CBP/TRS 48/90
                                  September 1990
TRS" "
48/90
            Nonpoint Source Pollution
                   Loading Factors and
                    Related Parameters
                    from the Literature
                            Chesapeake
                              ^^ Ba^
                              Program

-------

-------
Cto
                               NONPOINT  SOURCE

                          POLLUTION LOADING FACTORS

                                     AND

                             RELATED PARAMETERS

                             FROM THE LITERATURE
                       Compiled by: Linda L.  Blalock
   Printed by the U.S. Environmental Protection Agency for the Chesapeake Bay Program
                          HEADQUARTERS LIBRARY
                          ENVIRONMENTAL PROTECTION AGENCY
                          WASHINGTON, O.C. 20460

-------

-------
       Using  a modified version  of  TR-20  (SCS  computer  program),
 McTernan  et  al.   (1987)   conducted  a   study   to  evaluate   the
 effectiveness of various  BMPs  upon  the  production  of  nonpoint
 source pollutants  from  small  agricultural watersheds in northern
 Virginia. The SCS CN equation  and the  USLE are  incorporated in TR-
 20. Observed data collected from  five basins are compared to  data
 simulated by the model.
   TABLE 3. Calculated Algebraic Yield Comparisons Between
   Simulations and Observed Data Base for Delivered Sediment.
Stem*
Evaluated**
AD
Small Events
Luge Events
Mean Yield Calculated Emu*
(pounds) (pounds)
558
1.39
1115
15.9
0.84
32.7
Percent of Mean
2.85
61
2.9
•Error - I/N
            (M-S)
 N « Number of Samples.
 M - Measured Sediment Yield.
 S  * Simulated Sediment Yield.

"Six Total Storms
 3 small events (x <03 inch)
 3 large events (x >2-5 inches)
                                TABLE 4. Model Parameters Used to Simulate Discharge and
                                   Delivered Sediment for Select Management Practices.
                                                     Name of Parameter
                                  Practice
                                             CN
                                                          LS
No-TOI 81 0.003
Minimum-Till 83 0.024
Conventional Till 85 0.338
Well-Managed Pasture 74 0.004
Overgrazed Pasture 88 0.01
Forest 73 0.0001
No-Till Contour 75 0.003
Mln.-Till Contour 78 0.024
Conv.-Tili Contour 82 0.338
No-Till Terrace 73 0.003
73 0.003
Min.-TiiI Terrace 76 0.024
76 0.024
Conv.-TUl Terrace 78 0.338
78 0.338
CN • SCS Curve Number.
C • USLE Cover Factor.
LS B USLE Length-Slope Factor.
P * USLE Practice Factor.
K • Soil Erosion Factor.
1.3
13
1.3
13
13
13
13
13
1-3 .
1.8
035
1.8
0.35
1.8
035





1.0
1.0
1.0
1.0
1.0
1.0
0.50
0.50
030
0.50
030
030
030
030
030
•i




0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43





 Source:    McTernan,W.F.,  B.L. Weand, and T.J.  Grizzard.  1987.
            Evaluation of management practices to control
            agricultural pollutants. Hater Res. Bull. 23(4):691-700,

-------
          TABLE 5. Simulation Results for Three Tillage Alternatives Without Additional Practices.
Rain
Depth
Practice (inches)
No Tfll . 0.50
3.25
530
730
Minimum Till 0.50
3.25
530
730
Conventional Till 030
3.2S
530
» 730
Tine to Peak
(hours)
2.0
8.9
2.4
9.9
2.0
8.9
2.4
9.9
2.0
8.9
2.4
9.9
Time to Base
' (hours)
2.2
13.6
6.2
24.2
2.2
13.2
6.2
24.2
2.2
13.2
6.2
24.2
Peak Flow
(eft)
0.03
5.6
69
70
038
103
73
73
1.5
11.1
77
76
Runoff
Volume
(acre feet)
0.0005
2.00
7.30
11.2
0.008
335
7.7
11.7
0.02
3.9
8.2
12.2
Total Sediment
Load
(Ibs)
0.023
1.318
15.385
16,660
15.2
23.960
134^80
142,084
913
381,085
2,058,210
2,125.620
Peak Sediment
Discharge
(Ibs/Jw)
0.11
384
19325
19380
90
8,170
171.050
166,655
5375
126350
2,622,800
2,484^00
         TABLE 6. Simulatiqn Results foi Three Alternative Tillage Methods, Practice • Contour Plowing.
Rain
Depth
Practice (inches)
No Till 030
3.25
530
730
Minimum Tfll 030
3.25
530
730
Conventional Till 030
3.25
530
730
Time to Peak
{noun)
N/A
8.9
2.4
9.9
N/A
8.9
2.4
9.9
2.0
8.9
2.4
9.9
Time to Base
(hours)
N/A
13.2
6.2
24.2
N/A
13.2
63
24.2
2.2
13.2
6.2
24.2
Peak Flow
(cfs)
0
7.8
57
61
0
8.8
63
66
0.24
10.2
71.3
71.7
Runoff
Volume
(acre feet)
0
2.4
6.1
9.8
0
2.8
6.7
103
0.003
3.4
73
11.4
Total Sediment
Load
Obs)
0
878
5,762
6.713
0
8,664
53320
60,082
26
158,489
905,974
969383
Peak Sediment
Discharge
Qbs/hi)
0
324
7.170
7,889
0
3^22
67.404
70,716
155
54.730
1.151,855
1,138315
Source:  '  McTernan,W.F.   et  al.   1987.   Evaluation  of  management
            practices  to control  agricultural pollutants. Water Res.
            Bull.  23(4):691-700.

-------
          TABLE 7. Simulation Result! tot Three Alternative Tillage Methods, Practice * Terracing.
Rain
Depth
Practice (incite*)
NoTflJ 0.50
3.25
5.50
7.50
Minimum Xfll 0.50
0.25
5.50
7.50
Conventional Tfll 0.5
3.25
5.50
7.50
Time to Peak Time lo Bate
(hotto) (houa)
N/A .
9.0
X5
10.0
N/A
9.0
2.5
10.0
N/A
9.0
2J
10.0
N/A
17.4
8.8
26.4
N/A
17.2
8.6
26.2
N/A
17.2
8.6
26.2
Peak Plow
(eft)
0
5.5
36
43
0
6.3
41
48
0
6.9
45
51
Runoff
Volume
(acre feet)
0
2.2
5.7
9.4
0
2.5
6.2
10.1
0
2.8
6.6
10.6
Total Sediment
Load
Obi)
0
850
5,824
7,230
0
8.577
54.185
65.150
0
135,415
821,816
971,420
Peak Sediment
Discharge
(Ibs/hr)
0
213
3,155
3,880
0
2,115
30,480
35,875
0
34,040
482,595
551,820
                        TABLES. Sediment Yield Comparisons for
                          Simulated and Collected Data Batea,
                                         Sediment Yield
                 Pnctkx/Cover
Simulated Data  Collected Data  Percent
  Ob/ac/yi)      (Ib/ac/yr)    Change
OVGIgltfOd FvStUTG
Well Managed Putuxt
No-IHlCorn
Mtfiiniuiii-ffiM Coin
Fotcst
330
0
0.06
39
0
106
5
15
19
119
211
—
-99.6
105
—
Source:     McTernanfW.F.  et  al.   1987.  Evaluation  of  management
             practices to control  agricultural pollutants. Water Res.
             Bull.  23(4):691-700.

-------
       Two watersheds in Ohio - Treynor and Coshocton - were selected
 to model sediment yield  for a  single-storm event. Both watersheds
 were planted in corn  on  the contour.  Sediment yield  or deposition
 was  calculated by comparing total soil detachment  and the  transport
 capacity  (basic equation was USLE).  Runoff volumes and peak rates
 were predicted  using USDAHL-73  (Hoiton  & Lopez,  1973).   C  factors
 of  0.50  for Treynor  and  0.29  for  Coshocton were  held  constant
 through the run.
                      TABLE 1. EROSION-DEPOSITION CHARACTERISTICS
                       FOR STORMS SIMULATED ON TREYNOR W2 AND
                                 COSHOCTON W113.
                   Dat*
                           Riintml!
                           amount,
                            in.
          Sediment
          '
          Predicted
          erosion
                                     Me**. Pied. Intertill
                       ftt-
                       dieted
                    -   depoii-
                   Rill  »«°n
                                             luns per «c re
                   Ticynof
                   6-25-65
                   6-28-65
                   6-28-65
                   6-29-66
                   7-1-65
                   7-1-G5

                   Cothocton

                   6-6-71
                   6-13-72
                   6-15-72
                   7-10-72
                   11-7-72
0.53
0.62
1.20
2.42
0.6 6
0.25
1.71
1.60
0.70
0.60
1.35
 8.8
 8.5
31.8
2G.4
 1.6
 0.5
10.4
17.9
 8.7
 2.8
 6.9
0.51  0.98  0.47
1.84  1.49  0.37
6.36  5.74  1.36
3.65  8.21  1.01
O.&8  O.33  0.07
0.15  0.05  O.O3
0.60 0.00
1.26 0.14
4.90 0.53
7.9 S 0.7«
O.30 O.O3
0.02 0.004
1.73 4.31  0.25  4.06 0
2.13 9.46  0.35  9.10 0
4.40 4.81  0.17  4.64 0
0.68 0.73  0.64  0.09 0
0.38 3.68  0.21  3.47 0
Source:    Onstad,C.A. and G.R. Foster.  1975. Erosion modeling on
            a watershed. Trans.  ASAE.  288-292.

-------
                                                                              •J

         During 1985-86, a  rainfall simulator was used to evaluate the
   effectiveness of BMPs  on water quality  on eight  (8)  demonstration
   plots in  Virginia.  Seven of  the  eight  sites were located in  the
   Chowan River  Basin.  Plot descriptions  and  results  are  tabulated
   below.
Source:
                 I'lot CharacteriMtci and O
           RSOI
           RSO:
           RS07
           it so*
           R.tno
           RSIO
           RSM
           RSI 2
           RS13
                  SOUTHAMPTON COUNTY, VIROrNIA • CORN - MAY 15 *. 16, 1985
                   *
       Ko-lill
       Conventional
2320
2320
2
2
Goldtbora Tine sandy loam
Goldsbore line candy loam
                   fiSSKX COUNTY. VIRGINIA - SOYBIIANS - JUNE 19 & 20, 1985
       Conventional
                       1390
                       1390
               Slaglc fine sandy loam
               Sl.i«lc fine sandy {turn
                  CITY or- SU1WOUC. VIROtNIA - SOYBEANS • JULY 26 A 27. 19*5
       Conventional
       Chiocl plow
       No-till
 270
 270
 270
2
2
2
Suffolk loamy sand
Suffolk loamy und
Suffolk loamy sand
                  RICHMOND COUNTY. VIRGINIA - CORN • AUGUST 6 A 7. 1986
       Conventional
       No-till
690
690
7
7
Telotum fine sandy loam
Telotum fine sandy loam
                 SURRY COUNTY. VIRGINIA - SOYBEANS . AUGUST II A 12.1986
                     and Nutrient Yield (arcnl basis
                               SOUTIIAM1TON . CORN
XO.TIIX
com1.

CONV.
NO.TII.I.

<:ONV.
CM IS I- 1.
NO-TII |.
RSOI
RS02

RS07
RSM

RS09
RSin
Mil
9.«2
SM.33

914.31
10.36

1335.44
M0.74
. lOIJH
0.11
0.30

0.32
OJH

OJW
0.05
0.13
O.IS
OJI
. I'JSSliX
OJU
0X3
SUPPOI.
OJ)5
OJI3
OJI3
0.40
2.6J
O.S5
J.I7
0.16
I.2S
OJO
0.7]
OJJ
0.10
-SOYBRANS
2.91
0.3*
3J»
0.61
0.67
OJ15 . .
1.07
OJ6
am
OJO\
K . SOYHRANS
2J6
IJI
MS
RICHMOND.
CO.NV.
•NH--III.I.
RSI 2
RSI 3
236.95
41.9*
0.32
lUlfi
O.OJ
0.23
l^J
0.4*
2^2
IJ4
I.4H
CORN
I.6S
0.70
1.29
0.79
0.2*

0.43 04)1
11.0* OJ32
0^4
0.45
OJ3

OJJ
0.15
QJ06
QM
DM

OJ2
OJ»2
                                SURRY - SOYnriANS
Ross, B.B., M.L. Wolfe, V.O. shanholtz, M.D. Sraolen,  and
D.N. Contractor.  1982. Model  for  simulating  runoff  and
erosion  in ungaged watersheds. Virginia Water Resources
Research Center Bulletin, VPI, Blacksburg, VA.  130:72 p.

-------
       CREAMS was  applied on a typical  field  in  the Southern Coastal
Plain land resource  area  of Georgia.  The  model  was  run  for  seven
management systems  for a 20-year period.  Major crops grown on  the
Tifton  loamy  sand  are  corn,   soybeans,   and peanuts;  but  cotton,
tobacco,   small  grain,  and  horticultural  crops  are  also grown.  A
three-year rotation  of corn-soybeans-peanuts  is  a  common cropping
system.
                  TABLE l.'-Manage*>tnt System «n TKton Loaey Sand for CREAMS
                  Application
                 Management
                   5|>ste
          Description        	
Convention*! tillage: fill •oldaoard IK ta
   dc*p; spring disk 100 an deep; two
   sweep cultivations 50 en deep; tlllagt
   across concentrated-flow area; straight
   rows.
Conventional tillage: SUM as srsttB I tx-
 .  cept a grass waterway Is Maintained In
  • the concentrated-flow aroa.
Contour tillage: tlllagt Is tne SMt as »n
   syitt* 1 *Mtpt on tpprextmti contour;
   grass «t«rv«y Is Mlntalnatf tn eoncin-
   trattd-flM an*.
Contour ttrrtce*: tllltgc Is the sate as
   ijrstest 1 except on contour; grass ««-
   tcrwajr In concintr«ttd-f ION «rta as a
   terrace outlet cnaiwtl.
Contour tlllagt. rtsldut Mnagoent: shrtd
   crop residue; chlstl on contour 31S an
   tfttp; Mtntaln grass mterxty In con-
   cuitmed-flow area. (Spring toldboard
   prior to peanuts).
Contour ttrracts; contour tillage, residue
   •anagenenti sane as sjrsten S except
   field Is terraced.
Conventional tillage, winter cottr:  till*
                   TABLE 3.—Smmry of CREAKS Erosion Siwlttion. Avenge Annual Values.
                   1HS.74, Southern Coastal rlaln Field tn Georgia
NanegcMnt
SvltCB
1
2
3
4
S
6
7
Runoff
!ri
70.4
SS.4
rs.j
».o
17.S
33. S
Stdlrat
field
U/haJ
6.94
0.91
0.40
O.M
0.20
0.04
0.2S
enrichment
Ratio*
2.06
«.ea
8.CS
13.7*
9.13
14.4S
7.90
Product
(ST-ENf*
(l/KaJ
14.44
• C.13
3.4C
1.Z4
1.B3
o.sa
1.97
Rank6
1
Z
»
t
S
7
4
                       —	. ..... .. ..... .. »«i«ii pirtisi* surface ana to
                   original toll particle surface area.
                      •Product of MdlMnt yield* (ST) and tnrtch**nt ratio (EX).
                      f
                      c
-------
              TABLE 4.—CREWS Erosion Simulation By Element For Single Storm of
              March 6, 1959

Management
System
1
2
3
. 4
5
6
7

Runoff
(m;
37.6
37.6
33.5
24.9
25.4
19.3
21.3

Overland
1.14
1.14
0.54
1.12
0.34
0.40
0.13
Sediment Yield
Overland-
Overland- Channel -
Channel' Channel6
	 (t/haj 	
7.46
1.14
0.54
0.09 0.09
0.34
0.02 0.02
0.13

Field
7.46
1.14
0.54
0.09
0.34
0.02
0.13
*
Enrichment
Ratio
Field0
2.26
5.75
6.00
9.72
5.65
10.12
5.44
                 ^Overland-channel  represents the overland flow and waterway flow
              sequence (systems 1, 2, 3, 5, and 7).
                 ^Overland-channel-channel represents  Interterrace overland flow,
              terrace channel flow,  and grassed waterway flow sequence (systems 4 and

                 Enrichment ratio  Is ratio of sediment particle surface area to
              original soil particle surface area.	  •  •	
              TABLE 5,—Sunaary of CREAMS Plant Nutrient Simulation, Average Annual
              Losses. 1955-74. Southern Coastal Plain In Georgia
                              Runoff
              Management
                System   Nitrogen
                  Sediment
Phosphorus    nitrogen
          Nitrate-N
Phosphorus   leached

1
2
3
4
5
6
7

1.15
1.15
0.84
0.40
0.39
0.21
0.49

0.17
0.17
0.13
0.07
0.07
0.04
0.08
— (kg/ha) —
34.67
6.26
3.02
0.72
1.51
0.32
1.75

12.83
2.25
1.07
0.25
0.53
0.11
0.62

33.72
33.72
34.82
36.46
37.16
37.69
20.18
Source:     DelVecchio,J.R. and W.6.  Knisel.  1982.  Application  of  a
              field-scale   nonpoint  pollution   model.  Water  and  Soil
              Management 11:227-236.

-------
                                                                                 8

      The  table  below  compares   loadings  from  urban  and  rural
Wisconsin  watersheds.  The values represent 2- to 4-ryear averages
determined by monitoring.
    Tablt 2.  Coxparlaon of water and pollution yield* Iron Wiicon*ln axp*rlu«nc«l uatardud* - 1980-81 (Source
           Uiaconaln OapartMnt of Natural Raiourcai)
        tiatorihad typ«
                                 Pollution yield" (fc«/ha-yr>
Hatarahad *r*a  latparviouinai*  Runoff     Sutpandad
    (ha)         (I)      coafflclant*   lolldi' Total P Total lud
    Urban

     Stora aaif*ra
       CoaawreUl I              11.7
       Coamrei*! XI              18.1
       (Ualdancial I              U.6
       Jl«»ld«r»tUl II             25.3
       Kaaldantlal III            13.3
       R««ld«dtlal -
        101 under construction     522

    Suburban

     Lou daoalty ruldantlal,
       partly c«Mr«d            4974
               77
               81
               57
               51
               50

               47
0.18
0.6*
0.40
0.3)
0.31

0.31
                        0.10
 718
1197
 487
 272
 161

 767
                                   217
1.48
1.50
1.12
0.62
0.54

U.75
                                        0.30
1.5)
3.90
0.90
0.28
0.21

0.21
                                                0.12
Agricultural I
11
lit
IV
3>no
1528
Z41S
2144

     •Annual ruaeff voluaai rainfall volm*.
            vlntar.
 Source:    Novotny, V.  and G.  Chesters.  1986.  Delivery  of sediments
              and pollutants  from nonpoint sources  - a water quality
              perspective.  Milwaukee  River Nonpoint Source Abatement
              Research  Project.  Water Resources Center, University of
              Wisconsin-Madison.  34 p.

-------
      A site  in  the lakebed region of northern Ohio was selected to
 study the sediment and  chemical content  of agricultural  drainage
 water. The soil is poorly drained, fine-textured, and classified
 as Toledo silty clay;  a  Mollie Haplaguept, fine, illitic,  nonacid,
 raesic. Clay content ranges 47-59%  in  the upper  150 cm.  Crops by
 years starting  in 1969,  in order, were:  three  years  of corn,oats
 (with tallage in  July), bare  soil,  two  years  of  alfalfa-timothy
 sod, and three  years of corn-oats-soybeans combination  in  each
 plot. Fertility levels were as  recommended by soil  test for typical
 farm usage.  Tillage practice was  conventional with fall moldboard
 plowing and  spring seedbed preparation, except during  1969-71 when
 two of the four replications were managed with no-tillage  cultural
 practices. Annual  surface runoff  losses  averaged:
           2548  kg/ha  for sediment
           12.1  kg/ha  for NO3-N
            2.2  kg/ha  for P
     TA8LE 1.  ANNUAL RAINFALL, DRAINAGE FLOW, AND SEDIMENT LOSS BY DRAINAGE TREATMENT.

                        Shallow Pipe Drains Deep Pipe Drains  Surface Drains

     Year  Crop      Precip.   Flow -Sediment    Flow Sediment  Flow Sediment
                   mm      mm    kg/ha     mm   kg/ha    ram    kg/ha
1969
1970
1971

1972
1973

1974
1975

1976
1977
1978

Corn*
Corn*
Corn*
Average
Oats-bare
Bare soil
Average
Alf -grass
Alf-grass
Average
C-S-0*
C-S-0*
C-S-0*
Average
Average (al 1 years)
1061
818
689
856
1152
J&Z
1060
799
842
820
827
1022
_§4£
898
902







166
.122.
178
76
161
iZi
137
153







423
J65.

141
205
i5Z
168
218
206
160
. 57
139
3M
298
320
251
IP!
180
29
354

184
197
2776
419
236
1144
5405
4484
.4945
837
163
500
82
543
_3J<8
324
1529
157
154
88
131
331
1PJL
316-
147
136
172
46
261
149
152
183
2098
1751
773
1541
9054
7365
8210
1085
828
957
221
910
1391
841
2548
      Conventional "t I Mage for corn and soybeans.
Source:   Schwab   G.O.,  N.R.  Fausey,  and  D.E.   Kopcak.  1980.
          Sediment and  chemical content of agricultural  drainage
          water. ASAE Paper No. 79-2024. Ohio Agricultural Research
          and  Development Center, Wooster, OH.  16 p.

-------
                                                                    10
         TABLE 3-  CHEMICAL LOSSES BY DRAINAGE SYSTEM AND YEARS.

                                        Losses in kg/ha
Chemical
(analysts of)
N03-N
(water)







Average Annual
Avg. Percentage
Phosphorus
(water and
sediment)




*'


Average Annual
Avg. Percentage
Potassium
(water and
sediment)







Average Annual
Avg. Percentage
Year

1969
70
71
72
73
7*t
75
76
77
78

for Dormant
1969
70
71
72
73
74
75
76
77
78

for Dormant
1969
70
71
72
73
7k
75
76
77
78

for Dormant
Shal low pipe
drains




9.k
k.k
10.it
25.lt
6.3
11.2
Season ltO%





0.8
1.3
O.Jt
1.0
0.3
0.8
Season 57%





9.7
9.7
5.8
13-3
S.k
8-7
Season 1*2%
Deep pipe
drains
20.9
25.lt
17.5
26.8
22.0
lit.)
5.3
6.6
38. J
10.lt
18.7
43%
0.9
0.8
0.3
2. U
2.0
1.2
1.5
O.lt
2.1
0.6
1.2
50%
12.5
7-9
2.2
87.2
57. k
16.6
19.4
1.0
lit. 8
6.0
22.5
38%
Surface drains

19.3
35.3
10.6
18.6
9.5
9.0
0.8
5.1
8.7 •

12.1
29%
1.2
8.3
1.3
2.5 .
2.6
1.2
3.6
0.2
1.2

2.2
35%
2.9
' 17.6
7.6
113.7
92.2
23-0

: 3.9
15.0
-Li '
31.6'
: 39%
Source:    Schwab, G.O.  et al. 1980. Sediment and chemical content
           of agricultural drainage water.  ASAE Paper No.  79-2024.
           Ohio  Agricultural  Research   and  Development   Center,
           Wooster, OH.  16 p.

-------
                                                                            11

       Using   simulated  rainfall,   Sharpley   (1980)   evaluated   the
  effects of  varying soil  physical  and  chemical  properties,  soil
  slope,  rainfall  intensity, and source on  the enrichment of soil  P
  in runoff.  ER  values  for  total  P  have  ranged from  1.3  (Rogers,
  1941)  to  1.5-3.1 (Knoblauch  et  al.,1942; Neal,  1944; Stoltenberg
  and White,  1953).  Soils used were  Bernow  (fine-loamy,  siliceous,
  thermic Glossic Paleudalfs) ,  Kirkland (fine,  mixed,  thermic Udertic
  Paleustolls),  and Pullman  (fine,  mixed thermic Typic  Ustochrepts)
  which represent major soil types in Oklahoma and Texas.
               Table 3— Enrichment ratio* for P in rainfall runoff from several
                    aolU. with 0.25.50. and 100 kg/ha P amendment*.

                                 Enrichment ratio. .1 !• additi»n
-------
                                                                    12

     The New  York  State  Department  of  Agricultural  Engineering
published a bulletin " Determining Sediment Yield from Agricultural
Land11. The bulletin provides a simple procedure for evaluating the
effects  of field location  upon the amount of  sediment delivered to
a  stream.  A  small  farm  with  six  fields  located southeast  of
Skaneateles,  NY was used as the example site.  The USLE was Used.
          Table 2. Factors Used In Determining Soil Erosion on Example Farm, Skaneateles. N.Y.
Field
Ident1f1- Soil
cation Type
US
116
117
118
119
120
Honeoye
Honeoye
Lima
Angola
Angola
Honeoye
Cropping Slop*
History Gradient
Corn/Corn/Oats
Com/Corn/Oats
Hay/Hay/Oat*
. Wteat/Corn/Corn
Wheat/Hay/Kay
Hay/Hay/Corn
3%
5*
3*
3*
5%
11*
Slop*
tengtn
600 ft
300 ft
ZOO ft
325 ft
360 ft
195 ft
Conser-
vation
Practices
None
Contoured
Contoured
Contoured
None
Contoured
R
100
100
100
100
100
100
K
.32
.32
.32
.37
.37
.32
C
.43
.43
.17
.41
.14
.23
LS
.49
.93
.35
.41
1.01
2.20
Soil
Erosion
P T/ae
1.0
0.5
0.6
O.S
1.0
0.6
6.7
6.4
1.0
3.1
5.2
9.7
               Table 3. Estimated Sediment Delivered to a Stream from Example Fans

field
Identifi-
cation
US
116
117
118
119
120


Distance to
Stream
ft
200
0
840
540
180
0




SOft
.31
1.0
.23
.25
.32
1.0


Soil
Erosion*
x T/ac
6.7
6.4
1.0
3.1
5.2
9.7


Sediment
Yield
T/ac
2.1
6.4
0.2
0.8
1.7
9.4



Area
x_ ac
8.0
2.8
8.0
8.2
10.0
3.4
TO
Total
Sedlemt
Yield
• T
16.8
17.9
1.6
6.6
17.0
33.0
•J3CT
     •See Table 2
Source:    Walter,  M.F. and R.D.  Black. 1982.  Determining  sediment
           yield from agricultural land. 11 p.

-------
                                                                             13

         Smith et  al.  measured  amounts of nitrogen,  phosphorus,  and
   sediment  in  runoff  from grassland watersheds  in  the  Blackland
   Prairies  (BP),  High Plains (HP), Reddish Prairies (RP),  and Rolling
   Red Plains  (RRP), Texas, three- to five-year study periods included
   treatments  involving   fertilization,   cultivation,   and  burning.
   Overall nutrient concentrations ranged  from  2-10 mg/L for N  and
   0.3-2 mg/L for  P.
 Tafcfc i. Chancurisiki «f IN gn
i for various yean 197* through I9M.
Resource
area
BP
(Riesei,
Tex.)



HP
(Bushland.
Te*.)

RP
(El Reno.
Okla.)









RRP
(Wood-
ward. Okk.




Water-
shed
Y-U

W-IO

SW-II

N.G.

S.C.

FR-t


FR-2
FRO

FR-4

FR-5
FR-6
FR-7
FR-8
WW-I


WW-2
WW-3

WW-4
Size
(ha)
rz
•,
7.')
•i
I.I

0.04

0.04

1.6


1.6
1.6

1.6

1.6
1.6
1.6
1.6
4.7


5.5
2.7

2.9
Approx
•slope
i 2

, 2

1

1

1

3


3
3

4

4
3
3
3
7


8
8

*
Total
events
29

19

20

4

4
a>
12


14
13

13

15
15
18
17
21


35
22

27
Major soils
Houston Black clay
(Udic Pellusteru)




Pullman clay loam
(Torrertic Paleusiolls)


Bethany silt loam
(Pachic Pafeustolls}


and

Kirkland silt loam
(Udenic Paleustolls)




Woodward loam
(Typic Uslochrepis)

and
Quintan loam
(Typic Ustochrepti)

Major grasses
Klein (Panicum coloration)

Coastal Bermuda)
(Cynodon daciylon)
Harding winiergreen
(Photorii acquotica)
Blue grama (Bouuloua
gracilis and
BufTalo
(Buehlot dactyloida)
Little blucsiem
(Andropogoa xoparhu)

and
Big bluestem
(Andropogon gtrardii) and
Sideoau grama
(Bouuloua curiipenduta)




Sideoau grama
(Bouuloua curtipendula)

and
Hairy grama
(Bouuloua hirsute)

Land use
Moderate graze

Moderate graze1

Moderate graze

Idle

Idle

' ' Heavy graze (double Mocking)


Moderate graze/ fertilizer1
Moderate graze

Moderate graze/fertilizer/
Spring burn1
". Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze


• Moderate graze1
Moderate graze to wheat*

Moderate graze to wheat*
•J«0.k« N.h* Hirfece broMkui ia 1971.
'tt.kj N. h. luifwe brudcui in 1979. M; 23 k( hOk/hi in IMO.
'J6 tj N. h« >urf«oe l»?o»«ic«Min 1979. Hfc 22 ki ftO>'/hijp i JIM.
•»pHI £um~unWprK~io feriiliziai; 9A £4\itttD'»ppKd~iuMiy. 1980. but not runoff evenu oocurred til following year.
'Planted w wheat since bU I9T8. rcnilized according to soil KM far 40 quinuls/hi yield geaL
»3» kg N fei. 22 ki ItCh, hi in IVSO: May and Sept. defer cnsina.
•named to whet since fell 1970. fenilucd aeconirai to sail teu for 40 ^uinuU/ha yield goal
   Source:    Smith,S.J.,  R.G. Menzel, E.D.  Rhoades, J.R.  Williams, and
               H.V.  Eck.   1983.  Nutrient  and sediment  discharge  from
               southern plains grasslands. J. Range Hgmt. 36(4):435-439.

-------
                                                                                                             14
     X>
in*
                                                 HOi-N
                                                                    TKN
       IIP
       tp
       «P
                      1*7*40
                             0.011
                                |O06))>
                             O.MJ
                                (0.120)
                      1*7740  0415
                                (0.200)
                                1*7740
                  0.624
                     IU.IXI1
                  IMM7
                                1974-10
                                        0.214
                                           ISM)
                                        0.021
                                           (0.1*0)
                                1*7*40   0.00*
                                           (0.0)2)
                      1*7*40
           UnfcnKbul OrauUrKk
(UOO     1.210     4.2*      0.710     0.67U
   10.110}     (2.W)      (1.74)      (OJM)
0.220     0.201      1.46      0.204     0.10V
   (oju)     (0.470)     (i*6i      
-------
                                                                                         15

i BDie j— Annual pool
Parameter
Annual load* of'
Total P
Metric tanifyeai
Ammal flow, m* M
Mean annual load:
Total P
Metric Unify*"
ipnonu loaow ira
to Lake Erie. T
m ue auaoaJC7 niver
1 •' Calendar year
1
•>P
e"
of: .
a*P
1969
407
34.6
329
1974
i 606
45.3
• 279
* 31
1976
446
* 24
29.0
317
* 18
1976
333
* 16
21.8
298
* 33
1977
684
*U3
37.6
312
* 13
TD«U provided by the River Studies Ubontoty. Heidelberg College.
 Tiffin. Ohio.   ||                 >.
1 C«lciil«tert uilag the flow
-------
                                                                        16

                                     located at  the Southern  Piedmont
                          center  near  Wakinnsville,  GA were used  to
  evaluate  cropping-tillage  effects on  erosion  probabilities  in

  Haoluou?t^ed^ntVS°ilS -Tre Pred°»i™tely Cecil sandy loam (Typlc
  beloS?               Ur  tllla*e  ^sterns and  results  are described
     TABLE i. CROPPIHG-TILLACE SYSTEMS OH THREE RESEARCH WATERSHEDS IN THE SOUTHERN PIEDMONT
            System
     Watershed  Number  Period In Effect
Summer Crop
Winter Crop
TllUge
Inpteaent
PI



P.3



P4



1
2
3
4
S
6
7
8-
9
10
11
12
10-1-72
10-22-74
11-5-76
11-8-60
12-4-72
11-6-75
11-6-78
11-8-79
11-2-73
11-6-75
11-6-76
11-8-79
to
to
to
to
to
to
to
to
to
to
to
to
10-21-74
10-1-76
11-7-80
10-13-82
ll-S-75
11-5-78
11-7-79
11-9-82
11-5-75
11-5-76
11-7-79
11-10-62
Soybeans
Grain Sorghum
Soybeans
Grain Sorghum
Soybeans
Grain Sorghum
None
Soybeans
Corn
Soybeans
Hone-
Soybeans
None
Barley
Wheat
Clover
Rye. Barley
Barley. Wheat
Wheat, Rye Grass
Wheat
Rye
Barley. Wheat
Wheat. Rye Grass
Wheat
Conventional
Conservation
Conservation
Conservation
Conventional
Conservation
Hone
Conservation
Conventional
Conservation
None
Conventional
Disk Harrow
Fluted Coulter
•Coulter Inrow Chisel
Coulter Inrow Chisel
Disk Harrow
Fluted Coulter
Hone
Coulter Inrow Chisel
Disk Harrow
Fluted Coulter
Hone
Disk Harrow
       Terraces reconstructed during summer.
Source:    Mills,   W.C.,  A.W.  Thomas,
             and  G.W.   Langdale.   1985,
           Erosion probabilities  in Southern  Piedmont:
           tillage effects.  ASAE  Paper No.  842546.  24 p.
                                cropping-

-------
             TA8I.E 3.  MAXIMUM, MINIMUM  AVERAGE, AND NUHBER OF SCS CURVE NUMBERS OOTAtNEO FOR THREE RE-
                      SEARCH WATERSHEDS UNDER DIFFERENT CROPPING-TULAGE SYSTEMS IN THE SOUTHERN PIEDMONT
: • Watershed


PI
f
P3
Cropptng-TIIUge System
M«x.,
M1n.
Avg.
NO.
1.
98.03
55.96
85.57
36
2
90.26
55.25
76.11
19
3 I
86.71
51.39
68.69
10 I
A
54.43
40.92
47.68
2
Cropping-TIIUge System
5
94.95
63.41
80.93
38
6
87.32
46.63
69.07
12
7 8
68.08 86.01
67.59 44.03
8o7l9 63.05
7 10
P4
Cropplng-TI 11 age System
9
91.91
52.25
80.00
23
10
85.78
45.32
66.93
12
11
86.46
64.03
80.03
5
12
89.44
44.03
72.75
14
           TABLE 5.  MAXIMUM. MINIMUM, AVERAGE, AND NUMBER OF USLE C •  P FACTORS OBTAINED FROM THREE RESEARCH
                   WATERSHEDS UNDER DIFFERENT CROPPING-TILLAGE SYSTEMS IN THE SOUTHERN PIEDMONT
                      '.             !!

                                                  Watershed


                         PI                           P3                           P4
                 Cropplng-TI11»ge System           Cropplng-Tlllige System        Cropping.Tllltge System
                                                                                                 17
                                                                  8       9      10     11     12
           H*x.  ]..5888 0.0195  0.0090 j,0.0021   0.8312  0.0398 0.0113  0.0722  0.2401  0.0567  0.0115 0.1159

           Mill.  0.0162 0.0003  0.0001 [0.0015   0.0109  0.0036 0.0000  0.0000  0.0000  0.0049  0.0041 0.0000

           Avg.  0.2555 0.0048  0.0030  0.0018   0.1498  0.0129 0.0050  0.0316  0.0659  0.0270  0.0081 0.0497

           No.    36     19     10      2       38      12      7     10      23     12      5     14
Source:     Mills,   w.C.  ;et   al.   1985.    Erosion   probabilities   in
               Southern  Piedmont:  cropping-tillage  effects.  ASAE  Paper
               No.  842546.   24  p.

-------
                                                                                     18

       Rudra  et al.  applied  CREAMS  to a loam  soil  research plot in
southern Ontario.
                         TABLE 10. BEST-FIT PHOSPHORUS PARAMETERS
                                      FOR EACH PLOT
                      not
                              Plot
                           management
                            Soluble-P
                            parameter*
          ParUcuUte-P
          parameter*

1
2
3
4
ft

NS. NM. NP
NS. M, NP
S. M. NP
NS, M. P
5. M.P
SOLP
kf/b«
1.5
6.0
0.6
1.6
0.5
EXKP
0.016
0.008
0.080
0.008
0.030
A B
1.1 -0.003
1.0 -0.002
30.0 -0.9
2.9 -0.20
0.7 0.0
                      NS — No Stover (Stover removed)
                      S — Slovcr (Stover let t>
                      NM — No Minus* applied
                      M — Manure applied
                      NP — No fall plouchinc
                      P — nouched in tall
             TABLE 12. COMPARISON OF OBSERVED AND COMPUTED SOLUBLE PHOSPHORUS
                    IN RUNOFF FOR MAJOR EVENTS FOR THE CALIBRATION AKD
                                   VERIFICATION PHASES
                                        Soluble pbocpboruf, kc/ha
              Event
                            Hot 3
                                        Hot 5
                                                     •note
                        Com-
                        puted
                   Ob-   Com-
                  •ermd  puud
Ob-
     Com-
     puted
 Ob-   Com-
•ervmi  putcd
                                                                      Ob-
June 131971  O.125   0.164  0.0ft?   0.019  0.076
July 261971  0.066   O.O38  0.037   0.006  0.073
Auc261971  0.071   O.O22  0.030   0.0*0  0.016
May 16 1974  O.162   0.176  0.213   0.268  aO62
June 191976  O.033   O.O64  O.O60   0.016  O.O86
Awe 231976  O.112   0.142  O.O61   O.063  O.072
                                                        0.003  0.163   0.003
                                                        0.012  0.066   0.022
                                                        0.016  O.070   0.022
                                                        0.1O6  O.189   0.166
                                                        0.036  0.021   0.023
                                                        0.049  0.063   0.066
             •The bwt flt SOLP end EXKP ate 0ven In Table 10.
 Source:     Rudra,   R.P.,   W.T.   Dickinson,   and   G.J.   Wall.   1985.
               Application  of  the  CREAMS   model   in   southern  Ontario
               conditions.  Trans. ASAE 28(4):1233-1240.

-------
                                                                 19

     In  1S>80,  Beasley et  al.  reported  using ANSWERS to simulate
several  management  alternatives  for  a primarily  agricultural
watershed   in  northeastern  Indiana   under  several   different
precipitation  events.  A summary  of two Black Creek  watersheds is
below:
               TABLE 3. SUMMARY OIF OBSERVED AND PREDICTED WATERSHED
                      RESPONSES FOR SEVERAL STORMS IN 1976
                                        Runoff
                                                    Sediment yield
1
Watershed
name
Smith-Fry
(942h«> ,

Upper Blabk
Creek
<714ha> |

i
aianace-
menl
practice
2
2
3
2
. 2
2
3
3
Date
4/21/75 '
6/3/75
6/3/75
4/21/75
6/3/75
6/23/75
6/3/75
6/23/75
Rainfall.
mm
31.5
22.5
22.5
33.8
25.1
64.0
25.1
64.0
Observed.
mm
3.5
9.5
—
4.0
8.2
16.5
—
•~
Predicted
mm
1.4
6.5
6.5
3.2
7.2
17.4
7.2
7.6
Observed, '
kf
20OOO
75000
—
3000O
55000
325000
—
•—
Predicted,
kf
39100
96600
53100
36300
73200
282300
46900
102000
Source:    Beasley,  D.B.,  L.F.  Huggins,  and  E.J.   Monke.   1980.
           ANSWERS:  A model  for watershed planning.  Trans.  ASAE
           23(4):938-944.

-------
                                                                    20

        ANSWERS was  tested by ParJc  et al. with data from two  small
   agricultural watersheds (5.6 and  7.5  ha)  in the Four Mile  creek
   watershed in Iowa. Soils were Tama silt loam and Colo-Judson silt
   loam. Eleven  storms  from 1977-78 were used in  the simulation.
   Watersheds were planted with soybeans  and corn in rotation.  They
   were tilled in the spring and  one of  the watersheds was  covered
   with cornstalk residue.
   TABLE 2. SUMMARY OF EROSION MODEL FARAMETERS AND SIMULATED MAXIMUM SEDIMENT CONCENTRATION
W»t*obed
1SU1
1SU2
Sionn
•veal
77/4/19
77/8/15
77/8/28
T8/4/17
78/5/27
mean
77/8/15
78/4/17
78/4/18
78/5/27
mean
Soil panmetm*
•1 KI «2
2,0
2.0
2.0
2.0
1.8
2.0
2.0
2.0
J.S
1.5
1.8
0.33
0.33
0.30
0.23
0.13
0.28
0.33
0.2S
0.12
0.12
0.21
1.0
1.0
1.O
1.2
1.0
1.0
1.5
1.0
1.0
1.2
1.2
Kf
0.25
0.26
O.13
O.25
0.08
• 0.20
0.26
0.03
0.03
0.11
0.11-
Crop panmeica*
Cn Cm Cf
l.OO
0.60
O.45
0.8O
0.60
0.68
0.14
1.00
0.66
0.65
0.61
0.40
0.25
0.25
0.46
0.32
0.33
0.17
0.25
0.25
0.26
0.26
0.40
0.16
0.16
0.30
0.26
0.25
0.03
0.10
0.04
0.10
0.08
Max. coneeotntioo.
ppm
obeerved simulated
•7440
36070
2647
14600
45640
37938
44690
319O
4660
26020
19590
84647
64945
8355
23767
43521
42560
43011
11560
14663
20033
22362
Fndlcted
•edtaneat
jrMd.kE
36924
10719
47
1O65
2125
8696
7692
1446
287
12934
431 &
•SoU aad crop panmetcn defined in equation* (6] and [11).
   Source:    Park, S.W.,  J.K.  Mitchell, and J.N.  Scarborough. 1982.
              Soil  erosion on  small watersheds:  a modified ANSWERS
              model. Trans. ASAE  25(4):1581-1588.

-------
                                                               21
Land Use


Lo Till

Hi Till
                   Total N and P Loading Rates
Total N Load
 (Ib/ac/yr)

    5.0

   12.0
Total P Load
 (Ib/ac/yr)

  0.42

   2.05
      Reference
 Chesapeake Bay Basin
  Model-A Final
  Report (Jan. 1983)
Lo Till

Hi Till
   10.6

   17.9
  0.87

    5.64
Hartigan et al. 1983.
  Calibration  of  NFS
   model loading
  factors. J. Environ.
  Eng.  109(6):1259-
  1272.
Lo Till

Hi Till
   9.64

  18.56
  1.50

   4.20
Southerland, E. 1981.
  A continuous
  simulation modeling
  approach to nonpoint
pollution management.
  (Dissertation).

-------
                                             22
ID
•?
D
•o
c
IB
-1
"e
u
<£
^»
Q
E
o
u.
V)
w
i
w
u
J2
L
tft
*^*
O
IO
O)
^c
"O
(Q
O
-1
in
3
O
i_
O
.C
e.
in
O
£
<0
'o
H
•o
c
to
in
;o
•*•
O
 .£
« P
   q

   tN
   2.
•s
IV
fj
II
11
fc %
U TW
O>
>






CN
cn
•
\o
OJ






o
CN
•
*o







Developing
Subdivision Site
•B*
0>
JC wi
es
U f
*i"
V *-
oo
g E
|w
g re
" v
^ c







»O
q







tN
8







Low Density Urban
Residential Area
•ot
v .
•c .S2
£*
II
v *J
V CD
S *
i*
5 ™
•£ ™
•e c







vo
q







q






'c
Medium Density Urba
Residential Area
TJ +
JS.S5
S^
1 »
* c
omonee
Wauwal
S S
v s
2 c







ON
\O







«->
OJ






C
Medium Density Urba
Residential Area







•a
i
Is
? 4
•4 .5
V n
,p c
^°
^ «
OS
:=z

** Timmons, O.R. and R.F. r
of Environmental Quality,








*
t*
t2?
U
«M
g
u
^
§
«A
«>
Q£
k.
i
"c

>•
•a
Ji

f9
^W
"c
1
k.
a
o
o;
fv
^i

^ i
-2
. "3'
— m
Washington County Projcc
University of Wiscunsin-M







«_
O
1
. rv
E
5

>.
1
10
•o
o
•I
0
3
3:
B

£
^
.>
is?
*^
i
e
u
Z
eo
f*.
ON
g
s
** Inlcrnatiunal Joint Commi

-------
                                                                      23
      Table 6-1.  Urban Flow-weighted mean concentration (mg/1)
POLLUTANT
   NEW        OLDER     CENTRAL
SUBURBAN      URBAN     BUSINESS
NURP SITES    AREAS     DISTRICT
Wash.,DC)  (Baltimore) (Wash.,DC)
                      NATIONAL HARDWOOD  NATIONAL
                       NURP    FOREST     URBAN
                       STUDY   (Northern  HIGHWAY
                      AVERAGE  Virginia)  RUNOFF
PHOSPHORUS
Total
Ortho
Soluble
Organic

0.26
0.12
0.16
0.10

1.08
0.26 1.01
-
0.82.
•
0.46
-
0.16
0.13

0.15
0.02
0.04
0.11

-
' -
0.59

NITROGEN
  Total
  Nitrate
  Ammonia
  Organic
  TKN
  2.00
  0.48
  0.26
  1.25
  1.51
COD        ;J35.6
BOD  (5-day)  5.1
 13.6
  8.9
  1.1

  7.2

163.0
2.17
0.84
1.49
                        36.0
3.31
0.96
2.35

90.8
11.9
  0.78
  0.17
  0.07
  0.54
  0.61

>40.0
  2.72

124.0
METALS
Zinc
Lead
Copper
••
0.037
: 0.018
*"

0.397
0.389
0.105

0.250
0.370
"

0.176
0.180
0.047

0.380
0.550
!_. v
 Source:    Schueler,  T.  1987. Controlling urban runoff:  a practical
            manual for planning and designing urban BMPs.  Department
            of Environmental  Programs.

-------
                                                                     24
 w
 CA
  0]
  g
j

  B
  SB
w

3
                    S CS  S SS  8S3S  SSSK SSSC

                    J^rlS  <*£*••*  ** sO tn O  P.«M^P^ O O O *-4
                    ^ ^, ^  ^ ^ ^  ^^^^.^^^^  ^^^^ JJS^^J
                                         ' m •*  i-» M eo CD
                                         i e «M  M » o o

                                         ! d e  e d e e
              111
s ss  s ss  isss  ssss ssi

5 SI  S 52  Jsss  sssc ss,
          ^*      *«»


2 SS  S SS  S3SS  38SS 2SS

s^a  sss  sssc  ^s^s "«•



s ss  g sg  ftsss  sggs ss:
e oo  o o o  « d o o  M e> ci J -i d e
                                                       c
                                                       o
                                                       u
                                                       IM


                                                       e
 10
 0)

 I

 o
 05
                                                               to  •
                                                               It CM
                                                               a oo
 •S J!

 * §
 B U
 01 
CO C
g §
U "H

00 (0
TO -M

C >
                                                              •H C

                                                              <-" U
                                                              m E
                                                              3 O.
                                                              Of O
                                                              c

                                                              2
                                                              O
                                                              o
                                                             CO

-------
                                                                                    25
Table 2.  Comparison of selected constituents for stations in the Natural-Quality Network with stations in the Primary
Network, October 1974—Semptember 1975
Mountain province
Cataloochee Creek
Constituent '[ at Cataloochee, N.C.
'| (natural-quality)
Total nitrogen
(mg/L). :
Dissolved phosphorous :'
(mg/L).
Total phytoplanklon
(cdls/mL).
Fecal coliform
(col./lOOmL).
Biocbemical oxygen |
demand (mg/L). j
Periphyton— biomass ~
ashwuCg/m1).
Peripbyton.— biomass
drywt.(g/m«). .,
Dissolved organic
carbon (mg/L).
Chromium Oig/L)
Total 	
Suspended 	 . . .
Dissolved 	
Bottom 	 ' . .
Lead (Mg/L)
Total 	 	
Suspended 	 	
Dissolved 	
Bottom 	
ZincO(g/L)
Total 	
Suspended 	 ...
Dissolved 	 	 	 . '
Bottom 	 '

0.18-1.7

.01 -.02

'260-320

'< 10-2.000

< 1-2.0

1.5-3.9

2.3-6 2

3.6-4.9


I- *** #v
o
v 1
 jfj
4_ irt
^f IU
A.7
l/^ /
0»lft
1U
10-60
Neuse River near
Clayton, N.C.
(primary)
0.33-3.1

.04-. 90

1700-28.000

40-3000

1.6-6.1

4.6-5.4

6.9-8.5

7.4-12


0-10
0—10
o
10—20
IV +V
2" 130
jt I JV
5—130
A UV
0— R
0
i.xift_ncft
^ IV A^V
7_^n
—4U
0_jft
^«KI
0— ^rt
"**U
40
   'Single nomypieaJ vilue ncn included.
   'One value in (his concenira lion range.
     Source:     Water  Quality  of  North  Carolina   Streams.   Geological
                  Survey  Water-supply Paper  2185 A-D.  1982.

-------
                                                                              26
             TOTAL  NITROGEN
                                                            ORGANIC  NITROGEN
             NITRATE NITROGEN
AMMONIA NITROGEN
            TOTAL  PHOSPHORUS
                                                             EXPLANATION
                                                         X  Geecfteaicol tent
                                                      Mean  canttilutnt  concentration,
                                                        in  milligram  per  liter
                                                           O.CH nigh  flow
                                                           0.02 Low  flow
     Figure 8.  Mean concentrations of nutrients in unpolluted streams of North Carolina.
Source:    Water  Quality   of  North  Carolina  Streams.   Geological
            Survey Water-Supply Paper 2185 A-D. 1982.

-------
                                                                               27
"able 6.  Mean values and range* in concentration* of variout form* of nitrogen and phosphorus in the French Bread

-------
                                                                                                    28
Table 10.  Comparison of water quality of samples from the French Broad River at Marshall, N.C., with samples from
baseline-quality sites in the same area
                               French Broad River at Marshall

                               Mean value
      Baseline quality sites

 Mean value
                              Low    High       Range of
                              flow    flow      all samples
                             (0800   O1600
                             ll'/s)    h»/s)
                  Range of
Low     High      all samples
flow     flow
  Range in
  percent
attributable
to pollution
  based on
mean values1
                                    Major dlwolt ed constituent* (mUlitwni per liter)
Calcium 	
Magnesium 	 ,
Sodium 	
Potassium 	
Bicarbonate 	
Sulfate 	
Chloride 	 	 	
Fluoride 	
Silica 	
Dissolved solids 	
	 7.0
	 1.2
	 U.O
	 1.7
	 26".0
	 24.0
	 4.3
	 1
	 10.0
	 76.0
4.6
1.1
2.8
1.6
15.0
11.0
3.0
.2
8.2
44.0
3.2-10.0
.2-2.0
2.4-22.0
t. 0-2.9
9.0-35.0
. 5.1-42.0
.9-5.8
.0-1.2
3.7-11.0
30.0-112.0
1.3
.6
1.5
1.0
7.4
2.2
0.9
0.1
8.1
19.0
1.3
.4
.8
.6
5.1
2.2
.7
0.1
6.6
15.0
0.5-3.0
.3-0.9
.4-2.2
.3-1.9
2.0-9.5
.8-5.7
.0-2.0
.0-0.5
3.5-9.4
12.0-22.0
72-«81
•50-64
86-'89
'41-62
66-"72
80-91
77-«79
10-50
'19-20
66-«75
                                            Nutrients (milligrams per tiler)
Total nitrogen 	 	 	
Organic nitrogen 	
Nitrate nitrogen 	
Ammonia nitrogen • 	
Total phosphorus 	

. . 1 2
50
5 2
	 13
	 16

1 5
79
6 8
.11
24

066—4 8
0-4 0
29—21 0
.0-042
03—1 2

0 19
11
08
o
01

030
13
17
.01
01

0 0—0 92
.0-0 29
.0—40
.0-0.01
0—002

80- '84
'78-84
98-98
9 1 -MOO
•94-96

                                          Trace Metals (micrograms per liter)
Total arsenic 	
Total chromium 	
Total copper 	
Total iron 	
Total lead 	
Total mercury 	
Total selenium 	 	
Total zinc 	
	 033
	 1X0
	 11.0
	 958.0
	 41.0
	 17
	 5.0
	 58.0
5.2
24.0
32.0
20.602
58.0
.12
17.0
424.0
0.0-10.0
.0-90.0
.0-230.0
410-70.000
.0-250.0
.0-0.5
.0-29.0
10.0-6900.0
O.I
10.0
4.0
460.0
5.0
.10
.0
10.0
0.0
10.0
4.0
1800.0
9.0
.10
.0
10.0
0.0-1.0
!.0-'-«20.0
,0-13.0
20-»8600
,0-'-25
.0-0.50
.0-'-<0.0
.0-«40.0
'70-100
'17-58
»64-88
'52-91
84-'88
17-'4l
100-100
'83-98
   'Some constituents have i higher percent attributable to pollution at high ttow whereas others have a higher percent attributable to
 pollution at low flow.
          .                          .
   ^Exceeded limits recommended in Stft Drinking Wattr Att. Federal Register. Dec. 24, 1975. in some samples.
   •Exceeded limits recommended in Quality Criitria/or Wattr. U.S. Environmenul Protection Agency. 1976 in tome samoles.
   •No recommended limit*.                                           ..                         *
    Source:     Water   Quality   of  North   Carolina   Streams.   Geological
                   Survey Water-supply  Paper 2185  A-D.   1982.

-------
                                                                 29
                from the Neuie River near
                                                 with
Neuse River near Clayton Baseline-quality tiles
Mean Value

Base
flow
(O70
ft'/*)
High
(low
O370
flV*)
Mean Value
Range of
all Base <
samples flow
High
flow
Rvnfl^ o^
Percent
attribut-
able to
pollution
all Base
samples flow
High
flow
Majot dissolved constituent* (mg/l)
Calcium 	 	
Magnesium 	
Sodium 	 	
Potassium .. c .....
Bicarbonate 	
Sulfate 	
Chloride 	
Pluoiidc * .
Silica
Dissolved solids ... .

9.6
2.7
25
4.3
42
13
26
.5
16
120

5,3
1.7
8.4
2.4
22
9.1
8.3
.2
11
58
3.3-12 4.4
.9-3.3 1.9
2.6-37 4.6
1.5-6.4 1
8.3-70 4.6
6.3-24 2.5
2.7-41 4.1
.I-.8 .1
4.9-19 17
34-170 49
2.2
.8
1.5
1
5
5.5
1.5
.1
6
21
0.5-10
.3-4.1
.4-7.3
.3-1.9
2-44
.8-8.2
0-10
0-.5
3.1-29
12-78
54
30
82
77
89
81
84
80
60
58
53
82
58
77
40
82
50
45
63
Nutrients (mg/U
Total nitrogen 	
Organic nitrogen ....
Nitrate nitrogen .
Ammonia nitrogen . . .
Tola! phosphorus 	

3.7
. .87
2 5
.6
1.4

1.9
.83
.62
.37
.51
.3-6.1 .34
0-.34 .19
.3-4.4 .14
0-1.8 .01
.07-2.7 .02
.14
.38
.1
.01
.02
0-1.5
0-.69
0-1
0-.07
0-.05
91
86
94
98
99
93
54
84
97
96
Trace elements (pg/U
Total arsenic .
Total chromium .
Total copper ....
Total iron . . .
Total lead .
• Total mercury . .
Total selenium . .
Total zinc .

93
8 3
16
750
82
25
2
210

4.2
9.5
17
4800
29
.25
6.1
40
0-30 3.6
Or 20 10
2-70 4
520-20.000 570
2-500 6.4
0-.5 .15
0-12 0
0-1400 10
.71
10
4
4100
7.6
.5
0
10
0-.3
10-20
0-12
20-13.000
"0-25
0-.5
0-0
0-20
96
50
76
24
92
40
100
95
83
»
76
14
74
100
75
Source:
Water  Quality  of  North  Carolina  Streams.  Geological
Survey Water-supply Paper 2185 A-D.  1982.

-------
                                                                               30
Table 9. Comparison of water quality of samples from the Neuse River at Kinston with samples from baseline water-
quality sites in the basin upstream from Kinslon
Neuse River at Kinsion
Me*nV»lue

Base
(low
«370
hVs)
High
(low
O370
ft'/»)
Range of
all
sample*
Baseline-quality sites
Mean Value
Baie
flow
High
flow

ail
umplet
Percent
attribut-
able to
pollution
Base
flow
High
flow
Major dissolved eorwliUienl* (mg/L)
Calcium
Magnesium 	
Sodium 	
Potassium 	
Bicarbonate 	
Sulfate 	
Chloride 	
Fluoride 	 	 	
Silica 	
Dissolved solids 	

6.9
2
12
3.1
29
11
11
.2
9 4
70

4.8
. 1.5
6.3
2.3
15
9.5
7.2
.2
9.2
49
3.2-8.8
1.1-2.5
3.5-17
1.7-4
7-40
7.2-15
3.6-17
0-.5
3.1-14
34-91
2.9
1.3
3.8
.8
3.4
4.3
3.9
.1
13
39
1.9
.6
1.8
.8
3.3
6.3
2.3
.1
5.4
22
0.2-4.0
.1-4.1
.4-7.3
.1-1.9
0-44
.6-13
0-10
0-.5
1.4-29
11-78
58
35
67
70
88
61
66
SO
44
60
60
71 '
65
78
34
68
50
41
55
Nutrients (mg/L)
Total nitrogen 	
Organic nitrogen 	
Nitrate nitrogen 	
Ammonia nitrogen
Total phosphorus 	

1 4
.7

.03
3

1.2
.7
.09
.2
.6-2.1
J06-I.I
.02-.27
.07 -.38
.4
.3
.09
.01
.02
.5
.4
.08
.01
.02
0-1.5
0-.99
0-1
0-.07
0-.05
71
57
67
93
58
43
89
90 '\
   Source:    Water  Quality  of  North  Carolina   Streams.
               Survey Water-Supply Paper 2185 A-D. 1982.
Geological

-------
                                                                              31
     Table S.  A summary of nutriam mtbttci (or samples of the N«UM> River near Clayton and at Kintton, 1974-77 water
     years. All values are in mlltigrami per liter

Toul
organic
carbon
Dissolved
organic
carbon
Total
ammonia
nitrogen
7
.3-.7
.84
9-T4
.7-1
.52
., "*-M
^-.6
.92
n»_d <
1J-.7
1.4
ft-' °
1.1-1.7
2-4
i 2.-2.8
1.4
• , 1>-»
.8-2
-" rn_,,
.5- .9
KINSTON
Mctn
Number 95 percent
of confidence
tamplet . llmiii
12
9.1- IS
«
8.8-15.2
.07
4T _., 	
.03-. 11
.OS
J« , , 	
.04-.06
.06
W , -
.01 -.11
.66
^
.50-.82 .
.52
39
.61 -.43
.48
*4 	
.56-. 40
.79
41
.70-.88
^ U
1.2-1.4
.28
*•> 	 _
.17- J9
M J3
J1-.25

Kingc
4.1-27
1-19
.02-.27
0-.16
0-Jl
.06-1.1
.35- .76
0-1.1
.1-1.4
64-2.1
JK-.55
j07- J8

Number
ol
samples
i
., 20
12
x
13
U
11
13
II
47
47
47
12
« 47
Source:    Water  Quality   of  North  Carolina  Streams.  Geological
            Survey Water-supply Paper  2185  A-D.  1982.

-------
                                  TABLE  II1-4

            GENERALIZED VALUES OF THE COVER AND MANAGEMENT FACTOR. C.
        IN THE 37 STATES EAST Of THE ROCKY MOUNTAINS  (Stewart rt a}., 1975)
                                                                              32
Productivity lew!2
Qop, rotation. «nd management

Bast v»W: continuous fallow, tilled up Mid down slope
CORN
1 CRdR. fall TP. conv (1)
2 C RdR, (print TP, conv (1 )
3 C RdL fill TP, conv (1)
4 C RdR. we seeding, spring TP. conv (1 )
5 C. Rd L. standinf. jprinj TP. conv 1 1 }
6 C fall ihred stalk*, sprint TP. conv ( 1 }
7 C(iiU|i:>-W(Rd L. fait TP) (2)
> C Rd L, fall chisel, spring disk. 40-30-* re < 1 )
9 CUiiaf e). W we jccdinf , no-lill |>1 In c-k W (1 )
10 GlRdL>-W(RdL, sprint TP) (2)
il C fall shred sulks, chisel pi . 40-309 t e < I )
1 2 C-C-C-W-M. Rd L. TP for C disk for W (S )
• 13 C. RdL. strip till row tones. 55-409- re (i)
14 . C-C-C-W.M-M.RdL.TPforC.diskforW(6)
1 5 C-C-W-M, RdL. TP for C. <1 isk for W (4 )
1 6 C. fall shred, no-lill pi . 70-50'- re < 1 )
1 7 C-C-W-M-M. RdL. TP for C Uufc lor W (i)
1 > C-C-C-W-M. Rd L. no-till p 1 3d & 3rd C li )
19 C-C-W-M. Rd L. no-till pi 2d f (4 )
20 C no-till pi in c-k whcal. 90-70U re ( 1 )
21 C-C-C-W-M-M. no-till |»l 2d t 3rd C (6 )
22 C-W-fci Rd L. TP for C. disk for W (3)
23 C-C-W-M-M. RdL. no-till pi 2d C (5)
24 C-W-M-M. RdUTPforCdiskf>*rW(4)
25 C-w-M-M-M. RdL, TP for C. disk for W (J )
26 C. no-till pi in c-k sod. 95-80% re (1 )
COTTON'*
2? Col. conv ( Western Pbins) ( 1 )
28 Cot. conv(Souih)Cl)
MKADOW
29 Gnu IL Lc|tumr mix
30 Alfalfa, lespodexa or Serieu
31 Sweet clover
SORGHUM. GRAIN (western Pl»in»)4
32 RdL. «prinic TP. conv (1 )
33 No-lill pi in shredded 70-501/. re
Ilijh
C value
1.00

0.54
.50
.42
.40
.38
.35
.31
.24
.20
.20
.19
.17
.16
.14
.12
.11
.087
.076
.068
.062
.061
.055
.051
.039
.032
.017

0.42
.34

O.IKM
.1120
.025

0.43
.11
Mod.

t.OO

0.62
.59
.52
.49
.48
.44
.35
.50
.24
.28
.2ft
.23
.24
.20
.17
IK
.14
.13
.11
.14
.11
.095
.094
.074
.06!
.053

0.49
.40

0.01



0.53
.IK
Source:  Water  Quality Assessment:  A Screening Procedure for Toxic  and
Conventional  Pollutants in Surface  and Ground Water—Part 1  (Revised-1985).
US EPA. EPA/600/6-85/002a. September  1985

-------
                                      TABLE II1-4  (Continued)
                                                                                                             33
Line
                             Crop, rotation, and management'
                                                                                        Productivity
                                                                                       High
                                                                                                    Mod.
                                                                                             C value
DYBEANS*
34
35
36
37
J
WHEAT
38
3»
40
41
42
43
44
45
46
47
48
49
9. RdL, spring TP. conv (1 )
C-B. TP annually, conv (2)
B, no-tfll pi
C-B, no-tiU pi. fall shred C stalks (2)


W.»-. f»U TP after W (2)
W-1-, stubbk muk-h. 500 Ihs re (2)
W-K, nubble mulch. 1000 Ibs re (2)
Spring W. RdL. Sept TP, conv (N & S Oak) ( 1 ) .
Winter W. RdL. Auc TP. con* (Kans) (1 >
Spring W. stubble mulch. 750 Ibs re (1 )
Spring W. ttubbk muk-h. 1 250 Ibs re { 1 )
Winter W. stubble muk-h. 750 Ibs'rc (I)
Winter W, stubbk mukh. 1 250 Ibs re (1 >
W-M. con* (2)
W-M-M. conv (3)
W-M-M-M. conv(4)

0.48
.43
.22
.18


0.38
.32
.21
.23
.19
.15
.12
.11
.10
.054
\ .026
.021

0.54
.51
.28
.22














    1 This table is (or illusmtive purposes only and is not a complete list of cropping systems or potential practice*. Values of C differ
 with rainfall pattern and planting dales. These generalized values show approximately the relative erosion-reducing effectiveness of
 vmrious crop systems, but locationaUy derived C values should be used for conservation planning at the field level. Tables of local
 values an available from the Soil Conservation Service.
    2 High level is exemplified by long-term yield avenges greater than 75 bu. corn or 3 toni gras*-and-legume hay: or cotton manage-
 ment that regularly provides good stands and powth.
    3 Numbers in parentheses indicate number of years in  the rotation cycle. No. (t) designates a continuous one-crop system.
    * Grain sorghum, soybeans, or rotton may  be substituted for corn in line* 12.14.15.17-19.21-25 to estimate C values for wd-
 based rotations.
 Abbreviations defined:
                                                       F - fallow
                                                       M • grass & legume hay
                                                       pi - plant
                                                       W -wheat
                                                       we - winter covet •
B   - soybeans
C   • corn          ~         '
c-k • chemically killed
conv - conventional
col - cotton

Ibs ic     . pounds of crop residue per acre remaining on surface after new crop scedinf
% re     • percentage of soil surfac* covered by residue mulch after new crop seeding
70.50ft re - 70* cover tor C values in first column; 50% for second column
RdR     - residues (com stover, straw, etc.) removed or burned
RdL     - all residues left on field (on surface or incorporated)
|T?      - turn plowed (upper 5 or more inches of soil inverted, covering residues)
       Source:   Water  Quality Assessment:    A Screening Procedure  for Toxic  and
       Conventional  Pollutants  in  Surface and  Ground Water—Part  1  (Revised-1985)
       US  EPA.  EPA/600/6-85/002a.  September 1985

-------
                                         TABLE  HI-6

               C  FACTOR  VALUES FOR PERMANENT PASTURE,  RANGE  AND  IDLE  UNO
                                 (Wischmeler and Smith,  1978)1
                                                    34
                         V«o>*ativ« canopy
                                               Cover ihol contact lh« »oil «urfoc«
Tya* one)
No appreciable
canopy
Percent
cover 3

trp,4
G
W
Perctnl around cover
0 20 40 40 M 93+
0.45 0.20 0.10 0.042 0.013 0.003
'.45 .24 .15 .091 .043 .011
                     Tall wcedi or      25
                       t hart bruth
                       with average
                       drop foil height  50
                       of 20 in

                                       75


                     Appreciable  bruth  25
                       or buthei. with
                       average drop fall
                       height  of  6M  ft  50
 G     .36  .17.  .09  .036  .013  .003
W     .36  .20  .13  .063  .041  .011

 C     .26  .13  .07  .035  .012  .003
W     .26  .16  .11  .076  .039  .011

 C     .17  .10  .06  .032  .011  .003
W     .17  .12  .09  .066  .038  -OU

 C     .40  .18  .09  .040  .013  .003
W    -.40  .22  .14  .087  .042  .011

 C     .34  .16  .06  .038  .012  .003
W     .34  .19  .13  .082  .041  .011
                                       75    C     .28  .14  .OB  .036  .012  .003
                                             W     .28  .17  .12  .078  .040  .011
                     Tree*, but no      25    C
                       appreciable law .       W
                       brvih. Average
                       drop (all height  50    C
                       of 13 ft               W
      .42  .19   .10  .041   .013  .003
      .42  .23   .14  .089   .042  .011

      .39  .18   .09  .040   .013  '.003
      .39  .21   .14  .087   .042  .011
                                       75    C     .36  .17  .09  .039  .012  .003
                           	W     J6  M  .13  .064  .041  .011
                            titled C valvet otiume that  the vegetation  and mulch are
                     randomly dillribulcd over the  entire area.
                       2 Canopy height it meatured ai the average  fall height of water
                     dropi  falling from the  canopy  to the ground.  Canopy  effect it in-
                     vertely proportional  to drop  fall  height and  it negligible if fall
                     height eiceedt 33 ft.
                       3 Par lion of lolol-orcct lurface Ihol would be hidden from view by
                     canopy in  a vertical projection (a bird't-eye view).
                       *G: cover at  lurface it  grott.  grattlike planii.  decoying  com-
                           pacted duff, or litter at lean  2 in deep.
                        W: cover el  ivrface » mattly broodleaf herbaceoui planii Cot
                           weedt with little loleraUroel  network near the  twrfoce) or
                           undecayed reiiduet or both.
Source:   Water Quality Assessment:   A Screening  Procedure for  Toxic  and
Conventional  Pollutants  in  Surface and  Ground Water—Part 1 (Revised-1985).
US  EPA.  EPA/60076-85/002a.  September 1985

-------
                                                                           35
                               TABLE 111-7

                C FACTOR VALUES FOR UNDISTURBED FOREST LAND
                       (Hischmeier and Smith, 1978)
         Percent of Area
        Covered by Canopy
          of Trees and
          Undergrowth
Percent of Area
   Covered by
Duff (litter) at
least 5 on deep
   Factor
     C
            100-75
             70-45
             40-20
    100-90
     85-75
     70-40
0.0001-0.001
0.002-0.004
0.003-4.009
Source:  Water Quality Assessment:  A  Screening Procedure for Toxic  and
Conventional  Pollutants  in Surface and Ground Water—Part 1 (Revised-1985)
US EPA.  EPA/600/6-85/002a. September 1985

-------
                                                                                                             36
                                                       TABLE  II1-8
                            C FACTOR  VALUES FOR MECHANICALLY  PREPARED WOODLAND SITES
                                             (Wischmeler and Smith, 1978}
                                                                           \
Sit
             Mvlch
      Seil cendtllen? oi»d w««d iov««3
                      ToTrf
NC  WC   NC WC   NC WC  ~NC  WC
Oi.l.d. roktd.
or b*dd>d Hen* 1
10
20
40
60
80
Iwrned' .... None
10
20
40
60
80
Drum chopped 5 None
10
20
40
60
• * 80

3.32
.33
.24
.17
.11
.03
.23
.23
.19
.14
.08
.04
.16
.13
.12
J09
.06
.03

0.70
.13
.12
.11
.08
.04
.10
.10
.10
.09
.06
.04
.07
.07
.06
.06
.03
.03

0.72
.46
J4
.23
.13
.07
.26
.24
.19
.14
.09
.03
.17
.16
.12
.09
.06
.03

0.27
.20
.17
.14
.11
.06
.10
.10
.10
..09
.07
.04
.07
.07
.06
.06
.03
.03

O.BS-
'.34
.40
.27
.18
.09
.31
.26
.21
.13
.10
.03
.20
.17
.14
.10
.07
.03

0.32
.24
.20
.17
.14
.08
.12
.11
.11
.09
.08
.04
.08
.08
.07
.06
.03
.03

0.94
.60
.44
JO
.20
.10
.43
J6
.27
.17
.11
.06
.29
.23
.18
.11
.07
.04

0.36
.26
.22
'.19
.13
.09
.17
.16
.14
.11
.08
.03
.11
.10
.09
.07
.03
.04
  1 percentage  of lurfoce covered  by re»ld«e In  contact wllh the
toll.
  2f«cef(W  toll condition—Highly noble  toil  oggregalei  In lop.
tetl wllh fin*  lr» reelt and lltur mU«d In.
   Cooi/—Moderately  ilobU  toil  aggregate* In  loptoii or hip My
liable oggregolei In ivbioll (lapioil removed during raking), only
Iracei of Illler mlsed In.
   fair— Highly unitoble iatl  aggregoUi In lopioll or moderately
llobl« aggrigalei In tubioll, no lltler mlied In.
   fear—No laptell. Klghly credible toll  aggregatei In lubtoll. no
Illler mixed la.
  3 NC—No live v«B«lalIon.
   WC—73 pirctnl *ov»r of gran and w»»d» having an  avorago..
             drop  roll height of  20 In.  For !nt«rm«dlat<  p«rc«*t>
             og«« of cover, Inlarpolot* b*t««*n  columns
  4 Modify lh* tilled C value* o» followi  to account  lor offoch »*
itirloc* rovghneti and aging i
   Flrit yeor after Ireolmenli  multiply titled C valwei by  0.40 for
     rough turfose (depreuloni >6 In);  by Q.&5 for ModeraUry
     rough;  end by 0.90 for tmooth (depreiilont <2 In).
   For 1  to  4  yeort after Irealmenli nulllply titled lotion by OJ.
   For •*+ to 8 yearn vie table 6.
  •More than I yearn uie loble 7.
    For firil 3  yearn Me C voluei at lUted.
    For 3+ lo I yeon ofttr trealmenti «•• table  6.
    More than  8 yean aher Irealmenli tite loble 7.
            Source:   Water  Quality Assessment:   A  Screening  Procedure for  Toxic  and
            Conventional  Pollutants  in  Surface  and Ground Water—Part 1  (Revised-1985).
            US EPA.  EPA/600/6-85/002a.  September 1985

-------
                                                                              37
                                  TABLE  111-12
         REPRESENTATIVE DISSOLVED NUTRIENT  CONCENTRATIONS IN RURAL RUNOFF
Soil Cover
Fallow*
Corn3
Small Grains3
Hay8
Pasture3
Inactive Agriculture^
Eastern U.S.
Midwest
West
Forestc
Eastern U.S.
Hid west
West
Nitrogen
(mg/1)
2.6
2.9
1.8
2.8
3.0

1.6
1.5
1.5

0.19
0.06
0.07
Phosphorus
(mg/1)
0.10
0.26
0.30
0.15
0.27

0.14
0.14
0.14

0.006
0.009
0.012
                      JSnpwmelt Runoff from Manured Fieldsd
Fallow
Corn
Small Grains
Hay
12.2
12.2
25.0
36.0
1.9
1.9
5.0
8.7
            8Dornbush et jBl^ (1974)
            bAverage of pasture and forest
            cDroernik (1977).  See Figures 111-4,5
            dGilbertson jit £l_ (1979).  These concentrations are asso-
             ciated with winter manure spreading.
Source:   Water Quality Assessment:   A Screening  Procedure for Toxic and
Conventional  Pollutants  in Surface'and Ground Water—Part 1  (Revised-1985).
US EPA.  EPA/600/6-85/002a. September 1985

-------
                                                                            38
     Table 1. Major Soils of  the 3058 ha Mill Creek Watershed
     Soil
Area (ha)
                                                             Percent of Total
Loam
Loamy Sand
Muck
Sandy Loam
Alluvial Land
fine Sandy Loan
Fine Sand
(Lakes)
. 2,242
489
153
99
30
6
4
35
73.3
16.0
5.0
3.2
1.0
0.2
0.1
1.1
Source:  Seminar on Water Quality Management Trade-Offs:  Point Source vs. Diffuse
8pure• Pollution CCenlerenoe) September 16-17, I960, Chicago, Illinois.  US KfA.
EPA-905/9-80-009.  September 1980.

-------
                                                                                                                   39
  Table 3. Stream Enporc  of Material* by the 30)6 ha Hill  Creek Watershed Above H-37



Nitrate-M
Nitrite-N
Ammoai*-N
Total KJcldahl K
Molybcatc Inactive r
Total F
Chloride
Calcium
Sodium
5u*p*nded Sol id>


Weighted
mean (•*/!>
1.765
0.023
0.078
0.782
0.076
0.153
11.778
49.676
3.462
11.590
1973-76

local load
(kg/yr)
30373 * 3546
188 * 283
912
9116
882
1782
137303
579095
63901
1JS114
1023
2293
29B
1018
23309
111673
8939
1374*5

Unit aree
load (kf/
ha/yr)
6.729
0.094
0.296
2.981
0.288
0.583
44.900
169.371
20.696
44.164


Uaightad
Man (mg/1)
3.636
0.010
0.020
1.117
0.181
0.313
19.608
31.314
3.964
47.965
1976-77

Total le«4

11766 3496
31.24
62.95
3602
562
1006
63663
165439
19293
134709
3.3*
27.72
1090
250
331
8334
56926
' 3644
146989

Unit area
load (kg/
ha/yr)
3.854
0.010
0.021
1.176
0.190
0.330
20.884
54.100
6.309
30.392
  Table 4. Streuo Export  of Material*  by  tba 889 ha Horth Branch Subwater*hed of Kill Creek
                                               1973-76
                                                                                          1976-77
Weighted
mean (mg/1)
MlcraCa-H
Mtrite-S
amwjui \ e K
Total Kjeldahl 8
Holybdace tractive r
TouO. P
Chloride
Calcium
Sodium
Su*fwui*d Solid*
1.
0.
0.
0.
0.
0.
13.
S3.
191
038
073
696
073
171
585
690
6.687
21.490
Total load
(kg/yr)
3529 t
113 t
215 *
2063
217
506
4024C
159076
19811 *
63655 *
1433
137
229
938
99
335
13602
42395
5105
23995
Unit area
load (kg/
ha/yr)
3.970
0.127
0.242
2.321
0.244
0.569
45.271
176.940
22.285
71.614
Weighted
Man (mg/1)
0.
0.
0.
0.
0.
0.
30.



685
010
010
465
050
054
527
a
a
a
Total load
(kg/yr)
566
6.38
6.61
229
32.1
34.5
19602



i
t
t
t
I
»
*
a
a
a
66
.11
.34
52
12.5
14.1
1169



Unit area
load (kg/
ha/yr)
0.639
0.007
0.007
0.336
0.036
0.039
22.049
a
a
a
   a laeofficient data
Table 5. Stream Export of Material* by the 1146 ha Mill Creek Watershed Above the Confluence vith North Branch
1975-76



Mitrate-H
Nitrite-*
Aamonia-M
Total Kjeldahl H
Molybdatc reactive T
Total T
Chloride
Calcium
Sodium
Suananded aolida

Weighted
mean (mg/1)
1.511
0.013
0.100
0.798
0.063
0.139
9.875
42.438
3.781
16.388

Total

load
(kg/yr)
5200 t 2836
44.2 S 40.5
344
2745
216
478
33986
146055
416
731
' 103
238
4377
25920
13012 1 1605
56399 i 35775
Unit area
load (kg/
ha/yr)
4.358 .
0.039
0.300
2.393
0.188
0.417
29.656
127.448
11.354
49.214

Weighted
mean («g/l
5.607
0.009
0.013
1.175
0.156
0.248
19.265
44.060
3.607
33.603
1976-77

Total load
(kg/yr)
4061 t 2316
6.76 t 1.74
9.26 i 12.10,
851 t 301
113 S. 43
179 t 109
13954 $ 2969
31913 i 15662
. 2757 t 1256
22464 * 73338

Unit area
load (kg/
ha/yr)
3.544
0.006
0.008
0.743
0.099
0.156
12.176
27.647
2.406
21.365

-------
                                                                                                         40
          Table 3.  Total and available phoiphoru*
                  conaarvation tillage practice*
                                             loaaa (metric  com)  to L*»«  Crt« bafore and after adoption of
Point f
Upper 	
Lafcea* k .

Before 1060 2*55 617
After 10*0 2453 617


Itfere 473 184 1 272
After 475 1841 272

Rural Diffuse
Atiwapherlc* "articulate" Soluble I
20* *OI
Total r
1119 6610 6610 1530
1119 2*96 2496 1530
Objective
Ava Habit f
560 1132 2264 1530
360 499 996 1530
Objective
Urban*
>lffuae

1570
1570
• 11.000

691
691
- T
Total Load
202 40Z
•
1551« 13S1I
11*04 (26. 5Z)d 11404 (26.SZ>*


«S01 7633
MM (9.7Z)d *3»J (16.M)d

          *  *ji»OBptlon:  >OZ ot the  tocml load !• partlculac* and  301 of the partlculalc load  la available; 1001 of the

                         •olubl* load 1* aaaumcd tp be availabl*.
b  A**uBp«lon:  dir«et dlaeharfc of
                                                effluent to the lak* 1* 75X av.llabl*
                                                                                         «t  •!. 1980).
          e  Aa*iMptton;  nhort c«n availablllcy of rural dlffu«« ••dlacnc P la 20Z and long Can availability ia

                         *OI Uojan^aJ.. W79).


          d  Percent reduction with conservation ttlla|«.

          a  Ata»*ph«rlc P courcea are aaaiMMd co b* SOZ available.


          f  Xeaidual paint aourca* after reduction to 1 •*!•/!.
Source:   Seminar  on Water Quality Management  Trade-Offs:   Point Source  vs.  Diffuse

                       « 16-17.  1»80,  Chio..«,  lilinei.,   US
                          September  1980.

-------
                                                                                        41
              Table 1—Phosphorus loadings lo Chesapeake Bay by major basin (March-October)

                                      H Point        H Cropland        « Other
                                      source           toad         aounetoad
              Phoaahonw ikdl            contribution      contribution     source eontrto.
•avin Dry Avg. W»t Dry Avg. Wet Dry Avg. »
tart A: at the tall line
Susquehanns 941.000 1.318.000 2.664.000
Pwuiera 156.000 149.000 174,000
Potomac 326,000 386.000 1,077.000
Rappahanneck 49.000 47.000 130.000
tork 30.000 35.000 151.000
James
TOTAL
tart •: te IMai w
VtCheMpeake
PltuMM
Potomac
Rappahanneck
Vbrk
James
Eastern Shore
TOTAL
Pert C: tart A +
Suaquenanna
Paluxem
Potomac
Rappahannock
Ibrk
James '
Vt Chesapeake
Eastern Shore
TOTA1.
299,000 349.000 690.000
1.601. 000 2JM.OOO 6.066.00O
•ton (betow the toll line)
966,000 1.067.000 1.394.000
69.000 66.000 130,000
882.000 915,000 1.263.000
54.000 79,000 221.000
39,000 65,000 208,000
1.325.000 1,374.000 1.670.000
345.000 379.000 962,000
3.692.000 3.967.000 5.738.000
tana
941.000 1.316.000 2.664.000
215.000 217.000 304.000
1.208.000 1.303.000 2.304.000
103,000 126.000 350.000
69,000 100.000 359.000
1.624.000 1,723.000 2.259.000
968.000 1.087.000 1,384.000
345.000 379.000 962.000
5.493.000 6.253.00010.786.000
24
92
27
1
7
46
33

93
79
82
69
64
96
44
87

24
88
67.
47
50
66
93
44
69
23
90
15
1
7
36
26

65
69
79
61
50
93
4O
81

23
83
59
39
35
81
65
40
61
12
76
7
1
2
21
14

67
36
57
22
16
81
16
56

12
56
34
14
10
63
67
16
36
60
7
52
56
74
46
S3

8
19
10
27
27
3
SO
12

60
10
23
39
44
12
6
SO
27
M Dry Avg. W
77
19
72
75
86
63
72

25
61
31
69
66
14
79
36

77
33
50
71
76
29
25
79
S3
16
3
33
41
19
16
_____


7
12
11
12
10
4
10
7~

17
7
18
22
6
7
7
10
12 *"
let Dry A»g. Vtt
11
5
21
24
12
16
^••0 ^BM
14

6
13
12
9
8
.5
S
«.~

11
9
16
IS
14
6
8
5
11~
76
6
73
99
93
55
P^^— *
67

7
21
16
11
16
4
' 66
13

76
12
33
53
SO
14
7
56
31
7* .
10
6S
91
91
6*
^m^^^^m
n

IS
31
it
•
so
7
99
i»~

77
17
41
61
6$
11
IS
63
5"
•
M
a
•
•
n
"5

a
H
4}
n •
M '
II
J1-.
44 '

• .
41 •
81 ;
_;
9)
»••
a*
—5
»*
             Tabl* 2.—Nitrogen loadings lo Chesapeake Bay by major basin (March-October)

Nitrogen (kg)
H Point
source
contribution
H Cropland
toad
contribution
H Other
sounse toad
source eontrib.
** °V *»»• W"» Dry AvB- Wet Dry Avo. Wet Dry Avo Kfct t
faemhinna
hUM
tana:.
BjtpiNannock
*A
**•
IwUL
21.500.00026,500.00048.000.000
580.000 536,000 809.000
6,270.000 7.500.00017.800.000
695.000 727.000 1.660,000
380.000 370,000 1.264.000
1,760.000 2.300.000 5,030.000
31,185.00037.933.00074,559.000
P-t •: to Mai waters (below the Ml Una)
*Ow»PMk» 6.179.000 7,265.00010.036.000
WA •
lM*n Shore
mu
PMCiPartA •» tan
**art
feBpahennock
*rt
WOwupsaks
Com Shore
TBttl

438.000 596.000 1.276.000
6,094.000 9J99.00011J94.000
279,000 611.000 2.047.OOO
315.000 666.000 2.255.000
6.272.000 7.013.000 6.913.000
3.269,000 3.973.000 9.500.000
24.647.00029J6S.00045.42S.OOO
B
?i .500.000 26 4SA nm4T TJT ATM
1.015.000 t.133.000 2.068.000
14.367.000 15.944,00029.167.000
975.000 1.339.000 3.734.000
630.000 1.066.000 3.492.00O
6.032.000 9J20.00013.945.000
6.179.000 7jZe5.OOOlO.038.000
3.269.000 3.973.000 9.500.000
55.967.00066.497.0001 19.691 ,000
10
71
10
10
10
10
11
65
46
77
37
34
88
13
72
10
61
48
-17
22
71
as
13
38
10
65
10
10
10
9
11
72
35
74
17
15
79
10
62
10
49
44
13
13
62
72
10
33
5
41
10
10
10
8
7
52
16
55
S
S
62
4
39
5
26
28
7
7
43
52
4
19
65
29
83
72
76
73
83
20
55
17
73
76
IS
63
M
85
43
46
72
77
29
20
83
60
91
S3
64
78
62
78
88
40
75
37
69
90
32
92
64
91
66
66
64
87
49
40
92
75
S
6
7
18
12
18
6
— 6
10
9
to
9
6
7
6
S
8
8
15
10
9
8
7
7
4
6
6
12
•8
14
5
•8
9
a
6
S
6
4
— __
4
8
.6
9
.6
6
8
•4
6
T Total
IM)MPIfMMs"H
contribution
90
29
90
90
90
90
89
15
52
23
63
66
12
87
•Ml^^
28
90
39
52
63
78
29
15
87
62
90
35
'90
90
90
91
88

65
26
63
65
21
90
^^^^H ^B
38
90
SI .
55
67
87
36
28
90
67
95
59
90
90
90
92
9.1
4£
64
.49
95
95
3
96
61
95
74
72
93
93
57
49
96
81
Source:   Macknis, Joseph.   "Chesapeake Bay  Nonpoint Source  Pollution."
Perspectives on  Nonpoint Source  Pollution:   Estuarine Quality
                                               pp!65-171

-------
                                                                                                                    42
s
u
!




§




6
                                                                          S«   •>
                                                                          0   «
      4

      S


    .4

i      i


        s
                         S^   •   <*   »   r*   a    r*
                         ^   •   o   ft   *>   *    •*
                         •»•>»•    r-   e   p-
                         «   •   o   <^    *<   *   *«
                                                 SP4   «k
                                   _             n   e
                                   i   i   i
                           §
                                    1   i
                                             i   I
               I
i    I   i   i
                                                                           £^   tn   ^   *i   *   «
                                                                           w   w   »*   «   r»   M
                                                                                    £m   •*   r*   *»   P<
                                                                                    O   •>   *t   P»   O

                                                                                           •
                                                                            fc   I*    t?   I*   t»   t«   H
                                                                            I   I    i   I   i   i   I
                                                                            1   I    i   i   i   i  1
                                                                                                                         CO
                                                                                                                          M
                                                                                                                          
                                                                                                                          o
                                                                                                                          n.
                                                                                                                          01
                                                                                                                          as,
                                                                                                                          f

                                                                                                                           01
                                                                                                                          •o
                                                                                                                          e

                                                                                                                          03
                                                                                                                          10
                                                                                                                          CQ



                                                                                                                          I
                                                                                                                          u
                                                                                                                           3

                                                                                                                           O

-------

-------
WK     6

-------