United States
Environmental Protection
Agency
Off ice of
Water Program Operations (WH-547)
Washington DC 20460
Reprint of USA
CRREL, SR 79-7
April 1979
Water
-f- -7 f~
Energy Requirements
for Small Flow
Wastewater Treatment
Systems
U.S. EPA Headquarters Library
Mail code 3201
1200 Pennsylvania Avenue NW
Washington DC 20460
MCD-60
EPA
832
R-
79-
100
-------
Disclaimer Statement
This report has been reviewed by the U.S. Environmental Protection
Agency (EPA) and approved for publication. Approval does not signify
that the contents necessarily reflect the views and policies of the
Environmental Protection Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
Notes
To order this publication, "Energy Requirements for Small Flow Wastewater
Treatment Systems" (MCD-60), from EPA write to:
General Services Administration (8FFS)
Centralized Mailing List Services
81dg. 41, Denver Federal Center
Denver, CO 80225
Please indicate the MCD number and title of publication.
Multiple copies may be purchased from:
National Technical Information Service
Springfield, VA 22151
-------
Energy Requirements
for Small Flow
Wastewater Treatment
Systems
E.J. Middlebrooks and C.H. Middlebrooks
1200
ton DC 20460
MCD-60
Reprinted by
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF WATER PROGRAM OPERATIONS
MUNICIPAL CONSTRUCTION DIVISION
WASHINGTON, D.C. 20460
-------
-------
EPA Comment
This report was reprinted by EPA's Office of Water Program Operations
as one of a series of reports that contain information on topics of
major interest related to municipal wastewater treatment and sludge
management. Reports in this series provide detailed information on the
planning, design, and operation of municipal wastewater treatment systems.
Energy is a major concern to EPA as well as to the Nation. This
report summarizes energy requirements for small flow wastewater treatment
systems and presents energy data for various wastewater treatment system
components. Energy requirements for wastewater systems that contain
those components can be estimated using data presented in this report.
The reports in this series do not contain either EPA policy or EPA
regulatory requirements. They are reprinted to assist consulting engineers,
state and local regulatory personnel, and EPA Regional Administrators
during preparation, review, and evaluation of projects proposed for
funding through EPA's Construction. Grants Program.
^WL^7
rector SI
Harold P. Cahill, Jr., Director
Municipal Construction Division
Office of Water Program Operations
-------
-------
Special Report 79-7
April 1979
ENERGY REQUIREMENTS FOR SMALL FLOW
WASTEWATER TREATMENT SYSTEMS
fc.f. Middfebrooks and C.H. Middlebrooks
Prepared tor
DIRFCTORATE OF MILITARY PROGRAMS
OFFICE, CHIfcl OF ENGINEERS
By
UNIIf [) STATES ARMY
CORPS Of ENGINI I K$
COLD RiCIONS Rl SI ARCH AM) FNCINS rRINC, I AHORAK)R\
HANOVi-R. NEW HAMPSHIRI . USA
-------
-------
PREFACE
This report was prepared by E. Joe Mlddlebrooks and Charlotte H.
Middlebrooks, both of Middlebrooks and Associates, Logan Utah.
The study was performed for the U.S. Array Cold Regions Research
and Engineering Laboratory (USA CRREL) and was funded under DA Project
4A762720A896, Environmental Quality for Construction and Operation of_
Military Facilities; Task 02, Pollution Abatement Systems; Work Unit 004,
Waj?t_e_wa_ter_ Treatment Techniques in Cold Regions.
The final scope of study was defined by Sherwood C. Reed of CRREL.
He served as technical monitor during the course of the study and his
efforts in this regard contributed significantly to the successful com-
pletion of this report.
Technical review of this report was performed by Sherwood C. Reed,
Robert S. Sletten, C. James Martel, and Edward F. Lobacz of CRREL.
Permission to reproduce drawings, tables, promotional and instruc-
tional materials by the following firms is greatly appreciated.
Journal Water Pollution Control Federation, Washington, D.C.
Public Works Journal Corporation, Ridgewood, New Jersey
Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan
Water and Sewage Works, Scranton Gillette Communications, Inc.,
Chicago, Illinois
The assistance of Ms. Barbara South in the preparation of this
manuscript is greatly appreciated. Ms. Mona McDonald's editorial
review was also most helpful.
The contents of this report are not to be used for advertising or
promotional purposes. Citation of brand names does not constitute an
official endorsement or approval of the use of such commercial products.
iii
-------
TABLE OF CONTENTS
Page
INTRODUCTION 1
General 1
Other Studies 1
METHODS AND PROCEDURES 9
Equation Development 9
Design Parameters 9
Wastewater Characteristics . 9
Energy Recovery 10
Secondary Energy 10
RESULTS AND DISCUSSION 11
Energy Equations 11
Treatment Systems 11
Energy Consumption 11
Carbon and Ion Exchange Regeneration 37
Gas Utilization 37
Effluent Quality and Energy Requirements 37
Conventional Versus Land Treatment 39
CONCLUSIONS 45
APPENDIX A: EQUATIONS DESCRIBING ENERGY REQUIREMENTS .... 47
APPENDIX B: RAW WASTEWATER CHARACTERISTICS 77
APPENDIX C: SLUDGE CHARACTERISTICS 79
LITERATURE CITED 81
-------
LIST OF FIGURES
Figure Page
1 Energy requirements for 30 mgd secondary treatment
plants (Wesiier and Burris, 1978) 3
2 Trickling filter treatment with anaerobic digestion
(BOD5 - 5-day, 20°C biochemical oxygen demand; SS =
suspended solids) 12
3 Rotating biological contactor creatiaent with anaerobic
digestion . 13
4 Activated sludge treatment with auaerooic digestion ... 14
5 Activated sludge treatment with sludge incineration ... 15
6 Physical-chemical advanced secondary treatment 16
7 Extenaed aeration with intermittent sand filter .... 17
8 Slow rate irrigation 18
9 Rapid infiltration 19
10 Overland flow 20
11 Facultative lagoon-intermittent sand filter
treatment 21
12 Advanced wastewater treatment 22
13 Comparison of energy requirements for trickling filter
effluent treated for nitrogen removal and filtered
versus facultative pond effluent followed by overland
flow treatment 40
14 Comparison of energy requirements for activated sludge,
nitrification, filtration and disinfection versus
facultative pond effluent followed by rapid infil-
tration and primary treatment followed by rapid
infiltration 41
15 Comparison of energy requirements for secondary
treatment followed by advanced treatment versus
facultative pond effluent followed by slow rate land
treatment 43
-------
LIST OF TABLES
Table
1
Page
Energy requirements, 7.5 mgd, Lake Tahoe Wastewater
Treatment system (Gulp and Culp, 1971; Gulp, 1978)
2 Examples of systems to be considered in evaluating
energy implications of wastewater reuse (Hagan and
Roberts, 1976) 5
3 Estimated energy (electricity and fuel) for alter-
native treatment: processes (Benjes, 1978) 6
4 Estimated total annual and unit costs for alternative
treatment processes with a design flow of 1.0 mgd
(Tchobanoglous, 1974) 7
5 Energy comparison of sludge dewatering equipment
(Jacobs, 1977) 8
6 Energy comparison of biological treatment systems
(Jacobs, 1977) 8
7 Guidance for assessing level of preapplication for land
treatment (EPA, 1978) 23
8 Energy requirements for components of trickling filter
system with anaerobic digestion in the intermountain
area of the USA 24
9 Energy requirements for components of a rotating
biological contactor treatment system with anaerobic
digestion located in the intermountain area of the
USA 25
10 Energy requirements for components of activated sludge
system with anaerobic digestion in the intermountain
area of the USA 26
11 Energy requirements for components of activated sludge
system with sludge incineration in the intermountain
area of the USA 27
12 Energy requirements for components of a physical-
chemical advanced secondary wastewater treatment
system located in the intermountain area of the
USA 28
VI
-------
LIST OF TABLES (CONTINUED)
Table
Page
13 Energy requirements for components of an extended
aeration system with slow sand filter located in the
intermountain area of the USA 29
14 Energy requirements for components of slow rate
(irrigation) land treatment system located in the
intermountain area of the USA 30
15 Energy requirements for components of a primary
wastewater treatment plant followed by rapid infil-
tration land treatment systems located in the
intermountain area of the USA 31
16 Energy requirements for components of rapid infil-
tration land treatment systems located in the
intermountain of the USA 32
1? Energy requirements for components of overland flow
land treatment systems located in the intermountain
area of the USA 33
18 Energy requirements for components of a facultative
lagoon-intermittent sand filter system located in the
intermountain area of the USA 34
19 Energy requirements for components of an advanced
wastewater treatment system processing secondary
effluent located in the intermountain area of the
USA 35
20 Energy requirements for components frequently appended
to secondary wastewater treatment plants 36
21 Expected effluent quality and total energy requirements
for various sizes and types of wastewater treatment
plants located in the intermountain area of the USA 38
22 Total annual energy for typical 1 mgd system
(electrical plus fuel, expressed as 1000 kwh/yr) ... 42
vii
-------
CONVERSION FACTORS: U.S. CUSTOMARY TO
METRIC (SI) UNITS OF MEASUREMENT
These conversion factors include all the significant digits given
in the conversion tables in the ASTM Metric Practice Guide (E 380), which
has been approved for use by the Department of Defense. Converted values
should be rounded to have the same precision as the original (see E 380).
Multiply
inch
inch
foot
foot^
yard 3
gallon
pound
pound/ i
pound/ foot ^
kilowatt-hour
horsepower-hour
watt
watt
Btu
BTu
standard feet^ of
air/minute
25.4*
2.54
0.3048*
0.8361274
0.02831685
0.764549
0.003785412
453.6
6894.757
16.01846
3.600 x 106
2.6845 x 106
1.000
0.0013410
1054.85
0.000293
0.47195
To Obtain
millimeter
centimeter
meter
meter2
meter^
meter3
meter-*
gram
pascal
kilogram/meter-^
joule
joule
joule/second
horsepower
joule
kilowatt-hour
standard meter^ of
air/minute
Exact
viii
-------
SUMMARY
With increasing energy costs, energy consumption is assuming a
greater proportion of the annual cost of operating wastewater treatment
facilities of all sites, and because of this trend, it is likely that
energy costs will become the predominant factor in the selection of cost-
effective small-flow wastewater treatment systems.
Where suitable land and groundwater conditions exist, a facultative
pond followed by rapid infiltration is the most energy-efficient system
described in this report. Where surface discharge is necessary and
impermeable soils exist, a facultative pond followed by overland flow
is the third most energy-efficient system described. Facultative ponds,
followed by slow or intermittent sand filters, are the fourth most energy-
efficient systems discussed, and are not limited by local soil or ground-
water conditions.
IX
-------
-------
INTRODUCTION
General
The concern for energy use at wastewater treatment facilities has
developed well after many of the plans were made for the management
of water pollution in the United States. This is true in military as
well as in civilian installations. With changing standards and technology,
information on energy requirements for small (0.05 to 5 mgd) wastewater
treatment systems is needed to avoid future errors and to provide infor-
mation to assist in designing and planning. Several estimates have been
made for large systems, usually in the range of 5 to 100 mgd, but because
hundreds of small systems are being used by military installations, it is
imperative that information be gathered on energy requirements for waste-
water treatment for small systems.
This report summarizes the energy requirements for all viable alter-
natives presently available to military installations for the treatment of
small flow rates (0.05 - 5 mgd) of wastewater. It compares various
treatment combinations, and presents in tabular form the energy require-
ments for the most viable alternatives. The data can be combined to
produce an estimate of the energy requirements for all currently available
unit operations and processes.
Other Studies
Only one comprehensive study of the energy requirements associated
with wastewater treatment has been performed. Wesner et al. (1978)
presented a detailed analysis of energy requirements by unit operations
and unit processes employed in wastewater treatment. The results of this
study were presented in graphical form with accompanying tables out-
lining the design considerations employed in developing the graphs.
Energy requirements were presented in terms of the design flow rate
of the treatment system in most cases, but when a wide choice of load-
ing rates was applicable, the graphs were presented in terms of surface
area or the flow rate applied to the component of the system. Portions
of the Wesner et al. (1978) results are presented in detail in Appendix
A in this report
Culp (1978) has presented an analysis of alternatives for future
wastewater treatment at South Tahoe, California. This illustrates the
increasing sensitivity of energy costs. When the original advanced waste-
water treatment system was constructed in the late 1960's, energy was not
costly and was not usually a significant factor in concept selection and
design. Table 1 illustrates the energy required for alternatives com-
pared with the original design. It is anticipated that the final product
-------
Table 1. Energy requirements 7.5 mgd, Lake Tahoe Wastewater Treatment
system (Gulp and Gulp, 1971; Gulp, 1978).
Alternative
Total energy
(electricity and fuel
expressed as
equivalent 1000
k.wh/yr)
Original system complete secondary treatment,
AWT system, effluent export to Indian Creek
Reservoir
1978 Alternatives
Continue secondary, nitrification, effluent
export to Indian Creek Reservoir
Continue secondary, nitrogen removal (ion
exchange) effluent export to I.C.R.
Continue secondary on site, flood irri-
gation land treatment in Carson River Basin
64,500
39,400
40,244
25,000
Does not include secondary energy requirements for chemical
manufacture.
from the flood irrigation land treatment alternative will be at least
equal in quality to the original design effluent.
Energy requirements for four wastewater treatment systems, includ-
ing sludge processing, that are capable of achieving secondary effluent
quality and complete sludge treatment and disposal were presented by
Wesner and Burris (1978). Estimated energy requirements were presented
for 1) trickling filter with anaerobic digestion, 2) activated sludge with
anaerobic digestion, 3) activated sludge with sludge incineration, and 4)
independent physical-chemical treatment with sludge incineration using 5
and 30 mgd capacities. A comparison of energy requirements for the four
systems treating 30 mgd is shown in Figure 1. The potential for solar
energy as a method of heating the digester and control building was
discussed. Heat recovery from sewage effluents using heat pumps to heat
digesters and buildings was considered.
Zarnett (1976, 1977, and undated) has examined the energy require-
ments for water and wastewater treatment plants and has presented the
requirements by unit operations employed. The results were presented
by unit operation to make it convenient to assess any treatment system
on the basis of total energy consumption. By combining various flow
configurations, a system capable of producing a given effluent quality
can be assembled and the energy requirements compared. Zarnett cautions
-------
o
o
o
o
o
o
(O
o
o
CM
o
o
AOM3N3
60
-------
that the data were presented for comparative purposes and should not be
used as absolute values.
Energy requirement:? for various types of wastewater treatment
plants were presented by Hagan and Roberts (1976). In addition to the
discussion of conventional secondary and tertiary treatment systems,
land treatment systems were considered. Tradeoffs between pollutants
removed from wastewater and pollutants added to the environment by
energy use were discussed. It was pointed out that decreasing returns
are obtained as the level of treatment increases, and it is possible
to add more contamination to the environment by increased energy con-
sumption than is removed! from the wastewater. Comparisons of energy
requirements for a 100 mgd capacity system employing conventional
secondary, advanced wastewater treatment and land treatment systems
were presented. Energy implications with regard to wastewater reuse
were considered, and it was shown that in many instances the reuse of
wastewater can conserve energy. The savings are related to the degree
of treatment required before reuse. Table 2 is a summary of total
energy requirements for various wastewater treatment systems assumed by
Hagan and Roberts for direct discharge of the wastewater, employed for
various reuse purposes, and the energy requirements for alternative
sources of fresh water. Their assumptions include unnecessarily stringent
preapplication treatment requirements for the general case of irrigation
reuse. Current EPA guidance on the topic is presented in the Results and
Discussion section.
Garber et al. (1975) compared biological and physical-chemical
processes to treat wastewater in the Los Angeles area. Biological
processes were found to be more energy efficient and less stressful
on the overall environment. Treatment of the wastewater by physical-
chemical methods required almost five times as much energy as activated
sludge including nitrification and phosphorus removal. Solids disposal
by pumping 90 to 100 miles to the desert to drying beds required 16
times as much energy as the present system of discharging screened
digested solids seven miles at sea. Chemical treatment of the sludge
followed by mechanical dewatering and disposal at local landfills
required 35 times as much energy as the current sludge disposal system.
The general problems associated with small wastewater treatment
plants, alternative treatment processes available to small plants, im-
portant design considerations, and an economic comparison of the alter-
natives available were presented by Benjes (1978). Table 3 presents the
estimated annual energy required alternative wastewater treatment pro-
cesses for a range of design flows. Tchobanoglous (1974) conducted a
similar analysis and cost factors derived from his work are shown in
Table 4.
Jacobs (1977) discussed various ways to more effectively utilize
energy at wastewater treatment plants. Use of different types of
pumps, sludge dewatering equipment, plant modification and energy
recovery from digester gas and incineration of sludge were discussed.
-------
Table 2. Examples of systems to be considered in evaluating energy
implications of wastewater reuse (Hagan and Roberts, 1976).
Total
Energy
Required
for 100 mgd
kwh/day
Treatment assumed for discharge
1. Activated sludge (with chlorination, sludge
digestion and landfill disposal)
2. Biological-chemical (activated sludge with alum
treatment, nitrification/denitrification, sludge
digestion and landfill disposal)
3. Tertiary (activated sludge, coagulation/filtration,
carbon adsorption, zeolite ion-exchange,
recalcination)
Type of reuse
1. Local irrigation (assume 100-ft head for
conveyance)
2. Distant irrigation (assume 1,500-ft head for
conveyance)
3. Industrial (assume 100-ft head)
4. Unrestricted (assume 500-ft head)
Treatment assumed prior to reuse
For irrigation reuse:
activated sludge
biological-chemical
For industrial reuse:
b iological-chemic al
biological-chemical & desalting
tertiary
tertiary & desalting
For unrestricted reuse:
tertiary
tertiary & desalting
Alternative sources of fresh water
1. Local supplies
2. Imported
3. Desalted seawater
93,000
235,000
1,137,000
57,000
615,000
57,000
216,000
93,000
235,000
235,000
695,000
1,137,000
1,597,000
1,137,000
1,597,000
57,000
938,000
6,661,000
'Courtesy of Water and Sewage Works, Chicago, Illinois.
-------
Table 3. Estimated energy (electricity and fuel) for alternative treat-
ment processes (Benjes, 1978).
Process
Energy (1000 kwh/yr)
Plant capacity (mgd)
0.1
0.5
1.0
2.0
Prefabricated extended aeration
Prefabricated contact stabilization
Custom design, extended aeration
Oxidation ditch
Activated sludge, anaerobic digestion
Activated sludge, nitrification,
anaerobic digestion
Trickling filter, anaerobic digestion
RBC, anaerobic digestion
RBC, nitrification, anaerobic digestion
139
95
197
134
119
251
31
65
113
_
447
857
647
387
650
126
276
496
_
886
1,901
1,288
764
922
246
566
1,026
_
-
-
2,571
1,525
2,576
485
1,105
2,005
All with aerated grit chamber, chlorination and sludge drying beds.
A comparison of energy requirements and costs for sludge dewatering
equipment is shown in Table 5. Energy requirements and costs for
biological treatment systems are presented in Table 6.
Mills and Tchobanoglous (1974) presented detailed methods for
calculating the energy consumption by the unit operations and processes
used in wastewater treatment. Use of the equations and graphs presented
in the paper is illustrated by examples using two alternative flow
schemes. Detailed results are presented in tabular form and are easily
compared between processes and systems.
Smith (1973) estimated the electrical power consumption by most
conventional and advanced processes used to treat municipal waste-
water on a unit processes basis. Electrical power consumption for
complete plants was estimated by adding the power consumption for the
individual processes. A comparison of electrical power consumption
by wastewater treatment systems was made with other uses.
Estimates of recoverable energy in digester gases were made by
Wesner and Clarke (1978). A discussion of the variation in gas
production with the type sludge was presented.
-------
Table 4. Estimated total annual and unit costs for alternative treatment
processes with a design flow of 1.0 mgd (Tchobanoglous, 1974).a
Process
Iirihoff tank
Rotating biological disks
Trickling filter processes
Activated sludge processes
With external digestion
With internal digestion
Stabilization pond processes
Land treatment processes
Slow rate
Basic system
With primary treatment
With activated sludge
With stabilization pond
Rapid infiltration
Basic system
With primary treatment
With activated sludge
With stabilization ponds
Initi
cap it
cosl
dolla
380,
800,
900,
1,000,
500,
250,
340,
940,
1,240,
590,
200,
800,
1,000,
450,
al
al
L b -
rs
000
000.
000
000
000
000
000
000
000
000
000
000
000
000
Annual
Capital
41
87
98
109
54
27
37
103
136
64
21
87
109
49
,720
,832
,811
,790
,895
,447
,328
,302
,139
,775
,958
,832
,790
,405
cost, dollars
0 6. M
15,
57,
58,
74,
48,
23,
41,
81,
115,
65,
25,
65,
99,
48,
550
680
480
410
800
680
540
540
950
220
100
100
510
780
b
Total
57,
145,
157,
184,
103,
51,
28,
184,
252,
129,
47,
152,
209,
98,
270
512
291
200
695
127
859
742
089
996
058
932
300
185
Unit
cost
cents/
1000
galb
15
39
43
50
28
14
21
50
69
35
12
41
57
26
.7
.9
.1
.5
.4
.0
.6
.6
.1
.6
.9
.9
.3
.9
Courtesy of Public Works Journal Corporation, Ridgewood, New
Jersey.
Based on an ENRCC index of 1900.
Capital recovery factor = 0.10979 (15 years at 7 percent).
-------
Table 5. Energy comparison of sludge dewatering equipment (Jacobs, 1977) .c
Belt press filters
Vacuum filter
Centrifuges
kw Demand
cost /mo.
40.0 kw
$112.00
75.5 kw
$210.00
108.0 kw
$299.60 .
kwh Usage
cost /mo.
6105 kwh
$153.85
8750 kwh
$220.50
13,700 kwh
$313.05
Monthly
cost
$265.85
$430.50
$612.65
Annual
cost
$3190.20
$5166.00
$7351.80
Notes:
1. Based on dewatering 75,000 Ib/week of waste activated sludge at 3
percent feed, and approximately 20 percent cake solids concentration.
2. Costs based on varying rate schedule.
Courtesy of Water and Sewage Works, Chicago, Illinois.
3, c
Table 6. Energy comparison of biological treatment systems ' ' (Jacobs,
1977).f
kw demand
Cost
kwh usage
Cost
Monthly cost
Annual cost
Completely
mixed
ASe
550
$ 1,070
230,000
$ 3,423
$ 4,498
$53,976
Extended
aeration
ASd»e
540
$ 1,053
236,000
$ 3,498
$ 4,542
$54,504
Carousel
extended
aeration
ASd>e
525
$ 1,053
218,000
$ 3,282
$ 4,335
$52,020
Pure
oxygen
AS
525
$ 1,020
216,000
$ 3,247
$ 4,076
$48,804
Bio-Disk
425
$ 800
188,000
$ 2,701
$ 3,501
$42,012
Comparison based on entire plant energy consumption.
Includes consideration of differences in sludge quantity and
characteristics.
£
Costs based on varying rate schedule.
Result in higher effluent quality.
0
Activated sludge.
Courtesy of Water and Sewage Works, Chicago, Illinois.
-------
METHODS AND PROCEDURES
Equation Development
The graphs presented by Wesner et al. (1978) were converted to
lines of best fit at the lower design flow rates (0.1 - 5.0 mgd) and
used to calculate the energy requirements for small systems such as
those employed at military installations. Least-squares fits of the
linear and curvilinear lines were employed. A power function was used to
fit the linear lines on the log-log plots and a polynomial equation was
used to fit the curvilinear lines. The forms of the two functions are
shown below.
log Y = a + b (log X) + c (log X)2 + d (log X)3
Polynomial function
Y = a X
Power function
Various combinations of the unit operations and processes were
selected to form the most commonly used wastewater treatment systems.
Energy requirements for each component of the system for various design
flow rates were estimated using the equations of best fit. These results
were tabulated for easy comparison between various types of treatment
systems.
Design Parameters
Design parameters for all of the unit operations and processes
are shown with the energy equations for each operation or process in
Appendix A. Additional detail can be obtained by referring to the
report by Wesner et al. (1978). The energy relationships for the conven-
tional and advanced wastewater treatment processes are unmodified,
but it was necessary to modify the land application energy relation-
ships to conform to accepted practice in cold regions. The slow rate
and overland flow application seasons were modified from five months
per year to 250 days per year to more realistically reflect actual
practice. Rapid infiltration application seasons extend over 365 days
per year and not five months per year as shown in the Wesner et al.
(1978) report.
Wastewater Characteristics
Raw wastewater and sludge characteristics used to develop the
energy relationships are presented in Appendixes B and C, respectively
-------
Energy Recovery
The potential energy available in digester gas was estimated using a
figure of 6.5 million Btu/million gallons of wastewater treated. This
value is based upon a mixture of primary and waste activated sludge, and
the value will vary with the type of sludge and must be adjusted when
better data are available. However, a value of 6.5 million Btu/million
gallons of wastewater is satisfactory for estimating purposes and will
yield a conservative estimate for net energy consumption.
Btu available in digester gas can be converted to electricity,
and a conversion factor of 11,400 Btu per kwh can be used to estimate
the electricity generated. The conversion factor assumes an electrical
generation efficiency of 30 percent. The gas utilization system also
requires energy and this must be considered when comparing systems.
Secondary Energy
Secondary energy requirements are the amounts of energy needed
to produce consumable materials used in a wastewater treatment system.
Disinfectants, coagulants, sludge conditioning chemicals and regeneration
of activated carbon and ion exchange resins require energy in their
production, and this energy must be considered when comparing the energy
efficiency of various systems.
Methods of construction, materials of construction, seasonal varia-
tions and other factors also influence the energy budget for a treatment
system, but to a lesser degree than the primary factors such as direct
energy consumption on a daily basis. Only the direct energy consumption
and the secondary energy requirements are considered in this report.
10
-------
RESULTS AND DISCUSSION
Energy Equations
The equations of the lines of best fit for the energy require-
ments of the unit operations and processes used in wastewater treat-
ment based on the graphs reported by Wesner et al. (1978) are presented
in Appendix A. Design conditions and assumptions used in developing
the graphs are presented along with each equation. Details about the
conditions imposed upon the equations can be obtained from the Wesner
et al. (1978) report. Each equation is cross referenced to the Wesner et al
report. The equation number used in Appendix A coincides with the
figure number in the Wesner et al. report; i.e., Equation 3-15 cor-
responds to Figure 3-15. Only the portions of the curves below a flow
rate of 5 mgd were used to determine the line of best fit. This was
done to obtain a better trend at the lower flow rates of interest rather
than introduce the influence of the higher flow rates. All equations
for the linear lines have a correlation coefficient of 0.999 or better.
Treatment Systems
Flow diagrams of the wastewater treatment systems commonly employed
are shown in Figures 2 through 12. The flow diagrams for land appli-
cations systems were selected utilizing the preapplication treatment
guidelines shown in Table 7. The biological and physical treatment
systems shown in Figures 2, 3, 4, 7, 8, 9, 10, and 11 are most often
employed in small systems; however, the activated sludge process with
sludge incineration (Figure 5), physical-chemical treatment (Figure
6), and the advanced treatment following secondary treatment (Figure
12) have been employed in special cases. These 11 systems can be modified
by adding various processes in the treatment train to produce almost any
quality effluent desired. Also, a very wide range of energy consumption
can be experienced with these basic systems and their modifications.
The raw wastewater characteristics and the expected effluent quality
from each of the systems are shown on the figures. The raw water charac-
teristics are also summarized in Appendix B. Sludge characteristics used
to develop the energy relationships in Wesner et al. (1978) and this
report are presented in Appendix C.
Energy Consumption
Energy requirements for the components of the treatment systems
shown in Figures 2 through 12 for various flow rates of wastewater
treated by the systems are presented in Tables 8 through 19. The table
11
-------
c
OJ
oo
IT
LJ
LJ
t)
If
u £
o
ro
o
10
4
z
o
X
u
o
t-
o
CO
I
I
I
I
I
« o °
-2^. _ to
"j: ?• PJ w
to
o
EL
w
• 5
o
z
<
a
1
(U
u
o
u
o
o
C-4
•o
u
tn
a
o
CQ
O
•H
60
•H
y
•H
n>
to
•H CO
iJ rH
c o
n) i (0
-------
tr
LJ
I
UJ
t-
00
i
O
cr
UJ
CO
(O
o
a.
CO
o
X
d
o
•H
4J
CO
i
4J
-------
60
-H
T3
O
•H
tO
c
«
J3
j_i
•H
00
iJ
tfl
•r-l
-------
UJ
10
I
c
*
o
(M
^ 6
O
tr
n
Q
O
ffl
to
CO
V)
o
o.
OT
O
O
•H
U
C
•H
CJ
60
•a
3
I
(B
01
60
T3
-------
-J
o
eo
* o o
E to —
0) _
11 -
O -
if.' —
CO CV
a:
UJ
in
O
QD
<0
O
Q.
(0
O
I-
o
£
a.
"5
o
•a
c
o
u
0)
CD
0)
U
§
o
•H
S
a)
o
O
•H
CO
o:
LJ
u
3
3
60
•H
fc
16
-------
u
r-i
c
«
03
4-1
C
CD
0)
4-1
C
c
o
1-1
01
01
T3
c
(!)
4J
X
w
0)
i-l
ao
•H
17
-------
e _ _ o
O
a:
o
4)
3 x
»- w
.5 E
g
O
K)
Q
O
m
i- O I
^ o £
Q. i- o>
n
o
•H
4.)
Cfl
60
•H
OJ
J-J
ta
00
01
d
CO
18
-------
to
o
0.
v>
o
z
<
o
•rl
C
T3
L
0)
M
00
•H
19
-------
£
UJ
3
:i
U'
K
ec
I
52
a
id E
in
_ E
- *> _
CJ CVI —
in
l
t I
O ^1
in
O
O ">
CD W
TJ
M
(U
O
t—i
0)
bO
•H
20
-------
o
id
fe
UJ
a:
V _
s r -2 «
z
o
LU
o E
5 ""
o «
o.
c
01
4J
4-1
•H
e
M
Id
O
All
O
o
s?
QJ
>
O
cd
0)
M
C4>
•rl
21
-------
t-
u
a:
4K
REMOV
EXCHAN
J°z
ii
O
o:
u
z
£»S
UJ Ul
m IE
a:
ui
to j
< o
* «
I
o»
E
in v
.3
=
I -
a.
i
cc
UJ
I
a
o
03
o
o
(O
I
z
to
o
a.
m
o
z
a>
s
tfi
en
cB
UJ
U
d
|x
2 *
S 0
=> HI
-J UJ
< u.
OJ
S-i
00
22
-------
Table. 7. Guidance for assessing level of preapplication treatment for
land treatment systems (EPA, 1978).
II,
III.
Slow-rate systems (reference sources include Water Quality
Criteria 1972, EPA-R3-73-003, Water Quality Criteria EPA 1976, and
various state guidelines).
A. Primary treatment - acceptable for isolated locations with
restricted public access and when limited to crops not for
direct human consumption.
B. Biological treatment by lagoons or inplant processes plus
control of fecal coliform count to less than 1,000 MPN/100 mla
acceptable for controlled agricultural irrigation except for
human food crops to be eaten raw.
C. Biological treatment by lagoons or inplant processes with
additional BOD or SS control as needed for aesthetics plus
disinfection to log mean of 200/100 ml (EPA fecal coliform
criteria for bathing waters) - acceptable for application in
public access areas such as parks and golf courses.
Rapid-infiltration systems
A. Primary treatment - acceptable for isolated locations with
restricted public access.
Biological treatment by lagoons or inplant processes - accept-
able for urban locations with controlled public access.
B.
Overland-flow systems
A. Screening or comminution - acceptable for isolated sites with
no public access.
B. Screening or comminution plus aeration to control odors during
storage or application - acceptable for urban locations with
no public access.
probable number of coliform bacteria per 100 ml of sample.
number corresponds to the figure number; i.e., Table 8 is a listing of the
energy requirements for a trickling filter treatment system with anaerobic
digestion (Figure 2). The last column in each table lists the equations
used to calculate the values (Appendix A).
Table 20 shows the energy requirements for components frequently
appended to secondary treatment systems to produce a better quality
effluent. By modifying the basic systems shown in Figures 2 through
12, it is possible to develop the energy requirements for almost any
23
U.S. EPA Headquarters Library
ft_ Mail corfe 3201
° Pennsylvania Avenue NW
Washington DC 20460
-------
•H
C
o
•H
4J
eo
0>
00
T»
u
•rl
2
0)
s
«
JS
4J
•H
S
I
05
CO
t-i
01
•H
ff
•H
^
O
>rl
4J
*W
o
tn »
C en
1) ?
C
O -i
o) cd
• I
rt C
0) tH
§ 4J
M d
3 O
cr S
01 M
M ,
s-t
tj
a.
o
•a
B
O
•a
a
0
&*
•v
§
O
•o
1/1
0
•O
(T
0*
•o
00
»n
o
O
<
2
E
1
o
0
tn
&I
£? fr
V i4
a1
S
X
c
ss
W 7
cr
G
v 2
C *r^
U 3
cr
3
n
c
>, 0)
£? §
85
w a
cr
S
V
^
M S
a £
c -^
K
C
:*-, u
efi e
4U M
U
s
> "
• £
"S
^"1^
3^3
£
1 & >,
w ^ JS
-1^
*3|
. ^>
* 3 •=
w u 5
+j -^
c ^
-^3 >•
z«>
" fl^"^
rt -J< •§
*J J-
•""1 *•
S ""* ^5
£ 03
, ^w.
U ^1 "*"
M-S"*
4j J*
C U
"*"-H x
S ^ "5"
"** 3 «
i £ *"
W M S
ij •*
* c ^1
3 ^"* 3
£ en
* i-
»||
4-1
i/l O -^
^ ^ jj ^ ,jj ^^ ^j, AA(*liAAA cnA *A
8
o
"« ~*~
2 a 1 x
K -H
*J cj 0 H m tN
c q -H
O ^ 1 0 7J .
T -3 u llow
fl ^ 60 e IN a
SH m S H IK
•H Q U >H
H U & & X
S £??SS oo -SSS
* -" r^ » J" o* £
oooooooooo oo IA tN fM co sr o
s ^sssssi's
« »v
oooooooogo oo tc
•" S "^ ^ 2 S ^ ^ S2S
S SM S 3 SSSS
§§S^W.SSS^^ SS S r5 S*§^
flT -H"^" xC -Trs" J^O* O* V in" ^" (sj OO
*"* ^o^Cr--rj fN ^^S
CM cNOO\oto o cotfvr^r^.
10 "" » " ^1 "1
OOOOOOOOGO OO tf~* — ' COCTio*1
(SiOi»--31*TCT*OOf^.— <*^ m^-< — • vfi •^•'ffa1'?
c«<-> ^«.u-s^rO^ 04 i-j >c^ —
— -H ^ o <*• -£
•J ^*O""-* — mirQf^
rj .rsj_^in CD r-lr^j)<-
"^ ^
S S2S 2 gp SS i "° 3 " K S S ? e
01 (N c-ir-,(^l— OvC C^J (M *^ -H a> c c 4 u "^ OCA too ~j
l-< >, * O O t*- c/lOiuX 6 -i-* Q MDf-i 8J O
t- « c u c otf c )3fert'e*c2fx^ *ic^fl 5 * tj
2*"!=W"g.kj ^ •U'ZloOH fTo eX>C-^O 5 •" i- o:
Sr^OfOM U U 0 •" »-( "U 1 » > 41 -H ^! 13 I f-4» U
> iu BO tj o — i oi u tn fr, tn xi fiocon x a n Xi ^ i-< -i n
*j rj U VJ Ot*H 3 ^ l-i C l-i rt m 13 ftl 3 2 OJ
CD ix ft, H'-AC tn 3 o <. ax— icnjrea^ ec
5 to o — ttJ
24
-------
^J
•H
3
§
4J
to
E>*
K^>
U
U
c
(U
4— &
(0
0)
M
t 1
J-i
O
4J
O
R} •
3 <
C en
0 O
U
0)
M J3
18 tt
0
•H t-(
60 O
O
i— 1 18
O 0)
•H )»J
,Q «B
00 C
C -H
3 3
tfl C
•P S
O Q
M
cd a)
•*-> I
>« c
O Tt
10 0) 1
4J X!
C w
Q)
c a
O -H
&•«
O -i 01
a) m
C C!
W EC
.
I
f
o
m
"°*
6
o
T)
f
o
X
s
""}
o
T3
f
— .
O
^
C
o
o
tfl
kJ
e
1
u
C
Energy
: qulreme
^
09
4-1
C
oel
b
M 1
W S
at M
C -H
H 7
O"
s
ai
c
a^
J- CU
OJ t«
C VH
W 3
tr
as,
VI
M
U> 5
V *-*
c •*••
w a
cr
£
'Ji
*>
C
x ai
aC E
Iw u
p —
M 3
O*
S
rar ion
'rocess
_c- u
C 0
- § "
« °-t
= ^^
fc. ^ *J
s «
.',f?fe
a^l
-!fe
u •" -^,
3^3
" X •
• *£,
W u ^
Of -H ^
s 4>i
" B^
-Is-
"^
U* ^1 4J
Sa
iS1^
"a|
M B J
-"I*
3 — "5
"•£-
s!!
5 xl 3
u •*
• S i-
~ 3 *•
S^"3
S«
^ VJ
U LI >•
* "o .c
S-c 3
4_j •»•
C k.
PH" ~ X
S="5
=- 5£
z
" V-
Si-
JSt-§
«-pJ5
b
u*i O -»
O-^<''-x ooao --
m mmrnrntnifn ^i mco »A
"f
P
•M (DO
•d
° Oj *
Ckl
H u ao
n a
x e w
a u o
^ a Q
O — CQ -» fn oo — • oft » in
iC*N^*-*M 00 ^«A*O^O
"^ ^ "* °1 * °X . P-*OC »-» iri n O^-^CT^ r^-^~j trt P-< sD en >— «
oo — • \c ^H f^o>w iA *»^*coen
iC-JxflO^^ *J oo%C'»--<
rn* <*" * r-T
goooooc ooo 00^*1 f*1 co-^o —
irtODO>-lv'O'N r-~OaO fn>Ofn (N cimtAflQ
O^ ^tOvOONQC^ — r*x 30 r-OOO *O ^^rx•O^^D
r^ — • -r^- CJiOO O*O-
IN (sj in P **>r-lQEN
SOOOrn(N|oc*1 r*>f*jr»Aco r» •-* s> rn ^ i~" ^o wtOr-. rv(
"^ • __- *O ^O CM r*i ff» -if ^- oo lAOmo1.
^j,_^»r*-. T <^ r«" f^ & — — GOOOO
OJ
rt o>
•g * i5
^ _c e c
(fl C 00 41 O M
ij o 'H -u -r-t q>
^aid-rt 3: w*j*j
c •< o u x (U w
cj -H td c en N v
oCCE CujJnX OCO in DO
C£*-* OtB.C("JbO C'H •— t «-*'H
oj-^ic z:*-«^" Cd an d C <-*)
O^L- -.M—'-'C 4JOJ4I 0 -r^-^ DT3
*c ^ t- « e t; v e ^; do JM! o. u.-i 01
u i, c ^ > --< oj C 4)
' ac a i, s «j ;/•. •/. x *j « i-H q H (-* w f- •-' c
L.cJC'-COC t-V-^ -C^OI T- «Q | -H « 06 OC J2CJ
1, 3 — i v: -H x -" t t cwiJXJ oc-HtJ cC JJIL
*-iS S *j v, c ^ "*• D OH*jOac-c-H o -^iw -rfoe
C-Jl— i-g-Hftscc JH TJuc-^1—H T3-0 3
3 — SCi-6 O-^ U 1 u > ti -H — i ^3 I — ( «-t X
^Sijaauu-HLJ'-'Co w ^ ocnirtx^c .n MT^I-I -^oc
;*-.flig k,eooi-H "-ai-CUiflifl3ft(33 n t-i
wpio- o,c«:^cs (rJ3Cj
-------
•n
C
o
t-t
M
(I)
00
•H
"O
U
^Q
O
JO
«
A
4J
•H
*>
»*
g
0)
fft
00 ;
I
4J 1
bO-H |
01 (0 I
W 5 '
O
^H !
OJ
a;
«
o
.5
i 'f-
"E cc E
B ^ a;
o £ "3
o-
DC:
1
1 1 ' £
"^ ; S e
1 * ,«
; c ! ^ £
1 S ; *
™
£ ; ^
s * i * *
1 ^ ; S £
« O UJ =
O • C"
H """ aC
j
O
<-J
I • >\
3 £ ; ^ £
c "*• I X u-
>-. ~ ' ^
tr '
•„
d l T
^1 tJ
" ^ i . F
B ! JfH
UJ 5
O C"
-c ^
I ? 1
•^ .^ ""
C c-
, M
|
_. -j;
~ a^
r a_
iT V,
A
d
2
'
p
_T J i.
.3 H "=
"xS
i $ *"" 1 S
^ ^ J^ J CO
" 5 ^ !
•- ^ >• i
3 "^ ~3 '
X ^
1 . " I ^
— -^ -5 ' ,-..
" S *- !
3 -^ "= '
^ S ffl
, * ^ O
o ^T >i °
* T ^ "1
Hj -™ a ^
^
* 5 I-
|r|
3=: ^
v i'^' ^
w "^ "^ —
* - V-
^ :" =
W "^
.' f >• §
^ 2 •*
-Si.
tf — f 1
5 x
1 >. ^ X
^ r» "^ "^
J~ *f "5 ': —
«J
C
? .5 t;
F a. a>
i P!
*- X
>- *z c
1 J t
/ = -
tM 0) <-> ~J
7TT777 7T
"«s.
5 if
H K 2
« * "
7J * ^
r " ^
k. E *
ocoooo o° c
u^oo\oo^oco »^-^ IN
co c^ r^
—
oooooo c- ~
lOXCJr-qpr— r--_ _
— X *~* r* OC —
a c
- — " ,-T ^C 0* 0* -sT* C r-"
— cc — • ^12
ocoooo c;^ o
•
*• ~ ^ 'J-. | a-. ~ > ™ ~.
^co: tri-^L--c -
^l^i^f^lc H
a. < '^ -S c/:
in «/^ o -^
CO 30 -H —i Ch — t *-«
El
0;
m -H
dii H
"S S "
1 O -H "
ad — w -D
-^ a. ^ O
S**"
0 — O ~*
"" "* ~~ '
o o o m
tsj 00 — • I — *
O f~*. Q r^i
—.
f^.
*^ -^ -^ —1
*" O J3 '1
— -*J O
in r^-
— '
6 <••!
~
O O -J r-j
—" O i^1. oc
QC -T
X- -rg O --7
•" ^ S
? ^ 5 —
r-* -*
n — •
0 ". r'l ~~.
ss ~ ~
r-T -j"
^j r< r. ^
O —
— S 5 --
f :•*,
^" —
^
e
c
Cl
c -5 .2 _.
C H K «
i ^ 53 L- i 2
£-zi '*?-
| | t | r r 1
3 — < < ~ ::! J3
,^, ^. 50
x ao Y
S ? 3 "5 S S
^ j! U" (— ' ^ CO '
-1
"1 ^i " Q —
*.T -~ ^ c^^
* r--- •* M
-C (-1 -H -J L*% O^
t^ r- %£s CC IT1 —
f*1* vf (.1 r-.
-n -Q — . — , _.
" S! it S §
rsj S O — i
^j _* — — r i
~_ -T S S § R
— — i/- r-»
^ \C* f^CO
CO £• in rv*
" "*
tn •* IT-. CT- ^T f^- !
S 2 ;.2^2j
;
— OC * C ^
— ^ ^ cc c ;
J" ^-" •. t3
E V, c
C 0 M
4- n -H M
K O 4-i 4-i
>, 'H C !C
V. 4-J N CJ
J- N — i — l 1
1 £* | ^ § ?
75 ? ^ 2 ?
J ± p" L. "" 71 i
C •-• •" C t. -H 3£
'i .^i J^ J! >^
£ ^ :S « ^ 5 i ^
26
-------
c
•H
O
^
4J
flj
M
01
a
•H i
o 1
G 1
•H I
i
o ;
00 I
*o
3
t~H '
w :
J2 i
4J
•H i
3 :
E •
CJ !
4J '
w '
E>t
tn
0)
DO
T)
3
i
CO
•a
(U
4J i
n)
>
•H
11
*J
CJ
a)
O
0) •
4J *-i
o
V*
O n)
iw at
b
CO CB
C C
0) i-t
S «
01 4->
H C
•H 3
3 0
cr- g
0» H
Id cu
^
!* C
00 -H
M
01 01
C J2
W 4->
fsf r*i O -3"
I r-^ccr^*» in 10 u-1 — — 3 O
• ^-< r-. oc Cf\ —• IN — f-m ^Qtoch— •—'—'—"
_7
™ — < DM
c; "•* '•"*
« A &
1 ! a "i •?
J ' -3 x 3
j •- ^= 2 £
1 ~ -5 S -j —
' [ II 3 — i bo -- <
u & it 6
I H B » _
[ Q -H 0 O O
[ 1- U O ^ ^1
1
1 1 . - l_ ! O '^ O "-•
j 1 x ~ : .= S, ; 25^-
: • 3. : >. ; ; £ - - : -i" - i
i i £ : * ? 1 * ' :
ic' 2-^ ."^i 0 OOOOOO Oji^ OOCO 0
^ | ^ , ijx g --s-gs S- S -SSS S
j S -dj g -«sf|S 33 S -SSS R
i .. C u — O — --T 1^1
1 ' ^ — " >, r".A05^.
I * • -T -.H <^ • g? sO m
i i - " • Si — - '
i i • . :• .r — " • a: -3-
» — - C c ! ™ - " '
' 5t • .-^ f ' X ~ -
- e - r ? • • _
• ' r-, ' — "Z ' "u1 "^ •"'OOOOO o -' *— : OOOO O
• "; ' ^3 3 ! ' 5' X ! 5 '•" « 0 r- C ^" r^ - C f^ 0 * rw —
j frt! iT I! **^ O -TOCQOvCO --.-— f^-tr-vjul ^O
j.. £ I a> - - . ^--.-- --T" .......
£• ^ , "r1 "5 ^ -- r-. T-
" ^ ) w t- 5 u-, ^as^^inc—1 IAVT^T -*
^ 14-i-"1) „, .-t oc —< oJ
1 '71 ' ' » c x. ' O'-"^"^
S ^ 1 •/• ' — - ^ ' X — f-J ?M
I ."." ' ^ ' -j •" -^ ' ac "J "-•
' = 1 : :*?!"»•='
• ^ >r.*'t
1 2 o ' =-^i >". - ' = ~-- = = SS =SH 2 = = S 2
i 3 _: "§•!;••—•?; 5 -^ 5 K « S S ^ "t "1 * * ~ ^ ^.
H & Stifl 2 ""-'"d-o'g"* °-*3 s SiCS S
t; i " "
-1* .= u( O^-I^
i ~ ' .„ J . -j S, ; -t c — -c
' ? ; _ ' i ';-•"=' '"."''".
: | ! 1 : 5 (j : ~ s = ':
:*! '. i 1-3 j i > fc! § £5|S|| e! 1 £S|| £
3,o, a- [ r .- ^ i * i <^ '"• ^'^c '"_,. ' * -
>. j ^js-ej; 2" """ rings' -;s ;? s"5:^! s
" ! 1 _r g " i £ :; * 2
1 ^-k i ^ 1 "T| — ^ | -•: "J ^
. "-> . -3 , S . ," _ - .
: ; S : g f '; £ == :
' i "". • -5 '- ' i £• S. i ^ § § § § — S 'r- i S S ~s t~ sr
: :<=. 5-: s~-i! •' *--*-<==. ".c. -. =^"-x.
. . . A . -, j 3 • ..; .,; _ - ^ L- - -« r- r- " ^
, liK'"^j| -- -T - rM
! ! ! -
i ic..1 -' - • "
5 ! = z "S : "
! ' S* ' M ^ ' ^1 ^ '
' c: i iT ~ '
; = ; 1 '3 '- 1 f • > '• i •; i H s § = s 2 ^ ^ 5 *. ? £
: = : s- ; :; ^^ ; -^ -^ '-, ^-^^^ x -. x. ^1"*.^ .
> | K j ~ "^ "5 — " c ^i ce ^ ^ ^ "T H' ^' —
j
1 "
i . _ r ^
;i ; . «,! il-^'L , J
'I 'T1"^ ^^'"^-^''LT -*-j!c *T
l| ! f= '2. 4 i" c "c e W w: »• c^-1 ^
1 1 c » S E u, ~ 0 a - — u c - -u c-
• | -.W -si— rtSxi'O'l/O ~jiCi- «i
•1 ._( ij o a. c t- ^ — i •'-> 'ii r r ti -^ c, -^ r: -H
! 1 .j ^ 1 Ci ;-, -j *. - tJ O i/i 1 il/ >. E — -•-"- ^
m »r
CO CC
I J^
J
3
3C ^
3C O
y. ,e
~" !
i
?, * •
r-^ — '
- _f
IS
iA O
ST J
CC CC
^ £
•"• «
-•J
f^l CC
— " •
1
•c ;£ !
-.T • ,
* "1 i
• ^ 1
o ^
r" •«
5c: -J
"T 7-
oc t^
_-» .,
:; ?
ri
i"
OJ t.rt
-t C
3v ' -
2 r^
J
.;
j:
•/•.
CC rj- £
.55 ;i
jj -^ ^j
n i "
^ .c, 'J
•- 'z r. •. r. ^ c^---i-~3 ~
i ? E ^' C - i - ^ ^ S 5 ~.
01
i—I
Xi
CO
v. - ~ < •-• -
27
-------
M
Q>
4J
0)
CO
fl
3
l-i
CO
"S
O
O
0)
CO
0)
o
c
CO
•H Q)
CO .C
(j jj
u us
I 0)
c ooc oc o c
C --n CO C O C O C
0- ,f o X '^o- O O
u
•H C
0) -H
>> flj
I i "j il'- ':"
-
ooc c= c
-
U-l >-l
o ^
3 en
cr
QJ 4J
M C
0) QJ
C M
j o cr
: = 55: 55
• o X rT ^ —
eo
•H
"
28
-------
w
OJ
4.1
•H
<*-!
"S
M
Q
tH
W
4J
,_J
3
e
j i
CD
05
C
0
4J
ct)
n
cd
0)
-a
c!
0!
4J
X
01
c
CO
,
O
en
c
at
C
o
t
o
u
M
O
MH
CO
rement
•H
3
CT
a»
60
j^
HI
C
w
*
ro
a>
r-l
|
1
i
B
tn
*-> i
ai
x;
"^
y_i
o
CO
4)
VJ
C8
•S
cd
c
2
5
a)
£
-H
> £
5 ME
= V. 51
~ ^: 3
2
n
•C >; *
~C * E
e i. ui
CJ 1-.
° uj a
; £ 5
' u ; ;
1 ~ ' r.
i 3 , . ^
I £ ! ~z. Si
• ^ ^ cH £
| | u- '. C •—
. Jj1 !
i "T" •
]
! 1 *!
! !s" 11
! '• ~~ \ ^
1
.2 ?
; s s
1 * ^
1 °
• *
m
s
u.
1
j;
-
-.
•u
" >,
2^
*j -*
3 x
« "^
X
* u
^1
= L.
-2 ^
^ 3
X =
S-t1
?l
*J
; >
~ '!•
^ £
& .>•
il X
--H ^**
yl CO
>! L|
"M *?
c ^
^
"u "5
— -^
X
1 1111
l£ -H
O 'J
-
Z "'j
s *
c; cr * ^ c;
C J- — >^ 0
r-» i." OC •£ O
°° "' 5
O o d; O O
ro — f-. \-. Q
r-T
0 O O C5 0
3^ — -T -^ S
~~
1. fill
X — —
Q 0 O O C
( OC -"» 03 O C
rt 1--I .- LA
S ^ S E S
— „ c r.^
" ^-
i
V
c *J
s ? j ?
; £ -- ^ <
; £ P: t -L
>. di ^ O
^ i- t ~ e
% '£ w 'p J .^
-- • f^ 3 U r^
3; ••'j 3; i_) C^ VH
tfl I. Cf
* — •= *
J, Cl^ i^*^ J>'
S ~ s -" r O iib
a. c- PC is
UJ U- — j— — «
r- &c o .rj1
x c — c 3. . t- --.
JJ-H-O O^ux: t£
j- ™ ..« n •- a s ^ —
4-. •- dj a. n — H
^ E ^ L. 71 ? ° ° Sc
3: 5 -g ^ "" t) "C « o" »
2^^^:^=^^^; 2
•-J
j^, tA
rj *'"'
£ ^ R ^ 5
J ^ gT^ i
*» ?; ^
E E
3 g Rg 3
O .
•- -j~ a at
g j. u 5i t
l) *-J C C
tl "" , u
T3 g u •*- Es O 1
S U ™ C --I 0 i-
2 £ u! "S i w x
£ 5 0 ^
O -T
j~>
5 ^"^
5
^*
. r^j ;?-
C
LA
M
!"•» CD "-*
» sj fl
o
-
r^. S -\
~ ~ —
u-
c--:-
^
, — < .
-T
~ G
c j<: a.
S|£g
•11 oa i -H
H Df . C -•-»
00 >, 3 C
"B a * 5
_
'~^
~-
5
^*
X
?
f".
r^i'
^
-"
-
s
~J
m
-- .
^
"(••
o
V-
J3
1/1
29
-------
*•*
CJ '.
O ••
1-1 !•
0) :; j
03 II §
03 |l
4J )'
C
(U
s
co ! : • = u
QJ , J. i — j; _>••
M ^ ' - — * ~
u - ' t s| • :'is
•S = • : = i:H .xs
S i: ;o; I'.^i
1-1 !' , i ~ ~*
^^ ' ' - = U
§ :: • - J'^t
U . &i II "**
trt o ! c -~ . „• i.
M > - - | .j £•?
vi - "" « t 'i
!-i '3 "
•H jj ! 1 . ._• C f
^^ ~ i i "-1 ] •!. ""* ~~
] C -3 .•.£;£— u
4J E ' ^ * ? 1 ' ^ *
to i ? i °. ! = - : , > t,
n ;: £ : - : ~ I ' i-s^
S' ' u • ' " w kj 5
• ' -. ' ' Z,
o i! - : ,.
-t 3 : ,:--SS.
m !iy: ; . S ; .^S ^
«*-! • :'d'|'??'™J! =
O < i: , i c ;
M : "3 , ^ £'=:.'> i
ffl & ^ • •" c" ' ^ 'H ^c
(2
U «0 [ "- iS '5 • • "' S.
a) i i ° r • i 'C •;
to M II t « ! w t »
o to ; j " •*
"^ (- i 1 ' "'•?!-
W -H ' ' -, F i ^ - •=
4Jnj : M > e ! is - ;
C -M ; £ Z i \ * "
S! C • • £ S r ' , >' v.
63 • • u: i- I v .^ ^.
-.7OO"^ OOO i •«
^ — « r- O tNl sOO-^T •-<
•*" CO -* r~- -H DC
i-- ec ^r ?o
c <~
fM r^
5 ;;55oa: OOO -5
~ " ** S £ 22%
rj fj — r-.j
o O
^
O oooc OOc «:
O -^ O O i."i tNOO *^
"•• 3) ^ a ffv rs-co -T
— • r-
'JO ^ L 3 O, — • U •*--: ^t
*-* 1^ E fitUO ^-« -H-p"'-
^.i-rH^fitj [_. -oca. T3T;
3 "Ctj. ^ 0
""
*~- * ^ '^. *T sj-
" S- "~- S *7 ^
^ ^ -^ ..-« ^ ,rt
s rt g r: ^ i |
•X ^ o-, 30 QC 00
s- 5. 2 ~ - -
? S £* ^ ^ ?J
^* ^* e^
rn f^ i/" r^i !"•> t^. |
"j r-+ CN ^7 -.) ..-i
5 ^P™ X C^ 5
vj u^ r" — r-t [
000 p 0 C |
r» ^ ^. -^ i j
[
I
•X) X CO X CO X [
•7* ^.f ~T — i ^ ,C \
^ GC i-N 5s -1 ^
^•J CW •* •— •
_- _ r-\ _ _ «i
— i _ _* ^J — (
'
-< -a- vj iy, c-J e^i
ceT oq" ~$ -o" fjT iX^
i ft.
"•=• "3 -Li X s.. efl *O fl> 8)"
4) ••- i_l OC C tJ -H U DC
t-.-ic-a *-» — * — i c -a
C :/5 :.j or -, „ :/i cj pfi
< w -
30
-------
43 tO
T3
0> 0) i
5 42
O *•*
r-l <4-l
0 O
tO
U 01
ca cd ;
1— i
a c
*H
4J (fl
S£
a a
4J O
flj £3
(U t-i
M 0)
C
>-i -H
0)
4J 01
to .c:
Or)
j j rj
W •!-! :
CO
0)
frrt •
cd o
6 0
•r-l r-l
M
a, g
rd 01
j 1
M-l CD
O £** ,
03
en :
4-1 4-1
c n
o)
3 rH
CT'H
a) M-I
Vi C
fj^
00 ^
VJ -r-l
a> a,
C tO
W Vi
in
1-1
a)
r^
cd
H
I >*
] -ti
i ™
• ^
i =
*•
1 ^
; i
|
3
> >t
\ ->
j .„
™
—
1
i
I
i
|
|
|
j
y-
= ;
I • « "-
$ • r :.:
: - S
; n , ~
i^ '.^
! - E u ! o
-C j X S !*. ^ ^ ' -C
E v< 41 . *•
-
o c ~^ . i- o o C- o o o o .-."; o
* UJ3 (j21:>s '•-* ^ ™ " 00 cJ\ ' - iT> r^vo
U 'C J* CO — O — 'S
- c u c>
J ' 0 12 -;..' 03
»1 . r ' (^ — - jj -^"
ol: w e . |f cc I
S , ^ ^
u u ,
^ ' -2 '^. ' ] ^ >, r- S x 5- ^ 5- r^ ^ ic
"*•• , tr ; „- .^ -^. a- •? Q .r ^ o "* ' - c
J. ™ .- "5 ', ~* — ' • ^ — .7- - "-
, — k- ^ i- ' f-
. = ^ ' —
" • s ™ ""-
•3 1 >, i . — ~" •— —
iC -^ £ , JZ ™ .
£ — 1
•- ! ~ ' r .t^ • " *•' -^ sc •* ~ -r ~~
2£ ^ •,« ^ , ~ ~'*^r_ " •>?
ii ~* ' ~
r : ^ r: j
1; ?l : £s^ :
'"- 1 '= ^ .' >• S, : § S g = 3 = g ~ g
C! ~ 1 ^ -. '"^ , ~' ", "^ ~T ""„ ^'. '. ~~" m-i
•£ ' ~ ^ "> ' T — •" .« C — "i
, , IM ^d >"•• •-"
; a 4 1 ^ : -
? ,= ^ ^' ^
lc ^ ^ *" j: ^
- C 5 ' u 0 0 0 .0 0 .^ • - 0 -A
EC ' £J .H S "1 •*>
c: 1 ^ ^ - i
-0 ^J |i — .H ^
s? w S ^
G 4* i-
O UJ = ; 1 £, > C -^ O >C <-l iri -T "-• ^1
36 ^ .- 3 - — - * -
-j ;
^
i *^
! T3 a:
; o
r: "tr
-j Z C -^
1 ? *~ -E i-
! - '^ fi c ^ &c 6
! v •- ^ ^ w c -^ Ij
1 ^ £• .'' _[, r j; ^, ? 7
z"^ ' ^ - •— TE « c^i^
,£ i ^"^-Es'-S ^ e.^"-*
- .- ; •- i >-' 2 « e ^ " -j j= "
-,- , ^TU.3-_LT. "-i— 73 ?- ^
-r | t - - .^ e as -— scij
=.,_ I^^E^i^^se-^^^-c
i — ^ 3 k- e i e i^-^
0- 3 "- 3S '»J :J -^ -C T5 O _0t T T
' " ^ r-. a. y: a. u. r • <
••c o^ y
— < ac -.t f*~- oo — «
"' P"t — S ^ 3^
— T r-~ •£:
1
a^ oo M ;•-
~*. :C;
L ^c S * ^ — ^ .
i.~ •-j 31 !
^ •
.* .- - ^ " ^J
-.'• — si? ™" CT1 ,
": w- ~t 5s
— —
X -T '"? '••
•N ^' s£
— "
• - •».
fj X « X C X
-
--r u-- 5s [
— "-?, ""T "1
^j ^
" . i- j , ii- ac f^i
c -, _ —
^4 ^. x» C-J
."
{vj m i£j r*. 00 u^
X "" — I "** — ^
r ~j a-- r-
-; -H -.
~
tl
T.
i/:
"^ i4 iC =
w _^ ^ ri
^ L ^ — ^
v - -^ ^ 5 ^
^ i_ " „ ~" ^ H
a: i — r:- ec *x
t; =' - c - •- =
'>^^ -4 ^ ^ ? -
= = - J -E e5 £ «
C H
31
-------
e
•H
•a
ai
o
o
00 -
c : '
I i :,
w ; : £
3 | «?
n ^
T3
c
CD
^J i
! "5
§ i |5
« ' ' - :
VJ '• - :
4-1 ' ft .
•H : : - . -s
*c '• i =
*rH . ~
"O : 5- '
•r-l v. '
a • • ; •
2 • ? •
•w : 1' *
O ;. 3 ; "
(D . • ; = ; =
4-1 ^J • ""
C to : : r •
(y I""} . . "i
c i =• ;
o . a;
if- E
^ U
OC
U3
LJ
a
IM OJ
C --<
~ o-
•y
VJ
^ s.
II
P"
12
i
si
i £
r
^
^
OC 1
(U L.
^ =.
01
PC
tt
c
so e
i-. o
S u
w P
D£
-C h
|S>;
U *J -^
* '" X-
^•c ji
C L
- ° >.
% '- """
JT " '
1 * S.
2-p
B c ^
"i •- -?1
.'. — ^
5" ^
i >, ;;
i -- ^:
- 'u 2
- = _
I f i'
S =
£ -- 5
i •"
£
— ^ >,
!)_"*-•
•£ *
i. S^.
^ L. i
-"-L>-
1 ^ "B
•s ^
^
^ *y !=
S "^ 3
w ^
Jt.-
:T'
§O O.O O C ^
^ "• O O » <^
^- 11*1 00 O *•" -~t t*-
% -"°o^ ^f
•TO X £, —
^* — r
''7
3 C O O C5 O OO
-3 irt QC O *** ~* •"•!
•JN -.t O O ~-t ^J ^
" — r.. ^ — ,j 3^ — •
-™i CO vj
r-
3 C J, O ,5 2 JS
-t :~ *£ C? f 5 ^
j, • - - r d t^ •"
— .0 X
.-
'-'
^> ~ " O -^ -3 *
-j b •" o c^ -t -i
o" — " -^ o" -T" — "
•t
O O O O O *•* -1
oC -•• CO o C ac -4-
PSl (^
'X
O LT- O O u"i — (T.
° -1 S. S. S. ~ 2
^^ "^ f*1 ^
11
^ >N i. I a.
u t c .- c i
i * E "" 'E T
ca
H
32
-------
01
fi
c
•H
"D
-i
6 tfi
)-i C
•H -H
cr 4J
0) C
^ 3
X i
60 M
J-l flj
C C
U •!-)
Q C «1 5 0£ O C
-T "I ^ C! M "I O
:-5
>• ,
~5 ;
OJ
rH
J2
E-i
33
-------
4J
CO
S*» i
CO 1
*•" i
cu "
4J =
H I
*^4 -
IH 1 "
-a j
C !
m
CO :
4J : !
C '•' '• \ c ..
cu • ;*.:*£.
4-1 - ' ' j " 1 ;; ~ ~^
S (• .' t ^ i ^£
r . ' ' = 1 = •- ! i =; '-
(•I , : • ••* = ! •- 5 *.
cu • • : "" r • Z - 5
4j i ; ! a. a x i
c !: | s-
t ' : : *\ -t*.
C . : | £ ! s = "3
O 1 1 "O - >1 ^ 1 ^ ^J ^
0 . f : ?§ ! *""
s? i e"iiiii-*s.
rH 1 > " 1 S" ' S - 5
i-. ,' OS M ij 3
cu : = • t-
^ ' C ' fc c i_
•H ' J 2 i « •- •*'
*J | E i S - =
« : i 5 -= §• a ; fc ~ i
ii : ; g 6 : t •: ;
>H • . -1 0 = -M | , t,
** ^ , ; •: - ; u 3 ^ >• >.
0 W ' [ 2 ' " ' ? : - - ^
rfl S ' ^ i ^ : <" - "5
"? ^^ . ! , , i_ ^
*4-l 1 ^ 1 i ^
a) : ^ ! : . = *
_f i— 1 K y ™l O >.
ra J3 '3 ' . ; «i -H -C
4-J E • = 3 - ^
I, .^~- >3J,t-^j
"-1 • : --• i : =c E : = «=
ot-i -5 s;ii'
O -A C '" ] 1 .- ^
ml — * W " , O •** >>
L C CJ cf " "^ --v.
S S !-' j -^!
(U 1-1 i T • .
CS n) i 5 , [ . c i.
o i • F • ' ° o - -c
& « . : :j : .. >.. r : £ - f
C T-l , . . i , I' E . - =0
0 • LL. ~~~ ^
c c , i > r £ j £ x
a> -H n : a £ ^
S • • r e - . _i .. ^
oj cu . . ; _• : J- ; _a - -~
^•^ ii 1"! «'2.i"3
•*j ' * i LI ^
g w 1 1 ! ; i
IT C :
cu -H ;
M j
13 :
>s 01 !
00 4J ;
H « •:
01 O
C O i
w ^ !
* ' ' " O
0° i! ^ ^
^J -1 .i.
^ :: §•>.
<1) •!
iH i •
jQ
-»
— ^ m 30 oo
A A.i A A
r?
(|
s
H
•
^ i £
r-J ^ r-.j
1*
"
O O O ^ C »C s£
3 in f-t — o -N -NI
"-- — ' i.-i — i i.-\ "* ^
\C ^ o% — O ™ ' 01
00 -T s* 0 X OC
(*•' -T
tn — j=
3C ^n !n
r ?
i ^j
— • y.
w M: "~" ^- >,
c 2 i? rj ^ _
•;.EG££ ^^^
l v- -^ r _c ~ .r E
i. *- C C ?S •" ^
r c u >•. ^ £ ^
-«lf-i-» t_ ±:Ot-
00 4.1 *J >, K! — 1 H
. !C ^ y k- ^ p] OC- ^
?"fcl^er-' ^— -
j x |- c — '" K TJ-T; Z
, ? w in a. -y; ^a ^, -H -H —i
flJC-" 3 a D ^ S
ctt-Q i/J^:cQa: t-j
34
-------
61)
•H
tn
03
CD
o
o
en
«'
c
CD
to
0) •
*j en
u
g«
0) U-i
4-1 O
tt>
CO CO
S a>
"Cl CO
0)
U C
C -H
> 4J
T) C
CO 3
O
e E
OJ
^1 j I ,t
o c
•H
to
4-1
-------
c
-" ~-" ! ^ •— ;< x r-x a c;
cc ' ^u ,i 3 ! -c -T -r V — *c c
QJ
3
CT
O)
c
ai
c
o
D.
O
O
C!
cu
(U
14
•H
>-. W
Mj tJ
M C
0) «
c: --H
u a.
o
CM
36
-------
system applicable to the treatment of small flows of wastewater. For
combinations not shown in the tables, energy requirements can be calcu-
lated using the equations in Appendix A.
Carbon and Ion Exchange Regeneration
Energy requirements for the regeneration of carbon and ion ex-
change materials for very low flow systems (0.05 -0.1 mgd) are shown
in Tables 12, 19, and 20 only for comparative purposes. In most cases
activated carbon would be replaced rather than regenerated and the
energy requirements would be reduced accordingly. The regeneration of
ion exchange resins would probably be justified, but depending upon
local conditions it may be less expensive to replace ion exchange resins
on a fixed schedule rather than to regenerate them.
Energy requirements for carbon regeneration represent less than
3 percent of the electricity and 94 percent of the fuel consumed in
the components of an advanced treatment system following secondary
treatment at a flow rate of 5 mgd. At a flow rate of 0.05 mgd, the
energy requirements for carbon regeneration have been reduced to 2
percent of the electricity and 57 percent of the fuel requirements.
However, the inconvenience of operating additional equipment and the
need for highly skilled operation would probably rule out the use of
carbon regeneration at very small (< 0.5 mgd) wastewater treatment
systems.
Gas Utilization
Although the energy required and produced by gas utilization is
presented in the examples summarized in Tables 8, 9, and 10, gas utiliza-
tion in small flow systems, particularly at the lower flow rates of less
than 0.5 mgd, may not be advisable. The increased operating expense
caused by the need for a more skilled operator and more sophisticated
equipment will likely offset any savings from gas utilization. However,
this is a decision that must be made on an individual basis.
Effluent Quality and Energy Requirements
Table 21 shows the expected effluent quality and the energy
requirements for various combinations of the operations and processes
shown in Figures 2 through 12 and Tables 8 through 20. Energy require-
ments and effluent quality are not directly related. Utilizing facul-
tative lagoons and land application techniques, it is possible to ob-
tain an excellent quality effluent and expend small quantities of energy.
Although one system may be more energy efficient, the selection of a
wastewater treatment facility must be based upon a complete economic
analysis. However, with rising energy costs, energy requirements are
assuming a greater proportion of the annual cost of operating a waste-
water treatment facility, and it is likely that energy costs will
37
-------
n
w
0
tu
c
to
o
W
"c
CO
4J
effluent qual
•X3
11
4J
O
a
w
^
CN
0)
J3
CO
E-*
*
<
C/3
3
(U
U-l
0
to :
(U
CO
C
•H
B intermounta
.c
•H
"3
3
0
CO
c
CO j
er treatment p
cd
0)
t»
co ;
S i
8
"-
•ir-
.-• L £
• ~ ~
r r
1 '~*-
• • i >
1111!
i j;;
i^il
; 1 j * i
™ • . s^
: i f =
l'"i
- £ • , ^
i-'H
'•r.
6-,'~ ~
§
1
i
£
>.
^ £
^ i 2 c
• ^ j i
"•:. T * •*
an r x
> : -•. > 5
lit!
-J 7 5 i
*•
t: i S S
2: ;; § ;
i 4 I J
^' 1 i 1
| *' 5 ?
!*' = ="
** U- —
^- 1 *>-. ~-~ a:
^
t' S S £
^ i 5 a
i. ;; =: ;
|:s 1 s
1
5 = y
c -=
i * ^
' - "* =
1 1 1
s ;ll
•j
'r.
-
c-
X
^x
_
H
"
r
-"
-
•r, ., i
> V '' ••
: -j; .« L,
.!' «j 13 U ^3
L, J ,, ,
.; ^ ^ ^ J,
' .=
-
f =
!. J-
; 5
1 -
S i
.! £
'. i
i; §
—
y
' -T
f j^
1 t
=
i
< £
;: .
" (
*• :
- .
•- -
"t '
S |
•?! -
S:
"
SS
•
•3
m
i:
V,
JS
3
-
5"
ii
- . ^ -. T _•
i »^*i
J JIH
- ;» :T • •: :: ^ ^ | ,^
•c _ — i... ,-, '" ?_
i -= t : 2 = s 2 = .-
— —•-"-' 0-
£ * jj* • . •» x ••*• •» s u
^xar-'fij^^-xi
:-. .
ss-s: cs±3OO-i
l;?r ^Ziss;!
s =• i • a ; * - •' •;
5'j^^Sc^^oo
H'l,:
- = o . , -2"t ;
i
j £|
* 1. *.^ •* "
?i rll
5 fc 5 "• 5 . *
C 1- •« C — *J
IS Ifi (ft T3 ^ O H
=!31*li 1
a 11 !L E ~ -rt 1. -J
eCu9,4l>H> R
it: g >-• .2 *« 0 < b. -rl
f WJ-" B. "9*0 >«V*D
^2"i-5t^T""5«
J<— WC>> — TJ >
38
-------
become the predominant factor in the selection of small flow treatment
systems. Operation and maintenance requirements, and consequently costs,
are frequently kept to a minimum at small installations because of the
limited resources and operator skills normally available. This favors
the selection of systems employing units with low energy requirements.
It is very likely that all future wastewater treatment systems at small
installations in isolated areas will be designed employing low energy
consuming units and simple operation and maintenance. The only exceptions
to this will be in areas with limited space or construction materials, or
where surplus energy is available.
The effluent quality expected with each of the treatment systems and
the energy requirements shown in Table 21 are presented in the order of
decreasing 6005 concentration in the effluent. The other parameters
(suspended solids, Total P, and Total N) do not necessarily decrease in
the same manner because most treatment facilities are designed to remove
8005, but in general there is a trend in overall improvement in effluent
quality as one reads down the table. As shown in Table 21, there are
many systems available to produce an effluent that will satisfy EPA
secondary or advanced effluent standards; however, energy requirements
for the various systems are varied and can differ by a factor of greater
than 20 to produce the same quality effluent.
For purposes of comparison the total energy (electricity plus fuel:
3,413 Btu/kwh) for a typical 1 mgd system has been extracted from Table 21
and listed in Table 22 in order of increasing energy requirements. It is
quite apparent from Table 22 that increasing energy expenditures do not
necessarily produce increasing water quality benefits. The four systems
at the top of the list, requiring the least energy, produce effluents
comparable to the bottom four that require the most. Three of the top
four are land treatment systems, and their adoption will depend on local
site conditions. The facultative pond followed by intermittent sand
filter and surface discharge to receiving waters is less constrained by
local soil and groundwater conditions.
Conventional Versus Land Treatment
A comparison of the energy requirements for a conventional waste-
water treatment system consisting of a trickling filter system followed
by nitrogen removal, granular media filtration and disinfection with a
facultative pond followed by overland flow and disinfection is shown in
Figure 13. This comparison is made because of the approximately equivalent
quality effluents produced by the two systems (Table 21). The relation-
ships in Figure 13 clearly show that there are significant electricity
and fuel savings with the land application system. Similar comparisons
for modifications of the two systems can be made by referring to Tables
8, 17, and 20 and selecting combinations to produce equivalent effluents.
Figure 14 shows a comparison of the energy requirements for an
activated sludge plant producing a nitrified effluent, followed by
39
-------
1100 -
Trickling Filter
Nitrogen Removal
(Ion Exchange)
Granular Media Filt.
(Gravity)
Disinfection
Facultative Pond
Overland Flow
(Flooding)
ui
Figure 13.
FLOW RATE, MOD
Comparison of energy requirements for trickling filter ef-
fluent treated for nitrogen removal and filtered versus
facultative pond effluent followed by overland flow
treatment.
40
-------
2400
72
x
w
>>
X.
.c
*
Jtf
(/5
I-
Z
UJ
2
UJ
a
ID
a
UJ
a:
a
IT
H
O
UJ
UJ
2100
I8OO
1500
1200
900
600
300
Activated Sludge ">
Nitrification
Granular Media Filtration
(Gravity)
Disinfection
Figure 14.
FLOW RATE, MGD
Comparison of energy requirements for activated sludge.
nitrification, filtration and disinfection versus facultative
pond effluent followed by rapid infiltration and primary
treatment followed by rapid infiltration.
-------
Table 22. Total annual energy for typical 1 mgd system (electrical plus
fuel, expressed as 1000 kwh/yr).
Treatment system
Rapid infiltration (facultative pond)
Slow rate, ridge 4 furrow (fac. pond)
Overland flow (facultative pond)
Facultative pond 4 intern, filter
Facultative pond 4 microscreens
Aerated pond + intern, filter
Extended aeration 4 sludge drying
Extended aeration 4 interm. filter
Trickling filter 4- anaerobic digestion
RBC 4- anaerobic digestion
Trickling filter 4- gravity filtration
Trickling filter 4- N removal 4 filter
Activated sludge 4- anaerobic digestion
Activated sludge 4 an. dig. 4 filter
Activated sludge 4- nitrification 4 filter
Activated sludge 4 sludge incineration
Activated sludge 4 AWT
Physical chemical advanced secondary
Effluent quality
BOD
5
1
5
15
30
15
20
15
30
30
20
20
20
15
15
20
<10
30
SS P
1 2
1 0.1
5 5
15
30
15
20
15
30
30
10
10
20
10
10
20
5 <1
10 1
N
10
3
3
10
15
20
-
-
-
-
-
5
-
-
-
-
<1
—
Energy
1000
kwh/yr
150
181
226
241
281
506
683
708
783
794
805
838
889
911
1,051
1,440
3,809
4,464
granular media filtration and disinfection; a facultative pond followed
by rapid infiltration land treatment, and primary treatment followed by
rapid infiltration land treatment is the most energy-efficient waste-
water treatment system, but it is closely followed in energy efficiency
by the primary treatment and rapid infiltration system. The energy
requirements for both of the rapid infiltration land treatment alter-
natives are less than 15 percent of the energy required for the activated
sludge system.
In Figure 15, energy requirements for slow rate land application
systems using ridge and furrow and center pivot systems to distribute
facultative pond effluent are compared with the energy requirements for
an activated sludge plant practicing nitrogen and phosphorus removal,
granular media filtration of the effluent, and disinfection prior to
discharge. Both the activated sludge and advanced treatment system and
the facultative pond and slow rate systems produce approximately equiva-
lent quality effluents. The ridge and furrow flooding technique of land
treatment requires less than 5 percent of the energy required by the
advanced treatment scheme. Utilizing a center pivot mechanism to distri-
bute the facultative pond effluent increases the energy requirements by a
42
-------
9600
6400
to
b
i- 7200
to
h- 6000
z
LU
5
LU
4000
LU
(T
360°
O
LU
LU
2400
1200
Electricity-
Activated Sludge
+
Nitrogen Removal
(Ion Exchange)
+
Phosphorus Removal
+
Granular Media Filtration
(Gravity)
+
Disinfection
Facultative Pond
+
Slow Rate Land Treatment
RidgeftFurrow -Flooding
32
28
to
b
24
00
z
O
20
16
LU
2
LU
-------
factor of five compared with the ridge and furrow flooding technique, but
the energy requirements for the center pivot system are less than 11 per-
cent of the energy requirements for the advanced treatment system.
In an energy conscious environment, the land application techniques
of treating wastewater have a distinct advantage over the more conven-
tional wastewater treatment systems. When land is available at a reason-
able cost, the lower energy requirements for land application systems will
likely result in a more cost: effective as well as more energy effective
system of wastewater treatment.
44
-------
CONCLUSIONS
Based upon the results of the analyses presented in this report, the
following conclusions are made.
1. With increasing energy costs, energy consumption is assuming a
greater proportion of the annual cost of operating wastewater
treatment facilities of all sizes, and because of this trend,
it is likely that energy costs will become the predominant
factor in the selection of cost-effective small-flow wastewater
treatment systems.
2. Small-flow wastewater treatment systems are frequently designed
to minimize operation and maintenance, and as energy costs
increase, design engineers will tend to select low-energy-
consuming systems.
3. Low-energy consuming wastewater treatment systems are generally
easier to operate and maintain than energy intensive systems,
making the low-energy-consuming systems even more attractive
because of the desire to minimize highly skilled operation at
small facilities.
4. Where suitable land and groundwater conditions exist, a facul-
tative pond followed by rapid infiltration is the most energy-
efficient system described in this report.
5. When surface discharge is necessary and impermeable soils exist,
a facultative pond followed by overland flow is the second most
energy-efficient system described in this report.
6. Facultative ponds, followed by slow or intermittent sand filters,
are the fourth most energy-efficient systems discussed, and are
not limited by local soil or groundwater conditions.
7. Physical-chemical advanced secondary treatment systems utilize
the most energy of the conventional methods of producing an
effluent meeting of federal secondary effluent standard of
30 mg/1 of BOD,- and suspended solids.
8. Slow rate land application systems following facultative ponds
are more energy efficient than most forms of mechanical secondary
treatment systems, while also providing benefits of nutrient
removal, recovery and reuse.
9. Advanced physical-chemical treatment following conventional
secondary treatment consumes approximately 34 times as much
electrical energy and 13 times as much fuel as slow rate land
treatment to produce an equivalent effluent.
45
-------
10. Land application wastewater treatment systems following storage
ponds (aerated or facultative), preliminary treatment (bar
screens, comminutors, and grit removal), or primary treatment
are by far the most energy-efficient systems capable of
producing secondary effluent quality or better.
11. This study did not consider the energy requirements for produc-
tion of all materials consumed in the treatment process, but it is
not believed that inclusion of such factors would significantly
change the relative ranking of the systems discussed. Such
inclusion would rather make the differences between simple
biological processes and mechanical systems even more dramatic.
46
-------
APPENDIX A
EQUATIONS DESCRIBING ENERGY REQUIREMENTS
r.-H icm , PriH'i'Ss, .mil hqu.il i m> hfHtr-
K.tw Scwagt- Puir.pinj? (Const,ml SpiM'tl)
V - I'lT.OOO Xn'q ' T'lH = '.')0 :'t
V • iri.OUO X0'^ 1DH = (.0 ft
V - (>l , KM) X '" '' TilH • ill 't
V r- U),.-,iM x"'"! TDM. - !l> ft
V - c),6fi() X " '"" l'[)H - > ft
V = KU'Ctrical Knerj'y Ki-ijui rr.i, kwlv'yi
1-.' K.tw St'u'agp Puropins (Vari-jbl-,1 Sp^i-d)
h * 69,000 X0'"*" TOM - HI ft
V = .'4,!«) X°•''''' TDti = ::) t'L
Y -1 inv80*> X ' 1 TDH = • t't
v - KlPitriro] Kn*»rj>v Krejui ri.-d, kwii/vi
Dos ign Asm imp i i ens :
(•'.! !>, ion-, U-i :-'E .1 i dvnami. In.-.).-
Typo of Knor.-.v Rt"]uiif.1: • it-.-:t:..i:
Di-sit::) As-iS'.i:;:i*C it-tin :
Kl lit t on.- i *•.-> i i-r tyi*i*;.i I -'on! i i t,
puirpw t"ir:irt*-s wirh t :cw*
Wound r.it.'ir vai* i;ib lr spffH
V/n*iiilf! o I i-v« ! wot w! '
Ty;n- ol )MKM>',V lu-qn i r
"K.iw >i-w.ii;t' H-jn;)inf; i\.^'ii^'--- S>it-t-.J:
v - 2:M),ono x°'SA TDH - !nu f i
Y = IV. 000 Xy"' "* TOIL = ON f i
Y - V :<••-{. r i\-a 1 Kncr>;v Ht-i;i i t'f .: , '-.v'". v f
X - Flow, raKd
l.iaie S I lui.m- Puffspinj;
1-1.: V 3.-*VSH *• 0,;.'(;r: i 1 nu X! * .J.r'iio fi.:.^
1 . n; v S . 1^8 i t- 0 ..•"].- i ' ! • .• -. ' * • f . L S ' .' i I , •*: \ 1 '
- O.fl'jjJ (lot X)' - S. ,i:-iti.-ir-, K- I ' Lu-ii; , J.ow
Y - », ill) X n-i lv, mi-.d
n f'icii-fir ii-.s i nr typ* -M 1 \-rie ;-1 !.
purii1:-. i V.E r LL.-;; w t E It : ' -'-^ -
Wound r.>1 ii f v:u i ;th lo r.LH-*-il
V.jrih It it" • i we: wi-! I
T'VI»' of Knt'i's'.v KtMjusrcii I hvM !•
L ro.l t Md1 IT , .II.1 J ';- ' ii I' I iiW
S 1 sjtlri*' * *MU t-nt i -it i>'fi-;, I i-i i i
E r\».i [:•:!.• 'it , i r.- i' r .• r 1 -u
47
-------
Figure
Number
From EPA
430/9-77-0U
Operation, Process, and Equation Describing
Energy Requirements-.
3-6 Ferric Chloride Sludge Punplng
log Y - 3.6192 * 0.8308 Cog X) 4 0.13b4 (log X)3
- 0.0356 (log X)1 - Secondary Effluent
log V - 3.6051 + 0.8078 (..og X) + 0.1301 (log X)'
- 0.0047 (log X) - Ran Sevage
Y * Electrical Energy Required, kwh/yr
X • Plant Capacity, mgd
Design Conditions, Assi.rapti*>ns anil
EffluLT.t Q
Suspended Solids 250 30
Phosphate UK. P 11,0 1.0
Water Qua lity: Inf lu«?nt Kt t luoru
(Tertiary) (mg/i) (rag/1)
Suspended Solids 30 10
Phosphiite -'is P 11,0 1 .(t
Design Assuwptions:
TDH = -!5 ft
SI udgij concent r.ic ion (sefondn ry)~ J!.';
Sludgv eom'ent'r.it i«n (t-i? rt iiirv)f I ~
t'errii Chlnrido nddition = Br>
Typi: of fcnergy Required: Kleilr
Mechanically Cleaned Screens
log Y = 3.0803 + 0.1838 (log X) - 0.0467 (log
+ 0,0428 (log X)3
Y - Electrical Energy Required, kwh/yr
X - Flov, mgd
3-8 Conminutors
log Y - 3.67O4 + 0.3493 I log X) t 0.0437 (log X)'
+ 0.0267 (log X)3
Y « Electrical Energy Required, kuh/yr
X •= Flow, mgd
3-9 Grit Removal (Aerated)
log Y - 4.1229 + 0.1582 (log X) + 0.1849 (log X)'
+ 0.0927 (log X)3
Y = Electrical Energy Required, kwh/yr
X - Plant Capacity, ragd
Design A*si4TpCinn*;
Nomift I run t imes are 1.0 min E ot ;t 1
tira*.1 par hr f>:t:ept i). 1 mgtt (5 min)
and 100 mgd <15 mir>;
Bar Spacing is V4 in
Wunn ««?ar drive, 502 ef f ii-ii-tK-y
Type of Energy Required: Kleitrii;il
Type ni Energy Required: Klei-trii';il
Grit Removal (non-Aerac«-d)
Y = 530 X0-24
Y - Electrical Energy H( quired, kwh/yr
X * Plant Capacity, mgd
Pre-Ai>rat ton
log V - 4.5195 + 0.778! ( Log. X) + O.JfriS (Jog X)"
- 0,04<»6 (log X)
Y = Klectric.'il Energy Krquired, kwh/yr
X ~ Plant Capacity, mgc.
WiitL-r Quality:
R#IEIOVL| of 90'il oi material with
spei-ific gravi ty of gr«-;iter th.i
Design Assumptions:
i'Tl 1 remov.-i 1 11- a ho Iding f ;n- i I i
by -i st- ruw jti.mp
Size* based on :> peaki ng t Tc-t nr «'
IX*tt*ni ion t in».j is "i min
Tijnk design s Imi lar to t Itat by
Li:'.k-BoU, I'MC Corp. .»r Ji-irn-
Oporaf hiji Pjiramct urs:
Air race of i < fm per toot ft 1«-
Removal equipment
Type o! Energy Required: I U1* t rii
Water i,Ki,ility:
Re mo va 1. of 9 Q£ o f ma ce r i a 1 w i t i i
spi'.1 it" i f gravity greater t hnn
Denign Assumptions:
Crit removal t .> ^ holding i,n'iLi
by screw pump
Sizt- b;ist'd on [icak ing i ,i%- toi ol
Square tjnk
tittik or 1 13i i dftcnt i-'i' E irm- .ii
•ivvr.tgf t liiw
i)per.ttt* t*qnipnirnt .' hr <•.!*• it .i.iv
Type i--1 KniT>;v ri,'i[it i rrJ: r'U , : r i
Opor.it ing f'-ir-im, tor:
Aur supply is 0«IS en tc/.n-iJ
Type i-~ Lrt*.'r.i;y Kt-qn 1 r>?d: 11 U-. E r i, 11
48
-------
Figure
Number
From EPA
430/9-77-011
Operation, Process, and Equation Describing
Energy Requirements
3-12 Primary Sedimentation
log Y - 3.8564 -f- 0.3781 (log X) + 0.1880 (log X)2
+ 0.0213 (log X)3 - Rectangular
log Y - 3.8339 + 0.3362 (log X) + 0.0148 (log X)2
+ 0.0081 (log X)3 - Circular
Y - Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd
Secondary Sedimentation
log Y - 4,2149 * 0.6998 (log X) + 0.1184 (log X)2
- 0.0660 (log X)3 - Activated Sludge
log Y = 3.8591 + 0.3349 (log X) + 0.0735 (log X)'
+ 0.0238 (log X)3 - Trickling Filter
Y « Electricity Required, kwh/yr
X - Plant Capacity, tngd
Design Condi t tons* Assumpi ions ,n
Effluent Quality
Water Quality:
Inl J uviit 't-i : 11.
Suspended Solids 2 JO
Design Assumptions:
Sludge pumping incloded
Scum pumped by a lutigf [>un
Multiple tanks
Operating Parameters:
Loading = 1000 gpd/sq )"t
Waste rate = k*)°', of itw hi
5£ concerttr«it ion
Pumps operate 10 minutt's i
Type of Eiiergy Requirod : '•
3-14
Chemical Treatment Sedimentation Alum or Ferric Chloride
log Y = 3-5364 + 0.074') (log X) + 0.0290 (Jog X)2
- 0.0144 (log X)J
Electrical Energy Required, kwh/yr
PI ant Capacity, m^d
Chemical Treat merit Sedimentation Lime
log Y = 3.5144 + 0.0172 (log X) + 0.0942 (log X)"
+ 0.0905 (log X)3
y - Klectrlcal Energy Required, kwh/yr
X * Plant Capacity, mgd
3-16
High R.ite Trickling Filter (Rock Media)
0 94
V = 61,300 X
Y - Klectrlcal Energy Required, kwh/yr
X - Pl;inc Capacity, mgd
Water Quality:
[mj-,
BODS :o
Suspended Sol IUH .'0
(applicable tt1 -u-t ivritfd sUnlgi
cem ertlueiic quality v.ui.il>l«-
trickling r'ilci'r svsit'n-.s)
Design Assumptions:
Secondary scdimentai im) i iir i-i'siv
tional act i v.'itod « 1 uvi^c nu- tiut
return ;md Wclrtte o.'t i v.u fit s 1 u
Secondary sediment at HMI for c r i t'
fitter system iucl i»l**rt w^i.st « s
pumping,
Hydraulic. InAdinK = hOfl ^p'^^l '
Operating Paramt-ters:
Waste activated slud^f
= 0.667 Ib ss/lh BODr,
Return activated sludge - rjO£ ()
Sludge concentration - \Z
Waste purapii: operated It) miiniu-
ciu'h hour
Type of Energy Ut'quirfdi Kli-rt ri,-
Design As^umpt i ons:
Coagulant: .ilum or f'l-rr if
Ope rat ing Par JJHCE »'t' :
Overflow rate - 7UO Hl'd/s*]
Typi? of F.ncrgy R*.Ttuircd: K
Design
Overflow rate, Av^ = i.CKMJ ^pJ/sq it
Type ot Energy Rt-quirt-d: Kit-. < r t. .1 i
Water Quality: luilu^m l.i i :>n-.\i
Suapond^d Solids 80
Design Assumptions:
Hytlr:lnlif li^Klin^ = 0.-,
irtfl uUini; res i rvul.! :
TIW a 10 it
Op.i»rai ing Par.imt U-r :
Type i' I Kiit?ry.y Rftju i rt-d : KJ.
49
-------
Figure
Number
From EPA
430/9-77-011
Operation, Process, .and'Equation Describing
Energy Requirements
Design Conditions, Assuniptions .md
Effluent Quality
3-17
Low Rate Trlrkling Hltcr (Rook Media)
0 44
Y - 93,600 X
Y = KlCLtriiai Knur^y Rt-q.iired, kwti/yr
X = Plant Capa, icy, n>:i|
3-18 High Rot i* TrU-klln* rili-.-r (PlascK Media)
v = ihitono x°'9:>
\ * Kle* t rioal Ktuir^y Kt-qLiirud, kwh/yr
X = P] ant <.";ipac ity, rn>;d
3-19
Sii|>.'r - High Riilc Trii-kH!iij Kilu-r (Plastic- Media)
0 9 $
Y " 224,Olio X
trii-al KiuTjiy Kvquireit, kwh/yr
t <:,ipiid ty, iii>'.ii
3-20
;itin« Hiulo>:ica] tlisk
310 ,000 X - Standard Media
71,000 X
- |)I"IIM> Media
Y = Klivtrii-.il Km-rny Ki-iiiiitvd. kwh/yr
X - t'lant Ciipaclty, null
Water Quality:
Infliunt Sl'l'lm-nt
(nig/ I)
BOD5 136
Suspended Solids 80
Design Assumptions:
HydrauMi loading = 0.0- K
TDH = 2} ft
Operating Parameter:
Nc rei ire ulat ion
Type of Energy Required: tl
{iaf,l n
!0
SO
.'sq It
Water Quality: Influent Slltlm-rU
(nn/11 (nw-'n
BODj 1 16 JWj
Suspended Solids 80
Design Assumptions:
Hyilraulii- loading1 1.0 ,.pro/s:( ti
inr]nding rtjf i r\ u lat iun
TDH = 40 ft
Operating l:artimot tT:
Recirculatlon Rnti,> = "j;!
Type of tncr^y Required: K]t'fl t i^
Water Quality:
BOD
Influent Kft'ltK-nt
(B(!/ 1 ) (me/ 1 5
13(i K.'.
Suspenceil Solids 80
Design Astsntnpt ions:
Hydraulic loading = 3 B^RI
including rtacirt. ulation
TDH - 40 It
Operating Parameter:
Rcriri u tat ion r;tcio - 2:1
'1'ypf of Energy Required: K
Water Quality: InFliitnt Kt'tlm-iil
(mg/l) (mg/O
BU1>5 1 )f> VI
SuspRnduc Sol ills SO HI
Design A-ssunpt ions:
Hydraulic loading - I >'.rti/*r
unit
DC-ISC mcry,y Kcfulred, kwh/yr
X = Plant Capa, itv, :u,;d
Water Quatity:
Infliifitt ^
ce.ii Solids 80 :M)
esi§n Assumptions:
Bii-i-c-i: h-adiiin' JOO It- BOD-,/ 10(10
:u fr
Acr.iliun • I Ib O-i: Ib BOI)^
OxygLT. transfer i'! f i^ itM'v y i • w.ist.
wacc-r (meubaiiii-iil .ier.:f ioit i
* !.£ Ib 0). hp-:ir
'3-2^ Brush Ai-r.itlun (Ov.uJ.ic i.-n Ullrh)
II*TL>A- Ki-ijui rt*d. kwh/yr
Recycle -=litt[>iL' = ^0"'.
Type of" F.ner^v Required: r U- : r i- il
Design Ass t imp t ions :
Optnit i:i>: rar-fsit-t *.•[ :
Ox/gon rcq-.ii r«.'tnt':it - I . '•• |h d .
OT i-(nirtnnK:d/ !t> Nlf, -N «. i it n i- : .T
50
-------
Figure
Number
from EPA
430/9-77-OU
3-24
Operation, Process, and Equation
Energy KequIremencs
3-23 Oxygen Activated Sludge - Uncovered Ruactor With
Cryogenic Oxygon 1^'nerat ton
Y = 201,000 X " UnsL.iged, plug flow 0^ activate
sludgu and comp 1 ete mtx Q->
activated sludge
V = Electrical Energy Required, kwh/yr
X = Plant Capacity, mgd
V25
Oxygen Activated Sludge - Covered Kea
With Cryogenic Oxygen Generic ion
J.OG
170,000 X
Klectrica1 Energy Required, kwh/yr
PIant Capac i t y, mgd
Design Conditions, Assumptions .nid
Hi !•"! in-lit Qu.-iLi tv
Water Qua I icy:
1 SO
>n
Suspended Snl Ids HO
[>esi £ti Assuisp*. i on ft :
Ox y ft tin tran.slt.-r ri f i<- it-He y - I. "> l I
0 j / h p - h r (wire to wafer'
Rot ii ting fine bubble di i i users " i or
dissolution
Includes oxygen grne-r.-ii io;i
Oxygen requirement = !.! ; b Oj
consumed/Ih BOI^ removed
Type OL Energy Rt-q-.;i red: Si 1 *-. L r i I'.il
Oxygon Activated Slud^f - Cnvert-d Realtor
With PSA Oxygen Generation
1 (\(t
V = 230,000 X
Y ~ Elect rical Energy K^qui rt-d, kwli/yr
X = l*'anl Capacity, pgd
Water Quality: Influent r.! ; -HI'III
(m^f 1) (in 1)
B0)>r I "th -'0
S\ispundfi.: Sol LJs rtu .'!J
Design Assinnpl ioits:
Oxv^en t ran.s''i.T -.-f f i .• i i-n.-y it-. *Mri«: i*-
w.iter = 2.f)/ Ib 02/hp-hr (uiii- t'
w.-iter;
Surfaco at-r.-iti^rs ;<>r ili syu L m u-*i
In<' 1 udt'H oxygen gi'nerat itni
\)pftr«if ing iMrrtrtoti-r :
^ipplltiJnh 30t). rcr.*-.v,l
Type >if Energy Requ i r ed : Kl t**1 c ri *••( 1
Water Duality: Inf hu-nt Kn Joent
Oxyji^n t r.ins t iir fl i'ii'ii'iu*y 3 n w.i.st*.—
water - l,r>^ Ib 0>/h;?-hr (win- i,*
water;
Surf ace -it; r.» l orft ! ',;-f --I i -•*»<' I ut i on
Ini-hides oxv.;.-:l griier.xt lor.
3-26
Activated Sludge - Cit
Bubble Diffusion
Y » 290,000 X ' Conventional activated
V = 600,000 X1 Kxrcnded iioration
V = 150,000 X1*00 funt.u-t HtdbiliziUi>>n
V - Electrical Energy Kt-
X - Plant Cap;)i-ity, rngd
fi, kwh/vr
Oxvii.'n Kcqui r-.-DC.-iU - \ , '. 1!' 0 '
i- on sinned/ Ib HOPj I'omov^'d
Type i>E' Enn-rgy Ktjqit i r*?0 : K l*'--i r t .
W.icer QIUT! i EV: l:il IUL-IH Kft't
(ni:/U :•*.:,•
BOIJS 1 W» -'
WiiLer =• l..th ]b Og/lip-hr <
W.ltcr, iiK'liiiMn>: hluwiT)
Avor-igo vnltif I'CY .il] I ypt •-
ii i )' f UfH'TS
Ope r;i i i nc. V.'iraau'tc rs :
Cunvcnt imui I -it1 1 i V.IT f i'j
rriiinvt'd + 'j.
-------
Figure
Number
From EPA
U 30/9-77-011
3-2"
Operation. Process, md Equation Describing
Einergy K-.rqulrements
Activated Sludge - Kim. 3ubbZe Diffusion
J.OO .
210,000 X
Y - WO,000 X
Y - 240,000 X
..1.00
1.00
("nnv'jntioTial activated sludge
l'-on{; I f*te mix)
i-. x.tt:rjt»d aerat ; on
CiUir:;i*'C rttabll izat ion
Y * Electrical Energy Required, kwh/yr
X = Plant Capaci-y, rcgd
Design Condit Ions, Assumpt inns .
Effluent Quality
W;u-?r Qua ;i ty:
Inf lu.*nc l.ff Itn-nt
ended Solids 81
Assurapt ions:
tpn t ranster e t f icIL n^y in
w.il cr , inc ludii'.g b.luwwr)
Aver.-ige value for all ( ypes uf
dil i layers
Operating Paramectr^:
ConvL'Jitional .'ict-vated sludge oxygi?n
rc OLinsiimeO.-' Ib H«.JD=-j
removed + '* . b Ib 02 cons iitucd / i h
SK4-N (in rei-vv le si udge .jxidizud
dit r i MJJ a« nit ion
Type of Energy Required: F-l«-*-t rir,il *
Water Quality; Influent Ei'i hient
(nV/D (rait/ 1)
BODS 1 Ik ,'0
5uHpin-«t! Solids t-o .'0
IX'si^n Awsunjpt ions:
Oxygen transfiT *-f t iei fnt:y - l.-S ih
On;hp-hr twirt i d w^.tef)
Sur t a»"f jcrj Un- , hi gh speod
Operating Parjrju'U-rs:
Convent ion a I net i v.ited sludge rcquiri'
Dcitt » 1.0 :b 0; coEisu^vj'lb HOO^
removed
Ext i'n Jt-cJ ae r.'it ii-n nxy^t'n r^qui rt'mttti
* ],'> ;b 0^ .utisumeJ/lb BODj rt'-
mnvt'd + i.(> Ib H > cotisuiRcJ/lb
SM^-S (in rcu.itnr i**od) oxidized
Cont ,K r stabil 1;{;U ion ojcypon rt'ijiuro--
TtMTii = i.l Ib 0-, co'i^tjn^tl/ Ib B^)D^
n'ltini/ed + 4.b Ib Oo I'ons-ncned/ It>
S'L'-S {in r»-cy U- etut)g«-> <>xfrgy Kequirec: tJ t-rt r ii ;d
W-ICC-T Quality: [nf htont li( I !nt:nt
(m«/i) (m^.- M
BOU.j 1 M. ' ,10
SuMp.-iJt'd S;»l ids Sit .'0
hfflign Assumptions:
Oxv>c*-'i rranslor ».'f s'ic- ifnrv in w;i>u--
w.it c-r = l.b Ib O^/hp-lir (wi ri- I •>
w.i t •-' r)
Opur.it ir.^ P.ir.imfCfrs;
Convi'tit ion a I .KSI I vriced si ^^)^;^.l iixy^on
n.-f(.-i rcnient - 1.0 ! b 0^ .-.•!irt»:r.i-,l: [I-
bOlK remuvt-il
Ex' i-ncii.'d ,ier. 11 i i1!) nxv^fn f fijui r»-mi-ii-
= L-5 Ih 0» L ^itriumt d/ !h KOEl^ r. -
mnvcd •* 4.h )b O:> ,-i>n^ii:n-d; Ih
NK.-N (in rt-;.t-i,tr ti-i-d) oxiJi/.*d
t^ont ,-u't fitiib i I i /.ai ion oxy^i'n r«-<^ii rt--
mn-t - 1.1 !b 0: ^t.nmiin^d/ Ih IIODr,
rris'Vfd +• -'4, n Ih O-i ttmsumetJMb
NH-.-N (in nvyi !*• slud*;.1) "XiiHzrJ
dur ing t\-,K-r,-.: ian
Type ni Kiior^y Hnjui reil: l\ 1 rrl r t • .t J
52
-------
Figure
Number
From EPA
&K/9-77-011
3-30
Operation, Process, and Equation Describing
Energy Requirements
Activated Sludge - Stat-ir Mixer
.. 1.00
Y - 250,000 X
Conventional ariivatud sludge
(complete mix)
Y - 500,000 XUO° Extended aeration
Y • 300,000 X " Contact: stabilisation
Y » Electrical Energy Required, kwh/yr
X - Plant capacities* mgd
"j-M Activated Sludge - Jet 3 iff user
Y - 170,000 X " ' Conventional activated sludge
(complete mix)
Y - 340,000 X ' Extended iifniLion
Y = :>1Q>QOQ X * Contact stabilization
Y •= Electrical Energy Required, kwh/yr
X « Plant Capacity, ngci
Design Condt I tons, Agsutnpt ions and
El f I IIPHC Qual ity
Qual ity:
Influent K: r I uem
(mg/ 1 > c.:ns»/ 1 )
13f> JO
80 20
Suspended So i ids
E)?Hlgn Assumptions:
Oxygen transfer el t'i.-ieiicy = I . "*•'* lb
0">/np-hr (wire to wjt«?r)
Operating Parameters:
Convent ional at:t ivatfct si udgu .ixy^fr; ft*-
qui rement =• 1.0 lb 0-> ronsuroi'd/1 h BOD^
removed
Kxtended aer;it ion oxygen reqn i ri'iut-nE = 1 , i
i-oEisumed/lb SH^-S-S ffEi reaciti-i u-fit) iix.icii/1.1
Contort scabi li ?.xt ion oxygen rcqui resent -
lb 02 consumed/lb NH.^-N (in n-»-v.-U-
,sludgn) oxidised (hiring rtMt-r.it ii.ua
Typo uf Knergy Rt-qui n-ncnt : K trd f i« .11
Wat or
BODS
i nr i
80
Suspended Sol ids
Den i^n Assiimpt i onw:
DxvRt'n transfer «-I I t «'ie>nry iri w.isEfW.i
l.K lh 07/hp-hr CwirL' tow.iti-r)
Opi-rating I'aranifujrs:
q u t rvme r
xT-L-iuted aeriitiuii oxv^en recjn i r.Tn.-ni
Ib 0'. consumed/ Ib rtOJ>5 removal * -. .
0-* oonHuraerf/lh NH—N (in rc.n't.-t u-
)-32 Aer.-ited Ponds
Y - 260,000 X1*00
Y ~ Electrical Knergy Rorful rod, kwh/yr
X - Plant Capd Solids J10
Ik'H i rfH ArtKUtnpt i ons ;
E,nw-s[n*<'(i tij»»<'h;)fl if.')! ^urt .tri1 .H-I'.I!
Mnlur oi f ii-ioncv - '*p|'
Nitrification - Suspended <"rowt.!i
Y « 180,000 X1>0°
Y = ELectriral Knergy Rcqulrt'it, kwli/vr
X -- Plant Cap;u-iiyt nis;d
Oxy^-n ivqtiin'tiifnl 1.0 lb U.-'l?
Typo of Kru'rsy KI-<[I: i r.-J: K k'. iri.
,-\ir.!no[i i .1 .in S L"V
t- i.O lh
53
-------
Figure
Number Operation, Process, and liquation Describing
From EPA Fnergy Ki-t ; I rumen ts
4JO/9-77-011
3-J4 Slr.rlflf.it Urn, F-xed Fi l:n Reactor
Y = HI,000 X°'9li He, y.-'.e - 0.5:1
Y - 151,000 x"'9'' Kcc-y.-le - 1:1
Y - 226,000 K°'9" Kei-y.-le - 2:1
Y = El£-ctrik-a' Enerc% K.»-.;uircd, kwh/yr
X = Plant Capacity, nigd
3-35 Denitrlfii-atiun - Suspfridcd Growth (Overall)
(Inclmlfs Methano) addition, reaction,
sodimontatio: in J sludge recycle;)
lt>g Y - 5.004J + D.9..J5 (log X) -f 0.0248 (log
- 0.0132 (_og X) '
Y = Electrical FInergy K^'quired, kwh/yr
X = Plant Capacity, nigw i n ),•
curves in 1-PA 430/9-77-011
Denirrit tr;tt ton Rea< tor. Kigurc '3- if*
Reai^rat i fV:, Figur*; 'i- j?
Sediment ,ti i on snc S; lulgc kei'Viii e,
3-36
3-38
3-19
rtenitrif it-at ion - Suspt-ndot} Growth Reactor
0 99
Y > 72,500 X
¥ = Electric.iJ tnergv R-.it i>-r.( Aer.-t*-* Stabilization
Y- j>.o«> .r-ou
Y = Eluftrii-al Knergv Required, kwh/yr
X = Plant CupiK-ity* mg*l
Dcnitr if ioat i*-u» Sedimcr t-it ion and Sludge Recycle
log V = 4.1171 + 0.7S9ti Hog X) + 0.1607 ; log M)"
- a.ci'iH^ (tog .<) l
Y = EU-c-Lrii-.-il Knergv Rtqulred, kwh/yr
X = Plant Capacity, ra^'l
'I'y jit: of E:tt»r>.',y k* -quired: K )*.H't r ical
Design As sump t Lous:
Tempera tun.- ••• I5°C
Nitrate r«nxtv.,l = 0. I Ib NOj-N'/lb ML\'SSM,v.
Mixing Je vi i-f , .syhneri;*1*! t itrt> ^;ies, tip - 'f . '»
hp/1000 L'n E t
Mcthanol cidttit ion is ini kitlt'd
()po rd ting P;ir;iiiH-ti.T:
MLVSS = 1500 niK/l
Typ*j of Energy Kfqui rtid: HI i'f t r ical
Design Assumpl i.-ns:
Detention tint1 = 50 rain
Mfichanic.il :ni ration = 1 hp/)t)i)0 ^u It
Typt? of Envrsy K«'t)uired: Kkvfica]
Dostgn Assuropi t;•!!«:
S'irf ace lo.'Ht t !•.>; = "00 ^j^i/sq L
Sludge recyv!. = 30" :: 15 it f!!H
Type? of Ent,T'»"j K^ff.it red r l:.\ t-i-1 - i i-a i
Dt-nitri f i .MI icn - Fi xetl Ti IT,, Pressure
log Y - -*.4JJS f- O.ft'iS' ling X) + O.OQiO O«S ^>"
+ o.ooy; (log >:)
Y = Eli-i-t rical Iviergv l^i-quired, kwh/yr
X = Plant C.ip.-u ity, in^il
iV.iti?r Qualitv: Influv:u :%:fh,f
Di-sLftn Assum|>' ir:i.s:
S.ind m^di;.i :;i/f - 2-4 ntut
rnfluent piuapinj. TRH ^ li li
f..>;-iding r.itr 1.7 gpm/;it; ft
Torap = IS^N'
o I :
B.ickwas!' ev.T- i days I.T ] !i :nin -
Kpm/si. t r .111,1 25 tt Tllll
Morhanol .id.niii.in = 1.1 (c:ll jOH: NO r
Tvpi- of Er.^ry.v Ki-quiri'ci: Eli-i-t-li-;il
Dt-nit rit'i, ,it inn - Fiv.-.i Fil^j, Gravity
Lrtjt Y = t.^U, + 0..' ih" (Ing X.I 4 0.1801 {]OR X)~
- O.U''.5 i ( lot; XI "'
Y = KU-s-t r ir;i I Ivnerj-.v ^.-(juired, kwh/yr
X = PI am t^i
Qua t ir v ;
T:if I in- :[
E-:ff
I .
nt-wi>;n Aiisum[-r inns:
S.idd inodi;] :-i i ,:i- - !-•< nil t
[Icp th = 6 I ;
i-o.uUns r.-it.- 1. -' ,;r"i-:-l n
lc-.per.n-ir.- li:'i:
D[:i-r.ir ing i'.i I .::-.,-: i>rs :
Hi.-kwasii I '> -".::i/ii.iv ' -'> ^[im: ^v; f:
ft TtlH
Mi-thanoL .nl.li : K<:> - '!:! (Cll jdM : So (-
Tvpi' of En,•[•[•..- Ki'i|iilri'il: II11-1-1 r i,-;i ]
54
-------
Figure
Number
From EPA
430/9-77-011
Operation, Process, and Equation Describing
Energy Requirements
Design Conditions, Assumptions .imi
Effluent Qu.iliEy
3-41 Denltrification - Fixed Film, Upflow
(Based on Experimental Data)
log Y - 4.4935 + 0.8695 (log X) + 0.0664 (log X)2
- 0.0012 (log X)3
Y • Electrical Energy Required, kuh/yr
X - Plant Capacity, mgd
3-44
Water Quality;
Inr 1 tiunt
EffI uunt
Us/I I
O.'i
Nitrate as X '2''->
Design Assumptions:
Sand media size = O.d Dm
Muidizttd depth = 12 f t
Influent puMping TDH - J;> fl
Tmnpera Lurt* - 1 5 C
Ope rating Fa r. ime L e r s:
Mt-thasiot addition = 3:1 (CHjORrNOrSj
Type of Energy Rt-quired: K] ecf ri
TKM 10 r, :i
Temperature IV i"
Operating Pararneu-rs:
Oxygen supply for ni tr ii'i^at ion/duni t r it i.-.-t
tion = l.J BOI')5 r«J^".'L'd -f -*..1! flKN
removed) - 4.6 (H.& 'I'KN appLift!)*
Mechanical ^errit ion
Dt-nitrifIcation nfxLn»; = 0,5 hpMOOD ,-:i "i
Dftenc Lort f ime ~ J j1 hnurfi
I no ludes fin.il sed int?::i ,it ion - K^vi ,.•p^!- sq n
and SOS s 1 ud^t: ri'cyf I H
Typi1 of Enc-rgy Scqui rt»d : K lo^t r i i .15
*Reft;rfenl:L': EUshop, \). \~ ., ft
Journal, p. 3.'0 (19/6)
Separate Stage Carbonaceous, Nitrification and
Denitrifiration Without MeLhanol Addition
(Based on Experimental Uata)
Y * 413,000 X°-98
Y = Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd
Water Quality:
BOO.:
Infl -]L-:H
r nitrifi.--.iti.il
02/lb HOD removed
retn*>v*3d
Mechaiuc^il aordtion, ].H Ib iij
trans ferri'd/hp-hr
Denitrlf i^'ation mixing = 0.5 Up/1000 ,-n
'i hr (ii»ccni ion
Final aeration st.ici- - 1 lir .k-t-iu l..n;
1 hp/1000 i*u t t
Sedimentation 3 700 g?ii/sq ft; Ui". n-cv,
Type of tncrgy Required: K] eel r ir.-t 1
Single Stage Carbonaceous, Nitrtfication, and
Denirrlfieation Without Mechanol AJdition -
Orbital Plants* (Based on Experimental Data)
0 99
Y = 436,000 X
Y = Electrical Energy Rpi^uired, kw!i/yr
X = Plant Capacity, m$d
3-'.5
LImo Feeding
Y
6,700 X Slaked lime, lou lime
Slaked lime, hlBh 1 line
Quick lime, low lime
Quicklime, hi^h iiraf
Y - 11,000 X
Y = 7,600 X1
Y = 13, 100 X°
.O.S1
~ Klectriral Energy Required, kvh/yr
= riant Capacity, TH;' i"
Operating P.ir.-imeters:
Total ,-ieratiun ilitc-li detent ion tiaic -;
K/M ratio = o. If)
Rotor aer.itinEi
Setlin*-ntat ioo ? /OO jjpct.'s'L :t; :iu: r.
Tvpe of Energy Requin-d : E I *•*• I r i .1 I
*Refprene-c: Natsche, N.;. .md Sp,-n/iri
Austrian PMni. Knocks On: Sitroj;*--1, W.i
Wastes Kngr., p. 18 < I;m. l<*7^)
Design Assumptions:
SJukeii Jiimis used for 0.1-') iai;cl . .t|i,i. i
plant s
Quicklime usi-d tor S-lot) m?.0» rns/1, 'H|tlt [Am.' .in UilOHJ/
Tvpe of KiHTjty Kcqitirt1^: K!«-. iri. -1
55
-------
Figure
Number
From EPA
430/9-77-011
Operation, Process, and Equation Describing
Er.ergy Pe^uirements
Cond it ions, Assumpti ons ,md
Effluent Quality
3-46 Alum Feeding
log Y « 3.4969 - 0.248? (log X) + 0.2711 (log X)2
+ o.m? ;iois x;;
Y =» Electrical Snergy F.equired, kwh/yr
X « Plant Capacity, mgc
3-47 Ferric Chloride Feeding,
log V - 3.4586 + 0.335!. (log X) + 0.2082 (log X)2
+ 0.0053 (log X) '
Y = Etectrlc.it Energy Required, kwh/yr
X - Plant Capacity, ragil
Operating Parameters:
Dosage - 150 rag/1 as Al^SO^Ji - U
Type of Knergy Required; Electrical
Operating Parameter:
Oosage - 85 m^/1 as Fed3
Type of tnergy Required: Electrical
3-48 Sulfuric Acid Feeding
log V - 3,1523 + 0.020'* (log X) + 0.0270 (log
+ 0.0188 (log X) J
Y = Electrical Energy Required,
X = Plant Capa« ity, mgd
X)
Operating Parameter:
Dosage = 450 mg/L (high lime system)
Dosage - 225 rag/i (low lime system)
Type of Energy Required: Electrical
3-49
Solids Contact Clarification - High Line, Two
Stage Rec-arbt'nat ian (Includes reactor
clarlfier* high lime feeding, sludge
pumping, two stsgo racarbonation)
log Y = 5. 1077 + 0.877.9 (log X) + O.lOSi (log
- 0,0549 (log x:3 - Liquid C02
Y = electrical Energy Required, kwh/yr
X = Plant Capacity, x«d
This curve is valid for chemical treatment
of both raw sewage and primary effluent.
X)
Wate
(Tre
Su
Ph
Wate
(Tre
Quality:
tment of Raw Sewage)
pended So I ids
sphate a« P
Qua 11cy:
Influent Effluent
Cng/1)
2f)0
[1.0
influent
(•>*/!)
30
11.0
10
1.0
Kffluent
(KB/I;
10.0
1.0
of I'ri. Eft.
Suspended Solids
Phosphate as P
Design Assumpf ions and Operating Parameters
are shown on the following curv€-s in
EPA 430/9-77-011. Lime Feeding. Figure
3-45; Renct.ir Ctari:ier, 3-53; Sludge Pump-
ing, J-4; Recarbonatlon. 3-60,
3-61; Recarbonation Clnrifier, i-15
Type of Energy Required: Electrical
3-50
Solids Contact Clari-' icat ion. High Lime,
Sulfuric Acid Neutralization (Includes
reactor clariflur, high lime feed,
chemical sludge pumping, sulfurlc acid
feed)
log Y - 4.593-' + 0,6. 13 (log X) + 0.2024 (U>g
0.0208 (log X.r
Y = Electrical.Energy Required, kwh/yr
X = Plant Capacity, ngil
3-51 Solids Contact Clarification Single Stage Low
Lime With- Sulfuric Acid Neutralization
(Includes reak'tor clarifier, low lime
feeding, sludge pumping, sulfuric acid
feeding)
log Y - 4.54/l) (mg/1)
Suspended Solids 2M) 20
Phosphate as P 11.3 .s.O
Water Quality: Influent Kftlw:ii
(Treatment of Pri. Eff.) '.mg/D (ret!/I)
Suspended Snlids 30 ;?0
Phosphate (is P 1 I .0 2.H
Design Assuxptions and Operating P.'ir.inK'l er>i
are shown on the to I lowing cnrvesi i ti KI'A
430,'9-T7-01I;
Lime Feeding, Fig-ire 3-'»5; Beiu-tor
Clarifior, 3-5 t; Sludge Pum|iing, i~-i;
Sulfuric A,-id fefiiitif. J-i8
Type of Energy Required: l.lectric.il
56
-------
Figure
Number
From EPA
630/9-77-01!
Operation,
Process, and Equation Describing
Enprgy Requirement a
Design Conditions, Assumptions nut
Effluent Quality
3-52 Solids Contact Clarification, Alum or Ferric
Chloride Addition (Includes chemical
feeding, reactor clarifier, sludge
pumping)
log Y - 4.6237 + 0,6983 (log X) +• 0.1477 (log X) 2
- 0.0470 (log X)3 - Alum
log Y - 4.549* + 0.6894 (log X) t 0.1645 (log X)2
- 0.0559 (log X)3 - Ferric Chloride
Y - Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd
This curve is valid for chemical t
both raw sewage and primary of t'l
Water Quality: Inf Ju^iu
(Treatment of Raw Sewage >
Suspended Solids
Phosphate as P
Water Quality:
(Treatment of prt. Eifl.)
Suspended Solids
Phosphate as P
Design Assumptions ;md Operating
are shown on the following curve
430/9-77-011:
Alum or Ferrti- Chloride Feedin
3-46, 3-47; Rractor CUrifier.
Sludge Pumping, "5-3, f-6
Type of Energy Required: Electric
re.y im
uf nt. »
1!)
1.0
Par:irRetrrs
ng curves in KPA
3-53 Reactor Clarifier
log Y - 4.3817 + 0.7223 (log X) + 0.0947 (log X)2
- 0.0027 (log X)3
Y * Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd
Operating Parameters:
Separation zone overfjow rate, lime -
1400 gpd/sq fi
Separat inn zone ovtrf I iiw rate, .11 ure ot
ferric chloride = 1000 gpd/^| fi
Type of Energy Required: IClectrit-.il
" " "
3—54 Separate Rapid Mixing, Flocculat ion, Sedlraentat ion
High Lime, Two Stage Recarbonation
log Y - 5.0961 + 0.9484 (log X) + 0.1979 (log X)2
- 0.0101 (log X)3 - Liquid C02
V = Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd
3-55 Separate Rapid Mixing, Flocculat ion. Sedi-
mentation Single Stage High Line,
Neutralization With SulfurU Acid
log V - 4.5919 + 0.6681 (log X) * 0.1926 (log X)"
- 0.0432 (log X)3
Y = Electrical Knergy Required, kwh/yr
X * Plant Capacity, ftgd
both raw sewage rtnd st'< ondary ft i Intuit
Water Quality: Influent El : Im-rn
ETreatraenl of Raw Sewage* (rag/13 im>;Mi
Suspended Solids .'50 !•>
Phosphate as P 11.0 1 .11
Water Quality: Intluent Kfl'ltn-nt
(Treatment of Sur. LsT.) i^M''!1 n
(Treatment of Raw Si'w.ige) (mg/i) Imi:/!.'
Suspended Solids J50 10
Phosphate as P 11.0 i.n
Water Quality: Influt'ni F.iilm'n
(Treatment nf «>.•<•. !-n".) (mR/1) (ni:. 1)
Suspended Solids 10 lu
Phosphate as P 11.11 J .11
Design Assumptions ;ind Oprratim-, I'-ir-u^u-rs
tire shown vui Th« ipllowini; <:urvt-; in rE'.A
430/9-77-011:
Lime I'Vodin^, l-'tf4ijrt- ^--•'o; H.i|iul Mixnij-,,
3-58; Fl>»-<'ulutinn, i- VJ; S^-il iiw-nt .n i.m.
3-15; S t udye Piunpilu:, S-^.; ^:ill=iri V J.I
Type of En
-------
Figure
Numbe r
From EPA
430/9-77-011
Operation, Process, and Equation Describing
Energy Requirements
3-62
3-63
Mtcroscreen-s
Y - 65,000
Y - 42,700 >:
Y * Electrical Energy Required, kwh/yr
X = Plant Capacity, mgd
x°'79
L.0. 79
23-. Screen
3S-i Screen
Pressure and Gravity Filtration
,, ,. vl-01
V = 22 X
Pressure Filters
Crciyic> Fi I ters
Y = Electrical J-inersjy F.eqnired, thousand kwh/yr
X = Plant Capacity, rogc
3-64 firmiular Carbon Adsorp:ion - Down flow
Pressurized Contractor
V . ,-4,000 X1-00
Y = Electriral Energy Required, kwh/yr
X = Plant Capacity, mgi
Granular Carbon Adsorption - Down flow Gravity
Contactor
V - ,1.000 X1'00
Y = Klocirical iltu-rgy Required, kwh/yr
X = Plant Capacity, mgd
Design Conditions, Assumptions and
Effluent Quality
Water Qua I icy:
Influent Ef f IIH.MU
(mg/1) (mg/l)
Suspended Solids (35i.) 2C 10
Suspended Sclids (23^) 2C ^
De s1gn As sump t i on s'
Loading rate (35p) = 1C.O Spni/sq ft
Loading rate (21^,) =6.7 gpm/sq ft
Operating Parameters:
802 submergence
Type of Energy Required: Electrical
Equat ion for }'St. sc reen ,".pp 11 cable /shove 0. J
mgd. For flew rates '0.2 mgd energy
requirements = 11,000 kwh/yr.
Equat ion for 2 3i_ screen appl i cab lu above 0. 1
mfcd. :;or flow rates -0.1 mj;d energy
rt-quireraeni s = 11,000 kwh/yr.
Quality:
Influent Kffluent
(rag/I; (mg/l)
20 -• 10
Suspended Solids
Design Assuir.ptions:
tncludes Ti E tor supply pumping (or a 1 low—
rtnce fur ' ;~SH nf tr^ittment Syst i;:n head);
filter b.-ii-kwash supply pumping, and
hydraulii- surfiu-t- wash pumping (rotating
arms)
Pump Efficiency : 70%; motor cf f ii-icncy: 9 \'-
Filter arcl b.-ii-k Wash head: gravity filters,
U ft, T|)H: pressure filters, 20 ft TDH
Surface vash punpinfii 20 ft TDH
Filtration r,it« (both filters); 5 ^pn/»q ft
Back wash roce (both filters): 18 gpm/sq t't
Hydraulir surface wash r.ito (rotating arm)
1 gprn/ sq (t • ave r.ige)
Operating; Parjaarers:
Filter run: 12 hrs. f.>r gravity, 24 firs.
for pryssurta
Back w,;ish punping (bot 'i f i 1 tars ) : 15 EH n*
per back wash
Surf act; wash pump ing (:>oth f il tors): 5 mi n *
per back w;ash
Type of Kner/gy Required: Electrif;d
Water QualIty:
In: Uivnt
(ng/l)
20
40
Cf I I-JCIIL
(mg/1)
10
carbon depth, SO
Suspended Sciids
COO x
Design Assumptions;
6 x 30 rot-sh carbon,
min. contact
Filcracion h*ad; 28 fr TDH (carbon depth)
-f 9 :"L, TDH, (piping and freeboard)
Fi 1 trat ion puiapinj;: 7 ;4pra/sq f t . •' ^7 f" [ .
TDH (a\vra^e)
Back wash pimping: 13 gpm/sq f t . ' 37 i i .
TDH (nvoriige)
Ope rat ir.;^ ?.•) raisete rs:
Operate [ . • 2j ft. head 1 1 - s s b >i i 1 • ' i n »i
be fore backwash i ng
brickwash pcrtpi tig : 15 ir i n per but'kw.isii
Type of fine1 rgy Rc-qui rc-ii : E ) e.'t r t i'.i I
Water Quality: liillucnt
Suspended Solids 20
CUD .*0
Design Assuni|tt ions:
8 x 30 mt*sli ;-arbnn
F: i i
58
-------
Figure
Number
From EPA
:.-30/9-77-01 I
t tort, Process, .md £qu-, Flo ecu I at ion,
Sfd intern at ion Law Lime, Nai H/.it ion
With Sulfuric Arid
log Y - 4..152) +• O./J'iU (log X) + 0.2292 (loii X)"
- 0.002- (lo« X) *
Y = Electrical EnutRy Required, kwh.'yr
X = Plant Capur.iry, rogd
This furvu is valid I .T .lu-r.lv.il if. ; :-„•.-.: . •
both raw MOwagi- .itnl rit-i omia TV cMliii-ru
Water Quality: Ini I mmL .- i i l.i.-::i
(Tre«i tan-lit of Kaw Sew-igi-f (HI-, ' i ' ••-.•.•.'\ '
Suspended Sol ids ."»(! H'>
Phosphate as y I I .•)
Water Quality ins i iu.-:tt ' ' • HI-:H
t'hosph.itt- as V I 1,1- ' -!-'
Di/ni^n AM sump 11 tins anJ opi/r.ir i up, I'.ir.i ..*• 11- r*
art: shiiwn on t hf i -• 1 ! .:wtny, -.-nrvi- s E •• (-TA
630/9-77-tHl:
V>9; Si'dimi-nt.iL ioi!, '3- I b ; l.irru- • t-vif t •.,• ,
3-43; Sitlftirlc Arid t-Vt-.liin', i-:,S;
Tv|>t* of Kn«rt*y Eit^qui r«-d : t! I t*c t '.' i v-t 1
Separate Rapid Mixing, Klocrul-itiiin,
Sediment a c ion Alum or Ft: rtic C.\\ Lor i
Add it ion
- 0.0169 (log X)" - Alun
lc>^ Y = 4.3-J95 * 0.6/26 (lt>g X) +• O.J21S (!
- 0.0133 (lug X.)"* - Ferrli- Ghloridi-
Y •= Klertrical Enc-rgy Required, kwh/vr
X *> Plant CapaoLty, mgd
"1-58 Rapid Mixing
Y - 1.900 X '
Y - Fleet rit-al Eni'rgy Enquired, kwh/yr
X - Pl;mt Ciiparicy, mc.d
FliJC'i'n 1 nt ion
Y - 9.840 x°-98
V - F.ltic-t ric.il r.ncngy Kt'qiii red, kwh/yr
X " I'l.int Cipai-ity, ~:.;J
This i-urvv is v.\\iA i ,T • iu--.ni .M I ; ro.<: ;:iL-n: .;
hot ft raw si-'W.iK^ .mil rtivond.-irv '.'I I l'ii-:it
Waier Qij.ility: Ini Incut t.n liu-nt
(TreatrnfOt nt" R.iw Sow.!^-1* (Hii1.'!) i ;-.>;. 1
Phosphate .is i' 1 1,6i i .u
W.U..T Qu.ilitv: Iiu'liiv^n i t" t L.u-.v.
C'l'i'LVilmt-nt of Si'f . i;: i . I (mj;/ 1 ) (n\;/ I *
• ire showfi Lin thf :'o!l.>wiriK vurvt:- in ! I'A
/, JO/9-/7-01 I:
Alum <»r i-Vrrit' Chh-riiR' l-Vt'tlinj;, i-i^uri-;,
V-'.6 .md 3--.?; Ka;>iJ Mixing, t-iS;
S 1 Lidi-f Pump i rip , 3- i niul i-'i
E"y:> i' o!' l-:iters;y KoquiroJ: Kfvvti i- -i I
[til's ign Assum|iL ions :
t:naKut;ii>t: time -T .iln:n ^r ft-rri.- ,iil.-fi,:u
!'y|u- oJ t'iiifrj'.y koqui r^if: I1" U-vt t : , .1:
Design As:;itrn['l ions :
;*«'t i:H::.'t.-s
i: - I Id si-,--'
['i-infH-r.it itrf - I !> (-
ri-;if;-.i E.i:ir : '. i mu .ir .1 L:jn .u" £i-rr:.
•fyt^1 LI! TIII.TV.V K^quir^.i: !-;ii-.-t r :, -: '
•arbonal i im - So I ut iV;\ !->i-ii uit 1. ir.:i E c
89,000 X1"0' Low 1 in<-
KUlcl rical (•"[ier>;y 8t'i|iii red , kwh/y r
= Pl.int Capacity, in)',tt
Re.-jrboiiat ion - St.K-k ;]JH .is C0_, >.
i nn
Y
V
1/0,000 X1'00 Ilin-i lira-
Fli-i'l fic-.il Kni-ruy KiM|u i ri-,1 , kw'i-'yr
Pl.int C-ip.ic- i ry. itiKi!
'VsE^n Atisynjir i t-ns :
V.ij)ori?..-r :"> Jh Qi.-'kwh
i:i.]0i-tnr piimivi = -,2 i\pn:/ 10(10
'. 'prrjlt i n|; i'af.jru1 f e rs :
1..JU Lira,- = !()()() ]]> CD. /mi ] L:,|
High l.ini.' • 4MIO Ib 1 D./roi I S-
'[\-;M- n) TiuTjiv [><'C(ii t ri'<: : i'lf.-'.
I'pi'l'.'it ills'. I'.-ir.iiw 11.' r-:;:
l..iw I i:m- - iulli) Hi i ii,,
Hi nil I in.. • hiMO 1I> i i;
59
-------
Figure
Number Operation, Prcf^ss, and Equation Describing
From EPA Krergy Ri'<]uiremontfi
* 30/9-77-011
Design do net c Ions, AH sump t ions .i
Kt r luent Qu.ility
Granular Carbon Adsurp.ion - I'pflow Expanded Bud
Y - 62,000 XI>(:°
V = Klet-t riral Energy required, kwh/yr
X - Plant ans iunt 7 gpm/sq ft < 28 i" t
depth)
(ft freeho.ird
Type of Knorgy Reqiti red : £1e>'( ri ca \
(tag/I)
-'0
lf>
Granu la r Art i v iti?d C.ivb:a:i HE!£L'n£>r;it 1 cm
Y - JB 000 "^ ' ^ '"" ' I " -
_,
r, l<*
l tV
'
Y - 4,000 X * C La -it Led r,iw wastowiiter
?-j#, - nit lion Btu/yr "
Y = 10,000 XK°° Cla-ifUd secondary affluent
Ele-trlrlty '
- _
Y = 1,100 X * Clarified secondary fffluent
Fuel - nillion Btu/yi
V - KlertrUa: £n..r(iv K,<,,,lreJ, kwh/vr
I (in Kxt-hnn^e :"or Amnr n i.a Rnmov.il T Cirav ity
and I'rtJ.ssnrt-
i m rtAn v1-00 T
•t = i 10, 000 x J r^ssure
1 00
Y = .fJO,OOo X " cravity
Design Assmnpt ton Si
Eleetr icif y i nt't udes E urnac? dr i vtr , .if tt-r-
burner, si rubber hi »wcrs :ind rarl^m
conveyors
Fu«l roquiri-J per Ib -,:,irban re>>i'oer.iu'd:
Furnace = 1,600 Btu
Jjea". " I'*>°° ^U,t u
n A£terD,rn,r - >,,00 Kt „
0]jcratin^ P;ir;!tnetcrs:
Carbon dosu: Clarified r:iv w.nscew^c.er,
I'>OC Ib/mi 1 g.i !
_ , ,
Type or Eiu-r.^y Required : Klevtr ii*al .mil hue I
W;it.cr Qua 1 i t y J nf 1 utjnt 1-t J 1 uC-nt
(n>',/I'l ix\x./l)
Suspended S..1M^ 3 rj
y
X - Plant f.ap,citv, ngd
. . i i. /
«d, kwh/yr
TV-sixn Ass-iirpi ion«:
150 bed. volumes ChrouKhpuL/c-yv ,c
6 bed vol^.s/hr ,,,,^,4 raj
Craylty h(id! av;ii]jbl(, |1pad , ,^ i(
PresHuru bed , .ive r.ig-.' opi;raL in}^ ht'.id = 10 £ C
Includes hjfkW'tsh but not rt'^c:ier.it inn oor
re.^uner ,-iru rt-ncw il
1 0 % d owil t i ir.t- tor r e £ t' n C r . i [ i on
T vpe of ECntTgv Rcqui rt d : K] fft r ica I
I on Kxc-hango ror Ammonia Kumoval -
Y = > 000 X
"" *
Y - KU-rtirlcal Euuri-v RuquirEd,, kwh/yr
-V = Pl-^iic Capacl : y , 3g«.3
rn t i on/ J-i nrs
Doaign AK.s;nnpi ions:
Regcm-raMon with J" NaCI
40 BV/refiCEH-ral ion; 1 ri'^if
Total he.tii - 10 ft
[lot's not in-- ludo r't-i;cncr;i-it n.new.i 1
Applicab U' E o >;r*wi : y or prvsauri? bvds
Type of E:uT4y Rrqi: : roc! : Fli'i-trt cj 1
1-70 Ion Kxi-!i.an>'.e I or AJWIOII in Rl ' '*' . . , , - t
Rept*nrr;int ;iir atrippt-d; tower hi.nii-it ,i£ ?«t
j? pd/ sq t' t wi t It Sti 5 ^-u E t .1 i f/c«i I
,, . , ,, t - , ,,
Stripping tow,-r avtr.i)) U'l>;ht = iJ ! I
. , .
Ammon i ;i recovered i n .idscrpt i on l owt-r w 1 1 Ji
IhSO/,
Type of Km rgy Kt-qn i rt?d : 1)1 tvt r i c;i I
Ion Kx«-h;-.iim? l or Afl.mon i.i Kemoval T Rfgener;int
K.Tn-w.ii bv Hi van- St rijiping
V ^ ), I8d X1'11" i lo.-t ri.-ity
V - 'ijj'^ X '" 1 •iwl-mi I lion Stu/yr
V - K Icct ri>-;i 1 iCner^y Roc ni rvd , kwh/yr
X = Plant Cap.H ity. iriKil
J>esi|tn Ass :;npt ions :
Steam st r if) pi up
Spi-nl ri.'KHm1 r;tn t
pH = K'
SfcMra si r i ppiT ii
-iJ wi t El
IB 1 (
I'OWLT in.' link's HO I ton in>; , [>H .idj u« Lmi-nt ,
pump in.; t >' si r ip;>i i)£ t .?w<*r
J-'u*»! b.isod nn r> 1^ »ito:np rvtpi i ri'd/ I . OOt)
££i 1 w;istt'w;tt IT I rv.iU'il
vpi-
Ri-
Klrt-rrii-.il
ul
60
-------
i tiin
.uniher
Opera! ion, l'r->ies:;f and Equation
-energy Kequj. romfnts
E)os£gn Condit ions, Asfitimpt ions and
Effluent Quality
Ammonia Si ripping
Y = H2 ,WC1 X '
•> 10,01)0 X
1'0'
V = MO, 000 X Ttil.il
V = Eh-ctrica! Energy Ke^uired, kwll/yr
X = Plant Capacity, m^d
Water Quality: Tnfiuent rift Joe
pH II II
Air temp., UF 7I< 70
NH-,-N, JtiK/1 l> i
Design Assumptions:
Punp TDH = 50 ft
Operating Parameters;
Hydraulic, loading - 1.0 gptn/sij ft
Air/Water ratio = 400 cu lt/>>al
lype ot Energy Keqitircd: HU'etri.-ai
Sreakpoim Chlori;iat ion With IV.-hloriilat ion
log V -- ">.U.:i +• 0.'!09J flog X) t (),1'169 (Ion x>~
-I- 0.04^8 (111)! \) Dechl or iii.it inn with
Y - KU'rlrii-.il Em-rny Ki-ijiiirirl, kuli/yr
A - Pl.itu C.i[);i(-itv, n^t!
J H cr (J'j.il i t y:
Design Assumptions:
Dos.iKe ratio, C1_,:NH4-N is ft: 1
Residua! Cl? = ' m);/l
Detention tine in rapid mix - i rr.in.
Sulfur Dioxide !eed rati. , SO?:Cl2 -' I:
Activated c-arbnn pumping, ri)ll » 10 ft
Type o[ Energy Renuired: Kle.trieal
i;h I or i r-.at i.'C. .ind ai-ch h- r i Hat i 0:1 I oi' [)i sinf t>c t i on
:o« V - -..1)108 + O.WH'J llo.4 X) • 0.0868 {Ion \l~
+ O.OOfi'J (lo)> X)' Chloriu.K ion with
iloriii.it inn Without
e^h Icr in.itiiii:
V = Kl t'< I r ii ;\1 Mru-rKy Hi-quirt-d. kwli/vr
v - I'l.itit <:.jp;ii.ity, mi;J
Water Quality: IlHluent Eftluen
BO1).-,, i»K/l JO JO
Suspended Solids, mg/l JO JO
Conform, no./100 ml -10(10 JOO
Kvapiirator used loj JoSiit^es greater "h.ni
.'000 lr/,iay
Dei h lorina tion by S02 assuming in -iO-,;i'l
No evaporator For SO?
Operal in); Parameters:
Chlorine dosage = 10 HIS.'t
Chlorine rGsiilu.il - 1 ira;/ !
Type ..: Energy Kei|ui rt-d: tleciri;a.
lUilnrlni- Dioxide Ci-tli'r.l! ton mil I-1.-. -ill rip.
"01: V = i.-'.hU''. + 0. IfjSfj (loiJ Xi + 0.217f
V = !-"liM-lfu il Kiu-rgy Ri-q-.i i rt-d , kwh/vr
X - Plain Capacity, rop.d
D*'Hi>;n AsKump t i-itlH :
Chlorine Dioxidi- do^jfte i^ '•* mg/1
U-quival^n t to 10 rng/1 C i 2 }
So.iiurr. Chlorite: u.lorinu DioxiJ. --ati.- -
l.iiK to 1
Chlorine: Chlorine Diuxiil.- ratio = l.nSl,. I
Type ot Mncrgy Rei|tiired: Klctlruai
.
• ..1-00 . ,
Y - >7,IJOiJ A Oxyv,i-:i !-L-t-d
f - 1-: lect rica I Em-r^y K..-(]:)i n;d, kwh/yr
X - I't.int Capacity, ra>;.l
Water QII.I 'i ly: liifliu-m Kfilm-ni
Siwp.-nJcd Solids. =is/l in !(!
• i-, .il i-.iiiformi;' 100 al lit,000 JOO
Design Assumptions:
Ozone generated from air 1 I . t)? wt . L uni-en-
tr.it ion nnd oxygen 5 2.0'^
Operating Parameters:
Oz.Mit- tiose = 5 m^/l
Tvpe n: Knergy Ri'quir,.-d: !! I ec [ r i, .1;
Ion [-:xi-li.niKi' for l)i-ir!i[HT.il i/at i<-;;
J're.ssurtr
, Cravitv :mJ
W;iter Quality:
Influent I'.l ) liu-nl
(mri/1)
-------
figure
Number
From EPA
430/9-77-011
3-78
Operation, Process, snd Kqiution Describing
Energy Req jirements
cm:! i t ions, As.suitipt Ions :md
I'M hient Qu.J ity
Reverse Osmosis
Y - 2,850,000 X0'9^
Y - Klectrtoal Knergy Fequlre-d, kwh/yr
X * Plane Capacity, nigc
Em luem:
- 1.0
ioo-noo
Water Qualicy:
pil
Turbidity, .ITU
TDS, ltn/1
:}esign Assumptions:
Feed pressure = 600 ps.
Single pas*: system
Operating Par.wters:
Wcitar recovery: 0.1 - I mt-d 752
I - III mgd 801
10 - 00 nigd 8b..
Typt; of :lntrr.t;y Koquirod: Kleci: ri i. a I
3-79
Land Treatment by Spra> Irrigation (Modified)
Y = 270,000 X1'00
V - 164,000 X
V - Electrical Knerj;y F
X = Plant Capacity, ngc
Center Pivot
Stlid Set
td, kuh/yr
3-80 Land Treatment by Ridge and Furrow Irrigation
and Fl nod i ng fMoc i f ircl)
Y » 20 X1' ° Ridgs and F-.irrov Fuel, million
Bt u/>r
Y >• lft,000 XJ*°° Fioocing Power
Y = 12,000 X * Ridge and forrow Power
y = Electrical Knt>r>;y F«quiredt kwh/yr except
for fuel
X = Plant Capacity, n$jc
Inf 1 Icration/PercoI.Ttic-n ,ind Overland Flow by
Flooding 'Modified)
V = <*.,?OQ XL'°°
vl.Q2
Y * "i.OOO X
Oveil.ind Flow
Rapid Inf i I tratiun
Y = Electrical KnerKy Fequirc-d. kwh/yr
X = P tant Capar i i y» rage
Infiltration/Peri-ol.iticn and Overland Xl.iw hy
Solid Stt Sprinklers (Modified)
t 00
'
V - 170,000 X
Y » ?5,000 X
''
4h.orl.-imt f-'luw
R^pid [nf iltration
V - i1! i cct ric;i 1 Kncrj'v f.equ 1 red , kwh/yr
X = Plant Capa-.-! tv, m^c
Wastt'wncer Tr<',-it(ni.'nl Plant. Bu] Uling Heat ing
Roquireiit'iiis
IOK V = 2.6362 -f n...5hl (1,^ X} + 0.0795 (1,^ X) "
+ 0.0026 {to.g X) Mi:):n-;ipolis
log Y ^ 2.4483 > O..'*^9f (tog X) + 0.048.1 (l.>g \)~
- 0.034^ (lo»i X)'' Now Ynrk
log V = K87/,^ -t- 0.'*H>; Clog X) + 0.07'U (l,^ X)'1
- O.Oltft !|.\K Xf L*'« Angeles
V = Bui Id ing Ho.it i ni; Kt q;iiremt']it-s, nil 1 i,MI Btu/yr
X = Plant Cap;n ity, mst
Irrigacion s«.',json is .'Mi days/vr
Center pivot, TDK = ISh it
Solid set, Tl'lf « 175 t:
Typo of Tr'ne r>;v Sequircii: Klec •: r iv.i i
1 sign AH.surTt[)[ i nns:
Irrigar inn si-.ison is .' -f) day.f/yr
i'ower i n^- luslcs runoJ: • ,•! urn pumy ii
ruel fi-r .mnt..11 !t?viH:n.; rind fidsi«.-
furr.-w rcpl.u-eraeut
ypo of Kner|',y Ki'quirL'il: Kl cc : ri t\i 1
IH'slgn A-ssiimpt i uns:
Inf iltrat ii»n..'pcrt:ol.ii it.n, T|y{ « ^ Et
OverlarJ f :ow, TDK - 11) ft
J)i spos.i 1 t ::Ttt is 2rJO d.ivs/yr tor Dv*1 r I ,inJ
7 low
t3ispos.il t urn- is 16 r> ..J.-LVH U>r Rar i tl
Inf i 1 tr;)t i>.'[i
I'ypr of rntTf;'/ Requi rt-t: r K J ect r i u;i 1
Design A>sun'p: '-uis:
Inf i It r;i c iint. pori'pLi: io-i rfpny, 1 DM M? t'r
Ovcrl;-i:i;i t K.-»- spray, T Hi - I ?> i't
Disposal E imc is 230 d.iv:-s/yr tnr i>v*-rl;im!
: spos;i ) t • :in i s Jbi »:.i
Inf K l r.:'. i.-:i
t- of r.nt'fs;,- f-toquirt^l:
csiHfi Assuinpl inns:
3-'nvir ftO'Sli .) . r t h.-m^fs-;hr
Stitrm wiiHli>w>. .ind i n-:;i: .it i'd wjll- m,l
..-eilin^s
7*1 por. oni t -.h-l Nt i i i .:..£ i,in r,;.-t( r
.-.. ChapLOr i, :»;IR*'S 5-.' t .» S-7 in KI'A
4 JO/9-77-01 6
62
-------
I
r it i.'!i, f'rcHH-Si2, .'iTitl Equat ion
titUTgy Rt?q uiriMnont s
w.it^-r rriMtmont iM.mi 15ui i.liiv, Cnoiing
Kt'qu i re mi' ru s
4.nr;,20 t- [).j.>;9 (lo»», M + O.OHSf* (1 ny. XI J
- O.OlbK (loB \J Miami
3>£>si«;n Umd it ions, Assurr.pt i
Eff hit-in .(>,').• i '. ,'i', X)"
- o.o CH d.i« >:>3 v.-w ».Vn
Y = ^ui;di;iu; Cool ing Rnr\ ni Tv:ne:'.t ?:, kwlr'.-r
X = I'l.-int i::lp;lt-it v, iri,;(i
(Ir.iv i C v Th i i-krn in>;
Sc-.> V;ibU' 3-4 in Kl'\ 'i 10/<(-,'7-r) i I •'.-• o,-
ti;:s.ump£. funs and ttpi- [ a t i E\L; iJiiritTUt'! u;r>j.
n 1st1 tor . _ _ ^ t .,,-..
lb/so f r /-J.iv
V ^ 17- \u' " Other Si -Jssi- rr.T. ',^00 t,. ^,(>UO Type i>i i-: lor^y Kfquirt'il: HK-.rrix.il
f l •' MI TliU-ki-m-r -\it\i
V = I . 7U x'"1' Other Sludgi* mi i'hirki'
'•' = K11 i t. r i i •;-. ! Kjl i-:' gy K< •:) •,; 1: «• c , k w'':; i; r
\ ~ TliIrkfiKT Area, MJ ti
Air i'lot at ion '!'hi.'k^:i i :i>:
.".r*/
Hi-i- '(' it>lr i~'f ri»r 'U'^ij;:> .* irSCCipt !>.'Vi» ..jn
op.Tiif ini; [>; ioitn air f I'tji)
ipiMit nl <).:> )l%/lh solids and :jver.i£i- -i:
~;t ! ro ,1 i r; :-ij 1 E sur ) ;U't' a r«.'."!.
i'vpf ,-* Knc-r^y Ktl •.)<)»*
V = Jhf) x KJ -MHO M^'.'.iy .--: .i^w.iTrj.-;! ...-ifiirt ch.t r.id or i s t i •• - En KPA •/*'1O V-.'.:-'.UI.
. „ , , , , , Mull i:>lo units n-injin-u ahovo HIM) ,u :E
. = Mi-ftrir.il Knrrjjy Ki'rn • r.-,i, kwli''yr / ..__
:-. - ivw.itt-i.'d Snluis i\i:^M. i? •. , i ;• ''/d.iv ,.s •-•i^*1'*.-
Op*- r;ii i riy •'ar'-ir!".11 «.* rs ;
Xa. :ii lit-:- f,t:i t.T '«) pin, .trr oM t.-r 1-
10 rin. a] lowc.i ' .»r -in lo.id s tii;, r^H? tr* i
.(1.97
< Hi.'.i"1-' vs.: JTi":.irv *• .1 is: ••
Av ( i v,i f t-i! ^ hnl£«' a nil L)i .i;es 11
SlikJ^s wi t h c'rC'l ;
- I' U'.-l rii'.'il f;.nk'fj>y Ko<|utri-J. kw;i/vr
.-•'. •.:•.( ti.i.- •.'•iiarii ilv, 1 on/J.v.' -1l'v s.'J :i1.>,'
ppU/sq j t i or J *
1 :)E; • Ml :'t r ,->! r- lttc,»i- and .'t IE 3\i; w.i
Opt-r:it i ns; P-ir'nr.t'i i:r-; :
'I wo - S( ,i.ir.ic ;: r.i • L H i ;inii si'l 1. 1 i n,*. * .tnk:;
W.islt wnii*r lu «lud_K.L> r,-ttin - 4:1
;•>-!»- ,-: KIHT^V Kr^ilred: rile-, i r i - ,• ;
:<«Mitur , t>infj t i.tns - tOO n.-ii/. d iSfV'c
M,-,it i-j-.-li-ni^r '.T >(I°F
St-L- T.-toli' )-*) tor sLiulj;^ ttf*- i ipl i-m .<-
I.-M: hi Oi.ipE,-- -i jit KPA .. so/'*- V ,'- t) I
urvi.1 t in- ! OL L--;
-!'.-),-«- /i i;ul. [•-.
I'.iHl -Lli i i kt-ii.T -1r t vi*--
63
-------
Numbi-r
Krom fcPA
VJO/9-/MM1
: iun. Process, iml Kum|.iL ions:
Si'.ic 111 r I'ond i '. ions - IUO j»s i < it iSO*" :•'
HiMt rxi-hanm-r :.T - SOltF
Cunt lrr-ous operation
Si-*: T.ir-h1 5-(J fcr sliid-;t.' do-; -ript io • n-.i
rext of Cn.-uHc-r r) :n El'A UftW-l't U
iurve i RC - udes :
Xucl to prod K-t- stf.im net-fSSfiry [. r-iist-
re.ii'liii i't'iUiMUrf r o ipcrat ing : ciipcr il nr.
yPL* 01" Er.t>rgy Rftjui red Fuel
HCiit Treatment - With Air Addition
1 Or)
Y '= 2r)D X ' ' Primary * W.A.S.
V - IJ« X1-"" W.A.S.'
,,„ . I.'"" „ .
Priory ( •*- tYCl,f t W.A.S. ami
Primary * W.A.S. (-J-FeC^)
TVrt i.iry Alum
Y = Km*l Rt-quirvd* million Bfu/yr
X = TliernKi 1 Frv.iUiiftit i'apat* it y, jjptn
Design A.-ssn
( pnt in:Jnnfi i-pfr.it ii-n
Sft' T;thl o ;>— 9 t ur « I tui^e dc;;«- r i fit. i s ii i,iu
text ol Cfi.ipUT '* H: Kl'A -. li)/**- " '-f '•
Clurvo f tic I nd<'^ :
t1 ne 1 E.O ("UMiiijiV ^( i.'.itii rlOi'i'S:i.ir> t . r.i i -;t-
rc.T.-ror .-.-im-Tifs to i?piT;r in>: t ^•-upt.-f-ttv
Tyjio of KiHTyny Kfijui rrii : f-'ue ]
t-at Tre.itmt-iit - With Air Addition
.2HOX1'110 P,-l*ry
1
Y
y
Y
^ .» IU A U
- *Q X1-00 D
- aOO X1''"' D
- Thermal Trvatnit
t >; . f r i nuirv
is* Prlmviry 4 W.A.S. irul
riT.;iry * W.A.S. (+*'E!t:ii'
iti. , Pri'H.'i rv -f w A ^ l •*•"•«.' C L \ )
mj 1 ion tk ii/yr
Sue i.tb . '?-•? lor slu.l
Curve 1 tu' 1 udt*-» :
EV.i 'tot f'Tlt*MH '. to
Type o, r..,yrBy Koq»lr*u:
^L- UeH.Tipt ••'•• .ir?u
EPA -' )0 '''*- •• • ' 1
opcr;;t [i1i> Li )i![H-r,it in
. IR .
Ion Y * '3.5 Hi + (!.:.r>h--, Mojr X) + 0.280K i log X}
IV1 s I j>n Ass;in;t!l ion s :
S'-e I'tib U- j— <$ pfi-i i-tj j n»i !- ij;un-
Curves i n.-1 u.ii-:
i':jf'Ttiioal ! rod i ti^ .itHl McirMl ni\;
IM rtt'Ht ed Pr imarv +• Wast o S I n»,li:e puirip t f\y,
Ai' I i vat t«l and Diy^rito J N 1 'jil^e""> •!''•'• u •( • n . \ i •;»:
;'r iir_.i rv t Wu«t*- Tv|n- ,>] Fn^rj'v Koiju i rt-.l: Ml o*11 r i
Y - F le>.' t i ii .1 ] KiV r>;\ , kwh.'yr
X ~ Sludge (,'n.ini it v , t nil-May (Jr-
Che^ii'.'j 1 Add i t ion \ . i:d i si'.-.sl t-d S 1 ndj»f s )
«ti- Ac i 1 Viit t'd
)
lug Y = 'LSI 74 + 0,2»S1 (Ion XS 4- 0. W.>8 (J OK XT
- 0. MH 3 (log
Primary t W.»,'» kwh/ vr
X = Sludge ^u.intity, ion/day (dry
V.i .-isuni l''i 11 r.it tor:
Ion V = 'i.].?-*S + ii.('rt.HO {lov, x^ '
- O.UI '7 i i.v;; X)
Y - Kl»-x iriu jl K-TorjiV Roquirod, kw
X = V K -.;'iT. !"i 1 i r.aJ ii n An- !, sq 3 t
i-'i 1 1 (-,ir i- .'iimp, >ii t • rrtM
I'.jrvi- i.-.. :-uii-', : !r .:.•:: Ji' i •..• . ; • , :i '
l-o 1 lol , v;tl aj-.i !.|1 or, :•*' .inn |;'.rii|:
r M ( t K JMIT,
64
-------
Rguri-
Number
From KPA
.!0/9-77-OII
Operation, Proc-uss, ,md Equation Describing
Energy Requirements
1-96
1-97
Ft Iter Pressing
Y • 6,980 X0'58 Influent solids
V - 7,810 X0'60
Influent solids
Y - 6,710 X
,0.71
Influt'tit sal ids = -£
Y - Electrical Energy IVqulrt-J, kuh.'yr
X • Filter Press Volume, <•» ft
Cpiurifuging
Y = 4,000 X1'00
Y , -1.940 X1'02
Dow,it »• r i ng
Y = Elt*t: c r ica 1 Energy Rr<]u i
X = Flow, gpn
'd , kwh/yr
Design Conditions, Assumption* ami
Effluent (Jiiiility
See Tahiti i-S for
In Kf \
Operating Pardttieters:
Power i'iinsur;p£ion b.isi><{ «>n .«':!t iinu-us
operation, 225 [>Hi ^|'^r:jt iit>: ]>rcs*.i
Curve int. Hades:
Feed Pimp (hydrmil !f,i 1 ly driven, po
displacement piston pump)
Opening and closing CIKH h<-ml-*:iii
Type cf Energy Required: Kleetrie.il
Operating Conditions:
Power consumption basi-d on i-t
operation
< icitrifugH, G = 700 siv~l
S 1 i idj^L- i'yu*.' i'i
!'r inuiry + Low Line N--
T<-rt ijiry + Low Lirce S.
Primary •+• 2 Stage High URH- '
;i ntt Dr y i ng Btid s
ID« V = 2.1785 +0.t)ViHLoj; X> *• 0.0185 (Jos; XI"
+ 0.0020 (log X) t'nwi-r Consumption
10^
= ^, .0 X " *" FUL* 1 t'i M; suir.pt io:i : 7 . :>\ so : i 'is
piicifU'O, mi] lion Htu/yr
Fuvl
- 1.2 X1"00 Fuel Qiiisunpt ii>n •? 2.52 aoluls
punipi-ii, mill ion Btu/yr
= 0.42 X1 Fiivl CiniMunpt iuii ' 1.02 solids
piimpi'il, Ri i ] ] ion EilL/yr
- Kuc 1 Required, million Slis/yr I'XC^pr P^WLT
Cansair.pt inn Wni.-ii is kwh-'yr
i.: l.iH.st f if,it i
1 dl lowi-d by
L.U-w,i( ur iciK
i lit ,E[
i ^E' As sump t ions:
nwt't" i'on sump L ion btjd on pump I n>; to
iJryisiR bc'ds at TDH - li rt
i]*-! I'onsiimpt ion basfd on :
.Irvinx to SOX solids, 70 Ihr-'.-ii IE
KMitiiif, with front end lo.idor, H ^,ti.'"fir
ust- uf Lii#s«l fii»;l (1J*0.(K«> ftH:/K.ii)
IS miniitej; ryquirt'd Li> K».id IU ,-« >-.; in»-
«n* T-ib !*'• 'i- i for q IK 1:11 i t i os >>! v. i r i o« s
aludsou/mll gal tri-.-iC<-d in KIVA -'. KJ/^ / ,'-0 I I
ypfr ol F.nitr^y Rfiquirt-d: ?! tet-1 r i t rt 1 ruid
' l-'Lt'l
UidRf Pumping
ot; Y = J.6558 + Ui'iJr, |,,L,V = |;j ...r5
v . .-..„ x1-00 Trlk.il-ity - ^ yd3
V *- .'.h X1'00 Tru.'k r.ip.-i.-itv = 10 yd3
Y .: Kut> i Reqoii"i*d, ni I : inu lit u/imt- wj> milft/vr
X - Annu.-i| SluciRi' Volnmo, l,0»n .-n yd
!Vs i KT As sump I Ions :
1 I'p.s
PipL'liiK' i'MPCtivc "••" l-K'Lor 8:i
['limping b;ist-d on k-i*nt r i r ujj.il non-, :t-i; ->i
.slurry pump^, bft'V. cfl'ti it-n, v
^0 hours pi'-r drty average npcr.-ition
Clpcr.u \nyt P.jrjimttcrs:
Set' T.-ihU- '3-9 for stinijn' i-li.ir;n-tf rist i^-s
tor disposal trs KPA 4 JO/'J-7;-(m
rypi- o! l-:n«»rfly Kcquirt-.f: Kli-. I r l.-.i I
\II-K i^n Assiicpt. ions:
O|irr.-i i i nj; Pj r.trooters :
OptT.ir. I on 8 hr per J.iy
Avi-r.".;o spivd; J> ni;>lt i or- t i r *U .'!' :i: i I
.mtt IS ntph Lliuri'-'M t»''
'I'r iti'k I :K- ! uso -'i. S rnp.n . i^i;
Si-i- T.-ihK- J-9 i'nr rilmJui- ckii-i. t .T i si i
tor ilispos.il In I'I'A •'' iO/^-r'/'-fH I
rviM* of Knt-ri-v Kt'ifuin-if: •-.' Di.---.-l i -K-!
65
-------
Figure
Number
Froio EPA
t lull, Process, ^t mph
Tug si^e: 100,000 gal birge- L,JOI' hp
'i:)0,000 S 850,300 s^il ILIIRC- -
2,000 hp
;,()CH),000 8, 2,300,0(10 Ka, li.irui--
2,r)00 lip
Sue T.ihU- t-'J !->r sludge charun-t IT : st in s
for di»|>(,..i.il In EPA 433/9-77-n I I
Type of Kiu-rj;y Required: Marine diese) in.-:
3-102
Liquid Sludge Hauling by Truck
V
f\ QO
14.9 X ' ° Truck Cij;at:ity = S.iCO gallons
Truck CijiAciLy -= 2, 500 gallons
Trucik Cjipaci ty = 1 , JOO &;i 1 1 ons
V = l-'u<* 1 Required , oi 11 ion Btu/out1 w.iy m 1 lo/yr
X a Annual Sludge Volumo, mil j;.i 1
L't i ] izar iein nf Liquid Sludfte
Y - !H(i X1'00 Land sp -radlnn
V = Fuel XL-quired, aillii:i Stu'yr
X = Annn.i! Siujge Volume, mil 14,1!
) g.-il di,-sc. (-?2) = UO.JOO Bf.i
Diesel [.uuvrvd innk rruo. rnpJi t u» rt*.it" If r
Truok fin- 1 usi- .'*.!> mpg .ivg
Sut: T;ibl<- !--'> I ,»r sludgt- eh;ir%ri-t .-r i st i
far di:;p(>M;M in KPA A 30/9-77-0 I I
Typ*» df KiitTKy KV(jiiIr?d: -'2 Dii-Kfl -II--1
Kue I use : 'if [••• id i tip t riL!'k - L1 ir.i I trip
I fe.il Jii'st-l ( •••'.!) - 140,000
Opt*r;i: in^ I'.-ir.LTn. i-.-rti:
Id 00 g.i I hij; *:i»-i'; tvpo .-fprCvj.U'r , 1 :»
mi tint i- r;"r:(i trip. Tr-.^-k is M- i ' I .-.M
St-t; T.ihlt- v-(J :^ir s!ut:£*1 L'ha T.M t i-r i ^E i.--
fur .!Lsp,.-;il In u'A '. >3/9- "-0 I I
Typ*i **f K;'.H-rj*v K -.•<]» i FL\: : -2 Dii-sf I ' iti- I
3-10A
I't i 1 iz.-it ion of Dewateruc SI u
Land Sp rr-.'id in^
Y - Kno! Koquircd, aiilli-m Bt»/vr
X = AuniKil SLuJ^e Volune , 1, OO'J ru vd
iipr-'Md inj; L riu'k - ! j'..i I '' E r
I K.il '.li.-s,-l («_') - liO,IXIO l!l .j
p.'ra: iuK I'.n .nr.<-: er :
l.andfil!: if -:ini;tes :>ii^ld*v.tr E (:..«•
^-.i %M : E-II.-K :.Md i'l' sln.ige
Spr,.'.Hiiii-,-: ..: ,-!i yj rii:; wn.-<-I : v:.e
riTirt-.uif r, .'' i^inuLe trip t ini-
M."e T.-tlih t~v j.ir ^lud^i.- t'hj r.i^ t cr i ^!
I ..T .M:ifin,.il i" 1-:]'A - 5J/4-.'.•'-'. M
vpe> r,l' i-.ii.-ri-.v !-;.-i|ui red: :;J! I)i,.^ol :u-
3-105 Mixing - Anaerobic. Digfs:t?r - Hi);li Kan-
Y = l.« X Mechantc.il Mixing- 1/fi HI*/ 1 000 ft
L'°°
Mechanica! Mixing- \l'i HIV 1000
l)L-.sij;:i Ass.iaipl i.--;-s:
-0 It suhmi1 r>'.f.ii'L' for reli-O-Sf til ;'..!:,
Mncnr <--\ i i i i tn.v v.iries ! rnm ^^i" [ .> (''t'
K°°
Mechanical M
Y - t.809-'4 + 0. 1-6J ilog X) - ().07::i
+ 0.0209 (log XI1
Y - I.^.60.'R - f..3.U:
«- I 1IP/100U ft.
0
"M X' "
Mlxii>K- b s.-ln/IOOO f
i X)
Type t'f KM.-r^v K.'q'iired : I'.lt^'L :- i- .j I
Si-i. Ch.-ipti-- S, :• n;eH j-I 1 I.' 1-U .in.I !'i.-M
3^1.(h !,'r :.!.•! i\-i; .it rt-ir:i''nr s ir -'J'A
- i).103<) I Uig X) J l.isMixins- 10 M'tV 1000 f t
lug V " (..17:2 - l^S'ji 'l.iji X) <• -).53.'.'l (I..,: X)"
- D.inOl (lug X) :.1« Mlxlni'.-:;!! svtn'lOOO ft
Y ' Kli>.-t rt\.-al Fnurgy Ri>]i.iri>d, kvih/yr
66
-------
Op*1 ration*
Fron K!'A
410/9-7/-OI1
l Kqn.-it. ion l)*j.scr ihing
ul remiT.tH
Des; i:n Ui:iluiwn : sr -usr Lhi'i n
star«'s, f Mr oenr r,i i 1 ".'ar i.-ns :r..; (i i n I v rv.
0.5 t'or KdiiLhpri) Int-.-il ion* miltiply (w Q. <
Sot> Fji'.urt* '1-105 !"t- nixing .-iit:r>-.v i^ ••'•' \
^10 •'•'}- 7 7-01 I
Si'i' Tab h"1 i- f for ^i. uHf.*' i.'h.-ir.ii-t IT i st i i •* i i
I'.PA '* 10/9-//-01 I
X = Solid
. . . . _ ,
i-
V - 1 r) 7 X
V •* .'00 X
Y = . TO X
Y =- 100 X
Y - IhO .X
Y = 'i(10 X
Y ' KiL'i-l
'•: - •ll-^]-;
s, llv'il.-iy
') '
I'.'oi Kiu-rnv li.iscJ ,m .•xv-en -.upplv -,-«.-i r,-r.-nr ,-
,f. . / ( rnixi:i>', ass:t~od li- iiv -i.tc l;-: ii-:i
1.00 'lm '"'^ M.-.-hsnl.-iil m. rat ion b:is...l ,m 1.5 ll> (>.;
Mt>ch.itii iM 3 At: rat ton - [.XT '-nt io:i < ranst t-r ''ts-ii-^r
'i iuip ~ 1 ^ J.'ivs l)i J f urtrii -Ter.it i on M.isi'H -'!; N . '* i h '.' *
1 .00 , r , t rnnsU'r/h;i-hr
Mf ch.-nu r i : Aer.-i-: i^-ri - Df- 1 ••nt ten ... __ r ,,.,'-,.,,_ ,.v.v.
lino - ... i..i>s Oxygen t nr ni iri r ir.it ion L« n.,r i m- i mU-il i it
' [ILffn-^d Air - Fh-CfntU-n " i me v,U:.rs prt-st-iU-*-.! - i .-r n ; i r : f E - .1 : i .MI n;-
•" ? ;»» . t>q... . .. ^ . ...t . . t. i .
1 00
lUffmifd .Air - IL-tLMit L.MI Time
,""•'« -.:.svw
r i i.,i' Kiioi'^v Ki'-ii n i rt*i1 . kwli/y r
- Ih \:,iv
. 00
1DO M> ion ':0'v: :'• ' J.iv
I'intr^v K^-IJ u i rpi], kwti/vf
")i?sipr;:> AS.-;I;E^P'( ions;
•Jro.~tss is ,-\i\ uth^-rr. .••;•>;! i 1 i ,-
Pure ;>x\rL;i'ri pr-.-v i tlt'tl 1 "i" H\VMI.':I
h.iv i :^ : it<- t " ' ! t'tu'i -t.- p,«wcT -i-
) .:.i h:v- |,0no . it t : mi:-. ;;:M
.'.9 Ib -n^/hii-i-r I'-:A •.-.•.•••-•r.n
I) i voptM) i v svsE i-m.s .isMuniftl i <>!' j'.i'i-.iE i-
y,,,- ..f i n-r.v X,.q-.iir,.j: i-l«. r:. .:
llpi.i-.T. In,; pn-ssuri- - i'' ;w
PC,- ir.'ii .!ri:-i| r.it i.. - '•: I
:n I^':1* 4^,1. lf-77-il i ! ii p^~i'::ik; :.
I ;.•.:.! •. " '" 1'r i-.irv S!u,i,:r
.: ,,, ._ 1.11(1 ;>^ . ,
-------
Figure
Number
From EPA
430/9-77-011
Operation, Process,
1 iOI)- 2000 '>4
grtMter rhan 2000 108
Olvratiut; Assumptions:
Heat1..!' tin. to rvjc:-; 1400"-' tearpi>r Dfid -J;? m^;d
n.n in.o
'i.S 11.0
3-11 5
3-U6
Ofierat in^> Par.imeCff :
Syster. .-pfr.ices 100'". ^1
3-114 Fluidized Bee. Funiiife Itir inera t Ion
Y - 10. i X "' Prin,ir>- Sludge, Rate- 14 lb/ft"/!ir
Y - 12.5 X1""" Priraiiry + Low Lime Sludge,
Rn:e - 18 Ib,'ft2/hr
Y - 15.f> X ' Digi-.sted Primary Sludge,
Rate - 14 Ih.-ft'/hr
Y -• 31.0 X1'"0 Prinwry + (W.A.S. + Fed 3) ,
Race - 8.4 lh/ft^rhr
1 00
Y = 45.0 X Primary + W.A.S., tPrlmary +
Fed,} + W.A.S. » dndW.A'.S.,
Kate - 6.8 Ib/ft2/hr
Y = 51.0 X1'00 i'riivry + FeCl , and W.A.S.-»-FeClj.
Riite - 6.8 lb/ft:/hr
Y = Fuel Req.iir?'!, Kill Ian Btu/yr
X = Dry SJud^t- Foed, Ib/hr
c-f v.- ! -ii. i ;«.- :>^ ti Js is 10 , P.'M)
'irj.tri' j- ! I I l or
in Ki'A ^30 '*-/"-
Design Asa
Heat v,j 1
Btu/ib
Sfe T-ible ••- 10 |>r<'
tnori- dC".l/:n ^H.^u
on.
(iptrat iiit'. C. J:iii t ions :
Combust ion t empt-r.ir urt- iri ! ^00°^
[k>wntimt> i:> ,-i f mis' t i f»» of Individual '-vvn
iO* est't'si- -i i r , tio j;rt'heai.«>r
Start up EU'L in*.' 1 iiik'd » 7 ?, 000 Bt II/KCJ i t t'
sL.irtitp
Type- ii "" Ktit-r •.;>• Recju i rv J : >';jo 1 til .«r N.i[ u
FluidiZfd BeJ Furn.ii e Incineratijn
Y - 47,400 X'1'93
V - Elei-t r Lcfi 1 Ent;r):y RfquirfJt kwh/yr
X » Bed Area, ,sq ft
Set* Table Vi^ prc.'^diiu; Ki$«rv 1-1 ! J t.^i
ilcsiUP. aasjm|>tions in KPA k SO/ 9- //-Oil
Opt*rat in^ P,ir.ian.Tt> TK :
Full t ine ->|>t*r.it ion
Type 'H Energy Rfqui r.'tf; K loi- c ri\' .1 i
SI nd>;O Drying,
Fu
mil I ton Btu/yr
Y - 10 X " Fuel JO' Input Solids Concentration,
'
1 10*» Itip-jt Solids Coiict'iicr.) c i on
in; 111 MI &tu/yr
Y - ;>GO X ' KlfH-ti-icity 30'i [npur Solids
Concent rat ion
Y = 234 Xl'°'* KU-ctricity 202 Inptit Solids
Conce ic rat ion
Y =- 'J2.4 x1""2 fuel 8? Input Solids Com-ontr.-iE ion,
ni 1 1 ion Brc/yr
Y * 277 .\K°' Fieri riL-Uy 8% Input SoMJfl
t*opi-!'ntt:it ion
Y * ?1.0 X * Vut-l UZ Input Solids Corn-entr;it ion,
:-:i 1 E tori Btu/yr
^ Y ' ' Klt'-.-t rif i t y 4"'. Input Sol nls
]»ryer fcf f !*• ioiu-v ?J '.
Product iD^isture t-onu-nt 10*
I'owcf i r.c i udt's b 1 ow^rs, fans , ^onv t-vors
Type of finer»;y Required. Fuel JIHI r'U-ttri- it.
68
-------
Mgure
Number Operation, Process, and Equation Describing Design Conditions, Assumptions and
Frota EPA Energy Requirements Effluent Quality
, n/9-77-011
V116 Y - 150 xl<°° Fuel 2% Input Solids Concentration,
(Umtinued) million Btu/yr
Electricity 2'.
Consent r;ition
Fuel I'' I up lit
mi 11 ion siiu/yr
Y = 2650 X1'00 Electricity 2% Input Solids
I QQ
Y » KM) X ' Fuel I'' Input Solids Concentration,
Y = 5100 X Electricity 1?; Input Solids
Y •= EC 1 *• i • t r i o a 1 Energy J. V = :,2>18 +• '].'>i'JJ i.;«s Xj * 0.::S9 U».; XT Primary + W.A.S. - 1700 psi*
- 0.0108 (^ X, ' Pri^rv * W.A.S. r W'A'S' ' 1(t°° ?Sig
} ContinuouH ope rat ion
>fi Y = 2,1561 + G.!>-VJi (log X) -+- 0,1772 (log X)' See Table 5-9 for sludge descr i|>r ion and
A Aon.; /i v/1 ,, , c cext ln ^apter 5 in EPA VJO/9-77-OM
- 0.02G5 (loe >.) W.A.S. „ TII
^ fi Curve Inc1udo«:
Y - Kle'i'tricity Reqnjrini, thousands kwti/yr Pressurination pumps Bnilor iuL-d pumps
X * Treatment Capaciiv, ^pm Sludgt; grinders Air rompressctrs
Decant tank drives
Type i>f Rnor^y Kt-quired: i:it>i r r i i ,i I
Note: Fuel 1« required only ;i( st.irt-up
j- ; i 3 MITM- Kt-i'Vil c ining - >!•: 3 T ip \ r Com-
. . Compoflitiim: LclC°3 M^OH;J lnert!l hlistibles
Y = KUvtriral Enorsy Kc<;ui re o, .kwh/hr K —
X = Hu.irth Area, sq Tl
Primary, 2
staA* high
1 im1
Tertiary, If fc!n*.Tgy
.
65Z 2X
j
7L 10
,
«(> . 1 4.1
Required:
1 i*
Hi
n. 1
KIK- 1 ,nn:
Ai-tivatt-d Carbon StlM-oiiii^ry ^ntTRV Requi rt-rU'dt ^
Y = l.i)1} X * 40Q Ib/miJ ^\ Tarclary i-r.-nmJjr
Cai'bii" t ft-.-if menr , ir.i 1 1 i «.in Ht u /d:iy
Y - 17.5 X1"00 2, SDH ]h/mll rfa 1 , I PC Pow^r^tl
Carbuc. ! rtMlment, million Blu/J.'iy
Y = E'r.Hiu.-tion Envri;y, ni 1 Ho:i Bcu/d-iy
X = t'hi:iL Capacity, -;,:d
Ammotii urn Hydroxidt1 Si'i'
-------
Fi gure
Number
f-'rom EFA
, 1^/9-77-03 1
si 311 -*!i>t!*l i I i i>ns , Assjrapt i on^ ,-»nc)
K:"f hitsnc Quality
i-4 Carbon :M<:/l. nil Him Btu/day
Y - '..'2 X" 330 u.g/1, nil lion Btu/day
) - •'•:-i-Til ; i:-:-. En TRV, :f!l!li,>n btj/^ay
:•: = ?l.rr Car-i;it.-, ^IRI!
i:h:.!rin-
v - : X' ' ! J1) mn,'
Y » Pro.luct ion Kn-rgy, k-.
v rntTny Rt*q uiro^eni :•
Y • Pro.lnciion En-.T«y» kwh/day
X - PUi;ii Capar.it v, rag 5oo;.-' ios: E:K- fgv t kwh/day
-'•-10 I'olvriuT Si.-c(Hi«.|.jry FnorjiV Kfyui rt-mi-nts
V » is^'t >:'*°, 1., -•-•/mi 1 . jt-il-i It i: /day
V -- i'r^-1-...-; !;•••! :-:,-• --rjiy, S: •:/.],-»>'
x - F '..1-1: :;\?..i :tt;. , n-.^o
•'+-11 Si--di:if- '/'.I. -ri^-* 5'--.uuind,ir-v Xr-.tT^V Keq-jirL-ienl:
V - ^-> ••:"" H ,-k ,in,1 Sul ir, 1^00 Ib/mil. g;i 1 .
Y = 20 x1*1' .Kvap.irated, l?nn Ib/mii. .^al.
Yj = :»ro«JiH-t io:-. Kn..-rgy, kwh/d;iy
X « I'l.i'H C.-ip.i.Mt -', mgd
\2 " 1'rodn.- 1 Ion Fatrgy, mil. Htu/day
X =j'l,iiit Capacity, nt^i
Y = ') "• i X * 37 •• -h/ni ; . ,;.i: . v kwh/djy
V - ;ni.i X •'' i7f.-i lb-V.il. .;.!-., kwK/day
Y - l'r-.i luft 1C.:-. Er.Tgv, kwh/H-iy
X - l'l;t:)t C;ipvi;-it ••-, ir,nd
•'- I "3 Siil 1 1) r Hi OKI ilu Sc- -undarv KniTj;;.1 Ktiqiiirenn-r.t s
Y - •). -*'i X' 'l? : -FH-'], kwh.'dav
V = :'!•;>]•,. t [s';- ;",:'L'r%ny, kwh /.'l.'iy
X - ]*:-rit i".r.;.s -it -', rnjiJ
Sul 1 af i *\ i%' -^t?. TT.I.ity '•'[>• r>;y ««,•£;t:ire^O:K
Y • l'5d-J .X *'* J:- i By;/], million Btu/day
Y -- :»hn:j .x "' iVi cnji/J, mil lion rttu/day
Y - I'r^.i'.iL i ii'i: :vn--r,i4y, T.I i ] i.in hi.u/day
X ~ •' !a:il i ,u'.i -It/', ,T^O
70
-------
Number Ope rat ion, frtn-ess, and tfqmc i.ni IVsc rib ing
!• Cvjai t.?A Hner£y Rrqisi remi'nt s
4'JO/-.»-?.'-OU
i-i KSL iinot *sd Heat Kftmlre;:*.':1!.*s IfXti; sc : i js-.ij. hi j I;K
Y - L.700U + 11..'402 X - 0.77^") >;''
CasH A : iJni ILHU! ;iCL'(i
V «• 0. JOOO -I- 17. 1750 X - 0.'i7SO X'
Cast- It: Addi-J W.i ! ' aai-i '"•• i '. \ ::^ :;;s.,i,it i^:\
Wit.ii is torn Winoows
V - 0.(K9l + 12.ii8fi X - 0.25'1H X'
C«ni' ':'.: Wall a:i,l Cfiii:ig lu.sulaLlur. iJuul>U'
(i la/ed Windows ami r". i'cir I;LIHI L:I t i on
Y = He.-il (Squired, nlLlion litu/«r
\ ~ ThiuiSdHvi, iit-->> dav -'yr
>tjsi^:l Conditions, Assumptions ;in-d
Eft luent ijual i rv
' t on 1 -.' iJigi'S'fr Hi-.'it Kt-:q-.i i n':r,:
= u . Ti in VS/I'L '-cia
iij x N.inii r.s. - ;ji^i.':iHT ;.u
Shul^o Tempi- r.it in r L.' riii',i:s 1 <• r , '':•"
71
-------
Figure
Number
From EPA
430/9-77-OU
5-7
Operation, Process, ind Equation Describing
Energy Rt quiremt-ntri
gn Conditions,
Ei r 1 uent Q
Digester Cas Cleaning .snd Storage Const met Lo» Costs
log Y = 0,9701 •» 0.337" (log X) - 0.1235 (Jug X>"
+ 0,0218 ( IQ& X) ' Total Clean Coirprt'ss and
log V = 3.1972 -- 1.705* (log X) f 0.6770 (log X)
- O.Q642 Clo*?, X) Clean and Compress
log V = -0.8547+ 1.77V! (log X) - 0. J70S, (log X)2
-I- 0.0521 (log X) * Store
Y <= Construction d'St , thousand dollars
X = Digester G?is Clear-tad and Compressed, srfm
Digester Gas Cleaning and Storage o R. M ^abor
Requirements
log Y = 0.2605 + 1.30:»0
*
X) * 0.019^ (I O
Y * U & M Labor, hr/y
X = Ulgewtor Cas Cloar.ed .inj Stv>red,
5-9 Digester Cas C loaning and Storage Hlnglne Construct ion Costs
lug Y » 5.2829 - 3.6W3 (log X> -f 1.3lft9 U«fc X)J
- O.IJSO (log X)3
Y - Construction Ccsr , thousand do Ilar s
X « 1C KngJne, hp
Internal Combustion Kngine o i M t-ibor
Requi regents
log Y - -1.1725 T U56U (log X) - 0.0271 (log X)
- 0-0146
X)3
Y = 0 & M Laaor, >i
X « 1C Engine, hp
Internaf C-imbuHtior. Engine Maintenance
Material Cost*
log Y = -5,4676 + 4.J5U (lug X) - 1.1752 (log X)'
+ o. m? (ioK x>3
Y = Mainten&.n<:u Material, thousand dollars/yr
X = 1C £nftiiie, lip
Internal CcKibiistitvn !-"ngine Altt-rn,ite Fuel
Requlirement.i
U>s Y = -l.«J249 * j.5577 (log X) - 0.7392 (log
+ O.U73h (lot X) *
Y - Altcrr.iice Fuo I Krquir^d, million Btj/yr
X * 1C Knjiine. hp
600 tpm tMigiiic with ;u-.tc
alternate s ue I svstt'in
600 rpm fiigine with
alt>.»rn.ile :'ut-1 ays
600 rpm LMtgiite with h»iar
a Iti'rn.itt f tie I SysiL»'m
n-roverv
r»-'rov€vrv .mil
600 rptn
al teni
witlt IK-
«.- 1 «y st t-
72
-------
Figure
S-jmber
Kr.>m F.PA
i JO/1-77-011
Operation, Process, and Kquation Describing
Energy Requirements
Design Conditions, Assurapt luns and
Effluent Quality
Digester Gas Utilisation System Construct ion
Costs
log V - 2.5404 - 0.4530 (log X) 4- O.M79 Clou X)
- 0.1318 (log X)'
Y - Construction Cost, thousand dollars
X • Plant Capacity, mgd
Complete e U-et ri e:i t y generation system .is
shown in Figure '>-h EPA 430/9-77-0 11
Digester Gas Utilization System OSM Labor
Requirements
log Y - 1.8795 + 1.1:374 (log X) - U.1063 (log X)'
* 0.0029 (log X)1
Y « H& M Labor, hr.'yr
X = PI.me Cap.irity, mgd
Complete systere for e lect ric i I y gener.it ton
,-is shnu:i in Xigure }-b EPA 4 tO/9-77-:-l I
praplet.j -system fur i- feotriL i t v generation
^IB sh >wn In Figure '•>->> EFA •'• H)/9- '/-D I I
;.~17 Digester Gas I't i 1 izat ion System Maintenance-
Material Costs
log Y • 4.1712 - 8.2581 Cog X) + fi.1717 iloj; X)'
- 1.3289 (lag X) '
Y = Maintenance Material, '.hous-trul do 1 lar s <'vr
X * Plant Capacity, mgd
rj-18 Dige-ster Cas I.'t i I Ization System i-lnergy Complete system lor electrical general [on
Rcqiiiri'ner.Lfi as shown in Figure 'j-<> KPA 4_>0/9-7 7-1)1 I
-t 0.0411 (log X) * Fuel
log Y = 1.7189 + O.S9:ifl ( log X) - i).1)424 ,.. XI*
* 0.0068 (log X! l KlEi-.trii'ity
Y » i-'uel Required, million Btu/yr
X = Plant Capacity, ngd
5-19 Multiple Hearth Inc inerat ion C-i-r.st r:. 1 ion Cost Design and Operation Assunpt i ons :
2 i.oafti nr rate = 6 Ib/sq ft.-'!ir
log Y - 0.0606 * 0.54!.: ,l,,S X. * tl.-,66(, ( i „>; X, ^^ . ,,ri!nar>. + W-A-S. s|l|J(!(, . „,;
- 0.159? (log X) ' sol .n Cost, million J.'ll.ir.s
X - J'laar Capai ity, "i.;^
'^-20 Multiple Hearth I nc Ini-rnl ion 0 i. M H.'qni rement s Hi-sign .--nil Operation AriSiimpl ions:
3.6'j l.oadliii- rate - 6 Ib/sq :i/hr
Y = 06 M Labor, hr/yr so'ids
X - Plant Capacity, inRd
i-Jl Multiple Hearlh Incineration Ma i:-.! ,'nar.cc Design .-.nil Operation Ass-jmpt loos:
Material Costs i.oadir.g rate • t> Ib/sq ft,'!>r
log Y , 3.5505 + 0.0972 ,.os X) , 0. ibSS (log X)2 S1^^ P'J«"" ' V'A-S- H' "^ = "';
- 0.05J9 Uog X) '
Y = Maintenance Material, doijnrs.'yr
X - Plant Capacity, mgd
•)-2J Auxiliary Heat Required to Sustain Combustion Assumptions:
of Sludge 10,000 TU.i/lb VS
Y • .'..09 - 0.165 X Primary, liO:. VS
Y = .'. - 0.179'X Primary + W.A.S., 69" V'S
Y = Heat Required, rail I ion Bto'ten vs
X = Sludge Solids, '•' hv -weight
5-2 S Heal Recovered 1 rnm 1m jneratiiiu oi Slucye A.-i-suffipt ions:
' KLnai st .u-k tetnp - 'iOO0!'
Y = -.I6S6.0 + S.14 X - II.D002 X" Primary * W.A.S. .i-0; pj,.,.^^ ,lir
\ - -S19:).4 -+• .'.06 X - :)..)006 X' W.A.S.+ reCi See table preceding :'i£-.tre '- '• '• - •••r ^i
.-har.icierj.itic.. in KPA 4 «>/>l-7;-i> i i
Y = -820 + I.It X Primary Sludge
Y - Initial Fine Cas Temperature. l E1'
X = Heal Kecov.-red, TiiMio:! Btn.' '•' r. mgd
i-'.', Impact ol txcess Air on I he Amount of Ai.xili.iry Ass.impl ions:
l-'uet for Sliiilge I ii. 1 ne-ral i on Solids !()••'."
Kxh.liisi 1'oiip. !'>l)0"l--
'•: - :i.'.I -i- O.OH2.' x volati l.-s :o-
X Kx.-ess Air, percent
73
,
-------
Number Operation, Process, -ind Equation Describing
From EPA Kier^y rfcquireneiits
410/9-77-011
esij:,-; Coruiit tons, AMsumpt ionw
U'llnent Quality
5-Jfs lint-rgy Roc-ovt- ry Rotary Ki Ln HcacL
Y = 0.02 X N'.-t: Eiuif;v Output, fcr-jj lb input
X = ': RDiust- . S.. i^t- ** KK> - X
Y = .:-,() + o.7i:i3 x - : ,oo:«) x"
? Recuvt ty of ':.]«• r.:.Y Input
:\ * ;. Re: us*- ' ;-. t.^e = LrtO- X
Hm-ri^y X«-< ,»vt-r>T V*rr. ,1.1] Shar: i-Vdc
Oxv^i-i. I'vrc 1 v.s .,<• -• ': Ret use i Slicijge = 100 -X
Y ^ -.8750 +• 'J.9~j"X- "i.UfU". >:"
unr-
rk':i! PcDp iiiii p it !i .'-IH ,-n VJJtun Piaur ->usi>;::
Optr.it ^;i =; Ci ;M : t i .ins l «']• V.j r iouw -' I > uvtu
Te:t)|jL-f;it ;fc-s
V = -0.0714 -t- 1.9^->7 :; - 0.0109 X" •
Output . ni L iiun -i( 'i/ y r/ni^ii
v T n,i5^y -1- i).or"!> > - j.oou^ x"
Uncf f i..' Lt-ni of I-1..1 : 1 v>rraan-,'L-
nra ,
Air to Air ii.Mt P,;-3;>- lyplc.il rVr; .TIMH.-I' MI:'.
Y • i9 - O.H.', X -IVIM..-II SCrm-tun' Hf.ll l.nss.
tn.ii: ..ic;l: Btu.hr
V - 11.5091 + 1.:'VI -. - O.JO>-» X" Ho.i
5- JO W.nvr tu W«i.<'r/W.iCfr ,• Air ».-:i: Pum
C;:;i.st rut I i^i; 1 1. .1
• 0.153C f U'L;
3- H
Y - Jlonscru.-t ) .•'ii v.t'M , Ot'l l*ir!-i
X - Hear t'li:-.;-- i;a;jt,i 11. .-, tht>UH,i,'i,l HLu/l
W.iUT tu W;il«'r /Wai ur : •.> Air Hont iMinps
O 6 M l.;-bor Kt-qu i r*:n*ut s
1.^; y = 0.2901' + ...'J.1.-. f;o>! X> *- 0.19:'i
- 0.0 Jr« • (li.-g .<•
Y -- O & M 1.,-itH.fj hr/yr
X - Heat FII.HJ) .:;ip;if i : v , thcus.ind atu/hr
5— J2 Watt-r i u *'.!it'r ••'Wait-r •. i' Ai r Ht-.iC J'u;r.ps
Mil i nn- ii.ru e Mat i' i'i.i 1 Cost s
!.H.")'j ( lo^ X) - 0.0ft:** iK-^ X)"
'
Y • Ma irUi-ii,i:u'-% S,iL«.-r i .1 1 , 20 1 1 .jrs. yr
X - He;ir F'uni]) C;;ip;sr t t v , 1 hous/md Htki/hr
Y ' i).9i :\'" ::T t.,'i>» iiixT.ii Ing hr.-'vr
V !>.!.% X'"'1' ;'.-r , >-.«i .'(XT it iiic In vr
V Kl.'ttr n i! y KI.>I|.I n-il. tlions.linl kwb.-'vi
s: iio.it i'nm|) (;,])i.i.-i i v. ihoiis.in-i ntu/ii!
74
-------
Fi.v.itv
Nunbrr
Fr«n KPA
.10/9-77-01!
Operation, Process, and Equation
Energy Requirements
Citsid i t io:is , Assumpt ions :t;l>:
Effhu-jit *>u,iEity
Air to Air Heat Pumas Const run ion Cost
Ion V ' - 0-1?"* + 0. U4'> dog X) + 0.1434 "
- 0.0112 UOR X) !
V = 0 i* M Labor, hr/yr
X = Hoat Pump Capacity, thousand Btu/lir
Air tn Air Hi.'at Pump MTintenani'O Matt-rial Custs
log V = 1.0960 + 0.4990 (log X) + ll.OMiH flog X)
- 0.0072 (log X)'3
V = M;) in! cnance Martiri.il, dnl l.irs.-'yr
X = Hi-.lt I'utnp Capacity, t housautt Iltn/lir
VU Air tu Air Hfal Pump I'n
,-0-
1.0
for K,7f>0 operating ^ir/yr
for -*,'3'Sn operatisis lir/'.'r
Y = 0.13 x"" for 1,000 operating Kr/vr
Y = EU'cl ricicy Required, thousarnJ kwli/yr
X = Hf.'it I'umfi r,-ip«icity, thousand Rt u/'hr
COP -2.4
Out * i ck- Tt'iripe f;it urc ~ •• :)°J-
75
U.S. EPA Headquarters library
Mail code 3201
1200 Pennsylvania Avenue NW
Washington DC 20460
-------
-------
1
APPENDIX B
RAW WASTEWATER CHARACTERISTICS (Wesner et al-, 1978)
Concentration
Parameter mg/1. Except pH
Biochemical Oxygen Demand 210
Suspended Solids 230
Phosphorus, as P 11
Total Kjeldahl Nitrogen, as N 30
Nitrite plus Nitrate 0
Alkalinity, as CaCO-j 300
pH 7.3
77
-------
-------
APPENDIX C
SLUDGE CHARACTERISTICS (Wesner et al., 1978)
Sludge
Type
Primary
Primary 4- FeCl~
Primary 4- Low
Lime
Primary 4- High
Lime
Primary 4- W.A.S.3
Primary 4-
(W.A.S. + FeCl3)
(Primary 4- FeCl_)
4- W.A.S.
WA ^
* *».» I-* *
W.A.S. 4-FeCl
Digested Primary
Digested Primary
4- W.A.S.
Digested Primary
4- W.A.'S. 4-FeCl3
Tertiary Alum
Tertiary High
Lime
Tertiary Low
Lime
Total
Solids
(wt Percent
of Sludge)
5
2
5
7.5
2
1.5
1.8
1.0
1.0
8.0
4.0
4.0
1.0
4.5
3.0
Sludge Solids
(Ib/mil gal)
Total
Solids
1151
2510
4979
9807
2096
2685
3144
945
1535
806
1226
1817
700
8139
3311
Volatile
Solids
690
1176
2243
4370
1446
1443
1676
756
776
345
576
599
242
3219
1301
Volatile
Solids
(wt
Percent
of Total
Solids)
60
47
45
45
69
54
53
80
50
43
47
33
35
40
39
Sludge
Volume
(gal/mil
gal)
2,760
16,500
11,940
15,680
12,565
21,480
20,960
11,330
18,400
1,210
3,680
5,455
8,390
21,690
13,235
W.A.S. = Wasted activated sludge.
79
-------
-------
LITERATURE CITED
Benjes, H. H. (1978) Small community wastewater treatment facilities—
biological treatment systems. USEPA, Technology Transfer, Design
Seminar Handout, Cincinnati, Ohio.
Culp, G. L. (1978) Alternatives for wastewater treatment at South Tahoe,
CA. Paper presented at the 51st Annual Conference of the Water
Pollution Control Federation, Anaheim, CA, October 1978.
Culp, R. L., and G. L. Culp (1971) Advanced wastewater treatment.
Van Nostrand Reinhold Company, New York, N.Y.
Environmental Protection Agency (1978) Attachment E to USEPA Program
Requirements Memorandum #PRM 79-3 issued 15 November 1978, to
provide guidance on land treatment alternatives.
Garber, W. F., G. T. Ohara, and S. K. Raksit (1975) Energy-wastewater
treatment and solids disposal. Journal of the Environmental
Engineering Division, ASCE, EE3, p. 319-331.
Hagan, R. A., and E. B. Roberts (1976) Energy requirements for waste-
water treatment. Part 2. Water & Sewage Works, Vol. 123, No.
12, p. 52-57.
Jacobs, A. (1977) Reduction and recovery: Keys to energy self-
sufficiency. Water & Sewage Works, Reference Number R-24 - R-37.
Mills, R. A., and G. Tchobanoglous (1974) Energy consumption in waste-
water treatment. In: Energy, Agricultureand WasteManagement,
W. J. Jewell, Editor. Ann Arbor, Michigan: Ann Arbor Science
Publishers, Inc.
Smith, Robert (1973) Electrical power consumption for wastewater
treatment, U.S. Environmental Protection Agency, Cincinnati, Ohio,
EPA R2-73-281.
Tchobanoglous, G. (1974) Wastewater treatment for small communities.
Parts 1 and 2. Public Works, Vol. 105, No. 7 & 8, p. 61-68 & 58-62.
Wesner, G. M., L. J. Ewing, Jr., T. S. Lineck, and D. J. Hinrichs (1978)
Energy conservation in municipal wastewater treatment. MCD-32. EPA
430/9-77-011. Prepared for the U.S. Environmental Protection Agency,
Office of Water Program Operations, Washington, D.C.
Wesner, G. M., and B. E. Burris (1978) Energy comparisons in waste-
water treatment. Paper presented at the 51st Annual Conference
of the Water Pollution Control Federation, Anaheim, California,
5 October 1978.
81
-------
Wesner, G. M., and W. N. Clarke (1978) There is a lot of energy in
digester gas. Bulletin of the California Water Pollution Control
Association, p. 70-79, July 1978.
Zarnett, G. D. (1976) Energy requirements for wastewater treatment
equipment. Applied Science Sect ions Pollution Control Branch,
Ministry of the Environment, Ontario, Canada, TN 7008.
Zarnett, G. D. (Undated) Energy requirements for conventional and
advanced wastewater treatment. Applied Sciences Section, Pollution
Control Branch, Ministry of the Environment, Ontario, Canada, Publica-
tion No. W47.
Zarnett, G. D. (1977) Energy requirements for water treatment systems.
Applied Sciences Section, Pollution Control Branch, Ministry of the
Environmentj Toronto, Ontario, Canada, Research Paper No. S2043.
82
•ff U.S. GOVERNMENT PRINTING OFFICE: I 9 8O-O-6 7 7-09 A/I 1 G6
-------
r
-------
n
o?
(D
c
III
II
7 51
o ~
3
o
o
O
I
II
------- |