNbLK -
tl r 14611 ( 1,11
it rw&in 1,11
IKNUII7. U JRI 1 LRSZ 0 KB1 0
1 / / 1 1 1 1 1 1 1 1 1 / 1 1 f / 1 / / ./HIKSN- 32 1 11 1 t
1 1 1 1 1 1 1 1 1 1 1 1 1 II II 1 1 1 Jlll_rSM« 33 3 21 1 4
//////////////////// JBLKSM" 31 2 21 1 *
//////////////////// JBLKSH* 35 1 21 1 *
UHT-*( A IIIER-F IOK |NI 1 IALISAI ION UK
JAI 1 LOIIHH 1
JHt'i 1 JBt2l.)RPV»l 1 0 LOBBB 1 LlMBO 0
JIIU2 |
IHN 1 JJAHR 1 JMONAt 1 J1A6 1 JINT 2|4
JKB2 '. NIIK 1 1
SlNC.Ll rvttll KESULIS OU1
IKN I
ID) CHI I I I 2IA
lit* UAH | | I 2IA
IHAINS I
o. iifNGBi?,ii o. crrNGDi J, 1 1 o. trrNsdd, i » o.
0. It 1 N(.III2, 1 1 O. Iff NbUI 3, 1 1 0. tFFNGUM.II 0.
--
.2U2I 7125-U2 0 . IOUOOOOO'01 . IOOOOUOO«OI
KODAK 2 lltfi | IRAINS 1 NZSNKE 0 ICNIFL 1 IBNOKH 1
IKNI/B7 1 JKI t LBSl 1 KB2 1
JAI 2 LUDHB 2
JRP2 1 JRI/IJMP2OI 0 LOBBB 2 LIMBO 0
JRH2 b
IKN 1 .IJAHR 1 JMONAt | JIAG 1 JINT 2|7
JRII2 9 IIIIK | 1
SlNdLf tVfNI ht'.ULTS utll
IHN 1
IUILNI | 1 12)7
« HI* OAlf 1 | 1717
WAINS 1
20U> LFFN<,IH2,II 0. LFIH(,B(3,II 0. EFINoBIH.II 0.
0. UIN(,UI?,II 11. tFFNbUI3,ll 0. trFNbUHd) 0.
STbUtN
I I (-IIJ4
, IUIP(I7 I 7-d
. inouuuuiuoi
. I0(juooou»ni
-------
--- HUtRltfl KORAK
PIRIIIU
SHNIVH ---
IKNUB;
JM
JKP2
JRII2
I II R
I JKI
3 Loeiin
IRAINS I NZSNRE 0 IENIFL I IBNOKN
3 LBSZ 2 KBZ I
JREZIJRP2*|I
0 LOBBB
3 LIMUO
UIRI I.EVLLS (HOUIIML .SMHSELI. HUNIH NUMBER I riNE SINCC S1REE T-CLLANIN't II .IOOOROOO»OI . lOOOOUOO'Ot
-- KORAK 'I Illk 10 INAINS 1 NZSNRC 0 IENTFL 1 IBNORH 1
IKNIIHZ 1 JNI 1 LBSZ 3 KBZ 1
JAI 1 LliOfUl 1
JHI'2 1 JNEZI.IHP2«II 0 LOBBB 1 LIMBO 0
JKU2 I 3
IKH | JJAIIR | JHONAI I JTAG I JINI 2I9
JKII2 I 7 NUk I 1
'« SIMM 1 FVENI HESUirS (HIT
IKN 1
1 U T t H 1 1 | 1 2 | V
.. NL* <-M« 1 . .2.-.
IKAIHS 1
JttUO. tt F N(,ll 1 ?, | ) 2nUO. trFNbRI3.il 2800. EFFNGUIH,!! 2DUO.
o. LFirJoui2.il o. trrNouij.ii o. IFFNGIMI.II o.
--
.0.>V3'I62I-U'I 0 IOUOOOOU-01 .10000000*01
-------
LES10H SINGLE F.VLNI RESULTS OUT
DAltNA ---
INN
IDIENT
UA1HHA NL* BAIL
KNI (101 tXII
I I 2*0
I 2tO
Ni
VO
END-OF-YEAH IOIAL DINT HASH-OftS
UIKI KPL | TOTAL *A5II-OII > .B9»984«03 C A TC MMt NT -ARE A DASH-OfFS .HZ/920402 .}SB&86>01 .1T3SV3»U3 .19IS2O«OI
UIRT lYPI 2 IOIAL KASII-UI F > .2BJS08'(Jt C A TCHHENT- ARE A «ASH-OFFS * .|V68IS*U3 .7B&IIM03 .IS372I»O1 .l1f1SO«O2
DIM TfF-t. 3 TOTAL KASH-UH .636085*01 CATCHMENT-AREA « ASH-OFF S .&02»06«03 .28097I>O1 .300*83*01 .3»5021«02
UIHI ITI'l S TOTAL KAbll-llff > . J6176S4OH C A I C HHENT-ARE A *«SH-OFFS 2I3TAO«U3 .I13171»O1 .IV7V2T«01 .1*6608*02
kECUW« KFCOVIKV Hill. CAHEn
> HNTWKt « ALARMS 0/f FOLLOWS
OUUUOOll 00000000
00000 OUOOOOOOOO
ilUHKPT CHIIITI
-------
APPENDIX 10
TEST EXAMPLE FOR MNTWSP
NOTE: This example is similar to the example
contained on the computer tape.
-------
-Exerpt of output
NJ
IO
OASG.AX .(JUS.
bASQ.AX .IFOI.
X «IFU2.
X >IFU3.
> IFOI.
0ASG.AX .IFUb.
UAbti.AH IFOA.
UAi&,»« IFQ7 .
WAbG.AA IFOB.
UASfa,»« -IFU9.
OASG.AX .IflO.
WA'jb.AX -IF I I .
WAS6.AX -If 12.
MAS6.AX «IFI3.
i AX . IF I H.
WA'j(, , A A » IF 16.
k'ASt, , AX IF I 7.
WASb, AX .If I V.
b>AS6,AX
-------
y*St,,A« «IF22.
L.ASG.AX «IF23.
MASft.A« H21.
i A* If 2b.
WUSl II.MFbl.
SUSt U..IF03.
NJ
l»,»lf(J6.
WUSl 17,'IIU/.
fcUSE IH.'IFUl).
tUbl IVi'lFOT.
WUSi 22 i> IF I 2.
23t*IFI3.
UU'jt 21t« IF |
WUSt .
irUbt 2ti« II 16.
2 7, IF I 7
UXill «UK
-------
085
., URBAN RUNOFF AND ITS POLLUTION
nJ
^
U1 SIN61E CVHir 5IMULAIION !
i
FOR IHE
««S-EPA-E»AMPll
-------
PIPt MLSU115
PIPE NUHBIR
UPPtH NODE
CUOI
LONER NUDE COU2
IMTLKVAL UU III)
It/Sill (III
I
2
3
1
&
6
7
R
1
in
I I
12
13
I 1
IS
16
I 7
18
IV
20
21
22
23
21
2S
26
^7
28
21
id
31
32
JJ
31
35
J6
37
38
39
40
II
12
13
11
IS
9.
9.
9.
59.
I'jS.
I 70.
I IS.
BS.
71.
SI.
1U.
31.
32.
30.
21.
19.
II.
12.
10.
10.
9.
9.
9.
9.
V.
9.
9.
9.
9.
V.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
V.
9.
9.
9.
.01
.10
.25
.;»
. iv
. 11
.12
.09
.06
.(IS
.05
.Ob
.01
.03
.1)2
.02
.02
.02
.01
.01
.01
.1)1
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
Ul
.01
01
.01
.01
.01
.01
.01
.01
.01
.01
ao
U/Stt)
9.
9.
9.
10*
116.
157.
132.
99.
81.
63.
17.
18.
33.
31.
26-
21.
17.
13.
1 1
10.
9.
9.
9.
9.
9>
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
HP
IN)
.01
.01
.01
.07
. 19
.26
.23
. 17
.11
. 1 1
.08
.06
.06
.OS
.01
01
03
.02
02
.02
.02
02
.01
01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
01
01
.01
.01
01
PI
IKG/IN1I
.6S
.65
.6b
3.15
8.25
9.23
6.32
3.76
2.39
I. 65
1.11
.81
.69
.65
.65
.6H
6S
.65
.65
.AS
.65
.65
.66
.65
.6%
.65
.65
.65
.65
.6b
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
P2
IKG/INTI
.73
.73
73
1.21
1 1. 51
11.11
11*21
8.18
7.09
5.52
1.U3
3. IS
2. S3
2.05
1 .63
1 .26
1 .07
92
.83
.79
.77
.71
.73
'3
>3
.73
.73
.73
.73
.73
73
.73
73
.73
.73
73
13
.73
.73
.73
.73
.73
.73
.73
73
P3
IEIUC/IN1)
SI .86
SI .86
51.66
61.29
98. 12
1 15.36
IUI.I1
83.19
69.10
61.52
57.02
55.82
51.78
53.10
52*78
50. 15
52.22
SI -91
51.68
S2.I1
52.23
51.85
51 .82
52. UO
51 .86
51 .87
51.85
bl .85
51 .85
51.85
51.86
SI .86
SI .86
51.86
51.86
51.86
51.86
51 .86
51.86
51 .86
51.86
SI .86
SI .86
51.86
SI .86
PI
IKG/IN1 1
.93
.93
.73
11.92
35.27
35.11
2U.95
1 1.50
7.06
1.11
2.57
1.15
1.01
.93
.91
.92
.91
.93
.93
.91
.91
.93
.93
.91
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
93
.93
.93
.93
.93
-------
PIPt HtiULlS
PIPE NUMBER
21
UPPER NODE
ROZI
LOKER NUDE C029
K>
VO
IM1EHVAL
2
3
1
b
A
7
H
7
Id
I I
12
13
II
IS
It,
17
18
19
211
21
It
23
21
25.
2A
27
28
2V
3D
31
32
JJ
31
3b
3*.
3/
JU
3»
111
II
12
tj
4'I
A"
&
6.
382.
21(1.
2AI .
215.
211.
Z1S.
213.
211
2)7.
237.
236.
205.
IS3.
75.
11.
19.
12.
7.
A.
6.
6.
A.
6.
6.
6.
6.
A.
A.
MU
(HI
.01
.01
.01
.»S
.70
.71
.AB
Ab
Al
.2
. 33
.2A
.12
.UA
1)2
.01
.III
.01
.Ol
.01
III
.01
.Ul
.01
.01
.01
.01
01
.01
.01
.01
.01
.01
.Ul
.(II
.01
01
.01
.111
.01
.01
<4D
u/stc
A.
A.
A.
207.
Z71.
261.
21S.
211.
Z1S.
Z13.
Z1|.
237.
237.
23A.
210.
180.
123.
?s.
10.
21.
12.
8.
A.
A.
A>
A*
A*
A.
A.
A.
A.
A.
A.
A*
A.
A'
A.
(, .
A.
A.
A<
A.
A*
A.
A.
HD
(HI
.01
01
01
.11
.SO
.S3
.S9
SB
SI
.SO
.SO
SO
.SO
.SO
.IS
.39
.27
.It
.0*
.OS
.03
.02
.01
.01
01
.01
01
.01
.Ol
.01
.01
.01
01
.01
.01
.01
.01
01
.01
.01
.01
.01
01
.01
.01
PI
IKfa/INTI
.15
.13
.13
13. A2
28.3V
13.33
10.20
.Al
.78
.Al
.55
.20
to
.77
3.92
2.8A
1.85
I.IA
.80
.Al
.SI
.15
.11
.15
.11
.11
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
PZ
IKG/INT 1
.SO
.19
.19
33.32
73.19
11. /S
35. AO
32.99
37. A9
11.95
11.73
10.35
3D. 99
31.35
21.12
IA.9B
10.81
A. 37
3.BA
2. SO
I.A1
1 .08
.77
.Al
52
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
P3
IEIOC/INII
3S.7S
31.79
31.75
58.80
88.82
A8.2A
73.82
73.91
75.10
81.77
85. 13
85.77
BB.2I
78.73
73.12
A2.67
bz.si
15.10
39.83
37.59 -
36.71
35.56
JS.39
36. 17
35. 10
31*97
31.80
31.78
31.78
31.77
31.77
31.77
31-77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31*77
31.77
PI
IKb/INTI
.61
.63
.63
66.78
111.27
65.25
16.02
31.11
21.01
20.32
11.93
7.31
2.31
.63
.59
.62
.63
.62
.61
.62
.63
.62
.63
.65
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.A3
-------
PIPl KtSUlIS
PIPl NUHLILR
2b
UfPEH NUDt
LOKER NODE C030
INIEKVAL UU
IL/StCI
S3
VO
00
I
2
3
1
5
6
/
II
1
IO
11
12
13
IS
1%
1A
I 7
IH
19
2t
21
22
2J
2-1
25
26
2V
20
2V
-111
Jl
32
33
31
lii
36
37
.IB
39
10
II
12
13
HI
1b
A.
A.
Z07.
271.
241 .
215.
211.
215.
213.
211 .
23/.
237.
23*.
2IU.
IBO.
123.
75.
10.
21 .
12.
H.
A.
4.
A.
«.
A.
A.
II U
IMI
111
.(10
.UU
.20
.32
.55
.411
.57
.5A
.32
.32
.31
.31
.31
.28
.2't
. 16
.0V
U1
.02
.01
. I1U
.00
. UU
.00
.00
.00
.00
.00
.00
. UCJ
.00
.00
.00
.00
.00
.1)0
. UU
.0(1
.on
.00
.00
.on
.uu
.00
eo
(1/StC 1
A.
A.
A-
117.
21 1.
211.
2HS.
211.
215.
211.
212.
23V.
230.
237.
223.
19V.
158.
1 10-
AH.
38.
21 .
17.
n.
7.
A.
A.
A.
A.
A*
A.
A*
A.
A.
A.
A.
A*
A-
A*
A.
A.
A.
A.
A.
A.
A.
HO
(HI
.01
.01
.01
.23
.11
.17
.18
.18
.18
.18
.I/
.17
.16
.HA
.11
.39
.31
.22
. 11
.08
.01
.02
.02
.01
.01
.01
.01
.01
.01
.01
.01
.01
01
01
.01
01
.01
.Ol
.01
01
.01
01
.01
.01
01
PI
IKG/IN1 1
12
11
13
5.73
20. 13
22. IB
II. 77
V.55
8.78
8.81
8. IA
A.9A
5.91
5.21
1.10
3.1A
2.12
1 .S3
.98
.71
.53
.50
.11
.11
.14
.IA
.11
.11
.11
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.11
.13
.13
P2
IKG/INTI
17
.10
.18
13. A1
SO.VS
40. bA
38.37
31.63
3b.J2
111. US
11.82
11.13
39.75
35. 67
28.37
21 .11
11.28
8.78
5.19
3.25
2.01
l.bl
VV
.73-
.40
b3
bO
.19
19
IT
IV
IV
IV
.19
IV
IV
.IV
IV
.IV
.19
.IV
IV
.19
IV
.IV
P3
ICIUC/INTI
33.92
31.28
31.01
16>I7
72.49
80.87
AV.I1
73.87
75.33
79. 18
83.1*
85.10
BA.79
81.0V
76. 3A
68.6.0
be. 20
18.61
11. bb
37. 59
3J.7S
36.67
31.91
3S.69
36.76
36.11
IS. 23
31.96
31.67
JH.79
J1.7B
11.78
31.77
31.77
31.77
31.77
31.77
31*77
31.77
31.77
11.77
11.77
11.77
31.77
31.77
PI
(KG/INI 1
61
62
.61
27.12
99. SB
109.91
56.00
19.89
28.11
22.72
17.96
1 1 .61
5.17
1 .60
.61
.At)
.62
.62
.60
.59
.54
.63
.61
.61
.66
.65
.61
.61
.61
.61
.61
.63
.63
.61
.63
.63
.63
.63
.63
.63
63
.63
.61
.63
.63
-------
PIPE RtSULIS
PIPE. NUMBER
UPPER HOOt
C033
LO»ER NODE C031
INIERVAt UU
tl/StCt
VO
9
ID
I I
12
13
II
IS
16
17
IB
IV
20
21
22
23
21
25
21,
27
211
2?
3U
Jl
J2
33
31
35
36
37
3D
3V
1C)
II
12
13
11
IS
38.
38.
13.
30V.
«7b.
I 175.
I 101.
V66.
OS 7.
732.
636.
b7/.
S1I
522.
1DH.
IIS.
18H.
32V.
272.
226.
I'M .
166.
IbS.
IbO.
116.
111.
113.
113.
112.
HI .
111.
111).
I'll).
139.
1311.
I 3b.
12V.
122.
I 12.
IU2.
VI.
87.
oo.
7S.
7U.
IIU
IMI
.00
.OU
.00
.UO
.OU
.OU
.uu
.IIU
.00
.0(1
.no
.OU
.OU
.uu
.OU
.00
.00
.OU
.00
.OU
.OU
.UO
.00
.OU
.00
.00
.OU
.UO
.0(1
.00
.00
.uu
.00
.OU
.uu
.00
.00
.on
.00
.OU
.no
.uu
.OU
.UO
.00
go
ll/SECI
36.
3V.
13.
273.
795.
1 121.
1101.
981.
871.
750.
650.
5«3.
617.
52S.
1V3.
151.
377.
338.
281.
231.
196.
172.
157.
151.
116.
115.
113.
113.
112.
111.
' 111 .
HO-
MO.
139.
138.
1 36.
130.
123.
1 13.
101.
vs.
8*.
81.
76.
70.
no
(HI
.01
.01
.01
.08
.25
.35
.31
.31)
.27
.23
.20
.18
.17
.16
.Ib
.11
.12
.III
,01
.07
.06
.OS
.Ob
.OS
.OS
.01
.01
.01
01
.01
.01
.01
.01
.01
.01
01
.01
.01
.01
.03
03
.03
.03
.02
.02
PI
IKG/INTI
1. S3
1.12
1.10
I.VS
8.90
2V. 60
62.01
52.37
IS. 21
33.81
23.35
18.5?
16.11
15.67
15.18
11.96
11.42
11.01
11.21
11.39
11.10
13.79
12.71
10.21
7.65
6.31
6.62
8.07
9.20
8.97
7.63
6.13
1.91
1.12
3.92
1.08
1. 10
3.75
3.38
3.09
3.01
3.01
3.27
3.67
1.21
P2
IKG/INTI
1.71
I.2S
I.S7
2.18
10.80
10.88
86.11
1 17.32
121.19
101. 75
1.06
73.12
67.92
66.67
61.30
62.09
$6.38
18.62
12.1O
16.21
30.60
26.66
22.98
17.98
13.71
1 1 -b7
12. bO
IS. 87
18.60
19. Ul
17.27
11. V5
12.58
10. V3
1 1.06
12.17
13.11
12. B3
1 1.68
10.22
V.I2
e.u3
7.35
6.98
6.79
P3
IEIOC/INII
122* If
89.58
1 12*08
155.08
210>01
367.16
S31.85
SBS.bl
518.80
180.38
109.27
359.87
312.12
277.33
258.0*
251.68
218.67
210.71
215.58
218.82
213-10
211 .03
231.73
207.9V
187.36
180.37
1*6.77
212.37
233.3V
232.36
217.26
IVV.9S
181.55
176.58
182. OU
IVH.08
213.12
218.56
223.21
221. BO
231 .06
210. UO
260.86
293.60
337.21
PI
IKG/INTI
2.20
1.61
2.02
2.81
31.61
126.58
212. 8U
221.35
199.35
111.85
VI .11
65.19
SI. 97
17.73
15.21
12.10
36.96
38. 10
11 .00
11.50
16.29
17.15
13.99
31.53
21.30
18.76
19. 6O
21.51
28.35
27.56
22.85
17.57
13.29
IO.11
9.11
9.19
V.09
7.61
6.17
S.I 1
1.6S
1.51
1.75
b.29
6.07
-------
». PIPl HtSill IS
PIPE NUHBLR
UPPCK NODt
C031
LOOtH NODE C03S
OJ
o
o
INTINVAL
1
3
1
5
6
7
a
9
in
11
12
13
II
15
16
I;
IB
IV
211
21
22
23
21
25
26
27
28
29
3D
31
32
33
it
3'j
36
37
3I»
39
111
Ml
12
13
11
15
gu
IL/Stl I
36.
3V.
13.
2/3.
795.
I 121.
I IU1.
981.
871.
750-
650.
563.
517.
525.
193.
151 .
397.
33«.
2BI .
231.
196.
I 72.
157.
151 .
116.
115.
113.
113.
112.
Ill .
111.
110.
110.
13V.
I3H.
136.
130.
123.
113.
101.
95.
88.
81 .
76.
70.
HI)
(HI
.00
.DO
.00
.00
.00
.00
.00
.0(1
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.01)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. uo
.on
.00
.00
.00
.00
.00
.00
.110
.00
.00
.uo
uo
IL/SEC 1
3S.
39.
1?.
2)1.
695.
loin.
1091.
1003.
897.
776.
672-
598.
556.
530.
500.
160.
1UH.
350.
2 VI.
215.
2U1.
1 7H.
ItO.
153.
117.
116.
Ml.
113.
112.
112.
111.
111.
110.
137.
139.
136.
131.
125.
1 15-
106.
97.
vo.
HJ.
77.
11.
HO
(HI
01
01
02
.09
27
11
13
39
35
30
26
23
22
21
20
18
16
11
* 1 1
09
08
O/
.06
.06
06
06
06
06
06
06
06
06
OS
05
05
.05
.05
OS
OS
.01
.01
01
03
03
03
(KG
2
5
5
1
3
2
1
1
1
1
1
1
1
1
1
1
1
1
1
3
PI
/INT 1
.92
1.25
I.OS
1.31
1 .95
9.90
J.60
2.03
2.36
!>.3I
1.01
1.25
9.50
I..13
5.55
>*31
1.93
1.15
1.26
1.31
1.12
1.19
1.90
Z.11
I. 18
.58
.32
.61
.06
.20
.97
.63
. 13
.91
.13
.93
.11
07
.78
.38
.09
I. 01
1.01
.27
.72
P2
IKC/INTI
1.03
1 .10
1.18
1.17
2.19
10.80
HO. 88
86.18
117.28
121.50
IOS.S2
83.79
71. 12
68.01
66. 11
61. 9B
61.90
56.12
19.17
12.38
3S.1S
30.71
26.82
22.11
17.91
13.58
1 1.58
12.19
IS.8S
18.68
19. Ul
17.27
11.91
12.58
10.91
11.10
12. S7
13.31
12.92 '
1 1.68
10.21
9.1 1
8. 01
7.31
7.05
P3
UIOC/INTI
73.83
100. 13
81. 3O
101.95
155-07
210.00
367. IS
535.07
585.31
550.21
181.23
107.98
358.23
312.21
275.1 1
260.89
251.07
219. 16
215.03
216.85
211.08
211.98
213.37
229.52
2U7.VO
185.73
180.12
106.59
212.02
233.17
232*31
217.23
199.81
181.63
176.69
182.72
199.57
21 1.90
22U.38
223.59
221.98
231.13
210.11
261.08
297.89
P1
(Kfa/INII
I .33
I. 80
I. 52
I .89
2.81
31.61
126.57
2)2.89
221.29
199.78
115.59
90.95
61.86
S2.00
17.3S
IS. 67
12.27
39. Ul
38.85
11.31
13. 7O
16.62
17. SI
12.96
31.13
21.07
18.76
19.59
21. SO
28.36
27. SS
22.81
17. 55
13.29
10. IS
IS
.51
.02
.69
.17
.1 1
.65
.51
.75
5.37
-------
PIPl III 5UI IS
PIPt NUHBLR
33
UPPCN NODE
C037
LONE.R NOOt R038
OJ
o
INILKOKL
,
2
3
1
5
A
7
B
V
Id
1 1
12
13
11
Ib
I*
1 7
18
IV
1(1
21
22
23
21
2b
26
27
28
2V
311
31
32
33
31
3b
36
37
3D
3V
10
11
12
13
11
Ib
(HI
IL/SECI
33.
10.
11 .
218.
470.
IOIV.
1 163.
1013.
VB'I.
IOS&.
H11.
7U1.
630.
bas.
511.
505.
117.
392.
337.
281.
231.
200.
I7S.
161 .
l'->2.
11V.
116.
IHb.
111.
113.
112.
112.
Ill
111.
no.
138.
US.
12V.
122.
1 13.
IU1.
VA.
UB.
82.
It..
III!
(Ml
01
.0(1
.00
.00
.01
.IS
.23
1.08
.'13
.22
16
| |
.07
OS
03
.02
01
.00
01
01
.00
.00
01
ou
.00
.00
.00
.00
.00
.00
.00
.ou
.00
.ou
.uo
.00
.00
.00
.ou
.00
.00
.ou
.ou
*00
.no
60
H/Sf.t 1
32.
10.
10.
1 7O.
52O.
836.
1031 .
VV6.
1031.
1031 .
921.
789.
689.
622.
572.
5)0.
I/S-
ill.
360>
3U|.
216.
213.
IBS.
166.
IS*.
ISI
147.
IIS.
Ml.
113.
113.
112.
Ill
111*
1 1O>
13V.
13*.
131 .
I2S.
1 16.
107.
VV.
VI.
81.
78.
HO
(HI
.02
.02
.02
09
.28
.IS
.S6
.56
.Sb
.56
SO
.12
.37
.31
.31
.2»
.26
.22
19
.16
. 13
1 1
.10
O9
.08
.08
.OB
.08
.00
.08
.08
.08
.08
.08
.08
.07
.07
07
07
.06.
.06
.OS
.Ob
.OS
.01
PI
IK6/IN1I
1.23
1.11
1.07
.79
9.21
15.11
11.71
17.23
17.96
28.11
31.17
14. SO
3V. 01
30.12
21.66
17.91
IS. 91
IS. 73
IS. 79
IS. IS
11. SI
11.23
11. S6
11.01
13.98
13.11
12.31
10. O8
7. SB
6.3S
6.67
(.13
9.25
9.02
7.69
6.20
5.00
1.19
1.03
1.19
1.17
3.83
3.13
3. 11
3. 1 1
PZ
IKG/INTI
1 .37
1.28
1.19
89
21.90
11.69
35.83
11.98
82.28
SI .35
76.20
1 15.90
113.19
99.96
80.12
71. MO
66.29
67.07
66.81
63.69
56.02
18.66
12.36
31.66
29.97
25.76
22. IS
17.72
13. S6
1 1.61
12.55
15.93
18.73
19.06
17.33
I5.U1
12.73
1 1 .01
I I. 29
12.72
I3.il
I2.V7
II. 68
10.22
9.23
P3
-------
HII'E. IUSUL1S
PIPt NUHBLR
UPPER NODI
K038
LOWED NODE B03B
INTERVAL (III
IL/StiI
CO
O
K)
I
2
3
1
S
6
7
8
9
IO
I I
12
13
It
l!>
16
I 7
IB
19
20
25
26
27
2H
29
-HI
Jl
3/
33
Jl
3S
36
J7
3b
3V
1U
HI
12
13
It
tb
32.
10.
10.
I 70.
231.
231.
211 .
210.
211.
211.
23/.
232.
229.
226.
221.
222.
219.
216.
213.
2U9.
2Ub.
202.
IBS..
166.
I 56.
Ibl .
117.
Mb.
I'll.
113.
113.
112.
I'M .
HI.
I1U.
139.
136.
131 .
I/S.
I 16.
10.
9V.
''I .
81.
7H.
.08
.0V
.09
.38
6b
.69
.71
.71
.71
.71
.70
.68
.6?
.66
.66
.65
.65
.61
.63
.61
.60
.b9
.55
.52
.50
.SO
.SU
.bO
.bU
.bO
.SO
.50
.50
SO
.SU
5U
.50
.3H
.3b
. 1J
.3U
.211
.2b
.23
.11
wo
(L/SCCI
J3.
3B.
39.
121.
212.
231.
211.
210.
211.
211.
237.
232.
229.
226.
221.
222.
219.
216.
213.
209.
205.
202.
187.
168.
158.
Ib2.
119.
116.
MS.
Ml.
113.
112.
112.
HI.
MO.
I1U.
138.
132.
128.
120.
III.
IU3.
»b.
bH.
HI .
HO
(HI
.10
.1 1
. 12
.39
.50
.SU
.50
.SU
.50
.50
.50
.50
.su
.50
.50
.50
.50
.50
.50
.SO
.50
.SU
.19
.50
.19
.18
.17
.16
.16
.15
.15
.15
.15
.11
.11
.11
.13
.12
.1U
.37
.3b
.32
.30
.27
.2b
PI
IKG/IHTI
1.92
1.16
1.09
.89
3.1 1
1.15
3.20
3.76
9.26
7.86
8.21
12.29
13.11
1 1 .66
9.21
7.76
7.3?
7.92
8.96
10.25
II. 5B
12.96
11.91
13.58
13.7?
13.56
12.76
10. 9B
8.60
6.B5
6.51
7.51
8.80
9.12
B.23
6.81
5.51
1.10
1.1 1
1.13
1.18
3.97
3.59
3.26
3.11
P2
IKG/INII
2.15
1.30
1.22
t >OO
6.95
12.19
9.59
9.6|
16.71
13.91
17.13
29.95
36.16
36.56
32. 12
30.36
30.36
33.55
38. Ul
12.57
15.58
16.06
12.77
15.76
31*29
27.30
23.65
19.51
15.25
12*10
12.17
11.57
17.60
16.91
. 16.03
16.00
13.73
1 1.12
11.21
12.13
13.18
13. IB
12.21
10.82
9.69
P3
IEIOC/INTI
153.51
92.92
87.35
71.32
61.79
52.05
19.68
77.81
1 17.95
87.78
89.61
110.52
161.62
161.12
151.57
116.89
111.51
111.32
156.18
177.13
202.01
226.81
211.09
236.25
211.71
21U.23
231.88
216.57
197.92
IB6.70
166.61
2O6.66
229.59
237.59
228.23
212.58
197.61
180.93
ll>6.76
199. 17
213.78
223.12
227.20
226.92
236.69
PI
IKG/INII
2.76
1.67
1 .57
1 .3D
12.96
2U.18
13.77
13.75
37.07
31.85
33.37
51.15
56.11
18.93
36.11
27.18
23.65
21.12
26.62
29.22
31.62
35.33
39.72
11.16
11.28
15.57
13.61
37.33
28.02
20.69
IV. 31
22.62
26.68
27,95
21.82
19.63
lb.2l
1 1.12
10.02
9.65
9.36
B.32
6.81
5.60
1.98
-------
tMPl NISULIS «
PIPE NUMBER
JS
UPPER NODE
B03B
I_0*IR NODE C039
INUSVAI. Oil
IL/SFCI
U>
O
U)
2
3
1
S
6
7
8
1
Id
I I
12
13
I 1
Ib
It
1 1
IB
IV
20
21
22
23
27
28
29
31}
31
32
JJ
31
JS
36
37
38
39
Mil
HI
12
13
11
IS
33.
38.
3V.
121.
IS6.
IS6.
IS7.
ISfi.
Ib9.
I 60.
161 .
162.
162.
163.
161.
161.
I6S.
166.
166.
166.
167.
167.
167.
I6/.
167.
167.
167.
166.
lot.
166.
166.
166.
I6S.
166.
I6b.
I6S.
161.
161.
161.
163.
163.
162.
161 .
160.
I6U.
HU
(III
.01
.01
.00
.02
.OS
.06
.01
.07
.»/
.O/
.O;
.07
.07
.on
.on
.08
.00
.08
.08
.OH
.08
.08
.08
.(18
.08
OH
.(18
.on
.08
.08
.08
.08
.OH
.1)8
.08
.00
.08
.08
.0«
.00
.OH
. Ull
.08
.0'
.117
«D
IL/SEC 1
32.
37.
38.
8V.
127.
113.
IS).
ISS.
Ib7.
ISV.
I6U-
161.
162.
l»2.
163.
161.
161.
165.
166.
166.
166.
167.
167.
167.
167.
167.
167-
167.
166.
166.
166.
166.
166.
I6S.
I6S.
its.
I6S.
161.
161.
1 61.
163.
162.
162.
161 .
160.
HD
(Ml
.01
.03
.03
.08
. 12
.11
. 11
.Ib
.IS
. IS
IS
.IS
. IS
.It
. 16
. 16
.16
16
.16
. 16
.16
. 16
16
. 16
. 16
.16
.16
. 16
. 16
. 16
. 16
. 16
.16
. 16
. 16
. 16
. 16
. 16
16
. 16
. 16
. 16
. IS
. IS
. IS
PI
IKG/INt 1
1 .62
1 .38
1 .01
1.18
1 .20
1.72
2.19
2.38
2.00
2.01
3.16
1.82
b.13
1.92
S.60
«.9B
8. 17
8.20
7.18
6.61
S.72
5.21
5.32
5.80
6.1V
7.30
a. 2i
9.17
10. 1 1
io.es
1 1.16
II. 95
1 1 .V8
11.16
.2a
.30
.SI
.17
.31
.67
7.88
6.11
S.I6
1.61
1.79
P2
IKG/IN1 1
.82
.ss
. 17
.32
.88
66
.ss
26
59
.38
6.11
7.12
7.21
7.11
9.61
11.09
16.8V
IB. 71
18.58
17.81
16.81
16.15
17.10
19. IS
21 .68
21.07
26.16
27.09
26.21
21. US
21.7]
19.77
17.86
15.67
12.88
10.31
9.S5
10. 92
13.15
11.31
13.83
12.16
10.11
10.02
11.27
P3
IEIOC/INTI
129.81
1 10. SB
83. SB
91.3*
67. OS
IS. 91
37-6S
13.95
13. (7
12.12
SV.88
73.06
69. IB
62.02
/0>61
90.11
1 10.78
120.11
121.27
1 19.52
1 15.99
112.89
1 11.26
120.13
110.19
I11.2S
162. SV
182. 78
2U1.09
220.55
211,|B
21S.IO
219.50
213.61
22b.11
2O8.6S
207. BB
225.11
2b0.1b
262.38
2S6.21
210.18
228.01
215. S9
266.69
PI
IKG/INTI
2.11
.99
.50
./O
.01
.21
.71
1 .79
.68
.91
12.12
19.17
2U.6S
19.91
22. VI
29.02
11.59
11.86
11.16
26.19
21.27
17.71
16.90
1 7.71
19.28
21 .OS
22.85
2S.02
28.07
31 .S6
3b.2b
18.81
10.37
3B.U6
3O.97
21.01
19.59
21 .19
2S.27
26.12
23.57
18.13
13. 7b
1 1 .16
11.11
-------
PIPE KLSIILIS
PIPC NUMBER
UPPEK NODE
SOI3
LOVER NODE SUI1
IN1ENVAL OU IIU
IL/StCI (HI
00
o
2
3
1
b
6
7
8
9
in
11
12
13
II
Ib
16
17
la
19
id
21
22
23
21
2b
26
27
28
29
30
31
42
43
31
3b
36
47
38
49
1(1
II
1?
13
11
Ib
.02
.(12
.02
.02
.02
.02
.02
.02
.02
.0?
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
00
IL/SEC 1
b.
b.
5-
5*
5.
5.
s.
5.
5-
S.
s.
s.
s.
5.
b.
S.
5-
S.
s.
s*
s.
s.
5-
5.
s.
b.
5-
b.
5.
s.
S*
s.
s.
b.
5.
b.
s.
b.
s.
b.
b.
S.
5.
b.
b.
HO
(Ml
.02
.02
.02
02
.02
.02
.02
.02
.02
02
.02
.02
02
02
02
02
02
02
.02
02
.02
Oi
.02
.02
.02
.02
.02
.02
02
O2
02
02
.02
.02
.02
02
02
02
.02
02
.02
.02
.02
.02
.02
PI
IKG/IHTI
.10
.10
.10
.10
.11)
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
P2
IKG/INt 1
.11
.11
.11
11
11
11
11
.11
.11
.11
11
11
11
11
.11
11
11
11
.11
11
11
11
11
11
.11
.11
.11
.11
.11
.11
.11
11
.11
.11
.11
11
11
11
11
11
11
11
.11
.11
.11
P3
IEIOC/IN1I
31 .66
31.66
31 >6«
31 .66
31 .66
31.66
31 .66
31.66
31.66
31.66
31.66
31.66
31.66
31.66
31*66
31 -66
31.66
31.66
31.66
31 .66
31 .66
31.66
31.66
31.66
31.66
31.66
31 .66
31.66
31 .66
31.66
31.66
31.66
31 .66
31.66
31.66
31.66
31 .66
31 .66
31.66
31 .66
31.66
31.66
31.66
31.66
31.66
PI
IKG/IHTI
S7
.S7
.67
.S7
.b7
.s;
.S7
S7
.b7
.b7
.67
.67
S7
.57
.57
b7
.57
.57
.b7
.57
.57
.57
.57
.57
.57
.57
.57
.57
.57
.67
.57
.57
.57
.57
.57
.s;
.57
.57
.57
.57
.57
.57
.57
.57
.57
-------
BASIN RISULTS
BASIN NUMBER
NODE BOOt
o
Ui
H\
,
2
)
1
b
6
1
a
v
10
1 1
12
1 J
11
IS
16
1 7
IB
IV
2U
21
22
21
21
26
26
2/
2H
2*
30
31
32
33
31
JS
J6
37
38
3V
10
11
12
13
11
IS
II VOL
(HI CUB. II
.Ob 3D.
.Ob 38.
.Ob JO.
.11 VU.
.30 213.
.51 133.
.71 667.
.82 6bV.
.V| 731.
.V7 77'j.
I.OU 7V8.
1.01 SUB.
1.02 811.
1.02 Rib.
1.01 80V.
.VV 7»b.
.V7 776.
.VI /SI.
.V| 721.
.H7 6Vb.
,BJ 6&b.
.7V 63b.
.7S 603.
.71 S72.
.6H SHI .
.61 SOV.
.6U 17H.
.b6 117.
.S2 116.
.18 386.
.11 3bb.
.11 32b.
.37 2V1.
.33 261.
.2V 23b.
.26 20V.
.23 106.
.21 167.
.IV IbO.
. 1 / I3b.
. IS 1 22.
.11 III.
. 13 102.
.12 V3.
. 1 1 86.
SIN UOl
L/StC L/SCC
IB. 18.
IV. 18.
IB. 1 II .
21V. 1b.
631. 121.
7SS. 122.
b68. 121.
131. 126.
368. 127.
271. 128.
202. I2H.
163. 128.
116. I2H.
133* 126.
108. 128.
83. 128.
61 . 121).
16. 127.
37. 127.
31 . 126.
26. 126.
23. 125.
2O. I2b.
IV. 121.
IV. 121.
IV. 123.
IV. 123.
IV. 122.
IV. 121.
IV. 121.
IV. 1211.
IV. 120.
IV. 119.
IV. 1 IV.
IV. 116.
1?. lUb.
IV. Vb.
IV. 83.
IV. 7b.
IV. 66.
IV. 61 .
IV. Sb.
IV. bl .
IV. 16.
IV. 13.
MOV PINI
i/sir 1*61
0. .V
0. 1.3
0. 1.3
0. Ib.O
0. 33. V
0. S3. 3
0. 11.1
0. 26. A
(1 . 1 0 . 1
0. 3.7
0. b.O
0. 3.1
0. 2.0
0. .7
0. .5
0. .S
0. .1
0. .1
0. .1
0. .1
U. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
o. .0
0.
0.
0. .
U.
0.
0. .
0.
0.
0.
0. .1
D. .1
PIN2 PIN
1*61 IEIO<
1.0 72.1
1.1 101. (
I.S IDS.
I8.S 168.
1B.S 316.'
81. 2 531. 1
27. B IVO.<
SB. 6 38S.
32. S IV2.I
11.2 VI.'
20. B ISI.'
lb.1 131.
11.7 I2S.
V.6 122. <
7.2 IIS. I
6.6 IIA.
1.2 III..
.1 III.
.7 III.
.6 109.,
.3 10V..
.0 III./
.B III.
.7 1 1 1 .1
.6 1 1 1 .1
.6 111.1
.6 1 1 1 .<
6 III..
.6 III.
..6 III.
.6 III.
.6 III.
.6 III.
.2 160.
.6 III.
.6 III.
6 III.
.6 III*
A III.
.6 III.
.6 III.
.6 III.
.6 III.
6 III.
.6 III.
) PINI POT
.1 IKGI IKG
) 1.3
) I.B
» I.V
> 70.1
( 116. B .
1 207.1
t 18-2 .
1 VO.V .
I 33.2 5.
1 11.1 S.
» 11.2 7.
1 7.1 8.
r 3.9 B.
, .0 B.
\ .3 10.4
r .1. 12.
! .U 12.
1 .0 12.
r 2.0 10.
! 2.0 1.1
t 2.0 3.
2.0 3.
2.0 6.
, 2.0 B.
1 2.0 B.
2.0 b.
> 2.0 3.
1 2.0 3.
! 2.0 1.
2.0 1 .
2.0 3.
2.0 2.
2.0 2.
1 2.V I.
2.0 1.
2.0 1 .
2.0 1.!
2.0 1.
2.0 2..
2.O 2.1
2.0 3.'
2.0 3.4
2.0 3.
2.U 3.1
2.0 2.1
POI2 PUT3
1Kb! IEIOCI
1.6 1 1 I.I
1 .6 1 10. V
1 .6 1 10. V
1.6 113.6
2.b 17V. 2
2.2 ISS.I
2.1 117. 1
1.3 137.3
6.V 62.6
7.2 6b.3
10. & 73.2
t 11.7 76.1
I 11.8 76. V
1 II. B 77.3
I 16.3 101.)
IV. 1 121. 1
If. 2 121. B
I IV. 2 122.1
1 16.6 106.6
) 7.6 S2.6
7.6 52.1
7.6 S2.1
11.6 97.1
IV. 6 12V. 3
IV. 6 128. 8
IS. 3 Vb.7
12.3 73.2
12.1 72.8
7.1 IS. B
6.V 11. b
12. b' VI. 2
12.7 98.7
II. B 103.6
V.9 106.7
B. 9 1 10. 1
7.3 IOV.6
> 6.3 120. b
' S.I I1S.O
! b.3 180. 1
1 S.2 220.6
1 1.8 272.6
k 1.2 286.3
1 3.7 263.7
) 3.3 23V. 0
9 3.1 220.1
POTl
IKGI
2.0
2.0
.0
.0
.2
.8
.6
12.2
26.2
27.1
31.2
1S.1
IS.fr
1S.B
12.6
16.9
17.2
17.1
If .B
13.3
11.2
11.2
23.1
30. S
30.3
If .8
12.6
12* S
S.8
S.S
8.7
7.9
S.6
3.3
2.B
2.3
2.2
2.1
1.2
1.0
l.f
S.2
1.7
1.3
1.0
POVI
IKGI
.0
.U
.O
.U
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.U
.0
POV2
1Kb!
.0
0
.0
.0
.0
0
.0
o
.0
.0
.0
.0
U
.0
0
.0
o
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
U
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV3
IEIOCI
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.0
.0.
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
.0
.0
POVI
IKGI
.U
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-------
BASIN NESUl15
BASIN NUMBER
NODI
BOJB
O
O\
N1
1
2
3
S
b
6
7
H
V
10
1 1
12
13
IS
IS
It,
17
IB
19
20
21
22
23
21
2b
2k
27
28
29
30
31
32
33
31
3b
36
37
3B
39
SO
HI
H2
S3
HI
Mb
H
(HI
.OU
.00
, Ull
.00
.03
.08
. 13
.18
.23
.27
.32
.36
.39
.S3
.16
.'19
.b2
.Sb
.bu
.6U
.62
.63
.63
.63
.63
.62
6|
.611
.b9
.Sll
.57
.i6
.bi
.bH
.%2
.SI
.bO
.18
.S6
.HS
.S|
.38
.3S
.3U
.27
VOL
CUB.M
O.
U.
0.
0.
1 7.
SO.
6S.
89.
1 IS.
1 37.
Ib9.
1 78.
197.
213.
231 .
2S6.
261.
2/6.
288.
298.
3U8.
3lb.
317.
317.
3IS.
310.
30b.
301 .
29b.
290.
28b.
280.
273.
26tt.
262.
2b6.
2bU.
2SI.
231.
219.
2Ub.
IU9.
171 .
ISI .
1 JJ.
WIN
L/SfL
33.
30.
39.
I7S.
212.
23S.
2SI.
2SO.
2SI .
2SI.
23/.
232.
229.
226.
22S.
222.
219.
216.
213.
209.
2Cb.
202.
IH7.
168.
IS8.
Ib2.
IS9.
IS6.
ISS.
1 SS.
IS3.
IS2.
IS2.
ISI .
ISO.
ISO.
1 38.
132.
128.
I2U.
III.
1(13.
9b.
HH.
HI .
81)1
l/SFC
33.
38.
39.
121.
IS6.
IS6.
157.
ISB.
IS9.
160.
161 .
162.
162.
163.
I6S.
IAS.
IAS.
166.
166.
166.
167.
16'.
167.
167.
167.
167.
167.
166.
166.
166.
166.
1 66.
I6b.
I6b.
I6b.
I6b.
I6S.
I6S.
I6S.
163.
163.
162.
161 .
160.
16(1.
qov
L/SIC
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
U.
U.
0.
0.
0.
0.
O.
0.
0.
O.
U.
0.
0.
U.
0.
0.
I).
0.
U.
n.
0.
[1.
PINI
1 K 1. 1
1 .9
1.2
1 .1
.9
3.1
S.S
3.2
3.8
9.3
7.9
8.2
12.3
13.1
11.7
9.2
7.8
7.1
7.9
9.0
10.3
11.6
13.0
13.9
13.6
1 3.8
11.6
12.8
1 1 .0
H.6
6.9
6.B
7.5
8.R
9. 1
tt.2
6.0
b.S
M.I
S.I
S.I
S.2
1.0
3.6
3.3
3. 1
PIN2
IKGI
.,
.3
.2
.0
.9
1 .2
6
.A
16.7
13.9
1 7.S
29.9
36.5
36.6
32.7
30.1
30. S
33.6
38.0
12.6
SS.6
16. 1
S2.S
3S.8
31.3
27.3
23.7
19. S
IS. 3
12. S
12.2
IS. 6
17.6
18.9
IH.O
16.0
13.7
1 1 .S
11.2
12. 1
13.2
13.2
12.2
10.8
9. 7
PIN3
(EIOCI
IS3.S
92.9
87.1
71.3
61.8
52.0
S9.7
77.8
118.0
87.8
89.6
ISO.S
161.8
I6S.S
ISS. 6
116.9
ISI .S
ISS. 3
IS6.2
177.1
202.0
226.8
2SS.|
238.2
211.7
210.2
23S.9
218.6
197.9
186.7
188.6
206.7
229.6
237.6
228.2
212.6
197.8
180.9
186.8
199.2
213.8
223.1
227.2
228.9
236.7
PINS
IKGI
2. 8
1.7
1.6
1 .3
13.0
20. S
13.
13.8
37.1
31.1
J3.S
bl.b
b6.l
18.9
36.1
27. S
23.7
2S.I
26.6
29.2
31.6
3b.3
39.7
11.2
SS.3
SS.6
S3.H
37.3
28.0
20.9
IV. 3
22.6
26.9
27.9
21.8
19.8
IS. 2
ll.s
10.0
V.
9.
8.
6.
S.
S.O
port
IKGI
1 .9
1.2
I.I
.9
1 .S
i .a
2.S
2.1
1.9
2.2
S.3
S.S
s.a
S.O
6.2
7.9
a.s
7.9
7.1
6. 1
S.3
S.I
S.S
6. 1
6.9
7.8
a. 7
9.7
10.6
II .2
II. 8
12.1
1 l.a
IO.S
a.o
6.S
6.6
7.8
a. a
a.s
7.2
S.6
S.6
S.6
S.O
POTZ
IKlil
2.1
1.3
1.2
1.0
3.3
3.7
S.S.
S.7
1.3
S.S
6.6
7.7
6.7
a. 2
11.2
IS. 3
18.6
la.a
18.3
17.3
16.3
16.6
IB. 3
20. S
22.9
2b.3
27.1
27.1
2S.3
22.7
20.7
18.8
16.9
IS.S
11.3
9.3
9.8
12.2
IS. 2
IS.S
13.1
1 1 . 1
9.7
IO.S
12.2
POI3
It IOCI
153. S
92.9
e/.s
71.3
30. S
38.7
33.7
32.8
3S.6
SI. 3
69.6
76.6
61.0
63.1
78.8
102.9
119.2
121. S
120. a
1 17. a
113.6
1 12.0
116. S
I2S.S
136.3
152.9
173.1
193.3
213.9
227. a
2SI.3
219.1
2SO.U
236.7
213.3
203. a
212.6
210. U
262.0
263.2
218.9
231.6
221.6
218.6
287.2
POTS
(Kill
2.8
1.7
1.6
1.3
6. 1
7.9
11.7
9.2
7.9
8.O
16.9
21.6
19. S
20. S
2S.S
32.9
16.3
33.2
28.9
23.6
18.6
16.7
17.1
18.1
20.2
22.0
23.8
26. S
30.0
33.3
37. S
so.s
SO.S
3S.S
26.1
19.7
19. S
23.7
27. O
2S*8
21.1
IS.S
1 1 .8
1 I. 1
11.2
POVI
IKGI
.U
.0
.0
.0
.0
.0
.0
.0
.O
.U
.0
.0
.0
.U
.0
.0
.O
.U
.U
.11
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV2
IKGI
.0
.11
0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
U
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.U
.0
.0
.0
.(I
.0
.0
.0
.0
POV3
It IOCI
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
POVS
IKGI
.U
.U
.0
.U
.0
.U
.0
.0
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.a
.0
.0
.0
.0
.U
.0
.0
.0
.0
.U
.0
.0
.U
.0
.0
.0
.0
.0
.U
.U
.U
.0
-------
OVEKflOU RtSUllS
OVERFLOW NUMBER
HOIS
INItKVAt UIN qui MOV
IL/SLCIIL/StCIIt/Si cI
OJ
o
1
1
3
1
b
4
/
B
9
10
I 1
12
1 J
11
IS
14
17
IB
1 9
20
21
22
23
?1
2b
24
27
?B
29
30
31
32
3J
31
3!>
34
37
3B
39
10
11
12
13
11
1b
0.
O.
U.
1,5,.
2b9.
343.
33H.
249.
212.
155.
107.
81.
4B.
40.
in.
31.
22.
13.
7.
1.
2.
1 .
0.
O.
U.
0.
0.
0.
0.
0.
U.
o.
0.
0.
0.
u.
0.
0.
I).
0.
0.
0.
0.
0.
0.
0.
0.
0.
10.
.
.
.
.
.
.
a.
0.
8.
.
.
.
.
.
.
1.
2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
a.
0.
(I.
0.
0.
0.
0.
0.
0.
0.
u
0
0
7!,
250
3b'l
331)
240
203
117
99
73
40
52
10
24
IS
5
0
0
0
0
0
0
U
0
0
0
0
0
0
0
U
0
0
0
0
U
U
0
u
0
0
fj
0
SZUI
IKGI
.0
.0
.0
.0
1.)
73.2
23. 1
13.0
8.2
J.I
\ .V
.»
.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.u
.0
.0
.0
.0
.0
.0
.u
.u
.u
SZU2
1Kb)
.0
.0
.0
.0
S.&
32.1
It. 7
21.7
18.1
27.1
IU.7
7.3
S.1
1.1
3.1
I.V
I.I
.7
.1
.2
.1
. 1
.U
.U
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.u
.0
.0
.0
.0
.u
.0
.()
SZU3
IEIOCI
.0
.0
.0
.0
21. a
135. O
1*9.5
1 14.7
82.0
74. V
20.1
11.1
B.I
S.A
3.1
,S
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
SZUI
IKGI
0
0
0
>O
20.8
10*. 0
V3.3
-------
OVEKFLO* HESUIIS
OVERFLOW NUMBER
NODE
RQ2B
INIERVAL WIN HOI «OV
IL/SIIIll/SECIIL/SEfI
OJ
o
oo
1
2
3
4
b
A
7
a
9
10
1 1
12
13
IS
15
IA
| 7
18
IV
ill
2 1
22
23
21
25
2A
27
2H
29
30
31
32
33
31
3b
3A
37
3D
3V
SO
SI
H2
S3
MS
15
A.
A.
A.
AS2.
I9C1.
2U3S.
1571.
1 1»0.
835.
551 .
42A.
298.
267.
272.
?05.
153.
75.
SS.
19.
12.
7 .
A.
b .
A.
6.
A .
A.
A.
A.
«.
6.
A.
6.
h.
A*
A.
A.
A.
A.
A.
A.
t>.
A.
A.
6.
6.
6.
A.
382.
218.
2AI.
2Sb.
2S1.
715.
213.
211.
237.
237.
23A.
20S.
153.
75.
SS.
19.
12.
7.
A.
6.
A.
6.
A.
A.
A.
A.
A.
A.
A.
6.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
0
0
0
?60
IfcSA
1 77S
1326
91*
690
308
I8A
Al
SO
3A
0
0
0
0
0
0
U
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
tl
0
0
c
r
0
0
SlUl
UGI
.H
.S
.S
S».2
111.1
92. b
5S.S
S2.2
30. S
18. II
11.5
7.1
A. 2
S.U
3.3
2.2
1 .3
.9
.7
b
.b
.S
.S
.S
.1
.1
.S
.S
,1
.S
.S
.1
.S
. 1
.S
.S
.S
.S
.S
.S
.S
.S
. S
.S
.S
S7.U2
IXbl
.S
.S
.5
ISA.S
3SU.2
311. 1
20H.3
171.2
IS) .7
97. II
71.1
S2.S
SI .1
3U.S
19.7
12.6
7.S
S.*
2.9
1.?
1.2
.8
.A
.5
.S
.b
.S
.S
.5
.S
.S
.S
.S
.6
.S
.b
.S
.S
.S
.b
.b
.S
.S
.b
.S
5ZU3
IE IOC 1
31. e
31. «
3S.8
145.0
8.7
605.2
18|. S
35S.S
270. 1
111. 5
(17.7
IIS. 6
V8.7
as. 3
47. 7
SS.7
17.2
11 .B
38. S
36. V
36.1
35.5
3S.I
31.?
31.6
31. B
31.8
31.8
31.6
31.8
31. A
31. B
31.8
31.6
31. U
31. R
31.8
31.6
31. B
31.6
31.8
31.6
34.8
34.8
31.8
SZU4
IK6I
.6
.6
.6
294. &
S70.3
138. S
223. S
I23.I
71.3
4UI
17.3
4. 1
.6
.6
.6
.6
.6
. t.
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
.6
.6
. fc
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.A
.4
.A
S»BI
U6I
.1
.1
.1
38. 2
14.9
1 1 '*
.6
.6
.«
.3
.S
.V
. 1
.2
.3
.2
1*3
.9
.7
.S
.b
.4
.4
.1
.4
.1
.4
.4
.4
.4
.4
.4
.1
.1
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
SAB2
IKGI
.S
.S
.S
67.1
41.3
10.4
31. »
35.1
41. A
13.1
10. 1
11 .8
31.2
26.4
If. 7
I2.8
7.S
4.S
2.9
I. 9
I. 2
.6
.6
.S
.S
.S
.S
.5
.b
.b
.S
.S
.S
.b
.S
.b
.b
.b
.b
.b
.S
.b
.b
.S
.S
P013
It IOC I
34.8
31.6
31.6
98.1
63.6
77.7
7b.2
72.6
7V. 3
67.0
83.1
»2.l
81. S
71.0
67.7
SS.7
17.2
41.6
36. S
36.9
36.1
3S.S
3S.I
34.9
31.8
34.6
34.8
31.8
31.6
31.6
31.8
31.6
34.8
34.8
34.6
34.8
34.8
34.6
34.8
34.8
34.6
34.6
. 34.6
34.6
34.6
P014
IKGI
.6
.t
.6
175.1
71.2
5A.3
34.9
2S.2
21.6
18.1
9.8
3.3
.7
.S
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
POVI
IKGI
.U
.U
.0
21. U
99. S
80.6
16.7
33. S
21. S
10. S
6.0
l.b
1 . 1
.6
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
U
.0
.1)
.0
.11
.0
.0
.0
.U
.0
.U
.U
.0
.U
.U
.0
.U
.U
.U
POV2
IKbl
.0
.U
.0
S9.1
2VS.9
273.8
172.1
136.1
100. 1
SI. 7
30.9
10.7
7.2
4.0
.O
.0
.0
.0
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
POV3
1C IOC 1
.0
.0
.0
66.9
125. |
S27.4
4U6.2
261.8
IV0.6
110.4
64.3
23. S
17.2
11.3
.0
.0
.U
.0
.O
.O
.0
.0
.0
.0
.0
.U
.U
.U
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.U
.0
.U
.0
.0
.0
.U
POVI
IK6I
.0
.0
.0
1 19. S
496.1
362. 1
188. 6
97.9
S2.S
23.0
7.b
.8
. |
.1
.O
.0
.0
.U
.U
.U
.U
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.U
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.U
.0
.0
OVEKfLO* IOTALS
POVI
325-
POV2
I Mb.
2I2S.
POV4
1368.
-------
OVEKFLO* RISUIIS
OVCRfLO* NUMBER
NODI.
RU38
INTtHVAL giN goi go»
(L/SI.C ML/SE.CI IL/Slt I
CO
O
VO
1
2
3
1
S
6
7
8
V
Id
1 1
12
13
|1
IS
16
17
18
17
2U
21
22
23
21
25
26
27
2»
27
3D
31
32
33
31
3!>
36
37
IH
37
1U
11
12
13
11
15
32.
in.
10.
1 /O.
S2CU
B34.
1031 .
776.
1031.
1031 .
721.
787.
6H7.
622.
5/2.
5JO.
1/5.
11 1.
3fcO.
301 .
216.
213.
HIS.
166.
156.
151
117.
MS.
111.
113.
111.
112.
Ill .
111.
110.
137.
136.
131.
125.
1 16.
107.
77.
71 .
81.
/8.
32.
10.
10.
1 70.
231.
231.
211 .
21U.
211 .
211 .
737.
732.
227.
226.
221.
222.
217.
216.
213.
2CI7.
705.
202.
IB5.
166.
156.
151.
117.
IIS.
111.
113.
113.
112.
Ill .
Ill .
I1U.
139.
1 36.
131 .
I2S.
116.
107.
7V.
71 .
81.
78.
0
0
0
0
7VO
(.02
770
756
773
770
687
556
160
376
31«
30"
255
IV8
117
92
11
1 1
0
U
0
0
0
U
0
U
a
U
0
tj
0
0
0
O
0
U
0
0
U
U
ll
SZUI
IKGI
1 .2
I.I
1. 1
.6
7.2
IS.1
11.7
17.2
18.0
2e.i
31. S
16.5
39.0
30. 8
21.;
17.7
15.7
15.7
15. 8
15.5
M.5
M.2
|1.6
11.0
11.0
1 1-1
12.1
10. 1
7.6
6.1
6.7
8. I
7.1
.0
. 7
.2
.0
.1
.0
.2
.2
3.8
3.1
3. 1
3. 1
SZU2
1Kb)
1 .1
1.3
1.2
.9
21.9
HH.7
35.8
12.0
12.3
SI .1
76.2
IIS. 7
II3.2
IOO.O
8U. I
7i .a
66.3
67. I
66.8
63.7
66. 0
18.7
12.1
31.7
30. U
25.8
22.1
17.7
13.6
11.6
12.6
IS. 7
18.7
17.1
17.3
15.0
12.7
1 1.0
1 1 .1
12.7
13. «.
13.0
1 1.7
10.2
7.2
SZU3
UIUCI
78.2
71.3
85. 2
63.1
1 17. S
172.2
213.0
367.7
553.2
310.5
376.1
517.6
171.3
15S.O
385.1
318.0
303.7
281.1
272.3
267.2
251.0
218.7
255.2
215.8
215.6
238.7
231. S
207.7
187. 6
181.6
171.2
217. Q
23H.I
237. 1
222.1
205.3
171. |
182.2
187.1
205.7
717.5
226.1
228.6
227.8
237.6
SZU1
IKGI
1.8
1 .6
1.5
1.2
11.6
71.6
18. U
6I.2
I75.0
I 11. 8
110.3
176.0
168.2
127.7
82.0
61.3
17.6
17.5
16.6
13.1
37.2
38.7
12.3
13. S
16.0
15.7
12.1
33.7
21.0
18.8
17.7
21.6
28.1
27.6
22.7
17.7
11.1
10. S
7.6
7.7
7.2
7.7
6.2
5.2
1.8
SABI
IKGI
1 *2
1 > 1
1 >l
.8
1.1
1.1
2.7
1.1
1 1.2
6.6
8.7
13.7
1 3.0
11*2
8.5
7.5
7.1
8.2
7.3
10*7
12.1
13.5
11.6
11.0
11.0
13*
12.
10.
7.
6*
6*
8-
7.
7.0
7.7
6.2
5.0
.2
.0
.2
,i
.8
.1
.1
3. 1
S*B2
IKbl
1.1
1.3
1.2
.7
7.7
12.5
8.1
IU.I
17.2
12. 0
17. t
31.2
17.6
16.3
11.1
30.1
10.6
lb.0
37.6
11.3
16.6
16.0
12.1
31.7
10.0
25.8
22.1
1 7.7
1 J.6
1 1 .6
12.6
IS. 7
18.7
17.1
17.3
15.0
12.7
1 1.0
11.3
12.7
1 J.5
13. U
11.7
10.2
7.2
POI3
If. IOC 1
78.2
71.1
85. Z
61.|
51.0
18.2
17.7
88.5
128.8
72.5
76.6
158.5
161.2
165.1
150.8
IIS. 8
110.5
116.7
I6I .2
IBS. 7
2II.5
215.3
2&S.2
215.8
215.6
238.7
231. S
207.7
187. 1
181.6
171.2
217.0
238. 1
237.1
222.1
205.1
171.)
182.2
187.1
205.7
217.5
226.1
228.6
227.8
237.6
POI1
IKGI
1.8
1.6
1.5
1 .2
18.1
2U. 1
1 1 .2
11.7
15.1
26.8
16.0
57.8
55.7
16.1
32.1
25. 7
22.7
21.8
27.6
30.2
32.6
36.8
12.1
11.5
16. U
15.7
12.1
11.7
21.0
18.8
17.7
21.6
28.1
27.6
22.7
17.7
11.1
10.5
.6
.7
.2
. 7
.2
5.2
1.8
POVI
IKGI
.0
.0
.0
.0
5.1
II. 1
7.0
11. 1
16.
21.
2S.
12.
26.
17.
11.
10.
.
.5
.1
. 7
.1
.8
.O
.0
.O
.0
.0
.0
.0
.O
.O
.O
.U
.0
.0
.O
.O
.0
.U
.0
.U
.U
.0
.0
.0
POV2
IKbl
.0
.O
.0
.0
12.2
12.2
27. S
31.7
63.1
37.1
Sb.6
81.
75.
61.
18.
11.
35.
32.
27.
17.
7.
2.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV3
IEIOCI
.0
.0
.U
.U
66.6
123.7
163.3
277.1
121.1
218.0
277.6
177.1
110.1
287.7
211.1
202.1
161.5
111.5
1 1 I.I
81 .5
12.6
11.1
.0
.0
.U
.0
.O
.U
.0
.0
.0
.U
.U
.O
.0
.0
.O
.U
.U
.U
.0
.0
.U
.0
.0
POVI
IKGI
.0
.U
.0
.U
21.2
51.6
16.8
16.5
117.6
88.0
IDS. 3
118.2
112.1
81.1
17.7
15.6
26.7
22.7
17.0
13.2
6.6
2.1
.0
.0
.0
.0
.0
.0
.1)
.O
.0
.U
.11
.U
.0
.0
.U
.0
.0
.0
.0
.0
.O
.U
.0
OViRfLU* I01AL5
POv I
2S5.
701.
PUV3
3557.
POVI
1007.
bBNKPI CKINli
-------
APPENDIX 11
TEST EXAMPLE FOR STATCS
NOTE: This example is similar to the example
contained on the computer tape.
310
-------
BASG.AA Q9S>
SASfciAX .|F|8.
S>ASG,AX .IF|9.
fASO.AX .IF??.
8AS6.AX .IFZB.
SASd.T 9.,F|1/0/POS/100
8AS6,r | |
6USt >,»IF27.
MUSE 8,«II2B.
-------
ro
Nodes of Interest
Input data
Exerpt of output
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS
PAGE
1.
4.
5.
6.
7.
9.
9.
10.
11.
12.
13.
14.
15,
16.
17.
11.
19.
20.
21.
22.
2S.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
IHON KAY JUNE JULY
»CRAF R015
88UHE
SHU 1»BOD
2-TSS
3«rc
4>COD
tKNOT G"3
IREG 9
8HAHL R01S
8SKAL X*l N-220.0 8-1
X-7 H*,33
X*8 H« 880.00
X»9 H«.220
X«10 M*,550
X-27 M-,040
.0005 .001 .002 ,003 .00
X«28 M'55.000
X«29 Ha.022
X«JO M-,066
X-J2 H*|6S.OOO
X-JJ «»,050
X«36 M«JOOO.O
X.J7 H«,33
X>40 H»220.0
XM1 H-O.HO
X»59 H-2JO.O
X-61 H>330,0
X*63 MB 3000,0
X-65 H« 990,0
8EDH3 1 8 9 10 27 28 29
*ZDH3 >9,29 E*0.25
59,8 E>0.25
28f8 E>0.2S
1,8 E»0.25
8END
3-1
1
S-l
5-1
8-4
4 ,006 .008 ,01 .019 ,02
8>l
S>1
8«1
B«l
8«2
8-2
8*1
8-1
8-1
8»l
8«1
S>2
8-1
30 32 33 16 37 40 41 «9 61 63 6S
0.50 2.50 H*0.2S 1,0 9.0
0.50 2.50 H«0.25 1.0 9.0
0.50 2.90 H«0.25 1.0 5.0
0.50 2,50 H«0,25 1.0 5.0
0 ERROR(S), 0 MARNINO(8)| 0 COMMENT(S)
-------
RECEIVING HATER LOADING* RESULTING fROH COMBINED AND SEPARATE SEWER SYSTEMS PAGE
SINGLE-RESULT ( OVERFLOW
1 P 0-OVERFLON TOTAL ( Ml )
3 PI-OVERFLON TOTAL ( KG )
} P2-OVERFLCW TOTAL ( KG )
4 P3-OVERFLOH TOTAL ( KG )
5 P4-OV(RrLOH TOTAL C KG )
u>
t->
LO
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SENER 8ISTEHS
PAGE
NODEI R01S
1,MONTH ?,MONTH 3.MONTH
I .1924E+04 .8865E+04 ,l666Ei04
2 .IflTEtOl .S887E+03 .1962E+03
3 .4437E+03 .1290E+04 ,3727E«03
4 .1894E+04 .B677E+04 .2051E+04
S .7375E+03 .2S9SE+04 ,9267Et03
1, TEAR
TOTAL FOR WHOLE TEAR
.1246E+05
.966TE+03
.2J06E+04
.I262E+OS
.4259E+04
CO
I.MONTH 2.MONTH 3.MONTH
1 .2S02E+04 .274IE+04 .183TE»04
2 ,163IEt03 ,1*3SG403 .1S82E+03
3 .4S03E+OJ ,S017Ei03 ,3022EtO]
4 ,2U3C«04 ,2J71EtO< .25S6E+04
S .6693E+03 .7300E403 .6496E+03
2, TEAR
TOTAL TOR WHOLE YEAR
,7379Et04
.9048E+03
.12S4EtQ4
.706IE+04
.2049E+04
TOTAL FOR ALL YEARS
I ,1983E*05
2 .1471E+04
3 .3360F+04
4 .I968E+05
5 .6308E+04
AVERAGE YEARLY VALUE
.99I7E+04
.7357E+03
.1680E404
,9841Et04
,3l54Et04
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS
PAGE
too
CO
M
Ui
**«*«»**«***«»*
EVALUATION FOR TEAR
NODEI ROIS ( OVERFLOW >
t»«**««»*t«»t*»***«**
DT 9.00 MINUTES
8| ROD
82 « T8S
81 FC
84 COD
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEMER SYSTEMS
NODEI HOIS
THO DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION OF OVERFLOW
Q-OVERFLOH TOTAIi
(PROPERTY I)
(PROPERTY I)
(HIN )
(HJ >
PAGE 107
EVALUATION FOR (EAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS
I
I SO.l
I
20.02
40.04
60.0*
o.ol
too. to
119.90
139.92
159,94
179.96
199. 91
220.00
4.00
4.30
2.00
t.OO
0.50
0.00
0.00
0,00
O.SO
0,00
0.00
0.00
12.50
39.50
160. 240.
0.00 0.00
I. 00 1.50
1.50 3.00
0.50 0.00
1.00 0.50
0.00 0.00
0.50 0.50
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0,00 0,00
6.50 9.90
23.00 16.50
320.
0.00
1.00
1,50
0,00
0,00
o.oo
0.00
0.00
0.00
0,50
0,00
0,00
3.00
11.00
400.
0.00
1.00
0,00
0.00
0,00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
1.00
.00
410. 560.
0.00 D.OO
0.00 0.50
0,00 0,50
O.SO t.OO
0.00 0.00
0.00 0,00
0.00 0.00
0.00 0.00
0.00 0,00
0.00 0.00
0.00 0.50
0.00 0.00
0.50 2.50
7,00 C.50
640.
0.00
0,00
0,00
0,00
0,00
0.00
0.00
0.00
O.SO
0.00
0,00
0,00
0,50
4,00
720.
0,00
0.00
0,00
0,50
0,50
0,00
0,00
0,50
0,00
O.SO
0,00
0.00
2.00
3,50
100,
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0,50
0,00
0.00
0.00
0.50
1.50
RIO,
0.00
(1,00
0,00
0,00
0,00
0.00
0,00
0,00
0.00
0.00
0.00
0.00
0.00
1,00
1
0.00
0.00
0.00
0.00
0.00
0.00
0.50
o.oo
0.00
0.00
0.00
0.50
l.oo
1.00
4.00 13^50
11.50 31.50
1.50 20.00
1.50 11.50
2,50 1,00
0.00 5,50
1,50 5.50
0.50 4,00
1.50 3.50
1.00 2.00
0.50 1,00
0,50 0,50
U!
-------
RECEIVING WATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS
NODEI ROIS
THO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE IDS
EVALUATION TDK (EAR
IATION
IVERFLO
220.00
220.00
199.98
179.96
199.44
119.92
119.90
100.10
60.08
60,06
40.04
20.02
OF OVERFLOW
N TOTAL
I
t
I
I
+
I
I
* X
I
I
+ X
I
I
+ 4
I
I
» X X
I
I
+
I
I
+ X X X
I
I
+ X X
I
I
+ X . X
I
I
t . , XX
I
I
t ,
I
80.1 160. 240, 120.
(PROPERTY 1) (HIN
(PROPERTY 8) (M3
X
X
»l
XX*
1
X
X X
400. 480. S60. 640. T20.
1 ISOLINE8
XXX 1 I80LINES
... 1 ISOLINE8
) VERTICAL SCALE
) HORIZONTAL SCALE
X
*
X «
X
X « * »
X
X
X
I
600. 680. 860.
FOR FREQUENCY OF
FOR FREQUENCY OF
FOR FREQUENCY OF
0.2S
1.00
S.OO
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS
NODEI R019
Co
M
00
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION OF OVERFLOW
PAGE 10«
EVALUATION FOR (CAR
(PROPERTY 1)
SCALES
FREQUENCIES
SUM
0-OVERFLOW
SCALES
rREOUENClES
SUM
d-OVERFLOW
SCALES
FREQUENCIES
SUM
QoOVERPLOH
SCALES
rRCQUENClES
SUM
Q«OVCRFLOH
SCALES
FREQUENCIES
SUM
P1»OVERFLOH
SCALES
FREQUENCIES
SUM
PI -OVERFLOW
SCALES
FREQUENCIES
SUM
20,0 40,0 60,1 10,1
4.00 11. SO I.SO 3. SO
35.50 11, SO 20.00 il.50
RATE INTERVAL VALUES
, 300E-01.601B-01.901E-01.120
217.90 92.00 95.00 14.00
463.90 246.00 194.00 99.00
TOTAL
10.1 160. 240. 320,
12.90 6.90 9.90 3.00
39.90 23.00 16.50 11.00
RATE AVERAGE
2
6
16
69
1
6
100. 120.
,90 0.00
,00 5.50
(PROPERTY
.150 .180
.00 11.00
,00 49,00
(PROPERTY
400. 460.
.00 0.90
.00 7.00
(PROPERTY
.200E-01.400E-OI.601E-01.801E-01.100 .120
8.00 9.90 4.90 4. SO 3.00 1.90
39.90 27.90 11.00 13.50 9.00 6.00
RATE MAXIMUM
.900E-01.100 .190 .200
11.00 S.OO 4.90 4.00
39.90 24.90 16.90 12.00
RATE INTERVAL VALUES
.900E-01.IOOE-02.200E-02.100E
229.50 29.00 38.00 19.50
463.50 234.00 205.00 167.00
TOTAL
5,00 10,0 19.0 20.0
14.00 3.90 2.90 3.00
39.90 21.90 18.00 15.50
2
8
(PROPERTY
.290 .300
.00 2.00
,00 6,00
(PROPERTY
-02.400E-02.600E
21.50 32.00
147.90 126.00
2
12
(PROPERTY
29,0 30,0
.00 1.00
.50 10.50
1
5
7)
5
36
8)
2
6
9)
1
4
10)
0
4
27)
140,
.90
.so
.210
.90
.00
960,
.50
.90
.140
.00
.90
.390
.50
.00
160.
0.90 '
4.00
.240
9.90
12.90
640.
0.50
4.00
.160
0.90
1.90
.400
0.90
1.90
1
1
9
27
2
1
1
1
1
1
-02.SOOE-02.100E-01
15.00 16.00 18
94.00 79.00 63
26)
2
9
15,0
.50
.50
40.0
2.00
7.00
2
9
180.
.50
,90
.270
.00
.00
720.
,00
.90
.160
.90
.00
.450
.00
,00
.190E
.90
.00
49.0
.00
.00
200,
1,00
2,00
,100
1.90
22.00
800.
0.50
1.90
.200
0.50
1.50
,500
1.00
2.00
220.
0.50
1.00
.110
1.00
18.50
680.
0.00
1,00
,220
0,00
I. 00
,550
0,50
1.00
0.90
0.50
19.90
19.90
I. 00
1.00
1.00
1,00
0.50
0.50
01 , JOOE-01 .400E-01
11.50 22.00 9.00
44.50 11.00 9.00
50.0
1.00
1,00
55,0
0,50
2.00
1.90
1.50
MIN
Ml/S
Ml
Ml/8
HJ/S
KG/8
KG
-------
RECEIVING WATER LOADINGS RESULTING rROH COMBINED AND SEPARATE SEHER SYSTEMS
PAGE
UO
Pt"OVERFLOW RATE AVERAGE
(PROPERTY 29)
U)
M
VO
SCALES
FREQUENCIES
SUN
Pt-OVERrLOW
SCALES
FREQUENCIES
SUM
P2»OVERFLON
SCALES
FREQUENCIES
SUM
P2-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
P 4 -OVERFLOW
SCALES
FREQUENCIES
BUM
.200E.02.400E-02.601E-02.l01E-02,100E-0|.t JOE-OI, 140E-01,1«OE-OJ,I»OE-OI. 2001-01, 220E-01
12.00 (.00 S.50 I. SO 2.00 1.50 0.00 2.00 O.SO 1.00 1,50 0.00
15.50 21.50 17.30 12.00 1,50 6.50 5.00 5,00 1.00 2.50 1,50 0.00
RATE MAXIMUM (PROPERTY 10)
.60iB-02.120E-01.1tOE>0|,240E-0|.100E-01.}fOE-01.420E»Ol,4tOE»OI,S40E-01,600E-01.660E-01
14.50 5.00 5.00 2.50 1.00 2.50 1.50 t.OO 1.00 1.00 0.00 O.SO
15.50 21.00 18.00 11.00 1,50 7.50 5.00 1,50 2.50 1,50 0.50 0.80
TOTAL
15.0 10.0
It. 50 1.50
15.50 19.00
RATE AVERAGE
.500E-02.62SE
12.00 4.00
15.50 21.50
TOTAL
100. 125,
11.50 1.00
15.50 24.00
RATE AVERAGE
.JOOE.Ol.40tE
11.50 1.00
15.50 24.00
TOTAL
20,0 40,0
15.00 2.00
15.50 20.50
RATE AVERAGE
(PROPERTY
45,0
4.00
15.50
60.1
2.00
11.50
75.1
1.50
9.50
».»
1.50
6.00
(PROPERTY
02.IOOE
J.50
19.50
02. 100E-01 . 125E-01 . 15IE
4.00 0,50 1,50
16.00 12.00 11.50
(PROPERTY
160.
J.OO
21.00
200.
t.OO
It. 00
250.
1.50
17.00
119.
5.00
15.50
(PROPERTY
-01.901E-01.I20
4.50 5.00
16.00 11.50
.150
2.50
6.50
.110
1.00
4.00
(PROPERTY
«0,1
4.00
It. 50
10.1
t.so
14,50
100.
2.00
11.00
120.
1.50
11.00
(PROPERTY
12)
105.
O.SO
4.50
31)
120.
1.00
4.00
01.200C-01.250E
J.OO 1.50
10.00 7,00
36)
400.
1.00
10.50
17)
.210
1.50
3.00
40)
140.
0.00
9.50
41)
500.
1.50
7.50
.240
1.00
1.50
160.
2.50
9.50
135,
t.OO
3.00
01. USE"
t,50
5,50
610.
1.50
4,00
,270
0.00
0,50
110.
4.00
7.00
.100E-01.200E-01.100E-Ot,400E-OI.SOOE-0|.*OOE-0|.70QE-01,100E-Ot.900E-
11.50 7.00 5.00 1.00 2.00 0.00 1.50 1.50 1.50
15,50 22.00 IS. 00 10.00 7.00 5.00 5.00 1.50 2.00
ISO.
O.SO
2.00
its.
1.00
1,50
0.50
O.SO
Ot.400E-01,500E-01
1.50 1.50 1.00
4.00 2.50 1.00
too.
0.00
O.SO
.100
O.SO
O.SO
200.
t.OO
3.00
.IOOE+04
0,00 0.50
0,50 0.50
.110
0,00
0,00
220.
0.50
2.00
Ol.lOOEtOO.UO
O.SO A. 00
O.SO 0.00
0.00
0,00
1,50
1.50
0.00
0.00
KG/8
KG/8
KG
KG/8
KG
KG/S
KG
KG/8
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SCHER SYSTEMS
not
111
PI-OVERFLOW CONCENTRATION AVERAGE
(PROPERTY 59)
CO
N3
O
SCALES 20.0
FREQUENCIES 7.50
SUH 15.50
40,0
5.00
21.00
60.1
2.50
21.00
0.1
2.00
20. SO
100
2.50
11.50
P3-OVERFLOH CONCENTRATION AVERAGE
SCALES 10,0
FREQUENCIES 5.00
SUM 15.50
60.1
1.50
10.50
90.1
1.50
29.00
120.
2.SO
25.50
150
l.SO
21.00
Pl»OVERrLON CONCENTRATION AVERAGE
SCALES 100.
FREQUENCIES 2.50
SUM 15.50
175.
1.00
11.00
«eo.
2.00
12.00
600.
l.SO
10.00
750
2.50
26.50
P4'OVERFLON CONCENTRATION AVERAGE
SCALES 90,1
FREQUENCIES 10.00
SUM 15.50
110.
1.50
25.50
270.
1.50
22.00
160.
l.SO
11. BO
450
1.00
15,00
120.
2.00
16.00
(PROPERTY
110.
1.50
19.50
(PROPERTY
945,
1.00
24.00
(PROPERTY
540.
2.00
14.00
140,
l.SO
14.00
61)
210.
2.50
18.00
61)
160.
4.00
10.50
240.
1.50
15.50
110,
5,50
6,50
270.
1.00
14,00
200.
1.00
I. 00
100.
6.50
11.00
220.
0.00
0.00
110.
1.50
4.50
0.00
0,00
1.00
1,00
.120E+04.150Et04.1»9C+04.240E+04,)OOEi04
5.00 5.00 4.00 5.00 2.00 0,00
21.00 16.00 11,00 7.00 2,00 0,00
65)
610.
0.50
12.00
720.
5.00
11.50
10.
2.50
6.50
900.
1.50
4.00
990.
0.50
0.50
0.00
0.00
MG/L
MG/L.
MG/L
MG/L
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SENER SYSTEMS
NODEI R01S
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION OF OVERFLOW
I MIN )
220, X*
I*
PAGE 112
EVALUATION fOR TEAR
220.
200.
110.
160.
N? 140.
M
120.
100.
o.l
60.1
40.0
20.0
FREQUENCY
+x
I*
* '
*
X
+ X
I*
I*
I *
I
I
* X
*
*
***»» X
I *
I *
I *
t **» X
I *
I *
I *
t ***«***** X
i U
I *
* **«**»« X
I
I
I
I *
I »
I
0 10 20 10 40 50 60 TO 10 90 100 ( 0/0 )
CURVE X X CUMMULATIVE FREQUENCY CURV N J5.50 EVENTS
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE 8EHER SYSTEMS
NODEI ROI5
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
Q-OVERFLOM RATE INTERVAL VALUES
( Ml/S )
,))0
PACE ill
EVALUATION FOR YEAR
U)
NJ
NJ
,1)0
,100
.270
.240
,210
,l«0
.ISO
,120
.90IE-01
,«01C-OI
.JOOE-01
I *
I »
I *
IX
I»
t»
I*
I*
I*
I*
»»
*
*
»
*
*
**
*
**»******
*
*
»
0
FREQUENCY CURVE
-+
10
+
20
»
10
*f "
40
»
SO
"+
60
70
»
SO
XX CUMMULATIVC FREGUENCY CURV
.......«.........>
90 100 ( 0/0 )
N 463,50 INTERVALS
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEHER ST8TEK5>
NODEI R015
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
0-OVERFLOH TOTAL
PAGE 114
EVALUATION FOR TEAR
U)
1X5
OJ
( M3 )
0,
810.
100.
720.
640.
560.
410,
X»»
I *
I
I
t»X
*
*
»"X
I*
I*
I»
+»«»X»
I
I *
I *
I*
+
I *
I *
I »
«****
400.
320,
240,
160.
10,1
t»»
*»**
*
*
t-
0
FREQUENCY CURVE
*««
*
*««*
*
»**»*
.*
10
,........+..-.-.-..+.........+....
20 30 40
XX CUHHULATIVE FRECUCNCY CURV
50
60
70
90
35.50
100 ( 0/0 )
EVENTS
-------
Ul
tsJ
Special nodes of interest
Input data
Exerpt of output
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEHER SYSTEMS
3.
4.
5.
6.
7,
It
9.
10.
II.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29,
30,
11.
32.
33. (EDM4 1 3 4 5 6 II 12 13 14 16 17 20 21 24 25 67 69 71 73
34.
35.
36.
37.
36, (END
PAGE
ISSTS
tMON NAT JUNE JULY
*CRAr C037
I8UHE
ISMU IBBOD
2BTSS
3«rc
4 -COD
KNOT G"4
IREG 9
WAHt
IBKAL
(EDH4
IZDM4
C037
X«l
X«3
X»4
5
6
It
12
13
X»I4
X-16
KBIT
X"20
XB21
X«24
XB25
X«67
Xo69
X»7l
X-73
1 3 4
P«4,
P-5,
P"l.
P-l.
H> 550.0 ami
M"l,0
MB 16500.0
HB.44
H-1.65
H-.ll
H» 810.0
H',095
H>.22
M-2200.0
M-,15
H«33000.0
H«l.l
H-3300.0
H-.33
H>220.0
H-440,0
H-UOOO.O
H"770,0
5 6 11 12 13
12 E-0.2S
17 E-0.2J
5 E-0.25
4 E«0,25
S«2
8«l
8*1
8*
8*
S»
S"
8>
8"
8-
8
8*
S»
3"
8"
8-
a*
s>
1
14 16 17 20 21 24 25 67 6»
0.50 2.90 H-0.25 1.0 S.O
0.50 2.50 H«0. 25 1.0 S.O
0.50 2,50 H*0. 25 1.0 5.0
0.50 2. SO H«0. 25 1.0 S.O
0 ERROR(S),
0 HARNINO(S), 0 COMMtNT(S)
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS
PAGE
SINGLE-RESULT
( NODE ON THE RECEIVING BOOT
1
2
3
4
S
6
7
1
9
10
Q-INFLOH TOTAL
PI -INFLOW TOTAL
P2-1NFLOH TOTAL
P3-INFLOH TOTAL
P4-INFLOW TOTAL
O'BACKGROUND FLOW 1
PI BACKGROUND FLOW
PI-BACKGROUND FLOW
PJ-BACKGROUND FLOW
P4-BACKCROUND FLOW
IATE 1
RATE
RATE
RATE
RATE
IECEIVING
RECEIVING
RECEIVING
RECEIVING
RECEIVING
WATERS 1
HATERS
HATERS
HATERS
HATERS
fOTAL
TOTAL
TOTAL
TOTAL
TOTAL
( Ml
( KG
KG
KG
KG
Hi
KG
KG
KG
KG
CO
N>
t_n
-------
RECEIVING WATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER BT8TEH8
PAGE
NODEI C037
I. YEAR
1
2
4
S
6
7
6
9
10
I.MONTH
19957.
2323.
5250.
83231.
7336.
16413.
0.
0.
0.
0.
2.MONTH
64S3S.
5258.
10840.
179468.
17954.
57361.
0.
0.
0.
0.
3.MONTH
18216.
2471.
5297.
74065.
9426.
13127.
0.
0.
0.
0.
TOTAL FOR WHOLE
U)
K)
ON
10
102728.
10032.
21368.
336763.
34917.
88901.
0.
0.
0.
0.
2, TEAR
1
2
3
4
3
6
7
8
9
10
1,MONTH
26392.
2297.
3731.
82197.
7194.
22883.
0.
0.
0.
0.
2.MONTH
23663.
2190.
5780.
78748.
7026.
20412.
0.
0.
0.
0.
3,MONTH
30034.
3107.
5984.
126641.
9432.
24735.
0.
0.
0.
0.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE flCHCR BTSTEMS
PAGE
TOTAL FOR HHOLB
I
2
}
4
5
6
T
I
*
10
(0091,
7S94.
J7JJ6.
2«7SI6,
23652.
61010.
0.'
0.
0.
0.
OTAL TOR ALL TEAMS
AVERAGE ICARLY VALUE
to
I
a
j
4
S
6
7
«
9
10
182119,
156931.
17647,
38*04.
624349.
SIS69,
0,
o.
o.
o.
91409.
71466.
(23.
I94S2.
312175.
29214.
0.
0.
o.
0.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED HMD SEPARATE 8EMER 8T8TEM5
MOB
*»******tl*l»*»*««t«*»***«*»»*»**t****»
U>
S3
oo
For statistical analysis of
special nodes of interest
"NODE ON THE RECEIVING" must
be replaced by "SPECIAL NODES
OF INTEREST" in the output.
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SENER SYSTEMS
NQDEI C017
TMO DIHENSIONAIi FREQUENCY DISTRIBUTION
Q-INFLOU TOTAL
P1MNFLON TOTAL
(PROPERTY 4)
(PROPERTY 12)
(NJ
(KO
PAGE 99
EVALUATION TOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS
1501,50
1001.00
4504.50
6006.00
7507,90
1992.90
10494.00
11995.50
11497.00
14991.50
16500.00
10.1
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0,00
o.oo
0.00
0.00
0.00
25,50
160.
1.00
0.50
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.50
25.50
240,
4.00
0.50
0.00
o.oo
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
4.50
22.00
120.
1.00
1.00
0.00
2,50
0.00
0.00
0,00
0.00
0.00
0.00
0,00
0,00
6.50
17,50
400.
0.00
2.50
0,80
O.SO
0,00
0,00
0.00
0.00
0.00
0,00
0.00
0.00
1.50
11,00
410.
0.00
0.00
1.00
0.50
0.50
0.00
0.00
o.oo
0.00
0.00
0.00
0,00
2,00
7.50
860.
o.oo
o.oo
l.oo
1.00
0.00
0.50
o.oo
0,00
0.00
0.00
0.00
0.00
2.SO
5.50
640.
0.00
0.00
0.00
0.00
0.50
0.80
0.00
0,00
0.00
0.00
0.00
0.00
1.00
1.00
720. 100, 810,
0.00. 0,00 0,00 0.00
0,00 0.00 0.00 0,00
0,00 0,00 0,00 0,00
O.SO 0.00 0.00 0.00
0,00 0.00 0,00 0.00
0.50 0.00 0.00 0.00
0,00 0.00 0.00 0.00
0,00 O.SO 0,00 0,00
0,00 0.00 0.00 0.00
0,00 0.00, 0.00 0.00
0.00 0.00 0.00 0,00
0.00 0.00 0,00 0.50
1.00 0.50 0.00 0.80
2,00 1.00 0,50 0,80
8.00
6.50
2.50
5.00
1.00
1.50
0,00
0,50
0.00
0.00
0.00
0,50
25.50
17.50
11.00
.50
1.50
2.50
1,00
1,00
0.50
0.50
0,90
0,50
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE 8EHER SYSTEMS
NODEI COJ7
TWO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE 100
EVALUATION FOR YEAR
0-INFLOH TOTAL (PROPERTY 4)
PI -INFLOW TOTAL (PROPERTY 12)
(Ml ) VERTICAL SCALE
(KG ) HORIZONTAL SCALE
I
16500,00 + ***«««*»»«*X
16500.00
14991.50
11497.00
11999.50
10494.00
J- "92.50
O
7507,50
6006,00
4904.90
1003.00
1501.50 .
1
* » *
t » t
.......
* » 1 * * *
* * * * » X
* t X *
* . X X X
* * * * X X X
XX,.**.
K * . , X * * *
[
10,1 160. 240. 120. 400. 410, 960, 640
*«* |
XXX 1
.,. 1
*
» »
* *
. . X . .
\
* *
X X * *
X * * *
» X « * *
* » »
* * *
. 720. 800, 110. 1(0.
ISOLINES FOR FREQUENCY OF 0,25
ISOLINES FOR FREQUENCY OF 1.00
ISOLINES FOR FREQUENCY OF ' 5,00
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS
NODEI COJ7
THO DIMENSIONAL FREQUENCY DISTRIBUTION
DURATION Or
Q»INFLOH RATE AVERAGE
(PROPERTY 1)
(PROPERTY S)
(Hid )
(MJ/S )
PAGE 10}
EVALUATION TOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS
90.09
100.10
150.19
200.70
290.29
299.79
349.10
H». IS
449.90
499.45
990.00
t
.400E
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
IS. 50
t
-01.IOIE
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2S.SO
-01,120
0.00
2.00
o.oo
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
o.oo
0.00
2,00
39.90
,160 .200
0.00 0,00
I. 00 0.00
2,00 3.00
0,00 0.00
0.00 0.00
0,00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
3.00 J.OO
23.90 20.90
.240
o.oo
0.00
9. SO
o.oo
0.00
0.00
0.00
1.90
0.90
0.00
o.oo
0.90
s.oo
17.90
,2SO
0.00
0.00
0.90
0.00
0.90
0,00
0.90
0.00
0.90
0.00
0.90
0.00
2,90
9.90
,120
0.00
0.00
0.90
0,00
0.90
0.00
I. 00
0,00
0.00
0.00
0.00
0.00
2.00
7.00
.ISO
0.00
0.00
0,00
1.50
0,00
0,00
0.90
0,90
0.00
0,00
0.90
0,00
J.OO
s.oo
,400
0.00
0,00
0,00
0,00
1.00
0,00
0,00
0.00
0,00
0,00
0,00
0,00
1.00
2,00
.440
0,00 0,00
0,00 0,00
0,00 0.00
0,00 0,00
0,00 0,00
0,00 0,00
0.00 0,00
0,90 0,00
0,00 O.SO
0.00 0,00
0,00 0,00
0.00 0,00
0.90 0.90
1,00 0.90
0,00 29,90
J.OO 25.90
11.50 22,50
1.50 11.00
2,00 *,90
0,00 7.90
2.00 7,50
2.50 5.50
1.50 3,00
0.00 1.90
1.00 1.50
0.50 0.50
UJ
U)
NOTE: For statistical analysis of special nodes of interest
replace OVERFLOW by INFLOW:
-------
N>
RECEIVING NATER LOADINGS RESULTING FROM COMBINED AND SEPARATE 8EHER SYSTEMS
NODE I C011
TMO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE 104
EVALUATION FOR ICAR
DURATION or ojunrwm "7
Q-INFLOu RATE AVERAGE /
I /
550.00 * ft
550. 00
499.99
-^""449.90
199.15
149.80
299.75
250.25
200.20
150.15
100.10
ft
*
ft
»
ft
50.05 + ft
I
(PROPERTY 1) (NIN )
(PROPERTY 5) (Ml/8 )
»
ft ft ft
ft *
ft ft
ft ft ft
ft
ft ft
ft ft ft
ft ft
X
ft ft ft
/ .400C-OI, 801E-OI.1JO .160 .
NOTE: For statistical analysis
nodes of interest replace
by INFLOW.
ft X
ft X
ft X
ft ft
ft ft
ft ft
ft ft
.
ft ft
ft ft
200 .240
of special
OVERFLOW
*
X X
ft ft ft
X
ft X
XXX
ft ft ft
X X
ft X
X X
ft ft ft
ft ft ft
.280 .120 .160
* | ISOLINES TOR
XXX 1 ISOLINES FOR
... 1 ISOLINES rOR
VERTICAL SCALE
HORIZONTAL SCALE
ft ft ft
ft ft ft
ft ft ft
ft » X
ft X *
ft ft ft
ft ft ft
X
ft ft ft
ft ft ft
ft ft ft
ft * ft
.400 .440 .440
FREQUENCY or 0.25
FREQUENCY OF 1.00
FREQUENCY OF 5.00
-------
RECEIVING HATER LOADINGS RESULTING rROH COMBINED AND SEPARATE BENCH SYSTEMS
NODEl COJT
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE I Of
EVALUATION FOR IEAR
DURATION Or OVJ
SCALES
FREQUENCIES
SUM
INFLOW
30,1
0.00
25.90
100,
3.00
2S.50
ISO.
11.50
22.50
200,
1.50
11.00
(PROPERTY 1)
250.
2.00
»,50
100.
0.00
7.50
150,
2.00
7.50
400.
2.50
5,50
450.
1.50
3,00
500,
0.00
1.50
550.
1.00
1,50
0,50
0,50
NIN
0-INFLOW RATE INTERVAL VALUES
(PROPERTY ))
SCALES .100E+00.12S .160 .200 .250 .315 .400 .500 ,(30 .100 1,00
FREQUENCIES 325.50 57.00 64,50 59,50 112,50 131.50 116.50 101,50 61,50 22.50 |4.SO 25,50
SUN 1106.50 711.00 724.00 659.50 600.00 4*7.50 349.00 232.50 124,00 62,50 40.00 25.50
H3/S
0-1NFLOW TOTAL (PROPERTY 4)
SCALES .|50E+04.300E404.4SOC404.601E«04.751E+04.l99C+04.105E*OS.I20e«06.|3SE+05,tSOC>05.l65Et05
FREQUENCIES 1,00 6.50 2.50 5.00 1.00 1.50 0.00 0.50 0.00 0.00 0.00 0.50
SUM 25.50 17.50 11.00 1.50 3.50 2.50 1.00 1*00 0,50 0,50 0,50 0,50
H3
U)
CO
CO
Q-INFLOw RATE AVERAGE (PROPERTY 5)
SCALES ,400E-01.IOJE«01,120 .160 ,200 .240 .210 .320 .360 ,400 ,440
FREQUENCIES 0,00 0.00 2,00 3.00 3.00 1.00 2.50 2.00 3.00 1.00 0.50
SUN 25.50 25.50 25.50 23.50 20.50 17.50 9.50 7.00 5.00 2.00 1,00
0,50
0.50
H3/8
0-INFLOW RATE MAXIMUM
SCALES
FREQUENCIES
SUM
.150
1.00
25.50
.300
1.50
24.50
.450
4.00
23.00
.601
6.50
19.00
(PROPERTY 6)
.751
4.00
12.50
3.00
B.SO
1.05
0,00
5.50
1.20
2.50
5.50
I.35
0,50
3.00
1.50
1.60
2.50
1.65
0,50
1,00
0.50
0,50
M3/S
PI-INFLOW BATE INTERVAL VALUES
(PROPERTY 11)
SCALES .100E-01.200E-01.100E-01.400E«-OI.500E-01.600E>01.700E»OI,IOOE-01.900E-0|.|OOEt00.1tO
FREQUENCIES 231.50 468.00 129.00 73.00 51,50 31.00 29.00 27,00 16,50 11.50 A.50 23.00
SUM 1106.50 673.00 405.00 276.00 203,00 151.50 113.50 14,50 57,50 41,00 29,SO 23.00
KG/S
PI-INFLOW TOTAL (PROPERTY 12)
SCALES 80,1 160. 240. 320. 400. 410. 560. 640. 720. 100. 110.
FREQUENCIES 0.00 3.50 4.50 6.50 3.50 2.00 2.50 1.00 1.00 0.50 0,00
SUM 25.50 25.50 22.00 17.50 11.00 7.50 5.50 3,00 2.00 1.00 0.50
0.50
0.50
-------
RECEIVING MATER LOADINGS REBUtiTINO rROH COMBINED AND SEPARATE 8EHER 8T8TEM8
PAGE
101
Pl-INFLO" RATE AVERAGE
(PROPERTY 13)
SCALES .S01E-02.100E-01.190E»01.200E<>OI.280E-Ol.300Eo01.3SOE-Oi,400E>01,4SOE.OI,500E»01,5SOE*Ol
FREQUENCIES 0.00 0.00 2.00 J.JO 6.00 B.OO 5.SO 1,90 1,50 1,00 0.00 O.SO
SUM as.so as.so as.so ai.so ai.oo is.oo 10.00 4,so 1,00 1.90 o.so o.so
KG/8
PI-INFLOW RATE MAXIHUH
(PROPERTY 14)
SCALES ,200E»01.400E-0|,601E-01,I01E>>01,100 .HO ,140 .ISO ,110 .100 .aao
FREQUENCIES 1.00 9.00 3,00 S.OO 6.00 3,SO 2.SO 0,80 0,50 0,00 0,00 0,90
SUM as,so a4.so ai.so ii.so 13,so 7.so 4.00 i.so i.oo o.so o.so o.so
KG/8
P2»INFLO« TOTAL
SCALES 200, 400. 601, 101,
FREQUENCIES I.SO 7.00 4.SO 4.SO
SUM 2S.SO 24.00 17.00 12.SO
(PROPERTY It)
,IOOE+04.120Bt04.14oe+04,t6oe+04,t(OE+04,200E+04,220C*04
I.SO O.SO 3.00 I.SO O.SO 0.90 0.00 O.SO
S.OO 6.SO 6.00 3,00 I.SO 1,00 O.SO 0.90
KG
CO
P2-INFLQN RATE AVERAGE
(PROPERTY 17)
SCALES .lSOE»01.im»01.240E»01,300E»01.37SE>0|.47JC.01.600E»01.7SOE-01,94SE«01.l20 .ISO KO/8
FREQUENCIES 1.00 O.SO 0.50 2.00 O.SO 4.00 4.00 7,SO 3,30 1,30 0.00 O.SO
SUM 25.50 24.50 24.00 23.30 21.SO 21.00 17.00 13.00 3,50 3,00 0.90 O.SO
P3-INFLON TOTAL
SCALES
FREQUENCIES
BUM
(PROPERTY 30)
.300E+04.601Et04.901E+04.120E«03.130E+03.1*OC+OS.210E«OS.240Et05.270E+OS.300C*08,330Et05
0.00 3.00 10.50 2.50 2,00 1.00 2.SO 3.00 0,00 1,00 1,00 0,00
25.SO 25.50 22.50 12.00 9.BO 7.50 6.50 4.00 2.00 2.00 1.00 0.00
KG
P3-INFLO" RATE AVERAGE
SCALES
FREQUENCIES
SUM
.100
0.00
25.50
.200
0.00
2S.50
.300
0.00
25,50
.400
0.00
29.90
(PROPERTY 21)
.500
0.00
25,SO
.600
0.00
2S.SO
.700
0.00
25,50
.800
0,00
25,SO
,900
7,00
2S.SO
1,00
13,30
11,90
1.10
4.SO
5.00
0,90
O.SO
KC/S
P4-INFLOW TOTAL
SCALES 300, 601, 901.
FREQUENCIES 1.00 6.00 S.OO
SUM 25.SO 24.50 18.50
(PROPERTY 24)
.120E*04.ISOE»04.1IOE*04.2tOE+04.240E+04.270E+04,300E+04,}30E*04
4.00 3,30 3.00 1.90 0,90 0.50 0.00 0.00 0.50
13,90 9.50 6.00 3.00 1,30 1,00 0,50 0.90 0,90
KG
P4-INFLOH RATE AVERAGE (PROPERTY 23)
SCALES ,300E»01.60IE-0|.901E-0|,iaO .ISO .110 .210 .240 .270 .300 .J30
FREQUENCIES 3.00 3.50 S.30 6.SO 3.SO 2.50 O.SO 0.00 0,00 0.50 0,00
SUM 29.90 22.50 19.00 13.50 7.00 3.SO 1.00 0.50 0.90 0.90 0,00
0.00
0.00
KG/S
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEMER SYSTEMS
PAGE
P1-INFLON CONCENTRATION AVERAGE
(PROPERTY «7)
SCALES
FREQUENCIES
SUM
20.0
0.00
25.50
P2»INFLOW CONCENTRATION
SCALES
FREQUENCIES
SUM
40.0
0.00
25.90
Pl-INFLOH CONCENTRATION
SCALES
FREQUENCIES
SUN
40.0
0.00
29.90
AVERAGE
10.1
0.50
25.50
AVERAGE
60.1
0.00
25.50
120.
2.50
25.00
0.1
1.00
25,90
1,00*
22,90
100. 120.
4.50 1.00
24.50 20.00
(PROPERTY
200. 240.
1.90 2.00
21,90 11.00
(PROPERTY
140.
1.00
17.00
69)
210.
2.90
16.00
71)
160.
1.90
16.00
120.
2.00
11.90
110,
4,00
12,90
160.
7.90
11,90
200.
5.50
1.90
400.
4,00
4.00
220.
2,90
1,00
440,
0,00
0.00
0.90
0.90
0.00
0,00
.!OOEf04.200E404.100Et04.400C»04.90!E«04.600C*04.700C+04,IOOC+04,900C+04.100E+09,l!OE+09
0.00 0.00 0.50 0.00 1.90 1.00 1.90 9,00 9,00 9,00 1.90 0.50
25.50 29.50 29.90 25.00 29. DO 21.50 20.50 17,00 12,00 7.00 J.OO 0.90
P4-INFLOH CONCENTRATION
SCALES
FREQUENCIES
£ SUM
l/i
70.1
0.00
29.90
AVERAGE
140.
1.00
25.50
210.
5,00
24.90
2*0,
2.50
19.50
(PROPERTY
190. 420,
2.90 2.00
17.00 14.90
Tl)
490.
2.00
12.90
960.
1.00
10.90
610.
9.00
7,50
700.
2.90
2,90
770.
0.00
0,00
'
0,00
0.00
MG/L
MG/L
MG/b
MG/L
-------
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEMCR 618TEM8
NODEl C0$7
ONE DIMENSIONAL FREQUENCY DiSTRisuTinn
DURATION or
I HIM
PACE 110
EVALUATION FOR YEAR
590.
550,
500.
450.
400.
CO
$ »»
300.
250.
200,
ISO.
100.
50.1
FREQUENCY
X« ^S.
I» ^V.
I» ^s.
I» ^
+x»» ^r--.^-^
I ^^"^
1 * X^
I ^-w^
» K ^*+^
M ~^^^
* ^^K
UK NOTE: For statistical analysis of special
* J nodes of interest replace OVERFLOW
i . by INFLOW.
+ »»» n
i
i «
i
* * K
I t
I
I » ,
***** m
*
*
*
*»*** n
i *
i *
i *
* » K
I
I
I »
4 **«**X*» .
I *
I »
I »
+ »**<»»*******«*»******» n
I
I
I «
»*»****« X
*
0 10 20 30 40 50 60 TO (0 90 100 ( 0/0 )
CURVE X-'-X CUMHULATIVE FREQUENCY CURV N 25,50 EVENTS
-------
GJ
RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SBNCK SYSTEMS
NODEI COJT
ONE DIMENSIONAL FREQUENCY DISTRIBUTION
Q-INFUOH RATE INTERVAL VALUES
PAGE 111
EVALUATION TOR YEAR
t Hi/a i
1,00
1.00
,100
.630
,800
,400
.31'
.250
,200
,160
.125
,100(5+00
,
<
FREQUENCY CURVI
l»»
1 *
t «
I »
MX
»
r»
KMX
*
*
X
*
*
t X
*
t X
*
*» X
*
» X
*
*** X
X
X
»»*»»*******»***«* . X
) 10 20 30 40 50 ftO TO 80 90 100 ( 0/0 )
! X X CUMMULATIVC FREQUENCY CURV N » 1106.50 INTERVALS
-------
U)
CO
00
RECEIVING MATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BENER SYSTEMS
NODEI COI7
ONE DIMENSION*!, FREQUENCY DISTRIBUTION
Q-INFLOH TOTAL
( H) )
,t«SEtOS X»
I»
I*
I»
.165B+OS «X
.1SOE+05 X
.U5E+05
X
.UOE+09 *X
I*
I*
I*
.IOSE+OS ** X
HOE It!
EVALUATION rOR UAR
,I9»E*04
.751E+04
.601E+04
.450E+04
.300E+04
.130E+04
*** X
*»»»***««*«
*
»
*
**»***»**»*»**»
+-
0
FREQUENCY CURVE
****
*
+
10
..».
10
40
SO
60
70
XX CUMKULATIVC FRE6UENCY CURV
90 tOO ( 0/0 )
N as.SO EVENTS
-------
APPENDIX 12
TEST EXAMPLE FOR RAINSC
NOTE: This example is similar to the example
contained on the computer tape.
339
-------
Input data
«OQS.
>TfRS.
0«S6,AX
H.RAIN.
«DLLEU,C .MRS-
FURPUR }7R2* SL/3RI 05/ZI/M Of!S2>01
FIRS IS NOT CAHLOGOIO OR ASSIGNED
r»c SIAIUS: IOUQIOOOOOOO
«»SG,I »F IRS. (FM///SOO
«DEiriE.C
fuRPOR ifR2* SI.7JRI DS/7I/7V 07IS2I05
. ,F I1///SOO
BXST ««85.R«IN5C
INPU1 DM» CARDS
| -L»N E
2 .M05 SOOO
-------
Output
CO
.JS
ONE DIMENSIONAL FRE8UENO OIST|8UT|ON
TEARS STATISTICS fOF THE TEARS
56 60
RAINFALL DURATION I M|N I
SCALE
f RE9>
TOTALS
TOT* PC.
OT. SCAL
f RE8.
TOTALS
TOT" PC.
ORTSPElL
SCALE
fRte.
TOTALS
TOT. PC.
DT. SCAL
FRE8.
TOTALS
TOT. PC.
66
27
12. S
100
6.6
0
12. S
100
< HIM i
2000
IR.S
12. S
100
100
B.S
12.5
100
132
5
IS. S
36.17
13.2
2
12.5
100
1000
6.S
21
56.17
800
I.S
31
80
1 78
3
10.5
21. '1
19.8
6
10. S
9S.29
6000
1.5
17. S
11.18
1200
3.5
32.5
76.17
TOTAL RAINOEPlM PER IVINT 1 MM
SCALE
f RES.
TOTALS
TOT. PC.
PI. SCAL
FREO.
TOTALS
TOT. PC.
AVERAGE
SCALE
TREK*
TOTALS
TOT. PC.
DT. SCAL
f RIO.
TOTALS
T01. PC.
3.1
11
12.5
100
.66
0
12-5
100
INTENSITY
2/0
9.5
12.5
too
SI
0
12.5
100
6.6
16
28.5
67.06
1.32
2
17.5
100
PfK
510
IS
33
77.65
106
I
12. S
100
9.9
6
12.5
29.11
1.78
1.5
10.5
95.29
RAINFALL
BIO
ID
18
17.35
I62
1
11.5
V7.6S
261
1
7.S
17. *S
26.1
6,5
31.5
8I.|8
8000
1.5
13
30.59
1400
1
29
68.21
1
13.2
3
6.5
IS.2»
2.61
1
36
81.71
EVINT
1080
1.5
e
in.»7
716
2.5
37.5
88.71
330
1
I.S
8.21
11
I.S
28
65.88
(0000
2
8.5
20
2000
1
25
SB. 82
16. S
2
3.S
8.21
3.1
3.5
12
75.29
i HH /
1150
.5
3.5
A. 21
770
2
35
02.15
196
I.S
2.5
5.88
39.6
2.S
21. S
ST. 65
12000
I.S
6.5
IS. 29
2100
2
21
S6.i;
19. a
.5
1 .S
3. S3
3.96
2.5
28.5
67.06
1000 /
1620
1
3
7.06
321
5.5
33
77,65
162
0
1
2. IS
16*2
2.5
22
S|.»6
11000
.5
s
11.76
2800
S
22
51.76.
23*1
«S
|
2. IS
1.62
I.S
26
6|.I8
INT i
IB70
5
2
1.71
176
2
27.5
61.7)
528
.S
1
2.3S
52.8
0
19,5
15.88
16000
2
1.5
10.59
1200
2
21. S
SO. 69
26.1
0
,s
LIB
5.28
I.S
21. S
50.59
2160
,5
I.S
1.51
112
3
25. S
60
S»1
0
5
1.18
S9.l|
Z'S
|9. S
IS. 88
18000
|
2.5
5.88
3600
I .5
I»«S
15. SB
29.7
0
>5
1 .18
S.91
2.S
18
12.15
2110
.5
1
2.15
IB*
2
22.5
52*91
640
.S
,s
I.I*
46
1.5
IT
10
20000
I.S
I.S
1.51
1000
s
18
12. IS
11
»S
S
1.18
4.6
1
IS.S
16.17
2700
.5
.5
1.18
510
2.5
20.5
18.21
-------
Ul
JS
NJ
MAXIMUM
SCILE
FPl«.
TO)ALS
TOI. PC.
0). StAL
ruts.
TOTALS
TOI. PC.
INTENSITY OF RAINFALL EVENI
eoo 1600 2100 3200
7
12.5
100
160
0
12.5
100
1 1.5
33.5
78.82
320
1
12.5
100
8
IV
11.71
180
2
11.5
77.65
3
II
25.88
610
3.5
37.5
72.71
1 MM / 1000 / INT 1
1000 1800 5600
3
8
I8.R2
eoo
2.5
36
81.71
1
S
11.76
960
5
33. S
78.82
1 "5
1
9. It
1120
3
28>S
67,06
6100
1
2.5
5.8«
1280
1.5
2S.S
to
720Q
1
I'S
3.53
1110
3-5
21
56.17
000
.S
.5
LIB
1600
1,5
20.5
18.21
AVERAGE / MAXIMUM INIENSITf PER RAINFALL EVENT
SCALE
FRE6.
IOTALS
TOT. PC.
DT. SCAL
f RES.
T01ALS
101. PC.
TIME TO
SCALE
FRtb.
IOTALS
10T. PC*
OT. SCAL
FRE1.
IOTALS
TOI. PC.
TIME 10
SCALE
FRIB.
TOTALS
TOT. PC.
DT. SCAL
F«EO.
10IALS
101. PC.
.07
2
12.5
100
.036
0
12. S
100
MAXIMUM
55
36.5
. 12.5
100
5.5
26
12.5
100
MAXIMUM
.08
18
12.5
100
.016
16
12.5
100
. 18
1
10.5
95.27
.072
.5
12,5
100
.27
8.5
36.5
85.88
.108
2-5
12
98.82
.36
II
2*
65.88
.111
1.5
37.5
72.71
INTENSITY OF RAINFALL
110
3.5
6
11.12
II
2*5
16.5
38.82
INTENSl
.16
6
21.5
57.65
.032
0
26.5
62.35
165
1.5
2.5
5,88
16.5
2.5
11
32.71
220
0
1
2.35
22
1.5
11.5
27.06
.15
7.5
17
10
.18
1.5
38
89.11
EVENT
275
.5
1
2.35
27.5
1
10
23.53
l» / TOTAL DURATION OF
.21
1'&
17.5
15.88
.018
.5
26.5
62.35
RA|N DEPTH TO |HL INTERVAL WITH
SCALE
FRE9.
TOTALS
10). PC.
OT. StAL
FRE8.
TOTALS
10T. PC.
1 .6
32.5
12.5
100
.16
16
12.5
ILU
3.2
1.6
10
23.53
.32
2.5
2A.S
62*35
1.8
2
5.5
12,71
.If
1.5
21
SA.17
.32
2
I*
35.29
.061
1
2*
6|.|8
.1
1.5
13
30.59
.08
.5
75
5
-------
RAIN DEPTH 10 INTERVAL UMIIH MAXIMUM INTENSITY / TOTAL »AIN DEPTH OF CyENT
SCALE
FKE9«
TOTALS
TOT. PC.
01. SCAL
FREO.
TOTALS
TUT. PC.
RAINFALL
SCALE
FRE*.
TOTALS
TOT. PC.
OT. SCAL
fREU.
TOTALS
TOT. PC.
.09
19.5
12. S
100
.018
16
12.5
100
.18
1
23
51.12
.036
.5
26.5
A2.3S
.27
6
1 9
11.71
.051
.5
26
61.18
INTENSITY - INTERVAL
aoo
717
811.5
100
80
187
8| 1.5
100
1600
37
61*5
7.95
160
219
621.5
76.96
2100
1 1
27.5
3.39
210
120
375.5
16.27
.36
5.5
13
30.59
.072
1 .5
25.5
60
VALUES
3200
7
16.5
2.03
320
83.5
2S5.5
31.18
.15
2.5
7.5
I7.6S
.09
I
21
56.17
1 MM /
1000
1
9.5
1.17
100
0
172
71.2
51
2
S
11.76
.108
0
23
51.12
1000 /
1800
1 .5
5.5
.68
180
13. S
172
21.2
.63
2
3
7.06
.124
2
23
51.12
INT 1
5600
1 «S
1
. '»
540
31. S
128.5
15.83
72
0
1
2.35
111
1
21
19.11
6100
1
2.S
31
610
20. S
1
11.58
.8)
5
I
*«Js
.162
1
20
17.06
7200
1
1.5
18
72Q
f
73. S
9,06
.9
.5
S
1.18
.18
0
19
11.7|
8000
.S
.5
04
800
0
61,5
7.95
-------
APPENDIX 13
CONVERSION FACTORS
Multiply
By
To Obtain
acres 4047
cubic feet 0.02832
cubic feet 28.32
cubic feet per minute 0.4720
cubic meters (m3) 35.31
cubic meters (m3) 264.2
2
cubic meters (m3) 10
feet 0.3048
feet of water 304.8
gallons (US) 0.1337
gallons (US) 3.785
gallons (US) per minute 0.06308
hectares (ha) 2.471
hectares (ha) 1.076*10!
inches 2.540
inches of mercury 345.3
inches of water 25.40
kilograms (kg) 2.2046
kilograms (kg) 1.102*10"
kg per cubic meter (kg/m3) 0.06243
kg per square meter (kg/m2) 3.281*10
kg per square meter (kg/m2) 2.896*10
kg per square meter (kg/m2) 0.2048
kilometers (km) 3281
kilometers (km) 0.6214
-3
square meters (m2)
cubic meters (m3)
liters (1)
liters per seond (1/s)
cubic feet
gallons
liters (1)
meters (m)
kg per square meter (kg/m2)
cubic feet
liters (1)
liters per second (1/s)
acres
square feet
centimeters (cm)
kg per square meter (kg/m2)
kg per square meter (kg/m2)
pounds
tons (short)
pounds per cubic foot
feet of water
inches of mercury
pounds per square foot
feet
miles
344
-------
Multiply
By
To Obtain
kilometers (km) 1093.6
liters (1) 0.03531
liters (1) 61.02
liters (1) IO"3
liters (1) 1.308*10
liters (1) 0.2642
meters (m) 3.2808
meters (m) 39.37
meters (m) 10
meters per second (m/s) 1968
meters per second (m/s) 3.284
meters per second (m/s) 6.0
meters per second (m/s) 2.237
miles 5280
miles 1.6093
milligrams per liter (mg/1) 1
millimeters (mm) 0.03937
pounds 453.6
pounds per cubic foot 16.02
pounds per square foot 4.882
ppm 1
square feet 0.09290
square meters (m2) 2.471*10
square meters (m2) 10.764
temp (degs C) +17.8 1.8
temp (degs F) -32 5/9
tons (long) 1016
tons (long) 2240
o
tons (metric) (t) 10
tons (metric) (t) 2205
tons (short) 2000
-3
yards
cubic feet
cubic inches
cubic meters (m3)
cubic yards
gallons
feet
inches
kilometers (km)
feet per minute
feet per second
kilometers per hour (km/hr)
miles per hour
feet
kilometers (km)
ppm
inches
grams
kg per cubic meter (kg/m3)
kg per square meter (kg/m2)
milligrams per liter (mg/1)
square meters (m2)
acres
square feet
temp (degs Fahr)
temp (degs Cent) (°C)
kilograms (kg)
pounds
kilograms (kg)
pounds
pounds
345
-------
TECHNICAL REPORT DATA
(Please read Inunctions on the reverse before completing)
REPORT NO.
EPA-600/2-80-116
3. RECIPIENT'S ACCESSION*NO.
4. TITLE AND SUBTITLE
QUANTITY-QUALITY SIMULATION (QQS)
A DETAILED CONTINUOUS PLANNING MODEL
FOR URBAN RUNOFF CONTROL- Volume II User's Manual
8. REPORT DATE
August 1980 (Issuing Date)
8. PERFORMING ORGANIZATION COO6
, AUTHORIS)
Wolfgang F. Geiger and Helmut R. Dorsch
8. PERFORMING ORGANIZATION REPORT NO.
PERFORMING ORGANIZATION NAME AND ADDRESS
DORSCH CONSULT LTD.
Toronto, Ontario, Canada M5H 1Z2
10. PROGRAM ELEMENT NO.
A35B1C Tnrir f
. CONTRACT/GRANT NO.
R 805100
2. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research LaboratoryGin., OH
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati *_ Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final Sept. 1977-July 1979
14. SPONSORING AGENCY COOS
EPA/6QQ/14
S. SUPPLEMENTARY NOTES
Project Officer: Hichard Field (201) 321-6674, .8-340-6674
6. ABSTRACT
To calculate urban stormwater and combined sever overflow pollution and means for
its control, a comprehensive mathematical model is presented. The model
(Quantity-Quality Simulation) operates in a continuous mode and accounts for the
unsteady runoff and overflow behavior of total drainage systems. Lumping techniques
that calculate the runoff from drainage areas are combined with detailed flow routing
through main and interceptor sewers as well as other structures such as branches,
overflows, basins, pump stations, control gates and treatment facilities. The computer
program calculates the runoff in the storm or combined sewer system and in the
receiving waters. The program package, written in Standard Fortran IV, is composed of
approximately 30,000 statements and pan be used on any BATCH processing system having
Fortran IV compilers
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Sewer overflow, mathematical model, runoff,
computer program, storm sewer, combined
sewer, interceptor sewer, Fortran IV
Stormwater, Quantity-
Quality Simulation,
Batch Processing system
13B
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
360
20. SECURITY CLASS (Thispagt}
Unclassified
22. PRICE
CPA Form 2220O (S-73)
346
------- |