-------
t
Fort Winwright
re
z
S.
55
[Fairbanks, AK
[Site Location
CO
c
X
hydrocarbc
P
s
•75
1
, dieldrin, p
O
O
Q
O
O
i
[Contaminants
i
c
1
Felt leaf willow do
{Vegetation Type
over site\
JC
O
S
0
felt leaf will
Invasive species (
[Planting Descriptions
0
CO
ra
S
to
D)
o>
«*S
in
in
es between
1
T3
O
(Site Characterizations
JET Rates
o
in
U?
g
0]
0)
c
5
o
O
if
o>
O)
§
^3
5
CD
LU
0.
To
•3
1
C
<0
0)
li."
to
CO
5
CM
i
Temperature Ran
8/25
Climate
5
1
, Phytoextr;
Rhizodegradation
[Mechanism
1
1
'E
I
1
2
M
tff
1
ol amendm
eg
d.
I
ta
|OM Requirements |
"5T
•D
1
.O
Full scale (850 cu
a
I
1
o
Completed (1 997-
|Project Status
"5
o
U
to
[Funding Source
pnitial concentrations
|Final Concentrations
CD
5
1
^
g
^
en
'5
en =
^j IE
il
eg Si
0) to
£ 5
i_ S
Ij
o fe
TU :5
^3 ^—
(A £
C S
Ic
^ c
rin concenl
Iherthan a
Tl TO
d) _
'.^
35
o) —
onsdecrea
Wainwright
Aldrin concentrati
deposited in Fort
Lessons Learned
5
v
(O
T3
8LU9J
O
^
Q.
>2
Q
1 treatment
w
01
_c
S
'c
1
CO
8
£
TJ
Soil excavated an
[Comments
§
O)
CD
8-
c
=5
•H
i, soderlunt
U3
^"
*?
S
O
S.
Q.
UJ
Diane Soderland,
[Primary Contact |
^
O
8
Q.
ep
CO
CO
•3s
CO
Wainwrigh
t;
o
t
t
1
on
1
Jltl
^irst Five Year R<
{Citation |
00
ff
-------
t
0)
Illinois Fertilizer/Herbicide Spill Sit
[Site Name
Site Location
[Nitrogen, herbicides
[Contaminants
o>
(O
0)
CO
0,
^
Hybrid poplar trees and understor
01
s
1
t
1
CO
Q.
M
C
o
a
[Planting Descri
Soil and groundwater
n
1
Groundwater at 4-6' bgs
as
o
a
3
[Site Character!
IET Rates
[Climate
c
o
«
-S
(Q
~n
S
£'
[Hydraulic control, phytoextraction,
Mechanism
5
1
en
•§
cn
o
5
c
OM Requireme
u.
0)
T8
u
(0
tj
.&.
S.
a.
Active {began 4/1 999)
[Project Status
ti)
o
U
[Facility owner
«
[Funding Sourc
*
E
2
d
n
b
i"
Nitrate/nitrite = 20-200 mgL; alacl
10
o
•*
[initial concentr
M
§
••a
n
[Final Concentr
"§
c
o
_]
l«
m«
|s
(I) O
S"8
•o c
gl
«**
» £
"5. i_
c "«
||
"" IJ'L
£ «^ <5
5 to *<
P c fc-
•>- CO B)
a cn c
c § ^
*^ co" y-*
as >* O
* "c °.
*** O co
* •— *
^ m ^~
0) S 0
Agrochemical spill site. The trees
up a significant volume of groundv
recovery well in 2000, compared t
Comments
E
8
si
u
4=
o
•5
£
®
=
1
fry
in
o>
00
[Louis A Licht Ecolotree, (31 9) 35
^
[Primary Contai
[Citation
-------
t
Iowa State University microplot
ite Name
"3
(£.
1-
UJ
~
0
| °^"
**• 52 ^S c
•SB Q ^U (D
"5 CM "§ -c
Q of {? p
o ^ ^* ^p
% £i ^
* <§ll
Final Report EPA Grant Number r825549c045. Available at
http:/fcfpub.epa.gov/ncer_abstracts/index.cfrn/fuseaction/displa
Belden, JB; Clark, BW; Phillips, TZ; Hendersen, KL; Arthur, EL;
Residues in Soil Using Phytoremediation. ACS Symposium Set
Detoxification, Chapter 1 2. Ed: JJ Gan, PC Zhu, SD Aust, AT L
o
i
0
-------
t
Lockwood Farm
o
z
3
O)
Ham den, CT
ite Location
W
p-p'-DDE (p,p'-dichlorodiphenyldichloehtylene)
ontaminants
u
21 cultivar varieties of Cucurbita pepo
0
o
•a
1
1
01
1
CU
CO
4=
0)
CO
CL
M
C
O
g.
u
w
a
a
D)
0
E
TO
•o
1
«
<4=
^
CO
edia Type
2
M
c
Q
ite Characterizatil
(0
1
t-
Ul
CN
in
§
CO
CD
CD
CO
O>
C
•g
o
a
4f
I
1
.0.
o
ex
M
O
U
unding Source
LL
p-p-DDE: 200-1 200 ng/g (dry weight)
M
C
litial concentratio
c
10
C
inal Concentratio
LL
H
i
(0
C
o
V
-1
2
CD
%
1
»
CO
0)
€
o
c
CD
O
CL
»
0)
^
CD
S
>,
-C (0
f 1
iS
x to
§ 8
Certain cultivars of C. pepo are better able to phyti
variations in exudate quantity and composition acr
omments
U
CO
"o
CD
3
Jason White, (203J-974-8523, Jason. White@po.st
rimary Contact
CL
2
* d
.£ CL
*s CO
§1?
LJ § S
> y 7|
|White, JC; Wang, X; Gent, MPN; lannucci-Berger,
2003. Subspecies Level Variation in the Phytoextr;
\Environmental Science and Technology. 37(2003)
o
i
o
-------
I
w
^D
1
tn
ra
m
•o
i
u
{Site Name
Portland, OR
{Site Location
o
CO
P
m
5,
0
Q.
sl
115
0 E L:
,r S *
1
n
tt
114
(B ^
?! i
(D O) Q)
> (0 C
"5
B " 3
CD 2 0)
« 7-2S
§' ' , w
(D D)
centrationsm
and correctin
•mixing
t m CD
Variability in soil contaminant coi
normalizing data for soil moistun
recalcitrant soil contaminant Pr
Lessons Learned
{Comments
C
0
s
1
:|
•5.
_C
.Si
1
750-0950, ari
Jff^^
An M. Ferro, Phytokinetics, (801
{Primary Contact
{Citation
t
-------
t
1
2
m
Mid-Lakes Farm Service Coop<
0)
n
z
0)
w
Bonduel, Wl
ite Location
V)
W
o
o
IA
•o
i
Q.
O
O
i
I1
Pesticides, herbicides, volatile
ontaminant
g
ra
Q.
0
Q.
•o
I
V)
2
O
0
f
o
I
>
IA
4*
lanting Descriptic
Q.
Soil, groundwater (sandy soil)
edia Type
2
03
y
ra
^
3
M
•o
c
0
O)
o
•55
£>
^
W
*
s
•a
§
e
o
-^£
2
J3
OJ
I
T3
1
•D
ra
'TO
a>
1 0' of sandy soil underlain by p
ID
C
a
ite Characterizatil
to
w
£
«
£
1-
UJ
CO
in
C
o
0)
ra
m
to
D)
c
§
2
O
tr
O>
O)
^
1
0)
UJ
B "
00
?s
§
s
'tx
1
Q_
•(5
3
1
c
1
u."
Temperature Range: -29 to 99
to 9/1 8
ts
E
u
§
I
•§
N
£
§"
're
=
:§
(0
"o
V)
g
',0
ra
•o
ra
&
E
N
€
g
Hydraulic control, phytoextracti
echanism
2
_
0)
en
c
T3
C
0
M Requirements
o
Full-Scale (0.3 acres)
JB
u
2
Operational (began May 1 996)
ID
55
I
o
n
O
(j
01
2
1
D>
C
TJ
C
3
W
C
litial Concentratio
c
M
C
inal Concentratio
_1^_
1
U)
o
0)
1
c
"1
Q.
0)
<0
S
fl)
°-
£
E
8-
V
m
I
0
u
UJ
ra
V)
ra
1
J5
en
ra
Q.
o
CL
T3
T
omments
o
_
§
9
1
0
8
@
j^
*T
CO"
in
00
in
CO
Louis A Licht Ecolotree, (319)
rimary Contact
Ju.
c
o
V
5
n
00
CO
-------
1
o
[Site Name
i
Q
[Site Location
alachlor, atrazine, metoachlor, metribuzin
[Contaminant
je|dod puo/H
[Vegetation Type
Planted from cuttings
(A
0
•ft
{Planting Descript
Groundwater, soil (silt loam)
{Media Type
Groundwater located between 4-1 0 ft bgs
M
c
o
•a
{Site Characteriza
|ET Rates
Ut
c
'5
2
O3
4)
O>
CO -
^
^
in
CO
in
g"
1
£
in
ai
CO
§
1
Q.
-7t
i
Q.
•s
3
C
C
Temperature range: -22 to 1 06 F; Mean ai
season: 5/1 to 1 0/6
Climate
|
•a
£
a
f
8
lc
Mechanism
irrigation to use groundwater, treatment
IA
|OM Requirement!
Full -scale (1.5 acres)
TB
u
W
75
.a.
S
S
O)
c
O)
c
'o
0)
O
{Project Status
$30000 (Including $1 0,000/acre planting)
15
o
U
S
3
•c
fl
[Funding Source
J5
o
S
O
"a!
^^
*o
E
a.
a.
o
m
00
,_-
J3
•o
1 fc
5
^ s
si
0 |
*- ^3
® §:
c
I!
^r ^
8 ^
Alachlor 750 ppb groundwater, 1 50 ppm :
1 000 ppb groundwater, 50 ppm soil; Metri
M
o
Initial concentrati
E
Q.
O-
o
$&
o> IT
i- O
JV
2 .^
c 5
§5
OlJ
^ ..
&l
03 —
co
H
. . °-
ipo
S "v
•^— ^^
"~"tQ
8|
Q. 0)
Q. •£•
0 %
Alachlor 1 00 ppb groundwater (1 996), <1
soil (1 990); Metoachlor: 1000 ppb ground'
groundwater (1 996)
10
o
Final Concentrati
0)
c
~s
5
Periods of continuous data logging and m
Lessons Learned
u
lc
Q.
CO
b>
4=
•§>
V
en
Concentration data is approximate, estim;
[Comments
O)
to
g^
r™
$
3
Q.
u.
Q
•5
c
J
"S
in c
"~T R
Edd Gatliff, Applied Natural Sciences, Inc.
ponsultants, (513) 271-0092, pt@thomas
Primary Contact
u
1
CO
TJ
0)
1
S
[Citation
oo
f
-------
t
t
Former Orchard Site
Site Name
1
05
1
Picatinny Arsenal, N
{Site Location
"20 fe<
c
o
Site Character! zati
JET Rates
S
(0
CO
(0
0)
J
s
o
o>
..
o
1
'o.
1
To
3
C
n
CO
c
CO
(1)
2
JJJ
^_
1^
I
75
>
Q)
LLJ
iL"
(N
o
t
Temperature Range:
10/26
Climate
Phytoextraclion
Mechanism
^
N
^g
•e
&
•o
c
0)
•o
Irrigation, lime amen
JOM Requirements
— .
£T
0
o
o
o
Demoastraton plots
Project Scale
o
o
O)
en
o
Project Status
o
O
X
w
—\
Funding Source
Q.
O-
O
0
Q.
Q.
0
c
Initial Concentratio
10
c
Final Concentratio
Lessons Learned
M
E
*ff
0)
1
1
>
o
•2
^*
•«
i
u
U9
V)
S
*
0)
(O
B
C
s
2
Ol
<
•d
o
^
to
ra
Original turf grass w
Comments
o
o
0
1
c
<0
"S
<§)
_i£
u
•5.
CO
S
0
£
09
8
r^
S
CO
Q.
in
I
Michael Blaylock, EC
primary Contact
Citation
I
-------
icific Railroad
*w
o.
o
'c
— 1
[Site Name |
5
Laramie,
|Site Location |
to
g
1
o
-.a
orophenol, polyaromal
pentachi'
i
o
u
£
2
X
E
(O
ra
£
O)
I
5
«f
C
ra
w
«
•s
5
jod, willow, hackberry
i
o
1
o
I
I
[Planting Descriptions |
0
1
n
1
[Site Characterizations |
IET Rates
ro
$
o>
o
0
if
(0
00
£
§
1
ID
LU
e- •
(0
d
*~
I
S
ID.
Z
Q.
3
1
1
iL"
05
0
o
Q)
O)
or
1
10
"3
(Project Scale |
Ongoing
{Project Status i
0
u
[Funding Source
[initial concentrations |
[Final Concentrations
[Lessons Learned
co
s
1
£
E
1
c
E
f
to
^
_c
C
2
•7
TO
"°_
2
T5
E
CM
latments used at site: :
01
0)
0
Comments
3)
«i
Q.
0)
f
1
1, flechas.1
o
chas. EPA, 303-31 2-6
Felix Fie
[Primary Contact j
^5i
areachitoi
a
REACHIT: http://www
Q.
UJ
[Citation
f
-------
t
3
c
(O
r - Timber Proce
Weyerhausei
a>
z
55
g
Klamatn Fall;
[Site Location
o>
re
|
ta
re
"55
E
T3
re
S
O
CL
CL
O
rt
semi-volatiles (F
Halogen ated
[Contaminant
i
1
f
T3
C
T3
re
(O
f
Q.
(Vegetation Type
10
*••
[Planting Descriptior
ta
01
•o
jj
1
.2
S
8.
j3
fg
5
at
c
[Site Characterizatio
|ET Rates
ason:
CD
$
O)
C
2
0
if
O)
^
|
1
u]
B* "
8
Cfl
"u
f
Q.
Operatonal
(Project Status
10
O
U
[Funding Source
at
[initial concentration
10
[Final Concentration
I
10
i
£
O)
•8 8
3 2
5 re
3 0
^ *"
ta J
is 5
8"£
o- re
"O t-
2 re
rs,
o.E
M M
V CO
O 2
*o qj
o i
,= Js
23?
8 *£
"SI
m "
!i §.*>
Q. CO 1.
•o E o
5||
p.^-S
-?1
o>'5 2
.E '* o>
stewater contain
discharge to rec
idations inhibitin
Industrial wa
point-source
concrete foui
Comments
o
u
(|V
I
o
0
B
2
o
1
CO
K
°?
CO
ID
-------
S
Whitewater
[Site Name
Whitewater, Wl
[Site Location
X
5
•55
Nitrate Nitrogen, herbicides/insecticides,
[Contaminant
$
I
CO
§
D.
T3
I
[Vegetation Type
1
^^
(O
"7*
O
i
w
Trees were deep rooted and planted wh
w
E
[Planting Descriptic
Groundwater, Soil
[Media Type
ai
O!
•5
o
2
m
to
1
•a
c
3
o
i
E
.0
1
U
£_
*
o
E
Site is situated on a porous aquifer med
M
g
Site Characterizatil
[ET Rates
D)
C
g
O
§
1
if
CM
h-
CO
5
•43
2
CO
uj
b)
O
%
J
'5.
'o
£
Q.
«•
CD
1
Temperature Range: -30 to 1 04 F; Mear
Reason: 5/1 3-9/25
Climate
(Hydraulic control
[Mechanism
I
2
a
o
CO
CD
"55
"S
0)
_c
Ol
^e
1
!*
'55
CO
CD*
8
|OM Requirements
Full-Scale (1 0 acres)
(Project Scale
Operational (began 1990)
[Project Status
o
o
0
to
o
o
1
[Funding Source
to
c
[initial concentratio
(0
e
[Final Concentratio
1
w
o
i
01
c >
"o >
« o
(0 "> "5
3 0 |
III
8-s ^
Q. CO O
"^ •*" "'S
'C L. 2
o.E §
CO CO o
CD CO c
co """ en
s*!
c m -o
° >» to
""" "55 ^
•*•* m co
§>E fc
I|o
._ O. *"*
CQ 5" £
Q. W Q.
-D E ^
^ m ni
ndustrial wastewater containing PCP ar
joint-source discharge to receiving strei
concrete foundations inhibiting root dev<
Comments
"3
c
0)
CO
CO
cB
S
0
CO
CM
o>
rt
2.
o
i
o
cB
"o
c/)
2
-------
to
1
£
Former farm
[Site Name
[Site Location
"c
o
E
i
to
1
Pesticides, n
[Contaminant
2
J2
S
a
T5
1
I
[Vegetation Type
(A
[Planting Description
£
5
T3
1
Ol
"5
[Media Type
fm
[Site Characterizatiol
|ET Rates
[Climate
[Mechanism
|OM Requirements
•5
u
V)
*•*
U
2
Q.
^pmt
CN
O)
0)
T-
01
c
'C
a
c
s
Ongoing (bei
[Project Status
*•!
0
u
[Funding Source
(A
[initial concentration
in
JFinal Concentration:
1
«A
O
0
[Comments
E
8
"
S
o
"Q
U
LLI
1"
(O
3
[Primary Contact
[Citation
-------
Wilmington
Site Name
Wilmington, NC
Site Location
imonium
b
CO
in
i!
Nitrate nitrogen, pestit
Contaminant
CO
a
o
0.
I
1
o
V
I
I
Ol
c
V
1
2
0
•c
a
*
^
CO
£
£
3
Z
T3
+x
*c
(O
5
CD
1
JS
Q.
•o
c
CO
^
o
•a
CD
09
§
(A
Planting Descriptior
8
3
M
CO
o
u
•D
C
Groundwater, Soil (sa
f
(0
Ol
Groundwater is 1 0-1 5
M
c
[Site Characterizatio
JET Rates
n
0)
CO
O)
c
§
s
O)
CD
O)
[••
32
<
CM
<=
O
'•&
§
_2
Lit
5
m
5
1
"5.
0
0)
°-
CO
3
i
i
u."
0
t_J
^
Temperature range: 0
4/1 1 to 1 1 /3
Climate
Hydraulic confrol
Mechanism
CD
g
OM Requirements
Full-Scale (6 acres)
(D
"o
CM
o
Operational (1 992- 20
Project Status
o
o
0
o"
CO
"3
fl
-2
5
•c
n
Funding Source
(A
Initial concentration
(A
Final Concentration
to
CD
E
o
-Q
-I
c
|
>•
CD
8-
a.
CD
£
8
H
CO
S
£
5
^
t »
to
^-
co
s observed
ation
(D £-
s'i
J2 JS
ci o
S ti
Reduction of contamir
continuous source of <
Lessons Learned
1
*^_
^~
~n
CO
S
m
d}
£
C
^
CO
O)
c
Nitrogen levels in dow
Comments
"53
c
d>
(0
S
i
§
<§
$
o>
^^
rt
jj-
«S
_
o
c
i
'o
W
^
^
Ti
Edd Gatiiff, Applied N
Primary Contact
Citation
-------
£
cd
Cfl
PQ
U
x
1
8.
a.
e
o
1-
i
X
z
U
o.
i
1-
•z
o
X
0
(£
H
X
X
o
X
X
X
X
o
o
X
o
X
X
CNJ
o
X
CO
O
U
o
o
N
(0
(0
N.
IO
0)
i
I
LO
CO~
6
CO
II
X
Q
o:
JO E
i= 1C
*%
^ O
m .b
« =
i- -o
H ii
X I-
IE
01
0)
2
£ E
.3
•S E
fc J
Q. <
o z
Q. <
0 0)
1 |
.1
1
.1.1
CM
-------
Cl Explosives Americas Engineering
Site Name
O
S
1
| Site Location
Ammonium nitrate; Dinitrotoluene
| Contaminant
%
Bald Cypress, Hybrid Poplar, Ninebark, Willo1
| Vegetation Type
&
OT
C
•&
3
"5
§
Q)
b»
flj
.Q
TJ
§
1 8,000 trees in various arrangements, rooted
M
o
| Planting Descripti
Groundwater, Soil (in situ). Surface Water
Media Type
•o
i
•D
S
09
1
E
T3
$
T3
O>
'5
I
•o
3
D)
O
15
•s
tf
jjJ
ft
M
Surface water and small drainages; wetlands
silts.
c
o
Site Character! zati
13
DC
e
Evapotranspiratio
CM
Si
o
*7
in
i
0)
01
0
O
f
CN
s?
g
Q
1
^
«
%
0)
*r
s-
8
UJ
LL
oo
o
5
in
OH
Q
1
1
Rhizodegradation, phytoextraction
Mechanism
Irrigaton, weeding
0
o
w
Operation/Mainter
Requirements
Field Demonstration. 3.2 acres
Project Scale
Active remedial. Planted 2/1 996
| Project Status
d>
.£
^
_w
™ST
$40, 000-installation, $20,000-oversight and [
o
U
•^J
c
0)
The cost of management was born by the cli
Funding Source
Jl
D)
3
§
CN
d
II
0)
8
13
O
1
Ammonium nitrate = 20-1 ,000 mg/kg soil; Din
i
| Initial concentratic
w
c
| Final Concentratic
1
H; (D
QJ r-
C (0
QJ QJ
1 1
= 'S
2 S
t5 CD
* •
||
"B £
It
ra Q.
^
_c
S;
Q.
\9J
!§
Ari M. Ferro, Phytokinetics (435) 750-0950 ar
Primary Contact
Citation
-------
i
0
«
n
z
2
V)
Middletown, IA
pite Location
. .
0)
§
1
•
o
"E
•£
to
•*"
CN,
1-
T>
C
CO
"3"
'I
(0
'£
in
co"
6
J=
RDX (hexahydro 1 ,3,5-trini
jContaminant
•*
CO
z
Q
!>
z
X
aj
w
T3
"0
9)
O
m
LL
6
°
J?
(li
o>
m
a:
Q.
1
Climate
i
u
0>
S
A
bperati on/Main ten anc<
Requirements
tn
T3
e
03
(U
Full Scale Constructed W<
a
T5
u
(0
**
u
.«.
2
a.
M
1
(0
4*
U
'o
a
at
O
O
CERCLA
Funding Source
£>
S
O
O
00
X
§
nitial concentrations
.0
a.
£
CM
O
V
X
§
pinal Concentrations
1 »
n> v
I- ?
M
i'i
El-
Q> Q)
JT ~
°ro
9 >r
(D
to -o
^ '7R
°- i
° 8
X
O =
kl v?
CL M
a-?
(B-0
toremov
reduced,
culture).
•o.c.y
l^§
11!
ai c >%
5-,!
^ N.
^~ CD O
z S *
,_ .-u,
«©5
w ^^ JU
£f \ «
?* S
isi
o f5 ^5
T» v E
RDX disappearance in gw
0.133-0.291 mg/L-dayRD;
of TNT and RDX were esti
"8
I
M
O
$
V
OJ
E
m
•ft
U
CO
*»
75
I
u
co
0)
>
'35
O
9-
Js
0)
irance to
ID
s
n
u
v
'c
O)
"w
(0
T3
(0
JC
*
Q.
8.
^
o
-5
:5'
acute toxidty assays (<1 4
jcomments
3
T3
O
RJ
$
O
11
« >•
w E
c >=
'5>^
c ®
® ^
(B)S
§f
c 3s
il
11
up -5
K*
CO (0
M
co .E
— • CD
(0 C
$ 111
o *»-
— o
•S ^>
• F
"* rf
Qi n
•o $
i °
TO —
- 03
« .c
sf
o w
2 !K
. S
Kiker, J.H., S. Larson, D.D
Contaminated Surface Wa
Citation
-------
Joliet Army Ammunition Plant
Site Name
[Site Location
Q
(£
C
1
trinitrotoluene (TNT), Tetryl, cyclotrimethylenetrinitr
[Contaminant
i
E
0)
01
'm
2
Q.
0
TO
C
o
Q.
"5
to
I
_o
1
d.
V)
¥
_to
Q.
TJ
i.
T
1
o
1
O)
•5
slurry reactor
planting Descriptions
Groundwater
|Media Type
Shallow aquifer
CA
[site Characterization!
(A
£
(0
Evapotranspiration R
CM
C^J
0
5
in
Ci
T
§
(0
U5
01
1
E
CD
So"
rt
Q.
•JT
S
03
O.
T3
3
i
CO
(S
1
UJ
u.'
o
0
n
DC
ei
I-
[Climate
Hydraulic Control, phytodegradation
[Mechanism
u
Operation/Main ten am
Requirements
o>
T5
t>
t
n
1 998, proposal
Project Status
$1 91 ,000 research grant
in
o
n
Funding Source
^nitial concentrations
Final Concentrations
Lessons Learned
f
s
£
c
o
to
0)
en
S
c
§
tfc
^J
in
TO
1
TO
'^
(D
£
to
Q
O
§1
The site did not use phytoremediation for remediati
remediation including excavation and off-site dispo:
Comments
n
TO
O
0
1
6
§>
UJ
3
i|
~ CO
1
fiS KJ
UJ O
berry Schnoor, University of Iowa (319) 335-5586.
GRACE Bioremediation Technologies, Inc. [DARAT
Bill Rainey, Plexus Scientific brainey@plexsci.com
Primary Contact
'y?
O
in
1
C
i
*•»
C r*>
#.
Multiple Biotechnology Demonstrations of Explosiw
http://aec.army.mil/prod/usaec/et/restor/ecsoils.htm
Citation
-------
Longhom Army Ammunition Plant, Burning Ground #3
z
£
Jsa
Marshall, Texas
ite Location
V)
3
Q_
ontaminant
n
hybrid poplar trees (Populus Deltoides Nigra, DN34)
a>
o
1
f
425 poplar trees were planted
US
o
V
a.
(anting Descri
n
1
1
0
n
1
S
GW 1 68-1 71 ' bgs. Clayey soils
w
c
o
M
ite Character!;
V)
co
dJ
*
o
§
1
1 ,000,000 gal/acre/yr (groundwater is pumped up and drip irriga
10
£
ra
Q£
O
•a
vapotranspira
ill
o
i
i
(O
Q)
M
O)
o
b
in
c
3
'o.
1
a
"5
3
n
g
01
5
§
V
1
LU
LL
f*.
O
S
ro
ai
a
K
a
1
i
o
Phytodegradation, Rhizodegradation
echanism
2
1
0
o
"5.
i
..
I
E
1
n
,
•c
fVI
W
Complete Environmental Service: Trees inspected & irrigated re
4)
U
C
n
i
peration/Main
equirements
SJt.
0.7 acre Demonstration
•1
u
V)
i
o
n"
Planted March 17, 2003, continuing through 2005
10
1
w
"5
'o
n"
S
o
o"
o
Dl
•^
fe
g
E
T3
g
installation and maintenance costs $42,000; research, analysis ;
w
o
<>
Department of the Army, Operations Support Command
0)
u
o
(0
O)
_c
c
3
Perchlorate: -1 00 mg/L
ttl
o
litial concentr
c
Perchlorate: 1 0 mg/L
10
0
'-g
inal Concentr;
E co
>-^5
co -a CD
'•C 0) D U3
-s •£ o .
The mass of perchlorate taken up by poplar trees and/or degrad
zero (-0.261 ± 0.016kg/d). Therefore, between April 2003 and I
the groundwater by the hybrid poplar trees and/or the microbes
complicated hydrogeological setting and trenching, it is difficult t
balance on perchlorate to prove efficacy of treatment in the field
^
S
o
S
~ y>
tt\ ** ^
Z '55 o
£
|s|l
Sfll
10 ^ ^ c
>> to co 5
c S ro j-
°«§l
^ *- CO ^_
Trees are growing well; phytoremediation system is functioning
growing season. Test plot was irrigated with perchlorate contam
deep for the roots of the poplar trees to reach. Approximately 1 '
between April and November 2003. Irrigation was discontinued
on November 1 7.
omments
u
•o
g
'3
di
c
"i
0)
c
"Si
Jerry Schnoor, University of Iowa (319) 335-5649 jschnoor@en{
1
o
u
S
n"
_c
aj
2 &
CJ
|£
|«
•g o
™"o
11
Ic ^
"O O
c —
o
ll
=6 «
Schnoor, J.L., et al. (2004) Demonstration Project of Phytoreme
Groundwater at the Longhom Army Ammunition Plant, The Univ
1
w
U
o
o
-------
1
Site Name
i
1
i
Site Location
X
d)
C
1
i
i
W
1
(D
i
•5,
0>
CO
1
0
o
•o
i
%
a
d)
trinitrotoluene (TNT), cydotrimethylenetrinitramii
{Contaminant
Aquatic and wetlands plants. Parrot feather,
a
Vegetation Typ
Constructed wetland
tA
O
•a
o.
planting Descri
Groundwater, soil
JMedia Type
Field-scale wetland demonstration
(A
0
N
Site Character!
M
£
a
o
Evapotr an spir<
o
£
oo
^
c
g
re
$
a
!
L.
CM"
IT)
in
a
'^
a
15
3
n
%
0)
if
o
CM
5
re
DJ
LL
uo
o
2
CO
di
a
re
a:
ci
1
Climate
Phytodegradation
Mechanism
9
U
i
OperationMair
Requirements
1 /8 acre field demonstration
project Scale
June 1996-Sept 1997
Project Status
00
"5
o
o
Q
ft
u
o
CO
O)
_c
c
3
D)
E
CO
0
X
I
CNI
CM
X
o
OL
CO
h-
U)
o
S
Initial concentr
£
S
1
CD
us
re
**
o
w
-o
re
S
g
O)
CO
-T
_l
O)
E
CM
8
o
o
•35 .
-Q £•
£1
Lagoon and gravel-bed wetlands are reducing T
removal efficiencies of only 47 and 20%, respec
0
•-s
;inal Concentr;
•8
Lesson s Learn
*7
i
CT
E
•^
CO
3
in
CTl
C
"c
1
i
J
TJ
I
&
C
1
u
3
T3
0)
10
cc
f
1
d
"a.
CD
re
Q.
to
o
E
•s
S
O
Comments
_
E
E
ra
01
w
en
g
CO
©
c
-£
U
T
^.
0)
1
0)
"S
barlene Bader-Lohn, US AEC (41 0) 436-6861 d
•K
Primary Contac
O)
C
' to
P S ^
< 5 § "o
c*>£ ° (S
O3 5 S ^ (0
o C0 ||
O5 ;^ 2 ^ *W
t- £ ^ *
^rec^ £ 1
- T- O fe
u j 4) ^ . ^ Q)
' S "~^ § ' — ' ®
2 ^ ^ "c ^*
C E ^ .£> ra 5
w o -I o *~ S
8.cc gt |
8. g 1 1 * §
***" .— n """""' S
\3 (ft +*m. •* «*- (Q
O Q" ifi Os 2« CO *»*
bH jMj Q) Q) ^— — !,_
Army Environment Center, Aberdeen Proving G
Sikora, F.L. et al (1 997), "Phytoremediation of e
innovative wetlands-based treatment technologi
Waste Research - Abstracts Book, May 19-22, 1
Best, E.P.H. et al (1 997), Fate and mass balanc
groundwater from Ihe Milan Army Ammunition P
Presentation 1 4. In 1 2th Annual Conference on
Kansas City, MO.
0
V
a
o
-------
3*>
?
'c
New Mexico State U
Site Name
z
of
(U
U
O
CO
CO
pite Location
if)
co"
A"
to
'c
E
1^5
co"
T_
„
H
?
^
2,4,6-trinitrotoluene i
(HMX)
Contaminant
Datura innoxia
i
i
>«
CO
3
Cell suspension culti
(0
planting Descriptu
Media Type
w
c
o
Bite Character! zati
w
1
Q£
^
pvapotranspiratior
00
Ql
o
£
5;
*
c
8
CO
a>
CO
CT
c
g
E
e
00
CO
a
o
u.
a
c
i
CO
C
CO
CD
*f
00
1
y
0)
LU
ti."
c\
^
s
1
co
DC
a
1—
Climate
Ph ytodegradation
Mechanism
u
c
ra
Operation/Mainten
Requirements
0)
3
to
-5
i
CD
di
•5
u
CO
"o
'z
a.
Completed 1 999
Project Status
"3
o
U
=unding Source
^*,
a
a
o
o
o
o
1-
IA
C
Initial Concentratio
E
•3
1
E
5
o
bi
CD
£
c
ii
c
"CD
£
CD
K
Z
2
0)
£
i^»
o
^
c
co
CO
CO
CM
C
£
(A
C
^inal Concentratio
^.essons Learned
co 2
^ *^ o
8~1
cp 2? ^
— * co
CO H- ~
o o co
*^ s* £
"° fi-i r-n
i c?
CO c ^
75 $ o>
^5 -c H-
O CM Z
c ^
ill
S •—
'« x: "S
to OJ co
"° m ^
£ -, "S
"5 n "S
E * *
8 .§ »
™- o |
Z ^ *
^ ^
., TI to
o S *~
0) LO O
^5 " ^y
"S "c H fc
-«^ C ^3" O
f"» o ~y o
2 ^ J2
Sll "
CA ^ *U fll
Aminodinitrotoluene:
extent in cell media.
TNT could be detect
biotransformation st<
Comments
primary Contact
0
CD
0 P
ll
d> c
,^ .
-£
H x
_l -C"
LU ,3>
O co
"*• c
. —
5 co
^
. Q
£ °
— to
1 o
X "°*
0- 0
d 8-
• 3
O W
off
LU O
0 >,
tr j=
LU 1-
CO -"r
"jr CI
£-6
w =
QQ «
i*
-1- J3
SS
, 0)
QC ^
^
— | ^
111 S
5 >
M. E. LUCERO, W. 1
Nitrogenous Explosi
Biology (1998)
o
I
0
O
fWHl
«<
-------
IKE Missile Site
"^
Site Name
n
2
i
o
1
S/
{Site Location
richloroethene
i—
{Contaminant
opiar trees
rt
{Vegetation Type
•8
c
i
W
a
CO
15
D)
S
a
a
1
1
in
i»
«
^
Evapotranspiration Ra
Oi
C*
O
"T
**
5
g
i
O)
.c
1
6
e
cj
O.
'i
Q.
"S
C
CQ
g
0)
5
op
•*
y
J)
111
1*1 "
in
,-
S
i
QC
d
^—
Climate
Mechanism
n
bperation/M ainten anci
Requirements
'o
n"
«
L_
$
ent County Fort
V
final Concentrations
1
CO
o
1
(A
?
in
c
—
3
S
xpects positive
II 1
{comments
Primary Contact
•8
u
Q.
C
2
i
o
$
c
1
3
en
1
5
(D
z.
0)
O
u.
*-
LJ
O
^
0
c
_o
"S
"§
p
B
•R
a.
e
0)
-D
1
2?*
||
O aT
Citation
S
-------
"o
I
c
Site Name
b
1
jSite Location
0)
1
^
1
u
N
Cv
Ja
•7
N^
in
CO
1
co
1
c
to
0)
i
W
£
0)
g
£
o
£
o
Trinitrotoluene (TNT)
(HMX)
Contaminant
1
Populus Deltoides x 1
41
o
•a
%
o>
*
greenhouse study
>
mm
Planting Descriptior
Hydroponic Solution
Media Type
M
C
|Site Character! zatio
(A
£
n
IE vapotran spiral! on
m
Q!
CT)
_O
CO
"C
in
5
en
S
in
ra
c
5
S
0
»' ~
•*
fj
'o
a
15
3
C
m
TO
(C
^
^~
.£
M
?
'W
_o
X
CD
CC
_c
"c
CD
£
i
1
o
c
£
H
^
c
(u
j/
n
a:
m
£
>i
0
v>
HMX removed more
jComments
primary Contact
T3
^
0
CC
H"
B3
CD
^
O
9-
UJ
"••
o
S
u.
I
Cl>
fn
S
D"
S
O
^
O "CO
f~ ^
-e .E1
. x
j q)
|o
c ^
<0 ^
« Q
10 t£
-* 3
2 =
^•l
C "^
1
Citation
o
<
-------
Volunteer AAP
*
w
z
s
55
Chattanooga, TN
ite Location
(0
4
•D
i
H
§,
Constructed wetland
c
Q
V
D.
1
Q
o>
c
V
z
Surface Water
a
a
1
_^_
Top foot contaminant Sandy soil
.
M
ite Character!;
«J
et
o
•*!
vapotranspira
ui
o>
o
T"
£
oo
wing season: 4/1
S
O
in
rt
tn
Q.
D.
75
c
n
0)
O)
0)
UJ
u."
in
o
0
0
i
(0
tr:
ci
1
i
o
echanism
2
o
1
peration/Main
equirements
O ft
1
en
0
O
3
(0
.1
S
(L
stration May-September 1 996
Completed. 1 1 5-day Field demon
S
(0
I
S
0.
Estimated $50,000
o
U
o
"ra
0)
1
»«
* £
- 0j
|l
°o
o *•••
Z: O
J. S. Deparlmen
the Department
« "D
4) c
aha (Missouri River Organization)
gy Certification Program (ESTCP]
'elopment Program (SERDP).
U. S. Army Engineer District Om;
Environmental Security Technoloi
Environmental Research and Dev
(D
1
1
D>
C
=5
3
LL.
i
01
E
o
CO
TJ
ra
I— '
CT
E
(O
i
CM
01
CM
in
1
CM
^d
E
<6
i
CT
E
»
c
o
litial concentr
c.
T3
i. e 05
I^H-
iS|
in |^ LO
« s ; *
So> 1
2 « £
ill
05 0 c
Hi
OJ D) 3)
*~ ^ "f
Q w >
g= = -1
CM 5 C
;unlight removed 22 g TNT, 1 04 g
e unplanted sediment reactors in
the unplanted sediment reactors
system)
planted sediment reactors in full s
the 1 1 5-day operational period; th
62 9 26DNT(1 071 -L system); and
24DNT and 26 9 26DNT (1 071 -L
M
O
•a
(B
inal Concentri
LL.
m
£
|
5
_c
CD
•5
10
2
1
i
j>
JJ
^
i
iter, coontail and American pondw
Elodea failed to grow in VAAP wa
H
Bssons Learm
_j_
Is.
The hydraulic retention time was '
omments
o
E
|
Si
i
UI
Q.
CO
£
CD
fft\
0) 436-6861 dartene.bader-lohnU;
Dariene Bader-Lohn, US AEC (41
•**
rimary Contac
ft
*>»
P ^5
?|
||
l| .
S .^ ^
^15
!|1
IP
^* (B C*J
'« T> CM
Q. S®
Larson (1 997), "Degradation of e;
systems planted with aquatic and
Research - Abstracts Book, May
Miller, J.L., E.P.H. Best and S.L.
Ammunition Plant in flow-through
Conference on Hazardous Waste
e
o
•a
5
o
o
<
-------
0)
ra
i
01
E
5
5
c
"(TJ
1
d>
n
Z
JJ
•S
to
CO
o
5
[Site Location
E
1
0
c
"F3
•u"
co
_>
3
O
(Contaminant
•o
1"
?
1
i
o
'10
'C
(_
•as-
co
CD
•i
"c?
Q.
E
.§
co
E
DO,
i
CO
u
la
-y
<5
O)
§
haseolus
p..
CO ^
ai
1?
ago sativa),
grass(Loliu
«?.
II
•**** n
^ i
5 a
u
e
Operation/Maintenai
Requirements
eb
•«.»
'co
to
U>
1
'S
CD
c
o
'•C
"S5
*5
UJ
5^
^D
C
_:
"i
£
5
T3
'tis
0)
to
8
£
I
t_
(j)
CD
73
Ij
t
project Status
la
o
Funding Source
e
a.
c^
CM
o
£'
1
E"
a
Q.
O
CM
3
O
u
*.
E
CL
Q.
S
•ti
CO
_CD
""""^
f^"
a
a
o
Q
o
i
r^
CD
a.
E"
a
S
C*3
•x
J
10
Initial concentration
(A
^inal Concentration:
Lessons Learned
fl-
3 E
^1
D 2
^ X
_O J)
^ ™
«1
E-S
CD CD
"^ "(6
'5I
M 0
to «<
D) ^
||
"° 'p
tf «
CO T3
O) Q
(1) C
•c E
E 3
_(£ T3
CD O)
u CO
CD O
'to £
«3>
(0 4)
8*
"5. »
U9 (0
g£
|5
f|
^ 8
0) CD
c c
= o
E 1><
CO CD CC
Comments
Primary Contact
X
i
"5 (
» 5 °°
|.6cN
3 i ^
O > Q.
^~,O CD
S — 3
S^,— ~
IE?
n3>
~3 'C 2
•D^S
C **• ^.
to 1 c
•5 w •"=
-§ 5 CD
Q OK
IMII ™D fji
_o c ^^
5 r-
§£.8
Jc^
"B^
b^^
!$w
^ 4)
•y ' d
^_ f*» g,.
^_T \f) (0
iff
"co h^-i
I Lff C
d|l
P" -C
8 o c
o9.o
Citation
o
<
-------
t
tn
5
Ordnance
Weldon Spring Former Army
Site Name
0
Site Location
•o
ra
o>
trinitrotoluene, dinitrotoluene,
[Contaminant
Treatment slurry
0
n
planting Descriptions
i
E
•8
0)
to
•a
£
Surface water, Soil, Sludge, :
Media Type
Clayey gravel with sand
M
[Site Characterization!
M
"S
^vapo transpiration R
1
0)
u)
Ol
e
1
o
0
§ "
i
Q
an annual
i
*f
0)
ID
u."
hi
O)
(5
CL
1
Iciimate
Mechanism
(*
Operation/Maintenani
Requirements
Demonstration/Bench scale
•s
I
o
n"
CO
u>
53
1
o
n"
g
1
c
8
CO
•55
U)
(0
"5
o
o
J
c
0
»
?
CD
,s
CO
1
co
To
J
>sible addi
lancers.
Estimated $1 47/mA3 with pos
source and other process enl
t!
o
u
USEP A/SITE
funding Source
1
><
•fe
0)
O)
E
8
in
g
nitial concentrations
CO
£
o
E
Oi
§
0
^
O)
n
"S
u
•g
£
z
TNT: 8.7 mgtog dry weight T
Final Concentrations
ai
£
E
o>
"35
pproximal
Treatment time found to be a
1
c
Treatment slurry
Comments
>
0!
Vp*i
(0
@
ra
o
£
c
1
CM
Tom Lorenz, US EPA (91 3) 5
primary Contact
g>
10
Of.
Q
^£
in
<
CL
LU
Q.
O
•g
"5
J
CO
o:
-3
.-
?
if
5
CO
§
•^9
-------
t
e
i
ite Name
V)
i
o
CO
I
ite Location
V)
trinitrotoluene
ontaminant
_u_
<5
TB
IB
8-
CL
of
white rot fungi, mycorrhiza; sprue
01
o
OJ
»
•o
CD
13
T3
CO
.„_
O>
1^
S
5
i
£
5
$
1
•
1
in
>*-
O
o
0
P3
CL
0
TJ
0)
N
1
D)
0
£
T3
c
(0
TJ
"S
CO
Heavy duty soil grader loosened,
followed by layer of bark mulch.
c
(anting Descriptio
^
•5
V)
edia Type
z
1
>,
to
en
o
15
CO
2
m
(D
C
ite Characterizatic
to
1
it
vapotranspiration
u
f \
Q
CN
CC>
0)
3
CO
Si
Q.
i-
"CO
3
5
S^
<
co"
E
o
o
CO
o
1
a
1
CL
E"
o
CD
hi
"§
±^
Cool, humid mountain climate. All
i
o
Rhizodegradation
lechanism
2
0)
y
C
peration/Mainten:
equirements
O U.
1
X
in
CN
CD
ra
ft"
Ol
en
CO
M
55
"u
.fi.
n"
O
o
a
0
o
(0
o>
_c
e
LL.
'5
co
1
O)
E
1-
01
o
g
mm
litial concentratiol
E
1-
1
O)
I
d)
c
1
I
en
£
g
(0
^
,_
£
5
~
ll
•43 C
8£
l|
CO T3
c 5
° §
"£ o
Lower TNT concentrations brougl
concentrations lowered, but not d
w
inal Concentratior
LL.
essons Learned
_j_
omments
O
CD
•o
i
E
-9
§
©
CO
To
0)
£l
2
•^
$
1
8
i
CO
Dr. Hartmut Koehler, University o
rimary Contact
n
i
r—
"7
^~
,^
O
e
O
.2
a)
1
i
.c
f\
1^
1
c
^^
1
05
Jt/
Tfi
1
>
zi
c •
il
£ .
-§2
£L^
*-a
-5-9
co o
Koehler, H., J. Warrelmann, T. Fr
Contaminated Soil. Acta Biotechr
o
S
u
oo
o
-------
en
03
.0
"
Q
x
^
I
i
fi
$
a
z
.0
Q.
O
U
73
O
S.
V
(L
X
O
X
X
X
CM
O
X
Q
X
X
X
CM
Q
X
S
O
X
o
X
X
X
o
X
X
co
&
O
X
X
X
co
CO
O
X
X
X
X
CO
Q
X
D
X
X
X
X
X
CO
CO
O
X
&
Q
X
X
S
n
X
X
Q
O
O
X
X
X
Q
>
X
X
Q
X
Q
F
0*
CO
ro
X
X
X
S?
0
X
o
X
X
X
Q
S
W
O
1
€
*
a
z
JJ
ft.
5
0
T3
U
^
S.
n
ft.
X
X
X
CM
Q
X
X
X
X
CO
0
X
X
•*
o
t^
P5
in
O
in
O
X
CO
Q
X
h»
O
X
X
CO
Q
X
X
X
X
X
en
o
X
o
o
X
^
o
X
X
X
Q
X
X
X
X
8
0
X
Si
o
X
CM
O
X
X
X
CO
Q
§ =8
TJ 1 fc
S * £
-J Z W
n n n
£ ~ at
Q. Z <
- E
O t
II II II
O in 3
O O O
III
tl I
ID ra jz
CO U O
n n n
cS S o
'
< DO
n n ii
5 <2 co
I
Os
O
-------
t
31 7/31 9 Area - Argonne National Laboratory
0
TO
z
2
u>
Lemont, IL
ite Location
V)
|
'•fy
H
u
0)
a>
co
_j
(S
'*\
E
1
Perchloroethene, Trichloroethene, Carbon Tetrachloride, Chi
ontaminant
u
5
1
1
re
1
£
|
5
_o
i
•§
CO
CD
U
.*
'S
a
•o
1
Eastern gamagrass, Hybrid Poplar, Golden Weeping Willow,
V
S
I
>
b
"re
•a
"5.
.2>
00 0
co cO
® "2
J23
•35 re
5Z
•5 -o
A 0)
t^
"JS
•5©
800 whips planted. 420 poplars installed in deep, lined boreh
near surface. Used patented TreeWells® and TreeMediation
M
0
•a
Q.
1
Q
O)
•ft
g
a.
1
1
n
1
JD
O
^
^
1
^s
o
n
o
^
"55
CO
J!
Groundwater, Soil: Top-Bottom: 10' silty clay, 2* shallow aqui
o
n
TJ
a
S
Groundwater 25-30' bgs, aquifer 5'
M
o
•a
n
N
ite Character!
«
(A
5
IB
U.
C
O
•-B
vapotranspirs
UJ
CM
0!
0
10
^
H
S
re
(D
in
O)
1
e
o
CO
tri
d.
1
Q.
TB
c
(D
0)
if
CO
ID
LU
iL*
°
~
i
QL
Q.
1
|
O
5
•a
re
•o
re
bi
01
Phytostabilization, phytoextraction, phytodegradation, rhizodi
echanism
2
(0
cu
u
0
fe
i
"U
ro
T5
(J
•5
^
re
**r
$
3
ffi
(V
^
A
10
£
2
Fertilization, replanting, and significant Health/Safety expend
(B
itenanci
p oration /Main
equirements
Oo:
Full-scale (4 acres)
roject Scale
a
en
O)
O)
1
J
en
'5
c
n
roject Status
Q.
$1.2 million
o
u
UJ
0
Q
CO
1
D)
TJ
e
if
Q.
Q.
a.
1
'a>
o
£
IX
1
•s
•55
I
1
•is
r
M
0
V
ID
itial Concenti
c
n/a; varies considerably throughout site, from ppb to ppm
a>
o
V
n
inal Concentr
u.
TreeWells® installed in effort to achieve hydraulic control
S
Bssons Learn
_i
c
1
CO gj
|C4
l_ W
* C
Q)
W 3
S-B
o _
C ^~
ffl £
™ .2
c 15
Si
"5 2
1*
* 8
0) <])
ft •**
J _c
TCE and PCE and breakdown products (trichloroacetic acid)
contaminated soil in less than a year. TCE and PCE present
omments
0
•>
o
D)
"c
© —
'§» =
(D Q)
C S
Cristina Negri, Argonne National Laboratory (630) 252-9662
Ed Gafliff, Applied Natural Sciences (513) 895-6061 ans@fu
**
jj
S
o
u
>,
*
•c
0.
-i
<0
4) rt)
1 1
o **
x S,
» ^
CD ^
£ rt\
£ 1
u *
s I?
•S rn 5
Js u *
§ 1^
O ^ T-"
•o § d
S oj c
CO S "5.°^
c "'n (2 "§
i! fs
Q- v> 'S.'-S
Negri, M.C., et al 2003 Root Development and Rooting at De
McCutcheon and J.L. Schnoor, eds., Phytoremediation: Tran
John Wiley & Sons, Inc. p233-262, 91 2-913
Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted H
Phytoremediation Site: International Journal of PhytoremediE
o
•a
S
o
-------
[Anaconda Smelter Site, MT
[Site Name
Anaconda, MT
[Site Location
Arsenic, cadmium, copper, and zinc
[Contaminant
«
g
8
X
c
5
O
C
•<*
o
'•&
S
a.
1
o.
To
3
C
O
(0
C
[initial concentratio
iff^
u>
c
080 mg/kg (post-plan
Cu: average 832 mg/kg, range 525-1
w
c
[Final Concentratio
£
m
1
i
"S
V
Q.
pecies
u>
1
CO
"Z.
g
1
O)
i^
-g
is
S
!
^g.
Is
01 '0
Soil amendments (lime) and fertilizer
commercially available cultivated spe
1
M
^
"o
\
E
tn
1
CO
CD
|
Q.
CD
^
co
o
1
1
>, amendments and ft
Pre-tilling pH was phytotoxic to plant:
[vegetation.
Comments
E
o
1
E
JT
494-7329, jay.comis
|jay Cornish, MSE Technology, (406)
[Primary Contact
0)
*s
"S CB
CO DC
Q. ^g
o:|
o _
™\
CO
QC *Q
"3 jD
= «
"? «
CQ ^
II
ig
els
olerant Cultivars (DA'
jgram (Activity III Pro
) by Leslie Marty, DA'
Development of Acid/ Heavy Metal T
the EPA Mine Waste Technology Prc
Damage Program (Contract#6001 21 ;
Citation
-------
t
Anderson
0)
re
Z
CO
35
Anderson, SC
[Site Location
Lead, cadmium, sulfate, nitrate
[Contaminant
J!
Q.
X
a>
1
f)
[Vegetation Type
live cuttings, deep-rooted
g
[Planting Descripti
3"
1
&
Maintenance and monitoring costs:
to
o
0
0)
1
n
[Funding Source
Q
re
e
o
u
7s
"IE
(0
5
[Final Concentratic
>,
1
u
Vf=
'c
O)
•B)
0
i
o
cu
^
10
co
1
Concentration of metals in surface
[Lessons Learned
IE
1
c
g
~?
to
to
0
E
"S5
05
•§
-fc
cu
^g
(0
c
o
o
ffl
•55
(A
re
Q.
Phytoremediation is combined with
[Comments
£
u
1
tn
§
(0
o
'S.
I
9
j^
CN
CO"
, J1
Paul Thomas, Thomas Consultants
[Primary Contact
Personal communication
[Citation
-------
Argonne NL West 1
[Site Name
Idaho Falls, ID
c
[Site Locatio
Cesium-1 37
Contaminan
koshtascoparia
i
[Vegetation 1
hydro-seeded
M
o
a.
I
*
a
a>
•e
•D
i
09
E
1
£
1
U)
(O
10
O
OJ
1
1
S?
8
•D
1
|
*5
ffl
n
1
o
to
1
u
**
_®
ra
1
1
u
o
6
M
1
_c
s
I
M
g
•.B
n
N
i
[Site Characi
|ET Rates
_ o
SCO
CJ
'fee
~ °
VJ jj
•$ '.Q-
3
1 s
n c
^4f
- 00
Is
i §
g^
O Q)
rA — —
Northern high desert, very low humidity, short growing sea!
nighttime temperature. Temperature range: -38 to 1 02 F; E
mm; Growing season: 6/1 4 to 914
Climate
Phytoextraction
[Mechanism
,
S
c
g"
1
ra
£
i
SE
I
u-
11
•?i 5?
Irrigation (system with automated sensors based on soil m<
potasssium fertilizer, pest control (Roundup), harvesting (m
1
L.
1?
Demonstration/ Pilot (1 500 cubic yards)
13
i
o
u
10
c
M
55
I
o
fl
g
=
'E
IT)
t)
O
o
Government agency, PRP
u
o
CO
_c
c
IL
b
O-
d
CO
A
C)
10
o
'B
JS
u
o
u
T3
•49
"e
Data available Fall '04
(0
o
!
o
u
To
C
il
I
(0
c
To
£
€
CD
£
J)
_{g
'S
(0
(D
£
t^
0
(D
(A
1
Initial costs could be reduced significantly from this project
currently exists
Comments
0
Dl
"E
Scott Lee, Argonne West, 208-533-7829, scottlee@anlw.a
"u
n
Primary Cor
en
i
c
•a)
HI
T5
g
••s
o
•s
•O
O
9
"o
1 §
U Q.
Various CERCLA documents, including EPA Superfund Re
Laboratory, OU 21. 9/29/98. EPA/ROD/R1 0-98/061 1998.
(http://www.epa.gov/superfund/sites/rods/fulltext/r1 098061 .
Citation
-------
t
ArgonneNL West 2
Site Name
o
ta
15
LL
0
CO
•o
|Site Location
k_
ifi
[Contaminant
|
1
T
O
1
r
co
s-
ta
CO
£
Q.
-S
D)
.C
i
to
c
o
[Site Characterizatii
JO
[ET Rates
E
E
"co co
O CM
^ f
** <0
O nj
!§ ;§.
y" <|)
0 0-
O "JB
g i
I g
« 5
in **
_ 00
is
UJ ••
f> £
CD .O
c >
O Q)
U> LL
OJCM
C O
13
O>00
-_ /«rt
Northern high desert, very low humidity, shorl
nighttime temperature. Temperature range: -.
Growing season: 6/1 4 to 9/4
Climate
Phytoextraction
[Mechanism
E
a>
w
B
g
c
8"
•.0
TJ
CO
£
c
CO
I
c
8
CD
5
to
E
!~
§CD
1
•D ffl
CD E
CO t
Irrigation (system with automated sensors ba
fertilizer, pest control (Roundup), harvesting (
OM Requirements
Demonstration/ Pilot (500 cubic yards)
0)
15
u
V)
"o
-fi.
s
n
Inactive
[Project Status
I
IT)
15
o
Government agency, PRP
[Funding Source
OJ
0)
CM
8
1
(A
C
[initial Concentratio
p
u.
_o>
1
(0
"55
n
(A
c
[Final Concentratio
[Lessons Learned
CD
£
5
n
c
j)
_co
1
£
"o
3
CO
Q)
f^
1
o
^
D.
(fl
£
F
Initial costs could be reduced significantly froi
currently exists
Comments
;,
O
O)
"E
co
Jj
n
®
(D
*
»j
Scott Lee, Argonne West, 208-533-7829, sco
Primary Contact
ra
c
§5
_c
c
UJ
"co
c
o
CO
o
-s
T3
O
'to
'8
o
*o
•E c-
o -o
O Q.
0)
cr cdS
•o o> a
C O) CO
£ *~ o
sil
« S2 »
Various CERCLA documents, induding EPA
Laboratory, OU 21. 9/29/98. EPA/ROD/R1 0-5
(http://www.epa.gov/superfund/sites/rods/fulll
Citation
-------
I
CO
I
•z.
1C
c
1
Site Name
(Idaho Falls, ID
jSite Location
£>
1
[Contaminant
1
5
•o
I
[Vegetation Type
hand-planted, spaced 18 Inches apart
i
(Planting Descriptii
*o
>s
E
CD
o
g
3
%
CO
O>
la
i
0
1
S?
o
to
•o
Ifl
J
•D
g
.Q
SS
§
If
w
n
1
o
05
'o
(0
8-
U
^
Effective rooting depth is 1 0-20 inches. Available wat
M
o
[Site Character! zati
"c
|ET Rates
_ o
CB CO
O CM
2=1
^ s
^'%
0 £
O Q-
O -jj
3
9* c
o §
"S C
8.8
"8
IO *^
g(N
£$
tA • •
M S
0> O
§5
CD LU
-------
0)
z
CD
C
g
Site Name
Q
to
LL
0
1
Site Location
Chromium and mercury
[Contaminant
_o
1
•o
!
c
%
1
at
r
co
s-
0)
|
CO
•o
0)
u
to
Q.
to
•a"
1
co
9-
T3
i
1
[Planting Descriptu
•o
c
(0
!>.
s
TO
_o
0>
$5
-Q
to
E
CD
S?
O
d.
Soil; 40% bondfarm loamy sand, 30% rock outcro
{Media Type
5
—
CO
'D
re
Q.
to
u
cB
1
Effective rooting depth is 1 0-20 Inches. Available
»
i
[Site Character! zati
-5
HI
_ O
SCO
CM
J
U g
•* '§-
n" 1J
o H
? re
* c
l!
g> a)
m5
in^
m "
S t».
£ t
S o
c 5
O 0)
10 LU
CO LL
O>CN
.C O
Northern high desert, very low humidity, short gro
nighttime temperature. Temperature range: -38 to
mm; Growing season: 6/1 4 to 9/4
Climate
Phytoextraction
[Mechanism
|
i
CO
s
"5
c
0
c
g"
;-o
IS
to
£
A
_
^
^
5""
u
fertilizer, pest control (Roundup), harvesting (man
OM Requirements
Demonstration/ Pilot (500 cubic yards)
v
13
u
V)
I
Z
a.
Inactive
[Project Status
g
1
in
CM
"5
O
u
Government agency, PRP
{Funding Source
Mercury 3.94 mg/kg; Chromium: 709 mg/kg
M
c
[initial Concentratio
p
"5
LL
0)
-s
'5
co
10
c
[Final Concentratio
[Lessons Learned
£
g
I?
^
c
_CD
CO
'to
to
>,
re
£
•5
0)
•j
CO
f^
.u
o
o.
en
Initial costs could be reduced significantly from thi
[currently exists
Comments
>
8>
c
re
J
a
©
rti
Scott Lee, Argonne West 208-533-7829, scottle<
Primary Contact
D)
c
C
OT
^
HI
"re
|
•z.
O
T3
—
O
;«>
cu
O
•MB*
0
E t
o a.
cu
DC ed co
"O O> O
c o> °o
•? '*" o
Various CERCLA documents, including EPA Sup<
Laboratory, OU 21. 9/29/98. EP A/ROD/R1 0-98/Of
(http://www.epa.goV/superfund/sites/rods/fulltext/r
Citation
-------
0)
55
•0
t
3
C/5
8
1
i
0
1
w
«J
{Site Name
Fairhaven, MA
[Site Location
t*
ii
Kl
if
,~
z
^
«
2
®*
^
c
u
*"
c
o
Benzene, Copper, Chr
[Contaminant
To be determined
[Vegetation Type
at
[Planting Descript
Groundwater
0
(0
0
Z
M
C
o
!D
[Site Characterizal
I
a:
UJ
o
lason: ^
%
0)
c
s
o
O
i '
®
^
1
S
'o.
u
V
Q.
"5
3
C
—
^
*r
in
c
o
•^
§
_«
UJ
tn
en
_g
OJ
Temperature Range: -
10/22
Climate
JMechanism
M
£
!
I
a
o
"5
u.
[Project Scale
Pre-design
w
i
s
a.
IS
o
u
(Funding Source
w
c
o
[initial concentrati
M
C
O
[Final Concentrate
[Lessons Learned
o
O)
HI
8-
©
*i
C
•JK
^
£
S
"8
of
«
?
fl^,
^
to
a.
ui
{
•i
12
primary Con tact
c
O!
Not available: pre-desi
[Citation
-------
t
Austin, TX Residential Site
[Site Name
X
c"
jSite Location
8
o
[Contaminant
Hyperaccumulating fem {Pteris)
[Vegetation Type
Ferns transplanted from pots
2
c
Q
•_s
[Planting Descripl
Soil (silt loam)
[Media Type
U)
c
o
•*3
[Site Characteriza
to
s
1
in
A
£
•o
c
O
|ET Rates
£
CO
^
o
to
i
O)
2
O
m
O)
CO
g
1
Q.
fl3
Q.
C
i
if
fv.
co
|
o>
Temperature Range: 4 to 1 06 F; El
11/5
Climate
Phytoextraction
[Mechanism
O!
.£
ff*
i
n
^^
$
0
—
CZ
•a
Ol
1
\*f
0)
£
*^
w
,C
O)
O
in
G."
0
Z
-------
Bayonne, NJ
01
z
£
w
Bayonne, NJ
Site Location
Heavy metals
[Contaminant
I
CO
u
'(0
Indian mustard (Bras
0
o
i
1
Planted from seeds
M
c
[Planting Descriptic
Soil (sandy loam)
0
*
(0
1
1
Q.
IS
CO
i
o>
1
fX
O
w
)
tj
.2.
o
ts
o
[Funding Source
u
0
in
O
"5
CO
S
•s
3
CO
rt
•§
CO
CD
en
E
o
8.
^
«
8
S
oo
J^.
M
CO
\
0
3
ri
(0
c
JFinai Concentratio
0
8
cn
1
S
x o
§1
CQ
4= <
4) s**«
§UJ
^_
O O
H
5 4)
fO >-
V CO
co M
.IS T3
CO 0)
O w
^3
OJ <
(fl ^
1?
u
CO
g-
c
41
CD
9
-g
o
_CO
o"
o
I
1
^
0)
s
a.
CO
sch (now Eden
I
Michael Blaylock, Ph
Primary Contact
E!
81
mi
O]
Qj
cj
i
[Citation
t
-------
t
i
i
U>
C
S
ir
O)
m
ite Name
CO
0
O)
o
U)
CD
n
ite Location
CO
Cadmium, lead, zinc
ontaminant
u
—
m
%
1
:»
u
1
u
CO
i
c
CO
CD
CD
egetation Type
>
1
2
CD
Q.
"5
Q.
0
£
i
1
S
o
0
lendments
40 plots (4 rows, each row with one of three an
a>
§
•c
(anting Descrip
a.
1
1
1
.c
.J2
E
0)
c
•43
8
O
g
u
i£i
to
(O
8
S
a.
8
•43
1
Soil (fine-grained tailings from froth/chemical fl<
0>
.2
c
S
05
in
8,
CO
CO
I
CO
•43
O
0
3
CD
Q.
1
(0
O)
S
CM
If)
,
CD
CO
I
Q.
0
g
in
S
6
o
g
f»
e estimate:
Demonstration cost $1 7,200 per acre; full seal
compost)
w
0
U
US EPA Mine Waste Technology Program
:
1
0)
c
TJ
3
U.
U)
O
•a
litial concentral
c
i
•ra
inal Concentral
4r
a
-c | „,
.2* cfl ^ ^
ers Compost h
a more vigoroi
;e either amen
Iments should
91 %
"° n S
C ^ .— CD
•jg W §£
** ^ ^ O
oo: £ D)
» m £ .£
8 ec^ us
•— i— -O CD
Q. cn"S 0
C3> |
-S QJ
•S Cj
Jig
c§
•2 ^
|^
Oj tn
CD 0}
1 H
* s
port for frte
fracf/ve Wu/
larch 2004
MSE Technology Applications, Inc., Interim Re
Amendments and the Potential for Creating Ati
1 89, July 2001 and Final Report MWTP-239, IY
0
I
U
o
<
-------
Bunker Hill
a
n
z
S
85
Q
CO
8
TJ
i
o
(Site Location
o
c
TJ"
8
(Contaminant
(A
03
CO
O)
to
0)
E
£
1
S
1
8-
M
S
X
(Vegetation Type
M
[Planting Descriptioi
"5
TJ
1
a.
o
[Project Stabs
1
[Funding Source
01
01
E
00
CN
cn
tJ
O
cn
^£
D)
E
8
Q
fNl
£
0
T"
(M
Zn: 6000-14700 mg/kg; Pb: ;
U)
(initial concentration
u
[Final Concentration
"8
c
w
i
to
<1>
s
s
TJ
cB
>>
0)
_o
I
Ol
2
^«
"5
co
5
>
£
T>
CU
.£
E
u
D)
CM
•o
CO
£•
i
m
[Comments
o
Ol
CO
3
10
to
I
5%
CD
CO
-g
IN
CO
3
o
tn
o
co_
I
1
6
CO
rr
[Primary Contact
0)
o
S" (B
, "o
| !2
•.^ o
t> (fl
"§ ~u
^ 21
S"§
It
CD CD
t5 S
7? '5
2 -=
UJ ^
S 2
l|
fl) flJ
II
co _e
ll
CO 5
3 ^5
S|»
O) ,^
<=• 0
c c
ja o
§|
. "5.
0 '
^1§.
Brown, S.L. and R.L. Chane
343-360. In J. Bartels (ed.) L
Society of America, Madison
Citation
-------
t
Cooperative Farm
0)
I
3
w
1
CL
•§,
m
[Site Location
U
c
-a
1
1
re
[Contaminant
»
re
E
re
in
w
N
w
3
E
1
u
to
_c
£
CL
O)
<0
3
£
_
0)
I
re"
"re
1
1
c£
i
"55
2
m
[Vegetation Type
-
u
0
"5s
JZ
D.
•o
$
5
5
D)
^
W
d)
c
•4=
re
a.
0
.Q
Q.
C
,g
"ffi
N
'•f3 /•;
d, plowing, andfer
tensity, seedsyhoU
0) **
s«
i 8-
Herbicide applied, weeds re
Inc. recommendations on d
(A
^
Planting Descriptior
[Soil (Sandy clay)
[Media Type
"ST
•§
s?
s
1
JN,
O>
c
'8-
IS
*_rf
TO
u=
"6
CO
i
2
2
O
1
o
E
c
£
to
m
! topography range
co
Depth to groundwater > 1 1
w
e
Site Characterizatio
|ET Rates
[Climate
iPhytoextraction
[Mechanism
E
Q
TJ
d>
•^
Ul
S
i
•^
"c
0)
E
C
§5
CO
1-
Q
•a
re
15
u
c
o
1
O)
Fertilization (N, S, P, K), irri
|OM Requirements
"re"
in
ID
S
to
"5
u
0
«
u
V)
I
2
a.
— »
pi
O)
c
•c
D.
C/>
I
JO
u>
"5
o>
n
[Project Status
"S3
E
£
re
1
Q.
~1
U!
,3
[Funding Source
Oi
f
o "o>
re ~o ic
CD "D ** ^ ^"
±"5 ® £ Cl
^ E s uJ
JS Q-:§_ * S-
(0 - rt^ ®
If |§|
C m Cfl Q f
CO ^ .• 03 t
._. ^ (/J W* ^3
| 1 re || I
o, m "c § re £
IIlll!
|§-| l^'s
f s^ l-o *
•o re <5 "° S w
re fe "S § « £
^ "3 1 "2 « ^
c o § H5 o §•
.§ '3 >g 3 jr ••*=
Is-llll
g.| *I"H.^
C .^T ^ |_ .^ *fr
g^ E o-l <«
y 1 8 S 2 I
The most efficient plant spe
juncea) provided by Phytoh
ETU, was less effective in
environmental conditions c<
concentrations of lead and
application. This treatment
Lessons Learned
"S"
V
0)
CL
to
TJ
C
'g
.
^5
<<5
c
"2 ID
JS
tt)" 'Eo
ij
11
i"
IS
o> .•=
> c
ui E
i"c
•a "a.
Q) T3
re ^
ed in hazardous M
>n), soil chemistry,
•- -fi
to -e
O "to
Q. O
_fi Q.
Harvested materials were d
direction, humidity, light, de
Comments
ex
u
"5
1
^
n>
!
of
o
o
in
CN
CO
?
«T
S
4
ology of Industrial
u
LLI
i
Ratal Kucharski, Institute fr
[Primary Contact
S
'w
T)
re
^
^
m
^
5
-s
ty
"U
i
•5
a.
o
S,
CO
^
i
i-
Q?
o:
i
c
LL
CO
O)
en
Veas, Katowice. 1
^•^
[re
to
[institute for Ecology of Indu
Iphytoremediation project
Citation
-------
o
«J
O
*
Z
£
<3
aslano, Switzerland
0
[Site Location
u
05
Q,
1
(0
(1
[Contaminant
asket willow (Salix viminalis)
m
[Vegetation Type
2"
^i
^L
g
S
flj
E
cr
(0
j
Q
Q.
rom cuttings, 4 cuttings per sub
u
M
[Planting Descriptior
oj
ID
CL
1
u
|5
•S
(fl
1
M
C
[Site Characterizatiol
|ET Rates
[Climate
hytoextraction
Q.
i
u
9
O
^
CM
•o
"o.
(0
^
§j
(0
-j
tr
T?
-s
a;
LU
w
35
^5
g
c
«
5
Cv
15
-5
~m
•z.
O>
2£
^
nf
^
01
i
CM
of
Q.
0 £
II
'•e-e
u
(D
X
o
M
•_*
^
8
§
O)
^£
en
E
00
in
^
q
Di
D)
E
^
c
1
1
u
•3
c
1
K
"o
•^
s
CO
c
atherine Keller, Swiss Federal 1
0
[Primary Contact
0
^
15
'5
•a
15
_c
IK
IB
c
>
X
is
w
£
*
N
•o
C
•o
O
"o
J
u
-------
21
1
u.
6
re
£
"g
1
m
Central Louisiani
[Site Name
Louisiana
[Site Location
Q>
0
2
&
o
o
w
5
Q_
E"
arsenic, chrorniu
[Contaminant
Loblolly pines
[Vegetation Type
<$
%
Q.
O
O
kO
'S
^*
"w
1
T5
1
£
u
•^
c
re
8
co"
O)
^
1
g
o
Q.
3
co
5
0,
13
uT
O
$
5
"S
«s
^
._ yj
§o
— "2
groundwater con
below ground sui
c
Site Characterizatio
JET Rates
[Climate
[Mechanism
[ON Requirements
to
o
re
0
jo.
Q
Field demonstral
[Project Scale
81
0)
o
•z.
re
O>
(V
CO
[Project Status
CO
o
o
[Funding Source
O)
^£
O)
E
o
-------
H
1
C-H Plant Area: Texas City Ch
[Site Name
b
Q.
T3
Q.
0)
If)
n
|ET Rates
•*
£
o
|s.
C
*!?
c:
%
re
%
01
c
1
o
0
K ""
hj j
^«
a
1
a
3
i
i
a
1
[Climate
Hydraulic Control
i
1
|OM Requirements
Demonstration/Pilot (27 acres)
0
T5
u
CO
ta
'o
ot
O)
c
•5
O)
n
[Project Status
"55
o
U
1
n
BP; Texas Voluntary Cleanup i
u
o
CO
o>
B
TJ
E
U.
£1
E
o
X
s
n
'E
"re
f)
«
^nitial concentration
M
[Final Concentration
[Lessons Learned
"5
0
TJ
%
t*
C
"5.
£
%
to
3
V)
•&
£
§
E
S.
re
0)
E
5
q=
Q.
re
^
g
1
B-
£
Quarterly monitoring of ground
excavations also done.
Comments
O
.&
o
re
J2
f*£
136-71 6£
David Tsao, BP /Amoco, (630)fi
[Primary Contact
c
o
CO
o
'c
3
E
u
"co
a.
TJ
CM
ITRC Technologies Workshop
[Citation
-------
I
Firing Range, ChiHiwack
0
n
z
S
V)
ChiHiwack, BC
ite Location
V)
(U
Q.
Q.
8
•o
ontaminant
o
^^
re
cu
u
c
CO
o
"(O
U)
2
s
•s
B
to
3
5
i
T3
•o
n
?
?
•43
(Q
(0
(O
CL,
s
CL
i
fe
n
1
o
1
O)
0>
CM
J£
i
go.
in
•<(••• <4 J
^c o
|t
*- c
2 »
-D ;:
a «
£ "55
.£
* 0)
•o2
n o
CM y
c Q)
^5 i_
•O 3
u] re
o
8
O
» *.
E
o
?
.a
'a,
?
Q.
"re
c
ra
1
E"
g
1
g o £ A
C f5 O) C QQ
•rf | 1 '* o
5-SS o> 6
•2 J> S o ro
•yii§
CQ •§ § .« o
£ ••= £ o .£
— ~5i fll
o • t/i S
o r\ Q) c Q
o ^ w "S "
lllll
§ffl w o S
.0 c c c ^_
Overall results suggest that P. sativum is a more effective phyto
acidification has the potential to be as effective as low dose app
EDTA was stll most effective in enhancing lead concentrations i
study, metal concentrations ranging from <1 00 to 600 mg*g we
applications of 1 .7 mmol/kg EDTA resulted in shoot tissue conct
P. sativum. (EDTA applications ranged from 0.3 to 1 .7 mmol/kg
1
s
ID
C
S3
•5
_E
CL
TO
•E
|
O
O
cS
c
;—
(U
c
ra
X
•U
i
D)
L_
f*t
Phytoremediation compound was was equipped with a double-fe
fence.
omments
o
1
'3i
o>
w
0) §
E
"I
o p
C Q
S
ffi
o.£
2|
0 Q.
a) ^
fA "^
CD IO '
0) C4
11
3 CO
IcS
Peat moss added as a bulking agent, at a rate providing a 1 0%
experimental soil. Granular fertilizer (28-1 0-1 0) was distributed
EDTA at a rate of 0.03 mmol/kg soil 50 days after planting.
rimary Contact
o.
S
3)
O
"5
C
UJ
CO
1
o
9
in
-CCE-E!
O
C£.
O
CO
1
lc
o
Phytoremediation of Lead Contaminated Rifle Range Soils, CFB
Canada, 2000.
o
TO
B
u
rs
<
-------
1
O
I
£
V)
o
"re
O
|Site Location
Arsenic
[Contaminant
Ryegrass
[Vegetation Type
w
planting Description
o
.5
0
5
03
O)
>
re
8
1
o
CM
H
rt
^.^
03
to
E
R
S
a
Q.
re
U)
d)
Depth to groundwater van
e
[Site Characterizatiol
I
U.
Ul
in
if
8
«
D)
_e
5
E
E
a>
tr
Q.
1- 05
Climate
lphytoaccumulation
^Mechanism
8
|OM Requirements
(ii
£
u
[Demonstration/Pilot (0.5 a
o>
•re
«•«
U
s
Q.
TJ
1
a
O
project Status
OT
D
o
CM
i
^
!ffl
[$12,000 CAN, approxirnal
4«*
O
1
O)
'•5
c
to
O)
_c
I
o
a
0
n
Initial concentration
»
Final Concentration
.s
» ®
n -°
g,l
SI
"5 S
II
0 "°
c ^
2 0)
£
're -D
£^
e "0
0 S
» •=
11
8 §
8 «s
U -C
ll
^8
f» "^
^ re
.— aj
_<3 o_ re
c o f
re ^) w
^ S 2
C ^1. ,t
™°o
S'5. *fi
«
-------
Combustion Superfund
Site Name
Denham Springs, LA
Site Location
„
"c
1
=5
03
S
3
0
>
•55
..
15
%
c
2j-
3
JJ
E
•o
TO
—
o>
S
N
8
-°
w"
c
03
H
'.Q
"O
J)
I
1,2-dichloroethane, polych'
toluene diamine
Contaminant
'i
_o
i
1
"TO
z
«
0,
V)
3
ft
S
3
UJ
Vegetation Type
I
CO
1
o
n
10
c
Planting Descriptio
Groundwater
Media Type
•5
TO
Q.
E
"o
1
•o
b
LT3
w
ft
Site Character! zatii
ET Rates
o
CO
CO
TO
>
D)
C
"I
E
CD
B *"
00
d
(O
§
1
'5.
"o
£
a
3
C
TO
C
03
2
05
ID
S
•ss
S
03
HI
LL
CJ
o
Temperature Range: -8 to
11/4
Climate
c
.2
13
N
V
TO
~5
O
5
Q.
1
TO
•o
2
Hydraulic control, rhizodeg
1 Mechanism
OM Requirements
Full-Scale
| Project Scale
CN
O
i
TO
O.
| Project Status
w
0
u
T3
a.
Funding Source
Combustion Superfund
(A
Initial concentratio
in
e
1 Final Concentratiol
| Lessons Learned
Q.
E
•5
£
f
o
| Comments
CO
* gj
A *?
toj^
Si CM
Katrina Coltrain, US EPA
Todd Thibodeaux, LDEQ (
Primary Contact
3
Q.
UJ
O
UJ
o
Citation
oo
-------
Craney Island Fuel Terminal
[site Name
Portsmouth, VA
[Site Location
1
1
i
Q.
i
1
a.
i
i
n
[Contaminant
i
Bermuda grass, rye grass, white dove
0
[Vegetation Typ
O)
c
=0
8
M
O
a
[Planting Descri
f
1
10
c\i
re
0
•J-
-55
"5
c
*c *
o £
c o
— c
co re
T **
CM c
D) «
C C
ill contain!
polyethyle
o re
e ><
§5-0
Phytoremediation on biological treatm
soil followed by a sand layer, followed
compacted clay base.
10
0
n
M
Site Character!;
|ET Rates
0
g
\J
to
0)
•5
1
O
to
5
g
w
•J3
.9*
jjj
Q.
16
c
co
CD
if
<£>
CM
5
1
Temperature Range: -3 to 1 04 F; EIe\
10/31
Climate
Rhizodegradation
[Mechanism
0)
C
"5_
Z. u>
||
ii
Monthly basis: Wedding, mowing, fert
monthly or bimonthly. Tilling and irrigz
£.
c
OM Requireme
Demonstration/Pilot (1 20 ft x 1 80 ft)
•a
I
o
Completed (1995-1 997)
at
i
i
o
o
¥
c
Q
*O
I
|
Q-
Q
8
Q
TJ
re
2
8
u.
r-
nonstratioi
g
O
>
AATDF{Advanced Applied Technolog
a
[Funding Sourc
o
[initial concentr
o
[Final Concentri
i
*~
jS
rt
CD
T3
CO
J3
CD
•o
(O
2!
O)
a3
^a
£
$
o
2 s^
= ; unveget
$ s5:
> t-.
5KCO
X) II
Total TPH degradation in soils varied
reduction in soils; fescue=35%; clover
,
Lessons Learn
[Comments
i
At
0)
•8
km-
ft
5
(U
t
J!B
1
CO
"E
Q.
CO
(D
*J
[primary Contac
£
5
•o
re
c
E
1
0
CO (ti
•52
ol
"•^ ^
.5
£ ^~
S ^
XT ™5
^.^
n 1
c £
O 0)
" C •
, , .e
Banks, M. Katherine, A Paul Schwab
Hazardous Organic Chemicals (1 997)
http://www.ruf.rice.edU/-aatdf/pages/p
Citation
ON
<
-------
S
^
o
CO
U_
ffl
I
•Q
0)
C
o
T3
CO
•"§
13
•m
Danbury, CT brownfi*
[Site Name |
0
i
[Site Location |
O)
T
jContaminant |
Eastern Cotton wood
[Vegetation Type |
cotton woods
Genetically modified
[Planting Descriptions |
Soil (primarily fill)
[Media Type j
tfi
D)
*;
o
[Site Characterizations j
3
IB
UJ
S
LO
«5
8
CO
co
CD
CO
0)
1
o
®.
o>
UO
£
o
-*S
!9-
"u
£
Q.
3
C
C
co
c
CD
_
~a.
Q.
CO
CD
>,
E
C
O
ro
1
CD
fe
f.
Q.
.c
§'
.£-,
results are posi'
§
CM
f
£
[Comments |
._-
"1
0
•5
S
o
^
1
-J
§
CO
u
•«:
CD
C
§,
'S,
.C CO
•§•3
.* H
Q. ^
CO ^
^ffl
J2 'o
-§"©
_ ^
in en
11
is ^
K 5
5 "^
Phytogenetics,
, 203-797-4625,
David Glass, Applied
Danbury Health Dept
Primary Contact
^•J*
a
UJ
D
^
0
E
c
's
^
I
0)
o:
0)
«
Documents not yet a1
[Citation |
-------
di
f
-^sS «
V
O
0
JO
.a
Ul
T5
M
cn
c
'c
TJ
i
cn
1
•o
i
(0
cn
S
soil), decreasing do
declining with dept
5
mg/kg (
; Cd: 4.
.£ «
S CM
£5
CQ ^
OD ,, -P^
a al
10
oncen
Illil
feU"
N 3 ^ c
2 i 11 •£
•gs o ® »
ijs'js
s S is -S H
11 ill
IS II
S»!l!
||2f>
L 'B m
lar survival rate ranged b
ts than in Galena study
n rates were higher for
t water use efficiency and
k>twigs>wood for Zn a
"8
OHS Le
ts
ri
R
Acr
, JL
ical
O
1
O
t
-------
Dorchester, MA
(Site Name
Dorchester, MA
(Site Location
•o
CD
V
(Contaminant
_c
ID
CD
.C
2^
•^
—
Inigation, fertilization,
(OM Requirements
^
5f
o
Demonstration/ Pilot (
«
u
tj
.t,
S
oo"
Completed (1 996-1 99
(Project Status
In
o
Phytotech
(Funding Source
JD
Q.
r>
O
O
0
s
£
JB
ro
§,
o
^
ID
£
in
T3
0)
5
ii
n
M
(initial concentration
f^
^^
Q.
O
O
CO
TO
£
to
8
Ja
n
(A
(Final Concentration
(Lessons Learned
(Comments
|
o>
o
CD
8-
£
•5
(U
©
-^
o
JD
O
o
o
o
^,
d>
Q
(C
s-
C
Michael Blaylock, Ede
(Primary Contact
Q
CO
1
E
c
•5,
f i
CO Q
lo
ro
•- CO
1°
•— W5
§°
O ®
w S
_J ^
O C
O C
ro E
CD Z
§, t
cf H
"S-b
0 HI
1 fe
o "S
25
-------
1
Q
{Site Name
Domach, Switzerland
{Site Location
Cadmium, copper, zinc
{Contaminant
"in
1
c
Basket willow (Salix vim
{Vegetation Type
"aT
'S
Q.
1
CO
£
co
JB
^5
sr
Y
J3
"=
fc
O_
CO
o>
^c
1
i
s
3
w
c
{Planting Descriptic
rt
N!
Q.
to
1
I
Is
{Media Type
10
c
o
{Site Characterizatil
|ET Rates
i
(Climate
Phytoextracton
{Mechanism
D)
J^
CM
•tf
•Q.
E
S
±9
tfl
0)
S"
CO
is
i?
-^
^2
i
i
s
E
co
b
5
CD
o
•jj
yi
O)
§
^ ^
D> CD
o is
CM 'C.
df CM
Fertilization (1 20 kg P/h
Fe/ha), sulfur (36 md/m
OM Requirements
"5
o.
E
^
x
T-:
^
{Demonstration/ Pilot (fo
a
u
(0
7i
S
A
1
CM
fi
O)
"5.
{Project Status
3
o
{Funding Source
TQ*
'0
CD
O
S
c
s
CM
£
5
_0)
0
.b
09
tfl
|
"ra
^
§
O)
E
(0
i5
t»
H>
E
s
in
O
en
O)
E
CO
CM
T3
O
(0
e
Initial concentratio
CO
u>
t*.
CO
"^
CO
CD
O)
(i
1^
O
c
1
^-
B1
0
c
1
"o
s
••s
_c
IE
LL
Catherine Keller, Swiss
{Primary Contact
Z)
•g
to
vi
To
•^
?
!^
^C
(A
T5
c
1
•5
X
1
CO
£
5
fi
•a
§
O
15
_
ra
^>
i
^
Q_
O CM
i
(E*
T5 S"
^ 2
Hammer, D; Kayser, A'
and Management. 19(2(
Citation
-------
East Palo Alto
*
n
z
2
V)
o
o
o
15
o.
•55
CO
UJ
ite Location
CO
Arsenic, sodium
ontaminant
U
Eucalyptus, Tamarisk
o
1
£
i
T3
0!
_C
"a
I
F
w
en
S
3
1
ia
0
o
•5
0)
c
W
g
jj
1
£
g
!
s
in
CO
CD
CD
Q.
w
1
n.
1
0
O
D>
C
••a
i
a.
I
(0
•a
i
Soil (clayey soil on top, over more porous s
o
.Z
S
M
O]
.0
«
5
CD
1
T3
C
O
L.
O
Groundwater containment inside slurry wall.
10
g
ite Characterizal
CO
10
ce.
UJ
42
S
g
H)
CO
8»
en
g
0
E
CO
^
I
3
"o.
"u
CD
Q.
15
3
i
i
2
jjj
O5
CO
Temperature Range: 27 to 105 F; Elevation
12/28
1
(3
Phytoextraction
echanism
Z
O)
.£
1
5
"* C
"U ffl
CO ^
CD ^
U -Q
tff U)
li
En
(0 0)
•«* c
CO V
O) —
•i S"
^
•— •'»'
CO
°p
in
5
«r
WJ
M«
QJ
."
Mike Rafferty, SS Papadopulous and Assoc
rimary Contact
a.
X
CO
CD
O
_o
1
LX
S
o
CN
rt
f c
CO ~
5 CO
CD
-------
(C
£
0
.-r
•a
0)
a:
|
1
OT
S
§
.E
UJ
16
o
1
U
[Site Name
a
O
of
u
c
•5
s
CL
1
(Q
C
3
u.
c
[Site Location
o
[Cadmium, lead, zim
[Contaminant
[Vetiver grass
[Vegetation Type
10
c
A
[Planting Descriptil
[Soil (red soil-oxisoil
[Media Type
M
c
O
[Site Characterizati
|ET Rates
j
I
j
[Climate
[Phytoextraction
[Mechanism
[Fertilization
JOM Requirements
Demonstraton/ Pilol
a
•a
"u
.0.
O
£
[Completed
[Project Status
i
[Funding Source
10
c
[initial concentratio
M
C
[Final Concentratio
[Lessons Learned
[Comments
_
.5
6
oo"
0
§
csi
cfi
c
*•*!
c
m
•z.
00
X
o
ffl
O
0.
8
o
c
u
'o
"o
•§
n
<£
|HM Chen, Chinese
[Primary Contact
[Citation
en
3
01
E
o>
£
-o
OJ
c
E
"E:
o
u
^
"i
"o
c
.2
tc
T3
0)
I
^^
0.
•a
M
•§
£
Q)
£ ^
P
a> CN
O -1-'
o
§§
Chen, HM; et al. 20
Chemosphere. 41 (i
«
a
z
2
CO
m
<
-------
t
Ensign-Bickford Company
i
z
o
Simsbury, CT
[Site Location
1
[Contaminant
Helianthus annus)
Indian mustard (Brassica juncea) and sunflower (1
"3
1
Seeded with three treatment crops
g
[Planting Descript
to
.0
"5
[Media Type
"i
Q
"o
2
1
^.
to
nj
0)
to
CT
turated throughout growin
Water table 2-4 ft bgs. Poor site drainage. Soil sal
U)
o
!B
[Site Characterizal
JET Rates
CM
IB
c
Q
w
at
O)
c
"5
S
O
^_
5
|
ft; Mean annual precipita
Temperature Range: -26 to 102 F; Elevation: 174
9/23
Climate
S
1
I
(X
[Mechanism
5
o
o
•o
c
S
jfl
in
Irc
* £
lo
3 TO
U) -O
Kl *0
;m depth) and foliar fertili;
; stabilizing amendments
o £
o E
~* o
1
c «-
O B>
If
££
., 0)
ll
«A
low Requirement!
1
(Q
in
CO
ID
m
"3
u
•|
s
00
1
9
1
1
0)
Q.
u>
V)
I
s.
o
[Funding Source
^
•^
fen
ni
V
E
§
o
CN
6
o
m
sl5
ea 2: 1 25-1 250 mg/kg; A
Pb concentration: 635 m<
Pb concentrations for Area 1 : 500-5000 mg/kg; AJ
750-1000 mg/kg; Area 5: 6.5-7.5 mg/kg. Average
M
g
Initial concentrati
Average Pb concentration: 478 mg/kg (Area 1 -4).
a>
O
[Final Concentrati
c
T3
S
to
•3
t
n
13
C
C
u>
Idl
n
CN c
in =
?§
stard in treatment crop 1
sr similar, approximately '
Lead uptake ranged from 342 mg/kg in Indian mu
treatment crop 3. Average lead uptake in sunflowi
Lessons Learned
•D
S
1
(0
3
£
•Q
C
"8
H
b.
0)
1
'S
although some areas rem
Plant growth for treatment crops generally good, <
poor plant growth and reduced biomass yields.
Comments
1
1)390-1100, SoilRx@aol.
Michael Blaylock, Edenspace Systems Corp, (70S
[Primary Contact
c
Q.
5O
£2
•g CN
2l!
s>°
c O
£9
rfRP
A\ rvi
and Open Detonating Are
jdies, Volume 4. EPA 541
FRTR. 2000. Phytoremediation at the Open Burn
Simsbury, CT. Abstracts of Remediation Case Sti
Citation
m
^
-------
FortDix,NJ
i
£
FortDix,NJ
[Site Location |
1
|
o
u
(O
i.
ard, sunflower, mixed
"w
i
S
T3
C
0
O
•a
CD
Q>
0)
CO
[Planting Descriptions |
TJ
%
>
•o
i
c
1
_g.
"5
CO
.5
S
[Site Characterizations
|ET Rates
in
|
(A
0
D)
1
0
O
« "
c
.0
5
Q.
rtrt
£
Q.
"co
D
C
c
OS
i
«f
o
rt
V-
§
1
UJ
LL."
CM
O
T~
S
T
oi
en
S
or
m
Temperatun
110/23
Climate
1
u
1
i
CL
1
s
^^
•D
CO
J2
Q
UJ
en
th leachate containin
Irrigation (wi
[OM Requirements
on/ Pilot (1.25 acres)
Demonstrati
3!
i
8
Ar
997-10/2002
Completed 1
(Project Status |
o
u
•o
Q.
a
u
o
CD
_c
e
3
u.
"3
1
o
0
o
o'
I
8,
I
O)
en
in
Jti
n
[initial concentrations
O)
D)
E
§
CM
Jd
n,
[Final Concentrations
•o
=5
_
£
^J-
$ (A
C
i -0
o n;
I J=
^j C
V o
CB °
(D T3
-55 —
0)^
O C
o eg
% "*5
s (reduction of Pb bel
for the difference in ir
Project goal;
not account
Lessons Learned
o
°"l
* " *^
51
n C
^ o
JC
al
•S '5
c S
CM
cl
— TO
•p £
s «
o e
to B
CL £
O "D
CO «^
**— O
CO ^
c «
to
g-D
. 'ffi
> planting
/ater rem.
sad fragments prior tc
dcrulated drainage v
Excavated li
gallons of re
mgfcg
Comments
>
i>
(C
(§)
g
1
U SEP A, 51 3-569-71
^"
g
OL
S
J5
ro
[Primary Contact
o
"o
o
o
T3 0
C C
« —
C W"
SS
W CO
P T3
X C
10 j^
Hp
s ?
S-5
ra -»
^ 0
§s
& H
s.8
JC C
u
M CO
0) .
Is
_c JB
tu ""
•Rw
onsofPh
^utcheon
Is
§0
LU c
T> |>
.2 JB
u-co
3-0
§UJ
"»
Rock, Steve
Contaminan
Citation
9
-------
t
1
UJ
fo
El
ta
m
iza,
ts
Su
G
22
C
or?)
yti
C
p 1? •
c -E T3
•s fe «
•»• -° >
«
o
V
S
_0_
-------
z
(0
CD
"8
c
c
[Site Name
z
te
rn
[Site Location
(D
i
I
[Contaminant
•o
bulrush, sedges, cattails, arrc
[Vegetation Type
Native species used
M
o
[Planting Descript
_
Soil (sandy loam, submerged
n
1
M
O
:»
[Site Characterizal
[ET Rates
O)
c
o
O
|
'5.
"0
3)
Q.
fa
3
C
C
i
^z
C
o
-^
3
0)
III
1
n
£
1
Q.
C
*£
.i
T?
Lake Michigan/ Harbor area c
season:
Climate
I
o
•.=
n
1
0)
o
•§,
JC
Phytostabilization (As, Pb), P
[Mechanism
Irrigation, fertilization
**
|OM Requirement!
Demonstration/ pilot (3 acres
[Project Scale
i
0)
O)
•§
O)
n
[Project Status
unfunded
o
u
not applicable
[Funding Source
en
1
o
c?
?3
ti
Q
Q.
a
ii
0.
o>
E
CM
O
Q.
8-
M
O
[initial concentrati
10
o
[Final Concentratii
"5
£
"8
N
§
"53
T3
1
E
£
w
§
,_:
^ (I)
$ £
0 2
X e
is*
Q flj -^
5) .22 Li
§.| E
«1®
« 8 S
~ 03 g
» £ O
8 ii
«>*=.«
rl\ t/3
ja *^ "3
d) "O JQ
3 « i1
(B W m
lli
Results are still somewhat pr
high phosphate applications i
water. It increases As bioavai
i
(A
O
%
a
[Comments
^n
0)
4)
Q.
®
i
u
Q.
CN
-------
:-
eg
id Disposal F
Jones Island Confint
n
z
£
V)
Milwaukee, Wl
ite Location
0)
leavy metals
Anthracene, PCBs, t
ontaminant
U
i^
o >
H —
1 1
11
o ___
x 5
ID o
CO ^
?f
2 3
^1
1 1
0) CQ
CO 3
(0 c
.0 co
<" HF
££
ifl ~
o>"
"i^
^ to
O 3
T3 *
CO <0
E 3
Q.
JE 01 „.
CO OJ
•"Tt* fct d)
v D> £
o> -^5.
Populus deltoides (tr
Andropogon gerardii
rubra or Morus alba
a
|
1
0
?
1
CO
Q.
•o
CO
c
5
2
0
CO
.ii
Q.
"co
i
c
CO
0)
s
CN
(O
§
1
II)
ai
LL
CO
0
0
CO
CN
1
&
§
Q.
CO
•o
a
£
!«
^ i
§ s
" s
1|
^> y)
i
u
Rhizodegradation
echanism
S
f
[
D)
_C
Fertilization, Harvest
M Requirements
0
*T
u
5
CN
Demonstration /Pilot
reject Scale
0.
D)
'I
D)
0
reject Status
0.
t;
o
O
jnding Source
u.
p
^
s available Fi
[Concentration result
M
c
itial Concentratio
c
p
T5
s available F;
Concentration result
a>
c
inal Concentratio
u.
1
to
o
_l
CO
C Q
Q ••'
0 "Z
3 |
0) C
11
0) ..
x-i
di aiiuir
fil
1 £
£ ">
if
O. fl)
*
F > 03
omments
U
3
"8
0)
3
3
CO
1
W
^
CN
i
in
«o
University, 71
CD
1
Q.
1
LLI
rimary Contact
0.
s
u
o
<
-------
«
I
Q.
O
O)
CO
5
I
*
o
§
i o .2 S
; ~ •= _J 73 .3.
,iA l« £ o
M
01
c
S
w
6
TJ
g
fq
Tf
ead
C
!
H
2
01
with
ea
1
Q.
L§
CT
O
01
S
_>,
w
(0
o>
tc
1
2>
«
I
_*
3
5
5
UJ
8 to 1 07
Ran
atu
Tem
c
o
•«
I
I
onit
00-2002)
rates
t obje
were
TS
of
1
(S
3
>.
o"
•5
I
1
2*
!
oil
ing
B
te
tat
9
o
ra
z
5
(A
O
•-§
U
o
_l
2
55
t>
£
w
§
•-B
a
I
•a
%
a>
ra
1
(A
O
••s
N
1
2
n
f.
O
2
w
»
3
n
o:
1U
*
£
S
I
£
O
«
7
£
!
o
CL
O
O
V)
o»
e
'o
c
3
Concentrati
ed
_l
W
O
i
J2
i
o
u
|
o
u
>.
(C
u
-------
t
Lechang Pb/Zn mine tailings
a
z
.•§
^
6
c
=5
E
U.
Ol
O!
E
CO
O
x;
O)
O)
£
m
CO
3
o
Zn: 4388 mg/kg, Pb: 41 64 mg/kg;
(0
[initial concentratio
M
E
[Final Concentratio
[Lessons Learned
[Comments
r-
3
<0
A
©
Ol
g
I
g
IY
»-
CO
1
CM
in
00
^
2
>
'c
ti5
I
CO
0)
I
CT
di
5
[Primary Contact
Q)
C
"e
u
c
"N
•3
i
M
0)
1
JO
1
(0
1
-o
c
CD
1
c
8
•a
_co
E
3 O
B *"*
_ T
"3 8?
E i-
Yang, B, et al. 2003. Growth and
tailings. Chemosphere. 52(2003):
Citation
-------
Magic Marker
jSiteName
z
S
|Site Location
1
[Contaminant
fc
o
c
3»
Indian Mustard (Brassica juncea) and
[Vegetation Type
Planted from seeds
10
c
[Planting Descriptic
Soil (shallow, loamy sand)
.2
M
n
[Site Characterizatil
|ET Rates
o
in
^
C
o
V
(A
o>
c
5
e
o
Ki"
^-
c
o
S
'E.
5
Q)
CL
^_
c
(0
CO
J
*r
o
en
g
n
Temperature Range: -4 to 1 02 F; Elev
10/23
Climate
Phytoextraction
(Mechanism
I
c
amended wiih EDTA harvested, repla
|OM Requirements
£
rr
Full-Scale (0.25 acres, 1 acre, 4500 s<
TB
I
2
Q.
Operational (planted 1 996)
[Project Status
g
CO
a
1
c
CD
C
£
a
Z
1
03"
o
0.
Iti
o
8
tA
"5
o
o
T3
g
L.
|
to
=9
CD
a
1
8
b
M
§
T3
EPA brownfield grant; N J State Hazan
(Funding Source
0)
j£
ex
E
§
00
s
8
1
§
o
2
o
S
n
(A
c
(initial concentratio
0
Q
5
•t=
1
o
1
CO
b
JL
n
M
e
[Final Concentratio
•o
c
g
2^
^ "D
•5 c
3 m
$ CD
o ^
^S
3 "0
03 CD
j-i'co
o-I
u (1)
-------
t
'»
u.
en
1
0.
1
a
z
$5
O
re
•a
IT
Site Location |
o>
i
•5.
Q)
Q
0
£1
o
1
o
c
1
u
'c
1
1
s
I
o
[Contaminant |
T)
n musta
ro
=0
_c
(0
1
IT
CO
CL
o
Q.
•0
1,
T
[Vegetation Type j
£
*-
(O
^7
o
c
Operational/In Progrej
[Project Status
0
u
State, voluntary
8
1
ra
_c
c
LL.
Ol
E
o
in
o
i
ill
[initial concentrations |
[Final Concentrations |
£
"in
>s
r>
Q.
(0
£
w
(C
3
C
1
U
£
re
(U
I
V)
0)
£
0}
«
o
I
E
Q.
CL
in
M
re
£
u)
J£
Q.
o.
o
CO
"o
O)
re
Dramatic drop, on ave
with contaminants
Lessons Learned
1
g
<- "O
c £
8 |
J£ O)
^
™S
55
^1
re €
O 0)
^ o
w i
S*
*t
«1
J= o
V
£ *=
*^ w
Q C-
5 1
ta ~a
L: §
«T3
(JO
^x «
•6*
£ 2.
5 re^
il
|l
jl «
SITE Program. Trees 1
reduction of TCE cone
flow
1
o
u
n
Ir
1
Z
•o
0>
"5.
it"
^
re
C3
•D
•o
LU
5
E
o
o
(U
u
re
CL
cn
i
"8
©
ij
•?>
re
s
o
g
2-
co ^
05 d
CO »
o ^
Clf ^
(0 CD
C O
CD of
| g
Primary Contact
I
4)
o
I
1
^J
Q
•S-
fe
c
'T
3
•q
s
|
^
s"
(O
3
1
0.
O)
_c
3
_g
oundwa
O
LU
0
Phytoremediation of T
o
-------
Former Orchard Site
[Site Name
picatinny Arsenal, New Jersey
c
[Site Locatio
-•-^
Arsenic (from arsenical pesticides;
[Contaminan
"
•5
Brake Fem (Pteris: mayil, parkeril,
1
[Vegetation 1
g
•20 feet below grout
01
.
is
N
I
[Site Characi
|ET Rates
in
i
O)
c
i
o
O
B
s
I
Q.
1
Q.
"55
*!•>
C
C
c
n
UJ
Temperature Range: -4 to 1 02 F; I
10/26
Climate
Phytoextraction
{Mechanism
IM
0)
N
w
•£
•o
CD
ra
(C
CO
«
Irrigation, lime amendments, harv<
i
1
Demonstration plots (1 0,000 sq ft)
«
Project Seal
{Ongoing (2001 )
01
^
{Project Stati
H»
O
o
W
8
Funding Soi
E
a
a
1
S
a.
a
o
M
C
O
•fi
£
0)
o
7s
'c
M
C
o
n
JJ3
C
a
0
o
O
«
c
1
i
Lessons Lei
CO
£
.£
DI
n
"4
"c
o
£
03
•
-------
t
Palmerton Zinc Pile Demo (Blue Mountain)^
[Site Name
Palmerton (Carbon County), PA
[Site Location
Zinc, cadmium
[Contaminant
Alpine Pennycress, Bladder Campion
01
P-
i-
o
•a
o>
Hydroseeding
M
o
Q.
u
[Planting Desi
¥
i
.1
1
_
O
n
CO
•5
CO
"c
CO
Q.
CD
f
O
a
•S
Soil; manufactured soil (blend of treated municipal soli
.2
i
8
If)
•o
j;
.c
•s
*
0
o
CN
do
§
w
in
_^- >
J3 f
SB-
'S ^
.E J
.2=1
Very steep slopes, mountainous topography. Zinc pile
1 000 ft wide. Drains to Aquashicola Creek and eventu;
HI
c
o
T&
£
"o
n
1
O
CO
|ET Rates
tc
in
o
i
in
Dl
c
|
O
f '
m
•^
c
I
'o.
•Q
£
0
TS!
CD
C
SB
CO
^
Temperature Range: -1 2 to 1 05 F; Elevation: 1 500 ft; f
to 10/2
Climate
Phytostabilization, Phytoextraction
[Mechanism
Amendment application using spreader trucks
•/)
S
V
<£.
Demonstration/Pilot (25 sq meters)
4)
T5
'o
Completed (1986)
V)
to
t>
.£.
o
Estimated as $1 00,000 feasibility study
"5
o
Q.
o:
n
0)
u
o
V)
ai
_c
c
Zinc: 35000-80000 mg/kg
«
§
IS
£
S
u
o
u
n
"c
•?
w
o
••o
n
[Final Concen
CO
C TO
._ ^
co .£ o>
™ |^ ^
| °. 0 1
(0 j? co o
c "5. to ^^
CO ^ Q) j;
trt tc cQ W
* S-?"
"5 ^ "5 ^
2 a ?.^5
0) JX (ft
> § c ™
l^f5 <«•
75 S o !^ co
Determined manufactured soil performed best when n<
great as 2.9"Air in 2 hours, or 8.5" rain/hr in 20 hrs. Ma
limestone and seed, and unmulched. Best ratio for woi
grass/legumes is 1 :1 (biosolids: flyash). Ratio selected
species for mixed seed is 'Oahu' intermediate wheatgr
"g
c
S
M
C
i
[Comments
>
§>
CO
3
CO
^
CO
cd
J§!
(9
0)
g
S. L. Brown; Rufus Chaney USD A (301 ) 504-651 1 , ch
•tt
n
[Primary Conl
o"
0)
—5
5
'•&
1
CO
£
•S"
0
0
Q.
O.
C
§
(I)
E
To
Q.
+j
r ^
Oyler, J. Blue Mountain Superftind Remediation Projei
2004. ITRC Phytotechnologies conference.
Citation
VO
-------
Palmerton Zinc Pile (Blue Mountain)
[Site Name
Palmerton (Carbon County), PA
[Site Location
Zinc, cadmium
[Contaminant
CO
•»
s
O
CO
CO
3
1
CD
J3
CO
IQ
2
Q.
CD
to
0>
>>
^
Is
i
Oahe intermediate wheatgrass, Pennfine pen
bluegrass, and Streeker redtop
(9
Vegetation Typ
10
1
4_
T3
1
.S
g
O
[A
*
CT
'- .21
!i 5
M =
s. s
'o C
U >
C CD
F3 T3
Very steep slopes, mountainous topography.
1 000 ft wide. Drains to Aquashicola Creek an
««
0
•JO
s
Site Character!;
|ET Rates
i
CO
O)
I
2
O
Eo
s?
8
•.0
'5.
^
O-
co
3
g
1
$-
O
ID
Temperature Range: -1 2 to 105 F; Elevation:
5/5 to 10/2
Climate
Phytostabilzation, phytoexlraction
[Mechanism
i
s
5,
1
CN
c
JOM Requiremel
^^
•o
8
Full Scale (1 000 acres; 1 000 more acres prop
[Project Scale
Completed (1991 -1995)
[Project Status
5
o
of
0.
CN
CO
-------
I
Port Colbome
1
.*
OT
Port Colbome, ON
ite Location
CO
•^*
to
1
z
^)
1
•s
3
CO
1
i
o
o
42
5
c
E
o
o
.*:
o
'c
T3
§
to"
a
8
TB
u
0
(D
1
ontaminant
U
Com, soybeans, radish, oats, alyssum
0>
i-
o
••a
O)
o
1
s
a.
1
CO
•D
0>
8
it
10
n
lanting Descriptic
a.
^.
1
a
o
S
o
is
•s
le
jo
|
08
"O)
le
>
Soil (4 types used in demonstration: san
edia Type
Z
I
T3
1
01
2
£
1
1
°
M
§
ite Characterizati
V)
te.
UJ
en
1
S
o
c
E
S
s
'5.
1
Q.
H3
C
i
D
£
m
T—
C
o
"S
Temperature Range: -26 to 33.5 C; Elev
season: 5/20-9/23
i
o
1
v>
Q_
echanism
S
1
o
(U
b
a
CO
|
o
<-i
Amendment of dolimitic limestone (80-1 1
M Requirements
O
f
of
3
"ta
•v
S
!
.£
c
u.
jo
c
(A
C
litial concentratio
c
-SS
c
(0
c
inal Concentratio
u.
essons Learned
_j
3
3,
i^s
= « 5
5 "o. w
*± Q. W
— O ^
o CP
•E " b
si§
•| •§ 2 ~
*— ^ £
1 2 1]
CO £* C "
§ §i -5 .a
» = a g
.11 •§ .=
||Ii
50 O) -j ^
Uii ^ 1
O (1) ™ «.
Q. fe 0) §
ll!^
Purpose of the phytostabilization part of
any adverse effects of the CoCs. 20 mel
(com, soybeans, radish and oats) are in
some nickel phyloextraction testing cam
omments
u
E
o
u
•ri
i
8
3
5
.a,
c
'01
gi
in
S
CJ>
I
O
o>
*J
i
E
E
James Higgins, Jacques Whitford Envirc
rimary Contact
Q.
o
•a
S
u
go
Tfr
-------
Savannah River, SC
[Site Name
o
CO
i
.*
?
[Site Location
Cadmium, Chromium, Vanadium
[Contaminant
Bush beans (Phaseolus vulgaris )
[Vegetation Type
"o
D>
C
•c
CO
8-
To
_c
j.
'ta
•Q
m
0
1
£
S
0}
S
o>
E
1
co
to
£
c
o
E
f~
5
T- 3>
Planted in three consecufive years {
76 cm between rows and 1 0 cm bet
at
f+
o
!B
.9-
1
d>
O
0)
»
g
a
"to"
•O
i
ID
8
8
•55
>,
1
•o
i
SK
1
CD
n=
"5
tf>
JMediaType
M
C
O
•-ZJ
[Site Characterize!
[ET Rates
75
c
§
i
CD
5
4f
TT
CO
1
CD
111
CO
Q
O
•**
\
i
2
n.
w
1—
1
£«
"1
52
5*
Abundant rainfall. Warm, humid con
precip: 44.6"; Growing season: 4/15
Climate
Phytoextraction
[Mechanism
Q)
C
^^
§
f
,0.
w
§
E
•o
cC
CD
6
d>
c
KS
Mowing, fertilization, irrigation, weec
»A
OM Requirement!
Demonstration/ Pilot
Tt
&
1
£
CM
O5
CD
ri
CO
en
[Project Status
"S
5
LJJ
0
Q
CO
-)
[Funding Source
at
§
jlnitial concentrati
at
c
[Final Concentrati
>,
F CDH
•oi«
... . k_
•£ >• Q.
CD CD CD
E^ ^
CD
9> £ S
o '? -o
E - «
S^L
J jS £
CO CD CO
£ E>
01 ^ -o
i«s
ISF
w o
S E "0
8 c5U
-^ fli A)
"O Ji: S
c5-8£.
- 13 «i
<2 n£
w i c
Sx o
CD C
|i|
^D fA V
rt c r
i_ a ai
f Cd and V afte
re large reductii
12 months. Adt
for uptake.
There was little vertical movement o
During the first 18 months, there wei
change detected in the subsuquent
transformed to forms less available '
1
_i
«
o
I
-i
>
CO
O)
J£
CO
tri
•D
co
r£
^^
CO
0)
_^
co
LO
T3
O
CO
%
J£
CM
0)
•.D
CO
Q.
S
b
•c
Q.
tn
1
$
w=
JJ
'tS
2
"S
T3
•o
CO
en
3
'CD
|_2
Comments
P
•c3
co
(3)
\Sf
c
1
i
CO
_c
co"
'D>
S
O
*&"
2?
'tn
^
CD
>
'e
/ Laboratory, Ui
HW Martin, Savannah River Ecolog:
[Primary Contact
§
U3
co>
= S
2 "co
O n)
E CD
•- w
E .
3 O
^t
CCT>
£P os
> CO
"O ^
ss
I's
3 •«
M
££
i'o
-3c/>
1 =
CO CO
0 ^
= ^
tn
CD >R
0) J
Temporal chan
conditions. Wa
Martin, H.W. and D.I. Kaplan. 1998.
soil and phytoavailability under field
Plant and So// article
Citation
Os
I
-------
I
"5
1
'c
3
E
«J
.2
.*
a
CO
Site Name
Washington, DC
Site Location
Arsenic
[Contaminant
*tn
01
1
|
i
[Vegetation Type
Ferns transplanted from pots
tn
^
i
[Planting Descriptit
•5
1
W
C
CO
_O
>
13
1
X
M
O
[Site Character! zati
W
1
DC
in
[Climate
o
o
g
ro
ID
tn
ra
c
i
2
o
CD
00
CO
g
1
"o.
(0
G
13
3
C
c5
c
CO
5
tj
(D
g
1
ID
til
Temperature Range: -5 to 104 F;
[Mechanism
Phyloextraction
|OM Requirements
.8
1§
2
.£
Q
Q
Q
•n
§
0
i
s
JO
c
o
CO
_N
3
&
[irrigation, shade cloths installed,
73
u
V)
2
a.
__
£
S
o
o
in
CM
II
CD
CD
"to
£
Demonstration/Pilot (3 sites with
tn
'o
Ongoing (began May 2004)
o
O
[Army Corps of Engineers
[Funding Source
a
a
o
10
o
CM
tn
c
[initial concentratio
CO
c
[Final Concentratio
[Lessons Learned
[Comments
[Primary Contact
£
u
8
CO
w
-------
Appendix E: USDA Soil Classification System
(adopted from the 1993 USDA Soil Survey Manual)
For most sites, soil particles in the contaminated medium were less than 2 mm, and the
following soil texture classification system was used. Sites containing a contaminated soil
medium of larger particle sizes (i.e. rock fragments) or manufactured soils were described
using language found in the site literature or documentation, or in reference to USDA
manual.
Figure 1. Sand, clay, and silt percentages for soil texture classification
•«&,•
Prior to classifying soils, it is important to discuss the three mineral components of soils
that are categorized based on particle size: sands, silts, and clays. Particles that range
from about 0.05 mm to 2 mm in size are sands. Particles between 0.002 mm and 0.05 mm
are classified as silts. Particles less than 0.002 mm are clays. Further breakdown based on
soil textures is as follows:
Sands: Contain more than 85% sand, and the percentage of silt plus 1.5 times the
percentage of clay is less than 15.
1. Coarse sand: Greater than or equal to 25% or more very coarse and coarse sand;
less than 50% ay other single grade of sand.
2. Sand: Greater than or equal to 25% or more very coarse, coarse, and medium
sand; less than 25% very coarse and coarse sand; less than 50% fine sand and/or
very fine sand.
3. Fine sand: 50% or more fine sand; less than 25% very coarse, coarse, and
medium sand; less than 50% very fine sand
4. Very fine sand: 50% or more very fine sand
I
A151
-------
I
Loamy sands: Between 70 and 91% sand and the percentage of silt plus 1.5 times the
percentage of clay is 15 or greater; the percentage of silt plus twice the percentage of clay
is less than 30.
1. Loamy coarse sand: Greater than or equal to 25% or more very coarse and coarse
sand; less tha 50% any other single grade of sand
2. Loamy sand: Greater than or equal to 25% or more very coarse, coarse, and
medium sand; less than 25% very coarse and coarse sand; less than 50% fine
and/or very fine sand
3. Loamy fine sand: Greater than or equal to 50% fine sand; less than 50% very fine
sand; less than 25% very coarse, coarse, and medium sand
4. Loamy very fine sand: 50% or more very fine sand.
Sandy loams: Between 7% and 20% clay, greater than 52% sand, and the percentage of
silt plus twice the percentage of clay is 30 or more; or, less than 7% clay, less than 50%
silt, and more than 43% sand.
1. Coarse sandy loam: Greater than or equal to 25% or more very coarse and coarse
sand; less than 50% any other single grade of sand
2. Sandy loam: Greater than or equal to 30% very coarse, coarse, and medium sand;
less than 25% very coarse and coarse sand; less than 30% fine and/or very fine
sand. Or, less than or equal to 15% very coarse, coarse, and medium sand, less
than 30% fine and/or very fine sand, and less than or equal to 40% fine or very
fine sand.
3. Fine sandy ham: Greater than or equal to 30% fine sand, and less than 30% very
fine sand. Or, between 15%-30% very coarse, coarse, and medium sand. Or,
greater than or equal to 40% fine and very fine sand, one half of which is fine
sand, and less than or equal to 15% very coarse, coarse, and medium sand.
4, Very fine sandy loam: Greater than or equal to 30% or more very fine sand and
less than 15% very coarse, coarse, and medium sand. Or, greater than 40% fine
and very fine sand, more than half of which is very fine sand, and less than 15%
very coarse, coarse, and medium sand.
Loam: Between 7% and 27% clay, 28% and 50% silt, and 52% or less sand.
1. Silt loam: Greater than or equal to 50% or more silt and between 12% and 27%
clay. Or, between 50% and 80% silt and less than 12% clay
2. Sill: greater than or equal to 80% or more silt, and less than 12% clay.
3. Sandy clay loam: Between 20% and 35% clay, less than 28% silt, and more than
45% sand.
4. Clay ham: Between 27% and 40% clay and more than 20%-46% sand.
5. Silly clay ham: Between 27% and 40% clay and less than or equal to 20% sand.
6. Sandy clay: Greater than or equal to 35% clay and greater of equal to than 45%
sand
7. Silty clay: Greater than or equal to 40% clay and greater than or equal to 40% silt.
4Clay: Greater than or equal to 40% or more clay, less than 45% sand, and less than
40% silt.
A152
-------
Appendix F: Climate Table
State
AK
AK
AK
AK
AK
AK
AK
AK
AL
AL
AL
AL
AR
AR
AR
AR
AR
A2
AZ
AZ
AZ
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CO
CO
CT
DE
DE
FL
FL
FL
FL
City
Barrow
Bethel
Fairbanks
Gulkana
Juneau
King Salmon
Nome
Sitka Airport
Birmingham
Mobile
Montgomery
Tuscaloosa
Fayetteville (Airport)
Fort Smith
Little Rock
Pine Bluff
Texarkana
Flagstaff
Phoenix
Tuscon
Yuma
Bakersfield
Barstow
Berkeley
Bishop
Blythe
Eureka
Fresno
Los Angeles
Sacramento
San Diego
San Francisco
Santa Barbara
Denver
Grand Junction
Hartford
Dover
Wilmington
Gainesville
Jacksonville
Miami
Orlando (Sanford)
Spring
Frost Date
8/4
6/21
5/25
6/23
5/30
6/8
7/8
5/7
4/14
3/19
3/28
4/8
5/3
4/14
4/8
4/4
3/29
6/26
3/16
3/27
2/19
3/3
4/15
1/19
5/25
3/1
3/14
4/1
2/11
3/23
3/30
1/24
2/26
5/20
6/1
5/12
4/19
4/25
3/29
3/14
none
3/4
Fall Frost
Date
7/24
9/5
8/25
8/9
9/5
8/27
8/17
10/11
10/24
11/5
10/29
10/20
10/4
10/18
10/27
10/26
10/29
9/9
11/18
11/7
12/14
11/20
10/29
12/26
9/26
11/28
11/15
11/7
12/8
11/14
11/12
12/8
12/4
9/20
9/16
9/23
10/15
10/15
11/5
11/16
none
12/3
Elevation
(ft)
26
39
499
1578
23
49
10
66
630
30
200
187
1250
446
259
207
361
7004
1112
2558
207
492
1929
6
4146
262
59
338
148
69
42
7
16
5333
4848
174
36
36
157
30
13
98
Low
Temperature
(F)
-54
-48
-€2
-58
-22
-48
-54
0
-6
3
0
-1
-15
-10
-4
_2
5
-23
19
16
24
19
7
26
-8
20
21
18
30
18
32
24
20
-25
-23
-26
0
-14
10
7
30
19
High
Temperature
-------
*
State
FL
FL
FL
GA
GA
GA
GA
GA
GA
GA
HI
HI
HI
IA
IA
IA
IA
ID
ID
ID
IL
IL
IL
IL
IN
IN
IN
KS
KS
KS
KS
KS
KY
KY
KY
LA
LA
LA
LA
LA
LA
MA
MD
ME
Ml
City
Pensacola
Tallahassee
Tampa
Albany
Atlanta
Augusta
Brunswick
Columbus
Macon
Savannah
Hilo
Honolulu
Lihue
Cedar Rapids
Des Moines
Mason City
Ottumwa
Boise
Idaho Falls
Pocatello
Chicago
Peoria
Rockford
Springfield
Evansville
Ft. Wayne
Indianapolis
Dodge City
Good land
Salina
Topeka
Wichita
Bowling Green
Lexington
Padicah
Alexandria
Baton Rouge
Lafayette
Lake Charles
New Orleans
Shreveport
Boston
Baltimore
Augusta
Detroit
Spring
Frost Date
3/20
4/5
2/25
3/31
4/10
4/15
3/18
4/8
4/4
3/30
none
none
none
5/13
5/9
5/20
5/2
5/26
6/14
6/12
4/25
5/8
5/13
5/1
4/23
5/15
5/9
5/7
5/16
5/4
5/4
5/1
4/28
5/3
4/18
3/26
3/18
3/17
3/18
3/21
4/2
5/3
4/11
5/12
5/12
Fall Frost
Date
11/8
10/28
12/3
10/26
10/25
10/23
11/15
10/27
10/25
10/31
none
none
none
9/25
9/21
9/16
10/5
9/22
9/4
9/6
10/22
10/6
9/25
10/6
10/12
9/25
10/7
10/11
9/23
10/9
10/1
10/10
10/7
10/10
10/15
10/31
11/4
11/6
11/5
11/15
10/27
10/5
10/29
9/22
10/9
Elevation
(ft)
76
69
7
208
977
134
10
387
354
46
30
39
103
902
968
1174
840
2706
4728
4477
658
653
725
617
430
856
807
2593
3680
1275
879
1321
538
1063
397
77
59
36
9
7
174
30
148
354
619
Low
Temperature
(F)
6
6
18
7
-8
-1
13
-2
-6
3
53
52
50
-28
-24
-30
-23
-25
-38
-33
-27
-25
-27
-22
-21
-22
-23
-21
-27
-24
-26
-21
-21
-21
-15
5
-8
9
11
11
3
-7
-7
-19
-13
High
Temperature
(F)
105
103
99
101
105
108
99
104
108
105
94
94
90
104
108
104
105
110
102
104
104
105
104
106
104
106
103
109
108
109
110
112
107
103
105
104
102
102
103
102
107
102
105
97
103
Precipitation
(in)
58.9
65.8
43.9
48.3
50.8
44.6
53
51
44.6
49.2
129.7
22.1
43.1
33.4
33.1
32.7
33.8
12.1
10.9
12.1
35.8
36.2
37.1
35.3
43.1
34.7
39.9
21.5
18.2
30.1
35.2
29.3
51
44.5
48.9
53.1
60.8
58.6
55.3
62.2
46.1
41.5
40.7
42
26.6
A154
-------
State
Ml
Ml
Ml
Ml
MN
MN
MN
MO
MO
MO
MO
MS
MS
MS
MT
MT
MT
MT
NC
NC
NC
NC
ND
NO
ND
ND
NE
NE
NE
NE
NE
NH
NH
NJ
NJ
NJ
NJ
NM
NM
NM
NV
NV
NV
NV
City
Lansing
Marquette
Muskegon
Traverse City
Duluth
International Falls
Minneapolis
Joplin
Kansas City
Springfield
St. Louis
Columbus
Jackson
Meridian
Billings
Bozeman
Butte
Helena
Asheville
Charlotte
Greensboro
Raleigh
3ismark
Dickinson
Fargo
Minot
Grand Island
Lincoln
North Platte
Omaha
Scottsbluff
Concord
Mt. Washington
Atlantic City
Millville
Newark
Trenton
Albuquerque
Gallup
Las Vegas
Ely
Las Vagas
Reno
Winnemucca
Spring
Frost Date
5/31
5/25
5/24
6/9
6/4
6/9
5/21
4/26
4/30
5/2
4/30
4/11
4/7
4/12
5/29
6/19
7/1
6/2
4/24
4/25
4/22
4/29
5/26
6/9
5/25
5/31
5/16
5/9
5/25
5/12
5/25
6/9
7/29
5/15
4/29
4/15
4/15
5/25
6/14
5/29
6/30
4/3
6/19
6/26
Fall Frost
Date
9/18
10/4
9/24
9/17
9/10
9/4
9/15
10/13
10/9
10/8
10/8
10/15
10/14
10/19
9/6
8/31
8/23
9/2
10/11
10/14
10/14
10/16
9/7
8/28
9/12
9/2
9/26
9/30
9/10
9/23
9/14
9/8
8/2
9/28
10/10
10/26
10/23
9/26
9/15
9/22
8/21
11/7
8/23
8/26
Elevation
(ft)
859
1414
644
625
1424
1118
833
987
742
1364
564
200
291
295
3569
4467
5530
3827
2239
787
902
443
1673
2542
895
1722
1853
1181
2788
1027
3854
338
6268
52
72
7
190
5104
6465
6501
6262
2030
4526
4300
Low
Temperature
(F)
-29
-34
-15
-37
-39
-46
-34
-15
-19
-17
-18
-2
2
0
-32
•46
-52
-38
-7
-5
-8
-9
-43
-35
-35
-36
-28
-33
-34
-23
-42
-33
-46
-2
-10
-8
-4
-17
-34
-26
-30
12
-16
-37
High
Temperature
(F)
100
99
99
101
97
98
105
108
110
108
107
104
106
107
105
103
99
105
95
103
103
105
109
109
106
106
110
108
108
110
109
102
72
102
102
105
102
105
99
99
100
117
105
108
Precipitation
(in)
30.6
36
32.6
29.8
30
24.3
28.4
43.2
36.1
43.2
37.5
55
55.4
56.7
15.1
14.7
12.2
11.6
38.8
43.1
42.6
41.4
15.5
16.1
19.5
18.7
24.9
28.8
19.3
29.9
15.3
36.4
98.9
36.7
42.1
43.9
42
8.9
11.3
16.1
10.1
3.4
7.5
8.2
A155
-------
t
State
NY
NY
NY
NY
NY
OH
OH
OH
OH
OH
OH
OH
OK
OK
OR
OR
OR
OR
OR
OR
OR
PA
PA
PA
PA
PA
SC
SC
SC
SC
SO
SD
SD
SD
TN
TN
TN
TN
TX
TX
TX
TX
TX
TX
City
Albany
Buffalo
New York City
Rochester
Syracuse
Akron
Cincinnati
Cleveland
Columbus
Dayton
Toledo
Youngstown
Okalahoma City
Tulsa
Baker City Airport
Eugene
Klamath
Pendleton
Portland
Redmond
Salem
Allen town
Harrisburg
Philadelphia
Pittsburg
Williamsport
Beaufort
Charleston
Columbia
Greenville
Huron
Pierre
Rapid City
Sioux Falls
Chattanooga
Knoxville
Memphis
Nashville
Amarillo
Austin
Brownsville
Dalhart
Dallas/ Ft Worth
El Paso
Spring
Frost Date
5/24
5/20
4/13
5/18
5/14
5/21
4/29
5/18
5/9
4/27
5/16
5/24
4/15
4/13
6/29
5/22
6/28
5/3
4/26
7/17
5/22
5/5
5/4
4/14
5/26
5/16
3/28
4/6
4/17
5/5
5/27
6/2
5/26
5/24
4/18
4/9
4/8
4/16
4/30
3/21
2/15
5/9
4/8
4/14
Fall Frost
Date
9/19
9/23
10/27
9/29
10/3
10/2
10/13
10/5
10/3
10/16
9/29
9/29
10/16
10/21
8/26
10/1
8/31
10/5
10/18
8/20
9/28
10/2
10/4
10/28
9/20
9/30
11/1
10/30
10/16
10/8
9/15
9/8
9/14
9/17
10/19
10/23
10/27
10/14
10/14
11/5
12/17
10/11
10/24
10/28
Elevation
(ft)
292
705
98
544
426
1214
760
804
833
1004
669
1178
1280
676
3372
430
4099
1200
33
3050
180
380
340
27
1223
522
21
49
226
956
1282
1469
3247
1440
689
981
510
600
3615
617
20
3995
574
3913
Low
Temperature
(F)
-28
-20
-2
-19
-26
-24
-15
-19
-19
-24
-20
-20
-8
-8
-39
-7
-25
-19
6
-28
-5
-12
-9
-7
-18
-17
10
6
-1
-6
-39
-33
-23
-36
-10
-24
-14
-17
-12
4
16
-18
-1
-8
High
Temperature
(F)
99
97
104
98
97
101
101
104
101
102
104
100
110
110
106
108
100
113
107
108
108
105
107
104
103
103
104
104
107
103
112
114
109
110
105
102
106
105
108
106
106
107
113
112
Precipitation
(in)
36.1
38.6
47.2
31.9
38.9
36.6
39.7
36.6
38.1
36.6
32.9
37.4
33.3
40.6
10.6
49.4
12.6
12
36.3
8.6
39.2
43.5
40.5
41.5
36.8
40.7
51.2
51.5
49.9
50.6
20.1
18.7
18.6
23.8
53.5
47.1
50.9
47.3
19.5
31.9
26.6
17.5
33.7
8.8
A156
-------
t
State
TX
TX
TX
TX
UT
UT
UT
UT
VA
VA
VA
VT
VT
WA
WA
WA
WA
WA
WA
Wl
Wl
Wl
Wl
Wl
Wl
WV
WV
WY
WY
WY
WY
WY
City
Houston
Midland
San Antonio
Wichita Falls
Cedar City
Logan
Salt Lake City
Wendover
Norfolk
Richmond
Roanoake
Burlington
Montpelier
Bellingham
Olympia
Seattle
Spokane
Walla Walla
Yakima
Eau Claire
Green Bay
Lacrosse
Madison
Milwaukee
Wausau
Charleston
Parkers burg
Casper
Cheyenne
La ramie
3ock Springs
Sheridan
Spring
Frost Date
3/17
4/11
3/23
4/13
6/8
5/22
5/18
5/8
4/6
4/27
4/29
5/25
6/3
5/6
5/17
4/20
5/20
4/19
5/20
5/26
5/26
5/15
5/13
5/20
5/22
5/9
5/9
6/8
6/8
6/26
6/11
6/6
Fall Frost
Date
11/14
10/21
11/6
10/24
9/14
9/27
9/29
10/10
10/31
10/13
10/5
9/19
9/8
10/1
9/30
10/27
9/19
10/20
9/21
9/15
9/18
9/29
9/25
9/26
9/6
10/5
10/2
9/7
9/9
8/26
9/1
9/7
Elevation
(ft)
102
2857
581
1027
5852
4300
4225
4241
26
164
1174
335
1099
59
36
125
1922
1166
1135
892
699
672
872
672
1191
951
840
5320
6143
7186
6370
3952
Low
Temperature
(F)
7
-11
6
-8
-24
-13
-18
-10
-3
-8
-11
-30
-34
-1
-8
9
-25
-24
-17
-39
-29
-36
-30
-26
-36
-15
-20
-41
-29
-50
-37
-37
High
Temperature
-------
I
t
Appendix G
Resources
Internet Resources:
1. RTDF Phytoremediation Profiles website
http://rtdf.org/public/phyto/siteprof/index.cfra
2. EPA REACH IT website
http://www.epareachit.org/
3. CLU-IN Innovative Remediation Technologies: Field Scale Demonstration
Project Database and Report
http://clu-in.org/products/nairt/
4. EPA Superfund Innovative Technology Evaluation (SITE) Project Status
Information
http://www.epa.gov/ORD/SITE/projectstatus.htm
5. Federal Remediation Technologies Roundtable (FRTR)
http://www.frtr.gov/
6. MIST Chemistry Webbook
http://webbook.nist.gov/chemistry/
Database resources:
• Science Direct
• LexisNexis
• EBSCOhost
• MEDLINE
• BIOSIS
• National Technical Information Service (NT IS)
• Energy Science and Technology
• General Science Abstracts
• Waternet
• Agricola
• CAB Abstracts
• Science.gov
• USDA PLANTS database
A158
-------
I
Appendix H
References
Alexander, M. 2000. Aging, Unavailability, and Overestimation of Risk from Environmental
Pollutants. Environmental Science and Technology. 34(20): 4259-4265.
Angle, JS; Chancy, RL; Baker, AJM; Li, Y; Reeves, R; Volk, V; Roseberg, R; Brewer, E; Burke,
S; Nelkin, J. 2001. Developing commercial phytoextraction technologies: practical
considerations. South African Journal of Science. 97(11-12): 619-623.
ASTDR. 2004: http://www.atsdr.cdc.gov/toxprofiles/. Updated 7/26/04
Baghour, M; Morenp, DA; Villora, G; Lopez-Cantarero, I; Hernandez, J; Castilla, N; Romero, L.
2002. Root-Zone Temperature Influences on the Distribution of Cu and Zn in Potato-Plant
Organs. Journal of Agricultural and Food Chemistry. 50: 140-146.
Baker, AJM. 1989. Terrestrial Higher Plants which hyperaccumulate metallic elements -
A review of their Distribution, Ecology, and Phytochemistry. Bioreceovery. 1: 81-126
Barraclough, D; Kearney, T; Croxford, A. 2004. Bound residues: environmental solution
or future problem? Environmental Pollution. Article In Press.
Baz, M.; Fernandez, RT. 2002. Evaluating woody ornamentals for use in herbicide
phytoremediation. Journal of the American Society for Horticultural Science. 127(6): 991-997.
Belden, JB; Philips, TA; Coats, JR. 2004. Effect of prairie grass on the dissipation,
movement, and bioavailability of selected herbicides in prepared soil columns.
Environmental Toxicology and Chemistry. 23(1): 125-132.
Bhadra, R., R.J. Spanggord, D.G. Wayment, J.B. Hughes, and J.V. Shanks. 1999.
Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems
of Myriophyllum aquaticum. Environmental Science & Technology. 33: 3354-3361.
Boyle, J. Shann, JR. 1998. The influence of planting and soil characteristics on mineralization on
2.4.5-T in rhizosphere soil. Journal of Environmental Quality. 27(3): 704-709.
Briggs, GG; Bromilow, RH; Evans, AA. 1982. Relationships between lipophilicity and root
uptake and translocation of non-ionized chemicals by barley. Pesticide Science. 13: 495-504.
Burken, JG. 2003. Removal and Fate of Chlorinated Solvents From Contaminated Ground water.
Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003
Chicago, IL
Chen, H; Cutright, T. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus
annuss. Chemosphere. 45(2001): 21-28.
CERCLA, 2003. http://www.atsdr.cdc.gov/clist.html. May 24, 2004. July 30, 2004.
A159
t
-------
t
Compton, HR; Prince, GR; Fredericks, SC; Gussman, CD. 2003. Phytoremediation of Dissolved
Phase Organic Compounds: Optimal Site Considerations Relative to Field Case Studies.
Remediation. 13(3): 21-37.
Delaplane, KS. 2000. Pesticide Usage in the United States: History, Benefits, Risks, Trends.
Cooperative Extension Service/The University of Georgia College of Agriculture and
Environmental Sciences. USDA Extension Service National Agriculture Pesticide Impact
Assessment Program special project 93-EPIX-1-1415.
EPA National Risk Management Research Laboratory. 2000. Introduction to Phytoremediation.
EPA/600/R-99/107.
EPA. Pivetz, B.E. 2001. "Phytoremediation of Contaminated Soil and Groundwater at Hazardous
Waste Sites". EPA Groundwater Issue. Feb 2001. EPA/540/S-01/500
EPA, Office of Pesticides. 2002. Pesticide Industry Sales and Usage: 1998 and 1999 Market
Estimates.
EPA. 2004. Improving Sampling, Analysis, and Data Management for Site Investigation and
Cleanup. EPA-540-F-04-001a
Ernst, WHO. 1996. Bioavailability of heavy metals and decontamination of soils by plants.
Applied Geochemistry. 11: 163-167.
Evans, JC; Lagrega, MD; Buckingham, PL. 2000. Hazardous Waste Management
McGraw-Hill College, edition 2.
FIocco, CG; et. al. 2004. Removal of azinphos methyl by alfalfa plants (Medicago sativa L.) in a
soil-free system. Science of The Total Environment. 327(1-3): 31-39
Garcinuno, RM; Fernandez-Hernando, P; Camara, C. 2003. Evaluation of pesticide uptake by
Lupinus seeds. Water Research. 37(14): 3481-3489.
Gatliff, EG. 1994. Vegetative Remediation Process Offers Advantages over Traditional Pump-
and-Treal Technologies. Remediation. Summer 1994343-352
Gatliff, 2004. Personal communication
Gisbert, C; Ross, R; De Haro, A; Walker, DJ; Bemal, MP, Serrano, R; Navarro-Avino, J. 2003. A
plant genetically modified that accumulates Pb is especially promising for phytoremediation.
Biochemical and Biophysical Research Communications. 303 (2003): 440-445.
Gleba, D; Borisjuk, NV; Kneer, R; Poulev, A; et al. 1999. Use of plant roots for phytoremediation
and molecular farming. Proceedings of the National Academy of Sciences, USA. 96: 5973-5977
Hannink, N.K., SJ. Rosser, andN.C. Bruce. 2002. Phytoremediation of Explosives. Critical
Reviews in Plant Sciences, 21 (5):511-538
Hirsh, SR; Compton, HR; Matey, DH; Wrobel, JG; Schneider, WH. 2003. Five Year Pilot Study:
Aberdeen Proving Ground. Phytoremediation: Transformation and Control of Contaminants. Ed:
Steven McCutcheon and Jerald L. Schnoor. 651-657
A160
-------
Hughes, J.B., J.V. Shanks, M. Vandeford, J. Lauritzen, and R. Bhadra. 1997. Transformation on
TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology. 31(1):
266-271.
Hsu, FC; Marxmiller, RL; Yang, AY. 1990. Study of root uptake and xylem translocation of
cinmethylin and related compounds in detopped soybean roots using a pressure-chamber
technique. Plant Physiology. 93: 1573-1578.
1TRC. 2004. White Paper Case Study. Making the Case for Ecological Enhancements. ECO-1.
January 2004
1TRC. 2004. Phytotechnologies Workshop. Harrisburg, PA. June 9-10, 2004.
Karthikeyan, R; JCuIakow, PA. 2003. Soil Plant Microbe Interactions in Phytoremediation.
Advances in Biochemical Engineering/Biotechnology, Vol. 78: Phytoremediation. Ed: David
Tsao.
Karthikeyan, R.; Davis, LC; Erickson, LE; Al-Khatib, K; Kulakow, P; Barnes, PL; Hutchinson,
SL; Nurzhanova, AA. 2004. Potential for Plant-Based Remediation of Pesticide-Contaminated
Plants such as Trees, Shrubs, and Grasses. Critical Reviews in Plant Sciences. 23(1): 91-101.
Keller, C; Hammer, D; Kayser, A; Richner, W; Brodbeck, M; Sennhauser, M. 2003. Root
development and heavy metal phytoextraction efficiency: comparison of different plant species in
the field. Plant and Soil. 249: 67-81.
Kelley, SL, et. al. 2000.Biodegradation of 1,4-dioxane in planted and unplanted soil: Effect of
Bioaugmentation with Amycolata sp. Water Resources. 35(16): 3791-3800.
Linarce, NA; Whitling, SN; Baker, AJ. Angle, JS; Ades, PK. 2003. Transgenics and
Phytoremediation: Intergrated Risk Assessment, Management, and Communication Strategy.
International Journal of Phytoremediation. 5(2): 181-185.
Matso, K. 1995. Mother Nature's Pump and Treat. Civil Engineering. Oct 1995 p46
Mattina, MJI, lannuci-Berger, W; Dykas, L. 2000. Chlordane uptake and its translocation in food
crops. Journal of Agriculture and Food Chemistry. 48(2000): 1909-1915.
Mattina, IM; Lannucci-Berger, W; Musante, C; White, JC. 2003. Concurrent plant uptake of
heavy metals and persistent organic pollutants from soil. Environmental Pollution. 124: 375-378.
McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of
Contaminants: Hoboken, NJ, John Wiley & Sons, Inc.
Mulligan, CN; Yong, RN; Gibbs, BF. 2001. Remediation technologies for metal-contaminated
soils and groundwater: an evaluation. Engineering Geology. 60(1-4): 193-207.
Negri, MC; Gatliff, EG; Quinn, JJ; Hinchman, RR. Root Development and Rooting at Depths.
Phytoremediation: Transformation and Control of Contaminants. Ed: Steven C. McCutcheon and
Jerald L. Schnoor. 2003. Wiley and Sons, Inc.
t
A161
-------
t
Newman, L; Reynolds, C. 2004. Phytodegredation of organic compounds. Current Opinion in
Biotechnology. 15: 225-230.
Nzengung, VA; Penning, H; O'Niell, W. 2004. Mechanistic Changes During Phytoremediation of
Perchlorate Under Different Root Zone Conditions. InternationalJoumal of Phytoremediation.
6(1): 63-83.
Oehme, M. Dispersion and transport paths of toxic persistent organochlorides to the Arctic levels
and consequences. Science of the Total Environment. 106(1991): 45-53.
Olson, PE; Reardon, K.F; Pilon-Smits, EAH. 2003. Ecology of Rhizosphere Bioremediation.
Phytoremediation: Transformation and Control of Contaminants. Edited by Steve McCuthcheon
and Jerald Schnoor. 2003. John Wiley and Sons, Inc.
Pankow and Cherry. 1996. Groundwater Chemical, 3rd ed, John H. Montgomery
Peralta-Videa, JR; de la Rosa, G; Gonzalez, JH; Gardea-Torresdey, JL. 2003. Effects of the
growth stage on the heavy melal tolerance of alfalfa plants. Advances in Environmental Research
8(2004): 679-685.
Pulford, ID; Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees- a
review. Environment International. 29(2003): 529-540.
Reeves, RD. 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction.
Plant and Soil. 249: 57-65.
Rock, S. 2003. Field Evaluations of Phytotechnologies. Phytoremediation: Transformation and
Control of Contaminants. Ed: Steven C. McCutcheon and Jerald L. Schnoor. 2003. Wiley and
Sons, Inc.
Romkens, P; Bouwman, L; Japenga, J; Draaisma, C. Potentials and drawbacks of chelate-
enhanced phytoremediation of soils. Environmental Pollution. 116(2002): 109-121.
Schnoor, JL. 2002. Phytoremediation of Soil and Groundwater GWRTAC Technology Evaluation
Singh, G; Dowman, A; Higginson, FR; Fenlon, IG. 1992. Translocation of aged cyclodiene
insecticide residues from soil into forage crops and pastures at various growth stages under field
conditions. Journal of Environmental Science and Health. 27(1 992): 7 1 1 -728.
Song, WY; Sohn, EJ; Martinoia, E; Lee, YJ; Yang, YY; Jasinki, M; Forestier, C; Inwhan, H; Lee,
Y. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants.
Nature Biotechnology. 21(8): 914-919.
Spain, J.C. (Ed), J.B. Hughes (Ed) and H.J. Knackmuss. 2000. Biodegradation ofNitroaromatic
Compounds and Explosives. Boca Raton, FL; London: Lewis Publishers, c2000
Sung, K; Munster, CL; Rhykerd, R; Drew, MC; Corapcioglu, MY. 2003. The use of vegetation to
remediate soil freshly contaminated by recalcitrant contaminants. Water Research. 37(10): 2408-
2418.
A162
-------
t
Susarla, S., et al. 2002. Phytoremediation: An ecological solution to organic chemical
contamination. Ecological Engineering 18 (2002): 647-658.
Turget, C; Peper, MK; Cutright, TJ. 2004. The effect of EDTA and citric acid on
phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution.
131(2004): 147-154.
USGS. 2004a. Personal communication
USGS Scientific Investigations Report. 2004b. Assessment of Subsurface Chlorinated Solvent
Contamination Using Tree Cores at the Front Street Site and a Former Dry Cleaning Facility at
the Riverfront Superfund Site, New Haven, Missouri, 1999-2003.
Van Den Bos, A. 2002. Phytoremediation of Volatile Organic Compounds in Groundwater: Case
studies in Plume Control. EPA. Office of Solid Waste and Emergency Response Technology
Innovation. Washington, DC.
Vose, JM; Harvey, GJ; Elliot, KJ; Clinton, BD. Measuring and modeling tree and stand level
transpiration. Phytoremediation: Transformation and Control of Contaminants. Ed: Steven C.
McCutcheon and Jerald L. Schnoor. 2003. Wiley and Sons, Inc.
Vroblesky, D.A and T.M. Yonosky. 1990. Use of Tree-Ring Chemistry to Document Historical
Ground-Water Contamination Events. Groundwater 28(5):677-684.
Wayment, D.G., R. Bhadra, J. Lauritzen, J.B. Hughes, and J.V. Shanks. 1999. A transient study
of formation of conjugates during TNT metabolism by plant tissues. Inlernation Journal of
Phytoremediation. 1(3): 227-239.
Wang, QR; Liu, XM; Cui, YS; Dong, YT; Christie, P. 2002. Responses of legume and non-
legume crop species to heavy metals in soils with multiple metal contamination. Journal of
Environmental Science and Health Part A Toxic-Hazardous Substances and Environmental
Engineering. A37(4): 611-621.
Wayment, D.G., R. Bhadra, J. Lauritzen, J.B. Hughes, and J.V. Shanks. 1999. A transient study
of formation of conjugates during TNT metabolism by plant tissues. International Journal of
Phytoremediation. 1(3): 227-239.
White, JC. 2002. Differential bioavailability of the field-weathered p-p'-DDE to plants of the
Cucurbita and Cucumis genera. Chemosphere. 49: 143-152.
Wofle, AK; Bjomstad, DJ. 2002. Why Would Anyone Object? An Exploration of Social Aspects
of Phytoremediation Accountability. Critical Reviews in Plant Sciences. 21(5): 429-438.
Weih, M; Nordh, NE. 2002. Characterising willows for biomass and phytoremediation: growth,
nitrogen, and water use of 14 willow clones under different irrigation and fertilization regimes.
Biomass and Bioenergy. 23(2002): 397-413
A163
-------