EPA 600/9-81-014
February 1981
COMPUTER PROGRAM DOCUMENTATION
for the
STREAM QUALITY MODEL
QUAL-II
Prepared by
Larry A. Roesner
Paul R. Giguere
Donald E. Evenson
Prepared for
Southeast Michigan Council of Governments
Detroit, Michigan
July 1977
(Revised January 1981)
Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Athens, Georgia
-------
FOREWORD
QUAL-II/SEMCOG version was developed by Water Resources Engineers
for the Southeast Michigan Council of Governments (SEMCOG) under Section
208 of PL 92-500. It represents a substantial improvement over previous
versions of the model and is being made available through the Center for
Water Quality Modeling as a service to interested users with the permission
of SEMCOG. Mention of trade names or commercial products does not consti-
tute endorsement or recommendation for use by the U.S. Environmental Pro-
tection Agency.
ii
-------
TABLE OF CONTENTS
Page
I. INTRODUCTION ]
History and Acknowledgments 2
Prototype Representation 3
Model Limitations 4
Model Structure and Subroutines 4
Program Language and Operating Requirements 6
Typical Execution Times 6
Job Control Considerations 7
II. GENERAL MODEL FORMULATION 8
Introduction 8
Conceptual Representation 9
Functional Representation H
Hydraulic Characteristics I4
Longitudinal Dispersion I5
III. CONSTITUENT REACTIONS AND INTERRELATIONSHIPS 19
General Considerations 19
Summary of Mathematical Relationships 30
Reaction Rates and Physical Constants 32
Temperature Dependence 32
IV. FUNCTIONAL REPRESENTATION OF TEMPERATURE 34
The Basic Temperature Equation 34
Definition of HN **
Net Short-Wave Solar Radiation ^b
Long-Wave Atmospheric Radiation J4
Water Surface Back Radiation ' 44
Evaporation jj
Conduction 47
V. COMPUTATIONAL REPRESENTATION 48
Aft
Prototype Representation Ti
Model Limitations j™
Numeric Solution Technique *z
List of References &
VI. COMPUTER PROGRAM DESCRIPTION 62
Model Structure and Subroutines 62
Main Program QUAL2 62
Subroutine ALGAES 80
Subroutine BODS 85
Subroutine CHANL 89
-------
TABLE OF CONTENTS
(Continued)
VI. Continued
Subroutine COLIS 93
Subroutine CONSVT 98
Subroutine DOS 102
Subroutine FLOAUG 107
Subroutine HEATEX/HEATER 113
Subroutine HYDRAU 123
Subroutine INDATA 127
Subroutine NH3S 149
Subroutine N02S 154
Subroutine N03S 159
Subroutine P04S 164
Subroutine RADIOS 169
Subroutine REAERC 174
Subroutine SOVMAT 179
Subroutine TEMPS 183
Subroutine TEMPSS 188
Subroutine TRIMAT 193
Subroutine WRPT2 198
Subroutine WRPT3 ' ' 204
Definition of Symbols 211
VII. QUAL-II DESCRIPTION OF VARIABLES IN COMMON 214
iv
-------
LIST OF FIGURES
No. Page
1-1 General Structure of QUAL-II 5
II-l Discretized Stream System 10
II-2 Stream Network of Computational Elements and Reaches 12
III-l Major Constituent Interactions 20
IV-1 Heat Transfer Terms Associated with Interfacial 36
Heat Transfer
V-l Classical Implicit Nodal Scheme 51
VI-1 General Structure of QUAL-II 63
VI-2 Flow Chart for Main Program QUAL2 67
VI-3 Flow Chart for Subroutine ALGAES 82
VI-4 Flow Chart for Subroutine BODS 87
VI-5 Flow Chart for Subroutine CHANL 90
VI-6 Flow Chart for Subroutine COLIS 95
VI-7 Flow Chart for Subroutine CONSVT 100
VI-8 Flow Chart for Subroutine DOS 104
VI-9 Flow Chart for Subroutine FLOAUG 109
VI-10 Flow Chart for Subroutine HEATEX/HEATER 114
VI-11 Flow Chart for Subroutine HYDRAU 124
VI-12 Flow Chart for Subroutine INDATA 128
VI-13 Flow Chart for Subroutine NH3S 151
VI-14 Flow Chart for Subroutine N02S 156
VI-15 Flow Chart for Subroutine N03S 161
VI-16 Flow Chart for Subroutine P04S 166
VI-17 Flow Chart for Subroutine RADIOS 171
VI-18 Flow Chart for Subroutine REAERC 175
VI-19 Flow Chart for Subroutine SOVMAT 180
VI-20 Flow Chart for Subroutine TEMPS 185
VI-21 Flow Chart for Subroutine TEMPSS 190
VI-22 Flow Chart for Subroutine TRIMAT 195
VI-23 Flow Chart for Subroutine WRPT2 201
VI-24 Flow Chart for Subroutine WRPT3 207
-------
LIST OF TABLES
No. Page
II-l Values of Manning's "n" Roughness Coefficient 17
II-2 Typical Values of Dispersion Coefficients 18
III-l Summary of Differential Equations to be
Solved by QUA1.-II 31
III-2 Input Parameters for QUAL-II 33
IV-1 Definition of Heat Transfer Terms Illustrated
in Figure 1 37
IV-2 Empirical Coefficients for Determining Rs 43
vi
-------
I. INTRODUCTION
QUAL-II is a comprehensive and versatile stream water quality
model. It can simulate up to 13 water quality constituents in any combi-
nation desired by the user. Constituents which can be simulated are:
1. Dissolved Oxygen
2. Biochemical Oxygen Demand
3. Temperature
4. Algae as Chlorophyll a_
5. Ammonia as N
6. Nitrite as N
7. Nitrate as N
8. Dissolved Orthophosphate as P
9. Coliforms
10. Arbitrary Nonconservative Constituent
11. Three Conservative Constituents
The model is applicable to dendritic streams which are well mixed. It
assumes that the major transport mechanisms, advection and dispersion,
are significant only along the main direction of flow (longitudinal axis
of the stream or canal). It allows for multiple waste discharges,
withdrawals, tributary flows, and incremental inflow. It also has the
capability to compute required dilution flows for flow augmentation to
meet any prespecified dissolved oxygen level.
Hydraulically QUAL-II is limited to the simulation of time
periods during which the stream flows in the river basin are essentially
#
constant. Input waste loads must also be held constant over time. QUAL-II
can be operated as a steady-state model or a dynamic model. Dynamic
operation makes it possible to study water quality (primarily dissolved
oxygen and temperature) as it is affected by diurnal variations in
meteorological data. The basic theory and mechanics behind the development
of QUAL-II are described in this Program Documentation Manual which is
intended to supplement the User's Manual.
-------
QUAL-II can be very helpful as a water quality planning tool.
It can be used to study the impact of waste loads (magnitude, quality and
location) on in-stream water quality. It could also be used in conjunction
with a field sampling program to identify the magnitude and quality
characteristics of nonpoint source waste loads. By operating the model
dynamically, diurnal dissolved oxygen variations due to algae growth and
respiration can be studied. Dynamic operation also makes it possible to
trace the water quality impact of a slug loading, such as a spill, or of
seasonal or periodic discharges.
HISTORY AND ACKNOWLEDGMENTS
QUAL-II/SEMCOG VERSION is a -new release of QUAL-II which was
developed by Water Resources Engineers, Inc. It includes modifications and
refinements made in the model since its original development in 1972 and
is Intended to supersede all prior releases of the computer program. The
significant differences between this program and earlier releases are:
1. Option of English or Metric units on input data.
2. Option for English or Metric output— choice is
independent of input units.
3. Option to specify channel hydraulic properties
»
in terms of trapezoidal channels or stage-discharge
and velocity discharge curves.
4. Option to use Tsivoglou's computational method for
stream reaeration.
5. Improved output display routines.
6. Improved steady-state temperature computation routines.
QUAL-II is an extension of the stream water quality model QUAL-I
developed in 1970 by F. 0. Masch and Associates and the Texas Water
Development Board (1371)* and the Texas Water Development Board (1970).
*See list of r^a Bareness at rn© and of Sect i en V.
2
-------
The computer code was written by W. A. White. In 1972, WRE under contract
to the U.S. Environmental Protection Agency, modified and extended QUAL-I
to produce the first version of QUAL-II. Over the next three years,
several different versions of the model evolved in response to specific
client needs. In March of 1976, the Southeast Michigan Council of
Governments (SEMCOG) contracted with WRE to make further modifications
and to combine the best features of the existing versions of QUAL-II
into a single model. QUAL-II/SEMCOG VERSION is that Model.
PROTOTYPE REPRESENTATION
QUAL-II permits any branching, one-dimensional stream system
to be simulated. The first step involved in approximating the prototype
is to subdivide the stream system into reaches, which are stretches of
stream that have uniform hydraulic characteristics. Each reach is then
divided into computational elements of equal length so that all compu-
tational elements in all reaches are the same length. Thus, all reaches
must consist of an integer number of computational elements.
In total, there are seven different types of computational
elements; these are:
1. Headwater element
2. Standard element
3. Element just upstream from a junction
4. Junction element
5. Last element in system
6. Input element
7. Withdrawal element
Headwater elements begin every tributary as well as the main river system,
and as such, they must always be the first element in a reach. A standard
element is one that does not qualify as one of the remaining six element
types. Since incremental inflow is permitted in all element types, the
only input permitted in a standard element is incremental inflow. A type
-------
3 element is used to designate an element on the mainstem that is just
upstream from a junction element (type 4) which is an element that has
a simulated tributary entering it. Element type 5 identifies the last
computational element in the river system; there should be only one
element type 5. Element types 6 and 7 represent elements which have
inputs (waste loads and unsimulated tributaries) and water withdrawals,
respectively. River reaches, which are aggregates of computational
elements, are the basis of most data input. Hydraulic data, reaction
rate coefficients, initial conditions, and incremental runoff data are
constant for all computational elements within a reach.
MODEL LIMITATIONS
QUAL-II has been developed to be a relatively general program;
however, certain dimensional limitations have been imposed upon it during
program development. These limitations are as follows:
Reaches: a maximum of 75
Computational elements: no more than 20 per reach
or 500 in total
Headwater elements: a maximum of 15
Junction elements: a maximum of 15
Input and withdrawal elements: a maximum of 90 in total
MODEL STRUCTURE AND SUBROUTINES
QUAL-II 1s structured as one main program, QUAL2, supported by
23 different subroutines. Figure 1-1 graphically illustrates the
functional relationships between the main program and the 23 subroutines.
The original version of QUAL was structured to permit the addition of
parameters easily through addition of subroutines. This basic concept,
which proved to be an extremely valuable one, was maintained in the extansion
-------
PROGRAM RETURN FOR FLOW AUGMENTATION OPTION |
i*^
ro r > c o
PROGRAM RETURN FOR DYNAMIC SOLUTION OR ITERATIVE STEADY STATE SOLUTION
H>
1 N
2 t
3 t
4 t
5
6 .
7
8 ^
9
10 D-
11
12 t
13
14 fc
15
16 t
17
18 t
19
20 .
21 t
22 J
23 t
24
25 t
26
27 .
28 fr
29 t
INOATA
HYDRAU
TRIMAT
CONSVT
— — 0 CHANL
•
N.
TEMPS/TEMPSS
— - — £> HEATEX/HEATER |
^
BOOS
ALGAES
P04S
NH3S
N02S
N03S
REAERC
DOS
COLIS
RADIOS
WRPT2
FLOAUG
WRPT3
N
fv
rs
r>
u
N.
N.
N
r^-
rv
. «
program 2
^
tltment A ^ ^ ei
s
0
V
M
A
T
program
ement B
calling sequence
in element A
called by __/
element A
FIGURE 1-1
GENERAL STS'JCTURE OF QUAL-I!
-------
of the original version to QUAL-II. Thus, if it becomes desirable at some
later time to add new parameters or modify existing parameter relationships,
the changes can be made with a minimum of model restructuring.
PROGRAM LANGUAGE AND OPERATING REQUIREMENTS
QUAL-II is written in FORTRAN IV and is compatible with the
UNIVAC 1108, CDC 6400, and IBM 360 and 370 computer systems. The SEMCOG
version of QUAL-II requires an average of 51,000 words of core storage.
QUAL-II uses the system's 80 column card reader as the only input device
and the system's line printer as the only output device.
TYPICAL EXECUTION TIMES
Execution time on any particular computer system is nearly
linearly related to:
1. The number of water quality parameters simulated,
2. The number of computational elements in the system, and
3. The number of time steps simulated when the dynamic
simulation option is used.
Approximate execution times for a UNIVAC and IBM computer are shown below.
Execution Time
Steady-StateDynamic
Computer Simulation* Simulation**
UNIVAC 1108 0.02 0.01
IBM 360/40 0.15 0.05
* Seconds/water quality parameter/computational element
**Seconds/water quality parameter/computational element/time step
-------
JOB CONTROL CONSIDERATIONS
If the system's normal FORTRAN input device unit is not unit 5
or the output unit is not unit 6, then the variables "NI" and "NO" in the
subroutine INDATA should be changed to reflect the system's I/O unit
identifiers.
-------
II. GENERAL MODEL FORMULATION
INTRODUCTION
The primary objective of any stream water quality model development
is to produce a tool which has the capability for simulating the behavior
of the hydrologic and water quality components of a stream system. The
development of this tool to simulate prototype behavior by application of
a mathematical model on a digital computer proceeds through three general
phases (Water Resources Engineers, Inc. (1967)):
1. Conceptual representation
2. Functional representation
3. Computational representation.
Conceptual representation involves a graphic idealization of the
prototype by description of the geometric properties that are to be modeled
and by identification of boundary conditions and interrelationships between
various parts of the prototype. Usually, this process entails discretizing
the prototype into "elements" of a size compatible with the objectives that
the model must serve, defining these elements according to some simple
geometric rules, and designating the mode by which they are connected,
either physically or functionally, as integral parts of the whole. A part
of this conceptual structuring is the designation of those boundary conditions
that will be considered in the simulation.
Functional representation entails formulation of the physical
features, processes, and boundary conditions into sets of algebraic equations.
It involves precise definition of each variable and its relationship to all
other parameters that characterize the model or its input-output relationships.
3
-------
Computational representation is the process whereby the functional
model is translated into the mathematical forms and computational procedures
required for solution of the problem over the desired time and space
continuum. It is concerned with development of a specific solution technique
that can be accommodated by the computer and with codification of the
technique in computer language.
*
In the remainder of this section the Conceptual Representation
of QUAL-II will be described together with its general Functional
Representation for mass transport, hydraulic characteristics, and
longitudinal dispersion. Section III will discuss specific constituent
reactions and interactions. Section IV will develop the Functional
Representation of stream temperature as simulated in QUAL-II.
CONCEPTUAL REPRESENTATION
Figure II-l shows a stream reach n which has been subdivided
into a number of subreaches or computational elements each of length Ax.
For each of these computational elements, the hydro!ogic balance shown
can be written in terms of flows into the upstream element (Q-{_-|), external
sources or withdrawals (Qx-j), and the outflow (Q-j) through the downstream
face of the element. Similarly, a materials balance for any constituent
C can be written for the element. In the materials balance, we consider
both transport (Q-C) and dispersion (A £=-|£) as the movers of mass along
the stream axis. Mass can be added to the system via wasteloads (QXCX)
and added or removed via internal sources or sinks (S-j) such as benthic
sources and biological transformation. Each computational element is
considered to be completely mixed.
Thus the stream can be conceptualized as a string of completely
mixed reactors—computational elements—which are linked sequentially to
one another via the mechanisms of transport and dispersion. Sequential
-------
Reach 71
(QC).
Qi-1
AX
FIGURE II-l
DISCRETIZED STREAM SYSTEM
After Water Resources Engineers, Inc. (1967)
10
-------
groups of these reactors can be defined as reaches in which the computational
elements have the same hydrogeometric properties—stream slope, channel
cross section, roughness, etc.—and biological rate constants—BOD decay
rate, benthos source rates, algae settling rates, etc.—so that the
stream shown at the left of Figure I1-2 can be conceptually represented
by grouping of reaches and computational elements shown on the lower right
of the figure.
FUNCTIONAL REPRESENTATION
Mass Transport Equation
The basic equation solved by QUAL-II is the advection-dispersion
mass transport equation, which is numerically integrated over time for
each water quality constituent. This equation includes the effects of
advection, dispersion, dilution, constituent reactions and interactions,
and sources and sinks. For any constituent, C, this equation can be
written as:
where
at
M
x
t
C
AX
u
s
3x
dx -
3(AX u C)
3x
dx
mass (M)
distance (L)
time (T)
concentration (M/L3)
cross-sectional area (L2)
dispersion coefficient (L2/T)
mean velocity (L/T)
external source or sinks (M/T)
Since M = VC, we can write
3M a
3?
3C . - 3V
It C It
(Ax dx)
+ s
II-l
II-2a
11
-------
Most Upstnom
Point
R«och
Number
Computational
Eltmtnt Numbtr~
FIGURE II-2
STREAM NETWORK OF COMPUTATIONAL ELEMENTS AND REACHES
12
-------
where
V = Av dx = Incremental volume (L3)
x
If we assume that the flow in the stream is steady, i.e. 3Q/3t = 0, then
the term 3V/3t = 0 and equation II-2a becomes
3M _ .1 3C
3t " V3t
Combining equations II-l and II-2b and rearranging,
3C . xL dc
Jt ~ A3x Bx dT ?
The terms on the right-hand side of the equation represent,
respectively, dispersion, advection, constituent changes, external sources/
j/%
sinks, and dilution. The -rr term refers only to constituent changes such
3C
as growth and decay, and should not be confused with the term , the local
concentration gradient. The latter term includes the effect of constituent
changes as well as dispersion, advection, sources/sinks, and dilutions.
.Under steady-state conditions, the local derivative becomes
equal to zero; in other words:
II-4
Changes that occur to individual constituents or particles independent of
advection, dispersion and waste inputs are defined by the term:
= individual constituents changes II-5
These changes include the physical, chemical, and biological reactions
and interactions that occur in the stream. Examples of these changes are
reaeration, algal respiration and photosynthesis, and col i form die-off.
-------
HYDRAULIC CHARACTERISTICS
QUAL-II assumes that the stream hydraulic regime is steady-state;
i.e. 3Q/3t = 0, therefore, the hydro!ogic balance for a computational
element can be written simply as (see Figure II-l):
• (Qx)i • JI'6
where (Qxh is the sum of the external inflows and/or withdrawal to that
element.
Once equation II-6 has been solved for Q, the other hydraulic
characteristics of the stream segments can be determined by equations of
the form:
u » aQb II-7
Ax - Q/u I1-8
and
d » aQ8 I1-9
where a, b, a and 3 are constants, and d is the stream depth. These
constants usually can be determined from stage-discharge rating curves.
Alternatively, if the cross-sectional properties of the stream
segment are available as a function of the depth d, u can be obtained as
a function of discharge by the trial and error solution of Mannings equation:
q . LMAxRx2/3se1/2 n-io
where
A * cross-sectional area of the channel or canal
in square feet,,
R * mean effective hydraulic radius (area divided by
wetted perimeter) feet,
n * Manning roughness factor (usual range 0.010 to 0.10)
Se s slope of the energy grade line, unit!ess,
Q » discharge in cubic feet per second.
The value for u 1s then determined from equation II-8.
14
-------
LONGITUDINAL DISPERSION
Dispersion is basically a convective transport mechanism. The
term "dispersion" is generally used for transport associated with spatially-
averaged velocity variation, as opposed to "diffusion" which is reserved
for transport that is associated primarily with time-averaged velocity
fluctuations.
Taylor (1954) was able to derive a predictive equation for the
longitudinal dispersion coefficient, DL, in long straight pipes, as
DL = 10 r0 u*, ftVsec. 11-11
where rQ is the pipe radius and u* is the average shear velocity defined as
u* = / TO/P, ft/sec. 11-12
where
TO s boundary shear stress, lb/ft2, and
p = mass fluid density, Ib-sec2/ff*
Some investigators have attempted to apply Taylor's expression to streamflow.
However, such applications can be highly approximate, because of the
difference between the geometry or velocity distributions in streamflow
and those in a pipe.
Elder (1959) assumed that only the vertical velocity gradient
was important in streamflow and developed an expression analogous to
Taylor's expression but with a coefficient equal to 5.93:
DL = 5.93 du* 11-13
where d is the mean depth in feet of the stream.
Other investigators have derived similar expressions for DL and
found it to be extremely sensitive to lateral velocity orofiles. Elder's
-------
expression, however, seems adequate in one-dimensional situations where
the channel is not too wide. For very wide channels, Fisher (1964) has
shown that half-width rather than depth is the dominant scale and therefore
is important to the definition of the longitudinal dispersion coefficient.
Equations 11-11 and 11-13 can be written in terms of the Manning Equation
and other variables characteristic of stream channels.
»
As an example, for steady-state open-channel flow:
u* - C /~R5" n-14
where
C = Chezy's coefficient
R • the hydraulic radius
Se = the slope of the energy grade line
Chezy's coefficient is given by:
Rl/6
C * ~- 11-15
where n is the Manning roughness coefficient tabulated for different
types of channels in Table II-'l.
Se, the slope of the energy gradient, is given by
S6 » ( ^TTT)2 "-16
1.486
where u is the mean velocity. Substituting equations 11-14, 11-15 and
11-16 Into equation 11-13 and 'letting R'» d for a wide channel yields
the expression
DL - 22.6 n u d°-833 11-17
15
-------
TABLE II-1
VALUES OF MANNING'S "n" ROUGHNESS COEFFICIENT
After Henderson (1966)
Artificial Channels n
Glass, plastic, machined metal 0.010
Dressed timber, joints flush 0.011
Sawn timber, joints uneven 0.014
Cement plaster 0.011
Concrete, steel troweled 0.012
Concrete, timber forms, unfinished 0.014
Untreated gunite 0.015-0.017
Brickwork or dressed masonry 0.014
Rubble set in cement 0.017
Earth, smooth, no weeds 0.020
Earth, some stones, and weeds 0.025
Natural River Channels n
Clean and straight 0.025-0.030
Winding with pools and shoals 0.033-0.040
Very weedy, winding and overgrown 0.075-0.150
Clean straight alluvial channels 0.031 d1/6
(d = D-75 size in ft.
= diameter that
75 percent of
particles are
smaller than
-------
where
DL = longitudinal dispersion coefficient, ftVsec.
n » Manning's roughness coefficient
u = mean velocity, ft/sec.
d » mean depth, ft.
Typical values for dispersion coefficients are given in Table II-2.
TABLE II-2
TYPICAL VALUES OF DISPERSION COEFFICIENTS
After Gloyna (1967)
System Classification
, ftVsec.
Flumes and small streams
Large rivers
Estuaries
3 x 10-2
3 x
6 x 103
18
-------
III. CONSTITUENT REACTIONS AND INTERRELATIONSHIPS
GENERAL CONSIDERATIONS
One of the most important considerations in determining the waste-
assimilative capacity of a stream is its ability to maintain an adequate
dissolved oxygen concentration. Dissolved oxygen concentrations in streams
are controlled by atmospheric reaeration, photosynthesis, plant and animal
respiration, benthal demand, biochemical oxygen demand, nitrification,
salinity, and temperature, among other factors.
The most accurate oxygen balance would consider all significant
factors. The QUAL-II includes the major interactions of the nutrient
cycles, algae production, benthic oxygen demand, carbonaceous oxygen
uptake, atmospheric aeration and their effect on the behavior of dissolved
oxygen. Figure III-l illustrates the conceptualization of these interactions,
It should be noted that the arrows on the figure indicate the direction of
normal system progression in a moderately polluted environment; the
directions may be reversed in some circumstances for some constituents.
For example, under conditions of oxygen supersaturation, which might occur
as a result of algal photosynthesis, oxygen might be driven from solution,
opposite to the indicated direction of the flow path.
Coliforms and the arbitrary nonconservative constituent are modeled
as nonconservative decaying constituents, and do not interact with other
constituents. The conservative constituents, of course, neither decay nor
interact in any way with other constituents.
The mathematical relationships that describe the individual
reactions and interactions are presented in the following paragraphs.
13
-------
ATMOSPHERIC
AERATION
CARBONACEOUS
BOD
CHLOROPHYLL A
ALGAE
FIGURE III-l
MAJOR CONSTITUENT INTERACTIONS
20
-------
Chlorophyll a (Phytoplanktonic Algae)
Chlorophyll a_ is considered to be directly proportional to the
concentration of phytoplanktonic algal biomass. For the purposes of this
model algal biomass is converted to chlorophyll a_ by the simple relationship:
Chi a_ = a0 A III-l
where
Chi a_ - chlorophyll ^concentration
A s algal biomass concentration
a » a conversion factor
The differential equation that governs the growth and production of
algae (chlorophyll a) is formulated according to the following relationship:
where
A = algal biomass concentration
t = time
u * the local specific growth rate of algae as defined
below, which is temperature dependent
p a the local respiration rate of algae, which is
temperature dependent
a, « the local settling rate for algae
d a average depth
Now, the local specific growth rate of algae is known to be coupled to
availability of required nutrients and light. The standard formulation
for the local specific growth rate takes the form:
N3 K, + L
•• - •• - -•» - * '
-------
where
ym=.v = the maximum specific growth rate
iMOA
Kg - the local concentration of nitrate nitrogen
P = the local concentration of orthophosphate
L * the local intensity of light
X * the light extinction coefficient (Ld = Le"Xd)
KN» Kp» KL s empirical half-saturation constants (temperature dependent)
It should be noted that equation III-3 couples algal production to the
available nutrient supply, and thus algae and chlorophyll a_ can be expected
to vary in time and space as nutrients are added. If either nitrogen or
phosphorus or both are not simulated, it is assumed that they will not
limit the growth of algae. It should also be noted that equation III-3
includes light intensity, as input to the model. Finally, the growth and
respiration constants are temperature dependent and are formulated, along
with all other temperature dependent system variables, according to the
procedure explained in a later paragraph of this section.
Nitrogen Cycle
The nitrogen cycle in QUAL-II contains three components as shown
in Figure III-l. The differential equations governing transformation of
nitrogen from one form to another are given below.
Ammonia Nitrogen
dN,
3!1 » o1 pA - B1 NT + a3/Ax III-4
where
N-1 * the concentration of ammonia nitrogen as nitrogen
Si = rate constant for the biological oxidation of ammonia
nitrogen, temperature dependent
a, * the fraction of respired algal biomass which is
! resolubilized as ammonia nitrogen by bacterial action
-------
o"3 = the benthos source rate for ammonia nitrogen
AX « average cross-sectional area
and other terms are as previously defined.
Nitrite Nitrogen
dN2
TIT" " — B l i»i — Do i»o * * * J
Qu I I fc £
where
No = the concentration of nitrite nitrogen as nitrogen
82 = rate constant for the oxidation of nitrite nitrogen,
temperature dependent
and other terms are as previously defined.
Nitrate Nitrogen
dN3 III-6
- * 6, N, - ou uA IU 6
£. L. \
Note the coupling that exists between the conversion of nitrate
.and the production of algae to close the loop indicated in Figure III-l.
Phosphorus Cycle
The formulation of the phosphorus cycle is less complex than
the nitrogen cycle because the model considers only the interaction of
phosphorus and algae plus a sink term. Correspondingly, the differential
equation describing the distribution can be written as:
pA - ctg vA + a2/Ax III-7
23
-------
where
P * the concentration of orthophosphate as phosphorus
02 = the fraction of algal biomass that is phosphorus
0^2 a the benthos source rate for phosphorus
and all other terms are as previously defined.
Carbonaceous BOO
The rate of change of carbonaceous BOD is formulated as a first
order reaction according to the formula:
& • - K, L - K3 L III-8
where
L * the concentration of carbonaceous BOD
K-j * the rate of decay of carbonaceous BOD
(temperature'dependent)
K3 s the rate of loss of carbonaceous BOD due
to settling
Note that while the change in BOD is expressed by equation III-8,
the oxygen demand exerted as a result of the change is only KiL. The BOD
which settles becomes a benthic oxygen demand.
Dissolved Oxygen
The differential equation that describes the rate of change of
oxygen in the model is written in the form:
$ 3 K2«>* - 0) + (<*3U - a4P) A - Kj L - K4/AX - a& ^ N, - ag 32 N2 III-9
where
0 « the concentration of dissolved oxygen
0* » the saturation concentration of dissolved oxygen
at the local temperature and pressure
-------
cu s the rate of oxygen production per unit of
algae (photosynthesis)
a^ = the rate of oxygen uptake per unit of algae respired
etc = the rate of oxygen uptake per unit of ammonia oxidation
etc x the rate of oxygen uptake per unit of nitrite
nitrogen oxidation
l<2 a the aeration rate in accordance with the Fickian
diffusion analogy
K4 - constant benthic uptake rate
The saturation concentration of dissolved oxygen is computed
at standard pressure (29.92 in. of Hg) by the equation:
0* = 24.89 - 0.426 T + 0.00373 T2 - 0.0000133 T3 111-10
where
T = temperature of water in °F.
According to the American Public Health Association, Inc. (1965),
0* can be corrected for a given barometric pressure other than standard
pressure by the equation:
°* • °*Kf-es '»•"
where
P = barometric pressure, in. of Hg
at
e. = saturated water vapor pressure at the temperature
of the water surface, in. of Hg
and for elevation less than 3,000 feet by
°* • °* 202- m-12
For water temperatures above 60°F, the American Public Health Association,
Inc. (1965) indicates that the solubility of oxygen in water decreases by
approximately 0.008 mg/1 per 100 mg/1 of chloride present. QUAL-II does
not correct 0* for either pressure or chlorides.
-------
Numerous equations have been developed to compute reaeration
coefficients (<«) based on stream geometry and characteristics. Those
which have been selected as options are discussed below.
Churchill^ Elrnore, and Buckingham (1962)
This investigation was based on probably the most extensive
and accurate measurements of stream reaeration available and produced
the following expression for K^ at 20°C (68°F):
K220 - 5.026 u.d-.x 2.31 111-13
where
IT = average velocity in the stream, ft/sec.
d = average depth of the stream, ft
a reaeration coefficient, I/day
O'Connor and Dobbins (19 S3)
These investigators proposed equations based on the turbulent
characteristics of a stream as follows:
For streams displaying low velocities and
Isotropic conditions
20 .. C°X'5
For streams displaying high velocities and
nonlsotropic conditions
20 . o IH.15
25
-------
where
S a slope of the streambed
d = mean stream depth, ft.
if a mean velocity, ft/ day
* reaeration coefficient, I/day
and where Dm is the molecular diffusion coefficient (ftVday) which can
be computed by
Dm = 1.91 x 103 (1.037)1"-20 ni-16
Isotropic conditions are satisfied when Chezy's coefficient is greater
than 17, and nonisotropic for values less than 17. 0' Conner and Dobbins
(1958) have shown that equation 111-14 is generally applicable for most
cases, and is the equation used in the program for this option.
Owens, Edwards, and Gibbs (1964)
For streams with a velocity variation range from 0.1 to 5.0
ft/sec, and depths from 0.4 to 11.0 ft:
K*° * 9.4 u°'67/ d1'85 x 2.31 111-17
where
U * mean velocity, ft/sec.
d » mean depth, ft.
* re aeration coefficient, I/ day
Thaakston and Krenkel (196S)
This Investigation included several rivers in the Tennessee
Valley Authority system and resulted in the following equation for 1C,
at 20°C:
* 10.8 (1 + F°'5) . J x 2.31 111-18
27
-------
where F is the Froude number which can be computed by
F = -Hi- Hi-19
/?"?
and u* is the shear vel ocity,' ft/sec. , which can be computed by
u* * STsTg » .SJLjfiL in-20
e 1.49 d1*167
where
d = mean depth, ft.
g = acceleration of gravity, ft/sec2
S = slope of the energy gradient
— a mean velocity (ft/sec)
n s Manning's coefficient
Langbien and Dwnm (1967) •
K^0 = 3.3 u/d1'33 x 2.31 IH-21
where
TT * mean velocity, ft/sec.
d = mean depth, ft.
* reaeration coefficient, I/day
Taivoglou and Wallace (1972)
This approach postulates that the reaeration coefficient for
a reach is proportional to the change in elevation of the water surface
in the reach and inversely proportional to the flow time through the reach.
4° - K 0
where
K = constant of proportionality, ft"1
Ah = change in water surface elevation in reach, ft.
t a flow time within reach, hours
-------
Assuming uniform flow,
Ah = Se Ax II1-2.
where
Se = slope of the energy gradient, ft/ft
Ax » reach length, ft.
The time of passage through a reach is:
tf = ~ 111-24
u
where
u" = mean velocity in reach, ft/sec.
Thus, equation II1-22 can be rewritten as
K?,0 = 3600 K Se IT 111-25
where the constant 3600 converts velocity to units of ft/hr.
The energy gradient may be input directly as noted in the User's
Manual. If it is not specified, Se is estimated from the Manning equation:
H2 n2
e - u n 111-26
6 (1.49)2 d4/3
where
d » mean depth, ft.
n • Manning's coefficient
The constant K should be treated as a variable and determined
empirically. A value of 0.0524—English units—for K was derived from
data collection in five rivers in the Southeastern United States.
29
-------
Col 1 forms
The differential equation that describes the die-off of col i forms
in the stream is:
where
E = the concentration of col i forms
Kg = coliform die-off rate
Arbitrary Nonconservative Constituent
The differential equation that describes the decay of the
arbitrary nonconservative constituent is:
dR . i/ p
it " ~K6 R
where
R = the concentration of the nonconservative constituent
Kfi = decay rate for the constituent
SUMMARY OF MATHEMATICAL RELATIONSHIPS
Table III-1 summarizes the complete set of equations solved by
QUAL-II with the exception of the temperature relationships. The equations
that describe the temperature routing as well as the associated relationships
for all the heat budget terms are described in the next chapter. The
equations presented in Table III-l include the effects of dispersion,
advection, constituent reactions and interactions, and a source term.
Section V of this documentation describes how QUAL-II is structured to
solve these equations.
30
-------
SUMMARY OF DIFFERENTIAL EQUATIONS TO BE SOLVED BY QUAL-II
(except temperature)
£) 3(Avuc)
u>
i,uii3ci vai i vc mineral \t/
Algae (A)
Ammonia nitrogen (N,)
Nitrite nitrogen (N2)
Nitrate nitrogen (N,)
Dissolved Orthophosphate (P)
Biochemical oxygen demand (L)
Dissolved oxygen ()
Coliform (F)
at
3A
at
3N
at
3N
at" *
3P .
at
ot
M ,
at
3F .
at
3R .
Ax3x AxSx Axdx
a(AxD, §J) 3(A uA) S. a
LA . 4- ,.,. 4- / 1 1 - n _ , , M A
A a* A aw i /iv in • P • J «
AX3X AX3X AxdX
DN
3(AvDi aT1) S(A uN ) SN
X L oX **A j./ A DMi\
Ax3x " Ax3x * Aydx * lot»pA ' BiNi 4 Ax'
3Ni
Ax3x AX3X ' Axdx f (CiN. CaN,)
3N> s
Ax3x Ax3x f Axdx f ^0* » a>p '
3(A D. |J) 3(AuP) Sp a,
X L dX 1- «.f!,. + fn In n\& -L ^}
A3x A 3x * A,dx u*lp U)A A*
X A A *
*(A.D, 1^-) 3(AvuL) -.
+ - (K + K )L
a(AxoL |f) a(Axu*) s^
3(A D. ^) 3(A uF) SF
A L UA A -IT . -- . K F
Aw3x A.3x A dx s
X A A
a(AvDi |r-) 3(A uR) »B
X L dX * « '* i/ o
(a,p - a,,P)A - K,L - ^ - a^.N, - a.U.Nj
at
AX3X
-------
REACTION RATES AND PHYSICAL CONSTANTS
The chemical and biological reactions that are simulated by
QUAL-II are represented by a complex set of equations that contain many
system parameters: some are constants, some are spatially variable, and
some are temperature dependent. Table II1-2 lists these system parameters
and gives the usual range of values, units, types of variation, and
reliability of the range for each parameter. Kramer (1970) and Chen and
Orlob (1972) give detailed discussions of the basic sources of data, ranges
and reliabilities of each of these parameters. Final selection of the
values for many of these system parameters should be made during model
calibration and verification.
TEMPERATURE DEPENDENCE
All rate constants and other factors (except the saturation
concentration of oxygen) that are known to be temperature dependent are
formulated according to the relationship:
XT = X2.0 9- 111-28
where
XT = the value of the variable at the local temperature, T(°C)
X20 = the value of the variable at 20°C
9 * an empirical constant for each temperature dependent
system variable
= 1.0159 for K2
a 1.047 for all others
32
-------
TABLE II1-2
INPUT PARAMETERS FOR QUAL-II
run ir
•
i
i
i
•
i
i
MX
1
'
1
!
'
1
FAKAMKTKH
HANK
IH JUAL
ALPHA0
ALPHA1
ALPHA2
ALPHA3
ALPHA4
ALPHAS
ALPHA6
GR0HAX
RESPRT
CKNH3
CKN02
ALGSET
SPH0S
SNH3
CK1
CX2
CK3
CX4
CKS
CK6
CRN
CKP
CXi.
IHtSMliriUI
Ratio of chlorophyll a.
to alnae blomass ~
Fraction of alnae
biomass which Is N
Fraction of alqae
biomass which is P
0, production per unit
of algae growth
02 uptake per unit of
algae respired
(la uptake per unit of
NH] oxidation
Oz uptake per unit of
NOj oxidation
Maximum specific growth
rate of algae
Algae respiration rate
Rate constant for biological
oxidation of NH,-^02
Rate constant for bloloqical
oxidation of NOj-flO,
Local settling rate for
algae
Benthos source rate for
phosphorus
Benthos source rate for NH
Carbonaceous BOO decay rate
Reaeratlon rate
Carbonaceous BOO sink rate
Benthos source rate for BOO
Collform die-off rate
Arbitrary nonconservatlve
decay rate
Nitrogen half-saturation
constant for alqae growth
Phosphorus half-saturation
constant for algae growth
Lijht half-saturation
win:;
U9 Chi -A
«H» A
mo*
mg A
moP
mg A
mn 0
mo, A
mgO
mq A
mo 0
iglT
mo 0
mg~¥
1
3Sy
1
day
1
dly
ft
day
day-ft
TO N
day- ft
1
1
Bay
1
o"«y-ft
diy
1
3a7
I1
i
Langleys
HAHC.K Of'
VAIMK:;
50-100
0.08-0.09
0.012-0.015
1.4-1.8
1.6-2.3
3.0-4.0
1.0-1.14
1.0-3.0
O.OS-O.S
0.1-0.5
0.5-2.0
0.5-6.0
*
*
0.1-2.0
0.0-100
-0.36-0.36
*
0.5-4.0
*
0.2-0.4
0.03-0.05
.03
VAIUAULK
or HKACU
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yts
Yes
Yes
Yes
No
No
No
TKUPKKATIJHK
UKPKHUKttr
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
Yes
Yts
No
NO
Yes
Yes
No
No
No
HKLlAeltm
Fair
Good
Good
Good
Fair
Good
Good
Good
Fair
Fair
Fair
Fair
Poor
Poor
Poor
Good
Poor
Poor
Fair
*
Fair to Good
Fair to Good
•lood
cor. s t ant for alia* growth
. gn i y
33
-------
IV. FUNCTIONAL REPRESENTATION OF TEMPERATURE
THE BASIC TEMPERATURE EQUATION
The basic mass transport equation for QUAL-II was given in
Section II as (see equation II-3):
0 C)
"at AX 3x AX Sx
In temperature modeling, C is taken as the concentration of heat (HL"3)
which can be equated to temperature through the relationship:
C = p c (T - T0) ' IV-2
where
p = the density of water (M L~3)
c = the heat capacity of water (HM-"1 D'1)
T = the water temperature
T0 = an arbitrary base temperature
D = degrees
The parameters p and c can be considered constant for practical purposes.
jp
Also, internal heat generation, ^ , which results from viscous dissipation
of energy and boundary friction, is generally so small as to be negligible.
Thus setting ^ = 0 in equation IV-1 and substituting equation IV-2 for C
gives us (after some simplification):
3T , 3(AxOl f > 3(Ax 5 T) T ,
3t Ax 3x Ax 3x pc V
The source term s/V, which has units of HL"3T, accounts for all
heat transferred across the system boundaries, i.e. heat transferred across
the air-water interface and heat conducted across mud-water interface.
34
-------
Heat transfer across the mud-water interface is generally insignificant;
hence, s/V takes on the identify of the net rate of heat input, per unit
volume of stream, through the air-water interface.
It is most convenient to represent the interfacial heat transfer
rate as a flux Hfj having units of (HL'^T "^). For a stream element of
length dx and mean surface width W, fyj is related to s/V as fo'llows.
The total rate of heat input across the air-water interface is
HN dx W. This heat is distributed uniformly throughout the underlying
volume of A dx, where Ax is the mean cross-sectional area of the element,
«
thus the rate of heat gain per unit volume of water, s/V, is computed as:
HN (Wdx) HN
•L s 5 - _£! - Jl TV_A
V Ax dx Ax dx d 1V *
where d = AX/W is the hydraulic depth of the stream. Substituting
equation IV-4 into equation IV-3 gives the generalized form of the
temperature equation as:
OT* ••
*) i A Oi ™L^i /) (A ij T 1 H
1>t = AX 3x AX 3x + pcd"
DEFINITION OF HN
Heat is transferred across the air-water interface of a surface
water body by three difference processes: radiation exchange, evaporation,
and conduction. The individual heat terms associated with these processes
are shown in Figure IV-1 and are defined in Table IV-1 along with the
typical ranges of their magnitudes in northern latitudes.
The expression that results from the summation of these various
energy fluxes Is:
35
-------
Hs Ha Hb
t 5
t "i
AIR-WATER
'INTERFACE
Hsn Han
FIGURE IV-1
HEAT TRANSFER TERMS ASSOCIATED WITH
INTERFACIAL HEAT TRANSFER
36
-------
TABLE IV-1
DEFINITION OF HEAT TRANSFER TERMS
ILLUSTRATED IN FIGURE 1
Heat Term Units Magnitude
(BTU ft'2 day'1)
H. - total incoming solar or m -2T-1
s short-wave radiation ML T
-2 1
Hsr = re^ected short-wave radiation HL T 40-200
Ha = total incoming atmospheric m -2T-1
a radiation ML '
-2 -1
Ha». " reflected atmospheric radiation HL T 70-120
ar
H, » back radiation from the water HL'^T"1 2400-3600
He * heat loss by evaporation HL'V1 150-3000
H, s heat loss by conduction to M, -2T-1 -«n . ,,.nn
C atmosphere ML ' "J^U W 4UU
37
-------
HN = Hsn + Han ' IV
where
HN = net energy flux passing the air-water interface,
Btu/ft2-day
Hsn = net short-wave solar radiation flux passing
through the interface after losses due to
absorption and scattering in the atmosphere
and by reflection at the interface, Btu/ft2-day
H = net long-wave atmospheric radiation flux passing
through the interface after reflection, Btu/ft2-day
Hjj = outgoing long-wave back radiation flux, Btu/ft2-day
HC = convective energy flux passing back and forth
between the interface and the atmosphere, Btu/ft2-day
HQ = energy loss by evaporation, Btu/ft2-day
These mechanisms by which heat is exchanged between the water surface and
the atmosphere are fairly well understood and are adequately documented in
the literature by Edinger and Geyer (1965). The functional representation
of these terms has been defined by Water Resources Engineers, Inc. (1967).
The formulations reported here were extracted from that more detailed work
by Frank D. Masch and Associates and the Texas Water Development Board (1971)
NET SHORT-WAVE SOLAR RADIATION
The net incoming solar radiation is short-wave radiation which
passes directly from the sun to the earth's surface. Its magnitude depends
on: the altitude of the sun, which varies daily as well as seasonally for
a fixed location on the earth; the dampening effect of scattering and
absorption in the atmosphere due to cloud cover; and the reflection from
the water surface.
The net amount of solar radiation which reaches the surface of
the earth may be represented functionally on an hourly basis as:
38
-------
IV-7
(1) (11) (111) (Tv)
where
H s net short-wave solar radiation flux, Btu/ft2-hour
H » amount of radiation flux reaching the earth's
.atmosphere, Btu/ft2-hour
atmospheric transmission term
Albedo or reflection coefficient
cloudiness as a fraction of sky covered
It is appropriate for purposes of the discussion here to identify
and treat separately the four components in equation IV-7 as (i) extra-
terrestrial solar radiation, (ii) radiation scattering and absorption,
(iii) reflectivity, and (iv) cloudiness.
Extraterrestrial Radiation
The short-wave solar radiation flux that strikes the earth's
outer atmosphere over a given period of time is given by Water Resources
Engineers, Inc. (1967) as:
u
Ho a ;r
* r-cos T&Tcos 5 Cs1n ^ •sin (TZ^)]} r
where
Hc- 3 solar constant = 438.0 Btu/ft2-hour
5C
r » normalized radius of the earth's orbit
» latitude of the site, degrees
6 = declination of the sun, degrees
tjj.t a hour angles corresponding to the beginning and end,
respectively, of any time interval between sunrise
and sunset
F ai correction factor for diurnal exposure to
radiation flux.
39
-------
Several parameters in equation IV-8 requiring further definition
are described by Water Resources Engineers, Inc. (1967).
Relative Earth-Sun Distance
r = 1.0 + 0.17 cos [Ijjg. (186-Dy)] IV-9
where Dy is the number of the day of the year (beginning January 1).
Declination
6 = Ttr"77 cos [ (173-Dy):i IV-10
Bon? Angles
and
tb - STb - Ats + ET - 12
t. = STa - At. + ET - 12 IV-12
C S 5
where STjj, STe are the standard times at the beginning and end of the
time interval selected.
ET » an expression for time from a solar ephemeris
which represents the difference in hours between
"true solar time" and that computed on the basis
of a year average. It is given for each day of
the year, Dy, by
ET = 0.000121 - 0.12319 sin - (Dy-1) - 0.0714]
- 0.16549 sin [ (Dy-1) + 0.3088] IV-13
Ats - difference between standard and local civil time
in hours as determined from
Ats
-------
where
e s -1 for west longitude
e = +1 for east longitude
l-sm = longitude of standard meridian, degrees
Mm = longitude of local meridian, degrees
Diurnal Exposure
T = 1 when STr < STb or STe <; STS IV-15
T = 0 when STS < STb or STe < STr IV-16
where STr and STs are the standard times of sunrise and sunset, respectively,
as determined from:
STr = 12 - ^ arc cos [tan (j|jj) tan 5] + Ats IV-17
and
STS = 24 - STr + 2Ats IV-18
Radiation Scattering and Absorption
The atmospheric transmission term, a^, is given by Water Resources
Engineers, Inc. (1967) as:
a * a" + Q.5 (1 - a' - d) IV ,g
t 1 -0.5 Rs(l - a1 + dj
in which a" is the mean atmospheric transmission coefficient after
scattering and absorption given by:
a" = exp {- [0.465 + 0.0408 PWCJ
[0.179 + 0.421 exp (-0.721 9am}] 9an)> IV-20
where 6am is the optical air mass given by the expression:
-------
e = exp (-Z/2532)
am sin a + 0.15 (±|2SL + 3.885}'1'253
in which
Z = elevation of the site in feet
a = sun's altitude in radians given by
a = arc sin [sin sin 5 + cos
cos 6 cos ] IV-22
in which t is the hour angle, described by an equation similar to
equations IV-11 and IV-12.
Pwc in equation IV-20 is the mean daily precipi table water content
in the atmosphere, given by the expression
Pwc = 0.00614 exp (0.0489Td) IV-23
where T
-------
Cloudiness
The dampening effect on the solar radiation flux is given by
Water Resources Engineers, Inc. (1967) as
Cs = 1.0 - 0.65 c£ IV-26
where CL is the decimal fraction of the sky covered. Water Resources
Engineers, Inc. (1967) reports that equation IV-26 gives satisfactory
results except for heavy overcast conditions, i.e. when C|_ approaches 1.0.
Reflectivity
The reflection coefficient, RSt can be approximately computed
as a function of the solar altitude, a, by Anderson's (1954) empirical
formula:
Rs * AaB IV-27
where a is in degrees, and A and B are functions of cloudiness, C[_. Values
for A and B given by Anderson (1954) are shown in Table IV-2.
TABLE IV-2
EMPIRICAL COEFFICIENTS FOR DETERMINING Rs
After Anderson (1954)
Cloudiness
0
Clear
0.1 - 0.5
Scattered
0.6 - 0.9
Broken
1.0
Overcast
Coefficients ABABABAB
1.18 -0.77 2.20 -0.97 0.95 -0.75 0.35 -0.45
-------
LONG-WAVE ATMOSPHERIC RADIATION
The long-wave radiation emitted by the atmosphere varies directly
with the moisture content of the atmosphere. Although it is primarily
dependent on air temperature arid humidity, it can also be affected by
ozone, carbon dioxide, and possibly other materials in the atmosphere.
Anderson (1954) indicated that the amount *of atmospheric radiation is also
significantly affected by cloud height. The amount of long-wave atmospheric
radiation that is reflected is approximately a constant fraction of the
incoming radiation. Anderson (1954) found this fraction to be approximately
0.03.
The net atmospheric radiation flux can be expressed as:
Han = [2.89 x TO'6] a (Ta + 460)6 (1.0 + 0.17C^) (1 - RJ IV-28
where
Han = net -T°n9-wave atmospheric radiation flux, Btu/ft2/hour
a = Stefan-Bo!tzman constant, 1.73 x 10~9 Btu/ft2/hour/
"Rankine4
T. = air temperature at a level 6 feet above the water
surface, °F
RL s reflectivity of the water surface for atmospheric
radiation =0.03
WATER SURFACE BACK RADIATION
The third source of radiation transfer through the air-water
interface is long-wave back radiation from the water surface, H^, which
represents a loss of heat from the water. It can be seen from Table IV-1
that back radiation accounts for a substantial portion of the heat loss
from a body of water. This loss is expressed by the Stefan-Boltzman
Fourth Power Radiation Law for a blackbody as:
-------
Hb = 0.97 a (Ts + 460)4 IV-29
where
Hjj = water surface back radiation flux, Btu/ft2/hour
Ts » water surface temperature, °F
Equation IV-29 can be linearized over a given temperature range
as:
Hb = a2 + 02 Ts IV-30
where
a2* ^2 = constants defined over the range
In the steady-state temperature solution, this linearized version of the
back radiation equation is used to allow the temperature dependent terms
to be separated out of the equation. Sets of cu, $? are specified for 21
5°F temperature intervals between 35°F and 135°F. For dynamic simulations
the heat flux term calculations are based on the temperature at the
beginning of the time step.
EVAPORATION
A water body also loses heat to the atmosphere by evaporation.
Each pound of water that leaves as water vapor carries its latent heat
of vaporization (approximately 1050 BTU at 60°F) plus its sensible heat.
Therefore, evaporation also represents a significant loss of heat.
This heat loss can be expressed as:
He = Y HLE + Hy IV-31
where
Y s specific weight of the water being evaporated, lb/ft3
HL a latent heat of vaporization, Btu/lb, given by
HL = 108* - 0.5 Ts
-------
E = evaporation rate, ft/hour
Hv = sensible heat loss Btu/ft2/hour
The evaporation rate, E, is most often expressed as
E = (a + bW) (es - ea)
where
and
where
IV-32
a,b
W
constants
wind speed, in mph, measured 6 feet above the
water surface
saturation vapor pressure of the air, in. of Hg,
at the temperature of the water surface, as given by
0.1001 exp (0.03 Ts) - 0.0837
water vapor pressure, in. of Hg, at a height of
6 feet above the water surface, given as
e - 0.000367 Pa (Ta - Twb)
IV-33
ewb
ewb
Pa
Twb
\..« 1571 /
saturation vapor pressure, in. of Hg, at the
wet bulb temperature from the expression
0.1001 exp (0.03 Twb) - 0.0837
local barometric pressure, in. of Hg
wet bulb temperature, °F
IV-34
IV-35
The literature contains a wide range of values for the evaporation constants
a and b. Roesner (1969) reports that a good average value of a would be
6.8 x 10~4 ft/hour-in. of Hg, while b would best be represented by 2.7 x
10"4 ft/hour-in. of Hg.-mph.
To linearize the variation of evaporation rate with surface
water temperature Ts, equation IV-34 is approximated over 5°F intervals as:
IV-36
-------
Sets of 0|t 8-j are specified for 21 5°F intervals between 35°F and 135°F.
The linearized evaporation expression is used in the steady-state
temperature solution.
The sensible evaporative heat loss can be expressed simply as:
Hy = c y E (Ts - T0) IY-37
where
c - heat capacity of water = 1 Btu/lb/°F
T = reference temperature, °F
Sensible heat loss is very small compared to the other heat loss components
in the energy budget and thus is not included in the QUAL-II temperature
computation.
CONDUCTION
Heat that is transferred between the water and the atmosphere
due to a temperature difference between the two phases is normally called
conduction. Using the fact that transfer by conduction is a function of
the same variables as evaporation, it is possible to arrive at a propor-
tionality between heat conduction and heat loss by evaporation. This
proportionality, known as Bowen's ratio, is expressed as:
-l 202 IV'38
So
where Cg is a coefficient * 0.01.
By using Bowen's ratio, the rate of heat loss to the atmosphere
by heat conduction, HC> can be defined as:
Pa
Hc = Y HL (a + bW) (0.01 gg^) {Ts - Tft) IY-39
For practical purposes, the ratio (P./29.92) can be taken as unity.
o.
-------
V. COMPUTATIONAL REPRESENTATION
PROTOTYPE REPRESENTATION
To expand upon the basic conceptual representation presented in
Section II, QUAL-II permits any branching, one-dimensional stream system
to be simulated. The first step involved in approximating the prototype
is to subdivide the stream system into reaches, which are stretches of
stream that have uniform hydraulic characteristics. Each reach is then
divided into computational elements of equal length so that all computational
elements in all reaches are the same length. Thus, all reaches must consist
of an integer number of computational elements.
In total, there are seven different types of computational
elements; these are:
1. Headwater element
2. Standard element
3. Element just upstream from a junction
4. Junction element
5. Last element in system
6. Input element
7. Withdrawal element
Headwater elements begin every tributary as well as the main river system,
and as such, they must always be the first element in a reach. A standard
element is one that does not qualify as one of the remaining six element types.
Since incremental inflow is permitted in all element types, the only input
permitted in a standard element is incremental inflow. A type 3 element is
used to designate an element on the mainstern-that is just upstream from a
junction element (type 4) which is an element that has a simulated tributary
entering it. Element type 5 identifies the last computational element in
48
-------
the river system; there should be only one element type 5. Element types
6 and 7 represent elements which have inputs (waste loads and unsimulated
tributaries) and water withdrawals, respectively.
River reaches, which are aggregates of computational elements,
are the basis of most data input. Hydraulic data, reaction rate
coefficients, initial conditions, and incremental runoff data are constant
for all computational elements within a reach.
MODEL LIMITATIONS
QUAL-II has been developed to be a relatively general program;
however, certain dimensional limitations have been imposed upon it during
program development. These limitations are as follows:
Reaches: a maximum of 75
Computational elements: no more than 20 per reach
or 500 in total
Headwater elements: a maximum of 15
Junction elements: a maximum of 15
Input and withdrawal elements: a maximum of 90 in total
QUAL-II can be used to simulate any combination of the following
parameters or groups of parameters:
1. Conservative minerals (up to three at a time)
2. Temperature
3. BOD
4. Chlorophyll a_
5. Dissolved orthophosphate as phosphorus
6. Ammonia, nitrite and nitrate as nitrogen
7. Dissolved oxygen
8. Coliforms
9. An arbitrary nonconser/ative constituent
-------
All parameters can be simulated under either steady-state or dynamic
conditions. If either phosphorus or the nitrogen cycle are not being
simulated, the model presumes they will not limit algal growth.
NUMERIC SOLUTION TECHNIQUE
At each time step and for each constituent, equation II-3 can
be written I times, once for each of the I computational elements in the
network. Since it is not possible to obtain analytical solutions to
these equations under most prototype situations, a finite difference
method is used, more specifically, the classical implicit backward
difference method (see Smith, 1966).
The general basis of a finite difference scheme is to find the
value of a variable (e.g., constituent concentration) as a function of
space at a time step n+1 when its spatial distribution at the n*-n time
step is known. Time step zero corresponds to the initial condition.
Backward difference or implicit schemes are characterized by the fact
that all spatial derivatives (3/3x) are approximated in difference form
at time step n+1.
Formulation^ of the Finite Difference Scheme
The finite difference scheme is formulated by considering the
constituent concentration, C, at four points in the mnemonic scheme as
shown in Figure V-l.
Three points are required at time n+1 to approximate the
spatial derivatives. The temporal derivative is approximated at
distance step i.
50
-------
M\JH ivu i i \i_/^i*i %; vi o i i \u/-im
element i + l
element
i
o
i
N
t -
At
FIGURE V-l
CLASSICAL IMPLICIT NODAL SCHEME
51
-------
Equation II-3 can be written in finite difference form in
two steps. First, the advection and diffusion terms are differentiated
once with respect to x giving:
3C, l , - L M (A 50, -(AuC),.,-
dC. s.
where
vi ' Ai
Secondly, expressing the spatial derivative of the diffusion terms in
finite difference and thence the time derivative of C in finite difference,
there results:
-n+1
V
At \ M. Axi
f.. rn
/ Ql ci
n+1 n ,-n+l
l
In equation V-2, the term dC/dt is expressed as:
where
r- = rate constant
p. = internal constituent sources and sinks (e.g. nutrient
loss from algal growth, benthos sources, etc.)
52
-------
HP
Note that the ^-r for every constituent modeled by QUAL-II can be expressed
in this form (see Table III-l and equation IV-5).
If equation V-2 is rearranged in terms of the coefficients of
Ci-l' Ci+1> and Ci-l' we obtain the
a, eft + b, Cf
+ e
• Z
V-3
where
q, T At n
b, * 1.0 + [(ADL), +
+Qj - r. At
zi s C1
n Si
i
At
The values of a-, b^, c^, and I* are all known at time n, while the C^
terms are the unknowns at time step n+1.
n+1
In the case of a junction element with a tributary upstream
element, the basic equation becomes:
where
k rn+1 + r
b1 C1 + c.
rn+1 = 7
j Cj - Z1
At
V-4
j = the element upstream of junction element i
C1^ s concentration of constituent in element j at time n+1
53
-------
It can be seen that the dj term is analogous to the a-j term.
Both terms account for mass inputs from upstream due to dispersion and
advection.
3C,
Under steady-state conditions, g~- = 0 in equation V-l . Working
through the finite difference approximations and rearranging terms as
before, the steady-state version of equation V-3 is derived:
v c
V-5
where
a.
"1
ci
zi
i 1-1 11
(ADt ) • i Q • T
r L 1-1 , l-l -I
"L y.^x. V •*
p(ADL). j (ADL)i_1 ^ Q
(ADL)1
- 5l+p
i
Note that equation V-5 is the same as equation V-3, with the
following changes:
° At equals 1.0
° the constant 1.0 in b-j = 0.0
« the initial concentration c" in Z^ » 0.0
Method of Solution
Equations V-3 and V-5 each represent a set of simultaneous
linear equations whose solution provides the values of c" for all i's.
Expressed in matrix form this set of equations appears as:
54
-------
bl cl
a2 b2 c2
a3 b3 C3
a. b1 GI
...
al bl
X
-n+1
Cl
rn+l
C2
cn+l
rn+l
ci
• '
cn+l
rn+l
CI
=
zi
h
h
z<
*
zi-i
z.
V-6
The left matrix is a tri-diagonal matrix. An efficient method that readily
lends itself to a computer solution of such a set of equations is as follows:
1) Divide through the first equation in V-6 by b] to obtain:
cn+1 + w c""1
L] + w1 L2
WT » c-t/b-, and GT = 2
V-7
where
2) Combine the expression for bj (see V-3) and the second equation in
V-6 to eliminate 33 and the result is:
n+l
where
b2 ' a2 Wl
-n-H
and
V-8
- a^
b-2-a2
55
-------
3) Combine equation V-8 and the third equation in V-6 to eliminate
aj and the result is:
Cij*1 + W3 dj+1 * G3 v-9
where „ 7 , r
c3 Z, - a- 6-
Wo s r - r-rr and G* - ^ — -±-,1
3 b - a W 3 b - a W
4) Proceed through the equations, eliminating a^ and storing the values
of W.j and G^ given by:
ci
Wi = bi " ai Wi-r 1 " 2, 3, . . . ,1 V-10
and
Gi = F1 a1 I/"1* 1 = 2, 3, ... ,1 V-ll
1 Di ' ai wi-l
5) The last equation is solved for Cj by
V-12
6) Solve for c , c2» • • • » c by back substitution.
81 - W. C^], 1-1-1, 1-2, ... ,1 V-13
Boundary Conditions
Upstream
In most situations of interest, transport is unidirectional
in nature, i.e., there is no significant transport upstream. Therefore,
the concentration at some point just upstream from the upper end of the
stream reach of interest can be used as the boundary condition. Hence,
Z-j in equation V-3 is taken as:
56
-------
zl • cl" + T * Pi
l
where c" is the boundary condition (headwater concentration).
Downstream
For the boundary condition at the downstream end of the system
it is possible to assume a fictitious boundary condition at a point only
slightly downstream from the lower end of the reach of interest. This
is possible because the magnitudes of D^ and u in virtually all situations
of interest are such that the downstream boundary condition has very little
effect on the water upstream. Then, one can let
n+l rn+l v_1
CI v l
where Cj+j is the concentration just downstream from the end of the system.
57
-------
LIST OF REFERENCES
American Public Health Association, Inc., Standard Methods for the
Examination of Water and Wastewater. American Public Health
Association, 1965.
Anderson, E.R., Energy Budget Studies in Water Loss Investigations-
Lake Hefner Studies, Technical Report, U.S. Geological
Survey Prof. Paper 269, 1954.
Chen, C.W. and G.T. Orlob, Fi nal Report, Eco 1 ogic Simulation of Aquatic
Environments. Water Resources Engineers, Inc., prepared for
the Office of Water Resources Research, U.S. Department of the
Interior, October 1972.
Churchill, M.A., H.L. Elmore and R.A. Buckingham, "The Prediction of
Stream Reaeration Rates," Jour. Sanitary Eng. Div., ASCE,
v. 7, 1962.
Duke, James H. Jr., Provision of a Steady-State Version of the Stream
Model. QUAL, Water Resources Engineers, Inc., prepared for
the Environmental Protection Agency, November 1973.
Eckenfelder, W.W. and D.J. O'Conner, Biological Waste Treatment, Pergamon
Press, 1961.
Edinger, J.E. and J.C. Geyer, Heat Exchange in the Environment, Johns
Hopkins Univ., 1965.
Elder, J.W., "The Dispersion of a Marked Fluid in Turbulent Shear Flow,"
Jour. Fluid Mech., v. 5, 1959.
Fisher, H.B., Diacusaian to "Time of Travel of Soluble Contaminants in
Streams," fey T,J, Buchanan, Proc. Sanitary Eng. Divv, ASCE,
y. 6, 1964.
58
-------
Frank D. Masch and Associates and the Texas Water Development Board,
Simulation of Water Quality in Streams and Canals, Theory and
Description of the QUAL-I Mathematical Modeling System, Report 128,
the Texas Water Development Board, May 1971.
Gloyna, E.F., Prediction of Oxygen Depletion and Recent Developments in
Stream Model Analyses, Stream Analysis and Thermal Pollution,
v. 2, prepared for Poland Proj. 26, World Health Organization,
Univ. Texas, Austin, 1967.
Henderson, P.M., Open Channel Flow, Macmillan Co., 1966.
Johnson, A.E. and J.H. Duke, Jr., Incorporation of the Tsivoglou K2 Equation
into QUAL-II, DOSAG3 and the Receiving Water Module of the Storm
Water Management Model, Water Resources Engineers, Inc.,
prepared for the Environmental Protection Agency, November 1973.
Kramer, R.H., A Search of the Literature for Data Pertaining to
Bioenergetics and Population Dynamics of Freshwater Fishes,
Desert Biome Aquatic Program, Utah State University, August 1970.
Langbien, W.B. and W.H. Durum, The Aeration Capacity of Streams, U.S. Geol.
Survey Circ. 542, 1967.
O'Conner, D.J., An Analysis of the Dissolved Oxygen Variation in a Flowing
Stream. Conf. Advances in Biological Waste Treatment, Univ.
Texas, Austin, 1966.
O'Conner, D.J. and W.E. Dobbins,"Mechanism of Reaeration in Natural
Streams," Trans. ASCE, v. 123, 1958.
Owens, M. R.W. Edwards and J.W. Gibfas, "Some Reaeration Studies in Streams,"
Internat. Jour. Air and Water Pollution, v. 3, 1964.
59
-------
Ralston, R. and H.S. Wilf, Mathematical Methods of Digital Computers, v. 1,
John Wiley and Sons, Inc., 1960.
Rawson, Jack, Reconnaissance of the Chemical Quality of Surface Waters
of the San Antonio River Basin, Texas, Texas Water Development
Board Report 93, 1969.
, Reconnaissance of the Oxygen Balance and the Variation of
Selected Nutrients in the San Antonio River During Low Flow,
U.S. Geol. Survey open-file report, 1970.
Roesner, L.A., Temperature Modeling in Streams, Lecture notes, water
quality workshop, T.V.A., 1969.
Roesner, L.A., J.R. Monser and O.E. Evenson, Computer Program Documentation
for the Stream Quality Model QUAL-II, An Intermediate Technical
Report, submitted to the Environmental Protection Agency,
Washington, D.C., Contract No. 68-01-0742, Iowa and Cedar
River Basins Model Project.
Smith, J.D., Solutions to Partial Differential Equations, Macmillan Co., 1966.
Stone, H.L. and P.O.T. Brian, "Numerical Solution of Convective Transport
Problems," Jour. Am. Inst. Chem. Eng., v. 9, no. 5, 1963.
Streeter, H.W. and E.B. Phelps, A Study of the Pollution and Natural
Purification of the Ohio River, U.S. Public Health Service
Bull. 146 (reprinted 1958), 1925.
Taylor, G.I., "The Dispersion of Matter in Turbulent Flow Through a Pipe,"
Proc. Royal Soc. London, 234A, 1954.
60
-------
Texas Water Development Board, Simulation of Water Quality in Streams
and Canals, Program Documentation and User's Manual, September 1970.
Thackston, E.L. and P.A. Krenkel, Longitudinal Mixing and Reaeration in
Natural Streams. Technical Report 7, Sanitary and Water Resources
Engineering, Vanderbilt Univ., 1966.
Thomas, H.A. Jr., Pollution Load Capacity of Streams, Water and Sewage
Works, 1948.
Tsivoglou, E.G. and J.R. Wallace, Characterization of Stream Reaeration
Capacity, Prepared for the Environmental Protection Agency,
Office of Research and Monitoring, Washington, D.C., 1972.
Tsivoglou, E.G. and L.A. Neal, "Tracer Measurement of Reaeration: III.
Predicting the Reaeration Capacity of Inland Streams,"
Jour. WPCF, v. 48, no. 12, December 1976.
Water Resources Engineers, Inc., Prediction of Thermal Energy Distribution
1n Streams and Reservoirs, Prepared for the California Dept.
of Fish and Game, 1967.
Water Resources Engineers, Inc., Technical Proposal, Upper Missisippi
River Basin Model Project, submitted to Environmental Protection
Agency, May 1972.
Water Resources Engineers, Inc. Progress Report on Contract No. 68-01-0713,
Upper Mississippi River Basin Model Project, Sponsored by the
Environmental Protection Agency, submitted to Environmental
Protection Agency, September 21, 1972.
Wunderlich, W.O., The Fully-Mixed Stream Temperature Regime, ASCE
Specialty Conf., Utah State Univ., Logan, Utah, 1969.
51
-------
VI. COMPUTER PROGRAM DESCRIPTION
MODEL STRUCTURE AND SUBROUTINES
QUAL-II is structured as one main program, QUAL2, supported
by 23 different subroutines. Figure VI-1 graphically illustrates the
functional relationships between the main program and its subroutines.
The original version of QUAL, as programmed by William A. White, was
structured to permit the addition of parameters easily through addition
of subroutines. This basic concept, which proved to be an extremely
valuable one, was maintained in the extension of the original version
to QUAL-II. Thus, if it becomes desirable at some later time to add
new parameters or modify existing parameter relationships, the changes
can be made with a minimum of model restructuring.
This section describes the main program QUAL2, and its 23
subroutines. Each program description contains: (1) a brief written
description of what the program does, including mathematical relationships;
(2) a program flow chart; and (3) a program listing. Section VII contains
definitions of all program variables in COMMON storage.
MAIN PROGRAM QUAL2
QUAL2 is the main program of QUAL-II; it calls most of the
subroutines, computes some miscellaneous constants, sets up the initial
conditions, performs the convergence checks when a steady-state problem
is being solved, and controls the printing of the output reports. The
only subroutines not called by the main program are HEATEX, HEATER, and
CHANL, which are called by Subroutines TEMPS, TEMPSS, and HYDRAU,
respectively.
52
-------
PROGRAM RETURN FOR FLOW AUGMENTATION OPTION |
^
ro r > c o
PROGRAM RETURN FOR DYNAMIC SOLUTION OR ITERATIVE STEADY STATE SOLUTION
r>
1 t
2 t
3 t
4 t
5
6 .
7 *
8 t
9
10 o
11
12 t
13
14 t
— L^1
15
16 I>
17
13 .s.
19
20 t
— u-
21 t
22 J
23 t
24 ^
25 t
26
27 ,.
28 ^
29 t
INOATA
HYDRAU
TRIMAT
CONSVT
— i— £> CHANL
^
TEMPS/TEMPSS
—t- — > HEATEX/HEATER
^
BOOS
ALGAES
P04S
NH3S
N02S
N03S
REAERC
DOS
COLIS
RADIOS
WRPT2
FLOAUG
WRPT3
N
ps
K
N
PS
r^
p^
PV
PK
1 *
program 2
,^^^^ ,,ps.
titment A ^ * el
S
0
V
M
A
T
9 rag ram
emenf 3
/ ^
callinq sgqmnce s called by ^/
in element A ~— " element A
FIGURE VI-1
GENERAL STRUCTURE OF QUAL-II
-------
After QUAL2 calls INDATA, which reads in the input data, and
computes some miscellaneous constants, it sets up the initial conditions
for each computational element. Initial conditions for each reach are
read in and used to define the initial conditions for all computational
elements within a reach. QUAL2 then calls the subroutines necessary to
simulate the water quality parameters specified on the title cards.
The input Title Data Cards (see User's Manual) prescribe which
water quality parameters QUAL-II will simulate. Whenever a Title Data
Card indicates a parameter is to be simulated, the program assigns a
positive integer to an internal variable (MODOPT) that indicates which
model options are to be used. The correspondence between internal model
options and parameters is as follows.
Model Option Parameter(s) to be Simulated
MODOPT (1) Conservative Constituents
MODOPT (2) Temperature
MODOPT (3) Biochemical Oxygen Demand
MODOPT (4) Chlorophyll £
MODOPT (5) Dissolved Orthophosphate as P
MODOPT (6) Ammonia, Nitrite and Nitrate (as N)
MODOPT (7) Dissolved Oxygen
MODOPT (8) Coliforms
Any combination of the above options will work. However, it should be
noted that if chlorophyll a_ is to be simulated when either phosphorus
or the nitrogen cycle or both are not to be simulated, the program
assumes they will not limit algae growth.
When temperature is to be simulated under steady-state conditions,
QUAL2 uses an iterative numerical scheme to converge on a solution. The
procedure is as follows:
64
-------
1. Using the known values of temperature in each
element (initial conditions or values from previous
iteration step 2), select the linear constants for
the appropriate 5°F temperature range to be substituted
into equations IV-30 and IV-36, then compute the heat
flux terms.
2. Compute a new steady-state temperature in each element.
3. For each element, check whether the newly computed
temperatures: 1) lie in the same 5°F linear range
as the old temperatures which were used to compute
the heat flux terms, and 2) lie between 35°F and 135°F.
4. If the above conditions are satisfied in all elements,
the problem is considered solved. If one or more
elements have not converged, repeat steps 1, 2, and 3
using the newly calculated temperatures to compute
the heat flux terms. If convergence is not achieved
after 10 iterations, terminate execution of the program.
When chlorophyll a. is to be simulated under steady-state
conditions, QUAL2 uses an iterative numerical scheme to converge on a
solution. Basically the procedure works as follows:
1. Calculate an algae growth rate based on the
initial conditions for the first iteration.
2. Compute the resulting phosphorus and nitrate
concentrations.
3. Recompute the growth rate based on the newly
computed phosphorus and nitrate levels.
4. Compare the previous and newly computed growth rates.
ot
-------
5. If all growth rates have not changed by at least
0.05 per day, the problem is considered solved. If
the growth rate change in any one computational
element exceeds 0.05 per day, steps 2 through 5 are
repeated.
Upon completion of the stream quality computations, QUAL2 selectively
reports the results and execution is terminated.
The flow chart for QUAL2 is illustrated in Figure VI-2 and
is followed by the program listing. All program variables contained
in COMMON are described in Section VII.
66
-------
UHTM.IZS
TITUS
CHJL.
tXMTA
EiTMUW
ttQUlHB
C5MTWTS
MCOUM tfTUM K* HOt
JUSWtMTJQH
SCT IIKTWI.
coNornon
CMXHYBMU
ttt± TXDMT
me m
NIMU
rax
OTMMIC sauna* OR
SOLUTION
«un saicrtD
qiMUTT MJWWTOS
V
FIGURE VI-2. FLOW CHART FOR MAIN PROGRAM QUAL2
67
-------
STEADY-STATE SOLUTION
REQUESTED
FIGURE VI-2 (Continued). FLOW CHART FOR MAIN PROGRAM QUAL2
53
-------
CALL NH3S
CALL SOVMAT
CALL N02S
CALL SOVMAT
CALL N03S
CALL SOVMAT
CALL REAERC
CALL DOS
CALL SOVMAT
STEADY-STATE SOLlfflON
REQUESTED
FIGURE VI-2 (Continued). FLOW CHART FOR MAIN PROGRAM QUAL2
5S
-------
IS
TIME
-------
IS
WOOPT(3) > 0
NO
YES
CALL HRPTZ(BOO)
IS
HOOOPT(6) > 0
NO
YES
CALL URPT2(C(H3)
CAR HRPT2(CH02
CALL HRPT2(CN03)
IS
MOOOPT(5) > 0
YES
CALL WRPT2(PHOS)
IS
WOOPT(4) > 0
NO
YES
CAU URPT2(ALGAE)
IS
MOOOPT(8) > 0
MO
YES
CALL WRPT2(OXi)
IS
WDOPT(l) > 0
YES
CALL
CAU
CALL
URPT2
WRPT2
HRPT2
CONS
CONS
CONS
1,1
1,2
1.3
)
)
FIGURE VI-2 (Continued). FLOW CHART FOR MAIN PROGRAM QUAL2
71
-------
own
Hwrosnrmcsis-
nsnwnat KATIOS
FIGURE VI-2 (Continued). FLOW CHART FOR MAIN PROGRAM QUAL2
72
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
19.
19.
20.
21.
22.
23.
24.
25.
26.
27.
23.
29.
30.
31.
32.
33.
34.
35.
35.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
5 A
39 .
59.
60.
6 t
' 4 •
62.
&•>
° J .
64.
65.
66.
67.
68.
69.
70.
^ t
' " «
72.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c.
c.
c.
c:
c
c
c
c *
c *
c.
c
PROGRAM QUAL-2
QUAL-2 IS A SET Of INTERRELATED STREAM
QUALITY ROUTING MODELS. IT HAS THE
CAPABILITY TO ROUTE TEMP. , SOD/DO,
NITROGEN SERIES, PHOSPHATE, ALAGE,
COLIFORMS, RADIO. NUCLIDE, AND
UP TO THREE CONSERVATIVE MINERALS
THROUGH A FULLY-MIXED STREAM SYSTEM.
THESE PARAMETERS CAN BE ROUTED ON AN
INDIVIDUAL BASIS OR SIMULTANEOUSLY IN
SUCH A COMBINATION AS THE USER MAY
DESIRE. QUAL-1 ALSO HAS THE CAPABILITY
TO COMPUTE THE FLOW AUGMENTATION REQEO.
TO MEET PRESELECTED MINIMUM DO LEVELS.
HYDRAULICS ARE CONSIDERED STEADY-STATE.
COMMON TITLE(20,20),RCHID(75,5),RMTHOR(75),RMTEOR(75),NHtfMAR(15),
TARGOO(75),IAUGOR(75,6),NCELRH(75),IFLAG(75,20),
ICLORD(75,20),CO£FQV(75),EXPOQV(75),COEFQH(75),EXPOQH(75),
CMANN(75),CKU75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
EXPQK2(75),TINIT(75),OOINIT(75),BOINIT(75),COINIT(75,3),
QI(75),Tl(75),OO.I(75),aODI(75),CO.NSK75,3),JUNCID(15,5),
J«NC(15,3),HWrRIO(15,5),Hi»FLOWC15),HwrEMP(15),H«00(l5),
HWBOD(15),HWCONS(15,3),MASTIO(90,5),TRFACT(90),WSFLOW(90),
WSTEMP(90),*SDO(90),WSBOD(90),KSCONS(90,.n,QATOT(15),
AC500),B(500),C(500),D(15),S(500),Z(500),N(500),G(500),
FLOW(500),DEPTH(500),YEL(500),DTO.VCL(500),K2(500).K1(500),
HSNET(500),OL(500),VHW(15),D£PHW(15),DLHtt(15),T(500),
D0( 500), 800(500), CONS (500, 3 ),PTI.M£,TPRINT,DELX,
NHWTRS,NR£ACH,NWASTE,NJUNC,D£LT,01LT,02LT,DTOOX2,DT20DX,
LAT,LSM,LLM,£L£V,DAT,A£,BE,DAYOFY,DRYaLB,M£TBLB,D£MPT,
ATMPR,UI°ND, CLOUD, SONET, NI,NJ,TRLCD,TOFDAY, NT, NC, TIME, NCS
COMMON/MOOIF/ CX4(75) ,CK5 (75) ,CKNH3(75) ,CKN02(75) ,CKN03(75) ,
CKN,CKP,CXL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
ALPHAS, ALPHA6,GROMAX,RESPRT,ALGS£T(75),SPHOS(75),
5NH3(75),KNH3(500),KN02(500),RESPRR(500),COLI(500),
ALGAE(500),PHOS(500),CNH3(500),CN02(500},CN03(500),
COLIR(75),ALGI(75),PHOSI(75),CNH3I(75),CN02I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(7S),
CN02IT(75),CN03IT(75),MSCOLI(90),WSALG(90),WSPHOS(90), .
MSNH3(90),MSN02(90),WSN03(90),HWCOLI(1S),HMALG(1S),
HNPHOSUS),HWNH3(15),HWN02(15),HrtN03(15),GROWTH(500),
NOOOPT(10),IRCHNO(750},EXCOEF(75)
COMMOM/SSTATE/ X(500),ISS
COMMON/SSTEMP/JT(500),SOLRC}i(75),CLDRCH(75}/PATRCH(75),TOBRCH(75},
*TMBRCH(75) ,MINRCH(75)
COMMON/RADION/ CK6 (75) , RADNIK75) ,RADNI (75) , H^RAON (15) , WSRAONOO) ,
* RADIO(SOO)
COMNON/OUTPUT/IRPT1
COMMON/AUG/IAUGIT
COMMON/METER/; METRIC, METOUT
+ + t + + tt +
> *«**<«* COMMENTED OUT PER TOM 3ARNWCLL
DIMENSION TJK500)
DIMENSION TITL19(l3),nTL20(15)
REAL Kl.<2,LAr,LLM,LjM,JUNCID
DATA TIT- 49 /*H ALS,AHAS G(^HaC^T,4HH PA.4HTES ,4HIN
-------
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
U2.
113.
114.
115.
116.
117.
118.
119.
1 5f>
i«U.
121
** 4 .
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
i "it
*•>« .
133.
U4.
135.
136.
137.
139.
139.
140.
C
C
C
C
C
C
C
C
C
C
c.
C
c
c
c
c
c
*P,4HER D,4,iA* A,4HRE ,4H ,4H
DATA IITL20 /4H PHO,
*T,4HI(XN ,4HRATI.,4HOS A,4HR£ ,4H
00 10 J«6,20
IsJ-5
TITL£(19,J)sTIIL19(I)
TITLEC20,J)aTITL20U)
10 CONTINUE
,4H ,4H ,4H ,4H /
4HTOS*,4HNTHE,4HSIS-,4HRESP,4HIRA
,4H ,4H ,4H ,4H /
STEP 1-0
INITIALIZE CERTAIN PARAMETERS
STEP 2-0
READ IN TITLES
STEP 3-0
READ IN ALL DATA REQUIRED FOR OP
OF THE MODELS.
STEP 4-0
IF THE CORRECT NO. OF DATA CARDS
DOT BEEN READ IN, THE PROGRAM MI
TERMINATE.
CALL. INDATACILIST,IRPI1,IAUGOP,TMAX,NCELL5)
C
C
c.
C:
C
C
c
c
c
c
c
c
c
c
c.
•
DELXsDELX*5280.0
If (ISS) 901,901,900
900 DILI = 1.0/24.0
02LT *: 1.0
CELT *•- 3600.0
IF CPTIME.LE.O.) PIIXEaTMAX
GO TO 902
901 DILI »; DELT/24.0.
D2LT*DELT
OELTaOELT*3600.0
TMAX»TMAX-O.Ol
902 CONTINUE
DTODX2*OELT/CDELX*DELX)
DT200X«2.0»OEL1/DELX
CKL3CKL*60.
* + t + t + t FEB> 1980 REVISIONS NO.
IFC»OOOPT(2).GT.O.O.AHO,ISS.LE.O)
IF (ISS.LE.O) GO TO 11.0
FUNCT=0.0
IF (SONET. LT.l.OE-4) GO. TO 51
NOLH»14
OLH'FIiOAT(NDtiH)
SOAVE=50NET/OLH
00 50 M>1,NOLH
FM*M
STEP 5-0
ESTABLISH REQUIRED CONSTANTS.
STEP 6-0
SET INITIAL CONDITIONS.
CONVERSION OF CXL TO LANGLEYS/HR
CONVERSION TO 8TU/SQ .FT./HR
THE FOLLOWING. COMPUTES THE
AVERAGE LIGHT INTENSITY FOR
STEADY-STATE. COMPUTATION
3
CXL»CXL»3.685
74
-------
141.
142.
143.
144.
145.
146.
147.
i A Q
i^o .
149.
150.
151.
152.
151
* * j •
154.
155.
156.
157.
158.
159.
160.
Ibl.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174,
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
C
C
C
C
C
C
TOTsSa»V£*U.O-CDSC6.28*FM/DLH)>
50 FUNCTsFUNCT+(IOT/(CXL»TOT))
51 CONTINUE
FUNCT»FUNCT/24.
SONNENsCKL*FUNCI/ C 1 . -FUNCT}
110 CONTINUE
lAUGIIsO
998 CALL HYDRAU
CALL IRIMAT
00 915 I=1,NREACH
NCELR*NCELRH(I)
00 915 Jsl.NCELR
IOR=ICLORD(I,J)
T(IOR>=TINIT(I)
* * + FOLLOWING STATEMENT DELETED TO
PER LETTER OF 23 SEPT 1980.
AVOID DOUBLE CONVERSIONS
IF(METRIC.GT.O)TUOR)»l.8*TUOR)+32.0
t * t
DO(IOR}=DOINII(I}
aOD(XOR)*8QINIT(I)
CONS(IOR,l)3caiNIT(I,n
COI»SCIOR,2}sCOINIT(l,2)
CONS(IOR,3)sCDINIT(l,3)
ALGAE(IOR)sALGIT(I}
PHOS(IOR)3PHOSIT(I)
CJJH3(IOR)=CNH3IT(I)
CN02(IQR)=CN02ITCI)
CN03(IOR)*CN03ITU)
COLI(IOR)=COLIIT(I)
RADlOdOR)sRAONIT(I)
IF(NOOOPT(4).EQ.O) GO TO 915
TC*0.556*(T(IOR)-63.0)
EXPTsEXP(-EXCOEF(I)*OEPTH(IOR))
TLOGsALOG((CKu+SONNEN)/(CKL+SONNEjJ*EXPT))
GRO»iIH{IOR)sGROMAX*TLOG/(EXCOEFCI)»D£PTHUOR»
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
^
u
C
V
(*
w
GROWTH CIOR)=GROWTHCIOR)*1.047**TC
915 CONTINUE
DO 922 NWS=i,NWAST£
EFL83D*1.0«TRFACT(NMS)
»iSBOD(NWS}>EFLaOO*WSaOD(NWS)
922 CONTINUE
NITERaO
ITEKsO
999 TIMESTIME+D2LT
TPRIMTaTPRlNTr02LT
STEP 7-0
BEGIN COMPUTATIONS AND OPERATE U
STEADY-STATE CONDITIONS ARE REAC
XHICH IS THE TIME (TMAX) REQUIRE
MATER PARTICLE AT THE UPPERMOST
IN THE SYSTEM TO REACH THE END: 0
THE SYSTEM.
STEP 7-1
CALL SUBROUTINES TO PERFORM HYOR
BALANCE ON SYSTEM AND ESTABLISH
COEFFICIENT MATRIX.
STEP 7-2
ROUTE SELECTED QUALITY PARAMETER
MODOPTd) CONSERVATIVE
MDDOPTC2) TEMPERATURE
MODOPTU) BOD
75
-------
C HODOPTC4) CHLOROPHYLL A
212. C HODOPK5) PHOSPHOROUS
213. C MODOPTC6) NH3,N02,N03
214. C MODOPTC7) OXYGEN
215. C MODOPTC8) COLIFORMS
216. C MODOPK9) NON-CONSERVATIVE
217. C
213. IF (MODOPT(l).SQ.O) CO TO 702
219. 701 NT«3
220. 00 777 NC=1,NCS
221. CALL CONSVT
222. CALL SOYMAT
223. NTsNm
224. 00 808 Isl.NCELLS
225. CONS(I,NC)»Z(I)
226. 808 CONTINUE
227. 777 CONTINUE
228. C
229. 702 If (MOBOPT(2).EQ.O) CO TO 703
230. NT»6
231. IF CISS.GT.O.) GO TO 7702
232. CALL TEMPS
233. CALL SOVMAT
234. 00 800 I=1,NCELLS
235. TU)sZ(I)
236. 800 CONTINUE
2J7. GO TO 703
238. C
239. 7702 IF (NITER.GT.O) GO TO 703
240. 7703 00 7706 1 = 1, NC&.LLS
241. TJl(I)= 9
279. CALL P04S
280. CALL SOYMAT
75
-------
281. DO 80S lal.NCELLS
282. PH05U) « Z(I)
293. aos CONTINUE:
284. C
285. 706 IP (MO£OPT(6).CQ.O) GO TO 707
286. NT a 10
287. CALL NH3S
288. CALL SOVMAT
289. 00 306 I«1,NCELLS
290. CNH3CI) s Z(I)
291. 806 CONTINUE
292. NT * 11
293. CALL N02S
294. CALL SOVMAT
295. 00 816 I=1,NCELLS
296. CN02U) * Z(I)
297. 816 CONTINUE
298. NT « 12
299. CALL N03S
300. CALL SOVMAT
301. DO 826 Ial,NCELLS
302. CN03U) > 2(1}
303. 826 CONTINUE
304. C
305. 707 IF (MODOPT(7).EQ.O) GO TO 708
306. NT = 13
307. CALL REAERC
308. CALL DOS
309. CALL SOVMAT
310. DO 803 Isl.NCELLS
311. DO(I)=Zm
312. 303 CONTINUE
313. 708 IF (MOSOPT(8).EQ.O) GO TO 799
314. NT » 14
315. CALL COLIS
316. CALL SOVMAT
317. DO 807 I=1,NC£LLS
318. COLIC I) * 2(1)
319. 307 CONTINUE
320. 799 CONTINUE
321. IF(MOOOPT(9).£Q.O) GO TO 7999
322. NT=15
323. CALL RADIOS
324. CALL SOVMAT
325. DO 809 Isl.NCELLS
326. RADIO(I)=Z(l)
327. 809 CONTINUE
328. 7999 CONTINUE
329. IF (TPRINT.LT.PTIME) Sa'TO 997
330. TPRINT'0.0
331. 997 CONTINUE
332. C
333. C STEP 7-3
334. C IF STEADY-STATE CONDITION HAS NO
335. C REACHED, CONTINUE ROUTING.
336. C
337. IF(ISS) 9996,9996,9990
338. 9990 IF (MO£OPT(4)) 1001,1001,9992
339. 9992 HUM a 0
340. HER > ITER t 1
341. WRITE (NJ,7779) ITER
342. 7779 FORMAT (12H ITERATION ,15)
343. DO 9994 JJsl,NREACH
344. NCELRsNCELRH(JJ)
345. 00 9994 KK*1,NCELR
3*6. I = ICLO*OUJ,XK)
TC»fl.S56*(T(I)-68.0)
£XP7*£X?OEXCOEF(JJ)*OEPTH(I))
77
-------
351. XGRO»sXGROW*1.047*«TC.
352. TT a DELX/(V£LCI>*86400.)
353. TGROW 3 XGROU
354. IF (MODOPT(S).EQ.O) GO TO 9820
355. DGOP * -1.0/(ALPHA2*ALGAE(I)*TT)
356. XA a OGDP
357. XB a GROWTH(I) + (CKP+PHO.S(I) )*DGDP-XGROH
358. XC a GROrtTH(I)«{CKP+PHCXSU))-XGROW*PHOS(I)
359. ROOT * 5QRT(X8*XB-4.0*XA*XC-)
360. OPHOSa-0.5*X8/XA * 0.5*ROOT/ABS(XA)
361. PHOS(I) a PHOSUJ+OPHOS
362. IF (PHOS(I).LI.O.O) PHOS(I) = 0.0
363. TGROH = XGROW*PHOSU)/(CKP+PHOSU) )
364. 9820 IF (MODOPT(6).EO.O) GO TO 9840
365. OGON a -1.0/CALPHA1«ALGAE(I)*TT)
366. XA a OGON
367. XB a GROHTHCI)-KCKN+CN0.3U) )'DCDN-XGROH
368. XC a GROWTH(I)*(CXN*C!l0.3m)-XCROW*CN03
370. DCM03a-0.5«X8/XA + 0.5*ROOT/AflS(XA)
371. CN03(I) a CN03CI] + OCN03
J72. IF (CN03U).LI.O.O) CN03CI) * 0.0
373. TGROrf a TGRO«i*CN03(I)/CCKN+CN03U) )
374. 9840 CONTINUE
375. OG a TGROW - GROMTH(I)
376. IF (ASS(OG).LT.0.05) GO. TO 8994
377. NUM a HUM + 1
378. 8994 GROtaTH(I) a GROWTHQ) + 0.7*OG
379. 9994 CONTINUE
380. WRITE (NJ,7780) NUM
381. 7780 FORMAT (30H GROWTH RATE NON CONVERGENT IN.I4.9H ELEMENTS)
382. IF (NUM) 1001,1001,9996
383. 9996 IF (TIME.LT.TMAX) GO TO. 999
384. 1001 CONTINUE
385. IF(ISS.LE.O.OR.IRRTl.LE.O) GO TO 9998
386. IF (MOOOPTUn 1011,1011,1002
387. 1002 NTa6
388. CALL MRPT2CT)
389. 1011 CONTINUE
390. IF (MOOOPTO)) 1021,1021,1012
391. 1012 NT313
392. CALL URPT2CDO)
393. 1021 CONTINUE
394. IF (MODOPTC3)} 1031,^031,1022
395. 1022 MT=7
396. CALL WRPT2CBOD)
397. 1031 CONTINUE
398. IF (MQJ70PTC6)) 1041,1041,1032
399. 1032 NT310
400. CALL NRPT2CCNH3)
401. HT»11
402. CALL WRPT2 (CN02)
403. NTS12
404. CALL HRPT2 CCN03)
405. 1041 CONTINUE
406. IF (MODOPTC5)) 1051,1051,1042
407. 1042 NT«9
408. CALL MRPT2 (PHOS)
409. 1051 CONTINUE
410. IF (MODQPTC4)) 1061,1061,1052
411. 1052 NTa8
412. CALL HRPT2 (ALGAE)
413. 1061 CONTINUE
414. IF CM000PTC8)) 1071,1071,1062
415. 1062 MTS14
416. CALL «RPT2 (COLD
417. 1071 CONTINUE
418. IF (HOOOPT(l)) 1081,1081,1072
419. 1072 NTs3
420. 00 1075 NC=1,NCS
78
-------
421. CALL NRPT2 (CONSU.HC))
422. 1075 NT-NItl
423. 1081 CONTINUE
424. IF (MODOPTC9)) 1091,1091,1092
425. 1082 NT=15
426. CALL MRPT2 (RADIO)
427. 1091 CONTINUE
428. If (MOOOPTC4KEQ.O) GO TO 9965
429. C
430. MT=19
431. 1F(IRPT1.EQ.1)CALL HRPT2 (GROWTH)
432. C
433. XTEMP s ALPHA3/ALPHA4
434. 00 9960 Ial,NCELLS
435. Z(I) * XTEMP'GROWTHUJ/RESPRRU)
436. 9960 CONTINUE
437. NT a 20
438. IFURPT1.EQ.1KALL WRPT2U)
439. 9965 CONTINUE
440. 9998 CONTINUE
441. C
442. C STEP 8-0
443. C
444. C IF FLOW AUGMENTATION IS DESIRED,
445. C HOW MUCH IS REQUIRED, AUGMENT TH
446. C NECESSARY HEADWATER FLOWS AND ST
447. C ROUTING AGAIN AT TIME a ZERO.
448. C
449. IF (IAUGOP.EQ.O) GO TO 9999
450. C
451. C + + +t + + -». FEB« 1980 REVISIONS NO. 5
452. lAUGlTal
453. C*t+*+*t
454. C
455. CALL FLOAUG
456. If (TIME.EQ.0.0) GO TO 998
457. 9999 CONTINUE
458. CALL WRPT3
459. STOP
460. END
73
-------
SUBROUTINE ALGAES*
Subroutine ALGAES completes the setup of the equations necessary
to calculate algal biomass concentrations in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
the right hand side of the equations. In addition, solar radiation is
read at three hour intervals if a dynamic simulation is being performed.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computation element is:
TYPE DIAGONAL TERM
All except type 7 b^ » Xj - (uj - p - o^
7. 'Withdrawal b1 = x1 - (Uf - p - Oj./DjAt - q0 —•
'i
where x.j is defined in Subroutine TRIMAT.
The growth rate, y^, is computed according to Equation II-6
as
In
N, + K« P+TCp A7D7 4" Ki + Le Aiui
3 Ti 1 r i i i
For dynamic simulation, nitrate (N3) and phosphorus (P) values from the
previous time period are used to calculate the growth rate; for steady-
state simulation, values from the previous iteration are used.
If, under the program options, algal concentrations are being
simulated and either nitrate or phosphorus or both are not being
simulated, the program assumes that the parameter or parameters not
simulated are not limiting. For example, if both nitrate and phosphorus
are not being simulated the growth rate would be computed as
80
-------
,
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ = A* + q^A^ ~ - a1-Ah
6. Waste Input Si - A* + ^'. At + qy/Aw &
All Others S1 • A* + q^A! ^
For steady-state simulation, the only difference is that the value from
the previous time step, A*, is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-3 and
is followed by the program listing. All program variables contained
in COMMON are defined in Section VII.
*AII symbols used are defined at the end of this section of the
DocumertaTjcn Report.
31
-------
ENTRY
SUBROUTINE ALGAES
(SEE DATA
ram 19)
INITIALIZE COUNTERS AND
CONVERSION FACTORS
READ SOLAR RADIATION IF
SIMULATION IS DYNAMIC
DO computations
from a to b for
ill computational
•iMMtS
CALCULATE GROWTH RATE.
AND INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY-STATE
Oft DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADO HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADO UASTEUATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
RETURN
TO QUAL
FIGURE VI-3. FLOW CHART FOR SUBROUTINE ALGAES
32
-------
1. SUBROUTINE ALGAES
2. C
3. COMMON TITL£(20,20),RCHID(75,5),RMTHOR(75),RMT£OR(75),MHWWAR(15),
4.
5.
6.
7.
8.
9.
10.
11.
12,
13.
14.
15.
16.
17.
19.
TARGDO(75),IAUGOJU75,&),NCELRHO5),IFLAG(75,20),
lCLORO(75,20),COErO.V<75),EXPO,C!C3(75),X20PT(75),CK2(75),COIiQ.K2(75>,
EXPQK2C75),rmT(75),DOINIT(75),B01NITC75),COINlT(75,3),
QI(75),n(75),OOJ(75),aODI(75),CONSl(75,3),JUNCIDa5,5),
JUNC(15,3),H*rRlD(l5,5),HWFLOW(15),H*T£«P(15),HWOQ(15),
HWBODU5),HHCONS(15,3),WA5TID(90,S),TRFACK90),WSFLOH(90),
WST£MP(90),MSOO(90),*SBOD(90),HSCONS(90,3),tiATOT(lS),
AC500),8(500),C(500),0(15),3(500),Z(500),rt(500),GC500),
FLOW ( 500 ), DEPTH ( 500 ),VEL (500 ),DTO.YCU 500), K2( 500 ),K1 (500),
H5NET(500),DL(500),VHWU5),DEPHW(15),OLHW(15),1(500),
DOC 500),800(500),CONS(500,3),PTIME,TPRINI,DELX,
NHWTRS,NR£ACH,NWASIS,,NJUNC,DELT,01LT,D2L;r,OTODX2,DT20DX,
LAT,LSH,LLM,£LEV,DAI,A£,8E,DAXOFY,DRXBLB',WETBLB,DEWPT,
ATMPR,HIND,CLOUD,SONET,NI,NJ,TRLCD,TOFDAX,NT,NC,TIME,NC5
19. C
20. C
21. COMMON/MODIFA CX4(75),CX5(75),CXNH3(75),CXN02(73),CKN03(75),
22. * CXN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
23. * ALPHAS,ALPHA6,GROMAX,RESPRT,ALGSET(7S),SPHOS(75),
24. * 5NH3(75),KNH3(500),KN02(500),RESPRR(500),COLI(SOO),
25. * ALGAE(500),PHOS(500),CNH3(500),CN02(500),CN03(500),
25. * COLIR(75),ALGI(7b),PHOSI(75),CNH3I(75),CN02I(75),
27. * CN03I(75),COL1II(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
28. * CN02IT(75),CN03IT(75),HSCOLI(90),MSALG(90),MSPHOS(90),
29. * WSNH3(90),WSN02(90),rfSN03(90),HHCOLI(15),H*ALG(15),
30. * HWPHOS(15},HMNH3(15),HWN02(15),HMN03(15),GROWTH(500),
31. » MODOPI(10),IRCHNO(750),EXCOk;F(75)
32. C
33. COMMON/SSTAT£/X(SOO),ISS
34. C
35-. C INITIALIZE COUNTERS
36. C
37. NHMaO
38. NMS*0
39. C
40. C HEAD SOLAR RADIATION DATA IF REQO
41. C
42. IFUSS .GT. 0 .OR. MOOOPT(2) .GT. 0) GO TO 20
43. IF(TRLCO) 10,10,15
44. 10 REAO(NI,11) SONET
45. 11 FORMAT(30X,F10.0)
46. TRLCO=3.0
47. IS TRLC03TRLCO-02LI
48. 20 CONTINUE
49. C
50. C LOOP THROUGH REACHES AND COMP. ELEMENTS
51. C
52. DO 100 Isl,NR£ACfl
53. NCELRsNCELRH(I)
54. CNC£LR»NCELR
83
-------
55. ALCIJ « QI(I)/CNCELR*ALGIU)
56. 00 100 Jsl.NCELR
57. IORsICLORDCI,J)
58. C
59. C COMPUTE ALGAE GROWTH RATES
60. C
61. TC * 0.556*PK03(IOR))
71. SO IF (MODOPT(6).EQ.O> GO TO 52
72. GROWTH(IOR) » GROWTHCIOJ?) *:.N03(IQR)/(CKN+CN03 (IOR) )
73. 52 CONTINUE
74. C
75. C INITIALIZE DIAGONAL A»0 KNOWN TERMS
76 "
7?! V RSACTaGROMTH(IOR)-RE:SPRR(IOR)-AL5INK
78. BtIUR)=X(IOR)-R£ACT*01UT
79. S(IOR)sALGAEUOR)
80. 1FCISS.GT.1) SaOR}=0.0
81. S(IOR) = S(IOR)+ALGIJ*OTOVCL(IOR)
32. C
83. C MODIFY DIAGONAL AND/OR KNOWN TERMS
84 "
8s! W IFLaIFLAC(I,J)
86. GO TD (101,100,100,100,100,103,104), IFL
87. C
US. 101 NHWsNHWtl
89. S(IOR) B S(IOR) - A(IOR)*HMALG(NHW)
90. GO TO 100
91. 103 NWSsMStl
92. S(IOR) s S(IOR) t WSFIO.N(NHS)*NSALG(NWS)*DTOVCL(XOR>
93. GO TO 100
94. 104 NN5BNWS+1
95. B(10R) s BCIOR) - WSFLOM(NWS)*OTOVCL(IOR)
96. 100 CONTINUE
97. RETURN
98. END
84
-------
SUBROUTINE BODS*
Subroutine BODS completes the setup of the equations necessary
to calculate BOD levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bj - xj + (Kx + K3)At
7. Withdrawal bj = x1 + (Kx + K3)At - q0 77
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S^ » I* + q^LJ ~ - a^
6. Waste Input Si - L* + q!l! ^ * qwLw &
*
All Others S1 • L + ql
*AM sv^&c's US8C a"3 csfined at the end cf This section o* the
'-at icn Resort,
35
-------
For steady-state simulation, the only difference is that the value from
the previous time step, U, is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-4 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
36
-------
ENTRY
SUBROUTINE BODS
INITIALIZE
COUNTERS MO
CONVERSION FACTORS
A
DO computations
from a to b for
all computational
dements
INITIALIZE MOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
AOO HEADWATER
INPUTS TO KNOW
TERM. S(I)
TYPES 2. 3. 4. S
CONTINUE
TYPE 6
ADO WASTEWATER
INPUTS TO KNOWN
TERM. S(I)
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 3(1)
6
RETURN
TO QUAL
FISURE VI-4. FLOW CHART FOR SUBROUTINE 30CS
-------
1. SUBROUTINE BOOS
2. C
3. C
4. COMMON TITL£(20,20),RCHID(7S,5),RMTHOR(75),RMTEQR(75),NHWWAR(15),
5. * TARGDO(75),IAUGO*(75,6),NC£LRH(75),IFLAG(75,20),
6. * ICLORO(75,20),CO£FQV(75),EXPOQY(75),CO£FQH(7J»,EXPOQH(75),
7. * CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
8. * EXPQK2(75),IINII(75),DOINIT(75),B01NIT(75),COINIT(75,3),
9. * Q1(75),TI(75),001(75),3001(75),CONSH7S,3),JUNCID(15,5),
10. * JUNC(15,3),HMrRIO(15,5},HWFLOW(15),HMTEMP(15),HWOO(15),
11. * HWBOD(15),H*CONSU5,3),WASTID(90,5),TRFACT(90),WSFLOH(90),
12. * WSTEMP(90),»SOO(90>,asaOD(90),WSCONS(90,3),QATOI(15),
13. * A(500>,8(500),C(500),0(15),S(500),Z(500),H(500),G(500),.
14. * FLOW(SOO),DEPTH(500),VEL(500),DTO.VCL(500),K2(500),Ki(500),
IS. * HSNET(SOO),DL(500),VHW(15),DEPHH(15),DLHH(15),1(500),
16. * 00(500),800(500),CUNS(500,3),PTIME.TPRINt.OELX,
17. * . NHfcTRS,NREACH,MWAST£,NJUNC.D£LT,DlLT,D2LT,OTODX2,DT200X,
18. « LAT,LSM,LLM,ELEV,DAT,AE,BE,DA*OF*,ORYBLB,W£TBLB,0£HPT,
19. * ATMPR,NINO,CLOUD,SONET,NI,NJ,TRLCU,TOFOAX,NT,«C,TIME,NCS
20. C
21. C
22. COMHON/SSTATE/X(500),ISS
23. REAL K1,K3
24. C
25. C INITIALIZE COUNTERS
26. C
27. NHW»0
28. NWSS0
29. C
30. C LOOP THROUGH REACHES AND COMP. ELEMENTS
31. C
32. 00 100 I*1,NR£ACH
33. NCELRsNCELRHU)
J4. CNCELRsMCELR
35. 800IJsUI(I)/C»CELR*BOOI(l)
36. oo 100 J=I,N:ELR
37. IOR=ICLORD(I,J)
38. C
39. C INITIALIZE DIAGONAL ANO KNOWN TERMS
40. C
41. TC>0.556*(T(IOR)-68.0)
42. K1(10R)=CK1U)*1.047**TC
43. K3=CK3(I)
44. REACT=01LT*(K1(10R)+K3)
45. B(10R)=X(IOR)+KEACT
46. SUOR)=aOD(10R)
47. IF(ISS.GT.l) S(IOR)«0.0
43. S(IOR)=S(IOR)tBODlJ*OIO.VCL(IOR)
50* C
51. C MOOIPX DIAGONAL AND/OR KNOWN TERMS
52. C
53. GO TO (101,100,100,100,100,103,104), IfL
54. C
55. 101 NHHsNHN+1
56. S(IOR)»S(IOR)-A(IOR)«HW80D(NHW)
57. GO TO 100
58. 103 NHSsNriS+l
59. SUOR)3S(IOR)+WSFLOW(NH3)*HSaOD(NNS)*DTaYCL(IOR)
00. GO TO 100
61. . 104 NWSsNWS+1
62. a(IOR)*&(IOR)-WSFLOW(HHS)»OrOVCL(IOR)
63. 100 CONTINUE
64. RETURN
65. END
-------
SUBROUTINE CHANL
Subroutine CHANL is called by subroutine HYDRAU to compute the
velocity and depth in each computational element given the flow in that
element. One of two techniques as explained in Section II, Hydraulic
Characteristics, is used depending on input specifications. The first
involves the use of discharge coefficients and exponents to compute the
velocity and depth while the second computes these values from the
geometric properties of the stream reach.
The subroutine flow chart is illustrated in Figure VI-5 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
-------
INITIALIZE COUNTERS
SET
DEPTH(d) - 1.0
CALCULATE Q
USING
MAIMING EQUATION
SELECT NEW
d USINS
NEVTCN-RAPHSON
FIGURE VI-5. FLOW CHART FOR SUBROUTINE CHANL
90
-------
1.
2.
J.
4.
S.
6.
7.
9.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
23.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
SUBROUTINE CHANL(J,Q»VELO.OPTH)
C
C
C
C
C
C
C
C
C
C
C
C
340
C
C
350
THIS SUBROUTINE RETURNS VELOCITY AND DEPTH
USING THE NEKTON RAPHSON TECHNIQUE WHEN
TRAP-CHANNEL DATA IS INPUT OR
ALPHA'S ANDi BETA'S OTHERWISE
COMMON TITLE(20,20),RCHI0(75,5),RMTHOR(75),RHI£ORU5),NHWUARU5),
TARGDO(75),IAUGOA(75,6),NCELRH(75),IFLAG(75,20),
ICIORO<75,20),CO£FQVC75),EXPOQV(75),COEFQH(75),EXPOQH(7S),
CMANN<75),CKl(75),CK3(75),K20PT(7S),CK2(75),COEQK2(7.5),
EXPOK2(75),TINIT(75),DOINIT(75),BOINIT(75),COINIT(75,3),
QI(75),TI(75),OOJU75),80DI(75),CO.NSI(75,3),JUNCIDa5,5),
JUNC(15,3),HMTRID(15,5),HMFLOW(15),HHTEMP(15),HWDO.(15),
HMBOD(15)rHMCONS(15,3),WASTID(90,5),TRFACT(90),MSFLOW(90),
WSTEMP(90),HSDO(90),»SBOO(90),WSCONS(90,3},QATOT(1S),
AC500),8(500),C(500),D(15),S(500),Z(500),»(500),0(300),
FLOW(500),DEPTH(500),VEL(SOO),DTOVCL(500),K2(500),Kl(500),
HSNET(500),DL(500),VHM(15),D£PHM(15),OLHM(15),T(500),
00(500),800(500),CONS(500,3),PTIHE,TPRINr,D£LX,
NHNTRS,NR£ACH,NriASTE,NJUNC,OELT,DlLT,Q2l.T,OTOOX2,DT20DX,
LAT,LSM,LLM,£L£V,DAI,A£,BE,OAYOFY,DR5(aLa',i4ETBLa,OEWPT,
ATMPR,HIND,CLOUD,SONET,NI,NJ,TRLCD,TOFOAX,NT,NC,TIME,NCS
COMNON/MODIF/. CK4(75),CKS(75),CKNH3(75),CXN02(75),CKN03(75),
» CXN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
» ALPHAS,ALPHA6,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
> SNH3(75),KNH3(500),KN02(500),RESPRR(500),COLI(500),
> ALGAE(500),PHOS(500),CNH3(500),CN02(500),CN03(500),
> COLiR(75),ALGI(75),PHOSl(75),CNH31(75),CN02I(75),
» CN03I(75),COtIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
> CN02IT(75),CN03IT(7S),WSCOLI(90),M5ALG(90),MSPHOS(90),
» MSNH3(90),MSN02(90),i HMPHOS(15),HHNH3(15),HWN02(15),HHN03(15),GROWTH(500),
» MOOOPT(10),IRCHNO(750),£XCOEF(75)
COMMON/CDATA/SS1(75),SS2(75),WIDTH(75),5LOPE(75},ITRAP
IF(O.NE.O.)GO: TO 340
V£LO=0.
OPTH'O
RETURN
CONTINUE
IFUTRAP.EQ.DGO TO 350 •
VELOsCOEFQV(J)*Q**£XPOQV(J)
OPTHsCO£FQH(J)*Q**EXPOQH(J)
RETURN
CONTINUE
91
-------
55. C
56. C
57. DCb*l.
58. DELDsl.
59. CONSI«i.486/CMANNU>*SQRT)
60. 00 360 lsl,30
61. AREA*0.5*im(SQRT(SS2(J)«*2 + l>)
65. FL*sCO.NST»UAR£A»*1.6$667)/iETPESU'*l-0.33333»*DHET?»/
69. 2 (METPER**!.33333)
70. OCL'OELO-F/or
71. ir.(A8SCF).LT.0.001*Q) SO TO 380
72. 360 DELOsQEL
73. MR2TE(6,1H1)
74. 1111 FORMAIUH ,32HIHERE IS- NO CONVERGENCE IN CHANL)
75. RETURN
76. 380 COKTINUE
77. OPTH=OEU
78. VELO«a/AREA
79. RETURN
80. END
92
-------
SUBROUTINE COLIS*
Subroutine COLIS completes the setup of the equations necessary
to calculate coliform levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right
hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ • xj + K5 At
7. Withdrawal bj = xj + KS At - qQ —•
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
Include headwater inflows, wastewater discharges, tributary flows and
Incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous .time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater
6. Waste Input
All Others
s
1
Si
si
* 1 1
* Ej + q-E-
i 1 i
* 1 1
• E* + «iEi
= E* * q^EJ
At r
vi " 1 h
At At
vTj~ * qw w 7j"
At
*AM symcGi? ussc are defined at the and of this section of the
-------
For steady-state simulation, the only difference is that the value from
the previous time step, E*, is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-6 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
94
-------
ENTRY
SUBROUTINE COLIS
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
00 computations
from a to b for
all computational
•leiMfits
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADO HEADWATER
INPUTS TO K/tOWN
TERM, S(I)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADO UASTEWATER
INPUTS TO KNOWN
TERM, SU)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 3(1)
RETURN
TO QUAL
FIGURE VI-6. FLOW CHART FOR SUBROUTINE COLIS
-------
1.
2.
3.
4.
S.
6.
7.
8.
9.
10.
11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
C
C
C
C
C.
C
C
C
C
C
C
C
C
C
SUBROUTINE COLIS
COMMON TITLEC20,20>,RCHID(75,5),RMTHORC75},RMTEOR(75),NHWHAR(15),
TARCDO(75),IAUSQK(75,6),NCELRHC75),IFLAGC75,20),
ICLORO(75,20),COEFQV(75),£XPOQV(75),COEFQHC75),EXPOQH(75>,
CHANN(75),CK1(75),C!U(75),K20PTC75),CK2(75),COEQK2(75),
EXPQK2(7S>,TINITn5),OOINITO5),BOINlT(75),COINm75,3),
QI(75),TI(75),DO.IC75),BODI(75),CDHSI(75,3},JUNC1DU5,5>,
JUNC(15,3>,HWTRID(15,5),HMFLOW(15),HNX£MPUS),HWDO.a5),
HMBOD(lS),HWCONS(lS,3),WASTlO(90,5),TRfACT(90),W5FLOW(90),
WStEMP(90),WSOO(90),HSBOD(90),WSCONS(90,3),QATOT(15),
AC500), B<500), C (500), 0(15), S (500 },Z(500),KC500),G(500),
FLQW(500),D£PTHl500),VEL(500),DTaVCL(500),K2(500),Kl(500),
HSNEI(500),DL(500),VHW(15),DEPHW(15),DLH*U5),T(SOO),
00(500), BOD (500 ),CONS(500, 3 ),PTIME,TPRINT,D£LX,
NHWTRS,NREACH,NWASTE.,NJUNC, CELT, DILI, 02LT,DTODX2,DT200X,
LAT,LSM,LLM,ELEY,DAI,AE,BE,DAYQF!(,DRYBLB,WET8L8,DEHPT,
ATMPR, HIND, CLOUD, SONST,NI,NJ,TRLCD,TOFDAi, NT, NC.riM£>NCS
COMMON/MOOIF/7 CX4(75) , CK5(75) ,CXNH3 (75 ) ,CKN02 (75 ) ,CKN03(75) ,
CXN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
ALPHAS, AUPHA6,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
SNH3(75),KNH3(500),KK02(500),RESPRR(500),COL:(500),
ALGAE (500 ), PHOS ( 500 ),CNH3 (500 ),CN02 (500 ),CN03( 500),
COl.IR(75),AbGI(75),PHOSI(75),CNH3I(75),CN02l(75),
CNQ31(75),COI,IIT(75),ALGIT(75),PHOSIT(75),CNH3ir(75),
CN02II(75),CN03IT(75),WSCOH(90),HSALG(90),WSPHOS(90),
HWPHOS(15),HKNH3(15),HWM02(15),HHN03tl5),GROWTH(500),
MOOOPT(10),IRCHNO(750),EXCOEF(75)
COMMON/SSTATE/X(500),ISS
REAL K5
NHW«0
NWS>0
INITIALIZE COUNTERS
LOOP THROUGH REACHES AND COMP. ELEMENTS
00 100 Isl.HREACH
NCELRsNCELRH(I)
CNCELRsNCELR
COLIJsQI(I)/CNC£LR*COLlR(I)
DO 100 J=1,NCELR
IOR»1CLORD(I,JJ
INITIALIZE DIAGONAL AND KNOWN TERMS
TC»0.556*(T(IOR)-68.3)
96
-------
55. K5aCX5(I)*1.047**TC
56. REACT=DiLT*K5
57. B(IOR)sX(IOR)*REACT
58. SUOR)aCOLI(IOR)
59. IF (ISS.GT.O) SUOR)*0.0
60. SUOR)«S(IOR)*COUJ*OTO.YCLCIOR>
61. m*IFUG(I,J.)
62. C
63. C MODIFJf DIAGONAL AND/OR KNOWN TERMS
64. C
65. GO TO (101,100,100,100,100,103,104), IfL
66. C
67. 101 NHWsNHU+1
63. S(IOR)aS(IOR)-A(IOR)*HWCOLI(NHM)
69. SO TO 100
70. C
71. 103 NMS»NHS+1
72. S(IOR)*S(IOR)tUSrLOW(NUS)*MSCOLI(NMS)*DTOVCL(IOR)
73. GO TO 100
74. C
75. 104 NWS-NMS+1
76. B(XOR)sa(IOR)-WSri.ON(NHS)*DIOVCMIOR)
77. 100 CONTINUE
78. RETURN
79. END
-------
SUBROUTINE CONSVT*
Subroutine CONSVT completes the setup of the equations necessary
to calculate concentrations of a conservative constituent level in each
computational element. Specifically, the subroutine completes the
definition of the diagonal term of the coefficient matrix and defines
the vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b^ * Xj
7. Withdrawal b1 = x^ - q0 —•
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater Si = C* + qjcj ^- - a^
6. Waste Input S^ • C* + q.jcj ^7 + qwCw—
All Others ' Si = C* + q\C\ &
*AII symools used are defined at the end of this section of the
Documentation Report.
98
-------
«
For steady-state simulation, the only difference is that the value from
the previous time step, C?, is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-7 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
99
-------
ENTRY
SUBROUTINE CONSVT
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
DO computations
from 4 to b for
all computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADO HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADO WASTEWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
0
RETURN
TO QUAL
FIGURE VI-7. FLOW CHART FOR SUBROUTINE CONSVT
100
-------
1.
2.
3.
4}
5.
6.
7.
3.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18. •
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
bO.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
C
C
C
C
C
C
C
C.
C
C
C
C
C
c.
C
c
c
c
c.
c
101
(
c
103 K
i
c
c
104 »
e
100 C
*
E
SUBROUTINE CONSVT
CONSVT PERFORMS A CONSERVATIVE MINERAL
BALANCE FOR EACH COMPUTATIONAL ELEMENT
IN THE SYSTEM.
COMMON TITLEC20,20),RCHIDC75,5),RMTHOR(75),RMTEORC75),NHHWARU5>,
TARGDO(75),IAUGO*C75,6),NCELRH(75),1FOAG(75,20),
ICLORO(75,20),CO£FQVnS),EXPOQV(75),COEFg.HC75),£XPOQH(75),
CMANN(75),CK1(7S),CK3(75;),K20PT<75),CK2(75),COEQK2(75),
EXPQK2(75),TINII(75),DOINIT(75),aoiNIT(75),COINIT(75,3),
QI(75),TI<75),OO.I(75),BOOI(75),CQASI(75,3},JUNCIDU5,5),
JUNCU5,3),HWrRID(15,5),HWFLOW(15),HWT£MP(15),HWOO.U5),
HWBODU5),H*CONSU5,3),WASTID(90,5),TRFACT(90),HSFLOW(90),
WSTEMP(90),WSDOC90),HS80D(90),WSCONS(90,3),QATOTUS),
A(500),B(SOO),C(500),DU5),5(500),Z(500),K(500),G(500),
FLOW(500),D£PTH(500},VEL(500),DTO.VCL(500),K2(500>,K1(500),
HSN£T(500),OL (500), VHW( 15 ),DEPHW( 15 ),OLHM( 15),TC500),
00(500),BOD(500),CONS(500,3),PTIME,TPRINT,DELX,
NHWTRS,NREACH,NHAST£.,NJUNC,D£LT,D1LT,02LT,QTODX2,DT2CIDX,
LAT,LSM,LLM,ELEY,DAr,AE,a£,DAXUF*,DRXaLa,rfETBLB,DEWPT,
ATMPR,MIND,CLOUD,SONET,NI,NJ,TRLCD,TOFOAY,NT, tiC,TIME,NCS
COMMON/SSTATE/XtSOO),ISS
INITIALIZE COUNTERS
NHWsO
NMS'O
LOOP THROUGH REACHES AND COMP. ELEMENTS
00 100 I»1,NREACH
NCELR3NCELRHCI)
CNCELRaNCELR
CONSIJsQI ( I) /CNCELR*CONSI ( I , NO
00 100 J>l,NC£Lft
IOR»ICLORDU,J)
INITIALIZE DIAGONAL AND KNOWN TERMS
B(IOR)=X(IOR)
S(IOR)»CONS(IOR,NC)
IF(iSS.GT.l) S(IOR)sO.O
S(IUR)*5(IOR)+CONSIJ*OTOVCL(IOR)
MODIFY DIAGONAL AND/OR KNOWN TERMS
GO TO (101,100,100,100,100,103,104), IFL
NHWsNHW+1
S(IOR)sS(IOR)»A(IOR)*HMCONS(NHW,NC)
GO TO 100
S(IORJ«S(IOR)+WSFLOW(NWS)*i
-------
SUBROUTINE DOS*
Subroutine DOS completes the setup of the equations necessary
to calculate dissolved oxygen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j a x^ + (K2)i At
7. Withdrawal bt = x.j"+ (KJ1 At - qo ^
where x^ is defined in Subroutine TRIMAT and the reaeration rate
reaeration constant, (K2)^, is determined in Subroutine REAERC.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the concentration
in the previous time step. The known term for each type of element for
dynamic simulation is:
Si -
-------
TYPE RIGHT HAND SIDE
1. Headwater S.. * S^ -
6. Waste Input S1 = Si +
For steady-state simulation, the only difference is that the value
*
from the previous time step, 4»-j, is set equal to zero and At - 1.0.
The subroutine flow chart is illustrated in Figure VI-8 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
-------
Coma }
uwotfliK oos I
.S sat ^s»"
\ 108 WHITS .>
GONVGCT
I MT 300
TO ULTIMATE
arruua
countB AW
comtniM
Q
00 camutlont
fn* t a i far
•II comiutleiul
tlMMCI
nmm
TOM AM OUGOML
TOW rat STOW-sun
on onwuc SWUUTIOH
1
Ttn i
awvre s(u AM id)
AMI AOO HtABUTCt
iwvn TO crew
TOW, «I)
1
TTTCJ 2, J, t
comiwi
I
TW 4
AOO mnnMT MOCM
TO man TGW. sm
rm »
ADO UASTDMTEX
IVUTJ 10 OOWI
TOW. S(l)
1
Tmjr
AOO IMIOOITAI. ixaau
TO an« Tom. s(n. AM
SUtTMCTSTUAN
MtTHOMUAI. flON atAfiONAt.
TOW. >(I)
(wniw ^
TOOMM. J
FIGURE VI-8. FLOW CHART FOR SUBROUTINE DOS
104
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
23.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
SI.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
C
C
C
C
c.
C
C* • * * *
c • • « * *
c • • * • •
C • * 9 • 9
10
1
20 (
25 :
I
'
30 (
35 C
{
J
t
1
t
40 C
45 (
3
(
C
C
C
50 C
!
SUBROUTINE DOS
COMMON TITL£(20,20),RCHID(75,5),RMTHOR(75),RMTEOR(75),NHWHARU5),
TARGwO(75),IAUGOA(75,6),NC£LRH(75),IFLAS:(75,20),
ICLORO(75,20),CO£FQV(75),EXPOOY(75),COEFQH(75),EXPOQH(75),
CMANN(75),CX1(75),C:<3(75),K20PT(75),CK2(75),COEOK2(75),
EXPQK2(75),TINIT(75),DOIiUT(75),aOINlT(75),COlNIT(75,3),
OI(75),TI(75),DOJ(75),dODI(75),CONSI(75,3),JUNCID(15,5),
JUNC(15,3),HWTRID(15,5),HWFLOW(15),HWT£MPU5),HMDO(15),
HW800(15),HMCONS(15,3),MASTID(90,5),TRFACT(90),M5FLOW(90),
MST£MP(90},USOO(90),NSBOD(90),WSCONS(90,3),QATOTU5),
A(500),8(500),C(500),0(15),5(500),Z(500),W(500),G(500),
FLOW(500),OEPTH(500),VEL(500),DTOVCL(500),K2(500),Kl'(500),
HSNET(500),DL(500),VHW(15),DEPHW(15),DLHM(15),T(500),
00(500),800(500),CONS(500,3),PT1ME,TPRINT,OELX,
NHWTBS,NREACH,NWASIE.,NJUNC,OELT,D1LT,D2LT,DTODX2,DT200X,
LAT,L5M,LLM,ELEV,DAI,AE,BE,OAXOFY,DRY8LB,HETBLB»OEHPT,
ATMPR.rflNO,CLOUD,SONET,NI,NJ,TRLCD,TOFDAY,NT,NC,TIME,NCS
COMMON/MODIF/ CK4(75),CK5(75),CXNH3(75),CXN02(75),CKN03(75),
CKN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
ALPHAS,ALPHA6,GROMAX,RESPRT,ALGSETC 75),SPHQS(75),
5NH3(75),KNH3(500),KS02(500),R£SPRR(500),COLI(500),
ALGAE(500),PHQS(500),CNH3(500),CN02C500),CN03(500),
COLIH(75),ALGI(75),PHOSI(75),CNH3I(75),CN02I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHUSIT(75),CNH3IT(75),
C«02IT(75),CN03ir(75),WSCOLI(90),WSALG(90),WSPHOS(90),
WSNH3(90),»SN02l90},iiSN03(90),HWCOLlU5),HWALG(15),
HMPHOS(lb),HMNH3(15),HMN02(15),HVIN03(15),GROrtTH(500),
MODOPT(10),IRCHNO(750),£XCOEF(75)
COMMON/SSTAT£/X(500),ISS
REAL K1,K2,KO
REAL KNH3.KN02
DATA U80U/4H 5-0/
....CONVERT BETWEEN ULTIMATE AND 5-DAY BOD BASED ON AN ASSUMED
....LAB DECAY RATE OF 0.23/DAY (BASE £ ).. MRN
IF(TITL£(7,6).N£.UBOD) GO TO SO
CFBOO » 1.0 - EXP( -5.0»0.23 )
IVERT 3 0
IVEKT * 1
IF( NHMTRS .LE. 0 ) GO TO 25
DO 20 J s l, NHMTRS
HMBOD(J) 3 HMBOD(J) /. CFBOO
25 IF( NMASTC .L£. 0 ) GO TO 35
DO 30 J 3 1, NMASTE
HSBOD(J) s HSaOD(J) /! CFBOO
MUE
J 3 1, NREACH
3 Booi(j) /. craoo
NCELR 3 NCELRH(J)
00 40 K 3 l, NCELR
IOR 3 ICLORO(J,K)
BOOUOR) = BOO(IOR) / CFBOD
IF( IVERT .GE. 2 ) RETURN
1.0 / CFBOO
CFBOD
INITIALIZE COUNTERS
1.
-------
72. FACT a 1.0 / (28.3 * 86400.0)
73. C
74. C LOOP THROUGH REACHES AND COMP. ELEMENTS
75. C
76. • 00 100 I=1,NREACH
77. NCELR=NCELRH(I)
78. CNCELR'NCELR
79. DOIJ*Q1(I)/CNC£LR»DOIU)
80. C RATlOsl.o/(1.0-EXP(-5.0*CKl(I)))
81. 00 100 Jsl.NCELR
82. IORsICLORD(I,J)
83. C.
84. C INITIALIZE DIAGONAL AND XNOMN TERMS
85. C
86. S(IOR)sOOUOR)
87. IF (JSS.CT.l) S(IOR}>0.0
88. IF (MOOOPT(4).LI.l) GO TO 90
89. AREACT=(ALPHA3*GROWTH(IOR)-ALPHA4*RE5PRR(IOR))*01LT
90. S(IOft) = S(IOR) *• AREACT'ALGAEUOR)
91. 90 IF (MOOOPT(6).LT.l) GO TO 92
92. SCIOR) » S(IOR) - UL?HA5*KNH3UOR)*CNH3UOR) +
93. 1 ALPHA6*KN02(IOR)*CN02(IOR))*D1LI
94. 92 S(IOR) = S(IOR) - CK4(I)*DELX*DTOYCL(IOR) *FACT
95. TC=0.556*(TUOR)-68.0)
96. C KHIOR)=KKIOR)*RATIO
97, OOSAI=24.89-0.4259*TCiaR)+0.003734»T(IQR)**2-0.00001328»TCIOR)**3
98. IF CDO.(IOR).GT.DOSAT) OO(IOR) = DOSAT
99. IFL=IFLAG(I,J.)
100. C
101. C MODIFX DIAGONAL AND/OR KNOWN TERMS
102. C
103. GO TO (101,102,102,104,102,103,105), IFU
104. C
105. 101 NHri=MHW+l
106. KO=K2UOK)*1.0159**TC
107. REACT=01UT*(KO»OOSAT-K1(IOR)*80D(IOR))
108. S(IOR)sS(IOR)tREACTfDOIJ*DTOVCL(IOR)-A(IOR)*HNOO(NHM)
109. B(IOR)=X(IOR)*D1LT»KO
110. GO TO: 100
111. C
112. 102 KOa(0.5*(K2(IOR-l)+K2(IOR)))*1.0159**TC
113. REACT=D1LT*CKO»DOSAT-KUIOR)*BODUOR))
114. S(IOR)*S(IOR)tREACT^DOIJ.*DIO.VCL(IOR)
115. 3(IOR)=X(IOR)t01LT*KO!
116. GO TO 100
117. C
118. 103 NVtSsNHS+1
119. KOa(0.5*(K2(IOR-l)+K2(IOR)))*1.0159**TC
120. R£ACT301LT*(KO*DOSAT-K1(IOR)*BOD(IOR))
121. S(IUR)3S(IOR)tREACTt(OOlJ-i-HSFt.OM(NMS)*NSDO(NMS)}*DTOVCL(IOR)
122. B(IOK)3X(IOR)+01LT*KQ:
123. GO TO 100
124. C
125. 104 IJUNC.sIJUNCtl
126. NS=1
127. NNaJUNC(IJUNC,NS)
128. KO=(0.25*(K2(IOR-1)+K2(NN)+2.0*K2(IOR)))*1.0159**TC
129. REACT=01LT»(KO»OOSAT-Rl(10R)»BOOtlOR))
130. S(IOR)sS(IOR)tREACTtOOIJ*DTOVCL(IOR)
131. 8(XOR)aX(IOft)t01LmOi
132. GO TO 100
133. C
134. 105 NWSstiHS+1
135. KO*(O.S*(K2(IOR-1)^K2(IOR)))*1.0159**TC
136. ReACT«DlLT*(KO*DOSAT-Kl(IOR)*aOO(IOR))
137. SUUR)*SUOR)+ReACT+DOIJ*DrOVCL(IOR)
138. 9(IOR)3X(IOR)t01LT*KO»MSFLO»(NMS)*OTOVCL(IOR)
139. 100 CONTINUE
140. IfCTir-e(7,6).«E.UBOD) RETURN
141. as to to
142. £30
106
-------
SUBROUTINE FLOAUG
Subroutine FLOAUG remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (1970).
According to that reference:
After steady-state conditions have been reached,
FLOAUG checks the calculated dissolved oxygen concen-
tration against the pre-specified target levels for
dissolved oxygen in each reach. If the computed
dissolved oxygen is below the target level, the routine
then searches all of the upstream headwaters for those
sources that the user has specified to have dilution
water. Dilution water is then added equally from all
sources and calculations are repeated. This sequence
continues until all target levels are satisfied,
whereupon a summary is written.
The theory of FLOAUG according to Frank D. Masch and Associates and the
Texas Water Development Board (1971) is:
When environmental conditions are such that the
dissolved-oxygen concentration in a stream drops below
some required target level, flow augmentation may be
desirable. The amount of augmentation water required
to bring dissolved-oxygen concentrations up to required
standards cannot be computed by an exact functional
relationship; however, a good approximation can be
given by
DOR * DOj - Cc
DOR
n - n K
'07
-------
where
DOn = dissolved-oxygen concentration required
to meet target conditions, mg/l
DOj - some required target level of dissolved
oxygen, mg/l
C- = minimum dissolved-oxygen concentration
(critical level) in the oxygen sag curve,
mg/l
,Q^ = amount of flow augmentation required, cfs,
Q - flow at the critical point in the oxygen
sag curve, cfs
The flow chart for FLOAUG shown in Figure VI-9 is taken from the referenced
report. The program listing follows the figure.
108
-------
( START J
INITIALIZE
AUGMENTATION
FLOWS
DETERMINE LOCATION AND
MAGNITUDE OF MINIMUM 0.0.
FOR EACH REACH
MINIMUM 0.0.
FOR EACH REACH
SEEN CHECKED
AGAINST
ARGET
IS
TARGET
LEVEL 0.0.
SATISFIED?
COMPUTE AMTV
OF FLOW
AUGMENTATION
REQUIRED
DIVIDE TOTAL AUGMENTATION
REQUIRED EQUALLY AMONG
AVAILABLE HEADWATER SOURCES
CHECK TO SEE THAT AN EXCESS
OF FLOW AUGMENTATION
HAS NOT BEEN USED
WRITE
\INTERMEDIATE~
SUMMARY /
WAS
FLOW
AUGMENTATION
REQUIRED
FIC-'JRE VI-9. FLOW CHART FOR SUBROUTINE FLOAUG
109
-------
1. SUBROUTINE FLOAUG
2. C
3. C FLOAUG SEARCHES THROUGH THE SYSTEM BY
4. C REACH TO DETERMINE THE MINIMUM DO. LEVEL
5. C WITHIN EACH REACH. EACH OF THESE MINIMUM
6. C DO LEVELS IS CHECKED AGAINST A SELECTED
7. C TARGET LEVEL. IF FLOW AUGMENTATION IS
8. C REQUIRED, THIS FLOW IS DISTRIBUTED
9. C EQUALLY AMONG THE HEADWATER SOURCES THAT
10. C ARE. AVAILABLE TO. A GIVEN REACH.
11. C
12. C
13. COMMON T1TLE(20,20),RCHID(7S,5),RMTHOR(75),RMTEOR(75),NH«WAR(15),
14. * TARGOO(75),IAUGOK(73,6),NC£LRH(75),IFLAG(75,20},
15. * ICLORO(75,20),CO£FQV(75),EXPOQV(75),COEFQH(75),EXPOQH(75),
16. * CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
17. * . EXPQK2(75),rlNir(75),OOINIT(75),B01NII(75),COINIT(75,3),
18. * QZ(75),U(75),001(75),8001(75),CON5H75,3),JUNCIDU5,5),
19. * JUNC(15,3),HWTRID(15,5),HWFLOH(15),HHT£MP(15),HWDO.(15),
20. * HMBOO(15),HMCONS(15,3),WASTID(90,5),TRFACT(90),WSFLOW(90),
21. * HSTEMP(90),MSDO(90),US80D(90),WSCONS(90,3),QATOTU5),
22. * A(500),8(500),C.C500),0(15),S(500),Z(500),W(500),G(500),
23. * FLOW(500),D£PIH(500),VEL(500),DiaVCL(500),K2C500),Kl(500),
24. * HSN£T(500},DL(500),VHW(1S),DEPHN(15),DLHH(1S),T(500),
25. * 00(500),800(500),CONS(500,3),PTIME,TPRINT,DELX,
26. * NHHIRS,NREACH,NWASTE,NJUNC,D£LT,01LT,02LT,DTODX2,DT200X,
27. * LAT,LSM,LLM,ELEV,DAT,AE,BE,OAYOFY,DRYBLB>HET8LB,DEWPT,
28. » ATMPR,HIND,CLOUO,SONET,NI,NJ,TRLCD,TOFDAY,NT,NC,TIME,NCS
29. C
30. C
31. DIMENSION IORMIN(75),RMILE(75),DOMIN(75),IOROER(75),QAUGU5)
32. C
33. C
34. C STEP 1-0
35. C INITIALIZE AUMENT&TION FLOWS
36. DO 5 NHMal.NHMTRS
37. QAUG(NHW)»0.0
38. 5 CONTINUE
39. C
40. C
41. C STEP 2-0
42. C LOOP THROUGH SYSTEM OF NREACH RE
43. C AND NCELR COMPUTATIONAL ELEMENTS
44. C REACH TO DETERMINE MINIMUM DO LE
45. C REACH AND ITS LOCATION BY RIVER
46. C
47. DO SO 1*1,NREACH
48. DOMN(I)=100.0
49. IF(NHrtNARU).EQ.O) GO TO 50
50. NCELR=NCELRH(I)
si. DO 100 j»t,NCELR
52. IOR=ICLORD(I,J)
S3. If (DO(IOR).GE.DOMIN(IO) GO TO" 100
54. DOMIN(I)»DO(IOR)
no
-------
55. IORMIN(I)«IOR.
56. XMINsj
57. RMILE(I)sRMTHOR(I)-XHIN*OELX/5280.0
S3. 100 CONTINUE
59. SO CONTINUE
60. NBTARC=0
61. C.
62. C STEP 3-0
63. C LOOP THROUGH NREACH REACHES TO S
64. C MINIMUM 00 LEVEL IS BELOW TARGET
65. C
66. DO 25 1*1,NREACH
67. IF COCWIN(I).GE.TARGOOm) GO TO 25
68. C
69. C STEP 3-1
70. C IF TARGET LEVEL IS NOT MET* COHP
71. C AMOUNT OF FLOW AUGMENTATION REQU
72. C
73. NBTARGsNBTARG+1
74. lOROERCNBTARG)*!
75. IQRalORMINU)
76. RMILE(NBIARG)=RMILEU)
77. OORE3D»TARGDO(1)-OOMIN(IJ+0.1
79. QREQO * FLOM(IOR)*(DOR£QO/IARGDO(I) t 0.15*
79. »(DOREQD/TARGDO(I))**2)
80. QSUM»0.0
81. NHMARsNHMMAR(I)
82. 00 350 J=1,NH*AR
83. NHWslAUGOR(I,J)
84. QSUMsQSUMtQAUG(NHM)
85. ' 350 CONTINUE
86. C
87. C STEP 3-2 .
88. C DIVIDE TOTAL AUGMENTATION REQUIR
89. C EQUALLY AMONG THE UPSTREAM HEAD*
90. C SOURCES AVAILABLE TO A GIVEN REA
91. C GIVEN REACH.
92. C
93. O.AOD«9R£QD/NHMtfAR(I)
94. C
95. C STEP 3-3
96. C CHECK TO SEE THAT AN EXCESS OF F
97. C AUGMENTATION HAS NOT BEEN USED.
98 C
99! IF (QREOO.LT.OSUM) GO TO 25
100. NHHARsNHWWARU)
101. DO 375 J=1,NHWAR
102. NHM3IAUGOR(I,J)
103. QAUG(NHW)3QADD
104. 375 CONTINUE
105. 25 CONTINUE
106. IF (NBTARG.EQ.O) GO TO 300
107. C
108. C STEP 4-0
109. C WRITE 5UMMARX OF FLOW AUG'MT. RE
-------
no. c
HI. WRITE (NJ.200)
112. 200 FORMAT UH1,38X.39H* * * REACHES HUH OXYGEN DEFICIT * * *,//,23X,
113. * 52HREACH NO, REACH IDENTIFICATION MINIMUM 00.,
114. * 15H RIVER MILE,/)
115. TIMEsO.O
116. 00 250 Ksl,N8TARG
117. I=IORDER(X)
118. WRITE (NJ,255) I, (RCHIDU, J) , JM ,5) ,DOMIN(I) ,RMILE(I)
119. 255 FORMAT C22X,I5,10X,5A4,7X,F5.1,11X,F6.1)
120. 250 CONTINUE
121. WRITE (NJ,260)
122. 260 FORMAT (1HO,30X.38H* * * FLOW AUGMENTATION REQUIRED * * «,//,
123. * 5X,100HHEAOHATER NO. HEADWATER IDENTIFICATION EXIS
124. *TING HEADWATER FLOW (CFS) AUG. REQUIRED CCfS),/)
125. 00 270 NH*=1,NHHTRS
126. WRITE (NJ,275) NHW,(HHTRIDCNHH,J),Jsl.5},HWFLOW(NHH),QAUG(NHW)
127. 275 FORMAT (8X,I5,12X,5A4,16X.F10.1,20X,F10.1)
128. 270 CONTINUE
129. DO 380 NHWsl,NHHTRS
130. HMFLOW(NHW) • HMFLOW(NHW) *• QAUG(NHW)
1J1. 380 CONTINUE
132. GO TO 310
133. 300 CONTINUE
134. C
135. C STEP 5-0
136. C WRITE FINAL SUMMARY OF FLOW
137. C AUGMENTATION REQUIREMENTS.
138. C
139. WRITE (NJ,261)
140. 261 FORMAT (1H0.33X,32HTOTAL FOOW AUGMENTATION REQUIRED,//,
141. *5X,101HHEADWATER NO. HEADWATER IDENTIFICATION INITIAL HE
142. *ADWATER FLOW (CFS) AUG. REQUIRED (CFS),/)
143. DO 305 NHWsl,MHWTRS
144. H«IFLOI=QATOT(NH»)
145. QATOT(NHW)3HMFLQW(NHW)-HWFLOI
146. HNFLO*(NHW)sHWFLOI
147. WRITE (NJ,275) NHh,(HMTRID(NHW,J),J«l,5),HWFLOH(NHW),QATOT(NHW)
148. 305 CONTINUE
149. 310 CONTINUE
150. RETURN
151. END
112
-------
SUBROUTINE HEATEX/HEATER
Subroutine HEATEX is used in the dynamic simulation of temperature.
It remains unchanged from the original version of QUAL as documented by
the Texas Water Development Board (1970). According to that reference:
This routine computes the net amount of heat
radiation flux being transferred across the air-Mater
interface. It is based on an energy budget tihioh
considers solar radiation, atmospheric radiation,
back radiation, conduction, and evaporation.
Detailed equations for all of the heat budget terms are presented in
Section IV.
The flow chart for Subroutine HEATEX shown in Figure VI-10 is
taken from the Texas Water Development Board reference. The program
listing follows the figure.
Subroutine HEATER is used in the steady-state simulation of
temperature. Calculations performed in HEATER are identical to those
performed in HEATEX except that the step (3-0)—see Figure VI-10--is not
included in HEATER. Back radiation, evaporation, and conduction losses
are computed in TEMPSS. The program listing for HEATER follows the
listing for HEATEX.
113
-------
f ami \
suwomxc HEATH
nquneo
CONSTANTS
COMtlft All rC«HI KCI7UIIIEOV
ro« C«ALUAT:N« THE VAKIOUS
riUUS U CHCRSr IUOSCT
CAicuurt POSITIOK or
sun uiArm TO
A stiicTca LOCArion
ON TNC CAHTH'S SUKfACE
rCAlCUUTf ITANOAIIO TIHCS
AT HNtCX SUN RISES
AMO StTI
CALCUUTt VAPOK MKSUDCSN
OCV >0[»T. AND OAM»CIIIIIQ
truer tut ro aauomcss
CAlCULATt
HOU« AKClES
L
CllCUlATt AMUKr 9F Cl.tA«x
JIT. SOU« lAOUTtail. AKO
AiriTuot or SUM
uicuuri AISOMTIOH Ana
SCATTHIlia Out TO
conairioos
CAlCUUTt
mrieenvitt
ULCM1.ATI HCT SOLA*
SCATTtlKC, ««SO«>T10«.
1*0 IfrLCCTtON
COMPUTE om» HCAT
ANO PCRFORM (Xf»5T
fo« CACN CUNCMT
«ATUOH.T
( KTUXII j
FIGURE VI-10. FLOW CHART FOR SUBROUTINE HEATEX/HEATER
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35..
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
73.
C
C
C
C
C
C
C
C
C
C
C
C.
C
C
C
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE HEATEX
HEATEX COMPUTES THE NET AMOUNT OF HEAT
RADIATION FLUX BEING TRANSFERRED ACROSS
THE AIR-WATER INTERFACE BASED ON AN
ENERGY BUDGET WHICH CONSIDERS SOLAR
RADIATION, ATMOSPHERIC: RADIATION, BACK
RADIATION, CONDUCTION, AND EVAPORATION.
COMMON TITLE(20,20),RCHID(75,5),RHTHOR(75),RMTEOR(75),NHWHARU5),
TARGOO(75),IAUGOA(75,6),NC£LRH(75),IFLAG(75,20),
ICLORO(75,20),COEFQVC75),EXPOQVC7S),CO£FQH(75),EXPOQH(75),
CMANN(7S),CKU75),C!C3{75),K20PT(75),CK2(75),COEQK2<75),
EXPQK2C75),IINin75),DOINIT(75),aOINITC75),COINIT<75,3),
O.I(75),TI(75),OOI(75),&OOI(75),CO.NSIC75,3),JUNCID(15,5),
JUNCC15,3),HHTRIDU5,5),HWFLOWU5),HWT£MP(15),H*00.<1S),
HW80DU5),HaCONSUS,3),HA5TID<90,5),TRFACTC90),WSFLOW<90),
*5TEMP(90),W500C90),ViS800(90),»iSCONS(90,3),QATOTC15),
A(SOO),BC500),C(500),D(15),S(500),ZC500),H(500),G(500),
FLOW(500),DEPrH(500),VELC500),DTaVCL(500),K2C500),KH500),
HSNETC500>,DL(500),VHW(15),D£PHWC15),OLHW(1S),TC500),
00(500),BOD(500),CONS(500,3),PTIME.TPRINI.OELX,
NHMTRS, NREACH, NHASTE., N JUNC , DELT ,D 1LT, D2LT , DTODX2 ,DT20DX,
LAT,LSN,LLM,ELE.Y,DAI,AE,BE,DAYQFY,DRYBL3<,WETBL8,DEWPT,
ATMPR, WIND,CLOUD,SONET,HI ,NJ.,TRLCD,TOFDA*,NT, NC,TIME, MCS
COMMON/METER/METRIC,METOUT
REAL LLM,LSM,LAT
PI*3.141628
CON1»2.0*PI/365.0
CON2*PI/180.0*LAT
CON3>180.0/PI
CON4s23.4S*PI/l80.0
CONS3PI/12.0
CON6S12.0/PI
0£UTSL3(LLM-LSM)/15.0
SOLCON=438.0
ELtXPsEXP(-ELEV/2532.0)
STEP 1-0
COMPUTE REQUIRED CONSTANTS
IF (IOFOAX.NE.0.0) GO' TO 77
STEP 2-0
COMPUTE ALL TERMS REQUIRED FOR
EVALUATING THE. VARIOUS FLUXES IN
ENERGY BUDGET
STEP 2-1
COMPUTE SEASONAL AND DAILY POSIT
SUN RELATIVE TO A SELECTED LOCAT
THE EARTH'S SURFACE.
REARIH*1.0t0.017*COS(C!XNlfQa6.0-DAYOFY))
DECLINsCON4*COS(CQNl*U72.0-DAYOFY))
RR»REARTH*»2
EQTlMEaO.000121-0.12319»SIN(CON1*COAYOF*-1.0)-0.07014)
* -0.16549*SIN(2.0*CON1.*(DAYQFY-1.0)+0.3038)
DECLOfisABSCDCCLIN)
ACS=TAN(CON2)*IAN(D£CLON)
IF (ACS.EQ.0.0) GO I3l 9
X*SQRTU.O-ACS*ACS)
X=X/AC5
-------
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
U3.
139.
140.
C:
C
C
C
c:
C
c
c
c
c
c
c
c
c
c
c
c
c
c:
c
c
ACSsATANU)
IF (DECLIN.GT.0.0) ACS=PI-ACS
GO TO 9
8 ACSsPI/2.0
9 CONTINUE
STRsl2.0-CON6«ACS+DELrSL.
5TSs24.0-SIRt2.0*DELTSL
518=0.0
STE=STB+D2LT
GO TO 78
77 STB»STB+D2LT
STBaST8tD2LI
78 CONTINUE
STEP 2-2
COMPUTE STANDARD TIMES AT WHICH
RISES AMD SETS.
STEP 2-3
READ IN LOCAL CLIMATALOGICAL OAT
AT DESIRED TIME INTERVAL (MINIMU
INTERVAL IS THREE HOURS).
If (TRLCD.NE.0.0) GO TO. 82
READ 12, CLOUD,ORmB',ilETBLB,ATHPR,MiNO
12 FORMAT (40X,5F9.0)
IF(METRlC.Ett.O)GO tt) 13
DR]fBLB30RYBLB*l. 8+32.0
H£TBLB=WETBL3*1.3+32.0
ATMPR=ATMPR*(29.9/1000.)
HIND=*1ND/0.3048
13 CONTINUE
HINDsrfIND*0.6818
STEP 2-4
COMPUTE VAPOR PRESSURES, DEM POI
DAMPENING EFFECT OF CLOUDINESS.
VPHB*0.1001*EXP(0.03*H£TBLB)-0.0837
VPAIRsVPWB-0.000367* ATMPR*(DR5fBLB-WETBL8)
* *(1.0+(W£T8LB-32.0)/1571.0)
DEWPT=ALUGC(VPAlRtO.0837)/0.1001)/0.03
C5*1.0-0.65*CLOUD**2
IF (CLOUD.GT.0.9) CS'0.50
CNL=»CLOUD*10.0+1.0
NL'CNL
82 CONTINUE
TRLCOSTRLCD+02LT
IF (TRLCD.LI.2.9) GO TO. 84
TRLCDsO.O
84 CONTINUE
IF (STS.LE.STB-.OR.STR.GE.STE) GO TO 35
IF(STR.GT.STB.AND.STR.LT.ST£) GO TO 41
IF ISTS.LT.STE.AND.SIS.GT.SI8) GO TO 42
STEP 2-5
COMPOTE HOUR. ANGLES
TB=SrB-12.0-OELTSL-f£OriME
TE=SIE-12.0-DELTSL+EQTIME
GO TO 43
41 TB3STR-12.0-D£LTSL+EQTIME
TE3STE-12.0-OELTSLtCQTIME
GO TO 43
42 79=313-12. O-OELTSL+EQIIME
43 CONTIHUC
TALTsi(T8+TS)/2.0
116
-------
141.
142.
144.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
194!
1 Q*
A 7 9 «
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
205.
207.
203.
209.
213.
C
C
C
C
C
C
C
C
C
Z'
C
C
C
C
C
C
C
C
.
C
C
C
C
C
C
STEP 2-6
COMPUTE AMT OF CLEAR SKY, SOLAR
RADIATION, AND ALTITUDE OF SUN.
SOLARsSOLCON/RR*(5IN(CON2)*SIN(DECLIN)»(TE-T8)+CON6*COS(CON2)»
» COS(DECLIN)* (SIN (CONS *TE)-smCON5*TB)))
ALPHA3SIN(CON2)*SIN(OECLIN)+COS(CON2)*CO£(DECLIN)*COS(CON5*TALT)
IF (ABS(ALPHAJ.EO.l.O) GO TO 4
YsSQKT(1.0-ALPHA*ALPHA)
Y=ALPHA/Y
ALPHA=ATAN(Y)
GO TO 5
4 IF (ALPHA. £Q. -1.0) GO TO 6
ALPHAsPI/2.0
GO TO 5
6 ALPHA=-PI/2.0
5 CONTINUE
IF (ALPHA. LI. 0.01) GO 10 35
STEP 2-7
COMPUTE ABSORPTION AND SCATTERIN
DUE TO. ATMOSPHERIC CONDITIONS.
PWCsO.OObl4*£XP(0.04S9*D£WPT)
OAM=ELEXP/ (SIN (ALPHA) tO. 15* (ALPHA*CON3+3. 885 )**(-!. 253))
AlsEXP(-(0.465+0.0408*PWC)» (0.129+0. 17 1 *EXP(-0.880*OAM) )*OAM)
A2s£XP(-(0. 465+0. 0408*PWC)*(0. 179+0. 421 *£XP(-0.721*OAM))*OAM)
STEP 2-8
COMPUTE REFLECTIVITY COEFFICIENT
GO TO (30, 31, 31, 3t, 31,31, 32, 32, 32,32, 33), NL
30 AR*1.18
BRs-0.77
GO TO 34
31 AR32.20
BR*-0.97
GO TO 34
32 ARaO.95
BRa-0.75
GO TO 34
33 AR=0.35
BRs-0.45
34 CONTINUE
RSsAR»(CON3» ALPHA) **BR
ATC»(A2+0.5*(1.0-Al-OAT))/( 1.0-0, 5»RS»(1.0-AltOAT))
STEP 2-9
COMPUTE NET SOLAR RADIATION AFTE
SCATTERING, ABSORPTION, AND. REFL
SONEr=SOLAR*ATC*CS*(1.0-RS)
IF(30H£T.L£.0)GO TO 35
GO TO 36
35 SONEIaO.O
36 CONTINUE
CLCst.O+0.17*CLOUD**2
STEP 3-0
COMPUTE OTHER HEAT FLUXES AND PE
ENERGY BUDGET FOR EACH COMPUTATI
ELEMENT.
HAs0.97*1.73S-09»2.89E-06*(DRY8L3t460.0)*»6»CLC*02LI
DO 70 I*1,NREACH
NCELRsNCELRH(I)
DO 70 Jsl.NCELR
1 3 Rs 1C LORD (I , J)
^ -\
117
-------
211. VPW=0.1001*£XP(0.03*T(IOR}>-0.0837
212. H8»0.97*1.73E-09«(TTOrOAXt02L7
219. If (TOfDAX.LT.23.9) GO TO 85
220. TOKDA1T=0.0
221. OAXOPYsOAYOFY+l.O
222. 85 CONTINUE
223. RETURN
224. END
113
-------
1.
2.
3.
4.
S.
6.
7.
8.
9.
10.
'11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
29.
29.
30.
1 1
J 1 •
32.
33.
)4
*t *
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
63.
69.
70.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ft
to
C
C
««
w
C
C
C
C
C
SUBROUTINE HEATERCNITER)
HCATEX COMPUTES THE NET AMOUNT OF HEAT
RADIATION FLUX BEING TRANSFERRED ACROSS
THE AIR-WATER INTERFACE BASED ON *AN
ENERGY BUDGET WHICH CONSIDERS SOLAR
RADIATION* ATMOSPHERIC RADIATION, BACK
RADIATION, CONDUCTION, AND EVAPORATION.
COMMON IITL£C20,20),RCHiD<75,5),RMTHOR(75),RMT£OR(75),NHWWAR(15),
« TARCOO(75),IAUGO*<7S,6>,NCELRH(75),IFLAG(75,20),
ICLORO(7S,20),CO£FQV(75},EXPOQV<75),CO£FQH<75),EXPOQH(75),
CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),COEQK2{75),
£XPQK2(75),TINlT(7S),DOIIUT(75),aoitUT(75),COINIT(75.3),
QI(75),TI(75),OOI(75),BUDI(75),COJ3),QATOTC15),
AC500), 8(500), 0(500), 0(15), 5(500 ),ZC500),W( 500 ),GC500),
FLOH(500),D£PTH(SOO),V£L(500),DTO.VCU500),K2(500),K1(500),
HSN£T(500),OU500),VHW(15),D£PHM(15),DLHrf(lS),T(500),
DO(500),BOO(500),CONS(500,3),PTIME,TPRINT,DELX,
NHHTRS,NR£ACH,NWASTe,NJUNC,D£LT,DlLT,02LT,DTODX2,OT20DX,
LAT,LStt,lLM,£L£V,DAI,A£,BE,OAYOFY,DRY8La,M£TBLa,DEWPT,
ATMPR,WINU, CLOUD, SONET, NI,NJ,TRLCD,TOfOA*, NT, NC, TIME, NCS
COMMON/METER/METRIC, METOUT
COMMON/AUG/IAUGIT
COMMON/SSTEMP/JT(bOO),SQLR:>U75)rCLDF438.0
ELEXP«EXP(-EL£V/2532.0)
STEP 2-0
COMPUTE ALL TERMS REQUIRED. FOR
EVALUATING THE. VARIOUS FLUXES IN
ENERGY BUDGET
IF (TOFDAY.NE.0.0) GO TO 7?
STEP 2-i
COMPUTE SEASONAL AND DAILY POSIT
SUN RELATIVE TO A SELECTED LOCAT
THE EARTH'S SURFACE.
REARTH»1.0«.O.Ol7*COSCONl»U86.0-OAXOFn)
DECHN«CON4»COS(CON1*<172.0"OAYOFY))
RR«R£ARTH»*2
EQTIHE»0. 00012 1-0. 1231 9»SI«(CON1*(OAYOFY-1.0) -0.0701 4)
119
-------
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
103
« V4 •
103.
104.
105
4 V ^ «
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
C
C
C
C
C
C
C
C
C
c.
C
c
.
c
c
c
c
c.
c
c
* -0.16549*SlN(2.0*CONl*(DAYOrY-1.0)+0.3088)
DECLON=ABS(OSCLIN)
ACS«TAN(CON2)*TAN(DECLOJO
IF (ACS. EQ. 0.0) GO TO 8
* X«SORIU.O-AC5*ACS)
XSX/ACS
ACSsATAN(X)
IF (OECLIN.GT.0.0) ACS-PI-ACS
GO TO 9
8 ACSspl/2.0
9 CONTINUE
STEP 2-2
COMPUTE STANDARD TIMES AT
RISES AND SETS.
3TR»l2.0-CON6«ACS+OELTSt,
STS*24.0-STRt2.0*0£LTSL
STBaO.O
STESSTB+D2LT
GO TO 78
77 STBSST8+D2LT
STE=ST8+D2LT
78 CONTINUE
STEP 2-3
WHICH
READ IN LOCAL. CLIMATALO.GICAL DAT
AT DESIRED TIME INTERVAL
INTERVAL IS THREE HOURS).
IF (TRLCD.NE.0.0) GO TO. 82
IF(IAUGIT.LE.O) R£AD(NI,12) CLOUD, DRYBLBiWETBLB-.ATMPR, WIND
12 FORMAK40X.5F8.0)
IF(METRIC.EQ.O)GO TO 13
DRXBLB»ORXBL3*1. 8+32.0
«ETBL8=WET8L8*1. 8+32.0
ATMPRsATMPR* (29. 9/1000.)
WIND3HINO/O.J048
13 CONTINUE
WINO'UIND*0.6818
DO 922 I«1,NREACH
TNBRCH(I)*WETBL8
TDBRCH(I)3Dft¥BLB '
CLDRCH(I)sCLOUD
UINRCH(I)»MIND
PATRCH(I)*ATMPR
922 CONTINUE
STEP 2-4
COMPUTE VAPOR. PRESSURES,
(MINIMU
DEM POI
DAMPENING EFFECT OF CLOUDINESS.
Vp'ua»0.1001*EXP(0.03*METBLB')-0.0837
VPAIRsVPNB-0.000367*ATMPR*(DRXBLB-METBLa)
* *(1.0+(M£TBLB-32.0)/1571.0)
DENPT»ALOG((VPAIR+0.0837)/0.1001)/0.03
CSal.O-0.65*CLOUD**2
IF (CLOUD. GT. 0.9) CS*0.50
CNL=CLOUD*10. 0+1.0
NL^CNL
82 CONTINUE
84 CONTINUE
IF (ST3.LE.ST3.0R.STS.GS.STE) GO TO 35
IF(STR.GT.STB.AND.STR.LT.STE) GO TO 41
IF (STS.LT.STE.AND.STS.GT.sra-) GO TO 42
120
-------
Ml. C STEP 2-5
142. C COMPUTE HOUR ANGLES
143. C
144. TB*STa-l2.0-OELTSL+EQTlM£
145. TEaSTE-12.0-DELT5L+EQTIME
146. GO TO 43
147. 41 TBSSTR-12.0-DELISL+EQTIME
148. TEaSr£-12.0-OELI5LtEQTIME
149. 50 TO 43
ISO. 42 T8»STB-12.0-DELTSL+EQIINE
151. TE*STS-12.0-OELISL+£O.TIME
152. 43 CONTINUE
153. TALTs(TB+TE)/2.0
154. C
155. C STEP 2-6
156. C COMPUTE AHT OF CLEAR SKY, SOLAR
157. C RADIATION, AND ALTITUDE OF SUN.
158. C
159. * SOLAR»SOLCON/RR*(SIN(COJI2)*SIN(DECLIN)*(TE-T8)+CDN6*C05(CON2)*
160. * COS(DECLIN)*(SmCON5*TE)-SIN(CON5*TB)))
161. ALPHAsSIN(CON2)»SIN(DECLIN)tCOS(CON2)*CQ.S(DECLIN}*COSCCON5*TALT)
162. If (ABS(ALPHA).EO.l.O) GO TO, 4
163. Y*SQRT(1.0-ALPHA*ALPHA)
164. JfaALPHA/Y
165. ALPHASATANU)
166. GO TO 5
167. 4 IF (ALPHA.EQ.-1.0) GO TO 6
168. ALPHAsPI/2.0
169. GO TO 5
170. 6 ALPHAs-PI/2.0
171. 5 CONTINUE
172. IF (ALPHA.LT.0.01) GO TO 35
173. C
174. C STEP 2-7
175. C COMPUTE ABSORPTION AND SCATTSRIN
176. C DUE TO. ATMOSPHERIC. CONDITIONS.
177. C
178. PWC*0.00614*£XP(0.0489*DEWPT)
179. OAM«ELEXP/(SIN(ALPHA)+0.15*(ALPHA*CON3t3.985)*»(•!.253))
180. A1»£XP<-(0.465+0.0408*PWC)»(0.129f0.171«EXP(-0.880*OAM))*OAM)
181. A2*SXP(-(0.465+0.0408*PHC)*(0.179+0.421*EXP(-0.721*OAM)}*OAM)
182. C
183. C STEP 2-8
184. C COMPUTE REFLECTIVITY COEFFICIENT
185. C
186. GO TO (30,31,31,31,31,31,32,32,32,32,33), NL
187. 30 AR-1.18
188. BR«-0.77
189. GO TO 34
190. 31 AR*2.20
191. BR3-0.97
192. GO TO 34
193. 32 ARsO.95
194. 8R»-0.75
195. GO TO 34
196. 33 AR»0.3S
197. SRs-0.45
198. 34 CONTINUE
199. RS*AR«(CON3*ALPHA)**BA
200. AIC*(A2+O.S*(1.0-A1-OAI))/(1.0-O.S*RS*U.O-A1+OAX))
201. C
202. C STEP 2-9
203. C COMPUTE NET SOLAR RADIATION AFTE
204. C SCATTERING, ABSORPTION, AND REFL
205. C
206. SONET*SOLAR*ATC*CS*(1.0*RS)
207. GO TO 36
209. 35 SONET=0.0
209. 36 CONTINUE
210. 00 923 I«1,NRSACH
111
ti. i
-------
211. SOLRCH(I)=SON£T
212. 923 CONTINUE
213. TOFDAX=TOFDAr*D2LT
214. IF (TO/DAX.LT.23.9) GO TO 85
215. TOFOAXsO.
216. OAXOFXsDAXOFX+1.
217. 35 CONTINUE
218. RETURN
219. END
122
-------
SUBROUTINE HYDRAU
Subroutine HYDRAU remains largely unchanged from the original
version of QUAL as documented by the Texas Water Development Board (1970).
According to that reference:
This routine performs a hydrologic balance for a
branching stream or canal system based on continuity
of flow. It then computes velocities^ volumes, and
dispersion coefficients for every computational element
in the system.
The only change from the original version is that Subroutine
CHANL is now called in steps 2-1, 2-2, 2-3, and 2-4 to compute velocity
and depth in each element.
The flow chart for Subroutine HYDRAU shown in Figure VI-11 is
taken from the Texas Water Development Board reference. The program listing
follows the figure.
123
-------
INITIALIZE
COUNTERS
HAVE
HYDRAULICS
FOR ALL ELEMENTS
BEEN
COMPUTED?
IS
ELEMENT
TYPE • i.2,3.4,
CALC. HYOR.
FOR ELEMENTS
TYPE*6 or 7
CALC. HY.OR.
FOR ELEMENTS
TYPE-1
CALC. HYO
FOR ELEMENTS
TYPE-4
CALC. HYOR.
FOR ELEMENTS
TYPE»2,3
or S
FIGURE VI-11. FLOW CHART FOR SUBROUTINE HYDRAU
124
-------
1.
2.
3.
4.
5.
b.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
13.
19.
20.
21.
22.
23.
24.
25.
26.
27.
29.
29.
30.
31.
32.
33.
34.
35.
36.
37.
33.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
&1.
52.
S3.
54.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
f*--
w-
c
^
w
c
c
c
C:
c
SUBROUTINE HYORAU
HYDRAU PERFORMS A HYDROLOGIC BALANCE OH
THE SKSTEM BASED ON CONTINUITY. IT
COMPUTES THE FLOW, VELOCITY, VOLUME,
DEPTH, AND DISPERSION COEFFICIENT FOR
EVERY ELEMENT IN THE SYSTEM.
COMMON IITLE(20,20),RCHID(75,5),RMTHOR(75),RMTEOR(75),NHWWARU5),
TARGDO<75),IAUGOR(75,6),NC£LRH(75),IFLAG(75,20),
ICLOROC75,20),CO£FQV(75),£XPOOV(75),COEFQH(75),EXPOQH(75>,
CMANN(7S),CKl{75>,CK3(75),K20PT(73),CK2(75),COEQK2<75),
EXJ»,rmT(75),DOINlT<7S),SOINIT(75),COINII(75,3),
OI(7S),TI(75),DOI(75),BODI(75),COMSI(75,3),JUNCID(15,5),
JUNCUS,3),HWTRIO(l5.5),HWFLOWU5),HhIEMPCl5),HWOa(i5),
HW80U(15),HWCOMSC15,3),WASTID(90,5),TRFACT(90},WSFLOW<90),
«TEMP(90>,WSDO(90),*S8QD(90},WSCONS(90,3),QATOIC15),
A(500),B{500),C.(500),OU5),8(500),Z(500),W(500),G(500),
FLOW(500),DEPTH(500),VEL(SOO),OTO.VCL(500),K2(500),Ki<500),
HSNET(500),DL(500),VHM(1S),DEPHM(1S),OLH^(1S),T(500),
00(500),BOD(500),CONSl500,3),PTIME,TPRINT,OELX,
NH»TRS,NREACH,NHASTS.,NJUNC,DELT,01Lli,02LI,OTODX2,OT200X,
LAT,LSM,LLM,ELeV,DAT,AE,8e,OAYOFY,DHYSL3,METBLB,DEXPT,
ATMPR,«INO,CLOUD,SONET,HI,NJ,TRLCD,TOFOAY,NT,NC,TIME,NCS
STEP 1-0
INITIALIZE COUNTERS FOR HEAOWATS
UASTE INPUTS OR UITHORAWLS, AND
JUNCTIONS.
NHW*0
NWS=0
IJUNC'O
STEP 2-0
LOOP THROUGH SYSTEM OF NREACH RE
AND NCELR COMPUTATIONAL ELEMENTS
REACH.
DO 100 I=1,NHEACH
NCELR3NCELRHU)
CNCELRSNCELR
fiR'OKD/CNCELR
DO 100 J»1,NCEUR
IOR*ICLORO(I,J)
IFL*IFLAG(I, J)
GO TO (101,102,102,103,102,104,104), IFL
STEP 2-1
COMPUTE HYDRAULICS FOR AN ELEMEN
TYPE 1.
125
-------
55. 101 NHW3NHH+1
56. FbOH(IOR)sHMrtiOH(NHW)+0R
57. CALL CHANl,(I,HWrLOH(NHM),VHrf(NHW),DCPHH(NHN))
58. DLHi*CNHlOs22.6*CMANN(I)*YHrfCNHlO*DEPHi*(NHW)»*0.833
59. CALL CHANL(X,FLOW(IORJ,VELUOR),D£PTHCIO«))
60. DTOVCLUOR)»DI20DX/CH*FLOW(MHtO/YH*QR
80. CALL CHANLU,FLOH(IOR),V£LUOR),D£PTH(IOJO)
81. DTOVCL(lOR)3DT200X/(FLai((XOR-l)/VEL.(XOR-l}tFLON(IOR}/VEL(IOR)^
82. * FLOM(NN)/V£L(NN})
83. GO TO 105
84. C
85. C STEP 2-4
86. C COMPUTE HYDRAULICS FOR ELEMENTS
87. C 6 OR 7.
a a r*
89! 104 NHSsMMS+1
90. FLOMUQR)3FU>W(XQR-1)+USFLOH(NHS)+QR
91. CALL CHANLU,FLOU(IOR),VELUOR),DEPTHUOfi>)
92. DTOVCL(XO!D30T200X/(FLOM(XOR-1>/YELUOR-1)+FLOW(XOR)/VEL(XOR)>
93. 10S CONTINUE
94. DL(10R)822.6«CMANN(X)»VEL(XOR)*DEPTH(IOR)**0.833
95. 100 CONTINUE
96. RETURN
97. END
126
-------
SUBROUTINE INDATA
Subroutine INDATA reads and prints all data required by the
model except the climatological data which is read in Subroutine HEATEX/
HEATER or ALGAE*. INDATA reads a set of title cards and 11 different
types of data that are prepared on 19 different data forms. Seven of
the data forms are optional depending on the parameters to be simulated.
Chapter V contains additional details concerning data preparation,
descriptions of data forms and an example data set. If INDATA detects
any data inconsistencies, it prints an error message and terminates
execution.
Figure VI-12 illustrates the flow chart for INDATA and the
following pages contain the program listing. All program variables
in COMMON are defined in Section VII.
*The criteria that determines which subroutine reads the climatological
data are:
!. Dynamic Simulation - No Temperature Simulation:
Read solar radiation values in ALGAE.
2. Dynamic Simulation - With Temperature Simulation:
Read Climatological Data in HEATEX.
3. Steady-State Simulation:
Read Climatological Data in HEATER.
127
-------
Subroutine
INDATA
INITIALIZE
CERTAIN
PARAMETERS
1 (SEE DATA
[ FORM 1)
1
READ TITLES
(SEE DATA
FORM 2)
OATA TYPE 1
READ AND PRINT
MODEL CONTROL OATA
| (SEE OATA
[ FORH2)
OATA TYPE 1A
READ AND PRINT
ALGAE PRODUCTION AND
OXIDATION CONSTANTS
] (SEE OATA
[ FORM 3)
1
I OATA TYPE 2
READ AND PRINT
REACH IDENTIFICATION DATA/
[(SEE OATA
FORM 4)
[ OATA TYPE 3
READ AND PRINT
TARGET LEVEL 0.0. AND
FUJU AUGMENTATION OATA
I (SEE OATA
[_ FORKS)
f DATA TYPE 4
KM AND PRINT
ELEMENT DESCRIPTION DATA ]
FIGURE VI-12. FLOW CHART FOR SU3PCUTINE INDATA
1C8
-------
(SEE DATA
FORM 6 & 6A)
(SEE DATA
FORK 7)
DATA TYPE S
READ AND PRINT
HYDRAULIC DATA
DATA TYPE 6
READ AND PRINT
OEOXYGENATION AND
REAERATION COEFFICIENTS
(SEE DATA
FORMS)
(SEE OATA
FORM 1Z)
OATA TYPE 6A
READ AND PRINT
ALGAE. NITROGEN, AND
PHOSPHOROUS COEFFICIENTS/
1 (SEE OATA
1 FORM 9 )
I
/ DATA TYPE 68
I READ AND PRINT
BENTHOS. COLIFORM. AND
RAOIO-NUCUDE COEFFICIEN
| (SEE OATA
1 FORM 10)
1
OATA TYPE 7
READ ADO PRINT
INITIAL CONDITIONS
| (SEE OATA
I FORM 11)
/
DATA TYPE 7A
READ AND PRINT
INITIAL CONDITIONS
(CONTINUED)
NDATA TYPE 3
READ AND PRINT
JUANTITY AND QUALITY OF
INCREMENTAL RUNOFF
FIGURE VT--2 tConfi-
V
FLOW CHART ?CR SUBROUTINE INDATA
-------
'(SEE DATA
FORM 13)
DATA TYPE 8A
READ AND PRINT
QUALITY OF INCREMENTAL
RUNOFF (CONTINUED)
r(SEE DATA
FORM 14)
DATA TYPE 9
READ AND PRINT
STREAM JUNCTION
IDENTIFICATION DATA
(SEE DATA
FORM IS)
DATA TYPE 10
READ AND PRINT
QUANTITY AND QUALITY
OF HEADWATER INFLOWS
^(SEE DATA
FORM 16)
DATA TYPE TOA
READ WO PRINT
ADDITIONAL QUALITY LEVELS j
OF HEADWATER INFLOWS
r(SEE DATA
F0i« 17)
DATA TYPE 11
READ AND PRINT
QUANTITY AND QUALITY OF
WASTE INPUTS OR
WITHDRAWALS
(SEE DATA
FORM 18)
DATA TYPE 11A
READ AND PRINT
/ADDITIONAL QUALITY LEVELS ,
OF WASTE INPUTS
OR WITHDRAWALS
PRINT ERROR
MESSAGE
STOP
r!5URi VI-12 (Continued.
PLOW CHART "OR SUBROUTINE INCA7A
-------
1.
2.
3.
4.
S.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
S3.
59.
60.
61.
62.
63.
*4.
65.
66.
67.
9S.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE INOATACILI6T, IRPT1 / UUGQP,TMAX,NCEH-S)
THIS SUBROUTINE READS IN ALL DATA
REQUIRED FOR THE OPERATION OF THE
MODEL EXCEPT THE CL1MAIOLOGICAL
DATA FOR TEMPERATURE SIMULATION.
COMMON IITLE(20,20),RCHID(75,S),RMTHOR(75),RMIEOR(75),NHHNAR(1S),
t TARGOO(75),IAUGOR(75,6),NCELRH(75),IFLAG(7S,20),
» ICLORO(75,20),COEFQV(75),EXPOQV(75),COEFQH(75),EXPOOH(75),
I CMANN(75),CM(75),CK3(75),K20PT(75),CK2(75),CO£QK2(75),
> EXPQK2(75),T1NIT(75),OOINIT(75)>80INIT(75),COINIT(75,3),
> QI(75),TI(75),DOJ(75),BOD1(75),COJ*SI(75,3),JUNCID(15,5),
> JUNC(1S,3),HMTRIO(1S,5),HWFLOW(15),HWT£MP(15),HHDO<15),
> HH800(1S),HNCONS(15,3),HASTID(9U,5),TRFACT(90),WSFLOW(90),
> »STEMP(90),«ISDO(90),aS800(90),W$COhS(90,3),Q.ATOT<15),
» A(500),8(500),C(500),0(15),5(500),Z(500),W(500),GC500),
» FLO«(500),DEPTH(500),VEL(500),DTOVCL(500),K2(500),M(500),
> HSNET(500),OL(500),VHrt(15),DEPHW(15),OLH^(15),T(500),
• 00(500),800(500),COMS(500,3),PTIHE,TPRIMT,OELX,
I NHWTRS,NREACH,NMASTE,NJUNC>DELT,D1LT,02LT,DTOOX2,OT20DX,
' LAT,LSM,LLM,ELEV,DAI,AE,BE,DAYOFi,DRY3La,^ETBL8,DEMPT,
i ATMPR,WIND,CLOUD,SONET,NI,NJ,TRLCD,TOFDA*,NT,HC,TIME,NCS
COMMON/MODIF/ CK4(75),CK5(75),CKNH3(75),CKN02(75),CKN03(75),
CXN/CXP,CKL,ALPHAO(75)(ALPHA1,ALPHA2,ALPHA3,ALPHA4,
ALPHAS,ALPHAS,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
SNH3(75)>KNH3(500),KN02(500),R£SPRR(500),COLI(500),
ALGAE(500),PHOSC500),CNH3(500),CN02(500),CN03(500),
COLiR(75),ALGI(75),PHOSI(75),CNH31(75),CN02I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
CN02II(75)>CN03IT(75)>MSCOLI(90),WSALG(90),W5PHOS(90)I
MSMH3(90),HSN02(90)>MSN03(90)>HMCOLI(15),HMALG(1S),
HKPHOS(15),HWNH3(15),HWN02(15),HHN03(15),GROWTH(500),
MOOOPT(10),IRCHNO(750),EXCOEF(75)
COMMON/RAOION/. CX6(75),RADNIT(75),RADNI(75),HHRADN(15),WSRADN(90),
» RADIO(SOO)
COMMON/S5TATE/1 X(500),ISS
COMMON/COATA/SS1(75),552(75),*IDTH(75),SLOPE(75),ITRAP
COMMOM/METER/METRIC,MEIOUT
DIMENSION DATA(9i,25),CODE(i4),CaDE2(6)
REAL K1,K2,LAT,LLM,LSM,JUNCID
DATA ENDT/4HENOT/ , ENOA/4HENDA/ , rES/4H YES/
DATA CODE/4HHS1,4HWRIT,4HFU>*,4HSTEA,4HTRAP,4HIN(»U,4HHUMB,
* 4HNUN ,4HTI«E,4HMAXl,4HLATI,4HSTAN,4HEVAP,4HELEy/
DATA CODE2/4HO UP,4HO PR,4HN CO,4HALG ,4Ht* HA,4HLIGH/
STEP 1-0
INITIALIZE CERTAIN PARAMETERS
73.
00 999 1*1,500
ALGAE(I)»0.
RESPRR(I)«0.
GKOi0.
999 CONTINUE
-------
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
1*3.
00 1000 I«l,250
1000 IRCHNO.(1)*0
ITRAPaO
ILISTaQ
IRPTlaO
IAUGOP »0
XSS30
LAT»0.0
LLMsO.O
LSM*0.0
DAXOFXaO.O
AEaO.O
BEao.o
ELEVsO.O
OATsO.O
NERRORaO
TIMEaO.O
TPRIHTaO.O
TOFDAX=0.0
TRLCO=0.0
CKLsO.O
MEIKICaO
HETOUTaO
NI=5
NJ=6
C.
c
C
c
00 30 1=1,16
READ (NX, 31) (IITLECI.,J)
31 FORMAT (20A4)
IF CtITI<£(l»l)-CMOI) 30,
30 CONTINUE
NERROR=1
34 1=1*1
READ (NI,31) (TITLE(I,J)
STEP 2-0
READ IN TITLES
,J»1,20)
35,30
•
,J=1,20)
If (IlTUE(I,U-eNOT)34, 39,34
39 N>I-16
WRITE (NJ,32) M
32 FORMAT UHO,5X*16H****«
GO TO 33
35 IF CI.GE.16) GO: TO 33
MERRORal
N316-I
WRITE (NJ,36) H
J6 FORMAT (1HO,5X,15H****«
33 CONTINUE
NTITUE3I
C
C
c.
C
oo 1700 i«:,9
1700 MODOPT(I)aO
ir(TITLE(3,3) .CQ. Y£S)
DO 1710 1*6,9
IFaiTUE(I,3) .EQ. XC3)
1710 CONTINUE
IF(TITL£UO,3) .EQ. YES)
DO 1720 I»13,15
IF(TITLE(I,3)- ,EQ. YES?
1720 COHTIMUE
C
C
c:
c.
HCSaQ
ir(MOOOPTd) .LT. 1J GO.
NCS«1
TOOj MANX (,I3,18H) TITLE. CARDS READ)
TOO FEM (,I3,18H) TITLE. CARDS READ)
STEP 2-1
SET PARAMETER LIST TO BE 3IMULAT
INTO MODEL OPTION ARRAY (MODOPT)
MOD0PTU)*!
MODOPT(I-4>*1
MODOPT(6)«l
MOOOPTCI-*)-!
STEP 2-2
SET NCS (KUM9SR OF- CONSSRYATXVE
CONSTITUENTS
TO 1730
i32
-------
141.
142.
143.
144.
145.
146.
147.
149.
149.
ISO.
151.
152.
153.
1S4.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
U9.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
132.
183.
184.
18S.
136.
187.
198.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
20Q.
201.
202.
203.
204.
205.
206.
207.
203.
209.
210.
1730
IF(IITLE(4,3) .CO. YES) NCS»2
IF(TITL£(S,3) ,CQ. YES) HC3»3
CONTINUE
C
C
C
C
C
C
C
C
STEP 3-0
READ IN ALL DATA REQUIRED FOR OP
OF THE MODELS.
STEP 3-1
READ IN DATA TXPE 1 (MODEL COHTR
21
20
24
IDATAsO
IF(MODOPT(4) .GT. 0) IDATAsl
IF(MOOOPT(5) .GT. 0) IDATAsl
IF(MOOOPT(6) .GT. 0) IOATA»1
IF(MODOPT(8) .GT. 0) lOATAal
IF(MODOPT(9) .GT. 0) IDATA'l
NCROS«15
DO 20 I=1,NCROS
READ (NI,21) IDATAU,X),K=1,1&)
FORMAT <6A4,A1,F10.0,10X.6A4,A1,F10.0)
IF (OATA(I,1)-CNDA)20,25,20
CONTINUE
NERRORal
READ (HI, 21) (DATAU,K),K=l,i&)
IF (DATACI,1)-£)IOA)24,29,24
N=I-NCROS
WRITE (NJ,22) N
29
22 FORMAT (1HO, 5X, 16H***«* TOO MANX C,I3,18H) DATA! CARDS READ)
25
GO TO 23
IF (I.GE.NCROS) GO TO 23
IFCMODOPTC2)) 1920,1920,1930
FE3' 1980 REVISIONS NO. 9
1920 IFCI.EQ.IDGO TO 23
1930 NERROR'l
N>NCROS-I
MBITE (NJ.26) N
26 FORMAT (1H0.5X, 15H»**»* TOO FEW (,I3,18H) DATA1 CARDS READ)
23 CONTINUE
NCROS*I
DO 16 I>1,N
DO 16 J»l,14
IF (DATA(I,l)-CODE(g)) 16,2,16
2 GO TO (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, IS, 18), J
3 ILIST * 1
CO TO 16
GO TO 16
5 IAUGOP a 1
GO TO 16
« ISS * 2
GO TO 16
7 ITRAP«l
GO TO 16
8 M£TRICaOATA(I,8)
METOUTsDATA(I,16)
GO TO 16
9 NREACH > DATA(I,8)
NJUNC * DATAU,16)
GO TO 16
10 NHHTPS > DAIA(I,8)
NWASIE * DATA(I,16)
GO TO 16
11 D£LT < DATA(I,8)
DELX a OATAU, 16)
-------
211. GO TO 16
212. 12 TMAX a DATA(I,8)
213. PTIME = DATAU.16)
214. CO TO 16
21S. 13 (.AT = DATAU.8)
216. LLM s DATA(I,16)
217. GO TO 16
213. 14 LSM > DATA(I,8)
219. DAYOFY * DAIA(I,16)
220. GO TO 16
221. IS AE * OATA(I,B)
222. 8E > OATAQ,16)
223. GO TO 16
224. 18 ELEY*DATA(I,8)
225. DATsOAIA(I,16)
226. 16 CONTINUE
227. IF(NREACH-75) 610,610,620 >
223. 620 HRITECNJ,515) NREACH
229. SIS FORMATUHO,5X,'*****',15,'REACHES EXCEED THE DIMENSIONS',
230. * ' OF 75')
231. NERROR=1
232. 610 CONTINUE
233. IF(NWAST£-75) 630,630,640
2J4. 640 WRIT£(NJ,516) NWASTE
235. 516 FORMAT(1HO,SX,'*****',15,'WASTE LOADS EXCEED THE PROGRAM'
236. *,. ' DIMENSIONS OF 75')
237. NERROR=1
233. 630 CONTINUE
239. IF ULIST.EQ.O) GO TO 200
240. WRITE (NJ,501)
241. 501 FORMAT(1H1,35X,31HWATER RESOURCES ENGINEERS, INC.,
242. *//26X,16H* * * DATA LIST ,
243. * 35H STREAM QUALITY ROUTING MODEL * * V32X.
244. *34H* * * QUAL-II/SEMCOG VERSION »**,/)
245. WRITE (NJ,502)
246. 502 FORMAT UHO,10X,24H$SS (PROBLEM TITLES) $$$,/)
247. WRITE (NJ,201)
243. 201 FORMAT (10X,9HCARD IYPE,29X,22HQUAL-II PROGRAM TITLES)
249. WRITE (NJ,503) ( (TITLE.CI, J) , J»l ,20) ,I»1 ,NTITLE)
250. 503 FORMAT (10X,20A4)
251. WRITE (NJ.504)
252. 504 FORMAT (1HO,10X,34HSSS DATA TYPE 1 (CONTROL DATAJ SSI,/)
253. WRITE (NJ,203)
254. 203 FORMAT UOX,9HCARD TYPE,36X,9HCARD TYPE)
255. WRITE (NJ,103) C CDATAU, J),J^«1,16) ,1»1,NCRDS)
256. 103 FORMAT (2C10X,6A4,Al.F10.S))
257. 200 CONTINUE
258. IF(MEIRIC.EQ.O) GO TO 199
259. DELXaDELX/1.609
260. IF(MOOOPT(2).EQ.O) 50 TO 199
261. AE=3.2808*AE*(1000./29.9)
262. BE«3.2308*BE*(1000./29.9)*(1609./3600.)
263. £LEV»3.2808»ELEV
264. 199 CONTINUE
265. C
266. C STEP 3-iA
267. C READ IN DATA TYPE U (ALGAE PROD
263. C. AND KITROGSN OXIDATION CONSTANTS
269. C.
270. DO 1003 131,7
271. READ (HI, 1001) (DATAU, J) , J»l,18)
272. 1001 FORMAT (8A4,F7.0,2X,8A4,F7.0)
273. IF (OAIA(I,1)-ENDA) 1003,1021,1003
274. 1003 CONTINUE
275. NERROR*!
27$. 1005 1*1+1
277. READ (NX,1001) (DATAU ,J),J=l,l8)
2"?3. IT (OATA(I,1)-ENDA) 1005,1007,1005
27J. 1007 N»I-7
23Q. VRITS (HJ.1020) N
134
-------
281. 1020 FORMAT (1HO,5X,16H*»*«* TOO MANY (,I3,20H) DATA IA CARDS READ)
282. GO TO 1004
283. 1021 If (I.CE.7) GO TO 1004
284. IF(IDATA) 1024,1024,1025
285. 1024 NCROS»1
286. GO TO 1026
287. 1025 NERRORsl
288. Ns7-I
289. WRITE (NJ.1022) N
29Q. 1022 FORMAT UH0.5X,15H»*»<» TOO FEW (,I3,20H) DATA U CARDS READ)
291. 1004 CONTINUE
292. Nsl-l
293. NCROSsI
294. DO 1006 1=1,N
295. DO 1006 J=l,6
296. IF(DATA(I,1)-COD£2(J))1006,1008,1006
297. 1008 GO TO (1009,1010,1011,1012,1013,1014), J
298. 1009 ALPHA5=DATAII,9)
299. ALPHA6=OATA(I,18)
300. GO TO 1006
301. 1010 ALPHA3»DATA(I,9)
302. ALPHA4»OATA(I,18)
303. GO TO 1006
304. 1011 ACPHAlsDATA(I.,9)
305. ALPHA2»OATA(I,18)
306. GO TO 1006
307. 1012 GROMAX=DATA(I,9)
308. RESPRTsOATAU,18)
309. GO TO 1006
310. 1013 CKN=DATA(I,9)
311. CKPsOATA(I,18)
312. GO TO 1006
313. 1014 CKL=DATA(I,9)
314. SONET=DATA(I,18)
315. 1006 CONTINUE
316. 1026 IF (HIST .EQ. 0) GO TO. 1015
317. WRITE (NO,1016)
318. 1016 FORMAT (1HO,10X,67HSS* DATA TYPE 1A (ALGAE PRODUCTION AND NITROGEN
319. * OXIDATION CONSTANTS ,5H) $$«,/)
320. WRITE (NJ,1017)
321. 1017 FORMAT (10X,9HCARO TYPE,43X,9HCARD TYPE)
322. WRITS (NJ,1018) ((DAIA(I,J.),J»1,18),I»1,NCRDS)
323. 1018 FORMAT(2UOX,8A4,F10.4))
324. 1015 CONTINUE
325. C
326. C STEP 3-2
327. C READ IN DATA TYPE 2 (REACH IDENT
328. C RIVER MILE AT HEAD AND END OF RE
329. C
330. II * NREACH+1
331. DO SO 1=1,11
332. READ (HI,51) (DATAd, J), J*l, 13)
333. 51 FORMAT (3A4,3X,F5.0,5A4,3X,A4,3X,F10.0,4X,A2,4X,F10.0)
334. IF (DATAd, 1)-£NDA) 50,55,50
335. SO CONTINUE
336. NERROR'l
337. 54 I»I*1
338. READ (NI,S1) (DATAd, J) ,J«1 ,13)
339. IF (OATA(I,1)-ENDA) 54,59,54
340. 59 NsI-II
341. WRITE (NJ,52) N
342. 52 FORMAT (1HO,5X,16H***«* TOO MANY (,I3,18H) DATA2 CARDS READ)
343. GO TO 53
344. 55 IF (I.GE.II) GO' TO 53
345. NERROR • 1
346. NsII-I
347. 4RITE (NJ,56) N
348. 56 FORMAT UHO,5X,15H*»**« TOO FEW (,I3,18H) DAXA2 CARDS READ)
^49. 53 C3NTI.1UE
350.
-------
351. IMAXsO
352. 00 1050 I=1,HREACH
353. IRCH»IFIX(DATACI,4)*10.t0.0001)
354. IRCHNO.(IRCH)sl
355. IMAX*MAXO(IMAX.IRCH)
356. 1050 CONTINUE
357. IOROER=0
358. 00 1055 IRCH*i,IMAX
359. If (IRCHNO(IRCH)) 1055,1055,1052
360. 1052 IORDERsIORDER+1
361. IRCHNO.(IRCH)slORDER
302. 1055 CONTINUE
363. 00 57 l=l,NREACH
364. IRCHsIFIX(OATA(I,4)*10,+0.0001)
365. NRCHslRCHNO(IRCH)
366. 00 53 J=5,9
367. K * J-4
368. RCHIO(NRCH.K) * DATA(I,J)
369. 58 CONTINUE
370. RMTHOR(NHCH) = DATA(I,11)
371, RMTEORCNRCH) s OATA(I,13)
372. IF(METRIC.NE.1)GO TO 57
373. RMTHOJUNRCH)sRMTHOR(NRCH)/1.609
374. RMTEOJUNRCH)sRMTEOR(HRCH)/1.609
375. 57 CONTINUE
376. IF UtaST.EQ.O) GO TO 425
377. WRITE (NJ.505)
373. 505 FORMAT UHO,10X,42HSS5 DATA TYPE 2 (REACH IDENTIFICATION) SSS,/)
379. WRITE (NJ,205)
380. 205 FORMAT (10X,9HCARO TYPE,11X,21HREACH ORDER AND IOENT,
391. * 15X,8HR, MI/KH,12X,3HR, MI/KM)
382. WRITE (NJ,401) CIFIX(DAIA(I,6)*10.t0.0001)
415. NRCHsIRCHNO(IRCH)
416. NHMAR a DATA(I,7)
417. NHriWAR(NRCH) s NHWAH
413. TARGDD.(NRCH)=OAJA(I,3>
419. DO 68
420. K a J-8
136
-------
421.
422.
423.
424.
425.
426.
427.
423.
429.
4JO.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
443.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
.462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
408.
489.
490.
68
67
8625
506
<
206
*
402
426
C
c
C
c
c
c
c
c
c
c
c
c
V
c
c
c
c
c
c
1
I
71 1
70 1
1
74 ;
1
4
79 1
1
72 1
(
75 :
!
!
1
73 (
76 1
1
I
]
1
?
(
C
t
I
78 C
77 C
]
>
507 !
*
't
207 f
*
r
lAUGOR(NRCH.K) « DATA(I,J)
68 CONTINUE
67 CONTINUE
8625 If (IL1ST.EQ.O) CO TO 426
WRITE CNJ,506)
506 FORMAT ( 1HO , 10X, 36HSSS DATA TYPE 3 (TARGET LEVEL DO AND,
31H FLO* AUGMENTATION SOURCES) SSS,/)
WRITE (NJ.206)
206 FORMA: (iox,9HCARD TYP£,i8x,24HR£ACH AVAIL HOWS TARGET,
5X.22HORDER OF AVAIL SOURCES)
WRITE (NJ.402) CCDAIA(I,J),J=1,14),I=1,NCRDS)
402 FORMAT ( 10X,5A4.5X,F5.0,5X,FS.O,F10.1 ,6F5.0)
STEP 3-4
READ IN DATA TYPE 4 (COMPUTATION
ELEMENT FLAG FIELD)
1 * ELEMENT WHICH REPRESS*
HEADWATER SOURCE.
2 > AN ELEMENT WITH NO EXT
INPUTS OTHER THAN INCR
3 * AN ELEMENT ON THE MAIN
IMMEDIATELY UPSTREAM F
JUNCTION.
4 s AN ELEMENT WHICH REPRE
A STREAM JUNCTION.
5 s Art ELEMENT WHICH REPRE
THE LAST COMPUTATIONAL
IN THE SYSTEM.
AN ELEMENT WITH A MAST
AN ELEMENT WITH A WITH
6
7
DO 70 1=1,11
READ (NI,71) (DATA(I,J),J*i,25)
FORMAT <2A4,A2,5X,FS.O,5X,F5.0,10X,20F2.0)
IF. (DATAU,1)-ENOA) 70,75,70
CONTINUE
NERRORsl
I>1+1
READ CMI, 71) (DATA(I,J),J=1,25)
IF (DATA(I,1)-ENDA) 74,79,74
N*I-II
WRITE (NJ,72) N
FORMAT (1HO,5X,16H»***» TOO MANY (,I3,13H) DATA4 CARDS READ)
GO TO 73
IF (I.GE.II) GO TO 73
NERROR * 1
NsII-1
WRITE (NJ,76) N
CONTINUE
FORMAT (1HO,5X,15H*«*»* TOO FEW (,13,18H) OATA4 CARDS READ)
NCROS=I
DO 77 I*1,NREACH
IRCHsIFlX(DATA(I, 4) *10. +0.0001)
NRCHalRCHNO(IRCH)
NCELR s DATAU.5)
NCELRH(NRCH)*NCELR
00 78 J»6,25
K « J-5
IFLAG(NRCH,K)«DATA(I,J)
CONTINUE
CONTINUE
IF (ILIST.EQ.O) GO TO 427
WRITE (NJ,S07)
FORMAT UHO,10X,36HSS* DATA TYPE 4 (COMPUTATIONAL REACH,
16H FLAG FIELD) $«$,/)
WRITS (NJ,207)
FORMAT UOX,9HCARD TYPE, 8X,20HREACH ELEMENTS/REACH,
13X,19HCOMPUTATIONAL FLAGS)
WRITE (NJ.403) ((DATA(I,J),Jal,2S),I«l,NCRDS)
-------
491. 403 FORMAT (10X,2A4,A2,5X,FS.O,5X,F5.0,10X,20F2.0)
492. 427 CONTINUE
493. IOR=0
494. 00 28 lal,NREACH
49S. NCELRxNCELRH(I)
496. 00 28 J»l,NCELR
497. IOR*IOR+l
498. ICLORO(I,J)«IOR
499. 28 CONTINUE
500. IFUOR-500) 650,650,660
SOI. 660 HRITE(NJ,517) IOR
502. 517 FORMAI(1HO,5X,•»**»**,IS,'COMPUTATIONAL ELEMENTS EXECEED THE.',
503. * ' PROGRAM DIMENSIONS OF 500')
504. NERRORd
505. 650 CONTINUE
506. NCELLSsIOR
507. C
508. C STEP 3-5
509. C READ IN DATA TYPE 5 (HYDRAULIC C
510. C- FOR COMPUTING. VELOCITY AND DEPTH
511. C
512. 00 80 1*1,11
513. READ (NI,81) (OATACI,J),0=1,9)
514. 81 FORMAT (2A4,A2,5X,F5.0,10X,5FIO.O)
515. IF (DATA(I,1)-ENDA) 80,85,80
516. 80 CONTINUE
517. NERROR * 1
518. 84 1=1+1
519. READ CNI.81) (DATACI,J),J»l,9)
520. IF COATA(I,n-£NDA) 84,89,34
521. 89 NsI-II
522. WRITE (NJ,82) N
523. 82 FORMAT (1HO,5X,16H***«* TOO MANY (,I3,18H) DATA5 CARDS READ)
524. GO TO 83
525. 85 IF U.GE.II) GO TO 83
526. NERROR * 1
527. NsII-I
528. WRITE (NJ,86) N
529. 86 FORMAT (1HO,5X,1SH***«* TOO FEW (,I3,18H) DATAS CARDS READ)
530. 83 CONTINUE
531. NCRDS*!
532. DO 87 I=I,NREA:H
533. lRCHsiFIXCOATAU,4)*10.tO.OOOi)
534. NRCHsIRCHNO(IRCH)
535. IF(ITRAP.EQ.l) GO TO 183
536. COEFQV(NRCH) * DATACI.5)
537. EXPOQV(NRCH) a DATA(I,6)
538. COEFQH(NRCH) s DATA U* 7)
539. EXPOQHCNRCH) « OATA{I,8)
540. CMAN»(NRCH) a DATA(I,9)
541. GO TO 184
542. 183 SS1(NRCH)3DATA(I,5)
543. SS2CNRCH)*OATA(I,6)
544. WIOTH(NRCH)soATA(I,7)
545. SLOPE(NRCH)sOATA(I,a)
546. CMANN(NRCH)>OAIA(I,9)
547. 184 CONTINUE
548. C +» + ** + + FE3' 1980 REVISIONS MO. 10
549. IF(CMANN(NRCH).LE.O.,)CMANN(NRCH)»0.020
550. C*t+++++
551. IFCMETRIC.EQ.O)GO TO 87
552. CVXX*3.2808/35.3133**EXPOQV(NRCH)
553. COEFQV(NRCH)«CDEFQV(HRCH)«C.VXX
554. CVXX«3.2808/35.3133»«EXPOQH(NRCH)
555. CO£FQH(NRCH)*COEFQHCNRCH)*CVXX
556. 87 CONTINUE
557. C * * + » + FES 1980 REVISIONS NO. 11
558. t » * * + + (DELETION OF HUES)
559. 88 IF (ILIST.EQ.O) GO TO' 428
569. WRITE (NJ.508)
138
-------
561. 508 FORMAT (1HO,10X,31HSSI DATA TYPE 5 (HYDRAULIC DATA,
562. * 40H FOR DETERMINING. VELOCITY AND DEPTH) «SS,/)
563. IFUTRAP.CQ.O ) WRITE(HJ,208)
564. IFdIRAP.NE.O )MRIIECNJ,1293)
565. 1208 FORMAI(10X,9HCARD TYPE.8X,5HREACH,13X,16H SSI SS2 ,
566. * . 4X,2SH«IDTH SLOPE CMANN)
567. 208 FORMAT (10X,9HCARO TYPE,8X,5HREACH,13X,16HCOEFQV EXPOQV,
568. * 4X,25HCOEFQH EXPQQH CMANN)
569. WRITE (NJ,404) ((DATAU,J),J=l, 9),1=1.NCRDS)
570. 404 FORMAT (10X,2A4,A2,5X,FS.O,10X,5F10.3)
571. 428 CONTINUE
572. C
573. C STEP 3-6
574. C READ IN DATA TYPE 6 (REACTION CO
575. C DEOXYGENATION AND REAERATION).
576. C
577. DO 90 1=1,11
578. READ (HI,91) (DATAU, J) , J=l, 10)
579. 91 FORMAT (2A4,A2,5X,F5.0,6F10 .0)
580. IF (DATAU,D-ENDA) 90,95,90
581. 90 CONTINUE
582. NERROR = 1
583. 94 1=1+1
584. READ (NI,91) (DATA(1,J),J=l,10)
585. IF (DATA(I,1)-£NDA) 94,99,94
586. 99 Mal-II
587. WRITE (NJ,92) N
588. 92 FORMAT (1H0.5X,16H***** TOO MANY (,I3,18H) DATAfi CARDS READ)
589. GO TO 93
590. 95 IF (I.GE.II) GO TO 93
591. NERROR = 1
592. N=II-I
593. WRITE (NJ,96) N
594. 96 FORMAT (1H0.5X,15H****» TOO FEW (,I3,13H) DATA6 CARDS READ)
595. 93 CONTINUE
596. NCRDS=I
597. DO 97 I»1,NREACH
598. IRCHsIFIX(DATA(I,4)*10.+0.0001)
599. NRCHalRCHNO(lRCH)
600. CKl(MRCH) a OATA(I,5)
601. CK3(NRCH) = DATA(I,6)
602. K20PT(NRCH) * DATA(I,7)
603. CK2(NRCH) = DATA(I,8)
604. COEQK2(NRCH) * DATA(I49)
605. EXPQK2CNRCH) = DATA(I,10)
606. IF(METRIC.EQ.O) GO TO 97
607. IF(K20PT(NRCH).E0.7) COZQK2(NRCH)=COEQK2(NRCH)*(1.0/35.3133)**EXPQK2(NRCH)
608. IF(K20PT(NRCH).E0.8) CO£QK2(NRCH)*COEQK2(NRCH)/3.2808
609. 97 CONTINUE
610. IF (ILIST.EQ.O) GO TO 429
611. WRITE (NJ.509)
612. 509 FORMAT (1HO,10X,38HSS* DATA TYPE 6 (REACTION COEFFICIENTS,
613. * 38H FOR DEOXYGENATION AND REAERATION) JSS,/)
614. WRITE (NJ,209)
615. 209 FORMAT (10X.9HCARD TYPE,8X,12HREACH Kl,3X,2HK3,8X,5HK20PT,
616. * 5X,26HK2 COEQK2, OR EXPQK2,,/,
617. * 74X,20HTSIV COEF OR SLOPE,/,
618. * 74X.21HFOR OPT 3 FOR OPT 8)
619. IF((DATA(I,10)*1000.).GT.10.) GO TO 98
620. WRITE (NJ,411) ( (DAIAU, J) , J«l , 10) ,I»1 ,NCROS)
621. 411 FORMAT (10X,2A4,A2,5X,F5.0,2F10.2,F10.0,Fl0.2,F10.3,5X,F10.5)
622. GO TO 429
623. 98 WRITE (Nj,405) CCOATAU,J),J=l,10),1=1,NCRDS)
624. 405 FORMAT (10X,2A4,A2,5X,F5.0,2F10.2,FIO.O,F10.2,2F10.3)
625. 429 CONTINUE
626. C
627. C STEP 3-6A
623. C READ IN DATA TYPE 6A (ALGAE, MIT
•>29. C AND PHOSPHORUS COEF.)
6JO. C
-------
631.
632.
633.
634.
63S.
636.
637.
633.
639.
640.
641.
642.
643.
644.
645.
646.
647.
649.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
69?.
703.
DO 1100 I*i,U
READ(NI,1101) (DATA(I,J),Jsi,12)
1101 FORMAI(5A4,5X,FS.O,2X,6F8.0)
IF CDATACI,l)-E!tDA) 1100,1105,1100
1100 CONTINUE
NERROR=1
1104 I=ltl
READ(NI,110l) (DATAU,J),Jsl,12)
IF (OATAU,1)-£NDA) 1104, 1109, 1104
1109 N=I-II
WRITE (NJ,1102> N
1102 FORMAT ( 1HO,5X, 16H**»»* TOO MANY (,I3,19H) DATA6A CARDS READ)
GO TO 1103
1105 IFCl.GE.Ii) GO TO U03
IF(IDATA) 1120,1120,1130
1120 NCRDS=1
GO TO 1140
1130 NEHRORsl
NsII-I
HRITE (NJ,1106) N
1106 FORMAT ( 1HO,5X, 15H<**«* TOO FEW (,I3,19H) OATA6A. CARDS READ)
1103 CONTINUE:
NCRDS=I
DO 1107 Jsi, BREACH
IRCH=IFIX(DATAU,6)»10.+0.0001)
NRCHsIRCHNOURCH)
ALPHAO.(NRCH)=OATA(I,7)
ALGSET(NRCH)sOATAU,3)
CXNH3(NRCH)=DATAU,9)
CKN02(NRCH)sDATA(I,10)
SNH3(NRCH)sDATAU,ll)
SPHOS(NRCH)»OATA(I,12)
IF (METRIC. EO.O) GO TO 1107
A{.GSeT(NRCH)s3.2808*ALGSET(NRCH)
SNH3(NRCH)sSNH3(NRCH)/3.2808
SPHOSCNRCH)=SPHOS(NRCH)/3.2B08
1107 CONTIMUe
1140 IFdLIST .EQ. 0) GO TO 1199
HRIT£(NJ,1110)
1110 FORMAT(1HO,10X,65H S$S DATA TYPE 6A (ALGAE, NITROGEN, AND PHOSPHOR
SUS CONSTANTS) SSS,/)
WRITE(NJ,11H)
1111 FORMAT(10X,9HCARD TXPE.17X,6H REACH, 2X,6HALPHAO,3X,6HALGSET,2X,
* 5HCKNH3,5X,5HCXN02,6X,4HSNH3,6X,4HSP04)
«RITE(NJ,IU2) C(DATA(I,J), J=l,12), I=1,NCROS)
1112 FORMAT(10X,5A4,2X,F8.0,F8.1,lX,2F8.2,lX,F9.2,2F10.i)
1199 CONTINUE
C
C
C
C
STEP 3-6B
RCAO IN DATA TYPE 68 (OTHER COEF
00 1200 I»1,II
READ(NI,1201) (OATA(I,J),Jsl,12)
1201 FORMAT(SA4,5X,F5.0,2X,6F8.0)
IF (DATA(I,1)-ENDA) 1200,, 1205,1200
1200 CONTINUE
NERRORal
1204 laltl
READ(MI,t201) (OATA(I,J),vJ3l,12)
IF (DATA(I,1)-ENDA) 1204, 1209, 1204
1209 Nal-II
WRITS (NJ,1202) N
1202 FORMAT (1HO,5X,16H<»*** TOO MANY (,I3,19H) DATA6& CARDS READ)
GO TO 1203
1205 IFQ.GE.II) 30 TO 1203
IFUDATA) 1220,1220,1230
1220 NCRDSsI
GO TO 1250
1230 N£RR3ft«l
140
-------
701. WRITE (NJ,1206) N
702. 1206 FORMAT UHO,5X, 15H**»»* TOO FEW (,I3,19H) DATA6B- CARDS READ)
703. 1203 CONTINUE
704. NCRDS=I
705. 00 1207 I=1.NR£ACH
706. lRCHsmX(DATA(I,6)»10.+0.0001)
707. NRCH*IRCHNOURCH)
708. CK4(NRCH)sOATA(I,7)
709. CK5(NRCH)=OATA(I,8)
710. EXCO£F(NRCH)=OATACI,9)
711. CK6(NRCH)=OAIAU,10)
712. IF(MEIRIC.EQ.O) GO TO 1207
713. CK4(NRCH)sCK4(NRCH)/3.2808
714. EXCOEF(NRCH)*£XCOEF(NRCH)/3.2808
715. 1207 CONTINUE
716. 1250 IF(ILIST.EQ.O) GO TO 1299
717. WRIT£(NJ,1210)
718. 1210 FORMAT(1HO,10X,41HS«» DATA TYPE 68 (OTHER COEFFICIENTS) $«$,/)
719. WRITE(NJ,1211)
720. 1211 FORMAT(10X,9HCARD I3fPE,13X,SH REACH,4X,3HCX4,6X,3KCK5•3X.6HEXCQEF,
721. *SX,3KCK6)
722. WRITE(NJ,1212) ((OATAU.J), J=l,10), I«1,NCRDS)
723. 1212 FORMAT(10X,5A4,2X,F9.0,4F9.2)
724. 1299 CONTINUE
725. C
726. C STEP 3-7
727, C READ IN DATA TYPE 7 (INITIAL CON
728. C
729. DO 110 1*1,11.
730. READ (Nl.lll) (DATACI,J),J=l,12)
731. Ill FORMAT (5A4,5X,F5.0,F10.0,2F5.0,3F10.0)
732. IF (DATA(I,1)-£NDA) 110,115,110
733. 110 CONTINUE
734. NERRQR*!
735. 114 IaI+1
736. READ (MI,111) CDATAU ,J) , J=l, 12)
737. IF (OATA(I,1)-EMDA) 114,119,114
738. 119 N=I-II
739. WRITE (NJ.112) N
740. 112 FORMAT (1HO,5X,16H*»**» TOO MANY (,Z3,l8H) DATA7 CARDS READ)
741. GO TO 113
742. US IF (I.GE.II) GO TO 113
743. NERROR = 1
744. NSII-I
745. WRITE (NJ.116) N
746. 116 FORMAT (1H0.5X,15H****« TOO FEW (,13,18H) DATA? CARDS READ)
747. 113 CONTINUE
748. NCRDS=I
749. DO 117 I=1,NR£ACH
750. IRCHsIFIX(OATACI,6)fl0.t0.0001)
751. NRCH«IRCHNO(IRCH)
752. TINIT(NRCH) * OATA(I,7)
753. IF(METRIC.EQ.l)TINIT(NRCH)>IlNlT(NRCH)*1.8t32.
754. DOINIT(NRCH) * DATA(I,8)
755. 80INITCNRCH) * DATA(I,9)
756. COINIT(NRCH,l)aOATA(I,10)
757. COINII(NRCH>2)«OATA(I,11)
758. COINIT(NRCH,3)«OATA(I,12)
759. 117 CONTINUE
760. IF (ILIST.EQ.O) GO TO 430
761. WRITE (NJ,510)
762. 510 FORMAT C1HO,10X,40H»S» DATA TYPE 7 (INITIAL CONDITIONS) $SS,/)
763. WRITE (NJ.210)
764. 210 FORMAT (10X.9HCARO TYPE,18X,33HREACH TEMP 0.0. BOD,
765. * 6X,26HCM-1 CM-2 CM-3 )
766. WRITS (NJ,406) ((DATAU,J),Jal,12),I»1,NCRDS)
767. 406 FORMAT (10X,5A4,5X,F6.0,/9.1,5F10.1)
763. 430 CONTINUE
C
-------
770. C STEP 3-7A
771. C READ IN DATA TYPE7A (INITIAL CON
772. C FOR CHLOROPHYLL,NITROGEN,PHOSPHO
773. C COLIFOfiM.AND RAOIONUCLIDE)
774. C
77S. 00 1302 1=1,11
776. REAO(NI,1301> (DAIAU.J), J»l,12)
777. 1301 FORMAT(3A4,A2,5X,F5.0,7F8.0)
778. IF (OATA(I,1)-ENDA) 1302,1303,1302
779. 1302 CONTINUE
780. NERROR*!
781. 1304 1=1+1
782. READ(NI,1301) (DATAU,J), J=l,12)
783. IF (DATAU.i)-ENDA) 1304,1305,1304
784. 130S Nal-II
78S. WRITE (NO,1306) N
786. 1306 FORMAT (1KO,SX,16H***** TOO MANY (,I3,20H) DATA 7A CARDS READ)
787. CO TO 1307
788. 1303 IF U.GE.II) 50 TO 1307
789. IFUDATA) 1321,1321,1330
790. 1321 NCROSsl
791. GO TO. 1350
792. 1330 NERRORsl
793. Nall-I
794. WRITE (NJ.1308) N
795. 1308 FORMAT (1HO,5X,15H****» TOO. FEW (,I3,20H) DATA 7A CARDS READ)
796. 1307 CONTINUE
797. NCRDSsI
798. DO 1309 I=t,NREACH
799. IRCHsIFIXCDATAU,5) *10. +0.0001)
800. NRCHsIRCHNOURCH)
801. ALGII(NRCH)=OATAU,6)/ALPHAO(NRCH)
802. CNH3IT(NRCH)sDATA(I,7)
803. CN02II(NRCH)=OAIA(I,8)
804. CN03IT(NRCH)sDATA(I,9)
805. PHOSIT(NRCH)»OATA(I,10)
806. COLIIT(NRCH)=DArAU,ll)
807. RAONlT(NRCH)sOATA(I,12)
809. 1309 CONTINUE
809. 1350 IF UL15T.EQ.O) GO TO 1320
810. URITE (NJ,1310)
811. 1310 FORMAT (1HO,10X,47HS8S DATA TYPE 7A (INITIAL CONDITIONS FOR CHOROP
812. * 29HHXLL A, NITROGEN, PHOSPHORUS,/30X,19HCOLIFORM AND SELECT
813. * 36HEO NON-CONSERVATIVE CONSTITUENT) »SS,/)
814. WRITE (NJ.1311)
815. 1311 FORMAT (10X.9HCARO TXPE,15X,5HREACH,5X,6HCHLORA,5X,5HNH3/N,5X,
816. * 5HN02/N,5X,5HN03/N,7X,3HDOP,6X,4HCOLI,4X,6HNONCON)
817. WRITE(NJ,1312} ((OATA(I,J), J=l,12), I*1,NCRDS)
818. 1312 FOKMAT (10X,3A4,A2,3X,F6.0,6X,F6.1,4X,F6.2,3F10.2,F10.2,F10.3)
819. 1320 CONTINUE
820. C
821. C STEP 3-8
822. C READ IN DATA TYPE 8 (INCREMENTAL
823. C CONDITIONS).
824. C
825. 00 120 1=1,11
826. READ (NI,121) (OATAd, J), J*l,13)
827. 121 FORMAT (5A4,5X,SF5.0,3F10.0)
828. IF CDATA(I,1)-ESDA) 120,125,120
829. 120 CONTINUE
830. NERROR=1
831. 124 1=1+1
832. READ (NI,121) (DATAd,J),J=l, 13)
833. IF (DATA(I,1)-CNDA) 124,129,124
834. 129 N3I-II
835. WRITE (NJ.122) N
836. 122 FORMAT (1HO,5X,16H***«* TOO MANY (,I3,18H) DATA8 CARDS READ)
837. GO TO 123
338. 125 IF U.GE.II) SO TO 123
339. NCRROR a 1
340. N*II-I
-------
841. WRITE CNJ.126) N
842. 126 FORMAT ClHO.SX, 15H*«*»* TOO; FEW (,I3,18H) DATA8 CARDS READ)
843. 123 CONTINUE
844. NCROSsI
845. DO 127 I=1,NREACH
846. IRCH*IFIX(DATA(I,6)*10.+0.0001)
847. NRCH«IRCHNO(IRCH)
848. QI(NRCH) 3 DAIA(I,7)
849. TI(NRCH) a DATA(I,8)
850. DOI(NRCH) a DATA(I,9)
851. 80DKNRCH) = OATA(I,10)
852. CONSI(NRCH,l}aOATA(I,ll)
853. CON5I(NRCH,2)aOATA(I,12)
854. CON5I(NRCH,3)*OATA(I,13)
855. IF(MEIRIC.EQ..O)CO TO 127
856. O.I(NRCH)s35.3133*QI(!JRCH)
857. TI(NRCH)sl.8*TI(NRCH)+32.0
858. 127 CONTINUE
859. If ULIST.EQ.O) CO TO 431
860. WRITE (NJ.511)
861. 511 FORMAT (1HO,10X,35HSSS DATA TYPE 8 (INCREMENTAL INFLOW,
862. * 16H CONDITIONS) SSS)
863. WRITE (NJ.211)
864. 211 FORMAT (10X.9HCARD IXPE,17X,5HREACH.5X,IHQ,5X,4HTEMP,6X,
865. * 4HD.O.,7X,3HBOO,6X,4HCM-l,6X,4HCM-2,6X,4HCH-3)
866. WRITE (NJ,407) ((DATACI,J),J=l,13),1=1.NCRDS)
867. 407 FORMAT (10X,5A4,5X,F5.0,F8.3,F8.1,5F10.1)
863. 431 CONTINUE
369. C
870. C STEP 3-8A
871. C READ IN DATA TYPE 8A CINCREMENTA
872. C CONDITIONS FOR CHLOROPHYLL, NITR
873. C PHOSPHOROUS, COLIFORM AND RADIO*
874. C
875. DO 1400 1=1,11
876. READ(Nia401) (OATA(I,J), J = 1,12)
877. 1401 FORMAT(3A4,A2,5X,F5.0,7F8.0)
378. IF (DATA(I,1)-£NOA) 1400,1402,1400
879. 1400 CONTINUE
880. NERROR=1
881. 1403 1=1+1
882. REAOCNI.1401) (OATA(I,J), J=l,12)
883. IF COATA(I,1)-EHOA) 1403,1404,1403
884. 1404 N=I-II
885. WRITE (NJ,1405) N
886. 1405 FORMAT (1HO,5X,16H**«*» TOO MANY (,I3,20H) DATA. 8A CARDS READ)
887. CO TO 1406
888. 1402 IF U.GE.II) CO TO 1406
889. IFUDATAH420,1420,1430
890. 1420 NCRDS'l
891. CO TO 1450
892. 1430 NERRORsl
893. N=II-I
894. WRITE (NJ,1407) N
895. 1407 FORMAT (1HO,5X,15H*»«»* TOO FEW (,I3,20H) DATA 8A CARDS READ)
896. 1406 CONTINUE
897. NCRDSsI
898. 00 1408 I»1,NREACH
899. IRCH»IFIX(DATA(I,5)*10.t0.0001)
900. NRCHsIRCHNO(IRCH)
901. ALCI(NRCH)sOATA(1,6)/ALPHAO(NRCH)
902. CNH3I(NRCH)aOATA(I,7)
903. C!i02I(NRCH)aOATA(l,8)
904. CN03I(NRCH)30ATA(I,9)
905. PHOSI(NRCH)aOATA(I,10)
90S. COLIR(NRCH)sDATA(I,ll)
907. tUONI(NRCH)30AIAU,12)
903. 1408 CONTINUE
909. 1450 IFULIS7 .EQ.O) CO TO 1409
SiO, ^RITS (NJ,1413)
143
-------
911. 14X0 FORMA? UHO, IOX,36HS»S DATA TYPE 8A (INCREMENTAL INFLOW ,
912. * 40H CONDITIONS TOR CHLOROPHYLL A. NITROGEN,/30X,
913. * 51HPHOSPHORUS, COLIFORM AND SELECTED NON-CONSERVATIVE ,
914. * 16HCONSTITUENT) $««,/)
915. WRITE (NO,1411)
916. 1411 FORMAIUOX,9HCARD ITPE,15X,12HREACH CHLORA,3X,5HNH3/N,3X,5HN02/N,
917. * 3X,5HN03/N,5X,3HDOP,7X,4HCOLI,2X,6HNONCON)
913. WR1TE(NJ,1412) ((DATA(l.J), J=l,12), I«1,NCRDS)
919. 1412 FORMAI(10X,3A4,A2,8X,F6.0,5F8.2,F11.1,F8.3)
920. 1409 CONTINUE
921. C
922. C STEP 3-9
923. C READ IN DATA TYPE 9 (STREAM JUNC
924. C IDENTIFICATION AND THE ORDER OF
925. C CONNECTING ELEMENTS TAKEN CLOCXW
926. C AROUND THE JUNCTION).
927. C
929. IIsNJUNC+1
929. DO 130 1=1,11
930. READ (NI,131) (OATAd , J) , J=l, 13)
931. 131 FORMAT (3A4,A3,5X,F5.0,5X,5A4,3(5X,F5.0))
932. IF (DAIA(I,1)-£NDA) 130,135,130
933. 130 CONTINUE
934. NERROR31
935. 134 1=1*1
936. READ (NI,131) (DATAd, J) , J»l ,13)
937. IF (OATAd,D-ENDA) 134,139,134
938. 139 Nal-II
939. WRITE (NJ,132) N
940. 132 FORMAT (1HO,5X,UH*«*M TOO MANY (,I3,l8H) DATA9 CARDS READ)
941. GO TO 133
942. 135 IF U.GE.II) 50 TO 133
943. NERROR = 1
944. ' N=II-1
945. WRITE (NJ,136) N
946. 136 FORMAT (1HO,5X,15H**»*» TOO FEW (,I3,18H) DATA9 CARDS READ)
947. 133 CONTINUE
943. NCRDSsI
949. DO 137 I«1,NJUNC
950. IJUNC • OATAd,5)
9S1. OQ 138 J*6,10
952. K » J-5
9S3. JUNC1D(IJUNC,K)»DATA(I,J)
954. 138 CONTINUE
955. JUNC(IJUNC,!) * DATA(I,1D
956. JUNC(IJUNC,2) « DATA(Z,12)
957. JUNC (I JUNC, 3) * DATAU,13)
953. 137 CONTINUE
959. IF (ILIST.EQ.O) GO TO 432
960. WRITE (NJ,S12)
961. 512 FORMAT (1HO,10X,38H$SS DATA TYPE 9 (STREAM JUNCTIONS) $$$,/)
962. WRITE (NJ,212)
963. 212 FORMAT (10X,9HCARD TSTPE,14X.24HJUNCTION ORDER AND IOENT,
964. * 9X,2SHUPSTRM JUNCTION TRIB)
965. MRITE (NJ,408) ((DATAd,J),Jsl,13),1=1,NCRDS)
966. 408 FORMAT (10X.3A4,A3,5X,F5.0,5X,5A4,5X,F5.0,5X,F5.0,5X,F5.0)
967. 432 CONTINUE
968. C
969. C STEP 3-10
970. C READ IN DATA TYPE 10 (HEADWATER
971. C AND THEIR CHARACTERISTICS).
972. C
973. II * NHWTRS+1
974. 00 140 1=1,11
975. READ (NI,141) (OATAd, J) ,J»1,16)
976. 141 FORMAT (2A4,A2,5X,F5.0,5A4,F10.0,6F5.0)
977. IF (OATAd, D-ENOA) 140,145,140
979. 140 CONTINUE
979.
995. 144
-------
981.
982.
983.
984.
985.
986.
987.
988.
989.
990.
991.
992.
993.
994.
995.
996.
997.
998.
999.
1000.
1001.
1002.
1003.
1004.
1005.
100S.
1007.
1009.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
1013.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
1038.
1039.
1040.
1041.
1042.
1043.
1044.
1045,
1046.
1047..
1043.
1049.
10SO.
READ (NI,141) (OATA(I,J),J=1,16)
IF (DATA(I,1)-£NDA) 144,149,144
149
WRITE (NJ,142) N
142 FORMAT (1HO,SX, 16H**»«* TOO MANX (I3,19H) OATA10 CARDS READ)
GO TO 143
145 IF (I.GE.II) GO TO 143
NERROR * 1
WRITE (NJ.146) N
146 FORMAT ( 1HO ,5X, 15H***«* TOO fEW (,I3,19H) DATA10 CARDS READ)
143 CONTINUE
NCRDSal
DO 147 Isl,NHWIR5
NHM « DATACI.4)
00 148 J=5,9
K » J-4
HWTRID(NHW,K) » DATA(I,J)
148 CONTINUE
HWFUOH(NHM) * DATAU.10)
HWIEMP(NHW) = DATA(I,11)
IF(MEIRIC.GT.O)HWFLO»(NHIO=35.3133»HWFLOW(NHW)
IF(METRIC.GT.O)HWTEMP(NHW)si.8*HWT£MP(NHiO*32.0
HWDO(NHlrf) > DAIA(I,12)
HWBOO(NHW) s OATAU,13)
Ht{CONS(NHW,l)sDATA(I,14)
HWCONS(NHM,2):OATA(I,15)
HMCOMS(NHW,3)=OATA(I,16)
c
c
c
c
c
c
141 CONTINUE
IF (ILIST.EQ.O) GO TO 433
WRITE (NJ.513)
513 FORMAT (1HO, 10X, 40HSSJ DATA lift 10 (HEADWATER SOURCES) $$$,/}
- WRITE (NJ,213)
213 FORMAT (10X,9HCARD T!fPE, 10X, 23HHDWATER ORDER AND IDENT,
* 5X,28HFIOW TEMP D.O. BOO,
» 24H CM-1 CM-2 CM-3)
WRITE (NJ,409) ( (DATA(I , J) , J=l , 16) , 1=1 ,NCRD5)
409 FORMAT (10X, 2A4 , A2 ,5X, F5 . 0 , 2X,5A4,F9.3,5F8 .2 ,F8. 3)
433 CONTINUE
STEP 3-10A
READ IN DATA TYPE 10A (HEADWATER
CHLOROPHYLL, NITROGEN, PHOSPHORU
COLIFORM AND RADIONUCLIDE CONDIT
DO 1500 1=1,11
READ(NI,1501) (OATACI.J), J=l,12)
1501 FORMAT(3A4,A2,5X,F5.0,7F8.0)
IF (OATA(I,1)-£NDA) 1500,1502,1500
1500 CONTINUE
NERRORsl
1503 I=I»1
READ(NI,1S01) (OATA(I,J), J>1,12)
IF (OATA(I,1)-ENDA) 1503,1504,1503
1504 NzI-II
WRITE CNJ.1505) N
1505 FORMAT (1HO,5X,16H****« TOO MANY (,I3,21H) DATA 10 A- CARDS READ)
GO TO 1506
1502 If (I.GE.II) GO TO 1506
IFUOATA) 1520,1520,1530
1520 NCROS'l
GO TO 1550
1530 NERRORal
MsII-I
WRITE (NO, 1507) N
1507 FORMAT ( 1H0.5X, 15H***»* TOO FEW (,I3,21H) DATA 10A CARDS READ)
1506 CONTINUE
30 :
145
-------
1051. NHW=DATA(I,5)
1052. HWALG(NHW)sOAIAd,6)/ALPHAO(l)
1053. H*NH3(NHW)*OATA(I,7)
1054. HWN02(NHW)sOAIAd,8)
1055. H*N03(NHW)=OAIA(I,9)
1056. HWPHOS(NHW)=OATA(1,10)
1057. HWCOLI(NHW)=OATA(I,11)
1058. HWRADN(NHW)aOATAd,12)
1059. 1508 CONTINUE
1060. 1550 IFdLlST ,EQ. 0) GO TO 1509
1061. WRITE (NJ,1510)
1062. 1510 FORMAT(1HO,10X,29HSS$ DATA UPE 10A (HEADWATER ,
1063. * 2SHCONOIT10NS FOR CHLOROPHYLL,
1064. * 21HNIIROGEN, PHOSPHORUS,/30X,25HCOLIFORM AND SELECTED NON
1065. * 30H-CONSERVATIVC CONSTITUENT) $$$,/)
106$. WRITE (NJ,1511)
1067, 1511 FORMAT (10X,9HCARD TYPE,UX,24HHOHATEP CHLORA NH3/N
1068. * 39HN02/N N03/N OOP COLI NONCON)
1°069. HRlTe(NJ,1512) ((DAIA(I,J). J*l,12), I»1,NCRDS)
1070. 1512 FORMAT (10X,3A4,A2,3X,F6.0,2X,F6.1,F6.2,3F8.2,F10.2,F8.3)
1071. 1509 CONTINUE
1072. C
1073. C STEP 3-11
1074. C READ IN DATA TYPE 11 (WASTE INPU
1075. C WITHORAWLS AND THEIR CHARACTERS
1076. C
1077. II » NHASTEtl
1078. 00 150 1=1,11
1079. READ (MI,151) (DATAd, J) , J»l, 17)
1080. 151 FORMAT (2A4,A2.F5.0,5A4,F5.0,F10.0,6FS.O)
1081. IF (DATAU,D-ENDA) 150,155,150
1082. 150 CONTINUE
1083. NERROR s 1
1084. 154 I = I + 1
1085. READ (NI,l5l) (DATAd, J) ,0*1 ,17)
1086. IF (DATAd,1)-ENDA) 154,159,154
1087. 159 MsI-II
1088. WRITE (NJ.152) N
1089. 152 FORMAT (lHO,5x,16H**»»* TOO MANX (,I3,19H) DATAU CARDS READ)
1090. GO T3 153
1091. 155 IF (I.GE.II) GO TO 153
1092. NERROR * 1
1093. NsII-l
1094. HRITE (NJ,1S6) N
1095. 156 FORMAT (1H0.5X,15H»*»»* TOO FEW (,I3,19H) DATAU CARDS READ)
1096. 153 CONTINUE
1097. NCRD5=I
1098. 00 157 Ial,NWASTE
1099. NNS > DATAd,4)
1100. 00 158 J=5,9
1101. K » J-4
1102. MASTIO(NHS.K)*OATA(I,J)
1103. 158 CONTINUE
1104. TRFACT(NHS) > OATA(I,10)
1105. WSFU)W(NWS) > DATAd,11)
1106. WSTEMP(NHS) * DATA(I,12)
1107. WSOO(NWS) > DATA(I,13)
1108. MSBOO(NWS) c OATAd.14)
1109. WSCONS(NHS,1)BOATA(I,15)
1110. MSCONS(NWS,2)'OATA(I,1S)
1111. WSCONS(NWS,3)*OATA(I,17)
1112. IF (METRIC.EQ.O) GO TO 157
1113. WSFLOM(NWS)>3S.3133*MSFLOW(NWS)
1114. WSTE*i>(NWS)3l.a*tfSTEMP(MW3)+32.0
1115. 157 CONTINUE
1116. I£ (IUI5T.EQ.O) GO TO 434
1117. WRITE (NJ.514)
1118. 514 FORMAT (1HO,10X.38HSS* DATA TYPE 11 (POINT SOURCE / POINT,
1119. * 28H SOURCE CHARACTERISTICS) US,/)
1120. WRITE (NJ.214)
-------
1121.
1122.
1123.
1124.
1125.
1126.
1127.
1128.
1129.
1130.
1131.
1132.
1133.
1134.
1135.
1136.
1137.
1133.
1139.
1140.
1141.
1142.
1143.
1144.
1145.
1146.
1147.
1143.
1149.
1150.
1151.
1152.
1153.
1154.
1155.
1155.
1157.
1153.
1159.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1163.
1169.
1170.
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1131.
1132.
1133.
1134.
1195.
1186.
1137.
1133.
1139.
1190.
214 FORMAT (10X,42HCARD TYPE POINT SOURCE ORDER AND ID EFF,
* 4X.36HFLOH TEMP D.O. BOD CM-1,4X,
* 12HCM-2 CM-3)
WRITE (NJ,410) ((DAIAU,J),J»t,17),I«l,NCRDS)
410 FORMAT (10X,2A4,A2.F5.0,2X,5A4,F5.2,F8.3,5F8.2,F8.3)
434 CONTINUE
STEP 3"11A
READ IN DATA TYPE IIA (WASTE INP
CHARACTERISTICS ALGAE, NITROGEN,
PHOROPHOROUS COL1FORMS AND RADIO
DO 1602 1=1,11
R£AO(NI,1601) (DATA(I,J), J=l,12)
1601 FORMAT(3A4,A2,5X,FS.O,7F8.0)
IF (OATA(I,1)-£NDA) 1602,1621,1602
1602 CONTINUE
NERRORsl
1605
C
c
C
c
c
READ(NI,1601) (DATACI.J), J=l,12)
IF (DATA(I,1)-ENDA) 1605,1607,1605
1607 NsI-II
WRITE (NJ,1620) N
1620 FORMAT UHO,5X, 16H**«» * TOO MANX (,I3,21H) DATA 11A CARDS READ)
GO TO 1604
1621 IF (I.GE.II) GO TO 1604
IF(IDATA) 1630,1630,1640
1630 NCRDSsO
GO TO 1650
1640 NE8ROR-1
WRITE (NJ,1622) N
1622 FORMAT ( 1HO,5X, 15H***** TOO FEW (,I3,21H) DATA 11A CARDS READ)
1604 CONTINUE
NCRDS=I
DO 1606 I=i,NHASTE
NHSsOATA(I,5)
WSALG(NWS)=OAIA(I,6)/ALPHAO(1)
MSNH3(NNS)sOATA(I,7)
HSN03(NMS)*DATA(I,9)
WSPHOS(NWS)sOATA(I,10)
WSRAON(NWS)=OATAU,12)
1606 CONTINUE
1650 IFULIST .EQ. 0) GO TO 1699
WRITS (NJ,1610)
1610 FORMAT (1HO,10X.41HSSS DATA TYPE IIA (POINT SOURCE CHARACTER,
* 45HISTICS - CHLOROPHYLL A, NITROGEN, PHOSPHORUS,/30X,
* 51HCOLIFORMS AND SELECTED NON-CONSERVATIVE CONSTITUENT
* 5H) S8S,/)
WRITE(NJ,1611)
1611 FORMAT UOX.9HCARD TYPE,6X,2SHPOINT SOURCE ORDER AND ID,3X,
* 46HCHLORA NH3/N M02/N N03/N OOP COLI,
* 11H NONCON)
NCRDSsNCRDS-1
IF (IDATA.EQ.O) GO TO 1655
DO 1615 l3i,NCROS
NWS*OATA(I,5)
FNMS3NUS
WRITE(NJ,1612)(DATA(I,J), J«l,4),FNMS,(WA5TID(N^S,K), K*l,5),
* (DAIACI.J), J»6,12)
1612 FORMAT (10X,3A4,A2,F6.0,IX,5A4,F8.3,4F3.2,FU.2,F8.3)
1615 CONTINUE
1655 WRITE (NJ,1612) (DATAtMCROStl,J),J»l,3)
1699 CONTINUE
WRITE (NJ,20S5)
2055 FORMAT (1H1)
*
* STEP 4-0
: IF THE CORRECT NO. OF DATA CARDS
K7
-------
1191.
1192.
1193.
1194.
1195.
1196.
1197.
1199.
1199.
1200.
U01.
1202.
1203.
1204.
120S.
1206.
1207.
C
c
C
NOT BEEN READ IN,
TERMINATE.
THE PROGRAM MI.
IF (NERROR.EQ.O) GO TO 888
WRITE (NJ,2066)
2066 FORMAT (1H1,15X.34H* * * *
33H* * *
16X.34H* E X
33HR H I
C U
A T
N
B
W A
C A
.//'*
T
E
16X, 1H»,31X,3HO F,31X,1H*,//,
16X,34H*
33HI
16X,34H*
33H»
N P 0 T
ERR
ATA
a R s IN
888
STOP
RETURN
END
143
-------
SUBROUTINE NH3S*
Subroutine NH3S completes the setup of the equations necessary
to calculate ammonia nitrogen concentration levels in each computational
element. Specifically, the subroutine completes the definition of the
diagonal term of the coefficient matrix and defines the vector of known
terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bi - *\ + (K7}1- At
7. Withdrawal bj * x1 + (K7)1 At - q0 ^
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each
type of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S1 = (Nj* + qj (N^ ~ - a1(N1)
~ - 11h
+ a3 Ax
6. Waste Input S1 - (N,)* + q! (Nx) ! & + qw(Nl)w
Ax
*-' I syT»ccls used are defined at the ena or this section cr t-
* on r'.eoort.
-------
TYPE RIGHT HAND SIDE
All Others S1 » (Kj)* + q! (N,)! ^
J v1
For steady-state simulation, the only difference is that the value from
*
the previous time step, (NjL. is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-13 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
150
-------
ENTRY
SUBROUTINE NH3S
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
00 computations
from a to 6 for
alt computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
AOO HEADWATER
INPUTS TO aiaw
TERM, S(t)
TYPES 2. 3. «. 5
CONTINUE
TYPE 6
AOO UASTEUATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 8(1)
0
RETURN
TO CUAL
FIGURE VI-13, FLOW CHART -'OR SUBROUTINE NH35
-------
1. SUBROUTINE NH3S
2. C
3. C
4. COMMON TITLE(20,20),RCHID(7S,5),RMTHOR(7S),RMTEOR(75),NHWWAR(1S),
5. * TARGDO(75),1AUGOR(75,6),NCELRH(75),IFLAG(75,20),
6. * ICLORD(75,20),COEF1,NREACH
46. NCELR»NCELRH(I)
47. CNCELR'NCELR
48. CNH3IJ*QI(I)/C?!CELR*CNH3I(X)
49. DO 100 J=l,NC£bR
50. IOR»ICLORO(I,J)
51. C
52. C INITIALIZE DIAGONAL AND KNOWN TERMS
53. C
54. IF (MODOPT(4).EQ.O) ALCAE(IOR)*0.0
1:2
-------
55. TC«0.556*(T(IOR)-68.0)
56. KNH3(IOR)=CKNH3U)«1.047»*TC.
57. REACT»ALPHA1*RESPRR(IOR)*ALGAE(IOR)*D1LI+SNH3(I)»0£1,X*
53. * OTOVCL(IOR) * FACT
59. 8CIOR)»XCIOR)+D1LT*KNH3(IOR)
60. S(IOH)*CNH3(IOR)
61. IF USS.GT.O) S(IOR)=0.0
62. 5
-------
SUBROUTINE N02S*
Subroutine N02S completes the setup of the equations necessary
to calculate nitrite nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms on
*
the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 bi = x-j + (Kg)i At
7. Withdrawal b1 = Xi + (K,)1 At - qQ ^7
where Xi is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIfflT HAND SIDE
1. Headwater Si - (N*)i + q^ (N^ £7 - ai (N2)h + (K7Nl)1 At
6. Waste Input Si - (N*)1 + qj (N^). ^ + qw (Ma)w ^ + (K?Nl)1 At
All Others Si • (N*)1 + q^ (N^ —• t (K7Nl)i At
i
*Aii symbols used ara defined at the end of this section
of the Documentation Report.
154
-------
For steady-state simulation, the only difference is that the value from
the previous time step, (N*)^, is set equal to zero and At s 1.0.
The subroutine flow chart is illustrated in Figure VI-14 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
15:
-------
BURY
SUBROUTINE N02S
INITIALIZE
COUNTERS WO
CONVERSION FACTORS
6
00 computations
from * to b for
all computational
elements
INITIALIZE KNOWN
TERN AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADO HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPES 2. 3. 4. S
CONTINUE
TYPE 6
ADO WASTEWATER
INPUTS TO KNOWN
TERM. S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM. 8(1)
RETURN
TO QUAL
FIGURE YI-14. FLOW CHART FOR SUBROUTINE N02S
156
-------
1. SUBROUTINE N02S
2. C
3. C
4. COMMON IITLE(20,20),RCHID(75,S),RMTHOR(75),RMT£OR(75),NHWWARUS),
5. * TARGDO(75),IAUGOR(7S,6),NC£LRH(75),IFLAG(75,20),
6. * ICLORO(75,20),CO£FQY(75),EXPOQV(75),COEFQH(75),£XPOQH(75),
7. * CMANN(75),CK1C75),CK3(75),K20PT(75),CK2(75),COEQK2C75),
8. » EXPQK2(75),IINIT(75),DOINIT(75),BOINITC75),COINITC75,3),
9. * 01(75),TH75),001(75),aODI(75),COJISIC75,3),JUNCIDU5,5),
10. * JUNC(15,3),HHTRID(15,5),HMFLONU5),HWTEMP(15),HMDO(15),
11. * HWBOO(15),HHCON3(15,3),HASTID(90,5),TRFACT(90),MSFLOM(90),
12. * MSTEMP<90),MSD3(90),MSBOO(90),HSCONS(90,3),QATOT(15),
13. * A(500),B(500),C(500),DU5),S(500),2(500),W(500),G(500),
14. * FLOW(SOO),DEPTH(500),VEL(500),DTOVCL(500),K2(500),Kl(500),
15. * HSNET(500),DL(500},VHW(15),OEPHW(15),DLH*U5),1(500).
16. * DO(SOO),800(500),CONS(500,3),PTIHE,TPRINT,D£LX,
17. * . NHWTRS,NREACH,NMASTE,NJUNC,DELT,01LT,02Lr,OTODX2,OT20DX,
18. * LAT,LSM,LLM,ELEV,DAr,AE,BE,DAXOF1t,DRY8LB,WETaLB,0£WPT,
19. * AIMPR,KINO,CLOUD,SONET,NI,NJ,TRLCD,TOFDAX,NT,NC,TIME,NCS
20. C
21. C
22. COMMON/MODIFA CK4(75),CK5(75),CKNH3(75),CKN02(75),CXN03(75),
23. * CKN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
24. * ALPHAS,ALPHA6,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
25. * SNH3(75),KNH3(500),!CN02(5QO),RESPRR(500),COLI(500),
26. * ALGA£(500),PHOS(500),CNH3(500),CN02(500),C.H03(500),
27. * COLIR(75),ALGI(75),PHOSI(75),CNH3I(75),CN02I(75),
28. * CN03I(75),COLIIT(75),ALGIT(75),PHOS1T(75),CNH3IT(75),
29. * CN02II(75),CM03IT(75),»SCOLI(90),hSALG(90),HSPHOS(90),
30. * MSNH3(90},MSN02(90),«ISN03(9U),H>iCOLI(15),HWALG(15)>
31. * HWPHOS(15),HMHH3(15),HMN02(15),HHN03(15},GROMTH(500),
32. * MODOPT(10),IRCHNO(750),EXCOEF(75)
33. C
34. COMMON/SSTATE/X(500),ISS
35. REAL KN02, KNH3
36. C
37. C INITIALIZE COUNTERS
38. C
39. NHW30
40. NMSaQ
41. C
42. C LOOP THROUGH REACHES AND COMP. ELEMENTS
43. C
44. DO 100 I>1,NREACH
45. NCELRsNCELRH(I)
46. CNCELRsNCELR
48.' DO 100 J=1,NCELR
49. IOR=ICLOKD(I,J)
50. C
51. C INITIALIZE DIAGONAL AND KNOWN TERMS
52. C
53. IC»0.556*(T(IOR)-68.0)
54. KN02(XORJ»CX*02(im.047**TC.
157
-------
55. REACT»01LT*KNH3UOR)*CNH3UOR)
56. B(IOR)*XCIOR)+OUT*KN02UOR)
57. 3(IOR)aCN02(IOR)
58. IF (ISS.GT.O) S(10R)«0.0
59. S(IOR»S(XOR)+REACTtC)iQ2I<]*OIOVCUlOR>
60. IFb«IFLAC(I,J)
01. C
62. C MODIFY DIAGONAL AND/OR KNOWN TERMS
63. C
64. GO TO (101,100,100,100,100,103,104), ITU
65. C
66. 101 NHM=MHM+1
67. S(IOR)sS(XOR)-A(XOR)*HWN02(NHH)
68. GO TO 100
69. C
70. 103 NWS*NriS+l
71. S(IOR}3S(XOR)+WSFLOW(!4HS)*USN02 (NHS)*DTOVCLCIQR)
72. GO TO 100
73. C
74. 104 NriS*NHS+l
75. B(lOR)=aaOR)-*SFlOHCM*S)*DTOYCUIOR)
76. 100 CONTINUE
77. RETURN
78. END
-------
SUBROUTINE N03S*
Subroutine N03S completes the setup of the equations necessary
to calculate nitrate nitrogen levels in each computational element.
Specifically, the subroutine completes the definition of the diagonal
term of the coefficient matrix and defines the vector of known terms
on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7
7. Withdrawal
where x is defined in Subroutine TRIMAT.
7. Withdrawal b1 = x1 - q0 •
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE
1. Headwater Si = (N*)i + q^Nj £• - ai(N3)h t (K8N2)i At - c^u^At
6. Waste Input S1 * (N*)1 + q!(N3)i ^ + qw(N3)w ^ + (K8N2). At - o^^At
All Others Si = (N*)1 * qj(N3). t (K3N2). At - a^-A.At
*AII symbols used are defined at the end of this section
in the Dccu.tenT.2Tion Report.
-------
For steady-state simulation, the only difference is that the value from
the previous time step, (N*)^, is set equal to zero and At = 1.0.
The subroutine flow chart is illustrated in Figure VI-15 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
-------
ENTRY
SUBROUTINE N03S
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
00 computations
fro* * to b for •
all computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
ADD HEADWATER
INPUTS TO KNOWN
TERM, S(I)
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADO UASTEWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, B(t)
G
RETURN
TO QUAL
FIGURE VI-15. FLOW CHART FOR SUBROUTINE N03S
161
-------
1.
2.
3.
4.
5.
6.
7.
a.
9.
10.
li.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
25.
27.
29.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
c
C
c
SUBROUTINE N035
COMMON TITLE(20,20)»RCHIDC75,5),RMTHOR(75),RMTEOR(75),NHHWAR(15),
TARGDO(75),IAUCOK(75,6),NCELRH(73),IFLAG(75,20),
ICLORD(7S,20).COEFQV(75),£XPOQV(75),CDCFQH(75),gXPogH(75)T
CMANN(75),CXH75),CX3<75),K20PTC75),CK2(75),COEQK2(75).
£XPQK2(75),IXNIT(7S),OOINIT(75),BQIN1TC7S),COXNIT(75,3),
Ql(7S),TI(75}.DCLI(75),&ODI(75},COJiSI{75,3).JUNCID(lS,5),
JUNCU5,3),HHIRID<15,5),HWFLOWU5>,HWTEMP(1S),H*OOC15),
HM80D(15),HHCONSU5,3),WASTlO(90,5),TRfACT(90),WSfLQM(90),
WSTEMPC90),NSDO(90),NS80D(90),HSCONS(90,3),OATOT(15),
A(500),8(500),C(500),0(15),S(500),2(500),W(500),G(500),
FLOW(SQO),OEPTH(500),VEL(SOO),DTaVCL(500),K2(500),K1(500),
HSNETCSOO),DL(500),VHWC15),DEPHW(15),DLHH(15),T(500),
00(500),800(500),CONS(500,3),PTIME.TPRINT.DELX,
NHWTRS,NREACH,N«IASTE,NJUNC,OELT,D1LT,02LI,OTODX2,DT200X,
LAT,LSN,LLM,ELEV,DAI,AE,BE,DAlfOFir,DR¥Bt,a,iiilETBLB,DEWPT,
ATMPR, ilINO, CLOUD, 50HEI, NI,NJ,XRLCD,TOFDAlf, NT, NC,TIME,NCS
COMMON/MOOIF/ CK4(75),CK5<75),CKNH3(75),CKN02(75).CKN03C75),
CKN,CKP,CKL,ALPHAO(75),ALPHAl»A[,PHA2.AtPHA3,ALPHA4,
ALPHAS,ALPHA6.GROMAX,RESPRT,ALGSET(75),SPHOS(75),
SNH3(75),KNH3(500),KN02(500),RESPRH(500),COU(500),
ALGAE(500),PHOS(500),CNH3(500),CN02(500),CN03(500),
COLIR(75),ALCI(75),PHOSI(75),CNH3I(75),C.NQ2I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
CN02IT(75),CN03IT(75) ,WSCOH(90) .WSAUGC90) ,WSPHOS(90) ,
WSNH3(90},WSN02(90),HSN03(90),HWCOLI(1S),HWALG(15),
HWPHOS(15),H1«NH3(15),HNNU2(15),HHN03(15),GROWTH(500),
MQDQPT(10),IRCHMQC750),EXCQEF(75)
CQMMON/SSTATE/X(500),ISS
REAL KN02
NHMsO
INITIALIZE COUNTERS
LOOP THROUGH REACHES AND CONP. ELEMENTS
00 100 Isl,NREACH
NCELftsNCELRH(I)
CNCELR=NCELR
00 100 J=1,NCELR
IOR*ICLORD(I,J)
INITIALIZE DIAGONAL AND KNOWN TERMS
IF (MODOPT(4),EO.O) »LGAE(IOR)=0 . 0
REACTB01LT*KN02(IOM)*CN02(IOR)-01LT*ALPHA1*GROMTH(IOR)*ALGAE(IOR)
162
-------
ss.
56. S(IOR)'CN03(IOR)
57. ir (ISS.GT.O) S(IOR)«0.0
58. S(IOR)*S(IOR)+REACT»CHa3IJ*OIOVCMIOR)
59. IFb»irt,ACU,J)
60. C
61. C HOOirX DIAGONAL AND/OR KNOHN TERMS
62c C
63, 50 TO UOifiOO,100,iOO,100,103,104), IFl
64. C
65. 10} NHK«MH«*1
66. S(10R)>S(IOR)«A(XOR)*HUH03(NHH)
67. GO TO 100
68. C
69. 103 NWS*NWS+1
70. SUOR)aSUOR)+MSFLOH(NNS)*iiSh03 (NUS)*OTOVCL(IOR)
71. GO TO 100
72. C
73. 104 NMS*NWS*t
74. BUOR)38UOR)-WSFLOM(NNS)*OTOVCl.(IOR)
75. 100 CONTINUE
76. RETURN
77. END
163
-------
SUBROUTINE P04S*
Subroutine P04S completes the setup of the equations necessary
to calculate phosphorus levels in each computational element. Specifically,
the subroutine completes the definition of the diagonal term of the
coefficient matrix and defines the vector of known terms on the right hand
side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions, and
mass changes caused by stream withdrawals. The resulting diagonal term
for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b. = x.
7. Withdrawal b. * xi - q0 ~
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the
concentration in the previous time step. The known term for eacn type
of element for dynamic simulation is:
TYPE
1. Headwater Si = P* + q'P1 ^- - a-Ph + a2 (p-u^ A.At + o3Ax ~
6. Waste Input Si = P* + (q'P1 + q/J &- + <*2 (p-u.) A.At + a/x ^
All Others Si • P* + q'P' 77 + a2 ^P-U^ A.At + 03Ax ~
*AII symbols used are defined at the end of this section
of the Documentation Report.
164
-------
For steady-state simulation, the only difference is that the value from
the previous time step, P*, is set equal to zero and At - 1.0.
The subroutine flow chart is illustrated in Figure VI-16 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
165
-------
ENTRY
SUBROUTINE P04S
INITIALIZE
COUNTERS AND
CONVERSION FACTORS
CD-
00 computations
from a to b for
all computational
elements
INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR STEADY STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
AOO HEADWATER
INPUTS TO KfKWN
TERM, S(I)
TYPES ?, 3. *. S
CONTINUE
TYPE 6
AOO WASTEWATER
INPUTS TO KNOWN
TERM, SO)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 8(1)
RETURN
TO QUAL
FIGURE VI-16. FLOW CHART FOR SUBROUTINE P04S
166
-------
1. SUBROUTINE P043
2. C
3. C
4. COMMON TITLE(20,20),RCHZD(75,5),RMTHOR(7S),RMTeOR(75),NHHHAR(15),
5.
b.
T.
8.
9.
10.
It.
12.
13c
14.
IS.
16.
17.
18.
19.
TARGDO(75),1AUGO*(7S,6),NCELRH(73),1FLAG(75,20),
:CLORD<75,20),CO£FQVC7S),EXPOQVC75),COEFaH(75),EXPOQHC75),
CMANN(7S),CK1(75),CK3(75),X20PT(75),CK2(75),COEQK2(75),
EXPQK2(75),TIMII(75),D01NIT(75),80INIT(7S),COINIT(75,3),
QI(75),n(75),OOI(75),aODI(7S),COJISI(7S,3),JUNCID(15,S),
JUNC(15,3),HtoTRIO(15,5),HMFLOM(15),HNTEMP(lS),HMOa(15)>
HW800U5),H«ICOHS(15,3),WASTID(90,5),TRFACT(90),MSFLOi«(90),
WSTEMP(90),MSDO(90),HSBOD(90),HSCONS(90,3),QATOT(15),
A(SOO),B<500),C(500),D(15),S(SOO),Z(500),W(500),G(500),
FLOH(SOO),DEPTH(500)PVEL(500),DTO.VCL1500),K2<500),K1(500),
HSNET(500),DL(500),VHW<15),DEPHW(15),DLH«U5),T(500),
00(500),800(500),CONS(500,3),PTIME,TPRINT,DELX,
NHWTRS,NREACH,JI»A5TE,NJUNC.DELT,DlLT,D2LI,DTODX2,DT2aDX,
LAT,LSM,LLM,ELEV,DAr,AE,BE,DAXOFY,DRXBLB>WETBLB,DEWPT,
ATMPR,HIND,CLOOO,SONET,NI.NJ.TRLCD.TOFOAX,NT,NC,TIME,NCS
20. C
21. C
22. COMMON/MODIF/ CK4(75),CK5(75),CKNH3(75),CXN02(75),CKN03(75),
23. * CKN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
24. * ALPHAS,ALPHAS,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
25. * SNH3(7S),KNH3(500),KN02(500),RESPRR(500),COLI(500),
26. » ALGAE(500),PHOS(500),CNH3(500),CN02(500),CN03(500),
27. * COLIR(75),ALGI(75),PHOSI(75).CNH3I(75),CN02IC75),
28. * CN03I(75),COLIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
29. * CN02IT(75),CN031T(75),HSCOLI(90),WSALG(90),WSPHOS(90),
30. * WSNH3(90),MSN02(90),MSN03(90),HHCOLI(15),KMALG(1S),
31. * HWPHOS(15),HWNH3(15),HWN02(15),HWN03(15),GROWTH(500),
32. * MODOPT(10),IRCHNO(750),EXCOEF(75)
33. C
34. COMMON/SSTATE/X(500)fISS
35. C
36. C
37. C. INITIALIZE COUNTERS
38. HHH«0
4o! FACT *: 1.0 / (28.3 * 86400.0)
41. C.
42. C LOOP THROUGH REACHES AND COMP. ELEMENTS
43. C
44. 00 100 I»1,NREACH
45. HCELR»NCELRHU)
46. CNCELR'NCELR
47. PHOSIJ * QI(I.)/CNC£LR*PHOSI(I)
48. 00 100 J»1,NCELR
49. IOR*ICLORO(I,J)
50. C
51. C. INITIALIZE DIAGONAL AND KNOWN TERMS
52. C.
53. S(IOR)3PHOS(IOR)
54. fl(IOR)»X(IOR)
167
-------
55. IFUSS.GT.l) S(IOR)«0.0
56. PSORCE=SPHOS(I)»OELX»DTOVCO(IOR) * FACT
57. REACT * ALPHA2*
-------
SUBROUTINE RADIOS*
Subroutine RADIOS completes the setup of the equations necessary
to calculate the concentration of an arbitrary nonconservative constituent
in each computational element. Specifically, the subroutine completes the
definition of the diagonal term of the coefficient matrix and defines the
vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b-j = x-j + K6 At
7. Withdrawal b-j = x-j + K6 At - q0 —
i
where x-j is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and, in the case of dynamic simulation, the .
concentration in the previous time step. The known term for each type
of element for dynamic simulation is:
TYPE RIGHT HAND SIDE
1. Headwater Si = R* + qjRl ^r - a^R^
2. Waste Input Si = R* + q'.R\ ^ + qwRw ^
All Others S1 = R* + q]R! ~
i
*AII symbols used are defined at the end of this section of the
Oocumentat i en Repo rt.
163
-------
For steady-state simulation, the only difference is that the value from
the previous time step, R?;, is set equal to zero and at At = 1.0.
The subroutine flow chart is illustrated in Figure VI-17 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
170
-------
I ENTRY
( SUBROUTINE RADIOS
INITIALIZE COUNTERS AND
CONVERSION FACTORS
00 computations
from a to b for
all computational
elements
CALCULATE GR7.-ITH RATE,
AND INITIALIZE KNOWN
TERM AND DIAGONAL
TERM FOR ST:ADY-STATE
OR DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE i
ADS HEAS'.;ATER
I::?UTS TO
TYPES 2. 3. 4. 5
CONTINUE
TYPE 6
ADD WASTEWATER
INPUTS TO KNOWN
TERM, S(I)
TYPE 7
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 8(1)
RETURN
-0 QUAL
FIGURE VI-17. FLOW CHART FOR SUBROUTINE RADIOS
171
-------
1. SUBROUTINE RADIOS
2. C
3. C
4. COMMON TITLE(20,20),RCHID(75,5),RMTHOR(75),RMT£OR(75),NHUWAR(15),
5.
6.
7.
a.
9.
10.
11.
12.
13.
U.
15.
16.
17.
18.
19.
7ARCDO(75),IAUGOm75,6)fNCELRH(75),IFLAG(75,2Q),
ICLORDC75,20),CO£FQVC75),EXPOQV<7S),COEFQH(75),EXPOQH(75),
CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),CO£QK2(75),
EXPQK2(75),TINIT(7S),OOINIT<75),BOINIT(75),COINIT(75,3),
gi(75).TIi;75),DOJ(7S),BODI(75)»CO.NSI(75,3),JUNCID(15,5),
JUNCU5,J),HWTRID(15,5),HWFLOWU5>,HWTEMP(15).HWOa(15>,
HW80D(i5)fH«CONS(15,3),WASTIO(90,5),TRFACX(90),MSFLOW(90),
H5TEMPC90),KSDOC90),dSBOD(90),WSCONS(90,3),QAToX(15),
A(500),8(500),CC500),0(15),S(500),ZC500),«C500),G(500),
FLOH(500),DEPIH(500),VEL(500),DTaVCL(500),K2(500),Kl(500),
HSNET(500),OL(500),VHM(15),DEPHH(15),OLHW(15),T(500),
00(500),800(500),CONS(500,3),PTIME,TPRIHT,DELX,
NHWTRS.NREACH,NHASIS«NJUNC,DELT,D1LT,D2UX,DTOOX2,DT20DX,
LAT,LSM,LLM,£LEV,DAT,AE,BE,OAKOFi',DRYBLa,WETBLB,DEWPT,
ATMPR,WIND,CLOUD,SONET,NI,NJ,TRLCD,TOFOAi,IIT,HC,TIME,NC3
20. C
21. C
22. COMMON/HOOIF/ CK4K75),CK5(75),CKNH3(75),CKN02(75),CKN03(75),
23. * CKN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
24. * ALPHAS,ALPHA6,GROHAX,RESPRT,ALGSET(75),SPHOS(75),
25. * SNH3<7S),KNH3(500),KH02C500),RESPR«{500),COLI(500),
26. * ALGAE(500),PHOS(SOO),CNH3(500),CN02(500),CN03(500),
27. * COLIR(75>,ALGI(75),PH05I(75),CNH3I(75),CN02IC7S),
28. * CN03I(75),COLIIT(75),ALGIT(75).PH05IT(75),CNH3IT(75),
29. * CN02IT(75},CN03IT(75),HSCOLI(90),WSALG(90),HSPHOS(90>,
30. * MSNH3(90),HSN02(90),HSN03(90),HNCOLI(15),I1UALG(15),
31. * HWPHOS(15),HWNH3(15),HWN02U5),HWN03U5),GROHTH(500),
32. * MODOPT(10),IRCHMO(750),EXCOEF(75)
33. C.
34. C
35. COMMON/RAOION/ CJC6(75),RADNIT(75),RADNI(75),H«RAON(15),HSRADN(90),
36. * RADIO(SOO)
37. C
38 C
39! COMMON/S5TATE/X(500),ISS
40. REAL K6
41. C
42. C INITIALIZE COUNTERS
43. C
44. NHN*0
45. NWS*0
46. C
47. C LOOP' THROUGH REACHES AND COMP. ELEMENTS
48. C
49. DO 100 lal.NREACH
50. NCELRsNCELRH(I)
51. CNC£LR«NCELR
52. RADIJs<3I(l)/CNCELR*RAOMI(l)
53. DO 100 J>1,NCELR
54. IOR*ICLORO(I,J)
172
-------
55. C
56. C INITIALIZE DIAGONAL AND KNOWN TERMS
57. C
58. TC*0.5S6*(T(IOR)-«8.0)
59. K6«CKfi(I)»l.047*«TC
60. REACT»D1LT*K6
61. 8UOR)«X(IOR)*REACT
62. S(IOR)*RADIOUOR)
63. IF (ISS.GT.O) SUOR)*0.0
64. S(IOR)*S(XOR>+RADIJ*OTO.VCL(IOR)
65. IFL*1FLAG(X,J}
66. C
67. C MODIFY DIAGONAL AND/OR KNOWN TERMS
68. C
69. 60 TO (101.100,100,100,100,103,104), IFL
70. C
71. 101 NHW*NHN+1
72. S(IOR)sS(IOR)-A(IOR)*HHRADN(NHW)
73. GO TO 100
74. C
75. 103 NHS3NHS+1
76. S(IOR)*S(IOR)+NSFLOH(NHS)*HSRADN(NWS)*OTOVCL(IOR)
77. GO TO 100
78. C
79. 104 NHS3NHS+1
80. B(IOR)«B(IOR)-WSrLOH(NHS)*OTOVCL(IOR}
81. 100 CONTINUE
82. RETURN
83. END
173
-------
SUBROUTINE REAERC*
Subroutine REAERC determines the reaeration coefficient for
each computational element through the use of any one of seven
different procedures. However, the same procedure must be used for
all computational elements within an individual reach. The choice of
which procedure to use is controlled by input options for each reach.
The seven options, procedures, and references are:
OPTION & PROCEDURE
1. Read-in K2 values
0.969
2. K2 = 5.026^^x2.31
3. K,
(Dmu)
0.5
m
JT5
x 86,400
REFERENCE
None
Churchill et al (1962)
0'Conner and Dobbins (1958)
0.67
4. K2 = 9.4
x 2.31
Owens et al (1964)
u*
5. K2 = 10.8(1 + /F)' p-x 2.31
6. K2 = 3.3
.333
x 2.31
Thackston and Krenkel (1966)
Langbien and Durum (1967)
7. K, = aQc
None
8. K2 » 3600KSeu
Tsivoglou and Wallace (1972)
*This subroutine is unchanged from the original version of QUAl
except for the addition of the Tsivoglou option. All symbols
used are defined at the end of this section of the Documentation Repor+.
174
-------
where
u = velocity (feet/sec)
D = depth (feet)
Dm = molecular diffusion coefficient (2.25 x 10"8 ft2/sec)
F = Froude Number = u/ v'tfg
u* = shear velocity (ft/sec)
» u n /g/1.49 D0-16?
g - acceleration of gravity (32.2 ft/sec2)
n = Manning's roughness coefficient
K - constant (range approximately 0.05 to 0.1/ft)
The subroutine flow chart is illustrated in Figure VI-18 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
175
-------
ENTER
SUBROUTINE REAERC
DO COMPUTATIONS
FRON «, TO b
FOR STREAM REACHES
SET ICj OPTION
FOR ALL COMPUTATIONAL
ELEMENTS IN REACH
00 COMPUTATIONS FROM »z TO b
FOR ALL COMPUTATIONAL ELEMENTS
WITHIN THE STREAM REACH
OPTION 1
SET Kg EQUAL
TO VALUES READ-IN
OPTIONS 2-8
CALCULATE K
RETURN
TO QUAL
FIGURE VI-18. aOW CHART FOR SUBROUTINE REAERC
175
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
^
<•
C
C
C
C.
C
C
C
C
C
C
SUBROUTING REAERC
REAERC CAN EITHER READ IN REAERATION
COEFFICIENTS (OPTION!), COMPUTE THKM
USING A SELECTED EQUATION (OPTION 2,3,
4,5, AND 6), OR COMPUTE THEM BASED ON
K2«A*Q,**B« ALL. K2'S ARE TO THE BASE. E.
COMMON TITLEC20,20),RCHID(75,S),RMTHOR(75),RMTEOR(75),NHWWARUS),
TARGDO<75).IAUGOR(75,6),NCELRH<7S),1FLAG(75,20),
ICLORO(75,20),CO£FQV(75>,EXPOQV<7S),COEFQH(75),EXPOO.H(75>,
CMANN(75),CKU75),CK3(75>,K20PT(75),CK2(75),COEQK2(75),
EXPQK2<75),TINITC75),DOINIT(75),BOINIT(75),COmT(75,3),
0.1(75),II (75),001(75),3001(75),CDNSH75,3). JUNCID( IS,3),
JUNC(15,3),HWrRID(l5,5),HWFLOW(15),HWTEMP(15),HWDO(15),
H*|BOD(15),HWCO*S(15,3),HASTID(90,5),TRFACT(90),WSFLOH(90),
W5TEMP(90),WSDO(90),WSBOD(90),WSCONS{90,3),OATOT(15),
A(500).8(500),C(500),0(15),5(500),2(500),«(500),C(500),
FLOW(500),DEPTH(500),VEL(500),DTOVCL(500),K2(500),K1(500),
H5NET(500),OL(500>,VHW(1S),OEPHW(15),OLHW(15),T(500),
00(500),BOO(500),CONS(500,3),PTIME,TPRINT,DELX,
NHHTRS,NREACH,NWASTE,NJUNC,DELT,DILI,02LI,DTOOX2,OT200X,
LAT,L5M,LLM,EL£V,DAI,AE.BE,DAYOFlf.DRYBL8,HETBLB,OEWPT,
ATMPR,«IINO,CLOUD,SONET,NI,NJ,TRLCD,TOFDAY,NT,NC,TIME,NCS
REAL K2,K2T
STEP 1-0
LOOP THROUGH SYSTEM OF NREACH RE
AND NCELR COMPUTATIONAL ELEMENTS
REACH.
DO 100 I»l,NREACH
NCELR«NCELRH(I)
KOPT*K20PT(I)
DO 100 J»l,NCELR
IOR»ICLORD(I,J)
IFL*IFLAG(I,J)
STEP 1-1
SELECT K2'S FOR ANY OPTION AS DE
BY REACH.
KOPT
KOPT
KOPT
KOPT
KOPT
KOPT
KOPT
KOPT
1 K2 IS READ IN.
2 CHURCHILL (1962)
3 O'CONNER • DOBBINS (19
4 OWENS, EDWARDS, - SIBB
5 THACKSTON - KRENKEL (1
6 LANGBIEN - DURUM (1967
7 K2 = A * 0 ** B
8 TSIVOGLOU - WALLACE (1
177
-------
55. C.
56. GO TO (101,102,103,104,105,106,107,108), XOPT
57. 101 K2UOR)«CK2CI.)
58. GO TO 100
59. 102 K2(IOR)a5.026*VEL(IOR>**0.969/DEPTH(XOR)**l.673*2.31
60. GO TO 100
61. 103 DM«2.25E-08
62. K2CIOR)*SO,RTCDM.*VEL(IOR>)/OEPTH(IOR)«'*1.5*8.64£*04
63. GO TO 100
64. 104 K2(IOR)=9.4»VEL(IOR)*»0.67/DEPTH(IOR)*'»1.85*2.31
65. GO TO 100
66. 105 Fs0.176*VELCIOR)/SQRTCDEPTH(IOR)>
67. SHRVEL=5.675*VEL(IOR)*CMANN(I)/(1.49»DEPTHUOR)**1.167)
68. K2(IOR)»10.8*(1.0+SQRI(r))*SHRVEL*2.31
69. GO TO 100
70. 106 K2CIOR)a3.3*VEL{IOR)/D£PTH(IOR)*«l.333*2.31
71. eg TO 100
72. 107 K2(IOR)sCOEQK2(I)*r[iOM(XOR)**eXPQ.K2U)
73. GO TO 100
74. 108 CC2 ' COEQK2(I)
75. SLOPE » EXPQK2CI)
76. IFCSLOPE.GT.0.0) GO TO 81
77. ir(CMANNU).GI.O.O) GO TO 82
78. WRITE(NJ,999)
79. 999 FORHAIC1H1,10X,S4H***XMPROPER PARAMETER SPECIFICATION FOR K2 OPTIO
80. IN 8 — /11X,42H***MUSI SPECIFY CHANNEL SLOPE OR. ROUGHNESS )
81. CALL EXIT
32. C CALCULATE DELTA H FROM CHANNEL. SLOPE
83. 81 K2UOR) * SLOPE * VEL(IOR) * CC2 * 3600.
84. GO TO 100
85. C CALCULATE DELTA H FROM MANNING EQ.
86. 82 K2T » CMANN(L)*CMANN(I)»VEL(IOR)*»3/DEPTH(IOR)»»<4./3.)
87. K2CIOR) s CC2*K2T*1630.3
88. 100 CONTINUE
89. RETURN
90. END
178
-------
SUBROUTINE SOVMAT
Subroutine SOVMAT remains unchanged from the original version
of QUAL as documented by the Texas Water Development Board (1970).
According to that reference:
Subroutine SOVMAT solves a system of simultaneous
linear equations whose coefficient matrix is of tri-
diagonal form by using a modified Gaussian Elimination
algorithm.
The solution algorithm is presented, in detail, in Section V. The
subroutine flow chart shown in Figure VI-19 is taken from the Texas
Water Development Board reference. The program listing follows the
Figure.
179
-------
HAVE
EQUATIONS F0«
ALL ELEMENTS SEEN ,
SOLVED BY SACK /
SUISTITUTION
FIGURE VI-19. FLOW CHART FOR SUBROUTINE SOVMAT
180
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
2fl
* o .
29.
1ft
J v •
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
C
c
C
c
c
c
• c
c
c
c
c
c
c
c
c.
c
c
c
c
c.
c
c
c
c
c
c
101
c
c
c
c
c
102
c
c
«•.
SUBROUTINE SOVMAT
SOVMAT SOLVES A SYSTEM Or SIMULTANEOUS
LINEAR EQUATIONS WHOSE COEFFICIENT
MATRIX IS OF TRIOIACONAL FORM USING
A MODIFIED GAUSSIAN ELIMINATION TYPE OF
ALGORITHM.
COMMON TITLE(20,20),RCHID(75,5),RMTHOR(75),RMTEOR(75),NHUNAR(15),
TARGDO(75),IAUGOA(75,6),NCELRH(7S),IFLAG(75,20),
ICLORD(75,20),CO«FQV<75),EXPOQV(75),COEFQH(75),£XPOQH(7S)»
CMANN(75),CKU75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
EXPQK2(75),TINII(75),DOINIT<75),B01NIT(75),COIN1I(75,3),
QI(7S),riC75),OM(75),BODI(75),CQHSl(75,3),JUNCIOU5,5),
JUNC(1S,3>,HHTRIDU5,5),HUFLOW<15),HWTEMP(15),HWDO(15),
HWBOD(15),HMCONS(15,3),WASTID(90,5),TRKACT(90),HSFLOW<90),
WSTEMP<90),MSDO(90),riSBOD(90),HSCONS(90,3),QATOT(15>,
A(500), 8(500), C(500),D( 15), SC500), 2(500), W(500),G(500),
FLOH(500),DEPrH(500),VEL(500),DiaVCL(SOO),K2(500),Kl(500),
HSNET(500),OL(500),VHW(i5),OEPHH(15),DLH*U5),T(500),
00(500), 800(500), CON5(500, 3), PTIME,TPRINI,DELX,
NHWTRS.NREACH,MWAST£,NJUNC.DELT,D1LT,02LT,DTODX2,OT20DX,
LAT.LSM,LLM»ELEV,DAI,AE,BE,DAYOFY,DRYBLB,WETBLB,DEWPT,
ATMPR, HIND, CLOUD, SONET, NI,NJ,TRLCD,IOFDAY, NT, NC,TIMS.NCS
COMMOH/OUTPUT/IRPT1
DIMENSION IFLG(SOO)
STEP 1-0
INITIALIZE COUNTER FOR STREAM JU
IJUNC'O
STEP 2-0
LOOP THROUGH SYSTEM OF NREACH RE
WITH NCELR COMPUTATIONAL ELEMENT
REACH.
00 100 HI, NREACH
NCELR«NCELRH(I)
DO 100 J«l, NCELR
IOR»ICLORD(I,J)
IFLslFLAG
-------
71. C TYPE 4.
72. C
73. 103 IJUNC»IJUNC*1
74. NS«1
75. NN3JUNC(IJUNC;,NS>
76. S(IOR)«SUOR)-DUJUNCO*G(HN>
77. DENOM*B(XOfD-AUOR)>MUOfl»n-0(XJUNC)*M(NN)
78. W(IOR)*CUOR)/DENOM
79. G(IOR)»(S
-------
SUBROUTINE TEMPS*
Subroutine TEMPS is used for dynamic temperature simulations
and completes the setup of the equations necessary to calculate temperatures
in each computational element. Specifically, the subroutine completes the
definition of the diagonal term of the coefficient matrix and defines the
vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions,
and mass changes caused by stream withdrawals. The resulting diagonal
term for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b. = x.,-
7. Withdrawal b1 = x1 - qfl ^- '
where x^ is defined in Subroutine TRIMAT.
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows and
incremental runoff, and the concentration in the previous time step.
The known term for each type of element for dynamic simulation is:
TYPE
1. Headwater S. = T* * ^- + ql T! ^ - a-Th
* 1 ' ' At At
6. Waste input s, = T, * -L- * ,, T, §* + qwTw £
* "i ' ' At
All Others S. = T. + J-+ q T. £!
dT. 1 Vi
*AII symbois used are defined at the end of this section
of the QocurrenCation Repor*.
183
-------
The subroutine flow chart is illustrated in Figure VI-20 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
184
-------
(am ^
SUMOUTINE TEMPS ]
INITIALIZE
COMTEK WO
CONVERSION FACTORS
CALL HEATEX
00 CMpuUtlMI
fmi • to b far
• 11 CMWUtlorw!
ill
INITIALIZE KNOWN
TERM AM DIAGONAL
TEW FOR DYNAMIC
SIMULATION
TYPE 1
ADO INCREMENTAL INFLOW
AND HEAOMATER INPUTS
TO KNOWN TERN,
S(U
TYPES 2. 3. S
ADD INCREMENTAL
INFLOW TO KNOWN
TEW. SO)
TYPE 4
ADO INCREMENTAL
INFLOW TO KNOWN
TEW, S(I)
TYPE 6
WO INCREMENTAL INFLOW
AND WASTEWATER INPUTS
TO KNOWN TERM.
S(I)
TYPE 7
ADO INCREMENTAL INFLOW
TO KNOWN TERM, S(I). AND
SUBTRACT STREAM
WITHDRAWAL FROM
DIAGONAL TERM, 8(1)
RETURN
TO QUAL
FIGURE VI-20. FLOW CHART FOR SUBROUTINE TEMPS
185
-------
1.
2.
3.
4.
5.
5.
7.
3.
9.
10.
11.
12.
13.
14.
IS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
c
c.
c
c
C:
C
C:
c.
C:
c;
c
c-
c:
c;
c
c.
C!
101
SUBROUTINE TCNPS
COMMON TITLE(20,20),RCHID<7S,5),RMTHOR(75),RMIEOR<75),NHWWAHU5),
TARGDO(75).lAUGaR(75,6),NCELRH(75),IFLAG<75,20),
ICLOROC75,20),CO£FQV(75),EXPOQV<75) ,COEFQHC75) ,EXPOO.H(75) ,
CMANN(75),CK1(75),CK3(75),X20PT(75),CK2(75),COEQK2(75),
EXPQK2<75>,TINir(75),DOINIT(75>,BOINIT<75),COlNITC75,3),
gi(7S>,TI(75),DOI(75),aODI(75),CaNSI(75,3>,JUNCID(l5,5),
JUNC(15,3),HWTRIDU5,5),HWFLOWU5),HWTEMP(15),HWDO.(15),
HWBODUS),HWCONS(1S,3),HASTID(90,5),TRFACT(90),WSFLOW(90),
«STEMP(90).WSDO(90),HSBOD(90),WSCONS(90,3),QATOT(15),
A(500),B<500),C.(500),0(15),3(500),2(500),W(500),G(500),
FLOW(500),D£PTH(500),VEU(500),DTO.VCL(500),K2(500),K1(500),
HSNET(500),DL(SOO),VHN(1S),DEPHNU5),DLHW(1S),T(500>,
00(500),800(500),CON5(500,3),PTIME,TPR1NT,DELX,
NHWTR5,NREACH,NWASIE,NJUNC,DELT,D1LT,D2LT,DTODX2,DT200X,
LAT, LSN , bLM , ELEV , OAT,AE,BE, 0AYOFX , DRY BLfr, HEtBLB, OEWPT ,
ATMPR,WIND,CLOUD,SOHEI,NI,NJ,TRLCD,TOFDA)f,HT,NC,TIME,NCS
COMMON /S3TATE/; X(500),I55
INITIALIZE COUNTERS
NHM'O
NNSsO
IJUNC>0
RHOCP«62.4
CALL HEATEX
LOOP'THROUGH REACHES AND .COMP. ELEMENTS
00 100 Isl,NR£ACH
NCELR*NCELRH(I) '
CNCELR'NCELR
TPIJ«gi(I)/CNCCLR*TI(X<)
00 100 J«1,NCELR
IOR»ICLORO(I,J)
INITIALIZE KNOWN TERMS
BUOR)»X(IOR)
IFL«IFLAG(I,JO
MODIFY DIAGONAL AND/OR KNOWN TERMS
GO TO (101,102,102,104,102,103,105), IFL
AOEPTH»0.5*(DEPHW(NHH)*OEPTH(IOR)>
REACIsHSNET(IOR)/(RHOCP*ADEPTH)
S(IOR)»T(IOR)+REACT+rPIJ»OTOVCL(10R)-A(IOR)»HWTEHP(NHW)
186
-------
55. GO TO 100
56. C
57. 102 ADEPTH»0.5*(DEPTHaOR-mDEPTH(IOR))
58. R£ACT»HSNET(IOR>/(RHOCP»AOEPTH)
59. 5UOR)«TUOR)*«EACT+TPIJ*OrOVCLUOR>
60. 60 TO; 100
61. C
62. 103 NHSMNS+l
63. ADEPIH»0.5»(DEPTH(IOR-mDEPTHUOR))
64. REACT«HSHET(IOR)/(RHOCP*ADEPTH)
65. 5(IOR)«T(IOR)+REACT+(TPIJ*W5rLOi«(MW5)*«5TEMP(««3))*OXQVCI.(IOR)
66. CO TO 100
67. C
68. 104 IJUNCWIJUHC+1
69. HS»1
70. NN«JUNC(XJUNC:.NS)
71. ADEPTH«0.25*8(IOR)-HSFl>ON(N«S)*OIOVCI.(XOR)
81. 100 CONTINUE
32. RETURN
83. END
187
-------
SUBROUTINE TEMPSS*
Subroutine TEMPSS is used for steady-state simulations and has
two main functions. First, the heat flux terms that were not computed in
HEATER (i.e. those that are dependent on water temperature: back radiation,
evaporation, and conduction losses) are computed. These heat budget terms
correspond to those calculated in step (3-0) of HEATEX (dynamic simulations)
except that in TEMPSS, the loss terms are combined and the water temperature
dependent terms separated out. In order that these terms be separable,
functional relationships for the computation of back radiation and
evaporation must be linearized, as noted in Section IV.
The second main function of TEMPSS is the same as that of TEMPS,
namely to complete the setup of the equations necessary to calculate
temperature in each computational element. Specifically, the subroutine
completes the definition of the diagonal term of the coefficient matrix
and defines the vector of known terms on the right hand side of the equations.
The additions to the diagonal term represent the individual
constituent changes caused by constituent reactions and interactions, and
mass changes caused by stream withdrawals. The resulting diagonal term
for each type of computational element is:
TYPE DIAGONAL TERM
All except type 7 b1 = xi +
7. Withdrawal b, = x, + I ^
where x^ is defined in Subroutine TRIMATE, and [hfT)]^ refers to the
temperature dependent heat flux terms.
*AII symbols used are defined at the end of this section of the
Documentation Report.
188
-------
The right hand side term contains all known inputs, which
include headwater inflows, wastewater discharges, tributary flows,
incremental runoff, and in this case, the heat flux terms that are not
dependent on water temperature. The known term for each type of element
for steady-state simulation is:
TYPE RIGHT HAND SIDE
1. Headwater S.
6. Waste Input S..
All Others Si
where h.i" refers to water temperature independent heat flux terms.
In comparing these terms with those computed in TEMPS for
dynamic simulations, note that the heat flux term (hj) has been separated
into a water temperature dependent term [h(T)]^ and a water temperature
independent term h^, the former considered an unknown and the latter a
known term in the solution. Note also the absence of At terms and the
temperature from the previous time step (T?), since this is a steady-
state solution.
The subroutine flow chart is illustrated in Figure VI-21 and
is followed by the program listing. All program variables contained in
COMMON are defined in Section VII.
n.t q T. q T
= -- + -—- + J~1
139
-------
C
V
nwoumt TOTSJ
nrruua
coutra
COWUSIM
! AM
MCTOH
00 COMPUTATIONS
nm • TO b ran
AU COmTATIOML
ELDOTS
nrruuzi MOM TQM
AM OIAOOML TOM
mt STtAOT-STATt
SIHJLATJOU
1 1
rm i
AOO INCREMENTAL INFLOW
AM) HEADWATER INPUTS
TO KNOWN TERM.
TYPES Z. 3. 5
AOO INCREMENTAL
INFLOW TO KNOWN
TERM, so
1 1
TTPt t
AOO INCREMENTAL
INFLOW TO KNOW
TERN, s(i)
TYPE 5
AOO INCREMENTAL INFLOW
AM UASTEUATER INPUTS
TO KMOM TERM.
TYPE T
AOO INCREMENTAL INFLOW
TO DOWN TERM. S(I). ANO
SUITRACT STREAM
WITHDRAWAL TOM
DIAGONAL TERM. 8(1)
RETURN
TO OUAL
FIGURE VI-21. FLOW CHART FOR SUBROUTINE TEMPSS
190
-------
1. SUBROUTINE TE.HPSS(NITER)
2. COMMON T1TLE(20,20),RCHID(7S,5),RMTHOR(75),HMTEOR(7S),NHHWARU5),
3. * TARGDO(75),IAUGO*(75,6),NCELRH(75),IFLAG(75.20),
4. * ICLORO(75,20),CO£FO.V(75),EXPOQV(75),COEFQ.H(7S),EXPOQH(7S),
5. * CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),CO£O.K2(75),
6. * EXPO.K2C75),TINII(75),DOINIT(75),BOINIT(75),COINIT(75,3),
7. * 01(75),11(75),DOJ(75),BODI(75),COflSI(75,3),JUNCIDU5,5) ,
8. * JUNC(15,3),HHTRID(15,5),HHFLOH(15),HHTEMP(1S),HWOO.(15),
9. * HWBOD(15),HWCONS(1S,3),HA5TID(90,S),TRFACT(90),«SFLOW(90),
10. * WSIEMP(90),hSOO(90),HSBOD(90),W5CONS<90,3),QATOT(l5),
U0 * A(500),8(500),:(500),0(15),S(500),2(500),W(SOO),GC500),
12. * FLOW(500),DEPTH(500),VEL(500),DTa.VCL(500),K2(500),KH500),
13. * HSN£T(500),DL1500),VHW(15),DEPHWU5),DLH«(15),1(500),
14. * 00(500),BOD(500),CONS(500,3),PTIME,TPRINI,DELX,
IS. * NHWTRS,NREACH,NWASTE,NJUNC,D£LT,D1LT,02LT,DTODX2,DT200X,
16. * LAT,LSH,LLM,El,EV,DAI,AE,BE,OAYOFX,DRXBLB,WeTBLB,DEW(»T,
17. * . ATMPR,MIND,CLOUD,SONET,NI,NJ,TRLCD,TOFDA]f,NT,NC»TIME,HCS
18. CONMOM/SSTATE/X(500),ISS
19. DIMENSION ALPHAK21), AOPHA2(21) ,BETAK2l) ,bETA2(2i)
20. DATA ALPHA1/-0.105,-0.161,-0.260,-0.360,-0.503,
21. S -0.671,-0.892,-1.144,-1.474,-1.842,
22. A -2.318,-2.858,-3.504,-4.264,-5.146,
23. B -6.202,-7.375,-8.767,-10.342,-12.162,-14.214/
24. DATA BETA1/0.0088,0.0102,0.0124,0.0144,0.0170,
25. S 0.0198,0.0232,0.0268,0.0312,0.0358,
26. A 0.0414,0.0474,0.0542,0.0618,0.0702,
27. B 0.079,0.090,0.107,0.114,0.128,0.143/
28. DATA ALPHA2/71.84,70.80,69.63,68.33,66.90,65.34,
29. S 63.39,61.43,59.33,56.93,54.38,51.68,
30. A 48.83,45.43,42.28,38.59,34.76,30.70,26.39,21.83,17.027
31. DATA BETA2/0.826,0.852,0.878,0.904,0.930,0.956,
32. S 0.986,1.014,1.042,1.072,1.102,1.132,
33. 8 1.162,1.196,1.226,1.259,1.292,1.326,1.361,1.396,1.431/
34. CONMON/SSTEMP/JT(500),SOLR;H(75),CLDRCH(75),PATRCH(75),
35. * TDBRCH(7S),TMBRCH(7S),HlHRCHt75)
36. REAL MU,LAMBDA
37. IF (NITER.EQ.O) CALL HEATER(NITER)
38. NHMsQ
39. NMS*0
40. IJUNC=0
41. RHOCP'62.4
42. DO 100 lal.NREACH
43. VPHB*0.1001*EXP(0.03*TNBRCH(I))-0.0837
44. VPAIRsVPWB
45. * -0.000367*PATRCHU)*(TDBRCH(I)-TWBRCH(I))«
46. * (1.0>(T»IBRCH(I)-32.0)/157l.O)
47. CLC*1.0t0.17*CLDRCH(I)»»2
48. HAs4.85E-15*(TDBRCH(I)t460.0)**6*CLC
49. NCELR3NCELRH(I)
50. CNCELHsNCeLR
51. TPIJsQI(I)/CNCELR*TI(I)
52. DO 100 J=l,iCELR
53. IOR=ICLORD(I,J)
54. IFL3IFLAG(I,J)
-------
SS. S(IOR)=0.
56. TJs
64. HSa3.687*SOLRCHU)/24.
65. MU*HS+HA-ALPHA2(M)-al*83
66. GO TO (101,102,102,104,102,103,105), IFL
67. 101 NHHsNHH+1
08. ADEPTH«0.5*(D£PHH<;NHiO+D£PIH
69. R£ACT2MU*D2LT/(RHOCP*AD£PTH)
70. ST3TPXJ*DTOVCL(IOR)-A(IOR)*HWTEMP(NHW)
71. SUOR)»S(IOR)+REACT+Sr
72. B(IOR)=X(IOR)+LAMBOA»02LT/(RHOCP*ADEPTH)
73. GO TO 100
74. 102 ADEPTH>0.5*(DEPTHUOR-l)tOEPTH(IOR))
75. REACT=MU*D2LT/(RHOCP«*DEPTH)
76. S(IDR)«S(IOH3*REACH-TPIJ*DTOVCL(IQR)
77. B(IOR)=X(IOR)+LAM6DA*02LT/(RHOCP*ADEPTH)
78. GO TO 100
79. 103 NWSsNHS+1
80. AOEPTH>0.3*(DEPTHQOR-l)+D£PTHUaR))
81. REACT=MU*D2LT/(RHOCP*AOEPTH)
82. STs(IPIJtwSFLOH(NMS)*WSTEMP(NMS))*DTOVCL(IOR)
83. S(IOR)=SUOR)tREACT+ST
84. 8(IDR)=X(IOR)*LAMBDA»D2LT/(RHOCP*ADEPTH)
85. GO TO 100
86. 104 IJUNC=UUNCtl
87. NS=1
88. NNsJUNC(IJUNC,NS)
69. ADEPTH»0.2S*(DEPTH(IOR-1)+OEPTH(NN)+2.*DEPTH(XOR))
90. REACT=MU*02LT/(RHOCP*»OEPTH)
91. S(IQR)=S(IORJ+REACT+TPIJ*DTOVCL(IOR)
92. B(IOR)sX(10R)+LAM8DA*02LT/(RHOCP*ADEPTH)
93. GO TO 100
94. 105 N*S=NWS-H
95. ADEPTH=0.5*(DEPTHUOR-l)+OEPTH(IOR))
96. REACT>MU*02LT/(RHOCP*AOEPTH)
97. S(10R)sS(IOR)4>REACTtTPIJ*OIOVCL(10R)
98. BT«MSFLOH(NWS)*OTOVCLQOR)
99. 8(IOR)=X(IOR)tUMBOA»02LT/(RHOCP*ADEPTH)-BT
100. 100 CONTINUE
1U1. RETURN
102. END
192
-------
SUBROUTINE TRIMAT
Subroutine TRIMAT computes all coefficients for the implicit,
finite difference advection-dispersion equation for each computational
element except for the diagonal term. In the case of the diagonal
term, b,., TRIMAT computes that portion of term that is fixed and
independent of the constituent to be simulated. This fixed portion of
the diagonal term is designated as x..
In general, the basic equation that TRIMAT sets up for a
computational element, i, is:
aizi-l + bizi + cizi+l = Si
where
b^ = x^ + (constituent dependent terms)
a^,c. = off-diagonal terms
S, = known term
z = variable
In die case of a computational element that contains a junction and the
upstream element in the tributary stream is n, the basic equation becomes;
Vl-l*b1*1*el'l+l*Vn ' S1
Table VI-1 contains the equations for each term in each type of
computational element.
The subroutine flow chart is illustrated in Figure VI-22
followed by the program listing. All program variables in COMMON are
defined in Section VII.
193
-------
TABLE VI-1
SUBROUTINE TRIMAT EQUATIONS
FOR VARIOUS TYPES OF COMPUTATIONAL ELEMENTS*
Reach Type
1. Headwater -D, gr - Q, ^
2. Regular
3. Upstream same as 2
from
junction
4. Junction same as 2
(with n)
5. End of -(0, ,+D,]
- Qi_]
6. Input same as 2
7. Withdrawal same as 2
(1.0 + (Di_1 + D.)
same as 2
(1.0 +(D.
same as 2
same as 2
same as 2
+ 2D.
Q1 )
same as 1
same as 2
Q. ±± ) same as
1 i
-0-
same as 2
same as 2
none
none
-D
none
none
none
Equations shown are for dynamic simulations. For steady-state simulations,
the 1.0 in the x term is 0.0 and the At's in all terms are set to i.O.
-------
ENTRY
SUBROUTINE TRIMAT
INITIALIZE
COUNTERS
00 COMPUTATIONS
FROM a TO b FOR
ALL COMPUTATIONAL
ELEMENTS
INITIALIZE FIXED COMPONENT
OF DIAGONAL TERM, x(I).
FOR STEADY STATE OR
DYNAMIC SIMULATION
DETERMINE
TYPE OF COMPUTATIONAL
ELEMENT
TYPE 1
HEADWATER ELEMENT
COMPUTE COEFFICIENTS
TYPES 2. 3, 6 OR 7
OTHER ELEMENTS
COMPUTE COEFFICIENTS
TYPE 4
JUNCTION ELEMENT
COMPUTE COEFFICIENTS
A(I), X(I), C(I). 0(1)
TYPE 5
FINAL ELEMENT
COMPUTE COEFFICIENTS
RETURN
TO QUAL
FIGURE VI-22. FLOW CHART FOR SUBROUTINE TRIMAT
195
-------
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
IB.
19.
20.
21.
22.
23.
24.
25.
26.
27.
29.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
C
c.
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c.
c;
c
c
c,
SUBROUTINE TRIMAT
TRIMAT COMPUTES THE COEFFICIENT MATRIX
FOR THE IMPLICIT-FINITE-OIFFERENCE FORM
OF THE ONE-DIMENSIONAb. (AOVECTION *
DISPERSION) TRANSPORT EQUATION..
COMMON TITLE(20,20),RCHIO(75,5),RMTHOR(75),RMTEOR<75),NHWWAR(15),
TARGOO(75),IAUGOJl<75,6),NCELRH(75),IFLAG.(75,20),
ICLORO(75,20),CO£FQV<75).EXPOQVC75),COEFQH(75),EXPOQH(75),
CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
EXPQK2(75),TINIT(75),DOINIT(75),BOINIT(75),COINITC75,3),
01(73),TI(75),DOIC75),BODl(75),COJISI(75,3),JUNCID(15,5),
JUNC(15,3),H«TRIDU5,5),HHFLOW(15),HWTEMP(15),HWOO(15),
H«BODU5),HWCONS(15,3),WASTIO(90,5),TRFACT(90),«SFLOH(90),
WSTEMP(90),WSDO(90),i«ISBOD(90),«SCONS(90,3),O.ATOTU5),
A(500),6(500),C(500),D(15),5(500),Z(500),W(500),G(500),
FLON<500),DEPTH(500),VELC500),DTO.VCL(500),K2(500),Kl(500),
HSNET(SOO),OL(500),VHH(15),DEPHW(15),OLHrf(15),T(500),
00(500),800(500),CONSC500,3),PTIME,TPRINT,OELX,
NHWTRSVNREACH,NWASTE.,NJUNC,DELTfDlLT*02LT,DTODX2,DT200X,
LAT,LSM,LLM,ELEV,DAT,AE,BE,OAYOFY,ORYBLfl,WETBLB,DEHPT,
ATMPR.MINO,CLOUD.SONEI,NI,NJ,TRLCD,TOFDAl,NT,NC.,riME,MC3
COMMON/SSTATE/XC500),ISS
MHW*0
IJU»C»0
STEP 1-0
INITIALIZE COUNTERS FOR HEADWATE
WASTE LOADS OR MITHORAULS, AND S
JUNCTIONS.
STEP 2-0
LOOP THROUGH SYSTEM OF NREACH RE
WITH NCELR COMPUTATIONAL ELEMENT
REACH.
DO 100 1=1,NREACH
NCELR»NCELRH(I)
DO 100 J=t,NCELR
IOR«ICLORDU,J)
X(IOR) * 1.0
IF (ISS.GT.O) X(IOR)
IFLsiFLAG(I,J)
GO TO (101,102,102,103,104,102,102), IFL
> 0.0
5TKP 2-1
COMPUTE COEFFICIENTS B AND C
ELEMENT OF TXPE. 1.
FOR
196
-------
55. C
56. 101 HHNaMHM+1
57. AUOR)s»OTODX2*DLHW(NHH)-HMrLOH(NHW)*DTaVCL(IOR)
58. X(IOR)»XCIOR)+OTODX2»
59. C(IOR)«-DTOOX2*DL(IOR>
60. GO TO 100
61. C
62. C STEP 2-2
63. C COMPUTE COEFFICIENTS A,B, AND C
64. C ELEMENTS OF TYPE 2,3,6, OR 7.
65. C)
66. 102 ACIOR)»-DTODX2»OLClOR-l)-FLOHUOH-l)*DIO.VeLUOR)
67. X(IOR)»X(IOR)*DTOOX2*(DL(IOR-l)+DL(IOR))fFLOH(10R)*OTOVCL(IORJ
68. C(IOR)>-DTOOX2*Db(IOR)
69. GO TO 100
70. C
71 e C STEP 2-3
72. C COMPUTE COEFFICIENTS A,B,C, AND
73. C. ELEMENT OF TYPE 4.
74. C
75. 103 IJUNC»WUNC»1
76. N3*l
77. NN»JUNCCIJUNC,NS)
78. DUJUMC)B-OTOOX2*OL
80. X(IOR)»XUOR}+OTOOX2*(OUIOR-l)tDL(NN)+2.0*DL
92. CUORJsO.
93. 100 CONTINUE
94. RETURN
95. END
197
-------
SUBROUTINE WRPT2
Subroutine WRPT2 is basically the same program as documented
by the Texas Water Development Board (1970). Minor changes to report
headings and formats are the only differences from the original version
of the program. For dynamic simulation QUAL-II uses WRPT2 to print
intermediate summaries of simulation results at preselected time intervals.
For steady-state simulations, the report is an optional form of outputting
the solution. WRPT2 writes the concentration of the quality constituents
simulated for each reach and all computational elements within the reach.
For steady-state simulations the WRPT2 also reports within the reach.
For steady-state simulations the WRPT2 also reports the number of
computational elements that do not satisfy the convergent criteria. The
following pages illustrate an example output report from WRPT2 for a
steady-state simulation.
WRPT2 is produced by entering "WRITE INTERMEDIATE REPORT" on
card number 2 of the TYPE 1 input data (see User's Manual Form 2).
Figure VI-23 illustrates the subroutine flow chart and the
following pages contain the program listing. Variables in COMMON are
defined in Section VII.
190
-------
to
RCH/CL
1 73.
2 73.
3 74.
4 7b.
5 75.
RCH/CL
1
2
3
4
5
8.
8.
8.
8.
7.
1
30
87
45
62
23
1
19
19
20
18
58
2
73.55
75.11
75.42
75.65
75.35
2
8.00
8.21
8.20
8.16
7.57
74
75
75
75
8
8
8
7
TEMPERATURE
34567
.30 74.10 74.58 74.90 75.10
.49 75.61 75.64
.66 75.66 75.66 75.66 75.66
.43 75.49 75.53 75.48 75.52
DISSOLVED OXYGEN IN MG/L
3
.00
.19
.15
.55
4
7.94
8.18
8.15
7.53
7.
8.
8.
7.
5
87
18
14
51
6
7.81
8.14
7.46
7
7.75
8.14
7.45
8
75.04
75.66
75.55
0
7.71
0.15
7.43
5-DAY BIOCHEMICAL OXYGEN DEMAND
RCH/CL
1
2
3
4
5
1.
1.
1.
1.
2.
1
94
95
92
74
92
2
2.14
1.90
1.84
1.69
3.00
2
1
1
3
3
.30
.85
.65
.08
4
2.39
1.80
1.62
3.15
AMMONIA
RCH/CL
1
2
3
4
5
0.
0.
0.
0.
0.
1
03
02
02
02
07
2
0.02
0.02
0.02
0.02
0.07
0
0
0
0
3
.02
.02
.02
.07
4
0.02
0.02
0.02
0.07
NITRITE
RCH/CL
1
2
3
4
5
0.
0.
0.
0.
0.
1
00
00
00
00
00
2
0.00
0.00
0.00
0.00
0.00
0
0
0
0
3
.00
.00
.00
.00
4
0.00
0.00
0.00
0.00
NITRATE
RCH/CL
1
2
J
4
5
0.
0.
0.
0.
0.
1
49
SO
50
49
63
2
0.49
0.49
0.49
0.49
0.63
0
0
0
0
3
.49
.49
.48
.63
4
0.49
0.49
0.48
0.63
2.
1.
1.
3.
AS N
0.
0.
0.
0.
AS N
0.
0.
0.
0.
AS N
0.
0.
0.
0.
5
51
76
58
23
IN
5
02
02
02
07
IN
5
00
00
00
00
IN
5
48
49
48
63
6
2.62
1.54
3.33
MG/L
6
0.02
0.02
0.07
MG/L
6
0.00
0.00
0.00
MG/L
6
0.48
0.48
0.62
7
2.73
1.51
3.40
7
0.02
0.02
0.06
7
0.00
0.00
0.00
7
0.48
0.40
0.62
8
2.75
1.47
3.46
8
0.03
0.02
0.06
8
0.00
0.00
0.00
8
0.62
0.48
0.62
ITERATION 3
9 10 11 12 13 14 15 16
75.IB 75.20 75.34 75.39 75.42 75.44 75.45 75.46
73.36 74.IB
75.57 75.55 75.57 75.58
ITERATION 3
13 14 IS 16
9 10 11 12
7.67 7.62 7.58 7.54 7.51 7.47 7.44 7.42
7.88 7.95
7.42 7.39 7.38 7.37
ITERATION 3
13 14 15 16
9 10 11 12
2.84 2.92 2.99 3.06 3.13 3.20 3.26 3.31
1.73 1.70
3.51 3.58 3.64 3.70
ITERATION 3
13 14 15 16
9 10 11 12
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.17 0.17
0.06 0.06 0.06 0.06
ITERATION 3
13 14 15 16
9 10 11 12
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00
0.00 0.00 0.00 0.01
ITERATION 3
13 14 15 16
9 10 11 12
0.61 0.61 0.60 0.60 0.60 0.59 0.59 0.59
0.76 0.76
0.62 0.61 0.61 0.61
17
17
17
17
17
17
18
18
18
18
18
IB
19
19
19
19
19
19
20
20
20
20
20
20
-------
0.10
0.10
0.10
0.10
0.12
0.10
0.10
0.10
0.10
0.12
0.10 0.10 0.09 0.09
0.10 0.10 0.10
0.09 0.10 0.10
0.10 0.09 0.39 0.09 0.09 0.09 0.18
0.12 0.12 0.12 0.12 0.12 0.11 0.11
RCH/CL 1
ALGAE AS CHL.A IN UG/L
3456
8
10
0.10
0.18
0.11
10
11 12 13 14 15 {£
0.10 0.10 0.10 0.10 0.10 0.09
17
0.11 0.11
ITERATION 3
13 14 IS
I 9.77 12.34 12.12 13.86 13.64 13.43 13.23 14.18 14.00 13.83
2 9.64 9.29 8.96 8.65 8.35
3 9.41 8.87
4 8.40 8.25 8.11 7.97 7.84 7.70 7.57 7.45 16.94 16.88
5 13.94 13.86 13.78 13.71 13.63 13.35 13.27 13.19 13.12 12.95 12.88 12.80
11 12 13 14 IS 16
13.65 13.49 13.32 13.16 13.00 12.84
17
FECAL COLIFORM IN NO./100 HL
HCH/CL
1
CL
RCH/CL
2
RCH/CL
3
RCH/CL
4
CL
RCH/CL
5
CL
1
,03E 05
11
,83E 05
1
.80E 05
1
,73£ 05
1
,18E 05
11
3.54C 05
12
I.69E 05
2
3.25E 05
13
1.57E 05
3
3.HE 05 2.87E 05
1.62E 05 1.46E OS
i.49t OS
2
1.09E 05
12
14
1.45E 05
4
1.31E 05
4
l.OOE 05 9.20E 04
13
14
15
1.34E 05
5
1.1BE 05
5
8.46E 04
IS
,47E 05 1.37E 05 1.28E 05 1.19E 05 1.11E 05
11 12 13 14 IS
.13E 04 6.64E 04
6
2.65E
16
1.24E
6
6
7.78E
16
6
1.02E
16
ITERATION 3
7 8 9 10
05 2.44E OS 2.31C 05 2.14E OS 1.98E 05
17 18 19 20
05
7 8 9 10
8
10
7 8 9 10
04 7.15E 04 6.58e 04 2.S2E 05 2.37E 05
17 18 19 20
7 8 9 10
05 9.48E 04 8.84E 04 8.24E 04 7.63E 04
17 18 19 20
RCH/CL i
1 82.53
2 97.62
3 97.54
4 96.35
5 97.79
RCII/CL 1
CONSERVATIVE MINERAL
3456
TOS IN HG/L
8 9
10
88.96 88.51 92.86 92.45 92.04 91.64 96.15 95.75 95.37
97.25 96.88 96.52 96.17
97.10
96.17 95.98 95.80 95.62 95.44 95.26 95.09109.63109.52
97.65 97.50 97.35 97.21 96.36 96.22 96.08 95.94 95.80 95.67 95.52
ITERATION 3
11 12 13 14 IS 16
94.99 94.62 94.25 93.90 93.54 93.20
17
ALGAE GROWTH RATES IN PER OAK ARE
345678
0.30
0.42
0.44
0.39
0.29
0.28
0.43
0.45
0.39
0.29
0.29 0.27 0.27
0.43 0.43 0.43
0.27 0.27 0.29 0.29
10
0.28
ITERATION 3
13 14 15
11 12 13 14 15 16
0.28 0.28 0.28 0.28 0.27 0.27
17
0.39 0.39 0.39 0.39 0.38 0.38 0.40 0.41
0.29 0.29 0.29 0.29 0.29 3.29 0.29 0.29
0.29 0.29
RCH/CL 1
PHOTOSYNTHESIS-RESPIRATION RATIOS ARE
3456789
2.12
2.90
2.99
2.58
1.95
1.97 1.95
2.88 2.86
2.97
2.57
1.94
2.56
1.94
1.83 1.82
2.85 2.83
2.55 2.55
1.93 1.93
1.80 1.78 1.92 1.90
2.54
1.91
2.53
1.90
2.52
1.90
2.78
1.89
10
1.89
2.78
1.88
ITERATION 3
13 14 15
11 12 13 14 15 16
1.87 1.86 1.84 1.83 1.81 1.80
1.91 1.91
17
10
18
18
18
18
19
19
20
19
20
19
20
19
20
-------
SUBROUTINE WRPTZ
YES
IS THIS
A STEADY-STATE
soumoN
NO
PRINT TITLE FOR
STEADY-STATE
SIMULATION
PRINT TITLE FOR
DYNAMIC SIMULATION
0
Loop through
jrogran from a
to b for all
str*M reaches
WRITE
INTERMEDIATE
OUTPUT REPORT
0
RETURN
TO QUAL
FIGURE VI-23. FLOW CHART FOR SUBROUTINE WRPT2
201
-------
1.
2.
3.
4.
5.
6.
7.
a.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
C
C.
C
C
C
C
C
C
C:
c:
SUBROUTINE WRPT2(CONCJ
C
c
c
c
HRPT2 WRITES AN INTERMEDIATE SUMMARY
OF IHC SELECTED QUALITY CONSTITUENTS.
THESE CONSTITUENTS ARE WRITTEN BY REACH
AND BY ELEMENT. THIS SUMMARY CAN BE
GIVEN AT A TIME INTERVAL OF DELI OR.
SOME MULTIPLE OF DELI.
COMMON TITLE(20,20),RCHID(75,5),RMTHOR(75),RMTEOR(75),NHWWARU5),
TARGDO(75),IAUGOR(75,6),NCELRH(75),IFLAG(75,20),
ICLORD(75,20),CO£FO.V(7S),EXPOQY(75),COEFQH(75),EXPOQH(75),
CMANN(7S),CM(75),CK3(75),K20PT(7S),CK2(75),COEQK2(7S),
EXPQK2(75),TINIT(75),DOINIT(75),BOINIT(75),COINIT(75,3),
QI(75),TI(75),OO.I(75),BUDI(75),CONSI(75,3),JUNCIO(15,5),
JUNC(1S.3),HWTRIDU5.5),HWFLOW(15),HWTEMPU5),HWOO(15),
HHBOD(15),HMCONS(15,3),MASTID(90,5).TRFACT(90J,WSFLOH(90),
MSTEMP(90),NSOO(90),MSBOD(90),WSCONS(90,3),gATOT(15),
A(500),8(500),C(500),D(15),5(500),2(500),H(500),G(500),
FLOW(500),DEPTH(500),VEL(500),DTO.VCL(500),K2(500),K1(500),
HSNET(500),DL(500),VHN(15),DEPHW(15),DLHM(15),T(500),
00(500),800(500),CONS(500,3),PTIME.TPRINT.OELX,
NHHTRS,NREACH,NMASTE,NJUNC,DELT,D1LT,02LT,DTQOX2,OT20DX>
LAT,LSM,LLM,ELEV,DAT,AE,BE,DAYOFK,DRYBLB<,METBLB,DEWPT,
ATMPR,MIND,CLOUD,SONET,NI,NJ,TRLCD,TOFDAY,NT,NC.TIME.NCS
COMMON/MODIF/ CX4(75),CK5(75),CKNH3(75),CKN02(75),CKN03(75) ,
CKN>CKP,CKL,ALPHAQ(75),ALPHA1,ALPHA2,ALPHA3.ALPHA4,
ALPHAS,ALPHA6,GROMAX,RESPRT,ALGSET(75),SPHOS(75),
SNH3(75),KNH3(500),KN02(500),RESPRR(500),COLI(500),
ALGAE(SOO),PHOS(500),CNH3(500),CN02(500),CN03(300),
COLIR(75),ALGI(75),PHOSI(75),CNH3I(7br,CN02I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHaSlT(75),CNH3IT(75),
CN02IK75) ,CN03IT(7S) , WSCOLK90) , WSALGOO) ,HSPHOS(903 ,
MSNH3(90),HSN02(90},HSN03(90),HHCOLI(15),HWALG(15),
HHPHOS(15),HHNH3(15),HHN02(15),HHN03(15),GRQMTH(500),
HODOPT(10),IRCHNO(750),EXCOEF(75)
COMMON/RADION/ CK6(7S),RADNIT(75),RADNI(75),HMRAON(15),MSRADN(90),
* RADIO(SOO)
COMMON/SSTATE/X(500),ISS
DIMENSION P(20),CONC(500)
IF (ISS) 20,20,10
10 ITIME=TIME
WRITE (NJ,15) (TITLE(NT,J),J«6,20),IT1ME
15 FORMAT UHO,19X.15A4,4X,9HITERAT10N,I3)
GO TO 55
20 CONTINUE
TlNDAYsTIME/24.0
202
-------
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
31.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
41
* •» •
94.
QC
"9«
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
C
C
C
C
C
C:
C
C
C
C
C
C
C
C
WRITE (NJ.50) CIITLECNr,J),J"6,20),TlNDA*
50 FORMAT UHO, 19X, 15A4,1X,FS.2,5H BAYS,/)
STEP 1-0
55 CONTINUE
IF(NT.EQ.14) GO TO 400
WRITC(NJ,60)
60 FORMAT C2X, 123HRCH/CL 123456
* 9 10 11 12 13 14 15 16 17
« 20. /)
LOOP THROUGH SYSTEM OF
BX NCELR COMPUTATIONAL
REACH.
00 100 I»1,NREACH
NCELR«NCELRHU)
DQ 200 J»t, NCELR
IOR«ICLORD(I,J)
P(J)»CONC(IOR)
IF(NI .EQ. 8) P
-------
SUBROUTINE WRPT3
Subroutine WRPT3 is used to print the final output from the
water quality simulations for both the steady-state solution and the
dynamic case. WRPT3 prints a complete history of all quality and
temperature parameters included in QUAL-II; any parameter not simulated
in the current simulation will be printed either at the value to which
it was initialized (as in the case of temperature) or as zero. The
following pages illustrate an example output report from WRPT3 for a
steady-state simulation.
Figure VI-24 illustrates the subroutine flow chart, and the
following pages contain the program listing. Variables in COMMON are
defined in Section VII.
204
-------
hi
f
c
«
S»CH ELT
NUfe NUM
1 1
2 2
i 3
4 4
5 5
6 6
V 7
a 8
9 9
10 10
11 11
12 12
13 13
14 14
IS 15
16 16
17 2 1
It 2 2
19 1 i
20 2 4
*1 2 5
n 3 i
23 3 2
24 4 1
25 4 2
26 4 3
27 4 4
28 4 5
29 4 6
30 4 7
31 4 8
3? 4 9
33 4 10
3i 5 1
3a 5 2
35 5 J
3? S 1
IE 5 5
39 5 6
40 5 7
us e
4i S 9
43 S 10
U 5 11
45 £ 12
TRCfcM OUAL
i • * T » r- •*•«•»
IT* SUt'J'uATl3N QUtrUt P'«ZZ UUKBER 1
CAf. OUALITV RC.'JTIt:G M3DEL LPC/CEtfCOC VERSION
**«* SIEADV STATE SIMULATION »t**t
FROM
KIL3
46.0
45.0
44.0
43.0
42.0
41.0
40.0
39.0
38.0
37.0
36.0
35.0
34.0
33.0
32.0
31.0
15.0
14.0
13.0
12.0
11.0
2.0
1.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
30.0
29.0
28.0
27.0
26.0
25.0
24.0
23.0
22.0
21.0
20.0
19.0
TO FLOW POINT INCH TEMP DC BOD NH3-M K03-N DIS-O-P CHL A COLI TDS
KILO (CHS) SOURCE FLOW DEC C (KG/L) (HC/L) (HG/L) (KG/L) (HG/L) (UG/L) /100HL ( ) (HC/L) ( ) ( )
45.0 0.98 0.0 0.02 22.94 8.19 1.94 0.03 0.49 0.10 9.77 403. 0.0 82.53 0.0 0.0
44.0 1.21 0.22 0.02 23.08 8.06 2.14 0.02 0.49 0.10 12.34 354. 0.0 88.96 0.0 0.0
43.0 .23 0.0 0.02 23.50 8.00 2.30 0.02 0.49 0.10 12.12 325. 0.0 86.51 0.0 0.0
42.0 .47 0.22 0.02 23.39 7.94 2.39 0.02 0.49 0.10 13.86 311. 0.0 92.86 0.0 0.0
41.0 .48 0.0 0.02 23.66 7.67 2.51 0.02 0.46 0.09 13.64 287. 0.0 92.45 0.0 0.0
40.0 .50 0.0 0.02 23.83 7.81 2.62 0.02 0.48 0.09 13.43 265. 0.0 92.04 0.0 0.0
39.0 .51 0.0 0.02 23.95 7.75 2.73 0.02 0.48 0.09 13.23 244. 0.0 91.64 0.0 0.0
38.0 .69 0.16 0.02 23.91 7.71 2.75 0.03 0.62 0.10 14.18 231. 0.0 96.15 0.0 0.0
37.0 .71 0.0 0.02 23.99 7.67 2.84 0.03 0.61 0.10 14.00 214. 0.0 95.75 0.0 0.0
36.0 .72 0.0 0.02 24.04 7.62 2.92 0.03 0.61 0.10 13.83 198. 0.0 95.37 0.0 0.0
35.0 .74 0.0 0.02 24.08 7.58 2.99 0.03 0.60 0.10 13.65 183. 0.0 94.99 0.0 0.0
34.0 .76 0.0 0.02 24.11 7.54 3.06 0.03 0.60 0.10 13.49 169. 0.0 94.62 0.0 0.0
33.0 .77 0.0 0.02 24.12 7.51 3.13 0.03 0.60 0.10 13.32 157. 0.0 94.25 0.0 0.0
32.0 .79 0.0 0.02 24.13 7.47 3.20 0.03 0.59 0.10 13.16 145. 0.0 93.90 0.0 0.0
31.0 .80 0.0 0.02 24.14 7.44 3.26 0.03 0.59 0.10 13.00 134. 0.0 93.54 0.0 0.0
30.0 .82 0.0 0.02 24.15 7.42 .31 0.03 0.59 0.09 12.84 124. 0.0 93.20 0.0 0.0
14.0 0.18 0.0 0.00 23.26 8.19 .95 0.02 0.50 0.10 9.64 180. 0.0 97.62 0.0 0.0
13.0 0.18 0.0 0.00 23.95 6.21 .90 0.02 0.49 0.10 9.29 162. 0.0 97.25 0.0 0.0
12.0 0.18 0.0 0.00 24.16 8.19 .85 0.02 0.49 0.10 8.96 146. 0.0 96.88 0.0 0.0
11.0 0.19 0.0 0.00 24.23 8.18 .80 0.02 0.49 0.10 8.65 131. 0.0 96.52 0.0 0.0
10.0 0.19 0.0 0.00 24.25 6.18 .76 0.02 0.49 0.10 6.35 118. 0.0 96.17 0.0 0.0
1.0 0.14 0.0 0.00 23.58 8.20 .92 0.02 0.50 0.10 9.41 173. 0.0 97.54 0.0 0.0
•0.0 0.14 0.0 0.00 24.12 6.20 .84 0.02 0.49 0.10 8.87 149. 0.0 97.10 0.0 0.0
9.0 0.33 0.0 0.00 24.24 8.18 .74 0.02 0.49 0.10 8.40 116. 0.0 96.35 0.0 0.0
6.0 0.33 0.0 0.00 24.25 6.16 .69 0.02 0.49 0.10 8.25 109. 0.0 96.17 0.0 0.0
7.0 0.34 0.0 0.00 24.25 8.15 .65 0.02 0.48 0.10 8.11 100. 0.0 95.98 0.0 0.0
6.0 0.34 0.0 0.00 24.26 8.15 .62 0.02 0.48 0.09 7.97 92. 0.0 95.80 0.0 0.0
5.0 0.34 0.0 0.00 24.26 8.14 .58 0.02 0.48 0.09 7.84 85. 0.0 95.62 0.0 0.0
4.0 0.34 0.0 0.00 24.26 6.14 .54 0.02 0.48 0.09 7.70 78. 0.0 95.44 0.0 0.0
3.0 0.34 0.0 0.00 24.26 8.14 .51 0.02 0.48 0.09 7.57 72. 0.0 95.26 0.0 0.0
2.0 0.34 0.0 0.00 24.26 6.15 .47 0.02 0.48 0.09 7.45 66. 0.0 95.09 0.0 0.0
1.0 0.75 0.41 0.00 22.96 7.68 .73 0.17 0.76 0.18 16.94 252. 0.0 109.63 0.0 O.C
0.0 0.76 0.0 0.00 23.43 7.95 .70 0.1? 0.76 0.18 16.88 237. 0.0 109.52 0.0 0.0
29.0 2.59 0.0 0.01 24.02 7.56 .92 0.07 0.63 0.12 13.94 147. 0.0 97.79 0.0 O.C
26.0 2.59 0.0 0.01 24.08 7.57 .00 0.07 0.63 0.12 13.86 137. 0.0 97.65 0.0 0.0
27.0 2.60 0.0 0.01 24.13 7..5S .08 0.07 0.63 0.12 13.78 128. 0.0 97.50 0.0 0.0
26.0 2.61 0.0 0.01 24.16 7.53 .15 0.07 0.63 0.12 13.71 119. 0.0 97.35 0.0 O.C
25.0 2.62 0.0 0.01 24.16 7.51 .23 0.07 0.63 0.12 13.63 111. 0.0 97.21 0.0 0.0
24.0 2.67 0.04 0.01 24.15 7.46 .33 0.07 0.62 0.12 13.35 102. 0.0 96.36 0.0 0.0
23.0 2.68 0.0 0.01 24.16 7.45 .40 0.06 0.62 0.12 13.27 95. 0.0 96.22 0.0 0.0
22.0 2.69 0.0 0.01 24.19 7.43 .46 0.06 0.62 0.11 13.19 88. 0.0 96.08 0.0 0.0
21.0 2.70 0.0 0.01 24.21 7.42 .51 0.06 0.62 0.11 13.12 02. 0.0 95.94 0.0 0.0
20.0 2.73 0.02 0.01 24.19 7.39 .56 0.06 0.61 0.11 12.95 76. 0.0 95.80 0.0 0.0
19.0 2.54 0.20 0.01 24.20 7.38 .64 0.06 0.61 0.11 12. OB 71. 0.0 9S.67 0.0 0.0
18.0 2.54 0.0 0.01 24.21 7.37 .70 0.06 0.61 0.11 12.80 66. 0.0
-------
rv»
o
01
STREAM QUALITY SIMULATION
OUAL II STREAM QUALITY ROUTING MODEL
***** STEADY STATE SIMULATION *****
OUTPUT PAGE NUMBER
WRE/SEMCOG VERSION
RCH ELT
ORD SUM
1 I
•2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 1 14
IS J IS
16 1 16
17 2 1
IB 2 2
19 2 3
20 2 4
21 2 5
22 1
23 2
24 1
25 2
26 3
27 4
28 S
29 6
30 7
31 8
32 9
33 10
34 5 1
35 5 2
36 S 3
37 5 4
38 5 S
39 5 6
40 5 7
41 5 8
42 5 9
43 5 10
44 5 11
45 5 12
FROM
KILO
46.0
45.0
44.0
43.0
42.0
41.0
40.0
39.0
38.0
37.0
36.0
35. 0
34.0
33.0
32.0
31.0
15.0
14.0
13.0
12.0
11.0
2.0
1.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
30.0
29.0
28.0
27.0
26.0
25.0
24.0
23.0
22.0
21.0
20.0
19.0
STREAM STREAM OXKGEN 800 NH3 N02 COLI ALGAE ALGAE
TO VEL DEPTH REAIR DECAY DECAY DECAY DECAY GROWTH HESPR
KILO (MPS) (M) (1/DY) (1/DY) Cl/DY) (1/DY) (1/DY) (1/OY) Cl/DY)
45.0 0.248 0.43 7.20 0.69 0.17 .14 .72 0.30 0.11
44.0 0.265 0.49 6.73 0.69 0.17 .15 .73 0.28 0.12
43.0 0.266 0.49 6.25 0.70 0.18 .17 .76 0.29 0.12
42.0 0.280 0.54 5.86 0.70 0.18 .17 .75 0.27 0.12
41.0 0.281 0.55 5.52 0.71 0.18 .18 .77 0.27 0.12
40.0 0.282 0.55 5.49 0.72 0.18 .19 .79 0.27 0.12
39.0 0.283 0.55 5.46 0.72 0.18 .20 .80 0.27 0.12
38.0 0.293 0.59 5.25 0.72 0.18 .20 .80 0.29 0.12
37.0 0.293 0.59 5.04 0.72 0.18 .20 .80 0.29 0.12
36.0 0.294 0.59 5.01 0.72 0.18 .20 .81 0.28 0.12
35.0 0.295 0.60 4.98 0.72 0.18 .21 .81 0.28 0.12
34.0 0.296 0.60 4.95 0.72 0.18 .21 .81 0.28 0.12
33.0 0.297 0.60 4.92 0.73 0.18 .21 .81 0.28 0.12
32.0 0.298 0.61 4.89 0.73 0.18 .21 .81 0.28 0.12
31.0 0.298 0.61 4.86 0.73 0.18 .21 .81 0.27 0.12
30.0 0.299 0.61 4.84 0.73 0.18 .21 .81 0.27 0.12
14.0 0.202 0.18 24.45 0.70 0.17 .16 .74 0.42 0.12
13.0 0.203 0.18 24.64 0.72 0.18 .20 .80 0.43 0.12
12.0 0.203 0.18 24.57 0.73 0.18 .21 .82 0.43 0.12
11.0 0.204 0.18 24.44 0.73 0.18 .21 .82 0.43 0.12
10.0 0.205 0.18 24.29 0.73 0.18 .22 .82 0.43 0.12
1.0 0.141 0.15 25.89 0.71 0.18 .18 .77 0.44 0.12
-0.0 0.142 0.16 26.02 0.73 0.18 .21 .81 0.45 0.12
9.0 0.253 0.26 20.53 0.73 0.18 .21 .82 0.39 0.12
8.0 0.253 0.26 15.95 0.73 0.18 .22 .82 0.39 0.12
7.0 0.254 0.26 15.90 0.73 0.18 .22 .82 0.39 0.12
6.0 0.254 0.26 15.84 0.73 0.18 .22 .82 0.39 0.12
5.0 0.255 0.26 15.79 0.73 0.18 .22 .82 0.39 0.12
4.0 0.255 0.26 15.74 0.73 0.18 .22 .82 0.39 0.12
3.0 0.255 0.26 15.69 0.73 0.18 .22 .82 0.38 0.12
2.0 0.256 0.27 15.64 0.73 0.18 .22 .82 0.38 0.12
1.0 0.342 0.43 11.96 0.69 0.17 .15 .72 0.40 0.11
0.0 0.343 0.43 8.66 0.70 0.18 .17 .76 0.41 0.12
29.0 0.301 0.62 5.77 0.72 0.18 .20 .80 0.29 0.12
28. 0 0.301 0.62 .77 0.72 0.18 .21 .81 0.29 0.12
27.0 0.302 0.62 .76 0.73 0.18 .21 .81 0.29 0.12
26.0 0.302 0.62 .76 0.73 0.18 .21 .82 0.29 0.12
25.0 0.302 0.62 .75 0.73 0.18 .21 .82 0.29 0.12
24.0 0.304 0.62 .73 0.73 0.18 .21 .82 0.29 0.12
23.0 0.305 0.63 .71 0.73 0.18 .21 .82 0.29 0.12
22.0 0.305 0.63 .71 0.73 0.18 .21 .82 0.29 0.12
21.0 0.305 0.63 .70 0.73 0.18 .21 .82 0.29 0.12
20.0 0.306 0.63 .69 0.73 0.18 .21 .82 0.29 0.12
19.0 0.299 0.61 .75 0.73 0.18 .21 .82 0.29 0.12
18.0 0.299 0.61 .81 0.73 0.18 .21 .82 0.29 0.12
-------
I suuairunwrfi \
OGMPVTC
uMts. MAMS.
OUTROO AW
ffltowwru <
GMC&fTMTtQNS
Low Otrou*
U b for ill
iti
FIGURE VI-24. FLOW CHART FOR SUBROUTINE WRPT3
207
-------
1.
2.
3.
4.
5.
6.
7.
a.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
C
C
C.
C
C
C
C
C
C
C
C
*
C
C
*
*
288
SUBROUTINE WRPT3
HRPT3 WRITES THE FINAL CONCENTRATION
OF THE SELECTED QUALITY CONSTITUENTS.
THESE CONSTITUENTS ARE MRITTEN BY REACH
AND. BY ELEMENT.
COMMON TITLE<20,20),RCHID(75,5),RMTHOR<75),RMTEOR(75),NHWWARO5),
TARGDO(75),IAUGOJU75,6),NCELRH(75),IFLAGC75,20),
ICLORO<75,20),CO£FQV(75),EXPOQV(75),COEFQH<75),EXPOQH(75),
CMANN(75),CK1(75),CK3(75),K20PT(75),CK2(75),COEQK2(75),
EXPQK2C75),TlNir(75),DOINITC75J,BOINIT(75),COINITC7S,3),
QI(75),TI(75).DO.I(75),BODK75),COJISI(75,3),JUNC1DU5,5},
JUNCU5,3),HWTRID<15,5),HWFLOWU5),HHTENP(15),HWDOU5),
HHBOD(15),H*CO!iSU5,3),WA5TID(90,5),TRFACT(90),W5FLOW(90),
HSTEMP(90),HSDQ(90),NSBOD(90),WSCONS(90,3),QATOT(15),
A(500 ), 8(500 ),C.{ 500), 0( 15), SC500) ,2(500) ,H( 500 ).GC500),
FLOH(500),DEPTH'(500),VEL(500),DTO.VCL(500),K2(500),K1(500>,
HSNEr(500),UL(500),l/HW(15),DEPHW(15),OLHH(lb),T(500),
00(500), BOO (500), CONS (500, 3), PTIME,TPRIMT,DELX,
NHWTRS,NREACH,NWASTE,NJUNC,DELT.D1LT,D2LT.DTODX2,DT20DX,
LAT , LSM , LLM , ELEV , OAT , AE , BE , DAYOF Y , DRY BLB<, WETBLB , DEWPT ,
ATMPR, WIND, CLOUD, SONET, NI,NJ,TRLCD,TOFOAY, NT, NC, TIME, NCS
COMMON/MUDIF/ CK4(75) ,CK5(75) ,CKNH3(75) ,CKN02(75) ,CKN03(75) ,
CKN,CKP,CKL,ALPHAO(75),ALPHA1,ALPHA2,ALPHA3,ALPHA4,
ALPHAS, ALPKA6,SROMAX,RESPHT,ALG5ET( 75 ),SPHOS (75),
SNH3(75),KNH3(500),KN02(500),RESPRR(500),COLI(500),
ALGAeC500),PHOS(500)»CNH3(500),CN02C500),CN03(500),
COLIR(75).ALGI(75),PHOSI(75),CNH31(75),CN02I(75),
CN03I(75),COLIIT(75),ALGIT(75),PHOSIT(75),CNH3IT(75),
CN02ITC75),C»03IT175),WSCOLI(90),WSALGC90),WSPH05(90),
WSNH3(90),*SN02C90),aSN03(90),HWCOLl(15),HWALG(15),
HWPHOS(15),HiiNH3U5),HWN02(15),HWN03U5),GROrfTH(500),
MODOPT(10),1RCHNO(750),£XCOEF(75)
COMMON/RAOIONX CK6 (75) , RADHIT(75) ,RADNI(75 ) , HWRADN (15) ,HSRADN(90) ,
RAOIO(SOO)
COMMON/SSTATC/X(500),1SS
COMMON/METER/MEIR1C , METOUT
REAL K1,K2,KNH3,KN02
DATA NPAGE/0/
NHW * 0
NWS = 0
LP > 0
OELM = DELX / 5280. 0
IF( METOUT .SI. 0 ) DELM * OELM * 1.609
DO 300 I a 1, NREACH
IF( METOUT .GT. 0 ) RHTHOR(I)»RMTHOR(I)*1 .609
NCELR * NCELRHU)
CNCELR = NCELR
QINC * QI(1) / CNCELR
IF( METOUT .GT. 0 ) QINC
00 300 J • 1, NCELR
LP » LP * 1
IF(MOD(LP,48).N£.nGO TO 288
NPAGE • NPAGE t 1
WRITE(NJ,6005) NPAGE
IF( ISS .EQ. 0 ) HRlTE(NJ,6007) TIME
IF( ISS .GT. 0 ) HRITE(NJ,6Q08)
IF( HETOUT .EQ. 0 ) MRITE(NJ,6010) TITLE( 15 , 13) , (TITLEdl , 13 ) ,
»I1»3,5),TITLE(15,15),(TITLE(II,15),II=3,5)
IF( HETOUT .GT. 0 ) MRITE(NJ,6011 ) IITLE( 15, 13) , (TITLEdl , 13) ,
*II=3,5),TITUE(15,15),(TITLE(II,15),II*3,5)
3 ICLORO(I,J)
QINC / 35.3133
208
-------
71. QHWD a 0.0
72. QNSI 3 0.0
73. IFL * IFLAGCI,J)
74. GO TO (290,296,296,296,296,292,294), IFL
75. 290 NHM * NHM t 1
76. QHMO * HNFLOK(HHM)
77. GO TO 296
79. 292 NWS s NWS * 1
79. QMSI • WSFLOUCNHS)
80. GO TO 296
ICLOROU.J)
115. IFL s IFLAGCI,J)
116. TC a O.S56*CTCIOR)-68.0)
117. XK5 » CKS(I)*l.047**TC
118. GO TO C352,354,354,356,354,354,354), IFL
119. 352 XK2 3 K2UOR)*1.01S9**TC
120. GO TO 370
121. 354 XK2 B ( 0.5«
-------
141. * 18HHRE/SEMCOG VERSION )
142. 6007 FORMAT( / 10X, 19HSYS1EM STATUS AFTER, F8.2. 27H HOURS OF DYNAMIC
143. IOPERATION )
144. 6008 FORMAT( / 10X, 3SH***** STEADY STATE SIMULATION ***** )
145. 6010 FORMATU/4X, 'RCH ELT FROM TO FLOW POINT INCR TEMP
146. 1 00 BOO NH3-N N03-N DIS-O-P CHL A COLL*,3X,A4,
147. 23(3X,A4),/
148. 3 4X, 'NUM NUM MILE MILE (CFS) SOURCE FLOW DEC. F (MG/L) (
149. 4MG/L) (MG/L) (MG/L) (MG/L) (UG/L) /100ML',' (',A4,')',
150. 53C C.A4,')'))
151. 6011 FORMAK//4X, 'RCH ELI FROM TO FLOW POINT INCR TEMP
152. 1 00 300 NH3-N N03-N DIS-O-P CHL A COLI',3X,A4,
153. 23(3X,A4),/
154. 3 4X, 'NUM NUM KILO KILO (CMS) SOURCE FLOW DEG C (MG/L) (
155. 4MG/L) (MG/L) (MG/L) (MG/L) (UG/L) /100ML',' C.A4,')',
156. 53C r,A4,')'))
157. 6015 FORMAT(I4,I3,I4,2F7.1,F8.2,F7.2.F6.2.7F7.2.F7.0,4F7.2)
158. 6020 FORMAK/27X, 62HSTREAM STREAM OXYGEN BOD NH3 N02 COLI
159. 1ALGAE ALGAE /
160. 2 5X, 92HRCH ELT FROM TO VEL DEPTH REAIR DECAY DECAY
161. 4 DECAY DECAY GROWTH RESPR CON-III /
162. 5 5X, 91HORD NUM MILE MILE (KPS) (FT) (1/DY) (1/DY) (1/DY)
163. 6U/DY) (1/DY) (1/DY) (1/DY) (MG/L) )
164. 6021 FORMAK/27X, 62HSTREAM STREAM OXYGEN BOD NH3 N02 COLI<
165. 1ALGAE ALGAE /
166. 2 5X, 92HRCH ELT FROM TO VEL DEPTH REAIR DECAY DECAY
167. 4 DECAY DECAY GROWTH RESPR /
lt>8. 5 5X, 91HORO MUM KlLa KILO (MPS) (H) (1/DY) (1/OY) U/DY)
169. 6(1/DY) (1/DY) (1/DY) (1/OY) )
170. 6025 FORMAI(3I4,2F7.1,F7.3,9F7.2)
171. END
210
-------
DEFINITION OF SYMBOLS
The following tabulation defines the symbols used in the
right hand side of the equations shown in each subroutine description,
except TRIMAT, which is self-explanatory.
SYMBOL DEFINITION
a . Coefficient in convection-diffusion
equation due to upstream stream segment
A Algal biomass
a Fraction of respired algal biomass
resolubilized as ammonia nitrogen by
bacterial action
a Fraction of algal biomass that is
phosphorus
a3 Rate of oxygen production per unit of
algae (photosynthesis)
a Rate of oxygen uptake per unit of algae
" respired
<*5 Rate of oxygen uptake per unit of ammonia
oxidation
a Rate of oxygen uptake per unit of nitrite
nitrogen oxidation
C Concentration of a conservative material
C Oxygen saturation concentration
D Average stream depth
D Average stream depth
D Molecular diffusion coefficient
-------
SYMBOL DEFINITION
X Light extinction coefficient
h Net heat flux
KL Empirical half-saturation constant, light
KN Empirical half-saturation constant, nitrogen
Kp Empirical half-saturation constant, phosphorus
Kj Rate of decay of carbonaceous BOD
<2 Aeration rate in accordance with the Fickian
diffusion analogy
K3 Rate of loss of carbonaceous BOD
due to settling
K^ Constant benthic uptake of oxygen
KS Rate of coliform die-off
K6 Rate of arbitrary nonconservative decay
K7 Rate constant for the biological oxidation
of airmonia nitrogen
K8 Rate constant for the oxidation of nitrite
nitrogen
L Intensity of light (ALGAES)
L Concentration of carbonaceous BOD (BODS)
u Algal specific growth rate
0 Maximum specific algal growth rate
n Manning's roughness coefficient
Nj Concentration of ammonia nitrogen
N Concentration of nitrite nitrogen
N3 Concentration of nitrate nitrogen
P Concentration of orthophosphate
p Algal respiration rate
q Stream flow
a Algal settling rate
a2 Benthos source rate for amnonia
a Benthos source rate for phosphorus
R Concentration of arbitrary nonconservative
212
-------
SYMBOL
DEFINITION
t
T
u
h (subscript)
i (subscript)
o (subscript)
w (subscript)
* (superscript)
1 (superscript)
Time
Temperature
Velocity
Shear velocity
Volume
Length
Specific heat times density
Headwater
Element
Taken out of system
Waste load
Previous time step value
Upstream element
213
-------
Variable Name
A(IOR)
AE
ALGAE(IOR)
ALGI(I)
ALGIT(I)
ALGSET(I)
ALPHAO(I)
ALPHA!
ALPHA2
ALPHAS
ALPHA4
ALPHAS
ALPHAS
ATMPR
SECTION VII
QUAL-II
DESCRIPTION OF VARIABLES IN COMMON
Definition
= Vector below diagonal in
tridiagonal coefficient matrix
for computational element IOR
3 Evaporation coefficient
* Concentration of algae in
computational element IOR
= Incremental inflow concentration
of chlorophyll a_ into reach J
» Initial concentration of
chlorophyll a_ in reach I
= Local settling rate for algae
in reach I
- Ratio of chlorophyll a to
algae biomass in reach" I
= Fraction of algae biomass
which is N
= Fraction of algae biomass
which is P
= 0« production per unit of algae
growth
= Og uptake per unit of algae
respired
= 02 uptake per unit of NH3
oxidation
uptake per unit of
oxidation
Local barometric pressure
English
Units
ft/hour-in. Hg
mg/1
ug/1
ug/1
ft/day
ug Ch1-a_
mg A
mg N
mg A
mg P
mg A
mg 0
mg A
. mg 0
mg A
mg Q
mg A
mg 0
mg A
in. Hg
214
-------
Variable Name
Definition
English
Units
B(IOR)
BE
BOD(IOR)
BODI(I)
BOINIT(I)
C(IOR)
CK2(I)
CK3(I)
CK4(I)
CK5(I)
CK6(I)
CKN
CKNH3(I)
CKN02(I)
CKL
Diagonal vector in tridiagonal
coefficient matrix for
computational element I OR
Evaporation coefficient
Ultimate BOD in computational
element IOR
Ultimate BOD of incremental
inflow in reach I
Initial ultimate BOD in reach I
Vector above diagonal in
tridiagonal coefficient matrix
for computational element IOR
BOD decay rate coefficient
(base e) for reach I
Reaeration coefficient (base e)
for reach I
Rate of settling or scouring
of BOD (base e) in reach I
Benthos source rate for BOD
in reach I
Col i form die-off rate in
reach I
Radionuclide decay rate
in reach I
Nitrogen half -saturation
constant for algae growth
Rate constant for biological
oxidation of NH-H in reach I
Rate constant for biological
oxidation of N0-*N0 in reach I
ft/hour-in. Hg-MPH
mg/1
mg/1
mg/1
I/day
I/day
I/day
m
mg
^irc
Light half-saturation constant
for algae growth
day-foot
I/day
I/day
mg/1
I/day
I/day
Langleys/day
215
-------
Variable Name
Definition
English
Units
CKP
CLDRCH(I)
CLOUD
CMANN(I)
CNH3(IOR)
CNH3I(I)
CNH3.IT(I)
CNOZ(IOR)
CN02I(I)
CN02IT(I)
CN03(IOR)
CN03I(I)
CN03IT(I)
COEFQH(I)
COEFQV(I)
Phosphorus half-saturation mg/1
constant for algae growth
Average fraction of cloud cover tenths
in reach I (SS temp)
Fraction of sky covered —
(cloudiness express as
decimal)
Manning's channel roughness —
coefficient for reach I
Concentration of NH3 in mg/1
computational element IOR
Incremental inflow concentration mg/1
of NH3 in reach I
Initial concentration of NH3 mg/1
in reach I
Concentration of NOg in mg/1
computational element IOR
Incremental inflow concentration mg/1
of N0£ in reach I
Initial concentration of NOg mg/1
in reach I
Concentration of N03 in mg/1
computational element IOR
Incremental inflow concentration mg/1
of N03 in reach I
Initial concentration of N03 mg/1
in reach I
Coefficient of flow for depth-
discharge relationship in
reach I
Coefficient of flow for velocity-
discharge relationship in
reach I
216
-------
Variable Name
COEQK2(I)
COINIT(I,NC)
COLI(IOR)
COLIR(I)
COLIIT(I)
CONS(IOR.NC)
CONSI(I,NC)
D(IJUNC)
DAT
DAYOFY
DELT
DELX
DEPHW(NHW)
DEPTH(IOR)
Definition
= Coefficient of flow for
reaeration-discharge
relationship in reach I
= Initial conservative mineral
concentration in reach I
j* Concentration of coliform in
computational element IOR
= Incremental inflow concentration
of coliform in reach I
= Initial concentration of
coliform in reach I
= Concentration of conservative
minerals in computational
element IOR
= Concentration of conservative
minerals in incremental inflow
in reach I
= Vector of coefficients not in the
tridiagonal portion of the
coefficient matrix for junction
IJUNC
= Dust attenuation coefficient
= Day of the year on which temper-
ature routing begins (from
January 1)
= Time interval of integration
(time step over which the
solution to the routing equation
is advanced)
= Space interval of integration
(length of computational element)
= Depth of headwater source NHW
- Depth in computational element
IOR
English
Units
mg/1
1000
100 ml
1000
100 ml
1000
100 ml
mg/1
mg/1
days
seconds
miles
feet
feet
217
-------
Va H ab e
DEWPT
OL(IOR)
DLHW(NHW)
DQ(!OR)
001(1)
DOINIT(I)
ORYBLB
DTODX2
DT20DX
DTOVCL(IOR)
DILI
D2LT
ELEV
EXCOEF(I)
EXPOQH(I)
EXPOQV(I)
EXPQK2(I)
FLOW(IOR)
Definition
= Dew point temperature
- Dispersion coefficient in
computational element IOR
= Dispersion coefficient at
headwater source NHW
= Dissolved oxygen concentration
in computational element IOR
= Dissolved oxygen concentration
in incremental inflow in reach I
= Initial dissolved oxygen
concentration in reach I
= Dry bulb temperature
= DELT/DEUC2
= (2.0 x DELT)/DELX
= DT20DX/(FLOW(IOR)/VEL(IOR) +
FLQW(IQR-1)/VEL(IOR-1}}
= Time interval of integration
= "Tiuse interval of integration
= Mean elevation of river basin
= Light extinction coefficient
in reach I
= Exponent of flow for depth-
discharge relationship in reach I
= Exponent of flow for velocity-
discharge relationship in reach I
= Exponent of flow for reaeration
discharge relationship in reach -I
= Discharge in computational
element IOR
English
Units
degrees Fahr,
ft2/sec
ft2/sec
mg/1
mg/1
mg/1
degrees Fahr.
sec/ft2
sec/ft
sec/ft3
days
hours
ft
I/ft
CFS
218
-------
Vari_ablj?J\jajne
G(IOR),.
GROMAX
GROWTH{IOR)
HSNET(IOR)
HWALG(NHW)
HWBOD(NHW)
HWCOLI(NHW)
.WCONS(NHW,NC)
HWDO(NHW)
HWFLOW(NHW)
HWNH3(NHW)
HWN02(NHW)
HWN03(NHW)
HWPHOS(NHW)
HWRADN(NHW)
KWTEMP(NHW)
Def1nj_tj_on_ -
3 Array used in solution of
tri-diagonal matrix
= Maximum specific growth rate
of algae
- Algae growth rate in
computation element IOR
= Ne'tjheat exchanged through air-
water interface in computational
element IOR
= Concentration of chlorophyll A
in headwater source NHW
= Ultimate BOO of headwater source
NHW
= Concentration of coliform in
headwater source NHW
= Concentration of conservative
minerals at headwater source NHW
= Dissolved oxygen concentration
at headwater source NHW
= Discharge at'headwater source NHW
= ConcentratiqntQ.f ,W^ in
headwater source NHW
= Concentration of NO? in
headwater source NHW
= Concentration of N03 in
headwater source NHW
= Concentration cf 90$ in
headwater source NHW
= Concentration of radionuclide
in headwater source NHW
= Temperature in headwater
source NHW
English
Units
I/day
I/day
BTU/ft2
ug/1
mg/1
1000
100 ml
mg/1
mg/1
CFS
mg/1
mg/1
mg/1
degrees Fahr.
-------
Variable Name
Definition
English
Units
HWTRID(NHW,15)
lAUGOR(I.NHM-) ;
ICLORD(I,J)
Alphanumeric name of headwater
sourca
1RCHNO(250)
ISS
ITRAP
JT(IOR)
JUNC(IJUNC,3)
JUNCID(IJUNC,15)
Kl(IOR)
K2{IOR)
K20PT{I)
KNH3(IOR)
KN02(IOR)
Order of iieadwater sources-
available for- flow augmentation
Order of computation.
Computational flag field
Number of Inserted, reach
Internal flag for dynamic or
steady-state simulation
Flag for trapezoidal channel
cross-sections
Temperature range number in
computational element IOR
(SS temp)
Order of computational elements
clockwise around junction IJUNG
Alphanumeric name of stream
junction IJUNC
BOD decay rate (base e) ,
coefficient in computational
element IOR . .- - ,-:: ,
Reaeration. coeff.i--s-i.ent (base-:e) •
in computational element IOR
Option for determining reaeration
coefficient in reach I
Internal variable, temperature
corrected CKNH3 in computational
element IOR
Internal variable, temperature
corrected CKNOg in computational
element IOR
I/day
I/day
220
-------
yaHab|e__Name
IAT
LLM
LSM
METOUT
METRIC
MODOPT(IO)
NC
NCELRH(I)
NCS
NHWTRS
NHWWAR(I)
NI
NJ
NJUHC
NREACH
NT
NWASTE
PATRCH(I)
Defirrrbion
s Mean latitude of river basin
= Local meridian of river basin •
- Stand-Bird" meridian of'time zone
;ifT4*hi eft-river basin is located
= Flag for metric units output
= Flag for-metric units input •
= Model option; program internal -
variable
- Counter for the conservative
mineral being routed
= Number of computational elements
in reach I (maximum = 20)
= Number of conservative minerals
being routed (maximum * 3)
= Wumber of headwaters in stream
"system (maximum =15)
= Number of headwater sources
available for flow augmentation
= Input tape
= Output tape
= Number of str-ea'rff-junctionsf^-in-
system (maxi'mum £='. 15)
= Number of reaches in system
(maximum =75)
= Counter for printing titles
- Number of waste discharges or
withdrawals (maximum = 90)
=£Average barometric pressure for
reach I (SS temp)
English
Units
degrees"
degrees
degrees'
in. Hg
221
-------
Variable Name
Definition
English
Units
PHOS(IOR)
PHOSI(I)
PHOSIT(I)
PTIMI
QATOT(NHW)
QKI) .
RADIO(IOR)
RADNIT(I)
RCHID(I,15)
RESPRR(IOR)
RESPRT
RMTEOR(I)
RMTHOR(I)
S(IOR)
SLOPE(I)
SNH3(I)
= Concentration"'of PQ4 in . mg/1
computational element IOR
= Incremental inflow_concentratfon mg/1
of P04='in reach' I'
= Initial concentration of PO^ mg/1
in reach I
= Time interval for witthg hours
intermediate summary •
= Total flow augmentation from CFS
each headwater source used
= Incremental inflow in reach I CFS
= Concentration of arbitrary rag/1
nonconservative in
computationa1 e1emeni IOR
= Incremental inflow concentration —-
of radionuclides in reach I
= Initial concentration of —
radionuclides in reach I
= Alphanumeric name of reach I —
* Algae::respiratioh!Tate in
computation element IOR
- Alqae respiration rate
= River "mile Vt 'ertd of reach I
- Ri ver mi 16 at head • of reach I
= Vector of the known- heat or
material balance obtained in
computational 'element IOR
= Longitudinal slope of
trapezoidal channel of reach I
= Benthos source rate for NH3
in reach I day-foot
I/day
I/day
miles
mi 1 es
degrees Fahr,
or rng/1
ft/ft
mg N
222
-------
Variable Name
SOLRCH(I)
SSI (I)
ss2(i)
T(IOR)
TARSDO(I)
TDBRCH(I)
'I ME
TINIT(I)
TITLE(I.J)
TOFDAY
TPRINT
TRFACT(NWS)
TRLCD
TWBRCH(I)
Definjjtlon,
= Average light -intensity, for
reach I (S3 _temp)
- .Side slope,! (run/rise) of.,
trapezoidal channel of reach I
- Side slope 2 (run/rise) of
trapezoidal channel of reach I
= Temperature, in computational
element IQR
= Minpura allowable target level
for dissolved oxygen ......
concentration in reach I
= Average dry bulb temperature
in reach I ..(SS temp) .
= Temperature of incremental
inflow in reach I
= Length of -time over which a.
quality constituent has been
routed
= Temperature of incremental
inflow w -reach.. -I.
= Alphanumeric^ifpgram titles
= Hour of day
= Time counter to "determine wheYi
to write, in tamed.!' ate
English
Units.^
Langleys/day
= Treatment plant. jsff.icie,nc.y...,3v
(decimal fraction) for waste"
discharge NWS,
* ~r
= Time counter to determine iwjien -
to reach Local Clinia'tological data
= Average .wet butb "temperature in
reach I (SS temp)
degrees
mg/1
degrees Fahr.
degrees Fahr.
hours
degrees Fahr,
hours
hours
hours
degrees Fahr.
223
-------
Variable Name
Definition
English
Units
VEL(IOR)
VHW(NHW)
H(IOR)
WASTID(NWS,90)
WETBLB
WIOTH(I)
WIND
WINRCH(I)
WSALG(NWS)
WSBQD(NWS)
WSCQLI(NWS)
WSCONS(NWS.NC)
WSDQ(NWS)
WSFLOW(NWS)
WSNH3(NWS)
= Velocity in computational
element IOR
FPS
= Velocity at headwater source NHW FPS
= Array used 1n-solution-of —
tr1-diagonal matrix
» Alphanumeric
plant, withdrawal, *ortpoint
source NWS
* Wet bulb temperature
* Bottom width of trapezoidal,
channel of reach I
- Wind velocity
= Average wind speed for reach I
(SS temp)
= Input concentration of
chlorophyll a_ for waste load
or point source NWS
= Ultimate BOO of waste loading
or point source NWS
= Input concentration of fecal
coliform for waste load or
point source NWS
= Concentration of conservative
mineral in waste load or
point source NWS
i
= Concentration of dissolved oxygen
in waste load or point source NWD
= Discharge of waste load, with-
drawal or point source
= Input concentration of t
for waste load or point
source NWS
degrees Fahr.
feet
KNOTS
ft/sec
vg/i
rag/1
1000-
rag/1
mg/1
CFS
mg/1
224
-------
VariableName
WSN02(NWS)
WSNOS(NWS)
WSPHOS(NWS)
o
WSRADN(NWS)
WSTEMPtNWSl
X(IOR)
Z(IOR)
Definition
= Input concentration-,Q#i.|W2 for
waste load or poTfit'iutirce NWS
= Input concentration o"|fN03 ,,,fer \
waste load or ooint source"mS
= Input concentration of P04 for'
waste load or poirit, soucce NWS
= Input concentration of
radlonuclitle for waste Joad
or point source NWS
= Temperature of waste 1oad or
point source>NWS
= Program -'internal -variable, -for ,
computational:element IOR
= Temporary storage vector.for
computational element IOR
English
UnHs
mg/1
mg/1
mg/1
degrees Fahr.
225
i y.3. sovfrntHN? POW
?«< - ?5 7 -019/3009
------- | |