United States
              Environmental Protection
              Agency
Off ice of
Water Program Operations (WH-547)
Washington DC 20460
Reprint of USA
CRREL, SR 79-7
April 1979
              Water
   -f- -7 f~
              Energy Requirements
              for Small Flow
              Wastewater Treatment
              Systems
                              U.S. EPA Headquarters Library
                                 Mail code 3201
                              1200 Pennsylvania Avenue NW
                                Washington DC 20460
                                          MCD-60
EPA
832
R-
79-
100

-------
                         Disclaimer Statement
This report has been reviewed by the U.S. Environmental Protection
Agency (EPA) and approved for publication.   Approval does not signify
that the contents necessarily reflect the views and policies of the
Environmental Protection Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
                                 Notes

To order this publication, "Energy Requirements for Small Flow Wastewater
Treatment Systems" (MCD-60), from EPA write to:

          General Services Administration (8FFS)
          Centralized Mailing List Services
          81dg. 41, Denver Federal Center
          Denver, CO  80225

Please indicate the MCD number and title of publication.

Multiple copies may be purchased from:

          National Technical Information Service
          Springfield, VA  22151

-------
Energy Requirements
for Small Flow
Wastewater Treatment
Systems

E.J. Middlebrooks and C.H. Middlebrooks
                    1200	

                         ton DC 20460
                              MCD-60
           Reprinted by

  U.S. ENVIRONMENTAL PROTECTION AGENCY
  OFFICE OF WATER PROGRAM OPERATIONS
    MUNICIPAL CONSTRUCTION DIVISION
       WASHINGTON, D.C. 20460

-------

-------
                             EPA Comment
     This report was reprinted by EPA's Office  of  Water Program Operations
as one of a series of  reports that contain information on topics of
major interest related to municipal wastewater  treatment and sludge
management.  Reports in this series provide detailed  information on the
planning, design, and  operation of municipal  wastewater treatment systems.

     Energy is a major concern to EPA as well as to the Nation.  This
report summarizes energy requirements for small  flow  wastewater treatment
systems and presents energy data for various  wastewater treatment system
components.  Energy  requirements for wastewater systems that contain
those components can be estimated using data  presented in this report.

     The reports in  this series do not contain  either EPA policy or EPA
regulatory requirements.  They are reprinted  to assist consulting engineers,
state and local regulatory personnel, and EPA Regional Administrators
during preparation,  review, and evaluation of projects proposed for
funding through EPA's  Construction. Grants Program.
                                                          ^WL^7
                                                              rector       SI
Harold P.  Cahill, Jr., Director
Municipal  Construction Division
Office of  Water  Program Operations

-------

-------
Special Report 79-7
April 1979
ENERGY REQUIREMENTS FOR SMALL FLOW
WASTEWATER TREATMENT SYSTEMS
fc.f. Middfebrooks and C.H. Middlebrooks
Prepared tor
DIRFCTORATE OF MILITARY PROGRAMS
OFFICE, CHIfcl OF ENGINEERS
By
         UNIIf [) STATES ARMY
         CORPS Of ENGINI I K$
         COLD RiCIONS Rl SI ARCH AM) FNCINS rRINC, I AHORAK)R\
         HANOVi-R. NEW HAMPSHIRI . USA

-------

-------
                                   PREFACE

     This report was prepared by E. Joe Mlddlebrooks and Charlotte H.
Middlebrooks, both of Middlebrooks and Associates, Logan Utah.

     The study was performed for the U.S. Array Cold Regions Research
and Engineering Laboratory (USA CRREL) and was funded under DA Project
4A762720A896, Environmental Quality for Construction and Operation of_
Military Facilities; Task 02, Pollution Abatement Systems; Work Unit 004,
Waj?t_e_wa_ter_ Treatment Techniques in Cold Regions.

     The final scope of study was defined by Sherwood C. Reed of CRREL.
He served as technical monitor during the course of the study and his
efforts in this regard contributed significantly to the successful com-
pletion of this report.

     Technical review of this report was performed by Sherwood C. Reed,
Robert S. Sletten, C. James Martel, and Edward F. Lobacz of CRREL.

     Permission to reproduce drawings, tables, promotional and instruc-
tional materials by the following firms is greatly appreciated.

     Journal Water Pollution Control Federation, Washington, D.C.
     Public Works Journal Corporation, Ridgewood, New Jersey
     Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan
     Water and Sewage Works, Scranton Gillette Communications, Inc.,
          Chicago, Illinois

     The assistance of Ms. Barbara South in the preparation of this
manuscript is greatly appreciated.  Ms. Mona McDonald's editorial
review was also most helpful.

     The contents of this report are not to be used for advertising or
promotional purposes.  Citation of brand names does not constitute an
official endorsement or approval of the use of such commercial products.
                                     iii

-------
                           TABLE OF CONTENTS


                                                                    Page

INTRODUCTION  	    1

     General  	    1
     Other Studies	    1

METHODS AND PROCEDURES 	    9

     Equation Development 	    9
     Design Parameters 	    9
     Wastewater Characteristics .     	    9
     Energy Recovery   	   10
     Secondary Energy  	   10

RESULTS AND DISCUSSION 	   11

     Energy Equations  	   11
     Treatment Systems 	   11
     Energy Consumption   	   11
     Carbon and Ion Exchange Regeneration   	   37
     Gas Utilization	37
     Effluent Quality and Energy Requirements  	   37
     Conventional Versus Land Treatment  	   39

CONCLUSIONS	45

APPENDIX A:  EQUATIONS DESCRIBING ENERGY REQUIREMENTS   ....   47

APPENDIX B:  RAW WASTEWATER CHARACTERISTICS    	   77

APPENDIX C:  SLUDGE CHARACTERISTICS   	   79

LITERATURE CITED 	   81

-------
                            LIST OF FIGURES
Figure                                                              Page

   1    Energy requirements for 30 mgd secondary treatment
        plants (Wesiier and Burris, 1978)	3

   2    Trickling filter treatment with anaerobic digestion
        (BOD5 - 5-day, 20°C biochemical oxygen demand; SS =
        suspended solids)   	 12

   3    Rotating biological contactor creatiaent with anaerobic
        digestion  .	13

   4    Activated sludge treatment with auaerooic digestion  ... 14

   5    Activated sludge treatment with sludge incineration  ... 15

   6    Physical-chemical advanced secondary treatment 	 16

   7    Extenaed aeration with intermittent sand filter   .... 17

   8    Slow rate irrigation	18

   9    Rapid infiltration  	 19

  10    Overland flow	20

  11    Facultative lagoon-intermittent sand filter
        treatment	21

  12    Advanced wastewater treatment   	 22

  13    Comparison of energy requirements for trickling filter
        effluent treated for nitrogen removal and filtered
        versus facultative pond effluent followed by overland
        flow treatment	40

  14    Comparison of energy requirements for activated sludge,
        nitrification, filtration and disinfection versus
        facultative pond effluent followed by rapid infil-
        tration and primary treatment followed by rapid
        infiltration  	 41

  15    Comparison of energy requirements for secondary
        treatment followed by advanced treatment versus
        facultative pond effluent followed by slow rate land
        treatment	 43

-------
                            LIST OF TABLES
Table

  1
                                                            Page
Energy requirements, 7.5 mgd, Lake Tahoe Wastewater
Treatment system (Gulp and Culp, 1971; Gulp,  1978)
  2     Examples of systems to be considered in evaluating
        energy implications of wastewater reuse (Hagan and
        Roberts, 1976)  	    5

  3     Estimated energy (electricity and fuel) for alter-
        native treatment: processes (Benjes,  1978)	6

  4     Estimated total annual and unit costs for alternative
        treatment processes with a design flow of 1.0 mgd
        (Tchobanoglous, 1974)  	    7

  5     Energy comparison of sludge dewatering equipment
        (Jacobs, 1977)  	    8

  6     Energy comparison of biological treatment systems
        (Jacobs, 1977)  	    8

  7     Guidance for assessing level of preapplication for land
        treatment (EPA, 1978)  	   23

  8     Energy requirements for components of trickling filter
        system with anaerobic  digestion in the intermountain
        area of the USA	24

  9     Energy requirements for components of a rotating
        biological contactor treatment system with anaerobic
        digestion located in the intermountain area of the
        USA	25

 10     Energy requirements for components of activated sludge
        system with anaerobic  digestion in the intermountain
        area of the USA	26

 11     Energy requirements for components of activated sludge
        system with sludge incineration in the intermountain
        area of the USA	27

 12     Energy requirements for components of a physical-
        chemical advanced secondary wastewater treatment
        system located in the  intermountain  area of the
        USA	28
                                  VI

-------
                     LIST OF TABLES (CONTINUED)
Table
Page
 13    Energy requirements for components of an extended
       aeration system with slow sand filter located in the
       intermountain area of the USA	29

 14    Energy requirements for components of slow rate
       (irrigation) land treatment system located in the
       intermountain area of the USA	30

 15    Energy requirements for components of a primary
       wastewater treatment plant followed by rapid infil-
       tration land treatment systems located in the
       intermountain area of the USA	   31

 16    Energy requirements for components of rapid infil-
       tration land treatment systems located in the
       intermountain of the USA	   32

 1?    Energy requirements for components of overland flow
       land treatment systems located in the intermountain
       area of the USA	33

 18    Energy requirements for components of a facultative
       lagoon-intermittent sand filter system located in the
       intermountain area of the USA	   34

 19    Energy requirements for components of an advanced
       wastewater treatment system processing secondary
       effluent located in the intermountain area of the
       USA	35

 20    Energy requirements for components frequently appended
       to secondary wastewater treatment plants 	   36

 21    Expected effluent quality and total energy requirements
       for various sizes and types of wastewater treatment
       plants located in the intermountain area of the USA         38

 22    Total annual energy for typical 1 mgd system
       (electrical plus fuel,  expressed as 1000 kwh/yr)   ...   42
                                vii

-------
               CONVERSION FACTORS:  U.S. CUSTOMARY TO

                  METRIC (SI) UNITS OF MEASUREMENT
     These conversion factors  include all the significant digits given
in the conversion tables in the ASTM Metric Practice Guide (E 380), which
has been approved for use by the Department of Defense.  Converted values
should be rounded to have the  same precision as the original (see E 380).
Multiply

inch
inch
foot
foot^
yard 3
gallon
pound
pound/ i
pound/ foot ^
kilowatt-hour
horsepower-hour
watt
watt
Btu
BTu
standard feet^ of
   air/minute
25.4*
2.54
0.3048*
0.8361274
0.02831685
0.764549
0.003785412
453.6
6894.757
16.01846
3.600 x 106
2.6845 x 106
1.000
0.0013410
1054.85
0.000293
0.47195
 To Obtain

millimeter
centimeter
meter
meter2
meter^
meter3
meter-*
gram
pascal
kilogram/meter-^
joule
joule
joule/second
horsepower
joule
kilowatt-hour
standard meter^ of
     air/minute
      Exact
                                  viii

-------
                                SUMMARY
     With increasing energy costs, energy consumption is assuming a
greater proportion of the annual cost of operating wastewater treatment
facilities of all sites, and because of this trend, it is likely that
energy costs will become the predominant factor in the selection of cost-
effective small-flow wastewater treatment systems.

     Where suitable land and groundwater conditions exist, a facultative
pond followed by rapid infiltration is the most energy-efficient system
described in this report.  Where surface discharge is necessary and
impermeable soils exist, a facultative pond followed by overland flow
is the  third most energy-efficient system described.  Facultative ponds,
followed by slow or intermittent sand filters,  are the fourth most energy-
efficient systems discussed, and are not limited by local soil or ground-
water conditions.
                                   IX

-------

-------
                            INTRODUCTION
General

     The concern for energy use at wastewater treatment facilities has
developed well after many of the plans were made for the management
of water pollution in the United States.  This is true in military as
well as in civilian installations.  With changing standards and technology,
information on energy requirements for small (0.05 to 5 mgd) wastewater
treatment systems is needed to avoid future errors and to provide infor-
mation to assist in designing and planning.  Several estimates have been
made for large systems, usually in the range of 5 to 100 mgd, but because
hundreds of small systems are being used by military installations, it is
imperative that information be gathered on energy requirements for waste-
water treatment for small systems.

     This report summarizes the energy requirements for all viable alter-
natives presently available to military installations for the treatment of
small flow rates (0.05 - 5 mgd) of wastewater.  It compares various
treatment combinations, and presents in tabular form the energy require-
ments for the most viable alternatives.  The data can be combined to
produce an estimate of the energy requirements for all currently available
unit operations and processes.
Other Studies

     Only one comprehensive study of the energy requirements associated
with wastewater treatment has been performed.  Wesner et al. (1978)
presented a detailed analysis of energy requirements by unit operations
and unit processes employed in wastewater treatment.  The results of this
study were presented in graphical form with accompanying tables out-
lining the design considerations employed in developing the graphs.
Energy requirements were presented in terms of the design flow rate
of the treatment system in most cases, but when a wide choice of load-
ing rates was applicable, the graphs were presented in terms of surface
area or the flow rate applied to the component of the system.  Portions
of the Wesner et al. (1978) results are presented in detail in Appendix
A in this report

     Culp (1978) has presented an analysis of alternatives  for  future
wastewater treatment at South Tahoe, California.  This illustrates the
increasing sensitivity of energy costs.  When the original  advanced waste-
water treatment system was constructed in the late 1960's,  energy was not
costly and was not usually a significant factor in concept  selection and
design.  Table 1 illustrates the energy required for alternatives com-
pared with the original design.  It is anticipated that the final product

-------
Table  1.  Energy requirements 7.5 mgd, Lake Tahoe Wastewater Treatment
          system (Gulp and Gulp, 1971; Gulp, 1978).
                  Alternative
    Total energy
(electricity and fuel
    expressed as
   equivalent 1000
       k.wh/yr)
Original system complete secondary treatment,
AWT system, effluent export to Indian Creek
Reservoir
1978 Alternatives
Continue secondary, nitrification, effluent
export to Indian Creek Reservoir
Continue secondary, nitrogen removal (ion
exchange) effluent export to I.C.R.
Continue secondary on site, flood irri-
gation land treatment in Carson River Basin
       64,500


       39,400


       40,244

       25,000
      Does not include secondary energy requirements for chemical
manufacture.
 from the  flood  irrigation  land  treatment  alternative  will  be  at  least
 equal in  quality  to  the  original  design effluent.

      Energy  requirements for  four wastewater  treatment  systems,  includ-
 ing  sludge processing, that are  capable of  achieving  secondary  effluent
 quality and  complete  sludge treatment  and disposal were presented  by
 Wesner and Burris  (1978).  Estimated energy requirements were presented
 for  1) trickling  filter  with  anaerobic digestion, 2)  activated  sludge  with
 anaerobic digestion,  3)  activated sludge  with sludge  incineration,  and 4)
 independent  physical-chemical treatment with  sludge incineration using 5
 and  30 mgd capacities.   A  comparison of energy requirements for  the four
 systems treating  30 mgd  is shown  in Figure  1.   The potential  for solar
 energy as a  method of heating the digester  and control  building  was
 discussed.   Heat  recovery  from  sewage  effluents using heat pumps to heat
 digesters and buildings  was considered.

      Zarnett (1976,  1977,  and undated) has  examined the energy require-
ments for water and wastewater  treatment  plants and has presented  the
 requirements by unit operations employed.  The results  were presented
 by unit operation  to make  it  convenient to  assess any treatment  system
on the basis of total energy consumption.  By combining various  flow
 configurations, a  system capable  of producing  a given effluent quality
 can  be assembled and the energy requirements  compared.  Zarnett  cautions

-------
o
o
o
o
o
o
(O
o
o
CM
o
o
                                       AOM3N3
                                                                    60

-------
 that  the  data were  presented  for  comparative purposes and should not be
 used  as absolute values.

      Energy  requirement:?  for  various  types of wastewater treatment
 plants were  presented by  Hagan and Roberts (1976).  In addition to the
 discussion of conventional  secondary  and tertiary treatment systems,
 land  treatment systems were considered.  Tradeoffs between pollutants
 removed from wastewater and pollutants added to the environment by
 energy use were discussed.  It was pointed out that decreasing returns
 are obtained as the  level of  treatment increases, and it is possible
 to add more  contamination to  the  environment by increased energy con-
 sumption  than is removed!  from the wastewater.  Comparisons of energy
 requirements for a  100 mgd capacity system employing conventional
 secondary, advanced wastewater treatment and land treatment systems
were  presented.  Energy implications  with regard to wastewater reuse
were  considered, and it was shown that in many instances the reuse of
wastewater can conserve energy.  The  savings are related to the degree
of treatment required before  reuse.   Table 2 is a summary of total
energy requirements  for various wastewater treatment systems assumed by
Hagan and Roberts for direct  discharge of the wastewater, employed for
various reuse purposes, and the energy requirements for alternative
sources of fresh water.  Their assumptions include unnecessarily stringent
preapplication treatment  requirements for the general case of irrigation
reuse.  Current EPA guidance  on the topic is presented in the Results and
Discussion section.

     Garber  et al.  (1975) compared biological and physical-chemical
processes to treat wastewater in the  Los Angeles area.  Biological
processes were found to be more energy efficient and less stressful
on the overall environment.  Treatment of the wastewater by physical-
chemical methods required almost  five times as much energy as activated
sludge including nitrification and phosphorus removal.  Solids disposal
by pumping 90 to 100 miles to the desert to drying beds required 16
times as much energy as the present system of discharging screened
digested solids seven miles at sea.   Chemical treatment of the sludge
followed by mechanical dewatering and disposal at local landfills
required 35 times as much energy as the current sludge disposal system.

     The general problems associated with small wastewater treatment
plants, alternative treatment processes available to small plants, im-
portant design considerations, and an economic comparison of the alter-
natives available were presented by Benjes (1978). Table 3 presents the
estimated annual energy required alternative wastewater treatment pro-
cesses for a range of design flows.  Tchobanoglous (1974) conducted a
similar analysis and cost factors derived from his work are shown in
Table 4.

     Jacobs (1977) discussed various ways to more effectively utilize
energy at wastewater treatment plants.  Use of different types of
pumps, sludge dewatering equipment, plant modification and energy
recovery from digester gas and incineration of sludge were  discussed.

-------
Table 2.  Examples of systems to be considered in evaluating energy
          implications of wastewater reuse  (Hagan and Roberts,  1976).
                                                                Total
                                                                Energy
                                                               Required
                                                             for  100 mgd
                                                               kwh/day
Treatment assumed  for discharge
    1.  Activated  sludge  (with chlorination, sludge
        digestion  and landfill disposal)
    2.  Biological-chemical  (activated sludge with alum
        treatment, nitrification/denitrification, sludge
        digestion  and landfill disposal)
    3.  Tertiary (activated  sludge, coagulation/filtration,
        carbon adsorption, zeolite ion-exchange,
        recalcination)
Type of reuse
    1.  Local irrigation (assume 100-ft  head for
        conveyance)
    2.  Distant irrigation (assume 1,500-ft  head for
        conveyance)
    3.  Industrial (assume 100-ft  head)
    4.  Unrestricted (assume 500-ft  head)

Treatment  assumed  prior to reuse
    For irrigation reuse:
        activated sludge
        biological-chemical
    For industrial reuse:
        b iological-chemic al
        biological-chemical & desalting
        tertiary
        tertiary & desalting
    For unrestricted reuse:
        tertiary
        tertiary & desalting

Alternative sources of fresh water
    1.  Local supplies
    2.  Imported
    3.  Desalted seawater
   93,000


  235,000


1,137,000



   57,000

  615,000
   57,000
  216,000
   93,000
  235,000

  235,000
  695,000
1,137,000
1,597,000

1,137,000
1,597,000
   57,000
  938,000
6,661,000
     'Courtesy of Water and Sewage Works, Chicago, Illinois.

-------
Table 3.  Estimated energy (electricity and fuel) for alternative treat-
          ment processes (Benjes, 1978).
             Process
                                              Energy (1000 kwh/yr)
                                              Plant capacity (mgd)
                                         0.1
0.5
1.0
2.0
Prefabricated extended aeration
Prefabricated contact stabilization
Custom design, extended aeration
Oxidation ditch
Activated sludge, anaerobic digestion
Activated sludge, nitrification,
anaerobic digestion
Trickling filter, anaerobic digestion
RBC, anaerobic digestion
RBC, nitrification, anaerobic digestion
139
95
197
134
119

251
31
65
113
_
447
857
647
387

650
126
276
496
_
886
1,901
1,288
764

922
246
566
1,026
_
-
-
2,571
1,525

2,576
485
1,105
2,005
      All with aerated grit chamber, chlorination and sludge drying beds.
A comparison of energy requirements and costs for sludge dewatering
equipment is shown in Table 5.  Energy requirements and costs for
biological treatment systems are presented in Table 6.

     Mills and Tchobanoglous (1974) presented detailed methods for
calculating the energy consumption by the unit operations and processes
used in wastewater treatment.  Use of the equations and graphs presented
in the paper is illustrated by examples using two alternative flow
schemes.  Detailed results are presented in tabular form and are easily
compared between processes and systems.

     Smith (1973) estimated the electrical power consumption by most
conventional and advanced processes used to treat municipal waste-
water on a unit processes basis.  Electrical power consumption for
complete plants was estimated by adding the power consumption for the
individual processes.  A comparison of electrical power consumption
by wastewater treatment systems was made with other uses.

     Estimates of recoverable energy in digester gases were made by
Wesner and Clarke (1978).  A discussion of the variation in gas
production with the type sludge was presented.

-------
Table 4.  Estimated total annual and unit costs for alternative treatment
          processes with a design flow of 1.0 mgd (Tchobanoglous, 1974).a

Process
Iirihoff tank
Rotating biological disks
Trickling filter processes
Activated sludge processes
With external digestion
With internal digestion
Stabilization pond processes
Land treatment processes
Slow rate
Basic system
With primary treatment
With activated sludge
With stabilization pond
Rapid infiltration
Basic system
With primary treatment
With activated sludge
With stabilization ponds
Initi
cap it
cosl
dolla
380,
800,
900,

1,000,
500,
250,


340,
940,
1,240,
590,

200,
800,
1,000,
450,
al
al
L b -
rs
000
000.
000

000
000
000


000
000
000
000

000
000
000
000
Annual
Capital
41
87
98

109
54
27


37
103
136
64

21
87
109
49
,720
,832
,811

,790
,895
,447


,328
,302
,139
,775

,958
,832
,790
,405
cost, dollars
0 6. M
15,
57,
58,

74,
48,
23,


41,
81,
115,
65,

25,
65,
99,
48,
550
680
480

410
800
680


540
540
950
220

100
100
510
780
b
Total
57,
145,
157,

184,
103,
51,


28,
184,
252,
129,

47,
152,
209,
98,
270
512
291

200
695
127


859
742
089
996

058
932
300
185
Unit
cost
cents/
1000
galb
15
39
43

50
28
14


21
50
69
35

12
41
57
26
.7
.9
.1

.5
.4
.0


.6
.6
.1
.6

.9
.9
.3
.9
      Courtesy of Public Works Journal Corporation, Ridgewood, New
Jersey.
      Based on an ENRCC index of 1900.
      Capital recovery factor = 0.10979 (15 years at 7 percent).

-------
 Table 5.   Energy comparison  of  sludge  dewatering  equipment (Jacobs, 1977) .c



Belt press filters

Vacuum filter

Centrifuges

kw Demand
cost /mo.
40.0 kw
$112.00
75.5 kw
$210.00
108.0 kw
$299.60 .
kwh Usage
cost /mo.
6105 kwh
$153.85
8750 kwh
$220.50
13,700 kwh
$313.05
Monthly
cost

$265.85

$430.50

$612.65
Annual
cost

$3190.20

$5166.00

$7351.80
Notes:
1.   Based on dewatering  75,000  Ib/week of waste activated sludge at 3
     percent feed,  and approximately  20 percent cake solids concentration.
2.   Costs based on varying rate schedule.

     Courtesy of Water and Sewage Works, Chicago, Illinois.
                                                           3,   c
Table 6.  Energy comparison of biological treatment systems '  '   (Jacobs,
          1977).f


kw demand
Cost
kwh usage
Cost
Monthly cost
Annual cost
Completely
mixed
ASe
550
$ 1,070
230,000
$ 3,423
$ 4,498
$53,976
Extended
aeration
ASd»e
540
$ 1,053
236,000
$ 3,498
$ 4,542
$54,504
Carousel
extended
aeration
ASd>e
525
$ 1,053
218,000
$ 3,282
$ 4,335
$52,020
Pure
oxygen
AS
525
$ 1,020
216,000
$ 3,247
$ 4,076
$48,804
Bio-Disk
425
$ 800
188,000
$ 2,701
$ 3,501
$42,012
      Comparison based on entire plant energy consumption.

      Includes consideration of differences in sludge quantity and
characteristics.
     £
      Costs based on varying rate schedule.

      Result in higher effluent quality.
     0
      Activated sludge.

      Courtesy of Water and Sewage Works, Chicago, Illinois.

-------
                       METHODS AND PROCEDURES
Equation Development

     The graphs presented by Wesner et al. (1978) were converted to
lines of best fit at the lower design flow rates (0.1 - 5.0 mgd) and
used to calculate the energy requirements for small systems such as
those employed at military installations.  Least-squares fits of the
linear and curvilinear lines were employed.  A power function was used to
fit the linear lines on the log-log plots and a polynomial equation was
used to fit the curvilinear lines.  The  forms of the two functions are
shown below.
     log Y = a + b (log X) + c (log X)2 + d (log X)3
             Polynomial function
     Y  =  a X
Power function
     Various combinations of the unit operations and processes were
selected to form the most commonly used wastewater treatment systems.
Energy requirements for each component of the system for various design
flow rates were estimated using the equations of best fit.  These results
were tabulated for easy comparison between various types of treatment
systems.
Design Parameters

     Design parameters for all of the unit operations and processes
are shown with the energy equations for each operation or process in
Appendix A.  Additional detail can be obtained by referring to the
report by Wesner et al. (1978).  The energy relationships for the conven-
tional and advanced wastewater treatment processes are unmodified,
but it was necessary to modify the land application energy relation-
ships to conform to accepted practice in cold regions.  The slow rate
and overland flow application seasons were modified from five months
per year to 250 days per year to more realistically reflect actual
practice.  Rapid infiltration application seasons extend over 365 days
per year and not five months per year as shown in the Wesner et al.
(1978) report.
Wastewater Characteristics

     Raw wastewater and sludge characteristics used to develop the
energy relationships are presented  in Appendixes B and C, respectively

-------
Energy Recovery

     The potential energy available in digester gas was estimated using a
figure of 6.5 million Btu/million gallons of wastewater treated. This
value is based upon a mixture of primary and waste activated sludge, and
the value will vary with the type of sludge and must be adjusted when
better data are available.  However, a value of 6.5 million Btu/million
gallons of wastewater is satisfactory for estimating purposes and will
yield a conservative estimate for net energy consumption.

     Btu available in digester gas can be converted to electricity,
and a conversion factor of 11,400 Btu per kwh can be used to estimate
the electricity generated.  The conversion factor assumes an electrical
generation efficiency of 30 percent.  The gas utilization system also
requires energy and this must be considered when comparing systems.
Secondary Energy

     Secondary energy requirements are the amounts of energy needed
to produce consumable materials used in a wastewater treatment system.
Disinfectants, coagulants, sludge conditioning chemicals and regeneration
of activated carbon and ion exchange resins require energy in their
production, and this energy must be considered when comparing the energy
efficiency of various systems.

     Methods of construction, materials of construction, seasonal varia-
tions and other factors also influence the energy budget for a treatment
system, but to a lesser degree than the primary factors such as direct
energy consumption on a daily basis.   Only the direct energy consumption
and the secondary energy requirements are considered in this report.
                                  10

-------
                       RESULTS AND DISCUSSION
Energy Equations

     The equations of the lines of best fit for the energy require-
ments of the unit operations and processes used in wastewater treat-
ment based on the graphs reported by Wesner et al.  (1978) are presented
in Appendix A.  Design conditions and assumptions used in developing
the graphs are presented along with each equation.   Details about the
conditions imposed upon the equations can be obtained from the Wesner
et al. (1978) report.  Each equation is cross referenced to the Wesner et al
report.  The equation number used in Appendix A coincides with the
figure number in the Wesner et al. report; i.e., Equation 3-15 cor-
responds to Figure 3-15.  Only the portions of the curves below a flow
rate of 5 mgd were used to determine the line of best fit.  This was
done to obtain a better trend at the lower flow rates of interest rather
than introduce the influence of the higher flow rates.  All equations
for the linear lines have a correlation coefficient of 0.999 or better.
Treatment Systems

     Flow diagrams of the wastewater treatment systems commonly employed
are shown in Figures 2 through 12.  The flow diagrams for land appli-
cations systems were selected utilizing the preapplication treatment
guidelines shown in Table 7.  The biological and physical treatment
systems shown in Figures 2, 3, 4, 7, 8, 9, 10, and 11 are most often
employed in small systems; however, the activated sludge process with
sludge incineration (Figure 5), physical-chemical treatment (Figure
6), and the advanced treatment following secondary treatment (Figure
12) have been employed in special cases.  These 11 systems can be modified
by adding various processes in the treatment train to produce almost any
quality effluent desired.  Also, a very wide range of energy consumption
can be experienced with these basic systems and their modifications.

     The raw wastewater characteristics and the expected effluent quality
from each of the systems are shown on the figures.  The raw water charac-
teristics are also summarized in Appendix B.  Sludge characteristics used
to develop the energy relationships in Wesner et al. (1978) and this
report are presented in Appendix C.
Energy Consumption

     Energy requirements for the components of the treatment systems
shown in Figures 2 through 12 for various flow rates of wastewater
treated by the systems are presented in Tables 8 through 19.  The table
                                   11

-------
                                                          c
                                                          OJ
                                                          oo
         IT
         LJ
LJ
 t)

If
u £
                          o
                          ro
o
10
4
z
o
X
u


o
t-

    o
    CO

      I
      I
      I
      I
      I
                   «      o   °
                   -2^.   _   to
                   "j: ?•   PJ   w
                                   to
                                   o
                                   EL
                                   w
                                  • 5

                                   o
                                   z
                                   <
 a

1
 (U

 u
 o
                                                         u
                                                         o
                                                         o
                                                         C-4
                                                         •o
                                                          u

                                                           tn
                                                         a
                                                         o
                                                         CQ
                                                          O
                                                         •H
                                                          60
                                                         •H
                                                          y
                                                         •H
                                                          n>

                                                          to
                                                         •H  CO
                                                          iJ  rH
                                                          c  o
                                                          n)  i  (0
                                                          
-------
        tr
        LJ

        I
        UJ
        t-
        00

        i

                     O

                     cr
                     UJ
                                       CO
                                                  (O
                                                  o
                                                  a.
                                                  CO
                                                  o
                                                  X
                                                               d
                                                               o
                                                              •H
                                                               4J
                                                               CO
                                                               

 i
 4J

 
-------

                                                     60
                                                    -H
                                                    T3

                                                     O
                                                    •H
                                                     tO
                                                     c
                                                     «

                                                    J3
                                                    j_i
                                                    •H
                                                     00
                                                     iJ
                                                     tfl

                                                    •r-l
                                                    
-------
           UJ
           10
           I
                        c
                        *
o
(M
                       ^   6
                       O
                       tr
 n
Q
O
ffl
                                      to
                                      CO
                                         V)
                                         o
                                         o.
                                         OT
                                         O
                                                            O
                                                           •H
                           U
                           C
                           •H

                           CJ
                           60
                           •a
                           3
                                                           I
                                                            (B
                                                            01
                                                            60
                                                           T3
                                                            
-------
                                        -J
                                        o
                                        eo
                                                   *  o   o
                                                   E  to   —
                                                0) _

                                               11  -
    O  -
    if.'  —

CO   CV
                                               a:
                                               UJ
 in


O
QD
                                                        <0
                                                        O
                                                        Q.
                                                        (0
                                                        O
                                                        I-
o
£
a.

"5

o
                                                                        •a
                                                                        c
                                                                        o
                                                                        u
                                                                        0)
                                                                        CD
                                                                        0)
                                                                        U


                                                                        §
                                                                        o
                                                                        •H
                                                                        S
                                                                        a)

                                                                        o
                                                                        O
                                                                        •H
                                                                        CO
   o:
   LJ
u
3
                                                                        3
                                                                        60
                                                                        •H
                                                                        fc
                         16

-------
                                                                      u
                                                                      r-i
                                                                      c
                                                                      «
                                                                      03

                                                                      4-1
                                                                      C
                                                                      CD
                                                                      0)
                                                                      4-1

                                                                      C
                                                                      c
                                                                      o
                                                                      1-1
                                                                      01
                                                                      01
                                                                      T3
                                                                      c
                                                                      (!)
                                                                      4J
                                                                      X
                                                                      w
                                                                      0)
                                                                      i-l

                                                                      ao
                                                                      •H
17

-------
                           e     _    _      o
O
a:
o
 4)
3  x
»-   w
.5   E
      g
                       O
                       K)
Q
O
m
                                                i-    O   I
                                               ^    o  £
                                                Q.   i-  o>
                                                                               n
                                                                               o
                                                                               •H
                                                                               4.)
                                                                               Cfl
                                                                               60
                                                                               •H
                                                                               OJ
                                                                               J-J
                                                                               ta
                                                                              00

                                                                               01
                                                                               d
                                                                               CO
                18

-------
                                                                                          to
                                                                                          o
                                                                                          0.
                                                                                          v>
                                                                                          o
                                                                                          z
                                                                                          <
                                                                                                   o
                                                                                                   •rl
                                                                                                   C



                                                                                                   T3
L
                                                                                                   0)
                                                                                                   M


                                                                                                   00
                                                                                                   •H
                                          19

-------
£
UJ
3
:i
U'
K
     ec

     I
     52
     a
                           id   E
                                        in
                           _   E
                                    -  *>   _
                                    CJ  CVI   —
                                             in
                                                   l
                                             t   I
                                             O   ^1
                                     in
                                    O
                                    O  ">
                                    CD  W
                                                                       TJ
                                                                       M
                                                                       (U
                                                                       O
                                                                       t—i

                                                                       0)
                                                                       bO
                                                                       •H
                    20

-------
o
id
fe
UJ
a:
                   V  _

                   s   r  -2   «
z
o

    LU
o  E
5  ""
o  «
o.
                                                                         c
                                                                         01
                                                                         4J
                                                                         4-1
                                                                         •H
                                                                         e
                                                                         M
     Id
     O
     All
                                                                          O
                                                                          o
                                                                          s?
                                                                          QJ
                                                                          >
                                                                          O
                                                                          cd
                                                                          0)
                                                                          M

                                                                          C4>
                                                                          •rl
                21

-------
t-

u
a:
4K
REMOV
EXCHAN
J°z
ii






O
o:
u
z
£»S
UJ Ul
m IE

                                                             a:
                                                             ui
                                                             to  j
                                                             <  o
                                                             *  «
                                                                  I
o»
E
                                                                                        in  v
                                                                        .3
                                                                        =
                                                                  I     -
                                                                                            a.
                                                                                             i
                                                                        cc
                                                                        UJ
                                                                        I
     a
     o
     03
o
o
 (O
I
z
                                                                       to
                                                                       o
                                                                       a.
                                                                       m
                                                                       o
                                                                       z
                                    a>
                                    s
                                    tfi
                                                                                                                 en
                                                                                                                 cB
                                                                                                                 UJ
                                                                                                                 U
                                                                                                                 d
|x
2 *


S 0
=> HI
-J UJ
< u.
                                                                                                                 OJ
                                                                                                                 S-i

                                                                                                                 00
                                               22

-------
Table. 7.  Guidance for assessing level of preapplication treatment for
          land treatment systems  (EPA, 1978).
 II,
III.
Slow-rate systems (reference sources include Water Quality
Criteria 1972, EPA-R3-73-003, Water Quality Criteria EPA 1976, and
various state guidelines).

A.  Primary treatment - acceptable for isolated locations with
    restricted public access and when limited to crops not for
    direct human consumption.

B.  Biological treatment by lagoons or inplant processes plus
    control of fecal coliform count to less than 1,000 MPN/100 mla
    acceptable for controlled agricultural irrigation except for
    human food crops to be eaten raw.
C.  Biological treatment by lagoons or inplant processes with
    additional BOD or SS control as needed for aesthetics plus
    disinfection to log mean of 200/100 ml (EPA fecal coliform
    criteria for bathing waters) - acceptable for application in
    public access areas such as parks and golf courses.

Rapid-infiltration systems
A.  Primary treatment - acceptable for isolated locations with
    restricted public access.
    Biological treatment by lagoons or inplant processes - accept-
    able for urban locations with controlled public access.
      B.
Overland-flow systems
A.  Screening or comminution - acceptable for isolated sites with
    no public access.
B.  Screening or comminution plus aeration to control odors during
    storage or application - acceptable for urban locations with
    no public access.
           probable number of coliform bacteria per 100 ml of sample.
 number  corresponds  to  the  figure  number;  i.e., Table  8  is  a  listing  of  the
 energy  requirements  for  a  trickling  filter  treatment  system  with  anaerobic
 digestion  (Figure 2).  The last column  in each table  lists the  equations
 used  to calculate the  values  (Appendix  A).

      Table 20  shows  the  energy requirements  for  components frequently
 appended to  secondary  treatment systems  to  produce  a  better  quality
 effluent.  By  modifying  the basic  systems shown  in  Figures 2  through
 12, it  is  possible  to  develop the  energy  requirements for  almost  any
                                   23
                                               U.S. EPA Headquarters Library
                                                  ft_ Mail corfe 3201
                                                  ° Pennsylvania Avenue NW
                                                  Washington DC 20460

-------
•H
C
o
•H
4J
eo
0>
00
T»

u
•rl
2
0)
s
«
JS
4J
•H
S
I
05
CO
t-i
01

•H

ff
•H
^
O
>rl

4J

*W
o
tn »

C en
1) ?
C
O -i
o) cd
• I
rt C
0) tH

§ 4J
M d
3 O
cr S
01 M
M ,
s-t
tj
a.
o











































•a
B
O



•a
a
0
&*



•v
§
O





•o

1/1
0





•O
(T

0*



•o
00

»n
o

O














<




2
E
1
o
0





tn
&I
£? fr
V i4

a1
S
X
c
ss
W 7
cr


G

v 2
C *r^
U 3
cr
3


n
c
>, 0)
£? §
85
w a
cr
S


V
^
M S
a £
c -^

K


C
:*-, u
efi e
4U M

U
s








> "


• £

"S














^"1^
3^3
£
1 & >,

w ^ JS
-1^
*3|
. ^>
* 3 •=

w u 5
+j -^
c ^
-^3 >•

z«>
" fl^"^
rt -J< •§
*J J-

•""1 *•
S ""* ^5

£ 03
, ^w.
U ^1 "*"
M-S"*
4j J*
C U
"*"-H x
S ^ "5"
"** 3 «

i £ *"

W M S
ij •*
* c ^1

3 ^"* 3

£ en
* i-

»||

4-1














i/l O -^
^ ^ jj ^ ,jj ^^ ^j, AA(*liAAA cnA *A

8
o
"« ~*~
2 a 1 x
K -H
*J cj 0 H m tN
c q -H
O ^ 1 0 7J .
T -3 u llow
fl ^ 60 e IN a
SH m S H IK
•H Q U >H
H U & & X

S £??SS oo -SSS
* -" r^ » J" o* £

oooooooooo oo IA  tN fM co sr o
s ^sssssi's
« »v
oooooooogo oo tc

•" S "^ ^ 2 S ^ ^ S2S
S SM S 3 SSSS


§§S^W.SSS^^ SS S r5 S*§^
flT -H"^" xC -Trs" J^O* O* V in" ^" (sj OO
*"* ^o^Cr--rj fN ^^S

CM cNOO\oto o cotfvr^r^.
10 "" » " ^1 "1


OOOOOOOOGO OO tf~* — ' COCTio*1
(SiOi»--31*TCT*OOf^.— <*^ m^-< — • vfi •^•'ffa1'?
c«<-> ^«.u-s^rO^ 04 i-j >c^ —
— -H ^ o <*• -£
•J ^*O""-* — mirQf^
rj .rsj_^in CD r-lr^j)<-
"^ ^



S S2S 2 gp SS i "° 3 " K S S ? e
01 (N c-ir-,(^l— OvC C^J (M *^ -H a> c c 4 u "^ OCA too ~j
l-< >, * O O t*- c/lOiuX 6 -i-* Q MDf-i 8J O

t- « c u c otf c )3fert'e*c2fx^ *ic^fl 5 * tj
2*"!=W"g.kj ^ •U'ZloOH fTo eX>C-^O 5 •" i- o:

Sr^OfOM U U 0 •" »-( "U 1 » > 41 -H ^! 13 I f-4» U
> iu BO tj o — i oi u tn fr, tn xi fiocon x a n Xi ^ i-< -i n
*j rj U VJ Ot*H 3 ^ l-i C l-i rt m 13 ftl 3 2 OJ
CD ix ft, H'-AC tn 3 o <. ax— icnjrea^ ec
5 to o — ttJ
24

-------
^J
•H
3

§
4J
to
E>*
K^>
U
U
c
(U

4— &

(0
0)
M
t 1

J-i
O
4J
O
R} •
3 <
C en
0 O
U
0)
M J3
18 tt
0
•H t-(
60 O
O
i— 1 18
O 0)
•H )»J
,Q «B
00 C
C -H
3 3
tfl C
•P S
O Q
M
cd a)
•*-> I
>« c
O Tt
10 0) 1
4J X!
C w
Q)
c a
O -H
&•«
O -i 01
a) m
C C!
W EC
.























I





















f
o
m



"°*
6

o



T)
f
o



X
s
""}
o




T3
f
— .
O




^
C

o
o



















tfl
kJ
e
1








u
C
Energy
: qulreme
^

09
4-1
C
oel
b 
M 1
W S
at M
C -H
H 7
O"
s
ai
c
a^
J- CU
OJ t«
C VH
W 3
tr
as,


VI
M
U> 5
V *-*
c •*••
w a
cr
£


'Ji
*>
C
x ai
aC E
Iw u
p —
M 3
O*
S






rar ion
'rocess

_c- u
C 0


















- § "
« °-t
= ^^
fc. ^ *J
s «
.',f?fe
a^l

-!fe
u •" -^,
3^3
" X •

• *£,
W u ^
Of -H ^
s 4>i
" B^
-Is-
"^
U* ^1 4J
Sa
iS1^

"a|
M B J
-"I*
3 — "5
"•£-
s!!
5 xl 3
u •*
• S i-
~ 3 *•
S^"3
S«
^ VJ
U LI >•
* "o .c
S-c 3
4_j •»•
C k.
PH" ~ X
S="5
=- 5£
z
" V-
Si-
JSt-§
«-pJ5
b














u*i O -»
O-^<''-x ooao --
m mmrnrntnifn ^i mco »A


"f
P
•M (DO
•d
° Oj *
Ckl
H u ao
n a
x e w
a u o
^ a Q
O — CQ -» fn oo — • oft » in
iC*N^*-*M 00 ^«A*O^O
"^ ^ "* °1 * °X . P-*OC »-» iri n O^-^CT^ r^-^~j trt P-< sD en >— «
oo — • \c ^H f^o>w iA *»^*coen
iC-JxflO^^ *J oo%C'»--<
rn* <*" * r-T


goooooc ooo 00^*1 f*1 co-^o —
irtODO>-lv'O'N r-~OaO fn>Ofn (N cimtAflQ
O^ ^tOvOONQC^ — r*x 30 r-OOO *O ^^rx•O^^D
r^ — • -r^- CJiOO O*O-
IN (sj in P **>r-lQEN
SOOOrn(N|oc*1 r*>f*jr»Aco r» •-* s> rn ^ i~" ^o wtOr-. rv( 
"^ • __-  *O ^O CM r*i ff» -if ^- oo lAOmo1.
^j,_^»r*-. T <^ r«" f^ & — — GOOOO
OJ
rt o>
•g * i5
^ _c e c
(fl C 00 41 O M
ij o 'H -u -r-t q>
^aid-rt 3: w*j*j
c •< o u x (U w
cj -H td c en N v
oCCE CujJnX OCO in DO
C£*-* OtB.C("JbO C'H •— t «-*'H
oj-^ic z:*-«^" Cd an d C <-*)
O^L- -.M—'-'C 4JOJ4I 0 -r^-^ DT3
*c ^ t- « e t; v e ^; do JM! o. u.-i 01
u i, c ^ > --< oj C 4) 
' ac a i, s «j ;/•. •/. x *j « i-H q H (-* w f- •-' c
L.cJC'-COC t-V-^ -C^OI T- «Q | -H « 06 OC J2CJ
1, 3 — i v: -H x -" t t cwiJXJ oc-HtJ cC JJIL
*-iS S *j v, c ^ "*• D OH*jOac-c-H o -^iw -rfoe
C-Jl— i-g-Hftscc JH TJuc-^1—H T3-0 3
3 — SCi-6 O-^ U 1 u > ti -H — i ^3 I — ( «-t X
^Sijaauu-HLJ'-'Co w ^ ocnirtx^c .n MT^I-I -^oc
;*-.flig k,eooi-H "-ai-CUiflifl3ft(33 n t-i
wpio- o,c«:^cs (rJ3Cj
-------
•n
C
o
t-t
M
(I)
00
•H
"O
U

^Q
O
JO
«
A
4J
•H
*>
»*
g
0)

fft
00 ;

 I
4J 1
bO-H |

01 (0 I
W 5 '




O
^H !
OJ





a;
«
o
.5



i 'f-

"E cc E
B ^ a;
o £ "3
o-
DC:

1

1 1 ' £
"^ ; S e
1 * ,«
; c ! ^ £
1 S ; *
™

£ ; ^
s * i * *
1 ^ ; S £
« O UJ =
O • C"
H """ aC
j
O
<-J
I • >\
3 £ ; ^ £

c "*• I X u-
>-. ~ ' ^
tr '
•„
d l T
^1 tJ
" ^ i . F
B ! JfH
UJ 5
O C"



-c ^
I ? 1
•^ .^ ""
C c-
, M
|









_. -j;
~ a^



r a_
iT V,


A




d
2
'

p
_T J i.
.3 H "=
"xS
i $ *"" 1 S

^ ^ J^ J CO
" 5 ^ !
•- ^ >• i
3 "^ ~3 '
X ^
1 . " I ^

— -^ -5 ' ,-..

" S *- !
3 -^ "= '
^ S ffl

, * ^ O
o ^T >i °
* T ^ "1
Hj -™ a ^

^
* 5 I-
|r|
3=: ^

v i'^' ^
w "^ "^ —


* - V-
^ :" =
W "^
.' f >• §

^ 2 •*
-Si.
tf — f 1
5 x
1 >. ^ X
^ r» "^ "^
J~ *f "5 ': —
«J





C

? .5 t;
F a. a>
i P!
*- X


>- *z c

1 J t
/ = -
tM 0) <-> ~J
7TT777 7T

"«s.
5 if

H K 2
« * "
7J * ^
r " ^
k. E *



ocoooo o° c
u^oo\oo^oco »^-^ IN

co c^ r^
—



oooooo c- ~
lOXCJr-qpr— r--_ _
— X *~* r* OC —
a c
- — " ,-T ^C 0* 0* -sT* C r-"
— cc — • ^12




ocoooo c;^ o
•

*• ~ ^ 'J-. | a-. ~ > ™ ~.
^co: tri-^L--c -
^l^i^f^lc H

a. < '^ -S c/:
in «/^ o -^
CO 30 -H —i Ch — t *-«

El
0;
m -H
dii H
"S S "
1 O -H "
ad — w -D
-^ a. ^ O
S**"
0 — O ~*
"" "* ~~ '

o o o m
tsj 00 — • I — *

O f~*. Q r^i

—.
f^.
*^ -^ -^ —1
*" O J3 '1
— -*J O
in r^-
— '

6 <••!
~

O O -J r-j
—" O i^1. oc
QC -T


X- -rg O --7
•" ^ S


? ^ 5 —
r-* -*
n — •

0 ". r'l ~~.


ss ~ ~
r-T -j"

^j r< r. ^
O —

— S 5 --
f :•*,
^" —




^
e
c
Cl

c -5 .2 _.
C H K «
i ^ 53 L- i 2



£-zi '*?-
| | t | r r 1
3 — < < ~ ::! J3
,^, ^. 50
x ao Y









S ? 3 "5 S S
^ j! U" (— ' ^ CO '
-1
"1 ^i " Q —
*.T -~ ^ c^^
* r--- •* M
-C (-1 -H -J L*% O^

t^ r- %£s CC IT1 —
f*1* vf (.1 r-.
-n -Q — . — , _.
" S! it S §
rsj S O — i
^j _* — — r i

~_ -T S S § R
— —  i/- r-»
^ \C* f^CO
CO £• in rv*
" "*
tn •* IT-. CT- ^T f^- !
S 2 ;.2^2j
;
— OC * C ^
— ^ ^ cc c ;
J" ^-" •. t3
E V, c
C 0 M
4- n -H M
K O 4-i 4-i
>, 'H C !C
V. 4-J N CJ
J- N — i — l 1
1 £* | ^ § ?
75 ? ^ 2 ?



J ± p" L. "" 71 i
C •-• •" C t. -H 3£
'i .^i J^ J! >^
£ ^ :S « ^ 5 i ^
26

-------
c
•H


O
^
4J
flj
M
01
a
•H i
o 1
G 1
•H I
i
o ;
00 I
*o
3
t~H '
w :

J2 i
4J
•H i
3 :
E •

CJ !
4J '

w '

E>t
tn

0)
DO
T)
3
i
CO
•a
(U
4J i
n)
>
•H
11
*J
CJ
a)

O

0) •
4J *-i
o
V*
O n)
iw at
b
CO CB
C C
0) i-t
S «
01 4->
H C
•H 3
3 0
cr- g
0» H
Id cu
^
!* C
00 -H
M
01 01
C J2
W 4->
fsf r*i O -3"
I r-^ccr^*» in 10 u-1 — — 3 O
• ^-< r-. oc Cf\ —• IN — f-m ^Qtoch— •—'—'—"

_7
™ — < DM
c; "•* '•"*
« A &

1 ! a "i •?
J ' -3 x 3
j •- ^= 2 £


1 ~ -5 S -j —
' [ II 3 — i bo -- <
u & it 6
I H B » _
[ Q -H 0 O O
[ 1- U O ^ ^1
1
1 1 . - l_ ! O '^ O "-•
j 1 x ~ : .= S, ; 25^-
: • 3. : >. ; ; £ - - : -i" - i
i i £ : * ? 1 * ' :
ic' 2-^ ."^i 0 OOOOOO Oji^ OOCO 0
^ | ^ , ijx g --s-gs S- S -SSS S
j S -dj g -«sf|S 33 S -SSS R
i .. C u — O — --T 1^1
1 ' ^ — " >, r".A05^.
I * • -T -.H <^ • g? sO m
i i - " • Si — - '
i i • . :• .r — " • a: -3-
» — - C c ! ™ - " '
' 5t • .-^ f ' X ~ -
- e - r ? • • _
• ' r-, ' — "Z ' "u1 "^ •"'OOOOO o -' *— : OOOO O
• "; ' ^3 3 ! ' 5' X ! 5 '•" « 0 r- C ^" r^ - C f^ 0 * rw —
j frt! iT I! **^ O -TOCQOvCO --.-— f^-tr-vjul ^O
j.. £ I a> - - . ^--.-- --T" .......
£• ^ , "r1 "5 ^ -- r-. T- 
" ^ ) w t- 5 u-, ^as^^inc—1 IAVT^T -*
^ 14-i-"1) „, .-t oc —< oJ
1 '71 ' ' » c x. ' O'-"^"^
S ^ 1 •/• ' — - ^ ' X — f-J ?M
I ."." ' ^ ' -j •" -^ ' ac "J "-•
' = 1 : :*?!"»•='
• ^ >r.*'t
1 2 o ' =-^i >". - ' = ~-- = = SS =SH 2 = = S 2
i 3 _: "§•!;••—•?; 5 -^ 5 K « S S ^ "t "1 * * ~ ^ ^.
H & Stifl 2 ""-'"d-o'g"* °-*3 s SiCS S
t; i " "
-1* .= u( O^-I^
i ~ ' .„ J . -j S, ; -t c — -c

' ? ; _ ' i ';-•"=' '"."''".
: | ! 1 : 5 (j : ~ s = ':
:*! '. i 1-3 j i > fc! § £5|S|| e! 1 £S|| £
3,o, a- [ r .- ^ i * i <^ '"• ^'^c '"_,. ' * -
>. j ^js-ej; 2" """ rings' -;s ;? s"5:^! s
" ! 1 _r g " i £ :; * 2
1 ^-k i ^ 1 "T| — ^ | -•: "J ^
. "-> . -3 , S . ," _ - .
: ; S : g f '; £ == :
' i "". • -5 '- ' i £• S. i ^ § § § § — S 'r- i S S ~s t~ sr
: :<=. 5-: s~-i! •' *--*-<==. ".c. -. =^"-x.
. . . A . -, j 3 • ..; .,; _ - ^ L- - -« r- r- " ^
, liK'"^j| -- -T - rM
! ! ! -
i ic..1  -' - • "
5 ! = z "S : "
! ' S* ' M ^ ' ^1 ^ '
' c: i iT ~ '
; = ; 1 '3 '- 1 f • > '• i •; i H s § = s 2 ^ ^ 5 *. ? £
: = : s- ; :; ^^ ; -^ -^ '-, ^-^^^ x -. x. ^1"*.^ .
> | K j ~ "^ "5 — " c ^i ce ^ ^ ^ "T H' ^' —



j
1 "
i . _ r ^
;i ; . «,! il-^'L , J
'I 'T1"^ ^^'"^-^''LT -*-j!c *T
l| ! f= '2. 4 i" c "c e W w: »• c^-1 ^
1 1 c » S E u, ~ 0 a - — u c - -u c-
• | -.W -si— rtSxi'O'l/O ~jiCi- «i
•1 ._( ij o a. c t- ^ — i •'-> 'ii r r ti -^ c, -^ r: -H
! 1 .j ^ 1 Ci ;-, -j *. - tJ O i/i 1 il/ >. E — -•-"- ^

m »r
CO CC
I J^





J
3







3C ^
3C O
y. ,e
~" !
i
?, * •
r-^ — '
- _f
IS
iA O
ST J






CC CC
^ £

•"• «
-•J
f^l CC
— " •
1
•c ;£ !
-.T • ,
* "1 i
• ^ 1

o ^

r" •«


5c: -J
"T 7-

oc t^
_-» .,


:; ?
ri
i"
OJ t.rt
-t C


3v ' -
2 r^

J




.;
j:
•/•.
CC rj- £
.55 ;i
jj -^ ^j
n i "
^ .c, 'J
                                                 •-  'z  r.  •.  r. ^    c^---i-~3   ~

                                                 i  ?  E ^'  C  -  i -  ^ ^  S 5   ~.
 01
i—I
Xi
 CO
                                                                                   v.    - ~ < •-• -
                                                                       27

-------
  M
  Q>
  4J
  0)


  CO
  fl
  3
  l-i
  CO

 "S
  O
  O
  0)
  CO
 0)
 o
 c
 CO
 •H  Q)
 CO .C
 (j  jj
 u  us
 I   0)
                                            c   ooc   oc   o c
                                            C   --n CO C   O C   O C
                                            0-   ,f o X   '^o-   O O
 u
 •H  C
 0) -H
 >>  flj
                I  i  "j  il'-    ':"
                     -
                                                ooc    c= c
                                                            -
U-l   >-l
 o   ^
 3  en
 cr
 QJ  4J
M  C
 0)   QJ
 C   M
                   j  o      cr
                                                    : =    55:    55


                                                    • o    X rT    ^ —
 eo
•H
                                                 "
                                                              28

-------
w
OJ

4.1


•H
<*-!

"S

M



Q
tH
W
4J
,_J
3

e
j i
CD
05
C
0

4J
ct)
n
cd


0)
-a
c!
0!
4J
X
01
c
CO
,
O

en
c
at
C
o
t
o
u
M
O
MH

CO
rement
•H
3
CT
a»

60
j^
HI
C
w

*
ro


a>
r-l

















|






1



i






B
tn
*-> i
ai
x;
"^
y_i
o
CO
4)
VJ
C8
•S
cd
c
2
5
a)
£
-H
> £
5 ME
= V. 51
~ ^: 3


2
n
•C >; *
~C * E
e i. ui
CJ 1-.
°  uj a
; £ 5
' u ; ;
1 ~ ' r.
i 3 , . ^
I £ ! ~z. Si
• ^ ^ cH £
| | u- '. C •—

. Jj1 !
i "T" •
] 
! 1 *!
! !s" 11
! '• ~~ \ ^




1




.2 ?
; s s
1 * ^

1 °
• *


















m
s
u.

1
j;

-
-.


•u



" >,
2^
*j -*
3 x
« "^

X
* u
^1

= L.
-2 ^
^ 3
X =
S-t1
?l
*J
; >
~ '!•
^ £

& .>•

il X

--H ^**
yl CO
>! L|
"M *?

c ^
^
"u "5
— -^














X

1 1111







l£ -H

O 'J

-
Z "'j
s *





c; cr * ^ c;
C J- — >^ 0
r-» i." OC •£ O
°° "' 5




O o d; O O
ro — f-. \-. Q
r-T




0 O O C5 0
3^ — -T -^ S
~~




1. fill

X — —



Q 0 O O C
( OC -"» 03 O C
rt 1--I .- LA


S ^ S E S
— „ c r.^
" ^-

i

V
c *J
s ? j ?
; £ -- ^ <
; £ P: t -L

>. di ^ O
^ i- t ~ e

% '£ w 'p J .^

-- • f^ 3 U r^
3; ••'j 3; i_) C^ VH
tfl I. Cf
* — •= *

J, Cl^ i^*^ J>'


S ~ s -" r O iib
a. c- PC is
UJ U- — j— — «
r- &c o .rj1
x c — c 3. . t- --.
JJ-H-O O^ux: t£

j- ™ ..« n •- a s ^ —

4-. •- dj a. n — H

^ E ^ L. 71 ? ° ° Sc
3: 5 -g ^ "" t) "C « o" »
2^^^:^=^^^; 2
•-J
j^, tA
rj *'"'


£ ^ R ^ 5
J ^ gT^ i
*» ?; ^
E E



3 g Rg 3
O .
•- -j~ a at
g j. u 5i t

l) *-J C C
tl "" , u

T3 g u •*- Es O 1
S U ™ C --I 0 i-
2 £ u! "S i w x
£ 5 0 ^
O -T
j~>
5 ^"^


5
^*

. r^j ;?-



C
LA
M

!"•» CD "-*
» sj fl


o
-

r^. S -\
~ ~ —


u-



c--:-

^


, — < .
-T








~ G
c j<: a.
S|£g
•11 oa i -H
H Df . C -•-»

00 >, 3 C
"B a * 5

















_
'~^
~-


5
^*

X



?
f".


r^i'


^
-"

-



s



~J

m


-- .
^











"(••
o
V-
J3
1/1
29

-------
*•*
CJ '.
O ••
1-1 !•
0) :; j
03 II §
03 |l
4J )'
C
(U
s
co ! : • = u
QJ , J. i — j; _>••
M ^ ' - — * ~
u - ' t s| • :'is
•S = • : = i:H .xs
S i: ;o; I'.^i
1-1 !' , i ~ ~*
^^ ' ' - = U
§ :: • - J'^t
U . &i II "**
trt o ! c -~ . „• i.
M > - - | .j £•?
vi - "" « t 'i
!-i '3 "
•H jj ! 1 . ._• C f
^^ ~ i i "-1 ] •!. ""* ~~
] C -3 .•.£;£— u
4J E ' ^ * ? 1 ' ^ *
to i ? i °. ! = - : , > t,
n ;: £ : - : ~ I ' i-s^
S' ' u • ' " w kj 5
• ' -. ' ' Z,
o i! - : ,.
-t 3 : ,:--SS.
m !iy: ; . S ; .^S ^
«*-! • :'d'|'??'™J! =
O < i: , i c ;
M : "3 , ^ £'=:.'> i
ffl & ^ • •" c" ' ^ 'H ^c
(2 
U «0 [ "- iS '5 • • "' S.
a) i i ° r • i 'C •;
to M II t « ! w t »
o to ; j " •*
"^ (- i 1 ' "'•?!-

W -H ' ' -, F i ^ - •=
4Jnj : M > e ! is - ;
C -M ; £ Z i \ * "
S! C • • £ S r ' , >' v.
63 • • u: i- I v .^ ^.
 -.7OO"^ OOO i •«
^ — « r- O tNl sOO-^T •-<
•*" CO -* r~- -H DC
i-- ec ^r ?o
c <~
fM r^


5 ;;55oa: OOO -5
~ " ** S £ 22%
rj fj — r-.j
o O
^


O oooc OOc «:
O -^ O O i."i tNOO *^
"•• 3) ^ a ffv rs-co -T
— • r- 
'JO ^ L 3 O, — • U •*--: ^t
*-* 1^ E fitUO ^-« -H-p"'-
^.i-rH^fitj [_. -oca. T3T;
3 	 "Ctj. ^ 0
""
*~- * ^ '^. *T sj-
" S- "~- S *7 ^
^ ^ -^ ..-« ^ ,rt
s rt g r: ^ i |

•X ^ o-, 30 QC 00
s- 5. 2 ~ - -
? S £* ^ ^ ?J
^* ^*  e^
rn f^ i/" r^i !"•> t^. |


"j r-+ CN ^7 -.) ..-i
5 ^P™ X C^ 5
vj u^ r" — r-t [
000 p 0 C |
r» ^ ^. -^ i 	 j
[
I
•X) X CO X CO X [
•7* ^.f ~T — i ^ ,C \
^ GC i-N 5s -1 ^
^•J CW •* •— •
_- _ r-\ _ _ «i
— i _ _* ^J — (
'
-< -a- vj iy, c-J e^i
ceT oq" ~$ -o" fjT iX^
 i ft.
"•=• "3 -Li X s.. efl *O fl> 8)"
4) ••- i_l OC C tJ -H U DC
t-.-ic-a *-» — * — i c -a
C :/5 :.j or -, „ :/i cj pfi
< w -


30

-------
43  tO
T3
0> 0) i
5 42
O *•*
r-l <4-l
0 O
tO
U 01
ca cd ;
1— i
a c
*H
4J (fl
S£
a a
4J O
flj £3
(U t-i
M 0)
C
>-i -H
0)
4J 01
to .c:

Or)
j j rj
W •!-! :
CO

0)
frrt •
cd o
6 0
•r-l r-l
M
a, g
rd 01
j 1
M-l CD
O £** ,
03
en :
4-1 4-1
c n
o) 
3 rH
CT'H
a) M-I
Vi C
fj^
00 ^
VJ -r-l
a> a,
C tO
W Vi


in
1-1
a)
r^
cd
H






















I >*
] -ti
i ™
• ^


i =
*•


1 ^
; i
|
3
> >t
\ ->
j .„
™
—
1


i






I





i
|
|
|







j






y-
= ;
I • « "-
$ • r :.:
: - S
; n , ~
i^ '.^

! - E u ! o

-C j X S !*. ^ ^ ' -C
E v< 41 . *•
-
o c ~^ . i- o o C- o o o o .-."; o
* UJ3 (j21:>s '•-* ^ ™ " 00 cJ\ ' - iT> r^vo
U 'C J* CO — O — 'S
- c u c>
J ' 0 12 -;..' 03
»1 . r ' (^ — - jj -^"
ol: w e . |f cc I
S , ^ ^
u u ,
^ ' -2 '^. ' ] ^ >, r- S x 5- ^ 5- r^ ^ ic
"*•• , tr ; „- .^ -^. a- •? Q .r ^ o "* ' - c
J. ™ .- "5 ', ~* — ' • ^ — .7- - "-
, — k- ^ i- ' f-
. = ^ ' —

" • s ™ ""-
•3 1 >, i . — ~" •— —
iC -^ £ , JZ ™ .
£ — 1

•- ! ~ ' r .t^ 	 • " *•' -^ sc •* ~ -r ~~
2£ ^ •,« ^ , ~ ~'*^r_ " •>?
ii ~* ' ~
r : ^ r: j
1; ?l : £s^ :
'"- 1 '= ^ .' >• S, : § S g = 3 = g ~ g
C! ~ 1 ^ -. '"^ , ~' ", "^ ~T ""„ ^'. '. ~~" m-i
•£ ' ~ ^ "> ' T — •" .« C — "i
, , IM ^d >"•• •-"
; a 4 1 ^ : -
? ,= ^ ^' ^
lc ^ ^ *" j: ^
- C 5 ' u 0 0 0 .0 0 .^ • - 0 -A

EC ' £J .H S "1  •*>
c: 1 ^ ^ - i
-0 ^J |i — .H ^
s? w S ^
G 4* i-

O UJ = ; 1 £, > C -^ O >C <-l iri -T "-• ^1

36 ^ .- 3 - — - * -
-j ;
^
i *^
! T3 a:
; o
r: "tr
-j Z C -^
1 ? *~ -E i-
! - '^ fi c ^ &c 6
! v •- ^ ^ w c -^ Ij
1 ^ £• .'' _[, r j; ^, ? 7
z"^ ' ^ - •— TE « c^i^
,£ i ^"^-Es'-S ^ e.^"-*
- .- ; •- i >-' 2 « e ^ " -j j= "
-,- , ^TU.3-_LT. "-i— 73 ?- ^
-r | t - - .^ e as -— scij
=.,_ I^^E^i^^se-^^^-c
i — ^ 3 k- e i e i^-^
0- 3 "- 3S '»J :J -^ -C T5 O _0t T T
' " ^ r-. a. y: a. u. r • <
••c o^ y











— < ac -.t f*~- oo — «
"' P"t — S ^ 3^
— T r-~ •£:
1

a^ oo M ;•-
~*. :C;
L ^c S *  ^ — ^ .
i.~ •-j 31 !
^ •
.* .- - ^ " ^J
-.'• — si? ™" CT1 ,
": w- ~t 5s
— —
X -T '"? '••
•N ^' s£
— "
• - •».
fj X « X C X
-
--r u-- 5s [
— "-?, ""T "1
^j ^

" . i- j , ii- ac f^i
c -, _ —

^4 ^. x» C-J

."

{vj m i£j r*. 00 u^
X "" — I "** — ^



r ~j a-- r-

-; -H -.
~




tl
T.
i/:

"^ i4 iC =
w _^ ^ ri
^ L ^ — ^
v - -^ ^ 5 ^
^ i_ " „ ~" ^ H
a: i — r:- ec *x
t; =' - c - •- =
'>^^ -4 ^ ^ ? -
= = - J -E e5 £ «
C H

                                31

-------
 e
•H
•a
 ai
 o
 o
00 -
c : '
I i :,
w ; : £
3 | «?
n ^

T3
c
CD
^J i
! "5
§ i |5


« ' ' - :
VJ '• - :
4-1 ' ft .
•H : : - . -s

*c '• i =
*rH . ~

"O : 5- '
•r-l v. '
a • • ; •
2 • ? •
•w : 1' *
O ;. 3 ; "

(D . • ; = ; =
4-1 ^J • ""
C to : : r •
(y I""} . . "i
c i =• ;
o . a;
if- E
^ U
OC

U3
LJ
a
IM OJ
C --<
~ o-
•y


VJ
^ s.

II
P"
12

i
si
i £

r



^
^
OC 1
(U L.
^ =.
01
PC

tt
c
so e
i-. o
S u
w P
D£




-C h
|S>;
U *J -^
* '" X-
^•c ji
C L
- ° >.
% '- """
JT " '
1 * S.


2-p
B c ^
"i •- -?1
.'. — ^
5" ^
i >, ;;
i -- ^:
- 'u 2
- = _
I f i'
S =


£ -- 5

i •"
£
— ^ >,
!)_"*-•
•£ *
i. S^.

^ L. i
-"-L>-
1 ^ "B
•s ^
^
^ *y !=
S "^ 3
w ^



Jt.-
:T'
§O O.O O C ^
^ "• O O » <^
^- 11*1 00 O *•" -~t t*-
% -"°o^ ^f
•TO X £, —
^* — r
''7


3 C O O C5 O OO
-3 irt QC O *** ~* •"•!
•JN -.t O O ~-t ^J ^

" — r.. ^ — ,j 3^ — •
-™i CO vj
r-



3 C J, O ,5 2 JS
-t :~ *£ C? f 5 ^
j, • - - r d t^ •"
— .0 X
.-
'-'

^> ~ " O -^ -3 *

-j b •" o c^ -t -i
o" — " -^ o" -T" — "


•t


O O O O O *•* -1
oC -•• CO o C ac -4-

PSl (^
'X


O LT- O O u"i — (T.
° -1 S. S. S. ~ 2
^^ "^ f*1 ^




                                                                 11
                                ^   >N i. I a.


                                u  t c .- c i

                                i  * E "" 'E T
 ca
H
                           32

-------
 01
fi
 c
•H
"D
 -i
 6   tfi

 )-i   C
•H  -H

 cr 4J
 0)   C
 ^   3

 X  i
 60  M
 J-l   flj

 C   C
U  •!-)
                                             Q   C «1 5  0£    O C
                                             -T   "I ^ C!  M    "I O
:-5
                                      >•  ,

                                      ~5  ;
 OJ
rH
J2

E-i
                                                      33

-------
4J
CO
S*» i
CO 1
*•" i
cu "
4J =
H I
*^4 -
IH 1 "
-a j
C !
m
CO :
4J : !
C '•' '• \ c ..
cu • ;*.:*£.
4-1 - ' ' j " 1 ;; ~ ~^

S (• .' t ^ i ^£
r . ' ' = 1 = •- ! i =; '-
(•I , : • ••* = ! •- 5 *.
cu • • : "" r • Z - 5
4j i ; ! a. a x i
c !: | s-
t ' : : *\ -t*.
C . : | £ ! s = "3
O 1 1 "O - >1 ^ 1 ^ ^J ^
0 . f : ?§ ! *""
s? i e"iiiii-*s.
rH 1 > " 1 S" ' S - 5
i-. ,' OS M ij 3
cu : = • t-
^ ' C ' fc c i_
•H ' J 2 i « •- •*'
*J | E i S - =
« : i 5 -= §• a ; fc ~ i
ii : ; g 6 : t •: ;
>H • . -1 0 = -M | , t,
** ^ , ; •: - ; u 3 ^ >• >.
0 W ' [ 2 ' " ' ? : - - ^
rfl S ' ^ i ^ : <" - "5
"? ^^ . ! , , i_ ^
*4-l 1 ^ 1 i ^
a) : ^ ! : . = *
_f i— 1 K y ™l O >.
ra J3 '3 ' . ; «i -H -C
4-J E • = 3 - ^
I, .^~- >3J,t-^j
"-1 • : --• i : =c E : = «=
ot-i -5 s;ii'
O -A C '" ] 1 .- ^
ml — * W " , O •** >>
L C CJ cf " "^ --v.
S S !-' j -^!
(U 1-1 i T • .
CS n) i 5 , [ . c i.
o i • F • ' ° o - -c
& « . : :j : .. >.. r : £ - f
C T-l , . . i , I' E . - =0
0  • LL. ~~~ ^
c c , i > r £ j £ x
a> -H n : a £ ^
S • • r e - . _i .. ^
oj cu . . ; _• : J- ; _a - -~

^•^ ii 1"! «'2.i"3
•*j ' * i LI ^
g w 1 1 ! ; i
IT C :
cu -H ;
M j
13 :
>s 01 !
00 4J ;
H « •:
01 O
C O i
w ^ !



* ' ' " O
0° i! ^ ^
^J -1 .i.
^ :: §•>.
<1) •!
iH i •
jQ

-»
— ^ m 30 oo
A A.i A A


r?

(|
s
H
•
^ i £
r-J ^ r-.j
1*
"

O O O ^ C »C s£
3 in f-t — o -N -NI
"-- — ' i.-i — i i.-\ "* ^
\C ^ o% — O ™ ' 01
00 -T s* 0 X OC
(*•' -T 

tn — j=
3C  ^n !n


r ?
i ^j
— • y.
w M: "~" ^- >,
c 2 i? rj ^ _
•;.EG££ ^^^
l v- -^ r _c ~ .r E
i. *- C C ?S •" ^
r c u >•. ^ £ ^
-«lf-i-» t_ ±:Ot-
00 4.1 *J >, K! — 1 H
. !C ^ y k- ^ p] OC- ^
?"fcl^er-' ^— -
j x |- c — '" K TJ-T; Z
, ? w in a. -y; ^a ^, -H -H —i
flJC-" 3 a D ^ S
ctt-Q i/J^:cQa: t-j
34

-------
 61)

 •H
 tn
 03
 CD
 o
 o
 en
 «'
 c
 CD
to
0)   •
*j en
u
 g«
 0) U-i
 4-1  O
 tt>
 CO  CO
 S  a>

 "Cl  CO
 0)
 U  C
 C -H

 > 4J
 T)  C
 CO  3
    O
 e  E
    OJ
^1 j  I ,t
 o  c
   •H
 to
 4-1  
-------
 c
  -" ~-" !  ^ •—   ;< x r-x   a   c;

  cc '  ^u ,i 3 !  -c -T   -r V —   *c   c
 QJ
 3
 CT
 O)
 c
 ai
 c
 o
 D.

 O
 O
 C!
 cu

 (U
 14
•H
 >-. W
 Mj tJ
 M  C
 0)  «
 c:  --H
u  a.
o
CM

                                       36

-------
system applicable to the treatment of small flows of wastewater.  For
combinations not shown in the tables, energy requirements can be calcu-
lated using the equations in Appendix A.
Carbon and Ion Exchange Regeneration

     Energy requirements for the regeneration of carbon and ion ex-
change materials for very low flow systems (0.05 -0.1 mgd) are shown
in Tables 12, 19, and 20 only for comparative purposes.  In most cases
activated carbon would be replaced rather than regenerated and the
energy requirements would be reduced accordingly.  The regeneration of
ion exchange resins would probably be justified, but depending upon
local conditions it may be less expensive to replace ion exchange resins
on a fixed schedule rather than to regenerate them.

     Energy requirements for carbon regeneration represent less than
3 percent of the electricity and 94 percent of the fuel consumed in
the components of an advanced treatment system following secondary
treatment at a flow rate of 5 mgd.  At a flow rate of 0.05 mgd, the
energy requirements for carbon regeneration have been reduced to 2
percent of the electricity and 57 percent of the fuel requirements.
However, the inconvenience of operating additional equipment and the
need for highly skilled operation would probably rule out the use of
carbon regeneration at very small (< 0.5 mgd) wastewater treatment
systems.
Gas Utilization

     Although the energy required and produced by gas utilization is
presented in the examples summarized in Tables 8, 9, and 10, gas utiliza-
tion in small flow systems, particularly at the lower flow rates of less
than 0.5 mgd, may not be advisable.   The increased operating expense
caused by the need for a more skilled operator and more sophisticated
equipment will likely offset any savings from gas utilization.  However,
this is a decision that must be made on an individual basis.
Effluent Quality and Energy Requirements

     Table 21 shows the expected effluent quality and the energy
requirements for various combinations of the operations and processes
shown in Figures 2 through 12 and Tables 8 through 20.  Energy require-
ments and effluent quality are not directly related.  Utilizing facul-
tative lagoons and land application techniques, it is possible to ob-
tain an excellent quality effluent and expend small quantities of energy.
Although one system may be more energy efficient, the selection of a
wastewater treatment facility must be based upon a complete economic
analysis.  However, with rising energy costs, energy requirements are
assuming a greater proportion of the annual cost of operating a waste-
water treatment facility, and it is likely that energy costs will
                                   37

-------

n
w
0
tu
c
to
o
W
"c
CO
4J
effluent qual
•X3
11
4J
O
a
w
^
CN
0)
J3
CO
E-*






*
<
C/3
3
(U
U-l
0
to :
(U
CO
C
•H
B intermounta
.c
•H
"3
3
0
CO
c
CO j
er treatment p
cd
0)
t»
co ;
S i






8

"-
•ir-
.-• L £
• ~ ~
r r
1 '~*-
• • i >
1111!
i j;;
i^il
; 1 j * i
™ • . s^
: i f =
l'"i
- £ • , ^
i-'H
'•r.
6-,'~ ~




§
1
i
£


>.
^ £
^ i 2 c
• ^ j i
"•:. T * •*
an r x
> : -•. > 5
lit!
-J 7 5 i
*•
t: i S S
2: ;; § ;
i 4 I J
^' 1 i 1
| *' 5 ?
!*' = ="
** U- —
^- 1 *>-. ~-~ a:
^
t' S S £
^ i 5 a
i. ;; =: ;
|:s 1 s
1
5 = y
c -=
i * ^
' - "* =
1 1 1


s ;ll



•j




'r.



-

c-
X

^x
_


H
"
r


-"
-

•r, ., i
> V '' ••
: -j; .« L,
.!' «j 13 U ^3
L, J ,, ,
.; ^ ^ ^ J,
' .=
-
f =
!. J-
; 5
1 -
S i
.! £
'. i
i; §
—
y
' -T
f j^
1 t


=
i






< £
;: .
" (




*• :

- .

•- -
"t '
S |
•?! -
S:
"
SS
•

•3
m
i:
V,
JS
3
-
5"
ii

- . ^ -. T _•
i »^*i
J JIH
- ;» :T • •: :: ^ ^ | ,^
•c _ — i... ,-, '" ?_
i -= t : 2 = s 2 = .-
— —•-"-' 0-
£ * jj* • . •» x ••*• •» s u
^xar-'fij^^-xi
:-. .
ss-s: cs±3OO-i
l;?r ^Ziss;!
s =• i • a ; * - •' •;
5'j^^Sc^^oo
H'l,:

- = o . , -2"t ;
i
j £|
* 1. *.^ •* "
?i rll
5 fc 5 "• 5 . *
C 1- •« C — *J
IS Ifi (ft T3 ^ O H
=!31*li 1
a 11 !L E ~ -rt 1. -J
eCu9,4l>H> R
it: g >-• .2 *«  0 < b. -rl
f WJ-" B. "9*0 >«V*D
^2"i-5t^T""5«
J<— WC>> — TJ >

38

-------
become the predominant factor in the selection of small flow treatment
systems.  Operation and maintenance requirements, and consequently costs,
are frequently kept to a minimum at small installations because of the
limited resources and operator skills normally available.  This favors
the selection of systems employing units with low energy requirements.
It is very likely that all future wastewater treatment systems at small
installations in isolated areas will be designed employing low energy
consuming units and simple operation and maintenance.  The only exceptions
to this will be in areas with limited space or construction materials, or
where surplus energy is available.

     The effluent quality expected with each of the treatment systems and
the energy requirements shown in Table 21 are presented in the order of
decreasing 6005 concentration in the effluent.  The other parameters
(suspended solids, Total P, and Total N) do not necessarily decrease in
the same manner because most treatment facilities are designed to remove
8005, but in general there is a trend in overall improvement in effluent
quality as one reads down the table.  As shown in Table 21, there are
many systems available to produce an effluent that will satisfy EPA
secondary or advanced effluent standards; however, energy requirements
for the various systems are varied and can differ by a factor of greater
than 20 to produce the same quality effluent.

     For purposes of comparison the total energy (electricity plus fuel:
3,413 Btu/kwh) for a typical 1 mgd system has been extracted from Table 21
and listed in Table 22 in order of increasing energy requirements.  It is
quite apparent from Table 22 that increasing energy expenditures do not
necessarily produce increasing water quality benefits.  The four systems
at the top of the list, requiring the least energy, produce effluents
comparable to the bottom four that require the most.  Three of the top
four are land treatment systems, and their adoption will depend on local
site conditions.  The facultative pond followed by intermittent sand
filter and surface discharge to receiving waters is less constrained by
local soil and groundwater conditions.
Conventional Versus Land Treatment

     A comparison of the energy requirements for a conventional waste-
water treatment system consisting of a trickling filter system followed
by nitrogen removal, granular media filtration and disinfection with a
facultative pond followed by overland flow and disinfection is shown in
Figure 13.  This comparison is made because of the approximately equivalent
quality effluents produced by the two systems (Table 21).  The relation-
ships in Figure 13 clearly show that there are significant electricity
and fuel savings with the land application system.  Similar comparisons
for modifications of the two systems can be made by referring to Tables
8, 17, and 20 and selecting combinations to produce equivalent effluents.

     Figure 14 shows a comparison of the energy requirements for an
activated sludge plant producing a nitrified effluent, followed by
                                    39

-------
       1100 -
                       Trickling Filter
                       Nitrogen  Removal
                       (Ion Exchange)
                       Granular Media Filt.
                       (Gravity)
                       Disinfection
                                                   Facultative Pond
                                                   Overland  Flow
                                                   (Flooding)
   ui
Figure 13.
                   FLOW  RATE, MOD
Comparison of  energy requirements for  trickling filter ef-
fluent  treated for nitrogen removal and  filtered versus
facultative  pond  effluent followed by  overland flow
treatment.
                                    40

-------
      2400
72
 x
 w
 >>
 X.
 .c
 *
 Jtf

 (/5
 I-
 Z
 UJ
 2
 UJ
 a
 ID
 a
 UJ
 a:
 a

 IT
 H
 O
 UJ

 UJ
       2100
       I8OO
       1500
       1200
        900
        600
        300
Activated Sludge     ">


Nitrification


Granular Media Filtration

(Gravity)


Disinfection
Figure 14.
                             FLOW  RATE, MGD

          Comparison  of  energy requirements  for activated sludge.
          nitrification,  filtration and disinfection versus facultative
          pond effluent  followed by rapid  infiltration and primary
          treatment followed by rapid infiltration.

-------
Table  22.  Total annual energy for typical 1 mgd system (electrical plus
           fuel, expressed as 1000 kwh/yr).

Treatment system
Rapid infiltration (facultative pond)
Slow rate, ridge 4 furrow (fac. pond)
Overland flow (facultative pond)
Facultative pond 4 intern, filter
Facultative pond 4 microscreens
Aerated pond + intern, filter
Extended aeration 4 sludge drying
Extended aeration 4 interm. filter
Trickling filter 4- anaerobic digestion
RBC 4- anaerobic digestion
Trickling filter 4- gravity filtration
Trickling filter 4- N removal 4 filter
Activated sludge 4- anaerobic digestion
Activated sludge 4 an. dig. 4 filter
Activated sludge 4- nitrification 4 filter
Activated sludge 4 sludge incineration
Activated sludge 4 AWT
Physical chemical advanced secondary
Effluent quality
BOD
5
1
5
15
30
15
20
15
30
30
20
20
20
15
15
20
<10
30
SS P
1 2
1 0.1
5 5
15
30
15
20
15
30
30
10
10
20
10
10
20
5 <1
10 1
N
10
3
3
10
15
20
-
-
-
-
-
5
-
-
-
-
<1
—
Energy
1000
kwh/yr
150
181
226
241
281
506
683
708
783
794
805
838
889
911
1,051
1,440
3,809
4,464
granular media filtration and disinfection; a facultative pond followed
by rapid infiltration land treatment, and primary treatment followed by
rapid  infiltration land treatment is the most energy-efficient waste-
water treatment system, but it is closely followed in energy efficiency
by the primary treatment and rapid infiltration system.  The energy
requirements for both of the rapid infiltration land treatment alter-
natives are less than 15 percent of the energy required for the activated
sludge system.

     In Figure 15, energy requirements for slow rate land application
systems using ridge and furrow and center pivot systems  to  distribute
facultative pond effluent are compared with the energy requirements for
an activated sludge plant practicing nitrogen and phosphorus removal,
granular media filtration of the effluent, and disinfection prior to
discharge.  Both the activated sludge and advanced treatment system and
the facultative pond and slow rate systems produce approximately equiva-
lent quality effluents.  The ridge and furrow flooding technique of land
treatment requires less than 5 percent of the energy required by the
advanced treatment scheme.  Utilizing a center pivot mechanism to distri-
bute the facultative pond effluent increases the energy requirements by a
                                   42

-------
     9600
     6400
  to
  b
   i- 7200
  to
  h-  6000
  z
  LU
  5
  LU
     4000
  LU
  (T
      360°
  O
  LU
  LU
      2400
      1200
                                                   Electricity-
    Activated Sludge
           +
    Nitrogen Removal
    (Ion Exchange)
           +
    Phosphorus  Removal
           +
    Granular Media Filtration
    (Gravity)
           +
    Disinfection
                                              Facultative  Pond
                                                     +
                                              Slow Rate Land Treatment
                          RidgeftFurrow -Flooding
                                                                        32
                                                                        28
   to
   b
                                                                        24
                                                                           00
                                                                           z
                                                                           O
20
                                                           16
                                                              LU
                                                              2
                                                              LU
                                                              
-------
factor of five compared with the ridge and furrow flooding technique, but
the energy requirements for the center pivot system are less than 11 per-
cent of the energy requirements for the advanced treatment system.

     In an energy conscious environment, the land application techniques
of treating wastewater have a distinct advantage over the more conven-
tional wastewater treatment systems.  When land is available at a reason-
able cost, the lower energy requirements for land application systems will
likely result in a more cost: effective as well as more energy effective
system of wastewater treatment.
                                    44

-------
                               CONCLUSIONS
     Based upon the results of the analyses presented in this report,  the
following conclusions are made.

     1.  With increasing energy costs,  energy consumption is assuming  a
         greater proportion of the annual cost of operating wastewater
         treatment facilities of all sizes, and because of this trend,
         it is likely that energy costs will become the predominant
         factor in the selection of cost-effective small-flow wastewater
         treatment systems.

     2.  Small-flow wastewater treatment systems are frequently designed
         to minimize operation and maintenance, and as energy costs
         increase, design engineers will tend to select low-energy-
         consuming systems.

     3.  Low-energy consuming wastewater treatment systems are generally
         easier to operate and maintain than energy intensive systems,
         making the low-energy-consuming systems even more attractive
         because of the desire to minimize highly skilled operation at
         small facilities.

     4.  Where suitable land and groundwater conditions exist, a facul-
         tative pond followed by rapid  infiltration is the most energy-
         efficient system described in  this report.

     5.  When surface discharge is necessary and impermeable soils exist,
         a facultative pond followed by overland flow is the second most
         energy-efficient system described in this report.

     6.  Facultative ponds, followed by slow or intermittent sand filters,
         are the fourth most energy-efficient systems discussed, and are
         not limited by local soil or groundwater conditions.

     7.  Physical-chemical advanced secondary treatment systems utilize
         the most energy of the conventional methods of producing an
         effluent meeting of federal secondary effluent standard of
         30 mg/1 of BOD,- and suspended  solids.

     8.  Slow rate land application systems following facultative ponds
         are more energy efficient than most forms of mechanical secondary
         treatment systems, while also  providing benefits of nutrient
         removal, recovery and reuse.

     9.  Advanced physical-chemical treatment following conventional
         secondary treatment consumes approximately 34 times as much
         electrical energy and 13 times as much fuel as slow rate land
         treatment to produce an equivalent effluent.
                                    45

-------
10.   Land application wastewater treatment  systems  following storage
     ponds (aerated or facultative),  preliminary treatment  (bar
     screens,  comminutors,  and grit removal),  or primary treatment
     are by far the most  energy-efficient  systems capable of
     producing secondary  effluent quality  or better.

11.   This study did not consider the energy requirements for produc-
     tion of all materials  consumed in the treatment  process, but it  is
     not believed that inclusion of such factors would significantly
     change the relative  ranking of the systems discussed.   Such
     inclusion would rather make the differences between simple
     biological processes and mechanical systems even more  dramatic.
                              46

-------
                                       APPENDIX  A
           EQUATIONS   DESCRIBING  ENERGY  REQUIREMENTS
          r.-H icm ,  PriH'i'Ss,  .mil hqu.il i m>  hfHtr-
          K.tw Scwagt- Puir.pinj?  (Const,ml  SpiM'tl)
          V -  I'lT.OOO  Xn'q '     T'lH  =  '.')0 :'t
          V  •  iri.OUO  X0'^     1DH  =  (.0 ft
          V -   (>l , KM)  X '"   ''     TilH  •  ill 't
          V r-   U),.-,iM  x"'"!     TDM.  -  !l> ft
          V -    c),6fi()  X " '""     l'[)H  -   > ft
          V = KU'Ctrical  Knerj'y Ki-ijui rr.i, kwlv'yi
1-.'       K.tw St'u'agp Puropins  (Vari-jbl-,1 Sp^i-d)
          h  * 69,000 X0'"*"      TOM -  HI ft
          V = .'4,!«) X°•'''''      TDti =  ::) t'L
          Y -1 inv80*> X  '  1      TDH =   • t't
          v - KlPitriro]  Kn*»rj>v  Krejui ri.-d, kwii/vi
                                                                       Dos ign Asm imp i i ens :
                                                                         (•'.! !>, ion-, U-i :-'E .1 i dvnami.   In.-.).-
                                                                       Typo  of  Knor.-.v Rt"]uiif.1:   • it-.-:t:..i:
                                                                       Di-sit::) As-iS'.i:;:i*C it-tin :
                                                                         Kl lit t on.- i *•.-> i i-r  tyi*i*;.i I  -'on! i  i t,
                                                                            puirpw  t"ir:irt*-s wirh  t :cw*
                                                                         Wound r.it.'ir vai* i;ib lr  spffH
                                                                         V/n*iiilf! o  I i-v« ! wot  w! '
                                                                       Ty;n-  ol  )MKM>',V lu-qn i r
"K.iw  >i-w.ii;t'  H-jn;)inf;  i\.^'ii^'--- S>it-t-.J:
v -  2:M),ono x°'SA     TDH  - !nu  f i
Y =  IV. 000 Xy"' "*     TOIL  =  ON  f i
Y -  V :<••-{. r i\-a 1  Kncr>;v Ht-i;i i t'f .: ,  '-.v'". v f
X -  Flow, raKd
l.iaie  S I lui.m- Puffspinj;
1-1.:  V    3.-*VSH   *• 0,;.'(;r:  i 1 nu X!  *  .J.r'iio fi.:.^
1 . n;  v     S . 1^8 i t- 0 ..•"].- i  ' ! • .•  -. '  *  • f .  L S ' .'  i I , •*:  \ 1 '
       - O.fl'jjJ (lot X)'  -  S.  ,i:-iti.-ir-,  K- I ' Lu-ii;  ,  J.ow
Y  -  », ill)  X	   n-i  lv,  mi-.d
                                                                                   n f'icii-fir ii-.s  i nr  typ* -M 1  \-rie ;-1 !.
                                                                                     purii1:-. i  V.E r LL.-;; w t E It : ' -'-^ -
                                                                                   Wound  r.>1  ii f  v:u i ;th lo r.LH-*-il
                                                                                   V.jrih It  it" •  i  we:  wi-! I
                                                                                 T'VI»' of  Knt'i's'.v  KtMjusrcii     I hvM !•
                                                                            L ro.l t Md1 IT ,  .II.1  J ';- ' ii I'  I iiW

                                                                         S 1 sjtlri*' * *MU t-nt i -it i>'fi-;,  I i-i i i
                                                                            E r\».i [:•:!.• 'it ,   i r.-  i'  r .• r  1 -u
                                                47

-------
   Figure
   Number
  From EPA
430/9-77-0U
Operation,  Process, and Equation Describing
             Energy Requirements-.
    3-6       Ferric Chloride Sludge Punplng
              log Y - 3.6192 * 0.8308 Cog X) 4 0.13b4 (log X)3
                    - 0.0356 (log  X)1 - Secondary  Effluent
              log V - 3.6051 + 0.8078 (..og X) + 0.1301 (log X)'
                    - 0.0047 (log  X)  - Ran Sevage
              Y  * Electrical Energy  Required, kwh/yr
              X  • Plant Capacity,  mgd
Design Conditions,  Assi.rapti*>ns  anil
           EffluLT.t  Q
                                                              Suspended  Solids   250         30
                                                              Phosphate  UK.  P       11,0        1.0
                                                            Water Qua lity:      Inf lu«?nt   Kt t luoru
                                                            (Tertiary)           (mg/i)     (rag/1)
                                                              Suspended  Solids     30         10
                                                              Phosphiite  -'is  P       11,0        1 .(t
                                                            Design Assuwptions:
                                                              TDH =  -!5  ft
                                                              SI udgij  concent r.ic ion (sefondn ry)~ J!.';
                                                              Sludgv  eom'ent'r.it i«n (t-i? rt iiirv)f I ~
                                                                                 t'errii Chlnrido nddition =  Br>
                                                                               Typi: of fcnergy  Required:  Kleilr
             Mechanically Cleaned  Screens
             log Y  =  3.0803 + 0.1838  (log X) - 0.0467  (log
                    +  0,0428 (log X)3
             Y - Electrical Energy Required, kwh/yr
             X - Flov,  mgd
    3-8      Conminutors
             log Y -  3.67O4 + 0.3493  I log X)  t 0.0437  (log X)'
                   +  0.0267 (log X)3
             Y « Electrical Energy Required,  kuh/yr
             X •= Flow,  mgd

    3-9      Grit Removal  (Aerated)
             log Y -  4.1229 + 0.1582  (log X)  + 0.1849  (log X)'
                   +  0.0927 (log X)3
             Y = Electrical Energy Required,  kwh/yr
             X - Plant  Capacity, ragd
                                                            Design A*si4TpCinn*;
                                                              Nomift I  run  t imes are  1.0 min E ot ;t 1
                                                                tira*.1  par  hr f>:t:ept i). 1 mgtt (5  min)
                                                                and  100 mgd <15 mir>;
                                                              Bar Spacing is V4 in
                                                              Wunn ««?ar drive,  502 ef f ii-ii-tK-y

                                                            Type of Energy  Required:  Kleitrii;il
                                                            Type ni Energy  Required:  Klei-trii';il
             Grit Removal  (non-Aerac«-d)
             Y = 530 X0-24
             Y - Electrical  Energy H( quired,  kwh/yr
             X * Plant Capacity, mgd
             Pre-Ai>rat ton
             log V - 4.5195 + 0.778!  ( Log. X)  + O.JfriS  (Jog  X)"
                   - 0,04<»6 (log X)
             Y = Klectric.'il  Energy Krquired,  kwh/yr
             X ~ Plant Capacity, mgc.
                                                            WiitL-r Quality:
                                                              R#IEIOVL| of 90'il oi  material with
                                                                spei-ific gravi ty  of gr«-;iter  th.i


                                                            Design Assumptions:
                                                              i'Tl 1  remov.-i 1  11- a  ho Iding  f ;n- i I i
                                                                by -i st- ruw  jti.mp
                                                              Size* based on :>  peaki ng t Tc-t nr «'
                                                              IX*tt*ni ion t in».j is  "i min
                                                              Tijnk design s Imi lar to t Itat by
                                                                Li:'.k-BoU,  I'MC Corp. .»r Ji-irn-
                                                            Oporaf hiji Pjiramct urs:
                                                              Air race of  i < fm  per toot ft  1«-
                                                              Removal equipment
                                                            Type o!  Energy  Required:  I U1* t rii

                                                            Water i,Ki,ility:
                                                              Re mo va 1. of 9 Q£ o f  ma ce r i a 1 w i t i i
                                                                spi'.1 it" i f gravity greater t hnn
                                                            Denign  Assumptions:
                                                              Crit  removal  t .>  ^  holding i,n'iLi
                                                                by  screw pump
                                                              Sizt-  b;ist'd on [icak ing i ,i%- toi  ol
                                                              Square tjnk


                                                                tittik  or  1  13i i  dftcnt i-'i'  E irm- .ii
                                                                •ivvr.tgf  t liiw
                                                              i)per.ttt* t*qnipnirnt  .'  hr <•.!*• it .i.iv
                                                           Type  i--1  KniT>;v  ri,'i[it i rrJ:   r'U , : r i
                                                            Opor.it ing f'-ir-im, tor:
                                                              Aur supply is  0«IS  en tc/.n-iJ
                                                            Type i-~  Lrt*.'r.i;y  Kt-qn 1 r>?d:  11 U-. E r i, 11
                                                        48

-------
   Figure
   Number
  From EPA
430/9-77-011
Operation,  Process,  and Equation Describing
             Energy Requirements
    3-12     Primary  Sedimentation

             log  Y  -  3.8564 -f- 0.3781  (log  X)  + 0.1880 (log X)2

                    +  0.0213 (log X)3  - Rectangular

             log  Y  -  3.8339 + 0.3362  (log  X)  + 0.0148 (log X)2

                    +  0.0081 (log X)3  - Circular

             Y -  Electrical Energy Required,  kwh/yr

             X -  Plant  Capacity, mgd
             Secondary Sedimentation

             log  Y  -  4,2149 * 0.6998  (log  X)  + 0.1184 (log X)2

                    -  0.0660 (log X)3  - Activated Sludge

             log  Y  =  3.8591 + 0.3349  (log  X)  + 0.0735 (log X)'
                    +  0.0238 (log X)3  - Trickling Filter
             Y  «  Electricity Required, kwh/yr

             X  -  Plant Capacity, tngd
Design Condi t tons*  Assumpi ions ,n
          Effluent  Quality
                                                                              Water Quality:
                                                                                                   Inl J uviit  't-i :  11.
                                                             Suspended Solids     2 JO

                                                           Design  Assumptions:
                                                             Sludge  pumping incloded
                                                             Scum  pumped by a lutigf [>un
                                                             Multiple tanks

                                                           Operating Parameters:
                                                             Loading = 1000 gpd/sq )"t
                                                             Waste rate = k*)°', of itw hi
                                                                5£  concerttr«it ion
                                                             Pumps operate 10 minutt's i

                                                           Type of Eiiergy Requirod :  '•
    3-14
             Chemical  Treatment Sedimentation Alum or Ferric Chloride
             log Y  =  3-5364 + 0.074')  (log  X)  + 0.0290 (Jog X)2
                    -  0.0144 (log X)J
                  Electrical Energy Required,  kwh/yr
                  PI ant  Capacity, m^d
             Chemical  Treat merit Sedimentation  Lime
             log Y  =  3.5144 + 0.0172  (log  X) + 0.0942 (log X)"

                    +  0.0905 (log X)3
             y - Klectrlcal Energy Required, kwh/yr
             X * Plant  Capacity, mgd
    3-16
             High R.ite  Trickling Filter  (Rock  Media)
                          0 94
             V = 61,300 X

             Y - Klectrlcal Energy Required, kwh/yr
             X - Pl;inc  Capacity, mgd
                                                                              Water Quality:
                                                                                       [mj-,
                                                             BODS                        :o
                                                             Suspended Sol IUH           .'0
                                                             (applicable tt1 -u-t ivritfd sUnlgi
                                                                cem ertlueiic quality v.ui.il>l«-
                                                                trickling r'ilci'r svsit'n-.s)
                                                           Design  Assumptions:
                                                             Secondary scdimentai im) i iir i-i'siv
                                                                tional  act i v.'itod « 1 uvi^c  nu- tiut
                                                                return  ;md  Wclrtte o.'t i v.u fit  s 1 u
                                                             Secondary sediment at HMI for c r i t'
                                                                fitter  system  iucl i»l**rt w^i.st « s
                                                                pumping,
                                                             Hydraulic. InAdinK = hOfl ^p'^^l '
                                                           Operating Paramt-ters:
                                                             Waste activated slud^f
                                                                = 0.667 Ib  ss/lh BODr,
                                                             Return activated sludge -  rjO£ ()
                                                             Sludge concentration - \Z
                                                             Waste purapii:   operated It)  miiniu-
                                                                ciu'h hour
                                                           Type of  Energy  Ut'quirfdi  Kli-rt ri,-
                                                           Design  As^umpt i ons:
                                                             Coagulant:   .ilum or f'l-rr if

                                                           Ope rat ing  Par JJHCE »'t' :
                                                             Overflow rate  -  7UO Hl'd/s*]

                                                           Typi? of  F.ncrgy R*.Ttuircd:   K
                                                                              Design
                                                             Overflow rate,  Av^ =  i.CKMJ ^pJ/sq  it

                                                           Type ot  Energy Rt-quirt-d:  Kit-. < r t. .1 i
                                                                              Water Quality:       luilu^m   l.i i :>n-.\i
                                                             Suapond^d  Solids     80

                                                           Design  Assumptions:
                                                             Hytlr:lnlif  li^Klin^ = 0.-,
                                                                irtfl uUini; res i rvul.! :
                                                             TIW a  10  it
                                                           Op.i»rai ing Par.imt U-r :
                                                                              Type i' I  Kiit?ry.y Rftju i rt-d :   KJ.
                                                       49

-------
   Figure
   Number
  From  EPA
430/9-77-011
                Operation,  Process,  .and'Equation  Describing
                             Energy  Requirements
  Design  Conditions,  Assuniptions .md
             Effluent  Quality
     3-17
                Low  Rate Trlrkling  Hltcr  (Rook  Media)
                             0 44
                Y -  93,600 X

                Y =  KlCLtriiai Knur^y Rt-q.iired,  kwti/yr
                X =  Plant  Capa, icy,  n>:i|
3-18        High Rot i* TrU-klln* rili-.-r (PlascK  Media)

            v = ihitono  x°'9:>

            \ * Kle* t rioal  Ktuir^y  Kt-qLiirud, kwh/yr
            X = P] ant <.";ipac ity, rn>;d
    3-19
                Sii|>.'r -  High Riilc Trii-kH!iij Kilu-r (Plastic- Media)
                              0 9 $
                Y " 224,Olio X

                         trii-al KiuTjiy  Kvquireit,  kwh/yr
                         t  <:,ipiid ty,  iii>'.ii
    3-20
                   ;itin«  Hiulo>:ica]  tlisk

                    310 ,000 X     -  Standard Media
                     71,000 X
                                   -  |)I"IIM> Media
                Y = Klivtrii-.il Km-rny  Ki-iiiiitvd. kwh/yr
                X - t'lant  Ciipaclty,  null
                                                                                 Water Quality:
                                                                                                      Infliunt  Sl'l'lm-nt
                       (nig/ I)
  BOD5                  136
  Suspended Solids      80
Design  Assumptions:
  HydrauMi  loading  = 0.0-  K
  TDH = 2}  ft
Operating  Parameter:
  Nc rei ire ulat ion
Type of Energy Required:   tl
                                                                                                              {iaf,l n
                                                                                                                 !0
                                                                                                                 SO

                                                                                                             .'sq It
                                                                                 Water Quality:        Influent  Slltlm-rU
                                                                                                        (nn/11      (nw-'n
                                                                                   BODj                  1 16        JWj
                                                                                   Suspended  Solids      80
                                                                                 Design Assumptions:
                                                                                   Hyilraulii-  loading1 1.0 ,.pro/s:( ti
                                                                                     inr]nding rtjf i r\ u lat iun
                                                                                   TDH = 40 ft
                                                                                 Operating l:artimot tT:
                                                                                   Recirculatlon Rnti,>  =  "j;!
                                                                                 Type of tncr^y  Required:   K]t'fl t i^
                                                                                 Water Quality:
                                                                               BOD
                                                                                                  Influent   Kft'ltK-nt
                                                                                                   (B(!/ 1 )     (me/ 1 5
                                                                                                    13(i         K.'.
                                                                               Suspenceil Solids     80
                                                                            Design Astsntnpt ions:
                                                                               Hydraulic loading  = 3 B^RI
                                                                                 including  rtacirt. ulation
                                                                               TDH - 40 It
                                                                            Operating Parameter:
                                                                               Rcriri u tat ion  r;tcio - 2:1
                                                                            '1'ypf of Energy Required:   K
                                                                            Water Quality:       InFliitnt   Kt'tlm-iil
                                                                                                   (mg/l)     (mg/O
                                                                               BU1>5                 1 )f>         VI
                                                                               SuspRnduc Sol ills     SO         HI
                                                                            Design A-ssunpt ions:
                                                                               Hydraulic loading  - I >'.rti/*r
                                                                                 unit
                                                                               DC-ISC mcry,y Kcfulred,  kwh/yr

                X  =  Plant  Capa, itv,  :u,;d
                                                                                 Water Quatity:
                                                                                                       Infliifitt  ^
                                                                                     ce.ii Solids     80         :M)
                                                                             esi§n Assumptions:
                                                                               Bii-i-c-i: h-adiiin' JOO  It-  BOD-,/ 10(10
                                                                                 :u fr
                                                                               Acr.iliun •  I  Ib  O-i: Ib  BOI)^
                                                                               OxygLT. transfer  i'! f i^ itM'v y  i •  w.ist.
                                                                                 wacc-r (meubaiiii-iil  .ier.:f ioit i
                                                                                 *  !.£ Ib 0). hp-:ir
    '3-2^        Brush  Ai-r.itlun  (Ov.uJ.ic i.-n Ullrh)


                                 II*TL>A-  Ki-ijui rt*d. kwh/yr
                                                                                   Recycle  -=litt[>iL' = ^0"'.
                                                                                 Type of" F.ner^v Required:   r U- : r i- il
                                                                                 Design Ass t imp t ions :


                                                                                 Optnit i:i>: rar-fsit-t *.•[ :
                                                                                   Ox/gon rcq-.ii r«.'tnt':it -  I . '••  |h d .

                                                                                     OT i-(nirtnnK:d/ !t> Nlf, -N  «. i it n  i- : .T
                                                           50

-------
   Figure
   Number
  from  EPA
430/9-77-OU
    3-24
Operation, Process, and  Equation
             Energy KequIremencs
    3-23        Oxygen Activated Sludge - Uncovered Ruactor With
                     Cryogenic  Oxygon  1^'nerat ton

                Y  = 201,000  X  "    UnsL.iged, plug  flow 0^  activate
                                    sludgu and comp 1 ete mtx Q->
                                    activated sludge
                V  = Electrical Energy Required, kwh/yr
                X  = Plant Capacity, mgd
    V25
                Oxygen Activated Sludge  - Covered Kea
                     With Cryogenic Oxygen Generic ion
                              J.OG
                     170,000  X

                     Klectrica1  Energy  Required,  kwh/yr
                     PIant Capac i t y, mgd
Design  Conditions,  Assumptions .nid
           Hi !•"! in-lit  Qu.-iLi tv
                                                                                  Water Qua I icy:
                                                                                      1 SO
                                                                                                   >n
                                                                Suspended Snl Ids      HO
                                                              [>esi £ti  Assuisp*. i on ft :
                                                                Ox y ft tin  tran.slt.-r  ri f i<- it-He y  - I. "> l  I
                                                                  0 j / h p - h r  (wire  to wafer'
                                                                Rot ii ting fine bubble di i i users " i or
                                                                  dissolution
                                                                Includes oxygen grne-r.-ii io;i

                                                                Oxygen  requirement  = !.! ; b Oj
                                                                  consumed/Ih BOI^  removed
                                                              Type OL Energy  Rt-q-.;i red:    Si 1 *-. L r i I'.il
                Oxygon Activated Slud^f  - Cnvert-d Realtor
                     With PSA  Oxygen Generation
                               1  (\(t
                V  =  230,000 X

                Y  ~  Elect rical  Energy  K^qui rt-d,  kwli/yr
                X  =  l*'anl Capacity, pgd
                                                              Water Quality:       Influent   r.! ; -HI'III
                                                                                     (m^f 1)     (inr                  I "th         -'0
                                                                S\ispundfi.: Sol LJs      rtu         .'!J
                                                              Design Assinnpl ioits:
                                                                Oxv^en  t ran.s''i.T -.-f f i .• i i-n.-y  it-. *Mri«: i*-
                                                                  w.iter = 2.f)/  Ib  02/hp-hr  (uiii-  t'
                                                                  w.-iter;
                                                                Surfaco at-r.-iti^rs  ;<>r ili syu L m u-*i
                                                                In<' 1 udt'H  oxygen gi'nerat itni
                                                              \)pftr«if ing iMrrtrtoti-r :

                                                                  ^ipplltiJnh 30t).  rcr.*-.v,l
                                                              Type  >if Energy  Requ i r ed :  Kl t**1 c ri *••( 1

                                                              Water Duality:       Inf hu-nt   Kn Joent




                                                                Oxyji^n  t r.ins t iir fl i'ii'ii'iu*y  3 n w.i.st*.—
                                                                  water - l,r>^  Ib  0>/h;?-hr  (win-  i,*
                                                                  water;
                                                                Surf ace -it; r.» l orft  ! ',;-f --I i -•*»<' I ut i on
                                                                Ini-hides  oxv.;.-:l griier.xt lor.
    3-26
                Activated Sludge - Cit
                                             Bubble  Diffusion
                Y  »  290,000  X  '     Conventional  activated

                V  =  600,000  X1      Kxrcnded iioration
                V  =  150,000  X1*00  funt.u-t HtdbiliziUi>>n
                V  -  Electrical  Energy  Kt-
                X  -  Plant Cap;)i-ity, rngd
                                                fi,  kwh/vr
                                                                Oxvii.'n  Kcqui r-.-DC.-iU  - \ , '.  1!'  0 '
                                                                i- on sinned/ Ib HOPj  I'omov^'d
                                                              Type i>E' Enn-rgy Ktjqit i r*?0 :  K l*'--i r t .

                                                              W.icer QIUT! i EV:       l:il IUL-IH   Kft't
                                                                                     (ni:/U     :•*.:,•
                                                                BOIJS                  1 W»         -'
                                                                  WiiLer  =• l..th  ]b  Og/lip-hr  <
                                                                  W.ltcr,  iiK'liiiMn>: hluwiT)
                                                                Avor-igo  vnltif I'CY  .il] I ypt •-
                                                                  ii i )' f UfH'TS
                                                              Ope r;i i i nc.  V.'iraau'tc rs :
                                                                Cunvcnt imui I -it1 1 i V.IT f i'j
                                                                                       rriiinvt'd + 'j.
-------
   Figure
   Number
  From EPA
U 30/9-77-011
     3-2"
    Operation.  Process,  md Equation Describing
                  Einergy  K-.rqulrements
Activated Sludge  - Kim.  3ubbZe Diffusion
             J.OO  .
                     210,000 X
                Y  -  WO,000 X
                Y  -  240,000 X
              ..1.00
               1.00
  ("nnv'jntioTial  activated sludge
  l'-on{; I f*te mix)

  i-. x.tt:rjt»d aerat ; on

  CiUir:;i*'C rttabll izat ion
                Y  * Electrical Energy Required,  kwh/yr
                X  = Plant  Capaci-y,  rcgd
                                                  Design  Condit Ions,  Assumpt inns .
                                                             Effluent  Quality
                                                                                   W;u-?r  Qua ;i ty:
                                                                                                         Inf lu.*nc  l.ff Itn-nt
ended  Solids      81
 Assurapt ions:
tpn t ranster e t f icIL n^y  in
                                                                       w.il cr ,  inc ludii'.g  b.luwwr)
                                                                     Aver.-ige value for all ( ypes  uf
                                                                       dil i layers
                                                                  Operating Paramectr^:
                                                                     ConvL'Jitional .'ict-vated sludge oxygi?n
                                                                       rc OLinsiimeO.-' Ib  H«.JD=-j
                                                    removed + '* . b  Ib 02 cons iitucd / i h
                                                    SK4-N  (in rei-vv le si udge  .jxidizud
                                                    dit r i MJJ  a« nit ion
                                                Type of  Energy  Required:   F-l«-*-t rir,il  *

                                                Water Quality;       Influent  Ei'i hient
                                                                       (nV/D     (rait/ 1)
                                                  BODS                  1 Ik          ,'0
                                                  5uHpin-«t! Solids       t-o          .'0
                                                IX'si^n Awsunjpt ions:
                                                  Oxygen  transfiT  *-f t iei fnt:y - l.-S  ih
                                                    On;hp-hr twirt  i d w^.tef)
                                                  Sur t a»"f  jcrj Un- ,  hi gh speod
                                                Operating  Parjrju'U-rs:
                                                  Convent ion a I net i v.ited sludge rcquiri'
                                                    Dcitt  »  1.0  :b  0; coEisu^vj'lb  HOO^
                                                    removed
                                                  Ext i'n Jt-cJ  ae r.'it ii-n  nxy^t'n r^qui rt'mttti
                                                    *  ],'>  ;b 0^ .utisumeJ/lb  BODj  rt'-
                                                    mnvt'd  + i.(>  Ib  H > cotisuiRcJ/lb
                                                    SM^-S  (in rcu.itnr i**od)  oxidized
                                                  Cont ,K r  stabil 1;{;U ion ojcypon rt'ijiuro--
                                                    TtMTii  =  i.l  Ib  0-, co'i^tjn^tl/ Ib  B^)D^
                                                    n'ltini/ed + 4.b  Ib Oo I'ons-ncned/ It>
                                                    S'L'-S  {in r»-cy  U- etut)g«-> <>xfrgy  Kequirec:   tJ t-rt r ii ;d
                                                                  W-ICC-T Quality:        [nf htont   li( I !nt:nt
                                                                                          (m«/i)     (m^.- M
                                                                     BOU.j                  1 M. '        ,10
                                                                     SuMp.-iJt'd  S;»l ids      Sit         .'0
                                                                  hfflign Assumptions:
                                                                     Oxv>c*-'i rranslor ».'f s'ic- ifnrv  in w;i>u--
                                                                       w.it c-r =  l.b Ib O^/hp-lir  (wi ri-  I •>
                                                                       w.i t •-' r)
                                                                  Opur.it ir.^ P.ir.imfCfrs;
                                                                     Convi'tit ion a I  .KSI I vriced  si ^^)^;^.l iixy^on
                                                                       n.-f(.-i rcnient  - 1.0  ! b  0^  .-.•!irt»:r.i-,l: [I-
                                                                       bOlK remuvt-il
                                                                     Ex' i-ncii.'d ,ier. 11 i i1!)  nxv^fn f fijui r»-mi-ii-
                                                                       =  L-5 Ih 0»  L ^itriumt d/ !h  KOEl^  r. -
                                                                       mnvcd •*  4.h  )b O:>  ,-i>n^ii:n-d; Ih
                                                                       NK.-N (in  rt-;.t-i,tr  ti-i-d) oxiJi/.*d
                                                                     t^ont ,-u't  fitiib i I i /.ai ion  oxy^i'n  r«-<^ii rt--
                                                                       mn-t -  1.1  !b 0: ^t.nmiin^d/ Ih  IIODr,
                                                                       rris'Vfd  +•  -'4, n Ih O-i  ttmsumetJMb
                                                                       NH-.-N (in  nvyi  !*•  slud*;.1)  "XiiHzrJ
                                                                       dur ing t\-,K-r,-.: ian
                                                                  Type ni  Kiior^y  Hnjui reil:   l\ 1 rrl r t • .t J
                                                            52

-------
   Figure
   Number
  From  EPA
&K/9-77-011
     3-30
             Operation,  Process, and  Equation  Describing
                          Energy Requirements
                Activated Sludge  - Stat-ir  Mixer
                             .. 1.00
                Y  -  250,000 X
                                     Conventional ariivatud sludge
                                     (complete  mix)
                Y  -  500,000 XUO°   Extended  aeration

                Y  •  300,000 X  "     Contact:  stabilisation
                Y  »  Electrical  Energy Required, kwh/yr
                X  -  Plant capacities* mgd
"j-M        Activated  Sludge - Jet  3 iff user
            Y - 170,000 X "  '   Conventional  activated sludge
                                (complete mix)
            Y - 340,000 X '     Extended iifniLion
            Y = :>1Q>QOQ X *     Contact stabilization
            Y •= Electrical Energy  Required,  kwh/yr
            X « Plant  Capacity,  ngci
Design  Condt I tons,  Agsutnpt ions  and
           El f I IIPHC  Qual ity
                                                                                Qual ity:
                                                                                                 Influent   K: r I uem
                                                                                                  (mg/ 1 >      c.:ns»/ 1 )
                                                                                                   13f>          JO
                                                                                                    80          20
                                                                       Suspended So i ids
                                                                     E)?Hlgn Assumptions:
                                                                       Oxygen transfer el t'i.-ieiicy  = I . "*•'*  lb
                                                                          0">/np-hr  (wire to wjt«?r)
                                                                     Operating Parameters:
                                                                       Convent ional  at:t ivatfct si udgu .ixy^fr;  ft*-
                                                                          qui rement  =• 1.0  lb 0->  ronsuroi'd/1 h  BOD^
                                                                          removed
                                                                       Kxtended aer;it ion  oxygen  reqn i ri'iut-nE  =  1 , i

                                                                          i-oEisumed/lb SH^-S-S ffEi  reaciti-i  u-fit) iix.icii/1.1
                                                                       Contort scabi li ?.xt ion oxygen rcqui resent -

                                                                          lb 02 consumed/lb NH.^-N (in n-»-v.-U-
                                                                          ,sludgn) oxidised (hiring rtMt-r.it ii.ua
                                                                     Typo uf Knergy  Rt-qui n-ncnt :   K trd f i« .11
                                                                          Wat or
                                                                            BODS
                                                                                                       i nr i
                                                                                                          80
                                                                            Suspended Sol ids
                                                                          Den i^n  Assiimpt i onw:
                                                                            DxvRt'n  transfer «-I I t «'ie>nry  iri  w.isEfW.i
                                                                               l.K lh 07/hp-hr  CwirL' tow.iti-r)
                                                                          Opi-rating I'aranifujrs:

                                                                               q u t rvme r
                                                                             xT-L-iuted aeriitiuii  oxv^en  recjn i r.Tn.-ni
                                                                               Ib  0'. consumed/ Ib rtOJ>5  removal * -. .
                                                                               0-*  oonHuraerf/lh NH—N (in  rc.n't.-t  u-
     )-32        Aer.-ited Ponds
                 Y   -  260,000  X1*00

                 Y  ~ Electrical Knergy  Rorful rod, kwh/yr
                 X  - Plant  Capd  Solids          J10
                                                                     Ik'H i rfH ArtKUtnpt i ons ;
                                                                        E,nw-s[n*<'(i  tij»»<'h;)fl if.')!  ^urt .tri1 .H-I'.I!
                                                                        Mnlur oi f ii-ioncv - '*p|'
                 Nitrification - Suspended <"rowt.!i

                 Y « 180,000  X1>0°

                 Y = ELectriral Knergy  Rcqulrt'it, kwli/vr
                 X -- Plant  Cap;u-iiyt nis;d
                                                                        Oxy^-n ivqtiin'tiifnl    1.0 lb U.-'l?

                                                                      Typo of Kru'rsy  KI-<[I: i r.-J:   K k'. iri.



                                                                        ,-\ir.!no[i i .1 .in S                L"V
                                                                               t- i.O  lh
                                                             53

-------
   Figure
   Number        Operation,  Process, and  liquation Describing
  From  EPA                    Fnergy Ki-t ; I rumen ts
4JO/9-77-011
    3-J4        Slr.rlflf.it Urn,  F-xed  Fi l:n Reactor
                Y =  HI,000  X°'9li   He, y.-'.e - 0.5:1

                Y -  151,000  x"'9''   Kcc-y.-le - 1:1

                Y -  226,000  K°'9"   Kei-y.-le - 2:1

                Y =  El£-ctrik-a'  Enerc%  K.»-.;uircd,  kwh/yr
                X =  Plant Capacity, nigd
3-35        Denitrlfii-atiun -  Suspfridcd Growth  (Overall)
               (Inclmlfs Methano) addition, reaction,
                     sodimontatio:  in J  sludge recycle;)

            lt>g Y -  5.004J +  D.9..J5  (log X) -f 0.0248  (log

                  -  0.0132  (_og X) '

            Y = Electrical FInergy K^'quired, kwh/yr
            X = Plant  Capacity,  nigw i n ),•
                                                                           curves  in  1-PA 430/9-77-011
                                                                             Denirrit tr;tt ton Rea< tor. Kigurc  '3- if*
                                                                             Reai^rat i fV:, Figur*;  'i- j?
                                                                             Sediment ,ti i on  snc S; lulgc kei'Viii e,
3-36
3-38
3-19
            rtenitrif it-at ion  - Suspt-ndot} Growth Reactor
                            0  99
            Y  >   72,500  X
            ¥ =  Electric.iJ  tnergv  R-.it i>-r.(  Aer.-t*-*  Stabilization
            Y-  j>.o«> .r-ou
            Y =  Eluftrii-al  Knergv Required, kwh/yr
            X =  Plant  CupiK-ity* mg*l
            Dcnitr if ioat i*-u»  Sedimcr t-it ion and  Sludge Recycle

            log V  =  4.1171  +  0.7S9ti  Hog X) + 0.1607  ; log M)"

                   -  a.ci'iH^  (tog .<) l
            Y = EU-c-Lrii-.-il  Knergv Rtqulred, kwh/yr
            X = Plant Capacity, ra^'l
                                                                          'I'y jit: of E:tt»r>.',y k* -quired:  K )*.H't r ical

                                                                          Design As sump t Lous:
                                                                             Tempera tun.- •••  I5°C
                                                                             Nitrate  r«nxtv.,l = 0. I  Ib NOj-N'/lb ML\'SSM,v.
                                                                             Mixing Je vi i-f , .syhneri;*1*! t itrt> ^;ies, tip  -  'f . '»
                                                                               hp/1000  L'n E t
                                                                             Mcthanol  cidttit ion is  ini kitlt'd
                                                                          ()po rd ting  P;ir;iiiH-ti.T:
                                                                             MLVSS =  1500 niK/l
                                                                          Typ*j of Energy Kfqui rtid:  HI i'f t r ical

                                                                          Design Assumpl i.-ns:
                                                                             Detention  tint1 = 50 rain
                                                                             Mfichanic.il  :ni ration =  1 hp/)t)i)0 ^u It
                                                                          Typt? of Envrsy K«'t)uired:  Kkvfica]
                                                                          Dostgn Assuropi t;•!!«:
                                                                             S'irf ace  lo.'Ht t !•.>; =  "00 ^j^i/sq   L
                                                                             Sludge recyv!.  = 30"  :: 15 it  f!!H
                                                                          Type? of Ent,T'»"j K^ff.it red r  l:.\ t-i-1 - i i-a i
            Dt-nitri f i .MI icn  - Fi xetl  Ti IT,, Pressure

            log Y  -  -*.4JJS f- O.ft'iS'  ling X) +  O.OQiO  O«S  ^>"

                   +  o.ooy;  (log >:)
            Y = Eli-i-t rical Iviergv l^i-quired, kwh/yr
            X = Plant  C.ip.-u ity, in^il
                                                                          iV.iti?r Qualitv:       Influv:u     :%:fh,f


                                                                          Di-sLftn Assum|>' ir:i.s:
                                                                            S.ind m^di;.i  :;i/f -  2-4  ntut
                                                                             rnfluent piuapinj.  TRH ^ li li
                                                                            f..>;-iding r.itr    1.7  gpm/;it; ft
                                                                            Torap =  IS^N'
                                                                                     o  I :
                                                                         B.ickwas!'  ev.T- i days I.T  ] !i  :nin  -
                                                                           Kpm/si.  t r  .111,1 25  tt  Tllll
                                                                         Morhanol  .id.niii.in =  1.1 (c:ll jOH: NO r
                                                                      Tvpi- of Er.^ry.v Ki-quiri'ci:   Eli-i-t-li-;il
            Dt-nit rit'i, ,it inn  -  Fiv.-.i  Fil^j, Gravity

            Lrtjt Y  =  t.^U, + 0..' ih"  (Ing X.I 4 0.1801  {]OR  X)~

                   -  O.U''.5 i  ( lot; XI "'

            Y = KU-s-t r ir;i I Ivnerj-.v ^.-(juired, kwh/yr
            X = PI am  t^i
                                                                             Qua t ir v ;
                                                                                            T:if I in- :[
                                                                                                          E-:ff
                                                                                                                 I .
                                                                          nt-wi>;n Aiisum[-r inns:
                                                                            S.idd inodi;]  :-i i ,:i- -  !-•<  nil t
                                                                            [Icp th = 6  I ;
                                                                            i-o.uUns r.-it.-    1. -'  ,;r"i-:-l n
                                                                            lc-.per.n-ir.-    li:'i:
                                                                          D[:i-r.ir ing i'.i I .::-.,-: i>rs :
                                                                            Hi.-kwasii  I '> -".::i/ii.iv  '  -'> ^[im: ^v;  f:
                                                                               ft TtlH
                                                                            Mi-thanoL .nl.li : K<:> -  '!:!  (Cll jdM : So (-
                                                                          Tvpi'  of En,•[•[•..-  Ki'i|iilri'il:   II11-1-1 r i,-;i ]
                                                        54

-------
   Figure
   Number
  From EPA
430/9-77-011
Operation,  Process, and Equation Describing
             Energy Requirements
                                                             Design  Conditions, Assumptions .imi
                                                                        Effluent Qu.iliEy
    3-41        Denltrification  -  Fixed Film, Upflow
                (Based on Experimental Data)
                log Y - 4.4935 + 0.8695 (log X) +  0.0664 (log X)2
                      - 0.0012  (log X)3
                Y • Electrical Energy Required, kuh/yr
                X - Plant Capacity, mgd
    3-44
                                                                       Water Quality;
                                                                                            Inr 1 tiunt
                                                                                       EffI uunt
                                                                                         Us/I I
                                                                                         O.'i
                                                        Nitrate as X         '2''->
                                                      Design Assumptions:
                                                        Sand media size  =  O.d Dm
                                                        Muidizttd depth  =  12 f t
                                                        Influent puMping TDH - J;> fl
                                                        Tmnpera Lurt* -  1 5 C
                                                      Ope rating Fa r. ime L e r s:
                                                        Mt-thasiot addition  =  3:1 (CHjORrNOrSj
                                                      Type of Energy Rt-quired:   K] ecf ri 
                                                        TKM                10             r, :i
                                                        Temperature        IV i"
                                                      Operating Pararneu-rs:
                                                        Oxygen supply  for ni tr ii'i^at ion/duni t r it i.-.-t
                                                          tion = l.J BOI')5 r«J^".'L'd -f -*..1!  flKN
                                                          removed) - 4.6  (H.& 'I'KN appLift!)*
                                                        Mechanical ^errit ion
                                                        Dt-nitrifIcation nfxLn»; = 0,5 hpMOOD ,-:i "i
                                                        Dftenc Lort f ime ~  J j1  hnurfi
                                                        I no ludes fin.il sed int?::i ,it ion  -  K^vi  ,.•p^!- sq n
                                                          and SOS s 1 ud^t:  ri'cyf I H
                                                      Typi1 of Enc-rgy Scqui rt»d :  K lo^t r i i .15

                                                      *Reft;rfenl:L':  EUshop,  \). \~ ., ft
                                                       Journal,  p. 3.'0 (19/6)
                Separate Stage  Carbonaceous, Nitrification and
                      Denitrifiration Without MeLhanol  Addition
                      (Based on Experimental Uata)

                Y * 413,000 X°-98
                Y = Electrical  Energy Required, kwh/yr
                X - Plant Capacity,  mgd
                                                                       Water Quality:
                                                        BOO.:
                                                                            Infl -]L-:H
                                                                             r  nitrifi.--.iti.il
                                                          02/lb HOD  removed
                                                          retn*>v*3d
                                                        Mechaiuc^il aordtion,  ].H Ib iij
                                                          trans ferri'd/hp-hr
                                                        Denitrlf i^'ation mixing = 0.5 Up/1000  ,-n
                                                          'i hr (ii»ccni ion
                                                        Final aeration  st.ici-  - 1 lir .k-t-iu l..n;
                                                          1 hp/1000  i*u  t t
                                                        Sedimentation  3 700  g?ii/sq ft;  Ui".  n-cv,
                                                      Type of tncrgy  Required:   K] eel r ir.-t 1
                Single Stage Carbonaceous, Nitrtfication,  and
                      Denirrlfieation Without Mechanol  AJdition -
                      Orbital  Plants* (Based on Experimental Data)
                             0  99
                Y = 436,000 X
                Y = Electrical  Energy Rpi^uired, kw!i/yr
                X = Plant Capacity,  m$d
    3-'.5
                LImo Feeding
                Y
                     6,700 X       Slaked lime,  lou  lime
                                   Slaked lime,  hlBh  1 line
                                   Quick lime,  low  lime
                                   Quicklime,  hi^h  iiraf
Y - 11,000  X
Y =  7,600  X1

Y = 13, 100  X°
          .O.S1
                  ~ Klectriral  Energy Required, kvh/yr
                  = riant Capacity,  TH;' i"
Operating  P.ir.-imeters:
  Total  ,-ieratiun ilitc-li  detent ion tiaic -;
  K/M ratio  =  o. If)
  Rotor  aer.itinEi
  Setlin*-ntat ioo ? /OO jjpct.'s'L  :t;  :iu:  r.
Tvpe of  Energy  Requin-d :  E I *•*• I r i  .1 I
*Refprene-c:  Natsche,  N.;. .md  Sp,-n/iri
 Austrian  PMni. Knocks  On: Sitroj;*--1,  W.i
 Wastes  Kngr.,  p. 18 < I;m.  l<*7^)

Design Assumptions:
  SJukeii Jiimis  used for  0.1-')  iai;cl  . .t|i,i. i
    plant s
  Quicklime  usi-d tor S-lot) m?.0» rns/1,  'H|tlt [Am.' .in  UilOHJ/
Tvpe of  KiHTjty  Kcqitirt1^:  K!«-. iri. -1
                                                        55

-------
   Figure
   Number
  From EPA
430/9-77-011
             Operation,  Process,  and Equation Describing
                          Er.ergy  Pe^uirements
           Cond it ions, Assumpti ons  ,md
             Effluent Quality
3-46       Alum Feeding
           log Y «  3.4969 - 0.248?  (log X)  + 0.2711 (log X)2
                 +  o.m?  ;iois  x;;
           Y =» Electrical Snergy  F.equired,  kwh/yr
           X « Plant Capacity,  mgc

3-47       Ferric Chloride  Feeding,
           log V -  3.4586 + 0.335!.  (log X)  + 0.2082 (log X)2
                 +  0.0053 (log  X) '
           Y = Etectrlc.it Energy  Required,  kwh/yr
           X - Plant Capacity,  ragil
                                                                     Operating Parameters:
                                                                       Dosage - 150 rag/1 as Al^SO^Ji -  U
                                                                     Type of Knergy Required;  Electrical
                                                                     Operating Parameter:
                                                                       Oosage - 85 m^/1 as Fed3

                                                                     Type of tnergy Required:  Electrical
3-48       Sulfuric Acid Feeding

           log V - 3,1523 + 0.020'*  (log  X)  + 0.0270 (log

                 + 0.0188 (log  X) J

           Y = Electrical Energy  Required,
           X = Plant Capa« ity,  mgd
                                                              X)
Operating Parameter:
  Dosage = 450 mg/L (high  lime  system)
  Dosage - 225 rag/i (low lime system)
Type of Energy Required:   Electrical
    3-49
               Solids Contact Clarification - High  Line,  Two
                     Stage Rec-arbt'nat ian  (Includes  reactor
                     clarlfier* high  lime feeding,  sludge
                     pumping, two stsgo racarbonation)

               log Y = 5. 1077 + 0.877.9 (log X) + O.lOSi  (log

                     - 0,0549 (log x:3 -  Liquid  C02

               Y = electrical Energy  Required, kwh/yr
               X = Plant Capacity, x«d
                                                                 This curve is valid for chemical  treatment
                                                                   of both raw sewage and primary  effluent.
                                                          X)
Wate
(Tre
  Su
  Ph
Wate
(Tre
      Quality:
     tment of Raw Sewage)
     pended So I ids
     sphate a« P
      Qua 11cy:
Influent   Effluent
 Cng/1)
  2f)0
   [1.0
influent
 (•>*/!)
   30
   11.0
   10
    1.0
Kffluent
 (KB/I;
   10.0
    1.0
                                                                            of I'ri. Eft.
                                                                   Suspended Solids
                                                                   Phosphate as P
                                                                 Design Assumpf ions and Operating  Parameters
                                                                   are shown on the following curv€-s  in
                                                                   EPA 430/9-77-011.  Lime  Feeding. Figure
                                                                   3-45; Renct.ir Ctari:ier,  3-53;  Sludge  Pump-
                                                                   ing, J-4; Recarbonatlon.  3-60,
                                                                   3-61; Recarbonation Clnrifier,  i-15
                                                                 Type of Energy Required:   Electrical
    3-50
               Solids Contact Clari-' icat ion. High  Lime,
                     Sulfuric Acid Neutralization  (Includes
                     reactor clariflur, high lime  feed,
                     chemical sludge pumping, sulfurlc  acid
                     feed)

               log Y - 4.593-' + 0,6. 13 (log X) + 0.2024  (U>g

                     0.0208 (log X.r

               Y = Electrical.Energy Required, kwh/yr
               X = Plant Capacity, ngil
    3-51        Solids Contact Clarification Single  Stage  Low
                     Lime With- Sulfuric Acid Neutralization
                     (Includes reak'tor clarifier, low lime
                     feeding, sludge pumping, sulfuric  acid
                     feeding)
               log Y - 4.54/l)      (mg/1)
                                                                   Suspended Solids          2M)          20
                                                                   Phosphate as P              11.3         .s.O
                                                                 Water Quality:             Influent    Kftlw:ii
                                                                 (Treatment of Pri. Eff.)    '.mg/D      (ret!/I)
                                                                   Suspended Snlids           30          ;?0
                                                                   Phosphate (is P              1 I .0         2.H
                                                                 Design Assuxptions and Operating  P.'ir.inK'l er>i
                                                                   are shown on the to I lowing cnrvesi  i ti KI'A
                                                                   430,'9-T7-01I;
                                                                     Lime Feeding, Fig-ire 3-'»5; Beiu-tor
                                                                       Clarifior,  3-5 t;  Sludge Pum|iing,  i~-i;
                                                                       Sulfuric A,-id fefiiitif.  J-i8
                                                                 Type of Energy Required:   l.lectric.il
                                                       56

-------
   Figure
   Number
  From EPA
630/9-77-01!
Operation,
                        Process, and Equation  Describing
                         Enprgy Requirement a
Design Conditions,  Assumptions  nut
         Effluent Quality
3-52       Solids Contact Clarification, Alum or Ferric
                 Chloride Addition (Includes chemical
                 feeding, reactor clarifier, sludge
                 pumping)
           log Y - 4.6237 + 0,6983 (log X) +• 0.1477  (log  X) 2
                 - 0.0470 (log X)3 - Alum
           log Y - 4.549* + 0.6894 (log X) t 0.1645  (log  X)2
                 - 0.0559 (log X)3 - Ferric Chloride
           Y - Electrical Energy Required, kwh/yr
           X - Plant Capacity, mgd
                                                    This  curve  is  valid for chemical t
                                                     both  raw  sewage and primary of t'l
                                                    Water Quality:             Inf Ju^iu
                                                    (Treatment  of  Raw Sewage >
                                                     Suspended Solids
                                                     Phosphate as  P
                                                    Water Quality:
                                                    (Treatment  of prt.  Eifl.)
                                                     Suspended Solids
                                                     Phosphate as  P
                                                    Design  Assumptions ;md Operating
                                                     are shown on  the following curve
                                                     430/9-77-011:
                                                       Alum or Ferrti- Chloride Feedin
                                                       3-46,  3-47;  Rractor CUrifier.
                                                       Sludge  Pumping,  "5-3, f-6
                                                    Type  of Energy  Required:  Electric
                                                                                                       re.y im
                                                                                                       uf nt. »

1!)
1.0
Par:irRetrrs
ng curves in KPA
    3-53       Reactor Clarifier
               log Y - 4.3817 + 0.7223  (log  X) + 0.0947  (log  X)2
                     - 0.0027 (log X)3
               Y * Electrical Energy Required, kwh/yr
               X - Plant Capacity, mgd
                                                    Operating  Parameters:
                                                      Separation zone overfjow rate, lime -
                                                        1400 gpd/sq  fi
                                                      Separat inn zone ovtrf I iiw rate, .11 ure ot
                                                        ferric chloride =  1000 gpd/^| fi
                                                    Type of  Energy Required:   IClectrit-.il
" " "
3—54 Separate Rapid Mixing, Flocculat ion, Sedlraentat ion
High Lime, Two Stage Recarbonation
log Y - 5.0961 + 0.9484 (log X) + 0.1979 (log X)2
- 0.0101 (log X)3 - Liquid C02
V = Electrical Energy Required, kwh/yr
X - Plant Capacity, mgd










3-55 Separate Rapid Mixing, Flocculat ion. Sedi-
mentation Single Stage High Line,
Neutralization With SulfurU Acid
log V - 4.5919 + 0.6681 (log X) * 0.1926 (log X)"
- 0.0432 (log X)3
Y = Electrical Knergy Required, kwh/yr
X * Plant Capacity, ftgd








both raw sewage rtnd st'< ondary ft i Intuit
Water Quality: Influent El : Im-rn
ETreatraenl of Raw Sewage* (rag/13 im>;Mi
Suspended Solids .'50 !•>
Phosphate as P 11.0 1 .11
Water Quality: Intluent Kfl'ltn-nt
(Treatment of Sur. LsT.) i^M''!1 n
(Treatment of Raw Si'w.ige) (mg/i) Imi:/!.'
Suspended Solids J50 10
Phosphate as P 11.0 i.n
Water Quality: Influt'ni F.iilm'n
(Treatment nf «>.•<•. !-n".) (mR/1) (ni:. 1)
Suspended Solids 10 lu
Phosphate as P 11.11 J .11
Design Assumptions ;ind Oprratim-, I'-ir-u^u-rs
tire shown vui Th« ipllowini; <:urvt-; in rE'.A
430/9-77-011:
Lime I'Vodin^, l-'tf4ijrt- ^--•'o; H.i|iul Mixnij-,,
3-58; Fl>»-<'ulutinn, i- VJ; S^-il iiw-nt .n i.m.
3-15; S t udye Piunpilu:, S-^.; ^:ill=iri V J.I
                                                                     Type of En
-------
   Figure
   Numbe r
  From EPA
430/9-77-011
Operation, Process,  and  Equation Describing
            Energy  Requirements
    3-62
    3-63
               Mtcroscreen-s

               Y - 65,000
               Y - 42,700  >:

               Y * Electrical  Energy Required, kwh/yr
               X = Plant Capacity,  mgd
                       x°'79
                       L.0. 79
                   23-.  Screen
                   3S-i  Screen
               Pressure and Gravity  Filtration
               ,,   ,. vl-01
               V = 22 X
                                Pressure Filters
                                Crciyic>  Fi I ters
               Y = Electrical  J-inersjy  F.eqnired, thousand kwh/yr
               X = Plant Capacity,  rogc
3-64       firmiular  Carbon Adsorp:ion - Down flow
                  Pressurized Contractor
           V .  ,-4,000  X1-00

           Y =  Electriral  Energy  Required, kwh/yr
           X =  Plant Capacity, mgi
              Granular Carbon Adsorption -  Down flow Gravity
                     Contactor

              V  -  ,1.000 X1'00

              Y  =  Klocirical iltu-rgy Required,  kwh/yr
              X  =  Plant  Capacity, mgd
                                                                       Design Conditions, Assumptions and
                                                                                Effluent Quality
                                                    Water Qua I icy:
                           Influent  Ef f IIH.MU
                            (mg/1)     (mg/l)
  Suspended  Solids  (35i.)     2C         10
  Suspended  Sclids  (23^)     2C          ^
De s1gn As sump t i on s'
  Loading  rate  (35p)  = 1C.O Spni/sq ft
  Loading  rate  (21^,)  =6.7 gpm/sq ft
Operating  Parameters:
  802 submergence
Type of Energy Required:  Electrical
Equat ion for }'St. sc reen ,".pp 11 cable /shove 0. J
  mgd.  For  flew rates  '0.2 mgd energy
  requirements = 11,000 kwh/yr.
Equat ion for 2 3i_ screen appl i cab lu above 0. 1
  mfcd.   :;or flow rates -0.1 mj;d energy
  rt-quireraeni s = 11,000 kwh/yr.
                                                           Quality:
                                                                             Influent     Kffluent
                                                                              (rag/I;       (mg/l)
                                                                                20          -• 10
                                                      Suspended  Solids
                                                    Design  Assuir.ptions:
                                                      tncludes  Ti E tor supply pumping  (or  a 1 low—
                                                        rtnce  fur ' ;~SH nf tr^ittment Syst i;:n head);
                                                        filter  b.-ii-kwash  supply pumping, and
                                                        hydraulii-  surfiu-t- wash pumping  (rotating
                                                        arms)
                                                    Pump  Efficiency :   70%;  motor cf f ii-icncy:  9 \'-
                                                    Filter  arcl b.-ii-k  Wash head:  gravity filters,
                                                      U  ft,  T|)H:  pressure  filters, 20  ft TDH
                                                    Surface vash punpinfii 20 ft TDH
                                                    Filtration  r,it«  (both filters); 5 ^pn/»q  ft
                                                    Back wash roce (both filters): 18 gpm/sq  t't
                                                    Hydraulir surface wash  r.ito (rotating arm)
                                                      1 gprn/ sq  (t  • ave r.ige)
                                                    Operating; Parjaarers:
                                                      Filter  run:   12 hrs.  f.>r gravity, 24 firs.
                                                        for pryssurta
                                                      Back w,;ish  punping  (bot 'i f i 1 tars ) : 15 EH n*
                                                        per back wash
                                                      Surf act; wash pump ing  (:>oth f il tors): 5  mi n *
                                                        per back w;ash
                                                    Type of Kner/gy Required:  Electrif;d
                                                                     Water  QualIty:
                                                                           In: Uivnt
                                                                            (ng/l)
                                                                              20
                                                                              40
                                                                                                         Cf I I-JCIIL
                                                                                                          (mg/1)
                                                                                                            10
                                                                                 carbon depth,  SO
                                                                        Suspended Sciids
                                                                      COO       x
                                                                      Design  Assumptions;
                                                                        6  x  30 rot-sh carbon,
                                                                          min. contact
                                                                        Filcracion h*ad; 28 fr TDH  (carbon depth)
                                                                          -f 9 :"L,  TDH,  (piping and  freeboard)
                                                                        Fi 1 trat ion puiapinj;: 7 ;4pra/sq  f t .  •' ^7  f" [ .
                                                                          TDH (a\vra^e)
                                                                        Back  wash pimping:  13 gpm/sq  f t .  ' 37  i i .
                                                                          TDH (nvoriige)
                                                                      Ope rat ir.;^ ?.•) raisete rs:
                                                                        Operate [ . • 2j ft. head 1 1 - s s b >i i 1 • ' i n »i
                                                                          be fore backwash i ng
                                                                        brickwash pcrtpi tig : 15 ir i n per  but'kw.isii
                                                                        Type  of fine1 rgy Rc-qui rc-ii :  E ) e.'t r t i'.i I
                                                    Water Quality:           liillucnt

                                                      Suspended Solids          20
                                                      CUD                       .*0
                                                    Design Assuni|tt ions:
                                                      8 x 30 mt*sli ;-arbnn
                                                                                                          F: i i
                                                      58

-------
    Figure
    Number
  From EPA
:.-30/9-77-01 I
        t tort,  Process,  .md  £qu-,  Flo ecu I at ion,
                         Sfd intern at ion Law Lime,  Nai H/.it ion
                         With  Sulfuric Arid
                 log Y  -  4..152)  +•  O./J'iU (log  X)  +  0.2292  (loii  X)"
                         -  0.002- (lo« X) *
                 Y  = Electrical  EnutRy Required,  kwh.'yr
                 X  = Plant  Capur.iry, rogd
                                                              This furvu  is valid I .T  .lu-r.lv.il  if. ; :-„•.-.:  .  •
                                                                 both  raw  MOwagi-  .itnl rit-i omia TV cMliii-ru
                                                              Water Quality:                 Ini I mmL   .- i  i l.i.-::i
                                                              (Tre«i tan-lit  of Kaw  Sew-igi-f     (HI-, ' i '     ••-.•.•.'\ '
                                                                 Suspended  Sol ids              ."»(!          H'>
                                                                 Phosphate  as  y                 I  I .•)
                                                              Water Quality                 ins i iu.-:tt   ' '  •  HI-:H


                                                                 t'hosph.itt-  as  V                 I  1,1-         ' -!-'
                                                              Di/ni^n  AM sump 11 tins  anJ opi/r.ir i up,  I'.ir.i ..*• 11- r*
                                                                 art: shiiwn  on  t hf  i -• 1 ! .:wtny,  -.-nrvi- s  E ••   (-TA
                                                                 630/9-77-tHl:

                                                                   V>9; Si'dimi-nt.iL ioi!,  '3- I b ;  l.irru-  • t-vif t •.,• ,
                                                                   3-43; Sitlftirlc  Arid  t-Vt-.liin',  i-:,S;

                                                              Tv|>t* of  Kn«rt*y  Eit^qui r«-d :   t! I t*c t '.' i v-t 1
                 Separate Rapid Mixing,  Klocrul-itiiin,
                         Sediment a c ion Alum or  Ft: rtic  C.\\ Lor i
                         Add it ion
                         -  0.0169 (log X)"   -   Alun

                  lc>^ Y  =  4.3-J95 *  0.6/26  (lt>g  X) +•  O.J21S  (!

                         -  0.0133 (lug X.)"*   -   Ferrli-  Ghloridi-

                  Y •= Klertrical Enc-rgy  Required, kwh/vr
                  X *> Plant CapaoLty, mgd
     "1-58        Rapid Mixing

                 Y  - 1.900 X  '
                 Y  - Fleet rit-al  Eni'rgy Enquired,  kwh/yr
                 X  - Pl;mt  Ciiparicy,  mc.d
                  FliJC'i'n 1 nt ion

                  Y  - 9.840 x°-98
                  V  - F.ltic-t ric.il  r.ncngy  Kt'qiii red,  kwh/yr
                  X  " I'l.int  Cipai-ity,  ~:.;J
                                                              This i-urvv  is v.\\iA  i ,T  • iu--.ni .M I  ; ro.<: ;:iL-n:   .;
                                                                 hot ft  raw  si-'W.iK^  .mil rtivond.-irv '.'I I l'ii-:it
                                                              Waier Qij.ility:                 Ini Incut   t.n liu-nt
                                                              (TreatrnfOt  nt" R.iw  Sow.!^-1*     (Hii1.'!)     i ;-.>;. 1

                                                                 Phosphate  .is i'                 1 1,6i         i .u
                                                              W.U..T Qu.ilitv:                 Iiu'liiv^n   i t" t L.u-.v.
                                                              C'l'i'LVilmt-nt  of  Si'f . i;: i . I     (mj;/ 1 )     (n\;/ I *



                                                                 • ire showfi  Lin thf  :'o!l.>wiriK  vurvt:-  in ! I'A
                                                                 /, JO/9-/7-01 I:
                                                                   Alum <»r  i-Vrrit'  Chh-riiR'  l-Vt'tlinj;,  i-i^uri-;,
                                                                   V-'.6 .md 3--.?;  Ka;>iJ  Mixing,   t-iS;

                                                                   S 1 Lidi-f  Pump i rip ,  3- i  niul  i-'i
                                                              E"y:> i' o!'  l-:iters;y  KoquiroJ:   Kfvvti i- -i I

                                                              [til's ign  Assum|iL ions :
                                                                 t:naKut;ii>t:   time  -T .iln:n ^r  ft-rri.-  ,iil.-fi,:u
                                                               !'y|u- oJ  t'iiifrj'.y koqui r^if:   I1" U-vt t : , .1:
                                                              Design  As:;itrn['l ions :
                                                                 ;*«'t  i:H::.'t.-s
                                                                 i: -  I Id si-,--'
                                                                 ['i-infH-r.it itrf  -  I !>  (-
                                                                 ri-;if;-.i E.i:ir :   '. i mu  .ir .1 L:jn .u"  £i-rr:.
                                                              •fyt^1 LI!  TIII.TV.V K^quir^.i:   !-;ii-.-t r :, -: '
   •arbonal i im  -  So I ut iV;\  !->i-ii uit  1. ir.:i E c

      89,000  X1"0'    Low  1 in<-


     KUlcl rical  (•"[ier>;y  8t'i|iii red ,  kwh/y r
   =  Pl.int  Capacity,  in)',tt
Re.-jrboiiat ion  -  St.K-k  ;]JH  .is C0_,  >.
                i nn
Y

V
                       1/0,000  X1'00    Ilin-i lira-
                      Fli-i'l fic-.il Kni-ruy KiM|u i ri-,1 ,  kw'i-'yr
                      Pl.int  C-ip.ic- i ry.  itiKi!
                                                                                'VsE^n Atisynjir i t-ns :
                                                                                  V.ij)ori?..-r    :">  Jh Qi.-'kwh
                                                                                  i:i.]0i-tnr  piimivi  = -,2  i\pn:/ 10(10
                                                                                '. 'prrjlt i n|;  i'af.jru1 f e rs :
                                                                                  1..JU Lira,-  =  !()()() ]]> CD. /mi ]  L:,|
                                                                                  High l.ini.' •   4MIO Ib  1 D./roi I  S-
                                                                                '[\-;M-  n)  TiuTjiv [><'C(ii t ri'<: :   i'lf.-'.
                                                                                I'pi'l'.'it ills'.  I'.-ir.iiw 11.' r-:;:
                                                                                  l..iw I i:m-  -  iulli) Hi i ii,,
                                                                                  Hi nil  I in..  •  hiMO 1I>  i i;
                                                               59

-------
   Figure
   Number         Operation,  Prcf^ss,  and Equation Describing
  From  EPA                     Krergy  Ri'<]uiremontfi
* 30/9-77-011
                                                                           Design do net c Ions, AH sump t ions  .i
                                                                                     Kt r luent Qu.ility
                Granular Carbon Adsurp.ion -  I'pflow Expanded Bud
                Y  - 62,000  XI>(:°
                V  = Klet-t riral Energy  required,  kwh/yr
                X  - Plant ans iunt  7 gpm/sq  ft < 28  i" t
                                                                           depth)
                                                                         (ft  freeho.ird
                                                                       Type of Knorgy Reqiti red :   £1e>'( ri ca \
                                                                                                               (tag/I)
                                                                                                                 -'0
                                                                                                                 lf>
            Granu la r Art i v iti?d  C.ivb:a:i HE!£L'n£>r;it 1 cm

            Y  -  JB 000  "^ ' ^  '""   ' I "           -
                                _,
                                r, l<*
                                         l tV
                                           '
            Y  -   4,000  X  *     C La -it Led r,iw wastowiiter
                                ?-j#,  - nit lion Btu/yr   "

            Y  =  10,000  XK°°  Cla-ifUd secondary affluent
                                Ele-trlrlty        '
                          -   _
            Y  =   1,100  X  *     Clarified secondary fffluent
                                Fuel  - nillion Btu/yi

            V  -  KlertrUa:  £n..r(iv K,<,,,lreJ,  kwh/vr
            I (in  Kxt-hnn^e  :"or Amnr n i.a Rnmov.il T  Cirav ity
                   and I'rtJ.ssnrt-
                 i m rtAn v1-00   T
            •t  =  i 10, 000 x       J r^ssure
                           1  00
            Y  =  .fJO,OOo X "      cravity
                                                                           Design Assmnpt ton Si
                                                                             Eleetr icif y  i nt't udes E urnac? dr i vtr ,  .if tt-r-
                                                                               burner,  si rubber hi »wcrs :ind  rarl^m
                                                                               conveyors
                                                                             Fu«l roquiri-J per  Ib -,:,irban re>>i'oer.iu'd:
                                                                               Furnace  =  1,600  Btu

                                                                               Jjea". "  I'*>°°  ^U,t u
                                                                           n   A£terD,rn,r -  >,,00 Kt „
                                                                           0]jcratin^ P;ir;!tnetcrs:
                                                                             Carbon  dosu:  Clarified  r:iv w.nscew^c.er,
                                                                                                I'>OC Ib/mi 1 g.i !
                                                                           _                                          ,     ,
                                                                           Type or  Eiu-r.^y Required :   Klevtr ii*al  .mil hue I

                                                                           W;it.cr Qua 1 i t y            J nf 1 utjnt     1-t J 1 uC-nt
                                                                                                     (n>',/I'l        ix\x./l)
                                                                             Suspended  S..1M^           3             rj
                                                                                y
            X -  Plant f.ap,citv, ngd
                                         .    .   i  i. /
                                          «d,  kwh/yr
                                                                           TV-sixn Ass-iirpi ion«:
                                                                             150 bed.  volumes  ChrouKhpuL/c-yv ,c
                                                                             6 bed  vol^.s/hr ,,,,^,4  raj
                                                                             Craylty  h(id! av;ii]jbl(, |1pad ,  ,^  i(
                                                                             PresHuru bed , .ive r.ig-.' opi;raL in}^ ht'.id = 10  £ C
                                                                             Includes hjfkW'tsh  but not  rt'^c:ier.it inn oor
                                                                               re.^uner ,-iru rt-ncw il
                                                                             1 0 % d owil t i ir.t- tor r e £ t' n C r . i [ i on
                                                                           T vpe of  ECntTgv Rcqui rt d :  K] fft r ica I
                I on Kxc-hango  ror  Ammonia  Kumoval  -
Y =  >  000 X
     "" *
Y -  KU-rtirlcal  Euuri-v RuquirEd,,  kwh/yr
-V =  Pl-^iic Capacl : y ,  3g«.3
                                                                                                        rn t i on/ J-i nrs
                                                                           Doaign AK.s;nnpi ions:
                                                                             Regcm-raMon with  J" NaCI
                                                                             40 BV/refiCEH-ral ion;  1 ri'^if
                                                                             Total  he.tii - 10  ft
                                                                             [lot's not  in-- ludo  r't-i;cncr;i-it  n.new.i 1
                                                                             Applicab U' E o >;r*wi : y or  prvsauri?  bvds
                                                                           Type of  E:uT4y Rrqi: : roc! :  Fli'i-trt cj 1
1-70        Ion  Kxi-!i.an>'.e  I or AJWIOII in  Rl ' '*' .            .             ,  ,      -  t
                                                                             Rept*nrr;int  ;iir atrippt-d;  tower  hi.nii-it  ,i£   ?«t
                                                                               j? pd/ sq  t' t wi t It  Sti 5 ^-u E t  .1 i f/c«i I
                                                                             ,,   .    ,                ,, t   -  ,      ,,
                                                                             Stripping  tow,-r avtr.i)) U'l>;ht  =  iJ  ! I
                                                                                  .            ,  .
                                                                             Ammon i ;i  recovered  i n .idscrpt i on  l owt-r  w 1 1 Ji
                                                                               IhSO/,
                                                                           Type of  Km rgy Kt-qn i rt?d :   1)1 tvt r i c;i I
Ion Kx«-h;-.iim?  l or  Afl.mon i.i  Kemoval T  Rfgener;int
       K.Tn-w.ii bv  Hi van- St rijiping

V ^  ), I8d X1'11"    i lo.-t ri.-ity

V - 'ijj'^ X  '"     1 •iwl-mi I lion Stu/yr
V -  K Icct ri>-;i 1  iCner^y  Roc ni rvd ,  kwh/yr
X =  Plant Cap.H ity. iriKil
                                                                       J>esi|tn Ass :;npt ions :
                                                                         Steam   st r if) pi up
                                                                         Spi-nl  ri.'KHm1 r;tn t
                                                                           pH =  K'
                                                                         SfcMra   si r i ppiT ii
                                                                                                       -iJ wi t El

                                                                                                         IB  1 (
                                                                             I'OWLT  in.' link's HO I ton in>; , [>H  .idj u« Lmi-nt ,
                                                                               pump in.;  t >' si r ip;>i i)£ t .?w<*r
                                                                             J-'u*»! b.isod nn  r>  1^  »ito:np rvtpi i ri'd/ I . OOt)
                                                                               ££i 1 w;istt'w;tt IT  I rv.iU'il
                                                                            vpi-
                                                                                           Ri-
                                                                                                       Klrt-rrii-.il
                                                                                                                     ul
                                                           60

-------
 i tiin
.uniher
               Opera! ion,  l'r->ies:;f  and Equation
                            -energy Kequj. romfnts
     E)os£gn Condit ions,  Asfitimpt ions and
               Effluent Quality
             Ammonia  Si ripping

             Y  =  H2 ,WC1 X '
                 •> 10,01)0 X
                           1'0'
             V  = MO, 000 X         Ttil.il

             V  = Eh-ctrica! Energy Ke^uired, kwll/yr
             X  = Plant  Capacity,  m^d
Water  Quality:            Tnfiuent     rift Joe
  pH                          II            II
  Air  temp.,  UF              7I<            70
  NH-,-N,  JtiK/1                l>             i
Design Assumptions:
  Punp TDH =  50  ft
Operating Parameters;
  Hydraulic, loading -  1.0 gptn/sij  ft
  Air/Water ratio = 400  cu lt/>>al
lype ot  Energy  Keqitircd:   HU'etri.-ai
             Sreakpoim  Chlori;iat ion With  IV.-hloriilat ion

             log V --  ">.U.:i +• 0.'!09J flog  X) t (),1'169  (Ion  x>~

                   -I-  0.04^8 (111)!  \)   Dechl or iii.it inn with
            Y  - KU'rlrii-.il Em-rny Ki-ijiiirirl, kuli/yr
            A  - Pl.itu  C.i[);i(-itv,  n^t!
                                                                        J H cr (J'j.il i t y:
                                                                       Design Assumptions:
                                                                          Dos.iKe  ratio, C1_,:NH4-N is  ft: 1
                                                                          Residua!  Cl? =  ' m);/l
                                                                          Detention  tine  in  rapid mix  -  i  rr.in.
                                                                          Sulfur  Dioxide  !eed  rati.  ,  SO?:Cl2 -'  I:
                                                                          Activated  c-arbnn pumping,  ri)ll  »  10 ft
                                                                       Type o[  Energy Renuired:  Kle.trieal
             i;h I or i r-.at i.'C. .ind  ai-ch h- r i Hat i 0:1 I oi'  [)i sinf t>c t i on

             :o«  V -  -..1)108 +  O.WH'J llo.4  X) •  0.0868 {Ion  \l~

                   +  O.OOfi'J (lo)>  X)'  Chloriu.K ion  with
                                          iloriii.it inn  Without
                                         e^h Icr in.itiiii:
             V  = Kl t'< I r ii ;\1 Mru-rKy Hi-quirt-d. kwli/vr
             v  - I'l.itit <:.jp;ii.ity,  mi;J
Water  Quality:             IlHluent    Eftluen
  BO1).-,,  i»K/l                   JO         JO
  Suspended Solids, mg/l      JO         JO
  Conform, no./100 ml     -10(10        JOO

  Kvapiirator  used loj  JoSiit^es greater "h.ni
     .'000 lr/,iay
  Dei h lorina tion  by S02  assuming  in  -iO-,;i'l

  No evaporator  For SO?
Operal in); Parameters:
  Chlorine dosage =  10 HIS.'t
  Chlorine rGsiilu.il -  1 ira;/ !
Type ..:  Energy  Kei|ui rt-d:   tleciri;a.
             lUilnrlni-  Dioxide Ci-tli'r.l! ton  mil I-1.-. -ill rip.

             "01: V =  i.-'.hU''. + 0. IfjSfj (loiJ  Xi +  0.217f
             V  = !-"liM-lfu il Kiu-rgy Ri-q-.i i rt-d ,  kwh/vr
             X  - Plain  Capacity,  rop.d
D*'Hi>;n  AsKump t i-itlH :
  Chlorine Dioxidi- do^jfte  i^ '•* mg/1
     U-quival^n t  to 10 rng/1  C i 2 }
  So.iiurr. Chlorite:  u.lorinu DioxiJ.  --ati.-  -
     l.iiK to  1
  Chlorine:   Chlorine Diuxiil.-  ratio =  l.nSl,. I
Type  ot  Mncrgy  Rei|tiired:   Klctlruai
                     .
                         • ..1-00            .    ,
             Y  -  >7,IJOiJ A        Oxyv,i-:i  !-L-t-d

             f  - 1-: lect rica I  Em-r^y K..-(]:)i n;d, kwh/yr
             X  - I't.int  Capacity,  ra>;.l
Water  QII.I 'i ly:             liifliu-m    Kfilm-ni
  Siwp.-nJcd Solids. =is/l        in         !(!
  • i-, .il  i-.iiiformi;' 100 al   lit,000        JOO
Design Assumptions:
  Ozone  generated from  air 1 I . t)?  wt .  L uni-en-
     tr.it ion nnd  oxygen  5  2.0'^
Operating Parameters:
  Oz.Mit-  tiose  =  5 m^/l
Tvpe  n:  Knergy  Ri'quir,.-d:   !! I ec [ r i, .1;
             Ion [-:xi-li.niKi' for  l)i-ir!i[HT.il i/at i<-;;
                   J're.ssurtr
                                                  , Cravitv :mJ
                                                                       W;iter Quality:
                            Influent     I'.l ) liu-nl
                             (mri/1)        
-------
   figure
   Number
  From  EPA
430/9-77-011

    3-78
              Operation, Process,  snd Kqiution Describing
                           Energy Req jirements
                                                                       cm:! i t ions,  As.suitipt Ions  :md
                                                                        I'M hient Qu.J ity
 Reverse Osmosis
 Y  - 2,850,000  X0'9^
 Y  - Klectrtoal  Knergy Fequlre-d, kwh/yr
 X  * Plane Capacity, nigc
                                                                                                   Em luem:
                                                                                                    - 1.0
                                                                                                   ioo-noo
                                                                     Water Qualicy:
                                                                        pil
                                                                        Turbidity,  .ITU
                                                                        TDS, ltn/1
                                                                     :}esign Assumptions:
                                                                        Feed pressure  = 600 ps.
                                                                        Single pas*: system
                                                                     Operating  Par.wters:
                                                                        Wcitar recovery:  0.1 -  I  mt-d 752
                                                                                          I -  III mgd 801
                                                                                          10 -  00 nigd 8b..
                                                                     Typt; of :lntrr.t;y  Koquirod:  Kleci: ri i. a I
    3-79
                Land Treatment by Spra>  Irrigation (Modified)
                Y = 270,000 X1'00
            V - 164,000 X
                V - Electrical Knerj;y  F
                X = Plant  Capacity, ngc
                                       Center Pivot
                                       Stlid Set
                                              td,  kuh/yr
3-80        Land Treatment by Ridge  and Furrow Irrigation
                  and  Fl nod i ng  fMoc i f ircl)
            Y »  20  X1'  °     Ridgs  and F-.irrov Fuel, million
                               Bt u/>r
            Y >• lft,000  XJ*°°  Fioocing Power
            Y = 12,000  X *    Ridge  and forrow Power
            y = Electrical Knt>r>;y  F«quiredt kwh/yr except
                   for  fuel
            X = Plant Capacity,  n$jc
            Inf 1 Icration/PercoI.Ttic-n  ,ind Overland Flow by
                  Flooding 'Modified)
            V  = <*.,?OQ  XL'°°
                       vl.Q2
           Y  * "i.OOO  X
                                    Oveil.ind Flow
                                    Rapid  Inf i  I tratiun
                Y  = Electrical  KnerKy  Fequirc-d. kwh/yr
                X  = P tant Capar i i y» rage
                Infiltration/Peri-ol.iticn  and Overland Xl.iw hy
                      Solid Stt  Sprinklers (Modified)
                              t  00
                               '
V -  170,000 X
Y »   ?5,000 X
                           ''
                                      4h.orl.-imt f-'luw
                                      R^pid [nf iltration
               V  - i1! i cct ric;i 1  Kncrj'v  f.equ 1 red , kwh/yr
               X  = Plant Capa-.-! tv, m^c
               Wastt'wncer Tr<',-it(ni.'nl Plant.  Bu] Uling  Heat ing
                      Roquireiit'iiis

                IOK  V = 2.6362  -f n...5hl  (1,^ X} + 0.0795 (1,^ X) "
                      + 0.0026  {to.g X)      Mi:):n-;ipolis

                log  Y ^ 2.4483  > O..'*^9f  (tog X) + 0.048.1 (l.>g \)~

                      - 0.034^  (lo»i X)''     Now Ynrk

                log  V = K87/,^  -t- 0.'*H>;  Clog X) + 0.07'U (l,^ X)'1

                      - O.Oltft  !|.\K Xf     L*'« Angeles

               V  =  Bui Id ing  Ho.it i ni; Kt q;iiremt']it-s, nil 1 i,MI Btu/yr
               X  =  Plant Cap;n ity, mst
                                                            Irrigacion s«.',json  is  .'Mi days/vr
                                                            Center  pivot, TDK  =  ISh it
                                                            Solid  set, Tl'lf « 175  t:
                                                          Typo of  Tr'ne r>;v Sequircii:   Klec •: r iv.i i
                                                                           1 sign AH.surTt[)[ i nns:
                                                                           Irrigar inn  si-.ison  is .' -f)  day.f/yr
                                                                           i'ower i n^- luslcs  runoJ:   • ,•! urn pumy ii
                                                                           ruel fi-r .mnt..11  !t?viH:n.;  rind fidsi«.-
                                                                              furr.-w rcpl.u-eraeut
                                                                          ypo  of Kner|',y  Ki'quirL'il:  Kl cc : ri t\i 1
                                                          IH'slgn A-ssiimpt i uns:
                                                            Inf iltrat ii»n..'pcrt:ol.ii it.n,  T|y{ «  ^  Et
                                                            OverlarJ  f :ow,  TDK -  11) ft
                                                            J)i spos.i 1  t ::Ttt  is 2rJO  d.ivs/yr tor  Dv*1 r I ,inJ
                                                              7 low
                                                            t3ispos.il  t urn- is 16 r>  ..J.-LVH  U>r Rar i tl
                                                              Inf i 1 tr;)t i>.'[i
                                                          I'ypr  of rntTf;'/  Requi rt-t: r   K J ect r i u;i 1
                                                                     Design  A>sun'p: '-uis:
                                                                        Inf i It r;i c iint. pori'pLi: io-i  rfpny, 1 DM    M? t'r
                                                                       Ovcrl;-i:i;i t  K.-»-  spray,  T Hi  -  I ?> i't
                                                                       Disposal E  imc  is  230 d.iv:-s/yr  tnr i>v*-rl;im!
                                                                         : spos;i )  t  • :in  i s  Jbi »:.i
                                                                         Inf K l r.:'. i.-:i
                                                                         t- of  r.nt'fs;,- f-toquirt^l:
                                                                      csiHfi  Assuinpl inns:
                                                                       3-'nvir  ftO'Sli .) . r  t h.-m^fs-;hr
                                                                       Stitrm wiiHli>w>. .ind  i n-:;i: .it i'd wjll-   m,l
                                                                         ..-eilin^s
                                                                       7*1 por. oni t -.h-l  Nt i i i .:..£  i,in  r,;.-t( r
                                                                      .-.. ChapLOr  i,  :»;IR*'S  5-.' t  .»  S-7  in KI'A
                                                                       4 JO/9-77-01 6
                                                            62

-------
                                                                                                                                                                 I
       r it i.'!i,  f'rcHH-Si2,  .'iTitl  Equat ion
                  titUTgy Rt?q uiriMnont  s
       w.it^-r  rriMtmont  iM.mi  15ui i.liiv,  Cnoiing
        Kt'qu i re mi' ru s

          4.nr;,20 t- [).j.>;9 (lo»»,  M  + O.OHSf*  (1 ny. XI J
        - O.OlbK (loB  \J       Miami
                                                                          3>£>si«;n  Umd it ions,  Assurr.pt i
                                                                                     Eff hit-in  .(>,').•  i '. ,'i', X)"
        -  o.o CH  d.i«  >:>3      v.-w ».Vn
Y  = ^ui;di;iu;  Cool ing Rnr\ ni Tv:ne:'.t ?:,  kwlr'.-r
X  = I'l.-int  i::lp;lt-it v,  iri,;(i
(Ir.iv i C v Th i i-krn in>;
                                                                    Sc-.>  V;ibU' 3-4  in Kl'\  'i 10/<(-,'7-r) i I  •'.-•  o,-
                                                                    ti;:s.ump£. funs  and ttpi- [ a t i E\L;  iJiiritTUt'! u;r>j.
                                                     n 1st1  tor        .          _      _ ^ t      .,,-..
                                                                    lb/so  f r /-J.iv
V  ^  17-  \u' "    Other  Si  -Jssi-  rr.T.   ',^00  t,.  ^,(>UO      Type  i>i  i-: lor^y  Kfquirt'il:   HK-.rrix.il
                     f l •' MI  TliU-ki-m-r  -\it\i

V  =  I . 7U  x'"1'    Other  Sludgi*  mi  i'hirki'
'•'  = K11 i t. r i i •;-. !  Kjl i-:' gy  K< •:) •,; 1: «• c ,  k w'':; i; r
\  ~ TliIrkfiKT  Area,  MJ  ti

Air i'lot at ion  '!'hi.'k^:i i  :i>:
              .".r*/
                                                                    Hi-i- '(' it>lr  i~'f ri»r 'U'^ij;:> .* irSCCipt !>.'Vi»  ..jn
                                                                    op.Tiif ini; [>; ioitn air f I'tji)
                                                                    ipiMit  nl  <).:>  )l%/lh solids and :jver.i£i-  -i:
                                                                    ~;t ! ro  ,1 i r; :-ij  1 E  sur ) ;U't'  a r«.'."!.
                                                                    i'vpf  ,-*   Knc-r^y  Ktl •.)<)»*
V  =  Jhf) x    KJ         -MHO  M^'.'.iy .--:  .i^w.iTrj.-;!  ...-ifiirt        ch.t r.id or i s t i •• -  En  KPA  •/*'1O V-.'.:-'.UI.
                 .  „         ,         ,   ,   ,  ,                         Mull i:>lo units n-injin-u  ahovo  HIM)  ,u :E
.   = Mi-ftrir.il  Knrrjjy  Ki'rn • r.-,i, kwli''yr                           /   ..__
:-.  - ivw.itt-i.'d  Snluis  i\i:^M.  i? •. ,  i ;•  ''/d.iv                 ,.s    •-•i^*1'*.-
                                                                    Op*- r;ii i riy  •'ar'-ir!".11 «.* rs ;
                                                                       Xa. :ii lit-:- f,t:i  t.T   '«) pin,  .trr oM  t.-r  1-
                                                                       10  rin.  a] lowc.i  ' .»r -in lo.id s tii;,  r^H?  tr* i
              .(1.97
              <           Hi.'.i"1-' vs.: JTi":.irv  *•  .1 is: ••
                         Av (  i v,i f t-i! ^ hnl£«' a nil  L)i .i;es 11

                         SlikJ^s  wi t h c'rC'l ;

   - I' U'.-l rii'.'il  f;.nk'fj>y  Ko<|utri-J. kw;i/vr
     .-•'. •.:•.( ti.i.-  •.'•iiarii ilv,  1  on/J.v.'  -1l'v  s.'J :i1.>,'
                                                                                                  ppU/sq  j t  i or  J  *
                                                                       1 :)E;  •   Ml  :'t  r ,->!  r- lttc,»i- and  .'t  IE  3\i;  w.i
                                                                    Opt-r:it i ns;  P-ir'nr.t'i i:r-; :
                                                                       'I wo  -  S( ,i.ir.ic ;:  r.i • L H i  ;inii si'l 1. 1 i n,*.  * .tnk:;
                                                                       W.islt  wnii*r  lu  «lud_K.L>  r,-ttin  -  4:1
                                                                    ;•>-!»- ,-:   KIHT^V  Kr^ilred:   rile-, i r i - ,• ;
                                                                       :<«Mitur  , t>infj t i.tns -  tOO  n.-ii/.  d   iSfV'c
                                                                       M,-,it  i-j-.-li-ni^r  '.T     >(I°F

                                                                       St-L-  T.-toli'  )-*)  tor  sLiulj;^  ttf*- i  ipl  i-m .<-
                                                                         I.-M:  hi  Oi.ipE,--  -i  jit KPA  ..  so/'*- V ,'- t) I
                                                                     urvi.1  t in- ! OL L--;

                                                                       -!'.-),-«-  /i  i;ul.  [•-.
                                                                       I'.iHl -Lli i i kt-ii.T  -1r t vi*--
                                                   63

-------
   Numbi-r
  Krom fcPA
VJO/9-/MM1
                            : iun.  Process,  iml Kum|.iL ions:
                                        Si'.ic 111 r I'ond i '. ions  -  IUO j»s i < it  iSO*" :•'
                                        HiMt  rxi-hanm-r  :.T -  SOltF
                                        Cunt lrr-ous  operation
                                        Si-*:  T.ir-h1  5-(J  fcr sliid-;t.' do-; -ript io •  n-.i
                                          rext  of  Cn.-uHc-r r)  :n  El'A UftW-l't  U
                                      iurve  i RC - udes :
                                        Xucl  to prod K-t- stf.im net-fSSfiry  [.  r-iist-
                                          re.ii'liii  i't'iUiMUrf  r o  ipcrat ing  : ciipcr il nr.
                                      yPL*  01"  Er.t>rgy  Rftjui red    Fuel
                  HCiit  Treatment  - With Air  Addition
                             1  Or)
                  Y  '= 2r)D X  '  '      Primary  * W.A.S.
                  V  -  IJ« X1-""     W.A.S.'
                       ,,„ .  I.'""     „  .
                                      Priory  ( •*- tYCl,f  t W.A.S.  ami
                                      Primary  *  W.A.S.  (-J-FeC^)
                                      TVrt i.iry  Alum
                 Y  = Km*l Rt-quirvd* million Bfu/yr
                 X  = TliernKi 1  Frv.iUiiftit i'apat* it y,  jjptn
                                                                                  Design A.-ssn
                                        ( pnt in:Jnnfi  i-pfr.it ii-n
                                        Sft' T;thl o  ;>— 9  t ur « I tui^e  dc;;«- r i fit. i s ii  i,iu
                                          text  ol  Cfi.ipUT '*  H:  Kl'A -. li)/**- " '-f  '•
                                     Clurvo  f tic I nd<'^ :
                                        t1 ne 1  E.O ("UMiiijiV ^( i.'.itii rlOi'i'S:i.ir>  t .  r.i i -;t-
                                          rc.T.-ror  .-.-im-Tifs  to i?piT;r  in>:  t ^•-upt.-f-ttv
                                     Tyjio of  KiHTyny Kfijui rrii :   f-'ue ]
                  t-at Tre.itmt-iit  -  With Air  Addition
                    .2HOX1'110     P,-l*ry
1
Y

y
Y

^ .» IU A U
- *Q X1-00 D

- aOO X1''"' D

- Thermal Trvatnit
t >; . f r i nuirv
is* Prlmviry 4 W.A.S. irul
riT.;iry * W.A.S. (+*'E!t:ii'
iti. , Pri'H.'i rv -f w A ^ l •*•"•«.' C L \ )
mj 1 ion tk ii/yr

Sue i.tb . '?-•? lor slu.l

Curve 1 tu' 1 udt*-» :
EV.i 'tot f'Tlt*MH '. to
Type o, r..,yrBy Koq»lr*u:
^L- UeH.Tipt ••'•• .ir?u
EPA -' )0 '''*- •• • ' 1


opcr;;t [i1i> Li )i![H-r,it in
. IR .
                  Ion Y  *  '3.5 Hi +  (!.:.r>h--,  Mojr  X)  + 0.280K  i log X}
                                     IV1 s I j>n  Ass;in;t!l ion s :
                                        S'-e  I'tib U-  j— <$ pfi-i i-tj j n»i  !- ij;un-


                                     Curves  i n.-1 u.ii-:
                                        i':jf'Ttiioal  ! rod i ti^ .itHl  McirMl ni\;
      IM rtt'Ht ed  Pr imarv +• Wast o      S I n»,li:e  puirip t f\y,
      Ai' I i vat t«l  and  Diy^rito J        N 1 'jil^e""> •!''•'• u •( •  n . \ i •;»:
      ;'r iir_.i rv t  Wu«t*-              Tv|n-  ,>]  Fn^rj'v  Koiju i rt-.l:   Ml o*11 r i
                 Y  -  F le>.' t i ii .1 ]  KiV r>;\ ,  kwh.'yr
                 X  ~  Sludge (,'n.ini it v ,  t nil-May  (Jr-
                 Che^ii'.'j 1  Add i t ion  \ . i:d i si'.-.sl t-d  S 1 ndj»f s )


                                                    «ti-  Ac i 1 Viit t'd
)
                 lug Y =  'LSI 74 +  0,2»S1 (Ion XS  4- 0. W.>8  (J OK  XT
                        -  0. MH 3  (log

                                                  Primary  t W.»,'»  kwh/ vr
                 X  =  Sludge ^u.intity,  ion/day (dry

                 V.i .-isuni  l''i 11 r.it tor:
                 Ion  V =  'i.].?-*S +  ii.('rt.HO {lov, x^  '
                        -  O.UI '7 i  i.v;; X)

                 Y  -  Kl»-x iriu jl  K-TorjiV  Roquirod,  kw
                 X  =  V K -.;'iT.  !"i 1 i r.aJ ii n  An- !,  sq  3 t

                                       i-'i 1 1 (-,ir i- .'iimp,  >ii t  •  rrtM
                                       I'.jrvi-  i.-.. :-uii-', :    !r .:.•::  Ji' i •..• .   ; •  , :i '
                                          l-o 1 lol ,  v;tl  aj-.i !.|1 or, :•*' .inn  |;'.rii|:
                                          r M ( t K    JMIT,
                                                                64

-------
   Rguri-
   Number
  From  KPA
.!0/9-77-OII
  Operation,  Proc-uss,  ,md Equation  Describing
                Energy  Requirements
     1-96
    1-97
Ft Iter Pressing
Y  •  6,980 X0'58     Influent  solids
V  -  7,810 X0'60
                                      Influent solids
                 Y  - 6,710 X
                             ,0.71
                                      Influt'tit sal ids = -£
                Y  - Electrical Energy IVqulrt-J,  kuh.'yr
                X  • Filter Press  Volume,  <•» ft
                 Cpiurifuging
                 Y  = 4,000  X1'00
                 Y  , -1.940  X1'02
                                     Dow,it »• r i ng
                Y  = Elt*t: c r ica 1  Energy Rr<]u i
                X  = Flow,  gpn
                                                 'd ,  kwh/yr
     Design  Conditions,  Assumption*  ami
               Effluent  (Jiiiility
                                                                            See  Tahiti  i-S for
                                                                                                                      In  Kf \
Operating Pardttieters:
  Power i'iinsur;p£ion  b.isi><{ «>n  .«':!t iinu-us
     operation,  225 [>Hi  ^|'^r:jt iit>: ]>rcs*.i
  Curve int. Hades:
     Feed Pimp  (hydrmil !f,i 1 ly  driven,  po
       displacement piston pump)
     Opening  and closing CIKH h<-ml-*:iii
Type  cf Energy  Required:  Kleetrie.il
                                                            Operating Conditions:
                                                              Power  consumption basi-d on  i-t
                                                                operation

                                                                < icitrifugH,  G = 700  siv~l

                                                            S 1 i idj^L-  i'yu*.'                     i'i
                                                            !'r inuiry  + Low  Line             N--
                                                            T<-rt ijiry + Low Lirce            S.
                                                            Primary  •+• 2 Stage High  URH-    '
                  ;i ntt Dr y i ng Btid s

                 ID«  V  = 2.1785   +0.t)ViHLoj; X>  *• 0.0185  (Jos; XI"
                       +  0.0020 (log X)      t'nwi-r Consumption
                           10^
                   = ^, .0  X " *"     FUL* 1 t'i M; suir.pt io:i :  7 . :>\  so : i 'is
                                      piicifU'O,  mi] lion Htu/yr
                                    Fuvl
                   - 1.2  X1"00     Fuel Qiiisunpt ii>n •? 2.52  aoluls
                                      punipi-ii,  mill ion Btu/yr

                   = 0.42  X1       Fiivl CiniMunpt iuii  ' 1.02  solids
                                      piimpi'il,  Ri i ] ] ion EilL/yr

                   - Kuc 1  Required,  million  Slis/yr I'XC^pr  P^WLT
                     Cansair.pt inn  Wni.-ii is  kwh-'yr
                                                                                                              i.: l.iH.st f if,it i
                                                                                                              1 dl lowi-d by
                                                                                                              L.U-w,i( ur iciK
                                                                                                              i lit ,E[
                                                               i ^E'  As sump t ions:
                                                               nwt't" i'on sump L ion btjd on  pump I n>;  to
                                                                iJryisiR bc'ds  at TDH  - li  rt
                                                               i]*-!  I'onsiimpt ion basfd on :
                                                                .Irvinx to  SOX solids, 70  Ihr-'.-ii  IE
                                                                KMitiiif, with front  end  lo.idor,  H  ^,ti.'"fir
                                                                   ust- uf Lii#s«l fii»;l (1J*0.(K«> ftH:/K.ii)
                                                                IS  miniitej;  ryquirt'd Li>  K».id   IU ,-« >-.; in»-
                                                               «n*  T-ib !*'• 'i- i  for q IK 1:11 i t i os  >>! v. i r i o« s
                                                                aludsou/mll gal tri-.-iC<-d in KIVA -'. KJ/^ / ,'-0 I I
                                                               ypfr  ol F.nitr^y Rfiquirt-d:   ?! tet-1 r i t rt 1  ruid
                                                               ' l-'Lt'l
                  UidRf Pumping
                  ot; Y =  J.6558 +  Ui'iJr,  |,,L,V  = |;j ...r5

                 v  . .-..„  x1-00     Trlk.il-ity  - ^ yd3
                 V  *- .'.h  X1'00     Tru.'k  r.ip.-i.-itv  = 10 yd3
                 Y  .: Kut> i  Reqoii"i*d, ni I : inu lit u/imt- wj>  milft/vr
                 X  - Annu.-i|  SluciRi' Volnmo,  l,0»n  .-n yd
                                                                            !Vs i KT As sump I Ions :
                                                                 1  I'p.s
                                                              PipL'liiK' i'MPCtivc  "••" l-K'Lor  8:i
                                                              ['limping b;ist-d  on k-i*nt r i r ujj.il  non-, :t-i; ->i
                                                                .slurry pump^, bft'V.  cfl'ti  it-n, v
                                                              ^0 hours pi'-r drty average npcr.-ition
                                                            Clpcr.u \nyt P.jrjimttcrs:
                                                              Set'  T.-ihU-  '3-9  for stinijn' i-li.ir;n-tf rist i^-s
                                                                tor  disposal  trs KPA  4 JO/'J-7;-(m
                                                            rypi- o!  l-:n«»rfly Kcquirt-.f:   Kli-. I r l.-.i I
                                                            \II-K i^n  Assiicpt. ions:


                                                            O|irr.-i i i nj; Pj r.trooters :
                                                              OptT.ir. I on  8  hr per  J.iy
                                                              Avi-r.".;o spivd; J> ni;>lt  i or- t i r *U  .'!' :i: i I
                                                                .mtt   IS ntph  Lliuri'-'M t»''
                                                              'I'r iti'k  I :K- ! uso -'i. S  rnp.n . i^i;
                                                              Si-i- T.-ihK-  J-9  i'nr  rilmJui- ckii-i. t .T i si i
                                                                tor  ilispos.il In  I'I'A  •'' iO/^-r'/'-fH I
                                                            rviM*  of  Knt-ri-v  Kt'ifuin-if:  •-.'  Di.---.-l  i -K-!
                                                            65

-------
 Figure
 Number
Froio  EPA
         t lull, Process,  ^t mph
   Tug si^e:    100,000 gal  birge- L,JOI' hp
               'i:)0,000 S 850,300  s^il  ILIIRC- -
                     2,000  hp
                ;,()CH),000 8, 2,300,0(10 Ka, li.irui--
                     2,r)00  lip
   Sue T.ihU- t-'J  !->r  sludge charun-t IT : st in  s
     for di»|>(,..i.il  In  EPA  433/9-77-n I I
Type of Kiu-rj;y Required:   Marine diese) in.-:
  3-102
               Liquid  Sludge  Hauling by Truck
               V
            f\ QO
     14.9  X '  °   Truck  Cij;at:ity = S.iCO gallons
                                 Truck CijiAciLy  -=  2, 500  gallons

                                 Trucik Cjipaci ty  =  1 , JOO  &;i 1 1 ons

               V = l-'u<* 1 Required , oi 11 ion  Btu/out1  w.iy  m 1 lo/yr
               X a Annual Sludge Volumo, mil j;.i 1
L't i ] izar iein  nf Liquid  Sludfte

Y  -  !H(i  X1'00     Land  sp -radlnn

V  =  Fuel XL-quired,  aillii:i Stu'yr
X  =  Annn.i!  Siujge  Volume,  mil  14,1!
   )  g.-il di,-sc.  (-?2) =  UO.JOO  Bf.i
   Diesel  [.uuvrvd  innk  rruo.  rnpJi  t u» rt*.it" If r
   Truok fin- 1  usi-  .'*.!> mpg  .ivg
   Sut: T;ibl<-  !--'>  I ,»r sludgt- eh;ir%ri-t .-r i st i
     far di:;p(>M;M  in KPA A 30/9-77-0 I I
Typ*» df KiitTKy  KV(jiiIr?d:   -'2  Dii-Kfl  -II--1
                                                                              Kue I  use :   'if [••• id i tip t riL!'k -  L1  ir.i I  trip
                                                                              I  fe.il Jii'st-l  ( •••'.!)  - 140,000
                                                                            Opt*r;i: in^ I'.-ir.LTn. i-.-rti:
                                                                              Id 00  g.i I  hij;  *:i»-i';  tvpo  .-fprCvj.U'r ,   1 :»
                                                                                mi tint i- r;"r:(i  trip.  Tr-.^-k  is  M- i  '  I .-.M
                                                                              St-t; T.ihlt-  v-(J :^ir  s!ut:£*1  L'ha T.M t i-r i ^E i.--
                                                                                fur .!Lsp,.-;il  In  u'A  '. >3/9- "-0 I I
                                                                            Typ*i **f K;'.H-rj*v  K -.•<]» i FL\: :    -2 Dii-sf I   ' iti- I
  3-10A
               I't i 1 iz.-it ion of  Dewateruc SI u
                                 Land  Sp rr-.'id in^

               Y  - Kno!  Koquircd, aiilli-m  Bt»/vr
               X  = AuniKil SLuJ^e Volune ,  1, OO'J  ru vd
                                                                            iipr-'Md inj;  L riu'k  - ! j'..i I '' E r
                                                                I  K.il '.li.-s,-l  («_') -  liO,IXIO l!l .j
                                                              p.'ra: iuK  I'.n .nr.<-: er :
                                                                l.andfil!:    if  -:ini;tes  :>ii^ld*v.tr E (:..«•
                                                                  ^-.i %M  : E-II.-K :.Md i'l' sln.ige
                                                                Spr,.'.Hiiii-,-:    ..: ,-!i yj  rii:; wn.-<-I : v:.e
                                                                  riTirt-.uif r,   .''  i^inuLe  trip  t ini-
                                                                M."e T.-tlih  t~v  j.ir ^lud^i.- t'hj r.i^ t cr i ^!
                                                                  I ..T .M:ifin,.il  i" 1-:]'A  - 5J/4-.'.•'-'. M
                                                              vpe> r,l' i-.ii.-ri-.v  !-;.-i|ui red:   :;J!  I)i,.^ol   :u-
  3-105        Mixing -  Anaerobic. Digfs:t?r  - Hi);li  Kan-

               Y  =  l.«  X       Mechantc.il  Mixing- 1/fi HI*/ 1 000  ft

                         L'°°
                                Mechanica!  Mixing- \l'i  HIV 1000
                                                             l)L-.sij;:i Ass.iaipl i.--;-s:

                                                                -0  It  suhmi1 r>'.f.ii'L'  for  reli-O-Sf til ;'..!:,
                                                                Mncnr <--\ i i i i tn.v v.iries ! rnm  ^^i" [ .> (''t'
                         K°°
                                Mechanical  M
                   Y  -  t.809-'4  + 0. 1-6J  ilog X) -  ().07::i
                      +  0.0209  (log  XI1
                   Y  - I.^.60.'R  - f..3.U:
                                    «-   I   1IP/100U ft.
                                                        0
                                                  "M X' "

                                Mlxii>K-   b s.-ln/IOOO  f

                               i  X)
Type  t'f KM.-r^v K.'q'iired :   I'.lt^'L :- i- .j I
Si-i. Ch.-ipti--  S, :• n;eH j-I 1  I.'  1-U .in.I  !'i.-M
   3^1.(h !,'r  :.!.•!  i\-i; .it rt-ir:i''nr s  ir -'J'A
                     -  i).103<)  I Uig  X) J  l.isMixins-  10  M'tV 1000 f t
               lug V "  (..17:2  -  l^S'ji  'l.iji X)  <•  -).53.'.'l  (I..,:  X)"
                     -  D.inOl  (lug  X)    :.1«  Mlxlni'.-:;!! svtn'lOOO ft
              Y  ' Kli>.-t rt\.-al  Fnurgy  Ri>]i.iri>d,  kvih/yr
                                                            66

-------
                     Op*1 ration*
  Fron  K!'A
410/9-7/-OI1
                                                 l  Kqn.-it. ion  l)*j.scr ihing
                                                ul remiT.tH
                                                          Des; i:n Ui:iluiwn  : sr  -usr Lhi'i n
                                                          star«'s,  f Mr oenr r,i i 1 ".'ar i.-ns  :r..; (i i n I v  rv.
                                                          0.5  t'or  KdiiLhpri)  Int-.-il ion* miltiply  (w  Q. <


                                                       Sot>  Fji'.urt*  '1-105 !"t- nixing  .-iit:r>-.v  i^  ••'•' \
                                                          ^10 •'•'}- 7 7-01 I
                                                       Si'i'  Tab h"1  i-  f for ^i. uHf.*'  i.'h.-ir.ii-t IT i st i i •*  i i
                                                          I'.PA  '* 10/9-//-01 I
X = Solid
. . . . _ ,
i-
V - 1 r) 7 X



V •* .'00 X

Y = . TO X

Y =- 100 X

Y - IhO .X


Y = 'i(10 X

Y ' KiL'i-l
'•: - •ll-^]-;
s, llv'il.-iy
') '
I'.'oi Kiu-rnv li.iscJ ,m .•xv-en -.upplv -,-«.-i r,-r.-nr ,-

,f. . / ( rnixi:i>', ass:t~od li- iiv -i.tc l;-: ii-:i

1.00 'lm '"'^ M.-.-hsnl.-iil m. rat ion b:is...l ,m 1.5 ll> (>.;
Mt>ch.itii iM 3 At: rat ton - [.XT '-nt io:i < ranst t-r ''ts-ii-^r
'i iuip ~ 1 ^ J.'ivs l)i J f urtrii -Ter.it i on M.isi'H -'!; N . '* i h '.' *
1 .00 , r , t rnnsU'r/h;i-hr
Mf ch.-nu r i : Aer.-i-: i^-ri - Df- 1 ••nt ten ... __ r ,,.,'-,.,,_ ,.v.v.

lino - ... i..i>s Oxygen t nr ni iri r ir.it ion L« n.,r i m- i mU-il i it
' [ILffn-^d Air - Fh-CfntU-n " i me v,U:.rs prt-st-iU-*-.! - i .-r n ; i r : f E - .1 : i .MI n;-
•" ? ;»» . t>q... . .. ^ . ...t . . t. i .
1 00
lUffmifd .Air - IL-tLMit L.MI Time
,""•'« -.:.svw
r i i.,i' Kiioi'^v Ki'-ii n i rt*i1 . kwli/y r
- Ih \:,iv
. 00
      1DO  M>  ion  ':0'v:  :'• '  J.iv

      I'intr^v  K^-IJ u i rpi],  kwti/vf
                                                                                    ")i?sipr;:>  AS.-;I;E^P'( ions;
                                                                                      •Jro.~tss  is  ,-\i\ uth^-rr. .••;•>;! i 1 i ,-
                                                                                         Pure  ;>x\rL;i'ri  pr-.-v i tlt'tl  1 "i" H\VMI.':I
                                                                                           h.iv i :^  : it<- t " ' ! t'tu'i -t.-  p,«wcT  -i-
                                                                                              ) .:.i h:v-  |,0no  . it t :  mi:-. ;;:M
                                                                                              .'.9  Ib -n^/hii-i-r I'-:A •.-.•.•••-•r.n
                                                                                      I) i voptM) i v   svsE i-m.s .isMuniftl  i <>!' j'.i'i-.iE i-

                                                                                     y,,,- ..f  i n-r.v X,.q-.iir,.j:   i-l«. r:. .:
                                                                                      llpi.i-.T. In,;  pn-ssuri-  -  i''  ;w
                                                                                      PC,- ir.'ii .!ri:-i|  r.it i..  -  '•: I
                                                                                         :n I^':1* 4^,1. lf-77-il i !   ii  p^~i'::ik;  :.
                        I ;.•.:.!  •. " '"    1'r i-.irv  S!u,i,:r
                        .:   ,,,  ._ 1.11(1    ;>^	  .     ,


-------
   Figure
   Number
  From  EPA
430/9-77-011
   Operation,  Process,  
                                                                                                1 iOI)- 2000            '>4
                                                                                            grtMter  rhan  2000       108
                                                                          Olvratiut; Assumptions:
                                                                            Heat1..!' tin.  to rvjc:-;  1400"-' tearpi>r  Dfid          -J;? m^;d
                                                                                  n.n               in.o
                                                                                  'i.S               11.0
    3-11 5
    3-U6
                                                                          Ofierat in^> Par.imeCff :
                                                                            Syster. .-pfr.ices  100'". ^1
    3-114       Fluidized Bee. Funiiife Itir inera t Ion

                Y -  10. i  X "'   Prin,ir>- Sludge, Rate- 14 lb/ft"/!ir

                Y -  12.5  X1"""  Priraiiry +  Low Lime Sludge,
                                   Rn:e - 18  Ib,'ft2/hr
                Y -  15.f>  X '    Digi-.sted Primary Sludge,
                                   Rate - 14  Ih.-ft'/hr

                Y -•  31.0  X1'"0  Prinwry +  (W.A.S.  + Fed 3) ,
                                   Race - 8.4  lh/ft^rhr
                           1 00
                Y =  45.0  X      Primary + W.A.S.,  tPrlmary  +
                                   Fed,} + W.A.S. »  dndW.A'.S.,
                                   Kate - 6.8  Ib/ft2/hr

                Y =  51.0  X1'00  i'riivry +  FeCl  , and W.A.S.-»-FeClj.
                                   Riite - 6.8  lb/ft:/hr

                Y =  Fuel  Req.iir?'!,  Kill Ian Btu/yr
                X =  Dry SJud^t-  Foed,  Ib/hr
              c-f  v.- ! -ii. i ;«.-  :>^ ti Js is  10 , P.'M)
                               'irj.tri'  j- ! I I  l or
                               in Ki'A  ^30  '*-/"-
                                                          Design Asa
                                                            Heat v,j 1
                                                               Btu/ib
                                                            Sfe  T-ible  ••- 10 |>r<'
                                                               tnori- dC".l/:n  ^H.^u
                                                               on.
                                                          (iptrat iiit'. C. J:iii t ions :
                                                            Combust ion  t empt-r.ir urt-  iri  ! ^00°^
                                                            [k>wntimt> i:> ,-i  f mis' t i f»»  of  Individual  '-vvn
                                                            iO*  est't'si-  -i i r ,  tio j;rt'heai.«>r
                                                            Start up EU'L in*.' 1 iiik'd »  7 ?, 000 Bt II/KCJ  i t  t'
                                                               sL.irtitp
                                                          Type- ii ""  Ktit-r •.;>• Recju i rv J :   >';jo 1 til .«r  N.i[ u
                FluidiZfd  BeJ Furn.ii e Incineratijn

                Y - 47,400 X'1'93

                V - Elei-t r Lcfi 1 Ent;r):y RfquirfJt  kwh/yr
                X » Bed  Area, ,sq  ft
                                                          Set* Table Vi^ prc.'^diiu;  Ki$«rv  1-1 ! J  t.^i
                                                            ilcsiUP. aasjm|>tions in KPA  k SO/ 9- //-Oil
                                                          Opt*rat in^ P,ir.ian.Tt> TK :
                                                            Full  t ine ->|>t*r.it ion
                                                          Type 'H  Energy Rfqui r.'tf;   K loi- c ri\' .1 i
SI nd>;O  Drying,

             Fu
             mil I ton  Btu/yr
                Y - 10  X  "   Fuel  JO'  Input Solids Concentration,
                           '
                                   1  10*» Itip-jt  Solids Coiict'iicr.) c i on
                               in; 111 MI  &tu/yr
                Y - ;>GO  X  '   KlfH-ti-icity 30'i  [npur Solids
                              Concent rat ion
                Y = 234  Xl'°'* KU-ctricity 202  Inptit Solids
                               Conce ic rat ion
                Y =- 'J2.4 x1""2 fuel  8? Input Solids Com-ontr.-iE ion,
                                ni 1 1 ion Brc/yr

                Y * 277  .\K°'  Fieri riL-Uy 8%  Input SoMJfl
                                t*opi-!'ntt:it ion
                Y * ?1.0 X  *    Vut-l  UZ Input Solids Corn-entr;it ion,
                                :-:i 1 E tori Btu/yr
                      ^ Y  '  '  Klt'-.-t rif i t y 4"'.  Input Sol nls
  ]»ryer  fcf f !*• ioiu-v  ?J '.
  Product  iD^isture  t-onu-nt  10*
  I'owcf  i r.c i udt's  b 1 ow^rs,  fans ,  ^onv t-vors
Type of  finer»;y Required.  Fuel JIHI r'U-ttri- it.
                                                           68

-------
   Mgure
   Number         Operation, Process,  and Equation Describing            Design  Conditions, Assumptions and
  Frota EPA                    Energy Requirements                                   Effluent Quality
, n/9-77-011
    V116      Y  -   150 xl<°° Fuel  2% Input Solids Concentration,
 (Umtinued)                   million Btu/yr
                               Electricity 2'.
                               Consent r;ition

                               Fuel  I'' I up lit
                               mi 11 ion siiu/yr
Y = 2650  X1'00 Electricity  2% Input Solids

           I  QQ
Y »   KM)  X  '    Fuel I''  Input  Solids Concentration,
               Y  =  5100 X     Electricity  1?;  Input Solids
                Y  •=  EC 1 *• i • t r i o a 1  Energy J.  V = :,2>18 +• '].'>i'JJ i.;«s  Xj  * 0.::S9 U».;  XT         Primary  + W.A.S. -  1700  psi*

                      - 0.0108  (^ X, '  Pri^rv * W.A.S.               r W'A'S' ' 1(t°° ?Sig
                                                                   }       ContinuouH ope rat ion
                >fi  Y = 2,1561 + G.!>-VJi (log  X)  -+- 0,1772 (log  X)'       See Table  5-9 for sludge  descr i|>r ion and
                        A Aon.;  /i    v/1  ,,  ,  c                             cext  ln  ^apter 5 in  EPA VJO/9-77-OM
                      - 0.02G5  (loe >.)   W.A.S.                        „     TII
                                ^   fi                                    Curve Inc1udo«:
               Y  -  Kle'i'tricity Reqnjrini, thousands kwti/yr              Pressurination pumps      Bnilor iuL-d pumps
               X  *  Treatment Capaciiv, ^pm                              Sludgt;  grinders           Air rompressctrs
                                                                          Decant  tank drives
                                                                        Type i>f Rnor^y Kt-quired:   i:it>i r r i i ,i I
                                                                          Note:   Fuel 1« required only ;i( st.irt-up
    j- ; i 3       MITM-  Kt-i'Vil c ining  -  >!•: 3 T ip \ r     Com-
                                                  .   .                  Compoflitiim:    LclC°3 M^OH;J lnert!l  hlistibles
                Y  =  KUvtriral Enorsy Kc<;ui re o, .kwh/hr                   K	   	—
                X  =  Hu.irth Area,  sq Tl
Primary, 2
staA* high
1 im1
Tertiary, If fc!n*.Tgy
.

65Z 2X
j
7L 10
,

«(> . 1 4.1
Required:


1 i*

Hi


n. 1
KIK- 1 ,nn:
                Ai-tivatt-d Carbon  StlM-oiiii^ry ^ntTRV  Requi rt-rU'dt ^

                Y  =  l.i)1}  X  *    40Q Ib/miJ ^\  Tarclary i-r.-nmJjr
                                 Cai'bii" t ft-.-if menr ,  ir.i 1 1 i «.in Ht u /d:iy

                Y  -  17.5  X1"00  2, SDH ]h/mll rfa 1 ,  I PC Pow^r^tl
                                 Carbuc. ! rtMlment,  million Blu/J.'iy

                Y  =  E'r.Hiu.-tion Envri;y, ni 1 Ho:i  Bcu/d-iy
                X  =  t'hi:iL Capacity,  -;,:d
                Ammotii urn Hydroxidt1  Si'i'
-------
   Fi gure
   Number
  f-'rom  EFA
, 1^/9-77-03 1
                                                                      si 311 -*!i>t!*l i I i i>ns , Assjrapt i on^  ,-»nc)
                                                                               K:"f hitsnc Quality
    i-4          Carbon  :M<:/l.  nil Him  Btu/day
                 Y  -   '..'2  X"    330  u.g/1,  nil lion  Btu/day
                 )  - •'•:-i-Til  ; i:-:-. En  TRV,  :f!l!li,>n btj/^ay
                 :•:  =  ?l.rr   Car-i;it.-,  ^IRI!
                 i:h:.!rin-
                 v  -    :   X' '      ! J1) mn,'
                 Y  »  Pro.luct ion Kn-rgy,  k-.
                                              v rntTny  Rt*q uiro^eni :•
                 Y •  Pro.lnciion  En-.T«y»  kwh/day
                 X -  PUi;ii  Capar.it v,  rag  5oo;.-' ios:  E:K- fgv t  kwh/day
   -'•-10         I'olvriuT Si.-c(Hi«.|.jry FnorjiV  Kfyui rt-mi-nts
                 V  »  is^'t  >:'*°,  1.,  -•-•/mi 1 .  jt-il-i  It i: /day
                 V  --  i'r^-1-...-; !;•••!  :-:,-• --rjiy,  S: •:/.],-»>'
                 x  -  F '..1-1:   :;\?..i :tt;. ,  n-.^o
   •'+-11         Si--di:if-  '/'.I. -ri^-*  5'--.uuind,ir-v  Xr-.tT^V Keq-jirL-ienl:

                 V  -  ^-> ••:""   H ,-k ,in,1 Sul ir,  1^00  Ib/mil.  g;i 1 .
                 Y  = 20 x1*1'  .Kvap.irated,  l?nn  Ib/mii. .^al.
Yj =  :»ro«JiH-t io:-. Kn..-rgy,  kwh/d;iy
X «  I'l.i'H  C.-ip.i.Mt -',  mgd
                                                                 \2 " 1'rodn.- 1 Ion  Fatrgy, mil.  Htu/day
                                                                 X  =j'l,iiit  Capacity,  nt^i
                Y  =   ') "•  i X  *     37 ••  -h/ni ; .  ,;.i: . v  kwh/djy

                V  -  ;ni.i X  •'' i7f.-i  lb-V.il.  .;.!-.,  kwK/day

                Y  -  l'r-.i  luft 1C.:-.  Er.Tgv,  kwh/H-iy
                X  -  l'l;t:)t C;ipvi;-it ••-, ir,nd
   •'- I "3        Siil 1 1) r Hi OKI ilu  Sc- -undarv  KniTj;;.1  Ktiqiiirenn-r.t s

                Y  - •). -*'i X' 'l?    : -FH-'], kwh.'dav

                V  = :'!•;>]•,.  t [s';-  ;",:'L'r%ny,  kwh /.'l.'iy
                X  - ]*:-rit  i".r.;.s -it -',  rnjiJ
                 Sul 1 af i   *\  i%' -^t?.  TT.I.ity '•'[>• r>;y  ««,•£;t:ire^O:K

                 Y  •  l'5d-J .X  *'*   J:-  i By;/], million Btu/day

                 Y  --  :»hn:j .x  "'   iVi cnji/J, mil lion rttu/day

                 Y  -  I'r^.i'.iL i ii'i:  :vn--r,i4y,  T.I i ] i.in  hi.u/day
                 X  ~  •' !a:il  i ,u'.i -It/', ,T^O
                                                           70

-------
    Number           Ope rat ion,  frtn-ess,  and  tfqmc i.ni IVsc rib ing
  !• Cvjai t.?A                       Hner£y  Rrqisi remi'nt s
4'JO/-.»-?.'-OU

     i-i          KSL iinot *sd  Heat Kftmlre;:*.':1!.*s  IfXti;  sc :  i  js-.ij. hi j I;K

                  Y -  L.700U +  11..'402 X - 0.77^")  >;''
                      CasH A :   iJni ILHU! ;iCL'(i

                  V «• 0. JOOO -I-  17. 1750 X - 0.'i7SO  X'
                      Cast- It:   Addi-J W.i ! '  aai-i  '"•• i '. \ ::^ :;;s.,i,it i^:\
                                 Wit.ii  is torn Winoows

                  V - 0.(K9l  +  12.ii8fi X - 0.25'1H  X'
                      C«ni' ':'.:   Wall  a:i,l  Cfiii:ig lu.sulaLlur. iJuul>U'
                                 (i la/ed Windows  ami  r". i'cir  I;LIHI L:I t i on

                  Y = He.-il (Squired, nlLlion  litu/«r
                  \ ~ ThiuiSdHvi,  iit-->>  dav -'yr
                                                               >tjsi^:l Conditions,  Assumptions  ;in-d
                                                                         Eft luent ijual i rv
' t on 1 -.'  iJigi'S'fr Hi-.'it  Kt-:q-.i i n':r,:
                          =  u .  Ti  in VS/I'L '-cia
            iij  x    N.inii  r.s. -  ;ji^i.':iHT  ;.u
Shul^o  Tempi- r.it in r  L.'  riii',i:s 1 <• r ,  '':•"
                                           71

-------
   Figure
   Number
  From EPA
430/9-77-OU
    5-7
  Operation,  Process, ind Equation  Describing
               Energy Rt quiremt-ntri
        gn  Conditions,
             Ei r 1 uent Q
                Digester Cas Cleaning .snd  Storage Const met Lo» Costs

                log  Y  = 0,9701 •» 0.337"  (log X)  - 0.1235 (Jug X>"

                      + 0,0218 ( IQ& X) '  Total  Clean Coirprt'ss and
                log  V  =  3.1972 -- 1.705*  (log  X)  f 0.6770 (log X)

                      -  O.Q642 Clo*?, X)   Clean  and Compress

                log  V  =  -0.8547+ 1.77V!  (log  X)  - 0. J70S, (log X)2

                      -I-  0.0521 (log X) *  Store

                Y <=  Construction d'St , thousand  dollars
                X =  Digester G?is Clear-tad and  Compressed, srfm
               Digester  Gas Cleaning and Storage  o R. M ^abor
                      Requirements
               log Y = 0.2605 + 1.30:»0
                                       *
                                              X)  *  0.019^ (I O
               Y * U & M  Labor,  hr/y
               X = Ulgewtor Cas  Cloar.ed .inj Stv>red,
    5-9        Digester  Cas C loaning and Storage  Hlnglne   Construct ion Costs

               lug Y » 5.2829  - 3.6W3 (log X> -f  1.3lft9 U«fc X)J

                     - O.IJSO  (log X)3

               Y - Construction Ccsr , thousand do Ilar s
               X « 1C KngJne,  hp
Internal Combustion  Kngine o i M t-ibor
      Requi regents

log Y - -1.1725 T  U56U  (log X) - 0.0271  (log X)

      - 0-0146
                                    X)3
               Y = 0 & M Laaor,  >i
               X « 1C Engine,  hp
               Internaf C-imbuHtior. Engine Maintenance
                     Material  Cost*

               log Y = -5,4676 + 4.J5U (lug X) -  1.1752  (log X)'

                     + o. m?  (ioK x>3

               Y = Mainten&.n<:u Material, thousand  dollars/yr
               X = 1C £nftiiie,  lip
               Internal CcKibiistitvn  !-"ngine Altt-rn,ite  Fuel
                     Requlirement.i

               U>s Y = -l.«J249  * j.5577 (log X) - 0.7392  (log

                     + O.U73h  (lot  X) *

               Y - Altcrr.iice Fuo I Krquir^d, million  Btj/yr
               X * 1C Knjiine.  hp
                                                       600 tpm tMigiiic  with ;u-.tc
                                                         alternate  s ue I  svstt'in
                                                                      600 rpm fiigine with
                                                                        alt>.»rn.ile  :'ut-1  ays
                                                       600 rpm LMtgiite  with h»iar
                                                         a Iti'rn.itt  f tie I  SysiL»'m
                                                                                                n-roverv
                                                                                                r»-'rov€vrv  .mil
600 rptn
  al teni
                                                                      witlt IK-
                                                                     «.- 1  «y st t-
                                                         72

-------
   Figure
   S-jmber
  Kr.>m F.PA
i JO/1-77-011
              Operation, Process,  and Kquation  Describing
                          Energy Requirements
Design Conditions, Assurapt luns and
          Effluent Quality
                Digester Gas Utilisation System  Construct ion
                      Costs
                log V - 2.5404  -  0.4530 (log X)  4- O.M79 Clou  X)
                      - 0.1318  (log X)'
                Y  - Construction  Cost,  thousand  dollars
                X  • Plant Capacity, mgd
                                                                    Complete e U-et ri e:i t y generation system  .is
                                                                      shown  in  Figure '>-h EPA 430/9-77-0 11
                Digester Gas  Utilization System  OSM Labor
                      Requirements
                log Y - 1.8795  + 1.1:374 (log  X)  -  U.1063 (log  X)'
                      * 0.0029  (log X)1
                Y  « H& M Labor,  hr.'yr
                X  = PI.me Cap.irity, mgd
                                                                    Complete  systere for e lect ric i I y gener.it ton
                                                                      ,-is shnu:i  in Xigure  }-b  EPA  4 tO/9-77-:-l I
                                                                         praplet.j  -system fur i- feotriL i t v generation
                                                                          ^IB sh >wn  In Figure  '•>->>  EFA •'•  H)/9- '/-D I I
;.~17        Digester Gas I't i 1 izat ion System  Maintenance-
                  Material  Costs

            log  Y • 4.1712  -  8.2581 Cog  X)  +  fi.1717 iloj;  X)'

                  - 1.3289  (lag X)  '

            Y  =  Maintenance  Material, '.hous-trul do 1 lar s <'vr
            X  *  Plant Capacity, mgd

rj-18        Dige-ster Cas I.'t i I Ization System  i-lnergy                Complete  system lor electrical general [on
                  Rcqiiiri'ner.Lfi                                       as shown  in Figure 'j-<>  KPA 4_>0/9-7 7-1)1 I


                  -t 0.0411  (log X)  *   Fuel

            log  Y = 1.7189  + O.S9:ifl ( log  X)  -  i).1)424 ,..  XI*

                  * 0.0068  (log X!  l   KlEi-.trii'ity

            Y  »  i-'uel Required, million Btu/yr
            X  =  Plant Capacity, ngd

5-19        Multiple Hearth Inc inerat ion  C-i-r.st r:. 1 ion Cost        Design  and  Operation Assunpt i ons :
                                                               2       i.oafti nr rate = 6  Ib/sq  ft.-'!ir
            log  Y - 0.0606  * 0.54!.: ,l,,S  X.  *  tl.-,66(, ( i „>;  X,        ^^ .   ,,ri!nar>. + W-A-S.  s|l|J(!(,  .  „,;

                  - 0.159?  (log X)  '                                    sol .n Cost,  million J.'ll.ir.s
            X  -  J'laar Capai ity, "i.;^

'^-20        Multiple Hearth I nc Ini-rnl ion  0 i. M  H.'qni rement s       Hi-sign  .--nil  Operation AriSiimpl ions:
                      3.6'j                                            l.oadliii- rate - 6  Ib/sq  :i/hr

            Y  =  06 M Labor,  hr/yr                                      so'ids
            X  -  Plant Capacity, inRd


i-Jl        Multiple Hearlh Incineration  Ma i:-.! ,'nar.cc              Design  .-.nil  Operation Ass-jmpt loos:
                  Material  Costs                                     i.oadir.g rate • t>  Ib/sq  ft,'!>r

            log  Y , 3.5505  + 0.0972 ,.os  X)  ,  0. ibSS (log  X)2       S1^^  P'J«""  ' V'A-S-  H' "^  =  "';

                  - 0.05J9  Uog X)  '

            Y  =  Maintenance Material, doijnrs.'yr
            X  -  Plant Capacity, mgd

•)-2J        Auxiliary Heat  Required to Sustain Combustion         Assumptions:
                  of Sludge                                          10,000  TU.i/lb VS

            Y  •  .'..09 - 0.165 X   Primary, liO:.  VS

            Y  =  .'. - 0.179'X      Primary + W.A.S., 69" V'S

            Y  =  Heat Required, rail  I ion Bto'ten vs
            X  =  Sludge Solids, '•' hv -weight

5-2 S        Heal Recovered  1 rnm  1m jneratiiiu oi  Slucye            A.-i-suffipt ions:
                                              '                        KLnai st .u-k tetnp  -  'iOO0!'
            Y  =  -.I6S6.0  +  S.14 X - II.D002 X"  Primary * W.A.S.       .i-0;  pj,.,.^^ ,lir
            \  - -S19:).4  -+•  .'.06 X - :)..)006 X'  W.A.S.+ reCi         See  table preceding  :'i£-.tre  '- '• '• -  •••r ^i
                                                                        .-har.icierj.itic..  in KPA 4 «>/>l-7;-i> i i
            Y  =  -820 +  I.It X    Primary  Sludge

            Y  -  Initial  Fine Cas Temperature.  l E1'
            X = Heal Kecov.-red,  TiiMio:!  Btn.' '•'  r. mgd

i-'.',        Impact ol txcess Air on I he  Amount of Ai.xili.iry      Ass.impl ions:
                  l-'uet  for  Sliiilge  I ii. 1 ne-ral  i on                      Solids      !()••'."
                                                                      Kxh.liisi 1'oiip.   !'>l)0"l--
            '•:  -  :i.'.I -i- O.OH2.'  x                                      volati  l.-s   :o-

            X   Kx.-ess Air, percent

                                                     73

                                                                                                                                                   ,

-------
    Number          Operation, Process,  -ind  Equation  Describing
  From EPA                      Kier^y  rfcquireneiits
410/9-77-011
                                                                                 esij:,-; Coruiit tons, AMsumpt ionw
                                                                                           U'llnent  Quality
5-Jfs         lint-rgy  Roc-ovt- ry  Rotary  Ki Ln  HcacL
             Y  = 0.02 X   N'.-t:  Eiuif;v  Output, fcr-jj lb  input
             X  = ':  RDiust-       .  S.. i^t- **  KK> - X
             Y  = .:-,()  + o.7i:i3  x  -  : ,oo:«)  x"
                  ?  Recuvt ty of ':.]«• r.:.Y Input
             :\  * ;.  Re: us*-       '  ;-.  t.^e =  LrtO- X
             Hm-ri^y  X«-< ,»vt-r>T V*rr. ,1.1]  Shar:  i-Vdc
                    Oxv^i-i.  I'vrc 1 v.s .,<•  -•  ': Ret use       i  Slicijge  =  100 -X
             Y  ^  -.8750 +•  'J.9~j"X- "i.UfU".  >:"
                                                             unr-
             rk':i!  PcDp iiiii p it  !i .'-IH  ,-n VJJtun  Piaur  ->usi>;::
                    Optr.it ^;i =; Ci ;M : t i .ins  l «']• V.j r iouw  -' I  > uvtu
                    Te:t)|jL-f;it  ;fc-s
             V  = -0.0714  -t- 1.9^->7  :;  - 0.0109 X" •
                  Output .  ni L iiun  -i( 'i/ y r/ni^ii
             v  T n,i5^y -1- i).or"!>  >  -  j.oou^ x"
                  Uncf f i..' Lt-ni of  I-1..1 : 1 v>rraan-,'L-
                                         nra ,
             Air  to Air ii.Mt P,;-3;>-  lyplc.il  rVr; .TIMH.-I' MI:'.

             Y  •   i9 -  O.H.',  X  -IVIM..-II  SCrm-tun'  Hf.ll  l.nss.
                                 tn.ii: ..ic;l: Btu.hr


             V  -   11.5091 +  1.:'VI  -.  -  O.JO>-» X"  Ho.i
5- JO         W.nvr tu  W«i.<'r/W.iCfr  ,•  Air  ».-:i:  Pum
                    C;:;i.st rut I i^i;  1 1. .1
                                                   • 0.153C  f U'L;
3- H
             Y -  Jlonscru.-t ) .•'ii v.t'M ,  Ot'l l*ir!-i
             X -  Hear  t'li:-.;--  i;a;jt,i 11. .-,  tht>UH,i,'i,l  HLu/l
             W.iUT tu  W;il«'r /Wai ur : •.>  Air Hont  iMinps
                    O  6 M l.;-bor  Kt-qu i r*:n*ut s

             1.^;  y = 0.2901'  +  ...'J.1.-.  f;o>!  X>  *-  0.19:'i

                    - 0.0 Jr« •  (li.-g  .<•
             Y --  O &  M 1.,-itH.fj hr/yr
             X -  Heat  FII.HJ)  .:;ip;if i : v ,  thcus.ind  atu/hr
5— J2         Watt-r i u  *'.!it'r ••'Wait-r •. i'  Ai r Ht-.iC J'u;r.ps
                    Mil i nn- ii.ru e Mat i' i'i.i 1 Cost s
                                  !.H.")'j  ( lo^  X) -  0.0ft:**  iK-^  X)"

                                        '
             Y  •  Ma irUi-ii,i:u'-% S,iL«.-r i .1 1 ,  20 1 1 .jrs. yr
             X -  He;ir  F'uni])  C;;ip;sr t t v ,  1 hous/md  Htki/hr
             Y  '  i).9i  :\'"    ::T t.,'i>» iiixT.ii Ing hr.-'vr


             V    !>.!.%  X'"'1'    ;'.-r  , >-.«i .'(XT it iiic In  vr
             V    Kl.'ttr n i! y KI.>I|.I n-il. tlions.linl  kwb.-'vi
             s:    iio.it  i'nm|)  (;,])i.i.-i i v.  ihoiis.in-i  ntu/ii!
                                                             74

-------
   Fi.v.itv
   Nunbrr
  Fr«n KPA
.10/9-77-01!
  Operation,  Process, and Equation
              Energy Requirements
Citsid i t io:is ,  Assumpt ions :t;l>:
  Effhu-jit *>u,iEity
              Air to Air Heat  Pumas Const run ion Cost

              Ion V ' -  0-1?"* + 0. U4'> dog X) + 0.1434 "

                    - 0.0112  UOR  X) !

              V = 0 i* M Labor, hr/yr
              X = Hoat Pump  Capacity, thousand Btu/lir
              Air tn Air Hi.'at  Pump MTintenani'O Matt-rial  Custs

              log V = 1.0960  + 0.4990  (log X) + ll.OMiH flog  X)

                    - 0.0072  (log X)'3

              V = M;) in! cnance  Martiri.il, dnl l.irs.-'yr
              X = Hi-.lt I'utnp Capacity,  t housautt Iltn/lir
   VU       Air tu Air  Hfal  Pump  I'n
                       ,-0-
                        1.0
                 for  K,7f>0 operating ^ir/yr

                 for  -*,'3'Sn operatisis lir/'.'r

Y = 0.13 x""     for  1,000 operating Kr/vr

Y = EU'cl ricicy  Required, thousarnJ kwli/yr
X = Hf.'it I'umfi  r,-ip«icity, thousand Rt u/'hr
                                                                   COP -2.4
                                                                   Out * i ck- Tt'iripe f;it urc  ~  •• :)°J-

                                                     75
                                                                    U.S. EPA Headquarters library
                                                                             Mail code 3201
                                                                   1200 Pennsylvania Avenue NW
                                                                        Washington DC  20460

-------

-------
                                                                               1
                        APPENDIX B

    RAW WASTEWATER CHARACTERISTICS (Wesner et al-,  1978)
                                         Concentration
      Parameter                         mg/1. Except pH

Biochemical Oxygen Demand                     210
Suspended Solids                              230
Phosphorus, as P                               11
Total Kjeldahl Nitrogen, as N                  30
Nitrite plus Nitrate                            0
Alkalinity, as CaCO-j                          300
pH                                              7.3
                             77

-------

-------
                         APPENDIX C




        SLUDGE CHARACTERISTICS  (Wesner  et  al.,  1978)

Sludge
Type
Primary
Primary 4- FeCl~
Primary 4- Low
Lime
Primary 4- High
Lime
Primary 4- W.A.S.3
Primary 4-
(W.A.S. + FeCl3)
(Primary 4- FeCl_)
4- W.A.S.
WA ^
* *».» I-* *
W.A.S. 4-FeCl
Digested Primary
Digested Primary
4- W.A.S.
Digested Primary
4- W.A.'S. 4-FeCl3
Tertiary Alum
Tertiary High
Lime
Tertiary Low
Lime
Total
Solids
(wt Percent
of Sludge)
5
2

5

7.5
2

1.5

1.8
1.0
1.0
8.0

4.0

4.0
1.0

4.5

3.0
Sludge Solids
(Ib/mil gal)
Total
Solids
1151
2510

4979

9807
2096

2685

3144
945
1535
806

1226

1817
700

8139

3311
Volatile
Solids
690
1176

2243

4370
1446

1443

1676
756
776
345

576

599
242

3219

1301
Volatile
Solids
(wt
Percent
of Total
Solids)
60
47

45

45
69

54

53
80
50
43

47

33
35

40

39
Sludge
Volume
(gal/mil
gal)
2,760
16,500

11,940

15,680
12,565

21,480

20,960
11,330
18,400
1,210

3,680

5,455
8,390

21,690

13,235
W.A.S.  =  Wasted activated sludge.
                             79

-------

-------
                          LITERATURE CITED
Benjes, H. H.  (1978)  Small community wastewater treatment facilities—
     biological treatment systems.  USEPA, Technology Transfer,  Design
     Seminar Handout, Cincinnati, Ohio.

Culp, G. L.  (1978)  Alternatives for wastewater treatment at South Tahoe,
     CA.  Paper presented at the 51st Annual Conference of the Water
     Pollution Control Federation, Anaheim, CA,  October 1978.

Culp, R. L., and G. L. Culp  (1971)  Advanced wastewater treatment.
     Van Nostrand Reinhold Company, New York, N.Y.

Environmental Protection Agency  (1978)   Attachment E to USEPA Program
     Requirements Memorandum #PRM 79-3 issued 15 November 1978,  to
     provide guidance on land treatment  alternatives.

Garber, W. F., G. T. Ohara, and S. K. Raksit  (1975)  Energy-wastewater
     treatment and solids disposal.  Journal of the Environmental
     Engineering Division, ASCE, EE3, p. 319-331.

Hagan, R. A., and E. B. Roberts  (1976)   Energy requirements for waste-
     water treatment.  Part 2.  Water &  Sewage Works, Vol. 123,  No.
     12, p. 52-57.

Jacobs, A. (1977)  Reduction and recovery:  Keys to energy self-
     sufficiency.  Water & Sewage Works, Reference Number R-24 - R-37.

Mills, R. A., and G. Tchobanoglous  (1974)  Energy consumption in waste-
     water treatment.  In:  Energy, Agricultureand WasteManagement,
     W. J. Jewell, Editor.  Ann Arbor, Michigan:  Ann Arbor Science
     Publishers, Inc.

Smith, Robert  (1973)  Electrical power consumption for wastewater
     treatment, U.S. Environmental Protection Agency, Cincinnati, Ohio,
     EPA R2-73-281.

Tchobanoglous, G. (1974)  Wastewater treatment for small communities.
     Parts 1 and 2.  Public Works, Vol.  105, No. 7  & 8, p. 61-68 & 58-62.

Wesner, G. M., L. J. Ewing, Jr., T. S. Lineck, and  D. J. Hinrichs  (1978)
     Energy conservation in municipal wastewater treatment. MCD-32.  EPA
     430/9-77-011.  Prepared for the U.S.  Environmental Protection Agency,
     Office of Water Program Operations, Washington, D.C.

Wesner, G. M., and B. E. Burris  (1978)   Energy comparisons in waste-
     water treatment.  Paper presented at the 51st Annual Conference
     of the Water Pollution Control Federation,  Anaheim, California,
     5 October 1978.

                                   81

-------
 Wesner,  G.  M.,  and W.  N.  Clarke   (1978)   There is  a lot  of energy in
      digester gas.   Bulletin of  the California Water Pollution Control
      Association,  p.  70-79,  July 1978.

 Zarnett,  G.  D.  (1976)   Energy requirements  for wastewater treatment
      equipment.   Applied  Science Sect ions Pollution Control Branch,
      Ministry of  the  Environment,  Ontario,  Canada,  TN 7008.

 Zarnett,  G.  D.   (Undated)  Energy  requirements for  conventional and
      advanced wastewater  treatment. Applied  Sciences Section, Pollution
      Control Branch,  Ministry of the Environment, Ontario, Canada, Publica-
      tion No.  W47.

 Zarnett,  G.  D.   (1977)  Energy requirements for water treatment systems.
      Applied Sciences  Section, Pollution Control Branch,  Ministry of the
      Environmentj  Toronto, Ontario, Canada, Research Paper No. S2043.
                                   82

•ff U.S. GOVERNMENT PRINTING OFFICE: I 9 8O-O-6 7 7-09 A/I 1 G6

-------
r

-------
  n
  o?
  (D

  c
III
II
7 51
o ~
        3

       o

       o
       O
         I
          II


-------