EPA-600/2-80-116
                                             August 1980
            QUANTITY-QUALITY SIMULATION (QQS)
          A DETAILED CONTINUOUS PLANNING MODEL
                FOR URBAN RUNOFF CONTROL

                        Volume II
                      User's Manual
                           by
                   Wolfgang F. Geiger
                    Helmut R. Dorsch
                   DORSCH CONSULT LTD.
            Toronto, Ontario, Canada  M5H 1Z2
                   Grant No. R 805100
                     Project Officer

                      Richard Field
            Storm and Combined Sewer Section
              Wastewater Research Division
Municipal Environmental Research Laboratory (Cincinnati)
                Edison, New Jersey  08817
       MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
           OFFICE OF RESEARCH AND DEVELOPMENT
          U.S. ENVIRONMENTAL PROTECTION AGENCY
                 CINCINNATI, OHIO  45268

-------
                                DISCLAIMER
     This report has been  reviewed and approved for publication by the Mu-
nicipal  Environmental  Research  Laboratory,  U.S. Environmental  Protection
Agency,- Cincinnati, Ohio.  Approval does not signify that the contents nec-
essarily reflect the views  and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names  or  commercial  products  constitute
endorsement or recommendation for use.

-------
                                 FOREWORD
     The Environmental Protection Agency  was created because of increasing
public and government  concern  about the dangers of pollution to the health
and welfare  of the American people.  Noxious air, foul water,  and spoiled
land are tragic testimony to the deterioration of our natural environment.
The complexity of that environment and the interplay between its components
require a concentrated  and integrated attack on the problem.

     Research and development comprise that necessary first step in problem
solution and involve defining the problem, measuring its impact, and search-
ing for solutions. The Municipal Environmental Research Laboratory develops
new and  improved  technology and systems for the prevention, treatment, and
management of wastewater and solid and hazardous waste pollutant discharges
from municipal and community sources,  for the preservation and treatment of
public drinking water supplies  and for the minimization of adverse economic,
social, health, and aesthetic effects  of pollution.  This publication is one
of the products of  such research; a most vital communications link between
the researcher and the user community.

     This study  describes the  principles and use  of  the Quantity-Quality
Simulation (QQS) model. The QQS model  defines the impact of urban runoff on
receiving waters and aids in the initial and detailed planning of abatement
alternatives  for  pollution  from storm sewer discharges and combined sewer
overflows in urbanized  areas.
                                                     Francis T.  Mayo
                                                     Director
                                                     Municipal Environmental
                                                     Research Laboratory
                                    111

-------
                                  PREFACE
Control of urban  runoff  pollution has become a focus of environmental pro-
tection activities. Satisfactory analysis of urban runoff abatement measures
requires the  investigation  of  numerous alternatives and planning variables
to arrive at economical and efficient solutions.  This has  resulted in an in-
creasing interest in the modeling of urban runoff.

     Urban runoff models have been developed to serve one or more  of the ba-
sic functions of planning, system analysis or design, and operations. A num-
ber of models was developed with only one of these functions in mind. Selec-
tion of a suitable model becomes a difficult task when two or more engineer-
ing functions are involved simultaneously. This situation is further compli-
cated by  the large variety of problems  encountered in practice.  A model
serving multiple functions ideally should not produce more information than
needed, yet should not yield such over-simplified results that its reliabi-
lity is in question.

     The simulation model detailed  in this report  was developed to serve
multiple functions. It allows assessment of impacts  of existing urban drain-
age systems  on  receiving waters as well  as  the  evaluation of expected ef-
fects of structural and nonstructural mitigative  alternatives. The model has
been applied in the detailed planning and initial design of main system com-
ponents and is considered to be applicable for the  analysis of a wide vari-
ety of operations problems.

     The theoretical background  of this model and  its data processing mode
were developed during the period from 1973 to 1975.  The programming was par-
tially  financed by the Federal Minister of  Research and  Technology of the
Federal Republic of Germany  (Grant No. 0825027).

     Because  this  simulation  model may  well  suit   certain American needs
within the framework of Section 201 and Section 208  studies, a  research
grant was provided by the U.S.  Environmental Protection Agency to make this
planning tool available to  the American user. The  model had  already been
used in an American city.

     This report is in two volumes. Volume I describes the theoretical back-
ground, testing, and application of  the model.  Volume II is the  user's
manual for the model program.
                                     IV

-------
                                 ABSTRACT
     A  comprehensive mathematical  model, the  Quantity-Quality Simulation
(QQS) model, for calculation of urban stormwater and combined sewer overflow
pollution and the means for its control is presented. The model operates in
a continuous mode and accounts for the unsteady runoff and overflow behavior
of  total  drainage systems.  Lumping techniques, that calculate the runoff
from drainage areas,  are  combined with detailed flow routing  through main
and interceptor  sewers  as well as other structures such as branches, over-
flows , basins, pump  stations,  control gates, and treatment facilities.  The
computer program calculates the runoff in the storm or combined  sewer system
and in the  receiving waters. The program package,  written in Standard For-
tran IV,  comprises  approximately 30,000 statements and  can be  used on any
BATCH processing system having Fortran IV compilers.

     While  the  QQS model  is designed  to  operate   in the  continuous mode,
single events may  be used to calibrate and verify the model.  A statistical
analysis routine yields total monthly or annual runoff and overflow figures
and related information such as the frequency and duration of receiving wa-
ter loadings. Continuous simulations may be employed to assess a stormwater
runoff, storm sewer outfall, or combined sewer overflow pollution problem
and to estimate  improvements that would be achieved by structural and non-
structural control and corrective measures.

     Applicability of the QQS model is demonstrated in a number of compari-
sons with measurements of runoff quantity and several water quality parame-
ters made in several catchments.  Short descriptions  of  QQS model applica-
tions are given  for overflow abatement studies made  for:  Rochester,  N.Y.;
Vancouver,  B.C.,  Canada;  Toronto,  Ont.,  Canada',   Augsburg,  Germany;  and
Munich, Germany.

     This  is  Volume  II,  subtitled "User's Manual"  of  the report,  titled
"Quantity-Quality Simulation (QQS), A Detailed Continuous Planning Model for
Urban Runoff Control" submitted by DORSCH CONSULT LTD.,  Toronto, Canada, in
fulfillment of research Grant No. R 805100 under the sponsorship of the
U.S. Environmental Protection Agency. Volume I is subtitled "Model Descrip-
tion, Testing,  and Applications".  Work was completed as of July 1979.

-------
Section
          Runoff simulation for receiving water systems 	 48
               Programs required for runoff simulations in
               receiving water systems 	 48
               Program DTCHCK for receiving water simulations 	 49
               Programs RCVRIN and MRBNTC for receiving water simulations 50
               Program MRBNSP for receiving water simulations 	 51
               Program STATCS for receiving water simulations 	 52
          Precipitation statistics 	 52
               Program RAINSC 	 52
  4. TEST EXAMPLES 	 55
          General	 55
          Problem description 	 55
          Data preparation	 57
          Verification 	:.'	 58
          Abatement alternatives 	 58
          Problem assessment and violation of guidelines
          and standards 	 59

References and bibliography 	  60

APPENDIX  1:    Data Cards for QQSEGL 	  61
APPENDIX  2:    Data Cards for DTCHCK	  85
APPENDIX  3:    Error (F) and Informative Messages and Output
               Headings of DTCHCK 	 177
APPENDIX  4:    Data Cards for STATCS 	 201
APPENDIX  5:    Properties for Statistical Analysis 	 218
APPENDIX  6:    Test Example for QQSEGL 	 229
APPENDIX  7:    Test Example for DTCHCK 	 231
APPENDIX  8:    Test Example for DWTFLC 	 279
APPENDIX  9:    Test Example for RCVRIN and MNTWKC 	 284
APPENDIX 10:    Test Example for MNTWSP 	'.	 292
APPENDIX 11:    Test Example for STATCS 	 310
APPENDIX 12:    Test Example for RAINSC 	 339
APPENDIX 13:    Conversion Factors	 344
                                    viii

-------
                                  FIGURES


Number                                                                  Page

 1   Runstream of the individual QQS programs	  2

 2   Overall flow chart 	  3

 3   Program QQSEGL, simulation results of runoff quantity 	 11

 4   Program QQSEGL, simulation results of runoff quantity
     and quality 	  12

 5   Program MNTWSP or MRBNSP, single event simulation
     results of segment 	  13

 6   Program MNTWSP, single event simulation results of basin 	  15

 7   Program MNTWSP, single event simulation results of over-
     flow structure 	  16

 8   Program MNTWKC, total runoff of flows and pollutant loads 	  17

 9   Program STATCS, one-dimensional statistics of continuous
     simulation results,  tabularized 	  18

 10  Program STATCS, one-dimensional statistics of continuous
     simulation results,  graphical 	  20

 11  Program STATCS, two-dimensional statistics of continuous
     simulation results,  tabularized 	  21

 12  Program STATCS, two-dimensional statistics of continuous
     simulation results,  graphical 	  22

 13  Program STATCS, monthly and annual totals 	  23

 14  Program RAINSC, precipitation statistics 	  25

 15  Test catchment 	  56
                                   ix

-------
                                  TABLES






Number                                                                  Page




 1   Data Processing Capabilities of the Program System 	   5




 2   Coordination of Logical Unit Numbers and File Names 	  27




 3   Logical Unit Numbers for Sequential Files and their Sizes 	  28




 4   Direct Access Files and their Sizes 	  29




 5   Programs with Block Data Subprograms 	  29




 6   Overlay Structure of the Program DTCHCK 	  30




 7   Overlay Structure of the Program DWTFLC 	  32




 8   Overlay Structure of the Program MNTWKC 	  33




 9   Overlay Structure of the Program MRBNTC 	  35




10   Overlay Structure of the Program STATCS 	  36

-------
                           LIST OF ABBREVIATIONS
ABBREVIATIONS

BOD 5
°C
cfs
cts
cts/5 min
cts/1
COD
DWF
EPA
OF
FC
ft
g
ha
hrs
HVM
in
kg
kg/5 min
km
1
Ib
1/s.ha
m
m2
m3
m3/s
mg
mg/1
min
flfrlli
mm/5 min
N
P
Pb
ppm
QQS
R & D
s
SS
biochemical oxygen demand (5-day)
temperature degs C
cubic feet per second
counts
counts per 5 minutes
counts per liter
chemical oxygen demand
dry-weather flow
Environmental Protection Agency
temperature degs F
fecal coliform
feet
gram
hectare
hours
Hydrograph Volume Method
inch
kilogram
kilograms per 5 minutes
kilometer
liter
pound
liter per second and hectare
meter
square meter
cubic meter
cubic meters per second
milligram
milligrams per liter
minutes
millimeter
millimeters per 5 minutes
frequency
phosphorus
lead
parts per million
Quantity-Quality Simulation
Research and Development
second
suspended solids
                                   xi

-------
STP            — sewage treatment plant
TSS            — total suspended  solids
UWRR           — Urban Water Resources Research
WSE            — water surface elevation
yrs            — years
29.8.75        — day.month.year, e. g. Aug. 29, 1975


NOTE:          Abbreviations and symbols used in Appendices 1 to 4 only co-
               ordinate the descriptions on each page and are not contained
               in this list.
                                   xii

-------
                             ACKNOWLEDGEMENTS
     The valuable suggestions  for program improvements of the municipalities
and agencies involved in applications of the QQS program are gratefully ack-
nowledged .

     Especially acknowledged is the valuable guidance  and assistance of the
Project  Officer of  this  demonstration study,  Richard Field,  Chief of the
Storm and Combined Sewer Section (Edison, New Jersey)  of the U.S. EPA Muni-
cipal Environmental  Research Laboratory, Cincinnati, Ohio. The valuable com-
ments provided by H.C.  Torno  of the  U.S.  EPA Office  of R  & D  (Washington,
D.C.) and  by D. Ammon of the  Storm and Combined Sewer Section  (Edison, New
Jersey) of the U.S.  EPA Municipal Environmental Research Laboratory, Cincin-
nati, Ohio,  were  gratefully accepted. M.B. McPherson,  Director of the ASCE
UWRR Program who reviewed and  assisted in editing the final report is thank-
fully acknowledged.

     Appreciation is extended  to personel  of Dorsch Consult: Simo Mrdja who
did  the  systems analysis  and debugging  for  most  of  the programs  and who
drafted Section 2 of this volume; Donatus Reich who prepared the test examp-
les; and Mrs. Uta Gysser who performed with dedication the  extensive typing
job.  The principal author,  Wolfgang F. Geiger  is now associated with  the
Technical University of Munich, Department  of Civil  Engineering, Munich,
Germany.
                                  xiii

-------

-------
                                 SECTION 1

                      OVERALL QQS PROGRAM DESCRIPTION
PROGRAM SYSTEM COMPENDIUM

     The Quantity-Quality  Simulation (QQS)  model is a comprehensive mathe-
matical model  for  the calculation of urban  storrawater  runoff and combined
sewer overflows (1). A detailed description of the individual components of
the QQS method is given in Section 2 of Volume I, Model Description, Testing,
and Applications.

     The program package  of the QQS model comprises of a number of indivi-
dual programs: a  data edit program, a sequence of three programs necessary
to  perform the actual  runoff simulations,  a  program to  print the runoff
hydrographs and pollutographs in the case of single events,  and  a statistics
program to evaluate continuous simulation results.  In  addition,  there are
two optional programs  included in the package. The one simulates rainfall-
runoff from  individual  catchments  (not including major sewer routing), the
other  analyses precipitation  data  statistically.  Figure 1  shows  the se-
quence in  which  the individual programs are applied. An overall flow chart
is provided in  Figure  2.

     The following explanations of the functions of individual programs are
intended to provide an overview of the total program package.  Further infor-
mation about input  preparation,  necessary control cards and error messages
is given in Section  3 of this report, Program Handling.

     The program DTCHCK  checks the network, quantity and  quality data for
format and plausibility. In case of errorless data (according to input spe-
cifications) the internal  input  files for the simulation part of the pack-
age are created.

     The program DWTFLC  simulates  one full day under dry-weather flow con-
ditions and  establishes  internal  files (IF13 and IF21), containing a daily
cycle of dry-weather flows  at all network nodes.

     TXTFCE provides the output headings TXTFCG provides  for metric units.

     RCVRIN and MNTWKC perform the actual simulations of quantities and qua-
lities of runoff from the catchments and their transport throughout the sew-
er network.

     MNTWSP  prints  single event  simulation results which  were written by
MNTWKC on an internal file  (IF23).

-------
                                     [Create Files
   o
II
II
£3
O T3
§ §
* E
          (catchment runoff
          simulation,  optional)

          (statistics of pre-
          cipitation data,
          optional)
          (print of single
           event results)
1 OOSEGL h-5
/
1 RAINSC Y

DTCHCK


DWTFLC


(datacheck)
(dry-weather flow
calculation)
ITXTFCE/G 1 (textfiles)



MNTWKC
RCVRIN


(storm runoff
simulation)
iSave Results 1
1 WTWSP 1
STATCS 1 (statistics)
                                             I Save Results
                                      Delete Files
o  o>

i  -5
=1  U
cs  o
          (print of single
          event results)
                                     [Create Files I
                                    I Save Results |
                                I HRBNSPl"
                                                         (data check)

                                                        (receiving water
                                                         simulation)
ISTATCSl   (statistics)
                                             I Save Results]
                                      Delete Files
       Figure  1.  Runstream of  the individual  QQS programs.

-------
DATA CHECK AND EDIT (OTCHCK )
/ Preclp
tatlon
|
Input E«
Mjloo a
Organ! za
J
Rainfall
Statist!

RUNOFF SIMULATION
TXTFCf , HNTHKC/HR
RCVRIN. NNTUSP/ni
1
I- /Air /Dry-Heather /Receiving
Temperatures 1 Flow Water Flow
^ 4/ 4/
^^
ami- /PreclptX input Exmlnitlc
nd — M tattcin 1 for the Main Pr«
tion 1 Intcnsl-/
xtj.,^
(Frequencies, 1
_J Cumulative
cs M Frequencies
(Duration*


S (WTFlCi
iNfc Definition of
IHSP Precipitation

^f
Pollutant Accumulation and Decay
In Drainage Areas
1
Pollutant Routing In the „ _
Sewer System '
\
^ l*^
Flow and Pollutant Routing In the
Receiving Hater System
(In Case of Single Event Simulations)
* " .
IPollutant loaoj (Finn and Depth) pollutant load]
Mydrographs 1 llydrographs 1 llydrographs 1

(^External j^ralnaoe Area /Sewer
1 loadings 1 Character- 1 Network
1 Istlcs 1 Geometry

/Receiving
Hater System
| Geometry
4r * * *

n and Preparation
igram
Note: For acronyms
see figure 1.
i r
the Effective
t

Runoff from Drainage Areas
1 r
Flow Routing and Calculation of
Velocities In the Sewer System
- ^
^X\ STATISTICS (STATCS)
^ Statistical Analysis of
Continuous Simulation Results
I 1
(In Case of Continuous Simulations)
Frequency. Annual and Sea-
Cumulative Fre- sonal Totals of
quency and Our- Flows and Pol-
atlon Curves lutant toads



(In Case of Single Event)
Simulations)
Iflow and Depth]
bydrogrtpns 1
L.^^1
Figure 2.  Overall flow chart.

-------
     For practical application of the QQS program package it has been found
beneficial to treat  the  sewer network and the  receiving  water as separate
systems,  even  though runoff  and  pollutant transport  calculations  in both
systems employ the same principles. This separation permits the performance
of data checks and simulations for verification or'related purposes indivi-
dually for the  sewer system or the receiving water system without handling
the other system  component  simultaneously.  Therefore,  for the sewer system
and receiving  water system,  individual  program versions  have been estab-
lished which differ mainly in their capacity.  These individual program ver-
sions also contribute to more economical computer use.

     The  pertinent program  names  for receiving  water system  routing  are
RCVRIN, MRBNTC  and MRBNSP.  Receiving water network routing  can be started
only after a corresponding sewer network simulation has been completed.

     The  results  of continuous long-term simulations  are  stormwater dis-
charges, combined  sewer  overflows,  their pollution quantities, and receiv-
ing water loadings at specified nodes. These data are organized and statis-
tically evaluated in STATCS.  One-dimensional and two-dimensional statistical
analyses are performed for  those  properties and nodal  points designated in
the initial input  instructions.

     QQSEGL is  a  program which facilitates calibration and verification of
drainage area calculations.  This  program simulates quantity and quality of
runoff  from  individual drainage  areas  and is an excerpt  of the pertinent
subroutines of MNTWKC.  This program is included in the  package, but its use
is optional.

     The program RAINSC provides a statistical analysis of precipitation da-
ta and  serves  to  select  a suitable time span from longer rainfall observa-
tions for continuous rainfall-runoff simulations.  This program is included
in the package,  but its use is optional.

     The use of additional  programs may prove beneficial,  e.  g.,  the HEC1
program for derivation of unit hydrographs (3) , depending on  individual pro-
ject needs.
PROGRAM SYSTEM CAPACITY

     The capacity  of  the  QQS program system as described in this report is
sufficient for normal applications of total service areas up to approximate-
ly 6,000 ha  (15,000  acres)  in size. At this  approximate  upper limit, with
100 drainage areas their average size would be 60 ha (150 acres). Consider-
able  departures  from these  figures may be encountered  in applications to
diverse  service  areas. Regardless  of  the size of  the total  service area,
three different rainfall records may be handled simultaneously in the simu-
lations. Each  of  these records is  ascribed to  a  fixed area by input. To a
certain degree this will provide some consideration for nonuniformity in the
distribution of precipitation. From one to four pollutants  can be considered
simultaneously in one simulation run.  If  necessary,  additional pollutants
may be handled in  subsequent runs.

-------
     Single event  simulations  can be made for  a  period of up to 24 hours.
The  time  step is  fixed  at  five minutes.  Although it  is  desirable  for the
scope of urban runoff simulation to derive the pertinent input from records
allowing for  similar  fine interpretation, it is still possible to interpo-
late the input  data required in five-minute  detail  from less refined rec-
ords. Single event simulations required for more than one day of data may be
performed  by  splitting  the  event and adjusting  the initial conditions of
successive runs.

     Continuous simulations of up to 20 years, the time step being fixed at
five minutes, are  possible,  but to save computing costs the selection of a
4- to 8-year period based on statistical analysis of precipitation criteria
has been found to suffice without sacrificing reliability.

     Either metric or English units can be used, except for programs QQSEGL
and RAINSC which allow for metric input only. The major data processing cap-
abilities are summarized in Table 1. It should be noted that  the program di-
mensions given are not rigid but may be adjusted by the programmer to accom-
modate larger areas and individual needs.
       TABLE 1.  DATA PROCESSING CAPABILITIES OF THE PROGRAM SYSTEM
Maxima

Length of data for a single event simulation
Length of data for a continuous simulation
Statistical variables, total cases

Precipitation stations
Conservative pollutants
Area types (considering pervious and impervious separately)
Receiving waters arbitrarily connected
Sewer network

Drainage areas
Special .structures
External loadings

Receiving waters
system elements
nodes

overflows
basins and pumps
operational controls
constant
variable (only for single event simulation)
system elements
nodes
Specified nodes for statistical analyses - special structures
                                         - arbitrary nodes
24 hrs
20 yrs
118

3
4
4(8)
2

400
370
100
 35
 15
 20
 18
 10
150
130

 50
  5

-------
INPUT DATA OVERVIEW

Input Data for the Runoff Simulation Programs

     Input  data  for the  runoff  simulation  programs  (MNTWKC/MRBNTC  and
RCVRIN) are  divided  into four groups: precipitation,  network  and drainage
area, quantity, and quality.  All input may be provided in metric or English
units. Format  requirements for  all  input data are provided  in Section 3,
Program Handling.  In order to facilitate application  and  to  avoid wasting
computing time, these input data are checked by an extensive data edit pro-
gram (DTCHCK) for errors and for plausibility. Such a data edit is critical
for  efficient  and economical  application  of  a  comprehensive  simulation
model. Some  of the  drainage  area,  quantity and quality data  are also re-
quired as  inputs  for the program QQSEGL for simulating the runoff from in-
dividual drainage areas. The precipitation data as prepared for runoff sim-
ulations also serve as inputs for the rainfall statistics program (RAINSC).
However,  input  to the programs  QQSEGL and RAINSC only  can be provided in
metric units.

Precipitation Data—
     As discussed in Section 1 of Volume  I (Model Description,  Testing,
and Applications)  continuous  runoff  simulations are sought in order to de-
fine storm sewer discharge and combined sewer overflow behavior. To perform
such a continuous simulation, an equally continuous record of precipitation
data must be  prepared as an input.

     Precipitation intensities have  to be  supplied at 5-minute time inter-
vals and  dry spells  between individual events must be specified. Gaps in a
precipitation record should be filled with estimated values. The checking of
continuous precipitation records against daily totalizer  registrations is
advisable.

     The  5-minute  rainfall intensity  values  required may be  derived from
original  continuous  recordings  of cumulative  depth. In  order  to  include a
broad spectrum  of  events it is necessary to  refer  to a record of 15 to 20
years duration. According to experience, however,  it is not imperative that
runoff simulations be performed for such a complete record. It  is sufficient
for runoff simulation purposes to select a grouping of four to  six represen-
tative years from a long rainfall record. Selection may be aided by statis-
tical analysis  of  the rainfall data by employing the program RAINSC to in-
vestigate major properties, e.g.:

          Rainfall duration (min)
          Dry spell (min)
          Time elapsed from start of rainfall to the  5-minute
          interval with maximum rainfall intensity (min)
          Volume of rainfall  (mm)
          Average rainfall intensity  (mm /5 min)
          Ratio of average to maximum rainfall intensity
          Individual rainfall intensities of the 5-minute
          intervals (mm/min)

-------
     In  the  case of continuous runoff simulations,  the  precipitation data
enter the program  DTCHCK on a separate precipitation  file.  In the case of
single event simulations, the precipitation data are supplied for input to-
gether with the network and drainage area data.

Network and Drainage Area Data—
     The network and  drainage  area data consist mainly of geometrical data
defining the sewer network,  receiving water system and drainage areas. For
single event, simulations the precipitation data are entered with the network
data.

     For practical application of  the  QQS program  package,  it  has proven
beneficial to treat the sewer network and receiving waters as separate sys-
tems, even though runoff and pollutant transport calculations are performed
for both systems according to the same principles.  This separation makes it
possible to perform data checks and simulations for verification or abate-
ment purposes,  individually for  the  sewer network  or the receiving water
system, without the need for handling both system components simultaneously.
Therefore,  individual program  versions  were established  for  the  sewer and
receiving water systems, differing mainly in their capacity.  The connection
of the sewer system and receiving water  system  takes  place  at storm sewer
outfall and combined sewer overflow locations.

     The major network input data define the individual segment shapes, di-
mensions, roughness and invert elevations,  and the  logical  connections of
segments. For  structures within the network,  additional  data  such as weir
heights  and lengths,  overflow  coefficients,  pumping  characteristics,  and
control gate settings have to be provided. Control gates  may be operated as
a function of time or of the water surface elevation at any node within the
sewer network.  Defined  are  also segments  and nodes: for  which single event
simulation hydrograph printouts are desired; for which continuous simulation
results have to be statistically analyzed  -  these are called nodes of inter-
est (storm sewer outfalls,  combined sewer  overflows,  and basins) and special
nodes of interest  (any  ordinary network node with  one inflow and one out-
flow) ; and where constant  or variable external loadings  enter the calcula-
tion area at boundary nodes. In order to  allow for statistical analysis of
storm sewer  discharge data, storm sewer  discharges must  be  handled as if
they occurred at  overflow structures.

     The major drainage  area characteristics are  drainage  area types, sizes,
ratios of impervious to  pervious areas,  population densities  and industrial
wastewater  inflows.  Individual drainage  areas  are  indexed  to one  of  the
three precipitation station records and to  a  sewer system node.

     Most of the network and drainage area data may be  derived from sewer
network plans and aerial photographs.  In modeling a sewer  network or receiv-
ing water  system,   one  should  not attempt to achieve  an  exact geometrical
portrayal of the prototype but should establish a computational description
of the hydraulic features determining the  runoff, outfall,  and overflow pro-
cesses .

-------
     Network and  drainage area  data  enter the program DTCHCK.  For runoff
simulations from  individual drainage areas the drainage  area characteris-
tics are entered only into the program QQSEGL.

Quantity Data—
     The quantity data are mainly those data necessary to determine the run-
off quantity from drainage areas and dry-weather flows. Initial or starting
losses  and  soil infiltration  capacities  are needed  to  evaluate effective
precipitation.   Evaporation  rates,  temperature data,  and  soil infiltration
capacities are required to determine the depression capacities available at
the start of a rainfall event. Temperature data and evaporation rates usual-
ly  are  taken from  official  registrations. Initial or starting  losses and
soil infiltration capacities  are defined according to values  given in the
literature and  from  local experience.

     Unit hydrographs  for  determining  runoff from  drainage areas  may be
established synthetically or  may be derived from precipitation-runoff rec-
ordings. Final  determination  of unit hydrographs may be  aided by comparing
the runoff from individual  drainage areas calculated by  the program QQSEGL
with recorded runoff,  or by comparisons with runoff data  calculated by oth-
er, possibly more detailed methods.

     Diurnal variations of  dry-weather  flow,  boundary flow conditions, and
receiving water flows  are also specified in this data group. These data are
obtained from meteorological surveys, waterworks records,  etc.

     All of these data  also enter the program DTCHCK. Initial or starting
losses, soil infiltration capacities, and unit hydrographs are also required
as input for the program QQSEGL.

Quality Data--
     The quality data  consist mainly of information necessary to determine
runoff  and  dry-weather flow  quality.  For pollutant  balance calculations,
maximum and initial pollutant values and pollutant build-up times and func-
tions,  are  specified  for the different drainage-area  types. Also p'rovided
are data describing  the frequency and efficiency of street cleaning.

     Unit pollutographs, the influences of rainfall duration and diurnal and
seasonal  variations,  all of  which determine the pollutant  wash-off  from
drainage areas, should be derived from rainfall-runoff quality measurements.
The final definition of these functions is facilitated by the program QQSEGL
by  comparing in a  number of  sequential runs  the  calculated pollutant load
runoff from individual drainage areas with measured data. Because areas with
similar  characteristics  have  similar unit  hydrographs  and  unit polluto-
graphs, the user may gain experience by analyzing some of the many rainfall-
runoff  measurements reported in Section 4 of Volume  I,  Model Description,
Testing, and Applications.

     Also specified in the quality data group are diurnal variation of dry-
weather  flow  quality,  water  quality boundary conditions,  receiving water
background pollution,  and the removal effects of detention basins and treat-

-------
meat facilities. Most of these data may be obtained from waterworks records,
local surveys, and the literature.

     All of  these data  are entered into the program DTCHCK. Pollutant load
variations and  the  factors modifying their influence that  account  for the
time of  day  and  rainfall  duration are  required as input  for  the  program
QQSEGL as well.

Input Data for the Statistical Programs

Runoff Statistics—
     Two levels  of  input enter the statistics program STATCS, namely, con-
tinuous  simulation  results  and data specifying the type and extent of sta-
tistical analysis. For a sewer network simulation, continuous runoff results
are provided at nodes of interest and at special nodes of interest specified
by input to the program DTCHCK as part of the network and drainage area da-
ta. At storm sewer outfalls and combined sewer overflows, which were defined
as nodes of  interest,  the discharge and overflow rates and pollutant loads
enter the program STATCS by way of internal files.  The same is true for the
ingoing and outgoing flows at basins during a time of surcharge conditions.
This also applies to the ordinary network nodes with one inflow and one out-
flow which were defined as special nodes of interest.

     For a  receiving water system, continuous  runoff quantity  and  quality
results at the nodes of interest of that system enter the program STATCS by
way of internal files.  Any junction in a receiving water system, where one
branch of  the junction  is a sewer segment loading to receiving waters, may
there be  defined as node of interest.

     The second  type of  input to the program STATCS determines the  proper-
ties  investigated and their  scales:  whether  one-  or  two-dimensional;  if
monthly  or  annual statistics  are to  be performed; and  whether  tabular or
graphical output is  desired.

Precipitation Statistics—
     Similarly, the  program RAINSC calls for two levels of input  in order to
perform a statistical analysis of the  precipitation data. Precipitation rec-
ords must be  supplied on file in  the  same format  required for the  program
DTCHCK. The second type of input is a designation of the choice of years and
months to  be considered  and  whether  monthly or annual  statistics  must be
performed.
OUTPUT DATA

Runoff Simulation Results

Runoff from Individual Drainage Areas—
     Single event  simulations  of runoff from individual  drainage  areas  as
performed by the program QQSEGL are used mainly  for  verification  purposes
and may be made for a maximum of 99 intervals of 5-minute duration each.

-------
     The output of  the  program QQSEGL contains the input data and the cal-
culated runoff hydrographs. Figure  3  shows an example of output for a case
where only runoff quantity was calculated. T indicates the number of 5-min-
ute time intervals  after  the  start of rainfall. RFDPT represents the rain-
fall  intensity (1/1,000  mm per 5  min);  THRLP  represents the  initial  or
starting losses for  impervious  areas  (1/1,000 mm); EFRBA  is  the effective
precipitation  for  impervious  areas (1/1,000  mm per  5  min); THRLG is  the
starting losses for  pervious  areas  (1/1,000 mm); SEEPG is the infiltration
rate (1/1,000 mm per 5 min), and EFRGA is  the  effective precipitation as ap-
plied to  pervious  areas.  The  calculated  flow  hydrographs from impervious
areas are marked by WQBA (m3/s), the flow  from pervious areas by WQGA (m3/s)
and the total runoff by WQTOT (m3/s).  MSWQ (m3/s) is a listing of the meas-
ured runoff as supplied by input and DWQ (m3/s)  gives the difference between
the calculated and measured runoff.

     Figure 4 provides a listing of the output for a case where runoff quan-
tity and quality are calculated. As a  departure from and in addition to the
above explained headings,  INT  indicates the number of 5-minute time inter-
vals after the start of rainfall; DLPHB and DLPHG the  pollutant load runoff
per hectare  in kg  per interval from impervious and pervious areas,  respec-
tively; and  ADLTOT  the  total  runoff of pollutant  loads  in kg per interval
from the  drainage  area  in question.  MSDQ indicates the measured data  and
DDQ is the difference between calculated and measured  values, both in kg per
interval. The  concentration of  the  pollutant in the  runoff from the total
drainage area is provided by CNTRN  (3.33 mg/1).  The pollution related output
is given for two pollutants, which  is  the  most that may be  considered by the
program QQSEGL.

Runoff in the sewer and receiving water system—
     By sequencing the  programs DTCHCK, DWTFLC, TXTFCE,  RCVRIN, MNTWKC and
MNTWSP, single event simulations of the runoff in storm and combined sewer
networks can  be performed for a maximum of 288 5-minute intervals.  Similar
simulations  may be  made  for  receiving water  systems  using the programs
DTCHCK, RCVRIN, MRBNTC and MRBNSP.

     Single event simulations are used principally to  calibrate input data,
to verify  the program package  and  to  check,  on the basis  of  synthetic  or
real storms the comparative effectiveness  of different storm sewer discharge
and combined sewer overflow abatement alternatives.

     The programs MNTWSP and MRBNTC provide the output of single event run-
off simulations of the sewer system and receiving water system respectively.
Flow, depth or pressure, and pollutant load hydrographs  may be obtained for
any element in the sewer and receiving  water systems.

     For the  sewer  or receiving water  system sections, Figure  5, the flow
and depth  or pressure values  are given at  the  upstream (QU, HU) and down-
stream  (QD,  HD)  ends of an element. The pollutant load values (PI,  P2,  P3,
P4) refer  to the  downstream end of the segment. Metric  units are shown in
Figure  5.  If the  output is provided in English units, instead,  in addition
the corresponding concentrations are given.
                                     10

-------
HFnpT
      F.b  !  it 7*




       IHHLH   EF'I'H
                          St F."li   Ef«li«
                                         uoo»
                                                 UOGA
                                                        UOIOT
                                                                  HSUO
                                                                          DUO
                                                                                          P«bF
1
7
1
»
•5
*.
7
f>
9
1C
1 1
t?
11
in
IS
1*
17
1 »
17
?o
/I
??
71
21
25
?<.
?7
?«
?3
Id
31
3?
31
11
15
3*
17
1C
19
l|"
1 1
II?
HI
ait
?'•
P:J1
iir n
ISiJ
2».-
?\JV)
700
170
1 ?n
111
inn
9-)
fii
8U
»(•
*1
PC
7!|
to
7')
?r
!>0
10
5(1
11(1
V)
JT
10
3i1
1 )
»>i
n
o
i
f;
!)
T
T
rl
1
•1
.'t
0
99 Ii
*(•••
97'J
9iP
740
9£t>
H90
IP'S
0
0
rt
n
c>
0
n
o
0
r>
n
0
•_>
p
P
n
,1
P
n
n
II
ri
n
n
1!
ti
• i
i«
0
i)
T
n
ii
0
"
,'•
Ij
o
,,
)
t
>i
•1
0
• }
Ij
"J
0
n
Ci
IMO
•llO
140
?MU
2.10
?in
171
1 HI
HO
111.
vo
PO
no
HI
*i
en
70
SI
70
70
4"
10
30
10
30
n>
no
•in
in
no
VI
(i
n
n
0
'i
j'i
n
.1
it
•i
n
1 5 in >
IM'i: i
IS 111
t^oun
IS'i'l'l
I50CO
IS'111
1K'IUU
IS!)!'}
ISriJO
isno i
15001
15110
isotn
ISIIM
15000
lii'n
l". ;.'.. a
1510 )
151300
1 iDU'.l
1?(llii|
1 30J J
1 50UO
isn.iii
isniu'i
l^nn
15HCO
15T11
isnm
1 SoJ1)
I5ni!0
t50H'l
ISOC-n
15'l.) >
isii';n .
isaiio
I'jUl, '
I50.)!l
15ro"
|5r, n
151111'
IS I'M
iSiiiin
JS'i'l 1
f. JC«
1 5 1 1 ">
15ii.-;-.i
1ST J-')
. I^O':''
11
I'l
n
!•'
?•>
?n
10
570
SO.)
mi 0
IS')
2»1
?0il
2 no
171
170
mo
110
91
60
HI
t>:l
90
til)
n
4')
70
7"
61
70
30
10
3'i
30
41
30
10
no
1 )
u
)
«l
T
,1
rt
r
1
^
.1
i>
U
C
0
C
0
C
0
r
0
r
0
0
r%
n
ii
r
0
c
n
r
n
r
n
c
a
' (5
a
.0
f)
0
o
C
0
r
0
r
0
r
o
r
n
c
ii
r
0
c
0
r
r>
r
,'JOO'l
.0000
,0')00
.0000
. aooa
.oouo
.010"!
.0101
.JO 11
.007S
.U2U»
.0'34
.0*27
.0*119
.0*311
.0408
.0382
.0*60
.01J»
.0108
.0275
.024*
.U21S
.0194
.0181
.01 70
.0158
.0147
.0118
.0131
.UI27
.Ot20
.010?
.0097
.0184
.0078
.0175
.0049
.U047
.0144
.OJ58
.0047
.OOIS
.C")2«
.0117
.yi2
.0409
.OUU4
.00') 4
.IIC01
.OOrtft
.OCOO
.010T
.UUCO
.0100
.OCOO
.0000
.OCOO
.O')on
.or GO
.oouo
.OCOO
.UOOft
.OCOO
.oaoa
.ocon
.0100
.OCOO
.aiao
.OCOO
.0000
.OCOO
.bom
.OCQP
.oooft
.OCOO
.ooon
.ccoo
.0000
.ocno
.llOOft
.OCOO
.0000
.ocoo
.00(10
.ocoo
.0100
.ccoo
.000"
.CCGO
.0011
.aeon
.000"
.ocoo
.0310
.1COO
.000"
.ocon
.ODOT
.OCOO
.aoou
.0000
.ftJJU
.nnoci
.0:300
.noon
.0101
.onon
.0018
.0176
.0704
. " J 3 i
.0427
.0449
.0414
.moe
.0182
.0140
.0134
,
-------
INT
      WQBA
             HOGA   HOTOT
                          MSMO
                                 DIjPHB
                                          DIBT TYPE 1
                                       DLPHG ADI>TOT   HSDO,
                                                           DDO  CNTRN
                                                                         DLPHB
       DIRT TYPE 2
DLPHG ADI/TOT   HSDO
                                                                                                  DDQ  CNTRN
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
n
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
o.oono
o.nooo
o.oooo
0.0500
0.1465
0.1616
0.1059
0.0763
0.0654
0.0456
0.0317
0.0253
0.02J2
O.n2l0
0.0154
0.0104
0.0058
0.0029
0.00|6
0.0009
0.0004
0.0002
0.0001
O.nooo
o.nooo
0.0000
o.nooo
O.nooo
o.nooo
o.oooo
O.nOOO
O.flOOO
0.0000
o.oooo
o.oooo
O.nOOO
o.nooo
O.flOOO
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000
o.ooon
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
0.0000
0.0000
0.0000
0.0000
O.ooon
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.ooon
0.0000
0.0500
0.1465
0.1616
0.1059
0.076)
0.0654
0.0456
0.0317
0.0253
0.0232
0.0210
0.0154
0.0104
0.0058
0.0029
0.0016
0.0009
0.0004
0.0002
0.0001
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.onoo
o.ooon
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.ooon
0.0000
0.0000
o.noao
0.0450
0.1400
0.1650
0.1100
0.0800
0.0630
0.0480
0.0360
0.0280
0.0240
0.0200
0.0160
0.0110
0.0070
0.0040
0.0020
0.0010
o.oooo
0.0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oono
o.oono
o.oono
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.000
0.000
0.000
1.977
3.023
2.443
1.484
1.166
0.847
0.513
0.306
0.190
0.150
0.109
0.070
0.04J
0.021
0.011
0.005
0.00)
0.001
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0,000
0.000
0,000
0,000
o.ooo
0,000
0,000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
4,109
7.870
6.358
3.864
3.034
2.206
1.335
0.796
0,496
0.390
0.285
0.183
0.107
0.055
0.028
0.014
0.006
0.002
0.000
0.000
0.000
o.ooo
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
.000
.000
.700
.000
.500
.600
.600
1.800
1.200
0.800
0.600
0.400
0.300
0.200
0.100
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
-1,000
-0.595
•0.130
-0.142
0.264
0.434
0.406
0.135
•0.004
-0.104
-0.010
•0.019
•0.017
0.007
0.055
0.02R
0,014
0,006
0.002
0.000
0.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.00
0.00
0.00
82.13
53.73
39.39
36.47
39.79
33.71
29.25
25.11
19.56
16.82
13,56
11.86
10.31
.97
.68
.63
,49
.22
1.71
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 ,
0,00
0.00
0.00
0.00
0.000
0.000
0.000
1.961
4.460
4.091
2.631
2.217
1.847
1.279
0.930
0.689
0.535
0.377
0.237
0.153
0.087
0.049
0.029
0.016
0.009
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0,000
0.000
0.000
0.000
o.ooo
o.ooo
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
o.ooo
0.000
0.000
0.000
0,000
0,000
0.000
5.104
11.610
10.545
6.850
5.771
4.808
3.330
2.420
1.783
1.391
0.982
0.616
0,399
0,226
0.127
0.076
0.043
0,022
0.010
0,003
0,001
0,000
0,000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0,000
0.000
0.000
0.000
0.000
1.000
9.900
12,000
11,000
7.600
9,800
4.600
3,500
2,600
1.900
1.400
1.000
0,500
0,400
0,200
0.100
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
-1.000
-0.796
-0.390
-0.459
-0.750
•0.029
0.208
-0.170
-0.180
-0.117
-0.009
-0.018
0.116
-0.001
0.026
0.027
0.076
0.043
0.022
0.010
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.00
0.00
0,00
102.13
79,27
69,27
64.65
79.67
73.50
72.96
76,30
70,36
59,97
«6,77
39.87
38,39
39,16
43.18
46,24
49,55
52,74
55,77
94,72
96,80
0,00
0,00
0,00
0.00
0,00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
          Figure 4.   Program QQSEGL, simulation results of  runoff  quantity and quality.

-------
      PIPt NISUIIS  ••••
                             FIPl MUHULR
                                                UPPCN NUUL
                                                            COJ1
                                                                    LOHtM NOUE C03b
INTtKVAL
           uu
         u /sit I
 HII
(Ml
  Ull
II/btt I
1
2
3
S
b
6
7
8
V
III
1 1
17
13
11
IS
16
1 /
IN
19
2ll
21
42
23
21
2b
26
if 7
28
29
3U
Jl
32
33
31
Jb
36
37
3I>
39
10
11
12
13
11
Ib
3*.
3V.
13.
2/3.
7VS.
1 121.
1 101.
981.
Kll.
750.
650.
5b3.
517.
52S.
193.
Ibl.
3V/ .
3JH.
281 .
231.
IV6.
1 77.
157.
Ibl .
116.
US.
113.
113.
117.
HI .
HI .
110.
110.
13V.
1 IH.
1 It..
130.
123.
1 13.
IU1 .
Vb.
8*.
Ul .
7*.
70.
. fl()
.uu
.00
.00
.110
.00
.uu
.00
.Oil
.00
.00
.uo
.uu
.uu
.uu
.00
. UL
.uu
.ou
.1)0
.uu
.uu
.ou
.ou
.uo
.00
.ou
.0(1
.uu
.uu
.uu
.00
.on
• tu
.00
.uu
.uu
.uu
. ou
.ou
.uu
.Ull
.on
.uu
.uu
35
19
17
731
6V5
lum
IOV1
IOU3
ev7
776
672
59H
556
5JO
SUO
160
1UH
350
291
215
2U1
1 /«
ll.O
153
11;
1 16
111
113
112
H2
111
111
no
13?
139
1 36
Ul
125
1 IS<
IU6
V7
VO
HI
77
71
b
1
01
01
02
09
27
11
13
39
35
3O
76
23
22
21
70
18
16
| 1
1 1
09
08
01
06
06
06
06
06
06
06
06
O6
06
Ob
Ob
Ob
Ob
05
Ob
Ob
01
01
01
OJ
03
03
PI
IKG/INII
.92
1 .25
1 .US
1.31
1 .95
8.90
29.60
S2.03
52.36
Ib. Jl
31. Ol
23.25
18.50
16.13
IS.SS
IS. 31
11.93
11.15
11.26
11.31
11.12
11.19
13.90
12.11
10.18
• 7.58
.32
.61
.06
.20
.97
.63
. 1 3
.91
.13
.93
• 1 1
,U7
3.78
3.38
3.U9
3.01
3.01
3.27
3.72
P2
IKO/IU1I
1 -U3
1.10
1.18
1 .17
2.19
10.80
10.88
86. 18
1 17.28
121.50
IDS. 52
83.79
73. 12
6ft. Ol
66. 11
61. V8
61 .90
S6.12
19.17
12.38
35. IS
30.71
26.82
22.11
17. VI
13.58
1 1.58
12.19
IS.8S
18.68
19.01
17.27
11.91
12.511
10.91
11.10
1 2 . b 7
13. Jl
12.92
1 1 .68 -
10.21
9.1 1
8.01
7.J1
7.05
P3
lilbl/INI 1
73.83
IUU. 13
81.30
101.95
I5S.07
210.00
367. IS
535.07
585.31
550-21
181.23
107.98
158.23
112.21
275.1 1
260.89
251.07
219. 16
215.03
216.85
211.08
• 211.98
213.17
229.52
2U7.9U
185.73
180.12
186. 59
212.02
233.17
232.31
217.23
199.81
101.63
176.69
182.72
199.57
21 1.90
220.38
223. S9
221.98
231.11
210-11
261.08
297.89
PI
(Kb/INI 1
1.33
1 .80
1.52
1.89
2.81
31.61
126.57
212.89
221.29
199.78
115.59
90.95
61.86
52.00
17.35
15.67
12.27
39.01
38.85
11.31
13.70
16.62
17.51
12.96
31.13
21.07
18.76
19.59
21.50
28.36
27.55
22.81
17.55
1 3.29
10. Ib
.Ib
.51
.02
.69
.17
.1 1
.65
• 51
.75
5.37
   Figure 5.   Program MNTWSP or MRBNSP,  single event simulation results of  segment.

-------
     For basins and pumping stations, the flow and pollutant load variations
(Figure 6) are  provided  for the inflow (QIN, PIN1,  PIN2, PIN3, PIN4), out-
flow  (QOT,  POT1,  POT2,  POT3,  POT4) and  overflow  (QOV,  POV1,  POV2, POV3,
POV4). For basins  the  volumes  filled (VOL) and the  water depth or pressure
head  (H)  are also  provided.  For overflows,  the inflow  (QIN,  SZU1, SZU2,
SZU3, SZU4,  where  SZU  =  PIN),  outflow  (QOT,  SAB1,  SAB2, POT3, POT4, where
SAB  =  POT)  and overflow figures  (QOV,  POV1, POV2,  POV3, POV4)  are listed
(Figure 7). In addition,  the totals overflowing are  summarized at the bottom
of the hydrograph tables  (QOV, POV1,  POV2,  POV3 and POV4) in Figure 7.

     Note: All  flow figures printed are taken from  the downstream oriented
calculation of the iterative solution method, and the  flow depth or pressure
head figures printed are  taken from the upstream oriented calculation. If an
interruption of the iteration process occurs, flow and depth figures may be
produced that do not seem to corrrespond  conclusively.  This  situation may
often be  avoided  by subdividing  long or  voluminous  sewer  segments, which
helps to eliminate a forced termination of the iteration procedure.

     Further ,  the  output of the simulation .program MNTWKC contains  a calcu-
lation record that is of  no intermediate interest to the user. However, the
total  runoff of flows and pollutant loads  from all the calculation area
which is part of this record, may be  useful  (Figure 8).

     As explained in Section 1  of Volume I  (Model Description, Testing,
and Applications) continuous simulations  are necessary to define the sepa-
rate  sewer discharge and  combined  sewer  overflow behavior.  The amount of
data  obtained  from such  a continuous  simulation can be  evaluated  only by
means of statistical analyses.  The runoff, discharge,  and overflow data ob-
tained by the program MNTWKC and MRBNTC are stored for statistical analysis
on internal files.

Statistical Results

Sewer and Receiving  Water System Statistics—
     For  statistical analysis,  the  program STATCS  is employed which orga-
nizes and  analyzes  the storm sewer discharge, combined sewer overflow, and
sewer or receiving water  runoff data. The output of the program STATCS prim-
arily consists of tables  and graphs  describing frequency distributions, cum-
ulative  frequencies, and frequency  duration  curves  resulting  from  one- or
two-dimensional statistical analyses.

     Tabulated frequency distributions and cumulative  frequency curves for a
one-dimensional statistical analysis are shown in Figure 9.  The table head-
ing first specifies the name of the discharge or overflow or the segment in
the sewer or receiving water system, and indicates whether the analysis was
done  on a monthly  basis  (e.g. EVALUATION FOR JULY) or  on  an annual basis
(EVALUATION  FOR YEAR). The heading  EVALUATION FOR YEAR  always is given if
all months  simulated per year  enter the statistical analysis. This type of
heading also applies when a part of the year, e.g. May through September, is
simulated. The name of the variable (e.g. DURATION OF  OVERFLOW) and  the num-
ber  of the  variable  (e.g. PROPERTY  1)  given in the heading refer to the
table  of properties for statistical analysis provided  in  Appendix 5. The


                                     14

-------
                          • •••  IIASIN KISULIi   ••••
                                                         BASIN NUHBFH
                                                                                   NUbL
                                                                                         B018
01
                I l<1
 I
 2
 3
 1
 b
 6

 a
 v
10
11
12
I 3
II
IS
16
I 7
18
19
20
21
22
i3
,1
25
2/,
27
2B
2>
30
31
32
J3
JS
35
36
3/
3B
JV
1U
II
12
1J
11
1b
                          VOL   UIN   bOI
                         CUB.M L/Sl.l l/Sl.t L/SfC
bu
Oil
ou
OJ
OJ
Oa
| 3
III
2j
21
32
36
3V
13
16
19
52
Sb
S«
6U
62
6 J
63
(. J
63
62
61
60
U
U
0
u
1 7
10
61
89
1 11
137
IbV
1 'B
1*7
21 3
231
216
261
276
286
29H
JOo
3lb
31 /
31 '
311
3IU
305
301
                     . bll
                     .S/
                     .bb
                     .52
                     .51
                     .bU
                     . IB
                     .16
                     .11
                     .11

                     . 31
                     . JJ
                     .27
29U.
2Bb.
2BU.
273.
261..
267.
2bo.
2bu.
211 .
231 .
21V.
205.
IBV.

151 .
I 3 J.
 JJ.
 311.
 3V.
121.
212.
2)1.
211.
210.
211 •
211 .
23/.
232.
22V.
226.
221.
222.
219.
216.
213.
209.
2CS.
202.

I 60.

152.
119.
116.
lib.
I 'I M .
113.
i in.

I 3B.
I 32.
I2U.
I 20.
I I I •
IU3.
 VS.
 mi •
 HI •
 33.
 30.
 3V.
121.
156.

IS'.
15*.
ISV.
160.
161 .
162.
162.
163.
161.
1*1.
165.
166.
166.
I 66.
16'.
167.
167.
I6/.

I6/.
167.

I/.6.
I 66.
166.
166.
16'.,.

I6b.
16'...
161.
161.
161.
163.

162.
IM .
160.
160.
II V
src
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
(1.
0.
u.
u.
0.
0.
0.
u.
0.
0.
u.
0.
0.
0.
0.
u.
0.
0.
II.
PI HI
U I, I
1 .9
1 .?
1 . 1
.9
3. 1
1.1
3.2
3.8
9.3
'.V
B.2
12.3
13.1
II.'
9.2
7.8
7.1
7.9
9.0
10.3
11.6
13.0
13.9
13.6
13. H
13.6
1 2. a
1 1 .0
a. 6
6.9
6.b
7.5
H.H
9. 1
6.2
6.H
b.S
1.1
1. 1
1. 1
1.2
I.Ci
3.6
3. 3
3. 1
HIN2
IKGI
2- 1
1 . 1
1 .2
1 .0
6.9
12.2
9.6
9.6
16.7
1 3*9
17.1
2V. 9
36. S
36.6
32.7
10.1
30.1
13.6
36.0
12.6
IS.*
16.1
12.8
lb.8
31.3
2'. 3
23.'
IV. 5
Ib.l
12.1
12.2
|1.6
17.6
IB. 9
IH-0
16.0
13.7
11.1
11.2
12. 1
13.2
13.2
12.2
iu.a
v. 7
PIH3
K.IOCI
153.5
92.9
87.1
'!•!
61.8
52.0
19.1
'7.8
i ia.o
87.8
89.6
110. S
161 . II
161.1
151.6
116.9
111 .S
111.1
156.2
177.1
202.0
226.6
211. |
236.2
211 . 7
210.2
231.9
218.6
197.9
166.7
188.6
20*. 7
229.6
217.6
22a.2
212.6
197. a
110.9
166. H
199.2
211.11
223. 1
227.2
22H.V
236. 1
PIN1
(KGI
2.8
1 .7
1.6
1 .1
11.0
20. S
11.*
u. a
37.1
ii. a
ii.i
SI .S
56. 1
16.9
36.1
27. S
21.7
21. 1
26.6
29.2
31 .6
35.3
39.7
11.2
11.1
IS. 6
11. H
17.1
28.0
20.9
19.1
22.6
26.9
27.9
21.8
19. a
IS. 2
1 1 .1
10.0
9.6
9.1
a. i
6.8
S.6
S.O
POII
IK6I
1.9
1 .2
1 . 1
.9
1 .S
1 .8
.6
.1
.9
.2
.1
.1
.a
.0
.2
.9
.S
.9
7. 1
6. 1
S.I
S. 1
s.s
6. 1
6.V
7. a
8.7
9.7
10.6
1 1.2
1 1 .8
12.1
1 1 .8
10.1
8.0
6.S
6.6
'.a
6.6
M.S
7.2
S.6
1.6
1.6
S.O
POI2
1*1,1
2. 1
1 .1
1 .2
1 .0
1.1
1.7
.5.
.7
.1
.1
.6
.7
.7
.2
11.2
15.3
ia.6
18. a
16.3
17.1
16.1
16.6
18.3
20. S
22.9
2S.1
27. 1
27.1
2S.1
22.7
20.7
ib.a
16.9
11.1
11.1
9.1
9.B
12.2
11.2
11. S
11.1
U.I
9. 7
10.1
12.2
HOI.
It lo<
153.!
92.1
a'.'
71 .
10.
18.
11.
12.
11.
SI.
69.
76.
41 .1
61.
7».(
102.1
1 19..
121.!
I2U.
117.
1 U.
112.
1 16.
121.
116.
IS2.
171.
191.
211.
227.
211 .
219.
250. C
216. J
211. J
201.1
212. t
210.1
262.1
263.:
21B.1
211. t
221. «
218.4
28'. 1
t KOtl
i mill
> 2. a
1 .7
1 .6
.1
. i
.V
11.7
9.2
7.9
e.o
16.9
21 .6
1 19.1
20. S
1 25. S
1 32.9
! 16.1
> 11.2
28.9
21.6
18.6
16* 7
17.1
18.1
20.2
22. U
21.8
26.1
30*0
13.1
17.1
10.1
1 10.1
35.5
26. 1
19.7
19. S
1 21.7
1 27.0
2S.0
21.1
IS.S
11.8
II.I
11.2
PUVI
IH6I
.U
.0
.0
.0
.0
.0
.U
.U
.U
.0
.O
.U
.O
.0
.0
.U
.0
.0
.u
.0
.0
.0
.0
.u
.0
.u
.u
.0
.0
.0
.0
.0
.u
.0
.u
.0
.u
.0
.0
.0
.u
.u
.0
.0
.u
PUV2
IKbl
.0
.U
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.1)
.0
>u
.0
.0
.u
.0
.0
.0
.0
.u
.u
.0
.u
POV3
It IOC 1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• o
• .0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
POW1
""•'
.0
.u
.0
.0
.0
.0
.u
.u
.0
.0
.0
.0
.u
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.u
.u
.u
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1)
.0
.0
.u
                           Figure  6.   Program MNTWSP,  single event simulation results of basin.

-------
                      UVEBfLU* HESULIS
                                                     OVEMFLO* NUMBER
                                                                                   Nour
                                                                                           HU2V
            UlllkVAL
                     b|N   gut    gov
                   IL/SllI11/SLCIIL/Str|
CT\
1
2
J
1
b
4
7
H
V
10
1 1
12
13
11
Ib
14
17
18
IV
<•('
71
21
23
'ft
25
Ik
iJ
78
29
JO
31
3?
33
31
35
36
31
3B
3V
ID
11
12
13
11
15
4*
6.
4.
612.
IVC-1.
2U35.
Ib7l .
1 190.
835.
•>M.
176.
296.
2t>7.
272.
205.
153.
75.
11.
19.
12.
7.
6.
4.
4.
4.
b .
4.
6.
4.
6.
4.
6 .
6.
4.
4.
4.
6.
4.
6.
6 .
6.
4.
6.
6.
4.
4.
4.
4.
3*2.
yi«.
241 .
215.
211.
715.
213.
211.
237.
737.
236.
705.
153.
75.
11.
19.
12.
7.
6.
4.
6.
6.
6.
6.
4.
4.
4.
A.
4.
6.
4.
4.
6.
4.
4.
4.
6.
6.
6.
6.
6.
4.
n
O
U
7«.0
1456
1 771
1326
VIA
5VC
}Q«
186
61
50
36
0
0
0
0
0
0
ll
U
0
0
U
0
0
D
0
tl
0
0
c
b
0
D
0
0
I'
0
(,
c
r
c
b
S7UI
IKbl
.1
.1
.1
59.2
111.1
92. b
55.1
12.2
30.5
in. 8
1 -5
.1
.2
.8
.3
2.2
1 .3
.9
.7
.b
.b
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
. 1
.1
.1
.1
. 1
.1
.1
.1
.1
.1
.1
52U2
• Kht
.5
.b
.b
114. S
310.2
311.1
201.3
171.2
111.7
97.8
71.1
62. 1
11.1
30. b
19.7
12.8
7.S
l.b
2.9
1.9
1.2
. «
.4
.b
.b
.b
.5
.S
.b
.5
.f,
.5
.5
.b
.5
.5
.5
.S
.5
.b
.b
.b
.b
.5
.S
5ZU3
1C IOC 1
31.8
31.8
31.8
165.0
188.7
605.7
181.1
351.1
270.1
197. S
117.7
1 Ib.A
98.7
85. 3
A7.7
55.7
17.2
11.8
38. S
3A.9
34.1
35.5
3S.I
31.9
31.8
31.8
31.8
31.8
31.8
31.8
31. «
31. H
31.8
31.8
31.8
31.8
31.8
31.
31.
31.
31.
31.
31.8
31.8
31.8
S2U1 SA8I
IKGI IK6I
.4 .
• A .
• A .
291. S 35.
570.3 11.
138. S II.
723. b 8.
123.1 8.
71.3 8.
11.1 8.
17.3 A.
1.1 b>
.8 S.
.A 1.
.6 3>
.4 2.
*A 1 .
.4 .
• A .
.A .
.A .
.4 .
.4 .
• A .
• A .
.A .
• A •
.A
.A .
.A .
• A .
.4 .
• A .
• 4 .
.4 .
• A .
.A .
.4 .
.4 .
.6 •
.6 ' .
.4 .
.4 .
.4 .
.4 .
S»B2
IKbl
1 .5
.b
.S
87.1
11.3
1U.1
31.9
35.1
11.4
13.1
10.1
11 .8
31.2
26.1
IV. 7
12.8
7.S
l.b
2.9
1.9
1.2
.8
.4
.b
.b
.b
.S
.b
.b
.6
.b
.b
.4
.b
.b
.b
.b
.b
.b
.5
.b
.b
.b
.b
.b
POM
IE IOCI
31.8
31.8
31.8
98. I
A3. A
77.7
7b.2
72. A
79.3
87.0
83.1
92.1
81. &
71.Q
A7.7
Sb.7
17.2
11.8
38. &
3A.9
36.|
35.5
35.1
31.9
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31.8
P011
IKbl
.6
.4
.4
I7S.I
71.2
SA.3
31.9
25.2
21.8
18.1
9.8
3.3
.7
.S
.4
.4
.4
.4
.4
.4
.4
.4
.6
.4
.4
.4
.A
.A
.A
.A
.A
.A
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.6
.6
POVI
IK6I
.0
.U
.0
21.0
99. b
80.4
14.7
33. S
21. b
10. S
b.O
l.b
I.I
.A
.O
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
POV2
IKbl
.0
.0
.0
5V.
2V5.
273.
172.
134.
100.
SI.
30.
10.
7.
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.U
.0
POV3
IE IOCI
.U
.0
.0
44.9
125. 1
527.1
104. 2
281.8
190.8
110.1
41.3
23. b
17.2
11.3
.0
.U
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.U
.0
.U
.U
.U
POVI
IKbl
.0
.0
.0
1 19. b
194. 1
382.1
188. A
97.9
52.5
23.0
7.5
.8
• 1
.1
.O
• O
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.U
          OVEM LU»  101*1-,
                          uuv
                                 
-------
• •• I I i lull •••  SIIH.Lf LVLMI  MISII11S UUI

	UAUNA	   |H»     I
              I Mil
              1 1) II N I
                      I
                         |
                              11.0
• •• UA1MUA •••  III* UAH

       if	  till
                            240

HI

Hi T1PL |
Ulhl 1YKI t
1)1
hi Ttl'l. .1
UIKI It PI 1
--
• «

it t C 0 V >. 	
HNIUKt •••
u b u
QUO

I DIAL
IO1 AL
IIIIAL
11)1 AL


• ASM-IK r » .M»9»
• ASII-UI 1 • .283S
kASM-(ll 1 • .63*0
LNO-OF-tCAH
1U1AL Oil
84-U3 CATCMMLNI-
08«01 CAICIIHtNI-
8S*(I1 CAItHIILMI-
ARLA
AREA
ARIA
• ASII-UM • .]4174S»UH C ATCIIHE.N1 -ARE A
N{ ClIVI HI
ALARMS
U
0
0/P
C
0
• Ml II CALLED
FOILOHS
n ii o
0 U 0


U 0 U
000


0
0


0
0
ir kASH-orrs
NASH-OffS »
•ASH-OFFb •
•ASH-OFF S •
•ASH-OFFS •


U
0


0
O
.t27»20.02
.I*4«IS«U)
.&028U4>03
.2I3V4U«U3



                                                                                       .I83/2I«U1
                                                                                                 .J«SU21«02

                                                                                                 .I?44OB«U2
      fhlNIS
              Figure 8.   Program MNTWKC, total runoff of flows and pollutant  loads.

-------
                  RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SEHER SYSTEM*



                                                                              NODE!   C01T
oo
               ONE DIMENSIONAL FREQUENCY DISTRIBUTION
               DURATION OF OVERFLOW
                                 PACE    107




                                  EVALUATION FOR  TEAR
(PROPERTY  t)
SCALES
FREQUENCIES
SUM
Q-INFLON RATE
SCALES
FREQUENCIES
SUN
90.1
0.00 3
25.90 29
100,
.00
.50
150.
11.50
22.90
200.
1.90
11.00
INTERVAL VALUES
.100E+00
329. SO 97
1106.90 7(1
.129
.00
.00
.160
64.90
724.00
.200
99.90
699.90
Q» INFLOW TOTAL
SCALES
FREQUENCIES
SUN
Q-INFLON RATE
SCALES
FREQUENCIES
BUH
Q-INFLO* RATE
SCALES
FREQUENCIES
SUM
PI -INFLOW RATE
SCALES
FREQUENCIES
SUM
.150E»04
(.00 6
29.90 17
AVERAGE
.400E-01
0.00 0
25.90 29
MAXIMUM
.150
1.00 1
25.50 24
290. 300.
2.00 0.00
9.50 7.90
(PROPERTT
.290 .319
112.90 111.50
•00.00 417.50
(PROPERTT
390.
2.00
7.90
3)
.400
116.90
349.00
4)
400,
2.50
8,50

.500
101,50
232.50

490.
1.90
3,00
' '
,630
61.50
124.00

500.
0.00
1.90

.800
22.90
62.90

550.
1.00
1.90

1.00
14.50
40.00

0.50
0.50

29.50
29.50

.300E*04.450E*04.601E«04.7S|E*04.*99E*04,10SE+OS,120l>OS.13SE+05.ISOE*OS.|65Et09
.50 2.90 S.OO 1.00 1.90 0.00 0.50 0,00 0,00 0,00 0.50
.90 11.00 S.50 3.90 2.90 1.00 1,00 O.SO 0,90 0.50 0.90

.IOIR
.00
.50

.300
.50
.50

-01.120
2.00
29.90

.450
4.00
21.00

.160
3.00
23.90

.601
6.90
19.00
INTERVAL VALUES
f PROPERTY
.200 .240
3.00 1.00
20.50 17.90
(PROPERTY
.791 .199
4.00 3.00
12.90 1.90
(PROPERTY
.100E-01.200E-01.300E-01.400E*Ot.500e-01.600E
2)3.50 468.00 129.00 73.00 51.50 38.00
1106.50 173.00 405.00 276.00 203.00 151.50
Pl-INFLO** TOTAL
SCALES
FREQUENCIES
SUM
• O.I
0.00 3
25.50 25
160.
.50
.50
740.
4,50
22.00
320.
6.50
17.90
(PROPERTY
400. 410.
3.50 2.00
11.00 7.90
9)
.210
2.90
9.50
6)
1.09
0.00
5.90
11)

,320
2.00
7,00

1.20
2.50
9,»0

-01. 7001-01, 100E
29.00 27.00
113.50 (4.50
12)
560.
2.50
5.50

640.
1.00
3,00

.360
3,00
S.OO

1,15
O.SO
3.00


.400
1.00
2.00

1.90
1.80
2.90


.440
0,90
1,00

1.69
0,50
1.00

-01.900E-OI.JOOE+OO.HO
16.50 11.50 A. SO
97,90 41.00 29,50

720.
1.00
2.00

• 00,
0.50
1.00

• 80.
n.oo
A. SO

0.50
0.50

0.50
0.90

23.00
23.00

0.50
0.90
                                                                                                                 NIN
                                                                                                                 M3/S
                                                                                                                 H3
                                                                                                                N3/S
                                                                                                                Ml/S
                                                                                                                KG/8
                                                                                                                KG
       Figure  9.   Program  STATCS,  one-dimensional  statistics  of continuous simulation results,  tabularized.

-------
first line, SCALES, gives the division into classes for the variable inves-
tigated. The dimension of the values always is indicated on the right side.
The center line shows the frequency distribution for all months or years in-
vestigated. The last  value  of this line indicates the number of events ex-
ceeding the last scale value given. In Figure 9, overflow durations  of 50 to
100 minutes were  encountered three times per year and an overflow duration
of 550  minutes  was exceeded once  in two  years.  The lower line, named SUM,
represents the  corresponding cumulative  frequency curve. It is obtained by
summarizing the  individual   frequencies of  the  frequency distribution from
the right side. Figure 10 demonstrates the corresponding graphical output of
the frequency  distribution   (***) and the  cumulative  frequency curve (XX).
From the  cumulative  frequency curve it can be  read that for the time span
investigated an  overflow duration  of  350 minutes  was  exceeded five times
during a year on the average.

     Two-dimensional  frequency  distributions  are  given as  tabulated and
graphical outputs  (Figures 11 and 12) as well. The two variables or proper-
ties represented in the example are duration of overflow and average inflow
rate.  The column headings of Figure 11 include the node, discharge or over-
flow name in the sewer or receiving water system, type of statistics (month-
ly or annual),  names and numbers of the properties investigated, and the di-
mensions of the vertical and horizontal scales. The first column of figures
on the  left hand  provides the scale of  the property listed vertically and
the top line gives the scale of the property listed horizontally. The values
given in the center of the tabulation represent the number of events occur-
ring within the ranges indicated by the  scales.

     Figure 11  shows, for instance, that three events occurred for which the
duration of overflow was between 100 and 150 minutes when the average inflow
rate was about  0.18 m3/s.

     As for one-dimensional  results frequency distributions and cumulative
frequency curves of the two properties  investigated for two-dimensional sta-
tistics, can be provided. The columns on  the  right hand side of Figure 11
refer to  the  first property and the two  lines at the bottom  refer to the
second property. For both of these external sets the inner columns or lines
are the frequency  distributions  and the outer are the cumulative frequency
curves.

     Figure 12  attempts  to  show graphically the  isolines  for certain fre-
quencies.  The heading again is similar to that for the tabulated output of
Figure 11. The  scales of the two properties investigated are provided on the
left and  at the bottom  of the graph.  The three different frequency ranges
for which different characteristics are plotted were specified in the input.
The grid system, however, is usually too coarse to provide a picture suffi-
ciently dense to connect the  isolines for  given frequencies.

     In addition to the  statistical analysis for each location point inves-
tigated, monthly and  annual  totals also are  listed  by  STATCS (Figure 13).
Similarly, as  for  single  event simulations, for continuous simulations the
program MNTWKC  gives the calculation record of the total flow and pollutant
                                     19

-------
                 RECEIVING HATCH LOADINGS RESULTING FROM COMBINED AND SEPARATE SEVER (YSTCHS             PACE     110

           ONE DIMENSIONAL FREQUENCY DISTRIBUTION                                   M0OC|   COlT        EVALUATION FOR (EAR

           DURATION OF OVERFLOW

           ( KIN     )
                550.    X*
                        I*
                        I.
                        I.
                550.    tX»»
                        I  •
                        I  •
                        I  •
                500.    ••** X
                        *
                        *
                        *
                450.    •••••X
                        I    •
                        I    •
                        I    •
                400.    +    ••»•• X
                        I        •
                        I        *
                        I        •
                ISO.    «      ***          X
                        I      •
                        I      •
N>                      I      •
°              JOO.    »»•••*••                   X
                        •
                        •
                        •
                250.    ••••*•••                   X
                        I      *
                        I      •
                        I      •
                200.    »    •••                          X
                        I    •
                        I    •
                        I    •
                ISO.    *    ••••••••••••••«••••«•«««»•••••••••••••)(••
                        I                                         •
                        I                                         •
                        I                                         •
                100.     *         ••••§•«••••••••••••€••••«•••••••••»                                        X
                        I         •
                        I         •
                        I         •
                50,1    •*•*•*••••••                                                                                  X
                        •
                        •
                        •
                        t-----.---t------>-.«-.->--->-+-.--~--..+.........*......--.+..-......+....-.... .*...... ...+.........*
                        0        10        20        10        40        SO        60        70       10       90        100  ( 0/0 )

           FREQUENCY CURVE          X—-X CUMULATIVE FREQUENCY CURV                                      N  •   25.SO     EVENTS

        Figure  10.   Program STATCS,  one-dimensional statistics of continuous  simulation results,  graphical.

-------
       RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SEVER SYSTEMS

                                                                    NODEI   C011

    THO DIMENSIONAL FREQUENCY DISTRIBUTION
    DURATION OF OVERFLOW
    Q.1NFLOX RATE AVERAGE
(PROPERTY  1)
(PROPERTY  S)
(MIN     )
(HI/I    )
                                  PAGE     101

                                   EVALUATION FOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS


SO. OS

too. to

ISO. IS

200.20

250.29

299.75

149.10

199.15

449.90

499.95

550.00



.4001-
0.00

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00
25.50

OI.IOIE-OI.I20
0.00 0.00

0.00 2.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00
0.00 2.00
25.50 25.50

,l«0
0.00

1. 00

2.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
1. 00
21.50

.200
0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
1.00
20.50

.240
0.00

0.00

5.50

0.00

0.00

0.00

0.00

l.iO

o.so

0.00

0.00

0.50
1.00
17.50

.210
0.00

0.00

o.so

0.00

0.50

0.00

0.50

0.00

0.50

0.00

o.so

0.00
2.90
9.50

.120 ,1«0
0,00 0,00

0,00 . 0.00

0,50 0.00

0,00 ..1,90

0,50 0,00

0,00 0,00

1.00 O.SO

0,00 O.SO

0.00 0.00

0.00 0.00

0,00 0.50

0.00 0.00
2.00 1.00
7.00 S.OO

.400
0.00

0,00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
1.00
2.00

.440
0.00

0,00

0,00

0.00

0,00

0,00

0.00

o.so

A. 00

0.00

0.00

0,00
0,50
1.00


0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

o.so

0.00

0.00

0.00
0.50
o.so

0.00 25.50

1.00 25.50

11.50 22.50

1.50 11.00

2,00 V.50

0.00 7.50

2.00 7.50

2.50 5.50

1.50 1.00

0,00 1.50

1.00 1.50

0.50 0.50


Figure  11.   Program STATCS, two-dimensional  statistics  of continuous  simulation  results,  tabularized.

-------
        RECEIVING MATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS



                                                                    NODE!  COIT




      TWO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE     104



 EVALUATION FOR TEAR
IATION OF OVERFLOW (PROPERTY 1) (NIN ) VERTICAL SCALE
NFLOK RATE AVERAGE (PROPERTY 3) CMJ/S ) HORIZONTAL SCALE
I
330.00 +••»• • X • •
I
1
330.00 + • • • • « • j «
I
499.95 *•»•••••«
I
I
449.90 f • • • • • j X~«
I
399,|5 +• • • • • j •.•
I
I
349.10 + •*•••• xi
I
I
299.73 *••*••••••
I
I
230.23 *•*••»•(](
I
I
200.20 + ••••••••
I
I
130.15 *••• ..XX
I
100.10 «•• X • • • •
I
I
80, OS +•«••••••
I
***"T*M**W W*T**MOT B**T ***M Mw •^•^••"'^^•••^•••^••••••••^^•••••v^ ••
.400E-OI.I01E-01.120 .160 .200 .240 .210 .320
• • • •
X • • •
• • • •
» . • • X
X • X •
X • • •
• • • •
• X • •
X • • •
• • • •
• • • •
• • • •
.340 .400 .440 .440
••• 1 ISOLINES FOR FREQUENCY OF 0.25
XXX 1 ISOLINES FOR FREQUENCY OF 1.00
... 1 ISOLINCS FOR FREQUENCY OF 3.00
Figure 12.   Program STATCS, two-dimensional  statistics of  continuous simulation results,  graphical.

-------
                      RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SENER BTSTCNS
       PACE
                                                       •ODEI   HOIS
                               1.MONTH   2,MONTH   1.MONTH
                             ,1924C*04 .II65E+04 ,I66«E»04
                             .1I17E+OJ .SimtO) .mmoj
                             .4417E+01 .|290E»04 .1727E+0)
                             .1I94E«04 .8617E»04 ,20JlEi04
                             .7175E+01 .2993E+04 .9J67E+03
                                                          t. TEAR
                                                       TOTAL TOR WHOLE TEAR
                                                             .1246E+OS
                                                             .*667E*0)
                                                             ,2I06E»04
                                                             .1262E«OS
                                                             ,42S9Et04
NJ
LO
                               t.MONTH   2,MONTH   J,MONTH
                         I    .2I02E+04 ,2741Et04 .|«J7E»04
                         2    .16J1E+OJ ,HHE»OJ ,15I2E»OJ
                         1    .4S01E+01 ,S017E»OJ .1022C401
                         4    .21J3E+04 ,217IE»04 ,2556Et04
                         S    ,669IE«01 .TlOOEtOl ,6496E«OJ
                                                          a. TEAR
                                                       TOTAL FOR WHOLE TEAM

                                                          1   ,7J79Et04
                                                          2   .504IE+OJ
                                                          }   ,12S4E*04
                                                          4   .7061E+04
                                                          S   ,2049E«04
                                      TOTAL FOR ALL  YEARS

                                   t           .mmos
                                   2           ,!47IEt04
                                   1           .1J60E+04
                                   4           ,I9«8E*OS
                                   S           ,«10IEt04
AVERAGE (EARLT  VALUE

             ,9917E*04
             .7J57E+OJ
             ,16IOE»04
             .»I41E»04
                                      Figure  13.   Program STATCS, monthly  and annual totals.

-------
runoff from the whole calculation area over the time span simulated (Figure
8).

Precipitation Statistics—
     In principal, the output of the precipitation statistics program RAINSC
is similar to the sewer and receiving water system statistics output of the
program STATCS. However,  RAINSC  allows only for one-dimensional statistics
of the properties indicated in Appendix 5 (part: Properties for Statistical
Analysis of Precipitation Data).  Here the scales are always linear and are
automatically chosen by the program based on the maximum value detected. The
scales are automatically  subdivided into ten ranges. In addition, a stati-
stical analysis is carried out where scales are automatically chosen so that
50 percent of the values are contained in the nine lower scale ranges. Thus
it is  possible to  detail the frequency distribution for  the  usually more
frequently occurring lower values.

     Figure 14  shows  an output example. The headings specify  the property
under consideration and the scale dimension and indicate whether the analy-
sis is based on monthly or annual data. Each property specification is fol-
lowed by  two tables for  the  two  scale divisions chosen in  each case.  The
first line of  each grouping gives the scale divisions,  and the first value
in this line belongs to the range from 0 to the first scale value given. The
second line in each group gives the frequencies for the individual ranges.
The third  line provides  the  cumulative frequency curve and the last line
gives the percentage  of values occurring within the  individual  ranges.  In
this  instance,  a  rainfall duration  between 462 and 528  minutes was  en-
countered once in  two years.
                                     24

-------
                     ONI DlKlNSIONAt FHtQUCNC* OISI|BUI|OM
N)
                     tl»SS STATISTICS fOH THC  T£*«S





                     54 tO



                     RAINFALL OUHAIION  I M|H  I
StALl
r*iv.
TOTALS
TOT. PC.
or. SCAL
FRC8.
TOTALS
TOT* PC'
GNfSPtLL
SOLI
FRES.
TOTALS
10T. PC*
01. SCAt
meo.
TOTALS
101. PC*
44
27
12. S
IOU
4.4
0
12.5
100
I KIN i
2000
I*-S
12.5
100
100
a.s
12. S
100
1)2
S
IS.S
34.17
II. 2
2
17.5
100

1000
4.5
21
Si.1I
BOO
I.S
11
• 0
!»•
1
10. S
21.71
IT.*
4
10. S
?S.2«

4000
I.S
17. S
11.1*
1200
J.s
12. S
7*. 17
241
1
7.S
IT.4S
it.i
4.S
J1.S
• !.!•

• 000
I.S
1)
lo.sv
1400
•]
2»
4«.21
130
1
3.S
• •21
33
3.S
2«
4S>*«

10000
2
• .S
20
2000
1
2S
S».»2
3V4
I.S
2.S
&*••
3V. *
2.S
21. b
S7.4S

12000
I.S
4.S
IS. 2V
2100
2
21
S4.17
142
0
I
2.3S
It . 2
2.5
22
S|.74

llOOO
.S
S
II, »4
2iCO
.5
22
S|.74
S2«
.S
1
2.3S
52. «
0
IV. S
1S.»«

14000
2
1.5
10. SV
3 ZOO
2
21. 5
so.sv
SVi
0
• s
III*
SV. t)
2.5
IV. S
1S.»*

1*000
1
*.s
&.*•
3400
I.S
l«.5
1S.*»
440
.5
• 5
l>l*
44
1.5
17
10

10000
I.S
1.5
3. S3
1000
.5
1*
12.36
Tl/IAL RAjNDCPlH PER IV[NT I MH 1
SCALt
(Rio.
TOTALS
IOT. PC.
DT. SCAt
»KEO.
TOTALS
?or. PC.
AVlRAtF
SCALt
FN[U.
TOTALS
101. PC.
01. SCAL
(Rig.
TOTALS
101. PC.
3.3
11
12. S
100
• 4A
0
12. S
too
INIf KSITf
2/0
V.b
12. S
IliO
bl
0
12. S
ICO
4.4
It
2«.S
47.0*
1.32
2
12. S
100
».?
4
12. S
2V.1I
1.98
1.S
10. s
VS. 2V
PtH RAINF ALL
510
IS
1)
77.46
IOC
1
1?.S
IOC
610
10
ID
12. JS
142
1
i|.s
V7.4S
13.2
3
4.S
IS. 2V
2.41
4
14
• 1.71
EVINT
10*0
I.S
•
IP.B2
214
2.S
17. S
88.71
14. S
2
3.S
• .21
3.3
3.S
32
7S.2V
1 "M /
I3SO
.S
3.S
fl.21
270
2
34
82. 3S
iv. a
.s
I.S
3. S3
3.V4
2.b
28. S
47.04
1000 /
1470
1
3
7.04
321
b.S
33
77. 4S
23.1
.5
1
2. IS
1.42
1.5
24
4|.l«
INT i
I«VO
.5
2
l.'l
J'B
2
27.5
41.71
24.1
0
.S
I.I*
S.2«'
3.5
21. S
60.5V

2140
.S
I.S
3.51
132
3
25.5
40
2V. 7
0
• 5
!•!•
i.V^
2.5
1*
12.35

2130
• 5
I
2.35
1*4
2
22.5
52. Vi
13
.5
.5
I.I*
4.4
3
IS.S
14.17

2700
.S
.5
I.I*
510
2.S
20.5
11.21
                              Figure  14.   Program RAINSC, precipitation statistics.

-------
                                 SECTION 2

                            INITIAL JOB SET-UP
COMPUTER SYSTEM REQUIREMENTS

     The QQS program package  can be run on machines with core storage cap-
acities  of  at least 122 K words using overlay. The program  also requests
peripheral storage devices which may consist of direct  accessable  disk or
drum units. All  programs  of  the QQS package were executed on three machine
types, i.e., UNIVAC series 1100 with EXEC 8 operating systems, DEC series 20
with TOPS 20  operating systems and AMDAHL 470/V7 with IBM OS/VS1 operating
systems.
SYSTEM DEPENDENT ROUTINES

     Except for  program DTCHCK  all programs of the QQS package are written
in ANSI X3.9  FORTRAN.  The complete package consist of approximately 30,000
statements. The program DTCHCK does not correspond to ANSI FORTRAN on three
occasions:

     -  literal phrases enclosed in apostrophes are used in FORMAT state-
        ments
     -  READ statements are used with ERR jump
     -  READ statements are used with END jump
     For direct access I/O and for character set handling, machine dependent
routines, written  in  assembler language, are employed. The direct access I/O
is made from the  subroutine DIRECT:

     CALL DIRECT (IFILE, IOSW, MEM, NWORDS, IREC)

     The arguments are:

     IFILE          Integer variable  or  constant which defines a file name
                    (up to four  characters)
     IOSW           I/O switch     8   for write on file
                                  16   for read from file
     MEM            Integer or real variable or array element corresponding
                    to the  beginning address  after which  it  is  read from
                    memory or written on to memory
     NWORDS         Number of words to be transferred
     IREC           Starting record consisting at 28 words on the file from
                    which it is  read or on to which it is written.
                                     26

-------
     For the character string handling two routines are used: Integer func-
tion IGET and subroutine PUT. They are called as follows:

     CALL PUT (ISTRNG, NTH, ICHAR)
     i.e. , put the character ICHAR into ISTRNG at the position NTH.

     ICHAR = IGET (ISTRNG, NTH)
     i.e. , get the NTH character from string ISTRNG.


JOB CONTROL LANGUAGE

     The job control cards are provided for all programs of the package ac-
cording to the requirements of the UNIVAC series  1100 machines in Section 3,
Program Handling of this report. The logical unit number for the card reader
is 5 and for the line printer is  6.


DATA SETS

     The data  sets or  files used by the QQS program package can be classi-
fied into two groups: the sequential data sets and the direct access files.
The  sequential  data sets  are read or written formated  or unformated from
FORTRAN  subroutines.  They are  accessed via logical unit numbers.  The direct
access files are read or written from the machine dependent routine DIRECT,
and  accessed,  e.g.  at  UNIVAC by a file name which can consist of a maximum
of four  characters.  The  names of main programs,  subroutines or block data
subprograms in which the logical unit numbers and file names for the direct
access files are  defined in Table 2.
       TABLE 2.  COORDINATION OF LOGICAL UNIT NUMBERS AND FILE NAMES


                              Names of main program, subroutines or
       Main program            block data subprograms, where logic
                            unit numbers and file names are defined


       DTCHCK                                INCNDC
       DWTFLC                                DWTFLC
       MNTWKC                                CNINIT
       MNTWSP                                INCMNP
       MRBNSP                                INCMBP
       MRBNTC                                CNINVN
       QQSEGL                                QQSEGL
       RAINSC                                INCNRS
       RCVRIN                                RCVRIN
       STATCS                                INISYS
       TEXTFC                                TEXTFC
       TXTFCE                                TXTFCE
       TXTFCG                                TXTFCG
                                     27

-------
In Table 3 the logical unit numbers for all sequential files used by the QQS
program package  are provided and  an  estimate for their size  in tracks is
given. 1 track corresponds to 1,792 words.
TABLE 3.  LOGICAL UNIT NUMBERS FOR SEQUENTIAL FILES AND THEIR SIZES
File
Logical unit number
Size in tracks
IF01
IF02
IF03
IF05
IF06
IF07
IF08
IF09
IF10
IF11
IF12
IF14
IF17
IF27

IF28M
NET j\
QUANTA
QUALT J
RAIN ,,
n i
MRBNET^
n i
MRBQNT^
MRBQLT J
11
12
13
15
16
17
18
19
20
21
22
24
27 •>
7S
A 1
8a}
5
3
2b\ llc'

5

3
4
10
20
100
10
10
10
10
10
10
10
10
10
50
20

20
50
50
50
50

50

50
50
a)   Used only by program STATCS
b)   Used only by program DTCHCK for sewer network calculation
c)   Used only by program RAINSC
d)   Used only by program DTCHCK for receiving water calculation
     Table 4 contains the direct access files used by the QQS program pack-
age and their sizes in tracks. The sizes are estimated for a continuous sim-
ulation of approximately  ten years of precipitation input with high inten-
sities and frequent rainfalls.
LOADING PROCEDURES

     In order to run the program on a computer with a maximum core size cor-
responding to the minimum core requirements given, some programs have to be
segmented. Programs requiring block data subprograms are listed in Table 5.
                                    28

-------
        TABLE 4.  DIRECT ACCESS FILES AND THEIR SIZES
File
                    Size in tracks
IF04
IF13
IF15
IF16
IF18
IF19
IF20
IF21
IF22
IF23
IF24
IF25
IF26
DRAI
11
9
TFRS
FIRS
FRRS

a)
b)
c)
d)
e)
f)
8)
h)
i)
  10
1200
 100
  a)c)d)
  a)b)
  a)
10
io
20
2°
50
50
6000
  10
1200.
2400
8000
 300
  10
  10
 300
  10
1000
                                  b)
                                  c)d)
                                  ib>
                                  b>
                                  ,b)d)
                                  |b)d)
                                  c)d)
                                  c)d)
                                  lb>
                                  |b)c)d)
                                  c)
                        10
                        10
e)
e)
                   8
                 20h
                5001
                500°

for sewer network and single event calculation
for sewer network and continuous simulation
for receiving water network and single event calculation
for receiving water network and continuous simulation
for sewer network calculated only
scratch file used by program DTCHCK only
scratch file used by program STATCS only
text file used by program    RAINSC only
scratch file used by program RAINSC only
         TABLE 5.  PROGRAMS WITH BLOCK DATA SUBPROGRAMS
         Program
                            Block data subprograms
DTCHCK
MNTWKC
MNTWSP
MRBNSP
MRBNTC
RAINSC
INCNDC
CNINIT
INCMNP
INCMBP
CNINVN
INCNRS
                                29

-------
      The  following tables  6 to 10  describe  the overlay structures of  the
 programs DTCHCK, DWTFLC, ttNTWKC, MRBNTC and STATCS. The beginning of a seg-
 ment is marked by the  name SEG.  The following  lines  include all programs,
 subroutines  and block data  subprograms belonging to this particular  segment.
'At the end  all common blocks  of this  segment are  included,  shifted  two
 blanks  to the right in the tables.
              TABLE  6.   OVERLAY STRUCTURE OF THE PROGRAM DTCHCK
                      SEG IS01
MAIN SEG ROOT

SEG IS02
SEG IS03
SEG IS04
SEG IS05
SEG IS06
SEG ISO?
SEG IS08
SEG IS09
SEG IS 10
SEG IS11. i SEG DSOO
SEG IS12
SEG IS13

SEG DS01
SEG DS02
SEG DS03
SEG DS04
SEG DS05
SEG DS06
SEG DS07
SEG DS08
SEG DS09
SEG DS10
SEG DS11
 (continued)
                                      30

-------
TABLE 6 (continued)
        SEG  ROOT
          IN  DTCHCK
          IN  INC.'JDC
        BLAHKJCOMMON
            IN  CONVER
            IN  riLESN
            IN  GEBANZ
            IN  HULRTH
            IN  INTANZ
            IN  KNOANZ
            IN  RHBAMZ
            IN  RflRANZ
            IN  RUEANZ
            IN  3KMANZ
            IN  SMMUZV
            IN  STEANZ
            IN  STEUER
        SEG  ISOU,  (ROOT)
          IN  INPUTA
          IN  HINPUT
        SEO  I302»,  (ROOT)
          IN  INPUTR
        SEO  IS03»,  (ROOT)
          IN  INPUTC
        SEO  IS04»,  (ROOT)
          IN  INPtJTD
        SEG  I305»,  (ROOT)
          IN  IMPUTE
        SEO  IS06»,  (ROOT)
          IN  INPIJTF
        SEG  I307«,  (ROOT)
          IN  QUANT!
          IN  MOIMNT
        SEC  IS08«,  (ROOT)
          IN  QUARTZ
        SEC  I309»,  (ROOT)
          IN  QUA-IT3
        SEC  IS10*,  (ROOT)
          IN  QUAHT4
        SEG  IS11»,  (ROOT)
          IN  DIRECT
          IN  REGEN
          IN  RCGFll,
        SEC  I312»i  (ROOT)
          IN  QUALI1
          IN  MQUALT
        SEG  IS13»,  (ROOT)
          IN QUAI.t2
        SEG  DSOO*,  (IS01,1S02,
          IN  GE8IET
          IN  INTKNO
          IN  KNOOAT
          IN  PHBDAT
          IN  RORDAT
          IN  RUEDAT
          IN  SHMIIZA
          IN  STEUEU
          IN  TWACHN
          IN  HAS3VB
        SEC  D801»,  (OSOO)
            IN  CDCK01
            IN  CDCK06
        SEC  D602»,  (DSOO)
            IN  CDCK02
                             SEG  DSC3*,  (DSOO)
                                 IN  CDCK03
                             SEG  DS04»i  (DSOO)
                                 IN  CDCK04
                             SEG  D605»,  (DSOO)
                                 IN CDCKOS
                             SEG  DS06»»  (DSOO)
                                 IN  CUCK07
                                 IN  CDCK09
                             SEG  DS07»,  (DSOO)
                                 IN  CDCK08
                                 IN  CDCK11
                             SEO  DS08»,  (DSOO)
                                 IN  CDCKlO
                             SEG  DS09*r  (DSOO)
                                 IN  CDCK12
                             SEG  DS10»,  (DSOO)
                                 IN  CDCK13
                             SEG  DS11»»  (DSOO)
                                 IN  CDCKU
                                 IN  CDCKlS
                                 IN  CDCK16
                                 IN  RECADC
                             END
1303,1304,1805,1806,1307,1308,1309,1810,1511,1312,1813)
                                             31

-------
           TABLE 7.   OVERLAY STRUCTURE OF  THE PROGRAM DWTFLC
       SEG  ROOT
         IN  DHTFLC
           IK  ALLGCD
           IN  AHZI.HM
           IN  BLANK9COHMON
           IN  CNSCHN
           IN  EXKRHN
           IN  EXVBHN
           IN  FADONT
           IN  FII.ENR
           IN  riUERc
           IN  ITB'VRT
           IN  IWNAHN
           IN  KNOTHN
           IN  QZQUDV
           IN  RIIBKHN
           IN  RHBNHN
           IN  RHNVHN
           IN  RHRKHN
           IN  RHRNHN
           IN  RHRVHN
           IN  ROHRHN
           IN  RUEFHN
           IN  3IKKHN
           IN  STBT.HN
           IN  STEVHN
           IN  SYSDHN
           IN  T'lADTN
           IN  TWDRHN
           IN  ZCTIOL
       SEC  DTE*
         IN  DTEMTW
         IN  INDATW
         IN  IVZlHN
       SEG  TW*»  ,  DTE
         IN  DIRECT
         IN  ECVZHM
         IN  ENXHBT
         IN  IHSEHN
         IN  PMXHBT
         IN  3B1IHN
         IN  584IHH
         IN  SHARHH
         IN  SINKBF
         IN  SINKBW
         IN  SRFAHM
         IN  SRHAHN
         IN  SRKRHN
         IN  SRNKHN
         IN  SRRRH,V
         IN  SRRGHN
         IN  SRRIHM
         IN  SRVZHN
         IN  THARHM
         IN  TWKTHN
         IN  HNUBHN
           IN  CEHAHN
           IN  ITERTN
           IN  3IKVHN
           IN  STVAHN
           IN  STWHN
MAIN SEG  ROOT
                            SEG DTE
SEC  INW*  (TWA)
  IN  I91IHN
  IN  IB4IHM

  IN  INWTH.H
  IN  IWRBHM
  IN  IKRIHN
  IN  IWRUHN
  IN  IWVZHN
SEO  VRR»  ,  INM
  IN  ECSFHN
  IN  EHOAHN
  IN  EHARHN
  IN  EHASHN
  IN  ENHAHM
  IN  ENHBHN
  IN  EQAAHN
  IN  EQARHN
  IN  EQHAHN
  IN  EQHBHN
  IN  EQHRHN
  IN  EQRAHN
  IN  ERHAHH
  IN  ERQEHH
  IN  EVUaHN
  IN  KNtRAD
  IN  LQARHH
  IN  LQNAHM
  IN  LQNRHN
  IN  OPBLQS
  IN  QNBFTW
  IN  RB1IHN
  IN  RB4IHH
  IN  RRFAHM
  IN  RRNKHN
  IN  RRRBHM
  IN  RRRGNN
  IN  RRRIHN
  IN  RRRUHN
  IN  RRVZHN
  IN  RUKRHK
  IN  TWKBHM
  IN  VB4IHM
  IN  VORRHN
  IN  VRARHS
  IN  VRA3HH
  IN  VRNKHH
  IN  VRRHHN
  IN  VRRCHM
  IN  VRRIHM
  IN  VRVZHH
    IN  CEQEHN
    IN  CIIOAHN
    IN  CQARHN
    IN  CQD2HN
    IN  QZQUDA
END
                                                         SEG  INW
                             SEG TWA
                                                         SEG VRR
                                        32

-------
             TABLE 8.   OVERLAY STRUCTURE  OF THE  PROGRAM MNTWKC
(continued)
              SEC MAIN
                 IN  MNTWKC
                 IN  CNINIT
                 IN  BENTOP
                 IN  CLOSED
                 IN  CLOSES
                 IN  DATENA
                 IN  DATMNS
                 IN  DIRECT
                 IN  HES5BH
                 IN  H3ENBN
                 IN  SBNTOP
                 IN  SCHBEL
                 IN  SSTUP3
                 IN  33TUP4
                 IN  SSTUP6
                 IN  STUP03
                 IN  STUPD4
                 IN  STUPD5
                 IN  S7UPD6
                 IN  SWABN
                 IN  TMBfRD
                   IN   ALARMS
                   IN   ALLGCD
                   IN   ANZLNN
                   IN   AU8DRK
                   IN   BUNK*COHMON
                   IN   CON3CM
                   IN   FILENR
                   IN   FILERC
                   IN   ITBWRT
                   IN   MAIHCM
                   IN   OFBBEb
                   IN   SIKKHN
                   IN   SMAI,LG
                   IN   SMCONB
                   IN   53TTS1
                   IN   5STTS2
                   IN   STATSI
                   IN  STATS2
                   IN  SYSDHN
                   IN  TWDRHN
                   IN  ZEITDL
               SEG HAUPT«,(MAIN)
                 IN  BASPA1
                 IN  BASPB1
                 IN  BASPB2
                 IN  BASPC1
                 IN  BASPC2
                 IN  BASPI1
                 IN  BASPI2
                 IN  BASPL1
                 IN  BASPL2
                 IN  BSTKHH
                 IN  BUFGET
                 IN  BUFREL
                 IN  CONSOt,
                 IN  CURTHP
                 IN  DATMNA
                 IN  DATHNI
                 IN  DATMNL
                 IN  DIRTHQ
                 IN  DIRTT
                 IN  DTENHN
IN  DTSET
IN  ECVZHM
IN  EEINIT
IN  CESRHB
IN  EESRUB
IN  EESTOH
IN  EFNGER
IN  EHOAHf4
IN  EHARHN
IN  EHASHK
IN  ENHAHN
IN  ENHOHN
IN  ENTFHH
IN  EQAAHH
IN  EQARHN
IN  EQHAHN
IN  EQHBHK
IN  EQHRHM
IN  EQRAHM
IN  ERHAHN
IN  ERQEHN
IN  EVLBHM
IN  FADBHN
IN  FEOHIS
IN  FEGOIN
IN  HHCNIN
IN  HYDRHM
IN  INOAHM
IN  INITHN
IN  INITMK
IN  INITTS
IN  INSEHM
IN  IPIOBL
IN  IVZIHN
IN  JAHRES
IN  JAHRKO
IN  KBNTHA
IN  KBRMNC
IN  KUTRAD
IN  LQARHN
IN  LQNAHN
IN  LQNRHN
IN  HRKCHN
IN  OFB
IN  OPBIiOS
IN  PIPEPA
IN  PIPEPn
IN  PIPEPC
IN  PIPEPI
IN  PIPKPU
IN  PQliYSO
IN  ONBFHN
IN  RAIMTR
IN  RBilHrt
IN  RB4IHN
IN  RBINIT
IN  RBUPD1
IN  RBUP02
IN  RDRN8T
IN  ROVEBK
IN  RECOVS
IN  REPOSR
IN  RHBHQ
IN  RHLOOP
                                            33

-------
TABLE 8 (continued)
               IN  RRFAHN
               IN  RRNKHN
               IN  RRRBHN
               IN  RRRGHN
               IN  RRRtHM
               IN  RRR'JHN
               IN  RRVZHH
               IN  RSET
               IN  RUKHHN
               IN  SCI
               IN  SHMCGL
               IN  SMNIVB
               IN  SMR3ET
               IN  SMUUIN
               IN  SSTTR3
               IN  SST11P2
               IN  STATRS
               IN  STS1HN
               IN  5TS2HN
               IN  STSKHK
               IN  STUP01
               III  3TUP02
               IN  SHMGER
               IN  TWAINT
               IN  VBIIHM
               IN  VB4IHK
               IN  VORRHN
               IN  VORLIPD
               IN  VRARHN
               IN  VRMHN
               IN  VRNKHN
               IN  VP.RBHM
               IN  VRRCHN
               IN  VRRIHN
               IN  VRRUHM
               IN  VRVZHM
               IN  HMU8HM
                 IN  CEHAHN
                 IN  CEOKHN
                 IN  CHOAHN
                 IN  C1SCHN
                 IN  CQARHN
                 IN  CQD2HN
                 IN  CVZVHN
                 IN  EXKHHN
                 IN  CXVHHN
    IN  ITERTH
    IN  IWSVHN
    IN  LOGIC
    IN  OZQIIDV
    IN  RHRKHN
    IN  SMOVHH
    IN  STEVHN
    IN  STVVHN
    IN  VR3VHN
    IN  FAOrjUT
    IN  IWHAHN
    IN  IWSAHN
    IN  KHOTHN
    IN  KUVKXB
    IN  NDSOTH
    IN  OZQUDA
    IN  RMBKHH
    IN  RHBriHN
    IN  RHBVHN
    IN  RHRNHN
    IN  RHRVHN
    IN  RQHPHN
    IN  RUEFHN
    IN  SIKVHN
    IN  SHOAHN
    IN  SMRflHR
    IN  3H5BWD
    IN  STELHN
    IN  STVAHN
    IN  TWAPHN
    IN  VRSAHN
    IN  WHERND
8EG RESTRT*,(MAIN)
  IN  RECOVA
  IN  RECOVC
  IN  RECOVR
  IN  RECOVW
    IN  RECVRY
SEC 3TATOr»»(HAIN)
  IN  STATHO
  IN  33TTHD
END
              MAIN SEG  MAIN
                                         SEG STATOP
                                         SEG RESTRT
                                         SEG HAUPT
                                            34

-------
     TABLE  9.  OVERLAY STRUCTURE   OF THE PROGRAM  MRBNTC
SEG  MAIN
  IN  MRBNTC
  IN  CNINVH
  IN  DIRECT
  IN  EEJNVN
  IN  MSGEYN
  IN  NSGGVN
  IN  STUtVN
  IN  STU3VM
  IN  STU4VH
  IN  STU3VN
  IN  STU6VN
  IN  STU7VH
  IN  SWRNVN
  IN  TMBFVN
    IN  BLAtiK$COMMON
    IN  ALRMVN
    IN  AjjCOVN
    IN  ANZI.VN
    IN  AUDKVN
    IN  riiNRVN
    IN  FLRCVN
    IN  LOGCVN
    IN  MNCMVN
    IN  QZQUVN
    IN  5MALVN
    IN  SMCOVN
    IN  STT1VN
    IN  STT2VN
    IN  3Y30VN
    IN  FORFNY
    IM  ZETDVN
 SEG   VORF«   »   (MAIN)
   IN  BUFGVN
   IN  BUFRVN
   IN  CONSOb
   IN  DATVNA
   IN  DATVNI
   IN  DATVNU
   IN  DAT'/NS
   IN  DIRfTV
   IN  DTENVN
   IN  DTHSY'I
   IN  DTNAYH
   IN  ECSFVN
   IN  ECVZVM
IN  EESTOV
IN  EHARVN
IN  ENHAVN
IN  ENHBVN
IN  EQARVN
IN  EQHAVM
IN  EQHBVN
IN  EQHRVN
IN  ERKAVN
IN  ERQEYN
IN  FADBVN
IN  FEDVIS
IN  HDYRYN
IN  HTlMVN
IN  INDAVN
IN  INMKYN
IN  INTSYN
IN  INVTVH
IN  IPVOCD
IN  IPVOOA
IN  IVZIYN
IN  IWNKVN
IN  IWVZVN
IN  JNVOVN
IN  KNBOVN
IN  KTADVN
IN  I/QAHVN
IN  LQNAVV
IN  I.QNRVN
IN  HRKCVN
IN  PIPAVN
IN  PIPBVN
IN  PIPCVH
IN  PIPtVM
IN  PIPLVN
IN  OHBFVN
IN  RDKVVN
IN  RECOVT
IN  RRFAVN
IN  RRNKVM
IN  RRYZVN
IN  RUKRVM
IN  SHARVN
IN  SMUUVM
IN  SRFAVN
TN  SRHJVVN
   IN   S.RKRVN
   IN   SRKRVN
   IN   3RNKVM
   IN   SRVZVN
   IN   STTSVfj
   IN   VNCMVN
   IN   VORCON
   IN   VORRVM
   IN   VORSlN
   IN   VRARVN
   IN   VRNKVN
   IN   VRVZVH
   IN   HNUBVN
   IN   ZRlPVfl
    IN CEHAYN
    IN CEOEVN
    IN CNSCVN
    IN CONCVN
    IV COARVH
    IN CVZWN
    IN EXKBVN
    IN EXV4VN
    IN INSHM*
    IN ITBWVN
    IN ITRTVN
    IN KMOTVH
    IN RHRKVN
    IN  RHRNVN
    IN  RHRVVN
    IN  ROHRVN
    IN  SMRI1VN
    IN  VOREGD
    IN  VRSMVN
SEG  RESTRT»  ,
  IN   RCBt.VN
  IN   RECOVR
  IN  RCVCVN
  IN  RCVRVM
  IN  RCVWVN
    IN  RCYYVN
SEC  STATOP»  i
  IN  STTHVN
  IN  STFRVN
    IN  3TT3VN
END
                                                                         (MAIN)
                                                                         (MAIN)
MAIN SEG MAIN
                           SEG STATOP
                                RESTRT
                            SEG VORF
                                   35

-------
 TABLE 10.   OVERLAY STRUCTURE  OF THE PROGRAM STATCS
     SEG  MAIN
       XN  STATCS
       IN  ABORT
       IN  BLANK
       IN  CPYCOL
       IN  DIRECT
       IN  ERRORS
       IN  HEADER
       IN  LOOKER
       IN  PAGECT
       IN  OCLCAR
       IN  SKAUTi
       IN  UEB5R
        IN  BLAHK*COMMON
        IN  ANZAHL
        IN  CNTRLS
        IN  DAUERN
        IN  ERROR
        IN  HAFENZ
        IN  IMPT
        IN  INTKNQ
        IN  IUUNTS
        IN  HGTRIS
        IN  NAMEN
        IN  REGG
        IN  SKALA
        IN  VRTEIL
     SEG  INPUT»(HAIN)
       IN  CVDIGT
       IN  CYFUTG
       IN  CVlMTf!
       IN  DMPCOM
       IN  INISY8
       IN  INICHS
       IN  INIEDM
       IN  INIFAK
       IN  INIKNO
       IN  INIMON
       IN  ININOT
       IN  INISKA
       IN  INISMU
       IN  INIREG
       IN  INIWAt,
       IN  IHIZDH
       IN  INGRAF
       IN  INSPRA
       IN  JQIMA4
       IN  PPUEF
       IN  PUTQET
       IN  RDCARD
  IN  SKALT2
  IN  SKBtiNK
  IN  STHEPS
    IN  CDBUFR
    IN  CHRSET
    IK  SAVRUM
    IN  SYSPRN
SEG  TEXTE»(INPUT)
  IN  IKTXT2
SEG  TEXTG*(INPUT)
  IN  INTEXT
SEG  SQRT»(HAIH)
  IN  INITIA
  IN  PRTSUM
  IN  RDKHOT
  IN  SORT!
  IN  SORT2
  IN  SORTS
  IN  SORT*
  IN  STOIRT
    IN  SnRTFD
    IN  SFAKTR
SE6  KNOAKAXHAIN)
  IN  CHECK
  IN  DRUCK1
  IN  DRUCK2
  IN  EINZEL
  IN  GRAPHt
  IN  INIOIM
  IN  INREGO
  IN  KNOANA
  IN  LOKREG
  IN  PAGOEF
  IN  RDDECK
  IN  RDBCMN
  IN  RDREGN
  IN  RDVORF
  IN  STOOIM
  IN  STOREG
  IN  T8TNOT
  IN  VERGL
    IN  ARRY
    IN  HAFS
    IN  JMPT
    IN  RBGO
    IN  TEXT
END
MAIN SEG MAIN
                           SEG KNOANA
                           SEG  SORT
                                           SEG TEXTG
                           SEG  INPUT
                                           SEG TEXTE
                               36

-------
                                 SECTION 3

                             PROGRAM HANDLING
GENERAL

     The following handling descriptions are intended to enable users to ap-
ply the QQS program package on their own. However,  successful application of
complex mathematical models for urban runoff control generally requires some
background in mathematical  modeling and computer applications and thorough
experience in urban drainage planning.

     The control  cards given  should not be changed because  in  some cases
they instruct sets of internal control cards. The version described is valid
for all UNIVAC machines of the 1100 series with EXEC 8 control systems. The
programs and  their individual  sets of internal control cards are contained
in a file designated "qqs" in the following description.  The user can estab-
lish this  "qqs" file  under  an arbitrary name. Note: On all  control cards
given the symbolic file name "qqs" must be replaced by the entire real file
name including its  qualifier  (e.g., I0073-9858PR*QQS).

     Data files are always established using the same name, whereby the use
of different qualifiers enables the working of several file versions simul-
taneously.  The  qualifier-card  must  directly succeed the  RUN-card.  If the
qualifier-card is not used, the data files obtain as  qualifier the project-
ID from the RUN-card.

     The QQS program package enables:

     the runoff simulation  of  single rainfall events for individual drain-
     age areas, whereby the maximum duration of an event is 99 intervals of
     5-minute duration each;

     the runoff simulation  of  single rainfall events for  entire  sewer and
     receiving water  systems,  whereby the  maximum duration of an  event is
     288 intervals  of  5-minute duration each;

     continuous runoff simulation at 5-minute intervals for continuous pre-
     cipitation records  for periods  up to  20 years,  including  subsequent
     statistical analysis of the continuous simulation results; and

     precipitation statistics.

     Both single event and continuous simulations can be made for sewer sys-
tems and for receiving water systems. In general, any pollutant may be con-
                                     37

-------
sidered except  for  pollution parameter 3 (P3), which is reserved for fecal
coliforms (FC) because special units are used for their measurement.

     CPU time estimates provided later are for UNIVAC 1108 and are based on
experience with the Augsburg, Rochester and Vancouver projects. For a UNIVAC
1106, the times given must be doubled and for a UNIVAC 1110 the times given
can be divided by 2. It must be understood that, particularly because of the
simulation programs MNTWKC/MRBNTC, the CPU time is dependent on the size and
geometrical lay-out of the sewer and receiving water systems.


RUNOFF SIMULATION FOR INDIVIDUAL DRAINAGE AREAS

Program QQSEGL

Description of QQSEGL—
     The program QQSEGL computes the runoff from an individual drainage area
and  its  pollution  load.  The computation method employed  is  in accordance
with the runoff simulation method for drainage areas of the program MNTWKC.
The major application of the program QQSEGL is for verification purposes of
the  unit hydrographs and unit pollutographs  (unit pollutant  load  hydro-
graphs) whereby calculated and measured runoff data are compared.

     The maximum duration of precipitation that can be accepted by QQSEGL is
495 minutes, which equals 99 time intervals of 5-minute duration. The maxi-
mum number of pollutants which may be considered is two.

Control and Data Card Requirements for QQSEGL--

     a)   "RUN  (approximately 1 CPU second)
     b)   "ASG,A  qqs.
     c)   "XQT  qqs. QQSEGL
          Data cards
     d)   "FIN

     The input  data requirements  are listed in Appendix 1, Data Cards for
QQSEGL. An example is given in Appendix 6, Test Example for QQSEGL.

Error Messages of QQSEGL—
     There are no program related error messages.

Output of QQSEGL--
     The major output of  the program QQSEGL  are  hydrographs  and polluto-
graphs  (pollutant load  hydrographs), calculated and measured  (as  given by
input), as  well as the differences between calculated and measured values.
Output examples are provided  in Section 1 of this volume, Figures 3 and 4.
                                     38

-------
     »(for continuous simulations only)
RUNOFF SIMULATION FOR STORM AND COMBINED SEWER SYSTEMS

Programs Required for Runoff Simulations in Sewer Systems

     For runoff simulations in sewer systems the following sequence of pro-
grams must be used:

     DTCHCK
     DWTFLC
     TXTFCE and TXTFCG
     RCVRIN and MNTWKC
     MNTWSP (for single event simulations)
     STATCS (for continuous  simulations)

     In case data files do not exist or were deleted, the files must be pro-
vided with the  following control cards prior to running DTCHCK:

     a)   "RUN  (approx. 2 CPU second)
     b)   "QUAL  arbitrary qualifier
     c)   "ASG,A  qqs.
     d)   "ADD  qqs.CATALOG/IFXXDFSE  (for single event simulations only)
     e)   "ADD  qqs.CATALOG/IFXXDFMNTWMY ~|
     f)   "DATA,IN  *IF27.
     g)   "ADD,D  qqs.TEXT/INTXT2
     h)   "END
     i)   "DATA,IN  *IF28.
     j)   "ADD,D  qqs.TEXT/INTEXT
     k)   "END
     1)   "FIN

     For single  event  calculations  the programs above may be  operated in-
dividually or  as  one run,  except for STATCS which must be executed indivi-
dually. Operating the programs as one run, the sequence is interrupted if an
error is found  by any one of the programs.

Program DTCHCK

Description of  DTCHCK—
     The  program DTCHCK  checks  the  precipitation,  network,  quantity  and
quality data for format and plausibility. Once the input data are found to
be without error, internal input files for the simulation part of the pack-
age are created.

     DTCHCK input may be provided in metric or English units. The pollution
parameter Fecal coliform must be entered as the third pollutant.  In case of
frequent checks or changes of only one of the input files, the network file,
for instance, it is advisable to store the unchanged files permanently.  For
final calculations, program results should be secured for multiple outputs.
The running time of the program DTCHCK is about 60 CPU seconds. The core re-
quirement of DTCHCK is 55 K UNIVAC words.
39

-------
Control and Data Card Requirements for DTCHCK—

     a)   "RUN
     b)   "QUAL arbitrary qualifier
     c)   "ASG,A  qqs.
     d)   "ADD qqs.ASGXUSE/IFXX
     e)   "ADD qqs.ASGX/DF
     f)   "DATA,IL *NET.
          Network Data
     g)   "END
     h)   "DATA,II *QUANT.
          Quantity Data
     i)   "END
     j)   "DATA,II *QUALT.
          Quality Data
     k)   "END
     1)   "DATA,II *RAIN.            \     (f      ..       .   .   .       _ .
     -    Precipitation Data         J     (for continuous simulations only)
     m)   "END
     n)   "ADD qqs.USE/DF
     o)   "XQT qqs. DTCHCK
     p)   "ADD *NET.
     q)   "FIN

     In case of errors, the run must be repeated but only the  erroneous da-
ta files must be replaced, e.g., if the file NET was errorless, the cards f)
to g)  are  omitted.  If  all input data were correct, the internal files IF01
to IF03, IF05 and IF07 to IF11 are established.

     Because input requirements for  precipitation, network,  quantity and
quality data are  quite extensive,  the data card  specifications  are listed
separately in Appendix  2, Data Cards for DTCHCK.

Error Messages  of DTCHCK—
     The Program DTCHCK yields an extensive number of program related error
messages  (F).  In  addition,  informative messages  are provided to encourage
the user to check any  data questioned as  to  validity.  Only the errors (F)
must be corrected in order to perform simulations. Due to  the program struc-
ture, all of these error and informative messages are in German, the corres-
ponding English translations are listed separately in Appendix 3, Error Mes-
sages and Output Headings of DTCHCK.

Output of DTCHCK--
     The program DTCHCK  provides  listings and summaries of all  input data.
Internal input files enter the runoff simulation programs  RCVRIN and MNTWKC.
These  internal  input files  are written in metric  units  even when  English
units are used originally, because the runoff calculations always use metric
units.  An  output  example  is  contained  in Appendix 7,  Test  Example  for
DTCHCK.
                                     40

-------
Program DWTFLC

Description of DWTFLC—
     The program  DWTFLC simulates  the runoff of  one full  day under dry-
weather flow  conditions  and establishes the internal  files  IF13 and IF21.
Note: Dry-weather flow usually has little influence on the storm runoff be-
havior. Therefore the diurnal variation of dry-weather flow normally may be
neglected.

     Under  dry-weather  flow conditions, no overflows  at  the boundaries of
the calculation area are allowed. For basins, the water depths must be less
than their heights, i.e., the basins cannot be surcharged under dry-weather
flow conditions.  If  this condition is violated, warnings  are printed out.
Note:  A  value of  120  iterations must not be exceeded.  If  this  value is
reached or  exceeded, the calculations are not convergent and the input has
to be rechecked, in which case the dry-weather flow results of the last five
iterations are output. Possible sources for nonconvergence are:

     a)   Unallowed backwater  (unallowed  under  dry-weather flow conditions
          only) indicated by large values for HA and HE;
     b)   branching points,  if the values  for H and  Q  differ between the
          iterations;
     c)   overflows  at   the  network boundary are  occurring or  basins  are
          pressurized;
     d)   overflows and  basins,  if  similar conditions to b); or one itera-
          tion overflowing,  next iteration no overflow, etc.;
     e)   pumps, if maximum  capacity too low to pump dry-weather flow;
     f)   gates, if closed or closing under dry-weather flow conditions.

     The major corrective measures to be taken are: to increase weir heights
and eliminate backwater by changing pipe element  dimensions or  roughness co-
efficients.

     In the case  of  a  variable dry-weather flow the triggering water level
for gate  closure must not  be  reached. This possibility is  checked by the
program and warnings are printed out.  Also, whenever  input  data are changed,
the dry-weather flow calculation must be repeated prior to  the  actual runoff
simulation with RCVRIN and MNTWKC. The running time is approximately 40 CPU
seconds and the core requirements of DWTFLC is 50 K UNIVAC  words.

Control and Data Card Requirements for DWTFLC—

     a)   "RUN
     b)   "QUAL  arbitrary qualifier
     c)   "ASG.A  qqs.
     d)   "ADD  qqs. ASGXUSE/IFXX
     e)   "XQT  qqs. DWTFLC
     f)   "FIN

     No data cards are required for the program DWTFLC.
                                     41

-------
Error Messages of DWTFLC—
     An error message is given if the maximum number of iterations (121) is
reached. In this  case the network has to be rechecked as described above.

     Warnings  are  given if  gates  are closing, overflows  are occurring or
basins are pressurized under dry-weather flow conditions.

Output of DWTFLC—
     For a successful run, the maximum and average number of iterations and
maximum water depth for basins under dry-weather flow conditions are printed
out. When  calculation nonconvergencies  occur,  the dry-weather flow results
for the last five iterations are output. An example is provided in Appendix
8, Test Example for DWTFLC.

Programs TXTFCE and TXTFCG

Description of TXTFCE and TXTFCG—
     The program TXTFCE provides the output headings. One output file named
IF25 is necessary.  The program TXTFCE has to be executed only once for each
qualifier used. The running times are minor (UNIVAC 1108: 0.2 CPU seconds).

     The program TXTFCG provides for output in metric units. One output file
named IF26  is  necessary.  Program TXTFCG also has  to be executed only once
for each qualifier used. The running times also are minor.

Control and Data  Card Requirements for TXTFCE and TXTFCG—

     a)   "RUN
     b)   "QUAL  arbitrary qualifier
     c)   "ASG,A qqs.
     d)   "ASG,A *IF25.
     e)   "XQT qqs. TXTFCE
     f)   "ADD qqs.TEXT/TXTFCE
          1 data  card containing in columns 1-52  (center positioned)
          an arbitrary heading, e.g. , CITY OF ROCHESTER
     g)   "FIN

     For program  TXTFCG control cards e) and f) are  replaced by:

     e)   "XQT qqs. TXTFCG
     f)   "ADD qqs.TEXT/TXTFCG

Error Messages of TXTFCE and TXTFCG—
     TXTFCE and TXTFCG yield no program related error messages.

Output of TXTFCE  and TXTFCG—
     The programs have no output.
                                     42

-------
Programs RCVRIN and MNTWKC

Description of RCVRIN and MNTWKC--
     The program RCVRIN  initializes all recovery files needed by the program
MNTWKC. The  latter program performs the actual simulations of quantity and
quality of runoff  from the drainage areas and its transport through the sew-
er system.

     RESTART may be used in case of a system breakdown or a maximum time in-
terruption. If the space provided for output is not sufficient,  a message is
given and the calculation will be interrupted, but this situation is unlike-
ly to  occur.  Continuous  simulation results are written on the files IF04,
IF18,  IF19 and  IF22.  In case of  a  RESTART,  further results  continue to be
written on these  files.  In case of an interrupt and RESTART, the  runoff of
the  last  rainfall event calculated is  lost.  The  runoff  of more rainfall
events may be lost if their runoffs are less apart than the duration of the
maximum flowtime.

     It is suggested that continuous simulations be calculated year by year,
and that the results be  saved on the files IF14 to IF24, each time prior to
a RESTART. After  completion of a continuous  simulation,  the files IF01 to
IF26 must be  copied and secured on tape including their qualifiers.

     For single event simulations all initialization values must correspond
to 00.00 (hr.min)  of the day of rainfall. Using all program capabilities for
•single  event  simulations,  running  times  in  the magnitude  of 10  to  20 CPU
minutes may be expected.  However, the exact running time depends on the sew-
er system layout.

     For continuous simulations the total computing time may be estimated on
the experience  gathered  with single event simulations of a specific system
by: Total computing time = time per interval * (number of precipitation in-
tervals + number of events * max.  flow time of the system in intervals).

     The core requirement of MNTWKC is 120 K UNIVAC words.

Control and Data Card Requirements for RCVRIN and MNTWKC--

     a)   "RUN
     b)   "QUAL  arbitrary  qualifier
     c)   "ASG,A  qqs.
     d)   "ADD  qqs.ASGXUSE/IFXX
     e)   "XQT  qqs. RCVRIN
     f)   "XQT  qqs.MNTWKC
          One data card for single event simulations:
          Column    3    :     1
          Columns   4 -   6:    Estimate of the maximum flow time in the net-
                              work  in  5-mioute intervals  (Format  13),  for
                              example Augsburg 56, Vancouver 40.
                                     43

-------
          Columns  10 - 11:    Maximum number of  iterations  (Format 12, de-
                              fault value 15). Increasing  this  limit under
                              normal conditions  will  not yield  better re-
                              sults but will only  increase  the  calculation
                              time.
          Data cards for continuous simulations:
          Data card 1 (FORTRAN format 313,  112)
          Column    3     :    1
          Columns   4  -  6:    Maximum flow  time  in intervals (same  as for
                              single event simulations).
          Columns   7  -  9:    Total number of nodes of interest  and special
                              nodes of interest for which subsequent statis-
                              tical analysis will be done.
          Columns  10 - 11:    Maximum number  of  iterations  (default value
                              15).  Increasing  this  limit under  normal con-
                              ditions will not yield better results but will
                              only increase  the calculation time.
          Data card 2 and those following  (FORTRAN format  8F10.0)  contain
          the critical basin depths in meters,  at which the end of the storm
          runoff is considered. The sequence of the basins must be identical
          with the sequence on the output from program DWTFLC. For an esti-
          mate of dry-weather flow depths see output of program DWTFLC.
     g)   "FIN

     Note: The  card e)  has to  be  read only once for  a  continuous  simula-
     tion.   In case of a RESTART and calculation of additional  years, this
     card must be removed.

Error Messages for RCVRIN and MNTWKC—
     An error message is  given if the pollutant  initialization  is not com-
pleted. Large basins in  particular,  have to be  checked, if  pollutants can
travel through these basins within the maximum flow time provided.

Output of RCVRIN  and MNTWKC—
     There is no output for the program RCVRIN. The output  of MNTWKC mainly
indicates how  many iterations  are used  in  each time step  and  if control
gates are operating. Furthermore,  the total pollutant wash-off  from catch-
ment areas is provided for the time of calculation, specified by area types
(see Section 1 of this volume, Figure 8). These  outputs from MNTWKC may be
considered as internal and are not discussed further here. However, an exam-
ple is provided in Appendix 9,  Test  Example for RCVRIN and MNTWKC.

     For  single   event  simulations  the  hydrographs and pollutographs are
stored on file  IF23,  which may be printed  by  the  program  MNTWSP. For con-
tinuous simulations, the results are stored in files for further evaluation
by the statistics program STATCS.
                                     44

-------
Program MNTWSP
Description of MNTWSP--
     The program MNTWSP  prints  single event simulation results, which were
written by the program MNTWKC on file IF23. For final calculations, the re-
sults should  be  secured  for multiple outputs. The running time of the pro-
gram MNTWSP,  of  course,  depends on the number of printout segments and in-
tervals, but is usually around 1 CPU minute on a UNIVAC 1108.

Control and Data  Card Requirements for MNTWSP—

     a)   "RUN
     b)   "QUAL  arbitrary qualifier
     c)   "ASG,A qqs.
     d)   "ADD qqs.ASGXUSE/IFXX
     e)   "XQT qqs. MNTWSP
          One data  card
          Column   1 -  3:
     f)   "FIN
The number of time intervals to be printed out
is specified  (FORTRAN format 13).  The value
given may be  smaller but not larger than the
number of time steps simulated in MNTWKC.
Error Messages of MNTWSP—
     There are no program related error messages in MNTWSP.

Output of MNTWSP--
     For the  segments  and  nodes specified by  input  to  program DTCHCK flow
and depths hydrographs and pollutographs are provided. The  output  is des-
cribed in detail in Section 1 of this volume (Figures 5,  6 and 7).  Further
examples are  contained  in Appendix 10, Text Example for MNTWSP.

Single Event Simulations  as One Run

     The control and data card requirements for single event simulations in
one run are:
Provision of files
Assignment of files
Provision of text file

Provision for metric units
     a)   "RUN
     b)   "QUAL  qualifier
     c)   "ASG,A  qqs.
     d)   "ADD  qqs.CATALOG/IFXXDFSE
     e)   "ADD  qqs.ASGXUSE/IFXX
     f)   "XQT  qqs.TXTFCE
          Data card
     g)   "XQT   qqs.TXTFCG
          Data card
     h)   "DATA,IL  *RAIN
          Precipitation data
     i)   "END
     j)   "DATA,IL  *NET.
          Network data
     k)   "END
                                     45

-------
                                   1)

                                   m)
                                   n)
"DATA,II  *QUANT.
Quantity data
"END
"DATA.IL  *QUALT.
Quality data
o)
p)
q)
r)
s)
t)
u)
v)
-
w)
-
x)
"END
"ADD
"XQT
"ADD
"ERS
"XQT
"XQT
"XQT
Data
"XQT
Data
"FIN

qqs.USE/DF
qqs.DTCHCK
*NET.
*IF13.
qqs.DWTFLC
qqs.RCVRIN
qqs.MNTWKC
card
qqs.MNTWSP
card

Data check
DWF Calculation
Recovery file initialization
Actual simulation

Printout
     For explanations see the previous descriptions. For an estimate of the
total running  time  the  estimates for the individual programs  given may be
added.

Program STATCS

Description of STATCS—
     The basic continuous simulation results are  quantities  and pollution
loads entering or  leaving the special nodes of interest and overflowing or
surcharging at the nodes of interest. The special nodes of interest and the
nodes of interest were specified by input to the program DTCHCK. The data at
these specified nodes are organized and one- or two-dimensional statistical
analyses are made for different statistical properties. A list of the prop-
erties which may be considered is contained in  Appendix  5,  Properties for
Statistical Analysis.  Monthly and annual  total overflow  figures  are also
evaluated.  To evaluate average and maximum values and totals per event prior
to statistical analysis  the  data for entering and leaving amounts are con-
sidered from the start to the end of a runoff.  The per event data for over-
flow and surcharge  conditions are considered accordingly.

     The pollutant  values  normally are dimensioned as kg (Ib), kg/s (Ib/s)
and mg/1 (ppm),  respectively.  For statistical analysis of fecal coliforms,
however, the user must substitute in the output the dimensions 1010 counts,
1010 counts/s and 1010 counts/1, respectively.

     Note  that some of  the  statistical properties are on an event basis,
while others  represent  interval  values. In the  latter  case  the values are
arranged only  by their  magnitude, and thus the  relation  to  the individual
overflow event is  lost.  In this  case  it  is  possible to derive  duration
curves from the cumulative  frequency curve.

     A direct combination or comparison between two one-dimensional frequen-
cy distributions  or cumulative  frequency  curves is not  possible.  A cross
                                     46

-------
correlation between two statistical properties can be obtained only by two-
dimensional statistical analysis.

     Because the statistics scales are not chosen automatically by this pro-
gram, the maximum  values  have to be  estimated  for the properties investi-
gated. A good  estimate is obtained on the basis of the runoff and overflow
results of a synthetic storm with a one-year recurrence, adding for maximum
scale values approximately 20 to 50 percent. The final scale should be ad-
justed in a way that the data are grouped approximately in a normal distri-
bution.

     To find the optimum  scales quickly, as a  first trial it is suggested
that all properties  at all nodes be analyzed with one (large) common esti-
mate for the maximum scale value of each property. Then in further runs for
individual nodes or small groups of nodes, the scales can be finalized. For
the final results the maximum scale value should not be exceeded by data for
a  less-than-two-year  frequency.  Usually the best  distributions  can  be ob-
tained by using individually adjusted scales. For basins or pumps, one com-
mon statistics run is sufficient, because continuous simulation results for
these facilities are obtained only under surcharge conditions.

     It is advisable to use the graphical output option only for final runs
and annual statistics.

     For control of  statistical  of results, the  following  checks  are sug-
gested:

     a)   The  total  number of  events,  which is the sum  of the  individual
          frequencies; on an event basis, they must be  equal for all proper-
          ties.

     b)   Total numbers of events  or total numbers  of  intervals  or  annual
          totals; if, after a change in scales,  different total numbers are
          obtained, the data are overwritten, i.e., if the internal files 9
          or 11 were too small.

     c)   General plausibility  of comparison of total surface  runoff and
          total volume of  discharge and overflows.

     Development of overflow  abatement  alternatives and the referencing of
single event simulation results  to statistical  results can be done in con-
junction with statistical  analyses (2).

     The running time on a UNIVAC 1108 for monthly and annual statistics is
approximately 5 CPU seconds per statistical property per node.

Control and Data Card Requirements for STATCS—

     a)   "RUN
     b)   "QUAL  qualifier same as for IF18 and IF19
     c)   "ASG,A qqs.
     d)   "ADD  qqs.ASGX/STTF


                                     47

-------
     e)   "XQT  qqs.STATCS
          Data cards
     f)   "FIN

     Because data card requirements are extensive, they have been listed in
Appendix 4, Data Cards for STATCS. A test example for STATCS is given in Ap-
pendix 11.

Error Messages of STATCS—
     Program related error messages are given if input data or files are not
prepared according to  specifications.

Output of STATCS—
     The major output  of the statistics program STATCS  consists of:

          Monthly and annual totals of entering and leaving, discharging and
          overflowing volumes and pollutant loads.

          Frequencies and cumulative frequencies for one-dimensional statis-
          tics as tabulated and graphical outputs.

          Frequencies and cumulative frequencies of two-dimensional statis-
          tics as tabulated and graphical outputs.

     For a discussion of output interpretation see Section 1 of this volume
(Figures 9  to  13).


RUNOFF SIMULATION FOR  RECEIVING WATER SYSTEMS

Programs Required for Runoff Simulations in Receiving Water Systems

     Simulation  of  a  receiving  water system can be started only subsequent
to the simulation of the corresponding sewer system.  For runoff simulations
in receiving water systems  the following sequence of programs must be used:

     DTCHCK
     RCVRIN and MRBNTC
     MRBNSP (for single event simulations)
     STATCS (for continuous simulations)

     In case data files do not exist or were deleted, the files must be pro-
vided by the following control cards prior to  running DTCHCK:

     a)   "RUN  (approximately 2 CPU seconds)
     b)   "QUAL  arbitrary  qualifier
     c)   "ASG,A  qqs.
     d)   "ADD  qqs.CATALOG/MRBDF
          (for single event and continuous simulations)
                                     48

-------
     Also before  starting DTCHCK  for the receiving water  system,  all IF-
Files from the sewer system calculation must be saved on tape, as they will
be overwritten by  the results from a receiving water system calculation.

     The files IF07, IF15, and IF16 of the sewer system calculation are used
in the  receiving  water calculation. If a receiving water system run fails,
these three files  must be loaded again from the tape.

Program DTCHCK for Receiving Water Simulations

Description of DTCHCK for Receiving Water Simulations—
     Program DTCHCK checks  the receiving water network data (file MRBNET),
quantity data for the receiving water system (file MRBQNT),  and quality data
for  the  receiving water  system (file MRBQLT)  for  format  and plausbility.
When the data contain no errors internal input files for the actual simula-
tion part of the package are created.

     When erroneous data occur, the file IF07 from the  sewer system calcula-
tion must be provided again prior to the start of a new DTCHCK run. The run-
ning times of the program DTCHCK for receiving water systems are  in the mag-
nitude of 40 CPU seconds.

Control and  Data  Card  Requirements for DTCHCK  for  Receiving Water Simula-
tions—

     a)   "RUN
     b)   "QUAL arbitrary qualifier
     c)   "ASG,A  qqs.
     d)   "ADD qqs.ASGXUSE/IFXX
     e)   "ADD qqs.ASGX/MRBDF
     f)   "DATA.IL  *MRBNET.
          Network data
     g)   "END
     h)   "DATA,IL  *MRBQNT.
          Quantity data
     i)   "END
     j)   "DATA.IL  *MRBQLT.
          Quality data
     k)   "END
     1)   "ADD qqs.USE/MRBDF
     m)   "XQT qqs. DTCHCK
     n)   "ADD *MRBNET.
     o)   "FIN

     In case of errors, the data check run must be repeated  but only the er-
roneous data files must be replaced, e.g., if the file  MRBQLT is  errorless,
the  control  cards  j)  - k) are  omitted.  If  all  input data are correct, the
internal files IF06, IF07 and  IF12 are established. Because  the input re-
quirements for the  network,  quantity and quality data  are quite  extensive,
the  data card  specifications are contained separately  in Appendix  2,  Data
Cards for DTCHCK.
                                     49

-------
Error Messages of DTCHCK for Receiving Water Simulations—
     There is an extensive number of program-related error messages (F) that
refer to  erroneous  input  data.  In addition, informative messages  are pro-
vided to  encourage  the  user to check the  flagged  data  for their validity.
Only the  errors  (F)  must  be corrected in order to perform simulations. Be-
cause of the program structure,  all of these error-and-information messages
are in German and Appendix 3 lists the corresponding English equivalents.

Output of DTCHCK for Receiving Water Simulations-
     Listings and summaries  of  all input data are  provided  by the program
DTCHCK.  Again internal input  files  enter  the runoff  simulation  programs
RCVRIN and MRBNTC.  All values in the internal files are  in metric units even
if English units were  used originally,  because the runoff calculations are
always performed  in metric units.

Programs RCVRIN and MRBNTC for Receiving Water Simulations

Description of RCVRIN and MRBNTC for Receiving Water Simulations—
     The program RCVRIN initiates all recovery files required by the program
MRBNTC. The program MRBNTC performs the  simulations of quantities and quali-
ties of runoff throughout the receiving water system.

     In performing continuous simulations,  RESTART may be used in case of a
system breakdown or  a  maximum time interruption. If the space provided for
output is not sufficient,  a message is given and the calculation will be in-
terrupted, but this situation is unlikely to occur. In case of an interrupt
and RESTART,  certain results are  lost,  to wit;  the runoff  results  of the
last discharge or overflow event routed  through the receiving water system;
also the  runoff  results  for more than one  event if the runoff of the last
event  is  connected by maximum  flowtime with the  runoff of  the  preceeding
event.

     It is suggested that  continuous simulations be performed year by year
and that  the results be saved on  the files IF01 to IF26  (except  IF04 and
IF22) each time prior to a RESTART. After completion of  a continuous simula-
tion, the files IF01 to IF26 (except for IF04 and IF22)  should be copied and
secured on tapes. The qualifiers, accordingly, should be  used without fail.

     Using all program capabilities  for single  event  simulations,  running
times of  5  to 8  CPU minutes may be expected.  It should be understood that
the running time is dependent on the system layout.

     For  continuous  simulations, the total computing time may be estimated
on the basis of experience gained with single event simulations of a speci-
fic system  by: Total computing time =  time per interval *  (number  of all
outfall or overflow intervals + number of events * maximum flow time of the
system in intervals). The core requirement of MRBNTC is 52 K UNIVAC words.
                                     50

-------
Column
Columns
3
4 -
Columns  7 -  9:
Columns 10 - 11:
Control and  Data Cards  for  RCVRIN and MRBNTC for Receiving  Water Simula-
tions—

     a)   "RUN
     b)   "QUAL  arbitrary qualifier
     c)   "ASG,A  qqs.
     d)   "ADD  qqs.ASGXUSE/IFXX
     e)   "XQT  qqs. RCVRIN
     f)   "XQT  qqs. MRBNTC
          One data card  (FORTRAN format 313,  112)
                              1
                              Maximum  flow  time  in intervals  (same  as for
                              single event simulation).
                              Total  number  of nodes  for  which subsequent
                              statistical analysis is  to be done. For single
                              event runs columns 7-9  must be blank.
                              Maximum  number  of  iterations  (default value
                              15).  Increasing  this  limit  usually will not
                              yield  better  results  but  only  increases the
                              calculation time.
     g)   "FIN

     Note: The card e) has to be read in only once for a continuous simula-
     tion.    In case of a RESTART and the calculation of additional years,
     this card must be removed.

Error Messages for RCVRIN and MRBNTC for Receiving Water Simulations—
     An error message is given when the pollutant  initialization is not com-
pleted prior to routing of each discharge and overflow event through the re-
ceiving water system.

Output of RCVRIN and MRBNTC for Receiving Water Simulations-
     There is no output for the program RCVRIN.  The  output of MRBNTC mainly
indicates how many iterations  were used in each time  step. This output may
be considered as internal and is not discussed further.

     For  single event simulations,  the hydrographs  and  pollutographs are
printed by the  program MRBNSP. For continuous simulations, the results are
stored on files  for further evaluation by the statistics program STATCS.

Program MRBNSP for Receiving Water Simulations

Description of MRBNSP for Receiving Water Simulations—
     The program MRBNSP  prints single event simulation results produced by
the program MRBNTC. For final calculations the results should be secured for
multiple outputs. The  running  time of the program MRBNSP, which depends on
the number of  printout segments and intervals, usually  is less than 1 CPU
minute on UNIVAC 1108.
                           51

-------
Control and Data  Card  Requirements for MRBNSP for Receiving  Water Simula-
tions—

     a)   "RUN
     b)   "QUAL arbitrary qualifier
     c)   "ASG.A  qqs.
     d)   "ADD  qqs.ASGXUSE/IFXX
     e)   "XQT  qqs. MRBNSP
          One data card
          Column 1-3:   The  number  of  time intervals  to be printed  out
                         (FORTRAN  format  13).  The value given may  not be
                         larger than the  number  of  time steps simulated in
                         MRBNTC.
     f)   "FIN

Error Messages of  MRBNSP for Receiving Water Simulations—
     There are no  program related error  messages in MRBNSP.

Output of MRBNSP for Receiving Water Simulations—
     Flow and depth hydrographs and pollutographs are provided for the
segments and nodes specified by input to the program DTCHCK.

Program STATCS for Receiving Water Simulations

     The  basic  continuous simulation results are hydrographs  and polluto-
graphs at the nodes of interest specified by input to the program DTCHCK in
connection with receiving water system  simulations. For receiving water sta-
tistics these data are also sorted and  analyzed by the program STATCS. One-
and two-dimensional analyses may be performed for the statistical properties
specified by  input to the  program STATCS.  Appendix 5  contains  a list of
properties for statistical analysis.

     It should be noted that for evaluation of average values and totals the
time basis  taken  for  an  event is the duration of runoff (duration of sewer
system overflows and the  maximum flow time in the receiving water system as
defined in the input to the program RCVRIN and MRBNTC). For further remarks,
control and data  card  requirements,  error messages  and output see the pre-
vious description of program STATCS (pages 46^48).


PRECIPITATION STATISTICS

Program RAINSC

Description of RAINSC—
     This program statistically analyses  precipitation  records  covering a
maximum of  20  years.  Analysis can be made of 11 different properties on an
annual and  monthly basis.  Analysis of  complete records is possible as well
as selective  analysis  of  individual years or months as specified by input.
For each  property the  analysis is presented for two scales: A linear scale
based on the maximum value detected; and a scale  chosen to contain autoraati-


                                     52

-------
cally at least 50 percent of all values occurring. RAINSC allows for metric
units only.

     The precipitation data of each record must be on a separate file in the
format specified  in  Appendix 2,  Data Cards for DTCHCK, Precipitation Data,
Omitting  cards 3 and 7 will allow for one precipitation series  only.


     The annual  statistics  are based only on  the  months specified on data
card  4  of program RAINSC.  The maximum dry spell  specified on  data card 2
(RAINSC) ensures  that for statistics  this dry spell is the maximum value.
This  value is  not an artificial dry spell resulting from an interrupted rec-
ord  (as for instance September to May, if precipitation  data for May to
September were provided).

     After each calculation the file PRINT, which contains the rainfall sta-
tistics, must  be  saved.  The running time of the program RAINSC is approxi-
mately 2.5 CPU minutes  for a record of 20 years, with each year containing
5 months of data.

     The statistical properties analyzed by program RAINSC are given in Ap-
pendix 5, Properties for Statistical Analysis.

Control and Data  Card Requirements for RAINSC—
     Prior to running the program RAINSC the text file *TFRS must be created
by:

     "ASG,AX  qqs.
     "DELETE,C *TFRS.
     "ASG.UP  *TFRS.,F14///10
     "XQT qqs.TEXTFC
     "ADD qqs.TEXT/RAINSC
     "FIN

     The control  and data cards for the program RAINSC are:

     a)   "RUN
     b)   "QUAL  qualifier,  under which the precipitation data are on file
     c)   "ASG.AX  qqs.
     d)   "ASG,AX  qualifier of program *TFRS.
     e)   ASG,AX  *file  name of precipitation data
     f)   "USE 11,  *file name of precipitation data
     g)   "DELETE,C  *FIRS.
     h)   "ASG,T  *FIRS., F14///500
     i)   "DELETE,C  *FRRS.
     j)   "ASG.T  *FRRS., F14///500
     k)   "XQT qqs. RAINSC
          Data cards
          Data card 1     :   Language card
          Columns   1 -  4:   *LAN
          Column    8     :   E for English or G for German
                                     53

-------
          Data card 2
          Columns   1
          Columns   6
          Data card 3
          Columns   1
          Columns   7
     1)
          Data card 4
          Columns   1
          Columns   7
          Data card 5
          Columns   1
Data card 6
Columns   1
"FIN
    :    Maximum dry spell
-  4:    *MDS
- 72:    Approximation of real maximum dry spell in 5-
        minute intervals (integer number). Longer dry
        spells, theoretically  provided by  input for
        interrupted records,  must not be considered.
    :    Choice of years
-  4:    *YAR
- 65:    Years (FORTRAN format 13,  e.g., 67 68 69), on
        which statistical analysis should be based (20
        at a  maximum).  If all years provided  on the
        precipitation data file should be considered,
        this card is omitted.
    :    Choice of months
-  4:    *MNT
- 42:    Months per year (FORTRAN format 13, e.g. 7  8
        9 10) on which statistical analysis should be
        based. If all months provided on file should
        be considered, this card is omitted.
    :    End card
-2:    **
        For  additional  statistical  analysis of  the
        precipitation record in question,  data cards
        1 through 5 follow again.
    :    End of data cards
-  3:    ***
Error Messages of RAINSC—
     Program related error messages are given, if direct input data or data
contained in the  precipitation files supplied are erroneous.

Output of RAINSC--
     Frequencies, cumulative frequencies, and cumulative frequencies in per-
cent are provided of the properties analyzed for linear scales based on the
maximum  value  occurring;  the  same  is given  for a detailed  linear scale,
which is  chosen  so  that at least 50 percent of all values are contained in
the nine lower scale ranges of the detailed scale. Section 1 of this volume
contains a discussion of the output (see also Figure 14).  A test example for
RAINSC is contained  in Appendix 12.
                                     54

-------
                                 SECTION 4

                               TEST EXAMPLES
GENERAL

     In order to illustrate the program handling characteristics of the QQS
program package  a test example  is  provided.  Even though the  example  as a
whole is hypothetical, the input data to the individual programs mainly were
taken from actual projects in order to provide realistic figures, especially
for the functions which are specific for the  QQS method.

     Input and output are illustrated for  the program QQSEGL,  which simu-
lates the  runoff from individual drainage  areas, for the  program sequence
DTCHCK, DWTFLC,  TXTFCE,  (TXTFCG,)  RCVRIN, MNTWKC, MNTWSP and STATCS, which
are used to perform runoff simulations in sewer systems,  as well as for the
program RAINSC,  the  precipitation  statistics  program. A comprehensive test
example is used  to demonstrate the association of the individual programs.
It must be understood that only a few facets of the many application possi-
bilities offered by the programs can be demonstrated by this example.

     All input is prepared according to the requirements  of Section 2,  Pro-
gram Handling. The output interpretation of the individual programs is ex-
plained in Section 1,  Program System.

     This  test  example,   together with the multitude of  verification  runs
provided  in  Volume I (Model  Description,  Testing, and Applications,
Section 4, Verification and Testing),  are intended to enable a new user to
develop a familiarity with input data preparation for the QQS program pack-
age.
PROBLEM DESCRIPTION

     The demonstration area chosen is drained by both separate and combined
sewers. The urbanized catchments are located on both sides of a river (Fig-
ure 15). The combined sewer system overflows and the treatment plant efflu-
ent enter this  receiving water.

     The  receiving  water system  may be heavily overloaded  because  of the
many industrial inflows, sewer system outfall discharges and overflows, and
nonpoint  sources. Therefore,  an appropriate scope for  a  study would be to
assess the  effect  of the present system on the receiving water and to de-
velop  structural and nonstructural  pollution abatement alternatives on the
basis of BODS,  TSS, fecal coliform,  and COD information. Abatement alterna-
tives  should utilize the existing sewer system to  a  maximum.  Alternatives

                                     55

-------
C039
      combined main sewer system
—— seperate  sewer system
•••••• receiving water system
 Ui  combined sewer overflow
 L_J  basin
 (B)
 vf_/  pumping station
 W  sewage  treatment plant
 [ij    control  gate regulated  by WSE at
      Figure  15.   Test catchment.
                      56

-------
studied may include different levels of surface ponding, inline storage, or
operational control as opposed to increasing the treatment plant capacity.

     Once the decision has been made to employ a mathematical model for as-
sessment of the pollution problem and the development of abatement alterna-
tives, the study may be subdivided for mathematical model applications into
the following phases:

          Data preparation and calibration for present conditions
          Verification of the program package
          Problem assessment
          Data preparation for future conditions
          Development of abatement alternatives for present conditions
          and/or different stages  of future conditions
          Proof that the selected  alternatives meet guidelines and re-
          ceiving water standards.

     Even though in the following demonstration the individual programs are
applied only once, it should.be understood that for an actual project a rep-
etitive application of some programs must be made.
DATA PREPARATION

     The  catchment under  investigation has  a total  area of  393  ha  (971
acres). For simulation purposes this area is subdivided into drainage areas
averaging 35 ha  (86  acres)  in size; The areas  are  shown in Figure 15. The
boundaries of individual  drainage  areas are defined for ten combined sewer
drainage areas and one area drained by a separate  sewer system. The outflows
of the individual drainage areas are connected to  a system of main and trunk
sewers (for runoff calculations the individual drainage areas are handled by
the QQS model as lumped system). For preparing the network data note, espe-
cially in view  of  continuous simulations,  that the computer time is mainly
dependent on the number of elements and precipitation intervals considered.
Comparisons with field data showed that sewer lengths of approximately 500 m
in connection with the 5-minute time step for calculations  are practical and
yield acceptable computer  times.

     For demonstration purposes  a  possible alternative for overflow abate-
ment was chosen  to consist of one basin, three combined sewer system over-
flows, and one control gate. The dry-weather or combined sewer flows are di-
rected by this system to a sewage treatment plant, the effluent of which is
pumped to the receiving water.  The sewers and the basin of the system pro-
vide substantial inline storage. The runoff from the area AC28 entering the
main and trunk sewer system is throttled by a control gate, the operation of
which is dependent on the water depth at the node C034. Assuming that AC28
is a projected new development area that later on  might require its own new
treatment plant, the area  shall not, in the meantime, be allowed to overload
the old system.

     Preparation of  the network,  quantity and quality files of  the input
data may  be aided by  applying  the program DTCHCK, the error meassages  of

                                     57

-------
which speed debugging of the input data prepared.  The input data as prepared
for DTCHCK for this demonstration are provided in Appendix 7.

     The derivation and  calibration of input data such as unit hydrographs
and pollutographs may  be made especially for present conditions, using the
program QQSEGL,  which simulates runoff quantities  and qualities from indivi-
dual drainage  areas.  For  drainage  area AC01,  it was  assumed  that runoff
measurements were  available.  An  input and  output  example  of  the  program
QQSEGL is  included  in  Appendix 6 for a case where  calculated flows,  BOD,.,
and TSS loads were compared with measured data.

     For final definition of the unit hydrographs  and pollutographs the pro-
gram QQSEGL is  applied repetitively until satisfactory runoff calculations
are obtained  for the  measured events  available. .Careful  checking of  the
measured data and  of  the boundary conditions for the individual events in-
vestigated helps to avoid calibration of input data against wrong measure-
ments or under false assumptions.

     The calibration  of input  data  may be extended  to the main and  trunk
sewer system if measured runoff data from this system are available. There-
fore, single event simulations are performed using the sequence of programs
DTCHCK, DWTFLC,  TXFCE,  RCVRIN, MNTWKC, and MNTSWP. Because the example cho-
sen represents  an abatement  alternative,  single event  simulations of the
runoff in  the sewer system is further discussed below. Repetitive applica-
tion of the program sequence,  comparison of the calculated runoff with meas-
urements and adjustment of input data lead  to  a final input data set.

     For the final calibration it should be understood that the intention of
the model is not to picture the system geometry exactly but to represent the
approximate runoff and overflow behavior of the system. Therefore, the sewer
network  may be  abstracted  and roughness   coefficients  of  individual  sewer
segments, overflow weir  heights and even profile dimensions may be adapted
to achieve this  goal.


VERIFICATION

     Verification of the program package is usually accomplished by compar-
ing the calculated runoff of the individual drainage areas and of the system
as a whole with measured dry-weather flows and rainfall-runoff data. Because
verification of runoff behavior of the total system to a similar extent for
all different magnitudes of precipitation events may prove difficult, empha-
sis should be given to those precipitation events that would usually cause
overflows or overloading,  conditions that are supposed to be abated or av-
oided by the alternatives in mind.
ABATEMENT ALTERNATIVES

     Abatement alternatives usually are developed starting from present con-
ditions.  To  save computing time, the  effectiveness  of  different abatement
schemes may  be  tested by relative comparisons of the calculated runoff and

                                     58

-------
overflow behavior. This approach usually is on the basis of synthetic storms
or real storms  considered  critical for the loading of the system. Also, in
this context continuous and single event simulation results may be combined
(2). As an example of single event runoff simulations of the overall system,
a set of input and output data is contained in Appendices 8, 9 and 10. Final
choice of an abatement alternative is based on technical evaluation and cost
figures associated with the different schemes.
PROBLEM ASSESSMENT AND VIOLATION OF GUIDELINES AND STANDARDS

     A problem can conclusively be assessed and violation of guidelines and
standards can be demonstrated only by a continuous investigation of the pre-
cipitation-runoff-overflow behavior  of the  entire system as  explained in
Volume I (Model Description,  Testing,  and Applications;  Section  1, In-
troduction). Therefore,  the above-named sequence of programs is used for
sewer system runoff simulations with continuous rainfall records.  How-
ever, instead  of the program  MNTWSP,  which provided the output  of runoff
hydrographs for single event simulations, the multitude  of output data prod-
uced by  a continuous simulation  is statistically analyzed by the  program
STATCS.  For  continuous  simulations,  aside from  the precipitation data and
data card 2 of the program DTCHCK: Network data, the input is similar to the
input necessary for single event simulations. The additional input data re-
quired for the statistics program STATCS and output samples  of this  program
are  provided  in Appendix 11. As  far as monthly or annual  totals are con-
cerned,  the ratios  of total  runoff to  overflow  figures,  comparing  for in-
stance present  and future  (abated)  conditions, are more informative than
the absolute values are.

     For assessment of  runoff  and overflow behavior,  simulation of  contin-
uous records of as long  as 20 years duration was not found to be necessary.
Selection of 4  to  6 representative years from a long continuous precipita-
tion record has  proved  beneficial for runoff simulation purposes. This se-
lection is aided by statistical  analysis of the precipitation data. If for
statistical key properties the statistical analysis of the complete rainfall
record yields similar results  as  the statistical analysis  of the years se-
lected does the  shorter precipitation record may be used as the continuous
runoff simulation input. Statistical analysis of precipitation data  is done
by the program  RAINSC.  See Appendix 12 for input and output examples. How-
ever, the years  used  in the examples were selected arbitrarily and  are not
necessarily the best choice.
                                     59

-------
                                REFERENCES
1.   Geiger, W.  F.   Urban Runoff Pollution Derived from  Long-Time  Simula-
     tion.  In:  Proceedings  of the National  Symposium on Urban  Hyrodolgy
     and Sediment Control, Lexington, Kentucky, 1975. pp. 259-270.

2.   Geiger, W. F.,  S.  A.  la Bella and G.  C.  Me Donald. Overflow  Abatement
     Alternatives Selected by Combining Continuous and Single Event  Simula-
     tions. In:  Proceedings  of the National Symposium on Urban Hydrology,
     Hydraulics and  Sediment Control, Lexington, Kentucky,  1976. pp. 71-79.

3.   HEC1. Flood Hydrograph Package. Users  Manual. The Hydrologic  Engineer-
     ing Center,  Davis, California, 1973. 25 pp.
                                     60

-------
                            APPENDIX1
                           DATA CABDS FOR QQSEGL
PROGRAM QQSEGL:
Input data
DATA CARD
SUMMARY OF DATA CARDS:
Extent of simulations
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARD(S)
DATA CARD(S)
DATA CARD
2a
2b
3
4a
4b
4c
5
6
7 :
8 :
9a:
9b:
9c:
9d:
lOa:
lOb:
lla:
lib:
12a:
12b:
13 :
                    PART 1:  QUANTITY
                    Number of precipitation intervals
                    Precipitation intensities
                    Losses
                    Number of unit hydrograph ordinates
                    Unit hydrograph impervious areas
                    Unit hydrograph pervious areas
                    Drainage area characteristics
                    Measured runoff

                    PART 2:  QUALITY
                    Number of pollutants
                    Starting interval
                    Number of unit pollutant load hydrograph ordinates
                    Conversion and area factors
                    Unit pollutant load hydrograph for pollutant 1
                    Unit pollutant load"hydrograph for pollutant 2
                    Diurnal variation influence for pollutant 1
                    Diurnal variation influence for pollutant 2
                    Influence of rainfall duration on pollutant 1
                    Influence of rainfall duration on pollutant 2
                    Measured load of pollutant 1
                    Measured load of pollutant 2
                    Amount of pollution at start of rainfall
NOTE:     PROGRAM QQSEGL only allows for metric input. Special provision for
          input of bacteria counts is not made.
                                    61

-------
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration. The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number  into the  space available. However,  all  real numbers
must be provided including their decimal points.  A Fortran I-for-
mat (integer numbers)  is  requested, if no decimal point is shown
in  the space  under  consideration. All  integer  numbers must  be
right adjusted within the space provided.

Symbols  contained  in  the  format box,  but not  individually ex-
plained, must be punched as shown. All blanks  within a field shown
in the format box are interpreted as zeros.

Symbols used in the format boxes coordinate the explanations giv-
en on the data cards only and do not necessarily match the symbols
used in the equations of Section 2 of  Volume 1  (Model Description,
Testing, and Applications).
                           62

-------
PROGRAM QQSEGL
                    DATA CARD 1:   Extend of simulations
EXPLANATIONS:
0    Runoff quantity only is computed.   DATA CARDS 1 to 6 must be supplied
1    Runoff quantity and quality are computed.  DATA CARDS 1 to 13 must be
     supplied

-------
PROGRAM  QQSEGL
                          DATA  CARD 2a:  Number  of precipitation intervals
   a^p^l/ g[9|lO IIJI2 I3|M I5H4 17 II 19 Kplpp Mp 2O27 iSQV MJ3I[3
EXPLANATIONS:
N
Number of precipitation intervals (^ 99)
One interval  has a duration  of 5 minutes

-------
      PROGRAM QQSEGL
                         DATA CARD(S) 2b:  Precipitation  intensities
IN
1 2
3
4
5
IN
•1'
a
V
10
IN
n
12
1314
IS
IN
16
i;L
i»
20
IN
21
22
2^4|2S
IN
j^ja^pa
29J3C
IN
1ID3
33
H"
IN
up;
M
1M40
IN
4IJ42
43^
a
IN
44
17
II
It
X
IN
5152(53
4,
IN
56
57J5U
snsc
IN
ii
nL
M
u
IN
"H68
40

^i
IN
444*
IN
»444o
      EXPLANATIONS:
IN
Precipitation intensities in




(Continue up to 7 cards)
                                                                         nun
                                                                 1,000  5 min
(J\

-------
      PROGRAM QQSEGL
                         DATA CARD 3:   Losses
     EXPLANATIONS:
cr.
DI


DP


IDP


IR
Maximum initial losses for impervious areas in   nnn mm
                                               J. 9 \IUU

                                               1
                                   Maximum initial losses for pervious areas  in
                                                                                 1,000
                                    Initial losses at start of calculation  for pervious  areas  in
                                                                                                 1,000
                                                                   mm
                                   Final constant rate of infiltration  in
                                                                                 mm
                                                                           1,000 5 min
             NOTE:       The  initial losses include initial evaporation, wetting  losses,  depression  capaci-
                         ties on the oversurfaces and initial losses within the drainage  system of the
                         catchments. For pervious areas in addition the initial rate of infiltration cap-
                         acity above the final constant rate is included in the initial losses.

                         Dependent on surface roughness and land use the initial  losses for  impervious
                         areas vary from 0.5 to 3.0 mm.  The infiltration for pervious areas may be  as
                         much as 12.0 mm.  Some reference values are given on DATA CARD 5 of PROGRAM
                         DTCHCK:  Quantity data in Appendix 2.

                         The  initial losses at the start of a calculation must .be smaller than  the maximum
                         initial losses provided. The value must be valid for the start of rainfall.

                         The  final constant rate of infiltration may vary substantially and  is  mainly de-
                         pendent on the perviousness of the top soil layer. For some reference  values see
                         DATA CARD 6 of PROGRAM DTCHCK: Quantity data in Appendix 2.

-------
PROGRAM QQSEGL
               DATA CARD 4a:  Number of unit hydrograph ordinates
EXPLANATIONS:
Number of unit hydrograph ordinates for impervious areas (^ 30)
Number of unit hydrograph ordinates for pervious areas   (^ 30)

-------
     PROGRAM QQSEGL
                                     DATA CARD(S)  4b:   Unit hydrograph impervious areas
Al


n





,






9

/
10
u
12
I2|l3|l4

IS

14
A3
*
17 18 19 ZOplpTp^
A4
*
VMOV 28 29 30 1102
A5
*
333 -MS
14
17
u
»
to
A6
*
oUjLaLXJ^A

•7

«
A7
*





A8


Sfl
+
61

i2

S3
M
Ag
•
UUp
ta
HT
72
A10
73 7-fyi 76 r> 7BJ79 JO
EXPLANATIONS:
                         A.
                      Dimensionless ordinates of the unit hydrograph for impervious areas
                      (5-minute intervals).  A maximum of  30 values  may be  given.
oo
NOTE:       The sum of all ordinates of one unit hydrograph must be 1.0.

            The unit hydrographs may be derived from rainfall-runoff measurements or syn-
            thetic unit hydrographs may be used. The values as contained in Appendix 6,
            Test Example for PROGRAM QQSEGL, are not generally transferable on other areas,
            as the shape of the unit hydrographs is dependent on catchment size, shape,
            slope, land use and other characteristics.

-------
PROGRAM QQSEGL
                         DATA CARD(S) 4c:  Unit hydrograph pervious areas
61
•FF
4
S
6
7
B
B2
9 10 ll|l2JI3|u|l5|l6

17

IS
B3
IVpOBlp

23

24

2)
B4
2
-------
      PROGRAM QQSEGL
                         DATA CARD 5:    Drainage area characteristics
      EXPLANATIONS:
A         Size of drainage area in ha
GAMMA     Ratio of imperviousness in percent of total area
o

-------
PROGRAM QQSEGL
                         DATA CARD(S)  6:   Measured runoff
             II 12 13 14 ll
                                           IJ5J S3J3


-------
PROGRAM QQSEGL
               DATA CARD  7:    Number of pollutants
                                    19 Mpip J3fM «B4 17JM lVfq^\ 42
EXPLANATIONS:
Total number of pollutants  (1  or 2)
        NOTE:       One or  two  pollutants  may be investigated in one run with PROGRAM QQSEGL.

-------
PROGRAM QQSEGL
                         DATA CARD 8:   Starting interval
EXPLANATIONS:
D
5-minute interval of day, where precipitation starts, e.g.  150 for
12.30 (hr.min)

-------
PROGRAM QQSEGL
                         DATA CARD 9a:   Number of unit pollutant
                                        load hydrograph ordinates
EXPLANATIONS:
H
Number of unit pollutant load hydrograph ordinates for pollutant I
Number of unit pollutant load hydrograph ordinates for pollutant 2
        NOTE:
The number of pollutant load unit hydrograph ordinates must be equal or smaller
than the smaller number of unit hydrograph ordinates given on DATA CARD(S)  4b or
4c of PROGRAM QQSEGL.

-------
     PROGRAM QQSEGL
                         DATA CARD 9b:  Conversion and area factors
     EXPLANATIONS:
                         AF,
          Dimensionless area factor for pollutant 1 (usually 1.0)

          Dimensionless area factor for pollutant 2 (usually 1.0)
             NOTE:
Ul
The area factors multiply with the ordinates of the unit pollutant load hydro-
graphs as given on DATA CARDS 9c and 9d of PROGRAM QQSEGL. This feature is pro-
vided to allow for quick variation of the unit pollutant load hydrographs dur-
ing the calibration process.

-------
      PROGRAM QQSEGL
                         DATA CARD(S) 9c:   Unit pollutant load hydrograph
                                           for pollutant 1
pll
1 2
3
4
•I-
7
B
P12
*
fl"
12
13
I4|l5|l6
P13
*
17 lt|l» 20J2I 22 23p4
P14
*
2524ppe
zsjsojjip
P15
3£
UO7
H3T°
P16
4IJ42 43J44|42



I7J4B
P17
"H42
53
H4*
P18
^H'kh
n
',.

4r
.
5»J7t
n|72
Pln
HH4f

78

79110
      EXPLANATIONS:
          Ordinates of the unit pollutant load hydrograph for pollutant 1
              NOTE:
The number of pollutant load unit hydrograph ordinates must be equal or smaller
than the smaller number of unit hydrograph ordinates given on DATA CARD(S)  4b or
4c of PROGRAM QQSEGL.
cr>

-------
-vl
VJ
      PROGRAM QQSEGL
                                DATA CARD(S) 9d:  Unit pollutant load hydrograph
                                                  for pollutant 2
          21
22
23
24
                                                   25
                                         26
27
r28
2n
      I 23 436 78
n"M4
                  10 II 12 13 14 I3h« I7UI IV 20 21 22 23 !4
                                                  15 16 17 W 3« 40 41
                                     (sjscfcip n S4 ssu >7papi|at{A) 6i[a^ u M ww we nb:
     EXPLANATIONS:
                Ordinates of  the unit pollutant load  hydrograph for pollutant 2
              NOTE:
      The number of pollutant  load unit hydrograph ordinates must be equal  or smaller
      than the smaller number  of unit hydrograph ordinates given on DATA CARD(S)  4b or
      4c of PROGRAM QQSEGL.

-------
      PROGRAM QQSEGL
                                DATA CARDS  lOa:   Diurnal variation influence
                                                  for pollutant 1
          DV
            11
DV
  12
DV
  13
0V
  14
DV
  15
                                                             DV
                                           16
                                                   0V
                                                                         17
                                                   DV
                                                     18
                                                    DV
                                                                          1..
                                                                                                       DV
                                                                In
                  o[n
       1718
          19 20 21 22 23EM 25
        M J7J2
                                     10 41 421
                                >2 S3 S4lSS(56
                                                                             l 72
                                                                                 |74 75 ram*n ^
      EXPLANATIONS:
       DV
                             li
      Dimensionless  influence factor for the time  of  day on pollutant 1
      (0.0 5 Du g 1.0)
00
              NOTE:
       48 subsequent values starting at midnight are necessary, each  representing
       half an hour.

       The change in land use conditions  during the day (e.g. traffic conditions)
       may be accounted by the diurnal variation influence factor. For BODS,  COD
       and TSS for instance DV   usually  is  1.0 during rush hours and decreases
       to 0.8 for night time traffic.

-------
PROGRAM QQSEGL
                                DATA CARDS  lOb:   Diurnal variation  influence
                                                  for pollutant 2
     DV
      21
DV
  22
                        DV
                           23
                        Mx 21(22)23 24 2d2« 2? »
                                    DV,
                                    24
DV
  25
DV
  26
                            13J34J3J ji|37p 3»J40
                                                             Ut
DV
  27
DV
  28
DV
  Z..
                             OTa S*C 41 ijCt ij M 67 UJM WJ7IJ72 wJ/i 74 77J78 7!
DV
                                                      2n
12)45 67 I
          » 10 II
              iaffl
                  1516
                                                          - U OUt! (
EXPLANATIONS:
        NOTE:
      DV2i
                              Dimensionless influence factor of the time  of day on pollutant  2
                              (0.0
                       DV2i
                                              1.0)
      48 subsequent values starting at midnight are necessary, each representing
      half an hour.

      The change in land use conditions during the day (e.g. traffic conditions)
      may be accounted  by the diurnal variation influence factor.  For BODs, COD
      and TSS for instance DV^. usually is  1.0 during rush hours  and decreases
      to 0.8 for night  time traffic.

-------
     PROGRAM QQSEGL
                         DATA CARDS lla:   Influence of rainfall duration
                                          on pollutant 1
Rn
i^T
4
5
4
T
R12
9 10 II I2|I3||4

ISIA
R13
I7JIB I9p
3 21 22p3J24
R14
25 24 27J2B
TPr

33
R15
4434
17
H3T°
R16
*
4>|»
4rrT8
R17
*
*9J5CJ5I(52[53J5X
4,
R18
s^fJ^J^t
"•:
u|u|»|u|tf
4>h
Rln
73 74pi|76p 70

79 BC
     EXPLANATIONS:
          Dimensionless influence factor of rainfall duration on pollutant 1
          (0.0 £ R   £ 1.0)
'JO
o
             NOTE:
20 values are necessary (5-minute intervals).

The ability of a rainfall intensity to wash off pollutants is decreasing with
increasing rainfall duration.  At the beginning of a rainfall R-.  = 1.0. After
90 minutes RI.  usually decreases to 0.2 to 0.4. The figures provided in Ap-
pendix 7, Test Example for PROGRAM DTCHCK, may be used as reference values.

-------
PROGRAM QQSEGL
                         DATA CARDS lib:   Influence of rainfall duration
                                          on pollutant 2
R21
*
1 2 3 415

6

1
g
R22
*
9|lo|ll|l2 I3|U
IS

16
R23
17 ie ic
MB'
22
23
U
R24
232J27
28(29
4,
)2
R25
33
34
U
36
37
ia
39
40
R26
4W
44
41
H'T"
"27
*
*H4>MHM»
"28
S7|S1S9
4,
4+
"?..
»5JM U M|6<
7d7<

72
R2n
73 74|73)w|77J7ll 79J8C
EXPLANATIONS:
R
                     2i
Dimensionless influence of rainfall duration on pollutant 2
          (0.0 ^ R
                                      2i
                                           1.0)
        NOTE:
20 values are necessary (5-minute intervals).

The ability of a rainfall intensity to wash off pollutants is decreasing with
increasing rainfall duration.  At the beginning of a rainfall R~- = *-0- After
90 minutes R   usually decreases to 0.2 to 0.4. The figures provided in Ap-
pendix 7, Test Example for PROGRAM DTCHCK, may be used as reference values.

-------
     PROGRAM QQSEGL
                                DATA CARD(S) 12a:  Measured load of pollutant  1
                              MP
                                13
                     HP
                       14
"
  15
"
  16
MP
  1?
MP
  18
*
                                                                                              !..
MP
            ln
         34
            47
11[13 13 U Ii[l6 17 mi?
                                 2 23 24 2511
                                             112
               I? « «9Bc|si s:
                                                                                    >l 62 4:
                                                                                                  2 n 74
                                                                                                     m 74 M70 7'
                                                                                                           990
     EXPLANATIONS:
             NOTE:
00
CO
       MP1.       Measured  runoff load of pollutant  1 not  including dry-weather  flow
                 in kg/5 min


       The number of values supplied must be equal  to the number of precipitation
       intervals provided  on DATA CARD(S) 2b of PROGRAM QQSEGL + the larger number
       of unit pollutant load  hydrograph ordinates  given  on DATA CARD(S) 9c or  9d
       of PROGRAM QQSEGL   +1.

-------
      PROGRAM QQSEGL
                                DATA CARD(S) 12b:  Measured  load  of  pollutant 2
      '   MP
          21
MP
  22
                             MP
23
                     HP
                                          24
                                                 MP,
                                25
                             MP
26
        MP
                                         27
"28
                                                                       MP.
2..
                                                                                                     MP
                                                                                                       2n
      1234 5 6 7 \»
           20J2
                                !l 22 23 24 2:
      tip 27|2
     EXPLANATIONS:
      MP2.
     Measured runoff load of pollutant 2 not including dry-weather  flow
     in kg/5 min
00
U)
              NOTE:
      The number of values  supplied must be equal to the number  of precipitation
      intervals provided  on DATA CARD(S) 2b of PROGRAM QQSEGL +  the larger number
      of unit pollutant load hydrograph ordinates given on DATA  CARD(S)  9c or 9d
      of PROGRAM QQSEGL   +1.

-------
     PROGRAM QQSEGL
                         DATA CARD 13:   Amount of pollution at start of rainfall

     EXPLANATIONS:
          Initial amount of pollution for pollutant 1 in kg/ha

          Initial amount of pollution for pollutant 2 in kg/ha
             NOTE:
The initial amount of pollution is the pollution available for wash-off at
the start of rainfall.
00

-------
                            APPENDIX  2
                         DATA  CARDS FOR DTCHCK
PROGRAM DTCHCK:
               Precipitation data
DATA

DATA

DATA

DATA

DATA

DATA

DATA
CARD

CARD

CARD

CARDS

CARDS

CARD

CARD
1

2

3

4

5

6

7
Title card

Year card

Month card

Type-of-event cards

Precipitation cards
End card

End card
NOTE:     Precipitation data according to these specifications are supplied
          only for continuous simulations. For single event simulations the
          precipitation data  enter PROGRAM  DTCHCK on DATA CARDS  4  of the
          network data.

          R and S at the upper right of each data card description specifies
          if the  data card(s) must be included for  separate and combined
          sewer system  (S) and/or  for receiving  water  system (R) simula-
          tions .

          If the  format box on top of each data card description is subdi-
          vided,  the upper part  describes the input in  english,  the lower
          part in metric units.

          A Fortran F-format (real numbers) is required,  if a decimal point
          is shown in the space under consideration. The  location of the de-
          cimal point as indicated is not binding and may be adjusted to fit
          the number  into the space  available.  However,  all real numbers
          must be provided including their decimal points.  A Fortran I-for-
          mat (integer numbers)  is  requested, if no decimal point is shown
          in the  space under consideration. All  integer  numbers must  be
          right adjusted within the space provided.

          Symbols  contained in  the format  box,  but not  individually ex-
          plained, must be punched as shown.

          Symbols used in the format boxes coordinate the explanations given
          on the  data cards  only and do  not necessarily match the symbols
          used in the equations of Section 2 of Volume I  (Model Description,
          Testing, and Applications).
                                   85

-------
     PROGRAM DTCHCK:     Precipitation data
                              DATA  CARD 1:    Title card
        34 S A
I3|U UJI6 I7JI8 I»20hl|
                                        a 19
                                                            3 44 tS *
                                                                                                    ?j /6 17 7
     EXPLANATIONS:
     Any text with up to 80 alphanumeric characters may be  inserted.
             NOTE:
     This card must be identical with the title cards of the  network, quantity and
     quality data.
00
o\

-------
      PROGRAM DTCHCK:     Precipitation data       DATA CARD 2:   Year card
         1 A'2 A'3  '4 UU'SUU'G A 7 ftT8
      EXPLANATIONS:
                           i

                          DT
Year, e.g. 78 for  1978  in  increasing sequence


Duration of a time interval  in minutes,  5.0 must be entered
00
-J

-------
     PROGRAM DTCHCK:     Precipitation data       DATA CARD 3:   Month card
     EXPLANATIONS:
M.
Month, in increasing sequence starting in the first space,
e.g. 9 for September
00
oo

-------
     PROGRAM DTCHCK:
Precipitation data
          DATA CARDS 4:  Type-of-event-cards
     EXPLANATIONS:
CD
vD
Year
Month
Day
Hour
Minute

INT
                         DURATION
               Type of event
                0   dry spell
                1   rainfall event (cards containing the rele-
                    vant precipitation intensities roust follow)
                                        Starting time of the individual event using a 24 hour clock
Number of interval of day at which the event starts, one in-
terval being of 5 minutes duration

Duration of event in intervals
             NOTE:
At the end of an individual year or of a calculation period in a year a dry
spell card must be provided covering the whole time span until the start of
the first precipitation to be simulated in the next year or calculation pe-
riod in a year, not accounting, however, for total years missing.

A complete precipitation series, however, ends with a rainfall event.

The calculation periods in the different years must match, e.g. always May
through September.

-------
     PROGRAM DTCHCK:      Precipitation data        DATA CARDS 5:   Precipitation cards
                                                          R9
                                       MO
Ml
M2
13
                                                                            . n
                 MIO
                   II U I3||4111 I
     EXPLANATIONS:
          Amount of rainfall within the  (5-minute) time  interval DT
          in 1/1,000 mm
             NOTE:
There is no limit to the number of values supplied using  sequential cards.
Precipitation cards only follow subsequently to a type-of-event card in-
dicating E = 1 (DATA CARDS 4 of PROGRAM DTCHCK: Precipitation data).
>D
o

-------
PROGRAM DTCHCK:     Precipitation data
                         DATA CARD 6:   End card
EXPLANATIONS:
The end of a precipitation series comprising of several years or of several
calculation periods in different years is marked by this card. For a second
and third precipitation series DATA CARDS 4 to 6 of PROGRAM DTCHCK are repeated:
Precipitation data may follow.

-------
     PROGRAM DTCHCK:     Precipitation data
                         DATA CARD 7:   End card
     EXPLANATIONS:
The very last precipitation series supplied is marked in addition by this sec-
ond end card.
VO

-------
PROGRAM DTCHCK:
Netwbrk (and drainage area) data
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
DATA CARD
DATA CARDS
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
1
2
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
4
5a
5b
6a
6b
6c
6d
7a
7b
7c
8a
8b
                    Title card
                    Constant card
                    Printout segments
                    End of printout segments
                    Printout nodes, overflow structures (OS)
                    End of printout nodes, overflow structures (OS)
                    Printout nodes, basins (RS)
                    End of printout nodes, basins (RS)
                    Special nodes of interest
                    Nodes of interest
                    Boundary nodes (constant loading)
                    Boundary nodes (variable loading)
                    Precipitation intensities
                    Segment cards
                    End card
                    Special structure type 1, overflow structure (OS)
                    Special structure type 2, flooded detention basin (RS)
                    Special structure type 3, pump drained basin (RS)
                    End card
                    Control gate type 1
                    Control gate type 2
                    End card
                    Drainage areas
                    End card
NOTE:     This data set containing network and drainage area data, constant
          cards and regulating  information also is briefly called "Network
          data".
          R and S at the upper right of each data card description specifies
          if  the  data card(s)  must be included for  separate  and combined
          sewer system  (S) and/or  for receiving water  system (R)  simula-
          tions .
                                     93

-------
If the format  box on top of each data card description is subdi-
vided, the upper  part  describes the input in  english,  the lower
part in metric  units.

A Fortran F-format (real numbers) is required,  if a decimal point
is shown in the space under consideration. The  location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number  into the space available. However,  all  real numbers
must be provided including their decimal points.  A Fortran I-for-
mat (integer numbers)  is  requested, if no decimal point is shown
in  the space  under  consideration.  All  integer  numbers must  be
right adjusted within the space provided.

Symbols  contained in  the  format box,  but not  individually ex-
plained,  must be punched as shown.

Symbols used in the format boxes coordinate the explanations given
on the data  cards only and do  not  necessarily match the symbols
used in the equations of Section 2 of Volume I (Model Description,
Testing,  and Applications).
                          94

-------
VO
Ul
     PROGRAM DTCHCK:     Network  data
                                              DATA CARD 1:   Title card
R
S
       I I J 4 iUl'UUIlolll II 111* lilJl/U I
EXPLANATIONS:
                         Any text with  up  to 80 alphanumeric characters may be  inserted.
             NOTE:
                    This  card must be  identical with the title cards of the precipitation,
                    quantity and  quality data.

-------
PROGRAM DTCHCK:
                          Network data
                         DATA CARD 2:   Constant card
                                                                 R
                                                                 S
         DATE
       I J 3
N
                      1114
 WCF
                        15 16 17 IB 19 20 II 2
                          IWF
PF
                                          JiMm
PF
                                                O
                                              Tl J«bS 3b 17
PF
                                                    1U19MI
                                                                   5C5I5V5:
                                                                       START
INT
                                                                                                  '1/6
     EXPLANATIONS:
ON
DATE      Up to 10 characters, e.g. 10/25/1974 or OCT.25,74;
          if blank, the current machine date will be used.

PS        Number of precipitation series considered in the project,
          e.g. 1, 2 or 3
N         General value for Manning's n , dimensionless (0.007 S N £ 0.1)
          It holds good for all sewer segments that are not provided with  an
          individual value on DATA CARD(S) 5a of PROGRAM DTCHCK: Network data
WCF       Prognosis factor for water consumption, dimensionless
          (0.1 S WCF S 10.0). The value provided here serves as default value
          for WCF on DATA CARD(S) 8a of PROGRAM DTCHCK: Network data. WCF  is
          used to multiply DWF on DATA CARDS lOa of PROGRAM DTCHCK: Quantity
          data. For normal applications 1.0 is suggested.
IWF       Prognosis factor for industrial wastewater, dimensionsless
          (0.1 ^ IWF ^ 10.0). The value provided here serves as default value
          for IWF on DATA CARD(S) 8a of PROGRAM DTCHCK: Network data. IWF  is
          used to multiply IW on DATA CARD(S) 8a of PROGRAM DTCHCK: Network
          data. For normal applications 1.0 is suggested.

PF.       Prognosis factor for the amount of pollutant i contained in dry
          weather flow, dimensionless (0.1 ^ PF. S 10.0). PF. is used to
          multiply AP. on DATA CARDS lla of PROGRAM DTCHCK: Quality data.
          For normal applications 1.0 is suggested.

-------
      PROGRAM DTCHCK:
Network data
DATA CARD 2:   Constant card continued
      EXPLANATIONS:
VO
C         Condition    1    single event simulation;  precipitation intensi-
                            ties are read in by way of DATA CARDS  4 of
                            PROGRAM DTCHCK:  Network data
                       3    continues simulation;  precipitation intensities
                            are read in as a separate data set (PROGRAM DTCHCK:
                            Precipitation data)

START     Starting date and time of event(s) simulated, e.g.  Day = 1,
          Months = 5,  Year = 76, Hour = 13 and Minute = 25

END       Ending date  and time of event(s) simulated, only supplied for
          C = 3, e.g.  31, 10,  77, 23 and 55
INT       Number of intervals  of single event to be simulated, only for
          C = 1. A maximum number of 288 intervals is allowed

DT        Duration of  time step, 5 minutes must be used,  i.e. 5

TEST      blank          no test printout
          T              test  printout

RW        blank or 0     in the run anticipated a  sewer network is calculated
          1              in the run anticipated one receiving water system is
                         calculated
          2              in the run anticipated two independent receiving
                         water systems are calculated

PRUEF     blank or 0     the project only comprises a sewer network
          1              the project comprises both,  sewer network and re-
                         ceiving  water system(s)
          A value for  PRUEF only is provided, if RW = blank or 0

LAN       1              english language is used  for output

MET       blank or 0     metric units are used for input  and desired for output
          1              english units are used for input and desired for output

-------
ROGRAM DTCHCK:
X
1 2
Nl
3
4 I*
6
NO
i
•
»
10
)
n
(
12
Network data
Nl
i'j
u
IS
\t>
NO
4.
19
20
)
21
(
2i
Nl
4.
2Sp
NO
M28
2«
3d
X
4,
DATA CARD(S) 3a:
Nl
4.
33
36
NO
iwap
,0

41

42
Nl
43 4-1
43
46
Printout
NO
ITUUU?
M
X
5152
Nl
"HH*
segments
NO
SfliU
SlL
x
4?
Nl
4
isL

i?
NO
Ml
iVpfl
x
4,
Nl
4<
+
NO
444°
R
S
     EXPLANATIONS:
Nl, NO    Inflow and outflow nodes of segments for which hydrograph printouts
          are desired.
             NOTE:
VO
00
For single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network
data) only.

Up to 100 segments may be specified in arbitrary sequence for a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK: Network data). Up to 50 seg-
ments may be entered for a receiving water network (RW = 1 or 2 on DATA CARD 2
of PROGRAM DTCHCK: Network data).

In case of a continuous simulation (C = 3 on DATA CARD 2 of PROGRAM DTCHCK:
Network data) 3a-type cards are ignored.

-------
      PROGRAM DTCHCK:      Network  data
                         DATA CARD 3b:  End of printout segements
R
S
     EXPLANATIONS:
This card is mandatory and must contain XX in columns 1 and 2.
VO
vD

-------
     PROGRAM DTCHCK:
            Network data
                         DATA CARD(S) 3c:
Printout nodes,
overflow structures
ND
1 2 3 <
ND
i
6
7
8
ND
V lOllI
I]
ND
IJM4
15
14
ND
i/ it
I90C
ND
44+
ND
»
uppa
ND
»
4-h
ND
3334
13
16
ND
-h
4"
ND
4I43H3

44
ND
Hid
«H
ND
i»«|si

i}
ND

ND
H4f
ND
4>|4J
ND
>5|4^
ND
«
mpi
72
ND
4<|4*
ND
'; /ul/v ao
     EXPLANATIONS:
            ND
          Names of overflow structures for which hydrograph printouts are
          desired, for single event simulations, only (C = 1 on DATA CARD 2
          of PROGRAM DTCHCK: Network data).

          Up to 35 nodes (= maximum number of overflow structures in a sewer
          network) may be entered in arbitrary sequence.
O
o
NOTE:
In case of a continuous simulation (C = 3 on DATA CARD 2 of PROGRAM DTCHCK:
Network data) 3c-type cards are ignored. For a calculation of a receiving
water network (RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data)
omit these cards.

-------
PROGRAM DTCHCK:
Network data
DATA CARD 3d:
End of printout nodes,
overflow structures
EXPLANATIONS:
This card is mandatory in case of the calculation of a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK: Network data) and
must contain XXXX in columns 1 through 4.
        NOTE:
This card is omitted in case of a receiving water system simulation
(RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data).

-------
      PROGRAM DTCHCK:     Network data
                                      DATA CARD 3e:   Printout nodes,  basins
       ND
NO
ND
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
                                                  lAUHMI
                                                       IIUIMlU* lS4t «/U
     EXPLANATIONS:
             ND
                  Names of basins for which hydrograph printouts are desired  for
                  single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK:
                  Network data).

                  Up to 15 nodes (= maximum number of detention structures  in a sewer
                  network) may be entered in arbitrary sequence.
o            NOTE:
NJ
             For continuous simulations (C = 3 on DATA CARD 2 of PROGRAM DTCHCK: Network
             data) 3e-type cards are ignored. For a calculation of a receiving water net-
             work (RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK: Network data) omit these
             cards.

-------
     PROGRAM DTCHCK:
Network data
DATA CARD 3f:  End of printout nodes,
               basins
     EXPLANATIONS:
This card is mandatory, in case  of the calculation of a sewer network
(RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK:  Network data) and
must contain XXXX in columns 1 through 4.
o
U)
             NOTE:
This card is omitted in case of a receiving water system simulation
(RW = 1 or 2 on DATA CARD 2 of PROGRAM DTCHCK:  Network data).

-------
PROGRAM DTCHCK:     Network data
                         DATA CARD 3g:   Special  nodes of interest
              II 12 I3IIXII5 16 17 It 19 20 21122 23 24 25
EXPLANATIONS:
SNI       Special nodes of interest. At  nodes  with one inflow and one
          outflow, specified on this card,  continuous simulation re-
          sults may be statistically analyzed.  Up to 5 node names may
          enter.
        NOTE:
In case of single event simulations the  content of the 3g-card is ignored
(C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network data).

-------
     PROGRAM DTCHCK:
   Network data
                                          DATA CARDS  3h: Nodes of interest
                                                                          R
                                                                          S
            ND
ND
ND
                   ND
ND
                                 5
ND
ND
ND
ND
ND
ND
                            /4T°444
ND
ND
ND
ND
ND
ND
ND
                                                                                     M74W
ND
234
                   It 19 2U
     EXPLANATIONS:
   SN

   ND
                           Sequential number of 3h-type  cards

                           Nodes of interest.  Special  structures only may be defined as nodes
                           of interest (see  DATA CARD(S)  6  of PROGRAM DTCHCK: Network data).
                           The names may enter in arbitrary sequence.
             NOTE:
o
In
   3 cards must be given with at  least  one and a maximum of 50 ND-entries for a
   sewer network simulation (RW = blank or 0 on DATA CARD 2 of PROGRAM DTCHCK:
   Network data) and a  maximum of 30  ND-entries for a  receiving water network
   (RW = 1 or 2).

   In case of a continuous  simulation the results at these nodes are statistically
   analyzed (C = 3 on DATA  CARD 2 of  PROGRAM DTCHCK: Network data).

   In case of a single  event simulation the contents of the 3h-type cards is ig-
   nored (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network data).

-------
ROGRAM DTCHCK:
•>
1 J|l
i
<
JN7
i
ND
»|.o|..|»

11
Network data
ND
M|U|U
ND
44»

X
ND
»p2p]|}4
ND
4
-------
     PROGRAM DTCHCK:
                  Network data
                     DATA  CARD 3j:   Boundary nodes (variable loading)
                                                                                                           R
                                                                                                           S
                   NO
                 ND
ND
ND
ND
ND
ND
ND
ND
ND
I J 4 1 6 1 » »||OII IJ||J||4
                         It: I) III
                                             33 JJ Idlib/ II )VU
-------
     PROGRAM DTCHCK:
Network data
DATA CARDS 4:  Precipitation intensities
R
O
CO
     EXPLANATIONS:
             NOTE:
          Time in minutes (integer values only), counting from the start of
          rainfall, e.g.  5 on the first card, 10 on the second, 15 on the
          third, etc.
                                   Intensities in in/hr or

                                                 (for 5 min. intervals), for
                                   precipitation series 1, 2 and 3 (see PS on DATA CARD 2 of PROGRAM
                                   DTCHCK:  Network data).
The first and the last card of this data group must contain the word "RAIN" in
columns 1 through 4 for english units or "REGEN" in columns 1 through 5 for
metric units.

Precipitation intensities on type-4 cards are allowed and necessary only for
single event simulations (C = 1 on DATA CARD 2 of PROGRAM DTCHCK: Network
data). For continuous simulations (C = 3) these cards must be removed.

-------
PROGRAM DTCHCK:
Network data
          DATA CARD(S) 5a:  Segment cards
                                     R
                                     S
EXPLANATIONS:
NI
Name of inflow node
NT1
                    NO             Name of outflow node         NT2   *
                    NT1, NT2,  NT3  Names of tributary nodes      NT3
                                                                          NO
                                                          NI
                    CSC
                    H
                    W
                    L
                    YU, YD

                    SU, SD

                    N
               Cross-section code (alpha-
               numeric,  but not XX.  This
               code is used to assign the
               appropriate shape, specified on DATA CARD(S) 2a of PROGRAM DTCHCK:
               Quantity data, to the segment •
               Cross-section height  in inches or meters
               Cross-section width in inches or meters
               Segment length in feet or meters
               Upstream and downstream invert elevations in feet or meters,
               referenced to a base  level, e.g. sea level
               Upstream and downstream surface elevations, in feet or meters,
               referenced to a base  level, e.g. sea level
               Individual Manning's  n, dimensionless (0.007 S N ^ 0.1). A value
               should be punched only, if it differs from the general N-value
               given on DATA CARD 2  of  PROGRAM DTCHCK: Network data

-------
PROGRAM DTCHCK:     Network data             DATA CARD(S)  5a:   Segement cards continued


EXPLANATIONS:       R         Only in case of receiving water  system simulation
                              (RW = 1 or 2 on DATA CARD 2, PROGRAM DTCHCK:  Network data)
                         1    if segment is part of receiving  water 1
                         2    if segment is part of receiving  water 2


        NOTE:       The full flow capacity of any segment  should be > 0.1 m3/s.
                    The cross-section area of any segment  should be > 0.001 m2.
                    The length in m of any segment should  be < full flow velocity in m/s  * 300 s.

                    The maximum numbers of segment cards are 400 for a sewer network and  150 for
                    a receiving water system.

-------
PROGRAM DTCHCK:     Network data
                         DATA CARD 5b:  End card
                                                                                                     R
                                                                                                     S
EXPLANATIONS:
This final card for segments must contain END in columns 3 through 5 for
english units or "ENDE" in columns 2 through 5 for metric units.

-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 6a:  Special structure type 1
EXPLANATIONS:
Special structure type  1   =  Overflow  structure  (OS)

ND        Nodal name  of structure
                    N01


                    HOS



                    LOS

                    YOS



                    COS
          Name of outflow  node  at outflow
          segment

          Height of weir crest  above  struc-
          ture invert  elevation in  feet or
          meters
                                                 N01
                                       N02 (Overflow)
          Length of weir  crest  in  feet or meters

          Invert elevation  of structure in feet or meters. This invert eleva-
          tion must be  above the lowest invert provided for sewer segments
          (see DATA CARD  (S) 5a, PROGRAM DTCHCK: Network data)

          Overflow discharge coefficient in Poleni formula (dimensionless),
          default value =0.65
«  •!
                                                      H
                                                       1.5
                                        =  2.95
                                  H
                                                           1.5
        NOTE:
The maximum number  of overflow structures is 35. The input sequence of spe-
cial structure type 1 cards  is arbitrary.

-------
PROGRAM DTCHCK:
                  Network data
         DATA CARD(S) 6b:    Special structure type 2
    ND
                         YRS
BRS
HMAX
   ifel
I 234} « 71
                       Jfl 2ID2 2:
               41 42 43 4414444U7 II
EXPLANATIONS:
                  Special structure type 2  =  Flooded detention basin  (RS)

                  ND        Nodal name of structure

                  YRS       Invert elevation of structure in
                            feet or meters

                  BRS       Bottom area size in square feet
                            or square meters
                  HMAX      Height of structure in feet or meters,  if there  is  a ceiling

                  DTI       Detention time index
                            0    no cleaning effect
                            1    detention basin with cleaning  effect  (see DATA CARDS lOa
                                 of PROGRAM DTCHCK: Quality data)
                            2    treatment basin (see DATA CARDS  lOb, PROGRAM DTCHCK:
                                 Quality data)
        NOTE:       Under dry-weather flow the basin must be  empty or the inflow must be equal
                    to  the outflow.

                    The input sequence of special  structure type  2 cards is arbitrary.

                    For both, special structure  types  2  and 3 (see DATA CARD(S) 6c, PROGRAM DTCHCK:
                    Network  data) a maximum  of  15  structures  may  be entered.

-------
PROGRAM DTCHCK:     Network data
                         DATA CARD 6d:  End card
EXPLANATIONS:
This final card for special structures must contain "END" in columns
3 through 5 for english units or "ENDE" in columns 2 through 5 for metric
units.
        NOTE:
This card is mandatory,  even though the network does not contain any special
structures.

-------
     PROGRAM DTCHCK:
                   Network data
         DATA CARD(S) 6c:   Special  structure type 3
         ND
                          YRS
BRS
HMAX
                                                                                    jL 15 MJ»JM M Nttl n|?JJ7<|/: M WS «E
I 1149 471
                                         14 W 14 1
                                                  4142
                                                    *yyi 4M4X4M4« k
                                                              SI S3 W S- W SU
     EXPLANATIONS:
(Jl
                   Special structure type 3  =  Pump drained detention basin (RS)

                   For ND, YRS, BRS, HMAX and DTI see type 2 structures  (DATA CARD(S) 6b of PROGRAM
                   DTCHCK: Network data)
                          Po>Pl
                             Pumping line coefficient
                             to be used in:
                             Q (H)  =  P
                                                      .  H
                                    For derivation of the pumping
                                    line coefficients, Q must enter
                                    in m3/s  and H in m; maximum pump rate = P  ; maximum pumping height
                                    = - P /P1  resulting in a negative number tor P... Enter  P..  without the
                                      Htf * O  X                                       A          J.
                                     -"fiion
                                      'sign.
             NOTE:        The pumping line should be defined in a way that the range  of  the  real pump-
                          ing curve,  within which the pumps operates, is approximated by the line.

                          The input  sequence of special structure type 3 cards is arbitrary.

                          For both special structure types 2 (see DATA CARD 6b, PROGRAM  DTCHCK:  Network
                          data)  and  3 a maximum of 15 structures may be entered.

-------
PROGRAM DTCHCK:
Network data
               DATA CARD(S) 7a:  Control gate type  1
EXPLANATIONS:
        NOTE:
CONTROL GATE TYPE 1:
               opening and closing linearily within a given time
                    KNG

                    HMAX

                    HMIN

                    TS
                    TO
                    KNE

                    KNEE

                    QVPR
          Name of node, whose water surface elevation triggers opening and
          closing of gate
          Water surface elevation at KNG, at which the gate starts closing
          (HMAX > HMIN), in feet or meters
          Water surface elevation at KNG, at which the gate starts opening,
          in feet or meters
                                                 KNE
                                                                 Control gate
Closing time in minutes
Opening time in minutes
Upstream node of segment, in which
the control gate is located
Downstream node of segment, in which
the control gate is located
Flow through control gate in "closed" position
in % of full flow capacity of the segment KNE-KNEE, e.g. 5.00
                                                                            KNEE
The maximum number of control gates of type 1 and 2 together is 20. All water
surface elevations on this card are above invert. A control gate must be located
in a downstream segment of a branching point
                         —1-*  •«,
                    of an overflow
                                                                      KMC
                                                                               aase. or in the throttle
                                            tare
                                                     KHEE
                    The water surface  elevation for triggering opening and closure is taken at the
                    upper end of the downstream segment of KNG (  —**%***•   c
                                                             or

-------
PROGRAM DTCHCK:
Network data
                         DATA CARD(S) 7b:   Control gate type 2
EXPLANATIONS:
CONTROL GATE TYPE 2:   opening and closing directly dependent on water surface
elevation at KNG

HMAX      Water surface elevation at KNG, beyond which the gate is closed,
          in feet or  meters (and below which the gate opens) (HMAX > HMIN)
HMIN      Water surface elevation at KNG, up to which the gate is open,  in
          feet or meters (and at which the gate starts closing)

For KNG, KNE, KNEE and QVPR see DATA CARD 7a of PROGRAM DTCHCK: Network  data.
        NOTE:
The maximum number of control gates of type 1 and 2 together is 20.  All water
surface elevations on this card are above invert. A control gate must be located
in a downstream segment of a branching point
of an overflow   *"~~^   -*    *  *~    °
                                                           Kt/££ or in the throttle

               ~"^^-                       ~~
The water surface elevation for triggering opening and closure is taken at the
upper end of the  downstream segment of KNG ( —•"   nf •    n   nr """•*•	L
                                                                                 or

-------
      PROGRAM DTCHCK:
Network data
DATA CARD 7c:  End card
      EXPLANATIONS:
This card must contain "END" in columns 3 through 5 for english units or "ENDE"
in columns 2 through 5 for metric units.
              NOTE:
This card must be contained even if there are no control gates.
00

-------
PROGRAM DTCHCK:
Network data
DATA CARD(S) 8a:  Drainage areas
   * 3 4 II
                    u ur it
   \i9\xtt\ n MJMpa up tab« MpiJH u
                                      |»JM wjw n rata 74 ttpappapgJBc
EXPLANATIONS:
CA        Name of drainage area
ND        Name of node the drainage area belongs  to. Up  to  three drainage
          areas may be connected to one node
NP        Number of the precipitation series the  area belongs  to (1,  2 or 3)
TYPE      Type number of area (1, 2, 3 or 4, see  DATA CARD  4 of PROGRAM
          DTCHCK: Quantity data)
A         Size of area in acres or hectares
GAMMA     Ratio of impervious area to total area  (0.0 S  GAMMA  S 1.0)
PD        Population density in capita per acre or  in capita per hectare
WCF       Dimensionless water consumption factor  for the drainage area;
          default value = value provided for WCF  on DATA CARD  2 of PROGRAM
          DTCHCK: Network data
IW        Industrial wastewater inflow from drainage area in cfs or 1/s
IWF       Dimensionless industrial water consumption factor; default value =
          value provided for IWF on DATA CARD 2 of  PROGRAM  DTCHCK: Network
          data
        NOTE:
Up to 100 drainage areas may be entered.

-------
PROGRAM DTCHCK:
                          Network data
DATA CARD 8b:  End card
     EXPLANATIONS:       This  card must contain "END" in columns 3 through 5 for english units  or
                         "ENDE" in columns 2 through 5 for metric units.

                         This  is the final card of the drainage area data and of the whole network
                         data  set.
K)
O

-------
PROGRAM DTCHCK:
Quantity data
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CARD
CARD(S)
CARD
CARD
CARD
CARD
CARD(S)
CARD
CARDS
CARD
CARD(S)
CARD(S)
CARDS
CARDS
CARDS
CARD
CARD
CARD(S)
CARD
CARDS
CARD
CARD
CARDS
CARD
1
2a
2b
3
4
5a
5b
6
7
8a
8b
8c
9
lOa
lOb
lla
lib
12a
12b
12c
12d
13a
13b
13c
                    Title card
                    Cross-section cards
                    Cross-section end card
                    End card
                    Area type designations
                    Maximum initial losses
                    Initial losses at start of calculation
                    Infiltration rates
                    Evaporation rates
                    Title card of monthly temperatures
                    Minimum temperatures
                    Maximum temperatures
                    Unit hydrographs
                    Dry weather flow (diurnal pattern)
                    Industrial wastewater (diurnal pattern)
                    Special nodes of interest
                    End card of special nodes of interest
                    Constant external loadings
                    End of constant external loadings
                    Variable external loadings (hydrographs)
                    End of variable external loadings
                    Receiving water title card
                    Receiving water flows
                    End of receiving water flows
NOTE:     R and S at the upper right of each data  card description specifies
          if  the  data card(s) must be included  for  separate  and combined
          sewer system  (S) and/or  for receiving water  system (R)  simula-
          tions .
          If  the  format  box on top of each data card description is subdi-
          vided,   the  upper part  describes the input in  english,  the lower
          part in metric  units.
          A Fortran F-format (real numbers) is required,  if a decimal point
          is shown in the space under consideration. The  location  of the de-
          cimal point as indicated is not binding and may be adjusted to fit
                                    121

-------
the number  into the  space  available. However,  all  real numbers
must be provided including their decimal points. A Fortran I-for-
mat (integer numbers)  is  requested,  if no decimal point is shown
in  the space  under  consideration. All  integer numbers must  be
right adjusted  within the space provided.

Symbols  contained  in  the  format box, but not  individually ex-
plained, must be punched as shown.

Symbols used in the format boxes coordinate the explanations given
on the  data  cards  only and do  not necessarily  match the symbols
used in the equations of Section 2 of Volume 1 (Model Description,
Testing, and Applications).
                          122

-------
K)
U)
      PROGRAM DTCHCK:     Quantity data
                                         DATA CARD 1:   Title  card
R
S
l|5[6|7|»|9[lo|ll[tt[l3[M|ISI6p|l
                            7|« 19
                                          18
                                                     W l
                                                                                     I U i
     EXPLANATIONS:
               Any text with up to 80 alphanumeric characters  may be inserted.
              NOTE:
               This  card must be identical  with the title  cards of the precipitation, network
               and quality data.

-------
      PROGRAM DTCHCK:
            Quantity data
                                             DATA CARD(S) 2a:  Cross-section  cards
                                                  R
                                                  S
                        Kl
                      K2
                                           K3
CROSS-SECTION
DESIGNATION
                  10 ii
M
EXPLANATIONS:
                          CSC


                          Kl

                          K2

                          K3
                           Cross-section code (alphanumeric). The code name may  be  arbitra-
                           rily chosen, however, XX may not be used.
                              2
                           A/H   =  ratio of cross-sectional area to square of height

                           R/H   =  ratio of hydraulic radius to height

                           W/H   =  ratio of width to height
                          CROSS-SECTION  Any arbitrary name with up to 15 alphanumeric characters may
                          DESIGNATION
                           be inserted, e.g. CIRCULAR
NOTE:
                          The ratio R/H must be derived using metric units.

-------
     PROGRAM DTCHCK:     Quantity data
                         DATA CARD 2b:  Cross-section end card
R
S
      XX

     EXPLANATIONS:
This card marks the end of the cross-section card(s) and must contain XX  in
columns 1 and 2.
NJ
I/I

-------
PROGRAM DTCHCK:     Quantity data
                         DATA CARD 3:   End card
                                                                                 R
                                                                                 S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4.

-------
      PROGRAM DTCHCK:     Quantity data
                         DATA CARD 4:    Area  type designations
                                             R
                                             S
             DESIGNATION
            DESIGNATION
DESIGNATION
DESIGNATION
                              X 21 2i
      EXPLANATIONS:
DESIGNATION    Area type specifiation,  e.g.  RESIDENTIAL, COMMERCIAL,
               INDUSTRIAL, PARKS, etc.
              NOTE:
If there are less than four different  area types,  the unused fields must
remain empty.
N)

-------
>ROGRAM DTCHCK: Quantity data
DEPRESSION DEPTHS
X
MULDEN KAPAZITAETEN






II
X
IV
1C
01 1
•
'HM5
Dpi
•
4t§
4.
Dl
•
ii np
DATA CARD 5a: Maximum initial losses
2
4>
DP2
•
M ITpp

40

41
DI3
*
<3H3H«J
DP3
•
(4J4J <»[49J5(
DI4
•
4>
H
+
DP4
•
"M4f
*^.
. —
4,
---,
^--
4.
^-^
^-^
U|Mp
>
4f
<
ti
^^
^^
^H4^H44«
R
s
      EXPLANATIONS:
N)
00
This card must contain "DEPRESSION DEPTHS" in columns 1 through 17 for english
units or "MULDENKAPAZITAETEN" in columns 1 through 18 for metric units.
                          DI
                          DP.
          Initial losses in inches or mm of rainfall on impervious areas for
          area types 1 through 4 (see DATA CARD 4 of PROGRAM DTCHCK: Quantity
          data)

          Initial losses in inches or mm of rainfall on pervious areas for
          area types 1 through 4 (see DATA CARD 4 of PROGRAM DTCHCK: Quantity
          data)
             NOTE:
The initial losses include initial evaporation, wetting losses, depression
capacities on the oversurfaces and initial losses within the drainage system
of the catchments. For pervious areas in addition the initial rate of infil-
tration capacity above the final constant rate is included in the initial
losses.

Dependent on surface roughness and land use the initial losses for impervi-
ous areas vary from 0.5 to 3.0 mm. The part of infiltration additionally in-
cluded for pervious areas may amount up to 12.0 mm.  The following tables con-
tain some reference values:

-------
PROGRAM DTCHCK:     Quantity data            DATA CARD 5a:  Maximum initial losses continued


                    REFERENCE VALUES FOR INITIAL OR STARTING LOSSES ON
                    IMPERVIOUS AREAS
                    Land Use                 Initial or Starting Loss (nun)
                    Commercial                         0.5 to 2.0
                    Residential                        0.7 to 2.5
                    Industrial                         1.0 to 3.0
                    EXAMPLES OF REFERENCE VALUES FOR INITIAL OR STARTING
                    LOSSES FOR PERVIOUS SURFACES
                    Land use                                  Initial or
                    Soil surface characteristics             starting loss
                    (Typical examples)                           (mm)
                    Open space            '                        10
                    Cultivated soil (corn, root crops,
                    viniculture, hop culture, etc.)                8
                    Landscaped strip, playground                   2
                    Protected green areas and slopes               5
                    Garden or meadow                               5

-------
      PROGRAM DTCHCK:
Quantity data
      DATA CARD(S)  5b:
                  Initial  losses  at start
                  of calculation
                                                  R
                                                  S
       INITIAL DEPR. L.
       MULDENINITIALWERTE
                                 I Dl.
             IDP,
IDL
IDP0
IDI
IDP3
I DP,
                          17 II l« X)
                               tip n MM ap l
                                         »Jt 31
                   HJM H U 14 I
      EXPLANATIONS:
LO
O
This card must contain "INITIAL DEPR. L." in columns  1  through 17 for english
units or "MULDENINITIALWERTE" in columns 1 through  18 for metric units.
                          IDI.
                             J
                          IDP.
          Number of precipitation series

          Initial depression losses, in inches or mm on  impervious areas for
          area type j- (see DATA CARD 4 of PROGRAM DTCHCK: Quantity data)

          Initial depression losses, in inches or mm on  pervious  areas for
          area type j (see DATA CARD 4 of PROGRAM DTCHCK: Quantity data)
              NOTE:
For each precipitation series one card must be furnished.

The initial losses at the start of a calculation must be smaller than the
maximum initial losses provided on DATA CARD 5a of PROGRAM DTCHCK:  Quantity
data. The values must be valid for 00:00 hours at the day of  rainfall ac-
counting for the evaporation (see DATA CARD 7 of PROGRAM DTCHCK:  Quantity
data) from 00:00 hours to the start of rainfall.

-------
PROGRAM DTCHCK:
Quantity data
      DATA CARD  6:    Infiltration rates
                                                   R
                                                   S
  INFILTRATION RATES
  VERSICKERUNGSRATEN
                          INF
                             11
            INF
               12
INF
   13
INF
   14
INF
   21
INF
   22
INF
   23
INF
   24
INF
   31
INF
   32
INF
   33
INF
   34
                       I* 30 }|
                                                    t 13 i
                                                          HfflS M[»{M 4*0 Mppj*^
EXPLANATIONS:
This card must contain "INFILTRATION RATES" in columns  1  through 18  for eng-
lish units or "VERSICKERUNGSRATEN" in columns 1 through 18  for metric units.
                    INF
                       ij
          Infiltration rates in in./hr. or 1/s/ha  for precipitation series
          i and area- type j
        NOTE:
The infiltration rates requested here are the final  constant  rates  of in-
filtration capacity. The initial rate of infiltration  capacity is  included
in the maximum initial loss given on DATA CARD 5a of PROGRAM  DTCHCK:  Quantity
data. The values for the final constant rates of infiltration may vary sub-
stantially and are mainly dependent on the perviousness  of the top  soil layer.
Some examples of reference values for soil infiltration  losses (infiltration
rates) are given in the following table:

-------
     PROGRAM DTCHCK:      Quantity  data
DATA CARD 6:   Infiltration rates continued
                          EXAMPLES OF REFERENCE VALUES FOR SOIL INFILTRATION LOSSES FOR
                          PERVIOUS AREAS
                          Land  use
                          Soil  surface  characteristics
                          (Typical  examples)
u>
                          Open space
                          Cultivated  soil  (corn, root  crops,
                          viniculture, hop  culture, etc.)
                          Landscaped  strip, playground
                          Protected green areas and slopes
                          Garden or meadow
               Soil infiltration  (1/s ha)
               Clay     Clayey    Sand,
                         sand     loess,
                                  gravel
                20

                10
                 5
                20
                20
30

20
10
30
30
40

30
10
50
40

-------
     PROGRAM DTCHCK:
Quantity data
DATA CARDS 7:  Evaporation rates
                                           R
                                           S
        EVAPORATION RATES
        VERDUNSTUNGSRATEN
                                            EVA
                          EVA
      EVA
EVA
EVA
EVA
EVA
EVA
EVA
EVA
     EXPLANATIONS:
EVA       Evaporation rates in in /day or mm/day, as dependent on temperature.
          The sequence is increasing in steps of 2 °F, starting with 34 °F or
          in steps of 1 °C, starting with 1 °C. Therefore
u>
          the 1st card will contain the evaporation rates
                    temperatures from  34 to  52 °F or  1
          the 2nd card will contain the evaporation rates
                    temperatures from  54 to  72 °F or 10
          the 3rd card will contain the evaporation rates
                    temperatures from  74 to  92 °F or 20
          the 4th card will contain the evaporation rates
                    temperatures from  94 to 112 °F or 30
          the 5th card will contain the evaporation rates
                    temperatures from 114 to 132 °F or 40
                                 for the
                                 to 10 °C,
                                 for the
                                 to 20 °C,
                                 fpr the
                                 to 30 °C,
                                 for the
                                 to 40 °C,
                                 for the
                                 to 50 °C.
             NOTE:
Five cards are necessary, the first of which must contain "EVAPORATION RATES"
in columns 1 through 17 for english units or "VERDUNSTUNGSRATEN" in columns
1 through 17 for metric units.

The evaporation rates usually vary from 0.0 to 23.0 mm/day, hut should he
taken from local records.

-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 8a: Title card of monthly temperatures
EXPLANATIONS:
This card must contain "TEMPERATURES" in columns 1 through 12 for english
units or "TEMPERATUREN" in columns 1 through 12 for metric units.

YEAR      Number of years for which temperature cards follow (^ 20)

Tl        Time of day at which minimum temperatures occur on an
          average, e.g. 3.40 (hr.min)

T2        Time of day at which maximum temperatures occur on an
          average, e.g. 14.00 (hr.min)

-------
     PROGRAM DTCHCK:     Quantity data
                         DATA CARD(S) 8b:  Minimum  temperatures
                                                                           R
                                                                           S
                    MINT
 MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
MINT
                   n \n hi 14 u ulimt i» to 11
     EXPLANATIONS:
YEAR

MINT
   Calendar year  minus  1900,  e.g.  75

   Average monthly minimum temperatures from January through December
   in  °F  or °C  (MINT £  32.1 °F or  MINT £ 0.1 °C)
LO
Ln
             NOTE:
This card must be submitted for each year simulated; the  sequence  is
arbitrary.

The average monthly minimum temperatures should be derived  from local
records.

-------
     PROGRAM DTCHCK:     Quantity data
                         DATA CARD(S) Be:  Maximum temperatures
                                                                           R
                                                                           S
                   MAXT
 MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
MAXT
         3u s t ; • »u>
                      14 IJ It, 17 It 19 K >l
                                          ac i
                                                       41 I2M3 44 U <
                                                                                           re
                                                                                                       '9 lit
     EXPLANATIONS:
YEAR      Calendar year minus 1900, e.g. 75

MAXT      Average monthly maximum temperatures from January through december
          in °F or °C (MAXT S MINT + .2 °F or MAXT £ MINT + .1 °C)
             NOTE:
u>
This card must be submitted for each year simulated, the sequence is
arbitrary.

The average monthly maximum temperatures should be derived from local
records.

-------
      PROGRAM DTCHCK:
                  Quantity data
   DATA CARDS 9:   Unit hydrographs
                                    R
                                    S
UNIT HYDROGRAPHS
                           X
        EINHEITS GANGLINIEN
                                               Qp
                                                Qj,
                 QP
           QP3
Ql.
QP
            •*
          1 lofl
4 MJMJMJM i>|4i[<2[4-ii; 4ii4>N*1H
a X Mp4"H
                                                                                               'jr
      EXPLANATIONS:
                            Time in minutes, e.g. 5.0, 10.0, 15.0, etc.

                            Dimensionless ordinates of unit hydrographs at time T  for  im-
                            pervious areas for area type j (see DATA CARD 4 of PROGRAM
                            DTCHCK: Quantity data)
                            Dimensionless ordinates of unit hydrographs at time T  for  pervious
                            areas for area type j (see DATA CARD 4 of PROGRAM DTCHCK:  Quantity
                            data)
U)
              NOTE:
                  Up to 30 cards may be submitted (max. T = 150.0 minutes). The  sum of all
                  ordinates of one unit hydrograph must be 1.0.

                  The first and the last card must contain the words "UNIT HYDROGRAPHS" in
                  columns 1 through 16 for english units or "EINHEITSGANGLINIEN" in columns  1
                  through 18 for metric units, the-center cards do not.

                  The unit hydrographs may be derived from rainfall-runoff measurements or
                  synthetic unit hydrographs may be used. The values as contained in Ap-
                  pendix 7, Test Example for PROGRAM DTCHCK are not generally transferable
                  on other areas, as the shape of thfe unit hydrographs is dependent on
                  catchment size, shape, slope, land use and other characteristics.

-------
      PROGRAM DTCHCK:
Quantity data
DATA CARDS lOa:  Dry-weather flow  (diurnal pattern)
                                                                                                   R
                                                                                                   S
        DRY-WEATHER FLOW
         TW - ABFLUESSE
M.I.M.M.H-H
 X
                      IJJH
                                       DWF
                         DWF
             DWF
                                                                    DWF
DWF
                                                                                                     DWF
      21 l
            vr,
                       13 14 )
                                         l« X SI
                                          K rwrmi /Jw
U)
CD
      EXPLANATIONS:
              NOTE:
                        ,  DWF
          Time in hr.min, e.g. 12.00
          The values for T on the first card must be:
                    0.00    4.00    8.00    12.00    16.00    20.00
          With each subsequent card these values are increased by half
          an hour, e.g.:
                    0.30    4.30    8.30    12.30    16.30    20.30

          Dry-weather flow in cfs per 1,000 inhabitants or 1/s per
          1,000 inhabitants
Eight cards are required, the first of which should contain the words
"DRY-WEATHER FLOW" in columns 1 through 16 for english units or "TW-ABFLUESSE"
in columns 1 through 12 for metric units.

The dry-weather flow values may be assumed to be similar to the water consump-
tion in the area under consideration. Frequently constant dry-weather flow
values may suffice.

-------
PROGRAM DTCHCK:      Quantity data
                          DATA CARDS lOb:  Industrial wastewater
                                           (diurnal pattern)
   IW-ABFLUESSE
                            IWW
              IWW
                                  IWW
                                    IWW
                                     IWW
IWW
IWW
IWW
IWW
IWW
                                                                                             IWW
IWW
 12
    342
6|7|8l9
ft
3M4 15 J|7 18M9 20 tip K Up
                                      Ml
                                                                950
     II 52J53 5-1 55 56157 SDpfcc
                                                                                                7475
                                                                               7|7eJ79
                                                                                                  75 777e79 HO
EXPLANATIONS:
IWW       Relative values  for the industrial  waste water provided  in  half-
          hour timesteps (dimensionless).
        NOTE:        Four cards are necessary,  the first of which  should contain the word
                     "IW-ABFLUESSE" in columns  1 through 12 for english and metric units .
                     The average of all 48 values must be 1.0.

-------
     PROGRAM DTCHCK:
             Quantity data
                               DATA CARDS  lla:   Special nodes  of interest
        SNI
DWFR
SNI
DWFR
SNI
DWFR
SNI
DWFR
SNI
DWFR
              78
                 9 1011
                      13 14
                                          829301,
                                                           IIMIM:
                                                        19 40 « 4lUa 44 li 46 (TUSH? K SI
                                                     I7|4a|n
                                                   ippp 55J56p SO 59JJC 61JS2 S3 J4[4s|M 67J4a 69 «jyi|72p3 7MS 7
-------

PROGRAM DTCHCK:     Quantity data
                         DATA CARD lib: End card of special
                                        nodes of interest
EXPLANATIONS:
This card is mandatory.  The card marks the end of the special nodes of
interest and must contain XXXX in columns 1 through 4.

-------
PROGRAM DTCHCK:     Quantity data
                                     DATA CARD(S)  12a:   Constant external loadings
                                                                                        R
                                                                                        S
   ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
ND
QEX
  1214
      lUma » 10 ii ui
        B
    >i\\t i7Jn[i» K itpjffl* iajaippaptpc aipapy^ i^MpTpptyo
EXPLANATIONS:
            ND        Name of boundary node with constant  external loading
            QEX       External loading in cfs or 1/s
        NOTE:
            Any number of cards may be read in, but only loadings at nodes, specified on
            DATA CARD 3i of PROGRAM DTCHCK: Network data,  are considered.

-------
     PROGRAM DTCHCK:     Quantity data
DATA CARD 12b: End of constant external loadings        R

                                                        S
      XXXX
                             BWffH^^
     EXPLANATIONS:       This card is mandatory and must contain XXXX in columns I through 4
•P-
OJ

-------
'ROGRAM DTCHCK: Quantity data
ND





X


0
.•|4a|u
QEX
o
.
^"t

JO
T1
"H44
QEX,
4^
DATA CARDS 12c: Variable external loadings
(hydrographs)

X)
T2
4*1+
QEX2
•
4+7H4°
T3
«t|«J4:)[K
QEX3
*
4*14.14
T4
IllsJiJs

QEX4
SASAKI S

flsftu
T5
»||4>|M
QEX5
•
M|4>H4c
T
7l|73|n{/4
QEX.
4.
n
?»
TV
10
R
S
EXPLANATIONS:
ND

T.
 J
                    QEXi
Name of boundary node with variable external loading (hydrograph)
Time in minutes; the values must increase in 5-minute steps, the
first value (T ) must be zero, e.g. 0, 5, 10, etc.

External loading in cfs or 1/s at time T.
        NOTE:
The end of hydrograph is marked by a negative time value (e.g.  -1). One
hydrograph may contain up to 289 time values (T  plus 288 intervals).

Any number of hydrographs may be read in but only the hydrographs at
nodes specified on DATA CARD 3j of PROGRAM DTCHCK: Network data are
considered for single event simulations.

-------
PROGRAM DTCHCK:     Quantity data
DATA CARD 12d:  End of variable
                external loadings
R
S
EXPLANATIONS:       This card is mandatory and must contain XXXX in columns 1 through A.

-------
PROGRAM DTCHCK:
Quantity data
DATA CARD 13a:  Receiving water title card
EXPLANATIONS:
RW        Number of receiving water (1 or 2)

NAME      Any name of receiving water with up to 68 alphanumeric characters
          may be inserted

QMIN      Lower flow limit in cfs or m3/s

QMAX      Upper flow limit in cfs or m3/s
        NOTE:       Flow values exceeding the limits QMIN or QMAX cause an informative message
                    only by the PROGRAM DTCHCK.

-------
PROGRAM DTCHCK:     Quantity data
                         DATA CARDS 13b:  Receiving water flows
              R
                                                         Q-,
                                                           Q
                                                                                 10
Q
                                                                    11
Q
         12
EXPLANATIONS:
RW        Number of receiving water according to DATA CARD 12a of PROGRAM
          DTCHCK: Quantity data

YEAR      Calendar year minus 1900, e.g. 75

DAY       Number of day from 1 to 31

Q.        Daily receiving water flow for the months January through December
          in cfs or m3/s
        NOTE:
31 cards are required for one year.

Up to 20 years may be read in, which is a maximum of 20 times 31 cards.

-------
     PROGRAM DTCHCK:
Quantity data
DATA CARD  13c:  End of receiving water flows
R
S
                                    m iiJMppe »9pcpi n upy up iytyo 4i[47|43|»<[
-------
PROGRAM DTCHCK:
Quality data
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
DATA CARDS
DATA CARD
DATA CARDS
DATA CARDS
DATA CARD(S)
DATA CARDS
DATA CARDS
DATA CARDS
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD
DATA CARDS
DATA CARD
DATA CARD
DATA CARDS
DATA CARD
1
2
3a
3b
3c
3d
4
5
6
7
8
9
lOa
lOb:
lla:
lib:
lie:
lid:
12a:
12b:
12c:
12d:
13a:
13b:
13c:
                    Title card
                    Names of pollutants
                    Maximum pollution
                    Initial pollution
                    Pollutant build-up times
                    Build-up function coefficients
                    Street cleaning
                    Unit pollutant load hydrographs
                    Area factors
                    Influence of rainfall duration
                    Diurnal variation influence
                    Seasonal variation influence
                    Cleaning effect of detention facilities
                    within the sewer network
                    Cleaning effect of storm or combined
                    sewage treatment basins
                    Dry-weather flow pollution (diurnal pattern)
                    Industrial wastewater pollution
                    Special industrial wastewater pollution
                    Dry-weather flow pollution end card
                    Constant external loading pollution
                    End of constant external loading pollution
                    Variable external loading pollution (pollutograph)
                    End of variable external loading pollution
                    Receiving water title card
                    Receiving water pollution
                    End of receiving water pollution
NOTE:     R and S at the upper right of each data card description specifies
          if the  data card(s) must be included for separate  and combined
          sewer system  (S)  and/or  for receiving water  system (R)  simula-
          tions .
          If the  format  box  on top of each data card description is subdi-
          vided,  the  upper part  describes the input in  english,  the lower
          part in metric  units.
                                   149

-------
A Fortran F-format (real numbers) is required, if a decimal point
is shown in the space under consideration.  The location of the de-
cimal point as indicated is not binding and may be adjusted to fit
the number  into the  space available. However,  all  real numbers
must be provided including their decimal points.  A Fortran I-for-
mat (integer numbers)  is  requested, if no decimal point is shown
in  the space  under  consideration. All  integer  numbers must  be
right adjusted within the space provided.

Symbols  contained  in  the  format box,  but not  individually  ex-
plained, must be punched as shown.

Symbols used in the format boxes coordinate the explanations given
on the  data  cards  only and do  not  necessarily match the symbols
used in the equations of Section 2 of Volume I (Model Description,
Testing, and Applications).
                          150

-------
PROGRAM DTCHCK:     Quality data
                         DATA CARD 1:   Title card
 I 1 3
  ^^
EXPLANATIONS:
Any text with up to 80 alphanumeric characters may he inserted.
        NOTE:
This card must be identical with the title cards of the precipitation, net-
work and quantity data.

-------
>ROGRAM DTCHCK
1
i
X
2 3
:


Quality data
NAME
4 i «|7|l|»|lOJII
12
13
ulis
,444,^
2
21
I
+
DATA CARD 2: Names
NAME
unxu
^.
4<|»|»
4W'HH«
3
41
X
4JJ43
of pollutants
NAME
44|4! U\ljpt tSJStJil
52
4,
4r
TT
4
di
X
4"
NAME
Kisls,
1U49
wt
^jiTa/^w
jt
77J7apy|ec
R
S
EXPLANATIONS:
                    NAME
          Exponent of the multiplication factor 10  by which the input fig-
          ures of pollutant 3 are multiplied to account for bacteria counts
          per acre or per ha, e.g. X ~ 10 should be entered for fecal coli-
          forms.

          Name of pollutant
     NOTE:
The third pollutant is reserved for fecal coliforms.  If there are less than
four pollutants simulated the remaining columns remain empty.

In case of bacteria counts per liter on DATA CARDS lla, lib,  lie, 12a and 13b
of PROGRAM DTCHCK:  Quality data the multiplication factor is  10  where Y = X - 3.

-------
     PROGRAM DTCHCK:
            Quality data
                               DATA CARD 3a:   Maximum pollution
                                                                                 R
                                                                                 S
       PM
         11
PM
  12
PM
  13
PM
  14
PM
  21
PM
  22
PM
  23
PM
  24
PM
  31
PM
  32
PM
  33
PM
  34
PM
  41
PM
  42
PM
  43
PM
  44
            « 7 i »hoi
      ffl
                      HIS
                             w »I
     EXPLANATIONS:
            PM..
                Maximum amount of pollution for pollutant i in Ibs./acre or»kg/ha,
                or number of bacteria x 10 /acre or number of bacteria x 10 /ha in
                an area of type j (X and pollutant i are specified on DATA CARD 2
                of PROGRAM DTCHCK: Quality data, the area of type j is defined on
                DATA CARD 4 of PROGRAM DTCHCK: Quantity data).
             NOTE:
Ul
u>
            The maximum pollution is the amount of pollution which may accumulate  in a
            catchment (including in the lateral sewers) after a dry  spell  of  indefinite
            duration. Some reference values are given  in the following table:

-------
PROGRAM DTCHCK:     Quality data             DATA CARD 3a:  Maximum pollution continued


                    REFERENCE VALUES FOR MAXIMUM POLLUTION BUILD-UP
                    Pollution parameter            P   ,-„
                              r                     up,100
                    BOD5                            15 to  40 kg/ha
                    KMn04                          100 to 200 kg/ha
                    COD                            100 to 200 kg/ha
                    Settleable solids               60 to 125 kg/ha
                    TSS                             60 to 125 kg/ha
                    Lead                   up to approx. 0.03 kg/ha
                    Total phosphorus       up to approx. 0.2  kg/ha
                    Fecal coliforms   500 x 1010 to 5,000 x 1010/na

-------
      PROGRAM DTCHCK:
            Quality data
                               DATA CARD 3b:   Initial pollution
                                                                              R
                                                                              S
        Pi
         11
PI
 12
PI
 13
PI
 14
PI
 21
PI
 22
PI
 23
PI
 24
PI
 31
PI
 32
PI
 33
PI
 34
PI
 4)
PI
 42
PI
 43
PI
 44
                •EH
           MJi7|u[i» ac nfra aJMJM M HpiJMpo iipapyy Mp a M|4t
                                    41 42 4:
      EXPLANATIONS:
            PI..       Initial amount of pollution  for pollutant i in Ibs./acre or kg/ha,
              1J       or number of bacteria x  10 /acre of pollutant i or  number of bacteria
                       x  l(r/ha in an area of type  j  (PI.. g PM±. of DATA  CARD 3a of PROGRAM
                       DTCHCK: Quality data)             1J     1J
in
tn
              NOTE:        The initial pollution is  the  amount of pollution available for washoff at
                           the start of a.calculation (midnight of the day with the first rainfall).

-------
PROGRAM DTCHCK:      Quality data
                                                    DATA CARD 3c:  Pollutant build-up times
                                                                                                       R
                                                                                                       S
       BUILD - UP TIMES
       AUFBAUZEITEN
                            '11
                           '12
                                 '13
'14
'21
'22
'23
24
'31
'32
'33
34
'41
42
'43
'44
I 2 3 4 J « 7 < V
                      I) U I3||4 ITllS IV M 111
                              35 2d 27UI
                                                                   sy< aft sTJiapjM upfyjfn ^[M^T^M MJTC up
     EXPLANATIONS:
                   This card must  contain "BUILD-UP-TIMES" in  columns 1 through 14 for english
                   units or "AUFBAUZEITEN" in columns 1 through  12  for metric units.

                   Tij       Time  in hours, necessary for build-up  of the maximum amount of pol-
                             lutant i in an area of type j (only integer values), e.g. 240
Ui
              NOTE:
                   The pollutant  build-up times are the times  after which the maximum pollu-
                   tion as  specified on DATA CARD 3a of PROGRAM DTCHCK:  Quality data is
                   reached,  e.g.  for BOD5 and COD 240 hours, for TSS 720 hours and for fecal
                   coliforms 24 hours may be used as reference values.

-------
'ROGRAM DTCHCK:
Kll




K12




Quality data DATA CARDS 3d: Build-up function coefficients
K13
"M44
it
K14
lAJITJII 19 1C
K21
"hH"
K22
4Hf
K23
iipnxuH
K24



41
K .
4'

1

K32
"MH"
K33


K34
1 J 1
"rr T
K
6l|*}
41
uj4>

M
K42
4f

w
K43
^ipjpj/^l/j
K44
HHH40
R
S
EXPLANATIONS:
K..
Dimensionless coefficients A, B, C of the build-up function of pollu-
tant i in an area of type j, the values given are multiplied by 10
        NOTE:
Three cards are necessary; the first of which contains the A-coefficients,
the second the B-coefficients and the third the C-coefficients of the follow-
ing build-up function:
                    Y  =  1 -
                                 Ax + 1
                       ,  whereby x are 5-minute intervals
                              Bx  + Cx + 1

                    The following reference values may be used:
                    Coefficient
                                B
                    BOD5 and COD        -34.2     1.89     465.2
                    TSS                 -34.7     0.21     86.34
                    Fecal coliforms      13.34   1133.     3825.
                    With increasing time between rainfalls the pollution build-up rate is dimi-
                    nishing. This effect is considered by the build-up functions defined.

-------
•ROGRAM DTCHCK: Quality data DATA CARD 4: Street cleaning








STREET CLEANING



X
STRASSENREINIGUNG
'M1
T
T

9|.0
n|n|l3
M
U
M
17
X
ii
i»
K

IS
2lpj23
\
/
Mp

/
\
it

kl
2*21



N
Y
A




pn
13
J433



P12
14
iTpa

P13
44'

P14
4^

P21
(S44U7



P22
4tU»
X

P23
sipp

P24
'H*

P31
H4*

P32
4f

P33
»3|4s



P34
M
4.

P41
iiVOJ/'



R
S

P42
7J
73
74

P43
4*1"

P44
44°



     EXPLANATIONS:
Ln
00
This card must contain "STREET CLEANING" in columns 1 through 15 for english
units or "STRASSENREINIGUNG" in columns 1 through 17 for metric units.

IS        Interval of street cleaning in hours

ET        Time elapsed in hours from last street cleaning until start of
          simulation (0:00 hours of day with first rainfall)

Pij       Percentage of pollutant i removed by street cleaning in an area
          of type j, e.g. 10
             NOTE:
The efficiency of street cleaning is mainly a function of the procedure and
equipment used and must be taken from local records.

The following figures may be considered as maximum reference values:
                         BOD5 and COD
                         TSS
                         Fecal coliforms
                    Pij  =  35
                    Pij  =  40
                    Pij  =  30

-------
      PROGRAM DTCHCK:
Quality data
DATA CARDS 5:  Unit pollutant load hydrographs
R
S
       UNIT POLLUTOGRAPHS
                  X
        EINHEITS GANGLINIEN  SCHMUTZSTOFF
                                    papa ppiptpop
                   11 X )< lyajl? MJMJ40 ^ifr
                                                                  I* v 51 s:
      EXPLANATIONS:
                          0
                           j
          Number of pollutant (1, 2, 3 or 4) in column 30 for english  units
          or in column 33 for metric units
          Time in min., e.g. 5.0, 10.0, 15.0, etc.
          Ordinate of unit pollutant load hydrograph I in an area  of type  j
              NOTE:
Ui
For each pollutant up to 30 cards may be furnished. The  first  and  the  last
card must contain "UNIT POLLUTOGRAPHS" in columns  1 through  18 for english
units or "EINHEITSGANGLINIEN SCHMUTZSTOFF" in columns  1  through 31 for
metric units.

The unit pollutant load hydrographs should be derived  from rainfall-pol-
lutant load runoff measurements taken or representative  catchments.  To de-
fine the unit pollutant load hydrographs usually for each catchment con-
sidered five to ten complete events monitored are  necessary  as data base.
The values given in Appendix 7, Test Example for PROGRAM DTCHCK are not
generally transferable on other areas, but will provide  approximate shapes
and magnitudes for combined systems. For separate  systems the  values are
usually somewhat lower.
                          The sum of pollutant load hydrograph ordinates may not be equal to  1.0.

-------
JROGRAM
DTCHCK
: Qual
AREA FACTORS
XI
GEBIETSFAKTOREN
₯ff
, , 44-
12
IllNm

l«
Fll
l/|..|lV
ity d

10
F12
tmmi
ata

14
F13
ijpppi

29

F14
xnip2
F21
3313433
D^

u
VTA CARD
F22
17
4f
F23
4l[o|«
6: Area factors

i<
F24
i^M^a
F31
*
^"h
F32
$3
5<
S)|M
F33
»
HT
F34
*
4f
43W
F41
iS^T^M
F42
i»
^ol/i
.2
F43
*
n
744.
F44
44f
R
S
EXPLANATIONS:
This card must contain "AREA FACTORS" in columns 1 through 12 for english
units or "GEBIETSFAKTOREN" in columns 1 through 15 for metric units.

Fij       Dimensionless area factor for pollutant i in area of type j (usually
          all 1.0)
        NOTE:
The area factors multiply with the ordinates of the unit pollutant load
hydrographs as given on DATA CARDS 5, PROGRAM DTCHCK: Quality data. This
feature is provided to allow for quick variation the unit pollutant load
hydrographs (unit pollutographs) during the calibration process.

-------
PROGRAM DTCHCK:     Quality data
                                                  DATA CARDS 7:  Influence of rainfall duration
                                                                                          R
                                                                                          S
       RAINFALL
X
      REGENDAUER
                                     13
                              R21
                                              "22
23
33
34
-42
43
44
       I'M'M'I'M'H
          IT*
            l» M imxn M 2:
                                           *( IS
                                                                                               iffi
     EXPLANATIONS:
          T         Time after  start of  rainfall  in min.,  e.g.  5.0,  10.0,  15.0,  etc.

          R. .       Dimensionless  influence  factor of  rainfall  duration at time  T on
          1%'       pollutant i in an area of  type j  (0.0  ^  R. .  S  1.0)
             NOTE:
H
CT>
          20  cards are necessary; the  first  card must  contain "RAINFALL"  in columns
          1 through 8 for english units  or "REGENDAUER"  in  columns  1  through 10 for
          metric units.

          The ability of a  rainfall  intensity  to wash  off pollutants  is decreasing
          with increasing rainfall duration. At the beginning of a  rainfall R.. =
          1.0 (at T = 5.0). At T = 90.0  R..  usually decreases to 0.2  to 0.4. 1J
          The figures provided in Appendix-37,  Test Example  for PROGRAM DTCHCK,  may
          be  used as reference values.

-------
      PROGRAM DTCHCK:
Quality data
      DATA CARDS 8:  Diurnal variation influence
                                                        R
                                                        S
       DIURNAL VARIATION
       TAGESZEITEINFLUSS
             DV,
DV.,
DV.,
DV,
DV,
DV,
DV,
                          17 II I
                         p 3BJ39
                                                       10 41 42 I
                                                           13 Mta J<
     EXPLANATIONS:
                          DVi
          Time of day in hrs.min, e.g. 10.30
          Dimensionless influence factor of time T of day  on pollutant i
          (0.0 g DV.
                                                 1.0)
              NOTE:
a*
24 cards are necessary; the first must contain  "DIURNAL VARIATION" in
columns 1 through 17 for english units or "TAGESZEITEINFLUSS"  in columns
1 through 17 for metric units.

The values for T in the first card must be 00.00 and  12.00.  With each sub-
sequent card these values are increased by half an  hour,  i.e.,  00.30 and
12.30, 01.30 and 13.00, etc.

The change in land use conditions during the day (e.g. traffic conditions)
may be accounted by the diurnal variation influence factor.  For BOD5, COD
and TSS for instance DV. usually is 1.0 during  rush hours and  decreases
to 0.8 for night time traffic. For fecal coliforms  the influence of solar
radiation may be accounted for by DV. = 1.0 during  darkness  and DV.^ = 0.55
around noon.

-------
     PROGRAM DTCHCK:
Quality data
DATA CARD(S) 9:  Seasonal  variation influence
                                                  R
                                                  S
        SEASONAL VAR.
       JAHRESZEITEINFLUSS
                                 SV,
                   SV,
SV,
SVC
SV.
SV,
SVn
SV,
SV
                                                                 10
SV
                                                                                                 11
SV
                                                     12
                           111 19 10 21
      ipfo^fo appapvpc iipapyfo Mp>JM[:»J40
                                                        4114} «3 44 II
                                                                    ( Sl
                                                                                              WW3WK
                                                  >6 rfyt ?»|ac
     EXPLANATIONS:
                          SV.
                            J
          Number of pollutant  (1,  2,  3 or 4) in column 17 for englisb units
          or in column 20 for  metric  units

          Dimensionless influence  of  month j (January through December)  on
          pollutant i
              NOTE:
ON
CO
One card is necessary for  each pollutant.

The first card must contain  "SEASONAL VAR." in columns 1 through  12  for  eng-
lish units or "JAHRESZEITEINFLUSS" in columns 1 through 18 for metric  units.

The maximum pollution accumulating in the  drainage areas (see DATA CARD  3a
of PROGRAM DTCHCK: Quality data)  is dependent on the seasons of the  year.
For BODS, COD and TSS SV.  varies  between 0.75 and 1.0. For fecal  coliforms
SV. equals 1.0 during summer month and decreases to 0.4 in winter for
northern climates.

-------
     PROGRAM DTCHCK:     Quality data
                           DATA CARDS lOa:  Cleaning effect of detention
                                            facilities within the network
R
S
        CLEANING EFFECT
       BECKENKLAERWIRKUNG
                JiolnUiJul
is u i;
          13 MH
                                            ISI1
     EXPLANATIONS:
                         P.
            Detention time in min.,  e.g. 5, 10, 15, etc.
            Percentage to which pollutant i is reduced at time T, e.g. 70
             NOTE:
o\
  20 cards are necessary; the first should contain "CLEANING EFFECT" in
  columns 1 through 15 for english units or "BECKENKLAERWIRKUNG" in columns
  1 through 18 for metric units.

  The values for T on the first card must be 5, 105 and 205 minutes. With each
  subsequent card these values are increased by 5 minutes, i.e. 10, 110 and 210
  minutes.

  With increasing detention time the cleaning effect of a basin increases. For
  BOD5, COD, TSS and fecal coliforms Appendix 7, Test Example for PROGRAM
  DTCHCK, provides some reference values which may be adapted to local con-
  ditions.

-------
     PROGRAM DTCHCK:     Quality data
                                        DATA CARDS  lOb:  'Cleaning  effect of storm or com-       R
                                                         bined  sewage treatment basins          S
        CLEANING EFFECT
        BECKENKLAERWIRKUNG
                   X
                                                                                                w«d/4p;
« M» '•
                             ae»'
         32pll 14 Uui
                                                            a sab' v
     EXPLANATIONS:
               T

               P.
Detention time in hrs., e.g. 8.5

Percentage to which pollutant  i is  reduced at time T,  e.g.  55
Ul
             NOTE:
               16 cards are necessary; the first should  contain "CLEANING EFFECT" in
               columns 1 through 15 for english units or "BECKENKLAERWIRKUNG" in columns
               1 through 18 for metric units.

               The values for T on the first card must be 0.5,  8.5  and 16.5 hours.  With
               each subsequent card these values are increased  by 0.5  hours, i.e. 1.0,
               8.0 and 17.0 hours.
                         For reference values  see Appendix 7,  Test Example for PROGRAM DTCHCK.

-------
PROGRAM DTCHCK:
Quality data
               DATA CARDS  lla:
Dry-weather flow pollution
(diurnal pattern)
R
S
 TW-SCHMUTZMENGEN
  m
-------
PROGRAM DTCHCK:
Quality data
                                        DATA CARD lib:  Industrial wastewater pollution
   IW-KONZENTRATION
        IWC
                                              IWC.
l|i[ii|7|g|y|lo|ll|l2l3n[li[
                    16 17 18 IP 20 21 2:
            M w|28 » sopip iap-ipppTpa jfUJi
                                                      J 43 44 43 4.
                                                                                                     79 BC
EXPLANATIONS:
This card is mandatory and must  contain "IW-KONZENTRATION" in columns
1 through 16 for english and metric units.
                     IWC.
          Concentration of pollution i of the industrial wastewater  in  mg/1
          (ppm) or number of bacteria x 10 /I (Y is given on DATA CARD  2  of
          PROGRAM DTCHCK: Quality data)
        NOTE:
The industrial wastewater pollution given on this card applies to all  in-
dustrial wastewater inflows  IW as  specified on DATA CARD(S) 8a of PROGRAM
DTCHCK: Network data except  for those catchments for which on DATA  CARD(S)  lie,
PROGRAM DTCHCK: Quality data,  special industrial wastewater pollution  values
are provided.
                    This  card must  not be contained for receiving water  calculations.

-------
      PROGRAM DTCHCK:
Quality data
    DATA CARD(S)  lie:
                                                               Special industrial waste-
                                                               water pollution
         IW-SPEZ-KONZ
        CA
IWC
                                                  I5|3<
                                               IWC3
                                                          T
                                   I3jj« 46U7I8
n 5cjsi[sa n H|M{M a MM u\&\\n\>
2345 478
         9 IOMI 12
              13 14 13 16 17 18 l» 20 21 22 23R4 25
i
                                        !728
                                             31 32 33 34 35134
                                                          4IU24
                                                                              3 M »
                                                      p 74)77
                                                                                                         70 79 BO
      EXPLANATIONS:
00
              NOTE:
This card must contain IW-SPEZ-KONZ" in columns 1 through  12  for  english and
metric units.

CA        Name of drainage  area
IWC.      Concentration of  pollution of special industrial wastewater for
   1      drainage areas  in mg/1 (ppm) or number of bacteria  x  10 /I (Y is
          given on DATA CARD  2  of PROGRAM DTCHCK: Quality  data).
See also DATA CARD  lib, PROGRAM DTCHCK: Quality data.

The special industrial wastewater pollution again applies to  the  industrial
wastewater inflows  IW as  specified for the corresponding catchments on DATA
CARD(S) 8a of PROGRAM DTCHCK:  Network data and is included only,  if this in-
dustrial wastewater pollution  differs from the value IWC. provided on DATA
CARD lib of PROGRAM DTCHCK:  Quality data.               X

A maximum of 20 cards is  allowed.
                          These  cards must not be contained for receiving water calculations.

-------
      PROGRAM DTCHCK:     Quality data
DATA CARD lid: Dry-weather flow pollution end  card
                                                                                  R
                                                                                  S
      EXPLANATIONS:
This card is mandatory and must contain XXXX in columns  1 through  4.
CT«
VO

-------
PROGRAM DTCHCK:
Quality data
               DATA CARD(S) 12a:  Constant external loading
                                  pollution
R
S
EXPLANATIONS:
ND

PEX.
Name of boundary node with constant external loading
Concentration of pollution of external loading in rog/1 (ppm) or
number of bacteria x 10 /I for pollutant i (Y is given on DATA
CARD 2 of PROGRAM DTCHCK: Quality data)
        NOTE:
Any number of cards may be read in,  but only loadings at nodes specified on
DATA CARD 3i of PROGRAM DTCHCK:  Network data are considered.

-------
PROGRAM DTCHCK:     Quality data
                         DATA CARD 12b:  End of constant external
                                        loading pollution
R
S
EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4

-------
PROGRAM DTCHCK:
Quality data
                                              DATA CARDS 12c:
                                                              Variable external loading
                                                              pollution (pollutographs)
                                                   R
                                                   S
  ND
              PEX
                     PEX2
        PEX
PEX
PEX
PEX
PEX3
I t\3\4
      J»
         > I
           9110 IIII3 I) 14)13
                fet
                         Ml »
                      I4pj KpTpa MJ40 4l[o[43J4~£ -rwf
                                                 x 10 /I at time T. for pollutant  j  (Y is given
                             on DATA CARD  2  of  PROGRAM DTCHCK: Quality data)
        NOTE:
                   The end of a pollutograph  is  marked by a negative time value  (e.g.  -1).  One
                   pollutograph may contain up to 289 time values (T  plus 288 intervals).

                   Any number of pollutographs may be read in,, but only the hydrographs at
                   nodes, specified on DATA CARD 3j of PROGRAM DTCHCK: Network data,  are con-
                   sidered for single event simulations.

-------
      PROGRAM DTCHCK:      Quality data
                         DATA CARD 12d: End of variable external
                                        loading pollution
R
S
      EXPLANATIONS:
This card is mandatory and must contain XXXX in columns 1 through 4.
•vl
U)

-------
PROGRAM DTCHCK:
                    Quality data
DATA CARD 13a: Receiving water  title card
                                                                                                      R
                                             NAME
                         ""H"!" HHr >T*H]fT>'raF »yp*
                                                                                          i n
                                                                                                 t n
EXPLANATIONS:
                    RW        Number of receiving water  (1 or 2)

                    NAME      The name must match the name supplied  for the  corresponding
                              receiving water on DATA CARD 13a of PROGRAM DTCHCK:  Quantity
                              data

-------
     PROGRAM DTCHCK:
      Quality data
                  DATA CARDS 13b:   Receiving water pollution
                                                                                                          R
            RQL
RQU
RAP,
RAP,,
RAP.,
RAP,
RAP,
RAP,
RAP0
RAP,,
RAP
                                                                                          10
RAP
                                                                             11
RAP
                                                                      12
     EXPLANATIONS:
Ln
      RW


      RQL


      RQU
                         RAP.
   Number of receiving water according to DATA CARD 13a, PROGRAM
   DTCHCK:  Quality data

   Lower limit of receiving water discharge range in cfs or m3/s
   (RQL < RQU)

   Upper limit of receiving water discharge range in cfs or m3/s
   (RQU > RQL)

   Number of pollutant

   Concentration of receiving watervbackground pollution in mg/1
   (ppm) or number of bacteria x 10 /I which applies for the dis-
   charge range RQL to RQU dependent on the months of the year
   (January,  i = 1, through December, i = 12) (Y is given on DATA
   CARD 2,  PROGRAM DTCHCK:  Quality data)
             NOTE:
      2 to 20 ranges  given on subsequent card groups, which contain one card for
      each pollutant,  are permitted.  The range limits on the sequential card groups
      must be increasing, e.g.:
                         Receiving water 1,   range 1,
                         Receiving water 1,   range 1,
                         Receiving water 1,   range 2,
                         Receiving water 1,   range 2,
                         Receiving water 2,   range 1,
                                    pollutant 1
                                    pollutant 2
                                    pollutant 1
                                    pollutant 2
                                    pollutant 1, etc.
                         The number of ranges must be the same for both receiving waters.

-------
PROGRAM DTCHCK:     Quality data
                                                   DATA CARD 13c: End of receiving water
                                                                  pollution
                                                                                  R
                                                                                  S
                                 p ijppspp itppopi rcJMpyi upTp ]9poJ4i[<7 4
     EXPLANATIONS:
The end of the pollution figures of  a  receiving water is marked by this card,
containing -1.0 in columns 5 through 8
o\
             NOTE:
Subsequently follows DATA CARD 13a for  the  second receiving water, if exist-
ing, as well as the sequence of cards specified on DATA CARDS 13b. Again the
end is marked by DATA CARD 13c.

This is the last card of the Quality data set.

-------
                             APPENDIX  3
          ERROR (F) AND INFORMATIVE MESSAGES OF THE PROGRAM DTCHCK
GERMAN
                        ENGLISH
(F) ABSCHLUSS DER DATEN FEHLT,
ES SIND NOCH WEITERE DATEN VOR-
HANDEN

(F) ANFANGSZEITPUNKT = ...
UHR	MINUTEN
(F) ANZAHL DER JAHRE = ... 1ST
NICHT ZULAESSIG

(F) ANZAHL DER REGENINTERVALLE
GROESSER ALS MAXRND, KARTE
NUMMER ...

(F) ANZAHL DER REGENMESSREI-
HEN = ...
(F) ANZAHL INTERESSANTER KNO-
TEN ..., MAX. ZULAESSIG
(F) AUFBAUZEITENKARTEN FALSCH
GEKENNZEICHNET

(F) AUSGABEKNOTEN (RHB)
DER ... UND DER 	 KNOTEN SIND
GLEICH

(F) AUSGABEKNOTEN (RUE)
DER ... UND DER 	 KNOTEN
SIND GLEICH

(F) AUSGABEROHRE    DAS ...
UND DAS 	 ROHR SIND GLEICH
The end card of data check is
missing, additional cards are
existing.

The start of rainfall at ...
hours .... minutes does not
match with the duration of the
event provided.
A number of
admitted.
years is not
The number of precipitation in-
tervals is larger than MAXRND,
card number ....

The number of precipitation
records is specified as ... and
does not match with the preci-
pitation data supplied.

The total number of nodes of
interest is ..., only  ... are
allowed.

The card containing the built-
up times is identified false.

The printout nodes (basins) ...
and .... are provided twice.
The printout nodes (overflow
structures) ... and .... are
provided twice.
The printout segments ..
.... are provided twice.
          and
                                    177

-------
(F) BEIDE VORFLUTER HABEN DIE
NUMMER VORFL = ...

(F) BEREICHSLUECKE ODER UEBER-
SCHREITUNG VON DER ... BIS 	
KARTE

(F) BEZEICHNUNG OHNE GEBIETSART
GEGEBEN
(F) DAS AUSGABEROHR KA = ...
KE = 	 1ST NIGHT IM NETZ ENT-
HALTEN
(F) DAS JAHR 	 MESSREIHE ...
BEREITS VORHANDEN ODER ZWISCHEN
ZWEI MESSREIHEN FEHLT
(F) DAS NETZ ENTHAELT 	 BECKEN,
... SIND NUR ZULAESSIG

(F) DAS NETZ ENTHAELT KEINE SON-
DERBAUWERKE

(F) DAS NETZ ENTHAELT KEINE SON-
DERBAUWERKE.
SONDERBAUWERKSKARTEN USW. FEH-
LEN

(F) DAS NETZ ENTHAELT 	 KNO-
TEN, ... SIND NUR ZULAESSIG
(F) DAS NETZ ENTHAELT 	 UEBER-
LAEUFE, ... SIND NUR ZULAESSIG

(F) DAS ROHR KNA ...     KNE 	
EXISTIERT NICHT ODER DARF KEIN
GESTEUERTES ROHR SEIN
(F) DAS ROHR KNA = ...    KNE =
SOLL IN ZWEI ROHRE GETEILT WER-
DEN
Both receiving waters are in-
dicated by the number ....

There is a gap or overlap in
the ... to .... card.
The identification is given
without coordination to drain-
age area type.

The printout segment with the
upper node ... and the lower
node .... is not contained in
the network.

The year .... for precipitation
record ... is already existing
or the year in-between two pre-
cipitation records is missing.

The network contains .... ba-
sins, ... only are allowed.

The network does not contain
special structures.

The network contains no spe-
cial structures.
Input cards for special struc-
tures are missing.

The network contains a number
of .... nodes,  ... only are al-
lowed.

The network contains .... over-
flows, ... only are allowed.

The sewer segment with the up-
per node ... and the lower node
.... is not existing or may not
be a segment containing a con-
trol gate.

The sewer segment with the up-
per node ... and the lower node
.... should be subdivided into
two segments.
                                    178

-------
(F) DATENKARTEN FALSCH GEKENN-
ZEICHNET
(F) DATENKARTEN FEHLEN

(F) DEN ZUFLUSSKNOTEN .
ROHRES KA = ..., KE = .
(LFN ..) GIBT ES NIGHT
     .  DBS
(F) DER AUSGABEKNOTEN (RHB)
1ST NICHT IM NETZ ENTHALTEN
(F) DER AUSGABEKNOTEN (RUE)
1ST NICHT IM NETZ ENTHALTEN
(F) DER AUSGABEKNOTEN (RUE) ...
1ST KEIN REGENUEBERLAUF

(F) DER AUSGABEKNOTEN (RHB) ...
1ST KEIN SONDERBAUWERK MIT BECKEN

(F) DER GRENZKNOTEN ... 1ST NIGHT
IM VORFLUTERNETZ ENTHALTEN
(F) DER INTERESSANTE KNOTEN ...
DARF NUR EINEN ABFLUSS HABEN

(F) DER INTERESSANTE KNOTEN 	
HAT ... ZUFLUESSE, ER MUSS ZWEI
HABEN

(F) DER INTERESSANTE KNOTEN ...
1ST KEIN BECKENBAUWERK

(F) DER INTERESSANTE KNOTEN ...
LIEGT NICHT IM VORFLUTER
(F) DER INTERESSANTE KNOTEN ...
MUSS EIN AUSLASSROHR UND EIN
VORFLUTERELEMENT ALS ZUFLUESSE
HABEN
(F) DER KNOTEN ..
STEUERORGAN SEIN
DARF KEIN
The data cards are specified
wrong.

Data cards are missing.

The in-going node ... of the
sewer segment with the upper
node ... and the lower node
.... is not existing (sequen-
tial number ..).

The printout node (basin)  ...
is not contained in the net-
work.

The printout node (overflow
structure) is not contained in
the network.

The printout node (overflow
structure) ... is no overflow.

The printout node ... (basin)
is no basin.

The node at the calculation
area boundary ... is not con-
tained in the receiving water
system.
                          The interesting node .
                          have only one outflow.
                         may
                          The interesting node .... has
                          ... inflows, exactly two must
                          be specified.
                          The interesting node
                          basin.
                         is no
                          The interesting node ... is not
                          located in the receiving water
                          system.

                          The interesting node ... must
                          have one sewer segment and one
                          receiving water system element
                          as inflows.
The node .
trol gate.
may not be a con-
                                    179

-------
(F) DER KNOTEN ...  DARF KEIN
UEBERNAHMEKNOTEN SEIN (SONDER-
BAUWERK ODER VERZWEIGUNG)

(F) DER KNOTEN 	 HAT ZWEI AB-
FLUESSE (BAUWERKSTYP ...)

(F) DER KNOTEN ...  1ST EINE
VERZWEIGUNG ODER EIN SONDER-
BAUWERK

(F) DER KNOTEN ...  1ST IN DEM
NETZDATENFILE NICHT AUFGEFUEHRT

(F) DER KNOTEN ...  1ST KEIN
ABFLUSSKNOTEN DES KNOTEN ...
(LFN ..)
(F) DER KNOTEN ..
FACH AUFGEFUEHRT
1ST MEHR-
(F) DER KNOTEN ... MIT KONSTAN-
TER UEBERNAHME 1ST NICHT IM
NETZ ENTHALTEN

(F) DER KNOTEN ... MIT VARIAB-
LER UEBERNAHME 1ST NICHT IM
NETZ ENTHALTEN

(F) DER KNOTEN ... TAUCHT DREI-
MAL ALS ANFANGSKNOTEN AUF

(F) DER KNOTEN ... TAUCHT VIER-
MAL ALS ENDKNOTEN AUF
(F) DER MITTELWERT VON KOORDI-
NATEN MUSS = 1 SEIN

(F) DER REGEN     JAHR ... MO-
NAT ... TAG ... INT ... DAUER
... GEHT UEBER DIE REIHENUNTER-
BRECHUNG REIHE NUMMER  ...
(F) DER SPEZIELLE INTERESSANTE
KNOTEN ...  FEHLT

(F) DER SPEZIELLE INTERESSANTE
KNOTEN ...  1ST NICHT IM NETZ
ENTHALTEN
                          The node ...  may not be loaded
                          by an external loading (special
                          structure or branching point).

                          The node .— has two outflows
                          (structure type ...).

                          The node ...  is a branching
                          point or a special structure.
                          The node ...  is not mentioned
                          in the file network data.

                          The node ...  is not an outflow
                          node of the node ... (sequen-
                          tial number ..).
The node ..
eral times.
is mentioned sev-
                          The node ...  with a constant
                          external loading is not con-
                          tained in the network.

                          The node ...  with a variable
                          external loading is not con-
                          tained in the network.

                          The node —  is used three
                          times as beginning node.

                          The node ...  is used four
                          times as lower node of a sewer
                          segment.

                          The average value of the coor-
                          dinates must be equal to one.

                          The precipitation event, year
                          ..., month ..., day ..., inter-
                          val ..., duration ..., overlaps
                          with the interruption of the
                          precipitation record number

                          The node of special interest
                          ... is missing.

                          The node of special interest
                          ... is not contained in the
                          network.
                                    180

-------
(F) DER UEBERNAHMEKNOTEN
FEHLT

(F) DER UEBERNAHMEKNOTEN
1ST ZWEIMAL VORHANDEN
(F) DER ZUFLUSS .
KA = ..., KE =
ANGEGEBEN
ES GIBT EIN KA =
 DES ROHRES
 1ST NIGHT

* •  JvE — . • . i
(F) DIE ABSCHLUSSKARTE FEHLT
ODER DATEN VORHANDEN OBWOHL KEINE
KNOTEN IN NETZDATEN AUFGEFUEHRT
(F) DIE ANZAHL DER BEREICHE IN
DEN BEIDEN VORFLUTERN 1ST NIGHT
GLEICH

(F) DIE EINHEITSGANGLINIEN UM-
FASSEN 	 KARTEN, ... SIND NUR
ZULAESSIG

(F) DIE EINSKARTE FEHLT ODER AN-
ZAHL DER REGENKARTE 1ST FALSCH,
KARTE NUMMER ...

(F) DIE ERSTE KARTE FALSCH GE-
KENNZEICHNET

(F) DIE FOLGENDEN KNOTEN BILDEN
EINE NETZSCHLEIFE

(F) DIE KARTE ...  ENTHAELT DEN
NAMEN DES TEILEINZUGSGEBIETES,
DAS NIGHT VORHANDEN 1ST

(F) DIE KARTE ...  ENTHAELT KEI-
NE BLANKS IN DEN ERSTEN ZWANZIG
SPALTEN ODER ZU VIELE KARTEN
VORHANDEN

(F) DIE ... KARTE ENTHAELT KEI-
NE KNOTENANGABE

(F) DIE KARTE FALSCH GEKENN-
ZEICHNET
The boundary node with the ex-
ternal loading ... is missing.

The boundary node with the ex-
ternal loading ... is existing
twice.

The inflow ... of the sewer
segment with the upper node
... and the lower node .... is
not specified. There is a sewer
segment with the upper node ...
and the lower node 	

The end card is missing or data
are existing eventhough the
nodes are not mentioned in the
network data.

The number of ranges are not
equal for the two receiving
waters.

The unit hydrographs contain
.... cards, ... only are admit-
ted.

The "one" card is missing or
the number of precipitation
cards is wrong, card number

The first card is identified
wrong.

The following nodes form a net-
work loop.

The card ...  contains the name
of a drainage area, which is
not existing.

The card ...  does not contain
blanks in the first twenty
columns or too many cards are
existing.

The ... card contains no node
name.

The card is identified wrong.
                                    181

-------
(F) DIE NULLKARTE FEHLT
KARTE NUMMER ...

(F) DIE NUMMER DER GEBIETSBE-
ZEICHNUNGEN STIMMEN NICHT

(F) DIE NUMMER DBS VORFLUTERS
MUSS ... SEIN

(F) DIE NUMMERN DER SCHMUTZSTOFF-
BEZEICHNUNGEN STIMMEN NICHT

(F) DIE SOHLE DER DROSSEL LIEGT
TIEFER ALS DIE SOHLE DBS BECKENS
ODER HOEHER ALS DIE SCHWELLE
(F) DIE SOHLE DER DROSSEL LIEGT
UEBER DER SOHLE DBS REGENUEBER-
LAUFES

(F) DIE SOHLE DBS AUSLAUFROHRES
LIEGT TIEFER ALS DIE SOHLE DBS
BECKENS

(F) DIE TEMPERATURKARTEN ENTHAL-
TEN MEHR ALS ... VERSCHIEDENE
JAHRESANGABEN

(F) DIE ... UND DIE 	 PROFIL-
KARTE HABEN DIE GLEICHE PROFIL-
KENNZAHL

(F) DRITTE KARTE MIT DER JAH-
RESZAHL ... (LFN ..)
                         The "zero"
                         card number
           card is missing,
(F) ENDZEITPUNKT =
MINUTEN
..  UHR
(F) EIN TAG (= 1440 MINUTEN)
1ST KEIN GANZZAHLIGES VIELFA-
CHES VON DT = ... MINUTEN

(F) EINZELEREIGNISRECHNUNG BE-
GINNT AM ...

(F) ERSTE KARTE FALSCH GEKENN-
ZEICHNET
                         The numbers  of the drainage
                         area types do not match.

                         The number of the receiving
                         water must be ....

                         The numbers  of the pollutants
                         disagree.

                         The invert of the throttle sew-
                         er is lower than the invert of
                         the basin  or above the weir
                         crest.

                         The invert of the throttle sew-
                         er is above  the invert of the
                         overflow structure.

                         The invert of the outgoing seg-
                         ment is  lower than the basin
                         invert.

                         The temperatures cards contain
                         more than  ... different years.
The ...  and the .... cross sec-
tion cards have the same iden-
tifier.

There is a third card with the
year ... (sequential number ..).

The concluding time of the
event ...  hours .... minutes
does not match with the start
of event and the number of pre-
cipitation data provided.

One day is not a even numbered
multiple of DT = ... minutes.
                         The single event simulation
                         begins at ....

                         The first card  is identified
                         wrong.
                                    182

-------
(F) ERSTE KARTE FALSCH GEKENN-
ZEICHNET ODER ZU VIELE KARTEN
FUER TW-ABFLUESSE VORHANDEN

(F) ES FEHLEN DATEN FUER ...
JAHRE

(F) ES SIND 	 SPEZIELLE INTER-
ESSANTE KNOTEN AUFGEFUEHRT (...
SIND ZULAESSIG). ES MUSS MINDE-
STENS EIN INTERESSANTER KNOTEN
ANGEGEBEN SEIN

(F) ES SIND ZWEI NULLKARTEN HIN-
TEREINANDER VORHANDEN KARTE NUM-
MER ...
(F) ES WERDEN
LEN VERLANGT,
LAESSIG
.  PROFILKENNZAH-
SIND NUR ZU-
(F) ES WURDEN ... REGENINTENSI-
TAETSKARTEN EINGELESEN, 288 SIND
NUR ZULAESSIG

(F) FEHLER IN DEM NETZDATENFILE
DIE DATEN WERDEN UEBERLESEN
(F) FILE IF07 LEER (SYSTEMDATEN
KANALNETZ)

(F) FORMATFEHLER AUFBAUZEITEN
(F) FORMATFEHLER AUFGETRETEN,
EVENTUELL FEHLT ENDE-KARTE DER
ROHRELEMENTKARTEN

(F) FORMATFEHLER IN DEN DATEN-
KARTEN

(F) FORMATFEHLER IN DER GEBIETS-
FAKTORENKARTE

(F) FORMATFEHLER IN DER ...
KARTE
(F) FORMATFEHLER IN DER .
KARTE (GEBIET =	, KN
                            The first card is identified
                            wrong or too many cards for
                            dry-weather flows are existing.

                            Data cards are missing for ...
                            years.

                            .... nodes of special interest
                            are given (only ...  are al-
                            lowed) .  At least one node of
                            special  interest must be pro-
                            vided.
                            Two "zero"
                            quence,
           cards are in se-
        card number ....
.... cross section identifiers
are requested, ... are permis-
sible.

... precipitation intensities
were supplied, 288 only are
permitted.

There is an error in the file
network data, the data are ig-
nored.

File IF07 is empty (system da-
ta of the sewer network).

There is a format error in the
built-up times.

A format error was encountered,
possibly the end card of the
sewer segment cards is missing.

There is a format error in the
data cards.

There is a format error in the
drainage area coefficient card.

There is a format error in the
...  card.

There is a format error in the
...  card (drainage area ....,
node ...).
                                    183

-------
(F) FORMATFEHLER IN DER ...
KARTE (KNOTEN	)

(F) FORMATFEHLER IN DER ...
KARTE (KNOTEN 	, DROSSELKARTE)
(F) FORMATFEHLER IN DER ...
KARTE ODER ZU WENIGE KARTEN
VORHANDEN

(F) FORMATFEHLER IN DER KON-
STANTENKARTE

(F) FORMATFEHLER IN DER ...
PROFILKARTE

(F) FORMATFEHLER IN DER TITEL-
KARTE

(F) FORMATFEHLER IN DER UEBER-
NAHMEGANGLINIE DES KNOTENS ...
(F) FORMATFEHLER INITIALISIE-
RUNGSKARTE

(F) FORMATFEHLER INITIALISIE-
RUNGSWERTE

(F) FORMATFEHLER JAHRESZEITEN-
EINFLUSSKARTE
(F) FORMATFEHLER ... KARTE
(F) FORMATFEHLER ... KARTE
(KLAERWIRKUNG)

(F) FORMATFEHLER KOEFFIZIEN-
TENKARTE

(F) FORMATFEHLER MAXIMALE
SCHUTZWERTE
(F) FORMATFEHLER STRASSEN-
REINIGUNGSKARTE
(F) FUER DAS JAHR  ..
DIE TEMPERATURDATEN
FEHLEN
There is a format error in the
...  card (node ....).

There is a format error in the
...  card (node . ..., throttle
sewer card).

There is a format error in the
...  card or not enough cards
are existing.

Format error in the constant
card.

There is a format error in the
...  cross section card.

There is a format error in the
title card.

There is a format error in the
external loading hydrograph of
the node ....

There is a format error in the
initialisation card.

There is a format error in the
initialisation values.

There is a format error in the
seasonal variation influence
card.

There is a format error in the
...  card.

There is a format error in the
...  card (retention efficiency).

There is a format error in the
coefficient card.

There is a format error for the
maximum pollutant load avail-
able on drainage areas.

There is a format error in the
card defining street cleaning.

For the year ...  the tempera-
ture data are missing.
                                    184

-------
(F) FUER DAS JAHR 	 FEHLEN
VORFLUTERABFLUESSE
EINZELEREIGNISRECHNUNG BEGINNT
AM	UHR ... MINUTEN
(F) FUER DAS JAHR ... 1ST NUR
EINE TEMPERATURKARTE VORHANDEN

(F) FUER DAS JAHR ... SIND NICHT
ALLE MINIMALTEMPERATUREN NICHT
KLEINER ALS DIE MAXIMALTEMPERA-
TUREN

(F) FUER DEN KNOTEN  ... 1ST EINE
VIERTE TEILEINZUGSGEBIETSKARTE
VORHANDEN (LFN ..)

(F) FUER DEN LETZTEN KNOTEN 	
1ST NUR ... DROSSELKARTE VOR-
HANDEN

(F) FUER DEN UEBERNAHMEKNOTEN
... SIND ZWEI GANGLINIEN VOR-
HANDEN

(F) FUER LASTFALL =  ... DARF
KEIN ENDZEITPUNKT GEGEBEN SEIN
(F) GEBIETSART = ...  BEZEICHNUNG
FEHLT

(F) GEBIET = ... DER KNOTEN KN =
	 1ST NICHT IM NETZ ENTHALTEN
(LFN ..)

(F) GEBIETSFAKTORENKARTE FALSCH
GEKENNZEICHNET

(F) HMIN GROESSER ALS HMAX

(F) IM JAHR ...  MONAT 	 SIND
MIN UNO MAX TEMPERATUREN = NULL
(F) INITIALSISIERUNGSKARTE
FALSCH GEKENNZEICHNET
For the year .... the receiving
water runoff data are missing.
The single event simulation be-
gins at	hour ... min-
utes.

For the year ... only one tem-
perature card  is existing.

For the year ... not all min-
imum temperatures specified are
smaller than the maximum tem-
peratures given.

For the node ... a fourth
drainage area  card is existing
(sequential number ..).

For the last node .... only ...
throttle sewer card is exist-
ing.

For the boundary node with an
external loading ... two load-
ing hydrographs are existing.

For the condition C = ... pro-
vided on data  card 2 of the
file network data no conclud-
ing date and time may be given.

For the drainage area type ...
the identification is missing.

Drainage area  ..., the node
is not contained in the network
(sequential number ..).

The drainage area coefficient
card is identified wrong.

HMIN is larger than HMAX.

In the year ... month .... the
minimum and maximum tempera-
tures are zero.

The initialisation card is id-
entified wrong.
                                    185

-------
(F) INTERESSANTE KNOTEN
DER ... UND DER 	 KNOTEN SIND
GLEICH

(F) INTERESSANTER KNOTEN ...
1ST NICHT IM NETZ

(F) JAHR 19..    ABFLUESSE FUER
DIE MONATE ... BIS 	 VORHANDEN
(F) JAHRESKARTE: JAHR ... FAELLT
NICHT IN DEN ANGEGEBENEN ZEIT-
RAUM DER RECHNUNG

(F) 	 JAHR IN DER MESSREIHE
... FEHLT

(F) ... KARTE    DEN KNOTEN
... GIBT ES NICHT

(F) ... KARTE    ELEMENTTYP NICHT
PROGRAMMIERT
(F) ... KARTE HMAX = 0 ODER
NEGATIV

(F) KARTE SCHMUTZSTOFFNUMMER
FALSCH ODER KARTE NICHT RICHTIG
EINGEORDNET

(F) KARTE VQU = ... VQO = ...
ENTSPRICHT NICHT DER VORHERGE-
HENDEN KARTE

(F) KEINE DATEN FUER MESSREIHE
... VORHANDEN

(F) KEINE GEBIETSARTEN VORGE-
GEBEN

(F) KEINE KARTEN VORHANDEN

(F) KEINE SCHMUTZSTOFFE VORGE-
GEBEN

(F) KNOTEN = ...    BEIDE DROSSELN
HABEN DIE GLEICHE BEZEICHNUNG
E = ...
The nodes of interest  ... and
.... are similar.
The interesting node ... is not
contained in the network.

Year 19..  The runoff data for
the month ... to .... are exist-
ing.

The year provided ... is not
contained in the timespan to be
simulated.

The year  .... is missing in the
precipitation record ....

... card, the node .... is not
existing.

... card, this type of element
cannot be handled by the pro-
gram.

... card, HMAX = 0 or negativ.
The card containing the pol-
lutant numbers is wrong or in
the wrong order.

The card VQU = ... VQO =  ...
does not match with the pre-
ceeding card.

No data for rainfall record ..
existing.

There are no drainage area
types specified.

No cards are existing.

No pollutants are provided.
Node ..., both throttle sewers
have the same name E = ....
                                    186

-------
(F) KNOTEN ...
KEINEN ABFLUSS
DAS BAUWERK HAT
(F) KNOTEN = ...    DIE BECKENSOH-
LE LIEGT HOEHER ALS DIE SCHWELLE
DBS REGENUEBERLAUFS (LFN ..)

(F) KNOTEN = ...    DIE ... DROS-
SELKARTE GEHOERT NICHT ZUM KNO-
TEN (KN = ...) (LFN ..)
(F) KNOTEN = ...    DIE DROSSEL 2
LIEGT HOEHER ALS DIE BECKENSOHLE

(F) KNOTEN ...    DIE SCHWELLE DES
UEBERLAUFS LIEGT HOEHER ALS DIE
DECKE DES BECKENS

(F) KNOTEN = ...    DIE SOHLE DER
DROSSEL LIEGT NICHT TIEFER ALS
DIE DECKE DES BECKENS

(F) KNOTEN = ...    DIE SOHLE DER
DROSSEL LIEGT TIEFER ALS DIE
SOHLE DES BECKENS ODER HOEHER
ALS DIE SCHWELLE

(F) KNOTEN = ...    DIE SOHLE DER
DROSSEL LIEGT TIEFER ALS DIE
SOHLE DES UEBERLAUFS ODER HOEHER
ALS DIE SCHWELLE
(F) KNOTEN = ...    DIE SOHLE DES
AUSLAUFROHRES LIEGT TIEFER ALS
DIE SOHLE DES BECKENS

(F) KNOTEN = ...    DIE SOHLE DES
UEBERLAUFROHRES LIEGT HOEHER
ALS DIE SCHWELLE

(F) KNOTEN = ...    DROSSELBE-
ZEICHNUNG FALSCH E = ...
(LFN ..)

(F) KNOTEN = ... DROSSELKARTE,
KEIN POSITIVES GEFAELLE
(LFN ..)
Node ... the structure has no
outflow.

Node ..., the basin invert is
above the weir crest of the
overflow (sequential number  ..).

Node .—, the ... throttle
sewer card does not belong to
the node (...) (sequential
number ..).

Node ..., the throttle sewer 2
is higher than the basin invert.

Node ..., the weir crest of the
overflow is above the basin
ceiling.

Node = ..., the invert of the
throttle sewer is not lower
than the basin ceiling.

Node ..., the invert of the
throttle sewer is lower than
the invert of the basin or
higher than the overflow.

Node ..., the invert of the
throttle sewer is lower than
the invert of the overflow
structure or higher than the
weir crest.

Node ..., the invert of the
outgoing segment is lower than
the invert of the basin.

Node ..., the invert of the
segment behind the overflow is
higher than the weir crest.

Node ... throttle definition is
wrong E = ... (sequential num-
ber ..).

Node ..., check throttle sewer
card, inverse slope (sequential
number ..).
                                     187

-------
(F) KNOTEN = 	    DROSSELKARTE,
KS = ... LIEGT NIGHT INNERHALB
DER VORGEGEBENEN GRENZEN (...
UND ... BZW. ... UND ...)
(LFN ..)

(F) KNOTEN = 	    DROSSELKARTE,
LAENGE = ... (LFN ..)
                             Node ....,  throttle sewer card.
                             The friction factor ...  is not
                             between the limits given ...
                             and ....  or ...  and ...  respec-
                             tively (sequential number ..).

                             Node ....,  check throttle sewer
                             length = ...  (sequential number
(F) KNOTEN = ..
PROFILBREITE =
     DROSSELKARTE,
..  (LFN ..)
(F) KNOTEN =	    DROSSELKARTE
PROFILKENNZAHL FEHLT (LFN ...)
(F) KNOTEN ...    PARAMETER FUER
DIE VERWEILDAUER FALSCH
(F) KNOTEN 	
FEHLT FUER DIE
PKZ = ..
   PROFILKARTE
   DROSSEL
(F) KNOTEN = ...    UNZULAESSIGER
BAUWERKSTYP (LFN ..)
Node .... check throttle sewer
profile width = — (sequen-
tial number ..) .

Node ..., throttle sewer card
cross section code is missing
(sequential number ..).
                             Node
          the switch for the
retention time is wrong.

Node . . . . , the cross section
card for the throttle sewer
. . . (cross section code = . . )
is missing.

Node . . . , unallowed type of
structure (sequential number
(F) KNOTEN = ...
VORHANDEN (LFN ..)
    ZWEI KARTEN
(F) KONSTANTENKARTE KS-WERT ...
LIEGT NICHT INNERHALB DER VOR-
GEGEBENEN GRENZEN ... UND ...
BEZ. ... UND ...
(F) LASTFALL =
ZAHL = 	
      INTERVALLAN-
Node . . . , two cards are exist-
ing (sequential number . . ) .

The friction factor .... given
on the constant card is not
within the limits allowed of
. . . and . . . or . . . and . . . re-
spectively.

For the condition C = . . . pro-
vided on data card 2 of the
file network data the simula-
tion period of .... intervals
is not allowed.
(F) LASTFALL =
ZULAESSIG
      1ST NICHT
 (F) MAXIMALE ANZAHL DER STEUER-
 ORGANE UEBERSCHRITTEN
The condition C = ... provided
on data card 2 of the file net-
work data does not agree with
the other data supplied.

The number of control gates al-
lowed is exceeded.
                                     188

-------
(F) MAXIMALE ANZAHL VON KONSTAN-
TEN UEBERNAHMEN ... UEBERSCHRIT-
TEN, DARUEBERHINAUS GEHENDE KON-
STANTE UEBERNAHMEN WERDEN IGNO-
RIERT

(F) MAXIMALE ANZAHL VON TEILEIN-
ZUGSGEBIETEN (...) UEBERSCHRIT-
TEN
TEILEINZUGSGEBIETE WERDEN IGNO-
RIERT

(F) MAXIMALE ANZAHL VON VARIAB-
LEN UEBERNAHMEN ... UEBERSCHRIT-
TEN, DARUEBERHINAUSGEHENDE VA-
RIABLE UEBERNAHMEN WERDEN IGNO-
RIERT

(F) MEHR ALS FUENFZIG KNOTEN AN
DER GRENZE DES HAUPTNETZES UNZU-
LAESSIG

(F) MEHR ALS ... KLAERWERKS-
BECKEN

(F) MEHR ALS ... ZUGELASSENE
SPEZIELLE IW-KONZENTRATIONEN
ANGEGEBEN

(F) MEHR ALS ZWANZIG JAHRE EIN-
GEGEBEN

(F) ... MONAT FEHLT IN ..  MESS-
REIHE

(F) MONAT ... IM JAHR 	 MESS-
REIHE .. BEREITS VORHANDEN
(F) MONAT ..., TAG ..     Q = ..
KLEINER ALS QMIN ODER GROESSER
ALS QMAX

(F) MONATE SIND NICHT IN AUF-
STEIGENDER REIHENFOLGE, JAHR
	, MESSREIHE ... KARTE NUM-
MER ..

(F) MONATSKARTE: MONATE SIND
NICHT IN HOCHSTEIGENDER REIHEN-
FOLGE ANGEGEBEN
The number of boundary nodes
with constant external loadings
of
allowed at a maximum,
are exceeded, the surplus of
constant loadings is ignored.

The maximum number of drainage
areas (...) is exceeded.

The drainage areas in excess
are ignored.

The number of variable external
loadings of ... is exceeded,
the surplus of variable extern-
al loadings is ignored.
More than fifty nodes at the
boundary of the calculation
area are not permitted.
More than ..
are defined.
      treatment basins
There are more than ... special
industrial wastewater concen-
trations specified.

More than twenty years are pro-
vided.

... month is missing in preci-
pitation record .. .

The month ... in the year ....
of the precipitation record ..
is already existing.

Month ..., day .., Q = .... is
smaller than QMIN or larger
than QMAX.

The months are not in an in-
creasing sequence for the year
.... precipitation record ...
card number .. .

Month card: the months are not
given in increasing numbers.
                                     189

-------
(F) MONATSKARTE: UNZULAESSIGE
MONATSNUMMER GROESSER ALS ZWOELF
(F) PROGNOSEFAKTOR INDUSTRIE-
WASSER = ...
(F) PROGNOSEFAKTOR SCHMUTZ-
STOFF .. = ...
(F) PROGNOSEFAKTOR WASSERVER-
BRAUCH = ...

(F) QMIN ODER QMAX 1ST FALSCH

(F) RECHENBEGINN IM JAHR ...,
FUER DIESES JAHR SIND KEINE
WERTE VORHANDEN

(F) RECHENENDE IM JAHR ...,
FUER DIESES JAHR SIND KEINE
WERTE VORHANDEN

(F) REGENDAUEREINFLUSS FORMAT-
FEHLER IN DER ... KARTE
(F) REGENINTERVALL = ...  MINU-
TEN ENTSPRICHT NIGHT DEM RE-
CHENINTERVALL = .. MINUTEN
(F) ROHRELEMENT-KARTEN FEHLEN

(F) 	ROHRELEMENT-KARTEN WUR-
DEN EINGELESEN, ... SIND NUR
ZULAESSIG

(F) ROHR KA = .. KE = 	
(F) ROHR KA = ... KE = 	
2 ELEMENTKARTEN VORHANDEN
Month card: the number is not
permitted, the number is larger
than 12.

Prognosis factor for industrial
water consumption of ... is out
of range.

Prognosis factor for DWF pollu-
tion (pollutant number ..) =
... and is out of range.

Prognosis factor for water con-
sumption of ... is out of range.

QMIN or QMAX is wrong.

The calculation starts in the
year ..., for this year no val-
ues are supplied.

The simulation ends in the year
..., for this year no data are
supplied.

There is a format error in the
card defining the rainfall du-
ration influence.

The rainfall interval of ...
minutes does not correspond
with the calculation interval
of .. minutes.

Sewer segment cards are missing.

A number of .... sewer segment
cards were provided, only ...
are possible.

The sewer segment with the up-
per node .... and the lower
node .... must be checked.

For the sewer segment with the
upper node ... and the lower
node .... 2 element cards are
provided.
                                    190

-------
(F) ROHR KA = ... KE = 	
FORMATFEHLER IN DER ELEMENTKAR-
TE (LFN ..)
(F) ROHR KA = ... KE = ... HAT
KEIN POSITIVES GEFAELLE
(F) ROHR KA = ... KE = 	
PKZ = ... PROFILKARTE FEHLT
(F) ROHR KA = ... KE = .
PROFILBREITE = ...
(F) ROHR KA = ... KE = .
PROFILKENNZAHL FEHLT
(F) ROHR KA = ... KE = .
VORFLUTERKENNUNG = ...
(F) ROHR KA = ... KE = ..
ZU = ..
ES GIBT KEIN ROHR MIT KA
UND KE = 	

(F) ROHR KA = ... KE = ..
ZU1 =  ... ZU2 =  ... ZU3 .
                   In the element card with the
                   sequential number .... concern-
                   ing the sewer segment with the
                   upper node ... and the lower
                   node .... an format error is en-
                   countered.

                   The sewer segment with the up-
                   per node  ...  and the lower node
                   .... has an inverse slope.

                   For the sewer segment with the
                   upper node ... and the lower
                   node .... and the cross section
                   code ... the cross section card
                   is missing.

                   The width of the profile of ...
                   for the sewer segment with the
                   upper node ... and the lower
                   node .... is wrong.

                   The cross section code for the
                   sewer segment with the upper
                   node ... and the lower node
                   is missing.

                   The sewer segment with the up-
                   per node  ...  and the lower node
                   .... belongs to the receiving
                   water system ...

                   There is no sewer segment with
                   the upper node ... and the low-
                   er node ...., which has an in-
                   going segment from ..  (ZU).

                   Check the ingoing segments ZU1
                   = ..., ZU2 = ..., ZU3 = ... for
                   the sewer segment with the up-
                   per node  ...  and the lower node
(F) SCHMUTZSTOFF =
NUNG FEHLT
BEZEICH-
(F) SCHMUTZSTOFF ..     DIE EIN-
HEITSGANGLINIEN UMFASSEN 	
KARTEN, ... SIND NUR ZULAESSIG

(F) SCHMUTZSTOFF ... ERSTE KAR-
TE FALSCH GEKENNZEICHNET
Pollutant ..., name is missing.
                   Pollutant .., the unit polluto-
                   graphs contain .... cards, ...
                   only are allowed.

                   Pollutant ..., the first card
                   is identified wrong.
                                     191

-------
(F) SCHMUTZSTOFF .. FORMATFEH-
LER IN DER ... KARTE

(F) SONDERBAUWERKSKARTEN USW.
FEHLEN

(F) STRASSENREINIGUNGSKARTE
FALSCH GEKENNZEICHNET
(F) TAGE SIND NICHT IN AUFSTEI-
GENDER REIHENFOLGE; MONAT ...,
JAHR 	 PRECIPITATION SERIE
.. KARTE NUMMER ...

(F) TAGESZEITEINFLUSS
FORMATFEHLER IN DER ... KARTE
(F) TEILEINZUGSGEBIET ... GE-
BIETSART .. 1ST NICHT AUF DEM
QUANTITAETSFILE ANGEGEBEN

(F) TEMPERATURKARTEN FEHLEN
FUER DAS JAHR ...

(F) TITELKARTEN STIMMEN NICHT
UEBEREIN

(F) UEBERNAHMEKNOTEN (KONSTANT)
DER 	 UND DER ... KNOTEN SIND
GLEICH

(F) UEBERNAHMEKNOTEN (VARIABEL)
DER 	 UND DER ... SIND GLEICH
(F) VORFL = .. IN DER ... KAR-
TE ENTSPRICHT NICHT DER TITEL-
KARTE

(F) VORFLUTERABFLUSSDATEN FEH-
LEN

(F) VORFLUTERTITELKARTE    VORFL =
... 1ST NICHT ZULAESSIG
 (F) WERT NICHT AUFSTEIGEND
Pollutant .., there is a form-
at error in the ... card.

Cards for special structures
are missing.

The card containing street
cleaning values is identified
wrong.

Days are not in an increasing
sequence, month ..., year ....,
precipitation record .. card
number .. .

Diurnal variation influence
there is a format error in the
... card.

The drainage area ... area type
.., is not specified in the
quantity file.

For the year ... the tempera-
ture cards are missing.

The title cards do not match.
The boundary nodes with con-
stant external loadings ....
and ... are similar

The boundary nodes with vari-
able external loadings .... and
... are similar.

Receiving water .. in the  ...
card does not match with the
title card.

Flow data of the receiving
waters are missing.

The receiving water title  card
of receiving water number  ...
is not permissible.

The value is not in an increas-
ing sequence.
                                     192

-------
                   OUTPUT HEADINGS OF THE PROGRAM DTCHCK
                 (in sequence as appearing in the listing)
GERMAN
                        ENGLISH
MULDENKAPAZITAETEN
MULTENINITIALWERTE

VERSICKERUNGSRATEN
VERDUNSTUNGSRATEN
TEMPERATUREN
EINHEITSGANGLINIEN
TW-ABFLUESSE
AUFBAUZEITEN
STRASSENREINIGUNG
SCHMUTZSTOFF
GEBIETSFAKTOREN
REGENDAUER
TAGESZEITEINFLUSS
JAHRESZEITEINFLUSS
BECKENKLAERWIRKUNG
TW-SCHMUTZMENGEN
IW-KONZENTRATION

DATENPRUEFUNG
DIE MIT (F) GEKENNZEICHNETEN
MITTEILUNGEN VERHINDERN DIE
AUSFUEHRUNG DBS BERECHNUNGSTEILS

ALLE ANDEREN SIND NUR INFOR-
MATIV
FILE NETZDATEN
Depression losses
Initialization values for de-
pression losses
Infiltration rates
Evaporation rates
Temperatures
Unit hydrographs
Dry-weather flows (DWF)
Build-up times
Street cleaning
Pollutant
Drainage area factors
Rainfall duration
Diurnal variation influence
Annual variation influence
Retention efficiency
Dry-weather flow pollution
Industrial wastewater concen-
tration
Data check
All messages starting with (F)
refer to an error and prevent
a runoff simulation. The errors
must be corrected.
All other messages are inform-
ative or serve as headings.
Network data file
                                    193

-------
GERMAN
                        ENGLISH
DIE EINGABE ERFOLGT IN METRI-
SCHEN EINHEITEN
EINGABE DER KANALNETZDATEN
VORLAUFKARTEN
PROGNOSEFAKTOREN
ANFANGSZEITPUNKT
ENDZEITPUNKT
UHR
MINUTEN
LASTFALL

EINZELEREIGNIS
REGENINTENSITAETEN WERDEN EIN-
GELESEN
AUSGABEROHRE
AUSGABEKNOTEN
RUE
RHB
INTERESSANTE KNOTEN
KNQTEN MIT KONSTANTER UEBERNAHME

KNOTEN MIT VARIABLER UEBERNAHME

RECHENDAUER
REGENDAUER
REGENINTENSITAETEN
RE I HE
ROHRELEMENTKARTEN
ROHR
PROFILHOEHE
ANZAHL DER ROHRELEMENTE
ANZAHL DER KNOTEN
ROHRELEMENTKARTEN
KNOTENLOGIK
BEARBEITUNGSREIHENFOLGE
The input is in metric units.

Input of network data
First cards
Prognosis factors
Starting time
End time
Hour
Minutes
Condition (single event or
continuous simulation)
Single event simulation
Precipitation intensities are
read in
Printout segments
Printout nodes
Overflow structure
(Retention) basin
Nodes of interest
Node with contant external
loading
Node with variable external
loading
Simulation period
Rainfall duration
Precipitation intensities
Reinfall record
Sewer segment cards
Segment
Profile height
Number of sewer segments
Number of nodes
Sewer segment cards
Logic of the nodal system
Sequence of computation
                                    194

-------
GERMAN
                        ENGLISH
NACH UMSPEICHERUNG
SONDERBAUWERKE
FASSUNGSVERMOEGEN DER RHB
STEUERBARE ELEMENTE
ELEMENTANZAHLEN
ROHRE
KNOTEN
UEBERLAEUFE
BECKEN
ROHRVERZWEIGUNGEN
TEILEINZUGSGEBIETSKARTEN
GEBIET
GEBIETSART
FLAECHENANZAHL
FLAECHE
BEFESTIGT
BEFESTIGUNGSGRAD
EINOHNER
KNOTENUEBERSICHT
FILE QUANTITAET
PROFILKARTEN
GESAMTLAENGE DER KANAELE
FASSUNGSVERMOEGEN DER KANAELE
ROHRUEBERSICHT
TEILFUELLUNGSKURVEN FUER BECKEN

GEBIETSBEZEICHNUNGEN
GEBIETSARTEN
MULDENKAPAZITAETEN
VERSICKERUNGSRATEN
VERDUNSTUNGSRATEN
MONATSTEMPERATUREN
After ordering
Special structures
Volume of basins
Control gates
Number of elements
Segments
Nodes
Overflow structures
Basins
Branching points
Drainage area data
Drainage area
Drainage area type
Number of areas
Area
Impervious
Ratio of imperviousness
Inhabitants
Summary of nodes
Quantity file
Cross section cards
Total length of sewer segments
Volume of sewer segments
Summary of segments
Partial filling curves for
basins (this message should
be ignored)
Area type designations
Drainage area types
Depression losses
Infiltration rates
Evaporation rates
Monthly temperatures
                                    195

-------
GERMAN
                        ENGLISH
TEMPERATUREN FUER DIE
EINZELEREIGNISRECHNUNG
MESSZEITPUNKTE
TAGESINTERVALL
MONATSMITTELTEMPERATUREN
EINHEITSGANGLINIE
TW-ABFLUESSE
ORIGINAL
MIT WVBF = ...

KONSTANTE UEBERNAHMEN
VARIABLE UEBERNAHMEN
FILE QUALITAET
SCHMUTZSTOFFBEZEICHNUNGEN
SCHMUTZSTOFFE
SCHMUTZSTOFFAKTOREN
SCHMUTZMENGEN
AUFBAUZEIT
TURNUS DER STRASSENREINIGUNG
LETZTE STRASSENREINIGUNG VOR
... STUNDEN
EINFLUSSFAKTOREN
GEBIETSFAKTOREN
REGENDAUEREINFLUSS
TAGESZEITEINFLUSS
JAHRESZEITELNFLUSS
BECKENKLAERWIRKUNG
BECKEN IM NETZ
KLAERWERKSBECKEN
TW-SCHMUTZMENGEN
TW-SCHMUTZ
Temperatures for the single
event simulation
Time of day where the minimum
and maximum temperatures are
applied
Interval in the day
Average monthly temperatures
Unit hydrographs
Dry-weather flows (DWF)
Original
Including the water consumption
factor of ...
Constant external loadings
Variable external loadings
Quality file
Name of pollutants
Pollutants
Pollutant factors
Pollutant loads
Pollutant built-up time
Interval of street cleaning
Last street cleaning ... hours
ago
Coefficients
Area coefficients
Rainfall duration influence
Diurnal variation influence
Seasonal variation influence
Retention efficiency of basins
Retention basins
Treatment basins
Dry-weather flow pollution
Dry-weather flow pollution
                                    196

-------
                   OUTPUT HEADINGS OF THE PROGRAM DTCHCK
                        (in alphabetical sequence)
GERMAN
                        ENGLISH
ALLE ANDEREN SINK NUR
INFORMATIV
ANFANGSZEITPUNKT
ANZAHL DER KNOTEN
ANZAHL DER ROHRELEMENTE
AUFBAUZEIT
AUSGABEKNOTEN
AUSGABEROHRE
BEARBEITUNGSREIHENFOLGE
BECKEN
BECKEN IM NETZ
BECKENKLAERWIRKUNG
BEFESTIGT
BEFESTIGUNGSGRAD
DATENPRUEFUNG
DIE EINGABE ERFOLGT IN
METRISCHEN EINHEITEN
DIE MIT (F) GEKENNZEICHNETEN
MITTEILUNGEN VERHINDERN DIE
AUSFUEHRUNG DES BERECHNUNGS-
TEILS
EINFLUSSFAKTOREN
EINGABE DER KANALNETZDATEN
EINHEITSGANGLINIE
EINWOHNER
EINZELEREIGNIS
ELEMENTANZAHLEN
All other messages are informa-
tive or serve as headings
Starting time
Number of nodes
Number of segments
Pollutant built-up time
Printout node
Printout segments
Sequence of computation
Basins
Retention basins
Retention efficiency of basins
Impervious
Ratio of imperviousness
Data check
The input is in metric units

All messages starting with (F)
refer to an error and prevent
a runoff simulation. The er-
rors must be corrected
Coefficients
Input of network data
Unit hydrographs
Inhabitants
Single event simulation
Number of elements
                                    197

-------
GERMAN
                        ENGLISH
ENDZEITPUNKT
FASSUNGSVERMOEGEN DER KANAELE
FASSUNGSVERMOEGEN DER RHB
FILE NETZDATEN
FILE QUALITAET
FILE QUANTITAET
FLAECHE
FLAECHENANZAHL
GEBIET
GEBIETSART
GEBIETSARTEN
GEBIETSBEZEICHNUNGEN
GEBIETSFAKTOREN
GESAMTLAENGE DER KANAELE
INTERESSANTE KNOTEN
IW-KONZENTRATION

JAHRESZEITENEINFLUSS
KARTE
KLAERWERKSBECKEN
KNOTEN
KNOTENLOGIK
KNOTEN MIT KONSTANTER
UEBERNAHME
KNOTEN MIT VARIABLER
UEBERNAHME
KNOTENUEBERSICHT
KONSTANTE UEBERNAHMEN
LASTFALL

LETZTE STRASSENREINIGUNG
VOR ... STUNDEN
MESSZEITPUNKTE
End time
Volume of sewer segments
Volume of basins
Network data file
Quality file
Quantity file
Area
Number of areas
Drainage area
Drainage area type
Drainage area types
Area type designations
Area coefficients
Total length of sewer segments
Nodes of interest
Industrial wastewater concen-
tration
Seasonal variation influence
Card
Treatment basins
Nodes
Logic of the nodal system
Node with constant external
loading
Node with variable external
loading
Summary of nodes
Constant external loadings
Condition (single event or
continuous simulation)
Last street cleaning ... hours
ago
Time of day where the minimum
and maximum temperatures are
applied
                                     198

-------
GERMAN
                        ENGLISH
MINUTEN
MIT WVBF = ...

MONATSMITTELTEMPERATUREN
MONATSTEMPERATUREN
MULDENINITIALWERTE

MULDENKAPAZITAETEN
NACH UMSPEICHERUNG
ORIGINAL
PROFILHOEHE
PROFILKARTEN
PROGNOSEFAKTOREN
RECHENDAUER
REGENDAUER
REGENDAUEREINFLUSS
REGENINTENSITAETEN
REGENINTENSITAETEN WERDEN
EINGELESEN
RE I HE
RHB
ROHRE
ROHRELEMENTKARTEN
ROHRUEBERSICHT
ROHRVERZWEIGUNGEN
RUE
SCHMUTZMENGEN
SCHMUTZSTOFFE
SCHMUTZSTOFFBEZEICHNUNGEN
SCHMUTZSTOFFAKTOREN
SONDERBAUWERKE
STEUERBARE ELEMENTE
STRASSENREINIGUNG
TAGESINTERVALL
Minutes
Including the water consumption
factor of ...
Average monthly temperatures
Monthly temperatures
Initialisation values for
depression losses
Depression losses
After ordering
Original
Profile height
Cross section cards
Prognosis factors
Simulation period
Rainfall duration
Rainfall duration influence
Precipitation intensities
Precipitation intensities are
read in
Rainfall record
(Retention) basin
Segments
Sewer segment cards
Summary of segments
Branching points
Overflow structure
Pollutant loads
Pollutants
Name of pollutants
Pollutant factors
Special structures
Control gates
Street cleaning
Interval in the day
                                    199

-------
GERMAN
                        ENGLISH
TAGESZEITEINFLUSS
TEILEINZUGSGEBIETSKARTEN
TEILFUELLUNGSKURVEN FUER
BECKEN

TEMPERATUREN
TEMPERATUREN FUER DIE
EINZELEREIGNISRECHNUNG
TURNUS DER STRASSENREINIGUNG
TW-ABFLUESSE
TW-SCHMUTZ
TW-SCHMUTZMENGEN
UEBERLAEUFE
UHR
VARIABLE UEBERNAHMEN
VERDUNSTUNGSRATEN
VERSICKERUNGSRATEN
VORLATJFKARTEN
Diurnal variation influence
Drainage area data
Partial filling curves for
basins (this message should be
ignored)
Temperatures
Temperatures for the single
event simulation
Interval of street cleaning
Dry-weather flows (DWF)
Dry-weather flow pollution
Dry-weather flow pollution
Overflow structures
Hour
Variable external loadings
Evaporation rates
Infiltration rates
First cards
                                    200

-------
                          APPENDIX  4
                          DATA CARDS FOR STATCS
PROGRAM STATCS:
Input data
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
DATA CARD(S)
DATA CARD(S)
DATA CARD(S)
DATA CARD
1
2
3
4
5
6
7
8
9
10
11
12a
12b
13
14
15
                    Language
                    Listing of input data
                    Units
                    Special nodes of interest
                    Overflow totals
                    Listing of simulation results as arranged for
                    statistical analysis
                    Months
                    Annual statistics
                    Pollutants
                    Nodes of interest and special nodes of interest analyzed
                    Graphical output
                    Standard scales
                    Individual scales
                    One-dimensional analysis
                    Two-dimensional analysis
                    End card
NOTE:     PROGRAM STATCS allows for statistical analysis of continuous sim-
          ulation results (not of precipitation data).
          R and S at the upper right of each data card description specifies
          if the  data card(s)  must be included for  separate  and combined
          sewer system  (S)  and/or  for receiving water  system (R)  simula-
          tions.
          A Fortran F-format (real numbers) is required, if a decimal point
          is shown in the space under consideration. The location of the de-
          cimal point as indicated is not binding and  may be adjusted to fit
          the number  into the  space available. However,  all  real  numbers
          must be provided including their decimal points.  A Fortran I-for-
          mat (integer numbers)  is  requested, if no decimal point is shown
          in the  space  under consideration. All  integer  numbers must  be
          right adjusted within the space provided.
          Symbols  contained  in  the format box, but  not  individually  ex-
          plained, must be punched as shown.
                                   201

-------
      PROGRAM STATCS
                         DATA CARD  1:   Language
                                                                                                           R
                                                                                                           S
     EXPLANATIONS:
This card determines the language of the output headings

T    1    for german  headings
     2    for english headings
ho
o
             NOTE:
The following data cards may be in arbitrary order except $END always con-
cludes the data card set. Do not replace data cards not required by empty
cards.

-------
     PROGRAM STATCS
                                                  DATA CARD 2:   Listing  of  input  data
                                                                                 R

                                                                                 S
     EXPLANATIONS:
If this card is included, the following input cards are listed in front of

the statistics output.
o
u>

-------
      PROGRAM STATCS
                          DATA CARD  3:    Units
                                                                                                               R
                                                                                                               S
                         I5M6 iy|ie[l9pC 21 22p3p4 25 26 Pp8p> MEM 1213 1433 36 1
      EXPLANATIONS:
If this card  is  included the statistics  output is provided  in english units.
              NOTE:
If included also  the scales must enter  in english units. If  this  card is not
provided, then  the  scales must be given in metric units.
N3
O

-------
      PROGRAM STATCS
                                        DATA CARD 4:   Special nodes of interest
EXPLANATIONS:
                         This card calls for the statistical analysis of continuous simulation results
                         at the special nodes of interest specified on DATA CARD 3g of PROGRAM DTCHCK:
                         Network data in Appendix 2
K>
o
             NOTE:
                    This card is not allowed in case of statistical analysis of continuous sim-
                    ulation results at the nodes of interest given on DATA CARD 3h of PROGRAM
                    DTCHCK: Network data in Appendix 2.

-------
PROGRAM STATCS
                         DATA CARD 5:    Overflow totals
EXPLANATIONS:
Inserting this card the monthly and annual amount of overflow for each over-
flow structure analyzed is printed out.

-------
      PROGRAM STATCS
                         DATA CARD  6:    Listing of simulation results as
                                         arranged for statistical analysis
                                                                                                            R
                                                                                                            S
                                                                                    »3 M 45 M WJM M 7O7I 72 73*4 72 7,
      EXPLANATIONS:
              NOTE:
If this card is included a complete listing  of the simulation data as
arranged for statistical analysis is provided.


Do not include this card normally. Extensive output.
to
o

-------
     PROGRAM STATCS
                                     DATA CARD 7:    Months
R
S
       2MON
NAME  NAME NAME  NAME NAME  NAME  NAME  NAME  NAME  NAME   NAME  NAME
    tt
                            ll 19
                                                                                    I 43 5
     EXPLANATIONS:
O
oo
             NOTE:
            This card defines the names  of the months considered.

            NAME      The individual  names of the months simulated only may be given
                      (maximum of 12). The sequence must correspond to the  sequence
                      of simulation.  Between each name given there must be  at least
                      one blank.
                      Default names:  JANUARY  FEBRUARY  MARCH   ...


            For german  language  (T =  1 on DATA CARD 1 of PROGRAM  STATCS), the german
            words  for the months must be used.
                          Default names:  JANUAR  FEBRUAR  MAERZ

-------
PROGRAM STATCS
                         DATA CARD 8:   Annual  statistics
R
S
                   IS 16 17 I«l90l  23 24 MM  28
EXPLANATIONS:
If this card is included, only annual statistics are printed.
        NOTE:
If this card is not provided in addition to annual  statistics  the monthly
statistics are printed.

-------
      PROGRAM STATCS
                         DATA CARD(S) 9:  Pollutants
                                                                                                           R
                                                                                                           S
      EXPLANATIONS;
N>
M
O
              NOTE:
This card coordinates the pollutant results with the correct names for the
output headings.

Z         Number of pollutant such as 1 or 2 or 3 or 4

NAME      Name of pollutant corresponding to Z, e.g. BODS, TSS  SS or
          FECAL COLI
For each pollutant an individual card must be provided. There is a maximum
of 4 pollutants, e.g. 4 data cards in sequential order.

$SMU only must be contained on the first card.

Names and numbers must be identical to the information given on DATA CARD 2
of PROGRAM DTCHCK: Quality data in Appendix 2.

-------
PROGRAM STATCS
                                     DATA CARD(S) 10:
                                               Nodes of interest or special
                                               nodes of interest analysed
R
S
 % W A H L
NAME  NAME NAME  NAME  NAME  NAME  NAME   NAME  NAME  NAME   NAME  NAME  NAME  NAME   NAME
 1 2141
3[l4[l5|l6p[
                      ial9
                     24 Uj«p 28 29 30131 32J33 J4D3 14
                                                            6 1
                                                                                         1 11 7X
EXPLANATIONS:
            Defines the  nodes  of interest (overflows,  basins or receiving water system
            nodes)  or the special nodes of interest respectively at which statistical
            analysis of  continuous simulation results  is performed.

            NAME      Names  of the nodes of interest or special nodes of interest
                      respectively.  At a maximum 50 nodes can be given, minimum
                      one. See also DATA CARDS 3g and  3h of PROGRAM DTCHCK: Net-
                      work data in Appendix 2
        NOTE:
            The nodes  specified should be of the same type for one run.  The different
            types  are:
                    Statistics type 2:
                    Statistics type 3:
                    Statistics type 4:
                                basins
                                overflow structures
                                receiving water system nodes
                                or special nodes of interest
                    If this card is missing statistical analysis is done for all nodes, to which
                    on DATA CARDS 13 and 14 of PROGRAM STATCS statistical properties are coor-
                    dinated. If statistical analysis is requested for more than 15 nodes the se-
                    quence cards do not contain $WAHL.

-------
     PROGRAM STATCS
                                    DATA CARD(S) 11:  Graphical output
R
S
      2GRAF
NAME  NAME NAME NAME  NAME   NAME  NAME NAME  NAME  NAME  NAME   NAME  NAME  NAME  NAME
            4/89
                              20 21 22
                                                                                         68 6S
     EXPLANATIONS:
           For the nodes specified the statistical results are plotted on the line
           printer.

           NAME      Names of interesting nodes or special nodes of interest. As a
                     maximum 50 nodes may be given.
ro
             NOTE:
           In case of more than 15 nodes the sequence cards do not contain $GRAF.  In
           one statistics run only nodes of the same should be given (similar to DATA
           CARD(S) 10 of PROGRAM STATCS).

-------
      PROGRAM STATCS
                         DATA CARD(S) 12a:  Standard scales
                                                                                                          R
                                                                                                          S
     EXPLANATIONS:
to
M
CO
This card defines the scales for the statistical properties.
                         ZZZ



                         MVALUE

                         K
          Number of statistical property. A list of statistical properties
          available is contained in Appendix 5, Properties for Statistical
          Analysis .

          Maximum value of scale
          1
          2

          3

          4
linear scale (one scale range is 1/11 of MVALUE)
geometrical scale (scales are in % of MVALUE:
10.0/12.5/16.0/20.0/25.0/31.5/40.0/50.0/63.0/80.0/100.0)
logarithmic scale (scales are in % of MVALUE:
10.0/17.6/27.7/30.1/60.2/69.9/77.8/84.5/90.3/95.4/100.0)
free choice of scale (the individual figures must be
given on the subsequent DATA CARD 12b of PROGRAM STATCS)
             NOTE:
For each statistical property to be analysed this card must be provided.
Sequence cards do not contain $SKAL. Scales must be defined for all NNN
and/or NN1 and NN2 given on DATA CARD(S) 13 and/or 14 of PROGRAM STATCS.

As the maximum scale value is not chosen automatically it is suggested
to estimate MVALUE according to single event simulation results for a
one year recurrence storm and add 20 %. Sometimes it is advisable to
perform individual statistics runs with different scales for each node.
For final statistics runs the scales should be chosen that the maximum
value is exceeded less than once a year.

-------
     PROGRAM STATCS
                                     DATA CARD 12b:  Individual  scales
                                                                                                    R
                                                                                                    S
        VALUE
     VALUE
           VALUE
           VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
       i34>47i
14
>|lo|ll[n[l3|
                      14 13 14 I,
/[i«|i9 4ip444
                                                       41 4
                                                                II IV
                   KJJI «|n iJpfyt ITJ^fep'PJMp i^TJMJatfrcfrl)/
                                      4fl4fl4c
     EXPLANATIONS:
            If K = 4 on DATA CARD 12a of PROGRAM STATCS,  on  this  card the individual
            scale values are provided.

            VALUE     Individual scale values.  The  decimal point  must be provided with
                      each value. VALUE < MVALUE on DATA  CARD(S)  12a of PROGRAM STATCS
isj
M
JS
             NOTE:
            This card only is contained in case  of K = 4 on DATA CARD(S) 12a of PROGRAM
            STATCS.

-------
      PROGRAM STATCS
                                    DATA CARD(S) 13:  One-dimensional  analysis
                                                                                       R
                                                                                       S
       ?EDM
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
                                                         MUM
                                                         nnn
                                                         NNN
                                                                                      NNN
                                                                NNN
                                                                NNN
                                                                NNN
                   iiIn i
                         14(1; it
                                 i nhms
                         ft
                               Mp[4(l 4\\4
                                       lj«»JM Sip »3pJM SAJW MM U
                                                       MJW
                                                                                            66 W NO N re
                                                                ffl
     EXPLANATIONS:
KJ
M
Oi
              NOTE:
          Here the statistical properties subject to one-dimensional  statistical
          analysis are defined.

          A         Statistics type  2,  3 or 4 (see DATA CARD(S)  10 of PROGRAM STATCS)

          NNN       Numbers of statistical properties. A list of  statistical proper-
                    ties is given in Appendix 5, Properties for Statistical Analysis
          Continuation cards  do  not contain $EDMA. If different node  types are to be
          analysed in one run also different $EDM cards with different A's each in-
          cluding the necessary  sequence cards must be provided.

-------
PROGRAM STATCS
                                 DATA CARD(S) 14:  Two-dimensional analysis
                                                                                     R
                                                                                     S
          P=
NN1
NN2
                                    1HX
             nil] 13 M
                     I7IB
                                               MBS «nui «M
                                                             19 H 51
EXPLANATIONS:
        NOTE:
        Here the statistical properties subject to two-dimensional statistical
        analysis are defined.
                    NN1, NN2
                    B
                  Statistical type 2, 3 or 4 (see DATA CARD(S) 10 of PROGRAM
                  STATCS)
                  Pair of statistical properties. A list of statistical proper-
                  ties is given in Appendix 5. For each pair of statistical
                  properties one card has to be specified
                  Three ranges (+) for C which are considered
                  to represent a isofrequency curve, e.g.
                  B = 0.2  0.5   2.0
                                                                             NN1
                              Three frequencies, which are plotted on  re-
                              quest of DATA CARD(S) 9 of PROGRAM STATCS,
                              e.g. C =  .5  2.0  10.0
                                                                                           NN2
        Per statistics type, 8 pairs of statistical properties can be given at a
        maximum.

        Continuation cards do not contain $ZDMA. If different node types are to be
        analysed in one run also different $ZDM cards with different A's each in-
        cluding the necessary sequence cards must be provided.

-------
PROGRAM STATCS
                         DATA CARD 15:  End card
                                                                                                     R
                                                                                                     S
EXPLANATIONS:
This card yields the end of the statistics data card set.

-------
                            APPENDIX  5

                   PROPERTIES FOR STATISTICAL ANALYSIS
         PROPERTIES FOR STATISTICAL ANALYSIS OF PRECIPITATION DATA
No.
Property
     interval with the maximum rainfall intensity of
     the same event

 8   Ratio of time elapsed to the interval with the
    ' maximum intensity to total rainfall duration of
     this event

 9   Rainfall depth accumulated from the start of
     an event till the interval with maximum rain-
     fall intensity of the same event

10   Ratio of rainfall depth accumulated until the
     interval with maximum intensity to total rain-
     fall depth of this event

11   Individual rainfall intensities of five minute
     intervals
Dimensions
Metric Units
1
2
3
4
5
6
7
Rainfall duration per event
Dry spell between rainfall events
Total rainfall depth per event
Average rainfall intensity per event
Maximum rainfall intensity per event
Ratio of average to maximum intensity per event
Time elapsed from the start of an event to the
min
min
mro
i
1,000
1
1,000
-




mm
5 min
fftilty
5 min


                                             min
                                             nun
                                                       mm
                                                            1,000   5 min
                                   218

-------
PROPERTIES FOR STATISTICAL ANALYSIS OF BASIN RESULTS
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
43
44

(Statistics Type 2)
Property
Duration of surcharge
Duration between surcharge conditions
Q- inflow rate interval values
Q- inflow total
Q-inflow rate average
Q- inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2- inflow rate average
P2- inflow rate maximum
PS-inflow rate interval values
PS-inflow total
PS-inflow rate average
PS- inflow rate maximum
P4-inflow rate interval values
P4-inflow total
P4-inflow rate average
P4- inflow rate maximum
Pi-outflow total
Pi-retention average
219
Dimensions
Metric English
Units Units
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg
%

min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
%


-------
No.
Property
      Dimensions
Metric         English
Units          Units
45
47
48
49
51
52
53
55
56
57
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Pi-retention maximum
P2-outflow total
P2- retention average
P2- retention maximum
PS-outflow total
PS-retention average
P3- retention maximum
P4-outflow total
P4- retention average
P4- retention maximum
Pi-inflow concentration average
Pi-inflow concentration maximum
P2-inflow concentration average
P2-inflow concentration maximum
PS-inflow concentration average
PS-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Pi-outflow rate interval values
PI -outflow rate average
Pi-outflow rate maximum
P2-outflow rate interval values
P2-outflow rate average
P2-outflow rate maximum
PS-outflow rate interval values
PS-outflow rate average
PS-outflow rate maximum
P4-outflow rate interval values
P4-outflow rate average
P4-outflow rate maximum
Pi-outflow concentration average
%
kg
%
%
kg
%
%
kg
%
%
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
mg/1
%
Ibs
%
%
Ibs/s
%
%
Ibs
%
%
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
Ibs/s
ppm
                                    220

-------
                                                        Dimensions
No.       Property                                Metric         English
                                                  Units          Units
88        Pi-outflow concentration maximum        mg/1           ppm
89        P2-outflow concentration average        mg/1           ppm
90        P2-outflow concentration maximum        mg/1           ppm
91        PS-outflow concentration average        mg/1           ppm
92        PS-outflow concentration maximum        mg/1           ppm
93        P4-outflow concentration average        mg/1           ppm
94        P4-outflow concentration maximum        mg/1           ppm
                                   221

-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
OUTFALL AND OVERFLOW STRUCTURE RESULTS
No.
1
2
3
4
5
6
7
8
9
10
12
13
14
16
17
18
20
21
22
24
25
26
27

(Statistics Type 3)
Dimensions
Property Metric English
Units Units
Duration of overflow
Duration between overflow events
Q-inflow rate interval values
Q-inflow total
Q-inflow rate average
Q-inflow rate maximum
Q-overflow rate interval values
Q-overflow total
Q-overflow rate average
0-overflow rate maximum
Pi-inflow total
Pi-inflow rate average
PI -inflow rate maximum
P2-inflow total
P2-inflow rate average
P2-inflow rate maximum
P3- inflow total
P3- inflow rate average
P3-inflow rate maximum
P4-inflow total
P4-inflow rate average
P4-inflow rate maximum
PI -overflow rate interval value
222
min
min
m3/s
m3
m3/s
m3/s
m3/s
m3
m3/s
m3/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg
kg/s
kg/s
kg/s

min
min
cfs
cu.ft.
cfs
cfs
cfs
cu.ft.
cfs
cfs
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s


-------
No.
Property
      Dimensions
Metric         English
Units          Units
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
59
60
61
62
63
64
65
66
Pi-overflow total
Pi-overflow rate average
Pi-overflow rate maximum
P2-overflow rate interval value
P2-overflow total
P2-overflow rate average
P2-overflow rate maximum
PS-overflow rate interval values
PS-overflow total
PS-overflow rate average
PS-overflow rate maximum
P4-overflow rate interval values
P4-overflow total
P4-overflow rate average
P4-overflow rate maximum
PI -overflow concentration average
Pi-overflow concentration maximum
P2-overflow concentration average
P2-overflow concentration maximum
PS-overflow concentration average
PS-overflow concentration maximum
P4-overflow concentration average
P4-overflow concentration maximum
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm
                                   223

-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
       SPECIAL NODES OF INTEREST
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
67

(Statistics Type 4)
Dimensions
Property Metric English
Units Units
Duration of inflow
Duration between inflow events
Q-inflow rate interval values
Q-inflow total
Q-inflow rate average
Q-inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2-inflow rate average
P2- inflow rate maximum
PS- inflow rate interval values
PS-inflow total
PS-inflow rate average
PS-inflow rate maximum
P4-inflow rate interval values
P4-inflow total
P4-inflow rate average
P4- inflow rate maximum
Pi-inflow concentration average
224
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1

min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm


-------
No.
Property
      Dimensions
Metric         English
Units          Units
68
69
70
71
72
73
74
95
96
97
98
Pi-inflow concentration maximum
P2-inflow concentration average
P2- inflow concentration maximum
PS-inflow concentration average
PS-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Q-inflow rate interval values above
specified DWF ratio
Q-inflow total above specified
DWF ratio
Q-inflow rate average above spe-
cified DWF ratio
Q-inflow rate maximum above spe-
cified DWF ratio
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
m3/s
m3
m3/s
m3/s
ppm
ppm
ppm
ppm
ppm
ppm
ppm
cfs
cu.ft.
cfs
cfs
                                    225

-------
PROPERTIES FOR STATISTICAL ANALYSIS OF
     RECEIVING WATER SYSTEM NODES
No.
1
2
3
4
5
6
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
(Statistics Type
Property
Duration of runoff
Duration between runoff events
Q-inflow rate interval values
Q- inflow total
Q-inflow rate average
Q-inflow rate maximum
Pi-inflow rate interval values
Pi-inflow total
Pi-inflow rate average
Pi-inflow rate maximum
P2-inflow rate interval values
P2-inflow total
P2- inflow rate average
P2- inflow rate maximum
PS-inflow rate interval values
PS-inflow total
PS-inflow rate average
P3- inflow rate maximum
P4-inflow rate interval values
P4- inflow total
P4-inflow rate average
P4- inflow rate maximum
4)
Dimensions
Metric English
Units Units
min
min
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
min
min
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
                  226

-------
No.
Property
      Dimensions
Metric         English
Units          Units
46
50
54
58
67
68
69
70
71
72
73
74
95
96
97
98
99
100
101
102
103
Pi-background concentration re-
ceiving waters maximum
P2-background concentration receiv-
ing waters maximum
PS-background concentration receiv-
ing waters maximum
P4-background concentration re-
ceiving waters maximum
Pi-inflow concentration average
PI -inflow concentration maximum
P2-inflow concentration average
P2-inflow concentration maximum
PS-inflow concentration average
P3-inflow concentration maximum
P4-inflow concentration average
P4- inflow concentration maximum
Q-background flow rate receiving
waters interval value
Q-background flow receiving wa-
ters total
Q-background flow rate receiving
waters average
Q-background flow rate receiving
waters maximum
Pi-background flow rate receiving
waters interval value
Pi-background flow receiving
waters total
Pi-background flow rate receiv-
ing waters average
Pi-background flow rate receiv-
ing waters maximum
P2-background flow rate receiv-
ing waters interval values
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
m3/s
m3
m3/s
m3/s
kg/s
kg
kg/s
kg/s
kg/s
ppm
Ppm
ppm
ppm
Ppm
Ppm
ppm
ppm
ppm
ppm
ppm
ppm
cfs
cu.ft.
cfs
cfs
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
                                   227

-------
No.
Property
      Dimensions
Metric         English
Units          Units
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
P2 -background flow receiving
waters total
P2-background flow rate receiv-
ing waters average
P2-background flow rate receiv-
ing waters maximum
PS-background flow rate receiv-
ing waters interval values
P3-background flow receiving
waters total
PS-background flow rate receiv-
ing waters average
PS-background flow rate receiv-
ing waters average
P4-background flow rate receiv-
ing waters interval values
P4-background flow receiving
waters total
P4-background flow rate receiv-
ing waters average
P4-background flow rate receiv-
ing waters maximum _.
Pi-background flow concentration
receiving waters average
P2-background flow concentration
receiving waters average
PS-background flow concentration
receiving waters average
P4-background flow concentration
receiving waters average
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
kg/s
kg
kg/s
kg/s
mg/1
mg/1
mg/1
mg/1
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
Ibs/s
Ibs
Ibs/s
Ibs/s
ppm
ppm
ppm
ppm
                                   228

-------
                                   APPENDIX   6

                                 TEST EXAMPLE  FOR QQSEGL
           INPUT DATA CARDS

                    I         2         1         4        S         •         7         I
           1214567(901214967(*OI214967l*OI214967l*OI214967«*OI2}4967l*012149m*OI214967l*0
NJ
NJ
vO
10
IS
    0    0  (00 1200 2100
  lOOIOOOotOOOO  9)1
1022
 0.11000 0.17000 0.21000 0.
 0.06400 0.11000 0.12000 0.
 0.01)00 0.02600 0.02000 0.
 0.00200 0.00100
26.01000 0.10000
 0.00000 0.00000 0.00100 0.
 0.01600 0.02(00 0.02400 0.
 0.00000 0.00000 0.00000 0.
 0.00000 0.00000 0.00000 0.
 2
                                     SOO  400  100   200  200  200  100  100  100  100
10000
11 100
01600
04800
02000
00000
00000
0.06000
0.10*00
0.01100
0.14000
0.01600
o.ooooo
0.00000
0.01900
0.0*700
0.00*00
0.16900
0.01100
o.ooooo
o.ooooo
.02000
.0*20*
.00700
.11000
.00700
.00000
.00000
.01000
.06700
.00500
.01000
.00400
.00000
.00000
.00900
.09100
.00400
.06100
.00200
.00000
0.00200
0.04100
0.00100
0.04(00
0,00100
0.00000
(10
9000.00 1.00 1.00
1.0( 1.21 1.90 0.11 0.49 0.2( 0.14 0.0}
1.0 9.16 2.61 1.94 1.01 0.61 0.49 0.26 0.19 0.07
0.80000 O.iOOOO O.OOOOO
O.(6000 0.19000 0.12000
0.97000 0.9(000
0.97000 0.9(000
0.94000 p. 92000
0.80000 O.DOOOO
o.ttooo o.*90oo
0.97000 0.9(000
0.97000 0.4*000
0.94000 fl. 92000
1.00000 1.00000
0.27000 0.29000
1.00000 1.00000
0.19000 0.15000
.99000
.99000
.90000
.(0000
.92000
.99000
.•9000
.90000
.96000
.21000
.99000
.12000
.•0000
.•9000
.00000
.00000
.1(000
,(0000
.99000
.00000
.00000
.1(000
.(7000
,22000
.9(000
,11000
.(0000
.00000
.00000
.00000
.((0(0
.(0000
.00000
.00000
.00000
.(6000
.70000
.21000
.99000
.11000
.10000
.00000
.00000
.00000
.(4000
.10000
.00000
,00000
.00000
.(4000
.99000
.20000
.(•000
.10000
.•0000
.00000
.00000
.00000
.•2000
.•0000
.00000
.00000
.00000
.•2000
.49000
.20000
.7*000
.10000
.10000
.00000
.00000
.00000
.•0000
.(0(00
.00000
.00000
.00000
.•0000
.1(000
.30000
.66000
.10000
.(2000 0.14000
.••000 0.9(000
,»*000
.••000

.•2000
,»*000
.99000
,*(000

.11000
.20000
.99000
.10000
.•1000
.••000

.14000
.••000
.••000
.•6000

.2*000
.20000
.49000
.10000
.00 0.00 1.00 .70 (.00 6.90 1.60 2.60 .10 .20
.00 0.60 0.40 .10 0.20 0.10 0.00 .00 .00 .00
.00 0.00 0.00 .00 0.00 0.00 0.00 .00 .00 .00
.00 0,00 0.00 .00 0,00 0.00 0.00 .00
.00 0.00 1.00 .90 12.00 11.00 7.60 .(0 .60 .90
.60 1,90 1.40 1,00 0.90 0.40 0.20 .10 .00 .00
.00 0.00 0.00 0.00 0.00 0.00 0.00 .00 .00 .00
,00 0.00 0,00 0.00 0.00 0.00 0.00 .00
19.00 (0.00

-------
                                                                   OUTPUT
IsJ
u>
o
            INT
                   won*
                           HOG*   HOTOT
                                          HSHO
                                                 DIPM»
    OUT Ttrr i
OtPHO ftDLTOt   MD«
                                                                             CDO
        DIM WB 1
DLPHO tDLTOT   N600
                                                                                                                         ODQ  CMTRN
I o.oono
2 o.nooo
$
4
s
t
7
•
«
to
II
12
II
l«
|S
1*
n
ii
i«
10
21
21
21
11
»
26
27
2*
2*
10
11
12
11
11
15
It
IT
11
.0000
.(191)0
.14*5
.!«!»
.1099
.l>7tl
.0*54
,04«»
.0117
.0291
.0212
.»2|0
.0194
.0(04
.DOS!
.002«
.OOlt
.000*
.AOQ4
.0002
.flOOl
.0000
.0000
.0000
.0000
.11000
.nooo
.0000
.nOOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0900
.14*5
.1*1*
.105*
.0761
.0*54
.om
.Ollt
.019}
.0311
.0210
.0154
.0104
.0051
.002*
,0016
.000*
.0004
.0001
.0001
.0000
,0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0*6*
.0450
.1400
.1650
.1100
.0100
.0*10
.04(0
.0160
.0110
.0140
.0200
.0160
.0110
.0070
.0040
.0020
.0010
.0000
.0000
.0000
.0004
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 0.0000
.0000 0.0000
.000
.000
.000
.971
.Oil
.441
.414
.166
.147
.511
.106
.no
.190
.10*
.070
.041
.011
.Oil
.005
.001
.«0|
.009
.000
.000
.000
.000
.090
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
,«0«
.000
.000
.000
.000
,000
,000
,000
.000
.000
,000
.000
.000
.000
.000
.000
,000
,000
,000
,00*
.00*
,00«
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0*000
.000
.000
.000
.10$
.170
.}>•
.••4
.014
.204
.119
.7*1
.4*6
.1*0
.111
.1*1
.107
.095
.OK
.014
.006
.001
.00*
.000
.000
.009
,000
.000
.000
.000
.000
.•00
.00*
.000
.000
,000
.0*0
.000
.000
.do* Moo o.o«
.000 6.000 0.00
.000 *l.*00 0.00
.7*0 »0.5*S 11.11
.•6* »*«I10 91.71
.800 -0.141 If.lS
.40* 0,144 16.47
,604 0.414 1*,7*
.100 0.40* 11.71
.20* OtIH I*. 19
.60* -6.004 15.lt
,60* -0*104 |*.9*
,400 •
.100 •
•too •
.1*0
.000
,000
.000
«000
.000
.000
.000
.000
.006
.000
,000
.000
.000
4000
.000
.000
.000
.000
.000
.000
.010 16.61
.015 11,94
.017 11.06
.0*7 t««l|
.055
.01*
.014
tOO*
.001
.000
.000
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.000
.600 0.000
.97
.61
.61
.4*
.11
.11
.«•
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.000
.000
.000
.•II
.460
.091
.611
.117
.147
.17*
.»10
.669
.619
.177
.lit
.191
.067
.04*
.01*
.Oil
.00*
.004
.001
.000
.000
.000
.600
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.000
.000 0.000
.000 0.000
.000 5,104
.000 11.610 1
.000 10.549 1
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.004
.000
.000
.000
.000
.000
.000
.000
.000
.000
.690
.7T|
.101
.110
.410
.7*1
.1*1
.**!
.414
.1**
.12*
.117
,676
.041
.01}
.010
.00}
.00|
.000
.000
.000
.000
.000
.000
.000
.000
.0*0
.000
.000
.000
.000
.000
.000
.000
.000
.900
.000
,0*0
,600
.•00
.600
.900
.600
.»00
.40*
.000
.900
.400 -
.100
.100
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 0.00
.000 0.00
.000 0,00
.7*6 101.11
.$*» 79.17
.199 »9.27
.790 M.45
.01* 75,67
.20* 71.90
.170 71. »l
.1(0 71,10
.117 70.1*
.00* S*.*7
.01* »*,77
.11* }».I7
.001 1*,19
.01* It, I*
.027 41.1*
.07* 46.24
.041 4*. 95
.022 51.74
.010 55.77
.001 54.71
.001 si. *o
.000
.000
.00*
.0*0
.000
.000
.000
.000
.000
.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000
.00
.0*
.**
.00
.00
.00
.00
.0*
.00
.00
.00
.00
.00
.00

-------
             APPENDIX
           TEST EXAMPLE FOR DTCHCK
NOTE:  This example is similar to the example
       contained on the computer tape.
                    231

-------
                                        Input data and  output for single  event simulation
N)
Co
          »>Ab(,,AX
          MASO.A*
UlAib.AK  •!?[)(..




WASb.AX  >lfU7.





MAS(,, AX  • IFUB.




MASli.AX  «IFUV.





KA5(,,AH  tlFIO.




UAbl, , A»  • If | | .
          k.ASG,A»  • If I ).
                  •iri'i.
          UA^b.AA  «IIIS.
          WASt,,AX  « If 16.
          WAbb,A«  « IF | 7.
          WAS  • II IH.
          UASI..AA  -IF?!:.

-------
              M» •>(,,*»   .1121.
NJ
CO
              OAS'j.Ai   • IF 2M.
              UASb.A*
                         « IFOI•
              uusi    I i, • iroj.
              WCPit    Ib.'IIUfc.
              WUit.
              UUSI    I V, • IF UV.
              WI'SL   2J, > M I J.
              wllbL  2b.« IF IS.
              UHSL   //, ,• II 16.

-------
tollSL   27i«IFI7.
VASb.Ak   «KAIN.
W»b(,,AX   .UUANI,
           • UUAl| .
MIlLLL II ,1    «OHA|.
I UHPUK  2/HJ-l/UHA  t.13  SL7JHI  OS/16/79  2U:t7!HII
• UKAI   IS 1401  IA1 ALOblltD OK  ASS I MUD
» At  SIAIIIb:  HbOQIOOOOOOO
UASI,,I
                . ,t I M///30U
UUAI A i
OAIA  I
     I .
     2.
     3.
     1.
     S.
     A >
     7.
     H.
     V*
    III.
    I I •
    U •
    I J-
    I t.
    Ib.
    !.«..
    I /•
    1C.
    IV.
    IS-
    JA.
    •II-
    !»•
    2'!'
    JU.
    Jl •
    32.
    33.
    31.
    .IS.
    36.
IL   .Nil.
/ KL70-S  US/IA-20:i7:tV
       ugS-LHA-EXAMI-LC
                   I.OOIUI.O I
         IUUK.002   CU02CDU3
         lUOVtOlO   COIOCOII
                      C021C02S
0  I. II 1.0  1.0
COU31001   CUOHCQOS
C11IUU3I   CUI3CUI1
CU2SC026   CU2AC027
         IIIOAS6I7SO
COUSBU06   BOO6COU7
COI1KOIS   ROISCOIA
COJ7CU32
                                                                                   HS  Si
                                                                        C007COUB   CUU8COO*
                                                                        COI66U06
            r02VCII30   IU30C03I   C03K032   C032C033   C033C031   C031C03S   CU3SC036
<.II36(037   (037HOJH   H0360038   OU38CUJ?
UOU6H03H
XAXK




1 hOI SK02HHU38
2
3
1
b
NLuLM













kH.Hi
1C LO K.UU2
UU02XOH K.UIII




i
10
1'..
2(1
2S
30
3'>
'IU
IS
SO
S5
AO
AS
70
7S






0
O
160
AMO
s/.o
IIJCI
110
I6U
HO
•ID
•10
•10
AO
2C
fO
III .'III .MU2AO
1,1 .'III . 'IUIII1
                                                     60.111
                                                     SV.Aft

-------
1-0
OJ
Ln
                 J7.
                 3d.
                 3V.
                 111.
                 41 •
                 t2.
                 43.
                 14 .
                 S7.
                 IB.
                 •IV.
                 bIJ.
                 bl .
                 S2.
                 b3.
                 bl.
                 bb.
                 t>t..
                 b/.
                 Ml.
 (•3.
 61.
 6b.
 66.
 hi .
 OB.
 69.
 /U.
 n .
 /2.
 73.
 7S.
                 77.
                 /«.
                 79.
                 HO.
                 HI .
                 02.
                 HJ.
                 HI .
                 US.
                 H6.
                 II / .
                 1)11.
                 119.
                 VU.
                 V I .
             i no  UAI A.
icuu Jiunttou?
1C UOICUIIblOU.I
ic un'jiionti-iin'i
IBUU6CUU7LUObCUI6
ICOU7CUUHKOU6
KOObC009l007
ICU09CUIOCIIOB
ICOIUlbl KOOV
ICU| ICU.1ICOIO
ICUI ICUI'I
l(.UrittUlb(.IH3
IkOlM UI6UII 1
IbUI JSOI 1
IbUI'ISUIbSOl 3
ISblblUI A-..OI4
ICU 1 61)0061(0 ISSO 15
ICCI03CU241UU2
1 t'OZ4(O75lUUJ
KU2SCCI26I 024
llU2«CU2/tfl2b
IC02/Cl)J?l026
IK02BCU29
KU2VlU3UKa2tt
KU3btU3IC029
K03IC03210I IC030
KU3^C033L03IC027
KU33C034(.032
ICU31C03SC033
ICU3bCO36lO34
ICUJ6CUJ7103S
ICUJ7ROJIH 036
IKO3PIKJ 1UUI37
IUU3BCU.19K038
I hut
2ROIblCOIb0.20 S.
2MU2BICU7'»0.hUIU.
2KU3«i|UU3H0.5U2U.
2UO062
2U03H3
I-NUK
KUJ1 0.16 0. 15
3AIQICOUI 12 26* O3
3AIU410U4I2 Il.6b
3ACUSCUC5I2 IU.&2
3AClj^HUO6|2 30. IB
JAt |3rj|3l2 SU. Itl
3Abl3SOI 312 SO. 10
3AC26C0^6|4 2(1.40
3Al2eKU2BI3 7V. b2
3AL3ICUJI 1 1 1 7.HJ
JA(.3.'CU.12|2 21. 9U
3Atj3t(ll3l2 11. bl
3A137CUJ7I3 SU.S2
tuot
01 . 1 (I
01 . bl)
Ul 1 .00
Ol .31)
ni .-to
Ul -Ml
Ul .Ml
III .50
01 >5O
tl 1 1 . DO
01 1.00
III .20
01 .'10
Ul .40
Ol .40
(II .60
III >1U
01 .40
Ul .10
Ol .60
01 .611
ni .so
Ol .6U
01 .60
ui .an
II 1 . BU
U 1 .0(1
u i .00
01 .OU
Ul .00
III .20
III .50
Ul 1.20

00 '.3.92
OU 26. Sb
Oi; 111.43
SI. J9
v . mi

•4U2VD.
.SO?'lO.
1 .011145.
. 30lbb.
. i02'_.n.
«S02<5.
.501114.
.501 72.
.bO 92.
1 .OOI^U.
I.OO 92.
.20130.
.40120.
.40 92.
.401 JO.
•60IB2.
.40220.
.402OO.
.4OIHO.
.6O2I2.
•60IV8.
.50232.
.61)1 bl.
.60167.
.80137.
.OH2/2.
.01)152.
.00167.
.OOIB7.
.00214.
.201 38.
.bOIUO.
1 .20100.




HOO.0.6b5
'jOO. 0.655

59.68
57.50
55.10
51 .39
11.97
36.29
33.57
30.87
26.71
!><• 74
51.40
53.92
51.76
51.10
51.12
53.33
59.68
52.31
11.89
37.17
29.59
26.55
2b.7b
2S.33
21.02
22.65
18.47
16.07
I4.3O
12.77
1 1 .66
in. 41
21 .20




.001
.001

57.70
55.60
53.50
11.97
36.29
33.57
30.87
26.71
21*98
51.1O
54.12
53.53
54.10
51.12
53.73
52.61
53.00
11*89
38. OU
30*05
23. S3
25.75
25.33
21.91
22.65
18.67
14. U7
14-30
12.77
1 1 .66
II .23
10.27
21.10





2

10 3UKU2IU079 0.0
• 10 »2
.JS 9O
.14 S7
.23 Jl
. I'l
it'
.0? 75
.1(1 IB
. 50 2H
• 2V J2
• IS IH
.lit '\








































                                                                                               0.40 0.02U
 r A , II    .IJUANI .
I*  I/  RL70-b  lib/ IA
  I .        bUb-CI'A-l
  2.        (jl   I I I
  j.        » >
                                      XAHPlt
                                          . /US V'l,/
                                                      .;<.PUU:IU  i.CIIUOOJOKRCispRor it

-------
ro
u>
                1.
                S.

                7.
                8.
                9.
               10.
               I I •
               12.
               13.
               II.
               Ib.
19.

21 •
22.

21.
ib.
2A.
77.
28.
29.
3d.
II.
32.
33.
11 .
35.
               39.
               IU.
               II .
               12.
               13.
               11.

               16.
               1' •
               If).
               19.
               SU.
               bl .
               b2.
               b3.
               51.
               bS.
               S6<
               57.
               b8.
           tNU  I>AIA.
           xxxx
           ILUMHCKC IAI
           MULOKNKATA;
           HOLllLHIHI 1 I
           VlKSICHf Rill
           VEKOUNS(UN
1 .

.2


.1
.4






















oo
30
00
10
01)
10
Ob
10





It. 9 9.6


19.7 IS. 6
19.2 16.5
.061 .200
.110 .410
.120 .222
. 1 ta .190
.109 .050
.097 .010
.082 .010
.067 .DOS
.051
.043
.03)
.026
.020
.016
.01 1
.009
.007
.005
• OO4
.003
.002
.001
•0512.00
.0512.10
.0513.00
.0511.10
.OSI1.OO
.0514.30
.0515.00
.0515.30
1. 1. I*
1. 1. 1.
1. 1. 1.
1 . 1 . 1 .

1.7 O.I


9.7 5.2
9. | 6.4
.064
.1 10
.120
.118
.109
.097
.082
.(167
.051
.043
.0)3
.026
.020
.016
.01 1
.00V
.007
.005
.UO1
.00)
.U02
.001
.OSI6.OO
.OSI6.10
•0517.00
.0517.10
.0518.00
•usia.io
.0519.00
.USI9.10
1. 1
1. 1
1. 1
1. 1

0-1


1*0
6*0
.055
.ISO
.210
.200
. 1 JO
.090
.060
.010
.030
.020
.010
.005
.00)
.001














.064
.l|0
.120
.118
.109
.097
.082
.067
. Ub3'
.043
.1)13
.026
.020
.016
.01 1
.009
.U07
.005
.UOH
.001
.002
.001
.0520. OU .
.0520.10 .
.OS2I
.0521
*OO .
• 1O .
.0522. UU .
.0522
.30 .
.0523.OO .
.0523.30 1.
. 1 .
. 1 .
1 .
. 1 .
I .
1.
1.
| .
SS
70
80
00
5




























05
OS
OS
OS
OS
OS
05
OS




           KXAX
           »X»X
           WUAI A , IL
                       «t|UAL T .
                         -b Ob/l*-2U:i7:b1
                         QHb-f 1'A-t.XAMPU
                         I   II.O.II.              /   l.'i.S.              3I7FCCAL  COI.IFURM    1   COD
                           IIJ.U  IS. II  ?O.O  I',. (I /'..It nil. Ul Ml. (I no. (IHln. ClIOU. 0100. tlldO.O  bU.U  fcll.ll 7U.U AU.lt

-------
 1.
 S.
 6.
 7.
 H.
 9.
IU.
I I .
12.
I 3.
I 1.
It,.
16.
17.
in.
21 .
22.
23.
21.
2S.
26.
27.
2H.
2V.
JO.
Jl .
32.
33.
31.
3b.
Jfc.
17.
3H.
3V.
IU.
II .
1?.
13.
11.
1b.
•16.
'17.
•IN.
IV.
SO.
bl .
b2.
5J.
bh.
bV.
6(1.
61 .
A?.
63.
nl.
 IU.O  Ib.O  20.0 IS.O  >5.f) 80. DUO
AUHlAUnilLN      2'IQ  210 210  210
-31.2-31.2-31.2-31.2-31.7-31.7-31
 I.HV  I.R7  1.89 I.H9   -It   .21
Slk»bStHRL INIMINC,
 O 80.0100.0100.OIOO.0100.0 50.0  60*0  70.0 60.O
720  720 72O  720   21   21   21  21  210 210 21O  210
.6-31.713.3113.3113.3113.31-31.2-31.2-31.2-31.2
11   .21 I 133.1133.I 133.1133. 1.87  1.89  1.87 1.89
.686. 313825.3825.3825.3825.165.2165.216S.2165. 2
 5 35  35  5  10 1O  10 10   8  30 30   8  5  3b 35   S
t INHt.

11 NIK
1 IHIIl










1 INFIl
1 ISbANCiLINILN

1 )S(.AN«L Illicit
1 TbliANbLINItH










ITSbAIJl.LIHIlN
C INHt 1 l'j<,AI!r,L INIIH










E INHt
11 Milt










F 1 hill
tiEtllt










1 TShANbL INIIM
1 1S(.»IIC,L INIf N










1 T •.,(,»>! (,L INItN
1 'il AH.IIIKI.N 1 .
sciimiizsToi r

srtMiuT/siorr
scHiiui7STorr










SCIIMIIT7S10FF
bcmiuubiorr










SCHHUI/SIOI 1
S'CIIHUI ZSTUt r










sriltllil 7SIOF (
U 1 . 0 1.0 1 • U



2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
•I
1
•1
1
KEur. HIiAOtR b.OI .11(11 .OUI .UOI .001







10.01 .
1 b • II •
20.0 .
2b-U .
30.0 .
JS.O •
1 fl . II •
uui .001 .on i .001
7K • '/(, .V6 >VR
90 .«/ .H7 .70
76 .70 • 73 -77
/.'I .bb .bn .67
b S '''S .IV .59
•III . JH .'I? • V,






S.O
10.0
IS.O
20.0
25.0
3O.O
35.0
10.11
IS.O
SO.O
SS.O
60. O
5.0
10.0
IS.O
20.0
25.0
30.0
3S.O
10.0
15.0
SO.O
SS.O
60.0
S.O
10.0
IS.O
20. CI
25.0
30. O
35.0
10.0
15.0
SO.O
SS.O
60.0
S.O
10.0
IS.O
2O. 0
25. 0
3(1. 0
35. U
10*0
Hb.O
SO.O
SS.O
60.0
.0 1 .U 1
.UOI .UOI
.UOI .OOI
.79 .77
•7R .78
.77 .7S
.•'3 .06
. II / .79
. / II . A ft
1.10
1*28
2.0O
1 .03
0.65
0*37
0. 17
0-01
O.OU
o.oo
0*00
0.00
5.10
7.IS
3. SI
2. OS
1*35
0.70
0.60
0.35
0*20
0.09
0*02
0.00
15*00
39. SO
30. OO
19-00
10.00
5.50
3>Sb
2-00
1 .50
1.00
0.50
0.00
15.10
16.05
7. SO
3.85
2.15
1 .10
O.70
0.15
O.OU
O.OO
0.00
O.OU
.0 1.0 1
.001 .Out
.UOI .OO
.791 .00
.98 .97
.96 .98
.90 .75
.H3 .70
. > 7 . li 1
3.08
3.21
I.SO
0*77
0.17
0.28
0. 11
0.03
O.OO
0.00
0
O
3
S
2
I
1
0
0
0
0
0
U
0
IS
37
30
17
.00
.00
.83
.36
.63
.51
• 01
.68
.15
.26
.15
.07
.02
.00
.00
.50
.00
.00
10. OO
5
3
2
1
1
O
O
IS
16
7
3
2
|
0
0
0
0
O
0
.0 1 .
. (Ill 1 .
.71 .
.88 .
.80 .
.73 .
.67 .
.60 <
. b 1 .
.50
.50
.00
.50
.00
.SO
.00
.1
.05
.SO
.85
.15
.10
.70
. IS
.00
.00
.00
.00
O 1 .U 1
(101 .001
VI .71
83 .83
7b .75
66 .67
i>8 .60
bl ,b3
11 .16
3.
3.
1.
0.
U.
0.
0.
0.
0.
0.
0.
U.
7.
10.
5.
3.
2.
1.
O.
0.
U.
0.
0.
0.
7.
17.
IS.
7.
5.
2.
| .
I .
0.
0.
0.
0.
IS.
1*.
7.
3.
2.
1 .
0.
U.
U.
U.
U.
0.
.(I 1
.UUI
.VII
.ue
.BO
.73
.67
.60
.51
08
21
SU
77
19
28
11
03
00
OO
00
00
65
73
27
08
03
35
VO
53
30
11
03
00
SU
7S
OU
50
00
7b
75
OU
75
SO
25
OO
1
05
SU
8b
IS
10
7U
IS
00
00
OU
OU
• 0 1
.UOI
.UOI
.98
.70
.76
.61
.55
.18
1. 10
1.28
2.00
1 .03
0.65
U.37
O. 17
0.01
0.00
O.OU
0.00
0.00
5.10
7.15
3. SI
2.05
1.35
U.70
U.6O
0.35
0.211
0.09
O.U2
U.OO
15.00
39. SO
30.00
I9.0O
10.00
5.50
3.50
2.0U
1.50
1 .00
II. SO
O.OU
IS. 10
16.05
7.5U
3.85
2.15
1 .10
O. 7U
O.lb
U.OU
U.OO
U.OU
U.OU
.U 1 .U 1
.UOI .Oil 1
.UUI .UOI
.96 .V6
.87 .87
.70 .73
.55 .b«
.1b .19
.JH .12







































.U
.00
.00
.78
.VU
.77
.67
.5V
.Sb

-------
LO
.00
 67.
 AH.
 69.
 70.
 71.
 72.
 73.
 71.
 75.
 76 •
 77.
 7H.
 7V.
 HO.
 81 .
 82.
 03.
 81.
 HS.
 BA .
 87.
 Bll.
 89.
 911.
 91 .
 92.
 93.
 91.
 95.
 96.

 9B.
 99.
IOO.
101.
102.
                106.
                107.
                lort.
                109.
                 10.
                 I I *
                 17.
                 I 3*

                 15.
                 16.
                 17.
                 IB.
                 I'7.
                I 2O.
                171 .
                127.
                173.
                121.
                IZ5.
                126.
                127.
                178.
                12V.












TAfaCSZL 1























JAHKF.SZF
.JAHHtSZE
15.0 .
50.0 .
55.0 .
60.0 .
6S.O .
70.0 .
75.0 .
BO.O .
85. U .
VO.O .
VS.O .
IOU.O .
IF. INFLUSS























1 II INFLUSS
1 IL INtLIISS
JAHMt57.ll It INILOSS
JAHHtSZF
1 II. IMILUSS
13
3H
35
33
32
31
30
30
3D
30
30
3U
























1
2
3
1
.JJ .
.29 .
.27 .
.75 .
• 73 .
.77 .
.21 .
.20 •
.70 •
. 7,0 •
.20 .
.20 .
O.OO
H.3U
1 *00
1 ..10
2.00
2.30
1.00
1.3U
1.00
1.30
5.00
5.30
6.00
6* 3D
7. (10
7.30
(1. 00
B.3O
9.00
9.30
10-00
10.30
1 1 .00
1 1 .30
.80
.99
.10
.BO
HtlKt NKl ALHWIHKOHC,
































37
33
Jl
29
2B
77
26
25
25
75
75
25
0.
n.
o.
u.
o.
0.
0.
0.
o.
u.
0.
u.
u.
0.
i .
i .
I.
i .
0.
u.
u.
u.
11.
1 .
.
1 .
.
.
5
10
IS
20
25
30
35
10
15
•SI .69
.18 .59
.16 .53
.11 .18
.13 .11
.12 .17
.11 .11
.10 .10
.IU .10
.10 .'10
.10 .10
.10 .10
ao o.ao
au O.BO
HO O.BO
HO O.BO
RO o.ao
80 0.80
au o.ao
HO 0.80
82 0.82
HI 0.81
R6 0.86
89 0.8V
92 O.V2
V5 O.VS
OU I.OO
UU I.UO
.55
.IS
.39
.35
.37
.31
.31
.JO
.JO
.30
.30
.30
.00
.OO
.00
.UO
.00
.00
.00
.0(1
.au
.00
.00
.UO
.00
.UO
.00
.UO
oo i.no o.vs
OU 1 .00 O.VO
11 o.vv o.as
98 0.98 0.80
97 0.97 U.7S
98 0.98 0.7U
99 0.99 0.65
OU 1.00 0.60
75 .BO
00 .91
12 .16
7'i .80
.VO
.81
.60
.90
B6 AB VV 86
HI 15 VV 81
7H 12 9H 78
76 IU Va 7A
7S 3V V7 75
71 38 V7 71
73 37 97 73
73 JA 9f. 73
72 36 96 77
50 77 35 96 77
















55
60
65
70
77 35 95 72
71 31 95 71
71 31 95 71
71 3J 95 71
75 70 JJ VI 70




no
7U JJ 91 70
US 70 JJ 91 7O




90
69 37 91 6V
V5 AV 32 VI 6V
MJO
IIL<.MHM.AIK*INMIN<,






0
1
1
.5
• n
.',
6V J2 93 6V
B6 (.11 98 86
7B in 97 7»
/I '( / V !
>t
.61 .76
•52 .66
.16 .59
.12 .SI
.39 .IV
.37 .17
.36 .16
.35 .10
. JS .10
.35 .10
.JS .10
.15 .10
O.BO
O.BO
0.80
0.80
0.80
0.80
0.80
0.80
0.82
0.81
0.86
0.8V
0.92
O.VS
1.00
1 .OO
1.00
1.00
O.VV
O.V8
O.V7
0.9H
O.VV
1.00
.87 .
.80 .
.82
.87 .
IOS
1 10
IIS
120
I2S
130
I3S
no
IIS
ISO
155
160
165
170
I7S
IBIJ
I8S
190
195
200
(1.5
9.0
9.5
.18 .37
.11 .31
.3V .28
.36 .23
.33 .22
.32 .21
.31 .20
.30 .20
.30 .20
.JO .20
.JU .20
.30 .20
12. OU 1
12. JO 1
13.00 1
13.30 1
11.00 0
11. JU 0
IS* 00 0
IS. 30 0
16.00 0
16.30 1
17.00 1
17. JO 1
IS. 00 1
18.30 1
IV. 00 0
IV. 30 0
7O.OO 0
20. JO 0
2 I.OU 0
71.30 U
22.00 0
22. JO 0
.11
.36
• J2
.28
• 26
• 25
• 21
.23
.23
.23
• 23
.23
.UO
.UO
.00
.UO
.VV
• V8
.VJ
• 98
.VV
.OO
.UO
.00
.UO
.UQ
.98
.96
.VI
• V2
• VO
• 88
.86
• 81
23.00 0.82
23.30 0
80 -75
80 .80
VI .VV 1
80 -75
6V 32 93
68 31 93
68 31 93
68 31 92
68 31 92
67 31 92
67 31 92
67 31 92
67 31 97
67 31 VI
66 31 VI
66 31 VI
66 31 VI
66 31 VI
A6 31 VI
65 30 VI
65 3U VO
65 3O 90
65 30 90
65 30 VU
S8 30 83
58 3(1 112
5(1 .IU HI
.80
•75
.ao
.00
.'5
6V
68
68
68
68
67
67
67
67
67
66
66
66
66
66
65
65
65
65
6S
58
5H
5B
.18 .13 .33 .37
.11 .38 .2V .JJ
.3V .JS .27 .31
.36 .33 .25 .2V
.33 .32 .23 .28
.32 .31 .22 .27
.Jl .30 .21 .26
.JU .JO .20 .25
.30 .JO .20 .25
.30 .30 .20 .25
.30 .30 .20 .25
.30 .JO .20 .75
I.UU U.60 I.OO
I.OU U.S7 I.UU
1 .00 O.SS I.UU
I.OO O.SS I.OU
O.VV O.SS O.VV
o.vs o.6o o.va
0.97 0.6S 0.97
o.va o.7o o.va
0.99 0.80 O.VV
.00 O.VU I.UU
.00 .UO I.UU
.OU .00 I.UO
.00 .UO I.UO
.00 .OO I.UO
D.VS .on o.va
0.96 .UO O.V6
a. vi .uo o.vi
O.V2 .00 O.V2
U.VU .00 O.VU
11.88 .UO 0.88
0.86 .UO 0.86
0.81 .OU O.81
0.82 .00 O.82
O.BO .UO 0.8O
.82 .93 I.UU
.BO .80 .81
.96 .77 .55
.82 .93 |,UU
2U5 65 JU VU
2IU 65 30 VU
7IS 65 30 VU
220 65 JU VO
22S 65 JU HV
730 65 JO 8V
235 65 30 8V
210 65 30 8V
215 65 JO 8V
250 65 30 8V
255 65 JU 89
260 65 JU «9
265 65 3U HV
27U 65 30 88
275 65 JO 88
280 65 JU 88
285 65 JU 88
790 65 JU at.
7VS 65 30 88
JUO 65 30 88
16.5 Sa 3D 73
1 7.U 58 30 73
17.5 58 30 It.
• SI
.18
.16
.11
.13
.12
.11
.IU
.10
.10
.10
.10
























.98
.92
.13
.va
65
65
65
65
65
6S
65
65
65
65
65
65
65
65
65
65
65
65
65
65
58
58
58

-------
to
W
V0
I JU.
Ill •
I (2.
I 33.
I 11.
US.
I 36.
I3/-
IJt).
139.
I'lU.
I'll .
112.
113.
111.
Mb.
I 'I*.
I1/.
lie.
119.
ISO.
151 .
152.
CSJ.
151.
155.
I',6.
IS7.
IS«.
159.
I6O.
Ill .
162.
I «.3.
161.
I (.5.
166.
I (,7.
K,H.
16V.
I /U.
171.
1/2.
I 73.
171.
I /b-
I 76.
I IT.
I7H.
I II.
I lib.
181 .
III?.
183.
I 81.
I lib.
IH6.
IH7.
1(18.
IHV.
190.
I VI .
192.
                           TK-'jCHMIHZMI MGEN   I
                           l«i-5(IIMU












2.0 68 3 II 9S 6B 10.
2.S 66 35 93 66 10.
3.0 61 33 92 61 II.
3. S 62 32 91 62 II.
•1.0 61 31 90 61 12.
.1.5 60 31 89 60 12.
5.0 !i9 30 BB b9 13.
b.S f>B 3U 87 SB 13.
6.0 bB 30 86 SB 11.
6.b bfl 30 BS SB 11.
7.0 58 30 81 58 IS.
7.5 bB 3O 81 SB IS.
0
S
0
S
0
S
0
S
0
S
0
S
8.0 58 30 83 SB 16.0
O.OU250. 0250. 0250. 0250.0
0.
1.
1.
2.
7.
3.
3.
JU 250. 0250.0250. 0250.0
OO20O.U250.O25O.O750.0
30250.0250.0750.0250.0
00 75(1. 0750- O 750. U25Q.O
30250'. 0750. O 250. O25Q.O
OU2bU.U2SO. 0250 .0250-0
30250.0250.0250.O750.0







1.00250.0250.0250.0250.0
1.
5.
6.
6.
7.
7.
8.
8.
1.
9.
10.
10.
1 1 .
1 1.
0.
0.
| .
1 .
2.
2.
.».
J.
1.
1.
!. .
5 .
*•
6.
7.
7.
II.
II.
V.
<* ,
10.
HI.
•I"
1 1 .
0.
0.
30 2511. 025O.U25O. 0250.0
302bl).075U.O2S0.0250.0
OH 250. O2 50. 02 50. 0250.0
3D 2SO. 0750. 0750. 0750.0
no 7 b0.025O. 0250. 0250.0
30 2 50.0250. 0250. O2 50.0
00250.0250.025O.0750.0
30 250. 0250.1) 250. O250.O
OO7b0.02SO.O2SO.O7SO.O
HI 2'j [>. O 250.0 250 -O 250. U
nil 2 SO. 025O. 0250. 0750.0
3U2SU.O250.O250. 0250.0
UU 250. (12 5O. 0250. O2 50.0
10 2S0.025O.O250.O 250.0
00 2110. 0780. 02 80. 0280.0
JO 2 80. 0280.0280. 0280.0
OO2«O.078O.O2RO.n28O.O
3O280. 0280. 0280. O78O.O
UO 280.0280.0280.0280.0
J02H0.07U0.02HO.02BO.O
OO28O.O78O.0280.O280.0
3(1280.0280.0280.0280.0
00 2II0.07UU.U7BO. 0280.0
jn2H0.02BO.U280.O28O.O
(IO/(I(».(I7B(I.02HO.O7«O.O
JO280.02UO.02BO.O7BO.O
nO2(III.O78O.02(in.[l7BO.O
JO2«n.O2B0.07e0.0780.O
00 2 MO. 0280. 0? 80. 0780.0
I07KO* 0260. 0280. O280.0
11(1280.0280.0780.0780.0
JO2UO .02811. 0280. 0280.0
OU2«0.02«U.O?»in.U7»O.O
10 200. 0280. 0280. 0780.0
OP 780.0280.0280.0280.0
1U 2110. 0780. 0780. O280.0
OH 2HO* 0780. 0780* 0280.0
JO 7811. 0?80.Ii780. 0780.0
UO 7(1.0 2(1. V 20.0 20. 0
10 7U-U 70.0 20. n 20. 0








































SB 30 BO SB 16.0
SB 30 79 bB IB.S
SB 30 79 SB 19.0
SB 30 70 SB 19. b
SB 30 76 58 20. O
SB 30 77 SB 20. b
SB 30 77 SB 21.0
SB 3O 76 58 21. b
SB 30 75 SB 22.0
SB 30 75 bB 22. S
SB 30 75 SB 23.0
SB 30 71 SB 23. S
SB 30 71 58 71.0
1 2. 00 250. 0250. O 750
I2.302SO.O2S0.02SO
IJ.OO25U.02bU.O250
I3.302SO.02S0.02SO
I1.002SO.O2SO.O2SO
I 1.30250.0250.0250
IS.002SO.0250.O2bO
IS* J02SO.02bO.02SO
16.00250.0250.0250
16.30250.0250'. 025U
I 7alIn?QI> flPtitl fl?hfl
I / *UU«3UB(f
-------
NJ
*-
O
 193.
 IV1.
 I «<»
 IV6.
 177.
 I VHt
 119.
 200.
 201 •
 202.
 203.
 201.
 205-
 2(16.
 2U7.
 200.
 2OV.
 210.
 211.
 212.
 213.
 211.
 2|h.
 21*.
 217.
 2IM.
 217.
 22U'
 221 •
 222.
 223.
 221.
 ?2b.
 226.
 227.
 22H.
 229.
 230.
 231.
 232.
 233.
 231.
 23S.
 2J6.
 237.
 23H.
 23V.
 210.
 211 «
 212.
 2'I 3*
»0 DAIA.
                         Hf-SlllHUI /Mt N61N
                         IN-KOII2UI1HM ION
                         XXX*
                         XXXK
                         X»*k
                             -I .0
i.ou
1.. 10
,(.uu
2.30
3. on
3.30
H.OO
1.30
5.00
b.30
6. on
6.30
7. DO
7. 311
a. oo
8.30
9.00
7.30
111.00
10.30
1 1 .no
1 1 .30
11-00
O.JO
1 .00
1 .30
2.00
2.30
3.00
3.30
I.Od
1.30
5.00
5.30
6.00
6.3U
7.00
7.. 10
B.OO
8.30
9.00
9.30
10.00
10.30
1 1 .00
1 1.31)
27U.
20.O
20.0
2D.U
;o.o
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
340.
160.
3*0.
360.
360.
360*
360.
3*0.
360.
360.
360.
360*
36O.
360.
36O>
360.
360.
360.
360<
360*
36U.
360*
36O.
36O.
250.
70.0
20. 0
20.0
20.0
20.0
20. 0
20. O
20.0
20. 0
20.0
20.0
20.0
20.0
20.0
211. 0
2U.O
20.0
2O. 0
20.0
20.0
2U.O
20.0
360.
36O.
360.
360.
360.
3«U.
361).
360.
360.
360.
36O.
360.
36C.
3*0.
36U.
3*U.
360.
JfcU.
360.
360.
360.
360.
360.
36U.
20.
20. n
20. U
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20. 0
20. O
20.0
20.0
20.0
20.0
20.0
20. n
360.
160.
360.
360.
360.
160.
160.
360.
360.
160.
360.
36U.
36U.
360.
360.
36O.
360.
36O.
16U.
360.
160.
360.
360.
360.
360.
20.0
20.0
20.0
20. O
20. 0
20.0
20.0
20.0
20.0
20.0
20.0
20. O
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
160*
16O.
360-
360.
160'
360*
360.
360.
360'
360.
360*
360.
360*
360-
360.
360-
160.
160.
360-
360.
360.
360.
360.
360*

13.00  20.0 20.0  20*0 20.0
13.30  20.0 20.0  20.0 20.U
M.UO  20.0 2U.O  20.0 20.U
IN.JO  20.0 20.0  20.0 20.U
IS.00  20.0 20.0  20.0 20.U
14.30  20.0 20.0  20.0 2O.O
16.00  20.0 2U.O  20.0 20.0
16.30  20.0 20.U  20.0 2O.O
17.OO  2O.0 20.0  20.0 20.U
17.30  20.0 20.0  20.0 20.U
18.00  2O.Q 20.0  20.U Zll.U
18.10  20.0 20.0  20.0 20.0
19.00  20.0 20.0  20.0 10.U
If.30  20*0 20.0  20.0 20.O
20.00  20.0 20.0  2U.O 20.U
20.30  20.0 20.0  20.0 20.O
21.OO  20.0 2O.0  20.0 20.U
21.30  20.Q 2U.O  20.U 20.U
22.OO  20.0 2U.O  20.0 20.U
22.10  20.0 20.0  20.0 20.U
23.OO  20.0 20.0  20.0 2O.O
23.30  20.0 20.0  20.0 20.0
12.OO  360. 360.  160. 36O.
12.30  160. 360.  360. 160.
13.OO  160. 160.  160. 160.
I'l.lO  36U. 16O.  16O. 160.
14.00  160. 160.  160. 360.
11.10  160. 360.  360. 36U.
15.00  360. 160.  16O. 36O.
IS.30  16U. 360.  160. 36U.
16.00  16U. 160.  J6O. 160.
16.10  16U. 160.  160. 360.
17.00  160. 160.  360. 360.
17.10  16U. 1611.  360. 160.
18.OU  360. 360.  160. 160.
10.10  360. J6O.  36O. 160.
If.OO  360. 360.  360. 36O.
17.30  160. 360.  360. 160.
20.00  360. 16O.  160. 16U.
20.30  36O. 160.  160. 360.
21.00  160. 36U.  360. 160.
21.10  160. 160.  160. 1611.
22.00  16U. 160.  160. 1611.
22.10  160. 160.  360. 16U.
23.00  360. 360.  160. 360.
21.10  160. 360.  160. 16U.
            UOiL  I, •KAMI.
                  3,»qOAM1.
            MISt   1 i 'UOAI. 1 .
            U»U1   Ut-S.liKtK

-------
                                                                                         Q S
                                                  DIE  NIT  IF) 6EKENNZEICIINE|tN MItIIILUNGEN
                                               VFNHINDERN  DIE AUSFUEHRUNG OES  BEMECHNUNbSTt|LS
                                                       ALIE  ANDEREN SI NO  HUM  INFONMAtIV
Al Mil  NE120A1LN




     UIE  EINfaABt ERIOLC.I  IN HE TRISCIIIH EINMtlILN

     EINCiABF  OER KAtlAINt liDAlEN

I I VUNLAUFfcANIEN
     HNl>C,NGSLF AMOHtN     1-00
                                     I .00
                                               .00
                                                       I .00
                                                                 1.00
                                                                          1.00
     AMI AIIGSZt I 1PUNK T •  II.
           I1PUNKI  *        0.
J..IVS6  17 UMR  SO HINUICN
U. If  n   0 UHN   0 HINUICN
     LASIIALL  •  I    (IN2ELIKEI6HIS    REGENIN11 MS I 1AE1 EM (EROEN EINGELESlN
      }J AUSGAHEHUIIRt.
   CUOI COU2       CU02 COO1      (001 C001
   CUIO CUM       COM 10)1       C0|] COI1
   CU2« IO7J       IU2? (.011      Hill* iQ2f
   CUT. CU36       IOJ6 CUJ7       C0}7 K038

      3 AtSC.Att'NOILN (KOtl
     Kiiis   ni> jo  went)

      1 AUSbAbEKMUIlM (HMD)
     IIIIO6   B038

      U INIEKISbANIE  KNOIEN

      (I KNOIEN Mil  KUNSTANliK UFPEHNAIIHE.

      U KNOIEN Mil  VARIABLE* UEHEKNAIIIIE

     KECHENUAUtK    'IS INIEKVALLE
     NLbLHUAULN     Ib IMEK'VAILt

                      KEGENINUtlSl I AEIEtl    HEIHE
                    COOH COOS
                    roii i-ois
                    (U21 C030
                    K038 BO]S
                                         S
                                        IU
                                        IS
                                        2U
                                        2S
                                        JU
                      0
                      0
                    IhO
                    1,10
                    bfcO
                    100
                     BU
COOS  BOOt
ROIS  COI6
C010  C01I
8018  COlf
8006  C007
COIt  BOO*
C01I  C012
SOI)  SOI1
COO/  COU8
C001  COZ1
C012  C011
cooe  coo*
C02S  C02S
C011  C011
COU»  COIU
C02S  C026
C011  C01S

-------
                                                           40         160
                                                           IS          1U
                                                           SO          40
                                                           SS          10
                                                           60          10
                                                           6S          6U
                                                           70          20
                                                           75          20
               21  hOHHLLEHLNIKAHUN



                     KOIIR KA .  HOIS Kl •  COI6  I*KUI ILHOEUt  •   >20  ILfN   Ml

                     ANZAHL  UIH  HOHRLLt HF.N1 E     JO

                     ANIAIIL  ULH  KNOItN     IS
•P-
S3

-------
                                                                   KOHKELtMENIKARIEH
               UN
                                                               AB2   PK2
                                                                                                           SA
                                                                                                                       SI
                                                                                                                                              OE
                                                                                                                                                          KS
K)
4S
CO
1
2
3
1
5
«
7
a
1
10
1 1
12
11
11
16
16
i ;
IB
IV
20
21
l2
23
21
2b
26
27
26
2V
3U
31
32
J3
31
3S
CHOI
CUU2
CUU3
CUU'I
CCIU&
BUOfc
CIIU7
CUUH
CHUT
CIIIU
CUI |
CUI J
CUI1
KOI!.
SOU
SOI1
suit.
CUI6
CIIU3
CO21
CL2b
cii2*
C(I2/
NO2U
CU2V
CU3U
CU3I
CU32
CU33
CU31
CUJS
CU3(>
CU37
Ktljd
BU3H
Cum
CU03
CU01
CUUb
BOO*
CU07
coo«
cuov
CUIO
CUI 1
CC3I
CUI '1
KUIS
COIfc
SUM
SUIS
COI6
UUOfc
C021
III2S
CU26
CU27
COJ2
CO29
CO30
CU3I
CU.12
C033
CU31
CU3S
C036
C037
RO3B
H03B
CUJ9

tool
COO?
CUU3
CU01
CUUS
unut
COU7
CUUB
cuov
COID

CIH3
COIN

SOI3
suit
HOIS
C002
COU 3
C021
CU2S
CU26

K02«
f 029
COI 1
C03I
C032
C033
CU31
C035
C03&
Cb37
RU3H





COIt











SOIS








C03Q
CO27







COU3
C001
f UOS
B006
COO/
coue
COCI»
CUIO
COI 1
CU3I
C032
ROIS
CUI6
8006
SOIS
COIA
0006
C007

-------
                                                                       XNOTENL06
                         I
                         1
                         3
                         1
                         S
                         t
                         1
                         8
                         V
                        10
                        I I
                        12
                        13
                        IN
                        15
                        It
                        I 7
                        IS
  IN

COOI
1002
COU.I
(.001
COUb
UOU6
CUU7
CGUB
cnov
COIU
LOI I
<03I
COI 3
toil
HOIS
101*
SOU
SUM
ZUI

  0
  I
  2
  3
  4
  5
  6
  9
 10
 II
  0
 13
 II
 IS
  0
 I 7
/uz

  0
  0
  0
  0
  0
 16
  0
  0
  0
  0
  0
 27
  0
  0
  0
 \1
  0
  0
7U3

  0
  D
  0
  0
  I)
  0
  0
  0
  u
  0
  0
  0
  0
  p
  0
  D
  0
  U
S1U
0
1
1
1
1
I
1
1
1
1
1
2
0
|
|
I
0
1
• Bl
2
3
1
5
A
7
6
V
10
II
12
21
11
IS
16
6
ie
IV
AB2
0
0
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                                                          SAB
                                                                                        LFN
                                                                                               KN    ZUI
                                                                                                           HI 2    ZU3   SZ"   ABI
                                                                                                                                     AB2   SAB
If
20
21
22
23
21
25
26
27
28
29
10
31
12
33
31
3S
SOI5
C021
CU2S
C026
C027
C032
II 1)28
C02V
C030
CCU3
C031
CCJJS
C036
COJ7
N038
B038
C03V
18
3
20
21
Z2
23
0
26
26
21
28
2V
30
31
32
13
31
0
0
0
0
0
12
U
0
U
0
0
O
0
0
0
0
0
O
0
0
0
0
0
u
b
O
O
0
0
0
0
0
0
u
16
21
22
23
21
28
26
27
12
2V
30
31
12
11
11
IS
0
0
0
U
0
0
U
0
0
0
0
0
0
0
0
0
0
O
N)

-------
                                                   OtARIIEttUNGSREIHENFOLGE

                                                                     (ORIGINAL)

                  LFM     KH  RtlME    IFN     KN  REIHE   IFN     KN  REIHE   LFN     KN  REIME    LFN    KN  REIHE    LFH    KN  REIHE

                    I   CUOI      II      7   C007     17     I)   COI3      7     19   SOIS      6     2S  RU28       I     31  C036      31
                    2   C002      12      8   COOK     IB     II   COM      8     20   1021     23     It  CU29       2     32  CU37      32
                    3   COOJ      13      V   1009     II     IS   ROIS      ?     21   C02S     21     27  CO30       3     33  RU3S      33
                    1   CUOI      II     10   COIO     20   '  I*   COI6     10     22   C024     2S     26  CU33     2B     31  BU38      31
                    &   CUDS      IS     II   COII     2|     17   SOI3      1     23   C027     24     Z9  C031     29     3S  C039      JS
                    6   BOO*.      16     12   C03I     22     18   SOU      S     21   1032     27     30  C03S     30     34  0000       0
1-0
*-
Ul

-------
p E A R n
E 1 1










INACH UHSPEICHERUN6I
LFN
2S.
2k
27
17
10
l»
KN
HO2«
CU29
CLIO
SOI 3
SOU
SUIS
RtlME
1
2
3
1
*
6
LFN
13
11
IS
It
I
2
UN
cm 3
COM
RUIS
COIA
COOI
cou?
HE HIE
7
a
9
10
1 1
12
LFN
3
1
5
6
7
•
KN
COO)
COOI
COOS
BOU6
C007
cooa
REIHE
11
11
IS
It
i;
!•
LFN
9
10
1 1
12
20
21
KN
COO*
COIO
COII
con
C021
C02S
NCI HE
If
20
21
22
23
21
LFN
22
23
21
28
2?
30
KN
C026
C027
C032
CU33
C011
C03S
MCI HE
2S
26
27
28
29
30
LFN
31
32
3)
31
3S
U
KN
CU34
CU37
R03«
B038
C039
aaea
REIHE
31
32
31
31
IS
16
3) SUNDlKBAUftERfcC
N)
                   KNOTEN  • HOIb    IIRUE •     .70 ILFN    II




                   KN01CN  » ROia    BRUE •  20.UO UFN    II




                   UNOItM  » H006    HHA« .    S.OO ILFN    II




                   KNOttM  • 8038    HHAH »    S.OO ILFN    SI




                   f ASSUHGSVERMUF.OLN  OER RUB     tSOO.O CRN
              II  SUUEHUARE  ELEHENIE









                    LFN  ITP  KNAB  KNGB HMAX    HMIN  WVPRT    CFRG    042     DOA





                        III     29  .I&O    .ISO  .OOOO    .OOOO  .SOOO  .1667









                                                                    ELEHENIANZAHLEN







                                                                  RUHRE              3S




                                                                  KNOIEN             3S





                                                                  ULBERLAEUFE        3




                                                                  BtCKEN              2




                                                                  RUHRVERZOGGN.      I
             SI  II ILt II
                   (•LRI11  >  ACOI
                                     it;

-------
                          > AC01

                  bEBILT  ' ACOS

                  btUIEI  > AC26

                  OtUItl  • AC3I

                  bEHILI  • AC.IZ
Ill *   II.*S ILFH    71

FEZ •   10.Si IIFN    31

FEZ *   2U.18 (LF H    71

III *   I 7.83 (LF N    91

FEZ •   21.90 III N   101
                  btHIEt  • AOJ    rt2  •  II.SO  ILFII  III
          GIBIM5    FLAIUIEN    FLACCHC
            ADI       AN2AHL       IHAI
                                                                               BEFESMbl
                                                                                   IHAI
BCFESTI6UNGS   ElMftOHNER
    SHAD
SJ
1
2
3
11
1
1
2
1
17. a
2IS.O
130.0
20. S
S.3
*».»
JS.3
.1
.30
.11
.27
.02
1»V.
AV8J.
I6J).
SI2.
                                             sunncN
                                                                      3§3.3
                                                                                     71.0
                                                                                                  ,19

-------
                                                                       KNOTENUEUtRS
                                                                                                    C H  T
03
01EN KHTYI
cool
C002
CII03
CODM
COO1.
8004
C007
COOS
CU09
COIO
CUI 1
COJI
CUI3
HUH
ROIS
COI4
SHI 3
sun
SOIS
C0?t
C02S
CU24
C027
C032
RUJB
CU2?
CP30
C033
cost
1015
C03A
C037
R038
8030 •
C039 (
' SZU SAI
0
1
1
1
1
2
1
1
1
|
1
2
0
1
1
2
0
1
1
1
1
1
I
2
0
|
I
1
|
1
1
1
1 1
1 1
> 1 (
) IE6
ACOI

!
ACOI
ACOS
ACOt





AC3I
AC 13



ASI3




ACZ*

AC32
AC2*


AC33



AC37


1
ZN TtP
1 2


1 2
1 2
1 2





1 1
1 2



1 2




1 1

1 2
1 3


1 2



1 3



FEZ
24.03


11.45
10.52
30.18





17.83
SO. 10



SO. 10




20.18

21.90
79. 52


11. SO



SO. 52



FEZU
2.40


2.91
1.89
».91





S.3S
7.01



.00




.11

*.3S
31.81


2.17



3. SI



EH
2131.


1018.
600.
734.





199.
O.



1303.




SI2.

701.
1131.


2*1.



202.



•vsr
I.OO


I.OO
1 .00
I.OO





I.OO
I.OO



1 .00




I.OO

1 .00
I.OO


I.OO



i.oo



l« I*F
.0 I.OO


•0 I.OO
.0 I.OO
.0 i.oo





.0 i.oo
.0 I.OO



.0 I.OO




.0 i.oo

.0 I.OO
.0 1 .00


.0 I.OO



.0 i.oo



             bi f lit  SUANI i MCI
             I I  PKUF ILKAHItN
                                 DIH KANAEIE             6.1  KM





                  FASiUN(.SV(.HMOE<>tN UEH  KANAEll     20B0.3 CBH

-------
                                                                     ROHROEBERSICHI
                                   ivr
                                          1(13
                                                KKI
                                                       *82
                                                                                                                          5*
                                                                                                                                    SE
VO
CC.GI
C002
C003
CD01
COOS
BCIOt
CtU7
CUOfl
(on 9
CulO
CUI 1
(.(113
CUIH
RCI5
bOI3
SUM
5UI5
CI»I6
CUU3
C021
C02b
C026
CU27
RC.28
CC29
CU30
CU3I
C032
C033
(.031
CU3b
CO3A
CB37
RO3B
bOJS
CUU2
COU3
CllOl
CI1US
BUU6
CUU7
COU8
COU9
COIU
CUI 1
CUM
COM
RUIb
COI6
SUI1
SUIS
COI6
BDU6
C021
C025
C02«
C027
C032
CU2V
CtJU
((131
CO32
(033
C031
C03b
C036
C037
KO3H
PUJ8
CU3V

tool
CUU2
COD 3
COUH
COOS (014
8OOA
CUCI7
tOOrt
CbO?
COIO

COI3
CUM

SOI 3
SUM
HOIb SOIS
COOi
CU03
CU21
CU2b
CU2&

R028
C02?
COII (030
CU27 (.031
CO32
CU33
COJM
CU35
C(J36
(037
KO38
C003
COOt CO2H
COOS
BOOt
COOI
cooa
C009
COIU
COI 1
C03I
1032
HOIS
COIt
BOOt
SO IE,
cni6
oont
(007
C02b
cozt
C027
C032
C033
C030
C03I
(032
C033
C031
COJb
C03A
C037
N036
P03H
C03«

.10
• 10
.10
• SO
1.00
.30
.10
.60
• SO
.SO
• SO
1.00
1.00
.20
.10
.10
.10
.to
.10
.10
.10
.60
.60
. bO
.60
.60
.80
.80
, .00
.00
.00
.00
.20
• so
1.70
.31
.31
.31
.19
.7?
.21
.11
.19
.1*
.19
.19
.79
.79
. 16
.11
.11
.11
.17
.11
.11
.11
.17
.17
.19
.17
.17
.61
.61
.79
.79
.79
.79
.91
.19
.91
.126
.126
.126
.196
.78b
.071
.126
.196
.196
.196
.196
.78&
.7BS
.011
.126
.126
.126
.281
.126
.126
.126
.281
.281
. 196
.281
.281
.SOJ
.SOI
.786
.78S
.785
.78b
1. 131
. 196
1 .111
.210
.219
. 181
.1S6
2.83S
.191
.IIS
.110
.185
.621
.SSI
I.1S2
1.342
.019
.121
.122
.121
.106
.188
.129
.116
1.212
I.I 13
.211
.107
.323
1.178
1.668
3.210
2.S19
2.218
1.780
2.221
.ISV
l.2bS
26U.OO
IOO.OO
29U.OO
210.00
Mb.UO
I8S.OO
2SO.OO
22&.00
181. UO
172.00
92. OO
120. UO
92. UO
130.00
120.00
92.00
110.00
182.00
22U.OO
20O.OO
I8U.OU
2I2.UO
I9B.UO
212.00
181. OO
167.00
IJ7.UO
272.00
IS^.OO
I67.UO
IU7.UO
211.00
118.00
IOU.OO
IUO.OO
61.870
6O.81U
S9.680
S7.bOO
SS.100
SI .190
11.9/0
16.290
11.S70
10.870
26.710
SI. 760
S1.1OO
S3. 920
61.760
SI. 100
SI. 120
S3. 310
S9.680
S2.3IO
11.890
37.170
29.690
26.SSO
2S.7SO
26.330
21.020
22.6SO
18.670
I6.O7U
I1.3OO
12.770
1 1.660
10.130
21.200
60.810
59.680
S7.7OO
55.600
53*500
11.970
36*290
33.67O
30.870
26.710
21.980
61.100
61.120
S1.S3O
61.100
SI. 120
63.730
62.610
63.000
11.890
38.000
3O.U5U
23.630
25.760
26.110
21.910
22.6SO
18.670
16.070
11.300
12.770
1 (.660
1 1.210
10.270
21.100
• UOIO
.OOIO
.0010
.0010
. UUIO
.UOIO
.0010
.OOIO
.0010
.0010
.0010
.0010
.0010
.0010
.0010
.0010
.UOIO
.UOIO
.0010
.0010
.0010
.0010
.0010
.OOIO
.OOIO
.OOIO
.0010
.0010
.0010
.UUIO
.0010
.0010
.OOIO
.0010
.OOIO
             21
                                       CHIN  Rf(KLN
             41  (iLUIt liHlft UHNUHUH
                                          I    (OMHlHfI*l
                                          2    H( 5IDI Ml | At
                                          3    INDUS!hit

-------
             II MIILDENKAPA/I IAE IEN
             MULUENKAPAM IAETEN IMM|
MBI
.60
.60
HIM
10-00
10.00
MB2
.00
.•0
NU2
10*00
10.00
HBJ
1.00
1.00
HUJ
12.00
12.00
MBI
.80
.•0
MU1
10.00
IU.OO
             SI »EKMCKEHUf(faSRAlEN
             VfKSItKERUNG  IL/SEC/HA)
                                                          REGtNMESSRElHE I


                                                     27.7     27.7     18.6
                                                                                27.7
             MEGENNESSREIHE  2

         27.7    27.7    16.6
  REGENMESSRCIHE J

.0       .0      .0
NJ
(Jl
O
             VERDUNSlUNfaSRAItN
                                           CHAD C  NM/fAG   GKAD C  MM/TAG  GRAO  C   HN/TAG   GOAD C  HM/IAti  GRAD  C   MM/IA6
1
2
3
1
S
6
7
II
V
ID
.40
. 7O
.77
l.lb
I.JS
1 -5S
1 .'&
2. IIS
2.30
2.SS
1 1
12
11
11
IS
16
17
18
19
20
2.80
3.20
3. 60
1.00
1.10
1.80
S.25
£.70
6.20
6.70
21
22
21
21
2S
26
27
28
2V
30
7.20
7.70
B.20
8.70
» .20
».75
IU.2S
10.80
1 1.10
1 1 .80
11
12
1]
11
IS
16
17
18
If
10
12. IS
12. 10
13.10
11. TO
11.10
11.90
IS. IS
16.00
16. SO
17. DO
11
12
11
11
IS
16
17
18
IV
bO
18. OU
IB. SO
IT. 00
IT. SO
20.00
20.SU
21. 00
2I.SU
22.00
22. SO
             71 MOH» IStlMPtHA TllKUl





                   II MPlHAIUfclH MJLk bIL  I INMLl Kt I&MI bRlCHNUNo     10.T


                   Mf.lS/t I IHUNMI       37.  UNI)  |b7.  1 AGES INIER V AIL
19-3
         10.T
                          10*T
                                   19.J
                                            10.T
                                                     IT.3

-------
                                                                        HONAISHI MELIENPlRMUHeM
                             1954
                             1940
                             1945
                                          2.0
1
. 1
4.0
.1
1.0
.1
1 .'
3
I.S
7.1
.1
11.1
.1
2.1
1
I. I
a.4
I. 6
I2.7
I.S
8.3
s
7.0
11. 1
5.7
IS. 9
7. 1
IS.I
4
10. V
19.3
10.7
19.2
II. 1
IB.I

11
22
12
18
11
22
7
.2
.7
.2
.1
.0
.1
8
11.9
If. 7
1 l.f
19.2
12.7
22.1
9
9.S
IS. 4
11.7
14.5
7.8
IS.I
10
1.7
9.7
3. B
9.1
S.9
9.S

S
2
4
2
7
II
.2
.a
.1
.9
.1
12
.1
3.0
1.2
4.0
.1
1.0
             81 I
             L IHHE I 1S(.»NGL INIf H
                                                III I
ro
Ui
                                                                       9UI
                                                                                   «B2
                                                                                              «U2
                                                                                                         OB3
                                                                                                                                           OU1
5-0
10. 0
IS.O
20.0
25. 0
30.0
3b.O
10.0
IS.O
50.0
SS.O
40. 0
AS.O
70.0
;s.o
80.0
85.0
90.0
95.0
100.0
105. 0
1 1 n . o
.200000
.110000
.22200b
. 190000
.OSOOOO
.030000
.010000
.005,000
.000000
.000000
.000000
.000000
. nuoouo
.ooooou
.oooonu
.ouooou
. ouunou
.ouoouo
.000000
.000000
. OOOtlOO
. OOtltltlU
.041000
.1 10000
. 120000
. i laooo
. 1(17000
.097000
.082000
.U47000
.053000
.U13000
.033000
.026000
.020000
.01*000
.01 1000
.009000
.007000
.005000
.001000
.1)03000
.002000
.001000
. 1 80000
.370000
.230000
. 100000
.040000
.035000
.020000
.010000
.oosooo
.002000
.OOOOOO
.000000
.uoooro
.OOOOOO
.000000
.000000
.000000
.000000
.000000
.000000
.OOOOOO
.000000
.041000
. 1 10000
. I200UO
.1 18000
. 109000
.097000
.0820110
.047000
. 053UUO
.013000
.033000
.024000
. O200UO
.OI400O
.UI IOUO
.4109000
.00/000
.UObOOO
.ooiuoo
.003000
.U020UO
.OOIOOU
.200000
.1IOUOO
.222000
. I9UOOO
. 05000U
.030000
.OIOOOO
.ODSUOO
.OOOOOO
.OOOOUO
.OOOOOU
.ooooou
.000000
.OOOOOU
.ooooou
.ooooou
.OOOOUO
.oouooo
.OOOOOO
.oouooo
.OOOOOO
.OOOOOO
.041000
.110000
. I2OOOO
. i lauoo
. 109000
.097000
.082000
.047000
.US3UUO
.O13000
.033UOU
.024000
.U20UUU
.OI40UO
.UI IOUO
.U090UO
.00 7 000
.005000
.OOIUOO
.UO30UO
.U02UUU
.UOIOOU
.OS50UO
. ISUUOU
.210000
. 20OOUU
. I3OOOO
.090UUO
•04UOOU
.01OOOO
.U3000O
.U2UOOU
. OIOOOU
.oosoou
.UU30UU
.OUIOOO
.ouoouo
.ooooou
.ouooou
.ouuoou
.ooouou
. uuouou
. oooouu
.ouuoou
.041000
. i loonu
. 1 2UOUO
.1 lauuo
. I09UUO
.O970UO
•08200U
.04/000
.OS3UUO
.013000
.U33OUO
.D24UOO
.020000
•OI40OO
.01 IUUU
.O090UU
.007000
.oosooo
.OOIOOU
.0030UO
.002000
.OUIOOO
             VI T«-ABFLUES!>L

-------
            t«-ABFLUtSSE (L/IUOOt/51
                                                    »vfl
                                                           21 II
                                                                            7EM
                                                                                      • VB
                                                                                             ZEIT
                                                                                                      • VB
                                                                                                              ZEIf
                                                                                                                       • VB
                                                                                                                               ZtIT
U1
N>
.00
.05
. 10
. IS
.211
.2*.
.30
.35
.10
.IS
.SO
.55
.00
.OS
. 10
.IS
.20
.25
.30
.3*
.10
.IS
.so
.55
2.00
2.05
2. ID
2. IS
2.20
2.2*
2.30
2.3S
2.10
2.15
2.60
2.5S
3. CIO
3. Ob
3. 10
3. 15
3.20
3.25
3.30
3.35
3.1U
3. IS
3. 60 •
3.5". •
(.050 .00
I.OSO .US
.050 .10
.050 .15
.050 .20
.050 .25
.050 .10
.050 .35
.050 .10
•05O .IS
.050 .50
.050 .55
.050 6.00
.050 6. OS
.050 S.IO
.050 S.IS
.050 5.20
.050 S.2S
.050 5.30
.OSO S.3S
.050 5. MO
.050 S.IS
.050 5.50
.050 S.SS
.050 • 6.00
.050 6. OS
.050 6.10
.050 .IS
.050 .20
.(ISO .25
.050 .30
.050 .35
.050 .40
.050 .15
.050 .50
.050 .55
.OSO 7.00
.050 7.05
.050 7.10
.050 I. 15
.050 7.20
.OSO 7.25
.050 7.30
.050 7.35
.050 7.10
.050 7. IS
1.050 7. SO
1.050 7.55
.060
.050
.060
.050
.OSO
.OSO
.OSO
.050
.060
.050
.050
.050
.060
.050
.050
.060
.060
.060
.060
.060
.050
.060
.060
.050
.050 1C
.050 II
.050 II
.050 II
.060 11
.050 1C
.050 1C
.050 II
.060 II
.050 1C
.060 1C
.050 II
.050 1
.060 1
.050 1
.050 1
.050 1
.050 1
.060 1
.050 II
.060 1
.050 1
.050 11
.050 1
• 00
.05
.10
.IS
.20
.25
.30
.36
.10
.15
.SO
.S5
.00
• OS
.10
• IS
.20
.25
.30
.36
• 1O
.15
.SO
.SS
).oo
I. OS
).IO
).IS
I.2U
).2S
).30
).3S
1.10
>.15
J.SO
>.SS
.00
• OS
.10
• IS
.20
.25
.30
• 35
• 10
• IS
• so
.55 '
.050 12.00
.OSO 12.05
.060 12.10
.050 12.16
.050 12.20
.050 12.25
.O6Q 12.30
.1)60 12.36
.050 12.10
.060 12.16
.060 12.50
.050 I2.5S
.050 I3.UO
.060 I3.0S
.060 I3.IU
.050 I). IS
.060 I3.2O
.060 13.26
.050 13.30
•050 I3.3S
.050 13.10
.050 13.15
. O50 I3.SO
.060 I3.6S
.060 11. 00
.060 11.06
.060 11.10
.060 11. IS
.060 11.20
.OSO 11.25
.060 11.30
.060 11. JS
.060 11.10
.050 11. IS
•060 11.60
.OSO 11.65
.050 Ib.UO
.060 15.06
.050 16.10
.060 16.15
.050 IS. 20
.060 IS.2S
.060 15.30
.050 15.35
.O&O 15.10
.050 It.. IS
.060 15.50
•050 15. 55
.OSO 16.00
•DSO 16.06
.OSO 16.10
.OSO It. IS
.060 16.20
.OSO 16.26
.050 16.30
.060 16.36
.ObO 16. ID
.060 16.15
.OSO 16.50
.060 16.65
.050 17.00
.060 17.05
.OSO 17. IU
.060 17.15
•OSO 17.20
.060 17.26
.060 17.30
.060 17.36
.060 17. 1O
.OSO 17.16
.OSO ' 1 l.SO
.050 17.55
.050 1 11.00
.060 18.05
•OSO IK. 10
.060 18.16
.060 18.20
.050 16. 2S
•060 18.30
•060 18.36
.OSO 18.10
.060 18.16
.061) 18.60
.060 18.56
.060 19. UO
.050 If. OS
.060 19. IO
.060 IV. IS
•USD If. 20
.050 If. 25
.050 If. 30
.050 If. 35
.060 If. 10
.050 If. 15
.050 lf.5O
.050 If. 55
.050 20.OO
.0611 20.06
.OSO 20.10
.OSO ZO. IS
.050 20.20
.OSO 2U.25
.OSO 20. 3O
.060 20.35
.050 20.10
.060 20.15
.060 20. SO
.060 20. SS
.OSO 21. UO
.050 21.06
.060 21.10
.060 21.16
.060 21.20
.OSO 21.25
.060 21.30
.060 21.35
.060 21. 10
.OSO 21.15
.0*0 2 l.SO
.050 21. SS
.060 22.00
.060 22. US
.060 22.10
.060 22.15
.060 72.20
.OSO 22.25
.060 22.30
.1)60 22. JS
.060 22.10
.USD 22. IS
.060 22.60
.060 22. SS
.050 23.00
.060 23.06
.050 23.10
.060 23.16
•060 23.20
.060' 23.2S
.060 23.30
.060 23. 35
.050 23.10
.050 23.15
.USU 23.60
.060 23.56
.OSO
.060
.060
.050
.060
.050
.060
.060
.050
.050
.OSO
.050
.OSO
.060
.050
.060
.060
.OSO
.050
.051)
.060
.OSO
.060
.060
.060
.OSO
.060
.050
.060
• O&U
.050
.050
.|)SU
.060
.050
.060
.060
.050
.060
.060
.060
.060
.050
.060
.060
.050
.050
.060

-------
             I»-»flfLOtSS£  (L/IOOOC/SI
             IMIt  *VBF -  1.00)
                                                             Itll
                                                                              /III
                                                                                        • WO
                                                                                               ZEII
                                                                                                                /111
                                                                                                                          *VH
                                                                                                                                  ZEII
N)
Ln
OJ
.00 M.OSO .00
•OS M.OSO .OS
.10 M.OSO .10
.15 M.OSO *IS
.20 1.0^0 .20
.25 1.0SO .25
.30 M.05U .10
.35 M.U50 .IS
.10 M.OSO .10
.MS 'I.OSO .IS
.SU M.OSO .'JO
.SS I.OSO M.S5
.00 'i.oso s. on
.OS M.OSO S.OS
.10 M.OSO s.io
.IS I.OSO S.IS
.211 I.OSO S.20
.2S I.OSO S.2S
.JO I.OSO S.JO
.35 1.050 S.3S
•MO i.oso S.MO
.Mb I.OSO S.IS
.SO M.OSO S.SO
.SS I.OSO S.SS
2.00 M.OSO 6.00
2. OS M.OSO 6. OS
2.10 M.OSO 6.10
2. IS M.OSO 6. IS
2.20 M.OSO 6.20
2.2S M.OSO 6.25
2.3O 'I.OSO 6. JO
2.3!. M.OSO 6. IS
2. MO M.OSO A. MO
2. MS M.OSO 6. MS
2. SO M.OSO 6. SO
2.SS M.OSO 6.SS
3.00 M.OSO 7.00
3. US 1.050 7. OS
3.10 M.OSO 7.10
1. IS 'I.OSO 7. IS
3. 2U M.OSO 7.20
3.2S M.OSO 7.2S
3.30 I.OSO 7.30
3.3S M.OSO 7.3S
3.10 M.OSO 7. MO
I.MS M.OSO 7. MS
3. SO M.OSO 7.50
3.SS I.OSO 7.SS
.oso e.oo
.oso e.os
.oso e.io
.oso a. is
.OSO 8.20
.OSO 6.25
.OSO 8.30
.OSO 8.36
.oso 8.10
.oso B.MS
.OSO S.SO
.OSO 8. 65
.oso v.oo
.OSO 9. OS
.OSO 9.IO
.oso ?.ls
.OSO 9.20
.OSO 9.25
.050 9.30
.OSO 9.3S
.050 9. MO
.OSO 9. MS
.OSO 9. SO
.OSO 9.SS
.OSO 10. OO
.050 10. OS
.OSO 10. 10
.OSO 10.16
.050 10.20
.OSO 10. 2S
.OSO 10.30
.OSO 10. 3S
.050 10. 1O
.OSO 10. MS
.OSO 10. SO
.OSO 10. SS
.OSO 11.00
.OSO II. OS
.oso il. lo
.OSO II. IS
.OSO 11.20
.OSO II. 2S
.OSO 11.30
.OSO 11.35
.OSO II. MO
.USD II. MS
.OSO II. SO
.OSO II. SS
.OSO 12.00
.OSD 12. OS
.OSO 12.10
.050 12. IS
•USD 12.20
•OSO 12. 25
.OSO 12.30
.OSO 12. IS
.OSO 12. MO
•DSD 12. MS
.OSO 12. SO
.OSO 12. SS
.OSO 13.00
.OSO 13. OS
.050 13.10
.OSU 13.15
.OSO 13.20
.OSO 13.25
•OSO 13. JO
.050 13.35
.OSO 13. MO
.OSO 13. MS
.OSO 13. SO
.OSO 13. SS
.OSO IM.OO
.OSO IM.OS
.OSO IM.IO
.OSO IM.1S
.OSO 11.20
.OSO IM.2S
.050 IM.30
.USD 11.35
.OSO 11. MO
.OSO 11. MS
.OSO 11. SO
.OSU M.SS
.050 IS. 00
.OSO IS. OS
.OSO IS. 10
.OSU IS. IS
.OSO IS. 20
.OSO IS. 25
.nso is. Jo
.OSO IS. 35
.OSO IS. MO
.OSO IS. MS
.OSO IS. SO
•OSO IS.SS
.OSO 16.00
.OSO 16. US
.OSO 16.10
.OSO 16. IS
.OSU 16.20
.OSO 16.25
.OSO 16.30
.OSO 16. IS
.OSO 16.10
.OSO 16.15
.OSU I6.SU
.050 16.55
.OSO I7.0O
.OSU 17.05
.OSU 17.10
.050 17. IS
.OSU 17.20
.050 17.25
.050 17. JO
.OSO 17. JS
.OSO 17.10
.OSU 17. MS
.050 17.50
.060 17.65
.osu ia.no
.050 18. US
.050 18.10
.OSU 18. IS
.060 18.20
.OSO 18.25
.050 18,30
.OSU 18.36
.050 18.10
.060 18.15
.050 18.50
.OSU 18.55
.060 19.00
.OSU 19. US
.OSU 19. IU
.OSU 19.16
.USU 19.20
.OSU 19.26
.OSU IV, JO
.050 19. JS
.OSO 19.10
.OSU I9.1S
.050 19.60
.OSU 19. SS
.USU 20. OO
.OSU 20. OS
.050 20. IU
.050 2U.I5
.050 20.20
.050 20.25
. OSO 20.30
.050 2O. JS
.OSU 2U.MO
.OSU 20.16
.050 20.60
.OSU 2U.56
.OSO 21. UU
.050 21.05
.050 21. IU
.USU 21.15
.050 21.20
.050 21. ZS
.050 21. JO
.050 21.35
.USU 21.10
.OSU 21.16
.OSU 21.50
.OSO 21.55
.060 22.00
.OSU 22. OS
.USD 22. IU
.060 22.15
.050 22.20
.050 22.25
.USU 22.30
.USU 22.35
.050 22. IU
.060 22.15
.OSO 22.60
•OSU 22.55
.OSO 2J.UO
.OSO 2J.U5
.(ISO 23.10
.050 2J.I6
.OSU 23.20
.050 2J.25
.OSU 23.30
.OSU 2J.J5
.OSU 2J.MU
.OSO 2J.15
.050 2J.5U
.OSU 2J.S5
.050
• OSO
.OSO
.050
.USU
.USU
.USU
.USO
.USD
.USU
.050
.050
.nso
.oso
.050
;uso
.USD
• oso
.050
.050
.050
.USD
.OSU
.USO
.USO
.USD
.050
.050
.050
.050
.USU
.oso
.OSU
.OSO
.050
.050
.OSU
.OSO
.OSU
.USO
.050
.USO
.USU
• USD
.050
.OSU
.USO
.050
             iui
                  K-ADI tuesst
             IUI  SHlZILLlt  IMF.HISAN1F KNOIFN

-------
              III  KUNSIANTC UEBtkNAHHl N
             121  VAKIAULt UEIIF.RNAHMI N
             Cl  FILL  WUALIIAEI
             II  SCIIHUtiSrOI f Ht JL ICHNUNOEH
N>
01
             SIMHU1Z1.IOFFI
     I   0   ll.O.D.

     2   O   I.5.S.

     3  12   FEtAL COLIFOttH

     1   U   COD
             SOIHIH IS1UFF AMOHIN  IU»«      .1*01      «I»OI      .I»I3      .I«OI

             SC.HHU17&IUM AKTORt N  ln»T      .1*01      .MOI      •1*10      .I«OI




             21  SCHMUI /Htlll.EN
             ilHHUI?*.
                   iCHMOTZSIOFF  3

                   bdlHUIZSIUFF  3




                   SCHMUIZSIOFF  3

             AUFUAU/E|IEN ISTDI
  SCHMUT/SlllF F  I  OG/MAI

lo.u    is.u    20.0    is.o

in.u    is.o    70.o    is.o

                  AUFBAII/LIT *

                  AUFBAUZLII '

                  AIIFUAUZLI1 '

                  AUFHAU7LII *
hCHItlSAHl 2

(.FHIEI&AKI 3

(.EBlrlSANI 4
                                                  St HHIIIZSIOFF  I

                                      2HI    240     210     210

                   111 1-NUS  ULH  SlKAS-,LNRL INIdlMK,  = I(,M  STUNUCN
  SIMMUTZSIUFF 2  IKO/MAI       SCHMUIZS(OFF 3  IANZ/LI        SCHNUIZSTOFF 1  I KG/HA I

7S.O    BO.tl   110.0    80.0   IOO.O   IOO.U   100.0  IOO.O   bO.O   60.0   70.0    60.0

7S.O    6O.O   IIU.O    AO.U   IOO.O   IOO.U   IOO.O  IOO.O   SO.O   60.0   71).U    60.0

   21  STUHOEN

   21  StUriOtN

   21  STUNDEN

   21  SFOMOEN

            SIHMUIZ5IOFI  2                SCHMUIZSIOFF 3                SCHHUTZSIOFF 1

 770     720     720     720      21      21      21      21     210    21O    210     210

-------
                  LETHE SIHASSCNHEIMIGUMG  VOH   81 STUNOEN

            SIHASSENHtINIGUNG                SCHMUIZSTOFF I

                                    5.     35.     3b.     S.
                                                                 10.
   scHHutzsiorr  2

10.    10.     10.
   SCHHUTZSTOFF  3

Jt>.    Jo.      8.
   SCHHUIZSTOFF  i

IS.    35.     S.
            31 E I Milt I ISGANbLINIEM
            IIHHtIISGANGtINIEN
                                             zr 11
                                                              scuMuiiSTorr i
                                                                                                         SCHHUIZStOFF 2
            EIUHE1TSGANGLINItN
N>
01
s.o
1(1.0
IS.O
20.0
25.0
30.0
3S.O
1U.O
IS.O
5U.O
ss.o
ZEI 1
S.O
10. 0
IS-0
20.0
2!>.0
30.0
3S.O
•10.0
15.0
SO.O
ss.o
1. 100000
4.200OOU
2.000OUO
1.030000
. 6SOOOO
•370OOO
. IVOOUO
.0100OO
. OUDOOU
. OOOOUO
.ouoooo
3.UBOOOO
J.2IOUOO
i .saoooo
. / 70000
.190000
.780000
. 110000
.U30000
.000000
.000000
.000000
3.000000
3.JIOOOD
I.SOOOOO
. 77000O
.170000
.260000
. 110000
.03000O
.000000
.000000
.OUOOOO
1
1
2
1







. 100000
.2*0000
.000000
.030000
.650000
.370000
•I900OO
.O1OOOO
.OOOOUO
•OOOOUO
.OOOOOO
S.
7.
3.
2.
1.
•
•
•
.
•
•
IOUOUO
ISUOOU
SIUUUO
osuaoo
3SUOUO
90UOUO
6ouuuu
3SUUUU
20UUOU
O9UOUU
02OOOU
SCHHUIZSTOFF 3
IS.UUOOOU
39.5UOOOO
30.0000011
ly.ooooou
10.000000
S.bOOOOU
3.SUOOOO
2. OUOOOO
I.SOOOOO
1 .OUOOOO
.suooou
IS.OOOUOO
39.500000
30.UOOOOO
I9.UOOOOO
10.000000
5.SOCIOOO
3. SOOOOO
2.000000
1 .SOOOOO
I .000000
.SOOOOO
7. SOOOOO
IV.7SOOOO
IS. 000000
9. SOOOOO
S. 000000
2.7SOOOO
I .7501)00
1.000000
.750000
.SOOOOO
.2SOOOO
IS
39
JO
19
10
S
3
2
1
1

.OOOOOO
.500000
.000000
.OOOOUO
.ooouuu
.SOOOOO
.50001)0
•uooouo
.500000
.uououo
.SOOOOO
IS.
It.
7.
3.
2.
1.
.
.
.
.
.
10000O
osuoou
soouou
asuooo
1SUOOO
10000U
7UUUOU
ISOOOU
OOOOOO
oouoou
uouuou
3.83OOUO
S.36UOUO
2.630000
1.510000
1 .OIOOOO
.6ROOUO
.150000
.240000
. ISUUUO
.U7UOUO
.0200011
7
10
S
3
2
1





. 65UOOU
.71000O
.2700011
.oaooou
.O3UOOO
.3SOUOO
.voooou
.S30000
. 30OOOO
.I10OOO
. OJOOOU
S. IUOOUO
7. ISOOOU
3.SIUOUU
2.0SUOUU
I.3SOOUU
.900000
.6UOUOU
. 35UOOO
.2000OU
.09UOUO
.O2OOOO
SCHMUTZSTOFF 1
IS. 100000
I6.0SOOUO
7.SOUUUO
3.850000
2.1SOOUO
1 .100000
. 700UOO
. ISUOUO
. uooooo
.000000
.uooooo
IS
16
7
3
2
1





.100000
.osooou
.suoooo
.BSOUUO
. 1SUUOO
.100000
.700000
. ISUOUU
.000000
.OUOOOO
.OOOOUO
IS. IUOOUO
I6.0SOUOU
7.SOUUUO
3.B5UOOO
2. ISUOUU
I.10OUUU
.7000UU
. ISOOUO
.OOOOUO
.000000
.OOOOOO
            Ml I INFLUiSF AMCIRtM
(.11)11 ISf AKTORt N
1 .00 1
KtC.lNOAUmt INF LUS5 Ztlt
5.U
10.0
IS.O
2U.O
2S.O
3U.O
35.0
10.0
'IS.O
SO.O
SS.O
SCI
.00
IMOUSIOFF 1
1 .UU
1 .00 1
SCHMIII /SIOI 1
1 . Oil
1 .00
.VII
• to
• 7A
.61
• 55
.18
.13
. .ID
. .IS
1 .UU
1 .00
.96
• »r
.70
• ss
.15
• 38
• 33
'21
. 77
1 .00 1 .
1 .00 1 .
.96
.87
. 73 .
.58
.19 .
.12
.37
.33
.31
.00 1.00
1
no i.oo
uo i.uo
9* .99
90 .98
77 .97
67 .93
S9 .87
SS .78
51 .69
IB .59
1* .S3
SCHHUIZSIUFt I
1.0(1 1
.OU
1.00
SCHMUUSlOFf 2
I.OO I.OU
1.00 I.UU
.99 ,V9
.98 .98
.9S . Vt
.88 .9U
.79 . BJ
.66 .72
.SS .61
.IS .b2
.3V .16
1 .OU
1 .UU
I.UU
.V9
.90
.9S
.9U
.81
.76
.66
.59
1 .OU
.91
.88
.6U
./3
.67
.60
• 51
.18
.11
.3V
SCHMUIZSTOFF 3
1 .UU
1 .UU
SCHHUTZSIOFF
1 .UU
.91
.83
./S
• 66
.<•«
.SI
.1-3
.37
.31
.2H
I.UU 1.
.VI
.83
• 7S
.67
• 60 .
.S3 .
.16 .
.11
• 36
.3
-------
             lA&tS/LI ItINFLUSS
Ul
             JMIKISZH It INI LOSS
60.0 -33 .25 .29 .11 .IB
6S.O .32 .23 .78 .13 .11
70.0 .31 .22 .27 .12 .12
75.0 .30 .21 .24 .11 .11
80. 0 .30 .20 >2S .10 .10
85.0 .30 .20 .25 .10 .10
90.0 .30 .20 .25 .10 .10
95. U .30 .20 .26 .10 .10
100.0 .30 .20 .25 .10 .10
41 IT 1 2
. UO .80 .80
.30 .80 .80
1.00 .80 .80
1.30 .00 .80
2.00 .80 .80
2.30 .UO .80
3.0U .80 .80
3.30 .80 .80
1.00 .82 .82
1.30 ' .81 .81
5.00 .86 .86
6.30 .89 .89
6*00 .92 .92
6.3U .9S .95
7.0O I.UO 1.00
7. 3D t.OO 1.00
11.00 1.00 1.00
8. 3D 1.00 1.00
7.00 .99 .99
9.30 .98 .98
10.01) .97 .97
10*30 .98 .98
11.00 .99 .99
II. 3U I.UO 1.00
1211
.40 •'& .80 .90
.V» I.OU .91 .81
. MO .42 .1* "40
.80 . 7S .80 .90
.35 .12 .SI .36 .23
.32 .39 .19 .33 • .22
.31 .37 .17 .32 .21
.31 .36 .1* .31 .20
.30 .35 .10 .30 «2U
.30 .35 .10 .30 -21)
.30 .35 .10 • .311 .2U
.30 .35 .10 .30 .20
.30 .35 .10 .30 .20
3 1 ZEII
.00 • eo 12.00
.00. .80 12.30
.00 .80 13. UO
.00 .80 13.30
.00 .80 |1. UO
•OU .80 11.30
.00 .80 15. UO
.00 .80 15.30
.00 .82 I6.UO
.00 .81 14.30
.00 .86 17. UO
.00 .89 |/. 30
.00 .92 18.00
.00 .95 18.30
.00 I.OO I9.UU
.00 1.00 19.30
.95 I.OU 20. UO
.90 I.OO 20.30
.85 .99 21. UO
.80 .98 21.30
.75 .97 22. UO
.70 .98 22.30
.65 .99 23.00
.60 I.OO 23.30
S 6 7 8
.07 .80 .75 .'5
.80 .80 .BO .BO
.82 .91 .99 I.UO
.*7 .80 .75 .75
.28 .36 .33 .25 .29 .11
.26 .33 .32 .21 .28 .13
.25 .32 .31 .22 .27 .12
.21 .31 .30 .21 .26 .11
.23 .30 .30 .20 .25 .10
.23 >3U .30 .20 .25 .1U
.23 .30 .30 .20 .25 .10
.23 .30 .30 .20- .25 .10
.23 .30 .30 .20 .25 .10
1 2 3 1
I.UO I.OO .60 I.OO
I.UO I.UU .57 I.UO
I.OO I.OO .55 I.UO
I.OU I.UO .55 I.UO
.99 .99 .55 .99
.98 .98 .60 .98
.97 .97 .65 .97
.98 .98 .70 .98
.99 .99 .80 .99
.UO I.OO .90 .UO
.00 I.OO .00 .UO
.00 I.OO .UO .UO
.00 I.OU .00 .00
.00 I.DO .OO ,OO
.98 .98 .00 .98
.96 .96 .00 .96
.91 .91 .UO .91
.92 .92 .OO .92
.90 .90 .UO ,9U
.88 .88 .00 .88
.86 .86 .00 .86
.81 .81 .OO .81
.82 .82 .00 .82
.80 .80 .00 .80
9 10 II 12
.H2 .93 I.OO .98
.80 .80 .81 .92
.96 .77 .55 .13
.82 .93 I.OO .98

-------
                     I IN  I'HUZIHI I
Ln
BICKfll 1
2111
S.
10.
IS.
20.
2b.
30.
36.
in.
15.
^ 50.
bb.
An*
AS.
70.
76.
80.
BS.
VI).
vs.
iun.
IDS.
1 10.
IIS.
1 20.
126.
130.
1 J!>.
110.
IIS.
ISO.
Ib'j.
IAO.
166.
170.
176.
HID.
IBS.
ivn.
IVb.
200.
206*
210.
'2 \ b .
2211.
226.
2J(1.
2JS.
2-10.
2'lb.
260.
2bb.
2AO.
2li'i •
1 /(I.
27S.
2110.
286.
2911.
2V6.
.MILL
1
DA.
81.
78.
74.
75.
/I.
7J.
73.
72.
72.
72.
71.
71 •
71 .
70.
70.
70.
AV.
AV.
6V.
6V.
68.
68.
68.
68.
67.
67.
67.
67.
A7.
AA.
AA.
AA.
AA.
AA.
AS.
Ab-
A6.
66.
AS.
A6.
AS.
Ab.
AS.
AS.
AS.
AS.
Ab.
Af>.
AS.
Ab.
AS.
Ar<.
AS.
Ab.
Ab.
Ab.
AS.
AS.
AS.
?
6H.
16*
12.
10.
JV.
38.
37.
3A.
36.
36.
JS.
31.
31.
33.
33.
33.
33.
32.
32.
32.
32.
31.
31.
31.
31.
31.
31.
31.
Jl.
31.
31*
31.
31 .
31.
31 •
30.
JG.
JO.
JO-
JO.
JO-
JO*
30.
30.
JO.
in.
JU-
JU-
JU-
111.
JO.
JO.
JO.
JU.
JU-
JO.
30.
30.
.10.
JU.
1 NET!
3
VV.
VV.
98.
V8.
V7.
V7.
97.
V6.
96.
V6.
VS.
VS.
VS.
vs.
VI.
VI.
VI.
VI.
VI.
VJ.
V3.
V3.
V3.
92.
92.
92.
V2.
92.
V2.
VI .
VI.
VI .
VI .
91 .
VI .
VI.
VO.
VO.
VO.
VO.
VO.
VO.
VO.
VO.
HV.
RV.
89.
89.
117.
RV.
BV.
RV.
nv.
«8.
All.
H8.
HB.
Hll-
ll II.
II H.
KlAERHtRKSBtCKEN
1
86.
81.
78.
76.
75.
71.
73.
73.
72.
72.
72.
71.
71.
7).
70.
70.
70.
6V.
6V.
6V.
6V.
68.
68.
AB.
68.
67.
67.
67.
A7.
67.
6A.
AA.
66.
AA.
AA.
AS.
AS*
Ab.
AS.
65.
AS.
AS.
AS.
AS.
AS.
Ab.
AS.
Ab.
A'i.
Ab.
AS.
Ab.
Ab.
66.
AS.
Ab.
AS.
AS.
AS.
AS.
7EII

















.5
.0
.5
.0
.5
• 0
.5
.0
.5
.0
.5
.0
.5
.0
.5
.0
.5
v.o
V.5
10.0
10. S
II. 0
1 1.5
12.0
12.5
13. U
13.5
10.0
11.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18. S
IV. 0
IV. 5
20.0
20.5
21.0
21 .5
22.0
22.5
23.0
23.5
21.0
























1
86.
78.
71.
68.
66.
61.
62.
61.
60.
5V.
58.
58.
58.
58.
58.
58.
SB.
58.
58.
58.
58.
SB.
58.
50.
58.
58.
58.
58.
58.
SB.
58.
58.
sn.
58.
58.
58.
58.
58.
58.
58.
SB.
58.
58.
58.
58.
SB.
sa.
58.












2
68.
18.
12.
J8.
35.
33.
32.
31.
31 .
30.
3O.
30.
30.
30.
JU.
30.
ID.
30.
30.
30.
30.
3O.
30.
30.
30.
30.
30.
30.
30.
30.
30.
3D.
JU.
JU.
30.
30.
30.
10.
30.
JO.
3O.
JU.
30.
30.
3O.
JO.
JU.
JU.












3
VS.
97.
VS.
VS.
93.
92.
VI.
VO.
8V.
88.
87.
86.
85.
81.
81.
83.
83.
82.
81.
80.
7V.
7V.
78.
78.
77.
77.
76.
75.
75.
75.
71.
71.
73.
73.
72.
72.
71.
71.
70.
7O.
70.
70.
7O.
70.
70.
70.
70.
70.













86
78
71
68
66
61
62
Al
60
SV
58
58
Sb
58
S8
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
sa
58
58
58
58
58
SB
58
58
58













-------
                51  Ift-SCMHUI JMt"«iEH
NJ
Ul
CO
TN-SCHMU1 7. 2111
MI, iiium ri i
\ .on
\ .30
\ 1 .00
\ ..3U
K \ '-00
\\\ Z.JO
\ NA 3.00
\ ^ J.JO
\ 1.00
\ 1.3U
X s.oo
J S.JO
0 [? 6.00
vJ,>S 6.30
h-1 I-1 7.UO
PJ 7.30

H.JO
T3 CT1 S.l/0
*Cl *^ 9. 3O
0 •• tu.ou
10.30
1 1 .00
1 1 .30
12.00
IZ.30
1 J.OO
13. JO
11. PO
11.30
15.1)0
15. JO
11, .OO
16.30
1 7.GU
1 7.3U
IN. 00
IB. 30
1 V . UU
19.30
20. UO
20.30
21 .UO
2 1 . JO
22. (0
2.2. JU
23. PO
23.30
SCHHUIZStOFF 1

ZSO.OO
ZbO.OO
ZbO.OU
ZbO.OO
ZbO.OU
250.00
250.00
ZSU.OO
2SO.OU
ZbU.OO
ZSU.OO
ZSU.OU
Zbu.no
ZbO.OU
ZSU.OI)
ZbO.OU
ZbO.OO
250.00
ZSU.OO
250.00
250. OU
ZbO.OU
ZbO.OO
250.00
250.00
250.00
25(1.00
250.00
ZSO.OO
2SO.OU
250.00
ZbU.OO
250.00
ZbO.OO
250.00
zbo.no
ZbU.OO
250.00
ZbO.OU
ZbO.OU
ZbO.OU
ZbO.OU
750.00
250.00
250. (JO
250. OU
ZbO.OU
7bU.no

750.00
ZSU.OU
250.00
250.00
250.00
zsu.un
zso.no
ZSO.OO
250.00
ZSU.OO
ZSO.OO
250.00
ZSO.OO
250.00
ZSO.UO
ZSO.OO
ZSU.OU
ZSO.OO
250.00
ZSO.OO
250.00
ZSO.OO
250.00
250.00
250.00
25O.OU
ZSU.OO
250.00
250.00
ZbU.OO
250.00
2 SI). DO
2SO.OO
ZSb.OO
250.00
250.00
2so.au
2SO.OO
ZSO.OO
ZbO.OO
ZSO.UO
ZSO.OO
ZSU.OO
250.00
250.00
250.00
25(1.00
250.00
.
ZSO.UO
2so.au
250.00
250.0(1
250. OO
ZbO.OO
zso.on
ZSO.UO
250. OO
ZbO.OO
ZSU.OU
ZSO.OO
ZSO.OO
ZSO.OO
ZSU.OU
ZSO.OO
ZSO.OO
ZSO.OO
ZSO.OO
ZSO.UO
ZSO.OO
250.00
750.00
ZSU.OO
ZbU.OO
ISb.UU
7SO.I1U
250.00
ZbO.OO
ZSO.OO
ZSU.OO
25II.UQ
ZSO.OO
75(1. OU
ZSO.UO
ZbO.OO
zsu.un
75(1.00
ZbO.OO
75U.OU
7511.00
ZbO.UO
750. OO
250. on
7SO.OO
Zbd.no
zso.on
750. on

ZSO.OO
ZSO.OO
ZSO.OO
zsu.uu
zsu.no
ZSO.UO
ZSO.UO
zsn.un
ZSO.UO
ZSO.OO
ZSO.UO
ZSO.UO
zso.au
ZSO.OO
ZSO.OO
ZSO.OO
250.00
ZSO.OO
ZSO.OO
ZSO.OO
250. OO
ZSO.OO
ZSO.OO
ZSO.UO
750.00
250.00
ZSO.OO
ZSO.OO
zso.uu
ZSO.UO
ZSO.UO
ZSO.UO
ZSO.OO
ZbO.OO
250. Ob
ZSO.OO
ZSO.UC
ZSO.UO
ZbO.OO
250.0(1
ZSO.UO
250. OO
2SO.UO
250.00
ZSO.OO
260.00
ZSO.OO
250. OO

280.00
ZBU.OU
280.00
Z8U.OO
ZBU.UO
zeu.no
2BO.OO
zeo.oo
ZAu.oa
ZBO.OO
zeu.no
ZBU.UO
ZBU.OU
280. UO
28U.OO
zeo.no
280. no
ZBU.UO
zeu.uu
ZBO.OO
zau.ua
280.00
ZBO.UO
ZBU.OO
280.00
zeo.uo
ZBU.UO
zau.no
Z80.no
ZBU.OU
ZBU.OU
2ttO.no
280.00
Z8u.ro
280.00
ZBU.UO
ZBU.OO
ZBO.OO
zeo.oo
zeu.no
ZBU.UU
ZBU.UO
ZBU.OO
ZBO.OO
2PO.OO
ZBO.UO
ZBU.liO
ZBU.UO
SCHMUI7STOFF 2

280.00
280. OO
280. OO
2HO.OO
2BO.OO
280.00
2BU.OO
280.00
280.0U
ZBO.OO
280. UO
ZBO.UO
2BO.OU
280. UU
280. UU
280. OO
280.00
28u.au
280.00
280.00
280. OO
280.00
ZBO.UU
ZBU.UU
7no.no
ZBO.OO
ZBO.OO
280.00
ZBO.OO
ZBU.OO
7BO.OO
ZBO.UO
ZBO.OO
Z8U.OC
ZBU.UO
zao.ua
780. OU
zeo.oo
ZBO.OO
280.00
zeo.oo
zeo.oo
ZBU.UO
ZBO.OO
ZBO.UO
Z8u.no
ZBO.OU
ZHO.OO

280.00
280.00
2BO.UO
280.00
280.UO
280.UO
280.00
280.00
280.ua
280.00
2BO.OU
280.00
280.UO
2ea.au
280. OO
280.00
280.00
2BO.UO
280.00
280.00
ZBo.ua
ZBO.UO
ZBO.OO
ZBU.UO
ZBO.OO
ZSU.OO
Z8n.au
ZBU.UO
280.00
ZBO.UO
280.00
ZBO.OO
280.00
280.00
280.00
2BO.UU
ZBO.UO
280.00
280.00
280.00
280.00
280.00
2AO.UO
280.00
280.00
ZBO.OO
280.00
280.00

ZBO.OU
ZBO.OU
ZBO.UU
2110. OU
280. OU
280. UO
280.0U
2BO.UU
280. UU
280* OU
280. UU
280.0U
ZBU.UU
280.0U
280. OU
280. UU
Z8o.au
ZBO.UO
280.00
zeu.au
ZBO.UU
zao.au
ZBO.OO
ZBO.UU
ZBO.UU
ZBO.OU
zeo.ua
280.00
ZBO.OU
ZBO.UO
zao.au
ZBU.UU
ZbO.OO
ZBO.UU
ZBO.UO
ZSO.UO
280.00
ZBO.OU
ZBO.UU
ZBU.OU
280.00
ZBO.OU
zeo.ua
ZBO.UU
ZSU.OU
zso.uu
ZBU.UO
28O.OU

20.00
2o.uo
20.00
2o.uo
20.00
zu.oo
20.00
20.00
20.00
20.00
2u.ua
ZU.OO
zu.oo
ZU.OO
ZO.UO
20. OO
zu.oo
ZU.UU
zu.oo
zu.oo
za.ua
2u.oa
za.uu
20. on
20.00
2o.ua
2a.uo
zu.uo
ZU.OO
ZU.UO
zu.uo
ZU.UU
ZU.UU
zu.uo
ZU.UU
zu.oo
Zu.UO
zo.ua
zu.uo
ZU.OU
20.00
zu.ua
zo.ou
20.00
2u.ou
2u.ua
zu.ou
zu.uo
scHHUTzsrorr 3

zu.ou
2u.ua
20. on
2U.UU
zu.ou
zo.oo
zu.au
20. UO
2U.OO
20.00
2u.au
zu.oo
20. OU
zu.oo
2U.OU
zu.ou
zu.oo
20.00
zo.uu
20.00
zu.au
2U.OO
20.00
zo.ou
zu.no
zu.ou
20.00
zu.uo
20. no
2u.ua
20.0U
20.00
2U.OO
20.00
20. OU
2u.ou
2u.ou
2u.uo
zu.oo
zo.ou
zo.ou
zu.oo
20.00
20. nil
zu.ou
zu.oo
zu.uo
zu.nu

zu.uo
20. UU
zo.ou
zo.uu
zu.ou
20.ua
2o.uo
20. UU
20.00
20.ua
zo.ou
2U.on
20.ua
20.ua
20.au
2o.ua
20.00
2u.oa
20.ua
20.ua
20.00
20. UU
2U.UO
2u.ou
zo.oo
zu.ou
zu.oo
20. OU
20.00
2u.uo
ZU.UU
zu.oo
zn.uo
zo.ao
zo.uo
zu.uo
zu.oo
zo.uo
zo.uo
zo.oo
zo.uo
zu.un
zu.uo
zo.uo
zu.un
zo.ou
ZU.UU
zu.uo

zu.oo
zo.oo
ZU.UU
2U.UU
2U.OU
211. UU
2o.uo
2U.UU
2u.ua
zo.uu
zo.ou
20.00
20. uo
zo.oo
zu.oo
zo.oo
zu.uo
20.00
ZU.UU
2U.UU
ZU.UU
zo.oo
ZU.UU
zu.oo
za.uu
ZU.UU
20.00
zo.uo
zo.uu
ZU.UU
zu.ou
zo.ou
20.1)0
2U. UU
20. uu
2U.UU
zo.uu
zu.ou
ZU.UU
ZU.UU
ZU.UU
zu.uo
zu.uo
ZU.UU
ZU.UU
ZU.UU
zu.uo
zu.nu

360.UU
36o.ua
360. OO
360.UO
36U.UO
36U.UO
36U.UU
360. UO
360.00
360. OO
36U.UU
36U.au
36U.UO
360.00
360.0U
360.UO
360. UO
36U.UO
36U.uo
360.ua
360.00
360.00
360.00
360.0U
360.UO
360. UO
360.OU
360. OO
36u.uu
360. OO
360. UO
36U.OO
360. UU
36U.OO
36U.OO
36U.UU
36U.UO
36U.OU
360.0U
36U.OO
360. OO
36u.uu
360.00
36U.UU
360.00
36II.UO
360.0U
36U.UO
SCHHUIZSTOFF 1

36U.UO
360.UO
360. UO
36U.UU
360.UO
360. UU
360.UO
36U.OU
360. 00
360. OO
360.00
360.00
J60.UU
360.00
360.0U
36O.UU
36U.UO
36U.OU
360.00
360.00
360.au
360.UU
36U.UO
36U.UU
360.00
360.UO
36U.UU
36U.UU
36U.OO
360. UO
360.00
360.ua
36U.UU
36U.UU
360.00
360.00
360. UO
36U.UU
360.0U
360. UU
360. OO
36U.UU
360.UO
36U.UO
360.0O
36U.UU
36U.UU
36U.UU

36U.OU
360.00
36U.UO
36U.UU
36U.OU
36U.UU
360.UO
360.00
360.00
360.00
360.00
360.00
36U.UU
36U.UO
36U.OU
360.00
36U.OO
360.00
360.UU
36U.OU
360,00
360.00
36U.OU
36U.UO
360. UU
36U.uo
36O.OO
36U.OO
36U.UO
360. OO
360. UO
36u.ua
360.00
36U.UU
360. UO
36U.UU
36U.UO
360.UU
36U.OO
36U.OO
36U.OO
36U.UO
360. UO
360. OU
360.UO
36U.UO
36U.OU
36U.UU

360.UO
360. UU
360.00
360.0U
36U.UU
360.0U
36U.UU
360.0U
360.0U
360.0U
360.0O
360.au
36U.OU
360.00
360.00
360.00
360.00
360. OO
36U.UU
36U.nO
36O.OU
36O.UU
360. OU
360. UU
360. OU
36U.UU
360.00
360.00
36O.OO
360. UU
36U.UO
36U.OO
360. OO
360.00
36U.OU
36U.UU
36U.OU
360.0U
36U.UU
36O.OU
360. UU
360. UU
36U.OU
36O.OU
36U.OO
360.ua
360. UU
36U.UU

-------
NJ
Ln
IN-SCHHUIl lt.ll SCIIHIMZSIOFI 1 SCHMUT25TOH * SCHMU1ZS10FF 1 SCHNUlZSTUFF 1
Ib/IUUUF/bl I5MFI • 1.001 ISHF2 - 1.001 ISMF1 » I.OU) ISHF1 • I.UUI
.00
.JO
1 .00
1 .30
J.OO
2.SU
1.00
3. JU
M.UO
H..IO
b.UO
b.3U
fc.bU
6.30
;.uo
/.JO
u. on
B.30
v.oo
V.JO
1U.OO
10. JU
1 1 .CIO
1 1 .30
I/. 00
12.30
13.00
13.10
IH.OO
It. 30
lb.00
lb.30
I6.0U
16. 3O
i ; . oo
I/. 30
Ife.OU
ID. 30
IV. Oil
IV. 30
20.00
?0. 30
21 .00
21 .30
22.00
;-2.3O
23.00
2J.3CI
.01
.01
.01
.01
.01
.01
.01
.01
.Ol
.01
.01
.01
.01
.01
.01
.01
.Ol
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 01
.01
• 01
.01
.01
• 01
.01
.01
.01
.ni
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
.01
• Ol
.01
• Ul
.01
• 01
.01
• 01
.01
• Ul
• 01
• 01
• 01
.Ul
• 01
• 01
• 01
• 01
.01
.01
• 01
• ni
.01
• 01
.01
.01
• 01
.01
.01
• 01
.01
.Ul
• 01
• 01
.01
.01
.01
.01
.01
.01
• 01
.01
• III
.Ul
.01
.01
.01
.Ul
.Ul
.01
.01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.Ul
.01
.01
.Ul
.01
.01
.01
.Ul
.01
.01
.01
.01
.Ul
.01
.Ul
.01
.01
.01
.Ul
.01
.01
.Ul
.01
.01
.01
.Ul
.Ul
.01
.11
.1)
.13
. 11
.11
. 11
. 11
. 1 1
. 1 1
.11
.11
.11
. 11
.11
.11
. 11
.11
.11
. 11
. 1 1
.11
.11
.11
.11
. 11
. 1 1
.11
.11
.11
.11
. 1 1
.11
.11
. 1 1
. 11
.11
.11
. 1 1
.11
.13
.11
.11
. 11
.11
. 11
.11
.13
. 11
.11
.11
.11
.11
.11
• 1 1
.11
. 11
.11
. 11
.13
. 11
. 11
• 13
• 11
.11
• 11
.11
• 11
.11
.11
.11
.11
.11
• 11
• 11
• 11
.13
• 13
• 13
.11
.11
. 11
.11
.11
.11
.13
. 1 1
. 11
. 11
. 11
.13
. 11
. 13
.11
. 13
. 13
• 11
.11
.13
.13
.13
• 11
.11
.13
.11
.11
. 13
.13
. 13
.13
.11
.13
.11
.11
• 11
.11
.11
.13
.13
.13
.11
.13
.13
.13
.13
. 11
.11
.13
.13
.13
.11
.13
.11
.11
.11
.13
.13
.13
.13
.11
.11
.11
.11
• 11
.11
.13 •1.00 81.00 BI.OO BI.UO
.13 81. UO 81.00 11.00 81.00
.13 M.OO 81. OU 81.00 81.00
.13 8I.UU 81.00 81.00 8 I.OU
.11 81. OU 81. OU 81. UO 81. UU
.11 81.00 81.00 81. UO 81. UO
.13 81.00 81. OO 81. UO 81. UO
•13 81. OO 81. OU 81.00 81.00
.13 81.00 81.00 81. UO 81. UU
•13 81.00 81.00 81. OO 81. UO
.13 81. OU 81. 00 81.00 81. UU
•13 81. UO 81. OO 81.00 81.00
• 13 81. 00 81. OO 81. UO 81. OO
.13 SI.OO 81.01) 81.00 81.00
.11 81. OU 81. UU 81.00 81.00
.13 81. OO 81. OO 81.00 81. UU
.13 81.00 8I.OO 81. UO BI.UO
•13 81. UU 81. OO 81. UO 81. UO
.13 81.00 81. OU 81. OO 81. UO
.11 81.00 81.00 81. UO 81.00
.13 81.00 81.00 81.00 81. OO
•13 BI.OO 81.00 81.00 81.00
•13 81.00 81. 00 81.00 BI.OO
.13 81. OO 81.00 81. UO 81. OO
.13 81. UO 81. OU 81. UO 81. UO
.13 81.00 81. OU 81.00 81. UU
.13 81.00 BI.OO 81. UU 81. OU
•13 BI.OO 81. OO BI.UO BI.UO
.13 81.00 81.00 81.00 8I.UO
.13 81.00 81. UU BI.UO BI.UO
.13 81.00 81. OO BI.UO 81. UU
.13 BI.OO 81. OU 81.00 BI.OO
.13 BI.UO 81.00 81.00 BI.OO
.13 BI.OO BI.OO BI.UU BI.UO
.13 81. OU 81. OU 81. UU. BI.UO
.13 81.00 81. OU BI.UO BI.UO
.13 BI.OO 8 I.OU II I.OU 81.00
•|j BI.OU BI.UU BI.UU BI.OO
.13 ei.uo a i.ou BI.OO BI.UO
.13 81.00 8 I.OU BI.UU BI.UU
.13 BI.UU 81. OO 81.00 81.00
• U 01.00 81.00 81. UO 81.00
.13 81. UO 81.00 BI.UU BI.UU
•13 81.00 BI.OO BI.OO BI.UU
.13 BI.UO 81.00 81.00 8 I.OU
.13 BI.UU BI.OO 81. UO 81. UU
.13 111.00 81. OU 81. UU 81. UO
.13 8I.UU 8 I.OU BI.UO BI.UU
.It
.1*
.1*
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
.16
             61  I»-KUN2ENl«»lIUHLN
                     INKZI '27U.OOUO  IDKZ2  -ZbO.UOUO   IHK/3 ' 2U.03OU  I»KZ1  «  60.OOOU

-------
            81 KONSTANTE UEHC.RNAHHCM
            91  VAKIABLf UIBLHMAHMCN
           I.BKKPT  CHIHtl
N>
O>
O

-------
Input data for continuous simulation
QQS-EPA-EXAHPLC
56 60
671
0 96 1 1 0 0 t
1 96 09 10 19 99 192
400 2900 200 100
0 56 09 10 16 15 196
1 96 OS 10 16 29 198
200 ||00 BOO BOO 0
0 96 09 10 IT 45 214
1 56 05 11 16 50 20J
900 600 200
0 96 05 11 IT 5 206
1 56 05 17 2 15 28
1400 100 100
0 56 05 17 2 10 11
1 96 09 17 4 35 56
300 1800 200 100 400
0 56 OS 17 5 10 67
1 96 05 23 10 5 122
1100 200
0 96 05 23 10 15 124
1 56 OS 24 17 35 212
3800 1000 800 100 0
0 56 05 24 18 5 218
1 56 05 29 22 10 . 271
700 1900 500 100 100
0 56 05 2* 22 55 276
1 56 05 30 18 55 228
600 5900 500 500 100
0 56 05 30 19 25 234
1 96 06 05 18 55 228
1800 2600 3600 1200
0 56 06 OJ 19 15 232
1 56 06 07 19 30 235
100 0 700 6400
0 96 06 07 19 50 239
1 56 06 07 23 15 260
700 400 100 0 100
200 100 100 200 400
20 30 30 20 20
20 30 20 20 20
30 20 30 20 30
0 56 06 08 5 30 67
1 96 06 11 18 0 217
800 3200 2800 500 400
0 56 06 11 19 5 230
1 56 06 22 9 30 115
900 200 0 100 0
0 56 06 22 10 0 (21
1 56 06 27 12 0 145
100 200 500 800 600
0 56 06 27 12 59 196
1 96 06 27 16 40 201
600 1400 200 0 100
0 96 06 27 17 29 210
1 56 06 28 1 40 21
700 400 400 200 300
0 96 06 28 2 20 29
1 56 06 29 II 50 |41
600 400 100 100
0 56 06 29 12 10 147
1 56 07 01 17 55 216
100 0 100 ion 100


17141
4

2
16
200 200 100 200
277
1

1550
1

25
II
100 200 100 200
1783
2

376
6
100
1493
5

240
6
100
1722
4

579
4

41
75
0 100 0 100
200 200 200 600
20 30 20 30
20 10 20 30
20 100 0 100
1014
11
800 200 200 200
3053
6
too
1464
11
200 200 400 500
45
9
0 100 500 100
99
8
100 300 100
402
4

645
51
100 0 100 100
5.00






100 200 200 200 100 400 100








100 100




















0 100 0 0 100 0 300
900 100 100 20 10 20 10
20 20 20 20 10 20 10
20 10 20 20 20 20 20
0 100


200 100 100 100





100 300











300 800 1000 300 200 |OO 300
                               Precipitation data

-------
CO
200 400 100 400 400
200 400 200 300 300
TO 0 100
0 56 07 0| 22 10 267
t 96 07 0] 17 SO 219
900 200 600 2200 2100
20 20 30 30 600
0 96 07 0] 20 10 243
1 96 07 10 22 30 271
200 3600 S200 4400 2600
300 600 300 100 200
900 90Q 600 600 600
0 96 07 1| 2 19 21
1 96 07 11 11 29 I3S
100 100 100 100 100
210 210 210 210 210
100 100 100 100 100
20 20 20 20 20
0 100
0 96 07 l| 16 99 204
1 96 07 14 12 0 149
2300 1400 900 100 100
0 96 07 14 12 29 190
1 96 07 16 13 29 162
4000 BOO 0 100 0
0 96 07 IA 14 0 169
1 96 07 16 16 29 191
1800 400 0 200 100
0 96 07 l« 17 39 212
1 96 07 19 17 29 210
4100 I40Q 800 700 400
300 300 300 200 200
0 96 07 19 20 9 242
1 96 07 21 19 30 239
700 900 300 100 100
0 96 07 2| 20 0 241
1 96 07 27 2 20 29
1100 700 200
0 96 07 27 2 39 32
1 96 07 21 3 29 42
7000 1300 100 100
0 96 07 27 3 49 46
1 96 07 28 17 0 209
900 1600 900 400 300
0 96 07 28 17 40 213
1 96 07 29 19 49 |90
900 3000 200 0 100
0 96 07 29 16 20 197
1 96 07 29 20 10 243
400 400 300 200 100
0 100 0 100 100
200 100 200 100 100
0 96 07 30 0 9 2
1 96 07 30 2 99 36
1900 600 400
0 96 07 30 3 10 39
1 96 08 02 |9 19 184
2200 100 0 400 300
0 96 08 0} 19 40 189
1 96 08 03 9 19 112
300 80Q 300
0 96 08 03 9 30 119
1 96 08 10 1 20 17
100 20o 200 100 2100
300
300

236
28
2600
100
2332
49
2700
100
400
110
66
too
210
100
300

809
9

988
7
300
29
14
100
862
32
300
200
969
6
100
1916
3

10
4

447
8
200
269
7
0
46
47
too
100
0
34
3

1009
5

211
3

1918
17
160(1
300
too



900
100


1900
too
300


100
210
100
200






300


1200


300
100











100


100


0
too
100











600
200
300



900
200


600
100
200


70
200
too
200









1200


300
too











100





200
too
0











son
400
100



200
400


400
400
200


70
too
100
too









2300


300
100

















200
100
100











son
700
0



400
200


300
too
too


70
too
0
100









1100


900
200

















too
200
0











400
400
70



900
200


300
400
0


70
100
0
200









1100


100
200

















300
200
0











400
900
70



40
100


200
300
0


70
too
100
too









1000


too
100

















200
too
100











200
BOO
70



40



BOO
400
100


70
100
0
200









800


300
100

















100
300
100











500
BOO
70



40



400
400



too
too
too
100









too


300
0

















200
200
too











400
200
70



40



600
300



too
100
0
0












300
0

















too
0
too











300
300
70



40



•00
300



200
too
too
0












300
too

















100
200












400

-------
              100
            0 36 01  10  2  49     14     1137
            I 56 01  14  !•  10   219       II
              500  |0n  700 1400  tOO  200  200    0  300  100  100
o\
U)
0 56 0* 14 19 5 210
1 96 09 17 22 25 270
2100 100 0 100
0 96 01 17 22 45 274
I 56 01 21 10 55 112
1100 500 200 400 200
0 56 01 21 II 55 144
1 56 01 25 11 15 160
100 200 100 600 100
0 56 01 25 14 0 169
I 56 01 24 11 IS 220
100 0 100 500 100
100 10« 100 200 200
200 200 100 100 100
0 0 0 100
0 56 01 29 22 15 272
1 56 09 09 16 20 197
400 2500
0 56 09 09 1* 10 199
1 56 09 10 19 5 210
100 100 100 100 100
200 200 200 100 0
0 56 09 10 21 15 260
1 56 09 12 12 40 |53
1100 2000 100
0 56 09 12 12 55 156
1 56 09 1] 17 25 210
100 0 0 0 100
200 200 100 100 200
0 100 0 40 40
0 56 09 11 21 20 257
1 96 09 27 16 5 |94
100 0 100 100 100
200 60 60 60 60
200 200 100 100 200
20 20 20 10 10
0 56 9 27 20 10 247
1 60 05 0| 11 10 221
500 700
0 60 05 01 11 40 225
1 60 05 IJ 18 55 22t
500 BOO 100 90 50
0 60 05 11 19 20 211
1 60 05 U 14 40 177
40 40 40 40 40
150 100 400 SO 50
0 60 05 14 16 SO 201
1 60 05 16 20 40 249
too too too 100 too
100 500 600 200 100
100 10(1 100
0 60 05 16 21 15 284
1 60 05 22 9 10 115
10 10 10 10 50
100 100 200 100 100
100 100 100 100 SO
(0 80 90 10 80
200 200 100 100 100
100 |00 100 0 200
100 200 200 100 700
904
4
1010
12
100 100
1168
9
1100 1400
1201
52
500
)00
200

109J
2

119
10
100
200
469
1

142
47
0
too
40
1969
51
100
60
100

62184
2

1459
5

212
26
50
100
622
15
too
SO

1559
128
50
400
50
90
too
150
700

100
100
200






100
0





too
100
40


too
60
too









150
too


100
SO



50
500
SO
100
too
ISO
800
0
400

100
300
400






too
too





too
too
40


too
60
too









200
100


100
too



SO
300
SO
200
too
too
son
too
100

J0«
100
200






too
0





0
too
40


too
60
too









100
200


too
100



50
100
50
too
200
100
400
100

400
100
300






200
200





too
200
40


too
200
too









300
50


200
100



50
too
90
0
200
100
200
too

•00
300
200






200
200





0
200
40


200
too
200









400



too
too



too
200
50
too
too
too
200
too

900
200
100






200
200





0
200
40


200
0
0









JOO



200
100



too
200
SO
400
too
200
200


100
400
too






400
200





100
100
40


too
200
too









200



100
too



200
ISO
50
100
too
300
10


400
200
too






100
200





400
1200
40


too
40Q
0









100



100
400



200
150
90
900
too
900
30


loo
too
0






100






200
aoo
100


too
400
0









200



200
400



too
ISO
50
200
too
200
JO


100
too
too






400






200
too



0
100
20









ISO



200
300



200
ISO
50
400
too
200
20

-------
20 20
0 60 OS 22
1 60 OS 24
1100 29o
100 ton
150 900
100 SO
ISO SO
0 60 OS 24
1 60 OS 29
7900 ||00
30 30
0 60 OS 29
1 60 06 09
100 1SOQ
0 60 06 09
1 60 06 10
1100 1900
0 60 06 10
1 60
06
500
0 60
1 60
06
06
4900
0 60
t 60
100
400
200
0 60
1 «0
200
400
200
60
0 60
1 60
200
400
0 60
1 60
200
0 60
t 60
400
0 60
1 60
3600
0 60
1 60
100
100
too
0 60
1 60
1100
0 60
1 60
90
200
0 60
1 60
SOO
0 60
06
06



06
06




06
06


06
06
10
SOO
10
13
too
13
13
100
400
200
13
25
400
600
ISO
70
25
26
300
100
26
26
1200
06
07

07
07

07
07



07
07

07
07


07
07
2k
06
300
06
14
600
14
14
0
100
30
15
IS
300
IS
U
too
300
IS
23
1100
07
23
20
20 10
17 IS
250
SO
700
SO
22 45
16 20
400
30
17 55
4 10
600
4 49
19 9
300
16 0
20 5
300
21 0
IS 30

IS 40
17 0
90
400
50
20 35
IB 35
200
600
ISO
• 0
23 30
0 5
SOO
150
1 45
6 39
3000
7 9
0 45
600
1 20
21 0
90
21 20
23 15
100
100
30
2 15
14 40
1700
15 2S
17 45
too
300
19 55
IS 30
1600
16 35
10 10
243
206
200 100
SO 100
400 200
40 40
274
197
300 200
216
91
100 100
58
112
300 0
193
242
400 1500
293
117

1»9
209
190 0
300 300
50 20
24t
224
300 300
500 500
200 100
90 100
283
2
300 100
SO
22
10
400 100
16
10
200 200
17
293
SO
297
280
ISO 250
100 100
30
28
177
900 500
186
214
ISO 100
300 300
240
187
900 1300
200
30
941
66
100
100
300
40
1363
19
200
3003
7
200
412
II
too
. 49
II
100
796
2

16
43
200
400
20
3432
59
300
700
100
200
7
20
30

56
6
100
2604
7
200
2940
4

23
36
500
70

149
9
400
28
26
200
200
2291
13
1800
2369
30
60
100
200
40
200
too
9QO

100





100
400
20


200
900
90
ISO


30






100





400
70



300


200
100


600

30
70
50
190
40
too
100

too





200
600
20


200
400
SO
ISO


30












SOO
70



200


200
30


600

10
70
50
150
50
100
too

too





400
1100
20


400
400
100
300


50












400
100



100


200
30


ISO

30
30
100
100
SO
SO
SO

100





SOO
900
too


900
300
300
ISO


290












300
100






300
30


90

30
30
too
too
200
90
SO

100





SOO
900
too


SOO
300
100
so


300












100
too






200



200

30 30 30 10 10
30 100 100 200 100
too too too too so
50 SO 50 SO 100
100 100 10 30 10
50 SO 30 30 30







SOO SOO SOO 400 400
300 600 SOO 700 700



400 500 600 600 400
300 200 200 ISO 190
200 200 60 «0 10



BOO 100 300 1600 1400












300 200 100 100 100
200 190 |90 mo 100






300 100 300 200 200



100 200


-------
(SI
1
60
07 1|
too too
2700 1500
22 0
100
2tOO
265
10

10
600 2000
14
10
1100

0
1100

300
600

600
600

1000
400

too
200
SO SO
0
1

60
60
100
01 01
oa 01
too
30 lo
0
1



0
1

0
1

0
1

0
t

0
1

0
1



0
1

0
1

0
1

0
1






0
1

0
t
60
60
10
200
100
60
60
1100
60
60
1100
60
60
SOO
60
60
3200
60
60
1SOO
60
60
100
200
100
60
60
100
60
60
1200
60
60
S200
60
60
1100
200
100
too
100
90
60
60
SOO
60
60
01 01
01 0|
10
too
100
01 0|
Ot 02
300
Ot 02
01 01
100
Ot 0}
Ot OS
SOO
01 OS
Ot 06
ISO
01 06
Ot 07
1000
ot OT
Ot Ot
too
300
too
01 og
Ot 09
1700
01 09
Ot 15
100
ot is
Ot 16
1200
01 16
ot to
600
30
100
100
100
90
Ot 19
Ot 23
1200
Ot 24
09 Oft
900 JOO
0
1

0
1

60
60
100
60
60
100
09 06
09 06
700
09 06
09 19
200
1400 6200
0 60
09 19
0 SO
IS S
100
20
16 SS
It 20
10
200
100
21 SO
IS 45
100
16 0
12 IS
SO
12 SO
It 20
100
It SO
n 25
ISO
It 0
16 S
200
16 20
7 45
ISO
100
200
II IS
12 0
100
12 15
19 10
100
19 45
12 20
100
12 45
21 IS
100
10
too
50
90
90
5 20
21 45
600
0 0
14 10
100
15 0
15 IS
100
IS 40
16 10
SO
100
I* 25
11
112
2700
20
204
221
70
200
100
261
190

191
152

ISS
221
400
227
210
50
217
194

197
94
ISO
too
200
116
14S

141
21S

231


SOO
20


70
600
20








SOO


SO





200
too
200







149
200
154
260
200
20
100
50
90
90
SO


200
20
too
to
90
100
65
286

1
175
100
III
184
SO
119
199
50
150



SO


50


50
SO
222
171
22
100
20
17
42
70
600
20
215
1

247
1

642
6
200
271
7
SO
26S
1

115
42
100
200
loo
297
1

HIS
1

199
S

6t2
91
200
10
too
10
90
100
1171
1

191t
6
SO
1
5

1754
23
SO
50
3


400



too
SOO
20











SO





600
SO
too











SO
10
too
to
90
100











200
SO



100



too
400
20

















900
SO
too











50
10
100
10
90
100











100




loo



too
400
20

















too
100
SO











SO
200
50
to
90
200











200




SO



too
ISO
to

















100
loo
so











ISO
200
SO
to
90
200











too




SO



290
ISO


















too
ISO












200
100
so
to
90
100











100


                                                                   600  100  200  100  100
                                                                   200  100  tOO   SO   90
                                                                    10   10   10   30   10
                                                                   ISO  100  100  tOO  200
                                                                   100  100  tOO  ISO  150
100  100  tOO  100  200
ISO  200  200  100  100
                                                                   200  200  200  100  200
                                                                   200  200   SO   SO  tOO
                                                                    90   50   90  100  100
                                                                    to  too  too  100  100
                                                                    90   90   90   90   90
                                                                    50   SO
                                                                   100  100  100  400  100

-------
             t  60  09  19  II  35    224        21
               700 100   100   100  400  500  SOO  900  SOO  900  100  100  200  200  100  200
               200 200   100    90    90
             0  60   9  19  20  20    249     66T69
             I  62  09  09  II  9    211        1
               200 400   SOO   600  900  400  200
             0  62  09  09  II  40    229       220
             I  62  09  lo  II  0    197        1
               700 40Q   100
             0  62  09  10  11  19    160     2099
             I  62  09  17  16  10    199        96
                90   90   90    90    90    90   90   SO   10   10   10   10   10   10   20   20
                10   10   10   100    90    90  200  200  100  100  200  200  200  200  200  200
               200 100   100   100  100  100  100  100  100  200  100  100  200  200  100  100
               100 300   100   200  200  200  100  100  100  100  200  200  200  200  100  100
                90   90   200   190  190  2SO  290  300  100  100  100  100  100  400  400  400
               900 400   900   600  400  100  100  300  100  100  200   40   40   40   40   40
             0  62  09  t|   0  10      7      '469
             I  62  09  19  19  19    114        41
               100 |0o   100     0  100  200  200  100  100  100  200  100  100  100  100  100
               100 100   200   200  100  190  190  100  100  100   90   90   60   60   60  100
               100 100   400   100  100    90   90   90   90   90   90   90   90  100  200  100
             0  62  09  19  19  19    212     1160
             I  62  09  24  12  19    |92        47
               100 100   100   100  200  100  200  200  200  200  100  100  200  200  100  100
               100 100   200   200  200  100  100  100  100  200  190  190  100   10   30   10
               100 100   190   190  200  100  200  100  100  100  100  100  100    0  100
             0  62  09  24  16  10    199     2012
£           I  62  09  It  17  90    219        41
£             100 100   100   200  200  100  200  100  200  100  100  200  100  200  290  290
               100 100   100   200  400  400  300  100  290  290  200  200  100  |90  ISO  100
               100 190   190   100  100    90   90   90   90
             0  62  09  1|  21  19    296        21
             I  62  09  1|  21  10    279        14
                90 190   200   190  190  200  200  200  100  100  200  100  900  290  290  200
               200 200   200   100  200  100  200  200  200  200  100  600  900  190  |80  200
               100   10   10    10  100  100   90   90  100  100  100  100   90   90  200  200
               200 100   100   100  100  100   10   10   10   10   10   10   40   40   40   40
                40   40   40    40    40    40   40   40   20   20   20   20   20   20   20   20
                20   10   10    10
             0  62  06  0|   6  10    79       111
             I  62  06  0|  16  0    191        10
               290 290   100   200  200  200  100  100  100  100  100  200  200  200  900  100
               200 200   100   190  190  190  200  190   90   90  100   90   90   90
             0  62  06  0|  II  30    221     2110
             1  62  06  It  14  20    171        10
             1000 2900  2900 I2i>0  100  400  100  400  200  100
             0  62  06  II  19  10    111     1219
             I  62  06  IS  22  29    270        9
               700 50n   100     0  100
             0  62  06  19  22  90    279        12
             I  62  06  16   I  30    19        I
             1900 100   900   100  100  900  100   90
             0  62  06  16   2  10    27       191
             1  62  06  16  14  49    171        4
               900 1000   100    90
             0  62  06  16  19  9    |I2     4931
             I  62  07  0]  II  19    224        II
                90 290   100   600  1200  1000  600  700  200  400  100  200  200   10   10   10
                10   90
             0  62  07  01  20  9    242     HOI
             t  62  07  10   2  49    34        9
               100 100  2000   400    90
             0  62  07  10   1  10    19     2164

-------
1 62 07 17
700 1000
0 62 07 17
1 62 07 17
1100 1700
0 62 07 17
1 62 01 02
2000 7200
0 62 0* 0}
1 62 01 05
1500 600
0 62 0» 05
1 62 01 05
50 150
0 62 01 OS
1 62 0« Ofi
1100 500
0 62 01 06
1

0
1

0
1

0
1

0
1


0
1

0
t





0
1

0
1

0
1


0
1

0
1

0
1

0
1
62
1100
62
62
ISO
62
62
JOO
62
62
400
62
62
200
0
62
62
6100
6]
62
150
100
100
200
too
62
62
BOO
62
62
soo
62
62
400
400
62
62
too
62
65
2600
65
65
200
65
63
01

01
OS

01
01

01
01

01
01


01
09

09
09





09
09

09
09

09
09


09
09

9
05
06
700
06
15
ISO
IS
21
200
21
21
700
21
24
lOn
too
24
04
800
04
07
ISO
ISO
200
JOO
40
07
07
600
07
07
600
07
16
200
100
16
18
100
10
0)
1100
OS
05

05
05
01
04
200
04
05
IS JO 117
SOO
15 45 190
17 0 205
700 400 100
17 25 210
22 40 271
4000 900 (00
21 SS 218
19 IS 220
100
16 10 221
21 0 277
200 900 1400
21 10 281
2 10 11
100 100
2 SO 15
4 IS
100
4 SO
14 10
1400
14 40
9 50
500
10 SO
IS 40
400
16 20
1 45
SOO
0
5 10
17 10
50
17 45
5 SO
0
too
ISO
200
40
12 15
19 35

19 45
20 10

20 20
12 55
100
100
14 10
16 50
600
16 10
16 20
too
17 10
16 0
1200
16 45
16 15
52
100
S9
171
400
177
119
1000
111
1(9
600
197
46
500
SO
67
211

214
71
100
100
ISO

100


SO


700


200


SOO
SO





600
too
too
1600 1500
40
148
216

216
241

245
156
SOO

175
201
100
219
197
100
211
191
400
202
196
40








900



too


600


100


1
IS
s
4671
IS
900
796
1
54
6
SO
16
4
17
7
SOO
2704
6
SO
1670
12
400
56
6
200
711
21
too

1112
1

721
77
500
SO
ISO
1000
40
86
2

S
2

2501
19
1200

604
l«
200
65154
14
too
270
9
200
282
4
400

100





100


100


too






100
too
ISO
400
40








100



1500


SO


0


400 200 100 100 ISO SO SO SO







100 200 100 100 100


100


300 200 100 100 200 300 400 100 100






100 100 ISO 100 SO SO SO SO SO
100 100 ISO ISO 100 100 100 100 100
250 2SO 200 100 100 100 200 280 250
100 100 100 200 100 0 100 100 100
40 40 40 40 40 40








300 300 SO 50 200 200 100 300 100



600 100 0 200 400 100 100 100 100


100 200 100 0 0 100 100


o too



-------
             400  1000     0   100
           0  6S 09  OS  16  IS    300        11
           I  69 09  09  IT  40    21)         )
           1400  600   100
           0  69 09  OS  IT  99    216         4
           I  69 09  OS  tl  19    220         S
           1600  100   400   100    90
           0  69 09  OS  II  40    229      112)
           I  69 09  09  16  19    196         9
             400  300  1100   SOO  TOO   600  900  tOO  100
           0  65 09  09  IT  0    209       254
           I  69 09  10  14  10    1T1         )
           1400  40Q   90
           0  69 09  lo  14  29    174       199
           I  69 09  I]  14  0    169         2
           2900  900
           0  69 09  I]  14  10    171         9
           I  69 09  |]  14  19    176         2
           2200  20Q
           0  65 09  I)  14  49    IT!       101
           I  69 09  16   9  )0    119         2
           2000  300
           0  69 09  te   9  40    117       129
           I  69 OS  19   6  45    13        47
           1)00  200   100   200  100   200  100  200  200  200  900  100  200  200  200  100
             400  300   300   400  100   200  100  100  100  200  100  100  100  100  100  200
             100  400   400   400  100   200  100  200  100  200  100  100    0    0  100
           0  65 09  19  10  40    129      JJ5»
N>         I  69 09  27  19  10    III         6
^           100  900   900   500  100   100
00         0  65 05  27  15  40    119       141
           1  65 05  2«  20  40    249       216
240
60
60
0
200
200
0
200
200
500
100
too
0
10
0 65 09
1 65 05
240
60
60
300
0
0
0
100
200
400
100
0
0
In
29
10
240
60
60
200
100
200
100
0
too
•400
100
100
100
10
14 40
15 15
240 240
60 60
60 60
200 100
100 0
0 100
0 200
100 200
100 100
100 200
100 0
0 100
0 100
20 20
177
111
240
• 0
60
too
0
100
100
100
200
100
100
0
100
10
399
7
340
60
60
300
100
100
100
100
too
300
100
100
0
30


340
60
60
|00
0
0
100
100
900
600
too
too
100
20


60
60
60
0
100
300
100
100
700
500
0
0
0



60
60
60
100
200
200
200
100
200
500
100
too
0



60
60
60
0
200
200
200
100
too
300
too
0
100



60
60
60
too
300
100
100
300
too
200
100
too
200



60
60
60
0
100
200
100
0
200
100
100
0
0



60
60
60
0
200
too
100
100
0
100
too
too
too



60
60
no
too
200
too
200
too
mo
too
0
0
0



60
60
60
0
0
too
200
too
900
0
too
too
0



            100  100  500 1000  600  900  200
          0 65 05 lo 16 10   195       14
          1 65 05 In 19  0   229       69
            100  100  400  900 1700  400  100  100  100  200  100  200  100  200  400  100
            100  200  100  300  200  200  400  100  200  100  200  100  200  100  11>0  200
            100  200  100  100  100  200  100  100  100  100  100  100  100  100  tno  100
              0  |0o  100  tOO  200  200  100  200  100  100  100  100  200  100  100    0
            too  too  200    o  too
          0 65 OS >t  0 45    10     1092
          1 69 06 0] 19 49   211       21
            100  90Q 1100 2900  900 1500  200  200  400  900  200  200  100  100  400 1000
            500  200  100  100  100
          0 69 06 0] 21 10   259     1117
          I 65 06 0| IT  5   206      200
            100  10o  100    0  900  600  100  )00  200  500  100  400  200  200    0  100
            200    0  100  100  100  100    0  200    0  100  100  100    0  100    0  100

-------
Is)
O\
VO
0 100 0 tOO tOO
0 0 100 0 100
o ton o too o
too too 200 too 200
100 200 tOO 100 100
100 200 200 200 200
JOO )0ft 100 300 200
400 200 100 300 100
100 400 400 200 100
0 100 200 200 100
0 100 100 20 20
0 65 06 09 9 45 111
1 65 06 10 1 10 10]
JOO 200 200 100 200
500 tOO 900 2700 100
0 65 06 to 10 45 110
I 61 06 10 11 15 160
too too 100 400 200
too
0 65 06 10 14 40 177
1 65 06 to 14 55 HO
100 too 200 700 400
1100 2600 1900 1100 100
0 65 06 10 16 40 201
I 65 06 10 19 5 210
200 100 200 200 100
0 65 06 to 19 50 219
1 65 06 10 20 5 242
10 lo 10 0 200
500 600 200 400 100
0 65 06 10 22 10 271
1 65 06 10 21 10 2(1
100 0 100 200 100
o too
0 65 06 1| 1 0 11
1 65 06 11 1 5 11
700 400 100 200 100
200
0 65 06 11 4 10 55
t 65 06 14 10 tO 121
1100
0 65 06 14 10 15 124
1 65 06 14 11 10 161
1900 4400 5200 100
0 65 06 14 11 SO 167
1 65 06 14 16 15 196
2000 1400 200 1500 900
0 65 06 14 17 0 205
1 65 06 16 0 45 10
100 100 200 400 200
0 |0o 100 100 0
0 65 06 16 2 45 14
1 65 06 IT 11 15 224
1100 500 700 400 400
0 65 06 17 19 5 210
1 65 06 2| B 50 107
100 2800 1000 900 SOO
0 65 06 2| 9 20 11]
1 65 06 21 16 45 202
200 400 900 400 4000
0 65 06 2| 17 40 213
1 65 06 26 16 40 201
2700 170n 100
0 65 06 26 16 55 204
200
0
too
too
too
200
200
200
100
200
20
271
27
300
400
10
17
900

1
21
300

29
9
2400
1
29
100
500
12
19
1100

601
17
200

156
1

19
4

29
9
700
181
24
500
0
478
6
too
1029
6
200
89
II
2(00
1428
1

1221
200
0
100
200
100
200
100
100
200
too
20


200
600


(00



200



1400


200
600


700



200









400


600
too








1700




400
100
too
too
200
100
200
400
400
100
20


100
700


200



1800



700


0
300


400



200









600


500
too








MOO




500
0
0
too
100
200
too
100
400
100



100
0

,
700



2600



too


200
100


400



200









too


500









1200




300
100
too
200
200
300
100
100
100
ioo



200
0


1100



2100


*



400
500


(00



too












600









200




200
0
too
100
100
200
200
400
500
too



SOO
too


SOO



900






400
700


400



100












100









100




200
too
0
too
200
100
200
400
700
100



SOO



1(00



•00






1000
700


100



too












100














too
0
too
200
200
too
aoo
100
400
100



600



400



0






400
400


SOO



400












100














too
too
0
too
too
200
400
40p
100
too



0



400



100






700



too



400












200














0
0
100
too
200
too
100
SOO
100
100



100



too



•00






600



100



too












too














too
0
0
200
200
100
200
400
200
too



600



0



900






SOO



too



0












100















-------
I 69 it 30
100 TOO
0 «5 06 10
1 65 07 07
100 ItOO
0 65 07 01
1 69 07 01
100 0
100 200
200 100
200 200
100 100
0 69 07 OB
1 69 07 0|
100 400
0 69 07 08
t 69 07 09
400 1600
0 69 07 0)
1 69 07 17
100 300
100 300
200 100
0 69 07 IB
1 69 07 20
100 900
400 tOO
0 69 07 20
1 69 07 22
too o
300 600
200 0
70 70
30 30
0 69 07 2)
1 69 07 21
2100 2200
0 69 07 23
1 69 07 29
2200 600
0 69 07 29
1 69 07 2«
«00 1600
0 69 07 2«
1 69 07 2«
600 1400
0 69 07 26
1 69 07 26
1300 300
0 69 07 26
1 69 07 27
200 300
0 69 07 27
t 69 08 0]
200 0
0 69 01 03
1 69 08 07
1300 2900
0 69 09 01
t 69 OB 07
1400 600
0 69 08 07
t 69 08 31
300 300
22 90
1000
23 49
23 20
too
0 20
4 29
too
400
200
too

9 99
18 90
too
19 29
1 10
700
2 10
21 40
900
200
0
0 40
19 9
279
300 200
286
261
tOO 200
9
94
too too
1600 400
200 200
200 200

120
227
tooo too
214
19
700 100
27
261
600 600
200 100
too
9
210
1900 2900 2000
200
21 9
16 10
100
900
too
60
10
0 10
2 99
1200
3 29
19 19
too
19 30
0 19
900
8 39
12 9
600
12 30
14 99
too
19 40
16 19
(00
16 90
10 20
1200
10 90
22 40
2400
23 0
21 29
1100
21 90
IS 99
900
tOO 200
294
219
0 100
600 100
too too
60 60
10 20
7
16
800 600
42
184

187
too
too
104
146
200 100
191
180
300 100
189
196
700 400
201
129
200 100
131
271
900
277
282
400 100
287
192
400 900
II
100
2011
12
200
49
66
too
600
200
100

107
7
0
71
6
200
2938
16
700
too

797
24
200
too
941
76
800

200


200


too
200
300
200



200


600


900
too



200
0


700
too 1000
too
60
20
29
6
200
718
1

201
4

42
9

29
9
0
299
7
200
1938
6
too
1294
4

5
9

6917
19
400
too
60
20














too


too











0

200


100


too
too
100
200






too


600
200



too
too


soo
900
0
60
20














0














0

900 100 100


200 100 100 100


o too too o too
loo too too too too
400 100 100 100 no
200 100 100 100 200









600 200 100 900 400
400 200 400 200 100



100 0 100 tOO 200



100 600 (00 400 600
400 400 200 100 tOO
70 70 70 70 70
60 (0 60 60 10
20 20 20 20














too














200 100 100 200 0







too too o
200 100 200
200 200 100
200 200 «









400 100 200
400 400 100



100 100 200



700 SOO 100
too o too
70 70 70
10 10 10






























o too

-------
0 65 01 1| 17 10 207
1 65 09 09 16 55 204
200 tOO 100 1100 400
0 65 09 09 11 15 212
1 65 09 10 0 20 5
too too 100 200 loo
too
0 65 09 10 1 45 22
1 65 09 10 1 0 17
too too 200 too too
200 200 100 100 100
o ion
0 65 09 10 5 SO 71
t 45 09 10 • IS |04
100 0 100 0 0
400 400 700 100 100
0 65 09 10 10 40 129
t 65 09 10 11 55 144
too o too too too
100 200 100 200 200
too too too too too
100 100 200 200 100
100 200 100 400 200
too
0 65 09 10 11 40 225
t 65 09 12 17 10 207
100 500 600 400 200
0 65 09 12 17 15 212
1 65 09 I* 20 15 244
100 600 100 200 200
too 200 200 200 too
200 too 100 200 100
too
0 65 09 19 0 20 5
t 65 09 2« 9 10 111
100 0 0 100 0
100 100 200 200 100
too too too o too
200 ion too o too
2519
too
It
17
200

15
34
too
200

13
2S
too
200
IS
It
100
200
too
100
200

551
S

1760
49
200
loo
too

2691
56
too
too
200
0
too

200



200
200



100
0


0
100
too
200
200






200
200
200



too
200
200
too
too

400



200
200



0
0


too
too
too
100
100






100
loo
200



0
200
200
100


1600



200
300



100
too


too
0
200
too
too






200
200
200



too
too
100



2100



too
200



0



0
too
too
too
too






400
0
500



too
too
100



400



200
0



too



0
too
BOO
100
0






200
too
too



too
300
too



700



too
too



too



too
200
100
200
too






100
0
0



too
too
too



soo



too
too



300



300
too
0
too
0






300
0
too



too
too
300



700



200
100



300



200
too
200
too
too






300
too
300



too
0
300



300



300
0



400



300
300
too
300
0






too
0
too



too
too
300



0



too
100



500



too
too
too
0
0






100
too
too



too
too
300


-------
to
QOS-EPA-EXAMPLC
          1.00101.0 i.o i.o i.o t.o
xx
xxxx
xxxx
0   C037
t   ROtSRa2flR03a
2
3
4
5
IC001C002
1C002C003C001
IC003C004C002
ICOOICOOScOOj
ICOOSB006C004
IB006C007C005C016
1C007COOIR006
IC008C009C007
IC009COIOC006
ICOIOCOHC009
ICOI1C03IC010
IC013COI4
ICOMROUcOll
1R015C014C014
1SOI3S014
ISOHSOISjOll
1SOI5COI6S014
1C016B006POI5S015
IC003C024C002
1C024C025C003
1C025C026C024
IC026C027C02S
IC027C032C026
IR028C029
1C029C030R02I
IC030C03IC029
IC031C032COIIC030
ICQ)2CO)3c03tC027
IC033C034C032
IC034C035C033
IC035C036c034
1C036C037C035
1C037R036C036
IR038B038C037
IB03BC039R036
 CNDE
2R015IC0160.20 5.00 53.92
2R028IC0290.SOIO.OO 26.55
2R0381B0180.5020.00 10.43
2B0062
2B0383
 EMDE
1C034 0.16 0,15
 ENDE
3AC01C001|2 26.03 .10
3AC04C00412 11.65 .25
3AC05C005I2 10.52 .18
3AC06B00612 30.16 .23
3ACI3C013I2 50.10 ,14
3ASI3S01312 50.10
3AC26C026(4 20.48 .02
3AC28R028I3 79.52 .40
1AC31C03IU 17.81 .10
                                                            301055600003112602159
                                                                                     91
                                                                                            Network  data
01 .40
01 .40
01 .40
01 .50
on. oo
01 .JO
01 .40
01 .50
01 .50
01 .90
01 .50
011.00
011.00
01 .JO
01 .40
01 .40
01 .40
01 .60
01 .40
01 .40
01 .40
01 .60
01 .60
01 .50
01 .60
01 .60
01 .10
ot .to
011.00
011.00
011.00
011.00
011.20
01 .50
011.20
53.92
26.55
10.4)
51.39
9.00
.40260.
.40100.
.40290.
.50240.
1.00145.
.10115.
.40250.
.50225.
.50184,
.50172,
.50 92.
1.00120.
1.00 92.
.20130.
.40120.
.40 92.
.40130.
.60182.
.40220.
,40200.
,40t«0.
.60212.
.60191.
.50232.
.60184.
.60167.
.80137.
,80272.
.OOJ52.
.00167,
.00187.
.00214.
.201J8.
.50100.
1.20100.



100.0.655
500.0.655
61.17
60. 84
59.68
57.50
55.40
51.39
44.97
36.29
33.57
30.87
26.74
54.76
54.40
93. »2
54.76
54.40
54.12
53.33
59.68
52.31
44.89
37.47
29.59
26.55
25.75
25.33
24.02
22.65
18.67
16.07
14.30
12.77
11.66
10.43
21.20



.001
.001
60.84
59.68
57.70
55.60
53.50
44.97
36.29
33.57
30.87
26.74
24.98
54.40
54.12
S3. 53
54.40
54.12
53.73
52.61
53.00
44.89
11.00
30.05
23.53
25.75
25.33
24.91
22.65
18.67
16.07
14,30
12.77
11.66
11.23
10.27
21,10




2
                            10  30R028C029 0.0
                                  82
                                  90
                                  57
                                  31

                                  26
                                  25
                                  18
                                  28
                                                                    0.40  0.020

-------
            JAC32C032I2 21.90 .29  32
            3AC33C03312 14.SO .19  It
            3AC37C037I3 90.52 .07   4
             ENDG
to
-J
CO

-------
                                 .2500000 1.0000000KREI3PROFIL
S3
OQS-EPA«EXAMPI,E
01  lit     .78539(2
XX
xxxx
ICOMMERCIAL         2RE3IDENTIAL        3INDUSTRIE          4PARKS
HULDENKAPAZITAETEN    .6010.0   .8010.0  1.0 12.0   ,«010.0
                      .6010.0   .BOIO.O  1.0 12.0
                                                                                            Quantity  data
           MULDENIHITUUIERTG 1
           VERSICKERUNGSRATEN
           VERDUNSTUNGSRATEN
                               ,8010.0
27.7 27.7 27.7  41,•  27.7 27.7 27,7 48,6
           ,60   .70   .97 1.15 1.15 1.55 1.75 2.05 2.10 2.55
          2.60  1.20  1,60 4.00 4.40 4,«0 5.25 8,70 4.40 6.70
          7.20  7.70  1,20 1.70 9.20 9.7510.2510.1011*1011.10
         12,3SI2.9011,4011.9014.4014.9015,4516.0016,SOI 7.00
         11.0 11.5   19. 19,5  20. 20.5  21. 21.5  22. 22.5
TEMPERkTUREN 3
56 0.1 0
60 O.I 0,
65 O.I 0
56 2.4 4,
60 1.4 4
65 2.0 1,
EINHEITSGANGLINIEN




















EINHEITSGANGLINIEN
TW-ABFUIE33E
TH-ABFLUEsaE
TN-ABFLUESSE
TH-ABFLUESSE
TH-ABFLUESSe
TWABFLUE3SE
TH-ABFLUESSe
TH-ABFLUESSE
1H-ABFLUES8E



C017 1.30
XXXX
XXXX
XXXX
3.0013.00
1151 7.0
1011 5.7
1011 7.1

9248 15,1
5. .200 .064
10. .410 .110
IS, .222 .120
20. .190 .118
25. .050 .109
10. .030 .097
35. .010 .0(2
40. .005 .067
45. .053
50. .043
55. .013
60. .026
65. .020
70. .016
75. .011
80. .009
OS. .007
90. .005
95. .004
100, .003
105. .002
110. .001
0.00 .05 4.00
0.30 .05 4.30
1.00 .05 5.00
1.30 .05 5.30
2.00 .05 6.00
2.30 .05 6.30
3.00 .05 7.00
3.30 4.05 7.30
1. 1. 1. I
1. 1. 1. 1
1. 1. 1. 1
1. 1. 1. 1




10.9 |4.2 11.9 9.5
10.7 12.2 11.9 11.7
11.1 14.0 12.7 7.6

18.1 22.1 22.4 15.1
.160 ,064 ,200
.170 .110 .410
.210 .120 .222
.100 .116 .190
.060 .109 .050
.015 .097 .010
.020 .082 ,010
.010 .067 .005
.005 .051
.002 .041
.011
.026
.020
.016
.011
.009
,007
.005
.004
.001
.002
.001
.05 (.00 4.0512.00
.05 (.10 .0512.30
,05 9,00 .0511.00
.05 9.10 .0511.10
.0510.00 .0514,00
.0510.30 .0514.30
.0511,00 4.0515.00
.0511,30 4.0515.10
1. 1. 1. 1.
1. 1. t. 1.
. 1. I. 1. 1.
. t. 1. 1. 1.




7 0 1
62 2
9 2 1
1 6 0
57 0
,064 ,055 .064
.110 .ISO .110
.120 .240 .120
.116 .200 .116
.109 .130 .109
.097 .090 .097
.0(2 .060 .0(2
.067 .040 .067
,053 .030 .053
.043 .020 .043
.031 .010 ,011
.026 .005 .026
.020 .001 .020
.016 ,001 .016
.011 .011
.009 ,009
.007 .007
.005 .005
.004 .004
.001 .001
.002 .002
,001 .001
.0516.00 4.0520.00 4.05
.0516.10 4.0520.10 .05
.0517.00 4.0521.00 .05
.0517.10 .0521,10 ,05
,0518,00 ,0522.00 ,05
.0518.30 .0522.30 .05
.0519.00 .0521.00 .05
.0519.10 .0521.10 .05
1. 1. 1. 1.
1. 1. It 1.
1. 1. 1. 1.
1. 1. 1. 1.




                       -I

-------
           OOS-EPA-EXAHPLE
           i   B.O.D.            2   i.s.s.
            10.0  15.0 20.0 1S.O 79.0  10.QUO
            10.0  15,0 20.0 15.0 75.0  10.0110
           AlirBAUZElTEN      240 240 240 240
           •34.2-34.2-14.2-14.2-34,7-34.7-34
            1,89  1.19 1.69 1.19  .21   .21
           465,2465.2465.24«5.216.141*.14111
           8TRAS3ENREINIGUNG   161     14
           EINHEITSGlNGLINIEN  SCHMUTZSTOFT
       )l2rECAL COLirORN   4  COD
.0 10.0100.0100.0100.0100.0 50,0 60.0 70.0 60.0
,0 10.0100.0100.0100.0100,0 50,0 60.0 70.0 60,0
720 720 720  720  24  24  24  24 240 240 240 240
.6-14.71),1413.1413,3411.14-14,2-34.2-14.2-14.2
44  .211111.1111.1111.1113. 1.19 1,(9 l,*9 1.19
.616.343125.3I2S.3125,3125.465,2465.2465.2465.2
 5 35  35  5  10 40 40  10  I 10 30  I  S IS  35  5
           EINHEITSGANGMNIEN  SCHHUTZSTOfT
           EINHCIT8GANGLINIEN  SCHMUTtSTOfr
NJ
^J
Ln
           EINHEIT3GANGLINIEN SCHHUTZSTOfT
           EINHEITSGftNGLINIEN SCHMUTZSTOrF
           CINHEITSGANGLINIEN SCHMUTZSTOrT
           EINHEITSGANGLINIEN SCHHUTZSTOrr
           EINHElTSGftNGlINIEN  SCHMUTZSTOFF 4
           GCBIETSfAKTOREN  1.0 1.0  1.0  1.0 I
           REGENDAUER    5.01.001.001.001.001
                       10.01.001.001.001.001
                       15.0 ,9t  .96 .96  ,9«
                       20.0 .90  .(7 .17  .90
                       25.0 .76  .70 .71  .77
                       30.0 .64  .55 .58  .67
    5.0   4.10      3.01      3.01      4,10
   10.0   4.21      1.21     .1.21      4.21
   15.0   2.00      1.50      1.50      2,00
   20.0   1.03      0.77      0.77      1,01
   25.0   0.65      0.49      0.49      0,65
   30.0   0.17      0.21      0.21      0.17
   35.0   0.19      0.14      0.14      0,19
   40.0   0.04      0.01      0.01      0.04
   45.0   0.00      0.00      0.00      0.00
   50.0   0.00      0,00      0.00      0.00
   55.0   0.00      0.00      0.00      0.00
   60.0   0.00      0.00      0.00      0,00
    5.0   5.10      1.11      7.65      5.10
   10.0   7.15      5.16     10.71      7.15
   15.0   1.51      2.61      5.27      3.51
   20.0   2.05      1.54      1.01      2.05
   25.0   1.15      1.01      2.01      1.35
   30.0   0.90      0.61     .1.35      0.90
   35.0   0.60      0.45      0.90      0.60
   40.0   0.35      0.26      0,53      0.35
   45.0   0.20      O.IS      0.10      0.20
   50.0   0.09      0.07      0.14      0.09
   55.0   0.02      0.02      0.01      0.02
   60.0   0.00      0.00      0.00      0.00
    5.0  15.00     15.00      7.50     15.00
   10,0  19.50     19.50     19.75     19.50
   15.0  10.00     10.00     15.00     10.00
   20.0  19.00     19.00      9.50     19.00
   25,0  10.00     10.00      5,00     10,00
   30.0   5.50      5.50      2.75      5.50
   35.0   1.50      1.50      1.75      1.50
   40.0   2.00      2.00      1.00      2.00
   45.0   1.50      1.50      0.75      1.50
   50.0   1.00      1.00      0.50      I.00
   55.0   0.50      0.50      0.25      0.50
   60.0   0.00      0.00      0.00      0,00
    5.0  15,40     15.4       15.4      15.40
   10.0  16.05     16.05     16.05     16.05
   15.0   7.50      7.50      7.50      7.50
   20.0   l.tS      1.85      1.85      1.85
   25.0   2.45      2.45      2.45      2.45
   10.0   1.40      1.40      1.40      1.40
   35.0   0.70      0.70      0.70      0.70
   40.0   0.15      0.15      0.15      0.15
   45.0   0.00      0,00      0.00      0,00
   50.0   0.00      0.00      0.00      0.00
   55.0   0.00      0.00      0.00      ",00
   60.0   0,00      0,00      0.00      0.00
.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
.001.001.001.001.001.001.001.001.001.001.001.00
.001.001.001.00 ,94 .91  .91 ,941,001.001,001.00
.99 .99 .991.00 .86 .83  .83 .68 .96 .96 .96 .98
.98 .98 .98 .99 .80 .75  .75 .60 .90 .67 .67 .90
.97 .95 .96 .98 .73 .66  .67 .73 .76 .70 .73 .77
.93 .88 .90 .95 .67 .58  .60 .67 .64 .55 .58 .67
Quality  data

-------
to
35.0 .
40.0 .
45. 0 .
50.0 .
ss. o .
«0.0 .
69.0 .
70.0 .
75.0 .
• 0.0 .
• 5.0 .
»0.0 .
95.0 .
100.0 .
TAGESZEITEINFLUSS























JAHRESZEITEINFMJSS
JAHRESZElTEINrUISS
JAHRESieiTEINFUUSS
JAHRESZElTEINFLUSS
BECKENKLARRWIRKUNG



















BECKCNKLARRMIRKUNG

55
48
41
36
33
3)
32
31
30
30
30
30
30
30
























I
3
3
4






















.45
.38
.33
.29
.27
.25
.23
.22
.21
.20
.20
.20
.20
.20
0.00
0.30
I. 00
1.30
2,00
2.30
3.00
J.30
4.00
4.30
5.00
5.30
6.00
6.30
7.00
7.30
e.oo
B.30
9.00
9.30
10.00
10.30
11.00
11.30
.BO
.99
.40
.00






















.49 .59 .17
.42 .55 .78
.37 .51 .69
.33 .4» .59
.31 .46 .53
.29 .44 .48
.28 .43 .44
.27 .42 .42
.« .41 .41
.25 .40 .40
.25 .40 .40
.25 .40 .40
.25 .40 .40
.25 .40 .40
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.80 0.80
0.82 0.82
0.84 0.84
0.86 0.86
0.89 0.89
0.92 0.92
0.95 0.95
1.00 1.00
1.00 I. 00
1,00 1.00 I
1.00 1.00 (
0.99 0.99 (
0.98 0.98 (
0.97 0.97 (
0.98 0.98 (
0.99 0.99 C
1.00 1.00 (
.75 .80
1.00 .94
.42 .46
.75 .80
5 86 68 95
10 81 45 91
IS 78 42 91
20 76 40 91
25 TS 39 91
30 74 38 91
35 73 37 91
40 73 36 9(
45 72 36 96
50 72 35 9e
55 72 35 99
60 71 34 99
65 71 34 99
70 71 33 99
15 70 33 94
80 70 33 94
85 TO 33 94
90 69 32 94
95 69 32 94
100 69 32 93
0,5 86 68 98
1.0 78 48 91
.79
.66
.55
.45
.39
.35
.32
.11
.11
.30
.30
.30
.30
.30
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.95
1.90
(.85
.80
(.75
.70
.65
1.60
.90
.84
.60
.90
86
81
78
76
75
74
73
73
72
72
72
71
71
71
70
70
70
69
69
69
86
7S
•
•
t
•
•
•
t
•
•
•
•
»
f
•

0
0
0
0
0
0
0
0
0
0
0
0









0
1


























83 .90
72 .84
«1 .76
S3 .66
46 .59
42 .54
39 .49
37 .47
36 .46
35 .40
33 .40
33 .40
33 .40
33 .40
.80
.80
.80
.80
.10
.80
.80
.80
.82
.84
.86
.89
.92
.93
.00
.00
.00
.00
.99
.98
.97
.98
.99
.00
.87 .
.80 .1
.82 .1
.87 .
103
no
us
120
125
130
135
140
145
ISO
155
160
165
170
173
180
I8S
190
195
200
8,5
9.0
.60 .31
.34 .43
.48 .37
.44 .31
.39 .28
.36 .23
.33 .22
.32 .21
.31 .20
.30 .20
.30 .20
.30 .20
.30 .20
.30 .20
12.00
12.30
13.00
13.30
14.00
14.30
13.00
13.30
16.00
16.30
17.00
17.30
18.00
18.30
19.00
19.30
20.00
20.30
21.00
21.30 (
22.00 I
22.30 (
23.00 (
23.30 I
10 .79
10 .80
14 .99 1
10 .75
69 32 93
68 31 9!
68 31 9]
68 31 99
68 31 99
67 31 99
67 31 99
67 31 99
67 31 99
67 31 91
66 31 91
66 31 91
66 31 91
66 31 91
66 31 91
63 30 91
65 30 9C
65 30 9(
65 30 9C
65 30 90
58 30 81
58 30 83
.91
.46
.41
.!«
.12
.28
.26
.«
.24
.23
.23
.23
.23
.«
.00
.00
.00
.00
.99
.98
.97
.98
.99
.00
.00
.00
.00
.00
.98
.96
.94
.92
.90
1.88
>.86
1.84
(.82
).80
.73
.80
.00
.75
1 69
1 68
1 68
[ 68
68
67
67
67
67
67
66
66
66
66
66
65
65
1 65
> 65
63
58
58
.
.
.
.
.
.
.
.
.
.
.
.
.
•
1
1
1
1
0
0
0
0
0





0
0
0
0
0
0
0
0
0
0


























60 .53 .43 .49
34 .48 .38 .42
48 .43 .33 .37
44 .18 .29 .31
19 .35 .21 .11
36 .33 .23 .29
33 .32 .21 .28
32 .31 .22 .27
31 .30 .21 .26
30 .30 .20 .33
30 .30 .20 .39
30 .30 .30 .33
30 .30 .30 .25
10 .10 .20 .23
.00 0,60 1,00
.00 0.37 1.00
.00 0.35 i.OO
.00 0.33 1.00
.99 0.55 0.99
.98 0.60 0.96
.97 0.69 0.97
.98 0.70 0.98
.99 0.80 0.99
.00 0,90 1.00
.00 .00 i.OO
.00 .00 I. 00
.00 .00 1.00
.00 .00 1.00
.98 .00 0.98
.96 .00 0.96
.94 ,00 0.94
.92 .00 0,92
.90 .00 0.90
.68 .00 0.88
.86 .00 0.86
.84 .00 0.84
,82 .00 0.82
.80 .00 0.60
.82 ,93 1.00
.80 .80 .84
.96 .77 ,53
.83 ,91 1,00
305 65 30 90
210 65 30 90
215 65 30 90
220 65 30 90
325 65 30 89
230 65 30 89
335 65 30 69
340 65 10 89
345 65 30 69
330 63 30 69
335 63 30 69
360 65 30 69
265 63 30 89
270 63 30 88
273 63 30 86
380 63 30 86
383 65 30 86
390 63 30 88
393 63 30 88
300 65 30 88
16.5 58 30 73
17.0 56 30 73
.59
,55
.31
.48
.46
.44
.43
.43
.41
.40
.40
.40
.40
.40
























.96
.93
.43
.98
65
65
65
63
65
63
63
63
63
65
65
65
65
65
63
65
65
65
65
63
36
36

-------
           TM-8CHMUTZMCNGEN  1
NJ
           TH-SCHHUTZHENCEN  2
           TH-SCHHUTZMCNGEN  3
     1.5 74 42 95 74     9.S
     2.0 68 38 95 6(    10.0
     2.5 66 39 93 66    10.5
     3.0 64 33 92 64    11.0
     3.S 62 32 91 62    11.5
     4.0 61 31 90 61    12.0
     4.5 60 31 89 60    12.5
     5.0 59 30 81 59    13.0
     5.5 5* 30 87 51    13.5
     6.0 58 30 86 58    14.0
     6.5 58 30 8S 58    14.5
     7.0 58 30 84 58    15.0
     7.5 58 30 84 58    15.5
     8.0 58 30 83 58    16.0
 0.00250.0250,0250.0250.0
 0.30250.0250.0250.0250.0
 1.00250.0250.0250.0250.0
 1.30250.0250.0250.0250.0
 2.00250.0250.0250.0250.0
 2.30250.0250.0250.0250.0
 3.00250.0250.0250.0250.0
 3.30250.0250.0250.0250.0
 4.00250.0250.0250.0250.0
 4.30250.0250.0250.0250.0
 5.00250.0250,0250.0250.0
 5.30250.0250.0250,0250.0
 6,00250.0250.0250.0250.0
 6.30250.0250.0250.0250.0
 7.00250.0250.0250.0250.0
 7.30250.0250.0250.0250.0
 8.00250.0250.0250.0250.0
 8.30250.0250.0250.0250.0
 9.00250.0250.0250.0250.0
 9.30250.0250.0250.0250.0
10.00250.0250.0250.0250.0
10.30250.0250.0250.0250.0
11.00250.0250.0250.0250.0
11.30250.0250.0250.0250.0
 0.00280.0280.0210.0280.0
 0.30280.0280.0210.0280.0
 1.00280.0260.0210.0280.0
 1.30280.0280.0210.0280.0
 2.00280.0260.0210.0280.0
 2.30280.0280.0210.0280.0
 3.00280.0260.0280.0260.0
 3.30260.0280.0280.0280.0
 4.00260.0260.0280.0260.0
 4.30280.0280.0280.0260.0
 5.00260.0280.0280.0260.0
 5.30280.0280.0280*0280.0
 6.00280.0280.0280.0260,0
 6.30280.0280.0280.0260.0
 7.00280.0280.0280.0260.0
 7.30280.0260.0260.0280.0
 8.00260.0260.0260.0260.0
 8.30260.0260.0280.0280.0
 9,00280.0280.0280.0280.0
 9.30260.0280.0260.0260.0
10.00280.0260.0280.0260.0
10.30280.0260.0280.0260.0
11.00260.0260.0280.0260.0
11.30280.0280.0280.0260.0
 0.00 20.0 20.0 20.0 20,0
 0.30 20.0 20,0 70,0 ZO.O
                                                            56 30 61 56
                                                            56 30 60 56
                                                            56 30 79 SI
                                                            58 30 79 58
                                                            56 30 76 56
                                                            58 30 76
17.5 56 30 72 58
II.0 56 30 72 58
16.5 58 30 71 56
19.0 56 30 71 58
     56 30 70 56
     58 30 70 58
     56 30 70 56
     56 30 70 58
     58 30 70 56
     56 30 70 58
     56 30 70 56
                                                                           20.0
                                                                           20.5
                                                                           21.0
                                                                           21.5
                                                                           22.0
                                                                           22.5
                                                                           23.0 56 30 70 58
                                                                           23.5 56 30 70 SI
                                                                           24.0 51 30 70 51
         58
56 30 77 56
58 30 77 56
58 30 76 56
56 30 75 56
58 30 75 58
58 30 75 58
56 30 74 58
56 30 74 56
 12.00250.0250.0250.0250.0
 12.30250.0250.0250.0250.0
 13.00250.0250.0250.0250.0
 13.30250.0250.0250.0250.0
 14.00250.0250.0250.0250.
 14.30250.0250.0250.0250.
 15.00250,0250.0250.0250.
 15.10250.0250.0250.0250.
 16.00250,0250.0250.0250,
 16.30250.0250.0250.0250.
 17,00250.0250.0250.0250.
 17.30250.0250.0250.0250.
 18.00250,0250.0250.0250.
 16.30250.0250.0250.0250.
 19.00250.0250.0250.0250.
 19.30250.0250.0250.0250.
 20.00250.0250.0250.0250.
 20.30250.0250.0250.0250.
 21.00250,0250.0250.0250.
 21.30250.0250.0250.0250.
 22.00250.0250.0250.0250.
 22.30250.0250.0250.0250.
 23.00250,0250.0250.0250.
 23.30250.0250.0250.0250,
 12.00280.0280.0280.0260.
 12.30260.0260.0280.0280.
 13.00260.0280.0260.0280.
 13.30280.0280.0260.0260.0
 14.00260.0260.0260.0280.0
 14.30260.0260.0280.0260.0
 IS.00260.0260,0280.0280.0
 15,30280,0280,0260.0280.0
 16.00280.0280.0280.0260.0
 16.30260.0260.0280.0280.0
 17.00260.0260.0260.0280.0
 17.30280.0260.0260.0280,0
 18.00260,0280,0280.0260.0
 16.30260.0280.0260.0280,
 19.00280.0280.0260.0280.
 19.30280.0280.0260.0260.
 20.00260.0280.0260.0260.
 20.30260.0260.0260.0260,
 21.00260.0280.0260.0280,
 21.30260,0260.0260,0280.
 22.00260.0260,0280.0280.
 22.30280.0260,0260.0260.
 23.00280.0280.0280.0260.
 23.30280.0280.0280.0280.
 12.00 20.0 20.0 20.0 20,0
 12.10 20.0 20.0 20.0 20.0

-------
           TW-SCHHUTZMENGEN  4
-4
00
           IH-KOHZENTBATION
           XXXX
           XXXX
           XXXX
               •1.0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20,0 20.0
.00 20.0 20.0 20.0 JO.O
.10 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20,0 20.0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20,0 20,0
,00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
.00 20.0 20.0 20.0 20.0
.30 20.0 20.0 20.0 20.0
.00 20.0 20.0 20.0 20,0
.30 20.0 20.0 20.0 20,0
0,00 20.0 20.0 20.0 20.0
0.30 20.0 20.0 20.0 20.0
1.00 20.0 20.0 20.0 20,0
1.30 20.0 20.0 20.0 20,0
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360, 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
.00 360. 360. 360. 360.
.30 360. 360. 360. 360.
0.00 360. 360. 360. 360.
0.30 360. 360. 360. 360.
I. 00 360, 360. 360. 360.
1,30 360. 360. 360. 360.
270. 2SO, 20. 360.
13.00 20.0 20.0 20. 20,0
13.30 20.0 20.0 20. 20.0
14.00 20.0 20.0 20. 20.0
14.30 20.0 20.0 20. 20.0
15.00 20.0 20.0 20. 20.0
15.30 20.0 20.0 20. 20.0
16.00 20.0 20.0 20. 20.0
16.30 20.0 20.0 20. 20.0
IT. 00 20.0 20.0 20. 20.0
17.30 20.0 20.0 20. 20.0
11.00 20,0 20.0 20. 20.0
18.30 20.0 20.0 20. 20, 0
19,00 20.0 20.0 20.0 20.0
19.30 20.0 20.0 20.0 20.0
20.00 20.0 20.0 20.0 20.0
20.30 20.0 20.0 20.0 20.0
21.00 20.0 20.0 20.0 20.0
21.30 20,0 20.0 20.0 20.0
22.00 20.0 20.0 20.0 20.0
22.30 20.0 20,0 20.0 20.0
23.00 20.0 20,0 20.0 20.0
23.30 20.0 20.0 20.0 20.0
12.00 360. 360. 360. 360.
12.30 360. 360. 360. 360.
13.00 360. 360. 360, 360.
13.30 360. 360. 360. 160,
14.00 160. 360. 360. 360.
14.30 360. 360. 360. 360.
15.00 360. 360. 360. 360.
15,30 160. 160, 360, 360.
16.00 360. 360. 360. 360.
16.30 360. 360. 360. 160.
17.00 360. 360. 360. 360.
17.30 360. 360. 360. 360.
U.OO 360. 360. 360. 360.
18.30 360. 360. 360. 360.
19.00 360. 360. 360. 360.
19.30 160, 360. 360. 360.
20.00 360. 360. 360. 360.
20.30 360. 360. 360. 160.
21.00 360. 360. 360. 360.
21.30 360. 360. 360. 160.
22.00 160. 360. 360. 360.
22.30 160, 360. 360. 160.
23.00 360. 360. 360. 360.
23.30 160. 160. 360. 160,


-------
             APPENDIX   8
           TEST EXAMPLE FOR DWTFLC
NOTE:  This example is similar to the example
       contained on the computer tape.

-------
                                                                                Output

           WA&G.AI   «U«5.
           8ASG.AX   •IF03.


           UAS6.AX   •IF01.


           UASb.AA   .IFOb.


           0AS(>|AX   . IfOi.


           WAi(,,A»   .1107.


           UASb.AX
OO
O         61»b(, ,AX   .If 10.
           WAS(., AX   . IF I I .


           *AS(i.AX   • IF 17.


           UAbb.AA   «IFI3.


           hiASl, , AX   .IF 11.


           WASt,,Ak   .\F1b.


           WASfa.AX   «IF 14.


           WASGiAX   •IF I 7.


           IrASb.AX   .11 I h.


           WAS<., AX   • If I 9.


           WASb.AX   .|t?0.

-------
             UAbG.A*   «IF2I.
             WASG.A*   • If 22.
             WASG.A*   «IF2N.
                        >\f2b.
             WUSi.   11,'IFOI.
             UUbL   I3.-ITU3.
             WUSL   IS,
N3
oo
             UUbl    1 1), •IFO»>
                     IVi«IF09.
             MU'jf    ill,. IF 10.
             UUbL   21 t* IF I I .
             BUbL   22,«l> 12.
             UUSt   2.1,'HIJ.
             UUSL  2S>« IF Ib.
             HUSt  i»t« IF I /.

-------
10
oo
ITAb
IHM
1
2
J
•1
5
b
;
H
V
10
1 1
12
1 J
M
Ib
16
17
III
19
20
21
22
2J
21
2i.
26
^7
2 a
2V
JO
Jl
32
33
Jl
3!>
1
». MA
CUUI
CU02
CU03
CU01
CUOb
BUOt
CU07
coue
coo9
ClllO
CUI 1
till 3
CUM
NUId
SUI3
SUI1
SUIS
101 A
CU03
CU21
CII25
CU76
CU27
KU2H
CU29
CU30
CO 31
CU.12
CU33
CIJ31
CU35
CU3A
CU37
R03B
U(J3n
IUH1H 12
KNE
CO02
CU03
tUOl
COOS
8006
CU07
(.008
1009
COIO
CUI 1
CQ3I
COI'I
HOIS
CUI A
SOIH
SOIS
(III*
11006
CU2N
C02&
C026
C027
C032
CO2V
CU3CI
C03I
C032
CU33
C031
C03S
CU36
CO37
N03H
H03H
Cb3V
HA
.UM3HA&
.0|N1b31
.OUAO&13
.009866*
.OO3332b
.U20>.*l<>2
.OI16H9I
.0/IOH3I
.01 -70V 10
.01312/1
.QI67IIV
.OOOOUOO
.OOOOOOO
.01100000
.01 ;16
.0076660
.r>OJlJ2?
.U286HS3
.0210120
.0210128
.UIV07IS
.01671 1)
.01671 19
.OOOOOOO
.OOOOUOO
.OGOUOOO
.Ol 71120
.01 71117
.Ul 71120
.OU78065
.OU60S16
.0051757
.Ollb.lVOS
.U0393IT
.O0120S1
.012.1812
.01 1 31 IS
.0107717
.01 7HO?4
.01 78036
.OI1V722
.011977V
.0211380
.0211392
.0210113
. I227S22
.U372B69
UA
.0086127
.0086127
.00277)1
.O070I 75
.0091175
.OI8SI55
.0185155
.UIUSI55
.0105155
.0185155
.0185155
.OOUOOOO
.OOOOOOO
.OOOOOOO
.00527>|
.0052771
.0052771
.0052771
.OO5B696
.00511696
.OOb86'/6
.0079132
.0079132
.0057955
.OUS7955
.OU5795S
.0263320
.0371 112
.0381712
.0381712
.0381712
.0381712
.0389893
.03119893
.0389893
QE
.0086127
.0086127
.0027731
.0070175
.OO91175
.0185155
.0185155
.0185155
.0185155
.0165155
.0165155
.OOOOOOO
. .OOOOOOO
.OOOOOOO
.0052771
.OOS277I
.0052771
.0052771
.0058696
.0058696
.0058696
.OD79132
.0079132
.0057955
.0057955
.0057955
.O26J32O
.0371 112
.0381712
.0381712
.0381712
.0381712
.U389893
.0389893
.O389893
CVZSH
.UDOOOOO
•OOOOOUU
.0000000
•OOOOUOO
.OOOOOOO
•oooooou
•uoouooo
.0000000
.OOOOOOO
. uoonuoo
•uouuooa
.OOOOOOO
.OOUOOOO
.OOOOUOO
•OOUOOOO
•oououoo
•oououou
.OOOOOOO
.OOOOOOO
.uoouuoo
•uououou
.OOOOUOO
.OOOOUOO
.oououoo
•oououoo
•uouoooo
.uououou
.OOOOUOO
.0000000
.oououoo
•OOOOOOO
•OOOOUOO
•uoouuoo
•uoooooo
.OOOOOOO
                            NUI5
                            N028
                            NU3H
                OURUEf

               .ooooouoon
               • uiiuoouoiin
               .uauoodnnn
                         HOU6
                         UUJ8
                . U176.tO
                .0000(10
.OI8SIS
.03H9tV
                                                                         ClEUI
.UI85I5
.038989
                                                                                          OER2
.OUOUOO
.UUOUOU
                                                                                                           VOLB
38.103610
  .IIOOUOU
               Sit
         I SI A

Mu2U       o
                                            UVI-*

                                            .niiunn
 I AC1

. uiinou

-------
               ...  IftHHH ...       |      |2
               «•»  roAHiui •••       i      12

               • ••  IXAHHII ...   M«X HUMIIEH  OF  lltRAIIONS    12 AVtHAGC   12*000
             WBKKPT  TKINll
00
OJ

-------
             APPENDIX
     TEST EXAMPLE FOR RCVRIN AND MNTWKC
NOTE:  This example is similar to the example
       contained on the computer tape.

-------
                                                                  Exerpt  of  Output
00
           WASG.AX  .1(05.
           UA !><•<,«(






           9ASb,AX  •IFCI2.
                 X   .IFU6.







           UASG.AX   « II 07.








           UASO.AA   «lfUB.








           UA'jfc,A«   >IFOV>
           MAS(,,A«   «IF | | .







           UASfi,A«   • IF I 2.








           bASb.AX   • IF | 3.







           UASG,A»   • IF I 1.







           WAbd.AX   -IF IS.








           UAbG , A*   « IF |/,.







           UAS(, ,AX   .IF | 7.








           UASd.AX   •IF1B.







           UASb.AX   • If I V.








           UASb.AX   > II 2U.

-------
             UASO.A*   .IF22-



             MASI..AA   «IF2J.



             U«Sli,AX
                  , AX   • If 2S-
             uuse   1 1 f • it ui .
             UUbt   I3.'iro3.
f^j           WUSi
oo
             WUSC   l6.«lfU6.
             UUSt   I7..IFCJ/.
             WUSt   17, • If UV.
             UUSL   21 .»lf I I •
             UUSL   
-------
UUbE   2/,»IF17.
       «WUS.RCVR|N
 • ••  IIUC HI II •••  MA*IMUt1 FLU*IIMF (UHIC1ED 10  21  HMEStEPS




 • ••  RORHSI •••   DUKAIION  or  Nl X I RAINFALL    IS   SFARI UAfE




 ---  RSiT ---    IEESIN       I  im     2|t LOBBR       0 JHP I




 •••  KtCOVS •••   UAIA SAVE  At  PAIE   III   I   LI   1
I   I 215




 0









NJ
oo
"^
••• DA1HNL •••

	 OAIENA 	

	 RbuPUl ---




	 IFNGER 	
EFFNGUI l,|l
EFFNbUI 1,1)
OLD DATE
NE* DA IE
IRN
IDttHI
JHPI
JKtt

IENDS

1 1
1 1
211
1
1 JRP2
1
U
1
O
IRAINS 1
0. tFFMGUI2.il
U. IFF II
GUI ?, 1 1
1 1
1 2IS JIBPI 3

1 1215
1 JRBI 1 JRB2 1
O41OOU O 0 U
0 O O 0 0
0 U 0 0 0
U U 0 0 0
O. EFFNbBll.ll
U. EFFMGUCJ.II





0000
0 0 0 O
U 0 0 0
0000
0. EFFNGBIH.II
0. trrNSUMtll
 	HUTRHN	   DRV «IATHLR  FLO*  INI I ILALI SAT I ON FINISHED

-------
                INTAb    215       I1CHTM


                HOHK    HN»    K.Nt
N)
00
oo
1
2
3
1
5
6
7
a
7
IU
1 1
12
13
11
IS
16
17
IB
1*
20
21
22
23
21
26
26
27
28
2V
3U
31
32
3J
31
3b
KUL
,
2
3
CUOI
CUO2
CUO3
C001
CUO5
UU06
C007
COOB
CU07
COIO
CUI 1
CD 13
CUI 1
NUIS
Mil 3
sun
5UI5
CUI6
COQ3
CU21
CLI25
CU26
CII27
RU2B
CO27
CU3U
(U3I
C032
C033
C031
CU35
CD36
C037
NU3R
11038




C002
C003
CUOI
C005
UU06
C007
coon
coov
COIO
COI 1
C03I
con
HOIS
COI6
son
SOIb
cm 6
B006
C021
LO25
C026
C027
C032
C02»
C03U
1.031
C032
CU33
C031
CU35
CU36
CU37
Hd3B
U(J3B
C03V
MIIIMKII
HOI1..
K028
hi) 3 8
1 0
MA
.UH386S
.0111531
.0060513
.0098666
.00333/5
.0286152
.01 16891
•02IO13I
.0170918
.0131271
.01671 19
.OOOOOOO
.1)000000
.ooonuoo
.Ol 71120
.01 72016
.01 71170
.0078(166
.0060529
.0051BIH
.0053878
.OU3V315
.001/006
.0123812
.0113116
.010771 7
.0128357
.01 78032
.008631 1
.Ul 19761
. U 1 2 7 7 1 1
.02PI3V?
.0210113
. 1227522
. 037711 1.V
OfinOOdtJUCI
uuuudunud
uooooouuo

III
.0111531
.0111531
.0060516
.0098660
.0033329
.02861S3
.0210120
.0210128
.0190915
.0167113
.0167119
.OOOOOOO
.0000000
.OOOOOOO
.01 71120
.01 7111 7
.0171120
.0078065
.0060516
.OU517S7
.OIJ53705
.0039317
.0012051
.0123812
.01 131 15
.010771 7
.0178026
.01 78036
.0117722
.0117779
.0211380
.O2I1392
•021011 3
. 1227522
.U372B67




«A
.0086127
.0086127
.002773)
.00701 75
.0091175
.0185155
.0165155
.0185155
.OI8SIS5
.OIBSI55
.0185155
.OOOOOOO
.OOOOOOO
.OOOOOOO
.0052771
.0062771
.006277)
.006277)
.0068696
.0068696
.0051676
.0077132
.00791.12
.0067756
.0067756
.0057955
.0263320
.0371 112
.0381712
.0381712
.0381 712
.03817)2
.(1387873
.11387873
.0387873




Qt
.0086127
.0066127
.0027731
.00701 76
.0091175
.OI86I55
.0186166
•OI86IS6
.0186166
.11186166
.0186155
. (IOOOOOO
.OOOOOOO
.01)00000
.0062771
.0062771
.0062771
.0052771
.0058*96
•OOS8676
.0068676
.0077132
.0077132
.0057756
.0057755
.0057755
.0263320
.0371 112
.0381712
.0381712
.0381712
.0381712
.0387(73
.0387873
.0387873




CVZSH
.0037261
.OOI5136
.0018387
.1)030776
.UOI265I
.O01I62I
.0016772
.0061777
.00157(3
•0033570
.0020126
. UOOOOOO
.OOOOOOO
.UOOOOOO
.0021718
.OOI669O
.OO23715
•0022318
•OOI3717
.0011175
.0010158
.0013098
.0013072
.OO37600
.0032673
.U028257
.0013756
•UIOI122
,U016963
.0065181
.0083716
•UI20I 13
.0071222
.UI6U6B2
.01 I7I1U



MlNMKII


 UUU6

 UUJH
                                           .oooouo
                                                                             OEBI
                                                             . OlOSI'j

                                                             •U3A9BV
                   .018515
                   .03B7B?
.uoouou
.ouoooo
                                                                                                                  VOLB
38.101610
  .UOOOOU
                                    ISIA
                                               I) V !• A



                                              I -IHIII'III
  I AC1


I .llll.'IIHJ

-------
NJ
oo
vO
--- S1SF.HH  ---


  I  i  cu3i


--- HUVHHN  ---   KORAK
                                          n?   n     .IOUOOOOD«OI     .10000000*01

                                          1FR    7   IRAINS I   NZSNRE   0   IEMTFL
                                                                                     IBNORH  I
	 01 King -
1 1 1 / 1 1 1 1 1 / / /
illinium
1 1 1 1 1 1 1 1 / 1 / 1
////////////
• • ,MRKCHN»»

	 SMNIVH -
	 UISEI --
••• It'jfUH •
	 DA1CNA -
• •• UATMIIA •
	 ttn&lK -
Ef FNbUI 1,11
tl f N6UI 1,11
	 SISIMN -
1 1 tUJH
	 IIUYRMH -
	 UIKTHU -
	 blltllVI) -
	 OTill --
••• lib I OH •
	 UAltNA -
• •• DAI UNA •
	 IfNbLK -
tl r 14611 ( 1,11
it rw&in 1,11
IKNUII7. U JRI 1 LRSZ 0 KB1 0
1 / / 1 1 1 1 1 1 1 1 1 / 1 1 f / 1 / / ./HIKSN- 32 1 11 1 t
1 1 1 1 1 1 1 1 1 1 1 1 1 II II 1 1 1 Jlll_rSM« 33 3 21 1 4
//////////////////// JBLKSM" 31 2 21 1 *
//////////////////// JBLKSH* 35 1 21 1 *
UHT-*( A IIIER-F IOK |NI 1 IALISAI ION UK
JAI 1 LOIIHH 1
JHt'i 1 JBt2l.)RPV»l 1 0 LOBBB 1 LlMBO 0
JIIU2 |
IHN 1 JJAHR 1 JMONAt 1 J1A6 1 JINT 2|4
JKB2 '. NIIK 1 1
• • SlNC.Ll rvttll KESULIS OU1
IKN I
ID) CHI I I I 2IA
• • lit* UAH | | I 2IA
IHAINS I
o. iifNGBi?,ii o. crrNGDi J, 1 1 o. trrNsdd, i » o.
0. It 1 N(.III2, 1 1 O. Iff NbUI 3, 1 1 0. tFFNGUM.II 0.
--
.2U2I 7125-U2 0 . IOUOOOOO'01 . IOOOOUOO«OI
KODAK 2 lltfi | IRAINS 1 NZSNKE 0 ICNIFL 1 IBNOKH 1
IKNI/B7 1 JKI t LBSl 1 KB2 1
JAI 2 LUDHB 2
JRP2 1 JRI/IJMP2OI 0 LOBBB 2 LIMBO 0
JRH2 b
IKN 1 .IJAHR 1 JMONAt | JIAG 1 JINT 2|7
JRII2 9 IIIIK | 1
• • SlNdLf tVfNI ht'.ULTS utll
IHN 1
IUILNI | 1 12)7
«• HI* OAlf 1 | 1717
•WAINS 1
20U> LFFN<,IH2,II 0. LFIH(,B(3,II 0. EFINoBIH.II 0.
0. UIN(,UI?,II 11. tFFNbUI3,ll 0. trFNbUHd) 0.
             	STbUtN	


                I   I   (-IIJ4
                                 , IUIP(I7 I 7-d
                                                    . inouuuuiuoi
                                                                     . I0(juooou»ni

-------
---  HUtRltfl	  KORAK
	PIRIIIU	
	  SHNIVH  ---
                    IKNUB;
                    JM
                   JKP2
                     JRII2
                               I II R
   I  JKI
3 Loeiin
                                          IRAINS I  NZSNRE    0  IENIFL I   IBNOKN

                                              3  LBSZ       2 KBZ       I
                                 JREZIJRP2*|I
                                                     0  LOBBB
                                                                    3 LIMUO
 UIRI  I.EVLLS  (HOUIIML .SMHSELI.   HUNIH NUMBER •   I  riNE  SINCC  S1REE T-CLLANIN't II .IOOOROOO»OI . lOOOOUOO'Ot
-- KORAK 'I Illk 10 INAINS 1 NZSNRC 0 IENTFL 1 IBNORH 1
IKNIIHZ 1 JNI 1 LBSZ 3 KBZ 1
JAI 1 LliOfUl 1
JHI'2 1 JNEZI.IHP2«II 0 LOBBB 1 LIMBO 0
JKU2 I 3
IKH | JJAIIR | JHONAI I JTAG I JINI 2I9
JKII2 I 7 NUk I 1
'« SIMM 1 FVENI HESUirS (HIT
IKN 1
1 U T t H 1 1 | 1 2 | V
.. NL* <-M« 1 . .2.-.
IKAIHS 1
JttUO. tt F N(,ll 1 ?, | ) 2nUO. trFNbRI3.il 2800. EFFNGUIH,!! 2DUO.
o. LFirJoui2.il o. trrNouij.ii o. IFFNGIMI.II o.
--
.0.>V3'I62I-U'I 0 • IOUOOOOU-01 .10000000*01

-------
•••  LES10H  •••   SINGLE  F.VLNI  RESULTS  OUT
	  DAltNA  ---
                    INN
                    IDIENT
•••  UA1HHA  • ••   NL* BAIL

	KNI (101	   tXII
                                    I     I  2*0

                                     I 2tO




Ni
VO
END-OF-YEAH IOIAL DINT HASH-OftS
UIKI KPL | TOTAL *A5II-OII > .B9»984«03 C A TC MMt NT -ARE A DASH-OfFS • .HZ/920402 .}SB&86>01 .1T3SV3»U3 .19IS2O«OI
UIRT lYPI 2 IOIAL KASII-UI F > .2BJS08'(Jt C A TCHHENT- ARE A «ASH-OFFS * .|V68IS*U3 .7B&IIM03 .IS372I»O1 .l1f1SO«O2
DIM TfF-t. 3 TOTAL KASH-UH • .636085*01 CATCHMENT-AREA « ASH-OFF S • .&02»06«03 .28097I>O1 .300*83*01 .3»5021«02
UIHI ITI'l S TOTAL KAbll-llff > . J6176S4OH C A I C HHENT-ARE A *«SH-OFFS • •2I3TAO«U3 .I13171»O1 .IV7V2T«01 .1*6608*02
	 kECUW« 	 KFCOVIKV •Hill. CAHEn
•>• HNTWKt «•• ALARMS 0/f FOLLOWS
OUUUOOll 00000000
00000 OUOOOOOOOO
ilUHKPT CHIIITI

-------
             APPENDIX   10
           TEST EXAMPLE FOR MNTWSP
NOTE:  This example is similar to the example
       contained on the computer tape.

-------
                                                            -Exerpt of output
NJ
IO
OASG.AX  .(JUS.



bASQ.AX  .IFOI.



      X  «IFU2.



      X  >IFU3.



      >  •IFOI.



0ASG.AX  .IFUb.



UAbti.AH  •IFOA.



UAi&,»«  • IFQ7 .



WAbG.AA  •IFOB.



UASfa,»«  -IFU9.



OASG.AX  .IflO.



WA'jb.AX  -IF I I .



WAS6.AX  -If 12.



MAS6.AX  «IFI3.



    i AX  . IF I H.
           WA'j(, , A A   » IF 16.
           k'ASt, , AX   • IF I 7.
           WASb, AX   .If I V.
           b>AS6,AX

-------
            y*St,,A«   «IF22.

            L.ASG.AX   «IF23.

            MASft.A«   •H21.

                 i A*   • If 2b.
            WUSl   II.MFbl.
            SUSt   U..IF03.
NJ
                   l»,»lf(J6.
            WUSl   17,'IIU/.
            fcUSE   IH.'IFUl).
            tUbl   IVi'lFOT.
            WUSi   22 i> IF I 2.
                   23t*IFI3.
            UU'jt   21t« IF |
            WUSt   .
            irUbt   2ti« II 16.
                   2 7, • IF I 7

            UXill   «UK

-------
                                                    • •                    085                        ••



.,                                                  ••           URBAN RUNOFF  AND  ITS POLLUTION            ••
nJ

^                                                                                                                   •

U1                                                  ••              SIN61E CVHir  5IMULAIION                ••                                                                   !

                                                                                                                                                                                i

                                                    • •                      FOR  IHE                        ••



                                                    •                    ««S-EPA-E»AMPll                     •

-------
  ••••   PIPt  MLSU115   ••••
                                           PIPE NUHBIR
                                                                      UPPtH NODE
                                                                                        CUOI
                                                                                                    LONER  NUDE   COU2
IMTLKVAL        UU         III)
              It/Sill      (III
     I
     2
     3
     1
     &
     6
     7
     R
     1
   in
   I  I
   12
   13
   I  1
   IS
   16
   I  7
   18
   IV
   20
   21
   22
   23
   21
   2S
   26
   ^7
   28
   21
   id
   31
   32
   JJ
   31
   35
   J6
   37
   38
   39
   40
   II
   12
   13
   11
   IS
  9.
  9.
  9.
 59.
I'jS.
I 70.
I IS.
 BS.
 71.
 SI.
 1U.
 31.
 32.
 30.
 21.
 19.
 II.
 12.
 10.
 10.
  9.
  9.
  9.
•  9.
  V.
  9.
  9.
  9.
  9.
  V.
  9.
  9.
  9.
  9.
  9.
  9.
  9.
  9.
  9.
  9.
  9.
  V.
  9.
  9.
  9.
.01
.10
.25
.;»
. iv
. 11
.12
.09
.06
.(IS
.05
.Ob
.01
.03
.1)2
.02
.02
.02
.01
.01
.01
.1)1
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• Ul
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.01
ao
U/Stt)
9.
9.
9.
10*
116.
157.
132.
99.
81.
63.
17.
18.
33.
31.
26-
21.
17.
13.
1 1 •
10.
9.
9.
9.
9.
9>
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
HP
IN)
.01
.01
.01
.07
. 19
.26
.23
. 17
.11
. 1 1
.08
.06
.06
.OS
.01
• 01
• 03
.02
• 02
.02
.02
• 02
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 01
• 01
.01
.01
• 01
PI
IKG/IN1I
.6S
.65
.6b
3.15
8.25
9.23
6.32
3.76
2.39
I. 65
1.11
.81
.69
.65
.65
.6H
• 6S
.65
.65
.AS
.65
.65
.66
.65
.6%
.65
.65
.65
.65
.6b
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
.65
P2
IKG/INTI
.73
.73
• 73
1.21
1 1. 51
11.11
11*21
8.18
7.09
5.52
1.U3
3. IS
2. S3
2.05
1 .63
1 .26
1 .07
• 92
.83
.79
.77
.71
.73
• '3
• >3
.73
.73
.73
.73
.73
• 73
.73
• 73
.73
.73
• 73
• 13
.73
.73
.73
.73
.73
.73
.73
• 73
P3
IEIUC/IN1)
SI .86
SI .86
51.66
61.29
98. 12
1 15.36
IUI.I1
83.19
69.10
61.52
57.02
55.82
51.78
53.10
52*78
50. 15
52.22
SI -91
51.68
S2.I1
52.23
51.85
51 .82
52. UO
51 .86
51 .87
51.85
bl .85
51 .85
51.85
51.86
SI .86
SI .86
51.86
51.86
51.86
51.86
51 .86
51.86
51 .86
51.86
SI .86
SI .86
51.86
SI .86
PI
IKG/IN1 1
.93
.93
.73
11.92
35.27
35.11
2U.95
1 1.50
7.06
1.11
2.57
1.15
1.01
.93
.91
.92
.91
.93
.93
.91
.91
.93
.93
.91
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
• 93
.93
.93
.93
.93

-------
                  ••••   PIPt HtiULlS   ••••
                                                            PIPE  NUMBER
                                                                               21
                                                                                        UPPER NODE
                                                                                                           ROZI
                                                                                                                       LOKER  NUDE   C029
K>
VO
                IM1EHVAL
 2
 3
 1
 b
 A
 7
 H
 7
Id
I I
12
13
II
IS
It,
17
18
19
211
21
It
23
21
25.
2A
27
28
2V
3D
31
32
JJ
31
3b
3*.
3/
JU
3»
111
II
•12
tj
•4'I
  A"
  &•
  6.
382.
21(1.
2AI .
215.
211.
Z1S.
213.
211 •
2)7.
237.
236.
205.
IS3.
 75.
 11.
 19.
 12.
  7.
  A.
  6.
  6.
  A.
  6.
  6.
  6.
  6.
  A.
  A.
MU
(HI
.01
.01
.01
.»S
.70
.71
.AB
• Ab
• Al
.2
. 33
.2A
.12
.UA
• 1)2
.01
.III
.01
.Ol
.01
• III
.01
.Ul
.01
.01
.01
.01
• 01
.01
.01
.01
.01
.01
.Ul
.(II
.01
• 01
.01
.111
.01
.01
<4D
u/stc
A.
A.
A.
207.
Z71.
261.
21S.
211.
Z1S.
Z13.
Z1|.
237.
237.
23A.
210.
180.
123.
?s.
10.
21.
12.
8.
A.
A.
A>
A*
A*
A.
A.
A.
A.
A.
A.
A*
A.
A'
A.
(, .
A.
A.
A<
A.
A*
A.
A.
HD
(HI
.01
• 01
• 01
.11
.SO
.S3
.S9
• SB
• SI
.SO
.SO
• SO
.SO
.SO
.IS
.39
.27
.It
.0*
.OS
.03
.02
.01
.01
• 01
.01
• 01
.01
.Ol
.01
.01
.01
• 01
.01
.01
.01
.01
• 01
.01
.01
.01
.01
• 01
.01
.01
PI
IKfa/INTI
.15
.13
.13
13. A2
28.3V
13.33
10.20
.Al
.78
.Al
.55
.20
• to
.77
3.92
2.8A
1.85
I.IA
.80
.Al
.SI
.15
.11
.15
.11
.11
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
PZ
IKG/INT 1
.SO
.19
.19
33.32
73.19
11. /S
35. AO
32.99
37. A9
11.95
11.73
10.35
3D. 99
31.35
21.12
IA.9B
10.81
A. 37
3.BA
2. SO
I.A1
1 .08
.77
.Al
• 52
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
.19
P3
IEIOC/INII
3S.7S
31.79
31.75
58.80
88.82
A8.2A
73.82
73.91
75.10
81.77
85. 13
85.77
BB.2I
78.73
73.12
A2.67
bz.si
15.10
39.83
37.59 -
36.71
35.56
JS.39
36. 17
35. 10
31*97
31.80
31.78
31.78
31.77
31.77
31.77
31-77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31.77
31*77
31.77
PI
IKb/INTI
.61
.63
.63
66.78
111.27
65.25
16.02
31.11
21.01
20.32
11.93
7.31
2.31
.63
.59
.62
.63
.62
.61
.62
.63
.62
.63
.65
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.63
.A3

-------
                  ••••   PIPl  KtSUlIS   ••••
                                                           PIPl  NUHLILR
                                                                             2b
                                                                                      UfPEH NUDt
                                                                                                                    LOKER NODE   C030
                INIEKVAL        UU
                              IL/StCI
S3
VO
00
 I
 2
 3
 1
 5
 6
 /
 II
 1
IO
11
12
13
IS
1%
1A
I 7
IH
19
2t
21
22
2J
2-1
25
26
2V
20
2V
-111
Jl
32
33
31
lii
36
37
.IB
39
10
II
12
13
HI
1b
  A.
  A.
Z07.
271.
241 .
215.
211.
215.
213.
211 .
23/.
237.
23*.
2IU.
IBO.
123.
 75.
 10.
 21 .
 12.
  H.
  A.
  4.
  A.
  «.
  A.
  A.
II U
IMI
• 111
.(10
.UU
.20
.32
.55
.411
.57
.5A
.32
.32
.31
.31
.31
.28
.2't
. 16
.0V
• U1
.02
.01
. I1U
.00
. UU
.00
.00
.00
.00
.00
.00
. UCJ
.00
.00
.00
.00
.00
.1)0
. UU
.0(1
.on
.00
.00
.on
.uu
.00
eo
(1/StC 1
A.
A.
A-
117.
21 1.
211.
2HS.
211.
215.
211.
212.
23V.
230.
237.
223.
19V.
158.
1 10-
AH.
38.
21 .
17.
n.
7.
A.
A.
A.
A.
A*
A.
A*
A.
A.
A.
A.
A*
A-
A*
A.
A.
A.
A.
A.
A.
A.
HO
(HI
.01
.01
.01
.23
.11
.17
.18
.18
.18
.18
.I/
.17
.16
.HA
.11
.39
.31
.22
. 11
.08
.01
.02
.02
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 01
• 01
.01
• 01
.01
.Ol
.01
• 01
.01
• 01
.01
.01
• 01
PI
IKG/IN1 1
• 12
• 11
• 13
5.73
20. 13
22. IB
II. 77
V.55
8.78
8.81
8. IA
A.9A
5.91
5.21
1.10
3.1A
2.12
1 .S3
.98
.71
.53
.50
.11
.11
.14
.IA
.11
.11
.11
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.13
.11
.13
.13
P2
IKG/INTI
• 17
.10
.18
13. A1
SO.VS
40. bA
38.37
31.63
3b.J2
111. US
11.82
11.13
39.75
35. 67
28.37
21 .11
11.28
8.78
5.19
3.25
2.01
l.bl
• VV
.73-
.40
• b3
• bO
.19
• 19
• IT
• IV
• IV
• IV
.19
• IV
• IV
.IV
• IV
.IV
.19
.IV
• IV
.19
• IV
.IV
P3
ICIUC/INTI
33.92
31.28
31.01
16>I7
72.49
80.87
AV.I1
73.87
75.33
79. 18
83.1*
85.10
BA.79
81.0V
76. 3A
68.6.0
be. 20
18.61
11. bb
37. 59
3J.7S
36.67
31.91
3S.69
36.76
36.11
IS. 23
31.96
31.67
JH.79
J1.7B
11.78
31.77
31.77
31.77
31.77
31.77
31*77
31.77
31.77
11.77
11.77
11.77
31.77
31.77
PI
(KG/INI 1
• 61
• 62
.61
27.12
99. SB
109.91
56.00
19.89
28.11
22.72
17.96
1 1 .61
5.17
1 .60
.61
.At)
.62
.62
.60
.59
.54
.63
.61
.61
.66
.65
.61
.61
.61
.61
.61
.63
.63
.61
.63
.63
.63
.63
.63
.63
• 63
.63
.61
.63
.63

-------
                  ••••   PIPE  RtSULIS   ••••
                                                           PIPE.  NUMBER
                                                                                      UPPER HOOt
                                                                                                         C033
                                                                                                                    LO»ER NODE   C031
                INIERVAt        UU
                              tl/StCt
VO
 9
ID
I I
12
13
II
IS
16
17
IB
IV
20
21
22
23
21
25
21,
27
211
2?
3U
Jl
J2
33
31
35
36
37
3D
3V
1C)
II
12
13
11
IS
  38.
  38.
  13.
 30V.
 «7b.
I 175.
I 101.
 V66.
 OS 7.
 732.
 636.
 b7/.
 S1I •
 522.
 1DH.
 IIS.
 18H.
 32V.
 272.
 226.
 I'M .
 166.
 IbS.
 IbO.
 116.
 111.
 113.
 113.
 112.
 HI .
 111.
 111).
 I'll).
 139.
 1311.
 I 3b.
 12V.
 122.
 I 12.
 IU2.
  VI.
  87.
  oo.
  7S.
  7U.
IIU
IMI
.00
.OU
.00
.UO
.OU
.OU
.uu
.IIU
.00
.0(1
.no
.OU
.OU
.uu
.OU
.00
.00
.OU
.00
.OU
.OU
.UO
.00
.OU
.00
.00
.OU
.UO
.0(1
.00
.00
.uu
.00
.OU
.uu
.00
.00
.on
.00
.OU
.no
.uu
.OU
.UO
.00
go
ll/SECI
36.
3V.
13.
273.
795.
1 121.
1101.
981.
871.
750.
650.
5«3.
617.
52S.
1V3.
151.
377.
338.
281.
231.
196.
172.
157.
151.
116.
115.
113.
113.
112.
111.
' 111 .
HO-
MO.
139.
138.
1 36.
130.
123.
1 13.
101.
vs.
8*.
81.
76.
70.
no
(HI
.01
.01
.01
.08
.25
.35
.31
.31)
.27
.23
.20
.18
.17
.16
.Ib
.11
.12
.III
,01
.07
.06
.OS
.Ob
.OS
.OS
.01
.01
.01
• 01
.01
.01
.01
.01
.01
.01
• 01
.01
.01
.01
.03
• 03
.03
.03
.02
.02
PI
IKG/INTI
1. S3
1.12
1.10
I.VS
8.90
2V. 60
62.01
52.37
IS. 21
33.81
23.35
18.5?
16.11
15.67
15.18
11.96
11.42
11.01
11.21
11.39
11.10
13.79
12.71
10.21
7.65
6.31
6.62
8.07
9.20
8.97
7.63
6.13
1.91
1.12
3.92
1.08
1. 10
3.75
3.38
3.09
3.01
3.01
3.27
3.67
1.21
P2
IKG/INTI
1.71
I.2S
I.S7
2.18
10.80
10.88
86.11
1 17.32
121.19
101. 75
• 1.06
73.12
67.92
66.67
61.30
62.09
$6.38
18.62
12.1O
16.21
30.60
26.66
22.98
17.98
13.71
1 1 -b7
12. bO
IS. 87
18.60
19. Ul
17.27
11. V5
12.58
10. V3
1 1.06
12.17
13.11
12. B3
1 1.68
10.22
V.I2
e.u3
7.35
6.98
6.79
P3
IEIOC/INII
122* If
89.58
1 12*08
155.08
210>01
367.16
S31.85
SBS.bl
518.80
180.38
109.27
359.87
312.12
277.33
258.0*
251.68
218.67
210.71
215.58
218.82
213-10
211 .03
231.73
207.9V
187.36
180.37
1*6.77
212.37
233.3V
232.36
217.26
IVV.9S
181.55
176.58
182. OU
IVH.08
213.12
218.56
223.21
221. BO
231 .06
210. UO
260.86
293.60
337.21
PI
IKG/INTI
2.20
1.61
2.02
2.81
31.61
126.58
212. 8U
221.35
199.35
111.85
VI .11
65.19
SI. 97
17.73
15.21
12.10
36.96
38. 10
11 .00
11.50
16.29
17.15
13.99
31.53
21.30
18.76
19. 6O
21.51
28.35
27.56
22.85
17.57
13.29
IO.11
9.11
9.19
V.09
7.61
6.17
S.I 1
1.6S
1.51
1.75
b.29
6.07

-------
                  • •».   PIPl HtSill IS  ••••
                                                          PIPE NUHBLR
                                                                                     UPPCK NODt
                                                                                                       C031
                                                                                                                  LOOtH  NODE  C03S
OJ
o
o
                INTINVAL
 1
 3
 1
 5
 6
 7
 a
 9
in
11
12
13
II
15
16
I;
IB
IV
211
21
22
23
21
25
26
27
28
29
3D
31
32
33
it
3'j
36
37
3I»
39
111
Ml
12
13
11
15
                                gu
                             IL/Stl I
  36.
  3V.
  13.
 2/3.
 795.
I 121.
I IU1.
 981.
 871.
 750-
 650.
 563.
 517.
 525.
 193.
 151 .
 397.
 33«.
 2BI .
 231.
 196.
 I 72.
 157.
 151 .
 116.
 115.
 113.
 113.
 112.
 Ill .
 111.
 110.
 110.
 13V.
 I3H.
 136.
 130.
 123.
 113.
 101.
  95.
  88.
  81 .
  76.
  70.
HI)
(HI
.00
.DO
.00
.00
.00
.00
.00
.0(1
.00
.00
.00
.00
.00
.00
.00
.00
• 00
.00
.00
.00
.01)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. uo
.on
.00
.00
.00
.00
.00
.00
.110
.00
.00
.uo
uo
IL/SEC 1
3S.
39.
1?.
2)1.
695.
loin.
1091.
1003.
897.
776.
672-
598.
556.
530.
500.
160.
1UH.
350.
2 VI.
215.
2U1.
1 7H.
ItO.
153.
117.
116.
Ml.
113.
112.
112.
111.
111.
110.
137.
139.
136.
131.
125.
1 15-
106.
97.
vo.
HJ.
77.
11.
HO
(HI
•01
• 01
• 02
.09
• 27
• 11
• 13
• 39
• 35
• 30
• 26
• 23
• 22
• 21
• 20
• 18
• 16
• 11
* 1 1
• 09
• 08
• O/
.06
.06
• 06
• 06
• 06
• 06
• 06
• 06
• 06
• 06
• OS
• 05
• 05
.05
.05
• OS
• OS
.01
.01
• 01
• 03
• 03
• 03

(KG






2
5
5
1
3
2
1
1
1
1
1
1
1
1
1
1
1
1
1



















3
PI
/INT 1
.92
1.25
I.OS
1.31
1 .95
9.90
J.60
2.03
2.36
!>.3I
1.01
1.25
9.50
I..13
5.55
>*31
1.93
1.15
1.26
1.31
1.12
1.19
1.90
Z.11
I. 18
.58
.32
.61
.06
.20
.97
.63
. 13
.91
.13
.93
.11
• 07
.78
.38
.09
I. 01
1.01
.27
.72
P2
IKC/INTI
1.03
1 .10
1.18
1.17
2.19
10.80
HO. 88
86.18
117.28
121.50
IOS.S2
83.79
71. 12
68.01
66. 11
61. 9B
61.90
56.12
19.17
12.38
3S.1S
30.71
26.82
22.11
17.91
13.58
1 1.58
12.19
IS.8S
18.68
19. Ul
17.27
11.91
12.58
10.91
11.10
12. S7
13.31
12.92 '
1 1.68
10.21
9.1 1
8. 01
7.31
7.05
P3
UIOC/INTI
73.83
100. 13
81. 3O
101.95
155-07
210.00
367. IS
535.07
585.31
550.21
181.23
107.98
358.23
312.21
275.1 1
260.89
251.07
219. 16
215.03
216.85
211.08
211.98
213.37
229.52
2U7.VO
185.73
180.12
106.59
212.02
233.17
232*31
217.23
199.81
181.63
176.69
182.72
199.57
21 1.90
22U.38
223.59
221.98
231.13
210.11
261.08
297.89
P1
(Kfa/INII
I .33
I. 80
I. 52
I .89
2.81
31.61
126.57
2)2.89
221.29
199.78
115.59
90.95
61.86
S2.00
17.3S
IS. 67
12.27
39. Ul
38.85
11.31
13. 7O
16.62
17. SI
12.96
31.13
21.07
18.76
19.59
21. SO
28.36
27. SS
22.81
17. 55
13.29
10. IS
• IS
.51
.02
.69
.17
.1 1
.65
.51
.75
5.37

-------
                     • •••   PIPl III 5UI IS   ••••
                                                                    PIPt NUHBLR
                                                                                         33
                                                                                                   UPPCN NODE
                                                                                                                         C037
                                                                                                                                      LONE.R  NOOt  R038
OJ
o
INILKOKL

,
2
3
1
5
A
7
B
V
Id
1 1
12
13
11
Ib
I*
1 7
18
IV
1(1
21
22
23
21
2b
26
27
28
2V
311
31
32
33
31
3b
36
37
3D
3V
10
11
12
13
11
Ib
(HI
IL/SECI
33.
10.
11 .
218.
470.
IOIV.
1 163.
1013.
VB'I.
IOS&.
H11.
7U1.
630.
bas.
511.
505.
117.
392.
337.
281.
231.
200.
I7S.
161 .
l'->2.
11V.
116.
IHb.
111.
113.
112.
112.
Ill •
111.
no.
138.
US.
12V.
122.
1 13.
IU1.
VA.
UB.
82.
It..
III!
(Ml
• 01
.0(1
.00
.00
.01
.IS
.23
1.08
.'13
.22
•16
• | |
.07
• OS
• 03
.02
• 01
.00
• 01
• 01
.00
.00
• 01
• ou
.00
.00
.00
.00
.00
.00
.00
.ou
.00
.ou
.uo
.00
.00
.00
.ou
.00
.00
.ou
.ou
*00
.no
60
H/Sf.t 1
32.
10.
10.
1 7O.
52O.
836.
1031 .
VV6.
1031.
1031 .
921.
789.
689.
622.
572.
5)0.
I/S-
ill.
360>
3U|.
216.
213.
IBS.
166.
IS*.
ISI •
147.
IIS.
Ml.
113.
113.
112.
Ill •
111*
1 1O>
13V.
13*.
131 .
I2S.
1 16.
107.
VV.
VI.
81.
78.
HO
(HI
.02
.02
.02
• 09
.28
.IS
.S6
.56
.Sb
.56
• SO
.12
.37
.31
.31
.2»
.26
.22
• 19
.16
. 13
• 1 1
.10
• O9
.08
.08
.OB
.08
.00
.08
.08
.08
.08
.08
.08
.07
.07
• 07
• 07
.06.
.06
.OS
.Ob
.OS
.01
PI
IK6/IN1I
1.23
1.11
1.07
.79
9.21
15.11
11.71
17.23
17.96
28.11
31.17
14. SO
3V. 01
30.12
21.66
17.91
IS. 91
IS. 73
IS. 79
IS. IS
11. SI
11.23
11. S6
11.01
13.98
13.11
12.31
10. O8
7. SB
6.3S
6.67
(.13
9.25
9.02
7.69
6.20
5.00
1.19
1.03
1.19
1.17
3.83
3.13
3. 11
3. 1 1
PZ
IKG/INTI
1 .37
1.28
1.19
• 89
21.90
11.69
35.83
11.98
82.28
SI .35
76.20
1 15.90
113.19
99.96
80.12
71. MO
66.29
67.07
66.81
63.69
56.02
18.66
12.36
31.66
29.97
25.76
22. IS
17.72
13. S6
1 1.61
12.55
15.93
18.73
19.06
17.33
I5.U1
12.73
1 1 .01
I I. 29
12.72
I3.il
I2.V7
II. 68
10.22
9.23
P3

-------
                    • •••   HII'E. IUSUL1S   • •••
                                                               PIPt NUHBLR
                                                                                           UPPER NODI
                                                                                                              K038
                                                                                                                          LOWED NODE   B03B
                  INTERVAL        (III
                                IL/StiI
CO
O
K)
                       I
                       2
                       3
                       1
                       S
                       6
                       7
                       8
                       9
                     IO
                     I I
                     12
                     13
                     It
                     l!>
                     16
                     I 7
                     IB
                     19
                     20
                     25
                     26
                     27
                     2H
                     29
                     -HI
                     Jl
                     3/
                     33
                     Jl
                     3S
                     36
                     J7
                     3b
                     3V
                     1U
                     HI
                     12
                     13
                     It
                     tb
 32.
 10.
 10.
I 70.
231.
231.
211 .
210.
211.
211.
23/.
232.
229.
226.
221.
222.
219.
216.
213.
2U9.
2Ub.
202.
IBS..
166.
I 56.
Ibl .
117.
Mb.
I'll.
113.
113.
112.
I'M .
HI.
I1U.
139.
136.
131 .
I/S.
I 16.
10.
 9V.
 ''I .
 81.
 7H.
.08
.0V
.09
.38
• 6b
.69
.71
.71
.71
.71
.70
.68
.6?
.66
.66
.65
.65
.61
.63
.61
.60
.b9
.55
.52
.50
.SO
.SU
.bO
.bU
.bO
.SO
.50
.50
• SO
.SU
• 5U
.50
.3H
.3b
. 1J
.3U
.211
.2b
.23
.11
wo
(L/SCCI
J3.
3B.
39.
121.
212.
231.
211.
210.
211.
211.
237.
232.
229.
226.
221.
222.
219.
216.
213.
209.
205.
202.
187.
168.
158.
Ib2.
119.
116.
MS.
Ml.
113.
112.
112.
HI.
MO.
I1U.
138.
132.
128.
120.
III.
IU3.
»b.
bH.
HI .
HO
(HI
.10
.1 1
. 12
.39
.50
.SU
.50
.SU
.50
.50
.50
.50
.su
.50
.50
.50
.50
.50
.50
.SO
.50
.SU
.19
.50
.19
.18
.17
.16
.16
.15
.15
.15
.15
.11
.11
.11
.13
.12
.1U
.37
.3b
.32
.30
.27
.2b
PI
IKG/IHTI
1.92
1.16
1.09
.89
3.1 1
1.15
3.20
3.76
9.26
7.86
8.21
12.29
13.11
1 1 .66
9.21
7.76
7.3?
7.92
8.96
10.25
II. 5B
12.96
11.91
13.58
13.7?
13.56
12.76
10. 9B
8.60
6.B5
6.51
7.51
8.80
9.12
B.23
6.81
5.51
1.10
1.1 1
1.13
1.18
3.97
3.59
3.26
3.11
P2
IKG/INII
2.15
1.30
1.22
t >OO
6.95
12.19
9.59
9.6|
16.71
13.91
17.13
29.95
36.16
36.56
32. 12
30.36
30.36
33.55
38. Ul
12.57
15.58
16.06
12.77
15.76
31*29
27.30
23.65
19.51
15.25
12*10
12.17
11.57
17.60
16.91
. 16.03
16.00
13.73
1 1.12
11.21
12.13
13.18
13. IB
12.21
10.82
9.69
P3
IEIOC/INTI
153.51
92.92
87.35
71.32
61.79
52.05
19.68
77.81
1 17.95
87.78
89.61
110.52
161.62
161.12
151.57
116.89
111.51
111.32
156.18
177.13
202.01
226.81
211.09
236.25
211.71
21U.23
231.88
216.57
197.92
IB6.70
166.61
2O6.66
229.59
237.59
228.23
212.58
197.61
180.93
ll>6.76
199. 17
213.78
223.12
227.20
226.92
236.69
PI
IKG/INII
2.76
1.67
1 .57
1 .3D
12.96
2U.18
13.77
13.75
37.07
31.85
33.37
51.15
56.11
18.93
36.11
27.18
23.65
21.12
26.62
29.22
31.62
35.33
39.72
11.16
11.28
15.57
13.61
37.33
28.02
20.69
IV. 31
22.62
26.68
27,95
21.82
19.63
lb.2l
1 1.12
10.02
9.65
9.36
B.32
6.81
5.60
1.98

-------
                   • •••  tMPl  NISULIS  «•••
                                                           PIPE  NUMBER
                                                                             JS
                                                                                      UPPER NODE
                                                                                                        B03B
                                                                                                                    I_0*IR  NODE  C039
                 INUSVAI.        Oil
                              IL/SFCI
U>
O
U)
 2
 3
 1
 S
 6
 7
 8
 1
Id
I I
12
13
I 1
Ib
It
1 1
IB
IV
20
21
22
23
                    27
                    28
                    29
                    31}
                    31
                    32
                    JJ
                    31
                    JS
                    36
                    37
                    38
                    39
                    Mil
                    HI
                    12
                    13
                    11
                    IS
 33.
 38.
 3V.
121.
IS6.
IS6.
IS7.
ISfi.
Ib9.
I 60.
161 .
162.
162.
163.
161.
161.
I6S.
166.
166.
166.
167.
167.
167.
I6/.
167.
167.
167.
166.
lot.
166.
166.
166.
I6S.
166.
I6b.
I6S.
161.
161.
161.
163.
163.
162.
161 .
160.
I6U.
HU
(III
.01
.01
.00
.02
.OS
.06
.01
.07
.»/
.O/
.O;
.07
.07
.on
.on
.08
.00
.08
.08
.OH
.08
.08
.08
.(18
.08
• OH
.(18
.on
.08
.08
.08
.08
.OH
.1)8
.08
.00
.08
.08
.0«
.00
.OH
. Ull
.08
.0'
.117
«D
IL/SEC 1
32.
37.
38.
8V.
127.
113.
IS).
ISS.
Ib7.
ISV.
I6U-
161.
162.
l»2.
163.
161.
161.
165.
166.
166.
166.
167.
167.
167.
167.
167.
167-
167.
166.
166.
166.
166.
166.
I6S.
I6S.
its.
I6S.
161.
161.
1 61.
163.
162.
162.
161 .
160.
HD
(Ml
.01
.03
.03
.08
. 12
.11
. 11
.Ib
.IS
. IS
• IS
.IS
. IS
.It
. 16
. 16
.16
• 16
.16
. 16
.16
. 16
• 16
. 16
. 16
.16
.16
. 16
. 16
. 16
. 16
. 16
.16
. 16
. 16
. 16
. 16
. 16
• 16
. 16
. 16
. 16
. IS
. IS
. IS
PI
IKG/INt 1
1 .62
1 .38
1 .01
1.18
1 .20
1.72
2.19
2.38
2.00
2.01
3.16
1.82
b.13
1.92
S.60
«.9B
8. 17
8.20
7.18
6.61
S.72
5.21
5.32
5.80
6.1V
7.30
a. 2i
9.17
10. 1 1
io.es
1 1.16
II. 95
1 1 .V8
11.16
.2a
.30
.SI
.17
.31
.67
7.88
6.11
S.I6
1.61
1.79
P2
IKG/IN1 1
.82
.ss
. 17
.32
.88
• 66
.ss
• 26
• 59
.38
6.11
7.12
7.21
7.11
9.61
11.09
16.8V
IB. 71
18.58
17.81
16.81
16.15
17.10
19. IS
21 .68
21.07
26.16
27.09
26.21
21. US
21.7]
19.77
17.86
15.67
12.88
10.31
9.S5
10. 92
13.15
11.31
13.83
12.16
10.11
10.02
11.27
P3
IEIOC/INTI
129.81
1 10. SB
83. SB
91.3*
67. OS
IS. 91
37-6S
13.95
13. (7
12.12
SV.88
73.06
69. IB
62.02
/0>61
90.11
1 10.78
120.11
121.27
1 19.52
1 15.99
112.89
1 11.26
120.13
110.19
I11.2S
162. SV
182. 78
2U1.09
220.55
211,|B
21S.IO
219.50
213.61
22b.11
2O8.6S
207. BB
225.11
2b0.1b
262.38
2S6.21
210.18
228.01
215. S9
266.69
PI
IKG/INTI
2.11
.99
.50
./O
.01
.21
.71
1 .79
.68
.91
12.12
19.17
2U.6S
19.91
22. VI
29.02
11.59
11.86
11.16
26.19
21.27
17.71
16.90
1 7.71
19.28
21 .OS
22.85
2S.02
28.07
31 .S6
3b.2b
18.81
10.37
3B.U6
3O.97
21.01
19.59
21 .19
2S.27
26.12
23.57
18.13
13. 7b
1 1 .16
11.11

-------
                    • •••   PIPE KLSIILIS   ••••
                                                               PIPC NUMBER
                                                                                           UPPEK NODE
                                                                                                              SOI3
                                                                                                                          LOVER NODE  SUI1
                  IN1ENVAL         OU         IIU
                                IL/StCI      (HI
00
o
 2
 3
 1
 b
 6
 7
 8
 9
in
11
12
13
II
Ib
16
17
la
19
id
21
22
23
21
2b
26
27
28
29
30
31
42
43
31
3b
36
47
38
49
1(1
II
1?
13
11
Ib
.02
.(12
.02
.02
.02
.02
.02
.02
.02
.0?
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.1)2
.02
.02
.02
.02
.02
.02
.02
.02
00
IL/SEC 1
b.
b.
5-
5*
5.
5.
s.
5.
5-
S.
s.
s.
s.
5.
b.
S.
5-
S.
s.
s*
s.
s.
5-
5.
s.
b.
5-
b.
5.
s.
S*
s.
s.
b.
5.
b.
s.
b.
s.
b.
b.
S.
5.
b.
b.
HO
(Ml
.02
.02
.02
• 02
.02
.02
.02
.02
.02
• 02
.02
.02
• 02
• 02
• 02
• 02
• 02
• 02
.02
• 02
.02
• Oi
.02
.02
.02
.02
.02
.02
• 02
• O2
• 02
• 02
.02
.02
.02
• 02
• 02
• 02
.02
• 02
.02
.02
.02
.02
.02
PI
IKG/IHTI
.10
.10
.10
.10
.11)
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
P2
IKG/INt 1
.11
.11
.11
• 11
• 11
• 11
• 11
.11
.11
.11
• 11
• 11
• 11
• 11
.11
• 11
• 11
• 11
.11
• 11
• 11
• 11
• 11
• 11
.11
.11
.11
.11
.11
.11
.11
• 11
.11
.11
.11
• 11
• 11
• 11
• 11
• 11
• 11
• 11
.11
.11
.11
P3
IEIOC/IN1I
31 .66
31.66
31 >6«
31 .66
31 .66
31.66
31 .66
31.66
31.66
31.66
31.66
31.66
31.66
31.66
31*66
31 -66
31.66
31.66
31.66
31 .66
31 .66
31.66
31.66
31.66
31.66
31.66
31 .66
31.66
31 .66
31.66
31.66
31.66
31 .66
31.66
31.66
31.66
31 .66
31 .66
31.66
31 .66
31.66
31.66
31.66
31.66
31.66
PI
IKG/IHTI
• S7
.S7
.67
.S7
.b7
.s;
.S7
• S7
.b7
.b7
.67
.67
• S7
.57
.57
• b7
.57
.57
.b7
.57
.57
.57
.57
.57
.57
.57
.57
.57
.57
.67
.57
.57
.57
.57
.57
.s;
.57
.57
.57
.57
.57
.57
.57
.57
.57

-------
                          ••••  BASIN  RISULTS   ••••
                                                                  BASIN NUMBER
                                                                                                   NODE   BOOt
o
Ui
H\

,
2
)
1
b
6
1
a
v
10
1 1
12
1 J
11
IS
16
1 7
IB
IV
2U
21
22
21
21
26
26
2/
2H
2*
30
31
32
33
31
JS
J6
37
38
3V
10
11
12
13
11
IS
II VOL
(HI CUB. II
.Ob 3D.
.Ob 38.
.Ob JO.
.11 VU.
.30 213.
.51 133.
.71 667.
.82 6bV.
.V| 731.
.V7 77'j.
I.OU 7V8.
1.01 SUB.
1.02 811.
1.02 Rib.
1.01 80V.
.VV 7»b.
.V7 776.
.VI /SI.
.V| 721.
.H7 6Vb.
,BJ 6&b.
.7V 63b.
.7S 603.
.71 S72.
.6H SHI .
.61 SOV.
.6U 17H.
.b6 117.
.S2 116.
.18 386.
.11 3bb.
.11 32b.
.37 2V1.
.33 261.
.2V 23b.
.26 20V.
.23 106.
.21 167.
.IV IbO.
. 1 / I3b.
. IS 1 22.
.11 III.
. 13 102.
.12 V3.
. 1 1 86.
SIN UOl
L/StC L/SCC
IB. 18.
IV. 18.
IB. 1 II .
21V. 1b.
631. 121.
7SS. 122.
b68. 121.
131. 126.
368. 127.
271. 128.
202. I2H.
163. 128.
116. I2H.
133* 126.
108. 128.
83. 128.
61 . 121).
16. 127.
37. 127.
31 . 126.
26. 126.
23. 125.
2O. I2b.
IV. 121.
IV. 121.
IV. 123.
IV. 123.
IV. 122.
IV. 121.
IV. 121.
IV. 1211.
IV. 120.
IV. 119.
IV. 1 IV.
IV. 116.
1?. lUb.
IV. Vb.
IV. 83.
IV. 7b.
IV. 66.
IV. 61 .
IV. Sb.
IV. bl .
IV. 16.
IV. 13.
MOV PINI
i/sir 1*61
0. .V
0. 1.3
0. 1.3
0. Ib.O
0. 33. V
0. S3. 3
0. 11.1
0. 26. A
(1 . 1 0 . 1
0. 3.7
0. b.O
0. 3.1
0. 2.0
0. .7
0. .5
0. .S
0. .1
0. .1
0. .1
0. .1
U. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
0. .1
o. .0
0.
0.
0. .
U.
0.
0. .
0.
0.
0.
0. .1
D. .1
PIN2 PIN
1*61 IEIO<
1.0 72.1
1.1 101. (
I.S IDS.
I8.S 168.
1B.S 316.'
81. 2 531. 1
27. B IVO.<
SB. 6 38S.
32. S IV2.I
11.2 VI.'
20. B ISI.'
lb.1 131.
11.7 I2S.
V.6 122. <
7.2 IIS. I
6.6 IIA.
1.2 III..
.1 III.
.7 III.
.6 109.,
.3 10V..
.0 III./
.B III.
.7 1 1 1 .1
.6 1 1 1 .1
.6 111.1
.6 1 1 1 .<
•6 III..
.6 III.
..6 III.
.6 III.
.6 III.
.6 III.
.2 160.
.6 III.
.6 III.
• 6 III.
.6 III*
•A III.
.6 III.
.6 III.
.6 III.
.6 III.
•6 III.
.6 III.
) PINI POT
.1 IKGI IKG
) 1.3
) I.B
» I.V
> 70.1
( 116. B .
1 207.1
t 18-2 .
1 VO.V .
I 33.2 5.
1 11.1 S.
» 11.2 7.
1 7.1 8.
r 3.9 B.
, .0 B.
\ .3 10.4
r .1. 12.
! .U 12.
1 .0 12.
r 2.0 10.
! 2.0 1.1
t 2.0 3.
2.0 3.
2.0 6.
, 2.0 B.
1 2.0 B.
2.0 b.
> 2.0 3.
1 2.0 3.
! 2.0 1.
2.0 1 .
2.0 3.
2.0 2.
2.0 2.
1 2.V I.
2.0 1.
2.0 1 .
2.0 1.!
2.0 1.
2.0 2..
2.O 2.1
2.0 3.'
2.0 3.4
2.0 3.
2.U 3.1
2.0 2.1
POI2 PUT3
1Kb! IEIOCI
1.6 1 1 I.I
1 .6 1 10. V
1 .6 1 10. V
1.6 113.6
2.b 17V. 2
2.2 ISS.I
2.1 117. 1
1.3 137.3
6.V 62.6
7.2 6b.3
10. & 73.2
t 11.7 76.1
I 11.8 76. V
1 II. B 77.3
I 16.3 101.)
IV. 1 121. 1
If. 2 121. B
I IV. 2 122.1
1 16.6 106.6
) 7.6 S2.6
7.6 52.1
7.6 S2.1
11.6 97.1
IV. 6 12V. 3
IV. 6 128. 8
IS. 3 Vb.7
12.3 73.2
12.1 72.8
7.1 IS. B
6.V 11. b
12. b' VI. 2
12.7 98.7
II. B 103.6
V.9 106.7
B. 9 1 10. 1
7.3 IOV.6
> 6.3 120. b
' S.I I1S.O
! b.3 180. 1
1 S.2 220.6
1 1.8 272.6
k 1.2 286.3
1 3.7 263.7
) 3.3 23V. 0
9 3.1 220.1
POTl
IKGI
2.0
2.0
.0
.0
.2
.8
.6
12.2
26.2
27.1
31.2
1S.1
IS.fr
1S.B
12.6
16.9
17.2
17.1
If .B
13.3
11.2
11.2
23.1
30. S
30.3
If .8
12.6
12* S
S.8
S.S
8.7
7.9
S.6
3.3
2.B
2.3
2.2
2.1
1.2
1.0
l.f
S.2
1.7
1.3
1.0
POVI
IKGI
.0
.U
.O
.U
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.U
.0
POV2
1Kb!
.0
• 0
.0
.0
.0
• 0
.0
• o
.0
.0
.0
.0
• U
.0
• 0
.0
• o
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• U
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV3
IEIOCI
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.0
.0.
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
.0
.0
POVI
IKGI
.U
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

-------
                           ••••   BASIN NESUl15
                                                                    BASIN NUMBER
                                                                                                     NODI
                                                                                                             BOJB
O
O\
N1

1
2
3
S
b
6
7
H
V
10
1 1
12
13
IS
IS
It,
17
IB
19
20
21
22
23
21
2b
2k
27
28
29
30
31
32
33
31
3b
36
37
3B
39
SO
HI
H2
S3
HI
Mb
H
(HI
.OU
.00
, Ull
.00
.03
.08
. 13
.18
.23
.27
.32
.36
.39
.S3
.16
.'19
.b2
.Sb
.bu
.6U
.62
.63
.63
.63
.63
.62
• 6|
.611
.b9
.Sll
.57
.i6
.bi
.bH
.%2
.SI
.bO
.18
.S6
.HS
.S|
.38
.3S
.3U
.27
VOL
CUB.M
O.
U.
0.
0.
1 7.
SO.
6S.
89.
1 IS.
1 37.
Ib9.
1 78.
197.
213.
231 .
2S6.
261.
2/6.
288.
298.
3U8.
3lb.
317.
317.
3IS.
310.
30b.
301 .
29b.
290.
28b.
280.
273.
26tt.
262.
2b6.
2bU.
2SI.
231.
219.
2Ub.
IU9.
171 .
ISI .
1 JJ.
WIN
L/SfL
33.
30.
39.
I7S.
212.
23S.
2SI.
2SO.
2SI .
2SI.
23/.
232.
229.
226.
22S.
222.
219.
216.
213.
209.
2Cb.
202.
IH7.
168.
IS8.
Ib2.
IS9.
IS6.
ISS.
1 SS.
IS3.
IS2.
IS2.
ISI .
ISO.
ISO.
1 38.
132.
128.
I2U.
III.
1(13.
9b.
HH.
HI .
81)1
l/SFC
33.
38.
39.
121.
IS6.
IS6.
157.
ISB.
IS9.
160.
161 .
162.
162.
163.
I6S.
IAS.
IAS.
166.
166.
166.
167.
16'.
167.
167.
167.
167.
167.
166.
166.
166.
166.
1 66.
I6b.
I6b.
I6b.
I6b.
I6S.
I6S.
I6S.
163.
163.
162.
161 .
160.
16(1.
qov
L/SIC
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
U.
U.
0.
0.
0.
0.
O.
0.
0.
O.
U.
0.
0.
U.
0.
0.
I).
0.
U.
n.
0.
[1.
PINI
1 K 1. 1
1 .9
1.2
1 .1
.9
3.1
S.S
3.2
3.8
9.3
7.9
8.2
12.3
13.1
11.7
9.2
7.8
7.1
7.9
9.0
10.3
11.6
13.0
13.9
13.6
1 3.8
11.6
12.8
1 1 .0
H.6
6.9
6.B
7.5
8.R
9. 1
tt.2
6.0
b.S
M.I
S.I
S.I
S.2
1.0
3.6
3.3
3. 1
PIN2
IKGI
.,
.3
.2
.0
.9
1 .2
• 6
.A
16.7
13.9
1 7.S
29.9
36.5
36.6
32.7
30.1
30. S
33.6
38.0
12.6
SS.6
16. 1
S2.S
3S.8
31.3
27.3
23.7
19. S
IS. 3
12. S
12.2
IS. 6
17.6
18.9
IH.O
16.0
13.7
1 1 .S
11.2
12. 1
13.2
13.2
12.2
10.8
9. 7
PIN3
(EIOCI
IS3.S
92.9
87.1
71.3
61.8
52.0
S9.7
77.8
118.0
87.8
89.6
ISO.S
161.8
I6S.S
ISS. 6
116.9
ISI .S
ISS. 3
IS6.2
177.1
202.0
226.8
2SS.|
238.2
211.7
210.2
23S.9
218.6
197.9
186.7
188.6
206.7
229.6
237.6
228.2
212.6
197.8
180.9
186.8
199.2
213.8
223.1
227.2
228.9
236.7
PINS
IKGI
2. 8
1.7
1.6
1 .3
13.0
20. S
13. •
13.8
37.1
31.1
J3.S
bl.b
b6.l
18.9
36.1
27. S
23.7
2S.I
26.6
29.2
31.6
3b.3
39.7
11.2
SS.3
SS.6
S3.H
37.3
28.0
20.9
IV. 3
22.6
26.9
27.9
21.8
19.8
IS. 2
ll.s
10.0
V.
9.
8.
6.
S.
S.O
port
IKGI
1 .9
1.2
I.I
.9
1 .S
i .a
2.S
2.1
1.9
2.2
S.3
S.S
s.a
S.O
6.2
7.9
a.s
7.9
7.1
6. 1
S.3
S.I
S.S
6. 1
6.9
7.8
a. 7
9.7
10.6
II .2
II. 8
12.1
1 l.a
IO.S
a.o
6.S
6.6
7.8
a. a
a.s
7.2
S.6
S.6
S.6
S.O
POTZ
IKlil
2.1
1.3
1.2
1.0
3.3
3.7
S.S.
S.7
1.3
S.S
6.6
7.7
6.7
a. 2
11.2
IS. 3
18.6
la.a
18.3
17.3
16.3
16.6
IB. 3
20. S
22.9
2b.3
27.1
27.1
2S.3
22.7
20.7
18.8
16.9
IS.S
11.3
9.3
9.8
12.2
IS. 2
IS.S
13.1
1 1 . 1
9.7
IO.S
12.2
POI3
It IOCI
153. S
92.9
e/.s
71.3
30. S
38.7
33.7
32.8
3S.6
SI. 3
69.6
76.6
61.0
63.1
78.8
102.9
119.2
121. S
120. a
1 17. a
113.6
1 12.0
116. S
I2S.S
136.3
152.9
173.1
193.3
213.9
227. a
2SI.3
219.1
2SO.U
236.7
213.3
203. a
212.6
210. U
262.0
263.2
218.9
231.6
221.6
218.6
287.2
POTS
(Kill
2.8
1.7
1.6
1.3
6. 1
7.9
11.7
9.2
7.9
8.O
16.9
21.6
19. S
20. S
2S.S
32.9
16.3
33.2
28.9
23.6
18.6
16.7
17.1
18.1
20.2
22.0
23.8
26. S
30.0
33.3
37. S
so.s
SO.S
3S.S
26.1
19.7
19. S
23.7
27. O
2S*8
21.1
IS.S
1 1 .8
1 I. 1
11.2
POVI
IKGI
.U
.0
.0
.0
.0
.0
.0
.0
.O
.U
.0
.0
.0
.U
.0
.0
.O
.U
.U
.11
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV2
IKGI
.0
.11
• 0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
• U
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.U
.0
.0
.0
.(I
.0
.0
.0
.0
POV3
It IOCI
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.0
• O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
POVS
IKGI
.U
.U
.0
.U
.0
.U
.0
.0
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.0
.a
.0
.0
.0
.0
.U
.0
.0
.0
.0
.U
.0
.0
.U
.0
.0
.0
.0
.0
.U
.U
.U
.0

-------
                      • •••   OVEKflOU RtSUllS
                                                                        OVERFLOW NUMBER
                                                                                                                             HOIS
                INItKVAt    UIN     qui     MOV

                          IL/SLCIIL/StCIIt/Si cI
OJ
o
1
1
3
1
b
4
/
B
9
10
I 1
12
1 J
11
IS
14
17
IB
1 9
20
21
22
23
?1
2b
24
27
?B
29
30
31
32
3J
31
3!>
34
37
3B
39
10
11
12
13
11
1b
0.
O.
U.
1,5,.
2b9.
343.
33H.
249.
212.
155.
107.
81.
4B.
40.
in.
31.
22.
13.
7.
1.
2.
1 .
0.
O.
U.
0.
0.
0.
0.
0.
U.
o.
0.
0.
0.
u.
0.
0.
I).
0.
0.
0.
0.
0.
0.
0.
0.
0.
10.
.
.
.
.
.
.
a.
0.
8.
.
.
.
.
.
.
1.
2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
a.
0.
(I.
0.
0.
0.
0.
0.
0.
0.
u
0
0
7!,
250
3b'l
331)
240
203
117
99
73
40
52
10
24
IS
5
0
0
0
0
0
0
U
0
0
0
0
0
0
0
U
0
0
0
0
U
U
0
u
0
0
fj
0
SZUI
IKGI
.0
.0
.0
.0
1.)
73.2
23. 1
13.0
8.2
J.I
\ .V
.»
.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.u
.0
.0
.0
.0
.0
.0
.u
.u
.u
SZU2
1Kb)
.0
.0
.0
.0
S.&
32.1
It. 7
21.7
18.1
27.1
IU.7
7.3
S.1
1.1
3.1
I.V
I.I
.7
.1
.2
.1
. 1
.U
.U
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.u
.0
.0
.0
.0
.u
.0
.()
SZU3
IEIOCI
.0
.0
.0
.0
21. a
135. O
1*9.5
1 14.7
82.0
74. V
20.1
11.1
B.I
S.A
3.1
,S
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
SZUI
IKGI
• 0
• 0
• 0
>O
20.8
10*. 0
V3.3

-------
                             OVEKFLO*  HESUIIS
                                                                       OVERFLOW NUMBER
                                                                                                                NODE
                                                                                                                         RQ2B
                INIERVAL    WIN    HOI     «OV

                          IL/SIIIll/SECIIL/SEfI
OJ
o
oo
1
2
3
4
b
A
7
a
9
10
1 1
12
13
IS
15
IA
| 7
18
IV
ill
2 1
22
23
21
25
2A
27
2H
29
30
31
32
33
31
3b
3A
37
3D
3V
SO
SI
H2
S3
MS
15
A.
A.
A.
AS2.
I9C1.
2U3S.
1571.
1 1»0.
835.
551 .
42A.
298.
267.
272.
?05.
153.
75.
SS.
19.
12.
7 .
A.
b .
A.
6.
A .
A.
A.
A.
«.
6.
A.
6.
h.
A*
A.
A.
A.
A.
A.
A.
t>.
A.
A.
6.
6.
6.
A.
382.
218.
2AI.
2Sb.
2S1.
715.
213.
211.
237.
237.
23A.
20S.
153.
75.
SS.
19.
12.
7.
A.
6.
A.
6.
A.
A.
A.
A.
A.
A.
A.
6.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
A.
0
0
0
?60
IfcSA
1 77S
1326
91*
690
308
I8A
Al
SO
3A
0
0
0
0
0
0
U
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
tl
0
0
c
r
0
0
SlUl
UGI
.H
.S
.S
S».2
111.1
92. b
5S.S
S2.2
30. S
18. II
11.5
7.1
A. 2
S.U
3.3
2.2
1 .3
.9
.7
• b
.b
.S
.S
.S
.1
.1
.S
.S
,1
.S
.S
.1
.S
. 1
.S
.S
.S
.S
.S
.S
.S
.S
. S
.S
.S
S7.U2
IXbl
.S
.S
.5
ISA.S
3SU.2
311. 1
20H.3
171.2
IS) .7
97. II
71.1
S2.S
SI .1
3U.S
19.7
12.6
7.S
S.*
2.9
1.?
1.2
.8
.A
.5
.S
.b
.S
.S
.5
.S
.S
.S
.S
.6
.S
.b
.S
.S
.S
.b
.b
.S
.S
.b
.S
5ZU3
IE IOC 1
31. e
31. «
3S.8
145.0
8.7
605.2
18|. S
35S.S
270. 1
111. 5
(17.7
IIS. 6
V8.7
as. 3
47. 7
SS.7
17.2
11 .B
38. S
36. V
36.1
35.5
3S.I
31.?
31.6
31. B
31.8
31.8
31.6
31.8
31. A
31. B
31.8
31.6
31. U
31. R
31.8
31.6
31. B
31.6
31.8
31.6
34.8
34.8
31.8
SZU4
IK6I
.6
.6
.6
294. &
S70.3
138. S
223. S
I23.I
71.3
4UI
17.3
4. 1
.6
.6
.6
.6
.6
. t.
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
.6
.6
. fc
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.A
.4
.A
S»BI
U6I
.1
.1
.1
38. 2
14.9
1 1 '*
.6
.6
.«
.3
.S
.V
. 1
.2
.3
.2
1*3
.9
.7
.S
.b
.4
.4
.1
.4
.1
.4
.4
.4
.4
.4
.4
.1
.1
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
SAB2
IKGI
.S
.S
.S
67.1
41.3
10.4
31. »
35.1
41. A
13.1
10. 1
11 .8
31.2
26.4
If. 7
I2.8
7.S
4.S
2.9
I. 9
I. 2
.6
.6
.S
.S
.S
.S
.5
.b
.b
.S
.S
.S
.b
.S
.b
.b
.b
.b
.b
.S
.b
.b
.S
.S
P013
It IOC I
34.8
31.6
31.6
98.1
63.6
77.7
7b.2
72.6
7V. 3
67.0
83.1
»2.l
81. S
71.0
67.7
SS.7
17.2
41.6
36. S
36.9
36.1
3S.S
3S.I
34.9
31.8
34.6
34.8
31.8
31.6
31.6
31.8
31.6
34.8
34.8
34.6
34.8
34.8
34.6
34.8
34.8
34.6
34.6
. 34.6
34.6
34.6
P014
IKGI
.6
.t
.6
175.1
71.2
5A.3
34.9
2S.2
21.6
18.1
9.8
3.3
.7
.S
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.6
.A
.6
.6
.6
.6
.6
.6
POVI
IKGI
.U
.U
.0
21. U
99. S
80.6
16.7
33. S
21. S
10. S
6.0
l.b
1 . 1
.6
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.0
• U
.0
.1)
.0
.11
.0
.0
.0
.U
.0
.U
.U
.0
.U
.U
.0
.U
.U
.U
POV2
IKbl
.0
.U
.0
S9.1
2VS.9
273.8
172.1
136.1
100. 1
SI. 7
30.9
10.7
7.2
4.0
.O
.0
.0
.0
.a
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.U
.U
POV3
1C IOC 1
.0
.0
.0
66.9
125. |
S27.4
4U6.2
261.8
IV0.6
110.4
64.3
23. S
17.2
11.3
.0
.0
.U
.0
.O
.O
.0
.0
.0
.0
.0
.U
.U
.U
.0
.0
.0
.0
.0
.0
.0
.U
.U
.0
.U
.0
.U
.0
.0
.0
.U
POVI
IK6I
.0
.0
.0
1 19. S
496.1
362. 1
188. 6
97.9
S2.S
23.0
7.b
.8
. |
.1
.O
.0
.0
.U
.U
.U
.U
.U
.0
.0
.0
.0
.0
.0
.U
.0
.0
.U
.0
.0
.0
.0
.U
.0
.0
.0
.0
.0
.U
.0
.0
              OVEKfLO*  IOTALS
                                                           POVI
                                                                      325-
                                                                                   POV2
                                                                                              I Mb.
                                                                                                                      2I2S.
                                                                                                                                     POV4
                                                                                                                                               1368.

-------
                     ••••  OVEKFLO* RISUIIS   ••••
                                                                     OVCRfLO* NUMBER
                                                                                                               NODI.
                                                                                                                         RU38
              INTtHVAL    giN     goi    go»
                        (L/SI.C ML/SE.CI IL/Slt I
CO
O
VO
1
2
3
1
S
6
7
8
V
Id
1 1
12
13
|1
IS
16
17
18
17
2U
21
22
23
21
25
26
27
2»
27
3D
31
32
33
31
3!>
36
37
IH
37
1U
11
12
13
11
15
32.
in.
10.
1 /O.
S2CU
B34.
1031 .
776.
1031.
1031 .
721.
787.
6H7.
622.
5/2.
5JO.
•1/5.
11 1.
3fcO.
301 .
216.
213.
HIS.
166.
156.
151 •
117.
MS.
111.
113.
111.
112.
Ill .
111.
110.
137.
136.
131.
125.
1 16.
107.
77.
71 .
81.
/8.
32.
10.
10.
1 70.
231.
231.
211 .
21U.
211 .
211 .
737.
732.
227.
226.
221.
222.
217.
216.
213.
2CI7.
705.
202.
IB5.
166.
156.
151.
117.
IIS.
111.
113.
113.
112.
Ill .
Ill .
I1U.
139.
1 36.
131 .
I2S.
116.
107.
7V.
71 .
81.
78.
0
0
0
0
7VO
(.02
770
756
773
770
687
556
160
376
31«
30"
255
IV8
117
92
11
1 1
0
U
0
0
0
U
0
U
a
U
0
tj
0
0
0
O
0
U
0
0
U
U
ll
SZUI
IKGI
1 .2
I.I
1. 1
.6
7.2
IS.1
11.7
17.2
18.0
2e.i
31. S
16.5
39.0
30. 8
21.;
17.7
15.7
15.7
15. 8
15.5
M.5
M.2
|1.6
11.0
11.0
1 1-1
12.1
10. 1
7.6
6.1
6.7
8. I
7.1
.0
. 7
.2
.0
.1
.0
.2
.2
3.8
3.1
3. 1
3. 1
SZU2
1Kb)
1 .1
1.3
1.2
.9
21.9
HH.7
35.8
12.0
12.3
SI .1
76.2
IIS. 7
II3.2
IOO.O
8U. I
7i .a
66.3
67. I
66.8
63.7
66. 0
18.7
12.1
31.7
30. U
25.8
22.1
17.7
13.6
11.6
12.6
IS. 7
18.7
17.1
17.3
15.0
12.7
1 1.0
1 1 .1
12.7
13. «.
13.0
1 1.7
10.2
7.2
SZU3
UIUCI
78.2
71.3
85. 2
63.1
1 17. S
172.2
213.0
367.7
553.2
310.5
376.1
517.6
171.3
15S.O
385.1
318.0
303.7
281.1
272.3
267.2
251.0
218.7
255.2
215.8
215.6
238.7
231. S
207.7
187. 6
181.6
171.2
217. Q
23H.I
237. 1
222.1
205.3
171. |
182.2
187.1
205.7
717.5
226.1
228.6
227.8
237.6
SZU1
IKGI
1.8
1 .6
1.5
1.2
11.6
71.6
18. U
6I.2
I75.0
I 11. 8
110.3
176.0
168.2
127.7
82.0
61.3
17.6
17.5
16.6
13.1
37.2
38.7
12.3
13. S
16.0
15.7
12.1
33.7
21.0
18.8
17.7
21.6
28.1
27.6
22.7
17.7
11.1
10. S
7.6
7.7
7.2
7.7
6.2
5.2
1.8
SABI
IKGI
1 *2
1 > 1
1 >l
.8
1.1
1.1
2.7
1.1
1 1.2
6.6
8.7
13.7
1 3.0
11*2
8.5
7.5
7.1
8.2
7.3
10*7
12.1
13.5
11.6
11.0
11.0
13*
12.
10.
7.
6*
6*
8-
7.
7.0
7.7
6.2
5.0
.2
.0
.2
,i
.8
.1
.1
3. 1
S*B2
IKbl
1.1
1.3
1.2
.7
7.7
12.5
8.1
IU.I
17.2
12. 0
17. t
31.2
17.6
16.3
11.1
30.1
10.6
lb.0
37.6
11.3
16.6
16.0
12.1
31.7
10.0
25.8
22.1
1 7.7
1 J.6
1 1 .6
12.6
IS. 7
18.7
17.1
17.3
15.0
12.7
1 1.0
11.3
12.7
1 J.5
13. U
11.7
10.2
7.2
POI3
If. IOC 1
78.2
71.1
85. Z
61.|
51.0
18.2
17.7
88.5
128.8
72.5
76.6
158.5
161.2
165.1
150.8
IIS. 8
110.5
116.7
I6I .2
IBS. 7
2II.5
215.3
2&S.2
215.8
215.6
238.7
231. S
207.7
187. 1
181.6
171.2
217.0
238. 1
237.1
222.1
205.1
171.)
182.2
187.1
205.7
217.5
226.1
228.6
227.8
237.6
POI1
IKGI
1.8
1.6
1.5
1 .2
18.1
2U. 1
1 1 .2
11.7
15.1
26.8
16.0
57.8
55.7
16.1
32.1
25. 7
22.7
21.8
27.6
30.2
32.6
36.8
12.1
11.5
16. U
15.7
12.1
11.7
21.0
18.8
17.7
21.6
28.1
27.6
22.7
17.7
11.1
10.5
.6
.7
.2
. 7
.2
5.2
1.8
POVI
IKGI
.0
.0
.0
.0
5.1
II. 1
7.0
11. 1
16.
21.
2S.
12.
26.
17.
11.
10.
.
.5
.1
. 7
.1
.8
.O
.0
.O
.0
.0
.0
.0
.O
.O
.O
.U
.0
.0
.O
.O
.0
.U
.0
.U
.U
.0
.0
.0
POV2
IKbl
.0
.O
.0
.0
12.2
12.2
27. S
31.7
63.1
37.1
Sb.6
81.
75.
61.
18.
11.
35.
32.
27.
17.
7.
2.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
POV3
IEIOCI
.0
.0
.U
.U
66.6
123.7
163.3
277.1
121.1
218.0
277.6
177.1
110.1
287.7
211.1
202.1
161.5
111.5
1 1 I.I
81 .5
12.6
11.1
.0
.0
.U
.0
.O
.U
.0
.0
.0
.U
.U
.O
.0
.0
.O
.U
.U
.U
.0
.0
.U
.0
.0
POVI
IKGI
.0
.U
.0
.U
21.2
51.6
16.8
16.5
117.6
88.0
IDS. 3
118.2
112.1
81.1
17.7
15.6
26.7
22.7
17.0
13.2
6.6
2.1
.0
.0
.0
.0
.0
.0
.1)
.O
.0
.U
.11
.U
.0
.0
.U
.0
.0
.0
.0
.0
.O
.U
.0
            OViRfLU*  I01AL5
                                                         POv I
                                                                    2S5.
                                                                                              701.
                                                                                                            PUV3
                                                                                                                      3557.
                                                                                                                                     POVI
                                                                                                                                               1007.
          bBNKPI  CKINli

-------
             APPENDIX   11
           TEST EXAMPLE FOR STATCS
NOTE:  This example is similar to the example
       contained on the computer tape.
                    310

-------
BASG.AA   •Q9S>







SASfciAX   .|F|8.







S>ASG,AX   .IF|9.







fASO.AX   .IF??.







8AS6.AX   .IFZB.







SASd.T   9.,F|1/0/POS/100







8AS6,r   | |







6USt   >,»IF27.







MUSE   8,«II2B.

-------
ro
                                                          Nodes of  Interest
                                                          —Input data
                                                          — Exerpt  of output
             RECEIVING HATER  LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS
PAGE
1.
4.
5.
6.
7.
9.
9.
10.
11.
12.
13.
14.
15,
16.
17.
11.
19.
20.
21.
22.
2S.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
IHON KAY JUNE JULY
»CRAF R015
88UHE
•SHU 1»BOD
2-TSS
3«rc
4>COD
tKNOT G"3
IREG 9
8HAHL R01S
8SKAL X*l N-220.0 8-1
X-7 H*,33
X*8 H« 880.00
X»9 H«.220
X«10 M*,550
X-27 M-,040
.0005 .001 .002 ,003 .00
X«28 M'55.000
X«29 Ha.022
X«JO M-,066
X-J2 H*|6S.OOO
X-JJ «»,050
X«36 M«JOOO.O
X.J7 H«,33
X>40 H»220.0
XM1 H-O.HO
X»59 H-2JO.O
X-61 H>330,0
X*63 MB 3000,0
X-65 H« 990,0
8EDH3 1 8 9 10 27 28 29
*ZDH3 >9,29 E*0.25
•59,8 E>0.25
•28f8 E>0.2S
•1,8 E»0.25
8END











3-1
••1
S-l
5-1
8-4
4 ,006 .008 ,01 .019 ,02
8>l
S>1
8«1
B«l
8«2
8-2
8*1
8-1
8-1
8»l
8«1
S>2
8-1
30 32 33 16 37 40 41 «9 61 63 6S
0.50 2.50 H*0.2S 1,0 9.0
0.50 2.50 H«0.25 1.0 9.0
0.50 2.90 H«0.25 1.0 5.0
0.50 2,50 H«0,25 1.0 5.0

                                                             0  ERROR(S),    0  MARNINO(8)|  0  COMMENT(S)

-------
             RECEIVING HATER LOADING* RESULTING fROH COMBINED AND SEPARATE SEWER SYSTEMS             PAGE
                                       SINGLE-RESULT    (  OVERFLOW
                                           1 P 0-OVERFLON TOTAL          ( Ml )
                                           3 • PI-OVERFLON TOTAL      •   ( KG )
                                           } • P2-OVERFLCW TOTAL         ( KG )
                                           4 • P3-OVERFLOH TOTAL         ( KG )
                                           5 • P4-OV(RrLOH TOTAL         C KG )
u>
t->
LO

-------
               RECEIVING  HATER  LOADINGS  RESULTING FROM COMBINED AND SEPARATE SENER 8ISTEHS
                                                                                                       PAGE
                                                  NODEI   R01S
                         1,MONTH    ?,MONTH   3.MONTH
                   I    .1924E+04  .8865E+04  ,l666Ei04
                   2    .IflTEtOl  .S887E+03  .1962E+03
                   3    .4437E+03  .1290E+04  ,3727E«03
                   4    .1894E+04  .B677E+04  .2051E+04
                   S    .7375E+03  .2S9SE+04  ,9267Et03
                                                     1, TEAR
                                                  TOTAL FOR WHOLE TEAR
                                                        .1246E+05
                                                        .966TE+03
                                                        .2J06E+04
                                                        .I262E+OS
                                                        .4259E+04
CO
      I.MONTH   2.MONTH   3.MONTH
1   .2S02E+04 .274IE+04 .183TE»04
2   ,163IEt03 ,1*3SG403 .1S82E+03
3   .4S03E+OJ ,S017Ei03 ,3022EtO]
4   ,2U3C«04 ,2J71EtO< .25S6E+04
S   .6693E+03 .7300E403 .6496E+03
                                                     2, TEAR
                                                  TOTAL TOR WHOLE YEAR
                                                        ,7379Et04
                                                        .9048E+03
                                                        .12S4EtQ4
                                                        .706IE+04
                                                        .2049E+04
                                TOTAL FOR ALL YEARS

                             I           ,1983E*05
                             2           .1471E+04
                             3           .3360F+04
                             4           .I968E+05
                             5           .6308E+04
                                                                              AVERAGE YEARLY VALUE

                                                                                           .99I7E+04
                                                                                           .7357E+03
                                                                                           .1680E404
                                                                                           ,9841Et04
                                                                                           ,3l54Et04

-------
               RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS
                                                       PAGE
                                                                too
CO
M
Ui
**•«*••••••••«»•••••*•••••*••••••••«•**•*•••••«»*•••



               EVALUATION FOR TEAR




       NODEI    ROIS (          OVERFLOW      >


t»«**««•••»••••••*t«»••••t*••»••**•*••«•**••••••••••




                 DT •   9.00 MINUTES

              8| • ROD

              82 « T8S

              81 • FC

              84 • COD

-------
              RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEMER SYSTEMS

                                                                                   NODEI   HOIS

           THO DIMENSIONAL FREQUENCY DISTRIBUTION
           DURATION OF OVERFLOW
           Q-OVERFLOH TOTAIi
(PROPERTY  I)
(PROPERTY  I)
(HIN     )
(HJ      >
                                      PAGE     107

                                       EVALUATION FOR (EAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS
I
I SO.l
I

20.02

40.04

60.0*

•o.ol

too. to

119.90

139.92

159,94

179.96

199. 91

220.00



4.00

4.30

2.00

t.OO

0.50

0.00

0.00

0,00

O.SO

0,00

0.00

0.00
12.50
39.50


160. 240.

0.00 0.00

I. 00 1.50

1.50 3.00

0.50 0.00

1.00 0.50

0.00 0.00

0.50 0.50

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0,00 0,00
6.50 9.90
23.00 16.50


320.

0.00

1.00

1,50

0,00

0,00

o.oo

0.00

0.00

0.00

0,50

0,00

0,00
3.00
11.00


400.

0.00

1.00

0,00

0.00

0,00

0.00

0.00

0.00

0.00

0,00

0.00

0.00
1.00
• .00


410. 560.

0.00 D.OO

0.00 0.50

0,00 0,50

O.SO t.OO

0.00 0.00

0.00 0,00

0.00 0.00

0.00 0.00

0.00 0,00

0.00 0.00

0.00 0.50

0.00 0.00
0.50 2.50
7,00 C.50


640.

0.00

0,00

0,00

0,00

0,00

0.00

0.00

0.00

O.SO

0.00

0,00

0,00
0,50
4,00


720.

0,00

0.00

0,00

0,50

0,50

0,00

0,00

0,50

0,00

O.SO

0,00

0.00
2.00
3,50


100,

0.00

0.00

0.00

0,00

0.00

0.00

0.00

0.00

0,50

0,00

0.00

0.00
0.50
1.50


RIO,

0.00

(1,00

0,00

0,00

0,00

0.00

0,00

0,00

0.00

0.00

0.00

0.00
0.00
1,00

1


0.00

0.00

0.00

0.00

0.00

0.00

0.50

o.oo

0.00

0.00

0.00

0.50
l.oo
1.00


4.00 13^50

11.50 31.50

1.50 20.00

1.50 11.50

2,50 1,00

0.00 5,50

1,50 5.50

0.50 4,00

1.50 3.50

1.00 2.00

0.50 1,00

0,50 0,50


U!

-------
   RECEIVING WATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS



                                                                        NODEI   ROIS



THO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE     IDS



 EVALUATION TDK (EAR
IATION
IVERFLO

220.00


220.00


199.98


179.96


199.44


119.92


119.90


100.10


60.08


60,06


40.04


20.02





OF OVERFLOW
N TOTAL
I
t • • • •
I
I
+ • • • •
I
I
* • • • X
I
I
+ X • • •
I
I
+ • • • 4
I
I
» • X X •
I
I
+ • • • •
I
I
+ X X X •
I
I
+ X X • •
I
I
+ X . X
I
I
t . , XX
I
I
t , • • •
I
80.1 160. 240, 120.



(PROPERTY 1) (HIN
(PROPERTY 8) (M3

• • • •


• • X •


• • • •


• • • X


• • • •


• • »l •


• • • •


• • • •


• XX*

1
• • X •


X • X •


• • • •

400. 480. S60. 640. T20.
••• 1 ISOLINE8
XXX 1 I80LINES
... 1 ISOLINE8
) VERTICAL SCALE
) HORIZONTAL SCALE

• • • X


• • * •


X « • •


• X • •


X « * »


• • • X


• • • •


X • • •


X • • •


• • • •


• • • •


• I • •

600. 680. 860.
FOR FREQUENCY OF
FOR FREQUENCY OF
FOR FREQUENCY OF







































0.2S
1.00
S.OO

-------
               RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEHER SYSTEMS

                                                                                    NODEI   R019
Co
M
00
            ONE DIMENSIONAL FREQUENCY DISTRIBUTION
            DURATION OF OVERFLOW
                                      PAGE     10«

                                       EVALUATION FOR (CAR
(PROPERTY  1)
SCALES
FREQUENCIES
SUM
0-OVERFLOW
SCALES
rREOUENClES
SUM
d-OVERFLOW
SCALES
FREQUENCIES
SUM
QoOVERPLOH
SCALES
rRCQUENClES
SUM
Q«OVCRFLOH
SCALES
FREQUENCIES
SUM
P1»OVERFLOH
SCALES
FREQUENCIES
SUM
PI -OVERFLOW
SCALES
FREQUENCIES
SUM
20,0 40,0 60,1 10,1
4.00 11. SO I.SO 3. SO
35.50 11, SO 20.00 il.50
RATE INTERVAL VALUES
, 300E-01.601B-01.901E-01.120
217.90 92.00 95.00 14.00
463.90 246.00 194.00 99.00
TOTAL
10.1 160. 240. 320,
12.90 6.90 9.90 3.00
39.90 23.00 16.50 11.00
RATE AVERAGE
2
6

16
69

1
6

100. 120.
,90 0.00
,00 5.50
(PROPERTY
.150 .180
.00 11.00
,00 49,00
(PROPERTY
400. 460.
.00 0.90
.00 7.00
(PROPERTY
.200E-01.400E-OI.601E-01.801E-01.100 .120
8.00 9.90 4.90 4. SO 3.00 1.90
39.90 27.90 11.00 13.50 9.00 6.00
RATE MAXIMUM
.900E-01.100 .190 .200
11.00 S.OO 4.90 4.00
39.90 24.90 16.90 12.00
RATE INTERVAL VALUES
.900E-01.IOOE-02.200E-02.100E
229.50 29.00 38.00 19.50
463.50 234.00 205.00 167.00
TOTAL
5,00 10,0 19.0 20.0
14.00 3.90 2.90 3.00
39.90 21.90 18.00 15.50

2
8

(PROPERTY
.290 .300
.00 2.00
,00 6,00
(PROPERTY
-02.400E-02.600E
21.50 32.00
147.90 126.00

2
12
(PROPERTY
29,0 30,0
.00 1.00
.50 10.50
1
5
7)
5
36
8)
2
6
9)
1
4
10)
0
4
27)
140,
.90
.so

.210
.90
.00

960,
.50
.90

.140
.00
.90

.390
.50
.00

160.
0.90 '
4.00

.240
9.90
12.90

640.
0.50
4.00

.160
0.90
1.90

.400
0.90
1.90

1
1

9
27

2
1

1
1

1
1

-02.SOOE-02.100E-01
15.00 16.00 18
94.00 79.00 63
26)
2
9

15,0
.50
.50

40.0
2.00
7.00

2
9
180.
.50
,90

.270
.00
.00

720.
,00
.90

.160
.90
.00

.450
.00
,00

.190E
.90
.00

49.0
.00
.00
200,
1,00
2,00

,100
1.90
22.00

800.
0.50
1.90

.200
0.50
1.50

,500
1.00
2.00

220.
0.50
1.00

.110
1.00
18.50

680.
0.00
1,00

,220
0,00
I. 00

,550
0,50
1.00

0.90
0.50

19.90
19.90

I. 00
1.00

1.00
1,00

0.50
0.50

•01 , JOOE-01 .400E-01
11.50 22.00 9.00
44.50 11.00 9.00

50.0
1.00
1,00

55,0
0,50
2.00

1.90
1.50
                                                                                                                           MIN
                                                                                                                           Ml/S
                                                                                                                           Ml
                                                          Ml/8
                                                                                                                           HJ/S
                                                                                                                           KG/8
                                                                                                                           KG

-------
                RECEIVING WATER LOADINGS  RESULTING rROH COMBINED  AND  SEPARATE  SEHER  SYSTEMS
                                      PAGE
                                                                                                                 UO
             Pt"OVERFLOW RATE AVERAGE
(PROPERTY 29)
U)
M
VO
SCALES
FREQUENCIES
SUN
Pt-OVERrLOW
SCALES
FREQUENCIES
SUM
P2»OVERFLON
SCALES
FREQUENCIES
SUM
P2-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
PI-OVERFLOW
SCALES
FREQUENCIES
SUM
P 4 -OVERFLOW
SCALES
FREQUENCIES
BUM
.200E.02.400E-02.601E-02.l01E-02,100E-0|.t JOE-OI, 140E-01,1«OE-OJ,I»OE-OI. 2001-01, 220E-01
12.00 (.00 S.50 I. SO 2.00 1.50 0.00 2.00 O.SO 1.00 1,50 0.00
15.50 21.50 17.30 12.00 1,50 6.50 5.00 5,00 1.00 2.50 1,50 0.00
RATE MAXIMUM (PROPERTY 10)
.60iB-02.120E-01.1tOE>0|,240E-0|.100E-01.}fOE-01.420E»Ol,4tOE»OI,S40E-01,600E-01.660E-01
14.50 5.00 5.00 2.50 1.00 2.50 1.50 t.OO 1.00 1.00 0.00 O.SO
15.50 21.00 18.00 11.00 1,50 7.50 5.00 1,50 2.50 1,50 0.50 0.80
TOTAL
15.0 10.0
It. 50 1.50
15.50 19.00
RATE AVERAGE
.500E-02.62SE
12.00 4.00
15.50 21.50
TOTAL
100. 125,
11.50 1.00
15.50 24.00
RATE AVERAGE
.JOOE.Ol.40tE
11.50 1.00
15.50 24.00
TOTAL
20,0 40,0
15.00 2.00
15.50 20.50
RATE AVERAGE
(PROPERTY
45,0
4.00
15.50
60.1
2.00
11.50
75.1
1.50
9.50
•».»
1.50
6.00
(PROPERTY
•02.IOOE
J.50
19.50
•02. 100E-01 . 125E-01 . 15IE
4.00 0,50 1,50
16.00 12.00 11.50
(PROPERTY
160.
J.OO
21.00
200.
t.OO
It. 00
250.
1.50
17.00
119.
5.00
15.50
(PROPERTY
-01.901E-01.I20
4.50 5.00
16.00 11.50
.150
2.50
6.50
.110
1.00
4.00
(PROPERTY
«0,1
4.00
It. 50
10.1
t.so
14,50
100.
2.00
11.00
120.
1.50
11.00
(PROPERTY
12)
105.
O.SO
4.50
31)

120.
1.00
4.00

•01.200C-01.250E
J.OO 1.50
10.00 7,00
36)
400.
1.00
10.50
17)
.210
1.50
3.00
40)
140.
0.00
9.50
41)

500.
1.50
7.50

.240
1.00
1.50

160.
2.50
9.50


135,
t.OO
3.00

•01. USE"
t,50
5,50

610.
1.50
4,00

,270
0.00
0,50

110.
4.00
7.00

.100E-01.200E-01.100E-Ot,400E-OI.SOOE-0|.*OOE-0|.70QE-01,100E-Ot.900E-
11.50 7.00 5.00 1.00 2.00 0.00 1.50 1.50 1.50
15,50 22.00 IS. 00 10.00 7.00 5.00 5.00 1.50 2.00

ISO.
O.SO
2.00


its.
1.00
1,50


0.50
O.SO

Ot.400E-01,500E-01
1.50 1.50 1.00
4.00 2.50 1.00

too.
0.00
O.SO

.100
O.SO
O.SO

200.
t.OO
3.00



.IOOE+04
0,00 0.50
0,50 0.50

.110
0,00
0,00

220.
0.50
2.00

Ol.lOOEtOO.UO
O.SO A. 00
O.SO 0.00

0.00
0,00

1,50
1.50

0.00
0.00
                                                                                                                            KG/8
                                                                                                                            KG/8
                                                                                                                            KG
                                                                                                                            KG/8
                                                                                                                            KG
                                                                                                                            KG/S
                                                                                                                            KG
                                                                                                                            KG/8

-------
               RECEIVING HATER LOADINGS RESULTING  FROM COMBINED AND SEPARATE SCHER SYSTEMS
                                                                                                      not
                                               111
            PI-OVERFLOW CONCENTRATION AVERAGE
(PROPERTY 59)
CO
N3
O
SCALES 20.0
FREQUENCIES 7.50
SUH 15.50
40,0
5.00
21.00
60.1
2.50
21.00
• 0.1
2.00
20. SO
100
2.50
11.50
P3-OVERFLOH CONCENTRATION AVERAGE
SCALES 10,0
FREQUENCIES 5.00
SUM 15.50
60.1
1.50
10.50
90.1
1.50
29.00
120.
2.SO
25.50
150
l.SO
21.00
Pl»OVERrLON CONCENTRATION AVERAGE
SCALES 100.
FREQUENCIES 2.50
SUM 15.50
175.
1.00
11.00
«eo.
2.00
12.00
600.
l.SO
10.00
750
2.50
26.50
P4'OVERFLON CONCENTRATION AVERAGE
SCALES 90,1
FREQUENCIES 10.00
SUM 15.50
110.
1.50
25.50
270.
1.50
22.00
160.
l.SO
11. BO
450
1.00
15,00
120.
2.00
16.00
(PROPERTY
110.
1.50
19.50
(PROPERTY
945,
1.00
24.00
(PROPERTY
540.
2.00
14.00
140,
l.SO
14.00
61)
210.
2.50
18.00
61)
160.
4.00
10.50

240.
1.50
15.50

110,
5,50
6,50

270.
1.00
14,00

200.
1.00
I. 00

100.
6.50
11.00

220.
0.00
0.00

110.
1.50
4.50

0.00
0,00

1.00
1,00

.120E+04.150Et04.1»9C+04.240E+04,)OOEi04
5.00 5.00 4.00 5.00 2.00 0,00
21.00 16.00 11,00 7.00 2,00 0,00
65)
610.
0.50
12.00

720.
5.00
11.50

• 10.
2.50
6.50

900.
1.50
4.00

990.
0.50
0.50

0.00
0.00
                                                                                                                          MG/L
                                                                                                                          MG/L.
                                                                                                                          MG/L
                                                                                                                          MG/L

-------
     RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SENER SYSTEMS

                                                                          NODEI   R01S

ONE DIMENSIONAL FREQUENCY DISTRIBUTION

DURATION OF OVERFLOW

I MIN      )
     220,     X*
              I*
PAGE     112

 EVALUATION fOR TEAR
220.
200.
110.
160.
N? 140.
M
120.
100.
•o.l
60.1
40.0
20.0
FREQUENCY
+x
I*
* '
*
•••X
+•••• X
I*
I*
I *
I •
I •
•••*• X
*
*
**•*•»»• X
I *
I *
I *
t **» X
I *
I *
I *
t ••**••*«*••**** X
i U
I *
* *•*•«**•»« X
I •
I •
I •
I *
I »
I •
0 10 20 10 40 50 60 TO 10 90 100 ( 0/0 )
CURVE X— X CUMMULATIVE FREQUENCY CURV N • J5.50 EVENTS

-------
     RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE 8EHER SYSTEMS

                                                                          NODEI   ROI5

ONE DIMENSIONAL FREQUENCY DISTRIBUTION

Q-OVERFLOM RATE INTERVAL VALUES

( Ml/S     )
     ,))0
                                                                                                        PACE     ill

                                                                                                         EVALUATION FOR YEAR
U)
NJ
NJ
     ,1)0



     ,100



     .270



     .240



     ,210



     ,l«0



     .ISO



     ,120



     .90IE-01



     ,«01C-OI



     .JOOE-01
                         I  *
                         I  »
                         I  *
                         ••IX
                         I»
                         t»
I*

I*
I*
I*
»•»
  *
  *

  •»
                                •••••
                                    *
                                    *
                                    *•*••••••
                                            *
                                            •*••••*•••»••*•••*••*••*•**•
                                                                       *
                                                                       *
              »•
              0

FREQUENCY CURVE
                                 •-+•
                                  10
                  ••+•
                   20
••»•
 10
•*f "
 40
••»•
 SO
•"+•
 60
                                                                                              70
••»•
 SO
                                     X—X CUMMULATIVC  FREGUENCY CURV
.......«.........>
      90        100 ( 0/0 )

 N •  463,50     INTERVALS

-------
                RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEHER ST8TEK5>

                                                                                     NODEI   R015

           ONE DIMENSIONAL FREQUENCY DISTRIBUTION

           0-OVERFLOH TOTAL
                                                                                              PAGE      114

                                                                                               EVALUATION FOR  TEAR
U)
1X5
OJ
( M3       )
     • •0,
     810.
     100.
     720.
                640.
     560.
                410,
                         X»»
                         I *
                         I •
                         I •
                         t»X
                         *
                         *
                         •
                         »"X
                         I*
                         I*
                         I»
                         +»«»X»
                         I    •
                         I    *
                         I    *
                         I*
              +•••••••
              I      *
              I      *
              I      »
              «**•*••*
                400.
                320,
                240,
                160.
                10,1
                         t»»
                           *»••**•
                                 *
                                 *
              t-
              0


FREQUENCY CURVE
                                 •••*«•«•

                                        *
                                        *««*
                                           •
                                           *
                                           •
                                           ••»••**»••*•••••••
                                  .*
                                  10
,........+..-.-.-..+.........+....

       20        30        40


X—X CUHHULATIVE FRECUCNCY CURV
                                                                          50
                                                                                    60
70
                    90

                     35.50
                                                                                                                            100 ( 0/0 )


                                                                                                                             EVENTS

-------
Ul
tsJ
                                       Special nodes  of  interest

                                       — Input  data

                                       — Exerpt of output


RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEHER SYSTEMS

  3.
  4.
  5.
  6.
  7,
  It
  9.
 10.
 II.
 12.
 13.
 14.
 15.
 16.
 17.
 18.
 19.
 20.
 21.
 22.
 23.
 24.
 25.
 26.
 27.
 28.
 29,
 30,
 11.
 32.
 33.     (EDM4  1  3 4 5 6 II  12 13 14 16 17 20 21 24 25 67 69  71  73
 34.
 35.
 36.
 37.
 36,     (END
                                                                                                PAGE
ISSTS
tMON NAT JUNE JULY
*CRAr C037
I8UHE
ISMU IBBOD
2BTSS
3«rc
4 -COD
•KNOT G"4
IREG 9
• WAHt
IBKAL


















(EDH4
IZDM4



C037
X«l
X«3
X»4
• 5
•6
• It
• 12
•13
X»I4
X-16
KBIT
X"20
XB21
X«24
XB25
X«67
Xo69
X»7l
X-73
1 3 4
P«4,
P-5,
P"l.
P-l.
H> 550.0 ami
M"l,0
MB 16500.0
HB.44
H-1.65
H-.ll
H» 810.0
H',095
H>.22
M-2200.0
M-,15
H«33000.0
H«l.l
H-3300.0
H-.33
H>220.0
H-440,0
H-UOOO.O
H"770,0
5 6 11 12 13
12 E-0.2S
17 E-0.2J
5 E-0.25
4 E«0,25

S«2
8«l
8*1
8*
8*
S»
S"
8>
8"
8-
8
8*
S»
3"
8"
8-
a*
s>







1







14 16 17 20 21 24 25 67 6»
0.50 2.90 H-0.25 1.0 S.O
0.50 2.50 H«0. 25 1.0 S.O
0.50 2,50 H*0. 25 1.0 5.0
0.50 2. SO H«0. 25 1.0 S.O
                                                                0  ERROR(S),
                                                                0  HARNINO(S),  0  COMMtNT(S)

-------
                RECEIVING  HATER  LOADINGS RESULTING FROM COMBINED AND SEPARATE  SEWER  SYSTEMS
                                                                                                        PAGE
                                         SINGLE-RESULT
(   NODE ON THE RECEIVING BOOT
1
2
3
4
S
6
7
1
9
10
Q-INFLOH TOTAL
PI -INFLOW TOTAL
P2-1NFLOH TOTAL
P3-INFLOH TOTAL
P4-INFLOW TOTAL
O'BACKGROUND FLOW 1
PI •BACKGROUND FLOW
PI-BACKGROUND FLOW
PJ-BACKGROUND FLOW
P4-BACKCROUND FLOW





IATE 1
RATE
RATE
RATE
RATE





IECEIVING
RECEIVING
RECEIVING
RECEIVING
RECEIVING





WATERS 1
HATERS
HATERS
HATERS
HATERS





fOTAL
TOTAL
TOTAL
TOTAL
TOTAL
                                                                                                    (  Ml
                                                                                                    (  KG
                                                                                                      KG
                                                                                                      KG
                                                                                                      KG
                                                                                                      Hi
                                                                                                      KG
                                                                                                      KG
                                                                                                      KG
                                                                                                      KG
CO
N>
t_n

-------
               RECEIVING WATER LOADINGS RESULTING FROM COMBINED AND SEPARATE  SEWER  BT8TEH8
                                                                               PAGE
                                                  NODEI   C037
           I. YEAR
                   1
                   2

                   4
                   S
                   6
                   7
                   6
                   9
                 10
I.MONTH
 19957.
  2323.
  5250.
 83231.
  7336.
 16413.
     0.
     0.
     0.
     0.
2.MONTH
 64S3S.
  5258.
 10840.
179468.
 17954.
 57361.
     0.
     0.
     0.
     0.
3.MONTH
 18216.
  2471.
  5297.
 74065.
  9426.
 13127.
     0.
     0.
     0.
     0.
                                                      TOTAL FOR WHOLE
U)
K)
ON
                                                   10
                                    102728.
                                     10032.
                                     21368.
                                    336763.
                                     34917.
                                     88901.
                                         0.
                                         0.
                                         0.
                                         0.
          2, TEAR
                  1
                  2
                  3
                  4
                  3
                  6
                  7
                  8
                  9
                 10
1,MONTH
 26392.
  2297.
  3731.
 82197.
  7194.
 22883.
     0.
     0.
     0.
     0.
2.MONTH
 23663.
  2190.
  5780.
 78748.
  7026.
 20412.
     0.
     0.
     0.
     0.
3,MONTH
 30034.
  3107.
  5984.
126641.
  9432.
 24735.
     0.
     0.
     0.
     0.

-------
               RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE flCHCR BTSTEMS
                                                                                                       PAGE
                                                      TOTAL FOR HHOLB
                                                    I
                                                    2
                                                    }
                                                    4
                                                    5
                                                    6
                                                    T
                                                    I
                                                    *
                                                   10
                                (0091,
                                 7S94.
                                J7JJ6.
                               2«7SI6,
                                23652.
                                61010.
                                    0.'
                                    0.
                                    0.
                                    0.
          OTAL TOR ALL TEAMS
                                                                         AVERAGE ICARLY VALUE
to
 I
 a
 j
 4
 S
 6
 7
 «
 9
10
182119,
156931.
 17647,
 38*04.
624349.
 SIS69,
     0,
     o.
     o.
     o.
 91409.
 71466.
  (•23.
 I94S2.
312175.
 29214.
     0.
     0.
     o.
     0.

-------
            RECEIVING HATER LOADINGS RESULTING FROM COMBINED HMD SEPARATE 8EMER 8T8TEM5
MOB
                                        •*••»*•*•*•••••*•**••tl*l»*»*««t«*»***«*»»*»**t****»
U>
S3
oo
                                                                                   For statistical analysis  of
                                                                                   special nodes of  interest
                                                                                   "NODE ON THE RECEIVING" must
                                                                                   be  replaced by "SPECIAL NODES
                                                                                   OF  INTEREST" in the output.

-------
   RECEIVING HATER LOADINGS RESULTING FROM COMBINED AMD SEPARATE SENER SYSTEMS

                                                                        NQDEI    C017

TMO DIHENSIONAIi FREQUENCY DISTRIBUTION
Q-INFLOU TOTAL
P1MNFLON TOTAL
(PROPERTY  4)
(PROPERTY 12)
(NJ
(KO
                                      PAGE      99

                                       EVALUATION TOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS


1501,50

1001.00

4504.50

6006.00

7507,90

1992.90

10494.00

11995.50

11497.00

14991.50

16500.00



10.1
0.00

0.00

0.00

0.00

0.00

0.00

0,00

0.00

0,00

o.oo

0.00

0.00
0.00
25,50

160.
1.00

0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
1.50
25.50

240,
4.00

0.50

0.00

o.oo

0.00

0.00

0,00

0.00

0.00

0.00

0.00

0.00
4.50
22.00

120.
1.00

1.00

0.00

2,50

0.00

0.00

0,00

0.00

0.00

0.00

0,00

0,00
6.50
17,50

400.
0.00

2.50

0,80

O.SO

0,00

0,00

0.00

0.00

0.00

0,00

0.00

0.00
1.50
11,00

410.
0.00

0.00

1.00

0.50

0.50

0.00

0.00

o.oo

0.00

0.00

0.00

0,00
2,00
7.50

860.
o.oo

o.oo

l.oo

1.00

0.00

0.50

o.oo

0,00

0.00

0.00

0.00

0.00
2.SO
5.50

640.
0.00

0.00

0.00

0.00

0.50

0.80

0.00

0,00

0.00

0.00

0.00

0.00
1.00
1.00

720. 100, 810,
0.00. 0,00 0,00 0.00

0,00 0.00 0.00 0,00

0,00 0,00 0,00 0,00

O.SO 0.00 0.00 0.00

0,00 0.00 0,00 0.00

0.50 0.00 0.00 0.00

0,00 0.00 0.00 0.00

0,00 O.SO 0,00 0,00

0,00 0.00 0.00 0.00

0,00 0.00, 0.00 0.00

0.00 0.00 0.00 0,00

0.00 0.00 0,00 0.50
1.00 0.50 0.00 0.80
2,00 1.00 0,50 0,80

8.00

6.50

2.50

5.00

1.00

1.50

0,00

0,50

0.00

0.00

0.00

0,50


25.50

17.50

11.00

• .50

1.50

2.50

1,00

1,00

0.50

0.50

0,90

0,50


-------
   RECEIVING HATER LOADINGS RESULTING FROM COMBINED  AND  SEPARATE  8EHER  SYSTEMS



                                                                        NODEI    COJ7



TWO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE     100



 EVALUATION FOR YEAR
0-INFLOH TOTAL (PROPERTY 4)
PI -INFLOW TOTAL (PROPERTY 12)
(Ml ) VERTICAL SCALE
(KG ) HORIZONTAL SCALE
I
16500,00 + ***«««*»»«*X
16500.00
14991.50
11497.00
11999.50

10494.00
J- "92.50
O
7507,50
6006,00
4904.90
1003.00
1501.50 .
1
	
* • • » • • *
• • • t » • t
.......

* • » 1 * * *
* * * • * » X
• • * t • X *
• • * . X X X
* * * * X X X
• XX,.**.
K * . , X * * *
[
10,1 160. 240. 120. 400. 410, 960, 640
*«* |
XXX 1
.,. 1
*
» • • » •
• • • * *
. . X . .
\
• * • • *
X X • * *
X * • * *
» X « * *
* » • » •
* * • * •
	
. 720. 800, 110. 1(0.
ISOLINES FOR FREQUENCY OF 0,25
ISOLINES FOR FREQUENCY OF 1.00
ISOLINES FOR FREQUENCY OF ' 5,00

-------
              RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEWER SYSTEMS

                                                                            NODEI  COJ7

            THO DIMENSIONAL FREQUENCY DISTRIBUTION
            DURATION Or
            Q»INFLOH RATE AVERAGE
(PROPERTY  1)
(PROPERTY  S)
(Hid     )
(MJ/S    )
                                  PAGE     10}

                                   EVALUATION TOR YEAR
VERTICAL SCALE
HORIZONTAL SCALE
FREQUENCY IN EVENTS


90.09

100.10

150.19

200.70

290.29

299.79

349.10

H». IS

449.90

499.45

990.00

t

.400E
0.00

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00
IS. 50
t
-01.IOIE
0.00

0.00

0.00

0.00

0.00

o.oo

0.00

0.00

0.00

0.00

0.00

0.00
0.00
2S.SO

-01,120
0.00

2.00

o.oo

0.00

0.00

o.oo

0.00

0.00

0.00

0.00

o.oo

0.00
2,00
39.90

,160 .200
0.00 0,00

I. 00 0.00

2,00 3.00

0,00 0.00

0.00 0.00

0,00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00
3.00 J.OO
23.90 20.90

.240
o.oo

0.00

9. SO

o.oo

0.00

0.00

0.00

1.90

0.90

0.00

o.oo

0.90
• s.oo
17.90

,2SO
0.00

0.00

0.90

0.00

0.90

0,00

0.90

0.00

0.90

0.00

0.90

0.00
2,90
9.90

,120
0.00

0.00

0.90

0,00

0.90

0.00

I. 00

0,00

0.00

0.00

0.00

0.00
2.00
7.00

.ISO
0.00

0.00

0,00

1.50

0,00

0,00

0.90

0,90

0.00

0,00

0.90

0,00
J.OO
s.oo

,400
0.00

0,00

0,00

0,00

1.00

0,00

0,00

0.00

0,00

0,00

0,00

0,00
1.00
2,00

.440
0,00 0,00

0,00 0,00

0,00 0.00

0,00 0,00

0,00 0,00

0,00 0,00

0.00 0,00

0,90 0,00

0,00 O.SO

0.00 0,00

0,00 0,00

0.00 0,00
0.90 0.90
1,00 0.90

0,00 29,90

J.OO 25.90

11.50 22,50

1.50 11.00

2,00 *,90

0,00 7.90

2.00 7,50

2.50 5.50

1.50 3,00

0.00 1.90

1.00 1.50

0.50 0.50


UJ
U)
              NOTE:   For  statistical analysis  of  special nodes  of interest
                       replace OVERFLOW by  INFLOW:

-------
N>
               RECEIVING NATER LOADINGS RESULTING FROM COMBINED AND SEPARATE 8EHER SYSTEMS



                                                                                    NODE I   C011



            TMO DIMENSIONAL FREQUENCY DISTRIBUTION
PAGE     104



 EVALUATION FOR ICAR
DURATION or ojunrwm — "7
Q-INFLOu RATE AVERAGE /
I /
550.00 * ft
550. 00
499.99
-^""449.90
199.15
149.80
299.75
250.25
200.20
150.15
100.10
•
•
•
ft
•
*
•
ft
»
ft
50.05 + ft
I
(PROPERTY 1) (NIN )
(PROPERTY 5) (Ml/8 )
• • »
ft ft ft
ft • *
• ft ft
ft ft ft
ft
ft • ft
ft ft ft
ft ft •
• •
• X
ft ft ft
/ .400C-OI, 801E-OI.1JO .160 .
NOTE: For statistical analysis
nodes of interest replace
by INFLOW.
ft X
• •
• •
ft X
ft X
ft ft
ft ft
ft ft
ft ft
.
ft ft
ft ft
200 .240
of special
OVERFLOW
* • •
X • X
ft ft ft
X • •
ft • X
XXX
ft ft ft
X X •
ft • X
X X •
ft ft ft
ft ft ft
.280 .120 .160
•*• | ISOLINES TOR
XXX 1 ISOLINES FOR
... 1 ISOLINES rOR
VERTICAL SCALE
HORIZONTAL SCALE
ft ft ft
ft ft ft
ft ft ft
ft » X
ft X *
ft ft ft
ft ft ft
X • •
ft ft ft
ft ft ft
ft ft ft
ft * ft
.400 .440 .440
FREQUENCY or 0.25
FREQUENCY OF 1.00
FREQUENCY OF 5.00

-------
                RECEIVING HATER LOADINGS  RESULTING rROH COMBINED AND SEPARATE BENCH SYSTEMS

                                                                                    NODEl   COJT
             ONE DIMENSIONAL FREQUENCY  DISTRIBUTION
                                                                                           PAGE     I Of

                                                                                            EVALUATION FOR IEAR
             DURATION Or OVJ

             SCALES
             FREQUENCIES
             SUM
                      INFLOW
                  30,1
                 0.00
                25.90
  100,
 3.00
2S.50
  ISO.
11.50
22.50
  200,
 1.50
11.00
                                                     (PROPERTY  1)
  250.
 2.00
 »,50
 100.
0.00
7.50
 150,
2.00
7.50
 400.
2.50
5,50
 450.
1.50
3,00
 500,
0.00
1.50
 550.
1.00
1,50
0,50
0,50
                                                                                                               NIN
             0-INFLOW RATE INTERVAL VALUES
                                                     (PROPERTY  ))
             SCALES            .100E+00.12S    .160     .200    .250    .315    .400     .500     ,(30     .100    1,00
             FREQUENCIES    325.50    57.00   64,50   59,50  112,50  131.50  116.50  101,50   61,50   22.50    |4.SO   25,50
             SUN           1106.50   711.00   724.00  659.50  600.00  4*7.50  349.00  232.50  124,00   62,50    40.00   25.50
                                                                                                               H3/S
             0-1NFLOW TOTAL                                      (PROPERTY  4)

             SCALES            .|50E+04.300E404.4SOC404.601E«04.751E+04.l99C+04.105E*OS.I20e«06.|3SE+05,tSOC>05.l65Et05
             FREQUENCIES      1,00     6.50    2.50    5.00    1.00    1.50    0.00    0.50    0.00    0.00    0.00    0.50
             SUM             25.50    17.50    11.00    1.50    3.50    2.50    1.00    1*00    0,50    0,50    0,50    0,50
                                                                                                               H3
U)
CO
CO
Q-INFLOw RATE AVERAGE                                (PROPERTY  5)

SCALES            ,400E-01.IOJE«01,120    .160    ,200    .240    .210    .320    .360    ,400    ,440
FREQUENCIES      0,00    0.00    2,00    3.00    3.00    1.00    2.50    2.00    3.00    1.00    0.50
SUN             25.50   25.50   25.50   23.50   20.50   17.50    9.50    7.00    5.00    2.00    1,00
                                                                                                                     0,50
                                                                                                                     0.50
                                                                                       H3/8
             0-INFLOW RATE MAXIMUM
             SCALES
             FREQUENCIES
             SUM
                  .150
                 1.00
                25.50
  .300
 1.50
24.50
  .450
 4.00
23.00
  .601
 6.50
19.00
                                                     (PROPERTY  6)
  .751
 4.00
12.50
3.00
B.SO
 1.05
0,00
5.50
 1.20
2.50
5.50
 I.35
0,50
3.00
 1.50
1.60
2.50
 1.65
0,50
1,00
0.50
0,50
                                                                                                                           M3/S
             PI-INFLOW BATE INTERVAL  VALUES
                                                     (PROPERTY 11)
             SCALES            .100E-01.200E-01.100E-01.400E«-OI.500E-01.600E>01.700E»OI,IOOE-01.900E-0|.|OOEt00.1tO
             FREQUENCIES    231.50   468.00   129.00   73.00   51,50   31.00   29.00   27,00   16,50   11.50    A.50   23.00
             SUM           1106.50   673.00   405.00  276.00  203,00  151.50  113.50   14,50   57,50   41,00   29,SO   23.00
                                                                                                                           KG/S
PI-INFLOW TOTAL                                      (PROPERTY 12)

SCALES            80,1    160.    240.     320.     400.     410.   560.    640.     720.    100.    110.
FREQUENCIES      0.00    3.50    4.50    6.50    3.50    2.00    2.50    1.00    1.00    0.50    0,00
SUM             25.50   25.50   22.00   17.50   11.00    7.50    5.50    3,00    2.00    1.00    0.50
                                                                                                                     0.50
                                                                                                                     0.50

-------
                RECEIVING MATER LOADINGS REBUtiTINO  rROH COMBINED AND SEPARATE 8EHER 8T8TEM8
                                                                           PAGE
                                                                                    101
             Pl-INFLO"  RATE AVERAGE
                                     (PROPERTY 13)
             SCALES             .S01E-02.100E-01.190E»01.200E<>OI.280E-Ol.300Eo01.3SOE-Oi,400E>01,4SOE.OI,500E»01,5SOE*Ol
             FREQUENCIES       0.00     0.00     2.00     J.JO    6.00    B.OO    5.SO     1,90     1,50     1,00     0.00     O.SO
             SUM              as.so    as.so    as.so   ai.so   ai.oo   is.oo    10.00     4,so     1,00     1.90     o.so     o.so
                                                                                               KG/8
             PI-INFLOW  RATE MAXIHUH
                                     (PROPERTY 14)
             SCALES             ,200E»01.400E-0|,601E-01,I01E>>01,100    .HO    ,140    .ISO     ,110     .100     .aao
             FREQUENCIES       1.00     9.00     3,00    S.OO    6.00    3,SO    2.SO    0,80    0,50    0,00    0,00    0,90
             SUM              as,so    a4.so    ai.so    ii.so   13,so    7.so    4.00    i.so    i.oo    o.so    o.so    o.so
                                                                                               KG/8
            P2»INFLO«  TOTAL

            SCALES             200,     400.    601,    101,
            FREQUENCIES       I.SO     7.00     4.SO    4.SO
            SUM              2S.SO    24.00    17.00    12.SO
                                     (PROPERTY It)

                                  ,IOOE+04.120Bt04.14oe+04,t6oe+04,t(OE+04,200E+04,220C*04
                                 I.SO    O.SO    3.00    I.SO    O.SO    0.90    0.00    O.SO
                                 S.OO    6.SO    6.00    3,00    I.SO    1,00    O.SO    0.90
                                                                                               KG
CO
            P2-INFLQN RATE  AVERAGE
                                     (PROPERTY 17)
            SCALES             .lSOE»01.im»01.240E»01,300E»01.37SE>0|.47JC.01.600E»01.7SOE-01,94SE«01.l20     .ISO         KO/8
            FREQUENCIES       1.00     O.SO    0.50    2.00    O.SO    4.00    4.00    7,SO    3,30    1,30    0.00    O.SO
            SUM              25.50    24.50   24.00   23.30   21.SO   21.00   17.00   13.00    3,50    3,00    0.90    O.SO
            P3-INFLON TOTAL

            SCALES
            FREQUENCIES
            BUM
                                     (PROPERTY 30)

  .300E+04.601Et04.901E+04.120E«03.130E+03.1*OC+OS.210E«OS.240Et05.270E+OS.300C*08,330Et05
 0.00    3.00   10.50    2.50    2,00    1.00     2.SO     3.00    0,00    1,00    1,00    0,00
25.SO   25.50   22.50   12.00    9.BO    7.50     6.50     4.00    2.00    2.00    1.00    0.00
                                                                                               KG
            P3-INFLO" RATE  AVERAGE
            SCALES
            FREQUENCIES
            SUM
  .100
 0.00
25.50
          .200
         0.00
        2S.50
  .300
 0.00
25,50
  .400
 0.00
29.90
                                     (PROPERTY 21)
  .500
 0.00
25,SO
  .600
 0.00
2S.SO
  .700
 0.00
25,50
  .800
 0,00
25,SO
  ,900
 7,00
2S.SO
  1,00
13,30
11,90
 1.10
4.SO
5.00
0,90
O.SO
                               KC/S
            P4-INFLOW TOTAL

            SCALES             300,    601,    901.
            FREQUENCIES       1.00    6.00    S.OO
            SUM             25.SO   24.50    18.50
                                     (PROPERTY 24)

                          .120E*04.ISOE»04.1IOE*04.2tOE+04.240E+04.270E+04,300E+04,}30E*04
                         4.00    3,30    3.00    1.90    0,90    0.50    0.00    0.00    0.50
                        13,90    9.50    6.00    3.00    1,30    1,00    0,50    0.90    0,90
                                                                                               KG
            P4-INFLOH RATE  AVERAGE                               (PROPERTY 23)

            SCALES             ,300E»01.60IE-0|.901E-0|,iaO    .ISO    .110    .210    .240    .270    .300    .J30
            FREQUENCIES       3.00    3.50    S.30    6.SO    3.SO    2.50    O.SO    0.00    0,00    0.50    0,00
            SUM             29.90   22.50   19.00   13.50    7.00    3.SO    1.00    0.50    0.90    0.90    0,00
                                                                                         0.00
                                                                                         0.00
                                                                                               KG/S

-------
   RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SEMER SYSTEMS
                                                                                           PAGE
P1-INFLON CONCENTRATION AVERAGE
(PROPERTY «7)
SCALES
FREQUENCIES
SUM
20.0
0.00
25.50
P2»INFLOW CONCENTRATION
SCALES
FREQUENCIES
SUM
40.0
0.00
25.90
Pl-INFLOH CONCENTRATION
SCALES
FREQUENCIES
SUN
40.0
0.00
29.90
AVERAGE
10.1
0.50
25.50
AVERAGE
60.1
0.00
25.50

120.
2.50
25.00

•0.1
1.00
25,90

1,00*
22,90

100. 120.
4.50 1.00
24.50 20.00
(PROPERTY
200. 240.
1.90 2.00
21,90 11.00
(PROPERTY
140.
1.00
17.00
69)
210.
2.90
16.00
71)
160.
1.90
16.00

120.
2.00
11.90

110,
4,00
12,90

160.
7.90
11,90

200.
5.50
1.90

400.
4,00
4.00

220.
2,90
1,00

440,
0,00
0.00

0.90
0.90

0.00
0,00

.!OOEf04.200E404.100Et04.400C»04.90!E«04.600C*04.700C+04,IOOC+04,900C+04.100E+09,l!OE+09
0.00 0.00 0.50 0.00 1.90 1.00 1.90 9,00 9,00 9,00 1.90 0.50
25.50 29.50 29.90 25.00 29. DO 21.50 20.50 17,00 12,00 7.00 J.OO 0.90
P4-INFLOH CONCENTRATION
SCALES
FREQUENCIES
£ SUM
l/i
70.1
0.00
29.90
AVERAGE
140.
1.00
25.50

210.
5,00
24.90

2*0,
2.50
19.50
(PROPERTY
190. 420,
2.90 2.00
17.00 14.90
Tl)
490.
2.00
12.90

960.
1.00
10.90

610.
9.00
7,50

700.
2.90
2,90

770.
0.00
0,00
'
0,00
0.00
                                                                                                               MG/L
                                                                                                               MG/L
                                                                                                               MG/b
                                                                                                               MG/L

-------
     RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE BEMCR 618TEM8
                                                                          NODEl    C0$7
ONE DIMENSIONAL FREQUENCY DiSTRisuTinn
DURATION or
I HIM
PACE     110
 EVALUATION FOR YEAR
590.



550,



500.

450.


400.


CO
$ »»••



300.



250.



200,



ISO.



100.



50.1

FREQUENCY
X« ^S.
I» ^V.
I» ^s.
I» ^ —
+x»» ^r--.^-^
I • ^^"^
1 * X^
I • ^-w^
»••• K ^*+^
M ~^^^
* ^^K
••••UK NOTE: For statistical analysis of special
* J nodes of interest replace OVERFLOW
i . by INFLOW.
+ »•»»• n
i •
i «
i •
* ••* K • •
I t
I •
I » ,
•**••*** m
*
*
*
*»**•••* n
i *
i *
i *
* ••» K
I •
I •
I »
4 •••••••••••••••••••••••••••••••••**«**X*» .
I *
I »
I »
+ »•**<»•»******•*«*••»**•**•*••*•••» n
I •
I •
I «
»*•»•*•***•« X
*
0 10 20 30 40 50 60 TO (0 90 100 ( 0/0 )
CURVE X-'-X CUMHULATIVE FREQUENCY CURV N • 25,50 EVENTS

-------
GJ
                 RECEIVING HATER LOADINGS RESULTING FROM COMBINED AND SEPARATE SBNCK SYSTEMS



                                                                                      NODEI   COJT



            ONE DIMENSIONAL  FREQUENCY DISTRIBUTION



            Q-INFUOH RATE INTERVAL VALUES
PAGE     111



 EVALUATION TOR YEAR
t Hi/a i
1,00
1.00
,100

.630
,800
,400
.31'
.250
,200
,160
.125
,100(5+00
,
<
FREQUENCY CURVI
l»»
1 *
t «
I »
MX
»
r»
KMX
*
*
•••X
*
*
••••t X
*
•t X
*
*•» X
*
•»• X
*
••*•** X
X
X
»»*»»•*•*•***••**»*•**«•* . X
) 10 20 30 40 50 ftO TO 80 90 100 ( 0/0 )
! X— X CUMMULATIVC FREQUENCY CURV N » 1106.50 INTERVALS

-------
U)
CO
00
               RECEIVING  MATER LOADINGS RESULTING FROM COMBINED  AND  SEPARATE BENER SYSTEMS

                                                                                     NODEI    COI7

          ONE DIMENSION*!, FREQUENCY DISTRIBUTION

          Q-INFLOH TOTAL

          ( H)        )
               ,t«SEtOS X»
                        I»
                        I*
                        I»
               .165B+OS «X
                .1SOE+05   X
                .U5E+05
                          X
     .UOE+09 *X
              I*
              I*
              I*
     .IOSE+OS ** X
                                                                                              HOE     It!

                                                                                               EVALUATION rOR UAR
     ,I9»E*04



     .751E+04



     .601E+04



     .450E+04



     .300E+04



     .130E+04
                           ***    X
                           •
                           •
                           •
                           •*»»»•***««*•«
                                  *
                                  »
                                  *
                                  **»***»*•*»*•»**»
              +-
              0

FREQUENCY CURVE
                                                 *•***••
                                                       *
••+•
 10
                                                    ..•».
                                                     10
                                                               40
                                                                         SO
                                                                                   60
                                                                                             70
                                    X—X CUMKULATIVC FRE6UENCY CURV
     90        tOO ( 0/0 )

N •   as.SO     EVENTS

-------
             APPENDIX   12
           TEST EXAMPLE FOR RAINSC
NOTE:  This example is similar to the example
       contained on the computer tape.
                    339

-------
                                                         Input data
         «OQS.


         >TfRS.
0«S6,AX
      H.RAIN.
«DLLEU,C  .MRS-
FURPUR }7R2*       SL/3RI 05/ZI/M Of!S2>01

•FIRS  IS NOT CAHLOGOIO OR ASSIGNED
r»c SIAIUS: IOUQIOOOOOOO
«»SG,I  »F IRS. (FM///SOO
«DEiriE.C
fuRPOR ifR2*       SI.7JRI DS/7I/7V  07IS2I05
              . ,F I1///SOO


BXST  ««85.R«IN5C
 INPU1 DM» CARDS
    | -L»N  E
    2 .M05  SOOO

-------
                                                                      Output
CO
.JS
            ONE  DIMENSIONAL FRE8UENO OIST|8UT|ON



            TEARS  STATISTICS fOF  THE TEARS


            56 60



            RAINFALL DURATION  I  M|N I
SCALE
f RE9>
TOTALS
TOT* PC.
OT. SCAL
f RE8.
TOTALS
TOT" PC.
ORTSPElL
SCALE
fRte.
TOTALS
TOT. PC.
DT. SCAL
FRE8.
TOTALS
TOT. PC.
66
27
12. S
100
6.6
0
12. S
100
< HIM i
2000
IR.S
12. S
100
100
B.S
12.5
100
132
5
IS. S
36.17
13.2
2
12.5
100

1000
6.S
21
56.17
800
I.S
31
80
1 78
3
10.5
21. '1
19.8
6
10. S
9S.29

6000
1.5
17. S
11.18
1200
3.5
32.5
76.17
TOTAL RAINOEPlM PER IVINT 1 MM
SCALE
f RES.
TOTALS
TOT. PC.
PI. SCAL
FREO.
TOTALS
TOT. PC.
AVERAGE
SCALE
TREK*
TOTALS
TOT. PC.
DT. SCAL
f RIO.
TOTALS
T01. PC.
3.1
11
12.5
100
.66
0
12-5
100
INTENSITY
2/0
9.5
12.5
too
SI
0
12.5
100
6.6
16
28.5
67.06
1.32
2
17.5
100
PfK
510
IS
33
77.65
106
I
12. S
100
9.9
6
12.5
29.11
1.78
1.5
10.5
95.29
RAINFALL
BIO
ID
18
17.35
I62
1
11.5
V7.6S
261
1
7.S
17. *S
26.1
6,5
31.5
8I.|8

8000
1.5
13
30.59
1400
1
29
68.21
1
13.2
3
6.5
IS.2»
2.61
1
36
81.71
EVINT
1080
1.5
e
in.»7
716
2.5
37.5
88.71
330
1
I.S
8.21
11
I.S
28
65.88

(0000
2
8.5
20
2000
1
25
SB. 82

16. S
2
3.S
8.21
3.1
3.5
12
75.29
i HH /
1150
.5
3.5
A. 21
770
2
35
02.15
196
I.S
2.5
5.88
39.6
2.S
21. S
ST. 65

12000
I.S
6.5
IS. 29
2100
2
21
S6.i;

19. a
.5
1 .S
3. S3
3.96
2.5
28.5
67.06
1000 /
1620
1
3
7.06
321
5.5
33
77,65
162
0
1
2. IS
16*2
2.5
22
S|.»6

11000
.5
s
11.76
2800
• S
22
51.76.

23*1
«S
|
2. IS
1.62
I.S
26
6|.I8
INT i
IB70
• 5
2
1.71
176
2
27.5
61.7)
528
.S
1
2.3S
52.8
0
19,5
15.88

16000
2
1.5
10.59
1200
2
21. S
SO. 69

26.1
0
,s
LIB
5.28
I.S
21. S
50.59

2160
,5
I.S
1.51
112
3
25. S
60
S»1
0
•5
1.18
S9.l|
Z'S
|9. S
IS. 88

18000
|
2.5
5.88
3600
I .5
I»«S
15. SB

29.7
0
>5
1 .18
S.91
2.S
18
12.15

2110
.5
1
2.15
IB*
2
22.5
52*91
640
.S
,s
I.I*
46
1.5
IT
10

20000
I.S
I.S
1.51
1000
• s
18
12. IS

11
»S
• S
1.18
4.6
1
IS.S
16.17

2700
.5
.5
1.18
510
2.5
20.5
18.21

-------
Ul
JS
NJ
MAXIMUM
SCILE
FPl«.
TO)ALS
TOI. PC.
0). StAL
ruts.
TOTALS
TOI. PC.
INTENSITY OF RAINFALL EVENI
eoo 1600 2100 3200
7
12.5
100
160
0
12.5
100
1 1.5
33.5
78.82
320
1
12.5
100
8
IV
11.71
180
2
11.5
77.65
3
II
25.88
610
3.5
37.5
72.71
1 MM / 1000 / INT 1
1000 1800 5600
3
8
I8.R2
eoo
2.5
36
81.71
1
S
11.76
960
5
33. S
78.82
1 "5
1
9. It
1120
3
28>S
67,06
6100
1
2.5
5.8«
1280
1.5
2S.S
to
720Q
1
I'S
3.53
1110
3-5
21
56.17
• 000
.S
.5
LIB
1600
1,5
20.5
18.21
AVERAGE / MAXIMUM INIENSITf PER RAINFALL EVENT
SCALE
FRE6.
IOTALS
TOT. PC.
DT. SCAL
f RES.
T01ALS
101. PC.
TIME TO
SCALE
FRtb.
IOTALS
10T. PC*
OT. SCAL
FRE1.
IOTALS
TOI. PC.
TIME 10
SCALE
FRIB.
TOTALS
TOT. PC.
DT. SCAL
F«EO.
10IALS
101. PC.
.07
2
12.5
100
.036
0
12. S
100
MAXIMUM
55
36.5
. 12.5
100
5.5
26
12.5
100
MAXIMUM
.08
18
12.5
100
.016
16
12.5
100
. 18
1
10.5
95.27
.072
.5
12,5
100
.27
8.5
36.5
85.88
.108
2-5
12
98.82
.36
II
2*
65.88
.111
1.5
37.5
72.71
INTENSITY OF RAINFALL
110
3.5
6
11.12
II
2*5
16.5
38.82
INTENSl
.16
6
21.5
57.65
.032
0
26.5
62.35
165
1.5
2.5
5,88
16.5
2.5
11
32.71
220
0
1
2.35
22
1.5
11.5
27.06
.15
7.5
17
10
.18
1.5
38
89.11
EVENT
275
.5
1
2.35
27.5
1
10
23.53
l» / TOTAL DURATION OF
.21
1'&
17.5
15.88
.018
.5
26.5
62.35
RA|N DEPTH TO |HL INTERVAL WITH
SCALE
FRE9.
TOTALS
10). PC.
OT. StAL
FRE8.
TOTALS
10T. PC.
1 .6
32.5
12.5
100
.16
16
12.5
ILU
3.2
1.6
10
23.53
.32
2.5
2A.S
62*35
1.8
2
5.5
12,71
.If
1.5
21
SA.17
.32
2
I*
35.29
.061
1
2*
6|.|8
.1
1.5
13
30.59
.08
.5
75
5
-------
RAIN DEPTH 10  INTERVAL UMIIH  MAXIMUM  INTENSITY /  TOTAL »AIN  DEPTH OF  CyENT
SCALE
FKE9«
TOTALS
TOT. PC.
01. SCAL
FREO.
TOTALS
TUT. PC.
RAINFALL
SCALE
FRE*.
TOTALS
TOT. PC.
OT. SCAL
fREU.
TOTALS
TOT. PC.
.09
19.5
12. S
100
.018
16
12.5
100
.18
1
23
51.12
.036
.5
26.5
A2.3S
.27
6
1 9
11.71
.051
.5
26
61.18
INTENSITY - INTERVAL
aoo
717
811.5
100
80
187
8| 1.5
100
1600
37
61*5
7.95
160
219
621.5
76.96
2100
1 1
27.5
3.39
210
120
375.5
16.27
.36
5.5
13
30.59
.072
1 .5
25.5
60
VALUES
3200
7
16.5
2.03
320
83.5
2S5.5
31.18
.15
2.5
7.5
I7.6S
.09
I
21
56.17
1 MM /
1000
1
9.5
1.17
100
0
172
71.2
• 51
2
S
11.76
.108
0
23
51.12
1000 /
1800
1 .5
5.5
.68
180
13. S
172
21.2
.63
2
3
7.06
.124
2
23
51.12
INT 1
5600
1 «S
1
. •'»
540
31. S
128.5
15.83
• 72
0
1
2.35
• 111
1
21
19.11

6100
1
2.S
• 31
610
20. S
• 1
11.58
.8)
•5
I
*«Js
.162
1
20
17.06

7200
1
1.5
• 18
72Q
f
73. S
9,06
.9
.5
• S
1.18
.18
0
19
11.7|

8000
.S
.5
• 04
800
0
61,5
7.95

-------
                           APPENDIX  13
                              CONVERSION FACTORS
Multiply
By
To Obtain
acres                         4047
cubic feet                    0.02832
cubic feet                    28.32
cubic feet per minute         0.4720
cubic meters (m3)             35.31
cubic meters (m3)             264.2
                                2
cubic meters (m3)             10
feet                          0.3048
feet of water                 304.8
gallons (US)                  0.1337
gallons (US)                  3.785
gallons (US) per minute       0.06308
hectares (ha)                 2.471
hectares (ha)                 1.076*10!
inches                        2.540
inches of mercury             345.3
inches of water               25.40
kilograms (kg)                2.2046
kilograms (kg)                1.102*10"
kg per cubic meter (kg/m3)    0.06243
kg per square meter (kg/m2)   3.281*10
kg per square meter (kg/m2)   2.896*10
kg per square meter (kg/m2)   0.2048
kilometers  (km)               3281
kilometers  (km)               0.6214
        -3
square meters (m2)
cubic meters (m3)
liters (1)
liters per seond (1/s)
cubic feet
gallons
liters (1)
meters (m)
kg per square meter (kg/m2)
cubic feet
liters (1)
liters per second (1/s)
acres
square feet
centimeters (cm)
kg per square meter (kg/m2)
kg per square meter (kg/m2)
pounds
tons (short)
pounds per cubic foot
feet of water
inches of mercury
pounds per square foot
feet
miles
                                    344

-------
Multiply
                              By
       To Obtain
kilometers (km)               1093.6
liters (1)                    0.03531
liters (1)                    61.02
liters (1)                    IO"3
liters (1)                    1.308*10
liters (1)                    0.2642
meters (m)                    3.2808
meters (m)                    39.37
meters (m)                    10
meters per second (m/s)       1968
meters per second (m/s)       3.284
meters per second (m/s)       6.0
meters per second (m/s)       2.237
miles                         5280
miles                         1.6093
milligrams per liter (mg/1)   1
millimeters (mm)              0.03937
pounds                        453.6
pounds per cubic foot         16.02
pounds per square foot        4.882
ppm                           1
square feet                   0.09290
square meters (m2)            2.471*10
square meters (m2)            10.764
temp (degs C) +17.8           1.8
temp (degs F) -32             5/9
tons (long)                   1016
tons (long)                   2240
                                o
tons (metric) (t)             10
tons (metric) (t)             2205
tons (short)                  2000
-3
                                             yards
                                             cubic feet
                                             cubic inches
                                             cubic meters (m3)
                                             cubic yards
                                             gallons
                                             feet
                                             inches
                                             kilometers (km)
                                             feet per minute
                                             feet per second
                                             kilometers per hour (km/hr)
                                             miles per hour
                                             feet
                                             kilometers (km)
                                             ppm
                                             inches
                                             grams
                                             kg per cubic meter (kg/m3)
                                             kg per square meter (kg/m2)
                                             milligrams per liter (mg/1)
                                             square meters (m2)
                                             acres
                                             square feet
                                             temp (degs Fahr)
                                             temp (degs Cent) (°C)
                                             kilograms (kg)
                                             pounds
                                             kilograms (kg)
                                             pounds
                                             pounds
                                   345

-------
                                   TECHNICAL REPORT DATA
                            (Please read Inunctions on the reverse before completing)
  REPORT NO.
  EPA-600/2-80-116
             3. RECIPIENT'S ACCESSION*NO.
4. TITLE AND SUBTITLE
  QUANTITY-QUALITY SIMULATION  (QQS)
  A DETAILED CONTINUOUS PLANNING MODEL
  FOR URBAN RUNOFF CONTROL-  Volume  II User's Manual
             8. REPORT DATE
               August 1980  (Issuing Date)
             8. PERFORMING ORGANIZATION COO6
 , AUTHORIS)

  Wolfgang F. Geiger and Helmut R.  Dorsch
                                                           8. PERFORMING ORGANIZATION REPORT NO.
 PERFORMING ORGANIZATION NAME AND ADDRESS
 DORSCH CONSULT LTD.
 Toronto,  Ontario, Canada  M5H  1Z2
             10. PROGRAM ELEMENT NO.

               A35B1C    Tnrir f
               . CONTRACT/GRANT NO.
                                                             R 805100
 2. SPONSORING AGENCY NAME AND ADDRESS
 Municipal Environmental Research Laboratory—Gin., OH
 Office  of Research and Development
 U.S. Environmental Protection Agency
 Cincinnati *_ Ohio  45268	
             13. TYPE OF REPORT AND PERIOD COVERED
               Final  Sept.  1977-July 1979
             14. SPONSORING AGENCY COOS
               EPA/6QQ/14
 S. SUPPLEMENTARY NOTES
 Project Officer:  Hichard Field   (201)  321-6674,  .8-340-6674
 6. ABSTRACT

      To  calculate urban stormwater and combined sever overflow pollution and means  for
 its control,  a comprehensive mathematical model is presented.  The model
 (Quantity-Quality Simulation) operates in a continuous mode and accounts for the
 unsteady runoff and overflow behavior  of  total drainage systems.   Lumping techniques
 that calculate the runoff from drainage areas are combined with detailed flow routing
 through  main  and interceptor sewers as well as other structures such as branches,
 overflows,  basins, pump stations, control gates and treatment  facilities.  The computer
 program  calculates the runoff in the storm or combined sewer system and in the
 receiving waters.  The program package, written in Standard Fortran IV, is composed of
 approximately 30,000 statements and pan be used on any BATCH processing system having
 Fortran  IV  compilers
 7.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS
                           c. COSATI Field/Group
 Sewer overflow,  mathematical model, runoff,
 computer  program,  storm sewer, combined
 sewer,  interceptor sewer, Fortran IV
 Stormwater,  Quantity-
 Quality Simulation,
 Batch Processing system
      13B
18. DISTRIBUTION STATEMENT

  Release to Public
19. SECURITY CLASS (ThisReport)
 Unclassified
21. NO. OF PAGES
	360	
20. SECURITY CLASS (Thispagt}
 Unclassified
22. PRICE
CPA Form 2220O (S-73)
                                             346

-------