CBP/TRS 48/90
September 1990
TRS" "
48/90
Nonpoint Source Pollution
Loading Factors and
Related Parameters
from the Literature
Chesapeake
^^ Ba^
Program
-------
-------
Cto
NONPOINT SOURCE
POLLUTION LOADING FACTORS
AND
RELATED PARAMETERS
FROM THE LITERATURE
Compiled by: Linda L. Blalock
Printed by the U.S. Environmental Protection Agency for the Chesapeake Bay Program
HEADQUARTERS LIBRARY
ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, O.C. 20460
-------
-------
Using a modified version of TR-20 (SCS computer program),
McTernan et al. (1987) conducted a study to evaluate the
effectiveness of various BMPs upon the production of nonpoint
source pollutants from small agricultural watersheds in northern
Virginia. The SCS CN equation and the USLE are incorporated in TR-
20. Observed data collected from five basins are compared to data
simulated by the model.
TABLE 3. Calculated Algebraic Yield Comparisons Between
Simulations and Observed Data Base for Delivered Sediment.
Stem*
Evaluated**
AD
Small Events
Luge Events
Mean Yield Calculated Emu*
(pounds) (pounds)
558
1.39
1115
15.9
0.84
32.7
Percent of Mean
2.85
61
2.9
•Error - I/N
(M-S)
N « Number of Samples.
M - Measured Sediment Yield.
S * Simulated Sediment Yield.
"Six Total Storms
3 small events (x <03 inch)
3 large events (x >2-5 inches)
TABLE 4. Model Parameters Used to Simulate Discharge and
Delivered Sediment for Select Management Practices.
Name of Parameter
Practice
CN
LS
No-TOI 81 0.003
Minimum-Till 83 0.024
Conventional Till 85 0.338
Well-Managed Pasture 74 0.004
Overgrazed Pasture 88 0.01
Forest 73 0.0001
No-Till Contour 75 0.003
Mln.-Till Contour 78 0.024
Conv.-Tili Contour 82 0.338
No-Till Terrace 73 0.003
73 0.003
Min.-TiiI Terrace 76 0.024
76 0.024
Conv.-TUl Terrace 78 0.338
78 0.338
CN • SCS Curve Number.
C • USLE Cover Factor.
LS B USLE Length-Slope Factor.
P * USLE Practice Factor.
K • Soil Erosion Factor.
1.3
13
1.3
13
13
13
13
13
1-3 .
1.8
035
1.8
0.35
1.8
035
1.0
1.0
1.0
1.0
1.0
1.0
0.50
0.50
030
0.50
030
030
030
030
030
•i
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
Source: McTernan,W.F., B.L. Weand, and T.J. Grizzard. 1987.
Evaluation of management practices to control
agricultural pollutants. Hater Res. Bull. 23(4):691-700,
-------
TABLE 5. Simulation Results for Three Tillage Alternatives Without Additional Practices.
Rain
Depth
Practice (inches)
No Tfll . 0.50
3.25
530
730
Minimum Till 0.50
3.25
530
730
Conventional Till 030
3.2S
530
» 730
Tine to Peak
(hours)
2.0
8.9
2.4
9.9
2.0
8.9
2.4
9.9
2.0
8.9
2.4
9.9
Time to Base
' (hours)
2.2
13.6
6.2
24.2
2.2
13.2
6.2
24.2
2.2
13.2
6.2
24.2
Peak Flow
(eft)
0.03
5.6
69
70
038
103
73
73
1.5
11.1
77
76
Runoff
Volume
(acre feet)
0.0005
2.00
7.30
11.2
0.008
335
7.7
11.7
0.02
3.9
8.2
12.2
Total Sediment
Load
(Ibs)
0.023
1.318
15.385
16,660
15.2
23.960
134^80
142,084
913
381,085
2,058,210
2,125.620
Peak Sediment
Discharge
(Ibs/Jw)
0.11
384
19325
19380
90
8,170
171.050
166,655
5375
126350
2,622,800
2,484^00
TABLE 6. Simulatiqn Results foi Three Alternative Tillage Methods, Practice • Contour Plowing.
Rain
Depth
Practice (inches)
No Till 030
3.25
530
730
Minimum Tfll 030
3.25
530
730
Conventional Till 030
3.25
530
730
Time to Peak
{noun)
N/A
8.9
2.4
9.9
N/A
8.9
2.4
9.9
2.0
8.9
2.4
9.9
Time to Base
(hours)
N/A
13.2
6.2
24.2
N/A
13.2
63
24.2
2.2
13.2
6.2
24.2
Peak Flow
(cfs)
0
7.8
57
61
0
8.8
63
66
0.24
10.2
71.3
71.7
Runoff
Volume
(acre feet)
0
2.4
6.1
9.8
0
2.8
6.7
103
0.003
3.4
73
11.4
Total Sediment
Load
Obs)
0
878
5,762
6.713
0
8,664
53320
60,082
26
158,489
905,974
969383
Peak Sediment
Discharge
Qbs/hi)
0
324
7.170
7,889
0
3^22
67.404
70,716
155
54.730
1.151,855
1,138315
Source: ' McTernan,W.F. et al. 1987. Evaluation of management
practices to control agricultural pollutants. Water Res.
Bull. 23(4):691-700.
-------
TABLE 7. Simulation Result! tot Three Alternative Tillage Methods, Practice * Terracing.
Rain
Depth
Practice (incite*)
NoTflJ 0.50
3.25
5.50
7.50
Minimum Xfll 0.50
0.25
5.50
7.50
Conventional Tfll 0.5
3.25
5.50
7.50
Time to Peak Time lo Bate
(hotto) (houa)
N/A .
9.0
X5
10.0
N/A
9.0
2.5
10.0
N/A
9.0
2J
10.0
N/A
17.4
8.8
26.4
N/A
17.2
8.6
26.2
N/A
17.2
8.6
26.2
Peak Plow
(eft)
0
5.5
36
43
0
6.3
41
48
0
6.9
45
51
Runoff
Volume
(acre feet)
0
2.2
5.7
9.4
0
2.5
6.2
10.1
0
2.8
6.6
10.6
Total Sediment
Load
Obi)
0
850
5,824
7,230
0
8.577
54.185
65.150
0
135,415
821,816
971,420
Peak Sediment
Discharge
(Ibs/hr)
0
213
3,155
3,880
0
2,115
30,480
35,875
0
34,040
482,595
551,820
TABLES. Sediment Yield Comparisons for
Simulated and Collected Data Batea,
Sediment Yield
Pnctkx/Cover
Simulated Data Collected Data Percent
Ob/ac/yi) (Ib/ac/yr) Change
OVGIgltfOd FvStUTG
Well Managed Putuxt
No-IHlCorn
Mtfiiniuiii-ffiM Coin
Fotcst
330
0
0.06
39
0
106
5
15
19
119
211
—
-99.6
105
—
Source: McTernanfW.F. et al. 1987. Evaluation of management
practices to control agricultural pollutants. Water Res.
Bull. 23(4):691-700.
-------
Two watersheds in Ohio - Treynor and Coshocton - were selected
to model sediment yield for a single-storm event. Both watersheds
were planted in corn on the contour. Sediment yield or deposition
was calculated by comparing total soil detachment and the transport
capacity (basic equation was USLE). Runoff volumes and peak rates
were predicted using USDAHL-73 (Hoiton & Lopez, 1973). C factors
of 0.50 for Treynor and 0.29 for Coshocton were held constant
through the run.
TABLE 1. EROSION-DEPOSITION CHARACTERISTICS
FOR STORMS SIMULATED ON TREYNOR W2 AND
COSHOCTON W113.
Dat*
Riintml!
amount,
in.
Sediment
'
Predicted
erosion
Me**. Pied. Intertill
ftt-
dieted
- depoii-
Rill »«°n
luns per «c re
Ticynof
6-25-65
6-28-65
6-28-65
6-29-66
7-1-65
7-1-G5
Cothocton
6-6-71
6-13-72
6-15-72
7-10-72
11-7-72
0.53
0.62
1.20
2.42
0.6 6
0.25
1.71
1.60
0.70
0.60
1.35
8.8
8.5
31.8
2G.4
1.6
0.5
10.4
17.9
8.7
2.8
6.9
0.51 0.98 0.47
1.84 1.49 0.37
6.36 5.74 1.36
3.65 8.21 1.01
O.&8 O.33 0.07
0.15 0.05 O.O3
0.60 0.00
1.26 0.14
4.90 0.53
7.9 S 0.7«
O.30 O.O3
0.02 0.004
1.73 4.31 0.25 4.06 0
2.13 9.46 0.35 9.10 0
4.40 4.81 0.17 4.64 0
0.68 0.73 0.64 0.09 0
0.38 3.68 0.21 3.47 0
Source: Onstad,C.A. and G.R. Foster. 1975. Erosion modeling on
a watershed. Trans. ASAE. 288-292.
-------
•J
During 1985-86, a rainfall simulator was used to evaluate the
effectiveness of BMPs on water quality on eight (8) demonstration
plots in Virginia. Seven of the eight sites were located in the
Chowan River Basin. Plot descriptions and results are tabulated
below.
Source:
I'lot CharacteriMtci and O
RSOI
RSO:
RS07
it so*
R.tno
RSIO
RSM
RSI 2
RS13
SOUTHAMPTON COUNTY, VIROrNIA • CORN - MAY 15 *. 16, 1985
*
Ko-lill
Conventional
2320
2320
2
2
Goldtbora Tine sandy loam
Goldsbore line candy loam
fiSSKX COUNTY. VIRGINIA - SOYBIIANS - JUNE 19 & 20, 1985
Conventional
1390
1390
Slaglc fine sandy loam
Sl.i«lc fine sandy {turn
CITY or- SU1WOUC. VIROtNIA - SOYBEANS • JULY 26 A 27. 19*5
Conventional
Chiocl plow
No-till
270
270
270
2
2
2
Suffolk loamy sand
Suffolk loamy und
Suffolk loamy sand
RICHMOND COUNTY. VIRGINIA - CORN • AUGUST 6 A 7. 1986
Conventional
No-till
690
690
7
7
Telotum fine sandy loam
Telotum fine sandy loam
SURRY COUNTY. VIRGINIA - SOYBEANS . AUGUST II A 12.1986
and Nutrient Yield (arcnl basis
SOUTIIAM1TON . CORN
XO.TIIX
com1.
CONV.
NO.TII.I.
<:ONV.
CM IS I- 1.
NO-TII |.
RSOI
RS02
RS07
RSM
RS09
RSin
Mil
9.«2
SM.33
914.31
10.36
1335.44
M0.74
. lOIJH
0.11
0.30
0.32
OJH
OJW
0.05
0.13
O.IS
OJI
. I'JSSliX
OJU
0X3
SUPPOI.
OJ)5
OJI3
OJI3
0.40
2.6J
O.S5
J.I7
0.16
I.2S
OJO
0.7]
OJJ
0.10
-SOYBRANS
2.91
0.3*
3J»
0.61
0.67
OJ15 . .
1.07
OJ6
am
OJO\
K . SOYHRANS
2J6
IJI
MS
RICHMOND.
CO.NV.
•NH--III.I.
RSI 2
RSI 3
236.95
41.9*
0.32
lUlfi
O.OJ
0.23
l^J
0.4*
2^2
IJ4
I.4H
CORN
I.6S
0.70
1.29
0.79
0.2*
0.43 04)1
11.0* OJ32
0^4
0.45
OJ3
OJJ
0.15
QJ06
QM
DM
OJ2
OJ»2
SURRY - SOYnriANS
Ross, B.B., M.L. Wolfe, V.O. shanholtz, M.D. Sraolen, and
D.N. Contractor. 1982. Model for simulating runoff and
erosion in ungaged watersheds. Virginia Water Resources
Research Center Bulletin, VPI, Blacksburg, VA. 130:72 p.
-------
CREAMS was applied on a typical field in the Southern Coastal
Plain land resource area of Georgia. The model was run for seven
management systems for a 20-year period. Major crops grown on the
Tifton loamy sand are corn, soybeans, and peanuts; but cotton,
tobacco, small grain, and horticultural crops are also grown. A
three-year rotation of corn-soybeans-peanuts is a common cropping
system.
TABLE l.'-Manage*>tnt System «n TKton Loaey Sand for CREAMS
Application
Management
5|>ste
Description
Convention*! tillage: fill •oldaoard IK ta
dc*p; spring disk 100 an deep; two
sweep cultivations 50 en deep; tlllagt
across concentrated-flow area; straight
rows.
Conventional tillage: SUM as srsttB I tx-
. cept a grass waterway Is Maintained In
• the concentrated-flow aroa.
Contour tillage: tlllagt Is tne SMt as »n
syitt* 1 *Mtpt on tpprextmti contour;
grass «t«rv«y Is Mlntalnatf tn eoncin-
trattd-flM an*.
Contour ttrrtce*: tllltgc Is the sate as
ijrstest 1 except on contour; grass ««-
tcrwajr In concintr«ttd-f ION «rta as a
terrace outlet cnaiwtl.
Contour tlllagt. rtsldut Mnagoent: shrtd
crop residue; chlstl on contour 31S an
tfttp; Mtntaln grass mterxty In con-
cuitmed-flow area. (Spring toldboard
prior to peanuts).
Contour ttrracts; contour tillage, residue
•anagenenti sane as sjrsten S except
field Is terraced.
Conventional tillage, winter cottr: till*
TABLE 3.—Smmry of CREAKS Erosion Siwlttion. Avenge Annual Values.
1HS.74, Southern Coastal rlaln Field tn Georgia
NanegcMnt
SvltCB
1
2
3
4
S
6
7
Runoff
!ri
70.4
SS.4
rs.j
».o
17.S
33. S
Stdlrat
field
U/haJ
6.94
0.91
0.40
O.M
0.20
0.04
0.2S
enrichment
Ratio*
2.06
«.ea
8.CS
13.7*
9.13
14.4S
7.90
Product
(ST-ENf*
(l/KaJ
14.44
• C.13
3.4C
1.Z4
1.B3
o.sa
1.97
Rank6
1
Z
»
t
S
7
4
— . ..... .. ..... .. »«i«ii pirtisi* surface ana to
original toll particle surface area.
•Product of MdlMnt yield* (ST) and tnrtch**nt ratio (EX).
f
c
-------
TABLE 4.—CREWS Erosion Simulation By Element For Single Storm of
March 6, 1959
Management
System
1
2
3
. 4
5
6
7
Runoff
(m;
37.6
37.6
33.5
24.9
25.4
19.3
21.3
Overland
1.14
1.14
0.54
1.12
0.34
0.40
0.13
Sediment Yield
Overland-
Overland- Channel -
Channel' Channel6
(t/haj
7.46
1.14
0.54
0.09 0.09
0.34
0.02 0.02
0.13
Field
7.46
1.14
0.54
0.09
0.34
0.02
0.13
*
Enrichment
Ratio
Field0
2.26
5.75
6.00
9.72
5.65
10.12
5.44
^Overland-channel represents the overland flow and waterway flow
sequence (systems 1, 2, 3, 5, and 7).
^Overland-channel-channel represents Interterrace overland flow,
terrace channel flow, and grassed waterway flow sequence (systems 4 and
Enrichment ratio Is ratio of sediment particle surface area to
original soil particle surface area. • •
TABLE 5,—Sunaary of CREAMS Plant Nutrient Simulation, Average Annual
Losses. 1955-74. Southern Coastal Plain In Georgia
Runoff
Management
System Nitrogen
Sediment
Phosphorus nitrogen
Nitrate-N
Phosphorus leached
1
2
3
4
5
6
7
1.15
1.15
0.84
0.40
0.39
0.21
0.49
0.17
0.17
0.13
0.07
0.07
0.04
0.08
— (kg/ha) —
34.67
6.26
3.02
0.72
1.51
0.32
1.75
12.83
2.25
1.07
0.25
0.53
0.11
0.62
33.72
33.72
34.82
36.46
37.16
37.69
20.18
Source: DelVecchio,J.R. and W.6. Knisel. 1982. Application of a
field-scale nonpoint pollution model. Water and Soil
Management 11:227-236.
-------
8
The table below compares loadings from urban and rural
Wisconsin watersheds. The values represent 2- to 4-ryear averages
determined by monitoring.
Tablt 2. Coxparlaon of water and pollution yield* Iron Wiicon*ln axp*rlu«nc«l uatardud* - 1980-81 (Source
Uiaconaln OapartMnt of Natural Raiourcai)
tiatorihad typ«
Pollution yield" (fc«/ha-yr>
Hatarahad *r*a latparviouinai* Runoff Sutpandad
(ha) (I) coafflclant* lolldi' Total P Total lud
Urban
Stora aaif*ra
CoaawreUl I 11.7
Coamrei*! XI 18.1
(Ualdancial I U.6
Jl«»ld«r»tUl II 25.3
Kaaldantlal III 13.3
R««ld«dtlal -
101 under construction 522
Suburban
Lou daoalty ruldantlal,
partly c«Mr«d 4974
77
81
57
51
50
47
0.18
0.6*
0.40
0.3)
0.31
0.31
0.10
718
1197
487
272
161
767
217
1.48
1.50
1.12
0.62
0.54
U.75
0.30
1.5)
3.90
0.90
0.28
0.21
0.21
0.12
Agricultural I
11
lit
IV
3>no
1528
Z41S
2144
•Annual ruaeff voluaai rainfall volm*.
vlntar.
Source: Novotny, V. and G. Chesters. 1986. Delivery of sediments
and pollutants from nonpoint sources - a water quality
perspective. Milwaukee River Nonpoint Source Abatement
Research Project. Water Resources Center, University of
Wisconsin-Madison. 34 p.
-------
A site in the lakebed region of northern Ohio was selected to
study the sediment and chemical content of agricultural drainage
water. The soil is poorly drained, fine-textured, and classified
as Toledo silty clay; a Mollie Haplaguept, fine, illitic, nonacid,
raesic. Clay content ranges 47-59% in the upper 150 cm. Crops by
years starting in 1969, in order, were: three years of corn,oats
(with tallage in July), bare soil, two years of alfalfa-timothy
sod, and three years of corn-oats-soybeans combination in each
plot. Fertility levels were as recommended by soil test for typical
farm usage. Tillage practice was conventional with fall moldboard
plowing and spring seedbed preparation, except during 1969-71 when
two of the four replications were managed with no-tillage cultural
practices. Annual surface runoff losses averaged:
2548 kg/ha for sediment
12.1 kg/ha for NO3-N
2.2 kg/ha for P
TA8LE 1. ANNUAL RAINFALL, DRAINAGE FLOW, AND SEDIMENT LOSS BY DRAINAGE TREATMENT.
Shallow Pipe Drains Deep Pipe Drains Surface Drains
Year Crop Precip. Flow -Sediment Flow Sediment Flow Sediment
mm mm kg/ha mm kg/ha ram kg/ha
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
Corn*
Corn*
Corn*
Average
Oats-bare
Bare soil
Average
Alf -grass
Alf-grass
Average
C-S-0*
C-S-0*
C-S-0*
Average
Average (al 1 years)
1061
818
689
856
1152
J&Z
1060
799
842
820
827
1022
_§4£
898
902
166
.122.
178
76
161
iZi
137
153
423
J65.
141
205
i5Z
168
218
206
160
. 57
139
3M
298
320
251
IP!
180
29
354
184
197
2776
419
236
1144
5405
4484
.4945
837
163
500
82
543
_3J<8
324
1529
157
154
88
131
331
1PJL
316-
147
136
172
46
261
149
152
183
2098
1751
773
1541
9054
7365
8210
1085
828
957
221
910
1391
841
2548
Conventional "t I Mage for corn and soybeans.
Source: Schwab G.O., N.R. Fausey, and D.E. Kopcak. 1980.
Sediment and chemical content of agricultural drainage
water. ASAE Paper No. 79-2024. Ohio Agricultural Research
and Development Center, Wooster, OH. 16 p.
-------
10
TABLE 3- CHEMICAL LOSSES BY DRAINAGE SYSTEM AND YEARS.
Losses in kg/ha
Chemical
(analysts of)
N03-N
(water)
Average Annual
Avg. Percentage
Phosphorus
(water and
sediment)
*'
Average Annual
Avg. Percentage
Potassium
(water and
sediment)
Average Annual
Avg. Percentage
Year
1969
70
71
72
73
7*t
75
76
77
78
for Dormant
1969
70
71
72
73
74
75
76
77
78
for Dormant
1969
70
71
72
73
7k
75
76
77
78
for Dormant
Shal low pipe
drains
9.k
k.k
10.it
25.lt
6.3
11.2
Season ltO%
0.8
1.3
O.Jt
1.0
0.3
0.8
Season 57%
9.7
9.7
5.8
13-3
S.k
8-7
Season 1*2%
Deep pipe
drains
20.9
25.lt
17.5
26.8
22.0
lit.)
5.3
6.6
38. J
10.lt
18.7
43%
0.9
0.8
0.3
2. U
2.0
1.2
1.5
O.lt
2.1
0.6
1.2
50%
12.5
7-9
2.2
87.2
57. k
16.6
19.4
1.0
lit. 8
6.0
22.5
38%
Surface drains
19.3
35.3
10.6
18.6
9.5
9.0
0.8
5.1
8.7 •
12.1
29%
1.2
8.3
1.3
2.5 .
2.6
1.2
3.6
0.2
1.2
2.2
35%
2.9
' 17.6
7.6
113.7
92.2
23-0
: 3.9
15.0
-Li '
31.6'
: 39%
Source: Schwab, G.O. et al. 1980. Sediment and chemical content
of agricultural drainage water. ASAE Paper No. 79-2024.
Ohio Agricultural Research and Development Center,
Wooster, OH. 16 p.
-------
11
Using simulated rainfall, Sharpley (1980) evaluated the
effects of varying soil physical and chemical properties, soil
slope, rainfall intensity, and source on the enrichment of soil P
in runoff. ER values for total P have ranged from 1.3 (Rogers,
1941) to 1.5-3.1 (Knoblauch et al.,1942; Neal, 1944; Stoltenberg
and White, 1953). Soils used were Bernow (fine-loamy, siliceous,
thermic Glossic Paleudalfs) , Kirkland (fine, mixed, thermic Udertic
Paleustolls), and Pullman (fine, mixed thermic Typic Ustochrepts)
which represent major soil types in Oklahoma and Texas.
Table 3— Enrichment ratio* for P in rainfall runoff from several
aolU. with 0.25.50. and 100 kg/ha P amendment*.
Enrichment ratio. .1 !• additi»n
-------
12
The New York State Department of Agricultural Engineering
published a bulletin " Determining Sediment Yield from Agricultural
Land11. The bulletin provides a simple procedure for evaluating the
effects of field location upon the amount of sediment delivered to
a stream. A small farm with six fields located southeast of
Skaneateles, NY was used as the example site. The USLE was Used.
Table 2. Factors Used In Determining Soil Erosion on Example Farm, Skaneateles. N.Y.
Field
Ident1f1- Soil
cation Type
US
116
117
118
119
120
Honeoye
Honeoye
Lima
Angola
Angola
Honeoye
Cropping Slop*
History Gradient
Corn/Corn/Oats
Com/Corn/Oats
Hay/Hay/Oat*
. Wteat/Corn/Corn
Wheat/Hay/Kay
Hay/Hay/Corn
3%
5*
3*
3*
5%
11*
Slop*
tengtn
600 ft
300 ft
ZOO ft
325 ft
360 ft
195 ft
Conser-
vation
Practices
None
Contoured
Contoured
Contoured
None
Contoured
R
100
100
100
100
100
100
K
.32
.32
.32
.37
.37
.32
C
.43
.43
.17
.41
.14
.23
LS
.49
.93
.35
.41
1.01
2.20
Soil
Erosion
P T/ae
1.0
0.5
0.6
O.S
1.0
0.6
6.7
6.4
1.0
3.1
5.2
9.7
Table 3. Estimated Sediment Delivered to a Stream from Example Fans
field
Identifi-
cation
US
116
117
118
119
120
Distance to
Stream
ft
200
0
840
540
180
0
SOft
.31
1.0
.23
.25
.32
1.0
Soil
Erosion*
x T/ac
6.7
6.4
1.0
3.1
5.2
9.7
Sediment
Yield
T/ac
2.1
6.4
0.2
0.8
1.7
9.4
Area
x_ ac
8.0
2.8
8.0
8.2
10.0
3.4
TO
Total
Sedlemt
Yield
• T
16.8
17.9
1.6
6.6
17.0
33.0
•J3CT
•See Table 2
Source: Walter, M.F. and R.D. Black. 1982. Determining sediment
yield from agricultural land. 11 p.
-------
13
Smith et al. measured amounts of nitrogen, phosphorus, and
sediment in runoff from grassland watersheds in the Blackland
Prairies (BP), High Plains (HP), Reddish Prairies (RP), and Rolling
Red Plains (RRP), Texas, three- to five-year study periods included
treatments involving fertilization, cultivation, and burning.
Overall nutrient concentrations ranged from 2-10 mg/L for N and
0.3-2 mg/L for P.
Tafcfc i. Chancurisiki «f IN gn
i for various yean 197* through I9M.
Resource
area
BP
(Riesei,
Tex.)
HP
(Bushland.
Te*.)
RP
(El Reno.
Okla.)
RRP
(Wood-
ward. Okk.
Water-
shed
Y-U
W-IO
SW-II
N.G.
S.C.
FR-t
FR-2
FRO
FR-4
FR-5
FR-6
FR-7
FR-8
WW-I
WW-2
WW-3
WW-4
Size
(ha)
rz
•,
7.')
•i
I.I
0.04
0.04
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
4.7
5.5
2.7
2.9
Approx
•slope
i 2
, 2
1
1
1
3
3
3
4
4
3
3
3
7
8
8
*
Total
events
29
19
20
4
4
a>
12
14
13
13
15
15
18
17
21
35
22
27
Major soils
Houston Black clay
(Udic Pellusteru)
Pullman clay loam
(Torrertic Paleusiolls)
Bethany silt loam
(Pachic Pafeustolls}
and
Kirkland silt loam
(Udenic Paleustolls)
Woodward loam
(Typic Uslochrepis)
and
Quintan loam
(Typic Ustochrepti)
Major grasses
Klein (Panicum coloration)
Coastal Bermuda)
(Cynodon daciylon)
Harding winiergreen
(Photorii acquotica)
Blue grama (Bouuloua
gracilis and
BufTalo
(Buehlot dactyloida)
Little blucsiem
(Andropogoa xoparhu)
and
Big bluestem
(Andropogon gtrardii) and
Sideoau grama
(Bouuloua curiipenduta)
Sideoau grama
(Bouuloua curtipendula)
and
Hairy grama
(Bouuloua hirsute)
Land use
Moderate graze
Moderate graze1
Moderate graze
Idle
Idle
' ' Heavy graze (double Mocking)
Moderate graze/ fertilizer1
Moderate graze
Moderate graze/fertilizer/
Spring burn1
". Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze to wheat4
Moderate graze
• Moderate graze1
Moderate graze to wheat*
Moderate graze to wheat*
•J«0.k« N.h* Hirfece broMkui ia 1971.
'tt.kj N. h. luifwe brudcui in 1979. M; 23 k( hOk/hi in IMO.
'J6 tj N. h« >urf«oe l»?o»«ic«Min 1979. Hfc 22 ki ftO>'/hijp i JIM.
•»pHI £um~unWprK~io feriiliziai; 9A £4\itttD'»ppKd~iuMiy. 1980. but not runoff evenu oocurred til following year.
'Planted w wheat since bU I9T8. rcnilized according to soil KM far 40 quinuls/hi yield geaL
»3» kg N fei. 22 ki ItCh, hi in IVSO: May and Sept. defer cnsina.
•named to whet since fell 1970. fenilucd aeconirai to sail teu for 40 ^uinuU/ha yield goal
Source: Smith,S.J., R.G. Menzel, E.D. Rhoades, J.R. Williams, and
H.V. Eck. 1983. Nutrient and sediment discharge from
southern plains grasslands. J. Range Hgmt. 36(4):435-439.
-------
14
X>
in*
HOi-N
TKN
IIP
tp
«P
1*7*40
0.011
|O06))>
O.MJ
(0.120)
1*7740 0415
(0.200)
1*7740
0.624
IU.IXI1
IMM7
1974-10
0.214
ISM)
0.021
(0.1*0)
1*7*40 0.00*
(0.0)2)
1*7*40
UnfcnKbul OrauUrKk
(UOO 1.210 4.2* 0.710 0.67U
10.110} (2.W) (1.74) (OJM)
0.220 0.201 1.46 0.204 0.10V
(oju) (0.470) (i*6i
-------
15
i BDie j— Annual pool
Parameter
Annual load* of'
Total P
Metric tanifyeai
Ammal flow, m* M
Mean annual load:
Total P
Metric Unify*"
ipnonu loaow ira
to Lake Erie. T
m ue auaoaJC7 niver
1 •' Calendar year
1
•>P
e"
of: .
a*P
1969
407
34.6
329
1974
i 606
45.3
• 279
* 31
1976
446
* 24
29.0
317
* 18
1976
333
* 16
21.8
298
* 33
1977
684
*U3
37.6
312
* 13
TD«U provided by the River Studies Ubontoty. Heidelberg College.
Tiffin. Ohio. || >.
1 C«lciil«tert uilag the flow
-------
16
located at the Southern Piedmont
center near Wakinnsville, GA were used to
evaluate cropping-tillage effects on erosion probabilities in
Haoluou?t^ed^ntVS°ilS -Tre Pred°»i™tely Cecil sandy loam (Typlc
beloS? Ur tllla*e ^sterns and results are described
TABLE i. CROPPIHG-TILLACE SYSTEMS OH THREE RESEARCH WATERSHEDS IN THE SOUTHERN PIEDMONT
System
Watershed Number Period In Effect
Summer Crop
Winter Crop
TllUge
Inpteaent
PI
P.3
P4
1
2
3
4
S
6
7
8-
9
10
11
12
10-1-72
10-22-74
11-5-76
11-8-60
12-4-72
11-6-75
11-6-78
11-8-79
11-2-73
11-6-75
11-6-76
11-8-79
to
to
to
to
to
to
to
to
to
to
to
to
10-21-74
10-1-76
11-7-80
10-13-82
ll-S-75
11-5-78
11-7-79
11-9-82
11-5-75
11-5-76
11-7-79
11-10-62
Soybeans
Grain Sorghum
Soybeans
Grain Sorghum
Soybeans
Grain Sorghum
None
Soybeans
Corn
Soybeans
Hone-
Soybeans
None
Barley
Wheat
Clover
Rye. Barley
Barley. Wheat
Wheat, Rye Grass
Wheat
Rye
Barley. Wheat
Wheat. Rye Grass
Wheat
Conventional
Conservation
Conservation
Conservation
Conventional
Conservation
Hone
Conservation
Conventional
Conservation
None
Conventional
Disk Harrow
Fluted Coulter
•Coulter Inrow Chisel
Coulter Inrow Chisel
Disk Harrow
Fluted Coulter
Hone
Coulter Inrow Chisel
Disk Harrow
Fluted Coulter
Hone
Disk Harrow
Terraces reconstructed during summer.
Source: Mills, W.C., A.W. Thomas,
and G.W. Langdale. 1985,
Erosion probabilities in Southern Piedmont:
tillage effects. ASAE Paper No. 842546. 24 p.
cropping-
-------
TA8I.E 3. MAXIMUM, MINIMUM AVERAGE, AND NUHBER OF SCS CURVE NUMBERS OOTAtNEO FOR THREE RE-
SEARCH WATERSHEDS UNDER DIFFERENT CROPPING-TULAGE SYSTEMS IN THE SOUTHERN PIEDMONT
: • Watershed
PI
f
P3
Cropptng-TIIUge System
M«x.,
M1n.
Avg.
NO.
1.
98.03
55.96
85.57
36
2
90.26
55.25
76.11
19
3 I
86.71
51.39
68.69
10 I
A
54.43
40.92
47.68
2
Cropping-TIIUge System
5
94.95
63.41
80.93
38
6
87.32
46.63
69.07
12
7 8
68.08 86.01
67.59 44.03
8o7l9 63.05
7 10
P4
Cropplng-TI 11 age System
9
91.91
52.25
80.00
23
10
85.78
45.32
66.93
12
11
86.46
64.03
80.03
5
12
89.44
44.03
72.75
14
TABLE 5. MAXIMUM. MINIMUM, AVERAGE, AND NUMBER OF USLE C • P FACTORS OBTAINED FROM THREE RESEARCH
WATERSHEDS UNDER DIFFERENT CROPPING-TILLAGE SYSTEMS IN THE SOUTHERN PIEDMONT
'. !!
Watershed
PI P3 P4
Cropplng-TI11»ge System Cropplng-Tlllige System Cropping.Tllltge System
17
8 9 10 11 12
H*x. ]..5888 0.0195 0.0090 j,0.0021 0.8312 0.0398 0.0113 0.0722 0.2401 0.0567 0.0115 0.1159
Mill. 0.0162 0.0003 0.0001 [0.0015 0.0109 0.0036 0.0000 0.0000 0.0000 0.0049 0.0041 0.0000
Avg. 0.2555 0.0048 0.0030 0.0018 0.1498 0.0129 0.0050 0.0316 0.0659 0.0270 0.0081 0.0497
No. 36 19 10 2 38 12 7 10 23 12 5 14
Source: Mills, w.C. ;et al. 1985. Erosion probabilities in
Southern Piedmont: cropping-tillage effects. ASAE Paper
No. 842546. 24 p.
-------
18
Rudra et al. applied CREAMS to a loam soil research plot in
southern Ontario.
TABLE 10. BEST-FIT PHOSPHORUS PARAMETERS
FOR EACH PLOT
not
Plot
management
Soluble-P
parameter*
ParUcuUte-P
parameter*
1
2
3
4
ft
NS. NM. NP
NS. M, NP
S. M. NP
NS, M. P
5. M.P
SOLP
kf/b«
1.5
6.0
0.6
1.6
0.5
EXKP
0.016
0.008
0.080
0.008
0.030
A B
1.1 -0.003
1.0 -0.002
30.0 -0.9
2.9 -0.20
0.7 0.0
NS — No Stover (Stover removed)
S — Slovcr (Stover let t>
NM — No Minus* applied
M — Manure applied
NP — No fall plouchinc
P — nouched in tall
TABLE 12. COMPARISON OF OBSERVED AND COMPUTED SOLUBLE PHOSPHORUS
IN RUNOFF FOR MAJOR EVENTS FOR THE CALIBRATION AKD
VERIFICATION PHASES
Soluble pbocpboruf, kc/ha
Event
Hot 3
Hot 5
•note
Com-
puted
Ob- Com-
•ermd puud
Ob-
Com-
puted
Ob- Com-
•ervmi putcd
Ob-
June 131971 O.125 0.164 0.0ft? 0.019 0.076
July 261971 0.066 O.O38 0.037 0.006 0.073
Auc261971 0.071 O.O22 0.030 0.0*0 0.016
May 16 1974 O.162 0.176 0.213 0.268 aO62
June 191976 O.033 O.O64 O.O60 0.016 O.O86
Awe 231976 O.112 0.142 O.O61 O.063 O.072
0.003 0.163 0.003
0.012 0.066 0.022
0.016 O.070 0.022
0.1O6 O.189 0.166
0.036 0.021 0.023
0.049 0.063 0.066
•The bwt flt SOLP end EXKP ate 0ven In Table 10.
Source: Rudra, R.P., W.T. Dickinson, and G.J. Wall. 1985.
Application of the CREAMS model in southern Ontario
conditions. Trans. ASAE 28(4):1233-1240.
-------
19
In 1S>80, Beasley et al. reported using ANSWERS to simulate
several management alternatives for a primarily agricultural
watershed in northeastern Indiana under several different
precipitation events. A summary of two Black Creek watersheds is
below:
TABLE 3. SUMMARY OIF OBSERVED AND PREDICTED WATERSHED
RESPONSES FOR SEVERAL STORMS IN 1976
Runoff
Sediment yield
1
Watershed
name
Smith-Fry
(942h«> ,
Upper Blabk
Creek
<714ha> |
i
aianace-
menl
practice
2
2
3
2
. 2
2
3
3
Date
4/21/75 '
6/3/75
6/3/75
4/21/75
6/3/75
6/23/75
6/3/75
6/23/75
Rainfall.
mm
31.5
22.5
22.5
33.8
25.1
64.0
25.1
64.0
Observed.
mm
3.5
9.5
—
4.0
8.2
16.5
—
•~
Predicted
mm
1.4
6.5
6.5
3.2
7.2
17.4
7.2
7.6
Observed, '
kf
20OOO
75000
—
3000O
55000
325000
—
•—
Predicted,
kf
39100
96600
53100
36300
73200
282300
46900
102000
Source: Beasley, D.B., L.F. Huggins, and E.J. Monke. 1980.
ANSWERS: A model for watershed planning. Trans. ASAE
23(4):938-944.
-------
20
ANSWERS was tested by ParJc et al. with data from two small
agricultural watersheds (5.6 and 7.5 ha) in the Four Mile creek
watershed in Iowa. Soils were Tama silt loam and Colo-Judson silt
loam. Eleven storms from 1977-78 were used in the simulation.
Watersheds were planted with soybeans and corn in rotation. They
were tilled in the spring and one of the watersheds was covered
with cornstalk residue.
TABLE 2. SUMMARY OF EROSION MODEL FARAMETERS AND SIMULATED MAXIMUM SEDIMENT CONCENTRATION
W»t*obed
1SU1
1SU2
Sionn
•veal
77/4/19
77/8/15
77/8/28
T8/4/17
78/5/27
mean
77/8/15
78/4/17
78/4/18
78/5/27
mean
Soil panmetm*
•1 KI «2
2,0
2.0
2.0
2.0
1.8
2.0
2.0
2.0
J.S
1.5
1.8
0.33
0.33
0.30
0.23
0.13
0.28
0.33
0.2S
0.12
0.12
0.21
1.0
1.0
1.O
1.2
1.0
1.0
1.5
1.0
1.0
1.2
1.2
Kf
0.25
0.26
O.13
O.25
0.08
• 0.20
0.26
0.03
0.03
0.11
0.11-
Crop panmeica*
Cn Cm Cf
l.OO
0.60
O.45
0.8O
0.60
0.68
0.14
1.00
0.66
0.65
0.61
0.40
0.25
0.25
0.46
0.32
0.33
0.17
0.25
0.25
0.26
0.26
0.40
0.16
0.16
0.30
0.26
0.25
0.03
0.10
0.04
0.10
0.08
Max. coneeotntioo.
ppm
obeerved simulated
•7440
36070
2647
14600
45640
37938
44690
319O
4660
26020
19590
84647
64945
8355
23767
43521
42560
43011
11560
14663
20033
22362
Fndlcted
•edtaneat
jrMd.kE
36924
10719
47
1O65
2125
8696
7692
1446
287
12934
431 &
•SoU aad crop panmetcn defined in equation* (6] and [11).
Source: Park, S.W., J.K. Mitchell, and J.N. Scarborough. 1982.
Soil erosion on small watersheds: a modified ANSWERS
model. Trans. ASAE 25(4):1581-1588.
-------
21
Land Use
Lo Till
Hi Till
Total N and P Loading Rates
Total N Load
(Ib/ac/yr)
5.0
12.0
Total P Load
(Ib/ac/yr)
0.42
2.05
Reference
Chesapeake Bay Basin
Model-A Final
Report (Jan. 1983)
Lo Till
Hi Till
10.6
17.9
0.87
5.64
Hartigan et al. 1983.
Calibration of NFS
model loading
factors. J. Environ.
Eng. 109(6):1259-
1272.
Lo Till
Hi Till
9.64
18.56
1.50
4.20
Southerland, E. 1981.
A continuous
simulation modeling
approach to nonpoint
pollution management.
(Dissertation).
-------
22
ID
•?
D
•o
c
IB
-1
"e
u
<£
^»
Q
E
o
u.
V)
w
i
w
u
J2
L
tft
*^*
O
IO
O)
^c
"O
(Q
O
-1
in
3
O
i_
O
.C
e.
in
O
£
<0
'o
H
•o
c
to
in
;o
•*•
O
)
•u
ft)
•o
01
o.
in
3
V)
F-l
w
JD
«
ISt
V
U
C
V
h»
«£
41
O£
1/1
3 — •
|£
A ^j
« s-4
oJjS
H Q. S.
al Ifc
•o t
«j •£:
•o «
5 -w-5.
S."o £
«« 1= £
3 0 0
.» (fl^i
W
5
c
re
*
*
**
X
^
re
C £
^ 1
8 1
ZP^
r
•^^
r^ ^^
q —
*
I :
• i
«/i
£
o
5 *
Qf +£!,
•e 2
3 a-
5 g
•o -^
5 5
•§t
- I
S3
E §
5 £
"> .£
« P
q
tN
2.
•s
IV
fj
II
11
fc %
U TW
O>
>
CN
cn
•
\o
OJ
o
CN
•
*o
Developing
Subdivision Site
•B*
0>
JC wi
es
U f
*i"
V *-
oo
g E
|w
g re
" v
^ c
»O
q
tN
8
Low Density Urban
Residential Area
•ot
v .
•c .S2
£*
II
v *J
V CD
S *
i*
5 ™
•£ ™
•e c
vo
q
q
'c
Medium Density Urba
Residential Area
TJ +
JS.S5
S^
1 »
* c
omonee
Wauwal
S S
v s
2 c
ON
\O
«->
OJ
C
Medium Density Urba
Residential Area
•a
i
Is
? 4
•4 .5
V n
,p c
^°
^ «
OS
:=z
** Timmons, O.R. and R.F. r
of Environmental Quality,
*
t*
t2?
U
«M
g
u
^
§
«A
«>
Q£
k.
i
"c
>•
•a
Ji
f9
^W
"c
1
k.
a
o
o;
fv
^i
^ i
-2
. "3'
— m
Washington County Projcc
University of Wiscunsin-M
«_
O
1
. rv
E
5
>.
1
10
•o
o
•I
0
3
3:
B
£
^
.>
is?
*^
i
e
u
Z
eo
f*.
ON
g
s
** Inlcrnatiunal Joint Commi
-------
23
Table 6-1. Urban Flow-weighted mean concentration (mg/1)
POLLUTANT
NEW OLDER CENTRAL
SUBURBAN URBAN BUSINESS
NURP SITES AREAS DISTRICT
Wash.,DC) (Baltimore) (Wash.,DC)
NATIONAL HARDWOOD NATIONAL
NURP FOREST URBAN
STUDY (Northern HIGHWAY
AVERAGE Virginia) RUNOFF
PHOSPHORUS
Total
Ortho
Soluble
Organic
0.26
0.12
0.16
0.10
1.08
0.26 1.01
-
0.82.
•
0.46
-
0.16
0.13
0.15
0.02
0.04
0.11
-
' -
0.59
NITROGEN
Total
Nitrate
Ammonia
Organic
TKN
2.00
0.48
0.26
1.25
1.51
COD ;J35.6
BOD (5-day) 5.1
13.6
8.9
1.1
7.2
163.0
2.17
0.84
1.49
36.0
3.31
0.96
2.35
90.8
11.9
0.78
0.17
0.07
0.54
0.61
>40.0
2.72
124.0
METALS
Zinc
Lead
Copper
••
0.037
: 0.018
*"
0.397
0.389
0.105
0.250
0.370
"
0.176
0.180
0.047
0.380
0.550
!_. v
Source: Schueler, T. 1987. Controlling urban runoff: a practical
manual for planning and designing urban BMPs. Department
of Environmental Programs.
-------
24
w
CA
0]
g
j
B
SB
w
3
S CS S SS 8S3S SSSK SSSC
J^rlS <*£*••* ** sO tn O P.«M^P^ O O O *-4
^ ^, ^ ^ ^ ^ ^^^^.^^^^ ^^^^ JJS^^J
' m •* i-» M eo CD
i e «M M » o o
! d e e d e e
111
s ss s ss isss ssss ssi
5 SI S 52 Jsss sssc ss,
^* *«»
2 SS S SS S3SS 38SS 2SS
s^a sss sssc ^s^s "«•
s ss g sg ftsss sggs ss:
e oo o o o « d o o M e> ci J -i d e
c
o
u
IM
e
10
0)
I
o
05
to •
It CM
a oo
•S J!
* §
B U
01
CO C
g §
U "H
00 (0
TO -M
C >
•H C
<-" U
m E
3 O.
Of O
c
2
O
o
CO
-------
25
Table 2. Comparison of selected constituents for stations in the Natural-Quality Network with stations in the Primary
Network, October 1974—Semptember 1975
Mountain province
Cataloochee Creek
Constituent '[ at Cataloochee, N.C.
'| (natural-quality)
Total nitrogen
(mg/L). :
Dissolved phosphorous :'
(mg/L).
Total phytoplanklon
(cdls/mL).
Fecal coliform
(col./lOOmL).
Biocbemical oxygen |
demand (mg/L). j
Periphyton— biomass ~
ashwuCg/m1).
Peripbyton.— biomass
drywt.(g/m«). .,
Dissolved organic
carbon (mg/L).
Chromium Oig/L)
Total
Suspended . . .
Dissolved
Bottom ' . .
Lead (Mg/L)
Total
Suspended
Dissolved
Bottom
ZincO(g/L)
Total
Suspended ...
Dissolved . '
Bottom '
0.18-1.7
.01 -.02
'260-320
'< 10-2.000
< 1-2.0
1.5-3.9
2.3-6 2
3.6-4.9
I- *** #v
o
v 1
jfj
4_ irt
^f IU
A.7
l/^ /
0»lft
1U
10-60
Neuse River near
Clayton, N.C.
(primary)
0.33-3.1
.04-. 90
1700-28.000
40-3000
1.6-6.1
4.6-5.4
6.9-8.5
7.4-12
0-10
0—10
o
10—20
IV +V
2" 130
jt I JV
5—130
A UV
0— R
0
i.xift_ncft
^ IV A^V
7_^n
—4U
0_jft
^«KI
0— ^rt
"**U
40
'Single nomypieaJ vilue ncn included.
'One value in (his concenira lion range.
Source: Water Quality of North Carolina Streams. Geological
Survey Water-supply Paper 2185 A-D. 1982.
-------
26
TOTAL NITROGEN
ORGANIC NITROGEN
NITRATE NITROGEN
AMMONIA NITROGEN
TOTAL PHOSPHORUS
EXPLANATION
X Geecfteaicol tent
Mean canttilutnt concentration,
in milligram per liter
O.CH nigh flow
0.02 Low flow
Figure 8. Mean concentrations of nutrients in unpolluted streams of North Carolina.
Source: Water Quality of North Carolina Streams. Geological
Survey Water-Supply Paper 2185 A-D. 1982.
-------
27
"able 6. Mean values and range* in concentration* of variout form* of nitrogen and phosphorus in the French Bread
-------
28
Table 10. Comparison of water quality of samples from the French Broad River at Marshall, N.C., with samples from
baseline-quality sites in the same area
French Broad River at Marshall
Mean value
Baseline quality sites
Mean value
Low High Range of
flow flow all samples
(0800 O1600
ll'/s) h»/s)
Range of
Low High all samples
flow flow
Range in
percent
attributable
to pollution
based on
mean values1
Major dlwolt ed constituent* (mUlitwni per liter)
Calcium
Magnesium ,
Sodium
Potassium
Bicarbonate
Sulfate
Chloride
Fluoride
Silica
Dissolved solids
7.0
1.2
U.O
1.7
26".0
24.0
4.3
1
10.0
76.0
4.6
1.1
2.8
1.6
15.0
11.0
3.0
.2
8.2
44.0
3.2-10.0
.2-2.0
2.4-22.0
t. 0-2.9
9.0-35.0
. 5.1-42.0
.9-5.8
.0-1.2
3.7-11.0
30.0-112.0
1.3
.6
1.5
1.0
7.4
2.2
0.9
0.1
8.1
19.0
1.3
.4
.8
.6
5.1
2.2
.7
0.1
6.6
15.0
0.5-3.0
.3-0.9
.4-2.2
.3-1.9
2.0-9.5
.8-5.7
.0-2.0
.0-0.5
3.5-9.4
12.0-22.0
72-«81
•50-64
86-'89
'41-62
66-"72
80-91
77-«79
10-50
'19-20
66-«75
Nutrients (milligrams per tiler)
Total nitrogen
Organic nitrogen
Nitrate nitrogen
Ammonia nitrogen •
Total phosphorus
. . 1 2
50
5 2
13
16
1 5
79
6 8
.11
24
066—4 8
0-4 0
29—21 0
.0-042
03—1 2
0 19
11
08
o
01
030
13
17
.01
01
0 0—0 92
.0-0 29
.0—40
.0-0.01
0—002
80- '84
'78-84
98-98
9 1 -MOO
•94-96
Trace Metals (micrograms per liter)
Total arsenic
Total chromium
Total copper
Total iron
Total lead
Total mercury
Total selenium
Total zinc
033
1X0
11.0
958.0
41.0
17
5.0
58.0
5.2
24.0
32.0
20.602
58.0
.12
17.0
424.0
0.0-10.0
.0-90.0
.0-230.0
410-70.000
.0-250.0
.0-0.5
.0-29.0
10.0-6900.0
O.I
10.0
4.0
460.0
5.0
.10
.0
10.0
0.0
10.0
4.0
1800.0
9.0
.10
.0
10.0
0.0-1.0
!.0-'-«20.0
,0-13.0
20-»8600
,0-'-25
.0-0.50
.0-'-<0.0
.0-«40.0
'70-100
'17-58
»64-88
'52-91
84-'88
17-'4l
100-100
'83-98
'Some constituents have i higher percent attributable to pollution at high ttow whereas others have a higher percent attributable to
pollution at low flow.
. .
^Exceeded limits recommended in Stft Drinking Wattr Att. Federal Register. Dec. 24, 1975. in some samples.
•Exceeded limits recommended in Quality Criitria/or Wattr. U.S. Environmenul Protection Agency. 1976 in tome samoles.
•No recommended limit*. .. *
Source: Water Quality of North Carolina Streams. Geological
Survey Water-supply Paper 2185 A-D. 1982.
-------
29
from the Neuie River near
with
Neuse River near Clayton Baseline-quality tiles
Mean Value
Base
flow
(O70
ft'/*)
High
(low
O370
flV*)
Mean Value
Range of
all Base <
samples flow
High
flow
Rvnfl^ o^
Percent
attribut-
able to
pollution
all Base
samples flow
High
flow
Majot dissolved constituent* (mg/l)
Calcium
Magnesium
Sodium
Potassium .. c .....
Bicarbonate
Sulfate
Chloride
Pluoiidc * .
Silica
Dissolved solids ... .
9.6
2.7
25
4.3
42
13
26
.5
16
120
5,3
1.7
8.4
2.4
22
9.1
8.3
.2
11
58
3.3-12 4.4
.9-3.3 1.9
2.6-37 4.6
1.5-6.4 1
8.3-70 4.6
6.3-24 2.5
2.7-41 4.1
.I-.8 .1
4.9-19 17
34-170 49
2.2
.8
1.5
1
5
5.5
1.5
.1
6
21
0.5-10
.3-4.1
.4-7.3
.3-1.9
2-44
.8-8.2
0-10
0-.5
3.1-29
12-78
54
30
82
77
89
81
84
80
60
58
53
82
58
77
40
82
50
45
63
Nutrients (mg/U
Total nitrogen
Organic nitrogen ....
Nitrate nitrogen .
Ammonia nitrogen . . .
Tola! phosphorus
3.7
. .87
2 5
.6
1.4
1.9
.83
.62
.37
.51
.3-6.1 .34
0-.34 .19
.3-4.4 .14
0-1.8 .01
.07-2.7 .02
.14
.38
.1
.01
.02
0-1.5
0-.69
0-1
0-.07
0-.05
91
86
94
98
99
93
54
84
97
96
Trace elements (pg/U
Total arsenic .
Total chromium .
Total copper ....
Total iron . . .
Total lead .
• Total mercury . .
Total selenium . .
Total zinc .
93
8 3
16
750
82
25
2
210
4.2
9.5
17
4800
29
.25
6.1
40
0-30 3.6
Or 20 10
2-70 4
520-20.000 570
2-500 6.4
0-.5 .15
0-12 0
0-1400 10
.71
10
4
4100
7.6
.5
0
10
0-.3
10-20
0-12
20-13.000
"0-25
0-.5
0-0
0-20
96
50
76
24
92
40
100
95
83
»
76
14
74
100
75
Source:
Water Quality of North Carolina Streams. Geological
Survey Water-supply Paper 2185 A-D. 1982.
-------
30
Table 9. Comparison of water quality of samples from the Neuse River at Kinston with samples from baseline water-
quality sites in the basin upstream from Kinslon
Neuse River at Kinsion
Me*nV»lue
Base
(low
«370
hVs)
High
(low
O370
ft'/»)
Range of
all
sample*
Baseline-quality sites
Mean Value
Baie
flow
High
flow
ail
umplet
Percent
attribut-
able to
pollution
Base
flow
High
flow
Major dissolved eorwliUienl* (mg/L)
Calcium
Magnesium
Sodium
Potassium
Bicarbonate
Sulfate
Chloride
Fluoride
Silica
Dissolved solids
6.9
2
12
3.1
29
11
11
.2
9 4
70
4.8
. 1.5
6.3
2.3
15
9.5
7.2
.2
9.2
49
3.2-8.8
1.1-2.5
3.5-17
1.7-4
7-40
7.2-15
3.6-17
0-.5
3.1-14
34-91
2.9
1.3
3.8
.8
3.4
4.3
3.9
.1
13
39
1.9
.6
1.8
.8
3.3
6.3
2.3
.1
5.4
22
0.2-4.0
.1-4.1
.4-7.3
.1-1.9
0-44
.6-13
0-10
0-.5
1.4-29
11-78
58
35
67
70
88
61
66
SO
44
60
60
71 '
65
78
34
68
50
41
55
Nutrients (mg/L)
Total nitrogen
Organic nitrogen
Nitrate nitrogen
Ammonia nitrogen
Total phosphorus
1 4
.7
.03
3
1.2
.7
.09
.2
.6-2.1
J06-I.I
.02-.27
.07 -.38
.4
.3
.09
.01
.02
.5
.4
.08
.01
.02
0-1.5
0-.99
0-1
0-.07
0-.05
71
57
67
93
58
43
89
90 '\
Source: Water Quality of North Carolina Streams.
Survey Water-Supply Paper 2185 A-D. 1982.
Geological
-------
31
Table S. A summary of nutriam mtbttci (or samples of the N«UM> River near Clayton and at Kintton, 1974-77 water
years. All values are in mlltigrami per liter
Toul
organic
carbon
Dissolved
organic
carbon
Total
ammonia
nitrogen
7
.3-.7
.84
9-T4
.7-1
.52
., "*-M
^-.6
.92
n»_d <
1J-.7
1.4
ft-' °
1.1-1.7
2-4
i 2.-2.8
1.4
• , 1>-»
.8-2
-" rn_,,
.5- .9
KINSTON
Mctn
Number 95 percent
of confidence
tamplet . llmiii
12
9.1- IS
«
8.8-15.2
.07
4T _.,
.03-. 11
.OS
J« , ,
.04-.06
.06
W , -
.01 -.11
.66
^
.50-.82 .
.52
39
.61 -.43
.48
*4
.56-. 40
.79
41
.70-.88
^ U
1.2-1.4
.28
*•> _
.17- J9
M J3
J1-.25
Kingc
4.1-27
1-19
.02-.27
0-.16
0-Jl
.06-1.1
.35- .76
0-1.1
.1-1.4
64-2.1
JK-.55
j07- J8
Number
ol
samples
i
., 20
12
x
13
U
11
13
II
47
47
47
12
« 47
Source: Water Quality of North Carolina Streams. Geological
Survey Water-supply Paper 2185 A-D. 1982.
-------
TABLE II1-4
GENERALIZED VALUES OF THE COVER AND MANAGEMENT FACTOR. C.
IN THE 37 STATES EAST Of THE ROCKY MOUNTAINS (Stewart rt a}., 1975)
32
Productivity lew!2
Qop, rotation. «nd management
Bast v»W: continuous fallow, tilled up Mid down slope
CORN
1 CRdR. fall TP. conv (1)
2 C RdR, (print TP, conv (1 )
3 C RdL fill TP, conv (1)
4 C RdR. we seeding, spring TP. conv (1 )
5 C. Rd L. standinf. jprinj TP. conv 1 1 }
6 C fall ihred stalk*, sprint TP. conv ( 1 }
7 C(iiU|i:>-W(Rd L. fait TP) (2)
> C Rd L, fall chisel, spring disk. 40-30-* re < 1 )
9 CUiiaf e). W we jccdinf , no-lill |>1 In c-k W (1 )
10 GlRdL>-W(RdL, sprint TP) (2)
il C fall shred sulks, chisel pi . 40-309 t e < I )
1 2 C-C-C-W-M. Rd L. TP for C disk for W (S )
• 13 C. RdL. strip till row tones. 55-409- re (i)
14 . C-C-C-W.M-M.RdL.TPforC.diskforW(6)
1 5 C-C-W-M, RdL. TP for C. <1 isk for W (4 )
1 6 C. fall shred, no-lill pi . 70-50'- re < 1 )
1 7 C-C-W-M-M. RdL. TP for C Uufc lor W (i)
1 > C-C-C-W-M. Rd L. no-till p 1 3d & 3rd C li )
19 C-C-W-M. Rd L. no-till pi 2d f (4 )
20 C no-till pi in c-k whcal. 90-70U re ( 1 )
21 C-C-C-W-M-M. no-till |»l 2d t 3rd C (6 )
22 C-W-fci Rd L. TP for C. disk for W (3)
23 C-C-W-M-M. RdL. no-till pi 2d C (5)
24 C-W-M-M. RdUTPforCdiskf>*rW(4)
25 C-w-M-M-M. RdL, TP for C. disk for W (J )
26 C. no-till pi in c-k sod. 95-80% re (1 )
COTTON'*
2? Col. conv ( Western Pbins) ( 1 )
28 Cot. conv(Souih)Cl)
MKADOW
29 Gnu IL Lc|tumr mix
30 Alfalfa, lespodexa or Serieu
31 Sweet clover
SORGHUM. GRAIN (western Pl»in»)4
32 RdL. «prinic TP. conv (1 )
33 No-lill pi in shredded 70-501/. re
Ilijh
C value
1.00
0.54
.50
.42
.40
.38
.35
.31
.24
.20
.20
.19
.17
.16
.14
.12
.11
.087
.076
.068
.062
.061
.055
.051
.039
.032
.017
0.42
.34
O.IKM
.1120
.025
0.43
.11
Mod.
t.OO
0.62
.59
.52
.49
.48
.44
.35
.50
.24
.28
.2ft
.23
.24
.20
.17
IK
.14
.13
.11
.14
.11
.095
.094
.074
.06!
.053
0.49
.40
0.01
0.53
.IK
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface and Ground Water—Part 1 (Revised-1985).
US EPA. EPA/600/6-85/002a. September 1985
-------
TABLE II1-4 (Continued)
33
Line
Crop, rotation, and management'
Productivity
High
Mod.
C value
DYBEANS*
34
35
36
37
J
WHEAT
38
3»
40
41
42
43
44
45
46
47
48
49
9. RdL, spring TP. conv (1 )
C-B. TP annually, conv (2)
B, no-tfll pi
C-B, no-tiU pi. fall shred C stalks (2)
W.»-. f»U TP after W (2)
W-1-, stubbk muk-h. 500 Ihs re (2)
W-K, nubble mulch. 1000 Ibs re (2)
Spring W. RdL. Sept TP, conv (N & S Oak) ( 1 ) .
Winter W. RdL. Auc TP. con* (Kans) (1 >
Spring W. stubble mulch. 750 Ibs re (1 )
Spring W. ttubbk muk-h. 1 250 Ibs re { 1 )
Winter W. stubble muk-h. 750 Ibs'rc (I)
Winter W, stubbk mukh. 1 250 Ibs re (1 >
W-M. con* (2)
W-M-M. conv (3)
W-M-M-M. conv(4)
0.48
.43
.22
.18
0.38
.32
.21
.23
.19
.15
.12
.11
.10
.054
\ .026
.021
0.54
.51
.28
.22
1 This table is (or illusmtive purposes only and is not a complete list of cropping systems or potential practice*. Values of C differ
with rainfall pattern and planting dales. These generalized values show approximately the relative erosion-reducing effectiveness of
vmrious crop systems, but locationaUy derived C values should be used for conservation planning at the field level. Tables of local
values an available from the Soil Conservation Service.
2 High level is exemplified by long-term yield avenges greater than 75 bu. corn or 3 toni gras*-and-legume hay: or cotton manage-
ment that regularly provides good stands and powth.
3 Numbers in parentheses indicate number of years in the rotation cycle. No. (t) designates a continuous one-crop system.
* Grain sorghum, soybeans, or rotton may be substituted for corn in line* 12.14.15.17-19.21-25 to estimate C values for wd-
based rotations.
Abbreviations defined:
F - fallow
M • grass & legume hay
pi - plant
W -wheat
we - winter covet •
B - soybeans
C • corn ~ '
c-k • chemically killed
conv - conventional
col - cotton
Ibs ic . pounds of crop residue per acre remaining on surface after new crop scedinf
% re • percentage of soil surfac* covered by residue mulch after new crop seeding
70.50ft re - 70* cover tor C values in first column; 50% for second column
RdR - residues (com stover, straw, etc.) removed or burned
RdL - all residues left on field (on surface or incorporated)
|T? - turn plowed (upper 5 or more inches of soil inverted, covering residues)
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface and Ground Water—Part 1 (Revised-1985)
US EPA. EPA/600/6-85/002a. September 1985
-------
TABLE HI-6
C FACTOR VALUES FOR PERMANENT PASTURE, RANGE AND IDLE UNO
(Wischmeler and Smith, 1978)1
34
V«o>*ativ« canopy
Cover ihol contact lh« »oil «urfoc«
Tya* one)
No appreciable
canopy
Percent
cover 3
trp,4
G
W
Perctnl around cover
0 20 40 40 M 93+
0.45 0.20 0.10 0.042 0.013 0.003
'.45 .24 .15 .091 .043 .011
Tall wcedi or 25
t hart bruth
with average
drop foil height 50
of 20 in
75
Appreciable bruth 25
or buthei. with
average drop fall
height of 6M ft 50
G .36 .17. .09 .036 .013 .003
W .36 .20 .13 .063 .041 .011
C .26 .13 .07 .035 .012 .003
W .26 .16 .11 .076 .039 .011
C .17 .10 .06 .032 .011 .003
W .17 .12 .09 .066 .038 -OU
C .40 .18 .09 .040 .013 .003
W -.40 .22 .14 .087 .042 .011
C .34 .16 .06 .038 .012 .003
W .34 .19 .13 .082 .041 .011
75 C .28 .14 .OB .036 .012 .003
W .28 .17 .12 .078 .040 .011
Tree*, but no 25 C
appreciable law . W
brvih. Average
drop (all height 50 C
of 13 ft W
.42 .19 .10 .041 .013 .003
.42 .23 .14 .089 .042 .011
.39 .18 .09 .040 .013 '.003
.39 .21 .14 .087 .042 .011
75 C .36 .17 .09 .039 .012 .003
W J6 M .13 .064 .041 .011
titled C valvet otiume that the vegetation and mulch are
randomly dillribulcd over the entire area.
2 Canopy height it meatured ai the average fall height of water
dropi falling from the canopy to the ground. Canopy effect it in-
vertely proportional to drop fall height and it negligible if fall
height eiceedt 33 ft.
3 Par lion of lolol-orcct lurface Ihol would be hidden from view by
canopy in a vertical projection (a bird't-eye view).
*G: cover at lurface it grott. grattlike planii. decoying com-
pacted duff, or litter at lean 2 in deep.
W: cover el ivrface » mattly broodleaf herbaceoui planii Cot
weedt with little loleraUroel network near the twrfoce) or
undecayed reiiduet or both.
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface and Ground Water—Part 1 (Revised-1985).
US EPA. EPA/60076-85/002a. September 1985
-------
35
TABLE 111-7
C FACTOR VALUES FOR UNDISTURBED FOREST LAND
(Hischmeier and Smith, 1978)
Percent of Area
Covered by Canopy
of Trees and
Undergrowth
Percent of Area
Covered by
Duff (litter) at
least 5 on deep
Factor
C
100-75
70-45
40-20
100-90
85-75
70-40
0.0001-0.001
0.002-0.004
0.003-4.009
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface and Ground Water—Part 1 (Revised-1985)
US EPA. EPA/600/6-85/002a. September 1985
-------
36
TABLE II1-8
C FACTOR VALUES FOR MECHANICALLY PREPARED WOODLAND SITES
(Wischmeler and Smith, 1978}
\
Sit
Mvlch
Seil cendtllen? oi»d w««d iov««3
ToTrf
NC WC NC WC NC WC ~NC WC
Oi.l.d. roktd.
or b*dd>d Hen* 1
10
20
40
60
80
Iwrned' .... None
10
20
40
60
80
Drum chopped 5 None
10
20
40
60
• * 80
3.32
.33
.24
.17
.11
.03
.23
.23
.19
.14
.08
.04
.16
.13
.12
J09
.06
.03
0.70
.13
.12
.11
.08
.04
.10
.10
.10
.09
.06
.04
.07
.07
.06
.06
.03
.03
0.72
.46
J4
.23
.13
.07
.26
.24
.19
.14
.09
.03
.17
.16
.12
.09
.06
.03
0.27
.20
.17
.14
.11
.06
.10
.10
.10
..09
.07
.04
.07
.07
.06
.06
.03
.03
O.BS-
'.34
.40
.27
.18
.09
.31
.26
.21
.13
.10
.03
.20
.17
.14
.10
.07
.03
0.32
.24
.20
.17
.14
.08
.12
.11
.11
.09
.08
.04
.08
.08
.07
.06
.03
.03
0.94
.60
.44
JO
.20
.10
.43
J6
.27
.17
.11
.06
.29
.23
.18
.11
.07
.04
0.36
.26
.22
'.19
.13
.09
.17
.16
.14
.11
.08
.03
.11
.10
.09
.07
.03
.04
1 percentage of lurfoce covered by re»ld«e In contact wllh the
toll.
2f«cef(W toll condition—Highly noble toil oggregalei In lop.
tetl wllh fin* lr» reelt and lltur mU«d In.
Cooi/—Moderately ilobU toil aggregate* In loptoii or hip My
liable oggregolei In ivbioll (lapioil removed during raking), only
Iracei of Illler mlsed In.
fair— Highly unitoble iatl aggregoUi In lopioll or moderately
llobl« aggrigalei In tubioll, no lltler mlied In.
fear—No laptell. Klghly credible toll aggregatei In lubtoll. no
Illler mixed la.
3 NC—No live v«B«lalIon.
WC—73 pirctnl *ov»r of gran and w»»d» having an avorago..
drop roll height of 20 In. For !nt«rm«dlat< p«rc«*t>
og«« of cover, Inlarpolot* b*t««*n columns
4 Modify lh* tilled C value* o» followi to account lor offoch »*
itirloc* rovghneti and aging i
Flrit yeor after Ireolmenli multiply titled C valwei by 0.40 for
rough turfose (depreuloni >6 In); by Q.&5 for ModeraUry
rough; end by 0.90 for tmooth (depreiilont <2 In).
For 1 to 4 yeort after Irealmenli nulllply titled lotion by OJ.
For •*+ to 8 yearn vie table 6.
•More than I yearn uie loble 7.
For firil 3 yearn Me C voluei at lUted.
For 3+ lo I yeon ofttr trealmenti «•• table 6.
More than 8 yean aher Irealmenli tite loble 7.
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface and Ground Water—Part 1 (Revised-1985).
US EPA. EPA/600/6-85/002a. September 1985
-------
37
TABLE 111-12
REPRESENTATIVE DISSOLVED NUTRIENT CONCENTRATIONS IN RURAL RUNOFF
Soil Cover
Fallow*
Corn3
Small Grains3
Hay8
Pasture3
Inactive Agriculture^
Eastern U.S.
Midwest
West
Forestc
Eastern U.S.
Hid west
West
Nitrogen
(mg/1)
2.6
2.9
1.8
2.8
3.0
1.6
1.5
1.5
0.19
0.06
0.07
Phosphorus
(mg/1)
0.10
0.26
0.30
0.15
0.27
0.14
0.14
0.14
0.006
0.009
0.012
JSnpwmelt Runoff from Manured Fieldsd
Fallow
Corn
Small Grains
Hay
12.2
12.2
25.0
36.0
1.9
1.9
5.0
8.7
8Dornbush et jBl^ (1974)
bAverage of pasture and forest
cDroernik (1977). See Figures 111-4,5
dGilbertson jit £l_ (1979). These concentrations are asso-
ciated with winter manure spreading.
Source: Water Quality Assessment: A Screening Procedure for Toxic and
Conventional Pollutants in Surface'and Ground Water—Part 1 (Revised-1985).
US EPA. EPA/600/6-85/002a. September 1985
-------
38
Table 1. Major Soils of the 3058 ha Mill Creek Watershed
Soil
Area (ha)
Percent of Total
Loam
Loamy Sand
Muck
Sandy Loam
Alluvial Land
fine Sandy Loan
Fine Sand
(Lakes)
. 2,242
489
153
99
30
6
4
35
73.3
16.0
5.0
3.2
1.0
0.2
0.1
1.1
Source: Seminar on Water Quality Management Trade-Offs: Point Source vs. Diffuse
8pure• Pollution CCenlerenoe) September 16-17, I960, Chicago, Illinois. US KfA.
EPA-905/9-80-009. September 1980.
-------
39
Table 3. Stream Enporc of Material* by the 30)6 ha Hill Creek Watershed Above H-37
Nitrate-M
Nitrite-N
Ammoai*-N
Total KJcldahl K
Molybcatc Inactive r
Total F
Chloride
Calcium
Sodium
5u*p*nded Sol id>
Weighted
mean (•*/!>
1.765
0.023
0.078
0.782
0.076
0.153
11.778
49.676
3.462
11.590
1973-76
local load
(kg/yr)
30373 * 3546
188 * 283
912
9116
882
1782
137303
579095
63901
1JS114
1023
2293
29B
1018
23309
111673
8939
1374*5
Unit aree
load (kf/
ha/yr)
6.729
0.094
0.296
2.981
0.288
0.583
44.900
169.371
20.696
44.164
Uaightad
Man (mg/1)
3.636
0.010
0.020
1.117
0.181
0.313
19.608
31.314
3.964
47.965
1976-77
Total le«4
11766 3496
31.24
62.95
3602
562
1006
63663
165439
19293
134709
3.3*
27.72
1090
250
331
8334
56926
' 3644
146989
Unit area
load (kg/
ha/yr)
3.854
0.010
0.021
1.176
0.190
0.330
20.884
54.100
6.309
30.392
Table 4. Streuo Export of Material* by tba 889 ha Horth Branch Subwater*hed of Kill Creek
1973-76
1976-77
Weighted
mean (mg/1)
MlcraCa-H
Mtrite-S
amwjui \ e K
Total Kjeldahl 8
Holybdace tractive r
TouO. P
Chloride
Calcium
Sodium
Su*fwui*d Solid*
1.
0.
0.
0.
0.
0.
13.
S3.
191
038
073
696
073
171
585
690
6.687
21.490
Total load
(kg/yr)
3529 t
113 t
215 *
2063
217
506
4024C
159076
19811 *
63655 *
1433
137
229
938
99
335
13602
42395
5105
23995
Unit area
load (kg/
ha/yr)
3.970
0.127
0.242
2.321
0.244
0.569
45.271
176.940
22.285
71.614
Weighted
Man (mg/1)
0.
0.
0.
0.
0.
0.
30.
685
010
010
465
050
054
527
a
a
a
Total load
(kg/yr)
566
6.38
6.61
229
32.1
34.5
19602
i
t
t
t
I
»
*
a
a
a
66
.11
.34
52
12.5
14.1
1169
Unit area
load (kg/
ha/yr)
0.639
0.007
0.007
0.336
0.036
0.039
22.049
a
a
a
a laeofficient data
Table 5. Stream Export of Material* by the 1146 ha Mill Creek Watershed Above the Confluence vith North Branch
1975-76
Mitrate-H
Nitrite-*
Aamonia-M
Total Kjeldahl H
Molybdatc reactive T
Total T
Chloride
Calcium
Sodium
Suananded aolida
Weighted
mean (mg/1)
1.511
0.013
0.100
0.798
0.063
0.139
9.875
42.438
3.781
16.388
Total
load
(kg/yr)
5200 t 2836
44.2 S 40.5
344
2745
216
478
33986
146055
416
731
' 103
238
4377
25920
13012 1 1605
56399 i 35775
Unit area
load (kg/
ha/yr)
4.358 .
0.039
0.300
2.393
0.188
0.417
29.656
127.448
11.354
49.214
Weighted
mean («g/l
5.607
0.009
0.013
1.175
0.156
0.248
19.265
44.060
3.607
33.603
1976-77
Total load
(kg/yr)
4061 t 2316
6.76 t 1.74
9.26 i 12.10,
851 t 301
113 S. 43
179 t 109
13954 $ 2969
31913 i 15662
. 2757 t 1256
22464 * 73338
Unit area
load (kg/
ha/yr)
3.544
0.006
0.008
0.743
0.099
0.156
12.176
27.647
2.406
21.365
-------
40
Table 3. Total and available phoiphoru*
conaarvation tillage practice*
loaaa (metric com) to L*»« Crt« bafore and after adoption of
Point f
Upper
Lafcea* k .
Before 1060 2*55 617
After 10*0 2453 617
Itfere 473 184 1 272
After 475 1841 272
Rural Diffuse
Atiwapherlc* "articulate" Soluble I
20* *OI
Total r
1119 6610 6610 1530
1119 2*96 2496 1530
Objective
Ava Habit f
560 1132 2264 1530
360 499 996 1530
Objective
Urban*
>lffuae
1570
1570
• 11.000
691
691
- T
Total Load
202 40Z
•
1551« 13S1I
11*04 (26. 5Z)d 11404 (26.SZ>*
«S01 7633
MM (9.7Z)d *3»J (16.M)d
* *ji»OBptlon: >OZ ot the tocml load !• partlculac* and 301 of the partlculalc load la available; 1001 of the
•olubl* load 1* aaaumcd tp be availabl*.
b A**uBp«lon: dir«et dlaeharfc of
effluent to the lak* 1* 75X av.llabl*
«t •!. 1980).
e Aa*iMptton; nhort c«n availablllcy of rural dlffu«« ••dlacnc P la 20Z and long Can availability ia
*OI Uojan^aJ.. W79).
d Percent reduction with conservation ttlla|«.
a Ata»*ph«rlc P courcea are aaaiMMd co b* SOZ available.
f Xeaidual paint aourca* after reduction to 1 •*!•/!.
Source: Seminar on Water Quality Management Trade-Offs: Point Source vs. Diffuse
« 16-17. 1»80, Chio..«, lilinei., US
September 1980.
-------
41
Table 1—Phosphorus loadings lo Chesapeake Bay by major basin (March-October)
H Point H Cropland « Other
source toad aounetoad
Phoaahonw ikdl contribution contribution source eontrto.
•avin Dry Avg. W»t Dry Avg. Wet Dry Avg. »
tart A: at the tall line
Susquehanns 941.000 1.318.000 2.664.000
Pwuiera 156.000 149.000 174,000
Potomac 326,000 386.000 1,077.000
Rappahanneck 49.000 47.000 130.000
tork 30.000 35.000 151.000
James
TOTAL
tart •: te IMai w
VtCheMpeake
PltuMM
Potomac
Rappahanneck
Vbrk
James
Eastern Shore
TOTAL
Pert C: tart A +
Suaquenanna
Paluxem
Potomac
Rappahannock
Ibrk
James '
Vt Chesapeake
Eastern Shore
TOTA1.
299,000 349.000 690.000
1.601. 000 2JM.OOO 6.066.00O
•ton (betow the toll line)
966,000 1.067.000 1.394.000
69.000 66.000 130,000
882.000 915,000 1.263.000
54.000 79,000 221.000
39,000 65,000 208,000
1.325.000 1,374.000 1.670.000
345.000 379.000 962,000
3.692.000 3.967.000 5.738.000
tana
941.000 1.316.000 2.664.000
215.000 217.000 304.000
1.208.000 1.303.000 2.304.000
103,000 126.000 350.000
69,000 100.000 359.000
1.624.000 1,723.000 2.259.000
968.000 1.087.000 1,384.000
345.000 379.000 962.000
5.493.000 6.253.00010.786.000
24
92
27
1
7
46
33
93
79
82
69
64
96
44
87
24
88
67.
47
50
66
93
44
69
23
90
15
1
7
36
26
65
69
79
61
50
93
4O
81
23
83
59
39
35
81
65
40
61
12
76
7
1
2
21
14
67
36
57
22
16
81
16
56
12
56
34
14
10
63
67
16
36
60
7
52
56
74
46
S3
8
19
10
27
27
3
SO
12
60
10
23
39
44
12
6
SO
27
M Dry Avg. W
77
19
72
75
86
63
72
25
61
31
69
66
14
79
36
77
33
50
71
76
29
25
79
S3
16
3
33
41
19
16
_____
7
12
11
12
10
4
10
7~
17
7
18
22
6
7
7
10
12 *"
let Dry A»g. Vtt
11
5
21
24
12
16
^••0 ^BM
14
6
13
12
9
8
.5
S
«.~
11
9
16
IS
14
6
8
5
11~
76
6
73
99
93
55
P^^— *
67
7
21
16
11
16
4
' 66
13
76
12
33
53
SO
14
7
56
31
7* .
10
6S
91
91
6*
^m^^^^m
n
IS
31
it
•
so
7
99
i»~
77
17
41
61
6$
11
IS
63
5"
•
M
a
•
•
n
"5
a
H
4}
n •
M '
II
J1-.
44 '
• .
41 •
81 ;
_;
9)
»••
a*
—5
»*
Tabl* 2.—Nitrogen loadings lo Chesapeake Bay by major basin (March-October)
Nitrogen (kg)
H Point
source
contribution
H Cropland
toad
contribution
H Other
sounse toad
source eontrib.
** °V *»»• W"» Dry AvB- Wet Dry Avo. Wet Dry Avo Kfct t
faemhinna
hUM
tana:.
BjtpiNannock
*A
**•
IwUL
21.500.00026,500.00048.000.000
580.000 536,000 809.000
6,270.000 7.500.00017.800.000
695.000 727.000 1.660,000
380.000 370,000 1.264.000
1,760.000 2.300.000 5,030.000
31,185.00037.933.00074,559.000
P-t •: to Mai waters (below the Ml Una)
*Ow»PMk» 6.179.000 7,265.00010.036.000
WA •
lM*n Shore
mu
PMCiPartA •» tan
**art
feBpahennock
*rt
WOwupsaks
Com Shore
TBttl
438.000 596.000 1.276.000
6,094.000 9J99.00011J94.000
279,000 611.000 2.047.OOO
315.000 666.000 2.255.000
6.272.000 7.013.000 6.913.000
3.269,000 3.973.000 9.500.000
24.647.00029J6S.00045.42S.OOO
B
?i .500.000 26 4SA nm4T TJT ATM
1.015.000 t.133.000 2.068.000
14.367.000 15.944,00029.167.000
975.000 1.339.000 3.734.000
630.000 1.066.000 3.492.00O
6.032.000 9J20.00013.945.000
6.179.000 7jZe5.OOOlO.038.000
3.269.000 3.973.000 9.500.000
55.967.00066.497.0001 19.691 ,000
10
71
10
10
10
10
11
65
46
77
37
34
88
13
72
10
61
48
-17
22
71
as
13
38
10
65
10
10
10
9
11
72
35
74
17
15
79
10
62
10
49
44
13
13
62
72
10
33
5
41
10
10
10
8
7
52
16
55
S
S
62
4
39
5
26
28
7
7
43
52
4
19
65
29
83
72
76
73
83
20
55
17
73
76
IS
63
M
85
43
46
72
77
29
20
83
60
91
S3
64
78
62
78
88
40
75
37
69
90
32
92
64
91
66
66
64
87
49
40
92
75
S
6
7
18
12
18
6
— 6
10
9
to
9
6
7
6
S
8
8
15
10
9
8
7
7
4
6
6
12
•8
14
5
•8
9
a
6
S
6
4
— __
4
8
.6
9
.6
6
8
•4
6
T Total
IM)MPIfMMs"H
contribution
90
29
90
90
90
90
89
15
52
23
63
66
12
87
•Ml^^
28
90
39
52
63
78
29
15
87
62
90
35
'90
90
90
91
88
65
26
63
65
21
90
^^^^H ^B
38
90
SI .
55
67
87
36
28
90
67
95
59
90
90
90
92
9.1
4£
64
.49
95
95
3
96
61
95
74
72
93
93
57
49
96
81
Source: Macknis, Joseph. "Chesapeake Bay Nonpoint Source Pollution."
Perspectives on Nonpoint Source Pollution: Estuarine Quality
pp!65-171
-------
42
s
u
!
§
6
S« •>
0 «
4
S
.4
i i
s
S^ • <* » r* a r*
^ • o ft *> * •*
•»•>»• r- e p-
« • o <^ *< * *«
SP4 «k
_ n e
i i i
§
1 i
i I
I
i I i i
£^ tn ^ *i * «
w w »* « r» M
£m •* r* *» P<
O •> *t P» O
•
fc I* t? I* t» t« H
I I i I i i I
1 I i i i i 1
CO
M
o
n.
01
as,
f
01
•o
e
03
10
CQ
I
u
3
O
-------
-------
WK 6
------- |